diff --git a/notebooks/edu_content_human_as_a_judge.ipynb b/notebooks/edu_content_human_as_a_judge.ipynb index 15ec7af0..d3a7b872 100644 --- a/notebooks/edu_content_human_as_a_judge.ipynb +++ b/notebooks/edu_content_human_as_a_judge.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 78, + "execution_count": 1, "id": "e32546d4", "metadata": {}, "outputs": [], @@ -11,7 +11,46 @@ "import numpy as np\n", "import json \n", "from pathlib import Path\n", - "import matplotlib.pyplot as plt" + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import re\n", + "from collections import Counter\n" + ] + }, + { + "cell_type": "markdown", + "id": "01335ae6", + "metadata": {}, + "source": [ + "# Globals" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "efba794a", + "metadata": {}, + "outputs": [], + "source": [ + "language_codes = {\n", + " # \"en\": \"English\", # TODO: Remove English from the list?\n", + " \"bg\": \"Bulgarian\",\n", + " \"pl\": \"Polish\",\n", + " \"uk\": \"Ukrainian\",\n", + " \"de\": \"German\",\n", + " \"nb\": \"Norwegian\", # Bokmal\n", + " \"es\": \"Spanish\",\n", + " \"fr\": \"French\",\n", + " \"it\": \"Italian\",\n", + " \"hu\": \"Hungarian\",\n", + " \"fi\": \"Finnish\",\n", + " \"lt\": \"Lithuanian\",\n", + " \"el\": \"Greek\",\n", + " \"tr\": \"Turkish\",\n", + "}\n", + "\n", + "ablated_models = [\"gemma-3-27b-it\", \"Llama-3.3-70B-Instruct\", \"Mistral-Small-3.1-24B-Instruct-2503\"]" ] }, { @@ -30,7 +69,15 @@ "outputs": [], "source": [ "gt_annotations_path = Path(\"/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_human_as_a_judge/human_raw_scores/annotations__educational_content__en__gt.jsonl\")\n", - "en_documents_path = Path(\"/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_human_as_a_judge/human_aggregated_scores/511_test_documents_educational_content_en.jsonl\")" + "en_documents_path = Path(\"/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_human_as_a_judge/human_aggregated_scores/511_test_documents_educational_content_en.jsonl\")\n", + "llm_as_a_judge_metrics_path = Path(\"/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/output/llm_as_a_judge_metrics_continuous_spearman\")\n", + "annotated_500k_samples_path = Path(\"/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content\")\n", + "\n", + "# must be set!\n", + "# plot_path = Path(\"/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/output/plots\")\n", + "\n", + "if not plot_path.exists():\n", + " plot_path.mkdir(parents=True)" ] }, { @@ -43,7 +90,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 4, "id": "3467ff65", "metadata": {}, "outputs": [], @@ -54,7 +101,7 @@ " for line in f:\n", " obj = json.loads(line)\n", " row = obj.get(\"scores\")\n", - " cleaned = [int(x) if x is not None else None for x in row]\n", + " cleaned = [int(x) if x is not None else None for x in row] # we get three scores per document\n", " if cleaned: # ensure it’s not empty\n", " scores.append(cleaned)\n", " return scores\n", @@ -78,7 +125,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 5, "id": "57a95718", "metadata": {}, "outputs": [], @@ -92,8 +139,8 @@ }, { "cell_type": "code", - "execution_count": null, - "id": "a9a6602c", + "execution_count": 6, + "id": "142a4b26", "metadata": {}, "outputs": [ { @@ -105,8 +152,7 @@ } ], "source": [ - "jsonl_path = \"annotations__educational_content__en__gt.jsonl\"\n", - "annotations = load_gt_annotations(jsonl_path)\n", + "annotations = load_gt_annotations(gt_annotations_path)\n", "alpha = compute_krippendorff_alpha(annotations)\n", "print(f\"Krippendorff’s alpha (ordinal): {alpha:.3f}\")" ] @@ -121,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 7, "id": "c43d692e", "metadata": {}, "outputs": [ @@ -131,19 +177,19 @@ "np.float64(0.5627472794400139)" ] }, - "execution_count": 72, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gt_annotations = load_gt_annotations(gt_annotations_path)\n", - "np.array(gt_annotations).std(axis=1).mean()\n" + "np.array(gt_annotations).std(axis=1).mean()" ] }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 8, "id": "08d566f8", "metadata": {}, "outputs": [ @@ -172,6 +218,34 @@ "plt.show()" ] }, + { + "cell_type": "markdown", + "id": "29c45956", + "metadata": {}, + "source": [ + "### Agreement Analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "3a5814db", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Agreement rate: 0.785\n" + ] + } + ], + "source": [ + "annotations = load_gt_annotations(gt_annotations_path)\n", + "at_least_two_equal = [int(len(set(row)) < 3) for row in annotations]\n", + "print(f\"Agreement rate: {sum(at_least_two_equal) / len(at_least_two_equal):.3f}\")" + ] + }, { "cell_type": "markdown", "id": "5bd0348d", @@ -182,7 +256,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 10, "id": "5e1987d3", "metadata": {}, "outputs": [], @@ -193,55 +267,69 @@ }, { "cell_type": "code", - "execution_count": 77, - "id": "ce70f9a3", + "execution_count": 11, + "id": "99e69d68", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAGGCAYAAAD2GLGMAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAASiZJREFUeJzt3XdUFFf/P/D3grtLBxEFEQVUFLFhF7ELYoktGtH4+wb7E4OFqDEhtlhRfIK9m9ii0dgSYywQUTFWbNg1GixRwRiVKrDC/f3hYR/XBRxwYAHfr3M4h7kzc+9n787uZ6fdUQghBIiIiChPRoYOgIiIqCRgwiQiIpKACZOIiEgCJkwiIiIJmDCJiIgkYMIkIiKSgAmTiIhIAiZMIiIiCZgwiYiIJHjvEubAgQPh4uIia53r1q2DQqHAnTt3ZK23MHzzzTdQKBRF0lbbtm3Rtm1b7fThw4ehUCiwffv2Imm/MN5ruSUnJ2Po0KFwcHCAQqFAUFBQvuvIfk+fPHkif4DvgcLYTjZu3Ah3d3colUrY2NjIWndp5OLigoEDBxo6jLcqUMK8ffs2/vOf/6Bq1aowMTGBlZUVvL29sXDhQrx48ULuGIuN2bNn4+effzZ0GFrZiTr7z8TEBI6OjvDz88OiRYuQlJQkSzsPHz7EN998gwsXLshSn5yKc2xSzJ49G+vWrcOIESOwceNG/N///V+eyxp6+7t06RL69OkDZ2dnmJiYoFKlSvD19cXixYsNGldxcv36dQwcOBDVqlXD6tWrsWrVKknrTZgwAQqFAv7+/oUcYf6lpqbim2++weHDhwtcx/Hjx/HNN9/g+fPnssVV5EQ+7dmzR5iamgobGxsxevRosWrVKrFkyRLRr18/oVQqxbBhw/JbZZEKCAgQzs7OBVrX3NxcBAQE6JW/fPlSvHjxQmRlZb1bcPm0du1aAUBMnz5dbNy4UXz//fdi9uzZomPHjkKhUAhnZ2cRExOjs45GoxEvXrzIVzvR0dECgFi7dm2+1ktPTxfp6ena6UOHDgkAYtu2bfmqp6CxZWRkiLS0NNnaKgzNmjUT3t7ekpbNbfubOnWqACD++ecfmaPTdezYMaFSqUT16tXFjBkzxOrVq8WUKVNEx44dRbVq1Qq17cL0Lt8JOVm+fLkAIP7880/J62RlZQknJyfh4uIiTE1NRWJiomzxyOGff/4RAMTUqVMLXMe8efMEABEbG6s3Ly0tTWRkZBQ8wCJSJj/JNTY2Fv369YOzszMiIyNRsWJF7bzAwEDcunULv/32m2zJvKQwNjaGsbGxwdrv3LkzGjdurJ0ODg5GZGQkPvjgA3Tv3h3Xrl2DqakpAKBMmTIoUyZfb3u+paamwszMDCqVqlDbeRulUmnQ9qV4/PgxPDw8DB2GJLNmzYK1tTWio6P1DjM+fvxYtnZSUlJgbm4uW31FLbsv8nMo9vDhw/j7778RGRkJPz8/7Ny5EwEBAYUUYfGjVqsNHYI0+cmun376qQAgjh079tZlY2Njc/3ljzd+qWT/Qr5x44YYMGCAsLKyEnZ2dmLSpEkiKytL3Lt3T3Tv3l1YWloKe3t78d///lenvuw9rTd/uWTv0Rw6dEhbltOvyXnz5gkvLy9ha2srTExMRMOGDfX2ggDo/WX/2n+z/a5duwpXV9cc+6V58+aiUaNGOmUbN24UDRs2FCYmJqJs2bLC399f3Lt3L8f1c3rd0dHROc6fPXu2ACBWrVqlLcvu69eFh4cLb29vYW1tLczNzUWNGjVEcHCwEOJ/ffjmX/b72qZNG1G7dm1x5swZ0apVK2FqairGjBmjndemTRttO9l1bdmyRQQHBwt7e3thZmYmunXrpvd6nZ2dc9yber3Ot8WW03udnJwsxo4dK5ycnIRKpRI1atQQ8+bN0zs6AEAEBgaKXbt2idq1awuVSiU8PDzEvn37cuzrN8XHx4vBgweLChUqCLVaLerVqyfWrVun1xdv/uX06zs7nty2v+z39M8//xQBAQHC2tpaWFlZiYEDB4qUlBS9ugq6vdWsWVO0bdtW0uvP7r8ffvhB1KhRQ6jVatGwYUNx5MgRneWyY79y5Yro37+/sLGxEZ6envmKNSoqSvTp00dUrlxZqFQq4eTkJIKCgkRqaqpeXNnvp1qtFrVr1xY7d+7M1x7m0qVLhYeHh1CpVKJixYris88+E8+ePdPOd3Z21nufpOyVDRkyRHh4eAghhOjcubPw9fXVWyZ7m9m6dauYOXOmqFSpklCr1aJ9+/Z6e7PZn8srV66Itm3bClNTU+Ho6Cjmzp2rV+/bttXs7/LcXldMTIwICAgQrq6uQq1WC3t7ezFo0CDx5MkTbR3Z73Nu23tOn/fbt2+LPn36iLJlywpTU1PRrFkzsWfPngL3yc2bN8WHH34o7O3thVqtFpUqVRL+/v7i+fPneb85r8lXwqxUqZKoWrWqpGULkjA9PT1F//79xbJly0TXrl0FABEWFiZq1qwpRowYIZYtWya8vb0FAJ0P3rsmTCcnJ/HZZ5+JJUuWiLCwMNG0aVMBQOfN2bhxo1Cr1aJVq1Zi48aNYuPGjeL48eM5tr9hwwYBQJw+fVqnnTt37ggAYt68edqymTNnCoVCIfz9/cWyZcvEtGnThJ2dnXBxcdH5IObkbQnz/v37AoDo06ePXl9nu3z5slCpVKJx48Zi4cKFYsWKFWL8+PGidevWQggh4uLixPTp0wUAMXz4cO1rv337thDi1QfTwcFBlC9fXowaNUqsXLlS/Pzzz9p5OSXMunXrinr16omwsDDx1VdfCRMTE1GjRg2dLzgpCfNtsb35XmdlZYn27dsLhUIhhg4dKpYsWSK6desmAIigoCCddgCI+vXri4oVK4oZM2aIBQsWiKpVqwozMzOdL4KcpKamilq1agmlUik+//xzsWjRItGqVSsBQCxYsEAb+8aNG4WdnZ3w9PTUxp6cnJxjnXltf9nvaYMGDcSHH34oli1bJoYOHSoAiAkTJujU8y7bW8eOHYWlpaW4dOlSnstl91+dOnWEnZ2dmD59upg7d65wdnYWpqamOutnx+7h4SF69Oghli1bJpYuXZqvWEeNGiW6dOkiZs+eLVauXCmGDBkijI2NdbZ7IYQ4cOCAMDIyEnXq1BFhYWFi4sSJwtraWtSuXVtSwsyO1cfHRyxevFiMHDlSGBsbiyZNmmgPJ+7atUv06tVLABDLly8XGzdu1Dst8qa0tDRhY2MjZsyYIYR49f1hbGwsHj16pLNc9uenQYMGolGjRmL+/Pnim2++EWZmZqJp06Y6y7Zp00Y4OjqKypUrizFjxohly5aJ9u3bCwBi79692uWkbKvJycnaw8y9evXSbn/Zr+u///2vaNWqlZg+fbpYtWqVGDNmjDA1NRVNmzbV/hCNiYkR/fv3FwDE/Pnz9bb3Nz/vcXFxwt7eXlhaWoqJEyeKsLAwUb9+fWFkZCR27tyZ7z5JT08Xrq6uwtHRUcycOVOsWbNGTJs2TTRp0kTcuXPnre99NskJMyEhQQAQPXr0kLR8QRLm8OHDtWUvX74UTk5OQqFQiDlz5mjLnz17JkxNTXU6910T5pu/RDMyMkSdOnVE+/btdcpzO4f0ZvsJCQlCrVaLcePG6SwXGhoqFAqFuHv3rhDiVQI1NjYWs2bN0lnu0qVLokyZMnrlubWbW8IUQghra2vRoEED7fSbCXP+/PlvPf+V13nCNm3aCABixYoVOc7LKWFWqlRJ5xzNTz/9JACIhQsXasukJMy3xfbme/3zzz8LAGLmzJk6y/Xp00coFApx69YtbRkAoVKpdMpiYmIEALF48WK9tl63YMECAUD88MMP2rKMjAzh5eUlLCwsdF67s7Oz6Nq1a571ZXvbOczBgwfrlPfq1UuUK1dOO/2u21t4eLgwNjYWxsbGwsvLS0yYMEEcOHAgx3NP2XsQZ86c0ZbdvXtXmJiYiF69eunF3r9/f5318xNrTnuSISEhOp81IYTw9PQUFStW1NmjCA8PFwDemjAfP34sVCqV6Nixo8jMzNSWL1myRAAQ33//vd5rknpOefv27TrnPBMTE4WJiYmYP3++znLZn59atWrpXBuwcOFCAUDnh0j253LDhg3asvT0dOHg4CB69+6tLZO6reZ1DjOn/v/xxx8FABEVFaUty+sc5puf96CgIAFAHD16VFuWlJQkXF1dhYuLi/Y9kNon58+fF8C7Xz8h+SrZxMREAIClpaXUVfJt6NCh2v+NjY3RuHFjCCEwZMgQbbmNjQ1q1qyJv/76S7Z2s8/vAcCzZ8+QkJCAVq1a4dy5cwWqz8rKCp07d8ZPP/0E8drzubdu3YrmzZujSpUqAICdO3ciKysLffv2xZMnT7R/Dg4OcHNzw6FDh97thQGwsLDI82rZ7PMsv/zyC7KysgrUhlqtxqBBgyQv/8knn+hsR3369EHFihWxd+/eArUv1d69e2FsbIzRo0frlI8bNw5CCOzbt0+n3MfHB9WqVdNO16tXD1ZWVm/d9vbu3QsHBwf0799fW6ZUKjF69GgkJyfjyJEjMrwafZ9++qnOdKtWrfDvv/9qP7vvur35+vrixIkT6N69O2JiYhAaGgo/Pz9UqlQJu3fv1lvey8sLjRo10k5XqVIFPXr0wIEDB5CZmZln7PmJ9fXPb0pKCp48eYIWLVpACIHz588DAB49eoQLFy4gICAA1tbWOq9Jyjnk33//HRkZGQgKCoKR0f++NocNGwYrK6t3unZj06ZNaNy4MapXrw7g1Xds165dsWnTphyXHzRokM71Aa1atQIAve3SwsIC/+///T/ttEqlQtOmTXWWk2Nbfb3/09LS8OTJEzRv3hwACvwdunfvXjRt2hQtW7bUeT3Dhw/HnTt3cPXqVZ3l39Yn2e/5gQMHkJqaWqCYgHzcVmJlZQUAst2qkJPsRJLN2toaJiYmsLOz0yt/9uyZbO3u2bMHzZs3h4mJCWxtbVG+fHksX74cCQkJBa7T398f9+/fx4kTJwC8uhXn7NmzOpeM//nnnxBCwM3NDeXLl9f5u3btmiwXUiQnJ+f5I8ff3x/e3t4YOnQo7O3t0a9fP/z000/5Sp6VKlXK1wU+bm5uOtMKhQLVq1cv9PtY7969C0dHR73+qFWrlnb+697cHgGgbNmyb9327t69Czc3N50v1rzakcub8ZYtWxYAtPHKsb01adIEO3fuxLNnz3D69GkEBwcjKSkJffr00fsSe/N9BoAaNWogNTUV//zzj065q6urznR+Yr137x4GDhwIW1tbWFhYoHz58mjTpg0AaD/D2X2eU0w1a9Z86+vOXv/NZVUqFapWrVrg9/T58+fYu3cv2rRpg1u3bmn/vL29cebMGdy8eVNvnbe9z9mcnJz07rl+c/uVY1t9+vQpxowZA3t7e5iamqJ8+fLa97Og36F3797N8X2R+ll9s09cXV0xduxYrFmzBnZ2dvDz88PSpUvzHZ/kyyWtrKzg6OiIy5cvS1o+t5vj3/xl+bqcrjTN7erT1/fcCtJWtqNHj6J79+5o3bo1li1bhooVK0KpVGLt2rXYvHnzW9fPTbdu3WBmZoaffvoJLVq0wE8//QQjIyN89NFH2mWysrKgUCiwb9++HF+nhYVFgdsHgL///hsJCQnaX645MTU1RVRUFA4dOoTffvsN+/fvx9atW9G+fXuEh4dLuvr39V+YcsnrPS2qK5KlbHvFydvilXN7U6lUaNKkCZo0aYIaNWpg0KBB2LZtG6ZOnVqg2N/chqTGmpmZCV9fXzx9+hRffvkl3N3dYW5ujgcPHmDgwIEFPmpSVLZt24b09HR8++23+Pbbb/Xmb9q0CdOmTdMpk7pdFtX227dvXxw/fhxffPEFPD09YWFhgaysLHTq1KnI+l/Ka/32228xcOBA/PLLLwgPD8fo0aMREhKCkydPwsnJSVI7+bq/4IMPPsCqVatw4sQJeHl55blsdoZ/8ybVwvh1/S5t7dixAyYmJjhw4IDOpc1r167VWzY/I+SYm5vjgw8+wLZt2xAWFoatW7eiVatWcHR01C5TrVo1CCHg6uqKGjVqSK5bqo0bNwIA/Pz88lzOyMgIHTp0QIcOHRAWFobZs2dj4sSJOHToEHx8fGQfGejPP//UmRZC4NatW6hXr562rGzZsjne4Hz37l1UrVpVO52f2JydnfH7778jKSlJZy/z+vXr2vlycHZ2xsWLF5GVlaXzy/1d23nX96GwtrfsW5oePXqkU/7m+wwAN2/ehJmZGcqXLy9LrJcuXcLNmzexfv16fPLJJ9ryiIgIneWy+zynmG7cuJFnLK+vf+PGDZ3tLyMjA7GxsfDx8XlrHTnZtGkT6tSpk+MPjZUrV2Lz5s16CVNOUrfV3La9Z8+e4eDBg5g2bRqmTJmiLc+pn/P7Wc3pfXnXz1DdunVRt25dTJo0CcePH4e3tzdWrFiBmTNnSlo/XyP9TJgwAebm5hg6dCji4+P15t++fRsLFy4E8GqP1M7ODlFRUTrLLFu2LD9NSpJ9nun1tjIzMyWNsGFsbAyFQqGzN3rnzp0cR1QxNzfP1ygV/v7+ePjwIdasWYOYmBi9ETw+/PBDGBsbY9q0aXq/+oQQ+PfffyW39abIyEjMmDEDrq6uGDBgQK7LPX36VK/M09MTAJCeng4A2nvi5BqhY8OGDTqH9rdv345Hjx6hc+fO2rJq1arh5MmTyMjI0Jbt2bMH9+/f16krP7F16dIFmZmZWLJkiU75/PnzoVAodNp/F126dEFcXBy2bt2qLXv58iUWL14MCwsL7eHC/Mrv9vemd93eDh06lOPeSfa55zcPoZ04cULnHNb9+/fxyy+/oGPHjm89SiA11ux6Xl9GCKH9HspWsWJFeHp6Yv369TqH4SIiIvQOJefEx8cHKpUKixYt0mnru+++Q0JCArp27frWOt50//59REVFoW/fvujTp4/e36BBg3Dr1i2cOnUq33VLJXVbNTMzA6D/Ocup/wFgwYIFem3l97N6+vRp7Skt4NX56VWrVsHFxSXf9y4nJibi5cuXOmV169aFkZGR9ntOinztYVarVg2bN2+Gv78/atWqhU8++QR16tRBRkYGjh8/jm3btumMBzh06FDMmTMHQ4cORePGjREVFZXjMfl3Vbt2bTRv3hzBwcF4+vQpbG1tsWXLFr0OyknXrl0RFhaGTp064eOPP8bjx4+xdOlSVK9eHRcvXtRZtlGjRvj9998RFhYGR0dHuLq6olmzZrnW3aVLF1haWmL8+PEwNjZG7969deZXq1YNM2fORHBwMO7cuYOePXvC0tISsbGx2LVrF4YPH47x48e/9TXs27cP169fx8uXLxEfH4/IyEhERETA2dkZu3fvhomJSa7rTp8+HVFRUejatSucnZ3x+PFjLFu2DE5OTtoT7tWqVYONjQ1WrFgBS0tLmJubo1mzZnrnnaSytbVFy5YtMWjQIMTHx2PBggWoXr06hg0bpl1m6NCh2L59Ozp16oS+ffvi9u3b+OGHH3QuwslvbN26dUO7du0wceJE3LlzB/Xr10d4eDh++eUXBAUF6dVdUMOHD8fKlSsxcOBAnD17Fi4uLti+fTuOHTuGBQsWFPjCufxuf2961+1t1KhRSE1NRa9eveDu7q793G/duhUuLi56F37VqVMHfn5+GD16NNRqtfbHspQ9Jqmxuru7o1q1ahg/fjwePHgAKysr7NixI8fzzCEhIejatStatmyJwYMH4+nTp1i8eDFq166N5OTkPOMpX748goODMW3aNHTq1Andu3fHjRs3sGzZMjRp0kTn4hqpNm/eDCEEunfvnuP8Ll26oEyZMti0aVO+3uf8kLqtmpqawsPDA1u3bkWNGjVga2uLOnXqoE6dOmjdujVCQ0Oh0WhQqVIlhIeHIzY2Vq+t7AvAJk6ciH79+kGpVKJbt245DlLx1Vdf4ccff0Tnzp0xevRo2NraYv369YiNjcWOHTv0zrm+TWRkJEaOHImPPvoINWrUwMuXL7Fx48Ycv5fzVJBLa2/evCmGDRsmXFxchEqlEpaWlsLb21ssXrxYZyiy1NRUMWTIEGFtbS0sLS1F3759xePHj3O9reTNy7ADAgKEubm5XvvZN+W+7vbt28LHx0d74+zXX38tIiIiJN1W8t133wk3NzehVquFu7u7WLt2bY43+F+/fl20bt1amJqaCiD3gQteN2DAAO29W7nZsWOHaNmypTA3Nxfm5ubC3d1dBAYGihs3buS6zuvtZv+pVCrh4OAgfH19xcKFC3McXuvN13Xw4EHRo0cP4ejoKFQqlXB0dBT9+/cXN2/e1Fnvl19+ER4eHqJMmTI6t3Hk9F5ky+22kh9//FEEBweLChUqCFNTU9G1a1edy/+zffvtt9obkb29vcWZM2f06swrtpze66SkJPH5558LR0dHoVQqhZubW54DF7wpt9td3hQfHy8GDRok7OzshEqlEnXr1s3x1pf83FaS2/aX2+cnt+2yoNvbvn37xODBg4W7u7uwsLDQDpM3atQoER8fr7Nsdv/98MMP2s9WgwYNdD6LecWen1ivXr0qfHx8hIWFhbCzsxPDhg3T3gL0Zp/v2LFD1KpVS6jVauHh4ZHvgQuWLFki3N3dhVKpFPb29mLEiBF6969Kva2kbt26okqVKnku07ZtW1GhQgWh0WhyHVoyp1v4cvtc5vRapW6rx48fF40aNRIqlUrnO/zvv/8WvXr1EjY2NsLa2lp89NFH4uHDhznehjJjxgxRqVIlYWRkpLNt5jVwgY2NjTAxMRFNmzbNdeCCt/XJX3/9JQYPHiyqVasmTExMhK2trWjXrp34/fff9V5nXhRCFNMrGIioxFIoFAgMDNQ7/E1Ukr13j/ciIiIqCCZMIiIiCZgwiYiIJCjWCTMqKgrdunWDo6MjFAqF3q0eQghMmTIFFStWhKmpKXx8fPTu/3n69CkGDBgAKysr2NjYYMiQIW+9Io6I3o0QgucvqdQp1gkzJSUF9evXx9KlS3OcHxoaikWLFmHFihU4deoUzM3N4efnh7S0NO0yAwYMwJUrVxAREYE9e/YgKioKw4cPL6qXQEREpUSJuUpWoVBg165d6NmzJ4BXv2AdHR0xbtw47b1jCQkJsLe3x7p169CvXz9cu3YNHh4eiI6O1o5Gsn//fnTp0gV///23zqg7REREecnXwAXFSWxsLOLi4nSGpLK2tkazZs1w4sQJ9OvXDydOnICNjY02WQKvRuwwMjLCqVOn0KtXL71609PTdUZ+yMrKwtOnT1GuXDnZh4gjIioOhBBISkqCo6NjvgcFeJ+U2IQZFxcHALC3t9cpt7e3186Li4tDhQoVdOaXKVMGtra22mXeFBISUqhjNxIRFVf379+XPBD5+6jEJszCEhwcjLFjx2qnExISUKVKFcTGxuZrSDONRoNDhw6hXbt2UCqVhRFqicb+yR37Jm/sn5ylZryEd+ir8bSPfN4CVua5D4n5pqSkJLi6uhbq845LgxKbMB0cHAAA8fHxqFixorY8Pj5eO3i4g4OD3jP+Xr58iadPn2rXf5NardZ5akk2W1tb7TNBpdBoNDAzM0O5cuX4oc4B+yd37Ju8sX9yZprxEkbqV4Ok25azhbW59MfuZfcjTzvlrcQerHZ1dYWDgwMOHjyoLUtMTMSpU6e0jx7z8vLC8+fPcfbsWe0ykZGRyMrKKrTBjImIqHQq1nuYycnJuHXrlnY6NjYWFy5cgK2tLapUqYKgoCDMnDkTbm5ucHV1xeTJk+Ho6Ki9krZWrVro1KkThg0bhhUrVkCj0WDkyJHo168fr5AlIqJ8KdYJ88yZM2jXrp12OvvcYkBAANatW4cJEyYgJSUFw4cPx/Pnz9GyZUvs379f53FWmzZtwsiRI9GhQwcYGRmhd+/eWLRoUZG/FiKShxAC6ZmvztkpBQ8hZkvNyHz7QvROinXCbNu2bY4PrM2mUCgwffp0TJ8+PddlbG1tsXnz5sIIj4iKmBAC/dZE49y9MphwOtLQ4dB7psSewySi988LTSbO3Xtu6DCKNVdLAVOlsaHDKJWK9R4mEVFuTn7ZJl+3TrwPNBoNDkWE82rXQsKESUQlkqnKGGYqfoW9TqMQYK4sPDwkS0REJAETJhERkQRMmERERBIwYRIREUnAhElERCQBEyYREZEETJhEREQSMGESERFJwIRJREQkARMmERGRBEyYREREEjBhEhERScCESUREJAETJhERkQRMmERERBIwYRIREUnAhElERCQBEyYREZEETJhEREQSMGESERFJwIRJREQkARMmERGRBEyYREREEjBhEhERScCESUREJAETJhERkQRMmERERBIwYRIREUnAhElERCQBEyYREZEETJhEREQSlDF0AESkSwiB9EwgNeMllEJh6HCKldSMTEOHQO8xJkyiYkQIgX5ronHuXhlMOB1p6HCI6DU8JEtUjLzQZOLcveeGDqPYc7UUMFUaGzoMes9wD5OomDr5ZRtYmZsYOoxiR6PR4FBEOBQKHq6mosWESVRMmaqMYabiR/RNGoUAcyUZAg/JEhERScCESUREJAETJhERkQRMmERERBIwYRIREUnAhElERCQBEyYREZEETJhEREQSMGESERFJwIRJREQkARMmERGRBCU6YWZmZmLy5MlwdXWFqakpqlWrhhkzZkAIoV1GCIEpU6agYsWKMDU1hY+PD/78808DRk1ERCVRiU6Yc+fOxfLly7FkyRJcu3YNc+fORWhoKBYvXqxdJjQ0FIsWLcKKFStw6tQpmJubw8/PD2lpaQaMnIiIShrZH4Wg0WgQFxeH1NRUlC9fHra2tnI3oXX8+HH06NEDXbt2BQC4uLjgxx9/xOnTpwG82rtcsGABJk2ahB49egAANmzYAHt7e/z888/o169focVGRESliywJMykpCT/88AO2bNmC06dPIyMjA0IIKBQKODk5oWPHjhg+fDiaNGkiR3NaLVq0wKpVq3Dz5k3UqFEDMTEx+OOPPxAWFgYAiI2NRVxcHHx8fLTrWFtbo1mzZjhx4kSOCTM9PR3p6ena6cTERACvfghoNBrJsWUvm5913ifsn5xpNC91/mf/6OO2k7uC9g37Upp3TphhYWGYNWsWqlWrhm7duuHrr7+Go6MjTE1N8fTpU1y+fBlHjx5Fx44d0axZMyxevBhubm5yxI6vvvoKiYmJcHd3h7GxMTIzMzFr1iwMGDAAABAXFwcAsLe311nP3t5eO+9NISEhmDZtml55eHg4zMzM8h1jREREvtd5n7B/dKVnAtkfy8jISKiNDRpOscZtJ3f57ZvU1NRCiqR0eeeEGR0djaioKNSuXTvH+U2bNsXgwYOxYsUKrF27FkePHpUtYf7000/YtGkTNm/ejNq1a+PChQsICgqCo6MjAgICClRncHAwxo4dq51OTExE5cqV0bFjR1hZWUmuR6PRICIiAr6+vlAqlQWKpTRj/+QsNeMlJpyOBAC0b98e1uYmBo6o+OG2k7uC9k32kTTK2zsnzB9//FHScmq1Gp9++um7Nqfjiy++wFdffaU9tFq3bl3cvXsXISEhCAgIgIODAwAgPj4eFStW1K4XHx8PT0/PXONUq9V65UqlskAfzoKu975g/+hSCsX//leWYd/kgdtO7vLbN+xHaQrtKlmNRoMrV67g4sWLOucE5ZSamgojI92XYGxsjKysLACAq6srHBwccPDgQe38xMREnDp1Cl5eXoUSExERlU6yXyULAEePHkW/fv2g0Wjw8uVLlClTBhs2bECnTp1kbadbt26YNWsWqlSpgtq1a+P8+fMICwvD4MGDAQAKhQJBQUGYOXMm3Nzc4OrqismTJ8PR0RE9e/aUNRYiIirdZEmYWVlZOnt6QUFB2LRpE9q2bQsAWLVqFUaMGIHY2Fg5mtNavHgxJk+ejM8++wyPHz+Go6Mj/vOf/2DKlCnaZSZMmICUlBQMHz4cz58/R8uWLbF//36YmPDcEBERSSdLwmzWrBlWrlyJhg0bAgAyMjJQpUoV7fwqVaoUykABlpaWWLBgARYsWJDrMgqFAtOnT8f06dNlb5+IiN4fsiTMJUuWYOjQoWjTpg1mzpyJqVOnolGjRqhZsyY0Gg2uX7+uM/oOERFRSSPbHmZ0dDRCQ0PRqFEjhIaG4saNGzh16hQyMzPRpEkTVKpUSY6miIiIDEK2i36MjY0RHByMvn374tNPP8X69euxePFiODo6ytUEERGRwch2W8mVK1ewY8cOZGZmIiIiAt27d0erVq2wbNkyuZogIiIyGFkSZlhYGJo0aYJ58+bBy8sLq1evRkBAAE6dOoWTJ0/Cy8sLly5dkqMpIiIig5AlYYaGhuK3337DyZMnce7cOe3g53Z2dtiwYQOmT5+Ovn37ytEUERGRQciSMIUQ2vswjY2NdR7gDAC+vr44f/68HE0REREZhCwX/XzxxRfo0qUL6tevj5s3b2L27Nl6y3CgACIiKslkSZjjx4+Hn58frl+/jrp168Ld3V2OaomIiIoN2W4rqVu3LurWrStXdURERMXKO5/DnDNnjuSHj546dQq//fbbuzZJRERU5N45YV69ehXOzs747LPPsG/fPvzzzz/aeS9fvsTFixexbNkytGjRAv7+/rC0tHzXJomIiIrcOx+S3bBhA2JiYrBkyRJ8/PHHSExMhLGxMdRqtXbPs0GDBhg6dCgGDhzIi3+IiKhEkuUcZv369bF69WqsXLkSFy9exN27d/HixQvY2dnB09MTdnZ2cjRDRERkMLI+QNrIyAienp7w9PSUs1oiIiKDk20sWSIiotKMCZOIiEgCJkwiIiIJmDCJiIgkKJSEeevWLRw4cAAvXrwAAL3B2ImIiEoaWRPmv//+Cx8fH9SoUQNdunTBo0ePAABDhgzBuHHj5GyKiIioSMmaMD///HOUKVMG9+7dg5mZmbbc398f+/fvl7MpIiKiIiXrfZjh4eE4cOAAnJycdMrd3Nxw9+5dOZsiIiIqUrLuYaakpOjsWWZ7+vQp1Gq1nE0REREVKVkTZqtWrbBhwwbttEKhQFZWFkJDQ9GuXTs5myIiIipSsh6SDQ0NRYcOHXDmzBlkZGRgwoQJuHLlCp4+fYpjx47J2RQREVGRknUPs06dOrh58yZatmyJHj16ICUlBR9++CHOnz+PatWqydkUERFRkZJ1DxMArK2tMXHiRLmrJSIiMihZE+bFixdzLFcoFDAxMUGVKlV48Q8REZVIsiZMT09PKBQKAP8b3Sd7GgCUSiX8/f2xcuVKPkiaiIhKFFnPYe7atQtubm5YtWoVYmJiEBMTg1WrVqFmzZrYvHkzvvvuO0RGRmLSpElyNktERFToZN3DnDVrFhYuXAg/Pz9tWd26deHk5ITJkyfj9OnTMDc3x7hx4/Df//5XzqaJiIgKlax7mJcuXYKzs7NeubOzMy5dugTg1WHb7DFmiYiISgpZE6a7uzvmzJmDjIwMbZlGo8GcOXPg7u4OAHjw4AHs7e3lbJaIiKjQyXpIdunSpejevTucnJxQr149AK/2OjMzM7Fnzx4AwF9//YXPPvtMzmaJiIgKnawJs0WLFoiNjcWmTZtw8+ZNAMBHH32Ejz/+GJaWlgCA//u//5OzSSIioiIh+8AFlpaW+PTTT+WuloiIyKBkT5gAcPXqVdy7d0/nXCYAdO/evTCaIyIiKnSyJsy//voLvXr1wqVLl6BQKPQGL8jMzJSzOSIioiIj61WyY8aMgaurKx4/fgwzMzNcuXIFUVFRaNy4MQ4fPixnU0REREVK1j3MEydOIDIyEnZ2djAyMoKRkRFatmyJkJAQjB49GufPn5ezOSIioiIj6x5mZmam9mpYOzs7PHz4EMCrgQtu3LghZ1NERERFStY9zDp16iAmJgaurq5o1qwZQkNDoVKpsGrVKlStWlXOpoiIiIqUrAlz0qRJSElJAQBMnz4dH3zwAVq1aoVy5cphy5YtcjZFRERUpGRNmK8Pul69enVcv34dT58+RdmyZXUe80VERFTSyJowBw8ejIULF2rPYwKAra0tUlJSMGrUKHz//fdyNkclmBAC6ZlAasZLKAV/TGVLzeCtV0TFlawJc/369ZgzZ45OwgSAFy9eYMOGDUyYBOBVsuy3Jhrn7pXBhNORhg6HiEgSWRJmYmIihBAQQiApKQkmJibaeZmZmdi7dy8qVKggR1NUCrzQZOLcveeGDqNYc7UUMFUaGzoMInqNLAnTxsYGCoUCCoUCNWrU0JuvUCgwbdo0OZqiUubkl21gZW7y9gXfIxqNBociwnnen6iYkSVhHjp0CEIItG/fHjt27ICtra12nkqlgrOzMxwdHeVoikoZU5UxzFSFMqRxiaVRCDBXEhU/snxTtWnTBgAQGxuLypUrw8hI1vEQ8vTgwQN8+eWX2LdvH1JTU1G9enWsXbsWjRs3BvDqfNnUqVOxevVqPH/+HN7e3li+fDnc3NyKLEYiIir5ZP1p7+zsjOfPn+P06dN4/PgxsrKydOZ/8skncjaHZ8+ewdvbG+3atcO+fftQvnx5/Pnnnyhbtqx2mdDQUCxatAjr16+Hq6srJk+eDD8/P1y9elXnXCsREVFeZE2Yv/76KwYMGIDk5GRYWVnpnINRKBSyJ8y5c+eicuXKWLt2rbbM1dVV+78QAgsWLMCkSZPQo0cPAMCGDRtgb2+Pn3/+Gf369ZM1HiIiKr1kTZjjxo3D4MGDMXv2bJiZmclZdY52794NPz8/fPTRRzhy5AgqVaqEzz77DMOGDQPw6hBxXFwcfHx8tOtYW1ujWbNmOHHiRI4JMz09Henp6drpxMREAK8uxNBoNJJjy142P+u8LzSalzr/s490cdvJG/sndwXtG/alNLImzAcPHmD06NFFkiyBV8/fXL58OcaOHYuvv/4a0dHRGD16NFQqFQICAhAXFwcAsLe311nP3t5eO+9NISEhOV7RGx4eXqDXFRERke91Srv0TCB704uMjISad0/kiNtO3tg/uctv36SmphZSJKWL7EPjnTlzpsgGWs/KykLjxo0xe/ZsAECDBg1w+fJlrFixAgEBAQWqMzg4GGPHjtVOJyYmonLlyujYsSOsrKwk16PRaBAREQFfX18olcoCxVJapWa81A5Y0L59e1jzthId3Hbyxv7JXUH7JvtIGuVN1oTZtWtXfPHFF7h69Srq1q2r94Z1795dzuZQsWJFeHh46JTVqlULO3bsAAA4ODgAAOLj41GxYkXtMvHx8fD09MyxTrVaDbVarVeuVCoL9OEs6Hql2etD4SmVZdg/ueC2kzf2T+7y2zfsR2lkTZjZ5w6nT5+uN0+hUCAzU95xMr29vfWes3nz5k04OzsDeHUBkIODAw4ePKhNkImJiTh16hRGjBghayxERFS6yZow37yNpLB9/vnnaNGiBWbPno2+ffvi9OnTWLVqFVatWgXgVZIOCgrCzJkz4ebmpr2txNHRET179izSWImIqGQrtCFW0tLSCv0+xyZNmmDXrl0IDg7G9OnT4erqigULFmDAgAHaZSZMmICUlBQMHz4cz58/R8uWLbF//37eg0lERPki65A8mZmZmDFjBipVqgQLCwv89ddfAIDJkyfju+++k7MprQ8++ACXLl1CWloarl27pj0snE2hUGD69OmIi4tDWloafv/99xzHuyUiIsqLrAlz1qxZWLduHUJDQ6FSqbTlderUwZo1a+RsioiIqEjJmjA3bNiAVatWYcCAATA2/t/NdfXr18f169flbIqIiKhIyZowHzx4gOrVq+uVZ2VlcSQJIiIq0WRNmB4eHjh69Khe+fbt29GgQQM5myIiIipSsl4lO2XKFAQEBODBgwfIysrCzp07cePGDWzYsAF79uyRsykiIqIiJeseZo8ePfDrr7/i999/h7m5OaZMmYJr167h119/ha+vr5xNERERFSnZ78Ns1aoVB0UmIqJSR9Y9zOjoaJw6dUqv/NSpUzhz5oycTRERERUpWRNmYGAg7t+/r1f+4MEDBAYGytkUERFRkZI1YV69ehUNGzbUK2/QoAGuXr0qZ1NERERFStaEqVarER8fr1f+6NEjlClTaMPWEhERFTpZE2bHjh0RHByMhIQEbdnz58/x9ddf8ypZIiIq0WTd7Zs3bx7atGkDZ2dn7UAFFy5cgL29PTZu3ChnU0REREVK1oTp5OSEixcvYtOmTYiJiYGpqSkGDRqE/v3784neRERUosmWMDUaDdzd3bFnzx4MHz5crmqJiIiKBdnOYSqVSqSlpclVHRERUbEi+32Yc+fOxcuXL+WsloiIyOBkPYcZHR2NgwcPIjw8HHXr1oW5ubnO/J07d8rZHBERUZGRNWHa2Nigd+/eclZJRERULMiaMNeuXStndURERMWGrOcwAeDly5f4/fffsXLlSiQlJQEAHj58iOTkZLmbIiIiKjKy7mHevXsXnTp1wr1795Ceng5fX19YWlpi7ty5SE9Px4oVK+RsjoiIqMjIuoc5ZswYNG7cGM+ePYOpqam2vFevXjh48KCcTRERERUpWfcwjx49iuPHj0OlUumUu7i44MGDB3I2RUREVKRk3cPMyspCZmamXvnff/8NS0tLOZsiIiIqUrI/rWTBggXaaYVCgeTkZEydOhVdunSRsykiIqIiJesh2W+//RZ+fn7w8PBAWloaPv74Y/z555+ws7PDjz/+KGdTRERERUr2p5XExMRg69atiImJQXJyMoYMGYIBAwboXARERERU0siWME+ePIlff/0VGRkZaN++PUJDQ+WqmoiIyOBkSZjbt2+Hv78/TE1NoVQqERYWhrlz52L8+PFyVE9ERGRwslz0ExISgmHDhiEhIQHPnj3DzJkzMXv2bDmqJiIiKhZkSZg3btzA+PHjYWxsDAAYN24ckpKS8PjxYzmqJyIiMjhZEmZqaiqsrKy00yqVCiYmJhw/loiISg3ZLvpZs2YNLCwstNMvX77EunXrYGdnpy0bPXq0XM0REREVKVkSZpUqVbB69WqdMgcHB2zcuFE7rVAomDCJiKjEkiVh3rlzR45qiIiIii3Zn4dJRERUGjFhEhERScCESUREJAETJhERkQRMmERERBLInjBv376NSZMmoX///tqRfvbt24crV67I3RQREVGRkTVhHjlyBHXr1sWpU6ewc+dO7Ug/MTExmDp1qpxNERERFSlZE+ZXX32FmTNnIiIiAiqVSlvevn17nDx5Us6miIiIipSsCfPSpUvo1auXXnmFChXw5MkTOZsiIiIqUrImTBsbGzx69Eiv/Pz586hUqZKcTRERERUpWRNmv3798OWXXyIuLg4KhQJZWVk4duwYxo8fj08++UTOpoiIiIqUrAlz9uzZcHd3R+XKlZGcnAwPDw+0bt0aLVq0wKRJk+RsioiIqEjJ9ngv4NVzMFevXo3Jkyfj8uXLSE5ORoMGDeDm5iZnM0REREVO1j3MP/74A8Crx3116dIFffv2LdJkOWfOHCgUCgQFBWnL0tLSEBgYiHLlysHCwgK9e/dGfHx8kcVERESlg6wJs3379nB1dcXXX3+Nq1evyln1W0VHR2PlypWoV6+eTvnnn3+OX3/9Fdu2bcORI0fw8OFDfPjhh0UaGxERlXyyJsyHDx9i3LhxOHLkCOrUqQNPT0/MmzcPf//9t5zN6ElOTsaAAQOwevVqlC1bVluekJCA7777DmFhYWjfvj0aNWqEtWvX4vjx47wvlIiI8kXWhGlnZ4eRI0fi2LFjuH37Nj766COsX78eLi4uaN++vZxN6QgMDETXrl3h4+OjU3727FloNBqdcnd3d1SpUgUnTpwotHiIiKj0kfWin9e5urriq6++Qv369TF58mQcOXKkUNrZsmULzp07h+joaL15cXFxUKlUsLGx0Sm3t7dHXFxcjvWlp6cjPT1dO52YmAgA0Gg00Gg0kuPKXjY/67wvNJqXOv+zj3Rx28kb+yd3Be0b9qU0hZIwjx07hk2bNmH79u1IS0tDjx49EBISIns79+/fx5gxYxAREQETExNZ6gwJCcG0adP0ysPDw2FmZpbv+iIiIuQIq1RJzwSyN73IyEiojQ0aTrHFbSdv7J/c5bdvUlNTCymS0kUhhBByVRYcHIwtW7bg4cOH8PX1xYABA9CjR48CJRopfv75Z/Tq1QvGxv/7xs3MzIRCoYCRkREOHDgAHx8fPHv2TGcv09nZGUFBQfj888/16sxpD7Ny5cp48uQJrKysJMem0WgQEREBX19fKJXKgr3AUio14yXqz4gEAJz5qjWszeX5sVNacNvJG/sndwXtm8TERNjZ2SEhISFf33PvG1n3MKOiovDFF1+gb9++sLOzk7PqHHXo0AGXLl3SKRs0aBDc3d3x5ZdfonLlylAqlTh48CB69+4NALhx4wbu3bsHLy+vHOtUq9VQq9V65UqlskAfzoKuV5opheJ//yvLsH9ywW0nb+yf3OW3b9iP0siaMI8dOyZndW9laWmJOnXq6JSZm5ujXLly2vIhQ4Zg7NixsLW1hZWVFUaNGgUvLy80b968SGMlIqKS7Z0T5u7du9G5c2colUrs3r07z2W7d+/+rs3l2/z582FkZITevXsjPT0dfn5+WLZsWZHHQUREJds7J8yePXsiLi4OFSpUQM+ePXNdTqFQIDMz812be6vDhw/rTJuYmGDp0qVYunRpobdNRESl1zsnzKysrBz/JyIiKk1kHbhgw4YNOleYZsvIyMCGDRvkbIqIiKhIyZowBw0ahISEBL3ypKQkDBo0SM6miIiIipSsCVMIAYVCoVf+999/w9raWs6miIiIipQst5U0aNAACoUCCoUCHTp0QJky/6s2MzMTsbGx6NSpkxxNERERGYQsCTP76tgLFy7Az88PFhYW2nkqlQouLi7agQOIiIhKIlkS5tSpUwEALi4u8Pf3l21cVyIiouJC1pF+AgIC5KyOiIio2JA1YWZmZmL+/Pn46aefcO/ePWRkZOjMf/r0qZzNERERFRlZr5KdNm0awsLC4O/vj4SEBIwdOxYffvghjIyM8M0338jZFBERUZGSNWFu2rQJq1evxrhx41CmTBn0798fa9aswZQpU3Dy5Ek5myIiIipSsibMuLg41K1bFwBgYWGhHcTggw8+wG+//SZnU0REREVK1oTp5OSER48eAQCqVauG8PBwAEB0dHSOz5gkIiIqKWRNmL169cLBgwcBAKNGjcLkyZPh5uaGTz75BIMHD5azKSIioiIl61Wyc+bM0f7v7++PKlWq4MSJE3Bzc0O3bt3kbIqIiKhIyZow3+Tl5QUvL6/CbIKIiKhIvHPC3L17t+Rlu3fv/q7NERERGcQ7J8zscWTfRqFQIDMz812bIyIiMoh3TphZWVlyxEFERFSsyXqVLBERUWkl60U/06dPz3P+lClT5GyOiIioyMiaMHft2qUzrdFoEBsbizJlyqBatWpMmEREVGLJmjDPnz+vV5aYmIiBAweiV69ecjZFRERUpAr9HKaVlRWmTZuGyZMnF3ZTREREhaZILvpJSEjQDsRORERUEsl6SHbRokU600IIPHr0CBs3bkTnzp3lbIqIiKhIyZow58+frzNtZGSE8uXLIyAgAMHBwXI2RUREVKRkTZixsbFyVkdERFRscOACIiIiCWTdw0xLS8PixYtx6NAhPH78WG/YvHPnzsnZHBERUZGRNWEOGTIE4eHh6NOnD5o2bQqFQiFn9SWGEAKpGS+RngmkZryEUryf/ZCb1AwOwk9EJY+sCXPPnj3Yu3cvvL295ay2xHmhyUT9GZEAymDC6UhDh0NERDKQ9RxmpUqVYGlpKWeVVIq5WgqYKo0NHQYRkSSy7mF+++23+PLLL7FixQo4OzvLWXWJYqo0Rszk9jhwIBx+fh2hVCoNHVKxo9FocCgi/L09bE9EJY+sCbNx48ZIS0tD1apVYWZmppconj59KmdzxZZCoYCZqgzUxoCZqgyUSlm7uVTQKASYK4moJJH1m7x///548OABZs+eDXt7e+49EBFRqSFrwjx+/DhOnDiB+vXry1ktERGRwcl60Y+7uztevHghZ5VERETFgqwJc86cORg3bhwOHz6Mf//9F4mJiTp/REREJZWsh2Q7deoEAOjQoYNOuRACCoUCmZm8YZ2IiEomWRPmoUOH5KyOiIio2JA1YbZp00bO6oiIiIoNWRNmVFRUnvNbt24tZ3NERERFRtaE2bZtW72y1+/F5DlMIiIqqWS9SvbZs2c6f48fP8b+/fvRpEkThIeHy9kUERFRkZJ1D9Pa2lqvzNfXFyqVCmPHjsXZs2flbI6IiKjIyLqHmRt7e3vcuHGjKJoiIiIqFLLuYV68eFFnWgiBR48eYc6cOfD09JSzKSIioiIla8L09PSEQqGAEEKnvHnz5vj+++/lbIqIiKhIyZowY2NjdaaNjIxQvnx5mJiYyNkMERFRkZP1HKazs7POX+XKlQs1WYaEhKBJkyawtLREhQoV0LNnT71zpWlpaQgMDES5cuVgYWGB3r17Iz4+vtBiIiKi0kmWhBkZGQkPD48cB1hPSEhA7dq1cfToUTma0nHkyBEEBgbi5MmTiIiIgEajQceOHZGSkqJd5vPPP8evv/6Kbdu24ciRI3j48CE+/PBD2WMhIqLSTZZDsgsWLMCwYcNgZWWlN8/a2hr/+c9/EBYWhlatWsnRnNb+/ft1ptetW4cKFSrg7NmzaN26NRISEvDdd99h8+bNaN++PQBg7dq1qFWrFk6ePInmzZvLGg8REZVesuxhxsTEaJ9UkpOOHTsWyT2YCQkJAABbW1sAwNmzZ6HRaODj46Ndxt3dHVWqVMGJEycKPR4iIio9ZNnDjI+Ph1KpzL2RMmXwzz//yNFUrrKyshAUFARvb2/UqVMHABAXFweVSgUbGxudZe3t7REXF5djPenp6UhPT9dOZx9m1mg00Gg0kuPJXjY/67xP2D+5Y9/kjf2Tu4L2DftSGlkSZqVKlXD58mVUr149x/kXL15ExYoV5WgqV4GBgbh8+TL++OOPd6onJCQE06ZN0ysPDw+HmZlZvuuLiIh4p3hKO/ZP7tg3eWP/5C6/fZOamlpIkZQusiTMLl26YPLkyejUqZPeVbEvXrzA1KlT8cEHH8jRVI5GjhyJPXv2ICoqCk5OTtpyBwcHZGRk4Pnz5zp7mfHx8XBwcMixruDgYIwdO1Y7nZiYiMqVK6Njx445nqPNjUajQUREBHx9ffPc+35fsX9yx77JG/sndwXtm5wu2CR9siTMSZMmYefOnahRowZGjhyJmjVrAgCuX7+OpUuXIjMzExMnTpSjKR1CCIwaNQq7du3C4cOH4erqqjO/UaNGUCqVOHjwIHr37g0AuHHjBu7duwcvL68c61Sr1VCr1XrlSqWyQB/Ogq73vmD/5I59kzf2T+7y2zfsR2lkSZj29vY4fvw4RowYgeDgYO1IPwqFAn5+fli6dCns7e3laEpHYGAgNm/ejF9++QWWlpba85LW1tYwNTWFtbU1hgwZgrFjx8LW1hZWVlYYNWoUvLy8eIUsERHli2wj/Tg7O2Pv3r149uwZbt26BSEE3NzcULZsWbma0LN8+XIA+s/hXLt2LQYOHAgAmD9/PoyMjNC7d2+kp6fDz88Py5YtK7SYiIiodJJ1aDwAKFu2LJo0aSJ3tTl6c8zanJiYmGDp0qVYunRpEURERESlVZE83ouIiKikY8IkIiKSgAmTiIhIAiZMIiIiCZgwiYiIJGDCJCIikoAJk4iISAImTCIiIgmYMImIiCRgwiQiIpKACZOIiEgCJkwiIiIJmDCJiIgkYMIkIiKSgAmTiIhIAiZMIiIiCZgwiYiIJGDCJCIikoAJk4iISAImTCIiIgmYMImIiCRgwiQiIpKACZOIiEgCJkwiIiIJmDCJiIgkYMIkIiKSgAmTiIhIAiZMIiIiCZgwiYiIJGDCJCIikoAJk4iISAImTCIiIgmYMImIiCRgwiQiIpKACZOIiEgCJkwiIiIJmDCJiIgkYMIkIiKSgAmTiIhIAiZMIiIiCZgwiYiIJGDCJCIikoAJk4iISAImTCIiIgmYMImIiCRgwiQiIpKACZOIiEgCJkwiIiIJmDCJiIgkYMIkIiKS4L1ImEuXLoWLiwtMTEzQrFkznD592tAhERFRCVPqE+bWrVsxduxYTJ06FefOnUP9+vXh5+eHx48fGzo0IiIqQUp9wgwLC8OwYcMwaNAgeHh4YMWKFTAzM8P3339v6NCIiKgEKdUJMyMjA2fPnoWPj4+2zMjICD4+Pjhx4oQBIyMiopKmjKEDKExPnjxBZmYm7O3tdcrt7e1x/fr1HNdJT09Henq6djohIQEA8PTpU2g0GsltazQapKam4t9//4VSqSxA9KUb+yd37Ju8sX9yV9C+SUpKAgAIIQortFKhVCfMgggJCcG0adP0yl1dXQ0QDRFR0UlKSoK1tbWhwyi2SnXCtLOzg7GxMeLj43XK4+Pj4eDgkOM6wcHBGDt2rHY6KysLT58+Rbly5aBQKCS3nZiYiMqVK+P+/fuwsrIq2Asoxdg/uWPf5I39k7uC9o0QAklJSXB0dCzE6Eq+Up0wVSoVGjVqhIMHD6Jnz54AXiXAgwcPYuTIkTmuo1aroVardcpsbGwKHIOVlRU/1Hlg/+SOfZM39k/uCtI33LN8u1KdMAFg7NixCAgIQOPGjdG0aVMsWLAAKSkpGDRokKFDIyKiEqTUJ0x/f3/8888/mDJlCuLi4uDp6Yn9+/frXQhERESUl1KfMAFg5MiRuR6CLSxqtRpTp07VO7xLr7B/cse+yRv7J3fsm8KlELyOmIiI6K1K9cAFREREcmHCJCIikoAJk4iISAImzELCR4rlLCoqCt26dYOjoyMUCgV+/vlnQ4dUbISEhKBJkyawtLREhQoV0LNnT9y4ccPQYRULy5cvR7169bT3F3p5eWHfvn2GDqtYmjNnDhQKBYKCggwdSqnDhFkI+Eix3KWkpKB+/fpYunSpoUMpdo4cOYLAwECcPHkSERER0Gg06NixI1JSUgwdmsE5OTlhzpw5OHv2LM6cOYP27dujR48euHLliqFDK1aio6OxcuVK1KtXz9ChlE6CZNe0aVMRGBionc7MzBSOjo4iJCTEgFEVPwDErl27DB1GsfX48WMBQBw5csTQoRRLZcuWFWvWrDF0GMVGUlKScHNzExEREaJNmzZizJgxhg6p1OEepsz4SDGSS/aTcmxtbQ0cSfGSmZmJLVu2ICUlBV5eXoYOp9gIDAxE165ddb57SF7vxcAFRakgjxQjelNWVhaCgoLg7e2NOnXqGDqcYuHSpUvw8vJCWloaLCwssGvXLnh4eBg6rGJhy5YtOHfuHKKjow0dSqnGhElUDAUGBuLy5cv4448/DB1KsVGzZk1cuHABCQkJ2L59OwICAnDkyJH3Pmnev38fY8aMQUREBExMTAwdTqnGhCmzgjxSjOh1I0eOxJ49exAVFQUnJydDh1NsqFQqVK9eHQDQqFEjREdHY+HChVi5cqWBIzOss2fP4vHjx2jYsKG2LDMzE1FRUViyZAnS09NhbGxswAhLD57DlNnrjxTLlv1IMZ5vobwIITBy5Ejs2rULkZGRfGj5W2RlZSE9Pd3QYRhchw4dcOnSJVy4cEH717hxYwwYMAAXLlxgspQR9zALAR8plrvk5GTcunVLOx0bG4sLFy7A1tYWVapUMWBkhhcYGIjNmzfjl19+gaWlJeLi4gC8ek6hqampgaMzrODgYHTu3BlVqlRBUlISNm/ejMOHD+PAgQOGDs3gLC0t9c5zm5ubo1y5cjz/LTMmzELAR4rl7syZM2jXrp12euzYsQCAgIAArFu3zkBRFQ/Lly8HALRt21anfO3atRg4cGDRB1SMPH78GJ988gkePXoEa2tr1KtXDwcOHICvr6+hQ6P3CJ9WQkREJAHPYRIREUnAhElERCQBEyYREZEETJhEREQSMGESERFJwIRJREQkARMmERGRBEyYREREEjBhEr1HvvnmG3h6eho6DKISiQmT6B38888/GDFiBKpUqQK1Wg0HBwf4+fnh2LFjhg6NiGTGsWSJ3kHv3r2RkZGB9evXo2rVqoiPj8fBgwfx77//FrhOjUYDpVIpY5REJAfuYRIV0PPnz3H06FHMnTsX7dq1g7OzM5o2bYrg4GB0794dAKBQKLB8+XJ07twZpqamqFq1KrZv366t486dO1AoFNi6dSvatGkDExMTbNq0CQCwZs0a1KpVCyYmJnB3d8eyZct02v/yyy9Ro0YNmJmZoWrVqpg8eTI0Go3OMnPmzIG9vT0sLS0xZMgQpKWlFXKvEJVigogKRKPRCAsLCxEUFCTS0tJyXAaAKFeunFi9erW4ceOGmDRpkjA2NhZXr14VQggRGxsrAAgXFxexY8cO8ddff4mHDx+KH374QVSsWFFbtmPHDmFrayvWrVunrXvGjBni2LFjIjY2VuzevVvY29uLuXPnaudv3bpVqNVqsWbNGnH9+nUxceJEYWlpKerXr1+o/UJUWjFhEr2D7du3i7JlywoTExPRokULERwcLGJiYrTzAYhPP/1UZ51mzZqJESNGCCH+lzAXLFigs0y1atXE5s2bdcpmzJghvLy8co1l3rx5olGjRtppLy8v8dlnn+m1zYRJVDA8JEv0Dnr37o2HDx9i9+7d6NSpEw4fPoyGDRvqPNvTy8tLZx0vLy9cu3ZNp6xx48ba/1NSUnD79m0MGTIEFhYW2r+ZM2fi9u3b2uW2bt0Kb29vODg4wMLCApMmTcK9e/e0869du4ZmzZrptU1EBcOESfSOTExM4Ovri8mTJ+P48eMYOHAgpk6dmq86zM3Ntf8nJycDAFavXo0LFy5o/y5fvoyTJ08CAE6cOIEBAwagS5cu2LNnD86fP4+JEyciIyNDvhdGRDqYMIlk5uHhgZSUFO10dpJ7fbpWrVq5rm9vbw9HR0f89ddfqF69us6fq6srAOD48eNwdnbGxIkT0bhxY7i5ueHu3bs69dSqVQunTp3Sa5uICoa3lRAV0L///ouPPvoIgwcPRr169WBpaYkzZ84gNDQUPXr00C63bds2NG7cGC1btsSmTZtw+vRpfPfdd3nWPW3aNIwePRrW1tbo1KkT0tPTcebMGTx79gxjx46Fm5sb7t27hy1btqBJkyb47bffsGvXLp06xowZg4EDB6Jx48bw9vbGpk2bcOXKFVStWrVQ+oOo1DP0SVSikiotLU189dVXomHDhsLa2lqYmZmJmjVrikmTJonU1FQhxKuLfpYuXSp8fX2FWq0WLi4uYuvWrdo6si/6OX/+vF79mzZtEp6enkKlUomyZcuK1q1bi507d2rnf/HFF6JcuXLCwsJC+Pv7i/nz5wtra2udOmbNmiXs7OyEhYWFCAgIEBMmTOBFP0QFpBBCCEMnbaLSSqFQYNeuXejZs6ehQyGid8RzmERERBIwYRIREUnAi36IChHPeBCVHtzDJCIikoAJk4iISAImTCIiIgmYMImIiCRgwiQiIpKACZOIiEgCJkwiIiIJmDCJiIgkYMIkIiKS4P8DL5YfxOlUVmAAAAAASUVORK5CYII=", "text/plain": [ - "
" + "[np.float64(27.59295499021526),\n", + " np.float64(62.230919765166334),\n", + " np.float64(86.10567514677103),\n", + " np.float64(97.84735812133071),\n", + " np.float64(100.0)]" ] }, + "execution_count": 11, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ - "\n", "# Sort the data\n", "sorted_arr = np.sort(spread)\n", "\n", "# Unique values and their cumulative percentages\n", "values = np.unique(sorted_arr)\n", "cdf = [np.mean(spread <= v) * 100 for v in values] # percentage of elements ≤ v\n", - "\n", + "cdf" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "ce70f9a3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAGGCAYAAACNCg6xAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOOhJREFUeJzt3X98zfX///H72ZxtxjYhm8WYH/kRmd+NShiTCuVblMv7LXnnXVE0JcqI/FzvN0pCKtKbN/3SDxX2ppDfv3+nH7wpbKqxsbEdZ6/vHz7OuzX0enGOc3bO7Xq57NJez9fzPPd47LVT917ndV7HZhiGIQAAAPypIG8XAAAAUFIQnAAAAEwiOAEAAJhEcAIAADCJ4AQAAGASwQkAAMAkghMAAIBJBCcAAACTCE4AAAAmEZwAAABM8mpwWrVqle655x7FxsbKZrPp448/LrLfMAyNGDFClStXVunSpZWUlKTvv/++yJysrCz16tVLkZGRKleunPr27avTp09fwy4AAECg8Gpwys3NVaNGjTRt2rSL7k9LS9Orr76qGTNmaMOGDSpTpoySk5N19uxZ15xevXppz549Sk9P1+LFi7Vq1Sr169fvWrUAAAACiM1XPuTXZrNp0aJF6tatm6TzZ5tiY2M1ePBgPfPMM5Kk7OxsRUdHa86cOerZs6f27dun+vXra9OmTWrWrJkkacmSJercubN+/vlnxcbGeqsdAADgh3z2GqeDBw8qIyNDSUlJrrGoqCi1bNlS69atkyStW7dO5cqVc4UmSUpKSlJQUJA2bNhwzWsGAAD+rZS3C7iUjIwMSVJ0dHSR8ejoaNe+jIwMVapUqcj+UqVKqXz58q45F5Ofn6/8/HzXdmFhobKyslShQgXZbDZ3tQAAAEoAwzB06tQpxcbGKijo8ueUfDY4edL48eM1atQob5cBAAB8yE8//aQqVapcdo7PBqeYmBhJUmZmpipXruwaz8zMVEJCgmvO8ePHizzu3LlzysrKcj3+YoYNG6aUlBTXdnZ2tuLi4nTw4EFFRES4sQvJ4XDoq6++Utu2bWW32926ti8JlD6lwOk1UPqUAqfXQOlTCpxeA6XPvIJzap22SpK08ulWiiwT5tb1T506pfj4eFMZwGeDU3x8vGJiYrR8+XJXUMrJydGGDRv0+OOPS5ISExN18uRJbdmyRU2bNpUkrVixQoWFhWrZsuUl1w4NDVVoaGix8fLlyysyMtKtfTgcDoWHh6tChQp+/UcdKH1KgdNroPQpBU6vgdKnFDi9BkqfpQvOKSg0XJJUvkJ5RZUp7db1L/zuzFyu49XgdPr0af3www+u7YMHD2r79u0qX7684uLiNGjQII0ZM0a1a9dWfHy8UlNTFRsb63rnXb169dSpUyc9+uijmjFjhhwOhwYMGKCePXvyjjoAAOB2Xg1OmzdvVtu2bV3bF14+6927t+bMmaMhQ4YoNzdX/fr108mTJ3XrrbdqyZIlCgv73ym6efPmacCAAWrfvr2CgoLUvXt3vfrqq9e8FwCA7zAMQ/nO8y/x2A3/fdOPw3EuIPrMK3B6uwQXrwanO+64Q5e7jZTNZtPo0aM1evToS84pX7685s+f74nyAAAlkGEY6vnmJm09XEpDNq7wdjnXQKD06Rt89j5OAABciTMOp7YePuntMuAB8RGGStuDvVqDz14cDgDA1Vr/XBu3vwPLlzgcDi1dukzJyR39+uJw6f/eQZi+zOv3WyQ4AQD8VumQYIWH+O9/6hw2Q6HBUnhIKdnt/tundL5XX7hHNS/VAQAAmERwAgAAMIngBAAAYBLBCQAAwCSCEwAAgEkEJwAAAJMITgAAACYRnAAAAEwiOAEAAJhEcAIAADCJ4AQAAGASwQkAAMAkghMAAIBJBCcAAACTCE4AAAAmEZwAAABMIjgBAACYRHACAAAwieAEAABgEsEJAADAJIITAACASQQnAAAAkwhOAAAAJhGcAAAATCI4AQAAmERwAgAAMIngBAAAYBLBCQAAwCSCEwAAgEkEJwAAAJMITgAAACYRnAAAAEwiOAEAAJhUytsFAIC3GYahfKeUV3BOdsPm7XI8xuE4FxB95hU4vV0C/BjBCUBAMwxDPd/cpK2HS2nIxhXeLucaCJQ+Ac/gpToAAe2Mw6mth096uwx4QHyEodL2YG+XAT/DGScA+D/rn2ujyDJh3i7DYxwOh5YuXabk5I6y2+3eLsejHA6HvkpfJpvNf1+ShHcQnADg/5QOCVZ4iP/+a9FhMxQaLIWHlJLd7r99Sud7JTPBE3ipDgAAwCSCEwAAgEkEJwAAAJMITgAAACYRnAAAAEwiOAEAAJhEcAIAADCJ4AQAAGASwQkAAMAkghMAAIBJBCcAAACTCE4AAAAm+XRwcjqdSk1NVXx8vEqXLq2aNWvqpZdekmEYrjmGYWjEiBGqXLmySpcuraSkJH3//fderBoAAPgrnw5OEydO1PTp0/Xaa69p3759mjhxotLS0jR16lTXnLS0NL366quaMWOGNmzYoDJlyig5OVlnz571YuUAAMAflfJ2AZezdu1ade3aVXfddZckqXr16vr3v/+tjRs3Sjp/tmnKlCkaPny4unbtKkmaO3euoqOj9fHHH6tnz55eqx0AAPgfnz7j1KpVKy1fvlzfffedJGnHjh365ptvdOedd0qSDh48qIyMDCUlJbkeExUVpZYtW2rdunVeqRkAAPgvnz7jNHToUOXk5Khu3boKDg6W0+nU2LFj1atXL0lSRkaGJCk6OrrI46Kjo137LiY/P1/5+fmu7ZycHEmSw+GQw+Fwaw8X1nP3ur4mUPqUAqfXwOnzXJHv/bnfQDmmUuD0Gih9Sp7t1cqaPh2c3nvvPc2bN0/z58/XTTfdpO3bt2vQoEGKjY1V7969r3jd8ePHa9SoUcXGly1bpvDw8Ksp+ZLS09M9sq6vCZQ+pcDp1d/7zHdKF/5VuGLFCoUGe7Wca8Lfj+nvBUqvgdKn5Jle8/LyTM+1Gb9/i5qPqVq1qoYOHar+/fu7xsaMGaN//etf+vbbb3XgwAHVrFlT27ZtU0JCgmtOmzZtlJCQoFdeeeWi617sjFPVqlX166+/KjIy0q09OBwOpaenq0OHDrLb7W5d25cESp9S4PQaKH3mFZxTo5dWSJI2D71dUWXCvFyR5wTKMZUCp9dA6VPybK85OTmqWLGisrOz/zQHXNEZJ4fDoYyMDOXl5en6669X+fLlr6jQP5OXl6egoKKXYQUHB6uwsFCSFB8fr5iYGC1fvtwVnHJycrRhwwY9/vjjl1w3NDRUoaGhxcbtdrvH/vA8ubYvCZQ+pcDp1d/7tBu2/31vL+XXvV7g78f09wKl10DpU/JMr1bWMx2cTp06pX/9619asGCBNm7cqIKCAhmGIZvNpipVqqhjx47q16+fmjdvfkVFX8w999yjsWPHKi4uTjfddJO2bdumSZMm6ZFHHpEk2Ww2DRo0SGPGjFHt2rUVHx+v1NRUxcbGqlu3bm6rAwAAQDIZnCZNmqSxY8eqZs2auueee/T8888rNjZWpUuXVlZWlnbv3q3Vq1erY8eOatmypaZOnaratWtfdXFTp05VamqqnnjiCR0/flyxsbH6+9//rhEjRrjmDBkyRLm5uerXr59OnjypW2+9VUuWLFFYmP+ebgcAAN5hKjht2rRJq1at0k033XTR/S1atNAjjzyiGTNmaPbs2Vq9erVbglNERISmTJmiKVOmXHKOzWbT6NGjNXr06Kv+eQAAAJdjKjj9+9//NrVYaGioHnvssasqCAAAwFdd1e0IHA6HvvvuOzmdTtWpU+eiF1wDAAD4iyu+c/jq1atVvXp1tW3bVnfccYeqVq2qJUuWuLM2AAAAn2I6OF24BcAFgwYN0rx583T8+HFlZWVpzJgxl70FAAAAQElnOji1bNlSW7dudW0XFBQoLi7OtR0XF6ezZ8+6tzoAAAAfYvoap9dee01/+9vf1KZNG40ZM0YjR45U06ZNVadOHTkcDn377beaOnWqJ2sFAADwKtPBqWXLltq0aZPS0tLUtGlTpaWlaf/+/dqwYYOcTqeaN2+uG264wZO1AgAAeJWld9UFBwdr2LBheuCBB/TYY4/pnXfe0dSpUxUbG+up+gAAAHyGpXfV7dmzRx9++KGcTqfS09PVpUsX3XbbbXr99dc9VR8AAIDPMB2cJk2apObNm+vll19WYmKiZs2apd69e2vDhg1av369EhMTtWvXLk/WCgAA4FWmg1NaWpo+//xzrV+/Xlu3btWkSZMkSRUrVtTcuXM1evRoPfDAAx4rFAAAwNtMByfDMBQUdH56cHCwDMMosr9Dhw7atm2be6sDAADwIaYvDn/22WfVuXNnNWrUSN99953GjRtXbE5YWJhbiwMAAPAlpoPTM888o+TkZH377bdq2LCh6tat68m6AAAAfI6l2xE0bNhQDRs29FQtAAAAPs3UNU4TJkxQXl6eqQU3bNigzz///KqKAgAA8EWmgtPevXtVrVo1PfHEE/ryyy/1yy+/uPadO3dOO3fu1Ouvv65WrVqpR48eioiI8FjBAAAA3mLqpbq5c+dqx44deu211/TQQw8pJydHwcHBCg0NdZ2Jaty4sf72t7/p4Ycf5iJxAADgl0xf49SoUSPNmjVLM2fO1M6dO3Xo0CGdOXNGFStWVEJCgipWrOjJOgEAALzO0sXhkhQUFKSEhAQlJCR4oBwAAADfZemz6gAAAAIZwQkAAMAkghMAAIBJBCcAAACTrjg4/fDDD1q6dKnOnDkjScU+9BcAAMDfWA5Ov/32m5KSknTjjTeqc+fOOnbsmCSpb9++Gjx4sNsLBAAA8BWWg9PTTz+tUqVK6fDhwwoPD3eN9+jRQ0uWLHFrcQAAAL7E8n2cli1bpqVLl6pKlSpFxmvXrq1Dhw65rTAAAABfY/mMU25ubpEzTRdkZWUpNDTULUUBAAD4IsvB6bbbbtPcuXNd2zabTYWFhUpLS1Pbtm3dWhwAAIAvsfxSXVpamtq3b6/NmzeroKBAQ4YM0Z49e5SVlaU1a9Z4okYAAACfYPmMU4MGDfTdd9/p1ltvVdeuXZWbm6v77rtP27ZtU82aNT1RIwAAgE+wfMZJkqKiovTCCy+4uxYAAACfZjk47dy586LjNptNYWFhiouL4yJxAADglywHp4SEBNlsNkn/u1v4hW1Jstvt6tGjh2bOnKmwsDA3lQkAAOB9lq9xWrRokWrXrq033nhDO3bs0I4dO/TGG2+oTp06mj9/vt566y2tWLFCw4cP90S9AAAAXmP5jNPYsWP1yiuvKDk52TXWsGFDValSRampqdq4caPKlCmjwYMH6x//+IdbiwUAAPAmy2ecdu3apWrVqhUbr1atmnbt2iXp/Mt5Fz7DDgAAwF9YDk5169bVhAkTVFBQ4BpzOByaMGGC6tatK0k6cuSIoqOj3VclAACAD7D8Ut20adPUpUsXValSRTfffLOk82ehnE6nFi9eLEk6cOCAnnjiCfdWCgAA4GWWg1OrVq108OBBzZs3T999950k6f7779dDDz2kiIgISdJf/vIX91YJAADgA67oBpgRERF67LHH3F0LAACAT7ui4CRJe/fu1eHDh4tc6yRJXbp0ueqiAAAAfJHl4HTgwAHde++92rVrl2w2W7GbYDqdTvdWCAAA4CMsv6tu4MCBio+P1/HjxxUeHq49e/Zo1apVatasmb7++msPlAgAAOAbLJ9xWrdunVasWKGKFSsqKChIQUFBuvXWWzV+/Hg99dRT2rZtmyfqBAAA8DrLZ5ycTqfr3XMVK1bU0aNHJZ2/Aeb+/fvdWx0AAIAPsXzGqUGDBtqxY4fi4+PVsmVLpaWlKSQkRG+88YZq1KjhiRoBAAB8guXgNHz4cOXm5kqSRo8erbvvvlu33XabKlSooAULFri9QAAAAF9hOTj9/sN9a9WqpW+//VZZWVm67rrrXO+sA/yZYRjKd0p5BedkN/z3b97hOBcQfeYV8E5gAOZZDk6PPPKIXnnlFdd1TpJUvnx55ebm6sknn9Tbb7/t1gIBX2IYhnq+uUlbD5fSkI0rvF3ONRAofQKAOZYvDn/nnXd05syZYuNnzpzR3Llz3VIU4KvOOJzaevikt8uAB8RHGCptD/Z2GQB8nOkzTjk5OTIMQ4Zh6NSpUwoLC3Ptczqd+uKLL1SpUiWPFAn4ovXPtVFkmbA/n1hCORwOLV26TMnJHWW3271djkc5HA59lb6Myw0A/CnTwalcuXKy2Wyy2Wy68cYbi+232WwaNWqUW4uTpCNHjui5557Tl19+qby8PNWqVUuzZ89Ws2bNJJ1/6WTkyJGaNWuWTp48qdatW2v69OmqXbu222sBfq90SLDCQ674U4t8nsNmKDRYCg8pJbvdf/uUzvdKZgJghul/G3711VcyDEPt2rXThx9+qPLly7v2hYSEqFq1aoqNjXVrcSdOnFDr1q3Vtm1bffnll7r++uv1/fff67rrrnPNSUtL06uvvqp33nlH8fHxSk1NVXJysvbu3VvkrBgAAMDVMh2c2rRpI0k6ePCgqlatqqAgy5dHWTZx4kRVrVpVs2fPdo3Fx8e7vjcMQ1OmTNHw4cPVtWtXSdLcuXMVHR2tjz/+WD179vR4jQAAIHBYPv9erVo1nTx5Uhs3btTx48dVWFhYZP9f//pXtxX36aefKjk5Wffff79WrlypG264QU888YQeffRRSedDXEZGhpKSklyPiYqKUsuWLbVu3TqCEwAAcCvLwemzzz5Tr169dPr0aUVGRha5mNJms7k1OB04cEDTp09XSkqKnn/+eW3atElPPfWUQkJC1Lt3b2VkZEiSoqOjizwuOjrate9i8vPzlZ+f79rOycmRdP4CUYfD4bb6L6z5+3/6q8Dp81yR7/2530A5plLg9BoofUqB02ug9Cl5tlcra9oMwzCsLH7jjTeqc+fOGjdunMLDwy0XZ0VISIiaNWumtWvXusaeeuopbdq0SevWrdPatWvVunVrHT16VJUrV3bNeeCBB2Sz2bRw4cKLrvviiy9e9EL2+fPne7wnlGz5TmnIxvP/v5HW4pxCefc6AJR4eXl5euihh5Sdna3IyMjLzrV8xunIkSN66qmnrknAqFy5surXr19krF69evrwww8lSTExMZKkzMzMIsEpMzNTCQkJl1x32LBhSklJcW3n5OSoatWq6tix45/+wqxyOBxKT09Xhw4d/Pot3YHSZ17BOdcNIdu1a6coP78dQSAcUylweg2UPqXA6TVQ+pQ82+uFV57MuKKPXNm8efM1+UDf1q1ba//+/UXGvvvuO1WrVk3S+QvFY2JitHz5cldQysnJ0YYNG/T4449fct3Q0FCFhoYWG7fb7R77w/Pk2r7E3/v8/UeP2O2l/LrXC/z9mP5eoPQaKH1KgdNroPQpeaZXK+tZDk533XWXnn32We3du1cNGzYs9sO6dOlidclLevrpp9WqVSuNGzdODzzwgDZu3Kg33nhDb7zxhqTz11QNGjRIY8aMUe3atV23I4iNjVW3bt3cVgcAAIB0BcHpwjvaRo8eXWyfzWaT0+m+D8xs3ry5Fi1apGHDhmn06NGKj4/XlClT1KtXL9ecIUOGKDc3V/369dPJkyd16623asmSJdzDCQAAuJ3l4PTH2w942t1336277777kvttNptGjx590SAHAADgTld1F8uzZ8+6qw4AAACfZzk4OZ1OvfTSS7rhhhtUtmxZHThwQJKUmpqqt956y+0FAgAA+ArLwWns2LGaM2eO0tLSFBIS4hpv0KCB3nzzTbcWBwAA4EssB6e5c+fqjTfeUK9evRQc/L+7/zVq1EjffvutW4sDAADwJZaD05EjR1SrVq1i44WFhQFxy3cAABC4LAen+vXra/Xq1cXGP/jgAzVu3NgtRQEAAPgiy7cjGDFihHr37q0jR46osLBQH330kfbv36+5c+dq8eLFnqgRAADAJ1g+49S1a1d99tln+s9//qMyZcpoxIgR2rdvnz777DN16NDBEzUCAAD4BMtnnCTptttuU3p6urtrAQAA8GmWzzht2rRJGzZsKDa+YcMGbd682S1FAQAA+CLLwal///766aefio0fOXJE/fv3d0tRAAAAvshycNq7d6+aNGlSbLxx48bau3evW4oCAADwRZaDU2hoqDIzM4uNHzt2TKVKXdElUwAAACWC5eDUsWNHDRs2TNnZ2a6xkydP6vnnn+dddQAAwK9ZPkX08ssvq02bNqpWrZrrhpfbt29XdHS03n33XbcXCAAA4CssB6cqVapo586dmjdvnnbs2KHSpUurT58+evDBB2W32z1RIwAAgE+wFJwcDofq1q2rxYsXq1+/fp6qCQAAwCdZusbJbrfr7NmznqoFAADAp13RfZwmTpyoc+fOeaIeAAAAn2X5GqdNmzZp+fLlWrZsmRo2bKgyZcoU2f/RRx+5rTgAAABfYjk4lStXTt27d/dELQAAAD7NcnCaPXu2J+oAAADweZavcZKkc+fO6T//+Y9mzpypU6dOSZKOHj2q06dPu7U4AAAAX2L5jNOhQ4fUqVMnHT58WPn5+erQoYMiIiI0ceJE5efna8aMGZ6oEwAAwOssn3EaOHCgmjVrphMnTqh06dKu8XvvvVfLly93a3EAAAC+xPIZp9WrV2vt2rUKCQkpMl69enUdOXLEbYUBAAD4GstnnAoLC+V0OouN//zzz4qIiHBLUQAAAL7IcnDq2LGjpkyZ4tq22Ww6ffq0Ro4cqc6dO7uzNgAAAJ9i+aW6f/7zn0pOTlb9+vV19uxZPfTQQ/r+++9VsWJF/fvf//ZEjQAAAD7BcnCqUqWKduzYoYULF2rHjh06ffq0+vbtq169ehW5WBwAAMDfWApO69ev12effaaCggK1a9dOaWlpnqoLAADA55gOTh988IF69Oih0qVLy263a9KkSZo4caKeeeYZT9YHAADgM0xfHD5+/Hg9+uijys7O1okTJzRmzBiNGzfOk7UBAAD4FNPBaf/+/XrmmWcUHBwsSRo8eLBOnTql48ePe6w4AAAAX2I6OOXl5SkyMtK1HRISorCwMD6fDgAABAxLF4e/+eabKlu2rGv73LlzmjNnjipWrOgae+qpp9xXHQAAgA8xHZzi4uI0a9asImMxMTF69913Xds2m43gBAAA/Jbp4PTf//7Xg2UAAAD4PssfuQIAABCoCE4AAAAmEZwAAABMIjgBAACYRHACAAAw6YqC048//qjhw4frwQcfdN05/Msvv9SePXvcWhwAAIAvsRycVq5cqYYNG2rDhg366KOPXHcO37Fjh0aOHOn2AgEAAHyF5eA0dOhQjRkzRunp6QoJCXGNt2vXTuvXr3drcQAAAL7EcnDatWuX7r333mLjlSpV0q+//uqWogAAAHyR5eBUrlw5HTt2rNj4tm3bdMMNN7ilKAAAAF9kOTj17NlTzz33nDIyMmSz2VRYWKg1a9bomWee0V//+ldP1AgAAOATLAencePGqW7duqpatapOnz6t+vXr6/bbb1erVq00fPhwT9QIAADgE0x/yO8FISEhmjVrllJTU7V7926dPn1ajRs3Vu3atT1RHwAAgM+wHJy++eYb3XrrrYqLi1NcXJwnagIAAPBJll+qa9euneLj4/X8889r7969nqgJAADAJ1kOTkePHtXgwYO1cuVKNWjQQAkJCXr55Zf1888/e6I+AAAAn2E5OFWsWFEDBgzQmjVr9OOPP+r+++/XO++8o+rVq6tdu3aeqNFlwoQJstlsGjRokGvs7Nmz6t+/vypUqKCyZcuqe/fuyszM9GgdAAAgMF3Vh/zGx8dr6NChmjBhgho2bKiVK1e6q65iNm3apJkzZ+rmm28uMv7000/rs88+0/vvv6+VK1fq6NGjuu+++zxWBwAACFxXHJzWrFmjJ554QpUrV9ZDDz2kBg0a6PPPP3dnbS6nT59Wr169NGvWLF133XWu8ezsbL311luaNGmS2rVrp6ZNm2r27Nlau3YtH/8CAADczvK76oYNG6YFCxbo6NGj6tChg1555RV17dpV4eHhnqhPktS/f3/dddddSkpK0pgxY1zjW7ZskcPhUFJSkmusbt26iouL07p163TLLbdcdL38/Hzl5+e7tnNyciRJDodDDofDrbVfWM/d6/qawOnzXJHv/bnfQDmmUuD0Gih9SoHTa6D0KXm2VytrWg5Oq1at0rPPPqsHHnhAFStWtPpwyxYsWKCtW7dq06ZNxfZlZGQoJCRE5cqVKzIeHR2tjIyMS645fvx4jRo1qtj4smXLPBYA09PTPbKur/H3PvOd0oWnzYoVKxQa7NVyrgl/P6a/Fyi9BkqfUuD0Gih9Sp7pNS8vz/Rcy8FpzZo1Vh9yxX766ScNHDhQ6enpCgsLc9u6w4YNU0pKims7JydHVatWVceOHRUZGem2nyOdT7Hp6enq0KGD7Ha7W9f2JYHSZ17BOQ3ZuELS+VtzRJVx39+lrwmUYyoFTq+B0qcUOL0GSp+SZ3u98MqTGaaC06effqo777xTdrtdn3766WXndunSxfQP/zNbtmzR8ePH1aRJE9eY0+nUqlWr9Nprr2np0qUqKCjQyZMni5x1yszMVExMzCXXDQ0NVWhoaLFxu93usT88T67tS/y9T7th+9/39lJ+3esF/n5Mfy9Qeg2UPqXA6TVQ+pQ806uV9UwFp27duikjI0OVKlVSt27dLjnPZrPJ6XSa/uF/pn379tq1a1eRsT59+qhu3bp67rnnVLVqVdntdi1fvlzdu3eXJO3fv1+HDx9WYmKi2+oAAACQTAanwsLCi37vaREREWrQoEGRsTJlyqhChQqu8b59+yolJUXly5dXZGSknnzySSUmJl7ywnAAAIArZfl2BHPnzi3yjrQLCgoKNHfuXLcUZcXkyZN19913q3v37rr99tsVExOjjz766JrXAQAA/J/l4NSnTx9lZ2cXGz916pT69OnjlqIu5+uvv9aUKVNc22FhYZo2bZqysrKUm5urjz766LLXNwEAAFwpy8HJMAzZbLZi4z///LOioqLcUhQAAIAvMn07gsaNG8tms8lms6l9+/YqVep/D3U6nTp48KA6derkkSIBAAB8gengdOHddNu3b1dycrLKli3r2hcSEqLq1au73tkGAADgj0wHp5EjR0qSqlevrh49erj1hpQAAAAlgeU7h/fu3dsTdQAAAPg8y8HJ6XRq8uTJeu+993T48GEVFBQU2Z+VleW24gAAAHyJ5XfVjRo1SpMmTVKPHj2UnZ2tlJQU3XfffQoKCtKLL77ogRIBAAB8g+XgNG/ePM2aNUuDBw9WqVKl9OCDD+rNN9/UiBEjtH79ek/UCAAA4BMsB6eMjAw1bNhQklS2bFnXzTDvvvtuff755+6tDgAAwIdYDk5VqlTRsWPHJEk1a9bUsmXLJEmbNm1SaGioe6sDAADwIZaD07333qvly5dLkp588kmlpqaqdu3a+utf/6pHHnnE7QUCAAD4CsvvqpswYYLr+x49eiguLk7r1q1T7dq1dc8997i1OAAAAF9iOTj9UWJiohITE91RCwAAgE8zFZw+/fRT0wt26dLliosBAADwZaaC04XPqfszNptNTqfzauoBAADwWaaCU2FhoafrAAAA8HmW31UHAAAQqCxfHD569OjL7h8xYsQVFwMAAODLLAenRYsWFdl2OBw6ePCgSpUqpZo1axKcAACA37IcnLZt21ZsLCcnRw8//LDuvfdetxQFAADgi9xyjVNkZKRGjRql1NRUdywHAADgk9x2cXh2drbrA38BAAD8keWX6l599dUi24Zh6NixY3r33Xd15513uq0wAAAAX2M5OE2ePLnIdlBQkK6//nr17t1bw4YNc1thAAAAvsZycDp48KAn6gAAAPB53AATAADAJMtnnM6ePaupU6fqq6++0vHjx4t9HMvWrVvdVhwAAIAvsRyc+vbtq2XLlun//b//pxYtWshms3miLgAAAJ9jOTgtXrxYX3zxhVq3bu2JegAAAHyW5WucbrjhBkVERHiiFgAAAJ9mOTj985//1HPPPadDhw55oh4AAACfZfmlumbNmuns2bOqUaOGwsPDZbfbi+zPyspyW3ElnWEYyis4p3ynlFdwTnbDf68HczgCo8+8Aqe3SwAAeJHl4PTggw/qyJEjGjdunKKjo7k4/DLOOJxq9NIKSaU0ZOMKb5dzDQRKnwCAQGU5OK1du1br1q1To0aNPFEPUCLERxgqbQ/2dhkAgGvMcnCqW7euzpw544la/E5pe7B2pLbT0qXLlJzcsdjLmv7E4XAERJ/S+V6/Sl/G2VYACECWg9OECRM0ePBgjR07Vg0bNiz2H8nIyEi3FVfS2Ww2hYeUUmiwFB5SSna75V93ieGwGQHRp3S+VzITAAQmy/+F69SpkySpffv2RcYNw5DNZpPTycWzAADAP1kOTl999ZUn6gAAAPB5loNTmzZtPFEHAACAz7McnFatWnXZ/bfffvsVFwMAAODLLAenO+64o9jY799dxDVOAADAX1n+yJUTJ04U+Tp+/LiWLFmi5s2ba9myZZ6oEQAAwCdYPuMUFRVVbKxDhw4KCQlRSkqKtmzZ4pbCAAAAfI3lM06XEh0drf3797trOQAAAJ9j+YzTzp07i2wbhqFjx45pwoQJSkhIcFddAAAAPsdycEpISJDNZpNhGEXGb7nlFr399ttuKwwAAMDXWA5OBw8eLLIdFBSk66+/XmFhYW4rCgAAwBdZDk7VqlXzRB0AAAA+z/TF4StWrFD9+vWVk5NTbF92drZuuukmrV692q3FAQAA+BLTwWnKlCl69NFHFRkZWWxfVFSU/v73v2vSpEluLQ4AAMCXmA5OO3bsUKdOnS65v2PHjtzDCQAA+DXTwSkzM1N2u/2S+0uVKqVffvnFLUUBAAD4ItPB6YYbbtDu3bsvuX/nzp2qXLmyW4oCAADwRaaDU+fOnZWamqqzZ88W23fmzBmNHDlSd999t1uLGz9+vJo3b66IiAhVqlRJ3bp1K3Z38rNnz6p///6qUKGCypYtq+7duyszM9OtdQAAAEgWgtPw4cOVlZWlG2+8UWlpafrkk0/0ySefaOLEiapTp46ysrL0wgsvuLW4lStXqn///lq/fr3S09PlcDjUsWNH5ebmuuY8/fTT+uyzz/T+++9r5cqVOnr0qO677z631gEAACBZuI9TdHS01q5dq8cff1zDhg1z3TncZrMpOTlZ06ZNU3R0tFuLW7JkSZHtOXPmqFKlStqyZYtuv/12ZWdn66233tL8+fPVrl07SdLs2bNVr149rV+/Xrfccotb6wEAAIHN0g0wq1Wrpi+++EInTpzQDz/8IMMwVLt2bV133XWeqq+I7OxsSVL58uUlSVu2bJHD4VBSUpJrTt26dRUXF6d169ZdMjjl5+crPz/ftX3h3lQOh0MOh8OtNV9Yz93r+ppA6VMKnF4DpU8pcHoNlD6lwOk1UPqUPNurlTVtxh8/dM5HFRYWqkuXLjp58qS++eYbSdL8+fPVp0+fIiFIklq0aKG2bdtq4sSJF13rxRdf1KhRo4qNz58/X+Hh4e4vHgAA+Ky8vDw99NBDys7Ovuj9Kn/P8keueEv//v21e/duV2i6GsOGDVNKSoprOycnR1WrVlXHjh3/9BdmlcPhUHp6ujp06HDZ2zmUdIHSpxQ4vQZKn1Lg9BoofUqB02ug9Cl5tteLfSrKpZSI4DRgwAAtXrxYq1atUpUqVVzjMTExKigo0MmTJ1WuXDnXeGZmpmJiYi65XmhoqEJDQ4uN2+12j/3heXJtXxIofUqB02ug9CkFTq+B0qcUOL0GSp+SZ3q1sp7pd9V5g2EYGjBggBYtWqQVK1YoPj6+yP6mTZvKbrdr+fLlrrH9+/fr8OHDSkxMvNblAgAAP+fTZ5z69++v+fPn65NPPlFERIQyMjIknf9svNKlSysqKkp9+/ZVSkqKypcvr8jISD355JNKTEzkHXUAAMDtfDo4TZ8+XZJ0xx13FBmfPXu2Hn74YUnS5MmTFRQUpO7duys/P1/Jycl6/fXXr3GlAAAgEPh0cDLzhr+wsDBNmzZN06ZNuwYVAQCAQObT1zgBAAD4EoITAACASQQnAAAAkwhOAAAAJhGcAAAATCI4AQAAmERwAgAAMIngBAAAYBLBCQAAwCSCEwAAgEkEJwAAAJMITgAAACYRnAAAAEwiOAEAAJhEcAIAADCJ4AQAAGASwQkAAMAkghMAAIBJBCcAAACTCE4AAAAmEZwAAABMIjgBAACYRHACAAAwieAEAABgEsEJAADAJIITAACASQQnAAAAkwhOAAAAJhGcAAAATCI4AQAAmERwAgAAMIngBAAAYBLBCQAAwCSCEwAAgEkEJwAAAJMITgAAACYRnAAAAEwiOAEAAJhEcAIAADCJ4AQAAGASwQkAAMAkghMAAIBJBCcAAACTCE4AAAAmEZwAAABMIjgBAACYRHACAAAwieAEAABgEsEJAADAJIITAACASQQnAAAAkwhOAAAAJhGcAAAATPKb4DRt2jRVr15dYWFhatmypTZu3OjtkgAAgJ/xi+C0cOFCpaSkaOTIkdq6dasaNWqk5ORkHT9+3NulAQAAP+IXwWnSpEl69NFH1adPH9WvX18zZsxQeHi43n77bW+XBgAA/EiJD04FBQXasmWLkpKSXGNBQUFKSkrSunXrvFgZAADwN6W8XcDV+vXXX+V0OhUdHV1kPDo6Wt9+++1FH5Ofn6/8/HzXdnZ2tiQpKytLDofDrfU5HA7l5eXpt99+k91ud+vaviRQ+pQCp9dA6VMKnF4DpU8pcHoNlD4lz/Z66tQpSZJhGH86t8QHpysxfvx4jRo1qth4fHy8F6oBAAC+4NSpU4qKirrsnBIfnCpWrKjg4GBlZmYWGc/MzFRMTMxFHzNs2DClpKS4tgsLC5WVlaUKFSrIZrO5tb6cnBxVrVpVP/30kyIjI926ti8JlD6lwOk1UPqUAqfXQOlTCpxeA6VPybO9GoahU6dOKTY29k/nlvjgFBISoqZNm2r58uXq1q2bpPNBaPny5RowYMBFHxMaGqrQ0NAiY+XKlfNonZGRkX7/Ry0FTp9S4PQaKH1KgdNroPQpBU6vgdKn5Lle/+xM0wUlPjhJUkpKinr37q1mzZqpRYsWmjJlinJzc9WnTx9vlwYAAPyIXwSnHj166JdfftGIESOUkZGhhIQELVmypNgF4wAAAFfDL4KTJA0YMOCSL815U2hoqEaOHFnspUF/Eyh9SoHTa6D0KQVOr4HSpxQ4vQZKn5Lv9GozzLz3DgAAACX/BpgAAADXCsEJAADAJIITAACASQQnN5g2bZqqV6+usLAwtWzZUhs3brzs/Pfff19169ZVWFiYGjZsqC+++OIaVXp1rPQ5Z84c2Wy2Il9hYWHXsNors2rVKt1zzz2KjY2VzWbTxx9//KeP+frrr9WkSROFhoaqVq1amjNnjsfrdAervX799dfFjqnNZlNGRsa1KfgKjR8/Xs2bN1dERIQqVaqkbt26af/+/X/6uJL2PL2SPkvq83T69Om6+eabXffzSUxM1JdffnnZx5S04ylZ77OkHs8/mjBhgmw2mwYNGnTZed46pgSnq7Rw4UKlpKRo5MiR2rp1qxo1aqTk5GQdP378ovPXrl2rBx98UH379tW2bdvUrVs3devWTbt3777GlVtjtU/p/E3Kjh075vo6dOjQNaz4yuTm5qpRo0aaNm2aqfkHDx7UXXfdpbZt22r79u0aNGiQ/va3v2np0qUervTqWe31gv379xc5rpUqVfJQhe6xcuVK9e/fX+vXr1d6erocDoc6duyo3NzcSz6mJD5Pr6RPqWQ+T6tUqaIJEyZoy5Yt2rx5s9q1a6euXbtqz549F51fEo+nZL1PqWQez9/btGmTZs6cqZtvvvmy87x6TA1clRYtWhj9+/d3bTudTiM2NtYYP378Rec/8MADxl133VVkrGXLlsbf//53j9Z5taz2OXv2bCMqKuoaVecZkoxFixZdds6QIUOMm266qchYjx49jOTkZA9W5n5mev3qq68MScaJEyeuSU2ecvz4cUOSsXLlykvOKanP098z06c/PE8vuO6664w333zzovv84XhecLk+S/rxPHXqlFG7dm0jPT3daNOmjTFw4MBLzvXmMeWM01UoKCjQli1blJSU5BoLCgpSUlKS1q1bd9HHrFu3rsh8SUpOTr7kfF9wJX1K0unTp1WtWjVVrVr1T/8vqaQqicfzaiUkJKhy5crq0KGD1qxZ4+1yLMvOzpYklS9f/pJz/OG4mulTKvnPU6fTqQULFig3N1eJiYkXneMPx9NMn1LJPp79+/fXXXfdVexYXYw3jynB6Sr8+uuvcjqdxe5QHh0dfcnrPjIyMizN9wVX0medOnX09ttv65NPPtG//vUvFRYWqlWrVvr555+vRcnXzKWOZ05Ojs6cOeOlqjyjcuXKmjFjhj788EN9+OGHqlq1qu644w5t3brV26WZVlhYqEGDBql169Zq0KDBJeeVxOfp75ntsyQ/T3ft2qWyZcsqNDRUjz32mBYtWqT69etfdG5JPp5W+izJx3PBggXaunWrxo8fb2q+N4+p39w5HL4lMTGxyP8VtWrVSvXq1dPMmTP10ksvebEyXKk6deqoTp06ru1WrVrpxx9/1OTJk/Xuu+96sTLz+vfvr927d+ubb77xdikeZbbPkvw8rVOnjrZv367s7Gx98MEH6t27t1auXHnJUFFSWemzpB7Pn376SQMHDlR6enqJuJid4HQVKlasqODgYGVmZhYZz8zMVExMzEUfExMTY2m+L7iSPv/IbrercePG+uGHHzxRotdc6nhGRkaqdOnSXqrq2mnRokWJCSEDBgzQ4sWLtWrVKlWpUuWyc0vi8/QCK33+UUl6noaEhKhWrVqSpKZNm2rTpk165ZVXNHPmzGJzS/LxtNLnH5WU47llyxYdP35cTZo0cY05nU6tWrVKr732mvLz8xUcHFzkMd48prxUdxVCQkLUtGlTLV++3DVWWFio5cuXX/I16MTExCLzJSk9Pf2yr1l725X0+UdOp1O7du1S5cqVPVWmV5TE4+lO27dv9/ljahiGBgwYoEWLFmnFihWKj4//08eUxON6JX3+UUl+nhYWFio/P/+i+0ri8byUy/X5RyXleLZv3167du3S9u3bXV/NmjVTr169tH379mKhSfLyMfX45ed+bsGCBUZoaKgxZ84cY+/evUa/fv2McuXKGRkZGYZhGMZf/vIXY+jQoa75a9asMUqVKmX84x//MPbt22eMHDnSsNvtxq5du7zVgilW+xw1apSxdOlS48cffzS2bNli9OzZ0wgLCzP27NnjrRZMOXXqlLFt2zZj27ZthiRj0qRJxrZt24xDhw4ZhmEYQ4cONf7yl7+45h84cMAIDw83nn32WWPfvn3GtGnTjODgYGPJkiXeasE0q71OnjzZ+Pjjj43vv//e2LVrlzFw4EAjKCjI+M9//uOtFkx5/PHHjaioKOPrr782jh075vrKy8tzzfGH5+mV9FlSn6dDhw41Vq5caRw8eNDYuXOnMXToUMNmsxnLli0zDMM/jqdhWO+zpB7Pi/nju+p86ZgSnNxg6tSpRlxcnBESEmK0aNHCWL9+vWtfmzZtjN69exeZ/9577xk33nijERISYtx0003G559/fo0rvjJW+hw0aJBrbnR0tNG5c2dj69atXqjamgtvuf/j14XeevfubbRp06bYYxISEoyQkBCjRo0axuzZs6953VfCaq8TJ040atasaYSFhRnly5c37rjjDmPFihXeKd6Ci/Uoqchx8ofn6ZX0WVKfp4888ohRrVo1IyQkxLj++uuN9u3bu8KEYfjH8TQM632W1ON5MX8MTr50TG2GYRieP68FAABQ8nGNEwAAgEkEJwAAAJMITgAAACYRnAAAAEwiOAEAAJhEcAIAADCJ4AQAAGASwQkAAMAkghMAeMiLL76ohIQEb5cBwI0ITgBKjF9++UWPP/644uLiFBoaqpiYGCUnJ2vNmjXeLg1AgCjl7QIAwKzu3buroKBA77zzjmrUqKHMzEwtX75cv/322xWv6XA4ZLfb3VglAH/GGScAJcLJkye1evVqTZw4UW3btlW1atXUokULDRs2TF26dJEk2Ww2TZ8+XXfeeadKly6tGjVq6IMPPnCt8d///lc2m00LFy5UmzZtFBYWpnnz5kmS3nzzTdWrV09hYWGqW7euXn/99SI//7nnntONN96o8PBw1ahRQ6mpqXI4HEXmTJgwQdHR0YqIiFDfvn119uxZD/9WAFxrBCcAJULZsmVVtmxZffzxx8rPz7/kvNTUVHXv3l07duxQr1691LNnT+3bt6/InKFDh2rgwIHat2+fkpOTNW/ePI0YMUJjx47Vvn37NG7cOKWmpuqdd95xPSYiIkJz5szR3r179corr2jWrFmaPHmya/97772nF198UePGjdPmzZtVuXLlYuELQMlnMwzD8HYRAGDGhx9+qEcffVRnzpxRkyZN1KZNG/Xs2VM333yzpPNnnB577DFNnz7d9ZhbbrlFTZo00euvv67//ve/io+P15QpUzRw4EDXnFq1aumll17Sgw8+6BobM2aMvvjiC61du/aitfzjH//QggULtHnzZklSq1at1LhxY02bNq3Izz579qy2b9/uzl8DAC/ijBOAEqN79+46evSoPv30U3Xq1Elff/21mjRpojlz5rjmJCYmFnlMYmJisTNOzZo1c32fm5urH3/8UX379nWd1SpbtqzGjBmjH3/80TVv4cKFat26tWJiYlS2bFkNHz5chw8fdu3ft2+fWrZsWexnA/AvBCcAJUpYWJg6dOig1NRUrV27Vg8//LBGjhxpaY0yZcq4vj99+rQkadasWdq+fbvra/fu3Vq/fr0kad26derVq5c6d+6sxYsXa9u2bXrhhRdUUFDgvsYAlAgEJwAlWv369ZWbm+vavhB2fr9dr169Sz4+OjpasbGxOnDggGrVqlXkKz4+XpK0du1aVatWTS+88IKaNWum2rVr69ChQ0XWqVevnjZs2FDsZwPwL9yOAECJ8Ntvv+n+++/XI488optvvlkRERHavHmz0tLS1LVrV9e8999/X82aNdOtt96qefPmaePGjXrrrbcuu/aoUaP01FNPKSoqSp06dVJ+fr42b96sEydOKCUlRbVr19bhw4e1YMECNW/eXJ9//rkWLVpUZI2BAwfq4YcfVrNmzdS6dWvNmzdPe/bsUY0aNTzy+wDgJQYAlABnz541hg4dajRp0sSIiooywsPDjTp16hjDhw838vLyDMMwDEnGtGnTjA4dOhihoaFG9erVjYULF7rWOHjwoCHJ2LZtW7H1582bZyQkJBghISHGddddZ9x+++3GRx995Nr/7LPPGhUqVDDKli1r9OjRw5g8ebIRFRVVZI2xY8caFStWNMqWLWv07t3bGDJkiNGoUSNP/DoAeAnvqgPgN2w2mxYtWqRu3bp5uxQAfoprnAAAAEwiOAEAAJjExeEA/AZXHgDwNM44AQAAmERwAgAAMIngBAAAYBLBCQAAwCSCEwAAgEkEJwAAAJMITgAAACYRnAAAAEwiOAEAAJj0/wHMGtjUajCdEgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ "# Plot CDF\n", - "plt.figure(figsize=(4, 4))\n", + "plt.figure(figsize=(6, 4))\n", "plt.ylim(0, 100)\n", "plt.step(values, cdf, where=\"post\")\n", "plt.xlabel(\"Spread\")\n", "plt.ylabel(\"Cumulative Percentage (%)\")\n", - "plt.title(\"Cumulative Distribution of the Spread of Annotations\")\n", + "# plt.title(\"Cumulative Distribution of the Spread of Annotations\")\n", "plt.grid(True)\n", "plt.tight_layout()\n", + "plt.savefig(plot_path / f\"human_annotations_cummulative_spread.pdf\", format=\"pdf\", bbox_inches=\"tight\", pad_inches=0)\n", "plt.show()" ] }, { "cell_type": "code", - "execution_count": 68, - "id": "76a92eaa", - "metadata": {}, - "outputs": [], - "source": [ - "top_k_spread_doc_ids = spread.argsort()[::-1][:k]" - ] - }, - { - "cell_type": "code", - "execution_count": 70, + "execution_count": 13, "id": "4abce843", "metadata": {}, "outputs": [ @@ -510,7 +598,7 @@ ], "source": [ "# documents with largest spread\n", - "\n", + "top_k_spread_doc_ids = spread.argsort()[::-1][:k]\n", "documents = load_documents(en_documents_path)\n", "for doc_id in list(top_k_spread_doc_ids):\n", " document = documents[doc_id]\n", @@ -521,15 +609,101 @@ " print(\"========================================================================================================\")" ] }, + { + "cell_type": "markdown", + "id": "c8799cee", + "metadata": {}, + "source": [ + "### Filtering documents by given scores" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "34ad74ff", + "metadata": {}, + "outputs": [], + "source": [ + "doc_ids = np.argwhere(np.all(np.array(gt_annotations) == [5,5,5], axis=1)).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "b3b5f51c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Document ID 1: 53\n", + "Document ID 2: 53\n", + "Scores: [5, 5, 5]\n", + "Text: Are you confused about how many ounces are in 1.2 liters? If you’re from a country that primarily uses the metric system, you might find it challenging to convert the volume measurements into imperial units. In this guide, we’ll discuss everything you need to know about converting liters to ounces and vice versa.\n", + "This guide will be helpful if you’re cooking something or working with ingredients that require a certain amount of liquid. By the end of this article, you’ll be able to convert liters to ounces effortlessly. Let’s get started!\n", + "What is a liter, and what is an ounce?\n", + "Before diving into conversions, let’s define what a liter and an ounce mean. A liter is a unit of volume in the metric system, and it’s equal to 1000 milliliters. An ounce, on the other hand, is a unit of volume in the imperial system, and it’s equal to 28.35 milliliters or 1/128th of a U.S. gallon.\n", + "How Many Ounces in 1.2 Liters?\n", + "To convert liters to ounces, you’ll need to know that one liter is equal to 33.814 ounces. Therefore, to calculate how many ounces are in 1.2 liters, you’ll need to multiply 1.2 by 33.814. The answer, in this case, is 40.5768 ounces.\n", + "How Many Ounces Are in 1/2 Liter?\n", + "To convert 1/2 liter to ounces, you’ll need to multiply 0.5 by 33.814. The result is 16.907 ounces.\n", + "How Many Ounces in 1 Liter?\n", + "If you want to know how many ounces are in one liter, you don’t have to do any calculations because we know that one liter equals 33.814 ounces. So, if you have one liter of liquid, it’s the same as having 33.814 ounces.\n", + "How Many Liters in 1 Ounce?\n", + "To convert ounces to liters, you’ll need to divide the number of ounces by 33.814. For example, if you have 16 ounces of liquid and want to know how many liters that is, you’ll need to divide 16 by 33.814. The answer is 0.473 liters.\n", + "How to Measure Liquid in Ounces and Liters\n", + "In cooking, measuring the right amount of liquid is crucial to ensure the recipe’s success. You can measure liquid in both ounces and liters, depending on the recipe’s requirements. Measuring cups and spoons are widely used to measure liquid in ounces, while measuring jugs or cups are used for liters. Here are some tips for measuring liquid:\n", + "Measuring Liquid in Ounces\n", + "- Fill the measuring cup to the desired amount, holding the cup at eye level to ensure accuracy.\n", + "- Avoid shaking the cup to level the liquid as it can introduce more air into the mixture.\n", + "Measuring Liquid in Liters\n", + "- Place the measuring jug or cup on a flat surface and make sure it’s stable.\n", + "- Pour the liquid slowly to the desired amount, making sure it’s level with the markings on the jug or cup.\n", + "Conversion Table for Liters to Ounces\n", + "To make the conversion process easier, we’ve created a table with some common conversions of liters to ounces. You can refer to this table whenever you need to make a quick conversion.\n", + "Why is it important to measure accurately?\n", + "Cooking is a science, and the success of the recipe depends on accurate measurement. If you add too much or too little liquid to a recipe, it can affect the texture, flavor, and consistency. For instance, if you add too much liquid to a cake recipe, it might turn out dense and chewy. On the other hand, if you add too little liquid, the cake might be dry and crumbly. Therefore, it’s essential to measure accurately to ensure the recipe’s success.\n", + "In conclusion, converting liters to ounces is simple if you know the conversion rate. One liter is equal to 33.814 ounces, and you can use this conversion rate to make any necessary calculations. It’s essential to measure liquid accurately in cooking to ensure the recipe’s success. Now that you’ve learned how to convert liters to ounces, you can use this knowledge in your cooking and baking endeavors!\n", + "Frequently Asked Questions\n", + "- How many ounces are in 1.2 liters? There are 40.5768 ounces in 1.2 liters.\n", + "- How many ounces are in 1 liter? There are 33.814 ounces in one liter.\n", + "- How do you measure liquid in ounces? You can use measuring cups and spoons to measure liquid in ounces.\n", + "- How do you measure liquid in liters? You can use measuring jugs or cups to measure liquid in liters.\n", + "- Why is it important to measure accurately? Accurate measurement is crucial to ensure the success of the recipe.\n", + "Convert Units. (n.d.). Liters to US Fluid Ounces Conversion. Retrieved August 03, 2021, from https://www.convertunits.com/from/liters/to/us+fluid+ounces\n", + "========================================================================================================\n" + ] + } + ], + "source": [ + "documents = load_documents(en_documents_path)\n", + "for doc_id in list(doc_ids):\n", + " document = documents[doc_id]\n", + " print(f\"Document ID 1: {doc_id}\")\n", + " print(f\"Document ID 2: {document['document_id']}\")\n", + " print(f\"Scores: {gt_annotations[doc_id]}\")\n", + " print(f\"Text: {document['text']}\")\n", + " print(\"========================================================================================================\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e1789f3d", + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 18, "id": "eb44a56c", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHqCAYAAACZcdjsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAnT1JREFUeJzs3XdYU+fbB/BvCBKQJcoUEMGFShUnLnAXFRX3Xm3tsM5qh7791dGhtbVWO2zt0Gq11lH3wL13XVVRKg5QAQUHS9nn/eNpAhFQMuAQ+H6uKxfJycnJHcLIfZ7nuW+FJEkSiIiIiIiIDGAmdwBERERERGT6mFgQEREREZHBmFgQEREREZHBmFgQEREREZHBmFgQEREREZHBmFgQEREREZHBmFgQEREREZHBmFgQEREREZHBmFgQEREREZHBmFgQAZg5cyYUCoXcYRBRCWvXrh3atWtX5H39/PyKNyAyCdWrV8eoUaPkDoOo1GFiQWXOb7/9BoVCoblYWlqiatWqCA4OxjfffIPk5GS5Q6RCbN++HTNnzpQ7jOcaNWoUFAoF7Ozs8PTp03z3X7t2TfOzN2/ePBkiLLr4+HhMnDgRvr6+sLKygrOzM5o3b44PPvgAKSkpcocni5iYGMycORPnz583+rEzMjKwcOFCNGrUCHZ2dqhUqRLq16+PN954A1evXjX688lp9uzZ2Lhxo9xhFNmBAwe0/m8oFApUrlwZLVq0wMqVK+UOj8hkmMsdAFFx+fjjj+Ht7Y3MzEzExcXhwIEDmDRpEubPn4/NmzejQYMGmn3/97//YerUqTJGS4BILL7//vtSn1yYm5vjyZMn2LJlCwYMGKB138qVK2FpaYm0tDSZoiuahw8fomnTpkhKSsKrr74KX19fPHjwAP/88w9++OEHjBkzBjY2NnKHWex27dqldTsmJgazZs1C9erV4e/vb9Tn6tu3L3bs2IHBgwfj9ddfR2ZmJq5evYqtW7eiVatW8PX1NerzyWn27Nno168fevXqJXcoOpkwYQKaNWsGAHjw4AFWr16NYcOG4fHjxxg7dqxmv4iICJiZ8dws0bOYWFCZ1bVrVzRt2lRze9q0adi3bx+6d++Onj174sqVK7CysgIgPiiam5fOX4fU1FRYW1vLHQbloVKp0Lp1a6xatSpfYvHHH38gJCQEf/31l0zRFc2vv/6K6OhoHD16FK1atdK6LykpCRYWFiUWi5w/4yX1Ok+fPo2tW7fis88+w//93/9p3ffdd9/h8ePHJRJHcZIkCWlpaZq/q6VNUX7OAgMD0a9fP83tMWPGwMfHB3/88YdWYqFSqYotTiJTxnSbypUOHTrgo48+QlRUFFasWKHZXtAai927d6NNmzaoVKkSbGxsUKdOHa0PBBkZGZg+fTqaNGkCe3t7WFtbIzAwEPv378/3vA8ePMDw4cM10x9GjhyJCxcuQKFQ4LffftPsN2rUKNjY2OD69evo1q0bbG1tMXToUABATk4OFixYgPr168PS0hIuLi5488038ejRo3zPt2PHDgQGBsLa2hq2trYICQnB5cuXtfZRP1d0dDS6d+8OGxsbuLu74/vvvwcAXLx4ER06dIC1tTW8vLzwxx9/5Huex48fY9KkSfD09IRKpULNmjUxd+5c5OTkaPa5deuWZlrQTz/9hBo1akClUqFZs2Y4ffq0Vjzq5847HaEw3bt3h4+PT4H3tWzZUiupfNF7qY8hQ4Zgx44dWh8IT58+jWvXrmHIkCEFPqYo3y8AmDdvHlq1aoUqVarAysoKTZo0wbp16/IdT6FQYNy4cdi4cSP8/PygUqlQv359hIWFvTD+69evQ6lUokWLFvnus7Ozg6Wlpda2kydPolu3bnBwcIC1tTUaNGiAhQsXau2zb98+zc9dpUqVEBoaiitXrmjto/5dCw8Px5AhQ+Dg4IA2bdpo7l+xYgWaNGkCKysrVK5cGYMGDcLt27ef+1r++ecfKBQKbN68WbPtzJkzUCgUaNy4sda+Xbt2RUBAgOZ23jUWBw4c0JytfuWVVzQ/g3l/RwEgPDwc7du3R8WKFeHu7o4vvvjiufEB4vsNAK1bt853n1KpRJUqVTS3R40aherVq+fbr6C/U+qfgZUrV6JOnTqwtLREkyZNcOjQoQIfe/XqVQwYMAB2dnaoUqUKJk6cmG90LSsrC5988onmd7V69er4v//7P6Snp2vtV716dXTv3h07d+5E06ZNYWVlhcWLF0OhUCA1NRXLli3TfA+ftx5BPQ1p9erV+L//+z+4urrC2toaPXv2LPC9P3nyJLp06QJ7e3tUrFgRbdu2xdGjRwt8vYX9nBWVhYUFHBwc8p14enaNhXoK7tGjRzF58mQ4OTnB2toavXv3Rnx8vM7PS2SqmFhQuTN8+HAA+adA5HX58mV0794d6enp+Pjjj/HVV1+hZ8+eWv+8kpKS8Msvv6Bdu3aYO3cuZs6cifj4eAQHB2vNz87JyUGPHj2watUqjBw5Ep999hliY2MxcuTIAp87KysLwcHBcHZ2xrx589C3b18AwJtvvon33nsPrVu3xsKFC/HKK69g5cqVCA4ORmZmpubxv//+O0JCQmBjY4O5c+fio48+Qnh4ONq0aYNbt25pPVd2dja6du0KT09PfPHFF6hevTrGjRuH3377DV26dEHTpk0xd+5c2NraYsSIEbh586bmsU+ePEHbtm2xYsUKjBgxAt988w1at26NadOmYfLkyfle1x9//IEvv/wSb775Jj799FPcunULffr00cT+5ptvonPnzprXoL4UZuDAgbh586ZWcgIAUVFROHHiBAYNGlTk91Ifffr0gUKhwPr167Veo6+vb74Ps4Bu3y/1PPyPP/4Ys2fPhrm5Ofr3749t27blO+6RI0fw9ttvY9CgQfjiiy+QlpaGvn374sGDB8+N38vLC9nZ2c/9Hqvt3r0bQUFBCA8Px8SJE/HVV1+hffv22Lp1q2afPXv2IDg4GPfv38fMmTMxefJkHDt2DK1bt873cwcA/fv3x5MnTzB79my8/vrrAIDPPvsMI0aMQK1atTB//nxMmjQJe/fuRVBQ0HPP6Pv5+aFSpUpaH6YPHz4MMzMzXLhwAUlJSQDE7+KxY8cQFBRU4HHq1q2Ljz/+GADwxhtvaH4G8+7/6NEjdOnSBQ0bNsRXX30FX19ffPDBB9ixY8dzv4deXl4AxFS5rKys5+6rq4MHD2LSpEkYNmwYPv74Yzx48ABdunTBpUuX8u07YMAApKWlYc6cOejWrRu++eYbvPHGG1r7jB49GtOnT0fjxo3x9ddfo23btpgzZ47mdyqviIgIDB48GJ07d8bChQvh7++P33//HSqVCoGBgZrv4ZtvvvnC1/HZZ59h27Zt+OCDDzBhwgTs3r0bnTp10lrLtG/fPgQFBSEpKQkzZszA7Nmz8fjxY3To0AGnTp3Kd8yCfs6eJzk5GQkJCUhISMC///6LmTNn4tKlS4X+vX7W+PHjceHCBcyYMQNjxozBli1bMG7cuCI9lqhMkIjKmKVLl0oApNOnTxe6j729vdSoUSPN7RkzZkh5fx2+/vprCYAUHx9f6DGysrKk9PR0rW2PHj2SXFxcpFdffVWz7a+//pIASAsWLNBsy87Oljp06CABkJYuXarZPnLkSAmANHXqVK3jHj58WAIgrVy5Umt7WFiY1vbk5GSpUqVK0uuvv661X1xcnGRvb6+1Xf1cs2fP1orfyspKUigU0p9//qnZfvXqVQmANGPGDM22Tz75RLK2tpb+/fdfreeaOnWqpFQqpejoaEmSJOnmzZsSAKlKlSrSw4cPNftt2rRJAiBt2bJFs23s2LFSUf8sJSYmSiqVSpoyZYrW9i+++EJSKBRSVFSUJElFey91MXLkSMna2lqSJEnq16+f1LFjR0mSxHvq6uoqzZo1S/Oav/zyS83jivr9kiRJevLkidY+GRkZkp+fn9ShQwet7QAkCwsLKTIyUrPtwoULEgDp22+/fe7riIuLk5ycnCQAkq+vr/TWW29Jf/zxh/T48WOt/bKysiRvb2/Jy8tLevTokdZ9OTk5muv+/v6Ss7Oz9ODBA61YzMzMpBEjRmi2qX/XBg8erHWsW7duSUqlUvrss8+0tl+8eFEyNzfPt/1ZISEhUvPmzTW3+/TpI/Xp00dSKpXSjh07JEmSpLNnz0oApE2bNmn2a9u2rdS2bVvN7dOnT+f7vcy7LwBp+fLlmm3p6emSq6ur1Ldv3+fGl5OTo3m8i4uLNHjwYOn777/X/JzmNXLkSMnLyyvf9mf/TkmS+BkAIP3999+abVFRUZKlpaXUu3fvfI/t2bOn1uPffvttCYB04cIFSZIk6fz58xIAafTo0Vr7vfvuuxIAad++fZptXl5eEgApLCwsX6zW1tbSyJEjC/+G5LF//34JgOTu7i4lJSVptq9Zs0YCIC1cuFCSJPE9rFWrlhQcHKz1s/fkyRPJ29tb6ty5c77X++zP2YtiePZiZmZW4M+el5eX1utT/9/p1KmTVmzvvPOOpFQq8/1eEZVVHLGgcsnGxua51aEqVaoEANi0aVO+aSpqSqVSMz87JycHDx8+RFZWFpo2bYqzZ89q9gsLC0OFChW0zpaZmZlpzdd91pgxY7Rur127Fvb29ujcubPmbFpCQgKaNGkCGxsbzfSr3bt34/Hjxxg8eLDWfkqlEgEBAQVO0xo9erTW665Tpw6sra211g7UqVMHlSpVwo0bN7RiCgwMhIODg9ZzderUCdnZ2fmmYgwcOBAODg6a24GBgQCgdUxd2NnZoWvXrlizZg0kSdJsX716NVq0aIFq1appXhPw/PdSX0OGDMGBAwcQFxeHffv2IS4urtBpULp8v/LOUX/06BESExMRGBio9XOl1qlTJ9SoUUNzu0GDBrCzs3vh99XFxQUXLlzAW2+9hUePHuHHH3/EkCFD4OzsjE8++UTzPT137hxu3ryJSZMmab6XauppObGxsTh//jxGjRqFypUra8XSuXNnbN++Pd/zv/XWW1q3169fj5ycHAwYMEDr++Pq6opatWoV+LObl/r7k5qaCkCM5HTr1g3+/v44fPgwADGKoVAo9JoSo2ZjY4Nhw4ZpbltYWKB58+Yv/H4rFArs3LkTn376KRwcHLBq1SqMHTsWXl5eGDhwoEFrLFq2bIkmTZpoblerVg2hoaHYuXMnsrOztfZ99u/O+PHjAUDzHqm/PjuKNmXKFADIN2rm7e2N4OBgvWPPa8SIEbC1tdXc7tevH9zc3DQxnT9/XjPV8MGDB5qfkdTUVHTs2BGHDh3K9zv+7M/Zi0yfPh27d+/G7t27sXr1agwePBgffvhhvml/hXnjjTe0pqsFBgYiOzsbUVFROsVBZKpK52pVomKWkpICZ2fnQu8fOHAgfvnlF4wePRpTp05Fx44d0adPH/Tr10+rEsiyZcvw1Vdf4erVq1rTkby9vTXXo6Ki4ObmhooVK2o9R82aNQt8bnNzc3h4eGhtu3btGhITEwuN+f79+5r9ALGWpCB2dnZaty0tLeHk5KS1zd7eHh4eHvnmctvb22ut57h27Rr++eeffI9/NiY19Qd9NXWSUdAakaIaOHAgNm7ciOPHj6NVq1a4fv06zpw5gwULFmjtU5T3Uh/qdTCrV6/G+fPn0axZM9SsWbPAqT+6fL+2bt2KTz/9FOfPn9ea117QmpNnv6+A+N4W5fvq5uaGH374AYsWLcK1a9ewc+dOzJ07F9OnT4ebmxtGjx6tWRvwvP4N6g9NderUyXdf3bp1sXPnznwLZ/P+jgDi+yNJEmrVqlXgc1SoUOG5ryUwMBBZWVk4fvw4PD09cf/+fQQGBuLy5ctaiUW9evW0kh9dFfS74eDggH/++eeFj1WpVPjwww/x4YcfIjY2FgcPHsTChQuxZs0aVKhQQWvdly4K+p7Vrl0bT548QXx8PFxdXQvdt0aNGjAzM9P8zEZFRcHMzCzf3ydXV1dUqlQp3wfkZ99HQzwbm0Kh0Pp9Uv99e960pMTERK0TGLrG99JLL6FTp06a2wMGDEBiYiKmTp2KIUOGFPr7q1Ycf+eITAkTCyp37ty5g8TExEI/2APijPGhQ4ewf/9+bNu2DWFhYVi9ejU6dOiAXbt2QalUYsWKFRg1ahR69eqF9957D87OzlAqlZgzZ47mw5g+VCpVvg+8OTk5cHZ2LrSeuvqfnfps3e+//671YULt2QWISqWywOMVtj3vyEBOTg46d+6M999/v8B9a9eurfMxddWjRw9UrFgRa9asQatWrbBmzRqYmZmhf//+mn2K8l7qS6VSoU+fPli2bBlu3Ljx3DK5Rf1+HT58GD179kRQUBAWLVoENzc3VKhQAUuXLi1wAb0xvq8KhQK1a9dG7dq1ERISglq1amHlypVao1nG9mzloJycHCgUCuzYsaPA1/Si0rdNmzaFpaUlDh06hGrVqsHZ2Rm1a9dGYGAgFi1ahPT0dBw+fBi9e/c2KG5j/Ry7ublh0KBB6Nu3L+rXr481a9bgt99+g7m5eaFFC54dfTCGwp6rqA1DS7IClPrv25dfflloKeBnf06MEV/Hjh2xdetWnDp1CiEhIc/dtzj+zhGZEiYWVO6oF6u+aPjezMwMHTt2RMeOHTF//nzMnj0bH374Ifbv349OnTph3bp18PHxwfr167X+Cc+YMUPrOF5eXti/fz+ePHmiNWoRGRlZ5Jhr1KiBPXv2oHXr1s/9R6meEuPs7Kx11q041KhRAykpKUZ9Hl27n1tbW6N79+5Yu3Yt5s+fj9WrVyMwMBBVq1bV2u9F76UhhgwZgiVLlsDMzKzAxa1qRf1+/fXXX7C0tMTOnTu1SlouXbrUoDiLysfHBw4ODoiNjQWQ+zN16dKlQmNXL0yOiIjId9/Vq1fh6Oj4wjKfNWrUgCRJ8Pb2zpeUFoV6StLhw4dRrVo1zVS7wMBApKenY+XKlbh3716hC7fVdP0ZNFSFChXQoEEDXLt2TTP1y8HBocCpUYVNp1Gfyc/r33//RcWKFfOdYb927ZrWWfzIyEjk5ORoqlB5eXkhJycH165dQ926dTX73bt3D48fP9a81y+iz/fx2dchSRIiIyM1PYfUP4t2dnbF/vctL/Vi+/LaNJJIF1xjQeXKvn378Mknn8Db21tTxrUgDx8+zLdNfYZMPTVFfWYq75mokydP4vjx41qPU1dt+vnnnzXbcnJyNKVVi2LAgAHIzs7GJ598ku++rKwszYeQ4OBg2NnZYfbs2VpTs9SMWfZwwIABOH78OHbu3JnvvsePH+tV+Ub94VOX+eYDBw5ETEwMfvnlF1y4cAEDBw7Uur8o7yUgPgBHR0frHHP79u3xySef4LvvvitwlEitqN8vpVIJhUKhdXb61q1bRu9ifPLkSc16hLxOnTqFBw8eaKY1NW7cGN7e3liwYEG+90X9s+/m5gZ/f38sW7ZMa59Lly5h165d6Nat2wvj6dOnD5RKJWbNmpXv7K4kSS+scgWIJOLkyZPYv3+/JrFwdHRE3bp1MXfuXM0+z6PPz2BRXLt2rcCfr8ePH+P48eNwcHDQJAE1atRAYmKi1vSq2NhYbNiwocBjHz9+XGv9ze3bt7Fp0ya8/PLL+c6gP/t359tvvwUgyvAC0LxXeacTAsD8+fMB4IVn7NWsra11/h4uX75ca+3bunXrEBsbq4mtSZMmqFGjBubNm1fgh/ziKuuqrn7WsGHDYjk+UVnCEQsqs3bs2IGrV68iKysL9+7dw759+7B79254eXlh8+bN+er05/Xxxx/j0KFDCAkJgZeXF+7fv49FixbBw8NDs/Cze/fuWL9+PXr37o2QkBDcvHkTP/74I+rVq6f1T69Xr15o3rw5pkyZgsjISPj6+mLz5s2aD7xFObPXtm1bvPnmm5gzZw7Onz+Pl19+GRUqVMC1a9ewdu1aLFy4EP369YOdnR1++OEHDB8+HI0bN8agQYPg5OSE6OhobNu2Da1bt8Z3331n4HdWeO+997B582Z0794do0aNQpMmTZCamoqLFy9i3bp1uHXrFhwdHXU6pnoB6oQJExAcHAylUvncUQAgd53Du+++C6VSqSnPq1aU9xIQawHatm2LAwcO6BSzmZkZ/ve//71wv6J+v0JCQjB//nx06dIFQ4YMwf379/H999+jZs2aRZrHX1S///47Vq5cid69e6NJkyawsLDAlStXsGTJElhaWmr6fJiZmeGHH35Ajx494O/vj1deeQVubm64evUqLl++rEmUvvzyS3Tt2hUtW7bEa6+9hqdPn+Lbb7+Fvb19kTqp16hRA59++immTZuGW7duoVevXrC1tcXNmzexYcMGvPHGG3j33Xefe4zAwEB89tlnuH37tlYCERQUhMWLF6N69er51i8VFEelSpXw448/wtbWFtbW1ggICDB4LcGFCxcwZMgQdO3aFYGBgahcuTLu3r2LZcuWISYmBgsWLNAkAYMGDcIHH3yA3r17Y8KECXjy5Al++OEH1K5du8AF/H5+fggODsaECROgUqmwaNEiAMCsWbPy7Xvz5k307NkTXbp0wfHjx7FixQoMGTJE86G5YcOGGDlyJH766Sc8fvwYbdu2xalTp7Bs2TL06tUL7du3L9LrbdKkCfbs2YP58+ejatWq8Pb21uofUpDKlSujTZs2eOWVV3Dv3j0sWLAANWvW1BS+MDMzwy+//IKuXbuifv36eOWVV+Du7o67d+9i//79sLOzw5YtW4oUX2EOHz6s6evx8OFDbN68GQcPHsSgQYPKVGd0omIjRykqouKkLvunvlhYWEiurq5S586dpYULF2qVM1R7tozj3r17pdDQUKlq1aqShYWFVLVqVWnw4MFapUJzcnKk2bNnS15eXpJKpZIaNWokbd26tcBSkfHx8dKQIUMkW1tbyd7eXho1apR09OhRCYBWWde8pUwL8tNPP0lNmjSRrKysJFtbW+mll16S3n//fSkmJkZrv/3790vBwcGSvb29ZGlpKdWoUUMaNWqUVknKwp6rbdu2Uv369fNt9/LykkJCQrS2JScnS9OmTZNq1qwpWVhYSI6OjlKrVq2kefPmSRkZGZIkSQWWXlXDMyVss7KypPHjx0tOTk6SQqEocunZoUOHako9Pqso76U6lrxlRwvzovdIkgp/zUX5fkmSJP36669SrVq1JJVKJfn6+kpLly4ttNTo2LFj8z3/s6UwC/LPP/9I7733ntS4cWOpcuXKkrm5ueTm5ib1799fOnv2bL79jxw5InXu3FmytbWVrK2tpQYNGuQrabtnzx6pdevWkpWVlWRnZyf16NFDCg8P19pH/ToKK//7119/SW3atJGsra0la2trydfXVxo7dqwUERHx3NcjSZKUlJQkKZVKydbWVsrKytJsX7FihQRAGj58eL7HPFtuVpJEKeR69epJ5ubmWqVnC/vdKKw8bF737t2TPv/8c6lt27aSm5ubZG5uLjk4OEgdOnSQ1q1bl2//Xbt2SX5+fpKFhYVUp04dacWKFc/9GVixYoXmZ6ZRo0bS/v37tfZTPzY8PFzq16+fZGtrKzk4OEjjxo2Tnj59qrVvZmamNGvWLMnb21uqUKGC5OnpKU2bNk1KS0vT2q+gvwlqV69elYKCgiQrKysJwHN/HtWlXletWiVNmzZNcnZ2lqysrKSQkJACy/GeO3dO6tOnj1SlShVJpVJJXl5e0oABA6S9e/fme71FLTNdULlZCwsLydfXV/rss8+0fj/Vr72gcrPPljlXH/fZ94OorFJIElcUEclh48aN6N27N44cOVJgN14iohdRKBQYO3bsC0ciZ86ciVmzZiE+Pl7nkcTiduDAAbRv3x5r165Fv3795A6HiAzANRZEJSBv51hAVHf59ttvYWdnV2CXZiIiIiJTwzUWRCVg/PjxePr0KVq2bIn09HSsX78ex44dw+zZs0u0XCMRERFRcWFiQVQCOnTogK+++gpbt25FWloaatasiW+//Rbjxo2TOzQiIiIio+AaCyIiIiIiMhjXWBARERERkcGYWBARERERkcHK3RqLrKwsnDt3Di4uLjAzY15FRERERPrLycnBvXv30KhRI5ibl7uP1lrK3as/d+4cmjdvLncYRERERFSGnDp1Cs2aNZM7DFmVu8TCxcUFgHjz3dzcZI6GiIiIiExZbGwsmjdvrvmMWZ6Vu8RCPf3Jzc0NHh4eMkdDRERERGUBp9hz8TYRERERERkBEwsiIiIiIjIYEwsiIiIiIjIYEwsiIiIiIjIYEwsiIiIiIjIYEwsiIiIiIjIYEwsiIiIiIjIYEwsiIiIiIjIYEwsiIiIiIjIYEwsiIiIiIjIYEwsiIiIiIjIYEwsiIiIiIjIYEwsiIiIiIjIYEwsiIiIiIjIYEwsiIiIiIjIYEwsiIiIiIjIYEwsiIiIiIjKYudwBlCcRERFyh6CzOnXqyB0CEREREZkAjlgQEREREZHBmFgQEREREZHBmFgQEREREZHBmFgQEREREZHBmFgQEREREZHBmFgQEREREZHBWG6WiIiIiKgERUVF4dixY4iJiUFKSgoGDhwIX19frX3i4+OxZ88eREVFIScnB05OThgwYADs7e0BAFlZWdi5cycuX76MrKws1KxZE926dYONjY0cLwkAEwsiIiIiohKVkZEBFxcX+Pv7Y82aNfnuf/jwIZYuXYpGjRqhXbt2UKlUiI+Ph7l57kf3sLAwXLt2Df3794dKpcKOHTuwZs0avPrqqyX5UrQwsSAiIiIiKkG1atVCrVq1Cr1/3759qFWrFjp37qzZVrlyZc31tLQ0nDt3Dn379oW3tzcAIDQ0FN9//z3u3LkDDw+P4gv+OZhYEBEREREZKDk5GUlJSZrbKpUKKpVK5+NIkoRr166hVatWWLFiBWJjY+Hg4IA2bdpopkvFxsYiJycHPj4+msc5OjrC3t4et2/fli2x4OJtIiIiIiID1atXD/b29prLnDlz9DpOamoqMjIycPToUdSoUQPDhw+Hr68vVq9ejVu3bgEAUlJSoFQqYWlpqfVYa2trpKSkGPpS9MYRCyIiIiIiA4WHh8Pd3V1zW5/RCkCMWABAnTp10LJlSwCAq6srbt++jTNnzqB69eoGx1pcmFgQERERERnI1tYWdnZ2Bh+nYsWKMDMzg5OTk9Z2R0dH3L59GwBgY2OD7OxspKWlaY1apKamyloVilOhiIiIiIhKCaVSiapVq+LBgwda2x8+fKgpNevm5gYzMzPcuHFDc39CQgISExPh6elZovHmxRELIiIiIqISlJGRgYcPH2puP3r0CHFxcbCysoK9vT1atWqFdevWoVq1avD29kZkZCQiIiIwatQoAIClpSUaNWqEXbt2wcrKSlNu1sPDQ7aF2wATCyIiIiKiEhUTE4Nly5Zpbu/atQsA0LBhQ/Tq1Qt169ZF9+7dceTIEYSFhaFKlSoYMGAAqlWrpnlMly5dsHPnTqxZswbZ2dmoUaMGQkJCSvy15KWQ1CtEyok7d+7A09NTllJcERERJfp8xlCnTh25QyAiIiIqteT8bFnacMSCiEgP2dnA4cNAbCzg5gYEBgJKpdxRERERyYeJBRGRjtavByZOBO7cyd3m4QEsXAj06SNfXERERHJiVSgiIh2sXw/066edVADA3bti+/r18sRFREQkNyYWRERFlJ0tRioKWpmm3jZpktiPiIiovGFiQURURAcP5h+pyEuSgNu3xdoLIiKi8oZrLIiIXiAiAli2DFi8uGj7x8YWbzxERESlERMLIqICPHgArF4tEopTp3R7rJtb8cRERERUmnEqFBHRfzIygE2bgL59RXIwdqxIKpRKICQEWLUKcHcHFIrCj2FhAdStW3IxExERlRYcsSCick2SgDNngOXLReKQkJB7n78/MGIEMHgw4OoqtllYiOpPCkXBi7gzMoA2bYAdO4CaNUvkJRAREZUKHLEgonLp7l1g7lzAzw9o1gz49luRVLi4AFOmABcuAOfOAe+8k5tUAKJPxbp1YuQiL09P0cfCywuIjARatgROnizZ10RERCQnjlgQUbmRmgps3CjWTezZkzvioFIBvXoBI0cCnTsD5i/4y9inDxAaWnDn7QEDxLSps2eB9u3FKEhoaHG/MiIiIvkxsSCiMi0nBzh0SEx1WrsWSEnJva9NG5FM9OsHVKqk23GVSqBdu/zbXV1FWdqBA4Ht24HevYFvvgHGjTPkVRAREZV+TCyIqEy6dk0kE7//DkRF5W739hbrJoYPB2rUKJ7ntrERi8Dffhv4+Wdg/HgRw9y5gBknoBIRURnFxIKIyoxHj0SJ2OXLgePHc7fb2YkpSiNGAK1bl8yHe3Nz0feienXgww+BefOA6GgxDcvSsvifn4iIqKQxsSAik5aZCezcKT6wb94sqjIBInl4+WUx1Sk0FLCyKvnYFArg//4PqFYNePVVYM0asSZj40agcuWSj4eIiKg4MbEgIpMjScD582Jk4o8/gPv3c+/z8xPJxNChpadR3bBhQNWqYr3F4cNAq1aiHK23t9yRERERGQ8TCyIyGbGxwMqVYnTi0qXc7U5OIpEYORJo2PD5Dezk0qEDcPQo0LUrEBEhytFu3Qo0bSp3ZERERMbBxIKISrWnT8XUoeXLgV27RJUnQDSqCw0V6yaCg4EKFWQNs0j8/IATJ0Q52gsXgLZtxfSokBC5IyMiIjIcEwsiKnUkCThyRIxMrF0LJCXl3teqlUgmBgwAHBzki1Ff7u6i/G3//iJR6tkT+OEH4I035I6MiIjIMEwsiKjUuH5dlIddvhy4eTN3u5dXbonYWrXki89Y7OzENKg33wSWLhVfb90CPv2U5WiJiMh0MbEgIlk9fixGJZYvF6MUajY24qz+yJGiq3VZ+8BdoQLw668iaZo5E5gzR/S6WLJEdAInIiIyNUwsiKjEZWWJaUDLl4v1E+npYruZGdCpk0gmevUCKlaUM8rip1AAM2aI5OL110WFq5gYYMMG3TuBExERyY2JBRGVmH/+EesmVq4E7t3L3V6vXm6JWHd3+eKTy6hRohxtv37AgQOiid+OHaL/BRERkalgYkFExerePZFILF8uKiGpOToCQ4aItRONG5fOErEl6eWXRY+Lbt2A8HCgRQtg+3bA31/uyIiIiIpG9lnL338PVK8OWFoCAQHAqVPP33/BAqBOHdFF19MTeOcdIC2tJCIloqJKS8sto+ruDkyZIpIKCwugb19g0yYx5WfhQqBJEyYVag0binK0fn6iZ0dgoOgqTkREZApkHbFYvRqYPBn48UeRVCxYIOrRR0QAzs759//jD2DqVLG4sVUr4N9/xRQChQKYP7+koyeivCQJOHZMjEysXg0kJubeFxAgpjoNHAhUrixfjKbA01OMXPTtC+zbJ5KzxYuB116TOzIiIqLnkzWxmD9fLFh85RVx+8cfgW3bROIwdWr+/Y8dE3OPhwwRt6tXBwYPBk6eLLGQiegZN2/mloi9fj13u6enKA87YoQYZaSiq1RJrLEYPVp8b0ePBqKjRfUoju4QEVFpJdtUqIwM4MwZUQFGE8x/FWGOHy/4Ma1aiceop0vduCHmIHfrVvzxElGupCRxAqBtW8DHR1Q2un4dsLYWIxN794q+DJ99xqRCXxYWYqH7//4nbn/8sTgJk5Ehb1xERESFkW3EIiEByM4GXFy0t7u4AFevFvyYIUPE49q0EdMusrKAt94C/u//Cn+e9PR0pKtrWQJITk42QvRE5U92NrBnj/iwu2FD7tomhQLo2FGMTPTuLfpPkHEoFMAnn4jqUGPGiO/93bvAX3+JJntERESlieyLt3Vx4AAwezawaBFw9iywfr2YOvXJJ4U/Zs6cObC3t9dc6tWrV2LxEpUFly4B778vpjZ16QKsWiWSCl/f3KZuu3eLaU9MKorH668DmzeLEaE9e8Si7jt35I6KiIhIm2wjFo6OgFKpXcseELddXQt+zEcfiQ8vo0eL2y+9BKSmAm+8AXz4YcGdeadNm4bJkydrbt+9e5fJBdEL3L8vEojly0USr1a5sljXNHIk0LQp5/uXpG7dgEOHxGLuf/7JLUfboIHckREREQmyjVhYWIgyk3v35m7LyRG3W7Ys+DFPnuRPHpRK8VWSCn6MSqWCnZ2d5mJra2t48ERlUHo6sG4d0LOnKBE7aZJIKipUEF2w168XJVC/+w5o1oxJhRwaNxZr0OrWFVOiAgO1/4YSERHJSdaqUJMn5575bN5clJtNTc2tEjVihPiAM2eOuN2jh6gk1aiRKF8ZGSlGMXr0yE0wiKjoJElUVVu2TJSIffQo975mzcTv4KBBYoSRSofq1YGjR8V6loMHxfS0X38V7xUREZGcZE0sBg4E4uOB6dOBuDjRYTYsLHdBd3S09gjF//4nzpL+73/ibJ2Tk0gqPvtMlvCJTFZUVG6J2GvXcre7u4vphsOHA5wxWHo5OIjGeaNGAX/+KU7QREeLKaEcSSIiIrkoJKmwSURl0507d+Dp6Ynbt2/Dw8OjRJ87IiKiRJ/PGOqwVmiZkZwsqgktWyYKIahVrCiasY0YAbRvz9E/U5KTI6rizZ0rbo8eLYpbVKggb1xEROWJnJ8tSxtZRyyIqHhlZ4vuzcuXizUST57k3te+vTjT3acPwKVHpsnMDPj8c1GOdvx44JdfRLWoNWv4nhIRlWZRUVE4duwYYmJikJKSgoEDB8LX17fAfbdu3YozZ84gODgYLVq00Gx/+vQpduzYgYiICCgUCtStWxddu3aFhYVFSb2MfEyq3CwRFc2VK6J7vZcX8PLLwIoVIqmoXRv49FPRvG7fPpFY8AOo6Xv7bWDjRjH6FBYmGhfGxsodFRERFSYjIwMuLi7o9oIuz1euXMGdO3cKLD60fv163L9/H8OHD8eQIUMQHR2NLVu2FFfIRcLEgqiMSEjIrdhUr56YHnP3rpiPP2YMcOKEaD754Yci4aCypUcPMcXNyQk4d06Uow0PlzsqIiIqSK1atdChQwfUrVu30H2SkpKwY8cO9OnTB2bPlEWNj49HZGQkevbsCQ8PD1SrVg1du3bFpUuXZG0GzalQRCYsI0M0iVy2THzNyhLbzc1F34MRI4Du3QGVSt44qWQ0ayYSyK5dgX//BVq1EiMZ7drJHRkREelCkiRs2LABrVq1grOzc77779y5A0tLS1StWlWzzcfHBwqFAnfu3HluwlKcmFgQmRhJAk6fFusmVq0CHj7Mva9xYzG9adAgoIC/Q1QO+PgAx46JfiTHjgHBwcDSpcCQIXJHRkRUtiUnJyMpKUlzW6VSQaXnmb0jR47AzMwMAQEBBd6fkpICa2trrW1mZmawsrJCSkqKXs9pDJwKRWQibt8WPV3q1RN9XL7/XiQVbm7Ae+8BFy8CZ84AEyYwqSjvqlQB9uwB+vUTo1pDh4pF3uWrBiARUcmqV68e7O3tNZc56kZsOoqJicHJkyfRq1cvKEyshjhHLIhkkp0NHD4sFtm6uYkuys+Wek1JEdWcli8Xi63VHwytrESDtBEjgE6dWCKW8rOyEk0P33tPNBadNk30uvjmGzFVjoiIjCs8PBzu7u6a2/qOVkRHRyM1NRVff/21ZpskSdi1axdOnDiBSZMmwcbGBqmpqVqPy8nJwdOnT2FjY6PfCzAC/nshksH69cDEiaI0qJqHB7BwIdCrl1iEu2yZ6DuR9+9G27YimejXD7CzK+moydSYmQFffSUW60+aBPzwgxj5+vNP4JkRdCIiMpCtrS3sjPDPuUGDBvDx8dHatmLFCjRo0AD+/v4AAA8PD6SlpSEmJkazzuLmzZuQJEnWXhpMLIhK2Pr1IjF4dlrK3buiUV2VKsCDB7nba9YUycSwYYC3d8nGSmXDhAkicR06FNi6VSzm3roVcHGROzIiovIpIyMDD/Msknz06BHi4uJgZWUFe3t7VKxYUWt/MzMz2NjYwNHREQDg5OSEmjVrYsuWLejevTuys7Oxfft2+Pn5FViatqQwsSAqQdnZYqSioLnu6m0PHojRiMGDRULRsiVgYlMsqRTq00dMp+vRA/j7b/FztWMHUKeO3JEREZU/MTExWLZsmeb2rl27AAANGzZEr169inSMPn36YPv27Vi+fLlWgzw5KSSpfC3nk7PtekRERIk+nzHU4acOozpwQHS8fpGdO0VjOyJju3ZNlKO9fh2oXBnYtAlo00buqIiITJecny1LG1aFIipBRe2GnHcqFJEx1aoFHD8uKos9fCgW/69dK3dURERUFjCxICpBbm7G3Y9IH05OYlpUaCiQng4MGCAWeZev8WsiIjI2JhZEJSgwUCyiLWzNhEIBeHqK/YiKU8WKourYuHHi9rvvivU/2dnyxkVERKaLiQVRCVIqRUnZgs4Mq5ONBQvYl4JKhlIp+lrMmyduf/utqFj25Im8cRERkWliYkFUwrp2LbgHhYcHsG6dqN5DVFIUCmDKFGDNGkClAjZuBDp2BOLj5Y6MiIhMDcvNEpWw338HkpLElKelS4H79wvvvE1UUvr3Fz+HPXsCJ07klqOtVUvuyIiIyFQwsSAqQTk5wPz54vo774gzw0SlRZs2wLFjueVoW7UCNm8WSQYREdGLcCoUUQnatg2IiADs7YHRo+WOhig/X18xYtG0KZCQAHToAGzYIHdURERkCphYEJWgr74SX994A7C1lTcWosK4uIhmjt27A2lpQN++YmE3ERHR8zCxICohf/8NHDwImJsDEybIHQ3R81lbi5GKt94SVcwmTBCLvHNy5I6MiIhKKyYWRCVEPVoxeLCoAEVU2pmbA4sWAXPmiNvz5wMDB4pRDCIiomcxsSAqAVFRwNq14vqUKfLGQqQLhQKYOhVYuRKoUEGURO7UCXjwQO7IiIiotGFiQVQCFi4UHY07dQIaNpQ7GiLdDRkC7NolCg8cPQq0bg3cuCF3VEREVJowsSAqZo8fAz//LK5ztIJMWbt2IqmoVk1UN2vZEjh9Wu6oiIiotGBiQVTMfv4ZSEkB/PyA4GC5oyEyTP36wPHjgL+/aO7Yrh2wZYvcURERUWnABnlExSgjQ0yDAoDJk8V8dSJTV7UqcOiQ6Na9cyfQqxfw3XfAmDFyR0ZEREWRkpKC3bt348aNG0hNTc13//Tp0/U6LhMLomK0Zg1w9y7g6irmqBOVFba2YqRizBjg11+Bt98WRQpmzwbMOBZORFSqbdq0CYmJiQgKCoKtERtrMbEgKiaSBMybJ66PHw+oVPLGQ2RsFSqIqX7VqwMffQTMnQtERwNLl/LnnYioNIuOjsYrr7wCV1dXox6X55WIism+fcCFC0DFiqLJGFFZpFAA//sfsGyZ6HuxapVYS/TokdyRERFRYezs7CBJktGPy8SCqJioRytefRWoXFneWIiK24gRwI4dYorUwYOiHG1UlNxRERFRQbp06YK9e/fi8ePHRj0up0IRFYNLl4CwMDHXfNIkuaMhKhmdOgFHjgDdugFXrgAtWgDbtgGNG8sdGRER5bVu3TpkZmbim2++QYUKFWD2zOK4Dz74QK/jMrEgKgbz54uvvXsDNWrIGwtRSWrQADhxQiQXFy8CQUGi63zXrnJHRkREasHFVP+eiQWRkcXGAitWiOvvvitvLERy8PAADh8G+vUD9uwBevQAfvwRGD1a7siIiAgA/P39i+W4Oq+xuHcPGD5c1DE3NweUSu0LUXn33XdAZibQqpWYCkJUHtnbi2lQI0YA2dnA66+LylHFsFaQiIiKID09Xev68y760nnEYtQoUU7wo48ANzc2/CLKKzUV+OEHcZ2jFVTeWVgAv/0mytF+/DHw6adiQfcvv4j7iIio5MydOxdTpkyBtbU1Pv/8cygK+BAvSRIUCkXJNcg7ckQMcRfTCAqRSVu6VJTZrFED6NlT7miI5KdQALNmAdWqAW++Cfz+OxATA/z1lxjVICKikjFixAhYWVkBAEaOHFksz6FzYuHpyaFsooJkZwNffy2uT57MqYFEeb32mlh70a8fsHcv0KYNsH27+J9CRETFr3r16gVeNyadE4sFC4CpU4HFi8XwNlF5ERER8dz7jx0T646aNBEfml6we4moU6eO3CEQaQQHA4cOASEhoiRzy5ZiHUbDhnJHRkRUfmVkZODy5cvIzMxEjRo1UKVKFb2PpXNiMXAg8OSJmOpRsSJQoYL2/Q8f6h0LkUnbsEF87dYNUKnkjYWotGrUSJSj7doVCA8HAgPFtKjOneWOjIio7EtMTMSGDRsQGxsLDw8P9OzZE7///jsePHgAAKhQoQKGDh0KLy8vvY6v14gFEWm7elWMUJibi8SCiApXrZpYr9enD3DggPid+flnURyEiIiKz65du5CdnY2QkBCEh4djxYoVqFy5MkaNGgWFQoFt27bhwIEDeq/B0DmxKKa1HkQmTT1a0b494OAgbyxEpsDBQXSnf/VV4I8/gFdeya04yGqDRETFIyoqCoMHD4a7uztq1aqFL774Aj179oSNjQ0AICgoCMuXL9f7+Ho1yMvOBjZuBK5cEbfr1xcVcLhYlcqj2FgxtQMAevWSNRQik6JSiSpRXl7AnDnAjBmiHO2PP+afZktERIZLTU2F/X8l+aysrFChQgVNUgEANjY2SEtL0/v4OicWkZFi2PruXUC9LnTOHFHZY9s2sfaCqDzZtElUSmvalBVuiHRlZgbMni2Si7ffBpYsAe7cAdauBezs5I6OiKjsydu/oqBeFobQObGYMEEkDydOAJUri20PHgDDhon7tm0zanxEpVpyMrBnj7jO0Qoi/b35JuDuLgqE7NoFBAWJcrRVq8odGRFR2bJ//35U+G9YODs7G4cOHYKlpSUAIDMz06Bj65xYHDyonVQAQJUqwOefA61bGxQLkcnZsQPIyAB8fICXXpI7GiLT1r27+B8TEgJcuAC0aCF+x+rXlzsyIqKywcvLS1MBCgA8PT3x+PHjfPvoS+fEQqUSZ2mflZICWFjoHQeRycnMBLZuFdd79+aCUyJjaNo0txxtRIQ4YbVhgyiMQEREhhlVzOX3dE4suncH3ngD+PVXoHlzse3kSeCtt8QCbqLy4sAB4PFjwNFRNMQjIuPw9hYNJ0NDRVna4GBg6VJg6FC5IyMiMo6oqCgcO3YMMTExSElJwcCBA+Hr6wtATE/at28fIiMj8ejRI6hUKvj4+KBTp06wtbXVHOPp06fYsWMHIiIioFAoULduXXTt2hUWMp7pN9P1Ad98I9ZYtGwJWFqKS+vWQM2awMKFxREiUekjSaIyGsCKaETFoXJlYPduYMAAMTo4bJhY5C1JckdGRGS4jIwMuLi4oFsBza8yMzMRFxeHoKAgvPHGGxg4cCAePHiAVatWae23fv163L9/H8OHD8eQIUMQHR2NLVu2lNRLKJDOIxaVKokqONeuiaZgAFC3rkgsiMqLs2eB27cBKyvg5ZfljoaobLK0BFatEg315s0DPvxQlKP9/nvRjJKIyFTVqlULtWrVKvA+S0tLDB8+XGtb165d8csvvyAxMRH29vaIj49HZGQkXn/9dVT9r8pF165dsXLlSrz88staIxslSe8/zbVqiQtReaRuiBccDFSsKG8sRGWZmRnw5ZeiHO2ECcBPP4lytKtXA3lKrxMRlWnp6ekAoKnedOfOHVhaWmqSCgDw8fGBQqHAnTt3ULduXVniLFJiMXky8MkngLW1uP488+cbIyyi0uvGDeCff8QHnh495I6GqHwYN070iRk8WJShbddOFE9wdZU7MiIiITk5GUlJSZrbKpUKKpXK4ONmZWVhz549eOmllzTHS0lJgbW1tdZ+ZmZmsLKyQkpKynOPl5OTg8OHD6NRo0awM3LDoCIlFufOiTmu6utE5Zl6bUVgIODkJGsoROVKaCiwf78oInLmTG45WplOzBERaalXr57W7RkzZmDmzJkGHTM7Oxtr166FJEkICQkx6FhqZmZmOHbsGBo2bGiU4+VVpMRi//6CrxOVNwkJwKFD4job4hGVvIAA4PhxUY42MlIUD9m4UTTUIyKSU3h4ONzd3TW3DR2tyM7Oxrp165CYmIgRI0ZoHc/Gxgapqala++fk5ODp06ewKcI8UW9vb9y6dQv+/v4GxfgsnatCvfpqwX0sUlPFfURl2ZYtQE4O0KCBqI5GRCWvZk2RXLRsCTx6BHTuLNZcEBHJydbWFnZ2dpqLIYmFOql48OABhg8fjorPLOj08PBAWloaYmJiNNtu3rwJSZLg4eHxwuPXrFkTe/fuxa5du3Dx4kVERERoXfSl8+LtZctEl+1nF5s/fQosXw4sWaJ3LESl2pMnwM6d4jpHK4jk5egI7N0relts2AAMGiQqtU2ZwmaVRFT6ZWRk4OHDh5rbjx49QlxcHKysrGBjY4O1a9ciNjYWgwcPhiRJmnUTVlZWUCqVcHJyQs2aNbFlyxZ0794d2dnZ2L59O/z8/IpUEWrbtm0AgOPHj+e7T6FQYPr06Xq9riInFklJon64JIkRi/8WpQMAsrPFYjpnZ71iIDIJu3eL5MLTE2jSRO5oSFeGnIGRQ506deQOodSzsgLWrhXJxMKFwHvvAbduievsLUNEpVlMTAyWLVumub1r1y4AQMOGDdGuXTvN/6zFixdrPW7kyJGoXr06AKBPnz7Yvn07li9frtUgryhmzJhhhFeRX5ETi0qVxFkghQKoXTv//QoFMGuWESMjKkUyM0X/FkAsIOUZUaLSQakEFiwQ5WinTBE9Lm7fFv0vWAqaiEqr6tWrP/fDfVE++FtZWaFv374Gx5KVlQVzIzUHKvJR9u8XoxUdOgB//SW6oqpZWIg/6nlK6RKVKevWiYXb9vZA+/ZyR0NEz3rnHTGaOGwYsHmz+D3dsoUj6UREBVGXnD1z5gxSUlIwfvx4ODg4YN++fahUqRIaN26s13GLnFi0bSu+3rwp/nib6bzsm8g0SZLo+guIMpcVKsgbDxEVrF8/wM0N6NkTOHVKLO7esaPgUXYiovLs8OHDuHDhAjp16oQtW7Zotjs7O+PkyZN6JxY6pwdeXiKpePIEuHpVNArLeyEqaw4cAM6eFSNzRZy6SEQyad1aVIzy8RHNLFu1Ao4dkzsqIqLS5cKFC+jevTsaNGgAszyjBa6urkhISND7uDpPqIqPB155RZwFKkh2tt6xEJVKX30lvnbsCBi5QSURFYPatUVy0b07cPq0+N1dsQIwwlRkIqIyITk5GZXzrmv4jyRJyDbgw7zOIxaTJgGPHwMnT4qKHGFhogRtrVpiXitRWXLlCrBtm1isHRoqdzREVFTOzmJtYI8eQFoa0L+/WORNRESAk5MToqOj820PDw+Hm5ub3sfVecRi3z5RHadpUzElystLNCeyswPmzAGM1G2cqFSYP198DQ1lcQIiU2NtLXpcTJgALFokFnhHRYlRSEkCDh8GYmPFuozAQJaoJaLyIygoCBs3bkRSUhIkScKVK1eQkJCAf/75B4MHD9b7uDqPWKSm5lbZcHAQU6MA4KWXxDx0orLi3j3R9BEA3n1X3liISD9KJfDdd8AXX4jbCxaIdRheXqJy1JAh4mv16sD69XJGSkRUcnx9fTF48GDcvHkTFSpUwP79+5GQkIDBgwejRo0aeh9X5xGLOnWAiAjxR7hhQ2DxYnH9xx/FWR+isuL774GMDCAgQCwA/fdfuSMiIn0oFKJ5nqcnMHw4cOJE/n3u3hVVpdatA/r0KfkYiYhKmpeXF4YPH27UY+o8YjFxohg6BoAZM8Qi7mrVgG++AWbPNmpsRLJ58kRMnQDEaAUb4hGZvv79xUh7QSRJfJ00iUVIiKj8iImJwYULF3DhwgXExMQYfDydRyyGDcu93qSJmK969apILhwdDY6HqFRYtgx48ADw9gZ695Y7GiIyhsOHc6fvFkSSRNfuw4eBdu1KLCwiohKXlJSEv/76C9HR0bC0tAQApKWlwdPTE/369YOdnmUwDe7fXbEioGcPDaJSKTs7d9H2O+9wQSdRWaEebX+RMWOA118XRRsMmGpMRFRqbd68GdnZ2Rg7diwc/xsZSEhIwKZNm7B582YMyzuSoIMiJRaTJwOffCIqbEye/Px91R/IiEzVli1AZCRQqZLo2UJEZUNR1wFevQpMmSIu9euLBCM0NLcaIhGRqYuKisKrr76qSSoAwNHREV27dsXSpUv1Pm6REotz54DMzNzrheE8dCoL5s0TX8eMAWxs5I2FiIwnMBDw8BALtdVrKvJSKABXV7HQe+tW4OBB4PJlcZk9WyQmPXuKJKNDB0ClKvnXQERkDHZ2dsjJycm3XZIk2Nra6n3cIiUW+/cXfJ2orDlxAjh6FKhQARg3Tu5oiMiYlEpg4UJR/Umh0E4u1CfGvvtOVIV65x3g0SNg+3bRu2nHDjGVavFicbGxAYKDRZIREgIU0MCWiKjU6ty5M3bs2IFu3bqh6n+NumJiYhAWFoaXX35Z7+PqvMZixQrxR7diRb2fk6jU+uor8XXoUDbEIyqL+vQRJWUnTgTu3Mnd7uEhelzkLTXr4CD+FgwdCqSnixNrmzYBmzcDMTHAX3+Ji1IpRkPUU6a8vUv8ZRER6WTTpk3IzMzEL7/8ArP/5njm5OTAzMwMmzZtwqZNmzT7fvDBB0U+rkKSChoQLpyTE/D0qRgOHjZMnLExpcWtd+7cgaenJ27fvg0PD48Sfe6IiIgSfT5jqFOnjtwhlJgbN4BatYCcHOCff0TTx7z4/pk2U3v/+N4Vr+xs/Ttv5+QAZ86IJGPTJuDSJe37X3opN8lo0oTThInKOjk/W+rr/PnzRd7X39+/yPvqPGIRGwuEhQGrVgEDBoiRi/79xRmdVq10PZpoQvbll0BcnGi49+23QPPmhe//+DHw4YeiQ+rDh6J76oIFQLduuj83UV4LFogPDMHB+ZMKIipblEr9S8qamQHNmonLp5+KkxKbN4sk4/Bh4OJFcfn0UzHyqV6X0b4912UQUemgS7KgC53rW5ibA927AytXAvfvA19/Ddy6Jf5g6lqWb/VqUWVqxgzg7FmRWAQHi+MWJCMD6NxZPN+6daID+M8/A+7uur4KIm0PHwJLlojr774rbyxEZFp8fERjvf37gXv3gOXLgb59RSXFmBjgxx+Brl3FiP+AAeL/56NHckdNRGR8BvWxqFhRJAKPHolGeVeu6Pb4+fNFrXB1Sc8ffwS2bRMf8KZOzb//kiXiA+CxY2JxLQBUr27IKyASFi8GUlOBBg2Ajh3ljoaITFWVKsDw4eKSlgbs25e7LiMuDli7VlzMzYGgoNwpU15eckdORGQ4vSpyP3kizrh06yZGCxYsEN2JL18u+jEyMsQc1U6d8gRjJm4fP17wYzZvBlq2BMaOBVxcAD8/UQIwO7vw50lPT0dSUpLmkpycXPQgqVxITxdT8AAxWsH50ERkDJaW4v/k4sWixO2JE8C0aaI3RlaWSDomThQnyPz9xej9mTMFl8IlIjIFOicWgwYBzs6iFJ+PD3DggGgm9skngK9v0Y+TkCASAhcX7e0uLuKsTkFu3BBToLKzRQnAjz4SVXw+/bTw55kzZw7s7e01l3r16hU9SCoXVq0Sa4eqVgUGDpQ7GiIqi8zMgIAAcTLs0iXg2jXx/ysoSNx34QLw8ceiCV+1auIE2q5d4iQcEZGp0DmxUCqBNWvEB7HvvhMjCCUlJ0ckNT/9JCptDBwoFnL/+GPhj5k2bRoSExM1l/Dw8JILmEo9ScotMTtxImBhIW88RFQ+1Kwp1hgePCjWZfz2mxj5r1hRlMFdtEhMNXZyEif0Vq0SxUuIiIpDeno6rl69ivj4eIOOo/Mai5Urc6+npYmhXn04Oook5d497e337onOpwVxcxNrK/KWBKxbV4xwZGQU/KFQpVJBlacMR1JSkn4BU5m0a5c4e2hjA7zxhtzREFF55OgIjBwpLk+fAnv3inUZW7aI/4mrV4uLubmoZBUaKipNVasmd+REZKrWrl0LLy8vNG/eHJmZmfjpp5/w+L+zF3379tV7ho/OIxY5OWLak7u7+DB244bY/tFHwK+/Fv04FhZi1GHvXu1j791b+ChI69Zi2lXeDuT//isSDp5pJn2oRytGjwYqVZI1FCIiWFmJyos//ywqSh0/LoqZ1K0r1mXs2QOMHy8WezduDMycCZw7x3UZRKSbqKgoVPvv7MTVq1cBAFOnTkWXLl1w+PBhvY+rc2Lx6adiyPaLL7Q/zPv5Ab/8otuxJk8WfzyXLRMVpcaMEZV51FWiRowQC93UxowRVaEmThQJxbZtYr7q2LG6vgoiMad5924xv3niRLmjISLSZmYGtGgBzJkDhIeL/3tffgm0aSPuO3cOmDVLJBjVq4uEY88eIDNT7siJqLRLT0+HlZUVACAyMhJ169ZFhQoVULt2bTx48EDv4+qcWCxfLtY4DB2qPSWpYUPgv4SnyAYOBObNA6ZPFxUxzp8XzffUC7qjo8VaDjVPT2DnTuD0aVEWdMIE8YGwoNK0RC8yf7742r8/yxYTUelXq5aoXHf4sJgCvGSJmBZlZSX+X373nej15OQEDBkipk9x9i8RFcTOzg537txBRkYGIiMjUeO/ZnRPnz6Fubn+3Sh0fuTdu2LR2bNycvQ7SzJunLgU5MCB/NtathQl+4gMcfcu8Mcf4vqUKfLGQkSkKycnMbr/yitiXcaePbnrMu7fF4u9V60S6xLbtxcJSI8e4gQdEVGLFi2wfv16WFhYwN7eHtX/O8MaFRUFl2dLtupA58SiXj1xtuTZZj7r1gGNGukdB1GJ+vZbMV85KAho1kzuaIiI9GdlJZKGHj1EOfaTJ0WSsWkTEBEhilTs2iWmDTdunNuUr0ED9u0hKq+aNWsGd3d3JCYmokaNGlD898fAwcEBHTp00Pu4OicW06eLyhV374pRivXrxR+u5cuBrVv1joOoxCQn55Yo5mgFEZUlSiXQqpW4zJ0r/j+rk4zjx4GzZ8VlxgwxBbRnT5FkBAaK0Q0iKh8OHjyIVq1aoWrVqlrbvb29cezYMXjqObyp8xqL0FAx1LpnD2BtLRKNK1fEts6d9YqBqEQtWQIkJgK1a4vqK0REZVWdOsD77wNHj4o1i7/8IpIJS0vg1i3gm2+Ajh1Fj6hhw4C1a8XJFyIq2w4ePIiMAjpwZmZm4uDBg3ofV6/VGYGBopoOkanJygK+/lpcnzxZVFYhIioPXFyA114TlydPxP9x9bqMhATRp2rlSlHxUb0uo2dPUV6eiMoWqZAa1ffu3dNUi9KHzomFJAFnzogzHQoF4OMjKjpxniaZgr/+AqKiREOqESPkjoaISB4VK+autcjOFtOk1FOmrl0TFRh37gTefhto2jR3Xz8//r8nMmVz584FACgUCnz33Xda90mShIyMDDRp0kTv4+uUWOzfL850REXlNuNRKABvbzG9JChI7ziIip0k5TbEGztWLHgkIirvlErRG6NNG9Gj6urV3CTj5Eng77/F5aOPxP97dZLRpo3oBk5EpiM4OBgAsGnTJrRr1w4qlUpzn1KpRKVKlfReXwHokFhERor56AEBYiqJr6/4oBYeLuZodusG/POPGMEgKo0OHxY9UCwtxVk4IiLSplCILt9164oeUXFxojDLpk1i6tTNm8CCBeLi4ACEhIgkIzgYsLWVO3oiehF/f38A0CQQyrxN6YygyInFggWiA+jevdrbfX2B3r2BTp1EwvHtt0aNj8ho1KMVI0aIhYpERPR8rq7A6NHikpoqytZu2iSSjQcPgBUrxMXCQiwCV6/LcHOTO3Iiep7q1atDkiQ8ePAAqamp+dZceD3bV6KIipxYHDgAzJlT8H0KBTBpEjBtml4xEBW7iAhg82ZxffJkeWMhIjJF1tbiRGLv3qIQxrFjuVOmrl8HduwQl7feApo3z50yVa8e12UQlTZ37tzBX3/9hcTExHxJhUKhwPTp0/U6bpETi+ho4KWXCr/fz0+svSAqjdSVoHr0EOUXiYhIf+bmYl1lUBAwb54oO593XcapU+Ly4YdAjRq5IxmtW3NdBhEgOlwfO3YMMTExSElJwcCBA+Hr66u5X5IkHDhwAGfPnkVaWho8PT0REhKCKlWqaPZ5+vQpduzYgYiICCgUCtStWxddu3aFhYXFC59/69atqFq1KoYMGQJbI85jLHKxzZQUUUWiMBUrivJ1RKVNfDywbJm4/u678sZCRFTWKBRiVGLaNODECSAmBli8WKy9VKnEaMb8+UC7dmJq1ciRorluaqrckRPJJyMjAy4uLujWrVuB9x89ehQnT55ESEgIRo8eDQsLC6xYsQJZWVmafdavX4/79+9j+PDhGDJkCKKjo7Fly5YiPf/Dhw/RsWNHODk5wdLSMt9FXzpV8Q8PFwu0C7pcvqx3DETFatEiIC1NlEwMDJQ7GiKiss3NDXjjDWDbNtEfY906YPhwoHJlsS5j+XKgb1+gShVRFObnn8UicaLypFatWujQoQPq1q2b7z5JknDy5EkEBQXB19cXLi4u6NWrF5KTk3H16lUAQHx8PCIjI9GzZ094eHigWrVq6Nq1Ky5duoTkInS5dHd3x8OHD43+unQakOzYMbfMbF4KhdjOOZRU2jx9CqjLNL/7Ln9GiYhKko2NSCL69hXrMo4cEevdNm0CbtwQyce2beJvc0BA7roMX9/C/15nZ4sqf7GxIokJDBQlc4nklpycjKSkJM1tlUqlVc61qB4/foyUlBT45Cm1amlpCQ8PD9y+fRt+fn64c+cOLC0tUbVqVc0+Pj4+UCgUuHPnToEJS17NmzfHrl27kJKSAmdn53zVoVxcXHSOG9Ahsbh5U6/jE8nq99/FGTMvL/GPjYiI5GFuLqZDtWsnqvRdvpy7LuP0aTGN6sQJMaWqVi2xJiM0FGjVKjdxWL8emDgRuHMn97geHsDChUCfPnK8KqJc9erV07o9Y8YMzJw5U+fjpKSkAACsra21tltbWyP1vzmEKSkp+e43MzODlZWV5vHPs2bNGgCin4WaQqGAJEkls3hbz6pTRLLJycktMTtpEhcMEhGVFgqFKPri5ycWeN+9C2zZIpKMfftE9++vvhIXR0cxZcrZGfjyy/wzJ+7eBfr1E1OumFyQnMLDw+Hu7q65rc9oRUmZOHFisRyXH7WozNq2Dfj3X8DeXnSMJyKi0sndXZSpfestIDkZCAsTSYZ6ncZvvxX+WPVU7EmTxAgHp0WRXGxtbWFnZ2fwcWxsbAAAqampWhWbUlNTNVOUbGxsNKMXajk5OXj69Knm8c9TqVIlg+MsiE6Lt4lMybx54uubb7IjLBGRqbC1Bfr3F4337t8XIxgvmsoqScDt22LtBZGpq1SpEmxsbHDjxg3NtvT0dNy5cweenp4AAA8PD6SlpSEmJkazz82bNyFJEjw8PIr0PBcuXMCSJUvw1Vdf4fHjxwCAEydOaBaI64OJBZVJp08Dhw6J6U/jx8sdDRER6aNCBaB9+6KvkYuNLd54iIwlIyMDcXFxiPuvJNqjR48QFxeHxMREKBQKBAQE4PDhw4iIiMC9e/ewYcMG2NraanpdODk5oWbNmtiyZQvu3r2L6OhobN++HX5+fkXqS3H69Gns2rULNWvWRFpamqZJnqWlJU6ePKn36+JUKCqT1GsrBg8WC/uIiMh0ubkZdz8iucXExGCZuskWgF27dgEAGjZsiF69eqF169bIzMzEli1bkJaWhmrVqmHYsGEwz7NgtE+fPti+fTuWL1+u1SCvKE6dOoUePXrA19cXR48e1WyvWrWqJhZ9MLGgMufWLbGIDwCmTJE1FCIiMoLAQHGS6O7dgsveA+J+9ioiU1G9enXMmDGj0PsVCgXat2+P9u3bF7qPlZUV+upZ8vLx48dwdXXNt12pVCIzM1OvYwJFTCwaNSp6/f+zZ/WOhcgoFi4Udc47dQIaNpQ7GiIiMpRSKf629+uX2zvrWXXqAGac4E1UJJUqVUJcXFy+RdyRkZFwdHTU+7hF+hXs1Su3aU1wMHD9OqBS5dajtrQU24KD9Y6DyCgePwZ++UVcf/ddWUMhIiIj6tNHjEbnqeYJQJSjVSiAvXtFOVoierGWLVti+/btuHTpEiRJwt27d3Ho0CHs3bsXrVu31vu4RRqxyDtSM3o0MGEC8Mkn+fe5fVvvOIiM4qefgJQUURv95ZfljoaIiIypTx9xkvPZzts//CAKdXzwAeDjI0Y2iKhwjRs3hrm5Ofbv34/MzEz89ddfsLW1RZcuXeDn56f3cXVeY7F2LfD33/m3DxsGNG0KLFmidyxEBsnIAL75RlyfMqXo0/eIiMh0KJVitkRe48aJpnrffAMMHw54egIBAbKER2QyGjRogAYNGiAzMxMZGRn5OnnrQ+fZiFZWQJ7F4xpHj4opUURyWb1aLOxzdRXVoIiIqPyYPx/o0QNISwN69hSFPIjoxSpUqGCUpALQY8Ri0iRgzBixSLt5c7Ht5EkxUvHRR0aJiUhnkpRbYnbCBLEGiIiIyg+lEvjjDyAoCDh3DggJESc9i6nBMJFJe/LkCfbv349bt24hNTVV08dC7YMPPtDruDonFlOnivmLCxeKrpgAULcusHQpMGCAXjEQGWzvXuDCBaBiRdFpm4iIyh8bG2DLFjENKjxcdPDevl002iOiXBs2bMDDhw/RqFEj2NjYGO24OiUWWVnA7NnAq68yiaDSRT1a8dprQOXK8sZCRETycXcHtm4F2rQB9uwB3n5bFPbgujuiXNHR0XjllVcK7GVhCJ3WWJibA198IRIMotLi0iUgLEzUL580Se5oiIhIbv7+Yt2dmZkoQc4ytETaHB0dkVUMH+h1XrzdsSNw8KDR4yDS2/z54mufPmKaHhERUUgIsGCBuP7BB6IHBhEJ3bp1w759+3Dr1i08efIE6enpWhd96bzGomtXsc7i4kWgSRPg2UXkPXvqHQuRzmJjc9f6TJkibyxERFS6jB8PREayDC3RsywtLZGeno7ly5drbZckCQqFAtOnT9fruDonFm+/Lb6qzxLnpVAA2dl6xUGkl2+/BTIzgdatgRYt5I6GiIhKm/nzgRs3xLqLnj1FJcvq1eWOikhe69evh5mZGfr06SPf4m0AyMkx2nMTGSQlBfjxR3GdoxVERFQQpRJYtYplaInyun//Pt588004Ojoa9bg6r7EgKi2WLgUePQJq1uQUPCIiKpy6DK27e24Z2sxMuaMikk/VqlWRlJRk9OPqPGIBAKmpYgF3dDSQkaF934QJxgiL6Pmys4GvvxbX33lHnJEiIiIqDMvQEuVq3rw5wsLC0KpVKzg7O0P5zAcpFxcXvY6rc2Jx7hzQrRvw5IlIMCpXBhISRGMyZ2cmFlQyNmwAbt4EqlQBRo2SOxoiIjIF/v7An38CoaGiDG2tWsD778sdFVHJW/dfmbRNmzZptikUipJfvP3OO0CPHmJuu709cOKE6Gg5bBgwcaJeMRDpRJKAefPE9TFjRFJLRERUFN27izK0EyaIMrQ+PkC/fnJHRVSyJhbTh3adE4vz54HFi0XTGaUSSE8Xv5RffAGMHCl6CRAVp2PHRFUPCwtg3Di5oyEiIlPDMrRU3lUqpuoFOicWFSqIpAIQU5+io4G6dcXoxe3bxg6PKL+vvhJfhw8H9JwCSERE5RzL0FJ5duHChefe37BhQ72Oq3Ni0agRcPq0mJfYti0wfbpYY/H774Cfn14xEBXZtWvAxo3i+uTJsoZCREQmTF2GNjBQzMZgGVoqT8LCwrRuZ2dnIzMzE0qlEhUqVCi5xGL2bCA5WVz/7DNgxAgxz71WLWDJEr1iICqyBQvEGotu3YB69eSOhoiITJmNjRixCAjILUO7fbuYnUFUln3wwQf5tj148ADbtm1Dq1at9D6uzn0smjYF2rcX152dgbAwICkJOHMG0DO5ISqSBw9E7woAePddeWMhIqKyQV2G1to6twytJMkdFVHJq1KlCjp16pRvNEMXbJBHJuOHH4CnT8V0vHbt5I6GiIjKCnUZWjMzUYb2yy/ljohIHmZmZkhWT03SQ5GmQjVqVPQGMmfP6h0LUaHS0oBvvxXX332XDY2IiMi4ni1DW6MG0Lev3FERFY+IiAit25IkISUlBadOnUK1atX0Pm6REotevXKvp6UBixaJ+e0tW4ptJ04Aly+L4UOi4rByJXD/PuDhIebAElH58ew/QFNQp04duUMgPYwfL4qEfPut6M/l4cEytFQ2/fnnn1q3FQoFKlasCG9vb7z88st6H7dIicWMGbnXR48W2fwnn+Tfh+VmqTjk5OSWmJ00iYvqiIio+Hz9NXDzJsvQUtk2I++HeyPSeY3F2rWiEtSzhg0D/vrLGCERaQsLA65cAezsgNdflzsaIiIqy9RlaP39xUh5SAjw+LHcURGZBp0TCysrUef5WUePApaWxgiJSNu8eeLr66+L5IKIiKg4qcvQurvnlqHNzJQ7KiLjWbNmDY4cOZJv+9GjR7F27Vq9j6tzH4tJk0TfirNngebNxbaTJ0UPi48+0jsOogKdPQvs3w+YmwMTJ8odDRERlRfqMrRt2ogytGPHAosXs3gIlQ1RUVFo27Ztvu01a9bE8ePH9T6uzonF1KmAjw+wcCGwYoXYVreu6C8wYIDecRAVSL22YsAAwNNT3liIiKh8UZehDQ0Ffv5ZNAN+7z25oyIyXEZGBpRKZb7tSqUS6enpeh9Xrz4WAwaIqU8PH4rL0aNMKsj4bt8GVq8W16dMkTcWIiIqn9RlaAHg/fe5npTKBmdnZ1y+fDnf9kuXLsHJyUnv4+o8YqGWkSEWNeXkaG83oPQtkZaFC4HsbNHpvXFjuaMhIqLyimVoqawJCgrCmjVr8OjRI1T/r+zZzZs3cenSJfQ3oK6/zonFtWvAq68Cx45pb5ckMe8wO1vvWIg0EhOBn34S1999V95YiIiIvv4auHED2LaNZWjJ9NWpUwcDBw7EkSNHEB4eDnNzc7i4uGD48OGaREMfOicWo0aJhbRbtwJublzERMXjl1+A5GSxfqdLF7mjISKi8k6pFOstAgOB8+dFGdpjxwB7e7kjI9JP7dq1Ubt2baMeU+fE4vx54MwZwNfXqHEQaWRmimlQgFhbYabXSiAiIiLjsrEBtmwR06DUZWi3bWPjVjJdMTExSEhIAAA4OTnBzc3NoOPpnFjUqwf89/xExWLtWrFw29kZGDpU7miIiIhyeXiIWRuBgcDu3SxDS7rLycnBgQMHcPHiRaSkpMDW1hYNGzZEUFAQFP/9IEmShAMHDuDs2bNIS0uDp6cnQkJCUKVKFaPEkJqainXr1uHWrVuw/K8RXVpaGry9vdG3b19YW1vrdVydE4u5c0VVhNmzgZdeyp+ls4EZGUKSckvMjh/PpotERFT6NGrEMrSkv6NHj+Lvv/9Gr1694OzsjJiYGGzatAmWlpYI+K8qwNGjR3Hy5En06tULDg4O2L9/P1asWIGxY8fC3Fzv2ksaO3bsQEZGBt5++21NFaj4+Hhs3LgRYWFh6Nu3r17H1XmSSadOwIkTQMeO4oyyg4O4VKokvhIZ4sAB0RTPyko0YiQiIiqNuncXC7oBlqEl3dy+fRt16tRB7dq1UalSJdSrVw81atTA3bt3AYjRipMnTyIoKAi+vr5wcXFBr169kJycjKtXrxolhsjISHTr1k2rtKyTkxO6deuGa9eu6X1cnVOe/fv1fi6iF5o3T3x95RXASKN9RERExWLCBCAyMrcMracn0Ly53FFRaefp6YkzZ87gwYMHqFKlCuLi4hAdHY2XX34ZAPD48WOkpKTAx8dH8xhLS0t4eHjg9u3b8PPzMzgGSZIKbJBnZmYGSZL0Pq7OiUUB3b+JjCI8HNi+XcxTfecduaMhIiJ6sbxlaHv0YBna8iw5ORlJSUma2yqVCiqVKt9+bdq0QXp6Or777juYmZkhJycHHTp0QIMGDQAAKSkpAJBvnYO1tTVSU1ONEqu3t7dmypOtrS0AICkpCTt37tRKaHSl9yStJ0+A6GjRKC+v/74nRDqbP1987dULqFlT1lCIiIiKhGVoSa1evXpat2fMmIGZM2fm2+/y5cu4ePEi+vbtCycnJ8TFxWHnzp2wtbWFv79/icTatWtX/Pnnn1iwYAHs//thTUxMhLOzM/r06aP3cXVOLOLjxTSVHTsKvp8N8kgfcXHA77+L61OmyBsLERGRLliGlgAgPDwc7u7umtsFjVYAwO7du9G6dWvNlCYXFxckJibiyJEj8Pf3h42NDQBRuUk9mqC+7eLiYpRY7e3t8cYbb+DGjRta5WYNGa0A9Fi8PWkS8PixGOqzsgLCwoBly0RFhM2bDYqFyrHvvxejXy1aAK1ayR0NERGRbtRlaK2tc8vQGjBVnUyQra0t7OzsNJfCEovMzExNWVk1hUKhWdtQqVIl2NjY4MaNG5r709PTcefOHXh6ehotXoVCgRo1aiAgIAABAQEGJxWAHiMW+/YBmzYBTZuKxmVeXkDnzqLM7Jw5YgiQSBdPngCLFonrU6awFjgREZkmlqGloqhduzYOHz4Me3t7ODs7IzY2FidOnNBMg1IoFAgICMDhw4dRpUoVVKpUCfv374etrS18jdChWpIknD9/HleuXMHjx4+hUCg01akaNGiQL+nRhc6JRWqqKDMLiPKy8fFA7dqip8XZs3rHQeXYb78BDx8C3t5A795yR0NERKQ/dRnaiRNFGVofH0DPlgBURnXt2hX79+/H9u3bNdOdmjRpgrZ5KiS1bt0amZmZ2LJlC9LS0lCtWjUMGzbM4B4WkiRh1apVuHbtGlxdXeHi4gJJkpCQkICNGzfiypUrGDRokN7H1zm6OnWAiAhR8aBhQ9Ftsnp14McfAQO7gFM5lJ2dWwf8nXfEIjgiIiJTxjK09DwqlQpdunRBly5dCt1HoVCgffv2aN++vVGf+/z584iKisKIESPg7e2tdd/Nmzfx559/4sKFC2jYsKFex9d5jcXEiUBsrLg+Y4ZYxF2tGvDNN6IbN5EuNm8Wf3wdHERRACIiorLg66/F9PC0NFGG9tYtuSMiAi5duoTAwMB8SQUgStC2adMGFy9e1Pv4OicWw4YBo0aJ602aAFFRwOnTwO3bwMCBesdB5dRXX4mvb70lqmoQERGVBUolsGqVmN1x/75IMhIT5Y6Kyrt79+6h5nNq+tesWRNxcXF6H1/nxOLjj8ViW7WKFYHGjUUVhI8/1jsOKodOnACOHhXl+MaPlzsaIiIi47K1FZWiqlbNLUObmSl3VFSePX36NF/jvbxsbGyQlpam9/F1TixmzQL+awio5ckTcR9RUalHK4YO5focIiIqm1iGlkoTSZJgZlb4x3+FQoGcnBy9j6/z4m1JKrgc6IULQOXKesdB5cyNG8D69eI6G+IREVFZxjK0VFpIkoRNmzZBWUi1nGwDO10XObFwcBAJhUIhysvmTS6ys8UoxltvGRQLlSMLFgA5OUBwMPBf40kiIqIyi2VoqTRQ98p4Hn0rQgE6JBYLFojRildfFVOe7O1z77OwECVnW7bUOw4qRx4+BH79VVx/9115YyEiIiopEyYA164B333HMrQkj9DQ0GI9fpETi5EjxVdvb6B1a8DA/hxavv8e+PJLIC5OVE/49tui/aL9+ScweLAYWty40XjxUPFavFisyWnYEOjYUe5oiIiISs7XXwM3bwLbtgE9ewInTwJeXnJHRWQcRV68nZUFpKcDbdvmJhX37onRi/ffB44c0S+A1auByZNFT4yzZ8WHzeBgUZrteW7dEme7AwP1e16SR3q66HkCiLUVBnSNJyIiMjnm5rllaO/dYxlaKluKnFi8/roYwlNLTgaaNROjDTt3Au3bA9u36x7A/Pni2K+8AtSrJzp4V6wILFlS+GOys0UloVmzxBxFMh2rVomRKXd39j0hIqLyKW8Z2suXWYaWyo4iJxZHj2ovMlq+XHzAv3ZNVISaPFlMZ9JFRgZw5gzQqVOegMzE7ePHC3/cxx8Dzs7Aa6/p9nwkL0nKLTE7YYJYm0NERFQeeXgAW7awDC2VLUVOLO7eFeXR1PbuFYmGehH3yJEi69ZFQoJITlxctLe7uIiz2gU5ckQs/P3556I9R3p6OpKSkjSX5ORk3YIko9m1C7h0SXTYfuMNuaMhIiKSV+PGYiTfzEx8rpk3T+6IqCxbvHgxnj59CgA4ePAgMothmKzIiYWlJfBfLABE1+SAAO37C2qcZ0zJycDw4eKXz9GxaI+ZM2cO7O3tNZd69eoVb5BUKPUfzNGjgUqVZA2FiIioVOjRQyzoBoAPPsjt8URkbAkJCZpk4uDBg8jIyDD6cxS5tpO/P/D778CcOcDhw2LBUYcOufdfvy7mCurC0RFQKsWx8rp3D3B1zb//9eti0XaPHrnb1M0Bzc2BiAigRg3tx0ybNg2TJ0/W3L579y6TCxlcuADs2SPe74kT5Y6GiIio9Hi2DO2BAyxDS8bn6uqKTZs2wdPTE5Ik4dixY7AoZF5627Zt9XqOIicW06cDXbsCa9YAsbHAqFGAm1vu/Rs2iDK0urCwAJo0EdOqevUS23JyxO1x4/Lv7+sLXLyove1//xMjGQsXinrQz1KpVFCpVJrbSUlJugVJRqFeW9Gvn+h5QkRERLm+/hq4cUMUwmEZWioOoaGhOHDgAK5duwaFQoHIyEiYmRU8eanYE4u2bcVC6127xGhC//7a9/v765ddT54s1mc0bSoev2ABkJoqqkQBwIgRooLQnDliutWzXZrVU2rYvbn0unNHzCEF2BCPiIioIObmoj9XYKAY5Q8JEYVz8jYkJjKEo6Mj+vXrBwCYNWsWRowYAWtra6M+h05t7urWFZeC6LsYd+BAID5ejIjExYkEJSwsd0F3dLRY1ESm69tvRR+UoCCRQBIREVF+6jK0AQG5ZWi3bQMqVJA7MiprZsyYUSzHNWL/bP2NG1fw1CdAzDN8nt9+M3Y0ZEzJyaLTNsDRCiIiohdRl6ENChJlaMeNEz2+2FCWjO3hw4c4ceIEEhISAABOTk4ICAhA5cqV9T4mxwKoWP36q+goWqeOGNYlIiKi58tbhvann3LXKRIZS2RkJBYtWoSYmBi4uLjAxcUFd+/exaJFi3D9+nW9j1sqRiyobMrKEmtmALGWhlPaiIiIiqZHD2D+fGDSJOD99wEfH6BPH7mjorJi7969aNGiBTrl7VINYM+ePdizZw9qPFtmtYj4UY+KzV9/AVFRgJOT6D9CRERERTdhgpgKJUmiDO2pU3JHRGVFfHw8GjVqlG97o0aNEB8fr/dx9UosHj8GfvkFmDYNePhQbDt7VnTnJgLEH0F1Q7yxYwErK3njISIiMjUKhShD262baFLcs6c4YUdkKGtra8TFxeXbHhcXZ1ClKJ2nQv3zD9Cpkyh/dusW8PrrQOXKolNkdDSwfLnesVAZcvgw8PffokTw22/LHQ0REZFpYhlaKg6NGzfG1q1b8ejRI3j+1wju9u3bOHr0KFq0aKH3cXVOLCZPFs3xvvhClEVT69YNGDJE7ziojFGPVowcKaZCERERkX5YhpaMLSgoCBYWFjh+/Dj27t0LALC1tUXbtm0REBCg93F1TixOn84tH5qXu7voQ0EUESFK5QHAO+/IGwsREVFZoC5DGxjIMrRkOIVCgZYtW6Jly5ZIT08HAKhUKoOPq/MaC5UKSErKv/3ff3lmmoT588XXnj1FmVkiIiIyXOPGYlqUQsEytGQ8KpXKKEkFoEdi0bMn8PHHQGamuK1QiLUVH3wA9O1rlJjIhN2/n7vOZsoUeWMhIiIqa3r0EAu6AVGGdv16eeMhykvnxOKrr4CUFMDZWVQoaNsWqFlTzP/77LPiCJFMyaJFQFoa0KyZGK4lIiIi43q2DO3p03JHRCTovMbC3l7M7TtyRFSISkkRQ3PP9NegcujpU+D778X1KVM475OIiKg4qMvQ3rgBbN8uRjFOngS8vOSOjMo7vTtvt2kjLkRqy5cDCQniDxunxRERERUflqElfWVnZ2PlypUICQlBlSpVjHpsnROLb74peLtCIXoW1KwJBAUBSqWhoZEpycnJXbQ9aZL4g0dERETFh2VoSR9KpRL37t0rlmPr/PHv66+B+HjgyRPAwUFse/QIqFgRsLERi3d9fID9+4H/+m1QObB1q6gMZm8PvPaa3NEQERGVDyxDS/p46aWXcO7cOXQy8loGnROL2bNFibNffgFq1BDbIiOBN98E3ngDaN0aGDRI9C9Yt86osVIppi559+ab2o0TiYiIqHg1bgysWgX06iU+o9WqBbz7rtxRUWmWk5ODv//+Gzdu3ICbmxssLCy07g8ODtbruDonFv/7H/DXX7lJBSCmP82bJ+bV37ghunJzjn35cfo0cOiQmP40YYLc0RAREZU/PXuKWSWTJokytD4+QJ8+ckdFpVV8fDzc3NwAAA8fPjTacXVOLGJjgays/NuzsnI7b1etCiQnGxoamQr1aMWQIaIDOxEREZW8CROAa9dEhcZhw4CDB0X5d6JnjRw5sliOq3Mfi/btxXSXc+dyt507B4wZA3ToIG5fvAh4exsrRCrNbt0C1q4V1ydPljUUIiKick2hABYsALp1EyXge/QAoqLkjopKs4cPHyIyMhKZ/3W+liTJoOPpPGLx66/A8OFAkya5VQeysoCOHcV9gFjEzTbz5cPChaIiVOfOQMOGckdDRERUvrEMrWlISkrCnj17NB/qK1eujNDQUFStWhWA+IB/4MABnD17FmlpafD09DRqedgnT55g3bp1uHnzJhQKBcaPHw8HBwds3rwZlpaWeq+x0HnEwtVVVB0IDxdnqteuFdd37QJcXMQ+7dsDL7+sVzxkQh4/Fov4AdEQj4iIiOSnLkPr5ibK0A4YAPx3QppKgadPn2LJkiVQKpUYOnQo3n77bbz88suwtLTU7HP06FGcPHkSISEhGD16NCwsLLBixQpkFbQeQQ87d+6EmZkZ3nnnHVTIU5+4fv36uH79ut7H1TmxUPP1FQuFevYE6tTR+/nJhP30k+i87ufHRJKIiKg08fAQyUXFiuLk7/jxgIGzXMhIjh49Cnt7e4SGhsLd3R0ODg6oUaMGKleuDECMVpw8eRJBQUHw9fWFi4sLevXqheTkZFy9etUoMVy/fh2dOnWCnZ2d1vYqVarg8ePHeh9XrzZmd+4AmzcD0dFARob2feomaVS2ZWSIaVCAGK1gvWwiIqLSJW8Z2sWLRRVPlqGVX0REBGrUqIG1a9fi1q1bsLOzQ9OmTdGkSRMAwOPHj5GSkgIfHx/NYywtLeHh4YHbt2/Dz8/P4BgyMzO1RirUnj59CnMDuhzr/Mi9e8UohY8PcPWqOFt965bIghs31jsOMjGrVwMxMWKYdfBguaMhIiKigrAMbclJTk5GUlKS5rZKpYJKpcq336NHj/D333+jZcuWaNOmDWJiYhAWFgalUgl/f3+kpKQAAKytrbUeZ21tjdTUVKPEWq1aNVy4cAEd1JWXIEZKjh49iurVq+t9XJ2nQk2bJrLdixcBS0vR0+L2baBtW9FKnso+SRJ9SwAxtFrA7wwRERGVEhMmAGPHiv/fw4aJ/lNkfPXq1YO9vb3mMmfOnAL3kyQJbm5u6NixI9zc3NCkSRM0btwYZ86cKbFYO3fujLNnz2LlypXIzs7Gnj17sGjRIkRFRRnUjVvnEYsrV8SwGiAqDzx9KqpAffwxEBoqys5S2bZ3L/DPP4C1tSg9TERERKWXugztjRvAjh2iDO3Jk4CXl9yRlS3h4eFwz9PQq6DRCgCwtbWFk5OT1jZHR0dcuXIFAGBjYwMASE1Nha2trWaf1NRUuKgrJRnI2dkZ48aNw6lTp2BhYYGMjAzUrVsXzZo103pOXemcWFhb566rcHMDrl8H6tcXtxMS9I6DTIh6tOLVV4H/1hkRERFRKWZuLqYxt2kjTg527w4cOcIytMZka2ubbzF0QTw9PfHgwQOtbQ8ePID9f29GpUqVYGNjgxs3bsDV1RUAkJ6ejjt37qBp06ZGi9fS0hJBQUFGOx6gR2LRooX4QaxbVzRgmTJFTItav17cR2XbpUvAzp2AmZmYr0lERESmwdYW2LYNaN5c/D8fMEBUjipgDS8VoxYtWmDJkiU4fPgw6tevj7t37+Ls2bPo3r07AEChUCAgIACHDx9GlSpVUKlSJezfvx+2trbw9fU1WhxPnz7FuXPnEB8fDwBwcnJCo0aNYGVlpfcxdU4s5s8XJUYBYNYscX31aqBWLVaEKg/UjQ/79BELwIiIiMh0qMvQBgbmlqH94QdWdyxJ7u7uGDhwIPbu3YuDBw/CwcEBwcHBaNCggWaf1q1bIzMzE1u2bEFaWhqqVauGYcOGGVSxKa+oqCisWrUKKpVK05Tv1KlTOHToEAYPHgwvPefJ6RRddrYoNat+3dbWwI8/6vW8ZIJiY4GVK8V1lqsjIiIyTSxDK7/atWujdu3ahd6vUCjQvn17tG/fvlief/v27ahfvz5CQkJgZiZqOeXk5GDbtm3Yvn07xui5aFqnqlBKpWiE9uiRXs9FJu7bb0XnztatgYAAuaMhIiIiffXsmTvT5P33gQ0b5I2HStbDhw/RsmVLTVIBAGZmZmjZsiUePnyo93F1Ljfr5yeqClD5kpIihkoBntUgIiIqCyZOzC1DO3Qoy9CWJ25ubkgooOpSQkKCQZWndJ6o9emn4oPlJ58ATZqI6VB5FWExPJmgpUuBx4/FcGmPHnJHQ0RERIZiGdry5d69e5rrzZs3R1hYGB4+fAgPDw8AwJ07d3D69Gl07NhR7+fQObHo1k187dlTe6GPJInb2dl6x0KlVHa26NoJAJMniylxREREZPpYhrb8+PHHH6FQKCBJkmbb7t278+23fv16+Pn56fUcOicW+/fr9TxkwjZsAG7eBKpUAUaOlDsaIiIiMiaWoS0fJk6cWOzPoXNi0bZtcYRBpZUk5TbEe/ttoGJFeeMhIiIi4/PwALZsAYKCWIa2rKpUqVKxP4dexXAPHxblyW7cANauBdzdgd9/B7y9xVAalR3Hjon5liqVWOBFREREZVOTJtplaGvVEo2QqWxKTk5GdHQ0UlNTtaZHAUCAnuU/dU4s/voLGD5cVA84exZITxfbExOB2bOB7dv1ioNKKfVoxfDhgAFFAoiIiMgEqMvQvvMO8N57ohlu795yR0XGdv78eWzduhVKpRJWVlZQPDM0VWKJxaefiqZ4I0YAf/6Zu711a3EflR0xMcCmTeL65MnyxkJEREQlY+JE4No1YNEicSL54EGgWTO5oyJj2r9/P4KCghAYGJgvqTCEzn0sIiLE/Ltn2duLcqRUdmzaJNZYhIQAdevKHQ0RERGVBIUCWLgQ6NoVePpUlKGNipI7KjKmzMxM+Pn5GTWpAPRILFxdgcjI/NuPHBHDZVQ2JCUBe/eK65xfSUREVL6oy9A2aADcuyfK0CYmyh0VGUujRo0QHh5u9OPqPBXq9dfFENmSJSKjjYkBjh8XTfM++sjo8ZFMduwAMjKAxo2Bdu3kjoaIiIhKmq2tKDsbEMAytGVNx44dsWrVKkRGRsLZ2RnKZ5qUBQcH63VcnROLqVOBnBygY0fgyRMxLUqlEonF+PF6xUClTGam+MMBiNEKlpojIiIqnzw9WYa2LDpy5AgiIyPh6OiI+/fvG21KlM6JhUIBfPihqBQQGQmkpAD16gE2NkaJh0qB/fvFcKejI9C/v9zREBERkZyaNAH++ENUh2IZ2rLh+PHjCA0Nhb+/v1GPq/MaixUrxEiFhYVIKJo3Z1JRlkhSbiWo0FAOdxIREZH4TDB/vrj+3nvAhg3yxkOGUSqV8PT0NPpxdU4s3nkHcHYGhgwRPSuys40eE8nozBng9m3RYbtzZ7mjISIiotJi4kTg7bfFScihQ4HTp+WOiPQVEBCAU6dOGf24Ok+Fio0FwsJEZ8YBA8QH0P79xQ9Yq1ZGj49K2MaN4mtwsHhviYiIiIDcMrQ3b4oiLz17AidOAF5eckdGuoqJicHNmzfx77//wtnZGWZm2mMNAwcO1Ou4Oo9YmJuLkmMrVwL37wNffw3cugW0bw/UqKFXDFRKXL8O/PMPoFSKmtVEREREeeUtQxsXxzK0psrS0hJ169ZF9erVUbFiRVhaWmpd9KXziEVeFSuKM9uPHonGKVeuGHI0kpt6tCIwUCzcJiIiInoWy9CavtDQ0GI5rs4jFoBYvL1yJdCtG+DuDixYICoFXL5s5OioxMTHA4cPi+u9eskaChEREZVy6jK0FSvmlqGVJLmjIrnpPGIxaJDISitWFBnqRx8BLVsWR2hUkrZsEf1JGjRgB3UiIiJ6MZahNV0LFy587v0TJ07U67g6JxZKJbBmjZgC9UyTPly6BPj56RUHyejJE2DnTnG9d295YyEiIiLToS5D+847ogytjw8/S5iCgIAArds5OTmIi4tDZGQkWhlQjUnnxGLlSu3bycmiQtQvv4hSpSw/a3p27QKePhXDmo0byx0NERERmZKJE4Fr14BFi0SV0IMHgWbN5I6KnqdFixYFbj916hRiY2P1Pq5eaywA4NAhYORIwM0NmDcP6NBBlBwj05KdDWzeLK736iVKyREREREVlboMbdeu4kRlz56iqA+Znlq1aiE8PFzvx+uUWMTFAZ9/LubQ9e8P2NkB6emimtDnnzM7NUVHjgAJCUClSkC7dnJHQ0RERKbI3Bz480+WoTV14eHhsLKy0vvxRZ4K1aOHGKUICRFVoLp0EWssfvxR7+cmmUkSsGGDuN69O8vEERERkf7s7LTL0A4cKG6bG9TcgIrD4sWL821LSUlBamoqQkJC9D5ukd/qHTuACROAMWPEiAWZvkuXgBs3AAsLMXxJREREZAh1GdqgIFEYZtw44IcfONW6tKlTp47WbYVCAWtra1SvXh2OBjQzK3JiceQI8OuvorRY3brA8OGi9CyZLvVoRadOotkNERERkaFYhrb0a1dM89+LvMaiRQvg55+B2FjgzTfFPLqqVUXvg927RXUoMh23bwN//y3OIBRT80UiIiIqp0JDga++Etffey/3ZCaVbTrPerO2Bl59VVwiIsQoxuefA1OnAp0751YYotJt40bxtUULUdmLiIiIyJgmTQIiI7XL0DZuDBw+LE5Uu7kBgYH5+6JR8Zk1axYURZiXNn36dL2Ob9Bymjp1gC++AObMEfPpliwx5GhUUh49AvbvF9fZxIaIiIiKg7oM7c2bYq3uyy8DVlYiqVDz8BD79OkjX5zlycCBAwu9786dOzh58iQkSdL7+EZZp69Uih4IvXoZ42hU3LZvB7KyRGLo6yt3NERERFRWqcvQvvQSEB0NPH6sff/du0C/fsC6dUwuSoJvAR/8EhISsHfvXkRERKBBgwYGrb9gAbByJj1dJBYARyuIiIio+FlbA5mZBd8nSWJkY9IksS6D06JKTnJyMvbv348LFy6gZs2aeOutt+Ds7GzQMZlYlDN794qF9q6uYn0FERERUXFSr6kojCSJojKHD7NZb0lIS0vD4cOHcerUKbi6umLEiBHw8vIyyrGZWJQjOTnApk3iemgoYKZT33UiIiIi3T0vqdBnP9Lf0aNHcfToUdjY2KBv374FTo0yBBOLcuTUKfFLa2MjelcQERERFbeiVp9klcrit2fPHlSoUAGVK1fGhQsXcOHChQL3e94i7+dhYlGOqGtId+0KqFTyxkJERETlQ2CgqP50966Y9vQshULcHxhY8rGVBkeOHMHevXsREBCALl26AACysrKwc+dOXL58GVlZWahZsya6desGGxsbg56rYcOGRSo3qy8mFuXE1avAlSuiOkP37nJHQ0REROWFUilKyvbrJ5KIvMmF+jPuggXlc+H23bt3cebMGbi4uGhtDwsLw7Vr19C/f3+oVCrs2LEDa9aswauvvmrQ8/Uq5hKunGVfTqgb4rVrBzg4yBkJERERlTd9+oiSsu7u2ts9PMpvqdmMjAysX78ePXr0gKWlpWZ7Wloazp07h+DgYHh7e6Nq1aoIDQ3F7du3cefOHRkjfjGOWJQDcXHAiRPiemiovLEQERFR+dSnj/gcUlY7bycnJyMpKUlzW6VSQfWcuefbt29HrVq14OPjg0OHDmm2x8bGIicnBz4+Ppptjo6OsLe3x+3bt+Hh4VE8L8AIOGJRDmzeLCpCNW4MGKmaGBEREZHOlEoxe2LwYPG1rCQVAFCvXj3Y29trLnPmzCl030uXLiE2NhadCqimk5KSAqVSqTWKAQDW1tZISUkxetzGxBGLMi4lBdi9W1xnQzwiIiKi4hEeHg73PHO9ChutSExMRFhYGIYPHw5z87L1UbxsvRrKZ8cO0W3b2xto0EDuaIiIiIjKJltbW9jZ2b1wv9jYWKSmpmLx4sWabZIkISoqCqdOncKwYcOQnZ2NtLQ0rVGL1NRUg6tCFTcmFmVYZiawdau43rt3buUFIiIiIpKHt7c3xowZo7Vt06ZNcHR0ROvWrWFnZwczMzPcuHED9erVAwAkJCQgMTERnp6ecoRcZEwsyrCDB4FHj4AqVcpvbWgiIiKi0kSlUsHZ2VlrW4UKFWBlZaXZ3qhRI+zatQtWVlaacrMeHh6leuE2UEoWb3//PVC9OmBpCQQEiA7Rhfn5Z/Eh2cFBXDp1ev7+5ZUk5ZaY7dGjbC2OIiIiIirLunTpglq1amHNmjX47bffYGNjo3c37JIk+4jF6tXA5MnAjz+KpGLBAiA4GIiIAJ5J5gAABw6ISgKtWolEZO5c4OWXgcuX89dGLs/OnQOio8X3KDhY7miIiIiIqDCjRo3Sum1ubo6QkBCEhITIE5CeZB+xmD8feP114JVXgHr1RIJRsSKwZEnB+69cCbz9NuDvD/j6Ar/8Ikqp7t1bomGXeurRiuBgwNpa1lCIiIiIqByQNbHIyADOnBHTmdTMzMTt48eLdownT8Qi5cqVC74/PT0dSUlJmktycrLhgZdyN28C58+L72XPnnJHQ0RERETlgayJRUICkJ0NuLhob3dxEd2ii+KDD4CqVbWTk7zmzJmj1axEvbq+LFOPVrRpAzg5yRoKEREREZUTsk+FMsTnnwN//gls2CDWEhRk2rRpSExM1FzCw8NLNsgS9uABoO4K36uXrKEQERERUTki6+JtR0dRrejePe3t9+4Brq7Pf+y8eSKx2LPn+Y3fVCqVVufDpKQkAyIu/bZuFaNAfn5AzZpyR0NERERE5YWsIxYWFkCTJtoLr9ULsVu2LPxxX3wBfPIJEBYGNG1a/HGaiqdPxfcE4GgFEREREZUs2cvNTp4MjBwpEoTmzUW52dRUUSUKAEaMEGVk58wRt+fOBaZPB/74Q/S+UK/FsLERl/Js927xvXN3B5o1kzsaIiIiIipPZE8sBg4E4uNFshAXJ8rIhoXlLuiOjhbVjdR++EFUk+rXT/s4M2YAM2eWVNSlT3Y2sGmTuN6rF6BQyBoOEREREZUzsicWADBunLgU5MAB7du3bhV3NKYlJ0c0Bzx+XCRodnZA+/ZyR0VERERE5U2pSCxIP8ePAz//LMr2qmVlid4gz1ujQkRERERkbCZdbrY8O35cVMXKm1QAYgH3558XvcEgEREREZExMLEwQTk5YqRCkvLfp972889iPyIiIiKiksDEwgRdvpx/pCIvSRL3X75ccjERERERUfnGxMIEPXpk3P2IiIiIiAzFxMIEOTgYdz8iIiIiIkMxsTBB9esDjo6F96pQKMT99euXbFxEREREVH4xsTBBZmbA66+L688mF+rbr7+u3ViQiIiIiKg48aOniWrZEpg6FahSRXt7lSpiO/tYEBEREVFJYoM8E9ayJRAQIKo/PXok1lTUr8+RCiIiIiIqeUwsTJyZGfDSS3JHQURERETlHc9tExERERGRwZhYEBERERGRwZhYEBERERGRwZhYEBERERGRwZhYEBERERGRwZhYEBERERGRwZhYEBERERGRwZhYEBERERGRwZhYEBERERGRwZhYEBERERGRwZhYEBERERGRwZhYEBERERGRwZhYEBERERGRwZhYEBERERGRwZhYEBERERGRwZhYEBERERGRwczlDoCIiIiIqLw4fPgwrl69ioSEBJibm8PT0xOdOnWCo6OjZp+srCzs3LkTly9fRlZWFmrWrIlu3brBxsZGxshfjCMWREREREQlJCoqCs2aNcNrr72G4cOHIycnBytWrEBGRoZmn7CwMPz777/o378/Ro0aheTkZKxZs0bGqIuGiQURERERUQkZNmwY/P394ezsDFdXV4SGhiIxMRGxsbEAgLS0NJw7dw7BwcHw9vZG1apVERoaitu3b+POnTsyR/98TCyIiIiIiAyUnJyMpKQkzSU9Pb1Ij1PvZ2VlBQCIjY1FTk4OfHx8NPs4OjrC3t4et2/fNn7gRsTEgoiIiIjIQPXq1YO9vb3mMmfOnBc+RpIkhIWFwdPTE87OzgCAlJQUKJVKWFpaau1rbW2NlJSUYondWLh4m4iIiIjIQOHh4XB3d9fcVqlUL3zMtm3bcP/+fbz66qvFGVqJYWJBRERERGQgW1tb2NnZFXn/7du349q1axg1apTW42xsbJCdnY20tDStUYvU1FRWhSIiIiIiIkGSJGzfvh1Xr17FiBEj4ODgoHW/m5sbzMzMcOPGDc22hIQEJCYmwtPTs6TD1QlHLIiIiIiISsj27dtx8eJFDBo0CCqVSrNuQqVSoUKFCrC0tESjRo2wa9cuWFlZQaVSYceOHfDw8ICHh4fM0T8fEwsiIiIiohLy999/AwCWLVumtT00NBT+/v4AgC5dumDnzp1Ys2YNsrOzUaNGDYSEhJR0qDpjYkFEREREVEJmzJjxwn3Mzc0REhJiEslEXlxjQUREREREBmNiQUREREREBmNiQUREREREBmNiQUREREREBmNiQUREREREBmNiQUREREREBmNiQUREREREBmNiQUREREREBmNiQUREREREBmPnbSIiIio2ERERcoegkzp16sgdApHJ4ogFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZjIkFEREREREZzFzuAADg+++BL78E4uKAhg2Bb78FmjcvfP+1a4GPPgJu3QJq1QLmzgW6dSuxcImIiIjKvIiICLlD0FmdOnXkDqHITp06hWPHjiElJQWurq7o2rUr3N3d5Q7LILKPWKxeDUyeDMyYAZw9KxKL4GDg/v2C9z92DBg8GHjtNeDcOaBXL3G5dKkkoyYiIiIi0s+lS5ewa9cutG3bFm+++SZcXFywYsUKpKamyh2aQWRPLObPB15/HXjlFaBePeDHH4GKFYElSwref+FCoEsX4L33gLp1gU8+ARo3Br77rmTjJiIiIiLSx4kTJ9C4cWM0atQITk5O6N69OypUqIBz587JHZpBZE0sMjKAM2eATp1yt5mZidvHjxf8mOPHtfcHxAhHYfsTEREREZUW2dnZiImJgY+Pj2abQqGAj48P7ty5I2NkhpN1jUVCApCdDbi4aG93cQGuXi34MXFxBe8fF1fw/unp6UhPT9fcTkxMBADExsbqG7be7hc2v6sUs7a2ljuEUoPvn2kztfeP710uU3vvAL5/eZna+8f3LpepvXeAPO+f+jNlYmIi7OzsNNtVKhVUKlW+/Z88eQJJkvLFam1tjYSEhOINtpiVisXbxWnOnDmYNWtWvu3Nn7c6nIiIiIhIB35+flq3Z8yYgZkzZ8oTjExkTSwcHQGlErh3T3v7vXuAq2vBj3F11W3/adOmYfLkyZrbWVlZuHLlCjw9PWFmJvsSE6NITk5GvXr1EB4eDltbW7nDIR3wvTNtfP9MG98/08X3zrSVtfcvJycH0dHRqFevHszNcz9aFzRaAQAVK1aEQqHIt1A7NTUVNjY2xRprcZM1sbCwAJo0AfbuFZWdACAnR9weN67gx7RsKe6fNCl32+7dYntBChqGat26tcGxlyZJSUkAAHd3d60hOCr9+N6ZNr5/po3vn+nie2fayuL7V61atSLvq1QqUbVqVdy4cQO+vr4AAEmScOPGDZOfUSP7VKjJk4GRI4GmTUXvigULgNRUUSUKAEaMANzdgTlzxO2JE4G2bYGvvgJCQoA//wT+/hv46SfZXgIRERERUZG1aNECGzduRNWqVeHu7o4TJ04gMzMT/v7+codmENkTi4EDgfh4YPp0sQDb3x8IC8tdoB0dLSpFqbVqBfzxB/C//wH/93+iQd7GjcAz09qIiIiIiEolPz8/PHnyBAcOHNA0yBs6dCinQhnDuHGFT306cCD/tv79xYUElUqFGTNmFDqXj0ovvnemje+faeP7Z7r43pk2vn9C8+bNTX7q07MUkiRJcgdBRERERESmrWyURSIiIiIiIlkxsSAiIiIiIoMxsSAiIiIiIoMxsTBx33//PapXrw5LS0sEBATg1KlTcodERXDo0CH06NEDVatWhUKhwMaNG+UOiXQwZ84cNGvWDLa2tnB2dkavXr0QEREhd1hUBD/88AMaNGgAOzs72NnZoWXLltixY4fcYZEePv/8cygUCkzK29iKSq2ZM2dCoVBoXdQ9HKjsYGJhwlavXo3JkydjxowZOHv2LBo2bIjg4GDcv39f7tDoBVJTU9GwYUN8//33codCejh48CDGjh2LEydOYPfu3cjMzMTLL7+cr4sqlT4eHh74/PPPcebMGfz999/o0KEDQkNDcfnyZblDIx2cPn0aixcvRoMGDeQOhXRQv359xMbGai5HjhyROyQyMlaFMmEBAQFo1qwZvvvuOwCipbynpyfGjx+PqVOnyhwdFZVCocCGDRvQS91+nkxOfHw8nJ2dcfDgQQQFBckdDumocuXK+PLLL/Haa6/JHQoVQUpKCho3boxFixbh008/hb+/PxYsWCB3WPQCM2fOxMaNG3H+/Hm5Q6FixBELE5WRkYEzZ86gU6dOmm1mZmbo1KkTjh8/LmNkROVPYmIiAPEBlUxHdnY2/vzzT6SmpqJly5Zyh0NFNHbsWISEhGj9/yPTcO3aNVStWhU+Pj4YOnQooqOj5Q6JjKxUNMgj3SUkJCA7Oxsu6hbl/3FxccHVq1dlioqo/MnJycGkSZPQunVr+Pn5yR0OFcHFixfRsmVLpKWlwcbGBhs2bEC9evXkDouK4M8//8TZs2dx+vRpuUMhHQUEBOC3335DnTp1EBsbi1mzZiEwMBCXLl2Cra2t3OGRkTCxICIywNixY3Hp0iXOFTYhderUwfnz55GYmIh169Zh5MiROHjwIJOLUu727duYOHEidu/eDUtLS7nDIR117dpVc71BgwYICAiAl5cX1qxZw2mIZQgTCxPl6OgIpVKJe/fuaW2/d+8eXF1dZYqKqHwZN24ctm7dikOHDsHDw0PucKiILCwsULNmTQBAkyZNcPr0aSxcuBCLFy+WOTJ6njNnzuD+/fto3LixZlt2djYOHTqE7777Dunp6VAqlTJGSLqoVKkSateujcjISLlDISPiGgsTZWFhgSZNmmDv3r2abTk5Odi7dy/nChMVM0mSMG7cOGzYsAH79u2Dt7e33CGRAXJycpCeni53GPQCHTt2xMWLF3H+/HnNpWnTphg6dCjOnz/PpMLEpKSk4Pr163Bzc5M7FDIijliYsMmTJ2PkyJFo2rQpmjdvjgULFiA1NRWvvPKK3KHRC6SkpGidpbl58ybOnz+PypUro1q1ajJGRkUxduxY/PHHH9i0aRNsbW0RFxcHALC3t4eVlZXM0dHzTJs2DV27dkW1atWQnJyMP/74AwcOHMDOnTvlDo1ewNbWNt86Jmtra1SpUoXrm0zAu+++ix49esDLywsxMTGYMWMGlEolBg8eLHdoZERMLEzYwIEDER8fj+nTpyMuLg7+/v4ICwvLt6CbSp+///4b7du319yePHkyAGDkyJH47bffZIqKiuqHH34AALRr105r+9KlSzFq1KiSD4iK7P79+xgxYgRiY2Nhb2+PBg0aYOfOnejcubPcoRGVaXfu3MHgwYPx4MEDODk5oU2bNjhx4gScnJzkDo2MiH0siIiIiIjIYFxjQUREREREBmNiQUREREREBmNiQUREREREBmNiQUREREREBmNiQUREREREBmNiQUREREREBmNiQUREREREBmNiQUREREREBmNiQUREpUJQUBD++OMPucOgAkydOhXjx4+XOwwiKuWYWBARAGDUqFFQKBR466238t03duxYKBQKjBo1quQDK8TTp09RuXJlODo6Ij09XbY4FAoFNm7cqPPjqlevjgULFhg9HrX4+HiMGTMG1apVg0qlgqurK4KDg3H06NFie05DbN68Gffu3cOgQYNkef7ffvsNCoUCCoUCSqUSDg4OCAgIwMcff4zExERZYpLDrVu3oFAocP78ea3t77777v+3d+dBVZX/H8DfF0TuhctVdkFZXJElClxIDFEZBsoMlMwlBIRQSQd1RBtLdHJJK5BxG1xCFpdww8JQSDGSoBJGwZArFxA09CqEmnNVhODz+4PhfD0shtD3a/X7vGaY8TzPc5/nc557GM/nPOcckJycjGvXrr2YwBhj/wicWDDGBFZWVkhNTcXjx4+FsoaGBhw6dAjW1tYvMLKOjh8/DkdHR4wcObJHJ/b/Fo2NjZ2WBwQE4NKlS0hOToZKpUJ6ejomTpyI+vr6/3ks3bFt2zbMmzcPWlr/3f+WnhWjQqGAWq1GTU0N8vPzMX/+fKSkpOCVV17BrVu3/qtx/d2ZmJjAx8cH8fHxLzoUxtjfGCcWjDGBq6srrKyskJaWJpSlpaXB2toaLi4uorYtLS3YtGkTBg8eDJlMhpdffhnHjh0T6pubmxEWFibU29nZYevWraI+QkJC4O/vj5iYGFhYWMDY2BiLFi1CU1PTn8aakJCAwMBABAYGIiEhoUO9RCLBF198gWnTpkFPTw/Dhw9Henq6UJ+TkwOJRILs7GyMHj0aenp6cHd3R1lZmaif+Ph4DB06FH379oWdnR32798v1Nna2gIApk2bBolEImxXVlbCz88P5ubmkMvlGDNmDM6ePSt8buLEibh+/TqWLVsmXCVv05Yw6erqwtbWFrGxsaJ4bG1tsX79egQFBUGhUGD+/Pkd9v3+/fvIzc3Fp59+ikmTJsHGxgZjx47FqlWr8NZbb4naLViwAObm5pBKpXBycsI333zT61h++OEHeHh4QCaTwcrKCpGRkXj48GGHONvU1dXh3LlzmDp1qqhcIpEgPj4er7/+OmQyGYYMGSI6xgDg119/xTvvvIP+/fvDyMgIfn5+qK6uFurbjrGNGzfC0tISdnZ2XcYhkUgwYMAAWFhYwN7eHmFhYcjPz4dGo8HKlSuFdk+ePEFkZCTMzMwglUrx2muvoaCgQNTXlStX8Oabb0KhUMDAwAAeHh6orKwE0Pr9L126VNTe399ftCJoa2uLDRs2ICgoCHK5HDY2NkhPT0ddXR38/Pwgl8vh7OyMwsJCUT9/Nve2trb45JNPEBoaCgMDA1hbW2PPnj1C/eDBgwEALi4ukEgkmDhxolA3depUpKamdjl/jDEGYowxIgoODiY/Pz/asmULeXl5CeVeXl4UFxdHfn5+FBwcLJRv2LCBRo4cSZmZmVRZWUmJiYmkq6tLOTk5RETU2NhIa9asoYKCArp27RodOHCA9PT06PDhw6IxFQoFLVy4kJRKJZ08eZL09PRoz549z4y1oqKCdHV16e7du1RfX09SqZSqq6tFbQDQoEGD6NChQ1ReXk6RkZEkl8upvr6eiIi+++47AkBubm6Uk5NDV65cIQ8PD3J3dxf6SEtLIx0dHdq5cyeVlZVRbGwsaWtr07lz54iIqLa2lgBQYmIiqdVqqq2tJSKioqIi2rVrF/3yyy+kUqlo9erVJJVK6fr160REVF9fT4MGDaJ169aRWq0mtVpNRESFhYWkpaVF69ato7KyMkpMTCSZTEaJiYlCTDY2NqRQKCgmJoYqKiqooqKiw/w0NTWRXC6npUuXUkNDQ6dz2NzcTK+++io5OjrSt99+S5WVlXTy5Ek6depUr2KpqKggfX19iouLI5VKRXl5eeTi4kIhISFdfp9paWmkr69Pzc3NHb5DY2Nj2rt3L5WVldHq1atJW1ubSktLiaj1GLO3t6fQ0FC6fPkylZaW0pw5c8jOzo6ePHlCRK3HmFwup7lz51JJSQmVlJR0GkNiYiL169ev07olS5aQgYEB/fHHH0REFBkZSZaWlnTq1Cm6cuUKBQcHk6GhoXBs1dTUkJGREU2fPp0KCgqorKyM9u3bR1evXiUiIk9PT1qyZIlojPa/XzY2NmRkZES7du0ilUpFERERpFAoyNfXl44cOUJlZWXk7+9P9vb21NLSQkTUrblv63fnzp1UXl5OmzZtIi0tLSG2CxcuEAA6e/YsqdVqYZ+IiJRKJQGgqqqqrr5Kxtj/c5xYMMaI6D+JRW1tLenq6lJ1dTVVV1eTVCqluro60YlPQ0MD6enpUX5+vqiPsLAwmj17dpdjLFq0iAICAkRj2tjYCCdsREQzZsygmTNnPjPWDz/8kPz9/YVtPz8/Wrt2ragNAFq9erWwrdFoCACdPn2aiP6TWJw9e1Zok5GRQQDo8ePHRETk7u5O4eHhon5nzJhBb7zxhmicEydOPDNeIiJHR0favn27sG1jY0NxcXGiNnPmzCFvb29R2YoVK8jBwUH0uaf3vSvHjh0jQ0NDkkql5O7uTqtWraLi4mKhPisri7S0tKisrKzTz/c0lrCwMJo/f76oLDc3l7S0tIR5bS8uLo6GDBnSoRwALVy4UFTm5uZGERERRES0f/9+srOzE06siYiePHlCMpmMsrKyiKj1GDM3NxcSja48K7GIj48nAHTnzh3SaDSko6NDBw8eFOobGxvJ0tKSPvvsMyIiWrVqFQ0ePJgaGxs77a+7iUVgYKCwrVarCQBFR0cLZT/++CMBEBLT7sx9+35bWlrIzMyM4uPjiYioqqqKANClS5c6xP37778TAOHiAWOMtce3QjHGRExNTTFlyhQkJSUhMTERU6ZMgYmJiahNRUUFHj16BG9vb8jlcuEnJSVFuN0DAHbu3IlRo0bB1NQUcrkce/bswY0bN0R9OTo6QltbW9i2sLBAbW1tl/E1NzcjOTkZgYGBQllgYCCSkpLQ0tIiauvs7Cz8W19fHwqFokPfT7exsLAAAKGNUqnE+PHjRe3Hjx8PpVLZZXwAoNFoEBUVBXt7e/Tv3x9yuRxKpbLDvrfX1Xjl5eVobm4WykaPHv3MfoDWZyxu3bqF9PR0+Pr6IicnB66urkhKSgIAFBUVYdCgQRgxYsRfGktxcTGSkpJEx4WPjw9aWlpQVVXV6ViPHz+GVCrttG7cuHEdttvmv7i4GBUVFTAwMBDGMjIyQkNDg+g4fOmll9C3b99O++8OIgLQeqtUZWUlmpqaRHOjo6ODsWPHCnEVFRXBw8MDOjo6PR4TEB+b5ubmAFr3pX1Z2/Ha3bl/ut+227+e9TvXRiaTAQAePXrUi71ijP2b9XnRATDG/n5CQ0OxePFiAK3JQXsajQYAkJGRgYEDB4rqdHV1AQCpqamIiopCbGwsxo0bBwMDA3z++ef4+eefRe3bn3xJJJIOCcLTsrKycPPmTcycOVNU3tzcjOzsbHh7ez9X30+3aXvW4Vnjd0dUVBTOnDmDmJgYDBs2DDKZDG+//XavHm5+mr6+frfaSaVSeHt7w9vbG9HR0Xjvvfewdu1ahISECCeJf3UsGo0GCxYsQGRkZIe2Xb0AwMTEBPfu3XvusTUaDUaNGoWDBw92qDM1Ne0yxuelVCqhUChgbGwMtVr9p+3/bG61tLSEZKVNZ88VdXZsPut47e7cP+/vXJu7d+8CEM8tY4w9jRMLxlgHvr6+aGxshEQigY+PT4d6BwcH6Orq4saNG/D09Oy0j7y8PLi7u+P9998Xyp6+itxTCQkJmDVrFj766CNR+caNG5GQkCBKLHrL3t4eeXl5CA4OFsry8vLg4OAgbOvo6Iiu4Le1CQkJwbRp0wC0nvA9/UAxAPTt27fD59rGa9/XiBEjRKs6PeXg4CC8QcvZ2Rk1NTVQqVSdrlr0NBZXV1eUlpZi2LBh3Y7LxcUFt2/fxr1792BoaCiq++mnnxAUFCTabnuRgKurKw4fPgwzMzMoFIpuj/c8amtrcejQIfj7+0NLS0t4kD8vLw82NjYAWpOCgoIC4YFsZ2dnJCcno6mpqdNVC1NTU1GC0tzcjJKSEkyaNKlXsfZk7ttrW9lpf2wCQElJCXR0dODo6Njj/hlj/258KxRjrANtbW0olUqUlpZ2ehJpYGCAqKgoLFu2DMnJyaisrMTFixexfft2JCcnAwCGDx+OwsJCZGVlQaVSITo6usObc55XXV0dTp48ieDgYDg5OYl+goKC8NVXXwlXVf8KK1asQFJSEuLj41FeXo4tW7YgLS0NUVFRQhtbW1tkZ2cLJ8ZA676npaWhqKgIxcXFmDNnTocrwra2tjh//jxu3ryJ3377DQCwfPlyZGdnY/369VCpVEhOTsaOHTtE43VHfX09Jk+ejAMHDuDy5cuoqqrC0aNH8dlnn8HPzw8A4OnpiQkTJiAgIABnzpxBVVUVTp8+jczMzF7F8sEHHyA/Px+LFy9GUVERysvL8fXXXwsrYJ1xcXGBiYlJp39j4+jRo9i3bx9UKhXWrl2LCxcuCH29++67MDExgZ+fH3Jzc1FVVYWcnBxERkaipqbmueYMaL3l6fbt21Cr1VAqldi3bx/c3d3Rr18/bN68GUDr6kdERARWrFiBzMxMlJaWIjw8HI8ePUJYWBgAYPHixXjw4AFmzZqFwsJClJeXY//+/cIbxyZPnoyMjAxkZGTg6tWriIiIwP3795873vZ6MvftmZmZQSaTITMzE3fu3BH9DY/c3FzhjVOMMdYZTiwYY51SKBTPvAq8fv16REdHY9OmTbC3t4evry8yMjKE11UuWLAA06dPx8yZM+Hm5ob6+nrR6kVPpKSkQF9fH15eXh3qvLy8IJPJcODAgV6N8TR/f39s3boVMTExcHR0xO7du5GYmCh6BWdsbCzOnDkDKysr4Ur6li1bYGhoCHd3d0ydOhU+Pj5wdXUV9b1u3TpUV1dj6NChwq0lrq6uOHLkCFJTU+Hk5IQ1a9Zg3bp1z/2HCeVyOdzc3BAXF4cJEybAyckJ0dHRCA8Px44dO4R2x48fx5gxYzB79mw4ODhg5cqVwpXqnsbi7OyM77//HiqVCh4eHnBxccGaNWtgaWnZ5We0tbUxb968Tm9p+vjjj5GamgpnZ2ekpKTgyy+/FFaM9PT0cP78eVhbW2P69OnCK2IbGhp6tILx4MEDWFhYYODAgRg3bhx2796N4OBgXLp0SXj+BgA2b96MgIAAzJ07F66urqioqEBWVpaw2mJsbIxz585Bo9HA09MTo0aNwt69e4XVi9DQUAQHByMoKAienp4YMmRIr1crgJ7NfXt9+vTBtm3bsHv3blhaWgqJKNB6e2N4eHiv42SM/XtJqP2Nnowxxtj/2O3bt+Ho6IiLFy8KtxhJJBKcOHEC/v7+LzY4htOnT2P58uW4fPky+vThu6gZY53jFQvGGGMv3IABA5CQkPCnb85iL8bDhw+RmJjISQVj7Jl4xYIxxtjfEq9YMMbYPwtfemCMMfa3xNe9GGPsn4VvhWKMMcYYY4z1GicWjDHGGGOMsV7jxIIxxhhjjDHWa5xYMMYYY4wxxnqNEwvGGGOMMcZYr3FiwRhjjDHGGOs1TiwYY4wxxhhjvcaJBWOMMcYYY6zXOLFgjDHGGGOM9dr/ATRo7t4xczz9AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHpCAYAAAAf5apCAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhZ5JREFUeJzt3XdYFGfXBvB7AemIIIIgIFZK7A2xd1SiGGvsJsaYRI3G1/dLTNF0kzdNk2g0MVETY4uixt4rttgLiF1BsGIBFBCY748TFlZQ2QLDwv27rr3YnZ2dPbiAc+Z5nnM0iqIoICIiIiIiMoKF2gEQEREREZH5Y2JBRERERERGY2JBRERERERGY2JBRERERERGY2JBRERERERGY2JBRERERERGY2JBRERERERGs1I7gKKWkZGBI0eOwMPDAxYWzKuIiIiIyHBZWVm4fv066tevDyurUndqraPUffdHjhxBkyZN1A6DiIiIiEqQAwcOoHHjxmqHoapSl1h4eHgAkA/f09NT5WiIiIiIyJwlJCSgSZMm2nPM0qzUJRbZ0588PT3h7e2tcjREREREVBJwij0XbxMRERERkQkwsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqNZqR1AaRITE6N2CHrz9/dXOwQiIiIiMgMcsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqMxsSAiIiIiIqOxQR4RERERURG6fPky9uzZg/j4eCQnJ6Nfv34ICAjQ2efmzZvYvHkzLl++jKysLFSoUAF9+/aFs7MzACAjIwMbNmzAqVOnkJGRgerVq6Nr165wdHRU41sCwMSCiIiIiKhIpaenw8PDA/Xq1cOSJUvyPJ+YmIg5c+agfv36aNOmDWxsbHDz5k1YWeWcuq9fvx5nz55Fnz59YGNjg3Xr1mHJkiV4+eWXi/Jb0cHEgoiIiIioCNWoUQM1atR44vNbt25FjRo10LFjR+02V1dX7f3U1FQcOXIEvXr1QpUqVQAA4eHhmD59OuLi4uDt7V14wT8FEwsiIiIiIiMlJSXh/v372sc2NjawsbHR+ziKouDs2bNo1qwZ5s+fj4SEBLi4uKBFixba6VIJCQnIyspC1apVta9zc3ODs7MzYmNjVUssuHibiIiIiMhIQUFBcHZ21t6mTJli0HFSUlKQnp6OyMhIVKtWDYMHD0ZAQAAWL16MS5cuAQCSk5NhaWkJW1tbndc6ODggOTnZ2G/FYByxICIiIiIyUlRUFCpVqqR9bMhoBSAjFgDg7++PkJAQAEDFihURGxuLQ4cOwc/Pz+hYCwsTCyIiIiIiIzk5OaFs2bJGH8fe3h4WFhaoUKGCznY3NzfExsYCABwdHZGZmYnU1FSdUYuUlBRVq0JxKhQRERERUTFhaWkJLy8v3L59W2d7YmKittSsp6cnLCwscOHCBe3zt27dwr179+Dj41Ok8ebGEQsiIiIioiKUnp6OxMRE7eM7d+7g2rVrsLOzg7OzM5o1a4alS5fC19cXVapUwblz5xATE4Nhw4YBAGxtbVG/fn1s3LgRdnZ22nKz3t7eqi3cBphYEBEREREVqfj4eMybN0/7eOPGjQCAunXrokePHggMDMTzzz+P3bt3Y/369Shfvjz69u0LX19f7Ws6d+6MDRs2YMmSJcjMzES1atUQFhZW5N9Lbhole4VIKREXFwcfHx9VSnHFxMQU6fuZgr+/v9ohEBERERVbap5bFjccsSAiMkBmJrBrF5CQAHh6Ai1bApaWakdFRESkHiYWRER6iogAxo4F4uJytnl7A9OmAT17qhcXERGRmlgViohIDxERQO/eukkFAFy9KtsjItSJi4iISG1MLIiICigzU0Yq8luZlr1t3DjZj4iIqLRhYkFEVEC7duUdqchNUYDYWNmPiIiotGFiQUT0DHfuANOnA/+WD3+mhIRCDYeIiKhY4uJtIqJ8KAqwYwfw66/A0qVAamrBX+vpWXhxERERFVccsSAiyiUhAfjiC6BmTaBtW2D+fEkqatcGvvsO8PICNJonv97BAQgJKbp4iYiIiguOWBBRqZeRAaxbB8yeDaxZk7P42skJ6N8feOUVoFEjSSh8faX6k0aT/yLulBR5zYIFgK1t0X4fREREauKIBRGVWufOAe++K8lC9+7A339LUtG8OTBnjoxezJoFNG6cM0rRs6dMjapUSfdYPj7A228DNjbA8uVAWBiQlFT03xMREZFaOGJBRKXKw4fSa2L2bGD79pztFSoAQ4cCw4cDAQFPP0bPnkB4eP6dtzt3liRl61agXTsZCXFzK9RviYiIqFhgYkFEpcLRo5JM/PkncPeubNNoJBEYPhzo1g2wti748SwtgTZt8m5v0wbYtk2Oe/CgJBwbN8qIBhERUUnGxIKISqx792Stw6+/AocO5WyvXFmSiWHDCueEv2FDGc3o1Ak4fRpo0UKSC39/078XERFRccHEgohKFEWRk/pffwX++kumPgEyGtGjhyzEbt8esCjkFWYBAcDu3ZJcxMTIyMX69UCDBoX7vkRERGphYkFEJcK1a8Dvv0tCceZMzvbnnpNkYtCgol/r4OsrSU6XLjJi0qYNsGoV0Lp10cZBRERUFJhYEJHZysgANmyQtROrVuWUiXV0BF58URKKJk2e3neisFWoIAu5e/SQtRehocCSJbLAm4iIqCRhuVkiMjsXLgDvvy9rJZ5/HlixQpKKkBAZsUhIAH75BQgOVjepyFa2LLB2rVSSSkuTqlK//652VERERKbFEQsiMgupqdIfYvZsGQHI5uYGDBkii7GDgtSL71lsbaX/xYgRwNy5Utr2zh1g7Fi1IyMiIjINJhZEVKwdPy7JxPz5ciIOyChEp06STHTvLk3pzIGVlYyouLoC334LjBsH3L4NfPRR8RhZISIiMgYTCyIqdu7fBxYulJPwf/7J2e7rC7z8spSJrVxZtfCMYmEBfP01UL488N57wCefSHLxww+FX6mKiIioMDGxIKJiQVGAyEhJJpYsAR48kO1lysjC5+HDgQ4dpDGdudNogHfflZGLN94AZsyQ0Zi5c/Vr0kdERFScMLEgIlVdv55TJjYmJmd7UJAkE4MHS2Wlkui11wAXF/keFy6UjuBLlwL29mpHRkREpD8mFkRU5DIzpRP17NnA339L2VgAcHAA+vWTMrFNm5aOdQf9+gHlykmlqHXrZO3I6tWyjYiIyJwwsSCiInPxIjBnjtzi4nK2BwdLMtGvH+DkpF58agkNBTZtAsLCZDpY69bSn6NiRbUjIyIiKjgmFkRUqNLSpM/E7NnA5s05211dc8rE1qqlWnjFRrNmwM6dMmJx/DjQooUkG1WqqB0ZERFRwTCxIKJCceKErJv44w8gMTFne8eOMjoRHm4+ZWKLSu3aMmLRsSNw/jzQvLlMGWPiRURE5oCJBRGZTFISsGiRjE4cOJCz3dtbysS+9BLg56daeGahalVg926ZHnXiBNCqFbBmjXQVJyIiKs5Ur5o+fbqcaNjayjzr3Ccj+Zk6FfD3B+zsAB8f4K23pCMvEalDUYA9e2RKk6cn8Oqr8ntsZQX06gWsXQtcuiRN4JhUFIynJ7Bjh0yPunNHyuxu3Kh2VERERE+namKxeDEwfjwweTJw+DBQt65cpbtxI//9FywA3nlH9o+OlmkWixdLPXgiKlo3bwLffAM895xM2fntNyAlBQgIAL76Crh6VUqndulSMnpPFDUXF0kmOneWnh7PPy/9PYiIiIorVadCffstMGKETI8AgJkzZcj/t98kgXjcnj1yAjNggDz28wP69wf273/ye6SlpSEtLU37OCkpyXTfAFEpk5kpC4p//RVYuRJ49Ei229sDffvK2olmzUpHmdii4OAg/85Dh8oUsxdflF4Xr76qdmRERER5qTZikZ4OHDokQ/zaYCzk8d69+b+mWTN5TfZ0qQsXZJpF165Pfp8pU6bA2dlZewsKCjLdN0FUSly+DHz4oVQo6tJFRiIePQIaNwZmzQISEqSEbPPmTCpMzdoamD8feP11mXY2ciQwZYrcJyIiKk5UG7G4dUuufnp46G738ABOn87/NQMGyOtatJD/VDMypHPt06ZCTZw4EePHj9c+vnr1KpMLogJIS5PmdbNnyyhF9olsdqfo4cOBOnXUjbG0sLSU9WjlywOffip/827flilnTOSIiKi4MKuqUNu3A59/DsyYIQu9z50Dxo4FPvkE+OCD/F9jY2MDm1w1Le/fv180wRKZqVOnZKrT77/LyWu29u1lqlOPHlJsgYqWRiN/68qXl6IV33wjZXx//lkWyhMREalNtf+O3NzkKtz167rbr19/crfZDz6QK6WvvCKPa9eWxaKvvgq8955MpSIi/SUnSyGE2bOBfftytleqJGugXnpJyqCS+saNk1Gj4cNl+tmdO8DChUz2iIhIfaqdiltbAw0bAlu25GzLypLHT6rX/uBB3uQhu9oM5xsT6UdRJIl45RUpb/rKK/LYygp44QUppHD5slwlZ1JRvAwdCkRESIPBFSuAsDDpIUJERKQmVQfQx4+X/yAbNQKaNJEeFSkpOVWihgyRK6ZTpsjjbt2kklT9+jlToT74QLaznCVRwdy6Jd2wf/1Vpj1lq1lTroIPGfLkUUMqPrp3B9avl69btwLt2gHr1sloMBERkRpUTSz69ZNa+JMmAdeuAfXqyX+U2Qu6r1zRHaF4/32ZZ/z++1Ijv0IFSSo++0yV8InMRlYWsHmzJBPLl+eUibWzA/r0kdGKFi24ENjctGkDbNsmvS4OHgRatpTeFz4+akdGRESlkUZRStckori4OPj4+CA2Nhbe3t5F+t4xMTFF+n6m4O/vr3YIZITYWJmH/9tvMq0pW8OGkkz07w84O6sXH5lGTAzQsaN83j4+UsWLv7pEREVDzXPL4oa1RIhKmPR0KRP766/Ahg0564/KlQMGDZLpTvXqqRkhmZq/PxAZCXTqJOW6W7aU0d8GDdSOjIiI8nP58mXs2bMH8fHxSE5ORr9+/RAQEJDvvqtXr8ahQ4cQGhqKpk2barc/fPgQ69atQ0xMDDQaDQIDA9GlSxdYW1sX1beRB+soEZUQ0dHAhAmAt7dMb1q/XpKKtm2BP/8E4uOBH35gUlFS+fgAO3fKmrWbN2Wa1I4dakdFRET5SU9Ph4eHB7o+rcszgOjoaMTFxcHJySnPcxEREbhx4wYGDx6MAQMG4MqVK1i1alVhhVwgTCyIzFhyck7H66Ag6W1w86ZUeXr3XSlwsHWrNJe0s1M7WipsFSrI5922rVSJCg2V0SsiIipeatSogXbt2iEwMPCJ+9y/fx/r1q1Dz549YfFYWdSbN2/i3Llz6N69O7y9veHr64suXbrg5MmTSFKxTCATCyIzoyjAgQPSv8XTE3j5ZWDPHqmMFh4OrFolhQ8++wyoVk3taKmoOTkBa9dKI8O0NKBnT2l2SEREhSspKQn379/X3tLS0gw+lqIoWL58OZo1awZ3d/c8z8fFxcHW1hZeXl7abVWrVoVGo0FcXJzB72ssJhZEZuL2bWDaNKBuXSm3/MsvMmJRvbqUZI6NlZ4Gzz/PTsylna0t8NdfwLBhQGamlPWeOlXtqIiISragoCA4Oztrb1Oy+yUYYPfu3bCwsEBwcHC+zycnJ8PBwUFnm4WFBezs7JCcnGzw+xqLpx9EKsnMBHbtAhISZOShZcu8/ViysmRqy+zZUiY2PV2229rKOorhw4FWrVgmlvKyspIF/K6u0v/nrbckOf34Y/68EBEVhqioKFSqVEn72MbGxqDjxMfHY//+/Rg5ciQ0ZvYHm4kFkQoiIoCxY4Hco5Xe3jIi0bOnbM8uE3vpUs4+9etLmdgBA6TKE9HTWFgAX38tTfPefRf49FNJLn78UbdHEBERGc/JyQlly5Y1+jhXrlxBSkoKvvvuO+02RVGwceNG7Nu3D+PGjYOjoyNSUlJ0XpeVlYWHDx/C0dHR6BgMxcSCqIhFRAC9e+eUgc129SrQq5eUCD16VEYrAOkzMXCgjE6wfCjpS6MBJk6UkYvXXwd++gm4cweYNw9QsSIhERE9QZ06dVC1alWdbfPnz0edOnVQ79/Sjt7e3khNTUV8fLx2ncXFixehKIqqvTSYWBAVocxMGanIry1l9rbDh+Vr69YyOtGrFys6kfFGjpRRrsGDgUWLgLt3gWXLAHt7tSMjIip90tPTkZiYqH18584dXLt2DXZ2dnB2dob9Y3+cLSws4OjoCDc3NwBAhQoVUL16daxatQrPP/88MjMzsXbtWtSqVSvf0rRFhYkFURHatUt3+tOT/PGHNLMjMqV+/SS56NlT+px07AisXg24uKgdGRFR6RIfH4958+ZpH2/cuBEAULduXfTo0aNAx+jZsyfWrl2L33//XadBnpqYWBAVoYSEgu33+CJuIlMJDQU2bwa6dpUyxa1bS4d2T0+1IyMiKj38/PwwefLkAu8/bty4PNvs7OzQq1cvE0ZlPC7fIypCBT1540keFaaQEOnS7ekJnDgBtGgBXLigdlRERGTumFgQFaGWLaX605Oqx2k0gI+P7EdUmGrXBnbvBqpWlaSiRQtJMoiIiAzFxIKoCFlaSknZ/BZvZycbU6dyKhQVjapVJbmoXVum6bVqBezdq3ZURERkrphYEBWxnj3zLxvr7Q0sXSrPExUVT09gxw6gWTOpFNWhg6y5ICIi0hcXbxMVsbNnc0rKzp8vjcqe1HmbqCi4uAAbN0p/lfXrgW7dpDJZv35qR0ZEROaEiQVREZs+Xb527SqN74iKAwcHYOVKYOhQ6XPRv7+MYIwcqXZkRERkLjgViqgIJSUBc+bI/TffVDcWosdZW8so2uuvyzqg114DPv88/zVBREREj2NiQVSEfv8duH8fqFlTmpMRFTeWljKq9v778vi994AJE5hcEBHRszGxICoiWVnAjz/K/TFjZG0FUXGk0QCffAJ89508/vZb4OWXgYwMdeMiIqLijac2REVk82bg9GnAyUnmsRMVd+PGAfPmySjG3LlAnz5AaqraURERUXHFxIKoiPzwg3x96SVJLojMwZAhQEQEYGMDrFghRQfu31c7KiIiKo6YWBAVgfPngTVr5P6oUerGQqSv7t2lDK2TE7BtG9CuHXDzptpRERFRccPEgqgITJ8ui1+7dJGF20Tmpk0bSSrc3IBDh6TvSmys2lEREVFxwsSCqJAlJwO//ir3x4xRNxYiYzRsCOzeDfj4ADExQPPm8pWIiAhgYkFU6P74Q+ak16gBhIaqHQ2Rcfz9gchIICBARixatJARDCIiIiYWRIVIUXIWbY8ezRKzVDL4+AC7dgGNGgG3bgFt2wLbt6sdFRERqY2nOUSFaMsWIDoacHQEhg1TOxoi03FzA7ZulaQiKQno3BlYuVLtqIiISE1MLIgKUfZoxbBhQNmyqoZCZHJOTsDatUCPHkBaGtCrl/S9ICKi0omJBVEhuXABWLVK7o8erW4sRIXF1hb46y/pz5KZKUl0dsduIiIqXZhYEBWSGTNkjUVoqCx4JSqprKyk8tl//iOPx48H3n9ffv6JiKj0YGJBVAhSUnJKzL75prqxEBUFjQb46ivg88/l8WefSTPIzEx14yIioqLDxIKoEMyfD9y9C1SvLotaiUoDjQaYOBGYOVPu//QTMHAgkJ6udmRERFQUmFgQmVjuErOjRrHELJU+I0cCixYBZcoAixcD4eEyikdERCWbldoBEJU027YBp04BDg6yoJWoNOrbF3B2Bnr2BNavBzp1AlavBlxc1I6MiIgAIDU1FVevXkVKSgqUxxbF1a1b16BjMrEgMrHvv5evQ4fKiRVRaRUaCmzeDISFAXv2AK1bAxs2AJ6eakdGRFS6xcTEICIiAunp6bCxsYFGo9F5nokFUTFw8SJLzBLlFhIC7NwpIxYnTgAtWgCbNgFVq6odGRFR6bVx40bUr18f7du3R5kyZUx2XM7+JjKhGTOArCygY0cgMFDtaIiKh1q1gN27gWrVpL9L8+aSZBARkTqSkpIQHBxs0qQC4IgFUYHFxMQ89fm0NGDLFqBmTWDIEOAZuxcJfzbQoGKialVJLkJDgePHgVatgDVrgGbN1I6MiKj0qVatGuLj4+Fi4oVvTCyITGT7dql8U7Ei0LCh2tEQFT8VK8rvSbduQGSkjOxFREiyQURERadGjRrYtGkTbt68CXd3d1haWuo8b+iFSSYWRCagKFLxBpCFqiwxS5Q/Fxdg40agd29g3TpJMv74A+jXT+3IiIhKj1X/LgjdsWNHnuc0Gg0mTZpk0HGZWBCZwMmTwOXLgI0N0KGD2tEQFW/29sCKFcCwYcDChUD//sCdO8Brr6kdGRFR6TB58uRCOa5BicXZs1Kr/8YNWaiam4EJDpFZyx6taNdO+lcQ0dNZW0uHehcXKXrw+utAYqJ07n6s6iEREZkJvROLX36R/wDc3GS+bO7/ADQaJhZU+ty8CezfL/eff17dWIjMiYUF8OOPQPnywCefAO+9B9y+DXz1FacTEhGZ2v79+9GwYUNYWVlhf/aJyxMEBwcb9B56Jxaffgp89hnw9tsGvR9RibN2rYzc1asH+PioHQ2RedFogI8/BlxdgbfeAr79VkYufvkFsOJkXSIik9m3bx9q164NKysr7Nu376n7FllicecO0KePQe9FVOKkpclCVICjFUTGGDdOkouXXwbmzpX/axYtAmxt1Y6MiKhkGDt2bL73TUnvweY+fXJOpIhKux07gKQkwMMDaNRI7WiIzNuQIVJ+1sYGWLkS6NoVuH9f7aiIiEo2RVGgKIpJjqX3iEX16sAHHwD79gG1awOPN+x7802TxEVU7LHELJHpde8ObNggZWi3bZOCCOvWARUqqB0ZEVHJcvjwYezbtw+JiYkAAFdXVzRt2hQNGjQw+Jh6JxY//ww4OsqV2sdL32o0TCyo9Dh1Crh0iSVmiUytdWtppNe5M3DoENCyJbBpE9cwERGZyrZt27B37140adIEPv/+cY2NjcWGDRtw7949tG3b1qDj6p1YXLxo0PsQlTjZoxVt20qyTUSm06ABsGsX0KkTEBMDNG8u03ADAtSOjIjI/B08eBDdunVD7dq1tdv8/f3h4eGBdevWFV1ikVv2dCzWHKfS5uZNmQ4IyDQoIjI9f39g925JLk6flpGL9euBhg3VjoyIyDiXL1/Gnj17EB8fj+TkZPTr1w8B/145yczMxNatW3Hu3DncuXMHNjY2qFq1Kjp06AAnJyftMR4+fIh169YhJiYGGo0GgYGB6NKlC6ytrZ/5/pmZmfDy8sqz3cvLC1mPN6nTg0Gzwn//XdZX2NnJrU4d4I8/DI6ByOysWyclZuvUASpXVjsaopLLx0dGLho1Am7dkhHC7dvVjoqIyDjp6enw8PBA165d8zz36NEjXLt2Da1atcKrr76Kfv364fbt21i4cKHOfhEREbhx4wYGDx6MAQMG4MqVK1i1alWB3r9OnTo4ePBgnu2HDh3SGcXQl94jFt9+K4u3R4+WoWlArii99pr80X/rLYNjITIL6emyuBRgiVmiouDmBmzdCvToIV87dwYWLwbCw9WOjIgoR1JSEu7nKmVnY2MDGxubfPetUaMGatSoke9ztra2GDx4sM62Ll26YPbs2bh37x6cnZ1x8+ZNnDt3DiNGjNCOPHTp0gV//vknOnXqpDOykW1D9skLAI1Gg8OHD+P8+fPw9vYGAFy9ehX37t1DnTp19PvGc9F7xOKHH4CffgK+/FKqd3TvDvzvf8CMGcD33xscB5HZ2LlTSsy6uwNNmqgdDVHp4OQErFkjyUVaGtCrFzBvntpRERHlCAoKgrOzs/Y2ZcoUkx07LS0NgCQdABAXFwdbW1ud6UxVq1aFRqNBXFxcvse4du2a9nbjxg14eXnBwcEBd+7cwZ07d2Bvbw9PT0/cvHnT4Dj1HrFISACaNcu7vVkzeY6oJFMUIHuUsWtXlpglKkq2tsBffwGvvgrMmQMMGyZdujlSTkTFQVRUFCpVqqR9/KTRCn1lZGRg8+bNqF27tvaYycnJcHBw0NnPwsICdnZ2SE5Ozvc4Q4cONUk8T6P3aVH16sCSJXm3L14MPGFEh6jEiI6WymjW1rKglIiKlpUV8OuvwH/+I4/Hjwfefz+nmAgRkVqcnJxQtmxZ7c0UiUVmZib++usvKIqCMDOoFqP3iMVHHwH9+sl0kOw1FpGRwJYt+SccRCVJ9mgFS8wSqUejAb76StZeTJwIfPYZcPs28OOPgKWl2tEREZlGZmYmli5dinv37mHIkCE6iYqjoyNSUlJ09s/KysLDhw/hqOIJit4jFr16Afv3yx/0FSvk5uYGHDgAvPCC6QMkKi5u3QL27pX7XLRNpC6NBnjnHWDWLLk/cyYwcKAUVyAiMnfZScXt27cxePBg2Nvb6zzv7e2N1NRUxMfHa7ddvHgRiqJoF2OrwaA+Fg0bAvPnmzoUouItu8Rs7dosMWuOYmJi1A5BL/7+/mqHYBZefRUoVw4YNEim5N67ByxdCjw29ZiIqFhJT09HYmKi9vGdO3dw7do12NnZwdHREX/99RcSEhLQv39/KIqiXTdhZ2cHS0tLVKhQAdWrV8eqVavw/PPPIzMzE2vXrkWtWrXyrQhVVAqUWNy/D5Qtm3P/abL3IypJHj6UxlwA0K2burEQka6+fQFnZ6BnT/k97dQJWL0acHFROzIiovzFx8djXq7Sdhs3bgQA1K1bF23atNFeDJs1a5bO64YOHQo/Pz8AQM+ePbF27Vr8/vvvOg3yniUzMxOrV69Gq1at4GLiP5QFSixcXKTik7u7XBnKr9O2osj2zEyTxkdULCxaJCVmK1QAGjdWOxoielxoKLB5MxAWBuzZA7RqBWzcCHh6qh0ZEVFefn5+mDx58hOff9pz2ezs7NCrVy+939vS0hLR0dFo1aqV3q99lgIlFlu3Aq6ucn/bNpPHQFSsKYr0bwHkpIWLQ4mKp5AQKSzSqRNw8qQUGNm0CahWTe3IiIiKl4CAAJw+fRohISEmPW6BEovWrXPuV6kC+PjkHbVQFCA21pShERUPkZHAkSNArVpAx45qR0NET1OrlvzOduwInD8PtGgBbNgAGNFIloioxHF1dcXOnTsRGxsLT09PWFtb6zwfHBxs0HH1XrxdpUrOtKjcEhPlOU6FopIme7SiTRvp/ktExVuVKsDu3TI96vhxuTi2Zk3+zV2JiEqjI0eOwNbWFgkJCUjIp8N1kSUW2WspHpecLF1RiUqSuDhg2TK5zxKzROajYkVgxw75vY2MBDp0ACIigM6d1Y6MiEh9Y8eOLZTjFjixGD9evmo0wAcfALnL6WZmSm+LevVMHB2RymbOlJ/v1q2Bf4swEJGZKFdOFnD37i3lort1A/74A3jxRfm93rVLRuA9PYGWLbl+iohKn8zMTNy5cweurq6wsNC7vV0eBU4sjhyRr4oCnDgB5J6KZW0N1K0LTJhgdDxExUZqKvDzz3J/zBh1YyEiw9jbSyPXYcOAhQuBAQOkIMm6dTIimc3bG5g2TUrWEhGVdI8ePcLatWtx7NgxAMCYMWPg4uKCtWvXomzZsmjRooVBxy1wYpFdDeqll+SPL/tVUEm3eDFw86YUKwgPl4WgRGR+rK2lqauLCzBjBvDLL3n3uXpVRjaWLmVyQUQl3+bNm3H9+nUMGzYM83N1va5atSp27NhhcGKh95jHnDlMKqjky11i9o03ACuDetQTUXFhYSEXxZ5UgEFR5Ou4cSxCQkQlX0xMDLp27QpfX19oci2ednd31+kIri+DTpcOHgSWLAGuXAHS03Wfi4gwOBaiYmPvXuDQIcDGBnjlFbWjISJT2L1bGl0+SXbZ9F27pAocEVFJlZKSAgcHhzzb09PTdRINfek9YrFokZTsi44Gli8HHj0CTp2SOavOzgbHQVSsZI9WDBwIuLmpGwsRmUY+FRXztWULRy2IqGTz8vLCmTNn8mw/fPgwvL29DT6u3onF558D330HrFol81anTQNOnwb69gV8fQ2Og6jYiI+XedYAF20TlSSengXb79NPAS8vYORIqSr16FHhxkVEVNTat2+PrVu3YvXq1cjKysL+/fvxxx9/4OjRo2jXrp3Bx9U7sTh/HggLk/vW1kBKipSgfeutnAo6ROZs5kwgI0PKT7KEMlHJ0bKlVH962ii/vb2Uqb1xQ/5PCw0FPDykcMnq1UBaWpGFS0RUaHx9fTFy5EhkZWXB3d0d58+fh4ODA4YPHw4vLy+Dj6v3GgsXl5w5qpUqASdPArVrA3fvAg8eGBwHUbGQlgbMmiX3OVpBVLJYWsooe+/eklxkL9gGcpKNP/6Qfhfbt8vI5fLlUh1u7ly5OTnJ8716SbO93D2diIjMiaurK7p3727SY+o9YtGqFbBpk9zv0wcYOxYYMQLo3x9o396ksREVuSVL5EqltzfQo4fa0RCRqfXsKQlDpUq62729c0rNlikDdOwoFxkSEiTJGDNGpkclJQELFkhiUaGCJCmLFj19UTgRUXGUlZWFqKgo7NixAzt27EBUVBSysrKMOqbeIxY//iiNwwDgvffkD/CePfJH9v33jYqFSFWKAnz/vdx//XX52SaikqdnT+lNU5DO25aWQOvWcps6Fdi/H1i2TG6XLuXct7EBOnWS/wu7d5fRfSKi4urGjRtYtGgRkpOTUb58eQBAZGQkHBwc0L9/f7i7uxt0XI2i5B4MLvni4uLg4+OD2NhYo1a9GyImJqZI388U/P391Q6hyOzbB4SEyAlCbKxcjcyNn595M7fPj59d8aYowOHDOYlF7uIqVlYygt+rl4x8Pv63hIhKFjXPLQ3166+/wt7eHj169ICdnR0A4OHDh1i5ciVSUlIwfPhwg45boKlQ9+/r3n/ajchcZY9W9O/PEwEiejqNBmjYUColnj4NnDgBTJ4M1KolxR82bABefRWoWBFo1w6YPl0qzhERFQfXrl1D+/bttUkFANjZ2aFdu3a4du2awcctUGLh4iLzzgGpluHikveWvV1f06cDfn6ArS0QHAwcOPD0/e/eBUaNkqFrGxugZk1g7Vr935cot/h44K+/5D4XbRORPjQaSSg+/FASjNOngc8+Axo0ALKygG3bgNGjZR1HixZSsv3yZbWjJqLSrHz58khJScmzPSUlBa6urgYft0BrLLZuBbLfY+vWp5fq08fixcD48VLeMzhY5q+GhgIxMUB+U7vS02VBnbt7zuK7y5clqSEyxqxZcpWxeXM5GSAiMpS/P/Duu3K7eBGIiJD/s/btAyIj5TZ+PNCokSz+7tULqF5d7aiJqDRp37491q1bhzZt2minb8XFxWHHjh3o0KED0nLV1raxsSnwcVVdYxEcDDRuLAvCAbmy4+MjV4zfeSfv/jNnAl99JVeDCrqwNi0tTecf5+rVqwgKCuIaiwIqDfO809OlueP165Ls9u2b/378/MybuX1+/OxKnrg4KV+7bBmwc6duuds6dXKSjKAg9WIkIv2Z4xqLjz76SHtf8++IQXZKkPuxRqPBpEmTCnxcvatC1agBDBwotxo19H11jvR04NAhYOLEnG0WFkCHDsDevfm/5u+/ZXHtqFHAypUyD37AAODtt/Ov5gEAU6ZM0fnHI3rcX39JUlGpEvDCC2pHQ0Qllbe3XDgbM0b+5qxYIUnG1q3A8eNymzQJCAiQBKNXL2nSaapZAkRE2YYOHVoox9W7j8UbbwBr1sgfvsaNpdmQIWs8bt0CMjOlo2luHh5PPt6FCzKcnJkp6yo++AD45hvg00+f/D4TJ07EvXv3tLeoqCj9g6USjSVmiaioeXgAI0cCGzdKkvHbb0BYGGBtrbtGo3p14P/+T8rclq4ajkRUmPz8/Ap804feicVbbwH//ANERwNdu8riax8fqd/9++/6Hk0/WVmyvuLnn6UaR79+0ktj5swnv8bGxgZly5bV3pycnAo3SDIr+/dLwQBra2n0SERU1MqXB156CVi9WgqlzJ8vo6e2tnJB7auvgKZNZcrmuHHSfyMzU+2oiYjy0juxyFazJvDRR1K7e9cu4OZN+cNYUG5uMn3p+nXd7devS3m+/Hh6yvvmnvYUGCgjHOnp+n8PRD/8IF/798+/YAARUVFydpapxhERMrL/119yEc3RUdZoTJsGtGolUzffeAPYskUKTxARFQcGJxaAXOkdN06urJw5A/TpU/DXWlvLqMOWLTnbsrLkcUhI/q9p3hw4d072y3bmjCQc1tYGfQtUil27BixZIvdZYpaIihsHB1nQvWiRXLxbuRIYPFiSj+vXgZ9+knWJFSsCw4cD69bxIhsRqUvvxOLMGWkCVLOmnOhHRwNffil/5BYt0u9Y48cDv/wCzJsnx3n9dSAlJWfkY8gQ3cXdr78OJCYCY8dKHGvWSHOiUaP0/S6IpMTso0eSyDZsqHY0RERPZmsLdO8uU45v3JAk4pVXZBrV7duyRqNrVxl5HTxYFoY/fKh21ERU2uhdFSp70faoUcCLL+ZdfK2Pfv3kKsykSXL1uF49YP36nGNeuSKVorL5+Eg307fektJ8lSpJkvH224bHQKVTenrO2pw331Q3FiIifVhbA507y+2nn6R07bJlMn3q2jVZozF/vox4hIVJdamuXWU6FRERADx69AgAUObfqjV3797F6dOnUaFCBVSrVs3g4+rdx+LsWePKzKpNzVrD5lZHHyi5tfQXLJB5zJ6e0mSxINWg+PmZN3P7/PjZkb6ysoA9eyTJWLYMiI3Nec7WVhKRXr2Abt1kOhURmYY59rH4448/EBgYiEaNGiE1NRU//vgjLC0t8eDBA3Tq1AmNGzc26Lh6T4WqUQO4exeYPVumKSUmyvbDh4GrVw2KgajIZS/aZolZIiopLCyAFi2A776TCyb790up2mrVgNRUmR41eLD0gAoLk+lTt2+rHTURqSEhIQG+vr4AgKioKDg6OmLcuHHo0aMHDhw4YPBx9U4sjh+X5OLLL4Gvv5YkA5Ah2NzrIYiKq3/+Afbtk+kEr76qdjRERKan0QBNmsj/1WfPAkePAu+/L5UUHz2SXlDDh8vU4w4dZGqoIT2piMg8PXr0CDY2NgCA8+fPIyAgABqNBt7e3ribfXJvAIP6WLz0kvyhsrXN2d61q8zzJCruskcr+vUzbo0QEZE50GiAunWBTz4BoqLk9sknsi0zU6oxvv464OUlpWy//15K2xJRyeXq6orTp0/j3r17OH/+vHZdRUpKijbhMITeicXBg9It9HGVKvFqBxV/uauXscQsEZVGgYEyenH0qFwk/PJLGd1QFOlLNXasFEtp2lSa8124oHbERGRqrVu3xsaNGzFt2jRUqlQJPj4+AGT0wtPT0+Dj6l0VysYGuH8/7/YzZ2TeJlFx9vPPMg2gaVOpbkZEVJpVry7rMP7v/6QSY0SELPyOjJQ1GtnrNOrXl4XfvXpJdUgiMm9BQUHw9fVFUlISKubqTF21alUEBgYafFy9Ryy6dwc+/lhOzgAZYr1yRUq+9uplcBxEhS49XUozAhytICJ6nK+vNL3dtUuKsUyfDrRrJ4vCjxzJWaNRq5b0szp+XEY5iMj8rFy5EmXKlIGnpyc0Go12e4UKFRAZGWnwcfVOLL75BkhOliY8Dx8CrVvLFQ8nJ+CzzwyOg6jQRUQACQnSpbZ3b7WjISIqvjw9gTfekPUX169LJcjOnaWK3qlTcoGxbl1pljtxokyTZpJBZD6OHTuGjIyMPNszMjJw7Ngxg4+r91QoZ2dg0yZg9265WpGcDDRoIFUliIqz77+Xr6+9JhWhiIjo2dzcpILU8OFSCXLVKpkutX49cO4c8MUXcqtcGejZUy7cNG2q2+CWiIqHtLQ0KIoCRVGQlpYGK6ucVCArKwtnz56Fg4ODwcfXO7HI1qKF3IjMwaFDwN69crUtv+IDRET0bOXKSS+MwYOBpCQpW7tsGbBmjfTO+O47uXl5AS+8IFOkW7YErAw+2yAiU/riiy+g0Wig0Wjw448/5rtPmzZtDD5+gX7Vs6/0FsSbbxoaClHhyS4x27evTIUiIiLjODlJ2e5+/YAHD4ANGyTJWLUKiI+XNRrTp0thlx49JMlo145NSYnUNHToUADAvHnz0LdvX9jZ2Wmfs7S0RLly5eDk5GTw8TWK8uxZkVWq6D6+eVP+iJQrJ4/v3gXs7WXdRXEvS6dm2/WYmJgifT9T8Pf3VzsEo924IaUT09OlwkmTJoYdh5+feTO3z4+fHZmrtDRg82ZJMlauBBITc54rVw4ID5cko2NH3X5YRObKkHPLy5cvY8+ePYiPj0dycjL69euHgFwl1xRFwfbt23H48GGkpqbCx8cHYWFhKF++vHafhw8fYt26dYiJiYFGo0FgYCC6dOkC6wLM97579y6cnZ11Fm6bQoFmQF68mHP77DOgXj0gOlr+WCQmyv0GDaThDlFx88svklQ0aWJ4UkFERAVjYwOEhQG//Sb9rTZtkimo7u5yIXLePKkw6e4ODBggCUhKitpRExWt9PR0eHh4oGvXrvk+HxkZif379yMsLAyvvPIKrK2tMX/+fJ0F1xEREbhx4wYGDx6MAQMG4MqVK1i1alWB3r9cuXJIS0vD+fPncfz4cRw7dkznZii9Zz1+8AGwdCmQ+2Kav7/MqezdGxg40OBYiEzu0SNgxgy5z2l6RERFq0wZKe7SoYNMi4qMlHOIiAgpabtwodzs7IAuXeQ8IiwMKFv2ycfMzJSSuAkJUr2qZUvA0rLovieiJ0lKSsL9XM3ebGxsntjFukaNGqhRo0a+zymKgv3796NVq1baUYwePXrg66+/xunTp1GrVi3cvHkT586dw4gRI+Dl5QUA6NKlC/7880906tTpmdOZYmJiEBERgfT0dNjY2OQZuahbt26Bv+/c9E4sEhKAfKpTITNTStIRFSfLl8tcXw8PoE8ftaMhIiq9LC2BVq3kNnUqcOCAjFYsXQpcuiTJRkSEVO3r1EmmS3XvDri65hwjIkI6g8fF5Wzz9gamTZOKVERqCgoK0nk8efJkfPjhh3of5+7du0hOTkbVqlW122xtbeHt7Y3Y2FjUqlULcXFxsLW11SYVgDS302g0iIuLe2aTu40bN6J+/fpo3749yphw4ZPeiUX79jKkOXu2TH8CpOLO66+z5CwVP9mFB0aOZIlZIqLiwsJCStI2bQr873/SgC87yThzBli9Wm5WVrLgu1cvGf0YPjxvv4yrV2WkY+lSJhekrqioKFSqVEn7+EmjFc+SnJwMAHnKvjo4OCDl33mDycnJeZ63sLCAnZ2d9vVPk5SUhODgYJMmFYABDfJ++02q6jRqJPMobWxk3rqHhyQbRMXF4cMy7G5lJb0riIio+NFo5ELlZ58Bp08DJ04AH34I1K4tMyQ2bpSLQy+/nH8Tvuxt48bJ7AkitTg5OaFs2bLam6GJRVGoVq0a4uPjTX5cvUcsKlSQutVnz8qibQAICJDum0TFSXaJ2T59ZB4uEREVbxoNUKuW3CZPltGLZcuAuXPl/pMoChAbK2svjCjBT1QsODo6AgBSUlJ01kqkpKTAw8NDu0/KY1UPsrKy8PDhQ+3rn6ZGjRrYtGkTbt68CXd3d1g+tlDJ0MqEBresqVFDbkTF0c2bsiAQ4KJtIiJzVbMmMHEi4OcnFaSeJSGh0EMiKnTlypWDo6MjLly4gIr/Nt9KS0tDXFwcGjVqBADw9vZGamoq4uPjtessLl68CEVRClTyNrt61I4dO/I8p9FoMGnSJINiZy9MKpF++UVqqTdqBAQHqx0NEREZo6CjzhydJnORnp6OxFxNXu7cuYNr167Bzs4Ozs7OCA4Oxq5du1C+fHmUK1cO27Ztg5OTk7ZKVIUKFVC9enWsWrUKzz//PDIzM7F27VrUqlWrQA3uJk+eXCjfFxMLKnEePQJ++knuv/mmDK0TEZH5atlSqj9dvZr/OgtAGqG2bFm0cREZKj4+HvPmzdM+3rhxIwAp89qjRw80b94cjx49wqpVq5CamgpfX18MGjQIVlY5p+49e/bE2rVr8fvvv+s0yNNXRkaGznGNwcSCSpwVK6QUobs70Lev2tEQEZGxLC2lpGzv3nKxKL/kYvRo9rMg8+Hn5/fUUQONRoO2bduibdu2T9zHzs4OvXr1Muj9s7KysGvXLhw6dAjJyckYM2YMXFxcsHXrVpQrVw4Nsku/6knvqlBExV32ou2RI6VqGRERmb+ePaWkbK5qngAAW1v5+sMP0umbiJ5t165dOHbsGDp06KCzcNvd3R1Hjhwx+LgFGrE4frzgB6xTx9BQiIx39KhUBWGJWSKikqdnTyA8XLfzdt26QLNmUqq2Vy9g61ZeVCJ6lmPHjuH5559H1apVsWbNGu32ihUr4tatWwYft0CJRb16OUOPz5qvzhrSpKbs0YrevYFczSiJiKiEsLTMW1J25UrpqbVnj0yJ+vlnrq8jepqkpCS45m5r/y9FUZBpxMl8gaZCXbwIXLggX5ctA6pUAWbMkE6ZR47I/WrV5Dkitdy6Bfz5p9wfM0bdWIiIqOjUrAksWiQdvWfPzingQUT5q1ChAq5cuZJne1RUFDyNKK9WoBGLypVz7vfpA3z/PdC1a862OnWkGsMHHwA9ehgcC5FRZs+WErMNGwIhIWpHQ0RERalzZ+CLL4D/+z9g7FggKIjN8oiepFWrVlixYgXu378PRVEQHR2NW7du4fjx4+jfv7/Bx9V78faJEzJi8bgqVYCoKIPjIDJKRoaMnAEyWsEhcCKi0mfCBGmkl5EhF0IvXVI7IqLiKSAgAP3798fFixdRpkwZbNu2Dbdu3UL//v1RrVo1g4+rd7nZwEBgyhS5OmxtLdvS02VbYKDBcRAZZeVKIDYWqFAB6NdP7WiIiEgNGo2cn5w+DRw+LLMoIiMBBwe1IyMqfipXrozBgweb9Jh6JxYzZwLdukmjmuwKUMePyy/zv93BiYpc9qLtV1/NKT1IRESlj52d9DNq1Ag4dgx4+WVZf8GRbKL8paenQ3msOYyNgaXV9E4smjSRhdx//ilXBAC5QjxgAK8IkDqOHwd27JBKIa+/rnY0RESkNh8fKSjTrh2wZIlUt5w4Ue2oiIqPO3fuYN26dbh06RIyMjK02xVFgUajwaRJkww6rl6JxaNHQEAAsHq1XBkmKg6yRyt69crbOImIiEqnFi2A6dPlfOW994DatYHnn1c7KqLiYfny5VAUBd27d4ejo6PJjqtXYlGmDJCaarL3JjLa7dvA/PlynyVmiYgotxEjpHHqjBkys2L/fq4HJQKAa9eu4dVXX4Wbm5tJj6t3VahRo4Avv5SKC0Rq+/VXSXbr1weaN1c7GiIiKm6mTgVatQKSkqRr9927akdEpL5KlSrh/v37Jj+u3mss/vkH2LIF2LhRhhUfX1cREWGq0IieLiNDhrkBlpglIqL8lSkDLF0qi7nPngX695cp3ZaWakdGpJ5u3bphzZo1uH//Ptzd3WH52C+Eh4eHQcfVO7EoV07mshOpbdUq4MoVwM1N/qMgIiLKT4UKUimqeXNg/Xrg3Xdl9gVRafXgwQMkJiZi5cqV2m0ajaZoF28DwJw5Br0Pkcl9/718HTGCJWaJiOjp6teXc5gXXwT+9z+gbl1Zd0FUGq1cuRKenp7o1auXeou3iYqLEyeA7dtZYpaIiAquXz/pbTFlCjB8OODvDzRsqHZUREXv3r176N+/P1xdXU16XIMSi6VLpS70lSvSdTu3w4dNERbR02WXmH3hBalXTkREVBCffCL9j9askc7cBw8CBk4nJzJbVapUwbVr10yeWOhdFer774GXXpJfwiNHpGFe+fLSNK9LF5PGRpSvxMScErNvvqluLEREZF4sLaXJr78/EBcn60Yfv0hKVNLVrFkTGzZswPbt2xEVFYWYmBidm6H0HrGYMQP4+WdZLDt3LvB//wdUrQpMmiQnfESF7ddfgYcPZX5sixZqR0NERObG2RlYuRIIDgYiI6Wy4KxZakdFVHRWr14NANixY0ee54p08faVK0CzZnLfzk7qQgPA4MFA06bAjz8aFAdRgWRm5pSYffNNlpglIiLD+PsDCxcCYWFywbR+feC119SOiqhoTJ48uVCOq/dUqIoVc0YmfH2Bffvk/sWLgKKYMjSivFatAi5flul3LDFLRETG6NIF+OILuT9mDLBzp7rxEJk7vUcs2rUD/v5bMvuXXgLeeksWcx88CPTsWRghEuXIXrQ9YoSMmBERERnjv/8Fjh6V0YvevaURcOXKakdFVLjymwKVW+vWrQ06rt6Jxc8/A1lZcn/UKLlyvGcP0L07MHKkQTEQFcjJk8DWrYCFBUvMEhGRaWg0wOzZQEyMVLbs0UPWXdjbqx0ZUeE5ffq0zuPMzEzcvXsXFhYWcHFxKbrEwsJCbtlefFFuRIUte/3OCy/INDwiIiJTsLcHli8HGjWS0YuXX5YRDK7jo5JqZD6jAWlpaVixYgUCAgIMPm6BEovjxwt+wDp1DA2F6Mnu3AH++EPujxmjbixEVLSMKX2oFn9/f7VDID35+gLLlsmU78WLgXr1gHfeUTsqoqJjY2ODNm3aYOHChahbt65BxyhQYlGvnmTtivLs7D0z06A4iJ7qt9+ABw8kcW3VSu1oiIioJGrZUkbHX3sNePddoHZtqRpFVFqkpaUhLS3N4NcXKLG4eDHn/pEjwIQJstgpJES27d0LfPMN8L//GRwH0RPlLjE7ZgyHpomIqPCMHCnToWbOBAYMAPbvB4yYGUJULO3fv1/nsaIoSE5OxvHjx1G9enWDj1ugxCJ3dYQ+faT7dteuOdvq1AF8fIAPPpBFT0SmtGaNJLeurvJHnoiIqDBNmwacOgXs2gWEh0tyUa6c2lERmc6+7H4R/9JoNLC3t0fdunXRwojuw3ov3j5xAqhSJe/2KlWAqCiD4yB6ouwSs6+8wiodRERU+KytpZR+o0bAmTNyUWvVKsDSUu3IiExj7NixhXJcvRvkBQYCU6YA6ek529LTZVtgoClDI5JkdfNmqUT2xhtqR0NERKWFuzuwYoX0TFq3DnjvPbUjIjKd1NRUPHz4MM/2hw8fGrXGQu/EYuZMYMMGwNsb6NBBbt7esm3mTIPjIMpXdonZ8HA2LCIioqLVoIEUDwGAL7+UErREJcGyZctw8uTJPNtPnTqFpUuXGnxcvROLJk2ACxeATz+VtRV16gCffSbbmjQxOA6iPO7eBebNk/ssMUtERGp48cWcsrPDh0sTPSJzFxcXBz8/vzzb/fz8cPXqVYOPq/caCwBwcABefdXg9yQqkDlzpMRsrVpAmzZqR0NERKXVp59KT6+1a6VIzcGDMlWKyFxlZmYiKysr3+2PHj0y+LgGJRZnzwLbtgE3bgCPxzRpksGxEGllZuZMg2KJWSIiUpOlJbBgARAcDMTEAL17y/o/a2u1IyMyTKVKlXDo0CF0zV3mFcDBgwfh5eVl8HH1Tix++QV4/XXAzQ2oWFH3hE+jYWJBprFunUyvc3EBBg5UOxoiIirtnJ2BlStl2veuXcDYscBPP6kdFZFh2rZtiz/++APXr19HlX/LvV68eBHx8fEYNGiQwcfVO7H49FNZU/H22wa/J9Ezff+9fB0+XKbeERERqc3fX0YuunWTgjV160qXbiJz4+vri+HDhyMyMhJRUVGwsrKCh4cHunfvjvLlyxt8XL0Tizt3pEkeUWGJjgY2bZISs6NGqR0NERFRjrAw4PPPgYkTZaruc88BLVuqHRWR/ipWrIhevXqZ9Jh6V4Xq0wfYuNGkMRDpyF5b0a0bkE/BAiIiIlW9/TbQrx+QkQH06gVcuaJ2RET6y8rKQlRUFHbu3ImdO3ciOjo63wXd+tB7xKJ6deCDD4B9+4DatYEyZXSff/NNo+KhUu7evZwSs/xZIiKi4kijkf4WZ84AR45IpajduwF7e7UjI3OQlZWF7du348SJE0hOToaTkxPq1q2LVq1aQfPv4mVFUbB9+3YcPnwYqamp8PHxQVhYmFHTlHJLTEzEggULcP/+fe0xd+/ejbJly2LAgAFwdXU16Lh6JxY//ww4OgI7dsgtN42GJ4NknDlzgJQUGVpu21btaIiIiPJnby+duRs1kuRi+HBZf8EqhvQskZGROHjwIHr06AF3d3fEx8dj5cqVsLW1RXBwsHaf/fv3o0ePHnBxccG2bdswf/58jBo1ClZWBhV11bFu3Tq4uLhg+PDhsLOzAwA8ePAAy5cvx/r16zFgwACDjqv3VKiLF598u3DBoBiIAEjp4unT5T5LzBIRUXHn6wssXQpYWQGLFgH/+5/aEZE5iI2Nhb+/P2rWrIly5cohKCgI1apV0zamUxQF+/fvR6tWrRAQEAAPDw/06NEDSUlJOH36tEliuHz5Mjp06KBNKgDA3t4e7du3x6VLlww+rt6JBVFhWb8eOHcOKFcOMKLSGRERUZFp1Qr44Qe5P3GiNNGj0ikpKQn379/X3tLS0vLdz8fHBxcvXsTt27cBANeuXcOVK1dQvXp1AMDdu3eRnJyMqlWral9ja2sLb29vxMbGmiRWS0tLpKen59menp4OS0tLg49r0FhKXBzw99+yWOnxmL791uBYqJRjiVkiIjJHr70GHD0KzJoFDBgA7N8vpWmpdAkKCtJ5PHnyZHz44Yd59mvRogXS0tLw448/wsLCAllZWWjXrh3q1KkDAEhOTgYAODx2MuTg4ICUlBSTxFqzZk2sWrUK3bt3R6VKlQAAV69exZo1a+BvxA+v3onFli1A9+5A1arA6dNArVrApUuAogANGhgcB5VyMTHAhg0y/emNN9SOhoiISD/ffw+cOiWLuMPDJblwdlY7KipKUVFR2pN0ALCxscl3v1OnTuHEiRPo1asXKlSogGvXrmHDhg1wcnJCvXr1iiTWLl26YMWKFfj111+1IxRZWVnw9/dH586dDT6u3onFxInAhAnARx8BTk7AsmWAu7t0RzYiDirlcpeYzTXyR0REZBasrWW9RePGcrFs4EDp1G3ErBIyM05OTihbtuwz99u0aROaN2+OWrVqAQA8PDxw79497N69G/Xq1YOjoyMAICUlBU5OTtrXpaSkwMPDwySx2tra4sUXX8Tt27dx69YtAECFChUMrgaVTe81FtHRwJAhct/KCnj4UKpEffwx8OWXRsVCpdT9+8DcuXJ/zBhVQyEiIjKYhwewfDlgawusWSPl+Yke9+jRI21Z2WwajQaKogAAypUrB0dHR1zIVRUpLS0NcXFx8PHxMWks5cuXh7+/P/z9/Y1OKgADRiwcHHLWVXh6AufPS2lQAPg34SHSy9y5QHIyEBgItG+vdjRERESGa9gQ+PVXGbGYMgWoW1ea6RFlq1mzJnbt2gVnZ2e4u7sjISEB+/bt006D0mg0CA4Oxq5du1C+fHmUK1cO27Ztg5OTEwICAgx+3w0bNhR439DQUIPeQ+/EomlTmT8YGAh07Qr85z/AiRNARIQ8R6SPrKycaVAsMUtERCXBgAHAsWNSfvall4CaNYH69dWOioqLLl26YNu2bVi7dq12ulPDhg3RunVr7T7NmzfHo0ePsGrVKqSmpsLX1xeDBg0yqofFtWvXdB4nJCQgKytL2yDv9u3bsLCwgKenp8HvoXd0334rV5cBWWeRnAwsXgzUqMGKUKS/DRuAs2dlgdvgwWpHQ0REZBqffw4cPy6l1Hv0AP75R9akEtnY2KBz585PXSSt0WjQtm1btDVht+ChQ4dq7+/duxfW1tbo0aOHtpfFw4cPsXLlSvj6+hr8HnqvsahaFfi3GhYcHICZM+UXZ9kyoHJlg+OgUiq79vfLL8taHSIiopLA0hJYuFAuvF65AvTunbdEP5Fa9u7di/bt2+s0yLOzs0O7du2wd+9eg49rUGLxbz8PHXfvspoP6efMGWDdOpn+NGqU2tEQERGZVrly0verbFlg1y5g3Di1IyISaWlpePDgQZ7tKSkp+TbOKyi9E4tLl4DMzLzb09KAfzuRExXI9OnyNSwMqFZN3ViIiIgKQ0AA8OefchHtp5+kiR6R2gICArBy5UpER0drO4VHRUXh77//RmBgoMHHLfAai7//zrm/YYNu05fMTGmc5+dncBxUyiQlAXPmyH2WmCUiopLs+eeBzz4D3n0XGD1aqmm2aKF2VFSaPf/889i4cSOWLVuGrKwsAICFhQXq16+Pjh07GnzcAicWPXrIV40GyLX2AwBQpowkFd98Y3AcVMrMmyfJRUAAYMTPLxERkVl45x2pFLV4MdCrF3DwIGDilgREBVamTBmEhYWhY8eOuHPnDgDAxcUF1tbWRh23wInFv8kMqlSRygZubka9L5ViWVk5i7ZHj2aJWSIiKvk0GulvERMDHD0qF2x37QLs7dWOjEoza2trk3XzBgxYY3HxYt6k4u5dE0VDpcKmTbJwu2zZnC7uREREJZ2DA7BihZxHHT4MjBgB/NtsmahE0Dux+PJLGcbL1qcP4OoKVKokQ3xEz/L99/L1pZcAJyd1YyEiIipKlSsDS5cCVlbAggXA11+rHRGR6eidWMycmTMncNMmYPNmaf7SpQvw3/8aFsT06bJGw9YWCA4GDhwo2OsWLZKhxez1H1T8nTuXU2J29Gi1oyEiIip6rVsD06bJ/bfflvMoopJA78Ti2rWcxGL1aqBvX6BTJ+D//k/WXuhr8WJg/Hhg8mQZFqxbFwgNBW7cePrrLl0CJkwAWrbU/z1JPdOny7Bvly5A9epqR0NERKSO11/PmQr14osyRZioMM2aNQsPHz4EAOzYsQOPHj0y+XvonVi4uACxsXJ//XqgQwe5ryj597d4lm+/lV+sl14CgoJkRMTeHvjttye/JjMTGDgQ+OijZzflS0tL09bnvX//PpKSkvQPkkwiOTnnc33zTXVjISIiUpNGA/z4I9C8OXDvHhAeLl+JCsutW7e0ycSOHTuMaoT3JAWuCpWtZ09gwABpUX/7tlx5BoAjR/S/Ap2eDhw6BEycmLPNwkKSlad1E//4Y8DdHRg+XCoqPM2UKVPw0Ucf6RcYFYrffwfu3wdq1mSJWSIiImtrYNkyoFEj4PRpuWi6ciVgaal2ZFQSVaxYEStXroSPjw8URcGePXueWF62devWBr2H3iMW330nc+ODgmSNhaOjbE9IAN54Q79j3bolow+PV7ny8JApV/nZvVvKtf3yS8HeY+LEibh37572FhUVpV+QZBKKklNidswYSSCJiIhKOw8PYPlyWWe6Zg0waZLaEVFJFR4eDjs7O5w9exYajQbnzp3D6dOn870ZSu8RizJlZG3D4956y+AYCiwpCRg8WJKKgvbRsLGxgY2Njfbx/fv3Cyk6eprNm+VqjJNT3gaLREREpVmjRsDs2cCgQcDnnwN16gD9+qkdFZU0bm5u6N27NwDgo48+wpAhQ+Dg4GDS99A7sTAlNzcZ7rt+XXf79etAxYp59z9/XhZtd+uWsy27cZ+VlTSdqVat0MIlI7DELBER0ZMNHChl+7/6Sv6v9PcH6tVTOyoqqSZPnlwox1U1sbC2Bho2BLZsySkZm5Ulj/MrRRoQAJw4obvt/fdlJGPatJxqVVS8nD8vw7sAMGqUurEQEREVV1OmyHnO+vVyXvTPP0CFCmpHRSVVYmIi9u3bh1u3bgEAKlSogODgYLi6uhp8TNVnuo8fL1Ob5s0DoqOl/FpKimTrgHRmzl7cbWsL1KqleytXTq6A16oliQoVP9klZjt3loXbRERElJelpTTNq1EDuHxZmhAXQkVQIpw7dw4zZsxAfHw8PDw84OHhgatXr2LGjBk4f/68wcdVdcQCkDmEN2/KYqVr12TYb/36nAXdV65woa85Y4lZIiKignNxkcpQwcHAjh2yhvXHH9WOikqaLVu2oGnTpuiQ3TfiX5s3b8bmzZtRzcC1BQadst+9K4uMJk4EEhNl2+HDwNWrBsWA0aMlM09LA/bvl1+mbNu3A3PnPvm1c+cCK1YY9r5U+P74Q+py16ghjQ+JiIjo6QIDgT//lF4X06cXvBImUUHdvHkT9evXz7O9fv36uHnzpsHH1TuxOH5cprN8+SXw9deSZABARIRuPwqi3CVmR4/myBMREVFBdesGfPKJ3B81CoiMVDceKlkcHBxwLZ/eDteuXTOqUpTep3rjxwPDhgFnz8qah2xduwI7dxocB5VAW7bIuhlHR/mZISIiooJ7992cdRa9egGxsWpHRCVFgwYNsHr1auzevRuXL1/G5cuXsXv3bqxevRoNGjQw+Lh6r7H45x9g1qy82ytVenJTOyqdskcrhg0DypZVNRQiIiKzo9EAc+ZIOf3jx4EXXgB27QLs7NSOjMxdq1atYG1tjb1792LLli0AACcnJ7Ru3RrBudck6EnvxMLGBsivx9yZMyyJRjkuXABWrZL7+ZUOJiIiomdzcJDF3I0aAYcOASNGyPpFjUbtyMicaTQahISEICQkBGlpaQCg01DaUHpPhereHfj445zyZxqNVG56+20ZpiMCgBkzZI1FaKg0+SEiIiLD+PkBS5dKOdo//wS++UbtiKgksbGxMUlSARiQWHzzjZQQdXcHHj4EWrcGqleXXhKffWaSmMjMpaQAv/4q98eMUTcWIiKikqBNG2kGDMjF3PXrVQ2HKF96T4VydgY2bQJ275b5fsnJQIMGwGNlcKkUmz9fqoVVqwZ06aJ2NERERCXDG28AR49Kyf8XXwQOHGDjWSpeDG6Q16KF3IhyY4lZIiKiwqHRSLO8qChgzx6gRw9g3z4WSKHiQ+/E4vvv89+u0Uj52erVgVatZB4glT7btgGnTslis5deUjsaIiKiksXGBli2TBZzR0cDgwZJo2BeyKOCyszMxJ9//omwsDCUL1/epMfWO7H47jvg5k3gwQNpOw8Ad+4A9vbSr+DGDaBqVTnB9PExaaxkBrJHK4YOlWlzREREZFoVK0oy0bKlVGCcPDmnmR7Rs1haWuL69euFcmy989vPPwcaN5YGebdvy+3MGSA4WBYVXbkiP/BvvVUY4VJxdukS8Pffcp8lZomIiApPo0bAL7/I/U8/Bf76S914yLzUrl0bR44cMflx9R6xeP99GYKrVi1nW/XqwNdfS7nZCxeA//2PpWdLoxkzgKwsoGNHIDBQ7WiIiIhKtkGDZDH3N99IM9qaNYG6ddWOisxBVlYWDh48iAsXLsDT0xPW1tY6z4eGhhp0XL0Ti4QEICMj7/aMjJzO215eQFKSQfGQmXrwQKpUAMCbb6obCxERUWnxxRfAiRPAxo1AeDhw8CDg5qZ2VFTc3bx5E56engCAxMREkx1X78SibVtg5Eg5iaxfX7YdOQK8/jrQrp08PnECqFLFZDGSGfjzT1lrU7UqS8wSEREVFSsrYNEioEkT4Nw5oE8fSTLKlFE7MirOhg4dWijH1XuNxa+/Aq6uQMOGUpnAxkbm+bm65jRFc3RkV8jSRFFyqoWNGsWKYEREREXJxQVYuVLOv7ZvB8aPVzsiMheJiYk4d+4cHj16BABQFMWo4+k9YlGxojTIO31aFm0DgL+/3LK1bWtUTGRmduwATp6UymAvv6x2NERERKVPUJDMHggPl14XdesCr7yidlRUXD148ABLly7FxYsXodFoMGbMGLi4uODvv/+Gra2twWssDK56HBAAdO8ut9xJBZU+2aMVQ4YA5cqpGgoREVGp1b17TtnZN96QJnpE+dmwYQMsLCzw1ltvoUyueXPPPfcczp8/b/BxDeq8HRcnZUWvXAHS03Wf+/Zbg2MhM3T5sgy/AsCYMerGQkREVNq99x5w7BiwdCnQs6cs5vb2VjsqKm7Onz+PQYMGoexjbdvLly+Pu3fvGnxcvROLLVskI65aVaZD1aol/QsUBWjQwOA4yExll5ht316GYYmIiEg9Gg0wZ45MVz9+HHjhBWDnTsDOTu3IqDh59OiRzkhFtocPH8LKyqBxBwAGJBYTJwITJgAffQQ4OUlPC3d3YOBAoHNng+MgM8QSs0RERMWPo6N05m7cWEYsXn0V+P13STqoeLh//z42b96sXTjt6uqK8PBweHl5AZBF1Nu3b8fhw4eRmpoKHx8fhIWFoXz58iZ5f19fXxw7dgztsku6/vuekZGR8PPzM/i4eicW0dHAwoX/vtgKePhQfoA//lgWDL3+usGxkJlZsABITAT8/ICwMLWjISIiomxVqkg37o4dgfnzpUUAq0UVDw8fPsRvv/2GKlWqYODAgbC3t0diYiJsbW21+0RGRmL//v3o0aMHXFxcsG3bNsyfPx+jRo0yakQhW8eOHfH7778jISEBmZmZ2Lx5M27cuIGHDx/iZSMq8ei9eNvBIWddhacnkHt9x61bBsdBZkZRgB9+kPujR7PELBERUXHTti3w3Xdy/7//lf4WpL7IyEg4OzsjPDwclSpVgouLC6pVqwZXV1cAMnKwf/9+tGrVCgEBAfDw8ECPHj2QlJSE06dPmyQGd3d3jB49Gj4+PvD390d6ejoCAwMxcuRIbRyG0DvladoU2L0bCAwEunYF/vMfaYgXESHPUemwc6fM3WSJWSIiouJr9Gjg6FHgt9+Afv2Af/4BqldXO6qSKSkpCffv39c+trGxgY2NTZ79YmJiUK1aNfz111+4dOkSypYti0aNGqFhw4YAgLt37yI5ORlVq1bVvsbW1hbe3t6IjY1FrVq1TBKvra0tWrVqZZJjZdM7sfj2WyA5We5/9JHcX7wYqFGDFaFKk+zRisGDpTEPERERFT8ajRRaiYoC9u2TAjz79gGPFQMiEwh6rIrN5MmT8eGHH+bZ786dOzh48CBCQkLQokULxMfHY/369bC0tES9evWQ/O+JtoODg87rHBwckJKSYrJ4Hz58iCNHjuDmzZsAgAoVKqB+/fqwM2Klv16JRWamlJqtU0ceOzgAM2ca/N5kpq5cAZYvl/ujR6sbCxERET2djY3MLGnUSNbKDh4s/49bGNzNjPITFRWFSpUqaR/nN1oByFQnLy8vtG/fHgDg6emJGzdu4NChQ6hXr15RhIrLly9j4cKFsLGx0S4YP3DgAHbu3In+/fujcuXKBh1Xr8TC0hLo1El+KNkIrfT66ScpMduunZQbJiIiouLN01OSiVatpBfZhx9K4R0yHScnpzx9IZ60X4UKFXS2ubm5ITo6GgDg6OgIAEhJSYGTk5N2n5SUFHh4eJgk1rVr1+K5555DWFgYLP7NMLOysrBmzRqsXbsWrxtYjUnvXLVWLeDCBYPei0qAhw+BX36R+2yIR0REZD6aNAF+/lnuf/KJNNGjoufj44Pbt2/rbLt9+zacnZ0BAOXKlYOjoyMu5DrhTktLQ1xcHHx8fEwSQ2JiIkJCQrRJBQBYWFggJCQEiYmJBh9X78Ti00+lj8Xq1UBCAnD/vu6NSraFC4Hbt4HKlYFu3dSOhoiIiPQxZEhO2dmhQ6UQCxWtpk2bIi4uDrt27UJiYiJOnDiBw4cPo3HjxgAAjUaD4OBg7Nq1CzExMbh+/TqWL18OJycnBAQEmCQGT09P3MqnnOutW7eMGhXRe/F2167ytXt33UYriiKPMzMNjoWKudwlZkeNYolZIiIic/Tll1LRc9Mm6UH2zz+Am5vaUZUelSpVQr9+/bBlyxbs2LEDLi4uCA0NRZ3sRcwAmjdvjkePHmHVqlVITU2Fr68vBg0aZFQPi+vXr2vvN2nSBOvXr0diYiK8vb0BAHFxcfjnn3+0az8MoXd027YZ/F5k5nbvlpJ1dnbA8OFqR0NERESGsLICFi2SqVHnzwN9+wIbNgBlyqgdWelRs2ZN1KxZ84nPazQatG3bFm3btjXZe86cORMajQaKomi3bdq0Kc9+ERERBpe01TuxaN3aoPehEiB7tGLQIMCI3ilERESkMldXYOVK6UG2bZv0Jfv+e7WjosI0duzYQn8Pg8ZTdu0CZs2SRdx//QVUqgT88Ye0j2/RwtQhUnEQGyul6gAu2iYiIioJnnsOmD8f6NFDLh7Wq8emtyVZuSIo6ar34u1ly4DQUJkOc/gwkJYm2+/dAz7/3NThUXExc6asn2nTBqhdW+1oiIiIyBTCw6XhMQC8/jqwd6+68VDRSUpKwqlTp3DgwAHs379f52YovUcsPv1UTjKHDJH5edmaN5fnqORJTc0pT8fRCiIiopLl/feBY8dkZkLPnsDBgzIbhUquo0ePYvXq1bC0tISdnR00uSsyAQgODjbouHonFjEx0lzlcc7OwN27BsVAxdyiRcCtW4Cvr1QDIyIiopLDwgKYNw84cwY4eRJ44QVg507A1lbtyKiwbNu2Da1atULLli3zJBXG0HsqVMWKwLlzebfv3g1UrWqKkKg4UZScxVxvvCGVJIiIiKhkcXSUxdyurlJ+9tVX5RyASqZHjx6hVq1aJk0qAAMSixEjgLFjgf37pW9FfDzw55/SNM/A7t9UjO3ZAxw5IlctXnlF7WiIiIiosFStCixZIn2q/vgDmDpV7YiosNSvXx9RUVEmP67e15/feQfIygLatwcePJBpUTY2klhw/n3Jkz1aMXAgUL68urEQERFR4WrfHvj2W7mIPGECUKsW0LGj2lGRqbVv3x4LFy7EuXPn4O7uDsvHuh6HhoYadFy9EwuNBnjvPeC//5UpUcnJQFCQDKFRyXL7tlQBA5g0EhERlRZjxkhD3DlzgH79gAMHgOrV1Y6KTGn37t04d+4c3NzccOPGDZNNidI7sZg/XyoG2NtLQkEl17p1UmK2VSugbl21oyEiIqKioNEAP/0EREcD+/ZJSdp9+wAnJ7UjI1PZu3cvwsPDUa9ePZMeV+81Fm+9Bbi7AwMGAGvXyoknlTyPHgEbNsj9N99UNxYiIiIqWjY2Un7WywuIigIGD5ap8FQyWFpawsfHx+TH1TuxSEiQ8qMaDdC3L+DpCYwaJYt8qeTYtUuaHvr4yJUKIiIiKl08PYHlyyXJWLkyp5Eemb/g4GAcOHDA5MfVeyqUlRXw/PNye/BAfuAWLADatgW8vYHz500eIxUxRQFWr5b7LDFLRERUejVpIk1yhw4FPv5Ypkb37Kl2VGSs+Ph4XLx4EWfOnIG7uzssLHTHGvr162fQcY06ZbS3B0JDgTt3gMuXZS4emb+YGFmYX6YMS8wSERGVdkOGSOn5qVPlfo0aQO3aakdFxrC1tUVgYKDJj2tQYpE9UvHnn8CWLTJdpn9/YOlSU4dHasgerWjTBnBzUzUUIiIiKga++go4cULO+8LDpYkey9Cbr/BCmueu9xqLF1+UxdtvvSWNVLZvl6vbn3wCBAQUQoRUpBITgchIuf/88+rGQkRERMWDlRWweLGc+128KOtsMzLUjoqKG71HLCwtpStjaKjcz+3kSWmkQuYru8Tsc88BVaqoHQ0REREVF+XLyyLupk2BrVulgR67c5unadOmPfX5sWPHGnRcvROLP//UfZyUBCxcCMyeDRw6xPKz5uzRI2D9ernP0QoiIiJ6XK1awB9/yALuadNkMfdLL6kdFekrODhY53FWVhauXbuGc+fOoVmzZgYf1+DF2zt3Ar/+Kp2ZvbzkB2z6dIPjoGJg924pMevmJlcjiIiIiB73wgvAhx/K7bXXgMBAnjeYm6ZP+MAOHDiAhIQEg4+r1xqLa9eAL76QagB9+gBlywJpacCKFbK9cWOD4yCVKQqwapXc79Il7zQ3IiIiomwffCAJRnq6XFyOj1c7IjKFGjVqICoqyuDXFzix6NYN8PcHjh+X+XTx8cAPPxj8vlTMnDmTU2I2NFTtaIiIiKg4s7AA5s2TqVEJCZJkpKaqHRUZKyoqCnZ2dga/vsBTodatA958E3j9dRmxoJIlu8Rsq1YyEkVERET0NE5Ospi7cWPgwAGZFjVnDqDRqB0ZPcusWbPybEtOTkZKSgrCwsIMPm6BE4vdu2VNRcOGMpdu8GApPUvm784d+XwBLtomIiKigqtaNada6Lx5QL16wLhxakdFz+Lv76/zWKPRwMHBAX5+fnAzoolZgROLpk3lNnWq1DH+7Tdg/HggKwvYtEma5Dk5GRwHqWj9eqnmFRgIVKumdjRERERkTtq3B775RhKKCRNkelSHDmpHRU/Tpk2bQjmu3g3yHByAl1+WK9wnTgD/+Y8s3HZ3B7p3L4wQqTBlZMg0N4CjFURERGSYN98Ehg6VC5V9+wLnz6sdEanB4HKzgCzm/t//gClTpKLQb7+ZKiwqKpGRwN27gKsrYETZYiIiIirFNBpg5kwgOlrWW4SHA3v3cjZLcfPRRx9BU4BFMJMmTTLo+EYlFtksLYEePeRG5iW7xGzXriwxS0RERIaztQWWLwcaNQJOnZIRjKVLpYIUFQ/9+vV74nNxcXHYv38/FEUx+PgmSSzIPJ05IzcrK5aYJSIiIuN5eQEREUDr1pJkfPIJMHmy2lFRtoCAgDzbbt26hS1btiAmJgZ16tQxav0FE4tSLHeJWWdndWMhIiKikqFpU5kW9fLL0p27Th3pc0HFS1JSErZt24Zjx46hevXqeO211+Du7m7UMZlYlFK5S8x266ZuLERERFSyvPQScOwYMG2atCjYuxeoXVvtqAgAUlNTsWvXLhw4cAAVK1bEkCFDULlyZZMcm4lFKbVhg1SECghgiVkiIiIyva+/lgqiW7fKYu5//gHKl1c7qtItMjISkZGRcHR0RK9evfKdGmUMJhalUO4SsxytICIiosJgZSXN8xo3Bi5eBPr1A9askdGLhATA0xNo2ZLFY4rS5s2bUaZMGbi6uuLYsWM4duxYvvs9bZH30zCxKIX27JGpUCwxS0RERIWpfHlg5UogJATYsgVwcwOSk3Oe9/aW6VI9e6oXY2lSt27dApWbNRQTi1Iou8Rsly68SkBERESFq3Zt4I03gK++0k0qAODqVaB3bylLy+Si8PUo5N4QrCxcypw9C8TEsMQsERERFY3MTGDhwvyfy26ZMG6c7EfmjYlFKZNdYrZlS6BcOVVDISIiolJg1y4gLu7JzysKEBsr+5F5Y2JRity9m/NL+/zzqoZCREREpURCgmn3o+KLiUUpkl1i1t8fqFFD7WiIiIioNPD0NO1+VHwxsSglMjNzSsxytIKIiIiKSsuWUv3pScWINBrAx0f2I/PGqlClxJ49QGIi4OICNG+udjRERERUWlhaSknZ3r0lichesA3kJBtTp5beSpW7d+/Gli1bEBwcjM6dOwMAMjIysGHDBpw6dQoZGRmoXr06unbtCkdHR5WjfTqOWJQS2Yu2u3SRilBERERERaVnTykpW6mS7nZv79Jdavbq1as4dOgQPDw8dLavX78eZ86cQZ8+fTBs2DAkJSVhyZIlKkVZcEwsSoHz54HoaJaYJSIiIvX07AlcugRs2wYsWCBfL14sOUlFUlIS7t+/r72lpaU9df/09HRERESgW7dusLW11W5PTU3FkSNHEBoaiipVqsDLywvh4eGIjY1F3NPKaxUDTCxKgeyGeC1ayFQoIiIiIjVYWgJt2gD9+8vXkjT9KSgoCM7OztrblClTnrr/2rVrUaNGDVStWlVne0JCArKysnS2u7m5wdnZGbGxsYUSu6lwUkwJd+8esHOn3OeibSIiIqLCERUVhUq55nrZ2Ng8cd+TJ08iISEBI0aMyPNccnIyLC0tdUYxAMDBwQHJj7cuL2aYWJRw2SVma9aUGxERERGZnpOTE8qWLfvM/e7du4f169dj8ODBsCphC19L1ndDOjIzgbVr5T5HK4iIiIjUl5CQgJSUFMyaNUu7TVEUXL58GQcOHMCgQYOQmZmJ1NRUnVGLlJSUYl8ViolFCbZ3r5SYLVeOJWaJiIiIioMqVarg9ddf19m2cuVKuLm5oXnz5ihbtiwsLCxw4cIFBAUFAQBu3bqFe/fuwcfHR42QC4yJRQmWvWi7c2egTBl1YyEiIiIiWXvh7u6us61MmTKws7PTbq9fvz42btwIOzs72NjYYN26dfD29oa3t7caIRdYsagKNX064OcH2NoCwcHAgQNP3veXX6Qzo4uL3Dp0ePr+pdWFC1Ji1tJSelcQERERkXno3LkzatSogSVLlmDu3LlwdHREv3791A7rmVQfsVi8GBg/Hpg5U5KKqVOl10JMDPBYMgcA2L5dSpQ1ayaJyJdfAp06AadO5W26UpplN8Rr3pwlZomIiIiKs2HDhuk8trKyQlhYGMLCwtQJyECqj1h8+y0wYgTw0ktAUJAkGPb2wG+/5b//n38Cb7wB1KsHBAQAs2cDWVnAli1FGnaxdv8+sGOH3O/WTd1YiIiIiKh0UDWxSE8HDh2S6UzZLCzk8d69BTvGgwfAo0eAq2v+z6elpel0QUxKSjI+8GJu40b5N6lenSVmiYiIiKhoqJpY3LolJVE9PHS3e3gA164V7Bhvvw14eekmJ7lNmTJFpwti9ur6kip3idlu3QCNRt14iIiIiKh0UH0qlDG++AJYtAhYvlzWW+Rn4sSJuHfvnvYWFRVVtEEWsf37JWFzdgZatFA7GiIiIiIqLVRdvO3mJlWLrl/X3X79OlCx4tNf+/XXklhs3gzUqfPk/WxsbHRaqt+/f9+IiIs/lpglIiIiIjWoOmJhbQ00bKi78Dp7IXZIyJNf97//AZ98AqxfDzRqVPhxmouLF6U6lqWlJBZEREREREVF9XKz48cDQ4dKgtCkiZSbTUmRKlEAMGSIlJGdMkUef/klMGkSsGCB9L7IXovh6Ci30iy7xGyzZkD58urGQkRERESli+qJRb9+wM2bkixcuyZlZNevz1nQfeWKVIrK9tNPUk2qd2/d40yeDHz4YVFFXfywxCwRERERqUn1xAIARo+WW362b9d9fOlSYUdjXrKyZPrT+vWScFWtCvj7qx0VEREREZU2xSKxIMPs3Qv88otUgcp24wawb9/T16gQEREREZmaWZebLc327pWqWLmTCkDWp3zxRcEbDBIRERERmQITCzOUlSUjFYqS97nsbb/8IvsRERERERUFJhZm6NSpvCMVuSmKPH/qVNHFRERERESlGxMLM3Tnjmn3IyIiIiIyFhMLM+TiYtr9iIiIiIiMxcTCDD33HODmBmg0+T+v0cjzzz1XtHERERERUenFxMIMWVgAI0bI/ceTi+zHI0boNhYkIiIiIipMPPU0UyEhwDvvAOXL624vX162s48FERERERUlNsgzYyEhQHCwVH+6c0fWVDz3HEcqiIiIiKjoMbEwcxYWQO3aakdBRERERKUdr20TEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRrNQOgIiIiIiotNi1axdOnz6NW7duwcrKCj4+PujQoQPc3Ny0+2RkZGDDhg04deoUMjIyUL16dXTt2hWOjo4qRv5sHLEgIiIiIioily9fRuPGjTF8+HAMHjwYWVlZmD9/PtLT07X7rF+/HmfOnEGfPn0wbNgwJCUlYcmSJSpGXTBMLIiIiIiIjJSUlIT79+9rb2lpafnuN2jQINSrVw/u7u6oWLEiwsPDce/ePSQkJAAAUlNTceTIEYSGhqJKlSrw8vJCeHg4YmNjERcXV5Tfkt6YWBARERERGSkoKAjOzs7a25QpUwr0uuwExM7ODgCQkJCArKwsVK1aVbuPm5sbnJ2dERsba/rATYhrLIiIiIiIjBQVFYVKlSppH9vY2DzzNYqiYP369fDx8YG7uzsAIDk5GZaWlrC1tdXZ18HBAcnJyaYN2sSYWBARERERGcnJyQlly5bV6zVr1qzBjRs38PLLLxdSVEWLU6GIiIiIiIrY2rVrcfbsWQwdOlQnIXF0dERmZiZSU1N19k9JSWFVKCIiIiIiEoqiYO3atTh9+jSGDBkCFxcXnec9PT1hYWGBCxcuaLfdunUL9+7dg4+PT1GHqxdOhSIiIiIiKiJr167FiRMn8OKLL8LGxka7bsLGxgZlypSBra0t6tevj40bN8LOzg42NjZYt24dvL294e3trXL0T8fEgoiIiIioiBw8eBAAMG/ePJ3t4eHhqFevHgCgc+fO2LBhA5YsWYLMzExUq1YNYWFhRR2q3phYEBEREREVkcmTJz9zHysrK4SFhZlFMpEb11gQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRrNQOgIiIiEqumJgYtUPQi7+/v9ohEJktjlgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRmFgQEREREZHRrNQOgIiIiIiKn5iYGLVD0Ju/v7/aIZRqxWLEYvp0wM8PsLUFgoOBAweevv9ffwEBAbJ/7drA2rVFEiYRERERkUkcOHAAU6dOxaefforZs2fj6tWraodkNNUTi8WLgfHjgcmTgcOHgbp1gdBQ4MaN/Pffswfo3x8YPhw4cgTo0UNuJ08WZdRERERERIY5efIkNm7ciNatW2PkyJHw8PDA/PnzkZKSonZoRlE9sfj2W2DECOCll4CgIGDmTMDeHvjtt/z3nzYN6NwZ+O9/gcBA4JNPgAYNgB9/LNq4iYiIiIgMsW/fPjRo0AD169dHhQoV8Pzzz6NMmTI4cuSI2qEZRdU1FunpwKFDwMSJOdssLIAOHYC9e/N/zd69MsKRW2gosGJF/vunpaUhLS1N+/jevXsAgISEBCMiN8yNJw3DFGMODg5qh1Bs8PMzb+b2+fGzy2Funx3Azy83c/v8+NnlMLfPDlDn88s+p7x37x7Kli2r3W5jYwMbG5s8+2dmZiI+Ph4tWrTQbtNoNKhatSri4uIKP+BCpGpicesWkJkJeHjobvfwAE6fzv81167lv/+1a/nvP2XKFHz00Ud5tjdp0sSAiImIiIiI8qpVq5bO48mTJ+PDDz/Ms9+DBw+gKEqeJMjBwQG3bt0qzBALXYmvCjVx4kSMzzXEkZGRgejoaPj4+MDCQvWZYCaRlJSEoKAgREVFwcnJSe1wSA/87MwbPz/zxs/PfPGzM28l7fPLysrClStXEBQUBCurnFPr/EYrSjpVEws3N8DSErh+XXf79etAxYr5v6ZiRf32z28Yqnnz5gZGXDzdv38fAFCpUiWdITgq/vjZmTd+fuaNn5/54mdn3kri5+fr61vgfe3t7aHRaPIs1E5JSYGjo6OpQytSql6yt7YGGjYEtmzJ2ZaVJY9DQvJ/TUiI7v4AsGnTk/cnIiIiIiouLC0t4eXlhQsXLmi3KYqCCxcuwNvbW8XIjKf6VKjx44GhQ4FGjYAmTYCpU4GUFKkSBQBDhgCVKgFTpsjjsWOB1q2Bb74BwsKARYuAgweBn39W7VsgIiIiIiqwpk2bYsWKFfDy8kKlSpWwb98+PHr0CPXq1VM7NKOonlj06wfcvAlMmiQLsOvVA9avz1mgfeWKVIrK1qwZsGAB8P77wLvvAjVqSEWox9bLlCo2NjaYPHlyqZzLZ+742Zk3fn7mjZ+f+eJnZ974+clC7wcPHmD79u1ITk5GxYoVMXDgQLOfCqVRFEVROwgiIiIiIjJvJaMsEhERERERqYqJBRERERERGY2JBRERERERGY2JBRERERERGY2JhZmbPn06/Pz8YGtri+DgYBw4cEDtkKgAdu7ciW7dusHLywsajQYrVqxQOyTSw5QpU9C4cWM4OTnB3d0dPXr0QExMjNphUQH89NNPqFOnDsqWLYuyZcsiJCQE69atUzssMsAXX3wBjUaDcePGqR0KFcCHH34IjUajcwsICFA7LDIxJhZmbPHixRg/fjwmT56Mw4cPo27duggNDcWNGzfUDo2eISUlBXXr1sX06dPVDoUMsGPHDowaNQr79u3Dpk2b8OjRI3Tq1ClPF1Uqfry9vfHFF1/g0KFDOHjwINq1a4fw8HCcOnVK7dBID//88w9mzZqFOnXqqB0K6eG5555DQkKC9rZ79261QyITY7lZMxYcHIzGjRvjxx9/BABkZWXBx8cHY8aMwTvvvKNydFRQGo0Gy5cvR48ePdQOhQx08+ZNuLu7Y8eOHWjVqpXa4ZCeXF1d8dVXX2H48OFqh0IFkJycjAYNGmDGjBn49NNPUa9ePUydOlXtsOgZPvzwQ6xYsQJHjx5VOxQqRByxMFPp6ek4dOgQOnTooN1mYWGBDh06YO/evSpGRlT63Lt3D4CcoJL5yMzMxKJFi5CSkoKQkBC1w6ECGjVqFMLCwnT+/yPzcPbsWXh5eaFq1aoYOHAgrly5onZIZGKqd94mw9y6dQuZmZnwyG5R/i8PDw+cPn1apaiISp+srCyMGzcOzZs3R61atdQOhwrgxIkTCAkJQWpqKhwdHbF8+XIEBQWpHRYVwKJFi3D48GH8888/aodCegoODsbcuXPh7++PhIQEfPTRR2jZsiVOnjwJJycntcMjE2FiQURkhFGjRuHkyZOcK2xG/P39cfToUdy7dw9Lly7F0KFDsWPHDiYXxVxsbCzGjh2LTZs2wdbWVu1wSE9dunTR3q9Tpw6Cg4NRuXJlLFmyhNMQSxAmFmbKzc0NlpaWuH79us7269evo2LFiipFRVS6jB49GqtXr8bOnTvh7e2tdjhUQNbW1qhevToAoGHDhvjnn38wbdo0zJo1S+XI6GkOHTqEGzduoEGDBtptmZmZ2LlzJ3788UekpaXB0tJSxQhJH+XKlUPNmjVx7tw5tUMhE+IaCzNlbW2Nhg0bYsuWLdptWVlZ2LJlC+cKExUyRVEwevRoLF++HFu3bkWVKlXUDomMkJWVhbS0NLXDoGdo3749Tpw4gaNHj2pvjRo1wsCBA3H06FEmFWYmOTkZ58+fh6enp9qhkAlxxMKMjR8/HkOHDkWjRo3QpEkTTJ06FSkpKXjppZfUDo2eITk5WecqzcWLF3H06FG4urrC19dXxcioIEaNGoUFCxZg5cqVcHJywrVr1wAAzs7OsLOzUzk6epqJEyeiS5cu8PX1RVJSEhYsWIDt27djw4YNaodGz+Dk5JRnHZODgwPKly/P9U1mYMKECejWrRsqV66M+Ph4TJ48GZaWlujfv7/aoZEJMbEwY/369cPNmzcxadIkXLt2DfXq1cP69evzLOim4ufgwYNo27at9vH48eMBAEOHDsXcuXNViooK6qeffgIAtGnTRmf7nDlzMGzYsKIPiArsxo0bGDJkCBISEuDs7Iw6depgw4YN6Nixo9qhEZVocXFx6N+/P27fvo0KFSqgRYsW2LdvHypUqKB2aGRC7GNBRERERERG4xoLIiIiIiIyGhMLIiIiIiIyGhMLIiIiIiIyGhMLIiIiIiIyGhMLIiIiIiIyGhMLIiIiIiIyGhMLIiIiIiIyGhMLIiIiIiIyGhMLIiJS3ZYtWxAYGIjMzEy1Q9HSaDRYsWKF2mGoJj09HX5+fjh48KDaoRCRmWBiQUQ6hg0bBo1Gg9deey3Pc6NGjYJGo8GwYcOKPrBizM/PD1OnTtX7dW3atMG4ceNMHo85+r//+z+8//77sLS0VDuUUunDDz9EvXr1dLZZW1tjwoQJePvtt9UJiojMDhMLIsrDx8cHixYtwsOHD7XbUlNTsWDBAvj6+qoYGeUnPT1d7RCQmZmJrKwsg167e/dunD9/Hr169TJxVHk9evSo0N+jJBk4cCB2796NU6dOqR0KEZkBJhZElEeDBg3g4+ODiIgI7baIiAj4+vqifv36OvtmZWVhypQpqFKlCuzs7FC3bl0sXbpU+3xmZiaGDx+ufd7f3x/Tpk3TOcawYcPQo0cPfP311/D09ET58uUxatSop54Enj9/HuHh4fDw8ICjoyMaN26MzZs36+zj5+eHzz//HC+//DKcnJzg6+uLn3/+Wfv8pUuXoNFoEBERgbZt28Le3h5169bF3r17dY6zbNkyPPfcc7CxsYGfnx+++eYb7XNt2rTB5cuX8dZbb0Gj0UCj0QAAbt++jf79+6NSpUqwt7dH7dq1sXDhQp3veceOHZg2bZr2dZcuXQIA7NixA02aNIGNjQ08PT3xzjvvICMjQ+c9R48ejXHjxsHNzQ2hoaH5/htt374dTZo0gYODA8qVK4fmzZvj8uXL2udXrVqFxo0bw9bWFm5ubnjhhRe0z925cwdDhgyBi4sL7O3t0aVLF5w9e1b7/Ny5c1GuXDn8/fffCAoKgo2NDa5cuYK0tDRMmDABlSpVgoODA4KDg7F9+/Ynfo4AsGjRInTs2BG2trbabdlX0GfNmgUfHx/Y29ujb9++uHfvns5rZ8+ejcDAQNja2iIgIAAzZszQPpf9+S5evBitW7eGra0t/vzzz3xjOHv2LFq1agVbW1sEBQVh06ZNefY5ceIE2rVrBzs7O5QvXx6vvvoqkpOTdfb57bfftD8rnp6eGD16tE4sR48e1e579+5daDQa7b/P9u3bodFosGHDBtSvXx92dnZo164dbty4gXXr1iEwMBBly5bFgAED8ODBA+1xnvU7mH3cLVu2oFGjRrC3t0ezZs0QExMDQD7Ljz76CMeOHdP+LM6dOxcA4OLigubNm2PRokVP+viIiHIoRES5DB06VAkPD1e+/fZbpX379trt7du3V7777jslPDxcGTp0qHb7p59+qgQEBCjr169Xzp8/r8yZM0exsbFRtm/friiKoqSnpyuTJk1S/vnnH+XChQvK/PnzFXt7e2Xx4sU671m2bFnltddeU6Kjo5VVq1Yp9vb2ys8///zEOI8eParMnDlTOXHihHLmzBnl/fffV2xtbZXLly9r96lcubLi6uqqTJ8+XTl79qwyZcoUxcLCQjl9+rSiKIpy8eJFBYASEBCgrF69WomJiVF69+6tVK5cWXn06JGiKIpy8OBBxcLCQvn444+VmJgYZc6cOYqdnZ0yZ84cRVEU5fbt24q3t7fy8ccfKwkJCUpCQoKiKIoSFxenfPXVV8qRI0eU8+fPK99//71iaWmp7N+/X1EURbl7964SEhKijBgxQvu6jIwMJS4uTrG3t1feeOMNJTo6Wlm+fLni5uamTJ48Wft9tW7dWnF0dFT++9//KqdPn9Z+P7k9evRIcXZ2ViZMmKCcO3dOiYqKUubOnav991m9erViaWmpTJo0SYmKilKOHj2qfP7559rXd+/eXQkMDFR27typHD16VAkNDVWqV6+upKenK4qiKHPmzFHKlCmjNGvWTImMjFROnz6tpKSkKK+88orSrFkzZefOncq5c+eUr776SrGxsVHOnDnzxM+yTp06yhdffKGzbfLkyYqDg4PSrl075ciRI8qOHTuU6tWrKwMGDNDuM3/+fMXT01NZtmyZcuHCBWXZsmWKq6urMnfuXJ3P18/PT7tPfHx8nvfPzMxUatWqpbRv3145evSosmPHDqV+/foKAGX58uWKoihKcnKy4unpqfTs2VM5ceKEsmXLFqVKlSo6vwszZsxQbG1tlalTpyoxMTHKgQMHlO+++04nliNHjmj3v3PnjgJA2bZtm6IoirJt2zYFgNK0aVNl9+7dyuHDh5Xq1asrrVu3Vjp16qQcPnxY2blzp1K+fHmdf69n/Q5mHzc4OFjZvn27curUKaVly5ZKs2bNFEVRlAcPHij/+c9/lOeee077s/jgwQPt8d9++22ldevWT/z8iIiyMbEgIh3ZicWNGzcUGxsb5dKlS8qlS5cUW1tb5ebNmzqJRWpqqmJvb6/s2bNH5xjDhw9X+vfv/8T3GDVqlNKrVy+d96xcubKSkZGh3danTx+lX79+esX+3HPPKT/88IP2ceXKlZVBgwZpH2dlZSnu7u7KTz/9pChKzsne7NmztfucOnVKAaBER0criqIoAwYMUDp27KjzPv/973+VoKAgnffJPoF8mrCwMOU///mP9nHr1q2VsWPH6uzz7rvvKv7+/kpWVpZ22/Tp0xVHR0clMzNT+7r69es/9b1u376tANCeXD4uJCREGThwYL7PnTlzRgGgREZGarfdunVLsbOzU5YsWaIoiiQWAJSjR49q97l8+bJiaWmpXL16Ved47du3VyZOnPjEWJ2dnZXff/9dZ9vkyZMVS0tLJS4uTrtt3bp1ioWFhTZ5q1atmrJgwQKd133yySdKSEiIoig5n+/UqVOf+N6KoigbNmxQrKysdOJet26dTmLx888/Ky4uLkpycrJ2nzVr1igWFhbKtWvXFEVRFC8vL+W9997L9z30SSw2b96s3WfKlCkKAOX8+fPabSNHjlRCQ0MVRSnY72B+x12zZo0CQHn48KGiKPLvXbdu3XxjnzZtmuLn55fvc0REuVkV7fgIEZmLChUqICwsDHPnzoWiKAgLC4Obm5vOPufOncODBw/QsWNHne3p6ek6U6amT5+O3377DVeuXMHDhw+Rnp6eZ6Hoc889p7Nw19PTEydOnHhifMnJyfjwww+xZs0aJCQkICMjAw8fPsSVK1d09qtTp472vkajQcWKFXHjxo0n7uPp6QkAuHHjBgICAhAdHY3w8HCd/Zs3b46pU6ciMzPziYuNMzMz8fnnn2PJkiW4evUq0tPTkZaWBnt7+yd+TwAQHR2NkJAQ7ZSq7PdLTk5GXFycdo1Lw4YNn3ocV1dXDBs2DKGhoejYsSM6dOiAvn37ar+/o0ePYsSIEU+MwcrKCsHBwdpt5cuXh7+/P6Kjo7XbrK2tdf7tTpw4gczMTNSsWVPneGlpaShfvvwTY3348KHONKhsvr6+qFSpkvZxSEgIsrKyEBMTAycnJ5w/fx7Dhw/X+T4yMjLg7Oysc5xGjRo98b2zv18fHx94eXnpvNfj+9StWxcODg7abc2bN9fGo9FoEB8fj/bt2z/1vQoi97+ph4cH7O3tUbVqVZ1tBw4cAFDw38HHj5v75/xZ66bs7Ox0pl4RET0JEwsieqKXX35ZO0d8+vTpeZ7Pnl++Zs0anRNAALCxsQEg8+cnTJiAb775BiEhIXBycsJXX32F/fv36+xfpkwZnccajeapi4EnTJiATZs24euvv0b16tVhZ2eH3r1751nIXJDj5t4n+4Te0IXI2b766itMmzYNU6dORe3ateHg4IBx48aZbKF17hPcJ5kzZw7efPNNrF+/HosXL8b777+PTZs2oWnTprCzszM6Bjs7O50EKDk5GZaWljh06FCehMvR0fGJx3Fzc8OdO3f0eu/sn71ffvlFJwECkOe9C/JvZaxn/XtaWMiSRkVRtNuetIbo8Z/Hp/0MF+R38EnHBQr2c56YmIgKFSo8cz8iIiYWRPREnTt3Rnp6OjQaTb4LhHMv2m3dunW+x4iMjESzZs3wxhtvaLedP3/e6NgiIyMxbNgw7YLj5ORk7eJnUwoMDERkZGSe965Zs6b2BNba2jpP/4XIyEiEh4dj0KBBAOQE7syZMwgKCtLuk9/rAgMDsWzZMiiKoj35i4yMhJOTE7y9vfWOv379+qhfvz4mTpyIkJAQLFiwAE2bNkWdOnWwZcsWvPTSS/l+zxkZGdi/fz+aNWsGQBajx8TE6MSf33tlZmbixo0baNmypV4xRkVF5dl+5coVxMfHa0cS9u3bBwsLC/j7+8PDwwNeXl64cOECBg4cWOD3yk9gYCBiY2ORkJCgvZK/b9++PPvMnTsXKSkp2kQlMjJSG4+TkxP8/PywZcsWtG3bNs97ZJ+YJyQkaEcSci/kNlRBfgcLIr+fxWwnT57MM/pBRJQfVoUioieytLREdHQ0oqKi8p3y4+TkhAkTJuCtt97CvHnzcP78eRw+fBg//PAD5s2bBwCoUaMGDh48iA0bNuDMmTP44IMP8M8//xgdW40aNRAREYGjR4/i2LFjGDBggNGjDPn5z3/+gy1btuCTTz7BmTNnMG/ePPz444+YMGGCdh8/Pz/s3LkTV69exa1bt7Txbdq0CXv27EF0dDRGjhyJ69ev6xzbz88P+/fvx6VLl3Dr1i1kZWXhjTfeQGxsLMaMGYPTp09j5cqVmDx5MsaPH6+96l0QFy9exMSJE7F3715cvnwZGzduxNmzZxEYGAgAmDx5MhYuXIjJkycjOjoaJ06cwJdffqmNPTw8HCNGjMDu3btx7NgxDBo0CJUqVcozLSy3mjVrYuDAgRgyZAgiIiJw8eJFHDhwAFOmTMGaNWue+LrQ0FDs3r07z3ZbW1sMHToUx44dw65du/Dmm2+ib9++qFixIgDgo48+wpQpU/D999/jzJkzOHHiBObMmYNvv/22wP9OANChQwfUrFlT573ee+89nX0GDhyojefkyZPYtm0bxowZg8GDB8PDwwOAVLL65ptv8P333+Ps2bPa3wVARjSaNm2KL774AtHR0dixYwfef/99veLMT0F+BwvCz88PFy9exNGjR3Hr1i2kpaVpn9u1axc6depkdKxEVAqovMaDiIqZ7MXbT/J4VaisrCxl6tSpir+/v1KmTBmlQoUKSmhoqLJjxw5FUWRx6bBhwxRnZ2elXLlyyuuvv6688847OgtF83vPsWPHPrUSzcWLF5W2bdsqdnZ2io+Pj/Ljjz/mWQyd36LqunXraissFWRBraIoytKlS5WgoCClTJkyiq+vr/LVV1/pHHPv3r1KnTp1FBsbGyX7z+rt27eV8PBwxdHRUXF3d1fef/99ZciQITrfZ0xMjNK0aVPFzs5OAaBcvHhRURRF2b59u9K4cWPF2tpaqVixovL2229rq1QpSv6Lvh937do1pUePHoqnp6dibW2tVK5cWZk0aZJ2AbiiKMqyZcuUevXqKdbW1oqbm5vSs2dP7XOJiYnK4MGDFWdnZ8XOzk4JDQ3Vqew0Z84cxdnZOc/7ZlcB8/PzU8qUKaN4enoqL7zwgnL8+PEnxnr79m3F1tZWp7pV9mLiGTNmKF5eXoqtra3Su3dvJTExUee1f/75p/Z7cHFxUVq1aqVEREQoipL/5/skMTExSosWLRRra2ulZs2ayvr163UWbyuKohw/flxp27atYmtrq7i6uiojRoxQkpKSdI4zc+ZM7e+Cp6enMmbMGO1zUVFRSkhIiGJnZ6fUq1dP2bhxY76Lt+/cuaN9TX7/zo8vtH7W72B+xz1y5IjOz1xqaqrSq1cvpVy5cgoAbdWzPXv2KOXKldOpEkVE9CQaRck14ZOIiEgF//3vf3H//n3MmjULgFz9X7FihUmmC5Hh+vXrh7p16+Ldd99VOxQiMgOcCkVERKp77733ULly5UKZzkaGSU9PR+3atfHWW2+pHQoRmQmOWBARUbHDEQsiIvPDxIKIiIiIiIzGqVBERERERGQ0JhZERERERGQ0JhZERERERGQ0JhZERERERGQ0JhZERERERGQ0JhZERERERGQ0JhZERERERGQ0JhZERERERGS0/wfuev7jEgUougAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -569,27 +743,25627 @@ "\n", "# Line plot for average std dev\n", "ax1.plot(bin_centers, avg_stds_per_bin, color='blue', marker='o', label='Avg Std Dev')\n", - "ax1.set_xlabel('Mean Annotator Score (per Document)')\n", - "ax1.set_ylabel('Average Standard Deviation', color='blue')\n", + "ax1.set_xlabel('Mean annotator score (per document)')\n", + "ax1.set_ylabel('Average standard deviation', color='blue')\n", "ax1.tick_params(axis='y', labelcolor='blue')\n", "ax1.set_ylim(0, max(avg_stds_per_bin) + 0.1)\n", "\n", "# Bar plot for support on secondary y-axis\n", "ax2 = ax1.twinx()\n", "ax2.bar(bin_centers, support_per_bin, width=0.4, alpha=0.3, color='gray', label='Support (Count)')\n", - "ax2.set_ylabel('Number of Documents per Bin', color='gray')\n", + "ax2.set_ylabel('Number of documents per bin', color='gray')\n", "ax2.tick_params(axis='y', labelcolor='gray')\n", "\n", "# Title and layout\n", - "plt.title('Disagreement vs. Mean Score with Support per Bin')\n", + "# plt.title('Disagreement vs. Mean Score with Support per Bin')\n", "fig.tight_layout()\n", + "plt.savefig(plot_path / f\"human_annotation_score_std_hist.pdf\", format=\"pdf\", bbox_inches=\"tight\", pad_inches=0)\n", + "\n", "plt.show()\n" ] }, + { + "cell_type": "code", + "execution_count": 19, + "id": "ff3b4355", + "metadata": {}, + "outputs": [], + "source": [ + "# TODO\n", + "# * Add plot where x_axis is ground truth and the y_axis the standard deviation of the predictions\n", + "# * Could also plot the confusion matrix instead\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "786b91d9", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "197531d3", + "metadata": {}, + "source": [ + "# LLM-as-a-judge evaluation" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "c944d423", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'bg': {'phi-4': {'metrics': {'Fleiss': 0.2502797242524014,\n", + " 'Cohen': 0.2581460372083022,\n", + " 'Spearman': 0.636985906295526,\n", + " 'Kendall': 0.524629373412667,\n", + " 'Krippendorff': 0.5890210059887584,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.735812133072407,\n", + " 'TA-4.0': 0.8825831702544031,\n", + " 'Acc': 0.4187866927592955,\n", + " 'MAE': 0.8405088062622307,\n", + " 'MSE': 1.4927701674277016,\n", + " 'CA-0': 0.489247311827957,\n", + " 'CA-1': 0.32,\n", + " 'CA-2': 0.3113207547169811,\n", + " 'CA-3': 0.5288461538461539,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.3007767238307655,\n", + " 'Micro-F1': 0.4187866927592955,\n", + " 'F1-0_vs_rest': 0.6190476190476191,\n", + " 'F1-1_vs_rest': 0.2831858407079646,\n", + " 'F1-2_vs_rest': 0.32195121951219513,\n", + " 'F1-3_vs_rest': 0.48672566371681414,\n", + " 'F1-4_vs_rest': 0.09375,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8461538461538461,\n", + " 'Recall-0.5': 0.9476923076923077,\n", + " 'Precision-0.5': 0.7642679900744417,\n", + " 'F1-1.5': 0.749003984063745,\n", + " 'Recall-1.5': 0.8355555555555556,\n", + " 'Precision-1.5': 0.6787003610108303,\n", + " 'F1-2.5': 0.6060606060606061,\n", + " 'Recall-2.5': 0.7563025210084033,\n", + " 'Precision-2.5': 0.5056179775280899,\n", + " 'F1-3.5': 0.14084507042253522,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.08928571428571429,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8800594751862555},\n", + " 'CM': {'0': {'-1': 0, '0': 91, '1': 60, '2': 19, '3': 12, '4': 3, '5': 1},\n", + " '1': {'-1': 0, '0': 14, '1': 32, '2': 29, '3': 14, '4': 9, '5': 2},\n", + " '2': {'-1': 0, '0': 3, '1': 23, '2': 33, '3': 31, '4': 15, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 11, '2': 18, '3': 55, '4': 19, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 10, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.16588711569468226,\n", + " 'Cohen': 0.19228036253776437,\n", + " 'Spearman': 0.591981858701982,\n", + " 'Kendall': 0.4939727977473699,\n", + " 'Krippendorff': 0.5239927892374399,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.726027397260274,\n", + " 'TA-4.0': 0.9354207436399217,\n", + " 'Acc': 0.36007827788649704,\n", + " 'MAE': 0.8604044357469016,\n", + " 'MSE': 1.3792128723635573,\n", + " 'CA-0': 0.25806451612903225,\n", + " 'CA-1': 0.45,\n", + " 'CA-2': 0.33962264150943394,\n", + " 'CA-3': 0.49038461538461536,\n", + " 'CA-4': 0.3076923076923077,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.27892558085476743,\n", + " 'Micro-F1': 0.36007827788649704,\n", + " 'F1-0_vs_rest': 0.401673640167364,\n", + " 'F1-1_vs_rest': 0.3125,\n", + " 'F1-2_vs_rest': 0.32,\n", + " 'F1-3_vs_rest': 0.4533333333333333,\n", + " 'F1-4_vs_rest': 0.18604651162790697,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8173690932311622,\n", + " 'Recall-0.5': 0.9846153846153847,\n", + " 'Precision-0.5': 0.6986899563318777,\n", + " 'F1-1.5': 0.7393939393939394,\n", + " 'Recall-1.5': 0.8133333333333334,\n", + " 'Precision-1.5': 0.6777777777777778,\n", + " 'F1-2.5': 0.5259259259259259,\n", + " 'Recall-2.5': 0.5966386554621849,\n", + " 'Precision-2.5': 0.47019867549668876,\n", + " 'F1-3.5': 0.26666666666666666,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.2,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8871652140653743},\n", + " 'CM': {'0': {'-1': 0, '0': 48, '1': 102, '2': 25, '3': 7, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 4, '1': 45, '2': 26, '3': 18, '4': 7, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 25, '2': 36, '3': 37, '4': 7, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 16, '2': 31, '3': 51, '4': 6, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 8, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.1952697772865512,\n", + " 'Cohen': 0.21288702771196144,\n", + " 'Spearman': 0.6949435819158003,\n", + " 'Kendall': 0.5780140123660208,\n", + " 'Krippendorff': 0.6132355579928987,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7749510763209393,\n", + " 'TA-4.0': 0.7475538160469667,\n", + " 'Acc': 0.36007827788649704,\n", + " 'MAE': 0.9615133724722769,\n", + " 'MSE': 1.9095455533811698,\n", + " 'CA-0': 0.4946236559139785,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.2830188679245283,\n", + " 'CA-3': 0.18269230769230768,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.28429684004747086,\n", + " 'Micro-F1': 0.36007827788649704,\n", + " 'F1-0_vs_rest': 0.6344827586206897,\n", + " 'F1-1_vs_rest': 0.32142857142857145,\n", + " 'F1-2_vs_rest': 0.3076923076923077,\n", + " 'F1-3_vs_rest': 0.23170731707317074,\n", + " 'F1-4_vs_rest': 0.08547008547008547,\n", + " 'F1-5_vs_rest': 0.125,\n", + " 'F1-0.5': 0.855191256830601,\n", + " 'Recall-0.5': 0.963076923076923,\n", + " 'Precision-0.5': 0.769041769041769,\n", + " 'F1-1.5': 0.7913385826771654,\n", + " 'Recall-1.5': 0.8933333333333333,\n", + " 'Precision-1.5': 0.7102473498233216,\n", + " 'F1-2.5': 0.6198083067092651,\n", + " 'Recall-2.5': 0.8151260504201681,\n", + " 'Precision-2.5': 0.5,\n", + " 'F1-3.5': 0.1342281879194631,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.07462686567164178,\n", + " 'F1-4.5': 0.125,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.06666666666666667,\n", + " 'NDCG@all': 0.8962455778836316},\n", + " 'CM': {'0': {'-1': 0, '0': 92, '1': 66, '2': 15, '3': 5, '4': 4, '5': 4},\n", + " '1': {'-1': 0, '0': 10, '1': 36, '2': 24, '3': 9, '4': 14, '5': 7},\n", + " '2': {'-1': 0, '0': 2, '1': 20, '2': 30, '3': 24, '4': 24, '5': 6},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 18, '3': 19, '4': 57, '5': 8},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 3, '4': 5, '5': 3},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.025509070998077806,\n", + " 'Cohen': 0.08529134099763735,\n", + " 'Spearman': 0.665015121881333,\n", + " 'Kendall': 0.5710736903378152,\n", + " 'Krippendorff': 0.5366922584229493,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.75049115913556,\n", + " 'TA-4.0': 0.9449901768172888,\n", + " 'Acc': 0.2632612966601179,\n", + " 'MAE': 0.888015717092338,\n", + " 'MSE': 1.2146911154769697,\n", + " 'CA-0': 0.016129032258064516,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.4056603773584906,\n", + " 'CA-3': 0.49019607843137253,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.19655877639811004,\n", + " 'Micro-F1': 0.2632612966601179,\n", + " 'F1-0_vs_rest': 0.031746031746031744,\n", + " 'F1-1_vs_rest': 0.22018348623853212,\n", + " 'F1-2_vs_rest': 0.3453815261044177,\n", + " 'F1-3_vs_rest': 0.4608294930875576,\n", + " 'F1-4_vs_rest': 0.12121212121212122,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7792521109770808,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6383399209486166,\n", + " 'F1-1.5': 0.7649402390438247,\n", + " 'Recall-1.5': 0.8609865470852018,\n", + " 'Precision-1.5': 0.6881720430107527,\n", + " 'F1-2.5': 0.5454545454545454,\n", + " 'Recall-2.5': 0.5897435897435898,\n", + " 'Precision-2.5': 0.5073529411764706,\n", + " 'F1-3.5': 0.16666666666666666,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.14285714285714285,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.900996853510188},\n", + " 'CM': {'0': {'-1': 0, '0': 3, '1': 160, '2': 17, '3': 4, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 36, '2': 44, '3': 18, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 22, '2': 43, '3': 35, '4': 5, '5': 1},\n", + " '3': {'-1': 2, '0': 0, '1': 9, '2': 35, '3': 50, '4': 8, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 7, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.20970578693031436,\n", + " 'Cohen': 0.22677390868517155,\n", + " 'Spearman': 0.6548091179003084,\n", + " 'Kendall': 0.5439294506597407,\n", + " 'Krippendorff': 0.5745297705960156,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7318982387475538,\n", + " 'TA-4.0': 0.8414872798434442,\n", + " 'Acc': 0.3796477495107632,\n", + " 'MAE': 0.887801696020874,\n", + " 'MSE': 1.5566427484235703,\n", + " 'CA-0': 0.3978494623655914,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.29245283018867924,\n", + " 'CA-3': 0.40384615384615385,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.3737258417905565,\n", + " 'Micro-F1': 0.3796477495107632,\n", + " 'F1-0_vs_rest': 0.5522388059701493,\n", + " 'F1-1_vs_rest': 0.3089430894308943,\n", + " 'F1-2_vs_rest': 0.30845771144278605,\n", + " 'F1-3_vs_rest': 0.4077669902912621,\n", + " 'F1-4_vs_rest': 0.16494845360824742,\n", + " 'F1-5_vs_rest': 0.5,\n", + " 'F1-0.5': 0.8408488063660478,\n", + " 'Recall-0.5': 0.9753846153846154,\n", + " 'Precision-0.5': 0.7389277389277389,\n", + " 'F1-1.5': 0.7480314960629921,\n", + " 'Recall-1.5': 0.8444444444444444,\n", + " 'Precision-1.5': 0.6713780918727915,\n", + " 'F1-2.5': 0.6123778501628665,\n", + " 'Recall-2.5': 0.7899159663865546,\n", + " 'Precision-2.5': 0.5,\n", + " 'F1-3.5': 0.19801980198019803,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.11627906976744186,\n", + " 'F1-4.5': 0.5,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.5,\n", + " 'NDCG@all': 0.904476063808766},\n", + " 'CM': {'0': {'-1': 0, '0': 74, '1': 76, '2': 23, '3': 9, '4': 3, '5': 1},\n", + " '1': {'-1': 0, '0': 5, '1': 38, '2': 27, '3': 17, '4': 13, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 22, '2': 31, '3': 29, '4': 22, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 10, '2': 14, '3': 42, '4': 37, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.0748672732118802,\n", + " 'Cohen': -0.004948005531708599,\n", + " 'Spearman': 0.5917735395767074,\n", + " 'Kendall': 0.4886454021363991,\n", + " 'Krippendorff': 0.20213144548093886,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5655577299412916,\n", + " 'TA-4.0': 0.6947162426614482,\n", + " 'Acc': 0.14285714285714285,\n", + " 'MAE': 1.4396607958251795,\n", + " 'MSE': 2.9673842139595563,\n", + " 'CA-0': 0.010752688172043012,\n", + " 'CA-1': 0.1,\n", + " 'CA-2': 0.20754716981132076,\n", + " 'CA-3': 0.28846153846153844,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.11355093565748602,\n", + " 'Micro-F1': 0.14285714285714285,\n", + " 'F1-0_vs_rest': 0.02127659574468085,\n", + " 'F1-1_vs_rest': 0.10582010582010581,\n", + " 'F1-2_vs_rest': 0.17670682730923695,\n", + " 'F1-3_vs_rest': 0.27522935779816515,\n", + " 'F1-4_vs_rest': 0.10227272727272728,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7793764988009593,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6385068762278978,\n", + " 'F1-1.5': 0.6759689922480621,\n", + " 'Recall-1.5': 0.9688888888888889,\n", + " 'Precision-1.5': 0.5190476190476191,\n", + " 'F1-2.5': 0.5303030303030303,\n", + " 'Recall-2.5': 0.8823529411764706,\n", + " 'Precision-2.5': 0.37906137184115524,\n", + " 'F1-3.5': 0.12359550561797752,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.06748466257668712,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8854668923293021},\n", + " 'CM': {'0': {'-1': 0, '0': 2, '1': 72, '2': 77, '3': 23, '4': 12, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 10, '2': 33, '3': 24, '4': 33, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 4, '2': 22, '3': 34, '4': 46, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 10, '3': 30, '4': 61, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 3, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.08805710097211039,\n", + " 'Cohen': -0.02465995247255859,\n", + " 'Spearman': 0.7121437200586265,\n", + " 'Kendall': 0.6106605794735107,\n", + " 'Krippendorff': 0.3024829613772677,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6105675146771037,\n", + " 'TA-4.0': 0.7475538160469667,\n", + " 'Acc': 0.13307240704500978,\n", + " 'MAE': 1.3584474885844748,\n", + " 'MSE': 2.607686453576865,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.06,\n", + " 'CA-2': 0.1509433962264151,\n", + " 'CA-3': 0.34615384615384615,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.1314626366852865,\n", + " 'Micro-F1': 0.13307240704500978,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.058823529411764705,\n", + " 'F1-2_vs_rest': 0.14953271028037382,\n", + " 'F1-3_vs_rest': 0.2727272727272727,\n", + " 'F1-4_vs_rest': 0.1258741258741259,\n", + " 'F1-5_vs_rest': 0.18181818181818182,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.7056962025316456,\n", + " 'Recall-1.5': 0.9911111111111112,\n", + " 'Precision-1.5': 0.547911547911548,\n", + " 'F1-2.5': 0.5550239234449761,\n", + " 'Recall-2.5': 0.9747899159663865,\n", + " 'Precision-2.5': 0.3879598662207358,\n", + " 'F1-3.5': 0.14285714285714285,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.07913669064748201,\n", + " 'F1-4.5': 0.18181818181818182,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.1111111111111111,\n", + " 'NDCG@all': 0.9006209147328194},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 96, '2': 63, '3': 20, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 6, '2': 27, '3': 48, '4': 16, '5': 3},\n", + " '2': {'-1': 0, '0': 0, '1': 1, '2': 16, '3': 52, '4': 33, '5': 4},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 2, '3': 36, '4': 64, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.18746775596467924,\n", + " 'Cohen': 0.2146604678052657,\n", + " 'Spearman': 0.7120255639992602,\n", + " 'Kendall': 0.6048434606941641,\n", + " 'Krippendorff': 0.6035543126477034,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7632093933463796,\n", + " 'TA-4.0': 0.9197651663405088,\n", + " 'Acc': 0.37573385518590996,\n", + " 'MAE': 0.7899543378995432,\n", + " 'MSE': 1.1561208958469231,\n", + " 'CA-0': 0.23655913978494625,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.5566037735849056,\n", + " 'CA-3': 0.5,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2767890378705405,\n", + " 'Micro-F1': 0.37573385518590996,\n", + " 'F1-0_vs_rest': 0.3826086956521739,\n", + " 'F1-1_vs_rest': 0.2734375,\n", + " 'F1-2_vs_rest': 0.427536231884058,\n", + " 'F1-3_vs_rest': 0.48826291079812206,\n", + " 'F1-4_vs_rest': 0.08888888888888889,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8207070707070707,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.69593147751606,\n", + " 'F1-1.5': 0.7985074626865671,\n", + " 'Recall-1.5': 0.9511111111111111,\n", + " 'Precision-1.5': 0.6881028938906752,\n", + " 'F1-2.5': 0.5923076923076923,\n", + " 'Recall-2.5': 0.6470588235294118,\n", + " 'Precision-2.5': 0.5460992907801419,\n", + " 'F1-3.5': 0.1276595744680851,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.09375,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9051863977133235},\n", + " 'CM': {'0': {'-1': 0, '0': 44, '1': 110, '2': 25, '3': 5, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 35, '2': 45, '3': 15, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 10, '2': 59, '3': 31, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 35, '3': 52, '4': 16, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 5, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.10959884026410578,\n", + " 'Cohen': -0.02306686589465823,\n", + " 'Spearman': 0.4670353897953112,\n", + " 'Kendall': 0.36817233744751726,\n", + " 'Krippendorff': -0.020749787234160655,\n", + " 'Invalid': 198,\n", + " 'TA-2.0': 0.5143769968051118,\n", + " 'TA-4.0': 0.5686900958466453,\n", + " 'Acc': 0.10543130990415335,\n", + " 'MAE': 1.7587859424920131,\n", + " 'MSE': 4.253017394391197,\n", + " 'CA-0': 0.0891089108910891,\n", + " 'CA-1': 0.014084507042253521,\n", + " 'CA-2': 0.1076923076923077,\n", + " 'CA-3': 0.15384615384615385,\n", + " 'CA-4': 0.6,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08788561489818225,\n", + " 'Micro-F1': 0.10543130990415335,\n", + " 'F1-0_vs_rest': 0.16071428571428573,\n", + " 'F1-1_vs_rest': 0.021505376344086023,\n", + " 'F1-2_vs_rest': 0.11475409836065574,\n", + " 'F1-3_vs_rest': 0.14814814814814814,\n", + " 'F1-4_vs_rest': 0.0821917808219178,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8171206225680934,\n", + " 'Recall-0.5': 0.9905660377358491,\n", + " 'Precision-0.5': 0.695364238410596,\n", + " 'F1-1.5': 0.6508313539192399,\n", + " 'Recall-1.5': 0.9716312056737588,\n", + " 'Precision-1.5': 0.48928571428571427,\n", + " 'F1-2.5': 0.46153846153846156,\n", + " 'Recall-2.5': 0.9078947368421053,\n", + " 'Precision-2.5': 0.3094170403587444,\n", + " 'F1-3.5': 0.08536585365853659,\n", + " 'Recall-3.5': 0.6363636363636364,\n", + " 'Precision-3.5': 0.0457516339869281,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8618141740127587},\n", + " 'CM': {'0': {'-1': 85, '0': 9, '1': 18, '2': 32, '3': 23, '4': 16, '5': 3},\n", + " '1': {'-1': 29, '0': 1, '1': 1, '2': 12, '3': 19, '4': 37, '5': 1},\n", + " '2': {'-1': 41, '0': 0, '1': 3, '2': 7, '3': 15, '4': 33, '5': 7},\n", + " '3': {'-1': 39, '0': 1, '1': 0, '2': 5, '3': 10, '4': 44, '5': 5},\n", + " '4': {'-1': 3, '0': 0, '1': 0, '2': 1, '3': 2, '4': 6, '5': 1},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 1, '4': 0, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.13297603241902303,\n", + " 'Cohen': 0.1734400094010733,\n", + " 'Spearman': 0.691804608571313,\n", + " 'Kendall': 0.5934610549123195,\n", + " 'Krippendorff': 0.5907768825035782,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7549019607843137,\n", + " 'TA-4.0': 0.9666666666666667,\n", + " 'Acc': 0.3509803921568627,\n", + " 'MAE': 0.7774509803921567,\n", + " 'MSE': 1.014433551198257,\n", + " 'CA-0': 0.22043010752688172,\n", + " 'CA-1': 0.3,\n", + " 'CA-2': 0.660377358490566,\n", + " 'CA-3': 0.3592233009708738,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2543133455470617,\n", + " 'Micro-F1': 0.3509803921568627,\n", + " 'F1-0_vs_rest': 0.35807860262008734,\n", + " 'F1-1_vs_rest': 0.23715415019762845,\n", + " 'F1-2_vs_rest': 0.42168674698795183,\n", + " 'F1-3_vs_rest': 0.3978494623655914,\n", + " 'F1-4_vs_rest': 0.1111111111111111,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8141592920353983,\n", + " 'Recall-0.5': 0.9938271604938271,\n", + " 'Precision-0.5': 0.6895074946466809,\n", + " 'F1-1.5': 0.7881040892193308,\n", + " 'Recall-1.5': 0.9464285714285714,\n", + " 'Precision-1.5': 0.6751592356687898,\n", + " 'F1-2.5': 0.4563106796116505,\n", + " 'Recall-2.5': 0.3983050847457627,\n", + " 'Precision-2.5': 0.5340909090909091,\n", + " 'F1-3.5': 0.1,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.2,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9111846181499187},\n", + " 'CM': {'0': {'-1': 0, '0': 41, '1': 111, '2': 31, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 30, '2': 56, '3': 12, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 10, '2': 70, '3': 24, '4': 2, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 2, '2': 62, '3': 37, '4': 2, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 7, '3': 5, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.09640031331237015,\n", + " 'Cohen': 0.12505495954977142,\n", + " 'Spearman': 0.6648756282989798,\n", + " 'Kendall': 0.5478529174647802,\n", + " 'Krippendorff': 0.5323514771423119,\n", + " 'Invalid': 40,\n", + " 'TA-2.0': 0.7261146496815286,\n", + " 'TA-4.0': 0.7707006369426752,\n", + " 'Acc': 0.2823779193205945,\n", + " 'MAE': 1.0169851380042465,\n", + " 'MSE': 1.8075017692852091,\n", + " 'CA-0': 0.33540372670807456,\n", + " 'CA-1': 0.1348314606741573,\n", + " 'CA-2': 0.3431372549019608,\n", + " 'CA-3': 0.25,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.25640917913565986,\n", + " 'Micro-F1': 0.2823779193205945,\n", + " 'F1-0_vs_rest': 0.484304932735426,\n", + " 'F1-1_vs_rest': 0.15384615384615385,\n", + " 'F1-2_vs_rest': 0.2928870292887029,\n", + " 'F1-3_vs_rest': 0.2810810810810811,\n", + " 'F1-4_vs_rest': 0.07633587786259542,\n", + " 'F1-5_vs_rest': 0.25,\n", + " 'F1-0.5': 0.8400556328233658,\n", + " 'Recall-0.5': 0.9741935483870968,\n", + " 'Precision-0.5': 0.7383863080684596,\n", + " 'F1-1.5': 0.7566607460035524,\n", + " 'Recall-1.5': 0.9638009049773756,\n", + " 'Precision-1.5': 0.6228070175438597,\n", + " 'F1-2.5': 0.6111111111111112,\n", + " 'Recall-2.5': 0.8319327731092437,\n", + " 'Precision-2.5': 0.48292682926829267,\n", + " 'F1-3.5': 0.10071942446043165,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.056451612903225805,\n", + " 'F1-4.5': 0.25,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.16666666666666666,\n", + " 'NDCG@all': 0.9132807727945667},\n", + " 'CM': {'0': {'-1': 25, '0': 54, '1': 49, '2': 43, '3': 10, '4': 5, '5': 0},\n", + " '1': {'-1': 11, '0': 6, '1': 12, '2': 39, '3': 14, '4': 18, '5': 0},\n", + " '2': {'-1': 4, '0': 2, '1': 6, '2': 35, '3': 26, '4': 30, '5': 3},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 17, '3': 26, '4': 59, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 5, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.056315443761833006,\n", + " 'Cohen': 0.001451882424917561,\n", + " 'Spearman': 0.6075480658175866,\n", + " 'Kendall': 0.5060105233253961,\n", + " 'Krippendorff': 0.2565356722442852,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5596868884540117,\n", + " 'TA-4.0': 0.761252446183953,\n", + " 'Acc': 0.162426614481409,\n", + " 'MAE': 1.3529028049575995,\n", + " 'MSE': 2.658404000869755,\n", + " 'CA-0': 0.04838709677419355,\n", + " 'CA-1': 0.1,\n", + " 'CA-2': 0.18867924528301888,\n", + " 'CA-3': 0.33653846153846156,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12917755405681397,\n", + " 'Micro-F1': 0.162426614481409,\n", + " 'F1-0_vs_rest': 0.09230769230769231,\n", + " 'F1-1_vs_rest': 0.1092896174863388,\n", + " 'F1-2_vs_rest': 0.15444015444015444,\n", + " 'F1-3_vs_rest': 0.29045643153526973,\n", + " 'F1-4_vs_rest': 0.12857142857142856,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7859733978234583,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.647410358565737,\n", + " 'F1-1.5': 0.6708074534161491,\n", + " 'Recall-1.5': 0.96,\n", + " 'Precision-1.5': 0.5155131264916468,\n", + " 'F1-2.5': 0.5402597402597402,\n", + " 'Recall-2.5': 0.8739495798319328,\n", + " 'Precision-2.5': 0.39097744360902253,\n", + " 'F1-3.5': 0.1527777777777778,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08527131782945736,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8864212752405546},\n", + " 'CM': {'0': {'-1': 0, '0': 9, '1': 64, '2': 81, '3': 24, '4': 7, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 10, '2': 39, '3': 31, '4': 20, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 7, '2': 20, '3': 43, '4': 36, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 13, '3': 35, '4': 53, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'nn': {'phi-4': {'metrics': {'Fleiss': 0.16444244299451757,\n", + " 'Cohen': 0.18324801543141167,\n", + " 'Spearman': 0.634040725900716,\n", + " 'Kendall': 0.5131672067321597,\n", + " 'Krippendorff': 0.4859623258032618,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.695049504950495,\n", + " 'TA-4.0': 0.8772277227722772,\n", + " 'Acc': 0.35247524752475246,\n", + " 'MAE': 0.9815181518151813,\n", + " 'MSE': 1.8181518151815186,\n", + " 'CA-0': 0.3967391304347826,\n", + " 'CA-1': 0.21428571428571427,\n", + " 'CA-2': 0.2,\n", + " 'CA-3': 0.5728155339805825,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.30331100804126787,\n", + " 'Micro-F1': 0.35247524752475246,\n", + " 'F1-0_vs_rest': 0.5447761194029851,\n", + " 'F1-1_vs_rest': 0.22459893048128343,\n", + " 'F1-2_vs_rest': 0.2153846153846154,\n", + " 'F1-3_vs_rest': 0.41843971631205673,\n", + " 'F1-4_vs_rest': 0.08333333333333333,\n", + " 'F1-5_vs_rest': 0.3333333333333333,\n", + " 'F1-0.5': 0.8355795148247979,\n", + " 'Recall-0.5': 0.9657320872274143,\n", + " 'Precision-0.5': 0.7363420427553444,\n", + " 'F1-1.5': 0.7423423423423423,\n", + " 'Recall-1.5': 0.9237668161434978,\n", + " 'Precision-1.5': 0.6204819277108434,\n", + " 'F1-2.5': 0.5611111111111111,\n", + " 'Recall-2.5': 0.8559322033898306,\n", + " 'Precision-2.5': 0.41735537190082644,\n", + " 'F1-3.5': 0.1282051282051282,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.07936507936507936,\n", + " 'F1-4.5': 0.3333333333333333,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.25,\n", + " 'NDCG@all': 0.8844965761787986},\n", + " 'CM': {'0': {'-1': 0, '0': 73, '1': 57, '2': 34, '3': 14, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 5, '1': 21, '2': 21, '3': 41, '4': 8, '5': 2},\n", + " '2': {'-1': 0, '0': 5, '1': 9, '2': 21, '3': 55, '4': 14, '5': 1},\n", + " '3': {'-1': 0, '0': 1, '1': 2, '2': 14, '3': 59, '4': 27, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 10, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.06694713783776174,\n", + " 'Cohen': 0.10713148756728164,\n", + " 'Spearman': 0.5848739446808434,\n", + " 'Kendall': 0.4936621218347517,\n", + " 'Krippendorff': 0.4709800690856343,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.695049504950495,\n", + " 'TA-4.0': 0.9306930693069307,\n", + " 'Acc': 0.2851485148514851,\n", + " 'MAE': 0.9336633663366333,\n", + " 'MSE': 1.4458195819581956,\n", + " 'CA-0': 0.125,\n", + " 'CA-1': 0.30612244897959184,\n", + " 'CA-2': 0.42857142857142855,\n", + " 'CA-3': 0.4174757281553398,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.219855607684768,\n", + " 'Micro-F1': 0.2851485148514851,\n", + " 'F1-0_vs_rest': 0.22009569377990432,\n", + " 'F1-1_vs_rest': 0.2158273381294964,\n", + " 'F1-2_vs_rest': 0.34220532319391633,\n", + " 'F1-3_vs_rest': 0.39814814814814814,\n", + " 'F1-4_vs_rest': 0.14285714285714285,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7965043695380774,\n", + " 'Recall-0.5': 0.9937694704049844,\n", + " 'Precision-0.5': 0.6645833333333333,\n", + " 'F1-1.5': 0.7304015296367112,\n", + " 'Recall-1.5': 0.8565022421524664,\n", + " 'Precision-1.5': 0.6366666666666667,\n", + " 'F1-2.5': 0.5153846153846153,\n", + " 'Recall-2.5': 0.5677966101694916,\n", + " 'Precision-2.5': 0.47183098591549294,\n", + " 'F1-3.5': 0.22727272727272727,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.1724137931034483,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.889931716929865},\n", + " 'CM': {'0': {'-1': 0, '0': 23, '1': 119, '2': 30, '3': 8, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 30, '2': 46, '3': 16, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 18, '2': 45, '3': 37, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 13, '2': 36, '3': 43, '4': 10, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 9, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.25042940399718033,\n", + " 'Cohen': 0.26392734576086097,\n", + " 'Spearman': 0.6845612778214859,\n", + " 'Kendall': 0.5711313557788666,\n", + " 'Krippendorff': 0.6245946737902759,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7683168316831683,\n", + " 'TA-4.0': 0.7920792079207921,\n", + " 'Acc': 0.4079207920792079,\n", + " 'MAE': 0.8957095709570956,\n", + " 'MSE': 1.7885588558855883,\n", + " 'CA-0': 0.5271739130434783,\n", + " 'CA-1': 0.3469387755102041,\n", + " 'CA-2': 0.41904761904761906,\n", + " 'CA-3': 0.1941747572815534,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.32617488476870493,\n", + " 'Micro-F1': 0.4079207920792079,\n", + " 'F1-0_vs_rest': 0.6621160409556314,\n", + " 'F1-1_vs_rest': 0.3105022831050228,\n", + " 'F1-2_vs_rest': 0.411214953271028,\n", + " 'F1-3_vs_rest': 0.25806451612903225,\n", + " 'F1-4_vs_rest': 0.18181818181818182,\n", + " 'F1-5_vs_rest': 0.13333333333333333,\n", + " 'F1-0.5': 0.8619246861924686,\n", + " 'Recall-0.5': 0.9626168224299065,\n", + " 'Precision-0.5': 0.7803030303030303,\n", + " 'F1-1.5': 0.7871485943775101,\n", + " 'Recall-1.5': 0.8789237668161435,\n", + " 'Precision-1.5': 0.7127272727272728,\n", + " 'F1-2.5': 0.6056338028169014,\n", + " 'Recall-2.5': 0.7288135593220338,\n", + " 'Precision-2.5': 0.5180722891566265,\n", + " 'F1-3.5': 0.18604651162790697,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.10526315789473684,\n", + " 'F1-4.5': 0.13333333333333333,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.07142857142857142,\n", + " 'NDCG@all': 0.8924206491204052},\n", + " 'CM': {'0': {'-1': 0, '0': 97, '1': 63, '2': 10, '3': 7, '4': 3, '5': 4},\n", + " '1': {'-1': 0, '0': 9, '1': 34, '2': 30, '3': 9, '4': 10, '5': 6},\n", + " '2': {'-1': 0, '0': 2, '1': 18, '2': 44, '3': 15, '4': 19, '5': 7},\n", + " '3': {'-1': 0, '0': 1, '1': 6, '2': 23, '3': 20, '4': 45, '5': 8},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 1, '4': 9, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.04859592016160266,\n", + " 'Cohen': 0.11581036126296129,\n", + " 'Spearman': 0.6069087021477471,\n", + " 'Kendall': 0.5171421992696367,\n", + " 'Krippendorff': 0.5077404646762644,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7485148514851485,\n", + " 'TA-4.0': 0.9366336633663367,\n", + " 'Acc': 0.2871287128712871,\n", + " 'MAE': 0.8808580858085807,\n", + " 'MSE': 1.2376787678767873,\n", + " 'CA-0': 0.021739130434782608,\n", + " 'CA-1': 0.5204081632653061,\n", + " 'CA-2': 0.4095238095238095,\n", + " 'CA-3': 0.44660194174757284,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2043518470748518,\n", + " 'Micro-F1': 0.2871287128712871,\n", + " 'F1-0_vs_rest': 0.042328042328042326,\n", + " 'F1-1_vs_rest': 0.28732394366197184,\n", + " 'F1-2_vs_rest': 0.36752136752136755,\n", + " 'F1-3_vs_rest': 0.4717948717948718,\n", + " 'F1-4_vs_rest': 0.05714285714285714,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7795371498172959,\n", + " 'Recall-0.5': 0.9968847352024922,\n", + " 'Precision-0.5': 0.64,\n", + " 'F1-1.5': 0.7424892703862661,\n", + " 'Recall-1.5': 0.7757847533632287,\n", + " 'Precision-1.5': 0.7119341563786008,\n", + " 'F1-2.5': 0.5603448275862069,\n", + " 'Recall-2.5': 0.5508474576271186,\n", + " 'Precision-2.5': 0.5701754385964912,\n", + " 'F1-3.5': 0.10810810810810811,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.09090909090909091,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8962973352164433},\n", + " 'CM': {'0': {'-1': 0, '0': 4, '1': 157, '2': 16, '3': 6, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 51, '2': 33, '3': 10, '4': 4, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 34, '2': 43, '3': 22, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 15, '2': 32, '3': 46, '4': 9, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 7, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.12543698377608567,\n", + " 'Cohen': 0.14984805363947706,\n", + " 'Spearman': 0.6500373105943037,\n", + " 'Kendall': 0.5436493560045431,\n", + " 'Krippendorff': 0.5292841606177214,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7069306930693069,\n", + " 'TA-4.0': 0.7940594059405941,\n", + " 'Acc': 0.3089108910891089,\n", + " 'MAE': 0.9976897689768974,\n", + " 'MSE': 1.7857535753575366,\n", + " 'CA-0': 0.3532608695652174,\n", + " 'CA-1': 0.32653061224489793,\n", + " 'CA-2': 0.19047619047619047,\n", + " 'CA-3': 0.3106796116504854,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23588316380290322,\n", + " 'Micro-F1': 0.3089108910891089,\n", + " 'F1-0_vs_rest': 0.5078125,\n", + " 'F1-1_vs_rest': 0.27586206896551724,\n", + " 'F1-2_vs_rest': 0.21164021164021163,\n", + " 'F1-3_vs_rest': 0.3033175355450237,\n", + " 'F1-4_vs_rest': 0.11666666666666667,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8328912466843501,\n", + " 'Recall-0.5': 0.9781931464174455,\n", + " 'Precision-0.5': 0.7251732101616628,\n", + " 'F1-1.5': 0.735632183908046,\n", + " 'Recall-1.5': 0.8609865470852018,\n", + " 'Precision-1.5': 0.6421404682274248,\n", + " 'F1-2.5': 0.6066066066066066,\n", + " 'Recall-2.5': 0.8559322033898306,\n", + " 'Precision-2.5': 0.4697674418604651,\n", + " 'F1-3.5': 0.14754098360655737,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.08411214953271028,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9037959835780969},\n", + " 'CM': {'0': {'-1': 0, '0': 65, '1': 74, '2': 26, '3': 13, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 4, '1': 32, '2': 29, '3': 17, '4': 16, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 23, '2': 20, '3': 40, '4': 22, '5': 0},\n", + " '3': {'-1': 0, '0': 3, '1': 5, '2': 9, '3': 32, '4': 54, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 6, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.11999214935845538,\n", + " 'Cohen': -0.033177929660978656,\n", + " 'Spearman': 0.6095380753376158,\n", + " 'Kendall': 0.5135247406237631,\n", + " 'Krippendorff': 0.18211136335594036,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5722772277227722,\n", + " 'TA-4.0': 0.6316831683168317,\n", + " 'Acc': 0.10495049504950495,\n", + " 'MAE': 1.522112211221122,\n", + " 'MSE': 3.2167216721672163,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.10204081632653061,\n", + " 'CA-2': 0.20952380952380953,\n", + " 'CA-3': 0.0970873786407767,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08381818082540476,\n", + " 'Micro-F1': 0.10495049504950495,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.10695187165775401,\n", + " 'F1-2_vs_rest': 0.18487394957983194,\n", + " 'F1-3_vs_rest': 0.10582010582010581,\n", + " 'F1-4_vs_rest': 0.10526315789473684,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7772397094430993,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6356435643564357,\n", + " 'F1-1.5': 0.6823161189358372,\n", + " 'Recall-1.5': 0.9775784753363229,\n", + " 'Precision-1.5': 0.5240384615384616,\n", + " 'F1-2.5': 0.5187032418952618,\n", + " 'Recall-2.5': 0.8813559322033898,\n", + " 'Precision-2.5': 0.3674911660777385,\n", + " 'F1-3.5': 0.12264150943396226,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.06598984771573604,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8718559515637331},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 74, '2': 72, '3': 20, '4': 17, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 10, '2': 29, '3': 24, '4': 35, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 1, '2': 22, '3': 31, '4': 51, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 9, '3': 10, '4': 80, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 1, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.09611125521259406,\n", + " 'Cohen': -0.03410401088015358,\n", + " 'Spearman': 0.6956512373043822,\n", + " 'Kendall': 0.5964952117080603,\n", + " 'Krippendorff': 0.3163952215507081,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.6190476190476191,\n", + " 'TA-4.0': 0.7916666666666666,\n", + " 'Acc': 0.1349206349206349,\n", + " 'MAE': 1.3039021164021165,\n", + " 'MSE': 2.4226741622574965,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.07142857142857142,\n", + " 'CA-2': 0.15384615384615385,\n", + " 'CA-3': 0.3592233009708738,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.10303833901376303,\n", + " 'Micro-F1': 0.1349206349206349,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.06763285024154589,\n", + " 'F1-2_vs_rest': 0.15165876777251186,\n", + " 'F1-3_vs_rest': 0.26334519572953735,\n", + " 'F1-4_vs_rest': 0.13559322033898305,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7766990291262136,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6349206349206349,\n", + " 'F1-1.5': 0.7098865478119936,\n", + " 'Recall-1.5': 0.9864864864864865,\n", + " 'Precision-1.5': 0.5544303797468354,\n", + " 'F1-2.5': 0.541871921182266,\n", + " 'Recall-2.5': 0.9322033898305084,\n", + " 'Precision-2.5': 0.3819444444444444,\n", + " 'F1-3.5': 0.16,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.09090909090909091,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8995284774196881},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 99, '2': 54, '3': 26, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 31, '3': 47, '4': 12, '5': 1},\n", + " '2': {'-1': 1, '0': 0, '1': 1, '2': 16, '3': 63, '4': 21, '5': 3},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 6, '3': 37, '4': 57, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.16278427188788,\n", + " 'Cohen': 0.19544073247248805,\n", + " 'Spearman': 0.647420568112268,\n", + " 'Kendall': 0.5539589469544739,\n", + " 'Krippendorff': 0.5516442303342037,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7445544554455445,\n", + " 'TA-4.0': 0.9207920792079208,\n", + " 'Acc': 0.3584158415841584,\n", + " 'MAE': 0.8283828382838281,\n", + " 'MSE': 1.2754675467546754,\n", + " 'CA-0': 0.18478260869565216,\n", + " 'CA-1': 0.3979591836734694,\n", + " 'CA-2': 0.5142857142857142,\n", + " 'CA-3': 0.5048543689320388,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.26659042774242714,\n", + " 'Micro-F1': 0.3584158415841584,\n", + " 'F1-0_vs_rest': 0.3105022831050228,\n", + " 'F1-1_vs_rest': 0.2815884476534296,\n", + " 'F1-2_vs_rest': 0.4122137404580153,\n", + " 'F1-3_vs_rest': 0.5,\n", + " 'F1-4_vs_rest': 0.09523809523809523,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.809102402022756,\n", + " 'Recall-0.5': 0.9968847352024922,\n", + " 'Precision-0.5': 0.6808510638297872,\n", + " 'F1-1.5': 0.7665369649805448,\n", + " 'Recall-1.5': 0.8834080717488789,\n", + " 'Precision-1.5': 0.6769759450171822,\n", + " 'F1-2.5': 0.5952380952380952,\n", + " 'Recall-2.5': 0.635593220338983,\n", + " 'Precision-2.5': 0.5597014925373134,\n", + " 'F1-3.5': 0.09090909090909091,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.06896551724137931,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8905854046026823},\n", + " 'CM': {'0': {'-1': 0, '0': 34, '1': 115, '2': 26, '3': 4, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 39, '2': 42, '3': 13, '4': 4, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 18, '2': 54, '3': 28, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 7, '2': 30, '3': 52, '4': 13, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 6, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.07365376503906643,\n", + " 'Cohen': -0.010854765506807862,\n", + " 'Spearman': 0.4340909875992279,\n", + " 'Kendall': 0.36469976884772837,\n", + " 'Krippendorff': 0.17707943687895744,\n", + " 'Invalid': 328,\n", + " 'TA-2.0': 0.5649717514124294,\n", + " 'TA-4.0': 0.751412429378531,\n", + " 'Acc': 0.14689265536723164,\n", + " 'MAE': 1.4774011299435028,\n", + " 'MSE': 3.177181418706842,\n", + " 'CA-0': 0.09859154929577464,\n", + " 'CA-1': 0.125,\n", + " 'CA-2': 0.2903225806451613,\n", + " 'CA-3': 0.13513513513513514,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.15591916400981207,\n", + " 'Micro-F1': 0.14689265536723164,\n", + " 'F1-0_vs_rest': 0.175,\n", + " 'F1-1_vs_rest': 0.1509433962264151,\n", + " 'F1-2_vs_rest': 0.1956521739130435,\n", + " 'F1-3_vs_rest': 0.1282051282051282,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.2857142857142857,\n", + " 'F1-0.5': 0.7591240875912408,\n", + " 'Recall-0.5': 0.9811320754716981,\n", + " 'Precision-0.5': 0.6190476190476191,\n", + " 'F1-1.5': 0.6425339366515838,\n", + " 'Recall-1.5': 0.9594594594594594,\n", + " 'Precision-1.5': 0.48299319727891155,\n", + " 'F1-2.5': 0.4496124031007752,\n", + " 'Recall-2.5': 0.6744186046511628,\n", + " 'Precision-2.5': 0.3372093023255814,\n", + " 'F1-3.5': 0.0784313725490196,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.044444444444444446,\n", + " 'F1-4.5': 0.2857142857142857,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.2,\n", + " 'NDCG@all': 0.833097984084055},\n", + " 'CM': {'0': {'-1': 113, '0': 7, '1': 14, '2': 31, '3': 14, '4': 4, '5': 1},\n", + " '1': {'-1': 66, '0': 2, '1': 4, '2': 9, '3': 9, '4': 7, '5': 1},\n", + " '2': {'-1': 74, '0': 0, '1': 1, '2': 9, '3': 10, '4': 9, '5': 2},\n", + " '3': {'-1': 66, '0': 0, '1': 2, '2': 11, '3': 5, '4': 19, '5': 0},\n", + " '4': {'-1': 9, '0': 0, '1': 0, '2': 1, '3': 3, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.13109122967413311,\n", + " 'Cohen': 0.16828355969835773,\n", + " 'Spearman': 0.6657686594626404,\n", + " 'Kendall': 0.5654799331153871,\n", + " 'Krippendorff': 0.562397590808722,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7341269841269841,\n", + " 'TA-4.0': 0.9583333333333334,\n", + " 'Acc': 0.34523809523809523,\n", + " 'MAE': 0.8058862433862432,\n", + " 'MSE': 1.0972773368606699,\n", + " 'CA-0': 0.21739130434782608,\n", + " 'CA-1': 0.29591836734693877,\n", + " 'CA-2': 0.638095238095238,\n", + " 'CA-3': 0.37254901960784315,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23480436998776597,\n", + " 'Micro-F1': 0.34523809523809523,\n", + " 'F1-0_vs_rest': 0.35398230088495575,\n", + " 'F1-1_vs_rest': 0.22745098039215686,\n", + " 'F1-2_vs_rest': 0.42948717948717946,\n", + " 'F1-3_vs_rest': 0.39790575916230364,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8132992327365729,\n", + " 'Recall-0.5': 0.99375,\n", + " 'Precision-0.5': 0.6883116883116883,\n", + " 'F1-1.5': 0.7703984819734345,\n", + " 'Recall-1.5': 0.9144144144144144,\n", + " 'Precision-1.5': 0.6655737704918033,\n", + " 'F1-2.5': 0.4930232558139535,\n", + " 'Recall-2.5': 0.452991452991453,\n", + " 'Precision-2.5': 0.5408163265306123,\n", + " 'F1-3.5': 0.08333333333333333,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.1111111111111111,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9058952312588943},\n", + " 'CM': {'0': {'-1': 0, '0': 40, '1': 110, '2': 30, '3': 4, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 29, '2': 54, '3': 13, '4': 1, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 11, '2': 67, '3': 24, '4': 3, '5': 0},\n", + " '3': {'-1': 1, '0': 1, '1': 7, '2': 52, '3': 38, '4': 4, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 9, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.16152820783816604,\n", + " 'Cohen': 0.17970270285969858,\n", + " 'Spearman': 0.6615289237764627,\n", + " 'Kendall': 0.5355522810668969,\n", + " 'Krippendorff': 0.582108869117056,\n", + " 'Invalid': 42,\n", + " 'TA-2.0': 0.7408207343412527,\n", + " 'TA-4.0': 0.8142548596112311,\n", + " 'Acc': 0.3412526997840173,\n", + " 'MAE': 0.9308855291576675,\n", + " 'MSE': 1.5967122630189585,\n", + " 'CA-0': 0.42038216560509556,\n", + " 'CA-1': 0.12643678160919541,\n", + " 'CA-2': 0.46601941747572817,\n", + " 'CA-3': 0.27722772277227725,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2502685148871469,\n", + " 'Micro-F1': 0.3412526997840173,\n", + " 'F1-0_vs_rest': 0.5523012552301255,\n", + " 'F1-1_vs_rest': 0.14473684210526316,\n", + " 'F1-2_vs_rest': 0.38095238095238093,\n", + " 'F1-3_vs_rest': 0.32558139534883723,\n", + " 'F1-4_vs_rest': 0.09803921568627451,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8442503639010189,\n", + " 'Recall-0.5': 0.9477124183006536,\n", + " 'Precision-0.5': 0.7611548556430446,\n", + " 'F1-1.5': 0.7738317757009345,\n", + " 'Recall-1.5': 0.9452054794520548,\n", + " 'Precision-1.5': 0.6550632911392406,\n", + " 'F1-2.5': 0.6148409893992933,\n", + " 'Recall-2.5': 0.75,\n", + " 'Precision-2.5': 0.5209580838323353,\n", + " 'F1-3.5': 0.12612612612612611,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.07291666666666667,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8990381969914222},\n", + " 'CM': {'0': {'-1': 27, '0': 66, '1': 46, '2': 37, '3': 5, '4': 2, '5': 1},\n", + " '1': {'-1': 11, '0': 12, '1': 11, '2': 37, '3': 13, '4': 14, '5': 0},\n", + " '2': {'-1': 2, '0': 4, '1': 6, '2': 48, '3': 20, '4': 22, '5': 3},\n", + " '3': {'-1': 2, '0': 0, '1': 2, '2': 24, '3': 28, '4': 44, '5': 3},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 5, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.062333647725757634,\n", + " 'Cohen': -0.0025724911221094438,\n", + " 'Spearman': 0.6280202984692997,\n", + " 'Kendall': 0.5266668355988499,\n", + " 'Krippendorff': 0.28553359406392387,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5742574257425742,\n", + " 'TA-4.0': 0.7584158415841584,\n", + " 'Acc': 0.15643564356435644,\n", + " 'MAE': 1.3333333333333335,\n", + " 'MSE': 2.547414741474148,\n", + " 'CA-0': 0.02717391304347826,\n", + " 'CA-1': 0.1326530612244898,\n", + " 'CA-2': 0.17142857142857143,\n", + " 'CA-3': 0.32038834951456313,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12594242470678008,\n", + " 'Micro-F1': 0.15643564356435644,\n", + " 'F1-0_vs_rest': 0.05291005291005291,\n", + " 'F1-1_vs_rest': 0.13471502590673576,\n", + " 'F1-2_vs_rest': 0.14342629482071714,\n", + " 'F1-3_vs_rest': 0.2857142857142857,\n", + " 'F1-4_vs_rest': 0.1388888888888889,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.781973203410475,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.642,\n", + " 'F1-1.5': 0.6751592356687898,\n", + " 'Recall-1.5': 0.9506726457399103,\n", + " 'Precision-1.5': 0.5234567901234568,\n", + " 'F1-2.5': 0.5517241379310345,\n", + " 'Recall-2.5': 0.8813559322033898,\n", + " 'Precision-2.5': 0.4015444015444015,\n", + " 'F1-3.5': 0.1643835616438356,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.0916030534351145,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.899237907305392},\n", + " 'CM': {'0': {'-1': 0, '0': 5, '1': 71, '2': 82, '3': 19, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 13, '2': 34, '3': 32, '4': 19, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 9, '2': 18, '3': 41, '4': 37, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 12, '3': 33, '4': 56, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'sq': {'phi-4': {'metrics': {'Fleiss': 0.15789680599340014,\n", + " 'Cohen': 0.17313658976746882,\n", + " 'Spearman': 0.6245111661920767,\n", + " 'Kendall': 0.5070353469354135,\n", + " 'Krippendorff': 0.5200690567490972,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.711764705882353,\n", + " 'TA-4.0': 0.8705882352941177,\n", + " 'Acc': 0.3411764705882353,\n", + " 'MAE': 0.9421568627450982,\n", + " 'MSE': 1.6705337690631812,\n", + " 'CA-0': 0.372972972972973,\n", + " 'CA-1': 0.24,\n", + " 'CA-2': 0.2830188679245283,\n", + " 'CA-3': 0.4326923076923077,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.32050018285113074,\n", + " 'Micro-F1': 0.3411764705882353,\n", + " 'F1-0_vs_rest': 0.518796992481203,\n", + " 'F1-1_vs_rest': 0.2222222222222222,\n", + " 'F1-2_vs_rest': 0.2803738317757009,\n", + " 'F1-3_vs_rest': 0.37815126050420167,\n", + " 'F1-4_vs_rest': 0.12345679012345678,\n", + " 'F1-5_vs_rest': 0.4,\n", + " 'F1-0.5': 0.830238726790451,\n", + " 'Recall-0.5': 0.963076923076923,\n", + " 'Precision-0.5': 0.7296037296037297,\n", + " 'F1-1.5': 0.7472118959107806,\n", + " 'Recall-1.5': 0.8933333333333333,\n", + " 'Precision-1.5': 0.6421725239616614,\n", + " 'F1-2.5': 0.5555555555555556,\n", + " 'Recall-2.5': 0.7563025210084033,\n", + " 'Precision-2.5': 0.43902439024390244,\n", + " 'F1-3.5': 0.16279069767441862,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.09859154929577464,\n", + " 'F1-4.5': 0.4,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.3333333333333333,\n", + " 'NDCG@all': 0.9114741827688444},\n", + " 'CM': {'0': {'-1': 0, '0': 69, '1': 71, '2': 28, '3': 11, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 9, '1': 24, '2': 26, '3': 28, '4': 13, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 17, '2': 30, '3': 44, '4': 12, '5': 1},\n", + " '3': {'-1': 0, '0': 1, '1': 4, '2': 22, '3': 45, '4': 31, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 6, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.08598490157992747,\n", + " 'Cohen': 0.12068965517241381,\n", + " 'Spearman': 0.6083300415015487,\n", + " 'Kendall': 0.5094162432445601,\n", + " 'Krippendorff': 0.5064341379930453,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7215686274509804,\n", + " 'TA-4.0': 0.9313725490196079,\n", + " 'Acc': 0.2980392156862745,\n", + " 'MAE': 0.9111111111111111,\n", + " 'MSE': 1.3869281045751634,\n", + " 'CA-0': 0.15135135135135136,\n", + " 'CA-1': 0.33,\n", + " 'CA-2': 0.39622641509433965,\n", + " 'CA-3': 0.4326923076923077,\n", + " 'CA-4': 0.3076923076923077,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23492841581076876,\n", + " 'Micro-F1': 0.2980392156862745,\n", + " 'F1-0_vs_rest': 0.2557077625570776,\n", + " 'F1-1_vs_rest': 0.2357142857142857,\n", + " 'F1-2_vs_rest': 0.32941176470588235,\n", + " 'F1-3_vs_rest': 0.410958904109589,\n", + " 'F1-4_vs_rest': 0.17777777777777778,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7965043695380774,\n", + " 'Recall-0.5': 0.9815384615384616,\n", + " 'Precision-0.5': 0.6701680672268907,\n", + " 'F1-1.5': 0.7485604606525912,\n", + " 'Recall-1.5': 0.8666666666666667,\n", + " 'Precision-1.5': 0.6587837837837838,\n", + " 'F1-2.5': 0.518796992481203,\n", + " 'Recall-2.5': 0.5798319327731093,\n", + " 'Precision-2.5': 0.46938775510204084,\n", + " 'F1-3.5': 0.2553191489361702,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.1875,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.895190753655341},\n", + " 'CM': {'0': {'-1': 0, '0': 28, '1': 119, '2': 28, '3': 7, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 4, '1': 33, '2': 40, '3': 16, '4': 7, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 17, '2': 42, '3': 39, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 11, '2': 38, '3': 45, '4': 10, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 8, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.19373418484154717,\n", + " 'Cohen': 0.21228474154858945,\n", + " 'Spearman': 0.6954788065437562,\n", + " 'Kendall': 0.5766711648489272,\n", + " 'Krippendorff': 0.6023978898305775,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7745098039215687,\n", + " 'TA-4.0': 0.7470588235294118,\n", + " 'Acc': 0.3568627450980392,\n", + " 'MAE': 0.9758169934640523,\n", + " 'MSE': 1.9845315904139433,\n", + " 'CA-0': 0.4540540540540541,\n", + " 'CA-1': 0.33,\n", + " 'CA-2': 0.33962264150943394,\n", + " 'CA-3': 0.20192307692307693,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.28740917577263464,\n", + " 'Micro-F1': 0.3568627450980392,\n", + " 'F1-0_vs_rest': 0.6021505376344086,\n", + " 'F1-1_vs_rest': 0.28820960698689957,\n", + " 'F1-2_vs_rest': 0.3673469387755102,\n", + " 'F1-3_vs_rest': 0.25149700598802394,\n", + " 'F1-4_vs_rest': 0.10714285714285714,\n", + " 'F1-5_vs_rest': 0.10810810810810811,\n", + " 'F1-0.5': 0.8502024291497976,\n", + " 'Recall-0.5': 0.9692307692307692,\n", + " 'Precision-0.5': 0.7572115384615384,\n", + " 'F1-1.5': 0.79296875,\n", + " 'Recall-1.5': 0.9022222222222223,\n", + " 'Precision-1.5': 0.7073170731707317,\n", + " 'F1-2.5': 0.6329113924050633,\n", + " 'Recall-2.5': 0.8403361344537815,\n", + " 'Precision-2.5': 0.5076142131979695,\n", + " 'F1-3.5': 0.1342281879194631,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.07462686567164178,\n", + " 'F1-4.5': 0.10810810810810811,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.05714285714285714,\n", + " 'NDCG@all': 0.8915332347409991},\n", + " 'CM': {'0': {'-1': 0, '0': 84, '1': 76, '2': 12, '3': 5, '4': 3, '5': 5},\n", + " '1': {'-1': 0, '0': 8, '1': 33, '2': 27, '3': 11, '4': 14, '5': 7},\n", + " '2': {'-1': 0, '0': 2, '1': 16, '2': 36, '3': 23, '4': 19, '5': 10},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 13, '3': 21, '4': 57, '5': 9},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 3, '4': 6, '5': 2},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.016226760701848763,\n", + " 'Cohen': 0.0784990379069509,\n", + " 'Spearman': 0.63524288413785,\n", + " 'Kendall': 0.537931055791393,\n", + " 'Krippendorff': 0.5127235529602789,\n", + " 'Invalid': 3,\n", + " 'TA-2.0': 0.7396449704142012,\n", + " 'TA-4.0': 0.9428007889546351,\n", + " 'Acc': 0.2603550295857988,\n", + " 'MAE': 0.9026955950032872,\n", + " 'MSE': 1.2467674775367081,\n", + " 'CA-0': 0.021621621621621623,\n", + " 'CA-1': 0.4,\n", + " 'CA-2': 0.34285714285714286,\n", + " 'CA-3': 0.5048543689320388,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.17437667728788542,\n", + " 'Micro-F1': 0.2603550295857988,\n", + " 'F1-0_vs_rest': 0.042328042328042326,\n", + " 'F1-1_vs_rest': 0.23809523809523808,\n", + " 'F1-2_vs_rest': 0.3116883116883117,\n", + " 'F1-3_vs_rest': 0.45414847161572053,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7806060606060606,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6401590457256461,\n", + " 'F1-1.5': 0.7443762781186094,\n", + " 'Recall-1.5': 0.8198198198198198,\n", + " 'Precision-1.5': 0.6816479400749064,\n", + " 'F1-2.5': 0.5503875968992248,\n", + " 'Recall-2.5': 0.6068376068376068,\n", + " 'Precision-2.5': 0.5035460992907801,\n", + " 'F1-3.5': 0.0,\n", + " 'Recall-3.5': 0.0,\n", + " 'Precision-3.5': 0.0,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8920158071988616},\n", + " 'CM': {'0': {'-1': 0, '0': 4, '1': 156, '2': 20, '3': 4, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 40, '2': 36, '3': 21, '4': 3, '5': 0},\n", + " '2': {'-1': 1, '0': 0, '1': 28, '2': 36, '3': 38, '4': 3, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 12, '2': 31, '3': 52, '4': 8, '5': 0},\n", + " '4': {'-1': 1, '0': 0, '1': 0, '2': 3, '3': 9, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.09217360854424836,\n", + " 'Cohen': 0.11830557471210079,\n", + " 'Spearman': 0.6585330014328645,\n", + " 'Kendall': 0.549619687494579,\n", + " 'Krippendorff': 0.5329373360984615,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.692156862745098,\n", + " 'TA-4.0': 0.807843137254902,\n", + " 'Acc': 0.2823529411764706,\n", + " 'MAE': 1.011764705882353,\n", + " 'MSE': 1.7281045751633994,\n", + " 'CA-0': 0.31891891891891894,\n", + " 'CA-1': 0.28,\n", + " 'CA-2': 0.14150943396226415,\n", + " 'CA-3': 0.3173076923076923,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22070050106091985,\n", + " 'Micro-F1': 0.2823529411764706,\n", + " 'F1-0_vs_rest': 0.472,\n", + " 'F1-1_vs_rest': 0.23529411764705882,\n", + " 'F1-2_vs_rest': 0.14705882352941177,\n", + " 'F1-3_vs_rest': 0.3173076923076923,\n", + " 'F1-4_vs_rest': 0.15254237288135594,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8285714285714286,\n", + " 'Recall-0.5': 0.9815384615384616,\n", + " 'Precision-0.5': 0.7168539325842697,\n", + " 'F1-1.5': 0.7255639097744361,\n", + " 'Recall-1.5': 0.8577777777777778,\n", + " 'Precision-1.5': 0.6286644951140065,\n", + " 'F1-2.5': 0.5853658536585366,\n", + " 'Recall-2.5': 0.8067226890756303,\n", + " 'Precision-2.5': 0.45933014354066987,\n", + " 'F1-3.5': 0.18333333333333332,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.10476190476190476,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9059994149526595},\n", + " 'CM': {'0': {'-1': 0, '0': 59, '1': 82, '2': 31, '3': 8, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 28, '2': 38, '3': 18, '4': 14, '5': 0},\n", + " '2': {'-1': 0, '0': 4, '1': 19, '2': 15, '3': 41, '4': 27, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 9, '2': 14, '3': 33, '4': 48, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.1594965426526844,\n", + " 'Cohen': -0.06960134295726661,\n", + " 'Spearman': 0.6235393914987921,\n", + " 'Kendall': 0.5267091052413663,\n", + " 'Krippendorff': 0.12429444632553532,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5098039215686274,\n", + " 'TA-4.0': 0.6313725490196078,\n", + " 'Acc': 0.07647058823529412,\n", + " 'MAE': 1.6032679738562092,\n", + " 'MSE': 3.3814814814814818,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.03,\n", + " 'CA-2': 0.1320754716981132,\n", + " 'CA-3': 0.1346153846153846,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.05932116833293529,\n", + " 'Micro-F1': 0.07647058823529412,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.0375,\n", + " 'F1-2_vs_rest': 0.11290322580645161,\n", + " 'F1-3_vs_rest': 0.1278538812785388,\n", + " 'F1-4_vs_rest': 0.07766990291262135,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7784431137724551,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6372549019607843,\n", + " 'F1-1.5': 0.6488888888888888,\n", + " 'Recall-1.5': 0.9733333333333334,\n", + " 'Precision-1.5': 0.4866666666666667,\n", + " 'F1-2.5': 0.5152224824355972,\n", + " 'Recall-2.5': 0.9243697478991597,\n", + " 'Precision-2.5': 0.35714285714285715,\n", + " 'F1-3.5': 0.09615384615384616,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.05181347150259067,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8888325946709967},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 51, '2': 92, '3': 26, '4': 16, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 3, '2': 30, '3': 34, '4': 33, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 3, '2': 14, '3': 36, '4': 53, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 6, '3': 14, '4': 81, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.09829219072875885,\n", + " 'Cohen': -0.03227126970048433,\n", + " 'Spearman': 0.6919942016950994,\n", + " 'Kendall': 0.5899349929185254,\n", + " 'Krippendorff': 0.2695447372109828,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.596078431372549,\n", + " 'TA-4.0': 0.7529411764705882,\n", + " 'Acc': 0.12745098039215685,\n", + " 'MAE': 1.380065359477124,\n", + " 'MSE': 2.692864923747277,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.06,\n", + " 'CA-2': 0.11320754716981132,\n", + " 'CA-3': 0.3557692307692308,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09706645147792976,\n", + " 'Micro-F1': 0.12745098039215685,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.06060606060606061,\n", + " 'F1-2_vs_rest': 0.11374407582938388,\n", + " 'F1-3_vs_rest': 0.27106227106227104,\n", + " 'F1-4_vs_rest': 0.136986301369863,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7784431137724551,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6372549019607843,\n", + " 'F1-1.5': 0.6970172684458399,\n", + " 'Recall-1.5': 0.9866666666666667,\n", + " 'Precision-1.5': 0.5388349514563107,\n", + " 'F1-2.5': 0.5446009389671361,\n", + " 'Recall-2.5': 0.9747899159663865,\n", + " 'Precision-2.5': 0.3778501628664495,\n", + " 'F1-3.5': 0.1568627450980392,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.08695652173913043,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8885888231352203},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 89, '2': 61, '3': 28, '4': 6, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 6, '2': 29, '3': 44, '4': 19, '5': 2},\n", + " '2': {'-1': 0, '0': 0, '1': 3, '2': 12, '3': 57, '4': 33, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 37, '4': 63, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.16695059625212946,\n", + " 'Cohen': 0.20005003897266138,\n", + " 'Spearman': 0.6734350800449852,\n", + " 'Kendall': 0.5710603560366054,\n", + " 'Krippendorff': 0.552526906643166,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7352941176470589,\n", + " 'TA-4.0': 0.907843137254902,\n", + " 'Acc': 0.3607843137254902,\n", + " 'MAE': 0.8379084967320257,\n", + " 'MSE': 1.2949891067538122,\n", + " 'CA-0': 0.1783783783783784,\n", + " 'CA-1': 0.33,\n", + " 'CA-2': 0.6226415094339622,\n", + " 'CA-3': 0.49038461538461536,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2597521681922373,\n", + " 'Micro-F1': 0.3607843137254902,\n", + " 'F1-0_vs_rest': 0.3013698630136986,\n", + " 'F1-1_vs_rest': 0.25680933852140075,\n", + " 'F1-2_vs_rest': 0.4520547945205479,\n", + " 'F1-3_vs_rest': 0.5074626865671642,\n", + " 'F1-4_vs_rest': 0.04081632653061224,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8089887640449438,\n", + " 'Recall-0.5': 0.9969230769230769,\n", + " 'Precision-0.5': 0.680672268907563,\n", + " 'F1-1.5': 0.7757352941176471,\n", + " 'Recall-1.5': 0.9377777777777778,\n", + " 'Precision-1.5': 0.6614420062695925,\n", + " 'F1-2.5': 0.6190476190476191,\n", + " 'Recall-2.5': 0.6554621848739496,\n", + " 'Precision-2.5': 0.5864661654135338,\n", + " 'F1-3.5': 0.0784313725490196,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.05555555555555555,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8925300539569949},\n", + " 'CM': {'0': {'-1': 0, '0': 33, '1': 111, '2': 33, '3': 3, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 33, '2': 50, '3': 11, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 9, '2': 66, '3': 24, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 32, '3': 51, '4': 17, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 7, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.0681746779767515,\n", + " 'Cohen': 0.01953930581285601,\n", + " 'Spearman': 0.35921921068177504,\n", + " 'Kendall': 0.29578049895997244,\n", + " 'Krippendorff': -0.10150519008432224,\n", + " 'Invalid': 255,\n", + " 'TA-2.0': 0.49411764705882355,\n", + " 'TA-4.0': 0.5764705882352941,\n", + " 'Acc': 0.13725490196078433,\n", + " 'MAE': 1.8313725490196078,\n", + " 'MSE': 4.784967320261438,\n", + " 'CA-0': 0.031914893617021274,\n", + " 'CA-1': 0.09803921568627451,\n", + " 'CA-2': 0.1875,\n", + " 'CA-3': 0.2545454545454545,\n", + " 'CA-4': 0.5,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.13397217776205372,\n", + " 'Micro-F1': 0.13725490196078433,\n", + " 'F1-0_vs_rest': 0.061855670103092786,\n", + " 'F1-1_vs_rest': 0.13157894736842105,\n", + " 'F1-2_vs_rest': 0.18947368421052632,\n", + " 'F1-3_vs_rest': 0.2413793103448276,\n", + " 'F1-4_vs_rest': 0.05454545454545454,\n", + " 'F1-5_vs_rest': 0.125,\n", + " 'F1-0.5': 0.7796610169491526,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6388888888888888,\n", + " 'F1-1.5': 0.6468842729970327,\n", + " 'Recall-1.5': 0.990909090909091,\n", + " 'Precision-1.5': 0.4801762114537445,\n", + " 'F1-2.5': 0.4462809917355372,\n", + " 'Recall-2.5': 0.8709677419354839,\n", + " 'Precision-2.5': 0.3,\n", + " 'F1-3.5': 0.07936507936507936,\n", + " 'Recall-3.5': 0.7142857142857143,\n", + " 'Precision-3.5': 0.04201680672268908,\n", + " 'F1-4.5': 0.125,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.06666666666666667,\n", + " 'NDCG@all': 0.8520122625520562},\n", + " 'CM': {'0': {'-1': 91, '0': 3, '1': 19, '2': 25, '3': 19, '4': 27, '5': 1},\n", + " '1': {'-1': 49, '0': 0, '1': 5, '2': 5, '3': 15, '4': 23, '5': 3},\n", + " '2': {'-1': 58, '0': 0, '1': 1, '2': 9, '3': 12, '4': 22, '5': 4},\n", + " '3': {'-1': 49, '0': 0, '1': 0, '2': 7, '3': 14, '4': 29, '5': 5},\n", + " '4': {'-1': 7, '0': 0, '1': 0, '2': 1, '3': 1, '4': 3, '5': 1},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 1}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.10842349727488122,\n", + " 'Cohen': 0.15418092619334933,\n", + " 'Spearman': 0.6892349330543994,\n", + " 'Kendall': 0.5881935928131693,\n", + " 'Krippendorff': 0.5621908933290543,\n", + " 'Invalid': 4,\n", + " 'TA-2.0': 0.7391304347826086,\n", + " 'TA-4.0': 0.958498023715415,\n", + " 'Acc': 0.33201581027667987,\n", + " 'MAE': 0.8142292490118574,\n", + " 'MSE': 1.0917874396135263,\n", + " 'CA-0': 0.15135135135135136,\n", + " 'CA-1': 0.28,\n", + " 'CA-2': 0.6476190476190476,\n", + " 'CA-3': 0.43564356435643564,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22588523682054448,\n", + " 'Micro-F1': 0.33201581027667987,\n", + " 'F1-0_vs_rest': 0.26046511627906976,\n", + " 'F1-1_vs_rest': 0.21705426356589147,\n", + " 'F1-2_vs_rest': 0.4146341463414634,\n", + " 'F1-3_vs_rest': 0.4631578947368421,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8005018820577164,\n", + " 'Recall-0.5': 0.9937694704049844,\n", + " 'Precision-0.5': 0.6701680672268907,\n", + " 'F1-1.5': 0.7755102040816326,\n", + " 'Recall-1.5': 0.9457013574660633,\n", + " 'Precision-1.5': 0.6572327044025157,\n", + " 'F1-2.5': 0.5118483412322274,\n", + " 'Recall-2.5': 0.46551724137931033,\n", + " 'Precision-2.5': 0.5684210526315789,\n", + " 'F1-3.5': 0.0,\n", + " 'Recall-3.5': 0.0,\n", + " 'Precision-3.5': 0.0,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8975569694828766},\n", + " 'CM': {'0': {'-1': 0, '0': 28, '1': 119, '2': 35, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 28, '2': 60, '3': 10, '4': 1, '5': 0},\n", + " '2': {'-1': 1, '0': 1, '1': 9, '2': 68, '3': 23, '4': 4, '5': 0},\n", + " '3': {'-1': 3, '0': 0, '1': 2, '2': 54, '3': 44, '4': 1, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 8, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 1, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.06785449230690486,\n", + " 'Cohen': 0.10029641014381385,\n", + " 'Spearman': 0.678574708423601,\n", + " 'Kendall': 0.5540202691527693,\n", + " 'Krippendorff': 0.5226504197503163,\n", + " 'Invalid': 39,\n", + " 'TA-2.0': 0.7091295116772823,\n", + " 'TA-4.0': 0.8110403397027601,\n", + " 'Acc': 0.2611464968152866,\n", + " 'MAE': 1.0187544232130221,\n", + " 'MSE': 1.7095423448926639,\n", + " 'CA-0': 0.21084337349397592,\n", + " 'CA-1': 0.14772727272727273,\n", + " 'CA-2': 0.39603960396039606,\n", + " 'CA-3': 0.27722772277227725,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.23900828864832802,\n", + " 'Micro-F1': 0.2611464968152866,\n", + " 'F1-0_vs_rest': 0.33816425120772947,\n", + " 'F1-1_vs_rest': 0.14606741573033707,\n", + " 'F1-2_vs_rest': 0.3225806451612903,\n", + " 'F1-3_vs_rest': 0.2978723404255319,\n", + " 'F1-4_vs_rest': 0.10714285714285714,\n", + " 'F1-5_vs_rest': 0.2222222222222222,\n", + " 'F1-0.5': 0.8136054421768707,\n", + " 'Recall-0.5': 0.980327868852459,\n", + " 'Precision-0.5': 0.6953488372093023,\n", + " 'F1-1.5': 0.7468581687612208,\n", + " 'Recall-1.5': 0.9585253456221198,\n", + " 'Precision-1.5': 0.611764705882353,\n", + " 'F1-2.5': 0.6343042071197411,\n", + " 'Recall-2.5': 0.8448275862068966,\n", + " 'Precision-2.5': 0.5077720207253886,\n", + " 'F1-3.5': 0.1487603305785124,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.08490566037735849,\n", + " 'F1-4.5': 0.2222222222222222,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.14285714285714285,\n", + " 'NDCG@all': 0.9274609722320378},\n", + " 'CM': {'0': {'-1': 19, '0': 35, '1': 68, '2': 49, '3': 8, '4': 6, '5': 0},\n", + " '1': {'-1': 12, '0': 6, '1': 13, '2': 41, '3': 21, '4': 6, '5': 1},\n", + " '2': {'-1': 5, '0': 0, '1': 8, '2': 40, '3': 26, '4': 26, '5': 1},\n", + " '3': {'-1': 3, '0': 0, '1': 1, '2': 15, '3': 28, '4': 54, '5': 3},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 4, '4': 6, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.06714244101369066,\n", + " 'Cohen': -0.004414103196797914,\n", + " 'Spearman': 0.6439282024623049,\n", + " 'Kendall': 0.5402659277104233,\n", + " 'Krippendorff': 0.24937926488826512,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5549019607843138,\n", + " 'TA-4.0': 0.7529411764705882,\n", + " 'Acc': 0.15490196078431373,\n", + " 'MAE': 1.3699346405228758,\n", + " 'MSE': 2.709368191721133,\n", + " 'CA-0': 0.032432432432432434,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.20754716981132076,\n", + " 'CA-3': 0.3269230769230769,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12146155605247355,\n", + " 'Micro-F1': 0.15490196078431373,\n", + " 'F1-0_vs_rest': 0.06282722513089005,\n", + " 'F1-1_vs_rest': 0.08284023668639054,\n", + " 'F1-2_vs_rest': 0.16417910447761194,\n", + " 'F1-3_vs_rest': 0.2809917355371901,\n", + " 'F1-4_vs_rest': 0.13793103448275862,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7840772014475271,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6448412698412699,\n", + " 'F1-1.5': 0.6757575757575758,\n", + " 'Recall-1.5': 0.9911111111111112,\n", + " 'Precision-1.5': 0.5126436781609195,\n", + " 'F1-2.5': 0.5510204081632653,\n", + " 'Recall-2.5': 0.907563025210084,\n", + " 'Precision-2.5': 0.3956043956043956,\n", + " 'F1-3.5': 0.16,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.08888888888888889,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8854217684935691},\n", + " 'CM': {'0': {'-1': 0, '0': 6, '1': 60, '2': 87, '3': 25, '4': 6, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 42, '3': 28, '4': 22, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 2, '2': 22, '3': 48, '4': 34, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 11, '3': 34, '4': 58, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'nb': {'phi-4': {'metrics': {'Fleiss': 0.21552882131522622,\n", + " 'Cohen': 0.22812283649074583,\n", + " 'Spearman': 0.6563181307136616,\n", + " 'Kendall': 0.542353733268824,\n", + " 'Krippendorff': 0.5531401487075167,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7123287671232876,\n", + " 'TA-4.0': 0.8747553816046967,\n", + " 'Acc': 0.38943248532289626,\n", + " 'MAE': 0.9034572733202869,\n", + " 'MSE': 1.6414437921287235,\n", + " 'CA-0': 0.45161290322580644,\n", + " 'CA-1': 0.28,\n", + " 'CA-2': 0.24528301886792453,\n", + " 'CA-3': 0.5288461538461539,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.32084722423081596,\n", + " 'Micro-F1': 0.38943248532289626,\n", + " 'F1-0_vs_rest': 0.6021505376344086,\n", + " 'F1-1_vs_rest': 0.27860696517412936,\n", + " 'F1-2_vs_rest': 0.2549019607843137,\n", + " 'F1-3_vs_rest': 0.4263565891472868,\n", + " 'F1-4_vs_rest': 0.14084507042253522,\n", + " 'F1-5_vs_rest': 0.2222222222222222,\n", + " 'F1-0.5': 0.8506056527590848,\n", + " 'Recall-0.5': 0.9723076923076923,\n", + " 'Precision-0.5': 0.7559808612440191,\n", + " 'F1-1.5': 0.7490774907749077,\n", + " 'Recall-1.5': 0.9022222222222223,\n", + " 'Precision-1.5': 0.6403785488958991,\n", + " 'F1-2.5': 0.591715976331361,\n", + " 'Recall-2.5': 0.8403361344537815,\n", + " 'Precision-2.5': 0.45662100456621,\n", + " 'F1-3.5': 0.15,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.09230769230769231,\n", + " 'F1-4.5': 0.2222222222222222,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.14285714285714285,\n", + " 'NDCG@all': 0.8878281403189244},\n", + " 'CM': {'0': {'-1': 0, '0': 84, '1': 52, '2': 32, '3': 13, '4': 4, '5': 1},\n", + " '1': {'-1': 0, '0': 8, '1': 28, '2': 25, '3': 30, '4': 6, '5': 3},\n", + " '2': {'-1': 0, '0': 1, '1': 17, '2': 26, '3': 47, '4': 15, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 15, '3': 55, '4': 28, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 8, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 0, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.0760532145238589,\n", + " 'Cohen': 0.11510918701714945,\n", + " 'Spearman': 0.5946243553177213,\n", + " 'Kendall': 0.5041168968431521,\n", + " 'Krippendorff': 0.4909249050765856,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.700587084148728,\n", + " 'TA-4.0': 0.923679060665362,\n", + " 'Acc': 0.29158512720156554,\n", + " 'MAE': 0.9269406392694066,\n", + " 'MSE': 1.4361817786475322,\n", + " 'CA-0': 0.12903225806451613,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.330188679245283,\n", + " 'CA-3': 0.5096153846153846,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2177940467738537,\n", + " 'Micro-F1': 0.29158512720156554,\n", + " 'F1-0_vs_rest': 0.22641509433962265,\n", + " 'F1-1_vs_rest': 0.24305555555555555,\n", + " 'F1-2_vs_rest': 0.2834008097165992,\n", + " 'F1-3_vs_rest': 0.4608695652173913,\n", + " 'F1-4_vs_rest': 0.09302325581395349,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7975308641975308,\n", + " 'Recall-0.5': 0.9938461538461538,\n", + " 'Precision-0.5': 0.6659793814432989,\n", + " 'F1-1.5': 0.7241379310344828,\n", + " 'Recall-1.5': 0.84,\n", + " 'Precision-1.5': 0.6363636363636364,\n", + " 'F1-2.5': 0.5527272727272727,\n", + " 'Recall-2.5': 0.6386554621848739,\n", + " 'Precision-2.5': 0.48717948717948717,\n", + " 'F1-3.5': 0.13333333333333333,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.1,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8869302180716039},\n", + " 'CM': {'0': {'-1': 0, '0': 24, '1': 117, '2': 37, '3': 4, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 35, '2': 40, '3': 16, '4': 7, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 22, '2': 35, '3': 44, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 14, '2': 26, '3': 53, '4': 11, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 8, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.2473059927126134,\n", + " 'Cohen': 0.26172212875569123,\n", + " 'Spearman': 0.6935803198625042,\n", + " 'Kendall': 0.5765971169616891,\n", + " 'Krippendorff': 0.6294024949736439,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7788649706457925,\n", + " 'TA-4.0': 0.7788649706457925,\n", + " 'Acc': 0.4050880626223092,\n", + " 'MAE': 0.8969341161121983,\n", + " 'MSE': 1.771906936290498,\n", + " 'CA-0': 0.543010752688172,\n", + " 'CA-1': 0.42,\n", + " 'CA-2': 0.33962264150943394,\n", + " 'CA-3': 0.18269230769230768,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.32033743244669327,\n", + " 'Micro-F1': 0.4050880626223092,\n", + " 'F1-0_vs_rest': 0.6801346801346801,\n", + " 'F1-1_vs_rest': 0.36363636363636365,\n", + " 'F1-2_vs_rest': 0.3673469387755102,\n", + " 'F1-3_vs_rest': 0.2331288343558282,\n", + " 'F1-4_vs_rest': 0.12962962962962962,\n", + " 'F1-5_vs_rest': 0.14814814814814814,\n", + " 'F1-0.5': 0.8689655172413793,\n", + " 'Recall-0.5': 0.9692307692307692,\n", + " 'Precision-0.5': 0.7875,\n", + " 'F1-1.5': 0.7894736842105263,\n", + " 'Recall-1.5': 0.8666666666666667,\n", + " 'Precision-1.5': 0.724907063197026,\n", + " 'F1-2.5': 0.6040268456375839,\n", + " 'Recall-2.5': 0.7563025210084033,\n", + " 'Precision-2.5': 0.5027932960893855,\n", + " 'F1-3.5': 0.16296296296296298,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.09166666666666666,\n", + " 'F1-4.5': 0.14814814814814814,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.08,\n", + " 'NDCG@all': 0.8964037523983026},\n", + " 'CM': {'0': {'-1': 0, '0': 101, '1': 60, '2': 10, '3': 9, '4': 2, '5': 4},\n", + " '1': {'-1': 0, '0': 9, '1': 42, '2': 20, '3': 10, '4': 14, '5': 5},\n", + " '2': {'-1': 0, '0': 1, '1': 24, '2': 36, '3': 18, '4': 22, '5': 5},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 23, '3': 19, '4': 50, '5': 7},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 3, '4': 7, '5': 2},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.05644862886979403,\n", + " 'Cohen': 0.12310866574965607,\n", + " 'Spearman': 0.6134978838460946,\n", + " 'Kendall': 0.5248674438181551,\n", + " 'Krippendorff': 0.5126263169377094,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7549019607843137,\n", + " 'TA-4.0': 0.9411764705882353,\n", + " 'Acc': 0.29411764705882354,\n", + " 'MAE': 0.8686274509803921,\n", + " 'MSE': 1.232461873638344,\n", + " 'CA-0': 0.021505376344086023,\n", + " 'CA-1': 0.53,\n", + " 'CA-2': 0.3904761904761905,\n", + " 'CA-3': 0.49038461538461536,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2084528463001225,\n", + " 'Micro-F1': 0.29411764705882354,\n", + " 'F1-0_vs_rest': 0.042105263157894736,\n", + " 'F1-1_vs_rest': 0.29444444444444445,\n", + " 'F1-2_vs_rest': 0.3565217391304348,\n", + " 'F1-3_vs_rest': 0.49514563106796117,\n", + " 'F1-4_vs_rest': 0.0625,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7807228915662651,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6403162055335968,\n", + " 'F1-1.5': 0.7489361702127659,\n", + " 'Recall-1.5': 0.7857142857142857,\n", + " 'Precision-1.5': 0.7154471544715447,\n", + " 'F1-2.5': 0.5583333333333333,\n", + " 'Recall-2.5': 0.5630252100840336,\n", + " 'Precision-2.5': 0.5537190082644629,\n", + " 'F1-3.5': 0.11764705882352941,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.10526315789473684,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8885064368778701},\n", + " 'CM': {'0': {'-1': 0, '0': 4, '1': 159, '2': 16, '3': 4, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 53, '2': 32, '3': 12, '4': 3, '5': 0},\n", + " '2': {'-1': 1, '0': 0, '1': 32, '2': 41, '3': 26, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 16, '2': 32, '3': 51, '4': 5, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 8, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.15087117437375586,\n", + " 'Cohen': 0.1747603622035312,\n", + " 'Spearman': 0.659861073319925,\n", + " 'Kendall': 0.5585164950656233,\n", + " 'Krippendorff': 0.5681127287770646,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7397260273972602,\n", + " 'TA-4.0': 0.8082191780821918,\n", + " 'Acc': 0.33268101761252444,\n", + " 'MAE': 0.9471624266144816,\n", + " 'MSE': 1.6547075451185045,\n", + " 'CA-0': 0.3817204301075269,\n", + " 'CA-1': 0.42,\n", + " 'CA-2': 0.14150943396226415,\n", + " 'CA-3': 0.3076923076923077,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.25119909014876957,\n", + " 'Micro-F1': 0.33268101761252444,\n", + " 'F1-0_vs_rest': 0.5220588235294118,\n", + " 'F1-1_vs_rest': 0.3333333333333333,\n", + " 'F1-2_vs_rest': 0.18181818181818182,\n", + " 'F1-3_vs_rest': 0.3033175355450237,\n", + " 'F1-4_vs_rest': 0.16666666666666666,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8266666666666667,\n", + " 'Recall-0.5': 0.9538461538461539,\n", + " 'Precision-0.5': 0.7294117647058823,\n", + " 'F1-1.5': 0.7469879518072289,\n", + " 'Recall-1.5': 0.8266666666666667,\n", + " 'Precision-1.5': 0.6813186813186813,\n", + " 'F1-2.5': 0.6186186186186187,\n", + " 'Recall-2.5': 0.865546218487395,\n", + " 'Precision-2.5': 0.48130841121495327,\n", + " 'F1-3.5': 0.19672131147540983,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.11214953271028037,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9124451754206458},\n", + " 'CM': {'0': {'-1': 0, '0': 71, '1': 80, '2': 20, '3': 11, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 6, '1': 42, '2': 20, '3': 19, '4': 13, '5': 0},\n", + " '2': {'-1': 0, '0': 5, '1': 22, '2': 15, '3': 42, '4': 22, '5': 0},\n", + " '3': {'-1': 0, '0': 4, '1': 8, '2': 4, '3': 32, '4': 56, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.12907609021259053,\n", + " 'Cohen': -0.04250178123354287,\n", + " 'Spearman': 0.6286145557631627,\n", + " 'Kendall': 0.5322031489932144,\n", + " 'Krippendorff': 0.22830888130604177,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5949119373776908,\n", + " 'TA-4.0': 0.6301369863013698,\n", + " 'Acc': 0.09784735812133072,\n", + " 'MAE': 1.476842791911285,\n", + " 'MSE': 3.0241356816699283,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.19811320754716982,\n", + " 'CA-3': 0.11538461538461539,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.0787009578241681,\n", + " 'Micro-F1': 0.09784735812133072,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.0784313725490196,\n", + " 'F1-2_vs_rest': 0.17721518987341772,\n", + " 'F1-3_vs_rest': 0.13043478260869565,\n", + " 'F1-4_vs_rest': 0.0861244019138756,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.6930379746835443,\n", + " 'Recall-1.5': 0.9733333333333334,\n", + " 'Precision-1.5': 0.538083538083538,\n", + " 'F1-2.5': 0.5316455696202531,\n", + " 'Recall-2.5': 0.8823529411764706,\n", + " 'Precision-2.5': 0.3804347826086957,\n", + " 'F1-3.5': 0.10426540284360189,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.05612244897959184,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8888230445200241},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 90, '2': 59, '3': 20, '4': 17, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 39, '3': 22, '4': 31, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 4, '2': 21, '3': 23, '4': 58, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 11, '3': 12, '4': 79, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 3, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.09780265670222289,\n", + " 'Cohen': -0.034907270451700834,\n", + " 'Spearman': 0.7011387123642994,\n", + " 'Kendall': 0.5963815718522555,\n", + " 'Krippendorff': 0.3055541217476164,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6183953033268101,\n", + " 'TA-4.0': 0.7690802348336595,\n", + " 'Acc': 0.12915851272015655,\n", + " 'MAE': 1.3336594911937378,\n", + " 'MSE': 2.5202761469884765,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.16037735849056603,\n", + " 'CA-3': 0.3173076923076923,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09964342920565251,\n", + " 'Micro-F1': 0.12915851272015655,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.07692307692307693,\n", + " 'F1-2_vs_rest': 0.1588785046728972,\n", + " 'F1-3_vs_rest': 0.24175824175824176,\n", + " 'F1-4_vs_rest': 0.12030075187969924,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.7101910828025477,\n", + " 'Recall-1.5': 0.9911111111111112,\n", + " 'Precision-1.5': 0.5533498759305211,\n", + " 'F1-2.5': 0.5458937198067633,\n", + " 'Recall-2.5': 0.9495798319327731,\n", + " 'Precision-2.5': 0.38305084745762713,\n", + " 'F1-3.5': 0.14184397163120568,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.07936507936507936,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8966455180175203},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 98, '2': 58, '3': 24, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 28, '3': 46, '4': 17, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 1, '2': 17, '3': 61, '4': 23, '5': 4},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 5, '3': 33, '4': 64, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.22053178868029868,\n", + " 'Cohen': 0.24504634994206254,\n", + " 'Spearman': 0.6804091524864903,\n", + " 'Kendall': 0.5805903852931942,\n", + " 'Krippendorff': 0.5859043559322508,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7475538160469667,\n", + " 'TA-4.0': 0.9256360078277887,\n", + " 'Acc': 0.40117416829745595,\n", + " 'MAE': 0.7827788649706456,\n", + " 'MSE': 1.2011306805827349,\n", + " 'CA-0': 0.25268817204301075,\n", + " 'CA-1': 0.39,\n", + " 'CA-2': 0.5188679245283019,\n", + " 'CA-3': 0.5961538461538461,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2961800950226636,\n", + " 'Micro-F1': 0.40117416829745595,\n", + " 'F1-0_vs_rest': 0.4034334763948498,\n", + " 'F1-1_vs_rest': 0.2943396226415094,\n", + " 'F1-2_vs_rest': 0.4280155642023346,\n", + " 'F1-3_vs_rest': 0.5560538116591929,\n", + " 'F1-4_vs_rest': 0.09523809523809523,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8238276299112801,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.7004310344827587,\n", + " 'F1-1.5': 0.7748091603053435,\n", + " 'Recall-1.5': 0.9022222222222223,\n", + " 'Precision-1.5': 0.6789297658862876,\n", + " 'F1-2.5': 0.6367041198501873,\n", + " 'Recall-2.5': 0.7142857142857143,\n", + " 'Precision-2.5': 0.5743243243243243,\n", + " 'F1-3.5': 0.13636363636363635,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.10344827586206896,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8981506220609349},\n", + " 'CM': {'0': {'-1': 0, '0': 47, '1': 104, '2': 25, '3': 6, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 39, '2': 42, '3': 16, '4': 3, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 17, '2': 55, '3': 27, '4': 7, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 25, '3': 62, '4': 12, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 7, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.04678362573099412,\n", + " 'Cohen': 0.023906684482323026,\n", + " 'Spearman': 0.47486473315204364,\n", + " 'Kendall': 0.39222905368278405,\n", + " 'Krippendorff': 0.0954564495004836,\n", + " 'Invalid': 332,\n", + " 'TA-2.0': 0.5195530726256983,\n", + " 'TA-4.0': 0.7262569832402235,\n", + " 'Acc': 0.1564245810055866,\n", + " 'MAE': 1.579143389199255,\n", + " 'MSE': 3.715704531346989,\n", + " 'CA-0': 0.06756756756756757,\n", + " 'CA-1': 0.13513513513513514,\n", + " 'CA-2': 0.22580645161290322,\n", + " 'CA-3': 0.3225806451612903,\n", + " 'CA-4': 0.2,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.1311417004880069,\n", + " 'Micro-F1': 0.1564245810055866,\n", + " 'F1-0_vs_rest': 0.12658227848101267,\n", + " 'F1-1_vs_rest': 0.15873015873015872,\n", + " 'F1-2_vs_rest': 0.16666666666666666,\n", + " 'F1-3_vs_rest': 0.29850746268656714,\n", + " 'F1-4_vs_rest': 0.03636363636363636,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7526881720430108,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.603448275862069,\n", + " 'F1-1.5': 0.6018518518518519,\n", + " 'Recall-1.5': 0.9558823529411765,\n", + " 'Precision-1.5': 0.4391891891891892,\n", + " 'F1-2.5': 0.48484848484848486,\n", + " 'Recall-2.5': 0.8648648648648649,\n", + " 'Precision-2.5': 0.3368421052631579,\n", + " 'F1-3.5': 0.12307692307692308,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.06779661016949153,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8358097549745576},\n", + " 'CM': {'0': {'-1': 112, '0': 5, '1': 18, '2': 29, '3': 11, '4': 9, '5': 2},\n", + " '1': {'-1': 63, '0': 0, '1': 5, '2': 13, '3': 9, '4': 8, '5': 2},\n", + " '2': {'-1': 75, '0': 0, '1': 2, '2': 7, '3': 6, '4': 16, '5': 0},\n", + " '3': {'-1': 73, '0': 0, '1': 0, '2': 3, '3': 10, '4': 15, '5': 3},\n", + " '4': {'-1': 8, '0': 0, '1': 1, '2': 1, '3': 0, '4': 1, '5': 2},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.1438858309727244,\n", + " 'Cohen': 0.17958979489744875,\n", + " 'Spearman': 0.6986179274966334,\n", + " 'Kendall': 0.5974775270838849,\n", + " 'Krippendorff': 0.6088878412396672,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7647058823529411,\n", + " 'TA-4.0': 0.9627450980392157,\n", + " 'Acc': 0.3568627450980392,\n", + " 'MAE': 0.7617647058823527,\n", + " 'MSE': 0.983061002178649,\n", + " 'CA-0': 0.24193548387096775,\n", + " 'CA-1': 0.33,\n", + " 'CA-2': 0.6226415094339622,\n", + " 'CA-3': 0.36893203883495146,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.24314481552569087,\n", + " 'Micro-F1': 0.3568627450980392,\n", + " 'F1-0_vs_rest': 0.38461538461538464,\n", + " 'F1-1_vs_rest': 0.2509505703422053,\n", + " 'F1-2_vs_rest': 0.41904761904761906,\n", + " 'F1-3_vs_rest': 0.40425531914893614,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.816793893129771,\n", + " 'Recall-0.5': 0.9907407407407407,\n", + " 'Precision-0.5': 0.6948051948051948,\n", + " 'F1-1.5': 0.7915869980879541,\n", + " 'Recall-1.5': 0.9241071428571429,\n", + " 'Precision-1.5': 0.6923076923076923,\n", + " 'F1-2.5': 0.4807692307692308,\n", + " 'Recall-2.5': 0.423728813559322,\n", + " 'Precision-2.5': 0.5555555555555556,\n", + " 'F1-3.5': 0.0,\n", + " 'Recall-3.5': 0.0,\n", + " 'Precision-3.5': 0.0,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.904681007323939},\n", + " 'CM': {'0': {'-1': 0, '0': 45, '1': 113, '2': 24, '3': 4, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 33, '2': 55, '3': 8, '4': 1, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 13, '2': 66, '3': 26, '4': 1, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 4, '2': 58, '3': 38, '4': 3, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 7, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.2020930818199387,\n", + " 'Cohen': 0.21798948480117553,\n", + " 'Spearman': 0.6264739506274926,\n", + " 'Kendall': 0.5135673261706963,\n", + " 'Krippendorff': 0.571737621630807,\n", + " 'Invalid': 46,\n", + " 'TA-2.0': 0.7440860215053764,\n", + " 'TA-4.0': 0.8129032258064516,\n", + " 'Acc': 0.36989247311827955,\n", + " 'MAE': 0.9179211469534051,\n", + " 'MSE': 1.6510752688172046,\n", + " 'CA-0': 0.44025157232704404,\n", + " 'CA-1': 0.2727272727272727,\n", + " 'CA-2': 0.42,\n", + " 'CA-3': 0.2912621359223301,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.28032607803103093,\n", + " 'Micro-F1': 0.36989247311827955,\n", + " 'F1-0_vs_rest': 0.5761316872427984,\n", + " 'F1-1_vs_rest': 0.2681564245810056,\n", + " 'F1-2_vs_rest': 0.37668161434977576,\n", + " 'F1-3_vs_rest': 0.3488372093023256,\n", + " 'F1-4_vs_rest': 0.11214953271028037,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8500727802037845,\n", + " 'Recall-0.5': 0.954248366013072,\n", + " 'Precision-0.5': 0.7664041994750657,\n", + " 'F1-1.5': 0.7677165354330708,\n", + " 'Recall-1.5': 0.8944954128440367,\n", + " 'Precision-1.5': 0.6724137931034483,\n", + " 'F1-2.5': 0.6035087719298246,\n", + " 'Recall-2.5': 0.7288135593220338,\n", + " 'Precision-2.5': 0.5149700598802395,\n", + " 'F1-3.5': 0.12389380530973451,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.07142857142857142,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8818882556649317},\n", + " 'CM': {'0': {'-1': 27, '0': 70, '1': 50, '2': 28, '3': 4, '4': 6, '5': 1},\n", + " '1': {'-1': 12, '0': 8, '1': 24, '2': 26, '3': 16, '4': 13, '5': 1},\n", + " '2': {'-1': 6, '0': 6, '1': 12, '2': 42, '3': 16, '4': 23, '5': 1},\n", + " '3': {'-1': 1, '0': 0, '1': 4, '2': 23, '3': 30, '4': 45, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 1, '2': 4, '3': 2, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.05871015924257385,\n", + " 'Cohen': -0.00012289317851843506,\n", + " 'Spearman': 0.6219216252080505,\n", + " 'Kendall': 0.5212956259806314,\n", + " 'Krippendorff': 0.29490611294803326,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5909980430528375,\n", + " 'TA-4.0': 0.7514677103718199,\n", + " 'Acc': 0.15851272015655576,\n", + " 'MAE': 1.3202870189171558,\n", + " 'MSE': 2.5292454881495985,\n", + " 'CA-0': 0.04838709677419355,\n", + " 'CA-1': 0.12,\n", + " 'CA-2': 0.19811320754716982,\n", + " 'CA-3': 0.27884615384615385,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12875257958222047,\n", + " 'Micro-F1': 0.15851272015655576,\n", + " 'F1-0_vs_rest': 0.09230769230769231,\n", + " 'F1-1_vs_rest': 0.1218274111675127,\n", + " 'F1-2_vs_rest': 0.1640625,\n", + " 'F1-3_vs_rest': 0.2600896860986547,\n", + " 'F1-4_vs_rest': 0.1342281879194631,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7859733978234583,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.647410358565737,\n", + " 'F1-1.5': 0.6857142857142857,\n", + " 'Recall-1.5': 0.96,\n", + " 'Precision-1.5': 0.5333333333333333,\n", + " 'F1-2.5': 0.5401069518716578,\n", + " 'Recall-2.5': 0.8487394957983193,\n", + " 'Precision-2.5': 0.396078431372549,\n", + " 'F1-3.5': 0.15894039735099338,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.08823529411764706,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8973069383958757},\n", + " 'CM': {'0': {'-1': 0, '0': 9, '1': 76, '2': 72, '3': 21, '4': 8, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 12, '2': 41, '3': 27, '4': 20, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 7, '2': 21, '3': 39, '4': 39, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 16, '3': 29, '4': 57, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'et': {'phi-4': {'metrics': {'Fleiss': 0.16558092638361183,\n", + " 'Cohen': 0.18244334035304144,\n", + " 'Spearman': 0.6566756846898585,\n", + " 'Kendall': 0.5389754356719453,\n", + " 'Krippendorff': 0.5261555326699758,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7064579256360078,\n", + " 'TA-4.0': 0.8767123287671232,\n", + " 'Acc': 0.350293542074364,\n", + " 'MAE': 0.9399869536855838,\n", + " 'MSE': 1.671450315285932,\n", + " 'CA-0': 0.4032258064516129,\n", + " 'CA-1': 0.24,\n", + " 'CA-2': 0.1792452830188679,\n", + " 'CA-3': 0.5480769230769231,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.3147512127127717,\n", + " 'Micro-F1': 0.350293542074364,\n", + " 'F1-0_vs_rest': 0.5576208178438662,\n", + " 'F1-1_vs_rest': 0.23880597014925373,\n", + " 'F1-2_vs_rest': 0.18719211822660098,\n", + " 'F1-3_vs_rest': 0.42696629213483145,\n", + " 'F1-4_vs_rest': 0.07792207792207792,\n", + " 'F1-5_vs_rest': 0.4,\n", + " 'F1-0.5': 0.8419654714475432,\n", + " 'Recall-0.5': 0.9753846153846154,\n", + " 'Precision-0.5': 0.7406542056074766,\n", + " 'F1-1.5': 0.75,\n", + " 'Recall-1.5': 0.92,\n", + " 'Precision-1.5': 0.6330275229357798,\n", + " 'F1-2.5': 0.5673352435530086,\n", + " 'Recall-2.5': 0.8319327731092437,\n", + " 'Precision-2.5': 0.43043478260869567,\n", + " 'F1-3.5': 0.12195121951219512,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.07462686567164178,\n", + " 'F1-4.5': 0.4,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.3333333333333333,\n", + " 'NDCG@all': 0.9010819148560122},\n", + " 'CM': {'0': {'-1': 0, '0': 75, '1': 62, '2': 30, '3': 14, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 5, '1': 24, '2': 32, '3': 30, '4': 9, '5': 0},\n", + " '2': {'-1': 0, '0': 3, '1': 11, '2': 19, '3': 54, '4': 17, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 14, '3': 57, '4': 29, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 8, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.0895834113111502,\n", + " 'Cohen': 0.12669226203013995,\n", + " 'Spearman': 0.5956360590128252,\n", + " 'Kendall': 0.49874009555449356,\n", + " 'Krippendorff': 0.49507456049286813,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7103718199608611,\n", + " 'TA-4.0': 0.9217221135029354,\n", + " 'Acc': 0.3013698630136986,\n", + " 'MAE': 0.9171559034572732,\n", + " 'MSE': 1.419004131332898,\n", + " 'CA-0': 0.13978494623655913,\n", + " 'CA-1': 0.33,\n", + " 'CA-2': 0.42452830188679247,\n", + " 'CA-3': 0.4519230769230769,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23190438310001307,\n", + " 'Micro-F1': 0.3013698630136986,\n", + " 'F1-0_vs_rest': 0.23963133640552994,\n", + " 'F1-1_vs_rest': 0.22916666666666666,\n", + " 'F1-2_vs_rest': 0.35294117647058826,\n", + " 'F1-3_vs_rest': 0.4392523364485981,\n", + " 'F1-4_vs_rest': 0.13043478260869565,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7950310559006211,\n", + " 'Recall-0.5': 0.9846153846153847,\n", + " 'Precision-0.5': 0.6666666666666666,\n", + " 'F1-1.5': 0.7350096711798839,\n", + " 'Recall-1.5': 0.8444444444444444,\n", + " 'Precision-1.5': 0.6506849315068494,\n", + " 'F1-2.5': 0.549618320610687,\n", + " 'Recall-2.5': 0.6050420168067226,\n", + " 'Precision-2.5': 0.5034965034965035,\n", + " 'F1-3.5': 0.16666666666666666,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.12121212121212122,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8868261112040604},\n", + " 'CM': {'0': {'-1': 0, '0': 26, '1': 120, '2': 31, '3': 4, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 5, '1': 33, '2': 41, '3': 15, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 20, '2': 45, '3': 34, '4': 7, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 15, '2': 31, '3': 47, '4': 11, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 9, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.24470925752722303,\n", + " 'Cohen': 0.26033761882388673,\n", + " 'Spearman': 0.7070158912394379,\n", + " 'Kendall': 0.5901434719753905,\n", + " 'Krippendorff': 0.6423805561344249,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.786692759295499,\n", + " 'TA-4.0': 0.7788649706457925,\n", + " 'Acc': 0.40313111545988256,\n", + " 'MAE': 0.8767123287671231,\n", + " 'MSE': 1.6942813655142424,\n", + " 'CA-0': 0.5161290322580645,\n", + " 'CA-1': 0.44,\n", + " 'CA-2': 0.33962264150943394,\n", + " 'CA-3': 0.22115384615384615,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.3117286433927741,\n", + " 'Micro-F1': 0.40313111545988256,\n", + " 'F1-0_vs_rest': 0.6597938144329897,\n", + " 'F1-1_vs_rest': 0.37130801687763715,\n", + " 'F1-2_vs_rest': 0.36363636363636365,\n", + " 'F1-3_vs_rest': 0.2822085889570552,\n", + " 'F1-4_vs_rest': 0.11009174311926606,\n", + " 'F1-5_vs_rest': 0.08333333333333333,\n", + " 'F1-0.5': 0.8645690834473324,\n", + " 'Recall-0.5': 0.9723076923076923,\n", + " 'Precision-0.5': 0.7783251231527094,\n", + " 'F1-1.5': 0.8016194331983806,\n", + " 'Recall-1.5': 0.88,\n", + " 'Precision-1.5': 0.7360594795539034,\n", + " 'F1-2.5': 0.6283783783783784,\n", + " 'Recall-2.5': 0.7815126050420168,\n", + " 'Precision-2.5': 0.5254237288135594,\n", + " 'F1-3.5': 0.15037593984962405,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.0847457627118644,\n", + " 'F1-4.5': 0.08333333333333333,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.045454545454545456,\n", + " 'NDCG@all': 0.8896079879101745},\n", + " 'CM': {'0': {'-1': 0, '0': 96, '1': 69, '2': 10, '3': 4, '4': 3, '5': 4},\n", + " '1': {'-1': 0, '0': 6, '1': 44, '2': 24, '3': 8, '4': 13, '5': 5},\n", + " '2': {'-1': 0, '0': 3, '1': 20, '2': 36, '3': 22, '4': 19, '5': 6},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 19, '3': 23, '4': 54, '5': 4},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 2, '4': 6, '5': 2},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.03454532837466557,\n", + " 'Cohen': 0.09800315039283869,\n", + " 'Spearman': 0.65735345677687,\n", + " 'Kendall': 0.5626698305604065,\n", + " 'Krippendorff': 0.5419859856252587,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.7662082514734774,\n", + " 'TA-4.0': 0.9469548133595285,\n", + " 'Acc': 0.275049115913556,\n", + " 'MAE': 0.8680419122462345,\n", + " 'MSE': 1.1585352543112855,\n", + " 'CA-0': 0.016129032258064516,\n", + " 'CA-1': 0.46,\n", + " 'CA-2': 0.36792452830188677,\n", + " 'CA-3': 0.5098039215686274,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.18341003615458226,\n", + " 'Micro-F1': 0.275049115913556,\n", + " 'F1-0_vs_rest': 0.031746031746031744,\n", + " 'F1-1_vs_rest': 0.26822157434402333,\n", + " 'F1-2_vs_rest': 0.33620689655172414,\n", + " 'F1-3_vs_rest': 0.4642857142857143,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7792521109770808,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6383399209486166,\n", + " 'F1-1.5': 0.7654320987654321,\n", + " 'Recall-1.5': 0.8340807174887892,\n", + " 'Precision-1.5': 0.7072243346007605,\n", + " 'F1-2.5': 0.5590551181102362,\n", + " 'Recall-2.5': 0.6068376068376068,\n", + " 'Precision-2.5': 0.5182481751824818,\n", + " 'F1-3.5': 0.06666666666666667,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.06666666666666667,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9070218054859662},\n", + " 'CM': {'0': {'-1': 0, '0': 3, '1': 160, '2': 18, '3': 5, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 46, '2': 33, '3': 19, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 27, '2': 39, '3': 36, '4': 4, '5': 0},\n", + " '3': {'-1': 2, '0': 0, '1': 10, '2': 32, '3': 52, '4': 8, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 9, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.10319149451923962,\n", + " 'Cohen': 0.1272540268171396,\n", + " 'Spearman': 0.6456343157414739,\n", + " 'Kendall': 0.5396706764523056,\n", + " 'Krippendorff': 0.5212560060610887,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7045009784735812,\n", + " 'TA-4.0': 0.8062622309197651,\n", + " 'Acc': 0.29158512720156554,\n", + " 'MAE': 1.0120678408349641,\n", + " 'MSE': 1.7945749075886068,\n", + " 'CA-0': 0.34408602150537637,\n", + " 'CA-1': 0.33,\n", + " 'CA-2': 0.1509433962264151,\n", + " 'CA-3': 0.27884615384615385,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22248246053786316,\n", + " 'Micro-F1': 0.29158512720156554,\n", + " 'F1-0_vs_rest': 0.5019607843137255,\n", + " 'F1-1_vs_rest': 0.28448275862068967,\n", + " 'F1-2_vs_rest': 0.16080402010050251,\n", + " 'F1-3_vs_rest': 0.2648401826484018,\n", + " 'F1-4_vs_rest': 0.12280701754385964,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.834419817470665,\n", + " 'Recall-0.5': 0.9846153846153847,\n", + " 'Precision-0.5': 0.7239819004524887,\n", + " 'F1-1.5': 0.7327102803738318,\n", + " 'Recall-1.5': 0.8711111111111111,\n", + " 'Precision-1.5': 0.632258064516129,\n", + " 'F1-2.5': 0.5595238095238095,\n", + " 'Recall-2.5': 0.7899159663865546,\n", + " 'Precision-2.5': 0.43317972350230416,\n", + " 'F1-3.5': 0.15384615384615385,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.08823529411764706,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8944168140548879},\n", + " 'CM': {'0': {'-1': 0, '0': 64, '1': 72, '2': 34, '3': 11, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 33, '2': 27, '3': 22, '4': 14, '5': 1},\n", + " '2': {'-1': 0, '0': 1, '1': 19, '2': 16, '3': 47, '4': 23, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 8, '2': 16, '3': 29, '4': 50, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 6, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.14657761817663142,\n", + " 'Cohen': -0.05280118333817585,\n", + " 'Spearman': 0.6763546819274491,\n", + " 'Kendall': 0.5673434199162278,\n", + " 'Krippendorff': 0.16944107152963261,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5499021526418787,\n", + " 'TA-4.0': 0.6105675146771037,\n", + " 'Acc': 0.08414872798434442,\n", + " 'MAE': 1.5776255707762554,\n", + " 'MSE': 3.3070776255707766,\n", + " 'CA-0': 0.005376344086021506,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.12264150943396226,\n", + " 'CA-3': 0.10576923076923077,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.06830586376405796,\n", + " 'Micro-F1': 0.08414872798434442,\n", + " 'F1-0_vs_rest': 0.0106951871657754,\n", + " 'F1-1_vs_rest': 0.07954545454545454,\n", + " 'F1-2_vs_rest': 0.11353711790393013,\n", + " 'F1-3_vs_rest': 0.10784313725490197,\n", + " 'F1-4_vs_rest': 0.09821428571428571,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7784431137724551,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6372549019607843,\n", + " 'F1-1.5': 0.6707132018209409,\n", + " 'Recall-1.5': 0.9822222222222222,\n", + " 'Precision-1.5': 0.5092165898617511,\n", + " 'F1-2.5': 0.5255813953488372,\n", + " 'Recall-2.5': 0.9495798319327731,\n", + " 'Precision-2.5': 0.3633440514469453,\n", + " 'F1-3.5': 0.11504424778761062,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.061611374407582936,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8951297972913057},\n", + " 'CM': {'0': {'-1': 0, '0': 1, '1': 65, '2': 76, '3': 31, '4': 13, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 30, '3': 30, '4': 33, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 2, '2': 13, '3': 26, '4': 65, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 4, '3': 11, '4': 87, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.11110305788897666,\n", + " 'Cohen': -0.0446954277822198,\n", + " 'Spearman': 0.707520571044935,\n", + " 'Kendall': 0.6013422169595338,\n", + " 'Krippendorff': 0.2842703490147853,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6125244618395304,\n", + " 'TA-4.0': 0.7592954990215264,\n", + " 'Acc': 0.11937377690802348,\n", + " 'MAE': 1.3744292237442923,\n", + " 'MSE': 2.6267666884105245,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.06,\n", + " 'CA-2': 0.11320754716981132,\n", + " 'CA-3': 0.33653846153846156,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09024573310282308,\n", + " 'Micro-F1': 0.11937377690802348,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.05853658536585366,\n", + " 'F1-2_vs_rest': 0.1188118811881188,\n", + " 'F1-3_vs_rest': 0.24647887323943662,\n", + " 'F1-4_vs_rest': 0.11764705882352941,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.7068145800316957,\n", + " 'Recall-1.5': 0.9911111111111112,\n", + " 'Precision-1.5': 0.5492610837438424,\n", + " 'F1-2.5': 0.5314685314685315,\n", + " 'Recall-2.5': 0.957983193277311,\n", + " 'Precision-2.5': 0.36774193548387096,\n", + " 'F1-3.5': 0.13793103448275862,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.07692307692307693,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.900840405136827},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 97, '2': 55, '3': 30, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 6, '2': 25, '3': 50, '4': 18, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 1, '2': 12, '3': 60, '4': 29, '5': 4},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 4, '3': 35, '4': 62, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.12574630984276067,\n", + " 'Cohen': 0.16326854003803093,\n", + " 'Spearman': 0.6644256929785255,\n", + " 'Kendall': 0.5696115657462317,\n", + " 'Krippendorff': 0.5630571153102941,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7318982387475538,\n", + " 'TA-4.0': 0.9295499021526419,\n", + " 'Acc': 0.33268101761252444,\n", + " 'MAE': 0.8290932811480752,\n", + " 'MSE': 1.205262013481191,\n", + " 'CA-0': 0.1774193548387097,\n", + " 'CA-1': 0.33,\n", + " 'CA-2': 0.5377358490566038,\n", + " 'CA-3': 0.4230769230769231,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2554860618213582,\n", + " 'Micro-F1': 0.33268101761252444,\n", + " 'F1-0_vs_rest': 0.3013698630136986,\n", + " 'F1-1_vs_rest': 0.23826714801444043,\n", + " 'F1-2_vs_rest': 0.3944636678200692,\n", + " 'F1-3_vs_rest': 0.45595854922279794,\n", + " 'F1-4_vs_rest': 0.14285714285714285,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8094645080946451,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6799163179916318,\n", + " 'F1-1.5': 0.7604562737642585,\n", + " 'Recall-1.5': 0.8888888888888888,\n", + " 'Precision-1.5': 0.6644518272425249,\n", + " 'F1-2.5': 0.5654008438818565,\n", + " 'Recall-2.5': 0.5630252100840336,\n", + " 'Precision-2.5': 0.5677966101694916,\n", + " 'F1-3.5': 0.18181818181818182,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.13793103448275862,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9002040119744911},\n", + " 'CM': {'0': {'-1': 0, '0': 33, '1': 119, '2': 27, '3': 4, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 33, '2': 51, '3': 10, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 21, '2': 57, '3': 26, '4': 2, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 42, '3': 44, '4': 14, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 5, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 0, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.08448804414469645,\n", + " 'Cohen': 0.009214395742893178,\n", + " 'Spearman': 0.3432645593736001,\n", + " 'Kendall': 0.2917905871150624,\n", + " 'Krippendorff': -0.13586505052232534,\n", + " 'Invalid': 310,\n", + " 'TA-2.0': 0.48258706467661694,\n", + " 'TA-4.0': 0.5771144278606966,\n", + " 'Acc': 0.12437810945273632,\n", + " 'MAE': 1.9112769485903813,\n", + " 'MSE': 5.139994472084024,\n", + " 'CA-0': 0.037037037037037035,\n", + " 'CA-1': 0.02857142857142857,\n", + " 'CA-2': 0.1282051282051282,\n", + " 'CA-3': 0.3076923076923077,\n", + " 'CA-4': 0.5,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.11925675181253274,\n", + " 'Micro-F1': 0.12437810945273632,\n", + " 'F1-0_vs_rest': 0.07142857142857142,\n", + " 'F1-1_vs_rest': 0.0392156862745098,\n", + " 'F1-2_vs_rest': 0.12987012987012986,\n", + " 'F1-3_vs_rest': 0.2727272727272727,\n", + " 'F1-4_vs_rest': 0.06896551724137931,\n", + " 'F1-5_vs_rest': 0.13333333333333333,\n", + " 'F1-0.5': 0.7547169811320755,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6060606060606061,\n", + " 'F1-1.5': 0.6217228464419475,\n", + " 'Recall-1.5': 0.9764705882352941,\n", + " 'Precision-1.5': 0.45604395604395603,\n", + " 'F1-2.5': 0.4421052631578947,\n", + " 'Recall-2.5': 0.9130434782608695,\n", + " 'Precision-2.5': 0.2916666666666667,\n", + " 'F1-3.5': 0.0784313725490196,\n", + " 'Recall-3.5': 0.5714285714285714,\n", + " 'Precision-3.5': 0.042105263157894736,\n", + " 'F1-4.5': 0.13333333333333333,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.07142857142857142,\n", + " 'NDCG@all': 0.810221510285519},\n", + " 'CM': {'0': {'-1': 105, '0': 3, '1': 13, '2': 22, '3': 19, '4': 19, '5': 5},\n", + " '1': {'-1': 65, '0': 0, '1': 1, '2': 8, '3': 7, '4': 19, '5': 0},\n", + " '2': {'-1': 67, '0': 0, '1': 1, '2': 5, '3': 9, '4': 20, '5': 4},\n", + " '3': {'-1': 65, '0': 0, '1': 1, '2': 2, '3': 12, '4': 20, '5': 4},\n", + " '4': {'-1': 7, '0': 0, '1': 0, '2': 1, '3': 2, '4': 3, '5': 0},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 1}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.11180771628168028,\n", + " 'Cohen': 0.15448403553349477,\n", + " 'Spearman': 0.6971600041831558,\n", + " 'Kendall': 0.5944550436574051,\n", + " 'Krippendorff': 0.5741091963068756,\n", + " 'Invalid': 3,\n", + " 'TA-2.0': 0.7440944881889764,\n", + " 'TA-4.0': 0.9645669291338582,\n", + " 'Acc': 0.3346456692913386,\n", + " 'MAE': 0.7979002624671914,\n", + " 'MSE': 1.0468066491688535,\n", + " 'CA-0': 0.1935483870967742,\n", + " 'CA-1': 0.27,\n", + " 'CA-2': 0.6509433962264151,\n", + " 'CA-3': 0.37623762376237624,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2252702862488842,\n", + " 'Micro-F1': 0.3346456692913386,\n", + " 'F1-0_vs_rest': 0.32286995515695066,\n", + " 'F1-1_vs_rest': 0.216,\n", + " 'F1-2_vs_rest': 0.4169184290030212,\n", + " 'F1-3_vs_rest': 0.3958333333333333,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8095838587641866,\n", + " 'Recall-0.5': 0.9968944099378882,\n", + " 'Precision-0.5': 0.6815286624203821,\n", + " 'F1-1.5': 0.7845303867403315,\n", + " 'Recall-1.5': 0.9594594594594594,\n", + " 'Precision-1.5': 0.6635514018691588,\n", + " 'F1-2.5': 0.4716981132075472,\n", + " 'Recall-2.5': 0.43103448275862066,\n", + " 'Precision-2.5': 0.5208333333333334,\n", + " 'F1-3.5': 0.1,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.2,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9088057990711205},\n", + " 'CM': {'0': {'-1': 0, '0': 36, '1': 114, '2': 32, '3': 4, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 27, '2': 58, '3': 14, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 9, '2': 69, '3': 25, '4': 3, '5': 0},\n", + " '3': {'-1': 3, '0': 0, '1': 0, '2': 62, '3': 38, '4': 1, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 9, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.10729452617254405,\n", + " 'Cohen': 0.12806939144981844,\n", + " 'Spearman': 0.635154729662691,\n", + " 'Kendall': 0.5121721384494948,\n", + " 'Krippendorff': 0.508324808469824,\n", + " 'Invalid': 47,\n", + " 'TA-2.0': 0.7004310344827587,\n", + " 'TA-4.0': 0.8081896551724138,\n", + " 'Acc': 0.29310344827586204,\n", + " 'MAE': 1.0269396551724141,\n", + " 'MSE': 1.8430914750957859,\n", + " 'CA-0': 0.34868421052631576,\n", + " 'CA-1': 0.14893617021276595,\n", + " 'CA-2': 0.3431372549019608,\n", + " 'CA-3': 0.2912621359223301,\n", + " 'CA-4': 0.36363636363636365,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2227745574018922,\n", + " 'Micro-F1': 0.29310344827586204,\n", + " 'F1-0_vs_rest': 0.48623853211009177,\n", + " 'F1-1_vs_rest': 0.1761006289308176,\n", + " 'F1-2_vs_rest': 0.2966101694915254,\n", + " 'F1-3_vs_rest': 0.3015075376884422,\n", + " 'F1-4_vs_rest': 0.0761904761904762,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8422535211267606,\n", + " 'Recall-0.5': 0.9583333333333334,\n", + " 'Precision-0.5': 0.7512562814070352,\n", + " 'F1-1.5': 0.7477313974591652,\n", + " 'Recall-1.5': 0.944954128440367,\n", + " 'Precision-1.5': 0.6186186186186187,\n", + " 'F1-2.5': 0.5968253968253968,\n", + " 'Recall-2.5': 0.8103448275862069,\n", + " 'Precision-2.5': 0.4723618090452261,\n", + " 'F1-3.5': 0.10344827586206896,\n", + " 'Recall-3.5': 0.46153846153846156,\n", + " 'Precision-3.5': 0.05825242718446602,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.884117460215676},\n", + " 'CM': {'0': {'-1': 34, '0': 53, '1': 45, '2': 40, '3': 9, '4': 3, '5': 2},\n", + " '1': {'-1': 6, '0': 7, '1': 14, '2': 38, '3': 24, '4': 9, '5': 2},\n", + " '2': {'-1': 4, '0': 6, '1': 5, '2': 35, '3': 28, '4': 25, '5': 3},\n", + " '3': {'-1': 1, '0': 0, '1': 0, '2': 20, '3': 30, '4': 51, '5': 2},\n", + " '4': {'-1': 2, '0': 0, '1': 1, '2': 1, '3': 5, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.05602272754771406,\n", + " 'Cohen': 0.004294097783132167,\n", + " 'Spearman': 0.6165461936907847,\n", + " 'Kendall': 0.5154962710136125,\n", + " 'Krippendorff': 0.2516655391841167,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5636007827788649,\n", + " 'TA-4.0': 0.7710371819960861,\n", + " 'Acc': 0.1643835616438356,\n", + " 'MAE': 1.34116112198304,\n", + " 'MSE': 2.636225266362253,\n", + " 'CA-0': 0.021505376344086023,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.2358490566037736,\n", + " 'CA-3': 0.3557692307692308,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12772994050372277,\n", + " 'Micro-F1': 0.1643835616438356,\n", + " 'F1-0_vs_rest': 0.042105263157894736,\n", + " 'F1-1_vs_rest': 0.08791208791208792,\n", + " 'F1-2_vs_rest': 0.1893939393939394,\n", + " 'F1-3_vs_rest': 0.3020408163265306,\n", + " 'F1-4_vs_rest': 0.14492753623188406,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.78125,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6410256410256411,\n", + " 'F1-1.5': 0.676923076923077,\n", + " 'Recall-1.5': 0.9777777777777777,\n", + " 'Precision-1.5': 0.5176470588235295,\n", + " 'F1-2.5': 0.5492227979274611,\n", + " 'Recall-2.5': 0.8907563025210085,\n", + " 'Precision-2.5': 0.3970037453183521,\n", + " 'F1-3.5': 0.1702127659574468,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.09523809523809523,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8816973338953877},\n", + " 'CM': {'0': {'-1': 0, '0': 4, '1': 69, '2': 76, '3': 30, '4': 6, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 44, '3': 29, '4': 19, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 25, '3': 42, '4': 34, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 13, '3': 37, '4': 54, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'fi': {'phi-4': {'metrics': {'Fleiss': 0.17799737596005955,\n", + " 'Cohen': 0.19335705812574144,\n", + " 'Spearman': 0.6431971250533177,\n", + " 'Kendall': 0.527903153069031,\n", + " 'Krippendorff': 0.5198763506255754,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7137254901960784,\n", + " 'TA-4.0': 0.8549019607843137,\n", + " 'Acc': 0.3568627450980392,\n", + " 'MAE': 0.9522875816993464,\n", + " 'MSE': 1.767320261437909,\n", + " 'CA-0': 0.41397849462365593,\n", + " 'CA-1': 0.25,\n", + " 'CA-2': 0.22857142857142856,\n", + " 'CA-3': 0.4807692307692308,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.30837214672726865,\n", + " 'Micro-F1': 0.3568627450980392,\n", + " 'F1-0_vs_rest': 0.5641025641025641,\n", + " 'F1-1_vs_rest': 0.25125628140703515,\n", + " 'F1-2_vs_rest': 0.2376237623762376,\n", + " 'F1-3_vs_rest': 0.3952569169960474,\n", + " 'F1-4_vs_rest': 0.11627906976744186,\n", + " 'F1-5_vs_rest': 0.2857142857142857,\n", + " 'F1-0.5': 0.8406961178045516,\n", + " 'Recall-0.5': 0.9691358024691358,\n", + " 'Precision-0.5': 0.7423167848699763,\n", + " 'F1-1.5': 0.7518248175182481,\n", + " 'Recall-1.5': 0.9196428571428571,\n", + " 'Precision-1.5': 0.6358024691358025,\n", + " 'F1-2.5': 0.5722543352601156,\n", + " 'Recall-2.5': 0.8319327731092437,\n", + " 'Precision-2.5': 0.43612334801762115,\n", + " 'F1-3.5': 0.15053763440860216,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.08974358974358974,\n", + " 'F1-4.5': 0.2857142857142857,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.2,\n", + " 'NDCG@all': 0.8894419543470243},\n", + " 'CM': {'0': {'-1': 0, '0': 77, '1': 59, '2': 28, '3': 16, '4': 4, '5': 2},\n", + " '1': {'-1': 0, '0': 7, '1': 25, '2': 30, '3': 25, '4': 13, '5': 0},\n", + " '2': {'-1': 1, '0': 3, '1': 10, '2': 24, '3': 50, '4': 17, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 15, '3': 50, '4': 33, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 8, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.0799419224278231,\n", + " 'Cohen': 0.12044397564366882,\n", + " 'Spearman': 0.5753257918187117,\n", + " 'Kendall': 0.48002557414113606,\n", + " 'Krippendorff': 0.49056819129065155,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7240704500978473,\n", + " 'TA-4.0': 0.9256360078277887,\n", + " 'Acc': 0.2974559686888454,\n", + " 'MAE': 0.9125896934116111,\n", + " 'MSE': 1.4083496412263532,\n", + " 'CA-0': 0.15053763440860216,\n", + " 'CA-1': 0.42,\n", + " 'CA-2': 0.36792452830188677,\n", + " 'CA-3': 0.40384615384615385,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.21649127412220284,\n", + " 'Micro-F1': 0.2974559686888454,\n", + " 'F1-0_vs_rest': 0.25688073394495414,\n", + " 'F1-1_vs_rest': 0.2709677419354839,\n", + " 'F1-2_vs_rest': 0.3291139240506329,\n", + " 'F1-3_vs_rest': 0.39436619718309857,\n", + " 'F1-4_vs_rest': 0.047619047619047616,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7985074626865671,\n", + " 'Recall-0.5': 0.9876923076923076,\n", + " 'Precision-0.5': 0.6701461377870563,\n", + " 'F1-1.5': 0.7368421052631579,\n", + " 'Recall-1.5': 0.8088888888888889,\n", + " 'Precision-1.5': 0.6765799256505576,\n", + " 'F1-2.5': 0.4980544747081712,\n", + " 'Recall-2.5': 0.5378151260504201,\n", + " 'Precision-2.5': 0.463768115942029,\n", + " 'F1-3.5': 0.13636363636363635,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.10344827586206896,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8868469034419542},\n", + " 'CM': {'0': {'-1': 0, '0': 28, '1': 125, '2': 19, '3': 11, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 4, '1': 42, '2': 33, '3': 15, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 28, '2': 39, '3': 33, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 15, '2': 36, '3': 42, '4': 11, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 8, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.23305220144665115,\n", + " 'Cohen': 0.24754064876521797,\n", + " 'Spearman': 0.692986433376017,\n", + " 'Kendall': 0.5800932515445063,\n", + " 'Krippendorff': 0.6251044833983963,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7729941291585127,\n", + " 'TA-4.0': 0.7886497064579256,\n", + " 'Acc': 0.3933463796477495,\n", + " 'MAE': 0.8956294846705805,\n", + " 'MSE': 1.7588606218743208,\n", + " 'CA-0': 0.5053763440860215,\n", + " 'CA-1': 0.42,\n", + " 'CA-2': 0.3018867924528302,\n", + " 'CA-3': 0.22115384615384615,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.308828917505067,\n", + " 'Micro-F1': 0.3933463796477495,\n", + " 'F1-0_vs_rest': 0.6482758620689655,\n", + " 'F1-1_vs_rest': 0.3605150214592275,\n", + " 'F1-2_vs_rest': 0.32989690721649484,\n", + " 'F1-3_vs_rest': 0.26285714285714284,\n", + " 'F1-4_vs_rest': 0.17142857142857143,\n", + " 'F1-5_vs_rest': 0.08,\n", + " 'F1-0.5': 0.860655737704918,\n", + " 'Recall-0.5': 0.9692307692307692,\n", + " 'Precision-0.5': 0.773955773955774,\n", + " 'F1-1.5': 0.7895791583166333,\n", + " 'Recall-1.5': 0.8755555555555555,\n", + " 'Precision-1.5': 0.718978102189781,\n", + " 'F1-2.5': 0.6163934426229508,\n", + " 'Recall-2.5': 0.7899159663865546,\n", + " 'Precision-2.5': 0.5053763440860215,\n", + " 'F1-3.5': 0.16923076923076924,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.09565217391304348,\n", + " 'F1-4.5': 0.08,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.043478260869565216,\n", + " 'NDCG@all': 0.8822406658180483},\n", + " 'CM': {'0': {'-1': 0, '0': 94, '1': 67, '2': 13, '3': 5, '4': 3, '5': 4},\n", + " '1': {'-1': 0, '0': 6, '1': 42, '2': 23, '3': 14, '4': 8, '5': 7},\n", + " '2': {'-1': 0, '0': 3, '1': 20, '2': 32, '3': 28, '4': 16, '5': 7},\n", + " '3': {'-1': 0, '0': 1, '1': 4, '2': 17, '3': 23, '4': 55, '5': 4},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 1, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.0559095674833824,\n", + " 'Cohen': 0.1154658642773011,\n", + " 'Spearman': 0.6193441128720899,\n", + " 'Kendall': 0.5287490739901568,\n", + " 'Krippendorff': 0.5101093034583393,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7397260273972602,\n", + " 'TA-4.0': 0.9432485322896281,\n", + " 'Acc': 0.2896281800391389,\n", + " 'MAE': 0.8799739073711675,\n", + " 'MSE': 1.2383126766688408,\n", + " 'CA-0': 0.03763440860215054,\n", + " 'CA-1': 0.42,\n", + " 'CA-2': 0.46226415094339623,\n", + " 'CA-3': 0.47115384615384615,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.20850150035118534,\n", + " 'Micro-F1': 0.2896281800391389,\n", + " 'F1-0_vs_rest': 0.07253886010362694,\n", + " 'F1-1_vs_rest': 0.24778761061946902,\n", + " 'F1-2_vs_rest': 0.3904382470119522,\n", + " 'F1-3_vs_rest': 0.47572815533980584,\n", + " 'F1-4_vs_rest': 0.06451612903225806,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7840772014475271,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6448412698412699,\n", + " 'F1-1.5': 0.7428571428571429,\n", + " 'Recall-1.5': 0.8088888888888889,\n", + " 'Precision-1.5': 0.6867924528301886,\n", + " 'F1-2.5': 0.5523012552301255,\n", + " 'Recall-2.5': 0.5546218487394958,\n", + " 'Precision-2.5': 0.55,\n", + " 'F1-3.5': 0.12121212121212122,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.1111111111111111,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8924107902654057},\n", + " 'CM': {'0': {'-1': 0, '0': 7, '1': 154, '2': 19, '3': 4, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 42, '2': 39, '3': 15, '4': 4, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 28, '2': 49, '3': 25, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 15, '2': 34, '3': 49, '4': 6, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 8, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.12866837991323654,\n", + " 'Cohen': 0.15145594322885858,\n", + " 'Spearman': 0.6436732674970624,\n", + " 'Kendall': 0.5358767107250354,\n", + " 'Krippendorff': 0.546653150132477,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7123287671232876,\n", + " 'TA-4.0': 0.812133072407045,\n", + " 'Acc': 0.3131115459882583,\n", + " 'MAE': 0.980430528375734,\n", + " 'MSE': 1.6958034355294636,\n", + " 'CA-0': 0.3602150537634409,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.19811320754716982,\n", + " 'CA-3': 0.2692307692307692,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.24081231461994299,\n", + " 'Micro-F1': 0.3131115459882583,\n", + " 'F1-0_vs_rest': 0.5075757575757576,\n", + " 'F1-1_vs_rest': 0.2845528455284553,\n", + " 'F1-2_vs_rest': 0.21761658031088082,\n", + " 'F1-3_vs_rest': 0.27860696517412936,\n", + " 'F1-4_vs_rest': 0.1565217391304348,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8284960422163589,\n", + " 'Recall-0.5': 0.9661538461538461,\n", + " 'Precision-0.5': 0.7251732101616628,\n", + " 'F1-1.5': 0.7265625,\n", + " 'Recall-1.5': 0.8266666666666667,\n", + " 'Precision-1.5': 0.6480836236933798,\n", + " 'F1-2.5': 0.5893416927899686,\n", + " 'Recall-2.5': 0.7899159663865546,\n", + " 'Precision-2.5': 0.47,\n", + " 'F1-3.5': 0.1864406779661017,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.10679611650485436,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9113634731999892},\n", + " 'CM': {'0': {'-1': 0, '0': 67, '1': 78, '2': 30, '3': 7, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 5, '1': 35, '2': 26, '3': 20, '4': 14, '5': 0},\n", + " '2': {'-1': 0, '0': 5, '1': 19, '2': 21, '3': 38, '4': 23, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 14, '2': 10, '3': 28, '4': 50, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.12265671469961818,\n", + " 'Cohen': -0.036134870459898494,\n", + " 'Spearman': 0.6585517101461686,\n", + " 'Kendall': 0.5525679800008736,\n", + " 'Krippendorff': 0.20785813017563182,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5636007827788649,\n", + " 'TA-4.0': 0.6281800391389433,\n", + " 'Acc': 0.10371819960861056,\n", + " 'MAE': 1.5068493150684927,\n", + " 'MSE': 3.091976516634052,\n", + " 'CA-0': 0.005376344086021506,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.18867924528301888,\n", + " 'CA-3': 0.15384615384615385,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08338001255758522,\n", + " 'Micro-F1': 0.10371819960861056,\n", + " 'F1-0_vs_rest': 0.0106951871657754,\n", + " 'F1-1_vs_rest': 0.07650273224043716,\n", + " 'F1-2_vs_rest': 0.16326530612244897,\n", + " 'F1-3_vs_rest': 0.1641025641025641,\n", + " 'F1-4_vs_rest': 0.08571428571428572,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7784431137724551,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6372549019607843,\n", + " 'F1-1.5': 0.6748466257668712,\n", + " 'Recall-1.5': 0.9777777777777777,\n", + " 'Precision-1.5': 0.5152224824355972,\n", + " 'F1-2.5': 0.5503685503685504,\n", + " 'Recall-2.5': 0.9411764705882353,\n", + " 'Precision-2.5': 0.3888888888888889,\n", + " 'F1-3.5': 0.10377358490566038,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.05583756345177665,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.89194524734931},\n", + " 'CM': {'0': {'-1': 0, '0': 1, '1': 71, '2': 84, '3': 19, '4': 11, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 28, '3': 23, '4': 42, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 20, '3': 31, '4': 50, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 16, '4': 83, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 2, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.08193308477857468,\n", + " 'Cohen': -0.017636724647494217,\n", + " 'Spearman': 0.6984872995286274,\n", + " 'Kendall': 0.59499080583488,\n", + " 'Krippendorff': 0.2740359826391312,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.6011787819253438,\n", + " 'TA-4.0': 0.7544204322200393,\n", + " 'Acc': 0.14145383104125736,\n", + " 'MAE': 1.3664047151277017,\n", + " 'MSE': 2.657334643091029,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.05,\n", + " 'CA-2': 0.18095238095238095,\n", + " 'CA-3': 0.3786407766990291,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.14622383113860796,\n", + " 'Micro-F1': 0.14145383104125736,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.05102040816326531,\n", + " 'F1-2_vs_rest': 0.17674418604651163,\n", + " 'F1-3_vs_rest': 0.28363636363636363,\n", + " 'F1-4_vs_rest': 0.11594202898550725,\n", + " 'F1-5_vs_rest': 0.25,\n", + " 'F1-0.5': 0.7764423076923077,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6345776031434185,\n", + " 'F1-1.5': 0.7012578616352201,\n", + " 'Recall-1.5': 1.0,\n", + " 'Precision-1.5': 0.5399515738498789,\n", + " 'F1-2.5': 0.5463182897862233,\n", + " 'Recall-2.5': 0.9745762711864406,\n", + " 'Precision-2.5': 0.3795379537953795,\n", + " 'F1-3.5': 0.136986301369863,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.07633587786259542,\n", + " 'F1-4.5': 0.25,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.16666666666666666,\n", + " 'NDCG@all': 0.901604515831509},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 91, '2': 61, '3': 28, '4': 5, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 5, '2': 27, '3': 50, '4': 18, '5': 0},\n", + " '2': {'-1': 1, '0': 0, '1': 0, '2': 19, '3': 50, '4': 33, '5': 3},\n", + " '3': {'-1': 1, '0': 0, '1': 0, '2': 3, '3': 39, '4': 60, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.17134305648705192,\n", + " 'Cohen': 0.20430996366712162,\n", + " 'Spearman': 0.6828395768356903,\n", + " 'Kendall': 0.5839683952485305,\n", + " 'Krippendorff': 0.5905102998926354,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7495107632093934,\n", + " 'TA-4.0': 0.9158512720156555,\n", + " 'Acc': 0.3659491193737769,\n", + " 'MAE': 0.7964774951076318,\n", + " 'MSE': 1.1648184387910414,\n", + " 'CA-0': 0.20967741935483872,\n", + " 'CA-1': 0.4,\n", + " 'CA-2': 0.5943396226415094,\n", + " 'CA-3': 0.4230769230769231,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.26503023089241634,\n", + " 'Micro-F1': 0.3659491193737769,\n", + " 'F1-0_vs_rest': 0.3466666666666667,\n", + " 'F1-1_vs_rest': 0.2857142857142857,\n", + " 'F1-2_vs_rest': 0.45161290322580644,\n", + " 'F1-3_vs_rest': 0.4607329842931937,\n", + " 'F1-4_vs_rest': 0.045454545454545456,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8155583437892095,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6885593220338984,\n", + " 'F1-1.5': 0.7775628626692457,\n", + " 'Recall-1.5': 0.8933333333333333,\n", + " 'Precision-1.5': 0.6883561643835616,\n", + " 'F1-2.5': 0.6050420168067226,\n", + " 'Recall-2.5': 0.6050420168067226,\n", + " 'Precision-2.5': 0.6050420168067226,\n", + " 'F1-3.5': 0.0851063829787234,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.0625,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8987635078006797},\n", + " 'CM': {'0': {'-1': 0, '0': 39, '1': 116, '2': 26, '3': 1, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 40, '2': 43, '3': 12, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 18, '2': 63, '3': 21, '4': 3, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 6, '2': 37, '3': 44, '4': 17, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 8, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.11366938363416972,\n", + " 'Cohen': -0.03674751272293797,\n", + " 'Spearman': 0.40082114874913743,\n", + " 'Kendall': 0.3200064356928644,\n", + " 'Krippendorff': -0.04394949941349213,\n", + " 'Invalid': 286,\n", + " 'TA-2.0': 0.4888888888888889,\n", + " 'TA-4.0': 0.6533333333333333,\n", + " 'Acc': 0.10666666666666667,\n", + " 'MAE': 1.7451851851851847,\n", + " 'MSE': 4.316543209876543,\n", + " 'CA-0': 0.036585365853658534,\n", + " 'CA-1': 0.021739130434782608,\n", + " 'CA-2': 0.075,\n", + " 'CA-3': 0.3191489361702128,\n", + " 'CA-4': 0.2,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08028613223589871,\n", + " 'Micro-F1': 0.10666666666666667,\n", + " 'F1-0_vs_rest': 0.07058823529411765,\n", + " 'F1-1_vs_rest': 0.034482758620689655,\n", + " 'F1-2_vs_rest': 0.0594059405940594,\n", + " 'F1-3_vs_rest': 0.26785714285714285,\n", + " 'F1-4_vs_rest': 0.04938271604938271,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7835616438356164,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6441441441441441,\n", + " 'F1-1.5': 0.6319218241042345,\n", + " 'Recall-1.5': 1.0,\n", + " 'Precision-1.5': 0.46190476190476193,\n", + " 'F1-2.5': 0.47572815533980584,\n", + " 'Recall-2.5': 0.8596491228070176,\n", + " 'Precision-2.5': 0.3288590604026846,\n", + " 'F1-3.5': 0.06382978723404255,\n", + " 'Recall-3.5': 0.3,\n", + " 'Precision-3.5': 0.03571428571428571,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8257871100756643},\n", + " 'CM': {'0': {'-1': 104, '0': 3, '1': 11, '2': 38, '3': 14, '4': 13, '5': 3},\n", + " '1': {'-1': 54, '0': 0, '1': 1, '2': 12, '3': 12, '4': 18, '5': 3},\n", + " '2': {'-1': 66, '0': 0, '1': 0, '2': 3, '3': 19, '4': 14, '5': 4},\n", + " '3': {'-1': 57, '0': 0, '1': 0, '2': 6, '3': 15, '4': 24, '5': 2},\n", + " '4': {'-1': 3, '0': 0, '1': 0, '2': 2, '3': 5, '4': 2, '5': 1},\n", + " '5': {'-1': 2, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.08210228519360778,\n", + " 'Cohen': 0.1288029124834017,\n", + " 'Spearman': 0.6791813625289526,\n", + " 'Kendall': 0.582352940026658,\n", + " 'Krippendorff': 0.5755812159992642,\n", + " 'Invalid': 3,\n", + " 'TA-2.0': 0.7519685039370079,\n", + " 'TA-4.0': 0.9547244094488189,\n", + " 'Acc': 0.3110236220472441,\n", + " 'MAE': 0.8149606299212596,\n", + " 'MSE': 1.0625546806649167,\n", + " 'CA-0': 0.17204301075268819,\n", + " 'CA-1': 0.32,\n", + " 'CA-2': 0.5754716981132075,\n", + " 'CA-3': 0.31683168316831684,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22490900891205304,\n", + " 'Micro-F1': 0.3110236220472441,\n", + " 'F1-0_vs_rest': 0.2922374429223744,\n", + " 'F1-1_vs_rest': 0.23703703703703705,\n", + " 'F1-2_vs_rest': 0.3765432098765432,\n", + " 'F1-3_vs_rest': 0.36363636363636365,\n", + " 'F1-4_vs_rest': 0.08,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8055207026348808,\n", + " 'Recall-0.5': 0.9968944099378882,\n", + " 'Precision-0.5': 0.6757894736842105,\n", + " 'F1-1.5': 0.7741935483870968,\n", + " 'Recall-1.5': 0.918918918918919,\n", + " 'Precision-1.5': 0.6688524590163935,\n", + " 'F1-2.5': 0.4433497536945813,\n", + " 'Recall-2.5': 0.3879310344827586,\n", + " 'Precision-2.5': 0.5172413793103449,\n", + " 'F1-3.5': 0.14814814814814814,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.16666666666666666,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9117021096883667},\n", + " 'CM': {'0': {'-1': 0, '0': 32, '1': 120, '2': 31, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 32, '2': 57, '3': 9, '4': 1, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 16, '2': 61, '3': 26, '4': 3, '5': 0},\n", + " '3': {'-1': 3, '0': 0, '1': 2, '2': 61, '3': 32, '4': 6, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 8, '3': 4, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.10361815797050448,\n", + " 'Cohen': 0.12953350316024914,\n", + " 'Spearman': 0.6454197303558545,\n", + " 'Kendall': 0.5179859753459962,\n", + " 'Krippendorff': 0.5398566751000995,\n", + " 'Invalid': 44,\n", + " 'TA-2.0': 0.721627408993576,\n", + " 'TA-4.0': 0.8372591006423983,\n", + " 'Acc': 0.29336188436830835,\n", + " 'MAE': 0.9735902926481085,\n", + " 'MSE': 1.6231263383297645,\n", + " 'CA-0': 0.27710843373493976,\n", + " 'CA-1': 0.16853932584269662,\n", + " 'CA-2': 0.4166666666666667,\n", + " 'CA-3': 0.30097087378640774,\n", + " 'CA-4': 0.36363636363636365,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.2635109597458267,\n", + " 'Micro-F1': 0.29336188436830835,\n", + " 'F1-0_vs_rest': 0.40707964601769914,\n", + " 'F1-1_vs_rest': 0.16666666666666666,\n", + " 'F1-2_vs_rest': 0.32653061224489793,\n", + " 'F1-3_vs_rest': 0.34831460674157305,\n", + " 'F1-4_vs_rest': 0.08247422680412371,\n", + " 'F1-5_vs_rest': 0.25,\n", + " 'F1-0.5': 0.8107344632768362,\n", + " 'Recall-0.5': 0.9534883720930233,\n", + " 'Precision-0.5': 0.7051597051597052,\n", + " 'F1-1.5': 0.7537878787878788,\n", + " 'Recall-1.5': 0.9386792452830188,\n", + " 'Precision-1.5': 0.629746835443038,\n", + " 'F1-2.5': 0.6148409893992933,\n", + " 'Recall-2.5': 0.75,\n", + " 'Precision-2.5': 0.5209580838323353,\n", + " 'F1-3.5': 0.11428571428571428,\n", + " 'Recall-3.5': 0.46153846153846156,\n", + " 'Precision-3.5': 0.06521739130434782,\n", + " 'F1-4.5': 0.25,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.16666666666666666,\n", + " 'NDCG@all': 0.9127026234342277},\n", + " 'CM': {'0': {'-1': 20, '0': 46, '1': 67, '2': 41, '3': 8, '4': 4, '5': 0},\n", + " '1': {'-1': 11, '0': 10, '1': 15, '2': 40, '3': 12, '4': 12, '5': 0},\n", + " '2': {'-1': 10, '0': 4, '1': 8, '2': 40, '3': 20, '4': 22, '5': 2},\n", + " '3': {'-1': 1, '0': 0, '1': 1, '2': 25, '3': 31, '4': 43, '5': 3},\n", + " '4': {'-1': 2, '0': 0, '1': 0, '2': 3, '3': 4, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.06677233617400673,\n", + " 'Cohen': -0.004852380215398355,\n", + " 'Spearman': 0.6450452722543237,\n", + " 'Kendall': 0.5423502940229661,\n", + " 'Krippendorff': 0.27209767614373526,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5538160469667319,\n", + " 'TA-4.0': 0.7553816046966731,\n", + " 'Acc': 0.15459882583170254,\n", + " 'MAE': 1.3499673842139597,\n", + " 'MSE': 2.618449662970211,\n", + " 'CA-0': 0.03763440860215054,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.2169811320754717,\n", + " 'CA-3': 0.3076923076923077,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12235318299621628,\n", + " 'Micro-F1': 0.15459882583170254,\n", + " 'F1-0_vs_rest': 0.07253886010362694,\n", + " 'F1-1_vs_rest': 0.07954545454545454,\n", + " 'F1-2_vs_rest': 0.17037037037037037,\n", + " 'F1-3_vs_rest': 0.27467811158798283,\n", + " 'F1-4_vs_rest': 0.136986301369863,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7840772014475271,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6448412698412699,\n", + " 'F1-1.5': 0.6707503828483921,\n", + " 'Recall-1.5': 0.9733333333333334,\n", + " 'Precision-1.5': 0.5116822429906542,\n", + " 'F1-2.5': 0.5639686684073107,\n", + " 'Recall-2.5': 0.907563025210084,\n", + " 'Precision-2.5': 0.4090909090909091,\n", + " 'F1-3.5': 0.16,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.08888888888888889,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8849307457920452},\n", + " 'CM': {'0': {'-1': 0, '0': 7, '1': 63, '2': 87, '3': 21, '4': 7, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 43, '3': 32, '4': 18, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 6, '2': 23, '3': 41, '4': 35, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 11, '3': 32, '4': 61, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'sh': {'phi-4': {'metrics': {'Fleiss': 0.20313725490196075,\n", + " 'Cohen': 0.21800467653936095,\n", + " 'Spearman': 0.6554663925488476,\n", + " 'Kendall': 0.5376677050331645,\n", + " 'Krippendorff': 0.5292993999160559,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.718503937007874,\n", + " 'TA-4.0': 0.8641732283464567,\n", + " 'Acc': 0.3779527559055118,\n", + " 'MAE': 0.9360236220472441,\n", + " 'MSE': 1.7530074365704291,\n", + " 'CA-0': 0.43548387096774194,\n", + " 'CA-1': 0.19,\n", + " 'CA-2': 0.27884615384615385,\n", + " 'CA-3': 0.5436893203883495,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.32244607573734246,\n", + " 'Micro-F1': 0.3779527559055118,\n", + " 'F1-0_vs_rest': 0.5785714285714286,\n", + " 'F1-1_vs_rest': 0.20105820105820105,\n", + " 'F1-2_vs_rest': 0.29896907216494845,\n", + " 'F1-3_vs_rest': 0.43243243243243246,\n", + " 'F1-4_vs_rest': 0.13793103448275862,\n", + " 'F1-5_vs_rest': 0.2857142857142857,\n", + " 'F1-0.5': 0.8396739130434783,\n", + " 'Recall-0.5': 0.9596273291925466,\n", + " 'Precision-0.5': 0.7463768115942029,\n", + " 'F1-1.5': 0.7605118829981719,\n", + " 'Recall-1.5': 0.9369369369369369,\n", + " 'Precision-1.5': 0.64,\n", + " 'F1-2.5': 0.5835694050991501,\n", + " 'Recall-2.5': 0.8728813559322034,\n", + " 'Precision-2.5': 0.43829787234042555,\n", + " 'F1-3.5': 0.1702127659574468,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.10126582278481013,\n", + " 'F1-4.5': 0.2857142857142857,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.2,\n", + " 'NDCG@all': 0.8909703971490921},\n", + " 'CM': {'0': {'-1': 0, '0': 81, '1': 58, '2': 24, '3': 18, '4': 4, '5': 1},\n", + " '1': {'-1': 0, '0': 11, '1': 19, '2': 25, '3': 32, '4': 12, '5': 1},\n", + " '2': {'-1': 0, '0': 2, '1': 9, '2': 29, '3': 44, '4': 18, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 11, '3': 56, '4': 33, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 6, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.09437125808984881,\n", + " 'Cohen': 0.13390968365129197,\n", + " 'Spearman': 0.623576292531096,\n", + " 'Kendall': 0.5335544734338298,\n", + " 'Krippendorff': 0.5119142304104873,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7263779527559056,\n", + " 'TA-4.0': 0.9232283464566929,\n", + " 'Acc': 0.3051181102362205,\n", + " 'MAE': 0.8943569553805775,\n", + " 'MSE': 1.38079615048119,\n", + " 'CA-0': 0.12903225806451613,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.40384615384615385,\n", + " 'CA-3': 0.47572815533980584,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22639469608981802,\n", + " 'Micro-F1': 0.3051181102362205,\n", + " 'F1-0_vs_rest': 0.22857142857142856,\n", + " 'F1-1_vs_rest': 0.2638888888888889,\n", + " 'F1-2_vs_rest': 0.34146341463414637,\n", + " 'F1-3_vs_rest': 0.43555555555555553,\n", + " 'F1-4_vs_rest': 0.08888888888888889,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7990074441687345,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6652892561983471,\n", + " 'F1-1.5': 0.752895752895753,\n", + " 'Recall-1.5': 0.8783783783783784,\n", + " 'Precision-1.5': 0.6587837837837838,\n", + " 'F1-2.5': 0.5514705882352942,\n", + " 'Recall-2.5': 0.635593220338983,\n", + " 'Precision-2.5': 0.487012987012987,\n", + " 'F1-3.5': 0.1702127659574468,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.125,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.89131274890882},\n", + " 'CM': {'0': {'-1': 0, '0': 24, '1': 123, '2': 27, '3': 8, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 38, '2': 39, '3': 16, '4': 7, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 18, '2': 42, '3': 38, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 9, '2': 34, '3': 49, '4': 11, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 11, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.22750487124510738,\n", + " 'Cohen': 0.24382329009716186,\n", + " 'Spearman': 0.674819904250106,\n", + " 'Kendall': 0.5579494304454636,\n", + " 'Krippendorff': 0.6060795671633568,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.765748031496063,\n", + " 'TA-4.0': 0.7618110236220472,\n", + " 'Acc': 0.38779527559055116,\n", + " 'MAE': 0.9461942257217848,\n", + " 'MSE': 1.9335083114610674,\n", + " 'CA-0': 0.5053763440860215,\n", + " 'CA-1': 0.4,\n", + " 'CA-2': 0.3173076923076923,\n", + " 'CA-3': 0.21359223300970873,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.30752724278183946,\n", + " 'Micro-F1': 0.38779527559055116,\n", + " 'F1-0_vs_rest': 0.6438356164383562,\n", + " 'F1-1_vs_rest': 0.3418803418803419,\n", + " 'F1-2_vs_rest': 0.35106382978723405,\n", + " 'F1-3_vs_rest': 0.2732919254658385,\n", + " 'F1-4_vs_rest': 0.11009174311926606,\n", + " 'F1-5_vs_rest': 0.125,\n", + " 'F1-0.5': 0.856353591160221,\n", + " 'Recall-0.5': 0.9627329192546584,\n", + " 'Precision-0.5': 0.7711442786069652,\n", + " 'F1-1.5': 0.7755102040816326,\n", + " 'Recall-1.5': 0.8558558558558559,\n", + " 'Precision-1.5': 0.7089552238805971,\n", + " 'F1-2.5': 0.6291390728476821,\n", + " 'Recall-2.5': 0.8050847457627118,\n", + " 'Precision-2.5': 0.5163043478260869,\n", + " 'F1-3.5': 0.14184397163120568,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.07936507936507936,\n", + " 'F1-4.5': 0.125,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.06666666666666667,\n", + " 'NDCG@all': 0.8888862672363574},\n", + " 'CM': {'0': {'-1': 0, '0': 94, '1': 64, '2': 15, '3': 5, '4': 4, '5': 4},\n", + " '1': {'-1': 0, '0': 10, '1': 40, '2': 21, '3': 7, '4': 14, '5': 8},\n", + " '2': {'-1': 0, '0': 2, '1': 22, '2': 33, '3': 22, '4': 18, '5': 7},\n", + " '3': {'-1': 0, '0': 0, '1': 8, '2': 12, '3': 22, '4': 54, '5': 7},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 2, '4': 6, '5': 2},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.044906996428497666,\n", + " 'Cohen': 0.10380213958128537,\n", + " 'Spearman': 0.6286083427715494,\n", + " 'Kendall': 0.5321687342666803,\n", + " 'Krippendorff': 0.5114430343127077,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.747534516765286,\n", + " 'TA-4.0': 0.9368836291913215,\n", + " 'Acc': 0.28007889546351084,\n", + " 'MAE': 0.8984220907297831,\n", + " 'MSE': 1.2788187595879899,\n", + " 'CA-0': 0.03763440860215054,\n", + " 'CA-1': 0.45,\n", + " 'CA-2': 0.36538461538461536,\n", + " 'CA-3': 0.5098039215686274,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.1890091097260038,\n", + " 'Micro-F1': 0.28007889546351084,\n", + " 'F1-0_vs_rest': 0.07253886010362694,\n", + " 'F1-1_vs_rest': 0.2694610778443114,\n", + " 'F1-2_vs_rest': 0.3318777292576419,\n", + " 'F1-3_vs_rest': 0.46017699115044247,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.781973203410475,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.642,\n", + " 'F1-1.5': 0.7515400410677618,\n", + " 'Recall-1.5': 0.8280542986425339,\n", + " 'Precision-1.5': 0.6879699248120301,\n", + " 'F1-2.5': 0.5581395348837209,\n", + " 'Recall-2.5': 0.6153846153846154,\n", + " 'Precision-2.5': 0.5106382978723404,\n", + " 'F1-3.5': 0.0,\n", + " 'Recall-3.5': 0.0,\n", + " 'Precision-3.5': 0.0,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8909487107798458},\n", + " 'CM': {'0': {'-1': 0, '0': 7, '1': 151, '2': 21, '3': 5, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 45, '2': 33, '3': 19, '4': 3, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 26, '2': 38, '3': 37, '4': 2, '5': 1},\n", + " '3': {'-1': 1, '0': 0, '1': 12, '2': 29, '3': 52, '4': 9, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 9, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.13513884800314005,\n", + " 'Cohen': 0.15801239031892889,\n", + " 'Spearman': 0.6761963882518163,\n", + " 'Kendall': 0.5652203558661212,\n", + " 'Krippendorff': 0.5603545852266225,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.718503937007874,\n", + " 'TA-4.0': 0.797244094488189,\n", + " 'Acc': 0.3169291338582677,\n", + " 'MAE': 0.9573490813648295,\n", + " 'MSE': 1.6690726159230105,\n", + " 'CA-0': 0.3655913978494624,\n", + " 'CA-1': 0.28,\n", + " 'CA-2': 0.25,\n", + " 'CA-3': 0.3106796116504854,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.24296161184326195,\n", + " 'Micro-F1': 0.3169291338582677,\n", + " 'F1-0_vs_rest': 0.5210727969348659,\n", + " 'F1-1_vs_rest': 0.24034334763948498,\n", + " 'F1-2_vs_rest': 0.25870646766169153,\n", + " 'F1-3_vs_rest': 0.32,\n", + " 'F1-4_vs_rest': 0.11764705882352941,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8344370860927153,\n", + " 'Recall-0.5': 0.9782608695652174,\n", + " 'Precision-0.5': 0.7274826789838337,\n", + " 'F1-1.5': 0.7471264367816092,\n", + " 'Recall-1.5': 0.8783783783783784,\n", + " 'Precision-1.5': 0.65,\n", + " 'F1-2.5': 0.616822429906542,\n", + " 'Recall-2.5': 0.8389830508474576,\n", + " 'Precision-2.5': 0.4876847290640394,\n", + " 'F1-3.5': 0.1487603305785124,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.08490566037735849,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9035167083045218},\n", + " 'CM': {'0': {'-1': 0, '0': 68, '1': 80, '2': 24, '3': 8, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 5, '1': 28, '2': 36, '3': 14, '4': 17, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 17, '2': 26, '3': 37, '4': 22, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 8, '2': 11, '3': 32, '4': 52, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 6, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.13296647354003543,\n", + " 'Cohen': -0.048800082582683535,\n", + " 'Spearman': 0.6291692291598887,\n", + " 'Kendall': 0.5339937642598233,\n", + " 'Krippendorff': 0.20112831546952759,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5610236220472441,\n", + " 'TA-4.0': 0.6535433070866141,\n", + " 'Acc': 0.09448818897637795,\n", + " 'MAE': 1.5085301837270344,\n", + " 'MSE': 3.0960192475940507,\n", + " 'CA-0': 0.005376344086021506,\n", + " 'CA-1': 0.06,\n", + " 'CA-2': 0.17307692307692307,\n", + " 'CA-3': 0.10679611650485436,\n", + " 'CA-4': 0.9230769230769231,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.07598469242759213,\n", + " 'Micro-F1': 0.09448818897637795,\n", + " 'F1-0_vs_rest': 0.0106951871657754,\n", + " 'F1-1_vs_rest': 0.06282722513089005,\n", + " 'F1-2_vs_rest': 0.1518987341772152,\n", + " 'F1-3_vs_rest': 0.1116751269035533,\n", + " 'F1-4_vs_rest': 0.1188118811881188,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7768395657418576,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6351084812623274,\n", + " 'F1-1.5': 0.670846394984326,\n", + " 'Recall-1.5': 0.963963963963964,\n", + " 'Precision-1.5': 0.5144230769230769,\n", + " 'F1-2.5': 0.5187032418952618,\n", + " 'Recall-2.5': 0.8813559322033898,\n", + " 'Precision-2.5': 0.3674911660777385,\n", + " 'F1-3.5': 0.13725490196078433,\n", + " 'Recall-3.5': 0.9333333333333333,\n", + " 'Precision-3.5': 0.07407407407407407,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8906910670662038},\n", + " 'CM': {'0': {'-1': 0, '0': 1, '1': 77, '2': 75, '3': 16, '4': 17, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 6, '2': 30, '3': 33, '4': 31, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 4, '2': 18, '3': 33, '4': 49, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 10, '3': 11, '4': 78, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 12, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.12300337885021087,\n", + " 'Cohen': -0.05456335967088055,\n", + " 'Spearman': 0.6918590835361813,\n", + " 'Kendall': 0.5889710515818496,\n", + " 'Krippendorff': 0.26307015332750805,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.6035502958579881,\n", + " 'TA-4.0': 0.747534516765286,\n", + " 'Acc': 0.10848126232741617,\n", + " 'MAE': 1.4040105193951347,\n", + " 'MSE': 2.759752355906203,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.06060606060606061,\n", + " 'CA-2': 0.09615384615384616,\n", + " 'CA-3': 0.30097087378640774,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.11089246391601808,\n", + " 'Micro-F1': 0.10848126232741617,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.0594059405940594,\n", + " 'F1-2_vs_rest': 0.10204081632653061,\n", + " 'F1-3_vs_rest': 0.2206405693950178,\n", + " 'F1-4_vs_rest': 0.10144927536231885,\n", + " 'F1-5_vs_rest': 0.18181818181818182,\n", + " 'F1-0.5': 0.7753623188405797,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6331360946745562,\n", + " 'F1-1.5': 0.6996805111821086,\n", + " 'Recall-1.5': 0.9864864864864865,\n", + " 'Precision-1.5': 0.5420792079207921,\n", + " 'F1-2.5': 0.5302325581395348,\n", + " 'Recall-2.5': 0.9661016949152542,\n", + " 'Precision-2.5': 0.36538461538461536,\n", + " 'F1-3.5': 0.12080536912751678,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.06716417910447761,\n", + " 'F1-4.5': 0.18181818181818182,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.1111111111111111,\n", + " 'NDCG@all': 0.8889923920532499},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 94, '2': 54, '3': 31, '4': 5, '5': 2},\n", + " '1': {'-1': 1, '0': 0, '1': 6, '2': 25, '3': 50, '4': 16, '5': 2},\n", + " '2': {'-1': 0, '0': 0, '1': 2, '2': 10, '3': 60, '4': 29, '5': 3},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 3, '3': 31, '4': 67, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 6, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.14664917900471663,\n", + " 'Cohen': 0.1775779085030872,\n", + " 'Spearman': 0.6773996874892033,\n", + " 'Kendall': 0.5719402254843323,\n", + " 'Krippendorff': 0.5747099192335852,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7440944881889764,\n", + " 'TA-4.0': 0.9153543307086615,\n", + " 'Acc': 0.34448818897637795,\n", + " 'MAE': 0.8293963254593173,\n", + " 'MSE': 1.2213473315835517,\n", + " 'CA-0': 0.21505376344086022,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.47115384615384615,\n", + " 'CA-3': 0.47572815533980584,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.25117056753066663,\n", + " 'Micro-F1': 0.34448818897637795,\n", + " 'F1-0_vs_rest': 0.35398230088495575,\n", + " 'F1-1_vs_rest': 0.25806451612903225,\n", + " 'F1-2_vs_rest': 0.3904382470119522,\n", + " 'F1-3_vs_rest': 0.460093896713615,\n", + " 'F1-4_vs_rest': 0.044444444444444446,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8151898734177215,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.688034188034188,\n", + " 'F1-1.5': 0.7671232876712328,\n", + " 'Recall-1.5': 0.8828828828828829,\n", + " 'Precision-1.5': 0.6782006920415224,\n", + " 'F1-2.5': 0.6,\n", + " 'Recall-2.5': 0.6610169491525424,\n", + " 'Precision-2.5': 0.5492957746478874,\n", + " 'F1-3.5': 0.0851063829787234,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.0625,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.90038035778033},\n", + " 'CM': {'0': {'-1': 0, '0': 40, '1': 117, '2': 19, '3': 8, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 36, '2': 44, '3': 14, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 21, '2': 49, '3': 30, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 31, '3': 49, '4': 18, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 8, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.06764089614785368,\n", + " 'Cohen': 0.005285920230658325,\n", + " 'Spearman': 0.44308363524283045,\n", + " 'Kendall': 0.3408113280859837,\n", + " 'Krippendorff': 0.03154292540336412,\n", + " 'Invalid': 268,\n", + " 'TA-2.0': 0.525,\n", + " 'TA-4.0': 0.6041666666666666,\n", + " 'Acc': 0.1375,\n", + " 'MAE': 1.6527777777777775,\n", + " 'MSE': 3.9104166666666673,\n", + " 'CA-0': 0.04054054054054054,\n", + " 'CA-1': 0.058823529411764705,\n", + " 'CA-2': 0.2,\n", + " 'CA-3': 0.23214285714285715,\n", + " 'CA-4': 0.5714285714285714,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.11242179477473595,\n", + " 'Micro-F1': 0.1375,\n", + " 'F1-0_vs_rest': 0.07692307692307693,\n", + " 'F1-1_vs_rest': 0.08108108108108109,\n", + " 'F1-2_vs_rest': 0.19047619047619047,\n", + " 'F1-3_vs_rest': 0.24761904761904763,\n", + " 'F1-4_vs_rest': 0.0784313725490196,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8208955223880597,\n", + " 'Recall-0.5': 0.9939759036144579,\n", + " 'Precision-0.5': 0.6991525423728814,\n", + " 'F1-1.5': 0.6707317073170732,\n", + " 'Recall-1.5': 0.9565217391304348,\n", + " 'Precision-1.5': 0.5164319248826291,\n", + " 'F1-2.5': 0.5381165919282511,\n", + " 'Recall-2.5': 0.9230769230769231,\n", + " 'Precision-2.5': 0.379746835443038,\n", + " 'F1-3.5': 0.0847457627118644,\n", + " 'Recall-3.5': 0.5555555555555556,\n", + " 'Precision-3.5': 0.045871559633027525,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8567628938886682},\n", + " 'CM': {'0': {'-1': 112, '0': 3, '1': 16, '2': 28, '3': 13, '4': 13, '5': 1},\n", + " '1': {'-1': 49, '0': 0, '1': 3, '2': 12, '3': 10, '4': 23, '5': 3},\n", + " '2': {'-1': 54, '0': 1, '1': 4, '2': 10, '3': 11, '4': 22, '5': 2},\n", + " '3': {'-1': 47, '0': 0, '1': 0, '2': 3, '3': 13, '4': 32, '5': 8},\n", + " '4': {'-1': 6, '0': 0, '1': 0, '2': 2, '3': 1, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.13519132510881204,\n", + " 'Cohen': 0.1757686264045777,\n", + " 'Spearman': 0.6984476056476294,\n", + " 'Kendall': 0.5956052208779614,\n", + " 'Krippendorff': 0.5863041455081363,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7554240631163708,\n", + " 'TA-4.0': 0.9644970414201184,\n", + " 'Acc': 0.3510848126232742,\n", + " 'MAE': 0.784352399737015,\n", + " 'MSE': 1.0324348016655707,\n", + " 'CA-0': 0.21505376344086022,\n", + " 'CA-1': 0.28,\n", + " 'CA-2': 0.6826923076923077,\n", + " 'CA-3': 0.37254901960784315,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2527741773494273,\n", + " 'Micro-F1': 0.3510848126232742,\n", + " 'F1-0_vs_rest': 0.3524229074889868,\n", + " 'F1-1_vs_rest': 0.2222222222222222,\n", + " 'F1-2_vs_rest': 0.43558282208588955,\n", + " 'F1-3_vs_rest': 0.40641711229946526,\n", + " 'F1-4_vs_rest': 0.1,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8132147395171537,\n", + " 'Recall-0.5': 0.9968847352024922,\n", + " 'Precision-0.5': 0.6866952789699571,\n", + " 'F1-1.5': 0.788785046728972,\n", + " 'Recall-1.5': 0.9547511312217195,\n", + " 'Precision-1.5': 0.6719745222929936,\n", + " 'F1-2.5': 0.45933014354066987,\n", + " 'Recall-2.5': 0.41025641025641024,\n", + " 'Precision-2.5': 0.5217391304347826,\n", + " 'F1-3.5': 0.18181818181818182,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.2857142857142857,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9109401966812629},\n", + " 'CM': {'0': {'-1': 0, '0': 40, '1': 114, '2': 29, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 28, '2': 54, '3': 17, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 9, '2': 71, '3': 20, '4': 4, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 1, '2': 62, '3': 38, '4': 1, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 6, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.12891077460475328,\n", + " 'Cohen': 0.14958112548474,\n", + " 'Spearman': 0.6871907106901511,\n", + " 'Kendall': 0.5587995012295227,\n", + " 'Krippendorff': 0.5777755460904532,\n", + " 'Invalid': 52,\n", + " 'TA-2.0': 0.7192982456140351,\n", + " 'TA-4.0': 0.8026315789473685,\n", + " 'Acc': 0.3092105263157895,\n", + " 'MAE': 0.9418859649122805,\n", + " 'MSE': 1.5782772904483429,\n", + " 'CA-0': 0.37748344370860926,\n", + " 'CA-1': 0.1111111111111111,\n", + " 'CA-2': 0.42857142857142855,\n", + " 'CA-3': 0.24509803921568626,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.298815522574778,\n", + " 'Micro-F1': 0.3092105263157895,\n", + " 'F1-0_vs_rest': 0.5135135135135135,\n", + " 'F1-1_vs_rest': 0.12048192771084337,\n", + " 'F1-2_vs_rest': 0.38009049773755654,\n", + " 'F1-3_vs_rest': 0.27624309392265195,\n", + " 'F1-4_vs_rest': 0.10256410256410256,\n", + " 'F1-5_vs_rest': 0.4,\n", + " 'F1-0.5': 0.8434782608695652,\n", + " 'Recall-0.5': 0.9540983606557377,\n", + " 'Precision-0.5': 0.7558441558441559,\n", + " 'F1-1.5': 0.767175572519084,\n", + " 'Recall-1.5': 0.9348837209302325,\n", + " 'Precision-1.5': 0.6504854368932039,\n", + " 'F1-2.5': 0.6600660066006601,\n", + " 'Recall-2.5': 0.8547008547008547,\n", + " 'Precision-2.5': 0.5376344086021505,\n", + " 'F1-3.5': 0.13114754098360656,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.07476635514018691,\n", + " 'F1-4.5': 0.4,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.3333333333333333,\n", + " 'NDCG@all': 0.9299676730710865},\n", + " 'CM': {'0': {'-1': 35, '0': 57, '1': 56, '2': 26, '3': 6, '4': 6, '5': 0},\n", + " '1': {'-1': 10, '0': 10, '1': 10, '2': 40, '3': 19, '4': 11, '5': 0},\n", + " '2': {'-1': 6, '0': 4, '1': 8, '2': 42, '3': 23, '4': 21, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 2, '2': 14, '3': 25, '4': 60, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 5, '4': 6, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 0, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.0794071027507834,\n", + " 'Cohen': -0.018040762171525282,\n", + " 'Spearman': 0.6309446962555323,\n", + " 'Kendall': 0.5350801903599895,\n", + " 'Krippendorff': 0.25703937818941536,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5570866141732284,\n", + " 'TA-4.0': 0.7677165354330708,\n", + " 'Acc': 0.1437007874015748,\n", + " 'MAE': 1.3661417322834644,\n", + " 'MSE': 2.655293088363955,\n", + " 'CA-0': 0.026881720430107527,\n", + " 'CA-1': 0.05,\n", + " 'CA-2': 0.20192307692307693,\n", + " 'CA-3': 0.30097087378640774,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.11405299324362067,\n", + " 'Micro-F1': 0.1437007874015748,\n", + " 'F1-0_vs_rest': 0.05235602094240838,\n", + " 'F1-1_vs_rest': 0.05405405405405406,\n", + " 'F1-2_vs_rest': 0.16666666666666666,\n", + " 'F1-3_vs_rest': 0.2540983606557377,\n", + " 'F1-4_vs_rest': 0.15714285714285714,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7806060606060606,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6401590457256461,\n", + " 'F1-1.5': 0.665625,\n", + " 'Recall-1.5': 0.9594594594594594,\n", + " 'Precision-1.5': 0.5095693779904307,\n", + " 'F1-2.5': 0.5412371134020618,\n", + " 'Recall-2.5': 0.8898305084745762,\n", + " 'Precision-2.5': 0.3888888888888889,\n", + " 'F1-3.5': 0.18055555555555555,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.10077519379844961,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8915527632596302},\n", + " 'CM': {'0': {'-1': 0, '0': 5, '1': 71, '2': 77, '3': 25, '4': 8, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 5, '2': 41, '3': 37, '4': 16, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 21, '3': 46, '4': 31, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 9, '3': 31, '4': 59, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'hy': {'phi-4': {'metrics': {'Fleiss': 0.2397968438236895,\n", + " 'Cohen': 0.2522525201463022,\n", + " 'Spearman': 0.5719106287459507,\n", + " 'Kendall': 0.47307198544618234,\n", + " 'Krippendorff': 0.5424462022354862,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7440944881889764,\n", + " 'TA-4.0': 0.9114173228346457,\n", + " 'Acc': 0.4153543307086614,\n", + " 'MAE': 0.840551181102362,\n", + " 'MSE': 1.453958880139982,\n", + " 'CA-0': 0.42391304347826086,\n", + " 'CA-1': 0.5,\n", + " 'CA-2': 0.4095238095238095,\n", + " 'CA-3': 0.375,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2938905329716252,\n", + " 'Micro-F1': 0.4153543307086614,\n", + " 'F1-0_vs_rest': 0.5591397849462365,\n", + " 'F1-1_vs_rest': 0.373134328358209,\n", + " 'F1-2_vs_rest': 0.39631336405529954,\n", + " 'F1-3_vs_rest': 0.3939393939393939,\n", + " 'F1-4_vs_rest': 0.04081632653061224,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8331071913161465,\n", + " 'Recall-0.5': 0.9475308641975309,\n", + " 'Precision-0.5': 0.7433414043583535,\n", + " 'F1-1.5': 0.7334754797441365,\n", + " 'Recall-1.5': 0.7678571428571429,\n", + " 'Precision-1.5': 0.7020408163265306,\n", + " 'F1-2.5': 0.5238095238095238,\n", + " 'Recall-2.5': 0.5546218487394958,\n", + " 'Precision-2.5': 0.49624060150375937,\n", + " 'F1-3.5': 0.1111111111111111,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.07692307692307693,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8754547404523586},\n", + " 'CM': {'0': {'-1': 0, '0': 78, '1': 73, '2': 20, '3': 11, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 10, '1': 50, '2': 18, '3': 13, '4': 6, '5': 3},\n", + " '2': {'-1': 0, '0': 4, '1': 26, '2': 43, '3': 26, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 3, '1': 17, '2': 26, '3': 39, '4': 19, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 2, '2': 5, '3': 5, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.09791424817257521,\n", + " 'Cohen': 0.13659873115412235,\n", + " 'Spearman': 0.5381011974727566,\n", + " 'Kendall': 0.4496145499577497,\n", + " 'Krippendorff': 0.4671161675407054,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6988188976377953,\n", + " 'TA-4.0': 0.9350393700787402,\n", + " 'Acc': 0.31496062992125984,\n", + " 'MAE': 0.9101049868766403,\n", + " 'MSE': 1.4114173228346452,\n", + " 'CA-0': 0.1793478260869565,\n", + " 'CA-1': 0.4,\n", + " 'CA-2': 0.4380952380952381,\n", + " 'CA-3': 0.3942307692307692,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2223356549097372,\n", + " 'Micro-F1': 0.31496062992125984,\n", + " 'F1-0_vs_rest': 0.2986425339366516,\n", + " 'F1-1_vs_rest': 0.2631578947368421,\n", + " 'F1-2_vs_rest': 0.35384615384615387,\n", + " 'F1-3_vs_rest': 0.41836734693877553,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8050314465408805,\n", + " 'Recall-0.5': 0.9876543209876543,\n", + " 'Precision-0.5': 0.6794055201698513,\n", + " 'F1-1.5': 0.7046843177189409,\n", + " 'Recall-1.5': 0.7723214285714286,\n", + " 'Precision-1.5': 0.6479400749063671,\n", + " 'F1-2.5': 0.47619047619047616,\n", + " 'Recall-2.5': 0.46218487394957986,\n", + " 'Precision-2.5': 0.49107142857142855,\n", + " 'F1-3.5': 0.05714285714285714,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.05,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8695594996635814},\n", + " 'CM': {'0': {'-1': 0, '0': 33, '1': 114, '2': 28, '3': 6, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 40, '2': 39, '3': 11, '4': 7, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 28, '2': 46, '3': 25, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 22, '2': 37, '3': 41, '4': 4, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 8, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.12349026374168107,\n", + " 'Cohen': 0.15545062099219054,\n", + " 'Spearman': 0.6660551580883765,\n", + " 'Kendall': 0.5556493811588552,\n", + " 'Krippendorff': 0.5424010832912614,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7480314960629921,\n", + " 'TA-4.0': 0.6968503937007874,\n", + " 'Acc': 0.297244094488189,\n", + " 'MAE': 1.0885826771653544,\n", + " 'MSE': 2.2569991251093615,\n", + " 'CA-0': 0.3695652173913043,\n", + " 'CA-1': 0.39,\n", + " 'CA-2': 0.22857142857142856,\n", + " 'CA-3': 0.14423076923076922,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.242059063780551,\n", + " 'Micro-F1': 0.297244094488189,\n", + " 'F1-0_vs_rest': 0.5333333333333333,\n", + " 'F1-1_vs_rest': 0.31451612903225806,\n", + " 'F1-2_vs_rest': 0.2608695652173913,\n", + " 'F1-3_vs_rest': 0.1910828025477707,\n", + " 'F1-4_vs_rest': 0.044444444444444446,\n", + " 'F1-5_vs_rest': 0.10810810810810811,\n", + " 'F1-0.5': 0.8436268068331143,\n", + " 'Recall-0.5': 0.9907407407407407,\n", + " 'Precision-0.5': 0.7345537757437071,\n", + " 'F1-1.5': 0.7680311890838206,\n", + " 'Recall-1.5': 0.8794642857142857,\n", + " 'Precision-1.5': 0.6816608996539792,\n", + " 'F1-2.5': 0.6139817629179332,\n", + " 'Recall-2.5': 0.8487394957983193,\n", + " 'Precision-2.5': 0.48095238095238096,\n", + " 'F1-3.5': 0.10465116279069768,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.05732484076433121,\n", + " 'F1-4.5': 0.10810810810810811,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.05714285714285714,\n", + " 'NDCG@all': 0.8939680505675182},\n", + " 'CM': {'0': {'-1': 0, '0': 68, '1': 83, '2': 16, '3': 5, '4': 7, '5': 5},\n", + " '1': {'-1': 0, '0': 2, '1': 39, '2': 24, '3': 8, '4': 19, '5': 8},\n", + " '2': {'-1': 0, '0': 1, '1': 23, '2': 24, '3': 22, '4': 31, '5': 4},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 12, '3': 15, '4': 62, '5': 12},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 3, '4': 3, '5': 4},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.05725669996179251,\n", + " 'Cohen': 0.12007103244494255,\n", + " 'Spearman': 0.6564826152980173,\n", + " 'Kendall': 0.5656859024069502,\n", + " 'Krippendorff': 0.5376077874299889,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7677165354330708,\n", + " 'TA-4.0': 0.9606299212598425,\n", + " 'Acc': 0.297244094488189,\n", + " 'MAE': 0.8405511811023619,\n", + " 'MSE': 1.1065179352580925,\n", + " 'CA-0': 0.021739130434782608,\n", + " 'CA-1': 0.42,\n", + " 'CA-2': 0.6,\n", + " 'CA-3': 0.40384615384615385,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.19549454905084604,\n", + " 'Micro-F1': 0.297244094488189,\n", + " 'F1-0_vs_rest': 0.0425531914893617,\n", + " 'F1-1_vs_rest': 0.2553191489361702,\n", + " 'F1-2_vs_rest': 0.4421052631578947,\n", + " 'F1-3_vs_rest': 0.4329896907216495,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.782608695652174,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6428571428571429,\n", + " 'F1-1.5': 0.7775551102204409,\n", + " 'Recall-1.5': 0.8660714285714286,\n", + " 'Precision-1.5': 0.7054545454545454,\n", + " 'F1-2.5': 0.4953271028037383,\n", + " 'Recall-2.5': 0.44537815126050423,\n", + " 'Precision-2.5': 0.5578947368421052,\n", + " 'F1-3.5': 0.0,\n", + " 'Recall-3.5': 0.0,\n", + " 'Precision-3.5': 0.0,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8923661767210174},\n", + " 'CM': {'0': {'-1': 0, '0': 4, '1': 157, '2': 19, '3': 4, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 42, '2': 43, '3': 13, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 19, '2': 63, '3': 22, '4': 1, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 11, '2': 49, '3': 42, '4': 2, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 7, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.1589883393846268,\n", + " 'Cohen': 0.17912296319232113,\n", + " 'Spearman': 0.624367789831242,\n", + " 'Kendall': 0.5239263090857502,\n", + " 'Krippendorff': 0.5471387382826456,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7204724409448819,\n", + " 'TA-4.0': 0.8661417322834646,\n", + " 'Acc': 0.3425196850393701,\n", + " 'MAE': 0.9101049868766405,\n", + " 'MSE': 1.5374015748031495,\n", + " 'CA-0': 0.32065217391304346,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.24761904761904763,\n", + " 'CA-3': 0.4230769230769231,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2652790564615696,\n", + " 'Micro-F1': 0.3425196850393701,\n", + " 'F1-0_vs_rest': 0.466403162055336,\n", + " 'F1-1_vs_rest': 0.296875,\n", + " 'F1-2_vs_rest': 0.2524271844660194,\n", + " 'F1-3_vs_rest': 0.40930232558139534,\n", + " 'F1-4_vs_rest': 0.16666666666666666,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8230668414154653,\n", + " 'Recall-0.5': 0.9691358024691358,\n", + " 'Precision-0.5': 0.715261958997722,\n", + " 'F1-1.5': 0.73767258382643,\n", + " 'Recall-1.5': 0.8348214285714286,\n", + " 'Precision-1.5': 0.6607773851590106,\n", + " 'F1-2.5': 0.5913621262458472,\n", + " 'Recall-2.5': 0.7478991596638656,\n", + " 'Precision-2.5': 0.489010989010989,\n", + " 'F1-3.5': 0.20930232558139536,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.1267605633802817,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9024086675592422},\n", + " 'CM': {'0': {'-1': 0, '0': 59, '1': 85, '2': 27, '3': 8, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 6, '1': 38, '2': 33, '3': 13, '4': 10, '5': 0},\n", + " '2': {'-1': 0, '0': 3, '1': 19, '2': 26, '3': 41, '4': 16, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 14, '2': 14, '3': 44, '4': 31, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 5, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.1027168472281418,\n", + " 'Cohen': -0.03391169391187976,\n", + " 'Spearman': 0.5656676125374659,\n", + " 'Kendall': 0.4789207970978006,\n", + " 'Krippendorff': 0.17301426327090852,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5078740157480315,\n", + " 'TA-4.0': 0.7775590551181102,\n", + " 'Acc': 0.1377952755905512,\n", + " 'MAE': 1.4166666666666663,\n", + " 'MSE': 2.808180227471566,\n", + " 'CA-0': 0.005434782608695652,\n", + " 'CA-1': 0.05,\n", + " 'CA-2': 0.2,\n", + " 'CA-3': 0.375,\n", + " 'CA-4': 0.3076923076923077,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09694367816900333,\n", + " 'Micro-F1': 0.1377952755905512,\n", + " 'F1-0_vs_rest': 0.010810810810810811,\n", + " 'F1-1_vs_rest': 0.0641025641025641,\n", + " 'F1-2_vs_rest': 0.14736842105263157,\n", + " 'F1-3_vs_rest': 0.2943396226415094,\n", + " 'F1-4_vs_rest': 0.06504065040650407,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.779783393501805,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6390532544378699,\n", + " 'F1-1.5': 0.6488888888888888,\n", + " 'Recall-1.5': 0.9776785714285714,\n", + " 'Precision-1.5': 0.48558758314855877,\n", + " 'F1-2.5': 0.517948717948718,\n", + " 'Recall-2.5': 0.8487394957983193,\n", + " 'Precision-2.5': 0.3726937269372694,\n", + " 'F1-3.5': 0.096,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.05454545454545454,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8874084309488208},\n", + " 'CM': {'0': {'-1': 0, '0': 1, '1': 46, '2': 102, '3': 26, '4': 9, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 5, '2': 41, '3': 36, '4': 18, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 3, '2': 21, '3': 51, '4': 30, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 16, '3': 39, '4': 47, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 9, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.10206020479620773,\n", + " 'Cohen': -0.03547058688200244,\n", + " 'Spearman': 0.7120379814384182,\n", + " 'Kendall': 0.6108350486043852,\n", + " 'Krippendorff': 0.2849834704403197,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.610236220472441,\n", + " 'TA-4.0': 0.7578740157480315,\n", + " 'Acc': 0.1279527559055118,\n", + " 'MAE': 1.36253280839895,\n", + " 'MSE': 2.62800743657043,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.04,\n", + " 'CA-2': 0.14285714285714285,\n", + " 'CA-3': 0.3557692307692308,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.0965045962655166,\n", + " 'Micro-F1': 0.1279527559055118,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.03980099502487562,\n", + " 'F1-2_vs_rest': 0.15,\n", + " 'F1-3_vs_rest': 0.2578397212543554,\n", + " 'F1-4_vs_rest': 0.13138686131386862,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7788461538461539,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6377952755905512,\n", + " 'F1-1.5': 0.7068145800316957,\n", + " 'Recall-1.5': 0.9955357142857143,\n", + " 'Precision-1.5': 0.547911547911548,\n", + " 'F1-2.5': 0.54292343387471,\n", + " 'Recall-2.5': 0.9831932773109243,\n", + " 'Precision-2.5': 0.375,\n", + " 'F1-3.5': 0.1527777777777778,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08527131782945736,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8817665634166948},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 96, '2': 54, '3': 29, '4': 4, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 4, '2': 24, '3': 53, '4': 16, '5': 3},\n", + " '2': {'-1': 0, '0': 0, '1': 1, '2': 15, '3': 60, '4': 28, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 37, '4': 65, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.12885555303953578,\n", + " 'Cohen': 0.1672414715653988,\n", + " 'Spearman': 0.6592964222577726,\n", + " 'Kendall': 0.5633211515611941,\n", + " 'Krippendorff': 0.5492512346769144,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7401574803149606,\n", + " 'TA-4.0': 0.9350393700787402,\n", + " 'Acc': 0.33661417322834647,\n", + " 'MAE': 0.8372703412073491,\n", + " 'MSE': 1.2200349956255465,\n", + " 'CA-0': 0.15217391304347827,\n", + " 'CA-1': 0.34,\n", + " 'CA-2': 0.580952380952381,\n", + " 'CA-3': 0.4519230769230769,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.24214305960364402,\n", + " 'Micro-F1': 0.33661417322834647,\n", + " 'F1-0_vs_rest': 0.26291079812206575,\n", + " 'F1-1_vs_rest': 0.2537313432835821,\n", + " 'F1-2_vs_rest': 0.41216216216216217,\n", + " 'F1-3_vs_rest': 0.47,\n", + " 'F1-4_vs_rest': 0.05405405405405406,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8044831880448319,\n", + " 'Recall-0.5': 0.9969135802469136,\n", + " 'Precision-0.5': 0.6743215031315241,\n", + " 'F1-1.5': 0.7700934579439253,\n", + " 'Recall-1.5': 0.9196428571428571,\n", + " 'Precision-1.5': 0.662379421221865,\n", + " 'F1-2.5': 0.5606694560669456,\n", + " 'Recall-2.5': 0.5630252100840336,\n", + " 'Precision-2.5': 0.5583333333333333,\n", + " 'F1-3.5': 0.15384615384615385,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.125,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8980294750933071},\n", + " 'CM': {'0': {'-1': 0, '0': 28, '1': 116, '2': 33, '3': 4, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 34, '2': 47, '3': 13, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 16, '2': 61, '3': 26, '4': 2, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 44, '3': 47, '4': 11, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 6, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.09615611598536411,\n", + " 'Cohen': -0.007266811279826424,\n", + " 'Spearman': 0.3611669042541707,\n", + " 'Kendall': 0.2919531005969239,\n", + " 'Krippendorff': -0.16647940523774873,\n", + " 'Invalid': 257,\n", + " 'TA-2.0': 0.42231075697211157,\n", + " 'TA-4.0': 0.6733067729083665,\n", + " 'Acc': 0.11553784860557768,\n", + " 'MAE': 1.9143426294820718,\n", + " 'MSE': 4.950973882248782,\n", + " 'CA-0': 0.009900990099009901,\n", + " 'CA-1': 0.019230769230769232,\n", + " 'CA-2': 0.20408163265306123,\n", + " 'CA-3': 0.3,\n", + " 'CA-4': 0.625,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09188227345054505,\n", + " 'Micro-F1': 0.11553784860557768,\n", + " 'F1-0_vs_rest': 0.0196078431372549,\n", + " 'F1-1_vs_rest': 0.030303030303030304,\n", + " 'F1-2_vs_rest': 0.17543859649122806,\n", + " 'F1-3_vs_rest': 0.20689655172413793,\n", + " 'F1-4_vs_rest': 0.11904761904761904,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.75,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6,\n", + " 'F1-1.5': 0.5748502994011976,\n", + " 'Recall-1.5': 0.9795918367346939,\n", + " 'Precision-1.5': 0.4067796610169492,\n", + " 'F1-2.5': 0.38181818181818183,\n", + " 'Recall-2.5': 0.8571428571428571,\n", + " 'Precision-2.5': 0.24561403508771928,\n", + " 'F1-3.5': 0.09615384615384616,\n", + " 'Recall-3.5': 0.5555555555555556,\n", + " 'Precision-3.5': 0.05263157894736842,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8263795107311711},\n", + " 'CM': {'0': {'-1': 83, '0': 1, '1': 11, '2': 38, '3': 31, '4': 19, '5': 1},\n", + " '1': {'-1': 48, '0': 0, '1': 1, '2': 11, '3': 16, '4': 19, '5': 5},\n", + " '2': {'-1': 56, '0': 0, '1': 1, '2': 10, '3': 14, '4': 18, '5': 6},\n", + " '3': {'-1': 64, '0': 0, '1': 1, '2': 5, '3': 12, '4': 15, '5': 7},\n", + " '4': {'-1': 5, '0': 0, '1': 0, '2': 1, '3': 2, '4': 5, '5': 0},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 1, '4': 0, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.09387222600823615,\n", + " 'Cohen': 0.15471573031484376,\n", + " 'Spearman': 0.6657677007442705,\n", + " 'Kendall': 0.5702839750007359,\n", + " 'Krippendorff': 0.5366892892316792,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7297830374753451,\n", + " 'TA-4.0': 0.9684418145956607,\n", + " 'Acc': 0.33530571992110453,\n", + " 'MAE': 0.8132807363576591,\n", + " 'MSE': 1.0745123822046896,\n", + " 'CA-0': 0.17391304347826086,\n", + " 'CA-1': 0.27,\n", + " 'CA-2': 0.8,\n", + " 'CA-3': 0.2621359223300971,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.21621582362831504,\n", + " 'Micro-F1': 0.33530571992110453,\n", + " 'F1-0_vs_rest': 0.29493087557603687,\n", + " 'F1-1_vs_rest': 0.2222222222222222,\n", + " 'F1-2_vs_rest': 0.44680851063829785,\n", + " 'F1-3_vs_rest': 0.3333333333333333,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8080301129234629,\n", + " 'Recall-0.5': 0.9969040247678018,\n", + " 'Precision-0.5': 0.679324894514768,\n", + " 'F1-1.5': 0.776173285198556,\n", + " 'Recall-1.5': 0.9641255605381166,\n", + " 'Precision-1.5': 0.649546827794562,\n", + " 'F1-2.5': 0.38202247191011235,\n", + " 'Recall-2.5': 0.288135593220339,\n", + " 'Precision-2.5': 0.5666666666666667,\n", + " 'F1-3.5': 0.0,\n", + " 'Recall-3.5': 0.0,\n", + " 'Precision-3.5': 0.0,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9000203509231232},\n", + " 'CM': {'0': {'-1': 0, '0': 32, '1': 108, '2': 42, '3': 2, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 27, '2': 61, '3': 11, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 8, '2': 84, '3': 13, '4': 0, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 0, '2': 75, '3': 27, '4': 1, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 9, '3': 4, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.07604812249362014,\n", + " 'Cohen': 0.10516432416033317,\n", + " 'Spearman': 0.6271738753182688,\n", + " 'Kendall': 0.498526101961292,\n", + " 'Krippendorff': 0.4891358183092449,\n", + " 'Invalid': 22,\n", + " 'TA-2.0': 0.676954732510288,\n", + " 'TA-4.0': 0.8703703703703703,\n", + " 'Acc': 0.2757201646090535,\n", + " 'MAE': 1.0116598079561043,\n", + " 'MSE': 1.654092363968907,\n", + " 'CA-0': 0.22674418604651161,\n", + " 'CA-1': 0.21428571428571427,\n", + " 'CA-2': 0.38,\n", + " 'CA-3': 0.3069306930693069,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2139596509463324,\n", + " 'Micro-F1': 0.2757201646090535,\n", + " 'F1-0_vs_rest': 0.3611111111111111,\n", + " 'F1-1_vs_rest': 0.21428571428571427,\n", + " 'F1-2_vs_rest': 0.28679245283018867,\n", + " 'F1-3_vs_rest': 0.30392156862745096,\n", + " 'F1-4_vs_rest': 0.11764705882352941,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8174603174603174,\n", + " 'Recall-0.5': 0.9840764331210191,\n", + " 'Precision-0.5': 0.6990950226244343,\n", + " 'F1-1.5': 0.7357142857142858,\n", + " 'Recall-1.5': 0.9537037037037037,\n", + " 'Precision-1.5': 0.5988372093023255,\n", + " 'F1-2.5': 0.5491525423728814,\n", + " 'Recall-2.5': 0.6982758620689655,\n", + " 'Precision-2.5': 0.45251396648044695,\n", + " 'F1-3.5': 0.13186813186813187,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.07894736842105263,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9092174487511205},\n", + " 'CM': {'0': {'-1': 12, '0': 39, '1': 68, '2': 51, '3': 12, '4': 2, '5': 0},\n", + " '1': {'-1': 2, '0': 4, '1': 21, '2': 42, '3': 20, '4': 11, '5': 0},\n", + " '2': {'-1': 5, '0': 1, '1': 8, '2': 38, '3': 36, '4': 17, '5': 0},\n", + " '3': {'-1': 3, '0': 0, '1': 1, '2': 29, '3': 31, '4': 36, '5': 4},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 3, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.05427025966220607,\n", + " 'Cohen': 0.007510045725370507,\n", + " 'Spearman': 0.6134831783342036,\n", + " 'Kendall': 0.5163917469910526,\n", + " 'Krippendorff': 0.23313843826102343,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5393700787401575,\n", + " 'TA-4.0': 0.765748031496063,\n", + " 'Acc': 0.1673228346456693,\n", + " 'MAE': 1.3622047244094488,\n", + " 'MSE': 2.7082239720035,\n", + " 'CA-0': 0.021739130434782608,\n", + " 'CA-1': 0.04,\n", + " 'CA-2': 0.22857142857142856,\n", + " 'CA-3': 0.4230769230769231,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12561913118640186,\n", + " 'Micro-F1': 0.1673228346456693,\n", + " 'F1-0_vs_rest': 0.0425531914893617,\n", + " 'F1-1_vs_rest': 0.04678362573099415,\n", + " 'F1-2_vs_rest': 0.1791044776119403,\n", + " 'F1-3_vs_rest': 0.3548387096774194,\n", + " 'F1-4_vs_rest': 0.13043478260869565,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.782608695652174,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6428571428571429,\n", + " 'F1-1.5': 0.6636225266362252,\n", + " 'Recall-1.5': 0.9732142857142857,\n", + " 'Precision-1.5': 0.5034642032332564,\n", + " 'F1-2.5': 0.5604113110539846,\n", + " 'Recall-2.5': 0.9159663865546218,\n", + " 'Precision-2.5': 0.40370370370370373,\n", + " 'F1-3.5': 0.15602836879432624,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.0873015873015873,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8846112035757885},\n", + " 'CM': {'0': {'-1': 0, '0': 4, '1': 61, '2': 86, '3': 23, '4': 10, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 4, '2': 45, '3': 33, '4': 17, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 4, '2': 24, '3': 40, '4': 37, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 8, '3': 44, '4': 50, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'hr': {'phi-4': {'metrics': {'Fleiss': 0.18593838287348957,\n", + " 'Cohen': 0.2017650215658603,\n", + " 'Spearman': 0.6703029479182365,\n", + " 'Kendall': 0.5535088164082764,\n", + " 'Krippendorff': 0.5387423856085166,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7330677290836654,\n", + " 'TA-4.0': 0.848605577689243,\n", + " 'Acc': 0.36254980079681276,\n", + " 'MAE': 0.9432270916334662,\n", + " 'MSE': 1.7360004426737499,\n", + " 'CA-0': 0.4207650273224044,\n", + " 'CA-1': 0.23232323232323232,\n", + " 'CA-2': 0.26666666666666666,\n", + " 'CA-3': 0.48,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.26869052322937764,\n", + " 'Micro-F1': 0.36254980079681276,\n", + " 'F1-0_vs_rest': 0.5661764705882353,\n", + " 'F1-1_vs_rest': 0.23834196891191708,\n", + " 'F1-2_vs_rest': 0.28865979381443296,\n", + " 'F1-3_vs_rest': 0.3870967741935484,\n", + " 'F1-4_vs_rest': 0.13186813186813187,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8387978142076503,\n", + " 'Recall-0.5': 0.9623824451410659,\n", + " 'Precision-0.5': 0.7433414043583535,\n", + " 'F1-1.5': 0.7717996289424861,\n", + " 'Recall-1.5': 0.9454545454545454,\n", + " 'Precision-1.5': 0.6520376175548589,\n", + " 'F1-2.5': 0.5739130434782609,\n", + " 'Recall-2.5': 0.8608695652173913,\n", + " 'Precision-2.5': 0.43043478260869567,\n", + " 'F1-3.5': 0.16494845360824742,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.0975609756097561,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8839050891472583},\n", + " 'CM': {'0': {'-1': 0, '0': 77, '1': 63, '2': 23, '3': 15, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 8, '1': 23, '2': 26, '3': 30, '4': 10, '5': 2},\n", + " '2': {'-1': 0, '0': 4, '1': 4, '2': 28, '3': 49, '4': 18, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 11, '3': 48, '4': 37, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 6, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.08246173601474638,\n", + " 'Cohen': 0.12157714195070679,\n", + " 'Spearman': 0.5930093633035253,\n", + " 'Kendall': 0.4999180079987575,\n", + " 'Krippendorff': 0.48423877672580706,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7111553784860558,\n", + " 'TA-4.0': 0.9322709163346613,\n", + " 'Acc': 0.2968127490039841,\n", + " 'MAE': 0.9223107569721113,\n", + " 'MSE': 1.434041611332448,\n", + " 'CA-0': 0.12021857923497267,\n", + " 'CA-1': 0.36363636363636365,\n", + " 'CA-2': 0.37142857142857144,\n", + " 'CA-3': 0.49,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22773855722155276,\n", + " 'Micro-F1': 0.2968127490039841,\n", + " 'F1-0_vs_rest': 0.21153846153846154,\n", + " 'F1-1_vs_rest': 0.2535211267605634,\n", + " 'F1-2_vs_rest': 0.3170731707317073,\n", + " 'F1-3_vs_rest': 0.44144144144144143,\n", + " 'F1-4_vs_rest': 0.14285714285714285,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7939698492462312,\n", + " 'Recall-0.5': 0.9905956112852664,\n", + " 'Precision-0.5': 0.6624737945492662,\n", + " 'F1-1.5': 0.73828125,\n", + " 'Recall-1.5': 0.8590909090909091,\n", + " 'Precision-1.5': 0.6472602739726028,\n", + " 'F1-2.5': 0.5338345864661654,\n", + " 'Recall-2.5': 0.6173913043478261,\n", + " 'Precision-2.5': 0.47019867549668876,\n", + " 'F1-3.5': 0.22727272727272727,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.1724137931034483,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8870248178033632},\n", + " 'CM': {'0': {'-1': 0, '0': 22, '1': 118, '2': 31, '3': 8, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 36, '2': 39, '3': 15, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 19, '2': 39, '3': 40, '4': 7, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 12, '2': 32, '3': 49, '4': 7, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 10, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.21941927177730838,\n", + " 'Cohen': 0.23799436751707082,\n", + " 'Spearman': 0.6877385523570422,\n", + " 'Kendall': 0.5751164784719149,\n", + " 'Krippendorff': 0.6145470449477848,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7768924302788844,\n", + " 'TA-4.0': 0.7529880478087649,\n", + " 'Acc': 0.3804780876494024,\n", + " 'MAE': 0.9448871181938912,\n", + " 'MSE': 1.8984063745019923,\n", + " 'CA-0': 0.4972677595628415,\n", + " 'CA-1': 0.45454545454545453,\n", + " 'CA-2': 0.29523809523809524,\n", + " 'CA-3': 0.17,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.29948639646483416,\n", + " 'Micro-F1': 0.3804780876494024,\n", + " 'F1-0_vs_rest': 0.6453900709219859,\n", + " 'F1-1_vs_rest': 0.37815126050420167,\n", + " 'F1-2_vs_rest': 0.34065934065934067,\n", + " 'F1-3_vs_rest': 0.21518987341772153,\n", + " 'F1-4_vs_rest': 0.08849557522123894,\n", + " 'F1-5_vs_rest': 0.12903225806451613,\n", + " 'F1-0.5': 0.8614958448753463,\n", + " 'Recall-0.5': 0.9749216300940439,\n", + " 'Precision-0.5': 0.771712158808933,\n", + " 'F1-1.5': 0.7851239669421488,\n", + " 'Recall-1.5': 0.8636363636363636,\n", + " 'Precision-1.5': 0.7196969696969697,\n", + " 'F1-2.5': 0.6158940397350994,\n", + " 'Recall-2.5': 0.808695652173913,\n", + " 'Precision-2.5': 0.49732620320855614,\n", + " 'F1-3.5': 0.1388888888888889,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.07751937984496124,\n", + " 'F1-4.5': 0.12903225806451613,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.06896551724137931,\n", + " 'NDCG@all': 0.8937745511047701},\n", + " 'CM': {'0': {'-1': 0, '0': 91, '1': 65, '2': 14, '3': 5, '4': 4, '5': 4},\n", + " '1': {'-1': 0, '0': 7, '1': 45, '2': 17, '3': 11, '4': 12, '5': 7},\n", + " '2': {'-1': 0, '0': 1, '1': 22, '2': 31, '3': 22, '4': 23, '5': 6},\n", + " '3': {'-1': 0, '0': 0, '1': 7, '2': 13, '3': 17, '4': 56, '5': 7},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 3, '4': 5, '5': 3},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.04866601835017551,\n", + " 'Cohen': 0.10303622238721932,\n", + " 'Spearman': 0.6687948306293467,\n", + " 'Kendall': 0.5710579407822272,\n", + " 'Krippendorff': 0.5460460354719934,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.748,\n", + " 'TA-4.0': 0.944,\n", + " 'Acc': 0.28,\n", + " 'MAE': 0.8733333333333334,\n", + " 'MSE': 1.2031111111111108,\n", + " 'CA-0': 0.04918032786885246,\n", + " 'CA-1': 0.3838383838383838,\n", + " 'CA-2': 0.38095238095238093,\n", + " 'CA-3': 0.5204081632653061,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2113972521914155,\n", + " 'Micro-F1': 0.28,\n", + " 'F1-0_vs_rest': 0.09375,\n", + " 'F1-1_vs_rest': 0.23974763406940064,\n", + " 'F1-2_vs_rest': 0.3292181069958848,\n", + " 'F1-3_vs_rest': 0.4766355140186916,\n", + " 'F1-4_vs_rest': 0.12903225806451613,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7846534653465347,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6456211812627292,\n", + " 'F1-1.5': 0.7657841140529531,\n", + " 'Recall-1.5': 0.8623853211009175,\n", + " 'Precision-1.5': 0.6886446886446886,\n", + " 'F1-2.5': 0.5483870967741935,\n", + " 'Recall-2.5': 0.6017699115044248,\n", + " 'Precision-2.5': 0.5037037037037037,\n", + " 'F1-3.5': 0.17647058823529413,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.15789473684210525,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8982265328408588},\n", + " 'CM': {'0': {'-1': 0, '0': 9, '1': 150, '2': 19, '3': 3, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 38, '2': 42, '3': 16, '4': 3, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 22, '2': 40, '3': 38, '4': 4, '5': 1},\n", + " '3': {'-1': 2, '0': 0, '1': 8, '2': 33, '3': 51, '4': 6, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 7, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.14534739189280807,\n", + " 'Cohen': 0.1664642150428085,\n", + " 'Spearman': 0.6511385385355974,\n", + " 'Kendall': 0.5447181509301078,\n", + " 'Krippendorff': 0.5363744809754563,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7071713147410359,\n", + " 'TA-4.0': 0.8027888446215139,\n", + " 'Acc': 0.3247011952191235,\n", + " 'MAE': 0.9883798140770251,\n", + " 'MSE': 1.8028441788401952,\n", + " 'CA-0': 0.39344262295081966,\n", + " 'CA-1': 0.30303030303030304,\n", + " 'CA-2': 0.21904761904761905,\n", + " 'CA-3': 0.3,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2480031322132692,\n", + " 'Micro-F1': 0.3247011952191235,\n", + " 'F1-0_vs_rest': 0.5538461538461539,\n", + " 'F1-1_vs_rest': 0.26666666666666666,\n", + " 'F1-2_vs_rest': 0.23711340206185566,\n", + " 'F1-3_vs_rest': 0.2912621359223301,\n", + " 'F1-4_vs_rest': 0.1391304347826087,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8440860215053764,\n", + " 'Recall-0.5': 0.9843260188087775,\n", + " 'Precision-0.5': 0.7388235294117647,\n", + " 'F1-1.5': 0.7360308285163777,\n", + " 'Recall-1.5': 0.8681818181818182,\n", + " 'Precision-1.5': 0.6387959866220736,\n", + " 'F1-2.5': 0.5723076923076923,\n", + " 'Recall-2.5': 0.808695652173913,\n", + " 'Precision-2.5': 0.44285714285714284,\n", + " 'F1-3.5': 0.16806722689075632,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.09615384615384616,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8816449461545032},\n", + " 'CM': {'0': {'-1': 0, '0': 72, '1': 69, '2': 25, '3': 10, '4': 6, '5': 1},\n", + " '1': {'-1': 0, '0': 3, '1': 30, '2': 30, '3': 22, '4': 13, '5': 1},\n", + " '2': {'-1': 0, '0': 2, '1': 16, '2': 23, '3': 39, '4': 25, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 11, '2': 11, '3': 30, '4': 48, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.11584124197843347,\n", + " 'Cohen': -0.03606947945812666,\n", + " 'Spearman': 0.6231946820096644,\n", + " 'Kendall': 0.5207517850859654,\n", + " 'Krippendorff': 0.20648828674933994,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5717131474103586,\n", + " 'TA-4.0': 0.6593625498007968,\n", + " 'Acc': 0.10956175298804781,\n", + " 'MAE': 1.4780876494023902,\n", + " 'MSE': 3.03054448871182,\n", + " 'CA-0': 0.00546448087431694,\n", + " 'CA-1': 0.08080808080808081,\n", + " 'CA-2': 0.17142857142857143,\n", + " 'CA-3': 0.19,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.088615577254586,\n", + " 'Micro-F1': 0.10956175298804781,\n", + " 'F1-0_vs_rest': 0.010869565217391304,\n", + " 'F1-1_vs_rest': 0.08695652173913043,\n", + " 'F1-2_vs_rest': 0.145748987854251,\n", + " 'F1-3_vs_rest': 0.19387755102040816,\n", + " 'F1-4_vs_rest': 0.09424083769633508,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7780487804878049,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6367265469061876,\n", + " 'F1-1.5': 0.6792452830188679,\n", + " 'Recall-1.5': 0.9818181818181818,\n", + " 'Precision-1.5': 0.5192307692307693,\n", + " 'F1-2.5': 0.5244215938303342,\n", + " 'Recall-2.5': 0.8869565217391304,\n", + " 'Precision-2.5': 0.3722627737226277,\n", + " 'F1-3.5': 0.11398963730569948,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.06179775280898876,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8862908235405437},\n", + " 'CM': {'0': {'-1': 0, '0': 1, '1': 73, '2': 77, '3': 18, '4': 14, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 35, '3': 22, '4': 34, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 3, '2': 18, '3': 33, '4': 51, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 12, '3': 19, '4': 68, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.1331501826889906,\n", + " 'Cohen': -0.06239818684042797,\n", + " 'Spearman': 0.7040813452227204,\n", + " 'Kendall': 0.6012108922781682,\n", + " 'Krippendorff': 0.2501343749250968,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.59,\n", + " 'TA-4.0': 0.742,\n", + " 'Acc': 0.1,\n", + " 'MAE': 1.4303333333333332,\n", + " 'MSE': 2.8032777777777786,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.050505050505050504,\n", + " 'CA-2': 0.057692307692307696,\n", + " 'CA-3': 0.3,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.07591681234921427,\n", + " 'Micro-F1': 0.1,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.052083333333333336,\n", + " 'F1-2_vs_rest': 0.06030150753768844,\n", + " 'F1-3_vs_rest': 0.21897810218978103,\n", + " 'F1-4_vs_rest': 0.12413793103448276,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7775061124694377,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.636,\n", + " 'F1-1.5': 0.6932907348242812,\n", + " 'Recall-1.5': 0.9908675799086758,\n", + " 'Precision-1.5': 0.5331695331695332,\n", + " 'F1-2.5': 0.5152224824355972,\n", + " 'Recall-2.5': 0.9565217391304348,\n", + " 'Precision-2.5': 0.3525641025641026,\n", + " 'F1-3.5': 0.1437908496732026,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.07971014492753623,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8822683403196976},\n", + " 'CM': {'0': {'-1': 1, '0': 0, '1': 86, '2': 63, '3': 27, '4': 5, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 5, '2': 22, '3': 50, '4': 20, '5': 2},\n", + " '2': {'-1': 1, '0': 0, '1': 1, '2': 6, '3': 63, '4': 31, '5': 3},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 4, '3': 30, '4': 65, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.19319174527629376,\n", + " 'Cohen': 0.22313521500813704,\n", + " 'Spearman': 0.706880756986347,\n", + " 'Kendall': 0.6061847072113131,\n", + " 'Krippendorff': 0.608756125799004,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7669322709163346,\n", + " 'TA-4.0': 0.9203187250996016,\n", + " 'Acc': 0.38247011952191234,\n", + " 'MAE': 0.7689243027888445,\n", + " 'MSE': 1.1195219123505973,\n", + " 'CA-0': 0.22404371584699453,\n", + " 'CA-1': 0.37373737373737376,\n", + " 'CA-2': 0.6095238095238096,\n", + " 'CA-3': 0.48,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.28392950765909486,\n", + " 'Micro-F1': 0.38247011952191234,\n", + " 'F1-0_vs_rest': 0.36444444444444446,\n", + " 'F1-1_vs_rest': 0.27715355805243447,\n", + " 'F1-2_vs_rest': 0.460431654676259,\n", + " 'F1-3_vs_rest': 0.5106382978723404,\n", + " 'F1-4_vs_rest': 0.09090909090909091,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8164313222079589,\n", + " 'Recall-0.5': 0.9968652037617555,\n", + " 'Precision-0.5': 0.691304347826087,\n", + " 'F1-1.5': 0.79296875,\n", + " 'Recall-1.5': 0.9227272727272727,\n", + " 'Precision-1.5': 0.6952054794520548,\n", + " 'F1-2.5': 0.6153846153846154,\n", + " 'Recall-2.5': 0.6260869565217392,\n", + " 'Precision-2.5': 0.6050420168067226,\n", + " 'F1-3.5': 0.13043478260869565,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.0967741935483871,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9005298997336587},\n", + " 'CM': {'0': {'-1': 0, '0': 41, '1': 114, '2': 22, '3': 2, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 37, '2': 48, '3': 8, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 13, '2': 64, '3': 23, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 34, '3': 48, '4': 14, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 6, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.05163297045101089,\n", + " 'Cohen': 0.018938368089139956,\n", + " 'Spearman': 0.4622799973940039,\n", + " 'Kendall': 0.3828313547913429,\n", + " 'Krippendorff': 0.06651671266102122,\n", + " 'Invalid': 257,\n", + " 'TA-2.0': 0.5591836734693878,\n", + " 'TA-4.0': 0.6530612244897959,\n", + " 'Acc': 0.15510204081632653,\n", + " 'MAE': 1.6272108843537414,\n", + " 'MSE': 3.8591836734693876,\n", + " 'CA-0': 0.0449438202247191,\n", + " 'CA-1': 0.0,\n", + " 'CA-2': 0.14285714285714285,\n", + " 'CA-3': 0.3728813559322034,\n", + " 'CA-4': 0.6666666666666666,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.13074421592640043,\n", + " 'Micro-F1': 0.15510204081632653,\n", + " 'F1-0_vs_rest': 0.08602150537634409,\n", + " 'F1-1_vs_rest': 0.0,\n", + " 'F1-2_vs_rest': 0.12727272727272726,\n", + " 'F1-3_vs_rest': 0.36363636363636365,\n", + " 'F1-4_vs_rest': 0.0898876404494382,\n", + " 'F1-5_vs_rest': 0.11764705882352941,\n", + " 'F1-0.5': 0.7858942065491183,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6473029045643154,\n", + " 'F1-1.5': 0.6706231454005934,\n", + " 'Recall-1.5': 0.9741379310344828,\n", + " 'Precision-1.5': 0.5113122171945701,\n", + " 'F1-2.5': 0.5286343612334802,\n", + " 'Recall-2.5': 0.8955223880597015,\n", + " 'Precision-2.5': 0.375,\n", + " 'F1-3.5': 0.1320754716981132,\n", + " 'Recall-3.5': 0.875,\n", + " 'Precision-3.5': 0.07142857142857142,\n", + " 'F1-4.5': 0.11764705882352941,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.06666666666666667,\n", + " 'NDCG@all': 0.8710755598113981},\n", + " 'CM': {'0': {'-1': 94, '0': 4, '1': 17, '2': 36, '3': 15, '4': 16, '5': 1},\n", + " '1': {'-1': 59, '0': 0, '1': 0, '2': 12, '3': 13, '4': 12, '5': 3},\n", + " '2': {'-1': 56, '0': 0, '1': 2, '2': 7, '3': 12, '4': 23, '5': 5},\n", + " '3': {'-1': 41, '0': 0, '1': 1, '2': 5, '3': 22, '4': 27, '5': 4},\n", + " '4': {'-1': 7, '0': 0, '1': 0, '2': 1, '3': 0, '4': 4, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.11955089247453832,\n", + " 'Cohen': 0.16004689717588494,\n", + " 'Spearman': 0.6908199159401305,\n", + " 'Kendall': 0.591741414853888,\n", + " 'Krippendorff': 0.5812350581883734,\n", + " 'Invalid': 4,\n", + " 'TA-2.0': 0.7329317269076305,\n", + " 'TA-4.0': 0.9558232931726908,\n", + " 'Acc': 0.3413654618473896,\n", + " 'MAE': 0.7938420348058902,\n", + " 'MSE': 1.0495314591700131,\n", + " 'CA-0': 0.23497267759562843,\n", + " 'CA-1': 0.2653061224489796,\n", + " 'CA-2': 0.6190476190476191,\n", + " 'CA-3': 0.3711340206185567,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2325348805240106,\n", + " 'Micro-F1': 0.3413654618473896,\n", + " 'F1-0_vs_rest': 0.37719298245614036,\n", + " 'F1-1_vs_rest': 0.2184873949579832,\n", + " 'F1-2_vs_rest': 0.39274924471299094,\n", + " 'F1-3_vs_rest': 0.4067796610169492,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8151041666666666,\n", + " 'Recall-0.5': 0.9936507936507937,\n", + " 'Precision-0.5': 0.6909492273730684,\n", + " 'F1-1.5': 0.769811320754717,\n", + " 'Recall-1.5': 0.9400921658986175,\n", + " 'Precision-1.5': 0.6517571884984026,\n", + " 'F1-2.5': 0.4824120603015075,\n", + " 'Recall-2.5': 0.42857142857142855,\n", + " 'Precision-2.5': 0.5517241379310345,\n", + " 'F1-3.5': 0.0,\n", + " 'Recall-3.5': 0.0,\n", + " 'Precision-3.5': 0.0,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8999264263310613},\n", + " 'CM': {'0': {'-1': 0, '0': 43, '1': 102, '2': 35, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 1, '0': 1, '1': 26, '2': 63, '3': 8, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 11, '2': 65, '3': 23, '4': 5, '5': 0},\n", + " '3': {'-1': 3, '0': 0, '1': 1, '2': 58, '3': 36, '4': 2, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 8, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.1646630487050903,\n", + " 'Cohen': 0.18366870399234114,\n", + " 'Spearman': 0.646811506963114,\n", + " 'Kendall': 0.5205301206489735,\n", + " 'Krippendorff': 0.5550466139609931,\n", + " 'Invalid': 42,\n", + " 'TA-2.0': 0.7304347826086957,\n", + " 'TA-4.0': 0.8043478260869565,\n", + " 'Acc': 0.3391304347826087,\n", + " 'MAE': 0.9557971014492754,\n", + " 'MSE': 1.7316425120772947,\n", + " 'CA-0': 0.3782051282051282,\n", + " 'CA-1': 0.14285714285714285,\n", + " 'CA-2': 0.45544554455445546,\n", + " 'CA-3': 0.3163265306122449,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2583765554837591,\n", + " 'Micro-F1': 0.3391304347826087,\n", + " 'F1-0_vs_rest': 0.5108225108225108,\n", + " 'F1-1_vs_rest': 0.15853658536585366,\n", + " 'F1-2_vs_rest': 0.39316239316239315,\n", + " 'F1-3_vs_rest': 0.36046511627906974,\n", + " 'F1-4_vs_rest': 0.12727272727272726,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8359941944847605,\n", + " 'Recall-0.5': 0.9473684210526315,\n", + " 'Precision-0.5': 0.7480519480519481,\n", + " 'F1-1.5': 0.7695238095238095,\n", + " 'Recall-1.5': 0.9483568075117371,\n", + " 'Precision-1.5': 0.6474358974358975,\n", + " 'F1-2.5': 0.6185567010309279,\n", + " 'Recall-2.5': 0.8035714285714286,\n", + " 'Precision-2.5': 0.5027932960893855,\n", + " 'F1-3.5': 0.13445378151260504,\n", + " 'Recall-3.5': 0.5714285714285714,\n", + " 'Precision-3.5': 0.0761904761904762,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8909972990499506},\n", + " 'CM': {'0': {'-1': 27, '0': 59, '1': 51, '2': 36, '3': 4, '4': 6, '5': 0},\n", + " '1': {'-1': 8, '0': 14, '1': 13, '2': 32, '3': 13, '4': 16, '5': 3},\n", + " '2': {'-1': 4, '0': 2, '1': 6, '2': 46, '3': 23, '4': 21, '5': 3},\n", + " '3': {'-1': 2, '0': 0, '1': 3, '2': 16, '3': 31, '4': 46, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 3, '4': 7, '5': 0},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.08432542162710817,\n", + " 'Cohen': -0.023880343333050114,\n", + " 'Spearman': 0.6354242827810219,\n", + " 'Kendall': 0.5361032121164497,\n", + " 'Krippendorff': 0.26981074112728554,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5597609561752988,\n", + " 'TA-4.0': 0.7529880478087649,\n", + " 'Acc': 0.1394422310756972,\n", + " 'MAE': 1.358565737051793,\n", + " 'MSE': 2.6131031429836216,\n", + " 'CA-0': 0.04918032786885246,\n", + " 'CA-1': 0.08080808080808081,\n", + " 'CA-2': 0.1619047619047619,\n", + " 'CA-3': 0.26,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.2221238331455956,\n", + " 'Micro-F1': 0.1394422310756972,\n", + " 'F1-0_vs_rest': 0.09375,\n", + " 'F1-1_vs_rest': 0.08888888888888889,\n", + " 'F1-2_vs_rest': 0.13438735177865613,\n", + " 'F1-3_vs_rest': 0.22317596566523606,\n", + " 'F1-4_vs_rest': 0.1258741258741259,\n", + " 'F1-5_vs_rest': 0.6666666666666666,\n", + " 'F1-0.5': 0.7857142857142857,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6470588235294118,\n", + " 'F1-1.5': 0.6708860759493671,\n", + " 'Recall-1.5': 0.9636363636363636,\n", + " 'Precision-1.5': 0.5145631067961165,\n", + " 'F1-2.5': 0.5329815303430079,\n", + " 'Recall-2.5': 0.8782608695652174,\n", + " 'Precision-2.5': 0.38257575757575757,\n", + " 'F1-3.5': 0.1506849315068493,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08396946564885496,\n", + " 'F1-4.5': 0.6666666666666666,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 1.0,\n", + " 'NDCG@all': 0.9168116042759845},\n", + " 'CM': {'0': {'-1': 0, '0': 9, '1': 65, '2': 79, '3': 22, '4': 8, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 39, '3': 33, '4': 19, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 7, '2': 17, '3': 48, '4': 33, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 13, '3': 26, '4': 60, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}}},\n", + " 'el': {'phi-4': {'metrics': {'Fleiss': 0.2460012984713451,\n", + " 'Cohen': 0.2564785309994617,\n", + " 'Spearman': 0.6183578406474384,\n", + " 'Kendall': 0.5147457996840178,\n", + " 'Krippendorff': 0.5752421391728113,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.726027397260274,\n", + " 'TA-4.0': 0.8747553816046967,\n", + " 'Acc': 0.41291585127201563,\n", + " 'MAE': 0.8558382257012392,\n", + " 'MSE': 1.5535986083931286,\n", + " 'CA-0': 0.46774193548387094,\n", + " 'CA-1': 0.43,\n", + " 'CA-2': 0.27358490566037735,\n", + " 'CA-3': 0.4423076923076923,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.3410449012754981,\n", + " 'Micro-F1': 0.41291585127201563,\n", + " 'F1-0_vs_rest': 0.6041666666666666,\n", + " 'F1-1_vs_rest': 0.3524590163934426,\n", + " 'F1-2_vs_rest': 0.29441624365482233,\n", + " 'F1-3_vs_rest': 0.43601895734597157,\n", + " 'F1-4_vs_rest': 0.136986301369863,\n", + " 'F1-5_vs_rest': 0.2222222222222222,\n", + " 'F1-0.5': 0.8446866485013624,\n", + " 'Recall-0.5': 0.9538461538461539,\n", + " 'Precision-0.5': 0.7579462102689487,\n", + " 'F1-1.5': 0.7387755102040816,\n", + " 'Recall-1.5': 0.8044444444444444,\n", + " 'Precision-1.5': 0.6830188679245283,\n", + " 'F1-2.5': 0.5938566552901023,\n", + " 'Recall-2.5': 0.7310924369747899,\n", + " 'Precision-2.5': 0.5,\n", + " 'F1-3.5': 0.17073170731707318,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.1044776119402985,\n", + " 'F1-4.5': 0.2222222222222222,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.14285714285714285,\n", + " 'NDCG@all': 0.8818394069134945},\n", + " 'CM': {'0': {'-1': 0, '0': 87, '1': 64, '2': 20, '3': 9, '4': 4, '5': 2},\n", + " '1': {'-1': 0, '0': 8, '1': 43, '2': 26, '3': 13, '4': 8, '5': 2},\n", + " '2': {'-1': 0, '0': 6, '1': 22, '2': 29, '3': 32, '4': 15, '5': 2},\n", + " '3': {'-1': 0, '0': 1, '1': 15, '2': 15, '3': 46, '4': 27, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 7, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.1771981715514923,\n", + " 'Cohen': 0.2018934980475129,\n", + " 'Spearman': 0.587040293888872,\n", + " 'Kendall': 0.4918442527293123,\n", + " 'Krippendorff': 0.5266164552917545,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7313725490196078,\n", + " 'TA-4.0': 0.9333333333333333,\n", + " 'Acc': 0.37058823529411766,\n", + " 'MAE': 0.8385620915032681,\n", + " 'MSE': 1.3374727668845319,\n", + " 'CA-0': 0.27956989247311825,\n", + " 'CA-1': 0.44,\n", + " 'CA-2': 0.44339622641509435,\n", + " 'CA-3': 0.42718446601941745,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2750546227539467,\n", + " 'Micro-F1': 0.37058823529411766,\n", + " 'F1-0_vs_rest': 0.4262295081967213,\n", + " 'F1-1_vs_rest': 0.3120567375886525,\n", + " 'F1-2_vs_rest': 0.37751004016064255,\n", + " 'F1-3_vs_rest': 0.4292682926829268,\n", + " 'F1-4_vs_rest': 0.10526315789473684,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8195876288659794,\n", + " 'Recall-0.5': 0.9814814814814815,\n", + " 'Precision-0.5': 0.7035398230088495,\n", + " 'F1-1.5': 0.7368421052631579,\n", + " 'Recall-1.5': 0.8125,\n", + " 'Precision-1.5': 0.674074074074074,\n", + " 'F1-2.5': 0.5224489795918368,\n", + " 'Recall-2.5': 0.5423728813559322,\n", + " 'Precision-2.5': 0.5039370078740157,\n", + " 'F1-3.5': 0.15,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.12,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8785970432710287},\n", + " 'CM': {'0': {'-1': 0, '0': 52, '1': 97, '2': 27, '3': 5, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 5, '1': 44, '2': 31, '3': 14, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 25, '2': 47, '3': 29, '4': 4, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 16, '2': 36, '3': 44, '4': 7, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 9, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.16832014935197043,\n", + " 'Cohen': 0.19086827741659051,\n", + " 'Spearman': 0.6899182854708372,\n", + " 'Kendall': 0.5727902802931757,\n", + " 'Krippendorff': 0.5756889144367185,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7671232876712328,\n", + " 'TA-4.0': 0.7318982387475538,\n", + " 'Acc': 0.33463796477495106,\n", + " 'MAE': 1.0176125244618397,\n", + " 'MSE': 2.093498586649272,\n", + " 'CA-0': 0.43010752688172044,\n", + " 'CA-1': 0.34,\n", + " 'CA-2': 0.29245283018867924,\n", + " 'CA-3': 0.17307692307692307,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.27157270147908835,\n", + " 'Micro-F1': 0.33463796477495106,\n", + " 'F1-0_vs_rest': 0.5882352941176471,\n", + " 'F1-1_vs_rest': 0.2982456140350877,\n", + " 'F1-2_vs_rest': 0.3163265306122449,\n", + " 'F1-3_vs_rest': 0.2155688622754491,\n", + " 'F1-4_vs_rest': 0.0967741935483871,\n", + " 'F1-5_vs_rest': 0.11428571428571428,\n", + " 'F1-0.5': 0.8506666666666667,\n", + " 'Recall-0.5': 0.9815384615384616,\n", + " 'Precision-0.5': 0.7505882352941177,\n", + " 'F1-1.5': 0.7931034482758621,\n", + " 'Recall-1.5': 0.92,\n", + " 'Precision-1.5': 0.696969696969697,\n", + " 'F1-2.5': 0.6012269938650306,\n", + " 'Recall-2.5': 0.8235294117647058,\n", + " 'Precision-2.5': 0.47342995169082125,\n", + " 'F1-3.5': 0.13836477987421383,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.0763888888888889,\n", + " 'F1-4.5': 0.11428571428571428,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.06060606060606061,\n", + " 'NDCG@all': 0.8917784896472812},\n", + " 'CM': {'0': {'-1': 0, '0': 80, '1': 76, '2': 13, '3': 6, '4': 7, '5': 4},\n", + " '1': {'-1': 0, '0': 6, '1': 34, '2': 26, '3': 13, '4': 14, '5': 7},\n", + " '2': {'-1': 0, '0': 0, '1': 17, '2': 31, '3': 25, '4': 23, '5': 10},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 17, '3': 18, '4': 61, '5': 7},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 1, '4': 6, '5': 3},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.04958318175920954,\n", + " 'Cohen': 0.10577360351174481,\n", + " 'Spearman': 0.6545541939296697,\n", + " 'Kendall': 0.5619388950393851,\n", + " 'Krippendorff': 0.5272706955658846,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.7445972495088409,\n", + " 'TA-4.0': 0.9292730844793713,\n", + " 'Acc': 0.27897838899803534,\n", + " 'MAE': 0.8925998690242306,\n", + " 'MSE': 1.2667539838463213,\n", + " 'CA-0': 0.026881720430107527,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.3904761904761905,\n", + " 'CA-3': 0.5533980582524272,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.19820262856913248,\n", + " 'Micro-F1': 0.27897838899803534,\n", + " 'F1-0_vs_rest': 0.05235602094240838,\n", + " 'F1-1_vs_rest': 0.2345679012345679,\n", + " 'F1-2_vs_rest': 0.3474576271186441,\n", + " 'F1-3_vs_rest': 0.5022026431718062,\n", + " 'F1-4_vs_rest': 0.05263157894736842,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.781136638452237,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6408730158730159,\n", + " 'F1-1.5': 0.7554671968190855,\n", + " 'Recall-1.5': 0.852017937219731,\n", + " 'Precision-1.5': 0.6785714285714286,\n", + " 'F1-2.5': 0.599250936329588,\n", + " 'Recall-2.5': 0.6779661016949152,\n", + " 'Precision-2.5': 0.5369127516778524,\n", + " 'F1-3.5': 0.1,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.08,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8975557679616587},\n", + " 'CM': {'0': {'-1': 0, '0': 5, '1': 153, '2': 21, '3': 4, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 38, '2': 42, '3': 17, '4': 3, '5': 0},\n", + " '2': {'-1': 1, '0': 0, '1': 22, '2': 41, '3': 36, '4': 6, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 11, '2': 24, '3': 57, '4': 11, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 9, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.1653007310929532,\n", + " 'Cohen': 0.17850163496701033,\n", + " 'Spearman': 0.6307567152373387,\n", + " 'Kendall': 0.5220084352396945,\n", + " 'Krippendorff': 0.5650156294194755,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.711764705882353,\n", + " 'TA-4.0': 0.8549019607843137,\n", + " 'Acc': 0.34705882352941175,\n", + " 'MAE': 0.908496732026144,\n", + " 'MSE': 1.5494553376906322,\n", + " 'CA-0': 0.41935483870967744,\n", + " 'CA-1': 0.33,\n", + " 'CA-2': 0.2169811320754717,\n", + " 'CA-3': 0.3300970873786408,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.34525112736467684,\n", + " 'Micro-F1': 0.34705882352941175,\n", + " 'F1-0_vs_rest': 0.5512367491166078,\n", + " 'F1-1_vs_rest': 0.28448275862068967,\n", + " 'F1-2_vs_rest': 0.21800947867298578,\n", + " 'F1-3_vs_rest': 0.34,\n", + " 'F1-4_vs_rest': 0.17777777777777778,\n", + " 'F1-5_vs_rest': 0.5,\n", + " 'F1-0.5': 0.8276797829036635,\n", + " 'Recall-0.5': 0.941358024691358,\n", + " 'Precision-0.5': 0.738498789346247,\n", + " 'F1-1.5': 0.7326732673267327,\n", + " 'Recall-1.5': 0.8258928571428571,\n", + " 'Precision-1.5': 0.6583629893238434,\n", + " 'F1-2.5': 0.5850340136054422,\n", + " 'Recall-2.5': 0.7288135593220338,\n", + " 'Precision-2.5': 0.48863636363636365,\n", + " 'F1-3.5': 0.2127659574468085,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.12658227848101267,\n", + " 'F1-4.5': 0.5,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.5,\n", + " 'NDCG@all': 0.9145076761966459},\n", + " 'CM': {'0': {'-1': 0, '0': 78, '1': 69, '2': 26, '3': 9, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 10, '1': 33, '2': 33, '3': 14, '4': 10, '5': 0},\n", + " '2': {'-1': 0, '0': 5, '1': 25, '2': 23, '3': 35, '4': 17, '5': 1},\n", + " '3': {'-1': 1, '0': 4, '1': 5, '2': 23, '3': 34, '4': 37, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.16528532053162986,\n", + " 'Cohen': -0.07840169517178741,\n", + " 'Spearman': 0.639703838313411,\n", + " 'Kendall': 0.5455717661232881,\n", + " 'Krippendorff': 0.19151187487166954,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.5568627450980392,\n", + " 'TA-4.0': 0.6333333333333333,\n", + " 'Acc': 0.06862745098039216,\n", + " 'MAE': 1.5444444444444443,\n", + " 'MSE': 3.145751633986929,\n", + " 'CA-0': 0.005376344086021506,\n", + " 'CA-1': 0.03,\n", + " 'CA-2': 0.07547169811320754,\n", + " 'CA-3': 0.14563106796116504,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.055904766994553705,\n", + " 'Micro-F1': 0.06862745098039216,\n", + " 'F1-0_vs_rest': 0.0106951871657754,\n", + " 'F1-1_vs_rest': 0.03225806451612903,\n", + " 'F1-2_vs_rest': 0.06808510638297872,\n", + " 'F1-3_vs_rest': 0.14634146341463414,\n", + " 'F1-4_vs_rest': 0.07804878048780488,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7779111644657863,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6365422396856582,\n", + " 'F1-1.5': 0.6707882534775889,\n", + " 'Recall-1.5': 0.96875,\n", + " 'Precision-1.5': 0.5130023640661938,\n", + " 'F1-2.5': 0.5048543689320388,\n", + " 'Recall-2.5': 0.8813559322033898,\n", + " 'Precision-2.5': 0.35374149659863946,\n", + " 'F1-3.5': 0.0966183574879227,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.052083333333333336,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8884000858698269},\n", + " 'CM': {'0': {'-1': 0, '0': 1, '1': 76, '2': 78, '3': 17, '4': 14, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 3, '2': 32, '3': 28, '4': 37, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 4, '2': 8, '3': 40, '4': 54, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 3, '2': 8, '3': 15, '4': 77, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 2, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.12637133898513095,\n", + " 'Cohen': -0.05556131860598312,\n", + " 'Spearman': 0.7050367116075933,\n", + " 'Kendall': 0.601641156096354,\n", + " 'Krippendorff': 0.25665488525104974,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5968688845401174,\n", + " 'TA-4.0': 0.7299412915851272,\n", + " 'Acc': 0.10371819960861056,\n", + " 'MAE': 1.428897586431833,\n", + " 'MSE': 2.785768645357687,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.06,\n", + " 'CA-2': 0.05660377358490566,\n", + " 'CA-3': 0.2980769230769231,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.11878465200975445,\n", + " 'Micro-F1': 0.10371819960861056,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.06030150753768844,\n", + " 'F1-2_vs_rest': 0.06,\n", + " 'F1-3_vs_rest': 0.22627737226277372,\n", + " 'F1-4_vs_rest': 0.11612903225806452,\n", + " 'F1-5_vs_rest': 0.25,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.6970172684458399,\n", + " 'Recall-1.5': 0.9866666666666667,\n", + " 'Precision-1.5': 0.5388349514563107,\n", + " 'F1-2.5': 0.5217391304347826,\n", + " 'Recall-2.5': 0.957983193277311,\n", + " 'Precision-2.5': 0.3584905660377358,\n", + " 'F1-3.5': 0.13496932515337423,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.07432432432432433,\n", + " 'F1-4.5': 0.25,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.16666666666666666,\n", + " 'NDCG@all': 0.9090243751659209},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 90, '2': 61, '3': 29, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 6, '2': 23, '3': 48, '4': 22, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 2, '2': 6, '3': 58, '4': 38, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 4, '3': 31, '4': 66, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.15699472439512457,\n", + " 'Cohen': 0.1886243056288437,\n", + " 'Spearman': 0.7046284888610606,\n", + " 'Kendall': 0.6005552826317324,\n", + " 'Krippendorff': 0.5950591954687967,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7573385518590998,\n", + " 'TA-4.0': 0.913894324853229,\n", + " 'Acc': 0.3522504892367906,\n", + " 'MAE': 0.8108284409654269,\n", + " 'MSE': 1.176560121765601,\n", + " 'CA-0': 0.1989247311827957,\n", + " 'CA-1': 0.37,\n", + " 'CA-2': 0.5188679245283019,\n", + " 'CA-3': 0.47115384615384615,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.26116990944677254,\n", + " 'Micro-F1': 0.3522504892367906,\n", + " 'F1-0_vs_rest': 0.33183856502242154,\n", + " 'F1-1_vs_rest': 0.27611940298507465,\n", + " 'F1-2_vs_rest': 0.4,\n", + " 'F1-3_vs_rest': 0.47572815533980584,\n", + " 'F1-4_vs_rest': 0.08333333333333333,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8135168961201502,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6856540084388185,\n", + " 'F1-1.5': 0.7909604519774012,\n", + " 'Recall-1.5': 0.9333333333333333,\n", + " 'Precision-1.5': 0.6862745098039216,\n", + " 'F1-2.5': 0.6015625,\n", + " 'Recall-2.5': 0.6470588235294118,\n", + " 'Precision-2.5': 0.5620437956204379,\n", + " 'F1-3.5': 0.12,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.08571428571428572,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9027732523608726},\n", + " 'CM': {'0': {'-1': 0, '0': 37, '1': 116, '2': 26, '3': 3, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 37, '2': 48, '3': 11, '4': 4, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 13, '2': 55, '3': 31, '4': 7, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 36, '3': 49, '4': 17, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 7, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.08529318875671127,\n", + " 'Cohen': -0.003426124197002167,\n", + " 'Spearman': 0.48375095770315674,\n", + " 'Kendall': 0.39485328447948376,\n", + " 'Krippendorff': 0.014744904722679197,\n", + " 'Invalid': 269,\n", + " 'TA-2.0': 0.5289256198347108,\n", + " 'TA-4.0': 0.5743801652892562,\n", + " 'Acc': 0.11983471074380166,\n", + " 'MAE': 1.783746556473829,\n", + " 'MSE': 4.526400367309459,\n", + " 'CA-0': 0.0425531914893617,\n", + " 'CA-1': 0.06666666666666667,\n", + " 'CA-2': 0.2127659574468085,\n", + " 'CA-3': 0.15555555555555556,\n", + " 'CA-4': 0.5,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.10242940245764282,\n", + " 'Micro-F1': 0.11983471074380166,\n", + " 'F1-0_vs_rest': 0.08080808080808081,\n", + " 'F1-1_vs_rest': 0.08450704225352113,\n", + " 'F1-2_vs_rest': 0.2,\n", + " 'F1-3_vs_rest': 0.15217391304347827,\n", + " 'F1-4_vs_rest': 0.0970873786407767,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7636363636363637,\n", + " 'Recall-0.5': 0.9932432432432432,\n", + " 'Precision-0.5': 0.620253164556962,\n", + " 'F1-1.5': 0.643312101910828,\n", + " 'Recall-1.5': 0.9805825242718447,\n", + " 'Precision-1.5': 0.4786729857819905,\n", + " 'F1-2.5': 0.4953271028037383,\n", + " 'Recall-2.5': 0.9464285714285714,\n", + " 'Precision-2.5': 0.33544303797468356,\n", + " 'F1-3.5': 0.11475409836065574,\n", + " 'Recall-3.5': 0.6363636363636364,\n", + " 'Precision-3.5': 0.06306306306306306,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8384485864026487},\n", + " 'CM': {'0': {'-1': 92, '0': 4, '1': 22, '2': 33, '3': 15, '4': 16, '5': 4},\n", + " '1': {'-1': 55, '0': 0, '1': 3, '2': 9, '3': 10, '4': 20, '5': 3},\n", + " '2': {'-1': 59, '0': 0, '1': 0, '2': 10, '3': 11, '4': 23, '5': 3},\n", + " '3': {'-1': 59, '0': 1, '1': 1, '2': 1, '3': 7, '4': 29, '5': 6},\n", + " '4': {'-1': 3, '0': 0, '1': 0, '2': 0, '3': 3, '4': 5, '5': 2},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 1, '4': 0, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.12044377684393867,\n", + " 'Cohen': 0.15942500036934715,\n", + " 'Spearman': 0.6951791157786579,\n", + " 'Kendall': 0.5928388865688672,\n", + " 'Krippendorff': 0.5843584348092454,\n", + " 'Invalid': 3,\n", + " 'TA-2.0': 0.7440944881889764,\n", + " 'TA-4.0': 0.9586614173228346,\n", + " 'Acc': 0.33858267716535434,\n", + " 'MAE': 0.7926509186351705,\n", + " 'MSE': 1.054680664916885,\n", + " 'CA-0': 0.20967741935483872,\n", + " 'CA-1': 0.26,\n", + " 'CA-2': 0.6037735849056604,\n", + " 'CA-3': 0.42574257425742573,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23322815229152175,\n", + " 'Micro-F1': 0.33858267716535434,\n", + " 'F1-0_vs_rest': 0.3436123348017621,\n", + " 'F1-1_vs_rest': 0.203125,\n", + " 'F1-2_vs_rest': 0.4,\n", + " 'F1-3_vs_rest': 0.45263157894736844,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8111533586818758,\n", + " 'Recall-0.5': 0.9937888198757764,\n", + " 'Precision-0.5': 0.6852248394004282,\n", + " 'F1-1.5': 0.7729831144465291,\n", + " 'Recall-1.5': 0.9279279279279279,\n", + " 'Precision-1.5': 0.662379421221865,\n", + " 'F1-2.5': 0.5070422535211268,\n", + " 'Recall-2.5': 0.46551724137931033,\n", + " 'Precision-2.5': 0.5567010309278351,\n", + " 'F1-3.5': 0.08695652173913043,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.125,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.897331117844216},\n", + " 'CM': {'0': {'-1': 0, '0': 39, '1': 115, '2': 28, '3': 4, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 26, '2': 61, '3': 9, '4': 3, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 14, '2': 64, '3': 24, '4': 3, '5': 0},\n", + " '3': {'-1': 3, '0': 0, '1': 1, '2': 56, '3': 43, '4': 1, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 8, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.08195292066259803,\n", + " 'Cohen': 0.11068636548003341,\n", + " 'Spearman': 0.6486097317978743,\n", + " 'Kendall': 0.5329606763614796,\n", + " 'Krippendorff': 0.5252201930620052,\n", + " 'Invalid': 43,\n", + " 'TA-2.0': 0.7051282051282052,\n", + " 'TA-4.0': 0.7628205128205128,\n", + " 'Acc': 0.2692307692307692,\n", + " 'MAE': 1.0381054131054133,\n", + " 'MSE': 1.8745845204178542,\n", + " 'CA-0': 0.3375,\n", + " 'CA-1': 0.15217391304347827,\n", + " 'CA-2': 0.35,\n", + " 'CA-3': 0.17647058823529413,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2062197415218214,\n", + " 'Micro-F1': 0.2692307692307692,\n", + " 'F1-0_vs_rest': 0.48,\n", + " 'F1-1_vs_rest': 0.16568047337278108,\n", + " 'F1-2_vs_rest': 0.30042918454935624,\n", + " 'F1-3_vs_rest': 0.21428571428571427,\n", + " 'F1-4_vs_rest': 0.07692307692307693,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8354430379746836,\n", + " 'Recall-0.5': 0.9642857142857143,\n", + " 'Precision-0.5': 0.7369727047146402,\n", + " 'F1-1.5': 0.7527675276752768,\n", + " 'Recall-1.5': 0.9444444444444444,\n", + " 'Precision-1.5': 0.6257668711656442,\n", + " 'F1-2.5': 0.6084142394822006,\n", + " 'Recall-2.5': 0.8103448275862069,\n", + " 'Precision-2.5': 0.48704663212435234,\n", + " 'F1-3.5': 0.09929078014184398,\n", + " 'Recall-3.5': 0.5,\n", + " 'Precision-3.5': 0.05511811023622047,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9027368881716582},\n", + " 'CM': {'0': {'-1': 26, '0': 54, '1': 53, '2': 37, '3': 7, '4': 8, '5': 1},\n", + " '1': {'-1': 8, '0': 9, '1': 14, '2': 40, '3': 13, '4': 15, '5': 1},\n", + " '2': {'-1': 6, '0': 2, '1': 9, '2': 35, '3': 23, '4': 29, '5': 2},\n", + " '3': {'-1': 2, '0': 0, '1': 1, '2': 19, '3': 18, '4': 60, '5': 4},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 4, '4': 5, '5': 2},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 1, '4': 0, '5': 0}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.05852845247874627,\n", + " 'Cohen': 0.0022267429074114276,\n", + " 'Spearman': 0.6157309164701358,\n", + " 'Kendall': 0.5163740782736762,\n", + " 'Krippendorff': 0.25520791456964087,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.5588235294117647,\n", + " 'TA-4.0': 0.7725490196078432,\n", + " 'Acc': 0.1627450980392157,\n", + " 'MAE': 1.3424836601307188,\n", + " 'MSE': 2.6505446623093682,\n", + " 'CA-0': 0.03225806451612903,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.20754716981132076,\n", + " 'CA-3': 0.3592233009708738,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.1295871688620951,\n", + " 'Micro-F1': 0.1627450980392157,\n", + " 'F1-0_vs_rest': 0.0625,\n", + " 'F1-1_vs_rest': 0.07954545454545454,\n", + " 'F1-2_vs_rest': 0.16,\n", + " 'F1-3_vs_rest': 0.3148936170212766,\n", + " 'F1-4_vs_rest': 0.16058394160583941,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.782608695652174,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6428571428571429,\n", + " 'F1-1.5': 0.6717791411042945,\n", + " 'Recall-1.5': 0.9776785714285714,\n", + " 'Precision-1.5': 0.5116822429906542,\n", + " 'F1-2.5': 0.5464190981432361,\n", + " 'Recall-2.5': 0.8728813559322034,\n", + " 'Precision-2.5': 0.39768339768339767,\n", + " 'F1-3.5': 0.18309859154929578,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.10236220472440945,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.876186125820189},\n", + " 'CM': {'0': {'-1': 0, '0': 6, '1': 64, '2': 85, '3': 22, '4': 8, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 47, '3': 25, '4': 20, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 22, '3': 46, '4': 32, '5': 1},\n", + " '3': {'-1': 1, '0': 0, '1': 0, '2': 15, '3': 37, '4': 51, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'mt': {'phi-4': {'metrics': {'Fleiss': 0.10125982667258987,\n", + " 'Cohen': 0.1265873508057207,\n", + " 'Spearman': 0.6152128834145014,\n", + " 'Kendall': 0.4975008776453506,\n", + " 'Krippendorff': 0.42555986116868505,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6647058823529411,\n", + " 'TA-4.0': 0.8588235294117647,\n", + " 'Acc': 0.296078431372549,\n", + " 'MAE': 1.0669934640522876,\n", + " 'MSE': 1.9867647058823537,\n", + " 'CA-0': 0.2972972972972973,\n", + " 'CA-1': 0.15,\n", + " 'CA-2': 0.2358490566037736,\n", + " 'CA-3': 0.49038461538461536,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.21998345204636408,\n", + " 'Micro-F1': 0.296078431372549,\n", + " 'F1-0_vs_rest': 0.44715447154471544,\n", + " 'F1-1_vs_rest': 0.15706806282722513,\n", + " 'F1-2_vs_rest': 0.22727272727272727,\n", + " 'F1-3_vs_rest': 0.38202247191011235,\n", + " 'F1-4_vs_rest': 0.10638297872340426,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8242894056847545,\n", + " 'Recall-0.5': 0.9815384615384616,\n", + " 'Precision-0.5': 0.7104677060133631,\n", + " 'F1-1.5': 0.7307032590051458,\n", + " 'Recall-1.5': 0.9466666666666667,\n", + " 'Precision-1.5': 0.5949720670391061,\n", + " 'F1-2.5': 0.5289256198347108,\n", + " 'Recall-2.5': 0.8067226890756303,\n", + " 'Precision-2.5': 0.39344262295081966,\n", + " 'F1-3.5': 0.14583333333333334,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.08641975308641975,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8876846352799204},\n", + " 'CM': {'0': {'-1': 0, '0': 55, '1': 65, '2': 41, '3': 18, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 5, '1': 15, '2': 29, '3': 37, '4': 14, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 7, '2': 25, '3': 53, '4': 20, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 15, '3': 51, '4': 34, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 4, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.09432820008324189,\n", + " 'Cohen': 0.13452220824113048,\n", + " 'Spearman': 0.5602689093473517,\n", + " 'Kendall': 0.4681067128289585,\n", + " 'Krippendorff': 0.4527712675188118,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6862745098039216,\n", + " 'TA-4.0': 0.9490196078431372,\n", + " 'Acc': 0.30980392156862746,\n", + " 'MAE': 0.9202614379084962,\n", + " 'MSE': 1.4291938997821352,\n", + " 'CA-0': 0.11891891891891893,\n", + " 'CA-1': 0.37,\n", + " 'CA-2': 0.42452830188679247,\n", + " 'CA-3': 0.49038461538461536,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.24080634408437493,\n", + " 'Micro-F1': 0.30980392156862746,\n", + " 'F1-0_vs_rest': 0.21052631578947367,\n", + " 'F1-1_vs_rest': 0.26148409893992935,\n", + " 'F1-2_vs_rest': 0.3284671532846715,\n", + " 'F1-3_vs_rest': 0.46788990825688076,\n", + " 'F1-4_vs_rest': 0.17647058823529413,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7965474722564735,\n", + " 'Recall-0.5': 0.9938461538461538,\n", + " 'Precision-0.5': 0.6646090534979424,\n", + " 'F1-1.5': 0.7121212121212122,\n", + " 'Recall-1.5': 0.8355555555555556,\n", + " 'Precision-1.5': 0.6204620462046204,\n", + " 'F1-2.5': 0.5354330708661418,\n", + " 'Recall-2.5': 0.5714285714285714,\n", + " 'Precision-2.5': 0.5037037037037037,\n", + " 'F1-3.5': 0.2777777777777778,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.23809523809523808,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8908806810590433},\n", + " 'CM': {'0': {'-1': 0, '0': 22, '1': 110, '2': 44, '3': 6, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 37, '2': 40, '3': 18, '4': 4, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 25, '2': 45, '3': 32, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 11, '2': 36, '3': 51, '4': 5, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 7, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.24278557478863166,\n", + " 'Cohen': 0.25870684577530356,\n", + " 'Spearman': 0.674016633289588,\n", + " 'Kendall': 0.5599140351700173,\n", + " 'Krippendorff': 0.6104227383222653,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7509803921568627,\n", + " 'TA-4.0': 0.7705882352941177,\n", + " 'Acc': 0.4,\n", + " 'MAE': 0.9281045751633986,\n", + " 'MSE': 1.904139433551198,\n", + " 'CA-0': 0.5135135135135135,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.3584905660377358,\n", + " 'CA-3': 0.22115384615384615,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.3208543455547879,\n", + " 'Micro-F1': 0.4,\n", + " 'F1-0_vs_rest': 0.6551724137931034,\n", + " 'F1-1_vs_rest': 0.3247863247863248,\n", + " 'F1-2_vs_rest': 0.37623762376237624,\n", + " 'F1-3_vs_rest': 0.2967741935483871,\n", + " 'F1-4_vs_rest': 0.1509433962264151,\n", + " 'F1-5_vs_rest': 0.12121212121212122,\n", + " 'F1-0.5': 0.863013698630137,\n", + " 'Recall-0.5': 0.9692307692307692,\n", + " 'Precision-0.5': 0.7777777777777778,\n", + " 'F1-1.5': 0.7661290322580645,\n", + " 'Recall-1.5': 0.8444444444444444,\n", + " 'Precision-1.5': 0.7011070110701108,\n", + " 'F1-2.5': 0.6394557823129252,\n", + " 'Recall-2.5': 0.7899159663865546,\n", + " 'Precision-2.5': 0.5371428571428571,\n", + " 'F1-3.5': 0.15827338129496402,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08870967741935484,\n", + " 'F1-4.5': 0.12121212121212122,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.06451612903225806,\n", + " 'NDCG@all': 0.8882078859288761},\n", + " 'CM': {'0': {'-1': 0, '0': 95, '1': 64, '2': 13, '3': 5, '4': 3, '5': 5},\n", + " '1': {'-1': 0, '0': 7, '1': 38, '2': 28, '3': 7, '4': 13, '5': 7},\n", + " '2': {'-1': 0, '0': 2, '1': 25, '2': 38, '3': 15, '4': 19, '5': 7},\n", + " '3': {'-1': 0, '0': 1, '1': 7, '2': 14, '3': 23, '4': 50, '5': 9},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 1, '4': 8, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.08144054771196177,\n", + " 'Cohen': 0.13407501742076555,\n", + " 'Spearman': 0.6528755007075321,\n", + " 'Kendall': 0.5596339297846159,\n", + " 'Krippendorff': 0.526443572831842,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7465618860510805,\n", + " 'TA-4.0': 0.9449901768172888,\n", + " 'Acc': 0.3045186640471513,\n", + " 'MAE': 0.8677144728225277,\n", + " 'MSE': 1.228771010696354,\n", + " 'CA-0': 0.032432432432432434,\n", + " 'CA-1': 0.4,\n", + " 'CA-2': 0.4811320754716981,\n", + " 'CA-3': 0.5436893203883495,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22415917674869398,\n", + " 'Micro-F1': 0.3045186640471513,\n", + " 'F1-0_vs_rest': 0.06282722513089005,\n", + " 'F1-1_vs_rest': 0.25236593059936907,\n", + " 'F1-2_vs_rest': 0.40476190476190477,\n", + " 'F1-3_vs_rest': 0.5,\n", + " 'F1-4_vs_rest': 0.125,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7835550181378477,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6441351888667992,\n", + " 'F1-1.5': 0.7647058823529411,\n", + " 'Recall-1.5': 0.8705357142857143,\n", + " 'Precision-1.5': 0.6818181818181818,\n", + " 'F1-2.5': 0.5891472868217055,\n", + " 'Recall-2.5': 0.6440677966101694,\n", + " 'Precision-2.5': 0.5428571428571428,\n", + " 'F1-3.5': 0.17647058823529413,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.15789473684210525,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9005254228525376},\n", + " 'CM': {'0': {'-1': 0, '0': 6, '1': 148, '2': 24, '3': 5, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 40, '2': 38, '3': 19, '4': 3, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 20, '2': 51, '3': 31, '4': 4, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 9, '2': 31, '3': 56, '4': 7, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 9, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.08687298029054705,\n", + " 'Cohen': 0.11604727190741015,\n", + " 'Spearman': 0.6592188711650635,\n", + " 'Kendall': 0.5500111427401194,\n", + " 'Krippendorff': 0.5035969951890261,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6823529411764706,\n", + " 'TA-4.0': 0.7980392156862746,\n", + " 'Acc': 0.27647058823529413,\n", + " 'MAE': 1.0434640522875815,\n", + " 'MSE': 1.8438453159041404,\n", + " 'CA-0': 0.2918918918918919,\n", + " 'CA-1': 0.27,\n", + " 'CA-2': 0.18867924528301888,\n", + " 'CA-3': 0.28846153846153844,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.21883114233316012,\n", + " 'Micro-F1': 0.27647058823529413,\n", + " 'F1-0_vs_rest': 0.4444444444444444,\n", + " 'F1-1_vs_rest': 0.2317596566523605,\n", + " 'F1-2_vs_rest': 0.19900497512437812,\n", + " 'F1-3_vs_rest': 0.2777777777777778,\n", + " 'F1-4_vs_rest': 0.16,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8262548262548263,\n", + " 'Recall-0.5': 0.9876923076923076,\n", + " 'Precision-0.5': 0.7101769911504425,\n", + " 'F1-1.5': 0.7242647058823529,\n", + " 'Recall-1.5': 0.8755555555555555,\n", + " 'Precision-1.5': 0.6175548589341693,\n", + " 'F1-2.5': 0.5889212827988338,\n", + " 'Recall-2.5': 0.8487394957983193,\n", + " 'Precision-2.5': 0.45089285714285715,\n", + " 'F1-3.5': 0.1889763779527559,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.10714285714285714,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9085456062495575},\n", + " 'CM': {'0': {'-1': 0, '0': 54, '1': 80, '2': 32, '3': 14, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 27, '2': 33, '3': 23, '4': 15, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 18, '2': 20, '3': 42, '4': 24, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 8, '2': 10, '3': 30, '4': 56, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.10950949301923314,\n", + " 'Cohen': -0.030618353008952104,\n", + " 'Spearman': 0.5929470487557785,\n", + " 'Kendall': 0.49910185635521637,\n", + " 'Krippendorff': 0.17391390484687053,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5176470588235295,\n", + " 'TA-4.0': 0.6901960784313725,\n", + " 'Acc': 0.11960784313725491,\n", + " 'MAE': 1.4954248366013074,\n", + " 'MSE': 3.0448801742919396,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.05,\n", + " 'CA-2': 0.20754716981132076,\n", + " 'CA-3': 0.23076923076923078,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09337481945785193,\n", + " 'Micro-F1': 0.11960784313725491,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.05952380952380952,\n", + " 'F1-2_vs_rest': 0.1588447653429603,\n", + " 'F1-3_vs_rest': 0.23076923076923078,\n", + " 'F1-4_vs_rest': 0.1111111111111111,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7784431137724551,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6372549019607843,\n", + " 'F1-1.5': 0.6506746626686657,\n", + " 'Recall-1.5': 0.9644444444444444,\n", + " 'Precision-1.5': 0.49095022624434387,\n", + " 'F1-2.5': 0.5230769230769231,\n", + " 'Recall-2.5': 0.8571428571428571,\n", + " 'Precision-2.5': 0.3763837638376384,\n", + " 'F1-3.5': 0.13186813186813187,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.0718562874251497,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8908360144603562},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 55, '2': 97, '3': 22, '4': 11, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 5, '2': 38, '3': 30, '4': 27, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 22, '3': 27, '4': 52, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 12, '3': 24, '4': 65, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 1, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.09101181651801447,\n", + " 'Cohen': -0.026912535396279358,\n", + " 'Spearman': 0.6722684801511977,\n", + " 'Kendall': 0.5698816760065639,\n", + " 'Krippendorff': 0.25880841953879496,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5901960784313726,\n", + " 'TA-4.0': 0.7490196078431373,\n", + " 'Acc': 0.13137254901960785,\n", + " 'MAE': 1.3931372549019605,\n", + " 'MSE': 2.743191721132898,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.09,\n", + " 'CA-2': 0.16981132075471697,\n", + " 'CA-3': 0.2980769230769231,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.10223197467601275,\n", + " 'Micro-F1': 0.13137254901960785,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.09326424870466321,\n", + " 'F1-2_vs_rest': 0.1592920353982301,\n", + " 'F1-3_vs_rest': 0.23754789272030652,\n", + " 'F1-4_vs_rest': 0.1232876712328767,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7784431137724551,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6372549019607843,\n", + " 'F1-1.5': 0.6947040498442367,\n", + " 'Recall-1.5': 0.9911111111111112,\n", + " 'Precision-1.5': 0.5347721822541966,\n", + " 'F1-2.5': 0.5384615384615384,\n", + " 'Recall-2.5': 0.9411764705882353,\n", + " 'Precision-2.5': 0.3771043771043771,\n", + " 'F1-3.5': 0.14193548387096774,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.07857142857142857,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8872051724531904},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 82, '2': 69, '3': 27, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 9, '2': 27, '3': 43, '4': 18, '5': 3},\n", + " '2': {'-1': 0, '0': 0, '1': 1, '2': 18, '3': 52, '4': 31, '5': 4},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 6, '3': 31, '4': 66, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.14062617539530897,\n", + " 'Cohen': 0.17554739784553064,\n", + " 'Spearman': 0.6596022979210151,\n", + " 'Kendall': 0.5606481638863476,\n", + " 'Krippendorff': 0.5544345991450169,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7372549019607844,\n", + " 'TA-4.0': 0.9196078431372549,\n", + " 'Acc': 0.3411764705882353,\n", + " 'MAE': 0.841176470588235,\n", + " 'MSE': 1.2533769063180824,\n", + " 'CA-0': 0.17297297297297298,\n", + " 'CA-1': 0.33,\n", + " 'CA-2': 0.5660377358490566,\n", + " 'CA-3': 0.4423076923076923,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.25917154305212303,\n", + " 'Micro-F1': 0.3411764705882353,\n", + " 'F1-0_vs_rest': 0.29357798165137616,\n", + " 'F1-1_vs_rest': 0.23826714801444043,\n", + " 'F1-2_vs_rest': 0.4332129963898917,\n", + " 'F1-3_vs_rest': 0.4623115577889447,\n", + " 'F1-4_vs_rest': 0.1276595744680851,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8079800498753117,\n", + " 'Recall-0.5': 0.9969230769230769,\n", + " 'Precision-0.5': 0.6792452830188679,\n", + " 'F1-1.5': 0.7657142857142857,\n", + " 'Recall-1.5': 0.8933333333333333,\n", + " 'Precision-1.5': 0.67,\n", + " 'F1-2.5': 0.5806451612903226,\n", + " 'Recall-2.5': 0.6050420168067226,\n", + " 'Precision-2.5': 0.5581395348837209,\n", + " 'F1-3.5': 0.16326530612244897,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.11764705882352941,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9015647071742326},\n", + " 'CM': {'0': {'-1': 0, '0': 32, '1': 120, '2': 25, '3': 5, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 33, '2': 45, '3': 16, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 18, '2': 60, '3': 22, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 37, '3': 46, '4': 16, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 1, '2': 4, '3': 5, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.12671966314566768,\n", + " 'Cohen': -0.03884513264463729,\n", + " 'Spearman': 0.38704970527708393,\n", + " 'Kendall': 0.3106665554881096,\n", + " 'Krippendorff': -0.0952859549588736,\n", + " 'Invalid': 190,\n", + " 'TA-2.0': 0.528125,\n", + " 'TA-4.0': 0.565625,\n", + " 'Acc': 0.090625,\n", + " 'MAE': 1.7885416666666665,\n", + " 'MSE': 4.358506944444445,\n", + " 'CA-0': 0.02127659574468085,\n", + " 'CA-1': 0.0,\n", + " 'CA-2': 0.08333333333333333,\n", + " 'CA-3': 0.2328767123287671,\n", + " 'CA-4': 0.3333333333333333,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.0807216659156502,\n", + " 'Micro-F1': 0.090625,\n", + " 'F1-0_vs_rest': 0.041237113402061855,\n", + " 'F1-1_vs_rest': 0.0,\n", + " 'F1-2_vs_rest': 0.08759124087591241,\n", + " 'F1-3_vs_rest': 0.23776223776223776,\n", + " 'F1-4_vs_rest': 0.04081632653061224,\n", + " 'F1-5_vs_rest': 0.07692307692307693,\n", + " 'F1-0.5': 0.8287292817679558,\n", + " 'Recall-0.5': 0.995575221238938,\n", + " 'Precision-0.5': 0.7097791798107256,\n", + " 'F1-1.5': 0.6799116997792495,\n", + " 'Recall-1.5': 0.9871794871794872,\n", + " 'Precision-1.5': 0.5185185185185185,\n", + " 'F1-2.5': 0.45569620253164556,\n", + " 'Recall-2.5': 0.8571428571428571,\n", + " 'Precision-2.5': 0.3103448275862069,\n", + " 'F1-3.5': 0.06936416184971098,\n", + " 'Recall-3.5': 0.5454545454545454,\n", + " 'Precision-3.5': 0.037037037037037035,\n", + " 'F1-4.5': 0.07692307692307693,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.041666666666666664,\n", + " 'NDCG@all': 0.860128164097388},\n", + " 'CM': {'0': {'-1': 91, '0': 2, '1': 18, '2': 38, '3': 13, '4': 18, '5': 5},\n", + " '1': {'-1': 30, '0': 1, '1': 0, '2': 11, '3': 22, '4': 32, '5': 4},\n", + " '2': {'-1': 34, '0': 0, '1': 0, '2': 6, '3': 17, '4': 44, '5': 5},\n", + " '3': {'-1': 31, '0': 0, '1': 1, '2': 7, '3': 17, '4': 40, '5': 8},\n", + " '4': {'-1': 4, '0': 0, '1': 1, '2': 3, '3': 1, '4': 3, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.08249253179396931,\n", + " 'Cohen': 0.13606010016694503,\n", + " 'Spearman': 0.6580776465133312,\n", + " 'Kendall': 0.5613381454769161,\n", + " 'Krippendorff': 0.5448734020843023,\n", + " 'Invalid': 3,\n", + " 'TA-2.0': 0.747534516765286,\n", + " 'TA-4.0': 0.9704142011834319,\n", + " 'Acc': 0.31952662721893493,\n", + " 'MAE': 0.819197896120973,\n", + " 'MSE': 1.0830593907516983,\n", + " 'CA-0': 0.16756756756756758,\n", + " 'CA-1': 0.32,\n", + " 'CA-2': 0.6857142857142857,\n", + " 'CA-3': 0.2549019607843137,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.230589864251884,\n", + " 'Micro-F1': 0.31952662721893493,\n", + " 'F1-0_vs_rest': 0.2857142857142857,\n", + " 'F1-1_vs_rest': 0.24242424242424243,\n", + " 'F1-2_vs_rest': 0.4161849710982659,\n", + " 'F1-3_vs_rest': 0.3058823529411765,\n", + " 'F1-4_vs_rest': 0.13333333333333333,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8055207026348808,\n", + " 'Recall-0.5': 0.9968944099378882,\n", + " 'Precision-0.5': 0.6757894736842105,\n", + " 'F1-1.5': 0.7842401500938087,\n", + " 'Recall-1.5': 0.9414414414414415,\n", + " 'Precision-1.5': 0.6720257234726688,\n", + " 'F1-2.5': 0.3422459893048128,\n", + " 'Recall-2.5': 0.27350427350427353,\n", + " 'Precision-2.5': 0.45714285714285713,\n", + " 'F1-3.5': 0.11764705882352941,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.5,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.895796284986332},\n", + " 'CM': {'0': {'-1': 0, '0': 31, '1': 119, '2': 30, '3': 5, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 32, '2': 56, '3': 11, '4': 0, '5': 0},\n", + " '2': {'-1': 1, '0': 0, '1': 11, '2': 72, '3': 21, '4': 1, '5': 0},\n", + " '3': {'-1': 2, '0': 0, '1': 2, '2': 74, '3': 26, '4': 0, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 9, '3': 3, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.058144281798565414,\n", + " 'Cohen': 0.09071654163963261,\n", + " 'Spearman': 0.6470376646053079,\n", + " 'Kendall': 0.5237927316725144,\n", + " 'Krippendorff': 0.47941672565092575,\n", + " 'Invalid': 35,\n", + " 'TA-2.0': 0.6884210526315789,\n", + " 'TA-4.0': 0.7768421052631579,\n", + " 'Acc': 0.24842105263157896,\n", + " 'MAE': 1.0978947368421053,\n", + " 'MSE': 1.9852046783625736,\n", + " 'CA-0': 0.26506024096385544,\n", + " 'CA-1': 0.15217391304347827,\n", + " 'CA-2': 0.3,\n", + " 'CA-3': 0.21568627450980393,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.23176437597268493,\n", + " 'Micro-F1': 0.24842105263157896,\n", + " 'F1-0_vs_rest': 0.4036697247706422,\n", + " 'F1-1_vs_rest': 0.1590909090909091,\n", + " 'F1-2_vs_rest': 0.26785714285714285,\n", + " 'F1-3_vs_rest': 0.23404255319148937,\n", + " 'F1-4_vs_rest': 0.1037037037037037,\n", + " 'F1-5_vs_rest': 0.2222222222222222,\n", + " 'F1-0.5': 0.8224043715846995,\n", + " 'Recall-0.5': 0.9741100323624595,\n", + " 'Precision-0.5': 0.7115839243498818,\n", + " 'F1-1.5': 0.737410071942446,\n", + " 'Recall-1.5': 0.9447004608294931,\n", + " 'Precision-1.5': 0.6047197640117994,\n", + " 'F1-2.5': 0.5903614457831325,\n", + " 'Recall-2.5': 0.8376068376068376,\n", + " 'Precision-2.5': 0.4558139534883721,\n", + " 'F1-3.5': 0.125,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.06976744186046512,\n", + " 'F1-4.5': 0.2222222222222222,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.14285714285714285,\n", + " 'NDCG@all': 0.9059637565427046},\n", + " 'CM': {'0': {'-1': 19, '0': 44, '1': 63, '2': 42, '3': 9, '4': 8, '5': 0},\n", + " '1': {'-1': 8, '0': 3, '1': 14, '2': 35, '3': 21, '4': 19, '5': 0},\n", + " '2': {'-1': 6, '0': 5, '1': 5, '2': 30, '3': 30, '4': 26, '5': 4},\n", + " '3': {'-1': 2, '0': 0, '1': 2, '2': 15, '3': 22, '4': 61, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 4, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.07354620919454938,\n", + " 'Cohen': -0.009348351498016383,\n", + " 'Spearman': 0.6270882233604248,\n", + " 'Kendall': 0.5313440114075515,\n", + " 'Krippendorff': 0.2563880474857083,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5549019607843138,\n", + " 'TA-4.0': 0.7490196078431373,\n", + " 'Acc': 0.14901960784313725,\n", + " 'MAE': 1.3627450980392155,\n", + " 'MSE': 2.6629629629629634,\n", + " 'CA-0': 0.02702702702702703,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.2169811320754717,\n", + " 'CA-3': 0.28846153846153844,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.11817209292374385,\n", + " 'Micro-F1': 0.14901960784313725,\n", + " 'F1-0_vs_rest': 0.05263157894736842,\n", + " 'F1-1_vs_rest': 0.07865168539325842,\n", + " 'F1-2_vs_rest': 0.17100371747211895,\n", + " 'F1-3_vs_rest': 0.26200873362445415,\n", + " 'F1-4_vs_rest': 0.14473684210526316,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7831325301204819,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6435643564356436,\n", + " 'F1-1.5': 0.6687116564417178,\n", + " 'Recall-1.5': 0.9688888888888889,\n", + " 'Precision-1.5': 0.5105386416861827,\n", + " 'F1-2.5': 0.5535248041775457,\n", + " 'Recall-2.5': 0.8907563025210085,\n", + " 'Precision-2.5': 0.4015151515151515,\n", + " 'F1-3.5': 0.16883116883116883,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.09352517985611511,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8981635338793074},\n", + " 'CM': {'0': {'-1': 0, '0': 5, '1': 64, '2': 86, '3': 18, '4': 12, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 42, '3': 35, '4': 16, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 6, '2': 23, '3': 40, '4': 37, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 12, '3': 30, '4': 61, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'eu': {'phi-4': {'metrics': {'Fleiss': 0.07952690056150694,\n", + " 'Cohen': 0.10907680521895835,\n", + " 'Spearman': 0.6268184296895588,\n", + " 'Kendall': 0.5195049696495918,\n", + " 'Krippendorff': 0.42221154011575124,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6633858267716536,\n", + " 'TA-4.0': 0.8543307086614174,\n", + " 'Acc': 0.28346456692913385,\n", + " 'MAE': 1.0738188976377954,\n", + " 'MSE': 1.975229658792651,\n", + " 'CA-0': 0.2717391304347826,\n", + " 'CA-1': 0.14,\n", + " 'CA-2': 0.23809523809523808,\n", + " 'CA-3': 0.5,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2055439813747284,\n", + " 'Micro-F1': 0.28346456692913385,\n", + " 'F1-0_vs_rest': 0.41841004184100417,\n", + " 'F1-1_vs_rest': 0.14659685863874344,\n", + " 'F1-2_vs_rest': 0.23696682464454977,\n", + " 'F1-3_vs_rest': 0.35986159169550175,\n", + " 'F1-4_vs_rest': 0.07142857142857142,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8211068211068211,\n", + " 'Recall-0.5': 0.9845679012345679,\n", + " 'Precision-0.5': 0.7041942604856513,\n", + " 'F1-1.5': 0.726962457337884,\n", + " 'Recall-1.5': 0.9508928571428571,\n", + " 'Precision-1.5': 0.5883977900552486,\n", + " 'F1-2.5': 0.5546666666666666,\n", + " 'Recall-2.5': 0.8739495798319328,\n", + " 'Precision-2.5': 0.40625,\n", + " 'F1-3.5': 0.11627906976744186,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.07042253521126761,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8948224377253152},\n", + " 'CM': {'0': {'-1': 0, '0': 50, '1': 67, '2': 38, '3': 21, '4': 8, '5': 0},\n", + " '1': {'-1': 0, '0': 4, '1': 14, '2': 29, '3': 46, '4': 7, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 9, '2': 25, '3': 57, '4': 13, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 13, '3': 52, '4': 38, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 9, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.08891727556077873,\n", + " 'Cohen': 0.1314166577360365,\n", + " 'Spearman': 0.5722588447139946,\n", + " 'Kendall': 0.48902514193568963,\n", + " 'Krippendorff': 0.4837633372101541,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7106299212598425,\n", + " 'TA-4.0': 0.952755905511811,\n", + " 'Acc': 0.3090551181102362,\n", + " 'MAE': 0.8904199475065616,\n", + " 'MSE': 1.325240594925634,\n", + " 'CA-0': 0.11956521739130435,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.4666666666666667,\n", + " 'CA-3': 0.4423076923076923,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2345258979256918,\n", + " 'Micro-F1': 0.3090551181102362,\n", + " 'F1-0_vs_rest': 0.21153846153846154,\n", + " 'F1-1_vs_rest': 0.2585034013605442,\n", + " 'F1-2_vs_rest': 0.3602941176470588,\n", + " 'F1-3_vs_rest': 0.4339622641509434,\n", + " 'F1-4_vs_rest': 0.14285714285714285,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7970297029702971,\n", + " 'Recall-0.5': 0.9938271604938271,\n", + " 'Precision-0.5': 0.6652892561983471,\n", + " 'F1-1.5': 0.7237354085603113,\n", + " 'Recall-1.5': 0.8303571428571429,\n", + " 'Precision-1.5': 0.6413793103448275,\n", + " 'F1-2.5': 0.512396694214876,\n", + " 'Recall-2.5': 0.5210084033613446,\n", + " 'Precision-2.5': 0.5040650406504065,\n", + " 'F1-3.5': 0.2,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.2,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8910387968182151},\n", + " 'CM': {'0': {'-1': 0, '0': 22, '1': 118, '2': 37, '3': 4, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 38, '2': 39, '3': 19, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 23, '2': 49, '3': 31, '4': 2, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 15, '2': 38, '3': 46, '4': 5, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 7, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.1790498442367601,\n", + " 'Cohen': 0.19624849882765583,\n", + " 'Spearman': 0.7045551180816955,\n", + " 'Kendall': 0.5915864361673783,\n", + " 'Krippendorff': 0.614899952731007,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7775590551181102,\n", + " 'TA-4.0': 0.7598425196850394,\n", + " 'Acc': 0.3464566929133858,\n", + " 'MAE': 0.951443569553806,\n", + " 'MSE': 1.8565179352580932,\n", + " 'CA-0': 0.47282608695652173,\n", + " 'CA-1': 0.29,\n", + " 'CA-2': 0.34285714285714286,\n", + " 'CA-3': 0.15384615384615385,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.27747135611870305,\n", + " 'Micro-F1': 0.3464566929133858,\n", + " 'F1-0_vs_rest': 0.6170212765957447,\n", + " 'F1-1_vs_rest': 0.2636363636363636,\n", + " 'F1-2_vs_rest': 0.36180904522613067,\n", + " 'F1-3_vs_rest': 0.1871345029239766,\n", + " 'F1-4_vs_rest': 0.10619469026548672,\n", + " 'F1-5_vs_rest': 0.12903225806451613,\n", + " 'F1-0.5': 0.8528610354223434,\n", + " 'Recall-0.5': 0.9660493827160493,\n", + " 'Precision-0.5': 0.7634146341463415,\n", + " 'F1-1.5': 0.7937743190661478,\n", + " 'Recall-1.5': 0.9107142857142857,\n", + " 'Precision-1.5': 0.7034482758620689,\n", + " 'F1-2.5': 0.6158730158730159,\n", + " 'Recall-2.5': 0.8151260504201681,\n", + " 'Precision-2.5': 0.49489795918367346,\n", + " 'F1-3.5': 0.1527777777777778,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08527131782945736,\n", + " 'F1-4.5': 0.12903225806451613,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.06896551724137931,\n", + " 'NDCG@all': 0.8987551934496126},\n", + " 'CM': {'0': {'-1': 0, '0': 87, '1': 72, '2': 11, '3': 6, '4': 3, '5': 5},\n", + " '1': {'-1': 0, '0': 10, '1': 29, '2': 28, '3': 15, '4': 14, '5': 4},\n", + " '2': {'-1': 0, '0': 1, '1': 16, '2': 36, '3': 26, '4': 19, '5': 7},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 19, '3': 16, '4': 58, '5': 8},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 6, '5': 3},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.06382714387766732,\n", + " 'Cohen': 0.12567925586432283,\n", + " 'Spearman': 0.6492218313912486,\n", + " 'Kendall': 0.5604988960440244,\n", + " 'Krippendorff': 0.5419640178805267,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7559055118110236,\n", + " 'TA-4.0': 0.9507874015748031,\n", + " 'Acc': 0.2992125984251969,\n", + " 'MAE': 0.8448162729658794,\n", + " 'MSE': 1.1168525809273837,\n", + " 'CA-0': 0.021739130434782608,\n", + " 'CA-1': 0.46,\n", + " 'CA-2': 0.4666666666666667,\n", + " 'CA-3': 0.5096153846153846,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.20193158773374564,\n", + " 'Micro-F1': 0.2992125984251969,\n", + " 'F1-0_vs_rest': 0.0425531914893617,\n", + " 'F1-1_vs_rest': 0.26666666666666666,\n", + " 'F1-2_vs_rest': 0.4,\n", + " 'F1-3_vs_rest': 0.5023696682464455,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.782608695652174,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6428571428571429,\n", + " 'F1-1.5': 0.7577639751552795,\n", + " 'Recall-1.5': 0.8169642857142857,\n", + " 'Precision-1.5': 0.7065637065637066,\n", + " 'F1-2.5': 0.5882352941176471,\n", + " 'Recall-2.5': 0.5882352941176471,\n", + " 'Precision-2.5': 0.5882352941176471,\n", + " 'F1-3.5': 0.07407407407407407,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.08333333333333333,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9111303118370857},\n", + " 'CM': {'0': {'-1': 0, '0': 4, '1': 158, '2': 17, '3': 5, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 46, '2': 40, '3': 13, '4': 1, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 26, '2': 49, '3': 27, '4': 3, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 15, '2': 29, '3': 53, '4': 7, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 8, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.08107117102802595,\n", + " 'Cohen': 0.113404590522731,\n", + " 'Spearman': 0.6764856256669906,\n", + " 'Kendall': 0.5729043431302293,\n", + " 'Krippendorff': 0.4927233874982814,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6968503937007874,\n", + " 'TA-4.0': 0.7952755905511811,\n", + " 'Acc': 0.27165354330708663,\n", + " 'MAE': 1.0531496062992127,\n", + " 'MSE': 1.873359580052494,\n", + " 'CA-0': 0.24456521739130435,\n", + " 'CA-1': 0.26,\n", + " 'CA-2': 0.2,\n", + " 'CA-3': 0.3557692307692308,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.21574021809166125,\n", + " 'Micro-F1': 0.27165354330708663,\n", + " 'F1-0_vs_rest': 0.38961038961038963,\n", + " 'F1-1_vs_rest': 0.22510822510822512,\n", + " 'F1-2_vs_rest': 0.21,\n", + " 'F1-3_vs_rest': 0.32456140350877194,\n", + " 'F1-4_vs_rest': 0.14516129032258066,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8203821656050956,\n", + " 'Recall-0.5': 0.9938271604938271,\n", + " 'Precision-0.5': 0.6984815618221258,\n", + " 'F1-1.5': 0.7436823104693141,\n", + " 'Recall-1.5': 0.9196428571428571,\n", + " 'Precision-1.5': 0.6242424242424243,\n", + " 'F1-2.5': 0.5875706214689266,\n", + " 'Recall-2.5': 0.8739495798319328,\n", + " 'Precision-2.5': 0.4425531914893617,\n", + " 'F1-3.5': 0.1746031746031746,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.0990990990990991,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9061699736800988},\n", + " 'CM': {'0': {'-1': 0, '0': 45, '1': 89, '2': 32, '3': 11, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 26, '2': 33, '3': 27, '4': 14, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 10, '2': 21, '3': 46, '4': 26, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 6, '2': 8, '3': 37, '4': 53, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 3, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.1343801382329731,\n", + " 'Cohen': -0.05206964371493572,\n", + " 'Spearman': 0.5848071285993002,\n", + " 'Kendall': 0.4929225020300007,\n", + " 'Krippendorff': 0.13304125267497213,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5039370078740157,\n", + " 'TA-4.0': 0.6771653543307087,\n", + " 'Acc': 0.10039370078740158,\n", + " 'MAE': 1.5498687664041995,\n", + " 'MSE': 3.2283464566929134,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.06,\n", + " 'CA-2': 0.14285714285714285,\n", + " 'CA-3': 0.21153846153846154,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.07895866181704457,\n", + " 'Micro-F1': 0.10039370078740158,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.07741935483870968,\n", + " 'F1-2_vs_rest': 0.1111111111111111,\n", + " 'F1-3_vs_rest': 0.19730941704035873,\n", + " 'F1-4_vs_rest': 0.08791208791208792,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7788461538461539,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6377952755905512,\n", + " 'F1-1.5': 0.6469719350073855,\n", + " 'Recall-1.5': 0.9776785714285714,\n", + " 'Precision-1.5': 0.48344370860927155,\n", + " 'F1-2.5': 0.5110565110565111,\n", + " 'Recall-2.5': 0.8739495798319328,\n", + " 'Precision-2.5': 0.3611111111111111,\n", + " 'F1-3.5': 0.10869565217391304,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.05917159763313609,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8855701172751081},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 44, '2': 103, '3': 23, '4': 14, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 6, '2': 33, '3': 28, '4': 33, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 4, '2': 15, '3': 41, '4': 45, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 14, '3': 22, '4': 67, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.0949216534882179,\n", + " 'Cohen': -0.032095040194005,\n", + " 'Spearman': 0.7022592249353097,\n", + " 'Kendall': 0.6003642948435497,\n", + " 'Krippendorff': 0.31717865010498947,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6240157480314961,\n", + " 'TA-4.0': 0.7854330708661418,\n", + " 'Acc': 0.13582677165354332,\n", + " 'MAE': 1.3047900262467191,\n", + " 'MSE': 2.3983486439195105,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.13333333333333333,\n", + " 'CA-3': 0.375,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.16634031925570644,\n", + " 'Micro-F1': 0.13582677165354332,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.07547169811320754,\n", + " 'F1-2_vs_rest': 0.13592233009708737,\n", + " 'F1-3_vs_rest': 0.2746478873239437,\n", + " 'F1-4_vs_rest': 0.112,\n", + " 'F1-5_vs_rest': 0.4,\n", + " 'F1-0.5': 0.7788461538461539,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6377952755905512,\n", + " 'F1-1.5': 0.7129032258064516,\n", + " 'Recall-1.5': 0.9866071428571429,\n", + " 'Precision-1.5': 0.5580808080808081,\n", + " 'F1-2.5': 0.5410628019323671,\n", + " 'Recall-2.5': 0.9411764705882353,\n", + " 'Precision-2.5': 0.37966101694915255,\n", + " 'F1-3.5': 0.13846153846153847,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.0782608695652174,\n", + " 'F1-4.5': 0.4,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.3333333333333333,\n", + " 'NDCG@all': 0.9141257685461006},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 101, '2': 54, '3': 25, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 28, '3': 48, '4': 16, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 1, '2': 14, '3': 62, '4': 26, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 5, '3': 39, '4': 58, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 6, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.13265476220544037,\n", + " 'Cohen': 0.1629870478066091,\n", + " 'Spearman': 0.6822382470653958,\n", + " 'Kendall': 0.5775457944664929,\n", + " 'Krippendorff': 0.5708483338693953,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7381889763779528,\n", + " 'TA-4.0': 0.9192913385826772,\n", + " 'Acc': 0.3346456692913386,\n", + " 'MAE': 0.8366141732283461,\n", + " 'MSE': 1.2202537182852142,\n", + " 'CA-0': 0.21195652173913043,\n", + " 'CA-1': 0.31,\n", + " 'CA-2': 0.5047619047619047,\n", + " 'CA-3': 0.4519230769230769,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23485666905974997,\n", + " 'Micro-F1': 0.3346456692913386,\n", + " 'F1-0_vs_rest': 0.34977578475336324,\n", + " 'F1-1_vs_rest': 0.23754789272030652,\n", + " 'F1-2_vs_rest': 0.3925925925925926,\n", + " 'F1-3_vs_rest': 0.4292237442922374,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8171500630517023,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6908315565031983,\n", + " 'F1-1.5': 0.7744360902255639,\n", + " 'Recall-1.5': 0.9196428571428571,\n", + " 'Precision-1.5': 0.6688311688311688,\n", + " 'F1-2.5': 0.5725190839694656,\n", + " 'Recall-2.5': 0.6302521008403361,\n", + " 'Precision-2.5': 0.5244755244755245,\n", + " 'F1-3.5': 0.046511627906976744,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.03571428571428571,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9017907057342345},\n", + " 'CM': {'0': {'-1': 0, '0': 39, '1': 112, '2': 25, '3': 6, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 31, '2': 48, '3': 16, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 13, '2': 53, '3': 37, '4': 2, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 34, '3': 47, '4': 18, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 8, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.19492782385259777,\n", + " 'Cohen': -0.04881000403388458,\n", + " 'Spearman': 0.33978824081969095,\n", + " 'Kendall': 0.2643803147943323,\n", + " 'Krippendorff': -0.3375390874502997,\n", + " 'Invalid': 208,\n", + " 'TA-2.0': 0.4666666666666667,\n", + " 'TA-4.0': 0.43666666666666665,\n", + " 'Acc': 0.04666666666666667,\n", + " 'MAE': 2.118333333333333,\n", + " 'MSE': 5.806759259259258,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.03278688524590164,\n", + " 'CA-2': 0.043478260869565216,\n", + " 'CA-3': 0.11290322580645161,\n", + " 'CA-4': 0.4,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.040546204039693036,\n", + " 'Micro-F1': 0.04666666666666667,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.05405405405405406,\n", + " 'F1-2_vs_rest': 0.058823529411764705,\n", + " 'F1-3_vs_rest': 0.10687022900763359,\n", + " 'F1-4_vs_rest': 0.023529411764705882,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7951807228915663,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.66,\n", + " 'F1-1.5': 0.6320754716981132,\n", + " 'Recall-1.5': 0.9781021897810219,\n", + " 'Precision-1.5': 0.46689895470383275,\n", + " 'F1-2.5': 0.40993788819875776,\n", + " 'Recall-2.5': 0.9705882352941176,\n", + " 'Precision-2.5': 0.25984251968503935,\n", + " 'F1-3.5': 0.031413612565445025,\n", + " 'Recall-3.5': 0.5,\n", + " 'Precision-3.5': 0.016216216216216217,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8175188589646368},\n", + " 'CM': {'0': {'-1': 82, '0': 0, '1': 8, '2': 23, '3': 32, '4': 33, '5': 6},\n", + " '1': {'-1': 39, '0': 0, '1': 2, '2': 5, '3': 14, '4': 37, '5': 3},\n", + " '2': {'-1': 36, '0': 0, '1': 3, '2': 3, '3': 13, '4': 44, '5': 6},\n", + " '3': {'-1': 42, '0': 0, '1': 0, '2': 2, '3': 7, '4': 48, '5': 5},\n", + " '4': {'-1': 8, '0': 0, '1': 0, '2': 0, '3': 3, '4': 2, '5': 0},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.09432034867883411,\n", + " 'Cohen': 0.14826437812219806,\n", + " 'Spearman': 0.7003532938236706,\n", + " 'Kendall': 0.6053281866161742,\n", + " 'Krippendorff': 0.569808058165949,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.73767258382643,\n", + " 'TA-4.0': 0.9664694280078896,\n", + " 'Acc': 0.32741617357001973,\n", + " 'MAE': 0.804076265614727,\n", + " 'MSE': 1.0350646504492655,\n", + " 'CA-0': 0.15217391304347827,\n", + " 'CA-1': 0.23,\n", + " 'CA-2': 0.7428571428571429,\n", + " 'CA-3': 0.33980582524271846,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2499134153189165,\n", + " 'Micro-F1': 0.32741617357001973,\n", + " 'F1-0_vs_rest': 0.26291079812206575,\n", + " 'F1-1_vs_rest': 0.18181818181818182,\n", + " 'F1-2_vs_rest': 0.44192634560906513,\n", + " 'F1-3_vs_rest': 0.40229885057471265,\n", + " 'F1-4_vs_rest': 0.21052631578947367,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8039950062421972,\n", + " 'Recall-0.5': 0.9969040247678018,\n", + " 'Precision-0.5': 0.6736401673640168,\n", + " 'F1-1.5': 0.781021897810219,\n", + " 'Recall-1.5': 0.9596412556053812,\n", + " 'Precision-1.5': 0.6584615384615384,\n", + " 'F1-2.5': 0.46153846153846156,\n", + " 'Recall-2.5': 0.3813559322033898,\n", + " 'Precision-2.5': 0.5844155844155844,\n", + " 'F1-3.5': 0.19047619047619047,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.3333333333333333,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9135522187812359},\n", + " 'CM': {'0': {'-1': 0, '0': 28, '1': 121, '2': 32, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 23, '2': 66, '3': 10, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 8, '2': 78, '3': 17, '4': 2, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 1, '2': 65, '3': 35, '4': 2, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 7, '3': 4, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.10289029829743318,\n", + " 'Cohen': 0.12956291960655597,\n", + " 'Spearman': 0.6844696943568959,\n", + " 'Kendall': 0.5687732579993986,\n", + " 'Krippendorff': 0.5486628728601476,\n", + " 'Invalid': 37,\n", + " 'TA-2.0': 0.7197452229299363,\n", + " 'TA-4.0': 0.7940552016985138,\n", + " 'Acc': 0.28874734607218683,\n", + " 'MAE': 0.9953998584571836,\n", + " 'MSE': 1.7120193441849496,\n", + " 'CA-0': 0.32098765432098764,\n", + " 'CA-1': 0.10227272727272728,\n", + " 'CA-2': 0.39215686274509803,\n", + " 'CA-3': 0.25,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.2459102095840282,\n", + " 'Micro-F1': 0.28874734607218683,\n", + " 'F1-0_vs_rest': 0.4663677130044843,\n", + " 'F1-1_vs_rest': 0.11612903225806452,\n", + " 'F1-2_vs_rest': 0.321285140562249,\n", + " 'F1-3_vs_rest': 0.2810810810810811,\n", + " 'F1-4_vs_rest': 0.13675213675213677,\n", + " 'F1-5_vs_rest': 0.15384615384615385,\n", + " 'F1-0.5': 0.8344923504867872,\n", + " 'Recall-0.5': 0.970873786407767,\n", + " 'Precision-0.5': 0.7317073170731707,\n", + " 'F1-1.5': 0.7624113475177305,\n", + " 'Recall-1.5': 0.9728506787330317,\n", + " 'Precision-1.5': 0.6268221574344023,\n", + " 'F1-2.5': 0.6222222222222222,\n", + " 'Recall-2.5': 0.8235294117647058,\n", + " 'Precision-2.5': 0.5,\n", + " 'F1-3.5': 0.15384615384615385,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.08695652173913043,\n", + " 'F1-4.5': 0.15384615384615385,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.09090909090909091,\n", + " 'NDCG@all': 0.9194181993128391},\n", + " 'CM': {'0': {'-1': 22, '0': 52, '1': 56, '2': 40, '3': 8, '4': 6, '5': 0},\n", + " '1': {'-1': 12, '0': 5, '1': 9, '2': 46, '3': 17, '4': 9, '5': 2},\n", + " '2': {'-1': 3, '0': 4, '1': 2, '2': 40, '3': 25, '4': 29, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 21, '3': 26, '4': 51, '5': 6},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.10390632856130268,\n", + " 'Cohen': -0.03855756406647304,\n", + " 'Spearman': 0.6192926162199824,\n", + " 'Kendall': 0.5293400040267092,\n", + " 'Krippendorff': 0.21851201987705526,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5354330708661418,\n", + " 'TA-4.0': 0.7637795275590551,\n", + " 'Acc': 0.1279527559055118,\n", + " 'MAE': 1.4081364829396323,\n", + " 'MSE': 2.76071741032371,\n", + " 'CA-0': 0.010869565217391304,\n", + " 'CA-1': 0.03,\n", + " 'CA-2': 0.18095238095238095,\n", + " 'CA-3': 0.3076923076923077,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09655299357533588,\n", + " 'Micro-F1': 0.1279527559055118,\n", + " 'F1-0_vs_rest': 0.0213903743315508,\n", + " 'F1-1_vs_rest': 0.03488372093023256,\n", + " 'F1-2_vs_rest': 0.15019762845849802,\n", + " 'F1-3_vs_rest': 0.24427480916030533,\n", + " 'F1-4_vs_rest': 0.12857142857142856,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7792521109770808,\n", + " 'Recall-0.5': 0.9969135802469136,\n", + " 'Precision-0.5': 0.6396039603960396,\n", + " 'F1-1.5': 0.6605783866057838,\n", + " 'Recall-1.5': 0.96875,\n", + " 'Precision-1.5': 0.5011547344110855,\n", + " 'F1-2.5': 0.5297029702970297,\n", + " 'Recall-2.5': 0.8991596638655462,\n", + " 'Precision-2.5': 0.37543859649122807,\n", + " 'F1-3.5': 0.15492957746478872,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08661417322834646,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9011916380911041},\n", + " 'CM': {'0': {'-1': 0, '0': 2, '1': 63, '2': 78, '3': 34, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 3, '2': 41, '3': 39, '4': 17, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 4, '2': 19, '3': 49, '4': 32, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 10, '3': 32, '4': 60, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'da': {'phi-4': {'metrics': {'Fleiss': 0.195410216794434,\n", + " 'Cohen': 0.2074255386181324,\n", + " 'Spearman': 0.6355681406117013,\n", + " 'Kendall': 0.5251505641675952,\n", + " 'Krippendorff': 0.5354316959369512,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7142857142857143,\n", + " 'TA-4.0': 0.8786692759295499,\n", + " 'Acc': 0.37377690802348335,\n", + " 'MAE': 0.9207436399217223,\n", + " 'MSE': 1.670634920634921,\n", + " 'CA-0': 0.46236559139784944,\n", + " 'CA-1': 0.24,\n", + " 'CA-2': 0.27358490566037735,\n", + " 'CA-3': 0.4423076923076923,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2752235262217002,\n", + " 'Micro-F1': 0.37377690802348335,\n", + " 'F1-0_vs_rest': 0.607773851590106,\n", + " 'F1-1_vs_rest': 0.24742268041237114,\n", + " 'F1-2_vs_rest': 0.27230046948356806,\n", + " 'F1-3_vs_rest': 0.368,\n", + " 'F1-4_vs_rest': 0.15584415584415584,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8497970230040596,\n", + " 'Recall-0.5': 0.9661538461538461,\n", + " 'Precision-0.5': 0.7584541062801933,\n", + " 'F1-1.5': 0.7486238532110092,\n", + " 'Recall-1.5': 0.9066666666666666,\n", + " 'Precision-1.5': 0.6375,\n", + " 'F1-2.5': 0.5421686746987951,\n", + " 'Recall-2.5': 0.7563025210084033,\n", + " 'Precision-2.5': 0.4225352112676056,\n", + " 'F1-3.5': 0.1951219512195122,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.11940298507462686,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8777661924050029},\n", + " 'CM': {'0': {'-1': 0, '0': 86, '1': 53, '2': 29, '3': 13, '4': 4, '5': 1},\n", + " '1': {'-1': 0, '0': 7, '1': 24, '2': 26, '3': 32, '4': 10, '5': 1},\n", + " '2': {'-1': 0, '0': 3, '1': 12, '2': 29, '3': 51, '4': 10, '5': 1},\n", + " '3': {'-1': 0, '0': 1, '1': 5, '2': 20, '3': 46, '4': 32, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 4, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.09264381499247225,\n", + " 'Cohen': 0.1336004737842562,\n", + " 'Spearman': 0.5938060125908852,\n", + " 'Kendall': 0.49887871329901307,\n", + " 'Krippendorff': 0.4900934927433027,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7142857142857143,\n", + " 'TA-4.0': 0.9256360078277887,\n", + " 'Acc': 0.30528375733855184,\n", + " 'MAE': 0.9122635355512068,\n", + " 'MSE': 1.4090563165905632,\n", + " 'CA-0': 0.10752688172043011,\n", + " 'CA-1': 0.4,\n", + " 'CA-2': 0.4056603773584906,\n", + " 'CA-3': 0.4807692307692308,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2329918916584107,\n", + " 'Micro-F1': 0.30528375733855184,\n", + " 'F1-0_vs_rest': 0.19138755980861244,\n", + " 'F1-1_vs_rest': 0.27303754266211605,\n", + " 'F1-2_vs_rest': 0.33204633204633205,\n", + " 'F1-3_vs_rest': 0.46511627906976744,\n", + " 'F1-4_vs_rest': 0.13636363636363635,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7921279212792128,\n", + " 'Recall-0.5': 0.9907692307692307,\n", + " 'Precision-0.5': 0.6598360655737705,\n", + " 'F1-1.5': 0.7384615384615385,\n", + " 'Recall-1.5': 0.8533333333333334,\n", + " 'Precision-1.5': 0.6508474576271186,\n", + " 'F1-2.5': 0.5517241379310345,\n", + " 'Recall-2.5': 0.6050420168067226,\n", + " 'Precision-2.5': 0.5070422535211268,\n", + " 'F1-3.5': 0.17391304347826086,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.12903225806451613,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8866148012660774},\n", + " 'CM': {'0': {'-1': 0, '0': 20, '1': 120, '2': 38, '3': 5, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 40, '2': 38, '3': 11, '4': 8, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 20, '2': 43, '3': 35, '4': 8, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 13, '2': 33, '3': 50, '4': 8, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 9, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.26755379936854745,\n", + " 'Cohen': 0.28242254028948655,\n", + " 'Spearman': 0.6878616785100714,\n", + " 'Kendall': 0.5721703483907488,\n", + " 'Krippendorff': 0.6208962559213441,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7749510763209393,\n", + " 'TA-4.0': 0.776908023483366,\n", + " 'Acc': 0.4207436399217221,\n", + " 'MAE': 0.8897586431833007,\n", + " 'MSE': 1.7882148293107194,\n", + " 'CA-0': 0.5161290322580645,\n", + " 'CA-1': 0.41,\n", + " 'CA-2': 0.39622641509433965,\n", + " 'CA-3': 0.2403846153846154,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.3432992621756135,\n", + " 'Micro-F1': 0.4207436399217221,\n", + " 'F1-0_vs_rest': 0.6552901023890785,\n", + " 'F1-1_vs_rest': 0.35807860262008734,\n", + " 'F1-2_vs_rest': 0.4117647058823529,\n", + " 'F1-3_vs_rest': 0.3125,\n", + " 'F1-4_vs_rest': 0.16216216216216217,\n", + " 'F1-5_vs_rest': 0.16,\n", + " 'F1-0.5': 0.8614540466392319,\n", + " 'Recall-0.5': 0.9661538461538461,\n", + " 'Precision-0.5': 0.7772277227722773,\n", + " 'F1-1.5': 0.792,\n", + " 'Recall-1.5': 0.88,\n", + " 'Precision-1.5': 0.72,\n", + " 'F1-2.5': 0.6351351351351351,\n", + " 'Recall-2.5': 0.7899159663865546,\n", + " 'Precision-2.5': 0.5310734463276836,\n", + " 'F1-3.5': 0.16176470588235295,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.09090909090909091,\n", + " 'F1-4.5': 0.16,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.08695652173913043,\n", + " 'NDCG@all': 0.8878365114993971},\n", + " 'CM': {'0': {'-1': 0, '0': 96, '1': 64, '2': 12, '3': 6, '4': 5, '5': 3},\n", + " '1': {'-1': 0, '0': 8, '1': 41, '2': 24, '3': 9, '4': 11, '5': 7},\n", + " '2': {'-1': 0, '0': 3, '1': 19, '2': 42, '3': 15, '4': 21, '5': 6},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 17, '3': 25, '4': 52, '5': 5},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 1, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.07520059712632951,\n", + " 'Cohen': 0.13827993254637427,\n", + " 'Spearman': 0.6200934109244058,\n", + " 'Kendall': 0.5302804375325604,\n", + " 'Krippendorff': 0.5210792107694335,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7573385518590998,\n", + " 'TA-4.0': 0.9373776908023483,\n", + " 'Acc': 0.30724070450097846,\n", + " 'MAE': 0.857142857142857,\n", + " 'MSE': 1.2141769949989125,\n", + " 'CA-0': 0.03763440860215054,\n", + " 'CA-1': 0.53,\n", + " 'CA-2': 0.4339622641509434,\n", + " 'CA-3': 0.49038461538461536,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.209938145817518,\n", + " 'Micro-F1': 0.30724070450097846,\n", + " 'F1-0_vs_rest': 0.07253886010362694,\n", + " 'F1-1_vs_rest': 0.29608938547486036,\n", + " 'F1-2_vs_rest': 0.4052863436123348,\n", + " 'F1-3_vs_rest': 0.4857142857142857,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7840772014475271,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6448412698412699,\n", + " 'F1-1.5': 0.7515923566878981,\n", + " 'Recall-1.5': 0.7866666666666666,\n", + " 'Precision-1.5': 0.7195121951219512,\n", + " 'F1-2.5': 0.5819672131147541,\n", + " 'Recall-2.5': 0.5966386554621849,\n", + " 'Precision-2.5': 0.568,\n", + " 'F1-3.5': 0.058823529411764705,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.05263157894736842,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8938653525989312},\n", + " 'CM': {'0': {'-1': 0, '0': 7, '1': 157, '2': 15, '3': 4, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 53, '2': 28, '3': 17, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 32, '2': 46, '3': 24, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 16, '2': 28, '3': 51, '4': 9, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 9, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.14748246796706013,\n", + " 'Cohen': 0.16998843166418776,\n", + " 'Spearman': 0.6654808023512272,\n", + " 'Kendall': 0.5586203824945674,\n", + " 'Krippendorff': 0.5649995577519957,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.735812133072407,\n", + " 'TA-4.0': 0.8023483365949119,\n", + " 'Acc': 0.3268101761252446,\n", + " 'MAE': 0.9523809523809526,\n", + " 'MSE': 1.6638399652098288,\n", + " 'CA-0': 0.3763440860215054,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.24528301886792453,\n", + " 'CA-3': 0.25,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2520687641256895,\n", + " 'Micro-F1': 0.3268101761252446,\n", + " 'F1-0_vs_rest': 0.5263157894736842,\n", + " 'F1-1_vs_rest': 0.29535864978902954,\n", + " 'F1-2_vs_rest': 0.25870646766169153,\n", + " 'F1-3_vs_rest': 0.2694300518134715,\n", + " 'F1-4_vs_rest': 0.16260162601626016,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8333333333333334,\n", + " 'Recall-0.5': 0.9692307692307692,\n", + " 'Precision-0.5': 0.7308584686774942,\n", + " 'F1-1.5': 0.7552986512524085,\n", + " 'Recall-1.5': 0.8711111111111111,\n", + " 'Precision-1.5': 0.6666666666666666,\n", + " 'F1-2.5': 0.5911949685534591,\n", + " 'Recall-2.5': 0.7899159663865546,\n", + " 'Precision-2.5': 0.4723618090452261,\n", + " 'F1-3.5': 0.192,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.10909090909090909,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9076025346217166},\n", + " 'CM': {'0': {'-1': 0, '0': 70, '1': 78, '2': 24, '3': 8, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 5, '1': 35, '2': 28, '3': 18, '4': 14, '5': 0},\n", + " '2': {'-1': 0, '0': 4, '1': 17, '2': 26, '3': 34, '4': 25, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 7, '2': 17, '3': 26, '4': 53, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.13314893973682004,\n", + " 'Cohen': -0.045460771967035685,\n", + " 'Spearman': 0.662467179979225,\n", + " 'Kendall': 0.5624141706737313,\n", + " 'Krippendorff': 0.22062391878707543,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5831702544031311,\n", + " 'TA-4.0': 0.6262230919765166,\n", + " 'Acc': 0.09393346379647749,\n", + " 'MAE': 1.5009784735812128,\n", + " 'MSE': 3.07131985214177,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.09,\n", + " 'CA-2': 0.1320754716981132,\n", + " 'CA-3': 0.14423076923076922,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.07678393552730602,\n", + " 'Micro-F1': 0.09393346379647749,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.09278350515463918,\n", + " 'F1-2_vs_rest': 0.12173913043478261,\n", + " 'F1-3_vs_rest': 0.15228426395939088,\n", + " 'F1-4_vs_rest': 0.09389671361502347,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.6853582554517134,\n", + " 'Recall-1.5': 0.9777777777777777,\n", + " 'Precision-1.5': 0.5275779376498801,\n", + " 'F1-2.5': 0.5436893203883495,\n", + " 'Recall-2.5': 0.9411764705882353,\n", + " 'Precision-2.5': 0.3822525597269625,\n", + " 'F1-3.5': 0.11162790697674418,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.06,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8918955183734459},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 80, '2': 74, '3': 16, '4': 16, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 9, '2': 31, '3': 26, '4': 34, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 3, '2': 14, '3': 33, '4': 56, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 5, '3': 15, '4': 82, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.09771806603911055,\n", + " 'Cohen': -0.033975385460035756,\n", + " 'Spearman': 0.7127071328403662,\n", + " 'Kendall': 0.6072065660271785,\n", + " 'Krippendorff': 0.3199817853165817,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.6227897838899804,\n", + " 'TA-4.0': 0.762278978388998,\n", + " 'Acc': 0.12770137524557956,\n", + " 'MAE': 1.323510150622135,\n", + " 'MSE': 2.475114603798298,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.050505050505050504,\n", + " 'CA-2': 0.13333333333333333,\n", + " 'CA-3': 0.34615384615384615,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.14453821186992102,\n", + " 'Micro-F1': 0.12770137524557956,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.047619047619047616,\n", + " 'F1-2_vs_rest': 0.13270142180094788,\n", + " 'F1-3_vs_rest': 0.27169811320754716,\n", + " 'F1-4_vs_rest': 0.12949640287769784,\n", + " 'F1-5_vs_rest': 0.2857142857142857,\n", + " 'F1-0.5': 0.7764423076923077,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6345776031434185,\n", + " 'F1-1.5': 0.7106109324758842,\n", + " 'Recall-1.5': 0.9866071428571429,\n", + " 'Precision-1.5': 0.5552763819095478,\n", + " 'F1-2.5': 0.5547445255474452,\n", + " 'Recall-2.5': 0.957983193277311,\n", + " 'Precision-2.5': 0.3904109589041096,\n", + " 'F1-3.5': 0.1506849315068493,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08396946564885496,\n", + " 'F1-4.5': 0.2857142857142857,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.2,\n", + " 'NDCG@all': 0.9083473712991376},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 103, '2': 55, '3': 23, '4': 5, '5': 0},\n", + " '1': {'-1': 1, '0': 0, '1': 5, '2': 34, '3': 38, '4': 21, '5': 1},\n", + " '2': {'-1': 1, '0': 0, '1': 1, '2': 14, '3': 60, '4': 28, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 3, '3': 36, '4': 62, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.1883153743501902,\n", + " 'Cohen': 0.21430843680111056,\n", + " 'Spearman': 0.6830487530099215,\n", + " 'Kendall': 0.5830288176400527,\n", + " 'Krippendorff': 0.5895484611425207,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7592954990215264,\n", + " 'TA-4.0': 0.9217221135029354,\n", + " 'Acc': 0.37573385518590996,\n", + " 'MAE': 0.7932159165035875,\n", + " 'MSE': 1.2128723635572947,\n", + " 'CA-0': 0.25268817204301075,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.49056603773584906,\n", + " 'CA-3': 0.5,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.28406014749821173,\n", + " 'Micro-F1': 0.37573385518590996,\n", + " 'F1-0_vs_rest': 0.4034334763948498,\n", + " 'F1-1_vs_rest': 0.28679245283018867,\n", + " 'F1-2_vs_rest': 0.39543726235741444,\n", + " 'F1-3_vs_rest': 0.48826291079812206,\n", + " 'F1-4_vs_rest': 0.13043478260869565,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8238276299112801,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.7004310344827587,\n", + " 'F1-1.5': 0.7862595419847328,\n", + " 'Recall-1.5': 0.9155555555555556,\n", + " 'Precision-1.5': 0.6889632107023411,\n", + " 'F1-2.5': 0.5823754789272031,\n", + " 'Recall-2.5': 0.6386554621848739,\n", + " 'Precision-2.5': 0.5352112676056338,\n", + " 'F1-3.5': 0.16666666666666666,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.12121212121212122,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8926975976009004},\n", + " 'CM': {'0': {'-1': 0, '0': 47, '1': 108, '2': 21, '3': 5, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 38, '2': 44, '3': 12, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 16, '2': 52, '3': 32, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 37, '3': 52, '4': 12, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 7, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': 0.04972586412395707,\n", + " 'Cohen': 0.09774572230437284,\n", + " 'Spearman': 0.5253645190079144,\n", + " 'Kendall': 0.436627898135033,\n", + " 'Krippendorff': 0.2608998294100867,\n", + " 'Invalid': 313,\n", + " 'TA-2.0': 0.6313131313131313,\n", + " 'TA-4.0': 0.696969696969697,\n", + " 'Acc': 0.23737373737373738,\n", + " 'MAE': 1.3232323232323233,\n", + " 'MSE': 2.872615039281706,\n", + " 'CA-0': 0.1111111111111111,\n", + " 'CA-1': 0.13157894736842105,\n", + " 'CA-2': 0.3076923076923077,\n", + " 'CA-3': 0.32653061224489793,\n", + " 'CA-4': 0.75,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.23121198461203488,\n", + " 'Micro-F1': 0.23737373737373738,\n", + " 'F1-0_vs_rest': 0.2,\n", + " 'F1-1_vs_rest': 0.16129032258064516,\n", + " 'F1-2_vs_rest': 0.2553191489361702,\n", + " 'F1-3_vs_rest': 0.3516483516483517,\n", + " 'F1-4_vs_rest': 0.16901408450704225,\n", + " 'F1-5_vs_rest': 0.25,\n", + " 'F1-0.5': 0.8282208588957055,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.7068062827225131,\n", + " 'F1-1.5': 0.7348484848484849,\n", + " 'Recall-1.5': 1.0,\n", + " 'Precision-1.5': 0.5808383233532934,\n", + " 'F1-2.5': 0.5764705882352941,\n", + " 'Recall-2.5': 0.8448275862068966,\n", + " 'Precision-2.5': 0.4375,\n", + " 'F1-3.5': 0.17721518987341772,\n", + " 'Recall-3.5': 0.7777777777777778,\n", + " 'Precision-3.5': 0.1,\n", + " 'F1-4.5': 0.25,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.14285714285714285,\n", + " 'NDCG@all': 0.87948982617392},\n", + " 'CM': {'0': {'-1': 123, '0': 7, '1': 19, '2': 21, '3': 7, '4': 9, '5': 0},\n", + " '1': {'-1': 62, '0': 0, '1': 5, '2': 13, '3': 10, '4': 9, '5': 1},\n", + " '2': {'-1': 67, '0': 0, '1': 0, '2': 12, '3': 9, '4': 15, '5': 3},\n", + " '3': {'-1': 55, '0': 0, '1': 0, '2': 7, '3': 16, '4': 24, '5': 2},\n", + " '4': {'-1': 5, '0': 0, '1': 0, '2': 2, '3': 0, '4': 6, '5': 0},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 1}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.13116213395543003,\n", + " 'Cohen': 0.1662575602859162,\n", + " 'Spearman': 0.6804885069016888,\n", + " 'Kendall': 0.5804370428335067,\n", + " 'Krippendorff': 0.5871734481408813,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7392156862745098,\n", + " 'TA-4.0': 0.9647058823529412,\n", + " 'Acc': 0.34705882352941175,\n", + " 'MAE': 0.7843137254901957,\n", + " 'MSE': 1.0348583877995639,\n", + " 'CA-0': 0.25268817204301075,\n", + " 'CA-1': 0.26,\n", + " 'CA-2': 0.5943396226415094,\n", + " 'CA-3': 0.3883495145631068,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.25450561451111653,\n", + " 'Micro-F1': 0.34705882352941175,\n", + " 'F1-0_vs_rest': 0.3983050847457627,\n", + " 'F1-1_vs_rest': 0.2047244094488189,\n", + " 'F1-2_vs_rest': 0.39622641509433965,\n", + " 'F1-3_vs_rest': 0.4166666666666667,\n", + " 'F1-4_vs_rest': 0.1111111111111111,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8188775510204082,\n", + " 'Recall-0.5': 0.9907407407407407,\n", + " 'Precision-0.5': 0.6978260869565217,\n", + " 'F1-1.5': 0.769811320754717,\n", + " 'Recall-1.5': 0.9107142857142857,\n", + " 'Precision-1.5': 0.6666666666666666,\n", + " 'F1-2.5': 0.4716981132075472,\n", + " 'Recall-2.5': 0.423728813559322,\n", + " 'Precision-2.5': 0.5319148936170213,\n", + " 'F1-3.5': 0.1,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.2,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9049197837525359},\n", + " 'CM': {'0': {'-1': 0, '0': 47, '1': 109, '2': 26, '3': 4, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 26, '2': 59, '3': 13, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 15, '2': 63, '3': 24, '4': 3, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 4, '2': 58, '3': 40, '4': 1, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 6, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.1633776573219277,\n", + " 'Cohen': 0.18360137869391402,\n", + " 'Spearman': 0.6410946148477193,\n", + " 'Kendall': 0.5240723067528528,\n", + " 'Krippendorff': 0.5652410412076154,\n", + " 'Invalid': 62,\n", + " 'TA-2.0': 0.732739420935412,\n", + " 'TA-4.0': 0.8106904231625836,\n", + " 'Acc': 0.33853006681514475,\n", + " 'MAE': 0.9417223459539719,\n", + " 'MSE': 1.6370329126453849,\n", + " 'CA-0': 0.3790849673202614,\n", + " 'CA-1': 0.2441860465116279,\n", + " 'CA-2': 0.43617021276595747,\n", + " 'CA-3': 0.24752475247524752,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.29901603641894925,\n", + " 'Micro-F1': 0.33853006681514475,\n", + " 'F1-0_vs_rest': 0.5110132158590308,\n", + " 'F1-1_vs_rest': 0.25,\n", + " 'F1-2_vs_rest': 0.36123348017621143,\n", + " 'F1-3_vs_rest': 0.30864197530864196,\n", + " 'F1-4_vs_rest': 0.11320754716981132,\n", + " 'F1-5_vs_rest': 0.25,\n", + " 'F1-0.5': 0.834575260804769,\n", + " 'Recall-0.5': 0.9459459459459459,\n", + " 'Precision-0.5': 0.7466666666666667,\n", + " 'F1-1.5': 0.7634194831013916,\n", + " 'Recall-1.5': 0.9142857142857143,\n", + " 'Precision-1.5': 0.6552901023890785,\n", + " 'F1-2.5': 0.6376811594202898,\n", + " 'Recall-2.5': 0.7586206896551724,\n", + " 'Precision-2.5': 0.55,\n", + " 'F1-3.5': 0.14035087719298245,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.08080808080808081,\n", + " 'F1-4.5': 0.25,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.16666666666666666,\n", + " 'NDCG@all': 0.910262404250484},\n", + " 'CM': {'0': {'-1': 33, '0': 58, '1': 53, '2': 30, '3': 6, '4': 6, '5': 0},\n", + " '1': {'-1': 14, '0': 6, '1': 21, '2': 38, '3': 9, '4': 11, '5': 1},\n", + " '2': {'-1': 12, '0': 10, '1': 4, '2': 41, '3': 16, '4': 23, '5': 0},\n", + " '3': {'-1': 3, '0': 0, '1': 4, '2': 22, '3': 25, '4': 46, '5': 4},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 5, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.047993183032683885,\n", + " 'Cohen': 0.009288799282746285,\n", + " 'Spearman': 0.6316753484512889,\n", + " 'Kendall': 0.5296978703363052,\n", + " 'Krippendorff': 0.2935555697729285,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.589041095890411,\n", + " 'TA-4.0': 0.7553816046966731,\n", + " 'Acc': 0.16634050880626222,\n", + " 'MAE': 1.3170254403131116,\n", + " 'MSE': 2.571646010002175,\n", + " 'CA-0': 0.03763440860215054,\n", + " 'CA-1': 0.1,\n", + " 'CA-2': 0.24528301886792453,\n", + " 'CA-3': 0.3076923076923077,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.13297289457508324,\n", + " 'Micro-F1': 0.16634050880626222,\n", + " 'F1-0_vs_rest': 0.07253886010362694,\n", + " 'F1-1_vs_rest': 0.10204081632653061,\n", + " 'F1-2_vs_rest': 0.20392156862745098,\n", + " 'F1-3_vs_rest': 0.2794759825327511,\n", + " 'F1-4_vs_rest': 0.13986013986013987,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7840772014475271,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6448412698412699,\n", + " 'F1-1.5': 0.6856240126382307,\n", + " 'Recall-1.5': 0.9644444444444444,\n", + " 'Precision-1.5': 0.5318627450980392,\n", + " 'F1-2.5': 0.5608465608465608,\n", + " 'Recall-2.5': 0.8907563025210085,\n", + " 'Precision-2.5': 0.4092664092664093,\n", + " 'F1-3.5': 0.1610738255033557,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.08955223880597014,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.876696521829403},\n", + " 'CM': {'0': {'-1': 0, '0': 7, '1': 78, '2': 73, '3': 20, '4': 7, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 10, '2': 39, '3': 30, '4': 19, '5': 2},\n", + " '2': {'-1': 0, '0': 0, '1': 6, '2': 26, '3': 40, '4': 33, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 11, '3': 32, '4': 59, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'mk': {'phi-4': {'metrics': {'Fleiss': 0.1999462797482112,\n", + " 'Cohen': 0.20991850829407743,\n", + " 'Spearman': 0.6185226818256321,\n", + " 'Kendall': 0.5109324902946139,\n", + " 'Krippendorff': 0.55607580063667,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7151277013752456,\n", + " 'TA-4.0': 0.888015717092338,\n", + " 'Acc': 0.3791748526522593,\n", + " 'MAE': 0.8732809430255403,\n", + " 'MSE': 1.5060576293385721,\n", + " 'CA-0': 0.46774193548387094,\n", + " 'CA-1': 0.28,\n", + " 'CA-2': 0.29523809523809524,\n", + " 'CA-3': 0.4174757281553398,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.35430055077942396,\n", + " 'Micro-F1': 0.3791748526522593,\n", + " 'F1-0_vs_rest': 0.6126760563380281,\n", + " 'F1-1_vs_rest': 0.26291079812206575,\n", + " 'F1-2_vs_rest': 0.2683982683982684,\n", + " 'F1-3_vs_rest': 0.39090909090909093,\n", + " 'F1-4_vs_rest': 0.09090909090909091,\n", + " 'F1-5_vs_rest': 0.5,\n", + " 'F1-0.5': 0.8501362397820164,\n", + " 'Recall-0.5': 0.9659442724458205,\n", + " 'Precision-0.5': 0.7591240875912408,\n", + " 'F1-1.5': 0.7370441458733206,\n", + " 'Recall-1.5': 0.8609865470852018,\n", + " 'Precision-1.5': 0.6442953020134228,\n", + " 'F1-2.5': 0.5379310344827586,\n", + " 'Recall-2.5': 0.6610169491525424,\n", + " 'Precision-2.5': 0.45348837209302323,\n", + " 'F1-3.5': 0.14285714285714285,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.09090909090909091,\n", + " 'F1-4.5': 0.5,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.5,\n", + " 'NDCG@all': 0.9018535269479933},\n", + " 'CM': {'0': {'-1': 0, '0': 87, '1': 56, '2': 25, '3': 13, '4': 4, '5': 1},\n", + " '1': {'-1': 0, '0': 9, '1': 28, '2': 37, '3': 18, '4': 8, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 22, '2': 31, '3': 37, '4': 13, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 7, '2': 29, '3': 43, '4': 24, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 6, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.09628411607156365,\n", + " 'Cohen': 0.12798773513737138,\n", + " 'Spearman': 0.5891677577150736,\n", + " 'Kendall': 0.4941335008312805,\n", + " 'Krippendorff': 0.5059260886620232,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7092337917485265,\n", + " 'TA-4.0': 0.9430255402750491,\n", + " 'Acc': 0.30844793713163066,\n", + " 'MAE': 0.8919449901768174,\n", + " 'MSE': 1.3560358000436585,\n", + " 'CA-0': 0.20967741935483872,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.3523809523809524,\n", + " 'CA-3': 0.4174757281553398,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.24035183166567262,\n", + " 'Micro-F1': 0.30844793713163066,\n", + " 'F1-0_vs_rest': 0.3406113537117904,\n", + " 'F1-1_vs_rest': 0.2536231884057971,\n", + " 'F1-2_vs_rest': 0.2857142857142857,\n", + " 'F1-3_vs_rest': 0.4,\n", + " 'F1-4_vs_rest': 0.16216216216216217,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8086185044359949,\n", + " 'Recall-0.5': 0.9876160990712074,\n", + " 'Precision-0.5': 0.6845493562231759,\n", + " 'F1-1.5': 0.7290448343079922,\n", + " 'Recall-1.5': 0.8385650224215246,\n", + " 'Precision-1.5': 0.6448275862068965,\n", + " 'F1-2.5': 0.4881889763779528,\n", + " 'Recall-2.5': 0.5254237288135594,\n", + " 'Precision-2.5': 0.45588235294117646,\n", + " 'F1-3.5': 0.2564102564102564,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.20833333333333334,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8907418160741489},\n", + " 'CM': {'0': {'-1': 0, '0': 39, '1': 105, '2': 32, '3': 7, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 4, '1': 35, '2': 42, '3': 14, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 23, '2': 37, '3': 40, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 13, '2': 41, '3': 43, '4': 6, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 8, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.2103323895590118,\n", + " 'Cohen': 0.2301147643266339,\n", + " 'Spearman': 0.6916393105910902,\n", + " 'Kendall': 0.5730862371703953,\n", + " 'Krippendorff': 0.6014533800903612,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7642436149312377,\n", + " 'TA-4.0': 0.7406679764243614,\n", + " 'Acc': 0.3713163064833006,\n", + " 'MAE': 0.9666011787819255,\n", + " 'MSE': 1.9825365640689807,\n", + " 'CA-0': 0.4946236559139785,\n", + " 'CA-1': 0.39,\n", + " 'CA-2': 0.2761904761904762,\n", + " 'CA-3': 0.18446601941747573,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.29812952633315754,\n", + " 'Micro-F1': 0.3713163064833006,\n", + " 'F1-0_vs_rest': 0.647887323943662,\n", + " 'F1-1_vs_rest': 0.3406113537117904,\n", + " 'F1-2_vs_rest': 0.3036649214659686,\n", + " 'F1-3_vs_rest': 0.2375,\n", + " 'F1-4_vs_rest': 0.13008130081300814,\n", + " 'F1-5_vs_rest': 0.12903225806451613,\n", + " 'F1-0.5': 0.8637602179836512,\n", + " 'Recall-0.5': 0.9814241486068112,\n", + " 'Precision-0.5': 0.7712895377128953,\n", + " 'F1-1.5': 0.7801980198019802,\n", + " 'Recall-1.5': 0.8834080717488789,\n", + " 'Precision-1.5': 0.6985815602836879,\n", + " 'F1-2.5': 0.6242038216560509,\n", + " 'Recall-2.5': 0.8305084745762712,\n", + " 'Precision-2.5': 0.5,\n", + " 'F1-3.5': 0.14285714285714285,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.07913669064748201,\n", + " 'F1-4.5': 0.12903225806451613,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.06896551724137931,\n", + " 'NDCG@all': 0.8863193377765898},\n", + " 'CM': {'0': {'-1': 0, '0': 92, '1': 65, '2': 15, '3': 6, '4': 3, '5': 5},\n", + " '1': {'-1': 0, '0': 5, '1': 39, '2': 26, '3': 7, '4': 16, '5': 7},\n", + " '2': {'-1': 0, '0': 1, '1': 21, '2': 29, '3': 22, '4': 25, '5': 7},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 15, '3': 19, '4': 58, '5': 7},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 3, '4': 8, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.0927170361920089,\n", + " 'Cohen': 0.14433237271853983,\n", + " 'Spearman': 0.6648605725818062,\n", + " 'Kendall': 0.5676040417937402,\n", + " 'Krippendorff': 0.5535764891046631,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7544204322200393,\n", + " 'TA-4.0': 0.931237721021611,\n", + " 'Acc': 0.31237721021611004,\n", + " 'MAE': 0.8467583497053045,\n", + " 'MSE': 1.1763807029032955,\n", + " 'CA-0': 0.06451612903225806,\n", + " 'CA-1': 0.45,\n", + " 'CA-2': 0.45714285714285713,\n", + " 'CA-3': 0.5048543689320388,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2322522443392009,\n", + " 'Micro-F1': 0.31237721021611004,\n", + " 'F1-0_vs_rest': 0.12121212121212122,\n", + " 'F1-1_vs_rest': 0.2777777777777778,\n", + " 'F1-2_vs_rest': 0.384,\n", + " 'F1-3_vs_rest': 0.5024154589371981,\n", + " 'F1-4_vs_rest': 0.10810810810810811,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7878048780487805,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6498993963782697,\n", + " 'F1-1.5': 0.7661290322580645,\n", + " 'Recall-1.5': 0.852017937219731,\n", + " 'Precision-1.5': 0.6959706959706959,\n", + " 'F1-2.5': 0.6016260162601627,\n", + " 'Recall-2.5': 0.6271186440677966,\n", + " 'Precision-2.5': 0.578125,\n", + " 'F1-3.5': 0.10256410256410256,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.08333333333333333,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9010464991579996},\n", + " 'CM': {'0': {'-1': 0, '0': 12, '1': 146, '2': 23, '3': 4, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 45, '2': 39, '3': 12, '4': 4, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 24, '2': 48, '3': 26, '4': 7, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 9, '2': 32, '3': 52, '4': 10, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 8, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.13554134812433272,\n", + " 'Cohen': 0.15902720409517856,\n", + " 'Spearman': 0.651702042178097,\n", + " 'Kendall': 0.5508695302619782,\n", + " 'Krippendorff': 0.5499237084327541,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7190569744597249,\n", + " 'TA-4.0': 0.8271119842829077,\n", + " 'Acc': 0.32023575638506874,\n", + " 'MAE': 0.9512115258677146,\n", + " 'MSE': 1.6527504911591364,\n", + " 'CA-0': 0.34946236559139787,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.19047619047619047,\n", + " 'CA-3': 0.33980582524271846,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.24579296491524727,\n", + " 'Micro-F1': 0.32023575638506874,\n", + " 'F1-0_vs_rest': 0.5058365758754864,\n", + " 'F1-1_vs_rest': 0.28,\n", + " 'F1-2_vs_rest': 0.21390374331550802,\n", + " 'F1-3_vs_rest': 0.32407407407407407,\n", + " 'F1-4_vs_rest': 0.1509433962264151,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8331143232588699,\n", + " 'Recall-0.5': 0.9814241486068112,\n", + " 'Precision-0.5': 0.723744292237443,\n", + " 'F1-1.5': 0.7397260273972602,\n", + " 'Recall-1.5': 0.8475336322869955,\n", + " 'Precision-1.5': 0.65625,\n", + " 'F1-2.5': 0.5864197530864198,\n", + " 'Recall-2.5': 0.8050847457627118,\n", + " 'Precision-2.5': 0.46116504854368934,\n", + " 'F1-3.5': 0.18518518518518517,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.10752688172043011,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9043001932837759},\n", + " 'CM': {'0': {'-1': 0, '0': 65, '1': 84, '2': 22, '3': 8, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 35, '2': 30, '3': 20, '4': 12, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 19, '2': 20, '3': 45, '4': 19, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 12, '2': 10, '3': 35, '4': 45, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.10284505260402657,\n", + " 'Cohen': -0.03193457969358038,\n", + " 'Spearman': 0.6182319643008533,\n", + " 'Kendall': 0.5140940674457272,\n", + " 'Krippendorff': 0.21577674338053743,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5697445972495089,\n", + " 'TA-4.0': 0.7131630648330058,\n", + " 'Acc': 0.12180746561886051,\n", + " 'MAE': 1.4335297969875573,\n", + " 'MSE': 2.8755730189914868,\n", + " 'CA-0': 0.005376344086021506,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.18095238095238095,\n", + " 'CA-3': 0.23300970873786409,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.096884776296541,\n", + " 'Micro-F1': 0.12180746561886051,\n", + " 'F1-0_vs_rest': 0.0106951871657754,\n", + " 'F1-1_vs_rest': 0.08648648648648649,\n", + " 'F1-2_vs_rest': 0.15079365079365079,\n", + " 'F1-3_vs_rest': 0.21428571428571427,\n", + " 'F1-4_vs_rest': 0.11904761904761904,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7773766546329723,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6358267716535433,\n", + " 'F1-1.5': 0.6811145510835913,\n", + " 'Recall-1.5': 0.9865470852017937,\n", + " 'Precision-1.5': 0.5200945626477541,\n", + " 'F1-2.5': 0.5126903553299492,\n", + " 'Recall-2.5': 0.8559322033898306,\n", + " 'Precision-2.5': 0.36594202898550726,\n", + " 'F1-3.5': 0.1411764705882353,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.07741935483870968,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8896544488250344},\n", + " 'CM': {'0': {'-1': 0, '0': 1, '1': 74, '2': 78, '3': 21, '4': 12, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 33, '3': 32, '4': 27, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 3, '2': 19, '3': 41, '4': 42, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 17, '3': 24, '4': 62, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.10806220799004826,\n", + " 'Cohen': -0.042270001462629825,\n", + " 'Spearman': 0.6982585706314755,\n", + " 'Kendall': 0.5949970514249361,\n", + " 'Krippendorff': 0.26727559242158794,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6011787819253438,\n", + " 'TA-4.0': 0.7445972495088409,\n", + " 'Acc': 0.11984282907662082,\n", + " 'MAE': 1.398166339227243,\n", + " 'MSE': 2.706177690460599,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.06,\n", + " 'CA-2': 0.14285714285714285,\n", + " 'CA-3': 0.3106796116504854,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.12270768471800753,\n", + " 'Micro-F1': 0.11984282907662082,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.061224489795918366,\n", + " 'F1-2_vs_rest': 0.14084507042253522,\n", + " 'F1-3_vs_rest': 0.23272727272727273,\n", + " 'F1-4_vs_rest': 0.10144927536231885,\n", + " 'F1-5_vs_rest': 0.2,\n", + " 'F1-0.5': 0.7764423076923077,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6345776031434185,\n", + " 'F1-1.5': 0.7012578616352201,\n", + " 'Recall-1.5': 1.0,\n", + " 'Precision-1.5': 0.5399515738498789,\n", + " 'F1-2.5': 0.524822695035461,\n", + " 'Recall-2.5': 0.940677966101695,\n", + " 'Precision-2.5': 0.3639344262295082,\n", + " 'F1-3.5': 0.12162162162162163,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.06766917293233082,\n", + " 'F1-4.5': 0.2,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.125,\n", + " 'NDCG@all': 0.9003366804175356},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 90, '2': 63, '3': 28, '4': 4, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 6, '2': 23, '3': 53, '4': 17, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 0, '2': 15, '3': 53, '4': 34, '5': 3},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 7, '3': 32, '4': 62, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 6, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.17067937364171648,\n", + " 'Cohen': 0.20073729779873595,\n", + " 'Spearman': 0.6886037723317114,\n", + " 'Kendall': 0.5830509659904313,\n", + " 'Krippendorff': 0.5660101264909707,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7465618860510805,\n", + " 'TA-4.0': 0.9096267190569745,\n", + " 'Acc': 0.3614931237721022,\n", + " 'MAE': 0.8330058939096264,\n", + " 'MSE': 1.2892381576075091,\n", + " 'CA-0': 0.1827956989247312,\n", + " 'CA-1': 0.31,\n", + " 'CA-2': 0.5714285714285714,\n", + " 'CA-3': 0.5533980582524272,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2663478875923081,\n", + " 'Micro-F1': 0.3614931237721022,\n", + " 'F1-0_vs_rest': 0.3063063063063063,\n", + " 'F1-1_vs_rest': 0.23846153846153847,\n", + " 'F1-2_vs_rest': 0.449438202247191,\n", + " 'F1-3_vs_rest': 0.5205479452054794,\n", + " 'F1-4_vs_rest': 0.08333333333333333,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8065326633165829,\n", + " 'Recall-0.5': 0.9938080495356038,\n", + " 'Precision-0.5': 0.678646934460888,\n", + " 'F1-1.5': 0.7835820895522388,\n", + " 'Recall-1.5': 0.9417040358744395,\n", + " 'Precision-1.5': 0.670926517571885,\n", + " 'F1-2.5': 0.6245353159851301,\n", + " 'Recall-2.5': 0.711864406779661,\n", + " 'Precision-2.5': 0.5562913907284768,\n", + " 'F1-3.5': 0.08,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.05714285714285714,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8894533462145917},\n", + " 'CM': {'0': {'-1': 0, '0': 34, '1': 116, '2': 29, '3': 2, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 31, '2': 43, '3': 16, '4': 8, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 9, '2': 60, '3': 31, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 27, '3': 57, '4': 15, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 8, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.07126474176494511,\n", + " 'Cohen': 0.0015464386427727073,\n", + " 'Spearman': 0.4584913379406041,\n", + " 'Kendall': 0.35928307672266824,\n", + " 'Krippendorff': 0.10195432185905617,\n", + " 'Invalid': 313,\n", + " 'TA-2.0': 0.5153061224489796,\n", + " 'TA-4.0': 0.673469387755102,\n", + " 'Acc': 0.14285714285714285,\n", + " 'MAE': 1.5671768707482994,\n", + " 'MSE': 3.608134920634921,\n", + " 'CA-0': 0.05405405405405406,\n", + " 'CA-1': 0.05405405405405406,\n", + " 'CA-2': 0.22857142857142856,\n", + " 'CA-3': 0.23809523809523808,\n", + " 'CA-4': 0.5,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.11534015492262702,\n", + " 'Micro-F1': 0.14285714285714285,\n", + " 'F1-0_vs_rest': 0.10256410256410256,\n", + " 'F1-1_vs_rest': 0.06779661016949153,\n", + " 'F1-2_vs_rest': 0.16666666666666666,\n", + " 'F1-3_vs_rest': 0.24390243902439024,\n", + " 'F1-4_vs_rest': 0.1111111111111111,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7770700636942676,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6354166666666666,\n", + " 'F1-1.5': 0.6274509803921569,\n", + " 'Recall-1.5': 0.9411764705882353,\n", + " 'Precision-1.5': 0.47058823529411764,\n", + " 'F1-2.5': 0.5408805031446541,\n", + " 'Recall-2.5': 0.86,\n", + " 'Precision-2.5': 0.3944954128440367,\n", + " 'F1-3.5': 0.1038961038961039,\n", + " 'Recall-3.5': 0.5,\n", + " 'Precision-3.5': 0.057971014492753624,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.848949965114866},\n", + " 'CM': {'0': {'-1': 112, '0': 4, '1': 15, '2': 32, '3': 13, '4': 10, '5': 0},\n", + " '1': {'-1': 63, '0': 0, '1': 2, '2': 15, '3': 5, '4': 13, '5': 2},\n", + " '2': {'-1': 70, '0': 0, '1': 4, '2': 8, '3': 9, '4': 13, '5': 1},\n", + " '3': {'-1': 61, '0': 0, '1': 1, '2': 5, '3': 10, '4': 24, '5': 2},\n", + " '4': {'-1': 5, '0': 0, '1': 0, '2': 1, '3': 3, '4': 4, '5': 0},\n", + " '5': {'-1': 2, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.13718694386651242,\n", + " 'Cohen': 0.1783997430893507,\n", + " 'Spearman': 0.6944544899748724,\n", + " 'Kendall': 0.5951667422379241,\n", + " 'Krippendorff': 0.5752383349400148,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.73767258382643,\n", + " 'TA-4.0': 0.9684418145956607,\n", + " 'Acc': 0.3530571992110454,\n", + " 'MAE': 0.7876397107166335,\n", + " 'MSE': 1.0515012053473587,\n", + " 'CA-0': 0.1935483870967742,\n", + " 'CA-1': 0.28,\n", + " 'CA-2': 0.6571428571428571,\n", + " 'CA-3': 0.45544554455445546,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.24045467749855157,\n", + " 'Micro-F1': 0.3530571992110454,\n", + " 'F1-0_vs_rest': 0.32286995515695066,\n", + " 'F1-1_vs_rest': 0.2248995983935743,\n", + " 'F1-2_vs_rest': 0.42073170731707316,\n", + " 'F1-3_vs_rest': 0.4742268041237113,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.809102402022756,\n", + " 'Recall-0.5': 0.9968847352024922,\n", + " 'Precision-0.5': 0.6808510638297872,\n", + " 'F1-1.5': 0.7749077490774908,\n", + " 'Recall-1.5': 0.9502262443438914,\n", + " 'Precision-1.5': 0.6542056074766355,\n", + " 'F1-2.5': 0.5233644859813084,\n", + " 'Recall-2.5': 0.4827586206896552,\n", + " 'Precision-2.5': 0.5714285714285714,\n", + " 'F1-3.5': 0.2,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.4,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.916877069071466},\n", + " 'CM': {'0': {'-1': 0, '0': 36, '1': 110, '2': 37, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 28, '2': 58, '3': 12, '4': 1, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 10, '2': 69, '3': 25, '4': 1, '5': 0},\n", + " '3': {'-1': 2, '0': 0, '1': 1, '2': 53, '3': 46, '4': 0, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 7, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.08507715215716172,\n", + " 'Cohen': 0.1143448715226163,\n", + " 'Spearman': 0.6850548387772861,\n", + " 'Kendall': 0.5742758174008288,\n", + " 'Krippendorff': 0.538321737317955,\n", + " 'Invalid': 31,\n", + " 'TA-2.0': 0.7217573221757322,\n", + " 'TA-4.0': 0.7677824267782427,\n", + " 'Acc': 0.2698744769874477,\n", + " 'MAE': 1.0320781032078103,\n", + " 'MSE': 1.8102045560204554,\n", + " 'CA-0': 0.3128834355828221,\n", + " 'CA-1': 0.1702127659574468,\n", + " 'CA-2': 0.3300970873786408,\n", + " 'CA-3': 0.18446601941747573,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.23845114894803054,\n", + " 'Micro-F1': 0.2698744769874477,\n", + " 'F1-0_vs_rest': 0.45739910313901344,\n", + " 'F1-1_vs_rest': 0.1839080459770115,\n", + " 'F1-2_vs_rest': 0.29310344827586204,\n", + " 'F1-3_vs_rest': 0.2111111111111111,\n", + " 'F1-4_vs_rest': 0.11851851851851852,\n", + " 'F1-5_vs_rest': 0.16666666666666666,\n", + " 'F1-0.5': 0.834924965893588,\n", + " 'Recall-0.5': 0.9714285714285714,\n", + " 'Precision-0.5': 0.7320574162679426,\n", + " 'F1-1.5': 0.7441860465116279,\n", + " 'Recall-1.5': 0.9411764705882353,\n", + " 'Precision-1.5': 0.6153846153846154,\n", + " 'F1-2.5': 0.636085626911315,\n", + " 'Recall-2.5': 0.8813559322033898,\n", + " 'Precision-2.5': 0.49760765550239233,\n", + " 'F1-3.5': 0.16326530612244897,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.09090909090909091,\n", + " 'F1-4.5': 0.16666666666666666,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.1,\n", + " 'NDCG@all': 0.9270786198365389},\n", + " 'CM': {'0': {'-1': 23, '0': 51, '1': 54, '2': 42, '3': 9, '4': 7, '5': 0},\n", + " '1': {'-1': 6, '0': 6, '1': 16, '2': 41, '3': 18, '4': 13, '5': 0},\n", + " '2': {'-1': 2, '0': 3, '1': 8, '2': 34, '3': 28, '4': 26, '5': 4},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 12, '3': 19, '4': 67, '5': 3},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 8, '5': 2},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.062348067578078314,\n", + " 'Cohen': -0.001844093611893971,\n", + " 'Spearman': 0.6336290552747106,\n", + " 'Kendall': 0.5282998804119547,\n", + " 'Krippendorff': 0.2428850955936387,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5540275049115914,\n", + " 'TA-4.0': 0.7662082514734774,\n", + " 'Acc': 0.15913555992141454,\n", + " 'MAE': 1.3693516699410606,\n", + " 'MSE': 2.7101069635450776,\n", + " 'CA-0': 0.043010752688172046,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.1523809523809524,\n", + " 'CA-3': 0.3883495145631068,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12429686326947442,\n", + " 'Micro-F1': 0.15913555992141454,\n", + " 'F1-0_vs_rest': 0.08247422680412371,\n", + " 'F1-1_vs_rest': 0.08045977011494253,\n", + " 'F1-2_vs_rest': 0.12749003984063745,\n", + " 'F1-3_vs_rest': 0.3125,\n", + " 'F1-4_vs_rest': 0.14285714285714285,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7839805825242718,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6447105788423154,\n", + " 'F1-1.5': 0.6676923076923077,\n", + " 'Recall-1.5': 0.9730941704035875,\n", + " 'Precision-1.5': 0.5081967213114754,\n", + " 'F1-2.5': 0.5413533834586466,\n", + " 'Recall-2.5': 0.9152542372881356,\n", + " 'Precision-2.5': 0.38434163701067614,\n", + " 'F1-3.5': 0.16783216783216784,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.09375,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8882060933202796},\n", + " 'CM': {'0': {'-1': 0, '0': 8, '1': 61, '2': 81, '3': 29, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 39, '3': 35, '4': 18, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 6, '2': 16, '3': 46, '4': 37, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 10, '3': 40, '4': 53, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'sv': {'phi-4': {'metrics': {'Fleiss': 0.22190244554852706,\n", + " 'Cohen': 0.23316881709406723,\n", + " 'Spearman': 0.6466607960801041,\n", + " 'Kendall': 0.5364517240781522,\n", + " 'Krippendorff': 0.5507744996003143,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7254901960784313,\n", + " 'TA-4.0': 0.8823529411764706,\n", + " 'Acc': 0.396078431372549,\n", + " 'MAE': 0.89281045751634,\n", + " 'MSE': 1.6542483660130722,\n", + " 'CA-0': 0.4731182795698925,\n", + " 'CA-1': 0.24,\n", + " 'CA-2': 0.2641509433962264,\n", + " 'CA-3': 0.5436893203883495,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2892500564813452,\n", + " 'Micro-F1': 0.396078431372549,\n", + " 'F1-0_vs_rest': 0.6068965517241379,\n", + " 'F1-1_vs_rest': 0.24870466321243523,\n", + " 'F1-2_vs_rest': 0.2814070351758794,\n", + " 'F1-3_vs_rest': 0.43410852713178294,\n", + " 'F1-4_vs_rest': 0.1643835616438356,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8438356164383561,\n", + " 'Recall-0.5': 0.9506172839506173,\n", + " 'Precision-0.5': 0.7586206896551724,\n", + " 'F1-1.5': 0.7597765363128491,\n", + " 'Recall-1.5': 0.9107142857142857,\n", + " 'Precision-1.5': 0.6517571884984026,\n", + " 'F1-2.5': 0.5798816568047337,\n", + " 'Recall-2.5': 0.8305084745762712,\n", + " 'Precision-2.5': 0.44545454545454544,\n", + " 'F1-3.5': 0.175,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.1076923076923077,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8753876668719529},\n", + " 'CM': {'0': {'-1': 0, '0': 88, '1': 54, '2': 25, '3': 14, '4': 3, '5': 2},\n", + " '1': {'-1': 0, '0': 11, '1': 24, '2': 28, '3': 26, '4': 10, '5': 1},\n", + " '2': {'-1': 0, '0': 3, '1': 9, '2': 28, '3': 51, '4': 14, '5': 1},\n", + " '3': {'-1': 1, '0': 2, '1': 6, '2': 12, '3': 56, '4': 26, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 7, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.0953309728140191,\n", + " 'Cohen': 0.13102335121944186,\n", + " 'Spearman': 0.591646329807139,\n", + " 'Kendall': 0.492311755374174,\n", + " 'Krippendorff': 0.4998396116720517,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7142857142857143,\n", + " 'TA-4.0': 0.9275929549902152,\n", + " 'Acc': 0.30724070450097846,\n", + " 'MAE': 0.9093281148075669,\n", + " 'MSE': 1.405522939769515,\n", + " 'CA-0': 0.16666666666666666,\n", + " 'CA-1': 0.39,\n", + " 'CA-2': 0.33962264150943394,\n", + " 'CA-3': 0.47115384615384615,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22982093575208573,\n", + " 'Micro-F1': 0.30724070450097846,\n", + " 'F1-0_vs_rest': 0.28054298642533937,\n", + " 'F1-1_vs_rest': 0.2653061224489796,\n", + " 'F1-2_vs_rest': 0.3037974683544304,\n", + " 'F1-3_vs_rest': 0.43171806167400884,\n", + " 'F1-4_vs_rest': 0.0975609756097561,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8014981273408239,\n", + " 'Recall-0.5': 0.9876923076923076,\n", + " 'Precision-0.5': 0.6743697478991597,\n", + " 'F1-1.5': 0.7337278106508875,\n", + " 'Recall-1.5': 0.8266666666666667,\n", + " 'Precision-1.5': 0.6595744680851063,\n", + " 'F1-2.5': 0.5333333333333333,\n", + " 'Recall-2.5': 0.6050420168067226,\n", + " 'Precision-2.5': 0.4768211920529801,\n", + " 'F1-3.5': 0.13953488372093023,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.10714285714285714,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.884884893480283},\n", + " 'CM': {'0': {'-1': 0, '0': 31, '1': 116, '2': 30, '3': 5, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 4, '1': 39, '2': 33, '3': 18, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 24, '2': 36, '3': 40, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 15, '2': 31, '3': 49, '4': 9, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 10, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.24514839631567767,\n", + " 'Cohen': 0.2589956354641051,\n", + " 'Spearman': 0.6909643456979241,\n", + " 'Kendall': 0.5733974461737357,\n", + " 'Krippendorff': 0.6174201427982247,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.776908023483366,\n", + " 'TA-4.0': 0.7729941291585127,\n", + " 'Acc': 0.40117416829745595,\n", + " 'MAE': 0.9223744292237442,\n", + " 'MSE': 1.8751902587519027,\n", + " 'CA-0': 0.5161290322580645,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.36792452830188677,\n", + " 'CA-3': 0.2403846153846154,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.3146132608038778,\n", + " 'Micro-F1': 0.40117416829745595,\n", + " 'F1-0_vs_rest': 0.6508474576271186,\n", + " 'F1-1_vs_rest': 0.3211009174311927,\n", + " 'F1-2_vs_rest': 0.39195979899497485,\n", + " 'F1-3_vs_rest': 0.29411764705882354,\n", + " 'F1-4_vs_rest': 0.1651376146788991,\n", + " 'F1-5_vs_rest': 0.06451612903225806,\n", + " 'F1-0.5': 0.8583218707015131,\n", + " 'Recall-0.5': 0.96,\n", + " 'Precision-0.5': 0.7761194029850746,\n", + " 'F1-1.5': 0.793713163064833,\n", + " 'Recall-1.5': 0.8977777777777778,\n", + " 'Precision-1.5': 0.7112676056338029,\n", + " 'F1-2.5': 0.6258064516129033,\n", + " 'Recall-2.5': 0.8151260504201681,\n", + " 'Precision-2.5': 0.5078534031413613,\n", + " 'F1-3.5': 0.17142857142857143,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.096,\n", + " 'F1-4.5': 0.06451612903225806,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.034482758620689655,\n", + " 'NDCG@all': 0.8879430038363442},\n", + " 'CM': {'0': {'-1': 0, '0': 96, '1': 62, '2': 13, '3': 9, '4': 2, '5': 4},\n", + " '1': {'-1': 0, '0': 11, '1': 35, '2': 22, '3': 12, '4': 13, '5': 7},\n", + " '2': {'-1': 0, '0': 2, '1': 18, '2': 39, '3': 17, '4': 22, '5': 8},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 19, '3': 25, '4': 49, '5': 8},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 9, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.10992385851434973,\n", + " 'Cohen': 0.16502869046310842,\n", + " 'Spearman': 0.6618758502020395,\n", + " 'Kendall': 0.5640448158757305,\n", + " 'Krippendorff': 0.5602324191771517,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7827788649706457,\n", + " 'TA-4.0': 0.9432485322896281,\n", + " 'Acc': 0.33072407045009783,\n", + " 'MAE': 0.818982387475538,\n", + " 'MSE': 1.1409545553381166,\n", + " 'CA-0': 0.06989247311827956,\n", + " 'CA-1': 0.55,\n", + " 'CA-2': 0.39622641509433965,\n", + " 'CA-3': 0.5576923076923077,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2360211031384666,\n", + " 'Micro-F1': 0.33072407045009783,\n", + " 'F1-0_vs_rest': 0.1306532663316583,\n", + " 'F1-1_vs_rest': 0.3170028818443804,\n", + " 'F1-2_vs_rest': 0.37668161434977576,\n", + " 'F1-3_vs_rest': 0.5272727272727272,\n", + " 'F1-4_vs_rest': 0.06451612903225806,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7897934386391251,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6526104417670683,\n", + " 'F1-1.5': 0.7815126050420168,\n", + " 'Recall-1.5': 0.8266666666666667,\n", + " 'Precision-1.5': 0.7410358565737052,\n", + " 'F1-2.5': 0.5928853754940712,\n", + " 'Recall-2.5': 0.6302521008403361,\n", + " 'Precision-2.5': 0.5597014925373134,\n", + " 'F1-3.5': 0.12121212121212122,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.1111111111111111,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.895974309785504},\n", + " 'CM': {'0': {'-1': 0, '0': 13, '1': 153, '2': 13, '3': 4, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 55, '2': 29, '3': 14, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 28, '2': 42, '3': 31, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 11, '2': 29, '3': 58, '4': 6, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 8, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.1463215059786182,\n", + " 'Cohen': 0.16881410909987626,\n", + " 'Spearman': 0.6638122072777445,\n", + " 'Kendall': 0.5562228501219548,\n", + " 'Krippendorff': 0.5748221186689149,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.735812133072407,\n", + " 'TA-4.0': 0.8180039138943248,\n", + " 'Acc': 0.3287671232876712,\n", + " 'MAE': 0.9269406392694066,\n", + " 'MSE': 1.5849097629919553,\n", + " 'CA-0': 0.3602150537634409,\n", + " 'CA-1': 0.39,\n", + " 'CA-2': 0.16981132075471697,\n", + " 'CA-3': 0.34615384615384615,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2500912083595594,\n", + " 'Micro-F1': 0.3287671232876712,\n", + " 'F1-0_vs_rest': 0.5056603773584906,\n", + " 'F1-1_vs_rest': 0.30952380952380953,\n", + " 'F1-2_vs_rest': 0.19672131147540983,\n", + " 'F1-3_vs_rest': 0.3444976076555024,\n", + " 'F1-4_vs_rest': 0.14414414414414414,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8269484808454426,\n", + " 'Recall-0.5': 0.963076923076923,\n", + " 'Precision-0.5': 0.7245370370370371,\n", + " 'F1-1.5': 0.7564356435643564,\n", + " 'Recall-1.5': 0.8488888888888889,\n", + " 'Precision-1.5': 0.6821428571428572,\n", + " 'F1-2.5': 0.6149068322981367,\n", + " 'Recall-2.5': 0.8319327731092437,\n", + " 'Precision-2.5': 0.4876847290640394,\n", + " 'F1-3.5': 0.17699115044247787,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.10204081632653061,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9068802351548026},\n", + " 'CM': {'0': {'-1': 0, '0': 67, '1': 84, '2': 21, '3': 8, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 7, '1': 39, '2': 27, '3': 15, '4': 12, '5': 0},\n", + " '2': {'-1': 0, '0': 4, '1': 21, '2': 18, '3': 41, '4': 22, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 8, '2': 11, '3': 36, '4': 48, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.12014741426759515,\n", + " 'Cohen': -0.034408383535246,\n", + " 'Spearman': 0.6560692433514062,\n", + " 'Kendall': 0.5609628214744885,\n", + " 'Krippendorff': 0.21304468449698788,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.589041095890411,\n", + " 'TA-4.0': 0.6301369863013698,\n", + " 'Acc': 0.10371819960861056,\n", + " 'MAE': 1.5003261578604044,\n", + " 'MSE': 3.1176342683192004,\n", + " 'CA-0': 0.005376344086021506,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.16981132075471697,\n", + " 'CA-3': 0.15384615384615385,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08431521103171968,\n", + " 'Micro-F1': 0.10371819960861056,\n", + " 'F1-0_vs_rest': 0.0106951871657754,\n", + " 'F1-1_vs_rest': 0.07142857142857142,\n", + " 'F1-2_vs_rest': 0.1643835616438356,\n", + " 'F1-3_vs_rest': 0.15609756097560976,\n", + " 'F1-4_vs_rest': 0.10328638497652583,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7784431137724551,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6372549019607843,\n", + " 'F1-1.5': 0.6917057902973396,\n", + " 'Recall-1.5': 0.9822222222222222,\n", + " 'Precision-1.5': 0.533816425120773,\n", + " 'F1-2.5': 0.5333333333333333,\n", + " 'Recall-2.5': 0.9411764705882353,\n", + " 'Precision-2.5': 0.37209302325581395,\n", + " 'F1-3.5': 0.12093023255813953,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.065,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8924085658101588},\n", + " 'CM': {'0': {'-1': 0, '0': 1, '1': 85, '2': 59, '3': 25, '4': 16, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 31, '3': 29, '4': 33, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 2, '2': 18, '3': 29, '4': 57, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 5, '3': 16, '4': 81, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.08115956759425302,\n", + " 'Cohen': -0.0194693173416578,\n", + " 'Spearman': 0.7167548185707496,\n", + " 'Kendall': 0.6116330346074136,\n", + " 'Krippendorff': 0.32891568998633147,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.6254901960784314,\n", + " 'TA-4.0': 0.7627450980392156,\n", + " 'Acc': 0.1411764705882353,\n", + " 'MAE': 1.3094771241830065,\n", + " 'MSE': 2.448747276688453,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.19047619047619047,\n", + " 'CA-3': 0.36538461538461536,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.10720819208284883,\n", + " 'Micro-F1': 0.1411764705882353,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.0660377358490566,\n", + " 'F1-2_vs_rest': 0.18779342723004694,\n", + " 'F1-3_vs_rest': 0.2857142857142857,\n", + " 'F1-4_vs_rest': 0.1037037037037037,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7769784172661871,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6352941176470588,\n", + " 'F1-1.5': 0.7138263665594855,\n", + " 'Recall-1.5': 0.9910714285714286,\n", + " 'Precision-1.5': 0.5577889447236181,\n", + " 'F1-2.5': 0.5672371638141809,\n", + " 'Recall-2.5': 0.9747899159663865,\n", + " 'Precision-2.5': 0.4,\n", + " 'F1-3.5': 0.13986013986013987,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.078125,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9045519607350617},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 103, '2': 56, '3': 22, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 30, '3': 45, '4': 17, '5': 1},\n", + " '2': {'-1': 1, '0': 0, '1': 1, '2': 20, '3': 52, '4': 29, '5': 3},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 2, '3': 38, '4': 62, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 7, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.18615791582368416,\n", + " 'Cohen': 0.2132636663683688,\n", + " 'Spearman': 0.6933402342854686,\n", + " 'Kendall': 0.5863109850602262,\n", + " 'Krippendorff': 0.5916554442574787,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7514677103718199,\n", + " 'TA-4.0': 0.913894324853229,\n", + " 'Acc': 0.37377690802348335,\n", + " 'MAE': 0.7990867579908675,\n", + " 'MSE': 1.2009132420091322,\n", + " 'CA-0': 0.23118279569892472,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.4716981132075472,\n", + " 'CA-3': 0.5673076923076923,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.27130397419715363,\n", + " 'Micro-F1': 0.37377690802348335,\n", + " 'F1-0_vs_rest': 0.37554585152838427,\n", + " 'F1-1_vs_rest': 0.28044280442804426,\n", + " 'F1-2_vs_rest': 0.3968253968253968,\n", + " 'F1-3_vs_rest': 0.5315315315315315,\n", + " 'F1-4_vs_rest': 0.043478260869565216,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.819672131147541,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6944444444444444,\n", + " 'F1-1.5': 0.7739463601532567,\n", + " 'Recall-1.5': 0.8977777777777778,\n", + " 'Precision-1.5': 0.6801346801346801,\n", + " 'F1-2.5': 0.6444444444444445,\n", + " 'Recall-2.5': 0.7310924369747899,\n", + " 'Precision-2.5': 0.5761589403973509,\n", + " 'F1-3.5': 0.08333333333333333,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.06060606060606061,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8975530038634952},\n", + " 'CM': {'0': {'-1': 0, '0': 43, '1': 110, '2': 26, '3': 4, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 38, '2': 42, '3': 12, '4': 8, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 19, '2': 50, '3': 33, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 25, '3': 59, '4': 16, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 9, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.10310419338404508,\n", + " 'Cohen': -0.035829759155394436,\n", + " 'Spearman': 0.5414884179588088,\n", + " 'Kendall': 0.4406784757658552,\n", + " 'Krippendorff': 0.17101678686484012,\n", + " 'Invalid': 323,\n", + " 'TA-2.0': 0.6170212765957447,\n", + " 'TA-4.0': 0.6914893617021277,\n", + " 'Acc': 0.11170212765957446,\n", + " 'MAE': 1.5425531914893613,\n", + " 'MSE': 3.382683215130024,\n", + " 'CA-0': 0.04054054054054054,\n", + " 'CA-1': 0.08333333333333333,\n", + " 'CA-2': 0.2,\n", + " 'CA-3': 0.18181818181818182,\n", + " 'CA-4': 0.2,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09070374070374071,\n", + " 'Micro-F1': 0.11170212765957446,\n", + " 'F1-0_vs_rest': 0.07792207792207792,\n", + " 'F1-1_vs_rest': 0.08333333333333333,\n", + " 'F1-2_vs_rest': 0.17582417582417584,\n", + " 'F1-3_vs_rest': 0.17142857142857143,\n", + " 'F1-4_vs_rest': 0.03571428571428571,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7625418060200669,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6162162162162163,\n", + " 'F1-1.5': 0.6696035242290749,\n", + " 'Recall-1.5': 0.9743589743589743,\n", + " 'Precision-1.5': 0.5100671140939598,\n", + " 'F1-2.5': 0.4117647058823529,\n", + " 'Recall-2.5': 0.7368421052631579,\n", + " 'Precision-2.5': 0.2857142857142857,\n", + " 'F1-3.5': 0.06060606060606061,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.03278688524590164,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8562739565927192},\n", + " 'CM': {'0': {'-1': 112, '0': 3, '1': 31, '2': 26, '3': 8, '4': 5, '5': 1},\n", + " '1': {'-1': 64, '0': 0, '1': 3, '2': 8, '3': 9, '4': 14, '5': 2},\n", + " '2': {'-1': 66, '0': 0, '1': 1, '2': 8, '3': 14, '4': 14, '5': 3},\n", + " '3': {'-1': 71, '0': 0, '1': 1, '2': 6, '3': 6, '4': 17, '5': 3},\n", + " '4': {'-1': 8, '0': 0, '1': 0, '2': 3, '3': 0, '4': 1, '5': 1},\n", + " '5': {'-1': 2, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.12878305028989678,\n", + " 'Cohen': 0.1652203463288745,\n", + " 'Spearman': 0.6894573751544244,\n", + " 'Kendall': 0.5860764105625597,\n", + " 'Krippendorff': 0.5910578537109343,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.7465618860510805,\n", + " 'TA-4.0': 0.9607072691552063,\n", + " 'Acc': 0.34577603143418467,\n", + " 'MAE': 0.7819253438113946,\n", + " 'MSE': 1.0316524776249725,\n", + " 'CA-0': 0.24193548387096775,\n", + " 'CA-1': 0.3,\n", + " 'CA-2': 0.5943396226415094,\n", + " 'CA-3': 0.37254901960784315,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23627587639892403,\n", + " 'Micro-F1': 0.34577603143418467,\n", + " 'F1-0_vs_rest': 0.38461538461538464,\n", + " 'F1-1_vs_rest': 0.23255813953488372,\n", + " 'F1-2_vs_rest': 0.39622641509433965,\n", + " 'F1-3_vs_rest': 0.40425531914893614,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8163265306122449,\n", + " 'Recall-0.5': 0.9907120743034056,\n", + " 'Precision-0.5': 0.6941431670281996,\n", + " 'F1-1.5': 0.779467680608365,\n", + " 'Recall-1.5': 0.9192825112107623,\n", + " 'Precision-1.5': 0.6765676567656765,\n", + " 'F1-2.5': 0.47115384615384615,\n", + " 'Recall-2.5': 0.4188034188034188,\n", + " 'Precision-2.5': 0.5384615384615384,\n", + " 'F1-3.5': 0.0,\n", + " 'Recall-3.5': 0.0,\n", + " 'Precision-3.5': 0.0,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8884655583516098},\n", + " 'CM': {'0': {'-1': 0, '0': 45, '1': 111, '2': 27, '3': 2, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 30, '2': 58, '3': 8, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 13, '2': 63, '3': 28, '4': 1, '5': 0},\n", + " '3': {'-1': 2, '0': 0, '1': 4, '2': 59, '3': 38, '4': 1, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 8, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.1507098993034647,\n", + " 'Cohen': 0.169010889292196,\n", + " 'Spearman': 0.6252027549817402,\n", + " 'Kendall': 0.506935187019661,\n", + " 'Krippendorff': 0.5549923848561078,\n", + " 'Invalid': 67,\n", + " 'TA-2.0': 0.7274774774774775,\n", + " 'TA-4.0': 0.8288288288288288,\n", + " 'Acc': 0.3310810810810811,\n", + " 'MAE': 0.9485735735735735,\n", + " 'MSE': 1.6400775775775782,\n", + " 'CA-0': 0.3790849673202614,\n", + " 'CA-1': 0.15,\n", + " 'CA-2': 0.4329896907216495,\n", + " 'CA-3': 0.2828282828282828,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.2893074848531905,\n", + " 'Micro-F1': 0.3310810810810811,\n", + " 'F1-0_vs_rest': 0.5087719298245614,\n", + " 'F1-1_vs_rest': 0.1518987341772152,\n", + " 'F1-2_vs_rest': 0.3620689655172414,\n", + " 'F1-3_vs_rest': 0.3393939393939394,\n", + " 'F1-4_vs_rest': 0.12371134020618557,\n", + " 'F1-5_vs_rest': 0.25,\n", + " 'F1-0.5': 0.8303030303030303,\n", + " 'Recall-0.5': 0.9415807560137457,\n", + " 'Precision-0.5': 0.7425474254742548,\n", + " 'F1-1.5': 0.7609561752988048,\n", + " 'Recall-1.5': 0.9052132701421801,\n", + " 'Precision-1.5': 0.6563573883161512,\n", + " 'F1-2.5': 0.6,\n", + " 'Recall-2.5': 0.7105263157894737,\n", + " 'Precision-2.5': 0.5192307692307693,\n", + " 'F1-3.5': 0.17142857142857143,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.1,\n", + " 'F1-4.5': 0.25,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.16666666666666666,\n", + " 'NDCG@all': 0.9131769794503989},\n", + " 'CM': {'0': {'-1': 33, '0': 58, '1': 53, '2': 30, '3': 6, '4': 6, '5': 0},\n", + " '1': {'-1': 20, '0': 10, '1': 12, '2': 34, '3': 16, '4': 7, '5': 1},\n", + " '2': {'-1': 9, '0': 7, '1': 9, '2': 42, '3': 14, '4': 24, '5': 1},\n", + " '3': {'-1': 5, '0': 0, '1': 4, '2': 25, '3': 28, '4': 40, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 2, '4': 6, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.07672102756530522,\n", + " 'Cohen': -0.016139796515983074,\n", + " 'Spearman': 0.6595696205389856,\n", + " 'Kendall': 0.5569947268913363,\n", + " 'Krippendorff': 0.3039385258684627,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5792563600782779,\n", + " 'TA-4.0': 0.7436399217221135,\n", + " 'Acc': 0.14285714285714285,\n", + " 'MAE': 1.3365949119373777,\n", + " 'MSE': 2.536420961078496,\n", + " 'CA-0': 0.04838709677419355,\n", + " 'CA-1': 0.09,\n", + " 'CA-2': 0.14150943396226415,\n", + " 'CA-3': 0.27884615384615385,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.1168622935202779,\n", + " 'Micro-F1': 0.14285714285714285,\n", + " 'F1-0_vs_rest': 0.09230769230769231,\n", + " 'F1-1_vs_rest': 0.09230769230769231,\n", + " 'F1-2_vs_rest': 0.12244897959183673,\n", + " 'F1-3_vs_rest': 0.25217391304347825,\n", + " 'F1-4_vs_rest': 0.14193548387096774,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7859733978234583,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.647410358565737,\n", + " 'F1-1.5': 0.680379746835443,\n", + " 'Recall-1.5': 0.9555555555555556,\n", + " 'Precision-1.5': 0.5282555282555282,\n", + " 'F1-2.5': 0.5529715762273901,\n", + " 'Recall-2.5': 0.8991596638655462,\n", + " 'Precision-2.5': 0.39925373134328357,\n", + " 'F1-3.5': 0.16560509554140126,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.09154929577464789,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.902583633391591},\n", + " 'CM': {'0': {'-1': 0, '0': 9, '1': 76, '2': 74, '3': 19, '4': 8, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 9, '2': 39, '3': 34, '4': 18, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 9, '2': 15, '3': 42, '4': 40, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 11, '3': 29, '4': 63, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'pl': {'phi-4': {'metrics': {'Fleiss': 0.20557117590481178,\n", + " 'Cohen': 0.21682025414686212,\n", + " 'Spearman': 0.6578205554398511,\n", + " 'Kendall': 0.5375851907089526,\n", + " 'Krippendorff': 0.5524020541565153,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7221135029354208,\n", + " 'TA-4.0': 0.8806262230919765,\n", + " 'Acc': 0.3816046966731898,\n", + " 'MAE': 0.8998695368558385,\n", + " 'MSE': 1.6394324853228965,\n", + " 'CA-0': 0.478494623655914,\n", + " 'CA-1': 0.18,\n", + " 'CA-2': 0.29245283018867924,\n", + " 'CA-3': 0.49038461538461536,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2775383222771797,\n", + " 'Micro-F1': 0.3816046966731898,\n", + " 'F1-0_vs_rest': 0.6180555555555556,\n", + " 'F1-1_vs_rest': 0.19148936170212766,\n", + " 'F1-2_vs_rest': 0.2938388625592417,\n", + " 'F1-3_vs_rest': 0.408,\n", + " 'F1-4_vs_rest': 0.15384615384615385,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8501362397820164,\n", + " 'Recall-0.5': 0.96,\n", + " 'Precision-0.5': 0.7628361858190709,\n", + " 'F1-1.5': 0.7655677655677655,\n", + " 'Recall-1.5': 0.9288888888888889,\n", + " 'Precision-1.5': 0.6510903426791277,\n", + " 'F1-2.5': 0.5611940298507463,\n", + " 'Recall-2.5': 0.7899159663865546,\n", + " 'Precision-2.5': 0.4351851851851852,\n", + " 'F1-3.5': 0.18823529411764706,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.11428571428571428,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8809883287880375},\n", + " 'CM': {'0': {'-1': 0, '0': 89, '1': 56, '2': 21, '3': 15, '4': 4, '5': 1},\n", + " '1': {'-1': 0, '0': 11, '1': 18, '2': 33, '3': 28, '4': 9, '5': 1},\n", + " '2': {'-1': 0, '0': 2, '1': 9, '2': 31, '3': 47, '4': 15, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 18, '3': 51, '4': 29, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 5, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.06613538655122309,\n", + " 'Cohen': 0.1013593054040679,\n", + " 'Spearman': 0.5877767401802108,\n", + " 'Kendall': 0.48956607654426004,\n", + " 'Krippendorff': 0.49531447907705695,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7045009784735812,\n", + " 'TA-4.0': 0.9315068493150684,\n", + " 'Acc': 0.2837573385518591,\n", + " 'MAE': 0.921395955642531,\n", + " 'MSE': 1.4057947379865183,\n", + " 'CA-0': 0.17204301075268819,\n", + " 'CA-1': 0.32,\n", + " 'CA-2': 0.3490566037735849,\n", + " 'CA-3': 0.3942307692307692,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2204371301512267,\n", + " 'Micro-F1': 0.2837573385518591,\n", + " 'F1-0_vs_rest': 0.28699551569506726,\n", + " 'F1-1_vs_rest': 0.22456140350877193,\n", + " 'F1-2_vs_rest': 0.29365079365079366,\n", + " 'F1-3_vs_rest': 0.3778801843317972,\n", + " 'F1-4_vs_rest': 0.13953488372093023,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8010012515644556,\n", + " 'Recall-0.5': 0.9846153846153847,\n", + " 'Precision-0.5': 0.6751054852320675,\n", + " 'F1-1.5': 0.7276264591439688,\n", + " 'Recall-1.5': 0.8311111111111111,\n", + " 'Precision-1.5': 0.6470588235294118,\n", + " 'F1-2.5': 0.5038167938931297,\n", + " 'Recall-2.5': 0.5546218487394958,\n", + " 'Precision-2.5': 0.46153846153846156,\n", + " 'F1-3.5': 0.2222222222222222,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.16666666666666666,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8915379457181469},\n", + " 'CM': {'0': {'-1': 0, '0': 32, '1': 115, '2': 28, '3': 7, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 5, '1': 32, '2': 40, '3': 17, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 26, '2': 37, '3': 40, '4': 3, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 12, '2': 39, '3': 41, '4': 12, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 8, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.21720641072416633,\n", + " 'Cohen': 0.23406056135572706,\n", + " 'Spearman': 0.6897283835821124,\n", + " 'Kendall': 0.5735073455943227,\n", + " 'Krippendorff': 0.6221903976765624,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7827788649706457,\n", + " 'TA-4.0': 0.7729941291585127,\n", + " 'Acc': 0.3796477495107632,\n", + " 'MAE': 0.9223744292237444,\n", + " 'MSE': 1.824309632528811,\n", + " 'CA-0': 0.4838709677419355,\n", + " 'CA-1': 0.39,\n", + " 'CA-2': 0.32075471698113206,\n", + " 'CA-3': 0.20192307692307693,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.30676653904880774,\n", + " 'Micro-F1': 0.3796477495107632,\n", + " 'F1-0_vs_rest': 0.625,\n", + " 'F1-1_vs_rest': 0.3277310924369748,\n", + " 'F1-2_vs_rest': 0.3487179487179487,\n", + " 'F1-3_vs_rest': 0.25766871165644173,\n", + " 'F1-4_vs_rest': 0.14814814814814814,\n", + " 'F1-5_vs_rest': 0.13333333333333333,\n", + " 'F1-0.5': 0.8528610354223434,\n", + " 'Recall-0.5': 0.963076923076923,\n", + " 'Precision-0.5': 0.7652811735941321,\n", + " 'F1-1.5': 0.7943548387096774,\n", + " 'Recall-1.5': 0.8755555555555555,\n", + " 'Precision-1.5': 0.7269372693726938,\n", + " 'F1-2.5': 0.6112956810631229,\n", + " 'Recall-2.5': 0.773109243697479,\n", + " 'Precision-2.5': 0.5054945054945055,\n", + " 'F1-3.5': 0.15942028985507245,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08943089430894309,\n", + " 'F1-4.5': 0.13333333333333333,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.07142857142857142,\n", + " 'NDCG@all': 0.893028125368284},\n", + " 'CM': {'0': {'-1': 0, '0': 90, '1': 72, '2': 12, '3': 4, '4': 4, '5': 4},\n", + " '1': {'-1': 0, '0': 11, '1': 39, '2': 21, '3': 10, '4': 13, '5': 6},\n", + " '2': {'-1': 0, '0': 1, '1': 22, '2': 34, '3': 23, '4': 19, '5': 7},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 19, '3': 21, '4': 51, '5': 8},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 1, '4': 8, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.032253936730792396,\n", + " 'Cohen': 0.09872247116026311,\n", + " 'Spearman': 0.6317048923049332,\n", + " 'Kendall': 0.5461855152879105,\n", + " 'Krippendorff': 0.5302628718324456,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7495107632093934,\n", + " 'TA-4.0': 0.949119373776908,\n", + " 'Acc': 0.2759295499021526,\n", + " 'MAE': 0.8656229615133726,\n", + " 'MSE': 1.1587301587301586,\n", + " 'CA-0': 0.021505376344086023,\n", + " 'CA-1': 0.47,\n", + " 'CA-2': 0.3867924528301887,\n", + " 'CA-3': 0.46153846153846156,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.1964753380490095,\n", + " 'Micro-F1': 0.2759295499021526,\n", + " 'F1-0_vs_rest': 0.042105263157894736,\n", + " 'F1-1_vs_rest': 0.2647887323943662,\n", + " 'F1-2_vs_rest': 0.351931330472103,\n", + " 'F1-3_vs_rest': 0.4485981308411215,\n", + " 'F1-4_vs_rest': 0.07142857142857142,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.78125,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6410256410256411,\n", + " 'F1-1.5': 0.7463312368972747,\n", + " 'Recall-1.5': 0.7911111111111111,\n", + " 'Precision-1.5': 0.7063492063492064,\n", + " 'F1-2.5': 0.5573770491803278,\n", + " 'Recall-2.5': 0.5714285714285714,\n", + " 'Precision-2.5': 0.544,\n", + " 'F1-3.5': 0.13333333333333333,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.13333333333333333,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9062881539149782},\n", + " 'CM': {'0': {'-1': 0, '0': 4, '1': 161, '2': 16, '3': 4, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 47, '2': 35, '3': 16, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 31, '2': 41, '3': 31, '4': 3, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 16, '2': 33, '3': 48, '4': 7, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 10, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.17105868884802278,\n", + " 'Cohen': 0.1888502240442368,\n", + " 'Spearman': 0.6416288817552053,\n", + " 'Kendall': 0.5274869390406203,\n", + " 'Krippendorff': 0.5588116883636804,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7221135029354208,\n", + " 'TA-4.0': 0.8258317025440313,\n", + " 'Acc': 0.34833659491193736,\n", + " 'MAE': 0.931180691454664,\n", + " 'MSE': 1.650195694716243,\n", + " 'CA-0': 0.4032258064516129,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.24528301886792453,\n", + " 'CA-3': 0.3269230769230769,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.26534343539060523,\n", + " 'Micro-F1': 0.34833659491193736,\n", + " 'F1-0_vs_rest': 0.5494505494505495,\n", + " 'F1-1_vs_rest': 0.2916666666666667,\n", + " 'F1-2_vs_rest': 0.26,\n", + " 'F1-3_vs_rest': 0.34,\n", + " 'F1-4_vs_rest': 0.1509433962264151,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.835781041388518,\n", + " 'Recall-0.5': 0.963076923076923,\n", + " 'Precision-0.5': 0.7382075471698113,\n", + " 'F1-1.5': 0.7426326129666012,\n", + " 'Recall-1.5': 0.84,\n", + " 'Precision-1.5': 0.6654929577464789,\n", + " 'F1-2.5': 0.5954692556634305,\n", + " 'Recall-2.5': 0.773109243697479,\n", + " 'Precision-2.5': 0.4842105263157895,\n", + " 'F1-3.5': 0.1834862385321101,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.10638297872340426,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8845149553825653},\n", + " 'CM': {'0': {'-1': 0, '0': 75, '1': 75, '2': 22, '3': 7, '4': 6, '5': 1},\n", + " '1': {'-1': 0, '0': 6, '1': 35, '2': 30, '3': 15, '4': 14, '5': 0},\n", + " '2': {'-1': 0, '0': 6, '1': 19, '2': 26, '3': 35, '4': 20, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 11, '2': 16, '3': 34, '4': 43, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.13162833169160412,\n", + " 'Cohen': -0.040274607608992596,\n", + " 'Spearman': 0.6050722394407275,\n", + " 'Kendall': 0.5090159311883685,\n", + " 'Krippendorff': 0.1704380832089194,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5577299412915852,\n", + " 'TA-4.0': 0.6086105675146771,\n", + " 'Acc': 0.0958904109589041,\n", + " 'MAE': 1.5551206784083498,\n", + " 'MSE': 3.3050663187649496,\n", + " 'CA-0': 0.010752688172043012,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.1792452830188679,\n", + " 'CA-3': 0.09615384615384616,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.07762555496973654,\n", + " 'Micro-F1': 0.0958904109589041,\n", + " 'F1-0_vs_rest': 0.02127659574468085,\n", + " 'F1-1_vs_rest': 0.08376963350785341,\n", + " 'F1-2_vs_rest': 0.1630901287553648,\n", + " 'F1-3_vs_rest': 0.10752688172043011,\n", + " 'F1-4_vs_rest': 0.09009009009009009,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7793764988009593,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6385068762278978,\n", + " 'F1-1.5': 0.6687402799377916,\n", + " 'Recall-1.5': 0.9555555555555556,\n", + " 'Precision-1.5': 0.5143540669856459,\n", + " 'F1-2.5': 0.5170731707317073,\n", + " 'Recall-2.5': 0.8907563025210085,\n", + " 'Precision-2.5': 0.3642611683848797,\n", + " 'F1-3.5': 0.10714285714285714,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.05741626794258373,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.885901770953761},\n", + " 'CM': {'0': {'-1': 0, '0': 2, '1': 73, '2': 70, '3': 24, '4': 17, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 30, '3': 23, '4': 39, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 19, '3': 23, '4': 59, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 7, '3': 10, '4': 82, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 2, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.12245763636231424,\n", + " 'Cohen': -0.054136372120974885,\n", + " 'Spearman': 0.7290343318484526,\n", + " 'Kendall': 0.6229507408693421,\n", + " 'Krippendorff': 0.3016172468890952,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.6098039215686275,\n", + " 'TA-4.0': 0.7627450980392156,\n", + " 'Acc': 0.10980392156862745,\n", + " 'MAE': 1.3650326797385621,\n", + " 'MSE': 2.564433551198258,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.05,\n", + " 'CA-2': 0.06666666666666667,\n", + " 'CA-3': 0.3269230769230769,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08380752103405281,\n", + " 'Micro-F1': 0.10980392156862745,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.04807692307692308,\n", + " 'F1-2_vs_rest': 0.07106598984771574,\n", + " 'F1-3_vs_rest': 0.24285714285714285,\n", + " 'F1-4_vs_rest': 0.14084507042253522,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7769784172661871,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6352941176470588,\n", + " 'F1-1.5': 0.7028753993610224,\n", + " 'Recall-1.5': 0.9821428571428571,\n", + " 'Precision-1.5': 0.5472636815920398,\n", + " 'F1-2.5': 0.5407925407925408,\n", + " 'Recall-2.5': 0.9747899159663865,\n", + " 'Precision-2.5': 0.3741935483870968,\n", + " 'F1-3.5': 0.1610738255033557,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.08955223880597014,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9018338533995509},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 99, '2': 54, '3': 28, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 5, '2': 29, '3': 51, '4': 14, '5': 1},\n", + " '2': {'-1': 1, '0': 0, '1': 3, '2': 7, '3': 60, '4': 32, '5': 3},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 2, '3': 34, '4': 66, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.1892591733335329,\n", + " 'Cohen': 0.21692239484945441,\n", + " 'Spearman': 0.6650968172974302,\n", + " 'Kendall': 0.5686423845614813,\n", + " 'Krippendorff': 0.5881035570625532,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7455968688845401,\n", + " 'TA-4.0': 0.9256360078277887,\n", + " 'Acc': 0.3776908023483366,\n", + " 'MAE': 0.7919112850619696,\n", + " 'MSE': 1.1824309632528807,\n", + " 'CA-0': 0.25806451612903225,\n", + " 'CA-1': 0.42,\n", + " 'CA-2': 0.5,\n", + " 'CA-3': 0.4326923076923077,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.297054525135468,\n", + " 'Micro-F1': 0.3776908023483366,\n", + " 'F1-0_vs_rest': 0.4085106382978723,\n", + " 'F1-1_vs_rest': 0.30656934306569344,\n", + " 'F1-2_vs_rest': 0.3925925925925926,\n", + " 'F1-3_vs_rest': 0.46632124352331605,\n", + " 'F1-4_vs_rest': 0.20833333333333334,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8233799237611181,\n", + " 'Recall-0.5': 0.9969230769230769,\n", + " 'Precision-0.5': 0.7012987012987013,\n", + " 'F1-1.5': 0.7680311890838206,\n", + " 'Recall-1.5': 0.8755555555555555,\n", + " 'Precision-1.5': 0.6840277777777778,\n", + " 'F1-2.5': 0.5761316872427984,\n", + " 'Recall-2.5': 0.5882352941176471,\n", + " 'Precision-2.5': 0.5645161290322581,\n", + " 'F1-3.5': 0.24,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.17142857142857143,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9026522574185668},\n", + " 'CM': {'0': {'-1': 0, '0': 48, '1': 104, '2': 27, '3': 3, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 42, '2': 39, '3': 13, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 24, '2': 53, '3': 23, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 41, '3': 45, '4': 14, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 4, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.052830640972712374,\n", + " 'Cohen': 0.011256190904997854,\n", + " 'Spearman': 0.4473328475253046,\n", + " 'Kendall': 0.3534680868001957,\n", + " 'Krippendorff': 0.0882604518536968,\n", + " 'Invalid': 295,\n", + " 'TA-2.0': 0.5601851851851852,\n", + " 'TA-4.0': 0.6527777777777778,\n", + " 'Acc': 0.1527777777777778,\n", + " 'MAE': 1.591820987654321,\n", + " 'MSE': 3.6256430041152266,\n", + " 'CA-0': 0.07042253521126761,\n", + " 'CA-1': 0.1276595744680851,\n", + " 'CA-2': 0.22916666666666666,\n", + " 'CA-3': 0.19047619047619047,\n", + " 'CA-4': 0.42857142857142855,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12791244703009408,\n", + " 'Micro-F1': 0.1527777777777778,\n", + " 'F1-0_vs_rest': 0.1282051282051282,\n", + " 'F1-1_vs_rest': 0.16666666666666666,\n", + " 'F1-2_vs_rest': 0.21153846153846154,\n", + " 'F1-3_vs_rest': 0.19047619047619047,\n", + " 'F1-4_vs_rest': 0.07058823529411765,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.807909604519774,\n", + " 'Recall-0.5': 0.9862068965517241,\n", + " 'Precision-0.5': 0.6842105263157895,\n", + " 'F1-1.5': 0.6666666666666666,\n", + " 'Recall-1.5': 0.9591836734693877,\n", + " 'Precision-1.5': 0.5108695652173914,\n", + " 'F1-2.5': 0.4606741573033708,\n", + " 'Recall-2.5': 0.82,\n", + " 'Precision-2.5': 0.3203125,\n", + " 'F1-3.5': 0.0851063829787234,\n", + " 'Recall-3.5': 0.5,\n", + " 'Precision-3.5': 0.046511627906976744,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8339288289090923},\n", + " 'CM': {'0': {'-1': 115, '0': 5, '1': 16, '2': 32, '3': 9, '4': 8, '5': 1},\n", + " '1': {'-1': 53, '0': 1, '1': 6, '2': 6, '3': 12, '4': 20, '5': 2},\n", + " '2': {'-1': 58, '0': 1, '1': 1, '2': 11, '3': 11, '4': 20, '5': 4},\n", + " '3': {'-1': 62, '0': 0, '1': 2, '2': 5, '3': 8, '4': 26, '5': 1},\n", + " '4': {'-1': 6, '0': 0, '1': 0, '2': 2, '3': 2, '4': 3, '5': 0},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.15530440935918408,\n", + " 'Cohen': 0.19071083621142826,\n", + " 'Spearman': 0.6982136541973727,\n", + " 'Kendall': 0.5966648842718432,\n", + " 'Krippendorff': 0.6119524971832113,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7549019607843137,\n", + " 'TA-4.0': 0.9627450980392157,\n", + " 'Acc': 0.36666666666666664,\n", + " 'MAE': 0.7522875816993461,\n", + " 'MSE': 0.9766884531590411,\n", + " 'CA-0': 0.26881720430107525,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.6132075471698113,\n", + " 'CA-3': 0.34951456310679613,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.26689187319178337,\n", + " 'Micro-F1': 0.36666666666666664,\n", + " 'F1-0_vs_rest': 0.41841004184100417,\n", + " 'F1-1_vs_rest': 0.2681992337164751,\n", + " 'F1-2_vs_rest': 0.40498442367601245,\n", + " 'F1-3_vs_rest': 0.4044943820224719,\n", + " 'F1-4_vs_rest': 0.10526315789473684,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8220230473751601,\n", + " 'Recall-0.5': 0.9907407407407407,\n", + " 'Precision-0.5': 0.7024070021881839,\n", + " 'F1-1.5': 0.7846153846153846,\n", + " 'Recall-1.5': 0.9107142857142857,\n", + " 'Precision-1.5': 0.6891891891891891,\n", + " 'F1-2.5': 0.4723618090452261,\n", + " 'Recall-2.5': 0.3983050847457627,\n", + " 'Precision-2.5': 0.5802469135802469,\n", + " 'F1-3.5': 0.09523809523809523,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.16666666666666666,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8982051512922291},\n", + " 'CM': {'0': {'-1': 0, '0': 50, '1': 107, '2': 27, '3': 0, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 35, '2': 54, '3': 9, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 17, '2': 65, '3': 22, '4': 1, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 2, '2': 63, '3': 36, '4': 2, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 6, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.13846374079950372,\n", + " 'Cohen': 0.15877018771003082,\n", + " 'Spearman': 0.6542129292940191,\n", + " 'Kendall': 0.5335019194551602,\n", + " 'Krippendorff': 0.5619589856418514,\n", + " 'Invalid': 51,\n", + " 'TA-2.0': 0.7260869565217392,\n", + " 'TA-4.0': 0.8065217391304348,\n", + " 'Acc': 0.3173913043478261,\n", + " 'MAE': 0.9757246376811596,\n", + " 'MSE': 1.691968599033817,\n", + " 'CA-0': 0.37341772151898733,\n", + " 'CA-1': 0.18181818181818182,\n", + " 'CA-2': 0.375,\n", + " 'CA-3': 0.2621359223300971,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.2685201789773479,\n", + " 'Micro-F1': 0.3173913043478261,\n", + " 'F1-0_vs_rest': 0.5086206896551724,\n", + " 'F1-1_vs_rest': 0.19631901840490798,\n", + " 'F1-2_vs_rest': 0.3116883116883117,\n", + " 'F1-3_vs_rest': 0.30857142857142855,\n", + " 'F1-4_vs_rest': 0.1320754716981132,\n", + " 'F1-5_vs_rest': 0.15384615384615385,\n", + " 'F1-0.5': 0.8343023255813954,\n", + " 'Recall-0.5': 0.9503311258278145,\n", + " 'Precision-0.5': 0.7435233160621761,\n", + " 'F1-1.5': 0.7619047619047619,\n", + " 'Recall-1.5': 0.9345794392523364,\n", + " 'Precision-1.5': 0.6430868167202572,\n", + " 'F1-2.5': 0.6190476190476191,\n", + " 'Recall-2.5': 0.7711864406779662,\n", + " 'Precision-2.5': 0.5170454545454546,\n", + " 'F1-3.5': 0.16806722689075632,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.09615384615384616,\n", + " 'F1-4.5': 0.15384615384615385,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.09090909090909091,\n", + " 'NDCG@all': 0.914083301360287},\n", + " 'CM': {'0': {'-1': 28, '0': 59, '1': 50, '2': 36, '3': 8, '4': 4, '5': 1},\n", + " '1': {'-1': 12, '0': 10, '1': 16, '2': 37, '3': 12, '4': 13, '5': 0},\n", + " '2': {'-1': 10, '0': 5, '1': 8, '2': 36, '3': 24, '4': 22, '5': 1},\n", + " '3': {'-1': 1, '0': 0, '1': 0, '2': 23, '3': 27, '4': 46, '5': 7},\n", + " '4': {'-1': 0, '0': 0, '1': 1, '2': 3, '3': 1, '4': 7, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.07140016821587544,\n", + " 'Cohen': -0.01146219160379669,\n", + " 'Spearman': 0.6266969844686984,\n", + " 'Kendall': 0.5237616398748435,\n", + " 'Krippendorff': 0.27793600237429794,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5675146771037182,\n", + " 'TA-4.0': 0.7475538160469667,\n", + " 'Acc': 0.1487279843444227,\n", + " 'MAE': 1.3463796477495107,\n", + " 'MSE': 2.6044792346162216,\n", + " 'CA-0': 0.043010752688172046,\n", + " 'CA-1': 0.1,\n", + " 'CA-2': 0.16981132075471697,\n", + " 'CA-3': 0.2980769230769231,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.1198336741205766,\n", + " 'Micro-F1': 0.1487279843444227,\n", + " 'F1-0_vs_rest': 0.08247422680412371,\n", + " 'F1-1_vs_rest': 0.10526315789473684,\n", + " 'F1-2_vs_rest': 0.14007782101167315,\n", + " 'F1-3_vs_rest': 0.26956521739130435,\n", + " 'F1-4_vs_rest': 0.12162162162162163,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.785024154589372,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6461232604373758,\n", + " 'F1-1.5': 0.6739811912225705,\n", + " 'Recall-1.5': 0.9555555555555556,\n", + " 'Precision-1.5': 0.5205811138014528,\n", + " 'F1-2.5': 0.5511811023622047,\n", + " 'Recall-2.5': 0.8823529411764706,\n", + " 'Precision-2.5': 0.40076335877862596,\n", + " 'F1-3.5': 0.1456953642384106,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08088235294117647,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8816677522551835},\n", + " 'CM': {'0': {'-1': 0, '0': 8, '1': 70, '2': 79, '3': 21, '4': 7, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 10, '2': 43, '3': 27, '4': 20, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 7, '2': 18, '3': 43, '4': 38, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 11, '3': 31, '4': 59, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'cs': {'phi-4': {'metrics': {'Fleiss': 0.22243601700322982,\n", + " 'Cohen': 0.23355686513581264,\n", + " 'Spearman': 0.6425275924136147,\n", + " 'Kendall': 0.5280921365915271,\n", + " 'Krippendorff': 0.5496139767674719,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7045009784735812,\n", + " 'TA-4.0': 0.8708414872798435,\n", + " 'Acc': 0.3933463796477495,\n", + " 'MAE': 0.898238747553816,\n", + " 'MSE': 1.6133942161339425,\n", + " 'CA-0': 0.45698924731182794,\n", + " 'CA-1': 0.28,\n", + " 'CA-2': 0.27358490566037735,\n", + " 'CA-3': 0.5,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.33866695374356565,\n", + " 'Micro-F1': 0.3933463796477495,\n", + " 'F1-0_vs_rest': 0.6071428571428571,\n", + " 'F1-1_vs_rest': 0.27860696517412936,\n", + " 'F1-2_vs_rest': 0.2600896860986547,\n", + " 'F1-3_vs_rest': 0.4425531914893617,\n", + " 'F1-4_vs_rest': 0.15789473684210525,\n", + " 'F1-5_vs_rest': 0.2857142857142857,\n", + " 'F1-0.5': 0.8517520215633423,\n", + " 'Recall-0.5': 0.9723076923076923,\n", + " 'Precision-0.5': 0.7577937649880095,\n", + " 'F1-1.5': 0.7356746765249538,\n", + " 'Recall-1.5': 0.8844444444444445,\n", + " 'Precision-1.5': 0.629746835443038,\n", + " 'F1-2.5': 0.5849056603773585,\n", + " 'Recall-2.5': 0.7815126050420168,\n", + " 'Precision-2.5': 0.46733668341708545,\n", + " 'F1-3.5': 0.1927710843373494,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.11764705882352941,\n", + " 'F1-4.5': 0.2857142857142857,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.2,\n", + " 'NDCG@all': 0.8916828049194883},\n", + " 'CM': {'0': {'-1': 0, '0': 85, '1': 49, '2': 37, '3': 11, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 7, '1': 28, '2': 33, '3': 19, '4': 11, '5': 2},\n", + " '2': {'-1': 0, '0': 2, '1': 16, '2': 29, '3': 45, '4': 13, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 8, '2': 15, '3': 52, '4': 28, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 4, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.10366826955604394,\n", + " 'Cohen': 0.13900175232520073,\n", + " 'Spearman': 0.5995512861609984,\n", + " 'Kendall': 0.5012203022231464,\n", + " 'Krippendorff': 0.514418110672844,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7221135029354208,\n", + " 'TA-4.0': 0.9373776908023483,\n", + " 'Acc': 0.3150684931506849,\n", + " 'MAE': 0.883235485975212,\n", + " 'MSE': 1.3381169819525982,\n", + " 'CA-0': 0.1827956989247312,\n", + " 'CA-1': 0.42,\n", + " 'CA-2': 0.33962264150943394,\n", + " 'CA-3': 0.4519230769230769,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23650831477923276,\n", + " 'Micro-F1': 0.3150684931506849,\n", + " 'F1-0_vs_rest': 0.30493273542600896,\n", + " 'F1-1_vs_rest': 0.28378378378378377,\n", + " 'F1-2_vs_rest': 0.2938775510204082,\n", + " 'F1-3_vs_rest': 0.43119266055045874,\n", + " 'F1-4_vs_rest': 0.10526315789473684,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8060075093867334,\n", + " 'Recall-0.5': 0.9907692307692307,\n", + " 'Precision-0.5': 0.679324894514768,\n", + " 'F1-1.5': 0.7395626242544732,\n", + " 'Recall-1.5': 0.8266666666666667,\n", + " 'Precision-1.5': 0.6690647482014388,\n", + " 'F1-2.5': 0.5116279069767442,\n", + " 'Recall-2.5': 0.5546218487394958,\n", + " 'Precision-2.5': 0.4748201438848921,\n", + " 'F1-3.5': 0.2,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.16,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8875229010354008},\n", + " 'CM': {'0': {'-1': 0, '0': 34, '1': 116, '2': 27, '3': 5, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 42, '2': 35, '3': 16, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 26, '2': 36, '3': 37, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 12, '2': 39, '3': 47, '4': 6, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 9, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.22541932275964946,\n", + " 'Cohen': 0.24095388123317685,\n", + " 'Spearman': 0.6904211403747502,\n", + " 'Kendall': 0.5756882552156459,\n", + " 'Krippendorff': 0.615847426198448,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7749510763209393,\n", + " 'TA-4.0': 0.7710371819960861,\n", + " 'Acc': 0.38551859099804303,\n", + " 'MAE': 0.9282452707110244,\n", + " 'MSE': 1.8632311372037398,\n", + " 'CA-0': 0.510752688172043,\n", + " 'CA-1': 0.43,\n", + " 'CA-2': 0.2830188679245283,\n", + " 'CA-3': 0.18269230769230768,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.2992686601398587,\n", + " 'Micro-F1': 0.38551859099804303,\n", + " 'F1-0_vs_rest': 0.6551724137931034,\n", + " 'F1-1_vs_rest': 0.3739130434782609,\n", + " 'F1-2_vs_rest': 0.3125,\n", + " 'F1-3_vs_rest': 0.2222222222222222,\n", + " 'F1-4_vs_rest': 0.1651376146788991,\n", + " 'F1-5_vs_rest': 0.06666666666666667,\n", + " 'F1-0.5': 0.8633879781420765,\n", + " 'Recall-0.5': 0.9723076923076923,\n", + " 'Precision-0.5': 0.7764127764127764,\n", + " 'F1-1.5': 0.7888446215139442,\n", + " 'Recall-1.5': 0.88,\n", + " 'Precision-1.5': 0.7148014440433214,\n", + " 'F1-2.5': 0.6129032258064516,\n", + " 'Recall-2.5': 0.7983193277310925,\n", + " 'Precision-2.5': 0.4973821989528796,\n", + " 'F1-3.5': 0.15827338129496402,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08870967741935484,\n", + " 'F1-4.5': 0.06666666666666667,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.03571428571428571,\n", + " 'NDCG@all': 0.8874012015264107},\n", + " 'CM': {'0': {'-1': 0, '0': 95, '1': 61, '2': 15, '3': 7, '4': 4, '5': 4},\n", + " '1': {'-1': 0, '0': 8, '1': 43, '2': 21, '3': 11, '4': 10, '5': 7},\n", + " '2': {'-1': 0, '0': 1, '1': 22, '2': 30, '3': 28, '4': 18, '5': 7},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 18, '3': 19, '4': 54, '5': 9},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 2, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.0574702742145121,\n", + " 'Cohen': 0.11502521648111153,\n", + " 'Spearman': 0.6742456665520513,\n", + " 'Kendall': 0.5754789822583627,\n", + " 'Krippendorff': 0.5592635711762943,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7729941291585127,\n", + " 'TA-4.0': 0.9334637964774951,\n", + " 'Acc': 0.2876712328767123,\n", + " 'MAE': 0.8584474885844748,\n", + " 'MSE': 1.1672102631006738,\n", + " 'CA-0': 0.03763440860215054,\n", + " 'CA-1': 0.46,\n", + " 'CA-2': 0.39622641509433965,\n", + " 'CA-3': 0.49038461538461536,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.20393159458601184,\n", + " 'Micro-F1': 0.2876712328767123,\n", + " 'F1-0_vs_rest': 0.07253886010362694,\n", + " 'F1-1_vs_rest': 0.27380952380952384,\n", + " 'F1-2_vs_rest': 0.3559322033898305,\n", + " 'F1-3_vs_rest': 0.4657534246575342,\n", + " 'F1-4_vs_rest': 0.05555555555555555,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7840772014475271,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6448412698412699,\n", + " 'F1-1.5': 0.7789046653144016,\n", + " 'Recall-1.5': 0.8533333333333334,\n", + " 'Precision-1.5': 0.7164179104477612,\n", + " 'F1-2.5': 0.5758754863813229,\n", + " 'Recall-2.5': 0.6218487394957983,\n", + " 'Precision-2.5': 0.5362318840579711,\n", + " 'F1-3.5': 0.10526315789473684,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.08695652173913043,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8995980042802314},\n", + " 'CM': {'0': {'-1': 0, '0': 7, '1': 157, '2': 18, '3': 2, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 46, '2': 34, '3': 15, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 24, '2': 42, '3': 36, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 9, '2': 34, '3': 51, '4': 10, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 10, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.18393928516486335,\n", + " 'Cohen': 0.20335160905840288,\n", + " 'Spearman': 0.656749799677534,\n", + " 'Kendall': 0.5460937312955724,\n", + " 'Krippendorff': 0.5681774149274572,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7338551859099804,\n", + " 'TA-4.0': 0.8454011741682974,\n", + " 'Acc': 0.36007827788649704,\n", + " 'MAE': 0.9037834311806915,\n", + " 'MSE': 1.5588714938030008,\n", + " 'CA-0': 0.3763440860215054,\n", + " 'CA-1': 0.37,\n", + " 'CA-2': 0.27358490566037735,\n", + " 'CA-3': 0.38461538461538464,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.27707072423221535,\n", + " 'Micro-F1': 0.36007827788649704,\n", + " 'F1-0_vs_rest': 0.5303030303030303,\n", + " 'F1-1_vs_rest': 0.2948207171314741,\n", + " 'F1-2_vs_rest': 0.3036649214659686,\n", + " 'F1-3_vs_rest': 0.37037037037037035,\n", + " 'F1-4_vs_rest': 0.16326530612244897,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8364116094986808,\n", + " 'Recall-0.5': 0.9753846153846154,\n", + " 'Precision-0.5': 0.7321016166281755,\n", + " 'F1-1.5': 0.7534516765285996,\n", + " 'Recall-1.5': 0.8488888888888889,\n", + " 'Precision-1.5': 0.6773049645390071,\n", + " 'F1-2.5': 0.6012658227848101,\n", + " 'Recall-2.5': 0.7983193277310925,\n", + " 'Precision-2.5': 0.48223350253807107,\n", + " 'F1-3.5': 0.2,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.11764705882352941,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9042666072410066},\n", + " 'CM': {'0': {'-1': 0, '0': 70, '1': 84, '2': 17, '3': 10, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 4, '1': 37, '2': 25, '3': 20, '4': 14, '5': 0},\n", + " '2': {'-1': 0, '0': 4, '1': 20, '2': 29, '3': 37, '4': 16, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 10, '2': 14, '3': 40, '4': 40, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.11785415963600934,\n", + " 'Cohen': -0.028264085809394768,\n", + " 'Spearman': 0.6499739397071886,\n", + " 'Kendall': 0.5460388026814268,\n", + " 'Krippendorff': 0.19765402151083344,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5831702544031311,\n", + " 'TA-4.0': 0.6125244618395304,\n", + " 'Acc': 0.10567514677103718,\n", + " 'MAE': 1.5264187866927594,\n", + " 'MSE': 3.2320069580343556,\n", + " 'CA-0': 0.016129032258064516,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.14150943396226415,\n", + " 'CA-3': 0.15384615384615385,\n", + " 'CA-4': 0.9230769230769231,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08720545976316496,\n", + " 'Micro-F1': 0.10567514677103718,\n", + " 'F1-0_vs_rest': 0.031746031746031744,\n", + " 'F1-1_vs_rest': 0.08121827411167512,\n", + " 'F1-2_vs_rest': 0.14150943396226415,\n", + " 'F1-3_vs_rest': 0.16161616161616163,\n", + " 'F1-4_vs_rest': 0.10714285714285714,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.78031212484994,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.639763779527559,\n", + " 'F1-1.5': 0.6855345911949685,\n", + " 'Recall-1.5': 0.9688888888888889,\n", + " 'Precision-1.5': 0.5304136253041363,\n", + " 'F1-2.5': 0.5283018867924528,\n", + " 'Recall-2.5': 0.9411764705882353,\n", + " 'Precision-2.5': 0.36721311475409835,\n", + " 'F1-3.5': 0.12389380530973451,\n", + " 'Recall-3.5': 0.9333333333333333,\n", + " 'Precision-3.5': 0.06635071090047394,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8896682527530413},\n", + " 'CM': {'0': {'-1': 0, '0': 3, '1': 82, '2': 60, '3': 26, '4': 15, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 27, '3': 25, '4': 40, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 4, '2': 15, '3': 26, '4': 61, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 4, '3': 16, '4': 81, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 12, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.10159781920895798,\n", + " 'Cohen': -0.035161336998986936,\n", + " 'Spearman': 0.729521530573961,\n", + " 'Kendall': 0.6278076672371097,\n", + " 'Krippendorff': 0.3029223713882663,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6144814090019569,\n", + " 'TA-4.0': 0.7436399217221135,\n", + " 'Acc': 0.1232876712328767,\n", + " 'MAE': 1.3646444879321593,\n", + " 'MSE': 2.586323113720375,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.14150943396226415,\n", + " 'CA-3': 0.2980769230769231,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09631717759667496,\n", + " 'Micro-F1': 0.1232876712328767,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.06930693069306931,\n", + " 'F1-2_vs_rest': 0.14218009478672985,\n", + " 'F1-3_vs_rest': 0.23308270676691728,\n", + " 'F1-4_vs_rest': 0.13333333333333333,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.7097791798107256,\n", + " 'Recall-1.5': 1.0,\n", + " 'Precision-1.5': 0.5501222493887531,\n", + " 'F1-2.5': 0.5484633569739953,\n", + " 'Recall-2.5': 0.9747899159663865,\n", + " 'Precision-2.5': 0.3815789473684211,\n", + " 'F1-3.5': 0.15286624203821655,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.08450704225352113,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9061480943591828},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 95, '2': 58, '3': 28, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 29, '3': 47, '4': 17, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 0, '2': 15, '3': 53, '4': 34, '5': 4},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 31, '4': 69, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.22235460197635187,\n", + " 'Cohen': 0.24895812181514032,\n", + " 'Spearman': 0.6996206086490144,\n", + " 'Kendall': 0.6019784562453934,\n", + " 'Krippendorff': 0.6132520741867014,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7671232876712328,\n", + " 'TA-4.0': 0.9373776908023483,\n", + " 'Acc': 0.4050880626223092,\n", + " 'MAE': 0.744944553163731,\n", + " 'MSE': 1.1032833224614043,\n", + " 'CA-0': 0.24193548387096775,\n", + " 'CA-1': 0.37,\n", + " 'CA-2': 0.6037735849056604,\n", + " 'CA-3': 0.5480769230769231,\n", + " 'CA-4': 0.3076923076923077,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.31540959577191463,\n", + " 'Micro-F1': 0.4050880626223092,\n", + " 'F1-0_vs_rest': 0.38461538461538464,\n", + " 'F1-1_vs_rest': 0.2740740740740741,\n", + " 'F1-2_vs_rest': 0.463768115942029,\n", + " 'F1-3_vs_rest': 0.57,\n", + " 'F1-4_vs_rest': 0.2,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.817258883248731,\n", + " 'Recall-0.5': 0.9907692307692307,\n", + " 'Precision-0.5': 0.6954643628509719,\n", + " 'F1-1.5': 0.7915057915057915,\n", + " 'Recall-1.5': 0.9111111111111111,\n", + " 'Precision-1.5': 0.6996587030716723,\n", + " 'F1-2.5': 0.628099173553719,\n", + " 'Recall-2.5': 0.6386554621848739,\n", + " 'Precision-2.5': 0.6178861788617886,\n", + " 'F1-3.5': 0.23809523809523808,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.18518518518518517,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8987066064699049},\n", + " 'CM': {'0': {'-1': 0, '0': 45, '1': 113, '2': 21, '3': 2, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 37, '2': 44, '3': 11, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 18, '2': 64, '3': 22, '4': 2, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 35, '3': 57, '4': 10, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 3, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.07696317601708366,\n", + " 'Cohen': 0.0041353415250869885,\n", + " 'Spearman': 0.4777873799906214,\n", + " 'Kendall': 0.36404724982365133,\n", + " 'Krippendorff': 0.004499223431700283,\n", + " 'Invalid': 143,\n", + " 'TA-2.0': 0.5516304347826086,\n", + " 'TA-4.0': 0.5869565217391305,\n", + " 'Acc': 0.13043478260869565,\n", + " 'MAE': 1.7074275362318836,\n", + " 'MSE': 4.123490338164252,\n", + " 'CA-0': 0.06896551724137931,\n", + " 'CA-1': 0.06172839506172839,\n", + " 'CA-2': 0.10975609756097561,\n", + " 'CA-3': 0.24675324675324675,\n", + " 'CA-4': 0.5454545454545454,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.12377601238123707,\n", + " 'Micro-F1': 0.13043478260869565,\n", + " 'F1-0_vs_rest': 0.125,\n", + " 'F1-1_vs_rest': 0.08695652173913043,\n", + " 'F1-2_vs_rest': 0.12244897959183673,\n", + " 'F1-3_vs_rest': 0.24675324675324675,\n", + " 'F1-4_vs_rest': 0.07058823529411765,\n", + " 'F1-5_vs_rest': 0.09090909090909091,\n", + " 'F1-0.5': 0.8157894736842105,\n", + " 'Recall-0.5': 0.9841269841269841,\n", + " 'Precision-0.5': 0.6966292134831461,\n", + " 'F1-1.5': 0.6815415821501014,\n", + " 'Recall-1.5': 0.9824561403508771,\n", + " 'Precision-1.5': 0.5217391304347826,\n", + " 'F1-2.5': 0.47398843930635837,\n", + " 'Recall-2.5': 0.9213483146067416,\n", + " 'Precision-2.5': 0.31906614785992216,\n", + " 'F1-3.5': 0.08333333333333333,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.044444444444444446,\n", + " 'F1-4.5': 0.09090909090909091,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.047619047619047616,\n", + " 'NDCG@all': 0.8802281301427953},\n", + " 'CM': {'0': {'-1': 70, '0': 8, '1': 27, '2': 38, '3': 19, '4': 22, '5': 2},\n", + " '1': {'-1': 19, '0': 3, '1': 5, '2': 11, '3': 22, '4': 38, '5': 2},\n", + " '2': {'-1': 24, '0': 1, '1': 2, '2': 9, '3': 14, '4': 51, '5': 5},\n", + " '3': {'-1': 27, '0': 0, '1': 0, '2': 6, '3': 19, '4': 42, '5': 10},\n", + " '4': {'-1': 2, '0': 0, '1': 0, '2': 1, '3': 3, '4': 6, '5': 1},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 1}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.10993622236195418,\n", + " 'Cohen': 0.14939123097903406,\n", + " 'Spearman': 0.6891610068094658,\n", + " 'Kendall': 0.5914530906678815,\n", + " 'Krippendorff': 0.5969666383991323,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7470588235294118,\n", + " 'TA-4.0': 0.9686274509803922,\n", + " 'Acc': 0.3333333333333333,\n", + " 'MAE': 0.7787581699346403,\n", + " 'MSE': 0.9830610021786489,\n", + " 'CA-0': 0.23118279569892472,\n", + " 'CA-1': 0.28,\n", + " 'CA-2': 0.5943396226415094,\n", + " 'CA-3': 0.34951456310679613,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22707311593268473,\n", + " 'Micro-F1': 0.3333333333333333,\n", + " 'F1-0_vs_rest': 0.3706896551724138,\n", + " 'F1-1_vs_rest': 0.21455938697318008,\n", + " 'F1-2_vs_rest': 0.39009287925696595,\n", + " 'F1-3_vs_rest': 0.3870967741935484,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8147208121827412,\n", + " 'Recall-0.5': 0.9907407407407407,\n", + " 'Precision-0.5': 0.6918103448275862,\n", + " 'F1-1.5': 0.7741935483870968,\n", + " 'Recall-1.5': 0.9107142857142857,\n", + " 'Precision-1.5': 0.6732673267326733,\n", + " 'F1-2.5': 0.46078431372549017,\n", + " 'Recall-2.5': 0.3983050847457627,\n", + " 'Precision-2.5': 0.5465116279069767,\n", + " 'F1-3.5': 0.1111111111111111,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.3333333333333333,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9180803947747568},\n", + " 'CM': {'0': {'-1': 0, '0': 43, '1': 113, '2': 27, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 28, '2': 59, '3': 10, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 17, '2': 63, '3': 25, '4': 1, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 3, '2': 63, '3': 36, '4': 1, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 8, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.14277890619122852,\n", + " 'Cohen': 0.16148819685641957,\n", + " 'Spearman': 0.6647051078956249,\n", + " 'Kendall': 0.547738124428748,\n", + " 'Krippendorff': 0.5744925583388755,\n", + " 'Invalid': 53,\n", + " 'TA-2.0': 0.7314410480349345,\n", + " 'TA-4.0': 0.8100436681222707,\n", + " 'Acc': 0.32096069868995636,\n", + " 'MAE': 0.9297671033478894,\n", + " 'MSE': 1.6499878699660362,\n", + " 'CA-0': 0.4025974025974026,\n", + " 'CA-1': 0.11627906976744186,\n", + " 'CA-2': 0.4158415841584158,\n", + " 'CA-3': 0.2549019607843137,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.2668091376574577,\n", + " 'Micro-F1': 0.32096069868995636,\n", + " 'F1-0_vs_rest': 0.5414847161572053,\n", + " 'F1-1_vs_rest': 0.12738853503184713,\n", + " 'F1-2_vs_rest': 0.3620689655172414,\n", + " 'F1-3_vs_rest': 0.29213483146067415,\n", + " 'F1-4_vs_rest': 0.1111111111111111,\n", + " 'F1-5_vs_rest': 0.16666666666666666,\n", + " 'F1-0.5': 0.8471615720524017,\n", + " 'Recall-0.5': 0.9572368421052632,\n", + " 'Precision-0.5': 0.7597911227154047,\n", + " 'F1-1.5': 0.7735849056603774,\n", + " 'Recall-1.5': 0.9403669724770642,\n", + " 'Precision-1.5': 0.657051282051282,\n", + " 'F1-2.5': 0.6308724832214765,\n", + " 'Recall-2.5': 0.8034188034188035,\n", + " 'Precision-2.5': 0.5193370165745856,\n", + " 'F1-3.5': 0.15,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.08571428571428572,\n", + " 'F1-4.5': 0.16666666666666666,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.1,\n", + " 'NDCG@all': 0.9097481095507928},\n", + " 'CM': {'0': {'-1': 32, '0': 62, '1': 50, '2': 28, '3': 6, '4': 7, '5': 1},\n", + " '1': {'-1': 14, '0': 11, '1': 10, '2': 38, '3': 15, '4': 11, '5': 1},\n", + " '2': {'-1': 5, '0': 2, '1': 11, '2': 42, '3': 25, '4': 19, '5': 2},\n", + " '3': {'-1': 2, '0': 0, '1': 0, '2': 21, '3': 26, '4': 51, '5': 4},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 4, '4': 6, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.04654442877291962,\n", + " 'Cohen': 0.011528758023824026,\n", + " 'Spearman': 0.6425889899511723,\n", + " 'Kendall': 0.5393440074530751,\n", + " 'Krippendorff': 0.2771986832345311,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5675146771037182,\n", + " 'TA-4.0': 0.7651663405088063,\n", + " 'Acc': 0.17025440313111545,\n", + " 'MAE': 1.3333333333333333,\n", + " 'MSE': 2.5879539030223966,\n", + " 'CA-0': 0.04838709677419355,\n", + " 'CA-1': 0.09,\n", + " 'CA-2': 0.19811320754716982,\n", + " 'CA-3': 0.3557692307692308,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.13569619693456028,\n", + " 'Micro-F1': 0.17025440313111545,\n", + " 'F1-0_vs_rest': 0.09230769230769231,\n", + " 'F1-1_vs_rest': 0.09944751381215469,\n", + " 'F1-2_vs_rest': 0.16279069767441862,\n", + " 'F1-3_vs_rest': 0.30578512396694213,\n", + " 'F1-4_vs_rest': 0.15384615384615385,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7859733978234583,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.647410358565737,\n", + " 'F1-1.5': 0.6749226006191951,\n", + " 'Recall-1.5': 0.9688888888888889,\n", + " 'Precision-1.5': 0.517814726840855,\n", + " 'F1-2.5': 0.5567010309278351,\n", + " 'Recall-2.5': 0.907563025210084,\n", + " 'Precision-2.5': 0.40148698884758366,\n", + " 'F1-3.5': 0.1780821917808219,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.09923664122137404,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8923032732644883},\n", + " 'CM': {'0': {'-1': 0, '0': 9, '1': 65, '2': 81, '3': 24, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 9, '2': 41, '3': 33, '4': 16, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 21, '3': 42, '4': 38, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 9, '3': 37, '4': 56, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'es': {'phi-4': {'metrics': {'Fleiss': 0.22566967921538816,\n", + " 'Cohen': 0.2365711226823689,\n", + " 'Spearman': 0.6424367358777032,\n", + " 'Kendall': 0.5339696804020988,\n", + " 'Krippendorff': 0.547890180694453,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6888454011741683,\n", + " 'TA-4.0': 0.8923679060665362,\n", + " 'Acc': 0.39921722113502933,\n", + " 'MAE': 0.8871493803000652,\n", + " 'MSE': 1.5936073059360727,\n", + " 'CA-0': 0.4731182795698925,\n", + " 'CA-1': 0.24,\n", + " 'CA-2': 0.27358490566037735,\n", + " 'CA-3': 0.5576923076923077,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2894779243326146,\n", + " 'Micro-F1': 0.39921722113502933,\n", + " 'F1-0_vs_rest': 0.6175438596491228,\n", + " 'F1-1_vs_rest': 0.2513089005235602,\n", + " 'F1-2_vs_rest': 0.2648401826484018,\n", + " 'F1-3_vs_rest': 0.4603174603174603,\n", + " 'F1-4_vs_rest': 0.14285714285714285,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8521031207598372,\n", + " 'Recall-0.5': 0.9661538461538461,\n", + " 'Precision-0.5': 0.7621359223300971,\n", + " 'F1-1.5': 0.7326007326007326,\n", + " 'Recall-1.5': 0.8888888888888888,\n", + " 'Precision-1.5': 0.6230529595015576,\n", + " 'F1-2.5': 0.599388379204893,\n", + " 'Recall-2.5': 0.8235294117647058,\n", + " 'Precision-2.5': 0.47115384615384615,\n", + " 'F1-3.5': 0.18666666666666668,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.11666666666666667,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.88559946123781},\n", + " 'CM': {'0': {'-1': 0, '0': 88, '1': 45, '2': 34, '3': 14, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 8, '1': 24, '2': 34, '3': 26, '4': 6, '5': 2},\n", + " '2': {'-1': 0, '0': 3, '1': 17, '2': 29, '3': 43, '4': 13, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 15, '3': 58, '4': 26, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 7, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.06451348837209307,\n", + " 'Cohen': 0.10390924989544925,\n", + " 'Spearman': 0.6099698453842608,\n", + " 'Kendall': 0.5135226552908125,\n", + " 'Krippendorff': 0.4818875652503647,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6908023483365949,\n", + " 'TA-4.0': 0.9099804305283757,\n", + " 'Acc': 0.27788649706457924,\n", + " 'MAE': 0.9523809523809523,\n", + " 'MSE': 1.5085888236573168,\n", + " 'CA-0': 0.11290322580645161,\n", + " 'CA-1': 0.29,\n", + " 'CA-2': 0.330188679245283,\n", + " 'CA-3': 0.5096153846153846,\n", + " 'CA-4': 0.3076923076923077,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.21688934384504244,\n", + " 'Micro-F1': 0.27788649706457924,\n", + " 'F1-0_vs_rest': 0.20095693779904306,\n", + " 'F1-1_vs_rest': 0.20863309352517986,\n", + " 'F1-2_vs_rest': 0.2777777777777778,\n", + " 'F1-3_vs_rest': 0.4711111111111111,\n", + " 'F1-4_vs_rest': 0.14285714285714285,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7945879458794588,\n", + " 'Recall-0.5': 0.9938461538461538,\n", + " 'Precision-0.5': 0.6618852459016393,\n", + " 'F1-1.5': 0.7252336448598131,\n", + " 'Recall-1.5': 0.8622222222222222,\n", + " 'Precision-1.5': 0.6258064516129033,\n", + " 'F1-2.5': 0.5724381625441696,\n", + " 'Recall-2.5': 0.680672268907563,\n", + " 'Precision-2.5': 0.49390243902439024,\n", + " 'F1-3.5': 0.20689655172413793,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.13953488372093023,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.890918266071231},\n", + " 'CM': {'0': {'-1': 0, '0': 21, '1': 119, '2': 35, '3': 7, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 29, '2': 47, '3': 12, '4': 11, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 21, '2': 35, '3': 41, '4': 8, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 9, '2': 28, '3': 53, '4': 14, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 8, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.187808069530978,\n", + " 'Cohen': 0.2075626393808211,\n", + " 'Spearman': 0.7044638593677771,\n", + " 'Kendall': 0.5869134421684615,\n", + " 'Krippendorff': 0.6037083039264448,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7671232876712328,\n", + " 'TA-4.0': 0.7397260273972602,\n", + " 'Acc': 0.3522504892367906,\n", + " 'MAE': 0.9745596868884541,\n", + " 'MSE': 1.9512937595129378,\n", + " 'CA-0': 0.4731182795698925,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.330188679245283,\n", + " 'CA-3': 0.125,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.27918090363742537,\n", + " 'Micro-F1': 0.3522504892367906,\n", + " 'F1-0_vs_rest': 0.6285714285714286,\n", + " 'F1-1_vs_rest': 0.32727272727272727,\n", + " 'F1-2_vs_rest': 0.33653846153846156,\n", + " 'F1-3_vs_rest': 0.16149068322981366,\n", + " 'F1-4_vs_rest': 0.1,\n", + " 'F1-5_vs_rest': 0.12121212121212122,\n", + " 'F1-0.5': 0.8598382749326146,\n", + " 'Recall-0.5': 0.9815384615384616,\n", + " 'Precision-0.5': 0.7649880095923262,\n", + " 'F1-1.5': 0.7969348659003831,\n", + " 'Recall-1.5': 0.9244444444444444,\n", + " 'Precision-1.5': 0.7003367003367004,\n", + " 'F1-2.5': 0.6114649681528662,\n", + " 'Recall-2.5': 0.8067226890756303,\n", + " 'Precision-2.5': 0.49230769230769234,\n", + " 'F1-3.5': 0.13071895424836602,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.07246376811594203,\n", + " 'F1-4.5': 0.12121212121212122,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.06451612903225806,\n", + " 'NDCG@all': 0.892492436917667},\n", + " 'CM': {'0': {'-1': 0, '0': 88, '1': 68, '2': 17, '3': 5, '4': 4, '5': 4},\n", + " '1': {'-1': 0, '0': 5, '1': 36, '2': 30, '3': 7, '4': 14, '5': 8},\n", + " '2': {'-1': 0, '0': 1, '1': 13, '2': 35, '3': 28, '4': 22, '5': 7},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 19, '3': 13, '4': 61, '5': 8},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 4, '4': 6, '5': 2},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.0781852132427646,\n", + " 'Cohen': 0.1343969623288812,\n", + " 'Spearman': 0.6597547052001983,\n", + " 'Kendall': 0.5656710961489775,\n", + " 'Krippendorff': 0.5407366682824177,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7592954990215264,\n", + " 'TA-4.0': 0.9432485322896281,\n", + " 'Acc': 0.30332681017612523,\n", + " 'MAE': 0.8558382257012391,\n", + " 'MSE': 1.1998260491411172,\n", + " 'CA-0': 0.03225806451612903,\n", + " 'CA-1': 0.44,\n", + " 'CA-2': 0.4339622641509434,\n", + " 'CA-3': 0.5384615384615384,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23168196397228838,\n", + " 'Micro-F1': 0.30332681017612523,\n", + " 'F1-0_vs_rest': 0.0625,\n", + " 'F1-1_vs_rest': 0.2634730538922156,\n", + " 'F1-2_vs_rest': 0.3881856540084388,\n", + " 'F1-3_vs_rest': 0.5045045045045045,\n", + " 'F1-4_vs_rest': 0.17142857142857143,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7831325301204819,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6435643564356436,\n", + " 'F1-1.5': 0.7701612903225806,\n", + " 'Recall-1.5': 0.8488888888888889,\n", + " 'Precision-1.5': 0.7047970479704797,\n", + " 'F1-2.5': 0.5945945945945946,\n", + " 'Recall-2.5': 0.6470588235294118,\n", + " 'Precision-2.5': 0.55,\n", + " 'F1-3.5': 0.21621621621621623,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.18181818181818182,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9034092500125896},\n", + " 'CM': {'0': {'-1': 0, '0': 6, '1': 156, '2': 16, '3': 5, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 44, '2': 37, '3': 17, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 24, '2': 46, '3': 32, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 10, '2': 29, '3': 56, '4': 9, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 7, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.14250485181888484,\n", + " 'Cohen': 0.16458953314252134,\n", + " 'Spearman': 0.6631586054654145,\n", + " 'Kendall': 0.5516214349525573,\n", + " 'Krippendorff': 0.5760881746536972,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7338551859099804,\n", + " 'TA-4.0': 0.8140900195694716,\n", + " 'Acc': 0.324853228962818,\n", + " 'MAE': 0.941617742987606,\n", + " 'MSE': 1.5934442270058715,\n", + " 'CA-0': 0.3817204301075269,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.2169811320754717,\n", + " 'CA-3': 0.25,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.24714590069977482,\n", + " 'Micro-F1': 0.324853228962818,\n", + " 'F1-0_vs_rest': 0.5358490566037736,\n", + " 'F1-1_vs_rest': 0.304,\n", + " 'F1-2_vs_rest': 0.233502538071066,\n", + " 'F1-3_vs_rest': 0.26666666666666666,\n", + " 'F1-4_vs_rest': 0.14285714285714285,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8375165125495376,\n", + " 'Recall-0.5': 0.9753846153846154,\n", + " 'Precision-0.5': 0.7337962962962963,\n", + " 'F1-1.5': 0.7495069033530573,\n", + " 'Recall-1.5': 0.8444444444444444,\n", + " 'Precision-1.5': 0.6737588652482269,\n", + " 'F1-2.5': 0.5806451612903226,\n", + " 'Recall-2.5': 0.7563025210084033,\n", + " 'Precision-2.5': 0.4712041884816754,\n", + " 'F1-3.5': 0.17391304347826086,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.1,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9027848177718728},\n", + " 'CM': {'0': {'-1': 0, '0': 71, '1': 80, '2': 21, '3': 10, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 5, '1': 38, '2': 29, '3': 17, '4': 11, '5': 0},\n", + " '2': {'-1': 0, '0': 3, '1': 21, '2': 23, '3': 33, '4': 25, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 11, '2': 18, '3': 26, '4': 49, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.10722170041341669,\n", + " 'Cohen': -0.02778384790684596,\n", + " 'Spearman': 0.6205995096384024,\n", + " 'Kendall': 0.5230637106476714,\n", + " 'Krippendorff': 0.21910625992730148,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5675146771037182,\n", + " 'TA-4.0': 0.6653620352250489,\n", + " 'Acc': 0.11741682974559686,\n", + " 'MAE': 1.461187214611872,\n", + " 'MSE': 2.968471406827571,\n", + " 'CA-0': 0.010752688172043012,\n", + " 'CA-1': 0.09,\n", + " 'CA-2': 0.22641509433962265,\n", + " 'CA-3': 0.14423076923076922,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09360751548069444,\n", + " 'Micro-F1': 0.11741682974559686,\n", + " 'F1-0_vs_rest': 0.02127659574468085,\n", + " 'F1-1_vs_rest': 0.0967741935483871,\n", + " 'F1-2_vs_rest': 0.18532818532818532,\n", + " 'F1-3_vs_rest': 0.15463917525773196,\n", + " 'F1-4_vs_rest': 0.10362694300518134,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7793764988009593,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6385068762278978,\n", + " 'F1-1.5': 0.6790123456790124,\n", + " 'Recall-1.5': 0.9777777777777777,\n", + " 'Precision-1.5': 0.5200945626477541,\n", + " 'F1-2.5': 0.5295629820051414,\n", + " 'Recall-2.5': 0.865546218487395,\n", + " 'Precision-2.5': 0.3814814814814815,\n", + " 'F1-3.5': 0.12307692307692308,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.06666666666666667,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8902914405546271},\n", + " 'CM': {'0': {'-1': 0, '0': 2, '1': 72, '2': 82, '3': 17, '4': 13, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 9, '2': 33, '3': 24, '4': 34, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 3, '2': 24, '3': 32, '4': 47, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 13, '3': 15, '4': 74, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 2, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.11458180019543734,\n", + " 'Cohen': -0.048162316946437356,\n", + " 'Spearman': 0.7038622450040771,\n", + " 'Kendall': 0.5974227838006986,\n", + " 'Krippendorff': 0.29086138491542557,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6183953033268101,\n", + " 'TA-4.0': 0.7534246575342466,\n", + " 'Acc': 0.11545988258317025,\n", + " 'MAE': 1.3587736464448794,\n", + " 'MSE': 2.5921939552076543,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.08490566037735849,\n", + " 'CA-3': 0.34615384615384615,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08591669186407967,\n", + " 'Micro-F1': 0.11545988258317025,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.06796116504854369,\n", + " 'F1-2_vs_rest': 0.08737864077669903,\n", + " 'F1-3_vs_rest': 0.2608695652173913,\n", + " 'F1-4_vs_rest': 0.09929078014184398,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.7111111111111111,\n", + " 'Recall-1.5': 0.9955555555555555,\n", + " 'Precision-1.5': 0.5530864197530864,\n", + " 'F1-2.5': 0.5424528301886793,\n", + " 'Recall-2.5': 0.9663865546218487,\n", + " 'Precision-2.5': 0.3770491803278688,\n", + " 'F1-3.5': 0.12162162162162163,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.06766917293233082,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8939431282681429},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 98, '2': 58, '3': 22, '4': 8, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 30, '3': 41, '4': 21, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 0, '2': 9, '3': 67, '4': 27, '5': 3},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 3, '3': 36, '4': 63, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 6, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.20608908043830618,\n", + " 'Cohen': 0.2335810635413561,\n", + " 'Spearman': 0.6837274044778654,\n", + " 'Kendall': 0.5839060022582565,\n", + " 'Krippendorff': 0.5896384370474785,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7495107632093934,\n", + " 'TA-4.0': 0.9256360078277887,\n", + " 'Acc': 0.38943248532289626,\n", + " 'MAE': 0.7853881278538809,\n", + " 'MSE': 1.1906936290497927,\n", + " 'CA-0': 0.22580645161290322,\n", + " 'CA-1': 0.39,\n", + " 'CA-2': 0.5471698113207547,\n", + " 'CA-3': 0.5384615384615384,\n", + " 'CA-4': 0.3076923076923077,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.30017606824893345,\n", + " 'Micro-F1': 0.38943248532289626,\n", + " 'F1-0_vs_rest': 0.36681222707423583,\n", + " 'F1-1_vs_rest': 0.2846715328467153,\n", + " 'F1-2_vs_rest': 0.4444444444444444,\n", + " 'F1-3_vs_rest': 0.5384615384615384,\n", + " 'F1-4_vs_rest': 0.16666666666666666,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8171500630517023,\n", + " 'Recall-0.5': 0.9969230769230769,\n", + " 'Precision-0.5': 0.6923076923076923,\n", + " 'F1-1.5': 0.7784200385356455,\n", + " 'Recall-1.5': 0.8977777777777778,\n", + " 'Precision-1.5': 0.6870748299319728,\n", + " 'F1-2.5': 0.627906976744186,\n", + " 'Recall-2.5': 0.680672268907563,\n", + " 'Precision-2.5': 0.5827338129496403,\n", + " 'F1-3.5': 0.24,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.17142857142857143,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8998704265053911},\n", + " 'CM': {'0': {'-1': 0, '0': 42, '1': 112, '2': 26, '3': 1, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 39, '2': 39, '3': 15, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 17, '2': 58, '3': 25, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 6, '2': 30, '3': 56, '4': 12, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 7, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.07696205830612526,\n", + " 'Cohen': -0.0006053513055408466,\n", + " 'Spearman': 0.5635429636532285,\n", + " 'Kendall': 0.4478170865238588,\n", + " 'Krippendorff': 0.14479351121104556,\n", + " 'Invalid': 217,\n", + " 'TA-2.0': 0.5238095238095238,\n", + " 'TA-4.0': 0.6598639455782312,\n", + " 'Acc': 0.13945578231292516,\n", + " 'MAE': 1.512471655328798,\n", + " 'MSE': 3.3046107331821624,\n", + " 'CA-0': 0.05154639175257732,\n", + " 'CA-1': 0.04918032786885246,\n", + " 'CA-2': 0.1896551724137931,\n", + " 'CA-3': 0.2608695652173913,\n", + " 'CA-4': 0.5,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.11056661516961867,\n", + " 'Micro-F1': 0.13945578231292516,\n", + " 'F1-0_vs_rest': 0.0970873786407767,\n", + " 'F1-1_vs_rest': 0.07142857142857142,\n", + " 'F1-2_vs_rest': 0.15492957746478872,\n", + " 'F1-3_vs_rest': 0.2727272727272727,\n", + " 'F1-4_vs_rest': 0.06722689075630252,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8082474226804124,\n", + " 'Recall-0.5': 0.9949238578680203,\n", + " 'Precision-0.5': 0.6805555555555556,\n", + " 'F1-1.5': 0.6733167082294265,\n", + " 'Recall-1.5': 0.9926470588235294,\n", + " 'Precision-1.5': 0.5094339622641509,\n", + " 'F1-2.5': 0.5714285714285714,\n", + " 'Recall-2.5': 0.9487179487179487,\n", + " 'Precision-2.5': 0.4088397790055249,\n", + " 'F1-3.5': 0.07874015748031496,\n", + " 'Recall-3.5': 0.5555555555555556,\n", + " 'Precision-3.5': 0.0423728813559322,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8523634509050897},\n", + " 'CM': {'0': {'-1': 89, '0': 5, '1': 19, '2': 51, '3': 10, '4': 11, '5': 1},\n", + " '1': {'-1': 39, '0': 1, '1': 3, '2': 18, '3': 17, '4': 18, '5': 4},\n", + " '2': {'-1': 48, '0': 0, '1': 1, '2': 11, '3': 15, '4': 30, '5': 1},\n", + " '3': {'-1': 35, '0': 0, '1': 0, '2': 3, '3': 18, '4': 47, '5': 1},\n", + " '4': {'-1': 5, '0': 0, '1': 0, '2': 1, '3': 3, '4': 4, '5': 0},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.14288647938229013,\n", + " 'Cohen': 0.17726428251110027,\n", + " 'Spearman': 0.6639432528754559,\n", + " 'Kendall': 0.5643714819828817,\n", + " 'Krippendorff': 0.5751105381373665,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.7465618860510805,\n", + " 'TA-4.0': 0.9705304518664047,\n", + " 'Acc': 0.3555992141453831,\n", + " 'MAE': 0.7858546168958739,\n", + " 'MSE': 1.0526086007421958,\n", + " 'CA-0': 0.23655913978494625,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.5660377358490566,\n", + " 'CA-3': 0.39215686274509803,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.26349368054630506,\n", + " 'Micro-F1': 0.3555992141453831,\n", + " 'F1-0_vs_rest': 0.3776824034334764,\n", + " 'F1-1_vs_rest': 0.27169811320754716,\n", + " 'F1-2_vs_rest': 0.39215686274509803,\n", + " 'F1-3_vs_rest': 0.40609137055837563,\n", + " 'F1-4_vs_rest': 0.13333333333333333,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8152866242038217,\n", + " 'Recall-0.5': 0.9907120743034056,\n", + " 'Precision-0.5': 0.6926406926406926,\n", + " 'F1-1.5': 0.7769230769230769,\n", + " 'Recall-1.5': 0.905829596412556,\n", + " 'Precision-1.5': 0.6801346801346801,\n", + " 'F1-2.5': 0.45794392523364486,\n", + " 'Recall-2.5': 0.4188034188034188,\n", + " 'Precision-2.5': 0.5051546391752577,\n", + " 'F1-3.5': 0.11764705882352941,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.5,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9099249074034136},\n", + " 'CM': {'0': {'-1': 0, '0': 44, '1': 110, '2': 27, '3': 5, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 36, '2': 50, '3': 13, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 14, '2': 60, '3': 30, '4': 0, '5': 0},\n", + " '3': {'-1': 2, '0': 0, '1': 5, '2': 56, '3': 40, '4': 1, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 7, '3': 5, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.18629669426711326,\n", + " 'Cohen': 0.20134498824376057,\n", + " 'Spearman': 0.6513410297019224,\n", + " 'Kendall': 0.5237410218540497,\n", + " 'Krippendorff': 0.5792479569147012,\n", + " 'Invalid': 64,\n", + " 'TA-2.0': 0.7404921700223713,\n", + " 'TA-4.0': 0.8277404921700223,\n", + " 'Acc': 0.35570469798657717,\n", + " 'MAE': 0.9164802386278896,\n", + " 'MSE': 1.5971911508824261,\n", + " 'CA-0': 0.410958904109589,\n", + " 'CA-1': 0.16853932584269662,\n", + " 'CA-2': 0.4479166666666667,\n", + " 'CA-3': 0.31683168316831684,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.30303383195312056,\n", + " 'Micro-F1': 0.35570469798657717,\n", + " 'F1-0_vs_rest': 0.5333333333333333,\n", + " 'F1-1_vs_rest': 0.18181818181818182,\n", + " 'F1-2_vs_rest': 0.3891402714932127,\n", + " 'F1-3_vs_rest': 0.37209302325581395,\n", + " 'F1-4_vs_rest': 0.16,\n", + " 'F1-5_vs_rest': 0.18181818181818182,\n", + " 'F1-0.5': 0.8430493273542601,\n", + " 'Recall-0.5': 0.9368770764119602,\n", + " 'Precision-0.5': 0.7663043478260869,\n", + " 'F1-1.5': 0.7777777777777778,\n", + " 'Recall-1.5': 0.9245283018867925,\n", + " 'Precision-1.5': 0.6712328767123288,\n", + " 'F1-2.5': 0.6431095406360424,\n", + " 'Recall-2.5': 0.7844827586206896,\n", + " 'Precision-2.5': 0.5449101796407185,\n", + " 'F1-3.5': 0.18018018018018017,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.10416666666666667,\n", + " 'F1-4.5': 0.18181818181818182,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.1111111111111111,\n", + " 'NDCG@all': 0.9074997802988962},\n", + " 'CM': {'0': {'-1': 40, '0': 60, '1': 48, '2': 25, '3': 8, '4': 4, '5': 1},\n", + " '1': {'-1': 11, '0': 16, '1': 15, '2': 35, '3': 10, '4': 12, '5': 1},\n", + " '2': {'-1': 10, '0': 3, '1': 10, '2': 43, '3': 18, '4': 21, '5': 1},\n", + " '3': {'-1': 3, '0': 0, '1': 3, '2': 20, '3': 32, '4': 41, '5': 5},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 3, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.08322433159653218,\n", + " 'Cohen': -0.021401087544121733,\n", + " 'Spearman': 0.6472580554659703,\n", + " 'Kendall': 0.5430148406502159,\n", + " 'Krippendorff': 0.2562472226004705,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5557729941291585,\n", + " 'TA-4.0': 0.7416829745596869,\n", + " 'Acc': 0.13894324853228962,\n", + " 'MAE': 1.3913894324853227,\n", + " 'MSE': 2.734724940204392,\n", + " 'CA-0': 0.053763440860215055,\n", + " 'CA-1': 0.06,\n", + " 'CA-2': 0.11320754716981132,\n", + " 'CA-3': 0.3076923076923077,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.11173976835824016,\n", + " 'Micro-F1': 0.13894324853228962,\n", + " 'F1-0_vs_rest': 0.10152284263959391,\n", + " 'F1-1_vs_rest': 0.06779661016949153,\n", + " 'F1-2_vs_rest': 0.09795918367346938,\n", + " 'F1-3_vs_rest': 0.2612244897959184,\n", + " 'F1-4_vs_rest': 0.14193548387096774,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7854545454545454,\n", + " 'Recall-0.5': 0.9969230769230769,\n", + " 'Precision-0.5': 0.648,\n", + " 'F1-1.5': 0.6666666666666666,\n", + " 'Recall-1.5': 0.96,\n", + " 'Precision-1.5': 0.5106382978723404,\n", + " 'F1-2.5': 0.5409429280397022,\n", + " 'Recall-2.5': 0.9159663865546218,\n", + " 'Precision-2.5': 0.38380281690140844,\n", + " 'F1-3.5': 0.16455696202531644,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.09090909090909091,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8957959135574456},\n", + " 'CM': {'0': {'-1': 0, '0': 10, '1': 63, '2': 78, '3': 27, '4': 8, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 6, '2': 40, '3': 35, '4': 19, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 7, '2': 12, '3': 45, '4': 40, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 9, '3': 32, '4': 62, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'tr': {'phi-4': {'metrics': {'Fleiss': 0.24017114637544867,\n", + " 'Cohen': 0.25351301933430404,\n", + " 'Spearman': 0.6583440225936218,\n", + " 'Kendall': 0.5419714998542989,\n", + " 'Krippendorff': 0.5565940981983335,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.735812133072407,\n", + " 'TA-4.0': 0.8864970645792564,\n", + " 'Acc': 0.4090019569471624,\n", + " 'MAE': 0.8685583822570124,\n", + " 'MSE': 1.5681126331811268,\n", + " 'CA-0': 0.43548387096774194,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.24528301886792453,\n", + " 'CA-3': 0.5673076923076923,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.3868890094470198,\n", + " 'Micro-F1': 0.4090019569471624,\n", + " 'F1-0_vs_rest': 0.5827338129496403,\n", + " 'F1-1_vs_rest': 0.33175355450236965,\n", + " 'F1-2_vs_rest': 0.2694300518134715,\n", + " 'F1-3_vs_rest': 0.4555984555984556,\n", + " 'F1-4_vs_rest': 0.18181818181818182,\n", + " 'F1-5_vs_rest': 0.5,\n", + " 'F1-0.5': 0.8440860215053764,\n", + " 'Recall-0.5': 0.9661538461538461,\n", + " 'Precision-0.5': 0.7494033412887828,\n", + " 'F1-1.5': 0.7654784240150094,\n", + " 'Recall-1.5': 0.9066666666666666,\n", + " 'Precision-1.5': 0.6623376623376623,\n", + " 'F1-2.5': 0.5941176470588235,\n", + " 'Recall-2.5': 0.8487394957983193,\n", + " 'Precision-2.5': 0.45701357466063347,\n", + " 'F1-3.5': 0.2222222222222222,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.13636363636363635,\n", + " 'F1-4.5': 0.5,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.5,\n", + " 'NDCG@all': 0.908851982759894},\n", + " 'CM': {'0': {'-1': 0, '0': 81, '1': 59, '2': 27, '3': 15, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 7, '1': 35, '2': 19, '3': 27, '4': 12, '5': 0},\n", + " '2': {'-1': 0, '0': 4, '1': 14, '2': 26, '3': 49, '4': 12, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 14, '3': 59, '4': 28, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 5, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.14126882113018063,\n", + " 'Cohen': 0.1782717940127786,\n", + " 'Spearman': 0.6167791376721194,\n", + " 'Kendall': 0.5214167879150541,\n", + " 'Krippendorff': 0.515356848243858,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7338551859099804,\n", + " 'TA-4.0': 0.9275929549902152,\n", + " 'Acc': 0.3424657534246575,\n", + " 'MAE': 0.8682322243966077,\n", + " 'MSE': 1.3435529462926719,\n", + " 'CA-0': 0.13440860215053763,\n", + " 'CA-1': 0.44,\n", + " 'CA-2': 0.49056603773584906,\n", + " 'CA-3': 0.5,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.252865770687466,\n", + " 'Micro-F1': 0.3424657534246575,\n", + " 'F1-0_vs_rest': 0.2347417840375587,\n", + " 'F1-1_vs_rest': 0.30344827586206896,\n", + " 'F1-2_vs_rest': 0.4,\n", + " 'F1-3_vs_rest': 0.48598130841121495,\n", + " 'F1-4_vs_rest': 0.09302325581395349,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7985166872682324,\n", + " 'Recall-0.5': 0.9938461538461538,\n", + " 'Precision-0.5': 0.6673553719008265,\n", + " 'F1-1.5': 0.7591522157996147,\n", + " 'Recall-1.5': 0.8755555555555555,\n", + " 'Precision-1.5': 0.6700680272108843,\n", + " 'F1-2.5': 0.5714285714285714,\n", + " 'Recall-2.5': 0.6218487394957983,\n", + " 'Precision-2.5': 0.5285714285714286,\n", + " 'F1-3.5': 0.17777777777777778,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.13333333333333333,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8905670879786425},\n", + " 'CM': {'0': {'-1': 0, '0': 25, '1': 118, '2': 35, '3': 4, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 44, '2': 32, '3': 16, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 18, '2': 52, '3': 29, '4': 7, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 10, '2': 33, '3': 52, '4': 9, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 9, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.2684021761813938,\n", + " 'Cohen': 0.28200597276533323,\n", + " 'Spearman': 0.6971656587338136,\n", + " 'Kendall': 0.5802353508090317,\n", + " 'Krippendorff': 0.6437666346895605,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7886497064579256,\n", + " 'TA-4.0': 0.7808219178082192,\n", + " 'Acc': 0.4227005870841487,\n", + " 'MAE': 0.8708414872798435,\n", + " 'MSE': 1.7484235703413786,\n", + " 'CA-0': 0.543010752688172,\n", + " 'CA-1': 0.45,\n", + " 'CA-2': 0.33962264150943394,\n", + " 'CA-3': 0.25961538461538464,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.32479770872766955,\n", + " 'Micro-F1': 0.4227005870841487,\n", + " 'F1-0_vs_rest': 0.6733333333333333,\n", + " 'F1-1_vs_rest': 0.379746835443038,\n", + " 'F1-2_vs_rest': 0.37894736842105264,\n", + " 'F1-3_vs_rest': 0.3312883435582822,\n", + " 'F1-4_vs_rest': 0.11650485436893204,\n", + " 'F1-5_vs_rest': 0.06896551724137931,\n", + " 'F1-0.5': 0.8642659279778393,\n", + " 'Recall-0.5': 0.96,\n", + " 'Precision-0.5': 0.7858942065491183,\n", + " 'F1-1.5': 0.7958762886597938,\n", + " 'Recall-1.5': 0.8577777777777778,\n", + " 'Precision-1.5': 0.7423076923076923,\n", + " 'F1-2.5': 0.6508474576271186,\n", + " 'Recall-2.5': 0.8067226890756303,\n", + " 'Precision-2.5': 0.5454545454545454,\n", + " 'F1-3.5': 0.15151515151515152,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.08547008547008547,\n", + " 'F1-4.5': 0.06896551724137931,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.037037037037037035,\n", + " 'NDCG@all': 0.8873207597444019},\n", + " 'CM': {'0': {'-1': 0, '0': 101, '1': 63, '2': 10, '3': 5, '4': 3, '5': 4},\n", + " '1': {'-1': 0, '0': 10, '1': 45, '2': 20, '3': 6, '4': 11, '5': 8},\n", + " '2': {'-1': 0, '0': 3, '1': 24, '2': 36, '3': 19, '4': 18, '5': 6},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 15, '3': 27, '4': 51, '5': 6},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 2, '4': 6, '5': 2},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.08446466274313806,\n", + " 'Cohen': 0.14048922020654697,\n", + " 'Spearman': 0.6624890748701617,\n", + " 'Kendall': 0.5675661896062716,\n", + " 'Krippendorff': 0.5532264001630438,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7666666666666667,\n", + " 'TA-4.0': 0.9372549019607843,\n", + " 'Acc': 0.30980392156862746,\n", + " 'MAE': 0.8366013071895423,\n", + " 'MSE': 1.156427015250544,\n", + " 'CA-0': 0.04838709677419355,\n", + " 'CA-1': 0.48,\n", + " 'CA-2': 0.44761904761904764,\n", + " 'CA-3': 0.5096153846153846,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22122803951433004,\n", + " 'Micro-F1': 0.30980392156862746,\n", + " 'F1-0_vs_rest': 0.09230769230769231,\n", + " 'F1-1_vs_rest': 0.28486646884273,\n", + " 'F1-2_vs_rest': 0.3900414937759336,\n", + " 'F1-3_vs_rest': 0.49765258215962443,\n", + " 'F1-4_vs_rest': 0.0625,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7854545454545454,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6467065868263473,\n", + " 'F1-1.5': 0.7704918032786885,\n", + " 'Recall-1.5': 0.8392857142857143,\n", + " 'Precision-1.5': 0.7121212121212122,\n", + " 'F1-2.5': 0.5991902834008097,\n", + " 'Recall-2.5': 0.6218487394957983,\n", + " 'Precision-2.5': 0.578125,\n", + " 'F1-3.5': 0.058823529411764705,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.05263157894736842,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8984967091197534},\n", + " 'CM': {'0': {'-1': 0, '0': 9, '1': 153, '2': 18, '3': 4, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 48, '2': 35, '3': 14, '4': 3, '5': 0},\n", + " '2': {'-1': 1, '0': 0, '1': 27, '2': 47, '3': 28, '4': 3, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 9, '2': 32, '3': 53, '4': 10, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 8, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.1428398284768228,\n", + " 'Cohen': 0.1656946017365044,\n", + " 'Spearman': 0.6486405721607714,\n", + " 'Kendall': 0.5417701810653808,\n", + " 'Krippendorff': 0.5454856038913323,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7181996086105675,\n", + " 'TA-4.0': 0.8082191780821918,\n", + " 'Acc': 0.32289628180039137,\n", + " 'MAE': 0.9644487932159167,\n", + " 'MSE': 1.713035442487498,\n", + " 'CA-0': 0.3602150537634409,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.20754716981132076,\n", + " 'CA-3': 0.2980769230769231,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.359412793577373,\n", + " 'Micro-F1': 0.32289628180039137,\n", + " 'F1-0_vs_rest': 0.5153846153846153,\n", + " 'F1-1_vs_rest': 0.29411764705882354,\n", + " 'F1-2_vs_rest': 0.2146341463414634,\n", + " 'F1-3_vs_rest': 0.31313131313131315,\n", + " 'F1-4_vs_rest': 0.15254237288135594,\n", + " 'F1-5_vs_rest': 0.6666666666666666,\n", + " 'F1-0.5': 0.8346456692913385,\n", + " 'Recall-0.5': 0.9784615384615385,\n", + " 'Precision-0.5': 0.7276887871853547,\n", + " 'F1-1.5': 0.7404580152671756,\n", + " 'Recall-1.5': 0.8622222222222222,\n", + " 'Precision-1.5': 0.6488294314381271,\n", + " 'F1-2.5': 0.5830721003134797,\n", + " 'Recall-2.5': 0.7815126050420168,\n", + " 'Precision-2.5': 0.465,\n", + " 'F1-3.5': 0.18181818181818182,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.10377358490566038,\n", + " 'F1-4.5': 0.6666666666666666,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 1.0,\n", + " 'NDCG@all': 0.9192249037770744},\n", + " 'CM': {'0': {'-1': 0, '0': 67, '1': 75, '2': 31, '3': 6, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 4, '1': 35, '2': 28, '3': 17, '4': 16, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 21, '2': 22, '3': 38, '4': 23, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 7, '2': 16, '3': 31, '4': 49, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 2, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.1399902128231207,\n", + " 'Cohen': -0.04731114549036719,\n", + " 'Spearman': 0.6492371073148979,\n", + " 'Kendall': 0.5469981975548602,\n", + " 'Krippendorff': 0.1899475785548791,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5655577299412916,\n", + " 'TA-4.0': 0.6105675146771037,\n", + " 'Acc': 0.09001956947162426,\n", + " 'MAE': 1.5368558382257016,\n", + " 'MSE': 3.209828223526853,\n", + " 'CA-0': 0.005376344086021506,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.1509433962264151,\n", + " 'CA-3': 0.11538461538461539,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.07298003526951538,\n", + " 'Micro-F1': 0.09001956947162426,\n", + " 'F1-0_vs_rest': 0.0106951871657754,\n", + " 'F1-1_vs_rest': 0.07692307692307693,\n", + " 'F1-2_vs_rest': 0.13278008298755187,\n", + " 'F1-3_vs_rest': 0.12698412698412698,\n", + " 'F1-4_vs_rest': 0.09049773755656108,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7784431137724551,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6372549019607843,\n", + " 'F1-1.5': 0.6799387442572741,\n", + " 'Recall-1.5': 0.9866666666666667,\n", + " 'Precision-1.5': 0.5186915887850467,\n", + " 'F1-2.5': 0.5339805825242718,\n", + " 'Recall-2.5': 0.9243697478991597,\n", + " 'Precision-2.5': 0.37542662116040953,\n", + " 'F1-3.5': 0.10762331838565023,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.057692307692307696,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8879370577608351},\n", + " 'CM': {'0': {'-1': 0, '0': 1, '1': 72, '2': 79, '3': 17, '4': 17, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 32, '3': 21, '4': 40, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 2, '2': 16, '3': 32, '4': 56, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 8, '3': 12, '4': 83, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.0881522367761965,\n", + " 'Cohen': -0.023241843510077853,\n", + " 'Spearman': 0.6872040626458895,\n", + " 'Kendall': 0.5844473559148776,\n", + " 'Krippendorff': 0.2675229574068234,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6066536203522505,\n", + " 'TA-4.0': 0.7729941291585127,\n", + " 'Acc': 0.13894324853228962,\n", + " 'MAE': 1.3724722765818658,\n", + " 'MSE': 2.68449662970211,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.09,\n", + " 'CA-2': 0.12264150943396226,\n", + " 'CA-3': 0.38461538461538464,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.10501598623514531,\n", + " 'Micro-F1': 0.13894324853228962,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.09,\n", + " 'F1-2_vs_rest': 0.12682926829268293,\n", + " 'F1-3_vs_rest': 0.27586206896551724,\n", + " 'F1-4_vs_rest': 0.13740458015267176,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.7044025157232704,\n", + " 'Recall-1.5': 0.9955555555555555,\n", + " 'Precision-1.5': 0.5450121654501217,\n", + " 'F1-2.5': 0.5290023201856149,\n", + " 'Recall-2.5': 0.957983193277311,\n", + " 'Precision-2.5': 0.36538461538461536,\n", + " 'F1-3.5': 0.15602836879432624,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.0873015873015873,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8914288151941983},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 90, '2': 59, '3': 32, '4': 4, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 9, '2': 22, '3': 51, '4': 17, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 1, '2': 13, '3': 59, '4': 28, '5': 5},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 40, '4': 58, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.22114593987525824,\n", + " 'Cohen': 0.24831123584631765,\n", + " 'Spearman': 0.7195268341555376,\n", + " 'Kendall': 0.6210157883965518,\n", + " 'Krippendorff': 0.6333109033677062,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.786692759295499,\n", + " 'TA-4.0': 0.9373776908023483,\n", + " 'Acc': 0.4050880626223092,\n", + " 'MAE': 0.7266797129810827,\n", + " 'MSE': 1.0315285931724285,\n", + " 'CA-0': 0.24731182795698925,\n", + " 'CA-1': 0.41,\n", + " 'CA-2': 0.6320754716981132,\n", + " 'CA-3': 0.4807692307692308,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.3065987686299177,\n", + " 'Micro-F1': 0.4050880626223092,\n", + " 'F1-0_vs_rest': 0.39316239316239315,\n", + " 'F1-1_vs_rest': 0.3014705882352941,\n", + " 'F1-2_vs_rest': 0.48201438848920863,\n", + " 'F1-3_vs_rest': 0.5050505050505051,\n", + " 'F1-4_vs_rest': 0.15789473684210525,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8197969543147208,\n", + " 'Recall-0.5': 0.9938461538461538,\n", + " 'Precision-0.5': 0.6976241900647948,\n", + " 'F1-1.5': 0.810077519379845,\n", + " 'Recall-1.5': 0.9288888888888889,\n", + " 'Precision-1.5': 0.718213058419244,\n", + " 'F1-2.5': 0.6134453781512605,\n", + " 'Recall-2.5': 0.6134453781512605,\n", + " 'Precision-2.5': 0.6134453781512605,\n", + " 'F1-3.5': 0.2,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.16,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9069509455784583},\n", + " 'CM': {'0': {'-1': 0, '0': 46, '1': 115, '2': 19, '3': 2, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 41, '2': 44, '3': 10, '4': 3, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 12, '2': 67, '3': 25, '4': 2, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 39, '3': 50, '4': 12, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 1, '2': 3, '3': 6, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.1608706776091791,\n", + " 'Cohen': -0.05899567317187038,\n", + " 'Spearman': 0.4843881921578221,\n", + " 'Kendall': 0.39861884617766263,\n", + " 'Krippendorff': -0.042240873578598404,\n", + " 'Invalid': 260,\n", + " 'TA-2.0': 0.5338645418326693,\n", + " 'TA-4.0': 0.5657370517928287,\n", + " 'Acc': 0.06374501992031872,\n", + " 'MAE': 1.813413014608234,\n", + " 'MSE': 4.452080566622399,\n", + " 'CA-0': 0.044444444444444446,\n", + " 'CA-1': 0.0,\n", + " 'CA-2': 0.03773584905660377,\n", + " 'CA-3': 0.1509433962264151,\n", + " 'CA-4': 0.4,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.052398496915138176,\n", + " 'Micro-F1': 0.06374501992031872,\n", + " 'F1-0_vs_rest': 0.08421052631578947,\n", + " 'F1-1_vs_rest': 0.0,\n", + " 'F1-2_vs_rest': 0.038834951456310676,\n", + " 'F1-3_vs_rest': 0.1568627450980392,\n", + " 'F1-4_vs_rest': 0.034482758620689655,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7862407862407862,\n", + " 'Recall-0.5': 0.9937888198757764,\n", + " 'Precision-0.5': 0.6504065040650406,\n", + " 'F1-1.5': 0.6488095238095238,\n", + " 'Recall-1.5': 0.9819819819819819,\n", + " 'Precision-1.5': 0.48444444444444446,\n", + " 'F1-2.5': 0.45493562231759654,\n", + " 'Recall-2.5': 0.9137931034482759,\n", + " 'Precision-2.5': 0.3028571428571429,\n", + " 'F1-3.5': 0.04580152671755725,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.023809523809523808,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8723762759163569},\n", + " 'CM': {'0': {'-1': 96, '0': 4, '1': 20, '2': 31, '3': 11, '4': 23, '5': 1},\n", + " '1': {'-1': 50, '0': 0, '1': 0, '2': 12, '3': 13, '4': 23, '5': 2},\n", + " '2': {'-1': 53, '0': 1, '1': 1, '2': 2, '3': 16, '4': 28, '5': 5},\n", + " '3': {'-1': 51, '0': 0, '1': 0, '2': 4, '3': 8, '4': 35, '5': 6},\n", + " '4': {'-1': 8, '0': 0, '1': 0, '2': 1, '3': 1, '4': 2, '5': 1},\n", + " '5': {'-1': 2, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.10878683601647034,\n", + " 'Cohen': 0.152539069162285,\n", + " 'Spearman': 0.6981729360300727,\n", + " 'Kendall': 0.5980867072597336,\n", + " 'Krippendorff': 0.5864204698396918,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7509803921568627,\n", + " 'TA-4.0': 0.9607843137254902,\n", + " 'Acc': 0.33137254901960783,\n", + " 'MAE': 0.7928104575163394,\n", + " 'MSE': 1.0224400871459691,\n", + " 'CA-0': 0.1774193548387097,\n", + " 'CA-1': 0.32,\n", + " 'CA-2': 0.6226415094339622,\n", + " 'CA-3': 0.36893203883495146,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22511574844908178,\n", + " 'Micro-F1': 0.33137254901960783,\n", + " 'F1-0_vs_rest': 0.3,\n", + " 'F1-1_vs_rest': 0.24242424242424243,\n", + " 'F1-2_vs_rest': 0.40615384615384614,\n", + " 'F1-3_vs_rest': 0.4021164021164021,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8075,\n", + " 'Recall-0.5': 0.9969135802469136,\n", + " 'Precision-0.5': 0.6785714285714286,\n", + " 'F1-1.5': 0.7873134328358209,\n", + " 'Recall-1.5': 0.9419642857142857,\n", + " 'Precision-1.5': 0.6762820512820513,\n", + " 'F1-2.5': 0.4834123222748815,\n", + " 'Recall-2.5': 0.4322033898305085,\n", + " 'Precision-2.5': 0.5483870967741935,\n", + " 'F1-3.5': 0.09090909090909091,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.14285714285714285,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9143245263471723},\n", + " 'CM': {'0': {'-1': 0, '0': 33, '1': 119, '2': 30, '3': 4, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 32, '2': 56, '3': 11, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 13, '2': 66, '3': 24, '4': 3, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 0, '2': 62, '3': 38, '4': 3, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 8, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.16597729293282615,\n", + " 'Cohen': 0.1854538415113246,\n", + " 'Spearman': 0.64268970405614,\n", + " 'Kendall': 0.5225949744551703,\n", + " 'Krippendorff': 0.5484219833499763,\n", + " 'Invalid': 45,\n", + " 'TA-2.0': 0.7360515021459227,\n", + " 'TA-4.0': 0.8433476394849786,\n", + " 'Acc': 0.34120171673819744,\n", + " 'MAE': 0.9359799713876967,\n", + " 'MSE': 1.6683953266571294,\n", + " 'CA-0': 0.2981366459627329,\n", + " 'CA-1': 0.1978021978021978,\n", + " 'CA-2': 0.4105263157894737,\n", + " 'CA-3': 0.4326923076923077,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.30798921285156383,\n", + " 'Micro-F1': 0.34120171673819744,\n", + " 'F1-0_vs_rest': 0.42857142857142855,\n", + " 'F1-1_vs_rest': 0.2011173184357542,\n", + " 'F1-2_vs_rest': 0.33766233766233766,\n", + " 'F1-3_vs_rest': 0.4639175257731959,\n", + " 'F1-4_vs_rest': 0.16666666666666666,\n", + " 'F1-5_vs_rest': 0.25,\n", + " 'F1-0.5': 0.8192090395480226,\n", + " 'Recall-0.5': 0.9508196721311475,\n", + " 'Precision-0.5': 0.7196029776674938,\n", + " 'F1-1.5': 0.7637051039697542,\n", + " 'Recall-1.5': 0.9439252336448598,\n", + " 'Precision-1.5': 0.6412698412698413,\n", + " 'F1-2.5': 0.6375838926174496,\n", + " 'Recall-2.5': 0.7983193277310925,\n", + " 'Precision-2.5': 0.5307262569832403,\n", + " 'F1-3.5': 0.19230769230769232,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.11235955056179775,\n", + " 'F1-4.5': 0.25,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.16666666666666666,\n", + " 'NDCG@all': 0.8870842125450512},\n", + " 'CM': {'0': {'-1': 25, '0': 48, '1': 62, '2': 41, '3': 5, '4': 3, '5': 2},\n", + " '1': {'-1': 9, '0': 11, '1': 18, '2': 34, '3': 11, '4': 16, '5': 1},\n", + " '2': {'-1': 11, '0': 4, '1': 6, '2': 39, '3': 28, '4': 17, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 19, '3': 45, '4': 38, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 1, '2': 3, '3': 1, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.07198498809151489,\n", + " 'Cohen': -0.012741314496370393,\n", + " 'Spearman': 0.6380158291371096,\n", + " 'Kendall': 0.5317207376017842,\n", + " 'Krippendorff': 0.28144677392374096,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5792563600782779,\n", + " 'TA-4.0': 0.7495107632093934,\n", + " 'Acc': 0.14677103718199608,\n", + " 'MAE': 1.3515981735159817,\n", + " 'MSE': 2.633616003479018,\n", + " 'CA-0': 0.03763440860215054,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.1792452830188679,\n", + " 'CA-3': 0.2980769230769231,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.11851453443619704,\n", + " 'Micro-F1': 0.14677103718199608,\n", + " 'F1-0_vs_rest': 0.07253886010362694,\n", + " 'F1-1_vs_rest': 0.08376963350785341,\n", + " 'F1-2_vs_rest': 0.14960629921259844,\n", + " 'F1-3_vs_rest': 0.2672413793103448,\n", + " 'F1-4_vs_rest': 0.13793103448275862,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7840772014475271,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6448412698412699,\n", + " 'F1-1.5': 0.6833855799373041,\n", + " 'Recall-1.5': 0.9688888888888889,\n", + " 'Precision-1.5': 0.5278450363196125,\n", + " 'F1-2.5': 0.5416666666666666,\n", + " 'Recall-2.5': 0.8739495798319328,\n", + " 'Precision-2.5': 0.39245283018867927,\n", + " 'F1-3.5': 0.15789473684210525,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.08759124087591241,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8772886572077317},\n", + " 'CM': {'0': {'-1': 0, '0': 7, '1': 76, '2': 73, '3': 23, '4': 6, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 41, '3': 32, '4': 17, '5': 2},\n", + " '2': {'-1': 0, '0': 0, '1': 7, '2': 19, '3': 39, '4': 39, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 15, '3': 31, '4': 58, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'fr': {'phi-4': {'metrics': {'Fleiss': 0.18072474074377248,\n", + " 'Cohen': 0.19381585505218069,\n", + " 'Spearman': 0.6224269044724228,\n", + " 'Kendall': 0.507501915945731,\n", + " 'Krippendorff': 0.524659445400935,\n", + " 'Invalid': 9,\n", + " 'TA-2.0': 0.703187250996016,\n", + " 'TA-4.0': 0.8884462151394422,\n", + " 'Acc': 0.3645418326693227,\n", + " 'MAE': 0.9243027888446214,\n", + " 'MSE': 1.6658919876051348,\n", + " 'CA-0': 0.43783783783783786,\n", + " 'CA-1': 0.21875,\n", + " 'CA-2': 0.26666666666666666,\n", + " 'CA-3': 0.504950495049505,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.255745120135307,\n", + " 'Micro-F1': 0.3645418326693227,\n", + " 'F1-0_vs_rest': 0.5848375451263538,\n", + " 'F1-1_vs_rest': 0.21212121212121213,\n", + " 'F1-2_vs_rest': 0.27053140096618356,\n", + " 'F1-3_vs_rest': 0.4063745019920319,\n", + " 'F1-4_vs_rest': 0.06060606060606061,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8418156808803301,\n", + " 'Recall-0.5': 0.9652996845425867,\n", + " 'Precision-0.5': 0.7463414634146341,\n", + " 'F1-1.5': 0.7410207939508506,\n", + " 'Recall-1.5': 0.8868778280542986,\n", + " 'Precision-1.5': 0.6363636363636364,\n", + " 'F1-2.5': 0.5590062111801242,\n", + " 'Recall-2.5': 0.7758620689655172,\n", + " 'Precision-2.5': 0.4368932038834951,\n", + " 'F1-3.5': 0.14084507042253522,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.08928571428571429,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8752006625762642},\n", + " 'CM': {'0': {'-1': 1, '0': 81, '1': 59, '2': 25, '3': 15, '4': 4, '5': 1},\n", + " '1': {'-1': 4, '0': 8, '1': 21, '2': 30, '3': 24, '4': 12, '5': 1},\n", + " '2': {'-1': 1, '0': 2, '1': 16, '2': 28, '3': 50, '4': 9, '5': 0},\n", + " '3': {'-1': 3, '0': 1, '1': 6, '2': 19, '3': 51, '4': 24, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 10, '4': 2, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.06362515290936376,\n", + " 'Cohen': 0.10511269512206667,\n", + " 'Spearman': 0.6228714762402974,\n", + " 'Kendall': 0.5219195837240582,\n", + " 'Krippendorff': 0.49755490198120467,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7201565557729941,\n", + " 'TA-4.0': 0.8943248532289628,\n", + " 'Acc': 0.2759295499021526,\n", + " 'MAE': 0.9523809523809524,\n", + " 'MSE': 1.5133724722765822,\n", + " 'CA-0': 0.11290322580645161,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.27358490566037735,\n", + " 'CA-3': 0.47115384615384615,\n", + " 'CA-4': 0.3076923076923077,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2112006770953666,\n", + " 'Micro-F1': 0.2759295499021526,\n", + " 'F1-0_vs_rest': 0.20095693779904306,\n", + " 'F1-1_vs_rest': 0.2593856655290102,\n", + " 'F1-2_vs_rest': 0.2648401826484018,\n", + " 'F1-3_vs_rest': 0.41702127659574467,\n", + " 'F1-4_vs_rest': 0.125,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7945879458794588,\n", + " 'Recall-0.5': 0.9938461538461538,\n", + " 'Precision-0.5': 0.6618852459016393,\n", + " 'F1-1.5': 0.7461538461538462,\n", + " 'Recall-1.5': 0.8622222222222222,\n", + " 'Precision-1.5': 0.6576271186440678,\n", + " 'F1-2.5': 0.5714285714285714,\n", + " 'Recall-2.5': 0.7226890756302521,\n", + " 'Precision-2.5': 0.4725274725274725,\n", + " 'F1-3.5': 0.18181818181818182,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.11764705882352941,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.898344917756121},\n", + " 'CM': {'0': {'-1': 0, '0': 21, '1': 124, '2': 28, '3': 9, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 38, '2': 32, '3': 18, '4': 10, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 22, '2': 29, '3': 47, '4': 8, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 9, '2': 23, '3': 49, '4': 23, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 8, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.19281441150769643,\n", + " 'Cohen': 0.2117783851956736,\n", + " 'Spearman': 0.7009376881007874,\n", + " 'Kendall': 0.5824461754244241,\n", + " 'Krippendorff': 0.6068109901170714,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.776908023483366,\n", + " 'TA-4.0': 0.7495107632093934,\n", + " 'Acc': 0.3561643835616438,\n", + " 'MAE': 0.9771689497716896,\n", + " 'MSE': 1.9604261796042617,\n", + " 'CA-0': 0.45161290322580644,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.330188679245283,\n", + " 'CA-3': 0.19230769230769232,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.2787877657702042,\n", + " 'Micro-F1': 0.3561643835616438,\n", + " 'F1-0_vs_rest': 0.6,\n", + " 'F1-1_vs_rest': 0.3116883116883117,\n", + " 'F1-2_vs_rest': 0.3626943005181347,\n", + " 'F1-3_vs_rest': 0.23809523809523808,\n", + " 'F1-4_vs_rest': 0.10619469026548672,\n", + " 'F1-5_vs_rest': 0.05405405405405406,\n", + " 'F1-0.5': 0.8490566037735849,\n", + " 'Recall-0.5': 0.9692307692307692,\n", + " 'Precision-0.5': 0.7553956834532374,\n", + " 'F1-1.5': 0.7984344422700587,\n", + " 'Recall-1.5': 0.9066666666666666,\n", + " 'Precision-1.5': 0.7132867132867133,\n", + " 'F1-2.5': 0.6352201257861635,\n", + " 'Recall-2.5': 0.8487394957983193,\n", + " 'Precision-2.5': 0.507537688442211,\n", + " 'F1-3.5': 0.14666666666666667,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08148148148148149,\n", + " 'F1-4.5': 0.05405405405405406,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.02857142857142857,\n", + " 'NDCG@all': 0.8934492839155558},\n", + " 'CM': {'0': {'-1': 0, '0': 84, '1': 74, '2': 15, '3': 5, '4': 3, '5': 5},\n", + " '1': {'-1': 0, '0': 10, '1': 36, '2': 23, '3': 11, '4': 12, '5': 8},\n", + " '2': {'-1': 0, '0': 0, '1': 17, '2': 35, '3': 25, '4': 23, '5': 6},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 13, '3': 20, '4': 55, '5': 12},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 3, '4': 6, '5': 3},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.06027895509006439,\n", + " 'Cohen': 0.1213197993722046,\n", + " 'Spearman': 0.6420812835845574,\n", + " 'Kendall': 0.5513282078017098,\n", + " 'Krippendorff': 0.5369362606683725,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7553816046966731,\n", + " 'TA-4.0': 0.9471624266144814,\n", + " 'Acc': 0.29354207436399216,\n", + " 'MAE': 0.8617090671885191,\n", + " 'MSE': 1.1848227875625132,\n", + " 'CA-0': 0.03763440860215054,\n", + " 'CA-1': 0.45,\n", + " 'CA-2': 0.42452830188679247,\n", + " 'CA-3': 0.4807692307692308,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2287673187940822,\n", + " 'Micro-F1': 0.29354207436399216,\n", + " 'F1-0_vs_rest': 0.07253886010362694,\n", + " 'F1-1_vs_rest': 0.25936599423631124,\n", + " 'F1-2_vs_rest': 0.37344398340248963,\n", + " 'F1-3_vs_rest': 0.4854368932038835,\n", + " 'F1-4_vs_rest': 0.18181818181818182,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7840772014475271,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6448412698412699,\n", + " 'F1-1.5': 0.7593360995850622,\n", + " 'Recall-1.5': 0.8133333333333334,\n", + " 'Precision-1.5': 0.7120622568093385,\n", + " 'F1-2.5': 0.5394190871369294,\n", + " 'Recall-2.5': 0.5462184873949579,\n", + " 'Precision-2.5': 0.5327868852459017,\n", + " 'F1-3.5': 0.22857142857142856,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.2,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9001173990478823},\n", + " 'CM': {'0': {'-1': 0, '0': 7, '1': 160, '2': 13, '3': 4, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 45, '2': 36, '3': 17, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 29, '2': 45, '3': 25, '4': 7, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 13, '2': 36, '3': 50, '4': 5, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 5, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.13211119005674354,\n", + " 'Cohen': 0.15562783782888034,\n", + " 'Spearman': 0.6289326720306853,\n", + " 'Kendall': 0.5251311846484898,\n", + " 'Krippendorff': 0.5420936139424033,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7142857142857143,\n", + " 'TA-4.0': 0.8140900195694716,\n", + " 'Acc': 0.31702544031311153,\n", + " 'MAE': 0.9660795825179388,\n", + " 'MSE': 1.6905849097629926,\n", + " 'CA-0': 0.34946236559139787,\n", + " 'CA-1': 0.37,\n", + " 'CA-2': 0.18867924528301888,\n", + " 'CA-3': 0.3076923076923077,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.24304336749142572,\n", + " 'Micro-F1': 0.31702544031311153,\n", + " 'F1-0_vs_rest': 0.49429657794676807,\n", + " 'F1-1_vs_rest': 0.29133858267716534,\n", + " 'F1-2_vs_rest': 0.2094240837696335,\n", + " 'F1-3_vs_rest': 0.32160804020100503,\n", + " 'F1-4_vs_rest': 0.1415929203539823,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8247694334650857,\n", + " 'Recall-0.5': 0.963076923076923,\n", + " 'Precision-0.5': 0.7211981566820277,\n", + " 'F1-1.5': 0.7287128712871287,\n", + " 'Recall-1.5': 0.8177777777777778,\n", + " 'Precision-1.5': 0.6571428571428571,\n", + " 'F1-2.5': 0.5987261146496815,\n", + " 'Recall-2.5': 0.7899159663865546,\n", + " 'Precision-2.5': 0.48205128205128206,\n", + " 'F1-3.5': 0.17391304347826086,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.1,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9048978448480057},\n", + " 'CM': {'0': {'-1': 0, '0': 65, '1': 82, '2': 22, '3': 13, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 6, '1': 37, '2': 32, '3': 12, '4': 13, '5': 0},\n", + " '2': {'-1': 0, '0': 3, '1': 24, '2': 20, '3': 33, '4': 26, '5': 0},\n", + " '3': {'-1': 0, '0': 3, '1': 11, '2': 11, '3': 32, '4': 47, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.05833874683280317,\n", + " 'Cohen': 0.012454369765943829,\n", + " 'Spearman': 0.5871886761222456,\n", + " 'Kendall': 0.4874177099677098,\n", + " 'Krippendorff': 0.23726395450409432,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6027397260273972,\n", + " 'TA-4.0': 0.6868884540117417,\n", + " 'Acc': 0.15459882583170254,\n", + " 'MAE': 1.395303326810176,\n", + " 'MSE': 2.8891063274624913,\n", + " 'CA-0': 0.010752688172043012,\n", + " 'CA-1': 0.16,\n", + " 'CA-2': 0.22641509433962265,\n", + " 'CA-3': 0.25,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12586077068779725,\n", + " 'Micro-F1': 0.15459882583170254,\n", + " 'F1-0_vs_rest': 0.02127659574468085,\n", + " 'F1-1_vs_rest': 0.15384615384615385,\n", + " 'F1-2_vs_rest': 0.1991701244813278,\n", + " 'F1-3_vs_rest': 0.2613065326633166,\n", + " 'F1-4_vs_rest': 0.11956521739130435,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7793764988009593,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6385068762278978,\n", + " 'F1-1.5': 0.6932907348242812,\n", + " 'Recall-1.5': 0.9644444444444444,\n", + " 'Precision-1.5': 0.5411471321695761,\n", + " 'F1-2.5': 0.5402597402597402,\n", + " 'Recall-2.5': 0.8739495798319328,\n", + " 'Precision-2.5': 0.39097744360902253,\n", + " 'F1-3.5': 0.13978494623655913,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.07602339181286549,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8841606882232718},\n", + " 'CM': {'0': {'-1': 0, '0': 2, '1': 84, '2': 66, '3': 18, '4': 16, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 16, '2': 32, '3': 18, '4': 34, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 6, '2': 24, '3': 31, '4': 45, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 13, '3': 26, '4': 63, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.1093414282227094,\n", + " 'Cohen': -0.042163340371909275,\n", + " 'Spearman': 0.699135214557241,\n", + " 'Kendall': 0.5992019511039763,\n", + " 'Krippendorff': 0.2711953157699525,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.5980392156862745,\n", + " 'TA-4.0': 0.7372549019607844,\n", + " 'Acc': 0.11764705882352941,\n", + " 'MAE': 1.391503267973856,\n", + " 'MSE': 2.7087145969498923,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.050505050505050504,\n", + " 'CA-2': 0.1509433962264151,\n", + " 'CA-3': 0.28846153846153844,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09087318076434688,\n", + " 'Micro-F1': 0.11764705882352941,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.05102040816326531,\n", + " 'F1-2_vs_rest': 0.14953271028037382,\n", + " 'F1-3_vs_rest': 0.22388059701492538,\n", + " 'F1-4_vs_rest': 0.12080536912751678,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7769784172661871,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6352941176470588,\n", + " 'F1-1.5': 0.6990595611285266,\n", + " 'Recall-1.5': 0.9911111111111112,\n", + " 'Precision-1.5': 0.5399515738498789,\n", + " 'F1-2.5': 0.5424528301886793,\n", + " 'Recall-2.5': 0.9663865546218487,\n", + " 'Precision-2.5': 0.3770491803278688,\n", + " 'F1-3.5': 0.14102564102564102,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.07801418439716312,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8943926676385515},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 90, '2': 63, '3': 26, '4': 7, '5': 0},\n", + " '1': {'-1': 1, '0': 0, '1': 5, '2': 27, '3': 44, '4': 21, '5': 2},\n", + " '2': {'-1': 0, '0': 0, '1': 0, '2': 16, '3': 60, '4': 28, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 2, '3': 30, '4': 69, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.1740089475110849,\n", + " 'Cohen': 0.20242143076686647,\n", + " 'Spearman': 0.683769586871251,\n", + " 'Kendall': 0.5782595077827976,\n", + " 'Krippendorff': 0.5754380464823079,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7455968688845401,\n", + " 'TA-4.0': 0.9099804305283757,\n", + " 'Acc': 0.3639921722113503,\n", + " 'MAE': 0.8193085453359423,\n", + " 'MSE': 1.2480974124809738,\n", + " 'CA-0': 0.22580645161290322,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.5471698113207547,\n", + " 'CA-3': 0.4807692307692308,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2637798796000384,\n", + " 'Micro-F1': 0.3639921722113503,\n", + " 'F1-0_vs_rest': 0.3684210526315789,\n", + " 'F1-1_vs_rest': 0.2661596958174905,\n", + " 'F1-2_vs_rest': 0.42962962962962964,\n", + " 'F1-3_vs_rest': 0.4784688995215311,\n", + " 'F1-4_vs_rest': 0.04,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.818639798488665,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6929637526652452,\n", + " 'F1-1.5': 0.7796610169491526,\n", + " 'Recall-1.5': 0.92,\n", + " 'Precision-1.5': 0.6764705882352942,\n", + " 'F1-2.5': 0.6053639846743295,\n", + " 'Recall-2.5': 0.6638655462184874,\n", + " 'Precision-2.5': 0.5563380281690141,\n", + " 'F1-3.5': 0.11538461538461539,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.08108108108108109,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8965302081569092},\n", + " 'CM': {'0': {'-1': 0, '0': 42, '1': 110, '2': 26, '3': 4, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 35, '2': 44, '3': 13, '4': 8, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 14, '2': 58, '3': 30, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 32, '3': 50, '4': 18, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 8, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.05517750266458965,\n", + " 'Cohen': 0.012945976623615518,\n", + " 'Spearman': 0.48386426008364597,\n", + " 'Kendall': 0.40101729167080563,\n", + " 'Krippendorff': 0.05818209193602042,\n", + " 'Invalid': 316,\n", + " 'TA-2.0': 0.5282051282051282,\n", + " 'TA-4.0': 0.717948717948718,\n", + " 'Acc': 0.15384615384615385,\n", + " 'MAE': 1.56068376068376,\n", + " 'MSE': 3.51994301994302,\n", + " 'CA-0': 0.015151515151515152,\n", + " 'CA-1': 0.044444444444444446,\n", + " 'CA-2': 0.225,\n", + " 'CA-3': 0.42105263157894735,\n", + " 'CA-4': 0.4,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.1161079336924143,\n", + " 'Micro-F1': 0.15384615384615385,\n", + " 'F1-0_vs_rest': 0.029411764705882353,\n", + " 'F1-1_vs_rest': 0.06349206349206349,\n", + " 'F1-2_vs_rest': 0.19148936170212766,\n", + " 'F1-3_vs_rest': 0.3516483516483517,\n", + " 'F1-4_vs_rest': 0.06060606060606061,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7950310559006211,\n", + " 'Recall-0.5': 0.9922480620155039,\n", + " 'Precision-0.5': 0.6632124352331606,\n", + " 'F1-1.5': 0.6486486486486487,\n", + " 'Recall-1.5': 1.0,\n", + " 'Precision-1.5': 0.48,\n", + " 'F1-2.5': 0.48484848484848486,\n", + " 'Recall-2.5': 0.9090909090909091,\n", + " 'Precision-2.5': 0.3305785123966942,\n", + " 'F1-3.5': 0.08108108108108109,\n", + " 'Recall-3.5': 0.5,\n", + " 'Precision-3.5': 0.04411764705882353,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8356932100976866},\n", + " 'CM': {'0': {'-1': 120, '0': 1, '1': 16, '2': 32, '3': 8, '4': 8, '5': 1},\n", + " '1': {'-1': 55, '0': 1, '1': 2, '2': 9, '3': 15, '4': 17, '5': 1},\n", + " '2': {'-1': 66, '0': 0, '1': 0, '2': 9, '3': 11, '4': 18, '5': 2},\n", + " '3': {'-1': 66, '0': 0, '1': 0, '2': 4, '3': 16, '4': 15, '5': 3},\n", + " '4': {'-1': 8, '0': 0, '1': 0, '2': 0, '3': 3, '4': 2, '5': 0},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.180527320889546,\n", + " 'Cohen': 0.21268735851010834,\n", + " 'Spearman': 0.6877443984173865,\n", + " 'Kendall': 0.5904873212279812,\n", + " 'Krippendorff': 0.6181251861397463,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7627450980392156,\n", + " 'TA-4.0': 0.9627450980392157,\n", + " 'Acc': 0.3862745098039216,\n", + " 'MAE': 0.7326797385620912,\n", + " 'MSE': 0.9570806100217862,\n", + " 'CA-0': 0.3118279569892473,\n", + " 'CA-1': 0.4,\n", + " 'CA-2': 0.6226415094339622,\n", + " 'CA-3': 0.32038834951456313,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2620799278160441,\n", + " 'Micro-F1': 0.3862745098039216,\n", + " 'F1-0_vs_rest': 0.46963562753036436,\n", + " 'F1-1_vs_rest': 0.29739776951672864,\n", + " 'F1-2_vs_rest': 0.4217252396166134,\n", + " 'F1-3_vs_rest': 0.38372093023255816,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8305304010349288,\n", + " 'Recall-0.5': 0.9907407407407407,\n", + " 'Precision-0.5': 0.7149220489977728,\n", + " 'F1-1.5': 0.7817460317460317,\n", + " 'Recall-1.5': 0.8794642857142857,\n", + " 'Precision-1.5': 0.7035714285714286,\n", + " 'F1-2.5': 0.450261780104712,\n", + " 'Recall-2.5': 0.3644067796610169,\n", + " 'Precision-2.5': 0.589041095890411,\n", + " 'F1-3.5': 0.0,\n", + " 'Recall-3.5': 0.0,\n", + " 'Precision-3.5': 0.0,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8889693056880895},\n", + " 'CM': {'0': {'-1': 0, '0': 58, '1': 103, '2': 22, '3': 2, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 40, '2': 49, '3': 7, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 21, '2': 66, '3': 18, '4': 0, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 5, '2': 64, '3': 33, '4': 1, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 7, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.1354924433004306,\n", + " 'Cohen': 0.1587893213599848,\n", + " 'Spearman': 0.6671851880365198,\n", + " 'Kendall': 0.5473391819414487,\n", + " 'Krippendorff': 0.5865592281673595,\n", + " 'Invalid': 34,\n", + " 'TA-2.0': 0.7463312368972747,\n", + " 'TA-4.0': 0.7882599580712788,\n", + " 'Acc': 0.3165618448637317,\n", + " 'MAE': 0.9605171208944794,\n", + " 'MSE': 1.6790705800139762,\n", + " 'CA-0': 0.40718562874251496,\n", + " 'CA-1': 0.16666666666666666,\n", + " 'CA-2': 0.4158415841584158,\n", + " 'CA-3': 0.17307692307692307,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23734296325446383,\n", + " 'Micro-F1': 0.3165618448637317,\n", + " 'F1-0_vs_rest': 0.5396825396825397,\n", + " 'F1-1_vs_rest': 0.17751479289940827,\n", + " 'F1-2_vs_rest': 0.345679012345679,\n", + " 'F1-3_vs_rest': 0.22784810126582278,\n", + " 'F1-4_vs_rest': 0.13333333333333333,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8347578347578347,\n", + " 'Recall-0.5': 0.9451612903225807,\n", + " 'Precision-0.5': 0.7474489795918368,\n", + " 'F1-1.5': 0.7654784240150094,\n", + " 'Recall-1.5': 0.9272727272727272,\n", + " 'Precision-1.5': 0.6517571884984026,\n", + " 'F1-2.5': 0.6275862068965518,\n", + " 'Recall-2.5': 0.7647058823529411,\n", + " 'Precision-2.5': 0.5321637426900585,\n", + " 'F1-3.5': 0.16666666666666666,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.09401709401709402,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8985141342922355},\n", + " 'CM': {'0': {'-1': 19, '0': 68, '1': 54, '2': 34, '3': 5, '4': 5, '5': 1},\n", + " '1': {'-1': 10, '0': 11, '1': 15, '2': 39, '3': 10, '4': 14, '5': 1},\n", + " '2': {'-1': 5, '0': 6, '1': 9, '2': 42, '3': 18, '4': 23, '5': 3},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 26, '3': 18, '4': 55, '5': 4},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 3, '4': 8, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.06482211722825577,\n", + " 'Cohen': -0.004605442796031589,\n", + " 'Spearman': 0.6362640861493704,\n", + " 'Kendall': 0.5364486726733165,\n", + " 'Krippendorff': 0.2838059019995858,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5772994129158513,\n", + " 'TA-4.0': 0.7455968688845401,\n", + " 'Acc': 0.15459882583170254,\n", + " 'MAE': 1.3372472276581866,\n", + " 'MSE': 2.57490758860622,\n", + " 'CA-0': 0.04838709677419355,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.19811320754716982,\n", + " 'CA-3': 0.3076923076923077,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12332508204998106,\n", + " 'Micro-F1': 0.15459882583170254,\n", + " 'F1-0_vs_rest': 0.09230769230769231,\n", + " 'F1-1_vs_rest': 0.08602150537634409,\n", + " 'F1-2_vs_rest': 0.16091954022988506,\n", + " 'F1-3_vs_rest': 0.2807017543859649,\n", + " 'F1-4_vs_rest': 0.12,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7859733978234583,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.647410358565737,\n", + " 'F1-1.5': 0.6833073322932918,\n", + " 'Recall-1.5': 0.9733333333333334,\n", + " 'Precision-1.5': 0.5264423076923077,\n", + " 'F1-2.5': 0.5473684210526316,\n", + " 'Recall-2.5': 0.8739495798319328,\n", + " 'Precision-2.5': 0.39846743295019155,\n", + " 'F1-3.5': 0.14473684210526316,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08029197080291971,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8955451032568394},\n", + " 'CM': {'0': {'-1': 0, '0': 9, '1': 72, '2': 78, '3': 17, '4': 10, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 44, '3': 29, '4': 19, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 3, '2': 21, '3': 42, '4': 40, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 12, '3': 32, '4': 57, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'nl': {'phi-4': {'metrics': {'Fleiss': 0.19749905527500086,\n", + " 'Cohen': 0.21062413408576375,\n", + " 'Spearman': 0.6017338518953714,\n", + " 'Kendall': 0.49417415317567037,\n", + " 'Krippendorff': 0.4962034728408595,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7025440313111546,\n", + " 'TA-4.0': 0.863013698630137,\n", + " 'Acc': 0.37377690802348335,\n", + " 'MAE': 0.9530332681017614,\n", + " 'MSE': 1.8063709502065668,\n", + " 'CA-0': 0.43548387096774194,\n", + " 'CA-1': 0.22,\n", + " 'CA-2': 0.330188679245283,\n", + " 'CA-3': 0.4519230769230769,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.3207586938773494,\n", + " 'Micro-F1': 0.37377690802348335,\n", + " 'F1-0_vs_rest': 0.5848375451263538,\n", + " 'F1-1_vs_rest': 0.2328042328042328,\n", + " 'F1-2_vs_rest': 0.3125,\n", + " 'F1-3_vs_rest': 0.3821138211382114,\n", + " 'F1-4_vs_rest': 0.12658227848101267,\n", + " 'F1-5_vs_rest': 0.2857142857142857,\n", + " 'F1-0.5': 0.8456375838926175,\n", + " 'Recall-0.5': 0.9692307692307692,\n", + " 'Precision-0.5': 0.75,\n", + " 'F1-1.5': 0.7410071942446043,\n", + " 'Recall-1.5': 0.9155555555555556,\n", + " 'Precision-1.5': 0.622356495468278,\n", + " 'F1-2.5': 0.5421686746987951,\n", + " 'Recall-2.5': 0.7563025210084033,\n", + " 'Precision-2.5': 0.4225352112676056,\n", + " 'F1-3.5': 0.16279069767441862,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.09859154929577464,\n", + " 'F1-4.5': 0.2857142857142857,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.2,\n", + " 'NDCG@all': 0.8878042159771785},\n", + " 'CM': {'0': {'-1': 0, '0': 81, '1': 49, '2': 30, '3': 19, '4': 6, '5': 1},\n", + " '1': {'-1': 0, '0': 9, '1': 22, '2': 32, '3': 27, '4': 9, '5': 1},\n", + " '2': {'-1': 0, '0': 1, '1': 10, '2': 35, '3': 42, '4': 16, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 8, '2': 20, '3': 47, '4': 29, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 7, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.10490512706951376,\n", + " 'Cohen': 0.14144702299695477,\n", + " 'Spearman': 0.6150116797901293,\n", + " 'Kendall': 0.5252208293659809,\n", + " 'Krippendorff': 0.492011111270901,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.700587084148728,\n", + " 'TA-4.0': 0.9217221135029354,\n", + " 'Acc': 0.3111545988258317,\n", + " 'MAE': 0.9165035877364646,\n", + " 'MSE': 1.4548814959773866,\n", + " 'CA-0': 0.12903225806451613,\n", + " 'CA-1': 0.3,\n", + " 'CA-2': 0.41509433962264153,\n", + " 'CA-3': 0.5576923076923077,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23587008131798212,\n", + " 'Micro-F1': 0.3111545988258317,\n", + " 'F1-0_vs_rest': 0.22748815165876776,\n", + " 'F1-1_vs_rest': 0.21978021978021978,\n", + " 'F1-2_vs_rest': 0.34509803921568627,\n", + " 'F1-3_vs_rest': 0.4978540772532189,\n", + " 'F1-4_vs_rest': 0.125,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7990135635018496,\n", + " 'Recall-0.5': 0.9969230769230769,\n", + " 'Precision-0.5': 0.6666666666666666,\n", + " 'F1-1.5': 0.7323420074349443,\n", + " 'Recall-1.5': 0.8755555555555555,\n", + " 'Precision-1.5': 0.6293929712460063,\n", + " 'F1-2.5': 0.5865724381625441,\n", + " 'Recall-2.5': 0.6974789915966386,\n", + " 'Precision-2.5': 0.5060975609756098,\n", + " 'F1-3.5': 0.2,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.14285714285714285,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8923656274873517},\n", + " 'CM': {'0': {'-1': 0, '0': 24, '1': 116, '2': 34, '3': 8, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 30, '2': 45, '3': 18, '4': 7, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 17, '2': 44, '3': 36, '4': 8, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 10, '2': 25, '3': 58, '4': 11, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 9, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.23860614374956293,\n", + " 'Cohen': 0.2558182280915081,\n", + " 'Spearman': 0.6786086903747087,\n", + " 'Kendall': 0.5645675752491084,\n", + " 'Krippendorff': 0.6004384519045698,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7808219178082192,\n", + " 'TA-4.0': 0.7534246575342466,\n", + " 'Acc': 0.3953033268101761,\n", + " 'MAE': 0.9367253750815396,\n", + " 'MSE': 1.945640356599261,\n", + " 'CA-0': 0.5,\n", + " 'CA-1': 0.43,\n", + " 'CA-2': 0.32075471698113206,\n", + " 'CA-3': 0.22115384615384615,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.31887113331322364,\n", + " 'Micro-F1': 0.3953033268101761,\n", + " 'F1-0_vs_rest': 0.6458333333333334,\n", + " 'F1-1_vs_rest': 0.3722943722943723,\n", + " 'F1-2_vs_rest': 0.35978835978835977,\n", + " 'F1-3_vs_rest': 0.27380952380952384,\n", + " 'F1-4_vs_rest': 0.11864406779661017,\n", + " 'F1-5_vs_rest': 0.14285714285714285,\n", + " 'F1-0.5': 0.8610354223433242,\n", + " 'Recall-0.5': 0.9723076923076923,\n", + " 'Precision-0.5': 0.7726161369193154,\n", + " 'F1-1.5': 0.7952286282306164,\n", + " 'Recall-1.5': 0.8888888888888888,\n", + " 'Precision-1.5': 0.7194244604316546,\n", + " 'F1-2.5': 0.6178343949044586,\n", + " 'Recall-2.5': 0.8151260504201681,\n", + " 'Precision-2.5': 0.49743589743589745,\n", + " 'F1-3.5': 0.136986301369863,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.07633587786259542,\n", + " 'F1-4.5': 0.14285714285714285,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.07692307692307693,\n", + " 'NDCG@all': 0.8838794121135759},\n", + " 'CM': {'0': {'-1': 0, '0': 93, '1': 64, '2': 13, '3': 6, '4': 5, '5': 5},\n", + " '1': {'-1': 0, '0': 8, '1': 43, '2': 18, '3': 10, '4': 14, '5': 7},\n", + " '2': {'-1': 0, '0': 1, '1': 20, '2': 34, '3': 22, '4': 24, '5': 5},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 16, '3': 23, '4': 55, '5': 6},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 3, '4': 7, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.049411305602481075,\n", + " 'Cohen': 0.114040964777948,\n", + " 'Spearman': 0.6394215435120016,\n", + " 'Kendall': 0.541622482834839,\n", + " 'Krippendorff': 0.5318916101283754,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7568627450980392,\n", + " 'TA-4.0': 0.9411764705882353,\n", + " 'Acc': 0.28823529411764703,\n", + " 'MAE': 0.8643790849673201,\n", + " 'MSE': 1.1532135076252716,\n", + " 'CA-0': 0.03763440860215054,\n", + " 'CA-1': 0.48,\n", + " 'CA-2': 0.4528301886792453,\n", + " 'CA-3': 0.42718446601941745,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.19758125613181132,\n", + " 'Micro-F1': 0.28823529411764703,\n", + " 'F1-0_vs_rest': 0.07253886010362694,\n", + " 'F1-1_vs_rest': 0.2711864406779661,\n", + " 'F1-2_vs_rest': 0.3950617283950617,\n", + " 'F1-3_vs_rest': 0.4467005076142132,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7835550181378477,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6441351888667992,\n", + " 'F1-1.5': 0.7526427061310782,\n", + " 'Recall-1.5': 0.7946428571428571,\n", + " 'Precision-1.5': 0.714859437751004,\n", + " 'F1-2.5': 0.5478260869565217,\n", + " 'Recall-2.5': 0.5338983050847458,\n", + " 'Precision-2.5': 0.5625,\n", + " 'F1-3.5': 0.06060606060606061,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.05555555555555555,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9046818520982339},\n", + " 'CM': {'0': {'-1': 0, '0': 7, '1': 160, '2': 16, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 48, '2': 35, '3': 15, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 29, '2': 48, '3': 23, '4': 6, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 17, '2': 33, '3': 44, '4': 9, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 8, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.104611852531386,\n", + " 'Cohen': 0.13197061882108263,\n", + " 'Spearman': 0.6513746043526876,\n", + " 'Kendall': 0.5455268225993654,\n", + " 'Krippendorff': 0.538379425961808,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7123287671232876,\n", + " 'TA-4.0': 0.8062622309197651,\n", + " 'Acc': 0.29354207436399216,\n", + " 'MAE': 0.9957599478147424,\n", + " 'MSE': 1.7308654055229402,\n", + " 'CA-0': 0.3333333333333333,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.1320754716981132,\n", + " 'CA-3': 0.28846153846153844,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2254903489772561,\n", + " 'Micro-F1': 0.29354207436399216,\n", + " 'F1-0_vs_rest': 0.484375,\n", + " 'F1-1_vs_rest': 0.2777777777777778,\n", + " 'F1-2_vs_rest': 0.15217391304347827,\n", + " 'F1-3_vs_rest': 0.2898550724637681,\n", + " 'F1-4_vs_rest': 0.1487603305785124,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8276762402088773,\n", + " 'Recall-0.5': 0.9753846153846154,\n", + " 'Precision-0.5': 0.7188208616780045,\n", + " 'F1-1.5': 0.7315175097276264,\n", + " 'Recall-1.5': 0.8355555555555556,\n", + " 'Precision-1.5': 0.6505190311418685,\n", + " 'F1-2.5': 0.593939393939394,\n", + " 'Recall-2.5': 0.8235294117647058,\n", + " 'Precision-2.5': 0.46445497630331756,\n", + " 'F1-3.5': 0.17886178861788618,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.10185185185185185,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9073660140657527},\n", + " 'CM': {'0': {'-1': 0, '0': 62, '1': 84, '2': 25, '3': 9, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 4, '1': 35, '2': 29, '3': 18, '4': 14, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 24, '2': 14, '3': 43, '4': 23, '5': 0},\n", + " '3': {'-1': 0, '0': 2, '1': 9, '2': 9, '3': 30, '4': 54, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 3, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.11831453329534218,\n", + " 'Cohen': -0.02950615868873263,\n", + " 'Spearman': 0.6445973541437551,\n", + " 'Kendall': 0.5418044075860917,\n", + " 'Krippendorff': 0.18402637778278186,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5772994129158513,\n", + " 'TA-4.0': 0.6144814090019569,\n", + " 'Acc': 0.10567514677103718,\n", + " 'MAE': 1.5322896281800389,\n", + " 'MSE': 3.244400956729724,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.20754716981132076,\n", + " 'CA-3': 0.1346153846153846,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08500385097208112,\n", + " 'Micro-F1': 0.10567514677103718,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.0855614973262032,\n", + " 'F1-2_vs_rest': 0.19130434782608696,\n", + " 'F1-3_vs_rest': 0.1414141414141414,\n", + " 'F1-4_vs_rest': 0.09174311926605505,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.687211093990755,\n", + " 'Recall-1.5': 0.9911111111111112,\n", + " 'Precision-1.5': 0.5259433962264151,\n", + " 'F1-2.5': 0.5298329355608592,\n", + " 'Recall-2.5': 0.9327731092436975,\n", + " 'Precision-2.5': 0.37,\n", + " 'F1-3.5': 0.1085972850678733,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.05825242718446602,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8813650869255497},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 77, '2': 67, '3': 28, '4': 14, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 28, '3': 24, '4': 39, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 1, '2': 22, '3': 25, '4': 58, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 7, '3': 14, '4': 82, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.08976211231251495,\n", + " 'Cohen': -0.0273455204713704,\n", + " 'Spearman': 0.6989913208087782,\n", + " 'Kendall': 0.598806433786417,\n", + " 'Krippendorff': 0.3058174880930301,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.6098039215686275,\n", + " 'TA-4.0': 0.7843137254901961,\n", + " 'Acc': 0.13725490196078433,\n", + " 'MAE': 1.319281045751634,\n", + " 'MSE': 2.49025054466231,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.09,\n", + " 'CA-2': 0.1320754716981132,\n", + " 'CA-3': 0.36893203883495146,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.14449612430812778,\n", + " 'Micro-F1': 0.13725490196078433,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.08737864077669903,\n", + " 'F1-2_vs_rest': 0.13023255813953488,\n", + " 'F1-3_vs_rest': 0.2733812949640288,\n", + " 'F1-4_vs_rest': 0.12598425196850394,\n", + " 'F1-5_vs_rest': 0.25,\n", + " 'F1-0.5': 0.7769784172661871,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6352941176470588,\n", + " 'F1-1.5': 0.7038216560509554,\n", + " 'Recall-1.5': 0.9866071428571429,\n", + " 'Precision-1.5': 0.5470297029702971,\n", + " 'F1-2.5': 0.5520581113801453,\n", + " 'Recall-2.5': 0.9661016949152542,\n", + " 'Precision-2.5': 0.3864406779661017,\n", + " 'F1-3.5': 0.14814814814814814,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.08333333333333333,\n", + " 'F1-4.5': 0.25,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.16666666666666666,\n", + " 'NDCG@all': 0.9000938222966306},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 94, '2': 61, '3': 24, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 9, '2': 31, '3': 46, '4': 11, '5': 3},\n", + " '2': {'-1': 0, '0': 0, '1': 2, '2': 14, '3': 62, '4': 26, '5': 2},\n", + " '3': {'-1': 1, '0': 0, '1': 1, '2': 3, '3': 38, '4': 61, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.19030103740056278,\n", + " 'Cohen': 0.21752925702984738,\n", + " 'Spearman': 0.6942254307446798,\n", + " 'Kendall': 0.5919004863222185,\n", + " 'Krippendorff': 0.5860852208038714,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7436399217221135,\n", + " 'TA-4.0': 0.913894324853229,\n", + " 'Acc': 0.37573385518590996,\n", + " 'MAE': 0.8082191780821915,\n", + " 'MSE': 1.2226570993694275,\n", + " 'CA-0': 0.22043010752688172,\n", + " 'CA-1': 0.37,\n", + " 'CA-2': 0.5,\n", + " 'CA-3': 0.5576923076923077,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2829278894056704,\n", + " 'Micro-F1': 0.37573385518590996,\n", + " 'F1-0_vs_rest': 0.36123348017621143,\n", + " 'F1-1_vs_rest': 0.2813688212927757,\n", + " 'F1-2_vs_rest': 0.4076923076923077,\n", + " 'F1-3_vs_rest': 0.5272727272727272,\n", + " 'F1-4_vs_rest': 0.12,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8176100628930818,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6914893617021277,\n", + " 'F1-1.5': 0.7781954887218046,\n", + " 'Recall-1.5': 0.92,\n", + " 'Precision-1.5': 0.6742671009771987,\n", + " 'F1-2.5': 0.6397058823529411,\n", + " 'Recall-2.5': 0.7310924369747899,\n", + " 'Precision-2.5': 0.5686274509803921,\n", + " 'F1-3.5': 0.15384615384615385,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.10810810810810811,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9046410710985197},\n", + " 'CM': {'0': {'-1': 0, '0': 41, '1': 108, '2': 28, '3': 6, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 37, '2': 43, '3': 14, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 16, '2': 53, '3': 31, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 26, '3': 58, '4': 18, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 6, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.028838674179900214,\n", + " 'Cohen': 0.028781745889601362,\n", + " 'Spearman': 0.5649511005348035,\n", + " 'Kendall': 0.4503619457817632,\n", + " 'Krippendorff': 0.19131781360379319,\n", + " 'Invalid': 254,\n", + " 'TA-2.0': 0.5719844357976653,\n", + " 'TA-4.0': 0.708171206225681,\n", + " 'Acc': 0.17898832684824903,\n", + " 'MAE': 1.4390402075226978,\n", + " 'MSE': 3.1092736705577178,\n", + " 'CA-0': 0.1,\n", + " 'CA-1': 0.0851063829787234,\n", + " 'CA-2': 0.21052631578947367,\n", + " 'CA-3': 0.3148148148148148,\n", + " 'CA-4': 0.42857142857142855,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.1764116863148725,\n", + " 'Micro-F1': 0.17898832684824903,\n", + " 'F1-0_vs_rest': 0.18,\n", + " 'F1-1_vs_rest': 0.11267605633802817,\n", + " 'F1-2_vs_rest': 0.183206106870229,\n", + " 'F1-3_vs_rest': 0.2905982905982906,\n", + " 'F1-4_vs_rest': 0.06976744186046512,\n", + " 'F1-5_vs_rest': 0.2222222222222222,\n", + " 'F1-0.5': 0.8019323671497585,\n", + " 'Recall-0.5': 0.9940119760479041,\n", + " 'Precision-0.5': 0.6720647773279352,\n", + " 'F1-1.5': 0.6938775510204082,\n", + " 'Recall-1.5': 0.9916666666666667,\n", + " 'Precision-1.5': 0.5336322869955157,\n", + " 'F1-2.5': 0.5377358490566038,\n", + " 'Recall-2.5': 0.9047619047619048,\n", + " 'Precision-2.5': 0.3825503355704698,\n", + " 'F1-3.5': 0.10526315789473684,\n", + " 'Recall-3.5': 0.5555555555555556,\n", + " 'Precision-3.5': 0.05813953488372093,\n", + " 'F1-4.5': 0.2222222222222222,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.14285714285714285,\n", + " 'NDCG@all': 0.8757754788412403},\n", + " 'CM': {'0': {'-1': 96, '0': 9, '1': 20, '2': 39, '3': 14, '4': 8, '5': 0},\n", + " '1': {'-1': 53, '0': 0, '1': 4, '2': 17, '3': 11, '4': 13, '5': 2},\n", + " '2': {'-1': 49, '0': 1, '1': 0, '2': 12, '3': 18, '4': 24, '5': 2},\n", + " '3': {'-1': 50, '0': 0, '1': 0, '2': 5, '3': 17, '4': 30, '5': 2},\n", + " '4': {'-1': 6, '0': 0, '1': 0, '2': 1, '3': 3, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.15799694327070032,\n", + " 'Cohen': 0.19207544007532185,\n", + " 'Spearman': 0.6804738889270094,\n", + " 'Kendall': 0.5805122775735712,\n", + " 'Krippendorff': 0.6020436066257648,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.756385068762279,\n", + " 'TA-4.0': 0.962671905697446,\n", + " 'Acc': 0.36738703339882123,\n", + " 'MAE': 0.7590045841519317,\n", + " 'MSE': 1.0061122025758564,\n", + " 'CA-0': 0.26344086021505375,\n", + " 'CA-1': 0.37,\n", + " 'CA-2': 0.5754716981132075,\n", + " 'CA-3': 0.38235294117647056,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2699213039736042,\n", + " 'Micro-F1': 0.36738703339882123,\n", + " 'F1-0_vs_rest': 0.4117647058823529,\n", + " 'F1-1_vs_rest': 0.2730627306273063,\n", + " 'F1-2_vs_rest': 0.3961038961038961,\n", + " 'F1-3_vs_rest': 0.43333333333333335,\n", + " 'F1-4_vs_rest': 0.10526315789473684,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8205128205128205,\n", + " 'Recall-0.5': 0.9907120743034056,\n", + " 'Precision-0.5': 0.700218818380744,\n", + " 'F1-1.5': 0.7779960707269156,\n", + " 'Recall-1.5': 0.8878923766816144,\n", + " 'Precision-1.5': 0.6923076923076923,\n", + " 'F1-2.5': 0.46766169154228854,\n", + " 'Recall-2.5': 0.4017094017094017,\n", + " 'Precision-2.5': 0.5595238095238095,\n", + " 'F1-3.5': 0.09523809523809523,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.16666666666666666,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8935872189606235},\n", + " 'CM': {'0': {'-1': 0, '0': 49, '1': 109, '2': 24, '3': 3, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 37, '2': 50, '3': 9, '4': 1, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 22, '2': 61, '3': 20, '4': 3, '5': 0},\n", + " '3': {'-1': 2, '0': 0, '1': 3, '2': 60, '3': 39, '4': 0, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 7, '3': 5, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.11857815860347998,\n", + " 'Cohen': 0.13881004185948898,\n", + " 'Spearman': 0.6282193233965776,\n", + " 'Kendall': 0.5087307149759583,\n", + " 'Krippendorff': 0.5495888849160869,\n", + " 'Invalid': 37,\n", + " 'TA-2.0': 0.7215189873417721,\n", + " 'TA-4.0': 0.8291139240506329,\n", + " 'Acc': 0.3059071729957806,\n", + " 'MAE': 0.9535864978902955,\n", + " 'MSE': 1.6290436005625883,\n", + " 'CA-0': 0.38414634146341464,\n", + " 'CA-1': 0.19148936170212766,\n", + " 'CA-2': 0.37254901960784315,\n", + " 'CA-3': 0.21212121212121213,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22946862423767375,\n", + " 'Micro-F1': 0.3059071729957806,\n", + " 'F1-0_vs_rest': 0.5271966527196653,\n", + " 'F1-1_vs_rest': 0.2033898305084746,\n", + " 'F1-2_vs_rest': 0.304,\n", + " 'F1-3_vs_rest': 0.2441860465116279,\n", + " 'F1-4_vs_rest': 0.09803921568627451,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.840620592383639,\n", + " 'Recall-0.5': 0.9612903225806452,\n", + " 'Precision-0.5': 0.7468671679197995,\n", + " 'F1-1.5': 0.7368421052631579,\n", + " 'Recall-1.5': 0.9074074074074074,\n", + " 'Precision-1.5': 0.620253164556962,\n", + " 'F1-2.5': 0.5815602836879432,\n", + " 'Recall-2.5': 0.7192982456140351,\n", + " 'Precision-2.5': 0.4880952380952381,\n", + " 'F1-3.5': 0.14545454545454545,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.08421052631578947,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9007244831741236},\n", + " 'CM': {'0': {'-1': 22, '0': 63, '1': 48, '2': 40, '3': 7, '4': 6, '5': 0},\n", + " '1': {'-1': 6, '0': 9, '1': 18, '2': 40, '3': 16, '4': 10, '5': 1},\n", + " '2': {'-1': 4, '0': 3, '1': 15, '2': 38, '3': 24, '4': 20, '5': 2},\n", + " '3': {'-1': 5, '0': 0, '1': 2, '2': 28, '3': 21, '4': 46, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 5, '4': 5, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.04430980715377089,\n", + " 'Cohen': 0.012983226582359286,\n", + " 'Spearman': 0.6409816882191227,\n", + " 'Kendall': 0.537345844983624,\n", + " 'Krippendorff': 0.2995519014865615,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5851272015655578,\n", + " 'TA-4.0': 0.7553816046966731,\n", + " 'Acc': 0.17025440313111545,\n", + " 'MAE': 1.3085453359425963,\n", + " 'MSE': 2.521417699499892,\n", + " 'CA-0': 0.04838709677419355,\n", + " 'CA-1': 0.11,\n", + " 'CA-2': 0.22641509433962265,\n", + " 'CA-3': 0.3173076923076923,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.13630448447380356,\n", + " 'Micro-F1': 0.17025440313111545,\n", + " 'F1-0_vs_rest': 0.09230769230769231,\n", + " 'F1-1_vs_rest': 0.11458333333333333,\n", + " 'F1-2_vs_rest': 0.18823529411764706,\n", + " 'F1-3_vs_rest': 0.2857142857142857,\n", + " 'F1-4_vs_rest': 0.136986301369863,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7859733978234583,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.647410358565737,\n", + " 'F1-1.5': 0.6834645669291338,\n", + " 'Recall-1.5': 0.9644444444444444,\n", + " 'Precision-1.5': 0.5292682926829269,\n", + " 'F1-2.5': 0.5684210526315789,\n", + " 'Recall-2.5': 0.907563025210084,\n", + " 'Precision-2.5': 0.41379310344827586,\n", + " 'F1-3.5': 0.1610738255033557,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.08955223880597014,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8962718208043471},\n", + " 'CM': {'0': {'-1': 0, '0': 9, '1': 73, '2': 73, '3': 23, '4': 8, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 11, '2': 42, '3': 30, '4': 17, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 7, '2': 24, '3': 38, '4': 36, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 10, '3': 33, '4': 60, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'de': {'phi-4': {'metrics': {'Fleiss': 0.21790219457404525,\n", + " 'Cohen': 0.230746818047172,\n", + " 'Spearman': 0.6276948531045122,\n", + " 'Kendall': 0.5152196309359278,\n", + " 'Krippendorff': 0.5229276850254223,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7103718199608611,\n", + " 'TA-4.0': 0.898238747553816,\n", + " 'Acc': 0.3933463796477495,\n", + " 'MAE': 0.9145466405740379,\n", + " 'MSE': 1.6921069797782131,\n", + " 'CA-0': 0.44086021505376344,\n", + " 'CA-1': 0.23,\n", + " 'CA-2': 0.29245283018867924,\n", + " 'CA-3': 0.5673076923076923,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.28928157771472457,\n", + " 'Micro-F1': 0.3933463796477495,\n", + " 'F1-0_vs_rest': 0.5836298932384342,\n", + " 'F1-1_vs_rest': 0.24083769633507854,\n", + " 'F1-2_vs_rest': 0.29523809523809524,\n", + " 'F1-3_vs_rest': 0.44696969696969696,\n", + " 'F1-4_vs_rest': 0.16901408450704225,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8421052631578947,\n", + " 'Recall-0.5': 0.96,\n", + " 'Precision-0.5': 0.75,\n", + " 'F1-1.5': 0.76,\n", + " 'Recall-1.5': 0.9288888888888889,\n", + " 'Precision-1.5': 0.6430769230769231,\n", + " 'F1-2.5': 0.5529411764705883,\n", + " 'Recall-2.5': 0.7899159663865546,\n", + " 'Precision-2.5': 0.4253393665158371,\n", + " 'F1-3.5': 0.21052631578947367,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.13114754098360656,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8696382309232812},\n", + " 'CM': {'0': {'-1': 0, '0': 82, '1': 55, '2': 28, '3': 16, '4': 3, '5': 2},\n", + " '1': {'-1': 0, '0': 10, '1': 23, '2': 24, '3': 32, '4': 10, '5': 1},\n", + " '2': {'-1': 0, '0': 2, '1': 10, '2': 31, '3': 47, '4': 16, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 3, '2': 20, '3': 59, '4': 21, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 6, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.06454252633411683,\n", + " 'Cohen': 0.10418780577270281,\n", + " 'Spearman': 0.5871325263469134,\n", + " 'Kendall': 0.4914502119354108,\n", + " 'Krippendorff': 0.46933790759333727,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6927592954990215,\n", + " 'TA-4.0': 0.913894324853229,\n", + " 'Acc': 0.27984344422700586,\n", + " 'MAE': 0.9540117416829745,\n", + " 'MSE': 1.5201674277016746,\n", + " 'CA-0': 0.12365591397849462,\n", + " 'CA-1': 0.33,\n", + " 'CA-2': 0.33962264150943394,\n", + " 'CA-3': 0.47115384615384615,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2086523333521653,\n", + " 'Micro-F1': 0.27984344422700586,\n", + " 'F1-0_vs_rest': 0.21904761904761905,\n", + " 'F1-1_vs_rest': 0.2323943661971831,\n", + " 'F1-2_vs_rest': 0.2903225806451613,\n", + " 'F1-3_vs_rest': 0.43171806167400884,\n", + " 'F1-4_vs_rest': 0.0784313725490196,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7980295566502463,\n", + " 'Recall-0.5': 0.9969230769230769,\n", + " 'Precision-0.5': 0.6652977412731006,\n", + " 'F1-1.5': 0.7234848484848485,\n", + " 'Recall-1.5': 0.8488888888888889,\n", + " 'Precision-1.5': 0.6303630363036303,\n", + " 'F1-2.5': 0.5428571428571428,\n", + " 'Recall-2.5': 0.6386554621848739,\n", + " 'Precision-2.5': 0.4720496894409938,\n", + " 'F1-3.5': 0.1509433962264151,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.10526315789473684,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.887835609950167},\n", + " 'CM': {'0': {'-1': 0, '0': 23, '1': 117, '2': 34, '3': 9, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 33, '2': 42, '3': 14, '4': 10, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 21, '2': 36, '3': 42, '4': 7, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 12, '2': 29, '3': 49, '4': 14, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 1, '2': 1, '3': 9, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.22149663602812664,\n", + " 'Cohen': 0.23818779692682213,\n", + " 'Spearman': 0.697175369075446,\n", + " 'Kendall': 0.581053541110699,\n", + " 'Krippendorff': 0.6140631708274648,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7729941291585127,\n", + " 'TA-4.0': 0.7592954990215264,\n", + " 'Acc': 0.3816046966731898,\n", + " 'MAE': 0.934116112198304,\n", + " 'MSE': 1.8769297673407264,\n", + " 'CA-0': 0.510752688172043,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.3113207547169811,\n", + " 'CA-3': 0.17307692307692307,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.30740814425317636,\n", + " 'Micro-F1': 0.3816046966731898,\n", + " 'F1-0_vs_rest': 0.657439446366782,\n", + " 'F1-1_vs_rest': 0.3392857142857143,\n", + " 'F1-2_vs_rest': 0.336734693877551,\n", + " 'F1-3_vs_rest': 0.21428571428571427,\n", + " 'F1-4_vs_rest': 0.15384615384615385,\n", + " 'F1-5_vs_rest': 0.14285714285714285,\n", + " 'F1-0.5': 0.8649386084583902,\n", + " 'Recall-0.5': 0.9753846153846154,\n", + " 'Precision-0.5': 0.7769607843137255,\n", + " 'F1-1.5': 0.793713163064833,\n", + " 'Recall-1.5': 0.8977777777777778,\n", + " 'Precision-1.5': 0.7112676056338029,\n", + " 'F1-2.5': 0.6070287539936102,\n", + " 'Recall-2.5': 0.7983193277310925,\n", + " 'Precision-2.5': 0.4896907216494845,\n", + " 'F1-3.5': 0.15172413793103448,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08461538461538462,\n", + " 'F1-4.5': 0.14285714285714285,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.07692307692307693,\n", + " 'NDCG@all': 0.888307241396973},\n", + " 'CM': {'0': {'-1': 0, '0': 95, '1': 64, '2': 12, '3': 7, '4': 4, '5': 4},\n", + " '1': {'-1': 0, '0': 7, '1': 38, '2': 25, '3': 11, '4': 12, '5': 7},\n", + " '2': {'-1': 0, '0': 1, '1': 18, '2': 33, '3': 26, '4': 22, '5': 6},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 18, '3': 18, '4': 57, '5': 7},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 2, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.03227354284124583,\n", + " 'Cohen': 0.09887681038867213,\n", + " 'Spearman': 0.6218870534802078,\n", + " 'Kendall': 0.5339781090424877,\n", + " 'Krippendorff': 0.5193614671572371,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7534246575342466,\n", + " 'TA-4.0': 0.9432485322896281,\n", + " 'Acc': 0.273972602739726,\n", + " 'MAE': 0.8851924331376387,\n", + " 'MSE': 1.2148293107197212,\n", + " 'CA-0': 0.021505376344086023,\n", + " 'CA-1': 0.45,\n", + " 'CA-2': 0.42452830188679247,\n", + " 'CA-3': 0.41346153846153844,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.21218675173488102,\n", + " 'Micro-F1': 0.273972602739726,\n", + " 'F1-0_vs_rest': 0.042105263157894736,\n", + " 'F1-1_vs_rest': 0.254957507082153,\n", + " 'F1-2_vs_rest': 0.36585365853658536,\n", + " 'F1-3_vs_rest': 0.4387755102040816,\n", + " 'F1-4_vs_rest': 0.17142857142857143,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.78125,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6410256410256411,\n", + " 'F1-1.5': 0.7473903966597077,\n", + " 'Recall-1.5': 0.7955555555555556,\n", + " 'Precision-1.5': 0.7047244094488189,\n", + " 'F1-2.5': 0.5150214592274678,\n", + " 'Recall-2.5': 0.5042016806722689,\n", + " 'Precision-2.5': 0.5263157894736842,\n", + " 'F1-3.5': 0.21621621621621623,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.18181818181818182,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9007058645820878},\n", + " 'CM': {'0': {'-1': 0, '0': 4, '1': 162, '2': 15, '3': 3, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 45, '2': 39, '3': 14, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 28, '2': 45, '3': 26, '4': 7, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 18, '2': 36, '3': 43, '4': 7, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 5, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.16176955204643811,\n", + " 'Cohen': 0.18093738819320215,\n", + " 'Spearman': 0.638094327670404,\n", + " 'Kendall': 0.5350459984364871,\n", + " 'Krippendorff': 0.5684031200578643,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7201565557729941,\n", + " 'TA-4.0': 0.8199608610567515,\n", + " 'Acc': 0.3424657534246575,\n", + " 'MAE': 0.9337899543378999,\n", + " 'MSE': 1.6299739073711683,\n", + " 'CA-0': 0.41935483870967744,\n", + " 'CA-1': 0.39,\n", + " 'CA-2': 0.2169811320754717,\n", + " 'CA-3': 0.2692307692307692,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.25579678404801615,\n", + " 'Micro-F1': 0.3424657534246575,\n", + " 'F1-0_vs_rest': 0.5631768953068592,\n", + " 'F1-1_vs_rest': 0.3107569721115538,\n", + " 'F1-2_vs_rest': 0.2541436464088398,\n", + " 'F1-3_vs_rest': 0.27586206896551724,\n", + " 'F1-4_vs_rest': 0.1308411214953271,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8375838926174497,\n", + " 'Recall-0.5': 0.96,\n", + " 'Precision-0.5': 0.7428571428571429,\n", + " 'F1-1.5': 0.7327935222672065,\n", + " 'Recall-1.5': 0.8044444444444444,\n", + " 'Precision-1.5': 0.6728624535315985,\n", + " 'F1-2.5': 0.5942492012779552,\n", + " 'Recall-2.5': 0.7815126050420168,\n", + " 'Precision-2.5': 0.4793814432989691,\n", + " 'F1-3.5': 0.16363636363636364,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.09473684210526316,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8909737450169314},\n", + " 'CM': {'0': {'-1': 0, '0': 78, '1': 73, '2': 20, '3': 10, '4': 4, '5': 1},\n", + " '1': {'-1': 0, '0': 8, '1': 39, '2': 24, '3': 18, '4': 11, '5': 0},\n", + " '2': {'-1': 0, '0': 3, '1': 23, '2': 23, '3': 38, '4': 19, '5': 0},\n", + " '3': {'-1': 0, '0': 2, '1': 16, '2': 7, '3': 28, '4': 51, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 5, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.10518735435836338,\n", + " 'Cohen': -0.026045160344544183,\n", + " 'Spearman': 0.6222004781558779,\n", + " 'Kendall': 0.5190059489219454,\n", + " 'Krippendorff': 0.22762330379594742,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5909980430528375,\n", + " 'TA-4.0': 0.6477495107632094,\n", + " 'Acc': 0.11545988258317025,\n", + " 'MAE': 1.466405740378343,\n", + " 'MSE': 3.0250054359643404,\n", + " 'CA-0': 0.016129032258064516,\n", + " 'CA-1': 0.12,\n", + " 'CA-2': 0.16981132075471697,\n", + " 'CA-3': 0.15384615384615385,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.0948310031252849,\n", + " 'Micro-F1': 0.11545988258317025,\n", + " 'F1-0_vs_rest': 0.031746031746031744,\n", + " 'F1-1_vs_rest': 0.11822660098522167,\n", + " 'F1-2_vs_rest': 0.15789473684210525,\n", + " 'F1-3_vs_rest': 0.16161616161616163,\n", + " 'F1-4_vs_rest': 0.09950248756218906,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.78031212484994,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.639763779527559,\n", + " 'F1-1.5': 0.6888888888888889,\n", + " 'Recall-1.5': 0.9644444444444444,\n", + " 'Precision-1.5': 0.5358024691358024,\n", + " 'F1-2.5': 0.527363184079602,\n", + " 'Recall-2.5': 0.8907563025210085,\n", + " 'Precision-2.5': 0.3745583038869258,\n", + " 'F1-3.5': 0.11764705882352941,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.06349206349206349,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8808942097429604},\n", + " 'CM': {'0': {'-1': 0, '0': 3, '1': 83, '2': 64, '3': 22, '4': 14, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 12, '2': 29, '3': 25, '4': 33, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 6, '2': 18, '3': 28, '4': 54, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 11, '3': 16, '4': 75, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.0861972323124968,\n", + " 'Cohen': -0.02373895383939817,\n", + " 'Spearman': 0.68367956094756,\n", + " 'Kendall': 0.5800068638059478,\n", + " 'Krippendorff': 0.2960127214120797,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6183953033268101,\n", + " 'TA-4.0': 0.7906066536203522,\n", + " 'Acc': 0.14285714285714285,\n", + " 'MAE': 1.3147423352902807,\n", + " 'MSE': 2.500380517503805,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.09,\n", + " 'CA-2': 0.16037735849056603,\n", + " 'CA-3': 0.38461538461538464,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.10670129640586483,\n", + " 'Micro-F1': 0.14285714285714285,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.08653846153846154,\n", + " 'F1-2_vs_rest': 0.16113744075829384,\n", + " 'F1-3_vs_rest': 0.2777777777777778,\n", + " 'F1-4_vs_rest': 0.11475409836065574,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.7101910828025477,\n", + " 'Recall-1.5': 0.9911111111111112,\n", + " 'Precision-1.5': 0.5533498759305211,\n", + " 'F1-2.5': 0.5419664268585132,\n", + " 'Recall-2.5': 0.9495798319327731,\n", + " 'Precision-2.5': 0.37919463087248323,\n", + " 'F1-3.5': 0.13953488372093023,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.07894736842105263,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8936061435556232},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 97, '2': 55, '3': 28, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 9, '2': 28, '3': 48, '4': 14, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 1, '2': 17, '3': 62, '4': 22, '5': 4},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 5, '3': 40, '4': 58, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 6, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.20750818581359107,\n", + " 'Cohen': 0.23537702607470057,\n", + " 'Spearman': 0.7048528909290414,\n", + " 'Kendall': 0.6076767913633502,\n", + " 'Krippendorff': 0.607827764754351,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7671232876712328,\n", + " 'TA-4.0': 0.9295499021526419,\n", + " 'Acc': 0.3933463796477495,\n", + " 'MAE': 0.7612524461839528,\n", + " 'MSE': 1.1174168297455964,\n", + " 'CA-0': 0.22580645161290322,\n", + " 'CA-1': 0.37,\n", + " 'CA-2': 0.5943396226415094,\n", + " 'CA-3': 0.5576923076923077,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.28409274186480665,\n", + " 'Micro-F1': 0.3933463796477495,\n", + " 'F1-0_vs_rest': 0.3684210526315789,\n", + " 'F1-1_vs_rest': 0.27205882352941174,\n", + " 'F1-2_vs_rest': 0.47191011235955055,\n", + " 'F1-3_vs_rest': 0.5395348837209303,\n", + " 'F1-4_vs_rest': 0.05263157894736842,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.818639798488665,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6929637526652452,\n", + " 'F1-1.5': 0.7931034482758621,\n", + " 'Recall-1.5': 0.92,\n", + " 'Precision-1.5': 0.696969696969697,\n", + " 'F1-2.5': 0.6274509803921569,\n", + " 'Recall-2.5': 0.6722689075630253,\n", + " 'Precision-2.5': 0.5882352941176471,\n", + " 'F1-3.5': 0.1,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.08,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8981042135033636},\n", + " 'CM': {'0': {'-1': 0, '0': 42, '1': 117, '2': 19, '3': 5, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 37, '2': 43, '3': 15, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 15, '2': 63, '3': 24, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 32, '3': 58, '4': 11, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 8, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.022933167676140228,\n", + " 'Cohen': 0.037843522972946575,\n", + " 'Spearman': 0.6014058610578566,\n", + " 'Kendall': 0.4994593093193661,\n", + " 'Krippendorff': 0.2520696085494646,\n", + " 'Invalid': 264,\n", + " 'TA-2.0': 0.562753036437247,\n", + " 'TA-4.0': 0.7894736842105263,\n", + " 'Acc': 0.1902834008097166,\n", + " 'MAE': 1.3151147098515517,\n", + " 'MSE': 2.6355150697255953,\n", + " 'CA-0': 0.03333333333333333,\n", + " 'CA-1': 0.05660377358490566,\n", + " 'CA-2': 0.3877551020408163,\n", + " 'CA-3': 0.375,\n", + " 'CA-4': 0.6666666666666666,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.14642442250271173,\n", + " 'Micro-F1': 0.1902834008097166,\n", + " 'F1-0_vs_rest': 0.06451612903225806,\n", + " 'F1-1_vs_rest': 0.06741573033707865,\n", + " 'F1-2_vs_rest': 0.2714285714285714,\n", + " 'F1-3_vs_rest': 0.34615384615384615,\n", + " 'F1-4_vs_rest': 0.12903225806451613,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7830423940149626,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6434426229508197,\n", + " 'F1-1.5': 0.6602564102564102,\n", + " 'Recall-1.5': 0.9903846153846154,\n", + " 'Precision-1.5': 0.4951923076923077,\n", + " 'F1-2.5': 0.5697674418604651,\n", + " 'Recall-2.5': 0.8909090909090909,\n", + " 'Precision-2.5': 0.4188034188034188,\n", + " 'F1-3.5': 0.14705882352941177,\n", + " 'Recall-3.5': 0.7142857142857143,\n", + " 'Precision-3.5': 0.08196721311475409,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8667433696165903},\n", + " 'CM': {'0': {'-1': 96, '0': 3, '1': 32, '2': 42, '3': 6, '4': 7, '5': 0},\n", + " '1': {'-1': 47, '0': 0, '1': 3, '2': 24, '3': 16, '4': 9, '5': 1},\n", + " '2': {'-1': 57, '0': 0, '1': 1, '2': 19, '3': 14, '4': 13, '5': 2},\n", + " '3': {'-1': 56, '0': 0, '1': 0, '2': 6, '3': 18, '4': 22, '5': 2},\n", + " '4': {'-1': 7, '0': 0, '1': 0, '2': 0, '3': 2, '4': 4, '5': 0},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.1632721595730228,\n", + " 'Cohen': 0.1972651926907848,\n", + " 'Spearman': 0.6915812578630529,\n", + " 'Kendall': 0.5926759477956665,\n", + " 'Krippendorff': 0.6120759836155344,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7607843137254902,\n", + " 'TA-4.0': 0.9686274509803922,\n", + " 'Acc': 0.37254901960784315,\n", + " 'MAE': 0.7392156862745096,\n", + " 'MSE': 0.9505446623093681,\n", + " 'CA-0': 0.2903225806451613,\n", + " 'CA-1': 0.37,\n", + " 'CA-2': 0.6226415094339622,\n", + " 'CA-3': 0.32038834951456313,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2523974919326858,\n", + " 'Micro-F1': 0.37254901960784315,\n", + " 'F1-0_vs_rest': 0.44813278008298757,\n", + " 'F1-1_vs_rest': 0.2824427480916031,\n", + " 'F1-2_vs_rest': 0.41509433962264153,\n", + " 'F1-3_vs_rest': 0.3687150837988827,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8292682926829268,\n", + " 'Recall-0.5': 0.9969135802469136,\n", + " 'Precision-0.5': 0.7098901098901099,\n", + " 'F1-1.5': 0.7852998065764023,\n", + " 'Recall-1.5': 0.90625,\n", + " 'Precision-1.5': 0.6928327645051194,\n", + " 'F1-2.5': 0.44221105527638194,\n", + " 'Recall-2.5': 0.3728813559322034,\n", + " 'Precision-2.5': 0.5432098765432098,\n", + " 'F1-3.5': 0.2,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.4,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9219570052241717},\n", + " 'CM': {'0': {'-1': 0, '0': 54, '1': 104, '2': 25, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 37, '2': 52, '3': 10, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 16, '2': 66, '3': 23, '4': 1, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 5, '2': 63, '3': 33, '4': 2, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 7, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.1843475459257938,\n", + " 'Cohen': 0.200375640873788,\n", + " 'Spearman': 0.6154631597016689,\n", + " 'Kendall': 0.5075398877011381,\n", + " 'Krippendorff': 0.5713376526505718,\n", + " 'Invalid': 40,\n", + " 'TA-2.0': 0.7388535031847133,\n", + " 'TA-4.0': 0.8471337579617835,\n", + " 'Acc': 0.3609341825902335,\n", + " 'MAE': 0.9037508846426044,\n", + " 'MSE': 1.5779665015333806,\n", + " 'CA-0': 0.4723926380368098,\n", + " 'CA-1': 0.21505376344086022,\n", + " 'CA-2': 0.44329896907216493,\n", + " 'CA-3': 0.22330097087378642,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.3119381593141282,\n", + " 'Micro-F1': 0.3609341825902335,\n", + " 'F1-0_vs_rest': 0.5900383141762452,\n", + " 'F1-1_vs_rest': 0.22727272727272727,\n", + " 'F1-2_vs_rest': 0.35684647302904565,\n", + " 'F1-3_vs_rest': 0.2893081761006289,\n", + " 'F1-4_vs_rest': 0.12244897959183673,\n", + " 'F1-5_vs_rest': 0.2857142857142857,\n", + " 'F1-0.5': 0.8428781204111601,\n", + " 'Recall-0.5': 0.9318181818181818,\n", + " 'Precision-0.5': 0.7694369973190348,\n", + " 'F1-1.5': 0.7485148514851485,\n", + " 'Recall-1.5': 0.8790697674418605,\n", + " 'Precision-1.5': 0.6517241379310345,\n", + " 'F1-2.5': 0.5681818181818182,\n", + " 'Recall-2.5': 0.635593220338983,\n", + " 'Precision-2.5': 0.5136986301369864,\n", + " 'F1-3.5': 0.17142857142857143,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.1,\n", + " 'F1-4.5': 0.2857142857142857,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.2,\n", + " 'NDCG@all': 0.9125261939174565},\n", + " 'CM': {'0': {'-1': 23, '0': 77, '1': 48, '2': 27, '3': 5, '4': 6, '5': 0},\n", + " '1': {'-1': 7, '0': 10, '1': 20, '2': 36, '3': 14, '4': 13, '5': 0},\n", + " '2': {'-1': 9, '0': 10, '1': 11, '2': 43, '3': 13, '4': 19, '5': 1},\n", + " '3': {'-1': 1, '0': 1, '1': 4, '2': 33, '3': 23, '4': 40, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 1, '4': 6, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.04715633312969314,\n", + " 'Cohen': 0.009793530720208943,\n", + " 'Spearman': 0.6500245441904008,\n", + " 'Kendall': 0.547525489583711,\n", + " 'Krippendorff': 0.3097379227640713,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5870841487279843,\n", + " 'TA-4.0': 0.7495107632093934,\n", + " 'Acc': 0.16634050880626222,\n", + " 'MAE': 1.3124592302674496,\n", + " 'MSE': 2.5227223309415097,\n", + " 'CA-0': 0.04838709677419355,\n", + " 'CA-1': 0.11,\n", + " 'CA-2': 0.2169811320754717,\n", + " 'CA-3': 0.3076923076923077,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.13412316589431966,\n", + " 'Micro-F1': 0.16634050880626222,\n", + " 'F1-0_vs_rest': 0.09230769230769231,\n", + " 'F1-1_vs_rest': 0.1116751269035533,\n", + " 'F1-2_vs_rest': 0.184,\n", + " 'F1-3_vs_rest': 0.2807017543859649,\n", + " 'F1-4_vs_rest': 0.1360544217687075,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7859733978234583,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.647410358565737,\n", + " 'F1-1.5': 0.6857142857142857,\n", + " 'Recall-1.5': 0.96,\n", + " 'Precision-1.5': 0.5333333333333333,\n", + " 'F1-2.5': 0.5684210526315789,\n", + " 'Recall-2.5': 0.907563025210084,\n", + " 'Precision-2.5': 0.41379310344827586,\n", + " 'F1-3.5': 0.15789473684210525,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.08759124087591241,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8888846101799195},\n", + " 'CM': {'0': {'-1': 0, '0': 9, '1': 77, '2': 74, '3': 17, '4': 9, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 11, '2': 40, '3': 33, '4': 15, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 23, '3': 39, '4': 37, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 7, '3': 32, '4': 61, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'it': {'phi-4': {'metrics': {'Fleiss': 0.24044996078800035,\n", + " 'Cohen': 0.2530726637537587,\n", + " 'Spearman': 0.6276525154745057,\n", + " 'Kendall': 0.5142921540855047,\n", + " 'Krippendorff': 0.526819018233728,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7294117647058823,\n", + " 'TA-4.0': 0.9,\n", + " 'Acc': 0.40980392156862744,\n", + " 'MAE': 0.8852941176470588,\n", + " 'MSE': 1.6316448801742915,\n", + " 'CA-0': 0.44623655913978494,\n", + " 'CA-1': 0.3,\n", + " 'CA-2': 0.3113207547169811,\n", + " 'CA-3': 0.5436893203883495,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.3863470679147348,\n", + " 'Micro-F1': 0.40980392156862744,\n", + " 'F1-0_vs_rest': 0.6014492753623188,\n", + " 'F1-1_vs_rest': 0.29411764705882354,\n", + " 'F1-2_vs_rest': 0.3142857142857143,\n", + " 'F1-3_vs_rest': 0.4392156862745098,\n", + " 'F1-4_vs_rest': 0.16901408450704225,\n", + " 'F1-5_vs_rest': 0.5,\n", + " 'F1-0.5': 0.8521505376344086,\n", + " 'Recall-0.5': 0.9783950617283951,\n", + " 'Precision-0.5': 0.7547619047619047,\n", + " 'F1-1.5': 0.7666666666666667,\n", + " 'Recall-1.5': 0.9241071428571429,\n", + " 'Precision-1.5': 0.6550632911392406,\n", + " 'F1-2.5': 0.5454545454545454,\n", + " 'Recall-2.5': 0.7627118644067796,\n", + " 'Precision-2.5': 0.42452830188679247,\n", + " 'F1-3.5': 0.21333333333333335,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.13333333333333333,\n", + " 'F1-4.5': 0.5,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.5,\n", + " 'NDCG@all': 0.8890307847692244},\n", + " 'CM': {'0': {'-1': 0, '0': 83, '1': 57, '2': 23, '3': 16, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 7, '1': 30, '2': 27, '3': 25, '4': 10, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 10, '2': 33, '3': 49, '4': 14, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 7, '2': 20, '3': 56, '4': 20, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 6, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.06173214241285798,\n", + " 'Cohen': 0.10228381807534659,\n", + " 'Spearman': 0.58492992934578,\n", + " 'Kendall': 0.4877496825068927,\n", + " 'Krippendorff': 0.46341190055078196,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6908023483365949,\n", + " 'TA-4.0': 0.9158512720156555,\n", + " 'Acc': 0.27788649706457924,\n", + " 'MAE': 0.962818003913894,\n", + " 'MSE': 1.537290715372907,\n", + " 'CA-0': 0.11290322580645161,\n", + " 'CA-1': 0.33,\n", + " 'CA-2': 0.3113207547169811,\n", + " 'CA-3': 0.5,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2112400487533117,\n", + " 'Micro-F1': 0.27788649706457924,\n", + " 'F1-0_vs_rest': 0.20095693779904306,\n", + " 'F1-1_vs_rest': 0.22916666666666666,\n", + " 'F1-2_vs_rest': 0.28085106382978725,\n", + " 'F1-3_vs_rest': 0.4388185654008439,\n", + " 'F1-4_vs_rest': 0.11764705882352941,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7945879458794588,\n", + " 'Recall-0.5': 0.9938461538461538,\n", + " 'Precision-0.5': 0.6618852459016393,\n", + " 'F1-1.5': 0.7161904761904762,\n", + " 'Recall-1.5': 0.8355555555555556,\n", + " 'Precision-1.5': 0.6266666666666667,\n", + " 'F1-2.5': 0.5655172413793104,\n", + " 'Recall-2.5': 0.6890756302521008,\n", + " 'Precision-2.5': 0.47953216374269003,\n", + " 'F1-3.5': 0.18867924528301888,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.13157894736842105,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8913863623277738},\n", + " 'CM': {'0': {'-1': 0, '0': 21, '1': 118, '2': 33, '3': 10, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 33, '2': 36, '3': 21, '4': 8, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 27, '2': 33, '3': 41, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 10, '2': 26, '3': 52, '4': 16, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 9, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.20982046081883746,\n", + " 'Cohen': 0.22676855051216904,\n", + " 'Spearman': 0.6850493006295878,\n", + " 'Kendall': 0.567597764411304,\n", + " 'Krippendorff': 0.601616514546842,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7749510763209393,\n", + " 'TA-4.0': 0.761252446183953,\n", + " 'Acc': 0.37181996086105673,\n", + " 'MAE': 0.9562948467058057,\n", + " 'MSE': 1.934333550771907,\n", + " 'CA-0': 0.4838709677419355,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.33962264150943394,\n", + " 'CA-3': 0.17307692307692307,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.29904766672586375,\n", + " 'Micro-F1': 0.37181996086105673,\n", + " 'F1-0_vs_rest': 0.6293706293706294,\n", + " 'F1-1_vs_rest': 0.32142857142857145,\n", + " 'F1-2_vs_rest': 0.35467980295566504,\n", + " 'F1-3_vs_rest': 0.21818181818181817,\n", + " 'F1-4_vs_rest': 0.1415929203539823,\n", + " 'F1-5_vs_rest': 0.12903225806451613,\n", + " 'F1-0.5': 0.8559782608695652,\n", + " 'Recall-0.5': 0.9692307692307692,\n", + " 'Precision-0.5': 0.7664233576642335,\n", + " 'F1-1.5': 0.79296875,\n", + " 'Recall-1.5': 0.9022222222222223,\n", + " 'Precision-1.5': 0.7073170731707317,\n", + " 'F1-2.5': 0.5954692556634305,\n", + " 'Recall-2.5': 0.773109243697479,\n", + " 'Precision-2.5': 0.4842105263157895,\n", + " 'F1-3.5': 0.1527777777777778,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08527131782945736,\n", + " 'F1-4.5': 0.12903225806451613,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.06896551724137931,\n", + " 'NDCG@all': 0.8892769479381065},\n", + " 'CM': {'0': {'-1': 0, '0': 90, '1': 68, '2': 13, '3': 8, '4': 2, '5': 5},\n", + " '1': {'-1': 0, '0': 8, '1': 36, '2': 25, '3': 10, '4': 15, '5': 6},\n", + " '2': {'-1': 0, '0': 2, '1': 16, '2': 36, '3': 23, '4': 22, '5': 7},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 21, '3': 18, '4': 53, '5': 8},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 2, '4': 8, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.037656903765690405,\n", + " 'Cohen': 0.10225870332634956,\n", + " 'Spearman': 0.6318601928415856,\n", + " 'Kendall': 0.5443424011315313,\n", + " 'Krippendorff': 0.5242934652141771,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7588235294117647,\n", + " 'TA-4.0': 0.9470588235294117,\n", + " 'Acc': 0.2784313725490196,\n", + " 'MAE': 0.8732026143790848,\n", + " 'MSE': 1.1982570806100215,\n", + " 'CA-0': 0.016129032258064516,\n", + " 'CA-1': 0.45,\n", + " 'CA-2': 0.4339622641509434,\n", + " 'CA-3': 0.4563106796116505,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.19828577774604758,\n", + " 'Micro-F1': 0.2784313725490196,\n", + " 'F1-0_vs_rest': 0.031746031746031744,\n", + " 'F1-1_vs_rest': 0.2608695652173913,\n", + " 'F1-2_vs_rest': 0.36507936507936506,\n", + " 'F1-3_vs_rest': 0.4630541871921182,\n", + " 'F1-4_vs_rest': 0.06896551724137931,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.779783393501805,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6390532544378699,\n", + " 'F1-1.5': 0.757201646090535,\n", + " 'Recall-1.5': 0.8214285714285714,\n", + " 'Precision-1.5': 0.7022900763358778,\n", + " 'F1-2.5': 0.5213675213675214,\n", + " 'Recall-2.5': 0.5169491525423728,\n", + " 'Precision-2.5': 0.5258620689655172,\n", + " 'F1-3.5': 0.12903225806451613,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.125,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8918213317029476},\n", + " 'CM': {'0': {'-1': 0, '0': 3, '1': 160, '2': 17, '3': 4, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 45, '2': 38, '3': 15, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 28, '2': 46, '3': 25, '4': 7, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 12, '2': 41, '3': 47, '4': 3, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 8, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.12997793933438567,\n", + " 'Cohen': 0.15188330748912882,\n", + " 'Spearman': 0.6670290182364002,\n", + " 'Kendall': 0.5595646970064342,\n", + " 'Krippendorff': 0.5700553571149084,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7397260273972602,\n", + " 'TA-4.0': 0.812133072407045,\n", + " 'Acc': 0.3150684931506849,\n", + " 'MAE': 0.945857795172864,\n", + " 'MSE': 1.6507936507936516,\n", + " 'CA-0': 0.3870967741935484,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.16981132075471697,\n", + " 'CA-3': 0.2692307692307692,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23795745671497778,\n", + " 'Micro-F1': 0.3150684931506849,\n", + " 'F1-0_vs_rest': 0.5373134328358209,\n", + " 'F1-1_vs_rest': 0.28688524590163933,\n", + " 'F1-2_vs_rest': 0.1978021978021978,\n", + " 'F1-3_vs_rest': 0.2641509433962264,\n", + " 'F1-4_vs_rest': 0.1415929203539823,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8355437665782494,\n", + " 'Recall-0.5': 0.9692307692307692,\n", + " 'Precision-0.5': 0.7342657342657343,\n", + " 'F1-1.5': 0.7607843137254902,\n", + " 'Recall-1.5': 0.8622222222222222,\n", + " 'Precision-1.5': 0.6807017543859649,\n", + " 'F1-2.5': 0.5792682926829268,\n", + " 'Recall-2.5': 0.7983193277310925,\n", + " 'Precision-2.5': 0.45454545454545453,\n", + " 'F1-3.5': 0.1724137931034483,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.09900990099009901,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8949908435847219},\n", + " 'CM': {'0': {'-1': 0, '0': 72, '1': 83, '2': 16, '3': 8, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 5, '1': 35, '2': 27, '3': 17, '4': 15, '5': 1},\n", + " '2': {'-1': 0, '0': 5, '1': 17, '2': 18, '3': 50, '4': 16, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 9, '2': 15, '3': 28, '4': 52, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.08765361374308182,\n", + " 'Cohen': -0.013875296609601406,\n", + " 'Spearman': 0.6090754952932688,\n", + " 'Kendall': 0.5138170014192945,\n", + " 'Krippendorff': 0.23873667692162093,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5929549902152642,\n", + " 'TA-4.0': 0.6731898238747553,\n", + " 'Acc': 0.13111545988258316,\n", + " 'MAE': 1.4272667971298107,\n", + " 'MSE': 2.8993259404218326,\n", + " 'CA-0': 0.010752688172043012,\n", + " 'CA-1': 0.12,\n", + " 'CA-2': 0.2169811320754717,\n", + " 'CA-3': 0.20192307692307693,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.10582328366976557,\n", + " 'Micro-F1': 0.13111545988258316,\n", + " 'F1-0_vs_rest': 0.02127659574468085,\n", + " 'F1-1_vs_rest': 0.11940298507462686,\n", + " 'F1-2_vs_rest': 0.19008264462809918,\n", + " 'F1-3_vs_rest': 0.2079207920792079,\n", + " 'F1-4_vs_rest': 0.0962566844919786,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7793764988009593,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6385068762278978,\n", + " 'F1-1.5': 0.688783570300158,\n", + " 'Recall-1.5': 0.9688888888888889,\n", + " 'Precision-1.5': 0.5343137254901961,\n", + " 'F1-2.5': 0.5319693094629157,\n", + " 'Recall-2.5': 0.8739495798319328,\n", + " 'Precision-2.5': 0.38235294117647056,\n", + " 'F1-3.5': 0.1164021164021164,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.06321839080459771,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8876000718308812},\n", + " 'CM': {'0': {'-1': 0, '0': 2, '1': 82, '2': 72, '3': 16, '4': 14, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 12, '2': 27, '3': 27, '4': 34, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 6, '2': 23, '3': 31, '4': 46, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 13, '3': 21, '4': 69, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 3, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.10877788519724868,\n", + " 'Cohen': -0.04219543147208116,\n", + " 'Spearman': 0.7055295165209193,\n", + " 'Kendall': 0.6028509154160367,\n", + " 'Krippendorff': 0.29286334206533327,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6125244618395304,\n", + " 'TA-4.0': 0.7514677103718199,\n", + " 'Acc': 0.11937377690802348,\n", + " 'MAE': 1.3604044357469014,\n", + " 'MSE': 2.5985540334855406,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.0660377358490566,\n", + " 'CA-3': 0.3557692307692308,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.13617459660615897,\n", + " 'Micro-F1': 0.11937377690802348,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.06763285024154589,\n", + " 'F1-2_vs_rest': 0.06862745098039216,\n", + " 'F1-3_vs_rest': 0.27007299270072993,\n", + " 'F1-4_vs_rest': 0.125,\n", + " 'F1-5_vs_rest': 0.2857142857142857,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.7058823529411765,\n", + " 'Recall-1.5': 0.9866666666666667,\n", + " 'Precision-1.5': 0.5495049504950495,\n", + " 'F1-2.5': 0.5411764705882353,\n", + " 'Recall-2.5': 0.9663865546218487,\n", + " 'Precision-2.5': 0.3758169934640523,\n", + " 'F1-3.5': 0.1456953642384106,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08088235294117647,\n", + " 'F1-4.5': 0.2857142857142857,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.2,\n", + " 'NDCG@all': 0.9095851845950752},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 97, '2': 57, '3': 25, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 31, '3': 41, '4': 21, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 2, '2': 7, '3': 63, '4': 31, '5': 3},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 3, '3': 37, '4': 62, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.1828535162984544,\n", + " 'Cohen': 0.21217581506945005,\n", + " 'Spearman': 0.6686477475607646,\n", + " 'Kendall': 0.569705781113034,\n", + " 'Krippendorff': 0.5783262428695751,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7495107632093934,\n", + " 'TA-4.0': 0.923679060665362,\n", + " 'Acc': 0.37377690802348335,\n", + " 'MAE': 0.8043052837573385,\n", + " 'MSE': 1.217438573602957,\n", + " 'CA-0': 0.23118279569892472,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.5377358490566038,\n", + " 'CA-3': 0.4807692307692308,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2844742855149427,\n", + " 'Micro-F1': 0.37377690802348335,\n", + " 'F1-0_vs_rest': 0.37554585152838427,\n", + " 'F1-1_vs_rest': 0.2753623188405797,\n", + " 'F1-2_vs_rest': 0.42379182156133827,\n", + " 'F1-3_vs_rest': 0.49261083743842365,\n", + " 'F1-4_vs_rest': 0.13953488372093023,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.819672131147541,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6944444444444444,\n", + " 'F1-1.5': 0.7736943907156673,\n", + " 'Recall-1.5': 0.8888888888888888,\n", + " 'Precision-1.5': 0.684931506849315,\n", + " 'F1-2.5': 0.5806451612903226,\n", + " 'Recall-2.5': 0.6050420168067226,\n", + " 'Precision-2.5': 0.5581395348837209,\n", + " 'F1-3.5': 0.13333333333333333,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.1,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8911118391489357},\n", + " 'CM': {'0': {'-1': 0, '0': 43, '1': 113, '2': 23, '3': 2, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 38, '2': 43, '3': 13, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 18, '2': 57, '3': 28, '4': 3, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 7, '2': 34, '3': 50, '4': 13, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 5, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 1, '4': 0, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.037598367822792245,\n", + " 'Cohen': 0.023441396508728007,\n", + " 'Spearman': 0.4790301254803887,\n", + " 'Kendall': 0.38370219508418346,\n", + " 'Krippendorff': 0.11078890463249214,\n", + " 'Invalid': 244,\n", + " 'TA-2.0': 0.5468164794007491,\n", + " 'TA-4.0': 0.7191011235955056,\n", + " 'Acc': 0.1760299625468165,\n", + " 'MAE': 1.4513108614232209,\n", + " 'MSE': 3.1830004161464838,\n", + " 'CA-0': 0.08045977011494253,\n", + " 'CA-1': 0.09090909090909091,\n", + " 'CA-2': 0.22413793103448276,\n", + " 'CA-3': 0.3220338983050847,\n", + " 'CA-4': 0.42857142857142855,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.1371898181552723,\n", + " 'Micro-F1': 0.1760299625468165,\n", + " 'F1-0_vs_rest': 0.14893617021276595,\n", + " 'F1-1_vs_rest': 0.1282051282051282,\n", + " 'F1-2_vs_rest': 0.2,\n", + " 'F1-3_vs_rest': 0.2814814814814815,\n", + " 'F1-4_vs_rest': 0.06451612903225806,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8181818181818182,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6923076923076923,\n", + " 'F1-1.5': 0.6795580110497238,\n", + " 'Recall-1.5': 0.984,\n", + " 'Precision-1.5': 0.5189873417721519,\n", + " 'F1-2.5': 0.5086206896551724,\n", + " 'Recall-2.5': 0.8805970149253731,\n", + " 'Precision-2.5': 0.3575757575757576,\n", + " 'F1-3.5': 0.08247422680412371,\n", + " 'Recall-3.5': 0.5,\n", + " 'Precision-3.5': 0.0449438202247191,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8822217327335828},\n", + " 'CM': {'0': {'-1': 99, '0': 7, '1': 16, '2': 35, '3': 16, '4': 13, '5': 0},\n", + " '1': {'-1': 45, '0': 0, '1': 5, '2': 17, '3': 21, '4': 12, '5': 0},\n", + " '2': {'-1': 48, '0': 0, '1': 1, '2': 13, '3': 18, '4': 25, '5': 1},\n", + " '3': {'-1': 45, '0': 0, '1': 1, '2': 5, '3': 19, '4': 33, '5': 1},\n", + " '4': {'-1': 6, '0': 0, '1': 0, '2': 2, '3': 1, '4': 3, '5': 1},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 1, '4': 0, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.16688217084830123,\n", + " 'Cohen': 0.20078403631326092,\n", + " 'Spearman': 0.6761206514872166,\n", + " 'Kendall': 0.5768533675004286,\n", + " 'Krippendorff': 0.6016761061967593,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7686274509803922,\n", + " 'TA-4.0': 0.9686274509803922,\n", + " 'Acc': 0.37450980392156863,\n", + " 'MAE': 0.749019607843137,\n", + " 'MSE': 0.9812636165577341,\n", + " 'CA-0': 0.26881720430107525,\n", + " 'CA-1': 0.43,\n", + " 'CA-2': 0.5849056603773585,\n", + " 'CA-3': 0.34951456310679613,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2553913776882253,\n", + " 'Micro-F1': 0.37450980392156863,\n", + " 'F1-0_vs_rest': 0.4219409282700422,\n", + " 'F1-1_vs_rest': 0.30714285714285716,\n", + " 'F1-2_vs_rest': 0.4119601328903654,\n", + " 'F1-3_vs_rest': 0.391304347826087,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8250319284802043,\n", + " 'Recall-0.5': 0.9969135802469136,\n", + " 'Precision-0.5': 0.7037037037037037,\n", + " 'F1-1.5': 0.7833001988071571,\n", + " 'Recall-1.5': 0.8794642857142857,\n", + " 'Precision-1.5': 0.7060931899641577,\n", + " 'F1-2.5': 0.44554455445544555,\n", + " 'Recall-2.5': 0.3813559322033898,\n", + " 'Precision-2.5': 0.5357142857142857,\n", + " 'F1-3.5': 0.1111111111111111,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.3333333333333333,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9102540413838333},\n", + " 'CM': {'0': {'-1': 0, '0': 50, '1': 110, '2': 21, '3': 5, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 43, '2': 43, '3': 13, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 23, '2': 62, '3': 20, '4': 1, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 4, '2': 62, '3': 36, '4': 1, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 7, '3': 6, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.1392825964538014,\n", + " 'Cohen': 0.15901508579280466,\n", + " 'Spearman': 0.6715447771041636,\n", + " 'Kendall': 0.5475795397306189,\n", + " 'Krippendorff': 0.5945581260733762,\n", + " 'Invalid': 51,\n", + " 'TA-2.0': 0.7434782608695653,\n", + " 'TA-4.0': 0.8065217391304348,\n", + " 'Acc': 0.3173913043478261,\n", + " 'MAE': 0.9221014492753626,\n", + " 'MSE': 1.5437801932367154,\n", + " 'CA-0': 0.3660130718954248,\n", + " 'CA-1': 0.19318181818181818,\n", + " 'CA-2': 0.4,\n", + " 'CA-3': 0.2403846153846154,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.2850082065793031,\n", + " 'Micro-F1': 0.3173913043478261,\n", + " 'F1-0_vs_rest': 0.5,\n", + " 'F1-1_vs_rest': 0.19101123595505617,\n", + " 'F1-2_vs_rest': 0.35555555555555557,\n", + " 'F1-3_vs_rest': 0.28735632183908044,\n", + " 'F1-4_vs_rest': 0.12612612612612611,\n", + " 'F1-5_vs_rest': 0.25,\n", + " 'F1-0.5': 0.8390804597701149,\n", + " 'Recall-0.5': 0.9511400651465798,\n", + " 'Precision-0.5': 0.7506426735218509,\n", + " 'F1-1.5': 0.7799227799227799,\n", + " 'Recall-1.5': 0.9223744292237442,\n", + " 'Precision-1.5': 0.6755852842809364,\n", + " 'F1-2.5': 0.6416382252559727,\n", + " 'Recall-2.5': 0.7899159663865546,\n", + " 'Precision-2.5': 0.5402298850574713,\n", + " 'F1-3.5': 0.15126050420168066,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.08653846153846154,\n", + " 'F1-4.5': 0.25,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.16666666666666666,\n", + " 'NDCG@all': 0.9122718348963341},\n", + " 'CM': {'0': {'-1': 33, '0': 56, '1': 60, '2': 26, '3': 5, '4': 6, '5': 0},\n", + " '1': {'-1': 12, '0': 11, '1': 17, '2': 34, '3': 12, '4': 13, '5': 1},\n", + " '2': {'-1': 6, '0': 4, '1': 13, '2': 40, '3': 26, '4': 17, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 21, '3': 25, '4': 54, '5': 4},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 2, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.06424716343940354,\n", + " 'Cohen': -0.0037603728543822434,\n", + " 'Spearman': 0.6298714793309707,\n", + " 'Kendall': 0.530703695814679,\n", + " 'Krippendorff': 0.2719466720917523,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5694716242661448,\n", + " 'TA-4.0': 0.7436399217221135,\n", + " 'Acc': 0.15459882583170254,\n", + " 'MAE': 1.350945857795173,\n", + " 'MSE': 2.6381822135246797,\n", + " 'CA-0': 0.04838709677419355,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.19811320754716982,\n", + " 'CA-3': 0.2980769230769231,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12372388299950626,\n", + " 'Micro-F1': 0.15459882583170254,\n", + " 'F1-0_vs_rest': 0.09183673469387756,\n", + " 'F1-1_vs_rest': 0.08743169398907104,\n", + " 'F1-2_vs_rest': 0.16279069767441862,\n", + " 'F1-3_vs_rest': 0.26956521739130435,\n", + " 'F1-4_vs_rest': 0.13071895424836602,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.784503631961259,\n", + " 'Recall-0.5': 0.9969230769230769,\n", + " 'Precision-0.5': 0.6467065868263473,\n", + " 'F1-1.5': 0.6780715396578538,\n", + " 'Recall-1.5': 0.9688888888888889,\n", + " 'Precision-1.5': 0.5215311004784688,\n", + " 'F1-2.5': 0.5506493506493506,\n", + " 'Recall-2.5': 0.8907563025210085,\n", + " 'Precision-2.5': 0.39849624060150374,\n", + " 'F1-3.5': 0.15483870967741936,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.08571428571428572,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8963504900865995},\n", + " 'CM': {'0': {'-1': 0, '0': 9, '1': 69, '2': 77, '3': 21, '4': 10, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 43, '3': 28, '4': 21, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 4, '2': 21, '3': 43, '4': 37, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 11, '3': 31, '4': 60, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'ro': {'phi-4': {'metrics': {'Fleiss': 0.17982575986962762,\n", + " 'Cohen': 0.19075655561708782,\n", + " 'Spearman': 0.6473128154430938,\n", + " 'Kendall': 0.530183011869488,\n", + " 'Krippendorff': 0.5514652151776293,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7338551859099804,\n", + " 'TA-4.0': 0.8590998043052838,\n", + " 'Acc': 0.36203522504892366,\n", + " 'MAE': 0.9279191128506198,\n", + " 'MSE': 1.666394868449663,\n", + " 'CA-0': 0.4731182795698925,\n", + " 'CA-1': 0.16,\n", + " 'CA-2': 0.22641509433962265,\n", + " 'CA-3': 0.4807692307692308,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.31419056523974637,\n", + " 'Micro-F1': 0.36203522504892366,\n", + " 'F1-0_vs_rest': 0.5966101694915255,\n", + " 'F1-1_vs_rest': 0.17486338797814208,\n", + " 'F1-2_vs_rest': 0.23076923076923078,\n", + " 'F1-3_vs_rest': 0.4032258064516129,\n", + " 'F1-4_vs_rest': 0.14634146341463414,\n", + " 'F1-5_vs_rest': 0.3333333333333333,\n", + " 'F1-0.5': 0.8363136176066025,\n", + " 'Recall-0.5': 0.9353846153846154,\n", + " 'Precision-0.5': 0.7562189054726368,\n", + " 'F1-1.5': 0.7647058823529411,\n", + " 'Recall-1.5': 0.9244444444444444,\n", + " 'Precision-1.5': 0.6520376175548589,\n", + " 'F1-2.5': 0.5595238095238095,\n", + " 'Recall-2.5': 0.7899159663865546,\n", + " 'Precision-2.5': 0.43317972350230416,\n", + " 'F1-3.5': 0.18181818181818182,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.1095890410958904,\n", + " 'F1-4.5': 0.3333333333333333,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.25,\n", + " 'NDCG@all': 0.8922818031812116},\n", + " 'CM': {'0': {'-1': 0, '0': 88, '1': 53, '2': 27, '3': 11, '4': 6, '5': 1},\n", + " '1': {'-1': 0, '0': 18, '1': 16, '2': 29, '3': 26, '4': 10, '5': 1},\n", + " '2': {'-1': 0, '0': 3, '1': 11, '2': 24, '3': 51, '4': 17, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 21, '3': 50, '4': 29, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 6, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.08649983396625897,\n", + " 'Cohen': 0.12671672641694087,\n", + " 'Spearman': 0.5951731806789663,\n", + " 'Kendall': 0.5006393262937947,\n", + " 'Krippendorff': 0.4941370166641462,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7084148727984344,\n", + " 'TA-4.0': 0.923679060665362,\n", + " 'Acc': 0.299412915851272,\n", + " 'MAE': 0.9197651663405086,\n", + " 'MSE': 1.438138725809959,\n", + " 'CA-0': 0.12365591397849462,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.33962264150943394,\n", + " 'CA-3': 0.5288461538461539,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2294857520055369,\n", + " 'Micro-F1': 0.299412915851272,\n", + " 'F1-0_vs_rest': 0.2169811320754717,\n", + " 'F1-1_vs_rest': 0.24,\n", + " 'F1-2_vs_rest': 0.3076923076923077,\n", + " 'F1-3_vs_rest': 0.4845814977973568,\n", + " 'F1-4_vs_rest': 0.1276595744680851,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7950617283950617,\n", + " 'Recall-0.5': 0.9907692307692307,\n", + " 'Precision-0.5': 0.6639175257731958,\n", + " 'F1-1.5': 0.7294117647058823,\n", + " 'Recall-1.5': 0.8266666666666667,\n", + " 'Precision-1.5': 0.6526315789473685,\n", + " 'F1-2.5': 0.5579710144927537,\n", + " 'Recall-2.5': 0.6470588235294118,\n", + " 'Precision-2.5': 0.49044585987261147,\n", + " 'F1-3.5': 0.20408163265306123,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.14705882352941177,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8877087338901798},\n", + " 'CM': {'0': {'-1': 0, '0': 23, '1': 125, '2': 29, '3': 5, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 36, '2': 37, '3': 16, '4': 8, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 23, '2': 36, '3': 39, '4': 8, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 16, '2': 24, '3': 55, '4': 9, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 8, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.21792718968296618,\n", + " 'Cohen': 0.2369349885780624,\n", + " 'Spearman': 0.6955869318500117,\n", + " 'Kendall': 0.5829388638937573,\n", + " 'Krippendorff': 0.6007810987073277,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7749510763209393,\n", + " 'TA-4.0': 0.7377690802348337,\n", + " 'Acc': 0.37573385518590996,\n", + " 'MAE': 0.9726027397260275,\n", + " 'MSE': 2.021526418786693,\n", + " 'CA-0': 0.478494623655914,\n", + " 'CA-1': 0.39,\n", + " 'CA-2': 0.37735849056603776,\n", + " 'CA-3': 0.14423076923076922,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.2980824218780301,\n", + " 'Micro-F1': 0.37573385518590996,\n", + " 'F1-0_vs_rest': 0.6312056737588653,\n", + " 'F1-1_vs_rest': 0.35135135135135137,\n", + " 'F1-2_vs_rest': 0.39215686274509803,\n", + " 'F1-3_vs_rest': 0.189873417721519,\n", + " 'F1-4_vs_rest': 0.11864406779661017,\n", + " 'F1-5_vs_rest': 0.10526315789473684,\n", + " 'F1-0.5': 0.8594594594594595,\n", + " 'Recall-0.5': 0.9784615384615385,\n", + " 'Precision-0.5': 0.7662650602409639,\n", + " 'F1-1.5': 0.7992277992277992,\n", + " 'Recall-1.5': 0.92,\n", + " 'Precision-1.5': 0.7064846416382252,\n", + " 'F1-2.5': 0.6178343949044586,\n", + " 'Recall-2.5': 0.8151260504201681,\n", + " 'Precision-2.5': 0.49743589743589745,\n", + " 'F1-3.5': 0.14102564102564102,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.07801418439716312,\n", + " 'F1-4.5': 0.10526315789473684,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.05555555555555555,\n", + " 'NDCG@all': 0.8942754866925002},\n", + " 'CM': {'0': {'-1': 0, '0': 89, '1': 66, '2': 15, '3': 7, '4': 5, '5': 4},\n", + " '1': {'-1': 0, '0': 6, '1': 39, '2': 23, '3': 12, '4': 12, '5': 8},\n", + " '2': {'-1': 0, '0': 1, '1': 15, '2': 40, '3': 19, '4': 21, '5': 10},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 17, '3': 15, '4': 60, '5': 10},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 1, '4': 7, '5': 2},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.06622685764802673,\n", + " 'Cohen': 0.1209150169581219,\n", + " 'Spearman': 0.6493877405360879,\n", + " 'Kendall': 0.5561427601313816,\n", + " 'Krippendorff': 0.5430803920448131,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.7583497053045186,\n", + " 'TA-4.0': 0.9449901768172888,\n", + " 'Acc': 0.29469548133595286,\n", + " 'MAE': 0.8605108055009824,\n", + " 'MSE': 1.1914429163938003,\n", + " 'CA-0': 0.06989247311827956,\n", + " 'CA-1': 0.39,\n", + " 'CA-2': 0.4339622641509434,\n", + " 'CA-3': 0.4803921568627451,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2332471696752915,\n", + " 'Micro-F1': 0.29469548133595286,\n", + " 'F1-0_vs_rest': 0.1306532663316583,\n", + " 'F1-1_vs_rest': 0.23423423423423423,\n", + " 'F1-2_vs_rest': 0.3770491803278688,\n", + " 'F1-3_vs_rest': 0.47572815533980584,\n", + " 'F1-4_vs_rest': 0.18181818181818182,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7887667887667887,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6512096774193549,\n", + " 'F1-1.5': 0.7530864197530864,\n", + " 'Recall-1.5': 0.820627802690583,\n", + " 'Precision-1.5': 0.6958174904942965,\n", + " 'F1-2.5': 0.5454545454545454,\n", + " 'Recall-2.5': 0.5641025641025641,\n", + " 'Precision-2.5': 0.528,\n", + " 'F1-3.5': 0.2222222222222222,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.19047619047619047,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9032298521738927},\n", + " 'CM': {'0': {'-1': 0, '0': 13, '1': 154, '2': 12, '3': 6, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 39, '2': 41, '3': 18, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 28, '2': 46, '3': 25, '4': 6, '5': 1},\n", + " '3': {'-1': 2, '0': 0, '1': 12, '2': 34, '3': 49, '4': 7, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 5, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.1282618310482087,\n", + " 'Cohen': 0.1503787179013486,\n", + " 'Spearman': 0.6562437998651242,\n", + " 'Kendall': 0.5467187138302878,\n", + " 'Krippendorff': 0.5560466776663234,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7201565557729941,\n", + " 'TA-4.0': 0.8180039138943248,\n", + " 'Acc': 0.3131115459882583,\n", + " 'MAE': 0.9696673189823877,\n", + " 'MSE': 1.6862904979343338,\n", + " 'CA-0': 0.3763440860215054,\n", + " 'CA-1': 0.33,\n", + " 'CA-2': 0.16037735849056603,\n", + " 'CA-3': 0.2980769230769231,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23909870115413612,\n", + " 'Micro-F1': 0.3131115459882583,\n", + " 'F1-0_vs_rest': 0.5283018867924528,\n", + " 'F1-1_vs_rest': 0.2727272727272727,\n", + " 'F1-2_vs_rest': 0.18181818181818182,\n", + " 'F1-3_vs_rest': 0.29245283018867924,\n", + " 'F1-4_vs_rest': 0.1592920353982301,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8348745046235139,\n", + " 'Recall-0.5': 0.9723076923076923,\n", + " 'Precision-0.5': 0.7314814814814815,\n", + " 'F1-1.5': 0.7378640776699029,\n", + " 'Recall-1.5': 0.8444444444444444,\n", + " 'Precision-1.5': 0.6551724137931034,\n", + " 'F1-2.5': 0.5792682926829268,\n", + " 'Recall-2.5': 0.7983193277310925,\n", + " 'Precision-2.5': 0.45454545454545453,\n", + " 'F1-3.5': 0.1896551724137931,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.10891089108910891,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8959112072350262},\n", + " 'CM': {'0': {'-1': 0, '0': 70, '1': 78, '2': 24, '3': 9, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 5, '1': 33, '2': 27, '3': 20, '4': 14, '5': 1},\n", + " '2': {'-1': 0, '0': 4, '1': 20, '2': 17, '3': 44, '4': 21, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 11, '2': 13, '3': 31, '4': 49, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.11391113336223843,\n", + " 'Cohen': -0.028182654378858363,\n", + " 'Spearman': 0.630305505223741,\n", + " 'Kendall': 0.5327592835080491,\n", + " 'Krippendorff': 0.2129023984824392,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5772994129158513,\n", + " 'TA-4.0': 0.6360078277886497,\n", + " 'Acc': 0.1095890410958904,\n", + " 'MAE': 1.4853228962818004,\n", + " 'MSE': 3.09784735812133,\n", + " 'CA-0': 0.005376344086021506,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.16037735849056603,\n", + " 'CA-3': 0.18269230769230768,\n", + " 'CA-4': 0.9230769230769231,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08993055510740922,\n", + " 'Micro-F1': 0.1095890410958904,\n", + " 'F1-0_vs_rest': 0.0106951871657754,\n", + " 'F1-1_vs_rest': 0.07142857142857142,\n", + " 'F1-2_vs_rest': 0.1452991452991453,\n", + " 'F1-3_vs_rest': 0.19895287958115182,\n", + " 'F1-4_vs_rest': 0.11320754716981132,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7784431137724551,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6372549019607843,\n", + " 'F1-1.5': 0.6823161189358372,\n", + " 'Recall-1.5': 0.9688888888888889,\n", + " 'Precision-1.5': 0.5265700483091788,\n", + " 'F1-2.5': 0.5382716049382716,\n", + " 'Recall-2.5': 0.9159663865546218,\n", + " 'Precision-2.5': 0.3811188811188811,\n", + " 'F1-3.5': 0.1308411214953271,\n", + " 'Recall-3.5': 0.9333333333333333,\n", + " 'Precision-3.5': 0.07035175879396985,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.886270281640181},\n", + " 'CM': {'0': {'-1': 0, '0': 1, '1': 82, '2': 71, '3': 13, '4': 19, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 32, '3': 25, '4': 36, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 17, '3': 29, '4': 55, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 8, '3': 19, '4': 75, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 12, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.11699014922461715,\n", + " 'Cohen': -0.049152845148612734,\n", + " 'Spearman': 0.7178107376949358,\n", + " 'Kendall': 0.611073548390273,\n", + " 'Krippendorff': 0.2792245981260555,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.5952848722986247,\n", + " 'TA-4.0': 0.768172888015717,\n", + " 'Acc': 0.11591355599214145,\n", + " 'MAE': 1.376882776686313,\n", + " 'MSE': 2.622189478279852,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.04081632653061224,\n", + " 'CA-2': 0.09433962264150944,\n", + " 'CA-3': 0.34615384615384615,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08679651859594735,\n", + " 'Micro-F1': 0.11591355599214145,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.041025641025641026,\n", + " 'F1-2_vs_rest': 0.0966183574879227,\n", + " 'F1-3_vs_rest': 0.2517482517482518,\n", + " 'F1-4_vs_rest': 0.13138686131386862,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7764423076923077,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6345776031434185,\n", + " 'F1-1.5': 0.6970172684458399,\n", + " 'Recall-1.5': 0.9866666666666667,\n", + " 'Precision-1.5': 0.5388349514563107,\n", + " 'F1-2.5': 0.5395348837209303,\n", + " 'Recall-2.5': 0.9747899159663865,\n", + " 'Precision-2.5': 0.3729903536977492,\n", + " 'F1-3.5': 0.1527777777777778,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08527131782945736,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9043028559545201},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 90, '2': 63, '3': 28, '4': 5, '5': 0},\n", + " '1': {'-1': 2, '0': 0, '1': 4, '2': 26, '3': 51, '4': 16, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 2, '2': 10, '3': 63, '4': 29, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 2, '3': 36, '4': 63, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.20703841288928693,\n", + " 'Cohen': 0.23319549724729915,\n", + " 'Spearman': 0.6838791945060071,\n", + " 'Kendall': 0.5797879076631515,\n", + " 'Krippendorff': 0.5835725373755555,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7436399217221135,\n", + " 'TA-4.0': 0.923679060665362,\n", + " 'Acc': 0.3913894324853229,\n", + " 'MAE': 0.7912589693411609,\n", + " 'MSE': 1.1965644705370728,\n", + " 'CA-0': 0.24731182795698925,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.5849056603773585,\n", + " 'CA-3': 0.5288461538461539,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2889933199383591,\n", + " 'Micro-F1': 0.3913894324853229,\n", + " 'F1-0_vs_rest': 0.39655172413793105,\n", + " 'F1-1_vs_rest': 0.26717557251908397,\n", + " 'F1-2_vs_rest': 0.45588235294117646,\n", + " 'F1-3_vs_rest': 0.5213270142180095,\n", + " 'F1-4_vs_rest': 0.09302325581395349,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8227848101265823,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6989247311827957,\n", + " 'F1-1.5': 0.7765151515151515,\n", + " 'Recall-1.5': 0.9111111111111111,\n", + " 'Precision-1.5': 0.6765676567656765,\n", + " 'F1-2.5': 0.6171875,\n", + " 'Recall-2.5': 0.6638655462184874,\n", + " 'Precision-2.5': 0.5766423357664233,\n", + " 'F1-3.5': 0.13333333333333333,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.1,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8971983011165344},\n", + " 'CM': {'0': {'-1': 0, '0': 46, '1': 107, '2': 25, '3': 4, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 35, '2': 42, '3': 19, '4': 4, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 17, '2': 62, '3': 21, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 33, '3': 55, '4': 13, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 7, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.04792413218952474,\n", + " 'Cohen': 0.01485325393449588,\n", + " 'Spearman': 0.538972633923543,\n", + " 'Kendall': 0.43118402934284417,\n", + " 'Krippendorff': 0.20295819179067154,\n", + " 'Invalid': 249,\n", + " 'TA-2.0': 0.5954198473282443,\n", + " 'TA-4.0': 0.6679389312977099,\n", + " 'Acc': 0.15648854961832062,\n", + " 'MAE': 1.5069974554707375,\n", + " 'MSE': 3.3512510602205254,\n", + " 'CA-0': 0.12745098039215685,\n", + " 'CA-1': 0.1346153846153846,\n", + " 'CA-2': 0.1836734693877551,\n", + " 'CA-3': 0.19230769230769232,\n", + " 'CA-4': 0.4,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12925100636965042,\n", + " 'Micro-F1': 0.15648854961832062,\n", + " 'F1-0_vs_rest': 0.22033898305084745,\n", + " 'F1-1_vs_rest': 0.15384615384615385,\n", + " 'F1-2_vs_rest': 0.15384615384615385,\n", + " 'F1-3_vs_rest': 0.20202020202020202,\n", + " 'F1-4_vs_rest': 0.045454545454545456,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7733990147783252,\n", + " 'Recall-0.5': 0.98125,\n", + " 'Precision-0.5': 0.6382113821138211,\n", + " 'F1-1.5': 0.6603174603174603,\n", + " 'Recall-1.5': 0.9629629629629629,\n", + " 'Precision-1.5': 0.5024154589371981,\n", + " 'F1-2.5': 0.494949494949495,\n", + " 'Recall-2.5': 0.8305084745762712,\n", + " 'Precision-2.5': 0.35251798561151076,\n", + " 'F1-3.5': 0.08080808080808081,\n", + " 'Recall-3.5': 0.5714285714285714,\n", + " 'Precision-3.5': 0.043478260869565216,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8580436634813599},\n", + " 'CM': {'0': {'-1': 84, '0': 13, '1': 30, '2': 38, '3': 8, '4': 12, '5': 1},\n", + " '1': {'-1': 48, '0': 1, '1': 7, '2': 12, '3': 13, '4': 18, '5': 1},\n", + " '2': {'-1': 57, '0': 2, '1': 1, '2': 9, '3': 14, '4': 21, '5': 2},\n", + " '3': {'-1': 52, '0': 0, '1': 1, '2': 8, '3': 10, '4': 29, '5': 4},\n", + " '4': {'-1': 8, '0': 0, '1': 0, '2': 1, '3': 1, '4': 2, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.11104528207598441,\n", + " 'Cohen': 0.15127860821319483,\n", + " 'Spearman': 0.6772796626780714,\n", + " 'Kendall': 0.5748306464919687,\n", + " 'Krippendorff': 0.5818652066897299,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.7544204322200393,\n", + " 'TA-4.0': 0.962671905697446,\n", + " 'Acc': 0.33398821218074654,\n", + " 'MAE': 0.7901113294040598,\n", + " 'MSE': 1.0288692425234662,\n", + " 'CA-0': 0.22580645161290322,\n", + " 'CA-1': 0.34,\n", + " 'CA-2': 0.5943396226415094,\n", + " 'CA-3': 0.30392156862745096,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2257654002110132,\n", + " 'Micro-F1': 0.33398821218074654,\n", + " 'F1-0_vs_rest': 0.3652173913043478,\n", + " 'F1-1_vs_rest': 0.2537313432835821,\n", + " 'F1-2_vs_rest': 0.3949843260188088,\n", + " 'F1-3_vs_rest': 0.34065934065934067,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8147208121827412,\n", + " 'Recall-0.5': 0.9938080495356038,\n", + " 'Precision-0.5': 0.6903225806451613,\n", + " 'F1-1.5': 0.7807692307692308,\n", + " 'Recall-1.5': 0.9103139013452914,\n", + " 'Precision-1.5': 0.6835016835016835,\n", + " 'F1-2.5': 0.417910447761194,\n", + " 'Recall-2.5': 0.358974358974359,\n", + " 'Precision-2.5': 0.5,\n", + " 'F1-3.5': 0.0,\n", + " 'Recall-3.5': 0.0,\n", + " 'Precision-3.5': 0.0,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8991635957819315},\n", + " 'CM': {'0': {'-1': 0, '0': 42, '1': 115, '2': 25, '3': 4, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 34, '2': 52, '3': 13, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 17, '2': 63, '3': 23, '4': 2, '5': 0},\n", + " '3': {'-1': 2, '0': 0, '1': 2, '2': 67, '3': 31, '4': 2, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 7, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.12969699074275035,\n", + " 'Cohen': 0.15062612615156956,\n", + " 'Spearman': 0.6862066027045421,\n", + " 'Kendall': 0.5628058781006902,\n", + " 'Krippendorff': 0.5774094561697447,\n", + " 'Invalid': 44,\n", + " 'TA-2.0': 0.7301927194860813,\n", + " 'TA-4.0': 0.8201284796573876,\n", + " 'Acc': 0.31049250535331907,\n", + " 'MAE': 0.9500356887937189,\n", + " 'MSE': 1.6055198667618371,\n", + " 'CA-0': 0.35,\n", + " 'CA-1': 0.15730337078651685,\n", + " 'CA-2': 0.3939393939393939,\n", + " 'CA-3': 0.27884615384615385,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23883203830170552,\n", + " 'Micro-F1': 0.31049250535331907,\n", + " 'F1-0_vs_rest': 0.4890829694323144,\n", + " 'F1-1_vs_rest': 0.17073170731707318,\n", + " 'F1-2_vs_rest': 0.3305084745762712,\n", + " 'F1-3_vs_rest': 0.3118279569892473,\n", + " 'F1-4_vs_rest': 0.1308411214953271,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8340425531914893,\n", + " 'Recall-0.5': 0.9576547231270358,\n", + " 'Precision-0.5': 0.7386934673366834,\n", + " 'F1-1.5': 0.7726432532347505,\n", + " 'Recall-1.5': 0.9587155963302753,\n", + " 'Precision-1.5': 0.6470588235294118,\n", + " 'F1-2.5': 0.6360655737704918,\n", + " 'Recall-2.5': 0.8151260504201681,\n", + " 'Precision-2.5': 0.521505376344086,\n", + " 'F1-3.5': 0.16806722689075632,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.09615384615384616,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9102496793395825},\n", + " 'CM': {'0': {'-1': 26, '0': 56, '1': 56, '2': 37, '3': 6, '4': 4, '5': 1},\n", + " '1': {'-1': 11, '0': 9, '1': 14, '2': 39, '3': 16, '4': 10, '5': 1},\n", + " '2': {'-1': 7, '0': 4, '1': 5, '2': 39, '3': 27, '4': 23, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 21, '3': 29, '4': 48, '5': 6},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 4, '4': 7, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.04720688574390627,\n", + " 'Cohen': 0.009088959560517806,\n", + " 'Spearman': 0.6307093215547209,\n", + " 'Kendall': 0.52826495780647,\n", + " 'Krippendorff': 0.2900721605938025,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5949119373776908,\n", + " 'TA-4.0': 0.7592954990215264,\n", + " 'Acc': 0.16829745596868884,\n", + " 'MAE': 1.3124592302674494,\n", + " 'MSE': 2.5488149597738645,\n", + " 'CA-0': 0.05913978494623656,\n", + " 'CA-1': 0.12,\n", + " 'CA-2': 0.19811320754716982,\n", + " 'CA-3': 0.3076923076923077,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.13539964618933534,\n", + " 'Micro-F1': 0.16829745596868884,\n", + " 'F1-0_vs_rest': 0.1116751269035533,\n", + " 'F1-1_vs_rest': 0.1256544502617801,\n", + " 'F1-2_vs_rest': 0.1693548387096774,\n", + " 'F1-3_vs_rest': 0.26778242677824265,\n", + " 'F1-4_vs_rest': 0.13793103448275862,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7878787878787878,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.65,\n", + " 'F1-1.5': 0.6908517350157729,\n", + " 'Recall-1.5': 0.9733333333333334,\n", + " 'Precision-1.5': 0.5354523227383863,\n", + " 'F1-2.5': 0.5440414507772021,\n", + " 'Recall-2.5': 0.8823529411764706,\n", + " 'Precision-2.5': 0.39325842696629215,\n", + " 'F1-3.5': 0.16326530612244897,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.09090909090909091,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8980414748022626},\n", + " 'CM': {'0': {'-1': 0, '0': 11, '1': 73, '2': 68, '3': 25, '4': 9, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 12, '2': 39, '3': 31, '4': 18, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 6, '2': 21, '3': 44, '4': 35, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 14, '3': 32, '4': 58, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'lt': {'phi-4': {'metrics': {'Fleiss': 0.20412219178755234,\n", + " 'Cohen': 0.21567706542843446,\n", + " 'Spearman': 0.6380591962126064,\n", + " 'Kendall': 0.529572911832488,\n", + " 'Krippendorff': 0.5546154024926158,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7299412915851272,\n", + " 'TA-4.0': 0.8825831702544031,\n", + " 'Acc': 0.3796477495107632,\n", + " 'MAE': 0.8910632746249184,\n", + " 'MSE': 1.5569689062839747,\n", + " 'CA-0': 0.43010752688172044,\n", + " 'CA-1': 0.33,\n", + " 'CA-2': 0.29245283018867924,\n", + " 'CA-3': 0.4230769230769231,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.28375910835474744,\n", + " 'Micro-F1': 0.3796477495107632,\n", + " 'F1-0_vs_rest': 0.5714285714285714,\n", + " 'F1-1_vs_rest': 0.3113207547169811,\n", + " 'F1-2_vs_rest': 0.29107981220657275,\n", + " 'F1-3_vs_rest': 0.3728813559322034,\n", + " 'F1-4_vs_rest': 0.15584415584415584,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8382749326145552,\n", + " 'Recall-0.5': 0.9569230769230769,\n", + " 'Precision-0.5': 0.7458033573141487,\n", + " 'F1-1.5': 0.7547169811320755,\n", + " 'Recall-1.5': 0.8888888888888888,\n", + " 'Precision-1.5': 0.6557377049180327,\n", + " 'F1-2.5': 0.5741324921135647,\n", + " 'Recall-2.5': 0.7647058823529411,\n", + " 'Precision-2.5': 0.4595959595959596,\n", + " 'F1-3.5': 0.19753086419753085,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.12121212121212122,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8960655287569413},\n", + " 'CM': {'0': {'-1': 0, '0': 80, '1': 59, '2': 29, '3': 14, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 9, '1': 33, '2': 25, '3': 24, '4': 8, '5': 1},\n", + " '2': {'-1': 0, '0': 4, '1': 15, '2': 31, '3': 44, '4': 11, '5': 1},\n", + " '3': {'-1': 0, '0': 1, '1': 5, '2': 21, '3': 44, '4': 33, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 6, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.09995821835040046,\n", + " 'Cohen': 0.1342193042833696,\n", + " 'Spearman': 0.5894550466137274,\n", + " 'Kendall': 0.4911509980019675,\n", + " 'Krippendorff': 0.4970252115011522,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7064579256360078,\n", + " 'TA-4.0': 0.9315068493150684,\n", + " 'Acc': 0.3111545988258317,\n", + " 'MAE': 0.9008480104370515,\n", + " 'MSE': 1.3809523809523807,\n", + " 'CA-0': 0.1827956989247312,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.39622641509433965,\n", + " 'CA-3': 0.4326923076923077,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2337996313088223,\n", + " 'Micro-F1': 0.3111545988258317,\n", + " 'F1-0_vs_rest': 0.30493273542600896,\n", + " 'F1-1_vs_rest': 0.2517482517482518,\n", + " 'F1-2_vs_rest': 0.33070866141732286,\n", + " 'F1-3_vs_rest': 0.41284403669724773,\n", + " 'F1-4_vs_rest': 0.10256410256410256,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8060075093867334,\n", + " 'Recall-0.5': 0.9907692307692307,\n", + " 'Precision-0.5': 0.679324894514768,\n", + " 'F1-1.5': 0.7251461988304093,\n", + " 'Recall-1.5': 0.8266666666666667,\n", + " 'Precision-1.5': 0.6458333333333334,\n", + " 'F1-2.5': 0.5328185328185329,\n", + " 'Recall-2.5': 0.5798319327731093,\n", + " 'Precision-2.5': 0.4928571428571429,\n", + " 'F1-3.5': 0.14634146341463414,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.11538461538461539,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8861634817796046},\n", + " 'CM': {'0': {'-1': 0, '0': 34, '1': 111, '2': 32, '3': 6, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 36, '2': 39, '3': 15, '4': 7, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 24, '2': 42, '3': 36, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 15, '2': 35, '3': 45, '4': 9, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 11, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.2237198591167705,\n", + " 'Cohen': 0.23968782725304105,\n", + " 'Spearman': 0.6970744759953631,\n", + " 'Kendall': 0.5787064794075746,\n", + " 'Krippendorff': 0.6316224208646526,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7749510763209393,\n", + " 'TA-4.0': 0.776908023483366,\n", + " 'Acc': 0.38551859099804303,\n", + " 'MAE': 0.9093281148075668,\n", + " 'MSE': 1.7738638834529246,\n", + " 'CA-0': 0.5053763440860215,\n", + " 'CA-1': 0.41,\n", + " 'CA-2': 0.2830188679245283,\n", + " 'CA-3': 0.22115384615384615,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.30854440291966456,\n", + " 'Micro-F1': 0.38551859099804303,\n", + " 'F1-0_vs_rest': 0.6505190311418685,\n", + " 'F1-1_vs_rest': 0.34309623430962344,\n", + " 'F1-2_vs_rest': 0.30927835051546393,\n", + " 'F1-3_vs_rest': 0.27710843373493976,\n", + " 'F1-4_vs_rest': 0.13333333333333333,\n", + " 'F1-5_vs_rest': 0.13793103448275862,\n", + " 'F1-0.5': 0.8622100954979536,\n", + " 'Recall-0.5': 0.9723076923076923,\n", + " 'Precision-0.5': 0.7745098039215687,\n", + " 'F1-1.5': 0.7854251012145749,\n", + " 'Recall-1.5': 0.8622222222222222,\n", + " 'Precision-1.5': 0.7211895910780669,\n", + " 'F1-2.5': 0.62,\n", + " 'Recall-2.5': 0.7815126050420168,\n", + " 'Precision-2.5': 0.5138121546961326,\n", + " 'F1-3.5': 0.14925373134328357,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.08403361344537816,\n", + " 'F1-4.5': 0.13793103448275862,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.07407407407407407,\n", + " 'NDCG@all': 0.8931184670401409},\n", + " 'CM': {'0': {'-1': 0, '0': 94, '1': 68, '2': 13, '3': 4, '4': 4, '5': 3},\n", + " '1': {'-1': 0, '0': 8, '1': 41, '2': 24, '3': 8, '4': 12, '5': 7},\n", + " '2': {'-1': 0, '0': 1, '1': 25, '2': 30, '3': 25, '4': 18, '5': 7},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 18, '3': 23, '4': 51, '5': 7},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 2, '4': 7, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.048797094870631025,\n", + " 'Cohen': 0.10929281122150791,\n", + " 'Spearman': 0.6598908712189564,\n", + " 'Kendall': 0.5665103751552063,\n", + " 'Krippendorff': 0.5402385173124379,\n", + " 'Invalid': 3,\n", + " 'TA-2.0': 0.7539370078740157,\n", + " 'TA-4.0': 0.9507874015748031,\n", + " 'Acc': 0.2854330708661417,\n", + " 'MAE': 0.8562992125984252,\n", + " 'MSE': 1.1485126859142603,\n", + " 'CA-0': 0.026881720430107527,\n", + " 'CA-1': 0.41,\n", + " 'CA-2': 0.4528301886792453,\n", + " 'CA-3': 0.49504950495049505,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.20558813172507864,\n", + " 'Micro-F1': 0.2854330708661417,\n", + " 'F1-0_vs_rest': 0.05235602094240838,\n", + " 'F1-1_vs_rest': 0.24624624624624625,\n", + " 'F1-2_vs_rest': 0.37065637065637064,\n", + " 'F1-3_vs_rest': 0.49019607843137253,\n", + " 'F1-4_vs_rest': 0.07407407407407407,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7806060606060606,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6401590457256461,\n", + " 'F1-1.5': 0.7601626016260162,\n", + " 'Recall-1.5': 0.8423423423423423,\n", + " 'Precision-1.5': 0.6925925925925925,\n", + " 'F1-2.5': 0.5579399141630901,\n", + " 'Recall-2.5': 0.5603448275862069,\n", + " 'Precision-2.5': 0.5555555555555556,\n", + " 'F1-3.5': 0.13793103448275862,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.14285714285714285,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8981452608867684},\n", + " 'CM': {'0': {'-1': 0, '0': 5, '1': 157, '2': 19, '3': 3, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 41, '2': 42, '3': 15, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 28, '2': 48, '3': 27, '4': 3, '5': 0},\n", + " '3': {'-1': 3, '0': 0, '1': 7, '2': 39, '3': 50, '4': 5, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 7, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.15469590411388787,\n", + " 'Cohen': 0.17590027700831024,\n", + " 'Spearman': 0.6421188811925679,\n", + " 'Kendall': 0.5354484304528153,\n", + " 'Krippendorff': 0.5276977471026458,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7045009784735812,\n", + " 'TA-4.0': 0.8199608610567515,\n", + " 'Acc': 0.33463796477495106,\n", + " 'MAE': 0.9706457925636006,\n", + " 'MSE': 1.74037834311807,\n", + " 'CA-0': 0.3602150537634409,\n", + " 'CA-1': 0.34,\n", + " 'CA-2': 0.22641509433962265,\n", + " 'CA-3': 0.38461538461538464,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2535674369770098,\n", + " 'Micro-F1': 0.33463796477495106,\n", + " 'F1-0_vs_rest': 0.5173745173745173,\n", + " 'F1-1_vs_rest': 0.288135593220339,\n", + " 'F1-2_vs_rest': 0.24870466321243523,\n", + " 'F1-3_vs_rest': 0.35398230088495575,\n", + " 'F1-4_vs_rest': 0.11320754716981132,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.836173001310616,\n", + " 'Recall-0.5': 0.9815384615384616,\n", + " 'Precision-0.5': 0.728310502283105,\n", + " 'F1-1.5': 0.7362428842504743,\n", + " 'Recall-1.5': 0.8622222222222222,\n", + " 'Precision-1.5': 0.6423841059602649,\n", + " 'F1-2.5': 0.592814371257485,\n", + " 'Recall-2.5': 0.8319327731092437,\n", + " 'Precision-2.5': 0.4604651162790698,\n", + " 'F1-3.5': 0.14814814814814814,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.08602150537634409,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9004884899333929},\n", + " 'CM': {'0': {'-1': 0, '0': 67, '1': 74, '2': 28, '3': 11, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 34, '2': 29, '3': 20, '4': 14, '5': 0},\n", + " '2': {'-1': 0, '0': 3, '1': 14, '2': 24, '3': 44, '4': 21, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 14, '2': 6, '3': 40, '4': 44, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 7, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.13797562318909984,\n", + " 'Cohen': -0.04744041295464463,\n", + " 'Spearman': 0.6317197197764564,\n", + " 'Kendall': 0.5360337139258441,\n", + " 'Krippendorff': 0.19061813447405906,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5694716242661448,\n", + " 'TA-4.0': 0.6125244618395304,\n", + " 'Acc': 0.09001956947162426,\n", + " 'MAE': 1.5410958904109588,\n", + " 'MSE': 3.2316264405305506,\n", + " 'CA-0': 0.005376344086021506,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.12264150943396226,\n", + " 'CA-3': 0.14423076923076922,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.07408461852657429,\n", + " 'Micro-F1': 0.09001956947162426,\n", + " 'F1-0_vs_rest': 0.0106951871657754,\n", + " 'F1-1_vs_rest': 0.07368421052631578,\n", + " 'F1-2_vs_rest': 0.11255411255411256,\n", + " 'F1-3_vs_rest': 0.15625,\n", + " 'F1-4_vs_rest': 0.091324200913242,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7784431137724551,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6372549019607843,\n", + " 'F1-1.5': 0.6759689922480621,\n", + " 'Recall-1.5': 0.9688888888888889,\n", + " 'Precision-1.5': 0.5190476190476191,\n", + " 'F1-2.5': 0.5265700483091788,\n", + " 'Recall-2.5': 0.9159663865546218,\n", + " 'Precision-2.5': 0.3694915254237288,\n", + " 'F1-3.5': 0.10810810810810811,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.057971014492753624,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8788953871955031},\n", + " 'CM': {'0': {'-1': 0, '0': 1, '1': 76, '2': 75, '3': 17, '4': 17, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 29, '3': 23, '4': 40, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 13, '3': 31, '4': 57, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 7, '3': 15, '4': 80, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 2, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.1248539906024137,\n", + " 'Cohen': -0.05432652803236193,\n", + " 'Spearman': 0.7074118502355783,\n", + " 'Kendall': 0.6060338679877387,\n", + " 'Krippendorff': 0.25458416137486195,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5949119373776908,\n", + " 'TA-4.0': 0.7279843444227005,\n", + " 'Acc': 0.10567514677103718,\n", + " 'MAE': 1.4249836921069796,\n", + " 'MSE': 2.7854424874972827,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.05,\n", + " 'CA-2': 0.10377358490566038,\n", + " 'CA-3': 0.27884615384615385,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08102245267493992,\n", + " 'Micro-F1': 0.10567514677103718,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.05154639175257732,\n", + " 'F1-2_vs_rest': 0.10679611650485436,\n", + " 'F1-3_vs_rest': 0.2109090909090909,\n", + " 'F1-4_vs_rest': 0.11688311688311688,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.6978193146417445,\n", + " 'Recall-1.5': 0.9955555555555555,\n", + " 'Precision-1.5': 0.5371702637889688,\n", + " 'F1-2.5': 0.5275229357798165,\n", + " 'Recall-2.5': 0.9663865546218487,\n", + " 'Precision-2.5': 0.3627760252365931,\n", + " 'F1-3.5': 0.13664596273291926,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.07534246575342465,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9020748460084927},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 88, '2': 60, '3': 32, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 5, '2': 26, '3': 47, '4': 21, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 0, '2': 11, '3': 59, '4': 34, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 3, '3': 29, '4': 69, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.19216963457127348,\n", + " 'Cohen': 0.2214759923437779,\n", + " 'Spearman': 0.6908544200618558,\n", + " 'Kendall': 0.5902132682913738,\n", + " 'Krippendorff': 0.5951868926012376,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7534246575342466,\n", + " 'TA-4.0': 0.9354207436399217,\n", + " 'Acc': 0.3816046966731898,\n", + " 'MAE': 0.7775603392041746,\n", + " 'MSE': 1.1237225483800821,\n", + " 'CA-0': 0.22580645161290322,\n", + " 'CA-1': 0.42,\n", + " 'CA-2': 0.5377358490566038,\n", + " 'CA-3': 0.49038461538461536,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2895170194141369,\n", + " 'Micro-F1': 0.3816046966731898,\n", + " 'F1-0_vs_rest': 0.3684210526315789,\n", + " 'F1-1_vs_rest': 0.31226765799256506,\n", + " 'F1-2_vs_rest': 0.41007194244604317,\n", + " 'F1-3_vs_rest': 0.5,\n", + " 'F1-4_vs_rest': 0.14634146341463414,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.818639798488665,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6929637526652452,\n", + " 'F1-1.5': 0.7847619047619048,\n", + " 'Recall-1.5': 0.9155555555555556,\n", + " 'Precision-1.5': 0.6866666666666666,\n", + " 'F1-2.5': 0.5991902834008097,\n", + " 'Recall-2.5': 0.6218487394957983,\n", + " 'Precision-2.5': 0.578125,\n", + " 'F1-3.5': 0.23255813953488372,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.17857142857142858,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9095731186603835},\n", + " 'CM': {'0': {'-1': 0, '0': 42, '1': 108, '2': 29, '3': 4, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 42, '2': 44, '3': 12, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 16, '2': 57, '3': 27, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 38, '3': 51, '4': 12, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 6, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.04814299119169417,\n", + " 'Cohen': 0.011306694076834156,\n", + " 'Spearman': 0.48669414166879044,\n", + " 'Kendall': 0.3790793028716514,\n", + " 'Krippendorff': 0.0771050221129197,\n", + " 'Invalid': 226,\n", + " 'TA-2.0': 0.5614035087719298,\n", + " 'TA-4.0': 0.6210526315789474,\n", + " 'Acc': 0.14736842105263157,\n", + " 'MAE': 1.63859649122807,\n", + " 'MSE': 3.969785575048732,\n", + " 'CA-0': 0.06451612903225806,\n", + " 'CA-1': 0.05084745762711865,\n", + " 'CA-2': 0.13793103448275862,\n", + " 'CA-3': 0.2923076923076923,\n", + " 'CA-4': 0.5555555555555556,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.12908797916196046,\n", + " 'Micro-F1': 0.14736842105263157,\n", + " 'F1-0_vs_rest': 0.11764705882352941,\n", + " 'F1-1_vs_rest': 0.06666666666666667,\n", + " 'F1-2_vs_rest': 0.14678899082568808,\n", + " 'F1-3_vs_rest': 0.2773722627737226,\n", + " 'F1-4_vs_rest': 0.0970873786407767,\n", + " 'F1-5_vs_rest': 0.06896551724137931,\n", + " 'F1-0.5': 0.8076923076923077,\n", + " 'Recall-0.5': 0.984375,\n", + " 'Precision-0.5': 0.6847826086956522,\n", + " 'F1-1.5': 0.6825396825396826,\n", + " 'Recall-1.5': 0.9699248120300752,\n", + " 'Precision-1.5': 0.5265306122448979,\n", + " 'F1-2.5': 0.5278810408921933,\n", + " 'Recall-2.5': 0.9466666666666667,\n", + " 'Precision-2.5': 0.36597938144329895,\n", + " 'F1-3.5': 0.12121212121212122,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.06557377049180328,\n", + " 'F1-4.5': 0.06896551724137931,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.03571428571428571,\n", + " 'NDCG@all': 0.8748732893918199},\n", + " 'CM': {'0': {'-1': 93, '0': 6, '1': 24, '2': 29, '3': 15, '4': 16, '5': 3},\n", + " '1': {'-1': 41, '0': 3, '1': 3, '2': 11, '3': 18, '4': 21, '5': 3},\n", + " '2': {'-1': 48, '0': 0, '1': 3, '2': 8, '3': 18, '4': 22, '5': 7},\n", + " '3': {'-1': 39, '0': 0, '1': 1, '2': 3, '3': 19, '4': 30, '5': 12},\n", + " '4': {'-1': 4, '0': 0, '1': 0, '2': 0, '3': 2, '4': 5, '5': 2},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 1}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.07390489212060948,\n", + " 'Cohen': 0.12159081977521025,\n", + " 'Spearman': 0.6865798016418396,\n", + " 'Kendall': 0.5854514568692673,\n", + " 'Krippendorff': 0.5631512640215335,\n", + " 'Invalid': 3,\n", + " 'TA-2.0': 0.7362204724409449,\n", + " 'TA-4.0': 0.9625984251968503,\n", + " 'Acc': 0.30708661417322836,\n", + " 'MAE': 0.8241469816272965,\n", + " 'MSE': 1.0769903762029747,\n", + " 'CA-0': 0.1827956989247312,\n", + " 'CA-1': 0.24,\n", + " 'CA-2': 0.6037735849056604,\n", + " 'CA-3': 0.32673267326732675,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2224216701081664,\n", + " 'Micro-F1': 0.30708661417322836,\n", + " 'F1-0_vs_rest': 0.3090909090909091,\n", + " 'F1-1_vs_rest': 0.18972332015810275,\n", + " 'F1-2_vs_rest': 0.3798219584569733,\n", + " 'F1-3_vs_rest': 0.36065573770491804,\n", + " 'F1-4_vs_rest': 0.09523809523809523,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8090452261306532,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.679324894514768,\n", + " 'F1-1.5': 0.7734806629834254,\n", + " 'Recall-1.5': 0.9459459459459459,\n", + " 'Precision-1.5': 0.6542056074766355,\n", + " 'F1-2.5': 0.42718446601941745,\n", + " 'Recall-2.5': 0.3793103448275862,\n", + " 'Precision-2.5': 0.4888888888888889,\n", + " 'F1-3.5': 0.17391304347826086,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.25,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9103863493377554},\n", + " 'CM': {'0': {'-1': 0, '0': 34, '1': 117, '2': 31, '3': 4, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 24, '2': 65, '3': 10, '4': 1, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 11, '2': 64, '3': 30, '4': 1, '5': 0},\n", + " '3': {'-1': 3, '0': 0, '1': 1, '2': 63, '3': 33, '4': 4, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 8, '3': 4, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.11313747507970512,\n", + " 'Cohen': 0.14348490442202,\n", + " 'Spearman': 0.6579838540956281,\n", + " 'Kendall': 0.5353565007762726,\n", + " 'Krippendorff': 0.5178339411692743,\n", + " 'Invalid': 24,\n", + " 'TA-2.0': 0.702258726899384,\n", + " 'TA-4.0': 0.8008213552361396,\n", + " 'Acc': 0.29568788501026694,\n", + " 'MAE': 1.018480492813142,\n", + " 'MSE': 1.786105407255305,\n", + " 'CA-0': 0.24705882352941178,\n", + " 'CA-1': 0.21875,\n", + " 'CA-2': 0.42718446601941745,\n", + " 'CA-3': 0.2912621359223301,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.26413894482324857,\n", + " 'Micro-F1': 0.29568788501026694,\n", + " 'F1-0_vs_rest': 0.38181818181818183,\n", + " 'F1-1_vs_rest': 0.22105263157894736,\n", + " 'F1-2_vs_rest': 0.3492063492063492,\n", + " 'F1-3_vs_rest': 0.33519553072625696,\n", + " 'F1-4_vs_rest': 0.0975609756097561,\n", + " 'F1-5_vs_rest': 0.2,\n", + " 'F1-0.5': 0.8196286472148541,\n", + " 'Recall-0.5': 0.9747634069400631,\n", + " 'Precision-0.5': 0.7070938215102975,\n", + " 'F1-1.5': 0.75177304964539,\n", + " 'Recall-1.5': 0.9592760180995475,\n", + " 'Precision-1.5': 0.6180758017492711,\n", + " 'F1-2.5': 0.6410256410256411,\n", + " 'Recall-2.5': 0.847457627118644,\n", + " 'Precision-2.5': 0.5154639175257731,\n", + " 'F1-3.5': 0.12030075187969924,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.06779661016949153,\n", + " 'F1-4.5': 0.2,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.125,\n", + " 'NDCG@all': 0.9084089471740812},\n", + " 'CM': {'0': {'-1': 16, '0': 42, '1': 64, '2': 50, '3': 7, '4': 6, '5': 1},\n", + " '1': {'-1': 4, '0': 8, '1': 21, '2': 40, '3': 14, '4': 12, '5': 1},\n", + " '2': {'-1': 3, '0': 0, '1': 6, '2': 44, '3': 21, '4': 29, '5': 3},\n", + " '3': {'-1': 1, '0': 0, '1': 3, '2': 12, '3': 30, '4': 57, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 4, '4': 6, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 0, '4': 0, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.08129600150731557,\n", + " 'Cohen': -0.019490842173828016,\n", + " 'Spearman': 0.6534612270353615,\n", + " 'Kendall': 0.5533706953138916,\n", + " 'Krippendorff': 0.2669345303512781,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5518590998043053,\n", + " 'TA-4.0': 0.7553816046966731,\n", + " 'Acc': 0.14285714285714285,\n", + " 'MAE': 1.3672537508153946,\n", + " 'MSE': 2.628397477712547,\n", + " 'CA-0': 0.03225806451612903,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.16037735849056603,\n", + " 'CA-3': 0.3269230769230769,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.1116580770896309,\n", + " 'Micro-F1': 0.14285714285714285,\n", + " 'F1-0_vs_rest': 0.0625,\n", + " 'F1-1_vs_rest': 0.07692307692307693,\n", + " 'F1-2_vs_rest': 0.13654618473895583,\n", + " 'F1-3_vs_rest': 0.2698412698412698,\n", + " 'F1-4_vs_rest': 0.12413793103448276,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7831325301204819,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6435643564356436,\n", + " 'F1-1.5': 0.6635802469135802,\n", + " 'Recall-1.5': 0.9555555555555556,\n", + " 'Precision-1.5': 0.508274231678487,\n", + " 'F1-2.5': 0.5614035087719298,\n", + " 'Recall-2.5': 0.9411764705882353,\n", + " 'Precision-2.5': 0.4,\n", + " 'F1-3.5': 0.14965986394557823,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08333333333333333,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9032752270312255},\n", + " 'CM': {'0': {'-1': 0, '0': 6, '1': 65, '2': 84, '3': 24, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 37, '3': 38, '4': 18, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 8, '2': 17, '3': 48, '4': 33, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 5, '3': 34, '4': 63, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'pt': {'phi-4': {'metrics': {'Fleiss': 0.22102833709328726,\n", + " 'Cohen': 0.23424362076604355,\n", + " 'Spearman': 0.6200646754318665,\n", + " 'Kendall': 0.5059833684653418,\n", + " 'Krippendorff': 0.518575497495956,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7072691552062869,\n", + " 'TA-4.0': 0.8762278978388998,\n", + " 'Acc': 0.3929273084479371,\n", + " 'MAE': 0.927635887360838,\n", + " 'MSE': 1.712999345121153,\n", + " 'CA-0': 0.44324324324324327,\n", + " 'CA-1': 0.3,\n", + " 'CA-2': 0.2641509433962264,\n", + " 'CA-3': 0.5048543689320388,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2949884726981501,\n", + " 'Micro-F1': 0.3929273084479371,\n", + " 'F1-0_vs_rest': 0.5878136200716846,\n", + " 'F1-1_vs_rest': 0.28846153846153844,\n", + " 'F1-2_vs_rest': 0.28717948717948716,\n", + " 'F1-3_vs_rest': 0.416,\n", + " 'F1-4_vs_rest': 0.19047619047619047,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8443843031123139,\n", + " 'Recall-0.5': 0.9629629629629629,\n", + " 'Precision-0.5': 0.7518072289156627,\n", + " 'F1-1.5': 0.7419962335216572,\n", + " 'Recall-1.5': 0.8794642857142857,\n", + " 'Precision-1.5': 0.6416938110749185,\n", + " 'F1-2.5': 0.5595238095238095,\n", + " 'Recall-2.5': 0.7966101694915254,\n", + " 'Precision-2.5': 0.43119266055045874,\n", + " 'F1-3.5': 0.23255813953488372,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.14084507042253522,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8947806152964718},\n", + " 'CM': {'0': {'-1': 0, '0': 82, '1': 56, '2': 25, '3': 16, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 7, '1': 30, '2': 22, '3': 31, '4': 10, '5': 0},\n", + " '2': {'-1': 0, '0': 5, '1': 12, '2': 28, '3': 44, '4': 17, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 10, '2': 13, '3': 52, '4': 28, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 4, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.06426558801798297,\n", + " 'Cohen': 0.10540531480319715,\n", + " 'Spearman': 0.6298004540049054,\n", + " 'Kendall': 0.5272039124255627,\n", + " 'Krippendorff': 0.49354629688840057,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7092337917485265,\n", + " 'TA-4.0': 0.9115913555992141,\n", + " 'Acc': 0.27897838899803534,\n", + " 'MAE': 0.9377865094957433,\n", + " 'MSE': 1.454267627155643,\n", + " 'CA-0': 0.10270270270270271,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.32075471698113206,\n", + " 'CA-3': 0.49514563106796117,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2110440310858487,\n", + " 'Micro-F1': 0.27897838899803534,\n", + " 'F1-0_vs_rest': 0.18627450980392157,\n", + " 'F1-1_vs_rest': 0.2491103202846975,\n", + " 'F1-2_vs_rest': 0.27419354838709675,\n", + " 'F1-3_vs_rest': 0.4434782608695652,\n", + " 'F1-4_vs_rest': 0.11320754716981132,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7960687960687961,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6612244897959184,\n", + " 'F1-1.5': 0.7392120075046904,\n", + " 'Recall-1.5': 0.8794642857142857,\n", + " 'Precision-1.5': 0.6375404530744336,\n", + " 'F1-2.5': 0.5754385964912281,\n", + " 'Recall-2.5': 0.6949152542372882,\n", + " 'Precision-2.5': 0.49101796407185627,\n", + " 'F1-3.5': 0.18181818181818182,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.125,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.896013669092943},\n", + " 'CM': {'0': {'-1': 0, '0': 19, '1': 119, '2': 37, '3': 6, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 35, '2': 42, '3': 15, '4': 8, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 20, '2': 34, '3': 46, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 7, '2': 28, '3': 51, '4': 17, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 9, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.18923930514940837,\n", + " 'Cohen': 0.20802750558056826,\n", + " 'Spearman': 0.6852172123546514,\n", + " 'Kendall': 0.5714712095888327,\n", + " 'Krippendorff': 0.5904145498820064,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7544204322200393,\n", + " 'TA-4.0': 0.7524557956777996,\n", + " 'Acc': 0.35363457760314343,\n", + " 'MAE': 0.9862475442043223,\n", + " 'MSE': 1.9890853525431134,\n", + " 'CA-0': 0.4648648648648649,\n", + " 'CA-1': 0.32,\n", + " 'CA-2': 0.33962264150943394,\n", + " 'CA-3': 0.18446601941747573,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.28208013391627235,\n", + " 'Micro-F1': 0.35363457760314343,\n", + " 'F1-0_vs_rest': 0.6187050359712231,\n", + " 'F1-1_vs_rest': 0.2831858407079646,\n", + " 'F1-2_vs_rest': 0.35467980295566504,\n", + " 'F1-3_vs_rest': 0.2331288343558282,\n", + " 'F1-4_vs_rest': 0.08849557522123894,\n", + " 'F1-5_vs_rest': 0.11428571428571428,\n", + " 'F1-0.5': 0.8567567567567568,\n", + " 'Recall-0.5': 0.9783950617283951,\n", + " 'Precision-0.5': 0.7620192307692307,\n", + " 'F1-1.5': 0.77431906614786,\n", + " 'Recall-1.5': 0.8883928571428571,\n", + " 'Precision-1.5': 0.6862068965517242,\n", + " 'F1-2.5': 0.6109324758842444,\n", + " 'Recall-2.5': 0.8050847457627118,\n", + " 'Precision-2.5': 0.49222797927461137,\n", + " 'F1-3.5': 0.14864864864864866,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08270676691729323,\n", + " 'F1-4.5': 0.11428571428571428,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.06060606060606061,\n", + " 'NDCG@all': 0.8981052669139736},\n", + " 'CM': {'0': {'-1': 0, '0': 86, '1': 69, '2': 14, '3': 8, '4': 4, '5': 4},\n", + " '1': {'-1': 0, '0': 7, '1': 32, '2': 31, '3': 11, '4': 12, '5': 7},\n", + " '2': {'-1': 0, '0': 0, '1': 18, '2': 36, '3': 21, '4': 24, '5': 7},\n", + " '3': {'-1': 0, '0': 0, '1': 7, '2': 13, '3': 19, '4': 55, '5': 9},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 1, '4': 5, '5': 4},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.053724558849817444,\n", + " 'Cohen': 0.11261608609648976,\n", + " 'Spearman': 0.6713700137356197,\n", + " 'Kendall': 0.5747220182081597,\n", + " 'Krippendorff': 0.5520611044786139,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7583497053045186,\n", + " 'TA-4.0': 0.9273084479371316,\n", + " 'Acc': 0.28487229862475444,\n", + " 'MAE': 0.8631303208906351,\n", + " 'MSE': 1.174416066361056,\n", + " 'CA-0': 0.021621621621621623,\n", + " 'CA-1': 0.43,\n", + " 'CA-2': 0.4056603773584906,\n", + " 'CA-3': 0.5339805825242718,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.19483428342476128,\n", + " 'Micro-F1': 0.28487229862475444,\n", + " 'F1-0_vs_rest': 0.042328042328042326,\n", + " 'F1-1_vs_rest': 0.25671641791044775,\n", + " 'F1-2_vs_rest': 0.35833333333333334,\n", + " 'F1-3_vs_rest': 0.5116279069767442,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.781664656212304,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6415841584158416,\n", + " 'F1-1.5': 0.7651821862348178,\n", + " 'Recall-1.5': 0.84375,\n", + " 'Precision-1.5': 0.7,\n", + " 'F1-2.5': 0.6141732283464567,\n", + " 'Recall-2.5': 0.6610169491525424,\n", + " 'Precision-2.5': 0.5735294117647058,\n", + " 'F1-3.5': 0.05128205128205128,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.041666666666666664,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9046736857802343},\n", + " 'CM': {'0': {'-1': 0, '0': 4, '1': 157, '2': 18, '3': 5, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 43, '2': 43, '3': 12, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 25, '2': 43, '3': 30, '4': 8, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 10, '2': 26, '3': 55, '4': 12, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 9, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.1647297121877503,\n", + " 'Cohen': 0.18547162060169486,\n", + " 'Spearman': 0.6441188756506936,\n", + " 'Kendall': 0.5376871616783945,\n", + " 'Krippendorff': 0.5435927602330077,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.724950884086444,\n", + " 'TA-4.0': 0.8192534381139489,\n", + " 'Acc': 0.3418467583497053,\n", + " 'MAE': 0.9535036018336608,\n", + " 'MSE': 1.7223313686967914,\n", + " 'CA-0': 0.3675675675675676,\n", + " 'CA-1': 0.39,\n", + " 'CA-2': 0.2169811320754717,\n", + " 'CA-3': 0.34951456310679613,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2620584259152126,\n", + " 'Micro-F1': 0.3418467583497053,\n", + " 'F1-0_vs_rest': 0.5210727969348659,\n", + " 'F1-1_vs_rest': 0.32231404958677684,\n", + " 'F1-2_vs_rest': 0.23958333333333334,\n", + " 'F1-3_vs_rest': 0.3412322274881517,\n", + " 'F1-4_vs_rest': 0.14814814814814814,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8348745046235139,\n", + " 'Recall-0.5': 0.9753086419753086,\n", + " 'Precision-0.5': 0.7297921478060047,\n", + " 'F1-1.5': 0.7456310679611651,\n", + " 'Recall-1.5': 0.8571428571428571,\n", + " 'Precision-1.5': 0.6597938144329897,\n", + " 'F1-2.5': 0.5944272445820433,\n", + " 'Recall-2.5': 0.8135593220338984,\n", + " 'Precision-2.5': 0.4682926829268293,\n", + " 'F1-3.5': 0.17857142857142858,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.10309278350515463,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8828169751493513},\n", + " 'CM': {'0': {'-1': 0, '0': 68, '1': 76, '2': 25, '3': 10, '4': 5, '5': 1},\n", + " '1': {'-1': 0, '0': 3, '1': 39, '2': 27, '3': 17, '4': 13, '5': 1},\n", + " '2': {'-1': 0, '0': 4, '1': 17, '2': 23, '3': 40, '4': 22, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 10, '2': 11, '3': 36, '4': 45, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.08948023240363821,\n", + " 'Cohen': -0.01261462739920427,\n", + " 'Spearman': 0.5979050885526739,\n", + " 'Kendall': 0.49889193176377716,\n", + " 'Krippendorff': 0.22662089877878255,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5854616895874263,\n", + " 'TA-4.0': 0.6640471512770137,\n", + " 'Acc': 0.12966601178781925,\n", + " 'MAE': 1.4453176162409955,\n", + " 'MSE': 2.965073128137961,\n", + " 'CA-0': 0.005405405405405406,\n", + " 'CA-1': 0.11,\n", + " 'CA-2': 0.2641509433962264,\n", + " 'CA-3': 0.1553398058252427,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.10359111443708117,\n", + " 'Micro-F1': 0.12966601178781925,\n", + " 'F1-0_vs_rest': 0.010752688172043012,\n", + " 'F1-1_vs_rest': 0.10784313725490197,\n", + " 'F1-2_vs_rest': 0.22857142857142856,\n", + " 'F1-3_vs_rest': 0.1702127659574468,\n", + " 'F1-4_vs_rest': 0.10416666666666667,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7788461538461539,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6377952755905512,\n", + " 'F1-1.5': 0.6847133757961783,\n", + " 'Recall-1.5': 0.9598214285714286,\n", + " 'Precision-1.5': 0.5321782178217822,\n", + " 'F1-2.5': 0.5326370757180157,\n", + " 'Recall-2.5': 0.864406779661017,\n", + " 'Precision-2.5': 0.3849056603773585,\n", + " 'F1-3.5': 0.12307692307692308,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.06666666666666667,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8713004840181636},\n", + " 'CM': {'0': {'-1': 0, '0': 1, '1': 84, '2': 71, '3': 14, '4': 14, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 11, '2': 26, '3': 27, '4': 36, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 7, '2': 28, '3': 26, '4': 45, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 13, '3': 16, '4': 72, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 2, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.11052552585801768,\n", + " 'Cohen': -0.042816875375444985,\n", + " 'Spearman': 0.6829944017592054,\n", + " 'Kendall': 0.5809578323269349,\n", + " 'Krippendorff': 0.2552333988508979,\n", + " 'Invalid': 3,\n", + " 'TA-2.0': 0.5988142292490118,\n", + " 'TA-4.0': 0.7569169960474308,\n", + " 'Acc': 0.11857707509881422,\n", + " 'MAE': 1.396574440052701,\n", + " 'MSE': 2.7391304347826098,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.06060606060606061,\n", + " 'CA-2': 0.11320754716981132,\n", + " 'CA-3': 0.32673267326732675,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09094173828587586,\n", + " 'Micro-F1': 0.11857707509881422,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.06030150753768844,\n", + " 'F1-2_vs_rest': 0.11764705882352941,\n", + " 'F1-3_vs_rest': 0.2391304347826087,\n", + " 'F1-4_vs_rest': 0.12857142857142856,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7762998790810157,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6343873517786561,\n", + " 'F1-1.5': 0.697452229299363,\n", + " 'Recall-1.5': 0.9864864864864865,\n", + " 'Precision-1.5': 0.5394088669950738,\n", + " 'F1-2.5': 0.5235849056603774,\n", + " 'Recall-2.5': 0.9568965517241379,\n", + " 'Precision-2.5': 0.36038961038961037,\n", + " 'F1-3.5': 0.14864864864864866,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08270676691729323,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8898895225500407},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 91, '2': 56, '3': 32, '4': 6, '5': 0},\n", + " '1': {'-1': 1, '0': 0, '1': 6, '2': 27, '3': 44, '4': 20, '5': 2},\n", + " '2': {'-1': 0, '0': 0, '1': 1, '2': 12, '3': 62, '4': 27, '5': 4},\n", + " '3': {'-1': 2, '0': 0, '1': 2, '2': 3, '3': 33, '4': 63, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.13664114837352337,\n", + " 'Cohen': 0.16987039886949873,\n", + " 'Spearman': 0.6548304184744376,\n", + " 'Kendall': 0.5543416043243656,\n", + " 'Krippendorff': 0.5463734253773516,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7229862475442044,\n", + " 'TA-4.0': 0.9096267190569745,\n", + " 'Acc': 0.3379174852652259,\n", + " 'MAE': 0.8539620170268499,\n", + " 'MSE': 1.300152805064396,\n", + " 'CA-0': 0.2,\n", + " 'CA-1': 0.3,\n", + " 'CA-2': 0.5471698113207547,\n", + " 'CA-3': 0.44660194174757284,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.24626969504703788,\n", + " 'Micro-F1': 0.3379174852652259,\n", + " 'F1-0_vs_rest': 0.33183856502242154,\n", + " 'F1-1_vs_rest': 0.22813688212927757,\n", + " 'F1-2_vs_rest': 0.40418118466898956,\n", + " 'F1-3_vs_rest': 0.4717948717948718,\n", + " 'F1-4_vs_rest': 0.041666666666666664,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8125786163522013,\n", + " 'Recall-0.5': 0.9969135802469136,\n", + " 'Precision-0.5': 0.6857749469214437,\n", + " 'F1-1.5': 0.7556390977443609,\n", + " 'Recall-1.5': 0.8973214285714286,\n", + " 'Precision-1.5': 0.6525974025974026,\n", + " 'F1-2.5': 0.5795918367346938,\n", + " 'Recall-2.5': 0.6016949152542372,\n", + " 'Precision-2.5': 0.5590551181102362,\n", + " 'F1-3.5': 0.08,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.05714285714285714,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8905660338273743},\n", + " 'CM': {'0': {'-1': 0, '0': 37, '1': 111, '2': 30, '3': 2, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 30, '2': 52, '3': 13, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 16, '2': 58, '3': 23, '4': 8, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 6, '2': 36, '3': 46, '4': 15, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 7, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.07865119714943726,\n", + " 'Cohen': -0.019425051334702292,\n", + " 'Spearman': 0.6281247255234246,\n", + " 'Kendall': 0.51342241188897,\n", + " 'Krippendorff': 0.2628089088187101,\n", + " 'Invalid': 268,\n", + " 'TA-2.0': 0.5684647302904564,\n", + " 'TA-4.0': 0.7427385892116183,\n", + " 'Acc': 0.14522821576763487,\n", + " 'MAE': 1.3464730290456433,\n", + " 'MSE': 2.5844859382203778,\n", + " 'CA-0': 0.038461538461538464,\n", + " 'CA-1': 0.057692307692307696,\n", + " 'CA-2': 0.1836734693877551,\n", + " 'CA-3': 0.2857142857142857,\n", + " 'CA-4': 0.6666666666666666,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.11307418927765527,\n", + " 'Micro-F1': 0.14522821576763487,\n", + " 'F1-0_vs_rest': 0.07317073170731707,\n", + " 'F1-1_vs_rest': 0.075,\n", + " 'F1-2_vs_rest': 0.13846153846153847,\n", + " 'F1-3_vs_rest': 0.2807017543859649,\n", + " 'F1-4_vs_rest': 0.1111111111111111,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.81,\n", + " 'Recall-0.5': 0.9938650306748467,\n", + " 'Precision-0.5': 0.6835443037974683,\n", + " 'F1-1.5': 0.6875,\n", + " 'Recall-1.5': 0.990990990990991,\n", + " 'Precision-1.5': 0.5263157894736842,\n", + " 'F1-2.5': 0.5684210526315789,\n", + " 'Recall-2.5': 0.8709677419354839,\n", + " 'Precision-2.5': 0.421875,\n", + " 'F1-3.5': 0.10526315789473684,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.05714285714285714,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8906901137397758},\n", + " 'CM': {'0': {'-1': 107, '0': 3, '1': 25, '2': 39, '3': 8, '4': 3, '5': 0},\n", + " '1': {'-1': 48, '0': 0, '1': 3, '2': 25, '3': 11, '4': 11, '5': 2},\n", + " '2': {'-1': 57, '0': 1, '1': 0, '2': 9, '3': 21, '4': 17, '5': 1},\n", + " '3': {'-1': 47, '0': 0, '1': 0, '2': 8, '3': 16, '4': 31, '5': 1},\n", + " '4': {'-1': 7, '0': 0, '1': 0, '2': 0, '3': 2, '4': 4, '5': 0},\n", + " '5': {'-1': 2, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.14889491852300177,\n", + " 'Cohen': 0.18236557868180392,\n", + " 'Spearman': 0.6873702626299159,\n", + " 'Kendall': 0.5839267610291519,\n", + " 'Krippendorff': 0.5974593154718288,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7465618860510805,\n", + " 'TA-4.0': 0.9587426326129665,\n", + " 'Acc': 0.35952848722986247,\n", + " 'MAE': 0.7721021611001961,\n", + " 'MSE': 1.0283780833879062,\n", + " 'CA-0': 0.25405405405405407,\n", + " 'CA-1': 0.32,\n", + " 'CA-2': 0.5849056603773585,\n", + " 'CA-3': 0.4077669902912621,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2471155619232315,\n", + " 'Micro-F1': 0.35952848722986247,\n", + " 'F1-0_vs_rest': 0.4,\n", + " 'F1-1_vs_rest': 0.2490272373540856,\n", + " 'F1-2_vs_rest': 0.3961661341853035,\n", + " 'F1-3_vs_rest': 0.4375,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8199233716475096,\n", + " 'Recall-0.5': 0.9907407407407407,\n", + " 'Precision-0.5': 0.6993464052287581,\n", + " 'F1-1.5': 0.779467680608365,\n", + " 'Recall-1.5': 0.9151785714285714,\n", + " 'Precision-1.5': 0.6788079470198676,\n", + " 'F1-2.5': 0.49765258215962443,\n", + " 'Recall-2.5': 0.4491525423728814,\n", + " 'Precision-2.5': 0.5578947368421052,\n", + " 'F1-3.5': 0.0,\n", + " 'Recall-3.5': 0.0,\n", + " 'Precision-3.5': 0.0,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8946792730829312},\n", + " 'CM': {'0': {'-1': 0, '0': 47, '1': 106, '2': 29, '3': 2, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 32, '2': 54, '3': 9, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 16, '2': 62, '3': 28, '4': 0, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 55, '3': 42, '4': 3, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 7, '3': 6, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.15854090426159842,\n", + " 'Cohen': 0.17723398679760904,\n", + " 'Spearman': 0.6487259929645315,\n", + " 'Kendall': 0.5434522844599411,\n", + " 'Krippendorff': 0.5871515769487199,\n", + " 'Invalid': 65,\n", + " 'TA-2.0': 0.7477477477477478,\n", + " 'TA-4.0': 0.7972972972972973,\n", + " 'Acc': 0.3310810810810811,\n", + " 'MAE': 0.9328078078078078,\n", + " 'MSE': 1.6224349349349345,\n", + " 'CA-0': 0.4206896551724138,\n", + " 'CA-1': 0.14772727272727273,\n", + " 'CA-2': 0.425531914893617,\n", + " 'CA-3': 0.2647058823529412,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.25285708388842004,\n", + " 'Micro-F1': 0.3310810810810811,\n", + " 'F1-0_vs_rest': 0.5520361990950227,\n", + " 'F1-1_vs_rest': 0.15476190476190477,\n", + " 'F1-2_vs_rest': 0.3883495145631068,\n", + " 'F1-3_vs_rest': 0.3176470588235294,\n", + " 'F1-4_vs_rest': 0.10434782608695652,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8515742128935532,\n", + " 'Recall-0.5': 0.9498327759197325,\n", + " 'Precision-0.5': 0.7717391304347826,\n", + " 'F1-1.5': 0.7655310621242485,\n", + " 'Recall-1.5': 0.9052132701421801,\n", + " 'Precision-1.5': 0.6631944444444444,\n", + " 'F1-2.5': 0.6416382252559727,\n", + " 'Recall-2.5': 0.8034188034188035,\n", + " 'Precision-2.5': 0.5340909090909091,\n", + " 'F1-3.5': 0.14634146341463414,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.08333333333333333,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9072405338850792},\n", + " 'CM': {'0': {'-1': 40, '0': 61, '1': 49, '2': 22, '3': 6, '4': 6, '5': 1},\n", + " '1': {'-1': 12, '0': 13, '1': 13, '2': 33, '3': 16, '4': 13, '5': 0},\n", + " '2': {'-1': 12, '0': 2, '1': 12, '2': 40, '3': 16, '4': 23, '5': 1},\n", + " '3': {'-1': 1, '0': 0, '1': 6, '2': 14, '3': 27, '4': 52, '5': 3},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 3, '4': 6, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.05947511681052679,\n", + " 'Cohen': 3.20559788979935e-05,\n", + " 'Spearman': 0.6236014766333406,\n", + " 'Kendall': 0.5203806054904722,\n", + " 'Krippendorff': 0.2595830615505833,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5697445972495089,\n", + " 'TA-4.0': 0.7485265225933202,\n", + " 'Acc': 0.15717092337917485,\n", + " 'MAE': 1.3647675180091683,\n", + " 'MSE': 2.7002837808338787,\n", + " 'CA-0': 0.043243243243243246,\n", + " 'CA-1': 0.12,\n", + " 'CA-2': 0.16037735849056603,\n", + " 'CA-3': 0.3106796116504854,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.1276007471692153,\n", + " 'Micro-F1': 0.15717092337917485,\n", + " 'F1-0_vs_rest': 0.08290155440414508,\n", + " 'F1-1_vs_rest': 0.12834224598930483,\n", + " 'F1-2_vs_rest': 0.13765182186234817,\n", + " 'F1-3_vs_rest': 0.270042194092827,\n", + " 'F1-4_vs_rest': 0.14666666666666667,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7854545454545454,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6467065868263473,\n", + " 'F1-1.5': 0.6739811912225705,\n", + " 'Recall-1.5': 0.9598214285714286,\n", + " 'Precision-1.5': 0.5193236714975845,\n", + " 'F1-2.5': 0.5421994884910486,\n", + " 'Recall-2.5': 0.8983050847457628,\n", + " 'Precision-2.5': 0.3882783882783883,\n", + " 'F1-3.5': 0.16883116883116883,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.09352517985611511,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8908927946030045},\n", + " 'CM': {'0': {'-1': 0, '0': 8, '1': 66, '2': 76, '3': 27, '4': 8, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 12, '2': 38, '3': 29, '4': 21, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 7, '2': 17, '3': 44, '4': 36, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 10, '3': 32, '4': 59, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'ga': {'phi-4': {'metrics': {'Fleiss': 0.12457104157927451,\n", + " 'Cohen': 0.14925123893066417,\n", + " 'Spearman': 0.6342510093639441,\n", + " 'Kendall': 0.5218157629215376,\n", + " 'Krippendorff': 0.4669674866397687,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6772277227722773,\n", + " 'TA-4.0': 0.8930693069306931,\n", + " 'Acc': 0.3207920792079208,\n", + " 'MAE': 0.9867986798679869,\n", + " 'MSE': 1.7266226622662268,\n", + " 'CA-0': 0.2608695652173913,\n", + " 'CA-1': 0.22,\n", + " 'CA-2': 0.27884615384615385,\n", + " 'CA-3': 0.5784313725490197,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.3009296311415685,\n", + " 'Micro-F1': 0.3207920792079208,\n", + " 'F1-0_vs_rest': 0.40336134453781514,\n", + " 'F1-1_vs_rest': 0.21674876847290642,\n", + " 'F1-2_vs_rest': 0.24680851063829787,\n", + " 'F1-3_vs_rest': 0.44029850746268656,\n", + " 'F1-4_vs_rest': 0.09836065573770492,\n", + " 'F1-5_vs_rest': 0.4,\n", + " 'F1-0.5': 0.8160621761658031,\n", + " 'Recall-0.5': 0.9813084112149533,\n", + " 'Precision-0.5': 0.6984478935698448,\n", + " 'F1-1.5': 0.7346221441124781,\n", + " 'Recall-1.5': 0.9457013574660633,\n", + " 'Precision-1.5': 0.6005747126436781,\n", + " 'F1-2.5': 0.562874251497006,\n", + " 'Recall-2.5': 0.8034188034188035,\n", + " 'Precision-2.5': 0.43317972350230416,\n", + " 'F1-3.5': 0.15151515151515152,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.09803921568627451,\n", + " 'F1-4.5': 0.4,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.3333333333333333,\n", + " 'NDCG@all': 0.9054461518615786},\n", + " 'CM': {'0': {'-1': 0, '0': 48, '1': 70, '2': 49, '3': 11, '4': 5, '5': 1},\n", + " '1': {'-1': 0, '0': 5, '1': 22, '2': 34, '3': 35, '4': 4, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 7, '2': 29, '3': 53, '4': 14, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 17, '3': 59, '4': 21, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 8, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.06497775304449128,\n", + " 'Cohen': 0.1089589817806943,\n", + " 'Spearman': 0.5189714955229375,\n", + " 'Kendall': 0.4389795763893931,\n", + " 'Krippendorff': 0.4499060958170651,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.693069306930693,\n", + " 'TA-4.0': 0.9524752475247524,\n", + " 'Acc': 0.29504950495049503,\n", + " 'MAE': 0.9115511551155117,\n", + " 'MSE': 1.3546754675467547,\n", + " 'CA-0': 0.14673913043478262,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.47115384615384615,\n", + " 'CA-3': 0.3431372549019608,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.20458070261299532,\n", + " 'Micro-F1': 0.29504950495049503,\n", + " 'F1-0_vs_rest': 0.24770642201834864,\n", + " 'F1-1_vs_rest': 0.25165562913907286,\n", + " 'F1-2_vs_rest': 0.35379061371841153,\n", + " 'F1-3_vs_rest': 0.37433155080213903,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7929292929292929,\n", + " 'Recall-0.5': 0.9781931464174455,\n", + " 'Precision-0.5': 0.6666666666666666,\n", + " 'F1-1.5': 0.6938775510204082,\n", + " 'Recall-1.5': 0.7692307692307693,\n", + " 'Precision-1.5': 0.6319702602230484,\n", + " 'F1-2.5': 0.4507042253521127,\n", + " 'Recall-2.5': 0.41025641025641024,\n", + " 'Precision-2.5': 0.5,\n", + " 'F1-3.5': 0.07692307692307693,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.09090909090909091,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8831770233753757},\n", + " 'CM': {'0': {'-1': 0, '0': 27, '1': 115, '2': 35, '3': 5, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 5, '1': 38, '2': 42, '3': 13, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 27, '2': 49, '3': 25, '4': 1, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 22, '2': 40, '3': 35, '4': 5, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 7, '3': 6, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.2071062417096718,\n", + " 'Cohen': 0.22772139580147366,\n", + " 'Spearman': 0.7008924663672177,\n", + " 'Kendall': 0.5814990188211127,\n", + " 'Krippendorff': 0.6000949758713365,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7881188118811882,\n", + " 'TA-4.0': 0.7603960396039604,\n", + " 'Acc': 0.3683168316831683,\n", + " 'MAE': 0.9471947194719473,\n", + " 'MSE': 1.8897689768976902,\n", + " 'CA-0': 0.3967391304347826,\n", + " 'CA-1': 0.42,\n", + " 'CA-2': 0.33653846153846156,\n", + " 'CA-3': 0.2549019607843137,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.30769548894607973,\n", + " 'Micro-F1': 0.3683168316831683,\n", + " 'F1-0_vs_rest': 0.5488721804511278,\n", + " 'F1-1_vs_rest': 0.35,\n", + " 'F1-2_vs_rest': 0.36649214659685864,\n", + " 'F1-3_vs_rest': 0.3058823529411765,\n", + " 'F1-4_vs_rest': 0.1415929203539823,\n", + " 'F1-5_vs_rest': 0.13333333333333333,\n", + " 'F1-0.5': 0.8387096774193549,\n", + " 'Recall-0.5': 0.9719626168224299,\n", + " 'Precision-0.5': 0.7375886524822695,\n", + " 'F1-1.5': 0.8095238095238095,\n", + " 'Recall-1.5': 0.9230769230769231,\n", + " 'Precision-1.5': 0.7208480565371025,\n", + " 'F1-2.5': 0.6389776357827476,\n", + " 'Recall-2.5': 0.8547008547008547,\n", + " 'Precision-2.5': 0.5102040816326531,\n", + " 'F1-3.5': 0.15384615384615385,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.0859375,\n", + " 'F1-4.5': 0.13333333333333333,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.07142857142857142,\n", + " 'NDCG@all': 0.8900585915143691},\n", + " 'CM': {'0': {'-1': 0, '0': 73, '1': 83, '2': 16, '3': 4, '4': 3, '5': 5},\n", + " '1': {'-1': 0, '0': 7, '1': 42, '2': 20, '3': 13, '4': 12, '5': 6},\n", + " '2': {'-1': 0, '0': 2, '1': 14, '2': 35, '3': 22, '4': 25, '5': 6},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 15, '3': 26, '4': 52, '5': 8},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 3, '4': 8, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.04193405533733551,\n", + " 'Cohen': 0.10836568663792268,\n", + " 'Spearman': 0.618260212980319,\n", + " 'Kendall': 0.530175668738537,\n", + " 'Krippendorff': 0.5160297815644144,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7485148514851485,\n", + " 'TA-4.0': 0.9405940594059405,\n", + " 'Acc': 0.28316831683168314,\n", + " 'MAE': 0.8759075907590762,\n", + " 'MSE': 1.2107810781078108,\n", + " 'CA-0': 0.016304347826086956,\n", + " 'CA-1': 0.5,\n", + " 'CA-2': 0.4230769230769231,\n", + " 'CA-3': 0.45098039215686275,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.1904034081171225,\n", + " 'Micro-F1': 0.28316831683168314,\n", + " 'F1-0_vs_rest': 0.03208556149732621,\n", + " 'F1-1_vs_rest': 0.28328611898017,\n", + " 'F1-2_vs_rest': 0.37606837606837606,\n", + " 'F1-3_vs_rest': 0.45098039215686275,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7800729040097205,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6394422310756972,\n", + " 'F1-1.5': 0.7489361702127659,\n", + " 'Recall-1.5': 0.7963800904977375,\n", + " 'Precision-1.5': 0.7068273092369478,\n", + " 'F1-2.5': 0.5338983050847458,\n", + " 'Recall-2.5': 0.5384615384615384,\n", + " 'Precision-2.5': 0.5294117647058824,\n", + " 'F1-3.5': 0.0625,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.058823529411764705,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8944128459301556},\n", + " 'CM': {'0': {'-1': 0, '0': 3, '1': 158, '2': 20, '3': 2, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 50, '2': 28, '3': 19, '4': 3, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 29, '2': 44, '3': 25, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 16, '2': 34, '3': 46, '4': 6, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 9, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.10834285771449867,\n", + " 'Cohen': 0.1324206468944975,\n", + " 'Spearman': 0.6147307462328605,\n", + " 'Kendall': 0.5055088444937663,\n", + " 'Krippendorff': 0.5090494381296595,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7069306930693069,\n", + " 'TA-4.0': 0.8495049504950495,\n", + " 'Acc': 0.300990099009901,\n", + " 'MAE': 0.99009900990099,\n", + " 'MSE': 1.6792079207920794,\n", + " 'CA-0': 0.2717391304347826,\n", + " 'CA-1': 0.34,\n", + " 'CA-2': 0.22115384615384615,\n", + " 'CA-3': 0.38235294117647056,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23253750405326615,\n", + " 'Micro-F1': 0.300990099009901,\n", + " 'F1-0_vs_rest': 0.40816326530612246,\n", + " 'F1-1_vs_rest': 0.2698412698412698,\n", + " 'F1-2_vs_rest': 0.22772277227722773,\n", + " 'F1-3_vs_rest': 0.3561643835616438,\n", + " 'F1-4_vs_rest': 0.13333333333333333,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8104575163398693,\n", + " 'Recall-0.5': 0.9657320872274143,\n", + " 'Precision-0.5': 0.6981981981981982,\n", + " 'F1-1.5': 0.7290448343079922,\n", + " 'Recall-1.5': 0.8461538461538461,\n", + " 'Precision-1.5': 0.6404109589041096,\n", + " 'F1-2.5': 0.5659163987138264,\n", + " 'Recall-2.5': 0.7521367521367521,\n", + " 'Precision-2.5': 0.4536082474226804,\n", + " 'F1-3.5': 0.17391304347826086,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.1038961038961039,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9014019092097106},\n", + " 'CM': {'0': {'-1': 0, '0': 50, '1': 88, '2': 34, '3': 8, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 7, '1': 34, '2': 26, '3': 23, '4': 10, '5': 0},\n", + " '2': {'-1': 0, '0': 3, '1': 17, '2': 23, '3': 41, '4': 20, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 13, '2': 14, '3': 39, '4': 35, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 6, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.10431285619069723,\n", + " 'Cohen': -0.032989921821731105,\n", + " 'Spearman': 0.5561814345910385,\n", + " 'Kendall': 0.4627855055227546,\n", + " 'Krippendorff': 0.17237778409518656,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5108910891089109,\n", + " 'TA-4.0': 0.7564356435643564,\n", + " 'Acc': 0.13267326732673268,\n", + " 'MAE': 1.4349834983498346,\n", + " 'MSE': 2.83036303630363,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.23076923076923078,\n", + " 'CA-3': 0.28431372549019607,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.20879513814064224,\n", + " 'Micro-F1': 0.13267326732673268,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.09876543209876543,\n", + " 'F1-2_vs_rest': 0.16271186440677965,\n", + " 'F1-3_vs_rest': 0.25,\n", + " 'F1-4_vs_rest': 0.07462686567164178,\n", + " 'F1-5_vs_rest': 0.6666666666666666,\n", + " 'F1-0.5': 0.7772397094430993,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6356435643564357,\n", + " 'F1-1.5': 0.6475903614457831,\n", + " 'Recall-1.5': 0.9728506787330317,\n", + " 'Precision-1.5': 0.4853273137697517,\n", + " 'F1-2.5': 0.5040650406504065,\n", + " 'Recall-2.5': 0.7948717948717948,\n", + " 'Precision-2.5': 0.36904761904761907,\n", + " 'F1-3.5': 0.10218978102189781,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.05737704918032787,\n", + " 'F1-4.5': 0.6666666666666666,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 1.0,\n", + " 'NDCG@all': 0.9063215656743221},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 48, '2': 104, '3': 27, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 42, '3': 26, '4': 24, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 3, '2': 24, '3': 42, '4': 35, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 19, '3': 29, '4': 51, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 6, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.062098929812091426,\n", + " 'Cohen': -0.0034143250323936947,\n", + " 'Spearman': 0.6741647223298821,\n", + " 'Kendall': 0.5691367101674724,\n", + " 'Krippendorff': 0.308576939164782,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.6071428571428571,\n", + " 'TA-4.0': 0.8095238095238095,\n", + " 'Acc': 0.16468253968253968,\n", + " 'MAE': 1.2757936507936507,\n", + " 'MSE': 2.3666225749559087,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.11,\n", + " 'CA-2': 0.17475728155339806,\n", + " 'CA-3': 0.46078431372549017,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.17455325202801367,\n", + " 'Micro-F1': 0.16468253968253968,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.1073170731707317,\n", + " 'F1-2_vs_rest': 0.16,\n", + " 'F1-3_vs_rest': 0.33451957295373663,\n", + " 'F1-4_vs_rest': 0.11214953271028037,\n", + " 'F1-5_vs_rest': 0.3333333333333333,\n", + " 'F1-0.5': 0.7766990291262136,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6349206349206349,\n", + " 'F1-1.5': 0.7011308562197092,\n", + " 'Recall-1.5': 0.9863636363636363,\n", + " 'Precision-1.5': 0.543859649122807,\n", + " 'F1-2.5': 0.5532994923857868,\n", + " 'Recall-2.5': 0.9316239316239316,\n", + " 'Precision-2.5': 0.3935018050541516,\n", + " 'F1-3.5': 0.1415929203539823,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.08163265306122448,\n", + " 'F1-4.5': 0.3333333333333333,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.25,\n", + " 'NDCG@all': 0.9067119279276231},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 91, '2': 64, '3': 26, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 11, '2': 33, '3': 40, '4': 15, '5': 1},\n", + " '2': {'-1': 1, '0': 0, '1': 2, '2': 18, '3': 59, '4': 22, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 7, '3': 47, '4': 47, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 7, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.14050066973639894,\n", + " 'Cohen': 0.17930929515505023,\n", + " 'Spearman': 0.6816369364591798,\n", + " 'Kendall': 0.5875288709506022,\n", + " 'Krippendorff': 0.5811404257556978,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7584158415841584,\n", + " 'TA-4.0': 0.9366336633663367,\n", + " 'Acc': 0.3445544554455445,\n", + " 'MAE': 0.8066006600660066,\n", + " 'MSE': 1.142354235423542,\n", + " 'CA-0': 0.14130434782608695,\n", + " 'CA-1': 0.42,\n", + " 'CA-2': 0.5096153846153846,\n", + " 'CA-3': 0.49019607843137253,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2642401846304674,\n", + " 'Micro-F1': 0.3445544554455445,\n", + " 'F1-0_vs_rest': 0.24761904761904763,\n", + " 'F1-1_vs_rest': 0.28668941979522183,\n", + " 'F1-2_vs_rest': 0.40304182509505704,\n", + " 'F1-3_vs_rest': 0.49019607843137253,\n", + " 'F1-4_vs_rest': 0.15789473684210525,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8025,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6701461377870563,\n", + " 'F1-1.5': 0.7810650887573964,\n", + " 'Recall-1.5': 0.8959276018099548,\n", + " 'Precision-1.5': 0.6923076923076923,\n", + " 'F1-2.5': 0.5819672131147541,\n", + " 'Recall-2.5': 0.6068376068376068,\n", + " 'Precision-2.5': 0.5590551181102362,\n", + " 'F1-3.5': 0.2,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.16,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9046490081144993},\n", + " 'CM': {'0': {'-1': 0, '0': 26, '1': 128, '2': 24, '3': 4, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 42, '2': 42, '3': 12, '4': 4, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 17, '2': 53, '3': 29, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 6, '2': 36, '3': 50, '4': 10, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 6, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.1437979918753767,\n", + " 'Cohen': -0.042296288357803746,\n", + " 'Spearman': 0.28026868821908546,\n", + " 'Kendall': 0.21094026909975058,\n", + " 'Krippendorff': -0.2108242810472163,\n", + " 'Invalid': 147,\n", + " 'TA-2.0': 0.4776536312849162,\n", + " 'TA-4.0': 0.5893854748603352,\n", + " 'Acc': 0.0893854748603352,\n", + " 'MAE': 1.8533519553072626,\n", + " 'MSE': 4.709109248913719,\n", + " 'CA-0': 0.017391304347826087,\n", + " 'CA-1': 0.014084507042253521,\n", + " 'CA-2': 0.09523809523809523,\n", + " 'CA-3': 0.24,\n", + " 'CA-4': 0.2727272727272727,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.0677248377412983,\n", + " 'Micro-F1': 0.0893854748603352,\n", + " 'F1-0_vs_rest': 0.03418803418803419,\n", + " 'F1-1_vs_rest': 0.023255813953488372,\n", + " 'F1-2_vs_rest': 0.1038961038961039,\n", + " 'F1-3_vs_rest': 0.21052631578947367,\n", + " 'F1-4_vs_rest': 0.034482758620689655,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8113522537562604,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6825842696629213,\n", + " 'F1-1.5': 0.6549707602339181,\n", + " 'Recall-1.5': 0.9767441860465116,\n", + " 'Precision-1.5': 0.49266862170087977,\n", + " 'F1-2.5': 0.43454038997214484,\n", + " 'Recall-2.5': 0.8863636363636364,\n", + " 'Precision-2.5': 0.2878228782287823,\n", + " 'F1-3.5': 0.05319148936170213,\n", + " 'Recall-3.5': 0.38461538461538464,\n", + " 'Precision-3.5': 0.02857142857142857,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8139347618177706},\n", + " 'CM': {'0': {'-1': 69, '0': 2, '1': 10, '2': 44, '3': 23, '4': 33, '5': 3},\n", + " '1': {'-1': 29, '0': 0, '1': 1, '2': 10, '3': 20, '4': 36, '5': 4},\n", + " '2': {'-1': 20, '0': 0, '1': 2, '2': 8, '3': 30, '4': 39, '5': 5},\n", + " '3': {'-1': 27, '0': 0, '1': 2, '2': 5, '3': 18, '4': 50, '5': 0},\n", + " '4': {'-1': 2, '0': 0, '1': 0, '2': 3, '3': 5, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.05954056313288965,\n", + " 'Cohen': 0.11965134706814573,\n", + " 'Spearman': 0.6441946775817693,\n", + " 'Kendall': 0.5525683137159276,\n", + " 'Krippendorff': 0.5369881411559905,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7445544554455445,\n", + " 'TA-4.0': 0.9643564356435643,\n", + " 'Acc': 0.30297029702970296,\n", + " 'MAE': 0.8343234323432343,\n", + " 'MSE': 1.0913091309130911,\n", + " 'CA-0': 0.125,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.6538461538461539,\n", + " 'CA-3': 0.2549019607843137,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.20108027781451665,\n", + " 'Micro-F1': 0.30297029702970296,\n", + " 'F1-0_vs_rest': 0.22115384615384615,\n", + " 'F1-1_vs_rest': 0.2465753424657534,\n", + " 'F1-2_vs_rest': 0.40963855421686746,\n", + " 'F1-3_vs_rest': 0.3291139240506329,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7980049875311721,\n", + " 'Recall-0.5': 0.9968847352024922,\n", + " 'Precision-0.5': 0.6652806652806653,\n", + " 'F1-1.5': 0.7686274509803922,\n", + " 'Recall-1.5': 0.8868778280542986,\n", + " 'Precision-1.5': 0.6782006920415224,\n", + " 'F1-2.5': 0.34831460674157305,\n", + " 'Recall-2.5': 0.26495726495726496,\n", + " 'Precision-2.5': 0.5081967213114754,\n", + " 'F1-3.5': 0.1,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.2,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8938694515578042},\n", + " 'CM': {'0': {'-1': 0, '0': 23, '1': 131, '2': 27, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 36, '2': 54, '3': 7, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 18, '2': 68, '3': 16, '4': 2, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 7, '2': 69, '3': 26, '4': 0, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 10, '3': 3, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.04353483237202593,\n", + " 'Cohen': 0.08023009549396332,\n", + " 'Spearman': 0.6144327619913339,\n", + " 'Kendall': 0.5105225469740864,\n", + " 'Krippendorff': 0.43858672805353127,\n", + " 'Invalid': 32,\n", + " 'TA-2.0': 0.6765327695560254,\n", + " 'TA-4.0': 0.8012684989429175,\n", + " 'Acc': 0.24101479915433405,\n", + " 'MAE': 1.1187455954897814,\n", + " 'MSE': 2.042459478505991,\n", + " 'CA-0': 0.14906832298136646,\n", + " 'CA-1': 0.16326530612244897,\n", + " 'CA-2': 0.39603960396039606,\n", + " 'CA-3': 0.2727272727272727,\n", + " 'CA-4': 0.5,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.20774468692778716,\n", + " 'Micro-F1': 0.24101479915433405,\n", + " 'F1-0_vs_rest': 0.2513089005235602,\n", + " 'F1-1_vs_rest': 0.17582417582417584,\n", + " 'F1-2_vs_rest': 0.3041825095057034,\n", + " 'F1-3_vs_rest': 0.2918918918918919,\n", + " 'F1-4_vs_rest': 0.11214953271028037,\n", + " 'F1-5_vs_rest': 0.1111111111111111,\n", + " 'F1-0.5': 0.8105960264900662,\n", + " 'Recall-0.5': 0.9807692307692307,\n", + " 'Precision-0.5': 0.690744920993228,\n", + " 'F1-1.5': 0.7260034904013961,\n", + " 'Recall-1.5': 0.9719626168224299,\n", + " 'Precision-1.5': 0.5793871866295265,\n", + " 'F1-2.5': 0.5741935483870968,\n", + " 'Recall-2.5': 0.7876106194690266,\n", + " 'Precision-2.5': 0.4517766497461929,\n", + " 'F1-3.5': 0.144,\n", + " 'Recall-3.5': 0.6428571428571429,\n", + " 'Precision-3.5': 0.08108108108108109,\n", + " 'F1-4.5': 0.1111111111111111,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.0625,\n", + " 'NDCG@all': 0.8963725782709586},\n", + " 'CM': {'0': {'-1': 23, '0': 24, '1': 62, '2': 56, '3': 14, '4': 4, '5': 1},\n", + " '1': {'-1': 2, '0': 6, '1': 16, '2': 43, '3': 19, '4': 12, '5': 2},\n", + " '2': {'-1': 3, '0': 0, '1': 5, '2': 40, '3': 23, '4': 27, '5': 6},\n", + " '3': {'-1': 3, '0': 0, '1': 1, '2': 21, '3': 27, '4': 45, '5': 5},\n", + " '4': {'-1': 1, '0': 0, '1': 0, '2': 2, '3': 3, '4': 6, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.08249456048468132,\n", + " 'Cohen': -0.02146308573997069,\n", + " 'Spearman': 0.6225953537567184,\n", + " 'Kendall': 0.5240824920036155,\n", + " 'Krippendorff': 0.24245997035976063,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5544554455445545,\n", + " 'TA-4.0': 0.7841584158415842,\n", + " 'Acc': 0.14455445544554454,\n", + " 'MAE': 1.3650165016501652,\n", + " 'MSE': 2.654345434543455,\n", + " 'CA-0': 0.016304347826086956,\n", + " 'CA-1': 0.06,\n", + " 'CA-2': 0.17307692307692307,\n", + " 'CA-3': 0.35294117647058826,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.11247478028534995,\n", + " 'Micro-F1': 0.14455445544554454,\n", + " 'F1-0_vs_rest': 0.031914893617021274,\n", + " 'F1-1_vs_rest': 0.06593406593406594,\n", + " 'F1-2_vs_rest': 0.14516129032258066,\n", + " 'F1-3_vs_rest': 0.277992277992278,\n", + " 'F1-4_vs_rest': 0.15384615384615385,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7785888077858881,\n", + " 'Recall-0.5': 0.9968847352024922,\n", + " 'Precision-0.5': 0.6387225548902196,\n", + " 'F1-1.5': 0.66875,\n", + " 'Recall-1.5': 0.9683257918552036,\n", + " 'Precision-1.5': 0.5107398568019093,\n", + " 'F1-2.5': 0.5306122448979592,\n", + " 'Recall-2.5': 0.8888888888888888,\n", + " 'Precision-2.5': 0.3781818181818182,\n", + " 'F1-3.5': 0.18045112781954886,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.1016949152542373,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8835542052087341},\n", + " 'CM': {'0': {'-1': 0, '0': 3, '1': 69, '2': 76, '3': 30, '4': 5, '5': 1},\n", + " '1': {'-1': 0, '0': 1, '1': 6, '2': 39, '3': 36, '4': 18, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 18, '3': 52, '4': 29, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 11, '3': 36, '4': 53, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'sr': {'phi-4': {'metrics': {'Fleiss': 0.20730770945514168,\n", + " 'Cohen': 0.22252831343740442,\n", + " 'Spearman': 0.6593492179508463,\n", + " 'Kendall': 0.5407279952306375,\n", + " 'Krippendorff': 0.5241226886031578,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7086614173228346,\n", + " 'TA-4.0': 0.8543307086614174,\n", + " 'Acc': 0.3799212598425197,\n", + " 'MAE': 0.9360236220472441,\n", + " 'MSE': 1.763506124234471,\n", + " 'CA-0': 0.43243243243243246,\n", + " 'CA-1': 0.2222222222222222,\n", + " 'CA-2': 0.2830188679245283,\n", + " 'CA-3': 0.5533980582524272,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.31319614263116297,\n", + " 'Micro-F1': 0.3799212598425197,\n", + " 'F1-0_vs_rest': 0.5904059040590406,\n", + " 'F1-1_vs_rest': 0.23404255319148937,\n", + " 'F1-2_vs_rest': 0.28708133971291866,\n", + " 'F1-3_vs_rest': 0.4470588235294118,\n", + " 'F1-4_vs_rest': 0.07058823529411765,\n", + " 'F1-5_vs_rest': 0.25,\n", + " 'F1-0.5': 0.851006711409396,\n", + " 'Recall-0.5': 0.9814241486068112,\n", + " 'Precision-0.5': 0.7511848341232228,\n", + " 'F1-1.5': 0.7540394973070018,\n", + " 'Recall-1.5': 0.9375,\n", + " 'Precision-1.5': 0.6306306306306306,\n", + " 'F1-2.5': 0.5977011494252874,\n", + " 'Recall-2.5': 0.8813559322033898,\n", + " 'Precision-2.5': 0.45217391304347826,\n", + " 'F1-3.5': 0.10752688172043011,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.0641025641025641,\n", + " 'F1-4.5': 0.25,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.16666666666666666,\n", + " 'NDCG@all': 0.8873882356611245},\n", + " 'CM': {'0': {'-1': 0, '0': 80, '1': 54, '2': 30, '3': 15, '4': 5, '5': 1},\n", + " '1': {'-1': 0, '0': 5, '1': 22, '2': 31, '3': 28, '4': 12, '5': 1},\n", + " '2': {'-1': 0, '0': 1, '1': 11, '2': 30, '3': 42, '4': 20, '5': 2},\n", + " '3': {'-1': 1, '0': 0, '1': 2, '2': 12, '3': 57, '4': 31, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 10, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.08950246899043218,\n", + " 'Cohen': 0.12608990482419657,\n", + " 'Spearman': 0.6273747864707626,\n", + " 'Kendall': 0.5234333993278183,\n", + " 'Krippendorff': 0.5151347071751727,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7328094302554028,\n", + " 'TA-4.0': 0.9096267190569745,\n", + " 'Acc': 0.29862475442043224,\n", + " 'MAE': 0.9083169613621478,\n", + " 'MSE': 1.399039511023794,\n", + " 'CA-0': 0.12972972972972974,\n", + " 'CA-1': 0.35353535353535354,\n", + " 'CA-2': 0.42452830188679247,\n", + " 'CA-3': 0.4423076923076923,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22177898493626436,\n", + " 'Micro-F1': 0.29862475442043224,\n", + " 'F1-0_vs_rest': 0.22429906542056074,\n", + " 'F1-1_vs_rest': 0.2527075812274368,\n", + " 'F1-2_vs_rest': 0.3488372093023256,\n", + " 'F1-3_vs_rest': 0.42790697674418604,\n", + " 'F1-4_vs_rest': 0.07692307692307693,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7935323383084577,\n", + " 'Recall-0.5': 0.9845679012345679,\n", + " 'Precision-0.5': 0.6645833333333333,\n", + " 'F1-1.5': 0.7628083491461101,\n", + " 'Recall-1.5': 0.8933333333333333,\n", + " 'Precision-1.5': 0.6655629139072847,\n", + " 'F1-2.5': 0.5576208178438662,\n", + " 'Recall-2.5': 0.6302521008403361,\n", + " 'Precision-2.5': 0.5,\n", + " 'F1-3.5': 0.14814814814814814,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.10256410256410256,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8938169642380831},\n", + " 'CM': {'0': {'-1': 0, '0': 24, '1': 119, '2': 32, '3': 6, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 5, '1': 35, '2': 39, '3': 13, '4': 7, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 16, '2': 45, '3': 36, '4': 9, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 8, '2': 35, '3': 46, '4': 15, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 10, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.22967447139801217,\n", + " 'Cohen': 0.2479079349293173,\n", + " 'Spearman': 0.6870100190860253,\n", + " 'Kendall': 0.5704261266474713,\n", + " 'Krippendorff': 0.6066090041083707,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.768172888015717,\n", + " 'TA-4.0': 0.7426326129666012,\n", + " 'Acc': 0.38703339882121807,\n", + " 'MAE': 0.9607072691552064,\n", + " 'MSE': 1.998471949356036,\n", + " 'CA-0': 0.5081081081081081,\n", + " 'CA-1': 0.43434343434343436,\n", + " 'CA-2': 0.24528301886792453,\n", + " 'CA-3': 0.2403846153846154,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.30786538344800024,\n", + " 'Micro-F1': 0.38703339882121807,\n", + " 'F1-0_vs_rest': 0.6550522648083623,\n", + " 'F1-1_vs_rest': 0.36752136752136755,\n", + " 'F1-2_vs_rest': 0.2937853107344633,\n", + " 'F1-3_vs_rest': 0.2958579881656805,\n", + " 'F1-4_vs_rest': 0.1206896551724138,\n", + " 'F1-5_vs_rest': 0.11428571428571428,\n", + " 'F1-0.5': 0.8645690834473324,\n", + " 'Recall-0.5': 0.9753086419753086,\n", + " 'Precision-0.5': 0.7764127764127764,\n", + " 'F1-1.5': 0.7847082494969819,\n", + " 'Recall-1.5': 0.8666666666666667,\n", + " 'Precision-1.5': 0.7169117647058824,\n", + " 'F1-2.5': 0.63125,\n", + " 'Recall-2.5': 0.8487394957983193,\n", + " 'Precision-2.5': 0.5024875621890548,\n", + " 'F1-3.5': 0.13245033112582782,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.07352941176470588,\n", + " 'F1-4.5': 0.11428571428571428,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.06060606060606061,\n", + " 'NDCG@all': 0.8897110131679159},\n", + " 'CM': {'0': {'-1': 0, '0': 94, '1': 64, '2': 12, '3': 7, '4': 3, '5': 5},\n", + " '1': {'-1': 0, '0': 6, '1': 43, '2': 21, '3': 8, '4': 14, '5': 7},\n", + " '2': {'-1': 0, '0': 2, '1': 22, '2': 26, '3': 23, '4': 25, '5': 8},\n", + " '3': {'-1': 0, '0': 0, '1': 6, '2': 9, '3': 25, '4': 54, '5': 10},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 2, '4': 7, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.04398509671821569,\n", + " 'Cohen': 0.10105629916158343,\n", + " 'Spearman': 0.6451923877296519,\n", + " 'Kendall': 0.5474482698212314,\n", + " 'Krippendorff': 0.5309189739847024,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.75049115913556,\n", + " 'TA-4.0': 0.9351669941060904,\n", + " 'Acc': 0.2770137524557957,\n", + " 'MAE': 0.8834315651604455,\n", + " 'MSE': 1.2239685658153239,\n", + " 'CA-0': 0.043243243243243246,\n", + " 'CA-1': 0.42424242424242425,\n", + " 'CA-2': 0.4056603773584906,\n", + " 'CA-3': 0.4519230769230769,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.19771193506812368,\n", + " 'Micro-F1': 0.2770137524557957,\n", + " 'F1-0_vs_rest': 0.08290155440414508,\n", + " 'F1-1_vs_rest': 0.2553191489361702,\n", + " 'F1-2_vs_rest': 0.34959349593495936,\n", + " 'F1-3_vs_rest': 0.4413145539906103,\n", + " 'F1-4_vs_rest': 0.05714285714285714,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7854545454545454,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6467065868263473,\n", + " 'F1-1.5': 0.7620967741935484,\n", + " 'Recall-1.5': 0.84,\n", + " 'Precision-1.5': 0.6974169741697417,\n", + " 'F1-2.5': 0.544,\n", + " 'Recall-2.5': 0.5714285714285714,\n", + " 'Precision-2.5': 0.5190839694656488,\n", + " 'F1-3.5': 0.10810810810810811,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.09090909090909091,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8992579331327978},\n", + " 'CM': {'0': {'-1': 0, '0': 8, '1': 152, '2': 18, '3': 5, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 42, '2': 37, '3': 18, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 27, '2': 43, '3': 29, '4': 7, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 9, '2': 39, '3': 47, '4': 9, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 9, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.13027983362299597,\n", + " 'Cohen': 0.15358520686444044,\n", + " 'Spearman': 0.6657829767642025,\n", + " 'Kendall': 0.5566894741120766,\n", + " 'Krippendorff': 0.5517070514385931,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7210216110019646,\n", + " 'TA-4.0': 0.8074656188605108,\n", + " 'Acc': 0.31237721021611004,\n", + " 'MAE': 0.9672560576293385,\n", + " 'MSE': 1.7155642872735217,\n", + " 'CA-0': 0.34054054054054056,\n", + " 'CA-1': 0.3434343434343434,\n", + " 'CA-2': 0.2169811320754717,\n", + " 'CA-3': 0.2980769230769231,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2422213444601747,\n", + " 'Micro-F1': 0.31237721021611004,\n", + " 'F1-0_vs_rest': 0.49606299212598426,\n", + " 'F1-1_vs_rest': 0.2857142857142857,\n", + " 'F1-2_vs_rest': 0.22772277227722773,\n", + " 'F1-3_vs_rest': 0.30097087378640774,\n", + " 'F1-4_vs_rest': 0.14285714285714285,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8324607329842932,\n", + " 'Recall-0.5': 0.9814814814814815,\n", + " 'Precision-0.5': 0.7227272727272728,\n", + " 'F1-1.5': 0.7490494296577946,\n", + " 'Recall-1.5': 0.8755555555555555,\n", + " 'Precision-1.5': 0.654485049833887,\n", + " 'F1-2.5': 0.6049382716049383,\n", + " 'Recall-2.5': 0.8235294117647058,\n", + " 'Precision-2.5': 0.47804878048780486,\n", + " 'F1-3.5': 0.1694915254237288,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.0970873786407767,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8812787760620265},\n", + " 'CM': {'0': {'-1': 0, '0': 63, '1': 79, '2': 29, '3': 8, '4': 4, '5': 2},\n", + " '1': {'-1': 0, '0': 4, '1': 34, '2': 32, '3': 16, '4': 12, '5': 1},\n", + " '2': {'-1': 0, '0': 2, '1': 17, '2': 23, '3': 42, '4': 21, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 9, '2': 12, '3': 31, '4': 52, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.12093691518261397,\n", + " 'Cohen': -0.04204004669120942,\n", + " 'Spearman': 0.6334971901111014,\n", + " 'Kendall': 0.533468659491098,\n", + " 'Krippendorff': 0.21876226127808318,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5795677799607073,\n", + " 'TA-4.0': 0.6679764243614931,\n", + " 'Acc': 0.10412573673870335,\n", + " 'MAE': 1.4688932547478712,\n", + " 'MSE': 2.983846321763807,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.050505050505050504,\n", + " 'CA-2': 0.18867924528301888,\n", + " 'CA-3': 0.16346153846153846,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08308151549059069,\n", + " 'Micro-F1': 0.10412573673870335,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.05154639175257732,\n", + " 'F1-2_vs_rest': 0.1694915254237288,\n", + " 'F1-3_vs_rest': 0.16346153846153846,\n", + " 'F1-4_vs_rest': 0.11398963730569948,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7779111644657863,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6365422396856582,\n", + " 'F1-1.5': 0.6823161189358372,\n", + " 'Recall-1.5': 0.9688888888888889,\n", + " 'Precision-1.5': 0.5265700483091788,\n", + " 'F1-2.5': 0.5310173697270472,\n", + " 'Recall-2.5': 0.8991596638655462,\n", + " 'Precision-2.5': 0.3767605633802817,\n", + " 'F1-3.5': 0.13333333333333333,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.07222222222222222,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8923734704033585},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 83, '2': 65, '3': 24, '4': 13, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 5, '2': 36, '3': 26, '4': 32, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 4, '2': 20, '3': 35, '4': 47, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 9, '3': 17, '4': 75, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.11685463506127491,\n", + " 'Cohen': -0.046978667289385934,\n", + " 'Spearman': 0.6956133403626067,\n", + " 'Kendall': 0.5931064703185996,\n", + " 'Krippendorff': 0.25285990173245854,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.6015779092702169,\n", + " 'TA-4.0': 0.7238658777120316,\n", + " 'Acc': 0.11045364891518737,\n", + " 'MAE': 1.4224194608809992,\n", + " 'MSE': 2.8205676090291485,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.05102040816326531,\n", + " 'CA-2': 0.11320754716981132,\n", + " 'CA-3': 0.2912621359223301,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08491128264432411,\n", + " 'Micro-F1': 0.11045364891518737,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.05154639175257732,\n", + " 'F1-2_vs_rest': 0.11707317073170732,\n", + " 'F1-3_vs_rest': 0.2247191011235955,\n", + " 'F1-4_vs_rest': 0.11612903225806452,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7768395657418576,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6351084812623274,\n", + " 'F1-1.5': 0.7023622047244095,\n", + " 'Recall-1.5': 0.9955357142857143,\n", + " 'Precision-1.5': 0.5425790754257908,\n", + " 'F1-2.5': 0.5302325581395348,\n", + " 'Recall-2.5': 0.9661016949152542,\n", + " 'Precision-2.5': 0.36538461538461536,\n", + " 'F1-3.5': 0.13496932515337423,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.07432432432432433,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8879361566327623},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 90, '2': 58, '3': 29, '4': 7, '5': 1},\n", + " '1': {'-1': 1, '0': 0, '1': 5, '2': 26, '3': 45, '4': 21, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 0, '2': 12, '3': 56, '4': 35, '5': 3},\n", + " '3': {'-1': 1, '0': 0, '1': 1, '2': 3, '3': 30, '4': 68, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.21228215183862972,\n", + " 'Cohen': 0.23874545375086798,\n", + " 'Spearman': 0.6961203304597621,\n", + " 'Kendall': 0.5964742313023443,\n", + " 'Krippendorff': 0.603033686697906,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.75049115913556,\n", + " 'TA-4.0': 0.931237721021611,\n", + " 'Acc': 0.3948919449901768,\n", + " 'MAE': 0.7688277668631303,\n", + " 'MSE': 1.1351233355162624,\n", + " 'CA-0': 0.24324324324324326,\n", + " 'CA-1': 0.36363636363636365,\n", + " 'CA-2': 0.5660377358490566,\n", + " 'CA-3': 0.5288461538461539,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.31064327149860316,\n", + " 'Micro-F1': 0.3948919449901768,\n", + " 'F1-0_vs_rest': 0.391304347826087,\n", + " 'F1-1_vs_rest': 0.26865671641791045,\n", + " 'F1-2_vs_rest': 0.4528301886792453,\n", + " 'F1-3_vs_rest': 0.5288461538461539,\n", + " 'F1-4_vs_rest': 0.2222222222222222,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8223350253807107,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6982758620689655,\n", + " 'F1-1.5': 0.7769230769230769,\n", + " 'Recall-1.5': 0.8977777777777778,\n", + " 'Precision-1.5': 0.6847457627118644,\n", + " 'F1-2.5': 0.6352941176470588,\n", + " 'Recall-2.5': 0.680672268907563,\n", + " 'Precision-2.5': 0.5955882352941176,\n", + " 'F1-3.5': 0.2553191489361702,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.1875,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9080800015543442},\n", + " 'CM': {'0': {'-1': 0, '0': 45, '1': 110, '2': 23, '3': 4, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 36, '2': 42, '3': 16, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 19, '2': 60, '3': 23, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 31, '3': 55, '4': 14, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 5, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.07686928274135153,\n", + " 'Cohen': -0.002730748225013624,\n", + " 'Spearman': 0.37827235474335846,\n", + " 'Kendall': 0.2961673784710649,\n", + " 'Krippendorff': -0.04442786592757608,\n", + " 'Invalid': 275,\n", + " 'TA-2.0': 0.5384615384615384,\n", + " 'TA-4.0': 0.5854700854700855,\n", + " 'Acc': 0.1282051282051282,\n", + " 'MAE': 1.7443019943019942,\n", + " 'MSE': 4.4182098765432105,\n", + " 'CA-0': 0.06578947368421052,\n", + " 'CA-1': 0.0851063829787234,\n", + " 'CA-2': 0.12727272727272726,\n", + " 'CA-3': 0.22,\n", + " 'CA-4': 0.6,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.10906079627990965,\n", + " 'Micro-F1': 0.1282051282051282,\n", + " 'F1-0_vs_rest': 0.12195121951219512,\n", + " 'F1-1_vs_rest': 0.11764705882352941,\n", + " 'F1-2_vs_rest': 0.13592233009708737,\n", + " 'F1-3_vs_rest': 0.21568627450980393,\n", + " 'F1-4_vs_rest': 0.06315789473684211,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8134715025906736,\n", + " 'Recall-0.5': 0.9936708860759493,\n", + " 'Precision-0.5': 0.6885964912280702,\n", + " 'F1-1.5': 0.6792452830188679,\n", + " 'Recall-1.5': 0.972972972972973,\n", + " 'Precision-1.5': 0.5217391304347826,\n", + " 'F1-2.5': 0.44651162790697674,\n", + " 'Recall-2.5': 0.8571428571428571,\n", + " 'Precision-2.5': 0.3018867924528302,\n", + " 'F1-3.5': 0.07079646017699115,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.037383177570093455,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8221961766757346},\n", + " 'CM': {'0': {'-1': 109, '0': 5, '1': 14, '2': 26, '3': 13, '4': 14, '5': 4},\n", + " '1': {'-1': 52, '0': 1, '1': 4, '2': 8, '3': 14, '4': 15, '5': 5},\n", + " '2': {'-1': 51, '0': 0, '1': 2, '2': 7, '3': 13, '4': 28, '5': 5},\n", + " '3': {'-1': 54, '0': 0, '1': 1, '2': 6, '3': 11, '4': 29, '5': 3},\n", + " '4': {'-1': 8, '0': 0, '1': 0, '2': 1, '3': 1, '4': 3, '5': 0},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.10494429313542633,\n", + " 'Cohen': 0.1457074331001128,\n", + " 'Spearman': 0.6773168029591019,\n", + " 'Kendall': 0.5690610416494011,\n", + " 'Krippendorff': 0.5601289786831702,\n", + " 'Invalid': 3,\n", + " 'TA-2.0': 0.741106719367589,\n", + " 'TA-4.0': 0.9604743083003953,\n", + " 'Acc': 0.32806324110671936,\n", + " 'MAE': 0.8198287220026348,\n", + " 'MSE': 1.0995278875713654,\n", + " 'CA-0': 0.21081081081081082,\n", + " 'CA-1': 0.26262626262626265,\n", + " 'CA-2': 0.6226415094339622,\n", + " 'CA-3': 0.3465346534653465,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22180338550337128,\n", + " 'Micro-F1': 0.32806324110671936,\n", + " 'F1-0_vs_rest': 0.34513274336283184,\n", + " 'F1-1_vs_rest': 0.20967741935483872,\n", + " 'F1-2_vs_rest': 0.4036697247706422,\n", + " 'F1-3_vs_rest': 0.3723404255319149,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.811704834605598,\n", + " 'Recall-0.5': 0.9937694704049844,\n", + " 'Precision-0.5': 0.6860215053763441,\n", + " 'F1-1.5': 0.7806691449814126,\n", + " 'Recall-1.5': 0.9459459459459459,\n", + " 'Precision-1.5': 0.6645569620253164,\n", + " 'F1-2.5': 0.4265402843601896,\n", + " 'Recall-2.5': 0.3879310344827586,\n", + " 'Precision-2.5': 0.47368421052631576,\n", + " 'F1-3.5': 0.08695652173913043,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.125,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9009779899334373},\n", + " 'CM': {'0': {'-1': 0, '0': 39, '1': 112, '2': 31, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 26, '2': 56, '3': 16, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 8, '2': 66, '3': 26, '4': 5, '5': 0},\n", + " '3': {'-1': 3, '0': 0, '1': 3, '2': 61, '3': 35, '4': 2, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 7, '3': 6, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.15465422503547382,\n", + " 'Cohen': 0.1734769030504757,\n", + " 'Spearman': 0.7076341648601796,\n", + " 'Kendall': 0.5942565616396468,\n", + " 'Krippendorff': 0.6243893375390726,\n", + " 'Invalid': 45,\n", + " 'TA-2.0': 0.7737068965517241,\n", + " 'TA-4.0': 0.7887931034482759,\n", + " 'Acc': 0.3275862068965517,\n", + " 'MAE': 0.9051724137931034,\n", + " 'MSE': 1.5102969348659003,\n", + " 'CA-0': 0.432258064516129,\n", + " 'CA-1': 0.20224719101123595,\n", + " 'CA-2': 0.39215686274509803,\n", + " 'CA-3': 0.20388349514563106,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.27399520544537076,\n", + " 'Micro-F1': 0.3275862068965517,\n", + " 'F1-0_vs_rest': 0.5800865800865801,\n", + " 'F1-1_vs_rest': 0.2057142857142857,\n", + " 'F1-2_vs_rest': 0.365296803652968,\n", + " 'F1-3_vs_rest': 0.24,\n", + " 'F1-4_vs_rest': 0.08620689655172414,\n", + " 'F1-5_vs_rest': 0.16666666666666666,\n", + " 'F1-0.5': 0.860832137733142,\n", + " 'Recall-0.5': 0.970873786407767,\n", + " 'Precision-0.5': 0.7731958762886598,\n", + " 'F1-1.5': 0.789272030651341,\n", + " 'Recall-1.5': 0.9363636363636364,\n", + " 'Precision-1.5': 0.6821192052980133,\n", + " 'F1-2.5': 0.6402640264026402,\n", + " 'Recall-2.5': 0.8220338983050848,\n", + " 'Precision-2.5': 0.5243243243243243,\n", + " 'F1-3.5': 0.125,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.07079646017699115,\n", + " 'F1-4.5': 0.16666666666666666,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.1,\n", + " 'NDCG@all': 0.9134609074188743},\n", + " 'CM': {'0': {'-1': 30, '0': 67, '1': 58, '2': 21, '3': 4, '4': 4, '5': 1},\n", + " '1': {'-1': 10, '0': 5, '1': 18, '2': 38, '3': 15, '4': 12, '5': 1},\n", + " '2': {'-1': 4, '0': 4, '1': 7, '2': 40, '3': 27, '4': 22, '5': 2},\n", + " '3': {'-1': 1, '0': 0, '1': 2, '2': 17, '3': 21, '4': 59, '5': 4},\n", + " '4': {'-1': 0, '0': 0, '1': 1, '2': 1, '3': 5, '4': 5, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.06638407756583596,\n", + " 'Cohen': -0.0066598596278206745,\n", + " 'Spearman': 0.6434536100479542,\n", + " 'Kendall': 0.541489911337688,\n", + " 'Krippendorff': 0.2792745489954064,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5677799607072691,\n", + " 'TA-4.0': 0.7583497053045186,\n", + " 'Acc': 0.15520628683693516,\n", + " 'MAE': 1.3366077275703996,\n", + " 'MSE': 2.560794586334862,\n", + " 'CA-0': 0.043243243243243246,\n", + " 'CA-1': 0.06060606060606061,\n", + " 'CA-2': 0.19811320754716982,\n", + " 'CA-3': 0.33653846153846156,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12154148607725428,\n", + " 'Micro-F1': 0.15520628683693516,\n", + " 'F1-0_vs_rest': 0.08290155440414508,\n", + " 'F1-1_vs_rest': 0.06666666666666667,\n", + " 'F1-2_vs_rest': 0.16091954022988506,\n", + " 'F1-3_vs_rest': 0.2928870292887029,\n", + " 'F1-4_vs_rest': 0.1258741258741259,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7854545454545454,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6467065868263473,\n", + " 'F1-1.5': 0.6790697674418604,\n", + " 'Recall-1.5': 0.9733333333333334,\n", + " 'Precision-1.5': 0.5214285714285715,\n", + " 'F1-2.5': 0.5520833333333334,\n", + " 'Recall-2.5': 0.8907563025210085,\n", + " 'Precision-2.5': 0.4,\n", + " 'F1-3.5': 0.15172413793103448,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08461538461538462,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8978027190285766},\n", + " 'CM': {'0': {'-1': 0, '0': 8, '1': 69, '2': 81, '3': 18, '4': 9, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 6, '2': 41, '3': 35, '4': 17, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 21, '3': 43, '4': 37, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 12, '3': 35, '4': 56, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'gl': {'phi-4': {'metrics': {'Fleiss': 0.21187438713714818,\n", + " 'Cohen': 0.22574633187624948,\n", + " 'Spearman': 0.6432511041115291,\n", + " 'Kendall': 0.5261019450887813,\n", + " 'Krippendorff': 0.5334851189073117,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7279843444227005,\n", + " 'TA-4.0': 0.8669275929549902,\n", + " 'Acc': 0.38747553816046965,\n", + " 'MAE': 0.9236790606653618,\n", + " 'MSE': 1.7362470102196133,\n", + " 'CA-0': 0.46774193548387094,\n", + " 'CA-1': 0.27,\n", + " 'CA-2': 0.2358490566037736,\n", + " 'CA-3': 0.5192307692307693,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.28001121090705494,\n", + " 'Micro-F1': 0.38747553816046965,\n", + " 'F1-0_vs_rest': 0.6105263157894737,\n", + " 'F1-1_vs_rest': 0.27411167512690354,\n", + " 'F1-2_vs_rest': 0.26595744680851063,\n", + " 'F1-3_vs_rest': 0.40601503759398494,\n", + " 'F1-4_vs_rest': 0.12345679012345678,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8493894165535957,\n", + " 'Recall-0.5': 0.963076923076923,\n", + " 'Precision-0.5': 0.7597087378640777,\n", + " 'F1-1.5': 0.762962962962963,\n", + " 'Recall-1.5': 0.9155555555555556,\n", + " 'Precision-1.5': 0.653968253968254,\n", + " 'F1-2.5': 0.5625,\n", + " 'Recall-2.5': 0.8319327731092437,\n", + " 'Precision-2.5': 0.4248927038626609,\n", + " 'F1-3.5': 0.16279069767441862,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.09859154929577464,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8746143970353836},\n", + " 'CM': {'0': {'-1': 0, '0': 87, '1': 54, '2': 24, '3': 15, '4': 5, '5': 1},\n", + " '1': {'-1': 0, '0': 9, '1': 27, '2': 17, '3': 34, '4': 11, '5': 2},\n", + " '2': {'-1': 0, '0': 3, '1': 12, '2': 25, '3': 54, '4': 12, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 13, '3': 54, '4': 33, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 5, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.07392082504161504,\n", + " 'Cohen': 0.11562954180371754,\n", + " 'Spearman': 0.5822913412469801,\n", + " 'Kendall': 0.49591557896440963,\n", + " 'Krippendorff': 0.472053372622636,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.700587084148728,\n", + " 'TA-4.0': 0.9373776908023483,\n", + " 'Acc': 0.29158512720156554,\n", + " 'MAE': 0.9295499021526418,\n", + " 'MSE': 1.4435746901500324,\n", + " 'CA-0': 0.10215053763440861,\n", + " 'CA-1': 0.34,\n", + " 'CA-2': 0.3867924528301887,\n", + " 'CA-3': 0.5,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22422030795855083,\n", + " 'Micro-F1': 0.29158512720156554,\n", + " 'F1-0_vs_rest': 0.18357487922705315,\n", + " 'F1-1_vs_rest': 0.23529411764705882,\n", + " 'F1-2_vs_rest': 0.3203125,\n", + " 'F1-3_vs_rest': 0.45614035087719296,\n", + " 'F1-4_vs_rest': 0.15,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7926380368098159,\n", + " 'Recall-0.5': 0.9938461538461538,\n", + " 'Precision-0.5': 0.6591836734693878,\n", + " 'F1-1.5': 0.7262357414448669,\n", + " 'Recall-1.5': 0.8488888888888889,\n", + " 'Precision-1.5': 0.6345514950166113,\n", + " 'F1-2.5': 0.5407407407407407,\n", + " 'Recall-2.5': 0.6134453781512605,\n", + " 'Precision-2.5': 0.48344370860927155,\n", + " 'F1-3.5': 0.23809523809523808,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.18518518518518517,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8916247862800208},\n", + " 'CM': {'0': {'-1': 0, '0': 19, '1': 121, '2': 35, '3': 7, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 34, '2': 43, '3': 16, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 19, '2': 41, '3': 42, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 14, '2': 29, '3': 52, '4': 9, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 1, '2': 2, '3': 7, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.218579287527891,\n", + " 'Cohen': 0.23668647391784292,\n", + " 'Spearman': 0.6917950794360014,\n", + " 'Kendall': 0.5728227635604007,\n", + " 'Krippendorff': 0.5990148104351336,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7710371819960861,\n", + " 'TA-4.0': 0.7475538160469667,\n", + " 'Acc': 0.3776908023483366,\n", + " 'MAE': 0.9667318982387475,\n", + " 'MSE': 1.960426179604262,\n", + " 'CA-0': 0.4838709677419355,\n", + " 'CA-1': 0.4,\n", + " 'CA-2': 0.3490566037735849,\n", + " 'CA-3': 0.18269230769230768,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.293054814961604,\n", + " 'Micro-F1': 0.3776908023483366,\n", + " 'F1-0_vs_rest': 0.631578947368421,\n", + " 'F1-1_vs_rest': 0.35555555555555557,\n", + " 'F1-2_vs_rest': 0.37755102040816324,\n", + " 'F1-3_vs_rest': 0.23030303030303031,\n", + " 'F1-4_vs_rest': 0.10084033613445378,\n", + " 'F1-5_vs_rest': 0.0625,\n", + " 'F1-0.5': 0.8575305291723202,\n", + " 'Recall-0.5': 0.9723076923076923,\n", + " 'Precision-0.5': 0.7669902912621359,\n", + " 'F1-1.5': 0.79296875,\n", + " 'Recall-1.5': 0.9022222222222223,\n", + " 'Precision-1.5': 0.7073170731707317,\n", + " 'F1-2.5': 0.620253164556962,\n", + " 'Recall-2.5': 0.8235294117647058,\n", + " 'Precision-2.5': 0.49746192893401014,\n", + " 'F1-3.5': 0.1456953642384106,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08088235294117647,\n", + " 'F1-4.5': 0.0625,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.03333333333333333,\n", + " 'NDCG@all': 0.8964707673285559},\n", + " 'CM': {'0': {'-1': 0, '0': 90, '1': 64, '2': 18, '3': 6, '4': 5, '5': 3},\n", + " '1': {'-1': 0, '0': 8, '1': 40, '2': 17, '3': 13, '4': 15, '5': 7},\n", + " '2': {'-1': 0, '0': 1, '1': 18, '2': 37, '3': 21, '4': 23, '5': 6},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 16, '3': 19, '4': 56, '5': 10},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 2, '4': 6, '5': 3},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.021596215442745308,\n", + " 'Cohen': 0.08918701114008054,\n", + " 'Spearman': 0.6297149099492506,\n", + " 'Kendall': 0.5361626069990575,\n", + " 'Krippendorff': 0.520630215894191,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7514677103718199,\n", + " 'TA-4.0': 0.9373776908023483,\n", + " 'Acc': 0.26418786692759294,\n", + " 'MAE': 0.889106327462492,\n", + " 'MSE': 1.235377255925201,\n", + " 'CA-0': 0.016129032258064516,\n", + " 'CA-1': 0.47,\n", + " 'CA-2': 0.36792452830188677,\n", + " 'CA-3': 0.41346153846153844,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.201051725712472,\n", + " 'Micro-F1': 0.26418786692759294,\n", + " 'F1-0_vs_rest': 0.031746031746031744,\n", + " 'F1-1_vs_rest': 0.2647887323943662,\n", + " 'F1-2_vs_rest': 0.33191489361702126,\n", + " 'F1-3_vs_rest': 0.42786069651741293,\n", + " 'F1-4_vs_rest': 0.15,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.78031212484994,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.639763779527559,\n", + " 'F1-1.5': 0.7489539748953975,\n", + " 'Recall-1.5': 0.7955555555555556,\n", + " 'Precision-1.5': 0.7075098814229249,\n", + " 'F1-2.5': 0.5432098765432098,\n", + " 'Recall-2.5': 0.5546218487394958,\n", + " 'Precision-2.5': 0.532258064516129,\n", + " 'F1-3.5': 0.19047619047619047,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.14814814814814814,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8993520008200467},\n", + " 'CM': {'0': {'-1': 0, '0': 3, '1': 162, '2': 14, '3': 4, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 47, '2': 35, '3': 15, '4': 3, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 34, '2': 39, '3': 28, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 12, '2': 37, '3': 43, '4': 12, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 6, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.11717266059974014,\n", + " 'Cohen': 0.14440285907248995,\n", + " 'Spearman': 0.6589372312871454,\n", + " 'Kendall': 0.5487551974603594,\n", + " 'Krippendorff': 0.5270318046903425,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7123287671232876,\n", + " 'TA-4.0': 0.7984344422700587,\n", + " 'Acc': 0.3013698630136986,\n", + " 'MAE': 1.0022831050228311,\n", + " 'MSE': 1.7767449445531642,\n", + " 'CA-0': 0.3064516129032258,\n", + " 'CA-1': 0.34,\n", + " 'CA-2': 0.2169811320754717,\n", + " 'CA-3': 0.2980769230769231,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2361273666408513,\n", + " 'Micro-F1': 0.3013698630136986,\n", + " 'F1-0_vs_rest': 0.4578313253012048,\n", + " 'F1-1_vs_rest': 0.2809917355371901,\n", + " 'F1-2_vs_rest': 0.23232323232323232,\n", + " 'F1-3_vs_rest': 0.2980769230769231,\n", + " 'F1-4_vs_rest': 0.14754098360655737,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8253557567917206,\n", + " 'Recall-0.5': 0.9815384615384616,\n", + " 'Precision-0.5': 0.7120535714285714,\n", + " 'F1-1.5': 0.7419962335216572,\n", + " 'Recall-1.5': 0.8755555555555555,\n", + " 'Precision-1.5': 0.6437908496732027,\n", + " 'F1-2.5': 0.6006006006006006,\n", + " 'Recall-2.5': 0.8403361344537815,\n", + " 'Precision-2.5': 0.4672897196261682,\n", + " 'F1-3.5': 0.176,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.1,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8965783042988285},\n", + " 'CM': {'0': {'-1': 0, '0': 57, '1': 83, '2': 30, '3': 10, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 34, '2': 28, '3': 21, '4': 13, '5': 1},\n", + " '2': {'-1': 0, '0': 2, '1': 18, '2': 23, '3': 38, '4': 25, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 7, '2': 11, '3': 31, '4': 54, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.07655097119410685,\n", + " 'Cohen': 0.0028093758473691777,\n", + " 'Spearman': 0.5846799876078983,\n", + " 'Kendall': 0.486256342739207,\n", + " 'Krippendorff': 0.1738090801197042,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5596868884540117,\n", + " 'TA-4.0': 0.6575342465753424,\n", + " 'Acc': 0.14090019569471623,\n", + " 'MAE': 1.4895629484670583,\n", + " 'MSE': 3.182485322896281,\n", + " 'CA-0': 0.010752688172043012,\n", + " 'CA-1': 0.1,\n", + " 'CA-2': 0.22641509433962265,\n", + " 'CA-3': 0.23076923076923078,\n", + " 'CA-4': 0.9230769230769231,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.1139626201433619,\n", + " 'Micro-F1': 0.14090019569471623,\n", + " 'F1-0_vs_rest': 0.02127659574468085,\n", + " 'F1-1_vs_rest': 0.10989010989010989,\n", + " 'F1-2_vs_rest': 0.192,\n", + " 'F1-3_vs_rest': 0.24120603015075376,\n", + " 'F1-4_vs_rest': 0.11940298507462686,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7793764988009593,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6385068762278978,\n", + " 'F1-1.5': 0.6748466257668712,\n", + " 'Recall-1.5': 0.9777777777777777,\n", + " 'Precision-1.5': 0.5152224824355972,\n", + " 'F1-2.5': 0.527363184079602,\n", + " 'Recall-2.5': 0.8907563025210085,\n", + " 'Precision-2.5': 0.3745583038869258,\n", + " 'F1-3.5': 0.13793103448275862,\n", + " 'Recall-3.5': 0.9333333333333333,\n", + " 'Precision-3.5': 0.07446808510638298,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8837345247071317},\n", + " 'CM': {'0': {'-1': 0, '0': 2, '1': 67, '2': 75, '3': 25, '4': 17, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 10, '2': 34, '3': 20, '4': 36, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 3, '2': 24, '3': 25, '4': 54, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 11, '3': 24, '4': 67, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 12, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.08028090836691847,\n", + " 'Cohen': -0.01724819677942735,\n", + " 'Spearman': 0.7101106294235779,\n", + " 'Kendall': 0.6063947049304294,\n", + " 'Krippendorff': 0.305620594875214,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6223091976516634,\n", + " 'TA-4.0': 0.7671232876712328,\n", + " 'Acc': 0.14285714285714285,\n", + " 'MAE': 1.3290932811480756,\n", + " 'MSE': 2.538540987171124,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.1509433962264151,\n", + " 'CA-3': 0.375,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.14477607535212306,\n", + " 'Micro-F1': 0.14285714285714285,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.07692307692307693,\n", + " 'F1-2_vs_rest': 0.15458937198067632,\n", + " 'F1-3_vs_rest': 0.2815884476534296,\n", + " 'F1-4_vs_rest': 0.13333333333333333,\n", + " 'F1-5_vs_rest': 0.2222222222222222,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.7133757961783439,\n", + " 'Recall-1.5': 0.9955555555555555,\n", + " 'Precision-1.5': 0.5558312655086849,\n", + " 'F1-2.5': 0.5510688836104513,\n", + " 'Recall-2.5': 0.9747899159663865,\n", + " 'Precision-2.5': 0.3841059602649007,\n", + " 'F1-3.5': 0.1527777777777778,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08527131782945736,\n", + " 'F1-4.5': 0.2222222222222222,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.14285714285714285,\n", + " 'NDCG@all': 0.9071562382895682},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 99, '2': 54, '3': 28, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 29, '3': 45, '4': 17, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 0, '2': 16, '3': 57, '4': 29, '5': 4},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 2, '3': 39, '4': 61, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.19155859549482332,\n", + " 'Cohen': 0.22118264732608617,\n", + " 'Spearman': 0.6915948903538425,\n", + " 'Kendall': 0.5884237497585882,\n", + " 'Krippendorff': 0.5902925698275671,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7592954990215264,\n", + " 'TA-4.0': 0.923679060665362,\n", + " 'Acc': 0.3796477495107632,\n", + " 'MAE': 0.7847358121330722,\n", + " 'MSE': 1.1622091759078057,\n", + " 'CA-0': 0.20967741935483872,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.5660377358490566,\n", + " 'CA-3': 0.5192307692307693,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2879230737406883,\n", + " 'Micro-F1': 0.3796477495107632,\n", + " 'F1-0_vs_rest': 0.34513274336283184,\n", + " 'F1-1_vs_rest': 0.2753623188405797,\n", + " 'F1-2_vs_rest': 0.449438202247191,\n", + " 'F1-3_vs_rest': 0.5242718446601942,\n", + " 'F1-4_vs_rest': 0.13333333333333333,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8140703517587939,\n", + " 'Recall-0.5': 0.9969230769230769,\n", + " 'Precision-0.5': 0.6878980891719745,\n", + " 'F1-1.5': 0.7807692307692308,\n", + " 'Recall-1.5': 0.9022222222222223,\n", + " 'Precision-1.5': 0.688135593220339,\n", + " 'F1-2.5': 0.6403162055335968,\n", + " 'Recall-2.5': 0.680672268907563,\n", + " 'Precision-2.5': 0.6044776119402985,\n", + " 'F1-3.5': 0.1702127659574468,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.125,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9054631067534223},\n", + " 'CM': {'0': {'-1': 0, '0': 39, '1': 116, '2': 22, '3': 6, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 38, '2': 45, '3': 11, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 18, '2': 60, '3': 25, '4': 3, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 29, '3': 54, '4': 17, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 5, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.08132644673725022,\n", + " 'Cohen': -0.004994184853253092,\n", + " 'Spearman': 0.5643765681877343,\n", + " 'Kendall': 0.4645598315786723,\n", + " 'Krippendorff': 0.11570967136392052,\n", + " 'Invalid': 285,\n", + " 'TA-2.0': 0.49557522123893805,\n", + " 'TA-4.0': 0.7123893805309734,\n", + " 'Acc': 0.13716814159292035,\n", + " 'MAE': 1.5516224188790557,\n", + " 'MSE': 3.356686332350049,\n", + " 'CA-0': 0.07407407407407407,\n", + " 'CA-1': 0.0,\n", + " 'CA-2': 0.18604651162790697,\n", + " 'CA-3': 0.2558139534883721,\n", + " 'CA-4': 0.8571428571428571,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.10864236292948688,\n", + " 'Micro-F1': 0.13716814159292035,\n", + " 'F1-0_vs_rest': 0.13636363636363635,\n", + " 'F1-1_vs_rest': 0.0,\n", + " 'F1-2_vs_rest': 0.14678899082568808,\n", + " 'F1-3_vs_rest': 0.22916666666666666,\n", + " 'F1-4_vs_rest': 0.13953488372093023,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7912087912087912,\n", + " 'Recall-0.5': 0.993103448275862,\n", + " 'Precision-0.5': 0.6575342465753424,\n", + " 'F1-1.5': 0.6143344709897611,\n", + " 'Recall-1.5': 0.967741935483871,\n", + " 'Precision-1.5': 0.45,\n", + " 'F1-2.5': 0.4891304347826087,\n", + " 'Recall-2.5': 0.9,\n", + " 'Precision-2.5': 0.3358208955223881,\n", + " 'F1-3.5': 0.13636363636363635,\n", + " 'Recall-3.5': 0.8571428571428571,\n", + " 'Precision-3.5': 0.07407407407407407,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8794391121331973},\n", + " 'CM': {'0': {'-1': 105, '0': 6, '1': 17, '2': 37, '3': 13, '4': 8, '5': 0},\n", + " '1': {'-1': 48, '0': 0, '1': 0, '2': 16, '3': 19, '4': 17, '5': 0},\n", + " '2': {'-1': 63, '0': 1, '1': 2, '2': 8, '3': 10, '4': 21, '5': 1},\n", + " '3': {'-1': 61, '0': 0, '1': 0, '2': 4, '3': 11, '4': 27, '5': 1},\n", + " '4': {'-1': 6, '0': 0, '1': 0, '2': 1, '3': 0, '4': 6, '5': 0},\n", + " '5': {'-1': 2, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.14492429290026596,\n", + " 'Cohen': 0.18305951183482272,\n", + " 'Spearman': 0.705290572851986,\n", + " 'Kendall': 0.6047805220478177,\n", + " 'Krippendorff': 0.5946248402679714,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7416829745596869,\n", + " 'TA-4.0': 0.9608610567514677,\n", + " 'Acc': 0.3561643835616438,\n", + " 'MAE': 0.7765818656229614,\n", + " 'MSE': 1.0378886714503153,\n", + " 'CA-0': 0.1935483870967742,\n", + " 'CA-1': 0.29,\n", + " 'CA-2': 0.6132075471698113,\n", + " 'CA-3': 0.49038461538461536,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2604056542601576,\n", + " 'Micro-F1': 0.3561643835616438,\n", + " 'F1-0_vs_rest': 0.32142857142857145,\n", + " 'F1-1_vs_rest': 0.22568093385214008,\n", + " 'F1-2_vs_rest': 0.40752351097178685,\n", + " 'F1-3_vs_rest': 0.5125628140703518,\n", + " 'F1-4_vs_rest': 0.09523809523809523,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8095238095238095,\n", + " 'Recall-0.5': 0.9938461538461538,\n", + " 'Precision-0.5': 0.6828752642706131,\n", + " 'F1-1.5': 0.7800369685767098,\n", + " 'Recall-1.5': 0.9377777777777778,\n", + " 'Precision-1.5': 0.6677215189873418,\n", + " 'F1-2.5': 0.5585585585585585,\n", + " 'Recall-2.5': 0.5210084033613446,\n", + " 'Precision-2.5': 0.6019417475728155,\n", + " 'F1-3.5': 0.08695652173913043,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.125,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8998171529689803},\n", + " 'CM': {'0': {'-1': 0, '0': 36, '1': 114, '2': 33, '3': 2, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 29, '2': 60, '3': 8, '4': 1, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 12, '2': 65, '3': 26, '4': 3, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 49, '3': 51, '4': 2, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 6, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.12641174595203097,\n", + " 'Cohen': 0.14791596721906974,\n", + " 'Spearman': 0.6573589901042487,\n", + " 'Kendall': 0.5406254412055883,\n", + " 'Krippendorff': 0.5652205417601655,\n", + " 'Invalid': 39,\n", + " 'TA-2.0': 0.7436440677966102,\n", + " 'TA-4.0': 0.777542372881356,\n", + " 'Acc': 0.3050847457627119,\n", + " 'MAE': 0.9781073446327685,\n", + " 'MSE': 1.7325800376647837,\n", + " 'CA-0': 0.34375,\n", + " 'CA-1': 0.17894736842105263,\n", + " 'CA-2': 0.39,\n", + " 'CA-3': 0.2647058823529412,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.25760201939910604,\n", + " 'Micro-F1': 0.3050847457627119,\n", + " 'F1-0_vs_rest': 0.47413793103448276,\n", + " 'F1-1_vs_rest': 0.1878453038674033,\n", + " 'F1-2_vs_rest': 0.3406113537117904,\n", + " 'F1-3_vs_rest': 0.313953488372093,\n", + " 'F1-4_vs_rest': 0.08620689655172414,\n", + " 'F1-5_vs_rest': 0.14285714285714285,\n", + " 'F1-0.5': 0.8286516853932584,\n", + " 'Recall-0.5': 0.9455128205128205,\n", + " 'Precision-0.5': 0.7375,\n", + " 'F1-1.5': 0.7645951035781544,\n", + " 'Recall-1.5': 0.9354838709677419,\n", + " 'Precision-1.5': 0.6464968152866242,\n", + " 'F1-2.5': 0.6357615894039735,\n", + " 'Recall-2.5': 0.8205128205128205,\n", + " 'Precision-2.5': 0.518918918918919,\n", + " 'F1-3.5': 0.1076923076923077,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.06086956521739131,\n", + " 'F1-4.5': 0.14285714285714285,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.08333333333333333,\n", + " 'NDCG@all': 0.9024500114979469},\n", + " 'CM': {'0': {'-1': 26, '0': 55, '1': 61, '2': 32, '3': 5, '4': 6, '5': 1},\n", + " '1': {'-1': 5, '0': 11, '1': 17, '2': 38, '3': 16, '4': 12, '5': 1},\n", + " '2': {'-1': 6, '0': 6, '1': 7, '2': 39, '3': 18, '4': 25, '5': 5},\n", + " '3': {'-1': 2, '0': 0, '1': 1, '2': 16, '3': 27, '4': 54, '5': 4},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 4, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.10576541615874548,\n", + " 'Cohen': -0.04031415270608374,\n", + " 'Spearman': 0.6460335198853472,\n", + " 'Kendall': 0.5489249710856442,\n", + " 'Krippendorff': 0.24834996757336836,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5596868884540117,\n", + " 'TA-4.0': 0.7318982387475538,\n", + " 'Acc': 0.11937377690802348,\n", + " 'MAE': 1.414872798434442,\n", + " 'MSE': 2.779082409219396,\n", + " 'CA-0': 0.03225806451612903,\n", + " 'CA-1': 0.05,\n", + " 'CA-2': 0.14150943396226415,\n", + " 'CA-3': 0.23076923076923078,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09639161209854308,\n", + " 'Micro-F1': 0.11937377690802348,\n", + " 'F1-0_vs_rest': 0.0625,\n", + " 'F1-1_vs_rest': 0.05434782608695652,\n", + " 'F1-2_vs_rest': 0.12396694214876033,\n", + " 'F1-3_vs_rest': 0.1991701244813278,\n", + " 'F1-4_vs_rest': 0.13836477987421383,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7831325301204819,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6435643564356436,\n", + " 'F1-1.5': 0.6687306501547987,\n", + " 'Recall-1.5': 0.96,\n", + " 'Precision-1.5': 0.5130641330166271,\n", + " 'F1-2.5': 0.5297029702970297,\n", + " 'Recall-2.5': 0.8991596638655462,\n", + " 'Precision-2.5': 0.37543859649122807,\n", + " 'F1-3.5': 0.15950920245398773,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.08783783783783784,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8860349200487755},\n", + " 'CM': {'0': {'-1': 0, '0': 6, '1': 70, '2': 74, '3': 27, '4': 8, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 5, '2': 38, '3': 40, '4': 17, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 6, '2': 15, '3': 44, '4': 40, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 9, '3': 24, '4': 68, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'sl': {'phi-4': {'metrics': {'Fleiss': 0.19266391608357403,\n", + " 'Cohen': 0.20761881901104184,\n", + " 'Spearman': 0.6716898485821494,\n", + " 'Kendall': 0.5489919013254142,\n", + " 'Krippendorff': 0.5301271531552201,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6986301369863014,\n", + " 'TA-4.0': 0.8610567514677103,\n", + " 'Acc': 0.3679060665362035,\n", + " 'MAE': 0.9448793215916503,\n", + " 'MSE': 1.7409762991954771,\n", + " 'CA-0': 0.41935483870967744,\n", + " 'CA-1': 0.2,\n", + " 'CA-2': 0.27358490566037735,\n", + " 'CA-3': 0.5288461538461539,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.27171296050675764,\n", + " 'Micro-F1': 0.3679060665362035,\n", + " 'F1-0_vs_rest': 0.5693430656934306,\n", + " 'F1-1_vs_rest': 0.2185792349726776,\n", + " 'F1-2_vs_rest': 0.26244343891402716,\n", + " 'F1-3_vs_rest': 0.4435483870967742,\n", + " 'F1-4_vs_rest': 0.13636363636363635,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8422459893048129,\n", + " 'Recall-0.5': 0.9692307692307692,\n", + " 'Precision-0.5': 0.7446808510638298,\n", + " 'F1-1.5': 0.7504424778761062,\n", + " 'Recall-1.5': 0.9422222222222222,\n", + " 'Precision-1.5': 0.6235294117647059,\n", + " 'F1-2.5': 0.6046511627906976,\n", + " 'Recall-2.5': 0.8739495798319328,\n", + " 'Precision-2.5': 0.4622222222222222,\n", + " 'F1-3.5': 0.16666666666666666,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.09876543209876543,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8800443291350335},\n", + " 'CM': {'0': {'-1': 0, '0': 78, '1': 52, '2': 39, '3': 11, '4': 5, '5': 1},\n", + " '1': {'-1': 0, '0': 8, '1': 20, '2': 34, '3': 28, '4': 8, '5': 2},\n", + " '2': {'-1': 0, '0': 2, '1': 9, '2': 29, '3': 44, '4': 19, '5': 3},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 12, '3': 55, '4': 35, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 6, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.1081646442257588,\n", + " 'Cohen': 0.1416010328624977,\n", + " 'Spearman': 0.6299814275864881,\n", + " 'Kendall': 0.5282375132203505,\n", + " 'Krippendorff': 0.5216337315060091,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7201565557729941,\n", + " 'TA-4.0': 0.9315068493150684,\n", + " 'Acc': 0.3150684931506849,\n", + " 'MAE': 0.8897586431833009,\n", + " 'MSE': 1.3524679278103933,\n", + " 'CA-0': 0.17204301075268819,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.3584905660377358,\n", + " 'CA-3': 0.5,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.24068088441041904,\n", + " 'Micro-F1': 0.3150684931506849,\n", + " 'F1-0_vs_rest': 0.2909090909090909,\n", + " 'F1-1_vs_rest': 0.2589928057553957,\n", + " 'F1-2_vs_rest': 0.31020408163265306,\n", + " 'F1-3_vs_rest': 0.4444444444444444,\n", + " 'F1-4_vs_rest': 0.13953488372093023,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8054862842892768,\n", + " 'Recall-0.5': 0.9938461538461538,\n", + " 'Precision-0.5': 0.6771488469601677,\n", + " 'F1-1.5': 0.7480916030534351,\n", + " 'Recall-1.5': 0.8711111111111111,\n", + " 'Precision-1.5': 0.6555183946488294,\n", + " 'F1-2.5': 0.5519713261648745,\n", + " 'Recall-2.5': 0.6470588235294118,\n", + " 'Precision-2.5': 0.48125,\n", + " 'F1-3.5': 0.2222222222222222,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.16666666666666666,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8977718962569564},\n", + " 'CM': {'0': {'-1': 0, '0': 32, '1': 113, '2': 32, '3': 6, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 36, '2': 36, '3': 21, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 20, '2': 38, '3': 41, '4': 7, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 9, '2': 33, '3': 52, '4': 10, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 10, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.24806017687120926,\n", + " 'Cohen': 0.26315439966227594,\n", + " 'Spearman': 0.6936223836067604,\n", + " 'Kendall': 0.5784726459217217,\n", + " 'Krippendorff': 0.6314313898248809,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7925636007827789,\n", + " 'TA-4.0': 0.7710371819960861,\n", + " 'Acc': 0.4050880626223092,\n", + " 'MAE': 0.9034572733202869,\n", + " 'MSE': 1.8006088280060883,\n", + " 'CA-0': 0.521505376344086,\n", + " 'CA-1': 0.47,\n", + " 'CA-2': 0.33962264150943394,\n", + " 'CA-3': 0.20192307692307693,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.30844814607058546,\n", + " 'Micro-F1': 0.4050880626223092,\n", + " 'F1-0_vs_rest': 0.6576271186440678,\n", + " 'F1-1_vs_rest': 0.3983050847457627,\n", + " 'F1-2_vs_rest': 0.3769633507853403,\n", + " 'F1-3_vs_rest': 0.25766871165644173,\n", + " 'F1-4_vs_rest': 0.09345794392523364,\n", + " 'F1-5_vs_rest': 0.06666666666666667,\n", + " 'F1-0.5': 0.8610729023383769,\n", + " 'Recall-0.5': 0.963076923076923,\n", + " 'Precision-0.5': 0.7786069651741293,\n", + " 'F1-1.5': 0.8065173116089613,\n", + " 'Recall-1.5': 0.88,\n", + " 'Precision-1.5': 0.7443609022556391,\n", + " 'F1-2.5': 0.62,\n", + " 'Recall-2.5': 0.7815126050420168,\n", + " 'Precision-2.5': 0.5138121546961326,\n", + " 'F1-3.5': 0.145985401459854,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.08196721311475409,\n", + " 'F1-4.5': 0.06666666666666667,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.03571428571428571,\n", + " 'NDCG@all': 0.8929777161857703},\n", + " 'CM': {'0': {'-1': 0, '0': 97, '1': 64, '2': 12, '3': 4, '4': 5, '5': 4},\n", + " '1': {'-1': 0, '0': 10, '1': 47, '2': 17, '3': 10, '4': 10, '5': 6},\n", + " '2': {'-1': 0, '0': 2, '1': 19, '2': 36, '3': 22, '4': 20, '5': 7},\n", + " '3': {'-1': 0, '0': 0, '1': 6, '2': 17, '3': 21, '4': 53, '5': 7},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 2, '4': 5, '5': 3},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.06229762984069424,\n", + " 'Cohen': 0.1179800778730622,\n", + " 'Spearman': 0.6660980355488648,\n", + " 'Kendall': 0.5663018693665679,\n", + " 'Krippendorff': 0.5463347239114598,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7627450980392156,\n", + " 'TA-4.0': 0.9313725490196079,\n", + " 'Acc': 0.2901960784313726,\n", + " 'MAE': 0.8653594771241828,\n", + " 'MSE': 1.1838779956427012,\n", + " 'CA-0': 0.043010752688172046,\n", + " 'CA-1': 0.44,\n", + " 'CA-2': 0.44339622641509435,\n", + " 'CA-3': 0.46601941747572817,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2068102362258902,\n", + " 'Micro-F1': 0.2901960784313726,\n", + " 'F1-0_vs_rest': 0.08247422680412371,\n", + " 'F1-1_vs_rest': 0.2682926829268293,\n", + " 'F1-2_vs_rest': 0.3745019920318725,\n", + " 'F1-3_vs_rest': 0.46153846153846156,\n", + " 'F1-4_vs_rest': 0.05405405405405406,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.784503631961259,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6454183266932271,\n", + " 'F1-1.5': 0.7710843373493976,\n", + " 'Recall-1.5': 0.8571428571428571,\n", + " 'Precision-1.5': 0.7007299270072993,\n", + " 'F1-2.5': 0.5748987854251012,\n", + " 'Recall-2.5': 0.6016949152542372,\n", + " 'Precision-2.5': 0.5503875968992248,\n", + " 'F1-3.5': 0.10256410256410256,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.08333333333333333,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9032198555626133},\n", + " 'CM': {'0': {'-1': 0, '0': 8, '1': 152, '2': 21, '3': 3, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 44, '2': 39, '3': 15, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 23, '2': 47, '3': 29, '4': 7, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 9, '2': 35, '3': 48, '4': 11, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 9, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.12375673699780677,\n", + " 'Cohen': 0.14832126989522987,\n", + " 'Spearman': 0.6613875409307258,\n", + " 'Kendall': 0.5497906591554118,\n", + " 'Krippendorff': 0.5415908744330743,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7142857142857143,\n", + " 'TA-4.0': 0.8140900195694716,\n", + " 'Acc': 0.30919765166340507,\n", + " 'MAE': 0.9781474233529028,\n", + " 'MSE': 1.6969449880408787,\n", + " 'CA-0': 0.3387096774193548,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.1509433962264151,\n", + " 'CA-3': 0.34615384615384615,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23544358228152695,\n", + " 'Micro-F1': 0.30919765166340507,\n", + " 'F1-0_vs_rest': 0.4980237154150198,\n", + " 'F1-1_vs_rest': 0.2975206611570248,\n", + " 'F1-2_vs_rest': 0.16666666666666666,\n", + " 'F1-3_vs_rest': 0.32432432432432434,\n", + " 'F1-4_vs_rest': 0.12612612612612611,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.834850455136541,\n", + " 'Recall-0.5': 0.9876923076923076,\n", + " 'Precision-0.5': 0.722972972972973,\n", + " 'F1-1.5': 0.7438330170777988,\n", + " 'Recall-1.5': 0.8711111111111111,\n", + " 'Precision-1.5': 0.6490066225165563,\n", + " 'F1-2.5': 0.5791044776119403,\n", + " 'Recall-2.5': 0.8151260504201681,\n", + " 'Precision-2.5': 0.44907407407407407,\n", + " 'F1-3.5': 0.1592920353982301,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.09183673469387756,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9031366419051541},\n", + " 'CM': {'0': {'-1': 0, '0': 63, '1': 79, '2': 30, '3': 9, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 36, '2': 24, '3': 23, '4': 15, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 21, '2': 16, '3': 44, '4': 23, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 6, '2': 16, '3': 36, '4': 46, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 6, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.13923595462521693,\n", + " 'Cohen': -0.05051992148124573,\n", + " 'Spearman': 0.6323671438316602,\n", + " 'Kendall': 0.5361352717758541,\n", + " 'Krippendorff': 0.1996477747760933,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5636007827788649,\n", + " 'TA-4.0': 0.62426614481409,\n", + " 'Acc': 0.09001956947162426,\n", + " 'MAE': 1.5172863666014351,\n", + " 'MSE': 3.151989562948467,\n", + " 'CA-0': 0.010752688172043012,\n", + " 'CA-1': 0.03,\n", + " 'CA-2': 0.18867924528301888,\n", + " 'CA-3': 0.10576923076923077,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.07151759560630216,\n", + " 'Micro-F1': 0.09001956947162426,\n", + " 'F1-0_vs_rest': 0.02127659574468085,\n", + " 'F1-1_vs_rest': 0.031914893617021274,\n", + " 'F1-2_vs_rest': 0.16666666666666666,\n", + " 'F1-3_vs_rest': 0.11578947368421053,\n", + " 'F1-4_vs_rest': 0.09345794392523364,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7793764988009593,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6385068762278978,\n", + " 'F1-1.5': 0.6718266253869969,\n", + " 'Recall-1.5': 0.9644444444444444,\n", + " 'Precision-1.5': 0.5154394299287411,\n", + " 'F1-2.5': 0.5369458128078818,\n", + " 'Recall-2.5': 0.9159663865546218,\n", + " 'Precision-2.5': 0.3797909407665505,\n", + " 'F1-3.5': 0.1111111111111111,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.05970149253731343,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8902926643450401},\n", + " 'CM': {'0': {'-1': 0, '0': 2, '1': 77, '2': 67, '3': 24, '4': 16, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 3, '2': 41, '3': 21, '4': 35, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 4, '2': 20, '3': 27, '4': 55, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 6, '3': 11, '4': 83, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.12479981119034371,\n", + " 'Cohen': -0.05559900012204655,\n", + " 'Spearman': 0.7265484252690757,\n", + " 'Kendall': 0.622514803705285,\n", + " 'Krippendorff': 0.2700431636455105,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5870841487279843,\n", + " 'TA-4.0': 0.7377690802348337,\n", + " 'Acc': 0.10567514677103718,\n", + " 'MAE': 1.4145466405740377,\n", + " 'MSE': 2.7244509676016526,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.05,\n", + " 'CA-2': 0.0660377358490566,\n", + " 'CA-3': 0.3076923076923077,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.11561027488679225,\n", + " 'Micro-F1': 0.10567514677103718,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.052083333333333336,\n", + " 'F1-2_vs_rest': 0.06666666666666667,\n", + " 'F1-3_vs_rest': 0.2318840579710145,\n", + " 'F1-4_vs_rest': 0.12080536912751678,\n", + " 'F1-5_vs_rest': 0.2222222222222222,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.6925465838509317,\n", + " 'Recall-1.5': 0.9911111111111112,\n", + " 'Precision-1.5': 0.5322195704057279,\n", + " 'F1-2.5': 0.5391705069124424,\n", + " 'Recall-2.5': 0.9831932773109243,\n", + " 'Precision-2.5': 0.37142857142857144,\n", + " 'F1-3.5': 0.13924050632911392,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.07692307692307693,\n", + " 'F1-4.5': 0.2222222222222222,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.14285714285714285,\n", + " 'NDCG@all': 0.9087804159225001},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 85, '2': 67, '3': 28, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 5, '2': 28, '3': 50, '4': 16, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 2, '2': 7, '3': 58, '4': 35, '5': 4},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 32, '4': 69, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.18899211690635367,\n", + " 'Cohen': 0.21740889323399526,\n", + " 'Spearman': 0.6890388882919357,\n", + " 'Kendall': 0.589793019562599,\n", + " 'Krippendorff': 0.5977866061953192,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7475538160469667,\n", + " 'TA-4.0': 0.923679060665362,\n", + " 'Acc': 0.3776908023483366,\n", + " 'MAE': 0.780821917808219,\n", + " 'MSE': 1.1443792128723633,\n", + " 'CA-0': 0.23118279569892472,\n", + " 'CA-1': 0.4,\n", + " 'CA-2': 0.5094339622641509,\n", + " 'CA-3': 0.5096153846153846,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2872552519258578,\n", + " 'Micro-F1': 0.3776908023483366,\n", + " 'F1-0_vs_rest': 0.3739130434782609,\n", + " 'F1-1_vs_rest': 0.29411764705882354,\n", + " 'F1-2_vs_rest': 0.4,\n", + " 'F1-3_vs_rest': 0.5221674876847291,\n", + " 'F1-4_vs_rest': 0.13333333333333333,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8181818181818182,\n", + " 'Recall-0.5': 0.9969230769230769,\n", + " 'Precision-0.5': 0.6937901498929336,\n", + " 'F1-1.5': 0.7730769230769231,\n", + " 'Recall-1.5': 0.8933333333333333,\n", + " 'Precision-1.5': 0.6813559322033899,\n", + " 'F1-2.5': 0.632,\n", + " 'Recall-2.5': 0.6638655462184874,\n", + " 'Precision-2.5': 0.6030534351145038,\n", + " 'F1-3.5': 0.1702127659574468,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.125,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9068743775636817},\n", + " 'CM': {'0': {'-1': 0, '0': 43, '1': 109, '2': 27, '3': 4, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 40, '2': 47, '3': 9, '4': 4, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 19, '2': 54, '3': 27, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 31, '3': 53, '4': 16, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 5, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.13600190801764916,\n", + " 'Cohen': -0.0365007979109242,\n", + " 'Spearman': 0.4655219224245794,\n", + " 'Kendall': 0.37198510779388705,\n", + " 'Krippendorff': -0.10453379231573745,\n", + " 'Invalid': 233,\n", + " 'TA-2.0': 0.5215827338129496,\n", + " 'TA-4.0': 0.5179856115107914,\n", + " 'Acc': 0.07553956834532374,\n", + " 'MAE': 1.9502398081534775,\n", + " 'MSE': 5.021083133493205,\n", + " 'CA-0': 0.041666666666666664,\n", + " 'CA-1': 0.07272727272727272,\n", + " 'CA-2': 0.058823529411764705,\n", + " 'CA-3': 0.11538461538461539,\n", + " 'CA-4': 0.42857142857142855,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.06836739396659448,\n", + " 'Micro-F1': 0.07553956834532374,\n", + " 'F1-0_vs_rest': 0.07920792079207921,\n", + " 'F1-1_vs_rest': 0.0975609756097561,\n", + " 'F1-2_vs_rest': 0.07407407407407407,\n", + " 'F1-3_vs_rest': 0.11320754716981132,\n", + " 'F1-4_vs_rest': 0.046153846153846156,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7956043956043956,\n", + " 'Recall-0.5': 0.9945054945054945,\n", + " 'Precision-0.5': 0.663003663003663,\n", + " 'F1-1.5': 0.6595174262734584,\n", + " 'Recall-1.5': 0.968503937007874,\n", + " 'Precision-1.5': 0.5,\n", + " 'F1-2.5': 0.4,\n", + " 'Recall-2.5': 0.8983050847457628,\n", + " 'Precision-2.5': 0.25728155339805825,\n", + " 'F1-3.5': 0.06289308176100629,\n", + " 'Recall-3.5': 0.7142857142857143,\n", + " 'Precision-3.5': 0.03289473684210526,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8786763352228465},\n", + " 'CM': {'0': {'-1': 90, '0': 4, '1': 20, '2': 27, '3': 20, '4': 22, '5': 3},\n", + " '1': {'-1': 45, '0': 0, '1': 4, '2': 7, '3': 11, '4': 29, '5': 4},\n", + " '2': {'-1': 38, '0': 0, '1': 0, '2': 4, '3': 17, '4': 38, '5': 9},\n", + " '3': {'-1': 52, '0': 1, '1': 2, '2': 1, '3': 6, '4': 31, '5': 11},\n", + " '4': {'-1': 6, '0': 0, '1': 1, '2': 1, '3': 0, '4': 3, '5': 2},\n", + " '5': {'-1': 2, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.06734694930913634,\n", + " 'Cohen': 0.11487800457513453,\n", + " 'Spearman': 0.6851728161661139,\n", + " 'Kendall': 0.5850502855854306,\n", + " 'Krippendorff': 0.566868380957171,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.7347740667976425,\n", + " 'TA-4.0': 0.9587426326129665,\n", + " 'Acc': 0.3025540275049116,\n", + " 'MAE': 0.8238375900458412,\n", + " 'MSE': 1.0683256930801135,\n", + " 'CA-0': 0.1827956989247312,\n", + " 'CA-1': 0.25,\n", + " 'CA-2': 0.5849056603773585,\n", + " 'CA-3': 0.3235294117647059,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.20492918581153874,\n", + " 'Micro-F1': 0.3025540275049116,\n", + " 'F1-0_vs_rest': 0.3076923076923077,\n", + " 'F1-1_vs_rest': 0.19607843137254902,\n", + " 'F1-2_vs_rest': 0.36904761904761907,\n", + " 'F1-3_vs_rest': 0.3567567567567568,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8080301129234629,\n", + " 'Recall-0.5': 0.9969040247678018,\n", + " 'Precision-0.5': 0.679324894514768,\n", + " 'F1-1.5': 0.7712177121771218,\n", + " 'Recall-1.5': 0.9372197309417041,\n", + " 'Precision-1.5': 0.6551724137931034,\n", + " 'F1-2.5': 0.4368932038834951,\n", + " 'Recall-2.5': 0.38461538461538464,\n", + " 'Precision-2.5': 0.5056179775280899,\n", + " 'F1-3.5': 0.0,\n", + " 'Recall-3.5': 0.0,\n", + " 'Precision-3.5': 0.0,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9029829628651325},\n", + " 'CM': {'0': {'-1': 0, '0': 34, '1': 116, '2': 33, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 25, '2': 63, '3': 10, '4': 1, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 14, '2': 62, '3': 29, '4': 1, '5': 0},\n", + " '3': {'-1': 2, '0': 0, '1': 0, '2': 65, '3': 33, '4': 4, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 7, '3': 6, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.1445366568743685,\n", + " 'Cohen': 0.16807710657246056,\n", + " 'Spearman': 0.6482438163992557,\n", + " 'Kendall': 0.5403952851132321,\n", + " 'Krippendorff': 0.5347226317157574,\n", + " 'Invalid': 46,\n", + " 'TA-2.0': 0.7010752688172043,\n", + " 'TA-4.0': 0.8043010752688172,\n", + " 'Acc': 0.3225806451612903,\n", + " 'MAE': 0.9845878136200719,\n", + " 'MSE': 1.7372162485065714,\n", + " 'CA-0': 0.3157894736842105,\n", + " 'CA-1': 0.15463917525773196,\n", + " 'CA-2': 0.48484848484848486,\n", + " 'CA-3': 0.30392156862745096,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.2699101380499968,\n", + " 'Micro-F1': 0.3225806451612903,\n", + " 'F1-0_vs_rest': 0.4549763033175355,\n", + " 'F1-1_vs_rest': 0.18072289156626506,\n", + " 'F1-2_vs_rest': 0.3764705882352941,\n", + " 'F1-3_vs_rest': 0.3463687150837989,\n", + " 'F1-4_vs_rest': 0.13592233009708737,\n", + " 'F1-5_vs_rest': 0.125,\n", + " 'F1-0.5': 0.8400556328233658,\n", + " 'Recall-0.5': 0.9648562300319489,\n", + " 'Precision-0.5': 0.7438423645320197,\n", + " 'F1-1.5': 0.7486437613019892,\n", + " 'Recall-1.5': 0.9583333333333334,\n", + " 'Precision-1.5': 0.6142433234421365,\n", + " 'F1-2.5': 0.6308724832214765,\n", + " 'Recall-2.5': 0.8034188034188035,\n", + " 'Precision-2.5': 0.5193370165745856,\n", + " 'F1-3.5': 0.16806722689075632,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.09615384615384616,\n", + " 'F1-4.5': 0.125,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.07142857142857142,\n", + " 'NDCG@all': 0.9124628443204231},\n", + " 'CM': {'0': {'-1': 34, '0': 48, '1': 48, '2': 45, '3': 5, '4': 5, '5': 1},\n", + " '1': {'-1': 3, '0': 8, '1': 15, '2': 42, '3': 21, '4': 10, '5': 1},\n", + " '2': {'-1': 7, '0': 3, '1': 4, '2': 48, '3': 17, '4': 24, '5': 3},\n", + " '3': {'-1': 2, '0': 0, '1': 2, '2': 19, '3': 31, '4': 43, '5': 7},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 3, '4': 7, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.0730385598889096,\n", + " 'Cohen': -0.009270172979516378,\n", + " 'Spearman': 0.6323502453497302,\n", + " 'Kendall': 0.5299434413871362,\n", + " 'Krippendorff': 0.2411743458599812,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5322896281800391,\n", + " 'TA-4.0': 0.7573385518590998,\n", + " 'Acc': 0.1506849315068493,\n", + " 'MAE': 1.3848662752772338,\n", + " 'MSE': 2.7282017829963037,\n", + " 'CA-0': 0.026881720430107527,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.1509433962264151,\n", + " 'CA-3': 0.3557692307692308,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12017482556321735,\n", + " 'Micro-F1': 0.1506849315068493,\n", + " 'F1-0_vs_rest': 0.052083333333333336,\n", + " 'F1-1_vs_rest': 0.09411764705882353,\n", + " 'F1-2_vs_rest': 0.11940298507462686,\n", + " 'F1-3_vs_rest': 0.30578512396694213,\n", + " 'F1-4_vs_rest': 0.14965986394557823,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7807228915662651,\n", + " 'Recall-0.5': 0.9969230769230769,\n", + " 'Precision-0.5': 0.6415841584158416,\n", + " 'F1-1.5': 0.6545454545454545,\n", + " 'Recall-1.5': 0.96,\n", + " 'Precision-1.5': 0.496551724137931,\n", + " 'F1-2.5': 0.5612244897959183,\n", + " 'Recall-2.5': 0.9243697478991597,\n", + " 'Precision-2.5': 0.40293040293040294,\n", + " 'F1-3.5': 0.17333333333333334,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.0962962962962963,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8936863687967181},\n", + " 'CM': {'0': {'-1': 0, '0': 5, '1': 54, '2': 97, '3': 20, '4': 10, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 41, '3': 33, '4': 18, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 7, '2': 16, '3': 46, '4': 35, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 8, '3': 37, '4': 58, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'lv': {'phi-4': {'metrics': {'Fleiss': 0.21530792968615847,\n", + " 'Cohen': 0.2279699959453979,\n", + " 'Spearman': 0.6663971242237371,\n", + " 'Kendall': 0.5506696575257908,\n", + " 'Krippendorff': 0.5705512305157412,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7514677103718199,\n", + " 'TA-4.0': 0.863013698630137,\n", + " 'Acc': 0.38747553816046965,\n", + " 'MAE': 0.8760600130463144,\n", + " 'MSE': 1.5129375951293758,\n", + " 'CA-0': 0.40860215053763443,\n", + " 'CA-1': 0.31,\n", + " 'CA-2': 0.33962264150943394,\n", + " 'CA-3': 0.4807692307692308,\n", + " 'CA-4': 0.3076923076923077,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.3675390044021792,\n", + " 'Micro-F1': 0.38747553816046965,\n", + " 'F1-0_vs_rest': 0.5567765567765568,\n", + " 'F1-1_vs_rest': 0.2938388625592417,\n", + " 'F1-2_vs_rest': 0.32286995515695066,\n", + " 'F1-3_vs_rest': 0.4291845493562232,\n", + " 'F1-4_vs_rest': 0.10256410256410256,\n", + " 'F1-5_vs_rest': 0.5,\n", + " 'F1-0.5': 0.8384512683578104,\n", + " 'Recall-0.5': 0.9661538461538461,\n", + " 'Precision-0.5': 0.7405660377358491,\n", + " 'F1-1.5': 0.7732342007434945,\n", + " 'Recall-1.5': 0.9244444444444444,\n", + " 'Precision-1.5': 0.6645367412140575,\n", + " 'F1-2.5': 0.5968253968253968,\n", + " 'Recall-2.5': 0.7899159663865546,\n", + " 'Precision-2.5': 0.47959183673469385,\n", + " 'F1-3.5': 0.12195121951219512,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.07462686567164178,\n", + " 'F1-4.5': 0.5,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.5,\n", + " 'NDCG@all': 0.905398204072337},\n", + " 'CM': {'0': {'-1': 0, '0': 76, '1': 66, '2': 30, '3': 9, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 8, '1': 31, '2': 30, '3': 22, '4': 9, '5': 0},\n", + " '2': {'-1': 0, '0': 3, '1': 10, '2': 36, '3': 41, '4': 15, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 18, '3': 50, '4': 32, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 6, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 0, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.12364814527782084,\n", + " 'Cohen': 0.15685086035626505,\n", + " 'Spearman': 0.5898477761428,\n", + " 'Kendall': 0.4905216935658466,\n", + " 'Krippendorff': 0.4984914567266746,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7221135029354208,\n", + " 'TA-4.0': 0.9354207436399217,\n", + " 'Acc': 0.3287671232876712,\n", + " 'MAE': 0.891715590345727,\n", + " 'MSE': 1.374864100891498,\n", + " 'CA-0': 0.1827956989247312,\n", + " 'CA-1': 0.41,\n", + " 'CA-2': 0.44339622641509435,\n", + " 'CA-3': 0.41346153846153844,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2512455534039097,\n", + " 'Micro-F1': 0.3287671232876712,\n", + " 'F1-0_vs_rest': 0.30357142857142855,\n", + " 'F1-1_vs_rest': 0.2837370242214533,\n", + " 'F1-2_vs_rest': 0.37751004016064255,\n", + " 'F1-3_vs_rest': 0.39631336405529954,\n", + " 'F1-4_vs_rest': 0.14634146341463414,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8045112781954887,\n", + " 'Recall-0.5': 0.9876923076923076,\n", + " 'Precision-0.5': 0.678646934460888,\n", + " 'F1-1.5': 0.7387033398821218,\n", + " 'Recall-1.5': 0.8355555555555556,\n", + " 'Precision-1.5': 0.6619718309859155,\n", + " 'F1-2.5': 0.5230769230769231,\n", + " 'Recall-2.5': 0.5714285714285714,\n", + " 'Precision-2.5': 0.48226950354609927,\n", + " 'F1-3.5': 0.23255813953488372,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.17857142857142858,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8952944838100828},\n", + " 'CM': {'0': {'-1': 0, '0': 34, '1': 113, '2': 29, '3': 8, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 41, '2': 30, '3': 21, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 21, '2': 47, '3': 31, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 14, '2': 37, '3': 43, '4': 10, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 10, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.25069325138529286,\n", + " 'Cohen': 0.2671043538355219,\n", + " 'Spearman': 0.6993864912975261,\n", + " 'Kendall': 0.5833994836461937,\n", + " 'Krippendorff': 0.6303699936655691,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7906066536203522,\n", + " 'TA-4.0': 0.7827788649706457,\n", + " 'Acc': 0.4070450097847358,\n", + " 'MAE': 0.8884540117416828,\n", + " 'MSE': 1.7347249402043923,\n", + " 'CA-0': 0.489247311827957,\n", + " 'CA-1': 0.46,\n", + " 'CA-2': 0.3490566037735849,\n", + " 'CA-3': 0.23076923076923078,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.33076771720727777,\n", + " 'Micro-F1': 0.4070450097847358,\n", + " 'F1-0_vs_rest': 0.6385964912280702,\n", + " 'F1-1_vs_rest': 0.3786008230452675,\n", + " 'F1-2_vs_rest': 0.3756345177664975,\n", + " 'F1-3_vs_rest': 0.2926829268292683,\n", + " 'F1-4_vs_rest': 0.1509433962264151,\n", + " 'F1-5_vs_rest': 0.14814814814814814,\n", + " 'F1-0.5': 0.8602442333785617,\n", + " 'Recall-0.5': 0.9753846153846154,\n", + " 'Precision-0.5': 0.7694174757281553,\n", + " 'F1-1.5': 0.8016194331983806,\n", + " 'Recall-1.5': 0.88,\n", + " 'Precision-1.5': 0.7360594795539034,\n", + " 'F1-2.5': 0.6195286195286195,\n", + " 'Recall-2.5': 0.773109243697479,\n", + " 'Precision-2.5': 0.5168539325842697,\n", + " 'F1-3.5': 0.16541353383458646,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.09322033898305085,\n", + " 'F1-4.5': 0.14814814814814814,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.08,\n", + " 'NDCG@all': 0.897780308311288},\n", + " 'CM': {'0': {'-1': 0, '0': 91, '1': 71, '2': 10, '3': 6, '4': 5, '5': 3},\n", + " '1': {'-1': 0, '0': 7, '1': 46, '2': 20, '3': 11, '4': 11, '5': 5},\n", + " '2': {'-1': 0, '0': 1, '1': 23, '2': 37, '3': 18, '4': 21, '5': 6},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 21, '3': 24, '4': 48, '5': 8},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 1, '4': 8, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.03570232841272259,\n", + " 'Cohen': 0.09437306158617631,\n", + " 'Spearman': 0.6331556240360017,\n", + " 'Kendall': 0.5407020103393796,\n", + " 'Krippendorff': 0.5110579316141894,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7318982387475538,\n", + " 'TA-4.0': 0.9393346379647749,\n", + " 'Acc': 0.2720156555772994,\n", + " 'MAE': 0.8985649054142204,\n", + " 'MSE': 1.2544574907588606,\n", + " 'CA-0': 0.021505376344086023,\n", + " 'CA-1': 0.37,\n", + " 'CA-2': 0.4339622641509434,\n", + " 'CA-3': 0.5,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.18448786095545322,\n", + " 'Micro-F1': 0.2720156555772994,\n", + " 'F1-0_vs_rest': 0.042105263157894736,\n", + " 'F1-1_vs_rest': 0.22629969418960244,\n", + " 'F1-2_vs_rest': 0.36363636363636365,\n", + " 'F1-3_vs_rest': 0.4748858447488584,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.78125,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6410256410256411,\n", + " 'F1-1.5': 0.7445544554455445,\n", + " 'Recall-1.5': 0.8355555555555556,\n", + " 'Precision-1.5': 0.6714285714285714,\n", + " 'F1-2.5': 0.5634920634920635,\n", + " 'Recall-2.5': 0.5966386554621849,\n", + " 'Precision-2.5': 0.5338345864661654,\n", + " 'F1-3.5': 0.06060606060606061,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.05555555555555555,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8931680502030834},\n", + " 'CM': {'0': {'-1': 0, '0': 4, '1': 153, '2': 24, '3': 3, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 37, '2': 40, '3': 20, '4': 3, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 26, '2': 46, '3': 29, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 11, '2': 34, '3': 52, '4': 7, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 10, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.15295976278148432,\n", + " 'Cohen': 0.17328038562631054,\n", + " 'Spearman': 0.6602537350004568,\n", + " 'Kendall': 0.5493163452342668,\n", + " 'Krippendorff': 0.5472564045363023,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7221135029354208,\n", + " 'TA-4.0': 0.8317025440313112,\n", + " 'Acc': 0.33268101761252444,\n", + " 'MAE': 0.9510763209393346,\n", + " 'MSE': 1.6425309849967389,\n", + " 'CA-0': 0.3602150537634409,\n", + " 'CA-1': 0.34,\n", + " 'CA-2': 0.24528301886792453,\n", + " 'CA-3': 0.3269230769230769,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2578595267192039,\n", + " 'Micro-F1': 0.33268101761252444,\n", + " 'F1-0_vs_rest': 0.5173745173745173,\n", + " 'F1-1_vs_rest': 0.29310344827586204,\n", + " 'F1-2_vs_rest': 0.24761904761904763,\n", + " 'F1-3_vs_rest': 0.3192488262910798,\n", + " 'F1-4_vs_rest': 0.16981132075471697,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.836173001310616,\n", + " 'Recall-0.5': 0.9815384615384616,\n", + " 'Precision-0.5': 0.728310502283105,\n", + " 'F1-1.5': 0.7495291902071564,\n", + " 'Recall-1.5': 0.8844444444444445,\n", + " 'Precision-1.5': 0.6503267973856209,\n", + " 'F1-2.5': 0.573208722741433,\n", + " 'Recall-2.5': 0.773109243697479,\n", + " 'Precision-2.5': 0.45544554455445546,\n", + " 'F1-3.5': 0.2037037037037037,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.11827956989247312,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9070533802148367},\n", + " 'CM': {'0': {'-1': 0, '0': 67, '1': 75, '2': 31, '3': 8, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 34, '2': 30, '3': 21, '4': 12, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 14, '2': 26, '3': 43, '4': 21, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 9, '2': 16, '3': 34, '4': 44, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 3, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.12302046151525813,\n", + " 'Cohen': -0.0380708750282146,\n", + " 'Spearman': 0.6448343402261263,\n", + " 'Kendall': 0.543875842263305,\n", + " 'Krippendorff': 0.20492885177360642,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5714285714285714,\n", + " 'TA-4.0': 0.6340508806262231,\n", + " 'Acc': 0.10176125244618395,\n", + " 'MAE': 1.513372472276582,\n", + " 'MSE': 3.1167645140247884,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.05,\n", + " 'CA-2': 0.1509433962264151,\n", + " 'CA-3': 0.20192307692307693,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08234861459894245,\n", + " 'Micro-F1': 0.10176125244618395,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.05154639175257732,\n", + " 'F1-2_vs_rest': 0.14096916299559473,\n", + " 'F1-3_vs_rest': 0.20588235294117646,\n", + " 'F1-4_vs_rest': 0.09569377990430622,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.6791277258566978,\n", + " 'Recall-1.5': 0.9688888888888889,\n", + " 'Precision-1.5': 0.5227817745803357,\n", + " 'F1-2.5': 0.5301204819277109,\n", + " 'Recall-2.5': 0.9243697478991597,\n", + " 'Precision-2.5': 0.3716216216216216,\n", + " 'F1-3.5': 0.11374407582938388,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.061224489795918366,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8902497426166835},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 82, '2': 68, '3': 24, '4': 12, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 5, '2': 30, '3': 28, '4': 37, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 16, '3': 24, '4': 61, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 7, '3': 21, '4': 74, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.10147443565877902,\n", + " 'Cohen': -0.03449142053317389,\n", + " 'Spearman': 0.7190206300733474,\n", + " 'Kendall': 0.6173644455947936,\n", + " 'Krippendorff': 0.2844323768042787,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.6011787819253438,\n", + " 'TA-4.0': 0.7524557956777996,\n", + " 'Acc': 0.12573673870333987,\n", + " 'MAE': 1.3742632612966603,\n", + " 'MSE': 2.6196791093647684,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.06,\n", + " 'CA-2': 0.125,\n", + " 'CA-3': 0.33653846153846156,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.14955538972877083,\n", + " 'Micro-F1': 0.12573673870333987,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.06091370558375635,\n", + " 'F1-2_vs_rest': 0.12440191387559808,\n", + " 'F1-3_vs_rest': 0.2545454545454545,\n", + " 'F1-4_vs_rest': 0.12413793103448276,\n", + " 'F1-5_vs_rest': 0.3333333333333333,\n", + " 'F1-0.5': 0.7764423076923077,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6345776031434185,\n", + " 'F1-1.5': 0.6992125984251969,\n", + " 'Recall-1.5': 0.9955156950672646,\n", + " 'Precision-1.5': 0.5388349514563107,\n", + " 'F1-2.5': 0.5446009389671361,\n", + " 'Recall-2.5': 0.9747899159663865,\n", + " 'Precision-2.5': 0.3778501628664495,\n", + " 'F1-3.5': 0.1456953642384106,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08088235294117647,\n", + " 'F1-4.5': 0.3333333333333333,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.25,\n", + " 'NDCG@all': 0.9160994488516837},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 90, '2': 65, '3': 24, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 6, '2': 24, '3': 54, '4': 16, '5': 0},\n", + " '2': {'-1': 2, '0': 0, '1': 1, '2': 13, '3': 54, '4': 34, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 35, '4': 65, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.15745031664938725,\n", + " 'Cohen': 0.19181220405268096,\n", + " 'Spearman': 0.6688682534037828,\n", + " 'Kendall': 0.5697969571291819,\n", + " 'Krippendorff': 0.567469755497712,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7514677103718199,\n", + " 'TA-4.0': 0.9217221135029354,\n", + " 'Acc': 0.3542074363992172,\n", + " 'MAE': 0.8225701239399867,\n", + " 'MSE': 1.2226570993694283,\n", + " 'CA-0': 0.1827956989247312,\n", + " 'CA-1': 0.4,\n", + " 'CA-2': 0.5660377358490566,\n", + " 'CA-3': 0.41346153846153844,\n", + " 'CA-4': 0.3076923076923077,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.27250633937708263,\n", + " 'Micro-F1': 0.3542074363992172,\n", + " 'F1-0_vs_rest': 0.3076923076923077,\n", + " 'F1-1_vs_rest': 0.2888086642599278,\n", + " 'F1-2_vs_rest': 0.42857142857142855,\n", + " 'F1-3_vs_rest': 0.44329896907216493,\n", + " 'F1-4_vs_rest': 0.16666666666666666,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8089887640449438,\n", + " 'Recall-0.5': 0.9969230769230769,\n", + " 'Precision-0.5': 0.680672268907563,\n", + " 'F1-1.5': 0.7824427480916031,\n", + " 'Recall-1.5': 0.9111111111111111,\n", + " 'Precision-1.5': 0.68561872909699,\n", + " 'F1-2.5': 0.5655737704918032,\n", + " 'Recall-2.5': 0.5798319327731093,\n", + " 'Precision-2.5': 0.552,\n", + " 'F1-3.5': 0.2,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.14285714285714285,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9033688892976336},\n", + " 'CM': {'0': {'-1': 0, '0': 34, '1': 118, '2': 26, '3': 4, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 40, '2': 42, '3': 14, '4': 4, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 15, '2': 60, '3': 25, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 40, '3': 43, '4': 17, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 3, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.10956240171950164,\n", + " 'Cohen': -0.011982755694354807,\n", + " 'Spearman': 0.4895141793253782,\n", + " 'Kendall': 0.4060737817958491,\n", + " 'Krippendorff': -0.07158492031027297,\n", + " 'Invalid': 254,\n", + " 'TA-2.0': 0.5447470817120622,\n", + " 'TA-4.0': 0.4785992217898833,\n", + " 'Acc': 0.09727626459143969,\n", + " 'MAE': 1.9338521400778208,\n", + " 'MSE': 4.969520103761347,\n", + " 'CA-0': 0.04819277108433735,\n", + " 'CA-1': 0.057692307692307696,\n", + " 'CA-2': 0.1016949152542373,\n", + " 'CA-3': 0.07547169811320754,\n", + " 'CA-4': 0.8,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08438482536467534,\n", + " 'Micro-F1': 0.09727626459143969,\n", + " 'F1-0_vs_rest': 0.09195402298850575,\n", + " 'F1-1_vs_rest': 0.08823529411764706,\n", + " 'F1-2_vs_rest': 0.11320754716981132,\n", + " 'F1-3_vs_rest': 0.08791208791208792,\n", + " 'F1-4_vs_rest': 0.125,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8149882903981265,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6877470355731226,\n", + " 'F1-1.5': 0.6740947075208914,\n", + " 'Recall-1.5': 0.9918032786885246,\n", + " 'Precision-1.5': 0.510548523206751,\n", + " 'F1-2.5': 0.45849802371541504,\n", + " 'Recall-2.5': 0.9206349206349206,\n", + " 'Precision-2.5': 0.30526315789473685,\n", + " 'F1-3.5': 0.09876543209876543,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.05263157894736842,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8713201665910568},\n", + " 'CM': {'0': {'-1': 103, '0': 4, '1': 12, '2': 32, '3': 15, '4': 19, '5': 1},\n", + " '1': {'-1': 48, '0': 0, '1': 3, '2': 5, '3': 9, '4': 28, '5': 7},\n", + " '2': {'-1': 47, '0': 0, '1': 0, '2': 6, '3': 8, '4': 30, '5': 15},\n", + " '3': {'-1': 51, '0': 0, '1': 1, '2': 4, '3': 4, '4': 33, '5': 11},\n", + " '4': {'-1': 3, '0': 0, '1': 0, '2': 0, '3': 2, '4': 8, '5': 0},\n", + " '5': {'-1': 2, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.08097432521395662,\n", + " 'Cohen': 0.1287862407862408,\n", + " 'Spearman': 0.6817413928280561,\n", + " 'Kendall': 0.5845637926908267,\n", + " 'Krippendorff': 0.5534179055404889,\n", + " 'Invalid': 3,\n", + " 'TA-2.0': 0.7362204724409449,\n", + " 'TA-4.0': 0.9665354330708661,\n", + " 'Acc': 0.31299212598425197,\n", + " 'MAE': 0.8274278215223095,\n", + " 'MSE': 1.0855205599300084,\n", + " 'CA-0': 0.15053763440860216,\n", + " 'CA-1': 0.24,\n", + " 'CA-2': 0.6415094339622641,\n", + " 'CA-3': 0.38613861386138615,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2095646268062484,\n", + " 'Micro-F1': 0.31299212598425197,\n", + " 'F1-0_vs_rest': 0.26046511627906976,\n", + " 'F1-1_vs_rest': 0.18604651162790697,\n", + " 'F1-2_vs_rest': 0.4108761329305136,\n", + " 'F1-3_vs_rest': 0.4,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8014981273408239,\n", + " 'Recall-0.5': 0.9968944099378882,\n", + " 'Precision-0.5': 0.6701461377870563,\n", + " 'F1-1.5': 0.7734806629834254,\n", + " 'Recall-1.5': 0.9459459459459459,\n", + " 'Precision-1.5': 0.6542056074766355,\n", + " 'F1-2.5': 0.46226415094339623,\n", + " 'Recall-2.5': 0.4224137931034483,\n", + " 'Precision-2.5': 0.5104166666666666,\n", + " 'F1-3.5': 0.0,\n", + " 'Recall-3.5': 0.0,\n", + " 'Precision-3.5': 0.0,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8968895752270242},\n", + " 'CM': {'0': {'-1': 0, '0': 28, '1': 122, '2': 32, '3': 4, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 24, '2': 59, '3': 16, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 11, '2': 68, '3': 25, '4': 2, '5': 0},\n", + " '3': {'-1': 3, '0': 0, '1': 1, '2': 61, '3': 39, '4': 0, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 8, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.08535765130539082,\n", + " 'Cohen': 0.11497681481682354,\n", + " 'Spearman': 0.6725985083561833,\n", + " 'Kendall': 0.561325927638002,\n", + " 'Krippendorff': 0.5124989068278222,\n", + " 'Invalid': 38,\n", + " 'TA-2.0': 0.7082452431289641,\n", + " 'TA-4.0': 0.7885835095137421,\n", + " 'Acc': 0.27061310782241016,\n", + " 'MAE': 1.0384073291050038,\n", + " 'MSE': 1.8510101010101014,\n", + " 'CA-0': 0.26666666666666666,\n", + " 'CA-1': 0.16853932584269662,\n", + " 'CA-2': 0.32038834951456313,\n", + " 'CA-3': 0.27722772277227725,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.23837714779297592,\n", + " 'Micro-F1': 0.27061310782241016,\n", + " 'F1-0_vs_rest': 0.4055299539170507,\n", + " 'F1-1_vs_rest': 0.17543859649122806,\n", + " 'F1-2_vs_rest': 0.2832618025751073,\n", + " 'F1-3_vs_rest': 0.3010752688172043,\n", + " 'F1-4_vs_rest': 0.1111111111111111,\n", + " 'F1-5_vs_rest': 0.15384615384615385,\n", + " 'F1-0.5': 0.823045267489712,\n", + " 'Recall-0.5': 0.974025974025974,\n", + " 'Precision-0.5': 0.7125890736342043,\n", + " 'F1-1.5': 0.7491039426523297,\n", + " 'Recall-1.5': 0.954337899543379,\n", + " 'Precision-1.5': 0.616519174041298,\n", + " 'F1-2.5': 0.6338461538461538,\n", + " 'Recall-2.5': 0.8879310344827587,\n", + " 'Precision-2.5': 0.49282296650717705,\n", + " 'F1-3.5': 0.14388489208633093,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.08064516129032258,\n", + " 'F1-4.5': 0.15384615384615385,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.09090909090909091,\n", + " 'NDCG@all': 0.9241520199673287},\n", + " 'CM': {'0': {'-1': 21, '0': 44, '1': 60, '2': 45, '3': 7, '4': 8, '5': 1},\n", + " '1': {'-1': 11, '0': 5, '1': 15, '2': 39, '3': 18, '4': 10, '5': 2},\n", + " '2': {'-1': 3, '0': 3, '1': 7, '2': 33, '3': 28, '4': 31, '5': 1},\n", + " '3': {'-1': 3, '0': 0, '1': 0, '2': 12, '3': 28, '4': 56, '5': 5},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 4, '4': 7, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.07185221617868302,\n", + " 'Cohen': -0.00880437495745312,\n", + " 'Spearman': 0.6339129390027314,\n", + " 'Kendall': 0.5309903421995182,\n", + " 'Krippendorff': 0.24471234937515807,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5538160469667319,\n", + " 'TA-4.0': 0.7416829745596869,\n", + " 'Acc': 0.1487279843444227,\n", + " 'MAE': 1.38747553816047,\n", + " 'MSE': 2.734290063057187,\n", + " 'CA-0': 0.03225806451612903,\n", + " 'CA-1': 0.06,\n", + " 'CA-2': 0.2169811320754717,\n", + " 'CA-3': 0.2980769230769231,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.11649725843161596,\n", + " 'Micro-F1': 0.1487279843444227,\n", + " 'F1-0_vs_rest': 0.0625,\n", + " 'F1-1_vs_rest': 0.0670391061452514,\n", + " 'F1-2_vs_rest': 0.1803921568627451,\n", + " 'F1-3_vs_rest': 0.25833333333333336,\n", + " 'F1-4_vs_rest': 0.13071895424836602,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7831325301204819,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6435643564356436,\n", + " 'F1-1.5': 0.6697388632872504,\n", + " 'Recall-1.5': 0.9688888888888889,\n", + " 'Precision-1.5': 0.5117370892018779,\n", + " 'F1-2.5': 0.5505050505050505,\n", + " 'Recall-2.5': 0.9159663865546218,\n", + " 'Precision-2.5': 0.3935018050541516,\n", + " 'F1-3.5': 0.15384615384615385,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.0851063829787234,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8951227656363437},\n", + " 'CM': {'0': {'-1': 0, '0': 6, '1': 66, '2': 77, '3': 29, '4': 8, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 6, '2': 41, '3': 34, '4': 19, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 23, '3': 39, '4': 38, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 8, '3': 31, '4': 63, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'hu': {'phi-4': {'metrics': {'Fleiss': 0.21657438369629106,\n", + " 'Cohen': 0.23120919388689887,\n", + " 'Spearman': 0.655409537814319,\n", + " 'Kendall': 0.5407778162009823,\n", + " 'Krippendorff': 0.5392635339166326,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7196078431372549,\n", + " 'TA-4.0': 0.8921568627450981,\n", + " 'Acc': 0.39019607843137255,\n", + " 'MAE': 0.891503267973856,\n", + " 'MSE': 1.5989106753812639,\n", + " 'CA-0': 0.40860215053763443,\n", + " 'CA-1': 0.26262626262626265,\n", + " 'CA-2': 0.3018867924528302,\n", + " 'CA-3': 0.5576923076923077,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.3460834455038851,\n", + " 'Micro-F1': 0.39019607843137255,\n", + " 'F1-0_vs_rest': 0.5692883895131086,\n", + " 'F1-1_vs_rest': 0.2561576354679803,\n", + " 'F1-2_vs_rest': 0.29493087557603687,\n", + " 'F1-3_vs_rest': 0.45136186770428016,\n", + " 'F1-4_vs_rest': 0.17142857142857143,\n", + " 'F1-5_vs_rest': 0.3333333333333333,\n", + " 'F1-0.5': 0.8472775564409031,\n", + " 'Recall-0.5': 0.9845679012345679,\n", + " 'Precision-0.5': 0.7435897435897436,\n", + " 'F1-1.5': 0.7527272727272727,\n", + " 'Recall-1.5': 0.92,\n", + " 'Precision-1.5': 0.6369230769230769,\n", + " 'F1-2.5': 0.5825825825825826,\n", + " 'Recall-2.5': 0.8151260504201681,\n", + " 'Precision-2.5': 0.4532710280373832,\n", + " 'F1-3.5': 0.21052631578947367,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.13114754098360656,\n", + " 'F1-4.5': 0.3333333333333333,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.25,\n", + " 'NDCG@all': 0.892707184986355},\n", + " 'CM': {'0': {'-1': 0, '0': 76, '1': 60, '2': 30, '3': 16, '4': 3, '5': 1},\n", + " '1': {'-1': 1, '0': 5, '1': 26, '2': 33, '3': 27, '4': 7, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 12, '2': 32, '3': 46, '4': 15, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 6, '2': 15, '3': 58, '4': 25, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 6, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.12755629545255412,\n", + " 'Cohen': 0.16182766217399247,\n", + " 'Spearman': 0.569543047666189,\n", + " 'Kendall': 0.47764109519110004,\n", + " 'Krippendorff': 0.4912977107473687,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7064579256360078,\n", + " 'TA-4.0': 0.9334637964774951,\n", + " 'Acc': 0.33268101761252444,\n", + " 'MAE': 0.8878016960208738,\n", + " 'MSE': 1.3861709067188515,\n", + " 'CA-0': 0.1774193548387097,\n", + " 'CA-1': 0.42,\n", + " 'CA-2': 0.44339622641509435,\n", + " 'CA-3': 0.4230769230769231,\n", + " 'CA-4': 0.3076923076923077,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2617014744116037,\n", + " 'Micro-F1': 0.33268101761252444,\n", + " 'F1-0_vs_rest': 0.29333333333333333,\n", + " 'F1-1_vs_rest': 0.2857142857142857,\n", + " 'F1-2_vs_rest': 0.3671875,\n", + " 'F1-3_vs_rest': 0.43349753694581283,\n", + " 'F1-4_vs_rest': 0.19047619047619047,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8005018820577164,\n", + " 'Recall-0.5': 0.9815384615384616,\n", + " 'Precision-0.5': 0.6758474576271186,\n", + " 'F1-1.5': 0.7236580516898609,\n", + " 'Recall-1.5': 0.8088888888888889,\n", + " 'Precision-1.5': 0.6546762589928058,\n", + " 'F1-2.5': 0.5425101214574899,\n", + " 'Recall-2.5': 0.5630252100840336,\n", + " 'Precision-2.5': 0.5234375,\n", + " 'F1-3.5': 0.22727272727272727,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.1724137931034483,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.888959762255007},\n", + " 'CM': {'0': {'-1': 0, '0': 33, '1': 111, '2': 33, '3': 6, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 4, '1': 42, '2': 36, '3': 10, '4': 8, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 23, '2': 47, '3': 30, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 18, '2': 33, '3': 44, '4': 9, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 8, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.23203753772256003,\n", + " 'Cohen': 0.24909752409752406,\n", + " 'Spearman': 0.6912713295446201,\n", + " 'Kendall': 0.5788083353585051,\n", + " 'Krippendorff': 0.6240323476610714,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.761252446183953,\n", + " 'TA-4.0': 0.761252446183953,\n", + " 'Acc': 0.3913894324853229,\n", + " 'MAE': 0.9165035877364646,\n", + " 'MSE': 1.8619265057621222,\n", + " 'CA-0': 0.5268817204301075,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.3867924528301887,\n", + " 'CA-3': 0.17307692307692307,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.30711776900518944,\n", + " 'Micro-F1': 0.3913894324853229,\n", + " 'F1-0_vs_rest': 0.6712328767123288,\n", + " 'F1-1_vs_rest': 0.3111111111111111,\n", + " 'F1-2_vs_rest': 0.38497652582159625,\n", + " 'F1-3_vs_rest': 0.24324324324324326,\n", + " 'F1-4_vs_rest': 0.10714285714285714,\n", + " 'F1-5_vs_rest': 0.125,\n", + " 'F1-0.5': 0.8684931506849315,\n", + " 'Recall-0.5': 0.9753846153846154,\n", + " 'Precision-0.5': 0.782716049382716,\n", + " 'F1-1.5': 0.7762376237623763,\n", + " 'Recall-1.5': 0.8711111111111111,\n", + " 'Precision-1.5': 0.7,\n", + " 'F1-2.5': 0.636986301369863,\n", + " 'Recall-2.5': 0.7815126050420168,\n", + " 'Precision-2.5': 0.5375722543352601,\n", + " 'F1-3.5': 0.1527777777777778,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08527131782945736,\n", + " 'F1-4.5': 0.125,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.06666666666666667,\n", + " 'NDCG@all': 0.8905951027249435},\n", + " 'CM': {'0': {'-1': 0, '0': 98, '1': 61, '2': 15, '3': 4, '4': 3, '5': 5},\n", + " '1': {'-1': 0, '0': 8, '1': 35, '2': 31, '3': 3, '4': 16, '5': 7},\n", + " '2': {'-1': 0, '0': 0, '1': 23, '2': 41, '3': 18, '4': 17, '5': 7},\n", + " '3': {'-1': 0, '0': 0, '1': 6, '2': 17, '3': 18, '4': 57, '5': 6},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 1, '4': 6, '5': 3},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.07922542449533367,\n", + " 'Cohen': 0.1379605661993245,\n", + " 'Spearman': 0.6396750234735307,\n", + " 'Kendall': 0.5480039684809306,\n", + " 'Krippendorff': 0.5347362347065028,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.7662082514734774,\n", + " 'TA-4.0': 0.9449901768172888,\n", + " 'Acc': 0.30844793713163066,\n", + " 'MAE': 0.8461034708578913,\n", + " 'MSE': 1.1691770355817503,\n", + " 'CA-0': 0.04838709677419355,\n", + " 'CA-1': 0.49,\n", + " 'CA-2': 0.4716981132075472,\n", + " 'CA-3': 0.47058823529411764,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22119314743038232,\n", + " 'Micro-F1': 0.30844793713163066,\n", + " 'F1-0_vs_rest': 0.09230769230769231,\n", + " 'F1-1_vs_rest': 0.2857142857142857,\n", + " 'F1-2_vs_rest': 0.4048582995951417,\n", + " 'F1-3_vs_rest': 0.47761194029850745,\n", + " 'F1-4_vs_rest': 0.06666666666666667,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7849331713244229,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.646,\n", + " 'F1-1.5': 0.7625,\n", + " 'Recall-1.5': 0.820627802690583,\n", + " 'Precision-1.5': 0.7120622568093385,\n", + " 'F1-2.5': 0.5579399141630901,\n", + " 'Recall-2.5': 0.5555555555555556,\n", + " 'Precision-2.5': 0.5603448275862069,\n", + " 'F1-3.5': 0.125,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.11764705882352941,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8975707836309588},\n", + " 'CM': {'0': {'-1': 0, '0': 9, '1': 154, '2': 16, '3': 6, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 49, '2': 35, '3': 12, '4': 4, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 28, '2': 50, '3': 24, '4': 4, '5': 0},\n", + " '3': {'-1': 2, '0': 0, '1': 12, '2': 36, '3': 48, '4': 6, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 8, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.11999630279163556,\n", + " 'Cohen': 0.14226375908618893,\n", + " 'Spearman': 0.6307015192937804,\n", + " 'Kendall': 0.5220418075704708,\n", + " 'Krippendorff': 0.5353096750079398,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7103718199608611,\n", + " 'TA-4.0': 0.8297455968688845,\n", + " 'Acc': 0.30724070450097846,\n", + " 'MAE': 0.9823874755381606,\n", + " 'MSE': 1.69776038269189,\n", + " 'CA-0': 0.34408602150537637,\n", + " 'CA-1': 0.33,\n", + " 'CA-2': 0.19811320754716982,\n", + " 'CA-3': 0.27884615384615385,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.3202771620004218,\n", + " 'Micro-F1': 0.30724070450097846,\n", + " 'F1-0_vs_rest': 0.49230769230769234,\n", + " 'F1-1_vs_rest': 0.2661290322580645,\n", + " 'F1-2_vs_rest': 0.21428571428571427,\n", + " 'F1-3_vs_rest': 0.27751196172248804,\n", + " 'F1-4_vs_rest': 0.17142857142857143,\n", + " 'F1-5_vs_rest': 0.5,\n", + " 'F1-0.5': 0.8267716535433071,\n", + " 'Recall-0.5': 0.9692307692307692,\n", + " 'Precision-0.5': 0.7208237986270023,\n", + " 'F1-1.5': 0.7276264591439688,\n", + " 'Recall-1.5': 0.8311111111111111,\n", + " 'Precision-1.5': 0.6470588235294118,\n", + " 'F1-2.5': 0.559748427672956,\n", + " 'Recall-2.5': 0.7478991596638656,\n", + " 'Precision-2.5': 0.4472361809045226,\n", + " 'F1-3.5': 0.2018348623853211,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.11702127659574468,\n", + " 'F1-4.5': 0.5,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.5,\n", + " 'NDCG@all': 0.9146346250909738},\n", + " 'CM': {'0': {'-1': 0, '0': 64, '1': 80, '2': 28, '3': 10, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 7, '1': 33, '2': 25, '3': 22, '4': 13, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 22, '2': 21, '3': 40, '4': 20, '5': 1},\n", + " '3': {'-1': 0, '0': 1, '1': 13, '2': 16, '3': 29, '4': 45, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.08837624303826612,\n", + " 'Cohen': -0.01112809565616546,\n", + " 'Spearman': 0.6136226059052038,\n", + " 'Kendall': 0.5144554587977409,\n", + " 'Krippendorff': 0.23168602824539675,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5870841487279843,\n", + " 'TA-4.0': 0.6575342465753424,\n", + " 'Acc': 0.13111545988258316,\n", + " 'MAE': 1.4350945857795172,\n", + " 'MSE': 2.950641443792129,\n", + " 'CA-0': 0.016129032258064516,\n", + " 'CA-1': 0.1,\n", + " 'CA-2': 0.2358490566037736,\n", + " 'CA-3': 0.19230769230769232,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.10595906213376094,\n", + " 'Micro-F1': 0.13111545988258316,\n", + " 'F1-0_vs_rest': 0.031746031746031744,\n", + " 'F1-1_vs_rest': 0.10256410256410256,\n", + " 'F1-2_vs_rest': 0.20080321285140562,\n", + " 'F1-3_vs_rest': 0.20833333333333334,\n", + " 'F1-4_vs_rest': 0.09230769230769231,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.78031212484994,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.639763779527559,\n", + " 'F1-1.5': 0.6865203761755486,\n", + " 'Recall-1.5': 0.9733333333333334,\n", + " 'Precision-1.5': 0.5302663438256658,\n", + " 'F1-2.5': 0.5501285347043702,\n", + " 'Recall-2.5': 0.8991596638655462,\n", + " 'Precision-2.5': 0.3962962962962963,\n", + " 'F1-3.5': 0.1116751269035533,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.06043956043956044,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8866072382281535},\n", + " 'CM': {'0': {'-1': 0, '0': 3, '1': 79, '2': 71, '3': 16, '4': 17, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 10, '2': 38, '3': 21, '4': 31, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 3, '2': 25, '3': 27, '4': 51, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 3, '2': 9, '3': 20, '4': 72, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.10798087924447802,\n", + " 'Cohen': -0.039564598372474835,\n", + " 'Spearman': 0.7069438868115568,\n", + " 'Kendall': 0.6003368856847533,\n", + " 'Krippendorff': 0.2692419885808678,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.6129666011787819,\n", + " 'TA-4.0': 0.7367387033398821,\n", + " 'Acc': 0.11787819253438114,\n", + " 'MAE': 1.3981663392272428,\n", + " 'MSE': 2.7402313905260867,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.06,\n", + " 'CA-2': 0.1320754716981132,\n", + " 'CA-3': 0.30097087378640774,\n", + " 'CA-4': 0.75,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09143760259663325,\n", + " 'Micro-F1': 0.11787819253438114,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.0594059405940594,\n", + " 'F1-2_vs_rest': 0.13793103448275862,\n", + " 'F1-3_vs_rest': 0.23048327137546468,\n", + " 'F1-4_vs_rest': 0.12080536912751678,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7764423076923077,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6345776031434185,\n", + " 'F1-1.5': 0.707936507936508,\n", + " 'Recall-1.5': 1.0,\n", + " 'Precision-1.5': 0.547911547911548,\n", + " 'F1-2.5': 0.5292740046838408,\n", + " 'Recall-2.5': 0.9658119658119658,\n", + " 'Precision-2.5': 0.36451612903225805,\n", + " 'F1-3.5': 0.13924050632911392,\n", + " 'Recall-3.5': 0.7857142857142857,\n", + " 'Precision-3.5': 0.0763888888888889,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8926916357304051},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 96, '2': 51, '3': 34, '4': 4, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 6, '2': 28, '3': 45, '4': 20, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 0, '2': 14, '3': 53, '4': 36, '5': 3},\n", + " '3': {'-1': 1, '0': 0, '1': 0, '2': 4, '3': 31, '4': 66, '5': 2},\n", + " '4': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 3, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.18703059168345856,\n", + " 'Cohen': 0.2184131548727648,\n", + " 'Spearman': 0.6838808777860244,\n", + " 'Kendall': 0.5831470116690491,\n", + " 'Krippendorff': 0.5898774007158286,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7534246575342466,\n", + " 'TA-4.0': 0.9334637964774951,\n", + " 'Acc': 0.3796477495107632,\n", + " 'MAE': 0.7795172863666012,\n", + " 'MSE': 1.1300282670145678,\n", + " 'CA-0': 0.22043010752688172,\n", + " 'CA-1': 0.4,\n", + " 'CA-2': 0.5943396226415094,\n", + " 'CA-3': 0.46153846153846156,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.28192934448561013,\n", + " 'Micro-F1': 0.3796477495107632,\n", + " 'F1-0_vs_rest': 0.36123348017621143,\n", + " 'F1-1_vs_rest': 0.28776978417266186,\n", + " 'F1-2_vs_rest': 0.45,\n", + " 'F1-3_vs_rest': 0.4873096446700508,\n", + " 'F1-4_vs_rest': 0.10526315789473684,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8176100628930818,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6914893617021277,\n", + " 'F1-1.5': 0.781431334622824,\n", + " 'Recall-1.5': 0.8977777777777778,\n", + " 'Precision-1.5': 0.6917808219178082,\n", + " 'F1-2.5': 0.5907172995780591,\n", + " 'Recall-2.5': 0.5882352941176471,\n", + " 'Precision-2.5': 0.5932203389830508,\n", + " 'F1-3.5': 0.15,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.12,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.898176708232311},\n", + " 'CM': {'0': {'-1': 0, '0': 41, '1': 115, '2': 24, '3': 2, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 40, '2': 43, '3': 13, '4': 4, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 18, '2': 63, '3': 22, '4': 3, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 40, '3': 48, '4': 11, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 7, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.06303242422241305,\n", + " 'Cohen': 0.0023086815723823984,\n", + " 'Spearman': 0.4861010599623172,\n", + " 'Kendall': 0.38348755372495963,\n", + " 'Krippendorff': 0.07471479155179295,\n", + " 'Invalid': 237,\n", + " 'TA-2.0': 0.5912408759124088,\n", + " 'TA-4.0': 0.6167883211678832,\n", + " 'Acc': 0.14233576642335766,\n", + " 'MAE': 1.5954987834549876,\n", + " 'MSE': 3.7547648012976484,\n", + " 'CA-0': 0.05813953488372093,\n", + " 'CA-1': 0.05660377358490566,\n", + " 'CA-2': 0.14285714285714285,\n", + " 'CA-3': 0.2903225806451613,\n", + " 'CA-4': 0.4444444444444444,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.11501825807140464,\n", + " 'Micro-F1': 0.14233576642335766,\n", + " 'F1-0_vs_rest': 0.10989010989010989,\n", + " 'F1-1_vs_rest': 0.0759493670886076,\n", + " 'F1-2_vs_rest': 0.14516129032258066,\n", + " 'F1-3_vs_rest': 0.2857142857142857,\n", + " 'F1-4_vs_rest': 0.07339449541284404,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8227571115973742,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6988847583643123,\n", + " 'F1-1.5': 0.7037037037037037,\n", + " 'Recall-1.5': 0.9851851851851852,\n", + " 'Precision-1.5': 0.5473251028806584,\n", + " 'F1-2.5': 0.5275590551181102,\n", + " 'Recall-2.5': 0.9305555555555556,\n", + " 'Precision-2.5': 0.36813186813186816,\n", + " 'F1-3.5': 0.09375,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.05084745762711865,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8561176100292405},\n", + " 'CM': {'0': {'-1': 100, '0': 5, '1': 21, '2': 33, '3': 12, '4': 12, '5': 3},\n", + " '1': {'-1': 47, '0': 0, '1': 3, '2': 15, '3': 13, '4': 19, '5': 3},\n", + " '2': {'-1': 43, '0': 0, '1': 1, '2': 9, '3': 19, '4': 28, '5': 6},\n", + " '3': {'-1': 42, '0': 0, '1': 0, '2': 3, '3': 18, '4': 36, '5': 5},\n", + " '4': {'-1': 4, '0': 0, '1': 1, '2': 1, '3': 2, '4': 4, '5': 1},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.1330923939101788,\n", + " 'Cohen': 0.17221891291826452,\n", + " 'Spearman': 0.6937409014390623,\n", + " 'Kendall': 0.5956201310825481,\n", + " 'Krippendorff': 0.5988176763026796,\n", + " 'Invalid': 3,\n", + " 'TA-2.0': 0.7480314960629921,\n", + " 'TA-4.0': 0.968503937007874,\n", + " 'Acc': 0.3484251968503937,\n", + " 'MAE': 0.7709973753280837,\n", + " 'MSE': 0.9878608923884511,\n", + " 'CA-0': 0.22580645161290322,\n", + " 'CA-1': 0.31,\n", + " 'CA-2': 0.6,\n", + " 'CA-3': 0.38235294117647056,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2685013733761174,\n", + " 'Micro-F1': 0.3484251968503937,\n", + " 'F1-0_vs_rest': 0.36681222707423583,\n", + " 'F1-1_vs_rest': 0.2339622641509434,\n", + " 'F1-2_vs_rest': 0.39747634069400634,\n", + " 'F1-3_vs_rest': 0.430939226519337,\n", + " 'F1-4_vs_rest': 0.18181818181818182,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8157560355781448,\n", + " 'Recall-0.5': 0.9968944099378882,\n", + " 'Precision-0.5': 0.6903225806451613,\n", + " 'F1-1.5': 0.7739463601532567,\n", + " 'Recall-1.5': 0.9099099099099099,\n", + " 'Precision-1.5': 0.6733333333333333,\n", + " 'F1-2.5': 0.47804878048780486,\n", + " 'Recall-2.5': 0.4188034188034188,\n", + " 'Precision-2.5': 0.5568181818181818,\n", + " 'F1-3.5': 0.3333333333333333,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.4444444444444444,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9250655497221427},\n", + " 'CM': {'0': {'-1': 0, '0': 42, '1': 114, '2': 28, '3': 2, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 31, '2': 57, '3': 11, '4': 0, '5': 0},\n", + " '2': {'-1': 1, '0': 0, '1': 16, '2': 63, '3': 23, '4': 3, '5': 0},\n", + " '3': {'-1': 2, '0': 0, '1': 4, '2': 57, '3': 39, '4': 2, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 7, '3': 4, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.13125775079955615,\n", + " 'Cohen': 0.15458962768491358,\n", + " 'Spearman': 0.6632654551829412,\n", + " 'Kendall': 0.5466576478329774,\n", + " 'Krippendorff': 0.5565959337375257,\n", + " 'Invalid': 27,\n", + " 'TA-2.0': 0.731404958677686,\n", + " 'TA-4.0': 0.8615702479338843,\n", + " 'Acc': 0.3181818181818182,\n", + " 'MAE': 0.912190082644628,\n", + " 'MSE': 1.5101584022038572,\n", + " 'CA-0': 0.29714285714285715,\n", + " 'CA-1': 0.18478260869565216,\n", + " 'CA-2': 0.4563106796116505,\n", + " 'CA-3': 0.3434343434343434,\n", + " 'CA-4': 0.3076923076923077,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.23897131560377952,\n", + " 'Micro-F1': 0.3181818181818182,\n", + " 'F1-0_vs_rest': 0.44635193133047213,\n", + " 'F1-1_vs_rest': 0.17989417989417988,\n", + " 'F1-2_vs_rest': 0.3643410852713178,\n", + " 'F1-3_vs_rest': 0.35233160621761656,\n", + " 'F1-4_vs_rest': 0.09090909090909091,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8244897959183674,\n", + " 'Recall-0.5': 0.9805825242718447,\n", + " 'Precision-0.5': 0.7112676056338029,\n", + " 'F1-1.5': 0.7619047619047619,\n", + " 'Recall-1.5': 0.9585253456221198,\n", + " 'Precision-1.5': 0.6322188449848024,\n", + " 'F1-2.5': 0.5902777777777778,\n", + " 'Recall-2.5': 0.7456140350877193,\n", + " 'Precision-2.5': 0.4885057471264368,\n", + " 'F1-3.5': 0.12631578947368421,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.075,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8995136691627227},\n", + " 'CM': {'0': {'-1': 11, '0': 52, '1': 72, '2': 38, '3': 7, '4': 5, '5': 1},\n", + " '1': {'-1': 8, '0': 5, '1': 17, '2': 43, '3': 21, '4': 6, '5': 0},\n", + " '2': {'-1': 3, '0': 1, '1': 6, '2': 47, '3': 25, '4': 22, '5': 2},\n", + " '3': {'-1': 5, '0': 0, '1': 2, '2': 25, '3': 34, '4': 36, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 7, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.06173865563678709,\n", + " 'Cohen': -0.0036724738039337623,\n", + " 'Spearman': 0.6196971473393985,\n", + " 'Kendall': 0.5205804369822976,\n", + " 'Krippendorff': 0.27471614220273766,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5753424657534246,\n", + " 'TA-4.0': 0.7671232876712328,\n", + " 'Acc': 0.15851272015655576,\n", + " 'MAE': 1.328767123287671,\n", + " 'MSE': 2.5755599043270276,\n", + " 'CA-0': 0.04838709677419355,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.20754716981132076,\n", + " 'CA-3': 0.3173076923076923,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.1262100757994081,\n", + " 'Micro-F1': 0.15851272015655576,\n", + " 'F1-0_vs_rest': 0.09230769230769231,\n", + " 'F1-1_vs_rest': 0.07567567567567568,\n", + " 'F1-2_vs_rest': 0.16793893129770993,\n", + " 'F1-3_vs_rest': 0.27848101265822783,\n", + " 'F1-4_vs_rest': 0.14285714285714285,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7859733978234583,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.647410358565737,\n", + " 'F1-1.5': 0.6791277258566978,\n", + " 'Recall-1.5': 0.9688888888888889,\n", + " 'Precision-1.5': 0.5227817745803357,\n", + " 'F1-2.5': 0.5368421052631579,\n", + " 'Recall-2.5': 0.8571428571428571,\n", + " 'Precision-2.5': 0.39080459770114945,\n", + " 'F1-3.5': 0.16783216783216784,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.09375,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8815936325236656},\n", + " 'CM': {'0': {'-1': 0, '0': 9, '1': 71, '2': 74, '3': 25, '4': 6, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 45, '3': 28, '4': 20, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 22, '3': 44, '4': 35, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 15, '3': 33, '4': 54, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'uk': {'phi-4': {'metrics': {'Fleiss': 0.2693842313962089,\n", + " 'Cohen': 0.277344438137368,\n", + " 'Spearman': 0.6432833830881047,\n", + " 'Kendall': 0.5303844808642745,\n", + " 'Krippendorff': 0.6028395079188598,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7553816046966731,\n", + " 'TA-4.0': 0.8904109589041096,\n", + " 'Acc': 0.4344422700587084,\n", + " 'MAE': 0.796477495107632,\n", + " 'MSE': 1.3613829093281142,\n", + " 'CA-0': 0.478494623655914,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.4056603773584906,\n", + " 'CA-3': 0.47115384615384615,\n", + " 'CA-4': 0.3076923076923077,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.40075664711923803,\n", + " 'Micro-F1': 0.4344422700587084,\n", + " 'F1-0_vs_rest': 0.6075085324232082,\n", + " 'F1-1_vs_rest': 0.3076923076923077,\n", + " 'F1-2_vs_rest': 0.39090909090909093,\n", + " 'F1-3_vs_rest': 0.47342995169082125,\n", + " 'F1-4_vs_rest': 0.125,\n", + " 'F1-5_vs_rest': 0.5,\n", + " 'F1-0.5': 0.8422496570644719,\n", + " 'Recall-0.5': 0.9446153846153846,\n", + " 'Precision-0.5': 0.7599009900990099,\n", + " 'F1-1.5': 0.7676767676767676,\n", + " 'Recall-1.5': 0.8444444444444444,\n", + " 'Precision-1.5': 0.7037037037037037,\n", + " 'F1-2.5': 0.5890909090909091,\n", + " 'Recall-2.5': 0.680672268907563,\n", + " 'Precision-2.5': 0.5192307692307693,\n", + " 'F1-3.5': 0.17647058823529413,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.11320754716981132,\n", + " 'F1-4.5': 0.5,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.5,\n", + " 'NDCG@all': 0.8964684901544908},\n", + " 'CM': {'0': {'-1': 0, '0': 89, '1': 66, '2': 20, '3': 6, '4': 4, '5': 1},\n", + " '1': {'-1': 0, '0': 15, '1': 36, '2': 25, '3': 14, '4': 10, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 21, '2': 43, '3': 27, '4': 13, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 11, '2': 24, '3': 49, '4': 19, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 7, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.1442178532177311,\n", + " 'Cohen': 0.16939108223558497,\n", + " 'Spearman': 0.6098808033093035,\n", + " 'Kendall': 0.506251854177832,\n", + " 'Krippendorff': 0.5337573187388648,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.726027397260274,\n", + " 'TA-4.0': 0.9315068493150684,\n", + " 'Acc': 0.3424657534246575,\n", + " 'MAE': 0.8656229615133726,\n", + " 'MSE': 1.3322461404653183,\n", + " 'CA-0': 0.26344086021505375,\n", + " 'CA-1': 0.42,\n", + " 'CA-2': 0.3490566037735849,\n", + " 'CA-3': 0.4230769230769231,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2596754153730898,\n", + " 'Micro-F1': 0.3424657534246575,\n", + " 'F1-0_vs_rest': 0.4083333333333333,\n", + " 'F1-1_vs_rest': 0.3054545454545455,\n", + " 'F1-2_vs_rest': 0.30833333333333335,\n", + " 'F1-3_vs_rest': 0.3963963963963964,\n", + " 'F1-4_vs_rest': 0.13953488372093023,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8184143222506394,\n", + " 'Recall-0.5': 0.9846153846153847,\n", + " 'Precision-0.5': 0.700218818380744,\n", + " 'F1-1.5': 0.7455621301775148,\n", + " 'Recall-1.5': 0.84,\n", + " 'Precision-1.5': 0.6702127659574468,\n", + " 'F1-2.5': 0.5168539325842697,\n", + " 'Recall-2.5': 0.5798319327731093,\n", + " 'Precision-2.5': 0.46621621621621623,\n", + " 'F1-3.5': 0.2222222222222222,\n", + " 'Recall-3.5': 0.3333333333333333,\n", + " 'Precision-3.5': 0.16666666666666666,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9004855921341497},\n", + " 'CM': {'0': {'-1': 0, '0': 49, '1': 98, '2': 29, '3': 8, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 4, '1': 42, '2': 31, '3': 18, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 22, '2': 37, '3': 40, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 13, '2': 35, '3': 44, '4': 12, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 8, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.19297133955937656,\n", + " 'Cohen': 0.2141180980161178,\n", + " 'Spearman': 0.685131043937179,\n", + " 'Kendall': 0.5690873927208422,\n", + " 'Krippendorff': 0.5912482839053306,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7729941291585127,\n", + " 'TA-4.0': 0.7436399217221135,\n", + " 'Acc': 0.3561643835616438,\n", + " 'MAE': 0.9895629484670581,\n", + " 'MSE': 2.0406610132637533,\n", + " 'CA-0': 0.45161290322580644,\n", + " 'CA-1': 0.41,\n", + " 'CA-2': 0.2830188679245283,\n", + " 'CA-3': 0.17307692307692307,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.2862939502603148,\n", + " 'Micro-F1': 0.3561643835616438,\n", + " 'F1-0_vs_rest': 0.6064981949458483,\n", + " 'F1-1_vs_rest': 0.3445378151260504,\n", + " 'F1-2_vs_rest': 0.31746031746031744,\n", + " 'F1-3_vs_rest': 0.21951219512195122,\n", + " 'F1-4_vs_rest': 0.11864406779661017,\n", + " 'F1-5_vs_rest': 0.1111111111111111,\n", + " 'F1-0.5': 0.8536912751677852,\n", + " 'Recall-0.5': 0.9784615384615385,\n", + " 'Precision-0.5': 0.7571428571428571,\n", + " 'F1-1.5': 0.796844181459566,\n", + " 'Recall-1.5': 0.8977777777777778,\n", + " 'Precision-1.5': 0.7163120567375887,\n", + " 'F1-2.5': 0.6037735849056604,\n", + " 'Recall-2.5': 0.8067226890756303,\n", + " 'Precision-2.5': 0.4824120603015075,\n", + " 'F1-3.5': 0.14285714285714285,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.07913669064748201,\n", + " 'F1-4.5': 0.1111111111111111,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.058823529411764705,\n", + " 'NDCG@all': 0.8919731406869117},\n", + " 'CM': {'0': {'-1': 0, '0': 84, '1': 74, '2': 13, '3': 4, '4': 6, '5': 5},\n", + " '1': {'-1': 0, '0': 7, '1': 41, '2': 21, '3': 9, '4': 15, '5': 7},\n", + " '2': {'-1': 0, '0': 0, '1': 19, '2': 30, '3': 28, '4': 22, '5': 7},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 16, '3': 18, '4': 55, '5': 11},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 1, '4': 7, '5': 2},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.05699127510099088,\n", + " 'Cohen': 0.11396757347757913,\n", + " 'Spearman': 0.6640427586047261,\n", + " 'Kendall': 0.5651932409489093,\n", + " 'Krippendorff': 0.5527569235985632,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.7603143418467584,\n", + " 'TA-4.0': 0.9332023575638507,\n", + " 'Acc': 0.2868369351669941,\n", + " 'MAE': 0.862475442043222,\n", + " 'MSE': 1.1842392490722549,\n", + " 'CA-0': 0.053763440860215055,\n", + " 'CA-1': 0.44,\n", + " 'CA-2': 0.37142857142857144,\n", + " 'CA-3': 0.49514563106796117,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.213788237056911,\n", + " 'Micro-F1': 0.2868369351669941,\n", + " 'F1-0_vs_rest': 0.10204081632653061,\n", + " 'F1-1_vs_rest': 0.26112759643916916,\n", + " 'F1-2_vs_rest': 0.33766233766233766,\n", + " 'F1-3_vs_rest': 0.4766355140186916,\n", + " 'F1-4_vs_rest': 0.10526315789473684,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7858880778588808,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6472945891783567,\n", + " 'F1-1.5': 0.7628865979381443,\n", + " 'Recall-1.5': 0.8295964125560538,\n", + " 'Precision-1.5': 0.7061068702290076,\n", + " 'F1-2.5': 0.5748031496062992,\n", + " 'Recall-2.5': 0.6186440677966102,\n", + " 'Precision-2.5': 0.5367647058823529,\n", + " 'F1-3.5': 0.15,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.12,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9061872586542914},\n", + " 'CM': {'0': {'-1': 0, '0': 10, '1': 155, '2': 15, '3': 5, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 44, '2': 36, '3': 17, '4': 3, '5': 0},\n", + " '2': {'-1': 1, '0': 0, '1': 29, '2': 39, '3': 31, '4': 6, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 9, '2': 31, '3': 51, '4': 12, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 6, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.18166349714743268,\n", + " 'Cohen': 0.1998357736540839,\n", + " 'Spearman': 0.6377648863114097,\n", + " 'Kendall': 0.5335978130619256,\n", + " 'Krippendorff': 0.575382973294181,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.726027397260274,\n", + " 'TA-4.0': 0.8297455968688845,\n", + " 'Acc': 0.35812133072407043,\n", + " 'MAE': 0.902478799739074,\n", + " 'MSE': 1.5762665796912378,\n", + " 'CA-0': 0.41935483870967744,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.2641509433962264,\n", + " 'CA-3': 0.3173076923076923,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2723719937469937,\n", + " 'Micro-F1': 0.35812133072407043,\n", + " 'F1-0_vs_rest': 0.5672727272727273,\n", + " 'F1-1_vs_rest': 0.288,\n", + " 'F1-2_vs_rest': 0.2828282828282828,\n", + " 'F1-3_vs_rest': 0.34375,\n", + " 'F1-4_vs_rest': 0.1523809523809524,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8406961178045516,\n", + " 'Recall-0.5': 0.9661538461538461,\n", + " 'Precision-0.5': 0.7440758293838863,\n", + " 'F1-1.5': 0.7364185110663984,\n", + " 'Recall-1.5': 0.8133333333333334,\n", + " 'Precision-1.5': 0.6727941176470589,\n", + " 'F1-2.5': 0.5953177257525084,\n", + " 'Recall-2.5': 0.7478991596638656,\n", + " 'Precision-2.5': 0.49444444444444446,\n", + " 'F1-3.5': 0.18691588785046728,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.10869565217391304,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9008371614503143},\n", + " 'CM': {'0': {'-1': 0, '0': 78, '1': 74, '2': 20, '3': 7, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 9, '1': 36, '2': 30, '3': 13, '4': 12, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 25, '2': 28, '3': 30, '4': 22, '5': 0},\n", + " '3': {'-1': 0, '0': 1, '1': 15, '2': 14, '3': 33, '4': 41, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.07860852005000477,\n", + " 'Cohen': -0.005747667531955214,\n", + " 'Spearman': 0.6321422018538426,\n", + " 'Kendall': 0.5302105741113742,\n", + " 'Krippendorff': 0.23949609740651412,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5675146771037182,\n", + " 'TA-4.0': 0.6888454011741683,\n", + " 'Acc': 0.14090019569471623,\n", + " 'MAE': 1.4200913242009134,\n", + " 'MSE': 2.8456186127419003,\n", + " 'CA-0': 0.016129032258064516,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.20754716981132076,\n", + " 'CA-3': 0.27884615384615385,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.1137304954689291,\n", + " 'Micro-F1': 0.14090019569471623,\n", + " 'F1-0_vs_rest': 0.031746031746031744,\n", + " 'F1-1_vs_rest': 0.08648648648648649,\n", + " 'F1-2_vs_rest': 0.16793893129770993,\n", + " 'F1-3_vs_rest': 0.2857142857142857,\n", + " 'F1-4_vs_rest': 0.11049723756906077,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.78031212484994,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.639763779527559,\n", + " 'F1-1.5': 0.6790123456790124,\n", + " 'Recall-1.5': 0.9777777777777777,\n", + " 'Precision-1.5': 0.5200945626477541,\n", + " 'F1-2.5': 0.5492227979274611,\n", + " 'Recall-2.5': 0.8907563025210085,\n", + " 'Precision-2.5': 0.3970037453183521,\n", + " 'F1-3.5': 0.13114754098360656,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.07142857142857142,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8912214409857525},\n", + " 'CM': {'0': {'-1': 0, '0': 3, '1': 72, '2': 84, '3': 15, '4': 12, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 39, '3': 25, '4': 28, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 3, '2': 22, '3': 29, '4': 52, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 9, '3': 29, '4': 64, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 1, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.12275958625517484,\n", + " 'Cohen': -0.05496659000285775,\n", + " 'Spearman': 0.7155095997798218,\n", + " 'Kendall': 0.6080344633777259,\n", + " 'Krippendorff': 0.28633180276006276,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.6058823529411764,\n", + " 'TA-4.0': 0.7372549019607844,\n", + " 'Acc': 0.10588235294117647,\n", + " 'MAE': 1.3859477124183006,\n", + " 'MSE': 2.66900871459695,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.05,\n", + " 'CA-2': 0.10476190476190476,\n", + " 'CA-3': 0.27884615384615385,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.0822726721530147,\n", + " 'Micro-F1': 0.10588235294117647,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.04950495049504951,\n", + " 'F1-2_vs_rest': 0.10526315789473684,\n", + " 'F1-3_vs_rest': 0.2188679245283019,\n", + " 'F1-4_vs_rest': 0.12,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7769784172661871,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6352941176470588,\n", + " 'F1-1.5': 0.7025316455696202,\n", + " 'Recall-1.5': 0.9910714285714286,\n", + " 'Precision-1.5': 0.5441176470588235,\n", + " 'F1-2.5': 0.5437352245862884,\n", + " 'Recall-2.5': 0.9663865546218487,\n", + " 'Precision-2.5': 0.3782894736842105,\n", + " 'F1-3.5': 0.13924050632911392,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.07692307692307693,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8912986367420203},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 95, '2': 58, '3': 26, '4': 6, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 5, '2': 32, '3': 45, '4': 17, '5': 1},\n", + " '2': {'-1': 1, '0': 0, '1': 1, '2': 11, '3': 57, '4': 33, '5': 3},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 3, '3': 29, '4': 70, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.19146578552657523,\n", + " 'Cohen': 0.21983229864519271,\n", + " 'Spearman': 0.6680578124105967,\n", + " 'Kendall': 0.5681339517135188,\n", + " 'Krippendorff': 0.5712611302663977,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7436399217221135,\n", + " 'TA-4.0': 0.923679060665362,\n", + " 'Acc': 0.3796477495107632,\n", + " 'MAE': 0.8030006523157205,\n", + " 'MSE': 1.2239617308110455,\n", + " 'CA-0': 0.22580645161290322,\n", + " 'CA-1': 0.37,\n", + " 'CA-2': 0.5471698113207547,\n", + " 'CA-3': 0.5288461538461539,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.28182006195947723,\n", + " 'Micro-F1': 0.3796477495107632,\n", + " 'F1-0_vs_rest': 0.3684210526315789,\n", + " 'F1-1_vs_rest': 0.27205882352941174,\n", + " 'F1-2_vs_rest': 0.43609022556390975,\n", + " 'F1-3_vs_rest': 0.5213270142180095,\n", + " 'F1-4_vs_rest': 0.09302325581395349,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.818639798488665,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6929637526652452,\n", + " 'F1-1.5': 0.7701149425287356,\n", + " 'Recall-1.5': 0.8933333333333333,\n", + " 'Precision-1.5': 0.6767676767676768,\n", + " 'F1-2.5': 0.609375,\n", + " 'Recall-2.5': 0.6554621848739496,\n", + " 'Precision-2.5': 0.5693430656934306,\n", + " 'F1-3.5': 0.13333333333333333,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.1,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8967804977530014},\n", + " 'CM': {'0': {'-1': 0, '0': 42, '1': 111, '2': 23, '3': 7, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 37, '2': 44, '3': 14, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 18, '2': 58, '3': 24, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 6, '2': 30, '3': 55, '4': 13, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 6, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.12905535093634904,\n", + " 'Cohen': -0.025345318182674825,\n", + " 'Spearman': 0.5821931606293557,\n", + " 'Kendall': 0.4613231373737725,\n", + " 'Krippendorff': -0.006650254469360073,\n", + " 'Invalid': 267,\n", + " 'TA-2.0': 0.48770491803278687,\n", + " 'TA-4.0': 0.5614754098360656,\n", + " 'Acc': 0.0860655737704918,\n", + " 'MAE': 1.847677595628415,\n", + " 'MSE': 4.5700136612021875,\n", + " 'CA-0': 0.05263157894736842,\n", + " 'CA-1': 0.041666666666666664,\n", + " 'CA-2': 0.14,\n", + " 'CA-3': 0.06666666666666667,\n", + " 'CA-4': 0.8,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.07264884873580525,\n", + " 'Micro-F1': 0.0860655737704918,\n", + " 'F1-0_vs_rest': 0.1,\n", + " 'F1-1_vs_rest': 0.057971014492753624,\n", + " 'F1-2_vs_rest': 0.12727272727272726,\n", + " 'F1-3_vs_rest': 0.07792207792207792,\n", + " 'F1-4_vs_rest': 0.07272727272727272,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7680412371134021,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6234309623430963,\n", + " 'F1-1.5': 0.6206896551724138,\n", + " 'Recall-1.5': 0.9801980198019802,\n", + " 'Precision-1.5': 0.4541284403669725,\n", + " 'F1-2.5': 0.4688995215311005,\n", + " 'Recall-2.5': 0.9607843137254902,\n", + " 'Precision-2.5': 0.310126582278481,\n", + " 'F1-3.5': 0.09090909090909091,\n", + " 'Recall-3.5': 1.0,\n", + " 'Precision-3.5': 0.047619047619047616,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8642741315063062},\n", + " 'CM': {'0': {'-1': 91, '0': 5, '1': 17, '2': 41, '3': 13, '4': 17, '5': 2},\n", + " '1': {'-1': 52, '0': 0, '1': 2, '2': 10, '3': 9, '4': 26, '5': 1},\n", + " '2': {'-1': 56, '0': 0, '1': 2, '2': 7, '3': 7, '4': 26, '5': 8},\n", + " '3': {'-1': 59, '0': 0, '1': 0, '2': 2, '3': 3, '4': 31, '5': 9},\n", + " '4': {'-1': 8, '0': 0, '1': 0, '2': 0, '3': 0, '4': 4, '5': 1},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.10862978776161722,\n", + " 'Cohen': 0.15055160904432086,\n", + " 'Spearman': 0.695009138889551,\n", + " 'Kendall': 0.591076332649804,\n", + " 'Krippendorff': 0.5861321111679656,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.7485265225933202,\n", + " 'TA-4.0': 0.9666011787819253,\n", + " 'Acc': 0.33398821218074654,\n", + " 'MAE': 0.7897838899803533,\n", + " 'MSE': 1.0106963545077492,\n", + " 'CA-0': 0.22043010752688172,\n", + " 'CA-1': 0.3,\n", + " 'CA-2': 0.6132075471698113,\n", + " 'CA-3': 0.3333333333333333,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22524278966178923,\n", + " 'Micro-F1': 0.33398821218074654,\n", + " 'F1-0_vs_rest': 0.35807860262008734,\n", + " 'F1-1_vs_rest': 0.23622047244094488,\n", + " 'F1-2_vs_rest': 0.39156626506024095,\n", + " 'F1-3_vs_rest': 0.3655913978494624,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8136882129277566,\n", + " 'Recall-0.5': 0.9938080495356038,\n", + " 'Precision-0.5': 0.6888412017167382,\n", + " 'F1-1.5': 0.7850467289719626,\n", + " 'Recall-1.5': 0.9417040358744395,\n", + " 'Precision-1.5': 0.6730769230769231,\n", + " 'F1-2.5': 0.43349753694581283,\n", + " 'Recall-2.5': 0.37606837606837606,\n", + " 'Precision-2.5': 0.5116279069767442,\n", + " 'F1-3.5': 0.0,\n", + " 'Recall-3.5': 0.0,\n", + " 'Precision-3.5': 0.0,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9056589929776058},\n", + " 'CM': {'0': {'-1': 0, '0': 41, '1': 112, '2': 31, '3': 2, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 30, '2': 59, '3': 10, '4': 0, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 10, '2': 65, '3': 29, '4': 1, '5': 0},\n", + " '3': {'-1': 2, '0': 0, '1': 2, '2': 65, '3': 34, '4': 1, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 7, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.11971684016328439,\n", + " 'Cohen': 0.14617689131197542,\n", + " 'Spearman': 0.6717546685015094,\n", + " 'Kendall': 0.556389834304377,\n", + " 'Krippendorff': 0.5347900121551901,\n", + " 'Invalid': 36,\n", + " 'TA-2.0': 0.7157894736842105,\n", + " 'TA-4.0': 0.7663157894736842,\n", + " 'Acc': 0.29894736842105263,\n", + " 'MAE': 1.0140350877192985,\n", + " 'MSE': 1.8355555555555556,\n", + " 'CA-0': 0.3710691823899371,\n", + " 'CA-1': 0.1368421052631579,\n", + " 'CA-2': 0.32038834951456313,\n", + " 'CA-3': 0.27184466019417475,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.26828996963942003,\n", + " 'Micro-F1': 0.29894736842105263,\n", + " 'F1-0_vs_rest': 0.5175438596491229,\n", + " 'F1-1_vs_rest': 0.15853658536585366,\n", + " 'F1-2_vs_rest': 0.28695652173913044,\n", + " 'F1-3_vs_rest': 0.3076923076923077,\n", + " 'F1-4_vs_rest': 0.11678832116788321,\n", + " 'F1-5_vs_rest': 0.2222222222222222,\n", + " 'F1-0.5': 0.8476454293628809,\n", + " 'Recall-0.5': 0.9683544303797469,\n", + " 'Precision-0.5': 0.7536945812807881,\n", + " 'F1-1.5': 0.7491039426523297,\n", + " 'Recall-1.5': 0.9457013574660633,\n", + " 'Precision-1.5': 0.6201780415430267,\n", + " 'F1-2.5': 0.6463414634146342,\n", + " 'Recall-2.5': 0.8983050847457628,\n", + " 'Precision-2.5': 0.5047619047619047,\n", + " 'F1-3.5': 0.136986301369863,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.07633587786259542,\n", + " 'F1-4.5': 0.2222222222222222,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.14285714285714285,\n", + " 'NDCG@all': 0.9116342301934282},\n", + " 'CM': {'0': {'-1': 27, '0': 59, '1': 45, '2': 37, '3': 8, '4': 10, '5': 0},\n", + " '1': {'-1': 5, '0': 9, '1': 13, '2': 46, '3': 14, '4': 12, '5': 1},\n", + " '2': {'-1': 3, '0': 1, '1': 10, '2': 33, '3': 25, '4': 31, '5': 3},\n", + " '3': {'-1': 1, '0': 0, '1': 1, '2': 10, '3': 28, '4': 62, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 4, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.07636505610611957,\n", + " 'Cohen': -0.01496261618526007,\n", + " 'Spearman': 0.6249029503566623,\n", + " 'Kendall': 0.522417130802557,\n", + " 'Krippendorff': 0.2529120300555532,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5636007827788649,\n", + " 'TA-4.0': 0.7475538160469667,\n", + " 'Acc': 0.14481409001956946,\n", + " 'MAE': 1.3757338551859097,\n", + " 'MSE': 2.7177647314633617,\n", + " 'CA-0': 0.04838709677419355,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.16981132075471697,\n", + " 'CA-3': 0.27884615384615385,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.11700931332082935,\n", + " 'Micro-F1': 0.14481409001956946,\n", + " 'F1-0_vs_rest': 0.09230769230769231,\n", + " 'F1-1_vs_rest': 0.0782122905027933,\n", + " 'F1-2_vs_rest': 0.14007782101167315,\n", + " 'F1-3_vs_rest': 0.2457627118644068,\n", + " 'F1-4_vs_rest': 0.1456953642384106,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7859733978234583,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.647410358565737,\n", + " 'F1-1.5': 0.6728395061728395,\n", + " 'Recall-1.5': 0.9688888888888889,\n", + " 'Precision-1.5': 0.5153664302600472,\n", + " 'F1-2.5': 0.5319693094629157,\n", + " 'Recall-2.5': 0.8739495798319328,\n", + " 'Precision-2.5': 0.38235294117647056,\n", + " 'F1-3.5': 0.16774193548387098,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.09285714285714286,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8872473127173544},\n", + " 'CM': {'0': {'-1': 0, '0': 9, '1': 65, '2': 77, '3': 26, '4': 9, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 41, '3': 33, '4': 18, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 7, '2': 18, '3': 42, '4': 38, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 15, '3': 29, '4': 60, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'ca': {'phi-4': {'metrics': {'Fleiss': 0.17831361331107629,\n", + " 'Cohen': 0.19070611866501852,\n", + " 'Spearman': 0.6180017329391815,\n", + " 'Kendall': 0.5067990031483525,\n", + " 'Krippendorff': 0.5194355876430539,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7142857142857143,\n", + " 'TA-4.0': 0.8649706457925636,\n", + " 'Acc': 0.35812133072407043,\n", + " 'MAE': 0.9435746901500327,\n", + " 'MSE': 1.7611980865405525,\n", + " 'CA-0': 0.41935483870967744,\n", + " 'CA-1': 0.21,\n", + " 'CA-2': 0.27358490566037735,\n", + " 'CA-3': 0.49038461538461536,\n", + " 'CA-4': 0.3076923076923077,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.26092045960680554,\n", + " 'Micro-F1': 0.35812133072407043,\n", + " 'F1-0_vs_rest': 0.5591397849462365,\n", + " 'F1-1_vs_rest': 0.20689655172413793,\n", + " 'F1-2_vs_rest': 0.2761904761904762,\n", + " 'F1-3_vs_rest': 0.4180327868852459,\n", + " 'F1-4_vs_rest': 0.10526315789473684,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8344549125168237,\n", + " 'Recall-0.5': 0.9538461538461539,\n", + " 'Precision-0.5': 0.7416267942583732,\n", + " 'F1-1.5': 0.7481481481481481,\n", + " 'Recall-1.5': 0.8977777777777778,\n", + " 'Precision-1.5': 0.6412698412698413,\n", + " 'F1-2.5': 0.5696969696969697,\n", + " 'Recall-2.5': 0.7899159663865546,\n", + " 'Precision-2.5': 0.44549763033175355,\n", + " 'F1-3.5': 0.13953488372093023,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.08450704225352113,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8712700052100553},\n", + " 'CM': {'0': {'-1': 0, '0': 78, '1': 63, '2': 21, '3': 19, '4': 4, '5': 1},\n", + " '1': {'-1': 0, '0': 11, '1': 21, '2': 33, '3': 22, '4': 10, '5': 3},\n", + " '2': {'-1': 0, '0': 2, '1': 17, '2': 29, '3': 41, '4': 15, '5': 2},\n", + " '3': {'-1': 0, '0': 2, '1': 2, '2': 19, '3': 51, '4': 28, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 7, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.0750993630352153,\n", + " 'Cohen': 0.11628138370203311,\n", + " 'Spearman': 0.5997658490681664,\n", + " 'Kendall': 0.5062005395263326,\n", + " 'Krippendorff': 0.47174575296634147,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6947162426614482,\n", + " 'TA-4.0': 0.9080234833659491,\n", + " 'Acc': 0.2857142857142857,\n", + " 'MAE': 0.9566210045662099,\n", + " 'MSE': 1.5290824092193955,\n", + " 'CA-0': 0.10215053763440861,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.3490566037735849,\n", + " 'CA-3': 0.4807692307692308,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22435865342074449,\n", + " 'Micro-F1': 0.2857142857142857,\n", + " 'F1-0_vs_rest': 0.18536585365853658,\n", + " 'F1-1_vs_rest': 0.24647887323943662,\n", + " 'F1-2_vs_rest': 0.29838709677419356,\n", + " 'F1-3_vs_rest': 0.44642857142857145,\n", + " 'F1-4_vs_rest': 0.1694915254237288,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.795593635250918,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6605691056910569,\n", + " 'F1-1.5': 0.7279549718574109,\n", + " 'Recall-1.5': 0.8622222222222222,\n", + " 'Precision-1.5': 0.6298701298701299,\n", + " 'F1-2.5': 0.5684210526315789,\n", + " 'Recall-2.5': 0.680672268907563,\n", + " 'Precision-2.5': 0.4879518072289157,\n", + " 'F1-3.5': 0.22950819672131148,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.15217391304347827,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8965862162115622},\n", + " 'CM': {'0': {'-1': 0, '0': 19, '1': 118, '2': 35, '3': 10, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 35, '2': 42, '3': 15, '4': 8, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 21, '2': 37, '3': 39, '4': 9, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 10, '2': 26, '3': 50, '4': 18, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 6, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.19319984163357365,\n", + " 'Cohen': 0.21312127608786202,\n", + " 'Spearman': 0.6974814935461331,\n", + " 'Kendall': 0.580379743012352,\n", + " 'Krippendorff': 0.6014011529183101,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7729941291585127,\n", + " 'TA-4.0': 0.7397260273972602,\n", + " 'Acc': 0.3561643835616438,\n", + " 'MAE': 0.9849967384213962,\n", + " 'MSE': 1.9995651228527942,\n", + " 'CA-0': 0.4731182795698925,\n", + " 'CA-1': 0.39,\n", + " 'CA-2': 0.27358490566037735,\n", + " 'CA-3': 0.17307692307692307,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.2832578382292304,\n", + " 'Micro-F1': 0.3561643835616438,\n", + " 'F1-0_vs_rest': 0.6263345195729537,\n", + " 'F1-1_vs_rest': 0.3391304347826087,\n", + " 'F1-2_vs_rest': 0.30526315789473685,\n", + " 'F1-3_vs_rest': 0.21686746987951808,\n", + " 'F1-4_vs_rest': 0.10084033613445378,\n", + " 'F1-5_vs_rest': 0.1111111111111111,\n", + " 'F1-0.5': 0.8582995951417004,\n", + " 'Recall-0.5': 0.9784615384615385,\n", + " 'Precision-0.5': 0.7644230769230769,\n", + " 'F1-1.5': 0.7945205479452054,\n", + " 'Recall-1.5': 0.9022222222222223,\n", + " 'Precision-1.5': 0.7097902097902098,\n", + " 'F1-2.5': 0.6105919003115264,\n", + " 'Recall-2.5': 0.8235294117647058,\n", + " 'Precision-2.5': 0.48514851485148514,\n", + " 'F1-3.5': 0.14193548387096774,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.07857142857142857,\n", + " 'F1-4.5': 0.1111111111111111,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.058823529411764705,\n", + " 'NDCG@all': 0.8966264701720964},\n", + " 'CM': {'0': {'-1': 0, '0': 88, '1': 70, '2': 14, '3': 5, '4': 5, '5': 4},\n", + " '1': {'-1': 0, '0': 6, '1': 39, '2': 24, '3': 9, '4': 15, '5': 7},\n", + " '2': {'-1': 0, '0': 1, '1': 17, '2': 29, '3': 27, '4': 24, '5': 8},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 16, '3': 18, '4': 56, '5': 10},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 3, '4': 6, '5': 3},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.05162086291057979,\n", + " 'Cohen': 0.11251768845374222,\n", + " 'Spearman': 0.6406908495829057,\n", + " 'Kendall': 0.5444107890383387,\n", + " 'Krippendorff': 0.5382630509131168,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7529411764705882,\n", + " 'TA-4.0': 0.9333333333333333,\n", + " 'Acc': 0.28627450980392155,\n", + " 'MAE': 0.8666666666666666,\n", + " 'MSE': 1.192592592592592,\n", + " 'CA-0': 0.053763440860215055,\n", + " 'CA-1': 0.48,\n", + " 'CA-2': 0.39622641509433965,\n", + " 'CA-3': 0.4368932038834951,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.20572658286122855,\n", + " 'Micro-F1': 0.28627450980392155,\n", + " 'F1-0_vs_rest': 0.10204081632653061,\n", + " 'F1-1_vs_rest': 0.27507163323782235,\n", + " 'F1-2_vs_rest': 0.3605150214592275,\n", + " 'F1-3_vs_rest': 0.4411764705882353,\n", + " 'F1-4_vs_rest': 0.05555555555555555,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7864077669902912,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.648,\n", + " 'F1-1.5': 0.7536842105263157,\n", + " 'Recall-1.5': 0.7991071428571429,\n", + " 'Precision-1.5': 0.7131474103585658,\n", + " 'F1-2.5': 0.5619834710743802,\n", + " 'Recall-2.5': 0.576271186440678,\n", + " 'Precision-2.5': 0.5483870967741935,\n", + " 'F1-3.5': 0.10526315789473684,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.08695652173913043,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9002609274981733},\n", + " 'CM': {'0': {'-1': 0, '0': 10, '1': 156, '2': 14, '3': 4, '4': 2, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 48, '2': 35, '3': 14, '4': 3, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 31, '2': 42, '3': 29, '4': 4, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 14, '2': 32, '3': 45, '4': 12, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 8, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.09899026106922366,\n", + " 'Cohen': 0.1254114239500459,\n", + " 'Spearman': 0.6343876230062511,\n", + " 'Kendall': 0.5297263255286792,\n", + " 'Krippendorff': 0.5157360156368811,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7162426614481409,\n", + " 'TA-4.0': 0.7984344422700587,\n", + " 'Acc': 0.2876712328767123,\n", + " 'MAE': 1.0202217873450752,\n", + " 'MSE': 1.8443139813002831,\n", + " 'CA-0': 0.3064516129032258,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.18867924528301888,\n", + " 'CA-3': 0.25961538461538464,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2230007386483753,\n", + " 'Micro-F1': 0.2876712328767123,\n", + " 'F1-0_vs_rest': 0.44881889763779526,\n", + " 'F1-1_vs_rest': 0.2845528455284553,\n", + " 'F1-2_vs_rest': 0.2094240837696335,\n", + " 'F1-3_vs_rest': 0.25961538461538464,\n", + " 'F1-4_vs_rest': 0.13559322033898305,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8177083333333334,\n", + " 'Recall-0.5': 0.9661538461538461,\n", + " 'Precision-0.5': 0.708803611738149,\n", + " 'F1-1.5': 0.7394636015325671,\n", + " 'Recall-1.5': 0.8577777777777778,\n", + " 'Precision-1.5': 0.6498316498316499,\n", + " 'F1-2.5': 0.5861027190332326,\n", + " 'Recall-2.5': 0.8151260504201681,\n", + " 'Precision-2.5': 0.45754716981132076,\n", + " 'F1-3.5': 0.16260162601626016,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.09259259259259259,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8824920402876577},\n", + " 'CM': {'0': {'-1': 0, '0': 57, '1': 85, '2': 24, '3': 14, '4': 5, '5': 1},\n", + " '1': {'-1': 0, '0': 5, '1': 35, '2': 31, '3': 17, '4': 10, '5': 2},\n", + " '2': {'-1': 0, '0': 4, '1': 16, '2': 20, '3': 42, '4': 24, '5': 0},\n", + " '3': {'-1': 0, '0': 2, '1': 10, '2': 9, '3': 27, '4': 56, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 4, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.11072564741107548,\n", + " 'Cohen': -0.027634978557920187,\n", + " 'Spearman': 0.5716624441111349,\n", + " 'Kendall': 0.4864398684911518,\n", + " 'Krippendorff': 0.17731035772532522,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5557729941291585,\n", + " 'TA-4.0': 0.6457925636007827,\n", + " 'Acc': 0.11350293542074363,\n", + " 'MAE': 1.516634050880626,\n", + " 'MSE': 3.1865622961513376,\n", + " 'CA-0': 0.005376344086021506,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.2169811320754717,\n", + " 'CA-3': 0.16346153846153846,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09107473464631959,\n", + " 'Micro-F1': 0.11350293542074363,\n", + " 'F1-0_vs_rest': 0.0106951871657754,\n", + " 'F1-1_vs_rest': 0.07407407407407407,\n", + " 'F1-2_vs_rest': 0.18181818181818182,\n", + " 'F1-3_vs_rest': 0.18085106382978725,\n", + " 'F1-4_vs_rest': 0.09900990099009901,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7784431137724551,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6372549019607843,\n", + " 'F1-1.5': 0.6687306501547987,\n", + " 'Recall-1.5': 0.96,\n", + " 'Precision-1.5': 0.5130641330166271,\n", + " 'F1-2.5': 0.5089058524173028,\n", + " 'Recall-2.5': 0.8403361344537815,\n", + " 'Precision-2.5': 0.36496350364963503,\n", + " 'F1-3.5': 0.11707317073170732,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.06315789473684211,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8749073875948438},\n", + " 'CM': {'0': {'-1': 0, '0': 1, '1': 73, '2': 77, '3': 16, '4': 19, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 33, '3': 26, '4': 33, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 4, '2': 23, '3': 25, '4': 54, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 11, '3': 17, '4': 71, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 0, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.10630326554721116,\n", + " 'Cohen': -0.04034152224973009,\n", + " 'Spearman': 0.694205798877411,\n", + " 'Kendall': 0.5914073507053571,\n", + " 'Krippendorff': 0.28003581901245245,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6105675146771037,\n", + " 'TA-4.0': 0.7534246575342466,\n", + " 'Acc': 0.12133072407045009,\n", + " 'MAE': 1.371167645140248,\n", + " 'MSE': 2.6626440530550126,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.10377358490566038,\n", + " 'CA-3': 0.3269230769230769,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.0931241427397906,\n", + " 'Micro-F1': 0.12133072407045009,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.0784313725490196,\n", + " 'F1-2_vs_rest': 0.10628019323671498,\n", + " 'F1-3_vs_rest': 0.24727272727272728,\n", + " 'F1-4_vs_rest': 0.1267605633802817,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.7056962025316456,\n", + " 'Recall-1.5': 0.9911111111111112,\n", + " 'Precision-1.5': 0.547911547911548,\n", + " 'F1-2.5': 0.5364705882352941,\n", + " 'Recall-2.5': 0.957983193277311,\n", + " 'Precision-2.5': 0.37254901960784315,\n", + " 'F1-3.5': 0.14666666666666667,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08148148148148149,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8902629739291614},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 94, '2': 58, '3': 27, '4': 7, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 28, '3': 43, '4': 18, '5': 3},\n", + " '2': {'-1': 0, '0': 0, '1': 1, '2': 11, '3': 63, '4': 29, '5': 2},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 4, '3': 34, '4': 64, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.17397608099336748,\n", + " 'Cohen': 0.19981208894456615,\n", + " 'Spearman': 0.6932757298897455,\n", + " 'Kendall': 0.5914717883700847,\n", + " 'Krippendorff': 0.5930899264677099,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7338551859099804,\n", + " 'TA-4.0': 0.9158512720156555,\n", + " 'Acc': 0.3639921722113503,\n", + " 'MAE': 0.806262230919765,\n", + " 'MSE': 1.1998260491411175,\n", + " 'CA-0': 0.24731182795698925,\n", + " 'CA-1': 0.3,\n", + " 'CA-2': 0.49056603773584906,\n", + " 'CA-3': 0.5384615384615384,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2702389053218473,\n", + " 'Micro-F1': 0.3639921722113503,\n", + " 'F1-0_vs_rest': 0.3948497854077253,\n", + " 'F1-1_vs_rest': 0.23076923076923078,\n", + " 'F1-2_vs_rest': 0.3969465648854962,\n", + " 'F1-3_vs_rest': 0.5137614678899083,\n", + " 'F1-4_vs_rest': 0.0851063829787234,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8212927756653993,\n", + " 'Recall-0.5': 0.9969230769230769,\n", + " 'Precision-0.5': 0.6982758620689655,\n", + " 'F1-1.5': 0.7637051039697542,\n", + " 'Recall-1.5': 0.8977777777777778,\n", + " 'Precision-1.5': 0.6644736842105263,\n", + " 'F1-2.5': 0.6367041198501873,\n", + " 'Recall-2.5': 0.7142857142857143,\n", + " 'Precision-2.5': 0.5743243243243243,\n", + " 'F1-3.5': 0.12244897959183673,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.08823529411764706,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9017011657681085},\n", + " 'CM': {'0': {'-1': 0, '0': 46, '1': 107, '2': 27, '3': 2, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 30, '2': 48, '3': 15, '4': 6, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 18, '2': 52, '3': 33, '4': 3, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 25, '3': 56, '4': 18, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 7, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.03935165845099843,\n", + " 'Cohen': 0.017687934301958474,\n", + " 'Spearman': 0.5136596951085984,\n", + " 'Kendall': 0.3893278868975052,\n", + " 'Krippendorff': 0.1436247650595749,\n", + " 'Invalid': 200,\n", + " 'TA-2.0': 0.6109324758842444,\n", + " 'TA-4.0': 0.6752411575562701,\n", + " 'Acc': 0.1639871382636656,\n", + " 'MAE': 1.4646302250803853,\n", + " 'MSE': 3.298410146480886,\n", + " 'CA-0': 0.1111111111111111,\n", + " 'CA-1': 0.12307692307692308,\n", + " 'CA-2': 0.14285714285714285,\n", + " 'CA-3': 0.2714285714285714,\n", + " 'CA-4': 0.5,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.13516406766369643,\n", + " 'Micro-F1': 0.1639871382636656,\n", + " 'F1-0_vs_rest': 0.2,\n", + " 'F1-1_vs_rest': 0.15384615384615385,\n", + " 'F1-2_vs_rest': 0.14705882352941177,\n", + " 'F1-3_vs_rest': 0.2550335570469799,\n", + " 'F1-4_vs_rest': 0.05504587155963303,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.828125,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.7066666666666667,\n", + " 'F1-1.5': 0.7156862745098039,\n", + " 'Recall-1.5': 0.9931972789115646,\n", + " 'Precision-1.5': 0.5593869731800766,\n", + " 'F1-2.5': 0.5,\n", + " 'Recall-2.5': 0.8831168831168831,\n", + " 'Precision-2.5': 0.3487179487179487,\n", + " 'F1-3.5': 0.04878048780487805,\n", + " 'Recall-3.5': 0.42857142857142855,\n", + " 'Precision-3.5': 0.02586206896551724,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8491022203952981},\n", + " 'CM': {'0': {'-1': 87, '0': 11, '1': 30, '2': 34, '3': 11, '4': 11, '5': 2},\n", + " '1': {'-1': 35, '0': 0, '1': 8, '2': 13, '3': 18, '4': 23, '5': 3},\n", + " '2': {'-1': 36, '0': 0, '1': 1, '2': 10, '3': 27, '4': 27, '5': 5},\n", + " '3': {'-1': 34, '0': 0, '1': 0, '2': 9, '3': 19, '4': 39, '5': 3},\n", + " '4': {'-1': 7, '0': 0, '1': 0, '2': 0, '3': 3, '4': 3, '5': 0},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 1, '4': 0, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.14000362802985208,\n", + " 'Cohen': 0.17544865293884215,\n", + " 'Spearman': 0.6937024237665929,\n", + " 'Kendall': 0.5922721148271676,\n", + " 'Krippendorff': 0.5916766343963406,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7431372549019608,\n", + " 'TA-4.0': 0.9549019607843138,\n", + " 'Acc': 0.35294117647058826,\n", + " 'MAE': 0.7830065359477122,\n", + " 'MSE': 1.0518518518518516,\n", + " 'CA-0': 0.24731182795698925,\n", + " 'CA-1': 0.26,\n", + " 'CA-2': 0.6415094339622641,\n", + " 'CA-3': 0.3883495145631068,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2402508453816865,\n", + " 'Micro-F1': 0.35294117647058826,\n", + " 'F1-0_vs_rest': 0.39316239316239315,\n", + " 'F1-1_vs_rest': 0.208,\n", + " 'F1-2_vs_rest': 0.4236760124610592,\n", + " 'F1-3_vs_rest': 0.4166666666666667,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8193384223918575,\n", + " 'Recall-0.5': 0.9938271604938271,\n", + " 'Precision-0.5': 0.696969696969697,\n", + " 'F1-1.5': 0.7798507462686567,\n", + " 'Recall-1.5': 0.9330357142857143,\n", + " 'Precision-1.5': 0.6698717948717948,\n", + " 'F1-2.5': 0.4930232558139535,\n", + " 'Recall-2.5': 0.4491525423728814,\n", + " 'Precision-2.5': 0.5463917525773195,\n", + " 'F1-3.5': 0.0,\n", + " 'Recall-3.5': 0.0,\n", + " 'Precision-3.5': 0.0,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8921614552892098},\n", + " 'CM': {'0': {'-1': 0, '0': 46, '1': 110, '2': 26, '3': 3, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 26, '2': 59, '3': 12, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 11, '2': 68, '3': 24, '4': 2, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 3, '2': 57, '3': 40, '4': 3, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 8, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.1683538389658931,\n", + " 'Cohen': 0.18790075790963434,\n", + " 'Spearman': 0.6423645566006883,\n", + " 'Kendall': 0.5307952992673095,\n", + " 'Krippendorff': 0.5524647176829218,\n", + " 'Invalid': 66,\n", + " 'TA-2.0': 0.7280898876404495,\n", + " 'TA-4.0': 0.797752808988764,\n", + " 'Acc': 0.3393258426966292,\n", + " 'MAE': 0.9588014981273408,\n", + " 'MSE': 1.7546816479400755,\n", + " 'CA-0': 0.38926174496644295,\n", + " 'CA-1': 0.10975609756097561,\n", + " 'CA-2': 0.44329896907216493,\n", + " 'CA-3': 0.30392156862745096,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.289310681638192,\n", + " 'Micro-F1': 0.3393258426966292,\n", + " 'F1-0_vs_rest': 0.5296803652968036,\n", + " 'F1-1_vs_rest': 0.11688311688311688,\n", + " 'F1-2_vs_rest': 0.3944954128440367,\n", + " 'F1-3_vs_rest': 0.3522727272727273,\n", + " 'F1-4_vs_rest': 0.16071428571428573,\n", + " 'F1-5_vs_rest': 0.18181818181818182,\n", + " 'F1-0.5': 0.8464977645305514,\n", + " 'Recall-0.5': 0.9594594594594594,\n", + " 'Precision-0.5': 0.7573333333333333,\n", + " 'F1-1.5': 0.7659574468085106,\n", + " 'Recall-1.5': 0.9252336448598131,\n", + " 'Precision-1.5': 0.6534653465346535,\n", + " 'F1-2.5': 0.6287625418060201,\n", + " 'Recall-2.5': 0.8034188034188035,\n", + " 'Precision-2.5': 0.5164835164835165,\n", + " 'F1-3.5': 0.17886178861788618,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.10185185185185185,\n", + " 'F1-4.5': 0.18181818181818182,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.1111111111111111,\n", + " 'NDCG@all': 0.9151194853450632},\n", + " 'CM': {'0': {'-1': 37, '0': 58, '1': 51, '2': 23, '3': 10, '4': 7, '5': 0},\n", + " '1': {'-1': 18, '0': 8, '1': 9, '2': 38, '3': 14, '4': 12, '5': 1},\n", + " '2': {'-1': 9, '0': 4, '1': 6, '2': 43, '3': 19, '4': 24, '5': 1},\n", + " '3': {'-1': 2, '0': 0, '1': 6, '2': 13, '3': 31, '4': 46, '5': 6},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 0, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.07746607994132747,\n", + " 'Cohen': -0.017028893099176434,\n", + " 'Spearman': 0.6286548107407953,\n", + " 'Kendall': 0.5306363617051746,\n", + " 'Krippendorff': 0.26014855691345595,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5733855185909981,\n", + " 'TA-4.0': 0.7514677103718199,\n", + " 'Acc': 0.14481409001956946,\n", + " 'MAE': 1.3587736464448792,\n", + " 'MSE': 2.66688410524027,\n", + " 'CA-0': 0.043010752688172046,\n", + " 'CA-1': 0.06,\n", + " 'CA-2': 0.1792452830188679,\n", + " 'CA-3': 0.3076923076923077,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.11399243010591316,\n", + " 'Micro-F1': 0.14481409001956946,\n", + " 'F1-0_vs_rest': 0.08247422680412371,\n", + " 'F1-1_vs_rest': 0.06557377049180328,\n", + " 'F1-2_vs_rest': 0.15139442231075698,\n", + " 'F1-3_vs_rest': 0.2612244897959184,\n", + " 'F1-4_vs_rest': 0.1232876712328767,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.785024154589372,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6461232604373758,\n", + " 'F1-1.5': 0.6790697674418604,\n", + " 'Recall-1.5': 0.9733333333333334,\n", + " 'Precision-1.5': 0.5214285714285715,\n", + " 'F1-2.5': 0.5380710659898477,\n", + " 'Recall-2.5': 0.8907563025210085,\n", + " 'Precision-2.5': 0.38545454545454544,\n", + " 'F1-3.5': 0.1476510067114094,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08208955223880597,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8872132110367906},\n", + " 'CM': {'0': {'-1': 0, '0': 8, '1': 71, '2': 72, '3': 24, '4': 11, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 6, '2': 42, '3': 36, '4': 15, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 19, '3': 45, '4': 37, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 12, '3': 32, '4': 59, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'sk': {'phi-4': {'metrics': {'Fleiss': 0.17264271653543306,\n", + " 'Cohen': 0.18670330361418974,\n", + " 'Spearman': 0.6397282504729449,\n", + " 'Kendall': 0.5197100254843949,\n", + " 'Krippendorff': 0.5190247963780557,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7064579256360078,\n", + " 'TA-4.0': 0.863013698630137,\n", + " 'Acc': 0.3561643835616438,\n", + " 'MAE': 0.9562948467058057,\n", + " 'MSE': 1.7440747988693197,\n", + " 'CA-0': 0.44086021505376344,\n", + " 'CA-1': 0.17,\n", + " 'CA-2': 0.22641509433962265,\n", + " 'CA-3': 0.5096153846153846,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.3210747970945087,\n", + " 'Micro-F1': 0.3561643835616438,\n", + " 'F1-0_vs_rest': 0.5815602836879432,\n", + " 'F1-1_vs_rest': 0.18681318681318682,\n", + " 'F1-2_vs_rest': 0.22535211267605634,\n", + " 'F1-3_vs_rest': 0.4092664092664093,\n", + " 'F1-4_vs_rest': 0.12345679012345678,\n", + " 'F1-5_vs_rest': 0.4,\n", + " 'F1-0.5': 0.8405405405405405,\n", + " 'Recall-0.5': 0.9569230769230769,\n", + " 'Precision-0.5': 0.7493975903614458,\n", + " 'F1-1.5': 0.7491039426523297,\n", + " 'Recall-1.5': 0.9288888888888889,\n", + " 'Precision-1.5': 0.6276276276276276,\n", + " 'F1-2.5': 0.5507246376811594,\n", + " 'Recall-2.5': 0.7983193277310925,\n", + " 'Precision-2.5': 0.42035398230088494,\n", + " 'F1-3.5': 0.16279069767441862,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.09859154929577464,\n", + " 'F1-4.5': 0.4,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.3333333333333333,\n", + " 'NDCG@all': 0.8951987826784893},\n", + " 'CM': {'0': {'-1': 0, '0': 82, '1': 51, '2': 33, '3': 16, '4': 3, '5': 1},\n", + " '1': {'-1': 0, '0': 12, '1': 17, '2': 28, '3': 30, '4': 13, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 12, '2': 24, '3': 50, '4': 17, '5': 1},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 20, '3': 53, '4': 29, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 6, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.07412981139986374,\n", + " 'Cohen': 0.1107121283307605,\n", + " 'Spearman': 0.6167839309809399,\n", + " 'Kendall': 0.5222468702918995,\n", + " 'Krippendorff': 0.5202622396467917,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7142857142857143,\n", + " 'TA-4.0': 0.9256360078277887,\n", + " 'Acc': 0.2896281800391389,\n", + " 'MAE': 0.9018264840182649,\n", + " 'MSE': 1.3575233746466624,\n", + " 'CA-0': 0.16129032258064516,\n", + " 'CA-1': 0.35,\n", + " 'CA-2': 0.3113207547169811,\n", + " 'CA-3': 0.46153846153846156,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.21724404386460908,\n", + " 'Micro-F1': 0.2896281800391389,\n", + " 'F1-0_vs_rest': 0.273972602739726,\n", + " 'F1-1_vs_rest': 0.2413793103448276,\n", + " 'F1-2_vs_rest': 0.27615062761506276,\n", + " 'F1-3_vs_rest': 0.42105263157894735,\n", + " 'F1-4_vs_rest': 0.09090909090909091,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8019925280199253,\n", + " 'Recall-0.5': 0.9907692307692307,\n", + " 'Precision-0.5': 0.6736401673640168,\n", + " 'F1-1.5': 0.7368421052631579,\n", + " 'Recall-1.5': 0.84,\n", + " 'Precision-1.5': 0.65625,\n", + " 'F1-2.5': 0.5474452554744526,\n", + " 'Recall-2.5': 0.6302521008403361,\n", + " 'Precision-2.5': 0.4838709677419355,\n", + " 'F1-3.5': 0.17391304347826086,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.12903225806451613,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8932327053771766},\n", + " 'CM': {'0': {'-1': 0, '0': 30, '1': 120, '2': 26, '3': 6, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 35, '2': 41, '3': 15, '4': 7, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 24, '2': 33, '3': 44, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 11, '2': 33, '3': 48, '4': 12, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 11, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.2181952411250722,\n", + " 'Cohen': 0.23492449772091017,\n", + " 'Spearman': 0.6684337833634436,\n", + " 'Kendall': 0.5510740498743465,\n", + " 'Krippendorff': 0.6103718596092135,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7749510763209393,\n", + " 'TA-4.0': 0.7847358121330724,\n", + " 'Acc': 0.3835616438356164,\n", + " 'MAE': 0.9178082191780821,\n", + " 'MSE': 1.7871276364427051,\n", + " 'CA-0': 0.489247311827957,\n", + " 'CA-1': 0.42,\n", + " 'CA-2': 0.330188679245283,\n", + " 'CA-3': 0.19230769230769232,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.2989483724314266,\n", + " 'Micro-F1': 0.3835616438356164,\n", + " 'F1-0_vs_rest': 0.6232876712328768,\n", + " 'F1-1_vs_rest': 0.34146341463414637,\n", + " 'F1-2_vs_rest': 0.3626943005181347,\n", + " 'F1-3_vs_rest': 0.2484472049689441,\n", + " 'F1-4_vs_rest': 0.1308411214953271,\n", + " 'F1-5_vs_rest': 0.08695652173913043,\n", + " 'F1-0.5': 0.8493150684931506,\n", + " 'Recall-0.5': 0.9538461538461539,\n", + " 'Precision-0.5': 0.7654320987654321,\n", + " 'F1-1.5': 0.7851239669421488,\n", + " 'Recall-1.5': 0.8444444444444444,\n", + " 'Precision-1.5': 0.7335907335907336,\n", + " 'F1-2.5': 0.5979381443298969,\n", + " 'Recall-2.5': 0.7310924369747899,\n", + " 'Precision-2.5': 0.5058139534883721,\n", + " 'F1-3.5': 0.15384615384615385,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.08695652173913043,\n", + " 'F1-4.5': 0.08695652173913043,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.047619047619047616,\n", + " 'NDCG@all': 0.8860287784968621},\n", + " 'CM': {'0': {'-1': 0, '0': 91, '1': 72, '2': 10, '3': 4, '4': 6, '5': 3},\n", + " '1': {'-1': 0, '0': 12, '1': 42, '2': 20, '3': 10, '4': 10, '5': 6},\n", + " '2': {'-1': 0, '0': 3, '1': 22, '2': 35, '3': 21, '4': 20, '5': 5},\n", + " '3': {'-1': 0, '0': 0, '1': 10, '2': 19, '3': 20, '4': 50, '5': 5},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 2, '4': 7, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.048342285608446015,\n", + " 'Cohen': 0.10679653267289002,\n", + " 'Spearman': 0.641541317508014,\n", + " 'Kendall': 0.5474302130713258,\n", + " 'Krippendorff': 0.5279824764060826,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7495107632093934,\n", + " 'TA-4.0': 0.9471624266144814,\n", + " 'Acc': 0.28180039138943247,\n", + " 'MAE': 0.8770384866275277,\n", + " 'MSE': 1.2016199173733417,\n", + " 'CA-0': 0.03763440860215054,\n", + " 'CA-1': 0.41,\n", + " 'CA-2': 0.4339622641509434,\n", + " 'CA-3': 0.4519230769230769,\n", + " 'CA-4': 0.23076923076923078,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2188292286399598,\n", + " 'Micro-F1': 0.28180039138943247,\n", + " 'F1-0_vs_rest': 0.07253886010362694,\n", + " 'F1-1_vs_rest': 0.24550898203592814,\n", + " 'F1-2_vs_rest': 0.3665338645418327,\n", + " 'F1-3_vs_rest': 0.4519230769230769,\n", + " 'F1-4_vs_rest': 0.17647058823529413,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7840772014475271,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6448412698412699,\n", + " 'F1-1.5': 0.7555555555555555,\n", + " 'Recall-1.5': 0.8311111111111111,\n", + " 'Precision-1.5': 0.6925925925925925,\n", + " 'F1-2.5': 0.5409836065573771,\n", + " 'Recall-2.5': 0.5546218487394958,\n", + " 'Precision-2.5': 0.528,\n", + " 'F1-3.5': 0.2222222222222222,\n", + " 'Recall-3.5': 0.26666666666666666,\n", + " 'Precision-3.5': 0.19047619047619047,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9057903747202993},\n", + " 'CM': {'0': {'-1': 0, '0': 7, '1': 155, '2': 18, '3': 5, '4': 1, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 41, '2': 41, '3': 15, '4': 3, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 25, '2': 46, '3': 30, '4': 5, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 13, '2': 36, '3': 47, '4': 8, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 6, '4': 3, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.1716655843680271,\n", + " 'Cohen': 0.18830289604753858,\n", + " 'Spearman': 0.670211922170725,\n", + " 'Kendall': 0.562321811766549,\n", + " 'Krippendorff': 0.5833517589365766,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.726027397260274,\n", + " 'TA-4.0': 0.8512720156555773,\n", + " 'Acc': 0.350293542074364,\n", + " 'MAE': 0.8966079582517942,\n", + " 'MSE': 1.5088606218743208,\n", + " 'CA-0': 0.4032258064516129,\n", + " 'CA-1': 0.34,\n", + " 'CA-2': 0.2169811320754717,\n", + " 'CA-3': 0.36538461538461536,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2680990553709974,\n", + " 'Micro-F1': 0.350293542074364,\n", + " 'F1-0_vs_rest': 0.5535055350553506,\n", + " 'F1-1_vs_rest': 0.288135593220339,\n", + " 'F1-2_vs_rest': 0.23115577889447236,\n", + " 'F1-3_vs_rest': 0.35023041474654376,\n", + " 'F1-4_vs_rest': 0.18556701030927836,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8388814913448736,\n", + " 'Recall-0.5': 0.9692307692307692,\n", + " 'Precision-0.5': 0.7394366197183099,\n", + " 'F1-1.5': 0.7533980582524272,\n", + " 'Recall-1.5': 0.8622222222222222,\n", + " 'Precision-1.5': 0.6689655172413793,\n", + " 'F1-2.5': 0.5886075949367089,\n", + " 'Recall-2.5': 0.7815126050420168,\n", + " 'Precision-2.5': 0.4720812182741117,\n", + " 'F1-3.5': 0.2222222222222222,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.13095238095238096,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9100456931352507},\n", + " 'CM': {'0': {'-1': 0, '0': 75, '1': 76, '2': 23, '3': 8, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 5, '1': 34, '2': 30, '3': 21, '4': 10, '5': 0},\n", + " '2': {'-1': 0, '0': 2, '1': 20, '2': 23, '3': 42, '4': 19, '5': 0},\n", + " '3': {'-1': 0, '0': 3, '1': 6, '2': 17, '3': 38, '4': 40, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.1284351812376951,\n", + " 'Cohen': -0.03583662018898881,\n", + " 'Spearman': 0.6753241959121116,\n", + " 'Kendall': 0.5686548568024709,\n", + " 'Krippendorff': 0.20668165454985676,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5851272015655578,\n", + " 'TA-4.0': 0.6027397260273972,\n", + " 'Acc': 0.09784735812133072,\n", + " 'MAE': 1.5264187866927592,\n", + " 'MSE': 3.195042400521853,\n", + " 'CA-0': 0.010752688172043012,\n", + " 'CA-1': 0.09,\n", + " 'CA-2': 0.1320754716981132,\n", + " 'CA-3': 0.1346153846153846,\n", + " 'CA-4': 0.8461538461538461,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.08070138096448777,\n", + " 'Micro-F1': 0.09784735812133072,\n", + " 'F1-0_vs_rest': 0.02127659574468085,\n", + " 'F1-1_vs_rest': 0.09424083769633508,\n", + " 'F1-2_vs_rest': 0.12669683257918551,\n", + " 'F1-3_vs_rest': 0.14507772020725387,\n", + " 'F1-4_vs_rest': 0.09691629955947137,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7793764988009593,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6385068762278978,\n", + " 'F1-1.5': 0.6905132192846034,\n", + " 'Recall-1.5': 0.9866666666666667,\n", + " 'Precision-1.5': 0.5311004784688995,\n", + " 'F1-2.5': 0.5402843601895735,\n", + " 'Recall-2.5': 0.957983193277311,\n", + " 'Precision-2.5': 0.37623762376237624,\n", + " 'F1-3.5': 0.11353711790393013,\n", + " 'Recall-3.5': 0.8666666666666667,\n", + " 'Precision-3.5': 0.06074766355140187,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8924098522247583},\n", + " 'CM': {'0': {'-1': 0, '0': 2, '1': 79, '2': 65, '3': 26, '4': 14, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 9, '2': 32, '3': 20, '4': 39, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 2, '2': 14, '3': 27, '4': 63, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 4, '3': 14, '4': 85, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 11, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.09761719155385751,\n", + " 'Cohen': -0.03268422056512765,\n", + " 'Spearman': 0.7149546903307722,\n", + " 'Kendall': 0.609199053182785,\n", + " 'Krippendorff': 0.29198860699444995,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6164383561643836,\n", + " 'TA-4.0': 0.7573385518590998,\n", + " 'Acc': 0.12915851272015655,\n", + " 'MAE': 1.3607305936073057,\n", + " 'MSE': 2.6153511632963684,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.11320754716981132,\n", + " 'CA-3': 0.34615384615384615,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.13065054792377798,\n", + " 'Micro-F1': 0.12915851272015655,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.07881773399014778,\n", + " 'F1-2_vs_rest': 0.11650485436893204,\n", + " 'F1-3_vs_rest': 0.25622775800711745,\n", + " 'F1-4_vs_rest': 0.1323529411764706,\n", + " 'F1-5_vs_rest': 0.2,\n", + " 'F1-0.5': 0.777511961722488,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6360078277886497,\n", + " 'F1-1.5': 0.7109004739336493,\n", + " 'Recall-1.5': 1.0,\n", + " 'Precision-1.5': 0.5514705882352942,\n", + " 'F1-2.5': 0.5386416861826698,\n", + " 'Recall-2.5': 0.9663865546218487,\n", + " 'Precision-2.5': 0.37337662337662336,\n", + " 'F1-3.5': 0.1506849315068493,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.08396946564885496,\n", + " 'F1-4.5': 0.2,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.125,\n", + " 'NDCG@all': 0.9007962551338049},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 95, '2': 59, '3': 27, '4': 4, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 25, '3': 48, '4': 18, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 0, '2': 12, '3': 62, '4': 28, '5': 4},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 36, '4': 63, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.17430357361721502,\n", + " 'Cohen': 0.20439131377889175,\n", + " 'Spearman': 0.6874930573300714,\n", + " 'Kendall': 0.5901789195332865,\n", + " 'Krippendorff': 0.5962824061357372,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7553816046966731,\n", + " 'TA-4.0': 0.9275929549902152,\n", + " 'Acc': 0.3679060665362035,\n", + " 'MAE': 0.7827788649706456,\n", + " 'MSE': 1.1398130028267015,\n", + " 'CA-0': 0.22580645161290322,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.5377358490566038,\n", + " 'CA-3': 0.47115384615384615,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2737334517644544,\n", + " 'Micro-F1': 0.3679060665362035,\n", + " 'F1-0_vs_rest': 0.3684210526315789,\n", + " 'F1-1_vs_rest': 0.2753623188405797,\n", + " 'F1-2_vs_rest': 0.42066420664206644,\n", + " 'F1-3_vs_rest': 0.4803921568627451,\n", + " 'F1-4_vs_rest': 0.0975609756097561,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.818639798488665,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6929637526652452,\n", + " 'F1-1.5': 0.7799227799227799,\n", + " 'Recall-1.5': 0.8977777777777778,\n", + " 'Precision-1.5': 0.689419795221843,\n", + " 'F1-2.5': 0.5991902834008097,\n", + " 'Recall-2.5': 0.6218487394957983,\n", + " 'Precision-2.5': 0.578125,\n", + " 'F1-3.5': 0.13953488372093023,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.10714285714285714,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9011334500371152},\n", + " 'CM': {'0': {'-1': 0, '0': 42, '1': 115, '2': 20, '3': 5, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 38, '2': 47, '3': 12, '4': 3, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 19, '2': 57, '3': 26, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 37, '3': 49, '4': 14, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 7, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.08192730473212113,\n", + " 'Cohen': 0.0005996586558421058,\n", + " 'Spearman': 0.4751423036972329,\n", + " 'Kendall': 0.37927531538435977,\n", + " 'Krippendorff': -0.028618634026752687,\n", + " 'Invalid': 197,\n", + " 'TA-2.0': 0.5414012738853503,\n", + " 'TA-4.0': 0.5414012738853503,\n", + " 'Acc': 0.12101910828025478,\n", + " 'MAE': 1.7855626326963903,\n", + " 'MSE': 4.4844302901627735,\n", + " 'CA-0': 0.09,\n", + " 'CA-1': 0.057971014492753624,\n", + " 'CA-2': 0.14666666666666667,\n", + " 'CA-3': 0.16129032258064516,\n", + " 'CA-4': 0.42857142857142855,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.1149243929848674,\n", + " 'Micro-F1': 0.12101910828025478,\n", + " 'F1-0_vs_rest': 0.16363636363636364,\n", + " 'F1-1_vs_rest': 0.08421052631578947,\n", + " 'F1-2_vs_rest': 0.17054263565891473,\n", + " 'F1-3_vs_rest': 0.15625,\n", + " 'F1-4_vs_rest': 0.043478260869565216,\n", + " 'F1-5_vs_rest': 0.07142857142857142,\n", + " 'F1-0.5': 0.8223938223938224,\n", + " 'Recall-0.5': 0.9953271028037384,\n", + " 'Precision-0.5': 0.7006578947368421,\n", + " 'F1-1.5': 0.6761229314420804,\n", + " 'Recall-1.5': 0.9862068965517241,\n", + " 'Precision-1.5': 0.5143884892086331,\n", + " 'F1-2.5': 0.4557823129251701,\n", + " 'Recall-2.5': 0.9571428571428572,\n", + " 'Precision-2.5': 0.29910714285714285,\n", + " 'F1-3.5': 0.060240963855421686,\n", + " 'Recall-3.5': 0.625,\n", + " 'Precision-3.5': 0.03164556962025317,\n", + " 'F1-4.5': 0.07142857142857142,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.037037037037037035,\n", + " 'NDCG@all': 0.8614673163399486},\n", + " 'CM': {'0': {'-1': 86, '0': 9, '1': 21, '2': 29, '3': 18, '4': 20, '5': 3},\n", + " '1': {'-1': 31, '0': 0, '1': 4, '2': 11, '3': 22, '4': 26, '5': 6},\n", + " '2': {'-1': 31, '0': 1, '1': 1, '2': 11, '3': 13, '4': 38, '5': 11},\n", + " '3': {'-1': 42, '0': 0, '1': 0, '2': 3, '3': 10, '4': 44, '5': 5},\n", + " '4': {'-1': 6, '0': 0, '1': 0, '2': 0, '3': 3, '4': 3, '5': 1},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 1}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.10977857155780481,\n", + " 'Cohen': 0.14976770823561936,\n", + " 'Spearman': 0.6965920640860854,\n", + " 'Kendall': 0.5933981676558868,\n", + " 'Krippendorff': 0.5894470335935262,\n", + " 'Invalid': 3,\n", + " 'TA-2.0': 0.7460629921259843,\n", + " 'TA-4.0': 0.9645669291338582,\n", + " 'Acc': 0.33267716535433073,\n", + " 'MAE': 0.7867454068241466,\n", + " 'MSE': 1.0137795275590546,\n", + " 'CA-0': 0.23118279569892472,\n", + " 'CA-1': 0.27,\n", + " 'CA-2': 0.6095238095238096,\n", + " 'CA-3': 0.3431372549019608,\n", + " 'CA-4': 0.0,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22534535111579812,\n", + " 'Micro-F1': 0.33267716535433073,\n", + " 'F1-0_vs_rest': 0.3722943722943723,\n", + " 'F1-1_vs_rest': 0.216,\n", + " 'F1-2_vs_rest': 0.39143730886850153,\n", + " 'F1-3_vs_rest': 0.3723404255319149,\n", + " 'F1-4_vs_rest': 0.0,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8152866242038217,\n", + " 'Recall-0.5': 0.9937888198757764,\n", + " 'Precision-0.5': 0.6911447084233261,\n", + " 'F1-1.5': 0.7813084112149533,\n", + " 'Recall-1.5': 0.9414414414414415,\n", + " 'Precision-1.5': 0.6677316293929713,\n", + " 'F1-2.5': 0.4519230769230769,\n", + " 'Recall-2.5': 0.4017094017094017,\n", + " 'Precision-2.5': 0.5164835164835165,\n", + " 'F1-3.5': 0.1,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.2,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9131902355492657},\n", + " 'CM': {'0': {'-1': 0, '0': 43, '1': 110, '2': 30, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 27, '2': 59, '3': 12, '4': 0, '5': 0},\n", + " '2': {'-1': 1, '0': 0, '1': 12, '2': 64, '3': 27, '4': 2, '5': 0},\n", + " '3': {'-1': 2, '0': 0, '1': 1, '2': 64, '3': 35, '4': 2, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 8, '4': 0, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.1582030460954228,\n", + " 'Cohen': 0.17821285706236967,\n", + " 'Spearman': 0.6412235033534106,\n", + " 'Kendall': 0.5255588647034436,\n", + " 'Krippendorff': 0.5547940287678588,\n", + " 'Invalid': 42,\n", + " 'TA-2.0': 0.7398720682302772,\n", + " 'TA-4.0': 0.8272921108742004,\n", + " 'Acc': 0.3368869936034115,\n", + " 'MAE': 0.9339019189765456,\n", + " 'MSE': 1.6021085050935802,\n", + " 'CA-0': 0.325,\n", + " 'CA-1': 0.2087912087912088,\n", + " 'CA-2': 0.48514851485148514,\n", + " 'CA-3': 0.30392156862745096,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.3217082847716728,\n", + " 'Micro-F1': 0.3368869936034115,\n", + " 'F1-0_vs_rest': 0.45414847161572053,\n", + " 'F1-1_vs_rest': 0.21839080459770116,\n", + " 'F1-2_vs_rest': 0.3967611336032389,\n", + " 'F1-3_vs_rest': 0.34444444444444444,\n", + " 'F1-4_vs_rest': 0.11650485436893204,\n", + " 'F1-5_vs_rest': 0.4,\n", + " 'F1-0.5': 0.8236953455571228,\n", + " 'Recall-0.5': 0.9449838187702265,\n", + " 'Precision-0.5': 0.73,\n", + " 'F1-1.5': 0.7775700934579439,\n", + " 'Recall-1.5': 0.9541284403669725,\n", + " 'Precision-1.5': 0.6561514195583596,\n", + " 'F1-2.5': 0.6180555555555556,\n", + " 'Recall-2.5': 0.7606837606837606,\n", + " 'Precision-2.5': 0.52046783625731,\n", + " 'F1-3.5': 0.12962962962962962,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.07526881720430108,\n", + " 'F1-4.5': 0.4,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.3333333333333333,\n", + " 'NDCG@all': 0.9131082016629367},\n", + " 'CM': {'0': {'-1': 26, '0': 52, '1': 60, '2': 34, '3': 8, '4': 6, '5': 0},\n", + " '1': {'-1': 9, '0': 11, '1': 19, '2': 37, '3': 14, '4': 10, '5': 0},\n", + " '2': {'-1': 5, '0': 5, '1': 3, '2': 49, '3': 21, '4': 22, '5': 1},\n", + " '3': {'-1': 2, '0': 1, '1': 1, '2': 22, '3': 31, '4': 46, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 4, '3': 3, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 0, '5': 1}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.07555889499782055,\n", + " 'Cohen': -0.011711564773787764,\n", + " 'Spearman': 0.63050154868145,\n", + " 'Kendall': 0.5288965868992437,\n", + " 'Krippendorff': 0.26126625686550864,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5675146771037182,\n", + " 'TA-4.0': 0.7299412915851272,\n", + " 'Acc': 0.14481409001956946,\n", + " 'MAE': 1.3731245923026745,\n", + " 'MSE': 2.6838443139813006,\n", + " 'CA-0': 0.03225806451612903,\n", + " 'CA-1': 0.07,\n", + " 'CA-2': 0.20754716981132076,\n", + " 'CA-3': 0.28846153846153844,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.11453604568914773,\n", + " 'Micro-F1': 0.14481409001956946,\n", + " 'F1-0_vs_rest': 0.0625,\n", + " 'F1-1_vs_rest': 0.07526881720430108,\n", + " 'F1-2_vs_rest': 0.17120622568093385,\n", + " 'F1-3_vs_rest': 0.2643171806167401,\n", + " 'F1-4_vs_rest': 0.11392405063291139,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7831325301204819,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6435643564356436,\n", + " 'F1-1.5': 0.6739130434782609,\n", + " 'Recall-1.5': 0.9644444444444444,\n", + " 'Precision-1.5': 0.5178997613365155,\n", + " 'F1-2.5': 0.5529715762273901,\n", + " 'Recall-2.5': 0.8991596638655462,\n", + " 'Precision-2.5': 0.39925373134328357,\n", + " 'F1-3.5': 0.1375,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.07586206896551724,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8963811434793678},\n", + " 'CM': {'0': {'-1': 0, '0': 6, '1': 71, '2': 77, '3': 23, '4': 9, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 7, '2': 41, '3': 31, '4': 21, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 7, '2': 22, '3': 35, '4': 42, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 11, '3': 30, '4': 62, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'is': {'phi-4': {'metrics': {'Fleiss': 0.24829906467303545,\n", + " 'Cohen': 0.25738329942118876,\n", + " 'Spearman': 0.6467467015767657,\n", + " 'Kendall': 0.5363582347296141,\n", + " 'Krippendorff': 0.5615008315951123,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7244094488188977,\n", + " 'TA-4.0': 0.8917322834645669,\n", + " 'Acc': 0.41732283464566927,\n", + " 'MAE': 0.8618766404199475,\n", + " 'MSE': 1.5495953630796149,\n", + " 'CA-0': 0.4838709677419355,\n", + " 'CA-1': 0.26,\n", + " 'CA-2': 0.34285714285714286,\n", + " 'CA-3': 0.5392156862745098,\n", + " 'CA-4': 0.3076923076923077,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.35451096013680927,\n", + " 'Micro-F1': 0.41732283464566927,\n", + " 'F1-0_vs_rest': 0.6185567010309279,\n", + " 'F1-1_vs_rest': 0.2694300518134715,\n", + " 'F1-2_vs_rest': 0.3317972350230415,\n", + " 'F1-3_vs_rest': 0.45454545454545453,\n", + " 'F1-4_vs_rest': 0.11940298507462686,\n", + " 'F1-5_vs_rest': 0.3333333333333333,\n", + " 'F1-0.5': 0.8468965517241379,\n", + " 'Recall-0.5': 0.953416149068323,\n", + " 'Precision-0.5': 0.7617866004962779,\n", + " 'F1-1.5': 0.7556390977443609,\n", + " 'Recall-1.5': 0.9054054054054054,\n", + " 'Precision-1.5': 0.6483870967741936,\n", + " 'F1-2.5': 0.5904761904761905,\n", + " 'Recall-2.5': 0.7948717948717948,\n", + " 'Precision-2.5': 0.4696969696969697,\n", + " 'F1-3.5': 0.1643835616438356,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.10344827586206896,\n", + " 'F1-4.5': 0.3333333333333333,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.25,\n", + " 'NDCG@all': 0.9000614579302724},\n", + " 'CM': {'0': {'-1': 0, '0': 90, '1': 51, '2': 27, '3': 13, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 10, '1': 26, '2': 32, '3': 27, '4': 3, '5': 2},\n", + " '2': {'-1': 0, '0': 3, '1': 11, '2': 36, '3': 37, '4': 18, '5': 0},\n", + " '3': {'-1': 0, '0': 2, '1': 5, '2': 16, '3': 55, '4': 23, '5': 1},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 1, '3': 8, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.11474513431264584,\n", + " 'Cohen': 0.14972193726040706,\n", + " 'Spearman': 0.5792693993864673,\n", + " 'Kendall': 0.49294567052618765,\n", + " 'Krippendorff': 0.5041813201841212,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6929133858267716,\n", + " 'TA-4.0': 0.9547244094488189,\n", + " 'Acc': 0.328740157480315,\n", + " 'MAE': 0.8549868766404198,\n", + " 'MSE': 1.2596237970253716,\n", + " 'CA-0': 0.20967741935483872,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.45714285714285713,\n", + " 'CA-3': 0.4215686274509804,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.24205096762628395,\n", + " 'Micro-F1': 0.328740157480315,\n", + " 'F1-0_vs_rest': 0.3406113537117904,\n", + " 'F1-1_vs_rest': 0.2535211267605634,\n", + " 'F1-2_vs_rest': 0.34532374100719426,\n", + " 'F1-3_vs_rest': 0.4387755102040816,\n", + " 'F1-4_vs_rest': 0.07407407407407407,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8081321473951716,\n", + " 'Recall-0.5': 0.9875776397515528,\n", + " 'Precision-0.5': 0.6838709677419355,\n", + " 'F1-1.5': 0.7077534791252486,\n", + " 'Recall-1.5': 0.8018018018018018,\n", + " 'Precision-1.5': 0.6334519572953736,\n", + " 'F1-2.5': 0.5244444444444445,\n", + " 'Recall-2.5': 0.5042735042735043,\n", + " 'Precision-2.5': 0.5462962962962963,\n", + " 'F1-3.5': 0.20689655172413793,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.21428571428571427,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8902777679304524},\n", + " 'CM': {'0': {'-1': 0, '0': 39, '1': 105, '2': 35, '3': 4, '4': 3, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 36, '2': 47, '3': 11, '4': 3, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 28, '2': 48, '3': 26, '4': 2, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 15, '2': 41, '3': 43, '4': 3, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 10, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.22030095585377948,\n", + " 'Cohen': 0.23870068631100672,\n", + " 'Spearman': 0.6925519203730254,\n", + " 'Kendall': 0.5762981331544373,\n", + " 'Krippendorff': 0.6109393998373888,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7716535433070866,\n", + " 'TA-4.0': 0.7677165354330708,\n", + " 'Acc': 0.38188976377952755,\n", + " 'MAE': 0.9238845144356956,\n", + " 'MSE': 1.8027121609798777,\n", + " 'CA-0': 0.46774193548387094,\n", + " 'CA-1': 0.38,\n", + " 'CA-2': 0.3523809523809524,\n", + " 'CA-3': 0.21568627450980393,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.3151442381112823,\n", + " 'Micro-F1': 0.38188976377952755,\n", + " 'F1-0_vs_rest': 0.6170212765957447,\n", + " 'F1-1_vs_rest': 0.3261802575107296,\n", + " 'F1-2_vs_rest': 0.36633663366336633,\n", + " 'F1-3_vs_rest': 0.27672955974842767,\n", + " 'F1-4_vs_rest': 0.13793103448275862,\n", + " 'F1-5_vs_rest': 0.16666666666666666,\n", + " 'F1-0.5': 0.8528610354223434,\n", + " 'Recall-0.5': 0.9720496894409938,\n", + " 'Precision-0.5': 0.7597087378640777,\n", + " 'F1-1.5': 0.7864271457085829,\n", + " 'Recall-1.5': 0.8873873873873874,\n", + " 'Precision-1.5': 0.7060931899641577,\n", + " 'F1-2.5': 0.6220735785953178,\n", + " 'Recall-2.5': 0.7948717948717948,\n", + " 'Precision-2.5': 0.510989010989011,\n", + " 'F1-3.5': 0.15714285714285714,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.088,\n", + " 'F1-4.5': 0.16666666666666666,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.09090909090909091,\n", + " 'NDCG@all': 0.89541371869372},\n", + " 'CM': {'0': {'-1': 0, '0': 87, '1': 71, '2': 15, '3': 5, '4': 4, '5': 4},\n", + " '1': {'-1': 0, '0': 8, '1': 38, '2': 22, '3': 13, '4': 16, '5': 3},\n", + " '2': {'-1': 0, '0': 1, '1': 23, '2': 37, '3': 15, '4': 24, '5': 5},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 21, '3': 22, '4': 51, '5': 7},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 2, '4': 8, '5': 1},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.03770001032311345,\n", + " 'Cohen': 0.1008979639078309,\n", + " 'Spearman': 0.6164756403472222,\n", + " 'Kendall': 0.5295705414728494,\n", + " 'Krippendorff': 0.5115077263813894,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7460629921259843,\n", + " 'TA-4.0': 0.9468503937007874,\n", + " 'Acc': 0.27755905511811024,\n", + " 'MAE': 0.8825459317585302,\n", + " 'MSE': 1.2259405074365703,\n", + " 'CA-0': 0.026881720430107527,\n", + " 'CA-1': 0.44,\n", + " 'CA-2': 0.37142857142857144,\n", + " 'CA-3': 0.5098039215686274,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.1987732386552065,\n", + " 'Micro-F1': 0.27755905511811024,\n", + " 'F1-0_vs_rest': 0.05235602094240838,\n", + " 'F1-1_vs_rest': 0.25507246376811593,\n", + " 'F1-2_vs_rest': 0.33476394849785407,\n", + " 'F1-3_vs_rest': 0.48148148148148145,\n", + " 'F1-4_vs_rest': 0.06896551724137931,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7806060606060606,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6401590457256461,\n", + " 'F1-1.5': 0.7333333333333333,\n", + " 'Recall-1.5': 0.7927927927927928,\n", + " 'Precision-1.5': 0.6821705426356589,\n", + " 'F1-2.5': 0.5587044534412956,\n", + " 'Recall-2.5': 0.5897435897435898,\n", + " 'Precision-2.5': 0.5307692307692308,\n", + " 'F1-3.5': 0.12903225806451613,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.125,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9025880557546316},\n", + " 'CM': {'0': {'-1': 0, '0': 5, '1': 155, '2': 20, '3': 6, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 44, '2': 36, '3': 17, '4': 3, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 31, '2': 39, '3': 31, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 15, '2': 28, '3': 52, '4': 7, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 7, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.18805668817544835,\n", + " 'Cohen': 0.20392786621190873,\n", + " 'Spearman': 0.6292548075959544,\n", + " 'Kendall': 0.5209674515217705,\n", + " 'Krippendorff': 0.5494058702149784,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7263779527559056,\n", + " 'TA-4.0': 0.8464566929133859,\n", + " 'Acc': 0.3641732283464567,\n", + " 'MAE': 0.9169947506561681,\n", + " 'MSE': 1.6054790026246717,\n", + " 'CA-0': 0.3870967741935484,\n", + " 'CA-1': 0.37,\n", + " 'CA-2': 0.2571428571428571,\n", + " 'CA-3': 0.4215686274509804,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2750495164280974,\n", + " 'Micro-F1': 0.3641732283464567,\n", + " 'F1-0_vs_rest': 0.5313653136531366,\n", + " 'F1-1_vs_rest': 0.30962343096234307,\n", + " 'F1-2_vs_rest': 0.2634146341463415,\n", + " 'F1-3_vs_rest': 0.41545893719806765,\n", + " 'F1-4_vs_rest': 0.13043478260869565,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8295302013422818,\n", + " 'Recall-0.5': 0.9596273291925466,\n", + " 'Precision-0.5': 0.7304964539007093,\n", + " 'F1-1.5': 0.7430830039525692,\n", + " 'Recall-1.5': 0.8468468468468469,\n", + " 'Precision-1.5': 0.6619718309859155,\n", + " 'F1-2.5': 0.5913621262458472,\n", + " 'Recall-2.5': 0.7606837606837606,\n", + " 'Precision-2.5': 0.483695652173913,\n", + " 'F1-3.5': 0.1702127659574468,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.10126582278481013,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8984954633775998},\n", + " 'CM': {'0': {'-1': 0, '0': 72, '1': 75, '2': 26, '3': 7, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 6, '1': 37, '2': 31, '3': 16, '4': 10, '5': 0},\n", + " '2': {'-1': 0, '0': 3, '1': 19, '2': 27, '3': 35, '4': 21, '5': 0},\n", + " '3': {'-1': 0, '0': 4, '1': 8, '2': 13, '3': 43, '4': 34, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 4, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.10609341169192696,\n", + " 'Cohen': -0.031750935989240725,\n", + " 'Spearman': 0.6281084698087767,\n", + " 'Kendall': 0.5242394007173374,\n", + " 'Krippendorff': 0.20544530734890298,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.547244094488189,\n", + " 'TA-4.0': 0.7007874015748031,\n", + " 'Acc': 0.12007874015748031,\n", + " 'MAE': 1.4619422572178475,\n", + " 'MSE': 2.9278215223097113,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.06,\n", + " 'CA-2': 0.18095238095238095,\n", + " 'CA-3': 0.2647058823529412,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.09419616026329813,\n", + " 'Micro-F1': 0.12007874015748031,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.06779661016949153,\n", + " 'F1-2_vs_rest': 0.14615384615384616,\n", + " 'F1-3_vs_rest': 0.2465753424657534,\n", + " 'F1-4_vs_rest': 0.10465116279069768,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7759036144578313,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6338582677165354,\n", + " 'F1-1.5': 0.664624808575804,\n", + " 'Recall-1.5': 0.9774774774774775,\n", + " 'Precision-1.5': 0.5034802784222738,\n", + " 'F1-2.5': 0.5292620865139949,\n", + " 'Recall-2.5': 0.8888888888888888,\n", + " 'Precision-2.5': 0.37681159420289856,\n", + " 'F1-3.5': 0.12643678160919541,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.06918238993710692,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8916071150244708},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 66, '2': 89, '3': 22, '4': 9, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 6, '2': 35, '3': 30, '4': 29, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 4, '2': 19, '3': 34, '4': 48, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 12, '3': 27, '4': 62, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.09126559014024986,\n", + " 'Cohen': -0.029942952553221103,\n", + " 'Spearman': 0.6578519166083495,\n", + " 'Kendall': 0.5564398920967126,\n", + " 'Krippendorff': 0.2836552339431012,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.591715976331361,\n", + " 'TA-4.0': 0.777120315581854,\n", + " 'Acc': 0.13609467455621302,\n", + " 'MAE': 1.33629191321499,\n", + " 'MSE': 2.5450909489371036,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.08,\n", + " 'CA-2': 0.1523809523809524,\n", + " 'CA-3': 0.38613861386138615,\n", + " 'CA-4': 0.46153846153846156,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.10163175772242682,\n", + " 'Micro-F1': 0.13609467455621302,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.0784313725490196,\n", + " 'F1-2_vs_rest': 0.1391304347826087,\n", + " 'F1-3_vs_rest': 0.29545454545454547,\n", + " 'F1-4_vs_rest': 0.0967741935483871,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7753623188405797,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6331360946745562,\n", + " 'F1-1.5': 0.6891025641025641,\n", + " 'Recall-1.5': 0.9728506787330317,\n", + " 'Precision-1.5': 0.533498759305211,\n", + " 'F1-2.5': 0.5431472081218274,\n", + " 'Recall-2.5': 0.9224137931034483,\n", + " 'Precision-2.5': 0.38489208633093525,\n", + " 'F1-3.5': 0.12307692307692308,\n", + " 'Recall-3.5': 0.5333333333333333,\n", + " 'Precision-3.5': 0.06956521739130435,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8764845661499032},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 90, '2': 67, '3': 23, '4': 5, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 8, '2': 35, '3': 39, '4': 16, '5': 2},\n", + " '2': {'-1': 0, '0': 0, '1': 4, '2': 16, '3': 55, '4': 29, '5': 1},\n", + " '3': {'-1': 1, '0': 0, '1': 2, '2': 7, '3': 39, '4': 53, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 7, '4': 6, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.15578600166183854,\n", + " 'Cohen': 0.18835258866436477,\n", + " 'Spearman': 0.6811738936450203,\n", + " 'Kendall': 0.5835274270638383,\n", + " 'Krippendorff': 0.5760095968722173,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7322834645669292,\n", + " 'TA-4.0': 0.9291338582677166,\n", + " 'Acc': 0.35236220472440943,\n", + " 'MAE': 0.8103674540682414,\n", + " 'MSE': 1.19663167104112,\n", + " 'CA-0': 0.1935483870967742,\n", + " 'CA-1': 0.32,\n", + " 'CA-2': 0.5142857142857142,\n", + " 'CA-3': 0.5196078431372549,\n", + " 'CA-4': 0.3076923076923077,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.276280251981111,\n", + " 'Micro-F1': 0.35236220472440943,\n", + " 'F1-0_vs_rest': 0.32286995515695066,\n", + " 'F1-1_vs_rest': 0.23529411764705882,\n", + " 'F1-2_vs_rest': 0.3956043956043956,\n", + " 'F1-3_vs_rest': 0.53,\n", + " 'F1-4_vs_rest': 0.17391304347826086,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8095838587641866,\n", + " 'Recall-0.5': 0.9968944099378882,\n", + " 'Precision-0.5': 0.6815286624203821,\n", + " 'F1-1.5': 0.7600767754318618,\n", + " 'Recall-1.5': 0.8918918918918919,\n", + " 'Precision-1.5': 0.6622073578595318,\n", + " 'F1-2.5': 0.6209677419354839,\n", + " 'Recall-2.5': 0.6581196581196581,\n", + " 'Precision-2.5': 0.5877862595419847,\n", + " 'F1-3.5': 0.25,\n", + " 'Recall-3.5': 0.4,\n", + " 'Precision-3.5': 0.18181818181818182,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9023986250012431},\n", + " 'CM': {'0': {'-1': 0, '0': 36, '1': 116, '2': 27, '3': 3, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 32, '2': 52, '3': 10, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 19, '2': 54, '3': 26, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 32, '3': 53, '4': 12, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 3, '3': 6, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.13088838992084553,\n", + " 'Cohen': -0.04477737035096907,\n", + " 'Spearman': 0.34731329014107054,\n", + " 'Kendall': 0.2709305268090385,\n", + " 'Krippendorff': -0.10531333676013133,\n", + " 'Invalid': 275,\n", + " 'TA-2.0': 0.5150214592274678,\n", + " 'TA-4.0': 0.630901287553648,\n", + " 'Acc': 0.0815450643776824,\n", + " 'MAE': 1.8497854077253213,\n", + " 'MSE': 4.743204577968527,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.0851063829787234,\n", + " 'CA-2': 0.10638297872340426,\n", + " 'CA-3': 0.2,\n", + " 'CA-4': 0.2,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.06862619745162082,\n", + " 'Micro-F1': 0.0815450643776824,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.10126582278481013,\n", + " 'F1-2_vs_rest': 0.11494252873563218,\n", + " 'F1-3_vs_rest': 0.17307692307692307,\n", + " 'F1-4_vs_rest': 0.02247191011235955,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7639257294429708,\n", + " 'Recall-0.5': 0.993103448275862,\n", + " 'Precision-0.5': 0.6206896551724138,\n", + " 'F1-1.5': 0.6308724832214765,\n", + " 'Recall-1.5': 0.9591836734693877,\n", + " 'Precision-1.5': 0.47,\n", + " 'F1-2.5': 0.3981042654028436,\n", + " 'Recall-2.5': 0.8235294117647058,\n", + " 'Precision-2.5': 0.2625,\n", + " 'F1-3.5': 0.07476635514018691,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.039603960396039604,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8293856191751884},\n", + " 'CM': {'0': {'-1': 98, '0': 0, '1': 24, '2': 20, '3': 22, '4': 19, '5': 3},\n", + " '1': {'-1': 53, '0': 1, '1': 4, '2': 6, '3': 11, '4': 22, '5': 3},\n", + " '2': {'-1': 58, '0': 0, '1': 4, '2': 5, '3': 16, '4': 17, '5': 5},\n", + " '3': {'-1': 57, '0': 0, '1': 0, '2': 8, '3': 9, '4': 24, '5': 4},\n", + " '4': {'-1': 8, '0': 0, '1': 0, '2': 1, '3': 1, '4': 1, '5': 2},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.09081913253614435,\n", + " 'Cohen': 0.1378024507213379,\n", + " 'Spearman': 0.6962073028756561,\n", + " 'Kendall': 0.5951333355513575,\n", + " 'Krippendorff': 0.5769864910460258,\n", + " 'Invalid': 2,\n", + " 'TA-2.0': 0.7608695652173914,\n", + " 'TA-4.0': 0.9664031620553359,\n", + " 'Acc': 0.3181818181818182,\n", + " 'MAE': 0.8069828722002632,\n", + " 'MSE': 1.0388669301712776,\n", + " 'CA-0': 0.16129032258064516,\n", + " 'CA-1': 0.29,\n", + " 'CA-2': 0.6310679611650486,\n", + " 'CA-3': 0.35294117647058826,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2317110093557769,\n", + " 'Micro-F1': 0.3181818181818182,\n", + " 'F1-0_vs_rest': 0.2764976958525346,\n", + " 'F1-1_vs_rest': 0.21722846441947566,\n", + " 'F1-2_vs_rest': 0.40625,\n", + " 'F1-3_vs_rest': 0.3850267379679144,\n", + " 'F1-4_vs_rest': 0.10526315789473684,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8025157232704403,\n", + " 'Recall-0.5': 0.996875,\n", + " 'Precision-0.5': 0.671578947368421,\n", + " 'F1-1.5': 0.7840909090909091,\n", + " 'Recall-1.5': 0.9409090909090909,\n", + " 'Precision-1.5': 0.672077922077922,\n", + " 'F1-2.5': 0.4519230769230769,\n", + " 'Recall-2.5': 0.4017094017094017,\n", + " 'Precision-2.5': 0.5164835164835165,\n", + " 'F1-3.5': 0.19047619047619047,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.3333333333333333,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9140381921627112},\n", + " 'CM': {'0': {'-1': 0, '0': 30, '1': 125, '2': 28, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 1, '1': 29, '2': 54, '3': 16, '4': 0, '5': 0},\n", + " '2': {'-1': 2, '0': 0, '1': 13, '2': 65, '3': 23, '4': 2, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 0, '2': 64, '3': 36, '4': 2, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 6, '3': 6, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.08584667794421413,\n", + " 'Cohen': 0.11745127351705076,\n", + " 'Spearman': 0.6210836942447183,\n", + " 'Kendall': 0.4971360462549563,\n", + " 'Krippendorff': 0.524569277672268,\n", + " 'Invalid': 41,\n", + " 'TA-2.0': 0.721627408993576,\n", + " 'TA-4.0': 0.8329764453961456,\n", + " 'Acc': 0.2826552462526767,\n", + " 'MAE': 0.9996431120628125,\n", + " 'MSE': 1.6642279324292175,\n", + " 'CA-0': 0.23976608187134502,\n", + " 'CA-1': 0.19753086419753085,\n", + " 'CA-2': 0.44,\n", + " 'CA-3': 0.24,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.21963916205612297,\n", + " 'Micro-F1': 0.2826552462526767,\n", + " 'F1-0_vs_rest': 0.36936936936936937,\n", + " 'F1-1_vs_rest': 0.1787709497206704,\n", + " 'F1-2_vs_rest': 0.3333333333333333,\n", + " 'F1-3_vs_rest': 0.2874251497005988,\n", + " 'F1-4_vs_rest': 0.14893617021276595,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8033707865168539,\n", + " 'Recall-0.5': 0.9662162162162162,\n", + " 'Precision-0.5': 0.6875,\n", + " 'F1-1.5': 0.7579737335834896,\n", + " 'Recall-1.5': 0.9395348837209302,\n", + " 'Precision-1.5': 0.6352201257861635,\n", + " 'F1-2.5': 0.550185873605948,\n", + " 'Recall-2.5': 0.6434782608695652,\n", + " 'Precision-2.5': 0.4805194805194805,\n", + " 'F1-3.5': 0.17647058823529413,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.10344827586206896,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8937261288508698},\n", + " 'CM': {'0': {'-1': 15, '0': 41, '1': 70, '2': 49, '3': 8, '4': 2, '5': 1},\n", + " '1': {'-1': 19, '0': 9, '1': 16, '2': 33, '3': 15, '4': 7, '5': 1},\n", + " '2': {'-1': 5, '0': 1, '1': 9, '2': 44, '3': 19, '4': 26, '5': 1},\n", + " '3': {'-1': 2, '0': 0, '1': 3, '2': 33, '3': 24, '4': 37, '5': 3},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 1, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.05472378578616315,\n", + " 'Cohen': 0.0011176396933680888,\n", + " 'Spearman': 0.6214811757759677,\n", + " 'Kendall': 0.5207574560952076,\n", + " 'Krippendorff': 0.2915623558589544,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.5708661417322834,\n", + " 'TA-4.0': 0.7834645669291339,\n", + " 'Acc': 0.16535433070866143,\n", + " 'MAE': 1.3031496062992125,\n", + " 'MSE': 2.483814523184602,\n", + " 'CA-0': 0.04838709677419355,\n", + " 'CA-1': 0.1,\n", + " 'CA-2': 0.20952380952380953,\n", + " 'CA-3': 0.3333333333333333,\n", + " 'CA-4': 0.6923076923076923,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.13227197060848417,\n", + " 'Micro-F1': 0.16535433070866143,\n", + " 'F1-0_vs_rest': 0.09230769230769231,\n", + " 'F1-1_vs_rest': 0.10526315789473684,\n", + " 'F1-2_vs_rest': 0.16730038022813687,\n", + " 'F1-3_vs_rest': 0.288135593220339,\n", + " 'F1-4_vs_rest': 0.140625,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.784409257003654,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6452905811623246,\n", + " 'F1-1.5': 0.6751188589540412,\n", + " 'Recall-1.5': 0.9594594594594594,\n", + " 'Precision-1.5': 0.5207823960880196,\n", + " 'F1-2.5': 0.5489130434782609,\n", + " 'Recall-2.5': 0.8632478632478633,\n", + " 'Precision-2.5': 0.40239043824701193,\n", + " 'F1-3.5': 0.16666666666666666,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.09401709401709402,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.879377620190014},\n", + " 'CM': {'0': {'-1': 0, '0': 9, '1': 71, '2': 77, '3': 22, '4': 6, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 10, '2': 45, '3': 30, '4': 14, '5': 1},\n", + " '2': {'-1': 0, '0': 0, '1': 7, '2': 22, '3': 44, '4': 32, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 2, '2': 14, '3': 34, '4': 52, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 9, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}},\n", + " 'en': {'phi-4': {'metrics': {'Fleiss': 0.23993094797501208,\n", + " 'Cohen': 0.24896917337522073,\n", + " 'Spearman': 0.6399471317308785,\n", + " 'Kendall': 0.5249793452885182,\n", + " 'Krippendorff': 0.567784125276659,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7352941176470589,\n", + " 'TA-4.0': 0.8764705882352941,\n", + " 'Acc': 0.4117647058823529,\n", + " 'MAE': 0.8722222222222223,\n", + " 'MSE': 1.5833877995642702,\n", + " 'CA-0': 0.532258064516129,\n", + " 'CA-1': 0.26,\n", + " 'CA-2': 0.25471698113207547,\n", + " 'CA-3': 0.5192307692307693,\n", + " 'CA-4': 0.3333333333333333,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2899209842806652,\n", + " 'Micro-F1': 0.4117647058823529,\n", + " 'F1-0_vs_rest': 0.66,\n", + " 'F1-1_vs_rest': 0.2653061224489796,\n", + " 'F1-2_vs_rest': 0.27411167512690354,\n", + " 'F1-3_vs_rest': 0.432,\n", + " 'F1-4_vs_rest': 0.10810810810810811,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8583333333333333,\n", + " 'Recall-0.5': 0.9537037037037037,\n", + " 'Precision-0.5': 0.7803030303030303,\n", + " 'F1-1.5': 0.7557251908396947,\n", + " 'Recall-1.5': 0.8839285714285714,\n", + " 'Precision-1.5': 0.66,\n", + " 'F1-2.5': 0.5565749235474006,\n", + " 'Recall-2.5': 0.7711864406779662,\n", + " 'Precision-2.5': 0.4354066985645933,\n", + " 'F1-3.5': 0.15584415584415584,\n", + " 'Recall-3.5': 0.42857142857142855,\n", + " 'Precision-3.5': 0.09523809523809523,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8839212119112304},\n", + " 'CM': {'0': {'-1': 0, '0': 99, '1': 48, '2': 23, '3': 10, '4': 6, '5': 0},\n", + " '1': {'-1': 0, '0': 11, '1': 26, '2': 21, '3': 29, '4': 12, '5': 1},\n", + " '2': {'-1': 0, '0': 4, '1': 15, '2': 27, '3': 47, '4': 13, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 7, '2': 18, '3': 54, '4': 25, '5': 0},\n", + " '4': {'-1': 1, '0': 0, '1': 0, '2': 2, '3': 6, '4': 4, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-14B-Instruct': {'metrics': {'Fleiss': 0.0717828968755195,\n", + " 'Cohen': 0.11337713684330297,\n", + " 'Spearman': 0.601031622722745,\n", + " 'Kendall': 0.5067679635083551,\n", + " 'Krippendorff': 0.4906785954856199,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7084148727984344,\n", + " 'TA-4.0': 0.9041095890410958,\n", + " 'Acc': 0.2837573385518591,\n", + " 'MAE': 0.9383561643835617,\n", + " 'MSE': 1.4775494672754947,\n", + " 'CA-0': 0.11827956989247312,\n", + " 'CA-1': 0.36,\n", + " 'CA-2': 0.36792452830188677,\n", + " 'CA-3': 0.41346153846153844,\n", + " 'CA-4': 0.38461538461538464,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.22438372816765248,\n", + " 'Micro-F1': 0.2837573385518591,\n", + " 'F1-0_vs_rest': 0.20853080568720378,\n", + " 'F1-1_vs_rest': 0.23920265780730898,\n", + " 'F1-2_vs_rest': 0.3391304347826087,\n", + " 'F1-3_vs_rest': 0.39814814814814814,\n", + " 'F1-4_vs_rest': 0.16129032258064516,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7940813810110974,\n", + " 'Recall-0.5': 0.9907692307692307,\n", + " 'Precision-0.5': 0.6625514403292181,\n", + " 'F1-1.5': 0.7294117647058823,\n", + " 'Recall-1.5': 0.8266666666666667,\n", + " 'Precision-1.5': 0.6526315789473685,\n", + " 'F1-2.5': 0.5785714285714286,\n", + " 'Recall-2.5': 0.680672268907563,\n", + " 'Precision-2.5': 0.5031055900621118,\n", + " 'F1-3.5': 0.21875,\n", + " 'Recall-3.5': 0.4666666666666667,\n", + " 'Precision-3.5': 0.14285714285714285,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9022943820962006},\n", + " 'CM': {'0': {'-1': 0, '0': 22, '1': 127, '2': 22, '3': 11, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 2, '1': 36, '2': 39, '3': 16, '4': 7, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 24, '2': 39, '3': 36, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 14, '2': 22, '3': 43, '4': 25, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 6, '4': 5, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Llama-3.3-70B-Instruct': {'metrics': {'Fleiss': 0.2046004842615012,\n", + " 'Cohen': 0.2250110001217035,\n", + " 'Spearman': 0.6923941758637462,\n", + " 'Kendall': 0.5793028368744321,\n", + " 'Krippendorff': 0.6058481057178213,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7573385518590998,\n", + " 'TA-4.0': 0.7279843444227005,\n", + " 'Acc': 0.3659491193737769,\n", + " 'MAE': 0.9895629484670582,\n", + " 'MSE': 2.0132637529897806,\n", + " 'CA-0': 0.5053763440860215,\n", + " 'CA-1': 0.4,\n", + " 'CA-2': 0.29245283018867924,\n", + " 'CA-3': 0.125,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 1.0,\n", + " 'Macro-F1': 0.2864863922307459,\n", + " 'Micro-F1': 0.3659491193737769,\n", + " 'F1-0_vs_rest': 0.6527777777777778,\n", + " 'F1-1_vs_rest': 0.34934497816593885,\n", + " 'F1-2_vs_rest': 0.328042328042328,\n", + " 'F1-3_vs_rest': 0.16774193548387098,\n", + " 'F1-4_vs_rest': 0.11290322580645161,\n", + " 'F1-5_vs_rest': 0.10810810810810811,\n", + " 'F1-0.5': 0.8637602179836512,\n", + " 'Recall-0.5': 0.9753846153846154,\n", + " 'Precision-0.5': 0.7750611246943765,\n", + " 'F1-1.5': 0.7762376237623763,\n", + " 'Recall-1.5': 0.8711111111111111,\n", + " 'Precision-1.5': 0.7,\n", + " 'F1-2.5': 0.6329113924050633,\n", + " 'Recall-2.5': 0.8403361344537815,\n", + " 'Precision-2.5': 0.5076142131979695,\n", + " 'F1-3.5': 0.13664596273291926,\n", + " 'Recall-3.5': 0.7333333333333333,\n", + " 'Precision-3.5': 0.07534246575342465,\n", + " 'F1-4.5': 0.10810810810810811,\n", + " 'Recall-4.5': 1.0,\n", + " 'Precision-4.5': 0.05714285714285714,\n", + " 'NDCG@all': 0.8974923026344537},\n", + " 'CM': {'0': {'-1': 0, '0': 94, '1': 62, '2': 16, '3': 6, '4': 4, '5': 4},\n", + " '1': {'-1': 0, '0': 6, '1': 40, '2': 25, '3': 7, '4': 15, '5': 7},\n", + " '2': {'-1': 0, '0': 2, '1': 19, '2': 31, '3': 21, '4': 25, '5': 8},\n", + " '3': {'-1': 0, '0': 0, '1': 8, '2': 11, '3': 13, '4': 60, '5': 12},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 4, '4': 7, '5': 2},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 2}}},\n", + " 'gemma-2-27b-it': {'metrics': {'Fleiss': 0.06032009053065508,\n", + " 'Cohen': 0.11404728789986096,\n", + " 'Spearman': 0.6722676976109881,\n", + " 'Kendall': 0.5769914456423153,\n", + " 'Krippendorff': 0.5423307740032739,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7514677103718199,\n", + " 'TA-4.0': 0.9373776908023483,\n", + " 'Acc': 0.2876712328767123,\n", + " 'MAE': 0.8701891715590346,\n", + " 'MSE': 1.2402696238312676,\n", + " 'CA-0': 0.03763440860215054,\n", + " 'CA-1': 0.39,\n", + " 'CA-2': 0.330188679245283,\n", + " 'CA-3': 0.625,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.20176038827083523,\n", + " 'Micro-F1': 0.2876712328767123,\n", + " 'F1-0_vs_rest': 0.07253886010362694,\n", + " 'F1-1_vs_rest': 0.2445141065830721,\n", + " 'F1-2_vs_rest': 0.30837004405286345,\n", + " 'F1-3_vs_rest': 0.5263157894736842,\n", + " 'F1-4_vs_rest': 0.058823529411764705,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7840772014475271,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6448412698412699,\n", + " 'F1-1.5': 0.7647058823529411,\n", + " 'Recall-1.5': 0.8666666666666667,\n", + " 'Precision-1.5': 0.6842105263157895,\n", + " 'F1-2.5': 0.6148409893992933,\n", + " 'Recall-2.5': 0.7310924369747899,\n", + " 'Precision-2.5': 0.5304878048780488,\n", + " 'F1-3.5': 0.1111111111111111,\n", + " 'Recall-3.5': 0.13333333333333333,\n", + " 'Precision-3.5': 0.09523809523809523,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8960171839458505},\n", + " 'CM': {'0': {'-1': 0, '0': 7, '1': 150, '2': 21, '3': 4, '4': 4, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 39, '2': 38, '3': 21, '4': 2, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 25, '2': 35, '3': 42, '4': 4, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 5, '2': 25, '3': 65, '4': 9, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 10, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Qwen2.5-32B-Instruct': {'metrics': {'Fleiss': 0.20016043748563153,\n", + " 'Cohen': 0.21535132126353773,\n", + " 'Spearman': 0.6492893432244073,\n", + " 'Kendall': 0.5440255102024589,\n", + " 'Krippendorff': 0.6000020380564974,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7397260273972602,\n", + " 'TA-4.0': 0.8140900195694716,\n", + " 'Acc': 0.37377690802348335,\n", + " 'MAE': 0.8917155903457274,\n", + " 'MSE': 1.5779517286366604,\n", + " 'CA-0': 0.5,\n", + " 'CA-1': 0.41,\n", + " 'CA-2': 0.2358490566037736,\n", + " 'CA-3': 0.23076923076923078,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.27362861265717014,\n", + " 'Micro-F1': 0.37377690802348335,\n", + " 'F1-0_vs_rest': 0.6262626262626263,\n", + " 'F1-1_vs_rest': 0.34024896265560167,\n", + " 'F1-2_vs_rest': 0.26737967914438504,\n", + " 'F1-3_vs_rest': 0.26373626373626374,\n", + " 'F1-4_vs_rest': 0.14414414414414414,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8468965517241379,\n", + " 'Recall-0.5': 0.9446153846153846,\n", + " 'Precision-0.5': 0.7675,\n", + " 'F1-1.5': 0.7396694214876033,\n", + " 'Recall-1.5': 0.7955555555555556,\n", + " 'Precision-1.5': 0.6911196911196911,\n", + " 'F1-2.5': 0.6060606060606061,\n", + " 'Recall-2.5': 0.7563025210084033,\n", + " 'Precision-2.5': 0.5056179775280899,\n", + " 'F1-3.5': 0.17391304347826086,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.1,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8869894075669653},\n", + " 'CM': {'0': {'-1': 0, '0': 93, '1': 64, '2': 18, '3': 6, '4': 4, '5': 1},\n", + " '1': {'-1': 0, '0': 8, '1': 41, '2': 23, '3': 15, '4': 12, '5': 1},\n", + " '2': {'-1': 0, '0': 6, '1': 26, '2': 25, '3': 28, '4': 21, '5': 0},\n", + " '3': {'-1': 0, '0': 4, '1': 10, '2': 15, '3': 24, '4': 51, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 5, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-7B-Instruct': {'metrics': {'Fleiss': -0.06549118992997581,\n", + " 'Cohen': 0.0024289968243115245,\n", + " 'Spearman': 0.6595291685609866,\n", + " 'Kendall': 0.5573747415151047,\n", + " 'Krippendorff': 0.33878320080769697,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6379647749510763,\n", + " 'TA-4.0': 0.7025440313111546,\n", + " 'Acc': 0.1506849315068493,\n", + " 'MAE': 1.2954990215264193,\n", + " 'MSE': 2.4540117416829754,\n", + " 'CA-0': 0.010752688172043012,\n", + " 'CA-1': 0.13,\n", + " 'CA-2': 0.3018867924528302,\n", + " 'CA-3': 0.21153846153846154,\n", + " 'CA-4': 0.6153846153846154,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.12015691254373674,\n", + " 'Micro-F1': 0.1506849315068493,\n", + " 'F1-0_vs_rest': 0.02127659574468085,\n", + " 'F1-1_vs_rest': 0.11607142857142858,\n", + " 'F1-2_vs_rest': 0.2591093117408907,\n", + " 'F1-3_vs_rest': 0.23036649214659685,\n", + " 'F1-4_vs_rest': 0.09411764705882353,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7793764988009593,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6385068762278978,\n", + " 'F1-1.5': 0.7180327868852459,\n", + " 'Recall-1.5': 0.9733333333333334,\n", + " 'Precision-1.5': 0.5688311688311688,\n", + " 'F1-2.5': 0.5785123966942148,\n", + " 'Recall-2.5': 0.8823529411764706,\n", + " 'Precision-2.5': 0.430327868852459,\n", + " 'F1-3.5': 0.11627906976744186,\n", + " 'Recall-3.5': 0.6666666666666666,\n", + " 'Precision-3.5': 0.06369426751592357,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.897278426639461},\n", + " 'CM': {'0': {'-1': 0, '0': 2, '1': 105, '2': 54, '3': 15, '4': 10, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 13, '2': 42, '3': 21, '4': 24, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 5, '2': 32, '3': 26, '4': 43, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 11, '3': 22, '4': 70, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 2, '3': 3, '4': 8, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'gemma-3-27b-it': {'metrics': {'Fleiss': -0.09321047526673132,\n", + " 'Cohen': -0.027124806918580102,\n", + " 'Spearman': 0.6997657000494523,\n", + " 'Kendall': 0.5917569903227342,\n", + " 'Krippendorff': 0.26328740529471906,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.6,\n", + " 'TA-4.0': 0.7529411764705882,\n", + " 'Acc': 0.13333333333333333,\n", + " 'MAE': 1.3875816993464052,\n", + " 'MSE': 2.7289760348583885,\n", + " 'CA-0': 0.0,\n", + " 'CA-1': 0.08080808080808081,\n", + " 'CA-2': 0.12264150943396226,\n", + " 'CA-3': 0.375,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.5,\n", + " 'Macro-F1': 0.12763890893645932,\n", + " 'Micro-F1': 0.13333333333333333,\n", + " 'F1-0_vs_rest': 0.0,\n", + " 'F1-1_vs_rest': 0.08121827411167512,\n", + " 'F1-2_vs_rest': 0.12807881773399016,\n", + " 'F1-3_vs_rest': 0.27177700348432055,\n", + " 'F1-4_vs_rest': 0.10294117647058823,\n", + " 'F1-5_vs_rest': 0.18181818181818182,\n", + " 'F1-0.5': 0.7769784172661871,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6352941176470588,\n", + " 'F1-1.5': 0.7001569858712716,\n", + " 'Recall-1.5': 0.9911111111111112,\n", + " 'Precision-1.5': 0.5412621359223301,\n", + " 'F1-2.5': 0.543778801843318,\n", + " 'Recall-2.5': 0.9915966386554622,\n", + " 'Precision-2.5': 0.3746031746031746,\n", + " 'F1-3.5': 0.12244897959183673,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.06818181818181818,\n", + " 'F1-4.5': 0.18181818181818182,\n", + " 'Recall-4.5': 0.5,\n", + " 'Precision-4.5': 0.1111111111111111,\n", + " 'NDCG@all': 0.8964794133440245},\n", + " 'CM': {'0': {'-1': 0, '0': 0, '1': 88, '2': 62, '3': 31, '4': 4, '5': 1},\n", + " '1': {'-1': 1, '0': 0, '1': 8, '2': 22, '3': 50, '4': 17, '5': 2},\n", + " '2': {'-1': 0, '0': 0, '1': 1, '2': 13, '3': 57, '4': 32, '5': 3},\n", + " '3': {'-1': 0, '0': 0, '1': 1, '2': 0, '3': 39, '4': 62, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 6, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 1}}},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'metrics': {'Fleiss': 0.2030603423577392,\n", + " 'Cohen': 0.22911234389986457,\n", + " 'Spearman': 0.686598954251573,\n", + " 'Kendall': 0.5809625091677925,\n", + " 'Krippendorff': 0.5942336007000478,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.7573385518590998,\n", + " 'TA-4.0': 0.9158512720156555,\n", + " 'Acc': 0.38747553816046965,\n", + " 'MAE': 0.7886497064579254,\n", + " 'MSE': 1.1913459447706019,\n", + " 'CA-0': 0.25806451612903225,\n", + " 'CA-1': 0.41,\n", + " 'CA-2': 0.5377358490566038,\n", + " 'CA-3': 0.4807692307692308,\n", + " 'CA-4': 0.15384615384615385,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2863413518106297,\n", + " 'Micro-F1': 0.38747553816046965,\n", + " 'F1-0_vs_rest': 0.41025641025641024,\n", + " 'F1-1_vs_rest': 0.30711610486891383,\n", + " 'F1-2_vs_rest': 0.4253731343283582,\n", + " 'F1-3_vs_rest': 0.49019607843137253,\n", + " 'F1-4_vs_rest': 0.0851063829787234,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8248730964467005,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.7019438444924406,\n", + " 'F1-1.5': 0.7869481765834933,\n", + " 'Recall-1.5': 0.9111111111111111,\n", + " 'Precision-1.5': 0.6925675675675675,\n", + " 'F1-2.5': 0.5928853754940712,\n", + " 'Recall-2.5': 0.6302521008403361,\n", + " 'Precision-2.5': 0.5597014925373134,\n", + " 'F1-3.5': 0.12244897959183673,\n", + " 'Recall-3.5': 0.2,\n", + " 'Precision-3.5': 0.08823529411764706,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8963016134450722},\n", + " 'CM': {'0': {'-1': 0, '0': 48, '1': 106, '2': 26, '3': 1, '4': 5, '5': 0},\n", + " '1': {'-1': 0, '0': 0, '1': 41, '2': 39, '3': 15, '4': 5, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 16, '2': 57, '3': 27, '4': 6, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 35, '3': 50, '4': 15, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 5, '3': 6, '4': 2, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 1, '4': 1, '5': 0}}},\n", + " 'Llama-3.2-3B-Instruct': {'metrics': {'Fleiss': -0.015194313931290941,\n", + " 'Cohen': 0.044031415001724694,\n", + " 'Spearman': 0.5246848735548737,\n", + " 'Kendall': 0.4223291996288165,\n", + " 'Krippendorff': 0.2244617734534572,\n", + " 'Invalid': 212,\n", + " 'TA-2.0': 0.5919732441471572,\n", + " 'TA-4.0': 0.7157190635451505,\n", + " 'Acc': 0.1939799331103679,\n", + " 'MAE': 1.4007803790412485,\n", + " 'MSE': 3.0723708658491273,\n", + " 'CA-0': 0.17094017094017094,\n", + " 'CA-1': 0.11666666666666667,\n", + " 'CA-2': 0.2857142857142857,\n", + " 'CA-3': 0.20754716981132076,\n", + " 'CA-4': 0.4,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.15272123502026536,\n", + " 'Micro-F1': 0.1939799331103679,\n", + " 'F1-0_vs_rest': 0.28776978417266186,\n", + " 'F1-1_vs_rest': 0.14285714285714285,\n", + " 'F1-2_vs_rest': 0.2222222222222222,\n", + " 'F1-3_vs_rest': 0.22,\n", + " 'F1-4_vs_rest': 0.043478260869565216,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7843137254901961,\n", + " 'Recall-0.5': 0.989010989010989,\n", + " 'Precision-0.5': 0.6498194945848376,\n", + " 'F1-1.5': 0.6537396121883656,\n", + " 'Recall-1.5': 0.9672131147540983,\n", + " 'Precision-1.5': 0.49372384937238495,\n", + " 'F1-2.5': 0.4723618090452261,\n", + " 'Recall-2.5': 0.7966101694915254,\n", + " 'Precision-2.5': 0.3357142857142857,\n", + " 'F1-3.5': 0.06060606060606061,\n", + " 'Recall-3.5': 0.5,\n", + " 'Precision-3.5': 0.03225806451612903,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8499529631689791},\n", + " 'CM': {'0': {'-1': 69, '0': 20, '1': 29, '2': 46, '3': 9, '4': 12, '5': 1},\n", + " '1': {'-1': 40, '0': 0, '1': 7, '2': 23, '3': 9, '4': 19, '5': 2},\n", + " '2': {'-1': 43, '0': 2, '1': 2, '2': 18, '3': 17, '4': 24, '5': 0},\n", + " '3': {'-1': 51, '0': 0, '1': 0, '2': 10, '3': 11, '4': 29, '5': 3},\n", + " '4': {'-1': 8, '0': 0, '1': 0, '2': 2, '3': 1, '4': 2, '5': 0},\n", + " '5': {'-1': 1, '0': 0, '1': 0, '2': 0, '3': 0, '4': 1, '5': 0}}},\n", + " 'gemma-2-9b-it': {'metrics': {'Fleiss': 0.16980417350263502,\n", + " 'Cohen': 0.20283123202831232,\n", + " 'Spearman': 0.696039557933567,\n", + " 'Kendall': 0.59414305625388,\n", + " 'Krippendorff': 0.6197253239511314,\n", + " 'Invalid': 1,\n", + " 'TA-2.0': 0.7725490196078432,\n", + " 'TA-4.0': 0.9647058823529412,\n", + " 'Acc': 0.3764705882352941,\n", + " 'MAE': 0.7424836601307186,\n", + " 'MSE': 0.9577342047930282,\n", + " 'CA-0': 0.26881720430107525,\n", + " 'CA-1': 0.39,\n", + " 'CA-2': 0.5943396226415094,\n", + " 'CA-3': 0.3786407766990291,\n", + " 'CA-4': 0.07692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.2759384652694677,\n", + " 'Micro-F1': 0.3764705882352941,\n", + " 'F1-0_vs_rest': 0.4166666666666667,\n", + " 'F1-1_vs_rest': 0.2878228782287823,\n", + " 'F1-2_vs_rest': 0.4090909090909091,\n", + " 'F1-3_vs_rest': 0.430939226519337,\n", + " 'F1-4_vs_rest': 0.1111111111111111,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8205128205128205,\n", + " 'Recall-0.5': 0.9876543209876543,\n", + " 'Precision-0.5': 0.7017543859649122,\n", + " 'F1-1.5': 0.7897838899803536,\n", + " 'Recall-1.5': 0.8973214285714286,\n", + " 'Precision-1.5': 0.7052631578947368,\n", + " 'F1-2.5': 0.47761194029850745,\n", + " 'Recall-2.5': 0.4067796610169492,\n", + " 'Precision-2.5': 0.5783132530120482,\n", + " 'F1-3.5': 0.1,\n", + " 'Recall-3.5': 0.06666666666666667,\n", + " 'Precision-3.5': 0.2,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.9045518572460287},\n", + " 'CM': {'0': {'-1': 0, '0': 50, '1': 110, '2': 23, '3': 3, '4': 0, '5': 0},\n", + " '1': {'-1': 0, '0': 3, '1': 39, '2': 49, '3': 8, '4': 1, '5': 0},\n", + " '2': {'-1': 0, '0': 1, '1': 19, '2': 63, '3': 21, '4': 2, '5': 0},\n", + " '3': {'-1': 1, '0': 0, '1': 3, '2': 60, '3': 39, '4': 1, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 7, '3': 5, '4': 1, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 2, '4': 0, '5': 0}}},\n", + " 'Llama-3.1-8B-Instruct': {'metrics': {'Fleiss': 0.14013325530803808,\n", + " 'Cohen': 0.16073642259264187,\n", + " 'Spearman': 0.6574998965887701,\n", + " 'Kendall': 0.5434094381749343,\n", + " 'Krippendorff': 0.5721133943736478,\n", + " 'Invalid': 19,\n", + " 'TA-2.0': 0.7357723577235772,\n", + " 'TA-4.0': 0.8516260162601627,\n", + " 'Acc': 0.3231707317073171,\n", + " 'MAE': 0.9115853658536582,\n", + " 'MSE': 1.519817073170732,\n", + " 'CA-0': 0.33519553072625696,\n", + " 'CA-1': 0.23404255319148937,\n", + " 'CA-2': 0.38235294117647056,\n", + " 'CA-3': 0.30392156862745096,\n", + " 'CA-4': 0.5384615384615384,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.24914790780184184,\n", + " 'Micro-F1': 0.3231707317073171,\n", + " 'F1-0_vs_rest': 0.4819277108433735,\n", + " 'F1-1_vs_rest': 0.22,\n", + " 'F1-2_vs_rest': 0.32231404958677684,\n", + " 'F1-3_vs_rest': 0.3263157894736842,\n", + " 'F1-4_vs_rest': 0.14432989690721648,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.8244897959183674,\n", + " 'Recall-0.5': 0.9680511182108626,\n", + " 'Precision-0.5': 0.7180094786729858,\n", + " 'F1-1.5': 0.7476635514018691,\n", + " 'Recall-1.5': 0.91324200913242,\n", + " 'Precision-1.5': 0.6329113924050633,\n", + " 'F1-2.5': 0.621160409556314,\n", + " 'Recall-2.5': 0.7777777777777778,\n", + " 'Precision-2.5': 0.5170454545454546,\n", + " 'F1-3.5': 0.17475728155339806,\n", + " 'Recall-3.5': 0.6,\n", + " 'Precision-3.5': 0.10227272727272728,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8989956000238616},\n", + " 'CM': {'0': {'-1': 7, '0': 60, '1': 67, '2': 38, '3': 9, '4': 4, '5': 1},\n", + " '1': {'-1': 6, '0': 8, '1': 22, '2': 43, '3': 11, '4': 9, '5': 1},\n", + " '2': {'-1': 4, '0': 2, '1': 11, '2': 39, '3': 31, '4': 19, '5': 0},\n", + " '3': {'-1': 2, '0': 0, '1': 6, '2': 20, '3': 31, '4': 43, '5': 2},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 6, '4': 7, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}},\n", + " 'Qwen2.5-72B-Instruct': {'metrics': {'Fleiss': -0.04149722289302098,\n", + " 'Cohen': 0.009967265498386335,\n", + " 'Spearman': 0.6266890413298536,\n", + " 'Kendall': 0.5264194487824005,\n", + " 'Krippendorff': 0.3479816108585173,\n", + " 'Invalid': 0,\n", + " 'TA-2.0': 0.6066536203522505,\n", + " 'TA-4.0': 0.7886497064579256,\n", + " 'Acc': 0.17416829745596868,\n", + " 'MAE': 1.2354859752120027,\n", + " 'MSE': 2.2722330941509026,\n", + " 'CA-0': 0.06451612903225806,\n", + " 'CA-1': 0.13,\n", + " 'CA-2': 0.2169811320754717,\n", + " 'CA-3': 0.2980769230769231,\n", + " 'CA-4': 0.7692307692307693,\n", + " 'CA-5': 0.0,\n", + " 'Macro-F1': 0.14251999089643083,\n", + " 'Micro-F1': 0.17416829745596868,\n", + " 'F1-0_vs_rest': 0.12121212121212122,\n", + " 'F1-1_vs_rest': 0.12149532710280374,\n", + " 'F1-2_vs_rest': 0.18181818181818182,\n", + " 'F1-3_vs_rest': 0.27555555555555555,\n", + " 'F1-4_vs_rest': 0.15503875968992248,\n", + " 'F1-5_vs_rest': 0.0,\n", + " 'F1-0.5': 0.7888349514563107,\n", + " 'Recall-0.5': 1.0,\n", + " 'Precision-0.5': 0.6513026052104208,\n", + " 'F1-1.5': 0.6885245901639344,\n", + " 'Recall-1.5': 0.9333333333333333,\n", + " 'Precision-1.5': 0.5454545454545454,\n", + " 'F1-2.5': 0.5602240896358543,\n", + " 'Recall-2.5': 0.8403361344537815,\n", + " 'Precision-2.5': 0.42016806722689076,\n", + " 'F1-3.5': 0.18181818181818182,\n", + " 'Recall-3.5': 0.8,\n", + " 'Precision-3.5': 0.10256410256410256,\n", + " 'F1-4.5': 0.0,\n", + " 'Recall-4.5': 0.0,\n", + " 'Precision-4.5': 0.0,\n", + " 'NDCG@all': 0.8871628544616091},\n", + " 'CM': {'0': {'-1': 0, '0': 12, '1': 86, '2': 62, '3': 20, '4': 5, '5': 1},\n", + " '1': {'-1': 0, '0': 0, '1': 13, '2': 47, '3': 26, '4': 14, '5': 0},\n", + " '2': {'-1': 0, '0': 0, '1': 11, '2': 23, '3': 41, '4': 31, '5': 0},\n", + " '3': {'-1': 0, '0': 0, '1': 4, '2': 15, '3': 31, '4': 54, '5': 0},\n", + " '4': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 3, '4': 10, '5': 0},\n", + " '5': {'-1': 0, '0': 0, '1': 0, '2': 0, '3': 0, '4': 2, '5': 0}}}}}" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results_complete = {}\n", + "for path in list(llm_as_a_judge_metrics_path.glob(\"**/*.json\")):\n", + " language = path.parts[-2]\n", + " model = path.stem.split(\"_\")[2]\n", + " if language not in results_complete:\n", + " results_complete[language] = {}\n", + " with open(path, 'r') as f:\n", + " data = json.load(f)\n", + " results_complete[language][model] = data\n", + "\n", + "results_complete" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "773163e1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'bg': {'phi-4': 0.636985906295526,\n", + " 'Qwen2.5-14B-Instruct': 0.591981858701982,\n", + " 'Llama-3.3-70B-Instruct': 0.6949435819158003,\n", + " 'gemma-2-27b-it': 0.665015121881333,\n", + " 'Qwen2.5-32B-Instruct': 0.6548091179003084,\n", + " 'Qwen2.5-7B-Instruct': 0.5917735395767074,\n", + " 'gemma-3-27b-it': 0.7121437200586265,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.7120255639992602,\n", + " 'Llama-3.2-3B-Instruct': 0.4670353897953112,\n", + " 'gemma-2-9b-it': 0.691804608571313,\n", + " 'Llama-3.1-8B-Instruct': 0.6648756282989798,\n", + " 'Qwen2.5-72B-Instruct': 0.6075480658175866},\n", + " 'nn': {'phi-4': 0.634040725900716,\n", + " 'Qwen2.5-14B-Instruct': 0.5848739446808434,\n", + " 'Llama-3.3-70B-Instruct': 0.6845612778214859,\n", + " 'gemma-2-27b-it': 0.6069087021477471,\n", + " 'Qwen2.5-32B-Instruct': 0.6500373105943037,\n", + " 'Qwen2.5-7B-Instruct': 0.6095380753376158,\n", + " 'gemma-3-27b-it': 0.6956512373043822,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.647420568112268,\n", + " 'Llama-3.2-3B-Instruct': 0.4340909875992279,\n", + " 'gemma-2-9b-it': 0.6657686594626404,\n", + " 'Llama-3.1-8B-Instruct': 0.6615289237764627,\n", + " 'Qwen2.5-72B-Instruct': 0.6280202984692997},\n", + " 'sq': {'phi-4': 0.6245111661920767,\n", + " 'Qwen2.5-14B-Instruct': 0.6083300415015487,\n", + " 'Llama-3.3-70B-Instruct': 0.6954788065437562,\n", + " 'gemma-2-27b-it': 0.63524288413785,\n", + " 'Qwen2.5-32B-Instruct': 0.6585330014328645,\n", + " 'Qwen2.5-7B-Instruct': 0.6235393914987921,\n", + " 'gemma-3-27b-it': 0.6919942016950994,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6734350800449852,\n", + " 'Llama-3.2-3B-Instruct': 0.35921921068177504,\n", + " 'gemma-2-9b-it': 0.6892349330543994,\n", + " 'Llama-3.1-8B-Instruct': 0.678574708423601,\n", + " 'Qwen2.5-72B-Instruct': 0.6439282024623049},\n", + " 'nb': {'phi-4': 0.6563181307136616,\n", + " 'Qwen2.5-14B-Instruct': 0.5946243553177213,\n", + " 'Llama-3.3-70B-Instruct': 0.6935803198625042,\n", + " 'gemma-2-27b-it': 0.6134978838460946,\n", + " 'Qwen2.5-32B-Instruct': 0.659861073319925,\n", + " 'Qwen2.5-7B-Instruct': 0.6286145557631627,\n", + " 'gemma-3-27b-it': 0.7011387123642994,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6804091524864903,\n", + " 'Llama-3.2-3B-Instruct': 0.47486473315204364,\n", + " 'gemma-2-9b-it': 0.6986179274966334,\n", + " 'Llama-3.1-8B-Instruct': 0.6264739506274926,\n", + " 'Qwen2.5-72B-Instruct': 0.6219216252080505},\n", + " 'et': {'phi-4': 0.6566756846898585,\n", + " 'Qwen2.5-14B-Instruct': 0.5956360590128252,\n", + " 'Llama-3.3-70B-Instruct': 0.7070158912394379,\n", + " 'gemma-2-27b-it': 0.65735345677687,\n", + " 'Qwen2.5-32B-Instruct': 0.6456343157414739,\n", + " 'Qwen2.5-7B-Instruct': 0.6763546819274491,\n", + " 'gemma-3-27b-it': 0.707520571044935,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6644256929785255,\n", + " 'Llama-3.2-3B-Instruct': 0.3432645593736001,\n", + " 'gemma-2-9b-it': 0.6971600041831558,\n", + " 'Llama-3.1-8B-Instruct': 0.635154729662691,\n", + " 'Qwen2.5-72B-Instruct': 0.6165461936907847},\n", + " 'fi': {'phi-4': 0.6431971250533177,\n", + " 'Qwen2.5-14B-Instruct': 0.5753257918187117,\n", + " 'Llama-3.3-70B-Instruct': 0.692986433376017,\n", + " 'gemma-2-27b-it': 0.6193441128720899,\n", + " 'Qwen2.5-32B-Instruct': 0.6436732674970624,\n", + " 'Qwen2.5-7B-Instruct': 0.6585517101461686,\n", + " 'gemma-3-27b-it': 0.6984872995286274,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6828395768356903,\n", + " 'Llama-3.2-3B-Instruct': 0.40082114874913743,\n", + " 'gemma-2-9b-it': 0.6791813625289526,\n", + " 'Llama-3.1-8B-Instruct': 0.6454197303558545,\n", + " 'Qwen2.5-72B-Instruct': 0.6450452722543237},\n", + " 'sh': {'phi-4': 0.6554663925488476,\n", + " 'Qwen2.5-14B-Instruct': 0.623576292531096,\n", + " 'Llama-3.3-70B-Instruct': 0.674819904250106,\n", + " 'gemma-2-27b-it': 0.6286083427715494,\n", + " 'Qwen2.5-32B-Instruct': 0.6761963882518163,\n", + " 'Qwen2.5-7B-Instruct': 0.6291692291598887,\n", + " 'gemma-3-27b-it': 0.6918590835361813,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6773996874892033,\n", + " 'Llama-3.2-3B-Instruct': 0.44308363524283045,\n", + " 'gemma-2-9b-it': 0.6984476056476294,\n", + " 'Llama-3.1-8B-Instruct': 0.6871907106901511,\n", + " 'Qwen2.5-72B-Instruct': 0.6309446962555323},\n", + " 'hy': {'phi-4': 0.5719106287459507,\n", + " 'Qwen2.5-14B-Instruct': 0.5381011974727566,\n", + " 'Llama-3.3-70B-Instruct': 0.6660551580883765,\n", + " 'gemma-2-27b-it': 0.6564826152980173,\n", + " 'Qwen2.5-32B-Instruct': 0.624367789831242,\n", + " 'Qwen2.5-7B-Instruct': 0.5656676125374659,\n", + " 'gemma-3-27b-it': 0.7120379814384182,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6592964222577726,\n", + " 'Llama-3.2-3B-Instruct': 0.3611669042541707,\n", + " 'gemma-2-9b-it': 0.6657677007442705,\n", + " 'Llama-3.1-8B-Instruct': 0.6271738753182688,\n", + " 'Qwen2.5-72B-Instruct': 0.6134831783342036},\n", + " 'hr': {'phi-4': 0.6703029479182365,\n", + " 'Qwen2.5-14B-Instruct': 0.5930093633035253,\n", + " 'Llama-3.3-70B-Instruct': 0.6877385523570422,\n", + " 'gemma-2-27b-it': 0.6687948306293467,\n", + " 'Qwen2.5-32B-Instruct': 0.6511385385355974,\n", + " 'Qwen2.5-7B-Instruct': 0.6231946820096644,\n", + " 'gemma-3-27b-it': 0.7040813452227204,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.706880756986347,\n", + " 'Llama-3.2-3B-Instruct': 0.4622799973940039,\n", + " 'gemma-2-9b-it': 0.6908199159401305,\n", + " 'Llama-3.1-8B-Instruct': 0.646811506963114,\n", + " 'Qwen2.5-72B-Instruct': 0.6354242827810219},\n", + " 'el': {'phi-4': 0.6183578406474384,\n", + " 'Qwen2.5-14B-Instruct': 0.587040293888872,\n", + " 'Llama-3.3-70B-Instruct': 0.6899182854708372,\n", + " 'gemma-2-27b-it': 0.6545541939296697,\n", + " 'Qwen2.5-32B-Instruct': 0.6307567152373387,\n", + " 'Qwen2.5-7B-Instruct': 0.639703838313411,\n", + " 'gemma-3-27b-it': 0.7050367116075933,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.7046284888610606,\n", + " 'Llama-3.2-3B-Instruct': 0.48375095770315674,\n", + " 'gemma-2-9b-it': 0.6951791157786579,\n", + " 'Llama-3.1-8B-Instruct': 0.6486097317978743,\n", + " 'Qwen2.5-72B-Instruct': 0.6157309164701358},\n", + " 'mt': {'phi-4': 0.6152128834145014,\n", + " 'Qwen2.5-14B-Instruct': 0.5602689093473517,\n", + " 'Llama-3.3-70B-Instruct': 0.674016633289588,\n", + " 'gemma-2-27b-it': 0.6528755007075321,\n", + " 'Qwen2.5-32B-Instruct': 0.6592188711650635,\n", + " 'Qwen2.5-7B-Instruct': 0.5929470487557785,\n", + " 'gemma-3-27b-it': 0.6722684801511977,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6596022979210151,\n", + " 'Llama-3.2-3B-Instruct': 0.38704970527708393,\n", + " 'gemma-2-9b-it': 0.6580776465133312,\n", + " 'Llama-3.1-8B-Instruct': 0.6470376646053079,\n", + " 'Qwen2.5-72B-Instruct': 0.6270882233604248},\n", + " 'eu': {'phi-4': 0.6268184296895588,\n", + " 'Qwen2.5-14B-Instruct': 0.5722588447139946,\n", + " 'Llama-3.3-70B-Instruct': 0.7045551180816955,\n", + " 'gemma-2-27b-it': 0.6492218313912486,\n", + " 'Qwen2.5-32B-Instruct': 0.6764856256669906,\n", + " 'Qwen2.5-7B-Instruct': 0.5848071285993002,\n", + " 'gemma-3-27b-it': 0.7022592249353097,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6822382470653958,\n", + " 'Llama-3.2-3B-Instruct': 0.33978824081969095,\n", + " 'gemma-2-9b-it': 0.7003532938236706,\n", + " 'Llama-3.1-8B-Instruct': 0.6844696943568959,\n", + " 'Qwen2.5-72B-Instruct': 0.6192926162199824},\n", + " 'da': {'phi-4': 0.6355681406117013,\n", + " 'Qwen2.5-14B-Instruct': 0.5938060125908852,\n", + " 'Llama-3.3-70B-Instruct': 0.6878616785100714,\n", + " 'gemma-2-27b-it': 0.6200934109244058,\n", + " 'Qwen2.5-32B-Instruct': 0.6654808023512272,\n", + " 'Qwen2.5-7B-Instruct': 0.662467179979225,\n", + " 'gemma-3-27b-it': 0.7127071328403662,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6830487530099215,\n", + " 'Llama-3.2-3B-Instruct': 0.5253645190079144,\n", + " 'gemma-2-9b-it': 0.6804885069016888,\n", + " 'Llama-3.1-8B-Instruct': 0.6410946148477193,\n", + " 'Qwen2.5-72B-Instruct': 0.6316753484512889},\n", + " 'mk': {'phi-4': 0.6185226818256321,\n", + " 'Qwen2.5-14B-Instruct': 0.5891677577150736,\n", + " 'Llama-3.3-70B-Instruct': 0.6916393105910902,\n", + " 'gemma-2-27b-it': 0.6648605725818062,\n", + " 'Qwen2.5-32B-Instruct': 0.651702042178097,\n", + " 'Qwen2.5-7B-Instruct': 0.6182319643008533,\n", + " 'gemma-3-27b-it': 0.6982585706314755,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6886037723317114,\n", + " 'Llama-3.2-3B-Instruct': 0.4584913379406041,\n", + " 'gemma-2-9b-it': 0.6944544899748724,\n", + " 'Llama-3.1-8B-Instruct': 0.6850548387772861,\n", + " 'Qwen2.5-72B-Instruct': 0.6336290552747106},\n", + " 'sv': {'phi-4': 0.6466607960801041,\n", + " 'Qwen2.5-14B-Instruct': 0.591646329807139,\n", + " 'Llama-3.3-70B-Instruct': 0.6909643456979241,\n", + " 'gemma-2-27b-it': 0.6618758502020395,\n", + " 'Qwen2.5-32B-Instruct': 0.6638122072777445,\n", + " 'Qwen2.5-7B-Instruct': 0.6560692433514062,\n", + " 'gemma-3-27b-it': 0.7167548185707496,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6933402342854686,\n", + " 'Llama-3.2-3B-Instruct': 0.5414884179588088,\n", + " 'gemma-2-9b-it': 0.6894573751544244,\n", + " 'Llama-3.1-8B-Instruct': 0.6252027549817402,\n", + " 'Qwen2.5-72B-Instruct': 0.6595696205389856},\n", + " 'pl': {'phi-4': 0.6578205554398511,\n", + " 'Qwen2.5-14B-Instruct': 0.5877767401802108,\n", + " 'Llama-3.3-70B-Instruct': 0.6897283835821124,\n", + " 'gemma-2-27b-it': 0.6317048923049332,\n", + " 'Qwen2.5-32B-Instruct': 0.6416288817552053,\n", + " 'Qwen2.5-7B-Instruct': 0.6050722394407275,\n", + " 'gemma-3-27b-it': 0.7290343318484526,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6650968172974302,\n", + " 'Llama-3.2-3B-Instruct': 0.4473328475253046,\n", + " 'gemma-2-9b-it': 0.6982136541973727,\n", + " 'Llama-3.1-8B-Instruct': 0.6542129292940191,\n", + " 'Qwen2.5-72B-Instruct': 0.6266969844686984},\n", + " 'cs': {'phi-4': 0.6425275924136147,\n", + " 'Qwen2.5-14B-Instruct': 0.5995512861609984,\n", + " 'Llama-3.3-70B-Instruct': 0.6904211403747502,\n", + " 'gemma-2-27b-it': 0.6742456665520513,\n", + " 'Qwen2.5-32B-Instruct': 0.656749799677534,\n", + " 'Qwen2.5-7B-Instruct': 0.6499739397071886,\n", + " 'gemma-3-27b-it': 0.729521530573961,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6996206086490144,\n", + " 'Llama-3.2-3B-Instruct': 0.4777873799906214,\n", + " 'gemma-2-9b-it': 0.6891610068094658,\n", + " 'Llama-3.1-8B-Instruct': 0.6647051078956249,\n", + " 'Qwen2.5-72B-Instruct': 0.6425889899511723},\n", + " 'es': {'phi-4': 0.6424367358777032,\n", + " 'Qwen2.5-14B-Instruct': 0.6099698453842608,\n", + " 'Llama-3.3-70B-Instruct': 0.7044638593677771,\n", + " 'gemma-2-27b-it': 0.6597547052001983,\n", + " 'Qwen2.5-32B-Instruct': 0.6631586054654145,\n", + " 'Qwen2.5-7B-Instruct': 0.6205995096384024,\n", + " 'gemma-3-27b-it': 0.7038622450040771,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6837274044778654,\n", + " 'Llama-3.2-3B-Instruct': 0.5635429636532285,\n", + " 'gemma-2-9b-it': 0.6639432528754559,\n", + " 'Llama-3.1-8B-Instruct': 0.6513410297019224,\n", + " 'Qwen2.5-72B-Instruct': 0.6472580554659703},\n", + " 'tr': {'phi-4': 0.6583440225936218,\n", + " 'Qwen2.5-14B-Instruct': 0.6167791376721194,\n", + " 'Llama-3.3-70B-Instruct': 0.6971656587338136,\n", + " 'gemma-2-27b-it': 0.6624890748701617,\n", + " 'Qwen2.5-32B-Instruct': 0.6486405721607714,\n", + " 'Qwen2.5-7B-Instruct': 0.6492371073148979,\n", + " 'gemma-3-27b-it': 0.6872040626458895,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.7195268341555376,\n", + " 'Llama-3.2-3B-Instruct': 0.4843881921578221,\n", + " 'gemma-2-9b-it': 0.6981729360300727,\n", + " 'Llama-3.1-8B-Instruct': 0.64268970405614,\n", + " 'Qwen2.5-72B-Instruct': 0.6380158291371096},\n", + " 'fr': {'phi-4': 0.6224269044724228,\n", + " 'Qwen2.5-14B-Instruct': 0.6228714762402974,\n", + " 'Llama-3.3-70B-Instruct': 0.7009376881007874,\n", + " 'gemma-2-27b-it': 0.6420812835845574,\n", + " 'Qwen2.5-32B-Instruct': 0.6289326720306853,\n", + " 'Qwen2.5-7B-Instruct': 0.5871886761222456,\n", + " 'gemma-3-27b-it': 0.699135214557241,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.683769586871251,\n", + " 'Llama-3.2-3B-Instruct': 0.48386426008364597,\n", + " 'gemma-2-9b-it': 0.6877443984173865,\n", + " 'Llama-3.1-8B-Instruct': 0.6671851880365198,\n", + " 'Qwen2.5-72B-Instruct': 0.6362640861493704},\n", + " 'nl': {'phi-4': 0.6017338518953714,\n", + " 'Qwen2.5-14B-Instruct': 0.6150116797901293,\n", + " 'Llama-3.3-70B-Instruct': 0.6786086903747087,\n", + " 'gemma-2-27b-it': 0.6394215435120016,\n", + " 'Qwen2.5-32B-Instruct': 0.6513746043526876,\n", + " 'Qwen2.5-7B-Instruct': 0.6445973541437551,\n", + " 'gemma-3-27b-it': 0.6989913208087782,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6942254307446798,\n", + " 'Llama-3.2-3B-Instruct': 0.5649511005348035,\n", + " 'gemma-2-9b-it': 0.6804738889270094,\n", + " 'Llama-3.1-8B-Instruct': 0.6282193233965776,\n", + " 'Qwen2.5-72B-Instruct': 0.6409816882191227},\n", + " 'de': {'phi-4': 0.6276948531045122,\n", + " 'Qwen2.5-14B-Instruct': 0.5871325263469134,\n", + " 'Llama-3.3-70B-Instruct': 0.697175369075446,\n", + " 'gemma-2-27b-it': 0.6218870534802078,\n", + " 'Qwen2.5-32B-Instruct': 0.638094327670404,\n", + " 'Qwen2.5-7B-Instruct': 0.6222004781558779,\n", + " 'gemma-3-27b-it': 0.68367956094756,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.7048528909290414,\n", + " 'Llama-3.2-3B-Instruct': 0.6014058610578566,\n", + " 'gemma-2-9b-it': 0.6915812578630529,\n", + " 'Llama-3.1-8B-Instruct': 0.6154631597016689,\n", + " 'Qwen2.5-72B-Instruct': 0.6500245441904008},\n", + " 'it': {'phi-4': 0.6276525154745057,\n", + " 'Qwen2.5-14B-Instruct': 0.58492992934578,\n", + " 'Llama-3.3-70B-Instruct': 0.6850493006295878,\n", + " 'gemma-2-27b-it': 0.6318601928415856,\n", + " 'Qwen2.5-32B-Instruct': 0.6670290182364002,\n", + " 'Qwen2.5-7B-Instruct': 0.6090754952932688,\n", + " 'gemma-3-27b-it': 0.7055295165209193,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6686477475607646,\n", + " 'Llama-3.2-3B-Instruct': 0.4790301254803887,\n", + " 'gemma-2-9b-it': 0.6761206514872166,\n", + " 'Llama-3.1-8B-Instruct': 0.6715447771041636,\n", + " 'Qwen2.5-72B-Instruct': 0.6298714793309707},\n", + " 'ro': {'phi-4': 0.6473128154430938,\n", + " 'Qwen2.5-14B-Instruct': 0.5951731806789663,\n", + " 'Llama-3.3-70B-Instruct': 0.6955869318500117,\n", + " 'gemma-2-27b-it': 0.6493877405360879,\n", + " 'Qwen2.5-32B-Instruct': 0.6562437998651242,\n", + " 'Qwen2.5-7B-Instruct': 0.630305505223741,\n", + " 'gemma-3-27b-it': 0.7178107376949358,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6838791945060071,\n", + " 'Llama-3.2-3B-Instruct': 0.538972633923543,\n", + " 'gemma-2-9b-it': 0.6772796626780714,\n", + " 'Llama-3.1-8B-Instruct': 0.6862066027045421,\n", + " 'Qwen2.5-72B-Instruct': 0.6307093215547209},\n", + " 'lt': {'phi-4': 0.6380591962126064,\n", + " 'Qwen2.5-14B-Instruct': 0.5894550466137274,\n", + " 'Llama-3.3-70B-Instruct': 0.6970744759953631,\n", + " 'gemma-2-27b-it': 0.6598908712189564,\n", + " 'Qwen2.5-32B-Instruct': 0.6421188811925679,\n", + " 'Qwen2.5-7B-Instruct': 0.6317197197764564,\n", + " 'gemma-3-27b-it': 0.7074118502355783,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6908544200618558,\n", + " 'Llama-3.2-3B-Instruct': 0.48669414166879044,\n", + " 'gemma-2-9b-it': 0.6865798016418396,\n", + " 'Llama-3.1-8B-Instruct': 0.6579838540956281,\n", + " 'Qwen2.5-72B-Instruct': 0.6534612270353615},\n", + " 'pt': {'phi-4': 0.6200646754318665,\n", + " 'Qwen2.5-14B-Instruct': 0.6298004540049054,\n", + " 'Llama-3.3-70B-Instruct': 0.6852172123546514,\n", + " 'gemma-2-27b-it': 0.6713700137356197,\n", + " 'Qwen2.5-32B-Instruct': 0.6441188756506936,\n", + " 'Qwen2.5-7B-Instruct': 0.5979050885526739,\n", + " 'gemma-3-27b-it': 0.6829944017592054,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6548304184744376,\n", + " 'Llama-3.2-3B-Instruct': 0.6281247255234246,\n", + " 'gemma-2-9b-it': 0.6873702626299159,\n", + " 'Llama-3.1-8B-Instruct': 0.6487259929645315,\n", + " 'Qwen2.5-72B-Instruct': 0.6236014766333406},\n", + " 'ga': {'phi-4': 0.6342510093639441,\n", + " 'Qwen2.5-14B-Instruct': 0.5189714955229375,\n", + " 'Llama-3.3-70B-Instruct': 0.7008924663672177,\n", + " 'gemma-2-27b-it': 0.618260212980319,\n", + " 'Qwen2.5-32B-Instruct': 0.6147307462328605,\n", + " 'Qwen2.5-7B-Instruct': 0.5561814345910385,\n", + " 'gemma-3-27b-it': 0.6741647223298821,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6816369364591798,\n", + " 'Llama-3.2-3B-Instruct': 0.28026868821908546,\n", + " 'gemma-2-9b-it': 0.6441946775817693,\n", + " 'Llama-3.1-8B-Instruct': 0.6144327619913339,\n", + " 'Qwen2.5-72B-Instruct': 0.6225953537567184},\n", + " 'sr': {'phi-4': 0.6593492179508463,\n", + " 'Qwen2.5-14B-Instruct': 0.6273747864707626,\n", + " 'Llama-3.3-70B-Instruct': 0.6870100190860253,\n", + " 'gemma-2-27b-it': 0.6451923877296519,\n", + " 'Qwen2.5-32B-Instruct': 0.6657829767642025,\n", + " 'Qwen2.5-7B-Instruct': 0.6334971901111014,\n", + " 'gemma-3-27b-it': 0.6956133403626067,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6961203304597621,\n", + " 'Llama-3.2-3B-Instruct': 0.37827235474335846,\n", + " 'gemma-2-9b-it': 0.6773168029591019,\n", + " 'Llama-3.1-8B-Instruct': 0.7076341648601796,\n", + " 'Qwen2.5-72B-Instruct': 0.6434536100479542},\n", + " 'gl': {'phi-4': 0.6432511041115291,\n", + " 'Qwen2.5-14B-Instruct': 0.5822913412469801,\n", + " 'Llama-3.3-70B-Instruct': 0.6917950794360014,\n", + " 'gemma-2-27b-it': 0.6297149099492506,\n", + " 'Qwen2.5-32B-Instruct': 0.6589372312871454,\n", + " 'Qwen2.5-7B-Instruct': 0.5846799876078983,\n", + " 'gemma-3-27b-it': 0.7101106294235779,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6915948903538425,\n", + " 'Llama-3.2-3B-Instruct': 0.5643765681877343,\n", + " 'gemma-2-9b-it': 0.705290572851986,\n", + " 'Llama-3.1-8B-Instruct': 0.6573589901042487,\n", + " 'Qwen2.5-72B-Instruct': 0.6460335198853472},\n", + " 'sl': {'phi-4': 0.6716898485821494,\n", + " 'Qwen2.5-14B-Instruct': 0.6299814275864881,\n", + " 'Llama-3.3-70B-Instruct': 0.6936223836067604,\n", + " 'gemma-2-27b-it': 0.6660980355488648,\n", + " 'Qwen2.5-32B-Instruct': 0.6613875409307258,\n", + " 'Qwen2.5-7B-Instruct': 0.6323671438316602,\n", + " 'gemma-3-27b-it': 0.7265484252690757,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6890388882919357,\n", + " 'Llama-3.2-3B-Instruct': 0.4655219224245794,\n", + " 'gemma-2-9b-it': 0.6851728161661139,\n", + " 'Llama-3.1-8B-Instruct': 0.6482438163992557,\n", + " 'Qwen2.5-72B-Instruct': 0.6323502453497302},\n", + " 'lv': {'phi-4': 0.6663971242237371,\n", + " 'Qwen2.5-14B-Instruct': 0.5898477761428,\n", + " 'Llama-3.3-70B-Instruct': 0.6993864912975261,\n", + " 'gemma-2-27b-it': 0.6331556240360017,\n", + " 'Qwen2.5-32B-Instruct': 0.6602537350004568,\n", + " 'Qwen2.5-7B-Instruct': 0.6448343402261263,\n", + " 'gemma-3-27b-it': 0.7190206300733474,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6688682534037828,\n", + " 'Llama-3.2-3B-Instruct': 0.4895141793253782,\n", + " 'gemma-2-9b-it': 0.6817413928280561,\n", + " 'Llama-3.1-8B-Instruct': 0.6725985083561833,\n", + " 'Qwen2.5-72B-Instruct': 0.6339129390027314},\n", + " 'hu': {'phi-4': 0.655409537814319,\n", + " 'Qwen2.5-14B-Instruct': 0.569543047666189,\n", + " 'Llama-3.3-70B-Instruct': 0.6912713295446201,\n", + " 'gemma-2-27b-it': 0.6396750234735307,\n", + " 'Qwen2.5-32B-Instruct': 0.6307015192937804,\n", + " 'Qwen2.5-7B-Instruct': 0.6136226059052038,\n", + " 'gemma-3-27b-it': 0.7069438868115568,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6838808777860244,\n", + " 'Llama-3.2-3B-Instruct': 0.4861010599623172,\n", + " 'gemma-2-9b-it': 0.6937409014390623,\n", + " 'Llama-3.1-8B-Instruct': 0.6632654551829412,\n", + " 'Qwen2.5-72B-Instruct': 0.6196971473393985},\n", + " 'uk': {'phi-4': 0.6432833830881047,\n", + " 'Qwen2.5-14B-Instruct': 0.6098808033093035,\n", + " 'Llama-3.3-70B-Instruct': 0.685131043937179,\n", + " 'gemma-2-27b-it': 0.6640427586047261,\n", + " 'Qwen2.5-32B-Instruct': 0.6377648863114097,\n", + " 'Qwen2.5-7B-Instruct': 0.6321422018538426,\n", + " 'gemma-3-27b-it': 0.7155095997798218,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6680578124105967,\n", + " 'Llama-3.2-3B-Instruct': 0.5821931606293557,\n", + " 'gemma-2-9b-it': 0.695009138889551,\n", + " 'Llama-3.1-8B-Instruct': 0.6717546685015094,\n", + " 'Qwen2.5-72B-Instruct': 0.6249029503566623},\n", + " 'ca': {'phi-4': 0.6180017329391815,\n", + " 'Qwen2.5-14B-Instruct': 0.5997658490681664,\n", + " 'Llama-3.3-70B-Instruct': 0.6974814935461331,\n", + " 'gemma-2-27b-it': 0.6406908495829057,\n", + " 'Qwen2.5-32B-Instruct': 0.6343876230062511,\n", + " 'Qwen2.5-7B-Instruct': 0.5716624441111349,\n", + " 'gemma-3-27b-it': 0.694205798877411,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6932757298897455,\n", + " 'Llama-3.2-3B-Instruct': 0.5136596951085984,\n", + " 'gemma-2-9b-it': 0.6937024237665929,\n", + " 'Llama-3.1-8B-Instruct': 0.6423645566006883,\n", + " 'Qwen2.5-72B-Instruct': 0.6286548107407953},\n", + " 'sk': {'phi-4': 0.6397282504729449,\n", + " 'Qwen2.5-14B-Instruct': 0.6167839309809399,\n", + " 'Llama-3.3-70B-Instruct': 0.6684337833634436,\n", + " 'gemma-2-27b-it': 0.641541317508014,\n", + " 'Qwen2.5-32B-Instruct': 0.670211922170725,\n", + " 'Qwen2.5-7B-Instruct': 0.6753241959121116,\n", + " 'gemma-3-27b-it': 0.7149546903307722,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6874930573300714,\n", + " 'Llama-3.2-3B-Instruct': 0.4751423036972329,\n", + " 'gemma-2-9b-it': 0.6965920640860854,\n", + " 'Llama-3.1-8B-Instruct': 0.6412235033534106,\n", + " 'Qwen2.5-72B-Instruct': 0.63050154868145},\n", + " 'is': {'phi-4': 0.6467467015767657,\n", + " 'Qwen2.5-14B-Instruct': 0.5792693993864673,\n", + " 'Llama-3.3-70B-Instruct': 0.6925519203730254,\n", + " 'gemma-2-27b-it': 0.6164756403472222,\n", + " 'Qwen2.5-32B-Instruct': 0.6292548075959544,\n", + " 'Qwen2.5-7B-Instruct': 0.6281084698087767,\n", + " 'gemma-3-27b-it': 0.6578519166083495,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.6811738936450203,\n", + " 'Llama-3.2-3B-Instruct': 0.34731329014107054,\n", + " 'gemma-2-9b-it': 0.6962073028756561,\n", + " 'Llama-3.1-8B-Instruct': 0.6210836942447183,\n", + " 'Qwen2.5-72B-Instruct': 0.6214811757759677},\n", + " 'en': {'phi-4': 0.6399471317308785,\n", + " 'Qwen2.5-14B-Instruct': 0.601031622722745,\n", + " 'Llama-3.3-70B-Instruct': 0.6923941758637462,\n", + " 'gemma-2-27b-it': 0.6722676976109881,\n", + " 'Qwen2.5-32B-Instruct': 0.6492893432244073,\n", + " 'Qwen2.5-7B-Instruct': 0.6595291685609866,\n", + " 'gemma-3-27b-it': 0.6997657000494523,\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': 0.686598954251573,\n", + " 'Llama-3.2-3B-Instruct': 0.5246848735548737,\n", + " 'gemma-2-9b-it': 0.696039557933567,\n", + " 'Llama-3.1-8B-Instruct': 0.6574998965887701,\n", + " 'Qwen2.5-72B-Instruct': 0.6266890413298536}}" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metric_name = \"Spearman\" # \"Macro-F1\" # \"Spearman\" # \"Macro-F1\" # \"Spearman\" # \"NDCG@all\"\n", + "\n", + "metric_results = {lang: {model: subsubresult[\"metrics\"][metric_name] for model, subsubresult in subresult.items()} for lang,subresult in results_complete.items()}\n", + "metric_results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "60f8ea85", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "6ce47470", + "metadata": {}, + "outputs": [], + "source": [ + "metric_df = pd.DataFrame.from_dict(metric_results)\n", + "num_languages = len(metric_df.columns)\n", + "\n", + "\n", + "avg_37 = metric_df.mean(axis=1)\n", + "metric_df = metric_df[list(language_codes.keys())]\n", + "metric_df[\"avg-13\"] = metric_df.mean(axis=1)\n", + "metric_df[\"avg-37\"] = avg_37" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "e9caf110", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABF8AAAJOCAYAAABhgKhgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XV0VEcbwOHfZpNsPEFiQASHQHB3aymSr7hLgOLuDsFKcbfipRQp1hYKRYq7F6dQgiYhQNyT3e+PTTZZIiQslIbzPpw9J9y9Mu/OnZm7s3PnKjQajQYhhBBCCCGEEEII8VEYfeoECCGEEEIIIYQQQnzOpPNFCCGEEEIIIYQQ4iOSzhchhBBCCCGEEEKIj0g6X4QQQgghhBBCCCE+Iul8EUIIIYQQQgghhPiIpPNFCCGEEEIIIYQQ4iOSzhchhBBCCCGEEEKIj0g6X4QQQgghhBBCCCE+Iul8EUIIIYQQQgghhPiIjD91AoQQQgghhBBCCJG9RMf/O8cx+0x6LT6TMIQQ/4brT8M+dRLeW2kXay4+CvnUyTBIxfy23H4R8amTYRCPPJZsu/r8UyfjvbUtm5e9NwM+dTIM0rSkIxf+yd5loVIBW248C//UyTCIZz6rbF2ePfJYcv1J9m0TAEq7WnP676BPnQyDVC+cgyu+oZ86Ge+tnLsN5x4Gf+pkGKRKQTtO3s/e51HNIjm4mM3bhYoFbLP1dV7F/LafOgniXyCdL0IIIYQQQgghhMgSjeZTpyB7kTlfhBBCCCGEEEIIIT4iGfkihBBCCCGEEEKILNHwbw19UfxLx/m4ZOSLEEIIIYQQQgghxEckI1+EEEIIIYQQQgiRNTLnS5bIyBchhBBCCCGEEEKIj0hGvgghhBBCCCGEECJLZOBL1sjIFyGEEEIIIYQQQoiPSEa+CCGEEEIIIYQQIks0MvQlS2TkixBCCCGEEEIIIcRHJCNfhBBCCCGEEEIIkSWaf23WF8W/dJyPS0a+CCGEEEIIIYQQQnxEMvJFCCGEEEIIIYQQWSNzvmSJjHz5jCgUCvbs2fOpkyGEEEIIIYQQQogUpPMlm/H29qZZs2afOhlZdurUKapXr06uXLkwNzenWLFiLFiwIMNtoqOj8fb2xtPTE2Nj4yzFvXDhQooWLYq5uTkuLi4MHTqU6Oho3fve3t4oFArdK1euXHz11Vf89ddfGe7X19cXhULBtWvXMp2WjGzYsAE7O7sPsq/MqFOnDkOGDPko+46Li2PmxOHULOlKLU9Xvps0gvj4+HTXP3bwd9p8VZ0qRZ34okIRft60Vu/9XVs28nWdclQp6kSjaiU5enCf7r1G1UpSubADVYs5U7WYMzVKunyQGOLj4pgzeST1y7jRoKw7c3xGZhjDicO/07FJDWqVyEPjKsXYuXmd7r0+7ZtQvZgDtUvm1b0CA/xS7eN14EsalHWnY5MaBqc/Li6O6eOHUdUjH1VLuDBjwvAM0//nwX20+KIqFQo5UKdcIbb9sAaAF8+fUqGwo96rlKst/b3baNP86iWjBnSnXvkiVCrqTMsvq/FnivwxRHxcHOu+G0+P2iXoUacE62dNICGDGC4dP8jodl/StVph+n5ZnkM7Nune27Z8DiPb1KdDRTc2zpmcatsBTarQuWpBulYvQtfqRehey+ODxbByxljaVStK++rFWPXtuAxjOH/0Dwa1qk+rSvnpWq80+7dvBCD4dSBzR/fDu35Z2lQpxODWDTh/9A+9bTUaDT+vWUyPhhVoVSk/vZtW495fVz5IDHN8RtKgrBtflHNnbibKQqemNahdMg9NqhZj10/JZaFvhybUKO5AHc+8ulfKsrBy/nQ6NKpGtSK5mD9tjMFpB21Z+HbCcKqXdKFGSVdmTsy4Pjp6cB+tG1ajUhFH6pcvzPa36qOdWzbgVbsslYo48lXVEhz9Yy8Al8+fpnJRJ71XaVcbvps08oPEkN3Ls65d8HSlVqlMtAuHfqdNo+pUKebEFxWL8POPabQLdctRpZgTjaontwuxMTH0aNuYuuUKUL1EXprVK8+On9YbnP74uDjmTxnFVxXy06hiARZMHZ1h+k8d2Y/3/2rRoHQ+vq7hwZ4tqdPw5tVLGlUsgPf/auktb1W3NPU88/BFGRe+KOPCV+XdDU4/aPNg1qQR1CntSt0ybsyenHFZPn7od9o3rkF1D2caVi7Kjs3JedCrXROqFLWnRok8ulfKsvzP33fp09GLOqVd+bJiYaaPHURUVKTBMcTHxTHXZyRflnPny/L5mTdlVIYxnDz8O128alLXMy9e1Yrr1UdJ3rx6yZfl89PFq6be8gunjtL1f7WpX9qF9g2rcPb4YYPTnxTDgqmjaFwxP00qFWDhtHefS92/rsWXZfLRvIYHv6RzLjWpVIDuXyefS7GxMQzq7MX/qhbhq3KudPqqMr9u2/BB0j/HZyT1y7rRoFwmr4+a1qBWyTw0rlqMnSnyoE+HJlQv7kBtz7y6V9J59OZVIBOH9qRpdQ/qlnahk1dNThz+3eD062LIxtd4/1Waf+n1uZDbjsS/wtLSkgEDBlCqVCksLS05deoUvXv3xtLSkl69eqW5TUJCAubm5gwaNIidO3dm+lg//fQTY8aMYd26dVSrVo379+/rOlvmz5+vW++rr75i/XptY+bv78+ECRNo2rQpT548MSzYjyA2NhZTU9NPnYwMrV48m6sXz7HryAUA+ndtydqlc+k9JPWXqdPHDvHthGHMWLSacpWqEREWyutXgbr3d2xez+a1y5i1dD1FS5TizatAoiIj9PYxc+k66jVs+kFjWLd0DtcunWXbwfMADO7Wig3L5/HNoNGp1j17/DCzJ41gyvxVlKlYjYjwMN68eqm3zoBRPrTv3i/DY87xGUkRj1KEBL8xOP2rFs3iyoWz/Hr0EgC9OzXn+yVz6Dd0bKp1Tx49xPSxQ/luyRrKV65OeFgorxPTnyevC5f+DtCtGxsbS91yhWj0dSsAIiMiKF6yNMPGTcPByZnjhw8wsp83W38/TqEixQ2KYfeaRdy7dpG5O/4E4LuBndmzbgktew1Nte6100dZN3Mc/acvpnjZykRGhBHy+pXufScXdzoMHs+fu35K93iDvl1GxbpfGZTmt237fgG3r15g+S8nAPDp24HtqxfRvu/wVOtePvUnK6aPYfh3S/EoV4Wo8DCCXmvLQnRkJAWKl8R76ARyOjhx6cRhZo/qzfwtB3AtWBSATYtncvPyOaat/hlnF3cC/Z5hbGJ4XbFu2RyuXzrL1j+0ZWFI91ZsWDGPbwamUxYmj2DKvPTLQv9RPrTvlnZZcHErwIDRU/hl20aD053k+8WzuXrxLHuOXASgX5cWrFk6lz5p1Eenjh5ixvhhzFy8JkV9lJz+HZvXsWnNMmYv20Cxt+qj8pWrc/6ev27d14Ev+aJSUb76X0uDY/gcyvPqJbO5eukcuw4ntgveLVm7bC69B2fQLixMbBfCQ3kdmKJd+Gk9m9csY9aSFO1ClDYflMbGjJkyh/yFimJsbMzD+3fp2b4JBQoVpVylau+d/o3L5/LX5XP8+PtZAEZ804ZNK+fTbcCoVOueO3GYeT4jmDh3FaUrVCUiPIygt8oBwPypoyhSPO0632f+amp90eS905uWtUvncO3SOX4+pM2DQd6tWLd8Hr3SaNfOHD/Md5OGM23B95StmJgHKdpmgEGjp9AhnXZt/OBvKFW+EkvW7yQ8LJTBPdqwZslsBo7yMSiG9cu0+fDTgXMADOvRmo0r5tNjYOp8OHv8MHMmj8Rn3ipKV6yaZn0EMNdnFEU8ShGaIh+eP/FlTL/OTF24hmp1vuTMsYOMG9CVH/edJq+ru0Ex/LBiLjcun+OHfdpzaVTPNvy4cj7eaZxL508cZsGUEUyYs4pSFaoSmU4MC6eOonBx/RiUSmMGT5iFW8EiGBsb4/vgLoO7fI1bwaKUrlD1vdO/blni9VFimzDYwDZhQDptQlRkBEU9SjFglA/2js6cPvoH4wf3YMPuPylQuNh7px+y/zWe+DzIyJfP2OjRoylSpAgWFhYUKFCAiRMnEhcXp3vfx8eHMmXKsG7dOlxdXbGysqJfv34kJCQwe/ZsnJyccHBwYMaMGXr7nT9/Pp6enlhaWuLi4kK/fv0IDw/PMC1ly5alffv2lChRAnd3dzp16kTDhg05efJkuttYWlqyYsUKevbsiZOTU6bjPnPmDNWrV6dDhw64u7vz5Zdf0r59ey5cuKC3nkqlwsnJCScnJ8qUKcOYMWN4+vQpgYGB6ew5tWPHjqFQKDhy5AgVKlTAwsKCatWqce/ePd06169fp27dulhbW2NjY0P58uW5dOkSx44do1u3boSEhOhG4Pj4+ADg7u7OtGnT6NKlCzY2NvTq1Ut3rODgYN2+r127hkKhwNfXV7fs9OnT1KlTBwsLC3LkyEHDhg0JCgrC29ub48ePs2jRIt3xUm5nqF+2/0jPgSOxd3TC3tGJbwaMYM+2TWmuu2zudHoNHk3FqjVRKpXY2OUgf6EigLbTbcX8GYz0mUWxkqW1I5PsHcjnlv+DpTU9v+7YTPf+I8nt4ERuBye69R/Br9vTjmHl/Bn0GDiK8lUSY7C1w71gkSwd7/ihfYQGB9G4edsPkXx2b91E78GjdHnQe9BIdm35Ic11l8yZRp+hY6hUrRZKpRJbuxwUKFQ0zXX/PPAbao2GLxr9DwAXt/x06zMYpzx5MTIyou6XjXEvWJi/rlw0OIajv26j+TeDyGHvSA57R5r3GMTRPVvTXHf7irm06DmEEhWqYaRUYmVjR978hXTv1/ZqTdnq9TC3sjY4XVlxePdW2vYaQk57R3LaO9Km52AO7U67A+jHpbNo12cYnhWro1QqsbK1w6VAYQCcXNxo4d2P3E55MDIyolKdL8nrXoh7f10GICwkiD0/rGLw1AXkcc2PQqHAIY8LOe0dDY7ht5830y1lWeg3gt/SKQurFsygx4D3LwtNWnagWp0vsPyA+bRn2yZ6DkouCz0HjmT31rTLwrK50+kz5O36SFsWEhISWDZvBqN9ZlM8E/XRLzs245q/IGUqVDE4hs+hPP+y/Ud6DshkuzDvrXbBNhPtgqs2H5RKJYWLlcDYWPubYlIb98T3H4PSv2/nZrr2G64rB136DmPvjh/TXHfNwpl49x9Juco1dOXA7a1ycPLw74QFB9OwWRuD0pUVv/78Iz0GjMDewQl7Bye69x/OL+nkwYr50+k5cBQVqqTIgyyU5edPfWncrC0mpqbkyJWb2g0a8eDebYNj2LvjR7z7jdDlQ9e+w9n7c9oxrF74Ld0HjqRclRrp1kcnDv1OaEgQjZrpt73nThymaIlS1Kj3FUZGRtSo9xUepcqxf3fabVBW7Nu5mS59k8+lzn2GsW9n2ufS2kUz6dp/JGUTzyXrdM6l0JBgGn6tfy4plUoKFvXQlQUSy8Lzx4aVhV9/fuv6qF8G10cGtAl5Xd3p1HMgjs7a+qhm/Ua4FSjEzWuG10fZ/Rrvv0qj+XdenwvpfPmMWVtbs2HDBm7fvs2iRYtYvXp1qlt9Hj58yP79+zlw4ABbtmxh7dq1NGnShGfPnnH8+HFmzZrFhAkTOH/+vG4bIyMjFi9ezK1bt9i4cSN//vkno0al7rnPyNWrVzlz5gy1a9f+ILGmVK1aNS5fvqzrbPnnn3/4/fffady4cbrbhIeH8+OPP1KoUCFy5cqV5WOOHz+eefPmcenSJYyNjenevbvuvY4dO5IvXz4uXrzI5cuXGTNmDCYmJlSrVo2FCxdiY2ODn58ffn5+jBgxQrfd3LlzKV26NFevXmXixImZSse1a9eoX78+Hh4enD17llOnTuHl5UVCQgKLFi2iatWq9OzZU3c8F5cPc7tOaHAQAX7PKVrCU7esaAlP/J4/JSw0RG/dqMgI7ty4xkv/F/yvdlnqly/EiD5dCAzQ/nrs+/BvXge+5O6N6zSqVpIvKxVjyqiBhIeF6u1n+tjB1CntTpdm9Tn5p/6tGO8VQ0gwL/2eU8QjOYYixT3xf/GM8DRiuHvzGoH+L2hZrzxfVSrCmP5defXSX2+9dcvm0qCsO52a1mTfri1674WHhrBwxnjGTM/49rvMCgkOwt/vOcVKlNItK1aiVJp5EBkZwe2/rvLS/wWNa5ShVpkCDO3VSZcHb9u59QeaNm+Dyswszfdfv3rJPw/uUaR4SYNiCA8N5k2AH+5FSuiWuRX14JX/cyLfyv/oqEge3fmLoJf+DGlWk95flGXBqN4EBQa8vdsMrZkxhp71PJnY9X9cPXXEoPQDhIcE8yrgBfmLJX8WBYqVJNDvORFvxxAZwcPbf/H6pR+9m1ajcx1Pvhv2DW/SiSH4dSDP/vkb9yLa26PuXb+MiakpJ/bvpmu90vRoWIEN86cRFxdrUAyhIcG89H9OkeLJZaFwUlkIS6csBLygVf3yNKpchLEDUpeF9cvm8kU5dzp71eT3t8rCh5ZUHxXzeHd9FBkZwe0bVwnw98OrVhnqlivI8D6dU9VHd25e46uqJWhQsSg+owakqo+S7Nm2ieZtuxgcw+dQnkND0mgXPDLRLtQpS/0KhRjRN4124eZ1GlUvyZeVizFldOp2YWC31lQqYk+LBhXJldvBoNGR2nLwgsJvlYOAF89SHTcqMoJ7t67xKsCPdl9W5H/VijFhkLdeOQgPC2XJzAmMmDov3WPOmTSMJpUK0bvNl5w9dui9054cQ2IepCwLHqXwf5FBHgT40bxuOb6sWJhR/boQ+FZZXrN0DnXLuNGhSQ327tQvy516DmTfri1ER0fxKjCAowf3Uqu+YSML08qHIh7vqI/8/WjToAJNqhRl3IC38yGExd+OZ/S0+bxNrVajeetbnlqt5sG9WwbFEBYSTKD/CwqliKFQJs6lDg0r0qx6MSalcS4t+24Cw6ekfy6N7t2OBp7OdGlclRy57Kn5haFlQb9NKJKJNqFl/fJ8VbkIY9JoE9Ytm0uDcu508kp9fZTSm1eB+D64T6GihtZH2fsaT3w+pPPlMzZhwgSqVauGu7s7Xl5ejBgxgu3bt+uto1arWbduHR4eHnh5eVG3bl3u3bunmzOlW7duFC1alKNHj+q2GTJkCHXr1sXd3Z169eoxffr0VPtNT758+VCpVFSoUIH+/fvzzTfffNCYATp06MDUqVOpUaMGJiYmFCxYkDp16jBu3Di99fbu3YuVlRVWVlZYW1vz66+/sm3bNoyMsl4sZsyYQe3atfHw8GDMmDGcOXNGN8fMkydPaNCgAcWKFaNw4cK0bt2a0qVLY2pqiq2tLQqFQjcCx8rKSrfPevXqMXz4cAoWLEjBggUzlY7Zs2dToUIFli9fTunSpSlRogQDBgwgd+7c2NraYmpqioWFhe54SqUyy7GmJTJxCL61jZ1uWdLfkRH6o6JCQ4LRaDQcO7iPlZt/4bcT1zBVmTJ+cE/t+8FBAJw/dYyf9h5n24HTvHj6mLlTk4faz1jwPftO3+DghXu08+7NiN6duXn9skExRCWm09rGNkUM2r8j0ovh0D6WbtrNrqNXMDVVMWlo8i10/UZOZvfRqxy48Df9R/kw12c0R//4Tff+klmTadqyA675M5e37xIZoc0DG9sU6U/8O+KtkWmhwdr0HzmwlzVbf2X/6b8wVakYPbBHqv2+ePaEcyeP0rK9d5rHjY2NZURfbxo2bUHJ0uUMiiE6Ujs3gIV1cgyWiX9HRerHEBGqjeHisT8Yv3wLi345hYmJKUsnDMr08fpPW8Ti386y/MAlGrbrxvyRvXh465pBMSTdBmFpbZMiBu3fUW+dR+GhIWg0Gs79eYBp32/j+9/PYWKqYt7Y/qn2GxcXy5xRfajR0IvCJcoA2gv6yPAwXjx+xMq9Z5i5YQ+XT/3JzrVLDYsho7Lw9rmUWBaOH9rHkh92s/NPbVmYPCxFWRgxmV1Hr7L//N/0H+nD3CmjOZaiLHxouvrINvNl+egfe1n106/sO3kdU1MVYwdr26akoeLnTh1jy77j/PzHaZ4/fcycKalvm7l8/jTPnvji1aq94TF8BuU5KYYstws//sJvx69hamrK+CGJ7UJIinbht+Ns25+6XQBYsv5nzt7xZ82236nf6H+YmZm/d/qT6hyrFPWRVeJ5FBkRprduWGJ9dOLw7yxcv4uthy5haqpi2og+unWWz55M4xbtcXFPu86fOHslP/95ld2nbtGycy/GD+zKHQPnb0rKAyu9PEiKIf08WL5pD3uOXcXUVMXEoT116wwYNZlfjl3j4MUHDBjlw+wpo/gzRVmuXrsB1y6do1bJvDSsVARH53z8r3Vng2JIqz5KypPIt8pCWEhSPuxj0cZd/HzkMqampvgM761bZ+msyTRu2SHNfKhUoy53/rrK8UP7iI+P5/ihfdy4cp6I8LBU62ZFZBrnkvU7zqWTh39n/rpd/HTwEiamKqaPTD6XVsyZTKPm6Z9LALNWbeWPa89YvOk3an/plW5na2a8T5tw7NA+lv6wm12JbcKkt9qE3UevciBFm3A0jTYhLjaW8YO7U79xMzxKlX3v9L8zhmxwjfdfpvmX/n0upPPlM7Zt2zaqV6+u+1I/YcKEVPOZuLu7Y22dPNTb0dERDw8PvQ4IR0dHXr5Mvs/x8OHD1K9fn7x582JtbU3nzp15/fo1kYlfnJI6NKysrOjTJ7mxADh58iSXLl1i5cqVLFy4kC1b3v8X0CdPnugd69tvvwW0twJ9++23LF++nCtXrrBr1y727dvHtGnT9LavW7cu165d49q1a1y4cIGGDRvSqFEjHj9+DECjRo10+y5RokSq46dUqlTyr5POzs4Aus9s2LBhfPPNNzRo0IDvvvuOhw8fZiq+ChUqZO6DSCFp5IuhYmJiCA0N1XvFxMSku76FhSWA3q8HSb+GWFha6a1rnrhu+259yJPPFQtLK/oOHcfFsyeIiozA3FL7fvf+w8iRMxc5cuaie/9hHD+8X7ePcpWrYW5ugalKReNmbajVoBFHfv/VoJjNE9OZ8leopL8t34rBIjGNbbv2xjmvNoZeQ8Zy+dxJ3VwQpcpVwsrGFmMTE6rWqk/zDt4c3rcbgKsXznD98nm69B5iUJrTSlNYaHL6k/62tEo7/Z169CVPPlcsLa3oP3w8F86c0H1xTbJ72yaKlyxNsRS/XieJjY1laK9OmJtbMGWOYV/4AcwsLACIDE+OIWnEi7mF1VvramP4qn137PPkw8zCklZ9hnP70hmiMznBY/FylVGZm2NiqqJGo+aUr/UF548YNrGfubllYgzJF9RJF+7mlmnH4NXxGxzyuGBuYUmH/iO5ceE00SnyIS4ulu+GfYOpmTkDfOal2r5D/5GYW1ji4JwPr049uXD8oGExZFQW0jmXUpaFnoP1y4JnuUpYWWvLQpVa9Wne3ptDiWXhY0iuj1KkPzSdspz0GXZPro/6DRvHxcSykFR/9eg/nBw5c5MjZ2569B/OsRT1UZLdW3+gzheNyZnL3vAYPoPynJSulL+Mv7Nd8E7RLgxL0S4kvt+9X4p2od8wjh9JnQ9KpZIKVWrwOvAlG1cteu/0J9U5ESnqo6TRaxaW1mmu27pLL5zyumBhaUWPQWO4cl5bDq5fPMuNK+fp2HNwuscrXbEqZuYWmJqq+NKrFdXrNTS4kzIreZC0bjvv3jgn5kHvoWO5dFa/XbO2sdWO3q3dgJbtvTm0dxeg7SDr27kZzdp15fRtf45e88Xc3EKv8+Z9ZFQfWbxVFpLWbd0luT76ZvBYriTWR9cunuHG5fN07pV2PrgVKMy0RetYu3gWjSsX5rftm2jQpAW2djkNisEijXMp/B3nUsvOyedS90FjuJp0Ll06y80r5+mQwbmURKlUUqZSdd68DmTLmiXvnX5D24Reg9O4PrJOcX3UPvn6KElcbCxjBnTBzNyC8d8ufu+0ZyqGbHCNJz4fMuHuZ+rs2bN07NiRKVOm0LBhQ2xtbdm6dSvz5ukPUTQxMdH7v0KhSHOZWq0GtE/7adq0KX379mXGjBnkzJmTU6dO0aNHD2JjY7GwsNB7EpCNjY3evvLn196f7enpSUBAAD4+PrRv/36/EubJk0fvWDlzahvHiRMn0rlzZ92oGk9PTyIiIujVqxfjx4/XdSxZWlpSqFDy/BBr1qzB1taW1atXM336dNasWUNUVFSan9PbUr6vUCgAdJ+Zj48PHTp0YN++fezfv5/JkyezdetWmjdvnuE+LRMr/yRJ6U45JDblHD4A5ubv/ytfSjNnzmTKlCl6yyZPnkzzHqknDAWwscuBo3Ne7t2+gYt7AQDu3bqBU558er8yANjY2uGcN+3bnTQaDe4FC6NSZe0XGiMjRZbWT4uNrR0Oznm5f/sv3XwO92/fwNE5n+7XziTWNnY45cmX5n7eHrKsS6MiuUPz4pnjPH/iS+Oq2snj4mJjiYmO4ovyBdiy/wy5HTI/x1ESW7scODnn5e6tv3BNzIO7t/56rzxIolar2b3tR3oOSJ3vsbGxDOvdmbi4WJau2/ZBJoS2srEjp6Mzj+/fwsnFHQDf+7fI5ZQHC2v9usTS2pbcTnnT3tF73hysSJFH78vK1o7cjnn45+5NnBNjeHT3Jrmd8uqNhgHtr+j2zmnHkBRBXFwss4b1JD4ujgmLN2CSYjLd/EU/zNOZ3mZja4eDU17u30lRFu4klgXrD1AW3mN0YVYk1Ud3U9RHd29nvT5Co8G9QObqo/CwUA7u28P8VWnP4ZBVn0N5trFNbBdu3cDF7d9vF+Lj43nsm7kfO9KiLQd5+PvODfImzi3z950bODjnxeqtsmxtY4tjBuXg0tnjvHj6mGY1tGU2Ni6W2OgomlQqxMa9p9Ks840+QH2UlAf3b6fIg9s3cEwjD7Rl+d3nUUqKFGX52eNHxERH0d67j/Za0tSUlh26MbBbKwNjSM6HpPro7zs3cHTOm0Z9ZJthfXTpzAmeP32MV3XtRNJJbe9XFQvy477T5HZwotYXjan1RfJt6j1aNqBx83YGxWBta4f9W+fSg/c8ly4nnkstaiaeS7GxxMZE4VW5EOt/S/tcSoiP45kBc778221CXGwsYwd2JS42jrmrfsLkg9RH2fsa77/sc5qP5d8gI18+U2fOnMHNzY3x48dToUIFChcurBvRYYjLly+jVquZN28eVapUoUiRIrx48UJvnUKFCuleDg4O6e5LrVZnOJriXYyNjfWOldT5EhkZmaoiT7q9Jr1KE7SdJkZGRroOl7x58+r27ebm9t7pBChSpAhDhw7l4MGDtGjRQveUJVNTUxISEjK1D3t77a+pfn7Jj7J7+5HXpUqV4siR9OetyOzxxo4dS0hIiN5r7NjUT9hI6es2HVmzdC6vXgbw6mUAa5fNo3m7tOc+aNHBmy0bVhHg/4Lo6ChWLZpFpep1sLC0wszMnMbN27J+xQJCg4MIDQlm/YoF1El8AoTf86dcPn+a2JgY4uLi+OO3XRw7+Dt1Gxr+hAivVh1Yv3werwIDeBUYwIYV8/i6bdpDppu192b7D9/zMjGGNUtmUbFabSwsrQgLDeb00YNER0WSkJDAhdPH2fXTOup+pZ3gskOP/uw4cokf957kx70n6TVkLK4FCvPj3pPkMOBX82ZtO/H94jkEvgwg8GUAq5fMpWWHrmmu27pjNzavW0mA3wuio6JYseA7qtSoo/cL0JkTfxL85jWNm7XW2zYuLo7hfboQFRnBkrVbMVWp3jvNb6vzvzbsXruE4FcvCX71kj3rllKvWdodtPVbdOSPret589KP2Ogodq1eSMlKNXQjQuLj4oiNiUadkIBanUBsTDTxiR2Wr/yec+fyOeJiY4iPi+Pswd+4dPwPKtZpaHAM9Zu1ZfvqRQS9eknQq5dsX7OYL1t0SHPdhq06s/entbwO8CMmOoqtK+dRunJNzC0siY+LY9bwXkRHRTJ+0XpMTPU/Z6d8bpSpUoutK+cRHRXJ65f+7P1pLZU/wNObmrbqwIbl83gdGMDrwAA2rpjH/9IrC+30y8LaDMrCxcSyUC+xLIA2n2JioklQJ6BOSCAmRT69r2ZtOrF6yRxdfbRm6VxatE+7LLTs0I0t61fpysLKRd9RuUZifWRuTpMWbVm/PEV9tHwBdb/Ur2/2/7IDuxw5qVbb8JGHuhg+g/L8desstAvtvdmy8R3twsoFhIYk5sPK5Hbh7q2/OHvyT6Kjo4iPj+fEkQP8vmc71WoZlh+NW3bghxXzdeVg08oFeKVzG83/2nZlx6bVBPq/ICY6ivVL51C+ai0sLK1o170fWw5eYP2vx1n/63G+GTQGl/yFWP/rcXLkssf/xTOuXTxDbGJ9dOT33Zw8sp+aX6Q/V11mebXqyNplc3Xt2rrl82iWzrxELdp3ZdvG5LK8evFsKqUoy6eOHiRK164dY+fm9bqy7F6wCBYWlvy8aQ3x8fFEhIexe+tGinqUSvNYWdGkVce36qP5eLVJO4av23Vlx6bkGNYtnU2FxBjad+/H9kMX+eHXE/zw6wm+GTwW1/yF+eHXE7q2986Nq7r0r10yWzthagvDbyVs3KIDm1amOJdWLaBpq7TPJa82Xdn142oCA7Tn0oZlyedS22792PzHBdb+cpy1vxynx2DtubT2F+259PedG1w8fZSYxLJw9thBDv22g0o16hmU/ixdH7V7/+uj+Lg4xg70JioykjmrNn/Q+ii7X+OJz4OMfMmGQkJCUn3pfnuS2MKFC/PkyRO2bt1KxYoV2bdvH7t3Gz7Mu1ChQsTFxbFkyRK8vLw4ffo0K1eufOd2y5Ytw9XVlWLFtL3AJ06cYO7cuQwalDw/w9KlS9m9e7de58Ht27eJjY3lzZs3hIWF6eIuU6ZMusfy8vJi/vz5lC1blsqVK/PgwQMmTpyIl5eX3hwnMTEx+PtrJ88KCgpi6dKlhIeH4+XllZWPJENRUVGMHDmSVq1akT9/fp49e8bFixdp2VL7GFJ3d3fCw8M5cuQIpUuXxsLCAovEWy/eVqhQIVxcXPDx8WHGjBncv38/1UimsWPH4unpSb9+/ejTpw+mpqYcPXqU1q1bkzt3btzd3Tl//jy+vr5YWVmRM2fONH+FVqlUqNJs8NKfyLPnoNEEB72heb2KADRp0YYeA7QTCE8fOwSACTMXAtqh46HBQbRtqH0EaIWqtZix8Hvdvkb5fMe3E4bTuEYpTE1Nqd2gMSMmaW8ri4yIYNbkUTz1/QelsTFu+Qsye/lGSpWrlG7aMqvHgFGEBAXR9gvtvr5q1gbvftpfiWeO1z7qeOwM7eRpXfsMJTQ4iI5NagBQvkpNfOavAiA+Lp41i2cxYbB2zgXnvC4MGT+DBo2bAWBlbaP3a5eNrR3GxsY4pjMKIrP6DBlDcNAb/lenPABNW7Sl18CRAEwZrS1rk2dph+9+M2A4IcFBtPhC+1SWStVqMXPxGr397dqykS+aNEv1C+m1S+f484+9qMzMqO6Z3DHZa+AIeg0aaVAMLb4ZQnhwMMNb1gWgRuPmNOs+ENBOjgvwzfjvAPi6W3/CQ4MZ3e5LADwqVKP/tOTbDL6fPooTv/2s+/8f2zZQy6s1/aYsIDoqgg1zJuH/1Bel0hhnt/wM+W4lhUuVNyj9AO16DyMsOIi+/6sJQN2mLWmTOER82VTt5OT9J80GoFWPgYSHBDGwlfZLYqmK1Rg2U3vLx51rFzl/9ACmKjM61kwe5dK652Dd/oZ/t4ylU0bSpY4n5lbW1G3SkpbdUs8Zk1U9BowiJDiItl8mloWv2+Cd+Kjs7yZoy0LSRIJd+gwlNCSITk1TlIV5yWVh7ZJZTBiiLQt58rowePwM6ieWBYBvxw3Sm6zw502radKiPZPmrHjv9PcarK2Pvq6nvX2zafO2fJNYH00bq/3sJs7Unis9+g8jNPgNrRtqH8NasVotvl24WrevUT6z+Hb8MBpV98TE1JQ6XzRm5KSZesfbvfUHvm7T6YOO6vkcyrOuXaif2C40b0OP/ontwrghAEz4diGQol34KkW7sCBFuzD5O76d+Fa7MFHbLiQkxLNk9hQe//MAhUJBnnyujJj4LY0NfKqQd7+RhAQF0bGR9nNt+L82dO4zDNBOjgswcqp24tZOvYYQGhyE9/9qAVC2Sg0mztFeH1la2WBplVznW9vaYWxsgkPi6L2oyHAWThvD8yePUCqVuLgXYuqidZQsU9Gg9AN8M3AUIUFvaNVAu6/GzdrSPbFd+3b8EADGzViojbfvMEKCg2nXuDoAFarUZGpiHsTHxfP9ou/wHXQfAOe8rgybMIMvmmhH8VpYWrFgzTYWz5rMsrnTUCqNKF2+ClPmvX85TtK9/0hCgt7QvmFlABp+3YaufbWf/6yJ2vpo9DRtfdS591BCg4Pp4qWtf8tVrsnkuYn5YG2jNwLRxtYOYxNjHFK0vSvmTuXWtcsoFFCpel2W/fir7rY3Q3TtN5KQ4CA6N9aeS1/+rw2dEs+luYnn0ojEc6ljryGEhgTRPelcqlyD8bPTOZds9M+lhPh4Vs+fzpNHf2vnFMzrSv8x0/nCy7ARSBm1CTMT24Sx01NcH4UE0TGdNmFNijbh7eujv66c58Th31GpzPiyQvJ8Kd59h9GtX9qjr7MUQza+xhOfB4Umo6EA4j/H29ubjRs3plreo0cP1q5dy+7du2nWrBkAo0aNYt26dcTExNCkSROqVKmCj4+P7lHFPj4+7NmzR68jx9vbm+DgYPbs2aNbVqdOHcqUKcPChQsBWLBgAXPmzCE4OJhatWrRsWNHunTpQlBQEHZ2dmmme8mSJaxatYpHjx5hbGxMwYIF6dmzJ71799ZdrPr4+LBhwwa9xx+7u7unOWIno9M2Pj6eGTNmsGnTJp4/f469vT1eXl7MmDFDl763P0dra2uKFSvG6NGjdR0jafH19SV//vxcvXqVMmXKcOzYMerWrasX+7Vr1yhbtiyPHj0iT548dO3aldOnTxMQEEDu3Llp0aIFc+bMwSxx8rO+ffvy888/8/r1ayZPnoyPjw/u7u4MGTKEIUOG6B3/9OnT9O3bl7///puKFSsyaNAgWrduzaNHj3B3dwfg+PHjjBs3jsuXL2Nubk7lypXZunUrdnZ23L9/n65du3L9+nWioqL0tsuM608Nm3TuUyrtYs3FRyHvXvE/rGJ+W26/iHj3iv9hHnks2Xb1+adOxntrWzYve29m7YlK/zVNSzpy4Z/sXRYqFbDlxrPwd6/4H+aZzypbl2ePPJZcf5J92wSA0q7WnP476FMnwyDVC+fgim/aT9/KDsq523DuYfCnToZBqhS04+T97H0e1SySg4vZvF2oWMA2W1/nVcxv++6V/oOCIjM3gt9QOSw+zENCPjXpfBFCZJp0vnxa0vny6Unny3+DdL58etL58t8gnS+fnnS+/DdI58un8Sbi3+l8yWn5eXS+yJwvQgghhBBCCCGEEB+RzPkihBBCCCGEEEKILNEgN9FkhYx8EUIIIYQQQgghhPiIZOSLEEIIIYQQQgghskRmj80aGfkihBBCCCGEEEII8RHJyBchhBBCCCGEEEJkiQx8yRoZ+SKEEEIIIYQQQgjxEcnIFyGEEEIIIYQQQmSNDH3JEhn5IoQQQgghhBBCCPERycgXIYQQQgghhBBCZIlGhr5kiYx8EUIIIYQQQgghhPiIZOSLEEIIIYQQQgghskQjA1+yREa+CCGEEEIIIYQQQnxEMvJFCCGEEEIIIYQQWSIDX7JGRr4IIYQQQgghhBDis7Bs2TLc3d0xMzOjcuXKXLhwId1169Spg0KhSPVq0qSJbh2NRsOkSZNwdnbG3NycBg0a8Pfff2c5XdL5IoQQQgghhBBCiKzR/EuvLNi2bRvDhg1j8uTJXLlyhdKlS9OwYUNevnyZ5vq7du3Cz89P97p58yZKpZLWrVvr1pk9ezaLFy9m5cqVnD9/HktLSxo2bEh0dHSW0qbQaGSaHCGEEEIIIYQQQmSef0jcv3IcJ1uTTK9buXJlKlasyNKlSwFQq9W4uLgwcOBAxowZ887tFy5cyKRJk/Dz88PS0hKNRkOePHkYPnw4I0aMACAkJARHR0c2bNhAu3btMp02mfNFCJFpTj13fOokvDf/1a2warPhUyfDIOHbvZl66MGnToZBJn1RiO/PPf7UyXhvvaq44dL/l0+dDIM8XfY1/Xbd/tTJMMjyFh4UGPb7p06GQf6Z3xj3wXs/dTLem++iphQasf9TJ8MgD+Y2wrzsgE+dDINEXV2arfPhwdxGn0VZLjg8++YBwMN5jSg54dCnToZBbk7/gjy9d33qZLy3F6tafOokvBfNf2zWl9jYWC5fvszYsWN1y4yMjGjQoAFnz57N1D7Wrl1Lu3btsLS0BODRo0f4+/vToEED3Tq2trZUrlyZs2fPSueLEEIIIYQQQgghsr+YmBhiYmL0lqlUKlQqld6yV69ekZCQgKOjo95yR0dH7t69+87jXLhwgZs3b7J27VrdMn9/f90+3t5n0nuZJXO+CCGEEEIIIYQQIks0mn/nNXPmTGxtbfVeM2fO/ODxrF27Fk9PTypVqvTB9w3S+SKEEEIIIYQQQoj/qLFjxxISEqL3SnlrUZLcuXOjVCoJCAjQWx4QEICTk1OGx4iIiGDr1q306NFDb3nSdu+zz7dJ54sQQgghhBBCCCGy5N962JFKpcLGxkbv9fYtRwCmpqaUL1+eI0eO6Jap1WqOHDlC1apVM4zl559/JiYmhk6dOuktz58/P05OTnr7DA0N5fz58+/c59tkzhchhBBCCCGEEEJke8OGDaNr165UqFCBSpUqsXDhQiIiIujWrRsAXbp0IW/evKluW1q7di3NmjUjV65cessVCgVDhgxh+vTpFC5cmPz58zNx4kTy5MlDs2bNspQ26XwRQgghhBBCCCFElmj+Ww87AqBt27YEBgYyadIk/P39KVOmDAcOHNBNmPvkyROMjPRvALp37x6nTp3i4MGDae5z1KhRRERE0KtXL4KDg6lRowYHDhzAzMwsS2mTzhchhBBCCCGEEEJ8FgYMGMCAAQPSfO/YsWOplhUtWhRNBj1JCoWCqVOnMnXqVIPSJZ0vQgghhBBCCCGEyKL/4NCX/zCZcFcIIYQQQgghhBDiI5KRL0IIIYQQQgghhMiS/+KcL/9lMvJFCCGEEEIIIYQQ4iOSkS9CCCGEEEIIIYTIEhn4kjUy8kUIIYQQQgghhBDiI5LOl8+IQqFgz549nzoZQgghhBBCCCE+cxrNv/P6XMhtR9mMt7c3wcHB2a6T5dSpU4wePZq7d+8SGRmJm5sbvXv3ZujQoeluc+zYMRYsWMCFCxcIDQ2lcOHCjBw5ko4dO2Z4rBUrVrBixQp8fX0BKFGiBJMmTaJRo0a6ddzd3Xn8+DEARkZGODo60qhRI+bOnUuOHDnS3feGDRsYMmQIwcHBmQ8+A/92fioUCnbv3k2zZs0++L416njCzm0g+sEpUIBZwZpYV/FGYaRMf5v4GF7vGo46OgyHLhv13ou8e4TIG7+QEPEGIzMbrKt2w8ytIrH+dwg+MOOt/cRi7vEVNtW6GxxD7LUtxD85BygwdquCaen2GceQEEvUHxPRxIZh2Wx56vejQ4g8MB4ji5yYfzkVgITA+0SfnK+/YkIsxoXqoyqb8fmdkYT4OA6s/Ja//vwVhUKBZ73/8VWfcSiVqav63XNGcePoXpTGJrplXb7bgItHWQBCX/mzb8kUHt+8hEKhIH+ZKjQZMBlLu1zEx8awb9lU/rlyhsjQIGxyOVK9zTeU+6r1e6c9ZQzbF07jwsE9gIJKDZvRZvBElMZpN1fXTx7i19XzefnUF3Mra5p0G0TtFp0AiIoIY/Os8dw4/ScmKjPqtupCk+6DdNv+smoe104cxP/xA+q07ELboZMNTj+AJiGe4NPriPz7OKDAokgt7Kr3eGdZ8N86GHV0KHm/+QmA+LBAArYMfGvfsZi5lSd34/EAvNwznlj/eyiMkj8fp47LUVrmNCiGhPg4zqyfxf2T+1AooHDNplTvNhqjNM6lP5eM4+9T+zBKcS55TVqDU9Eyuv8/uvgnF7cuJcTvCaYWVlRo3ZcSDdvq7Scy+BVbB3thlduZNvN2GZR+TUI8r4+vJuLuUUCBVfE65KzdK8M8UMfH8PyH/qijQ3Hrt123PPb1E14fXUnsywcolCZYFKhMzjq9MDIx09s+ISKIZxv7YGxjT95OSw1Kf1IMQSfXEHHvGKDAsmgdctT65p0x+G0eSEJUKK59tgIQH/aSFz/21993fCzm7hVw8JoIQMzLBwQd/57YV74ozW2wrdwBq+L1PkgMr459T/idY6AAq2J1yV33HfkQF8PTH/qhjgol/4CfdctjXz/h1Z8riAl4qM2HgpXJXVc/H0L/OkDwpZ3Eh71CaWFL7rq9sSxU9f3Tr0kg/vlpEoLuA6DMUQTjvDVQKNL/7VKjjif27hY08dGYleqZ4rOIJe7pMdShvmBkjHFuT4ydKurej/M7jzrkHzTRQShze2KSr+Z7p1svPf9SHsSFvuTphj76x46PxSJ/RZybG1a3fi7l+fWx7wm/ewwAq+J1yVXn3fnw7Id+qKNDce+fOh9iXybnQ640YoiPCOLZht4Y2ziQr7NhMWgS4vE/tJLgW3+iQIFtyXo4fdHnnel/uLo38ZEhFB+xW7c8yu8+/gdXEP3yEUoLGxxqdsau1Be69+8v7Ux8RFByOTNS6m3/3jGo4wk9s56oBydBocC8UE1sqnZ7Z9scuGMY6uhQnLw36b0Xefcw4dd/QR3xGiMzG2yqdcfMvRIAMc+uE3p+Ewmhfigtc2Nd1Rszl7IGxyCyP+l8Ef8KS0tLBgwYQKlSpbC0tOTUqVP07t0bS0tLevXqleY2Z86coVSpUowePRpHR0f27t1Lly5dsLW1pWnTpukeK1++fHz33XcULlwYjUbDxo0b+frrr7l69SolSpTQrTd16lR69uxJQkIC9+/fp1evXgwaNIhNmzalu+9PJS4uDhMTk3ev+AlFXN1JnP9dcrVaAEDwgRlEXNuFVbn0v5CHX96G0soedXSY3vLIu4eIvLEP27pDMc7ljjoqBE18DACmTsVx8P5Rt25CZDCvtvTBrGB1g2OIu/Mb6ld/Y95Q27kTc3I+cXf3Yurxdfrb3NyNwjIXmtiwNN+PufojRjlcISZct0xpXwTLFit1/9dEhxC5dzjGLpUMSv/xn5bz5OYlBqzeD8CP43twcssK6nQamOb6Fb060KjvhDTf27dkCgBDfzwGGg07vxvO78un0XrcQtQJCVjntKfrrA3kcHbl2d1r/Dj+G2xyO1GogmFfGPatX8KDvy7i89NhABYP68r+jcto2mNwqnVvnj3GT3Mm0t1nAYVLVyIqIpywN4G697fOm0xEaDAz95wmLOg1CwZ1IqdTXqo2bgmAQz43Wg4Yw8lfthqU5reFXv6ZWL/bOLVbAsCrvVMJu7wDm4pt090m5MIWjK3tiY0O1S0ztrYnb6/ktGkS4vDb2B2LQjX0trWt2gXr0v/7oDFc3rEKv7tXaLfoVwD2Te/NlZ3fU6FNvzTXL9GwHTW6j03zvSdXT3Ly++nUH/wdzsXLExcVTmTw61TrnVwzg9z5ixMdFmxw+oPPbyXmxS3ydtGWs4A9kwi+sI0cVTqkv82ZHzG2cdDLA4DA/bNRORfHqfkU1DGRBPziQ/D5reSs4a233qujKzB1KIj6re3fV8jFbUS/uI1zJ22n7stffAi5uB27yu3T3+bcZoyt7UmISnkeOeDaN/mLmyYhjmdru2JZRFtW1THhvPxlCnZVOuBY4ktiXz4gYM8kjG0dMctTItUxsiLo3Fain9/GxVubD367JhF0fhs5q6afD2/O/IiJjQMxUfqfY8C+2ZjlKY5zi6moYyLx2z2ZoHNbyFWzGwChf+0n+PIeHJuMwdShAAmRwWjiog1Kf7z/JdThL1AV037msQ9/IyHgsl6nSapt/M6jMLVGE69/7LhnJyAhBpVHVzTxUcQ+/AWFqTXKnMUAMFLZYpSnGgmvbxuU5rf9W3lgYuNAgUHJnaaahDh8V3bGqlgtg2P4HMpz0PmtRL+4Tb6u2hj8d08i+Pw2cmSQD0HpxPDyd/188N8zmeBzW8iZWBaSvP4zKYa0r0+yIvDUT0Q+vUmhXqsBeLJ1PIGnt+BQs1O627w8sRETWwfiI0N0yxKiw3m8bQIONbvgXrYRUX73ebxlLCY5nLF0KalbL1+zsdgUNfy6LqXwKzuIDbiLfZtFALzZP53wqzuxLt8m3W3CLm1NvE7Vz4PIOwcJv7GXHPWHYpwrf+J1qrbMx4f6E3RwNnb1h6JyLUfMkysEH5pD7lbzMbZx+qAx/RdoZNaXLJHbjj5jo0ePpkiRIlhYWFCgQAEmTpxIXFyc7n0fHx/KlCnDunXrcHV1xcrKin79+pGQkMDs2bNxcnLCwcGBGTP0RxnMnz8fT09PLC0tcXFxoV+/foSHh799eD1ly5alffv2lChRAnd3dzp16kTDhg05efJkutuMGzeOadOmUa1aNQoWLMjgwYP56quv2LUr419Evby8aNy4MYULF6ZIkSLMmDEDKysrzp07p7eetbU1Tk5O5M2bl7p169K1a1euXLmS4b7flvQZbtq0CXd3d2xtbWnXrh1hYckN3Y4dO/D09MTc3JxcuXLRoEEDIiIi8PHxYePGjfzyyy8oFAoUCgXHjh3D19cXhULBtm3bqF27NmZmZmzevFl3rJQWLlyIu7u73rJ169ZRokQJVCoVzs7ODBgwAEC3XvPmzVEoFKm2M1TU/aNYlm2J0iIHSoscWJZpSdT9P9NdP+7VQ2KfXcOiVDO95Rp1AhGXt2FdtRsmufOjUChQWthhbOOY5n6i/z6O0tYJU8eiBscQ/+gkJh5eGJnbYWRuh0lxL+IfpX+OJgT5Eu9/A5OijdPe3/MraGIjMHarluFx43xPo7ByRJm7sEHpv3pgB7U69MM6lwPWuRyo1aEfVw7seK99Bfk/pUTtRqjMLVFZWFGydmNePtL++mtqbkG9rkPImccNhUKBS/Gy5C9dmSe3LhuUfoAze3+msfdAbHM7YJvbgcZdB3B67/Y01/119XyadB9E0XJVMVIqsbSxxcm9EACx0VFcOryXr3uPwMLaFkfXAtRt1ZXTv23TbV+1SStKVq2LuaWVwelOKfLOYawrtEFpmROlZU6sy7cm4s7hdNePffmA6CdXsC7bIsP9Rj06j0ajwbzA+/+Sn1l3/9xN+Va9scxhj2UOe8q37M2dI+83GuXCliVUaN2HvCUrYaRUorKyJUe+AnrrPLrwJzHhIRSp5fUhkk/YrUPYVWqHsVVOjK1yYlepLWE3D6a7fkzA30T6Xsa2YqtU78WF+GNVvC4KpQlKC1ssClQm9pWv3joRD8+ijg7HqnjdD5J+gPDbh7Gt2BZjy5wYW+bEtmIbwm8fSj+Glw+IenwFm/ItM9xv5MNzoNFgUVBbL8X43UWhNMbasxEKIyUqp6JYFKxK+K30P6/MCr15kBxVkvMhR+W2hN34I/0YAv4myvcSdhVTd9rHhfhhnSIfLAtW0eWDRp3Am9M/krtub1SOBVEoFBhb5sDEztmg9Ce8uYuxUwUUJpYoTCwxdqpAfAadI+rIl6jDnqB0KKe3XKOOQx38N8bOlVEYqzAys8PY3pP413d06yhzFkNp4wZGpgal+W3/Vh68LeLBWUCNZWHDv0B/DuU57OZB7CqniKFyW8JuZpwPkRnkg14MaeRDxIOzJESHYe1h+Ag2gKDrB8hdowMm1rkwsc5F7hodCL52IN31o/zuE/7wErmr6ndsRD67jZHShJzlm6IwUmKRtzg2RWsQfG3/B0lnRiLv/YlV2Va661Srsi2Junck3fXjAh8S8/QaVmWa6S3XqBMIu7QN22rdMcldIMV1qrZjJebpNUxy58fMrQIKhRFmbhUwsS9E1P3jHzM8kU1I58tnzNramg0bNnD79m0WLVrE6tWrWbBggd46Dx8+ZP/+/Rw4cIAtW7awdu1amjRpwrNnzzh+/DizZs1iwoQJnD9/XreNkZERixcv5tatW2zcuJE///yTUaNGZSltV69e5cyZM9SuXTtL24WEhJAzZ+aH0yckJLB161YiIiKoWjX9LyzPnz/nt99+o3LlyllKD2g/wz179rB371727t3L8ePH+e677wDw8/Ojffv2dO/enTt37nDs2DFatGiBRqNhxIgRtGnThq+++go/Pz/8/PyoVi35S/qYMWMYPHgwd+7coWHDhplKy4oVK+jfvz+9evXixo0b/PrrrxQqpP0yevHiRQDWr1+Pn5+f7v8fgjomHHXEa4xzuuuWGedyRx3+CnVsRKr1NeoEQk+uwrraN3q3SwAkhLxAHRVC/Ot/CNzaj8CfehN6ciXq2Mg0jx11/0/Mi9Q3OAZNbASaqCCM7Fx1y4zsXNBEvkYTl/rYGnUCsZfWoyrXOVUMAJq4SGKvb0VVrss7jx3vexKT/IaNGIkKCyH0lT9OBT10y5wKFifk5QuiI9L+1ev64T1817ICS3s24vSOtajVat17VVt249aJA0RHhBEVHsqNY3spUiXti7i42Bie3/sLx/yGdYBFhIYQ9NIPl8LJMeQr4sEb/+dEhev/6hQTFcmTuzcIDvRnYpu6jGxSgVXj+hHy6iUA/o8fEh8Xq7cvlyIePH9416A0vos6OpyEiNeY5s6vW2aSOz8J4YGoY9IuC0HHlpOjVm9I45aelCLuHMaiSC0UxvpfzsIu/8zztZ0I2D40cVi+YWLCQ4h47U9u92K6ZbncixH+yo+YdM6l+8d/ZV3Xqmwd/D+u/boBTeK5FBcdSeA/twl/85KfBjRmQ49a/DF3KBFBySOUYiLCOLNhNrV6fZjbvhKiw0gIf4WpQ3IHj6l9ARLC0s+DV4eXkKtevzTLsm35FoTf/hN1fAzxEW+IeHAWiwLJbYU6JoI3x9eQu37/VNu+fwzh2hjsk8+jd8Xw5sgSctbpg0KZ8SjJ8NuHsCxaR3ceaTTq1CtpNMSl86U68zFo80FlnyIfHAoQHxZIQjoxvDy4mNz1+6FIoyzYVWhJ2O0jqOOS8uGMLh/igp6TEBlETMADHq/2xndVZ14eXIQ6Ju12IzM08dEQF47CPLdumcI8N8SFo0mISb2+Rk3c06OY5KsNCv3bGDTRwaBRv7UvezTRqUeAfUj/Zh68LfTGQayK1cXI2LDOpM+jPKfOB5W9Nh/SiyHwUAb5UD6NfCioH8Pr46uxbzDgw6Q/Koz4sFeYORbULTNzLEhc6EsSotNO/4t9C3H+akDq+kijRvPWBB4ajZrogEd6y17sX8Td+a34Z8Ngwh5cMDiGpOtUk1zuumUmudxJyOA6NfjECmxqfANvnUfxIS9QRwUT9+ofXv7Uh4DNPQk+sSL5OlWjTmMsiIa4N48NjkNkf9L58hmbMGEC1apVw93dHS8vL0aMGMH27fq/IKvVatatW4eHhwdeXl7UrVuXe/fusXDhQooWLUq3bt0oWrQoR48mX9APGTKEunXr4u7uTr169Zg+fXqq/aYnX758qFQqKlSoQP/+/fnmm28yHc/27du5ePEi3bp1e+e6N27cwMrKCpVKRZ8+fdi9ezceHh5664wePRorKyvMzc3Jly8fCoWC+fPnp7PH9KnVajZs2EDJkiWpWbMmnTt35sgRbU+6n58f8fHxtGjRAnd3dzw9PenXrx9WVla6Y6tUKpycnHBycsLUNPkiZciQIbRo0YL8+fPj7Jy5X++mT5/O8OHDGTx4MEWKFKFixYoMGTIEAHt7ewDs7OxwcnLS/f9DSBrabaSy1C0zMrXQey+lyL9+xTiXO6bOHqneUyfenhP7/Aa5mn1HrhZzSAh7Sdi5DanWjfW/Q0JYAOaFDR/WnDRcVGFioVumyCCGuHv7MbJzQ2mfdodD7F/bMXavgZF1xkNMEwLvowkPxNg949Ex7xIbpW30zaysdcvMLLV/x0SmHplWuVlXBq79g1Hbz/P1sG85v3sj53Ynz7vjWqI8EcGv+a5FeWa1rEBUWCg12/VOtR+NRsOv88eRM687xWtkrpMwPTFR2gsgC2sb3TILK+3f0ZH6F0eRYSFoNBqunzjIkEWbmPbzcYxNTVnrMyRxX5GozC305oqxsLJJtZ8PTR0XBYDCNEVZSCwXSe+lFHZ1Nya586N6x+0d8WEviXn2F5bFv9BbblulM04dV5LHewO2VboQfGo1Uf+cS2cvmRMXrT2XTC2T80GVeC7FpXGh7dmkE+0X78N73Snq9J/GjX2b+Guf9vbNmIhQ0GjwvXAEr0lr6Lh0P0oTU44sGq3b/tymeRSt+zV2edwMSneSNOsjlXZ0kzo2dR6EXNqJqX0BzPOVTPUegIV7BaJf3Obx0lY8/b4zxtb2WJdIzoc3J9dh5dEAkxx5P0j6tTFEpY4h8ZxKK4bQy7swsS+IWd60Y0gSH/qS6KfXsSrxpW6ZyqkYmrhoQq/vRZMQT/SL20Q+PJvmcbIUQ2zqfFAm5oMmjX0HX9yByqEg5vk809yfRf4KRD2/zaMlLXm8shPG1vbYlNTGkRCl7RSMenKNfB0X4dJ5KfEhAbw69v37B6DWjhRWKFW6Rbq/E+JSrZ7w8ipG5vYYWeVJe19GxnpzxSiUppAQ+/7py4R/Mw9SigsNIOrJNWw8DWsT4HMpz4kxmGUuhuBLO1DZp58P5vkrEP38Nr5LW/JkVSeMreyxTlGmX59Yh3WJDxdDUtulNEseJapMatfS+GHs1dntmDkVxNK1VOq05/VAExfD64u/oEmIJ/LpLcLundHbT97/jaJI/x8oMugnclb4mqc7pxL14p5BMaR1HiW100nlJKWI679o22bn1G2zJvE6Neb5X+RuMRv7lvNICAsg9Ox6AFT5ShMX+IBo3/No1AlE+54n1v9umj/kfRY0/9LrMyGdL5+xbdu2Ub16dZycnLCysmLChAk8efJEbx13d3esrZO/rDk6OuLh4YGRkZHespcvX+r+f/jwYerXr0/evHmxtramc+fOvH79mshIbaWS1LFgZWVFnz76k6+dPHmSS5cusXLlShYuXMiWLVsyFcvRo0fp1q0bq1ev1s3bcvLkSb1jbd68Wbd+0aJFuXbtGufPn6dv37507dqV27f1hwqPHDmSa9eu8ddff+k6S5o0aUJCQsI748joM3R2dtZ9XqVLl6Z+/fp4enrSunVrVq9eTVBQUKZirlChQqbWS/Ly5UtevHhB/fqGjwKJiYkhNDRU7xUTk/qXviSKxEneUjaeSX8r3p4ALsSPyLsHsa7UOcN9WZRujpGZDUZmNliUbk7Mk9S3tETdO4LKtQJG5rZZCzCt4xprj6tJ8QU56e+3Y1CHBxD/zzFMS6d9n3BC4H0SXj3ApFjatyOlFP/oBMo8ZVGobN65bkZMzbUdRSlHJkRHaC8QVBapb6vJU7gElna5MFIqcSlelhpte3Pr+D5A26H4wxhvXEuUY9wv1xn3y3VcS5Rj01j9jk+NRsPeJZN59ewR7X1W6NUb70Nlrr0QigpPjiHpbzMLy7fW1cZbt3U3cjnnw8zCkv99M5T7V87qOl5io6NIiI/X29fb+/nQjEzMAe1IqiSaxLKQ9F6S+BA/Im79gV0173fuN+LOEUxy59cbUQPaL85GKksUSmPMXMti6fElkQ9OGRSDiZn2s42NTM6HpL9NzFJ/fvYFPDC3zYmRUolTkdKUbf4ND04f0NuXZ+NOWDvkwcTckopt+/P85gXioiN5cfsyfnevUrZZD4PSnJKuPopJWR9p88PIVD8P4oJfEPrX7+SslfbxE6LD8Ns5HuuSDXEfuAvXvltRmKgIPDAXgOhnN4l+cQe7NG5vMCwG8yzFEHZzPzlqvPuHifDbhzG1L6A3okZpboO910Qi7x3n2douBJ/ZiJVHA4zMrDPYUyZiME2jXUj8lV/xdgxBLwi9/ju5MsqHn8dhU6ohBQbvxr3/NhQmZgT8PgcAo8Rj2VVqg9LCFqWFLXaV2hDx8Hya+8sUI+0v9poUHSS6ES9v/Zqvjgkm/tVNjPOk04luZALqeL1RRpqEWFB+2FuM3vZv5kFKYTcPoXIogMqhQBp7ymIMn0V5TiOGmHRiCHpB2PV3xLBjHDaeDck/aDdu/bZhZGLGy/3afIh6dpPoF7fTvF3pfRnp6qPkdi1Bl34LvXVj3jwn6Mo+HOv3JC3GFja4tplKyK2j3FvUloCja7Er/SVK8+T6xtLVEyMTM4yMTbErWQ/rwlUIvWtYu5bWdWpS25xUTpLEh/gReecPbCqnPXI56XrRqkwL3XWqVZkWxDy+pI3RLi856g8j7PLPBGzqTuTdI5gVrIGRyrA6VXweZMLdz9TZs2fp2LEjU6ZMoWHDhtja2rJ161bmzZunt97bk7gqFIo0lyXdjuDr60vTpk3p27cvM2bMIGfOnJw6dYoePXoQGxuLhYUF165d021rY6P/hTJ/fu0Fn6enJwEBAfj4+NC+ffqTBwIcP34cLy8vFixYQJcuyRVhhQoV9I7l6Jg8J4ipqanudpvy5ctz8eJFFi1axKpVq3Tr5M6dW7dO4cKFWbhwIVWrVuXo0aM0aNAgwzhSyujzUiqVHDp0iDNnznDw4EGWLFnC+PHjOX/+vO6zSI+lpf6XHCMjo1RDNVPO4WNurt+AG2LmzJlMmTJFb9nkyZOBtH9JMlJZYWSZi/jXvrp7XuPf+GJkmUv3a60uzQF3UUeF8OrnxAlU1fFo4qJ5uak7ORqOxTina6oL27SoYyOJfnQOu/rDsx5gGhSmlijMc6AOfoKRlYP2GMFPUJjn1BsNA5Dw6m/tJLn7EycYVSdAfDQRvwzErMYQEl7eRhMRSORvQ3UxkhBLxC8DMf9yGkbmdoC2cyf+2UVU1QwfGmxubYtNbif8H94hZ+IIAv+Ht7G1d9aNgMkwfiOF7u+osGCCA55TuVkXTM2051Xlr7tw+uc1RIS8wdI2JxqNhn1LfHh+9zpdZ/2QqWO8i6WNLTkcnHn6923s82ljePr3bXI45sHcSr8MWljbktMp7V/1NBoNTm4FURqb8OzBHdyKeer2ladgsTS3+VCMzKxQWuYi9tUjjG21I9ZiXz1CaZVb7xc3gBi/2yREBeP/k3YSW406AU1sFC/WdSZXk4moHIskxqMm8u6fWJfLeC4PIMOnsGSWysoWy1xOvHp0F1sn7W14r3zvYpXbSTcCJrNpUFnaYJU7nZF7Gg3Pb5wjLOAZP/TUzq2QEBdLfGwM672r02bBHixzZH2EntLMGqVVbmID/9HN+RH78h+U1vap8iD6+S3UkcE8W6+d+F2jjkcTG8XjFe1xbDYZhUKJJj4Wm7L/097XrzTBxrMR/nu0t0hFPb1OfIg/T77Xtk2ahDg08TE8XtGevJ2XYWz1fk+dUppZaWN4lSKGwHTOoxe3SYgM5sUPvRNj0J5HT7/vgMP/JqNy0o7O02jUhN85jG2F1F/KzPJ44NQm+Ut04P5Z7xxF8+4YtPkQ8/KhLoaYwH8wtrbX/WqeJOr5LRIig3myLvELmzoedWwUj5a1w7mFDyiMUMfHYlv26+R8KNUIv12TADDJkS/V7XiGUhibgYkVmqhXoNJ28GuiXoGJld5oGAB1uB/ERxFzJ/FHII0a1LFE31iLaYEmKMxzgcIITdQrFBYOun0pzAx7Ktm7/Jt5kESjURN28xB2ldOfxPR9Ysje5TntfEgzhhfafHi6vqdeDL7L2+HU3AeFwigxhuR8sC7VCP/d2nyIenKN+BB/Hq/qrBeD7/J25Ouy/L1iUJpbY2ydm+iAh5jm0I7sig54iImNPcq3OuQjn94iPiKIByu669Kvjoni7vxWuLadhkXe4li4lKCA90LdNk93zcAijVEyOgpF+u9lUtJ1atyrR7rr1LjXvhhZ5k51nRrrf4eEqBBebkt8WIE6AU1cFP4bvcnZaBwmOd3e2XFq5l5J9+QjgFe7x2BepI7BcfwXfUaDUv4V0vnymTpz5gxubm6MHz9etyzp0cqGuHz5Mmq1mnnz5ul+5X77lqOkDo13UavVGY6mAO3jpps2bcqsWbNSPRXJ3Nz8gx5LqdTeox0VpR3tkNl9v4tCoaB69epUr16dSZMm4ebmxu7duxk2bBimpqa6kTbvYm9vj7+/PxqNBkViQ5Syg8ja2hp3d3eOHDlC3bppTxJnYmKSqeONHTuWYcOG6S1TqVSsHPBbutuYF6lDxLVdmCROfBtxbTfmRVOPwjErUA3TvMmNbFzAfUJPriBXizkYmdmgUJpgXqgWkX/twSR3fkBB5F97MHPTf7pE9MPTGKmsMM1X+p3xZJaxe03i7vyGUeLEt3F39mJcIPUtTcb5KqJ0SL5lSv36ITGX1mP+xRQUZjYY2eTBOH/ydgnPLhL36ARmNYejMEvuRIh/cg6FqRVKR8OeKJKkbMOWnNiyApcS5QE4uXUl5Rql/evXzeO/U6hCTVQWVrz4+yantn1PRS/tY64tbXOSM48bF37dTJ3O2ouPC7/9iE1uJyxttRdu+5ZO4cntK3jP/gFza8NHHiWp1qQ1v29YSsFS2hj2b1xGDa+0nxJU8+v2HN2xgRJVamNpY8fedYsoVqG6bnRLhfpN+fX7eXwzdTGhQa85umMj/+uZfF4nxMehTkhArVajVquJi4nGSKnUe/z2+7AoXp+wyztQORcHIOzyjlS3CwGYF6yBKsX5G+t/j6Bjy3BoswBlitFcMU+vo44OxaKw/rxA6phwYvzvosrjiUJpTMyLm4TfOkCOOobPVVCsbjOu7Pwe52LaR2Ne2bma4vXT7vx5cPoArmVrYGJuSeDDW1zdvYYSXyV3qnt80Zob+zfjUrYGZla2XPp5Bfk8q2Bibklpr64Ub5C834dn/uDO4Z00nfQ95jbv/8XUukQDgi9sQ5VHmwfBF7djncbtEZZFamLumvz4zxi/OwQeWkzeTktQWtiiSYjHyMSMsOv7sC7VCE18DGE3/8DUXjv3gW255liXTL61IuLvk4TdOIhTi2koLQwrF1Ye9Qm9uB2zxNszQy9t17tdKIlF4RqYuZRJjsH/Lq+PLMG5/WK9NEQ/uYY6KhTLIqnrtNiXDzHJ6YoGNRF3jxH97CbO7RcalH4Am5JfEHR+G2Z5tTEEnd+GdRq3olgVrYmFW3I+RL+4Q+DBRbh0WZqcD6ZmhF7bi03pxmjiYwi9cQCVgzYfjExUWBWvS/DFn1E5FgQUBF/8GctCVQxKvzJnMeIDLmFkmfijQsBljHOlvl1WmaMQSmsX3f/Vkf7EPTmKqmhbMDZHYaTEyK4w8X7nMXH/Ek18FPGBf2HinDxPh0aTABoNoAY0aNTxoFCgeGv+mKz6t/IgSdTjqyREhWJVrI5B6U7pcyjP1iW+IPhCcj4EX9iGTcnU+fB2DNF+2nzI13mpXgyh1/diU0qbD2Ep8sGufAtsPL/SbR9+/yRhN//AucV0g2LIUbohgae2YJ5Pe73y6vRW7Mo0SrWerUctrPInpz/y+R1e7JtPwW9WoLS0AyDK/wGq3K6g0RB88wgRT65TsMcKAGJDXhIX4o95nmIoFEaE3jtN2P2zuHdKPcIqqyyK1iX86k5MnbQ/woRf3YlFsdTXqeYFq6PKm6JtfnmPkOMrsG85DyPzxOvUwrUIv7YHk9wFAAXh1/agStHZEhv4AJNc+dHExxJx4zfUMWGfbeeLyBrpfMmGQkJC9L50A+TKlUvv/4ULF+bJkyds3bqVihUrsm/fPnbv3m3wsQsVKkRcXBxLlizBy8uL06dPs3Llyndut2zZMlxdXSlWTFvhnThxgrlz5zJo0CDdOkuXLmX37t26W4COHj1K06ZNGTx4MC1btsTf3x/QjmrJaNLdsWPH0qhRI1xdXQkLC+Onn37i2LFj/PGH/qzyYWFhus6Mp0+fMmrUKOzt7fUmvTXU+fPnOXLkCF9++SUODg6cP3+ewMBAihfXXkC4u7vzxx9/cO/ePXLlyoWtbfoNY506dQgMDGT27Nm0atWKAwcOsH//fr1ROT4+PvTp0wcHBwcaNWpEWFgYp0+fZuDAgbrjHTlyhOrVq6NSqciRI0eax1KpVKhUqjTfS49l2Vaoo8N5vUM72sOsUE0sy2if3hJ6SnvfvU2NXiiMVSiNk/edYGYDCgVKy+Rz2LqKN6Fn1vBqW38URiao3CpgVbmr3vGi7h/BvEjdD/JLfxITDy80seFEHRgHgLFbVUyKaR9rHnNZOx+KqnxXFMYqFCli0IS/BAUYWSSel0bGutsGABJMLVEolMnvJ4p/dBLj/DU+WAy1O/YnMjSYpd9oL7xK1f+amu37AvDbookAeA2eBsCFXzbx28IJ2sdG53akolcHqrVKHubcfsoKDqz8lnnta6DRqHEu6EGHqdqyHhzwnIu/bcbYxJQFnerotilV/3+6/b+vJt0HEh4ShE/7BgBUaticRl21nQmbZ2nzpePobwH4qnNfIkKDmdZFewFYtFxVuk1Onrep3YgpbJ41jtFfV8VUZUadll10j5kG2DRzDGd/36n7/7EdG6nauCXeE/VHCGaVTfk2qKPD8N+iHdFkUaQ21uW1w9iDjmkvMHPU6YuRiQojk+TzKN7cDwBjq9x6+4u4cwjzgtVS/UKqUScQenEb8UHa9BpbO2BXvTsWhQx/ukj51n2IDg9my2DtI6yL1GpKuZbaDvDjq7Sj4mr31v5afHP/Txxf6YNaHY9lTkdKfNWOMv/z1u2rbPNviAkP4efh2vogT8lK1B80EwBTCytMU9wWp7K0wcjYGKtchj2O065yexKiw3i+UXvLqFXxuthV0nbivTq8FIDcDQZoh7anuK0wLthW+6Qca20eKJQmOH49mTen1hN05gdQGGGWpzj2DbX1nJHKAiNV8sg4I5UVCqVSt70hbCu2IyEqjBc/asuwZdG62FbUjiZ4/ecyAHLV658qhvgQW0CRKg3htw5iUah6qvMIIPT6b4lPQUpA5VQMxxbTMbbKlWq9rMpRpT0JUaE8XZ+cDzkqa/Mh8JD2Uez2XwxMFYPSwhbeygenZpN5c2I9b04n5YMHDl8ld6bmrtubV0eW82RNdxRKEywKViZ3nbRvfcgsY6cKxCdEE3NXe4u0MkcRlI7ajuG4p8cAMHGpg8LIBExTdNrGaOt/hWnyuW2SrxZxT48Rc2sjGBljnNtT95hpgLgnx1AHJU8InvDqBkY5imHqZtitxP9mHgCE3vgDyyI1Uo2sMcTnUJ5zVGmPOjqUZxtSxJCUD4cT86FBGvmQRgxOzSbz+uR6glLkg33DYWnGoDSzQmFkbHAM9jU6Eh8VyoNV2rka7UrWx766tpP9xe/aRzfnaTw4VfqNg14ACkxskkcxvrm4h9B7p0GdgHk+D9w7zsbEWlvfqGOj8P9jObFBL8BIiSpnPlyaj8cib3GD0g9gVa416uhwArdrR16bF66FVVntNUHISe3IeNuavbXXqVbJbbNRqA0oQJmiTrSp2o3Q06t5uaUvCqUJKreK2FTx1r0fdmEzcS//BhSo8pUiV9Opep/L50QjQ1+yRKF5+z4G8Z/m7e3Nxo0bUy3v0aMHa9euZffu3TRr1gyAUaNGsW7dOmJiYmjSpAlVqlTBx8eH4OBgQPtFfc+ePXodOd7e3gQHB7Nnzx7dsjp16lCmTBkWLlwIwIIFC5gzZw7BwcHUqlWLjh070qVLF4KCgrCzs0sz3UuWLGHVqlU8evQIY2NjChYsSM+ePendu7duBI2Pjw8bNmzA19c3w1hr167NsWPH0v2MevTowZEjR/Dz88PW1pZSpUoxevRovvgi+Zdnd3d3vZFA9vb2VKxYkRkzZqR6nHNKGzZsYMiQIRl+hgsXLmThwoX4+vpy584dhg4dypUrVwgNDcXNzY2BAwfqHv8cGBhIx44dOXv2LOHh4Rw9ehR3d3fy58/P1atXU6Vl5cqVfPvtt7x584aWLVtStGhRvv/+e91nBrBq1SoWLFjAP//8Q+7cuWnVqhWLFy8G4LfffmPYsGH4+vqSN29eve0yw6nn+z22+L/Af3UrrNps+NTJMEj4dm+mHnrwqZNhkElfFOL7c9l3xv9eVdxw6f/Lp06GQZ4u+5p+u9J/XG52sLyFBwWG/f6pk2GQf+Y3xn3w3k+djPfmu6gphUZ8/MfDfkwP5jbCvOyHeSLMpxJ1dWm2zocHcxt9FmW54PDsmwcAD+c1ouSE9B9lnx3cnP4FeXrv+tTJeG8vVrX41El4L/8Epp6w+GMoYP95dF5J54sQItOk8+XTks6XT086X/4bpPPl05POl/8G6Xz59KTz5b9BOl8+jYeBhj0ZL7MK2n+4uS0/JXnakRBCCCGEEEIIIcRHJHO+CCGEEEIIIYQQImvkHposkZEvQgghhBBCCCGEEB+RjHwRQgghhBBCCCFElsjAl6yRkS9CCCGEEEIIIYQQH5GMfBFCCCGEEEIIIUSWyHOTs0ZGvgghhBBCCCGEEEJ8RDLyRQghhBBCCCGEEFmikVlfskRGvgghhBBCCCGEEEJ8RDLyRQghhBBCCCGEEFkjA1+yREa+CCGEEEIIIYQQQnxEMvJFCCGEEEIIIYQQWSIDX7JGRr4IIYQQQgghhBBCfEQy8kUIIYQQQgghhBBZopGhL1kiI1+EEEIIIYQQQgghPiIZ+SKEEEIIIYQQQogs0cisL1mi0GhksJAQQgghhBBCCCEy745fxL9ynOLOlv/KcT42GfkihMi0Z0ExnzoJ7y1fDhW+r6M/dTIM4p7LjIeBUZ86GQYpaG/O8+DYT52M95bXzpSnb7JvOQBwyakiIDTuUyfDII42JviHZO8YnGxNsnV5LmhvzuPX2bssuOVS8SSbl2fXnKpsX6d+Dm1zds4D+HzatuxcJ7nlUn3qJLwfGcaRJTLnixBCCCGEEEIIIcRHJCNfhBBCCCGEEEIIkSUy8CVrZOSLEEIIIYQQQgghxEckI1+EEEIIIYQQQgiRJfLonqyRkS9CCCGEEEIIIYQQH5GMfBFCCCGEEEIIIUSWaGTWlyyRkS9CCCGEEEIIIYQQH5GMfBFCCCGEEEIIIUTWyMCXLJGRL0IIIYQQQgghhBAfkYx8EUIIIYQQQgghRJbIwJeskZEvQgghhBBCCCGEEB+RjHwRQgghhBBCCCFElmhk6EuWyMgXIYQQQgghhBBCiI9IOl+yCYVCwZ49ez51MoQQQgghhBBCCDT/0r/PhXS+/Id4e3vTrFmzT52MLDt16hTVq1cnV65cmJubU6xYMRYsWJDhNvfu3aNu3bo4OjpiZmZGgQIFmDBhAnFxcRlu5+7ujkKhSPXq37+/bp3o6Gj69+9Prly5sLKyomXLlgQEBOje9/X11dvW1NSUQoUKMX36dDTvGDv3ofPI3d2dhQsXfrD9ZeTYsWMoFAqCg4M/yv7j4uKYMGoIJfM7UbKAMxNHDyU+Pj7d9Q/u30vDWpUoki8n5T3ys2n9at17f127QotGdSnuak/1ssXYsfVHvW2rli5CoTx2FHXJRVGXXJRwd/xgMUwaPYTSBZ0pUygPk8dkHMOh/XtpXKcyHq65qFwiP5tTxHDj2hVaN6mHp7sDtcoXZ+e2zXrbBvi9oFu7Zni45qJ66cJs+WHdB0m/z5ihlCuch/JF8jJl7LAM03/4wF686lbG0z031TwL8NOG5PT/fe8OnVs2plzhPFQp4c744f2JiozUvd+hWUOK57OjlLu97hXg/+KDxDB+5GBKuDtSIr8TE0YNyfg8+v03vqxZkcJ5c1C+uDub1n2ve++va1do/lVdirnmplqZonrn0fkzpyiSL6feyyWnGRNHD/0gMUwcNYSSBZzwLOjMpEyUha9qV6KoS04qpFUWGtfFw82e6uVSl4Uk9+7coqCTNd90av3e6Y6NjWXapLGULZ4fV3sralYqxfYtm9Jdf1DfHjjZmqb5On3yuG69rZt/oGalUrjaW1G2eH6mTx6XZl1/984t8jvZ4mRrimdhl/eOYfrksZTzyI+bgxW1Kmccw+C+PXC2M03zdSZFDNs2/0CtyqVwc7CinEd+Zvjox7B7x1Ya1auGm4MVznamtGjS4L3Sn9LnUp4njR5CqYJOlC7knKk6tVGdShR3zUmlEvn58a06tVWTupR0t6dm+WLs3KZfFsYO7Ue9yp7ktzdn7colBqc9Kf0TRw3Bs4ATpTJRlg/t30uj2pUo5pKTih6p09+ycV1KuNlTo1wxdqYoyzExMbT93xeUK+pCCTd76lUuxU8b13ywGD6HOjU7t81JMWTnfMiu7drbMWTn+kh8HqTzRRjM0tKSAQMGcOLECe7cucOECROYMGEC33//fbrbmJiY0KVLFw4ePMi9e/dYuHAhq1evZvLkyRke6+LFi/j5+elehw4dAqB16+SKeejQofz222/8/PPPHD9+nBcvXtCiRYtU+zp8+DB+fn78/fffTJkyhRkzZrBu3YdpZD+khIQE1Gr1p07GOy2eO5OL585w5OxVjpy5woWzp1k6f1aa6x49fJDxIwbj8+0c7jwO5MiZK1StXguAkJBgurZtRvM2Hbj5yJ+lq39g0uhhXDh3Wm8fS1f/wL2nr7n39DW3fAPSOkyWLZ33HZfOn+XQ6SscPHWZi+fOsHzB7DTXPX7kIJNGDWbS9DncePSSg6evUKWGNobQkGC6tW9Os1btufbQj0Xfb2TKmGFcTBHDoF5dsXdw5NKdJyxdt5mZPuM4d/qkQelfNv87Lp8/w4FTl9l/8hKXzp1mxcJ00v/nQSaPHsL46XO49jCA/ScvUzkxDwCG9fEmf8HCnLvly77jF7l76wZL53+nt49RE6fzl2+g7uXolMeg9AMsSjyP/jx3jT/PXuXC2dMsSfc8+oNxIwfjM3Mud5+84sjZq1StkXwedWnzNS3atOfWowCWrtnExFFDuXBWmweVq9Xg/rM3utfpK3dQKpV83aKNwTEsnjeTi+fPcOTMVQ6fvsKFc6dZuiDtGI4dOciEkYOZPGMOt30DOfxWWfBu14zmrTtw4x9/ln7/A5PHpC4LarWa0UP6UaFyVYPSPXXiGJYtmoexsQlft2zD82dPGdSnBwf3701z/Tr1GtCz70Ddq/6XjQBQKpW4uecH4Pff9jCk3ze8eP6Mr1u2wdjYhKUL5zLdZ7zevqKioujdreM7O+CzFEMLbQyD+6YfQ+16Dfimz0DdK2UMrilj6J8YQ4vkGGakiOH2rRsYGRlRoFBhg9Kf0udQnpckloXDp69y6JS2LCzLoCxMTKxTbz4K5FCKOjUkJJhu7ZvRrFUHrj/0Z/H3P+DzVp1avGQpps1ZROlyFQ1Od8r0Xzp/hsNnrnLo9BUuviP9E0YOZtKMOdxKLMtV0ijLf/3jz5LEspyUfmNjY6Z8t4ALtx5x63EgKzduY97MqVw4e8rgGD6HOjW7t82Q/fMhu7ZrKWX3+ug/S/MvvT4T0vmSTY0ePZoiRYpgYWFBgQIFmDhxot5Fq4+PD2XKlGHdunW4urpiZWVFv379SEhIYPbs2Tg5OeHg4MCMGTP09jt//nw8PT2xtLTExcWFfv36ER4enmFaypYtS/v27SlRogTu7u506tSJhg0bcvJk+o1VgQIF6NatG6VLl8bNzY3//e9/dOzYMcNtAOzt7XFyctK99u7dS8GCBalduzYAISEhrF27lvnz51OvXj3Kly/P+vXrOXPmDOfOndPbV65cuXBycsLNzY2OHTtSvXp1rly5kuHx31anTh0GDRrEqFGjyJkzJ05OTvj4+Oje12g0+Pj44OrqikqlIk+ePAwaNEi37ePHjxk6dKhuFA7Ahg0bsLOz49dff8XDwwOVSsWTJ0+oU6cOQ4YM0Tt+s2bN8Pb21v0/JiaG0aNH4+LigkqlolChQqxduxZfX1/q1q0LQI4cOVAoFHrbfQjbNm9k0PAxODo54+jkzMBho9n644Y01507cwpDRo6lao3aKJVK7OxyUKhIUQAuXziHqakpnbv1RKlUUrZCJb5q+jVbNq3/oOlNy88/bWTAsNE4ODnj4ORM/6Gj2LY57Rjmz5zCwBHjqFKjFkqlElu7HBQsnByDytSUjkkxlK9Ew6Zfsy3x83j86B8unT/DyAlTsbC0pGz5Snzdqh0//7TRoPTv2PID/YaNwcHRGQdHZ/oOHZ3uPhd+N5WBw8dSpXrq9AM8eexLs1btMTU1JVdue+o3bML9OzcNSl9mbPtxI4NGjNWdR4OGj2Hrpg1prjv32ykMGTmOanrnUTEALp0/i6mpis7de6FUKilXoRKNvJqlex79vGUT+QsW+iAXets3b2RgirIwYNhoXd6nFcPgLJaFrW/FsO77ZRQqUpTK1Wq+d5pfvQrU/TL5w9adLFm5jjETpmjT+N30NLdp0bo9076bp3tZWloC4NWsJflcXAFYMPtbAMZOmsaSletYv3k7ABtWr+D161e6fU0aM5znz54yYMgIg2L4MXG0x8YtO1m8ch2jx2tjmDfLgBjmJMYwcRqLV65j3Y+JMaxJjmH85BnsO3yKBomdNx/C51Cef/5pIwOHjdHVqQOGjmZ7BnXqoBHJZcHWLgeFEmO4klgWOr1Vp279MbksdOnRh+q16qFSqT5Y+rdv3siATJbleW+VZds0ynKndMqyUqmkmEdJjI21z8FIuibw/eehwTF8DnVqdm+bIfvnQ3Zs196W3esj8XmQzpdsytramg0bNnD79m0WLVrE6tWrU93q8/DhQ/bv38+BAwfYsmULa9eupUmTJjx79ozjx48za9YsJkyYwPnz53XbGBkZsXjxYm7dusXGjRv5888/GTVqVJbSdvXqVc6cOaPrEMmMBw8ecODAgSxtExsby48//kj37t11HReXL18mLi6OBg2Sh3wXK1YMV1dXzp49m+6+Ll26xOXLl6lcuXKmj59k48aNWFpacv78eWbPns3UqVN1I3J27tzJggULWLVqFX///Td79uzB09MTgF27dpEvXz6mTp2qG8mTJDIyklmzZrFmzRpu3bqFg4NDptLSpUsXtmzZwuLFi7lz5w6rVq3CysoKFxcXdu7cCWhv+fLz82PRokVZjjU9wcFB+L14jodnad2yEp6lef7sKaGhIXrrRkZEcOPaFfz9XlCrYknKFXOjj3cHAvy18avV6lS3f2k0au7e0v+iMHbYAEoVysvXX9bmz0MHDI4hJCmGkskxeJQszYv0Yrh+lQC/F9St5ElFD3f6de/AywxiUKuTY7h7+wYOjk7YOyTfLuVRshR3b7//l6GQ4CD8XzyneIlSevt88ewpYWmk/+b1q/j7vaBBlVJUKeHOgB4deRmQfA5+028wu7dvJjoqisAAfw7+/iv1vmyst5/lC2ZRvkhevOpVYfdbQ7ffh/Y8ekYJzxQxeJbi+bMnhIakjuGvxPOoZoUSlC3qSm/v9rrzSJNOHty5dSPNY2/bvJF2nbw/UAzPKZHiPCpRMoOycF0bQ+1KJSlf3I0+3TIuC2q1Wu88efb0MetXLWX8lJkGpfvendvExMRgZmZG8RLaOqp8RW19ePvmXyQkJGS4/ZPHvuz7dTcA/QYNByA+Pp7biZ93ufLaX/9KliqDSqUiJiaG+3fvAPDbnp1s2rCG2QuW4l6g0HvHcN/AGJ6miKHvwOQYks6ZshnE8KF9DuU5vTr1XWWhbqWSVPBwy1Kd+jGEpFGWM5P+OpVKUqG4G31TlOV066O36vxu7ZtTJI8tDaqVIbe9Aw2bfm1QDJ9DnZrd22bI/vmQXdu1lLJ7ffRfJgNfskY6X7KpCRMmUK1aNdzd3fHy8mLEiBFs375dbx21Ws26devw8PDAy8uLunXr6m7xKVq0KN26daNo0aIcPXpUt82QIUOoW7cu7u7u1KtXj+nTp6fab3ry5cuHSqWiQoUK9O/fn2+++ead21SrVg0zMzMKFy5MzZo1mTp1aqY/gz179hAcHKw3gsPf3x9TU1Ps7Oz01nV0dMTf3z/Vsa2srDA1NaVixYq0adOGLl26ZPr4SUqVKsXkyZMpXLgwXbp0oUKFChw5cgSAJ0+e4OTkRIMGDXB1daVSpUr07NkTgJw5c6JUKrG2ttaN5EkSFxfH8uXLqVatGkWLFsXCwuKd6bh//z7bt29n3bp1NG/enAIFClC/fn3atm2LUqkkZ86cADg4OODk5IStrW2WY01PZOLoqJT7tEn8OyIsTG/dkOAgNBoNf/z+Gz/t2sfJS7cwVZkyuE83QPtlKTIykg2rVxAXF8fFc2c4sPdXwsJCdftYuHIdZ67e5eKtf/Du1ZdeXdtx7colg2KIiAjXS7deDOFvxRCijeHg/t/YtHMvxy7cxNRUxdC+3QEolxjDxjXaGC6dP8PBfb8SHh6aeKwIbGzt9PZpY2ub6jhZS39EqvRb22j/Dk8n/Yf372Xjz3s5cl6b/uH9eujWqV3/Sy5dOEvpAg5U9SyAc558tOrQVff+iPFT+fPCTc7d8mXkhGlMGTecg/t+ee/0Q8rzyE63LOnvt2MITjqP9v3Kll2/c+rybUxNVQzq7Q1A+UpViIyMYP33y5PPo32/6J1HSc6fOcUT30e0atfJoPQDRGZ0HqVTFg7+/hubd+7jxMVbqEwzKAvnz/DHPv2yMHbYAIaNmUSOnLkMSndggLZ+tLC00i2zSBwFEh8fz5sUo1TSsnrFEhISEqhRqy6lypQF4M3rV7oOj6R9AVgmHiPA348nj30ZMagv7Tp1pUXr9gbF8PJl6hgssxDD9++IwTJFDEnHSNnB8SF9DuX5/evUfRy/cAtTU1OG9NWWhXfVqR9DhunPoCz/uHMfxy8mpr+PfvrfLsvhb9VH67fs5s7TN2z79SCNvJphZmZuUAyfQ52a3dtmyP75kF3btZSye30kPh/S+ZJNbdu2jerVq+Pk5ISVlRUTJkzgyZMneuu4u7tjbW2t+7+joyMeHh4YGRnpLXv58qXu/4cPH6Z+/frkzZsXa2trOnfuzOvXr4lMnJjPyspK9+rTp4/e8U6ePMmlS5dYuXIlCxcuZMuWLZmK48qVK/z000/s27ePuXPn6vaV8libN6f+FW7t2rU0atSIPHne7770bdu2ce3aNa5fv8727dv55ZdfGDNmTKaPn6RUqVJ6/3d2dtZ9pq1btyYqKooCBQrQs2dPdu/eneHkXklMTU1T7fddrl27hlKpzNLoofTExMQQGhqq94qJiUl3fQsr7ReRlL8ehIZqGyHLFOdgynW79+pHPhc3LK2sGDZmImdOHicyIoIcOXOx/qed7NmxjXLF3Jg5dQJtOnQhR47kRrhy1RqYW1igUqlo3qodXzRswv7f9hgUc9IXwrDQ5MYz6W9LK+s01/XumRzD0NETOXsqOYY1m3fw685tVPJwZ9a0ibTq0Bm7HDkTt7dM9et1WGhoquNkLf2W6abfKp30d+nZl7wurlhaWTF41ATOJaY/JDiILq2a0rZTN248fs3l+88xt7BkeL/uun2Uq1gZaxtbTExMqFXvC9p36cG+X3a+d/ohvfMoJO0Yks6j3v3J56rNg+Fj9c+jDVt2sWfHNsoWdWXmlMTzKI2Lua0/buCLRk3JldveoPRD8pfylDGEvaMsdEtRFoaO0T+P1v20k192bqN8cTe+mzqB1inKwq7tPxEfH0/Lth0NTre9o7bzN+kiGyAi8QuDsbExOXPlTnfbkOBgfkocMt5v8DDd8py5cqNUKhP3G5G838RjODo588fvvxESEszTx4/p1KYZq1csBrRzM3Rq04zAwOT26V0cHFLHEJ6FGLYkDhnvOyjtGCJSxJB0DAdH50ynLys+h/KcXKemURbeiiGp3HTLoE5du1lbFip6uDFr2gRadeiCXY4P9+UsS+lPpyx7v9Wu6aU/sSxXKO7GrLfKckpKpZIq1WsR+PIlq5bMNyiGz6FOze5tM2T/fMiu7VpK2b0++i/TaP6d1+fC+FMnQGTd2bNn6dixI1OmTKFhw4bY2tqydetW5s2bp7eeiYmJ3v8VCkWay5Imc/X19aVp06b07duXGTNmkDNnTk6dOkWPHj2IjY3FwsKCa9eu6ba1sbHR21f+/NrJCT09PQkICMDHx4f27TP+JdPFRftECw8PDxISEujVqxfDhw+nQoUKesdydNR/ms3jx485fPgwu3bt0lvu5OREbGwswcHBeqNfAgIC9EaWJB27UCHtEPfixYvz8OFDJk6ciI+PzzuPn1JGn6mLiwv37t3j8OHDHDp0iH79+jFnzhyOHz+earuUzM3NdbdSJTEyMko1zDHlPD/m5ob9QpbSzJkzmTJlit6yyZMn883gsWmub2eXA+c8ebl94y/c8xcE4PaN6+TJmw8bG/0RNra2duTNl/aTTJLiq1ilGnv+OKZb3rd7J6pUT/++X4WR4f3Itkkx3LyOW/4CANy+mXYMNrZ25HlHDBUqV2Pn/mO65QN6dNLdu1zMw5MAfz9eBb4kt72D7lhFi5cwKP1OefJy5+ZfuvTfufUXznnz6X4xz2z6n/j+Q0x0FF179tM9Eax91x70aNcs3eN/iDzQnkf5uJXiPLp14y/y5HXR+7UKks4j13RjAO159MvB5CfW9O3ekSpv3T8eFhrK3l928v3GrQanPzkG/bJwK53zKFNloXI1dh84plver0cnKieWhVPH/+Ta5YuULpwXgKioSNQJCZQv7sblO4+zlO6ixT0wNTUlOjqaO7duULyEJ5cvam9J9SjhiVKp5O/7dwHIm89VbzTeD+tXExEeTvESJanXoKFuubGxMcU9SnLzxnWuXL5IuQqVuHH9KjExMahUKooUK86N61cBOH0yOUbQdgAf/uN3vSfyvEuRDGIo/o4YNm1IjMEj/RiuphPDx/A5lOfkOvUv3JLaBQPKQoXK1diVok7t36NTqvL8ISWl/9aN5PR/yLLcP0VZTkt8fBy+/zwwKIbPoU7N7m0zZP98yK7tml66snl9JD4fMvIlGzpz5gxubm6MHz+eChUqULhwYR4/fv8KKcnly5dRq9XMmzePKlWqUKRIEV680H/UZKFChXSvjOYhUavVGY6USG+buLg41Go15ubmeseyfqtnff369Tg4ONCkSRO95eXLl8fExER32w9o5zh58uQJVatmPNmYUqkkPj6e2NjYdx4/K8zNzfHy8mLx4sUcO3aMs2fPcuOG9t5cU1PTd85DkMTe3l5vXpiEhARu3ky+v9TT0xO1Ws3x48fT2hxTU1Pddu8yduxYQkJC9F5jx6bd8ZKkTYcuLJk/i5cB/rwM8Gfpgtm079wtzXU7dO3B+tUr8HvxnKioKBbN+ZYaterqfvG5+dc1YmJiiIqK4qeNazl3+gQ9+gwA4PmzJ5w7c5KYmBji4uL4bfcODu7/jYaNvd4Z17u0at+FZfNnExjgT2CAP8sXzKFtp7RjaN+lBxvXrMDf7znRUVEsnvst1VLEcCsxhuioKLb8sI5zZ07Svbc2Brf8BShfqSpzpk8mKjKSa1cu8suObbTp6G1Y+tt1ZvnCWbr0r1g4O919tuvcnU0p0r903kyq1dSmv0CholhYWvHjulXEx8cTHh7Gtk3rdXP6hIYEc+zwAaIiI0lISODMiaNs2biGhk2bGZR+gDYdu7Bk3nfJ59H8WbTvknYedOzag/XfL9edRwtnf0uN2mmfR5s3ruXsqRN803eg3j5+2bmNHDlyUbveFwanXRdDhy4sXZBcFpYtmE279MpClx5sWL0C/xfafFg051uqp1EWoqOi+OmHxLKQeB5NmjGHP89e48Cx8xw4dp5O3j2pWqM2+46cyXKac+e2p5O39lbRLu1aMqhvD2bN8AFg6KhxANSsWIqaFUtx9fJF3XZxcXGs+345AH0Hpn6U6ZCR2npj5tSJDOrbg+6d2gLQtUdvcuXKTa9+g/APidW9Fi7XPl7X3sER/5BYXN3csxZDV20MXdu3ZHDfHsz+NjGGkdoYalUqRa1KpbiWTgx90ohh8IjEGKZNZHDfHvTorI2hS3dtDAD79/7C4L49OHxwPwAP/r7H4L49mDJhdKbT/7bPoTy3bt+FpfP1y0JGdeqGFDEsmpt+Wdjyw1rOnzmhq1NBOw9cdHQ0GrWahPh4oqOjMzXSNMP0Z6Est+/Sg42ZLMtb3irLt25c5+TRw0RHRREfH8+Rg/vZs2MrtT5AvfQ51KnZvW2G7J8P2bFde1t2r4/+qzT/0r/PhYx8+Y8JCQnRG3EB2qfypFS4cGGePHnC1q1bqVixIvv27WP37t0GH7tQoULExcWxZMkSvLy8OH36NCtXrnzndsuWLcPV1ZVixbQzsZ84cYK5c+fqnuoDsHTpUnbv3q3rFNm8eTMmJiZ4enqiUqm4dOkSY8eOpW3bthmOCAFtJ8369evp2rWr7skASWxtbenRowfDhg0jZ86c2NjYMHDgQKpWrUqVKlX01n39+jX+/v7Ex8dz48YNFi1aRN26dVON6DHEhg0bSEhIoHLlylhYWPDjjz9ibm6Om5sboL017MSJE7Rr1w6VSkXu3OkPi69Xrx7Dhg1j3759FCxYkPnz5xMcHKx7393dna5du9K9e3cWL15M6dKlefz4MS9fvqRNmza4ubmhUCjYu3cvjRs3xtzcHCsrqzSPpVKp0p6hPTL9DrXBI8cRFPSGelXKANC8TXsGDNN+8Rg7TNsgzZy/FID+Q0YSHBREw1qVAKhWozYLVyY/5nvdqmX8se9X4hPiKV+xClv3HMDJWXt7WUR4BJPHDMf30UOMlcbkL1SYFes2U65i1idLftvAEWMJCnpDg2ra+R6atW5Hv6HaCafHD9de2MyYtwSAvoNHEBz0hsa1tcetUqMWC5av1e1rw+rl/LHvVxIS4ilXsQo/7d6Po3PyLXKLV29kzJB+lC/mgp1dDsZMnpHh6J7M6D9cm/6GNcoB8HWrdvQdok3/xBHa9E+bq01/70EjCA4KwquutlxUrl6Lucu0X3wtraz4ftMOZk+bwPyZU7RPVKhUhdlLtE+SiYuLY8ncbxl8XztnRD4XN8ZN/Y7G/0v9SPesGjJyHMFvXlO3svaLYfM27RmYeB6NGdofgO8WLNPGO3QkwcFv+LKmdiLUajVrs2jlet2+1q1axoG9vxCfEE+FSlXY9ssfuvMoyZYfN9CmYxe92zENNWjEOILevKFe1TKA9ok6A4YmloXhiWVhnrYs9BsykuDgIBrW1paFqjVqs3BFcllY/71+WdiSoizY2eXAzi6Hbl0ra2tUKjOc8uR9r3RPnj4LlcqMXT9vYffPW3HPX4B+g0fQKINJP3fv2Irfi+c458lL81btUr3f9OsWzF+yihVL5rP7563kym1Pv0HDGDMx8/N7ZcWk6bNQmSXGsGMrbvkL0H+Q4THMW7yKFUvns3tHcgyjJyTHcOvGdbZv2aT7f+DLALZv2UQ+FzcmT0/7Uabv8jmU54EjxiXWqWUAaN66Pf0Ty8K4xLLwbWJZ6DtY2y40SlEW5i9PLgsbVi/T1anlK1bhp90H9OrUzq2acP6M9omJF86d5lufsQweOZ6hoye+d/qTynL9qu9Of1JZ/ipF+hekKMsb0ijLSelPiI9n9vTJ/PPgPgqFgnyubkycNotmaZyPWfU51KnZvW2G7J8P2bVdSym710fi86DQvH0fg/hkvL292bgx9ePsevTowdq1a9m9ezfNmjUDYNSoUaxbt46YmBiaNGlClSpV8PHx0X0Z9/HxYc+ePXodOd7e3gQHB7Nnzx7dsjp16lCmTBkWLlwIwIIFC5gzZw7BwcHUqlWLjh070qVLF4KCglJNYptkyZIlrFq1ikePHmFsbEzBggXp2bMnvXv31lX6Pj4+bNiwAV9fX0A738rs2bO5f/8+Go0GNzc3OnXqxNChQzEzM8vwczp48CANGzbk3r17FClSJNX70dHRDB8+nC1bthATE0PDhg1Zvny57rYjX19f3S1SoB3x4uzsTKNGjZgxYwb29unfG/v2Z/j25wfaxz/b2dmxYcMG9uzZw3fffcedO3dISEjA09OT6dOnU79+fQDOnTtH7969uXfvHjExMWg0GjZs2MCQIUP0OlZAe4E8ePBgtm3bhrGxMUOHDuXcuXO6YyXFPm7cOLZu3crr169xdXVl3LhxdOum7dmfNm0ay5cvJyAggC5duui2y6xnQVkbzfRfki+HCt/X0Z86GQZxz2XGw8CoT50MgxS0N+d5cOynTsZ7y2tnytM32bccALjkVBEQGvfuFf/DHG1M8A/J3jE42Zpk6/Jc0N6cx6+zd1lwy6XiSTYvz645Vdm+Tv0c2ubsnAfw+bRt2blOcsuVPR9LfcX335louJz7h/tx/FOSzhchRKZJ58unJZ0vn97ncoEqnS+fnnS+fHrS+fLpSefLf8Pn0rZl5zpJOl8y9rl0vshtR0IIIYQQQgghhMgSGcWRNTLhrhBCCCGEEEIIIcRHJCNfhBBCCCGEEEIIkSUygUnWyMgXIYQQQgghhBBCiI9IRr4IIYQQQgghhBAiSzQy60uWyMgXIYQQQgghhBBCiI9IRr4IIYQQQgghhBAia2TgS5bIyBchhBBCCCGEEEJ8FpYtW4a7uztmZmZUrlyZCxcuZLh+cHAw/fv3x9nZGZVKRZEiRfj999917/v4+KBQKPRexYoVy3K6ZOSLEEIIIYQQQgghsuS/OPBl27ZtDBs2jJUrV1K5cmUWLlxIw4YNuXfvHg4ODqnWj42N5YsvvsDBwYEdO3aQN29eHj9+jJ2dnd56JUqU4PDhw7r/GxtnvStFOl+EEEIIIYQQQgiR7c2fP5+ePXvSrVs3AFauXMm+fftYt24dY8aMSbX+unXrePPmDWfOnMHExAQAd3f3VOsZGxvj5ORkUNrktiMhhBBCCCGEEEJkiUbz77xiYmIIDQ3Ve8XExKRKT2xsLJcvX6ZBgwa6ZUZGRjRo0ICzZ8+mGcOvv/5K1apV6d+/P46OjpQsWZJvv/2WhIQEvfX+/vtv8uTJQ4ECBejYsSNPnjzJ8uclnS9CCCGEEEIIIYT4T5o5cya2trZ6r5kzZ6Za79WrVyQkJODo6Ki33NHREX9//zT3/c8//7Bjxw4SEhL4/fffmThxIvPmzWP69Om6dSpXrsyGDRs4cOAAK1as4NGjR9SsWZOwsLAsxSG3HQkhhBBCCCGEECJLNP/SrC9jx45l2LBhestUKtUH2bdarcbBwYHvv/8epVJJ+fLlef78OXPmzGHy5MkANGrUSLd+qVKlqFy5Mm5ubmzfvp0ePXpk+ljS+SKEEEIIIYQQQoj/JJVKlanOlty5c6NUKgkICNBbHhAQkO58Lc7OzpiYmKBUKnXLihcvjr+/P7GxsZiamqbaxs7OjiJFivDgwYMsxSG3HQkhhBBCCCGEECJrNP/SK5NMTU0pX748R44c0S1Tq9UcOXKEqlWrprlN9erVefDgAWq1Wrfs/v37ODs7p9nxAhAeHs7Dhw9xdnbOfOKQzhchhBBCCCGEEEJ8BoYNG8bq1avZuHEjd+7coW/fvkREROieftSlSxfGjh2rW79v3768efOGwYMHc//+ffbt28e3335L//79deuMGDGC48eP4+vry5kzZ2jevDlKpZL27dtnKW1y25EQItPy5fgw91Z+Ku65zD51EgxW0N78UyfBYHnt0v4VIbtwyZm9ywGAo43Jp06CwZxss38M2b08u+XK/mXB9TMoz9m9Tv0c2ubsngfwebRtn0OdlN38OzO+ZE3btm0JDAxk0qRJ+Pv7U6ZMGQ4cOKCbhPfJkycYGSWPQXFxceGPP/5g6NChlCpVirx58zJ48GBGjx6tW+fZs2e0b9+e169fY29vT40aNTh37hz29vZZSptCo9H8Fz8zIcR/0JuIhHev9B+V01LJX0/DP3UyDFLKxYqbz7J3DCXzWfEyLO5TJ+O9OVib8HdA1KdOhkEKO5rz8GX2jqGgw+cRQ3YuzyXzWX0WefAgm8dQyMGcx69TP241u3DLpSIgNPu2CaDtzA6LVr97xf8wazMjfF9Ff+pkGMQ9t1m2rpMKOmTPzvizD4L/leNULWT3rxznY5ORL0IIIYQQQgghhMgStYzjyBKZ80UIIYQQQgghhBDiI5KRL0IIIYQQQgghhMgSGfeSNTLyRQghhBBCCCGEEOIjkpEvQgghhBBCCCGEyBKZ8iVrZOSLEEIIIYQQQgghxEckI1+EEEIIIYQQQgiRJRqZ9SVLZOSLEEIIIYQQQgghxEckI1+EEEIIIYQQQgiRJWoZ+JIlMvJFCCGEEEIIIYQQ4iOSkS9CCCGEEEIIIYTIEpnzJWtk5IsQQgghhBBCCCHERyQjX4QQQgghhBBCCJElGhn4kiUfbeRLnTp1GDJkyMfafYbc3d1ZuHDhJzn2uxw7dgyFQkFwcDAAGzZswM7O7pOmSQghhBBCCCGEEB9PljpfvL29USgU9OnTJ9V7/fv3R6FQ4O3tDcCuXbuYNm1apvb7KTpqjh8/Tr169ciZMycWFv9n767jotjaAI7/AAUpwaBUFAQbsbswsQVFbMRWUFHsBru7u7u7BbvFFr0q6lVAVBqk3z8Wll1YkDAuvud7P/u5uFPPs2fOnN2ZM2c0KFGiBD179iQ6Ovq3xpERBw8epGrVqujq6qKpqUnFihXZtm1busv4+vrStWtXSpYsibKycoY/31mzZlGtWjW0tbXR19fHxsYGb29vhfMmJCTQokULlJSUOHz4sPR9Hx8flJSUpC9VVVXMzc2ZPn06CT84Pero6IiNjU2GYs2I33kiLuWJtbTExMQwZswYypcvj6amJoUKFcLBwYFPnz7JzWdiYiL3OSopKTF79my5eR49ekS9evXIkycPxsbGzJ07V256VvadrIqJiWG061CKFymImbEeY0a4EBsbq3DeogY6ci8D3TzUq1FJOn3d6hU0qlcDo/wadO/cXm7ZgM+fGdC7BxYli1HMKB9Wtaty6sSxn5bDzEkjqGthTL3yRZk1eWSaOQB4nD2BffPa1ChlQJOqJdi7bYPc9IO7NtPWqhI1ShnQonY5Lp09Lp3WonY5qpfQo2ZpQ2qWNqSuRZGfEv+MiSOobWFMHYuizJyUfvyXzp7Azro21Usa0KhK6vgP7NpMmwaVqF7SAOta5bh4Jjn++7ev061tQ2qVLUzjqiVZPHsK8fHxWY49OjqaaZPHUbG0KcYFtahXzZK9O9PeV4cO7INBXlWFr2tXPKXz7d6xlXrVLDEuqEXF0qZMmzKemJiYH67n1o1rWc4lJiYG93HDqVqqENVKF2bqeNd0y+HCmeO0bVyDCqYFqVuhOLu2rJNO+8f7OQ52LalaqhC1y5swcaQzkRER0ulhoSG4DnKkkrkBtSxMWLFwVpbjTpmD27jhVC5ZiCqlCuM+Lv0czp8+TptGNShvUpDalsXZKZPDK+/n9OjQksolC1HTwoQJI+RzSPLlsz9VShWmTaMa//fxJ+Xwu+rz9csXsW9RlxqljWjXqCpXL537aTnk5HJIqstVShaiaqnCTP1B/BcS47c0KUgdBfE7dGhJlZKFqGVhwsQU8Q/u05Xa5U2paGZAw6plWLFwtqJNZCmHyWOGYWlmSAVzI6aMHZ5uDudOHaeFVXXKFM1P9XKmbN+UnMNjr/vYtWqIhYke9aqU5sCe7XLLjhvuRKMa5THVU2fD6mU/Jf6kHMaNdKFUUX1KFzNg/KhhaeZQvFA+uVeRAho0rF05w+saOqgPxgU15dZx9/bNLMUdHR3N5AljKW1WlII66lSrZMHOHVvTnH9gv17kVVdR+Lpy2QOA1SuX07hBHUyNDdDT1aCiRSlmTneXa9cyu92MSNqPKpgbUbFEoR/vR6eP09KqBmWLFaCGhSk7NsvXhW7tW1DB3IhqZU0Y5ypfF340PTs55OTj0X9Vwm/672+R6Z4vxsbG7N69m8jISOl7379/Z+fOnRQtWlT6Xv78+dHW1v45USL5oZ9eBcmMZ8+e0bx5c6pWrcrly5d5/Pgxy5YtQ1VVlbi4uJ+yjZ8pf/78TJgwgRs3bvDo0SN69epFr169OHPmTJrLREVFoaenx8SJE6lQoUKGt+Xp6YmzszM3b97k3LlzxMTE0KxZM8LDw1PNu3jxYpSUlNJc1/nz5/H19eXVq1e4u7szY8YMNm7cmOFYfpe4uLhs/WjMrIiICO7fv8+kSZO4f/8+Bw8exNvbm7Zt26aad+rUqfj6+kpfQ4YMkU4LCQmhWbNmFCtWjHv37jFv3jzc3NxYu3atdJ6s7DtZtWDODG7duMb1u4+5ducRN69fZdE8xT8E3/sHy71KliqDrZ29dLqhUSFGjB5PD8e+qZYNDw+jfIWKnLl0jbcfvzJ24hT69+rGi+fPsp3DuqVz8bpzg0MX7nDw/G0e3L7O+uXzFc57zeMcMya6MmrKHK4/+8TB87epVquudPr+HRvZum4Zc5Zv5uYLP7YfuUSJUuXk1jF7+UZuvvDj5gs/rj75N9vxr106lwd3bnDkwh0OX7jN/dvXWZdG/FcvnWP6BFfGuM3hxvNPHLpwm6oy8e/bsZEta5cxd8Vmbnn7sePoJUqUlsQfFxfH0D6dadisFVcfv2froXOcPnqA/Ts3Zzl294ljWb54Ably58amgz3//vuBIQP7cObUcYXzN2jUhH6DhkhfTZq1AEBFRYViJqYAnDx2GJdBffn48V9sOtiTK3duli+az/QpE1Ktr3U7W7n1GRoVynIuKxfN5t7t65y8fI8Tnne5e+saq5fMVTjv5YtncRs7jAlT53H/H39OeN6jeu360umuTo4UNyvB9cc+HL90hxdPH7NiUfKPsqnjRxAc9A3Pe97sPHKOvTs2cWjvjizHnmTFotncu3Wd01fuceqyJIdVaeTgefEsU8YOY8K0eXi99ufU5XvUkM1hkCOm5iW4+cSHEx6SHJYr+GHpNt6VshYZb6/+5vjh99XnD+/eMqxfV5xHTODGs4+4jp+G64DufHj3Nts55PRyWLloNndvXefUlXucvHyXO+nEfzkx/onT5vHgtT8n04j/xhMfjnvc4fnTx3InWIaMGM+luy/weu3PjsNnOXZoL0f278p2DssWzOLOreucv/aAc1fvc/vmNVYsmqNwXo8LZ5k02oXJ0+fx5G0A567dp2ZdSQ7BwUH06mKDjV1XHr72Y+narbiNdeXOzeQT1WUsLJk2bwkVKlfLdtyyFs2bye2b17h8+yGet7y4deMqSxYoPjn15lOg3KtEqdLYtLfP1Loc+w6UW0fV6jWzFPfEcaNZvHAeuXPnpkPHTvz74T0D+/ZK84JRo8ZNGeQ8VPpq1jy5XTMxKQ7A0cMH+ezvR5Om1jRq0pS3b14ze8ZUZkydkuXtZsTyhbO5e+sG567e5+yVe9y5eZ2Vi9OoyxfOMnm0C5NnzOPxm8+cvXqfmnWS64LLAEeKm5fkzrN3nL58h+dPH7FswawMT8+qnH48Ev4OmT75UrlyZYyNjTl48KD0vYMHD1K0aFEqVUq+cp2yN8vKlSspUaIEefLkwcDAADs7O0DS08HT05MlS5ZIr+77+PhIexGcOnWKKlWqoKamxtWrV3n9+jXt2rXDwMAALS0tqlWrxvnz5zOVw9mzZzE0NGTu3LlYWFhgZmZG8+bNWbduHerq6kDy7UDHjx+nVKlSaGhoYGdnR0REBFu2bMHExIR8+fIxdOhQuRM227Zto2rVqmhra2NoaEjXrl35/PlzZj9mOVZWVtja2lKmTBnMzMxwcXHB0tKSq1evprmMiYkJS5YswcHBAR0dnQxv6/Tp0zg6OlKuXDkqVKjA5s2bef/+Pffu3ZObz8vLiwULFqR7MqVAgQIYGhpSrFgxunXrRp06dbh//36GYwFJ7kOHDmX06NHkz58fQ0ND3NzcpNMTEhJwc3OjaNGiqKmpUahQIYYOHSpd9t27dwwfPly6b0Fy2R49epSyZcuipqbG+/fvFfbAsrGxkfbmAslJrTFjxmBsbIyamhrm5uZs2LABHx8fGjZsCEC+fPnkeoGlpKOjw7lz57C3t6dUqVLUrFmT5cuXc+/ePd6/fy83b9J+lPTS1NSUTtuxYwfR0dFs3LiRcuXK0blzZ4YOHcrChQvlPr/M7jtZtWPbZkaMHo+hoRGGhka4jhrH9q2bfrjcvbu38X7xjC7de0rfa9POllZt2lGgQIFU85uYFmewywgKFy6CsrIyzVu2wbxEKe7duZXtHA7v3Ua/IaPRMzBEz8CQvoNHcXiP4qtFK+ZPZ4DLGKrVqoeKigp5dfNhal4KkJycWLlwBqPd5lLGogJKSkoU0NOnSDHTbMeYnkN7ttF/aHL8/YaM4tBuxfEvnz+dgcOS49fRzUdxmfhXLJjBWJn4C+rpY5wYf1hIMMFBgbS164aKigqFjYtRs64Vr148zVLcX74EsC3x6urW3QdYtmYjYye6A7Bg9nSFy3Sw78L0OQukLw0tSd1oY9OBIsaSCwEL584EYPzkaSxbs5HNO/YCsGndKr5+/SK3vt79neTWl3QCJysO7N6K07Cx6BsYoW9gxCCXMezfuUXhvIvnTMXZdRw16tSXloNZiVLS6R/e+dDWrguqqqrkL6hHY+tWvHz+BIDIiAhOHNnHsDFTyKuji6lZCXr0HpTmtjJj/66tOA2XyWHYGPalk8MQ13HUTCOH9+98sEnMoUCKHJKcO3WM4MBAbDp2yXbsf0P88Pvq8zWP85SxqECDJi1QVlamQZMWWFSswrED2f/hn9PLIWX8TsPSr8uDf1CX26WI31sm/lJlLVBTUwNASUkJZSVlfN78k+0c9u3cwhDXsegbGqFvaMTg4WPYu2OzwnkXznJn6Mhx1KrbQJqDeWIO92/fRFVVle69+qGiokKlKtWxbt2O3duT23mHPgOpU7+RNI+fZff2LQwbOQ4DQyMMDI1wGTGWndsU5yDr/r07vHzxnE7dHLK9rsz6EhDApg2Si2G79x9mzfrNTJwiuSNg9kzFdwbYd+7KnPmLpC8tTS0AbNrbYZx4gXvazDk8ev4P6zZuZc/+I3Tq0g2As2dOZXm7GbFv5xYGu46R7kfOw0ezJ639aLY7Q0aOT7Muf3j3Fhu7ztK60MS6Nd7Pn2Z4elbl9OPRf1V8wu95/S2yNOZL79692bQp+WC7ceNGevXqleb8d+/eZejQoUydOhVvb29Onz5N/fqSs4dLliyhVq1a9OvXT3p139jYWLrs2LFjmT17Ns+fP8fS0pKwsDBatmzJhQsXePDgAc2bN6dNmzapfrSmx9DQEF9fXy5fvpzufBERESxdupTdu3dz+vRpPDw8sLW15eTJk5w8eZJt27axZs0a9u/fL10mJiaGadOm8fDhQw4fPoyPj0+aP8KzIiEhgQsXLuDt7S39DH+l4OBgQNKDIklERARdu3ZlxYoVGBoaZmg9d+/e5d69e9Sokflud1u2bEFTU5Nbt24xd+5cpk6dyrlzki7RBw4cYNGiRaxZs4ZXr15x+PBhypcvD0hOChYpUkSu94hsDnPmzGH9+vU8ffoUfX39DMXi4ODArl27WLp0Kc+fP2fNmjVoaWlhbGzMgQMHAPD29sbX15clS5ZkOMfg4GCUlJRSjf8ze/ZsChQoQKVKlZg3b55c768bN25Qv359VFVVpe9ZW1vj7e1NYGBgqm38yn0nKDCQTx//xcIy+ey+hWUF/v3wnpDEfSgtO7Zsokmz5hhlsadBwOfPvPR+TlmL8llaPklIUCD+vh8pVS55PaXKlcf34wdCQ+RziIgI59njB3z286VNg4o0qmLGyIE9CPD3A8Dn9Su+Bnzm+WMvWtQuR9PqpXAfPZiw0BC59Uwb50KDCsXoYdOIKxez1xspODH+0mWT4y+dgfhb16+IVWUzXBXE/+yJF9a1ytG4WincZOLXyZcf2049OLh7KzExMXzwecPNqx7Ub2ydpdi9nz8jKiqKPHnyUDbx869STXKsePr40Q97JL5/58OJI4cAcHYZAUBsbCzPnjwGoFIVyVVYC8uKqKmpERUVxcsXz+XW4djVjmL6ealXzZK1K5f98BbJtAQHBeL36SNlLCyl75WxsOSTonIID+fpowf4+36iWW1Lapc3YWjfbnz2Tz5W9RnkwuF9O/geGUnAZz/OnTxKo2YtAXj7+iUx0dGUkbmqVsbCUu4H3c/KoayFJZ/+VZzDk4cP8PP7RJNaltS0MGFwihz6OrlwaG9yDmdPHaWRdUvp9NCQYGZOGcu0eUuzFfffEn9SDr+rPscnxKcaMTE+Pj7VD4ms5JCTyyEp/rIp63I68fv7faJpLUtqWZgwJGVdThH/uRTxA0wZ40J5kwLUr1ySiIgw2nfqke0cfD99lLvyXtaiAh///UCIghweP7yPn+8nGla3oGrZYjj17spnP0kO8fHxqY6L8fHxvHiavf3kR6TfL8rLf7/4mIHvF7u2bqJRU2tpT8aMrmvfru2ULmZA/RoVWLVsUZZ6Rz9//lTarpVL/H5SrbqkXXv86OEP27V373w4clhyodtl+Ejp+1WqVpPrdR4dFQWAUaFCP2W7iqS1H31Kcz+StGsNa5SnWlkTuf0IoJ/zMA7u3SmpC/5+nD15lMYydeFH07Mipx+PhL9Hlk6+dO/enatXr/Lu3TvevXvHtWvX6N69e5rzv3//Hk1NTVq3bk2xYsWoVKmStHeCjo4OqqqqaGhoSK/uq6ioSJedOnUqTZs2xczMjPz581OhQgUGDBiAhYUFJUqUYNq0aZiZmXH06NEMx9+xY0e6dOlCgwYNMDIywtbWluXLlxMSIv/DKCYmhlWrVlGpUiXq16+PnZ0dV69eZcOGDZQtW5bWrVvTsGFDLl26JF2md+/etGjRguLFi1OzZk2WLl3KqVOnCAsLy3B8igQHB6OlpYWqqiqtWrVi2bJlNG3aNFvr/JH4+HiGDRtGnTp1sLCwkL4/fPhwateuTbt27dJdvnbt2tKYq1Wrhr29PQ4ODukuo4ilpSVTpkyhRIkSODg4ULVqVS5cuABI9i1DQ0OaNGlC0aJFqV69Ov369QMkJ4xUVFTkeo8kiYmJYeXKldSuXVvas+lHXr58yd69e9m4cSO2trYUL16cxo0b06lTJ1RUVKQnqPT19TE0NMxwj6Pv378zZswYunTpQt68eaXvDx06lN27d3Pp0iUGDBjAzJkzGT16tHS6n58fBgYGcutK+refn5/0vd+x74SHS/ZvHR1d6XtJf4eGhaazXDgHD+yhe88+WdpudHQ0fR270q59RypVrpqldSSJiJDcWqedN7nckv6OCJevv6HBQSQkJHDp7HHW7DjK8csPya2mxngXyW1SwUHfALh11YOdxz3Ze/oaHz+8Y97UsdJ1zFi0lpPXnnDu9ku6OA5kxIDuPHko38MsMyKT4tdJHX94ivhDEuO/eOY4a3ce5eSVh6iqqjEuRfw3r3qw+4Qn+89c498P75jrnhy/dev27N+5iWol9GhZrwL1GzenrlXW9qvPiT8SNROv8gFoJvZkiY2NTdVLJaW1K5cRFxdH3QYNsawo6YH57esX6ZfMpHXJbsM/8YugqpoadRs0pF37jtRt0IhXL72ZNHYEa1Zk7QtTRHjq/ShvUjmkqAshwYEkJCRw/vRxNu05zrmbT1BVU2Okc3J9qN+oGfdu3aCSuT51LItjWLgIHbpIeomFh4ejoaFJrlzJDy7UzquTajuZlXSbaV4FdSEsxbqDk3I4dZwte49z4dYTVFXVGOGUnEODRs24e+sGFcz0qVW+OEaFimDXJbmn25ypE+jQuTsmxc2zFfffEj/83vpcq15Dnjy6z4XTx4iNjeXC6WN43b2Z6rPKrJxeDorqckbi37z3OOcT4x+ZIv57t25Q0Uyf2griB3Cfs4SHbwI4eOYKNh27opPNBzIk7St5ZfajpL9THieScjh76hjbDpzA8/ZTVFVVGTZIcnG1crUakt7f61cRExPD3VvXOXviKGFh8t+dfzZpDjKfRd7E7xfp7aPh4eEcPriXbg69M7WuvgMGc/XeE56++cSi5WtZv3o561Zlfvwa/8TvYZpaye2aVuLfsbGxfP2Sfru2ctkS4uLiaGDViIqVKiucZ8f2LRw6uB8tLS3cp836KdtVJMv70f7jeNyWtGvDnZLLoUHjZty9dR0LUz2qW5hiVLgwHbv2zPD0rMjpx6P/MjHmS+Zk6eSLnp4erVq1YvPmzWzatIlWrVpRsGDBNOdv2rQpxYoVo3jx4vTo0YMdO3YQkcGBk6pWlf9BFRYWxsiRIylTpgy6urpoaWnx/PnzNHu+DBw4EC0tLekLJPdObtq0iX///Ze5c+dSuHBhZs6cSbly5eR6R2hoaGBmZib9t4GBASYmJtL1JL0ne1vRvXv3aNOmDUWLFkVbW5sGDRoAZKhnzvv37+VinTlzpnSatrY2Xl5e3LlzhxkzZuDq6oqHh8cP15mWK1euyG1rx47UYwQ4Ozvz5MkTdu/eLX3v6NGjXLx4MUOD2O7ZswcvLy8ePnzI3r17OXLkCGPHjs3w9pNYWlrK/dvIyEj6mXfs2JHIyEiKFy9Ov379OHToUIbGBlJVVU213h/x8vJCRUVFWqYZsWPHDrk8r1y5Ijc9JiYGe3t7EhISWLVqldw0V1dXrKyssLS0ZODAgSxYsIBly5YRlXiVI6Oysu9ERUUREhIi90pvu0k/aGWvgCT9ra2V9thPRw7tR0Ndg2bNM39FIzo6ml7d7dHQ0GDx8jWZXj4lDQ3JD/QwmZOwSVeGNWROCgCoJ87bpddAChUpioamFk7Dx3PnxmUiIsKl8/dxHkG+/AXJl78gfZxH4Hn+lHQdlWvUQV1dA1U1NVra2NOgSQvOnzyS5fjVFcWf+LdmiviTcu3WOzl+Z9fx3L4uH39fmfj7ysT/9vVLhvbtzOgps7n7zxcu3n3Fm3+8WTRrcpZi1zeQnBiV/VEZFir5O1euXBQokHb7EhwUxM5tkp6YzkNdpe/nL1BQeiI/PCx5zKqkbRgYGgEwb/EKDhw7w/wlK9mx7zD9BknGVTpycF+WctFIvDVQtpdTaOLfminqQtLn7NB3EIWNi6KpqcXQURO5dc2TiPBwgoMCcbRvjX33Xjx8+5U7Lz6ioaHJSGfJl1hNTU0iIyPkjnmhoSGptpNZSbc3hirIQSvFujUV5OAyeiI3ZXJw6NiaTt178djnK/e8P6KuocmIxC/id25e497tm/QfPCJbMf9N8cPvrc+mZiWZt2IzqxfPpkHF4hzas5Xmbe3Q1c1PduT0ctBQEH9YJuIfmiL+nh0ldfmRz1fuJsY/UuYHaRJlZWXKV6yCppY2s93GZSuHpLhkr+yHhqR/POrVz4kixsXQ1NJi+JhJ3LgqySFf/gJs2HGAIwf2UK1sMeZMm4hdVwd086W+PfhnkuYg0zMl6e+U5SDr2OEDqKtr0ESmN0JG1mVZsRIFC+qhoqJClWo1GDxsVJbaA4PEC37hMhdfQ0MlP/Jz5cpFgXR+NwUFBbFti+S2/qHDFe/Tc2ZNZ1C/3uTLn58jJ85iUd4y29tNS/J+JFOX09iPkuZ17CuzH41O3o+CgwLp0aEVnbv34tn7b3i9+oS6hibDE0/y/Wh6VuX045Hw98jyo6Z79+7N5s2b2bJlC717p248ZGlra3P//n127dqFkZERkydPpkKFCj98KgwgN8YFwMiRIzl06BAzZ87kypUreHl5Ub58+TSfUjR16lS8vLykL1mFCxemR48eLF++nKdPn/L9+3dWr14tnZ47d265+ZWUlBS+l9QdMTw8HGtra/LmzcuOHTu4c+cOhw5JusJn5ClKhQoVkotV9qlSysrKmJubU7FiRUaMGIGdnR2zZmV98KmqVavKbSvlYK+DBw/m+PHjXLp0iSJFkp/CcvHiRV6/fo2uri65cuWSXnHt0KEDVlZWcuswNjbG3NycMmXK0LFjR4YNG8aCBQv4/v37D7cvK73P3NjYGG9vb1auXIm6ujpOTk7Ur19fbtR3RdTV1VMNFqysrJyqS63sepLGA8qMtm3byuUpezIx6cTLu3fvOHfunFyvF0Vq1KhBbGwsPj4+gOT2OX9/f7l5kv4t28snK/vOrFmz0NHRkXult4xuvnwUKlyEx48eSt978ughhYsYy10pSWn7lg106tZD7sp9RkRHR9OrRyeio6PZvGOf3K1XWZVXNx8GRoXxfvZY+p7308cYFioid+UTJFfKjAobp1yFREICJmYlUFPLk6ntKyln+XAMgE5i/C9k4n/xLIvxF08//lcvnmFgWJhmrWzIlSsXegaGtLPrypULWbt1qlSZsqiqqvL9+3eePZXEnzSGT1mL8qioqPDq5QtevXyR6sT91k3rCA8Lo0w5Cxo1Tb7tKVeuXJQpJ+mx9+DeHQAeP3xAVFQUampqlCxdBoA3/7xKkb7kGBAV9T1Luejo5sOwUGGeP3kkfe/5k0cYFVZcDoXSKIcEEnjv84ao75E49HVCVVUVHd18dOrRB8/zpwHJj+ZcuXPz4mnytl48eUTJMuUUrvOX5VDkxzn07JecQxeHPngk5nD9yiU+vH9LnQpmVCtjzNTxI3j54hnVyhjLdfH+f4o/KYffVZ8BGlm3Zt/pa1x78p7lm/bx/u1rqtasm+4yGckhJ5eDovif/cT4O8vEr0hsTAw+b19nKXbZHIwKFeaZXA4PKVS4iFwPAJD0Vi2cVg6Jx8WqNWpz8JQHXq8+se/4RQL8/alZu162YvyRpO8XTx7LfL94/OPvFzu3bsS+S3e57xdZWZdyFtvmMmXKSdu1p4m3wN65LWnXLMpboqKiwkvvF7z0Tt2ubVq/lrCwMMpZlKdps+Zy06Kjo+nfpyczpk7BvERJLnhel95WlNHtZlbyfpT8uaW1H6VbFxISeOfzhu/fI3Hs7yytC10d+nDpnKQu/Gh6VuX049F/WULC73n9LbL8bb958+ZER0cTExODtfWP7/PPlSsXTZo0Ye7cuTx69AgfHx8uXrwIkKmnDF27dg1HR0dsbW0pX748hoaG0h+jiujr62Nubi59pSVfvnwYGRkpfKpPRr148YKvX78ye/Zs6tWrR+nSpTM12G6uXLnkYpUdZyWl+Pj4TPeAkKWuri63raQnUyUkJDB48GAOHTrExYsXMTWVH3Ry7NixPHr0KNUJrUWLFsmNA6SIiooKsbGxREdHp7n9rObSpk0bli5dioeHBzdu3ODxY0mDk5l9S09PT67nU1xcHE+eJN/LXL58eeLj4/H09FS0uPQEgOz2tLW15fJMOoGTdOLl1atXnD9/XuHAsil5eXmhrKwsHZ+mVq1aXL58We4E0blz5yhVqhT58uVLcz0Z2XfGjRtHcHCw3GvcuPSvwHXt3pNF82bh7++Hv78fi+bPpkfPtE/Mvnrpze2bN+jukHqe2NhYvn//TmxsLAnx8Xz//l16AjMmJobeDp2JCA9n2+6DP3Vgv3b23Vm3fB5fPvvz5bM/61fMx7az4q6uHbr2YvfmNfj7feL790jWLJlNjTpWaGhqkSePOq1sO7Fx1SJCggIJCQ5i46pFNGzaCgDfjx+4d+sq0VFRxMTEcObYQTzOnqCRdetsxW9j3511y2TiXz6f9l0Ux2/XtRc7N63B3/cT3yMjWb1kNjXqJsavrk7r9p3YuHIRwUnxr1xEw2aS+MuWr0iAvy8XTh8jPj6eb18DOHZgN6WzOKJ/wYJ6dE98spVD5w4MHdiHOTPcABg+ejwAdataUreqpfRECkj2hQ1rVgLgNGR4qvUOHyXZZ2dOncTQgX3o1b0TAD37DJD2pqlTtTxtmlkxYuggunW0Yf3q5QDYd0n7Vtof6dCpB6uWzCHgsx8Bn/1YvXQuHbs6Kpy3U4/ebNuwCj/fj3yPjGT5glnUqtcQTU0tipcohYamFjs2rSE2NpawsFD2bt9EmcTxCtQ1NGjZ1o7Fc6YSGhKMz5t/2LZhVZrbygy7zj1YuTg5h1VL5mLfTfF6O3dPnUPtFDlsl8lhz/ZNlE3MoffAoZy7/pCjF25w9MINXEZPwtS8JEcv3KBAwYyNxfU3xg+/rz4DPH14n9jYWMLDQlm1eLZkQO2OXbMVP+T8cujQuQerZOJfvWQuHdOIv1P33myViX9FBupyUvwfP7zn9PHDhIeHER8fz/07N9m6fiX1rJpkOfYkHbs4sHzhHD77+/HZ348Vi+bSqbviXgRdHPqweX1yDkvmz6RO/YbSW1iePPIiKiqK75GR7Nq6gVvXL9N7wGDp8tHR0Xz//p2E+HjiZNrx7OrUzYEl82dLc1i6YA5dHdLuCfHPK2/u3LqhcJ4frevIwX2EhoSQkJCA1/17LFs8j1ZtbTMdc0E9PRx7S26D72xnw8B+vZgxVdI7dPRYyRP3qlYsR9WK5bh397Z0uZiYGNaskrRDQ4a5kpLzwL7s3rkdJSUlqlWvwdpVKxgzcrh0MN2MbDcr7Lo4sGLRXAL8/Qjw92Pl4nlp70c9+rBFZj9aOn8mtRP3IzNzSV3YtjG5LuyWqQs/mp4dOf14JPwdMne5WYaKigrPnz+X/p2e48eP8+bNG+rXr0++fPk4efIk8fHxlColGTXaxMSEW7du4ePjg5aWVronHUqUKMHBgwdp06YNSkpKTJo0KdMDYa1ZswYvLy9sbW0xMzPj+/fvbN26ladPn7JsWebv60xStGhRVFVVWbZsGQMHDuTJkydMm5b1kcWTzJo1i6pVq2JmZkZUVJR0sF/Z21TGjRvHx48f2bo1+UkISSdGwsLCCAgIwMvLC1VVVcqWLZvmtpydndm5cydHjhxBW1tbOnaIjo4O6urqqcZOkc095Ymar1+/4ufnR2xsLI8fP2bJkiU0bNjwhz08MmPz5s3ExcVRo0YNNDQ02L59O+rq6hQrVgyQ7FuXL1+mc+fOqKmppXt7XKNGjXB1deXEiROYmZmxcOFCud5ZJiYm9OzZk969e7N06VIqVKjAu3fv+Pz5M/b29hQrVgwlJSWOHz9Oy5YtUVdXl7tFLUlMTAx2dnbcv3+f48ePExcXJ/2c8+fPj6qqKjdu3ODWrVs0bNgQbW1tbty4wfDhw+nevbv0xErXrl1xd3enT58+jBkzhidPnrBkyRIWLVok3VZG9h1F1NTUFJ7UCI9N+0TWyLET+fbtG7WqSHobdOzUTfrjd8RQJwAWLF0pnX/H1o3Uql0XM/MSqda1YM4M5s5KrjuFC2pRp259jp6+yO2b1zl1/Ch58uShZLHkMW+GjRyL66jsddHuP3QMwYHfsGkk6aHUqn0n+g6WDHQ3bZwLAJNmSQZS7u3kSnDQN+ytawFQrVZ9ZixeJ13XKLc5zJroSsu65cmtqopVk5aMnCzpPRQRHs6cKaN57/OGXLlyUdTUnLkrt2BZuXq24h/gMoagwG+0TYy/tW0n+iXGPzUx/smJ8fdxlsRvlxR/7frMkol/tNscZkxwpUUdSfwNm7ZkVGL8RYqaMHfFJlYtmsVE14GoqqlRq14jRk/Jem88txlzyJMnDwf27uLgvt2YmBbHedhIWrZOe2ypQ/t24/vpI0aFCmPbsXOq6a3btWfh8jWsWrqQg/t2U6CgHs4uroydNFU6T3+noXhcPMeh/XtQVlbGsmIlevd3onO3zI9PlcTJdRyBgd9oUU9yn37bDp0Z6CIZr2nyaMltTVPnStqa/kNGEhQYSNvGkkeZ1qxdn3nL1wOSrs+rt+5n3vSJLJrtjoqKCpWr1WTO0uRymjJrIZNGDaF+pRKo5VGne+8B2Np3y3LsSZwTc7CuK8mhXYfODErMYdIoSQ7T5klyGDB0JEFBgbRpJMmhRp36zF+RnMPabfuZO20iC2cl5zA3MQdt7bxoaye3CTq6uuTOlQujQsk9Lv8f44ffV58BFs9x4/GDuygpKVGrXkM27D0hvZ0pO3J6OTi7jiMo8BvNMxh/cFAgbdOIf822/cxLEb9sXd6ydjnjhw8iPj4eA0MjevQZxIChyQOtZtWQkeMJDPxGk9oVAbDt2AXn4WMAGD9CcuJk5gLJj/1BLqMICgykRQNJW1SrbgMWrkx+quXmdSs4c+IocXGxVKlWk52HTmMgM1h+D7tW3Louub369s1rzHQbh8uoCQwfMylbObiOnkDgt2/Uqya5taZDp664jJDcxj56mDMAcxevkM6/c+smatSuS3Gz1N8v0lsXSJ6GN2qYE7GxsRgZFcKxzwAGKTi5nxEzZs8jT5487N29k317dmFa3IxhriNp3dYmzWX27d3Fp08fKVSoMB3tUz8l5+O//wKSi6W7dmyTvl+0aDHGjp+U5e3+yJAR4wj89o0mdSTjqtnYdcZpmKQuTBgpqQsz5kvqwiCXkQQFfaOllaRHTs069Vm0YgMgGYtm/fb9zJk6kfkz3SS3d1WvxYKkdu8H07Mjpx+P/qv+pl4pv4NSQiYe6eDo6EhQUBCHDx9WON3GxgZdXV02b96MlZUVFStWZPHixVy9epWJEyfy6NEjvn//TokSJZgwYQL29vaAZCDTnj178vDhQyIjI3n79q300b2BgYFyT4Dx8fGhd+/e3Lx5k4IFCzJmzBj27dsn3RZIfiQPGzYs1WODkzx48ICFCxdy7do1Pn36hJaWFuXKlWPkyJG0adMGkPyoHzZsmNyPbzc3Nw4fPix3+1LKz2TXrl2MHz8eX19fKleuzLhx42jbti0PHjygYsWKeHh4yOWlaDspTZw4kT179vDvv/+irq5O6dKlcXFxoVOnTnJxJD2iO0nK22oAihUrlm5PIUXLAGzatCnNpzYpKSlx6NAhbGxsAEkZyZ6IUVFRwcjIiBYtWjBjxgz09PTS3H7Kz1N2P0oiu58dPnxY+jSsuLg4ypcvz/Tp02ncuDEAN2/eZMCAAXh7exMVFUVCQkKan3lMTAwuLi7s2bOHXLlyMXz4cG7evCndFkgGxx0/fjy7d+/m69evFC1alPHjx0uf9jVt2jRWrlyJv78/Dg4O0uVkpfx8ZF26dAkrKyvu37+Pk5MTL168ICoqClNTU3r06IGrq6vcSZFHjx7h7OzMnTt3KFiwIEOGDGHMmDHS6RnZdzLjW3jmR8n/r8ivqcKjD9kb+PpPszTW4sm/OTsHiyJafA5N/7bA/zJ97dy88o/802FkSwkDdV5/ztk5mOn/HTnk5PpsUUTrryiDf3J4Dub66rz7mvWe0H9asQJq+Ifk3DYBwCBvbkK/Z/6JSP8l2nmU8fmStdtt/ytMCubJ0cckM/3MD2/wX3D6acBv2U7zcmn/fsxJMnXyRRCE/2/i5MufJU6+/Hni5Mt/gzj58ueJky//DeLky58nTr78N4iTL3/GyacZH2IjO1qW+ztu2creCI+CIAiCIAiCIAiCIAhCurI85osgCIIgCIIgCIIgCP+fxD00mSN6vgiCIAiCIAiCIAiCIPxCoueLIAiCIAiCIAiCIAiZkoDo+pIZoueLIAiCIAiCIAiCIAjCLyR6vgiCIAiCIAiCIAiCkClizJfMET1fBEEQBEEQBEEQBEEQfiHR80UQBEEQBEEQBEEQhEyJF2O+ZIro+SIIgiAIgiAIgiAIgvALiZ4vgiAIgiAIgiAIgiBkihjzJXNEzxdBEARBEARBEARBEIRfSPR8EQRBEARBEARBEAQhU0THl8wRPV8EQRAEQRAEQRAEQRB+IdHzRRAEQRAEQRAEQRCETEkQg75kiuj5IgiCIAiCIAiCIAiC8AuJni+CIAiCIAiCIAiCIGRK/J8OIIdRShB9hQRBEARBEARBEARByIT9D31/y3bsKhj9lu38aqLniyAIGbbw8ps/HUKWudYvzuyLr/90GNkytpEZ2+/9+6fDyJbuVYrk6HIY28iMpVff/ukwsmVoXdO/Yj86/MjvT4eRLTaWhsy48M+fDiPLJjQ2x/Xoiz8dRrYsbFua8Sdf/ukwsmVmy5LM88i5bfMoq7+jbd7r9elPh5Et9hULsfhKzm7bhtUzzdE5DKtn+qdDyBLRjyNzxJgvgiAIgiAIgiAIgiAIv5Do+SIIgiAIgiAIgiAIQqaIfi+ZI3q+CIIgCIIgCIIgCIIg/EKi54sgCIIgCIIgCIIgCJkixnzJHNHzRRAEQRAEQRAEQRAE4RcSPV8EQRAEQRAEQRAEQciU+D8dQA4jer4IgiAIgiAIgiAIgiD8QqLniyAIgiAIgiAIgiAImSLGfMkc0fNFEARBEARBEARBEAThFxInXwRBEARBEARBEARBEH4hcduRIAiCIAiCIAiCIAiZIu46yhzR80UQBEEQBEEQBEEQBOEXEj1fBEEQBEEQBEEQBEHIFNHxJXNEzxdBEARBEARBEARBEIRfSPR8yWE+fPjAlClTOH36NF++fMHIyAgbGxsmT55MgQIF/khMDx8+ZPbs2Vy9epUvX75gYmLCwIEDcXFxSXc5ExMT3r17J/ferFmzGDt2bJrL+Pr6MmLECO7evcs///zD0KFDWbx4cZrz7969my5dutCuXTsOHz4sfd/KygpPT0/pv/X19alfvz7z58+nWLFiaa7Pw8ODhg0bEhgYiK6ubrr5ZYSbmxuHDx/Gy8sr2+vKCBMTE4YNG8awYcN++rrjYmM4snwG988dASUlKjdpS7vBE1HJlfows2vWKB6cP4ZK7tzS9wbM34KJRWUAvnx8x6HFbrx75kXuPOrU69CTRl0HABAa+IUjy2fw5uFtvoeHUaBQUax7u2BRp8lPyeH4yhl4XTiKkpISFRu3pZXTBFRUUuewb85oHl48hkqu5Bx6z91MsXKSHIID/Di61I23j++ipKSEWaWatB3qhpZugQxNz4rY2Bh2LHDn+unDKClB7ea2dHOdorAMAO57nuXAmgX4vX+LhpY2Nn2H0diuBwD7V83jnscZPvn8Q1N7R7qPcJNbNjDAj/XTRvPi/k20dfLRrq8LDW27Zjn2JL+zDKa0spRbX2xMNPpFzXBZfyLbORxaNp27Z4+gpKRElabtsB2iuC7smDGKe+ePytUFp4VbMZWpC/sXueHz9AGqedRpYOdI424DpPMuG9KFt08fyK174s4L6BQ0yFYOOX1fio2JYeO8KVw+eRAlJSXqt2xP71HuacZ/2+MMu1bOw/fdGzS082LffzjN7XsS9PULm+ZP5undm0SEh2JYxITOTiOpbmUNQEx0FO6DuvDh9UtioqPIr2dA2x4DaJaYe3bExcZwctVMHibWhQqN2tLCabzCunBg7mgeXTwuVxcc526maNlKAIR88ePYUnd8EutC8Yo1aTN0CpqJdeFHy2cnB88Ns3nheRyUlCjToDUN+oxFWUEOZ5aM48XlE3IxtHdfT6HSkhiWd6oiv+6YaPIXKU6PpUcyva3MxH9+3SyeXToGSkqUs2pDk/7jFK7z+MKxPPWU/ww7T99IkTKS+Od3kP8s42KiKWBcnL4rjmVo+ezkcGzFDB6cl7TNlZq0pY3zRIX70Z7Zo/C6IH9M7Td/i9wx9fCSKbx9fBdQwrxSLWyGJR9Tv358x+GlbrxPbLvrtu+JVZcBqbaTlRxyersQGxPD1gVuXD15CJSUqNvClp4j3dI8Jt31OMveVfMSj6l56dB/GE07OgCwZ8Vc7nic4ePbV1h3csRx1FTpcs/v32LW4O5y64r+Hol1p170GjMty/HHxcZweNl07p2TtGuVm7bDJo3veDtnjuJ+inZt0IKtct/xDix2411iu1bPzpHGXVPvJ6HfApjdoxm6BoUYtTF7n//fksN/UbwY9CVTxMmXHOTNmzfUqlWLkiVLsmvXLkxNTXn69CmjRo3i1KlT3Lx5k/z58//2uO7du4e+vj7bt2/H2NiY69ev079/f1RUVBg8eHC6y06dOpV+/fpJ/62trZ3u/FFRUejp6TFx4kQWLVqU7rw+Pj6MHDmSevXqKZzer18/pk6dSkJCAu/evWPYsGF0796dK1eupLvePyEmJobcMg3Af9G5rSt4+/guo7eeAWDd6N5c2L6KZo5DFM5f26YbNkMmpXo/Pi6OjeMHYFG3Cb1nreXrpw+sGeGArp4RlZu2JToygsIlytJ6wGjyFjTg+Y1LbJ/qgsuaQxialMhWDhe3r+Ddk3sM33gagM3j+uCxYxWNHRTnUKNtN9o4T1Q47ehSNwDG7PKEhAT2zHTl2PJpdJm4OEPTs+LIhqW8fHiHOfsuADBvqANHNy3Htt+wVPM+un6JzXMmMGjqUkpVqk5keCjB375IpxsYm9B56AQ8Du9UuK0VEwZjULgYK8558e9rb+YN7o5hUVPKVKmV5fjh95aB+4lHcvMv6dsKy4atshU/wJkty3nz6C7jtp0FYM2oXpzbtpLmvYYqnL+ubTfaD52c6v34uDjWje1P+XpN6Td7LV8+fWDl8B7o6BtStWk76XxtB47Gyr53tuOWldP3pX3rFvPc6zZLD0lOsk9z7sb+9UvpNNA11bz3r11k7YxxDJu5nDKVaxAZHkrQ1wAAvkeGY1q6PD2GTSS/niH3Lp9nwZiBzNt5CmOzUiir5KLf2BkUMS2BSq5cfHjtzaS+dhQpXoKylWtmOX4Ajx0reffkLi4bTgGwZXwfPHeuolEPxXWhetuutHJSXBeOLXUHYOROD0hIYN+sERxfMY1OExZnaPmsurV3NZ+e38dhueQEw+GpA7i9bw01OzsrnL9Ci85Y9R2vcNrgPffk/r1taDtK1WuZ5W1lxLXdq/j36T36rZb8aNozuR/X96ymblfF320qt+pC0/4TFE4beeCB3L/XO7ehbH354016y2fVhW2StnnEZknbvGFMby5uX0XTnor3o1rtutF2cOq2GeDwkikAjNt9mYSEBHbNcOXIsql0m7SE+Lg4Nk8YQLm6TXCcIWm7149yQEfPiEpN2mYrh7+hXTi4fgkvHtxmwYFLAMwa3J1DG5ZhN2B4qnm9rl1iw6xxDJ6xjDKVahARHkrw1+RjqqGxCd1cJnDhUOpjapnKNdh6/ZX030FfA3BqXpXa1tkrg7Nbl/Pm8V3GbJW0a2tH9+L89pVYOypu1+rYdMM2jXZt/ThJu9Y38TveKtce6OoZUkWmXQM4sNiNwiXKEh4SlK3Y/6YchJxP3HaUgzg7O6OqqsrZs2dp0KABRYsWpUWLFpw/f56PHz8yYcIEli9fjoWFhXSZw4cPo6SkxOrVq6XvNWnShIkTkxulI0eOULlyZfLkyUPx4sVxd3cnNjZWOl1JSYn169dja2uLhoYGJUqU4OjRo9LpvXv3ZsmSJTRo0IDixYvTvXt3evXqxcGDB3+Yk7a2NoaGhtKXpqZmuvObmJiwZMkSHBwc0NHRSXO+uLg4unXrhru7O8WLF1c4j4aGBoaGhhgZGVGzZk0GDx7M/fv3fxizrM2bN6Orq8uZM2coU6YMWlpaNG/eHF9fX+k8Hh4eVK9eHU1NTXR1dalTpw7v3r1j8+bNuLu78/DhQ5SUlFBSUmLz5s2A5DNftWoVbdu2RVNTkxkzZki3JSupfGUdO3aMatWqkSdPHgoWLIitrS0g6e3z7t07hg8fLt3ez3T75D6a9HAmbwF98hbQp0l3J26f3Jvp9Xz+8IaAD29o5jgUlVy50S9anOqt7Ll5fDcABQoVpWHnfujqG6GsrEy5Oo3RMy7Ou6de2c7h3un9NOzmJM2hYbdB3D21L0vr+ub7gfJWLVFT10RNQ4vyVq3wf+ud4elZcfnoHtr1HopuQQN0CxrQtvcQPI/sVjjv/tXzsek7jDJVa6GsooJmXl0KmZhLp9dr3ZEKdRqSR1Mr1bL+//rw0usO9oPHkkddA3OLStRqYcPlo5kv75R+ZxnI+vDiIZ/f/UMV6w7ZCR+AWyf308zBGZ2C+ugU1KepgzM3T2ShLrx/w+cPb2jeS1IXDIoWp2Zre24cVVymP1NO35cuHN5Nx37DyK9nQH49A+z6unAhjZM/u1bMxX7AcCyq1UZFRQWtvLoUMZWcyDUsUgybnoMoaFAIZWVlqlk1o7CJGd6PJG2FiooKxUqUSb5ymnhs9X3vk634QVIXrLo5oV1AH+0C+lh1deLeqf1ZWtc33w9YNGghrQsWVi3xf/sy2zH+yNPzB6necSBa+fXRyq9P9Y4DeHL+QLbX6/fyEV8/vKZsI9tfuq1H5w5Qp/Mg6TprdxrIw7PZj/+T9yO+vH9N+Sa2P545m+6c2kdjmba5cXcn7pzKWv366vsBS6tWqKlrkkdDiwpWrfB7IzmmBiS23U16Jrfd1Vrac+t49o9Xf0O74HFkN+37upBPz4B8egbY9h3KpcO7FM67Z+U8OvQfTrmqtVFOPCYVNk0+pjZoa0+luo3QUHBMTcnz2D4MjU0pVbFatuK/fWI/TWXbtR7O3MpKu5a4n1jLfMer0cqeG8fk95PHV84RERJEVeufV0f+hhz+ixJ+0+tvIU6+5BDfvn3jzJkzODk5oa6uLjfN0NCQbt26sWfPHho0aMCzZ88ICJBctfP09KRgwYJ4eHgAkh4UN27cwMrKCoArV67g4OCAi4sLz549Y82aNWzevJkZM2bIbcPd3R17e3sePXpEy5Yt6datG9++fUsz3uDg4Az1wpk9ezYFChSgUqVKzJs3T+6kT3ZMnToVfX19+vTpk6H5v337xt69e6lRo0amtxUREcH8+fPZtm0bly9f5v3794wcORKA2NhYbGxsaNCgAY8ePeLGjRv0798fJSUlOnXqxIgRIyhXrhy+vr74+vrSqVMn6Xrd3NywtbXl8ePH9O6dsavaJ06cwNbWlpYtW/LgwQMuXLhA9erVATh48CBFihRh6tSp0u39LBGhwQQH+FHYvIz0vUIlyhDo/4nIsFCFy9w9c4iJrSszt2dzPPasJz4+HoCExP/LPrsuIT6eT69fKFxPaOAX/N/9QyGzUtnKITIxByOZHIzMyhL0+RPf08jhwblDTLWpwqLezbmyNzkHgLp2vXnseYrvYaFEhoXw8OJxStdqlOHpmRUeEsQ3f1+KlSorfa9YyXJ89ftIRFiI3LzfIyPwef6YwAA/RrWvz2DryiwdM5CgL/4Z2taHV8/RLaiPTgE9uW19ePU8y/HD7y8DWXdP7qNk9frkzebtOhGhwQR99qVwieRyKGyeVBdCFC5z5/QhxrWsxKwe1lzcnZxDfELG6sLZrSsY17ISc3u35vbpH5/0/pGcvi+FhQTx1f8TpqXKSd8zLVWOAN+PhIemiD8igtfPHvH1sx9OberQq5Elc0f241uA4viDvn7h37f/YFKyjNz70wf3wL6aCUNtG6BbQI+ajVpkOX6Q1IWQAD+MzJLLwNCsDMHp1AWvc4eZYVuVpX1acHXfBrm6UMeuF08un5bWhccXj1O6ZqMML58V38OCCfvqh37x0tL39ExLExrgS1S44hyeXTrKym412TK4NfcOb0puD1J4cv4AJlXqoVVAP8vb+pHI0GBCv/ihXzy5rA2KlyEk4BPf01jnkwtHWNSpOusGteLWwY1pxv/w7H7MqtZHu4BBlpbPqKS2uZDsMdW8DEHptM33zh5iStvKLHBsjmeKY2r9jr155HmSyMT9yOviMcrWbgxAQhrHK983itvujPob2gXJMckXE5ljkknJcnzx+0hEymNSZARvnz/i22c/hrWrS/8mFVk4qj+BaRyTfsTjyG4a2nTOVvwRocEEBfhS2Dzj7drdM4eY0KoSsx2subT7B9/xEuLxlWnXIsNCOLJiBh1HTM9W3H9bDsLfQdx2lEO8evWKhIQEypQpo3B6mTJlCAwMRF9fn/z58+Pp6YmdnR0eHh6MGDGCJUuWAHD79m1iYmKoXbs2IDmpMnbsWHr27AlA8eLFmTZtGqNHj2bKlCnS9Ts6OtKlSxcAZs6cydKlS7l9+zbNmzdPFcv169fZs2cPJ06kf2/j0KFDqVy5Mvnz5+f69euMGzcOX19fFi5cmPkPSMbVq1fZsGHDD8dRWblyJevXrychIYGIiAhKlizJmTNnMr29mJgYVq9ejZmZGQCDBw9m6lTJ/bchISEEBwfTunVr6XTZMtTS0iJXrlwYGhqmWm/Xrl3p1atXpmKZMWMGnTt3xt3dXfpehQoVAMifPz8qKirS3kY/U1RkOAB5tPJK31NP/DsqIgx1Lfnbyep16EmbQWPR0Nblw4tHbHUbgpKSMg3se6NftDj5DAtzeuNimvcexpeP77h9ch9REWGpthsbE812dxcqNmyJcWnLVNOzkoO6TA55EuOOigyT/p2ktq0DLQaMQUNbl3+9H7Fz2lCUlJWpayc5UVbMogp3Tu5hqo3k/uCiZSth1WWgdPkfTc+s7xERAGhoJ/cI09CW5PI9PBwNmbwiQoJJSEjgnscZxqzYiZZOPjbNGseqSS6MW/Xjq5TfIyLk1pe0rUgFZZQZv7sMkkRHRvDQ4zj2Y+ZlK36AqIjUOWhI60K43PsA9e160s5pLBp5dXn/4hGbJg9GSUmJhp36YFC0OPkNi3BywyJa9hlOwMd33Dq5n+8yn3PrAaMwNDFHNY86L+/dYPOUwahpaFKhvnWWc8jp+9L3xDLQ1E5eb9LfkRFhcu+HhQaRkJDA7UuncVuzG23d/KyeNprF4wczdZ38lfWYmGgWjBlI7WZtMC9XUW7axOXbiIuL4/mDWzy9exPVPHmyHD9AVKSkDGT3efV06kIt25407z8GdW1dPno/Yvc0F5SUlKljJ2lDiparwt2Te5lhKxk3xbhsJerLjMXxo+WzIiYxBzXN5M876e/oyHDUNOVzqNi6O/UcR5FHSwf/fx5zYq6rZFyGdo7y6/0egfeVkzQfNjvL28pQ/N8Ty0Bm2aQ2LjoyXO59gKpte9Coz2jyaOng++oxh2cPQ0lJmeq28vFHf4/g+eUTtHadk6XlMyNawTFV2jZHpm6b67TvSauBiW2z9yN2uEva5vodk4+pt47vwa2tZByaomUr0bCr5JiqZyxpu89uWkyzXpK2+86pfUSFi3Yh6Zgke0zVTPw7MiJMenwFycnvhIQE7lw6zYRVu9HWzce6GWNZPnEIk9ZkrpfG8/u38P/3PQ1ad8xW/IraNXXttNu1eh160tZJsh+9f/GILVMGo6SshJV9H/QT27VTGxbRIrFdu31Cvl07tmoO1Vt0QM/YlLdP5G83/H/O4b8qQYz5kimi50sO86MdXE1Njfr16+Ph4UFQUBDPnj3DycmJqKgoXrx4gaenJ9WqVUNDQwOQDJY7depUtLS0pK9+/frh6+tLROIXcABLy+QftpqamuTNm5fPnz+n2v6TJ09o164dU6ZMoVmzZunG6urqipWVFZaWlgwcOJAFCxawbNkyoqKiAORiGjgwYz9KQ0ND6dGjB+vWraNgwYLpztutWze8vLx4+PAhV69exdzcnGbNmhEaKrmSUq5cOen2W7RI+yqmhoaG9MQKgJGRkfSzyZ8/P46OjlhbW9OmTRuWLFmS4R4nVatWzdB8sry8vGjcuHGml0spKiqKkJAQuVdSuSiipi65XUz2amDSFSk1jdTdYouUtEBLtwDKKioUK1eJRl0H4nVJcrJOJVdues9Yw8dXz3C3q8OO6a5Ub2GHRl5duXXExkSzZfJgcudRp+OomdlNWXEOiX+rqafOobBMDkXLVqJB5wE88pDkEB8fz4bRPSlWrgpuxx/hdvwRxcpVYeMYxwxNz4o8iXVatmdC0tWcPClu51NLnLdZp94UNCpCHg1N2g9w5fnd63yPjOBH8mhoEJniym9kWCjqCso6M35nGch67HkKVTV1StVsmK34AdQ0UueQ9FklTZNlXMoCrXySHEzKVaJJ94E8uJhcF/rOWsO/r54xuX1ttk0dTo0UdcHUojLqWnlRyZWbMjXqU7ttVx5cyN6gfjl9X8qT+DmHy1wVj0j8O+V61RP3uVZd+qBfyBh1DU06O43iyZ1r0pNQIDnxMm9EP9TyqOM0Zb7C7aqoqGBRtTZB3wI4vHllluMHUFOXfK7ydSEscVrqz6ZQiXJoJtYF47KVqN95AI9l6sLmMY4ULVeZScceMunYQ4qWq8zmMb0ytHxW5U7MQbbnSXSE5G9V9dR1wcCsHBo6+VFWUcGoVEWqdeiL99VTqeZ7ee0MudTyYFq1QZa3laH48ySuU+YHVVJ5KFqnoXly/IVLV6SmXT+eXzmZar4XV06TS00d8+pWWVo+M5LilO0hkt4xVa5tTjwp8ehS8n60fmRPTCyqMO3kY6adfIyJRRXWj3IEJMerntPX8PGfZ0zvWIddM1yp2twODR3dbOXwN7QLScck2WNq0t8pj0lJ87bo0ge9QpJjaseBI3h6J2PHVFmXDu+iaoOm5M2fvQdyKGzXwn7Qrukmt2uNuw3ES6Zd6z1T0q65dajN9mnDqd4yuV17/fA2b5/ckz5k4Wf5G3IQ/g6i50sOYW5ujpKSEs+fP5eO4SHr+fPn6Onpoauri5WVFWvXruXKlStUqlSJvHnzSk/IeHp60qBB8heWsLAw3N3dad++fap15pG5cpdysFclJaVUXZKfPXtG48aN6d+/v9yYMhlVo0YNYmNj8fHxoVSpUnI9V/LmzZv2gjJev36Nj48Pbdq0kb6XFGeuXLnw9vaWnijR0dHB3FxyD625uTkbNmzAyMiIPXv20LdvX06ePElMTAxAqlu9ZCn6bGRPkm3atImhQ4dy+vRp9uzZw8SJEzl37hw1a6Y/GGPK8W+UlZVTnXxLii9JenFmxqxZs+R6zwBMmTKFvI0cFM6voa2Djp4hn/55TsHCkqdFffznObr6RqmurCmipCx/HtjQtCQDFmyR/vv46jmYVUi+JSw2JpqtU4YQFxtN7xlryJVbNcO5pUU9MQfff55ToJAkB99/nqOjb5TqypoiyjI5RIYGEeT/kdrtHVDNIymTWrY9uLx3HeHBktv10puuqZP5gbM18+qS38CI997PMChiAsA772cUMCiUqmeBprYOBQwLK15RBq5gGJcoQ2CAP8HfvqCTv2Ditp5SxLz0D5ZM3+8sA9nP+M6pvVRuZqvwyRmZpaGtg66+Ef++epZcF149S6wLPz6OKSnJ1wUj05I4Ldwq/ffRVbMxr5j27ZFKytkfyymn70taeXUpYFAIH+8nGBlL4n/r/ZSChoXker0AaObVQc9IcfwJiXeZx8REM29kf2Jjohm3ZDO5f3C8iYuN4dP7t1mOHyR1Ia+eIX6ydeH1M3T0MlYXZPeDpLpQyza5LtS0ceDq3vVpHm9+xn6UR0sHrQKGBLx9ga5RUQA+v3mBdkGjjPVEUVJ8ffDJuf2UbWgj98ShbG9LAXVtHbQLGuL/5jn5pOt8Tl49o1S9XhSHrzj+h2f3Ub6xzQ+fwpTW8pkh2zYXSDwefcpi2xwZGkSg/0fqdOgp3Y/qtHfAc0/yMdXQtCT95iW33SfXzKG4ZeZv55b1N7QLkmOSEe+8n2KYeEzy8X5KAcNCcr1eQHJMLZiNY2qSiLBQbp47juv8dVkNW0pDWwddPSM+yrZr/2SiXVNO3a4NkmnXjq2ajVliu/bq3nW+fnqPW3vJgOux0dHERH9nYpsqjNp0Cp2C+v+3OfxXZe/myP8/oudLDlGgQAGaNm3KypUriYyMlJvm5+fHjh07cHR0BJCO+7Jv3z7p2C5WVlacP3+ea9euSd8DqFy5Mt7e3pibm6d6KWei4X/69CkNGzakZ8+eqcaLySgvLy+UlZXR15cclGRjSXrvR0qXLs3jx4/x8vKSvtq2bUvDhg3x8vLC2Ng4zWVVVFQApJ9vsWLFpNsvXDiNhjCDKlWqxLhx47h+/ToWFhbs3CkZ+FFVVZW4uLgMrUNPT4/Q0FDCw8Ol76W8tcrS0pILFy6kuY6Mbm/cuHEEBwfLvcaNG5fuMtVb2HF+20pCvgYQ8jWAC9tXUaNVJ4Xzel08wffwUBISEvjw4hEXd67GUuY2iU+vXxAVGUFsTDSPLp/h9sn9NHGQPLEiLjaGrW5DiP4eQa/pa8ilqvbDfDKqirUdl3asJPRbAKHfAvDYuYpqLewVzvvIIzmHf70f47FrDRb1JLfhaerkp0DhYtw4sp2Y6ChioqO4eWQ7OnqGaOrk/+H0rKrfxp4jG5cR9OUzQV8+c3TTchrYdFE4b0Pbrpzbu4lvn32J/h7J4XVLKFutrvSqW2xsDNFR30mIiyc+Lo7oqO/ExkpO9hkUMaFkharsWzGHqO+RvH7ygOunD9OgneLyzozfVQZJAj684f3T+1RNYxtZUaOFHee2JteFc9tWUau14s/mgUxdeP/iERd2rKZCg+TbOT/+81xaFx56nubmCclgvgARoSE8vXGJ6O+RxMfF4X33GteP7KSCVerbQTMrp+9Ljdp1Yv+6JQR++Uzgl88cWL+EJrbdFM7btEN3TuzeyFd/X6K+R7J3zUIsa9RDXUOT2JgY5o/qT1RkBGMXbyJ3iuPN2xdP8LrhSdT3SOJiY7l7+TyXTxykUm2rbMUPUNm6Ax47V0nrgufO1VRpqfj2gcceJ6X70Ufvx1zevZZy9STH1KS6cOvIDmlduHVkO3ll6kJ6y2dHuca23N63mvDAAMIDA7izfw0WTRUPXup99RRREWEkJCTg9+oJdw+uo0Qt+R603/59y6cXDxSuIzPbyijLJu25vmc1Yd8CCPsWwPW9a6jQzE7hvM+vnJTG7/vqMTf3raNUHfn4v/77hn+fP1C4jowsnxVVm9txQeaYenHHKqq1VFy/Hl6SaZu9H+GxczUW9eX3oxuHk4+p1w/LH1N9X78gOvF49fjyGe6c2k/jHll/2lSSv6FdsGrbiYMblkqPqYc2LqORTVeF8zbu0I3TuzdKj6kH1i7CorrMMTVGckyNj48jPi5eckxNcTHu2unDaOnmw7JWA0WbyLTqLe04J/Md7/y2VdTMRLtmKdOufXqd3K498jwtHaQewKpTH8bvuMDIDccZueE4zfsMQ8+4OCM3HEc7X/Z68PwNOQg5n+j5koMsX76c2rVrY21tzfTp0+UeNV2yZEkmT5Y8Ds3S0pJ8+fKxc+dOjh8/DkhOvowcORIlJSXq1KkjXefkyZNp3bo1RYsWxc7ODmVlZR4+fMiTJ0+YPj1jg0Q9efKERo0aYW1tjaurK35+foDkZIaenmQQxdu3b+Pg4MCFCxcoXLgwN27c4NatWzRs2BBtbW1u3LjB8OHD6d69O/ny5Ut3e0knHMLCwggICMDLywtVVVXKli1Lnjx55J72BEifEJTy/YiICGms/v7+TJs2jTx58vzwdqnMePv2LWvXrqVt27YUKlQIb29vXr16hYODpAeJiYkJb9++xcvLiyJFiqCtrY2amuKTCTVq1EBDQ4Px48czdOhQbt26JX06UpIpU6bQuHFjzMzM6Ny5M7GxsZw8eZIxY8ZIt3f58mU6d+6MmppamrdmqamppRlHWpr2HEx4SBBzHSSfX+Wm7WjcfRAA+xdIekLZJQ48du3QNvYtmEB8XBw6BQ2o3a4bDTr1la7r4aUTXD+yk9joKIzMStNrxioKmUmuhPs8uc/Tq+fJparG5HbJt2Y17jaIJj2cMhVzSo16OBMREsjCXpIvm5WatMOqmySHQ4skj960HT4NgBuHt3No4UTi4+LIW9CAmm27Ubdj8gDPPaau5sSqGcyyr0NCQjyFzMviMG1NhqdnRbu+LoQGBzKmo2TwwDotbGnbS/JI1E0zJSfPeo2fBUAbR2fCQ4KY0EWSa5mqtRk4dbF0XRumj+bq8eQnq5zbu5m6re0Y4CZ5xLvTjOVsmD4apyYV0NLRpfPQ8dl+zDT83jIAyYCKJuWrUjCxh8fPYO04mPCQQGZ2bwpA1WY2NE3cN/fMlzxGttNIyUnqKwe3smfeeOLi4tAtaEBdm+407JxcF7wuneTq4R3ERkdRyLwMfWeulg5sHR8bw5lNS9ni5gJAfsPC2AyeQKWGyY/fzaqcvi/Z9x9OaHAgQ2zqA9CgVQfs+koeJ7pq2mgABk2aC0D73kMICw5iuL3klk2LanVwmbEMgBcP73D70hlU1fLQs0HyYJkd+g7Frq8LcXGx7Fg2i48+r1FSUkK/kDG9RrpRv2Xq3qSZ1bC7M5EhQSzpLfnCX7FxOxp0ldSFI4sldaHdMElduHlkG0cWJdeFGm27UkemLnSbuoqTK2cyt1NdEhLiMTIvS/epyU9B/NHyWVWj0yC+hwaxxbk1AGWs2lC9o6Qr/vmVbgA0cZL8/+GJHVxYOYX4uDi08utj2aILVWzkx5x5cn4/hctWIV8hk0xtK6vqdHEiMjSIdQMldapcw7bU7iS5Dfr0csl3ruaDJWO83Tu2g1PLJhMfF4d2AX0qt+pCDVv5wfIfnt2Pcbmq5C+cOv6MLJ8VTRwGExESxPyekra5UtN2NEpsmw8slLTNHVwlbfP1w9s4kNg259UzoFa7btS3Tz4eOU5fw7EVM5jRsTYJ8fEUKlEWxxlrk/PzOMHNozuJiY6ikFlpek5bhZFZ9npEwt/RLrTvN4zQ4EBc21sBULdle2z7SB6VvW665Dtav4mScYBseg0mLDiI0Z0kbUjZqrUZPH2pdF1rp43C81jymFRn9myiQZuOOMkcdy8d3o1V206ZupCanmY9BxMeHMjsHpKYqjSzoUl3Sbu2N7Fds09s164e3Mre+eOl3/Hq2HTHSuY7ntfFk1w7ktiumZWh98zVFDKTtGt5NLXlepZpaOugkisXuvpGIof/KDHkS+YoJYhRcnIUHx8f3NzcOH36NJ8/fyYhIYH27duzbds26TguADY2Npw4cYLAwEC0tLSIj4+nYMGClCpVihs3bsit88yZM0ydOpUHDx6QO3duSpcuTd++fenXrx8guY3m0KFD2NjYSJfR1dVl8eLFODo64ubmluoWFZD0HPHx8QEkj1tu2LAhb9++xcTEhPv37+Pk5MSLFy+IiorC1NSUHj164Orq+sMf/YoekSy7rZQcHR0JCgri8OHD0vesrKzw9PSU/jtfvnxYWloyZcoUGjZM+/7epDwCAwPR1dVl8+bNDBs2jKCgIOk8hw8fxtbWloSEBPz9/Rk4cCC3bt3i69evGBkZ0bNnT6ZMmYKysjJRUVF069aNCxcuEBQUxKZNm3B0dFT4mSete9SoUXz8+JHGjRvTtm1b+vfvL3c70sGDB5k2bRrPnj2T3nJ24IDk0Zg3b95kwIABeHt7ExUVlelBshZefpOp+f9LXOsXZ/bF1386jGwZ28iM7ff+/dNhZEv3KkVydDmMbWTG0qvZu6XkTxta1/Sv2I8OP/L702Fki42lITMu/POnw8iyCY3NcT2avSfZ/GkL25Zm/Mlf/8jtX2lmy5LM88i5bfMoq7+jbd7r9elPh5Et9hULsfhKzm7bhtUzzdE5DKtn+qdDyJINt9//lu30qV70t2znVxM9X3IYExMTud4OU6ZMYeHChTx69EhuDBHZEw0guec1rUdDW1tbY22ddvdiRT/QZU82uLm54ebmlm7cVlZWcuupXLkyN2/eTHeZzMSTnpS9QwDpo7czK2Uejo6O0tu9ktjY2EjnMTAw4NChQ2muT01Njf3796d6P60cbWxsUp2QSTpJlqR9+/YKx/ABqFmzJg8fPkwzHkEQBEEQBEEQhIyI/4/241ixYgXz5s3Dz8+PChUqsGzZMqpXr57m/EFBQUyYMIGDBw/y7ds3ihUrxuLFi2nZsmWW16mIGPMlh3N3d2fp0qXcvHkz1QC4giAIgiAIgiAIgvD/Ys+ePbi6ujJlyhTu379PhQoVsLa2VvikXoDo6GiaNm2Kj48P+/fvx9vbm3Xr1smN+ZnZdaZF9Hz5C/Tq1evHMwmCIAiCIAiCIAjCT/Jf7PiycOFC+vXrJ/2NvHr1ak6cOMHGjRsZO3Zsqvk3btzIt2/fuH79uvQptiYmJtlaZ1pEzxdBEARBEARBEARBEHK06Oho7t27R5MmTaTvKSsr06RJk1TjniY5evQotWrVwtnZGQMDAywsLJg5c6b0CbFZWWdaRM8XQRAEQRAEQRAEQRAy5XeN+RIVFUVUVJTce4qezvrlyxfi4uIwMDCQe9/AwIAXLxQPEv/mzRsuXrxIt27dOHnyJP/88w9OTk7ExMQwZcqULK0zLaLniyAIgiAIgiAIgiAI/0mzZs1CR0dH7jVr1qyfsu74+Hj09fVZu3YtVapUoVOnTkyYMIHVq1f/lPXLEj1fBEEQBEEQBEEQBEHIlPjfNObLuHHjcHV1lXsvZa8XgIIFC6KiooK/v7/c+/7+/hgaGipct5GREblz50ZFRUX6XpkyZfDz8yM6OjpL60yL6PkiCIIgCIIgCIIgCMJ/kpqaGnnz5pV7KTr5oqqqSpUqVbhw4YL0vfj4eC5cuECtWrUUrrtOnTr8888/ck8OfvnyJUZGRqiqqmZpnWkRJ18EQRAEQRAEQRAEQciUhITf88oMV1dX1q1bx5YtW3j+/DmDBg0iPDxc+qQiBwcHxo0bJ51/0KBBfPv2DRcXF16+fMmJEyeYOXMmzs7OGV5nRonbjgRBEARBEARBEARByPE6depEQEAAkydPxs/Pj4oVK3L69GnpgLnv379HWTm5D4qxsTFnzpxh+PDhWFpaUrhwYVxcXBgzZkyG15lR4uSLIAiCIAiCIAiCIAiZEs9vGvQlkwYPHszgwYMVTvPw8Ej1Xq1atbh582aW15lR4rYjQRAEQRAEQRAEQRCEX0j0fBEEQRAEQRAEQRAEIVMyOx7L/zvR80UQBEEQBEEQBEEQBOEXEj1fBEEQBEEQBEEQBEHIlHjR8yVTRM8XQRAEQRAEQRAEQRCEX0j0fBEEQRAEQRAEQRAEIVPixaAvmaKUkCA+MUEQBEEQBEEQBEEQMm7h5Te/ZTuu9Yv/lu38aqLniyAIGXb3bcifDiHLqprm5fLLb386jGypXzI/F198/dNhZEuj0gW45J1zc2hYqgAP3oX+6TCypVIxbR6+z9k5VCiqzYknn/90GNnSykKfx/+G/ekwsqx8ES1OPw3402FkS/Nyelx9Ffinw8iWuiXyceVlzs2hXsl8f8V+dPN10J8OI1tqmulyLYfXhTol8nHrdfCfDiPLapjp/OkQskR048gcMeaLIAiCIAiCIAiCIAjCLyR6vgiCIAiCIAiCIAiCkCniaUeZI3q+CIIgCIIgCIIgCIIg/EKi54sgCIIgCIIgCIIgCJkint2TOaLniyAIgiAIgiAIgiAIwi8ker4IgiAIgiAIgiAIgpApYsyXzBE9XwRBEARBEARBEARBEH4h0fNFEARBEARBEARBEIRMET1fMkf0fBEEQRAEQRAEQRAEQfiFRM8XQRAEQRAEQRAEQRAyJQHR9SUzRM8XQRAEQRAEQRAEQRCEX0j0fBEEQRAEQRAEQRAEIVPEmC+ZI3q+CIIgCIIgCIIgCIIg/EKi54sgCIIgCIIgCIIgCJmSIHq+ZIro+ZLDfPjwgd69e1OoUCFUVVUpVqwYLi4ufP369Y/F9PDhQ7p06YKxsTHq6uqUKVOGJUuW/HA5ExMTlJSU5F6zZ89Od5mrV69Sp04dChQogLq6OqVLl2bRokVy88yaNYtq1aqhra2Nvr4+NjY2eHt7p7ltFRUVChUqRJ8+fQgMDEx3+5s3b0ZXV/eHuWWUo6MjNjY2P219P6KkpMThw4d/ybpjY2KYO2UkjSoWpXGlYsxzG0VsbGya83ueP0nXVnWpV86IFjVLcWDHBum0AV1aUbu0HvUtCklfAf6+GZ6enRwWTx1Nq2rFaV3djMXTxqSbw7ULp+jTrgHWFY1pX7csR3ZtSjXPty+faV3djD7tGkjf+/D2HyY498C2ThlaVTXFuXMLHt+79VPiXzptDO1qmGFT05xl08cSl0781y+eor+tFa0qF8W+fjmO7U6O382lFx3rlaVNVRO6NanM9lUL5JZ9fO8mgztZ07aaKfYNLFi/cBrx8fE/JYclU8fQtroZ7WqYs3Ra+jlcu3iKfjZWtKxUlI71ynFUNoehvbCrV5bWVUzo2rgy2xTk4NzJmjZVTelY34J1C35ODjExMcyePIIGlkWxqlCUOVNGpl8Xzp2kc4s61C5jSLPqJdm/fYPc9EO7t2DbqDK1yxjSqo4FHmdPSKcF+PsyxLEDtcsY0rJ2WQ7u2pzt+JNymDVpBPXKF6W+ZVFmT04/B49zJ7FvUYeapQ1pWq0k+1LkcHDXFto1rEzN0oa0qGPBpcQcoqOi6NOpJQ0rF6dOucLYNKrC/p2p61FmxcbEsGrGODrVLknnOqVYPXNcuvvRrUunGWLXiA7VTXBoZMnJvVsACPoawLwxg+jZuCIda5oxtGNjbl06Lbfsg+ueuNg3oWON4gxqV497Vy9mO36QlMHMiSOoY2FMXYuizJqUfhlcOnuCjta1qV7SgMZVSrB3m3wZHNi1mTYNKlG9pAHNa5Xj0pnjANy7dY0apQzlXhWK5mX25FHZziE2JoaVM8bSsXYJOtYuycoflMPNS6dx7tAQm2omdGtYnhN7NkunTR/em65WFrSvURxH66rsWrNQbtklbiPo27oWLcsbcGjbmmzHnhT/IvfRtKhqSstqxVk0Nf024eqFU/RqW5+mFYpgU7csh9NoE1pWK06vtvUVruPNy2c0LGfAuEHdf14OU0fTspopraoX/2G7dvXCKXq3q0+zikWwTadda1W9OL3bJeeQ1K7Z1ClNy6omOHVuzuN7N39aDjl5P0rKYb7bKJpVNqFZFVMWuI9OtxyunD+JQ5t6NCxfmDa1y3Bw58ZU83z78plmVUxxaFNP7v3bVy/Rs20DGlcwpot1TW54nv8p8S90H03zqqa0yGBdcGxbnyYVitAunbrQolpxHFPUBbuGFWhUvhBNKxrTtKIxzauYZDv+pBzmu42iaeViNKtiwnz39L+nXj5/kh5t6mJVvhCta5eWK4NBXVtRr4w+DS0LS1+y30PDQ0OYPLwvjSoY06JGCTYun/tTchByPtHzJQd58+YNtWrVomTJkuzatQtTU1OePn3KqFGjOHXqFDdv3iR//vy/Pa579+6hr6/P9u3bMTY25vr16/Tv3x8VFRUGDx6c7rJTp06lX79+0n9ra2unO7+mpiaDBw/G0tISTU1Nrl69yoABA9DU1KR///4AeHp64uzsTLVq1YiNjWX8+PE0a9aMZ8+eoampmWrbcXFxvHz5kv79+zN06FC2bduWjU/j14iJiSF37tx/Oox0bVg+D6+7N9l79jYAQ3vZsWnlAvoNHZNq3uue55k7eQRTF66lYrXahIeF8O1LgNw8g0e707W3U5rb+9H0rNi6agGP791i64nrAIzu14ntqxfhODj1j5Bbly+wyH0UE+atxrJqLSLCQvn25XOq+RZPHUOJMuUJCUo+sRcWGkyN+k0YNW0R2jr5OHlgB2P6d2LnuXvo5i+Q5fi3r17Ak/u32HjsGgDjBnRmx5pFODinjv/2lQssmTqacXNXUb6KJP7Ar8ll4OA8iiImZqiqquH/6V/G9rfHoLAxTdvaExcXxyTnHtj3dmbJzpME+H1kRE8bDAob06aTY5bjB9i+SpLDpuOSHMb2/0EO7qMZP3cV5aumkYOpTA797DGUzcFJksPSnScJ8P2Ia08bDAsb06Zz9nJYv2wuXndusv+8pC4M6dmBjSvm099lbKp5r3mcY9YkV6YvWkel6pK68DUgOYcDOzexY8MKZi3dRKlylnz7EkBkZLh0+rghvSlSzJQL917zj/cznB3aU8zUnCo162Yrh3XL5vLg7k0OJubg7NiBDSvmMyCNHGZOdGXG4nVUVpDD/p2b2LF+BXOWpc5BJVcuxrrPw9S8FLly5eL1yxf069KK4ualqFy9dpbj37N2Ec8e3GLVkSsATBnUhb3rltBl0IhU8967epGV08cyYvYKylWuSaTMfvQ9IhyzMuXpNXwS+fUNuXP5HHNHD2DRrjMUNSuF3wcfZgxzZPS8NVSt14S7V84z07U3Kw54YGhskuX4AdYuncuDOzc4fOEOAE4O7Vm/fD4Dh6Uug6uXzjFjgiuzlq6XlEFoCF9ljkf7d2xk2/oVzF2xmdJJZRAhKYMqNepwy9tPOu/XgM80rV6K5m07ZCt+gF1rFvL0/i3WHLkKwKSBndm9bjHdBo1MNe/dqxdZPn0Mo2etpFyVmkSEhRIkU5+7DRpJ4cRj0mfff5k4oDMGhYxp1KYjAMVLlaV+83ZsWTor23En2bJyPo/u3WTbyRsAjOprz7bVC+k1eHSqeW9dPs9Ct5FMmr8m3TZh0dTRlChjSUjQt1TT4uPjmTtxGOUr1/hpOWxdNZ/H926y9YQkh9H97Nm+eiGOaeSwyH0kE+eln8NiBTmEhgZTo35jmXZtO6P7d2LXufvZatcg5+9HAJtWSPalnaclJ6Rc+3Rky6qF9BmSuhxueJ5n3pRRuC1YQ4VqtQhPoxzmu42mZFn5cvj43oexTj2Yung9ta2acd3jLOMH92T7iWsULmqS5fiT6sL2xLowMp26cPPyeRYk1oUKVSXxByqIf+HU0ZQsY0mwgrrgtnAd9Zu2ynK8imxaMY+H926w67TkYtfwPnZsWbWAPkNSf0+VlMFI3BasSfyemroMnEe70bmX4u+hC6aOJiQokCNXHhP49QtDHCTfL1radvmpOf0XxIuuL5kier7kIM7OzqiqqnL27FkaNGhA0aJFadGiBefPn+fjx49MmDCB5cuXY2FhIV3m8OHDKCkpsXr1aul7TZo0YeLEidJ/HzlyhMqVK5MnTx6KFy+Ou7u73JlgJSUl1q9fj62tLRoaGpQoUYKjR49Kp/fu3ZslS5bQoEEDihcvTvfu3enVqxcHDx78YU7a2toYGhpKX7InRxSpVKkSXbp0oVy5cpiYmNC9e3esra25cuWKdJ7Tp0/j6OhIuXLlqFChAps3b+b9+/fcu3dP4bYLFy5Mw4YN6dmzJ/fv3/9hzLLc3NyoWLEi27Ztw8TEBB0dHTp37kxoaKh0nv3791O+fHnU1dUpUKAATZo0ITw8HDc3N7Zs2cKRI0ekvXA8PDzw8fFBSUmJPXv20KBBA/LkycOOHTuk25K1ePFiTExM5N7buHEj5cqVQ01NDSMjI+kJsKT5bG1tUVJSSrVcdh3dv50+ziMpqG9IQX1DejuP4OhexSeyVi+cTp8ho6lSsx4qKirk1cmHiVnJnxpPVpw8sIMeg0ZQQN+QAvqGdB/oyskD2xXOu2HJTBycR1GpRl1UVFTQ1tGlWIocrp4/SWhwIM3a2cu9X8ayCm079UQ3f0FUVFRoY++AsooKb7yfZiv+0wd30m2gqzT+bgOGc+rADoXzbl46ix5OI6lYPTn+osVLSKcXL1kWVVU1QHIMUFZS5uO7N4Dkik5ocCDNbDqhoqKCYeGiVK5Vn7cvn2crfoBTB3fSXTaHgcM5mUYOm5bMwsFpJBVrpJFDKfkclJSV+eiTnEOIbA5FilK5dn3e/IQcju7bTt8ho9DTN0RP35A+g0dyOI26sGrhdPoNHUPVWsl1wdRcsh/FxcWxeuEMRk2ZQ2mLCigpKVFAT58iRU0B+PDuDV53bzBktBvqGpqUr1SNFjYdOZLGtjLjyN7t9Bs8Cj0DQ/QMDOk7eCSH9yhe74oF0+nvMoZqaeSwauEMRrkpzkFFRYUSpcuRK5fkWlDSsfB9Yjll1blDu+jUfzj59QzIr2dAp37DOHtop8J5ty+fQ5eBrlhWq4OKigpaOroYJ+5HhsYmtHd0oqBhIZSVlalhZU0RE3NePJK0J/euXcKsjCXVGzRDWVmZ6g2aUdKiEheO7ctW/ACH92yj39DR0jLoN2QUh3ZvVTjvivnTGThMpgx082FqXgqQlMGKBTMY4zaXMrJlUMxU4bqO7N9BUVMzKlatme0czh7aRecBrtJy6Nx/OGcPKi6Hrctm03XgCCyr15HWZ2OZ+mwqe0xCCWXl5GMSQJsufahUs750np/h5IEdODiNkLZrDoNcObFfcZuwfvEsHH/QJlw5f5KQoCCsbewVrmP/1jUUMytJxWpZP/GY0okDO3AYlJxDj4GunEizXZtFz4zkEByEdYp2raxlFdp2cpRp13qirKLC62y2a5Dz9yOA4/u34+iU/B2p56ARHN+n+Ji6bvFMeg8ZReWadROPqbqpviNdPneSkOBAWth0knv/5uXzlCpnSd1GzVFWVqZuo+aUtazMqUO7sxX/iQM76JmiLhz/QV2oXCM5fkX7UWg6deFXOLZ/B72cRklzcBw0kmNplMHaxTNSfE9NXQZp+R4ZwbnjBxngOhHtvLoUNTWno0N/jv2EtlnI+cTJlxzi27dvnDlzBicnJ9TV1eWmGRoa0q1bN+mP9WfPnhGQeNXR09OTggUL4uHhAUh6UNy4cQMrKysArly5goODAy4uLjx79ow1a9awefNmZsyYIbcNd3d37O3tefToES1btqRbt258+5b6THWS4ODgDPXCmT17NgUKFKBSpUrMmzcv3e5/ijx48IDr16/ToEGDNOcJDg4GSDeejx8/cuzYMWrUyPzVptevX3P48GGOHz/O8ePH8fT0lN4+5evrS5cuXejduzfPnz/Hw8OD9u3bk5CQwMiRI7G3t6d58+b4+vri6+tL7drJX7jGjh2Li4sLz58/x9raOkOxrFq1CmdnZ/r378/jx485evQo5ubmANy5I7l6umnTJnx9faX//hlCggP57PuRkmXLS98rWcYSv08fCAsJlps3MiKcF0+8CPDzpUOjylhXL8FYZwe+fPaTm2/jink0rlSMbq3rcuLgrlTb/NH0zAoNDiLA7xPmZZJPXpYoY4H/p38JCw1JlcPLpw/54u9LN+vq2NYpw+Shvfgqk0NYaAgrZk9ihLv8rS6KvPZ+RkR4GMUSfyxlK/7SyfGblbbgs2/68Ts0r45dvbK4D+stFz/AEvdRtKxkTJdGFYiMCMc68YpNXt18NG/fjVP7dxAbE8On92+5f+MyNRo0zXL8cjnIlIF5aQs+/6AMHKyr06FuWdxcUuew2H0ULSoa07lhBSLDw7Fun5xDiw7dOHVAksPH92+5f/0yNa2yl0NIcCD+KepCqbLl8fv4gVAFdeH5Yy8++33CpmElmlY1Z7STAwGJObx784qvXz7z4slDWtWxoHnN0kwbO0T6Wbx6/pSC+oYU0NOX2ZYlr15k78dOUg6lysnn4PuDHNpaVaJxVXNGDnIgwF+Sg8/rV3wNkOTQoo4FzWqUxn3MkFTlOaRXR6qX1KN9k2oUKKhPI+vWWY4/LDiIL/6fKC5TF0xLWxDg+y/hKbb7PSKcf5495OtnP/q3rkV3KwtmufblW4C/wnUHfQ3gw5tXmJYsC0h6KiQgf9UvIT4Bn5fPshw/QEiQpAxKy+5H5RSXQUREOM8eP8Dfz5c29SvSsLIZIwb2SFUGz5940bxWOZpUK4Xb6MGpyiDJ4T3bsO3kkK34QVKfv/h/wqx0Oel7xROPSWmWg78vfVvVpGuDcsxw7ZOqHJZPG41N1WI4NK1EZEQ4TW06ZzvO9OL/7PeJEmWSy8C8TPk02wTvp14E+PvSpVk12tUuzaShjnLtWlhoCMtnTWTkVMVtgt/HD+zfugan0VN/ag6SY2rGc/ji70tX62rY1CnNZAU5rJg9MVPtmkk22rWkHHLyfgQQomBfKlm2PH6f/iUsNO3vSPZNqtKqZinGD05ZDsEsnTmBMdPkb5mCxGNSip4I8fHx/JONk2CK4i+Rgf2oc7NqtK1dmokK9qNl6dQFgHmTXWlV3ZwB9s244XEuy7HL5/BRPocflsEnOjapQsuaJRk/uGeq76mbVs6nWRUTHNrU4+Sh5O+h7968IiYmOtXnlZ0y+C+LT/g9r7+FOPmSQ7x69YqEhATKlCmjcHqZMmUIDAxEX1+f/Pnz4+npCYCHhwcjRoyQ/vv27dvExMRIf+S7u7szduxYevbsSfHixWnatCnTpk1jzRr5+1wdHR3p0qUL5ubmzJw5k7CwMG7fvq0wluvXr7Nnzx7pbUBpGTp0KLt37+bSpUsMGDCAmTNnMnp06u6LihQpUgQ1NTWqVq2Ks7Mzffv2VThffHw8w4YNo06dOnI9ggDGjBmDlpYW6urqFClSBCUlJRYuTN2Q/Uh8fDybN2/GwsKCevXq0aNHDy5cuABITr7ExsbSvn17TExMKF++PE5OTmhpaUm3raamJu35o6qqKl3vsGHDaN++PaamphgZGWUolunTpzNixAhcXFwoWbIk1apVY9iwYQDo6ekBoKuri6GhofTfP0NEuKT7unZeXel72nl1AAgPD5ObNyQ4iISEBDzPnWD5tsMcuvSA3KpqTBqefPuZ86gpHL7kxZnb/zB4tBvz3EZz6cyxDE/PiqQu+FraOtL3tBJziAgPlZs3NESSw9XzJ1mw8QA7zt5BVVWV6aMGSudZPc+N5rZdKGJilu52Q0OCmeral+4DhlNAzyD78edNHX9kijIICwkmISGBaxdOMW/DAbadvk1uVVVmjRkkN5/LlHkcv/eOlfvO0bSdvVz5WrVox4l9W2lRqQg9rKtR06oZ1es1znL8Wc3h6oVTzN14gO1nbqOqqsrM0fI5DJsyjxP337Fq3zma2aTIoXk7ju/dSvOKRejR7OfkoLgu6CZOU1wXPM6eYOW2Ixzx9CK3qioTh0nqQnDirWq3rnmw/Zgnu05e4+OHdyyYNk6yvogwaT1L3pYO4Sn219+Vw+rtRzjm6YWqqioTEnMICU7M4aoHO495sufUNT59eMf8qePk1rNs0z5uPPdj/Z6TNG7Rljx55C8yZEbSLU2a2nml72kl/p3WfnTj4immr93LupO3yK2qyvxxqbuSx8REM3f0AOpat6VEuYoAVKrVgFdPvLhx4SRxsbHcuHCSZ163iQjLZhkk1gVtneTy/dEx9dKZ46zZeZQTVx6iqqrGOBdJu5jUpf/mVQ92nfBk3xnJfjTPPfXtS/duXePf9z60sct+1/jvEUnlkJxDUpmk3I9CZcphxrp9bDh1i9y5VZk7Vr4cBk+ay8Hbb1my+yyN23ZES2Yf/dkiIiQxZqZNuHL+JIs2HWTXubvkVlVj2sjkNmHV3Cm0aN8F4zTahHmTh9N76Dh08v2828cV5aCdgRwWbjzIzrOSHGTbtVXzptDCNu0cktcVjLtrH3pks12DnL8fQfJxR/Z4nVQmEWEpckisz5fPn2DJloPsu3APVVVV3EYMkM6zfM4UWnboqrAcqtdtyPNHD/A8d4LY2Fg8z53g8f1bhGfjmBSZhbpw+fxJFm86yO5zd1FNURdWzp1Cy3TqwqS5q9l38QGHrj6lQ4/+TBjSk+ePMtczPVUOCspA+wdl4Hn+BEu3HGL/hfvkVlXDbUTy7xqnkVM4cPEBJ2++wmmUGwvcx+BxVvI9NDIiHHUNTWmPzqTtptxfhf9P4uRLDpPybHZKampq1K9fHw8PD4KCgnj27BlOTk5ERUXx4sULPD09qVatGhoaGoBksNypU6dKTwZoaWnRr18/fH19iYiIkK7X0tJS+rempiZ58+bl8+fU928+efKEdu3aMWXKFJo1a5ZurK6urlhZWWFpacnAgQNZsGABy5YtIyoqCkAupoEDB8ote+XKFe7evcvq1atZvHgxu3Yp7vng7OzMkydP2L07dXfLUaNG4eXlxaNHj6QnS1q1akVcXNwPty/LxMREbqwaIyMj6WdToUIFGjduTPny5enYsSPr1q374aC+SapWrZqh+ZJ8/vyZT58+0bhx9n48AkRFRRESEiL3SioXRTQSbxeTvXqQ9LemppbCeTv1HIBR4aJoaGoxYNg47t28Iv3xbVm5Olp5dciVOze16jehfVdHzp1Ivo3tR9OzQl1DEld4WPJVnKQrOhqa2inmleTUoUd/DAsbo6GpRa+hY3lw6yqREeE8vHuDJ/dv0bXf0HS3GRYawqg+dpSvUpNeCu45zlL8Mlehkv5WT1EGSfPadu+HQWFj1DW1cBw8Bq/E+GUpKytTyqISGpparJ47GYAPb18xybkHg8ZO57TXR/Z6PuH965esW5C9K7ZJcYVlIof2PfphmJhDzyHp5FC+EuoyObx/84qJzj1wGjudMw8/su/yE96/yX4OiupCaOLfGinrQmIOXXoNpFARSV0YOHw8d29cJjIiXDq9l5Mr+fIXIF/+AvRycuXyhVOJy2uluuoYFhqCpmb6Y2dlJYewNHJIKocujsk5DHIdz53EHJKm95bJobeTK56JOchSUVGhas26fA34zJY1Px60PS3q6pJtyp4ASfrhkXI/ypMYX9tufdEvZIy6hibdnEfz+PY16Y8+kJx4meXaB7U86gxxS75aW8TUnDHz1rBr9QK6NSjH2UM7qd/chry6+bIcPyTvG2EhMsejxL9THVMT5+3aO7kMnFzHc+f6ZSIiwqVl1sd5BPnyFyRf/oL0cR6Bx/nUZXBo91asmrYkf4Hsn5zPo+CYFBGWdExVvB+169YPg0LGqGto0d15NI9uX5UrB5DU55IWFdHQ0GL9fLdsx5kWjcTjvGybEP6DNsHOIblN6DN0LA9uSdq1h3du8Pj+Lbr1c1G4rTNH9hIXG0fzFLeQ/IocMtOu9ZbNQdquKc5Bdv0j+3RIbNdSn+DLrJy+H0HycUf2eC0tBy0thfN2dEj+jtTXZRz3E78jed25zuN7t+jRX3E5FCtegmlLNrJh6Rxa1ijBsb3baNKqPTq6WT+pp56FutAxRV24n8G6AFChWi3yqGugqqpGszZ21GlkjUc2L7Blrgwk+5G9TBn0c5H/nlq+cnW0tCXfQ2vWb4xNF0fOnziU+Blo8j0yQq43f1hoSKr99W+RkPB7Xn8LMeBuDmFubo6SkhLPnz/H1tY21fTnz5+jp6eHrq4uVlZWrF27litXrlCpUiXy5s0rPSHj6ekpd4tOWFgY7u7utG/fPtU68+TJI/075WCvSkpKqZ4K8uzZMxo3bkz//v3lxpTJqBo1ahAbG4uPjw+lSpXCy8tLOi1v3rxy85qaSu5VL1++PP7+/ri5udGli/yVusGDB3P8+HEuX75MkSJFUm2vYMGC0ltySpQoweLFi6lVqxaXLl2iSZMm6W5fVnqfjYqKCufOneP69eucPXuWZcuWMWHCBG7duiXNIS0px79RVlZOdfItJiZG+nfK29GyY9asWbi7u8u9N2XKFFr3dFU4f16dfOgbFebls8cUKVYcgJfPHmNgVESuFwNIrqAbFjJWuJ60Ti4qKaV/nvhH0zNCW0cXPcNC/PP8MYUTx6P45/kT9I0KS6+aS+fNq4NBodT7FEhyuH/jMp8+vKNDPUk36ejoKKKjvtO2Rgk2HbtCAX1D6YkXE/PSjHBfgJKS0s+J/8UTCiXF/0Jx/Fp5ddA3Uhx/Wi1cbGys9L74Ny+fo2dYiAbWbQEooG9IM5vO7F6/lP4jp2Q7h9fPn/ywDLTy6qCfRhmklUNcTCz/Jo4l8jYph+Y/N4e8OvkwSKwLxjJ1wbBQkdS9VHR0MSycdl0oZlYCNbU8CqcDlChTjgB/X759CSB/QcmPZe9njzAvXTbL8cvm4P00OQfvp4pzyKuji1E6OZj8IAdFYmNjeefzOmvBA1o6uhQ0KMSbF08wShz09s2LJ+gZFpbrDQOS/UgvjbqQtBfFxEQz27UvsTExTFq6hdy5VeXmq9moBTUbtZD+27Vrcxq3zd6P6Ly6kjJ48ewxxiaSMniRxn6UXhmQkIBJ8YyVQVhoCGdPHGbhGsXjOGSWdlI5eCcfk16/eJpmOaR1TEp5W1eS2NhYPr7P3thA6dHW0UXfsBCvZNqEV88fZ6lNuHfDk08f3mFbV1I3o2Oiif4eSevq5mw+fpW71z159ugeratLvpN8/x5JfFwc7WqX5sj1F9nKQS9FDv9kM4f29RJziI4mOiqSNjXM2XTsKgUT27WRfTpgal6ake4Ls92uJeWQk/cjkNTRpH0paaylV88fY2BUWK43CUjKwTCdcrh7/TIfP7yjTR1JT/iY6GiiviFbFMQAAQAASURBVEfSvJoZ209co6C+IfWbtqR+05bS5fp0aEJL26zfWpX3J9aFu4n7kU2KutCqujlbjkv2o5SUf8J3PEkOhXn5/FGKMiiioAx00y0DRWRjLFa8BLly5eafF08obVFRui2zUtlrm4W/g+j5kkMUKFCApk2bsnLlSiIjI+Wm+fn5sWPHDhwdHQGk477s27dPOraLlZUV58+f59q1a9L3ACpXroy3tzfm5uapXsrKGd89nj59Kh20NuV4MRnl5eWFsrIy+vqS8QtkY0l6T5H4+Hi5XhkJCQkMHjyYQ4cOcfHixR+e5EiioqICIP18M7r9H1FSUqJOnTq4u7vz4MEDVFVVOXRIcnZcVVVV2tPmR/T09PDz85M78MueINLW1sbExETai0eR3LlzZ2h748aNIzg4WO41bty4dJdpY9eNjSvn8yXAny8B/mxatYB2aYwbYNulJ3u2ruWz3ye+f49k/bK5VKvdAA1NLUJDgrh26SzfIyOIi4vj9jUPDu7cRKPEH8k/mp4dLdp3ZdvqRXwN8OdrgD/b1yyilV0PxfnaO3Bw+zoC/D8R9T2SLSvmUblWfTQ0tbDvNYjtZ26x/ogH64940NtlHMam5qw/4oFuAT3Cw0IY1bcjRUzMGD1jyU/5ggpgbduFHasX8i3An28B/uxcs4gWHRQ/rrS1vQOHd6wnwN+XqO+RbF05n0o166OuqYX/xw9cPnuMyPAw4uPjefrgNoe2r6Nq3UYAlCxXga+f/bh6/iTx8fEEffvCuaN75cYVyKrm7buwfU1yDjvWLqKlXdo5HNqenMO2FfOpXEuSg9/HD1w+k5zDk/u3Obh9HdWScrBQkMORn5ND247d2LB8Pl8++/Plsz8bVyzAJo260L6LI7s3r5HWhXVL5lC9jhUamlrkyaNOS9tObFm9iJDgQEKDg9iyehFWiU+AMC5WnApVa7J8njuRkRE88brLqcP7sLHP/ngd7Tp2Y71MDhtWLMC2c9o57NqyBv/EHNYoyGFTYg4hwUFsksnhxdNH3Lhyke/fI4mNjeXyhdOcPLyX2vWz14OviU1n9q5bTOCXzwR++cy+9Uto1r6bwnmb23Xn2M4NfEncj3atXkCFGvVQ19AkNiaGOSP68T0ygolLNpNbwSCcr556ERcbS0R4GLtWLSA0OIjGbbM/iKSNfXfWLZsnLYP1y+fTvktPhfN26NqLXZvW4O/7ie+RkaxeMpsadRPLQF2dVu07sWnlIkKCEstg5SIaNpN/ksipI/vRzZef2g2y33sySVPbzuxeu5hvX/z59sWfPesWY90hrXLowdGd66XlsHP1AirWqIe6hhb+nz5w9dwxIiMk9fnZg9sc3bGOKrUbSpePiYkmOuo7CQnxxMXGEh31Pd3HEWdEiw5d2bpqobRN2LZ6Ea07Km4T2nbqyYFt6wjwk7QJm5fPo0pim9CptxM7z95m41FPNh71pM/QsRibmrPxqCf5CugxdPwMtp+6IZ3errMjlWrWZf3B7D+2vGX7rmxbLZPDmkW0TrNd6ynXrm1eIZNDLyd2nLnNhiOebDjiSR8XSQ4bjkhykLRrdhibmDN6xtKf1q5Bzt+PAFrZdWPzygXSctiyaiFt0jhWt+vck/3bkr8jbVw+l6qJ35G69HZi77k7bD16ma1HL9PXZRxFTUuw9ehl8iX2WHv++AGxsbGEh4WyYdlcQoICadk+e7cStlRQF9qkUxf2y9SFTTJ1oXNvJ3advc2mo55sOupJ38S6sCmxLvh9+hevO9eJjo4iNiaGCycPceXCKerJnEzKqtZ2XeXKYPOqBbS1V5xDu86O7JMrgznSMggNCeK6R/L30DvXPTm0ayMNEy9I5VHXoEkrW9YsmkFYaDDvfV6zb+sa2v6Etvm/KD4h4be8/hai50sOsnz5cmrXro21tTXTp0+Xe9R0yZIlmTxZ0p3e0tKSfPnysXPnTo4fPw5ITr6MHDlSeiIgyeTJk2ndujVFixbFzs4OZWVlHj58yJMnT5g+fXqG4nry5AmNGjXC2toaV1dX/PwkA1KpqKhIxxW5ffs2Dg4OXLhwgcKFC3Pjxg1u3bpFw4YN0dbW5saNGwwfPpzu3buTL1/a3bVXrFhB0aJFKV26NACXL19m/vz5DB2afHuHs7MzO3fu5MiRI2hra0vj0dHRkesdEhoaKj2Z8eHDB0aPHo2enp7coLfZdevWLS5cuECzZs3Q19fn1q1bBAQESMfuMTEx4cyZM3h7e1OgQAF0dHTSXJeVlRUBAQHMnTsXOzs7Tp8+zalTp+R65bi5uTFw4ED09fVp0aIFoaGhXLt2jSFDhki3d+HCBerUqYOamlqan7WamhpqaopG+k/71qO+g0cTHPgN+6bVAGhh04leTpLHus6aMAyAcTMWA9BzoCvBQUF0bSXZF6vWrIf7wrUAxMbEsm7pbCa4vATAqHBRhk+YQZOWthmanh09nUYSEvQNh5a1AGjatiPdBw4HYMFkSS4jEgeI69p/GCHBQfRpK+lJVrFGXSbMXQWAplZeNLWSy0U7rw65cuVG37AwAFfOneCZ113eeD/jyrkT0vlGuC+gaduOWY6/x6CRhAQF0qu1ZB9u0qYj3QZI4l/kJol/eOItE537uRASHEh/m+T4x81ZKV3Xga1rmD/RhYT4eAroG2LbrS9dErsJGxUpxsQFa9myfC5zxzmTWy0PVWo3wGlcxo4ZGcnBsZWCHKYk5pA42GOXfi6EBgXSr13aOcyTzaF7X7r0l8lhoSSHOWOdUU3Mwfkn5NB3yBiCAr/RoYmkLrS0tae3s+SRqDPGDwNgwszFAPQa5EpIUCCdW0jyrVqrPtMS6wLAyMmzmT1pBK3rWqKqpkqDJi1xnThTOn3W0o1MHTOYxpWLo6ObD5dxU7P9mGmAfkMlOdg2luTQytaePok5TE/MYWJiDr2dJDl0ap6cw4xFyTmMnjKbmZNG0LKuJaqqkhxGTpLkEBcXy7K57rx78w9KSkoUKlKUkZNm0jKbT8DoPMCV0KBABraVfBYNW3fAPnH/XT5V8tjywZPnAWDXZyihwUEMtZOcmCtfrQ4jZq0A4LnXHW5eOo2qWh661ksec82+nwv2/SSfw5bFM/B+fB8lJSUq1mrArA0HpbdKZEd/F0kZtGskuQW1tW0n+g6WlMG0cZJcJs2S3J7Vx9mVkKBvdLSWHLuq1a7PzMXrpOsa7TaHmRNcaVGnPLlVVbFq2pJRk+UfpXto91ba2XfP1IWXH+k6YAShQYEMkJaDHZ0TP7dl7pJchkyZD4B936GEhQTi3EHyQ9iyeh1Gzl4hXdfhbWtZPHk48Yn1uU3Xvtj3TW77J/Sz5/Hd6wA8uXeTDQvc6TZoJN2dMzaWnCKOTqMICQykewvJk5+atbWnx0BJD9D5kyX/HzlVMlZct/7DJMfftvUBqFSzLhPnSZ40mapN0NGVaxO0dXTR1tGVTtfU0kZVNQ96hoWyHHuSnk6jCA4KpEfL5By6p5dDcCC9k3KoUZcJc9PIIa98DpfPneCp111eez/j8rnj0vlGuC+kWTbaNcj5+xFAb+dRBAd+o4u15MEO1u3s6TlI8vnPmSRp48ZMWwRAjwHDCQkKwqFNPQAq16jHlPmJ5aCdV67HT14dXXLlzoW+UWHpe6vmT+Wp1z2UlKB6nYas2H5UektWVjk6jSI4MJBuiXXBWqYuzEvcj0Yl7kfdE+uCo0xdmJTBuhAZEcbiaWP5+P4tKioqGJuYM3XJRiwqVstW/AC9nUcTHBhIZ+vqkhza2dNzkOR7RcoycBgwnJCgQHq0kexzVWrUw22+ZDzM2JhY1i+bg49LHwCMihjjMn4GjVvaSLc1cso8Zk8aTtu65VBTy4Ndj35/5WOmhcxTSvjRICLCf4qPjw9ubm6cPn2az58/k5CQQPv27dm2bZt0HBcAGxsbTpw4QWBgIFpaWsTHx1OwYEFKlSrFjRs35NZ55swZpk6dyoMHD8idOzelS5emb9++9OsnGTBRSUmJQ4cOYWNjI11GV1eXxYsX4+joiJubW6pbVACKFSuGj48PIBn4t2HDhrx9+xYTExPu37+Pk5MTL168ICoqClNTU3r06IGrq2saP/olli1bxpo1a3j79i25cuXCzMyMfv36MWDAAOkXxrSutmzatEnaO8jExIR3795Jp+np6VGtWjVmzJiR6nHOsjZv3sywYcMICgoCJCc7Dh8+LNcDZfHixSxevBgfHx+eP3/O8OHDuX//PiEhIRQrVowhQ4ZIH/8cEBBAt27duHHjBmFhYVy6dAkTExNMTU158OBBqlhWr17NzJkz+fbtGx06dKBUqVKsXbtW+jkDrFmzhkWLFvHmzRsKFiyInZ0dS5cuBeDYsWO4urri4+ND4cKF5ZbLiLtvFT8dIyeoapqXyy/TfkJXTlC/ZH4uvvj6p8PIlkalC3DJO+fm0LBUAR68y95gqn9apWLaPHyfs3OoUFSbE09SjzuWk7Sy0Ofxvzl3AMbyRbQ4/TTgT4eRLc3L6XH1VcbGYfuvqlsiH1de5twc6pXM91fsRzdfB/3pMLKlppku13J4XahTIh+3Xgf/eMb/qBpmaV+A/S8bf/Llb9nOzJYZe9T3f504+ZLDTZkyhYULF3Lu3Dlq1qz5p8MR/nLi5MufJU6+/Hni5Mt/gzj58ueJky//DeLky58nTr78N4iTL3+GOPmSOeK2oxzO3d0dExMTbt68SfXq1X9qd2FBEARBEARBEARBUCT+x7MIMsTJl79Ar169/nQIgiAIgiAIgiAIgiCkQZx8EQRBEARBEARBEAQhU/6mJxH9DuIeFUEQBEEQBEEQBEEQhF9I9HwRBEEQBEEQBEEQBCFTRMeXzBE9XwRBEARBEARBEARBEH4h0fNFEARBEARBEARBEIRMiRc9XzJF9HwRBEEQBEEQBEEQBEH4hUTPF0EQBEEQBEEQBEEQMiVBDPqSKaLniyAIgiAIgiAIgiAIwi8ker4IgiAIgiAIgiAIgpApYsyXzBE9XwRBEARBEARBEARBEH4h0fNFEARBEARBEARBEIRMET1fMkf0fBEEQRAEQRAEQRAEQfiFRM8XQRAEQRAEQRAEQRAyRTztKHNEzxdBEARBEARBEARBEIRfSClBnK4SBEEQBEEQBEEQBCETnA89/y3bWWFb5rds51cTtx0JgpBhW+5++NMhZFnPqsYcf+L/p8PIltYWBhx57Penw8iWduUNufU6+E+HkWU1zHQ49Chnl4GtpSE3/wn602FkS01zXS68+PKnw8iWxqULcvLp5z8dRpa1LKfP/oe+fzqMbLGrYMS1V4F/OoxsqVMiH3fe5txjajVTHfY8+Pinw8iWTpUKc8n7658OI1salirAmWcBfzqMbLEuq5ejc7Auq/enQxB+A3HyRRAEQRAEQRAEQRCETBE30WSOGPNFEARBEARBEARBEAThFxI9XwRBEARBEARBEARByBTR8SVzRM8XQRAEQRAEQRAEQRCEX0j0fBEEQRAEQRAEQRAEIVPiRdeXTBE9XwRBEARBEARBEARBEH4h0fNFEARBEARBEARBEIRMER1fMkf0fBEEQRAEQRAEQRAEQfgfe2cdF8X2/vE3oCCNAaKIgKJYYKNioWI3AopKqAiKhYio18LuwO64dly7E+zu1msriEGDSv3+2GVhYUFxvV/v9Xfer9e+WGbOzDyffc55ZubMc878g4jMF4FAIBAIBAKBQCAQCAR5Ik2kvuQJkfkiEAgEAoFAIBAIBAKBQPAPIjJfBAKBQCAQCAQCgUAgEOQJkfiSN0Tmi0AgEAgEAoFAIBAIBALBP4jIfBEIBAKBQCAQCAQCgUCQJ1JF6kueEJkvAoFAIBAIBAKBQCAQCAT/IKLz5T/Gq1ev6NmzJ8WLF0ddXR0zMzMGDRrEx48ff5lNN2/exNXVFVNTUzQ1NSlfvjzBwcHf3M7c3BwVFRW5z9SpU3PdxtPTM9s2KioqVKxYUVZmypQp1KxZE11dXYyMjOjQoQMPHz7M8dhqamoUL16cXr16ERkZmevx16xZg4GBwTe1fS+enp506NDhp+3vW6ioqLBr165/ZN/JyUmsmz4a38aV6NfEmnUzxpCSnJxj+euhRxjdtQXe9a3wa1mDE3+tk61LjItlyagB9LGvwMDm1di9Qr4+vXn6iGl9u+DbuBIDm1dn9aRhfPmcqLyGpCSWTBpBFzsrXOuWY+nkP3LVcPHkYQY6NcHJ1gKPxpU5uHUtAFEf3zNzmC+eTariUtuSQc4OXDx5WLbd3asXcLYtJfdpZ1OMpVNGKm3/ssl/0K1uObrXK8+yKSNztf/SycP4OTvQ2bYUPZpU4ZDM/g/MHu5LL4dquNYpw2CXplzKZD9A7xY1calpQZdapelSqzRd61opZXtmDTODhtK0mhnNqpszc9xQknPRcOrYAdza1sPeujht7MqxY+Mq2bq+XVtTv7wRjWxMZJ/378Jk6+NjYxgz2IvGlU1pWasMqxZM/2kalk/+A7d65XCvX57l3/JDyGH8XRxwrVWKXg5VOJzJD3NG+OLVtBrd7MowxKUpl0Iy/PD2+d9M9etBz8Y2dK9nxQiPdty/fumnaZg5bijNqpvTrIYFs8YH5uqH08cP4N62Po1sTGhbt7ycH9L59CGCZjUscG9bX7bsxuVzNK5cQu5jV7YQs8cPU9r++ROG0aGWJR1rl2H+xOG5+uDciUP4dLSnTTUzOjeoxN7Na2Trxg3qgUv9irSrYUF3h+qsXzxLbtu0tDQ2LptLtybVaFPNDI8Wtbh/86pS9qdrWDxpBC52ZelsZ8XiySNy1XDh5CH6d2qMY01z3BrZcGDLWtm6yYN70d3eGqdapenZvAabl86W2/ZjRDhj+3bFsaY5ng7VOLR9Xdbd/7CGFVP+wLN+eTwbVGDl1NzbwuWQwwS4ONC9dmm8m1blyLY/AYj+9IHgEf3waVYd97plGdq5KZdD5GPSp4hwJvfrTvfapenTogbH/trwU+yfPS6QFjUsaFmzFHPGD8u1HZw5fhDPdg1wqFyC9vUqsGvT6mxlPn2IoGXNUni2ayC33KlRZRpbF6dpFVOaVjGlRXVzpe1P1zBj7FCaVDHDoao5M4K+HVO7ta5Hg4rFaVW7HH9tyGjLfVxbU7ecEQ0rmcg+mWPqcF93WtayopGNKe0b2LBywYyfpmHV1JH0aliRXvYVWT1tVK716EroEYZ1aYaHXRn6NqvO0Uz1ecuiGQx1aULXmmasnTE227ZpaWnsWrWA/q1r42FXBr8O9Xl8+9pP0RA8fhjtbEvTvpYl8ybkHpPOnjhI7w72tKpaEuf6FdmzOaMuBQ3sgVP9CrSpbk7XJtVYlyUm3b56gX6dm9O2hgXODSqxfNYEUlNTlbZ/4cThONUpg1OdsiyalHs8On/iEL6OjWhfw5yu9tbs37JGtm6iX09cG1bC0bYUHs1qsHFJRjx6/fxvxg/0wLVBRTrVtsS/W2vuXruolO2/k4Z/I2n/o8/vghh29B/i6dOn1KlTh7Jly7Jp0yYsLCy4e/cuQ4cO5eDBg1y4cIFChQr9z+26evUqRkZGrF+/HlNTU86dO4e3tzdqamr0798/123Hjx9P7969Zf/r6urmWj44OFiugyY5OZnKlSvj7OwsWxYaGkq/fv2oWbMmycnJ/PHHHzRr1ox79+6hra2d7dgpKSk8evQIb29vBg4cyLp1P+ei82eSlJRE/vz5f7UZubJ35Twe3bjM5K3HAZg10IN9qxfQvrdftrK3zoXw5/RReI8PxqqKLYnxsUR/+iBbv37mGOKio5i19zyxnz4yvV9XihQzoW5rJwCWjBpIGZvqDJn3Jwlxscwd3IM9K4Jx7j9cKQ1bls3h3vVLLNp9CoCgvl3ZujwY175DspW9euYEiycOZ8jUBVSoVpvEuFgiP74H4HNCAqXKV8Jz8CgKGRlz5dQxpgf6MHvTIUqWtqJi9dpsu/RUtq/ID+/p0bQqDVp2UMr+bcvmcu/6JebvCgVgvG83tq+YR+c+/tnKXjtzgqWTRuA3ZQEVqtUiMT6WqHT7E+MpVc4ad78M+2cF9mHmpoOYls7oZPGftojajVsqZXNWVi+cwc2r59l0SHKhMriXE2sXz6LXgOw34+dDjzFjbABBs5ZSpaYd8XGxfPoQIVemX2AQXXr4KjzWrPGBxERFsvv0bSI/fmCAeweMTUxp1dFVKQ3bl8/l/o1LBO+U+GFiv278tWIeLor8cPYEyyaNwG/yAsor8INFOWvc/EZRyNCYq6eOMXtYH6ZvlPghPjaGavUa03fMDHT0C3Ji1yYm9e/Oon3n0StYWCkNqxfN5NaVC2w8eAEA/17OrF08m14DArOVPX/qGDPGDiVo1lIq16ij0A8AM8cFUraCDTGRn2TLqtS048TN17L/P32IoF39iji0cVTK/g1LZnPn2kVW7j0DwB8+Xdi4dC5u/QKylb10+jjzxgcyfPpirKvXJiFTWwZw6zeUEualUVfX4N3b14zw7oyxSUkc2knOO6vmTuLWlfNMX7Wd4iUtiHj7mnw/IV5vXjqHu9cusmT3aQDG9HFly/JguiqIR1fOnGDRxOEETFlIRamGqEwauvYdgol5afKraxAR9poxPq4YFS9J47aSmDo9sA/FSpixMfQuz588YIxPF0zMSmNd004pDX8tn8uD65eYsyMEgEn9urFj5TycfbK3hetnT7Ji8h8MnDSfctK2EC2LqfFYlKtEd7+RFDQ05trpY8wd1pcpGw5iWrosAHNH+GJcwowVJ2/z6skDJvbtSjGzUlSsUeeH7V+7aCa3rl5g/YHzAAR4ubBuyWx69M/eDi6cOsasoABGz8xoB5EK2sHs8YGULW9DdNSnbOuCZi+nQdPWP2yvIlYtmMGNK+fZckQSUwf1cGLNoll4DVQcU6ePCWDc7Jxjav/AIFx7Ko6pXgOHUdLCEnUNDcLfvGJQDyeKlyhJyw6dldKwc0UwD29cZub2EwBMHeDGrlXz6eQ9OFvZG2dPsmrKH/SbOI/yVWuREB9L9MeM6wtjU3O6DhrJiR0bFR5r84JpPLh+kVGLN1HU1JwPYW9+Sntev3gWd65dZPW+swAM9+7ChqVzcO83NFvZS6ePEzwukD+mL8a6Rp1sMcm931BKWGTEpOG9XTA2MaVpOxdSUlIY7euGS89+zNt4gPdhb/D3kJzb2nbx/GH7Ny2dzd1rF1m6RxJTR/t0YfOyuXTzzR5Tr5w+wcKJwxg6dRGVFMSjbr4BmEhjasTb14zy6UJRE1OatHUmPiaaGvWaMDBoFrr6BTmyYyOj+3Zl9aFL6Ct5XvsdNAj++4jMl/8Q/fr1Q11dnSNHjtCwYUNKlixJy5YtOXbsGG/evGHkyJEsWLCASpUqybbZtWsXKioqLFmyRLbMwcGBUaNGyf7fvXs31apVo0CBApQqVYpx48bJPRVRUVFhxYoVdOzYES0tLcqUKcOePXtk63v27ElwcDANGzakVKlSdO/enR49erBjx45vatLV1cXY2Fj2ydw5ogh9fX258leuXCEyMpIePXrIyhw6dAhPT08qVqxI5cqVWbNmDS9fvuTqVfknkenHNjExoVGjRnh4eHDtWt6ebgQFBVGlShXWrVuHubk5+vr6dOnShdjYWFmZ7du3Y21tjaamJoULF8bBwYH4+HiCgoJYu3Ytu3fvlmXhhISE8Pz5c1RUVNiyZQsNGzakQIECbNiwQXaszMydOxdzc3O5ZatWraJixYpoaGhQrFgxWQdYermOHTuioqKSbTtlOb1nK+16DcCgSFEMihSlbc/+nNqzRWHZnUtm0r7XIMpXr4OqmhraegYUN7cE4MvnRC4e2UunvgFo6+pjbFYKh86enNqdsa/3b19Sp2VH8uVXR69gYao0aMrrvx8oreHYzs109vajkGFRChkWxaX3II7uVHyBtn7BNLr08ce6Zl3U1NTQ0TfAtFQZAIxNzXD09KWIcXFUVVWxtW+GibklD28pfhp+Ys8Wipe0oHyVmsrZv2szLr0z7HfuPYhjOdi/ceF0XPoMxrqmncR+PQNKWEjtL2FGB8++WewvzcNbyj/9+xZ7t2+gh+9QihgZU8TIGM++AezdprhDdNncSfQaEEj12vVRU1NDT98Ac+mN2Lf4nJjA0X078PEfha6eASUtLHF292bvVuU7X4/v2oxTJj84eQ3i2C7Ffti0cDouPoOplJMfPPpSpKjEDzXtm1HcvDSPpH4oY12VZk5u6BcqgpqaGk07dUdVVY0Xj+4rrWHf9vV4+gbI/ODhO4R9OWRDLJ87mZ79h1KtVr0c/XDq2AFioiNp2T73m7ADOzZhalYam2q1lLL/0I6NdOvjT2EjYwobGdPVZzAHc8iEWDNvKt19A6hiK2nLuvoGlJS2ZYBSZSugrq4BSM6HqiqqvHkh6TyNiYpk+5olDJ04DxOzUqioqFDUxJTCRsZK2Q9wdOcmuvgMltWjzt5+HMnhhnH9/Gm49vHHJpMG00wazMtWIH+6BlRQVVXhrVRD2Mvn3Lt2EQ+/kRTQ0qacTXXsW3fi6M5NSms4uXsznXr7UdCwKAUNi9LJaxAndine75aF03HyHkzFTG3BRNoWipYwo51HXwpL20KNhpK28Pi2JKaGv3rOg+uX6DrwDwpoalHGuhr1W3Xk5K7NStm//68NePgOkbUD977+7Nu+XmHZFXOn4NlPvh2YZWkHp48dIDYqiuYdXJSyKy/s2b6Bnv0yYmqPfgHsySHOLZn94zEVwLJcRdQ1MtqKiqoqr579rbSGk3u20NFroKwedew1MEffbl08E8feflSsYYeqrB5ZytY3bOtM1bqN0dTJ/rAvLjqSAxuW4zN2FsYlLVBRUcGweAkKGhZVWsPBHRvpnikmdeszmAM5xKTVwVNw9w2girQuZYtJVvIxSUVVlTfPJe05PjaGmOhImnXojJqaGsYlSlLNrgFPlTwvHN65CVcffwobFqWwYVG6+AzmcA7xaO38qXTtM4TKOcQji7LZ7U+PR1Y21Wjl4o6B9LzW0tkNVVU1nj28p5T9v4uGfyNpaWn/k8/vguh8+Y/w6dMnDh8+jK+vL5qamnLrjI2N6datm+xm/d69e7x/L+mdDQ0NpUiRIoSEhACSDIrz589jb28PwOnTp3F3d2fQoEHcu3ePpUuXsmbNGiZNmiR3jHHjxuHi4sKtW7do1aoV3bp149On7E9t0omOjv6uLJypU6dSuHBhqlatyowZM3JNhVXEypUrcXBwwMzMLFdbgFztefPmDXv37qVWrbxf8P/999/s2rWLffv2sW/fPkJDQ2XZOWFhYbi6utKzZ0/u379PSEgIjo6OpKWlERAQgIuLCy1atCAsLIywsDDs7DKeMg4fPpxBgwZx//59mjdv/l22LF68mH79+uHt7c3t27fZs2cPlpaSi47Lly8DsHr1asLCwmT//wziY6L4FBFGybIZw79Klq3Ix/A3JMTFyJX9kpjA8we3iXwfzrBODRnYvDoLhvch6sM7AMJf/E1y0tcs+6rAqycZFw4tu3lz9sBffP38magPEVwLOUSV+g5KaYiLjuLDu7dYlMvovCxVrhLvw94QHyuv4XNCPH/fu8XHiDB82tjhZm/NVH8vPr1/p3DfUR/f8/rpY8zLVlC4/ujOzTR17Kqc/TFRfHz3FotyGb+bhVXFHOxP4O97t/j0LhzftnXxbGTD9CG9c7H/A6+fPcG8bHm55YvHB+LWoALDurfhyunjStkPEBMdRUT4G8qUt5YtK1PBmvC3r4mLjZYrm5gQz4M7N3gf/hZnh+q0ql2WP/p78CEiXK7c6kUzaVbdHPe29TmQ6WbyxdPHJCV9lT9WeWuePLyrlAaZH6wy/GBuVZEPOfjh6b1bfIoIp1/buvRsbMOMgNz98ObZE8yy+EGm6fF9EhPiKJGHmyVFSPzwljIVMn6bsuW/4Yd3Ybg0rUHrOlb8McBTzg9xsdHMmzySYePlh7ooYu9fG2jr3F0p+2Ojo3gf/pbSmdpy6XKViAh7TVwWHyQmxPP47k0+vgvDo0UtnOtXYLxfTz5mqUfB4wJpXbUkXRtXITEhnmYduwBw/+YV8qurc+LADjo3qES3JtVYPnM8SV+/Kq3hw7u3lMoWj14rjEdP7t3k47twereuQ7eGlZisIB4tnDAMxxrmeDatRmJCAg7SbIRnj+5JbmqLGGU6VkWePVLuRkHSFsIw/562kJjA0/u3+BQRxsB29fBqUplZAd5E5tAWoj9JYpJZGUlMffH4PgWLFMWgsGGmY1XixeMf1yBrB1lixLu3iuvRw7s3+PAujC7NatLOrhyjBmZtBzHMnzKKgPHyQ0QyM2OMP61tLfFxacb5kKM/bLuchrA3lFXUlmNyjqmdGlenhW1ZhvfLHlNXLZyJQ1Vzurepz/4d2TvSpo0eQv0KxWhbrxKJ8XG0dlL+3PbpXRjmma4JzKwq8CH8DQkK6tGz+7eIjAjHr0N9fJpWZU6gT471KCuPb18jn7o65w7tom+z6vRvXZsNwZNITlK+Pb8Pf4tl+Yz2bFmuEhE51KVHd2/y4V0Y7s1t6VSvAkGDssekueOG0rKKKV0aVSYxPp7mjpKMTT2DgrTs1I2Df20gOSmJNy+fce3cKWrbN1XK/g/hbymd6foiPabmGI8iwujVqjauDSoycXAvPmbxwYLxgbSvboabQ1USE+Jp2qGLwmM/e3SPxIQ4Sip5XvsdNAjyxsKFCzE3N6dAgQLUqlWLS5dyHpa9Zs2abFNaFChQQK6MoqkvWrRokWe7ROfLf4THjx+TlpZG+fKKL7rLly9PZGQkRkZGFCpUiNBQSbp7SEgIQ4YMkf1/6dIlkpKSZDf548aNY/jw4Xh4eFCqVCmaNm3KhAkTWLp0qdz+PT09cXV1xdLSksmTJxMXF5djJT537hxbtmzB29s7V00DBw5k8+bNnDx5Eh8fHyZPnkxgYPZU3px4+/YtBw8exMvLK8cyqamp+Pn5UbduXbmMIIBhw4aho6ODpqYmJUqUQEVFhdmzv31zoOgYa9asoVKlStSvXx83NzeOH5fciIaFhZGcnIyjoyPm5uZYW1vj6+uLjo6O7NgaGhqyTB51dXXZfv38/HB0dMTCwoJixYp9ly0TJ05kyJAhDBo0iLJly1KzZk38/PwAMDSUXJQaGBhgbGws+/9n8DkhAQAtXT3ZsvTvn+Pj5crGx0STlpbGtdAjDF2wgek7T5E/vwZLRw+S7iseDU0t1PJljIrU0tHnc0LGfqztGvH4xmX62JfHr2UNChUtTv12yqU1JyZK9q+dSUP698T4OLmycVINF04cYsKyLSw7cIH86hrMGtEv236Tkr4yI7AP9Zq3pUzFKtnW3716gXevX9C4rXO2dXmyPyEv9keRlpbGxZOHCFq6mcX7z5NfXZ05I7IPE0xK+sqswD7UbdYWy0z2+02az7KDF1l17DqtXHsy3d+Lx3duKKdBaqeunr5sma6u5HtCnLyG2GiJhtBj+5m3difbj18jv7oGQUMy4o5vwFj+OnGdAxce4zs0iFnjhhFyZK/kWAnxaGppky9TPdPV0ychy2+VVz7n5oeELH6IzfDD2KWbWbjvPPnzqxP8h2I/zB7WB7ssfkgnPiaa2YF96NRroNxN9I+Qbmf6bw+g8w0/nDq2n+A1O9h27Crq6uoEBfjIyiyYNpZWjl0xNS+d63FvXD7H21fPaZnDBez32y/xgU6mepT+Pae2fPb4Qaav3M6fhy6RX12DqcPkh1UMGjudvVefs3DbUZq2d0FXzwCQ6E+Ii+XNi6esOXiB2ev2cOn0cbasmK+UBkX1SOeb8eggk5ZvZcXBi+TPr87M4fIa+o2exvZLT5m7+TCN2zmjI9XwOSFetu90tHX1sx3nZ2jQktajz1naQrw0Jl0OOczoJZuZv/cc+dXVmTdyQLb9JiV9Zc6wvtg1bUvpipVlx9LOpkFPVhd+hPR2oKObvR4lxMfKlY2NSW8HB5i7egebj15BXV2DCQF9ZGUWTR9LK0fXHNvB6OlL2HbiOjvP3KWTmzcjB3hwX8lsQ4UxVfo9Pot/Y6RtOeTofhas28mOk9dQV9dgzOBMMXXoWHaevM6hS4/pFxjEzKBhnDy8V24/wybMIvTOG9bsOkkrxy7o6RsopSHj+iJDg7b0e9aYmrkejVy0ieDdZ8ifX50FowZ+17HioqNIjIsl/OUz5uw6RdCKv7h59iS71yxSSsOPxKQzxw8yfdVfrD98CXV1dSYH9pUr5zd2BvuvvWDxtqM065ARkwDsW7Rn39Y/aVGlBG7NalLbvhm29Zv8sP2ytqyX2QeS9pb1nBkrtf/c8YNMXrGNVQcvkl9dnRlZYmr/MdPZefkZ87YcwSFTPMr6W0wJ8KFL70EUUjL76HfQ8G8lNe1/88kLW7Zswd/fn7Fjx3Lt2jUqV65M8+bNiYjIPhQ0HT09PdnD8LCwMF68eJGtTOYH5mFhYWzalPcMUdH58h/jW2lXGhoaNGjQgJCQEKKiorh37x6+vr58+fKFBw8eEBoaSs2aNdHS0gIkk+WOHz9e1hmgo6ND7969CQsLI0F6wgOwsbGRfdfW1kZPT09hBb5z5w7t27dn7NixNGvWLFdb/f39sbe3x8bGhj59+jBr1izmz5/Ply9fAORs6tOnT7bt165di4GBQa4T1vbr1487d+6weXP29NShQ4dy48YNbt26Jessad26NSkpKd91/HTMzc3l5qopVqyY7LepXLkyTZo0wdraGmdnZ5YvX/7NSX3TqVGjxneVSyciIoK3b9/SpMmPn2DT+fLlCzExMXKfdL8oooC0PiVmynJJjJNcnBbIMpRMQ1rWoXMPihQrQQEtbTr6DObB1fN8SUyggJY2Xz8nyk2ClhgXQwEtyX7iY6KY0a8rDTu4suz0QxYev4VGAS2WSTtvfhRNTcn+E+IyLqrjpd81tXWy6JWUbdvNC6PipmhqadO131BuXzor10mUlPSVqf5eqBfQpH+Q4qedR3ZsxLZRM/QLFVHO/vTfJ5P9Cd+wv3XXXjL7u/gO5c7ls7IL3XT7p/v3RkNTE9+gmXL7qFi9NhqaWuRX16Bha0dqNGzK+WP7ldMgtTPzk8D071o6OlnKSjS4uPtQzKQkWto69B40gqsXTssudK2r2aKjq0++/Pmp3aAJHVw9ObZ/p2R7LW0+JybIZdvFxcagleW3yivpv22CIj9oZdEgrXOtXb/thxlDeqNRQJO+Y+X9AJI08/F9XSlX1ZbOfbOPXc8r6XbK+SEuJz9I/nfO5AevgSO4JvXDjcvnuH3tIm7e326fe7etp37jlhQs/JPaQib7079nbQvpZTt296KoiSma2jp49A/kxsUz2W7cVVVVsapUBU1tHZZOHyu3vUf/QDS1dShavASObr05n2Uy2Lwiq0exPxaPuvcL5FaWeJSuoUylKmhp6bByZpBs+/hY+c6EhNiYbMf5YQ1ybSFGui6LBmlbaOnaE8PiJdDU0salbwB3L5/lc6J8W5gVIGkLPmMzJnMtoKWdLcsyIS5G5p8fIb0dxMdlr0da2roKyzq7e2NsYoqWtg69Bg7n2kVJO7h5+Ty3r12kW++c20HlmnUooKmFuroGzdo6Ubdxc0KydGzkWUMuMVU7i3+1pDG1s0dGW/b2k4+pNtVs0dGTxNQ6DZrQsWtGTM2MqqoqFWyqoqWtS/Dk0UppSL++yOzf9IyXrDE1vc61kNajAlraOPUZwr0r5+TqUc7Hkmzv1GcIBbS0KVLMhBZde3HtlHJZSOn1MC4PMcnRrTfG6TFpwLCcY5J1VTS1dVgyfQwAL58+ZlQ/N3yHT+TwzTdsO3WHl08fsXzW+B+2v4CCmJogawuK7W/fvTdFi0vsd+sXyM1LZxTGo7LSmLpcGo/SiY+NYaR3ZypWs6V7v+9/MPs7axB8P7Nnz6Z379706NGDChUqsGTJErS0tFi1KvvLANJRUVGRm9qiaNHsnWWZH5gbGxtTsGDBPNsmOl/+I1haWqKiosL9+4rHbN6/fx9DQ0MMDAywt7cnJCSE06dPU7VqVfT09GQdMqGhoTRs2FC2XVxcHOPGjePGjRuyz+3bt3n8+LFculXWyV5VVFSyzZx+7949mjRpgre3t9ycMt9LrVq1SE5O5vnz5wByNo0fL3/SSEtLY9WqVbi5uclli2Smf//+7Nu3j5MnT1KiRIls64sUKYKlpSVlypShcePGzJ07l3PnznHy5MlvHj8zuf02ampqHD16lIMHD1KhQgXmz5+PlZUVz549++bvkXX+G1VV1Wydb0lJSbLvWYejKcOUKVPQ19eX+0yZMiVnW/UMKGRUjBeZ0tRfPrpLoaLF0dLJ/kS1sLGJwv2kpaVhbFYatXz5efU4877uUcKyHAARr1/w9ctnmnbpSb786mjrGWDv2JWbZ08oIxkdfQOKFC3O0wd3ZMuePbhDEWOTbE9UdfT0MSyWgwbp36Skr0zz701yUhJ/zFlJ/vzZ62lCXCxnj+6lmWM3pWyX2GRA4aLFeSZn/12KGBfPo/1pMvtnDPEmOekrw2avUGh/ZlRVlT+d6OkbYGRswqP7t2TLHt+/TdFiJeSePgPo6hlgXDx7u4acO6lVVTJsNCtVhnz58vMk0+/1+P5tSlspHhr2vcj88DCTHx4q9oO2nj5FvsMPMwMkfghU4If0jhfT0lb0GT0dFRUVpeyHdD8U5/H927Jlj+/dpmgxEwV+0M/VD1fOn+LNqxe0rVeeFralmT1hGE8f36eFbWm54QzxsTGcOLSbti5uStuvq2+AoXFxOd/+/eAOhsVMsmV46OjpY1RMsf3kUI9SkpNkc76UypTC/jPRTY9HmerR0wd3MMwxHuXggxz2n5ycxNuXkvOQRdkKfHofLjeZ5NOHdzEvozjT9nuRtIViPM80lO/5w7sUzmtbSMtoC7OHepOclETArOVybcGsTHk+vX8nN3H7s4d3KamEBoXt4P5tjBTUI109fYrm2g5CefvqBR3qVaC1rSVzJgzn2eP7tLa1zDasJ53M8UopDcVMeHQvI6Y+uieNqXo/N6YqIjkpiVfPlZvzRUfPgEJFi/HiUaZ69EhSj7QUZGwVyeH6Iqf2nBmzHIYGK0t6TPr7fkZ7fnL/jsK6pKOnj1EOfsgxJiUl81o658uzR/cxNC5OwxbtUMuXj8JGxjTr0IULoT/egaSrb0ARY/nro78f3M0xHuUUU3OqRynJybL5UiCj08LM0oqBY2f+lPPa76Dh38q/bc6Xr1+/cvXqVRwcMqYjUFVVxcHBgfPnz+e4XVxcHGZmZpiamtK+fXvu3s0+DD0kJAQjIyOsrKzo27fvD71tWHS+/EcoXLgwTZs2ZdGiRSQmyr9SNzw8nA0bNuDp6Qkgm/dl27Ztsrld7O3tOXbsGGfPnpUtA6hWrRoPHz7E0tIy2ycvN1N3796VTVqbdb6Y7+XGjRuoqqpiZCRJmc9sS/qydEJDQ3ny5Am9evXKtp+0tDT69+/Pzp07OXHiBBYWFt91fDU1NQDZ75vb8fOCiooKdevWZdy4cVy/fh11dXV27pQ8KVJXV5dl2nwLQ0NDwsPD5QLQjRs3ZN91dXUxNzeXZfEoIn/+/N91vBEjRhAdHS33GTFiRK7b1Gvrwr5VC4j6EEHUhwj2rV5Iw/aKhw807NiVY1vWEBkRztfPn9m9IpgKNetSQEsbjQKa2DZtw44ls0iIiyH85TOObV0j21cxc0sKaGlxfNufpCQnkxgfR+iuTZhZKX8T1KRDZ7YuDybyQwSRHyLYumIezXKYi6W5kxv7Nq7k47swvnxOZPOSWVSuVR9NLW2Sk5KYNsSbz4kJjAxeLZvoMiuhB3aiq1+Iqnb2Stuebv/2TPZvXxFM0xw6dpp16s7+Tatk9m9dMhubTPbPCJDYP0KB/e/DXnP3ynmSvn4hOSmJM4f3cOnkYWo1yvvY16y0cerKmkWz+Pj+HR/fv2PN4lm0y+GGvH0XT7atW0ZE+Fs+f05k1YJp1LBriJa2DrExUZwLOcLnxARSUlK4fC6UnZtW0ah5OwAKaGrh0LojS+dMIi42mpfP/2bbn0tp5+KutIbG7eX98NeKYBw65uyHA5sz+WHpbKwz+WHWUG++JCYwfG52PyTExTLBtyvFzUrhGzTrp17cte7UjTWLM/ywdsls2jor/m3ad/Zg+5+Z/LBwOjXqSPzg2sOXrUcu8+fuU/y5+xReg0ZQ0qIMf+4+RcFM83Mc2fcX+gYFqVWv8U+xv3lHVzYumcOn9+/49P4dG5fOpVUnxXPJtHZxY9eGFXyQ+mDdoplUrd0ATW0d3r15xakje0mMjyM1NZW71y+xc/1yatRrBECxEmZUq9OQdYtm8jkxgQ8R4ezasAK7xsq3BYeOXdiybC6fPkTw6UMEW5cH06yT4nrUwqk7ezeulGnYlCkeRbx9xdmj+0hMiCc1NZV71y+zZ8MKqknjTrGS5pSvasva4Ml8Tkzg4e1rnNz/V46xLy/Yt+/MjhUZbWHnynk06ah4vw6O3TmYKSZtXzqHSrb1ZG1hzlAfviQmEDhnVba2YGxqTrkqNdk4fwpfEhN4fPs6Zw7spHEH5d5c1qpTV/5cPFvWDtYtmUNbZ8XxqF1nD7avW8778Ld8+ZzI6gUzqF6nAVraOnTp6cumI5dYvSeU1XtC8Ro4HFMLS1bvCaVgYUPC377mxuVzfJXG1OMHdnL6+EHqN22llP0AbZ26snrRLD68f8cHaUxt31mxhg6unmzN1JZXzJ9GzUwx9ezJjJh66WwoOzauolELSUwNe/OSEwd3kyBtK7euXmTL2qXUVmK4Szr27VzYuXK+7Ppi16oFOfq2iWM3Dm9ezaeIML5+TmTH8rlUsq0ny3xITkri65fPpKakkJqawtcvn0mWPsgyMimJda367Fg+ly+JiXx6H87hzaup0fD75t3LjRaOrqxfOlsWkzYsm0MrJ8UxqY2LOzvXr+B9ekxaOJNqdSQxKfzNK04dzohJd65dYsf65dSUxs6ylSrzMSKcM8cOkJqaStSnDxzdvRXLTHMX/QjNOnRh07K5Mvs3L59LixziUUtnN/ZkiqkbF8+iSu36kpj69hVnMsXUe9cvsXv9cqrXlcTU+LhYRvp0xsS8FH7j5/zU89rvoOH/M9+blf/hwwdSUlKyZa4ULVqU8HDFnd1WVlasWrWK3bt3s379elJTU7Gzs+P164y3MbZo0YI///yT48ePM23aNEJDQ2nZsuV338elI141/R9iwYIF2NnZ0bx5cyZOnCj3qumyZcsyZowk5dDGxoaCBQuyceNG9u3bB0g6XwICAmQdAemMGTOGNm3aULJkSZycnFBVVeXmzZvcuXOHiRMnfpddd+7coXHjxjRv3hx/f39ZxVZTU5PNK3Lp0iXc3d05fvw4JiYmnD9/nosXL9KoUSN0dXU5f/48gwcPpnv37t+VwrVy5Upq1aqVbR4XkAw12rhxI7t370ZXV1dmj76+vlx2SGxsrKwz49WrVwQGBmJoaCg36a2yXLx4kePHj9OsWTOMjIy4ePEi79+/l83dY25uzuHDh3n48CGFCxdGX18/x33Z29vz/v17pk+fjpOTE4cOHeLgwYPo6WX02AcFBdGnTx+MjIxo2bIlsbGxnD17lgEDBsiOd/z4cerWrYuGhkaOv7WGhgYaGoo7DHKinddA4qIj+cNFcgFQp6UjbXpI5q5YM0XSceM5QpI908bDl/joKEZ3lVzQlKtRh97j5sr25TZ0AmumjMC/dS3yaxTAwdlD9prpAlra+M1exdb5U/hr8QxU1VQpY1MDr7F5n68nK118/ImNiqRvu/oANGrTCRdpmvjC8ZKU0X5jpgPg1GsAcdGRDHCSXFja1LTDf8oCAO7fuMzFk4dQ1yhAt/oZT9Kcew+S7Q/g6M6NOHTo/FOyRgBcvAcTGxVJ//YNAGjYphNOXpKx7osnSOzvO1piv2OvAcTGROHnLLHfumZd/CZL5ql4cPMyl04eRl2jAO4NMjq1OnkNxLn3ID4nxLN82mjCXz5DNV8+TMxKETBjKVaVqyutoWe/QKIjI+nS3BaA5u1d8JC+WnfaaMlrRYdNmAOAu89gYqIicWtbD4DqteoTNFMyX1VyUjIr5k/j+SBJB22xEqYM+mMSTVp1kB0rYOwMpo4eTLt6FdHQKICTW2+lXzMN4Ow9mNjoSAZ2kPihQetOdJL6YYnUD32kfujYcwCx0VH4u0j8UKlmXQZNkvjhYSY/eDbM8IOj10CcvAZx8cRBHt26yotH97h4/IBsvc/o6TRs3UkpDT37DSU66hOuLSSTkEv8IHk9cFY/uPkMJiY6Cndpu6lWqz5jZ0resKetqyf3VFFPz4B8+fJhlCXLYe/29bTu1O2ntYXufYcQE/WJnm0k57smbZ3o6uMHwNwgydAsP+lQui69BxEbHYV3B3sAqtSqy/BpC2X72vHnUmaN8iMtNZXCRsZ06OZFl0zteMSMxcwZOwTnehXQ0tHFoa0znXtln6skr7hK41GfdpL63ahNJzpLj7tgnOT1tP2lQ2+cvQYSFxPFgE6S+GttW5chUzM07F63jOAxg0mVamjbtRfOXhnzYAROX8K8sf50bVABXb2C9PQfrfRrpgGceg8mLiqSwR0lGbf1Wzvi2Ety3GUTJa869h41DYAOPfsTFxPF0M6Sp5UVa9RlgKwtXOFyyGHyaxSgp33Ged+x10AcpToGTVnEkvEB9GpkjY6+Ad39Rin1mmkAT9+hREdG0q1lbQCat3PBTfrK+BljJH+HSieS7u7tR0xUJJ7tJO2+au16jJ4hbQc6emhnygLV1TcgX778GEmzNBIT4pg7YThvXj5DTU0NU3NLxgevopKSb8AD6NVfElM7N5XE1BYdXPD0lcTUKSMlbXnEJElb9ugjiandWktjau36BM3OFFPnTWNUekw1McVv5CQcMsXUTauXMHH4ANLS0ihiZIyLhzcefbO/DjqvOHr5ERcVxZBOkpvbeq060qGnpI2tmDQcAK+RkhcdtO/Rj7iYKIZ1kQx9r1DDjn4TgmX7WjYxkFN7t8n+P7xlDQ3aOuM7TvIb9J80n+UTh+HTVDKUpF4rR9p6yM+38iO49Q2Q1I/Wknbl0NaZbj6S32bOWIk/Bo+TDE927T2I2KhIereXtJsqteoxYlrGvDN//bmUGaMGyWJSx+5euEqHdhYrYcao2ctYu2A604b3Q12jANXtGtJvxPdd0+dE1z5DiImKxFsajxq3caKLtx8A88ZJYupA6bBYF6+BxEZH4uso8ZeNbV2GTsmIRzvXLWPOmMGkpaZSyMiYdt28cJG243PH9vPg5lWePbrP2aMZQ5kHBs2kcRun//ca/o38r15ENGXKFMaNGye3bOzYsQQFBSm97zp16lCnTsb5ws7OjvLly7N06VImTJgAQJcuGQ+Ura2tsbGxoXTp0oSEhORpygeVtN/p3U3/D3j+/DlBQUEcOnSIiIgI0tLScHR0ZN26dbJ5XAA6dOjA/v37iYyMREdHh9TUVIoUKYKVlVW2lKvDhw8zfvx4rl+/Tv78+SlXrhxeXl707t0bkGRu7Ny5U25uFQMDA+bOnYunpydBQUHZGgOAmZmZbAhRSEgIjRo14tmzZ5ibm3Pt2jV8fX158OABX758wcLCAjc3N/z9/b950x8dHU2xYsUIDg6W2ZiZnHqYV69eLcsOMjc3l5tIydDQkJo1azJp0qRsr3POzJo1a/Dz8yMqKgqQdHbs2rVLLgNl7ty5zJ07l+fPn3P//n0GDx7MtWvXiImJwczMjAEDBshe//z+/Xu6devG+fPniYuL4+TJk5ibm2NhYcH169ez2bJkyRImT57Mp0+f6NSpE1ZWVixbtkz2OwMsXbqUOXPm8PTpU4oUKYKTkxPz5s0DYO/evfj7+/P8+XNMTEzktvse1l55lafy/yY8apiy7873vfHg30qbSkXZfVtxr/1/hfbWxlz8O/rbBf+l1Cqtz85b/20fdLQx5sKTqF9thlLUtjTg+IMP3y74L6ZJuSIcuJvz5H//dlpVNGL7zbBfbYZSOFUuxtnH3zcP27+VumUKcvnZfzem1rTQZ8v1N7/aDKXoXNWEkw/zPvzg30Qjq8Icvvf+2wX/xTSvYPif1tC8ws97Ecb/ku7rb/5PjrPSuVy2TBdFD4u/fv2KlpYW27dvl7t39fDwICoqit27d3/X8ZydncmXL1+uk+oaGhoyceJEfHx8ciyTFdH58h9n7NixzJ49m6NHj1K7du1fbY7gN0d0vvxaROfLr0d0vvw7EJ0vvx7R+fLvQHS+/HpE58u/A9H58mvotu7G/+Q4G9yqfHfZWrVqYWtry/z5kuzJ1NRUSpYsSf/+/Rk+fPg3t09JSaFixYq0atUqxzfhvn79mpIlS7Jr1y7atWv33baJYUf/ccaNG4e5uTkXLlzA1tb2p6VsCwQCgUAgEAgEAoFA8F/C398fDw8PatSoga2tLXPnziU+Pp4ePXoA4O7ujomJiexlIuPHj6d27dpYWloSFRXFjBkzePHiBV5eXkDGC2o6deqEsbExf//9N4GBgVhaWtK8ed7mhBKdL78B6RVJIBAIBAKBQCAQCASC/wWp/8IxNJ07d+b9+/eMGTOG8PBwqlSpwqFDh2ST8L58+VIuYSEyMpLevXsTHh5OwYIFqV69OufOnaNCBcm8jWpqaty6dYu1a9cSFRVF8eLFadasGRMmTMjzHJmi80UgEAgEAoFAIBAIBALBb0H//v1lc2xmJSQkRO7/OXPmMGfOnBz3pampyeHDh3+KXaLzRSAQCAQCgUAgEAgEAkGeENPH5g0xQYhAIBAIBAKBQCAQCAQCwT+IyHwRCAQCgUAgEAgEAoFAkCdE3kveEJkvAoFAIBAIBAKBQCAQCAT/ICLzRSAQCAQCgUAgEAgEAkGeSBVzvuQJkfkiEAgEAoFAIBAIBAKBQPAPIjJfBAKBQCAQCAQCgUAgEOQJkfiSN0Tmi0AgEAgEAoFAIBAIBALBP4jIfBEIBAKBQCAQCAQCgUCQJ9JE6kueEJkvAoFAIBAIBAKBQCAQCAT/ICLzRSAQCAQCgUAgEAgEAkGeEIkveUNkvggEAoFAIBAIBAKBQCAQ/IOIzBeBQCAQCAQCgUAgEAgEeSJVpL7kCZU0MUuOQCAQCAQCgUAgEAgEgjzQYcWV/8lxdnnV+J8c559GZL4IBILvZlbo019twg8zpGEpVl1++avNUIqeNUty+N77X22GUjSvYMjOW+G/2owfpqONMfvvRPxqM5SidSUjdtwM+9VmKIVj5WJMPfH3rzZDKYY3Ls2fV179ajN+GPcapmy89vpXm6EUXauV4NqLmF9thlJUM9P7T58XmlcwJOThp19thlLYWxXiwt9Rv9oMpahd2uA/fW4Gyfl5139YQwcb419twg8h0jjyhpjzRSAQCAQCgUAgEAgEAoHgH0R0vggEAoFAIBAIBAKBQCAQ/IOIYUcCgUAgEAgEAoFAIBAI8oSYPjZviMwXgUAgEAgEAoFAIBAIBIJ/EJH5IhAIBAKBQCAQCAQCgSBPpIrElzwhMl8EAoFAIBAIBAKBQCAQCP5BROaLQCAQCAQCgUAgEAgEgjyRhkh9yQsi80UgEAgEAoFAIBAIBAKB4B9EZL4IBAKBQCAQCAQCgUAgyBPiZUd5Q2S+CAQCgUAgEAgEAoFAIBD8g4jMF4FAIBAIBAKBQCAQCAR5Ik2kvuQJkfkiEAgEAoFAIBAIBAKBQPAPIjJfBAKBQCAQCAQCgUAgEOSJVJH4kidE5otAIBAIBAKBQCAQCAQCwT+I6Hz5DXn16hU9e/akePHiqKurY2ZmxqBBg/j48eMvs+nmzZu4urpiamqKpqYm5cuXJzg4+JvbmZubo6KiIveZOnVqrtt4enpm20ZFRYWKFSvmWKZw4cK0aNGCW7du5brv58+fo6Kiwo0bN75L97dYs2YNBgYGP2Vf34O9vT1+fn7/yL5TkpPYMTeI0W2qMrptNXYGB5GSnKyw7OYpQxnmUI4/WljLPs/vXpOt//DmBcsDezC6TVXGO9lxctNS2brYyA9smDiYCU51GdmqMrO92nL37LGfoiE5OYkNM0YzoIk1Axxs2DBjTI4aAG6cOkpQt5b0bVAO/1Y1CflrvWxdYlwsy0YNoF+jigxuUZ29K+Xr+/Q+nfGpWwbfhuVln8j375SzPymJhROH41SnDE51yrJo0ohc7T9/4hC+jo1oX8OcrvbW7N+yRrZuol9PXBtWwtG2FB7NarBxyWzZutfP/2b8QA9cG1SkU21L/Lu15u61i0rZnlnD8sl/4FavHO71y7N8yshcNVwKOYy/iwOutUrRy6EKh7euBSDq4wfmjPDFq2k1utmVYYhLUy6FHJZt9/b530z160HPxjZ0r2fFCI923L9+6adpWDxpBJ3tytKlrhVLJufuh4snDzHAqTGdbM1xb2zDAZmG98wY1hePJlVwrl2agc5NuHjykNy218+FMsjFAedapejbvj5Xz5z4aRqWT/kD9/rl8WhQgRVTc/fD5ZDDDHFxoGvt0ng1rcrhbX8CEP3pA3NH9KN3s+p0r1uWgM5NuZzJDwCLxw9lQPt6OFU1Yd/65T/F/pTkJHbPC2Jc+2qM71CdPfPHkZKi2P5t0wIZ1bw8Y1vbyD4vMsWj6PfhrBvdh/EdajChY002jh9AXFTG+TTzdmNb2zCyWTmCvVorrSE5OYk/p4+mb+NK+DaxZt034tG10COM7tqC3vWtGNSyBif+WidblxgXy+JRA/Cxr8CA5tXYvUI+Hj27f4uJXo742FcgoH1dzuzfrrT9IKlHa6aNord9JbwbVWLt9NG5argaeoQRrs3pWbcs/ZpX59j2DA3bFs1gmIsDbrbmrJsZlOM+Xj15gHutUsz276W0/UlJSUwbE4C9TUkaVTZj+tihJOdif+jRA7i2rEfd8sVobmvF9vUrZeu8O7emdllD6lUoLvu8fxcmW3//9nV6OjWnQaUStKtvw76/NiltP/w+54Xg8YG0tS1Fu1qlmTdhWK4azp44iFeHhrSsaopT/Qrs2bw6W5lPHyJoV6s0Xh0ayi3/8C6M4d6daVnVlM6NbNi39c+fpmFm0FCaVTOnWXULZo0LzLUunT52APe29WlkbUJbu/Ls2LhKoYZm1S1wb1tfbvmlMyfxaNeQJpVNcW1em/Ohyl8j/S7n5mWT/6B7vXK4faeGwS4OdKlVip4OVTikQENXuzL4Z9GQ9PULo3o54mFfia52Zejfvh5HMsWy3420tLT/yed3QQw7+s14+vQpderUoWzZsmzatAkLCwvu3r3L0KFDOXjwIBcuXKBQoUL/c7uuXr2KkZER69evx9TUlHPnzuHt7Y2amhr9+/fPddvx48fTu3dv2f+6urq5lg8ODpbroElOTqZy5co4OzvLlWvRogWrV0tOyOHh4YwaNYo2bdrw8uXLvMr7x/n69Svq6uq/2oxcObZuIc9vX2HoWskJaEVgT45vWEwzjwEKy9u170b7AaOzLU9NSWH1SB8q1XOg5+RlfHz7imUB7ugbFqOaQzu+JiZgYlmB1t6B6BUpyv0LJ1k/fhCDluzE2LyMUhr2rZrP4xtXmLBFcqEyd5An+9cspJ3XoGxlb58PYf30UXiNm0vZKrYkxscR8+m9bP3GmWOJj4lmxp5zxHz6yKz+3ShsXAK71p1kZZz6D6epq/I3COlsWjqbu9cusnTPGQBG+3Rh87K5dPMNyFb2yukTLJw4jKFTF1Gpem0S4mKJ+phhfzffAEzMS6OurkHE29eM8ulCURNTmrR1Jj4mmhr1mjAwaBa6+gU5smMjo/t2ZfWhS+gXLKyUhu3L53L/xiWCd4YCMLFfN/5aMQ+XPv7Zyl47e4Jlk0bgN3kB5avVIjE+Q8PnxHgsylnj5jeKQobGXD11jNnD+jB940FMS1sRHxtDtXqN6TtmBjr6BTmxaxOT+ndn0b7z6CmpYcuyOdy7fpHFu08DMLavK1uXB+Pad0i2slfPnGDRxOEMmbqQitVqkxgXS2S6hoR4Spe3psfg0RQyMubyqaNMD/RhzqbDlCxtRfir50zy8yRwxlJq1HfgyuljTPbvycK/QjA2NVdKw/blc3lw/RLBO0IAqR9WzsPFJ7sfrp89ybLJfzBo0vxsfkhMiMeiXCXc/EZS0NCYq6ePMWdYX6ZtOIhp6bIAmJetQN3m7di4YJpSNmfmxPqFvLhzlcGrJJ1Va0b0ImTDYpq4K45Htdp1o22/UQrX7ZkXBMCwTaGQlsaWyf7sXTAB11FzARi3X77TPtirNTaNlO982bNyHo9vXGbK1uMAzBrowd7VC+jQ2y9b2VvnQvhz+ih8xgdjVcWWxPhYoj99kK1fN3MM8dFRzN57nthPH5nWryuFi5lQr7UT8bHRzPbzpKP3YOw7dOXZ/VvM6N8dI5OSlK1iq5SGXSvn8fDGZaZvk2iYPtCd3asW4OidXcPNcydZPXUkvhPmUa6qVMPHDA1FTc1xHTSSkzs35ni81NRUVkwcRtnKNZSyO52V82dw4/IFth2T3PwN9HBi1cJZeA8alq3suZBjTB09hAlzllHV1o74uBg+vn8vV2bgsHF07eWbbdvY6CgG9nDGx28EHV09uXfrOv3cO2JS0pyqNesopeF3OC+sWzyL29cusmbfOQCGeXdm/dI5ePQbmq3spdPHmTtuKCOnL8G6Rh0S4mKJ/BiRrdy8CcOwLG9NTFSk3PIJQ7wpXtKcHWcf8OzxfQK9nClhXpoqtnWV0rB64UxuXb3AxkMXAPDv5czaxbPpNSAwW9nzoceYMXYoQbOWUrlmHeLjYvn0IbuGmUGBlK1gQ0zUJ9myNy+fM9zXjfFzV2Bn34xzIUf4o78H6/efxaSk+Q/b/zucm7dJNcyTapjQrxvbV8yj80/QMGtYH2ZINaiq5aP38EmUsCiDWr58vPr7IaO9nChRqgwVqtVWSoPgv4/IfPnN6NevH+rq6hw5coSGDRtSsmRJWrZsybFjx3jz5g0jR45kwYIFVKpUSbbNrl27UFFRYcmSJbJlDg4OjBqVcSG6e/duqlWrRoECBShVqhTjxo2T67FXUVFhxYoVdOzYES0tLcqUKcOePXtk63v27ElwcDANGzakVKlSdO/enR49erBjx45vatLV1cXY2Fj20dbWzrW8vr6+XPkrV64QGRlJjx495MppaGjIylSpUoXhw4fz6tUr3me5WMqNkJAQVFRUOH78ODVq1EBLSws7OzsePnwoK3Pz5k0aNWqErq4uenp6VK9enStXrhASEkKPHj2Ijo6WZeAEBQUBkoyfCRMm4O7ujp6eHt7e3rJjRUVFyfZ948YNVFRUeP78uWzZ2bNnsbe3R0tLi4IFC9K8eXMiIyPx9PQkNDSU4OBg2fEyb6cslw5so4lbP/QKG6FX2Igmbr5cOrA1z/uJePWU9y+f0tRjIGr58mNUshS2rVy4sHczAIWLl8S+S28MjIqhqqpKRbsmGJmW4uW9G0prOLNnK2169segSFEMihSldY/+nN6zRWHZXUtm0bbXIMpVr4OqmhraevoUM7cE4MvnRC4d3UvHPgFo6epjbFaKJi4eOe7rZ3F45yZcffwpbFiUwoZF6eIzmMM7FN+orJ0/la59hlDZti5qamro6htgWiqj88qibAXU1TUASftWUVXl7YunAFjZVKOVizsGhYqgpqZGS2c3VFXVePbwntIaju/ajFNvPwoZFqWQYVGcvAZxbJdiDZsWTsfFZzCVatqhpqaGjp4BJSwkGoxLmNHBoy9FihZHVVWVmvbNKG5emke3JBkNZayr0szJDX2phqaduqOqqsaLR/eV1nB05yY6ew+Waejc248jOdwwrl8wDdc+/tjUlPhBJ5MfjE3NcfT0pYixREMt++aUMLfkwa2rAFw9e5LS5W2wbdgMVVVVbBs2o2ylqhzfu01pDSd2S/xQ0LAoBQ2L0slrEMd3KX4Sv2nhdJy9c/ZDe4++FE73Q0OpH25flW3fsksPbGrVl9W3n8HVQ9tp1M1XFo8adevLlYM/9rt8CnuFtX0rNDS10dDSwdq+Ne+ePVRY9tWDm0S8eEL15p0Urs8Lp/dspV2vAbJ41LZnf07lEEN2LJlJ+16DKC+LRwYUzxSPLh7ZS6e+AWhL41HTzp6c2i3Z15NbV8mXX53GndxQVVOjdKWqVG/UgtBdm5XWELpnCx16DZTVow49BxCyW/F+ty+eiWNvPyrUyKTBwlK2vkFbZ6rUbYSmtk6Oxzu8eRUmFpaUr/5zbnD2bFtPrwEBGBoZY2hkTM/+Q9i9VfET7MWzJ9J7YCA16tRHTU0NPf2CWFiW/a7j3Lx2ifzqGjh174WamhrWVWvQuHlbdm1WPuvidzgvHNyxAbc+QyhsZExhI2O69/HnYKZM08ysCp6Mu+9QqtSqJ9NQspS8H84cP0BMdCTN2rnILX/z8hl3rl2gt/9oNLW0qVC5Bg5tnTj41walNezbvh5P3wCKGBlTxMgYj75D2LdNcV1aPncyPQcMpVrtetK6ZIB5aXkNp45KNLTs0Flu+YVTx7CqaEO9xi1QVVWlXuMWVLCpxsGdyrXn3+HcfHzXZpyzaDj+kzSYmJfmoVSDmpoaZmXKo5ZPmuMgveYOe/lcaQ3/RtLS/jef3wXR+fIb8enTJw4fPoyvry+amppy64yNjenWrRtbtmyhYcOG3Lt3T9bJEBoaSpEiRQgJCQEkabbnz5/H3t4egNOnT+Pu7s6gQYO4d+8eS5cuZc2aNUyaNEnuGOPGjcPFxYVbt27RqlUrunXrxqdPn8iJ6Ojo78rCmTp1KoULF6Zq1arMmDEj1zRNRaxcuRIHBwfMzMxyLBMXF8f69euxtLSkcOG896yPHDmSWbNmceXKFfLly0fPnj1l67p160aJEiW4fPkyV69eZfjw4eTPnx87Ozvmzp2Lnp4eYWFhhIWFERCQ8SRq5syZVK5cmevXrzN6dPYMEUXcuHGDJk2aUKFCBc6fP8+ZM2do27YtKSkpBAcHU6dOHXr37i07nqmpaZ61KiIhNpro9+GYWJaXLStuWZ6od29JjItVuM2VIzsZ3bYaMzxbELJlBampqQCkSf9mjrRpaamEPX2gcD+xkR949+IJxUpZKaUhPiaayIgwTMtmDE8rWbYCn8LfkBAXI1f2S2ICLx7cJvJ9OH90smdwixosGt6XqA+SYUPhL/4mOekrpmUryLYxLVuR10/kLx72rZrPAAcbgrq35Nz+v5SyPzY6ig/hbyldLsP+0uUqERH2mvhYefs/J8Tz5N5NPkaE0atVbVwbVGTi4F58zDLsacH4QNpXN8PNoSqJCfE07dBF4bGfPbpHYkIcJUt/341GTsTFRPHx3VssrDI0mFtV5EPYGwUaEnh67xafIsLp17YuPRvbMCOgN59yGLoV9fEDb549waxseYXrXzy+T2JCHCWU1RAdxYd3bylVLqOD26JcJd7n6odwvNvUobt9Jab4e+Wi4T2vnj7GQlqvUlNTSUP+iiQtNY3nj5S72ZH4IQzz7/FDYgJP79/iU0QY/dvVo1eTyswM8M5xCF30J6kfylRQuP5nkCiNR8UyxaNipSsQFfGWzznEo+tHdzK+Q3Xm9GzB6a0Z8QignlNPboce5HNcLIlxMdw8sY9ydRor3M+VA9soa9sAvSJFldIQHxPFp4gwSsrFo4p8zCEePZfGo8BODRnYvDoLhvfJFo9KZoltr6TxKC01NduVbVpaKq+eKI65edLwLgwzqwxfm1lJNSioR8/u3+ZTRDhDOjbAt1k1ggP75Gko5vuw1xzetArXQYozmPJKTHQk78LeYFXBWrbMqoIN4W9eERsTLVc2MSGe+7dvEBEeRsdG1WhWowyBvu68jwiXK7diwQwaVTaja6t6csOKUhX4IDU1lccP7iil4Xc4L8RGR/E+/C2W5TNiqmW5Srx7+5q4LBoSE+J5dPcmH96F4dbcFsd65Qka1IOPmfwQFxvD4qmj8Q+ale1YTx/eldyYFzHKdCxrnioZU2Oio4gIf0uZ8hl1qWwFa8LfviYuNntdenDnBu/Dw3BxqEHr2lb80d+TD3Iaopk3eSTDJswmK6mpqdmGaKSmpvLk4d0ftv+3ODcr0GBhVZH3OWj4+94tPkaE49u2Lj0a2zD9GxpeP3uCeRYNE/u74VLTnIEdG2JQ2JDajVsqpUHweyA6X34jHj9+TFpaGuXLKw5g5cuXJzIyEiMjIwoVKkRoqCTtLiQkhCFDhsj+v3TpEklJSdjZ2QGSTpXhw4fj4eFBqVKlaNq0KRMmTGDp0qVy+/f09MTV1RVLS0smT55MXFwcly4pHqd57tw5tmzZgre3d66aBg4cyObNmzl58iQ+Pj5MnjyZwMDsKZo58fbtWw4ePIiXl1e2dfv27UNHRwcdHR10dXXZs2cPW7ZsQVU1781i0qRJNGzYkAoVKjB8+HDOnTvH58+fAXj58iUODg6UK1eOMmXK4OzsTOXKlVFXV0dfXx8VFRVZBo6OTsYTvcaNGzNkyBBKly5N6dKlv8uO6dOnU6NGDRYtWkTlypWpWLEi/fv3p0iRIujr66Ouro6WlpbseGpqannWqoivifEAaOroyZalf/+SEJetfL1OHgxbd5Rxuy7jMnQKZ/5aw5m/1gBgVLIUBY1NOLR6LslfvxD+7BGXDmzjS3z2/SQnfWX9+EFUbtQK03I2Smn4ItWgpZuhIf375/h4ubLxMdGkpaVxPeQI/gvWM2VHKPnV1Vk+xk+qOQENTa2Mpx7SfX1OyNiPo28gU3aeYs6hqzj1G87GmWO5lmU+j7yQvm9tPX3ZMm2p/QlZfrtYqf3njh9k8optrDp4kfzq6swYJp8O33/MdHZefsa8LUdwaOeMjp5BtuPGxUQzJcCHLr0HUchQuRtOmYZMPkj/npilHsXFRpGWlsbFk4cYu3QzC/edJ39+dYL/yD6MMSnpK7OH9cGuWVssK1bJtj4+JprZgX3o1GsgBTNddP8IiYnZNeika8jihzipH86fOMjEZVtZfkDih5kjsg9LSEr6yvRAH+o1b0cZqYaqdRry+M4Nzh8/QEpyMuePH+DejUsk5NDB8L0o9oO+dJ28hvgYiR8uhRxmzJLNLNh7jvzq6gSPzD68R+KHvtg1bYtlxcpK2ZgbXxTEowI6utJ12eOIXUd3/NccYdRfl+gUMIWzO9dybsca2XqzStWJj/rI+A7VmNChOp/jorF37ZNtP18TE7gZso+arVyyrcsrnxMSgLzFo2uhRwhcsIHpO0+RL78GS0cPku4rPns80tGX+dnSujpfPidwdOsakpOTeHTzMldDDpMYr2w9kmjQ1smISVqy9qxYw9WQwwxftJHZu06TX12dxaOzD/nMiVWThtOpzxB0DQoqZXc6CdLfOXPc05XG16wxNSZa0g5Cjuxn0bpd7Aq9jrq6BqP9MoZM9w8cy+7QGxy58oT+w4KYHhTIiUN7AbCpZktiQjxb1i4jKSmJG1cuEHJkH/E/qy3/h88L6XVFJ5OG9O9Z62icNB6dOX6AGav+YsPhy+RXV2dSYEZ7XTojiOYdXSlhnv26KjEhXu446cfK+lvlWYN0e93MGqQxNSEuix+kdenUsf0Er93BtuNXUVdXJ2iIj6zMgmljadWpK6YKNNjWa8T9W9cJPbqf5ORkQo/u5/a1i0rVpd/h3PwjGi6dPETQ0s0skmqYm4OGWTloGLVgHZsu/M2ElX9Ru0lr1AsUUErDv5XUtLT/yed3QXS+/IZ8a1IiDQ0NGjRoQEhICFFRUdy7dw9fX1++fPnCgwcPCA0NpWbNmmhpaQGSYTPjx4+XdVTo6OjIsicSpBdXADY2GTe/2tra6OnpERGRfYzqnTt3aN++PWPHjqVZs2a52urv74+9vT02Njb06dOHWbNmMX/+fL58+QIgZ1OfPtkvhteuXYuBgQEdOnTItq5Ro0bcuHGDGzducOnSJZo3b07Lli158eIFAC1btpTtO/NkvYrIrL1YsWIAMu3+/v54eXnh4ODA1KlT+fvvv3PdVzo1auR9zHp65ouyfPnyhZiYGLlP+m+uCHVNyVCwzBdC6U+YNbSyp4iXKFsJHYPCqKqpYVaxKo269uHGif0AqOXLT49JS3n7+B7jneqycaI/NVs6oaVvILeP5KSv/Dm2P+oamjgHTFZWMhrpGjJdoKTfxBbIMtStgLRtOHT2pEixEhTQ0qa9tz8Pr57nS2ICGlpafP2cKDeRW2JcLAW0MvZjaVMdLR098uXLT6U6DWnYsSuXju37YfvT9535CU7602WtLGn6mtKy7bv3pmhxUzS1dXDrF8jNS2fkOogAVFVVKVupCpraOizPMsllfGwMI707U7GaLd37fX+n6Lc0JCjwgWaWeqQp9Vdr114YFTdFU0ubLr5DuXP5rOymDyQXRjOG9EajgCZ9x87Mdsz42BjG93WlXFVbOvfNPgdCXkm3K7OG9IverMMl0vW26+Yl09CtXyC3L52V80NS0lem+PdCo4AmAzI9rS1hYcmwGUvZtGQW3RpW5MjOjTRo0QE9JW8+FfshRrouiwap3lauPTEqXgJNLW069w2Q+CFR3g8zAyR+6DN2hlL2fYv0tvw5czySftfQzB6PTDLFo5IVqtKwiw+3QiTxKDU1lZWBHphVrE7QvlsE7buFWcXqrBrmmW0/t0MPoq6hiVXtRkprSI8xmbNcEnOIRxrSsk0795DFo44+g7kvjUcFtLQVxKMYmZ91DAriN3sVFw7tZmCL6mxbMJX6bZzR0Ve2HmXXkP5dU0txTG3epSeGUg2dfPy5d+WcXD3KiTMHdpCSkkL91soP90pHS/o7Z85MSP+eNaZqSfV06eFDsRIl0dLWwWfwCK6cPy3rPLCpbouunr4k87WhA526enJ0n2TotUHBQsxZuYVDu7fRvGYZ5k8Loq1TN/QNlJuj73c4L6TblTnLJV2PprZulrISTY5u3hibSDR4DhjOjYtnSEyI59aV89y5fhFXr4E5HitrFkR8bEy23yrPGqTbZ9aQ/l1LR0dhWWd3H4qZSOqS16ARXLsgqUs3Lp/j9tWLuHkr7pg0K1WGCcGrWDlvGq1qlWHv1nU4tHZUqi79DudmWVv4hzT4KtAAkiFIlWrYEfXpPbvWLFJah+C/j5hw9zfC0tISFRUV7t+/T8eOHbOtv3//PoaGhhgYGGBvb8+yZcs4ffo0VatWRU9PT9YhExoaSsOGGbO/x8XFMW7cOBwdHbPts0CmXtz8+fPLrVNRUZFL3Qa4d+8eTZo0wdvbW25Ome+lVq1aJCcn8/z5c6ysrOTeOqSnpydXNi0tjVWrVuHm5qZwslptbW0sLTPGk69YsQJ9fX2WL1/OxIkTWbFiBYmJiQq1ZSXzehUVFQCZ9qCgILp27cr+/fs5ePAgY8eOZfPmzQp9lNW+zKRn5GTuXEtKSpIrk3W42Y8yZcoUxo0bJ7ds7Nix6DZyV1heS1cffUNj3j65TxETyfCuN0/uY2BUDE2d3CdIBlBRke8HNrYoi/fMtbL/9y2dRqnKtWT/Jyd9ZV3QAFKSvtJj0lLy5Vd+MmJtPX0KGhXj5aO7GJWQaHj16C6FihZHS0e+bmnp6lPI2EThftLS0jA2K41avvy8enwfc2ma8ctHdzEpXS7H46v8QMZVZnT1DShiXJynD+5QvKQFAH8/uIuhsYnckx6QPMkzKlYiR/sVkZKcLBvbDxkX2GaWVgwcO1NW75VBR8+AwkWL8+zhHdmEsc8e3qWIcfFsGrT19ClSLAcfSIfiSG74vUlO+sqI4DXkz1JP0i/uTEtb0Wf09J+jQd+AIkUlfigm1fD0wZ0c/WCYkx+kf5OSvjLV34vkpCRGz1ubTUPtxi3lUpn9u7agSTv5OQDyrEHPgMJFi/Hs4V2ZH57/iB/SMvwwa6g3yUlJDJ+7OpuGn42mNB6FPblP4eKSthz25D76RsVkGTC5kTn7MTE2iqh3b7BzdEe9gCS+1unoxqmty4mP/oS2fsYNzeWDW6nWrCNqaspfWmnrGVDIqBgvH92jaAlzQBJDFMUjbV19Cn9HPHr5+B4W5SUPCl48ukcJy4x4VLZyTUav2in7f+EIX8pVq5Vtf3nWULQYLx7do6i0Hr14eI/CRYvLZfR8S8P3DPa/c/E0f9+5jk9jib6vnxNJTU3Ft1k1Fh259o2tFaOnX5CixUx4dO82pmalAHh47zZFi5eQy2AASfw1NlE8jDenmJr1vFelRm1W7zgq+394P0+q11Zuktff4bygq2+AoXFxnty/jYlUw5P7dzAqZiLLKsysoWhxxRpIS+Pa+VOEvXqBUwPJA7Wkr1/48uUz7WuXYdWe05SyqsjHiHAiP76nYGFD6bFuY5HDkJjvRU/fACPj4jy+f5sSZhINj+/fpmgxE1kGjEyvnj7GOWhIS0vjyrlTvHn1grZ1y0s1fOXL50Ra1CzN+v1nKWJkTIOmrWjQtJVsu16dHGjVUfHwsO/htzg3SzU8f5hxbs5Ng+F3aJiRi4aspCQn8fblM6V1/Bv5jZJS/ieIzJffiMKFC9O0aVMWLVok6zRIJzw8nA0bNuDp6Qkgm/dl27Ztsrld7O3tOXbsmGzC1nSqVavGw4cPsbS0zPbJyxCdu3fv0qhRIzw8PLLNF/O93LhxA1VVVYyMJOmHmW1JX5ZOaGgoT548oVev73ubjIqKCqqqqrLfzsTERLbv3OaL+R7Kli3L4MGDOXLkCI6OjrK3LKmrq5OSkvJd+zA0lFwIhIVlvJoy6yuvbWxsOH78eI77+N7jjRgxgujoaLnPiBEjct2mZksnjq9fRMzH98R8fM+JDYuxba34JvDGyf18jo8lLS2NVw9ucXLjEqwbNpetf/v3A74kJpCc9JXbpw5z+cB2HNz6AZIT2LqgAXxNTMBz4lLy/cRJOuu1dWb/6gVEf4gg+kME+9cspH57xRcsDTu4cnzrWiIjwvn6+TN7VwRTvmZdCmhpo1FAk5oObdi1dCYJcTG8e/mM41vX0kC6r4TYaG6dPcGXz4mkpqRw79IZQnZsoHoj5cYDN+vQhU3L5vLp/Ts+vX/H5uVzadGpm8KyLZ3d2LNhBR/ehfHlcyIbF8+iSu36aGrr8O7tK84c2UtifBypqancu36J3euXU72u5Il+fFwsI306Y2JeCr/xc37KhVE6jdt3ZvvyYCI/RBD5IYK/VgTj0FGxhmadunNg8yo+SjVsXTob61r10dTSJjkpiVlDvfmSmCC54c9STxLiYpng25XiZqXwDZr1UzU4dOjC1uVzZRq2rQimmaNiDS2curN340qZHzYtmUXlTBqmDenN58QERgWvyaYB4PHdG6QkJ5MQH8emxbOIjY6iSTvlh700at+Zv1Zk8sPKeTTp2FVh2aaO3Tm4KcMP25bOwdq2XiY/+PA5MYFhc1Yp1JCU9JWvXz6TmpZKSkoyX798zvX1n99D9eZOnNywiNhP74n99J6QjYup2VLx73IrJCMevX54m5BNS6lUvwUA2vqFKGxixvnd60n6+oWkr1+4sHs9+obGch0v71895eXda9TI4Rg/Qv22LuxdtYCoDxFEfYhg7+qFNMwhHtl37MqxLWv4JI1Hu1cEUyFTPLJt2oYdS2aREBdD+MtnHNu6Rm5fLx7eIenrF75+/kzIzo08uHaBZj/hTWwN27qwe+V8mYY9qxZg38FVYdnGjl05vGU1nyLC+Po5kZ3Lg6loW0/2xDo5KUlST1JTSU1N4euXzyRLH0C4DRnL9O0nmbzpMJM3HaaJU3cq1KjDxPX7lbK/rXM3Vi6YyYeId3yIeMeqhbPo0FnxQwhHVw+2rFlGRPhbPn9OZHnwdGzrNkRLW4fY6CjOnDxCYmICKSkpXDobwl8bVtO4ZTvZ9g/u3OTrly98/pzIjk1ruHrxDF17Zh+CmFd+h/NCC8eubFg6R6Zhw7I5tHJyU1i2jYs7O9cv5/27t3z5nMifC2dQrU4DNLV1cO7Rl3WHLrJiVwgrdoXQY+AITC0sWbErBIPChpiUtKBStVqsmDORz4kJ3L91lWP7ttOqU3elNbR26saaRbP4+P4dH9+/Y+3i2bR1UVyX2nfxYPu6jLq0asF0athJ6pJrT1+2Hr3Mn3tO8eeeU3gNGkFJizL8ueeUrMPo/u3rJCcnEx8Xy8r504mJiqSVo+J29738DufmvGho2qk7+7NosMmkYWYuGp49uMON86F8kWYcXjl1jFP7d1DVzv6naRH8dxGZL78ZCxYswM7OjubNmzNx4kS5V02XLVuWMWPGAJKb9IIFC7Jx40b27ZMMdbC3tycgIAAVFRXq1s142jJmzBjatGlDyZIlcXJyQlVVlZs3b3Lnzh0mTpz4XXbduXOHxo0b07x5c/z9/QkPl0wcpqamJutUuHTpEu7u7hw/fhwTExPOnz/PxYsXZW8KOn/+PIMHD6Z79+4ULPjtdOiVK1dSq1YtuTc7ZebLly8yOyIjI1mwYAFxcXG0bdv2uzR9D4mJiQwdOhQnJycsLCx4/fo1ly9fplMnSWq0ubk5cXFxHD9+nMqVK6OlpSUb7pUVS0tLTE1NCQoKYtKkSTx69IhZs+QnjBsxYgTW1tb4+vrSp08f1NXVOXnyJM7OzhQpUgRzc3MuXrzI8+fP0dHRoVChQgo70DQ0NNDQyFunRlP3/iTERDHDQzKUrFrT9jTp1heA7bMkWU5OQyT15ezOdWyfOZLUlBT0DYti16EbDV0y5uW5eXI/5/dsJOnrF4qXLofnxMUUl2aNPL9zjbtnj5FPXYOx7TOGZjXp3pcm3ZW7UG3TayBx0ZGM6iwZulW7RUdae0o6ff6c8gcA7iMkQ5xaefgSHxNFUDfJTZpV9Tp4Bc2R7avb0PH8OfUPAtrURl2jAI2dPWSvmU5JTmbPimDCRknmxShSrASd/UZR00G519N27TOEmKhIvNvVA6BxGye6SF/pOm+cJG13oDQ11sVrILHRkfg6Si6cbWzrMnTKQtm+dq5bxpwxg0lLTaWQkTHtunnhIk3VPndsPw9uXuXZo/ucPZpxczMwaCaN2zgppcHZezCx0ZEM7NAAgAatO9FJetwlEyQp7H1GTwegY88BxEZH4e8i8VelmnUZNGk+AA9vXubSycOoaxTAs2HGsEFHr4E4eQ3i4omDPLp1lReP7nHx+AHZep/R02mo5NCFLj7+xEZF0kfqh0ZtOuHSW5IivmC85NWo/cdIht449Rooec2sk2QCV+uadRki9cP9G5e5cPIQ6hoF6Fo/48mrS+9BuEhfN7x27iQe3r6GiooKVeo0ZMrKHXLD234U596DiYuKZFBHSRZkg9aOdOol8cPSiZLX7PqMkrwaumPP/sTFRDGkswMAlWrUZaDMD1e4HCLxQw/7jFjs2GugzK8T+rhy9+p5ieZrF/lzzgRcfPyVSjVv7NaPhJhIZveQdOpWdWiPvTQe7ZwjmcC84+AJAJzftZ6ds0eRmpKCXpGi1G7XjXrOGR0PbuOXsH/xJKa41CUtLZXilhVwnyA/59mVA9swt65BEWmWys+gnZckHo1wkdQNu5aOtO0hmXNgzRRJZ7jniCkAtPHwJT46itFdJXrL16iD97i5sn25D53A6ikjGNy6Fvk1CuDg7EG91hlt9cjm1VwLOUxKSjKWNtUZtmgTBQ2NldbQwWsQsdGRDJXW73qtOtK+p0TDyskSDb3+kGho59mPuOgoRnSRaKhQw46+4zM0rJgYyOl92zNs3rKG+m2c6DNuDtp6BmhnmntEU1uX/OoaFDIqppT9XgMCiY78hJNDTQBadexMz36SV8ZP/sMPgD8mS2z07OtPdFQUXVpKrp9q1KnP+NnLAEhOTmbZ3Kk8//sRAMVKlMR/9CSats7IgN28ZiknD+8jJSUZm+q2LNm4F8OiytkPv8d5wb1vADFRn/BoLXntdtO2znT3GQzA7LESf/iPk1wPufb2IyYqCq/2kthVtVY9/pi2GABtHT20M2WO6erpky9ffgwzZV2NmrWMmaP86Ghnha6+AT4BQUq/ZhqgZ7+hREd+wrW5JKOseXsXPPpKXnE8bbREy7AJkmsIN5/BxERF4d62PgDVatVn7EzJG0m1dfXkMjX09A3Ilz8fRpkyNRbPHM/dG1dRUQHbuo1YuH5PtqF+eeV3ODe7SDUMkGpo2LoTTlINi6Ua+ko1OPYcQFx0FIMVaHiQSYNHJg2dpBpSUpLZMH8Kb57/jYqKCkbFTekREESDVtlHEPwOfGu6C4E8KmniF/vteP78OUFBQRw6dIiIiAjS0tJwdHRk3bp1cjf2HTp0YP/+/URGRqKjo0NqaipFihTBysqK8+fPy+3z8OHDjB8/nuvXr5M/f37KlSuHl5cXvXtLJpNTUVFh586dcnOrGBgYMHfuXDw9PQkKCso2jAXAzMxM9rrjkJAQGjVqxLNnzzA3N+fatWv4+vry4MEDvnz5goWFBW5ubvj7+3+zYyA6OppixYoRHBwsszEznp6erF2bMaxFV1eXcuXKMWzYMFnHSE6/rYWFBdevX6dKlSoymyMjIzEwMAAk2ShVq1bl2bNnFC9eHA8PD86ePcu7d+8oUqQIjo6OzJgxQzZkq2/fvmzbto2PHz8yduxYgoKCMDc3x8/PDz8/P7njnz17lr59+/L48WNq1qzJwIEDcXZ2lv1mIMn4+eOPP7h69SqamprUqlWLzZs3Y2BgwKNHj/Dw8ODmzZskJibKbfc9zAp9+u1C/1KGNCzFqssvf7UZStGzZkkO3/v+V6H/G2lewZCdt8K/XfBfSkcbY/bfyT6X1X+J1pWM2HEz7NsF/8U4Vi7G1BPfN3/Wv5XhjUvz55VXv9qMH8a9hikbr73+1WYoRddqJbj2IubbBf/FVDPT+0+fF5pXMCTkYc5vxvwvYG9ViAt/R/1qM5SidmmD//S5GSTn513/YQ0dbJTv8P4VNAo+9z85zslBdv+T4/zTiM6X/weMHTuW2bNnc/ToUWrXrv2rzRH8hxGdL78W0fny6xGdL/8OROfLr0d0vvw7EJ0vvx7R+fLvQHS+/Brs5/5vOl9C/H6Pzhcx7Oj/AePGjcPc3JwLFy5ga2v7Q69SFggEAoFAIBAIBAKBQPBjiM6X/yf06NHjV5sgEAgEAoFAIBAIBILfBDGIJm+IFAiBQCAQCAQCgUAgEAgEgn8QkfkiEAgEAoFAIBAIBAKBIE+IxJe8ITJfBAKBQCAQCAQCgUAgEAj+QUTmi0AgEAgEAoFAIBAIBII8IeZ8yRsi80UgEAgEAoFAIBAIBAKB4B9EZL4IBAKBQCAQCAQCgUAgyBMi8yVviMwXgUAgEAgEAoFAIBAIBIJ/EJH5IhAIBAKBQCAQCAQCgSBPiMSXvCEyXwQCgUAgEAgEAoFAIBAI/kFE5otAIBAIBAKBQCAQCASCPCHmfMkbIvNFIBAIBAKBQCAQCAQCgeAfRGS+CAQCgUAgEAgEAoFAIMgTIvElb4jMF4FAIBAIBAKBQCAQCASCfxCR+SIQCAQCgUAgEAgEAoEgT4g5X/KGSpr4xQQCgUAgEAgEAoFAIBDkgdpTQ/8nx7kwvOH/5Dj/NCLzRSAQfDe3XsX9ahN+GBtTHQ7fe/+rzVCK5hUMufkq9leboRSVTXXZeSv8V5vxw3S0MWbjtde/2gyl6FqtBNdexPxqM5Simpkepx9F/mozlKJ+2YL/6ZjUvIIhIQ8//WozlMLeqhDbb4b9ajOUwqlyMa6/+O+eF6qa6XL5WfSvNkMpalroc/Plf9cHAJVL6nLm8X87ptYrU5Cz/2ENdcsU/NUm/BAijSNviDlfBAKBQCAQCAQCgUAgEAj+QUTmi0AgEAgEAoFAIBAIBII8IWYwyRsi80UgEAgEAoFAIBAIBAKB4B9EZL4IBAKBQCAQCAQCgUAgyBMi8SVviMwXgUAgEAgEAoFAIBAIBIJ/EJH5IhAIBAKBQCAQCAQCgSBPiDlf8obIfBEIBAKBQCAQCAQCgUAg+AcRmS8CgUAgEAgEAoFAIBAI8oRIfMkbIvNFIBAIBAKBQCAQCAQCgeAfRGS+CAQCgUAgEAgEAoFAIMgTYs6XvCEyXwQCgUAgEAgEAoFAIBD8FixcuBBzc3MKFChArVq1uHTpUo5l16xZg4qKitynQIECcmXS0tIYM2YMxYoVQ1NTEwcHBx4/fpxnu0Tni0AgEAgEAoFAIBAIBII8kZb2v/nkhS1btuDv78/YsWO5du0alStXpnnz5kREROS4jZ6eHmFhYbLPixcv5NZPnz6defPmsWTJEi5evIi2tjbNmzfn8+fPebJNdL4IBAKBQCAQCAQCgUAg+M8ze/ZsevfuTY8ePahQoQJLlixBS0uLVatW5biNiooKxsbGsk/RokVl69LS0pg7dy6jRo2iffv22NjY8Oeff/L27Vt27dqVJ9tE54tA8B/B3t4ePz+/PG+noqKS58AgEAgEAoFAIBAIBLmRlpb2P/l8+fKFmJgYuc+XL1+y2fP161euXr2Kg4ODbJmqqioODg6cP38+Rx1xcXGYmZlhampK+/btuXv3rmzds2fPCA8Pl9unvr4+tWrVynWfihCdLwLBd5KUlMSwYcOwtrZGW1ub4sWL4+7uztu3b3Pd7ubNm7i6umJqaoqmpibly5cnODhYroynp2e2sYYqKipUrFhRabvDwsJo2bIlAM+fP0dFRYUbN24ovd+sJCUlMXn0EOpVMqW+dUmmjAkgOTk5x/IhR/bj0sKOWlZFcahRhq3rVsqt37FpDe3sq1LLqigt7Spy8sg+2bqWdhWxLWNI7XLG1C5nTL1KJX6KhuSkJBZOHI5TnTI41SnLokkjSMlFw/kTh/B1bET7GuZ0tbdm/5Y1snUT/Xri2rASjral8GhWg41LZsvWvX7+N+MHeuDaoCKdalvi3601d69dVNr+pKQkpoweQv1KJWlgXZKp3/TBAVxa1KW2lTFNa5RlWzYfrKW9fTVqWxnT0q4SJ4/sz7aPJw/vUaN0Yfy8XJW2HyQ+WD75D9zqlcO9fnmWTxmZqw8uhRzG38UB11ql6OVQhcNb1wIQ9fEDc0b44tW0Gt3syjDEpSmXQg7Ltnv7/G+m+vWgZ2MbutezYoRHO+5fz3k8cF41rJk2it72lfBuVIm100fnquFq6BFGuDanZ92y9GtenWPb18nWbVs0g2EuDrjZmrNuZpDcdklfvzDR25m+DlXo1aA8AY72nNix4adoSEpKYtqYAOxtStKoshnTxw7NtS6FHj2Aa8t61C1fjOa2VmxfL1+Xdm5ei2Pj6tQtX4w2da0JyVSX3r8LY6CnE3XLF6OVXUV2bFqjtP3JSUnMGR9Iq5oWtLYtxdwJw3K1/8zxg/Rs34BmVUrQsV4Fdm9ana3Mpw8RtLYtRc/2DWTLXj17wsh+bnSoW45WNczx7dKC21cvKG1/uob/cjxK1xA8PpC2tqVoV6s08yYMy1XD2RMH8erQkJZVTXGqX4E9mxX7oV2t0nh1aCi3/MO7MIZ7d6ZlVVM6N7Jh39Y/f4r9K6b8gWf98ng2qMDKqbnHo8shhwlwcaB77dJ4N63KkW0ZNmxeOB1/p8Z0rm7K6uljsm1783wogV2a4WZXBj/Hhlw/e1Jp+0HSlqeOGUJDm5LYVy7JtLG5nxdCjx6gS8u62JU3ppltWYVtuWPjatiVN6Z13UrZ2vIAz07YlTemlV2Fn9KWQeKHGWOH0qSKGQ5VzZkRlHs8OnXsAN1a16NBxeK0ql2OvzZkPO3u49qauuWMaFjJRPZ5/y7su9f/KLLzs3VJGth8x/n56AFcWtaldjljmtYsy7b1Cs7PjapRu5wxLetmnJ9fPH3MYO+uNKlhST1rUzwcm3L9svIxKTkpiTnjAmlZw4JWNUsxZ/y3Y2qPdg1oWrkEHepVYFcOMbVVzVL0aNdAwR7g6aN7NKpYlBF9uyttf7qG2eMCaVHDgpbfqcGzXQMcKpegfS4aWtYshWcWDU6NKtPYujhNq5jStIopLaqb/xQN/5+ZMmUK+vr6cp8pU6ZkK/fhwwdSUlLkMlcAihYtSnh4uMJ9W1lZsWrVKnbv3s369etJTU3Fzs6O169fA8i2y8s+c0K87Ugg+E4SEhK4du0ao0ePpnLlykRGRjJo0CDatWvHlStXctzu6tWrGBkZsX79ekxNTTl37hze3t6oqanRv39/AIKDg5k6dapsm+TkZCpXroyzs7PSdhsbGyu9j+9h+bzp3Lh8np3HLwPQz8ORFQtm0sdveLayZ0OOMmmUP5ODV1DN1o742Bg+fsgYh7l9wyrWr1zItAVrKFfRhk8f3pOYEC+3j6kLVtG4edufqmHT0tncvXaRpXvOADDapwubl82lm29AtrJXTp9g4cRhDJ26iErVa5MQF0vUx/ey9d18AzAxL426ugYRb18zyqcLRU1MadLWmfiYaGrUa8LAoFno6hfkyI6NjO7bldWHLqFfsPAP27983nSuX77AjuOSToR+Hp1YuWAmPjn4YPIofyYFL8/kgwz7t29YzYaVC5m2YDVWOfggNTWV8cMGUKVG7R+2OSvbl8/l/o1LBO8MBWBiv278tWIeLn38s5W9dvYEyyaNwG/yAspXq0VifIYPPifGY1HOGje/URQyNObqqWPMHtaH6RsPYlraivjYGKrVa0zfMTPQ0S/IiV2bmNS/O4v2nUdPCR8A7Fo5j4c3LjN923EApg90Z/eqBTh6+2Ure/PcSVZPHYnvhHmUq2pLYnws0R8/yNYXNTXHddBITu7cmG1bNbV8uA8dj4lFGdTy5eP100dM8ulMcQtLylWtpZSGlfNncOPyBbYdk9SlgR5OrFo4C+9Bw7KVPRdyjKmjhzBhzjKq2toRHxfDx/cZdWnHxtVsWLmIyfNWZdSlxIy69MeAXpQws+DY1Sc8eXif/u6OmFlYUr12vR+2/8/FM7l99QJ/7pc8kQrs7cL6JbPx7B+YrezFU8eYMy6AUTOWYlOjDglxsXz6kH1c+NzxgZQpb0NM1CfZstjYaGo1aMLQCXPQ1S/Igb/WE+jdmU1Hr2FQSLl69F+PRwDrFs/i9rWLrNl3DoBh3p1Zv3QOHv2GZit76fRx5o4bysjpS7CW+iHyY3Y/zJswDMvy1sRERcotnzDEm+Ilzdlx9gHPHt8n0MuZEualqWJb94ft/2v5XB5cv8ScHSEATOrXjR0r5+Hskz0eXT97khWT/2DgpPmUk8aj6Ew+MDY1x81vFMcUdJC+e/2CGf69GDxtMVXrNeH6mePMGuLFrO0nKFrC7IftB1gxfzo3Ll9gu7QtD/DoxKqFM/EepPi8MGW0PxPnLFfYlv/aKDkvTJm3WmFbHjGgJyXMLDh+9W+ePLxHv5/QlgFWLZjBjSvn2XJE0ik4qIcTaxbNwmtg9nh0PvQY08cEMG72UqrUtCNeQXvuHxiEa0/fHI/3rfU/wvL507l+5QI7pH7o59mJlQtn4pODHyaP8mfSXOn5OYsftm9czYYVC5k2P7sfYmKiqWvflNFT5qFvUJBdW9cxoIcTe0/dpKASMWntopncunqBdQckMXWolwvrlsymRw4xdXZQAKNn5h5T5yiIqemkpqYyfZQf1tWUO5cp0rBeqiEgFw0XTh1jllRD5Rp1iI+LJVKBhtnjAylb3oZoBRqCZi+nQdPWP83+fyv/q5cdjfhjBP7+8rFXQ0Pjp+y7Tp061KlTR/a/nZ0d5cuXZ+nSpUyYMOGnHCMdkfki+GnExsbSrVs3tLW1KVasGHPmzJEbKvPlyxcCAgIwMTFBW1ubWrVqERISItt+zZo1GBgYsG/fPqysrNDS0sLJyYmEhATWrl2Lubk5BQsWZODAgaSkpMi2Mzc3Z+LEibi7u6Ojo4OZmRl79uzh/fv3tG/fHh0dHWxsbOQ6SD5+/IirqysmJiZoaWlhbW3Npk2bctWnr6/P0aNHcXFxwcrKitq1a7NgwQKuXr3Ky5cvc9yuZ8+eBAcH07BhQ0qVKkX37t3p0aMHO3bskNt35nGGV65cITIykh49esjtKzk5mf79+6Ovr0+RIkUYPXr0N1/xlnnYkYWFBQBVq1ZFRUUFe3v7XLfNC7u2rqP3gEAMixpjWNQYr/5D2bVF8ZPHhTMn4jNoGDXr1EdNTQ09g4JYWFoBkJKSwqLZkwgMmk75SpVRUVGhsKERJcwsfpqtOXF45yZcffwpbFiUwoZF6eIzmMM7st/0AqydP5WufYZQ2bYuampq6OobYFqqjGy9RdkKqKtLTgoqKiqoqKry9sVTAKxsqtHKxR2DQkVQU1OjpbMbqqpqPHt4Tyn7d29dT+8BQzP5IIBdW9YpLLtw5kS8s/mgLCDxweLZkxgaNI1yufhg46rFWFhaUb3Wj9/cZOX4rs049fajkGFRChkWxclrEMd2KfbBpoXTcfEZTKWadqipqaGjZ0AJC4kPjEuY0cGjL0WKFkdVVZWa9s0obl6aR7euAVDGuirNnNzQl/qgaafuqKqq8eLRfaU1hO7ZQodeAyloWJSChkXp0HMAIbs3Kyy7ffFMHHv7UaFGHVTV1NDWM6C4haVsfYO2zlSp2whNbZ1s26qqqVGyTHnU8kmeo6RnzL179VxpDXu2rafXgAAMjYwxNDKmZ/8h7N6quC4tnj2R3gMDqZFel/Tl69KS2ZMJGDtVvi6VlNSlVy+ecuPKefoHjkVTSxvrqjVo2cGZ3VvXK2X//r824N53CEWMjCliZIxbH3/2/6V4nyuDp+DRbyhVa9WTtWWz0mXlypw+doCY6Ciat3eRW17BpjrtOnvK2nJbFw9U1dT4++FdlOW/Ho8ADu7YgFufIRQ2MqawkTHd+/hzMAc/rAqejLvvUKpk8kPJUvJ+OHP8ADHRkTRrJ++HNy+fcefaBXr7j0ZTS5sKlWvg0NaJg38plwl2cvdmOvX2k7XlTl6DOLFL8bXCloXTcfIeTMVM8cjEIsMH9u1cqFqvMZrautm2vXH2JKXKW1O9QVNUVVWp3qAplpWqErp3m1L2g6Qtew0YKmvLvfoHsCvXtjwsl7Y8iaFjp+XalgcEBknbck1pW1Z8rDxp2L6Bnv2Gytpzj34B7Mlhv0tmT6LXgECq107XYIB5lvb8K9i9dT29+3/n+XlWlvOz/necn6V+sK5SA6euPShUWNKeO7l6oqqqyuP7d5Sy/8BfG3D3zYip7n392b9dcVteMXcKnt8TU6OiaN7BReE+tv+5FLPSZalS004puzOz/68NeGTRsO8bGqpJNejloCE2Fw2Cn4uGhgZ6enpyH0WdL0WKSOr+u3fv5Ja/e/fuux9I58+fn6pVq/LkyRMg40G2MvtMR3S+CH4a/v7+nD17lj179nD06FFOnz7NtWvXZOv79+/P+fPn2bx5M7du3cLZ2ZkWLVrIvaYrISGBefPmsXnzZg4dOkRISAgdO3bkwIEDHDhwgHXr1rF06VK2b98ud+w5c+ZQt25drl+/TuvWrXFzc8Pd3Z3u3btz7do1Spcujbu7u6yj4vPnz1SvXp39+/dz584dvL29cXNzy/U1ZIqIjo5GRUUFAwODPG9XqFChHNevXLkSBwcHzMzkn3itXbuWfPnycenSJYKDg5k9ezYrVqz47uOm6zt27BhhYWFyHUDKEBMVybuwN1hVtJYts6poTdibV8TGRMuVTUiI597t60SEh9G2YRUaVy9NQB833r+TpO09//sxH99HcP/2DVraVaSprRXjAvsTFxsjt58JIwbRsLIZbh0ac/rEYZQlNjqKD+FvKV0uY6hX6XKViAh7TXyWY39OiOfJvZt8jAijV6vauDaoyMTBvfj4Xj4oLxgfSPvqZrg5VCUxIZ6mHbooPPazR/dITIijpBIXiHnxQWJCPPdv3yAi/C3tGlalSXVLAvq4Z/PBg9s3aWlXiWa25RgXOEDOB29fv2Tj6iUMHvnzngjExUTx8d1bLKwyfGBuVZEPYW8U+CCBp/du8SkinH5t69KzsQ0zAnrzKYsP0on6+IE3z55gVra8wvUvHt8nMSGOEkpepMfHRPHpXRhmVhVky8ysKvIx/A0JWTUkJvDs/m0+RYQzpGMDfJtVIziwD5E5aMiJGYM88axjSaBTY/QLFaFGoxZKaYiJltalCpnqUgUbwnOtS2F0bFSNZjXKEOjrzvsISV168fQxHz9E8ODOTdrUtaZl7fJMGJ5Rlx7fv0sRI2MKGxrJ9lm2gjVPHvz4jUJsdBTvw99iWT7Dfsvy1rx7+zpbHElMiOfh3Rt8eBdG1+Y16VC3HGMGevIhIiONOC42hoVTRzFk3KxvHvvvh/dIiI/DXNqZrIyG/3I8Stcg8UMl2TLLcpVy9MOjuzf58C4Mt+a2ONYrT9CgHnzM4ofFU0fjH5TdD08f3pV02BbJqEeW5ax5+ujHO5Ak8SgM8++JR4kJPL1/i08RYQxsVw+vJpWZFeD93W05NS0124OU1LRUXjxWrjM4vS2XlWvL1t9oy2/p0KgqTWtY5tiWW9etRIva5b7Zlq0q2PD4gXIdkTHRUURk0VC2vDXhb18Tp0DDgzs3eB/+lk6Nq9PCtizD+3nItWeAVQtn4lDVnO5t6rN/R/bOtG+tz7sGBefnCt9xfravSpMalgT0VXB+vnOTlnUr0axWOcYNG5CtTaXz+MFdEuLjKFWm3A/bHxsdRUT4W8rkIaa+fxeGa7OatLcrx2gFMXXBlFEEjFccU8PfvGL7n0vxDRz/wzZnJUaBhjLfcV7o0qwm7ezKMUqBhvm5aACYMcaf1raW+Lg043zI0Z+m5d/G/2rOl+9FXV2d6tWrc/z4cdmy1NRUjh8/LpfdkhspKSncvn2bYsWKAZKH18bGxnL7jImJ4eLFi9+9z3RE54vgpxAbG8vatWuZOXMmTZo0oVKlSqxevVqWofLy5UtWr17Ntm3bqF+/PqVLlyYgIIB69eqxenXGGMqkpCQWL15M1apVadCgAU5OTpw5c4aVK1dSoUIF2rRpQ6NGjTh5Un4sdKtWrfDx8aFMmTKMGTOGmJgYatasibOzM2XLlmXYsGHcv39f1mNpYmJCQEAAVapUoVSpUgwYMIAWLVqwdevW79b8+fNnhg0bhqurK3p6et+93blz59iyZQve3t4K1799+5aDBw/i5eWVbZ2pqSlz5szBysqKbt26MWDAAObMmfPdxzY0NASgcOHCGBsb59oBlBcSpMNRdPX0ZcvSvyfEx8mVjY2OIi0tjZNH9rF0wx72nbpJfg0N/hgk0ZueunnxTAgb94Wy9dBZ3rx6wYzxGam5k+Ys48DZOxy99AhXzz4M8enOnZtXldLwWapBO5MGbV09xRpioklLS+Pc8YNMXrGNVQcvkl9dnRnD5NOU+4+Zzs7Lz5i35QgO7ZzR0TPIdty4mGimBPjQpfcgChkWzbb+e8nwQcYx0r9ntT9G6oOQI/tZsmE3e0/dQF1DnZGDekvWS9P5032w5dBZ3r56wczxI2T7mDhiEL7+f2Cg5LCEzMh8oJvRntK/JybIa4iLlWi4ePIQY5duZuG+8+TPr07wH/2z7Tcp6Suzh/XBrllbLCtWybY+Piaa2YF96NRrIAUz3bz9mIYEid06GfVIS6ZBfthWvLQeXQ05zPBFG5m96zT51dVZPHpQno45NHgNq848ZNSyrdRs3Ap1jQJKaUiIl9ipI1eXFLfnzHVp0bpd7Aq9jrq6BqP9JHUpWlqXLp0NYd3eEDYeOMPbVy+YPUFSlxIT4uXiRvqx4rMcJ0/2S+uKjq6ieBQrVzY2RmL/6WMHmL1qBxuPXCG/ugYTh/aRlVk8YywtO7pial461+PGxkQzzr8Xbj6DKaxEW4b/fjyCjPquk0lD+vfELH6Ik/rhzPEDzFj1FxsOXya/ujqTAjP8sHRGEM07ulJCgR8SE+LljpN+rKy/VV5QFI+0pHXqc5Z4FC+1/3LIYUYv2cz8vefIr67OvJEDvutYNrUb8Pfdm1w6cZCU5GQunTjIwxuXs/1OeSW9Lef1vLBo3W52h94gv7o6o7K05YtnQ1i/N5RNByTn5lnStpyQEJdDW1ZOQ6LUTkXXF1njhEzD0f0sWLeTHSevoa6uwZjBGddbvkPHsvPkdQ5deky/wCBmBg3j5OG9373+R/hRPyxZv5u9oTdQV1dnpNQPMdGZzs97Q9lyMPv5OfO+hvXvQc9+QyhipMz1RfaYqvMdMXXO6h1sOiqJqRMCMsXU6WNp6ZhzTJ0xZjA9B45Av+DPuUaFjGuIvGg4dewAc1fvYPPRK6hn0bBo+lha5aJh9PQlbDtxnZ1n7tLJzZuRAzy4f+uawrKCn4+/vz/Lly9n7dq13L9/n759+xIfHy8bUeDu7s6IERltZvz48Rw5coSnT59y7do1unfvzosXL2T3YioqKvj5+TFx4kT27NnD7du3cXd3p3jx4nTo0CFPtonOF8FP4enTpyQlJWFraytbpq+vj5WV5Onf7du3SUlJoWzZsujo6Mg+oaGh/P3337JttLS0KF06I5AVLVoUc3NzdHR05JZlfU+7jY2N3HoAa2vrbMvSt0tJSWHChAlYW1tTqFAhdHR0OHz4sGz40IYNG+TsPH36tNzxkpKScHFxIS0tjcWLF8uWt2zZUraNosly79y5Q/v27Rk7dizNmjVT+FuuXbsWAwMDhY25du3aqKioyP6vU6cOjx8/JiUlhcmTJ8vZnNtQqG/xvTOKp6OlpQ1AXEzG04P0JwlaWYZLaErLuvboQ/ESJdHS1sF38B9cPn+KhIR4Wfle/YZQsFARChYqQq9+Qwg9dlC2j2q16qKpqYW6hgatOrjQ0KElxw7s/mG9AAWkdmV+opnwDQ3tu/emaHFTNLV1cOsXyM1LZ2QX7OmoqqpStlIVNLV1WJ5lwtT42BhGenemYjVbuvfLPuY4L2T4IOMpWlxsdK72Z/ZBX6kPEhPi0dSWrO/Zz5+ChQpTsFBhevbzl/lg/47NpCSn0KbTz5lkN510HyTEZVwIpX/X1MqiQVNStrVrL4yKm6KppU0X36HcuXxW1gECko6XGUN6o1FAk75jZ2Y7ZnxsDOP7ulKuqi2d+2afSyPvGrSkdmeqR9Lv6b971rLNu/TEsFgJCmhp08nHn3tXzvE5MYG8oKqmRvnqdYj+9J59fy5RRgJaUv+n15/M37PWpfR616WHD8Wkdcln8AiunD9NYkK8bH0P34y61MPXn1PHDwGS3yTrU8e42Bi0FQyz+m77pXUlPk5RPJIf8pFerzq5eWNsYoqWtg49Bw7n+kWJ/TevnOfOtYt07Z17h1hcbAwBvTphXb02PQZkn8Mhr/zX41FmuzL7N11P1qE36X5wlPpBU1sHzwHDuXHxDIkJ8dy6cp471y/i6jUwx2NlzUaJj43J9lvlBcXxKEa6Tn6/BaTxqKVrTwyLl0BTSxuXvgHcvXz2u9qyibklg6ctZtvS2fRqbMOJXZuo27w9OvoFf9h+UNyWY7/RljOfF/oM/oMr0vNCzm35oHR7nRzacvZhVnkhfchl5n2nf88aJ9L1dvbwoZiJRIO33wiuXjgt6wy0qWaLjp4++fLnp06DJnTs6smx/Ttl+/jW+h8hLzFVdn72zHR+9s90fpau75nJDz19/Qk9flBuP7Ex0fi6d6RqzTr0HfyHcvYriKnx34ipTu4ZMbVX5ph6+Ty3r12kWw4x9fDuraQkp9CiQ2elbM6K5g9ocM6i4dp3agCoXLMOBTS1UFfXoFlbJ+o2bk6Ikp14/1b+bZkvAJ07d2bmzJmMGTOGKlWqcOPGDQ4dOiS7H3z58iVhYRkTaUdGRtK7d2/Kly9Pq1atiImJ4dy5c1SokJHFHBgYyIABA/D29qZmzZrExcVx6NAhChTI2wMvMeGu4H9CXFwcampqXL16FTU1Nbl1mTtW8ufPL7dORUVF4bLU1FS5ZZnLpHdOKFqWvt2MGTMIDg5m7ty5srcX+fn58fXrVwDatWtHrVoZk3yZmJjIvqd3vLx48YITJ07IZb2sWLGCxMREhVru3btHkyZN8Pb2ZtSoUdl/JCQBbNWqVbi5uaGurq6wTE706dMHF5eMcafFixfP0/aZmTJlCuPGjZNbNnbsWBx7Kb451TMoSNFiJjy8dxtT81IAPLx7G+PiJbI9CdPTN6CYianiA6elYV66DBp5fHKvoqp8P7KuvgFFjIvz9MEdikvHTv/94C6GxiZyTz5B8rTEqJjiNyzldIJISU6WzbEAGTc6ZpZWDBw7U65T7Uf4WT5I+w4fXDgTwu0bV7CvbA7A58REUlJTaFLdkuNXn/ywBh09AwoXLc6zh3cwNpXs+9nDuxQxLp7NB9p6+hQpZqJgL5CGxAdJSV+ZGeBNctJXRgSvIX9++TaV3vFiWtqKPqOnK+0DiV0GFCpajBeP7lFUquHFw3sULlpclgEjK6urT2FjxRp+dAa7lORk3r18/kPbpqOnL6lLj+7dxtRMWpfu3aaogrqkq2+AcS51yewbdalM+Yq8fxfGpw/vKVREkpn36N5tLMtl77z+XnT1DTA0Ls7j+7cxkbblJ/dvY1TMBJ0sPtDV06do8Zzb8tXzobx99QLH+pILsK9fv/L1SyJta1myeu8ZihgZyzpeLCzLETBu9k+pR//1eJSuwdC4OE/k/HBHoR90cvEDaWlcO3+KsFcvcGogqRdJX7/w5ctn2tcuw6o9pyllVZGPEeFEfnxPwcKG0mPdxiKHYYbfgyQeFeP5w7uyePT84V0K5zUefWdbrtmoBTUzDRkc0b019m2Vm3RfUVt+dE/xeeGfaMsP793CslyFHLf5Pg0GGBUz4dG9W7J5xx7du03RYiWyZTvp6hlgnEt7VoSqSu7XD99a/z2k++Hh3Uwx9R86P0NGx0vpMuUZNXmu0u1ZV98Aoywx9bGSMbVjPWlMTfrK18+JtLG1ZM2+M1w5F8q9W1dpYyuZ++zz50RSU1Job1eO3ece/LAGvZ+o4YpUQ4csGlrbWrJ2n+S8kJWfUY8EeaN///6yF5tkJfOcoyCZvuJbIwlUVFQYP34848crNxxO1ATBT6FUqVLkz5+fy5cvy5ZFR0fz6NEjQDLBa0pKChEREVhaWsp9/ldv48nM2bNnad++Pd27d6dy5cqUKlVKZiuArq6unI2amppARsfL48ePOXbsGIULyw+5MDExkW2Teb6Wu3fv0qhRIzw8PJg0aVKOdoWGhvLkyRN69eqlcP3Fi/Kv/7xw4QJlypRBTU2NQoUKydmcL1/2vtX0Dp3MExYrYsSIEURHR8t9MqfnKaK9S3eWL5jBh4h3fIh4x4qFM+nYxUNh2U5de7B5zVLehb/l8+dElgZPpVZde7S0dShQQJPWHTuzavEcYqIiiYmOYtXiOTSSzhgf9uYVVy+e4euXLyQlJXF47w5CjuyncfM2udr3PTTr0IVNy+by6f07Pr1/x+blc2nRqZvCsi2d3dizYQUf3oXx5XMiGxfPokrt+mhq6/Du7SvOHNlLYnwcqamp3Lt+id3rl1O9biMA4uNiGenTGRPzUviNn/NTbnQA2rt0Y8WCmTIfrFw4i45d3BWWdezqySY5H0zDNpMPWnXszOpMPli9eA72Uh8MHTOFnScus+XQWbYcOotT957UrFOfjftPKa2hcfvObF8eTOSHCCI/RPDXimAcOir2QbNO3TmweRUfpT7YunQ21rXqo6mlTXJSErOGevMlMYHhc1eTX11+UraEuFgm+HaluFkpfINm/TQfADRs68LulfOJ+hBB1IcI9qxagH0HxVlCjR27cnjLaj5FhPH1cyI7lwdT0bae7Kl7clISX798JjU1ldTUFL5++UxyUhIguRG8feEUXz8nkpKczPXTxzl3cCfWdRS/tjMvtHXuxspMdWnVwll06JxDXXL1YMuaZURI69Ly4OnY1m0oq0stO7qwZslcYqIjiY2OYs2SuTRs2goAU7NSVK5RmwUzxpGYmMCdG1c5uGsr7V3clLK/lWNX1i2Zzcf37/j4/h3rls6hjZPifbZ18WDH+uW8f/eWL58TWbNwBtXrNEBLW4fOPXzZcPgSK3eHsnJ3KL0GDcfUwpKVu0MpWNiQ+LgYhno5YWpuSeCkeT+1Hv3X4xFAC8eubFg6R6Zhw7I5tMrBD21c3NmZyQ9/LpxBtToN0NTWwblHX9YdusiKXSGs2BVCj4EjMLWwZMWuEAwKG2JS0oJK1Wr9H3v3HVfz98cB/JUo2hlpSEVES1aFsomsrEhDRBQpmdk7O/Nrj4xkZ+9NZsPeJNJCe2mc3x/3dru3bul2kfq9n4/H5yH3M+77dN7nc27nns/ng+1+i5CZkY6XT0Jw+fQRWA8U7xG1HfsNwbHtBeej4zvWoUv/YUK37TrAAecOFJyPjmzxg6GpBW+mQkFbzi3SlgHg/fPHyM3JQUZaKg5vWY3UpER06Cv+jTz7itSWnRG4ewtfWy7aL/hv9uO1Zf/NBf1C0bb8COeCDsPGVvh7iaLPoGHY9d8qfIuPxbf4WOzetAr9hgjPIxs7ZxzaU3A+2r5+GVq35ZyPUpITcefaRWRmpCM3NxcP7tzAsYCd6NSjLwD8cr04+g0WoX+2c8YB/1/0z9x6SE5KxC6+ekhNSeY9ZWru8g2/rT33HDgMezbxnVM3+6H3YOF10HfIcBzduw3xMdxz6ga+c+pIdwRcfICdJ29g58kbcJnAOafuPMk5p06YsRj7zt3lre831BnNzS2w/dhVsctgLaQMfUoowxG+MuziK8PQke44cPEBdp28gV0nb2AUtwy7uGWI+foF4Q+D8fNnFnKys3Hl7HHcunIOltx+r7Jh7O8slQXNfCG/hby8PIYPH44pU6agZs2aUFFRwdy5c1GlShVISEigcePGsLe3h5OTE1atWoXmzZsjPj4eV65cgbGxMXr1+ruPYmvUqBGOHDmC4OBgKCsrY/Xq1YiNjRWYXlZYdnY2Bg0ahNDQUJw+fRq5ubm8Z7vXrFmz2Jkqz549Q+fOnWFlZQVvb2/ePpKSkrx7sOTbsWMHzMzMYGhoKOxQiIyMhLe3N8aMGYPQ0FCsX78eq1b9+iaQ+VRUVFCjRg2cP38e9erVQ/Xq1aGoqFhkO2lp6WIe35Yt5DUO1wnTkJTwAzadWwEAeg0YglHjOTNlFvpwpmbO9l0LgDNdNinxB2ytODepat2mPRav2cY71pR5y+A7yxvWFkaoJiWFjl2tMXmOLwDOtdPL5k5FZMQHVK1aFfV1dLH8P38Ytyi45K2sho2dhOTEBLj25TwWs3PvQRjKfTzwuvmcskzgXrpiO2oCUpIS4D6A8weMsWk7TPHdyDvW8b1b4TdnIlheHmqqqKKv/SjYcqfMB18+g1ePQ/DxzUvcuXSGt8+EeSvRufegMsc/esI0JCb8QP/OrQEAvQbYwoVbB4t8OOWY5bsGAKcOkhMTMMSK8ySBVm3aY/GarbxjTZ23FEtmTYK1hTGkpKTQoas1Js9ZAoAzy0ZBqWA6vKycPKSkq6OuatlnW+Ub7DoRKUkJmGDDGUBo32sgBnJ/b5sXci6FGDt7OQCg/0gPpCQlwtu2CwDAsHU7eC5eDwB4/fghHly7ACnp6nDuUDCLYsCoCRg0yhP3r57Dmych+PTmBe5fOctbP2b2cnToNVCsMtiM8kRKUgKmDOoMALCw7o9+IznfvuxYwhnEdJnByee+zuOQmpQIn6FWAAD9Vm3htmAN71jbF03FrdMFNxi/eHA3LHsPwtj5fsjLzcGhjcvw9dMHSEACddTrwd57Dtr17C9W/AAwymMqkhJ+YFBXTi5Z9x+CkeMmAQCWzPACAMxYwonT2c0bSYmJGNqT89SrVm0ssWB1QS5NnrMUS2dPRh+LZpCSlkL7rj3hPWsJb/2SdTuwcJoHurZoCEUlZUzwWSD2o2mHu09BUmICHK05j0Hv3tcWDtzHla+cw/l38oLVAAB7Vy8kJyVgZF9OzjU3s8DM5ZxLt2TlFCArV/CtqLyCEqpWrQYV7oylm5fO4Hn4I7x//QI3L53mbTdp/mp07yverIWKfj4CACe3yUhO/IHhvTjn+m59BsNhzEQAwOq5nHzy5t7I2G60F5ITEzGqXwcAnHqYsYxzWW/RelBE1arVUIdv5tisVVuxcpYX+rfVg7yiEsZMnifWY6YBYNDoiUhNTMDE/pyYLHsNwAAXzu9t6yLOY45dZy0DANiMHI/U5ERMGdIVAGDQqh08uOcjANi8YApunCq4r9z5wF3o0McW4xeuAQDsX7cE756FARISMDZvj3nbD6N6DRmx4geAUR6cfmEgry3bYuQ4Tv4s5rblmdy2PMKN0y8M7VnQLyws0pYnobeFMaSkOf0Cf1v2XbcTC6aNR5cWDaCopAzP39CWAcBl/FQkJSRgSDdOP9/DxhbO7pz88Z3JySefxZxvrYePnYjkxATY9+K8b0tzS8xbvQUAkJOdg+3rlmGWJ+cLLjUNTXjNXIyu1jalWi8OXv/chds/97eFC7ceFnHrYRa3Hnj9cw++/tmPr3+euxRLZhfqn2dz6uHqhVN4EvYQb149x5XzBZe5zFqyBr36l/1SHmf3KUhOSIBDz4JzqmNJ59TEBIzIP6eaW2DWimLOqYqC51R5RSXIKyrx1svKyUNKqjrq/IbPF87uU5CUkAB7bhms+MqwgluGKdwyOHDL4MxXhtmlLENGeirWLJyOqMiPkJSUhKa2Lhas3QlDk9Zil4FUfBJM1IuoCClGSkoKxo4di6CgICgoKGDq1KkIDAxE586d4evri+zsbCxatAh79uxBVFQUateuDXNzc8yfPx9GRkbYvXs3vLy8kJiYyDvmvHnzEBQUhPDwcN5rzs7OSExM5D0+WVtbG15eXrxHWgOcqWHHjx/n3TclIiICOjo6CAsLg4mJCX78+IGRI0fiypUrkJGRgaurKyIjI5GUlMQ7bmH5xxDm2rVrxT62ed68eUUu4QEALS0tRERE8P6flJQENTU1rF27FqNHjy6yfceOHWFgYIC8vDwEBARAUlISbm5uWLRoUYnfbBT+XWzfvh0LFixAVFQULC0ti0y9K8mTz2W/eWF5M9aUw4UX8eUdhlis9Ovg8Wfxbl5Y3pppyuP4k5hfb/iP6m+sioDQL+UdhliGtaiH0E/Cn4xRUbTQUsCtNwnlHYZYLBsrV+hzkpV+HVx//aO8wxBLR72aOPI4+tcb/sMGNVND2KeK2y8015LHw49Jv97wH9ZaRxGPIytuHQBAs/ryuP22Yp9TLRop404FLkO7RuLd46m8GMy8+Ffe5/li4ffKrGho8IX8MWlpadDQ0MCqVauKvYyGVCw0+FK+aPCl/NHgy7+BBl/KHw2+/Bto8KX80eDLv4EGX8oHDb6Ihi47Ir9NWFgYXr16BVNTUyQlJfFuSNSvX79yjowQQgghhBBCyO9E0zhEQ4Mv5LdauXIlXr9+DSkpKbRs2RK3bt1C7dq1yzssQgghhBBCCCGk3NDgC/ltmjdvjpCQkPIOgxBCCCGEEELIH5aXR1NfREGPmiaEEEIIIYQQQgj5g2jmCyGEEEIIIYQQQkRC93wRDc18IYQQQgghhBBCCPmDaOYLIYQQQgghhBBCRMJo6otIaOYLIYQQQgghhBBCyB9EM18IIYQQQgghhBAiEpr4Ihqa+UIIIYQQQgghhBDyB9HMF0IIIYQQQgghhIiE7vkiGpr5QgghhBBCCCGEEPIH0cwXQgghhBBCCCGEiIQmvoiGZr4QQgghhBBCCCGE/EE084UQQgghhBBCCCEioXu+iIZmvhBCCCGEEEIIIYT8QRKMhqsIIYQQQgghhBAiAp2JZ/7K+3z06/VX3udPo8uOCCGl9ul7VnmHUGZataQRlfizvMMQi4aSFL4kVNw6AIB6ytIVPo++VvA8UleSwuPPKeUdhliaacrj47fM8g5DLDq1q+NVdHp5h1FmTdRk8PlHxW3LAKBZUxpvYituHQBA47oy+BBfcdtCgzrVK0W/Vhk+X0RU8HOqdu3qFb4tkMqPBl8IIYQQQgghhBAiGrqGRiR0zxdCCCGEEEIIIYSQP4hmvhBCCCGEEEIIIUQkdPtY0dDMF0IIIYQQQgghhJA/iGa+EEIIIYQQQgghRCQ080U0NPOFEEIIIYQQQggh5A+imS+EEEIIIYQQQggRCc18EQ3NfCGEEEIIIYQQQgj5g2jmCyGEEEIIIYQQQkRCM19EQzNfCCGEEEIIIYQQQv4gmvlCCCGEEEIIIYQQ0dDEF5HQzBdCCCGEEEIIIYSQP4hmvhBCCCGEEEIIIUQkdM8X0dDMF0IqgN27d0NJSUnk/ZydnWFjY/Pb4yGEEEIIIYQQUno0+ELIb5KdnY1p06bByMgIsrKyUFdXh5OTE75+/frLfa9cuYK2bdtCXl4eqqqqmDZtGnJycsSOae3atdi9ezfv/x07doSXl5fYxxUmOzsbc6Z5wbihKprpqmHu9IklluHSudPo2dEUTevXhKmBDvbt2sZb9zQ8FIN6dYKhdh1YtmyCowf38dZ9ePcWrk62aKWvBaMGdTHQuiMe3Q/+bWWYOcUTBtp1YaCjillTvUosw8Wzp9DdsjUaaSijZVNt7N25lbfuSXgo+vfohCb1a6OtiR6OBO4T2PfB3Tvo080STevXQUt9HfjOn4W8vDyx45811QuGOqowbKCG2dNKroOL507Dqr0pGteriZb6OtjLVwdPwkMxoGcnNK1fB+2aNykSf5tmjaGrrgQ9zVrQ06wFA+26YsXOX4bKkkf6IuRRN8vW0NVQRoum2thTKI9senSCXv3aaGOih8OF6uHmtcuw6mCGxpq10NG8Ga5dvvDbyuA7exIsDeujvVF9LJ0zucQyXL94FrY92sFcTxXdWjXG4b07BNYfO+CPfh1bwFxPFT3bGuLaxTNFjvHu9Qu0algLXqPsfkv8c6d5wURXDc0bqWPeL/Lo8vnT6NXRDAZatWBuqIP9uwvy6O3rl7Af0BMmumow1dfGDO9xyEhPL/V6ccqwcIY3zJpqwFy/HhbNnFRiGa5eOIP+Xc3RomEdtG/eEIF7tgMAvn75jJa6KgKLoaYC3IcPFtj/8P7d6GlhghYN66CLaVNcOX/6t5Rh9lQvGDZQhVFDNcwpxTmpRwdT6GnWRCth5yTrTtDXqoN2LYqek/K9fvkcDVXlMcphsND1osa/wMcbrfU0YNqkHhbOKLkOrlw4g35dzGGiUwcWzRrigH9BHTRvoCKw6GsoYKxTQYzPHofBrm9XtNBVRRdTAwQd2i92/PllmDfdC80bqaFFY3XM8/l1W+jdyQyG2rXQxkgHAYXagsPAnmjeSA1mBtqYMakg179+iYSRdm2BpbGaHFwdB/2WMlSGvq2if76YM80LzXTVYNJI/dd98/nTsO5oBn2tWjAr5pzaTFcNrfW14VPonPn0cSgG9+oMIx0VtG/VFEcPVqy2kO/gvl3o2sYYhtq10L6lHi6dO/VbyvGvYYz9laWyoMEXQn6T9PR0hIaGYvbs2QgNDcWxY8fw+vVr9O3bt8T9Hj9+DGtra/To0QNhYWE4ePAgTp48ienTp4sdk6KiYplmzJTF+lW+eHg/GJfvhOHS7VA8uHcHG/2WCd32+pWLmD3VE3MWrcCzj/G4dCcU5hbtAQBJSYkYYWcDm0HD8Ph9DNZt3YN5073x8N4dAEByciI6dumOCzcfIfztVwwa6ogRQ23w4/s3scuwdqUvHt4LxtV74bh6NwwP7t7B+tXCy3Dt8gXMmOKJeb4r8SryG67cDUMbvjI42fbDAFs7PP8Yiw3b92L21Il4cJdThtzcXIy0HwSrnn3w7GMMgs5fw8ljhxDgv0Poe5XWOm78V+6G4UpwKB7cvYMNxcZ/ETMne2LekhV4+SkeV4JD0aZdQfzDh9igv+0wPPsYgw3b9mDONG884NZBvg3b9uD15+94/fk7nkfEihV7vsqSRw/uBeMaN4/u/yKPfKZ4Yr7vSryO/Iard8PQlq8Mjtw8evExFhsL5dGniA9wcbTFZJ85ePUpHjPnLcHo4UPxKeKD2GXYtm45wh7ew7ErD3D08gOEPriLHRtWCt32zvVLWDLLG1PmLsWdF1E4evk+WrWx5K0/sn8X9m5bj2UbduHuq2jsO3EVjfT0BY6Rl5eHBdM8YNLKXOzYAWDD6qV4dP8uLt4OxYVbIXh4Lxj/rVkudNsbVy5izlRPzF68Ak8+xOHC7VCYc9sCAHiNcUYD3cZ48OITzt18iJfPn2D9Kt9Sry+rzWuWIfRBME5df4ST1x4i5P4dbFm3Qui2t65dxIIZXvBZsBwP38Tg1LVHMOXWgXo9TYS8i+Mtd198gbyCEqz7FfxRfGjfTuzesg6rNu1GyLs4HDxzHY2bGohdhnXc9nwlOAyX73Da84YS2vOsKZ6Yu3gFXkTE43Khc5LzUBv0HzwMTz/EYMPWPZg7veg5KS8vD9O83NHKrI3YsQPAJr9lCHkQjDM3H+H0jYd4dP8ONq8VXgc3r17E/OlemLFgOULexeDMjUcwbVtQB2Ef4njL/VdfIK+ohF42nDpITkqEq31/9B04FA9fR2H15t1YOHPybxkQ3shtCxduh+L8rRA8uheMTcW1hasXMXeaJ2YtWoHH7+Nw/lYozPjawsSxzmjQsDHuP/+Eszce4tXzJ9iw2pdbxvp4GvGNt4S8+QoFRSX0thF/8KUy9G0V/fNF/jn10u1QXCzlOXXO4hV4+iEOFwudUz2558yHLz7hfKFzZnJSIkbY9YfNYDuEv4vG2i3+mO9T0HeL42+1BQA4sGcHdmxai7Vb9+Dpx284du4m9Joail0GUvHR4Av5a1JSUmBvbw9ZWVmoqanBz89PYCZGVlYWJk+eDA0NDcjKysLMzAzXr1/n7Z9/6c3p06ehp6cHGRkZDBo0COnp6fD394e2tjaUlZUxYcIE5Obm8vbT1tbGokWL4OTkBDk5OWhpaeHkyZOIj49Hv379ICcnB2NjYzx69Ii3z/fv32FnZwcNDQ3IyMjAyMgIBw4cKLF8ioqKuHTpEmxtbaGnpwdzc3Ns2LABISEhiIyMLHa/gwcPwtjYGHPmzIGuri46dOiA5cuXY+PGjUhJSRHYNigoCI0aNUL16tVhZWWFz58/lxgT/2VHzs7OuHHjBtauXQsJCQlISEggIiKixP1FcTjAHx7e06GiqgYVVTWMnzgNh/bvFrrtat/5mDDZB20sOkBSUhKKSsrQbaQHAAh9cA9SUlJwGDEakpKSaN7SFFa9+yFw3y4AgEmL1hg2fBRq1a4DSUlJ2Dm5oIqkJF49fyp2GQ7u88eEyT6oq6qGuqpqmDBpOgL3Ci/DyiXz4TVlBtpyy6CkpAzdxk0AAI/u34WUlDQcR7pCUlISLVqZomcfGxzYyylDcnISEhN+YJCdAyQlJaFZXxsWHbvg5Ytn4sW/3x8TJk3nxe/hPQ2B+4qJ33c+vKYU1AEnfk4dhHDrwDG/DlqZokfvfrz4/6TKkEeB+/zhWSiPDhSTRyuWzMfEX+SRU6E8CuDWw7XLF2Fk3BzdevRClSpV0K1HL5i0aI0jgeJ/S3ji0D6M9piCOnVVUaeuKkaNn4ygg3uFbrtx5SK4ek5D6zaWkJSUhIKSMnR0GwPg/CGwafViTJm3DE0Mm0FCQgK16qignpaOwDECdm6Cjq4eWpq1Ezt2ADgS4I9x3tN4eTRu4tTi82jpfHhMngHzdu15edSQm0cA8PnTR9gMGgopKSnUql0HXa164/XL56VeX1bHAvdgrNc0qNRVg0pdNYzxnIqjB/yFbrtu+UK4T/SBaduCMjTgKwO/K+dPgbE8dLPuB4BTR+tXLMSMBcuhb2QCCQkJ1K5TF5qF6qgsDu33hwffOWm89zQcLO6ctGQ+PEU8JwUWOift3LoRuo31YNbWUthbiOxo4B648dXBWM+pOBogvA7WLluIcd4+MCsmj/hdPncKLC8P3bl1EPbwHqSkpWE3fBQkJSXRrEVrdLfuiyPF5KwoDh/gtgVuGdwnTsWhAOHH9Vs6H+MnldwW+vHlepcScv3SuZPIy8uDVS8bsctQGfq2iv754nCAP8YXOqce/APn1JAH9yAtJQV7Z76+u1e/Ys8bIpXhL7WF3NxcrFm2ELMXrYRB/jlVpS7qa4t/Tv0X0cwX0dDgC/lrvL29cefOHZw8eRKXLl3CrVu3EBoayls/fvx43L17F4GBgXjy5AkGDx6MHj164O3bt7xt0tPTsW7dOgQGBuL8+fO4fv06+vfvj7Nnz+Ls2bPYu3cvtmzZgiNHjgi8t5+fH9q1a4ewsDD06tULjo6OcHJygoODA0JDQ9GwYUM4OTnxGndmZiZatmyJM2fO4NmzZ3B1dYWjoyMePHggUpmTkpIgISFR4uyTrKwsVK9eXeC1GjVqIDMzEyEhIQJlX7x4Mfbs2YM7d+4gMTERQ4cOLXUsa9euRZs2bTB69GhER0cjOjoampqaIpWnOEmJCYj+GgV9w2a81/QNmyHqy2ckJycJbJueloanj0MRE/0VnUwN0UpfC+4jhyEuJhoA55vLwifZvLw8vHou/IPDqxfPkJaaAl29pmKVITExAdFfv8DAyLigDEbGiPoSieSkomV4Es4pg2UrAzTXq48xznaI5ZaBFVOGl9w/7JWVa2KIgzMC9+1GdnY2Ij6+x+3rV9Cle08x44+CvlFBHRgYlVAH3PjbtzZEiyZaGOs8jBe/sDpgrGgd+HiPh7GuBvp174Crl86XOfZ8lTWPDEqRRxatDGCiVx+ufHlUXBny80hYnjG+9WWVnJiA2Ogo6BkY8V7TMzBCdNRnpBSqh4z0NLx8Go64mK/o26E5urTUxeSxToiPjQEARLx/i+/xcXj19DF6tjVEd9MmmD/VA6kpybxjfP0SiYBdmzFx5kKx4s4nLI+aGjbD12Ly6NnjMMREf0VnMyOY6mtjHF8eAcCocV44digAmRkZiI+NwYWzJ9HFyrrU68tahpjoKDQxKMijJgbGQusgPT0Nz5+EITb6K3pYNINlMx14uTogLja68GEBAEcP+KN3/yGQ5vY7H9+/wbf4OLx4Go4upk3RsWUjzJ48TqCOyiL/nGTAVw8GpWjPHUwN0bKpFsaOKPmclJeXh1d8f1B++fwJu7ZswMz54s86Arh18DUKTQ0L6qCpoTG+CquDtII6sGrbDO2MdDBhVMl10GdAQR3k5RX94yIvLw+vX4r3BzOvDAZF24KwMjx7zClDF3MjmBloY7zLMIEyjHL3wnG+XL949iQ6dxee64f3+6PvwIIyllVl6Nsq+ueL4vrm4s6pT7l51MnMCK31tQX6ZgAYXeiceZHvnJnHft3Wy1qGv9UWPrx7g2/xsXj+NAztW+qhXbOG8PF2R4qY51RSOdDgC/krUlJS4O/vj5UrV6JLly4wNDTErl27eDNUIiMjsWvXLhw+fBiWlpZo2LAhJk+eDAsLC+zaVfCNRHZ2NjZt2oTmzZujffv2GDRoEG7fvo0dO3ZAX18fvXv3RqdOnXDt2jWB97e2tsaYMWPQqFEjzJkzB8nJyWjdujUGDx6Mxo0bY9q0aXj58iViYznTSzU0NDB58mSYmJigQYMG8PDwQI8ePXDo0KFSlzkzMxPTpk2DnZ0dFBQUit3OysoKwcHBOHDgAHJzcxEVFYUFCxYAAKKjC0702dnZ2LBhA9q0aYOWLVvC398fwcHBpR4QUlRUhJSUFGRkZKCqqgpVVVVISkqWujwlSUtLBQAoKCryXsv/OS1VcPZOUlICGGO4eO4U9h49gxsPnkNKSgpebiMAAC1am3FmM23fhOzsbDy6H4yLZ04iNbVop5WUlAiP0Y5w95oKlbqqYpUhPZVTBkVFJd5r+T+nFipDYiKnDBfOnMSBY2dxO+QFpKSkMWGMMwCgpak50tPTsGvrf8jOzsbDe8E4f+aEQMfbx2Yg9u/eAV01RVi00EcXK2t06mr1G+IXUgeFZlAl5cd/9hQCjp3BrUfPISUtBc+xnDpoya2D3ds2FcR/+qRA/Gs270Rw2Cs8fP4Bzq5ucB0+FOGhjyCOypBHaWXIo/NnTiLw2FncCXkBaSlpePDlUYaQPMr/o9iyUxc8DnuE82dOICcnB+fPnMDD+8Fif8BLT08DAMgrFJQh/+d0bh3lS05KBGMM1y+eweb9J3DqZjikpKUw03M0Z31iAgDg/u3rCDh9AwfP38HXz5+wcoEP7xiLfDzh7j0DSsq1xIo7X1ny6NK5U9h75DSuPXgGKWlpTHQfydumQ5fuCLkfDCOdOjAz1IG6hgYGDxte6vVlkZ7GqQMFBWFlKFQHiZw6uHLhFHYEnsL54KeQkpLCNA+XIseN+hKJu7euYRBffEkJnDoKvnUNR87dwvGLd/ElMgK+c6eJWYYS6qGYc9LFs6ew/+gZ3Hz4HNJSJZyT7gfjwhnBc5KP93h4T58D5Zq/J4/y60Cevw4UiqkDbju4fP4Udh48hYv3nkJKWgpTxgmpg8+RCL55DYPtC+rApJUpMtLTsW/HZmRnZyPkwV1cOncKqYV+T6IS2ha4ZSh8PuJvC3sOn8bV+88gJSUN70Jt4dGDYBg3qANzIx2oqQvP9ajPn3Dn5lUMsR8hVvxA5ejbKvrnizL3zUdO43ox59RH94NhqFMHpoY6UOM7Z7ZoJaTvPntS7MHgv9kWkhJ+AADu3LiGoIt3cOrqfXz5FIHFs6eKVYZ/FvtLSyVBgy/kr/jw4QOys7NhamrKe01RURF6epwpfE+fPkVubi4aN24MOTk53nLjxg28f/+et4+MjAwaNmzI+3/dunWhra0NOTk5gdfi4uIE3t/Y2FhgPQAYGRkVeS1/v9zcXCxcuBBGRkaoWbMm5OTkcOHCBd7lQ/v37xeI89atWwLvl52dDVtbWzDGsGnTJt7rPXv25O1jYMC5nr579+5YsWIFxo4dC2lpaTRu3BjW1pzR8ypVCppo1apV0bp1a97/mzRpAiUlJbx8+RKRkZEC8SxZsqS4qiiVrKwsJCcnCyxZWVnFbi8ry/n98397kJLM6Shl5eQFtpXhbjtitDvqaWpBVk4OE6fNxt3bN5CelgblmrWwY/9RnDh6EK31tbBs4SwMGuZU5A+z5OQkOA3ug1ZmbTFx2myxygsAMtwc4v8WJ/9nuUJlkOVuO3LMONSrzynDJJ/ZCL5VUIbdB44h6MhBNNerD9/5s2A7zIn3R8H7t6/hYj8Ic5eswPuYZIS8jMC7N6+wZN7M3xw/tw7k5YVuO9K1oA68pwvGvyvgKIKOHESLJlrwXcCNn68OzNpYoIaMDKSlpdF/0FB0s+qFc6eCyhw/UDnySLYMeeRSTB7V5ObR8SMHYaJXH0vmz8IQvjzSbaSHTTv3YfWyxWjWqB4O7N2NfgNsxf7jU0ZGFgCQyleG1BTOz/m/93w1uNvajRgL9Xr1ISMrB7eJM/Dw7k1kpKehhixn/chx3lCuWQvKNWth5Dhv3Lh8DgBw5lggcnNy0Xug+DfZzVeQRwUf1ovLo/xth49yhwY3j7ymzsY9bh4lJSbAcWAvDHEYgeeRPxD29itqyMjCmzvI96v1ZSXD/b3x/0FVUAY5ods6jHSHRr36kJWVw/jJs3D/zk3eQFq+44F70dSwmcCMmvz9XT0mQ7lWbSjXqg1Xj8m4fumsmGUo2hZSfnFOGsF3Tpo4XbA97wzgtOeWTbWwdMEsDOY7Jx07FICcnBwMHGIvVsyC8XPbAX8dpJRcB46j3KGhyamDCVO4dZAmWAfHhNSBcs1a2LTnME4fPwQL4wZYtXgOBgx1gJJyTbHKUFJbKHI+ym8LowvagmfhtjCIk+vPPv1A6JuvkJGRhbd70Vw/cmAv9I1MBGYNlVVl6Nsq+ueLspxTnUfxteWpBW05/5w51GEEXkT+QDj3nDmRe85UrlkL2/cdwcljB2FqoI1lC2djkJ0jlGpWnLaQf+4b6zkFNWvVRs1atTHWcwquXBTvnEoqh6rlHQAhAJCamgpJSUmEhIQUmY3BP7BSrVo1gXUSEhJCXyt8V3f+bSQkJIp9LX+/FStWYO3atVizZg3v6UVeXl74+fMnAKBv374wMzPj7a+hocH7OX/g5dOnT7h69arArJft27cjIyOjyPt7e3tj4sSJiI6OhrKyMiIiIuDj44MGDRoI/4UVoq6ujvDwcN7/a4rZSfn6+mL+/PkCr82dOxcjPHyEbq+opAw1dQ28ePYEWjqcwbEXzx5DXaOewDe3AOfbHo16wi93yp9q2sqsLY6du857fZyLA8z5ruHP/4O5cZOmWLJqA6/+xKGkpAw19Xp4/vQJtLlleP70CdQ1NAW+KSkoQ/0Sy9DavC1OXLzBe91tpD2vDC9fPIequgZ69xsAAKirqoZBQx2xae1KzJxftoEzpfw64Iv/xdOy10Fr87YIunCdL34HmLcr/j4KElXEH8unPCpahtbmbXGSL4/G8uURAFhZ94WVdcFNvXt3tcCgoQ5ilUFBSRl11TTw+sVTaGpzzkGvnz+Fqno9gVkAAKCgqAQ1jeLrQbthI0hLF3/Zwb3b1/E0/BE6NtMGAGRmZCA3LxddWuriSsi7MsVfkEePoaXDif/Fs8dQE5JHCopKUC8hjz5FfEBWZgacXcdBQkICUlJSsHNywcihNgDwy/VlpaikDFU1Dbx6/gT1uXXw6vkTqJWhDvLl5eXh2MG9cPWYLLCNTsPGYl8aIoywc9JzMdpza7O2OH7+Ou91dxcHmHHPSbdvXEV4yEM0a8TpizMy0pGXm4uWTbUQ8vJTmeJXVFKGqroGXj4rqIOXz55ATUN4HagXVwcoVAeBe+E6YXKR7VqatkHg6au8/3u5OqF1G4syxV60DAVt4eXzx8WXoTRtYTRfrg8vmut5eXk4ErgHbhOmiBV7vsrQt1X0zxfFnVOF1UFp8iiz0DlzmJMLRvDlUSuztjh69jrv/+NHOYh9H6e/2RYa6P6Zc+q/qjLdj+VvoJkv5K9o0KABqlWrhocPH/JeS0pKwps3bwAAzZs3R25uLuLi4qCrqyuwqKqKdxlAWdy5cwf9+vWDg4MDmjVrhgYNGvBiBQB5eXmBGGvUqAGgYODl7du3uHz5MmrVEvwGWkNDg7ePlpaWwDoJCQmoq6ujRo0aOHDgADQ1NdGiRQve+pycHIGbAr9+/RqJiYlo2rQpqlatKhBPcYMvUlJSAjcjLo6Pjw+SkpIEFh8f4QMv+QbbOWHD6mWIi41BXGwMNvotxxAH4d/+2jm5YPf2TYiJjkJmRgbWrlyCdu078b7xefYkHFlZWcjMyMCBPTtwP/gmRo4ZD4DzzeNw275o0FAXy9Zs/i1/MOeztXfC+lVLeWXYsHoZ7JyEl8F+uAt2bf0P0V+jkJGRgTXLl8CiQ9EyZGRkYL//Dty9fROj3DwAAMYmzREbE43zZ04gLy8P37/F49ih/TAwNhEv/mFOWM9XBxv8lsPOUXj8w4a7YNe2Tbz4165YAgshdZCRkYEA/x24d+cmXMZy6iDqSyTuBd9CVlYWsrOzcer4EVw8dwpW1n3Eih+oHHk0xN4J6/jyaP3qZRhWQh7t5MsjPxHyCAAeh4UgJycHqSkp8Fu+GAkJP2Br5yh2GfrZ2mP7hpX4FheLb3Gx2LFxFfoPdRK67YBhzjiwewtiY74iMzMDW9Yug2m7jpCRlUP16jVg3X8Idm3yQ3JiApKTErFrkx86dusFAJgyxxfHrz7EwfN3cPD8HQxyGInWbSwRcOamWPEPsnPCf37LER8bg/jYGGxas6L4PHJ0wR6+PFq/cgnacvOooa4eZGTlsHfnFs7vOTUFB/ft4t1/4lfrxdF/iCM2r12O+LgYxMfFYMu6FRg4zFnotrYOI7F/5ybERn9FZkYG/vPzhblFR943uAAQfPMKEn98Ry8bwUcwV69RA30GDMX2jauRxK2j7RtXo7NVb7HLYDvMCRv8BNvz0OLOSU4u2L1tE2K+ctvziuLbc8Ae7jmJ257nLF6Bq3fDcf76fZy/fh8OzqPRxqIDzlwR72lBA4TUwaDi6sBxJPbtKKiDjat80cZSsA7u3LiChB/f0bt/0cdgv3gajp/c8h3atwsPgm9iuOt4seIHgEFDnfDfmkJtoZjLgYYWbgurlqCtpWBb2MeX64F7i+b67eucMvYZYCt27PkqQ99W0T9fDLJzwka+c+p/vzin+vPl0bpfnFMDC50zn/P33Xt34l7wLV7fLVYZ/lJbqF6jBvoNssPW9at459St61ehaw/xz6mk4qOZL+SvkJeXx/DhwzFlyhTUrFkTKioqmDt3LqpUqQIJCQk0btwY9vb2cHJywqpVq9C8eXPEx8fjypUrMDY2Rq9evf5qvI0aNcKRI0cQHBwMZWVlrF69GrGxsdDX1y92n+zsbAwaNAihoaE4ffo0cnNzERPDuelkzZo1ISUlVey+K1asQI8ePVClShUcO3YMS5cuxaFDhwRmAVWrVg0eHh5Yt24dqlativHjx8Pc3FzgUq5f0dbWxv379xEREQE5OTnUrFlT4NKmfNLS0pCWli56gNTiLz3ymDwDCQk/0LWtCQCg/2A7jJvIuWfAjEmcTnPJqg0AADfPKUhMSEDPDpzY21h0wOr/dvKOtXvbRlw4cxK5uTlo2docAcfPo66aOgDgwpkTCHt0H69ePMX5Myd4+yxZuQE2g8W7dMFrygwk/viOTmacDrS/rR08vDllmD5xHABgqd9GAMC4iVOQmPgD3S05l4K1teyAtZsL7k+0c8tGnD99Ajm5OWhlao6DJy5AlVuG+lo6+G/7XqxetggT3UZBunp1WHbsgnlLhD/CtLQ8p3DqoLO5CS/+8dz4fbw5deC7mlMH47w4dWDVnlMHbS06YM3mgjrYuYVTBzncOggMOs+LPy01DXOnT0LEx/eoKlkVOrqNsGnnfrRoXTAbrKwqSx4l/PiOjtw8GsCXR9O4ebSMm0fjuXnUjS+P1vHl0Y5CeXSIL48AwHfBLISFPIQEJGDZqQsOn7zIuwRCHKMnTENiwg/078yJq9cAW7iM53xbv8jHCwAwy3cNAGCkuzeSExMwxKotAKBVm/ZYvGYr71hT5y3FklmTYG1hDCkpKXToao3JczjfwCooKUNBSZm3raycPKSkq6OuakEZy2L8JB8k/PiBbu2aAwBsBg2FuxfnevuZkzl/pCxeuR4AMNZzMhITf6BXR07+mrdrj9Ubd3DjkcO2fUewbMEsrFoyD5KSkmhp2gYrN2wv1XpxuE2cjsSEH+jdoSUAoM+AoRjDnU0wb9oEzr/L1gEARo+fhKTEH7DpynlUt1m79li2XjCGowf2oHtvmyLf8gKAz4LlWDhjIrqZG0BKSgqduvfC9HlLxS7DhMkzkPDjBzq3MQEADBhsh/Hc9uzDbc++3Pbs7jUFiYkJsOJrz2s2FbTnXVsFz0kH+M5JSkrKUOLLIzl5eUhLV4eqesGs1LJw9+bUgbUlpw76DhyKsZ6cOpgzlVMHC5Zz6sDVYxKSEn6gbxduHbRtj+WF8uBIwB5YFVMHe7dvwqVzp5Cbk4Pmrc3gf+Qs6qqqiRU/wGkLiQk/0N2C0xb6DRoKN25bmMVtC4vy28KEyUhK+IHenQrawiq+trB17xEsXzgLq3wLcn1FoTw7HLAbPXr3F1rGsqoMfVtF/3zhwT2ndi3FOdWNe0615jun+vHl0XbuOXMl3zlzFV9b2b3tP1w4exK5OTloYWqOgGPnxO4TgL/bFmYvXIG5073QoVVTSElJo0uPXpi5QPijxSs6mvkiGglGvzHyl6SkpGDs2LEICgqCgoICpk6disDAQHTu3Bm+vr7Izs7GokWLsGfPHkRFRaF27dowNzfH/PnzYWRkhN27d8PLywuJiYm8Y86bNw9BQUECl9w4OzsjMTERQUFBADgDDl5eXrxHWgOcWSbHjx/nPYY5IiICOjo6CAsLg4mJCX78+IGRI0fiypUrkJGRgaurKyIjI5GUlMQ7bmH5xxDm2rVr6NixY7G/m86dOyM0NBRZWVlo1qwZ5s6di549C+5Mn1/2nTt3YsqUKYiKioKlpSV27NiB+vWFT08V9rt48+YNhg8fjsePHyMjIwMfP36EtrZ2sfsX9ul78YMv/zqtWtKISvxZ3mGIRUNJCl8SKm4dAEA9ZekKn0dfK3geqStJ4fFn8W7kWd6aacrj47fM8g5DLDq1q+NVdHp5h1FmTdRk8PlHxW3LAKBZUxpvYituHQBA47oy+BBfcdtCgzrVK0W/Vhk+X0RU8HOqdu3qFb4tVESqo4/8eqPfIGbboL/yPn8aDb6QcpOWlgYNDQ2sWrUKLi5FnwhA/j0V/Y/myvDhqDJ8SK3oeUSDL+WPBl/KHw2+/Bto8KX80eDLv4EGX8pH3VGH/8r7xG4verlmRUSXHZG/JiwsDK9evYKpqSmSkpJ4j1Pu169fOUdGCCGEEEIIIYT8OTT4Qv6qlStX4vXr15CSkkLLli1x69Yt1K5du7zDIoQQQgghhBAiArqIRjQ0+EL+mubNmyMkJKS8wyCEEEIIIYQQQv4qGnwhhBBCCCGEEEKIaGjii0iKPmOWEEIIIYQQQgghhPw2NPOFEEIIIYQQQgghIqF7voiGZr4QQgghhBBCCCGE/EE084UQQgghhBBCCCEioZkvoqGZL4QQQgghhBBCCCF/EM18IYQQQgghhBBCiEho5otoaOYLIYQQQgghhBBCyB9Egy+EEEIIIYQQQgghfxBddkQIIYQQQgghhBDR0FVHIqGZL4QQQgghhBBCCCF/EM18IYQQQgghhBBCiEjohruioZkvhBBCCCGEEEIIIX+QBKPhKkIIIYQQQgghhIhA2WH/X3mfhH32f+V9/jS67IgQUmo/0nLLO4Qyqykricyc8o5CPNWrAokZFbcOAECphiTex2WUdxhl1lClBmKSsss7DLGoKlZDbHLFLkNdhWr4mvizvMMQi7qSFOJSKm49qMhXQ3xKxT6p1pGvWinyKD614tZDHbmqFbodAJy28PFbZnmHIRad2tUrRb8QU4HLoKpQrbxDIH8BDb4QQgghhBBCCCFEJHQRjWjoni+EEEIIIYQQQgghfxANvhBCCCGEEEIIIUQkjLG/sohq48aN0NbWRvXq1WFmZoYHDx6Uar/AwEBISEjAxsZG4HVnZ2dISEgILD169BA5Lhp8IYQQQgghhBBCSIV38OBBeHt7Y+7cuQgNDUWzZs1gZWWFuLi4EveLiIjA5MmTYWlpKXR9jx49EB0dzVsOHDggcmw0+EIIIYQQQgghhBDRsL+0iGD16tUYPXo0RowYAX19fWzevBkyMjLYuXNnsfvk5ubC3t4e8+fPR4MGDYRuIy0tDVVVVd6irKwsWmCgwRdCCCGEEEIIIYRUcD9//kRISAi6du3Ke61KlSro2rUr7t69W+x+CxYsgIqKClxcXIrd5vr161BRUYGenh7c3Nzw/ft3keOjpx0RQgghhBBCCCFEJH/raUdZWVnIysoSeE1aWhrS0tICr3379g25ubmoW7euwOt169bFq1evhB779u3b2LFjB8LDw4t9/x49emDAgAHQ0dHB+/fvMWPGDPTs2RN3796FpKRkqctBM18IIYQQQgghhBDyT/L19YWioqLA4uvrK/ZxU1JS4OjoiG3btqF27drFbjd06FD07dsXRkZGsLGxwenTp/Hw4UNcv35dpPejmS+EEEIIIYQQQggRyd+a+eLj4wNvb2+B1wrPegGA2rVrQ1JSErGxsQKvx8bGQlVVtcj279+/R0REBPr06cN7LS8vDwBQtWpVvH79Gg0bNiyyX4MGDVC7dm28e/cOXbp0KXU5aPCFEEIIIYQQQggh/yRhlxgJIyUlhZYtW+LKlSu8x0Xn5eXhypUrGD9+fJHtmzRpgqdPnwq8NmvWLKSkpGDt2rXQ1NQU+j5fvnzB9+/foaamJlI5aPCFEEIIIYQQQgghIvlbM19E4e3tjeHDh6NVq1YwNTXFmjVrkJaWhhEjRgAAnJycoKGhAV9fX1SvXh2GhoYC+yspKQEA7/XU1FTMnz8fAwcOhKqqKt6/f4+pU6dCV1cXVlZWIsVGgy+EEEIIIYQQQgip8IYMGYL4+HjMmTMHMTExMDExwfnz53k34Y2MjESVKqW/9a2kpCSePHkCf39/JCYmQl1dHd27d8fChQtLNRuHHw2+EEIIIYQQQgghRCT/4swXABg/frzQy4wA/PImubt37xb4f40aNXDhwoXfEhc97YiQCqJjx47w8vISeT8JCQkEBQX99ngIIYQQQgghhJQODb4QIoJ58+ahSZMmkJWVhbKyMrp27Yr79++XuM/jx49hZ2cHTU1N1KhRA02bNsXatWsFtnF2doaEhESRxcDAQOyYo6Oj0bNnTwBAREQEJCQkSnyOvah+/vyJebOnw7CxFtRqyqBNSyMEBuwtdvtxY0aillxVocvtm9cBAM+ePkb/3t2hrV6Tt66wiePHwsLUBNrqNVFfVQmdLUxx9FBgmeKf6TMNDbXrQVFWGs2N9bF/755itx890hk1qkkIXW7e4MT/34b16GDRBppqdaAkVx2GTRth0YJ5yM7O5h3n7Zs3GGo7EFoadaEsXwNdOlri3t27IsefX4a5s6bDQFcLdZVkYN7CCIH7i68Dd9eRUJapKnTJr4OnTx7Dpld31FetyVsnzI1rV9CreyfUq6OIenUUYWHWAtevXi5TOQAgOzsb83wmokVjdbTU08B8H2/k5OQUu/3l86fRp7MZjLRro61xAwT4b+Ote/v6JRwHWqNFY3WYG2pj5qRxyEhPL3KMb3GxaKmngT6dzcocN8Cph0VzfdBCXwdaKnJob2aMQweKrwdPNxeoKUkJXYJv3eBtd3D/HrQ3M4aWihxa6Otg8bwZArl0/EggenZuCy0VOagpSWFAr65ilSM7Oxs+kz2hV18FTbTqYsYUr2LroIG6ssBSr5YMOrVtIfKxMjIyYG7SFI3r1xErdv73nTnFE/radWGgo4pZU4svAwBcPHsK3SxbQ1dDGS2aamPPzq28dU/CQ2HToxP06tdGGxM9HA7cJ7DvzWuXYdXBDI01a6GjeTNcuyzet2M/f/7Ewjk+MGmiA83acrBsbYxDJZxTJ4x1QV0FKaHLHb48Cty/B5atjaFZWw4mTXSwcK5gHgHAzetXYdOzC3TUlKGjpoxObVvixrUrIse/YI4PmjXRRr3asrBobYyDJcTvMXYkVBSqCV0E4/eHRWtj1Ksti2ZNtAXij/wUUewxbKxL/xQK/jIsnjsDLQ0aQKeuPDqaNytS74WlpaZi/qypaG2oC20VOTRvooXxo4fz1sfGRGPiuNFoadAADVQVYNXBDJcvnBU4xtGDAejZqQ2a1K8DXQ1ldGpjgm2b1okcf34ZFsz2QTM9bdSrJQuLVr+ohzEjoSJfTegiUA/7/GHRyhj1asmimZ42Fs4pVA/FHMOmZ9nqoTzaQnHHuX/3jshlADjno7nTvGCiq4bmjdQxb/rEX/ZrvTqawUCrFswNdbB/t2C/Zj+gJ0x01WCqr40Z3gX9WtSXSBhq1RZYGqnKYbTDoDLFDRTUQfOmOqhfRw6WpiX3axPcXKCqKCV0KVIHpsaoX0cOzZvqYJGQ8xEAvHr5HDqqilBVlIJRI+E3Pi1NGRbN8UGLpjrQqiOH9r8og6ebC9QUpYQuRfpmU2No1ZFDi6Y6WFyoDJMnuKFTm+ZorFkbuho10b29GY4fEf1z6j+P/aWlkqDLjggRQePGjbFhwwY0aNAAGRkZ8PPzQ/fu3fHu3TvUqSP8j4aQkBCoqKhg37590NTURHBwMFxdXSEpKcmbDrd27VosXbqUt09OTg6aNWuGwYMHix2zsMeq/U5zZ07D1k3rUV9LG/0HDcHpE8cwznUElJSU0MO6T5HtO3XpBkVFJd7/P7x/i0sXzkFSUhLaOg0AAF8+RyI2JgbGxia4c/um0Pfds3s7mpm0QL/+g/D82ROEhTyC60gHKCkroUu3HqWO32faFPy3YR20tLUx2HYogo4fxaiRw6GkrIxevYvG36VbdygqFcT//t1bnD93ViD+oONHERsbg27deyA5OQlnz5zG4oXzkZWVhYWLfZGUlATrHl3x5fNntO/QEerqGjh8KBC9enTFkxdvoKGhUer4AWDOjGnY8h+nDgYMHoJTQcfgNnoEFJWU0LPXr+vg/buCOtAqXAfNTHDnlvA6OHv6FByHDgQAdLPqCTV1Dbx/9wafIyNFip/fRr+lCLkfjPO3QgAALnY22LR2OTwmzSiy7Y2rFzF3uhdWbdyJ1ubtkJqSjG/xcbz13m7OaN7aHDsOBCElOQmuDgOxYfVSTJm1QOA482Z4Q9+wGRITvpc5bgBYMHs6dmzZAM362ug3wBZnTh2Hp5sLlJSU0b1n7yLbd+jcFQp89fDxwztcuciph/raOgCAs6eC4DVuFGTl5NBvgC3uBd/GhjUrkZ2dg3mLlwMAXjx/iipVqqCBbiO8evFcrDIAgN+KJXhw7w5uPngMABg2qA/WrlqKSdNmFdn2w9cEgf93atsCNgNsRT7W8sXzUU+zPn78+CZ2/ACwdqUvHtwLxrV74QAAh8F9sX71MkycOrPIttcuX4DPFE+s37ILZm0skJKSjG9xnEdUJiUlwtG2HyZNnw374ZfxOCwEwwb0gpaWDkzbtMOniA9wcbTFf9v3okv3nrhy8RxGDx+KK3dCoKXdoEyxz581Hds3b4CmljZsBtri9Mnj8BjrAkVlZViVJo/ev8Nlbh5p8eWRpxsnj2wG2uJu8G1s8FuJnOwczF/CyaPzZ09hxDBOn9Olew9ue36LL59Fa8/zZ03Dts0bUF8g/pFQKib+jp0L9wlF4z9zKggT+OK/F3wb6/1WIDs7GwuWrIC8vAJc3TwEjns4cD8SEn6goW4jkeIHgEVzpmPHlo3QrK+FvgNscfbUcXi5uUBRUUloW87OzobdgF4IeXgP9bW0MWioA7IyM/H+3RsAnCdtOA2xwbMn4TA2aYGOnbsh6OhBjBg2EGeu3IGxSQuEhTzEhLGcm0F269EL1WvUwKnjRzBvxhTU19KGlXVfkcowf9Y0bNtUqB7GjISSkjKsrIXUQ5duAn3bh3dC6uFkCfXgy60H90L1cKDs9VBebSFf7379oaZej/d/VTV1kcsAABtWL8Wj+3dx8XYoAGDEUBv8t2Y5JkwW0q9duYg5Uz2xetMuof2a1xhntDA1x67AE0hJTsIo+wFYv8oXU2cvhEa9+nj2qeAc+vPnT7QxaoDe/cs++LJgNrcO6muj30BbnDl5HBPGFt+vdezctUh7viKkDrzcuf3aQFvcu8Pt13JyMH9xQR1kZGRgzAh7oYMyopZhR6EyeJZQBmF5JLRvLqYM+X3zfv8dMGrWHH36DcSL508RHvoI7i5OUFRSRueuot2klVQijJDfJDk5mQ0bNozJyMgwVVVVtnr1atahQwfm6enJGGMsMzOTTZo0iamrqzMZGRlmamrKrl27xtt/165dTFFRkZ06dYo1btyY1ahRgw0cOJClpaWx3bt3My0tLaakpMQ8PDxYTk4Obz8tLS22cOFC5ujoyGRlZVn9+vXZiRMnWFxcHOvbty+TlZVlRkZG7OHDh7x9vn37xoYOHcrU1dVZjRo1mKGhIQsICBC5zElJSQwAu3z5skj7ubu7s06dOhW7/vjx40xCQoJFRETwXuvQoQMbN24cGzduHFNQUGC1atVis2bNYnl5eSW+FwB2/Phx3s/8S4cOHUSK+3tqjsDy+mM0k5aWZgDYrXth7HtqDlu8bBUDwJo1b1lke2GLzYDBDAAbMGhIkXWHjp/mxVp43YVrd3g/xyZmMi1tHQaAubp5CH0fxhjLyBZcIr/G8eJ/GPqEZWQztnylHwPAWrRoWWR7YcvAwbYMABs8ZCjvtVvBD1j6zzze/4fZOzIAzMjImGVkM3b85BkGgMnKyrKUjGyWkc1Y7779GAA2zsOz2PdijLGE9ByB5e2ngjq4/SCMJaTnsCXLOXVg0rxlke2FLf0Hcutg8JAi6w4HFdRB4XXaOg0YALZxy45SvU9COqce3sWmF7uoqmuw9dv38/6/bts+pl5PU+i2RiYt2KIV64s9lqycPDt0+irv/97T57JOXXsIbLNp90HWxqIjW7Z2C2tqYFRibO9i0xljjEUn/iyyPH0XxauHq3dCWHTiTzZ/yUoGgBmbtBC6T+Glb/9BDACzGWjLe83Q2IQBYIuW+bHoxJ/s0s0HDACTlpZmz95/Fdh/vNdkBoC1ade+xPdhjLGYpJ/FLuoa9dg2/wO8/2/dHcA0NOuXuE9M0k929uodJikpycJfRYh0rAvX77Em+gYs8NgZpqCo+Mv3iUnilCEqIavYRU29Htuy+wDv/5t3BTCNevWFbtuseUu2zG+j0HV7DgYxdQ1NgddshzmxwXaOLCohiy1esZaZtbEQWN/GogPznjarxPiiErIYY4zFJv8UWJ5/KMija3dDWGzyT7bAdyX3nNqiyPbClr4DCvIo/zWjZpw8Wrzcj8Um/2RXbhfk0YuPX1ls8k+mpc1pz2s3bS/V+zDGWFxytsDy4sNXXvzX74ayuORstpAv/sLbC1v6cfuE/gOH8F7Lj3/Jcj8Wl5zNrtx+yIv/5cfoIse49eAxk5CQYBISEuz2wyfFvpewPHry9guvDJdvh7CohCw2b8kKXlsWVpdrNu1gAFjDRo3Z++ikIuuv3Q3nnUfDXn1iUQlZzGXseAaAWVn3YVEJWWzDVn8GgCkp1+Tt10ivCQPA5i1ZUWIexaVkCywC9XAvlMWlZLOFS/nqodD2whZePQwawnuNVw8r/FhcSja7cqdQPRQ6xq2HhepByPsIawfl3RaGDOP02cfOXCp1W/gQn1HsoqauwTbs2M/7/4btnH5N2LZGJi3Y4lUbij2WnJw8O3zmKu//k3zmsU7degrddv22vUxRSZm9/JxQYnwf4jOE9gvP3vPVQXAIi0kqqANjkxalOlfz92v5rxnl92vL/VhM0k92+VZBHTz/8JW3naPzKCYnL8+8Jk9nAFgdlbq/7Beik34KLE/5ynA1OIRFJ/1k8/nKUHh7YYtA38x9zZCvDNFJP9klvjI8+/CVRSf9ZGeu3OZt//l7Oquvxfmc6jJ2vND3qahqDNjxV5bKgi47Ir+Nt7c37ty5g5MnT+LSpUu4desWQkNDeevHjx+Pu3fvIjAwEE+ePMHgwYPRo0cPvH37lrdNeno61q1bh8DAQJw/fx7Xr19H//79cfbsWZw9exZ79+7Fli1bcOTIEYH39vPzQ7t27RAWFoZevXrB0dERTk5OcHBwQGhoKBo2bAgnJyfeTaEyMzPRsmVLnDlzBs+ePYOrqyscHR3x4MGDUpf358+f2Lp1KxQVFdGsWTORfldJSUmoWbNmset37NiBrl27QktLS+B1f39/VK1aFQ8ePMDatWuxevVqbN++vdTvm1++y5cvIzo6GseOHRMp7sJevXyOrKwsVK9eHfqGRgCAlq05l248f/oYubm5Je4f+SkCp05wYhjvNUmk927VWvASkaysLACAmnrpv5l6+aIgfkMjTvymZuYAgCdPfh3/p4gIBB07CgCY6D2FL7bWkJCQKIjtJyc2de6MlurVqwPg5OGzp0/x/ft3fHj/DgDwODys1PEDgnVgwK2DVqac382zUtbBySBOHUwQoQ4+vH+HiI8fAABnTp2AllotNG2giSkTJyA1NVWkMuRLSkxAzNcoNDU05r2mb2iMr18+IyU5SWDb9LQ0PHschpiYr+jaxhjmhtoYP8oecbHRvG1GuXvi+KH9yMzIQHxcDC6eO4nOVta89SnJSVgydzoWrijbtH5+b16+4NVDUwPBtvDi2ZNf1sPnTxE4c/I4AMDNg1MPOTk5ePn8KQCgecvWAABDYxNIS0sjKysLb169FDvuwhITEvA16gsMjQrOaYbGzRD1ORLJSUkl7Akc2LMLnbtZ8b4dLs2xcnJyMHnCWPiuXIdqUlK/pwyJCYj++gUGRgV5ZGBkjKgvRcuQnpaGJ+GhiIn+CotWBjDRqw9XZzvExnDyKC8vr8jNBPPy8nj1woSsZ3zrRfWaL4/0DQqfU3+dR5GfInDmBCePxnkW5NGLZyXn0cf37/ApgtOez50+gUaadWDcWAs+kzyRJkJ7/h3xn+b2CeM8vYuN3+gX7WDzhjVgjKF7j15orNe01PEDwOtX/G2Z85jRFq1Kbss3uZdaysnJw6qDKXQ1lGHduS1uXudcsiVdveBpGOGhj5CWmoo3r14AAJ494cwK69K9J5rqGyIx4Qec7QZg7Eh7vH39CobGJhhoO6zMZSjXeljPVw9NRKyHcmoL/JyHDYKWigIsWxtj63/ry3Rj0aTEBER/jYK+YcF5sKlhM3z98hnJxfVr0V/R2cwIpvraGDdyGOJi+Pq1cV44diiA06/FxuDC2ZPowtev8Tu03x/9Bg6BNPczh6hei9mvRfL1a+4T+OqAe35sUUIdnAo6ir27t2O53wZoN9AtU/zAb+6bJ4jWN7doZSpwrJ/cz4JqZZxBRSoHGnwhv0VKSgr8/f2xcuVKdOnSBYaGhti1axfvpBYZGYldu3bh8OHDsLS0RMOGDTF58mRYWFhg165dvONkZ2dj06ZNaN68Odq3b49Bgwbh9u3b2LFjB/T19dG7d2906tQJ165dE3h/a2trjBkzBo0aNcKcOXOQnJyM1q1bY/DgwWjcuDGmTZuGly9fIjaWM5VcQ0MDkydPhomJCRo0aAAPDw/06NEDhw4d+mVZT58+DTk5OVSvXh1+fn64dOkSateuXerfVXBwMA4ePAhXV1eh679+/Ypz585h1KhRRdZpamrCz88Penp6sLe3h4eHB/z8/Er93vmXRtWqVQuqqqolDgCVRhz39ykrK8d7TY77c05ODr5/K/kSgs0b1yE3NxeWHTqhmUmLErctTl5eHiZ5uiMm+iuaNDXAiFFjS71vTEwMJ2Y5vvjlCuL/9ov4169bg9zcXHTs1BnNWwiPf98efxw7chhycnJYuJhzaZmFZXu079ARubm5aGPaAvVUa+PFc87lIrGxMaWOn7M9tw74yiArQh1s2sCpg/YdO6FZ89LXQTzfNOiwkEfoP2Aw8vLysH3Lf5gxxVuUIvCkpaUBABQUFHmvyXN/Tk1NEdg2KSkBjDFcPnca/odO48r9Z5CSksYkdxfeNh06d8ej+3fRrKEK2hg1gJp6PQyyK7gHw7IFMzFwqINYH+zyxcVx6k1Glr8eZAFw6uHH95LrYeum9cjNzYVF+04wNmkOAPjx/RvvHJp/LP734B9o+l3S0jh/aCvwXX6QP/26cB0I7peGoGOHYO80UqRj/bd2FQyNTdCmneVviJ77vtzBAv6p74rFlCExkZNH58+cROCxs7gT8gLSUtLwGOMMAGhpao6M9DTs2vofsrOz8fBeMM6fOYHUlGQAgGWnLngc9gjnz5xATk4Ozp85gYf3g5HCXS+qOG775z+nysoV5NH3X+XRf9w86lBMHskV5FH+e8TGROPbt3je6+GhIejbfxDy8vKwc9smzJpe+kFZ4fHznY9+GX9Bn2DM7RO+C8Rf9DwXGyPYDuLiYnHkYACAgj+6RRHPPacKtuWCMghry9++cc6Hj8NCoNNAF23aWuJxWAhG2A3Ah/dvoaXdAAO4Aygjhg1EY81auHX9Kuf9uOcOBUVF2DmNgLS0NC6dP4NTx4+gevXq6NnHBopKyiKVoVzqIfb31kN5tQUAkJKWhkWHTug3YDAsOnTG2zevMXv6JGzZKPpAPe88qFjQr+X/nFZMv3bp3CnsPXIa1x48g5S0NCa6F5xXO3TpjpD7wTDSqQMzQx2oa2hg8LDhKCzq8yfcuXkVQxxGiBxzvvjYov2ajAj92rZf9GsyssLrIPJTBCZPcMNQh+EYMNiuzPEDBXn0V/vmQuekvLw8TPMah5jor9Brqo/hLmPEKtO/hjH2V5bKggZfyG/x4cMHZGdnw9S0YJRXUVERenp6AICnT58iNzcXjRs3hpycHG+5ceMG3r9/z9tHRkYGDRs25P2/bt260NbWFvjjuG7duoiLK/jDDwCMjY0F1gOAEXcmA/9r+fvl5uZi4cKFMDIyQs2aNSEnJ4cLFy4gknuviv379wvEeevWLd6xOnXqhPDwcAQHB6NHjx6wtbXlHbdnz568fYTdLPfZs2fo168f5s6di+7duwv9Xfr7+0NJSQk2NjZF1pmbmwvMqGjTpg3evn2L3NxcLFmyRCDmSDHuu5GVlYXk5GSBJX9mCT8V7u81/8MFUPDHTdWqVVGrhEGppMRE7NuzEwDgIeKsl3xpaWlwtBuIff47YdysOYLOXIK8vHyp98+/Hw7/TI2UlIL4SxpUS0xMhP+uHQCAiZOmCN3Gd/FCjHZxRs2aNXHm/GUYcfO0atWqOHvhMvbsD8Q0n5lYvtKPd4w6dVRKHT9QkNv8306LVAf+ZasDFZW6vJ8XL1+FNRs3Yz53cOn0qSCRjpUv/0MM/x+u+T/LyckX2pZzTnAa5QYNzfqQlZWD59RZuHfnBtLT0pCUmACnwb0xxGEEnkZ8R8jrKNSQkcUk7ofYh/fuIOTBPbiOL1vuFaaiwsmldIG2wPm5atWqqFmr5Ho4sI8zCO02oWDgqmat2pCUlARQMDDF/x4qddV+S+z88n+vKXwzRPJ/LlwH/E4FHUWNGjLoyvcN7K+O9fH9O/jv2oY5C5fid8r/w5D/W+X8n4vkEXdblzHjUK++FmTl5DDJZzaCb3HyqGbNWth94BiOHzkIE736WDJ/FoYMc4JyzVoAAN1Geti0cx9WL1uMZo3q4cDe3eg3wJa3XlQqdTl5JHBOTSnIo1q/yKOAvZw8GldcHqUW5FH+e9RVVRM47yzwXYFV6zZhzoIlAIBzp06IGT/f+egX8e/nxV/QLmsJxF9wXP74+e3YvBFZWVlo2coU5m0tSh17vjrcc2p6Mf2asLZcuw5nn0Z6TbD7wDHsPXwS9bW0kZmZietXLgIA1m/ZBf/A4/CaMgMz5i7G7AW+nPLV5vzuL547jTnTJ6F69Rq49egZwl59gqqaOlYsnod9u0s/wxX4DfWwh1sPniLUQ90S6qGd6PVQXm0BAFas2Yijpy5g5dr/sP9wEEZz7yd04thhkcvBOw8m8/Vr3J9li+nXho9yh4Ym53zkNXU27t0u6NccB/bCEIcReB75A2Fvv6KGjCy83YoOsBw+sBf6RiYCM0lFVadu0X4tTYR+Lb8O3D2F10F6mvA6uHD2FJKSEvH50yc42NrwbjqdnJQIB1sbgS9/fkVFSBlE6pu5ZXArpgxC+2a+c1J6WhpG2g9CwN5dMDQ2wZFTFyEnwudUUvnQ4Av5K1JTUyEpKYmQkBCEh4fzlpcvXwo8+adatWoC+0lISAh9LS8vT+A1/m3yByeEvZa/34oVK7B27VpMmzYN165dQ3h4OKysrPDz508AQN++fQXibNWqFe9YsrKy0NXVhbm5OXbs2IGqVatixw7OH+Hbt2/n7XP2rOBTDF68eIEuXbrA1dUVs2YVvXElwBk93rlzJxwdHSEl4hT8sWPHCsSsLsLlN4X5+vpCUVFRYPH19S2yXZOmBpCSkkJmZiZvKu+jh5ynPxkYGkNSUhJvXr/Cm9evkF7oKTO7d25FWmoq9A2MRLpBbr7o6K/oY9UJ58+cQg/r3jh14RrqqIg2cNFUvyD+Z0858T+4fw8AYGTEif/1q1d4/apo/Nu3bUFqaioMDY3Q3Uow/p8/f8LF2QkL5s1Bo8aNceP2PZiaCV4mlZubi8G2QzBvwSKMch2Dc2dPAwC6dO0mUhn46+B5fh08KF0d7NqxFampqdA3NELX7qLVQT3N+lBSFv5tLP83laJQVFKGqroGXj57wnvt5bMnUNOox5sBk09BUQnq9YQ/+YCBITLiA7IyMzB8tDukpKSgqKQMOycXXL98HgAQfOsaPkd+RLtmDdG6qSYWzJiEN69eoHVTzTLNKGncVJ9XD/nTkUO4baGpgREkJSXx9s0rvH1TtB727t6GtNRUNNU3FLgJX9WqVdFUn3PZQ1jIQwDA08dhyMrKgrS0tMjT+EtDSVkZ6hr18OzpY95rz54+hkY9TYFvbgsL2LMTtnYOqFq14D7+vzrW/XvB+BYXi3YtDaCvowbnYQORkpwMfR01hD4q/SWgRcqgpAw19Xp4/rQgj54/fQJ1jaJlUFRUgka9+kKPk/9NW2vztjh58Qaef4jG8XNXERcXC/O2BTN1rKz74uLNB3j+MQb+gcfx8cM7gfWi0OPLoxeF8kjfsOQ82rOLm0cGhujcrVAeGZScRxqa9aFUzOwK/lkOfzJ+fzHiz5eeno7dO7YAANzLMNsCAPSa8LflZwCA0EeCbfndm1d49+YV7ykz/Je4FZZ/Pvz58ye6Wlljyoy5GOsxEde4gzLtO3GeAvSBe3PeWnXqoEHDRlCpq8q7Afrb16JdYshfhmLr4fUrvBXSL/jv/E31sJ1bD2X8cqW82gIAfHj3VuB4+eeCrKxMkcuhqKQMNXUNvHhWcB588ewx1DTqCczyBH7RrzGGT9x+zdl1nEC/du3SeYFt8/LycOTAHgxxcBY5Xn56JfRr+r/o1wTqoJh+LbSYOsj/fd+5dR2XL5zlncuzsrJw+cJZoU8tLI5YfXMpylBSHsVEf4VNz864cPY0uvfshaBzV1FbxC/YKgTG/s5SWfy528mQ/yfJycmsWrVq7MiRI7zXEhMTmaysLPP09GSvX79mANjNmzeLPUb+DXf5zZ07lzVr1kzgteHDh7N+/frx/q+lpcX8/PwEtgHfTWYZY+zjx4+cG92FhTHGGOvduzcbOXIkb31ubi5r1KiRwHFLq0GDBmzu3LklbvPs2TOmoqLCpkyZUuJ2165dYwDY06dPi6zr0KED09fXF3ht+vTprGnTpiUek/93ERUVxQCwR48elbhPZmYmS0pKElgyMzOF3sh21JhxDACrr6XNhto7MVlZWQaA7TlwlH1PzeHdZPDE2cu8fWISODegA8A2bt1V5Jh3Q56xofZOrEOnLrz9h9o7saH2TuxNRAz7nprD1DXqMQBMXkGBjR47no1xn8DGuE9gW3buLfUNdzOyGRvrzrnpoZa2NnNwHM6L/+CR4ywju+AmxRcuX+Ptk5z+k6lrcOLfvtO/yDHthjkwAExCQoLZOzixcR6ebJyHJ5s9dz5vmy5du7HeffuxESNHsQYNGzIATKdBAxYdnyDSDXcT0nPY6LEFdWDnUFAH+wKPsoT0gjo4df4yb5+4pAymzq2DTdt2FTnm/bBnzM7BiXXsXFAHdg5OzM7Bib2LjGEJ6Tls7sIlDABTU1Nnw0eMYioqdRkA5jNrbplvuDveezrTN2rG7j79wO4+/cD0jZoxz6mzhG7rPX0ua2pgxG6Hv2XPIr6z/rb2rF37zuxdbDp7/CGOKSops7m+q9mrqGQW/j6W2QwexlqZtWXvYtNZ2LsYdivsDW+ZMX8Z09Vrym6FvWGvv6aIfMPd6MSfbORodwaAadbXZrZ2jkyGWw879x1m0Yk/eb/Ho6cu8faJjE/jtYW1m3YUOeY2/0AGgMnKyTFbO0emWV+bAWCj3Sbwttm57zCztXNkTfQNeDcltLVzZGPHTyzTDXcnTp3BjIxN2JM3kezJm0hmZGzCpsyYU+z2tx89ZRISEiw49LlIx/oQnchCX3zgLVt3BzB5BQUW+uIDi4xPFeuGu15TZjBDYxMW9uoTC3v1iRkam7DJPnOEbjt15nymb2jMHj3/wN59TWSDhjowy46deesv3LjPPsQks3dfE9nyNf+x2nVUWMiLj7z1Z68Gs0/xaex15Dc22WcO027QkL398qNMN9yNTf7JRrpy80hLmw0ZVpBHuwIOs9jkgjzivxnol+8FebR+844ix9yxtyCPhgxzZJpanDxydZ/A22bW/MUMAFNVU2cOzi6sDrc9T50xp9Q33I1LzmYu3PjrF4p/d8ARFpeczYv/+JnLvH2ivqfzxb+zyDF37D0oEH99bvxj3CcIbOe7ci33XKrLYhKzfnlz3+LyaMRoN25b1mKD+dryjn2HWFRCFq8Mh09dZFEJWex15DdWu44KA8C69ejFOnfrwWuLT95+4d2ouWOXbsx+uAtrqm/IwL257r3Hr1lUQhY7dekWq1KlCgPAunTvyfr2H8wkJCQYAIGbR5fmhrtxKdnMZUwJ9ZDCVw9nL/P2ifrBVw9bdhY55o59xdTDuAkC2/mu4tZDQ10Wk5RV4o19i2sH5dkWJCQkmKl5W+bg7MK6Wlnz6mH+kuVluuGuxyQfZmBkwu4/+8juP/vIDIxMmNe02UK3neQzjzU1MGbBT96xF5E/2ABbe9auQ2f2IT6DPf0YzxSVlNm8pX7sTXQKe/IxjvW35fRr/MfYffAkqyEjw8Lfx/zyRrsl3XA3JomvDuprM1v+Oth/mMUk8fVrpy/x9vn8raAO1m3eUeSY2/fw9WvDCvo1V/cJQmNY8992XnsS9Ya70SWUYef+wyy6UBny94nkK8PazTuKHHNbMWUY7T6Btw3/51SXMePYKDcPNsrNg23c7l+pbrhb3WbbX1kqCxp8Ib/NqFGjmI6ODrt69Sp79uwZGzhwIJOXl2deXl6MMcbs7e2ZtrY2O3r0KPvw4QO7f/8+W7JkCTt9+jRj7O8OvkycOJFpamqyO3fusBcvXrBRo0YxBQWFEgdfUlNTmY+PD7t79y6LiIhgjx49YiNGjODc2fzZs2L3e/r0KatTpw5zcHBg0dHRvCUuLq7Itg4ODszMzEzocTp06MDk5OTYxIkT2atXr1hAQACTlZVlmzdvLva9C/8usrOzWY0aNdiiRYtYTEwMS0xMLHHfwoQNanz9nsbGe3qzuqpqrFq1aqxR4yZs3abtvPXCBl82bt3F+aNdXYPFJGQUOeaJs5d5+xVewp6/Ezhu4WWovZNIgy+JqZnMy3syU1XjxK/XpAnbsm0nb72wwZftOzlPpVDX0GDJ6T+LHNOyfQehsdXX0uJt4+U9mamqqrKqVasyFRUV5jR8BPv4ObrEJysxJnzwJSYhjY338maq3DporNeEbdi8nbde2ODLpm2cOlBX12BxSRlFjnnqfPF18PjlO5aQnsO+p/5kM+cuYJr1tZi0tDRr1FiPLfRdzr6lZJV58OXllyRmP8KVKSgqMQVFJeY4cix7FZXM3sWmMzsnF2bn5MLb9vXXFDZy7ASmXLMWU65Zi/Xo05/dffqBt/7gqSuspWkbJq+gyJSUa7LO3a3Z1fvPhb6vuE87ik78ySJiU5ibR0Fb0G2sx/w2bOOtFzb4spb7lBQ1dQ0WGZ8m9Lir1m1huo31WLVq1Ziqmjpzn+DNPsWl8tZPmjZLaD3V09Qq0+DL529pzHnUWKaoqMQUFZXYSFd39uV7OotJ+smcRoxmTiNGC2zvPsGbmbezFPlYhZejpy/9tqcdRcSlsuEuY3jvO2K0G/sUn8aiErKYg/Mo5uA8irdt5Ld05jrOk5dHvfoN4D2RJv+PZgUFRSYjK8vad+rCrgaHCbyXZcfOTE5ensnLKzDrvv3Zw2fvfznwUtLgS2R8CnOfwH9O1WNr/tvGWy/sD871mwvy6Mv3NKHHXb1hC2vEl0fjPL3Z52+pvPXRiZls+uz5vPas26gxm7d4GfuakCHS4Mvn+NRC8Tdha//bxlsvbPBl/eadvPijvqcLPa7fhi2sUeMmfPFPYl++pfHWxyRmMZ0GugwAW7pqXamerFRcHn2ISWZjx08UaMurN2zlrS88+BKVkMWu3AllHTp3ZTVkZJhyzVqsq5U1u34vnLd+7uLlTF1Dk1WrVo0pKddkvfoNYLcePRN43y27D7DmLVvz8q2pviFbsnLdL/NI2KDG52/F1AN3vbDBl/Vb+OrhR7rQ4wqth+9pvPUxSVlMpyG3Hlav++VTlYprB+XZFsaM82R6TfWZrJwck1dQYM2atyjxKWCMlTz48vprMnMYMYbXrzm5jGVvolPYh/gMZjd8FLMbPoq37duYVObiVtCv9ezTn91/9pG3/tBpwX6ti1Uvdv3hC4H3s+47gA2wtS/1wEtJgy+f4gT7tUaN9Zjfxm289cIGX9bx1cHnb2lCj7t6vWAduE/wLnbQXdzBl4g4IX3zxm289cIGX9bylSHyW5rQ465aL6Rvjk8tctzCi+0wx8o1+NJvy19ZKgsJxirTPB5SnlJSUjB27FgEBQVBQUEBU6dORWBgIDp37gxfX19kZ2dj0aJF2LNnD6KiolC7dm2Ym5tj/vz5MDIywu7du+Hl5YXExETeMefNm4egoCCEh4fzXnN2dkZiYiKCgoIAANra2vDy8oKXlxdvGwkJCRw/fpx335SIiAjo6OggLCwMJiYm+PHjB0aOHIkrV65ARkYGrq6uiIyMRFJSEu+4hWVmZmLYsGG4f/8+vn37hlq1aqF169aYNWsWWrduXezvZd68eZg/f36R17W0tBAREcH7f1JSEtTU1LB27VqMHj26yPYdO3aEgYEB8vLyEBAQAElJSbi5uWHRokUC94EprPDvYvv27ViwYAGioqJgaWmJ69evF7tvYT/SSr4r/L+spqwkMnPKOwrxVK8KJGZU3DoAAKUakngfl1HeYZRZQ5UaiEnKLu8wxKKqWA2xyRW7DHUVquFr4s/yDkMs6kpSiEupuPWgIl8N8SkV+6RaR75qpcij+NSKWw915KpW6HYAcNrCx2+iX5L0L9GpXb1S9AsxFbgMqgrVfr3RP6iGzda/8j4ZQcIfVFLR0OAL+WPS0tKgoaGBVatWwcXF5dc7kH8eDb6ULxp8KX80+PJvoMGX8keDL/8GGnwpfzT48m+gwZfyUaPflr/yPhknKsdToqr+ehNCSicsLAyvXr2CqakpkpKSsGDBAgBAv379yjkyQgghhBBCCCGk/NDgC/mtVq5cidevX0NKSgotW7bErVu3SnxcLyGEEEIIIYSQCojl/XobwkODL+S3ad68OUJCQso7DEIIIYQQQggh5J9Cgy+EEEIIIYQQQggRDd0+ViRVyjsAQgghhBBCCCGEkMqMZr4QQgghhBBCCCFENHTPF5HQzBdCCCGEEEIIIYSQP4hmvhBCCCGEEEIIIUQ0NPNFJDTzhRBCCCGEEEIIIeQPopkvhBBCCCGEEEIIEQ097UgkNPOFEEIIIYQQQggh5A+imS+EEEIIIYQQQggRDd3zRSQ084UQQgghhBBCCCHkD6KZL4QQQgghhBBCCBEN3fNFJDTzhRBCCCGEEEIIIeQPopkvhBBCCCGEEEIIEQ3d80UkEozRXCFCCCGEEEIIIYSUXg2rlX/lfTIuTP4r7/On0cwXQkipXX31vbxDKLPOTWohNCK5vMMQSwttBdx+m1DeYYjFopEyTj+LLe8wyqy3YV2EVPA8aqmtgFtvKnYeWTZWxvEnMeUdhlj6G6tW+Lbw6GPFbgutdCrHOfXa64rbN3fSq4XD4V/LOwyxDDZRrxSfL26++VHeYYilfeOaFb4tVEg0j0MkdM8XQgghhBBCCCGEkD+IZr4QQgghhBBCCCFENHTPF5HQzBdCCCGEEEIIIYSQP4hmvhBCCCGEEEIIIUQ0dM8XkdDMF0IIIYQQQgghhJA/iGa+EEIIIYQQQgghRDR0zxeR0MwXQgghhBBCCCGEkD+IZr4QQgghhBBCCCFENHTPF5HQzBdCCCGEEEIIIYSQP4hmvhBCCCGEEEIIIUQ0dM8XkdDMF0IIIYQQQgghhJA/iGa+EEIIIYQQQgghRDR5dM8XUdDMF0IIIYQQQgghhJA/iAZfCPlHaWtrY82aNcWuj4iIgISEBMLDw/9aTIQQQgghhBACgHPPl7+xVBI0+EJIBaWpqYno6GgYGhqWavt3795BXl4eSkpKfySenOxsrFs4Df3MGsLGXBfrF01Hbk5OsdsHXz0H1/4d0atFfdi2N8CpwF28dfM8R2CwpT76tNKGfdcW2LdpFW/dk0d30aullsDSVb8ONiz2EbsM2dnZWDZnMjo2q49OJlpYPncKckoow41LZ2FnbYF2+mqwMtPDkf07eOtch/aCuV4dWBio85b42Gje+g9vX2GsfR90bFYf3Vs3wiKfCcjISBcr/pzsbPjNn4qerXRg3boB/BZMKzH+21fOYUTf9ujWrB5sLPQRdGBXkW1+fIuDdesGGNG3Pe+1nz+z4OHQB33MG8OqeX3YW5nhZOBusWLnL8PmxT4Y2lYPdu2aYMuSGSXm0f1rFzBhUBcMMtXB8M7NcO6QPwAg8Xs8Vk5zh3OX5rA114Xn4K64f+2CwL7PQ+9jsr01hrRphOFdTOC/ZjHy8sTv4HO4edSpWX10LmUeDbO2gIW+GnoIyaM2enVgaaDOW/jzCACCAv0xoHNLWOiroY+FEa5fPPNbyuC3YCqsW+ugl2kDrFn461wa2a89upvUQ38LfZwoJpd6mTbAyH4FufT54zvMHOcIm3ZNYN1KG+5De+BpyL3fEv+2JTPgaNEETpZNsc13Zol59OD6BXjbdoWdWQO4dDXBBV4efYOfjztGdWsB+7aNMMm2Gx5cL8ijrxHvsdRrBEZ2NoaDhR58hvfFy7AHYsefX4bK0BaWz52Mzib10aW5FlbM+0VbuHwWw3pZwNJADT3N9XCUry2MseuFtk3qoL2hOm/hbwu/Wl/W+CvDOXXtgmnoa9oQ/cx0sW5hyX3znavnMNqmI6yb18dgSwOc5O+bJ4zAIEt99G6pjWFdWmAvX98MAE9D7mHcECv0aaWDwe0NsW3Vwt+WRzuWzsSI9voY0cEAO5fOKrEMj65fxJQh3eDYRhdjurXAxcN7eOsCNy7HpMFdMLRVfexeMafIvq/CHmCmU28Mt2yCMd1bImCdr9hlqOifLQBOHaxZMBW9WjdAb9OGv+wT7lw5B5d+HWBlookBJfQJvU0bwqVfB4HXV8yeCAcrU3RsUhuHd28WO3b+MlT0tkAqPrrnCyEVlKSkJFRVVUu1bXZ2Nuzs7GBpaYng4OA/Es++zavwLPQ+dp66AwDwGTMU+7f4wWnclCLbPrh1BWsXTIXP8k0watkG6akpSPgez1vvNG4K6mk3hJSUNGK/fsF0V1vU1dBEt762MG7VBmdCPvG2/fEtDkM7GaOTdX+xy7BjwwqEP7qHw5c4fzxNcB6Enf+tguuEaUW2Db5xGUvnTMJCv61o3rot0lKT8f1bvMA2E6bNx7CR7kLfa6bnKBi3NMX6XUeRmpIMTxdbbF+/HB5T55U5fv//VuJJyD3sPXsXADBllC32bl6NEeOnFtn2/s3LWD1vMmav3ALjVpw6+PEtrsh2fgumolFTYyQn/uC9JilZFV6zl0GrYWNUrVoVH9+9gqdjP2g11EOz1m3KHD8AHNzqhxdhD/DfiZsAgHluw3Bo21rYuU0qsm3I7avYtGg6Ji3dAP0W5sjgy6PM9HQ0aGoI54mzUFNFFY9uXsbyqWOw+sB51G+oh9zcXCye4Iz+zm5YtucUvsVEYYbLQKioa6KnrZNYZdixYQUeF8qjXf+twuhi8mjZnElYwJdHPwrlkUcJeXQsYBcCdv6HJet3Qk/fGD++xSMjI02s+AFgz6aVeBpyD3vOcHJp6mhb7Nu8Gs7F5JLf/MmYtaLkXFojJJdSUpJg1r4Lpiz0g7yiMs4e3YeprkNw4FIolGrWKnP8R7atwcvwB1h7/AYAYNE4exzdvg62Y72LbBt65yq2LvaB15KHVnNOAAA5gUlEQVQNaNrCDBlpKUjMz6OMNOg0MYKj1yzUrKOKkJuXsXraWCwPOAfNhnpIS0lGC4vOcJuzAnKKyrgadACLxzvgv9N3oaBc9viBytMWwh/dw6GL3LYwouS2sHzOJCxYvRUmxbSF8VOLbwulWS+qynBO3beJ0zfvOs3pm6e7/qJvnj8VM5ZvglGrYvpmHb6+ebQtVLl9c25uLma7O8J25DisCziL+OgoeA+3gaqGJvoMdRarDMe2r8WrsAdYffQaAGDJeAcc37Eeg8ZMLLJt+J1r2O7rA4/F69G0uRnS01KQ9P0bb72qpjYcPGfiyvGAIvvm5eZi+cQR6OM4Fgt3ncC32K+YP3ow6qjXQ7dBjmWOv6J/tgCAPZtW4WnIfew5w/kMOXX0EOzb7Afn8UXz6P7NK/CbPwUzV2z+RZ8wDY2aGiE5MUHgdd0mBuhsbYPtfovFirmwytAW/kmVaFbK30AzXwgpJx07dsT48eMxfvx4KCoqonbt2pg9ezYYK7hxVXp6OkaOHAl5eXnUr18fW7du5a0T5bKjWbNmoUmTJrC1tf0TRQEAnD8WAPux3qiloopaKqqwHzMR547uF7rt7nW+cHSfDBNTC0hKSkJeUQn1GzTirW/QWB9SUtIAAAkJCVSRqIKoTx+EHutiUCA0tBrAoLmp2GU4eXgfXMZPRh0VVdRRUcXIcZNw4uBeodtuWr0Ioz2mopW5JSQlJaGgqAydho1L/V5RnyNgbTME1aSkoFyrNjp07Yl3r1+IFf/Zo/vh5D4JtVVUUVtFFU5u3jhzZJ/Qbbev8YXzuCloblZQB1qF4r91+SySExNhZSOYN5KSkmiop4+qVTnj9xKQgISEBL5ECq8jUVw+Hoghrl6oWacuatapC9vRnrgk5EMyAOzbsAxDx3rDqHU7SEpKQk5RCZrcPFLV1MIAZ3fUVlVHlSpVYNqxOzS0dfH6SQgAID01GSlJCejc1xaSkpKoq1EfJubt8entS7HLcPLwPowcP5lXDyXl0ebVizCqUB5plzKPcnNzscVvCSbPWYomBs0gISGBWnVUUK++jthlOHN0P5zcCnLJcaw3zhwVnks71vpieGlyKSkRVv0Ec0nfuCX6DnGGUs3akJSURB/b4agiKYn3r5+LFf+VoEAMGl2QR4NGeeJykPA8OrBxOWzHTIRh67acPFJQQj0dbh7V04LNcDfUrsvJo9Ydu0NduyHePAkFADQyao7ugxyhyI2/20AHVKkiiU9vxM+jStEWjuyDyzjBtnDyUPFtwcVjKlqWoS38KZXhnHruWAAc+PvmsRNxtpi+eddaXzi5T4aJWTF9s55g3yxRpQqiIjgxpqUkIzkpAd1thnC+HKpXHy3atseH39AWrp0IxMBRnlCuUxfKdepiwKgJuBp0QOi2B/9bgUGuE2HQqi2qcNuzho4ub33HvrZobtEZNWTliuybnpqM1KREdOgzGFUkJaGirgkjM0tEvnslVvwV/bMFwGkLjm6TeHnkMNYbZ4vtE5bA6Rdt4fbls0hJSkD3fkU/l/a3H4WWbTpASrq62HHzqwxtgVR8NPhCSDny9/dH1apV8eDBA6xduxarV6/G9u3beetXrVqFVq1aISwsDO7u7nBzc8Pr169Feo+rV6/i8OHD2Lhx4+8OnyclKRHxMV+h26TgEqiGTQwRF/0FqSnJAttmpKfhzfPH+BYbDacephhkqY/5XiPxPS5GYLu186fAurkm7Do3Q0Z6Gqz62wl97/PHAtBzoL3YZUhOSkBsdBT09I14r+npGyPm62ekJCcVKcPLp+GIi41G/04t0L11I0x1d0J8oTJs37ACnUy0MKyXBU4fFfyg6DDaA2eOHUBmZga+xcfi2sXTaN+lR5njT0lKRFzMVzRqWhC/blMjxH4VXgevn4cjPjYadt1bo1/bJpg9wRnf+OJPTUnGBt9ZmLxAcCotv6muQ9HFUA2O1m2gXKsO2nfrXeb4ASA1KRHfYr9Chy+PGjQxRHx0FNIKlSEzPQ3vXzzB97hojOndFo4djbDUexR+xMcKPXbi93h8+fAW2o31AQDyisro1t8Ol44FICc7G9GfIxB+7yZate8qVhmE5VFjbh6lFpNH8bHRGNCpBaxaN8I0dyeBegA435p2FpJHnz68xfdvcXj1/DH6WBjBuk1TLJruUaS+RcVrzyLk0rfYaAyzag2bdk0wR0gubVw6C5PmF59L+d6/foH0tFRo6+qVOf7U5ER8j/0KHT0D3mvaegb4JjSP0vHhxRP8iIvBuD7tMLKzMVZMHl1CHn1D1Md30GrcVOj6T29fIiM9FfXEHDSoLG0hLjoKjfnbQtPi28KrZ+GIj4nGwM4tYGXaCNPHFW0LOzeuQJfmWrDvbYEzx4r+8f2r9aKoDOfUgrZckEe6TQwRV0wZeH2zlSkGWuhjnmfRvnnN/CnoaaKJoZ2aISMtDVYDOH2zgpIyeg60x7mj+5GTnY2oyI8IDb4J847dxCoDpz1HQ5u/PTc2wLeYKKQXbgsZ6fjwktOePftZYHRXE6ye4oqEYtpCYXKKyujUbyiuBh1ATnY2Yj5H4On9W2hh0aXM8Vf0zxaA8Dxq1NSw2LaQn0f2Vqbo364p5kwYIZBHnD5hdqn6hN+lMrSFfxZjf2epJGjwhZBypKmpCT8/P+jp6cHe3h4eHh7w8/Pjrbe2toa7uzt0dXUxbdo01K5dG9euXSv18b9//w5nZ2fs3r0bCgoKf6IIADgdFQDIKSjyXsv/OSMtVWDb1OQkMMZw58o5rNhxFHvPP0A1KSn4TnMT2M5z7gqcDvmE/w5fQrd+tpBXUCryvk8e3UX0l0/o3m+I2GVIT8svQ8H7yHPLkF6oDMlJiWCM4frFM/hvbxCCrodBSkoasyeO5m0zfupcnLgejosP32H81HlYPn8qrl44xVvfrkNXhD+6h/aGGrAybYy6avXQd3DZpzWnp3NilJMvWgfpaSkC26Ykc+K/dfks/HYdw4FLj1BNShoLJ4/lbbNp+Vz0HGAHTe2Gxb7n8q2BuPj4C9btO4UOVn0gXV28b6nyL5eRlS/I1fyfi8uje1fPY+HWg9h69h6qSUljlc+4IsfNzv6JFVPHwsKqDxoZmPBet7DqiwtH9mFga224WpvDtH03tLToLFYZ8vNIXkgepZWQRxv3BuH4L/LIY+o8rJg/Fde4eZQ/VfvBnevYe/I6As7cxtcvn7B6kXj3PxKWS/KlyKXVO48h4CInlxZN4culFXPRs3/JucQ5VhLme7vAccxE1KpTt8zxZ6aXkEfphfIohRP//WvnMXdLIDaevotq1aSwdsb4IsfNzv6J1dPGom33PtDly6N8aclJWD11LAa6TIBybZUyxw/8/7aFG5fOYMPeIBy/FoZqhdrCuClzEXQtHBcecM6pK+YVtIXSrBc5/spwTi1D33z7yjks33kU+y48gJSUFJZMFeybveauwJnQT9h0+BK62wj2zR179MPpQ3vQw6QeHLu3hnnH7jC1LPvABVDQnmX46kGW+3Ph9pzGrYeH185j1qZArD95B1WlpLF+lkep369N9z64cmw/HNo0xIS+7dDSsitM2nUqc/wV/bMFwJdHIrSF25fPYtXOo9h/8SGkpKQE+oTNK+ahR3871PtFn/A7VYa2QCoHGnwhpByZm5tDQkKC9/82bdrg7du3yM3NBQAYGxvz1klISEBVVRVxcUWvmwUAAwMDyMnJQU5ODj179gQAjB49GsOGDUP79u2F7lOcrKwsJCcnCyxZWVnFbl9DRhYABL6Rzf+58NTe/G37O4xGXQ1N1JCVg/P4aQi/f5vXOearUqUK9AybQ0ZWDpuXF70x3rmj+9GmUw8o1awtUvmEkZHlxJWaUvBNVP7PMoXKkL/tUOcxUKtXHzKychgz0QeP7t7ilcG4hSnkFRRRrVo1tO3QFQPtnHHp9DEAnG/C3BxtYDN0OO68iMG18AjUqCEj8AFL5PhlODGmpRatAxlZeYFta3C3HeTkClUNTcjIysFlwnSE3efE//jhXTwNvQ/70Z6/fF9JSUk0N22HhG/xOLB9fZnjB4AaNTi/1/TUgg9zadyfC+dRdW4e9bEfBRV1TdSQkcWwcVPw9MEd3od1gPPH5lLvUZCqXgPj5xV8y/bl4zssmuCMUVPn49ijT/C/+hifP7yFv98iscpQUh7JFpNHQ36RR3IKiqharRradOiKAXbOuMjNoxrc/Z3dvKFUsxaUataCs5s3bl05L14ZhORS6i9yaaBjQS6N5M+lR3fxLPQ+hv0il1JTkjHZZSCMWppjhMd0seLPzw3+PMr/OT9eXvzcnOtl58LLo6HuU/Ds4R1kphfcpDI7+ydWTBoN6eo14DZ3ZZH3TEtJxgI3OzRpboohbpPFip8/rv+7tjB8DNQ0uG3Bywch94ppC+27YsAwZ1w6c4x3jF+tFzn+ynBOlcmvg9L3zQMcR0OV2zcP9yihbzZqjhp8fXPkh7eYNc4R7tMX4cLjKBy++QyRH95g26oFYpWhoD0XlCH/58LtOX/bnnYuqKNeD9VlZGE7dhKePwxGZiluOvs14h1WTByJ4ZPmYf+9D9hyMRRRH99i/7olZY6/on+2APg+45WxTxgxYTrCuHlU0CdMECsmUVWGtvDPoqcdiYQGXwj5h1WrVk3g/xISEsXeLf3s2bMIDw9HeHg479Klq1evYuXKlahatSqqVq0KFxcXJCUloWrVqti5c2ex7+vr6wtFRUWBxdfXt9jt5RWVUEdVHe9ePeO99u7VM6ioaUCO75tbgPNNg4paPeEHKmZaYU5OTpF7vqSlpuDmhZOwHuRQbFyiUFBURl01Dbx58ZT32usXT1FXvR7vW6p88gpKUFXXFHocVkwZJKoUnG6/fPqIrMwM2DmPRTUpKSgoKmPgsBG4fe1imeOXV1SCiqo63r4siP/ty6dC60BeQRF11YXXAWMMIXdv4OvnT+hvoY/eprpYs3A6Pr59id6mukUuA8iXk5ONLxHi3Z9ATlEJteuq4wNfHn189Qy1VTUEZgAAnDyqo6YhvAzcf7Ozf2KZ92jkZGdjht8OVKsmxdvm09uXqF1XDe2694Fk1aqoWacuOvezxcNbl8UqQ34evRaSR3K/IY+q8OWRVoNGkP7N18QDBe2ZP5feiZlLAyz10cesIJf6mBXkUv7Ai45uE0yev1pgQLos5BSUUKuuOj6+5suj189RW1W9SB7JKiiidrF5xKmD7OyfWDnZFTnZPzF19XaBPAIKBl40G+ph7OzlYscPVJ62oFLonPrmxVPUVfs9bUFCouSPsL9a/yuV4Zya35bfv+Trm1+W0DcXU4bi+ubc7BxejB/fvEQdVXV06NEXklWropaKKrrbDMW9G5fEKgOnPashgu8+UBGvn6OWqjpkCrdneUXUVhXeFkpz2ULk21eoWVcN5t16Q7JqVSjXqYsOfQYj7NaVMsdf0T9bAHyf8QT6BOF59Ku2EHr3Jr5+/oSBlgboa9YIa7ltoa9ZoyKX9fxOlaEtkMqBBl8IKUf3798X+P+9e/fQqFEjSEpKinwsLS0t6OrqQldXFxoanA8fd+/e5Q3IhIeHY8GCBZCXl0d4eDj69y/+6UA+Pj5ISkoSWHx8Sr6Uwaq/HfZvXo0f8bH4ER+LgC1+6DlQ+MBIb1snBO3fjvjYaGRlZmDPfyvR3Lw9asjKITbqM25ePIWMtFTk5eXhedgDHN+3Da0KTYG/euYoFJSU0UqM6cCF9Rlkjx0bV+JbfCy+xcdi53+rYDNE+NM+BtgNx0H/rYiL+YrMzAxsW7ccpm07QEZWDinJibh97SIyMtKRm5uLB3eu4+j+Xejcoy8AQLthY8jIyOLw3u3IyclBWmoKjgf6Q0/fWOh7lVbPgcOwZ9NqfI+Pxff4WOzd7IfexUw37jtkOI7u3Yb4mK/IyszA7g0r0LJNe8jIymHISHcEXHyAnSdvYOfJG3CZMB2aOrrYefIGlGvVwdsXT/HwzjVkZWYgJycHwdcu4tKpIzC1FO8yBQDoYjMEh7atRcK3OCR8i8Oh7evQfcAwodtaDXLE6YAd+M7No8DNq9DMzBI1ZGQ5j3ue5IrMjHTMXLsL1bg3xsvXUN8Y3+NjcffKOeTl5SHpxzdcO3UEDZoYCX0vUfQZZI+dfHm0q4Q86m83HIcK5VHrQnmUWSiPunDzqHr1GuhpYwv/zWuQnJSAlORE+G9egw5drcUug/WAYdi7mS+XtvihdzFP++hjOxzH9m1DfCw3lzby5dIId+y/8AA7TtzAjhM34OLJyaUdJzi5lJaajCmjBkFTWxdTF6/7LQMXANC53xAc4cujo9vXomt/4feG6j7QAWcDd/Ly6NCW1TDiy6NVU1yRlZGO6WuK5lF6agoWug+DulYDuM9b9dviBypRW/iPry1sWoV+JbSFg3sK2sL29YJt4U6htnAsoOCc+qv1ZVUZzqk9Bthh35aCvnn/Vr9iv7TobeuE4/sK+ua9G1eiRRtO3xwT9Rk3LxT0zc9CH+DYvm1oze2bGxs2w/e4GNy+fBZ5eXlI/PENl04cErh3VFl17DsEx3esQ+K3OCR+i8PxnevRxUZ4W+g60B7nAnfiR1w0fmZm4MhWPxiaWvBmxeRkZ+NnViby8nKRl5uHn1mZyMnOBgA00DdGQnwMHlw7j7y8PCT/+I6bZ45Cu4mB0PcqrYr+2QIAeg4Yhr2b/XhtYd8WP/Qqtk9wEugT/DeuQAtuW7Ad4YZ9F+5j+4nr2H7iOkZ6+kBTRxfbT1yHUq06AIDsnz+RlZWJvLw85ObmICsrs8THWpdWZWgL/yS654tI6FHThJSjyMhIeHt7Y8yYMQgNDcX69euxatXvuwFZ06aCN4V89OgRqlSpAkNDw2L24JCWloa0tLSQNalCXuNwdJuM5MQEjOjdFgDQtc9g2HMfA+k3j/No1Incqe5DR3siOSkBrjYdAAAmZhbwWfYf71hH92zBylmeYHl5qKWiiv72o2BXaLr2uaP7YdXfTmAmgLhGeUxFUsIPDOraGgBgbTMEI905sS+Z6QUAmLF4DQDOpR5JiYkYat0OANDK3BIL/DhPo8rJzsHWtUsRMeENAEBNoz68Zy1Gt16cAS8ZWTn4bT+IdcvmYuPKhZCUrIJmLc0xf9UmseJ3dp+C5IQEOPQ0BwB072sLR+6jdVfO4fw7ecFqAIC9qxenvvpyLklrbm6BWSs2AwBk5RQgK1fwTZC8ohKqVq0GFe43irm5Odi6ahEiP77lXA6nUR/jfRahW59BYsUPAEPHeCMlMQFufS0BAJ16D4Qtt+43LuA83nXcnOUAgEEuHkhNSoDHIM511Mat28LbdwMA4GX4Q9y/dh5S0tVhb6nPO/7g0Z6wHe0J1XpamLp8MwI2rcSaWRMgJSUNkzYdMGrqfLHLkJ9Hg7l51NNmCEaUkEfJiYmwKyaPtq1dipl8eTRx1mJ07VUwcDppzlIsmzMZfS2bQUpKCu279sTEWWWfIp9vuPsUJCUmwNG6IJccSsqlpASMzM8lMwvMXF5MLikI5tLNS2fwPPwR3r9+gZuXTheUa/5qdO87uMzxD3adiJSkBEyw4cTUvtdADBzFmea+eSEnj8bO5uRR/5EeSElKhLctJ48MW7eD52LO5R6vHz/Eg2sXICVdHc4dCv4AGzBqAgaN8sT9q+fw5kkIPr15gftXzvLWj5m9HB16DSxz/EAlaQvjOW3BtlvRtuDLbQs+3LYwfCznnDqsV0FbmL+ary2sW4qZnnxtYeZidLXuX6r1ZVUZzqn5fbNzLyF981xu38y98andaE+kJCZgdL/i++YV/H2zwyjYuXJyUq2eFmat3gr/DcuxbPo4SElXR8u2HTDOR7zL1wBg4GgvpCQlYOKAjgAAS+sB6O/CuY/L1kWcxzW7zloGALAZMR6pSYmYMoRzc1ODVm3hsWgd71hbFk7BjVOHef8/f3AXOvQZjHEL1kBFoz68fDfh8JZV2DjHC1JS0jAyb4/hk8RrCxX9swUADHefjOTEH3Cy5jz6vFvfwXAYy8mjVXM4ZZnEvZn0MFcvJCclwqVvQR7NXM6JoWifoCjQFgBgsssghD/gPA76yaO72LR8LpzHT8UIj6KP5hZFZWgLpOKTYMXNYyOE/FEdO3aEgYEB8vLyEBAQAElJSbi5uWHRokWQkJCAtrY2vLy84OXlxdvHxMQENjY2mDdvHiIiIqCjo4OwsDCYmJiU6j13794NLy8vJCYmlinmq6++l2m/f0HnJrUQGiHeU2DKWwttBdx+m1DeYYjFopEyTj8r3ZMn/kW9DesipILnUUttBdx6U7HzyLKxMo4/+XNT1P+G/saqFb4tPPpYsdtCK53KcU699rri9s2d9GrhcPjX8g5DLINN1CvF54ubb36Udxhiad+4ZoVvCxVRjTbi3aettDLuLv0r7/On0cwXQspRtWrVsGbNGmzaVPRbiYiIiCKvhYeH837W1tYu9hrg4jg7O8PZ2VnEKAkhhBBCCCGEiIMGXwghhBBCCCGEECIauohGJHTDXUIIIYQQQgghhJA/iGa+EFJOrl+/Xt4hEEIIIYQQQkjZsLzyjqBCoZkvhBBCCCGEEEIIIX8QzXwhhBBCCCGEEEKIaOieLyKhmS+EEEIIIYQQQgghfxDNfCGEEEIIIYQQQoho6J4vIqGZL4QQQgghhBBCCCF/EM18IYQQQgghhBBCiGjoni8ioZkvhBBCCCGEEEIIIX8QzXwhhBBCCCGEEEKIaOieLyKhmS+EEEIIIYQQQgghfxDNfCGEEEIIIYQQQoho6J4vIqGZL4QQQgghhBBCCCF/EM18IYQQQgghhBBCiGjoni8ioZkvhBBCCCGEEEIIIX8SI4SQcpaZmcnmzp3LMjMzyzuUMqvoZajo8TNGZfhXVPQyVPT4GaMy/AsqevyMURn+FRW9DBU9fsYqRxnIv0GCMbpLDiGkfCUnJ0NRURFJSUlQUFAo73DKpKKXoaLHD1AZ/hUVvQwVPX6AyvAvqOjxA1SGf0VFL0NFjx+oHGUg/wa67IgQQgghhBBCCCHkD6LBF0IIIYQQQgghhJA/iAZfCCGEEEIIIYQQQv4gGnwhhJQ7aWlpzJ07F9LS0uUdSplV9DJU9PgBKsO/oqKXoaLHD1AZ/gUVPX6AyvCvqOhlqOjxA5WjDOTfQDfcJYQQQgghhBBCCPmDaOYLIYQQQgghhBBCyB9Egy+EEEIIIYQQQgghfxANvhBCCCGEEEIIIYT8QTT4QgghhBBCCCGEEPIH0eALIYQQQogQ9EwCIoovX76UdwikEGrDpDzk5x3lHymMBl8IIUQMHz58KO8QCCG/AWOM90H59evXAAAJCYnyDKlMGGPIy8vj/Uz+jjlz5mDhwoXIzMysFL/3ip5HBw8eBFAx23C+ivh7/90q6u/g6dOnACp2/pE/gwZfCCHlLv8DHr+K0OG6ubnBzc0NoaGh5R0KKUZFyKPKKjs7u7xDKJWUlBQAnA/JEhISOHnyJLp06YIHDx6Uc2Slk3/+zMrKAsApR/6gMH3w/zsmTpyIdevWwcPDA9WrV0dycnJ5hySyypRHX758wfDhw2FlZcV7rSL3BTdu3MDjx48rdBlK6/Xr13j8+DGCg4MBcHKvopX7wIEDMDExwc6dO8s7FPIPosEXQki5YoyhShXOqejYsWO4fv06gIrR4Q4ePBjv37/HypUrERISUt7hlBn/7/nVq1fIzMwsx2jKLr8c8fHx+PTpE9LT05Gbm1vOUZVeXl5esTn/r7eFwm7duoXt27cjKiqqvEMpkaurKzw9PXkDRZGRkQgICMDs2bNhampaztGVTpUqVfD+/XtMnjwZsbGxOHLkCBo3boxXr16Vd2i/xYsXL5CQkFDeYRQrICAAAQEBuHXrFgwNDfHw4UNMnDgR9+/fL+/QRJKfR97e3hU+j+rVq4eLFy/i1atXsLa2BlAxPlMUJiEhgevXr6NTp06IiIgQ+kVVZeLv74+BAwdiwIABsLW1xZw5cwBUrMG/TZs2wdHRESoqKnj06BEA4V8wkv9fNPhCCCk3eXl5vE717du3GDFiBDZu3Mj70Povf1jKy8tD586d4e/vj/v371fIAZi0tDQABR9sXrx4gQ4dOiA2NrY8wyoTxhgkJCQQFBSE7t27o3PnzrC0tMSMGTMQGRlZ3uGVKL8eqlSpAgkJCTx48AB79uxBQEAA3r17B+DfbguFHT16FL169cL379+RlJQE4N8cPAoMDERQUBAmTJiAatWqISwsDAsXLkRUVBQ6d+4M4N+Mm9/Bgwfx5s0bfPr0CXv27IG9vT0cHBywe/duNGnS5J+P/1e+f/8OY2NjeHt7IzExsbzDESoqKgo1a9aEkZERzp8/j9GjRyMkJASbN2+uMLMiz549i+fPn+Pbt2/Yt28fhg0bVuHzyNLSEvv370d4eHiFHYD5+PEjEhIS4Ovri379+kFSUrK8Q/pj9u7dCzc3N8ycORP79++Hu7s7zp49y+sfK4KtW7fCw8MDV69exdatW7FlyxaEhITwvmAkBADACCGkHOTl5fF+9vHxYR4eHqxhw4ZMSkqKdevWjd29e1fotv+C3NxcgX9v3rzJGjRowAYPHswePXpUnqGV2pIlS5i9vT2Ljo7mvRYcHMyaNm3KGPv3fuclya+HS5cuMVlZWbZ69WqWkJDApkyZwmRkZNjBgwfLOcLi5dfD169fGWOMBQUFsWrVqrHWrVuz6tWrMzMzMzZv3jze9v96vdy+fZvVrFmT7dixQ+D1lJSUcoqoeMuXL2dNmjRhjDF27tw5ZmRkxPT09Fj16tXZhQsXyjm6X/v8+TNr164d+/TpE2OMk0sSEhKsXbt27OPHj7zt/vWc+ZVTp04xWVlZ5ubmxhISEso7nCIePHjA9PT0WKdOnViVKlXYlStX2LFjx1irVq2Yo6MjCwkJKe8QSxQTE8O0tbWZs7MzY4yxNWvWVOg8KhznrVu3mJaWFuvevXux2/yLIiIimJSUFKtevTpbtGhReYfzR92/f59pa2uzffv28V67du0a6927N7t58yY7e/ZsOUZXOjt37mQSEhLs2LFjjDHGfvz4wdq3b8/Gjh3LsrKyKkTOkb+DBl8IIeVq7dq1TElJid27d4+9evWK3bx5k6mrqzNra2t279493nb/SseV/4c+Y4y9efOGff78mTHG2PPnzyvUAMzJkyeZhIQEc3d3Z1FRUYwxzuBF8+bNyzmy0tmzZw/buHEj7/9ZWVnMxcWFTZw4kTHGWGxsLNPW1mbu7u68bTIyMv56nL9y4sQJJiEhwcaOHctevHjBLC0t2ZYtW9jPnz/Z58+f2dSpU1mrVq3YwoULyzvUEuW3zyVLlrBu3boxxhhLS0tj58+fZ0OHDmXdu3dngYGB5RliEYX/aL58+TI7d+4cMzAwYH369GEPHz4s7xB/KT09nTHG2LNnz5iTkxNbtmwZ09LSYsOHD2dPnjzhbcd//vxXzqXCFI4t///nz59nUlJSzM3Njf348aM8QiuRu7s7k5CQYGZmZrzX9u3bV2EGYEJCQliLFi2Yq6srGz58OFu6dGmFzKP8mO7evcs2bdrElixZwq5cucJu3LjB9PT0mJWVVTlHWLzIyEh2+PBhxhhjBw4cYMOGDWObN29mderUYQ4ODrzt/sXfu7giIiLYkiVLeJ+nGGOsR48erG7dukxfX5/VqVOHWVlZsZycnHKMsnhJSUls4sSJ7PTp0wKvT506ldWrV4/35UNlrDsiOhp8IYSUKycnJzZs2DDGWEHHFBoaypSVlZmVlRULDg4uz/AE8Hec06ZNY02aNGG1atViFhYWLCgoiL1//75CDMDkf4A5f/48q1KlCnN1dWUpKSksKCiIGRkZlXN0v5aamsq6du3K2rRpw3bt2sV7ffDgwezgwYMsLi6OqaurM1dXV966EydOsEuXLv1TH37yB/IuXLjAqlSpwlxcXFifPn14MxkYYyw6Opp5e3uztm3b8gbJ/mXr1q1jpqambPXq1axPnz6sV69erHv37mzs2LFMSUmJvX79urxDFCDsj+aAgIAK80czY4wlJiYyMzMz5ujoyDIzM9mtW7eYpqYmG/6/9u49qqoy7wP475wjBioCLfNSCCJ4xQlQhAEdSUpXCV6zQM0wBxFNxXveLVyVy3GcbMzMpWjgdWYSXMjSMBemJCoCgokuRCTFnMQboAgIfN8/WGe/HMC03hf3Pqfv5y/Z+5zW74m92c/z3ft5dlgYfvzxR+Vzp0+fVrHKp3fo0CGsWrVKOT+M5+zBgwdhZWWFmTNn4tatW2qWaKK8vByBgYEIDw9H7969ERoaquzbuXMnvL298d577+HUqVMqVvlkGRkZ8Pf3R0REBB4+fGi2x9F//vMf2NnZITQ0FH5+fvD19UV4eLhyY+eNN95Qu8RGqqqqEBoaCn9/f8yZMwc6nQ7btm1DbW0tYmJiYGVlhaVLl6pdZrN68OCB8u8FCxbA3d0dOTk5uHHjBi5evAg7Ozv87W9/U7HCX1dSUqL82/i3q7S0FE5OTli4cKFaZZEGMXwhomem/lMjQF0IEBISghEjRij7KysrAQBffPEFrKysEBoaiuzs7Gdea0P1a9+9ezc6duyIhIQEbN++HfPnz4der8fXX3+Ny5cvw9XVFePGjTOZOqUl9dty/PhxGAwGzJ8/H19++SV8fX2RmpqKI0eO4OzZs8jOzsb+/ftRUFCgYsWN/fzzz3jrrbfwyiuvYPPmzQCA8PBw+Pr6wsXFBdOnT8ejR48A1IU1oaGhWL16tabunNXW1iq/i6SkJBgMBuh0Ohw9etTkc5cuXYJOp8P+/fvVKPOJ0tLSsGnTJvz973/HP//5T4SGhqJ///6YNGkSUlJSlM/4+PiY3NlU29MMmidNmqT5QTNQNyD29vbG5MmTcefOHaSmpsLJyQlhYWFITk5GdHQ0dDodiouLNRVANmXjxo3Q6XT45JNPGk3xXLt2LfR6PSIjIzU1Bck4cNy6dSt69OiBcePGKft2794NV1dXREZGoqKiQq0Sn0pGRgY8PDzM9jjKzc2Fk5MTNm3apPxsY2ODZcuWAai73rm6usLPz0/NMpt09+5d+Pr6QqfTYdq0acr28vJybNmyBS1atFDaYSmM1+iGvvvuO5Mp0WVlZejbty8++eSTZ1XaUykpKTEJXeq3p7a2FpWVlZg2bRoGDRqk/L3S4nlDzxbDFyJ6JuoPevPz85W7+EeOHIFOp8M333xj8vktW7Zg9OjR6NSpk8kTDGpLSUlBeHg41q1bp2wrLS3F+vXrYW1tjR9++AGZmZlo1aoVVqxYoWKlv+77779HREQESktL8f3330Ov18PBwQHt27dH9+7d0a5dO3Tr1g1dunRBu3btUFhYqHbJAOo6LlVVVQDqpnq98cYb8PPzwzfffIOCggJ4e3vjpZdeMvnOkiVL4OzsjEuXLqlRcpOMHbDi4mKUlpYCAE6ePAmDwYC3337b5OmXe/fu4eWXX0ZCQoIqtf4a413mkJAQ+Pr6YujQoRg/fjz++9//mnxu6dKl8PLyQnFxsUqVNs1SBs1A3RODnp6eysD5xIkT6NOnD9zd3eHs7KzJaVS1tbXKteH27du4f/8+gLopO3q9HtHR0SZh8datW+Ht7Y327dubDM60oqysDDExMejZs6fJsfTvf/9bcwH245jjcWT07bffKlNnCwoK4OzsjClTpij709PTceTIEbi7u+Pq1atqldmkqqoqBAYGwtPTE0OGDDFZ/8QYwNjY2ChTa81ZcnKyss7Z09wQuXnzJgYOHKipqat79+7FkCFD4OnpiUGDBj32GpGRkQGDwYDt27c/4wpJqxi+EFGz2rhxIzIzM5WfFy5cqEzXGTRoENavX4+1a9fC2toaO3bswK1bt3Dnzh0EBwdj586dSEhIgE6nQ25uroqtqHPjxg24urrC1ta20QJ4d+7cwYgRI/D+++8DALKysjT1lEVDMTEx6NSpE6ZPn4779+/j9OnTMBgMGDt2LHJzc3H79m2Ul5fj7t27uHfvntrlKoyhxd69e/H222/Dz88PrVq1gpubGzZv3ow9e/bA0dERnp6eeOuttzBmzBg8//zzJsegVsTHx2PAgAFwc3PDsmXLUFxcrAQwb775Jg4dOoQLFy5g8eLFaNu2rcnil1rQ8C7z+fPnYW1tjcWLFyufOXHiBGbOnAl7e3tkZWWpVOmTWcKgGTAdON+6dQvFxcXIyMhAUVGR2qWZSEpKwtmzZ5Wf9+3bB39/f3Tr1g0rV67EhQsXsHfvXhgMBkRHRyvTjJYuXYpt27Ypa91o0f379xETE4M+ffogKChI7XJ+F3M5jhpKTk7GsGHDcOXKFTg6OiIiIkK5DqempmLJkiUoLCzU7PFTUVGBGzduICgoCIMHD0ZcXJzJ/nXr1qFDhw64efOmShX+3+3duxc6nQ5OTk7K8fS4vlJtbS3KysoQFBSEAQMGaKZPFRMTgzZt2uDTTz/Fhg0b0KtXL0ycOFHZ3/CJvYiICAwcOBC//PKLKvWStjB8IaJmU1BQAEdHR0yZMgX5+fnYt2+fyXSdhQsXwtraGlFRUdi4cSOsrKzg4uICJycn9O7dG5WVlTh27BhcXV2VuyRqy87OhqurK/r27dtoQP/Xv/610YJ+WuksNOXrr79Gt27dMHXqVJSWliI1NRV6vR7vv/++Zv5/N+XkyZNo1aoVtm7diosXL+LSpUsICAhAQEAANm/ejLy8PMyePRthYWH48MMPkZeXp3bJjWRkZMDOzg7R0dGIioqCp6cnRo4ciZ9++gmnTp1SpiCNGTMGr732miaDi6buMtd/Su3AgQOYNm0ahg0bZrJop1ZZwqAZqBs4e3t7IyQkRHNr7AB1b9dxcXHBe++9h/z8fFy4cAH29vZYtWoVoqKi4OXlhTFjxiA9PR3x8fHQ6/Xw8PDAgAEDYGdnh3PnzqndhCe6f/8+Nm7cCB8fH80HFo+j9eOoKVeuXEGrVq2g0+kwa9Ysk30zZ87E0KFDNTVd7XEuX76MoKAgvPrqq4iNjQUArFixAmFhYbh9+7bK1f1+GRkZ8Pb2Rnh4OF577TW4ubkpU1Eb9pUqKiqQkJCAwYMHw8vLS3niVe0+VWJiIjp37ox//etfyrbFixcjOjoaJSUljabXA3VvEBs6dCinHBEAhi9E1MyysrLQr18/REVFITIy0mS6TklJCTZs2ABbW1skJibi/Pnz2LlzJ/bu3atcYOfNm4f+/ftrqsORnZ0NDw8PvPvuu8qguLS0FP7+/iaPOGvN5cuXGy3aum3bNnTv3h1TpkxBZWUljh8/Dp1Oh9mzZ6veyXmcr776Cr179za5e2l87a6bm5vyqketys/Px6pVq0yenjpw4ABeeeUVDB8+HIWFhcjJyYFOp8PcuXOVaUla86S7zJ9++ilOnz6tqXP3SSxh0AzUrQETEBCg2RDVOAibMWMGVq1aZfI2r8TERAwePBgjR47EpUuXcO7cOSxatAgLFizQxBOQT+vBgweaemrw99D6cdSUhIQEtG7dGh988AHy8vJw7tw5zJ8/H/b29mYR3BkVFBRg9OjR6NOnD7y9vWFnZ2fyBkhzlJSUhEmTJuHcuXM4c+YMAgMDTQKY+mum3Lx5E7GxsZg3b56y/XFrxDxLn332GWbMmGEyzSgwMBAuLi7o3r07evbsqbwau+EaMEDjtQ/pj4fhCxE1O2NH28HBodErc2/fvo2RI0dixowZJtvz8vIwZcoUODg4aGLB3YYyMzPRu3dvdOzYEcHBwRgzZgy8vLyUBYO1dofjzp076NSpE5YsWdKoI71lyxYYDAZMmzYNZWVlSEtL0/QgJzY2Fj169FAevTbeEcvJyUGbNm3g7u6uzK/W2u+hpKREWbNi0aJFJvsSExMREBCAUaNGIT8/H6dPn9b07+FJd5mHDBliloNPSxg0A9p8tXp9GRkZ8PHxgbOzMz744AOTfcZzYfTo0ZpeY+SPQOvHUUPV1dXYtm0b2rZtC0dHR/Tq1QseHh6anHr6JEVFRdi6dSs++ugjXLx4Ue1y/l/Uf3PWyZMnlQDGuAZPTU2Nck039qcA9Z94qa/+VNSwsDB07twZ8fHxyMrKwvjx4/Hiiy82ucCu1vojpA6GL0T0TOTk5KBLly6Pna7z+uuvKz8/ePAA+/fvx/jx4zUZvBidO3cOLi4u+Mtf/oIvv/xS2W7sOGhNSkoKunTpgo8++qjREzD9+vWDra0t5s2bp/kOwqVLl2BtbY3ly5ebbD9z5gwCAgIwbtw4zS2mWF9mZia6d++OAQMGmHREgbo7gx4eHggNDdXEXb4nsZS7zKSO7OxsuLi4PPZc8PT0xIQJE1BeXq75v0ukLdeuXcPx48eRlZWluYW+/4ged/6eOnVKCWCuX7+O6upqTJgwQZNvi2zYhhs3buDjjz82WSD/2rVrsLGxwcGDB591eWQmdAAgRETPQE5Ojrz77rvi4eEhc+bMEU9PTykrK5PXX39d3N3dZfPmzcpnKysrpaamRlq1aqVixU929uxZiYyMlJdfflkWLlwobm5uapf0q1JTU2XcuHESEREh4eHh0qlTJykvL5d58+aJk5OThISESNeuXdUu84l27NghkydPlgULFsiUKVPE3t5e1q1bJ1evXpXPP/9c2rZtq3aJvyonJ0fCwsLEx8dHZs2aJe7u7sq+5ORk6dGjhzg7O6tY4dOpqamRuLg4iYqKkrZt24qtra20bNlStm3bJl5eXmqXR2bAUs4FInp6tbW1otfrRUQkPT1dFi9eLD/99JM4ODjI1atXpaioSFq0aKFylU9WU1MjBoNBAIhOp5MTJ05IVFSUxMXFSc+ePdUujzSI4QsRPVNZWVnyzjvvyN27d8Xb21uee+45uXz5spw6dUqsrKyUC5g5ycrKksjISOnatausXLlS8xfc1NRUmThxogQHB4u/v7+cP39e4uPjJS0tTfOhhREA2bNnj0RERMgLL7wger1e7t69K4cPH5a+ffuqXd5TycrKkvDwcOnbt6/MmTNHevfurXZJv1tRUZEUFhZKmzZtxNHRUdq1a6d2SWRGLOlcIKKmNezfGYMLEZFDhw7JsGHDxM/PT44ePSpWVlYm+7WiYRvqh0hVVVUyduxY0el0Eh8fr2wnqo/hCxE9cz/++KOMHj1arK2tZcGCBTJhwgQxGAxSXV1tFnc6mpKeni4LFiyQ3bt3S6dOndQu54nOnDkjc+fOlcLCQrG1tZW4uDizCS3qKywslJycHHn48KH4+vpKly5d1C7pNzG34I6oufBcILIMTQUUOp1OdDqd7NmzRwoKCmTJkiXK/rKyMhk2bJjcuXNHsrOzpUWLFqr3B39LGyorKyUlJUU+//xzKSoqkoyMDLGysjIJZoiMeEQQ0TPXp08f2bVrl/j7+8vEiRPFYDBIbW2t2QYvIiL9+/eXQ4cOmUXwIiLi7e0tSUlJ8sMPP8jRo0fNMngREenSpYuMGDFCQkJCzC54ERHx8vKSDRs2yI0bN8TOzk7tcohUw3OByPzVDy3u3bsnIiJ6vV50Op3s27dPJk+eLK1btzb5TlpamnTo0EHOnj2rueDladpQUFAgycnJ0rJlS8nMzBQrKyuprq5m8EJN4pMvRKQa4wWOdwfoj66iokKsra3VLoNIdTwXiMxT/b7cF198Ibm5uTJnzhxxc3OT7OxsCQ4OlmXLlsnUqVMbfdfYH1Q7ePk9baipqZHi4mLp0KGDJtpA2sYjg4hUo9PpBACDF/rD42CTqA7PBSLzUz+0yM3NlWPHjsnhw4eldevWMnv2bHF0dJTdu3fLwIEDTb5nDF2MT5poJXj5LW0wGAzSsWNHEalrD4MX+jUc8RCRqsxtcV0iIiIi+l/G0GLu3LkyduxYsbOzk/79+8vatWtl9erVUlFR0Si0ENFWH/D3tqE+LbWHtInRHBEREREREf1uycnJsn37djl8+LD069dPREQ2bdokixYtEr1eL7Nnz9b82myW0AbSNoYvRERERERE9NQartf36NEjsbOzk3bt2in7IiMj5dGjRxIVFSXPPfecTJ06Vbp27api1aYsoQ1kXjjtiIiIiIiIiJ6aMbS4du2asq24uFhKSkpEr9fLw4cPRURk3Lhx0r59e9mxY4fExsZKRUWFaOV9L5bQBjIvDF+IiIiIiIjoN9m1a5f8+c9/FhGRoKAgCQwMlOHDh8vNmzfFxsZGREQqKyvlzTfflOnTp8vHH38s2dnZmlobxRLaQOaD4QsRERERERH9JkOGDBEbGxtZv369iIisXr1aXFxc5E9/+pPExcXJnj17ZPLkyZKfny9Lly4VZ2dnSUpKUrlqU5bQBjIfDF+IiIiIiIjosRpOs6mpqZE2bdpIYGCgpKamiohIr169JDY2VkaNGiXLly+XlStXSnV1tSQmJoqIiK2trbi4uDzz2o0soQ1k3nTghDUiIiIiIiJ6gqKiInF0dFR+Tk9PFz8/P4mNjZXx48cr269fvy6tW7cWe3t7ERFZtmyZ7NixQ1JSUlQPLyyhDWSe+OQLERERERER/aotW7bImDFjZP78+VJWViYVFRXSv39/mTFjhuzatUt++eUXqa2tFRGRF198Uezt7SUnJ0emTZsmX331lcTHx6seWlhCG8h8MXwhIiIiIiIiE8YQwsjX11fGjh0rCQkJMmDAAFm5cqUUFRXJ8OHDJS8vT65fvy56vV5qa2uVBWkdHBwkICBA0tLSxMvLi22gPzROOyIiIiIiIiJFbW2t8irmw4cPS1lZmdjb20tgYKA8evRIVq9eLceOHZP09HSJjo6WlStXSt++fSU5OVkMBoPJfwuAKm8HsoQ2kGVpoXYBREREREREpA0AlNBi8eLFEhcXJy+88IJcvHhRxo4dK2vWrJHly5dLVVWVbNq0SQ4cOCDl5eVSVVWlfK8+NUILS2gDWR4++UJEREREREQm1qxZI5999pkkJCSIj4+PbNiwQWbNmiWjRo2SNWvWiJubm4iIXL16Va5cuSIDBw4Ug8Fg8sSJ2iyhDWQ5eEQRERERERGR4ueff5bc3Fz5xz/+IT4+PrJv3z5ZsWKFLFu2TFJSUmTRokWSm5srIiJOTk4SEBAgBoNBampqNBNaWEIbyLJw2hEREREREREpnn/+eRk5cqQMHjxYzpw5I/PmzZMPP/xQZs2aJfb29jJ//ny5e/eubN++XTp37qx8r+FaKWqyhDaQZWGkR0RERERERApra2sJDg4We3t7+e6778Td3V3CwsJERKRly5byzjvvSMuWLeWll15SudLHs4Q2kGVh+EJEREREREQmWrSomySRl5cnJSUlotPppKKiQr799lsJCgqSgwcPKq9l1ipLaANZDi64S0RERERERE06efKkDBo0SHr06CGVlZVibW0tmZmZSrBhDiyhDWT+GL4QERERERHRY2VmZsq+ffukbdu2MnfuXGnRooVUV1ebVXhhCW0g88bwhYiIiIiIiJ6aJYQWltAGMi8MX4iIiIiIiIiImhEX3CUiIiIiIiIiakYMX4iIiIiIiIiImhHDFyIiIiIiIiKiZsTwhYiIiIiIiIioGTF8ISIiIiIiIiJqRgxfiIiIiIiIiIiaEcMXIiIiIiIiIqJmxPCFiIiIiIiIiKgZMXwhIiIiIiIiImpGDF+IiIiIiIiIiJoRwxciIiIiIiIiomb0P/p8WG3AtNqNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "plt.figure(figsize=(12, 6))\n", + "metric_df = metric_df.sort_index() \n", + "ax = sns.heatmap(metric_df, annot=False, fmt=\".3f\", cmap=\"Blues_r\", linewidths=0.5, cbar=True)\n", + "\n", + "# Add text annotations with bold max values\n", + "for i, model in enumerate(metric_df.index):\n", + " for j, lang in enumerate(metric_df.columns):\n", + " value = metric_df.iloc[i, j]\n", + " max_val = metric_df[lang].max()\n", + " weight = 'bold' if np.isclose(value, max_val) else 'normal'\n", + " ax.text(j + 0.5, i + 0.5, f\"{value:.3f}\", \n", + " ha='center', va='center', color='black', fontsize=9, fontweight=weight)\n", + "\n", + "# Final touches\n", + "# plt.title(f\"{metric_name}\")\n", + "# plt.ylabel(\"Model\")\n", + "# plt.xlabel(\"Language\")\n", + "plt.xticks(ticks=np.arange(len(metric_df.columns)) + 0.5, labels=metric_df.columns, rotation=45)\n", + "plt.yticks(ticks=np.arange(len(metric_df.index)) + 0.5, labels=metric_df.index, rotation=0)\n", + "plt.tight_layout()\n", + "\n", + "plt.savefig(plot_path / f\"llm_annotator_performance_{metric_name}.pdf\", format=\"pdf\", bbox_inches=\"tight\", pad_inches=0)\n", + "\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bea96db3", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "6d7739ea", + "metadata": {}, + "outputs": [], + "source": [ + "# TODO add avg column for 37 languages" + ] + }, + { + "cell_type": "markdown", + "id": "e594db53", + "metadata": {}, + "source": [ + "### {F1, Recall, Precision}@threshold" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "a7766cf9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'bg': {'phi-4': {'F1-0.5': 0.8461538461538461,\n", + " 'F1-1.5': 0.749003984063745,\n", + " 'F1-2.5': 0.6060606060606061,\n", + " 'F1-3.5': 0.14084507042253522,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-14B-Instruct': {'F1-0.5': 0.8173690932311622,\n", + " 'F1-1.5': 0.7393939393939394,\n", + " 'F1-2.5': 0.5259259259259259,\n", + " 'F1-3.5': 0.26666666666666666,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.3-70B-Instruct': {'F1-0.5': 0.855191256830601,\n", + " 'F1-1.5': 0.7913385826771654,\n", + " 'F1-2.5': 0.6198083067092651,\n", + " 'F1-3.5': 0.1342281879194631,\n", + " 'F1-4.5': 0.125},\n", + " 'gemma-2-27b-it': {'F1-0.5': 0.7792521109770808,\n", + " 'F1-1.5': 0.7649402390438247,\n", + " 'F1-2.5': 0.5454545454545454,\n", + " 'F1-3.5': 0.16666666666666666,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-32B-Instruct': {'F1-0.5': 0.8408488063660478,\n", + " 'F1-1.5': 0.7480314960629921,\n", + " 'F1-2.5': 0.6123778501628665,\n", + " 'F1-3.5': 0.19801980198019803,\n", + " 'F1-4.5': 0.5},\n", + " 'Qwen2.5-7B-Instruct': {'F1-0.5': 0.7793764988009593,\n", + " 'F1-1.5': 0.6759689922480621,\n", + " 'F1-2.5': 0.5303030303030303,\n", + " 'F1-3.5': 0.12359550561797752,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-3-27b-it': {'F1-0.5': 0.777511961722488,\n", + " 'F1-1.5': 0.7056962025316456,\n", + " 'F1-2.5': 0.5550239234449761,\n", + " 'F1-3.5': 0.14285714285714285,\n", + " 'F1-4.5': 0.18181818181818182},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'F1-0.5': 0.8207070707070707,\n", + " 'F1-1.5': 0.7985074626865671,\n", + " 'F1-2.5': 0.5923076923076923,\n", + " 'F1-3.5': 0.1276595744680851,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.2-3B-Instruct': {'F1-0.5': 0.8171206225680934,\n", + " 'F1-1.5': 0.6508313539192399,\n", + " 'F1-2.5': 0.46153846153846156,\n", + " 'F1-3.5': 0.08536585365853659,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-2-9b-it': {'F1-0.5': 0.8141592920353983,\n", + " 'F1-1.5': 0.7881040892193308,\n", + " 'F1-2.5': 0.4563106796116505,\n", + " 'F1-3.5': 0.1,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.1-8B-Instruct': {'F1-0.5': 0.8400556328233658,\n", + " 'F1-1.5': 0.7566607460035524,\n", + " 'F1-2.5': 0.6111111111111112,\n", + " 'F1-3.5': 0.10071942446043165,\n", + " 'F1-4.5': 0.25},\n", + " 'Qwen2.5-72B-Instruct': {'F1-0.5': 0.7859733978234583,\n", + " 'F1-1.5': 0.6708074534161491,\n", + " 'F1-2.5': 0.5402597402597402,\n", + " 'F1-3.5': 0.1527777777777778,\n", + " 'F1-4.5': 0.0}},\n", + " 'nb': {'phi-4': {'F1-0.5': 0.8506056527590848,\n", + " 'F1-1.5': 0.7490774907749077,\n", + " 'F1-2.5': 0.591715976331361,\n", + " 'F1-3.5': 0.15,\n", + " 'F1-4.5': 0.2222222222222222},\n", + " 'Qwen2.5-14B-Instruct': {'F1-0.5': 0.7975308641975308,\n", + " 'F1-1.5': 0.7241379310344828,\n", + " 'F1-2.5': 0.5527272727272727,\n", + " 'F1-3.5': 0.13333333333333333,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.3-70B-Instruct': {'F1-0.5': 0.8689655172413793,\n", + " 'F1-1.5': 0.7894736842105263,\n", + " 'F1-2.5': 0.6040268456375839,\n", + " 'F1-3.5': 0.16296296296296298,\n", + " 'F1-4.5': 0.14814814814814814},\n", + " 'gemma-2-27b-it': {'F1-0.5': 0.7807228915662651,\n", + " 'F1-1.5': 0.7489361702127659,\n", + " 'F1-2.5': 0.5583333333333333,\n", + " 'F1-3.5': 0.11764705882352941,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-32B-Instruct': {'F1-0.5': 0.8266666666666667,\n", + " 'F1-1.5': 0.7469879518072289,\n", + " 'F1-2.5': 0.6186186186186187,\n", + " 'F1-3.5': 0.19672131147540983,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-7B-Instruct': {'F1-0.5': 0.777511961722488,\n", + " 'F1-1.5': 0.6930379746835443,\n", + " 'F1-2.5': 0.5316455696202531,\n", + " 'F1-3.5': 0.10426540284360189,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-3-27b-it': {'F1-0.5': 0.777511961722488,\n", + " 'F1-1.5': 0.7101910828025477,\n", + " 'F1-2.5': 0.5458937198067633,\n", + " 'F1-3.5': 0.14184397163120568,\n", + " 'F1-4.5': 0.0},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'F1-0.5': 0.8238276299112801,\n", + " 'F1-1.5': 0.7748091603053435,\n", + " 'F1-2.5': 0.6367041198501873,\n", + " 'F1-3.5': 0.13636363636363635,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.2-3B-Instruct': {'F1-0.5': 0.7526881720430108,\n", + " 'F1-1.5': 0.6018518518518519,\n", + " 'F1-2.5': 0.48484848484848486,\n", + " 'F1-3.5': 0.12307692307692308,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-2-9b-it': {'F1-0.5': 0.816793893129771,\n", + " 'F1-1.5': 0.7915869980879541,\n", + " 'F1-2.5': 0.4807692307692308,\n", + " 'F1-3.5': 0.0,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.1-8B-Instruct': {'F1-0.5': 0.8500727802037845,\n", + " 'F1-1.5': 0.7677165354330708,\n", + " 'F1-2.5': 0.6035087719298246,\n", + " 'F1-3.5': 0.12389380530973451,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-72B-Instruct': {'F1-0.5': 0.7859733978234583,\n", + " 'F1-1.5': 0.6857142857142857,\n", + " 'F1-2.5': 0.5401069518716578,\n", + " 'F1-3.5': 0.15894039735099338,\n", + " 'F1-4.5': 0.0}},\n", + " 'fi': {'phi-4': {'F1-0.5': 0.8406961178045516,\n", + " 'F1-1.5': 0.7518248175182481,\n", + " 'F1-2.5': 0.5722543352601156,\n", + " 'F1-3.5': 0.15053763440860216,\n", + " 'F1-4.5': 0.2857142857142857},\n", + " 'Qwen2.5-14B-Instruct': {'F1-0.5': 0.7985074626865671,\n", + " 'F1-1.5': 0.7368421052631579,\n", + " 'F1-2.5': 0.4980544747081712,\n", + " 'F1-3.5': 0.13636363636363635,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.3-70B-Instruct': {'F1-0.5': 0.860655737704918,\n", + " 'F1-1.5': 0.7895791583166333,\n", + " 'F1-2.5': 0.6163934426229508,\n", + " 'F1-3.5': 0.16923076923076924,\n", + " 'F1-4.5': 0.08},\n", + " 'gemma-2-27b-it': {'F1-0.5': 0.7840772014475271,\n", + " 'F1-1.5': 0.7428571428571429,\n", + " 'F1-2.5': 0.5523012552301255,\n", + " 'F1-3.5': 0.12121212121212122,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-32B-Instruct': {'F1-0.5': 0.8284960422163589,\n", + " 'F1-1.5': 0.7265625,\n", + " 'F1-2.5': 0.5893416927899686,\n", + " 'F1-3.5': 0.1864406779661017,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-7B-Instruct': {'F1-0.5': 0.7784431137724551,\n", + " 'F1-1.5': 0.6748466257668712,\n", + " 'F1-2.5': 0.5503685503685504,\n", + " 'F1-3.5': 0.10377358490566038,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-3-27b-it': {'F1-0.5': 0.7764423076923077,\n", + " 'F1-1.5': 0.7012578616352201,\n", + " 'F1-2.5': 0.5463182897862233,\n", + " 'F1-3.5': 0.136986301369863,\n", + " 'F1-4.5': 0.25},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'F1-0.5': 0.8155583437892095,\n", + " 'F1-1.5': 0.7775628626692457,\n", + " 'F1-2.5': 0.6050420168067226,\n", + " 'F1-3.5': 0.0851063829787234,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.2-3B-Instruct': {'F1-0.5': 0.7835616438356164,\n", + " 'F1-1.5': 0.6319218241042345,\n", + " 'F1-2.5': 0.47572815533980584,\n", + " 'F1-3.5': 0.06382978723404255,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-2-9b-it': {'F1-0.5': 0.8055207026348808,\n", + " 'F1-1.5': 0.7741935483870968,\n", + " 'F1-2.5': 0.4433497536945813,\n", + " 'F1-3.5': 0.14814814814814814,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.1-8B-Instruct': {'F1-0.5': 0.8107344632768362,\n", + " 'F1-1.5': 0.7537878787878788,\n", + " 'F1-2.5': 0.6148409893992933,\n", + " 'F1-3.5': 0.11428571428571428,\n", + " 'F1-4.5': 0.25},\n", + " 'Qwen2.5-72B-Instruct': {'F1-0.5': 0.7840772014475271,\n", + " 'F1-1.5': 0.6707503828483921,\n", + " 'F1-2.5': 0.5639686684073107,\n", + " 'F1-3.5': 0.16,\n", + " 'F1-4.5': 0.0}},\n", + " 'el': {'phi-4': {'F1-0.5': 0.8446866485013624,\n", + " 'F1-1.5': 0.7387755102040816,\n", + " 'F1-2.5': 0.5938566552901023,\n", + " 'F1-3.5': 0.17073170731707318,\n", + " 'F1-4.5': 0.2222222222222222},\n", + " 'Qwen2.5-14B-Instruct': {'F1-0.5': 0.8195876288659794,\n", + " 'F1-1.5': 0.7368421052631579,\n", + " 'F1-2.5': 0.5224489795918368,\n", + " 'F1-3.5': 0.15,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.3-70B-Instruct': {'F1-0.5': 0.8506666666666667,\n", + " 'F1-1.5': 0.7931034482758621,\n", + " 'F1-2.5': 0.6012269938650306,\n", + " 'F1-3.5': 0.13836477987421383,\n", + " 'F1-4.5': 0.11428571428571428},\n", + " 'gemma-2-27b-it': {'F1-0.5': 0.781136638452237,\n", + " 'F1-1.5': 0.7554671968190855,\n", + " 'F1-2.5': 0.599250936329588,\n", + " 'F1-3.5': 0.1,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-32B-Instruct': {'F1-0.5': 0.8276797829036635,\n", + " 'F1-1.5': 0.7326732673267327,\n", + " 'F1-2.5': 0.5850340136054422,\n", + " 'F1-3.5': 0.2127659574468085,\n", + " 'F1-4.5': 0.5},\n", + " 'Qwen2.5-7B-Instruct': {'F1-0.5': 0.7779111644657863,\n", + " 'F1-1.5': 0.6707882534775889,\n", + " 'F1-2.5': 0.5048543689320388,\n", + " 'F1-3.5': 0.0966183574879227,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-3-27b-it': {'F1-0.5': 0.777511961722488,\n", + " 'F1-1.5': 0.6970172684458399,\n", + " 'F1-2.5': 0.5217391304347826,\n", + " 'F1-3.5': 0.13496932515337423,\n", + " 'F1-4.5': 0.25},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'F1-0.5': 0.8135168961201502,\n", + " 'F1-1.5': 0.7909604519774012,\n", + " 'F1-2.5': 0.6015625,\n", + " 'F1-3.5': 0.12,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.2-3B-Instruct': {'F1-0.5': 0.7636363636363637,\n", + " 'F1-1.5': 0.643312101910828,\n", + " 'F1-2.5': 0.4953271028037383,\n", + " 'F1-3.5': 0.11475409836065574,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-2-9b-it': {'F1-0.5': 0.8111533586818758,\n", + " 'F1-1.5': 0.7729831144465291,\n", + " 'F1-2.5': 0.5070422535211268,\n", + " 'F1-3.5': 0.08695652173913043,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.1-8B-Instruct': {'F1-0.5': 0.8354430379746836,\n", + " 'F1-1.5': 0.7527675276752768,\n", + " 'F1-2.5': 0.6084142394822006,\n", + " 'F1-3.5': 0.09929078014184398,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-72B-Instruct': {'F1-0.5': 0.782608695652174,\n", + " 'F1-1.5': 0.6717791411042945,\n", + " 'F1-2.5': 0.5464190981432361,\n", + " 'F1-3.5': 0.18309859154929578,\n", + " 'F1-4.5': 0.0}},\n", + " 'pl': {'phi-4': {'F1-0.5': 0.8501362397820164,\n", + " 'F1-1.5': 0.7655677655677655,\n", + " 'F1-2.5': 0.5611940298507463,\n", + " 'F1-3.5': 0.18823529411764706,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-14B-Instruct': {'F1-0.5': 0.8010012515644556,\n", + " 'F1-1.5': 0.7276264591439688,\n", + " 'F1-2.5': 0.5038167938931297,\n", + " 'F1-3.5': 0.2222222222222222,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.3-70B-Instruct': {'F1-0.5': 0.8528610354223434,\n", + " 'F1-1.5': 0.7943548387096774,\n", + " 'F1-2.5': 0.6112956810631229,\n", + " 'F1-3.5': 0.15942028985507245,\n", + " 'F1-4.5': 0.13333333333333333},\n", + " 'gemma-2-27b-it': {'F1-0.5': 0.78125,\n", + " 'F1-1.5': 0.7463312368972747,\n", + " 'F1-2.5': 0.5573770491803278,\n", + " 'F1-3.5': 0.13333333333333333,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-32B-Instruct': {'F1-0.5': 0.835781041388518,\n", + " 'F1-1.5': 0.7426326129666012,\n", + " 'F1-2.5': 0.5954692556634305,\n", + " 'F1-3.5': 0.1834862385321101,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-7B-Instruct': {'F1-0.5': 0.7793764988009593,\n", + " 'F1-1.5': 0.6687402799377916,\n", + " 'F1-2.5': 0.5170731707317073,\n", + " 'F1-3.5': 0.10714285714285714,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-3-27b-it': {'F1-0.5': 0.7769784172661871,\n", + " 'F1-1.5': 0.7028753993610224,\n", + " 'F1-2.5': 0.5407925407925408,\n", + " 'F1-3.5': 0.1610738255033557,\n", + " 'F1-4.5': 0.0},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'F1-0.5': 0.8233799237611181,\n", + " 'F1-1.5': 0.7680311890838206,\n", + " 'F1-2.5': 0.5761316872427984,\n", + " 'F1-3.5': 0.24,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.2-3B-Instruct': {'F1-0.5': 0.807909604519774,\n", + " 'F1-1.5': 0.6666666666666666,\n", + " 'F1-2.5': 0.4606741573033708,\n", + " 'F1-3.5': 0.0851063829787234,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-2-9b-it': {'F1-0.5': 0.8220230473751601,\n", + " 'F1-1.5': 0.7846153846153846,\n", + " 'F1-2.5': 0.4723618090452261,\n", + " 'F1-3.5': 0.09523809523809523,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.1-8B-Instruct': {'F1-0.5': 0.8343023255813954,\n", + " 'F1-1.5': 0.7619047619047619,\n", + " 'F1-2.5': 0.6190476190476191,\n", + " 'F1-3.5': 0.16806722689075632,\n", + " 'F1-4.5': 0.15384615384615385},\n", + " 'Qwen2.5-72B-Instruct': {'F1-0.5': 0.785024154589372,\n", + " 'F1-1.5': 0.6739811912225705,\n", + " 'F1-2.5': 0.5511811023622047,\n", + " 'F1-3.5': 0.1456953642384106,\n", + " 'F1-4.5': 0.0}},\n", + " 'es': {'phi-4': {'F1-0.5': 0.8521031207598372,\n", + " 'F1-1.5': 0.7326007326007326,\n", + " 'F1-2.5': 0.599388379204893,\n", + " 'F1-3.5': 0.18666666666666668,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-14B-Instruct': {'F1-0.5': 0.7945879458794588,\n", + " 'F1-1.5': 0.7252336448598131,\n", + " 'F1-2.5': 0.5724381625441696,\n", + " 'F1-3.5': 0.20689655172413793,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.3-70B-Instruct': {'F1-0.5': 0.8598382749326146,\n", + " 'F1-1.5': 0.7969348659003831,\n", + " 'F1-2.5': 0.6114649681528662,\n", + " 'F1-3.5': 0.13071895424836602,\n", + " 'F1-4.5': 0.12121212121212122},\n", + " 'gemma-2-27b-it': {'F1-0.5': 0.7831325301204819,\n", + " 'F1-1.5': 0.7701612903225806,\n", + " 'F1-2.5': 0.5945945945945946,\n", + " 'F1-3.5': 0.21621621621621623,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-32B-Instruct': {'F1-0.5': 0.8375165125495376,\n", + " 'F1-1.5': 0.7495069033530573,\n", + " 'F1-2.5': 0.5806451612903226,\n", + " 'F1-3.5': 0.17391304347826086,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-7B-Instruct': {'F1-0.5': 0.7793764988009593,\n", + " 'F1-1.5': 0.6790123456790124,\n", + " 'F1-2.5': 0.5295629820051414,\n", + " 'F1-3.5': 0.12307692307692308,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-3-27b-it': {'F1-0.5': 0.777511961722488,\n", + " 'F1-1.5': 0.7111111111111111,\n", + " 'F1-2.5': 0.5424528301886793,\n", + " 'F1-3.5': 0.12162162162162163,\n", + " 'F1-4.5': 0.0},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'F1-0.5': 0.8171500630517023,\n", + " 'F1-1.5': 0.7784200385356455,\n", + " 'F1-2.5': 0.627906976744186,\n", + " 'F1-3.5': 0.24,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.2-3B-Instruct': {'F1-0.5': 0.8082474226804124,\n", + " 'F1-1.5': 0.6733167082294265,\n", + " 'F1-2.5': 0.5714285714285714,\n", + " 'F1-3.5': 0.07874015748031496,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-2-9b-it': {'F1-0.5': 0.8152866242038217,\n", + " 'F1-1.5': 0.7769230769230769,\n", + " 'F1-2.5': 0.45794392523364486,\n", + " 'F1-3.5': 0.11764705882352941,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.1-8B-Instruct': {'F1-0.5': 0.8430493273542601,\n", + " 'F1-1.5': 0.7777777777777778,\n", + " 'F1-2.5': 0.6431095406360424,\n", + " 'F1-3.5': 0.18018018018018017,\n", + " 'F1-4.5': 0.18181818181818182},\n", + " 'Qwen2.5-72B-Instruct': {'F1-0.5': 0.7854545454545454,\n", + " 'F1-1.5': 0.6666666666666666,\n", + " 'F1-2.5': 0.5409429280397022,\n", + " 'F1-3.5': 0.16455696202531644,\n", + " 'F1-4.5': 0.0}},\n", + " 'tr': {'phi-4': {'F1-0.5': 0.8440860215053764,\n", + " 'F1-1.5': 0.7654784240150094,\n", + " 'F1-2.5': 0.5941176470588235,\n", + " 'F1-3.5': 0.2222222222222222,\n", + " 'F1-4.5': 0.5},\n", + " 'Qwen2.5-14B-Instruct': {'F1-0.5': 0.7985166872682324,\n", + " 'F1-1.5': 0.7591522157996147,\n", + " 'F1-2.5': 0.5714285714285714,\n", + " 'F1-3.5': 0.17777777777777778,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.3-70B-Instruct': {'F1-0.5': 0.8642659279778393,\n", + " 'F1-1.5': 0.7958762886597938,\n", + " 'F1-2.5': 0.6508474576271186,\n", + " 'F1-3.5': 0.15151515151515152,\n", + " 'F1-4.5': 0.06896551724137931},\n", + " 'gemma-2-27b-it': {'F1-0.5': 0.7854545454545454,\n", + " 'F1-1.5': 0.7704918032786885,\n", + " 'F1-2.5': 0.5991902834008097,\n", + " 'F1-3.5': 0.058823529411764705,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-32B-Instruct': {'F1-0.5': 0.8346456692913385,\n", + " 'F1-1.5': 0.7404580152671756,\n", + " 'F1-2.5': 0.5830721003134797,\n", + " 'F1-3.5': 0.18181818181818182,\n", + " 'F1-4.5': 0.6666666666666666},\n", + " 'Qwen2.5-7B-Instruct': {'F1-0.5': 0.7784431137724551,\n", + " 'F1-1.5': 0.6799387442572741,\n", + " 'F1-2.5': 0.5339805825242718,\n", + " 'F1-3.5': 0.10762331838565023,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-3-27b-it': {'F1-0.5': 0.777511961722488,\n", + " 'F1-1.5': 0.7044025157232704,\n", + " 'F1-2.5': 0.5290023201856149,\n", + " 'F1-3.5': 0.15602836879432624,\n", + " 'F1-4.5': 0.0},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'F1-0.5': 0.8197969543147208,\n", + " 'F1-1.5': 0.810077519379845,\n", + " 'F1-2.5': 0.6134453781512605,\n", + " 'F1-3.5': 0.2,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.2-3B-Instruct': {'F1-0.5': 0.7862407862407862,\n", + " 'F1-1.5': 0.6488095238095238,\n", + " 'F1-2.5': 0.45493562231759654,\n", + " 'F1-3.5': 0.04580152671755725,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-2-9b-it': {'F1-0.5': 0.8075,\n", + " 'F1-1.5': 0.7873134328358209,\n", + " 'F1-2.5': 0.4834123222748815,\n", + " 'F1-3.5': 0.09090909090909091,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.1-8B-Instruct': {'F1-0.5': 0.8192090395480226,\n", + " 'F1-1.5': 0.7637051039697542,\n", + " 'F1-2.5': 0.6375838926174496,\n", + " 'F1-3.5': 0.19230769230769232,\n", + " 'F1-4.5': 0.25},\n", + " 'Qwen2.5-72B-Instruct': {'F1-0.5': 0.7840772014475271,\n", + " 'F1-1.5': 0.6833855799373041,\n", + " 'F1-2.5': 0.5416666666666666,\n", + " 'F1-3.5': 0.15789473684210525,\n", + " 'F1-4.5': 0.0}},\n", + " 'fr': {'phi-4': {'F1-0.5': 0.8418156808803301,\n", + " 'F1-1.5': 0.7410207939508506,\n", + " 'F1-2.5': 0.5590062111801242,\n", + " 'F1-3.5': 0.14084507042253522,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-14B-Instruct': {'F1-0.5': 0.7945879458794588,\n", + " 'F1-1.5': 0.7461538461538462,\n", + " 'F1-2.5': 0.5714285714285714,\n", + " 'F1-3.5': 0.18181818181818182,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.3-70B-Instruct': {'F1-0.5': 0.8490566037735849,\n", + " 'F1-1.5': 0.7984344422700587,\n", + " 'F1-2.5': 0.6352201257861635,\n", + " 'F1-3.5': 0.14666666666666667,\n", + " 'F1-4.5': 0.05405405405405406},\n", + " 'gemma-2-27b-it': {'F1-0.5': 0.7840772014475271,\n", + " 'F1-1.5': 0.7593360995850622,\n", + " 'F1-2.5': 0.5394190871369294,\n", + " 'F1-3.5': 0.22857142857142856,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-32B-Instruct': {'F1-0.5': 0.8247694334650857,\n", + " 'F1-1.5': 0.7287128712871287,\n", + " 'F1-2.5': 0.5987261146496815,\n", + " 'F1-3.5': 0.17391304347826086,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-7B-Instruct': {'F1-0.5': 0.7793764988009593,\n", + " 'F1-1.5': 0.6932907348242812,\n", + " 'F1-2.5': 0.5402597402597402,\n", + " 'F1-3.5': 0.13978494623655913,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-3-27b-it': {'F1-0.5': 0.7769784172661871,\n", + " 'F1-1.5': 0.6990595611285266,\n", + " 'F1-2.5': 0.5424528301886793,\n", + " 'F1-3.5': 0.14102564102564102,\n", + " 'F1-4.5': 0.0},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'F1-0.5': 0.818639798488665,\n", + " 'F1-1.5': 0.7796610169491526,\n", + " 'F1-2.5': 0.6053639846743295,\n", + " 'F1-3.5': 0.11538461538461539,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.2-3B-Instruct': {'F1-0.5': 0.7950310559006211,\n", + " 'F1-1.5': 0.6486486486486487,\n", + " 'F1-2.5': 0.48484848484848486,\n", + " 'F1-3.5': 0.08108108108108109,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-2-9b-it': {'F1-0.5': 0.8305304010349288,\n", + " 'F1-1.5': 0.7817460317460317,\n", + " 'F1-2.5': 0.450261780104712,\n", + " 'F1-3.5': 0.0,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.1-8B-Instruct': {'F1-0.5': 0.8347578347578347,\n", + " 'F1-1.5': 0.7654784240150094,\n", + " 'F1-2.5': 0.6275862068965518,\n", + " 'F1-3.5': 0.16666666666666666,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-72B-Instruct': {'F1-0.5': 0.7859733978234583,\n", + " 'F1-1.5': 0.6833073322932918,\n", + " 'F1-2.5': 0.5473684210526316,\n", + " 'F1-3.5': 0.14473684210526316,\n", + " 'F1-4.5': 0.0}},\n", + " 'de': {'phi-4': {'F1-0.5': 0.8421052631578947,\n", + " 'F1-1.5': 0.76,\n", + " 'F1-2.5': 0.5529411764705883,\n", + " 'F1-3.5': 0.21052631578947367,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-14B-Instruct': {'F1-0.5': 0.7980295566502463,\n", + " 'F1-1.5': 0.7234848484848485,\n", + " 'F1-2.5': 0.5428571428571428,\n", + " 'F1-3.5': 0.1509433962264151,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.3-70B-Instruct': {'F1-0.5': 0.8649386084583902,\n", + " 'F1-1.5': 0.793713163064833,\n", + " 'F1-2.5': 0.6070287539936102,\n", + " 'F1-3.5': 0.15172413793103448,\n", + " 'F1-4.5': 0.14285714285714285},\n", + " 'gemma-2-27b-it': {'F1-0.5': 0.78125,\n", + " 'F1-1.5': 0.7473903966597077,\n", + " 'F1-2.5': 0.5150214592274678,\n", + " 'F1-3.5': 0.21621621621621623,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-32B-Instruct': {'F1-0.5': 0.8375838926174497,\n", + " 'F1-1.5': 0.7327935222672065,\n", + " 'F1-2.5': 0.5942492012779552,\n", + " 'F1-3.5': 0.16363636363636364,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-7B-Instruct': {'F1-0.5': 0.78031212484994,\n", + " 'F1-1.5': 0.6888888888888889,\n", + " 'F1-2.5': 0.527363184079602,\n", + " 'F1-3.5': 0.11764705882352941,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-3-27b-it': {'F1-0.5': 0.777511961722488,\n", + " 'F1-1.5': 0.7101910828025477,\n", + " 'F1-2.5': 0.5419664268585132,\n", + " 'F1-3.5': 0.13953488372093023,\n", + " 'F1-4.5': 0.0},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'F1-0.5': 0.818639798488665,\n", + " 'F1-1.5': 0.7931034482758621,\n", + " 'F1-2.5': 0.6274509803921569,\n", + " 'F1-3.5': 0.1,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.2-3B-Instruct': {'F1-0.5': 0.7830423940149626,\n", + " 'F1-1.5': 0.6602564102564102,\n", + " 'F1-2.5': 0.5697674418604651,\n", + " 'F1-3.5': 0.14705882352941177,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-2-9b-it': {'F1-0.5': 0.8292682926829268,\n", + " 'F1-1.5': 0.7852998065764023,\n", + " 'F1-2.5': 0.44221105527638194,\n", + " 'F1-3.5': 0.2,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.1-8B-Instruct': {'F1-0.5': 0.8428781204111601,\n", + " 'F1-1.5': 0.7485148514851485,\n", + " 'F1-2.5': 0.5681818181818182,\n", + " 'F1-3.5': 0.17142857142857143,\n", + " 'F1-4.5': 0.2857142857142857},\n", + " 'Qwen2.5-72B-Instruct': {'F1-0.5': 0.7859733978234583,\n", + " 'F1-1.5': 0.6857142857142857,\n", + " 'F1-2.5': 0.5684210526315789,\n", + " 'F1-3.5': 0.15789473684210525,\n", + " 'F1-4.5': 0.0}},\n", + " 'it': {'phi-4': {'F1-0.5': 0.8521505376344086,\n", + " 'F1-1.5': 0.7666666666666667,\n", + " 'F1-2.5': 0.5454545454545454,\n", + " 'F1-3.5': 0.21333333333333335,\n", + " 'F1-4.5': 0.5},\n", + " 'Qwen2.5-14B-Instruct': {'F1-0.5': 0.7945879458794588,\n", + " 'F1-1.5': 0.7161904761904762,\n", + " 'F1-2.5': 0.5655172413793104,\n", + " 'F1-3.5': 0.18867924528301888,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.3-70B-Instruct': {'F1-0.5': 0.8559782608695652,\n", + " 'F1-1.5': 0.79296875,\n", + " 'F1-2.5': 0.5954692556634305,\n", + " 'F1-3.5': 0.1527777777777778,\n", + " 'F1-4.5': 0.12903225806451613},\n", + " 'gemma-2-27b-it': {'F1-0.5': 0.779783393501805,\n", + " 'F1-1.5': 0.757201646090535,\n", + " 'F1-2.5': 0.5213675213675214,\n", + " 'F1-3.5': 0.12903225806451613,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-32B-Instruct': {'F1-0.5': 0.8355437665782494,\n", + " 'F1-1.5': 0.7607843137254902,\n", + " 'F1-2.5': 0.5792682926829268,\n", + " 'F1-3.5': 0.1724137931034483,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-7B-Instruct': {'F1-0.5': 0.7793764988009593,\n", + " 'F1-1.5': 0.688783570300158,\n", + " 'F1-2.5': 0.5319693094629157,\n", + " 'F1-3.5': 0.1164021164021164,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-3-27b-it': {'F1-0.5': 0.777511961722488,\n", + " 'F1-1.5': 0.7058823529411765,\n", + " 'F1-2.5': 0.5411764705882353,\n", + " 'F1-3.5': 0.1456953642384106,\n", + " 'F1-4.5': 0.2857142857142857},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'F1-0.5': 0.819672131147541,\n", + " 'F1-1.5': 0.7736943907156673,\n", + " 'F1-2.5': 0.5806451612903226,\n", + " 'F1-3.5': 0.13333333333333333,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.2-3B-Instruct': {'F1-0.5': 0.8181818181818182,\n", + " 'F1-1.5': 0.6795580110497238,\n", + " 'F1-2.5': 0.5086206896551724,\n", + " 'F1-3.5': 0.08247422680412371,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-2-9b-it': {'F1-0.5': 0.8250319284802043,\n", + " 'F1-1.5': 0.7833001988071571,\n", + " 'F1-2.5': 0.44554455445544555,\n", + " 'F1-3.5': 0.1111111111111111,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.1-8B-Instruct': {'F1-0.5': 0.8390804597701149,\n", + " 'F1-1.5': 0.7799227799227799,\n", + " 'F1-2.5': 0.6416382252559727,\n", + " 'F1-3.5': 0.15126050420168066,\n", + " 'F1-4.5': 0.25},\n", + " 'Qwen2.5-72B-Instruct': {'F1-0.5': 0.784503631961259,\n", + " 'F1-1.5': 0.6780715396578538,\n", + " 'F1-2.5': 0.5506493506493506,\n", + " 'F1-3.5': 0.15483870967741936,\n", + " 'F1-4.5': 0.0}},\n", + " 'lt': {'phi-4': {'F1-0.5': 0.8382749326145552,\n", + " 'F1-1.5': 0.7547169811320755,\n", + " 'F1-2.5': 0.5741324921135647,\n", + " 'F1-3.5': 0.19753086419753085,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-14B-Instruct': {'F1-0.5': 0.8060075093867334,\n", + " 'F1-1.5': 0.7251461988304093,\n", + " 'F1-2.5': 0.5328185328185329,\n", + " 'F1-3.5': 0.14634146341463414,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.3-70B-Instruct': {'F1-0.5': 0.8622100954979536,\n", + " 'F1-1.5': 0.7854251012145749,\n", + " 'F1-2.5': 0.62,\n", + " 'F1-3.5': 0.14925373134328357,\n", + " 'F1-4.5': 0.13793103448275862},\n", + " 'gemma-2-27b-it': {'F1-0.5': 0.7806060606060606,\n", + " 'F1-1.5': 0.7601626016260162,\n", + " 'F1-2.5': 0.5579399141630901,\n", + " 'F1-3.5': 0.13793103448275862,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-32B-Instruct': {'F1-0.5': 0.836173001310616,\n", + " 'F1-1.5': 0.7362428842504743,\n", + " 'F1-2.5': 0.592814371257485,\n", + " 'F1-3.5': 0.14814814814814814,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-7B-Instruct': {'F1-0.5': 0.7784431137724551,\n", + " 'F1-1.5': 0.6759689922480621,\n", + " 'F1-2.5': 0.5265700483091788,\n", + " 'F1-3.5': 0.10810810810810811,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-3-27b-it': {'F1-0.5': 0.777511961722488,\n", + " 'F1-1.5': 0.6978193146417445,\n", + " 'F1-2.5': 0.5275229357798165,\n", + " 'F1-3.5': 0.13664596273291926,\n", + " 'F1-4.5': 0.0},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'F1-0.5': 0.818639798488665,\n", + " 'F1-1.5': 0.7847619047619048,\n", + " 'F1-2.5': 0.5991902834008097,\n", + " 'F1-3.5': 0.23255813953488372,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.2-3B-Instruct': {'F1-0.5': 0.8076923076923077,\n", + " 'F1-1.5': 0.6825396825396826,\n", + " 'F1-2.5': 0.5278810408921933,\n", + " 'F1-3.5': 0.12121212121212122,\n", + " 'F1-4.5': 0.06896551724137931},\n", + " 'gemma-2-9b-it': {'F1-0.5': 0.8090452261306532,\n", + " 'F1-1.5': 0.7734806629834254,\n", + " 'F1-2.5': 0.42718446601941745,\n", + " 'F1-3.5': 0.17391304347826086,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.1-8B-Instruct': {'F1-0.5': 0.8196286472148541,\n", + " 'F1-1.5': 0.75177304964539,\n", + " 'F1-2.5': 0.6410256410256411,\n", + " 'F1-3.5': 0.12030075187969924,\n", + " 'F1-4.5': 0.2},\n", + " 'Qwen2.5-72B-Instruct': {'F1-0.5': 0.7831325301204819,\n", + " 'F1-1.5': 0.6635802469135802,\n", + " 'F1-2.5': 0.5614035087719298,\n", + " 'F1-3.5': 0.14965986394557823,\n", + " 'F1-4.5': 0.0}},\n", + " 'hu': {'phi-4': {'F1-0.5': 0.8472775564409031,\n", + " 'F1-1.5': 0.7527272727272727,\n", + " 'F1-2.5': 0.5825825825825826,\n", + " 'F1-3.5': 0.21052631578947367,\n", + " 'F1-4.5': 0.3333333333333333},\n", + " 'Qwen2.5-14B-Instruct': {'F1-0.5': 0.8005018820577164,\n", + " 'F1-1.5': 0.7236580516898609,\n", + " 'F1-2.5': 0.5425101214574899,\n", + " 'F1-3.5': 0.22727272727272727,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.3-70B-Instruct': {'F1-0.5': 0.8684931506849315,\n", + " 'F1-1.5': 0.7762376237623763,\n", + " 'F1-2.5': 0.636986301369863,\n", + " 'F1-3.5': 0.1527777777777778,\n", + " 'F1-4.5': 0.125},\n", + " 'gemma-2-27b-it': {'F1-0.5': 0.7849331713244229,\n", + " 'F1-1.5': 0.7625,\n", + " 'F1-2.5': 0.5579399141630901,\n", + " 'F1-3.5': 0.125,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-32B-Instruct': {'F1-0.5': 0.8267716535433071,\n", + " 'F1-1.5': 0.7276264591439688,\n", + " 'F1-2.5': 0.559748427672956,\n", + " 'F1-3.5': 0.2018348623853211,\n", + " 'F1-4.5': 0.5},\n", + " 'Qwen2.5-7B-Instruct': {'F1-0.5': 0.78031212484994,\n", + " 'F1-1.5': 0.6865203761755486,\n", + " 'F1-2.5': 0.5501285347043702,\n", + " 'F1-3.5': 0.1116751269035533,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-3-27b-it': {'F1-0.5': 0.7764423076923077,\n", + " 'F1-1.5': 0.707936507936508,\n", + " 'F1-2.5': 0.5292740046838408,\n", + " 'F1-3.5': 0.13924050632911392,\n", + " 'F1-4.5': 0.0},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'F1-0.5': 0.8176100628930818,\n", + " 'F1-1.5': 0.781431334622824,\n", + " 'F1-2.5': 0.5907172995780591,\n", + " 'F1-3.5': 0.15,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.2-3B-Instruct': {'F1-0.5': 0.8227571115973742,\n", + " 'F1-1.5': 0.7037037037037037,\n", + " 'F1-2.5': 0.5275590551181102,\n", + " 'F1-3.5': 0.09375,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-2-9b-it': {'F1-0.5': 0.8157560355781448,\n", + " 'F1-1.5': 0.7739463601532567,\n", + " 'F1-2.5': 0.47804878048780486,\n", + " 'F1-3.5': 0.3333333333333333,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.1-8B-Instruct': {'F1-0.5': 0.8244897959183674,\n", + " 'F1-1.5': 0.7619047619047619,\n", + " 'F1-2.5': 0.5902777777777778,\n", + " 'F1-3.5': 0.12631578947368421,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-72B-Instruct': {'F1-0.5': 0.7859733978234583,\n", + " 'F1-1.5': 0.6791277258566978,\n", + " 'F1-2.5': 0.5368421052631579,\n", + " 'F1-3.5': 0.16783216783216784,\n", + " 'F1-4.5': 0.0}},\n", + " 'uk': {'phi-4': {'F1-0.5': 0.8422496570644719,\n", + " 'F1-1.5': 0.7676767676767676,\n", + " 'F1-2.5': 0.5890909090909091,\n", + " 'F1-3.5': 0.17647058823529413,\n", + " 'F1-4.5': 0.5},\n", + " 'Qwen2.5-14B-Instruct': {'F1-0.5': 0.8184143222506394,\n", + " 'F1-1.5': 0.7455621301775148,\n", + " 'F1-2.5': 0.5168539325842697,\n", + " 'F1-3.5': 0.2222222222222222,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.3-70B-Instruct': {'F1-0.5': 0.8536912751677852,\n", + " 'F1-1.5': 0.796844181459566,\n", + " 'F1-2.5': 0.6037735849056604,\n", + " 'F1-3.5': 0.14285714285714285,\n", + " 'F1-4.5': 0.1111111111111111},\n", + " 'gemma-2-27b-it': {'F1-0.5': 0.7858880778588808,\n", + " 'F1-1.5': 0.7628865979381443,\n", + " 'F1-2.5': 0.5748031496062992,\n", + " 'F1-3.5': 0.15,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-32B-Instruct': {'F1-0.5': 0.8406961178045516,\n", + " 'F1-1.5': 0.7364185110663984,\n", + " 'F1-2.5': 0.5953177257525084,\n", + " 'F1-3.5': 0.18691588785046728,\n", + " 'F1-4.5': 0.0},\n", + " 'Qwen2.5-7B-Instruct': {'F1-0.5': 0.78031212484994,\n", + " 'F1-1.5': 0.6790123456790124,\n", + " 'F1-2.5': 0.5492227979274611,\n", + " 'F1-3.5': 0.13114754098360656,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-3-27b-it': {'F1-0.5': 0.7769784172661871,\n", + " 'F1-1.5': 0.7025316455696202,\n", + " 'F1-2.5': 0.5437352245862884,\n", + " 'F1-3.5': 0.13924050632911392,\n", + " 'F1-4.5': 0.0},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'F1-0.5': 0.818639798488665,\n", + " 'F1-1.5': 0.7701149425287356,\n", + " 'F1-2.5': 0.609375,\n", + " 'F1-3.5': 0.13333333333333333,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.2-3B-Instruct': {'F1-0.5': 0.7680412371134021,\n", + " 'F1-1.5': 0.6206896551724138,\n", + " 'F1-2.5': 0.4688995215311005,\n", + " 'F1-3.5': 0.09090909090909091,\n", + " 'F1-4.5': 0.0},\n", + " 'gemma-2-9b-it': {'F1-0.5': 0.8136882129277566,\n", + " 'F1-1.5': 0.7850467289719626,\n", + " 'F1-2.5': 0.43349753694581283,\n", + " 'F1-3.5': 0.0,\n", + " 'F1-4.5': 0.0},\n", + " 'Llama-3.1-8B-Instruct': {'F1-0.5': 0.8476454293628809,\n", + " 'F1-1.5': 0.7491039426523297,\n", + " 'F1-2.5': 0.6463414634146342,\n", + " 'F1-3.5': 0.136986301369863,\n", + " 'F1-4.5': 0.2222222222222222},\n", + " 'Qwen2.5-72B-Instruct': {'F1-0.5': 0.7859733978234583,\n", + " 'F1-1.5': 0.6728395061728395,\n", + " 'F1-2.5': 0.5319693094629157,\n", + " 'F1-3.5': 0.16774193548387098,\n", + " 'F1-4.5': 0.0}}}" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metric_regex = \"F1-\\w+\\.\\w+$\"\n", + "# metric_regex = \"Recall-\\w+\\.\\w+$\"\n", + "# metric_regex = \"Precision-\\w+\\.\\w+$\"\n", + "\n", + "metric_results = {\n", + " lang: {\n", + " model: {metric_name: score for metric_name, score in subsubresult[\"metrics\"].items() if re.match(metric_regex, metric_name)}\n", + " for model, subsubresult in subresult.items()\n", + " }\n", + " for lang, subresult in results_complete.items()\n", + " if lang in language_codes.keys()\n", + "}\n", + "metric_results" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "b7dfa539", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'phi-4': {'F1-0.5': np.float64(0.845564713466049),\n", + " 'F1-1.5': np.float64(0.7534720928383172),\n", + " 'F1-2.5': np.float64(0.5785996573806893),\n", + " 'F1-3.5': np.float64(0.18142085253249135),\n", + " 'F1-4.5': np.float64(0.1971916971916972)},\n", + " 'Qwen2.5-14B-Instruct': {'F1-0.5': np.float64(0.8030176996767414),\n", + " 'F1-1.5': np.float64(0.7330326117142378),\n", + " 'F1-2.5': np.float64(0.5399096710264919),\n", + " 'F1-3.5': np.float64(0.18542595571730566),\n", + " 'F1-4.5': np.float64(0.0)},\n", + " 'Llama-3.3-70B-Instruct': {'F1-0.5': np.float64(0.8589855700945056),\n", + " 'F1-1.5': np.float64(0.7918680098862654),\n", + " 'F1-2.5': np.float64(0.6164262859535897),\n", + " 'F1-3.5': np.float64(0.1494229484584371),\n", + " 'F1-4.5': np.float64(0.11468695652232917)},\n", + " 'gemma-2-27b-it': {'F1-0.5': np.float64(0.7824279863659103),\n", + " 'F1-1.5': np.float64(0.7575894170254484),\n", + " 'F1-2.5': np.float64(0.5594610033221324),\n", + " 'F1-3.5': np.float64(0.14620383561527317),\n", + " 'F1-4.5': np.float64(0.0)},\n", + " 'Qwen2.5-32B-Instruct': {'F1-0.5': np.float64(0.8333209528231839),\n", + " 'F1-1.5': np.float64(0.7391870237326502),\n", + " 'F1-2.5': np.float64(0.5911294481336646),\n", + " 'F1-3.5': np.float64(0.18307902394608308),\n", + " 'F1-4.5': np.float64(0.16666666666666666)},\n", + " 'Qwen2.5-7B-Instruct': {'F1-0.5': np.float64(0.7791208720046352),\n", + " 'F1-1.5': np.float64(0.6811383172435459),\n", + " 'F1-2.5': np.float64(0.5325616822483278),\n", + " 'F1-3.5': np.float64(0.11468160360908199),\n", + " 'F1-4.5': np.float64(0.0)},\n", + " 'gemma-3-27b-it': {'F1-0.5': np.float64(0.7772242739202372),\n", + " 'F1-1.5': np.float64(0.7043055312792907),\n", + " 'F1-2.5': np.float64(0.5390269728711503),\n", + " 'F1-3.5': np.float64(0.14128949394669374),\n", + " 'F1-4.5': np.float64(0.07442557442557443)},\n", + " 'Mistral-Small-3.1-24B-Instruct-2503': {'F1-0.5': np.float64(0.8189060207423486),\n", + " 'F1-1.5': np.float64(0.7831642863455396),\n", + " 'F1-2.5': np.float64(0.6050648523414249),\n", + " 'F1-3.5': np.float64(0.15490300118435466),\n", + " 'F1-4.5': np.float64(0.0)},\n", + " 'Llama-3.2-3B-Instruct': {'F1-0.5': np.float64(0.7933961953865034),\n", + " 'F1-1.5': np.float64(0.6547773955278735),\n", + " 'F1-2.5': np.float64(0.4993889838065812),\n", + " 'F1-3.5': np.float64(0.09332000561866019),\n", + " 'F1-4.5': np.float64(0.005305039787798408)},\n", + " 'gemma-2-9b-it': {'F1-0.5': np.float64(0.8165966934535018),\n", + " 'F1-1.5': np.float64(0.7814261102887254),\n", + " 'F1-2.5': np.float64(0.45984139595691675),\n", + " 'F1-3.5': np.float64(0.1120966463677461),\n", + " 'F1-4.5': np.float64(0.0)},\n", + " 'Llama-3.1-8B-Instruct': {'F1-0.5': np.float64(0.83394976109212),\n", + " 'F1-1.5': np.float64(0.7608475493213457),\n", + " 'F1-2.5': np.float64(0.6194359459058413),\n", + " 'F1-3.5': np.float64(0.14243872373819372),\n", + " 'F1-4.5': np.float64(0.15720006489237257)},\n", + " 'Qwen2.5-72B-Instruct': {'F1-0.5': np.float64(0.7849783344318181),\n", + " 'F1-1.5': np.float64(0.6758250259629394),\n", + " 'F1-2.5': np.float64(0.5477845310447756),\n", + " 'F1-3.5': np.float64(0.15889754505156187),\n", + " 'F1-4.5': np.float64(0.0)}}" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lang_averaged_metric_results = {}\n", + "for lang, subresult in metric_results.items():\n", + " for model, metrics in subresult.items():\n", + " if model not in lang_averaged_metric_results:\n", + " lang_averaged_metric_results[model] = {}\n", + " for metric_name, score in metrics.items():\n", + " if metric_name not in lang_averaged_metric_results[model]:\n", + " lang_averaged_metric_results[model][metric_name] = []\n", + " lang_averaged_metric_results[model][metric_name].append(score)\n", + "\n", + "for model, metrics in lang_averaged_metric_results.items():\n", + " for metric_name, scores in metrics.items():\n", + " lang_averaged_metric_results[model][metric_name] = np.mean(scores)\n", + "lang_averaged_metric_results" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "a049a58e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8k9X+wPHPk520SfeE7rJa9hQQAUVx4d4DEBXcguuq1wFurtd9r+M6cCA/cSAuFAUFgYLsWUZ3S/dOR5r5/P5Imza0pUUZAc/79cqL5uTJM3Ka0G/O+X6PJMuyjCAIgiAIgiAIgiAIR53iRJ+AIAiCIAiCIAiCIJyqRNAtCIIgCIIgCIIgCMeICLoFQRAEQRAEQRAE4RgRQbcgCIIgCIIgCIIgHCMi6BYEQRAEQRAEQRCEY0QE3YIgCIIgCIIgCIJwjIigWxAEQRAEQRAEQRCOERF0C4IgCIIgCIIgCMIxIoJuQRAEQRAEQRAEQThGRNAtCIIgCD7G5XLRv39/nn322W5tL0kSd9111zE+q+472uezatUqJEli1apVXW47YcIEJkyY0OV23T3HDz/8EEmSyM3N7fpEj4EjufaT7biVlZX4+fmxbNmyY3YMQRAEXyCCbkEQBOFPmT59OpIkdXj76aefPNu99dZbXHnllcTGxiJJEtOnTz+i4+Tm5nLTTTeRlJSETqcjMjKSM844gyeffPIoX5Hv+L//+z8KCgq8gsK0tDTmzp1LTU3NiTsx4ZTz5ptv8uGHH56QY4eEhHDLLbfw+OOPn5DjC4IgHC+qE30CgiAIwslLq9Xy3nvvtWsfNGiQ5+f58+dTV1fHyJEjKS4uPqL9Z2ZmMmLECPR6PTNmzCA+Pp7i4mK2bt3K/PnzmTdv3l++Bl/04osvcs011xAQEOBpS0tLY968eUyfPp3AwMATd3J/MzfeeCPXXHMNWq32hBz/jDPOwGKxoNFojsn+33zzTUJDQ9t9GXasj9vitttu4/XXX+fXX3/lzDPPPKbHEgRBOFFE0C0IgiD8aSqVihtuuOGw26xevdozyu3v739E+3/llVeor69n+/btxMXFeT1WVlZ2xOf7VzQ0NODn53fMj7Nt2zZ27NjBSy+9dMyPBcfvuk5WSqUSpVJ53I/b1NSERqNBoVCg0+mO+/GP13H79etH//79+fDDD0XQLQjCKUtMLxcEQThJ5OXlcccdd9CnTx/0ej0hISFceeWVXrmmmzdvRpIkPvroo3bPX758OZIk8f3333vaVq1axfDhw9HpdCQlJfHOO+8wd+5cJEk6aucdFxf3p/eXlZVFz5492wXcAOHh4e3afvzxR8aPH4/RaMRkMjFixAgWLVrktc0XX3zBsGHD0Ov1hIaGcsMNN1BYWOi1zfTp0/H39ycrK4vzzz8fo9HI9ddfD7jzrV999VVSU1PR6XREREQwa9YsqqurvfaxefNmJk+eTGhoKHq9noSEBGbMmNHlNS9duhSNRsMZZ5zhaZs7dy4PPvggAAkJCZ5p/IfmGS9dupT+/fuj1WpJTU31mubfsh9JkkhPT+e6664jKCiI008/3fP4woULPa9NcHAw11xzDQUFBV77yMjI4PLLLycyMhKdTkfPnj255pprqK2t7fBaDnc+4P6S4bzzzsNkMuHv789ZZ53Fhg0bunydAP73v/+RlJSEXq9n5MiRrFmzplvPa+vTTz+lT58+6HQ6hg0bxu+//+71eEc53fHx8Vx44YWsXbuWkSNHotPpSExM5OOPP/Z6blVVFQ888AADBgzA398fk8nEeeedx44dO7y2a8mf/uyzz3jsscfo0aMHBoMBs9ncLre65Xw6urXNZV+wYAFnnnkm4eHhaLVaUlJSeOutt7yOGx8fz549e1i9enW7fXSW030k75/CwkIuueQS/P39CQsL44EHHsDpdLbrg7PPPpvvvvsOWZY76yZBEISTmhjpFgRBOEls2rSJtLQ0rrnmGnr27Elubi5vvfUWEyZMID09HYPBwPDhw0lMTOTzzz9n2rRpXs9fvHgxQUFBTJ48GXAHO+eeey5RUVHMmzcPp9PJU089RVhY2BGdV0VFhdd9tVrtNS36r4iLi2PFihXdmnr64YcfMmPGDFJTU3nkkUcIDAxk27Zt/PTTT1x33XWebW666SZGjBjB888/T2lpKa+99hrr1q1j27ZtXtO2HQ4HkydP5vTTT+ff//43BoMBgFmzZnn2c88995CTk8N//vMftm3bxrp161Cr1ZSVlXHOOecQFhbGww8/TGBgILm5uSxZsqTLa05LS6N///6o1WpP22WXXcaBAwf4v//7P1555RVCQ0MBvPpq7dq1LFmyhDvuuAOj0cjrr7/O5ZdfTn5+PiEhIV7HuPLKK+nVqxfPPfecJ9B59tlnefzxx7nqqqu45ZZbKC8v54033uCMM87wvDY2m43JkydjtVq5++67iYyMpLCwkO+//56amhqvfu/O+ezZs4dx48ZhMpl46KGHUKvVvPPOO0yYMIHVq1czatSoTl+n999/n1mzZjFmzBhmz55NdnY2F110EcHBwcTExHT5OoN7FsbixYu555570Gq1vPnmm5x77rls3LiR/v37H/a5mZmZXHHFFdx8881MmzaNDz74gOnTpzNs2DBSU1MByM7OZunSpVx55ZUkJCRQWlrKO++8w/jx40lPTyc6Otprn08//TQajYYHHngAq9Xa4dTuM844g08++cSrLS8vj8cee8zri6i33nqL1NRULrroIlQqFd999x133HEHLpeLO++8E4BXX32Vu+++G39/f/75z38CEBER0ek1H8n7x+l0MnnyZEaNGsW///1vVqxYwUsvvURSUhK33367136HDRvGK6+8wp49e7p83QVBEE5KsiAIgnBSaGxsbNe2fv16GZA//vhjT9sjjzwiq9VquaqqytNmtVrlwMBAecaMGZ62KVOmyAaDQS4sLPS0ZWRkyCqVSu7Ofw/Tpk2TgXa38ePHd/ocPz8/edq0aV3uu8Xu3btlvV4vA/LgwYPle++9V166dKnc0NDgtV1NTY1sNBrlUaNGyRaLxesxl8sly7Is22w2OTw8XO7fv7/XNt9//70MyE888US7a3v44Ye99rVmzRoZkD/99FOv9p9++smr/euvv5YBedOmTd2+1hY9e/aUL7/88nbtL774ogzIOTk57R4DZI1GI2dmZnraduzYIQPyG2+84Wl78sknZUC+9tprvZ6fm5srK5VK+dlnn/Vq37Vrl6xSqTzt27ZtkwH5iy++OOw1dPd8LrnkElmj0chZWVmetqKiItloNMpnnHGGp+23336TAfm3336TZbm1LwcPHixbrVbPdv/73/+6/B1se46AvHnzZk9bXl6erNPp5EsvvdTTtmDBgnave1xcnAzIv//+u6etrKxM1mq18v333+9pa2pqkp1Op9dxc3JyZK1WKz/11FPtri8xMbHd+/zQaz+UxWKRhw0bJkdHR8vFxcWe9o4+LyZPniwnJiZ6taWmpnb4enX2mh/J+6ftNcqyLA8ZMkQeNmxYu2OlpaXJgLx48eIOr1EQBOFkJ6aXC4IgnCT0er3nZ7vdTmVlJcnJyQQGBrJ161bPY1dffTV2u91rVPXnn3+mpqaGq6++GnCPQq1YsYJLLrnEa7QtOTmZ8847r9vnpNPp+OWXX7xuRzMXOTU1le3bt3PDDTeQm5vLa6+9xiWXXEJERATvvvuuZ7tffvmFuro6Hn744XZ5qC1T2zdv3kxZWRl33HGH1zYXXHABffv25Ycffmh3/ENH5L744gsCAgI4++yzqaio8NyGDRuGv78/v/32G4BnxO/777/Hbrcf0TVXVlYSFBR0RM8BmDRpEklJSZ77AwcOxGQykZ2d3W7b2267zev+kiVLcLlcXHXVVV7XFRkZSa9evTzX1TKSvXz5chobG//S+TidTn7++WcuueQSEhMTPdtFRUVx3XXXsXbtWsxmc4f7bunL2267zWs0ePr06Uc0y2L06NEMGzbMcz82NpaLL76Y5cuXdzgNuq2UlBTGjRvnuR8WFkafPn28Xm+tVotCofBcb2VlJf7+/vTp08frPdti2rRpXu/z7rjjjjvYtWsXX331FZGRkZ72tvupra2loqKC8ePHk52d3WEqQFf+zPvn0N+zcePGdfj72PL7fuisGUEQhFOFCLoFQRBOEhaLhSeeeIKYmBi0Wi2hoaGEhYVRU1Pj9Uf0oEGD6Nu3L4sXL/a0LV68mNDQUM8U7bKyMiwWC8nJye2O01FbZ5RKJZMmTfK6tQ1ijobevXvzySefUFFRwc6dO3nuuedQqVTMnDmTFStWAO7cb+CwU1Pz8vIA6NOnT7vH+vbt63m8hUqlomfPnl5tGRkZ1NbWEh4eTlhYmNetvr7eU9xt/PjxXH755cybN4/Q0FAuvvhiFixYgNVq7dY1y38itzU2NrZdW1BQULtcc3DnhR96XbIs06tXr3bXtXfvXs91JSQkcN999/Hee+8RGhrK5MmT+e9//9thENfV+ZSXl9PY2Nhhf/Tr1w+Xy9Uun7xFS1/16tXLq12tVnsF8F059Png/n1rbGykvLz8sM/tzuvtcrl45ZVX6NWrl9d7dufOnR2+Zof2S1feeecdFixYwBtvvMFpp53m9di6deuYNGkSfn5+BAYGEhYWxqOPPgrwp4LuI33/6HS6dqkqnf0+tvy+H81aEoIgCL5E5HQLgiCcJO6++24WLFjA7NmzGT16NAEBAUiSxDXXXIPL5fLa9uqrr+bZZ5+loqICo9HIt99+y7XXXotKdfJ+7CuVSgYMGMCAAQMYPXo0EydO5NNPP2XSpEnH5HhtRylbuFwuwsPD+fTTTzt8TkuQIUkSX375JRs2bOC7775j+fLlzJgxg5deeokNGzYctop7SEhIh4FJVzqrsN1RAH/oaKrL5UKSJH788ccO99P2fF966SWmT5/ON998w88//8w999zD888/z4YNG7y+pDiS8zkZdef6nnvuOR5//HFmzJjB008/TXBwMAqFgtmzZ7d7z0L7fjmcjRs3cu+993LLLbcwc+ZMr8eysrI466yz6Nu3Ly+//DIxMTFoNBqWLVvGK6+80uGxj7Yjqfje8vveUqtAEAThVHPy/vUlCILwN/Pll18ybdo0r+nbTU1N1NTUtNv26quvZt68eXz11VdERERgNpu55pprPI+Hh4ej0+nIzMxs99yO2nzN8OHDATzrfrdMY969e3enI/UtFdD379/frijb/v37O6yQfqikpCRWrFjB2LFjuxUgnXbaaZx22mk8++yzLFq0iOuvv57PPvuMW265pdPn9O3bl5ycnHbtx3IUMCkpCVmWSUhIoHfv3l1u3/Llx2OPPUZaWhpjx47l7bff5plnnun2McPCwjAYDOzfv7/dY/v27UOhUHRaEK2lrzIyMrz60m63k5OT47VO/OFkZGS0aztw4AAGg+GICwp25Msvv2TixIm8//77Xu01NTV/KcAsLy/niiuuYPDgwfz3v/9t9/h3332H1Wrl22+/9RqRb0kTaKu7v1dH4/3TmZbf9379+v3pfQiCIPgyMb1cEAThJKFUKtuNEr7xxhsd5p7269ePAQMGsHjxYhYvXkxUVJTXElQt08KXLl1KUVGRpz0zM5Mff/zx2F3EEVqzZk2HOdHLli0DWqe6nnPOORiNRp5//nmampq8tm15zYYPH054eDhvv/221zTvH3/8kb1793LBBRd0eT5XXXUVTqeTp59+ut1jDofD8wVIdXV1u74aPHgwQJdTzEePHs3u3bvbbdeylnZHX7L8VZdddhlKpZJ58+a1O29ZlqmsrATAbDbjcDi8Hh8wYAAKhaLbU+dbKJVKzjnnHL755huv5bhKS0tZtGgRp59+OiaTqcPnDh8+nLCwMN5++21sNpun/cMPPzyi12f9+vVeudUFBQV88803nHPOOUdlbe6O3rNffPFFuyW2joTT6eSaa67BZrPx1VdfdVjhvOXc2x67traWBQsWtNvWz8+vW6/Z0Xj/dGbLli0EBAR4qr4LgiCcasRItyAIwkniwgsv5JNPPiEgIICUlBTWr1/PihUr2i0H1eLqq6/miSeeQKfTcfPNN7ebKj137lx+/vlnxo4dy+23347T6eQ///kP/fv3Z/v27UftvL/77jvPusR2u52dO3d6RkQvuugiBg4c2Olz58+fz5YtW7jssss8223dupWPP/6Y4OBgZs+eDYDJZOKVV17hlltuYcSIEZ41qHfs2EFjYyMfffQRarWa+fPnc9NNNzF+/HiuvfZaz5JH8fHxzJkzp8trGT9+PLNmzeL5559n+/btnHPOOajVajIyMvjiiy947bXXuOKKK/joo4948803ufTSS0lKSqKuro53330Xk8nE+eeff9hjXHzxxTz99NOsXr2ac845x9Pekiv/z3/+k2uuuQa1Ws2UKVM8wfhfkZSUxDPPPMMjjzxCbm4ul1xyCUajkZycHL7++mtmzpzJAw88wK+//spdd93FlVdeSe/evXE4HHzyyScolUouv/zyIz7uM888wy+//MLpp5/OHXfcgUql4p133sFqtfKvf/2r0+ep1WqeeeYZZs2axZlnnsnVV19NTk4OCxYsOKKc7v79+zN58mSvJcMA5s2bd8TX0pELL7yQp556iptuuokxY8awa9cuPv300yM6x0O9/fbb/Prrr9x2223tRq4jIiI4++yzOeecc9BoNEyZMoVZs2ZRX1/Pu+++S3h4uGd2SIthw4bx1ltv8cwzz5CcnEx4eHiHy/MdjfdPZ3755RemTJkicroFQTh1nYiS6YIgCMKRq66ulm+66SY5NDRU9vf3lydPnizv27dPjouL63AZroyMDM+ySGvXru1wnytXrpSHDBkiazQaOSkpSX7vvffk+++/X9bpdF2ez7Rp02Q/P79ubddyHofeFixYcNjnrlu3Tr7zzjvl/v37ywEBAbJarZZjY2Pl6dOney0z1eLbb7+Vx4wZI+v1etlkMskjR46U/+///s9rm8WLF8tDhgyRtVqtHBwcLF9//fXywYMHj+ja/ve//8nDhg2T9Xq9bDQa5QEDBsgPPfSQXFRUJMuyLG/dulW+9tpr5djYWFmr1crh4eHyhRde6LU81eEMHDhQvvnmm9u1P/3003KPHj1khULhtYwVIN95553ttj/0d6NlybDy8vIOj/vVV1/Jp59+uuzn5yf7+fnJffv2le+88055//79sizLcnZ2tjxjxgw5KSlJ1ul0cnBwsDxx4kR5xYoVXvvp7vnIsvu1mjx5suzv7y8bDAZ54sSJclpamtc2nS2b9eabb8oJCQmyVquVhw8fLv/+++/y+PHju71k2J133ikvXLhQ7tWrl6zVauUhQ4a0O0ZnS4ZdcMEF7fZ56LGbmprk+++/X46KipL1er08duxYef369e22a7m+jpZiO/TaW/qwo1vbfX777bfywIEDZZ1OJ8fHx8vz58+XP/jgg3bXUlJSIl9wwQWy0Wj02kdnr/lfef+0nHtbe/fulYF2v0OCIAinEkmWT5GKJoIgCMJRcckll7Bnz54O812F4+OTTz7hzjvvJD8/37P8mCCcimbPns3vv//Oli1bxEi3IAinLJHTLQiC8DdmsVi87mdkZLBs2TImTJhwYk5IAOD6668nNja2wyJZgnCqqKys5L333uOZZ54RAbcgCKc0MdItCILwNxYVFcX06dNJTEwkLy+Pt956C6vVyrZt2zpcw1gQBEEQBEE4MqKQmiAIwt/Yueeey//93/9RUlKCVqtl9OjRPPfccyLgFgRBEARBOErESLcgCIIgCIIgCIIgHCMip1sQBEEQBEEQBEEQjhERdAuCIAiCIAiCIAjCMfK3y+l2uVwUFRVhNBpFpUxBEARBEARBEAThT5Flmbq6OqKjo1EoOh/P/tsF3UVFRcTExJzo0xAEQRAEQRAEQRBOAQUFBfTs2bPTx/92QbfRaATcL4zJZDrBZ9M5u93Ozz//zDnnnINarT7RpyMcQvSP7xN95NtE//g+0Ue+TfSPbxP94/tEH/m2k6V/zGYzMTExnhizM3+7oLtlSrnJZPL5oNtgMGAymXz6F+3vSvSP7xN95NtE//g+0Ue+TfSPbxP94/tEH/m2k61/ukpbFoXUBEEQBEEQBEEQBOEYEUG3IAiCIAiCIAiCIBwjIugWBEEQBEEQBEEQhGPkb5fTLQiCIAiCIPgmp9OJ3W4/0afxl9ntdlQqFU1NTTidzhN9OkIHRB/5Nl/pH7VajVKp/Mv7EUG3IAiCIAiCcELJskxJSQk1NTUn+lSOClmWiYyMpKCgoMsCS8KJIfrIt/lS/wQGBhIZGfmXzkME3YIgCIIgCMIJ1RJwh4eHYzAYTvgf2X+Vy+Wivr4ef39/FAqRzemLRB/5Nl/oH1mWaWxspKysDICoqKg/vS8RdAuCIAiCIAgnjNPp9ATcISEhJ/p0jgqXy4XNZkOn04mAzkeJPvJtvtI/er0egLKyMsLDw//0VHPxGyYIgiAIgiCcMC053AaD4QSfiSAIQnstn01/pd6ECLoFQRAEQRCEE+5kn1IuCMKp6Wh8NomgWxAEQRAEQRAEQRCOERF0C4IgCIIgCIJwSlu1ahWSJB1Rhfz4+HheffXVY3ZOwt+HCLoFQRAEQRAEQTihpk+fjiRJ3Hbbbe0eu/POO5EkienTpx//ExOEo0AE3YIgCIIgCIIgnHAxMTF89tlnWCwWT1tTUxOLFi0iNjb2BJ6ZIPw1IugWBEEQBEEQBOGEGzp0KDExMSxZssTTtmTJEmJjYxkyZIinzWq1cs899xAeHo5Op+P0009n06ZNXvtatmwZvXv3Rq/XM3HiRHJzc9sdb/369YwfPx69Xk9MTAz33HMPDQ0Nx+z6hL8vEXQLgiAIgiAIguATZsyYwYIFCzz3P/jgA2666SavbR566CG++uorPvroI7Zu3UpycjKTJ0+mqqoKgIKCAi677DKmTJnC9u3bueWWW3j44Ye99pGVlcWVV17JZZddxs6dO1m8eDFr167lrrvuOvYXKfztiKDbBzldTjaXbmaHbQebSzfjdDlP9CkJgiAIgiAIwjF3ww03sHbtWvLy8sjLy2PdunXccMMNnscbGhp46623ePHFFznvvPNISUnh3XffRa/X8/777wPw1ltvkZSUxEsvvUSfPn24/vrr2+WDv/DCC1xxxRXce++99OrVizFjxvD666/z8ccf09TUdDwvWfgbUJ3oExC8rchbwQsbX6C0sRSAL1Z+QYQhgodHPsykuEkn+OwEQRAEQRAE4dgJCwvjggsu4MMPP0SWZS644AJCQ0M9j2dlZWG32xk7dqynTa1WM3LkSPbu3QvA3r17GTVqlNd+R48e7XV/586d7Ny5ky+//NLTJssyLpeLnJwc+vXrdywuT/ibEkG3D1mRt4L7Vt2HjOzVXtZYxn2r7uPlCS+LwFsQBEEQBEE4pc2YMcMzzfu///3vMTlGfX0906dP5/7770eh8J78K4q2CUebmF7uI5wuJy9sfKFdwA142uZvnC+mmguCIAiCIAintHPPPRebzYbdbmfy5MlejyUlJaHRaFi3bp2nzW63s2nTJlJSUgDo168fGzdu9Hrehg0bvO4PGTKE/fv3k5yc3O6m0WiO0ZUJf1ci6PYRW8u2eqaUd0RGpqSxhK1lW4/jWQmCIAiCIAjC8aVUKtm7dy/p6ekolUqvx/z8/Lj99tt58MEH+emnn0hPT+fWW2+lsbGRm2++GYDbbruNjIwMHnzwQfbv38+iRYv48MMPvfbz0EMPsXHjRu6++262b99ORkYG33zzjSikJhwTYnq5jyhvLO/Wdg+sfoBBYYNIDkymV1AvkgOTiTfFo1aqj/EZCoIgCIIgCMLxYTKZOn3shRdewOVyceONN1JXV8fw4cNZvnw5QUFBgHt6+FdffcWcOXN44403GDlyJM899xwzZszw7GPgwIF8//33PP/884wbNw5ZlklKSuLqq68+5tcm/P2IoNtHhBnCurVdVVMVvxX8xm8Fv3naVJKKOFMcyUHJ7mA8sBfJQcn09O+JUqE8zN4EQRAEQRAE4cQ7dCT6UEuXLvX8rNPpeP3113n99dc73f7CCy/kwgsv9Go7dOmxoUOHsnz58nY53S06WttbEP4MEXT7iKHhQ4kwRFDWWNZhXreERJg+jOfGPUdWTRaZNZnuW3UmdfY6smqzyKrNYjnLPc/RKrUkBiR6RsRbRscjDBFIknQ8L08QBEEQBEEQBOFvSQTdPkKpUPLwyIeZs2oOyEDbmFgGWZJ5ZNQjjIoaxaio1iUQZFmmtLHUE4Bn1GSQWZNJdk02Tc4m9lbtZW/VXq9j+av9SQpM8pqinhyYTIg+5PhcrCAIgiAIgiAIwt+ECLp9iKMuFcvBG9BGfIdCXetpdzkCsJZOwVGX2u45kiQR6RdJpF8kp/c43dPudDkprC/0GhHPqMkgtzaXens9O8p3sKN8h9e+gnXBngA8Ocg9TT0pMAmjxnjsLloQBEEQBEEQBOEUJoJuH+F0ycz7Lh1HXX8cdSkoDTlIqjpkhxFnYwISCuZ9l87ZKZEoFV1PDVcqlMSaYok1xXJm7JmedrvTTp45j8ya5lHxandQXlBXQFVTFRtLNrKxxHuJhUi/SE+ueFJgEslBySQGJKJX6Y/66yAIgiAIgiAIgnAqEUG3j9iYU0VxbVPzPQXOxiSvx2WguLaJjTlVjE7689PA1Uq1u+BaUDLncq6n3eKwkF2b7QnCWwLy0sZSShpKKGkoYW3hWs/2EhIxxhivUfHkwGTiAuJQK0QldUEQBEEQBEEQBBBBt88oq2vqeiNg2a4iegbp6RmkP6rF0PQqPakhqaSGeE9hN9vMZNdke42KZ1RnUG2tJr8un/y6fH4t+NWzvUqhIt4U76mg3jJdvYd/D1FJXRAEQRAEQRCEvx0RdPuIcKOuW9t9siGfTzbkE2nSMTw+iJEJwQyPC6ZPpLFb086PlEljYnD4YAaHD/Zqr7RUevLFM6ozPD832Bs8P5Pbur1OqSMxMNFrSbPkwGRRSV0QBEEQBEEQhFOaCLp9xMiEYKICdJTUNiHLEOaUUAN2oFwpgwR+WiW9wv3ZXWimxNzE9zuL+X5nMQBGrYqhcS1BeBCDYgLRqY/dyHKIPoQQfUi7SuolDSWtxduaA/LsWncl9fTKdNIr0732Y1QbvUbEewW588aDdcHH7NwFQRAEQRAEQRCOFxF0+wilQuLJKSnMW7ANs1KmXNW6VrefC0wOiSdvGMS5/aOw2JxsL6hhc24VG3Or2JpXTZ3VweoD5aw+UA6AWikxoEcAIxKCGREXzPD4IAINmmN6DZIkEeUfRZR/FON6jvO0O11ODtYf9FrSLLM6k1xzLnX2OraVbWNb2TavfYXoQjz54p6K6oHJ+Gv8j+k1CIIgCIIgCIIgHE0i6PYhJTm1FLcJtls0SNCgkinJqYX+Ueg1SkYnhXgKqjmcLvaV1LE5t4pNudVszK2ivM7K1vwatubX8A7ZAPSO8Gd4fDAj4oMYHhd81PPCO6NUKIkzxRFniuOsuLM87TanjVxzbrvibYX1hVQ2VVJZUskfJX947SvKL6pd8baEgAR0qu5NzxcEQRAEQTheEhMTmT17NrNnz+7w8dzcXBISEti2bRuDBw8+rucmCMLxI4JuH2F3uHh5nTs45tA4WAJkeHldNtef1xu1SuH1sEqpoH+PAPr3CGD62ARkWaagysKm3CrPLau8gQOl9RworWfRH/kARAXovILwY5UX3hmNUkPvoN70Durt1d5obySnNse7eFtNBmWNZRQ3FFPcUMyawjWe7RWSglhjbLuR8VhTrKikLgiCIAh/I06XzMacKsrqmgg36hiZEHxc/7Y5UjExMRQXFxMaGtqt7TMzMxkyZAhKpZKamppje3KCIBw1Iuj2ET+tzceM3D7gbiGBGZl/frqNq8Yn0DfKhL+24+6TJInYEAOxIQYuH9YTgMp6K1vyqpuD8Gp2F9ZSXNvEdzuK+G5HEQBGnYphcUGMiA9mRHwwA3sGHNO88M4Y1AZSQ1NJDfWupF5rrSWrJqtd8bYaaw255lxyzbmsyF/h2V6lUJEQkNBavK05KO/h3wOFpDj0sIIgCIIgnMR+2l3MvO/S2yzB6h5geHJKCuf2jzqBZ9Y5pVJJZGRkt7a12+1ce+21jBs3jrS0tGN8ZoIgHE0i6PYRRVWN3dru870lfL63BIDYID39ewaQEmUiJdpESlQAESZth1PGQ/y1nJMayTmp7g92i83JtoJqNue6A/GtedXUNTlYtb+cVfvdeeEapYIBPQPcVdLjgxkWd+zzwg8nQBvA0IihDI0Y6mmTZZnKpkpPnnjbaeqNjkYyqjPIqM7gR370PEev0pMUkOQZFW+pph6mDxOV1AVBEAThJPTT7mJuX7iVQ5P0SmqbuH3hVt66YegxCbwnTJhA//79Afjkk09Qq9XcfvvtzJ0717NNY2MjM2bM4IsvviAoKIjHHnuMmTNnAkc2vfyxxx6jb9++nHXWWSLoFoSTjAi6fUR0sKFb20U5JOoUMvUKyK+2kF9tYdmuEs/jQQZ1cwDeGognhvmhVnqP7Oo1SsYkhTImyT2dqSUvfFNuFZvb5IVvyatmS14176z2zgsfGe8uztYj8PjkhXdGkiRC9aGE6kM5Leo0T7ssyxQ3FLcbFc+uycbisLC7cje7K3d77cuoMXqNiLcE5IG6wON8VYIgCILw9ybLMha7s1vbOl0yT367p13ADSDjnkQ499t0xiaHdmuquV6tPKK/bT766CNuvvlmNm7cyObNm5k5cyY9e/bk6quvBuCll17i6aef5tFHH+XLL7/k9ttvZ/z48fTp06fbx/j111/54osv2L59O0uWLOn28wRB8A0i6PYR554ei+mndMxyJ1PMZTAh8f4VgynPruNARhUHyuspV7ooU8qUKV1UKmSqG+2sy6xkXWal56kalYLeEf7uQDzKREp0AH2jjJh0rfnObfPCb2rOC8+vamRTbrWnSnp2J3nhI1rywuOD6RNhROEDuVOSJBHtH020fzRn9DzD0+5wOSioK/CMjGfUZJBVk0WeOY86Wx1by7aytWyr175C9aFeS5olByYT6xd7vC9JEARBEP42LHYnKU8sPyr7koEScxMD5v7cre3Tn5qMQdP9P5FjYmJ45ZVXkCSJPn36sGvXLl577TVP0H3++edzxx13APCPf/yDV155hd9++63bQXdlZSXTp09n4cKFmEymbp+XIAi+QwTdPkKtUnDf2ETmrs1q/Vq2RfNXt/ednkjKadFwGowHmurtFGXWUJRZQ3FGDcUFdZRLLsqU7lt5czBuc7jYXWhmd6HZ65ixwQZSokz0axkVjzYRHaBDkiQkSSIuxI+4ED+uaJMXvjmvJQivZk9zXvi3O4r4tk1e+PC4oOYCbScuL7wzLXneCQEJnB13tqfd5rSRU5vTusZ4c0BeWF9IhaWCCksFG4o3eO0rUBHI8lXL6RXcyxOQJwQkoFVqj/dlCYIgCIJwgpx22mleI+OjR4/mpZdewul0j9QPHDjQ85gkSURGRlJWVtbhvlJTU8nLywNg3Lhx/Pjjj9x6661cd911nHHGGR0+RxAE3yeCbh8yfUpfyqtKWbC3ikZac6f9JBvT+wUzfUpfr+11/moSB4eRODgMAFuTg5LsWoozaynKqKE0x4zD4aRWIXtGwyvUMhUaqHY6ya9qJL+qkZ/2tE5PD9CrPVPT+zWPjCeH+6NRKQjx1zI5NZLJzXnhjTYH2wtq2JRTzea81rzw3/aX81ubvPCBPQO8qqQHGHyvorhGqaFPcB/6BHt/69xob2wt3tammnq5pZwaVw1ritawpqh9JfWWEfGWqeqxxlhUCvF2EwRBEITu0KuVpD81uVvbbsypYvqCTV1u9+FNIxiZENytYx9NarX33z2SJOFyuTrcdtmyZdjtdvd56PWAe2r5t99+y7///W/APfXe5XKhUqn43//+x4wZM47q+QqCcPSJKMCHpKens6tuH01nDMBmUYLVCVolCr2TXdm7SE8PIyUlpdPna3QqYlNCiE1xr9/ttLsozTNTlFFDcWYNxVm12Ovc37paJJlypYtyNdQFKClVuCi02Ki12FmfXcn67Nbp6WqlRK9woydXvCUYDzCoO8wL35hTxea8KjbmVFPRMjqeV83bq9376xNhZHh8c5X0hGB6BOqP0Sv61xnUBgaEDWBA2ACv9or6Cj5d/ilh/cLINmd7csfNNrOnkvoveb94tlcr1CQGJHotaZYcmEy0f7SopC4IgiAIh5AkqdtTvMf1CiMqQEdJbVOHed0SEBmgY1yvsGOyfNgff/zhdX/Dhg306tULpfLIg/e4uLh2bevXr/eMmgN88803zJ8/n7S0NHr06HHkJywIwnEngm4f4XK5eH39Fn5OGelu0Lf+p9Aoy/ycMhLD+i282bcvCkX3gjSlWkF0ciDRyYHuYzhdVBY2UJRR475l1hBbbwcLgAIHWqpV0BimwWxSUiw7yK61UGd1kF5sJr3Ye3p6j0D9IUXbTKRGm+jfI4AZp7fmhW/McRdn25TnzgvfX1rH/tI6Pm3OC49us174iIRgeof7Rl744QRoA4hXxXN+r/M932DLskyFpcJrRLzlZnFY2F+9n/3V+732o1fpvYLw5CB38bZQfaiopC4IgiAI3aBUSDw5JYXbF25FAq/Au+V/0ienpByz9brz8/O57777mDVrFlu3buWNN97gxRdfPGr779evn9f9zZs3o1AoPFXTBUHwfSLo9hHZubn8Ep3svnNosCVJIMv8Ep3E/BdfJCggAH9/f8/Nz8+v3c96ffuq4gqlgrBYI2GxRgadFYMsy1SXNFKcWeMJxFXVVii2Q7GdAYCMCkWUEWuElmqDgkK7nf0V9RystlBY4779kl7qOYZRp/KMhLcE4hcNjubK4TEA7pHv5uJsm/LceeFFh+SFm5rXCx8eH8zIhGAG9PCtvPDOSJJEmCGMMEMYY6LHeNpdsoui+iJPAJ5R7S7ell3rrqS+q2IXuyp2ee0rQBvQWryteUmz5MBkArQBx/uyBEEQBMHnnds/irduGNpune7I47BO99SpU7FYLIwcORKlUsm9997LzJkzqaurO2bHFATh5CKCbh+xobqeBt1hpllLEg06A5/3HkpwQx0GmxV9aTX6ghL3z3YrepsVtcs9/UihUHgF450F5/6B/qScHk3qOPf0JHOlhWLPSHgtNaWNyMVNaIqbiAAigAlhegL7hNMYoqFSK5NjbiK92MyB0jrqmhxszKliY06V59RVConkcH+vQPzOickE+WnceeH5Ne4q6XlVbMmrxtxJXviIBPdo+LBY38wL74xCUtDT2JOexp5MiJngaXe4HOTX5XuNimdUZ5Bfl0+ttZYtpVvYUrrFa19h+jCvEfHkwGSSApMwqLu35JwgCIIgnKrO7R/F2SmRbMypoqyuiXCjjpEJwcdshLuFWq3m1Vdf5a233vK0teRsZ2dnt5uhuH37ds/P8fHxyHJHk+I7N336dKZPn/6nz1cQhONPBN0+okGjpXme92EVB4ZRHBjW6eNqpwO9rQm9zeoVjBtKqtHbS7za1U4HEqBUKj1BuCcYj/Ynubc/akUwTdUy5hInVflWqgqbMJdbMJe3nmtqgIZJvYIIOysOW4iGg3Y7e0vq2FtsZk+RmVqLnX0ldewrqWPJtkLP86IDdF4F2y4ZEk2UScf+0nr3euEd5IW/hXvgv21e+PB4384L74xKoSIxIJHEgETO4RxPu9VpJac2x2t98czqTIoaiii3lFNuKWd98XqvffXw7+E1Ip4cmExCQAIapebQwwqCIAjCKUupkBidFHKiT0MQBMGLCLp9RGqPKKjI7nK7GdEhmNQqym12ym0O981up8LmoMklY1eqsOv9Mev9u9yXyul0B+j25kC8ORg3lNagLyj1atc47e4APVqJTmtAKWuQbSoc9RINTjUV6RoUuzRILg06rZ6B8WFc0CuK6LP6YQ9Qsb+03p0XXmRmb4mZvMpGimqbKKptYsXe1mUz/LUq+kUZSYkycUavMGadkYhOrWTnwVp3XnhuFdkVDZ4gfuGG1rzwEQnBntzwkyEvvDNapZa+wX3pG+xdrb7B3tBaSb1NQF5hqaCwvpDC+kJWHVzl2V4pKYkzxZEUmOQVkMcYY0QldUEQBEEQBEE4TsRf3j5idJCRMAWUO+X2Od0AskyYUuLp3j1RdvC4LMvUO13NgXhzQG53/1zREpy3aW90unAoldTp/ajT+3V5fkqX0x2UtwTmNit6e9sR9drmn5vQOuyUVsC2cgWKtWqUshaDzoApyMh54UFMHxuMyhBGcZOCgjqZ7Gob+0vr2V9aT73VwabcajblVrceWyGRFOZHSpSJa0bG0CNQT6PNyb6SOjbnVrG7yExRbRPfbC/im+2teeHD44M9o+EDewagVfl+Xvjh+Kn9GBg2kIFhA73aq5uqvUbEW5Y3q7PVkV2bTXZttlcldY1CQ2JgYmvOePPyZlF+UaJ4myAIgiAcgVWrVp3oUxAE4SQggm4foZQkXkiJ5+ZdOSAfEng35/q8kBLfYcAN7iJeRpUSo0pJokHb5fEanM72wXgngXqd04VToaReZ6Be13XusMLlQmc/ZHp784i6vrwIQ2FOc+DehM5uwx8YpVIxMcQfqyaQasmPSoeeYquSgjqZOpvMgdJ6DpTWs7Q5qAaIMGlJiTJx8+kJ6FQKapvsZJbWs62gBnOTg1/3lfHrPvcoukalYFDzeuEj44MZGhdEgP7kyQs/nCBdECMiRzAicoSnTZZlyhrLvCqoZ1ZnklWbhcVhYV/VPvZV7fPaj5/azzMqnhSY5AnIQ3QhIhgXBEEQBEEQhD/phAfd//3vf3nxxRcpKSlh0KBBvPHGG4wcObLT7VsKVeTn5xMaGsoVV1zB888/j06nO45nfWxcUP4776e/y2NJd1OsC/e0R1vLeDrrP1wQeSuEXXRUjuWnVOKnVxKn7zpAtzhdVBxm1LzMam9+3EGtw4lLoaBRq6dR23WetSTLrQF62+DcVkOgykqkugmpyYnVqqDBrqbaZaBKNmCWdZSarZSaWwuuAehUEkkhOqIC9KjVKmosDg6U1lHZYPeMoL9FVru88BHxwUSfhHnhnZEkiQi/CCL8IhjbY6yn3SW7KKwv9BoRz6zJJKc2hwZ7AzvLd7KzfKfXvgK1ge1GxZMCk0QldUEQBEEQBEHohhMadC9evJj77ruPt99+m1GjRvHqq68yefJk9u/fT3h4eLvtFy1axMMPP8wHH3zAmDFjOHDgANOnT0eSJF5++eUTcAVHkcsJP/2DC8xFnFuxlg0BAynThBBuq+S02p0okeGnLOh7ASiO7zRpvVJBjFJDjK7rolxWl8s7MLc7mu+3jqaXWmyUWe2YkZElCYtGh0XTjS9NZBmd3YbB1kRwUxNKsw2p3oGjQcbapMBiU9LkULCn1MKe0tZCbxIywWoHIRonfgonLqed+iY7jWXVLC8tZukfaiyyishAf68gvFe4/0mbF94ZhaQgxhhDjDGGibETPe12l518c367NcbzzfnUWGvYXLqZzaWbvfYVbgj3VFBvyRdPDEgUldQFQRAEQRAEoY0TGnS//PLL3Hrrrdx0000AvP322/zwww988MEHPPzww+22T0tLY+zYsVx33XWAe5mFa6+9lj/++OO4nvcxkZcGZvfUaSUuxtZub7+NuRDy1kHCGcf33I6AVqGgh05Dj24E6HaXTKXdQV5FIxn5NWSX1JNfbaHCZqdeq6BBp6BBJ9GgU9ColZAliSaNliaNFvwDIPSQHbpkpEYHUp0dhdmO0mxFqnMg26HKrqbK7j2dXKtwEKi0EEc1IVIDxgYLij0u1qWrWSGrcSm1hASa6BkeRJ+eYaTEhRNkMuLv33WRupONWqEmKTCJpMAkiG9tb3I0kVOb0zoq3hyQFzcUU9ZYRlljGeuK1nm2l5Do4d/Da0mz5KBkEkwJqJWnxnR+QRAEQRAEQTgSJyzottlsbNmyhUceecTTplAomDRpEuvXr+/wOWPGjGHhwoVs3LiRkSNHkp2dzbJly7jxxhuP12kfO/Wlnh9loCZAjVUjobXJBNa6K4cDsPBKiB4EEanNt/4Q3g90J99UX7VCIlKrJrJHAKN6tJ5/U72d4iz3OuFF+2soz6/FKcs0aiRPIG4LVKPoYcAVqsVqVGFWS+4p7jo7FUY1jihwtOzQ6kRhtruD8Tr3v1KDA6tLRanLSCnG1pNSgFoHeq0Tf7WNcslCeXk+mcUH+DWtdS10pUqNQqGgoqICo9HY+Tro/v6oVCc8i+NP06l09AvpR7+Qfl7tdbY6TyX1lnzxjJoMqpqqOFh/kIP1B1lVsMqzvUpSEWeK84yIt1RT7+nfE+VxnrkhCIIgCIIgCMfTCYsGKioqcDqdREREeLVHRESwb9++Dp9z3XXXUVFRwemnn44syzgcDm677TYeffTRTo9jtVqxWq2e+2azGQC73Y7dbj8KV3J0SPoQVEBZiIYDyX5Yta2BiNbqpHdmA+GVNnA2QcEf7lsbckAMcngKcnhq878pEJwIJ+HSUEot9EwJpGdKIBCH3eqkNMdMSVYtxZlmyvLqcJZaYH/rFHK1TklkgonI5AAikoyoowxUyc256HZ30biWvPMKe/MU90oLtVVNuOrsKJqnqktOGXsj2BuVmNFThB6ZYGSDCtmkxhWmRmGQ0Olc6LHhZ7e5c9BLzRhsZW0Kx7Wuha7Taj2BeNtb27aWn5XKkyMA1Uk6UoNSSQ1K9WqvaqoiqzaLrJos97+17sC83l7vub+c5Z7ttUotCaYEz9T05AB3vnikIfIvFW9zupxsKt7EDtsOgguDGRE1QgT3Pqbl89eXPocFb6KPfNup1D92ux1ZlnG5XLhcrhN9OkeF3FwEt+W6BN8j+si3+VL/uFwuZFnGbre3+1u9u5/BktxyRcdZUVERPXr0IC0tjdGjR3vaH3roIVavXt3hlPFVq1ZxzTXX8MwzzzBq1CgyMzO59957ufXWW3n88cc7PM7cuXOZN29eu/ZFixZhMPhQ7qnsYljxfezv3RxodFC9vPcBmYzA+zA1FWJqKsBkKSDAUoDeXtXhLp2SmjpdD8z6GGr1MdTpelKrj8WmNh3rqzmmZCfYzEqsVUps1e5/ZechAZpCRhPoRBvkRBvsRBPo7PD7BxloREGdQkENCoqalBQ2QlkD1NTLNNQ7cdo6fovIGgUuoxrZqHb/a1IjG1TQJg9c5XR4L7Nma8LQHJjrbdbmn5ua10J3oFIqUalUqNXqw/6rUqlQKBRH8VU9dmRZxiybKXWWUuYso9RZSqmrlHJnOXY6/qDSoiVcGU6EMoIIZQThCvfP/oqup/bvse3hB8sPmGWzp80kmbhAfwGpmtTDPFMQBEE4EVQqFZGRkcTExKDRdJ2eJgiCcDzZbDYKCgooKSnB4XB4PdbY2Mh1111HbW0tJlPnMdYJC7ptNhsGg4Evv/ySSy65xNM+bdo0ampq+Oabb9o9Z9y4cZx22mm8+OKLnraFCxcyc+ZM6uvrOwxCOhrpjomJoaKi4rAvzPEmy07+SBuDzVnT6TrdWmUQI8esQ5IOGbGz1CCVpyOVpiOV7YGydKTyfUj2ho6P5RfuGQ33jIqH9gbVyVkB3uWSqSpsoDir1jMa3lTvHcxJCgjt6U9UcgCRyQFEJprQ+XUvx7ii3srekjr2Fdexs9hMenEdBZWNdPTOkSWQ/VS4TGrkAI0nKEfVdYDcdi30tsG4d5DubtM67Bj0+k5Hztu2GQwGnxxBd7qcFDYUekbFM2vcS5rlmfNwyI4OnxOkDXIvZ9Y8Ip4U4L4ZNe4UgZUFK3lozUPIeHeO1Jyg8a9x/+KsmLOO7YUJ3WK32/nll184++yzUatFvr8vEn3k206l/mlqaqKgoID4+Pi/vhqNywn566G+BPwjIXb0MS9AW1BQwNy5c1m+fDkVFRVERUVx8cUXM3v2bOLi4k7Isps7duxg/vz5rFu3joqKCuLj45k1axb33HPPYZ+XmJhIXl6eV9tzzz3HP/7xj06fU1xczAMPPMCWLVvIzMzk7rvv5pVXXul0+88++4zrr7+eiy66iK+//trTfuaZZ7J69WrP/fDwcMaNG8eLL75IXFxcp/tbtWoVZ511FpWVlQQGBh72+tqSZZm6ujqMRqNXH82bN49vvvmGrVu3dntff0ViYiL33nsv995773E53smis/45EZqamsjNzSUmJqbdZ5TZbCY0NLTLoPuEzT3WaDQMGzaMlStXeoJul8vFypUrueuuuzp8TmNjY7vAuiWY6Oy7A61Wi1bbflkstVrtU/9JVVdvweaq7TjgBpAkrK4aGhq2ExR0mvdj6jAwjYek8a1tLhfU5ELpnubbbihNh6pspIYypJwyyFnVZv9KCO3lzhMPT3HnikekQkDPzs/Jh0QlaohKDIKz3b8LNaWNFGXUUJRZQ3FGLXVVTZTn11OeX8/OXwsBCI72Izo5kOhegUQlB+If1PHyaVFBaqKC/DmzX5Snra6xiQVfLyc4cSD7SxvYW2wmvdhMo82JVO9AUe+Aotbp77JSQtYokAwq/IP1GCP0aAK1WJUSlXYH9X9iLXS9JxhvHj0vr0dfWOkJ2FumuOvsNgx6vSfH/HD558czQFejJkmbRFJwkle73Wknz5zXrnhbQV0B1dbqDiupRxgiSApMYnvZ9nYBN4CMjITES1te4uz4s8VUcx/ia5/FQnuij3zbqdA/TqcTSZJQKBR/bRZX+rfw0z88hWkBMEXDufMh5egsuXqo7OxsRo8eTe/evfm///s/EhIS2LNnDw8++CDLli1jw4YNhIYeWvn12Nu2bRsREREsXLiQmJgY0tLSmDlzJiqVqtO/s1s89dRT3HrrrZ77RqPxsP1it9sJDw/nscce45VXXvH0ZUdyc3N56KGHGDduXIfb3XrrrTz11FPIskxeXh6zZ89m6tSprFmzptPjt+zjSH9/WqYsH3oeLQFeV/uy2+1H7b13uNfs76qz/jkRFAoFkiR1+Hnb3d+BE5rwe9999zFt2jSGDx/OyJEjefXVV2loaPBUM586dSo9evTg+eefB2DKlCm8/PLLDBkyxDO9/PHHH2fKlCk+OZJ3JKzWstY7srt4mtYmY9VI1ASoPYFvk7W0kz0cQqFw53QHJ0K/Ka3ttgYo29cchLtHxSnZBU01UL7PfeOr1u21Ac0F21K8C7dpjYce0WdIkkRQpB9BkX6kjusBgLnSQnFmbXMQXkN1SSNVRQ1UFTWw+3d3EG4K1XkC8OhegQSE6Tv9Zk2nVhLnD+cP7+l5s7lcMvlVjaQXm0kvMrO7qJZdhbVU1tuQnDKSxQkWJw2VVhoyajz7CjKoGR5lYlBSMIN6BaPUq73XQm/++dC10Bu0ehq6tRa6C72tOfe8JRhvqEN/sKI5MG/y5KHr7Fb8DYZ2wXhHgbqfn98x+RBUK9XugmtByZzLuZ52i8NCdm229xrj1ZmUNpZ6bocjI1PSWMLWsq2MiBxx1M9bEARBOIHSv4XPp8KhX7yai93tV318TALvO++8E41Gw88//4xe7/4/OTY2lkGDBtGrVy8ee+wx+vfvz9tvv83u3bsBWLp0KZdeeilvvfUWt912GwCTJk3itNNO45lnngHgm2++Yd68eaSnpxMdHc20adP45z//6SnOKkkS7777Lj/88APLly+nR48evPTSS1x0kfsaZ8yY4XWeiYmJrF+/niVLlnQZdBuNRiIjI7v9GsTHx/Paa68B8MEHH3S6ndPp5Prrr2fevHmsWbOGmpqadtsYDAbPsaOiorjrrruYNWtWt88F4MMPP2T27NksXryY2bNnU1BQwOmnn86CBQuIinIPoKxatYqHHnqIPXv2oFarSU1NZdGiRfz222+etNSWvwEXLFjgWaL4zTff5Mcff2TlypU8+OCDxMfHM3v2bK9raenftgOC3333HU899RS7du3C39+fcePG8fXXXzNhwgTy8vKYM2cOc+bMATofSBRObic06L766qspLy/niSeeoKSkhMGDB/PTTz95iqvl5+d7/VH/2GOPIUkSjz32GIWFhYSFhTFlyhSeffbZE3UJR41W616XPKzCSu/MBnS21oIBTRoFB5L9KA/VkpHxNPV1e4iMvBh//5Qjn26h8YOew9y3FrIMdcVtRsT3uEfFK/aDtRby09y3toLiITzVu4p6cMJxX0O8u0whekwhevqMcn+QN5pt7grpGTUUZ9ZSUVCHuaIJc0UJ+9aXAGAI0HiNhIdE+yEdZt1uhUIiPtSP+FA/zh/QOipe1WBjb7GZPUW1bMypYnehmVJzk+fPgupGOxuyKtmQVQk/g1opER2gp3/PACb2CWNSv2gCDa05bt1ZC91dMM5Old2JLClo1Opo1OqALqrct1kL3VMUrswdoLed3q63WTE4bBibp7h3NYpuMBj+coCuV+lJDUklNcQ7L9tsM5NVk8XSzKUsyVjSfB0Q2hSKzqmjSdlEha6CliUAyhvL/9J5CIIgCMeBLIO9sXvbupzw40O0C7jdOwIk9wh44oTu/Z2iNnRrll9VVRXLly/n2Wef9QTcLSIjI7nyyiv5/PPPufPOO7nnnnsoLy8nLCyM1atXExoayqpVq7jtttuw2+2sX7/es1zumjVrmDp1Kq+//jrjxo0jKyuLmTNnAvDkk096jjFv3jz+9a9/8eKLL/LGG29w/fXXk5eXR3BwcIfnW1tb2+ljbb3wwgs8/fTTxMbGct111zFnzpyjshLLU089RXh4ODfffPNhR65bVFVV8fnnnzNq1KgjPlZjYyP//ve/+eSTT1AoFNxwww088MADfPrppzgcDi655BJuueUW3nnnHTQaDZs3b0aSJK6++mp2797NTz/9xIoVKwAICGj922nu3Lm88MILvPrqq6hUKn799dcuz+WHH37g0ksv5Z///Ccff/wxNpuNZcuWAbBkyRIGDRrEzJkzvWYXCKeeE17a+q677ur0G7dVq1Z53VepVDz55JNeHzinisDAEUTX6OmbXtHuMa3NxYD0OnalSJSHVpNf8D75Be9jMCQTGTGFyMiL0Otj//zBJck9/coUDb3Obm132KDiQGswXpbu/rmuGKpz3bf9P7Rur9JDeN/WIDwi1R2Y+4X8+XM7RgwmDUlDwkka4v6yw2pxUJLVOhJemmemsdZG5pYyMre4ZyFoDSqikgKI6hVIRII/cjcLKQb7aRibHMrY5FBmnuGeSt1kd5JZVs+G7ErWZlawt9hMeZ0Vlwx2p0xeVSN5VY38sLMYAL1aQUywgSGxgYzvHc6gmEAGBeiRpMNPRbe7ZCrs3iPm5bbmIN3uHahX2R3ea6F3g/aQAF1fWofB3hygt8lJN9htGPW6DgPzQ+/r9fojCtBNGhNDwofgcDlYkrGE6IZoBlQOptY/hkaNFoPFyrDyAnaFbKfIr4jfD/7OiMgRhBnCun0MQRAE4TizN8Jz0UdpZ7J7yvkLMd3b/NEi9yBFFzIyMpBlmX79+nX4eO/evamuriY8PJzg4GBWr17NFVdcwapVq7j//vs9o8MbN27EbrczZswYwB1MP/zww0ybNg1wj1I//fTTPPTQQ15/A0+fPp1rr70WcOddv/7662zcuJFzzz2XQ6WlpbF48WJ++OGHdo+1dc899zB06FCCg4NJS0vjkUceobi4mJdffrnL1+Nw1q5dy/vvv8/27dsPu92bb77Je++9hyzLNDY20rt3b5YvX37Y53TEbrfz9ttvk5Tk/rvrrrvu4qmnngLcObi1tbVccMEFJCQkYDKZSE1t/UK/ZbnXjkb7r7vuOs+M3O569tlnueaaa7wKOw8aNAiA4OBglErlEc8uEE4+JzzoFtwkGXrtq3H/fOhjuL+nTcmUqR7/H0rKfqCiciWNjZlk57xCds4rBJiGEBF5MRHh56PRHKUgV6WByP7uG1e3tjdUQtmeNvnie6BsLzgsULTNfWvLP9J7RDwitblwm+9UKNXqVcT1DyGuv/u1c9iclOaam0fCayjONmNtdJC7q5LcXZUASEp/fsjZRY8+QUQlBxKRYEKt6d5Iv06tpH+PAPr3COCWcYmAe3r6/tI6ftpdwvrsSjJK66hptCMDFruLA6X1HCitZ/Gmg+5zVilICPVjeHwQg2OCSIkykRzuj6ZN0Ta1QiJKqyFK2/Vr7XDJVNnbB+Pegbr750qbAydgVWuwqjVUd+OaNXabd1G4svo2I+it7X4OKwHNOeid5Z633G8boA8NH0qKIwWN60y+Hj6Ahja58X5NjYzJSoSGJfyQ8wM/5/3M+QnnMzV1Kr2DenerzwRBEAShI11NB9ZqtZxxxhmsWrWKSZMmkZ6ezh133MG//vUv9u3bx+rVqxkxYoRnVZ0dO3awbt06r5mcTqeTpqYmGhsbPdsNHDjQ87ifnx8mk4mysjIOtXv3bi6++GKefPJJzjnnnMOe63333ef5eeDAgWg0GmbNmsXzzz+PtnkJ1BY33HADb7/99mH3B1BXV8eNN97Iu+++22V++/XXX88///lPAEpLS3nuuec455xz2LJlC0ajkdTUVE+ht3HjxvHjjz92uB+DweAJuME9Vb3ltQkODmb69Omcd955TJgwgXPPPZerr77aM/X8cIYPH97lNofavn27GMUWRNDtK+SctahsdZ0+LgEqWx2h9QbCBvwHh6OOsvLllJZ8S1X1emrN26g1byMj42mCg08nMuJiQkMnoVJ1/U3tEfMLgYQz3LcWLidU5XiPiJfudo+G15e4b1krW7dXqNyB96HBuDHKJwq3qTRKevQOokfvIACcThcVBfXu4mzNgbi10UHhgRoKD9QAoFBKhMcZPdPRo5ID0eq7/xZTKCT6RZnoF2ViTnOb3enij+xKftpdwqa8KnIrGrE63EPsVoeLfSV17CupY+GGfACUConEUD8G9gwkJdpESpT7FmDousiDSiERrlUTrlUDh88Vd8kyVXanO9e8g1Hztu0VNgd2Wcam1mBTa6gxdF0PQO2wewfjXiPoVk9+ur/DTqBe58kx11knsTyl/X+IDVo9v6SMZHKGRFjo7+yo2ME3Wd/wTdY3jI4azbTUaYyJHnPCq2MKgiAIzdQG94hzd+SlwadXdL3d9V9C3JjuHbsbkpOTkSSJvXv3cumll7Z7/MCBA4SFhREYGMiECRP43//+x5o1axgyZAgmk8kTiK9evZrx41uL4dbX1zNv3jwuu+yydvtsWzn50AJOkiS1W884PT2ds846i5kzZ/LYY49167raGjVqFA6Hg9zcXPr06eM1Ut3dVYCysrLIzc1lypTWGkMt56lSqdi/f78nQA4ICCA5ORlwv77vv/8+UVFRLF68mFtuuYVly5Z51kU+dEp/Wx29Nm2/HFmwYAF33XUX33zzDZ9//jmPP/44v/zyC6eddtqhu/Li5+f9d7VCoWj3pcuh6zYf7jyFvw8RdPsI6871dGeRDOeC67D6D8MROAhD6ECSAm4k3v86qlTbqLCtpd66j8rK1VRWrkah0BMWNonIiIsJDj4dheIYVjdVKCE02X1LvaS13VrnHgUvPWRk3FrrDs7L0mHXF63b6wJbA3BP4ba+3ZrmdSwplQoi4k1ExJsYcnYsNquNb79YTq/ogZRm11GUUUNDrY2SbDMl2WZYng9SyzJlgZ7ccIPpyEb31UoFp/cK4/Re7qnQsiyTXdHAhqwKfttfzrb8GiobbJ7tnS6ZjLJ6Msrq+arNShc9AvX0izJ5AvHUaBM9gzovFNcVhSQRqlERqun6I0SWZWocTu9Rc7v3KHrbQN0qy9hVauwqNWa6Xpe77VrolVHNeVeHXpckgSyzNrY/y/tMot7fzMfpH7MyfyXri9ezvng9yYHJTE2ZygWJF6BR+s4sDEEQhL8lSer+//1JZ7pT5MzFdJzX3ZxGl3TmUa09ExISwtlnn82bb77JnDlzvIKrkpISvvjiC+644w4Axo8fz+zZs/niiy+YMGECABMmTGDFihWsW7eO+++/3/PcoUOHsn//fk/w+Wft2bOHM888k2nTpv3p+kfbt29HoVAQHu5Ox/sz59S3b1927drl1fbYY49RV1fHa6+9RkxM59P+WwolWyzuFWEOt3TYkRoyZAhJSUnMnTuXsWPHsmjRIk477TQ0Gg1Op7Nb+wgLC6Ouro6GhgZPQH7oFPqBAweycuXKTqelH8nxhJOXCLp9hL1R6lbQrVLVo2paDSWrceZLNJRqaSrR4irWYmpUYQhX0zjShWWkjDPUQmnpd5SWfofSqsZYFkeQuR/+imRUpkCUJiMKo8n9r8mE0mRCaTQiGQxHb8RPa4SYke5bC1mG2oPNI+K7WwPxigx3FfW8te6bh+Qu0uaVK54CQQnuKu0ngKSQUBtdpIyLZtCZamRZxlzR5BkFL8qoobbcQkVBPRUF9ez6zT0lPDDCQHSyOy88OjkQY4juiF5rSZJICvMnKcyf60+LB6DM3MTmvGo25lSyPquKA6V17f7kKKyxUFhjYcXe1grfRq2Kfm1Gw1OiTfSK8EerOrrF8CRJIkitIkitorff4X/LZVmmzunqeHq73UHZIe1NLhmHUkWdXkWdvos/ziSJBp2B9dV13Jg4mMHhgymoK+DTvZ+yJGMJmTWZPJH2BK9ve51r+17LVb2vIlAXePReCEEQBOHYUCjdy4J9PpXWpLwWzf/HnvvCMSn2+p///IcxY8YwefJknnnmGa8lw5KSknj88ccBd+AVFBTEokWL+P777wF30P3AAw8gSRJjx4717POJJ57gwgsvJDY2liuuuAKFQsGOHTvYvXu3p7p5V3bv3s2ZZ57J5MmTue+++ygpcReJVSqVhIW5v8jfuHEjU6dOZeXKlfTo0YP169fzxx9/MHHiRIxGI+vXr2fOnDnccMMNBAUFHfZ4LYFmfX095eXlbN++HY1GQ0pKCjqdjv79+3tt37Ke9qHtjY2NnnMtLS3l6aefRqfTdTkt/kjk5OTwv//9jwsvvBCj0UhRUREZGRlMnToVcFdjz8nJYfv27fTs2ROj0djh8sPgnglgMBh49NFHueeee/jjjz/48MMPvbZ58sknOeuss0hKSuKaa67B4XCwbNkyz9rn8fHx/P7771xzzTVotdoTssSccOyJoNtHFKvj0LmCUUlVHc6ulmVwyEEUNvYlwr8ajZyDUmPFFNOEKaYJAGudmvoiDQ2btTT8qMHWU4FlpAvLMBdOk52amExqyERZAfrNCvSbFKiLOwhaVSqURiMKkxGlJygP8G4LMLUG7EYjyoCWx00oOvlg8pAkCIxx33pPbm23N7krppceEow3lEFVtvu297vW7dV+7uXLPMF4ijsYN3RdmfNokySJgDA9AWF6+o1x5wQ11FrdQXjzeuGVRQ3UlDZSU9pI+jp3gTT/IK1nibLoXoEERR75Fx7hJh3nD4jyVEyvtzrYll/NptxqNudWsTWvmiZH+6pvdVYHG3Oq2JhT5WlTKSSSw/09QXi/5oA8yO/4jPxKkoRJpcSkUpLUxew+WZZpcLo8AfinmfksrrMd/knA7zt301/hYsCAAcQYY3h45MPcMfgOvjzwJZ/u/ZSyxjLe2PYG7+58l4uTL+bGlBuJMx29b9YFQRCEYyDlIveyYB2u0/3CMVunu1evXmzatIm5c+dy1VVXUVZWhizLXHrppfznP//x5EBLksS4ceP44YcfOP300wF3IG4ymejTp4/XtOXJkyfz/fff89RTTzF//nzUajV9+/bllltu6fZ5ffnll5SXl7Nw4UIWLlzoaY+LiyM3NxdwB7j79+/3TIfWarV89tlnzJ07F6vVSkJCAnPmzPHK8+7MkCFDPD9v2bKFRYsWeR2ru959913effddAIKCghg4cCDLli2jT58+R7SfwzEYDOzbt4+PPvqIyspKoqKiuPPOOz1Lk11++eUsWbKEiRMnUlNT41kyrCPBwcEsXLiQBx98kHfffZezzjqLuXPneqrNg/vLlS+++IKnn36aF154wZNa0OKpp55i1qxZJCUlYbVaxZJhpyhJ/pv1rNlsJiAggNra2m7nohwPB5auInjjH4SonwO8Z8e29FCl/VE21FsxDIkgJjWVmCAZXdF6yFwJBzeB3Do1RVZocIUOwhEwEKu2F9VSOZXKLdT67celbM010VTo8dvlh26ThHSwARyOv3wtklbbGpwbjSgCTCiNpkMCdiNKU8u/Aa2j7f7+SIcuMl9ffkjhtt3utcad1o5PwNSjdXp6y7Jmob1AefSm19vtdpYtW8b555/fLm+oM00Ndoqzaj1BeHleHS6X99tP568mOjmQqOQAonsFEtrTH4Xyr43m250u9hSZ2ZxbxabcKjbnVntNSW+hlCScnXwcRAXoPIF4SnPeeWywAcVhllA73tZWmbliR3aX203ZvpYetRX4+/szatQohg8f7pkSaHfa+Sn3Jz5O/5h9VfsAkJCYEDOBaanTGBo+VOR9HyV/5j0kHF+ij3zbqdQ/TU1N5OTkkJCQ4JWz/Ke4nO4c7/pS8I9w53Af5+VMn3zySV5++WWWLFnCWWed9ZeXzBSODZfLhdlsxmQyiT7yQb7UP4f7jOpubCmCbh9R8P1mpLUWdIo0AtX/QyW1Lh3mkEOpsc+kyeUu/mF3WamxlVNjK8Ph78QvIZSI/pH09KtCezDNHYSbD3ofwNQDks/CmTCOygCZ4ppfqaxcjSy3BOASgYEjiAg6j2DtaJQN4Kyrw1lbi6uuDqe5DledGWetGWedGZe5zv24udbzs8tsbv2G4C9QGAzuANzYZtr7oVPh/f1QSI0o7eUom4pQNOaiNB9AYSnouA6bQg1hLcuZpbSOjvtH/KnCbUfjjx271UlJTq1nSnpJthmn3XtEWq1TEpXYOh09PN6ISv3X/nhoyQvfnFvFxpxqNudVkVfZfi1UvVqBQpJosHWcZ+SnUXrliadEm+gdYUT3F8/vz3LKMoN/30G5U+60T5XA66pGcjeup67OXbhQo9EwdOhQTjvtNM90N1mW2ViykY/2fMSawta1RPuH9Gda6jQmxU1CpRAThf6KUylgOFWJPvJtp1L/HNWg20e8//77lJWV8eCDDx6VNa6Fo8+XgjqhPV/qHxF0/wm+GnRbMquofG9P8z0nWsUeFFTjIgirKxV3uACyJCPJ7QMKl+yizl6FRd2AKkxLSJyT8IACtKXrIW8dOJpaN5aU0HM4zoQxVARpOOjaSU3tptaHJTUhIeOJjLyY0JAzUSq79x+g7HLhamjAZTY3B+xmd6DuFbDXtT5+SMDuamj4sy9fm2uTUPjpUepUKDQySqUNpVSPQmlHqXGhULtQamSUahcKjcsd2EcnoezRD2XcQKTYwUjh/UDTxfrXx+CPHafDRXl+XWuF9KxabBbvmQdKlYKIBJNnJDwyMQCN7q//Z96aF17F5rwq0ovMHDIIj16tIMhPi0uWqay3Yne2/+hQSJAU5u8ViPeLMhHq3711v/+qH8pruHl3rvvLn0OnizTfD1GreLdfDIaCHNLS0jxLiEiSRGpqKmPGjCE6unVt2OyabD5O/5jvsr7D5nLPEIjyi+L6ftdzea/L8dd0XexNaO9UChhOVaKPfNup1D+nYtDtSwGD0DHRR77Nl/pHBN1/gq8G3bJLpuCptUgWucPpq7IsIxskej46FmeVBXtRAw05lTTmVCBXOlC5Og68rLIFp58FU2geQYYMNLXrkaozvDfSB+GMH011iD/5mlyqHa1TdJVKf8LDJhMReRHBQaORpGM3iik7HO4AvGVk3VyL01zXOrJubg3inXVmXIcE8XJTU9cH6Yoko9TIKHRKlH56lAGBKIJCUYZFowiJQhngLkAnGwxs2bef0846E01wcPfz2Y+AyyVTWVjvVZzNUue9DIWkkAiL8feMhEclB6D3/+v51/VWB1vzqpunpFezraCapkNH4ZUSscEGTDo1NqeLohoL1Y32DvcXYdJ68sNbAvL4EL9jMj39h/IaHjtQSLGt9VyitWpmx0XwcVElu+stqCWJ+b17cm1UMFlZWaSlpZGd3fp7n5CQwJgxYzzLwQBUWipZvH8xn+37jGqre2Vyf7U/l/e6nOv7XU+Uf9frewqtTqWA4VQl+si3nUr9I4Ju4UQQfeTbfKl/RND9J/hq0A1g2V1BxcK9IHsH3nLzKF3oDf3Q929f0VCWZVx1NuoySqnanUdTQQ3KOgUGjB0G8JJUis64HX/tbjSWzUgO7/XBnWHJmMPCKNSXUqavRW4OjDSaMCIiLiQy4iKMxgE+l9vqslq9p8Kbzc2BegdBfK3ZPdJeU+nert5Cu6HdP+Go57O3IcsytWUWz0h4UWYNdZXtv2gIjvZrLs4WQHRyIP5Bf/0PGLvTxe7CWjbnVrvzwvOqqTokL1wCksP9iQ02YNAqabQ6yaloIKeyocOsA4NGSd9Io1fBtr6RJvSav/7FjlOWWVdRy/KNm5g8cgRjQwNQShINTiez9xbwXXkNALf0DGVuUg9UConi4mLS0tLYvXu3p4hJeHg4Y8aMoX///p7pgU2OJr7P/p6P0z8mpzYHAKWk5Jy4c5iWOo3U0NS/fP5/B6dSwHCqEn3k206l/hFBt3AiiD7ybb7UPyLo/hN8OegGd+Bd/W0WLnNrQKMI0BA0JanDgPtw6ssqKd6UTu2+g9hLGtHb/QjUhKFStB0JdaKR9qNVbkGv2Y7adQCpzVIbslpHQ1gkxf71lAc4sejdAZHBkEBExEVERkzBYEj4S9fsC2RZRrZY3EF6SS7OvJ04C/fhKs7GWV6As6ocl1XGaZNw2RU4bQqcdgmXTYHTocLVSU23I9WtfPY2QbxF4UdZlZLSYgfFeQ1Ul7TPzTaF6tyj4M2j4QHhf3597hayLJNV3uAZCd+UW0V+VftjxwTrGRITSHSgHo1KQXmdlfTiOvaXmNuNnIN7enpCqB8p0QHNBdvcQXm48cj+CHO6ZNZnlvHzmj84Z9woRieHo2z+8kiWZV7JK+VfOe4lScYHGXknNY5AtTuorqmpYcOGDWzduhWbzf0+NBqNnqJrLR+2LtnF2sK1fLTnIzaWbPQce1jEMKalTGN8zHgUkvhPvDOnUsBwqhJ95NtOpf4RQbdwIog+8m2+1D8i6P4TfD3oBvdU88bMSras2cSwcSMwJIcgHYVpuA011RTs2UXZjgPUZ5WhalARqAknSBOOXmUEQEEtWsV2dMqt6BRbUUrVXvuwGvypCJSpCFJQHaDGqVJgMg4kIvIiIsIvRKsN+8vn6ZOcdqjM9FRPd5XspilvCwa7e7ktWQaXvSUgl3A6tbh0PXHqonGpwnBKJpyyHpfF4R5Zb1OMzlVbi6uxfcB6xCQJR1Ak5tC+1AQkU63rSa0yBM8apc10GhcR4QoiY3VEJZkISwhBFWD6y+uzl5qbPCPhm3Kr2FvcPi88yKBmeHwww+LcgbjDKXOgtJ70YjPpRbVU1He85Feov9YrTzwlykhCqL8nkG7rp93FzP12DyXm1m9CIk1a5l6Uyrn9W6eA/1Bew13p+VhcLhL0Gj4akOi1jrjFYmHLli1s2LCB+vp6wF10bdiwYZx22mkEBAR4tk2vTOfj9I9ZnrMch+zOw483xXNjyo1MSZqCXqU/8hf0FHcqBQynKtFHvu1U6h8RdAsngugj3+ZL/SOC7j/hZAi64fj8Z9pQU01B+i4K9uykND0DqpwEasM9gbhRHYxWkYdOsRWtYitaRTqS1FrYyyVJ1JpUVAapqQzWUO+nJjh4LJGRFxEWdg6q5kD+VOTpn4ljUFcdaLOUWbp7nXF7J0Xh/MLarCvespxZH2RJ1ZrPXntI7rq5TTE6c/sCdE6zGdna8VC7Q6mj1pRATWAyNQHJmE1xyArv3yeVvZEAcxaB5myCHSUEqsyojf7uKfCeUfc2U+GbR929H2+fz17XZGdbfo27SnpuFdsLatqNbuvUCgbHBDIiPpjh8cHEBunJq2pkb3GdJxDPruh4erpOraBPpHeeeEFVI3MWb/ekZHg0p2y8dcNQr8B7T72FabuyOdhkx6hU8FZqPJNCvD8XHA4Hu3btIi0tjfLycgAUCoWn6FpUVOv+ShpKWLRvEV/u/5I6uzttI1AbyFV9ruLavtcSqj+y2SqnslMpYDhViT7ybadS/4igWzgRRB/5Nl/qHxF0/wki6O5cfXUVB9N3uQPx9N2Yi0swqUM9QXiwNoBIQxl+ih3oFFtRKYq9nm9VS1QFaagMVlMT6I8pfBKRPS8mNHQCCsVfL+7lSw7bPy4X1OS2WVe8+VaVDXTwdpOUEJLcGoRH9HcvaxYQ0+3lzLzy2c21zdXhze2CeFttPVX1GirsAVQSRo02GqfSO1hWOG0EmHMIqM0ksCaTAHMOSlfHBdK8LqOLfHbZ30ipS0Vmo8SeOhfbqpwUO9U0qPU0qHU4FUoUEvSLMjUH4UGMiA/GqFOxv8QdhO8tNpNeZGZvcR0We8dLmbWrXN6mPVInse7J871GyCtsDm7ZncOG2gYk4PGkaG6PCWs36i/LMpmZmaxbt47c3FxPe2JiImPGjCEpKcnznAZ7A19nfM3CvQsprC8EQK1Qc2HihUxNmUpyUHKXr+ep7lQKGE5Voo9826nUPyLoFk4E0Ue+zZf652gE3WLhQMHDPyiYvmPH03fseADqqyop2Lubg3t2kZO+i63F7uDBTxVAoOZ8ehjUJATWEqTKRM8utPYmosqsRJVZkamnzv8zKoO+ojAwAIXfJMIDpxAcMwZNhD+S6hT+cFMoIDjRfes3pbXd1gBl+9qMiDePjluqoWK/+7ZnSev22oA2a4qnQngqhPcDXfs3tEKrRaHVogrteiQ1rs3PLqeL8oI6itIrKDpQRXFuA9YmDdVBfagO6gOAhEyQtoEQqYJgezEB9Xko6yraVJSvA1lGtlpxlltxlld0fGBADfRrvl1xyGNNKi11ah31aj0Naj3laj2fq/UojEYCw4KJ6BHGiNhwIpPDYGgQhejYb1Gyv87FvsomtufXUG2xd/5FhSRRYoWNWeWM7hXuaQ7VqPh8cBKPHihkYXElT2UVkV5v4d99YtApFW2eLtGrVy969epFUVERaWlp7Nmzh+zsbLKzs4mIiPAUXfNT+3FDyg1c0/caVuav5OM9H7OzYidfZ37N15lfM7bHWKamTGV01GifK0goCIIgCIIgHF1ipNtH+eI32G2D8IL0XVQ3B+EAOqWGXiaJvqFWwtR56OV8r+c6lBJVQWpq/AKx2U/H6LoIY3AK6ig/1FH+qKP8UPr5xnV2x1HrH1mGuuL2o+IV+8Hl6Pg5gXFtpqenuH8OTgTFX6/6LbtkqkoaKM6s9VRJb6g5ZOq6BCE9/IlODiS6VyBRiUZ0KodnqnvnU+E7WALObD5q+eyrEkYyf+CVXW56SayWJ6adQbCf9+wLWZb5oLCCJzILccow1GRgQf8EIrSd9291dbWn6Jrd7p4NYDKZGDVqFMOGDfP6NnR72XY+2vMRK/NXIjfPeOgd1JupKVM5P+F81MqT5/f/aPDFzzjBm+gj33Yq9c+pOtKtVCr56quvuOyyy0706Qgd8KWRVKE9X+ofMdItHFf+wSH0Gzuefs0j4XVVFRxM301B+i4Opu9iV3ERu6oB4vBTRZHgV0tKhItIdQFqp4XwChvhFWXAEhr031DjDKKmeCSK6ktQNUWjDNC6g/BodyCuifJDGaw7KkXkfJYkgSnafet1dmu7wwYVzbniZW2C8bpiqMlz3/b/0Lq9Sg/hfVtHxFumqfuFHNnpKCRCov0Jifan/xk9kGWZusomzxJlRRk11JZZqDxYT+XBenatOghAQLie6Obq6NG94jGG6Lo9gutZn72DgN1SVUNRYQUVxRWYy6uw1dait1nwt1vwt1nws1vQuhwgywSbOx9hb2tpvpXvn13BhD7hXDqkB2f1C0enViJJEjf3DKO3Qcete3LZam7k3C0HWNA/gcEmQ4f7CgoK4rzzzmPChAls3ryZP/74A7PZzC+//MLvv//OsGHDGDVqFAEBAQwOH8zg8MEUmAtYuHchX2d+zYHqAzy27jFe2/oa1/W7jit7X0mANqDDYwmCIAhdc7qcbC3bSnljOWGGMIaGD0V5FL6U7sz06dOpqalh6dKlx+wYx8LatWv5xz/+wb59+2hsbCQuLo5Zs2YxZ86cTp+zf/9+brvtNtLT06mtrSU6OprrrruOJ5988rBf/MTHx5OXl9eu/Y477uC///0v4A5q7r//fj777DOsViuTJ0/mzTffJCIiAoDc3FwSElpXy1Gr1cTGxjJ9+nT++c9/HvZvjqPdR/Hx8cyePZvZs2cflf0dzqpVq5g4cSLV1dUEBgYe8+MJx44IuoU/zRgcSr/TJ9Dv9AlA+yB8d3ERu2tBIpxwXT2Jpmp6h9cS7KzBz+LEz1IBLMMpLcMcGkCTPBhr1oU07etLS8VtSaNsE4j7oYnyRx1pQFIfu/9AfYJKA5H93be2Giqbg/B099T00j1QthccFija5r615R/pPSIekQqhvUHlncfdGUmSMIXqMYXq6TvaXTCsodbaOhKeWUNlYT21ZRZqyyzsXefO8/cL1LqD8F6BRCUHEBzp1+mXJ5JKhSooCIKC2j0WBES3uW9zuNhdVOtZqmxzbhX1dY342ZsYUrafUEsNFbqATnO6/ewWeob4sb9OZsXeUlbsLcWoU3F+/yguHdqDkfHBjAs28uOw3kzdlU1Go5VLtmXwSt9YLo1of34t9Ho948aNY/To0ezcuZO0tDQqKipIS0tjw4YN9O/fnzFjxhAZGUmMKYZHRj3CHYPv4IsDX7Bo7yLKLeW8tvU1/rfzf1ycdDFTU6YSY4rpVh8JgiAIbivyVvDCxhcobSz1tEUYInh45MNMipt0As/M9/j5+XHXXXcxcOBA/Pz8WLt2LbNmzcLPz4+ZM2d2+By1Ws3UqVMZOnQogYGB7Nixg1tvvRWXy8Vzzz3X6bE2bdqE09lah2X37t2cffbZXHll6+y0OXPm8MMPP/DFF18QEBDAXXfdxWWXXca6deu89rVixQpSU1OxWq2sXbuWW265haioKG6++ea/+IocXU6nE0mSTvgIreA7xPRyH3UqTBurq6xoU5htFzUl7oBMq3AQH1BFr4hyYjVm9HbvadQ2jY5GbSr22onYbMOR8ffesQSqMIM7CI9uMz3dePyKtflU/7icUJXjPSJeuhuqczveXqFyB97hKd6V1E3R3S7c1lZTg52S7Nbp6OV5dbgOWStM56cmKjnAE4iH9vRHofzr/xG5XDLZFfVsyq3mxx2FDPryHd4Y3Jwtfkj1coDHNn7EaFspllvuZEV4f77dWUJRbZNnsx6Bei4eHM1lQ3sQEWzg9vQ8VlSaAbg3LoJ/JESi6MZr5HK5PEXX2n67n5SUxJgxY0hMTPR8K2932vkx90c+2vMRB6oPuE8diTNjz2Ra6jQGhw0+JfO+feo9JHRI9JFvO5X652hML1+Rt4L7Vt3nSd9pITV/if/yhJePSeDd2ShqR9PL//GPf/D1119z8OBBIiMjuf7663niiSc8/Td37lyWLl3KPffcw9y5c6mqqmLq1Km88cYbvPTSS7z88su4XC7uvfde/vnPf3qO9fLLL7NgwQKys7MJDg5mypQp/Otf/8Lf/5C/n7pw2WWX4efnxyeffNLt59x3331s2rSJNWvWdPs5s2fP5vvvvycjIwNJkqitrSUsLIxFixZxxRXu/8P37dtHv379WL9+PaeddppnpHvbtm0MHjzYs69JkybRp08fz4h5Rw7towkTJjBw4EC0Wi3vvfceWq2W2267jblz5wLudLN58+bxwQcfUFpaSkhICFdccQWvv/46EyZMYPXq1V77l2WZDz/8kNmzZ/Pxxx/z8MMPc+DAATIzM5k+fTqDBw/m1Vdf9Wx/ySWXEBgYyIcffgiA1WrliSeeYNGiRZSVlRETE8MjjzzCWWed5TW6DzBt2jTP8051Ynq5IHSTMSSUfuMm0m/cRKB9EL5/XzEgE26qo29MCXH6GkIsVjS2JjS2LaDYgqyTsAUl4zKcSZN9GJaKnrgaXTjKGnGUNWLZUe45nsKodk9Lbx4VV0f5owrVn9rT08Gdyx2a7L6lXNzabq1rLdzWNl/cWusu5FaWDru/bN1eF9imgnpzMB7WF7SH/09b56cmfkAo8QPcRdzsVielObUUNY+Gl2bX0tRgJ2dHBTk73FPA1VolkUkBzdPRAwiPN6H6E7MXFAqJ5HAjyeFGDBoli9f05Z8bP+KdgZdQoQ/0bBdqqWHWrm8YUJGNwt6I3/y5XB4dxa2zbuPAkPEs3VnKsl3FFNZYeHNVFm+uyqJ/DxOXDO5BTGgQCyqqeS2vlH0NFv7bLw5/1eHPVaFQ0Lt3b3r37k1hYSFpaWmkp6eTlZVFVlYWkZGRjBkzhtTUVNRKNRclXcSUxClsKN7Ax+kfs7ZwLSvzV7IyfyUDQwdyY+qNTIqdhEohPrIFQfh7kGUZi8PSrW2dLifPb3y+XcANeNpe2PgCoyJHdWuquV6lPyZfdhqNRj788EOio6PZtWsXt956K0ajkYceesizTVZWFj/++CM//fQTWVlZXHHFFWRnZ9O7d29Wr15NWloaM2bMYNKkSYwaNQpw/5/z+uuvk5CQQHZ2NnfccQcPPfQQb775ZrfPbdu2baSlpfHMM890+zmZmZn89NNPR5SzbrPZWLhwIffdd5/nNd6yZQt2u51Jk1q/FOnbty+xsbGeoLsjmzdvZsuWLUydOrXbx2/x0UcfMWfOHFasWMGuXbuYMWMGY8eO5eyzz+arr77ilVde4bPPPiM1NZWSkhJ27NgBwJIlSxg0aBAzZ87k1ltv9dpnY2Mj8+fP57333iMkJITw8PCODt3O1KlTWb9+Pa+//jqDBg0iJyeHiooKYmJi+Oqrr7j88svZv38/JpMJvV5/xNcq+AbxF5xw3BwahJsryjm4dzcFe3axM30Xv5cWYwi00Ce+hARTNeENTfg1OtFWZ0B1BnogQGeC5DNxBI3FKg3DVmXAXtyAo8KCq86Ota4a64FqzzEltQJVpB+aNrni6kg/FNpTfHo6gNYIMSPctxayDObC1tFwT+G2DGiqgbx17puHBEHx7dcWD0pwV2nvgFqrpGffYHr2DQbA6XBRnl9HUUYNxZk1FGXWYrM4KEivoiC9CgCFSiIi3uQpzhaZFIBGd2QfT+FGHWnRAwD49+r/UOofQpXWSLC1jvCGKt4dcBH/Gn49F+Zv5IbsVRiKiil78knCevTgkTtuZ+4/LuDXzGq+3naQVfvL2V1oZnehGaVCYlBMAPsCFSx3uLjAYuPjAQnE6bs3Rb9Hjx5ceeWVVFdXs379erZt20ZJSQlLlixh5cqVnHbaaQwdOhStVsvo6NGMjh5NZnUmn+z9hO+yvmNnxU4eXP0gPfx7cH2/67ms12X4qf2O6LURBEE42VgcFkYtGnXU9lfaWMqYz8Z0a9s/rvsDg7rjWh5/xWOPPeb5OT4+ngceeIDPPvvMK+h2uVx88MEHGI1GUlJSmDhxIvv372fZsmUoFAr69OnD/Pnz+e233zxBd9vc4vj4eJ555hluu+22bgXdPXv2pLy8HIfDwdy5c7nlllu6fM6YMWPYunUrVquVmTNn8tRTT3X7NVi6dCk1NTVMnz7d01ZSUoJGo2mXsxwREUFJSUm7YysUCmw2G3a7nZkzZ/6poHvgwIE88cQTmM1mhgwZwptvvsnKlSs5++yzyc/PJzIykkmTJnlyx0eOHAlAcHAwSqUSo9FIZGSk1z7tdjtvvvkmgwYN6vZ5HDhwgM8//5xffvnF86VDYmKi5/HgYPffUuHh4SKn+yQngm7hhDGFhpEybiIpHQThv6bvxEY2PRIqSQyqJLzeSlC1HXWTGQ4sRcNSNOAOBAeciSv+TOzq/tjLHNiL6rEXN2AvbkC2u7AX1GEvqGs9sASqEH3zaLgf6mh30TaFSXNKTuP1IkkQ0NN96z25td3e1Fq4rW0w3lAG1Tnu277vW7dXG9zLl7UNxsNTwBDc7pBKlYLIxAAiEwNgchwul0xVUT1FGa154RazjeLMWooza9nyUx6SBKExxtYK6ckB6LtIHxiZEExUgI71DOCPyFROryol2OGgSqVibXAEToUClULi64Sx/BA7kvNz13ND9mr8Cgsp/udjqN/5H2PvuJ3zr7+QaquL73cW8fW2Qrbl17A/rwYpD3RKiewIHWcfNPPe+L6cEdL9FJWgoCDOP/98r6JrtbW1LF++nFWrVjF8+HBGjRqFyWQiOSiZeWPmcfeQu/ls32cs3r+YwvpC/rXpX7y1/S2u6H0F1/W7jki/yK4PLAiCIPiExYsX8/rrr5OVlUV9fT0Oh6PddNT4+HiMRqPnfkREBEql0mt6bUREBGVlZZ77K1as4Pnnn2ffvn2YzWYcDgdNTU00NjZiMBi8ppnfcMMNvP322577a9asob6+ng0bNvDwww+TnJzMtdde2+V11NXVsWPHDh588EH+/e9/89BDD7FmzRrOO+88z3bvvPMO119/vddz33//fc477zyio6MP3W23LF68mH79+mG329m9ezd33303QUFBvPDCC906fouBAwd63Y+KivK8pldeeSWvvvoqiYmJnHvuuZx//vlMmTIFlerwYZNGo2m3365s374dpVLJ+PHjj+h5wslHBN2Cz2gfhJc1F2bbzo6aNWjDcogNqSaszkpwtR1TnQOpdDeU7kaR9joatR5t/BmQPAnOOAs5cCCOqiZ3AF7UgL24HltxAy6zDUeFBUeFBcuu1orXCj+VJz+8JRBXhemRjkLusc9T6yBqoPvWVn15+1zxsn1gb4TCLe5bW8Zo7+npEakQ2gvaLIelUEiE9jQS2tPIwIk9kWWZ2jILRZk1FDcH4eaKJsrz6yjPr2PHrwUABEUa2hRnC8QY7J1To1RIPDklhZc/2M6ZFi1GVaLnE65fnYtf9Xbm3DSYAIOa99bksFR5Bj/GncYFOWlcm70a//x8ih9+hMq33ib0rju58fzzmTo6npyKBr7eVsjSbYXkVzWiLLJgK7Jw445KxqSE8/i4XqREdz/4NhgMnHHGGV5F1yorK1m3bh3r169n4MCBjB49moiICEL1odw15C5uHnAz32V9xyfpn5BrzmXBngV8kv4J58Sfw7TUaaSEpHS/rwVBEE4CepWeP677o1vbbindwh0r7+hyuzfPepNhEcO6deyjbf369Vx//fXMmzePyZMnExAQwGeffcZLL73ktd2h+fmSJHXY5nK5AHdV7wsvvJDbb7+dZ599luDgYNauXcvNN9+MzWbDYDCwfft2z3MPDfJbcoYHDBhAaWkpc+fO7TLojolxF/pMSUnB6XQyc+ZM7r//foYPH+51rJbK4y3y8vJYsWIFS5Ys8WqPjIzEZrNRU1PjNZpbWlrabjQ5JiaG5ORkAPr160dWVhaPP/44c+fO7fL4bR3uNY2JiWH//v2sWLGCX375hTvuuIMXX3yR1atXH7Z+gl7fPi1BoVBwaPmsliVGW54j/D2IoFvwWabQcFLOOJOUM84E7sNcUUb+ni1k2L7DGrUZU79yQsx2gqtthFTZ0NotkLHcfQMIjEOdPAl18iSYOA608QA4622ekXB7kTsQd5Q34mpwYM2swZpZ03oSSgl1pJ9nVFwT5Y862g/+BrPTAfAPA/8JkDihtc3pgKps7xHxsj1Qkw91Re5b5i+t2yvUENbHO188PBWMkSBJSJJEYISBwAgDKWPd33zXVzc1L1FWS3FmDVVFDVSXNFJd0sieNUUAGEN0npHw6F6BBITr6WVXcnGjtl1en78scXGjlt4OJUlJoYxJCiWzrJ4P1uXwlU7HDwmjmZKTxlWZqzDm5VH04ENUvPU2oXfeQfx553Hf2b2ZM6kXW/Or+WJLIV9tL8RudbJ+WwnnbyuhT6SRS4f04OLB0UQFdO8/ULVazbBhwxgyZAgHDhwgLS2N/Px8tm/fzvbt20lOTmbs2LHEx8ejV+m5qs9VXNH7Cn4/+Dsf7fmIzaWbWZazjGU5yxgROYJpKdMY13McCulv8CWRIAinPEmSuj3Fe0z0GCIMEZQ1lnWY1y0hEWGIYEz0mGO6fNjhpKWlERcX51UAraNltI7Uli1bcLlcvPTSS57R8M8//9xrm5YgtSsulwur1XpEx3e5XNjtdlwuF3q9/rDHWrBgAeHh4VxwwQVe7cOGDUOtVrNy5Uouv/xywL08WX5+PqNHjz7s8ZVKJQ6HA5vN5p4p1s1r7Yper2fKlClMmTKFO++8k759+7Jr1y6GDh2KRqPxqsZ+OGFhYRQXF3vuO51Odu/ezcSJ7gGmAQMG4HK5WL16tVdOewuNRuN5nnByE0G3cNIwhYbTf/x59Mc9daiy+ADZ+z5hj/9vKHoX4d/gJKTaRnClnUCzHUVNHmx+Hza/jyypkGNGouh1Nsrks1AmDUDXq3UJKNnuwl7qDsRtbaenW53YC+uxF9Z7nYsySEsi/tTrDqLraXJXTw/SnvrT0wGUKgjr7b71b1M8panWvXyZV+G2dLDVNbft9t6PPviQXPEUCOsHGgP+QTp6j4ik9wj3N9yWevf085bR8PKCeuoqm9hfWcL+P9z5Xjp/FXar+1vqlmq1LVrur/08g4RBYc0F2Px57tIB3H92bxZuyOeTDUZ+iB/NRdnruCJrNf7Z2RTd/wCVb79N6J13YjznHIbFBTMsLph5U1J4aF0GS7YVoihrYn9JHS/8uI/5P+1jdGIIlwzpwXn9IzHquq4orFAo6Nu3L3379uXgwYOkpaWxd+9eMjMzyczMJCoqijFjxpCSkoJSqWRCzAQmxExgT+UePt7zMctzl7OpZBObSjYRb4rnxpQbuSjpInSqP1cBWBAE4WSjVCh5eOTD3LfqPiQkr8C75fP/HyP/ccwC7traWq8RVnCnFLXVq1cv8vPz+eyzzxgxYgQ//PADX3/99V8+dnJyMna7nTfeeIMpU6awbt06r+njnfnvf/9LbGwsffv2BeD333/n3//+N/fcc49nm//85z98/fXXrFy5EoBPP/0UtVrNgAED0Gq1bN68mUceeYSrr766ywr6LpeLBQsWMG3atHbTtAMCArj55pu57777CA4OxmQycffddzN69Oh2RdQqKyspKSnB4XCwa9cuXnvtNSZOnHhUVyT68MMPcTqdjBo1CoPBwMKFC9Hr9cTFxQHuFIDff/+da665Bq1WS2hoaKf7OvPMM7nvvvv44YcfSEpK4uWXX6ampsbzeHx8PNOmTWPGjBmeQmp5eXmUlZVx1VVXERcXhyRJfP/995x//vno9fojrkov+AYRdAsnrZCo3oREPQ2AxXKQvOxFFJZ+S15MMUqnTFCNjaAKB0EVdoxOB1J+GuSnwcp5OLVBkHwWyj7nQtJEJL9QND2NaHoaaSlRJbtknNXu6em25lFxe3EDzhorzmorQWho+O0gDc3bSzpVm2XMmou2RRiQVH+TkUddAMSe5r61kGX3CLjX9PR0qMwESxXkrnHfPCQISWqXK64PjCNxcBiJg8MAsDU5PMuUFWfWUppjpqnee+m5jtRXWynOqKFHn9Y/hkL8tdw7qRezxify7fYi3lsbyneJY7k4aw2XZa2GjEwKZ89B27s3oXffhXHSJLRqJa9N6MsF/aO4fUcOTYUNGEot2CutpGVVkpZVyeNLd3NOaiSXDolmXK8w1N1IU+jZsydXXXUVVVVVnqJrxcXFfPXVV6xYsYLRo0czZMgQtFotqSGpzD9jPnOGzeHTvZ/y5YEvyTXn8vSGp/nPtv9wdd+ruabPNYToQ7rdhYIgCCerSXGTeHnCyx2u0/2Pkf84put0r1q1iiFDhni1zZgxw+v+RRddxJw5c7jrrruwWq1ccMEFnmnRf8WgQYN4+eWXmT9/Po888ghnnHEGzz//fJfFxVwuF4888gg5OTmoVCqSkpKYP38+s2bN8mxTUVFBVlaW575KpWL+/PkcOHAAWZaJi4vjrrvuYs6cOV2e54oVK8jPz2/3urR45ZVXUCgUXH755VitViZPntxhIbiW0WClUklUVBTnn38+zz77bJfHPxKBgYG88MIL3HfffTidTgYMGMB3331HSIj7/9OnnnqKWbNmkZSUhNVqbTd9vK0ZM2awY8cOpk6dikqlYs6cOZ5R7hZvvfUWjz76KHfccQeVlZXExsby6KOPAu5irPPmzePhhx/mpptuYurUqX+bJcNONWKdbh91Kq2/eTzJskx9/T5KSr+huOgb7A53UQy9xUlAiYOAYhcRdgtqydX6HCRsgb1RpZyHss9k6DnCKwf5UK5GO5aDtez8dTO9guJwlliwlzWCs4O3kkJCHW5ozhNvs6a439+8T+0WKN/nvZRZ6W5orOx4e41/m3XFU1sLtzUvC+awO9nyYx6bl+V2eeizb07xjKB3RJZlfs+o4L012WzdU8AlWb9zadYa/Bzu9by1/foRdvdd+E+ciCRJ7GuwMG1nDnlNNgxWFxfaNew+UEF2eYNnnyF+GqYMiubSIT0Y2DOg2zMiGhoa2LRpExs3bqSxsREAnU7nKbrWtthOva2eJRlL+HTvpxQ1uKfgaxQapiRN4caUG0kKTOrWMY8X8Rnn+0Qf+bZTqX+OxjrdLZwuJ1vLtlLeWE6YIYyh4UNPyJRyX1pjWOiY6CPf5kv9czTW6RZBt486lf4zPVFk2UVNzSZKSr+hrOxHHA4zAJJLxq9YiV+ukwiLhTBNo9fzHAod1sgRaAdehKrvuRAY227fh/aP7HBhL2tslysuWzoefVUGaNwBeHRrrrgyWHfqryl+OLIM9WWt09PL0t0/l+8Hp63j5wTEeALwQvtAln4T0OVhgqMNDDorluRh4V0uS7avxMx7a3JYuTGDKftXcXH2WgwOd76bJjWV8Lvvwn/8eKodTm7dncu6mnok4B/xkUxUaVm6vYjvdhRRUd96/olhflw6uAeXDOlBTHD38hXtdjs7duwgLS2Nqir3MmtKpdJTdK3tWqAOl4MV+Sv4eM/H7KrY5Wk/vcfpTEudxqjIUT6RBiE+43yf6CPfdir1z9EMun2FLwUMQsdEH/k2X+ofEXT/CSLo/ntyuaxUVv5OSem3VFSsxOVqLRSiqg1Gu99BUEUtsbpa9CrvQLlRE4EjZhyGoZeh6jURNIZu9Y8syzhrba1LmBXVYytpwFnZ1OH2kkbZZhmz5qJtkQYk9d+lalsnnHb3dHSvUfE9YD7otZlLVvBx+Ts0uIKBjj6cWz7q3AGnSqMgaWg4/UZHEd0r8LBfeJSZm/hkQx5LV+3hrF0ruSh7LfrmLwKUqf2Jnn0vmjFjmJtVxAeF7or4l4QH8nLfWNTA2swKvt5ayM/pJTTZW2dZjIgP4tIhPblgQBQBhq7f5y6Xi/3795OWlkZBQYGnvVevXowdO9aT+wXu379tZdv4aM9H/FbwmyfHsW9wX6amTOXc+HNRH2ZGx7EmPuN8n+gj33Yq9Y8IuoUTQfSRb/Ol/hFB958ggm7B4aijvPxnSkq+pao6DWgJgpRo5D6ocnSoD+QTRRFRejNtYzGnrMTs1wtnwgS223ow/srbUGsOv370oVxNDuwlDZ6lzGzF9dhLGsDRwVtRAlWYHnWUf3OuePP09C7WrP5bsFS7C7W1jIjn/E5WUTg/1TyEO8Bu+wHtAiQmmN6kKeUm9uWEUlPaOsPBFKqj7+go+oyKxBTaefVxi83Jl1sP8vkvOxnxxzKm5KxD53Qv/SGnDCDugdl8FdebRzMO4pBhoFHPh/0TiNa5+6ve6uCn3SUs3VbIuqwKWj59NUoFZ/YN55IhPZjYNwytqusvWgoKCjxF11pER0czZswY+vXrh1LZuo88cx4L0xfyTdY3WBwWAML14Vzb71qu7H0lAdquZwgcbeIzzveJPvJtp1L/iKBbOBFEH/k2X+ofEXT/CSLoFtqyWssoLfuB0pJvMdft9LQrFDoCjacjVcbi2p2FvnQLPVTFmNTeS2k0yH7UBQ5E2fdcAkdfgzqw81zhw5GdMo6Kxubq6e41xe1FDbga7B1urzCq3YF4m1xxVaj+7z09PWcNfHQhWU2nscZ8Mw2u1mqi/opyTjd9QJJuA9z4DXLieEpzzOxNKyZjcyn2ptalOHr0CaLfmCgSh4Sh1nQc/LpcMr/uK2PRT9tIWvk1F+SkoXW5Z0hYUwZSef/93C3rqbI7CdOo+LB/AsMC/Lz2UVLbxDfbC/l6WyH7Suo87QF6NRcMjOKyIT0YFhfU5VTwyspK1q9fz/bt23E43OcQGBjoKbqmafOlUK21ls/3f86ifYuosLhH5PUqPZcmX8oNKTcQY4zpzit9VIjPON8n+si3nUr9I4Ju4UQQfeTbfKl/RND9J4igW+hMY2MOJSXfUlL6DRZL69qZanUQ4WHn4a8ZS2N6Ic69P+FftZ1IdQVqRetUYZcMVUTQGDYc9YALCR15MWq9X0eH6hZZlnHV2d0j4W2qpzsqLHSwDCmSWoEq0s8diEf5oY72Rx3ph0L7N5me7nLCq/3BXIxLlii29aPBFYSfopoozV4ULcXzAuNh/IMw8GpQqrHbnGRvK2dvWjGF+6s9u9PolCQPj6DfmCgiEkydBr+7Dtay6MctBC79jHNz1qNpDr4zRo7j3zNu44CsQCNJ/LtvDFdFBne4j73FZpZuK2Tp9kJKza1f7MQE6z3534lhh18ipKGhgY0bN7Jx40YsFvdotk6nY8SIEYwaNcpriRGb08aynGV8nP4xGdUZACgkBWfFnsXUlKkMDh982GMdDeIzzveJPvJtp1L/iKBbOBFEH/k2X+ofEXT/CSLoFroiyzJ1dbsoKfmG0rLvsdkqPI/pdD2IiLiIkODz+O37DQzSlaPI+pXA+nSCVHVe+7E4VZQp4rBFj8Yw9DLCB52OWqP9y+fnsjnbTE9vs6Z4m1xhDwlUIfo2ueLu0XGFSeMTxbSOuvRv4fOWZVLafrRJ7vsaf7A1r7keGAfj7odB14LKPRpsrrCwb0MJ+9YXU9cm9z4o0uCZfu4X2HEfFtVYWLxsC/zfR5yVtR61y4lFq+XJux5lU3JvAG6PCeOxpGiUnbz2TpfMhuxKlmwt5KfdxTTYWkfgB8UEctmQHlw4MIoQ/85/j2w2m6foWnW1+0sEpVLJoEGDGD16NGFhYZ5tZVlmffF6Pt7zMeuK1nnaB4YNZFrKNM6KPeuYVf0Vn3G+7//ZO++wKK7uj39mK73DUqRKR0VUUFBjjb0mRmNiS2JM3phqet4UzS8x7U00ienNFmOqvcZeQGyIIkgRUKT3zrLs7u+P1UUiCiJGYubzPPs8cOfemTt7dmf2O+fcc0QbdWxuJ/uIolvkViDaqGPTkewjiu42IIpuketBp2ugtOwQ+XnrKCjcjlZbZdym1brg2/l+XF3Ho1S6UHE2jsrDq5Fl7sO2Lg2lpGloeKHanCKFL1rPO7DqOR6XoG7tIsLBUFO8obj2iuzpuorms35LzGQGT/hFMa5wtUDmaIrQilrSHZ7E9bD1RajIaWyzcoMR70LnwXD0e4j+BKoLDdusPaD/M9D9fpAZ7KHX6clOLeNMTC5njxfQUG94oCEI4B5sT1CUC97dHJDKr3y/qtQNrNt2jMrvviUqJQYpOpaOvpsVo+8GYJCdJV+FeGHVwrrt2not2xPzWBOXzf7UIrQ6w6VaJhEY4O/IhDA37gxWYXKVRHs6nY4zZ84QHR3NhQuNSef8/f3p27cvHh4eTR68pJamsjxxOZvSN6HRGT67bhZuTA+ezgTfCZjL2x610RziNa7jI9qoY3M72UcU3SK3AtFGHZuOZB9RdLcBUXSLtBWtto6iop3k5a+nuHgven2jqLaxicBZNQ4np5HI5TbotRqqTm6nJu53lDkxWGtyuNy5qdFJyKq1pdQsCHyH4th9MC4Bge0mwo1zrqq/Qog3FNY05o67HKmAXGVmLGWmuJi0TWJ67bJaHRKdlob0fZzYv43u/Ycj87kDLvfY1tfAsR/g4MdQlW9os3KDfs9A2HSQN15Q62sbSDtewJnoXHLPlhvbleYy/MOdCYpywcHd4orIAa1Oz67dJ8j9/At6JB5kX1gE7818FLVCiZtOy899QvA1b92Py8JKNRvic1h7IpuTFxrnYKGUMbKLMxN7uNHH2x7JVdb0nz9/noMHD5KcnGxsc3NzMyZdu/xmVlRbxKqkVfyS8gvlasOxLOWWTAqYxP2B96MyV7Vqzi0hXuM6PqKNOja3k31E0S1yKxBt1LHpSPYRRXcbEEW3SHtQU1PI7j0folJlUl5+xNguCHLs7QfgrBqHg8MQpFLDF1NfXUTN8TXUJ2zAtOAYJvqqJvsrqzfhXI0dFTbdkAcMw7VrOC7+Ae0uwgH0Gh2a/GqjGK+/GKKuV2ub7S+1VV6WPd2QtE1qq+zw4emt+g5pauHYMji4GCpzDW2WLtD3aeg5E+RNM5mX5deQFJNL8qE8qssa117bu1kQFOWCf4QK02Yyyx8/lEDGok+RlF7g9UfmUWhnj2ldLXPqG5g3OqpV2covkVZQydq4HNbEZZNdVmtsd7E2YXx3N+7q4Ya/yrLZsUVFRcaka1qtwd62trZERkbSvXv3JknXahtqWZ+2nhVJKzhXYchxIBNkjPAewcyQmQTaBbZ6zs0hXuM6PqKNOja3k31E0S1yKxBt1LHpSPYRRXcbEEW3SHtwuX202kLy8zeQl7+BqqrG8k1SqQVOjsNQqcZhaxuJRHLRY6zXo887Re2JNejObMOsPAnJZa5nrV4gp8aKc7X2VDv0wDJ4IO4hobj4BSK7zvJkrUWv16MtVRu94ZfWimvL1M32F0ykV2RPl6vMEGQd56Z1Xd8hTR3ErYADi6Ai29BmoYK+T0HPB0Bh1qS7TqcnK6mEM9G5pMcXortY7k0iFfDq6kBglAseIXZI/xKufy7+DDGffMnXUVEk+vgj0ekYs3MnfQJDmXD3QOzMW29fnU7P0XOlrIm7wMaTuVTWNdaXD3ax4q4ebowLdcXJ6sofsFVVVRw+fJgjR44Yk66ZmpoSHh5OREREk6RrOr2OPVl7WHZ6GccLjhvbezv3ZkbIDPq59UMiXL/dxWtcx0e0UcfmdrKPKLpFrsbAgQPp3r07ixcvvq5xgiCwZs0aJkyYcNU+oo06Nh3JPqLobgOi6BZpD65mn6qqFPLy15Ofv566umxju0LhgMppDM7O47G07NrUS6yuQp+xD/WpDQhnd6Ksy29yrOoGOZlVtpyvc0DtHIFTSATuwV1vqgi/hK5GYxDhl4WoawpqQNvMZUMiIHcyNYanG73i5rfm89um71CDGuJWGsR3eZahzdwRop6E8IdAceW65rpqDalH8jkTk0vBucZkeqZWCgIiVARGuWDv2jTzeG5iMk8fiGOvn8FbPOrgLiL2HaNi4n3cPWkAnVvIVH7FHDRadp8p4I+4bPYkF6C5aB+JAH19HZgY5sbwEGfMlU2XCtTX13PixAliYmKMSddkMpkx6ZqDg0OT/glFCSw/vZzt57aj1Rs85T7WPkwPns7YzmNRSlsfmSFe4zo+oo06NreTfdpTdOu1WmqOHqOhsBCZoyNmvXoiSP/+Kh4dSTDcCBqNhldffZXNmzeTnp6OtbU1Q4cO5d1338XV1fWq4+Lj43n33Xc5cOAARUVFeHl58eijj/LUU08Z+8yaNYtly5ZdMTY4OJjTp08DbRfdeXl52NraolQqyczMxNvbm7i4OLp3727sc7vY6HalI9lHFN1tQBTdIu1BS/bR63WUlx8nL389BQWb0WgaS1GZmnrhrBqHs/M4zMy8r9x58Vn0aTvRJG5GmhWNVKe+bL+QX2dBZrUt5+scETqF4xbSHfeQrrj4Btx0EQ6gb9ChKaxtzJx+0Tuur21otr/UWmEQ4he94goXC6R2Jje9pvgNfYca6iH+J9j/Pyg7b2gzs4eoJyB8NiibD98uzq4iKSaXlNg8aisb1/w7eVoSFOWCX7gKpZlhLnq9niXHE3mnTI1OIqFL2hne+HoxCVbepI+cwl0T+9PHx+66w/hLq+vZeCqXtXHZHDt32edOLmVEF2cmhLnRt7M9ssu88DqdjqSkJKKjo8nObnxYFBgYSFRUFB4eHk2OkVOVw49JP/J76u9Ua6oBsDOx496Ae5kSOAU7k+ZLo12OeI3r+Ig26tjcTvZpL9FdsX07+QvfoSEvz9gmc3ZG9crLWA0b1h5TbTUdSTDcCOXl5UyaNImHH36Y0NBQSktLeeqpp9BqtRw9evSq477//nvi4+O56667cHd3Jzo6mjlz5vD+++/z+OOPG/d9KdoKoKGhgdDQUJ544gnmz58PtF10X44ouv+ZdCT7iKK7DYiiW6Q9uB776HT1lJQcIC9/PYWFf6LTNZaisrTsirPzeFROY1AqHa8c3KCGrFj0aTvRntmCrDi5yWa1Vsr5ahsyqm3JUjti6R1Gp+Cuf6sIh4vh6eX1l5UwMwhx7WVlty5HUEgby5hdyp6uMkOiaD9vRLt8h7QaOPkz7PsflGYY2kxtIfJxiJgDJs1fQ7RaHedOFXMmJpdzp4rRXcw8LpVJ8OluCD/vFGiHRCKwq7iCR06lU6kHp5Ii3v7if/hcOM+eTmEcGTCRCWMiGd3NBXkbMsufK66+uP77ApnFNcZ2R0sl40JdmRjmRohrYw1yvV5vTLqWkpJi7N+pUyeioqIIDAxscuOrrK/kj9Q/WJm0krxqw49cpVTJ2M5jmR48HR9rn6vOTbzGdXxEG3Vsbif7tIforti+neynnjY8nb6ci9c3t48X3xThXVlZyaOPPsratWuxsrLihRdeYN26dYSGhrJgwQKUSiWvvfYaP/30E2VlZXTp0oX33nuPgQMHArB06VKefvppVq5cybPPPktWVhajRo1i+fLl/Prrr7zxxhuUl5czffp0Fi1ahPSi197Ly4vZs2eTkpLCH3/8gb29PZ9++imRkZHMnj2bnTt34uPjw/fff0+vXr0AKC4u5vHHH2ffvn2UlpbSuXNnXnnlFaZOnXpd53zkyBEiIiI4d+7cFQ9lr8XcuXNJSkpi165dzW5fu3Ytd911FxkZGXh6egIG0d2lSxcAVqxYgVwu5z//+Q9vvvnmNR9KXx5e/td+AwYMYM+ePR1K1IlcSUeyT3uI7n9gWmIRkX8WEokCB4fBODgMpqGhmsKiP8nPX09JyQEqK09RWXmK1NSF2NlGoXIei5PjcGSyi55UmRK870DwvgPZnQugMg/O7kKfthN96g6U6jL8rIrxsyoG0iipO0HGflsOb7ElT+OIo18I7sFdcQ/uirNfALKb9MNMEARkNkpkNkpMg+2N7bq6hstqildTn1uFJq8Gfb2W+nMV1J+ruGwnIHM0NXrFFRdLmkmbSUzWEnqdnvqMcmyLFNRnlCPztW+bZ10qh7Bp0O1eOPUr7PsASs7Crv8zlB3rMxd6PwKmNk2HSSX4dHfEp7sjNRX1pBzOIyk6l5KcalKPFpB6tAALWyUBfZzpEenClohAZp7M4KydA0+8+H+89P0SBscdZsCPceze14O7e45h1MhwpoZ7YG3Weht62pvz1FA/nhziy4msMtbEZbMhPofCSjXfHcjguwMZ+DlZMLGHG+O7u+FmY4qnpyeenp4UFhYSExNDfHw8Fy5c4JdffsHOzs6YdE0ul2OpsGRmyEzuC7qPHed2sOz0Mk4Xn+a3lN/4LeU37uh0BzODZxLuHN7hE++JiIh0LPR6PfrLvKDX7KvVkv/W21cKbsOOQID8txdiHhnZqlBzwdS01desefPmcfDgQdavX49KpeL111/n+PHjhIaGAvDEE0+QlJTE6tWrcXV1Zc2aNYwYMYJTp07h5+cHQE1NDZ988gmrV6+msrKSu+66i4kTJ2JjY2MM67777rvp27cvU6ZMMR570aJFLFy4kNdee41FixYxffp0oqKiePDBB/nggw948cUXmTFjBqdPn0YQBOrq6ujZsycvvvgiVlZWbNq0ienTp9O5c2ciIiJadb5g8FALgoCNjU2rx1waZ2d39Uio7777jqFDhxoF9yWWLVvGQw89xOHDhzl69Chz5szBw8ODhx9+uFXHPXz4MBEREezYsYOQkJAmSUNFRP4uRE93B+V2eoJ9O9Ie9qmvLyK/YDP5eespr4gztkskShwchuCsGoe9/R1IJFdZJ6vTQu4JSNuJPm0nXDiCoG/MQN6gE7hQY01mtS2ZVbaU621w8Q/6W0T4tdBr9TQU1Rgyp19aJ55Tja5a02x/iYUcuevFpG0u5shdLZA5mF5VRNcmFFG24Sza8sYa5VJrBTZjO2PaxaHZMa1Gp4WE3w3iu+iiJ1hpDX0ehd6PgtnVf0zo9XoKz1dyJjqXlCP5qGsaw/FdfK1x66PiI7M69pYbMts/eOoo93/xERK9Hq0gYad7T9Z2GcaAgWE82NcbD3uzqx3qmtQ36NiXUsiauGz+TMqnvqGxBnlvbzvuCuvEiK7OWJkYPhuVlZXGpGt1dYbIBTMzMyIiIggPD8fcvHGdu16v51j+MZYlLmNv1l70GG4vQXZBzAiZwXCv4cglhv2K17iOj2ijjs3tZJ/mvEi6mhqSe/S8JfMJOH4MiVnL19jKykrs7e1ZtWoVkyZNAgzC0tXVldmzZzN79mzCwsI4f/58k/XPQ4cOJSIigoULF7J06VIeeOAB0tLS6Ny5MwCPPvooK1asID8/35jYcsSIEXh5efHll18CBk93//79WbFiBWBYw+zi4sJrr73Gm2++CcChQ4eIjIwkNzcXZ2fnZs9hzJgxBAYG8r///a9V701dXR19+/YlMDCQH3/8sVVjAKKjoxkwYACbNm1iWDMRBzk5OXh4eLBq1SomT55sbB84cCAFBQXGBwcAL730EuvXrycxMfGqx7vc0y2Gl/8z6Uj2ET3dIiL/YBQKB9w7zcC90wxqa8+Tl7eevPz11NScpaBgMwUFm5HJrHFyGoGzajw2NuEIl2eJlkjBrSe49UQY8ALUlkHGXqMIl1VcwMuiDC+LMlBlUKlRkFlymsytOzn2uw1aqTmuAYGGcPTgrjj7/j0iXJAKyFXmyFXmmHU3tOn1enSVGmNY+qUw9YaiWnRVGtQppahTGtcnC3IJMmfzJkJc7myGOrWM4pVJVxxTW15P8cok7KcF3Zjwlkih22TocjckroW9H0BhEux9D2I+N3i9I+c2K74FQcDJ0wonTyuiJvmSEV/EmZhcshJLyE0rJzetnAEmUswG2bLFSsf3XXuR8+0qXlj5NdLduxl2/giDs47x5+lw7tk5hLBewTx8hzc9PVteP305CpmEocEqhgarqKjTsOVULmvisjmUXmJ8vbYugaHBKiZ2d2NAgCNDhgyhX79+xqRrZWVl7NmzhwMHDtC9e3ciIyOxt7dHEAR6Ofeil3MvMsszWZm0knVp60gqSeLl/S+z6Ngi7g+6n0n+kzAVTFuerIiIiEgHJj09HY1G08RLbG1tTUBAAACJiYlotVr8/f2bjFOr1djbN0aFmZmZGQU3gEqlwsvLq0klCZVKRUFBQZP9dOvWrcl2gK5du17RVlBQgLOzM1qtloULF/LLL7+QnZ1NfX09arUas4sPGH788UceeeQR4/gtW7bQv39/4/8ajYbJkyej1+v54osvjO0jR45k//79AHh6ehqToF0iISGB8ePH88YbbzQruMHgzbaxsWk223ifPn2aRB5ERkby4YcfotVqee+991i4cKFxW2Ji4nWFvIuI/F2IoltEpANgauqBt/fjeHnNpbLqNPl568nP34i6Pp+cnJ/JyfkZpdIZlWoszqrxWFgEXhn6ZmoDweMheDyCXm/wxKbtMIjwcwexpI6uNvl0tclHp4e8Wksy8lJJTztAzC+WSOXKWyLCwSBIpVYKpFZ2mAQ0ikhdvbYxPP2SGM+rRl+vQ5NViSarsumOWngQWrYhHZPgNoaaNzmO1CC8gydC0nrY+z4UnDYkXov9EiIeNqz7Nm9e4MvkUvx6qfDrpaKqVE1ybC5J0bmUF9TSa0sRMm8Fm3uZs7VeIHPGE3wzew7Kz5dQffAgI8/FMvT8UbYnR/DIkSG4B3oxu58Pw0NUTZKjtQYrEzlTwj2YEu5Bdlkta+OyWROXTVpBFZtO5rLpZC525grGdHNhYpgbERER9OrVy5h0LScnh6NHj3L06FGCgoKIiorC3d0dAC9rL17t8ypzu8/ll+Rf+OnMTxTUFLDo2CK+iv+K8Z3H46J1uTE7iIiI3LYIpqYEHD/Wqr41R4+SNeeRFvu5f/0VZhfXN7d07PaguroaqVTKsWPHjGuxL3G5oP5rpIIgCM226XS6Jm2X97n0m6C5tkvjPvjgAz7++GMWL15M165dMTc35+mnn6a+3hAZNm7cOHr37m0c7+bmZvz7kuA+d+4cu3btauLR+/bbb40J0f4678TERIYMGcKcOXN49dVXr3yTMDx4//7775k+ffp1h34/+uijTTzj18qoLiJyKxFFt4hIB0IQBKwsu2Bl2QVf3xcpLY0lP38DBYVbUKvzOH/+G86f/wZzcz+cVeNQqcZhatqpuR2BY4DhFTkXQVML5w5C2i5I24GkKBlXs0pczSrp63ieOp2czEprMrPOE3/mCNG/KJEplLj6B+Ie3JVOIV1x7uz/t4ejSxRSlB5WKD0ab+56nZ6Gkrom2dM1udVoK+pBd42dAdpyNeqMckw627TTBCUQMgGCxkHyJoPHO++UoeRY7FeGMmNRT4KF01V3YWGrpOcIL3oM9yTvbDlJMbnIjxZgv6uSX/tacAY1oyr1vDP7dYY9UkjpF0uoiTnE6MwYhp0/zJbUPryWPJh3XJ15oK83k3t1wtLk+u3kZmPK3EG+PDawM6dzKlgTl826EzkUValZHnOO5THn8HYwZ0J3NyaEefPwwyFkZmYSHR1NamoqSUlJJCUl4e7uTlRUFAEBAUgkEmxNbHkk9BFmdZnF5vTNLE9cTlpZGj8l/4SAwKkDp5jZZSahjqE3YAgREZHbDUEQEFoR4g1g3rcvMmdnGvLzm1/XLQjIVCrM+/Zt1/JhPj4+yOVyjhw5YvSulpeXk5KSQv/+/enWrRtarZaCgoImHuNbxcGDBxk/fjzTpk0DDGI8JSWF4OBgACwtLbG0vLI6xyXBnZqayu7du5t46aGpOL+c06dPM3jwYGbOnMnbb7991Xnt3buXtLQ0HnrooWa3x8bGNvn/0KFD+Pn5IZVKsbOzu+Y6ccAo5LVa7TX7iYjcTETRLSLSQREEKXZ2UdjZReHvP5/i4j3k5a+jqGg31dWpnE3/kLPpH2Jt3RNn1XicnEaiUFzlxiM3Bd+hhhcLoSwLzu6EtJ2QvhcTdTmB1kUEWhcBUKyxJL3Cmsz0PA6djkP7i+QKEe7i649U9vevIxQkAnIHU+QOptCtMeN71aEcytaebXG8tlzdYp/rRiKBoLEQOAaStxjEd+4JiP4UDn8LvR6Evk+CZfNr6sDwA9PF1wYXXxv6T/bnbFwB/kdz+cS1gTxbGU9WFzP2pJp7h76I192lCKs/h6NHGZdxkBHnYtnsFcmS3EEs/tOOeyPcmdXXGzeb6/fWCIJAFzdrurhZ8/LIQA6eLWbN8QtsO51PRlE1i3aksGhHCj09bZkQ5saYCfegqS4jJiaGkydPkpWVxc8//4y9vT2RkZGEhoYil8tRSpVM9JvIBN8JROdEszRhKYfyDvHn+T/58/yfdHfszsyQmQxyH4RU8vfX1BUREfnnIkilqF552ZC9XBCaCu+L3l7VKy+3e71uS0tLZs6cyfPPP4+dnR1OTk688cYbSCQSBEHA19eX++67jxkzZvDhhx8SFhZGYWEhO3fupFu3bowePbpd59MSfn5+/Pbbb0RHR2Nra8tHH31Efn6+UXQ3h0ajYdKkSRw/fpyNGzei1WrJu1iSzc7O7qqe6YSEBAYPHszw4cOZN2+ecYxUKsXRsWm1lu+++47evXsbs5T/lfPnzzNv3jweeeQRjh8/zqeffsqHH37Y6vN2cnLC1NSUrVu30qlTJ0xMTLC2tm71eBGR9kAU3SIi/wCkUiVOTsNxchqORlNBYeE28vLXUVp6iPLyY5SXHyMl9U3s7PrjrBqHo+NQpNJreAhs3KHnLMNL2wDZRw0CPG0H5MRhL6/E3r6ScPsLNCDnQp0t6WUWZCSXcTDhBCAYRHjAZYnZfP1uiQi/hMyxdR6R8o3paEvVmEc4tykz+jURBAgcBQEjIXW7QXxnH4NDn8HR7wzvd9+nwOra4W9ypZTAPi4E9nFhVEE1c09kcFDewLowM3JSyhh2oBZ737n4DNBgs3c5iqMHmJC+n1HnDrHBK5Jfywfx/cFMRnd1YXZ/b7p1smnT6cikEgb4OzLA35FqdQPbTuexJi6bg2lFHDtXyrFzpby54TSDApyYGBbBY3cMJO7YEY4ePUpxcTEbN25k165d9O7dm/DwcMzMzBAEgb5ufYlwiuD7Dd9zzuEcW85t4UThCU7sOYG7pTvTgqYxwXcCZvK2JYsTERH592E1bBh8vPjKOt0q1U2t0/3RRx/x6KOPMmbMGGPJsKysLGOype+//56FCxfy7LPPkp2djYODA3369GHMmDE3ZT7X4tVXXyU9PZ3hw4djZmbGnDlzmDBhAuXl5Vcdk52dzfr16wGaJCED2L17t7H02V/57bffKCwsZOXKlaxcudLY7unpSWZmpvH/8vJyfv/9dz7++OOrzmHGjBnU1tYSERGBVCrlqaeeYs6cOS2f8EVkMhmffPIJb775Jq+//jr9+/dnz549rR4vItIeiNnLOyi3U1bS25GOYh+1Op/8/I3k5a+jsrIxcYlUaoajw52onMdhZ9sXieQ65lhdDOm7DSL87E6oym+6WbAho9KatFJzztdYo9EZnt3dahGu1+nJe+9wk6zlVyAAl654UgGzrg6YR7micLe8OSWt9HrDe7jnPbhw+OJxFdBjBvR7BqybWRrQ7G70LMrM5/1Mww9Jn3wNd0VXYVqvR5AIuLkIOCVvw+rYBiR6LfUyBeu8o/jNdxAVSnMivOyY3d+bIUEqpDe6nh3Ir6hjQ3wOfxzPJjG3seyblYmM0d1cGNPFCaE4g9hDh4w/5mQyGWFhYURGRmJnZ9fkO1SqKWX1mdX8nPwzFfWG/VkprJgcMJmpgVNxMrt6eL7IzaOjXOdEmud2sk971Om+hF6rpeboMRoKC5E5OmLWq2e7e7ivRXV1NW5ubnzwwQfcc889HSLzskjzdKTs2CJX0pHs0x7Zy0XR3UG5nW6mtyMd0T7V1WfJy19Pft56auvOG9vlcjtUTqNxdh6HlVXY9YlLvR7yE4wJ2Th/CHSNpb30gpRiiRtpJWakFptSoDbHoGxBplTiFhBsCEcP7opzZ9+bLsJrE4qazV5+CbupgaDXUxWdQ/35xiRscjcLLCJdMQt1RJDfhAu7Xg/pewye7/MxhjbJxRrg/eeBTesyrW4uLOPxpPPUaHW4IeXBU2pIbBS9SiW4lJ3C8fRGLKsuoFEoWePVj99876BSYY6XvRkP9fPm7p6dMFO0T6BTcl7lxfXf2eSW1xnbO9maMi7UhS4WtZxPOGwMLRQEgaCgICIiIoiPj2/yHarR1LDu7DpWJK4gqzILAJlExijvUcwInkGAXUC7zFmkdXTE65xII7eTfdpTdP/dxMXFcebMGSIiIigvL+fNN99kz549pKSkoFAoOoRgEGmejiTqRK6kI9lHFN1tQBTdIu1BR7aPXq+nouKEQYDnb0SjKTFuMzXxQOU8FmfVOMzNfa9/5+oqyNzfGIpemtFks0ZuRR7unMmTk1qspFbbGL59uQh3D+mKyscPqaz9V7g0X6dbic1YnyblwuovVFIVk0tNfAE0GC6DEjMZ5hHOmPd2QWZ7E3746fWG92/Pe3DugKFNIoPu90H/Z8HWq8VdJFbVMuNUOhfqNFhIJfzP1RnVqUqSD+VSfdk5W2qKcM7cjargCIJEx/rO/Vnt1Y8qhRk2ZnLu7+3BjEgvVFbtc546nZ5DGcWsOZ7NloQ8qtSNdci7uVlzh6cJFiXJ5GWmGtvNzc0ZNWoUQUFBTW6oWp2WPVl7WJ64nOMFx43tfVz6MCN4Bv3c+t2cyASRJnTk65zI7WWff7ronj17NsnJySgUCnr27MlHH31ESEhIhxEMIs3TkUSdyJV0JPuIorsNiKJbpD34p9hHp2ugtPQgeXnrKSzajlZbY9xmaRGCynkcKtUYTJRXT/B1TYrPwtldBhGesQ801cZNegRqzb3I1jiTcAEyiyXoLqvpdTNFuF6npyatmGP7j9CzfzhmvlcvE6at1lB9JI/qQ7loyy4mWRPAJMgeiygXlJ1tbo7AyzxgKDWWsffiMaUQOtXg+bbvfM2hRfUNzE7I4FB5NQLwamdXHnW158KZMpKic8k4WYju4oMEQa/FoegkLnmHsK7JZGvgAJa69qFGbopcKjA21JXZ/XwIdm2/62GdRsufifmsjctmb0ohDTrDXKQSgd6eVnSWFiNkn0SiN2SSdXBwIDIykm7dul3xfTpVeIplicv489yf6PSG9PSdrTszI2QGo31Go5Qq223eIk35p1zn/q3cTvb5J4vuq9GRBINI84g26th0JPuIorsNiKJbpD34J9pHq62lsGgH+XnrKS7Zh15/yRMpYGvTG2fn8Tg6jkAub+P3okENWbEXveA7If9Uk806uQUVFoGcq7XnZEY9BWUNTbbLlSaNa8JDuqHy8b0hEX69NtLr9NQllVAVk4M6rczYLnMyNYSe93BCorwJuSfPHzKEnZ/dZfhfkEK3ydD/OXC4ejRCvU7Hf1OzWZFTDMAklS3/C3DHRCqhrkpDypF8zsTkUnhZGL1CXY5z/mGcyk9yxL8bn9v1okZuuHn083Xgof7eDPBzRNIO674vUVylZkN8DmtO5BCfVWZsN5NL8FFU4EkB9g3FSASD57t379706tULs7+UCsquymZl4kr+SP2DmgbDwyM7EzumBk5lSsAUbE1s223OIgb+ide5fxO3k31E0S1yKxBt1LHpSPYRRXcbEEW3SHvwT7ePRlNKfsEW8vLWUV5+1NguCAocHAbirBqPvf0gpDfiRazMa/SCn90FtSVNNjdYe1FiGkB6uSXxaVVUVVQ32S5XmuAWGEyni4nZrkeE63Razp06ycE9u+g7cDCeXbshuY4yVJqCGqpicqg5VoC+3uCNFZRSzHuqMI90Qd7KTOnXRdYRg/hO+9PwvyCBLpPgjucM9dabQa/X80N2Ea+lZaPVQ5ilGUu7eqNSNn4miy5UcSYml5TYPGqrGtfjW1Vk4lwax3kvRz6y7Eq1xLAUwNfJgtn9vJkQ5oaJvH2TD50trGJdXDZrTmSTVVJrbLczEfCSFOPekIOtpBa5XG5MumZr21RMV9RX8EfKH6xMWkl+jSHJn1KqZFzncUwPno63tXe7zvnfzD/9One7czvZRxTdIrcC0UYdm45kH1F0twFRdIu0B7eTfWprLxgzoFdXpxjbpVILnJxG4Kwah61tHwThBgSYTmuoW33JC37hCFwMLQbQS5VoVGEUyHxILTIhMSWPusrKJru4XIR7hHTDybtzsyI8NTaaXUu/pqqkyNhmYefA4Flz8OsddX3Trmug5ngBVTE5NBQ2ikSlnw0Wka6YBNpdNWy9zWQfM4Sdp2y92CBAyEQY8AI4BTU7ZH9JJQ+fzqSsQYuzQs4PXb0Js2r6YEDboONcQjFJB3M4l1CEXm+Yt0Rbj2NFEnUuChaZuVOsM9jZ3lzB9EhPpvXxxMGifUO49Xo9sWcL+WRDLKcrFJTXNkY9OMrr8dTn4y0txkLSQHBwMFFRUbi5uTXZh0anYXvmdpadXkZSSWPyvIGdBjIjZAa9VL3Edd83yO10nbsduZ3sI4pukVuBaKOOTUeyjyi624AoukXag9vVPpVVZ8jPW09e/nrU6lxju1KhQqUag0o1FkvLLjcuZmrLDGuZL4nwigtNNuutXKlz7k2urhPJeRLSz6RRV1nRpI/cxBS3wGBjiTKVjy9nj8ay/qOFVz3suHmvXLfwBoNIVKeVURWdQ92ZEmPZMamtEos+rpj1UiE1b+fPQc4J2PcBnNnY2BY8Hu54AZy7XNE9s1bN9JPppNaoMZEIfBTowV2q5kOuayrqSY7J4fSfqZRXNT5MUdaXYWpTx09WdiTUGR6KKGQS7u7hxkP9vPF1smy307v0HRoybAQHzpayNi6bXWcKqNca1m0L6HGWVNBZWoynpBRfL3f69u2Lr69vk5uvXq/naP5Rlp9ezp4Le4ztwfbBzAiewTCvYcivp2SeiJHb9Tp3u3A72UcU3SK3AtFGHZuOZB9RdLcBUXSLtAe3u330eh1lZUfJy19HQcEWGhrKjdvMzHxwVo1DpRqHmZlnexwMilIay5KdOwgNjaWnECTo3XpS49iLrHonkjOruXAmkbqqpp5wmdIEvU6LVqNBQI+bWTkWsnqqGhRk11ijR8DS3oHZS767rlDzv9JQUkdVbC41R/LQ1Vz00MokmHV3xCLSFYWbRZv33Sy5Jw3iO2l9Y1vgGIPn2yW0SdfKBi3/STzHjmLDA4onPZx4yccFyVUekuj1evLTyzi5OpaMTB0N0sYbibmymiO25myvrUVzcfjAAEce7u9DVGf7G37w0tx3qKymns2n8lgTd4EjmaXGvlJ0eEhK6SwtJlSloG+UIema7C+RDhnlGaxIXMH6s+tRaw1J8ZzNnbk/8H7u9r8bS0X7PTT4N3C7X+f+6dxO9hFFt8itQLRRx6Yj2UcU3W1AFN0i7cG/yT46XT3FxfvIy19HUdFOdDq1cZuVVfeLAnw0CoXDNfZyHWhqDcI7bZdBiBclN91uaoveZyCVtqGcq7YjPfUCF5ISjCLc17KIwaqzWMoby2dVahTsyu9MWqUDk19fiHtItxuepl6jpSa+kKroHDQ5jevRFZ5WWES5YBrigCBrx5tE/mmD+D69FqOrPWAU3PE8uPUwdtPq9byTnsuS8wUADLO34rNgTyxl137QoKlRc/qHbZw5lE+xmbdhTTkgEXQU28vZVldDllQHAgS5WDG7nzdjQ11RtPEcW/oOZZXUsDYumzVx2aQXNb6/JmjwlhbT1bKWMVHdCA8Px9TUtMnYkroSfk7+mdVnVlNSZ8glYC435y6/u5gWNA1XC9c2zfnfxr/pOvdP5Hayjyi6RW4Foo06Nh3JPqLobgOi6BZpD/6t9mloqKKwcDt5+espKTkIXAwFFqTY2fZFpRqHo+OdyGTt6O0ty4KzF8PQ0/eCurzpdqcQ9J0HkVygJHXvJsa4nbk4p8Yul65y67OD8H/gPYL6Dmi36en1eurPV1IVnUPtqSK4WB5LYinHPMIFi97OSK3acU10wRmD+E74HaP49hsGA16CTj2N3X7PK2FechZqnZ4AcxOWd/XG07Tleejr68n5aT0J6+PJNg+h1szJuE1rKuGIUM8JWQOVEj1OlkpmRnlxf28PbMwU19jrlbT2O6TX6zl5oZw1cdmsP5FNSU1jMjhroRY/eSkTwtwYMygKGxubJmPVWjWb0jex/PRyzpafBUAqSBnqOZSZwTPp6tj1uub8b+Pfep37p3A72UcU3SK3AtFGHZuOZJ/2EN3iJ0xERKTVyGQWuLjcRVj3pfTrG42f36tYWYWi12spLtlHYtJz7D/Qm4SEpygs2olOV9/yTlvCxh16zoIpK+CFdHhwm2Fds2sPQICC0wgxSwg8+2Gzgvvy/wep0jn8x0+c3LkNdU0N7YEgCCg9rbCfGojLSxFYDfVAYqlAV6mhcud5ct89QvGqJNSZ5bTLM06nQJj0Hcw9DN3uNXikU7fDt4NhxV2QdRiAu53tWBvmh0ohI7m6jhFHUzhQWtnCzkFQKHCbOYk7f3qNCSP0hGf+gEtuNNKGOqS1OvrUyHi0woT760ywK25g0dZkIt/ZxevrEsi8zCPdXgiCQKi7DfPHhRD736F8P6sXo7s6o5BCud6Uo/WuvBqrZ/j7W3nuizUkZ5w3jlVKldzldxd/jP+Dz4d8Tm+X3mj1WrZlbuO+zfcxc8tMdp7fiVanvcYMRERE/knodHqyk0tJOZJHdnIpOt3N9y1lZWXx4IMP4urqikKhwNPTk6effpqSkpKWB98k4uPjmTp1Ku7u7piamhIUFMTHH3/c4jgvLy8EQWjyevfdd6855sCBA/Tt2xd7e3tMTU0JDAxk0aJFTfq88847hIeHY2lpiZOTExMmTCA5uWkk2+XHlkqluLq68tBDD1FaWsq1WLp06RUPXW+EWbNmMWHChHbbX0sIgsDatWv/tuOJ3BpuQtFZERGRfwNKpSMe7g/g4f4ANTUZ5OVvIC9vHbW1meQXbCS/YCMymQ0q1SicVeOxtu6BINzgcz6pDDz6GF6D/wvVxZC+G9J2ok/eglB39RuzIICVXI1JTgJ/fn2B3cu+xr93X7oMHEqnoC4I7fAUVWqlwGqoJ5aD3KlNKKYqJof6zApqTxZRe7IIuYs5FlGumIY6IlHcYDkuR3+46yvD2u79H0L8akNEwNmd4DMQBrxImGcU23oFMOtUBicqa5gSf5a3/DrxgFvLSwEkCgV2902l19134fvLr+R/+xG5dCLXpQ9lNv641gm4okAjgdOyBrbvP8+KmHPcGaxidn8fwr1s2z17uFwqYXCgisGBKirrNGxNyGNVdBoncqrJ11ny2zn446t4Ai2PMqW3N/cO6IZSLkUiSOjfqT/9O/XnTMkZlp9ezpaMLRwvOM7xguN4WHowLXga4zuPx0x+E8rBiYiI/C2cjStg/8+pVJc1LoMyt1HSf4ofncOcrjGy7aSnpxMZGYm/vz8//fQT3t7enD59mueff57Nmzdz6NAhHBzaafnVdXDs2DGcnJxYuXIl7u7uREdHM2fOHKRSKY8//vg1x7755ps8/PDDxv8tLa+dD8Pc3JzHH3+cbt26YW5uzoEDB3jkkUcwNzdnzpw5AOzdu5e5c+cSHh5OQ0MDr7zyCsOGDSMxMRFzc/Mrjq3VaklJSWHOnDk8+eSTrFix4gbejZuDRqP5x0eZiPx9iJ5uERGRG8bMzBsf7yeJ7LOD8F5rcHd/AIXCkYaGMrKzV3Hs+BSiYwaSdvYDqqqSW95hazG3h66TYOIXCKM+aNWQqN6dsXN1o0GtJnHfLn558xW+e+phYn7/iYqignaZliCVYBbqiNOjoTg9GYZ5uDOCXIImt5rS31PJfecwZZvTaSiubXlnLWHfGSZ8Dk8chbDpIJFB+h74YSQsHYNzziHWhPlyt8oWrR5eTrnAC8lZ1Ot0rdq9RKnEbvo0ArZtpPuDgwi/8CORh17HK3MzJppy5DroXi9jepUJsyqUlB4v5oEvYhj/2UHWx+eg0bbuONeLpYmce3q5s+bJQUS/PIS5fV1xNtWhQ0JipZI3duQQ+sYmHv1mN4fTi4xRBoF2gSzsv5Ctd2/loS4PYamw5HzleRbGLmTY78P45PgnFNYU3pQ5i4iI3DzOxhWw9auEJoIboLpMzdavEjgb1z7X978yd+5cFAoF27dvZ8CAAXh4eDBy5Ei2b99Obm4ur776KkuWLKFLl8aqE2vXrkUQBL788ktj29ChQ3n11VeN/69bt44ePXpgYmKCj48PCxYsoKGhsbyiIAh8++23TJw4ETMzM/z8/Fi/vjHh5oMPPsjHH3/MgAED8PHxYdq0aTzwwAP88ccfLZ6TpaUlzs7Oxtflorg5wsLCmDp1KiEhIXh5eTFt2jSGDx/O/v37jX22bt3KrFmzCAkJITQ0lKVLl3L+/HmOHTvW7LHd3NwYNGgQM2fO5Pjx4y3O+XLmz59P9+7dWbFiBV5eXlhbW3PvvfdSeVkp0t9++43Q0FBcXFxwdHRk6NChVFdXM3/+fJYtW8a6deuMXvc9e/aQmZmJIAj8/PPPDBgwABMTE3788UfjsS5n8eLFeHl5NWn7/vvvCQkJQalU4uLiYnzwcanfxIkTEQThinEitw+i6BYREWk3BEHAyqob/n6v0q/vQcK6L8fF+W6kUgvq6rI5d+5LYg+PIjZ2FJnnvqKuLqf9Dm7p3Kpu7nlrmeV+gEcmuNG/XyAKUxPKC/KJ/uVHvnn8IX5961WSDuxBU69ueWetQOFqge3dfri8HIH1KG+kdiboaxuo2pdN3v+OUrTsNHUppehvNATSzgfGL4EnjhvC8SVyyNwPy8ZgunwMS5QZvOrjggAszylmSvxZiusbWtqrEYmJCXYzZ+L753Y8n3wIv4oYIg/+l+4nPsGlKhGpRI+DTsLAOjmPVpjQ+Uwtny6LZ9B7u/lmXzoVdZqWD9JGXKxNeX5sGDGvj+HnB7pzp7uAmaChTidl69kaJn8dS+//28oHW04bQ+BV5iqe7vk0Oybt4KWIl+hk0YlydTnfnPqG4b8P59UDr5JSmtLCkUVERG4Wer0ejVrbqpe6toH9P1/7+7r/51TUtQ2t2l9rlwKVlJSwbds2HnvssSsSOjo7O3PPPffwyy+/MGDAABITEyksNDzQ27t3Lw4ODuzZswcweExjYmIYOHCgYa779zNjxgyeeuopEhMT+eqrr1i6dClvv/12k2MsWLCAyZMnc/LkSUaNGsX9999/zZD28vJy7OzsWjyvd999F3t7e8LCwvjggw+aiP3WEBcXR3R0NAMGXD1/Snm5IT/LteaTnZ3Nhg0b6N2793UdH+Ds2bOsXbuWjRs3snHjRvbu3WsMk8/NzWXq1Kk88MADxMbGsmvXLu666y70ej3PPfcckydPZsSIEeTm5pKbm0tUVGOp0ZdeeomnnnqKpKQkhg8f3qq5fPHFF8ydO5c5c+Zw6tQp1q9fj6+vLwBHjhwB4IcffiA3N9f4v8jthxheLiIiclMQBCl2dn2xs+tLgPZNiop3k5+3jqLivVRVJ1N19n3Onn0fG5sIVKqxqJxGIZfbtP2AnlFg5QoVuRgTjP0VmSkgIFRcwKJiNRFAeBcVpTY9ic9REHe6iPOnTnD+1AmUZuYE9r2DkIFDce7sf8Oh0hIzOZZ3dMKinxt1ySVUxeSiTimlLqmEuqQSZA6mmEe6YN5ThcTkBi7Ntp4w9mPo/xwcWARxK+DcQYQV43ncvQ/+Ef/lsVIbYsqqGXEsheVdvQmyMG15v5fOw9QU+wcfwHbKZEpWrUL27XfYHf0MP6kJxcHDyfcdSlGpBN8GKb4NUmqy9ET/lsbKrakMjXJnVpQX7nY3J4RbEAR6B7jRO8CNquoaVmyPZd2JXNLUFhTUwGd7M/lsbybdXC25J9yD0d1csTM34/6g+7k34F52Z+1m2ellnCg8wbqz61h3dh2RLpHMDJlJlGtUu4fLi4iIXJ2Geh1fP7W33fZXXabm22f2tarvnI8HIFe2vAQoNTUVvV5PUFBQs9v9/f0pLS3FyckJOzs79u7dy6RJk9izZw/PPvuscY314cOH0Wg0RnG3YMECXnrpJWbOnAmAj48P//d//8cLL7zAG2+8Ydz/rFmzmDp1KgALFy7kk08+4fDhw4wYMeKKuURHR/Pzzz+zadOma57Tk08+SY8ePbCzsyM6OpqXX36Z3NxcPvrooxbfj06dOlFYWEhDQwPz589n9uzZzfbT6XQ8/fTT9O3bt0kEAMCLL77Iq6++ilarpa6ujt69e7fq2M0dY+nSpcbQ+OnTp7Nz507efvttcnNzaWhoYOLEidja2mJlZUVoaGMJTlNTU9RqNc7OVz7Mf/rpp7nrrruuay5vvfUWzz77LE899ZSxLTw8HABHR0cAbGxsmj2eyO2DKLpFRERuOlKpCSqnkaicRqLRlFNQsIW8/PWUlR02vlJS3sTefgDOqrE4OAxBKm29EARAIoUR78EvMwCBpsL7oli662vwuxPO7oLEdZC8BaEqH7uqzQwCBvSwp8AkiGOZkJxTRfyfW4j/cwv2nTwIGTiU4P6DMLexvaH3QpAImAbZYxpkj6awhupDuVQfzaehqJbyDelUbMvErIcKi0gX5Kprh/RdExt3GPMR9H8WDn4Mx5ZC1iGGZY1lk9doZvo8S2ZdPaOPp/JZkAcjHW2ua/cSc3McHn4Y26n3UbpyJcU//IDq1DpUp9ahCYqgpN800vNNoEJDr3oZvUogf0sOT+88j1uoA9PvaIca79fAwtyM/0wcxMNjGzh64iQrdp/iRKmMHJ01J3MqObnuNPM3nGZQgIqJYW4MCXJiqOdQhnoOJb4wnmWnl7Hz/E5icmOIyY3B18aXGcEzGO0zGoX0+jK1i4iI3N605BlXKpXccccd7Nmzh6FDh5KYmMhjjz3G+++/z5kzZ9i7dy/h4eGYmRkeSMbHx3Pw4MEmnu1LIrSmpsbYr1u3xvKX5ubmWFlZUVBwZRh9QkIC48eP54033mDYsGHXnOu8efOMf3fr1g2FQsEjjzzCO++8g1KpxMKisTrJtGnTmoTI79+/n6qqKg4dOsRLL72Er6+v8aHA5cydO5eEhAQOHDhwxbbnn3+eWbNmodfrycrK4pVXXmH06NHs27cPqVR6zeNfjpeXV5O16C4uLsb3JjQ0lCFDhhAaGsrgwYMZOXIkkydPxta25ft7r169WuxzOQUFBeTk5DBkyJDrGidy+yGKbhERkb8VudwaN7d7cXO7l7q6HPLzN5KXv4GqqkSKinZQVLQDqdQcR8dhOKvGY2sbiUTSyktV8DiYvBy2vggVl4WuW7nCiHcN2wECRxteDWrD+ufEdXBmE5LaYpxrDzDaGkY4WpMjeHMsQ0/GhUz2rfye/auW4tMjnJCBQ/EJC0cqu7FLqNzRDJuxnbEa5klNXAFV0bk0FFwU4odyUXa2xiLSFZMgewRpG72s1m4w6n3o9wxEfwJHvycgcxObL+xnTtiHHDDz54GETF70duZpT9V1e3OlFuY4PPoItvffR8mKFZT8sBR50mFUSYfpFBBI/d2Pca5WRUZ8MSqtBFWtgoZD5aw4doJCazkS9zxGde+EVHJzvMgymYw+vXrQu2cYaWlpbNsXw96MatK19hTrzNmRlM+OpHwsTWSM6uLCxB5uRHh146OBH5FVmcWPST/yR+ofpJWl8Xr063wS9wlTA6cy2X8yNiY2N2XOIiIiIFNImPNx68o75qSWsXFJfIv9xjweiqufTauO3Rp8fX0RBIGkpCQmTpx4xfaUlBQcHR2xsbFh4MCBfP311+zfv5+wsDCsrKyMQnzv3r1NQrGrqqpYsGBBsx7Vy8sV/TWJlyAI6P6SryMxMZEhQ4YwZ86cJmvGW0vv3r1paGggMzOTgIAATpw4Ydz21/JI3t7eAHTt2pX8/Hzmz59/heh+/PHH2bhxI/v27aNTp05XHM/BwcEYeu3n58fixYuJjIxk9+7dDB069JrHv5xrvTdSqZQ///yTAwcOsHHjRj777DNee+01YmNjjedwNf66vl0ikVzx0EWjaVxO9ddlByL/XkTRLSIicsswMXHF03MOnp5zqKpOJT9vHXn5G6iru0Be3hry8tagUDjg5DQaZ+fxWFl2a1kUBo+DwNE0pO/jxP5tdO8/HJnPHQZP+F+RKcF/uOGl1UDGvosCfCPSmmLcOYG7K2jdzTincSM+W07msRjOHo3F1Mqa4P6D6DJwKA4eXjf0PkiUMiz6uGLe2wV1ejnV0TnUJhajPluO+mw5Umsl5n1cMA9XIbVoo5fVygVGvAN9n4boT7A7+j0/HX2U+T5z+a7T3byXkceZqjoWBXlgJr3+dB9SS0scH3sMu2nTKFm6jJLly9Ekn0FY+CQBwUH0evhxcpR+nNiXTVVeDQEaKQFFUhK/SWGbVSo9BrgxZUhnzJU357YkCAJ+fn74+flxV04O0dHRHDyVQFqDHelaeyrr4OejWfx8NAs3G1PGd3dlYpgbL0W8xGPdH+O3lN/4MelHCmoK+DTuU745+Q3jfcczPXg6nlY312svIvJvRBCEVoV4A7gH22Fuo7wiidrlWNgqcQ+2Q9KOD/js7e258847+fzzz3nmmWeaCKy8vDx+/fVXHnvsMQAGDBjA008/za+//mpcuz1w4EB27NjBwYMHefbZZ41je/ToQXJyslF8tpXTp08zePBgZs6cecV68NZy4sQJJBIJTk6G7O+tnZNOp0OtbrSHXq/niSeeYM2aNezZs6dFcXsJqdTwGaitrb2u47eEIAj07duXrl278tZbb+Ht7c2aNWuYN28eCoUCrbZ1pSQdHR3Jy8tDr9cbf59c/mDA0tISLy8vdu7cyaBBg5rdh1wub/XxRP65iKJbRESkQ2Bh7odF5+fw8XmW8orj5OWtp6BgM/X1RVy4sIwLF5ZhauqJs2oczs7jMTO7+g1bL0CptZx8JyWl1nIcBGOA+dWRysF3iOE1+iM4d9AgwJM2IK0uwEeSio87NAhKMmocSCy2In5zCcc2rUXl40eXgUMJ7DsAk8tC364XQRAw6WyDSWcbGsrqqI7No/pwLtpyNRXbMqnYcQ6zUEcsolxRdLp2CZerYqmC4W9D36eRx3zK24e/Jag6nZf8nmFdYRkZpfn80DMUNzOTlvfVDFIrKxyffAK7GdMpXrqU0uUrUCcmoX5mLlZdunD3E49T6xPO0d3nSYnNw0IrEFQOteuzeW9LFtbBttwz0R8P5zaeXytwdXVl0qRJDBlSSmxsLEePHuNCvQlntfac09mRXVbL53vO8vmes3Rxs2JCdzfGdb+P6UHT2Zq5leWJyzlTcoafk3/ml+RfGOg+kJkhM+nh1ENc9y0icguQSAT6T/Fj61cJV+3Tb7JfuwruSyxZsoSoqCiGDx9uFG+XSoZ17tyZ1157DTCEatva2rJq1So2btwIGET3c889ZxSAl3j99dcZM2YMHh4eTJo0CYlEQnx8PAkJCbz11lutmldCQgKDBw9m+PDhzJs3j7y8PMAgYi+tIz58+DAzZsxg586duLm5ERMTQ2xsLIMGDcLS0pKYmBieeeYZpk2bds3Q688++wwPDw8CAwMB2LdvH//73/948sknjX3mzp3LqlWrWLduHZaWlsb5WFtbN3lYUVlZaRSxWVlZvPDCCzg6OjZJZnajxMbGsnPnToYOHYqpqakxyd2ltfleXl5s27aN5ORk7O3tsba2vuq+Bg4cSGFhIe+//z6TJk1i69atbNmypYkXfv78+Tz66KM4OTkxcuRIKisrOXjwIE888YTxeDt37qRv374olcpWhbmL/PMQ9K1N0XibUFFRgbW1NeXl5dcMS7nVaDQaNm/ezKhRo8QagB0Q0T5/DzqdhpKSA+Tlr6ew8E90usYSW5aWXXFWjUOlGoNS2Vh/taBgGympb6JW5xnblEpn/P1ex8mpdZlGm05CC1mxBgGeuB4qG8PWG5CTXmlDSrk96VV26GQm+IZH0mXgUDy6hiJpzrt+neg1OmpOFlIVk4PmQpWxXeFuiXmUK2ZdHRBkN1CIoroYDn1GTOJBHvJ/mRKFDY4N5fzgUEWv0BHNRwhcBw2lpZR8/wMlP/6IvqYGAJPQbtj+5z/sKSnD1yWcgzuzqL9QYyynoUFPnUpJ3zs96RfVCeEmhZ5fora2lqNHjxIbG0tZZTUXdDZk6B3J0lpzKam8RID+fo5MDHPjzmAnEkqOs+z0MvZnN5bECbEPYWbITO70vBNZa5dEdGDE61zH5nayT11dHRkZGXh7ezcJn75emqvTbWGrpN/km1enGyAzM5P58+ezdetWCgoK0Ov1TJw4kSVLluDs7IxEYri6TZgwgU2bNlFaWoqFhQU6nQ4HBwcCAgKIiYlpss9t27bx5ptvEhcXh1wuJzAwkNmzZxvrZwuCwJo1a5gwYYJxjI2NDYsXL2bWrFnMnz+fBQsWXDFXT09PMjMzAdizZw+DBg0iIyMDLy8vjh8/zmOPPcaZM2dQq9V4e3szffp05s2bh1KpvOr5f/rpp3z11VdkZGQgk8no3LkzDz/8MI888ojx3K/2QPKHH35g1qxZgEF8njt3zrjN0dGR8PBw3n777SvKcl3O0qVLefrppykrKwMMInft2rVNPM6LFy9m8eLFZGZmkpSUxDPPPMPx48epqKjA09OTJ554wljGq7CwkPvvv5+YmBiqqqrYvXs3Xl5eeHt7ExcXd8VcvvzySxYuXEhJSQl33303AQEBfP3118b3GeCrr75i0aJFpKen4+DgwKRJk/jkk08A2LBhA/PmzSMzMxM3N7cm4/7N6HQ6KioqsLKyMn6ObhXXuka1VluKoruDcjvdTG9HRPv8/TQ0VFNUtIO8/PWUlOxHr78UiiXBzjYSlfM4BEFGYuJzXJm93HCz79rls7YJ70vodJB9tFGAl59vnJ9eSkaVDSkVDqRX2aGwdSbkjiGEDByCrbNr2495GfVZlVRF51BzshC0hnOUmMsxj3DGvI8LMuur/yhqkZoSzh9ayqwabxLNvVHo6vkg50emdO8PIRNvXHwXF1P83feUrlqFvq4OgFpPTzr/979Y9e9HdZmaTZvOcu5oAeZ1jfarUwi4dXdgxJjO2DjdnKznxjk2NHDq1Cmio6MpLCykTi/jnM6eHEUnzlU33vDNFFJGhDgzsYcbzvYV/HhmBRvObqBeVw+Ai7kL9wfdz91+d2OhaHvkw61GvM51bG4n+7SX6AbQ6fTkppZRXaHG3EqJi5/NTfFwX4s33niDjz76iD/++IMhQ4bccsEg0jwdSdSJXElHso8outuAKLpF2gPRPreW+vpi8gs2k5+/nvLy460cJaBUOtM3ai+CcOMeaPR6yIm7KMDXQWmGcZNWL5BZZUtqpQNnK+1wCAgjZOBQ/Pv0RWFy40lVtFX1VB/Oo/pQLtoKg9BDAqYhDlhEuqDwtm5zmHN1VTFPHDnCZgylSx7J+pnXy/9Eesdz0GUSSG/Mg9tQWEjxt99Runo1+ovr/Ux79cTxiScx7x2BXq8n+nAOe7ZlYJKrxkTfeB5SZxOihngSFOHc6rWebUGn05GWlkZ0dLTR41ChU1Jq7Uey2oqcisYkOU6WSsZ3d2VwsAXHyzbyc/JqStWlAFjILbjb727uD7ofFwuXmzbfm4V4nevY3E72aU/R3VH47rvvKCgo4Pnnn0d2g0k3RW4OHUnUiVxJR7KPKLrbgCi6RdoD0T4dh9raLPLy15OdvRq1OqfF/j3CfsTWtk/7TkKvh/yERgFelGLcpNULnK+2IbXSgXP1bnj0HkzIwKG4BQTf8PpfvVZPbWIx1TE5qNPLje0ylRkWUa6YhTkhUVy/ONXp9XyQeo5F2WUADCqJ5cvEN7G2djLU/+422bAG/gaozckh7rXXsDtyFH294cGBWe/eOD7xOGYXS7JkFVaxek0KxQkldKoXEC5GLOhlAt5hjoQN6IRL57Y/YGgN2dnZREdHk5iYiF6vR68Hna0HxZadib6gpqy2UYAHqCwZ212Fic0p1p9bTka54UGMVJAyzHMYM0NmEuIQctPm2t6I17mOze1kn9tRdHckwSDSPKKNOjYdyT6i6G4DougWaQ9E+3Q8cvPWk5j4TIv9QoIX4ew87uZOpuBMowAvOG1s1ukhq8aa1AoHCs1C8LljLMF3DMbS3uGGD6nJq6YqJoea4wXoNYayKIKJFPOeKiwiXZE5XL+HfV1BKU8nnadWp8e39gLLTr1I59oLYOtlqP8dOrXN4vvSd2hYjx6U//ADpb/+BhfLrJhHReLw+BOY9QgDoErdwOo9GRzZnYV7hQ5bXePN19ROSbd+bgRGOmNhe/N+rJeWlhITE0NcXJyxHIy5pRVKrx6crjZnd0oR9Q0X33cB+vjYE+JZTarmF44XRRv301PVk5nBMxngPgCJ0LF/5InXuY7N7WQfUXSL3ApEG3VsOpJ9RNHdBkTRLdIeiPbpeJSWHuJ43P0t9rO3G4iPz1NYWnb9ezJNF6VC4jr0iesQ8k4am/V6uFBjRVqVI7XuA+k8aCKde/VBdoOfJ11tA9XH8qmOyaGhuM7YbhJgi3mkKyb+tteVmOxkZQ2zTmWQo9ZgRQNfJy9kYN5Ow0ZrD+g/D7rfD7LrK2X21++QJieHoq++puz336GhAQDzfv1wfOJxTENDAWjQ6th2Oo/ftp5FeaGWgHopisvy0rsH2RIU5Yp3dwdk8psTfl5TU2NMulZdXQ2AUqkkOLQnJRZebEkq5nBGibG/Uiahj68peotYTlb/ghaDV9/LyovpwdMZ23ksprKOWcdVvM51bG4n+4iiW+RWINqoY9OR7COK7jYgim6R9kC0T8dDr9dyMPoO1Op8rkykdiUWFsG4uU7B2Xk8MtnNK0/VhJIMSFqPLmENkty4JptyaixJV7shhEzAd+g9OHl3vqGHAnqdHnVqKVUxudQllxjfEqm9CRZ9XDDvqUJi1rrPbmG9hgdPZXKkohoJMF+azsOxLyJUFxg6WHWCfk9DjxmG2uet4GrfofoL2RR/9SVlf6yBi3VLLQYMwOGJJzDt0hiafexcKT/sPcu5E0WEqKW4axtFtsJUhn+4isAoF5w8LW/KwxWNRsPJkyeJiYmhqKgIAIlEQteuXfHu0pODF+r54/gFzhZWG8fYmsnwcC0kmzXUyVIQBLBR2jA5YDJTA6fiYHrjEQ/tiXid69jcTvYRRbfIrUC0UcemI9lHFN1tQBTdIu2BaJ+OSUHBNk4lzL343+WXNoPo8vZ+htqadAoKN6O7mGlaIjFFpRqNm+sUrKzC/r46y2XnIWkDDfG/Ictrmgwur9aCbKkfyp734XPnFMysrl4jtDU0FNVSdSiX6qP56OsMXmRBLsEszAnzSFcULuYt7kOt0/Fi8gVW5xm8uPc6WfFexXaUBxdB1cXybJauF8X3TJBf+4dzS9+h+vPnKfriS8rXrTNkjQcsBg/G8fG5mAQHG/udL67hh+gMtsRk0blaoEu9FCt9483ZztWcwEgXAno7Y2Z1fd741qDT6UhNTSU6OrpJqRtfX18iIyOpVtqzJi6bDfE5FFXVG7c7WGnB8jC1JvuQKEqRS+SM8RnD9ODp+Nn6tfs824J4nevY3E72EUW3yK1AtFHHpiPZRxTdbUAU3SLtgWifjkvzdbpd8Pd7zVguTKMpIy9vLdk5q6muTjX2Mzf3x831XpydJyCX35jQvS4qctAlrqf+yCqUxfFcLvsL6iwotgrDPGoWnfpPRCJte9i0rl5LzYkCqqNz0OTVGNsV3lZYRLpiGmKPIL36jU2v1/P1hUIWpOWgA8KtzPk+0AXHhFVwYFFjDXMLZ+j7FPScBYrmy3y19jtUn5lJ0RdfUL5ho1F8W945FIfHH8ckIMDYr7xWw+rD51l2MBN5cT1d6qX4a6TILr6bgkTAs4s9QVEueHaxR3ojtc2vwoULF4iOjiYpKYlLt1YXFxeioqLwDwgkOqOUtXHZbDudR93FdfcAVlYFqM0OILc6hSCtpa9rX2aEzCDSJfLvewjUDOJ1rmNzO9lHFN0itwLRRh2bjmQfUXS3AVF0i7QHon06Nnq9lqKiGA4f/pOIiDtxcIhstkyYXq+nvOI4Odk/k1+wCZ3OsAZaIlHi5DQSN9epWFv3/HuFT1UBmvjfqTu8EvOy00iExkt0icaSSlUU1oMexabLIEPGrjag1+upz6ygKjqH2tNFcFH/Sa0UmPd2wTzCGanl1b3Cu4sreCQxk4oGHW5KOUu7etPVVApxK2D/Iqi4YOho7gR9n4ReD4KiqTf9er9D6vQMij7/nIpNmwwL4gHLESNwnPsYSr9Gz7BGq2PzqVy+2Z9OalYFgRopXepluGovS75mKcc/3JnAKBccOrV/He2SkhIOHTrE8ePHabi4Pt3a2po+ffrQo0cPNEjZlpDHmrhsDp4tunQ6SAQdEotEZFZxyCzOEGDfmRnBMxjlPQr5DWaLbwvida5jczvZRxTdIrcC0UYdm45kH1F0twFRdIu0B6J9Oj7XayONpoK8/HXk5KymquqMsd3MzBc31ym4uExELre9mVO+kupiKmOWUX9sNTY1KUgvE+Dlemvq3AdjO+RRFF692yzAteVqqmJzqT6ch67qYvkrqYBZVwfMo1xRuDe/JvpsTR0zTmZwtlaNqUTg4yBPxjnZQEM9xK+C/R8aQugBzBwg6gkInw1Kg8ht63dInZZG4WefUbllq6FBELAaORKHx+ei9PEx9tPr9cRmlPDt/gx2nsnHrsEQet5NK8ekoXF/jh6WBEa64B+hwsS8fb/LNTU1HDlyhNjYWGpqDJEFJiYm9OrVi969e2NpaUleeR3r47NZE5dDUm6FcawgrUVmGY/MOg5nuxruD76Pe/zvwVr590VgiNe5js3tZB9RdIvcCkQbdWw6kn1E0d0GRNEt0h6I9un4tNVGer2eisqT5GSvJi9/AzpdLQCCoMDJaQRurvdiYxPxt4f9aisLKdzxJfqEP3DUZCCTNF66qyW2aH1HYNl/NkKnnm0S4PoGHbUJRVRF51B/vtLYLnezwCLSFbNQRwR505teuaaBRxPPsbvE0H+el4rnvJyRCAJoNRC/Gvb/D0ozDQNM7SDqcQh/GI3U9Ia+Q3XJKRR99hmV27cbGiQSrEaPxuGx/6D09m7SN72wiu8PZvDbsQuo63V4N0jopVPgqRaMXn6JTMC7myNBUS64B9shuY4M7y2h0WiIj48nJiaG4uJiAKRSKV27diUqKgonJycAzuRVsOZ4NmtPZJNfoTaOF+TFyK1PYGGXyN3B/ZkePB0PK492m9+15i1e5zout5N9RNEtcisQbdSx6Uj2aQ/RLX7CRERERC5DEASsrUIJCnqH/v1iCAj4PywtQ9Dr68nPX8/xuPs4FHsn585/Q3198d82L6mlI84TX8PltTjUc09y1nsOmRp3NDoJ5rpSrFJ+QvhuCOqFPqjXPAXnY41roFuDIJNg1t0Jp8e64/R4d8x6qkAmoMmuovS3FHLfiaV8awYNpY1lyKzlMlZ09eERd0cAPsrM5+HTmVQ3aA31u3tMh8ePwoQvwM4Haktg55uwuCuS/f9Dpq252nRaxCTAn06ffIz3mj+wGDoEdDoqNmwgffQYcl56mfrz5419fRwteGtCV6JfGsKzw/2psJXzi7KOJRa17LdooMFShq5Bz9njBWxcEs/ylw8SsyaN0rzqa8yg9cjlcnr16sXcuXO59957cXd3R6vVcuLECT7//HN+/PFHMjIyCFBZ8vKoIKJfGsKPs3szqWcnzBVS9Bp76ouGUJLyBN9ttWPYd2/zn23Pczz/OP+y5+YiIi2i02nJOn2SpIN7yTp9Ep1Oe9OPmZWVxYMPPoirqysKhQJPT0+efvppSkpKWh58k4iPj2fq1Km4u7tjampKUFAQH3/8cYvjvLy8EAShyevdd9+95phZs2ZdMUYQBEJCQq7ax97enhEjRnDy5Mlr7BkyMzMRBIETJ0606rxbYunSpdjY2LTLvlrDwIEDefrpp/+244l0XGS3egIiIiIiHRWZzJJObvfRye0+KipOkZPzM3n566mpySAt7V3Onv0QR8c7cXO9F1vbSATh73mOaa7yoPPMD9Dr3yc/6QT5O77ELGsPnqYFKDUlEL8U4peiUdoh6TIBade7wSMSJK1LwqboZIndPZZYj/Km+kge1Ydy0Zapqdxzgcq9FzAJssciygVlZxtkEoEFvm4EmZvwQvIFNhWWk1GTytKu3niYKg3iu/t90HUyJPwO+z6A4lSk+95lmNQMifVZiJoLpm0L3TcJCsJ9yRJqE05TtGQJVXv2UL52LeUbNmA9YTwO//kPik6dALAzV/D4YD8evsOH9Sdy+O5ABofyKjmEBpWlwCgLK5zLtFSX13N823mObzuPs48VgZEu+PVSoTC9sVumRCIhMDCQwMBAsrKyjEnXUlNTSU1NxdXVlaioKIKCgujr60BfXwf+b3wX/kzKZ83xC+xNKURX50FdnQdb8rVsP7KLzp1+5fF+dzDK505kEvGWLvLvJjU2ml1Lv6aqpMjYZmHnwOBZc/DrHXVTjpmenk5kZCT+/v789NNPeHt7c/r0aZ5//nk2b97MoUOHcHD4+8sBHjt2DCcnJ1auXIm7uzvR0dHMmTMHqVTK448/fs2xb775Jg8//LDxf0vLa5fV/Pjjj5sI84aGBkJDQ7nnnnua9BsxYgQ//PADAHl5ebz66quMGTOG85c9JO0o1NfXo1C0f8ULkX8voqdbREREpBVYWXUlMPAt+vWNITBwIVaW3dDrNRQUbCbuxAxiDg0hM/NL1OrCv21OgiDgHBxG6JNf4fX2SdKHrOagZBSJ5U6otVLk6hKkx76HpaPRvt8Z/YZnIH0PaBta3DeA1FyO1UB3nF8Ix356MEpfG9BDXWIxRd8mkL/oGFUxOejUDdzrYs/vYb44KmQkVtcx4lgKh8qqLtuZDEKnwNxYuPs79A4ByLU1SPd/AIu7wa63oKbtXiHTLiG4f/kFXr/8jPkd/UGrpfz3Pzg7YiS5r72OJjvb2Fcpk3JPL3e2PNWfFQ9FMMDfkXypnh9qy3lfUcVJTxmmnhYIAuSlV7Dnx2R+eOEAf/5wmgtnStDrbty77O7uzpQpU3jiiSfo1asXMpmMnJwcfvvtNz799FMOHTqEWq3GVCFlXKgrPzwQQewrQ3ljbDD+ziaAFG1VECln+vHk9zX0/GgRC3b9RKW6qsVji4jcjqTGRrP+o4VNBDdAVUkR6z9aSGps9E057ty5c1EoFGzfvp0BAwbg4eHByJEj2b59O7m5ubz66qssWbKELl26GMesXbsWQRD48ssvjW1Dhw7l1VdfNf6/bt06evTogYmJCT4+PixYsMCYmBEM1/9vv/2WiRMnYmZmhp+fH+vXrzduf/DBB/n4448ZMGAAPj4+TJs2jQceeIA//vijxXOytLTE2dnZ+DI3v3ZZSWtr6yb9jx49SmlpKQ888ECTfkql0tine/fuvPTSS2RlZVFY2Pr75p49exAEgZ07d9KrVy/MzMyIiooiOTnZ2Cc+Pp5BgwZhaWmJlZUVPXv25OjRo+zZs4cHHniA8vJyBEFAKpUaHxZ4eXnxf//3f8yYMQMrKyvmzJljPFZZWZlx3ydOnEAQBDIzM41tBw8eZODAgZiZmWFra8vw4cMpLS1l1qxZ7N27l48//tjo4b98nMi/C1F0i4iIiFwHMpk5bq5TCA9fQ0T4BtzcpiGVWlBbe56z6R9wMLofJ0/Npbh4H3p968O7bxS5QknggOH0ff0nOr1ykLiui9lWEUVCmRN1WhnSulKEY9/D8vHoP/CFdY9D6g5D4rMWECQCpiH2OM7uimpeT8wjXRAUUhoKailbd5bchYcpW3+W7vUCW3v6083ClBKNlkkn0liZ85cQfIkUuk6iYc5+jng9jt4xCNQVBg/44q6wYwFUtz1s37RbNzy+/hrPn1Zh3rcvNDRQ9uuvpI0YSe6CBWjyGkvJCYJAfz9Hlj0YwfZn7mBKL3ekMgnbyit5s7yQPzqBLMwWa5UpDRodKbH5rFt8ghWvxXB4QzoVRbVtnucl7O3tGTNmDM8884zxR1tZWRlbt25l0aJF7Ny5k8pKw5p5R0slD/T1ZvvTQ9gxbwAP9nfFyqwBdCaUFwXzw3YrQt/awF0/LCc6I+OG5yYicivR6/Vo6upa9VLXVLPrh6+uub9dS79CXVPdqv21dtlGSUkJ27Zt47HHHsPU1LTJNmdnZ+655x5++eUXBgwYQGJiolFc7t27FwcHB/bs2QMY1ufHxMQwcOBAAPbv38+MGTN46qmnSExM5KuvvmLp0qW8/fbbTY6xYMECJk+ezMmTJxk1ahT333//NUPay8vLsbOza/G83n33Xezt7QkLC+ODDz5oIvZbw3fffcfQoUPx9PS8ap+qqipWrlyJr68v9vb217V/gP/+9798+OGHHD16FJlMxoMPPmjcdv/999OpUyeOHDnCsWPHeOmll5DL5URFRbF48WKsrKzIzc0lOzu7idf/f//7H6GhocTFxfHaa6+1ah4nTpxgyJAhBAcHExMTw4EDBxg7dixarZaPP/6YyMhIHn74YXJzc8nNzcXd3f26z1Xk9kCMRRMRERFpI5aWwQQGLMDP90XyCzaTk72a8oo4Cgu3Uli4FROTTri6TsbVZRJKpepvm5eVoxN9Js9AP2kaF5IS2LNrK7WnNtPZNBc/yyJM60oN5b3iVqA3sUYIGA3B48BnEMivncRI7mSG7XhfrId7UXMsn6qYXBqKaqmKzqEqOgelnw2r+zjzkmkV6wvLeS45i8SqWt70dUN2eXIyQUKObQQN972OPG0b7H0f8k/BgY8g9isIfwiingQLxza9B2ZhYXh89y01x45R+OkSag4douyn1ZT/9js2kydjP2cOcpWTsb+/ypL3JnXjueEBrDh0jpWHzpFWWcs7lbVYKmRM6+dMl3opOSeLqSyu48imTI5sysTN34bAKBc6hzkhV7a9hrq5uTkDBw4kKirKmHStpKSE/fv3Ex0dTWhoKJGRkTg6Gt4PXycLXh8dxqsjuxOdnsen+2I5claHTmPF8WS4LzkRG6vDTOrhwZyoMJysbo/kVCL/HhrUaj6ZOand9ldVUsySB6a0qu+Ty35D3oqEbqmpqej1eoKCgprd7u/vT2lpKU5OTtjZ2bF3714mTZrEnj17ePbZZ41rrA8fPoxGoyEqyhACv2DBAl566SVmzpwJgI+PD//3f//HCy+8wBtvvGHc/6xZs5g6dSoACxcu5JNPPuHw4cOMGDHiirlER0fz888/s2nTpmuf+5NP0qNHD+zs7IiOjubll18mNzeXjz76qMX3AyAnJ4ctW7awatWqK7Zt3LgRCwtDBYvq6mpcXFzYuHFjm5Jkvf322wwYMACAl156idGjR1NXV4eJiQnnz5/n+eefJzAwEAC/y8pKWltbG6LEnJ2NibouMXjwYJ599lnj/1lZWS3O4/3336dXr158/vnnxrbL17IrFArMzMxwdna+7nMUub0QRbeIiIjIDSKVmuHqMglXl0lUVSWTnfMzeXlrqKu7QHr6R2RkfIy9/SDcXO/F3v6OZmuG3wwEiQT3kG64h3RDXfM4yTH7WbdnO9Jzh/CzKsLPshjzunJDia/4VaCwhIAREDwefIeC3PSq+5aYyLDo64Z5pCvqs2VURedQd6YEdWoZpJYx31ZJ5942LNLX8H12Eak1dXwd4oWt/C+3HUFiEPxBYyF5M+x9D3LjIfoTOPxNo/i2bNtDC7OePfFc+gPVhw9T9Mmn1Bw9SumPP1L266/Y3DsFh4cfRubYKOwdLZXMu9OfxwZ25o/j2Xx7IJ30wmq+SLiAVCIwppczYx1sqD5TzoXkUrJTyshOKWPf6hR8ezoRFOmCc2frNme3VygUhIeH07NnT5KTkzl48CAXLlzg+PHjHD9+HH9/f6KiovD09EQQBCQSgX6+LvTznUBtvYbPovey+mg6RUUqyios+HZPCd/u2UEXdxkP9AlhRBcXzJXirV9EpD1pyTOuVCq544472LNnD0OHDiUxMZHHHnuM999/nzNnzrB3717Cw8MxMzMDDOHRBw8ebOLZ1mq11NXVUVNTY+zXrVs343Zzc3OsrKwoKCi44vgJCQmMHz+eN954g2HDhl1zrvPmzTP+3a1bNxQKBY888gjvvPMOSqXSKJoBpk2b1iREHmDZsmXY2NgwYcKEK/Y9aNAgvvjiCwBKS0v5/PPPGTlyJIcPH8bT05ORI0eyf/9+ADw9PTl9+vRV53n5ubu4uABQUFCAh4cH8+bNY/bs2axYsYKhQ4dyzz330Llz52ueN0CvXr1a7PNXTpw4ccXadRGR5hDvvCIiIiLtiIVFAAH+r+Pb+QUKCraQk/MzZeVHKCraQVHRDpRKF6P328TE9W+bl9LMjG5DhtNtyHCKs7M4vXcnK/ftxLouE3+rIvwsi7CkEk79anjJzcHvToMA9xtmrK/9VwSJgImfLSZ+tjSU1FEVm0vNkTx0pWru35qPm7Oc17qZsL+0ipHHUljW1YcA82Y8SIIAgaMhYBSkbDOI75zjELMEjnwLPR+Avk+BlUubzt88IgKzFcupiY2l8JNPqT1+nNLlKyj75Vdsp07FfvZDyC4LcTSRS7mvtwf3hruzJ6WAb/ZlEJNezLqEXNaRS4S3HTNn+uFY1EDyoVwqiupIOphL0sFcbFRmBEY6E9DbBQtbZZvmK5FICAoKIigoiPPnzxMdHc2ZM2dISUkhJSUFNzc3Y9K1S14iU4Wc5wYO5bmBcOjCST7YvYsT6XK0tV4kZGl5NuskL62JZ0SIC5N6etC3sz0yafMeJq3OUOf8WJGAfUYJkb5OSNuxjJqISEvIlEqeXPZbq/peSErgj3fnt9jvrpfm0ymoS4v9ZMrWfW99fX0RBIGkpCQmTpx4xfaUlBQcHR2xsbFh4MCBfP311+zfv5+wsDCsrKyMQnzv3r1Gry0YQq8XLFjAXXfddcU+Ly9X9NdScYIgoPtL1YrExESGDBnCnDlzmqwZby29e/emoaGBzMxMAgICmmQR/2t5JL1ez/fff8/06dObTUJmbm6Or6+v8f9vv/0Wa2trvvnmG9566y2+/fZbamtrmz23v3L59ksPOS+d+/z587nvvvvYtGkTW7Zs4Y033mD16tXN2uiv87ucS9fWyx+qaDSaJn3+uqxARORqiKJbRERE5CYglZrg4jIRF5eJVFenkZ3zM7m5f6BW55KR8TEZGZ/iYD8QV9cp2NsPRPI3Zp62d3Pnjvtm0W/KdDJPHidh95/sPRqLs6IUP8si/K2KsKIaEtcaXjITg+c7eAL4DweT5utQyuxMsBnpjfVQD2pOFFIVncPA3Gq+r9Iyr4cpmdQz+nAyX4R4MtD2Kol5BMHgbfcfDmk7Ye+7cOEIxH4BR7+HnjOh79Ng7Xbd5y0IAuZ9+mDWuzfV0dEUffIptfHxlPzwA6WrV2N3/33YPfQQMtvGTOoSicDgQBWDA1UkZJfz/YEM1sfncDijhMMZJXjZm/HgKC9GWluScaSAtOMFlOXXcGhtOrHr0nEPtiMw0gXvUAdk8rZFOHh4eODh4UFRURExMTGcOHGC7Oxsfv31V2xtbYmMjKR79+5NfuT26dSN36d3I686j8+P/MIfcReoLg1GU+/Ihvg8NsTnYW8hZ0L3TkwMcyPE1cr4w3VrQi4LNiSSW14HSFmeehQXaxPeGBvMiC5te+ghInK9CILQqhBvAM/QMCzsHK5IonY5lvYOeIaGIWllFYfWYG9vz5133snnn3/OM88800SA5eXl8euvv/LYY48BMGDAAJ5++ml+/fVX49rtgQMHsmPHDg4ePNgkrLlHjx4kJyc3Eaht4fTp0wwePJiZM2desR68tZw4cQKJRIKTk2E5zrXmtHfvXtLS0njooYdatW9DtI7EKLTd3K7/un41/P398ff355lnnmHq1Kn88MMPTJw4EYVCgVbbujJyl5bz5ObmYnvxvvDX0mXdunVj586dLFiwoNl9XM/xRG5vRNEtIiIicpMxN/fF3++/dPZ5jsLCbWTnrKasLJai4l0UFe9CqVDh4noPri6TMTVtvx8dLSGRSvEJC8cnLJyainLOHNxrEOBp6ahMqvC3LCLApgRrauDMRsNLqoDOgw0e8ICRzZb6EuRSzMOdMeulov58JabROSyPLeLFbiYct5MxIyGDeVoTguuv4TkVBPAbCr5DIH037HkPsg7B4a/h2FIImwb95oHN9SelEQQBi759MY+Konr/fgo/XULdqVMUf/sdpat+wnb6dOwfmIX0L7Vcu7hZ89GU7rwwIpBlMZn8eOgcmcU1vL4+ERszOff39uC+V8MpTy3nTEwuuWnlnD9dwvnTJSjNZPiFqwiKcsHRw7JN4ecODg6MHTuWQYMGceTIEQ4fPkxpaSmbN29m9+7dhIeHExER0ST809ncmTcHPskLUVX8kbqGb4/8TG6+Ow0V3SiusuC7Axl8dyADPycLJvZww9pUzqtrEvhrsGxeeR3/WXmcL6b1EIW3SIdDIpEyeNYc1n+08Kp9Bs2c066C+xJLliwhKiqK4cOH89ZbbzUpGda5c2djQq5u3bpha2vLqlWr2LhxI2AQ3c899xyCINC3b1/jPl9//XXGjBmDh4cHkyZNQiKREB8fT0JCAm+99Var5pWQkMDgwYMZPnw48+bNI+9iEkmpVGoUk4cPH2bGjBns3LkTNzc3YmJiiI2NNWb+jomJ4ZlnnmHatGlG0XktvvvuO3r37t0kU/vlqNVq4zxKS0tZsmQJVVVVjB07tlXn1Bpqa2t5/vnnmTRpEt7e3ly4cIEjR45w9913A4Ys5VVVVezcuZOuXbvS0NBwhcf+Er6+vri7uzN//nzefvttUlJS+PDDD5v0efnll+natSuPPfYYjz76KAqFgt27d3PPPffg4OCAl5cXsbGxZGZmYmFhgZ2dXZvWsIv88xGtLiIiIvI3IZUqcXYeR88eq4jsswMPj4eRy+1Q1+eTmbmE6JgBnDjxAAWF29DpNC3vsB0xs7Kmx8hxzHj/U6a9+wmuA+/jSG03vk3twfL0MA4VuVOhtwZtPaRshbX/gQ98YeXdcHx5sxnHBUFA6WmF/dRAgp+NYLm1A3fnNaAXBD6Uqfmt3pn8X1JQZ5ZffU2kIBhE/oNbYcZ68OxrmMPR7+GTMFj/JJSea9M5C4KAxR134PXLz3T64nNMgoPR1dRQ/NVXpA0ZSuEnn6AtL79inLO1CS+OCCTm5SEsGBeCh50ZZTUaPtt9loEf7+W77EIC7/Pj/jf70HOkJxa2StQ1DSTszebXd46y+v8Oc2LHeWoqWs4c3xwWFhYMGjSIZ555hlGjRmFra0ttbS379u1j0aJFbNiwgaKiph4/C4UFM0Kms2vG93w6pT+9+6zHtNNSZJbxIGhILaji/a3J/LcZwQ2gv/hasCERbTuUTBMRaW/8ekcxbt4rWNg1rYltae/AuHmv3LQ63X5+fhw5cgQfHx8mT55sXJvs5+fH1q1bjQ/BBEGgf//+CIJAv379AIMQt7KyolevXk1Cm4cPH87GjRvZvn074eHh9OnTh0WLFl0zG/hf+e233ygsLGTlypW4uLgYX+Hh4cY+NTU1JCcnG0OmlUolq1evZsCAAYSEhPD222/zzDPP8PXXX7d4vPLycn7//fdrerm3bt1qnEfv3r05cuRIE89/eyCVSikuLmbGjBn4+/szefJkRo4cafRER0VF8eijjzJlyhRUKhWffPLJVfcll8v56aefOHPmDN26deO999674qGHv78/27dvJz4+noiICCIjI1m3bh0ymcGv+dxzzyGVSgkODsbR0bFD1iQX+XsQ9K2ti3CbUFFRgbW1NeXl5Vd9stUR0Gg0bN68mVGjRrW4rkXk70e0T8fnn2IjnU5NYeEOcnJ+pqT0oLFdoXDExWUSbq6TMTX1uCVza9BoOHs0ltN7/iQzPg69Xou9soYg2zKCHaqw1F6WsEeQglc/gwc8aCxYODW7T51GyzfHz/NmdTlaAULKtPzvRC2udmZYRLliGuqIRNGCNyrzgGHNd8Y+w/8SGYTeC/2fBTufNp+vXq+natcuCj9dgvrMGcOuLS2xmzkTu5kzkFpaNjtOq9PzZ2I+3+5P5+i5UmN7P18HHurvTf/ODuSklHImOpf0E0VoGwzrDiUSAc+u9gRGuuDZ1R7pVdZXt4ROp+PMmTMcPHiQ7MvqkQcEBBAVFYWHh8cVnnW9Xk9cQRzLTi9jV2Y0msou1JdEolO3HGnx08N9iOx8/SV+RNqXf8o1rjXU1dWRkZGBt7d3kzXLbUGn05KddJqqslIsbGxxCwq5KR7ua/HGG2/w0Ucf8ccffzBkyBDRs9lBuZS93MrKSrRRB6Qj2eda16jWaktRdHdQbqeb6e2IaJ+Ozz/RRjU158jJ/YXc3N+or2/0VNrZ9sPV7V4cHYYgkVyZnObvoLKkiMR9uzm9509Kc3MM81LU0NVFTZBdOeZ1l5dWEQwe6UtZya2uTBi3p7CUh06mUy2R4qjW8b/jtYRU6BBMZZiHq7Do7YLMvoUENediDOI7fffFw0qh2xS44zmwbzlT7dXQ63RU7thB0adLUKemAiCxssL+gVnYTp+O1KL5pHIAcedL+fZABltO5XLJIezrZMHsft5MCHODeh1pR/NJis6l4FylcZyppRz/3s4ERbpg73b1/V9z3nq9MelacnKysb1Tp05ERUURGBjY7A+XcxXnWJm4ktVH06i80HKJpkVTujExTKw1e6v5J17jrkZ7iu6OwnfffUdBQQHPP/+80esp0rHoSKJO5Eo6kn1E0d0GRNEt0h6I9un4/JNtpNNpKCraRXbOT5SUHICLAb9yuZ2hNJnrZMzMvG/J3PR6PTnJSSTs2UFyzH40dYYEONaKOiL8FPhZFGBakdp0kHvvix7wccY12BqNhmVbtrNc5UNKjRoFMP9sA8PSDPtDAJNAOywiXVH62iBcK3N21mGD+E7bcXGsBLreA/2fA0f/tp+rTkfltm0UfvYZ9WlnAZBaW2P30EPY3X8fEvOrJIMDskpqWBadyeojWVSpGwCwN1cwPdKTaX08cbBQUpxTxZmYPJJj86i9LNTc0cOSoCgX/MJVmJi37bNbWFhITEwM8fHxxiQ+dnZ2REZGEhoa2mxm4S9idvDeOnWL+55/tw2zwvu22E/k5vJPvsb9ldtRdHckwSDSPKKNOjYdyT6i6G4DougWaQ9E+3R8bhcb1dZeICf3F3JyfqW+vjGc29amD65u9+LkOAyJpG1lqW4UTV0dKbEHSdjzJxcSE4ztDlYSIkMs8JJnoSg82XSQaw8IHo/GfxSbY5LoP2w4T6Xm8GdxBQD/MbfkkYQaGlLKjENkDqaYR7pg3lOFxOQaHqMLxwziO3XbxQYButwNdzwPToFtPk+9VkvFlq0UffYZ9RkZAEhtbbGf/RC2U6ciuVgztzkq6jT8ciSLHw5mkl1meKCgkEm4u4cbD/XzxtfJEq1Wx/nTJZyJziXzZBG6iy5yiUzAJ9SRwCgX3IPskLShZFdVVRWHDx/m8OHD1NXVAWBmZmZMunb5OtKNaZt4YmkZ+gZroLlj6RFk5Xw6y4YxvqOvey4i7cvtco0DUXSL3BpEG3VsOpJ9RNHdBkTRLdIeiPbp+NxuNtLpGigu3k12zs8UF++h0ftti4vzXbi6TsHcvO0h1TdKWV4up/ft5PSenVQWFxrbPTwc6R1oipsuDWn2YbgsTVeZqQeWEdOgy0TerbDg0/OGhwp32lvxsZMjkiMFVB/NR682eGoFhQSzHiosIl2Qq67uZSYnDvZ+AMmbLjYIBk/7gBdAFdLmc9RrtVRs2kThZ5+hOWdIhiO1t8d+9mxs752C5Br1Whu0OrYk5PHt/nTiLzQmZxsU4Mjs/j5EdbZHEARqK+tJOWwIPy/OrjL2M7dREtDHEH5uo7q6yL8a9fX1xMXFERMTQ1lZGQAymYzu3bsTGRmJvb09R/KOMP3XD6nLnnZx1F+Ftx4Tt1WsuOcZwp3DEbm13E7XOFF0i9wKRBt1bDqSfUTR3QZE0S3SHoj26fjczjaqq8shJ+dXcnJ/Qa3OM7bb2ETg6joFJ8cRSKW35oerTqflfMJJTu/ZQerhaLQXs+JKpFKCugfRo7Mcx8oTcO4Agl7XONApmESPYTwpCSPBxBN/c1OWd/PGQyKlJq6AquhcGgpqjN2Vna2xiHTFJMgeQXoVD3DuSdj3PiRtaGwLGgt3vAAu3dp8jvqGBsrXb6Doiy/QZBnWsksdHXB4eA42UyYjUV498kCv13P0XCnf7Evnz6R8Lt2Bg1ysmN3Pm7GhrihkEvR6PUVZVSRF55JyJA91dYNxHy6drQmMcsG3pxOKa3n+m0Gr1ZKUlER0dDQ5OTnG9sDAQCIjI3no8EPUngugpHgwtfrLP0N6QMDGKY5jT7+M9G9OTCVyJbfTNU4U3SK3AtFGHZuOZB9RdLcBUXSLtAeifTo+/wYb6fVaiov3kZ2zmqKiXYBBxMpk1rg4T8TVdQoWFm1f03yj1FVXkRy9j4Tdf5J3tnGdt5m1DV369MSkJomeVoVIMveBrlFUZph5sNZhAHudB/Ncn6H0s7NCr9ejTi+nKjqHusRio8Ncaq3EvI8L5uEqpBZXSTKXlwD7PoDEdRgHBoyGAc+Da1ibz0+v0VC+bh1Fn3+B5qKAlTk5Yf/IHGzuuQdJM+umLyezqJrvD2bw69EL1GoM3nwnSyUzo7y4v7cHNmaG8VqNjoyTRZyJyeX86WKjUJcpJHQOcyIwygU3vxbWvf917no9586dIzo6mpSUFGO7iZUJtRW16PRQoLOiFjmmaKjTS9nb4AfAu3d15d6IW5NRX6SR2+kaJ4pukVuBaKOOTUeyz20huj/77DM++OAD8vLyCA0N5dNPPyUiIuKq/cvKyvjvf//LH3/8QUlJCZ6enixevJhRo0a16nii6BZpD0T7dHz+bTaqU+eRm/MbObm/UFfXWDbK2roHbq734uQ0Cqm0hWzgN5GirHMk7NlB0v7d1JSXGdtVnf3o3j8Sf7sqFGe3wdldhjrcF8kwcaPSfzRdI+5FcOsBgkBDWR3Vh/KoPpKL7pIHWCZg1s0RiyhXFJ2aL+1FQZJBfCf8gVF8+48weL479Wzzuenr6ylbs5aiL7+kITfXMB1nZxwefQSbu+5CaEF8l9XUs+rweZZFZ5JfYUhkZiqXck+vTjzY1xsvh8ZQ+uoyNcmxeSRF51KW3+j5t3IwIaCPC4F9nLFyuD47FxQUGJOu6XS6q/Y70eDCiYZOyCQCP83pQ7iX3XUdR6R9uZ2ucaLoFrkViDbq2HQk+/zjRffPP//MjBkz+PLLL+nduzeLFy/m119/JTk5GSenK2u81tfX07dvX5ycnHjllVdwc3Pj3Llz2NjYEBoa2qpjiqJbpD0Q7dPx+bfaSK/XUlJygOycnykq2oFeb/CgymSWOKsm4Op2L5YWbU8qdqNoGxrIiDvKqd3bST9+hEtuW5lcgW9EJF37RuIuu4AucQPatD9RaBuzaeut3RGCxxvWZ7v1Qq+FmpOFVMXkoLnQuP5Z4W6JeZQrZl0dEGTN3KgLU2D//+DUr3ApxN13KAx4CdzbvlZZV19P2W+/UfzV1zTk5wMgd3XF/j+PYjNhAkILn8P6Bh0bT+bwzf4MknINieUEAe4MUjG7vw/hXrbGett6vZ78jAqSonNJPZqPpk5r3I9bgC1BUS74hDkib6nm+WUkJibyyy+/XHW7Xg97NZ3J1NlhZy5nwxP9cbO5dQ9y/u3cTtc4UXSL3ApEG3VsOpJ9/vGiu3fv3oSHh7NkyRLA8Oa6u7vzxBNP8NJLL13R/8svv+SDDz7gzJkzbb7BiKJbpD0Q7dPxEW0EanUBubm/k53zM3WX1dG2suqOm+u9qFSjkUqvPylXe6DRaFj/x+90MpGRtG8XxRfOG7dZOjgSMmAoIVG9OZS2n/rTaxlafAgzXV3jDixdDeuzg8eDRx/qs2uois6h5mQhaC9m/zaXYx7hjHkfF2TWzayzLkqD/R/CyZ/h4sMJfAbBwJfAo0+bz02nVlP2y68Uff0V2kJDvXV5p044/Oc/WI8fh9BCzV69Xk/M2WK+2Z/O7uTGpHTdOlkzu78Po7o4I5M2/gDR1GtJjyskKTqX7ORSY7vCRIpvLxWBkS44+1gZBfvVOHXqFL///vs1+2j0En7TeaDWOBLsYsVv/4nETCHWIL4V3E7XOFF0i1yNgQMH0r17dxYvXnxd4wRBYM2aNUyYMOGqfUQbdWw6kn3aQ3TfsjOor6/n2LFjDB06tHEyEglDhw4lJiam2THr168nMjKSuXPnolKp6NKlCwsXLjTWIBURERERaUSpdMLL6z9ERe4irPtynJxGIQhyKipOkHTmJfYfiORM8mtUVCa0vLObgMzElB6jxjPzf59x/9sfEXrnKJTm5lQWFXLo95/47tmnqdibQmHIs0T038ADIf/HVpdhaBUWUJkDh7+CpaPgw0AU8W9gF56Hyws9sBrmidRKga5aQ+XuLPLeO0zxj0mo08to8pzZwRcmfgGPH4GwaSCRQfpu+H44LBsLmQfadF4SpRK76dPw/fNPnF56Eam9PZoLF8j97385O3o05evWoW9ouOp4QRCI8nXghwci2DHvDqZGeKCUSTh5oZwnf4pjwAd7+GZfOhV1hiR1coWUgN7OTHgmjOlvRRIx1hsrBxPq67QkHsjhjw+OsWp+LMe2ZlJddvU63BYWFi2em1zQ4ey8DkFaRWJuBc//epJ/WWoYEZF/HfPnzycwMBBzc3NsbW0ZOnQosbGx1xwTHx/P1KlTcXd3x9TUlKCgID7++OMmfWbNmoUgCFe8QkLaXmXiErm5uYwcORKAzMxMBEHgxIkTN7xfEZG2csseTxcVFaHValGpVE3aVSoVZ86caXZMeno6u3bt4v7772fz5s2kpaXx2GOPodFoeOONN5odo1arUasbf2RUVBhC9jQaDZqLWXU7Ipfm1pHn+G9GtE/HR7RRUywtIwgMiMDHu5j8grXk5v5CXd05srNXkZ29CguLEFycJ+PoOBqZrGXxdaP81T72nt4MmPkwfafOJP1YLKf37iTr9EmyEk9B4ikmqtxZN3oGWxzuwEZfz3KzTHpl70BI3YpQXQBHv4Oj3yExs8fCfySmE8ZSVxdCzZESNBkV1J4qovZUETInU0z7OGMa6oBwKfTaygNGLYaoZ5AeXIxw8ieEjH2QsQ+dRxS6/s+h9+xviPW+HqRSrO6/H4uJEyn/5RdKv/8Bzbnz5Lz4EoVffIHdo49iMWIEgvTqIeCetia8OTaQpwb7sOpwFitjz5NdVsvbm5NYvDOFyT07MaOPB51sDWHeptYyug/rROhQN3LPlpN8KJ+ME0WU5ddwaG06sevS6RRkS0AfFZ5d7JHKG5+9u7q6YmlpSWVl5VXnY2VlxdxBU3lj73Jqzz3MplO5+O0wZ+5An+t7b0RumNvpGqfRaNDr9eh0umvmFWgNep2e+swKtJX1SC0VKLysrivJYHtx6WHUpfP6J+Pr68snn3yCj48PtbW1LF68mGHDhpGSkoKjo2OzY44cOYKjoyPLly/H3d2d6OhoHn30USQSCXPnzgVg0aJFLFy40DimoaGBsLAwJk2a1OQ9a8t7eGmZ6uWfqb9+vm4nG92OdCT76HQ69Ho9Go0G6V/u2a29Bt+y8PKcnBzc3NyIjo4mMjLS2P7CCy+wd+/eZp+g+fv7G937l074o48+4oMPPiD3YvKavzJ//nwWLFhwRfuqVaswM7s1YZUiIiIitx49UmkaMvkhZLKTCIIhYkivV9CgCUOjiUSnc+fKWs1/H5rqKiozUqhIT6GhqpJapSnr77yX850M9cjHVBYwVluJU1UirmVHcCk7ikJbbRxfLzUnz7oHRSYRSKp6YVtkgVRnOJ8GqY5ip3oKVXWoTZvezE3ri/DL34hn8V4kF8POi839SXaeQKFlyPWL74sIajU2MTHY7d2HtMaQBE3t5ETx0CFUde0KrQif0+jgaKHAnlwJebWGeQjo6W6vZ6CLDq9mcsjpNFCbJ6c6W0Z9aeOzdolcj6mrBnM3DXIrHYJgSFaakZFxqULYFTg7O+Pi4sKW2i3szqtHnXc3AA/6awm1Fz3eIm1DJpPh7OyMu7s7ihYSD16LhuRy1Dty0Vc2/ggWLOUoh7ogC7Buj6leQWVlJfPmzWPz5s1YWlry5JNPsnnzZrp27co777yDWq3mrbfe4rEb+YkAAQAASURBVPfff6e8vJygoCDmz59Pv379AMPv0ZdffpmvvvqK1157jezsbO68806++OIL1q1bxzvvvENFRQVTpkxh4cKFxt+/3bp1Y8aMGaSlpbFx40ZsbW157733iIiI4Mknn2Tfvn14enqyZMkSwsIMVRpKSkp4/vnniYmJoaysDC8vL+bNm8ekSZOu65wrKirw9PRk7dq1DBgwoNXjnnvuOVJSUli/fn2z2zdt2sT06dM5ceIEHh6GCgljxowhKCgIMOSCksvlPPjgg7zyyivXXDJja2vLypUrGT16NLa2tk229e3bl40bN7Z63iIi9fX1ZGVlkZeXR8NfItVqamq47777Wgwvv2WebgcHB6RSKfkXk81cIj8/H2dn52bHuLi4IJfLmzxhCAoKIi8vj/r6+mYv1C+//DLz5s0z/l9RUYG7uzvDhg3r8Gu6//zzT+68885//Fqt2xHRPh0f0Uat5Sk0mlLy89eSm/crtbXpyBWxyBWxmJsH4eJ8D05OY5HJrpIRvI1cj330Oh3ZyYkk7duF2Y7V7Og5mONdI9lo6UROUT1ved+BU49nESTQcD4a4cwGJMmbUFQX4lGyHw/2o1daous2jDpZfyrO+kGpBFWuCapcExR+Npj1UaHwvbzs1gy0Fdnooz9BcmIF9tUpRJ19H51buMHz7TO4beJ74kR01dWUrVpF2dJlKAsKcF31EwrfI9j951HMhw5FaEF8j8fw5H9/WjHfHcwk+mwJccUCccUSenrY8ECUJ0ODnJA2490rK6gh5VABqUfyqS6rp/qcgupzCuxczfDv7UxnbynFx2OoskpDJ23MIo9OAhIdxUUljBs3juH2w3lm3zPsUP8/e/cdX9P9P3D8de69udlbtkRkCIlEYofae9Oi9l6trVrV0iq12lJ0qE3t1t5qr5gZiBgxImRH9r7r90e+UikiUUr7+zwfj/t4uOd+1jnnJvI+n3UGVWp9Nt7T490WdfCyf7XfE+H5/ku/4/Ly8njw4AEmJiYvPac7N/wRWdujnzquy1SRtz0ay16VMaxq/Xeb+pSJEydy8eJFduzYgZ2dHV9++SVXrlyhRo3CHRE+//xzrl+/zsaNG3F0dGTHjh107dqVy5cv4+npiYGBAbm5uaxYsYJNmzaRmZlJ165dGTBgABYWFuzbt4+7d+/SrVs3GjduzPvvvw8UTslcvHgxX3/9NV999RULFizggw8+IDAwkIEDBzJ//nw+/fRTRo4cydWrV5EkiczMTOrWrcvnn3+OmZkZ+/btY8SIEVStWrXEnYOeVFBQwLJlyzA3NycwMLBMf0vn5uZiY2Pz3DwbN26kWbNmVK1ateiYQqFg06ZNDBo0iPPnz3Pp0iVGjBiBh4cHQ4cOLbE+Q0NDzMzMOHfuHHXr1uWPP/7Ax8cHpVKJmVnhVpSZmZmYmpq+cM0L4Z/3Nt2fvLw8DA0Nadiw4TPndJfGG19IrXbt2vzwww9AYde9i4sLo0aNeuZCap999hkbNmzg7t27RRPqFy5cyNy5c4n93x6pLyIWUhNeBXF/3n7iHpWdTqcjLf0SsTGbSEzah1ZbGHTJZIbY2bXDyfF9zMwCXsl/fi97fwpyc7h59jTLbt5ji2cNtHIFtkmx9Di9k7rVq1O1cQtsXd1Aq4Hos4V7c0fsgqz4P89TzxiNQ2NycuqSGVMFna7wP1C5tQEmdR0xrmGLzOiJNmXEwplFELwK1P9bzM2xOjSaBJVavXTPtyYzk5RffyVl9Rq0/xvSre/lhc3oUZg0a1bq63w9LoPlp+6x63IMqv8tIudiZcSg+q50q+mMsf7Tz9e1Wh0Prqdw42wc98KS0aiL9/br0KFSpqOVFSDTKlEUmJJudRW1svD/0CFDhiDpS/TZ14+rVxqiyfHEycKA3aMbYGX88j2VQun9l37HPWuRIp1Oh05VuiGlOq2OhPnBaDMKnptGZqbEbkKNUg01l/Rkpfr5y8zMxNramg0bNhT1Fqenp+Po6MiQIUMYMmQIAQEBREdH4+joWJSvefPm1K5dm1mzZrF69WoGDhzI7du3cXcvHMUzYsQI1q5dS0JCQtFaC61bt8bV1ZVffvkFAFdXVxo0aMDatWsBiI+Px8HBgalTpzJ9+nQAzp07R2BgIHFxcc/t0Grfvj2VK1fmu+++K/Fc9+zZQ48ePcjJycHBwYEdO3ZQq1bpd3sICgqiUaNG7N27l5YtWz71eWxsLC4uLmzYsIHu3bsXHW/cuDGJiYlcu3at6J58+umn7Nq1i4iIiOfW9+RCalFRUVSsWJHQ0FD8/f2L0rxNC3UJT3ub7s+rWEjtjS45OmHCBPr370/NmjWpXbs2CxYsIDs7m4EDBwLQr18/nJycmD17NgAffPABP/74I2PHjmX06NFERkYya9YsxowZ8yZPQxAE4T9BkiQsLWphaVGLSqqpxMfvICZ2E9nZkcTFbSEubgvGxpVwcuyBvX1n9PRez3DNkigNjfBt2pJFTaH97XuMvP+IRBtHlrfqQ/LBDYTu342NqxtVGzenyjuNMWz7DrSeCw8vFAbfETuRMh6iiN6LGXsxNTZEZRJIVlotch/VIH1vHhl/RGEUYItxoCNKB2Mwc4Q2c+CdcRD0A1xcAbEhsPF9cKhWGHx7tS1z8C03NcVm5Eis+vYlZfUaUtasIf/mTR6OGo2+dxVsRo3GpEnjF/7xX8XBjHndqzGptRe/nr3PuvP3iU7JYdruCOYfukWvOhXoX68CDuZ/bu8lk0lU8LGmgo81edkqIi8mcOXYA9IScgGQkFAWWBSrxzzVhzTrMNLT09mwYQMDBw7kp+Y/8H72IGJuWBKTVo4P1gWzbkgd9OTiD1jh79GptMR+EfTKytNmFBA37dkL9f6V4/R6f675UIK7d++iUqmK9RKbm5vj5eUFFG7Dp9FoqFSpUrF8+fn5WFv/2etuZGRUFHBD4fpGrq6uxRY3tLOzIzExsVg5fn5+xT4H8PX1fepYYmIi9vb2aDQaZs2axW+//UZMTAwFBQXk5+cXTbdcv349w4cPL8q/f/9+GjRoAECTJk0ICwsjOTmZZcuW0b17d86fP4+trS1t2rTh1KlTAFSoUIFr164Va2d4eDidOnXiyy+/fGbADbBmzRosLCyeudp43bp1i/0eDAwMZN68eWg0GubOnVtsXnhERETR0HRBeJu80aD7/fffJykpiS+++IL4+Hj8/f05cOBA0S+J6OjoYk82nJ2dOXjwIOPHj8fPzw8nJyfGjh3LpEmT3tQpCIIg/Cfp6Vng7DyA8uX7k54RQmzMZhIS95KdfYtbkdO5fWcutrZtcHLsibl5jTcy9KulR0WOODky4Oo9IoDfOg2l5ald+Fy/xLHVSzm5biXuNerg06Q5rn61kLnUhVYzISYEInYUBuBp91GmHcWKo+iM9CiQ1SQ7py45F+qQfSEeZUUzTAIdMfSxRjK1L8xffxwELYKLyyHuMmzqBXa+0OgTqNy+VHOznyQ3M8NmzGis+vXl0erVpP66lvyI6zz88EMMqlbFZvQojBs2fOE1tjUzYGIrLz5s4s7WkBhWnr7HveRsfjlxh+Wn7tKhmiOD36lIVafiD0sMjPXwbVwefWMFh1Y8v+dIptPDPLUq2Y5XiYuLY8uWLfTo0YMfWsyhf85kMu4N5fy9FL7afY2vO/s+txxB+P8iOzsbuVxOcHDwU4svPRlQ/3WkgiRJzzz218Wknkzz+PfDs449zvftt9+ycOFCFixYgK+vL8bGxowbN46CgsIRAh07dqROnTpF+Z2cnIr+bWxsjIeHBx4eHtStWxdPT09WrFjB5MmTWb58Obm5uc88l4iICJo1a8awYcOYMmXKM6+TTqdj5cqV9O3bt8xz+keMGFGsZ/zJEQWC8DZ545trjho1ilGjRj3zs+PHjz91LDAwkHPnzr3mVgmCIAhQ+EebhXkNLMxr4Ok5hfiEncTGbiIr6wbx8TuIj9+BkZEHTo7v4+DQBT09yxcX+gq5GOqzu7ono69Hsy85nX2NOqOs34y6R7by6N5tbp0/w63zZzCxtMK7YVN8GrfAqnwNKF8DWkyH+CuFQ9Cv7UBKuYO+9iz6yrPoUJCnrUZudH3S7tUh3cwG4zoOGNe2R25qAy1nQP2xcPZHuLAMEq7Cb33B1gcafQxVOpU9+LawwHbcOKz69ydl5UpS1q0nLzycB8NHYFDND5vRYzCuX++FwbeRUkHfuhXoXduFIzcSWXbqLhfupbA9NIbtoTHUdbNiaAM3mnjZIntiqK2x2TP2Mv9rGzWGtGrUgb3HtnHr1i32799P27Ztmdl0JJ/sX0vuw76sOxeNl70ZfetWKNP5C8KTJD0ZjtPrlSpt/r10Hq269sJ01gN90K/44hE6kl7pfnbd3NzQ09Pj4sWLRb2r6enp3Lp1iwYNGuDn54dGoyExMbGox/hNOnPmDJ06daJPnz5AYTB+69YtvL29ATA1NcXUtHTrMmi12qLdgZ4Mzp907do1mjZtSv/+/Zk5c+Zzyzpx4gS3b99m8ODBz/z8r4srnzt3Dk9PT+RyOVZWVlhZWZXY1seBvNhiWHiT3njQLQiCIPw76OmZ4Vy+L+Wd+pCReYXYmE3EJ+wmJ+c2kbdncvvOt9jatsbJsQcWFrX/sd5vY4Wc5VVd+S4qnvlRCexQmJLeczQzTODBqSNEnD5OVmoKF3Zu4cLOLThWqoJP4+Z4BTZA36Fa4RDxplMhMaJoDriUdB1DWTCGsmB0ejLyc/3IPVqfhKOBGPh6YlzPEaWzNVLzaVBvDJz7Gc4vgcRr8PsAsKkMDT8Gny4ge/Ew1ScpLC2x/egjrAYM4NGKlaRu2EDe5Ss8GDIEw4AAbMaMxugvwy2fRSaTaOFtRwtvO648TGP5qXvsvRrHubspnLubgpuNMYPfqci7AeUxVMpx8LTA2EK/5L28LfXxr+eNviX8/vvvXLx4ESsrKzoEduBuvbv8dOwgBUltmLYrHA8bEwLdX/3CVcL/D5IklWqIN4CBpyVycyWa9OfP6Zab62PgaflKtw8zNTWlf//+fPzxx1hZWWFra8uXX36JTFY4J9zDw4NevXrRr18/5s2bR0BAAElJSRw5cgQ/Pz/atWv3ytpSGp6enmzZsoWgoCAsLS2ZP38+CQkJRUH3s2RnZzNz5kw6duyIg4MDycnJ/PTTT8TExNCtW7fn5gsPD6dp06a0atWKCRMmEB9fuK6GXC5/apuxFStWUKdOnWILqD0pOjqaCRMmMHz4cEJCQvjhhx+YN29eqc/b1tYWQ0NDDhw4QPny5TEwMMDc/J+fHiX8/yYmXQmCIAhlIkkS5mbVqFJlNg3eOYuX1wxMTXzQ6QpISNhFSGgvzp1vwf3oZRQUPPpH2iSTJD6p6MBSH1cMZRLHUjLpn1SAc/d+jPhlDR0mTMatei0kSUbsrescWvoDv4zoy/6f5vPg2pXC/UDtfKDJZzDyHIy8AE2mgJ0vEloM5GFY6v2Eg6IfxhGDyVnyNcmLDpN9KQGdngU0nQLjrkCjT0HfHJJuwNbB8FMduLwZNOoXnsNfKaytsfvkYzwO/YFV//5I+vrkhoYSPXAQ0X37kX3hQqnL8itvwaKeAZz6pAnDGrphqq/gblI2n28Pp96cI8z/4yaPsgto8L4nULiQ2rN4N3BEJpPw8fGhRYsWABw8eJCIiAhGB4ymtb8chVkYGi2MWHeRByk5ZT5vQSgrSSZh0cG9xDQWHdxey37d8+fPJzAwkPbt29O8eXPq169PlSpVihZbWrlyJf369eOjjz7Cy8uLzp07F+sZ/ydNmTKF6tWr06pVKxo3boy9vf0z51A/SS6Xc+PGDd577z0qVapEhw4dePToEadOncLHx+e5+bZs2UJSUhLr1q3DwcGh6PXXxdfS09PZunXrc3u5oXCNp9zcXGrXrs3IkSMZO3Ysw4YNK/V5KxQKFi1axJIlS3B0dKRTp06lzisIr8obXb38TRCrlwuvgrg/bz9xj/55GRlXiYndRELCbjT/2y9bkvSwsWmBk2MPLC0DkaTCZ72v8/5czcxhwNV7xOSrMFPIWOLtShPrwt/3WakpRJw8Svjxw6TGPizKY25rh0/j5vg0aoZZOdviBT66A9cLF2EjNrTYR/lab/Lk7yD5d8GoYXUUlgaQmwYXlsLZnyAvrTChlTs0nAi+3UH+coPMVAmJPFq2jLTNm9GpCvchNqpTp7Dn+3/bE5VWVr6a3y4+YOWZezxMLZyLqZTLqOlqSdL1VJrm6mGm+/O5vBodCiQkPRnvTgjAvqI5Op2Offv2cfHiRRQKBf3798fa3pq+ewcRGtYEbV55PG2N2T7yHUyesYK68Pf8l37HlbQycFnkhieTtvtOsR5vubk+Fh3cMKxa7lU09YWys7NxcnLi22+/pVu3bm/FysvCs71Nq2MLT3ub7s+rWL1cBN1vqf/Sf6b/ReL+vP3EPXpz1OpsEhL3EBuziYzMK0XHDQ1dcHTsgYPDe8gk89d6f5IKVAy6GsXFjGxkwJcejgwrb1M0JFun0xEXeYPw44e5GXSSgv8tAoQk4VK1GlUbN8ejdiB6yr/Mc069D9d3obu6AynuUrGPCrSVUJVrgaJBD5T+vkj5mf8Lvn+E3NTCRJau0GAiVOsB8pc7b1V8PI+WLiX19y3wv+DbuF49yo0ehVFAQJnKUmu0/BGRwLJTdwmNTis6LumgvFqGsU4iW9IRJ9fybo6SCmo5SkMFnScEYONsikajYdOmTURGRmJkZMSQIUMo0C+g2/ahPLzeC53GjBbetizpU7PY/HHh7/sv/Y57VUE3FG4fln8vHW1mATJTJfoVzV9LD/djoaGh3Lhxg9q1a5Oens706dM5fvw4t27dKtoP+k0HDMKzvU1BnfC0t+n+iKD7JYigW3gVxP15+4l79HbIzIwgJnYz8fE70GiyAJAkBdZWTXnwwJWWLceh/Gtg+4rka7VMuvmQTfEpALxvb8U3XuXR/8t/3qr8PCLPBxF+/DAPrv35kEDfyJjK9Rvi07g59u6Vnp5DnR6DLmIX2uCtyJIvIT0xJFsl80Dr3h69Jj2RWTsVrnQe9APk/G+4vYULNPgIqvUCxcvta62KjSX5lyWkbdsG6sLh68YNGmAzehSGT2wlVFprgqL4ctfzF6PS00G3LCVOGjkGJnp0mVAdK0dj8vPzWb16NXFxcVhbWzN48GDuZN+hz/appN8bCDoFY5p6MKGl10udp/Bs/6Xfca8y6P6nhYaGMmTIEG7evIlSqaRGjRrMnz8fHx+ftyZgEJ7tbQrqhKe9TfdHBN0vQQTdwqsg7s/bT9yjt4tGk0NC4j5iYzaRnvHnEG19fSecnN7H0aEr+vp2r7xenU7HsodJTLsdixaoZWbMSl9XbJTP/k6kJ8Zz7cQRrp04QkbSn3viWpd3wadxc7wbNMHY4hkrtGcmoLmwFW3oNhSZwUjSn1v7aAw8wK8L8mrt4P5pOLMQspMKPzQrDw3GQ0BfULzcw4eChzEk/7KY9O074H+r85o0akS50aMxrPr8OZd/tTMshrGbwkpMo9TBRKUFqqR8jMyVdPmoOha2RmRmZrJs2TIyMjJwcXGhb9++HHl4hHG7NpIXV7idz4+9AmjvJ7bzeVX+S7/j/s1B9/O8TQGD8GziHr3d3qb78yqCbvENEwRBEF47udwIR4eu1Ky5hTq19+Ho2AedzpD8/Bju3p3PmaAGXL4ynOTkY+h0r25bF0mSGOZsy4Zqbpgr5FzMyKbVpVtcyXz2Al/mtvbU69abIYuW03XK11R5pzEKPSWPHkZzct1KlnzQnx3fziDy4lk06icWRzO1Q97sQ/QmHkY39jp5Vb4iX14TnU6OPO828gvfwrLGaM+uQletNwSOAWNbyHgIez+Chf5wfimo8sp8jsryTjh+/TXu+/dh3qULyGRknThBVNeuPPhwJHnXr5eqHFvTFwc7BRJUed8DK0djctIL2LkglIxHuZiamtK7d2/09fWJjo5m586dtKzQkjGN6qBndQqACb+FEh6TXubzEwRBEIR/OxF0C4IgCP8oExMvPNynkJ31JV6V5mJuXhOdTkNy8mEuXxnCmaBG3L23iLy82FdWZ2MrM/bV8MTDSJ/YfBWdQiLZmZj63PSSTEYFX3/ajp7IiKVraTF0FA4eXui0Wu5cOs+u72ay5IP+HP91OcnRUcXyyqzsMXh/HMrPD5PfLZjMcp+Tq6mFTqdAlnkHKWgBnF2ETs8I3JqAkTVkxsL+j2FhNTi3GFS5ZT5HpYsLjrNn4b5vL+adOhYG30ePcq/LuzwcPYa8m7dKzF+7ohUO5gaUNPvVwdyAet62dBoXgIWdEVkp+exaEEZ2ej52dna8//77yGQywsPDOXr0KCOqjaBDLQ1y45sUqGHQmvMkZT5/SzJBEARB+C8SQbcgCILwhiixs+tEzRqbqVvnIM7Og1AoLMjPj+PevYWcCWrE5ctDSUo+glZb9i23/srdyIC91T1pYmVKrlbH8Gv3mXs3Du0LZlnpGxnj17w1vWbOY8C8n6nZ4V2MzC3IzUgneO8O1nw8inWTxxN2cC95WVlF+SSZhEHVipiO+gS98XtIr3GMFD4mV1MXnU4PKS0K7h4rnOdtaAlKE8iKhwOfwgI/CPoRCrLLfJ5KV1cc587Fbc9uzNq1A0ki89Ah7nXqxMNx48mPjHxmPrlM4ssOhfv1Pi/wditnjAQYmSnpNM4fs3IGpCflsnNBGLmZBbi5udGxY0cATp8+TUhwCLMazKC6bxiSMonEDBXD1l6gQK19Tg2CIAiC8N8jgm5BEAThjTM29qCS5+e8Uz8IH+/vsbCoA2hJfnSUK1eGERTUkDt3vyc3N+Zv1WOup2CdnxsjnG0A+P5+AkPCo8hWl25Iu3V5Fxr1GcSwn1fT+ZOpeNQKRCaXk3A3kiMrF/PLiL7sWfgNUZdD0Gr/LFNhZYBFRz8sPpuMtuMakix38KjgE3I09dHq9AtXNy/4X8AuySE7Ef74HL73LZwDnp/1nBY9n76bG07zvsNt9y5M27QGIPPAAe527ETMRxPJv3v3qTytqzqwuE917M2LDzW3MNJDAs7cecTnO8LRanWYWBrQaVwAxhb6pMZls2tRGHnZKvz9/WnUqBEAe/fu5cG9B/zcch7lPfeALJfQ6Aw+3/G/vdEFQRAE4f8BEXQLgiAIbw25XB97+47UqL6BwLqHcXEZip6eFfkFCURF/UjQ2UaEhQ0kMekgWq3q5eqQJKZ5OLGwsgtKSWJfcjrtQyKJzi39sGe5QoF7jTp0mvg5wxevoXG/IZRzcUWjUnEz6CRbZ33BslGDOb1pLanxfw6TlynlGNeyx2ZsfUyGjybXez5xqg0kF3xGjqYRWgzhyTntuY/g0Bcwvwqc+A7yM8t8vvoeHpT//nsq7tyJacuWoNORsXcvd9t3IOaTTyiIiiqWvnVVB05NbMSmWnKmqoPZVEvOpclN+f59fyQJNl6I5std19DpdJiVM6TTOH8MTfVIfpDFnh8vU5CnpnHjxlSrVg2dTsfvv/+OOl3N0rYzMHfZBmj5/VIMa4KintVcQRAEQfjPEauXv6X+S6uS/heJ+/P2E/fo7VaW+6PV5pOUdJiY2E2kpgYVHVcqbXBw6IqTY3cMDV1eqh2X0rMZGH6PpAI1VnpyVlStSKCFyUuVpdPpSLx3h/Djh7h++jj52X8ODS9fpSo+jZtTqW59lAaGxfJpMgrIvhBH1vk4tJnZGMhCMZSfwVDvAjLtX3q45Uqo+h60/BqMy71UO/OuXyfpx5/IOnKk8IBMhnnHjpT78AOULi5k/PEHCbNmo46PL8qjsLfH7rPJ/GHtzcdbLqPTwYB6rnzZwRtJkngUk8X2+SHkZ6tx9LSg/ehqSDId69atIyoqClNTU4YMGcLFtIuM3LqN/MR2yCQdvw6qyzueL3ce/9/9l37HidXLhTdB3KO329t0f8Tq5YIgCMJ/nkymj51dO6oHrCWw7lEqVBiBUlmOgoIk7t9fTNDZJoSG9ichcT9abUGZyq5pbsyBGpXwMzEkRaWhW9ht1sYmv1Q7JUnCzs2DZoM+YMQva2k39hNcq1UHSeLh9XAOLl7AL8P7cfCXhTy8ca1oeLXcTIlZ8wo4TKqNVU8/tC4tSFVNIDZnLckF08hVtkEn/9+DAE0BXN4I33rALw0gfCuoy7YwmUGVKjj/9COuW7Zg0rgxaLWk79jBnTZtuT9gADFjxhYLuAHUCQnEjB1Hy0cRzH23cA/w1UFRfL33OjqdDmsnEzqO8UdpICc2Mo39v1xF0sl4//33sbGxITMzkw0bNvCO3TtMbF4dhXkwWp3E8HUXiEou+7x1Qfg3aty4MePGjXsjdbu6urJgwYI3UveLHD9+HEmSSEtLA2D16tVYWFi80TYJwqsmgm5BEAThX8PIqAIe7h9Tv95pfKv+jJVVA0AiJfU04eGjOH2mPrdvzyUn516py3QyULKjuiedbC1Q6+Djmw/57NZDVNqXHwimUCqpXK8h7302naE/rqT++32xsHdAlZdL+LFDbP5yEqvGD+f89t/ITCkM8iWFDKNqNtiOqIbtmACMapYnT1abRxkjicleRzKzyDdtjk5SADqIvwJbBsHs8vBbf7ixt0yrnhtW9cH5l8W4/rYZ44YNQKMh59z5Zyf+3wOChFmz6Vbdkdnv+gKw4vQ95uy/gU6nw7aCGe1HVUOhlPEgIoWDy8NRKvXp1asXxsbGJCQk8PvvvzPQewDvBuYhM4gmO19H/1VBZOa93FQBQXjTBgwYgCRJjBgx4qnPJk6ciFwuZ8CAAQBs27aNGTNmlKrcNxGgnzhxgqZNm2JlZYWRkRGenp7079+fgoKyPcz8J2zbto2aNWtiYWGBsbEx/v7+rF27tsQ8cXFx9OrVi0qVKiGTyRg/fnyp6po9eza1atXC1NQUW1tbOnfuzM2bN5+ZVqfT0aZNGyRJYseOHUXHo6KikCSp6KVUKvHw8ODrr79+4foWAwYMoHPnzqVqa2n8kw9g/vpA5XlUKhWTJk3C19cXY2NjHB0d6d+/P3FxccXSubq6FruOkiQxZ86cYmmuXLlCgwYNMDAwwNnZmW+++abY5y/z3XkVRNAtCIIg/OvIZHrY2rYiwH819QKP4+o6EqXSFpUqhfvRSzl7rjkhIb2JT9iNVvvinmAjuYxfvCvwaUV7AFbGJNPz8h1SVH9/1XSzcjbUffd9Bi1YyvvT5uDTuDl6+gakxsVyetOvLPtwEFtnf8nNs6dQqwqDT6WjCVZdK+H4WW3M21ZEbmlMXp4fSUnjiMnbSrrZV6j1KhbGwpoCiNgBm3rBN27w+0C4tqPUK58b+vnhsnQpdlOnlJxQp0MdH0/OpWB61nbh685VAVhy8i7fHryJTqfDwcOCth/6IVfIuHc5mcOrIjA3t6BXr17o6elx584d9u7dy/R3vqBWtRAkRTr3HxXw4YaLaP7GQw5BeEyr1XLv3j2uXr3KvXv30Gpf/0r5zs7ObNq0idzcPx965eXlsWXLFlxc/pz6YmVlhamp6SurV6fToVb//d9RABEREbRu3ZqaNWty8uRJrl69yg8//IBSqUSjKd1Ck/8kKysrPv/8c86ePcuVK1cYOHAgAwcO5ODBg8/Nk5+fj42NDVOmTKFatWqlruvEiROMHDmSc+fOcejQIVQqFS1btiQ7++nfsQsWLECSnr/x4uHDh4mLiyMyMpKvvvqKmTNnsnLlylK35Z+i0Wj+kZ+dx3JycggJCWHq1KmEhISwbds2bt26Ra9evZ5KO336dOLi4opeo0ePLvosIyODli1bUqFCBYKDg/n222+ZNm0aS5cuLUrzMt+dV0EE3YIgCMK/mqFhedzdJlC/3in8fH/B2roJIJGado5r18Zx+kx9IiNnkZ19p8RyJElinKs9q6tWxEgu43RaFm2Db3EzO++VtFOSJMpXqUrrD8YxYulaWo0Yi1NlH3Q6LVFhwexZMJclI/pxZOUvJNy9jU6nQ2akh2nD8th/XAvr/t7oe1qATk5mYg3iM38gQbmdHGVHdDpFYSWqHLi2DX7vD9+4w+a+cHVLqRZgk5tblOo81ElJAPSpW4GvOvoA8PPxO3x/qHAfcOfKVrQeXhWZXOL2pUSOrb2Oo4MjXbt2RZIkQkNDuRB0gZ9bz8HZcz9IKk7dSuWbg9fLfE0F4UkREREsWLCANWvWsHXrVtasWcOCBQuIiIh4rfVWr14dZ2dntm3bVnRs27ZtlC9fHn9//6Jjf+29/vnnn/H09MTAwAA7Ozu6du0KFPZsnjhxgoULFxb15kVFRRX1Gu7fv58aNWqgr6/P6dOnuXPnDp06dcLOzg4TExNq1arF4cOHy3QOf/zxB/b29nzzzTdUrVoVd3d3WrduzbJlyzA0LFyH4vGw7z179uDl5YWRkRFdu3YlJyeHNWvW4OrqiqWlJWPGjCkWqK9du5aaNWtiamqKvb09vXr1IjEx8SWu9J8aN25Mly5dqFKlCu7u7owdOxY/Pz9Onz793Dyurq4sXLiQfv36YW5uXuq6Dhw4wIABA/Dx8aFatWqsXr2a6OhogoODi6ULCwtj3rx5JQbR1tbW2NvbU6FCBXr37k39+vUJCQkpdVug8NzHjBnDJ598gpWVFfb29kybNq3oc51Ox7Rp03BxcUFfXx9HR0fGjBlTlPf+/fuMHz++6LsFf97bXbt24e3tjb6+PtHR0c8ccdG5c+ei0RtQ+DBj0qRJODs7o6+vj4eHBytWrCAqKoomTZoAYGlpiSRJxfI9ydzcnEOHDtG9e3e8vLyoW7cuixYtIiwsjOjo6GJpH3+PHr+MjY2LPlu/fj0FBQWsXLkSHx8fevTowZgxY5g/f36x61fW786rIIJuQRAE4T9BJlNgY9MC/2rLqV/vJBVdx6Cvb49KlUr0gxWcO9+S4JCexMXvQKN5fiDd2sacvdU9cTZQEpVbQLvgW/yRnP5K26o0MKRqkxb0+GougxYupU6X9zGxsiYvK5Owg3tYN3kcaz8ZTci+neRkpCPJJAyrWGMz2Be7j2pgUs8RSV+OOlOPlIxhxGq2k6r4HLXW9n81SKDOheu7YOvgwgB8Y0+4vAly057ZJoWNzZ9vJB1GtvmYueRgZJsPku6Z6frXc2Vq+8K9vRcdvc3Cw4V7gLv6lqPlYB8kCW6cjefk5ltUqlSJNm3aAHD06FFiImNY3nEqZuV3A7DkxD12hD58RVdY+P8mIiKC3377jYyMjGLHMzIy+O2331574D1o0CBWrVpV9H716tX07t37uekvXbrEmDFjmD59Ojdv3uTAgQM0bNgQgIULFxIYGMjQoUOLevOcnZ2L8n766afMmTOH69ev4+fnR1ZWFm3btuXIkSOEhobSunVrOnTo8FSwUhJ7e3vi4uI4efJkielycnJYtGgRmzZt4sCBAxw/fpwuXbqwb98+9u3bx9q1a1myZAlbtmwpyqNSqZgxYwaXL19mx44dREVFPTf4ehk6nY4jR45w8+bNomv4OqWnF/5/YGVlVXQsJyeHXr168dNPP2Fvb1+qci5dukRwcDB16tQpcxvWrFmDsbEx58+f55tvvmH69OkcOnQIgK1bt/L999+zZMkSIiMj2bFjB76+hVOCHj8MerK3+MlzmDt3LsuXL+fatWvY2to+s+6/6tevHxs3bmTRokVcv36dJUuWYGJigrOzM1u3bgXg5s2bxMXFsXDhwlKfY3p6OpIkPTW/f86cOVhbWxMQEMC3335bbLTH2bNnadiwIUqlsuhYq1atuHnzJqmpqU/V8U9+dxSvtXRBEARBeAMMDBxxcxuLq+tIUlJOEhO7meTko6SlXSAt7QK3FNNxsO+Co+P7mJhUeip/FRNDDtSoxJBr9ziblk3/q/f4zM2BUS62JQ4dfBmW9o6806Mv9br3IvpKGOHHD3P70jmSoqM4tmYZJ9atwr1GbXwaN6eifw30bIyw6OiOWasK5IQmkhUUhzoxh+ysQLIJRN/gDiaajRjIziPJZKBvAnnpcHNf4UumB26NwbsTVG4HRoV/OBrVrIHC3h5DRRR21dPQM/pzaKEqR0ZCiDm56ooY1axRrP2D36mIVqtj5r7rfH/4FnIZjGrqiXt1W5oN8Obw6gjCT8Sgp5QT+G4tUlNTOXv2LDt37qRv37780LEfQzftoeBRYyZuCaNiOROqOVu80mss/PvodDpUqtLN9ddqtezfv7/ENAcOHMDNza1UqyDr6emV+ee8T58+TJ48mfv37wNw5swZlixZwrlz556ZPjo6GmNjY9q3b4+pqSkVKlQgICAAKOz1UyqVGBkZPTOAmz59Oi1atCh6b2VlVWy49IwZM9i+fTu7du1i1KhRpWp/t27dOHjwII0aNcLe3p66devSrFkz+vXrV2xFZpVKxeLFi3F3dwega9eurF27loSEBExMTPD29qZJkyYcO3aM999/Hyh8IPGYm5sbixYtolatWmRlZWFi8nK7RUBhUObk5ER+fj5yuZyff/652HV5HbRaLePGjaN+/fpUrVq16Pj48eOpV68enTp1KjF/vXr1kMlkFBQUoFKpGDZsGP369StzO/z8/Pjyyy8B8PT05Mcff+TIkSO0aNGC6Oho7O3tad68OXp6eri4uFC7dm2g8Lsil8uLeoufpFKp+Pnnn8s09P7WrVv89ttvHDp0iObNmwOF9/ixxw8mbG1ty7Q4Xl5eHpMnT+a9994r9v0bM2YM1atXx8rKiqCgICZPnkxcXFxRT3Z8fDwVK1YsVpadnV3RZ5aWlsCb+e6IoFsQBEH4z5LJFJQr15Ry5ZqSlx9PXOwWYmM3k5cfy4OHq3nwcDXm5tVxcuyBrW1b5PI/t/OyVirYXM2dKZEx/Br7iJl347iRncd3Xs4Yyl/9QDGZTI6rfw1c/WuQm5XJjTMnuHb8MAl3bxN5IYjIC0EYW1ji3bApPo2bY+3kjEldR4zrOJB/N52soFjyIh6Rn+dOPlOQK9Ix1uzAWHsAuVwP7H0Lg++UO3D7UOFr91io2BC8OyFVbo/T8KYY3vjuqbYpDLU41U8lw6QVklz+1OdDG7qh1uqYe+AG3/1xC7lMxgeN3fGqY4+6QMPx9TcJPRSNQl9Oi7YtSEtL4/r162zatInBgwczuXUUX++8jjqrCgNWB3FwbFNszf4bW0cJL0elUjFr1qxXVl5GRsZTCy49z2effVasp6w0bGxsaNeuHatXr0an09G2bVusra2fm75FixZUqFABNzc3WrduTevWrenSpQtGRkYvrKtmzZrF3mdlZTFt2jT27t1LXFwcarWa3Nzc5/Z0jxgxgnXr1hXLL5fLWbVqFV9//TVHjx7l/PnzzJo1i7lz53LhwgUcHBwAMDIyKgq4oTCgcXV1LRY829nZFRs+HhwczLRp07h8+TKpqalFc4Wjo6Px9vYu8Vz/muazzz7js88+AwqHGYeFhZGVlcWRI0eYMGECbm5uNG7cuMQyn+fUqVNFo3EAlixZ8tRohZEjRxIeHl5sKPKuXbs4evQooaGhL6xj8+bNVKlSBZVKRXh4OKNHj8bS0pI5c+aUqv7H/Pz8ir13cHAouubdunVjwYIFRd+ttm3b0qFDBxSKksM+pVL5VLkvEhYWhlwup1GjRqXOs379eoYPH170fv/+/TRo0KDovUqlonv37uh0OubNm1cs74QJE4r+7efnh1KpZPjw4cyePRt9ff1St+FVf3dKQwTdgiAIwv8LBvr2VKw4ClfXD0hJOU1M7CaSk4+Qnh5CenoItyJnYG/XGUenHpiaVAZAKZPxjZczVUwMmRL5kK0JqdzJyWeVrysO+mX7o7wsDE1MCWjVnoBW7UmKjuLa8UNEnDxGdloqF3dt5eKurTh4elG1cQu86jXAwN0CA3cL1Gl5ZJ+LJ/tiHJpsczLoT4amN0bScUwe7kGp9wB83gUzR7h7HBLC4e6xwtee8RjJ9dBJ8Nc+PkkqXMDcKOl3ci4Nxqhm7afa/EFjdzRaLd/9cYu5B26gkEkMbeiGTwMn1AVaTv8eycU991AoZbz77rusWbOGhw8fsn79egYPHsytBvPZfCSB1Gw7+q06w44PG2Og93SALwhvq0GDBhX1LP/www8lpjU1NSUkJITjx4/zxx9/8MUXXzBt2jQuXrz4wh7BJ+ewQuEq6YcOHeK7777Dw8MDQ0NDunbt+txVx6dPn87EiROf+ZmTkxN9+/alb9++zJgxg0qVKvHLL7/w1VdfATy1J7wkSc889jiwzs7OplWrVrRq1Yr169djY2NDdHQ0rVq1KtWq6I6OjoSFhRW9f3JIt0wmw8PDAwB/f3+uX7/O7NmzXzpwqlmzZrG6HveQPjZq1Cj27NnDyZMnKV++fNHxo0ePcufOnafu23vvvUeDBg04fvx40TFnZ+eiNlepUoU7d+4wdepUpk2b9sL6n1TSNXd2dubmzZscPnyYQ4cO8eGHH/Ltt99y4sSJp/I9ydDQ8KkRHjKZ7KnV1Z8cgfJ4vn9ZdOzYsdiQeicnp2Jld+/enfv373P48OES2wtQp04d1Go1UVFReHl5YW9vT0JCQrE0j98/2bP/qr87pSGCbkEQBOH/FUmSY23dCGvrRuTnJxIXt5WY2M3k5T3gYcxaHsasxczMHyfHHtjZtUMuN2KgUzk8jfQZGh5FWGYOrS/dYpVvRaqbGb+4wr/JxsWVxv2G0qDXAO6GXCT8+GHuhV4iLvImcZE3ObZmGZ516lG1cXOcvX0xb+2KWTMXcq4kkRUUiyomixxdc3IKmqNU3cD4yh6MFPuRqr8PrWZDzCWI2AlxYaApeCrg/vO6gZ6RhrjPB2Iz7zcMq/o8lWZUU0/UWh0LDkcyc9915DKJQe9UpFozZ9QqDed23OXstjvoKeX07NmT5cuXk5qayqZNm5ja92PuPPqYC5cacyMOPt4SzKIetV75cH7h30FPT6+oR/NF7t+/z/r161+Yrnfv3lSoUKFUdb+M1q1bU1BQgCRJtGrV6pmrWz9JoVDQvHlzmjdvzpdffomFhQVHjx7l3XffLdOq4WfOnGHAgAF06dIFKOy5joqKem56W1vbUs3XtbS0xMHB4YXnUZIbN27w6NEj5syZUzQv/dKlS6XOr1AoioKjF9FqteTnv3i3iucxNDR8Zl06nY7Ro0ezfft2jh8//tTw5U8//ZQhQ4YUO+br68v3339Phw4dSqxTLpejVqspKCjAzMys1Of6IoaGhnTo0IEOHTowcuRIKleuzNWrV6levXqZvls2NjbF5n1rNBrCw8OLFkjz9fVFq9Vy4sSJouHlT3o8YuTJ+kxNTZ+5iv/jgDsyMpJjx45hbW391BoNfxUWFoZMJiv6PgcGBvL555+jUqmKfo4PHTqEl5dX0dDyZ/m7353SEEG3IAiC8P+Wvr4trq4fUKHCcFJTzxITu4mkpENkZISRkRHGrcivsbfviKPj+7xjWZX9NSvR78o9buXk0SX0NvO8nOlqb/Xiil4BuUIPz9r18Kxdj+y0VCJOHSP82CFSYh5w/dQxrp86hpmNHT6NmuHTqBnmNewwqm5LwYNMss/GkXMliQJNZQpUlUlXpWF87gDGwUNQBLSEbqvh1gE48OmL26HL4sGQIVRYtxb9Z/yBOLaZJxqtjh+O3mb6nggUcol+ga7UaO2KKl9D8P77nNx0C7leZXr37s2KFSuIiYlh145dLO44nS5pnxJ9qwO7Lyfh43ibEY08X8PVFN52j/cyLg13d3fMzMxK/APdzMwMd3f3Us3pfllyuZzr168X/bske/bs4e7duzRs2BBLS0v27duHVqvFy8sLKFxp+/z580RFRWFiYlKsh/evPD092bZtGx06dECSJKZOnVrm7Z6WLFlCWFgYXbp0wd3dnby8PH799VeuXbv2wl77kri4uKBUKvnhhx8YMWIE4eHhpd6rvCSzZ8+mZs2auLu7k5+fX7SI2+LFi4vSTJ48mZiYGH799deiY497krOyskhKSuLq1atYWloWm5/9VyNHjmTDhg3s3LkTU1NT4uPjgcK594aGhkWraD/r3P8aoD969Ij4+HjUajVXr15l4cKFNGnSpNi85b9r9erVaDQa6tSpg5GREevWrcPQ0LDogZOrqysnT56kR48e6OvrU65cueeW1bRpUyZMmMDevXtxd3dn/vz5xfbcdnV1pX///gwaNIhFixZRrVo17t+/T2JiIt27d6dChQpIksSePXto27YthoaGz5zHr1Kp6Nq1KyEhIezZsweNRkN8fDyZmZkYGBhgYGDA2bNnOX/+PE2aNMHU1JSzZ88yfvx4+vTpUxRQ9+rVi6+++orBgwczadIkwsPDWbhwId9//31RXaX57rwOYvVyQRAE4f89SZJhZVUf36o/8E7903i4T8LQsAIaTRYxMRu4eLETFy52Qi9lGzurOdLS2ox8rY5R16OZcScWje6f3WPa2MKSWh3eZcC8n+n19Tz8mrdGaWhERlICZ7dsYPnowfw+4zOunz6OzE6J1fteOHxaG7OWFZCbKdFiQaamB/F5S3l03on8Bf3QRZZuiyGZgyeatDSiBw6i4MGDpz6XJIkJLSrxYePCeZ9f7LzGunOFi0vV6ehGtWaFvV3H1t0g9Z6GHj16IJfLuXHjBhdPXmT1u5Mxcyxsy9z9Nzl+4+9tLST898lkMlq3bl1imtatW7/WgPsxMzOzUgVQFhYWbNu2jaZNm1KlShV++eUXNm7ciI9P4QiSiRMnIpfL8fb2LhqS/Tzz58/H0tKSevXq0aFDB1q1akX16tXL1O7atWuTlZXFiBEj8PHxoVGjRpw7d44dO3aUab7uX9nY2LB69Wp+//13vL29mTNnDt999/S6EWWVnZ3Nhx9+iI+PD/Xr12fr1q2sW7euWI9zXFzcU9ctICCAgIAAgoOD2bhxIw0bNqR9+/Yl1rV48WLS09Np3LgxDg4ORa/NmzeXud3NmzfHwcEBV1dXhg0bRtu2bV+qnJJYWFiwbNky6tevj5+fH4cPH2b37t1FawxMnz6dqKgo3N3dsXly14pnGDRoEP3796dfv340atQINze3ol7uxxYvXkzXrl358MMPqVy5MkOHDi0aHeHk5MRXX33Fp59+ip2d3XMX9ouJiWHXrl08fPgQf39/HBwccHJyonLlygQFBQGgr6/Ppk2baNSoET4+PsycOZPx48cX24Pb3NycP/74g3v37lGjRg0++ugjvvjiC4YNG1aUpjTfnddB0v11oP5/XEZGBubm5qSnp7/Sp0qvmkqlYt++fbRt2/alhzkJr4+4P28/cY/ebv+G+6PT6UhNO0dszCYSk/5ApyucfyiXG2Fj24Hf6M6Swg4Pmlubsdi7AqaKNzcHWZWfx+0LZwk/fpjo8MtFx5WGRlSu1xCfxs1x8PQCrY7ciEdkBcVRcO/PrdAU0l1slJORkc2zRnTrdKDTt0Y34iL3+w8kPzISPScnKqxfh94zenl0Oh1z9t9gycm7AMx+15eetV3Q6XSc2HCTa6dikWQSrYdVJVseX7S1TOvWrVGXVzNw3WFUabXQ19Oyb0wT3G1efpXj/6J/w89QaeXl5XHv3j0qVqyIgcHLL6AXERHBgQMHivV4m5mZ0bp16xcu2PWqabVaMjIyMDMz+0eCfaHsxD16u71N96ek31GljS3F8HJBEARBeAZJkrCyDMTKMpCCghTi47cTE7uJnJy7xMdtpiGbMTbowU8F73H4UQZtg2/xq68bFY1Kv4Lqq6Snb0CVBk2o0qAJ6YkJXDtxhGsnjpCRlMCVIwe4cuQAVk7OVG3cHO+GTbEd7ocqPpuss7HkBMejVruRqhqLtd4sdDqeGXhn59THxMwcl5UriOrTB9X9aKIHDabC2l9R/GWlZkmS+LRNZdRaHStO32PytqvIJYnutZxp1NMLdYGWm+fjObg8nHYf+NGsWTOOHDnCgQMH6NGjB1PbV+KrrVHk57rSa8VJ/hjbAnPDf3dwKbxe3t7eVK5cmfv37xdtR1WhQoU3/ge7IAiC+C0kCIIgCC+gVFrh4jKYunX+oHr1TdjbdUYmU1IjbxOfaz/FkhQic/JpfSmCkyklL/zyTzC3taNet14MWbSMblNn4d2gCQqlPikxDzi5fhVLPujP9rlfEXX/MmYdXHH4PBBjb8jT1uOR6jM0FJ/jp9UpkSQwke9DtWcRChsbKqxcicLBgYK7d4keMhTNM+bTSpLElHZVGFDPFYBJ266wNfghkkyiab/KuFe3QavWse+Xq1S08aFGjcI9wLds2UJTi4a83ygTSZFGQpqOQb+eQqP9fzU4T3gJMpmMihUr4uvrS8WKFUXALQjCW0H8JhIEQRCEUpIkCUuLWvj4zOOd+mep5DkVP2MZM3Qf4667RbpGosflSOZd3UNBQdqbbi6STIZLVT/ajPqIEUt+pcWwUThUqoxOq+VuyEV2zZ/FkhH9OfHbKvJlMUBh4B2fv4Kkglk8KviYpIJZxOZvJEdTD0lSo3d5Jtw6WDi0fNVK5OXKkX/9Og+GDUf7jFWOJUniyw7e9Knrgk4HE7dcZkdoDDK5jBaDfKjga41GpWXv4qvUqPIOHh4eqNVqNm7cyHjfwdQOCAWpgOB7uXy5O+SfvoSCIAiC8LeJoFsQBEEQXoKengXOzgOoU3s/zWss5Se7EN7hNFrkfJtcngFnVhJ27WPS0i49tc/pm6BvZIxfs9b0mvEdA+YvplbH9zC2sCQ3M4OQfTv549CJJ1LLydf6kattRL7WD9AnRfVJYeCtU8Om3nDzAEpXV1xWLEdmbk5uWBgPRo1C+4xtVyRJYnrHqv+b0w0Tfgtj9+VY5AoZrYdVpXxlS9T5Gvb+dJUmgW2ws7MjOzubzRs3s6jZx7i4Hwdg3dl4Nl64909cLkEQBEF4ZUTQLQiCIAh/gyRJWJjXwN9nDhvq92VMuTgktBylKWMTAjgWMpRz51sT/WAVKlXqm24uANZOzjTsPZBhP6+my6Qv8axTj0cFceSoM577gECnkxOTOxxd5Q6gVcHmPnBzPwZeXrgsXYLMyIics+eIGT8BnUr1VH6ZTGJm56p0r1kerQ7GbQ5j39U4FHpy2n7gh4OHOQW5ag4sjqBt886YmpqSnJzMvu37WP3uWEztTgPw+Y5wQu6nvNbrIwiCIAivkgi6BUEQBOEVUSrN+cy3DWt93TGRwU3Jm6nSN9zIUREZ+TWnz9Qj/Np4UlPPvxW93zK5HLfqteg44TPaT5hEyKMjAM9smyRJJOYl8FBlB96d/xd494UbezGsVo3yixcj6euTdfQosZM/Q6fRPF2fTGLOu368V708Gq2OMRtDORAej56+nPYjq2FbwZS8LBVHl92hY5v3UCqV3L9/n9BjoSzt3gk90wi0Whl9V50mLj33dV8eQRAEQXglRNAtCIIgCK9Y83Lm7KtZmYqGSpKxYbrsO8INuqLVFpCQsIuQ0F6cO9+C+9HLKCh49KabC4C6oICYnFucSdxBriaz2GcFmjwAKph4U3BZBfomfwbev/WH63swrlOb8osWgkJBxp49xE/76pnBu0wm8U1XP7oEOKHW6hi1IYRDEQkoDRV0GOOPtZMJORkFBK2NoX2bzkiSxNWrV8m9mcOXnV2R6ceRnSfn/eVHyVM9HdgLgiAIwttGBN2CIAiC8BpUMjZgX41KNLQ0IVcnY3Z+Ty44bcPBoQdyuTE5Ofe4fXsOp8/U52r4aFJSzqDTad9Ye00sLAGIybnFnge/cDRuA2cTd3E0bgM7ohdxJaVwzre+ohuZF7NBnf9n4P17f7i+G5NGjXD67luQyUj7/XcS537zzMBbLpP4rls1OlZzRK3V8eH6YI7eSMDAWI+OY/2xsDMiKzWfy1vTaNmsDQAnT57EO9+dno0zkOTZRCfB8PWn3ooRA4IgCIJQEhF0C4IgCMJrYqmnYIOfO4OdCrfgWhir43vNUKrXPUPlyrMwM/VDp1ORmLiP0LB+nD3XjKj7S8gvSP7H2+pUxQcTq8J26tCRlPeA6OzrJOU9QIeO6+nnuJl3CYB09WAyI/QgMx6qdAStGn4fABG7MGvdGocZMwBIWb2a5J9/fmZ9cpnE/O7VaOfrgEqjY8TaEI7fTMTITEmncQGYlTMgIzmPe4e1BNapB8CePXsYUL4DtapdATScuJHNt4cuv/ZrIwiCIAh/hwi6BUEQBOE1UsgkZlYqz3dezuhJEruT0njvSiw6qy7UqrWd2rV24+TUB7nchNzcaO7c+YYzZ+pz5epIHj06+Y/1fstkcpoOGFZimmjZTYwbOQKQrh5G1r1ykBwJlds/EXjvxOK9d7H77DMAkn/4kUerVz+zPIVcxoIe/rT2sadAo2XY2mBORSZhYqlPp3EBmFjqkxqfQ8olc7yr+KDVatmyZQtz6w2mvOtZAH4++pB94Q9e2XUQhFfF0tKSHTt2vOlmCILwFhBBtyAIgiD8A/o4WvO7vzvWegquZuXS+tItLqZnY2rqTWWvr2jwzlmqVJ6LuVkAOp2apKQDhF0eSNDZJtyL+on8/ITX3kbPOvXoOOGzoh7vx4zMLVAo9UmJecjR0F8xblgYeKepR5AV5wqxYVCpNeg08PtAuLYdq359sRk3FoDEOXNJ/e23Z9apJ5exqGcALbztKFBrGbLmEkG3kzErZ0incQEYmilJiclGd9cFZ2cX8vPz2f7bdpZ36o+JdSggMWZjCDfj01/jlRH+LXQ6Damp54iP30Vq6jl0utc773/AgAF07tz5tdbxOpw+fZr69etjbW2NoaEhlStX5vvvvy8xz/Hjx+nUqRMODg4YGxvj7+/P+vXrX1jX4sWL8fPzw8zMDDMzMwIDA9m/f3+xNK6urkiShCRJyOVyHB0dGTx4MKmpJe/4sHr1aiwsLF7YhtL6p++nJEniwcz/EyLoFgRBEIR/SF0LEw7UrIS3sQHJKjXvht5mY1zhQmpyuRGOjl2pWXMLdWrvo3z5figUZuTlPeTu3fmcCWrA5SvDSU4+9loDCc869Rj60wre/WwGdvWa8O5nMxj+yxq6fj4Dhb4+UZeDOX3jd4wbPA68R5KV4gPR58GjRWHgvWUwhG/DevhwrIcMBiD+y2mk7937zDqVChk/9apOs8q25Ku1DFpzkXN3H2FhZ0Snsf4YGOuRfD8b05QqWFtZk5GRwfGdx1nSrTkKo3uoNQreX36MtJyC13ZdhLdfYuJBzgQ1JCS0N9cixhMS2pszQQ1JTDz4ppv21jE2NmbUqFGcPHmS69evM2XKFKZMmcLSpUufmycoKAg/Pz+2bt3KlStXGDhwIP369WPPnj0l1lW+fHnmzJlDcHAwly5domnTpnTq1Ilr164VSzd9+nTi4uKIjo5m/fr1nDx5kjFjxryS833VVM/YFlEQSiKCbkEQBEH4BzkbKNld3ZN2NuaodDrG33jAl5ExqLV/LghmYuKFV6Uveaf+WbyrfIe5eU10Og3JyYe5fGUIZ4IacffeIvLyYl9LG2UyOeW9q2Lq6kF576rIZHKcKnvTacJnyOQKbp0/zYXovRjX/zPwzs6qAVGnoWLjwsB76xCka9uw+egjLHr2AJ2O2Emfknn02DPrVCpk/NynOo29bMhTaRm0+iIX7qVg7WRChzHVUBrISbqTi706AGNjY+Lj47l3+jZfdnJC0kshLUuP91f8gVrz5hajE96cxMSDXA0fSX5+fLHj+fkJXA0f+VYE3pMmTaJSpUoYGRnh5ubG1KlTiwVv06ZNw9/fn5UrV+Li4oKJiQkffvghGo2Gb775Bnt7e2xtbZk5c2axcufPn4+vry/GxsY4Ozvz4YcfkpWVVWJbAgIC6NmzJz4+Pri6utKnTx9atWrFqVOnnpvns88+Y8aMGdSrVw93d3fGjh1L69at2bZtW4l1dejQgbZt2+Lp6UmlSpWYOXMmJiYmnDt3rlg6U1NT7O3tcXJyokmTJvTv35+QkJASy/6rx9dw7dq1uLq6Ym5uTo8ePcjM/HNHhi1bthRdLzc3N1q2bEl2djbTpk1jzZo17Ny5s6jX/fjx40RFRSFJEps3b6ZRo0YYGBiwfv36orqetGDBAlxdXYsdW7lyJT4+Pujr6+Pg4MCoUaMAitJ16dIFSZKeyif8t4igWxAEQRD+YcYKOct8XPnI1Q6AJQ+T6HPlLmkqdbF0crkBDg5dqFljM3XrHMTZeRAKhQX5+XHcu7eQM0GNuHx5KEnJR9Bq1c+q6pVy9a9BuzETkSQZ4cf/4HLqcYwDHQAZqeqxZOfXhahT4BL4Z+AdvhX7qVMx79QR1Gpixo0j++zZZ5avr5DzS58aNPAsR06BhoGrLhB8PwXbCma0H+2PQl9O4q0CXJS1UCgU3L59G4toBT0apYOUz80YiXFbTr726yC8fjqdDo0mp1QvtTqTW7e+Ap61kn3hsVuR01GrM0tV3utaEd/U1JTVq1cTERHBwoULWbZs2VNDuu/cucP+/fs5cOAAGzduZMWKFbRr146HDx9y4sQJ5s6dy5QpUzh//nxRHplMxqJFi7h27Rpr1qzh6NGjfPLJJ2VqW2hoKEFBQTRq1KhM+dLT07Gysip1eo1Gw6ZNm8jOziYwMPC56WJiYti9ezd16tQpU3ug8Bru2LGDPXv2sGfPHk6cOMGcOXMAiIuLo2fPngwaNIhr166xe/duunTpgk6nY+LEiXTv3p3WrVsTFxdHXFwc9erVKyr3008/ZezYsVy/fp1WrVqVqi2LFy9m5MiRDBs2jKtXr7Jr1y48PDwAuHjxIgCrVq0iLi6u6L3w36R40w0QBEEQhP+PZJLExxUdqGxsyJjr0RxPzaRdcCRr/CriYWTwVHpjYw8qeX6Ou9tEkpIOEhO7ibS08yQ/Okryo6PoK+1wcOyGo0N3DA2dXlu7K9V9hxbDc/jjl0UE792OQXcTvOrWIPtcHKmq8UhoMYo+AY7VITYEtg1F0ulwmDkTbU4OmYcO82DkKFxWLMcoIOCp8g305CzrV5NBqy8SdOcR/VdeZO3g2gS4W9LuQz/2/HiZ5Ota3L1rcTPlLMHBwbRt3ozbfie4eDmAPaHZVHW8wogGfq/tGgivn1aby/ETvq+oNB35+fGcOOlfqtSNG11FLjd6RXX/acqUKUX/dnV1ZeLEiWzatKlYgKzValm5ciWmpqZ4e3vTpEkTbt68yb59+5DJZHh5eTF37lyOHTtWFJCOGzeuWLlff/01I0aM4Ofn7BzwpPLly5OUlIRarWbatGkMGTKk1Ofz22+/cfHiRZYsWfLCtFevXiUwMJC8vDxMTEzYvn073t7exdJMmjSJKVOmoNFoyMvLo06dOsyfP7/U7XlMq9WyevVqTE1NAejbty9Hjhxh5syZxMXFoVareffdd3F2dsbKyorAwEBkssJ+SENDQ/Lz87G3t3+q3HHjxvHuu++WqS1ff/01H330EWPHji06VqtWLQBsbGwAsLCweGZ9wn+L6OkWBEEQhDeog60Fu6t74KSvx53cfNoG3+Loo4znppfL9bG370iN6huoW+cQLi5D0NOzIr8ggaioHwk624iwsIEkJh1Eq3098w59m7Skcb/CP87P/LaWKIMbGNe2B2SkqCaSo3mnMOC29QadFrYPQ4rYhuO8eRjXr48uJ4cHw0eQd/36M8s30JOzon8t6rpZkZWvpt+KC1x+kEZ5L0vaDPdFJpdIidDDzcofgCOHj/CpdxscnQuHos7dF8XJ2zGv5dwF4WVt3ryZ+vXrY29vj4mJCVOmTCE6OrpYGldX16JgEcDOzg5vb++ioPDxscTExKL3hw8fplmzZjg5OWFqakrfvn159OgROTk5AJiYmBS9RowYUay+U6dOcenSJX755RcWLFjAxo0bS3Uux44dY+DAgSxbtgwfH5+isp6s68lF1ry8vAgLC+P8+fN88MEH9O/fn4iIiGJlfvzxx4SFhXHlyhWOHDkCQLt27dBoNC88j5KuoYODQ9H1qlatGs2aNcPX15fu3buzZs2aFy7W9ljNmjVLle6xxMREYmNjadasWZnyCf9NoqdbEARBEN6wqqZGHKhZiUFXo7iYkU2fK3f5wt2R4c42SJL03HzGxm54ekzG3W0CSUmHiYndRGpqEI9STvIo5SRKpQ2ODl1xdHwfQ0PnV9rmGu06k5edzbmtGzm66hfajPwI+xpO5AQnkKKeBGgxSgwCSzdIvQvbhyPrrKP8D4uIHjqM3OBgogcPocK6tei7uT1VvqFSzsoBtRiw8iIXolLou+I8G4bWpWpVa1oO8eHgsmtkRphRvnIlHqbdYt+uffzQtS19dx4nJ60yQ9ac58j4ljhbmbzS8xb+GTKZIY0bXS1V2tS0i1y+POiF6apVW4mlRa1S1f2qnT17lt69e/PVV1/RqlUrzM3N2bRpE/PmzSuWTk9Pr9h7SZKeeUyrLVy7ICoqivbt2/PBBx8wc+ZMrKysOH36NIMHD6agoAAjIyPCwsKK8pqZmRUrq2LFigD4+vqSkJDAtGnT6NmzZ4nncuLECTp06MD3339Pv379io7XrFmzWF12dnZF/1YqlUXDqmvUqMHFixdZuHBhsV7ycuXKFaXx9PRkwYIFBAYGcuzYMZo3b17ieTyppOsll8s5dOgQQUFBHDx4kKVLlzJz5kzOnz9fdC2ex9jYuNh7mUz21FSEJ+foGxq++u+R8O8leroFQRAE4S1go9RjS4A7PR2s0ALT7sQy7sYD8rUvXhhMJtPHzq4d1QPWElj3KBUqjECpLEdBQRJR9xcTdLYxoaH9SUjcj1b76lb4rtetFwFtOgBwYPH3pFR4hFF1W9BJpKgnk6sNLAy4zZz+1+M9HFnkLpx/WYyBtzealBSiBw6i4OGze6WNlApWDqxFzQqWZOSp6b38PNdi03EPsKX5gCogQd4NO2xMy6PRaDi86zA/dKyD3CCOApU+XZYeJKfg9c91F169wq2jjEr1srZ6B319e+B5D6gk9PUdsLZ6p1TllfSg62UFBQVRoUIFPv/8c2rWrImnpyf379//2+UGBwej1WqZN28edevWpVKlSsTGFl9g0cPDo+hla2v73LK0Wi35+fkl1nf8+HHatWvH3LlzGTZsWLHPDA0Ni9X1ZG/zy9Qll8sByM3NLdN5vIgkSdSvX59p06Zx8uRJlEol27dvBwofDjzuWX8RGxsb4uPjiwXeTz4YMDU1xdXVtajX/ln09PRKXZ/w7yaCbkEQBEF4S+jLZMz3cmaGhxMyYHN8Cu+F3iYxv/TDxI2MKuDh/jH1653Gt+rPWFk1ACRSUk8THj6K02fqc/v2XHJy7j23DJ1OQ1raeRSKENLSzj93izJJkmjSbyg+jZqh02rZs+gbsirnYuhvAzqJR+rPyKU+ZMSAUTlAB9tHIL+zG+cVy1F6uKNOSCB64EBUCYnPrMNEX8GqgbUIcLEgPVdFn+XnuR6XQaXa9jTpUxkJCV1kBcyNrMnNzSX8UDBT2pZDkmeRnGZAz5X7X9vCWMLbQZLkVPL84vG7v34KQCXPqUiS/LXUn56eTlhYWLHXgwcPiqXx9PQkOjqaTZs2cefOHRYtWlQU6P0dHh4eqFQqfvjhB+7evcvatWv55ZdfXpjvp59+Yvfu3URGRhIZGcmKFSv47rvv6NOnT1GaH3/8sdjQ6GPHjtGuXTvGjBnDe++9R3x8PPHx8aSkpJRY1+TJkzl58iRRUVFcvXqVyZMnc/z4cXr37l0sXWZmJvHx8cTFxXHhwgU+/vhjbGxsii1m9nedP3+eWbNmcenSJaKjo9m9ezdJSUlUqVIFKByafuXKFW7evElycnKJW4M1btyYpKQkvvnmG+7cucNPP/301P7j06ZNY968eSxatIjIyEhCQkL44Ycfij5/HJTHx8eXepi78O8kgm5BEARBeItIksRQZxs2VHPDXCHnUkYOrYNvcSUzp0zlyGR62Nq2IsB/NfUCj+Fa4UOUSltUqhTuRy/l7LnmhIT0Jj5hN1rtnz1Oj/c6vnK1PwaG67hytX+Jex1LMhkth4/Bo1ZdNCoVO777mvwAMPQrB1qJRwWTyZM3hJxk0DcDdLDjQxRR+3BZsRI9Z2dUDx4QPXgQ6uf80WlqoMeaQbWpVt6c1BwVvZef52Z8Jt71HWnwvicSchRRnhjpm5CamormSjLdG6QDai5Hyfh014kyXTvh38fWthW+VX9CX9+u2HF9fXt8q/6ErW3pVpt+GcePHycgIKDYa/r06cXSdOzYkfHjxzNq1Cj8/f0JCgpi6tSpf7vuatWqMX/+fObOnUvVqlVZv349s2fPfmE+rVbL5MmT8ff3p2bNmvz000/MnTu3WLuTk5O5c+dO0fs1a9aQk5PD7NmzcXBwKHq9aHGxxMRE+vXrh5eXF82aNePixYscPHiQFi1aFEv3xRdf4ODggKOjI+3bt8fY2Jg//vgDa2vrMl6V5zMzM+PkyZO0bduWypUrM3PmTL777jvatGkDwNChQ/Hy8qJmzZrY2Nhw5syZ55ZVpUoVfv75Z3766SeqVavGhQsXmDhxYrE0/fv3Z8GCBfz888/4+PjQvn17IiMjiz6fN28ehw4dwtnZmYBnLCwp/HdIuv9nj38zMjIwNzcnPT29xPkgb5pKpWLfvn20bdv2qbkpwpsn7s/bT9yjt5u4P6VzJyeP/lfvcTsnH0OZxPeVXehsZ/nS5Wm1ah49OkZM7CYePTrB4+2U9PQscbB/FwMDJ25FzuDprZcKewtLCl7UBQVsn/sV0eGXMTA2ofvU2cjO5JIb/gjkUM50AQZ5h0HPCFQ5hWV2+pECm8bc790HdUICBj4+uKxehfw5w1If93RfjUmnnImSTcPq4mFrSvCBKM7tuItankOWwxVU6gKqVKnC5oJoQq4VrpA8870K9K5V9aWv3dvmv/QzlJeXx71796hYsSIGBk+v3F8WhaM0LpKfn4i+vi0WFrVeWw93SbRaLRkZGZiZmRVbBE14e4h79HZ7m+5PSb+jShtbim+YIAiCILyl3I0M2FejEk2sTMnV6hgRcZ+5d+PQvuTzcplMgY1NC/yrraB+vZNUdB2Dvr49KlUq0Q9WcCtyOiXvdTzjuUPNFUolnT6egoOHF3nZWWyd+yWyJhYYeFuDBpKzxpNn2r4w4JYrC8vcOQpl4jFcVq1EbmVF3rVrPBjxAdr/zeH8K3NDPdYOro23gxnJWQX0XHaeO0lZ1GjtSs22rig0RhglVEYmybh+/TpDbHywcyhcIX3q9ttcio57qesm/HtIkhxLy7rY23fE0rLuGwm4BUEQ/koE3YIgCILwFjNTyFnn58YHzoV7un5/P4HB4VFkq//e4jsGBo64uY2lXuAJqvktw8ys+gty6MjPjyMt7eJzUygNDOkyeRrlXFzJTk1h65yp6LexxaCyFah1PEr9gHzrbqApAEkO6GDXKPRTT+GyYjkyU1Nyg4N5OGo02oJnL/hmYaRk/ZA6VLY3JSkzn55Lz3EvOZvaHSpSrbkzSpUFxmmeAFw4d4EZAf4Ymt5Hq9Wjz8rTJGSUbZi+IAiCIPxdIugWBEEQhLecXJL40sOJhZVdUEoS+5PTaR8Syf3cklf/LQ2ZTEG5ck1xLt+3VOnz85+94NljhiamdP18BhZ2DqQnJrB1zhcYdXLCwMsSnVpHctJA8p0GwpM95rvHYJBzHuelS5CMjMg+c4bYjz5Cp372yuOWxoWBdyU7ExL/F3hHp+RQ/z0PfBo6YZBrh3GWKwBnj51hVmMPZMoU8vKM6LJ0DyrNi1eEFwRBEIRXRQTdgiAIgvAv8b6DFdsDPLBRKrienUeb4FsEpWa9krL19Uu3BU9p0hlbWNJ1yteYWFnz6GE02775CpP3XNH3tEBXoCX5QTfy3ccWz7R7LEaaMJx/+hFJqSTz0GHiPv8c3XO2TLM20Wf9kLp42JoQn5FHz6XneJiaS6Melahc1x7DLGcMcu3R6XREHL/IxEYmIMsjNtmYfmt3lepcBUEQBOFVEEG3IAiCIPyL1DA35mCNSviZGpKi0tD98m1+jUn+2+VaWNR6wV7HoK/vgIVFrVKVZ25rR9fPv8bA1IyEu5Hs+n4m5j080Hc3Lwy8b7cm33da8Ux7xmGsiMBpwQKQy0nfuYv4GTOeu+WXjak+G4bWwc3GmNj0PHosPUdMei5N+lbGo7odJukeKAssUalU5ITeoUutdEDL2Rt6zDh4vFTnIQiCIAh/lwi6BUEQBOFfxtFAyY4ATzrbWqDWwSe3HjL51kNU2pffkKTkvY4LOdi/W6aFqazLO9P1s+koDQ15EHGVvT99i2VvL5QVzdHla0i+WoeCOguKZ9o7AVPTOzjOnQuSRNrGTSTNm/fcwNvW1ICNQ+tSsZwxMWm59Fx2jvjMfFoM8qainy2mqVVQqI3JysrCIzYXP4/7AKw4lsH2K9dKfS6CIAiC8LJE0C0IgiAI/0JGchmLvSvwaUV7AFbFJNPj8h1SVM+eB10az9vrWCYr3CIl+sFyUlLPlqlMOzcPOn/yBQo9JXeDL3Bw+SKs+1VB6WqGLk9D0vnKFDRZA5Liz0x7P8LcNhb7r6YB8Gj5Ch4tWfr8OswKA+8K1kY8SCkMvJOyC2g11IcKlW0wS/FBplWSlJREZ7kx5WyiADkTf7vOtfiEMp2PIAiCIJSVCLoFQRAE4V9KkiTGudqzumpFjOUyzqRl0ebSLW5kP3vLrdKwtW1F/Xon8fNdQ15uH/x819CwwSXKWTdFq83nypVhpKUHl6lMZ29fOkyYjEwu58aZExxbvwzrAd4oXUzR5alJPmFHQZvfQWH0Z6Z9E7GskIbtpEkAJC1YQMradc+tw968MPB2tjLk/qMcei47R0quijYj/CjvZod5SlUknZzo+/cZ62yNvlECGrUh3ZcdIfU5W5QJgiAIwqsggm5BEARB+JdrbWPOnuqeOBsouZ9XQPvgSP5ITn/p8iRJjoVFHdTq6lhY1EEuN6Rq1R+xsnwHjSaHsLBBZGRcKVOZbtVr0XrkBJAkLh/ax9kdGyk3qCpKZ1O0OWqSDxqi6rgbDK3/zLT/Y6y98yk3ahQACTNnkrZ123PrcLQwZOPQujhZGHIvOZuey86RWqCi/chqOJZ3xDS1Cugk7kTc4GM/M2SKTLKzzem8ZBsasaK5IAiC8JqIoFsQBEEQ/gOqmBhyoEYlAi2MydJo6X/1Hj/cT3juXOiyksv18fP7BQuL2mg0WYSGDSAz60bZ2li/Ec0HfwjA+e2/EfzHTsoNqopeeRO02WqSdqpRdd4H5s5/Ztr/CeVqSFgNGABA3NSpZBw48Nw6ylsasXFoXRzNDbiTlE3vZefJ0GjoMLoajjYumGR4APAwLJzhATKQ1NyPt2DI5u1luyCCIPwtq1evxsLCosz5BgwYQOfOnV95ewThdRJBtyAIgiD8R1grFfxWzYN+jtbogJl34xh5PZrcV9SLK5cbUs1vGWZm/qjV6YSG9iU7+06ZyqjWog0Neg0A4OT6VYQHHcZmUFX0HI3RZqtI+j0NVZd9YFu1KI90cDK2jUyw6NYNtFpiPv6ErBMnnluHi7URG4bWxd7MgMjELHovO08OOjqO9cfR3B3DrMKgPv/aDdp6pwFw7IoB3x0/WrYLIrx1NDodZ1Iz2Z6QypnUTDSv6KHT/1cqlYpJkybh6+uLsbExjo6O9OvXj9jY2BfmPXLkCPXq1cPU1BR7e3smTZqEWv3ya048tnDhQlavXl30vnHjxowbN+5vlysIr9NLBd1qtZrDhw+zZMkSMjMzAYiNjSUr69XsFSoIgiAIwsvRk0l84+XMnErlkUuwLSGVzqGRxOUXvJLyFQoT/KutwtTEB5UqhdDQvuTk3C9TGbU7daV2p64AHFr2E7fCzlJusC969sZos1QkrY9D1Wk7uNQvyiMd/Az71jaYtWsHKhUPx4wl+/yF59bhWs6YDUPrYGuqz82ETHovP0++HDqODcDBoDL6uTZotVqcH8bi7VwYQPx4MIMDN8SK5v9We5PSqHk2gvfC7vBBxH3eC7tDzbMR7E1Ke9NN+9fKyckhJCSEqVOnEhISwrZt27h58yYdO3YsMd/ly5dp27YtrVu3JjQ0lM2bN7Nr1y4+/fTTv90mc3Pzl+ohF4Q3qcxB9/379/H19aVTp06MHDmSpKQkAObOncvEiRNfeQMFQRAEQSi7AU7l2FzNHUuFnMuZubS+dIuQjOxXUraenhn+/qsxNvYkvyCB0NA+5OW9uOfrSe/07E+1Fm1Ap2P/j/O4fyuMckOqorAzQptZQPKae6jbbYDKHYrySIem4NjFGZMmTdDl5/Pwgw/IvfL8ueVuNiZsGFqXcib6XI/LoM+K86j1JTqPq469zBdFgRn5+fk0yc3EyiIedHqM2nCV28liRfN/m71JaQwJjyIuX1XseHy+iiHhUa8t8M7MzKR3794YGxvj4ODA999/T+PGjRk/fjwA+fn5TJw4EScnJ4yNjalTpw7Hjx8vyv94iPWePXvw8vLCyMiIrl27kpOTw5o1a3B1dcXS0pIxY8ag0WiK8rm6uvL111/Tr18/TExMqFChArt27SIpKYlOnTphYmKCn58fly5dKsrz6NEjevbsiZOTE0ZGRvj6+rJx48YSz8/c3JxDhw7RvXt3vLy8qFu3Lj/++CPBwcFER0c/N9/mzZvx8/Pjiy++wMPDg0aNGvHNN9/w008/FXXYPbZjxw48PT0xMDCgVatWPHjwoMQ2PTm8fMCAAZw4cYKFCxciSRKSJBEVFVVifkF4E8ocdI8dO5aaNWuSmpqKoaFh0fEuXbpw5MiRV9o4QRAEQRBe3juWphyoWQkvYwMSCtR0Cb3NlviUV1K2UmlFgP9ajIwqkpcfS0hob/LzSx+sSpJEs0EfULl+I7QaDbvnzSYu+hY2Q31R2BqiySggaeUt1M2XQI2Bf+Y7/AVOPTwwCqyLNieH6KHDyLt567n1eNiasHFoHcqZKLkWm0HfFRfQGSvoMq4m9mp/5GpDsrMy6G1SgFI/FXWBKe8uPUBWfv7fuj7C36PT6cjWaEr1ylCr+fxWDM8aSP742JTIGDLU6lKVV5Z1ECZMmMCZM2fYtWsXhw4d4tSpU4SEhBR9Pnr0aM6ePcumTZu4cuUK3bp1o3Xr1kRGRhalycnJYdGiRWzatIkDBw5w/PhxunTpwr59+9i3bx9r165lyZIlbNmypVjd33//PfXr1yc0NJR27drRt29f+vXrR58+fQgJCcHd3Z1+/foVnU9eXh41atRg7969hIeHM2zYMPr27cuFC88fMfIs6enpSJJUYm9zfn4+BgYGxY4ZGhqSl5dHcPCfux/k5OQwc+ZMfv31V86cOUNaWho9evQodVsWLlxIYGAgQ4cOJS4ujri4OJydnV+cURD+YYoXJynu1KlTBAUFoVQqix13dXUlJibmlTVMEARBEIS/r4KhPnuqezIy4j5/PMpg1PVoIrLy+NzdAbkk/a2y9fVtCPBfS3BIT3JzowkJ7UuN6htQKsuVKr8kk9H6w/EU5OZwN+Qi27/5iu5fzMZmqB9JS6+gTsolacU1bIbORmFiDydmAyA79hXOfT4nOjeP3LAwogcPpsLaX9GvWPGZ9XjambJ+SF16LjvH1Zh0+q28wNrBtekyrja/z1eRYHSJzOQEBjrqs/R+HhkZ5ei0fAOHPuiPTCaWv3kTcrRa3E9efSVl6YC4fBWVToWXKv2dhr4Yy+UvTJeZmcmaNWvYsGEDzZo1A2DVqlU4OjoC8ODBA1avXk10dHTRsYkTJ3LgwAFWrVrFrFmzgMJ504sXL8bd3R2Arl27snbtWhISEjAxMcHb25smTZpw7Ngx3n///aL627Zty/DhwwH44osvWLx4MbVq1aJbt24ATJo0icDAQBISErC3t8fJyanYqNTRo0dz8OBBfvvtN2rXrl2qa5OXl8ekSZPo2bMnZmZmz03XqlUrFixYwMaNG+nevTvx8fFMnz4dgLi4uKJ0KpWKH3/8kTp16gCwZs0aqlSpwoULF0rVJnNzc5RKJUZGRtjb25fqHAThTSjz/yRarbbY8JbHHj58iKmp6StplCAIgiAIr46pQs5q34qMrWAHwM8PEul35R4Z6qf/Py8rAwMHqgesRV/fnpycO4SG9UelSit1frlCQfvxn1LeuyoFublsnfUFaRkJhT3e5QzRpOaTtDwcdfXx0P77onyyUzNxGeSNfpUqaJKTiR40GFUJizt52ZuyfkgdLIz0uPwgjf4rL6C00ue9MfWwzvEDnYz8uGi6u2YDWu48sOXDbb//jSsj/NfdvXsXlUpVLDg0NzfHy8sLgIiICDQaDZUqVcLExKTodeLECe7c+XMBQiMjo6KAG8DOzg5XV1dMTEyKHUtMTCxWv5+fX7HPAXx9fZ869jifRqNhxowZ+Pr6YmVlhYmJCQcPHiwaJr5+/fpi7Tx16lSx+lQqFd27d0en07F48eKi423atCnK4+PjA0DLli359ttvGTFiBPr6+lSqVIm2bdsCFHuQpVAoqFWrVtH7ypUrY2FhwfXr14mOji7WnscPKQTh36jMPd0tW7ZkwYIFLF26FCgcHpaVlcWXX35Z9MMkCIIgCMLbRSZJTHZzoLKxAeNvRHMkJYN2wbf41deNikb6f6tsQ0NnqgesIzikJ1lZNwgNG0D1gLUoFKV7GK+n1Kfzx1/w+4zPSbgbyZavp9Djq28oN9SXpCVX0KTkkbz0CjbDeyPvXg5+HwA6DbKg76gwZDRRP+VTcPcu9wcOxHXdOhQ2Ns+sp4qDGesG16H38vOERqcxcNVF1gyqTdcPG7Lp5zzSjK9hGHuXRs5unHhgzYFLhvzkeISR9Zr9resjlJ2RTMadhr4vTgicS8ui95V7L0y33q8idS1MXpjO6BWNbsjOzkYulxMcHIz8Lz3nTwbUenp6xT6TJOmZx7Ta4rsQPJlG+t+olWcde5zv22+/ZeHChSxYsKBoNfJx48ZRUFC4yGLHjh2LepwBnJyciv79OOC+f/8+R48eLdbLvXz5cnJzc5+qf8KECYwfP564uDgsLS2Jiopi8uTJuLm5PfuC/YWjoyNhYWFF762srEqVTxDeRmX+rfLdd99x5swZvL29ycvLo1evXkVDy+fOnfs62igIgiAIwivSxc6SHQGeOOjrEZmTT5vgW5xKyXxxxhcwMqpIgP+v6OlZkpl5lbDLg1CrS79wm76REe9OnoaVkzNZKY/YMnMK+bocbIb5IrfUR/0oj6SlV9GUbw39d4G88EGB/OIPuA6tgp6TE6r70UQPHoImLe259VR1Mmfd4DqYGii4dD+VgasvYlbemG5Dm2OaU9jb6Jp4F3frZEDOd3tTOXrn1QxzFkpPkiSM5fJSvRpbmeGgr8fzJktIgKO+Ho2tzEpVnlTKaRdubm7o6elx8eLFomPp6enculW4xoCfnx8ajYbExEQ8PDyKvd7EUOgzZ87QqVMn+vTpQ7Vq1XBzcytqK4CpqWmxNj5eu+lxwB0ZGcnhw4extrYuVq6Tk1NRngoVKhT7TJIkHB0dMTQ0ZOPGjTg7O1O9evWiz9VqdbHF3m7evElaWhpVqlRBoVAUa8/zgm6lUvnMUbiC8DYpc9Dt7OzM5cuX+fzzzxk/fjwBAQHMmTOH0NBQbG1tX0cbBUEQBEF4hfzNjDhQoxLVzYxIU2voceUOyx8mFS24pNHpOJuWzQWFEWfTsku917GJSSUC/NegUJiRnh7ClSvD0GjySt0uIzNzuk6ZgZmNHWnxcWydORW1Qo3NUD/kFvqok3NJWn4FjXVtGHoElMYAyC8vw3W4FwobG/Jv3SJ66DA0Wc8P+H3Lm7N2cB1M9RVcuJfC4NWXsKpoxnv922CY64gkQf3saCyMU9FpDBmxNpSotPhSn4fwz5JLEl97FvbK/jVcfvx+hqfT317D4K9MTU3p378/H3/8MceOHePatWsMHjwYmUyGJEl4eHjQq1cv+vXrx7Zt27h37x4XLlxg9uzZ7N2795W2pTQ8PT05dOgQQUFBXL9+neHDh5OQUPLihyqViq5du3Lp0iXWr1+PRqMhPj6e+Pj4oh7y5/n222+5evUq165dY8aMGcyZM4dFixYV6/XX09Nj9OjRnD9/nuDgYAYMGEDdunVLPcccCteVOn/+PFFRUSQnJz81IkAQ3gZlCrpVKhXu7u5ERkbSu3dvvvnmG37++WeGDBlSbCVzQRAEQRDebnb6emzz96CrnSUaXeHqzhNvPmBnQio1z0bQPTyKFUY2dA+PKtNex6amPvhXW4VcbkJq2jmuXv0Arbb0K4GbWpWj65QZGFtYkhQdxba509Aa6bAZ6ovcXIk6MZek5VfRmHjBB0FgWNj7pYhYR8Wh7sgtLMi7epWHH3yANu/5Ab+/swVrBtfGRF/B2buPGPrrJey9LHnv/U4o862QoaGtNhY9RTYFedZ0WbqLHFXpHyAI/6x2NhYsr+qKvX7xYdkO+nosr+pKOxuL11Lv/PnzCQwMpH379jRv3pz69etTpUqVopW7V65cSb9+/fjoo4/w8vKic+fOXLx4ERcXl9fSnpJMmTKF6tWr06pVKxo3boy9vX3R1lvPExMTw65du3j48CH+/v44ODgUvYKCgkrMu3//fho0aEDNmjXZu3cvO3fufKo+IyMjJk2aRK9evahfvz4mJiZs3ry5TOc1ceJE5HI53t7e2NjYlLiVmSC8KZKuLPsiUDiE5PDhw1SpUuV1tem1ysjIwNzcnPT09BJXXXzTVCoV+/bto23btk/N6xHePHF/3n7iHr3dxP15e+h0OhY/SGLGndhnbrkEf/YWliV4SU27SFjYALTaPGzKtaBq1R+QyUp/r5Oio/ht2qfkZWdRwS+Azp98gS5dTdLSK2gzCtCzN6bcUF/kpMMv70Bm4YrIKqfW3F1yF21WFsaNGuL8ww9If9lx5UmXolLot/ICOQUaGniWY1m/mty5FMv2PZtR62WRLrNmR64zOp0eVdwfsG/I8FIPP36d/ks/Q3l5edy7d4+KFSs+tc1UWWl0Os6lZZFYoMZWqaCuhckr7+EuSXZ2Nk5OTnz77bd069YNMzMzsQL+W0qr1ZKRkSHu0Vvqbbo/Jf2OKm1sWeYzGDlyJHPnzkWtVpe9xYIgCIIgvFUkSeJDF1vW+FZ87pzYx8H41MiYUg81t7SoRTW/pchkSpKSDxERMRGdrvTzLm1cXHl38lfo6Rtw/0oo+xZ9i9xSic1QX2Smeqjis0lefhWtZA6jLoFV4XxsvZgDuA2wQzIwIPvESWI+mYSuhL9ZarpasWpALQz15JyKTGbEumA8ajnSpllnZBp9zLWPaGaYDMD1O86M272+1Ocg/PPkkkR9S1O62FlS39L0tQfcoaGhbNy4kTt37hASEkLv3r0B6NSp02utVxCEf5cyB90XL15k27ZtuLi40KpVK959991iL0EQBEEQ/n2M5bLn9nRDYeAdm6/iXFpWqcu0sqqPb9WfkSQ9EhL3cP36ZHS60s+3dPD0otPHU5ArFEReCOKPJT+gsDbAZqgfMhM9VHHZJK0IR6s1gA/PgX3hatd6yadw62OBpKcg88AB4qZ+ga6EeZ513KxZOaAWBnoyjt9M4sN1Ifg2dKNpnfZIWjnltQ8JMEwFYOdZE5ZePFjqcxD++7777juqVatG8+bNyc7O5tSpU5QrV7q96gVB+P+hzEG3hYUF7733Hq1atcLR0RFzc/NiL0EQBEEQ/n0SC0o3gq206R4rV64JVX0WIEly4uK3cvPWNMoys62Crz/txk1Cksm4duIwx39djsLGEJshvsiMFahiskhaGY5WLYNhJ8ElEABlVggVexiBXEb69u0kzJ5TYr2B7tas6F8LfYWMIzcSGbkhhDptfKhbtTnoJHy1t3FRZoFOjzk7Uzh9/0qZroPw3xQQEEBwcDBZWVmkpKRw6NChYntlC4IgwEvs071q1arX0Q5BEARBEN4gW2Xp/iQobbpieWxb4639lmsRHxETsx6ZTB9Pj89KPTfas1YgrUaM5cDP3xOyfxf6xibU69aLckP8SF52BdWDTJJXhlNucFVkA/fDhu4Q+Qf6qhtUfK8C937TkLp2LTJjI2zHjXtuPfU9Cud0D/n1EociEhizMZRFPeuQlZPF1agzvMNN9sh9yFCbMfjXCxwea4uz2T+/9ZMgCILw7/LSs9KTkpI4ffo0p0+fJikp6VW2SRAEQRCEf1hdC5MS9zqGwpWg61qYvFT59vadqFJ5FgAPHqzk7t35Zcrv06gZTQYMB+Dslg2E7NuJ0sGYcoN9kQwVFERnkrzqGtoCLfT+Haq+B4CB7D6unXWAjke/LCF52bIS62lYyYYlfWuglMvYHx7PuM1hdOzTFDdbP5SSlubyW+hJKvKzHeiy7DdyVDllvxiCIAjC/ytlDrqzs7MZNGgQDg4ONGzYkIYNG+Lo6MjgwYPJyRH/8QiCIAjCv1FJex0/ZqmQk6t5+T1wHR27U6nSNACi7v/MvaifypS/epsO1OteuFDVsTXLCD9+GKWTCTaDqyIZyCmIyiB5dTjaAg10XQkB/QAwNIinQrt8QEfSvPmkbNhQYj1NvGxZ3Kc6enKJvVfi+Oj3K/Qc1gl7s4qYyfJpKo8CtCQnufP+uqVoyzBPXRAEQfj/p8xB94QJEzhx4gS7d+8mLS2NtLQ0du7cyYkTJ/joo49eRxsFQRAEQfgHPG+vYys9OUpJIiI7jy6ht0nIV710Hc7l++Lh8SkAd+/OJzp6RZny1323BzXadQbgj18WEXk+CGV5U2wG+yLpyym4l8GjNdcKA+9OP0CdDwAwMk3BpVU2oCNh+gzSd+4ssZ5mVez4qVd1FDKJXZdjmbT1KgNH9sLcwBYHRRp1ZIVblF296c7H+1eX6RwEQRCE/1/KHHRv3bqVFStW0KZNG8zMzDAzM6Nt27YsW7aMLVu2vI42CoIgCILwD2lnY8GlQG9+q+rK4JwkfqvqytX6VdlZ3RNrPQVXs3JpF3KLyOy8l66jgstQKlYcB0Dk7Vk8fFj6bbgkSaJR38FUbdISnU7L3kXfEHUlFKWzKeUGVUVSysm/k86jtRHoVFpoMwfeKewUMLbMwLlZBqAjdvJnZPzxR4l1tfSx58deAchlEttCY/h8VwRDRw3AUGFGZb1YKkmpgIytp81ZGbL3Ja+GIAiC8F9X5qA7JycHOzu7p47b2tqK4eWCIAiC8B8glyQCLYyprc4h0MIYuSQRYGbE3hqeVDRU8jBPRceQSC6mZ790HRVdR1GhwggAbt76gti40j+4lySJFsNGUqlOfTRqNTu/+5rYW9fRr2BGuUE+SEoZ+ZFpJK+NQKfWQvMvoMlnAJjYZOPcOA20GmI+mkjWqdMl1tW6qgOLehQG3luCHzLjwG0Gj+iPUq5PHeUd7MgFrQFf70gm6EHYy14OQRAE4T+szEF3YGAgX375JXl5fz7hzs3N5auvviIwMPCVNk4QBEEQhLeHq6E+u6tXIsDUiFS1hm5ht9mflPZSZUmShLvbRMqX7w/A9euTiU/YXer8MpmcNqMn4lqtOur8fLbNmUZi1F30Xc0pN8AHSU9G/q1UHq27Xhh4N5oEzb8CwMQ+l/INUkFVwMPRo8m5dKnEutr5OfD9+/7IJNh86QHzTsbSp18f9CQZjfVvYIIabUE5Bv16mpjMuJe6HsJ/j6WlJTt27HjTzRAE4S1Q5qB74cKFnDlzhvLly9OsWTOaNWuGs7MzQUFBLFy48HW0URAEQRCEt0Q5pYItAe40tzYjT6tjcHgUq2KSX6osSZKo5DkVR8cegJaIiI9ITDpY6vwKPT06TvgMRy9v8rOz2TrrC1LjYtB3s8C6vw8oZOTdSOHRhhvoNFp4Zxy0mgOAqVMeTu+koMvL5cHwEeReDS+xro7VHJnf3R9Jgo0Xolkels57XbtiKKlporyJQqcjL7Mi7676Vaxo/gZptDrO3nnEzrAYzt55hEZb+j3hX8aAAQPo3Lnza63jdTh9+jT169fH2toaQ0NDKleuzPfff19inry8PAYMGICvry8KhaJM571gwQK8vLwwNDTE2dmZ8ePHF+vAGzBgAJIkFb2sra1p3bo1V65cKbHcqKgoJEkiLCys1G0pyerVq7GwsHglZZVG48aNGVfCNobCf0eZg+6qVasSGRnJ7Nmz8ff3x9/fnzlz5hAZGYmPj8/raKMgCIIgCG8RY7mc1VUr0sfBGi0w+dZDZt2JRacre4AjSRKVvWZgb98ZnU5DePhYkh8dL3V+PQMDukz6AhtXN3LS0/j96ylkJCdh4GFBuf7eoJDIi3hEysb/Bd6BH0Db7wAwK5+PU71UtNlZPBg6lPzIyBLr6hzgxLddqyFJsPbcfX6/q6Vli1ZYy3J4R3kHgITYqvTe9INY0fwNOBAexztzj9Jz2TnGbgqj57JzvDP3KAfCxeiDvzI2NmbUqFGcPHmS69evM2XKFKZMmcLSpUufm0ej0WBoaMiYMWNo3rx5qevasGEDn376KV9++SXXr19nxYoVbN68mc8++6xYutatWxMXF0dcXBxHjhxBoVDQvn37lz7H16mgoOBNN0H4l3mpfbqNjIwYOnQo8+bNY968eQwZMgRDQ8NX3TZBEARBEN5SCpnEt17l+djVHoBF0YmMuRFNgbbswaYkyahSeS62tm3R6VRcvfohKSlBpc5vYGxC18+mY+ngRGZyEltmTiUnIx0DT0vK9fUGuURu+CNSNt9Ep9FB7aHQrrBXz8wlD8fAVDRpqUQPGkxBdHSJdXWtUZ657/oBsDooiiOp5tSqWQdXeSrV5LEAhF6rzORDzw9ehFfvQHgcH6wLIS69+AJ/8el5fLAu5K0IvCdNmkSlSpUwMjLCzc2NqVOnolL9uRPAtGnT8Pf3Z+XKlbi4uGBiYsKHH36IRqPhm2++wd7eHltbW2bOnFms3Pnz5+Pr64uxsTHOzs58+OGHZGVlldiWgIAAevbsiY+PD66urvTp04dWrVpx6tSp5+YxNjZm8eLFDB06FHt7+1Kfd1BQEPXr16dXr164urrSsmVLevbsyYULF4ql09fXx97eHnt7e/z9/fn000958OABSUlJpa7r+PHjSJLEkSNHqFmzJkZGRtSrV4+bN28Wpbl8+TJNmjTB3NwcFxcXatWqxaVLlzh+/DgDBw4kPT29qMd92rRpALi6ujJjxgz69euHmZkZw4YNK6orLS2tqOywsDAkSSIqKqro2JkzZ2jcuDFGRkZYWlrSqlUrUlNTGTBgACdOnGDhwoVF9T2ZT/hvKXPQPXv2bFauXPnU8ZUrVzJ37txX0ihBEARBEN5+kiTxUUV75ns5I5fg9/hU+l65R5ZaU+ayZDIFPt7zKVeuOVptPpevDCMtreS51k8yMreg65QZmFrbkBr7kK2zviA/JxsDLyusHwfeV5JJ+e0mOq0Oag2C9gsAMK+Qh2PdNNRJiUQPGIAqPr7EurrXcmZWF18AVpy+x2WpApU8vfBXxOAipQEKfj9hyZrLJW9LJjyfTqcjp0Bdqldmnoovd13jWeMsHh+btiuCzDxVqcp7mREbpWFqasrq1auJiIhg4cKFLFu27Kkh3Xfu3GH//v0cOHCAjRs3smLFCtq1a8fDhw85ceIEc+fOZcqUKZw/f74oj0wmY9GiRVy7do01a9Zw9OhRPvnkkzK1LTQ0lKCgIBo1avRKzvVJ9erVIzg4uCjIvnv3Lvv27aNt27bPzZOVlcW6devw8PDA2tq6zHV+/vnnzJs3j0uXLqFQKBg0aFDRZ71796Z8+fKcP3+eY8eO8cknn6Cnp0e9evVYsGABZmZmRT3uEydOLMr33XffUa1aNUJDQ5k6dWqp2hEWFkazZs3w9vbm7NmznD59mg4dOqDRaFi4cCGBgYEMHTq0qD5nZ+cyn6vw76Aoa4YlS5awYcOGp477+PjQo0cPJk2a9EoaJgiCIAjCv0MvR2ts9fUYGh7FidRMuoTeZp2fG3Z/2e/7RWQyPar6LOLK1eGkpJwi7PJgqgesxczMr1T5zcrZ0nXKDDZ9OYnEe3fYPnc67332FYaVrbDuVYVH66+TezmJVJmEZbdKSDUHgiSD3WMwd80FIPYcRA8YQIX161GU8Md+rzouaHQ6pu4IZ+mpe3zQ0BcnxywaxN5hX743qRoTvt4WR6VywQQ61SjTdRAgV6XB+4vSz+8viQ6Iz8jDd1rJW8Q9FjG9FUbKMv+J/EJTpkwp+rerqysTJ05k06ZNxQJkrVbLypUrMTU1xdvbmyZNmnDz5k327duHTCbDy8uLuXPncuzYMerUqQNQbE6wq6srX3/9NSNGjODnn39+YZvKly9PUlISarWaadOmMWTIkFd3wv/Tq1cvkpOTeeedd9DpdKjVakaMGPHU8PI9e/ZgYmICQHZ2Ng4ODuzZsweZrOwDc2fOnFn0AOHTTz+lXbt25OXlYWBgQHR0NB9//DGVK1cmIyODgICAojrMzc2RJOmZPflNmzblo48+Knr/4MGDF7bjm2++oWbNmsXuxZPTcZVKJUZGRmUaOSD8O5X5WxwfH4+Dg8NTx21sbIiLe/NDdwRBEARB+Oc1tzZjW4DH397LWy7Xx893MRYWddBosggNG0Bm5vVS57dyLM97n01H38iYmBvX2D1/Nhq1CkMfa6x7VQYZ5IQmkro1srDHu0Z/6PgDIGHumotDnTQKoqKIHjgATXp6iXX1rVuBaR28AVh88j4ZznUoZ2FGU+Ut9FGjyndg6K8neJDx4j/Ohf++zZs3U79+fezt7TExMWHKlClE/2U6g6urK6ampkXv7ezs8Pb2LhZ42tnZkZiYWPT+8OHDNGvWDCcnJ0xNTenbty+PHj0q2srXxMSk6DVixIhi9Z06dYpLly7xyy+/sGDBAjZu3PjS5xcdHV2srlmzZgGFQ75nzZrFzz//TEhICNu2bWPv3r3M+D/27js6iqqN4/h3tqd3SIAAodeQIIiKKIgCCigiFhQBQez6IlYUKQIKFoqKKB2UolKliCBNBaUmoUOAAKGk97LZMvP+sRAJqShKez7n7Ekyc+fO7IzE/PbO3GfkyCLbt2vXjujoaKKjo9m2bRsdO3bk3nvv5cSJEwDce++9hX2XN49UePhfH9Sdzy3nz9mgQYN4+umn6dChA+PHj+fo0aMVen8tWrSo2Im4wPmRbiEu+WO80NBQNm/eTFhYWJHlmzdvpkqVKpftwIQQQghxbTlfy7tnzFHi8m3cvyuWOeG1aOnjcUn96PVuNAufQnR0XzKzooiK7k3z5vPw9Khboe0rh9XmwbeGsXD0e8RF7+SnL8Zx3yuv49YkEP/HGpC24CB5OxNRdAq+D9ZBad4bUODHl/ENywcNzm6LJb5fX6rP+RadR+nH37d1GA5VY9TKA3zxazyvtG5D0N61tNWOsMZen5zM+jw2exY/P/sqnibPSzoPNzI3o57973esUNttcWn0nbm93HaznmrJzWH+Fdr35fbHH3/wxBNPMGLECDp27IiPjw8LFizg008/LdLOaCx6d4iiKCUuU8/NnXD8+HG6dOnC888/z+jRo/H39+f333+nf//+2Gw23N3di8zs7e3tXaSv83/PN23alMTERIYPH07Pnj3/1nusUqVKkX35+7vO9XvvvceTTz5ZOIretGlTcnNzeeaZZ3j33XcLP1Dw8PCgTp06hdtPmzYNHx8fpk6dyqhRo5g2bRr5+fklnqeLXbheURSAwnM2fPhwHn/8cVasWMGKFSsYM2YMCxYs4MEHHyyzT4+Lfg+cP+4LH0e48Bl9QOa8EoUueaR7wIABDBw4kJkzZ3LixAlOnDjBjBkzePXVVxkwYMC/cYxCCCGEuEZcrlreBoMnzZrNwMurMXZ7GlFRvcnLO17h7as2aMT9r72DTm/g0B+/8cu0L9E0DffwIPwfqQ8K5G5PIGPZEdcfzc2fhAcmAQq+tfIJuTmD/H0HiH+6D2pBQZn7erpNLd65rwEAn21OwNygDdVMebQyuEboTp+KpO/343Cql/6s+41KURTcTYYKvdrUDSLEx4JSWl9AiI+FNnWDKtTf+ZB2OW3ZsoUaNWrw7rvv0qJFC+rWrVs4gvtP7Ny5E1VV+fTTT7nllluoV68eZ86cKdKmTp06ha9KlSqV2peqqhSU8996WQwGQ5F9nQ/deXl5xW4R1+tdH2yU9fy8oijodLrCoF21atXCvmvUqPG3jxOgXr16DBw4kMWLF/Pggw8yc+ZMwHW7t9NZsX+nQUFBAEXu9L24dFl4eDjr1q0rtY9L2Z+4tl1y6H7jjTfo378/L7zwArVq1aJWrVq8/PLLvPLKKwwePPjfOEYhhBBCXEMuVy1vo9GbyIjZeHjUw2ZLYldUL/LzT1d4+7CIm7jv5ddRFB171v3Mr3NnuoJ3RCX8Hq7nCt5bE8j48ajrj//IJ6Dbl1wYvPOi9nL6md5oF41gXeyZO2rzZqf6AEzcmoFn/dtoYEimvj4JFIXoPZG8u3bSJZ8DUT69TmHYudv8L47L538e1rURet3lD9MAmZmZhbdFn39d/Lxv3bp1OXnyJAsWLODo0aN89tlnLFmy5B/vu06dOtjtdj7//HOOHTvGN998w1dffVXudpMmTWL58uXExsYSGxvL9OnT+eSTT+jVq1dhmy+++KLYrdH79+8nOjqatLS0Iu+7LF27dmXy5MksWLCAuLg41q5dy3vvvUfXrl0LwzdAQUEBCQkJJCQkcODAAV5++WVycnLo2rXrpZ2UMuTn5/PSSy+xceNGTpw4wZ9//smOHTto2LAh4Lq9Pycnh3Xr1pGSklJ4i35J6tSpQ2hoKMOHDyc2NpaVK1cWu3Nh8ODBbN++nRdeeIHdu3dz8OBBJk+eTEpKSuH+tm7dyvHjx0lJSSkcjRfXn0sO3YqiMHbsWJKTk/nzzz+JiYkhLS2NoUOH/hvHJ4QQQohr0OWq5W00+hEZ+Q3u7rUoKDhLVFQvrAVlzy5+ofq33s49z7wEwI7li9m29AfX8TWvjN9D54L3H2fJXHHMdWwRj0O3yVwYvHO2xnDmuV5o5YxIvdC2Dq93qAfAxF1WvGs3p5XhJJWVLByKjuUbqjMrauElvX9RMZ2ahDC5V3OCfSxFlgf7WJjcqzmdmhSfj+hy2bhxI5GRkUVe77//fpE2999/P6+++iovvfQSERERbNmypcIzYJelWbNmjBs3jrFjx9KkSRPmzp3Lhx9+WO52qqoyePBgIiIiaNGiBZMmTWLs2LFFjjslJaXY88733XcfkZGRLF++vMj7LsuQIUN47bXXGDJkCI0aNaJ///507NiRr7/+uki71atXExISQkhICK1atWL79u388MMPtG3btuInpBx6vZ7U1FR69+5NgwYN6NevH506dWLEiBGAa6b15557jkcffZSgoCA++uijUvsyGo3Mnz+fgwcPEh4eztixYxk1alSRNvXq1WPNmjXExMRw8803c+utt7Js2TIMBtcTvq+//jp6vZ5GjRoRFBRU7Bl/cf1QtH9YF+HEiRPk5ubSoEGDvzW74H8tKysLHx8fMjMziz3XcjWx2+2F5RTKe25F/Pfk+lz95Bpd3eT6XP0u1zXSNI1xxxP5+LgrKD8c7Me4+tUxXuKoo7UggV07e5JvPYm7ey2aN5+P2RRY4e13rFjCpm+mA9C+3/NEdOwMQO62BNIXxwLgeUdVfO4Nc91eHPMdLH0ONJX0Y24kbPPF986mBH/1fbm3H0/45TATfokFNF6qnUXKqWOsKGhEDmaCyGPCC6G0rn7LJb3/i11P/4asVitxcXGEhYVhsVjK36AMTlVjW1waSdlWKnlZuDnM/18b4S6LqqpkZWXh7e19Tfx9fCOSa3R1u5quT1m/oyqaLSv8DmbMmMG4ceOKLHvmmWeoVasWTZs2pUmTJhWaOl8IIYQQN46Sa3kfu+Ra3hZzMJGR32A2h5CXd4zoqN7Y7ekV3r5Flwe5pfujAKybMZkDv20AwOPmYHy7uSZvyvn1NFk/H3eNeDd7FB78GhQdfudGvDM27SHpxe5o5dwC+r/2dXn5rjqAwqSj3vgFVeYuUywGnCTjzrCvj3A84/glvX9RMXqdwq21A3ggoiq31g64IoFbCCEuVuHQPWXKFPz8/Ap/Xr16NTNnzmTOnDls374dX1/fwlszhBBCCCEu9HiVAGY3rYWbTsfGc7W8kwrKfk76Ym5u1Wge+Q0mUyVycg8RFd0Xuz2rwtvf9kgvIjp2AeCnL8dzdOdWADxvCcH3/toAZG88RdbacxNchT8CD04BRVd4q3na+gOkvNIVnI5S96MoCoPuqcfzbWujoTD1VGWCfdxoYzwGwBGnH2+MX09mQdklyYQQQlwfKhy6Y2Nji9SnW7ZsGQ888ABPPPEEzZs354MPPihzdj4hhBBC3NiK1/KO5UjepdXydncPIzJyDkajP9nZe4mJ6YfDkVuhbRVF4a6+z9CoTTs0VWX5+DGc3LsbAM/bquDTpRYA2evjyfrlfPB+GLpPLRK8U9YdJfXVTmDPL3Nfb3aszzN31MKBnm+SQ6ntYSfScAqAndbKvD1uEXbnpX3wIIQQ4tpT4dCdn59f5D71LVu2cMcddxT+XKtWLRISKj6xiRBCCCFuPOdreYe5mYi32ui6M5YdmRULzed5etQlMmI2BoM3mVlRxOwegNNZegC+kKLT0fH5gdRucQtOu52lH48k4chhALxur4rPfa66xVm/nCRrw7lJjZr2gIemgaIvDN5Ja0+R/to9kJ9R+r4UhcH3NqBf6zDyMbEoqyYR5hRq6tJQFdiYXpnRk767pPcuhBDi2lPh0F2jRg127twJuGYz3LdvH61bty5cn5CQgI+Pz+U/QiGEEEJcVy6u5d3jb9Ty9vJqRETELPR6TzIytrJ7z/OoasVqDOv0err8702qNwnHbs1n0YfDSIl3jWx73VEN7041Acj6+QTZm87NV9PkIXhoGpqixzfMFbwT1iaT+XZ7yDpbyp5cwfu9Lg3pc2sN0lV3fs4Po7XpOP5KLvk6WHXSn69mLbuk9y6EEOLaUuHQ3adPH1588UVGjhzJww8/TIMGDbjpppsK12/ZsoUmTZr8KwcphBBCiOtLSbW8Z11iLW8f72ZENJuOTudGWtpv7Nn7Cqpasdu1DSYTD7w+hJA69bHmZLNw9HtkJLru2PNuG4r3PTUAyPzpONm/uW4Jp0l3lB7TC4N3lVaZnFmbQ/Z7d0NKbKn7UhSF4fc3ptct1Tmj+rDNHspdpiNYsJNk0Fi828SSRZsu6b0LIYS4dlQ4dL/55psMGDCAxYsXY7FY+OGHH4qs37x5Mz179rzsByiEEEKI69PFtbzfPnyKD4+dvaRa3r6+LWgW/jU6nYmUlF/Yt38Qqlr6JGcXMrm58+Dg4QSG1iA3PY2Fo4eQk5YKgHf76ni1rw5A5so4sjefdm3U+EGUHjPQFD0+NfOpcnMmp39xkDuyE5zaWeq+FEXh/fub0PPmUGKdQRxzBtDOdAQdKodNKgt/tbJxTUyF37cQQohrR4VDt06n4/333ycqKoqffvqJhg0bFln/ww8/0L9//8t+gEIIIYS4fhl0Ch/Xr8YbNYMBmHgikVcOnsSuVjx4+/u3pmmTL1EUI0lJqzhw8G00reyyXue5eXrx0Lsj8akcTGZiAgtHv0d+tmtGdO+7q+PVLhSAzOXHyPnjjGujxt1QHp6JpjPgUzOfkJaZxK/Tk/fxAxD7S6n70ukURndryiMtqrHLUZVczcwtBtdt7ZvdHCxZnkjU70cr/L6FEEJcG6QSvBBCCCGuqMtRyzswsB1NmkxEUfQkJCzh0KGhFR4x9/Tz5+Eho/D08yf11EkWfzgMW34eiqLg3aEGXndWAyBj2VFytp57frvRAygPz7ogeGcRv8Ed66QnIKb0ydF0OoUx3cN5qHkov9tr4qMroKE+EYBV7naWzjvKoe1nKvy+hRBCXP2uitA9adIkatasicVioVWrVmzbtq1C2y1YsABFUejWrdu/e4BCCCGE+Nf901relYI60qjhJ4DC6TPziY0dVeHg7VMpmB5DRmHx8ibhaCxLPx6Fw2ZzBe9ONfG8vSoAGUuOkLv9XLWWhl1RHp7tCt418gm+KZOTG70pmPUCbPm81H3pdAof9Qjn/ohqrLPVoZ4+iRBdJnYFlnjaWTZzH3G7kyv8voUQQlzdrnjo/u677xg0aBDDhg1j165dNGvWjI4dO5KUlFTmdsePH+f111+nTZs2/9GRCiGEEOLf9k9reQcH30/DBmMAiD81i6PHPq1w8A6oVp2HBo/A5OZG/L7drJg4FqfDgaIo+HQOw/O2KgCkL44ld6drdJqGXVAemYOmM+JTw0pw8yxObvLHtngYrBkCasm3uet1Cp883IyOzaqzzl6PVoYTeClWsnTwo7ud5V/HEH8wrcLvW5yjOiHuN9iz0PVVrfjdEkII8W+54qF73LhxDBgwgKeeeopGjRrx1Vdf4e7uzowZM0rdxul08sQTTzBixAhq1ar1Hx6tEEIIIf5tkd7urGhel5p/s5Z3lSo9qF9vBAAnTkzm+PEvKrxtcO26dHvjPfRGI0d3bOXnryaiqaoreHethcctIaBB+sLD5EWdGyBo0LkweHtXt1I5IouTG/2xr5sES58HZ8mj9Qa9jvGPNOPOJjX53V6LOw1HMeLklEFjncnB8knRnD2SUeFjv+Ht/xEmNIHZXWBRf9fXCU1cy/9F8fHx9OvXjypVqmAymahRowYDBw4kLe3KfWgSExNDz549CQ0Nxc3NjYYNGzJx4sRyt6tZsyaKohR5jRkzpsxt+vbtW2wbRVFo3LhxYZsPP/yQli1b4uXlRaVKlejWrRuHDh0qdd96vZ4qVarQv39/0tPTy9z/rFmz8PX1Lfe9VVTfvn3/07toFUVh6dKl/9n+xJVhuJI7t9ls7Ny5k8GDBxcu0+l03H333fzxxx+lbvf+++9TqVIl+vfvz2+//VbmPgoKCigo+KtuZ1aWa3IUu92O3V7xW9b+a+eP7Wo+xhuZXJ+rn1yjq5tcn6vflb5G1Yw6ljQNo+/+k8Tk5PNQ9BG+qF+NTgHeFdq+cuVHsdvzOBY3lmNxE9AwElqtYhO+BtdryH2vvMHKCWM58NsGjBYLd/YegKIoeNxbHdXpJH97EmnfH8KpObE0DYTa96A8NBP9oqfwrm4FBU5uDKCG7nt0uSk4u08Hk0eJ+/v4ocb8z+Ek5pCdNoajrHfUJcbsJMjpQPd5FPe/0oyg6l5FtrnS1+dystvtaJqGqqqopdwZUK4Dy1F+6ANoKBcs1rLOwve90R6eDQ27Xo7DLeLYsWO0bt2aevXqMXfuXMLCwti3bx9vvfUWq1at4o8//iAgIOCy77c827dvJygoiDlz5hAaGsqWLVt47rnn0Ol0vPjii2VuO2LECJ5++unCn728vMq8LuPHj+eDDz4o/NnhcBAZGUmPHj0Kt9u4cSPPP/88LVu2xOFw8O6779KhQwf27t2Lh8df/y7O79vpdHL48GGee+45Xn75ZebMmVPq/s/v41L/2zl/B8z5//YuXH7xspLY7XaMRuMl7bM0/+i//etUadfnSlBVFU3TsNvt6PX6Iusq+jtY0S6lLkcZ4uPjGTZsWJkj1Bc7c+YMVatWZcuWLdx6662Fy9988002bdrE1q1bi23z+++/89hjjxEdHU1gYCB9+/YlIyOj1E+Ihg8fzogRI4otnzdvHu7u7hU+ViGEEEL89wpQmOIWyF6jO4qm0dOaxp32nApvbzStxWz+ydWXtTt2++0V3jb7+BESt2wAwK9xBAHNWrpWaFDjmDuBSRY0NI7VyyEjwPWHV+XMKFoe+ww9TrLiLaQc8KJG2xQyfWuxtfYgbAavEvflUGHmYR3OrGTcFBu7HKEoaDySY6YGCkGt8jF5X59/lBsMBoKDgwkNDcVkMrkWaho48ivWgerEe87dKLkJRQL3eRoKmmdlsp78BXT6ElpcfEBuoJTUU3E9evTgwIED7NixAzc3t8LliYmJNG/enEcffZQGDRowc+bMwgGllStX0qtXLz799FP69esHQLdu3WjRogVDhgwBYNWqVYwdO5ZDhw4RHBxMz549ee211zAYXONlfn5+TJw4kTVr1rB+/XpCQkIYOXIk9913X6nH+vrrr3P48GF+/LH0kf/w8HCef/55nn/++Qq9/5KsXLmSJ598kujoaKpXr15im5SUFOrWrcuKFSto3bp1qfv+5JNPWLRoUZmDcfPmzWPw4MGcOOGqBDBmzBhWrlzJiy++yAcffEBGRgZ33303EydOxMvL9e9v2bJljB07lri4ONzc3AgPD2fu3Ll8/vnnjB07tkj/y5cvp3r16jRr1ozp06czffp0du7cybhx4zh58iQrV64sMgg4efJkJk+ezO7duwuXffvtt0yaNIljx47h5+dH165d+fjjjwkPDyc+Pr6wXWhoaJHtxNXBZrMRHx9PQkICDkfRkpR5eXk8/vjjZGZm4u1d+ofCl22kOy0tjdmzZ19S6L5U2dnZPPnkk0ydOpXAwMAKbTN48GAGDRpU+HNWVhahoaF06NChzBNzpdntdtauXcs999xz2T5FE5ePXJ+rn1yjq5tcn6vf1XSNumoa7xw5w/zEDOa5BeBftz5v1qiEUqFgdB9xx6sTH/81Zstimja9ieDghyq87z3167Fh5tek74umcXgzmnfuBoCmamQtPYo1KoXaR7zxuakulkb+wH1oR25G+6E33qGuZ9HjNwdRvc0xOp0Zj6PnD+ATWuK+OjpUXpofTe7RXYTpUolTA1jqkU/vbHfMMT7c/79m+Aa7BgyupuvzT1mtVuLj4/H09MRisbgW2nLRjWlY9oYVpKCh5CTgO7lJhdqrb58q9a6EC6WlpbF+/XpGjRpF5cqVi6zz8vLi4YcfZunSpWzYsIG3336bgoICgoKC2L59O4GBgWzdupWBAwdit9vZvn0777zzDt7e3vz22288//zzTJgwgTZt2nD06FGee+45zGYzQ4cOLdzHxx9/zJgxYxg3bhxffPEFzz77LHFxcfj7+5d4vPn5+QQFBZX5969Op2PixIl88sknVK9enZ49ezJw4MDCsF8R8+fPp3379jRpUvr5Pj93U2hoaOHx6HQ6LBZL4c+nT59m7dq13HLLLWUes8VicU14eK6N2Wzm+PHjrFmzhhUrVpCens5jjz3G5MmTGTVqFGfPnuXpp59mzJgx3HPPPaiqyubNm/Hy8uKdd97h2LFjZGVlFWYaf39/zpxxVRQYOXIkH3/8MZGRkVgsFqZMmYJery9yfBaLBZ1OV7hs8uTJvPHGG3z44Yd06tSJzMxMtmzZgre3N9u3byc4OJjp06fTqVOnYn3dyDRNIzs7Gy8vrwr+rv/3WK1W3NzcuOOOO/76HXXO+buoy1Phf0FlfSoGrttrLlVgYCB6vZ7ExMQiyxMTEwkODi7W/ujRoxw/fpyuXf+6Pej87QYGg4FDhw5Ru3btItuYzWbMZnOxvoxG4zXxP6lr5ThvVHJ9rn5yja5ucn2uflfDNTIC4xrWoKqbhU+OJ/DFqRQSHU7G1a+OUVf+H2N167wB2IiPn8nh2CEYje4EB99foX0379QVu9XK7/Nn8/v82bh5eRHevhMAAQ83IF07RF50Mpnfx2J4oiFujQKg4X3Qcz7a/MfxDrWiKHDqz2Cq3XoE4+zO0GsRVG5U/H0a4asnW/DsHAiN+5MszUIqHvzglUOfTC9WTtpL99eb4x3odsE2V/76/FNOpxNFUdDpdOh056Yb0l25aYd0Ol2F9n/06FE0TaNRo0Z/Hfc5qqpSr1490tPTCQ4Oxt/fn99++40ePXqwadMmXnvtNSZOnIhOp2PHjh3Y7XZuv/12dDodI0eO5O233+app54CoE6dOowcOZI333yT4cOHF+6jb9++PPHEE4DrmenPP/+cHTt20KlTp2LHumXLFr7//ntWrlxZ7Fgv9Morr9C8eXP8/f3ZsmULgwcPJiEhgXHjxlXk1HHmzBlWr17NvHnzSt2PqqoMGjSI1q1bEx4eXmTd22+/zXvvvYfT6cRqtdKqVSvGjx9f5jGfX3f+q6IoqKrK7NmzC0e2n3zySdavX49OpyMxMRGHw0H37t3x8/PD29ubiIiIwv7c3d2x2WxUqVKl2D4GDhxIjx49CpefD4MXHt/Fyz744ANee+01Bg4cWNimVatWAIUf1vj7+xfZn/gr453/3XAl6XQ6FEUp8fdtRX//Vjh0d+vWDUVRypwB9FI/hTCZTNx0002sW7eucMICVVVZt24dL730UrH2DRo0YM+ePUWWDRkyhOzsbCZOnEhoaMmfHAshhBDi2qYoCq+HBVPFbOSNw/H8kJBOcoGDaU1q4mko+5ZhRVGoW+ddVLWA06fnsf/A6+h0JipVKh5OStKq28MU5OWyfdlC1k6dhNndg/q3tkHRKfg9XB9Ng/yYZFLnHiDgyUa4NfCHuveg9JyPNv8xvKpZgXRO7wql2k3xKDM7Qc/voMatxfZlMer5uncLnpnlpNnJrfxhr0mGYmKJdyaPZMDS8VF0f705Zs8K3CZ9LTO6wzsVrFd+YgvM7VF+uycWQo3bKrbvS1Dek5pms5k77riDjRs3cvfdd7N//35eeOEFPvroIw4ePMimTZto2bJl4WOPMTExbN68mdGjRxf2cT6E5uXlFba7MLB6eHjg7e1dYvWfvXv38sADDzBs2DA6dOhQ5rFeeHdoeHg4JpOJZ599lg8//BCz2Yynp2fh+l69evHVV18V2X727Nn4+vqWORHZiy++yN69e/n999+LrXvjjTfo27cvmqYRHx/PO++8Q+fOnfn111/R6/Xl7v+8mjVrFgZugJCQkMJz06xZM9q3b0+zZs246667uPfee3nkkUfw8/Mr89wAtGjRotw2F0pKSuLMmTO0b9/+krYT158Kf2wQEhLC4sWLCx/0v/i1a9euv3UAgwYNYurUqcyePZsDBw7w/PPPk5ubW/jpXu/evQsnWrNYLDRp0qTIy9fXFy8vL5o0afLXc0BCCCGEuC49XiWAWU3CLrmWt6Io1K83gpDg7miak737BpKSsqHC+23Tsw/hd3cCTWPV558SF7XD1a9ewf+R+rg1DQSnRuq3+7EePjfbct27UR5fgKYz4lXNim+VJM7sq42WnwnfdIODq0rcl8WoZ0rfVtirNqeV4SQ6VE7qzKzzzCQ71cqyCdHkZdkqfOzXJEVx3eJdkVftu8C7CpT4RDeu5d5VXe0q0l8FB5Hq1KmDoigcOHCgxPWHDx8mKCgIX19f2rZty8aNG/ntt9+IjIzE29u7MIhv2rSJO++8s3C7nJwcRowYQXR0dOFrz549xMbGFrm19eIRtvMjvBfav38/7du355lnnil8XvxStGrVCofDwfHjxwGKHNP7779fpK2macyYMYMnn3yy1L/JX3rpJVasWMGGDRuoVq1asfWBgYHUqVOHunXrctdddzFhwgS2bNnChg0byt3/hco6N3q9nrVr17Jy5Urq16/PpEmTqF+/PnFxceWejwsnfQPXCOjFH7pcOLHWhc/5ixtbhUP3TTfdxM6dO0tdX94oeGkeffRRPvnkE4YOHUpERATR0dGsXr268HaLkydPcvbs2UvuVwghhBDXp3sCff5WLW9F0dGw4RgqVeqMptnZs/cF0tI2V2ifiqLQvv/z1L/tDlSngx/HfcipA3td6/QK/o/Vx9I4ABwaKXP2Y409F7zr3I3y+HdoOhNeVQvw9j9FwtFGaHYrfPcE7Cp5VmaLUc+UfrejhjSipeEkAFEGM1HumWQk5rHyiz04r/PcXWE6PXQ6P/nVxYH53M+dxlRsErVLEBAQwD333MOXX35Jfn7RSd8SEhL44Ycf6NOnDwB33nkn+/fv54cffqBt27YAtG3bll9++YXNmzcXLgNo3rw5hw4dok6dOsVel3Kb7b59+2jXrh19+vQpMmp+KaKjo9HpdFSqVAmgyLGcX3bepk2bOHLkCP37F68SoGkaL730EkuWLGH9+vWEhYVVaP/nZ4o+f37L2v+lUBSF1q1bM3jwYHbu3InJZGLJkiWA605cp7Ni9d2DgoJISEgokoGio6MLv/fy8qJmzZqsW7eu1D6MRmOF9yeuXRX+l/vGG29w222l35JTp06dwk+hLtVLL73EiRMnKCgoYOvWrYXPOYCrxMCsWbNK3XbWrFlS204IIYS4wfzdWt6Koqdxo08JDLwbVbURs/tZ0jO2V2ifOp2ee18cRFhkCxy2ApaMfZ/EY0dc/ep1BPRsgKWhPzhUUufsx3o0w7VhnfYoT3yHphjxqlqAp9tRks7ejKaq8OPL8Osnrtm6L+Jm0jP56Xa4VapJI30CAOtNOk6as0k/m0fKdnds+Y5i292QGt0Pj8wB75Ciy72ruJY3qtgz/Jfqiy++oKCggI4dO/Lrr78SHx/P6tWr6dixI7Vr1+a9994DXLdq+/n5MW/evCKhe+nSpRQUFBTO4A0wdOhQ5syZw4gRI9i3bx8HDhxgwYIFlzRSvXfvXtq1a0eHDh0YNGgQCQkJJCQkkJycXNhm27ZtNGjQgNOnTwPwxx9/MGHCBGJiYjh27Bhz587l1VdfpVevXhW69Xr69Om0atWqxAnUXnzxRb799lvmzZuHl5dX4fFc/GFFdnY2CQkJnD17lm3btvHGG28QFBRUZga5VFu3buWDDz5gx44dxMfHs3jxYpKTk2nY0DVxX82aNdm9ezeHDh0iJSWlzJJQbdu2JTk5mY8++oijR48yadIkfvrppyJthg8fzqeffspnn31GbGwsu3bt4vPPPy9cfz6UJyQklFuTXFy7Khy627RpU+LEDOd5eHgUuTVGCCGEEOLfFOZuZnnzukR4uZPucNIj+gg/JWeUu51OZ6Rpk88I8L8DVc0nJuZpMrNiKrRPvcFA11ffplrDJtjy81j0wVBST7tK/igGHQFPNMRS3w/NrpI6ax8FcZmuDWvfhdLrh8Lg7UEMqbl3u9atHwk/vQUl1KL1MBv44tmOVPb3paouAxUDSzwKSDflY8/S89PkfdisErwBV7AeuBf6rICHpru+DtzzrwVugLp167J9+3Zq1arFI488Qo0aNbj33nupW7cuq1evLnwGWVEU2rRpg6Io3H67q2xdeHg43t7etGjRoshtyx07dmTFihWsWbOGli1bcssttzB+/Hhq1KhR4eNauHAhycnJfPvtt4SEhBS+WrZsWdgmLy+PQ4cOFYZKs9nMggULuPPOO2ncuDGjR4/m1VdfZcqUKeXuLzMzk0WLFpU4yg2uGbwzMzNp27ZtkeP57rvvirQbOnQoISEhVKlShS5duuDh4cGaNWsua61zb29vfv31V7p06ULLli0ZOnQon376Kffeey8AAwYMoH79+rRo0YKgoCA2by79bpiGDRvy5ZdfMmnSJJo1a8a2bdt4/fXXi7Tp06cPEyZM4Msvv6Rx48Z06dKF2NjYwvWffvopa9euJTQ0lMjIyMv2PsXVpcJ1uo8dO0ZYWNgVn7L9n8rKysLHx6fcWmpXmt1uZ9WqVdx3333X/Kyk1yO5Plc/uUZXN7k+V79r6RrlOp08s/cE69Ky0AEf1qtGn6rllxZ1Oq3ExPQnPeNPDAZvmkfOxcur+KziJSnIy+OHke+QeOwIngGB9BzxEd5BrttdNbtKypx9FMRmoJh0BPZrgrmmj2vDYxvRvumBotnJOWPGVvV+/LUfXOsaPwgPfg2G4lVXsq12/jfhO3ZkWsjS3PAwJtEvvTIWh4Wq9f3o8mI4BtO1Obma1WolLi6OsLCwYuV4rkXDhg1j3LhxLF68mPbt21/xmZdFyVRVJSsrC29vb7lGV6Gr6fqU9Tuqotmywu+gbt26RW5JefTRR4uV+hJCCCGE+K956PXMbhrGEyH+qMBbh08x5tjZcuea0esthIdPwcenOQ5HFlHRfcjJOVyhfZrd3ek+eAT+VaqRk5rCwtFDyM1w3RqqGHUE9m6EuY4vmk0lZeY+Ck6eq+Vaqy3Kk4vQMOJZpQDT6R/J8H0GdEbYtwTmPgzW4nVfvSxGxv/vEZp7ZGHEQa69EnODDqMZHZw+lM7qKXtxOoqPlIv/3ogRI5gwYQI7duwoNrGZEOLGVOHQffH/uFatWkVubvnPTgkhhBBC/NsMOoVP6ofyes1gACacSOR/B09iV8sO3gaDBxHNZuDl1RS7PY2o6N7k5ZU/izGAu7cPPYaMwjuoEulnz7Dog6FYc3IAUIx6Ano3wlzLB63AScr0vdjis10b1roT+iwuDN6Gg7PJqjYIjB4Qtwlmd4Gc4qWffNxMjPvf47R0S0JBIy2/LnODf0cxaJzYm8ra6ftQnRLyrgZPPfUUzz///BUfoRNCXB3kN4EQQgghrgvna3mPqx+KXoHvE9LpvecYOY6yZwY2GLyIjJiFp2cDbLZkdkX1Ij//VIX26RUQSI8ho3D38SX5RByLxw7HbnXNpK4z6Qno2xhTTW+0AifJ0/diO30ulIfdAX2WoGoGPIML0G2fSHa998A9EM7GwPQOkHas2P78vSyMf+Uxwo2uuw3PZt/MouorUfRwNCqZdbMPoJbzQYMQQoj/VoVDt6IoxZ7nvtaf7xZCCCHE9efCWt4b0rLpXoFa3kajL5ERs3F3r01BQQK7onphtVasZKlfcBV6vDsSs4cHZw8fZNmno3Gcm5xKZ9IT+FRjTDW80awOkqftwXbmfPBug9JnqSt4V7aiWz+c3Kajwbc6pMfB9I6uAH6Ryn5ejHvmPmrq0gCFk+lt+LnOchQdHN6WyKZ5h/5WGVchhBD/jku6vbxv3750796d7t27Y7Vaee655wp/Pv8SQgghhLjSLqzlvbuCtbxNpkCaR36Dm1t1rNZ4oqKfpMCWUqH9BdUIo/vbIzCaLZzYHcWqzz9GPVd7V2c2uIJ3qBdavoOUaXuwJ7ge0VNqtUHpvQRVNeBR2QorBpLf4iOo3BRyk2BmZzi2qdj+qgcH8nh9A4FKDnbNRGzKzexo9AuKAvt/P8Pv38dec8H7WjteIcSN4XL8bqpw6O7Tpw+VKlXCx8cHHx8fevXqRZUqVQp/Pv8SQgghhLgaXFzL+/5d5dfyNpsrExnxLRZzFfLy4oiKehKbLa1C+6tSrwEPvD4EvcFA7NYtrJnyuasWN6CzGAjs3wRjNU/UPAfJU/dgTzwXvGvfAb0Xu4J3UD7qgn5YW42BGreDLRvm9nBNsnaRyr7ujOpaHzds5Dm92ZlcneMROwHYveEUfy4rfnv61ej87Ph5eXlX+EiEEKK487+b/kklD0NFG86cOfNv70QIIYQQ4ko4X8v7yd1xRGfn0SP6CF81qkmnoNIHCtzcqhIZ+Q07d/UkN/cw0dF9iYz8FqOx/FKjNcIj6Py/N1k+bgz7Nv6C2d2Dtr2fRlEUdBYDQf2akDx9L/bTOSRP3UPQM+EYK7mjq3Mnaq9FqN92xyMwj7xZj1Dw/CrM7p/CgR/hh6cgNwVuHlBkf+1bNub19Bw++C2dzIJQ1qfs4pFW8XhsDWXX6hMYTXpa3Ffzn57Gf5Ver8fX15ekJNfkce7u7tf8I4yqqmKz2bBarTKZ2lVKrtHV7Wq4PpqmkZeXR1JSEr6+vuj1f78sY4VDtxBCCCHEtSjIZGRRZO3CWt799saVW8vb3b0mzc8F7+ycfUTH9CMyYhYGg2e5+6t78210fP5/rP5yPLtWLcPi4cmtPXoCoHM3EtS/iWuk+2zuueDdFGOQO7p6bXE+vhB1bg/c/XPJ+7oz9lfWY/QIhB0zYNXrkJMI7d4tsr/+nW/neNIqvjmkkZLdnIWpK3nmtkAKtrix9cdjGEw6Iu6u/s9O4r8sONg16/z54H2t0zSN/Px83NzcrvkPEK5Xco2ublfT9fH19S38HfV3SegWQgghxHXvfC3vtw7HM/dsGm8dPsXZAjtvhQWX+gedh0cdIiPmsCvqCbKyoojZPYCIZjPQ693K3V/jO9tTkJfLhllT2PLDXMweHjS/937AFbwDn25KytTd2BPySJ66h0rPhGMIdEPf4C4cj30PCx7B3TeH/M/bw2u/Y/SsDBs/hF8/dpUT6zi2yP5G9OnE8QnL+C3JRGpKJ74yzeKN218h5Xc7mxcewWDS0+SOqv/8RP5LFEUhJCSESpUqYbeXPendtcBut/Prr79yxx13/KNbUsW/R67R1e1quT5Go/EfjXCfJ6FbCCGEEDeE87W8Q8wmPjmewIQTiZwpsPFp/eoYdSUHby+vhkRGzGJX1JNkZGxj9+7nCA+fgl5vLnd/ze+9n4LcXLb8MJcNs6Zgdveg8Z3tAdB7uIJ38pQ9OJJcwTvo2XAM/hYMje/G0WM+2g89cfPJJn/8HShvbsHgEeQa7d41G31OMjq3vyaw1el0TH2xM53HLudonoWcsz35yPghw1qPJH5zJpvmH8Jg0tHglpDLczL/JXq9/rL8gXul6fV6HA4HFotFAt1VSq7R1e16uz7yAIMQQgghbhh/p5a3t3c4Ec2mo9e7k5b+O3v3vYyq2iq0v1seeoybOj8AwM+TJxK7bUvhOr2niaABTTEEueHMLCB5ym4c6a4Z1g3NOqI++A1Ohw43r0wcn9yOs3YXeHg26E3oDq/i1iMfgzWzsD+L2cT8l+/BT1+AVTOjnnqC4bnDqHlrIGiwfvYBjuy8Pm7fFkKIa4mEbiGEEELccC61lrevbwvCw6eg05lJSVnHvn2DUFVHuftRFIU7n3yaxm3vRtNUVk78iBO7owvX671MBA1w3VruzCggeeoeHBkFABhv6oyzy0ycdh0Wj3TsY29BrXIrPLkEzexFYO4hDHO6QNZf9cQr+Xkzs18rzIqDdKcvljNdGJb/ITVvDkLTYO30fRzfXbEyaEIIIS4PCd1CCCGEuCHdE+jDosja+Bv1Farl7e93K+FNJ6MoRpKSf+LAgbfQNLXc/SiKQodnXqZuq9twOhws+2QUZw4fLFyv93aNeOsDLDjTrCRP3Y0z0xW8Tbd0w95piit4u6VhG3sLWkAjHE8ux2rwQUk+ANM7QEpsYX8RtasypmtdFDTO2ELxSm7MKOt0akQGoaoaq6fsJf5AxcqgCSGE+OckdAshhBDihtXc24OVzetVuJZ3QMCdNG3yGYqiJyFxKQcPDUHTtHL3o9Prue/lN6gRHom9wMriMcNIPhFXuF7vYyZoQDh6fwvOVCvJU/fgzHLdwm5p8zD29l/itOmwmFOwjWmF5lmV3+oNRfOvBZknXcH71M7C/h68rRHPtgwA4HhuBO45Kh87V1GtaQBOh8qqybs5cyTjb541IYQQl0JCtxBCCCFuaOdreTfzciPN7qRH9BFWJ2eW2j4oqAONG40DdJw58x2HY0dWKHgbjEYeeO1dqtRrSEFuLgtHv0d6wpm/1vuaXSPevmYcKfmuEe/sc8H7rp4UtBmP06bDbExC+/R2bDp3HL1XQZVIyE+D2V0g9pfC/t7qfgvtqpvQUDiZ1h7FFsMX6g6qNPDDYVNZ8UUMicez/v6JE0IIUSESuoUQQghxwwsyGVkcUYf2/t5YVY1+e+OYfbr0Z58rV+5Co4ZjADh1ajZHj35coeBttFh48O1hBNUIIy8zg4WjhpCd+td+DH4WV/D2MeNIzneNeOe4grf7vX2x3jzWFbz1idyx8100nRH6LIda7cCeB/MfhZjvANdt7V8NuIva3mDHQFpid/KVZUzTH6dyHR/sVifLP4sm5VTOPzl1QgghyiGhWwghhBAC8DC4ank/HuKPCrx1+BRjjp0tNUyHhDxE/fojAThx8mvijn9eof1YPDx56J338QupQlZyEgtHDSEv66+RdUOAG0EDmqLzNuFIyiNl2h6cua5J3jy6PUNe+AicBQpe5jSYcAdoKjz+PTTpAaoDljwDW74AwGzUM/+lu/AxqmRpbjjOPEKSbhrfmtIJqulFQZ6DHydGkZ5Q+i31Qggh/hkJ3UIIIYQQ5xh0Cp/WD+W1mpUBmHAikf8dPIldLTl4V6v6OHXrDgEgLm4iJ058XaH9ePj60ePdUXgGBJJ25hSLPhhKQd5fwdcQeC54exmxJ7iCt5rnCt5ej71CVp23cRQomNTT2D9t7Rrl7j4VbnnB1cGad2HNe6CqVPJ2Y/bTt2JQVBJUP3wTuhCnTOF7jzz8q3mSn21n2fgoMpPz/u5pE0IIUQYJ3UIIIYQQF1AUhTfCQvi0grW8q4c+Re1arwFw5OhHxMfPrtB+vIMq0ePdkbh5+5AUd5SlH43EbisoXG8McidoQDg6TyP2s7kkT99bGLw9e79GjP0BHAUKRns8jgl3QEEWdPwA7h7u6mDLZ7DsBXDaiagRyJgHGwMQa69OzbRI9tnn8aOPHd9gd3IzbSwbH012WumztwshhPh7JHQLIYQQQpTgiUuo5V2z5gvUrPkiAIdj3+f0me8qtI+AqqE89M77mNzcOXVgL8vHfYjT8dc+jJXcXSPeHkbsp3NInrEX1eqqD36qTXcyAp7DUaDDUHACx2dtwZoBt78KD3wJih5i5sP8nmDLpcfNtejfqgoAe/Kb0NjqzY6c1awKVPEOciM7zcqyCVHkZhaUcKRCCCH+LgndQgghhBCluJRa3rXCXqV6aH8ADh58l7MJSyu0j8phtXnwraEYTGbionbw06TxqOpfo+rGyh6u4O1uwH4qh5QLgrf3K++T4dEHh1WHIT8O5xd3QX46RD4Bj80DgxscWQuz74e8NN59IILWNT1R0bE3qzVNDWf4M20bv1TW8PQ3k5mUz48To8k/N3mbEEKIf05CtxBCCCFEGUqq5b2zhFreiqJQp85gqlbtBWjs3/8GiUk/VWgf1Ro24f7X3kGnN3Boy6+smz65yARuxmAPAp9uiuJmwHYym4xvDqJzuvYZ8M440vSP4LDq0Ocew/lle8hLg/qdoM+PYPGF0ztgRkd0WaeY8lRravgYsGLkRFpHGnhv4dekw/xaRYe7j4m0M7ks/yyGgrySR/WFEEJcGgndQgghhBDlKKmW988pxWt5K4pC/XrDCAnpAajs2zeQlJT1FdtHxE3c9/JroCjs/mU1v80v+my4qYonQU83RbEYsJ/Moc4BLzSbE0WnI+j9L0mxP+AK3tlHUb+6xxW8Q2+Gfj+Dd1VIOQzTO+CRcZhvn22DpxFSNQ/ykrpQK3A5686c4o/qBiyeRpJPZrPiixhs50bUhRBC/H0SuoUQQgghKuDCWt75qsZTe+KYU0Itb0XR0bDBB1Su3BVNc7B7z4ukpv1eoX3Uv7UN9wx4CYDtyxaydekPRdabqnoS1L8JilmPV7aR9G8PodqcKHo9lT+cQkp2RxxWHbqsI6hfd3AF70oNoP8aCGoA2WdgZidCs2OY2rcVOkUjTg3AK6k9VYOXsCY+iZ01DZjdDSQcy2LV5N04bCVPICeEEKJiJHQLIYQQQlTQxbW83zx8irEl1PJWFD2NGn5MUFAHNM3G7t3Pkp6+rUL7CG/fkTt69QPg9/mziVm7qsh6U6gXvn0a4NRr2OOySJ2zH83uRDGZqPTpLJJS2rmCd2Ys6pQOkJsKPtXgqZ8gtBVYM+Gbbtxq38bwrq4ZzaMd1QlLbUZA5ZWsOpXK7tomjBY9pw9l8NPXe3Da1X9+8oQQ4gYloVsIIYQQ4hJcXMt7/IlEBh6ML1bLW6cz0qTxBAIC7kRVrcTsfprMzKgK7aNl1+60evBRAH6ZPpkDv28sst4U6kVsg2wUk46CIxmkfHMAza6is1ioPOEbEk7fhiNfhy4jFnVaJ1fwdveHJ5dCvU7gsMJ3T9Db8huPtagKKPxZ0JCI7CC8A/7gx/hUDtQxozfqOLkvjTXT96E6JXgLIcTfIaFbCCGEEOISXVzL+7uENHrvOUbuRbW8dTozTZt8iZ/frTiduUTHPEVW9t4K7aP1o72I6NgZNI2fJo3j6M6iI+W53g58n2yAYtRRcDid1G/3ozlU9J4ehHw+l7NxLVzBO/0w2vROkJsCJnd4dC5E9AJNhR9fZmTgL7So7o0DPdvyI2lpz8bN6xBLTqVypL4beoPCsehkfpl1APWiDxaEEEKUT0K3EEIIIcTfdHEt7wdLqOWt11toFj4FH5+bcDiyiY7uS07OoXL7VhSFu/o+S8M27dBUlRXjxxC/b3eRNqaa3gT0bYxi1GE9lE7q3AOu4O3rS8iX8zlzKBxHvg4l7TDajPtcwVtvgAe+gNsHAWDcOJIpVX8ixMtEtmZhf86ttDLvx2xJZOGpFOLqu6PTKcRuT2TT3INoEryFEOKSSOgWQgghhPgHLq7l3WVXLEcvquWt17sT0Ww63l7h2O3pREX3Ji8vrty+FZ2Ojs/9j9otWuGw21jy0UgSjsYWaWOp7UtA70Zg0GE9kEbq/INoThVDYCAhkxdwam9D7Pk6lNRDruCdkwyKAncPg05jAPCPmsTM0OVYDApnVW8S02+jVeBvGE25fHc6hfgG7igK7N98lt9+iC32DLsQQojSSegWQgghhPiHLqzlfdJqo2sJtbwNBi8iImbi6dkQmy2FXVG9yM+PL7dvvcFAl/+9RWjjcOzWfBZ9OIzU00W3s9T1I7B3I9ArWPelkrbgEJpTwxgSQpUv53Mqus5fwXtmZ1fwBrjleXhoOuiMNDg2mwmVVwNwwFkZR8JNtK6+DoPeybwzKSQ08ABgz4ZT/Ln0qARvIYSoIAndQgghhBCXQUVqeRuNvkRGzMbdvQ4FBQnsiuqF1Xqm3L4NJhPd3hhCcJ16WLOzWDpmOPacrCJtLPX8CHjSFbzz96SQ9r0reJtq1CDk87mc2lYTe9654D2rM+QkuTZs2gOe+B6MHnRKnc0g398A+NNRA/PJOtzd+Hf0OphzNoWU+q7gvevnk+xYdfyfnzQhhLgBSOgWQgghhLhMKlLL22QKoHnkN7i51cBqPcWuqCcpKEgut2+Tmzvd3x5OQLXq5KancXr9KnLT04q0cWvgT8ATDV3BOyaZ9IWH0VQNS716BH82h/g/Q13BO+Vc8M5OdG1Y+y7ouwLcA3k5fzL3WfagomOTrS7mwx70aHUIvU5hZmIK6fVcwXvb8jiifzl5eU6cEEJcxyR0CyGEEEJcRhWp5W02V6J55LdYLFXJzz9OVPST2GxppXd6jpuXNz3eHYl3pco4crJZOnYE+TnZRds0CiCgZwPQQV5UUmHwdmvalOBPp3Py9yrngvfhc8E7wbVh1ebQfw2KX3U+0cbRUH8aK0Z+LWiEbXciT7fLQqfAtKQUsuq4A7B54RH2bjp12c6dEEJcjyR0CyGEEEJcZhWp5W2xVCEy4hvMpsrk5sYSFd0Huz2ztC4LefoH8ODbw9G7uZN66iSLPxyGLT+vSBu3JoH4P3YueO9KIn1xLJqq4d6yJZXHfsWJX4PP3Woeizary1/BO6A29F+Le3BdphnG4K9kk665syu/CQnb/+T1e10Tqn2dnEpOLVfw3jT/MAf/OHuZzpwQQlx/JHQLIYQQQvwLKlLL2929BpGR32A0BpCTs5/omKdwOLLL6NXFp1IwVdrdi8XTk4Qjh1n2ySgcNluRNu7hQfg/Wh8UyNuRSMayI2iahmebNlQaMZETGyphz9WfC96dIetccPYKhqdWUbVmQ742jsOAgxOqPyfyGnFg+2KG3l8NRQeTU1PJq+kGwPo5B4jdkXj5Tp4QQlxHJHQLIYQQQvyLyqvl7eFRm+aR32Aw+JKVFUNMzACczrwyenQx+/rzwBtDMVrcOLl3NysmfoTqdBZp496sEv6PuIJ37tYEMn50zTru3bEDge+M5cT6gHPB+wjM7vJX8Lb4QK9FtGxcj9GGGQBEO6qSk1Gb6OgZjOrm6nNSehrWUDc0DX6ZsZ+43SkXH6YQQtzwJHQLIYQQQvzLyqvl7elZn8iIWej1nmRkbmf37udwOgvK7bdy7bp0e+M99EYjR3f8yc+TJ6CpapE27pGV8OtRzxW8/zhL5opjaJqG74Pd8H91OCfWB2DL1UPqEZjVGbLOzaZutMDDs3n0llr01btKif1mr4V2tgr7jsxgdLcmoMAXWWnYqlpQVY3VU/YQv7/8Z9OFEOJGIqFbCCGEEOI/0NzbgxXN61HDUnItb2/vpkREzECvdyctfTN79r6IqtrK6NGlepNwur76NopOx/7fNrBh9tRiNbQ9bqqMX/e6AORsPkPmyjg0TcO/1xP4PvMGJ88H77SjruCdedq1oU4PnccxpH1VbtftwYGedba6OA+7kZK+lJEPNEZT4LOcdBwhFlSHxqrJuzkTm375TpwQQlzjJHQLIYQQQvxHarmbWXFT6bW8fX1uoln4VHQ6M6mpG9i771VU1VFuv7VvasW9L7wKikLU6uVs+WFusTYeLYPxfbAOADm/nyZr9XE0TSPw2WfwfuIFV/DO0UPasXPB+9ys5IqC4a63+aJzJWooieRiZqOtDglbU3A37GR410ZoCkzMS8cZbMFhV1nxxW4S47KKHYMQQtyIJHQLIYQQQvyHztfyvsvfq8Ra3n5+txDe9CsUxURy8mr2H3gDTXOW0aNLwzbtaP/UcwD8uWgBO1YsKdbGs1UIvg/UBiB70ymy1pxA0zSCXh2I5wO9Xbea5+ghPa5o8AZ8W/djWtdAPMknUfNml70WO1bvoGFwEkM6N0RV4LP8dNQgM/YCJ8s/jyY5vvxJ4YQQ4nonoVsIIYQQ4j/mquVdi56l1PIOCLiDpk0+R1EMJCb+yMGDQ9A0texOgYiOnbn9sd4AbPpmOnvWrynWxvPWKvh0rQVA9oZ4stedRFEUKg95F48OPc49422A9OOu4J0RX7ht3dvuZ+K9ASioHHJWIq6gGou+W8Q9DfW8c18DHAp8ZsuAABMFeQ5+nBhN2tncYscghBA3EgndQgghhBBXgFGnMK5+KINKqeUdFHQ3jRuNA3ScOfs9h2PfL/asdklu7vYwLbp2B2DtlC849Mfvxdp4ta6KT+cwALJ+OUnWupMoOh0ho0bidvt9nFh3cfA+Wbht+zvb8WZrfwC2OqqTmV+ZL2Z+Ts+bK/Fmp/rYFZjoyAR/E9YcO8smRJGZXP5s7EIIcb2S0C2EEEIIcYUoisKbYSF8Uj8UHcVreVeu3JlGDccCCqdOfcORo2PLDd6KonDHE0/RtH1HNE1l1eefEBe9s1g7rzbV8Lm3JgBZa0+QtTEexWCgyicfY76p7bngbYSME67gnX6icNvnutzGA4180NCx0V4bNTuAMVPf59k7wnjtnnrYFPjckYniYyQv08ay8dFkp1mLHYMQQtwIJHQLIYQQQlxhvaoEMKtpGG46xVXLO/oIyTZXLe+QkO40qD8SgJMnpxIXN7Hc/hRF4e6nX6D+rW1QnQ5+/PQDTh3cV6yd152heHesAUDW6uNk/3oKnclEtc8mYmx0Myd+8ceWa3KNdM/qUhi8FUVhbM9baRriQQFG1tnrQIoXn8wcwsvt6/K/9nWx6mCSloXiZSQ7zcqy8VHkZpZfBk0IIa43ErqFEEIIIa4CHQJ9WBRRx1XLOzufzjv/quVdtWpP6tYdAkDc8c85GT+l3P50Oj33vjSIsIibcNgKWDr2fZKOHyvWzrtddbzvrg5A5qo4sn8/jc7NjdCvvsJQuxknfvHDlmeGzKLB22LUM6VvK4I8TWRo7vxqr0XeSTOz5g1l4N11ealdHXJ18KWSheJpIDM5n2UTosnPLr8MmhBCXE8kdAshhBBCXCWa+5Rey7t66FPUrvUGAMePj8No/LXc/vQGI10HDaZqg8YU5OWycPR7pJ05Xayd99018LorFIDMFcfI+eMMek9PQqdOQV+tPifW+mLLPx+8O7ue9QZCfNz4uncLTHqFeNWPKEdVjh2GtYuG8lqHejx3Z21ydPC1koPirif9bC4/fhZNQZ79Mp0xIYS4+knoFkIIIYS4ipRUy3vNuVreNWs+R1jNlwEwW5Zy9ux35fZnNFt48K2hVAqrTX5WJgtHDSErJalYO+97auDVthoAGcuOkvPnWQx+foROn44SFMaJn32x5btBZjzM7AxpcQA0r+7HB93DAdjtrMIJZyC/7lPZt+hN3upYlwFtwsjUa0zT56JY9KTE57D88xhs1vLrjwshxPVAQrcQQgghxFXm4lrefS+o5R0W9j+qVe0HQOyR4Zw9W7we98XM7h489M77+FepRnZqMgtHvUdeZkaRNoqi4N2xJp53VAUgY+kRcrclYKxUiRozZ4BvVU787I3N6g5Zp1y3mqe5blfvcVM1BrRxzYb+u70mmU4f5u9XSPrhBd7pWIenWtckTa8x05iLYtaRGJfFqi93Y7eVX39cCCGudRK6hRBCCCGuQqXV8gYIC3sDm601oLH/wJskJq4stz93bx96DBmFd1Al0s+eZuEHQ7Hm5hRpoygKPveG4dm6CgDpS2LJ3ZGIsWpVqs+cgeZRiROrvbAVePwVvFOPAvD2vQ25s14QTvT8Yq+Nw+nN57FmrHOfYGiHGvS5tQbJeo05pjwUo47ThzNY/dUenPby648LIcS1TEK3EEIIIcRVqqRa3q8ejMehga3gQYIr9wBU9u0fRHLyL+X25xUQSI93R+Lu40vy8WMsGfs+dmvRUl6KouDTpRYet4aABumLDpMblYQ5LIzq06ehmvw4/pMndrsXZJ0uDN56ncJnPSOpFehBvmZhnb0Wij2AT+J9UGd3Y/jdIfS6pToJeo15lnwUg8LJ/Wn8PG0vTqcEbyHE9UtCtxBCCCHEVeziWt4LEtLod+AkVvTUrTuCypXvR9Mc7Nn7Mqmp5U+u5hdSlR7vjsTs4cGZQ/v5cdwHOB1FJzZTFAXf+2vj0SrYFby/P0RedBKWBg2oPuVrVJ0XcSvcsTt8IPuMa3K11KP4uBmZ2qcFXhYDKaoPWxzVcdir8WVSAMzoxPt3+tDz5lBO6VW+t1hBrxAXk8K6mftR1bLrjwshxLVKQrcQQgghxDXgwlreG9Nz+NSjMil2jUYNPyYoqBOaZmP3nudIT/+z3L6CaoTR/e3hGMxmjsfsYtVnn6CqRZ+vVhQF3wfq4NHSFbzTvjtE3u5k3CIiCP3yS1TNjbjlFuyqH2SfdQXvlCPUDvLki8ebo1PgqLMSB5yVSHU05LsMf3QzOjL6Nj0P31SN4waVJW4FoIPYHUls/PYgmgRvIcR1SEK3EEIIIcQ1orCWt0HPSb2ZbjHHiLM6aNJ4PAEB7VDVAmJ2DyAzc1e5fVWp15AHXh+C3mDg8NbNrJ0yCU0rGnoVnYLvg3Vwv6myK3gvOEj+3hQ8bmlF1YkTcDrNxC0zYdcCLgjesdxZL4h37msIwHZHdc44vTnovJWNud7oZt3LmJa5dG9elSMGJyvcbaDAgS1n+e372GLHIIQQ1zoJ3UIIIYQQ15DmPh4sbRZGoGrnZIGdrrtiicq207TJJPz9WuN05hEV/RRZWXvK7atmeCSdX3kTRdGxd8MaNn0zvcTg7fdQXdwjK4EKqfMOkr8vFa927aj60VicNgNxSw3YlSDISXA94518mP63h/FQ82poKGxwhpGlmlmvduCg1RP9tw/ycdPTPBBRhQMGJz+52wDYs/EUfyw5KsFbCHFdkdAthBBCCHGNCXMz81ZuAuGelsJa3uvSrYSHf4WvT0uczhyiovuSk3Oo3L7qtrqNDs+9AsDOlUvZurh47W9Fp+D3cD3cmgWBqpE67wD5B1Lxvu8+Qka+j7NAT9xiHQ59sCt4z+6CkhLL6AebEFndF7tqYo2zFg7NxDxdNxIdbui/78W4OrvpEh7CXqOTXzxcz5VHrTnJjlXHL+v5EkKIK0lCtxBCCCHENchbU/m+ac0itbznJuTRrNlUvL0jcDgy2BX1JLm5R8vtq0nbu2nXZwAAm7//ll0/LS/WRtEp+D9SH7emgeDUSP32ANZDafj26EHlwW/jLNBz7AcNh6kK5CTCrM5YMo7wda+bCPa2kOP0ZJ0zFJwmvjI+Ro5mRr/iFSZWXcd9TSoTZXSwyd0BwLblcUStOXl5T5gQQlwhErqFEEIIIa5RHvritbw/PZlDs/DpeHo2wm5PJSrqSfLyTpTbV/P7HuDWHo8DsGHW1+zbtK5YG0Wv4P9YfdwaB4BTI+Wb/Vhj0/Hv04fAV17GadNzbIETpyUUcpNgVmcqWY/z9ZM3YTboSHQEsVWtjGa3MMm9L3b06DeM4nO/7+jUKIhtJjtbzgXvLYuPsGfjqct6voQQ4kqQ0C2EEEIIcQ0rqZb3m0ezaBI+Ew+PuhTYEomKfhKr9Uy5fd3aoyfN770fgJ+/mkjs9j+KtVH0Ovx7NsDS0B8cGimz92M9kkHg88/j368fTpueo/PtON1rQG4yzO5CM/NZPuoRDsAhe3UOqT7k51mYFvASKqDfPoVJli/p1MCPzSY7291cwfvXBYc5sOXsZTpTQghxZUjoFkIIIYS4xpVUy/vpQ5nUazoLN7eaWK2n2RXVi4KCpHL7adv7aRrfeTeaqrJywlhO7Iku3s6gI+CJhlga+INDJXX2PmxxmVR643V8H3sUZ4GOowscOD1ruYL3rC48EJLJ821rA7DVXodE1UJiqo5FYUNAZ0S/fwlfMob76nmy0WQn2s1VwmzDNweI3ZF4uU+ZEEL8ZyR0CyGEEEJcJy6s5b0hLZvH9mcS2ng2Fks18vNPEBXdG5sttcw+FJ2ODs++TN2bb8PpcLDs41GcjS0+Idv54G2u54dmV0mZtQ/biSyChw7Fu2tXnHmaa8Tbuw7kpcDsrrzezEH7BpVQNR3r1TrkaUb2xeWyKWIsGD3QHd/EF7b36FrHwFqTjX0WJ5oGv8zYz7Ho5H/rtAkhxL9KQrcQQgghxHWksJa3Uc/u7Hwe2peFb4PZmM3B5ObGEhXdB7s9o8w+dHo9973yBjXCI7EXWFn84TCSTx4v1k4x6gh8siHmur5oNpWUGfuwxedQ5YPReLZvjzPXydHvnKi+9SEvBf039/PZXUbqVPKkwOHGT1ooDk1h/a6T7Gv7NbgHoEuIYWLeW3SvZWeV2cYhsxNV1fh52l5O7iv7AwMhhLgaSegWQgghhLjONPfxYEXzetSwmDhptfHw/myUOrMwmQLJyTlAdPRTOBzZZfZhMBp54LV3CanXAGtuDotGv0d6QvHnwhWjnoAnG2Gu5YNmc5IyYy/2BCtVx4/D47bbcGYWcPR7FdW/IeSl4jH/QWbf54aPm5FsWwC/KEGgKfywfienO88D3+ro0uP4NOsNelZPZ7nFxlGziurQ+OmrPZyJTf+3TpsQQvwrJHQLIYQQQlyHarmbWXFTXcK93EizO+l1MI+0mjMxGv3Iyt5NdMzTOJ15ZfZhtFjo/tZwgqrXJDcjnYWj3iM7LaVYO51JT0DfxpjCvNEKnCRP34MjqYBqX3yOW2QkjrRcji1SUAMaQ34aVZc9yqz73NDrFBKsNdiq8wAnzFi+lvQei6ByE5TcJD7IfIunqsaz1FLACZOKw66y4ovdJMRl/lunTQghLjsJ3UIIIYQQ16kgk5ElEXUKa3k/H2vjYNUZGAxeZGbuIGb3Mzid1jL7sHh68tC7I/ENDiErOZGFo94jL6t46NWZ9AT2bYKphjea1Uny9L040lVCv/4Kc6OG2BMziFumRw1qCvlpRK5/kvF3KAAcsjbkkKLHaXUybeEy8nsuhhq3o9hyeC/zPV4M2csitwJOmVTsBU5WfB5DcnzZI/VCCHG1kNAthBBCCHEd8zC4ank/Fuyq5T30hMqmoJnodB6kp//Bnr0voqq2svvw9ePhIaPxDAgk7XQ8iz8cTkFe8VFynVlPYL/GmKp7oeU7SJm+B2eunurTpmGqXRvbqRSOrzCjVgqH/HS6Rj/HoCb5aJrCDls4CYpGbkYusxcuwdHze2jYFcVpY1DGh7wV9DsL3QpIMGoU5Dn4cWI0aWdy/6WzJoQQl4+EbiGEEEKI65xRpzC+QSiv1nDV8v4yQeEHv5moigepqRvZu+9/qKq9zD68gyrR492RuHl5k3gslqUfv4/dVlCsnc5sILBfE4yhXqh5DlKm7Uazmak+YzrGatUoiDvDiZ890YIjUKwZvHzqNR6pmordaeBXtSE5qCScSmDR8hVoPWZBi34oaDyT8yWjApbznXs+yUYNa46dZROjyEgq+xZ5IYS40iR0CyGEEELcABRF4a1aIXxcvxo6YHGanileMyhQvEhOXsP+A2+gac4y+wioGspD77yPyc2dU/v3smL8GJwOR7F2OouBoH5NMFb1RM11kDxtDyheVJ85A0OlSlgPHefEen+0kOYo1gzG5Ayhnddp8gq8WKuvhkNTObDvAOs3bYLO46DtYAAezZvP575z+MEtlzSDRl6mjWUToshKzf83TpkQQlwWErqFEEIIIW4gT1YJLKzl/Vu2gU/cppGlBJCYuJwDB99B09Qyt69cqw4PvjkUg9HEsV3bWf3leFS1eFjXuRkI6t8EY4gHao6d5Km7USwBVJ85A72fH/m7D3Ly90poVVqgK8hkmjKSFsbjZOZWZa3JA4Dffv2NqOhoaPu2K3wrOjoW/Mw0n0kscs8mw6CRk1bAsgnR5GYUH3UXQoirgYRuIYQQQogbzIW1vPfnGxht/JIEqnD27EIOHR6Bpmllbl+tURO6vjYYnV7Pwc2bWD/jqxK30bkbCXy6KcZgD9RsO8lT96D3qUL16dPQeXmRt303p7aHolVrid6WxXzLh4QrR0nMbsJvJtft7st+XMaxY8egZX94eDboTdxq/5NvvT9ihXs62XqNrOR8lk2IIj+77GfThRDiSpDQLYQQQghxA7qwlvcpu4GRhgkcoR6nT3/LkSMflhu8a0W25N6XXgNFIWbtT/w+f3aJ7fQeRgKfboKhsjtqlo3kqbsxVA4j9OuvUNzcyPltK2d210Or1gqjPZvv3cfSTDnC8Zxb2WvKBQ3mzp9LYmIiNLofnlwCZm+aOPYxz3Mka9yTyNVrpCfk8eNn0Vhzy342XQgh/msSuoUQQgghblAX1vLOcOr5QDeaXdzEyfjpHIsbX+72DW67g3sGvAjAtmUL2bZsYYnt9J4mgp5uiiHIDWemjeSpezDVbETopC9QjEay1mwgIbYJWugtWJw5LLCMpal2lL0FrTlpzMZpdzL7m9lkZWVBzdvhqVXgWZkw9TjzPIfyu0c8+TqNlPgcVnwRg81a/DlzIYS4UiR0CyGEEELcwC6s5V2g6RivDGY993D8+CSOH/+y3O3D23fijieeAuC3ebOIWftTie30XiaCBoRjCHTDmVFA8tTdmBs1p+qE8aDXk7HsJ5JO3YxW/VbctFzmmsfQ0HacHVpz0g255OXk8c3cbygoKIDgptB/DfjXJlhL4huPIUR5xlKg00iMy2LlpN3YbWVPCieEEP8VCd1CCCGEEDe4orW8FaYrz7GQxzhy7FNOxs8sd/uW9z9EqwcfAeCX6V9ycPOmEtvpvU0EDWiKIcCCM72A5Cl7cGtxO1XGfAiKQtr8haSkt4UarfEgj2/MY6iTm8SvhlDyFSvJicl8v/B7nE4n+NV0Be8qkfho2UxzH8Zhz73YFDgTm8FPX+3BaS97UjghhPgvSOgWQgghhBDFankvUR5mKi9wIPZDTp2eV+72rR99kmYdOoOm8dOkcRzbtb3EdnofM4EDwtH7W3CmWUmZugfPOzsQPHw4AClTZ5NivQ9qtsGTfOaYxhKW6WS9hwGn4uRo7FF++ukn1zPnHoHQZznUaocbVr5wH0GC5zbsCsTvT2P11L04nRK8hRBXloRuIYQQQggBFK/lvUlpzzjeJubQaM6eXVTutu2fepYGre9EdTpZPu5D4vfvKbGtwddM0ICm6H3NOFLySZ66B+/7ulHpzTcBSJ44iTRdd1fwVvKZYxpDjVR/NnimoKGxY8cOtmzZ4urM7AWPfw9NemDAyViPD8n32oRTgeO7U/hl5n5UtexJ4YQQ4t8koVsIIYQQQhRxvpa3RacQozRnFCP448CHJCauKHM7Raej0wuvUuumm3HYbSz96H0Sjx0psa3Bz0LQM+Hofcw4kvNJnrob30eeIPCFFwBI/OBjMryehLA78FSszDKNJTS9Dlu9TgKwdu1a9u3bd64zE3SfCre4th3sPgGj18+owJEdSWz45gCaBG8hxBUioVsIIYQQQhTTIdCHxedqeccpdRjOKH7Z/xHJyWvK3E5vMNBl4FuENmqKLT+fhR8MJfXUyRLbGvwtBD3TFL23CUeSa8Tbr9+z+PfpDcDZ994nK+gZ1LA78VSsTNOPpXJOfQ54uvpbtHgRJ0+e61ung44fwN3DAXje/Sv8vZejonHwjwR+/e5wuWXQhBDi3yChWwghhBBClOjCWt5JSjDDtZEs2fsZqaklT5R2ntFkptub7xFcuy7W7CwWjn6PzKTEEtsaAtwIfCYcnZcJR2IeqdP3EvDya/g+3ANUldNvvUte9Zew17gTD6WAL9VxeNmqcMrtLKpTZd78eaSmpro6UxS4/VV44Es0Rc8T7jOo5rUEDY29m06zZfFRCd5CiP+chG4hhBBCCFGqwlrenhayFR9Gae8xa/cU0tL/KHM7k5s73QePIKBadXLSUlk4agg56WkltjUGuhH0TFN0nkbsZ3NJnbGXSm8Nwfu+e8Fu59TAN7E1eIPcam3wUAqYWDAFvWIgzZSGNd/Kt99+S25u7l8dRj6B8tg8VIOFBz2+oY6Xq3549NqTbF8Rd9nOjRBCVISEbiGEEEIIUaYgk5ElkXW5y98Tm2LmE20Q42Lmk5Gxo8zt3Ly8eejd9/GpVJmMxLMs+mAo+TnZJbY1BrkTNKApOg8j9jO5pMzaT/Dw0Xi2bYtWUMCpl15F12I4KZVvx0MpYHzuDxSYE8k15JKens6CBQuw2+1/dVi/E7o+y3GafenkMY8Gnj8AsH3lcXb9fOKynRshhCiPhG4hhBBCCFEuVy3v2jxa2QdN0TNN68c7USvIzIwpczsv/0B6DBmNh58/KSePs2TMcGzW/BLbGit7nAveBuynckj95hAhYz7BvVUr1Nxc4p99Cc+2YzjhdyvuSgHjszaQ4x6DTWcjPj6eJUuWoKoXlAgLvRl9/5+xe4TQ3nMejT1dM7D/seQouzecumznRgghyiKhWwghhBBCVIhRpzChYU0GVg8AYDHdeDbqV9KyDpS5nW/lYHq88z4WD0/Oxh5i2cejcNhsJe8j2IPA/k3RuRuwxWeTNv8IVcd/hluzZjgzMzk54AWCO09gn/vNuCsFjMuKItfzd1RU9u/fz7p164p2WKkBxmd+ocCvLm09v6WJxxIAfvvuMPs3n/nnJ0UIIcohoVsIIYQQQlSYoii8XTuUMXWC0KGyUWvDE7t2kJQVW+Z2gdVr0v2dERgtbpzcG8PKzz5CdTpLbGuq4klg/6YoFgO2E1mkfR9H1S++xFy/Ps6UFE4+8wLVenzFNkML3LAxNusAdq+NAGzevJnt27cX7dCnGuYBa8irfBN3eM6hsbur9NmGbw9yeHvCPz4nQghRFgndQgghhBDikvUNrcq0hiGYsBGlNaXbrv2cyDxW5jYhderT7Y330BuNHNn+J2u+/gztwtvBL2Cq6knQ001QLHpsx7NIX3yKapOnYKpZE8eZs6S88BLBj07jN5pjwcaw7H0oHr8CsGrVKg4fPly0Q3d/3PuvIKdGe+70mk4jt9WgwS8z93MsOvmynBMhhCiJhG4hhBBCCPG33Bccwg/hoXiRyzGtBvfvOsr+tLInKaveJJwuA99G0enYt2kdG2ZPLbWMl6maF4H9mqCY9djiMslcmUDo1GkYq1TBdvw4jtcGYu42lfVqcyw4eDs3Bg/LNjRN44cffuDs2bMXdeiOV5/vyKj/MG29p1DfsgFNhZ+n7uXEvtTLdVqEEKIICd1CCCGEEOJvaxUQwo+RYVRWUkkkiG4x8fyZEl/mNnVatKLTC68CELV6OVt+mFdqW3N1b1fwNukpOJpJ5po0QqdORx8USMHhwwR9+C7J7Sex1tkcMw5esf6BvzEau93O3LlzycjIKNqh3ohfz6kkRzzPXT5fUNuyGdWp8dNXezh9KP2fng4hhChGQrcQQgghhPhHGvpWYUXz+tRWTpKFJ4/sOcuqhLKDd6M27bir33MA/LloPjtXLi21rbmGN4FPNUYx6iiIzSD71xxCp0xD7+ODNWY3t0wfy58RH7PWeRNmVJ61byRYv4+cnBzmzZuH1Wot2qGiUOnBDzl7yxDu8ZlATfN2nHaVFZNiSDiW+U9PhxBCFCGhWwghhBBC/GOh3tVY1iKSCGUfNkw8fSCZ2fFlB+/Ijl1o/eiTAGycM409G9aU2tYc5kNAX1fwth5KJ3erg2pfT0Xn4UHetm30WjOdb6oNZ43zJsxoPOVcS6juEElJSXz//fc4S5i0req9r3Gi7afc5TOOaqZoHDaV5Z9Fk3yy5FriQgjxd0joFkIIIYQQl0WgZyjftbiVtsoWVHS8dSSVMUdPlPrMNkCrBx+hRdfuAKz9+gsOb91caltLbV8C+jQCgw7rwTTyduupNnkyisWCddNG3j64nLGeb7Pa2RIzGk+qP1GLIxw7dozly5eXeBy12vXlZMevaes7nhDjfmxWJ8sm7CL1TM4/PyFCCIGEbiGEEEIIcRn5eNZi6k3teUhZDsCEk+kMPBCHXS05eCuKwh1PPEXTuzqgaSorJ37M8eidpfZvqeNHYO9GYFCw7k/FetiDqhM/A6MR5acVvJ+5jbd1A/nJ2RITGo+xgjocIzo6ml9//bXEPuu37kZ8lzm09p1AJWMsBXlOlo3bSUZi3j8/IUKIG56EbiGEEEIIcVl5edVnzE3deVqZjaI5+S4xiz67j5DrKLkut6Io3D3gRerdcjuq08GycR9w+tCBUvu31PMj4MlGoFfI35uK7XQgVT7+BHQ6/BfPZYgujlccL7PKeTMmNB7lR+pxjA0bNhATE1Nin01ubsfp7vO5yXcSAYY48nOcLP10G1mp+ZflnAghblwSuoUQQgghxGXn5dWYNyL78Jruc0xaAevTc+keHUuyzV5ie51Oz30vv0bNiJtwFBSwZMxwko6XXvfbrb4/AU80dAXv3Sk4MqoTPHo0AI3nf8mznpm8Yn+JVerNGNF4hB+px1GWLVtGXFxciX02j2xJ8sMLaOQ3DT/9KXKzVJZ99Ae5GQX//IQIIW5YErqFEEIIIcS/wscngv4RLzJE+QBPLYuYbCtdd8YSl1dyiNUbjNw/aDBVGzSiIC+XRR8MJe3M6VL7d2sUQMDjDUCnkB+djGZrSKUhQwC475sPudvLziu2l/iZWzCg8QjLqavG8t1335GcnFxin63CG5H16FxCfb/FW59AViYsHfsreVm2f35ChBA3JAndQgghhBDiX+Pn25Iezd7kfWUYQVoix602Ou86zK6s3BLbG80WHnxrGJVq1iYvM4OFo4aQlVJyQAZwaxyIf88GoIO8qCQUc0sCXx2EAjw3dwT13BResL7IL3pX8H6YFdSw7uPbb78lO7vkWcpvb1IL9fHp+PkuxlOXQka6nh/HrMOaW/IovRBClOWqCN2TJk2iZs2aWCwWWrVqxbZt20ptO3XqVNq0aYOfnx9+fn7cfffdZbYXQgghhBBXlr9/azo0Hcr7ylDCtCOk2Z08FHWENSkl18Q2u3vw0Dsj8AupSnZqMgtHv0deZkap/bs3DcT/0QagQN7ORAxBbfF/5lnMqoPBSz/Az6jj2dwX2WC6GQMqj7CckMydzJ8/H5ut5BHsOxuHYun5GTqf1bjp0klNM7N89CpseRK8hRCX5oqH7u+++45BgwYxbNgwdu3aRbNmzejYsSNJSUkltt+4cSM9e/Zkw4YN/PHHH4SGhtKhQwdOny791iMhhBBCCHFlBQa2o3XjEbynjCBc20W+qtF3Txzfnkktsb27jy89hozCKzCI9DOnWPTBMArySh4dB3BvFoT/o/VBgdxtCZjCOuP7+BME5mfyzvov0Sl6ns56mQ1uzdCj8TAr8TmziUWLFqGqaol93t2kCpWeGE229+9YlCyS0rxYMXIJ9lJujxdC/HNOVWNrXBo7UxS2xqXhLKXywbXkiofucePGMWDAAJ566ikaNWrEV199hbu7OzNmzCix/dy5c3nhhReIiIigQYMGTJs2DVVVWbdu3X985EIIIYQQ4lJUqtSJ5g1H8xpjuUNbjwq8fiiej+LOllhD2zswiB7vjsLdx5ek40dZMnYE9gJrqf27R1TCr0c9V/DemoCl2WN4d3uQhqlxvBL1A070PJ3+Ous96qJHpQer0B1awerVq0utJd6xSQj1nniTeJ9oTEouZ9MDWTXyOxx5Uk5MiMtt9d6z3D52Pb1m7GBOrJ5eM3Zw+9j1rN579kof2j9iuJI7t9ls7Ny5k8GDBxcu0+l03H333fzxxx8V6iMvLw+73Y6/v3+J6wsKCigo+OvTyKysLADsdjt2+9V7e9D5Y7uaj/FGJtfn6ifX6Oom1+fqJ9fo6nYtX5+AgHtpVDePZ2LfJUBLZYnyMOOOJ3I6v4APa1fBqFOKtPcKqsQDbw5l0eghnD64n2WfjKbLoMHoDcYS+zeF++PtqEXWkmPk/nEWt1v64szN4e61aznuE8KisNt5MXM4433epFPuaR5mJQu3aWzx8eHmm28usc+7GwRie6Q/mxZ8T/3shpxKr8bq97/hnre7o/PwLdb+Wr4+Nwq5Rlefn/cl8vKCGC7++Csh08rz3+7i88ea0bFx5StybKWp6H8/ilbax3r/gTNnzlC1alW2bNnCrbfeWrj8zTffZNOmTWzdurXcPl544QV+/vln9u3bh8ViKbZ++PDhjBgxotjyefPm4e7u/s/egBBCCCGE+FuMxt8xWxazjnuYyTNoio4m9nwG5CdjKfZnN+QnJ3Bm/U9oTgee1cOofNtdKLrSb9oMTDRT45gHAAnBubB+MpbDsQxrPYCdQfXwMdoY5TWQrnkZqCgs5D7ywzri6+tbap87khWSDp4mMicMJyZquO/CcGsgBSa/f3w+hLieqRo4VLCdfznBrkKBCnangtUJ3x/TkecEUEroQcPXBMOaO9GVtPoKycvL4/HHHyczMxNvb+9S213Rke5/asyYMSxYsICNGzeWGLgBBg8ezKBBgwp/zsrKKnwOvKwTc6XZ7XbWrl3LPffcg9FY8ie54sqR63P1k2t0dZPrc/WTa3R1uz6uz33En6pN+7iP8SWdScqb7DW6Md2vHrMb1SDQVPzP1BPNm7P8k9HknIyjRq0T3NX/BRSl9L/A87YlkL38OMEJHrg9/RFZ343k7W1zeLXdq5xyD+AzwyRUj2d5IDeHHqxi6Qkdze4cRdWqVUs5YlgafYYV322kVU4IJ/KaU3/7Vu4a2BIlqF5hu+vj+lzf5Br9RdM0bA6VPLsTq10l3+Yk3/7Xy2o7v+7csnPrrXaVPFsFlp9b9s8oZNggqNEttAor+Q7nK+H8XdTluaKhOzAwEL1eT2JiYpHliYmJBAcHl7ntJ598wpgxY/jll18IDw8vtZ3ZbMZsNhdbbjQar4l/YNfKcd6o5Ppc/eQaXd3k+lz95Bpd3a7161Mr7DkU7BA3gcHqu4zXj2J3jpUH98QxP7w2Ye5F/4ar07wlnf/3BivGj2Xfxl+weHpxZ69+pQZvn9ah6NGRsfwY+VuS8Ht8GNjeZdiWaQxs+z9ikyzMChuHxqt0y82lm7qCFfP0eD83vtRHFx9uWQOUu1g0fzN35AZwKKsVhvELuPOVB1BCWxRpe61fnxvB1X6NNE3D7tSKhFrXVwf5NpV8u5M8m8MVcG1OVzg+1y6vMASf+952wff2ot//l/c+mw063Ex63Iz6wq95NidxKaVPlHheap7jqrpeFT2WKxq6TSYTN910E+vWraNbt24AhZOivfTSS6Vu99FHHzF69Gh+/vlnWrRoUWo7IYQQQghxdatZ8yWcqhVOfMV7zoGMN43neD503nWYb8Nr0dzbo0j7eq1ac8+zL7Hmq8/YuWIJFg9Pbun+aKn9e7auiqZC5spj5PyWgF+fkdT++g0Gb5vD0FufJirOE0PDtyFpLN1yc+hiW8aaGUbueOGzUh9FfLhFKE71NhYu2Em7PC/2ZbfD8Nl8Wj+TgVK7HcqJ36ma9gfKCW+odQfo9Jf1nImrh8OpFg3E54JsRYNv4bY2Z7F+zn//X87ebdLrsBhdodjdZMBi1ONm1P31vemin4163E16LKa/vncz6rGc//6icG0x6tGXcH/4H0dT6Tn1z3KPr5JXyXc3X+2u+O3lgwYNok+fPrRo0YKbb76ZCRMmkJuby1NPPQVA7969qVq1Kh9++CEAY8eOZejQocybN4+aNWuSkJAAgKenJ56enlfsfQghhBBCiEunKAq1a72O6rTCqVm8a3uOL9y+ZL/VzENRR/m6cQ06BPoU2aZpuw7Y8vLYOGcam7/7BrOHB5Edu5S6D682VUHVyPwpjpzfk/B/9iNu+fx/9N+7gqlN72fnwdoUNO6JcvY7HsjNokPOQn6dbub25ydiMJT85/JjN1fHqWksWRBDu3xPYrI7Y/z6e1oGDiAxMwRv1Y/Ew78SEpiB7t4x0Oj+y3reRPmcqlYYcK0XBOJ8m5McawFRqQrWqNPYVIV8218jx/k2x7ngq/71vc1Z4q3Udud/F4j1OgV3Y9GAW9Hga7lgeWEILiEQG/VXprjVzWH+hPhYSMi0ljCjg+sp72AfCzdfRbeWX4orHrofffRRkpOTGTp0KAkJCURERLB69WoqV3bNTHfy5El0F0ySMXnyZGw2Gz169CjSz7Bhwxg+fPh/eehCCCGEEOIyUBSFunWHuEa8zyzgdevTTPecxuYcM333xPFR/VB6VQkoss1Nnbthzc3lz0XzWT/jK8zuHjRq067UfXjdWQ1N1cj6+Tg5vycT+NI4Hh73MnEnt/NL9ZYcj72bz+qeRDmzjfvz0rkjdS47Zllo0e/jIn+LXuiJVjVQVY1l3++nXb6FHTmPsDu3Mzbtr9F5j8wU2syZRO3eSPC+gKpqFDhU8s6F2gtHgksc8b1g5PjCAG0tKRCfW2dzlPccsR4O77ss70dRwN1YPOCWHXwNuJ0bVXZ9XzQEu0ab/wrWJsMVr/b8r9HrFIZ1bcTz3+5CgSLB+/y4+LCujUocJb8WXPHQDfDSSy+Vejv5xo0bi/x8/Pjxf/+AhBBCCCHEf0pRFBrUH4mqFpCQsIRnc/oR5DeDpelmXj8Uz5kCG2/UDC7y/PZtDz9OQV4OUT8tZ/WX4zG5uVOnRatS9+HdLhRUjay1J8jZnEbQwAkM/PhlTnkGcdC/Jr6n+zMq+Cy6BD1d8lNocWo6Bxa40/jxkaX2+eStNXE6HfgvXEC89bYigRsgV/VndcabdPphGrXf63xN3Gquaa5AXNKtzhcH3IuD718B2kG+Xb3gNmuHa5KuC77/L10cZi0GHfnZmVQNDsTdZCw68ltG8C383lQ0WJsNujIn9RPl69QkhMm9mjNi+X7OZloLlwf7WBjWtRGdmoRcwaP7Z66K0C2EEEIIIYSi6GjYYAyqWkBS0ioeSe9LSOXZTE40Me54ImcL7HxUL7SwlreiKLTrPQBbXh77Nq1jxYQxdH97ONWbNCt1H97tq6OpGtnrTpL7RyZVX5vA0E9f5+Wb+nESX5p5vcO7ld9Gn2DgXmsCjQ5/RtxSd8K6DS61z94hZ5hjq4drfO7i4KUDVH5P7EZY3GZ0te/4R+eocGKtIs8Qn59Iq4SR43MTa134DPG1MLHW3wm+rnUG3Ey6c6PKrtFjs0GH7qIRUrvdzqpVq7jvvpuuqom5bnSdmoRwT6Ng/jiSxJrfttKhTSturVPpmh3hPk9CtxBCCCGEuGrodAYaNxqHqtpISfmFO5L6UTl0Nu/H65l/No3EAjtTG9fEw+AaMVZ0Ojo8+woFebkc2f4nSz8aycNDRxNSp36p+/C+uzqoGtkb4sndmkPDgWMY/sX7vNayPzEnjbRp+C5vBb+P/kwoHWzx1IweQ6KbhcodXy2xv9OHU8lVA8t6V+SoQcyenIPq+yeqXkHVKTh14FBcLxsaNjQK0LBqGlZVJV/TyHOq5Dqd5KoqOXYn2U4nVlVD+48ySEUm1irxtuoLlv+dibXEjUuvU2gV5k/qAY1WYf7XxX8fErqFEEIIIcRVRacz0rTJZ8Tsfpa0tN9ocLofX9SezWtxCuvTsukefYRvw2sRZHKNUOr0ejr/7y2WjB3ByT3RLP5wOI8O+5DA6jVL7F9RFLw71EBzauT8eorcHVZaP/cOr86azNiIR/ntgAd3RAzg9ZCpTDxTm3b2o1T6YziZZhM+bV8s1l9sqluF3ldejgVy8oos0597FS9wW+ysnHu53rMDrTCwO3Xg1CloetD0Chh0KAYFxahDf+5lMOkxmPSYzHpMFtdXi5sBNzcDbhYj7u4G3D2MeLob8fQw4m52jRIbrtDEWkJcTyR0CyGEEEKIq45OZya86WSiY/qTkbGVgONPMbveNzx3VCMmO5+uu2KL1PI2GI088Pq7LBw1hLOxh1j4wVAeGz4W3+CSnwNVFAWfe2uCqpHz+2nyoh080qs/cUuX832ddvwZXYumkffwvyq/8OXpBtzuOIj3xnfIMxpxb/1Mkb6S/WoCZ8p9Ty095uFjSCJX8+aw5SZOuDUDnRtGFAwq6DXQq6BzaihODZwaODQ0h4pqV3Ha1cIZpgwoGDRcPxd5PFoDnKUegwpYz72yyjhWvVGH0aTHYD731aTHaD731aTDYNafW6/HYHK1Ob/eYNJhLG29WY/BKM8/ixuLhG4hhBBCCHFV0uvdaBY+lejoPmRmRWE88hTfNfyW/rFOjufb6LIrlm/CwwpreZssbjz49nC+HzGYlJPHWTh6CI+N+AhP/4AS+1cUBZ/OYa7gveUM+ft0vHZfB47/GsO24EaciL6DyuHxvBJylElnmnKrcw/ua9/AbtBjbNW/sJ/QeoGcUY5h0ky4RqMvpmJTbPh2aEW92KmQsonmLAenGzTrDbe9DL6h5Z4PTdNwOlQcBSp2mxN7gROHzfWyF6iun+1OHAWunx32c20KnNhtThw213au9U4cdrWwD9fXv9K783zIz72kS1Zh54P5+RF448U/XxD2zwd8o1l3wfoSfj4X+PUS6sVVRkK3EEIIIYS4ahkMHkREzGRXVC+ys/eScbAPPzSZy4BYPbtz8nko6ihTGtfgnnO1vN08vejx7kgWDH2TjMSzLBz9Ho8OH4Obl3eJ/SuKgk/XWmiqRu6fZ7HHujH2lob03p1IvHdlAvY9grnB5wwMLmDi2QhuUaMx/jQIVa9D1+IpAFrVDmBCoJk7kkFBpWjwVtFQ+CPQzCv3PA339IdDq+C3T+HMLtj2NeyYDk0fgdsHQlDpz6IrioLBqMdg1GPh8k/+pWkaDrv6Vyi/MKSfD+1FQroTu83V3vX9ubBv+6uNa/tzyy6YsdxhU8+FfPtlfx+KwgVhXXfBKL2ucPRdb1BIP2tmqz0Os5ux5FH8C7crXK9HZ1Ak1ItLIqFbCCGEEEJc1QwGLyIjZrFr1xPk5B4ifl8f5jabxytHDWxIy6bv3jg+qhfKE+dqeXv4+tFjyCgWDHuT1FMnWfzhMB5+bzQmN/cS+1cUBd/7a4OqkbstAeMJHybUtdEnPo9DeHDn0aeJrjmeNyqb+Dghklu0KHQrBrrmKm/xFHqdQr9HGzFuRjR35RvxumDm7ywFNrjZGPRoxLkJoRRo2AUadIa4Ta7wHfcrxMyDmPmudbcPgqrN//0TW8J5MJ4Llm5el79/TdUKw3vRUP5XwP9r9F4tcX2JHwCcC/bOc3W5NQ3XtgVO8ss8IhMxJ05d8vtQdEphmDdcMMJeGMwvCvgVW39u5N6sR3+DP0evqhpnYjPIO2PgTGwGoQ0Ci80+f62R0C2EEEIIIa56RqMfEZFz2LWrJ3l5x4jd3YcpkfN497iB7xPSee1cLe/Xz9Xy9qlUmR7vjmLB8LdIOBrL0o9G8uDg4RhNJU9ZpugUfLvVQXNq5O1MpHJyEGMCz/BKhpNN+YE8dLofa6pOZWhQMCOSIrmVKJQVAwENWvRz1RDuB+//uB99agEemkKuouEMMDH0/ojiNYYVBWq1db1O7YTfx8HBFXBguetVqx20GQQ127jaXgcUnYLJYsBk+Xf6V53qX+H8glH3ImH93K35Bfl2Du4/RI3QMFQnF4zuX/QBwAW34atO16cpmqphszqxWUt/dv6f0OmVIqPu50fYS7yd/tyyv56Z12Ewnr/9vuRn7K/mAHs0KonfvoslN6MAcGNFzB48fM20ebQutSMrXenD+9skdAshhBBCiGuC2RRIZOQ37NrZk3zrSfbG9OajyHlUNZsYfyKRTy+o5W3QKQRUC6XHO+/z/fuDid+/hxUTxnL/oHfQG0r+E1jRKfg9VBc0jbxdSUTkVGWgWzzjCrxZnBlGT/39LA/+kXGB9RmU0pxb2QUrXnUNrbbs//drDFe7CR6bC0kHYfME2P09HNvgelVt4Qrf9e4F3Y09AloenV6HyU2Hya38iGO32znr2MNt99WucJ1up1P9a9T9ghH384G+xFH6wsCvFn8G/6L1muoK9apTw5bvwFb2MP3fpjMopU98d+HkeSWN0l94234Jt+EbTH8/1B+NSmL113uLLc/NKGD113vp9GyTazZ4S+gWQgghhBDXDIs5mMjIb9i56zHy8o4RE92HQc3nEmKuxtuHTzHvbBqJBQ6mNKmBh15P5Vp16PbmUBZ/MIxjO7ex+svx3PfSayilBFhFp+DXox6aqpEfncyD9mrEKqdYjjdLk5rThTP8FLyDGWortDS4jV2wchBoKtw84J/VGK7UAB78CtoOhi2fQ9Q3cHoHLHgcghrC7a9Ck4dAL3/CXwl6vQ69uw5zyU8p/COapqE6tAtG6SvyTH3Fn7m325yFM9+rDo0Ch4OCPMflfyNcMPN9BW65L/zeqGPbirgy+/39+1jCmgVd1SP1pZF/sUIIIYQQ4pri5laN5pHfsHPX4+TkHiIqug89I76lsjmM5/YdZ11aFg9FHeWb8DCCTEZCGzWl66DBLPtkFAc3b8Ls4Un7fs+VOhmWolPwf7g+aapG/u4UBumqcUJNYLfRnc2n2tJGSeS3SlvxUTugZSi0Zieset21cYt+KCd+p2raHygnvKHWHaDTX9ob9KsBnT+BO9+EP7+E7dMh+QAseQY2jIbWr0BELzD+S/dpi/+coijojQp6ow48/p1J8i5l5vuio/BXx8z3OekFnI3NoGp9v8vb8X9AQrcQQgghhLjmuLuHERk5h127Hic7ex8xMf1oHzGLHyLq0HvPMaKz84rU8q7VvCX3vjiIlZ9/QsyalVg8PLj9sd6l9q/oFfwfdQVv9qYy2lCZ/vZUTnsEUvlwB5pp8/ml0jrcnF0gm7+C9/qRGKyZtAA4MRm8q0CnsdDo/kt/k56V4O7h0HogbJ8Gf06GjBOw8jXYOBZufRFa9ANLyTOzC3He1Tzzvd3mJD0hl6Tj2YBrvv9TBpVcRcNDU6jm0KHD9QFZblbBZT/2/4KEbiGEEEIIcU3y9KhLZMQcdkU9TmZWFDG7nyGy2XSWN69Lz5hjxWp5N2h9JwV5efwybRJbl3yP2d2Dlvc/VGr/il6Hf88GpM49iN/+VMYa/XnekcmuwLo8GN2ems1X8lPAakzO+/HPy6AhR8GaWaQPLessyve94ZE5fy94A7j5wh2vwy0vQNS3sOUzyIyHX4a5JmBrOQBueR48Av9e/0L8Q/905vvTh9JZOj6Kw0Yn69xs5Fzw9IenCu3zTdSz6/HwLnkixKudzMYghBBCCCGuWV5eDYmMmI1e70lGxlZ273meMIvCiuZ1Cfd0I9Xu4KGoo6xNcYXhZvfcS5vH+wLw69yZ7F63usz+Fb2OgMcbYGnoT12njnf1rkSxpEZr7vy9Jf4ZVlb7rqIqiWglbY+Ghgar3wb1H852bXKHVs/AK1HQbTIE1nOF/N8+gfFN4Ke3IPPSS2AJcaWF1PXlhK/CMncbORc99ZGjwDJ3Gyd9FULq+l6R4/unJHQLIYQQQohrmrd3OBHNpqPTuZGW9ht79r5CoBEWR9ahnb8X+apK371xzD2TCsDND/Tg5gd6ALB26iQObvm1zP4Vg46AJxpiqe9HO9XAUzrXaNukel156uc63JyVgjc5lDa9kwKQdRpObLk8b1hvhIjH4YWt8Mg3UCUSHPmw9SuY2AyWvggpsZdnX0L8B1RNY72b3fXDxf+Qzv283s1R4gdb1wK5vVwIIYQQQlzzfH1b0Cz8a2J2P01Kyi/s2z+Ixo3GM6dpLV47dLJYLe/be/ahIC+XmLU/8dMXn2Jyc6NWZMtS+1cMOgJ6NSJlzj6eik3nqKLyqx4+avgo07cfg4blH6OauB9dWJvL96Z1Otct6w27usqL/TYOjv8G0d9C9FzXutsHQZWIy7dPcUNRVQ2rw4nVrpJvd5Jvc2K1u1759r+WW21OrA7X+vPLrefbX7C84Hw/9gv6ObdO1SgeuM9TIDnfxra4NG6tHfBfnoLLQkK3EEIIIYS4Lvj7t6Zp08ns3v0cSUmr0OlMNGr4MRMbVC+xlnf7fs9TkJfHwc2bWP7phzz0zvtUa9Sk1P4Vo47A3o1ImbWPIUczeF5xctTizZwq99GcyeUen7L6LYjb5Jr8rPZdl6/utqK4+qt9F8Rvdz3nfWgV7F/metW+C9q8BjVau9qKa5qmadid2rkQ67wgxKrFQvGFAfjCgFsYii9sa3NS4FAvaOP6+WqSlG290ofwt0joFkIIIYQQ143AgP+3d9/xVdX348df5+7cJPdmLxIySBghZAdkKSgKQlW0de/VavVbFbXFUUeX2p9abctXbf0qrdVqqyagIMiWJSObsMJe2ePem33H+f1xQyBAGGpIgPfz8TgPk5Nzzv2c8/EY33l/Pu/PBFJS3mTTpv+hsjIPjcbE0CG/41cJkUQa9cet5T3l54/R0drCroIN5P7xN9zw3B8IT0js8fqKXkvwncNhdhkv7VK5n2bmGsfytPpvQmk8YUyrAm606HDDtnneLSAWsu6CjNu8Vcp/KDE5cPO/oWozrH4DSj+FnUu9W/RIGD8DBk+R4LsXnK2scJvLg9tz9gdaG3QafPRaTPrD//RuPnotPgbv/sPfH73fqNPgY+i+39h5DR+DFpNOy+YKOz//sOCUbQjzPzeXyZOgWwghhBBCnFfCQieTPOxVyjbP4NChj9FqTCQlPcsdA0IIN+qPW8v7R4/N5POXnufA5k189ofnuPHFVwgeENPj9TUGb+Ctvr+J3+7x8BjN/Np5F2/r3+DYEbKHQ6PPuJI6TShXBB8kwfYtmsa9sORFWPYH7/Dw7HsgbtwPFwyHJ8N1f4OJT8PqP3urnh9YD/++CcKGw7jHYPi1oD2/w4GessJNrR2U2xSWb6/B5VGOywofDpgP7z8cAPe3rLBGoXsAbOghKO4Mlk3HBL/HBcBHBc2mo/YbdVq0mt77Q01MkJlIq4lKW1sPBQkhwmpiZHxQr7WhN53fb5kQQgghhLggRURcjcfTwZatv2L/gdlotCYGJTzB5BDrCdfynv7kc/z3t89QtaucT3/3LDe9+EesYeE9Xl9j1BJy93Au+r9NPLrPzWuekTzgfJSX9O8RpNi7jrOpfixkApsZhOLR8K+aAHQMIdO8h1HazQQ7dkLZ594tOMkbfKfdBOYfKLgIjIMfvQ6X/Aq+nQUb3oPqMvj8Plj2Oxj7CKTdAvqzm0HsH1lhLWwu7JX7+yGzwl0BcGdW+HBwbNJrMGg1KOfBqAWtRuH5q5J58F8FKNAt8D58d89fldyrgX9vkqBbCCGEEEKcl6KifoLH08a27c+zd+/baDUm4uP/h2yr7wnX8r7uqRf45IWZ1B/cz6e/9wbevgGBPV5fY9QRck8KV8xaSVGNi4WekSxqz2KkZhthNFJNAJs88eToDjCt+Ev+OtVJXHM8Mc0xrG9JZD2JhFLJMN23XOTei7muHBY+RceiZ9kcMZQdieNxRaYTbA4hyBREsCmYYJ9g/PR+Zx5o+YfD5b/xZrjXvwvr3oKGPfDlY7D8ZRj9MGrWXTh1fmc8V7inrPDRgXHb0YF0v8gKa3C1txISaMFs0J1TWeHz1ZSUSN66LZMXv9hMhe3I3O0Iq4nnr0pmSkpkH7bu+5GgWwghhBBCnLeio2/D42mnfMcf2LX7DTRaE7ED72eQ2cSXmUncVrKLkqZWfly4k78Nj+Unz/6Wj5/7FY2VFXz2+19zw/MvY/Lz6/H6GpOOlsEHGb/PlyU+Kh60fOtJPuoIlWWuRMbrs7hGW0v96CgamhpwHXThX+0PbRHUuKbzLR0kaYrIVoqJdzeRfqiM9ENlbDXo+Y+fP1/6WmnGBKoOPb74G4Kx6ILx1QXhq7Vi0lgwavwxavzQKWa0qg8ajKgevTc47pYVHkeraSStzgbamh201Wpp/cJA2xfLcaPt9T45Vm9lhY+9ll6rdP2xwul0Mn/+fKZOHY1erz/r9yxObEpKJJcnR7B2RzVfr1zHFeNHMTox7Jz/I4YE3UIIIYQQ4rw2cOC9uD1t7Nr1Ojt2vIxGYyIm+nbCjHo+z0jk/rI9LKt3cNem3fxxcAzXP/s7Pn7+l9Ts28Pnr7zA9c/8Dr2p5+HX0R4rPzUqoConWPJIARVeTxrPTdt24hcyDqPBh9ZAN62+bvY6mqisrafR0YLLk4YLhWHKHq7XreBKZR1DO5w8V1/PjLoW5rjH8qH7MjarcTSe9I5bOrdT0QMnHsauQfUGrgYdRp32nJ0rLM49Wo3CqPgg6raojIoPOi/+/ZCgWwghhBBCnPfi4x7C425lz9632L79BbQaI1FRN+Cn0x6/lndcOHc+/Rv+++JTVGzfypzXfs/0Xz6HroeMaJEjgBqN/YQ/A0CBJhTe1SfC+soTHKAF/Lu+W6MOZ03HcJ7nDn6sXcmt2iUkag5xq24Jt+qWUEwin2suZ6luFC6tDkXjAqUDj9KGmzZcagsdahMdajOK4gRNB4ri8v5T4wTFecw/j+y3KC6C3c2EuDsIUVWCAgcRHDeB4OAkgk3BBPlYuoa5++h8vl+nCHGBkKBbCCGEEEJcEBISHsftaWf//vfYsvVpNBojERHXoNcox6/lHRnEYzNfIPd3z7K3pJD5f/5//OjRX6HRHj/8usEvGDhJ0N0p3QPxzfUY2h0YWxsxuJuwJAwgMDMNy6D4zsyylmZbI7t3bGN3+QEcrije5RaSOMAk/50MbC4kzbODNM8OXtR8BKm3QPbdEDrkuM9zepw0tDVQ11pHXVsd9W313q+P/b6tlYY2G27VTRPQpNOwl87Mfsch2P7RCe/HrDN755r7BHcF4kd/3/W1TzD+ev/zouCXEN+FBN1CCCGEEOKCoCgKSYlP4/G0cfDgR2ze8iQajZGwsCkoinL8Wt5BFn79xLMseOUFytev4et3/sLkB36BotF0u254sO9pff49GjOZ/pajk9qoHe14Fu2GhUUYE8PxG5+BKXkg2qxEnM4rKCsrIz8/n/0H3LzviMSXTC4y7SSbUnzaqrwF0da9BbHjvMH3sKtAZwRAr9ETZg4jzHzqdcA9qgdbu617QH6ogLpdi6iz7aVeq6VOq6HO6EudAh2qixZXCy1NLRxoOnDK6+s1+hMH6J1fH/19gDEArebszy0XordI0C2EEEIIIS6LBDYRAABSaUlEQVQYiqIwZPCLeNztVFR+xqayR0nVvEVIyESA49byrvM385tf/IpVb7xE2YrFGM1mJtx5f7es7djRMYTN30y12nNF7jBFw8RbUlDr2nBVteCsbMZZ1YyiM6INjAPA1QCNcytgbgVoVfSRfsRF+ZM47Eoa01spPbSVks2bWNJmZikpDGIfl/juJLplE8reVbB3FZhDIOM2yLoLguJP+7loFA2BpkACTYEkkujdGX8ljH0Gqspg1Z9g02egVqECzTEjqcu+k7rwYdS111PfWk9dmzeLXt925Ou6tjqanc04PU6qWqqoaqk6vbYYAwnyCTpxgG4KPvIzUzB6rRRCE/2bBN1CCCGEEOKCoigahg17CbenjerqeZRu+jlpqe8SFDQW4Li1vH/hY+U3P3uM0rdeo+CruRh9/Rhz/S1d19PpNDwzfhCPfFPe42c+M34Q/iNCu+1T3Squ+lY69tbTvLaMth2VqE4TGr9wFLQ4DzTjPNDsbTOQipUU83j2BTSwxbWPHU0KO5pjsZDDRYZyMtmEqaUWVr/h3QZd5l33e/AU0H6P/+0PHw4/fhcmPg2r/4xS9CF++9fjt389seEjYNyjMPwn0EN2us3VdtRQ9rpuX3cF6Z3fN7Y34lE93p+11VFOz8/0MIvBcnrD3E3BmPXm7/4chPiOJOgWQgghhBAXHEXRMjz5NVRPBzW1iygu+Snp6bMJDMgBINvqy9yj1vJ+TB/Kr+/+Hw6+/xfWfvoRJl9fMqde03W9a6YOBuD3K3d2y3iHKd6A/PDPu7VBq6APNaMPNeObHQ1Ax4GDNObNwbFwDZ4WDRrLADSWKLSBA9GYAtG0eIhrsRLHCBqVZrZpD7FdW8HXHZksJp0kdjNev50Bzm0oO5fAziXgHwmZd0LmHWAd8N0fWlACXPUGXPIr+HYWbHwfqkrhs3th6e+8wXfazV3D2w8z6UxE+UUR5Rd1yo9weVzeeegnCMiPzaLXt9XjVt3YO+zYO+zsse855fV9dD4EmYIIMgbhanJRsL6AEHPICbPoFoNF5qGLH4QE3UIIIYQQ4oKk0ehJSXmTkpIHqKv/huLie8lI/ydWazoAiWYT8zKTuLVkF6VNrTzlE8njt/6M9g/fYdk//o7B7EvKhEld17tm6mCmXZHIytV7WF+4lZEZQxk/Ng6dTtNDC45niB5A2MM/J/ShB2nNz6cxNxfHV7PxtLSA1oDGPxKftHEYk0cSbo4kuDaQbNsg9mhq2KY9yDathm3OQQQympHqFjKVTRgdFbDiZdQVf0SNuxxl9H0oSZNAc/rt6sYSCVf8DsbNgA3vwrdvQcNu+OIRWP4yjH4Isu4GY8/rm/dEp9ERag4l1Bx6ymM9qgd7u73HYe1HD3mva6uj3d1Oq6uVg00HOdh0EIAtO7b0eP3D89C7Zc19jhnm3vmzQGOgzEMXPZKgWwghhBBCXLA0GiMjRrxFcfG9NDR+S1Hx3WRm/At//+EAhBn15GYkct+mPSxvcPCSfwz33nAf1v+8y9dv/xmjj5mkUWO6rqfTaRg3JgZ7YynjxsScUcB9NEVRMGdnY87OxvPMMzgWL6YxN5eWb9fRvOJDmld8iGI2Y5k8maBp1xAePYms6lZq91VRsnczW5r2sFAJYDEjGcoOxqqbiVL2oOxZCHsW4lIiaQ+6Fs+g69HGDEQfYUYX5IOiPYPMrjkILvmlN8jO/wes+Qs4DsHXz8LK12Dkz2DUz7zH9QKNoiHAFECAKYBBAYNOeqyqqrS4WroC8Oqmar7Z+A2RiZE0djQel1Fvcjad8Tz0AGPAyYvFHbXPoDX8UI9BnAMk6BZCCCGEEBc0rdZEaurfKCq+C5utgMKiO8nM+Ag/P++QcD+dlg9SE5ixbR//rWzgb0FxTP/JfSR++i7z/vxHpv/qeeJSM3qtfRqzGevVV2O9+mqchw5hmzuXxtxcnHv3YcvNxZabi37AAKzTpxM1/Rrirr+FaW43W4rLKNiYT9khLWXKEEKoZxSbSFM3Y6ACXd3/otb+jda1o2l0X0m7koo+zBd9uBldhC/6MDP6CF+0AUYUzUmCcYMvjP455NwLJZ/AqjegfieseNkbiGff7Q3MLaceXt5bFEXBV++Lr96XgZaBOAOdtJW2MXXEVPQnWH+93d1+0uJwR//s8Dz0+rZ66tvq2dG445Tt8Tf4Hzff/Ngs+uGvZR76uU+CbiGEEEIIccHT6XxJT3uPgsLbcThKKSy6nazMjzGbvRXA9RqFP3eu5f3G3iryQuIY/5OfMfKzvzPn1d9x/bO/I2rwsF5vpz4qipAHHiD4Zz+jtbAQW24e9q++wnnwILWzZlE7axbm7Gys117LsMmTSclMpaGhgcLCQgoLC5nnCGKhMobhbGOMdivh7n2YtSsxa1fi9ETTXH0lzRWXoh61rpli0KALPxyEm9GH+6KPMKPxN3Sf86wzeueNp98Km+fAqtehshTW/hXW/80733vsIxB88qx0f2DUGon0iyTSL/KUx7o8LhrbG3tYA/2oIL0zeHepLhwdDhwdjjOah350YH70GuhHB+gyD71/kqBbCCGEEEIIQKfzJyN9NgWFt9LUtJWCwtvIyvwYH58YwJstndm5lvdT2w+wMiSGhhse5LLP/sbnL7/Ajc+/TGjs6S/T9X0oioI5MxNzZibhTz+FY/ESbHl5NK9ZQ8vGjbRs3Ejl736H5YrLsV57LRMnTOCSSy5hx44d5OfnU1Kup9g9nAiqGandTKq6BT0HCND8Havxn7T7TaLFM5WWhljUDg/O/Q6c+x3d22DSdQbh3oy47nBm3FcPKdfB8GthxxLvUPN9a6DgH1D4ASRPh/EzIGLEWXlWvU2n0RHiE0KIT8gpj1VVFXuHvVtAfjhYP5xNPzqL3uZuO24e+qnacmyAfqIq7sE+3vXQdRoJB88GecpCCCGEEEJ00usDyEj/B/kFt9DSspOCwtvJyvw3JtORjOedA0IIN+h5YPMeNgVGYr/hYX70+d/49Pe/5obnX8JeW4tjzw4ObN5E7IhUNL1cYEvj44P1qh9hvepHOCsrsc2Ziy0vj47du71fz5mLLioS6zXXED99OkNuuQWbzUZRUREFBQXMtYWxgDGMYCtj9FsIdh7CZJ+HiXkERqfgGXIb7dYpOOs1uKqacVa14KptRW1z0bHHTscee/f2+OnRdw5P10UMR3/ZJ+idZWjW/QnKF0LZ594t6QpvMbbY0b36fPoTRVGwGq1YjVYSSDjl8S3OluMD9GMqux/+p8PpwOVxUd1STXVL9anbgkKgKbDHIP3YYP1szUN3e9xsrNpIcUcxYVVhjIwaec4XqVNUVVX7uhFnk91ux2q1YrPZsFgsfd2cHjmdTubPn8/UqSeeZyL6lvRP/yd91L9J//R/0kf9m/RP72tvryK/4CZaW/dhNseTmfFvjMbuFbU32pq5o3QX9U43wc12rp3zLgHNNvaHD6TZ7I9vi4Oh7U1MuvP+bsXWzgZVVWkrLqYxNw/7/Pl4HEey1D6ZmVivnY7lyitRzGZ27txJQUEB27Ztw+NxM4BKRmnKGK5uRas6vScZ/GDE9d51vyNTUZ0enDUtuKpacFY146xswVndgru+rcc2aQOM6APc6FoL0dcvRq/sQa/sR4nN9ma+EyfBWRoafT6+Qx3ujuMKwvW01FpDWwMqZxYG+uv9uwXmPRWJC/YJxqwzf6dh7ov3Lubl9S93K14Xbg5n5siZTIqddJIz+8bpxpaS6RZCCCGEEOIYRmM4Gen/oqDgJlpadlNYdDuZGR9hMBypxH30Wt77sfDPHz+Izu2mxXxkqSy/JhtFuXk8AWc18FYUBZ/0dHzS0wl/aiZNS5fSmJtH8+rVtBYU0FpQQNXv/4D/5ZcTOf0abvjJT2hqaenKfn/eEMl8xpHGZi7SbiGwoxry3/duA7JRsu/BMPxaDFFh3T7X0+7GVd2Cs9KbEXd2ZsY99g7cje24GwFGdG4AHnTlleh2FKL3X4N+RDb6zPHowvxQvmPl9wuVQWsgwjeCCN+IUx7r9rhpaG848Rz0Y9ZHr2+rx+Vx4XA6cDgd7LXvPeX1TVrTcYF5T5XdLUYLGkXD4r2LmbF8xnF/DKhuqWbG8hm8PuH1fhl4nw4JuoUQQgghhDgBH58BZGR8QH7BzTQ3l1NUdBcZGf9Crz+S0Uo0m/giI4EJi9bR6Gel45hBpE2+FuZccTM+i7/k9ZxRvT7U/EQ0JhOWqVOxTJ2Ks6oK29y52PLm0LFzJ/YvvsD+xRfoIiKwXnMNI6dfw9ixY9mzZw/5+fls2GJmnTuDWA4yUillGOVoDm6Egxth4VOQdou3OnnoEO9nGbUYYvwxxPh3a4OnxYmzusWbEe/MjLuqmvG0uHCpUbjUKNpswCpgVTEoKrpQ7xxxffiRiuq6INPJK6mL06LVaM98HvoJAvITZdFbXa20udtOfx66oiPQGEhD+4mz7yoqCgqvrH+FiTETz8mh5hJ0CyGEEEII0QOzOY7MzsDb0VRGUfE9ZKTPRqc7ks1u27ENF4CqHj88WlFAVZk3YjwPFRaQlJVzVtt/LH14OCH330/wfffRVlpKY24u9nnzcVVWUvfOO9S98w4+6ekEXnst1105hbapUykuLiY/P5//1kXjyyWkU8Yo7WYsbfWw7i3vFjvOG3wPu8pbxfwYGrMeY5wVY5y1a5+qqnianN4gfH8trrIinBV2nO5oVNWMq7oVV3UrrdQeuZBOgz7Mp6uCuq4zINcGGKVqdy/pNg/deprz0E+01NoJll5zdDhwqS5q2mpOek0VlcqWSgqqC8iJ6Nt36LuQoFsIIYQQQoiT8PVNJCPjAwoKbsFuL6S45H7S095Dq/UBYG2DgyY/a88XUBQc/gHM+td7jJ2fR0JmDvEZOQRFDThLd3CiJin4pKbik5pK+MyZNC1bRmNuLs0rV9FaVERrURFVv/89/pMmkXrttVz04IPsO3CAgoICvi3zZ407mwT2kqOUMljdhWbvKti7CswhkHEbZN0FQSev5K4oClp/A1p/A6bEQJiYBO1NqBtn4179EU6HDy51IE7NYJymdJwt/uDy4DzUjPNQc/drGbXeKurhvujCj1RU1/jpJRg/y8x6M2a9mRj/mFMe63Q7qWurY+7Oufyl8C+nPL6m5eTBeX8lQbcQQgghhBCn4O83tHM5sdtpbFxPSckDpKb+Da3WSLPZH+ynLkq1fNTl1G/NJ+Gz/+D/z3cJiIgkISOH+MwcooeloOujgl4aoxHLlClYpkzBWV2N/YsvseXl0l6+A/v8+djnz0cXFob1mquZNn06U6ZMoaSkhIKCAj6ujsOCgww2kaPZjF9LLax+w7sNusxbeG3wFNCeZthh9EMZ+zC6UfejK/43rHoDGj6HDlB9/HEP/znO6Btw2gxd88VdNa2o7W469jno2Nd9WTONWdcZhPseWWM83AznR+20c55eqyfCN4KMsIzTOj7UHHrqg/ohCbqFEEIIIYQ4DRZLKunp71FUdBf1DavYtOlhRoyYxdD4OCjefcrzK8NjqAz3Zv9C66qI37eNhKISohZ+iclgJHZEGvEZOSRkZOMXFNzLd3Ni+rAwgu+9h6B77qatbDO23FzsX36Jq7qaur+/S93f38WUmsqQa6eTfcstVDgc5Ofns6YsiJXOUSSxmxxKGMRelJ1LYOcS8I+EzDsh8w6wnmZ2X2f0ZsvTb4PNebDqTyhVm9AVvYKu9E/4pN8CUx6BoGGoLg+uutYj88WrvFXVXXWteFpcdOy207H7mGXN/PUkafxxKHswRvp3Zcc1RgmP+kJmWCbh5nCqW6pPOK9bQSHcHE5mWGYftO77kyXD+qnzcRmD84n0T/8nfdS/Sf/0f9JH/Zv0T9+qb1hLcfG9eDzthIVeydDkP5G5spQaj3LiJa9UlUAF7o2LYFm9gwJ7S7ewwtjRzsADO0jYt534/dvxb3YQFjeIhMxs4jNyiEhM6pMCbId5OjpoWr4cW24eTd98A243AIpej99llxFw7XS0WVls2rKF/Px8KisrCaSRTDaRpWzGrHYOBVc0MPhKb/Z70KWgOYPq5KoK5Ytg5Wuw/9sj1xt+HYx7DCJSjj/F6cZZ3XokEO+sqO5ubO/xY7SBxm6F2/ThZvShZhS9VFLvbYerlwPdAm8F7zvVH6uXy5JhQgghhBBC9IKgwNGkjniL4pIHqK75Cs1WIy8lP8N9ZXuPL6amqqDAqynxTAsN4In4SOqdLlbUO1hSZ2dpvZ16jJQnDKc8YTgAobUV3gB87Tqi8v6Ln58/8elZJGTmEJuagcnXr4eW9Q6NwYDliiuwXHEFrtpabF9+ie3zXNq3b8exYAGOBQvQhoYw8KqrSb12OnW+vuTn57OyNIzlHaMZyg6yKSVe3Q/b5nm3gIGQdbd3/rdf2KkboSgw+ArvtncNrHwddiyCTZ96t8FTYNwMGDjqyCl6LYYBfhgGdH9enjYXrYfsFC5eT3L4INw1bTirmvE4nLgb2nE3tNO2tf6ozwZdsE/3QDzcjC7EB0UrwfgPZVLsJF6f8PoJ1+n+1chf9buA+0xI0C2EEEIIIcQZCg6+hBEpf6Z000NUVuUxSGPg3eG/5Nflh6jocHYdF2Uy8NukAUwLDejaF6TXcW14INeGB+JRVYodrV0BeKG9hZqQSGpCIlmXeQnGjjZi93dmwf/2v/i3NTNgaDIJGTkkZOYQNCDmrBYK04WEEHzXXQTdeSftW7bQmJeH/YsvcdfUUv/ee9S/9x6mlBTGTp/OZffey5bO4mv/ODiEEOrJooQMZQumxn2w5EVY9gdvxfPseyBu3IlHChwrdox3qyiGVX+CsjzYvsC7xY6F8TO888l7uJbGpMMQ409deDv+U+O6Rou4m524qg6vL35krXG11YWrthVXbSuU1R25kFZBH+rTVUH98LxxbaAsa/ZdTYqdxMSYiaw/tJ5Faxdx+ejLGRk18pxcJuxoEnQLIYQQQgjxHYSGXs7w5NfZVPYYhyr+Q5LWxPqLnmbRvo18u20TFw1J4YrYFHSanv+XW6MoZFjMZFjMPBEfQW2HixX1dpbWO1hWb6ceE9sHpbB9kHf4dFjtIeL3lZOwZClRH/2DgJBQEjKzScjIIXr4CPSG45fr6g2KomBKTiYiOZnwJ56g6ZtvaMzNo2nFCto2baJt0yZ45RXCJ07kpunTabrySgqKi1leEsmS9nEMZxvZlBLjqYCyz71bcJI3+E67CcxBp25EZBpcPxsm7vAWbiv+GPau9m4Rqd7ge9jVcJoBm9ZXjzYhAGNCQNc+VVXxOJxda4s7q5pxVXn/qXZ4vPsqW2g9+tnoNd454mGH1xn3Zsi1FoNUUj8NWo2W7PBsqg3VZIdnn/MBN0jQLYQQQgghxHcWHv4jPJ52Nm/5JQcO/JOKis8wupu5xADshm8PRTA46TnCwiaf1vVCDDp+HBHEjyOCcKsqxfYWltTbWVLnoNjRQnVIFNUhUd4seHsrcft3kLBnO3HfvEqA28nAlNSuJcksIWen0rNiMOA/aRL+kybhqq/H/uWXNObm0b5lC46vv8bx9ddog4PJvuoqLr76GnY6O8jPz+f/9g8ngmqyKCWNrRjqymHhU94M+PDrvOt+R+ecOvsdkgjX/BUmPAVr/wr5s6GyBP57FwQnwthHIfVG0BnO/N4UBa3FgNZiwJQU2LVf9ai4G9u7FW5zVjbjrGlBdXpwHmjCeaCp+7WM2q4gXB/eucZ4hBmt35m3S5xbJOgWQgghhBDie4iM/DGNtgIOHfoYt7v7+tHt7VWUbnqIESmzTjvwPkyrKGRafcm0+vJkfCS1HS6W19tZUmdneb2DBnzYljiCbYkjAAivOejNgn/xBZH/9xZhMbEkZGQTn5lDVNJQNNrezxjqgoIIuuMOgu64g7atW7Hl5mH74gvcdXXUz55N/ezZWJOTuXb6dNpvu43iHTtYWhzLotbxjGArOZQQ4aqB4o+8W3iKN/gecQOYTlEE2ToAprwE45+A9e/AurehbgfMfRiWvwRj/sdbQd3g+73vU9Eo6IJM6IJM+Aw7Umledau46luPBOGdWXFXbeeyZnvtdOw9ppK6r74zCDcfFZT7ovGRUO18IT0phBBCCCHE96Cqburqlvf0U0Bhe/lvCQ2dhKJ898A3xKDjJxFB/KQzC15ob+maC17saKUqdABVoQP4NmsCprYW4g7sIH7LduK//opgrYa4tEwSMnOIS8/Cx8//O7fjdJmGDsX01EzCnnicppWrsOXm4li+nLbNm2nbvBn0elImXMKoq69mf2goBUVFvL1nBAOoJJsSUtiOvmoTzHscFj0PI673BuCRaSf/YN9gmPi0N8je+D6snQX2g7BgJqz4I1z0IGTc3Sv3rGgV9KHeiuc+KSFd+1WXB1dt61GBuDcYd9e34Wl20r7LRvsuW7draS2Gowq3ebPiujAzGsO5P9z6QiNBtxBCCCGEEN9DY+MG2tsrT3KESnt7BQ0N6wgKGvODfKZWUci2+pJt9eVXCZHUdDhZ1lkRfUW9g0aTma2JqWxNTAUgvPqgtxjbfz4hatafGJA0hISMbBIycwgZGNerc40VvR7/Syfif+lEXA0N2OfNx5abS1tZGY5Fi3EsWowpKIgrr/oR7qnTKLPZWFQ4iIUt9aSxhWxKCO2oh/z3vduAbO/c7+HXgsHc8wcb/WHsL2DkT71Z89VvQsMeWPZ7dKvfIDngEnBkQlBMr9171zPQabxZ7IjuWXZPhxtX9ZEg3FnZgquqGbetA7fdu7VvbzjqQqANNHkD8cPzxcN90Yf6oOikknp/JUG3EEIIIYQQ30N7e/VpHVdUfB+BATlYrRlYrZlYLOno9acYMn2aQg16bogI4oaIIFwelUJHZxa8zk5JUytVYQOoChvA2uyJmNpaiN9fTnx+CXF5nxHhayY+w7sk2cCUNPRG0w/SphPRBQYSdNutBN12K23bt2PLm4Nt7lzctbXU/+Of8I9/MmjoUNKnX0PlsEso3JbMrF3pxHKQbEpIphztwY1wcKN3/nfaLd7sd+iQnj9Ub/IG6Rl3wOY8WPk6SnUZSdXzUWctgYxbYcwvICi+1+67JxqDFkO0P4bo7iMPPK0unNXeIeqHC7c5q1rwNDlx17fhrm+jbctRy5ppQBfic2SN8cOZ8SAfFK0Ub+trEnQLIYQQQgjxPRiNp7HONKCq7dQ3rKK+YVXnHgVf30Ss1kyslkys1kzM5vjvnXXWaRRyrL7kWH2ZmRBJdbuTpZ0V0VfUO7CZzGxJSmNLUhqoKhE1B4nft52E2e8zoLGa2OQRXVlwa1jE92rLyZgGD8b0yycJm/EYTatWYcubQ9OSJbRv3Ur7y1vR6XRMvPhiJl45he3GsSwsGcqCpmrSKSObEgLbbLDuLe8WO84bfA+7CnQ9VHDX6mDETyDlx7i2zMM+73mCmnfAxvcg/x+Q8mMY9xiEJ/faPZ8ujY8OY6wFY2z3P8q4mzq8hdsqmzuD8s5K6m1uXNWtuKpbaS096gRd53D3w2uMd1ZU1wYYZVmzs0iCbiGEEEIIIb6HgIAcjMYI2tur8M7hPpaC0RhB6oi3sduLsdkKsNkLaG3dR3NzOc3N5Rw69AkAen0gFks6AdZMLNYMrJY0tNqTDKE+DWFGPTdFBnNTZDAuj0q+vZml9Q6W1tkpbWqlMiyayrBo1mZfik9rM3EHdpCw6lvi/v0B0cHBJGR61wSPGjwMre6HDx8UnQ7/CRPwnzABd2MjtvnzseXNoa2khKalS2HpUmICAhg2bRq1YyZRWpPGn8tzSGAP2ZQwhF1o9q6CvavAHAwZt0HWXRCU0MMHKqhJk1mZ5GJaSgC6tX+GnUug9D/ebfCVMP5xiMn5we/1+9L6GbzVzgcFdO1TVRW3veP44m1VnZXUK5pxVjQDNV3nKAbNUeuLH5kzrvGXZc16gwTdQgghhBBCfA+KomVw0nOUbnoIUOgeeHsDmMFJv8ZiScFiSSE6+lYA2jtqsdsKsNkKabQV4HCU4nQ2UFe3jLq6ZV3X9vMb2pUJt1ozMZkGfOfASKdRGBXgx6gAP55KiKSqMwu+pM7ON/UO7D6+R2XBPURWd2bB1/2V2KZGbzG2jGziM7IxW6zf46mdmDYggKBbbiHollto37EDW14etjlzcdXUYPvwQ/QffsjopCTGXnUVuwbk8NW2VL6yHySDTWSxCUtLnXfu9uo3YdCl3mHlg6/0ZrmPpSiosWMhcQIcKoRVf4LNc2H7V94tbrw38z3o0lMvW9aHFEVBZzWisxoxDT5mWbOGtiPzxatacFW2eJc16/Dg3O/Aud/R/Vo+uiOB+FFzxrW++rN9W+cVCbqFEEIIIYT4nsLCJjMiZRbby3/Traia0RjB4KRfn3C5MKMhhNDQKwgNvQIAj6cDR9MWbya8c2tvr8ThKMPhKOPAwQ8AMBhCOwNw79xwf78UtNoehlSfQrhRz82RwdwcGYyzMwt+uCJ6WVMbFeExVITHsCbnMsytTcTt30H810uIf+8dEqJjiM/MJiEjh7D4QT94htSYmEjYE08Q+uijNK9d661+vngJ7eXl8PrrRGq1DBo3joYJE9iiZvHG9m0ksYtsSkhkD8rOpbBzKfhHepcKy7zTu6zYiURlwA3/hNpyWPUGlHwMe1Z6t8h0GD8Dhl4FmnOnWJmiUdAF+6AL9sEn+ehlzTy46tq6FW5zVrV4lzVrddGxx07HnmOWNfPTHxWEm7vmjmtMEk6eDnlKQgghhBBC/ADCwiYTGjqJ2tq1rF+/iJEjLyckZPRpLxOm0RiwWtKwWtIgxrukVVvbIWy2Qmz2Qmy2AhyOMjo6aqipWUhNzUIAFMWAv//wriHpAdZMjMbwM26/XqNwUYAfFwX48cygKCraO1hW52BJvTcL7vDxY/PgdDYPTkfxeIioPkDCznISlv2ReFcbg9KzScjMJnZEOgaf7zck/miKToff+PH4jR+P22bD/tUCbLm5tBYX07JiBcYVK8i0Whk59Ur2Jl/NvINZ0LiXLErJoAw/RwWseAX1m/+HMvhKb/Y7dvyJPywkCabPgolPwZq/Qv5sqCiC/9wBIYNh7KOQegNoz93Mr6LVeOd2h5lhxJH9qtODs6blSOG2yhac1S3eZc2anLTvaKR9R2O3a2kDjEcKtx3Ojof5oOi/+7JmqkelY7eNwFoDHbtt6BKDz/n55xJ0CyGEEEII8QNRFC0BAaNwueoICBj1vdblBjCZojCZoggPnwaA292Gw7EJmy2fxs6h6U5nHXZ7IXZ7Iew/fN4ArJaMroy4n98wNJozCxQjjQZuiQrmlihvFnyDrdlbkK3OzubmNioiBlIRMZDVOZdhbmnyVkTP+4KEt/5C0qBBJGTkkJCZTWBkD9nl70BrtRJ4040E3nQj7bt2YcvNwzZ3Lq6qKjr+/TGRwMDEQTimTGG7NZMVu3YwRN1ONqXEq/th2zzYNg+ddSBJ5lHQlA2BJ2ifNRqufBkufgLWvQ3r/ga122HOz2HZH7xLkWXcfvIly84xil6DIcoPQ5Rft/2e9s5lzY6aL+6sasFj78Dd2I67sR22dV/WTBdk6qqg3lVRPeTUy5q1bqql8YuduG0dJOBHQ/kW7FYDAVcN6rbu+blGgm4hhBBCCCHOEVqtiYCAbAICsonFW0SrtXVfVybcZiugqWkbbW0HaWs7SFX1lwBoNCYslrSuIelWSwYGQ9Bpf65eozAm0I8xgX48OyiKQ20dXeuCf9PgoMnsR9mQDMqGZKB4PERW7ydhUznx8+cxRA+DMnJIyMghOnk4Wt0PkyU2JiQQ9vgMQh99hOa133YOP1+Mc8dOTH+dRapGQ/rF4zmQM4kvmi5C07CTLEpIZzM+tn0k2/ah/iUPhv3Im/2OG3/83G3fELj0We+SYhvfg7WzwH4AvvolrPgjXPQA5NwPPgE/yD31RxqjFkOMP4aYY5Y1a3F2q6B+eKi6p8WFq64NV10bbZvrjrqQgi7U50jhts6K6rogE4pGoXVTLXX/2nLc57ttHdT9awvBtw07ZwNvCbqFEEIIIYQ4RymKgtkci9kcS2TEdABcrqbOKumF2OzebLjLZaexcR2Njeu6zvXxiTtqSHoWvr6Jp52ZjzIZuDUqmFujgunweNhga2ZJnYOl9Xa2NrdxKCKWQxGxrBo5CXOLg/j95SR8/DFJtQcZOmRY11xw34DAU3/YqZ6BVovfuLH4jRuL2+HA/tVX2HLzaC0sxLN8BVHLVzDAYqF56pXsjL6N5Yf2MdSzhWxKifFUQFkulOWiBiehZN8NaTeD+Zg/SJgsMO5RGPUAFH3oLdTWuBeW/g5WvQk598Loh8Dv9JaPOx9ozHqMcVaMcUcK6qmqiqfJeSQIPypDrra7cVV5h6+3UnvkQjoNulAT7tq2k35e4xe7MCWfm0PNJegWQgghhBDiPKLT+REUNJagoLEAqKqHlpZdnZlwb6X0lpYdtLbuobV1DxWVnwOg1fphtaR3DUm3WNLR6y0n+ygADBoNYwP9GRvoz3NEcbCto3MYuoNv6u00m/0pG5JJ2ZBMFI+HqKr9JKwrJv6//2WE1bdrGHpEQhLK9yxUpvX3J/CGGwi84Qbad+/GNmeOt/p5RQXmjz9hBJCSlMTBSy7hw/Z0ApwHyaKUVLZgrCuHhU+jLvkNyvBrvdnv6Jzu2W+9yRtgZ94JZZ97K55Xb4bVb8C3b0Hm7d6seGDs97qPc5WiKGj9DWj9DZgSj6qkrqq4be1HKqhXHR6q3gIuD66KllNe221rp323DdNRy6WdKyToFkIIIYQQ4jymKBp8fRPx9U0kKuoGAJzORmz2oq5A3G4vxu1uor5hFfUNqw6fia9v0lFD0jMxm+NPWaV8gMnA7VEh3B4VQofHw3qbtyL6kjo721vaORgZy8HIWFaOuhzfZgfx+7eT8H/vMcxey7DhKcRn5BCXloHR7Pu97tsYH0/Yo48S+otf0LJuHY25uTi+XgTl5USXlxOlKDRdcgm7h9/AssYahrk3kU0Jka4aKP43FP8bNXw4SvY9MOIGb7b7MK3OW1At5SewfQGseh0ObIAN78LG92HE9d7MeNiw73UP5wtFUdAFmNAFmGDIkVEEqkfFXd9G07eHaFp16JTX8Tg6erOZvUaCbiGEEEIIIS4wen0AIcETCAmeAIDH46K5ebt3SLqtAJu9gNbWfTQ3b6e5eTuHDn3SeV4gFks6AZ1rhlssqWi1PRcTM2g0jAv0Z1ygP88nDmB/WwfL6uwsqbezst5Bs68/m4ZmsWloFl943Ayo3E/8ijUM+vADMkKDSMj0zgUPGhD9nZckUzQafEePxnf0aNzPNeFYuJCGzz6nraAAy/LljFi+nGEBAVRecTmfW8dicJSTTQkpbEVfVQbzHkf9+tcoqTd4s9+RaUcurtHA0Kkw5ErYswpWvga7lnmXHCv5GIZM8y43Fp39ndp+vlM0CroQH0zDgk8r6Nb4G85Cq354EnQLIYQQQghxgdNodPj7J+Pvn0x09K0AtHfUYj9qSLrDUYrT2UBd3TLq6pYB3mrtfn5DuzLhVmsmJtOAHgPkGJOBOwaEcMeAENo9HtY3NrO43s7SWjvlre0ciIrjQFQcK0fBp8124veVE7/6L6S2Oxg2Io2EzBxikkegM3y34Evr50fAj3+M79VXs+iDD8i022ma+wUcOkT0f/7LAMAxPJnykdewtONSkt2lZFNCqLPeu3xY/mzUqCyUnHtg+HVHqpcrCsSP924HC7zDzrd80VUtnfiLYdwMSJhwfLE2gTHeitZqwG3rOZOttRoxxlt7/Hl/JkG3EEIIIYQQ4jhGQwihoVcQGnoFAB5PB46mLV1V0m22AtrbK3E4ynA4yjjABwAYDKGd88K9c8P9/VLQao3HX1+jYXyQP+OD/HkxcQD7WttZWu9gaZ2dlfV2mnwtlA7LonRYFl+63URV7SPhq8Ukvf8u2dFRDMrIIT4jG//g71bR2hkcTPDttxP+i1/Qsn4Dtrw87AsXYinbzIiyzQzV66mccAmfRo/B1OrNfidTjvZQPszJR13wFEr6LZB1N4QNPXLhAZlw4wdQs90717vkE9j9jXeLyvRmvodM82bJBeDNeAdcNeiE1csPC7gq4ZwsogYSdAshhBBCCCFOg0ZjwGpJw2pJg5i7AWhrO3TUkPRCHI4yOjpqqKlZSE3NQgAUxYC///CuIelWawZGY/hx1x/oY+SuAUbuGhBCm9vDOlszS+vsLK61sbOtgwNR8RyIiucb4JMmGwnby4lfvJQsjYvk1HTiM3KITBqMRnNma6MrGg2+F43C96JRhD/7LI6vv8aWl0fL+vXELFpMDNAYGcmW8VNYor+M4e4SsikhsN3euYb326gDx6Dk3AvDrgJd5x8YQgfD9P+FCU/Bmr9AwT/hUAF8chuEDIFxj8GIn4D2h1lC7VznkxJC8G3DutbpPkxrNRJwVcI5u1wYSNAthBBCCCGE+I5MpihMpijCw6cB4Ha34XBswmbLp7FzaLrTWYfdXojdXgj7/6/zvAFYLRldGXE/v6FoNEeCT5NWwyVB/lwS5M+LSQPY25kFX1JrY1WDgyY/KyXDsikZls0XbjcDKvcS//kchtUeYmTcQBIyc4hLy8THz/+E7e6J1s+XgOuuJeC6a+k4cABb3hxseXkEHDhAwH/+yzCtlkMZ6Xwy5Kf4uneSTQlD2IVm3xrYtwaPTxCazNsh6y4ISvBeNCAGpv4RLn4S1r0F69+F2m2Q9wAs+wOM/QVk3AZ6nx+kT85lPikhmJKDadlRR/7KDWSNz8GceG4uE3Y0CbqFEEIIIYQQPwit1kRAQDYBAdnE4l0qqrV1HzZ7YdeQ9KambbS1HaSt7SBV1V8CoNGYsFjSjqqUnoHBcKTKdayPkbsHGLm7Mwu+trGJpfV2FtfY2N0O+wcksH9AAt8AHzXZiC/azqAv5jHKrGNYagYJmTmExMSeUTE2Q3Q0oQ8/RMjPH6Q1P5/G3DzsCxYwcGM+Azfm02i1UjJmAksCJzHcU0wWm7C01nvX8F79JmrCRG/2e/CV3mrnfqFw2XMw9hHY+B6snQW2fTD/CVjxClz0IOTcB6Zzc97yD0XRKBjirTRs6cAQbz3nA26QoFsIIYQQQgjRSxRFwWyOxWyOJTJiOgAuVxN2e7F3WLrdmw13uew0Nq6jsXFd17k+PnEEWDOxWDMIsGbh65uIomgxaTVMDLYwMdjCb5Oi2dPazpI6O0vr7Kyqd+Dws1KSnENJcg5z3C6iK/YS/69/M8JRy6hBCQzKHEnE4NNfykvRaDDn5GDOySHi2WdwLFpEY24efPstAV99hUur5eCgBD5Ovxt/zV6yKSGRPSi7lsGuZXh8w9Fk3wWZd4A12htUj3sMRj0Ahf+CNX+Gxn2w5Dew6g1v4H3Rz71BujgvSNAthBBCCCGEOGt0Oj+CgsYSFDQWAFX10NKyC5utoGtIekvLDlpb99DauoeKys8B0Gr9sFrSjyrSlo5O50+cj5F7o0O5NzqU1qOy4IuqG9jbAfuiB7EvehArgH86GolfU8igTz9jSEczJXqFpJyLsISGnVbbNWYz1muuwXrNNTgPHsQ2dy6NuXnEbi8ndns5dn9/CtJGsjj6MlIoIYMy/JqrYMUrqN/8P0ia7M1+D7rUO5x85P3eoeibPvNWPK/Z6l3z+9v/9QbpY/4HAgb2Uk+Is0WCbiGEEEIIIUSfURQNvr6J+PomEhV1AwBOZyM2e1HnkPRC7PZi3O4m6htWUd+w6vCZ+PomdQ1JD7Bm4eMTx6XBFi4NtvC7pGh2tbR3DkNvZE1jE3b/AIqHj6R4+Ei0bhcfVuwl4W//R2aHg1GDkxiUkUPUkGFotKcuxqYfMICQBx8k+IEHaC0ooDE3F81XC0hdtQq3RsPBAQP4d8YtBJgPkU0p8ep+2P4VbP8KtyUabc49kHE7+IVB2k0w4gbvz1e+BgfzYf3fvMPQR1zvzYyHDunFXhC9SYJuIYQQQgghRL+i1wcQEjyBkOAJAHg8Lpqbtx+plG4roLVtH83N22lu3s6hQ590nhfYWaDNG4jHWlK5LzqU+6JDaXF7WNPYxNI6G19X1XMAXVcWfDlgcTSQsHQ1gz/+N5eEBDIsPZO49CzMlpPPsVYUBXNWFuasLDzPPINj8WJsublo137LwP37afLzZf3gNBYnTSRFKSWdzfjYD8CS3+BZ+gcY9iM0OfdC3HgYOg2GTPUuL7byNdi9Aor/DcUfe382fgYMyOrdhy9+cBJ0CyGEEEIIIfo1jUaHv38y/v7JREffCkB7Ry32zkx4o60Ah6MEp7OB2rql1NYtBUBRtPj5De0szpbJWGsmlwVF80JcOLMXLsIzIouldTbW2luw+wdSNHwURcNH8ZnbRfSePSSsnMVIxclFQ4aQkJlDWFzCSYuxaXx8sF51FdarrsJZUYFtzlwMubn4FRTgKVQ4FBXFR8N/QlBQDdmUEqNWwOY82JyHKyAB3aj7IO1mSLjEux3Mh5Wvw9Yvj2wJE2DcDIi/GM6gMJzoOxJ0CyGEEEIIIc45RkMIoaFXEBp6BQAeTweOpi1dmXCbrYD29kocjjIcjjIO8AEABkMYFv80orU+jPQP4f6YdNrQsaahicV1NhZX1XMQHXtjEtkbk8gywGqvJ/7LRSTXVzAxMpShGVnEjkjHYOp5mS99ZCQhD/yM4J/9lNaiImy5eejmzyf662U0m82sTRjB4iGXkKLfTCpbMDbugoVP41n0Agy/Fs3I+yA6B276EKq3wuo3oOQ/sGu5dxuQ7c18D74SNJreftzie5CgWwghhBBCCHHO02gMWC1pWC1pEHM3AG1th44MSbcX4nCU0dFRTW3dIowmKC6ei6IYsPgPJ86ayeOBmbwYm84BTwBL6ux8XVnHekcbNksQRSkXUQR84nISs2UPgxYtZ4xRw0XJwxiUkUNAROQJ26UoCuaMDMwZGYQ//RSOJUuw5ebhu2YNnjKVysgIPhp8NSHhjWQrJUR6aqD0Eyj9BGfwEPQX/dQ73/vat2HCU7DmL1D4ARzcCB/fAqHDvHO+U37sXZpM9DvSK0IIIYQQQojzkskUhckURXj4NADc7jYcjk3U12+gvHwBPuYKnM467zri9kLY/3+d5w1grDWTqREZ6BIzKHZGs7TOwdfV9VTq9OyJSWJPTBJLAKutnoT/5JHa3MCl0REMy8hiwNBktDr9ce3RmExYp03DOm0azqoqbHPnYsrNI2r5Wlp8fFgdn0rrECspxm2ksBV93TaY9zjuBc/AiBvQjroPpr0Kl/wSvn0LNrwLNVsg96ew7Hcw5heQcZu3MrroNyToFkIIIYQQQlwQtFoTAQHZ+PqmUVoaxcSJV+JyVXRlwm22ApqattHWdpC2toNUVX0BgFFj4kZLGvcPyKTelM0GZxyLq5rZ2NKBzRpE4YjRFAIfupzE5G8j6csFXOxn5KLhw4nPyMY3IPC4tujDwwm5/36C77uPtpISGvPy8Js3H9eWrVSFh/PvxGmEDrCRrZQS6q6Hon9C0T/pCE3FMOZncPGTMO5Rb+C99n+9a33PfwJW/BFG/xyy7wWT5ew+YHFCEnQLIYQQQgghLkiKomA2x2I2xxIZeS0ALlcTdnvxUYF4IS6XncbGdTQ2rgNgGJDpE4cxbCTb9GP4ti2aFfUqVTo9uwcOZvfAwXwNBNhqSfjnx2R2NHFZ7ACGZWQTnpCIctQcbEVR8ElLwyctjfCZM2lauhT/3FwiV62m1WBgZVwaHYN9GW4uJ5lyDDUlMOchXPN+CWk3oxt1P4x6EAr/BWv+DLb9sPgFWPkn7zrgFz0IviFn/+GKLhJ0CyGEEEIIIUQnnc6PoKCxBAWNBUBVPbS07MJmK6Cxs1p6S8sOWlv30Nq6h3D+wzXAtRo/bH6XUaody9rmCEo6fGi0hlAwIoQCYLbLSczqQobmfsHEAF8uGpFCbGomRrO567M1RiOWK6/EcuWVOKuqsX/5BdbcXNrnFlAdFsbHSVcSPqCRTM0mglw2yH8X8t+lPSIbw5gHUH7+LWyZC6v+BLXbYeWrsHYWZN0Jox+GgJi+eagXOAm6hRBCCCGEEKIHiqLB1zcRX99EoqJuAMDpbMRmL+qqkm63F+N2N+Fvn8MY5jAGaMWHHYbJlCoXsa4tmlqdD7sHDmH3wCF8BQRW1JKw/h+MpIPLE2IZmplNYOSAriXJ9OFhBN97L0H33EPbpjKCcnOJnDeP1g2tfBOfjmuwieG+OxnCToyVG+Hz+3DqrZB5G/qbPoaazd61vg8Vwrq3vcPQU2+EsY9C6OA+e54XIgm6hRBCCCGEEOIM6PUBhARPICR4AgAej4vm5u1HKqXbCqBtHyPa8xhBHjcDB9QYSjVjKGYUWzzRNASEkB8QQj7wd2cHA79exfCGKi4LtXLRiFSik0eg0+u9w89HpOAzIoWwmb+iadlygnNzccxfSU1QICVJkwmPbiBTU4bFaYN1s2DdLFqjxmAaNwNFb4Y1b8Lub6DoQyj6CIZd5V1uLCqjLx/jBUOCbiGEEEIIIYT4HjQaHf7+yfj7JxMdfSsA7R212DuHozfaCtA6SojxfMJUPqEFH8rUVIrIooQs6vUB7Iodyq7YoXwBBO2sYdDK9xitV7kiMY4hGdn4B4WgMRiwTL4Cy+QrcNXUEP7lPKI//xzHhkqWx2WiDtGT7LeTRPbgc2gN/GcNHcZglKw70R+e971tnncI+pa5kDARxj8OceOgM8MufngSdAshhBBCCCHED8xoCCE09ApCQ68AwOPpwNG0pSsTHmgrIKd9HSqwX42lmAyKyWAbw6gPDKU+MJQNwFvODgbOWUxqcz2XhwVxUXoaEYmD0YWGEnz3XQTddSdtmzcTnjcH2xdfUKn1p2TIJMKjG0jXbMGvvQ7WvI66RqEl5hLMU19D2f8tbPocdi3zbtE5MG4GDJ4CRxV5Ez8MCbqFEEIIIYQQopdpNAasljSsljSIuRuAtrZD2GyFDLQVkGIv5GrHlzSrBjapqRSTQRGZNOqD2Bk3lJ1ALhBcto+kxasY66Nl8uBEBqdn4jN8OD7DhxP+5BNErliBLW8ODXN3sTw6A2WojmS/XcSzH9/9y2H/ctpM4SjZP8XYYYNNn8GBDfDxzRCWDOMeg+HXgVZCxR+KPEkhhBBCCCGE6AMmUxQmUxTh4dMAcLvbsDtKSbUVMNVWQGPjf9jp8qOYTIrIpJwh1AWEUxcQzrfAX1rbiM+bQ1pzM5MjwhiVkUHwpElYLr+cyLo6or/8ksa8ORyqtFAydALh0Q2kabfi01YFG97Cg5bm6PH4WoPRbF8I1Zvh8/th6e9g7COQfivoTX37kM4DEnQLIYQQQgghRD+g1ZoIDMghMCCHWEBVVXJa93Fl55rhBxs/Z12zD8WkU0wmjdpAtkUNZxvwHyC8tIxhK75gtNbMlCEjSLj5JoLuvJOoLVuw5eVRO28+y60ZaIdqGea/ixgq8D+wHA5Ai08kmgEXYarKh8a9MG8GrHgFRj8E2feA0b9vH845TIJuIYQQQgghhOiHFEXBbI7FbI4lMvJahgKXuJqw24tpbCygoOEAK+16itRktjOEKp8oqgZEsRx4vbGVIQs/JK2thkutEYy57y6SH3+cgStXYsvLY/8iG8VJSUTG1JOi3Ya5tQL2VOBWdDQFpeHfdghNUxUses679NjIn8KoB8E3uI+fyrlHgm4hhBBCCCGEOEfodH4EBY0lKGgsCcCPVQ/NLTs5UF/M4qoKVjn0FKpDsCmBlPhlUuIHHwDRJRtIad1CjuJgwj0jSXtmBm1fr6JuzhyWt/piGAZD/XcRqdZgrS8GoMkYjkajxdx6CL75f7B2FmTeCWMeBmt0nz6Hc4kE3UIIIYQQQghxjlIUDX6+SQz1TWJoDDwMtHc0sK5qE/MP7GNNiy/lykAOaAZywHcgC4D/19BCSsNC0sK3MfrhCIaaRmNYV8v++SolUUlExNSTrC3Hr70KACd6mgyhWDoq0K57Cza8C2k3wtjHICSxT+//XCBBtxBCCCGEEEKcR4yGQC6OGc/FMd7v69rbmLd3EwsOHmSjJwi7xp+NXMRGw0X8HxDTupf0VDtpKQGkudpwlwezcpMeg7+WIX77CKWewI5DANg0QWg9rfgV/gsKP4Tkq73LjUWl99n99ncSdAshhBBCCCHEeSzYaOKOwdncMTgbj6pSbGsid/sWljfaKdcFsV+JZT+xfKG9Fh9NMynDS0gfXkiaWoirxg/DQX9C25wkOCuxeuoBaMeAQzUTsHkuus1zYNBlMP5xiB0DitLHd9y/SNAthBBCCCGEEBcIjaKQEeBPxsiRANQ7XSzYe4Av9x5kvUdDk86XDYxmA6NBgYFhu0kLKySdAoZ3dBB5oJ0BVe34OTswKh3ea6hWdDvXYtk5FWJGeTPfgydL8N1Jgm4hhBBCCCGEuEAF6XXckhjHLYlxeFSV/Hobc7bvZFljC7uMfuxT4tlHPF9wHWZDMykJxWTE5zOpYQ1DKmoJqesgSLEB0KbosR3YTtC/b0YfngzjHoPk6aC9sMPOC/vuhRBCCCGEEEIA3ix4TnAAOaOzAKhtdzJv5x6+OlDJBlVPs8GX9YxhvTKGd4L/h9jAXUzoWMmPKxeTWnEAU4cTEw3ecx07aV36CNbVz+OX9RiajNtBZzxlG1TVTWPjOnS6AhobgwkJGY2iaHv1vnubBN1CCCGEEEIIIY4TYtRzZ3ISdyYn4VZV1lfXMWfbTlY0tbPb5M9eTQL/MCXwj7g78Yu2c0fNp9xUs5CkhkpCWlqhBdoMLewpeRbHnt/jGzaSgMF3YAkejcEQdNznVVcvZHv5b2hvr8TkAyWl/8JojGBw0nOEhU3ugyfww5CgWwghhBBCCCHESWkVhdHhIYwODwGgpq2dOVt3sKCihgKNiSaDhf+NvIf/jbyHga0VPLD/I35csxhrRwsJ+1tRaaW2cikHatZQF6jH7BOLNSAbqzUTqzWT5pZdbNr0P4Da7XPb26so3fQQI1JmnbOBt6avGwAwa9Ys4uLiMJlMjBo1ivXr15/0+P/+978MHToUk8nEiBEjmD9//llqqRBCCCGEEEKIUJOR+9KH8+mVEyi/YhT/SQzjVrWJ2OZG9vlE8vTgx0kZPZefDnueNZY0FCC0roP0TXbGrG8gdPtW6vZ9ytZtz7Ju/dSugNujKtgaB2CrjsPWOABPZwy+vfy3qKq7L2/5O+vzTPcnn3zCjBkzePvttxk1ahRvvPEGkydPZtu2bYSFhR13/Jo1a7j55pt56aWX+NGPfsRHH33E9OnTKSgoICUlpQ/uQAghhBBCCCEuXFpF4eKYKC6OiQKgormV3M1bWVRlZ1HAGOaGXUpiy15uO/QFN1YtILDdQeKeFuL3tFLlb6YyVk9DoBZbXSyjd+wlsqO469oVhmDWJsZiDdlHY+MGAgMv6qvb/M76PNP9+uuvc//993P33XeTnJzM22+/jdls5r333jvh8W+++SZTpkzhySefZNiwYfz2t78lMzOTv/71r2e55UIIIYQQQgghjhXp68PPczLI/dFllF8+ig8HBpCtt/J/4beQcdFn/M+Qp9hgGY4WlShHM5mbGslc18a1mwsI76jrdq3wjjqmby7AVjuQ9vbqPrqj76dPM90dHR3k5+fz1FNPde3TaDRMmjSJtWvXnvCctWvXMmPGjG77Jk+eTF5eXm82VQghhBBCCCHEGdJpFC4bFMdlg+IA2N9oJ7cMfmNKx6nWcVPtQn5SuZDAjmYAjl3ZWwN4gNE798JY37PZ9B9MnwbdtbW1uN1uwsPDu+0PDw9n69atJzynsrLyhMdXVlae8Pj29nba29u7vrfb7QA4nU6cTuf3aX6vOty2/tzGC5n0T/8nfdS/Sf/0f9JH/Zv0T/8m/dP/SR/1nQhfHx4cmcmDgNPtZll5Bi+vieV3FX/u8RwNENleR27uPH70s4vPWltP5XT//enzOd297aWXXuLFF188bv/XX3+N2WzugxadmUWLFvV1E8RJSP/0f9JH/Zv0T/8nfdS/Sf/0b9I//Z/0Uf8wpH7vaR3X5KjtV0W0W1paTuu4Pg26Q0JC0Gq1VFVVddtfVVVFRETECc+JiIg4o+OfeuqpbsPR7XY7MTExXHHFFVgslu95B73H6XSyaNEiLr/8cvR6fV83RxxD+qf/kz7q36R/+j/po/5N+qd/k/7p/6SP+pd5+1dC+6mP8/cPY+rUqb3foNN0eBT1qfRp0G0wGMjKymLJkiVMnz4dAI/Hw5IlS3j44YdPeM7o0aNZsmQJjz76aNe+RYsWMXr06BMebzQaMRqNx+3X6/XnxAt2rrTzQiX90/9JH/Vv0j/9n/RR/yb9079J//R/0kf9w5S7fk3Fn3MJ76g9YaVvD1BpCGHKXb/uV/11um3p8+rlM2bM4O9//zv/+Mc/2LJlCw8++CDNzc3cfffdANxxxx3dCq098sgjLFiwgNdee42tW7fywgsvsHHjxh6DdCGEEEIIIYQQ/ZfJz8oq0+WAN8A+2uHvV5sux+RnPavt+qH0+ZzuG2+8kZqaGp577jkqKytJT09nwYIFXcXS9u3bh0Zz5G8DY8aM4aOPPuLZZ5/l6aefJikpiby8PFmjWwghhBBCCCHOUdfPeJv/vg7j2hYR2VHbtb/SEMJq0+VcP+PtPmzd99PnQTfAww8/3GOmevny5cftu/7667n++ut7uVVCCCGEEEIIIc6W62e8TVuTjbzZv8XhqMbfP4wpd/2a68/RDPdh/SLoFkIIIYQQQgghTH5Wpv3sJebPn8/UqVP71Rzu76rP53QLIYQQQgghhBDnKwm6hRBCCCGEEEKIXiJBtxBCCCGEEEII0Usk6BZCCCGEEEIIIXqJBN1CCCGEEEIIIUQvkaBbCCGEEEIIIYToJRJ0CyGEEEIIIYQQvUSCbiGEEEIIIYQQopdI0C2EEEIIIYQQQvQSCbqFEEIIIYQQQoheIkG3EEIIIYQQQgjRSyToFkIIIYQQQggheokE3UIIIYQQQgghRC+RoFsIIYQQQgghhOglEnQLIYQQQgghhBC9RNfXDTjbVFUFwG6393FLTs7pdNLS0oLdbkev1/d1c8QxpH/6P+mj/k36p/+TPurfpH/6N+mf/k/6qH87V/rncEx5OMbsyQUXdDscDgBiYmL6uCVCCCGEEEIIIc51DocDq9Xa488V9VRh+XnG4/Fw6NAh/P39URSlr5vTI7vdTkxMDPv378disfR1c8QxpH/6P+mj/k36p/+TPurfpH/6N+mf/k/6qH87V/pHVVUcDgdRUVFoND3P3L7gMt0ajYbo6Oi+bsZps1gs/fpftAud9E//J33Uv0n/9H/SR/2b9E//Jv3T/0kf9W/nQv+cLMN9mBRSE0IIIYQQQggheokE3UIIIYQQQgghRC+RoLufMhqNPP/88xiNxr5uijgB6Z/+T/qof5P+6f+kj/o36Z/+Tfqn/5M+6t/Ot/654AqpCSGEEEIIIYQQZ4tkuoUQQgghhBBCiF4iQbcQQgghhBBCCNFLJOgWQgghhBBCCCF6iQTdfWjWrFnExcVhMpkYNWoU69ev7/HY2bNnoyhKt81kMp3F1l5YvvnmG6666iqioqJQFIW8vLxTnrN8+XIyMzMxGo0kJiYye/bsXm/nhepM+2f58uXHvT+KolBZWXl2GnyBeemll8jJycHf35+wsDCmT5/Otm3bTnnef//7X4YOHYrJZGLEiBHMnz//LLT2wvRd+kh+D509b731FqmpqV3r044ePZqvvvrqpOfI+3N2nWkfyfvTt15++WUUReHRRx896XHyHvWN0+mfc/0dkqC7j3zyySfMmDGD559/noKCAtLS0pg8eTLV1dU9nmOxWKioqOja9u7dexZbfGFpbm4mLS2NWbNmndbxu3fvZtq0aUycOJGioiIeffRR7rvvPhYuXNjLLb0wnWn/HLZt27Zu71BYWFgvtfDCtmLFCh566CG+/fZbFi1ahNPp5IorrqC5ubnHc9asWcPNN9/MvffeS2FhIdOnT2f69Ols2rTpLLb8wvFd+gjk99DZEh0dzcsvv0x+fj4bN27k0ksv5ZprrqGsrOyEx8v7c/adaR+BvD99ZcOGDbzzzjukpqae9Dh5j/rG6fYPnOPvkCr6xMiRI9WHHnqo63u3261GRUWpL7300gmPf//991Wr1XqWWieOBqi5ubknPeaXv/ylOnz48G77brzxRnXy5Mm92DKhqqfXP8uWLVMBtaGh4ay0SXRXXV2tAuqKFSt6POaGG25Qp02b1m3fqFGj1J/97Ge93Tyhnl4fye+hvhUYGKi+++67J/yZvD/9w8n6SN6fvuFwONSkpCR10aJF6iWXXKI+8sgjPR4r79HZdyb9c66/Q5Lp7gMdHR3k5+czadKkrn0ajYZJkyaxdu3aHs9ramoiNjaWmJiYU/41VZxda9eu7dafAJMnTz5pf4qzLz09ncjISC6//HJWr17d1825YNhsNgCCgoJ6PEbeob51On0E8nuoL7jdbj7++GOam5sZPXr0CY+R96dvnU4fgbw/feGhhx5i2rRpx70fJyLv0dl3Jv0D5/Y7JEF3H6itrcXtdhMeHt5tf3h4eI9zTIcMGcJ7773HnDlz+Ne//oXH42HMmDEcOHDgbDRZnEJlZeUJ+9Nut9Pa2tpHrRKHRUZG8vbbb/PZZ5/x2WefERMTw4QJEygoKOjrpp33PB4Pjz76KGPHjiUlJaXH43p6h2Tefe873T6S30NnV2lpKX5+fhiNRh544AFyc3NJTk4+4bHy/vSNM+kjeX/Ovo8//piCggJeeuml0zpe3qOz60z751x/h3R93QBxekaPHt3tr6djxoxh2LBhvPPOO/z2t7/tw5YJ0f8NGTKEIUOGdH0/ZswYdu7cyZ/+9Cc++OCDPmzZ+e+hhx5i06ZNrFq1qq+bInpwun0kv4fOriFDhlBUVITNZuPTTz/lzjvvZMWKFT0GdeLsO5M+kvfn7Nq/fz+PPPIIixYtOqeKbV0ovkv/nOvvkATdfSAkJAStVktVVVW3/VVVVURERJzWNfR6PRkZGezYsaM3mijOUERExAn702Kx4OPj00etEiczcuRICQR72cMPP8yXX37JN998Q3R09EmP7ekdOt3/Jorv5kz66Fjye6h3GQwGEhMTAcjKymLDhg28+eabvPPOO8cdK+9P3ziTPjqWvD+9Kz8/n+rqajIzM7v2ud1uvvnmG/7617/S3t6OVqvtdo68R2fPd+mfY51r75AML+8DBoOBrKwslixZ0rXP4/GwZMmSk84FOprb7aa0tJTIyMjeaqY4A6NHj+7WnwCLFi067f4UZ19RUZG8P71EVVUefvhhcnNzWbp0KfHx8ac8R96hs+u79NGx5PfQ2eXxeGhvbz/hz+T96R9O1kfHkvend1122WWUlpZSVFTUtWVnZ3PrrbdSVFR0woBO3qOz57v0z7HOuXeoryu5Xag+/vhj1Wg0qrNnz1Y3b96s/vSnP1UDAgLUyspKVVVV9fbbb1dnzpzZdfyLL76oLly4UN25c6ean5+v3nTTTarJZFLLysr66hbOaw6HQy0sLFQLCwtVQH399dfVwsJCde/evaqqqurMmTPV22+/vev4Xbt2qWazWX3yySfVLVu2qLNmzVK1Wq26YMGCvrqF89qZ9s+f/vQnNS8vTy0vL1dLS0vVRx55RNVoNOrixYv76hbOaw8++KBqtVrV5cuXqxUVFV1bS0tL1zHH/jdu9erVqk6nU1999VV1y5Yt6vPPP6/q9Xq1tLS0L27hvPdd+kh+D509M2fOVFesWKHu3r1bLSkpUWfOnKkqiqJ+/fXXqqrK+9MfnGkfyfvT946tji3vUf9yqv45198hGV7eR2688UZqamp47rnnqKysJD09nQULFnQVcNi3bx8azZGBCA0NDdx///1UVlYSGBhIVlYWa9askbldvWTjxo1MnDix6/sZM2YAcOeddzJ79mwqKirYt29f18/j4+OZN28ejz32GG+++SbR0dG8++67TJ48+ay3/UJwpv3T0dHB448/zsGDBzGbzaSmprJ48eJu1xA/nLfeeguACRMmdNv//vvvc9dddwHH/zduzJgxfPTRRzz77LM8/fTTJCUlkZeXd9LCXuK7+y59JL+Hzp7q6mruuOMOKioqsFqtpKamsnDhQi6//HJA3p/+4Ez7SN6f/kfeo/7tfHuHFFVV1b5uhBBCCCGEEEIIcT6SOd1CCCGEEEIIIUQvkaBbCCGEEEIIIYToJRJ0CyGEEEIIIYQQvUSCbiGEEEIIIYQQopdI0C2EEEIIIYQQQvQSCbqFEEIIIYQQQoheIkG3EEIIIYQQQgjRSyToFkIIIYQQQggheokE3UIIIcQ5Zvny5SiKQmNj41n93NmzZxMQEPC9rrFnzx4URaGoqKjHY/rq/oQQQojeIEG3EEII0Y8oinLS7YUXXujrJgohhBDiDOj6ugFCCCGEOKKioqLr608++YTnnnuObdu2de3z8/Nj48aNZ3zdjo4ODAbDD9JGIYQQQpw+yXQLIYQQ/UhERETXZrVaURSl2z4/P7+uY/Pz88nOzsZsNjNmzJhuwfkLL7xAeno67777LvHx8ZhMJgAaGxu57777CA0NxWKxcOmll1JcXNx1XnFxMRMnTsTf3x+LxUJWVtZxQf7ChQsZNmwYfn5+TJkypdsfCjweD7/5zW+Ijo7GaDSSnp7OggULTnrP8+fPZ/Dgwfj4+DBx4kT27NnzfR6hEEII0a9I0C2EEEKco5555hlee+01Nm7ciE6n45577un28x07dvDZZ5/x+eefd82hvv7666muruarr74iPz+fzMxMLrvsMurr6wG49dZbiY6OZsOGDeTn5zNz5kz0en3XNVtaWnj11Vf54IMP+Oabb9i3bx9PPPFE18/ffPNNXnvtNV599VVKSkqYPHkyV199NeXl5Se8h/3793Pddddx1VVXUVRUxH333cfMmTN/4CclhBBC9B0ZXi6EEEKco37/+99zySWXADBz5kymTZtGW1tbV1a7o6ODf/7zn4SGhgKwatUq1q9fT3V1NUajEYBXX32VvLw8Pv30U37605+yb98+nnzySYYOHQpAUlJSt890Op28/fbbDBo0CICHH36Y3/zmN10/f/XVV/nVr37FTTfdBMArr7zCsmXLeOONN5g1a9Zx9/DWW28xaNAgXnvtNQCGDBlCaWkpr7zyyg/2nIQQQoi+JJluIYQQ4hyVmpra9XVkZCQA1dXVXftiY2O7Am7wDh1vamoiODgYPz+/rm337t3s3LkTgBkzZnDfffcxadIkXn755a79h5nN5q6A+/DnHv5Mu93OoUOHGDt2bLdzxo4dy5YtW054D1u2bGHUqFHd9o0ePfq0n4EQQgjR30mmWwghhDhHHT3sW1EUwDun+jBfX99uxzc1NREZGcny5cuPu9bhpcBeeOEFbrnlFubNm8dXX33F888/z8cff8y111573Gce/lxVVX+I2xFCCCHOS5LpFkIIIS4QmZmZVFZWotPpSExM7LaFhIR0HTd48GAee+wxvv76a6677jref//907q+xWIhKiqK1atXd9u/evVqkpOTT3jOsGHDWL9+fbd933777RnemRBCCNF/SdAthBBCXCAmTZrE6NGjmT59Ol9//TV79uxhzZo1PPPMM2zcuJHW1lYefvhhli9fzt69e1m9ejUbNmxg2LBhp/0ZTz75JK+88gqffPIJ27ZtY+bMmRQVFfHII4+c8PgHHniA8vJynnzySbZt28ZHH33E7Nmzf6A7FkIIIfqeDC8XQgghLhCKojB//nyeeeYZ7r77bmpqaoiIiODiiy8mPDwcrVZLXV0dd9xxB1VVVYSEhHDdddfx4osvnvZn/OIXv8Bms/H4449TXV1NcnIyc+fOPa4g22EDBw7ks88+47HHHuMvf/kLI0eO5A9/+MNxldiFEEKIc5WiykQsIYQQQgghhBCiV8jwciGEEEIIIYQQopdI0C2EEEIIIYQQQvQSCbqFEEIIIYQQQoheIkG3EEIIIYQQQgjRSyToFkIIIYQQQggheokE3UIIIYQQQgghRC+RoFsIIYQQQgghhOglEnQLIYQQQgghhBC9RIJuIYQQQgghhBCil0jQLYQQQgghhBBC9BIJuoUQQgghhBBCiF4iQbcQQgghhBBCCNFL/j+TvLkfP0HFYAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import copy\n", + "\n", + "lang = \"avg\"\n", + "if lang == \"avg\": \n", + " threshold_results = copy.deepcopy(lang_averaged_metric_results)\n", + "else:\n", + " threshold_results = metric_results[lang]\n", + "\n", + "# Sort threshold labels\n", + "threshold_labels = sorted(next(iter(threshold_results.values())).keys(), key=lambda x: float(x.split('-')[1]))\n", + "x = [float(label.split('-')[1]) for label in threshold_labels]\n", + "\n", + "# Plot\n", + "plt.figure(figsize=(10, 6))\n", + "for model, metrics in threshold_results.items():\n", + " y = [metrics[threshold] for threshold in threshold_labels]\n", + " plt.plot(x, y, marker='o', label=model)\n", + "\n", + "plt.xlabel(\"Threshold\")\n", + "plt.ylabel(\"F1 Score\")\n", + "plt.title(f\"{lang} F1 Scores (threshold binarization)\")\n", + "plt.legend(title=\"Model\")\n", + "plt.grid(True)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "13ca1ac3", + "metadata": {}, + "outputs": [], + "source": [ + "# TODO check how class imbalance impacts the f1 score " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9f4a68a3", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "b1948eb3", + "metadata": {}, + "source": [ + "# Sourced LLM-as-a-judge Training Data" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "d37c12bb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'bul': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/bul_Cyrl_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'pol': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/pol_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'ita': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/ita_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'tur': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/tur_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'ukr': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/ukr_Cyrl_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'fin': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/fin_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'ell': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/ell_Grek_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'nob': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/nob_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'lit': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/lit_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'fra': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/fra_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'spa': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/spa_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'hun': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/hun_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'deu': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/deu_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl')}" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "language_codes_500k_docs = {\n", + " \"bul\": \"Bulgarian\",\n", + " \"pol\": \"Polish\",\n", + " \"ukr\": \"Ukrainian\",\n", + " \"deu\": \"German\",\n", + " \"nob\": \"Norwegian\", # Bokmal\n", + " \"spa\": \"Spanish\",\n", + " \"fra\": \"French\",\n", + " \"ita\": \"Italian\",\n", + " \"fin\": \"Finnish\",\n", + " \"hun\": \"Hungarian\",\n", + " \"lit\": \"Lithuanian\",\n", + " \"ell\": \"Greek\", # Modern Greek\n", + " \"tur\": \"Turkish\",\n", + "}\n", + "\n", + "model = ablated_models[2]\n", + "model_annotations_paths = list((annotated_500k_samples_path / f\"{model}_aggregated\").glob(\"**/*.jsonl\"))\n", + "# filter only the languages that we want to check\n", + "model_annotations_paths = {path.stem.split(\"_\")[0]: path for path in model_annotations_paths if path.stem.split(\"_\")[0] in language_codes_500k_docs.keys()}\n", + "model_annotations_paths" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "57d3b39d", + "metadata": {}, + "outputs": [], + "source": [ + "lang_to_scores = {lang: list() for lang in model_annotations_paths.keys()}\n", + "\n", + "for lang, model_annotations_path in model_annotations_paths.items():\n", + " with open(model_annotations_path, 'r') as f:\n", + " for line in f:\n", + " json_line = json.loads(line)\n", + " try:\n", + " score = float(json_line[\"score\"])\n", + " except: \n", + " continue\n", + " lang_to_scores[lang].append(score)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "dc8466ca", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA6MtJREFUeJzs3Xl8FPX9+PHXzN6b+w6BkHDfh4DI4YGKqHhbBdtahVq8iorUb6vtzwNtxVpvrbW1WjzaepceKoIoooLIDcoNOThzZ3eT7D3z+2OShZgACWSzSXw/Hw8esrMz83nPzkbe+czn8/4ouq7rCCGEEEKITk+NdQBCCCGEEKJtSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhDhhkyZNYtKkSe3SlqIoPPDAA5HXDzzwAIqiUF5e3i7t5+fnM2PGjHZpSwghTpQkdkKchM2bN3PVVVeRl5eH3W6ne/funHfeeTz77LOxDq3VZsyYgaIokT/x8fH07t2bq666infffRdN09qknRUrVvDAAw9QXV3dJudrSx05tlhq7yRaCHHizLEOQIjOasWKFZx99tn07NmTWbNmkZ2dzd69e/nqq694+umnue2222IdYqvZbDb++te/AuD1eikqKuK///0vV111FZMmTeLf//43iYmJkf0XL17c6jZWrFjBvHnzmDFjBsnJyS0+zuv1YjZH939Zx4pt+/btqKr8LiyE6NgksRPiBP3ud78jKSmJ1atXN0kCSktL2zWWuro6nE7nSZ/HbDZz7bXXNtr229/+lkceeYR77rmHWbNm8eabb0bes1qtJ93msWiaRiAQwG63Y7fbo9rW8dhstpi2H21t9R0SQsSW/PopxAnavXs3Q4YMabbXKTMzs8m2119/nbFjx+J0OklJSeHMM89s0uP1/PPPM2TIEGw2Gzk5Ofz85z9v8lhw0qRJDB06lLVr13LmmWfidDr59a9/DYDf7+f++++nb9++2Gw2cnNz+eUvf4nf7z+pa7377ruZMmUKb7/9Njt27GgUy3fH2D377LMMGTIkcp1jxozhH//4B2A80vu///s/AHr16hV57FtYWAgY4+hmz57N3//+98jnsGjRosh7R46xa1BeXs60adNITEwkLS2NO+64A5/PF3m/sLAQRVFYsGBBk2OPPOfxYmtujN2ePXu4+uqrSU1Nxel0Mm7cON5///1G+yxbtgxFUXjrrbf43e9+R48ePbDb7Zx77rns2rXrqJ95g4bHoNu2bTvmdTZ4/fXXGT16NA6Hg9TUVK655hr27t3baJ9jfYdOVGVlJXfddRfDhg0jPj6exMRELrzwQjZu3HhSn8cf//hHevfujcPhYOzYsXz++edNvncLFixodK++29ayZcsi2z7//HOuvvpqevbsGfkZufPOO/F6vU3afvvttxk8eDB2u52hQ4fyr3/9ixkzZpCfn99oP03TeOqppxgyZAh2u52srCxuuukmqqqqWv05CnGypMdOiBOUl5fHypUr+eabbxg6dOgx9503bx4PPPAAEyZM4MEHH8RqtbJq1So++eQTpkyZAhj/gM+bN4/Jkydzyy23sH37dv70pz+xevVqvvzySywWS+R8FRUVXHjhhVxzzTVce+21ZGVloWkal156KV988QU33ngjgwYNYvPmzTz55JPs2LGDhQsXntT1/uQnP2Hx4sUsWbKE/v37N7vPiy++yO23385VV10VSTw2bdrEqlWr+NGPfsSVV17Jjh07+Oc//8mTTz5Jeno6ABkZGZFzfPLJJ7z11lvMnj2b9PT0Jv+Ifte0adPIz89n/vz5fPXVVzzzzDNUVVXx6quvtur6WhLbkUpKSpgwYQJ1dXXcfvvtpKWl8corr3DppZfyzjvvcMUVVzTa/5FHHkFVVe666y5cLhePPvooP/7xj1m1alWL4mvJdf7ud7/j3nvvZdq0afzsZz+jrKyMZ599ljPPPJP169c3+iWkue/QydizZw8LFy7k6quvplevXpSUlPDnP/+Zs846iy1btpCTk9Pqz+NPf/oTs2fP5owzzuDOO++ksLCQyy+/nJSUFHr06HFCcb799tvU1dVxyy23kJaWxtdff82zzz7Lvn37ePvttyP7vf/++0yfPp1hw4Yxf/58qqqquOGGG+jevXuTc950000sWLCAmTNncvvtt1NQUMBzzz3H+vXrm/zsChF1uhDihCxevFg3mUy6yWTSx48fr//yl7/UP/roIz0QCDTab+fOnbqqqvoVV1yhh8PhRu9pmqbruq6XlpbqVqtVnzJlSqN9nnvuOR3QX3755ci2s846Swf0F154odG5XnvtNV1VVf3zzz9vtP2FF17QAf3LL7885vVcf/31elxc3FHfX79+vQ7od955Z6NYzjrrrMjryy67TB8yZMgx2/nDH/6gA3pBQUGT9wBdVVX922+/bfa9+++/P/L6/vvv1wH90ksvbbTfrbfeqgP6xo0bdV3X9YKCAh3Q//a3vx33nMeKLS8vT7/++usjr+fMmaMDjT5vj8ej9+rVS8/Pz4/cx08//VQH9EGDBul+vz+y79NPP60D+ubNm5u0daSWXmdhYaFuMpn03/3ud43227x5s242mxttP9p36HgxlJWVHXUfn8/X5PtdUFCg22w2/cEHH4xsa+nn4ff79bS0NP3UU0/Vg8FgZL8FCxboQKPv3d/+9rdm71tDW59++mlkW11dXZPY58+fryuKohcVFUW2DRs2TO/Ro4fu8Xgi25YtW6YDel5eXmTb559/rgP63//+90bnXLRoUbPbhYg2eRQrxAk677zzWLlyJZdeeikbN27k0Ucf5fzzz6d79+785z//iey3cOFCNE3jvvvuazL4XlEUAD7++GMCgQBz5sxptM+sWbNITExs8njPZrMxc+bMRtvefvttBg0axMCBAykvL4/8OeeccwD49NNPT+p64+PjAfB4PEfdJzk5mX379rF69eoTbuess85i8ODBLd7/5z//eaPXDZNWPvjggxOOoSU++OADxo4dy+mnnx7ZFh8fz4033khhYSFbtmxptP/MmTMbjUk844wzAKOnqyWOd53vvfcemqYxbdq0Rvc/Ozubfv36Nbn/zX2HTobNZot8d8PhMBUVFcTHxzNgwADWrVvXZP/jfR5r1qyhoqKCWbNmNZo08+Mf/5iUlJQTjtPhcET+XltbS3l5ORMmTEDXddavXw/AgQMH2Lx5M9ddd13kew/Gd3PYsGGNzvf222+TlJTEeeed1+hzHz16NPHx8Sf9cydEa8mjWCFOwqmnnsp7771HIBBg48aN/Otf/+LJJ5/kqquuYsOGDQwePJjdu3ejquoxk5WioiIABgwY0Gi71Wqld+/ekfcbdO/evcnEhZ07d7J169ajPjo82QkdNTU1ACQkJBx1n1/96ld8/PHHjB07lr59+zJlyhR+9KMfMXHixBa306tXr1bF1a9fv0av+/Tpg6qqTcZbtbWioiJOO+20JtsHDRoUef/IR/Q9e/ZstF9DctLScVjHu86dO3ei63qT/Rp893Fgc9+hk6FpGk8//TTPP/88BQUFhMPhyHtpaWlN9j/e59Hwne/bt2+j/cxm83Efzx9LcXEx9913H//5z3+afPYul+uYbTdsOzJR3blzJy6Xq9lxtdD+E6mEkMROiDZgtVo59dRTOfXUU+nfvz8zZ87k7bff5v77749Ke0f2OjTQNI1hw4bxxBNPNHtMbm7uSbX5zTffAM3/Y9dg0KBBbN++nf/9738sWrSId999l+eff5777ruPefPmtaid5q6tNRp6QY/2usGRiUd7MJlMzW7Xdf2Ezvfd69I0DUVR+PDDD5tt68ieJzj5z/m7Hn74Ye69915++tOf8tBDD5GamoqqqsyZM6fZGoht+Xm09B6Hw2HOO+88Kisr+dWvfsXAgQOJi4tj//79zJgx44RqNWqaRmZmJn//+9+bff9ov2gJES2S2AnRxsaMGQPAwYMHAaNnRdM0tmzZwsiRI5s9Ji8vDzBqpfXu3TuyPRAIUFBQwOTJk4/bbp8+fdi4cSPnnnvuUf+hOxmvvfYaiqJw3nnnHXO/uLg4pk+fzvTp0wkEAlx55ZX87ne/45577sFut7d5bDt37mzUy7dr1y40TYv06jT0BH13dvF3e0Hh6AlCc/Ly8ti+fXuT7du2bYu835aOd519+vRB13V69ep11Mkt0fTOO+9w9tln89JLLzXaXl1dHZmI0hoNn9+uXbs4++yzI9tDoRCFhYUMHz48sq2l93jz5s3s2LGDV155heuuuy6yfcmSJUdt+7u+u61Pnz58/PHHTJw4sc2TZSFOhIyxE+IEffrpp832LjSMeWp4rHr55ZejqioPPvhgkx6BhuMnT56M1WrlmWeeaXTOl156CZfLxUUXXXTceKZNm8b+/ft58cUXm7zn9Xqpra1t+cV9xyOPPMLixYuZPn36UR/1gTHT8khWq5XBgwej6zrBYBAwEj9o+o/wifrjH//Y6HXDqh8XXnghAImJiaSnp7N8+fJG+z3//PNNztWa2KZOncrXX3/NypUrI9tqa2v5y1/+Qn5+fqvGCbbE8a7zyiuvxGQyMW/evCbfS13Xm9ybtmYymZq0+/bbb7N///4TOt+YMWNIS0vjxRdfJBQKRbb//e9/b/IItU+fPgCN7nE4HOYvf/lLkxihca+grus8/fTTjfbLyclh6NChvPrqq5EhCACfffYZmzdvbrTvtGnTCIfDPPTQQ02uIRQKySomot1Jj50QJ+i2226jrq6OK664goEDBxIIBFixYgVvvvkm+fn5kYHpffv25Te/+Q0PPfQQZ5xxBldeeSU2m43Vq1eTk5PD/PnzycjI4J577mHevHlccMEFXHrppWzfvp3nn3+eU089tUnR4Ob85Cc/4a233uLmm2/m008/ZeLEiYTDYbZt28Zbb73FRx99FOlNPJpQKMTrr78OgM/no6ioiP/85z9s2rSJs88+u8k/lN81ZcoUsrOzmThxIllZWWzdupXnnnuOiy66KDI2b/To0QD85je/4ZprrsFisXDJJZdEkqrWKigo4NJLL+WCCy5g5cqVvP766/zoRz9ixIgRkX1+9rOf8cgjj/Czn/2MMWPGsHz58kb1+Bq0Jra7776bf/7zn1x44YXcfvvtpKam8sorr1BQUMC7777b5qtUHO86+/Tpw29/+1vuueeeSFmQhIQECgoK+Ne//sWNN97IXXfddVIxPPHEE02KGKuqyq9//WsuvvhiHnzwQWbOnMmECRPYvHkzf//73xv1QLeG1WrlgQce4LbbbuOcc85h2rRpFBYWsmDBAvr06dOod3XIkCGMGzeOe+65h8rKSlJTU3njjTcaJYQAAwcOpE+fPtx1113s37+fxMRE3n333WbHOT788MNcdtllTJw4kZkzZ1JVVcVzzz3H0KFDGyV7Z511FjfddBPz589nw4YNTJkyBYvFws6dO3n77bd5+umnueqqq07oMxDihMRiKq4QXcGHH36o//SnP9UHDhyox8fH61arVe/bt69+22236SUlJU32f/nll/VTTjlFt9lsekpKin7WWWfpS5YsabTPc889pw8cOFC3WCx6VlaWfsstt+hVVVWN9jnrrLOOWlIkEAjov//97/UhQ4ZE2hk9erQ+b9483eVyHfN6rr/+eh2I/HE6nXp+fr7+gx/8QH/nnXealLJoiOXIshN//vOf9TPPPFNPS0vTbTab3qdPH/3//u//mrT90EMP6d27d9dVVW1UpgLQf/7znzcbH0cpd7Jlyxb9qquu0hMSEvSUlBR99uzZutfrbXRsXV2dfsMNN+hJSUl6QkKCPm3aNL20tLTJOY8V23fLnei6ru/evVu/6qqr9OTkZN1ut+tjx47V//e//zXap6Hkxttvv91o+7HKsBypNdep67r+7rvv6qeffroeFxenx8XF6QMHDtR//vOf69u3b4/sc6zv0LFiaO6PyWTSdd0od/KLX/xC79atm+5wOPSJEyfqK1eubPIdae3n8cwzz+h5eXm6zWbTx44dq3/55Zf66NGj9QsuuKDRfrt379YnT56s22w2PSsrS//1r3+tL1mypEm5ky1btuiTJ0/W4+Pj9fT0dH3WrFn6xo0bm237jTfe0AcOHKjbbDZ96NCh+n/+8x/9Bz/4gT5w4MAmn9Ff/vIXffTo0brD4dATEhL0YcOG6b/85S/1AwcOtPhzFqItKLp+giN3hRBCRF1D4eqysrITGqvW1WiaRkZGBldeeWWzww6ibeTIkWRkZDQZlydERyFj7IQQQnRIPp+vybi9V199lcrKyiZL2bW1YDDY5FHusmXL2LhxY9TbFuJkyBg7IYQQHdJXX33FnXfeydVXX01aWhrr1q3jpZdeYujQoVx99dVRbXv//v1MnjyZa6+9lpycHLZt28YLL7xAdnY2N998c1TbFuJkSGInhBCiQ8rPzyc3N5dnnnkmMiniuuuu45FHHmnT4srNSUlJYfTo0fz1r3+lrKyMuLg4LrroIh555JFmCy4L0VHIGDshhBBCiC5CxtgJIYQQQnQRktgJIYQQQnQR37sxdpqmceDAARISEqKy7JIQQgghRFvSdR2Px0NOTs5xi59/7xK7AwcOnPRi6EIIIYQQ7W3v3r306NHjmPt87xK7hmWN9u7dS2JiYtTaCQaDLF68OLK8jIg9uScdk9yXjkfuScck96Vjao/74na7yc3NjeQwx/K9S+waHr8mJiZGPbFzOp0kJibKD2AHIfekY5L70vHIPemY5L50TO15X1oyhEwmTwghhBBCdBGS2AkhhBBCdBGS2AkhhBBCdBHfuzF2QgghhGhf4XCYYDAY6zCiIhgMYjab8fl8hMPhEzqHxWLBZDK1STyS2AkhhBAiKnRd59ChQ1RXV8c6lKjRdZ3s7Gz27t17UvVxk5OTyc7OPukau5LYCSGEECIqGpK6zMxMnE5nl1wYQNM0ampqiI+PP27x4Obouk5dXR2lpaUAdOvW7aTikcROCCGEEG0uHA5Hkrq0tLRYhxM1mqYRCASw2+0nlNgBOBwOAEpLS8nMzDypx7IyeUIIIYQQba5hTJ3T6YxxJJ1Dw+d0smMRJbETQgghRNR0xcev0dBWn5MkdkIIIYQQXYQkdkIIIYQQ9SZNmsScOXNO+PjCwkIURWHDhg1tFlNrSGInhBBCCNFFSGInhBBCCNFFSGInvjfCQY2QVwbxCiGEOLZQKMTs2bNJSkoiPT2de++9F13XAWOSw8KFCxvtn5eXx4IFC9o/0GZIHTvxvbH4r1s4tCWOygm1ZPVMjnU4QgjxvaLrOt7giS25dbIcFlOrZp2+8sor3HDDDXz99desWbOGG2+8kZ49ezJr1qwoRtk2JLET3wsHdlazd0sVoFBWVCOJnRBCtDNvMMzg+z6KSdtbHjwfp7XlKU9ubi5PPvkkiqIwYMAANm/ezJNPPtkpEjt5FCu+F9Z8WBj5u9cdiF0gQgghOrxx48Y16uEbP348O3fuJByOTY9ja0iPnejySgrc7N1SGXldJ4mdEEK0O4fFxJYHz49Z221FUZTIeLsGoVCozc5/siSxE11eQ2+dZg6hhsyUlFfENiAhhPgeUhSlVY9DY2nVqlWNXn/11Vf069cPk8lERkYGBw8ejLy3c+dO6urq2jvEo5JHsaJLK9vroXBTOYoCW3p+DkB1VU2MoxJCCNGRFRcXM3fuXLZv384///lPnn32We644w4AzjnnHJ577jnWr1/PmjVruPXWW7FYLDGO+LDOkToLcYLW1vfW5Y9K41++TQzlbII1+rEPEkII8b123XXX4fV6GTt2LCaTiTvuuIMbb7wRgMcff5yZM2dyxhlnkJOTw5NPPsmaNWtiHPFhktiJLqvyQC2715cBkDFRwbvcA4BeZ0LXdVmYWgghRBPLli2L/P1Pf/pTk/dzcnL46KPDs3s1TaOoqIjExEQA8vPzm4zBa0/yKFZ0WWsXFYIOvU/JoMJxgFqrCwAlZCLo7/gzm4QQQojWksROdEnVpXXsXF0CwJgL8yl0FxIyBfBYjNmxdS6ZGSuEEKLrkcROdEnrFhWh65A3LI2MngkUu4sB+Mfoh6hyHKLW5Y9xhEIIIUTbkzF2ostxV3jZ/tUhwOitAyhyG4keikZpXDG11ZLYCSGE6Hqkx050Oes/KkbTdHoMTCG7dxIABa4CGuZKlNqqqaxyxzBCIYQQIjoksRNdSm21ny0rDgBw6kX5AFT7qvEEPZF9Km1uKislsRNCCNH1SGInupT1i4vRQjrd+iaR0y8FgEJ3Ibp2eNRBjc2Fu6rjVAkXQggh2ookdqLLqHMH+Pbz/QCcOrVXZHuRuwg97Ii89to8MnlCCCFElySJnegyNi4tJhTUyMxPpMeglMh2Y+LE4R67kNmF3yN17IQQQnQ9ktiJLsFXG2TzsobeuvxGq0oUuYs4cpEJ3eQmXCurTgghhGh7CxYsIDk5OWbtS2InuoSNn+wl6A+T1iOevGFpjd4rdBWimGojrxU1RDAUJBzU2jtMIYQQIqoksROdnt8bYvOn+wCjbt2RvXW6rlPsKUZRA+i6gh62AlBjrabOI6tPCCGE6FoksROd3uZl+/DXhUjJdtLnlIxG75XWleIN+QDQg0loQWPsXZXVLRMohBBCNDFp0iRmz57N7NmzSUpKIj09nXvvvRdd1wGoqqriuuuuIyUlBafTydSpU9m9e3eMoz5MEjvRqQX9YTZ+vBeA0Rfmo6iNx84Ve4rRw3YAtEAGupYAQLXNJevFCiFEe9J1CNTG5k99UtZSr7zyCmazma+//pqnn36aJ554gr/+9a8AzJgxgzVr1vCf//yHlStXous606ZNIxgMRuNTazVZUkx0at9+vh9fbZCkDAf9xmQ2eb/QXQiaDfAR1jJRFKP3rsruorrSA2Q0OUYIIUQUBOvg4ZzYtP3rA2CNa/Huubm5PPnkkyiKwoABA9i8eTNPPvkkkyZN4j//+Q9ffvklEyZMAOD1118nLy+PhQsXMn369GhdQYtJj53otEKBMOsXFwMw6oI8VFPTr3ORqwgdEwBhJRONZABcNjflFa52i1UIIUTnMW7cuEbjtcePH8/OnTvZsmULZrOZ0047LfJeWloaffv2Zdu2bbEItQnpsROd1tYVB6lzB4hPtTFgXHaz+xR5ilBUo2ad2dYdJWRsr7O6cVXXtFeoQgghLE6j5yxWbX9PSGInOqVwSGPdR0UAjD4/D1MzvXXQUOrESODSEnLxuI2yJ36Lm5pqmTwhhBDtRlFa9Tg0llatWtXo9VdffUW/fv0YPHgwoVCIVatWRR7FVlRUsGvXLgYNGhSLUJuQR7GiU9r+1SFqqvzEJVkZOKFbs/uEtBB7PXtRlDC6ZqZPRi4OszF5Imx24/eE2jNkIYQQnURxcTFz585l+/bt/POf/+TZZ5/ljjvuoF+/flx22WXMmjWLL774go0bN/KTn/yEbt26cdlll8U6bEB67EQnpIU11i4qBOCUKXmYLaZm9ztYe5CQpqMooAXSGJqVSMn+JLw66CYXQXkSK4QQohnXXXcdXq+XsWPHYjKZuOOOO7jxxhsB+Nvf/sYdd9zBxRdfTCAQ4IwzzuCtt97CYrHEOGqDJHai09m5ugR3uQ9HgoXBZxx9hlWRuwg97EAx16IFMxiRHs9GawIH/cbqE4FAAE3TUVVZXkwIIcRhFouFp556ij/96U9N3ktJSeHVV1+NvNY0DbfbHXk9Y8YMZsyY0R5hNqtDPIr94x//SH5+Pna7ndNOO42vv/76qPsuWLAARVEa/bHb7e0YrYglTdNZ86Extm7k5J5YrM331kF9YqcZK02E9Ux6O21kW03oYQcAdRYPvpqOUXdICCGEaAsxT+zefPNN5s6dy/3338+6desYMWIE559/PqWlpUc9JjExkYMHD0b+FBUVtWPEIpZ2ryuluqQOm9PM0LO6H3PfIncRKMZXXDNlkVlcy6iSIFrIGGdXaXVR55YJFEIIIbqOmCd2TzzxBLNmzWLmzJkMHjyYF154AafTycsvv3zUYxRFITs7O/InKyurHSMWsaJrOms/LARgxLm5WO3HHklQ5C5CUY2CxE5nD6z/nsOPSq7DXr8SRbXNRa2sPiGEEOIIy5Yt46mnnop1GCcspoldIBBg7dq1TJ48ObJNVVUmT57MypUrj3pcTU0NeXl55Obmctlll/Htt9+2R7gixgo2lVOxvxaL3cSwST2Ov7+rANVklDfplpyPLbAKlRDpugZApd2Nu6ouqjELIYQQ7SmmkyfKy8sJh8NNetyysrKOWsF5wIABvPzyywwfPhyXy8Vjjz3GhAkT+Pbbb+nRo+k/9n6/H7//8OO2hgGOwWAwquu6NZy7o6wd19npus7q9wsAGHJmDibrsT/bQDjAwdqDxrFhB8PibJiUCgBSNTgIuO0uSsoqGBhsvrixaB/ys9LxyD3pmDrbfQkGg+i6jqZpaJoW63CiRq9fh7bhWk+Upmnouk4wGMRkajx+vDX3vNPNih0/fjzjx4+PvJ4wYQKDBg3iz3/+Mw899FCT/efPn8+8efOabF+8eDFOZ/QrUS9ZsiTqbXwf+MpMlO91oph0SkJb+eCDLcfcvzRcih62oJiCaP4M+uxbH3mvWzjItxirT2zbspNaVcZodgTys9LxyD3pmDrLfTGbzWRnZ1NTU0Mg0PWHvXg8npM6PhAI4PV6Wb58OaFQ4zqrdXUtf7oU08QuPT0dk8lESUlJo+0lJSVkZ7esF8VisXDKKaewa9euZt+/5557mDt3buS12+0mNzeXKVOmkJiYeOLBH0cwGGTJkiWcd955Haa2TWel6zr/eXIT4GbYWT0Yd0Xv4x6zbN8y9KUOFFOQcDiDSTZf5L2eYaMH1292E+9MYerUs6IVumgB+VnpeOSedEyd7b74fD727t1LfHx8l65eoes6Ho+HhISERuvLtpbP58PhcHDmmWc2+byOLKdyPDFN7KxWK6NHj2bp0qVcfvnlgNEVuXTpUmbPnt2ic4TDYTZv3szUqVObfd9ms2Gz2Zpst1gs7fKD0V7tdGX7tldRUuDGZFYZdX5+iz7PfbX70HVjP41MulXujrzXJ2T8VtWw+oTcn45BflY6HrknHVNnuS/hcBhFUVBVFVWN+VzNqGl4/NpwrSdKVVUURWn2/rbmfsf8UezcuXO5/vrrGTNmDGPHjuWpp56itraWmTNnAkb15+7duzN//nwAHnzwQcaNG0ffvn2prq7mD3/4A0VFRfzsZz+L5WWIKFrzQSEAg0/PIS6paZLenCJ3EYpijHtQLDk4Kz6KvNc36ALi0U1uAjV6W4crhBBCxEzME7vp06dTVlbGfffdx6FDhxg5ciSLFi2KTKgoLi5ulAFXVVUxa9YsDh06REpKCqNHj2bFihUMHjw4Vpcgoujgbhf7t1ehmhROmdKzxccVugpR6mfEJsf3wHSgEOp7yPND1UA8ihok4DMG955M97kQQoiuY9KkSYwcObLTljyJeWIHMHv27KM+el22bFmj108++SRPPvlkO0QlOoKG3rqB47uRkNryMRqF7kIU1RhL1zupGyYORd5z6hqEbWDyU2fyEPCFsTk6xI+CEEKIGHvvvfcijz7z8/OZM2cOc+bMiW1QrdB1H3qLTq+0yE3xtxUoqsKo8/NafFxtsJZyr1HaRAsmMzJYgaJoaLqdkJYKgDVkLCtWaXVT55LVJ4QQQhhSU1NJSEiIdRgnTBI70WE19Nb1H5tFUoajxccVu4sj68FqgXRsu4wC1r5wBt5wEgCOsPHbWJWtmjpZfUIIIUS9SZMmMWfOHCZNmkRRURF33nlnZG16gIqKCn74wx/SvXt3nE4nI0aM4J133olx1IfJ8yfRIZXvq6FgYzkoMPqClvfWgTFxQtdsgJewlsmwumIAXMEUTIpGggWSNBMuoMruxlPtBVLa/BqEEEIcpus63pA3Jm07zI5Wj6V+7733GDFiBDfeeCOzZs2KbPf5fIwePZpf/epXJCYm8r///Y+bb76ZoUOHMm7cuLYOvdUksRMd0tpFhQD0HZVJSnZcq44tdBcCRo9cWMliKBsAqPA7iTeHAUjXNIoBl91NeUU1kNMWYQshhDgKb8jLaf84LSZtr/rRKpyW1i1KkJqaislkIiEhoVFt3e7du3PXXXdFXs+ePZv333+ft99+WxI7IZpTdaiWXWtLARh9YX6rjtV1ncU7vkFRjeVXFHM30vT/AlDiM6PbjdEHOVqQdRirT1RWtrzwoxBCiO+3cDjMww8/zFtvvcX+/fsJBAL4/f6oLnrQGpLYiQ5n7aIi0KHXiHTSe8S3+LiwpjPvv9+yrWI3qt0oQtwjqSemA/tBgf11YWwmoycvr/5xQMDswl0dm0cDQgjxfeIwO1j1o1Uxa7ut/OEPf+Dpp5/mqaeeYtiwYTgcDm677bYOs2yaJHaiQ3GVednxtbHE3Jip+S0+zhcMM/etDXyw+RDx/ctRlDC6ZuI0uwlV8aPrZsr9JlKsxv69Qx7AQtjsxlvZMX4YhRCiK1MUpdWPQ2PNarUSDocbbfvyyy+57LLLuPbaawEIhULs3r2bIUOGxCLEJmRWrOhQ1n1UhK7p9BySSmZey7q13b4g17/8NR9sPoTV4gXFSNS0YBrjQgcB8Gvp6ChUBoylX/oGqwDQTW78nnDzJxZCCPG9lp+fz/Lly9m/fz/l5eUA9OvXjyVLlrBixQq2bt3KzTffTGlpaYwjPUwSO9FheCp9bFtpJGJjpvZq0TElbh/TXljJqoJK4m1m7r0iAz1s/EaoBTMY6Ck0zh0y6tdVBYwlxHLCRu06RQ3i90qPnRBCiKYefPBBCgsL6dOnDxkZGQD8v//3/xg1ahTnn38+kyZNIjs7m4suuijGkR4mj2JFh7F+cTFaWKf7gGS69Uk67v67y2q47qWv2V/tJT3exoKZp7LH9xm6bgNqCOuZZFfuBqDSHw+6jhLWCWkJ2FUPStiGbvJTp9QSCoYxW0xRvkIhhBAd3ZErXo0bN46NGzc2ej81NZWFCxdGXmuahtvt7jCTJ6THTnQItS4/W744ALSst259cRVX/WkF+6u95Kc5ee+WCQztnkShqxDqaxXppmziao3ErsxnIS4QwhkIEdCMpNEWsgH1q0+4pddOCCFE5yeJnegQNiwpJhzSyO6dRPf+ycfc99PtpfzoxVVU1QUZ3iOJd26ZQM804/FrkbsIRfUBEO/ojim8F4ADXp14nx97IIhPM2baxoWNDusqm0tWnxBCCNElSGInYs5bE+Cb5fsBGHNR/jGrg7+zdh8/e2UN3mCYM/tn8M9Z40iPt0XeL3QXoqg1AAx0JmFSPOi6wkEvOM/xkXFbCbX1IxCSNaOdSoeLGpcvWpcnhBBCtBtJ7ETMbfx4L6GARmZeAj0Hpza7j67r/GnZbu56eyNhTeeKU7rz1+vGEGczN9qnyF2EooAetnO6btSyC+qphHQT9sE1WBwBXHEhADI1Y4asy+amosIV5asUQgghok8mT4iY8tUG2bRsH2CsMtFcb52m6Tz0/hb+9mUhADee2Zu7LxiIqjbet7SuFF9ARzGBFshglNk4b20oDcWqYXMahYjrbDoEoXvYePzqtUpiJ4QQomuQxE7E1OZl+wj6wqR1j6PX8PQm7/tDYX7x1kb+t8kog/L/LhrEz87o3ey5ij3F6JoDxRQgHMqgZ/UeAKoCCdgy9Mh+XocGNZAXrgMgYHbjqqpt60sTQggh2p0kdiJmAr4QG5cakxtGX5iP8p0eOI8vyM2vr+XLXRWYVYXHrh7B5ad0P+r5Ct2F6LqxZFhYySLVvQaAMr+duKzDkyMC8RqUQZ+gC0gkbHZRW+lv46sTQggh2p8kdiJmvvlsP/66EMlZTvqMymz0XpnHz4y/fc23B9w4rSZeuHY0Z/bPOOb5ilxFoBg9c2ZLN6zBIlDgYB040g4ndqF4Y4xdfqgGSJTVJ4QQQnQZktiJmAgGwmz4uBiA0RfmNRovV1hey3Uvf01xZR1pcVb+NvNUhvdIPu45izxFqCbjkWq2IwOzYiz/csCrkZPijeynxvnRdCvp4SBgrD7hq5MeOyGEEJ2fJHYiJrZ8fgCvJ0hiup3+p2ZFtm/aV83Mv62mojZAz1Qnr/50LPnpcS06557qPZEaduNMxozXkJaAN2zGnnR4DJ3ZGiKgJ+HQy1DDFjRTkBqtDk3Tm0zIEEIIIToTKXci2l0oGGb94iIARp2fh2oyvobLd5RxzV++oqI2wJCcRN65ZXyLk7qwFmafx6iFpwWTOC1kLMhcF85AtWtYbEaPXDhsLBvmxQGAvX71iWqrG69HihQLIYSASZMmMWfOnFiHcUIksRPtbtuKg9S6AsSn2Bg4vhsAC9fv56cLVlMXCDOxbxpv3DiOzAR7i895oPYAofokTQukM6jWeMzrCiRhyzLG3fl9Cfi9xqoTtSajszqhPtGrtLlkWTEhhBBtJhCIzb8pktiJdhUOa6z9yOitO2VKHiazyl8/38OcNzcQ0nQuGZHDyzNOJcFuadV5i9xF6JqRCIa1TLJcxhqx5QE7canB+razCAXqEzuL8dVPMZ7YUmV3U1st4+yEEOL7bsaMGXz22Wc8/fTTKIqCoigsWLCA5OTkRvstXLiwUe3VefPmMXLkSP7617/Sq1cv7PaWd060JRljJ9rV9q8OUVPpx5loZeD4bH73/hZe/LwAgJ9O7MX/u2jQCY1zK3IX0fB11tUs4n1fAlDiNeFIMcbXWaz5+GuNosV1Nh0CkKWF2Qa47C4qK93k07SWnhBCiJOn6zq613v8HaNAcTiOuVzlkZ5++ml27NjB0KFDefDBBwF4//33W3Tsrl27ePfdd3nvvfcwmUwnHO/JkMROtBstrLFukdFbN/zcXH7172/413pjXNzdFw7kpjN7t/gH77uK3EUoqtEz57RmY9YPggL76zTS62fExsf3x1VpJHleO+CB3LAx2cJr9VBeUX0SVyeEEOJYdK+X7aNGx6TtAevWojidLdo3KSkJq9WK0+kkOzsboMVJWiAQ4NVXXyUj49jluaJJHsWKdrNzTSmuMi+2ODPPFh/iX+v3Y6ovPHzzWX1OOKkDKHQVopiMtWGHWiwoShhNt1EdVLAn1QCQnjYCXTHWovXHGXXr8oNGohcwu6iuqjmZyxNCCPE9l5eXF9OkDqTHTrQTXdNZ+2EhAJvjdJbtLsdhMfH8taM4e0DmsQ9ugT2uPShKCF03MVExlgrzhjMxxYPZEkTXFbp1G8mGjcYj2lCCkdj1CrmBDMJmN7Uu30nHIYQQonmKw8GAdWtj1vbJUFUVXdcbbQsGg032i4trWSWHaJLETrSLPRvKqDpUR0CFD/01pMRZeHnGqZzSM+Wkzx0IByipKQcVtEAqI/UDALiDKdgyG2bEJuJ0JqGq9WPoEvzoukq3+iLFusmF1x066ViEEEI0T1GUFj8OjTWr1Uo4fHhFooyMDDweD7W1tZHkbcOGDTGK7tjkUayIOl3X+eLfxizVNZYgGSkO3rllQpskdQB7PXvRwsb/LLRgBvmePQBUBpw4U43p5rpmlFUxm4zETjVrhIgnvf4HV1GDeL0yK1YIIQTk5+ezatUqCgsLKS8v57TTTsPpdPLrX/+a3bt3849//IMFCxbEOsxmSWInom7R4gJqSrwE0HH3tPPerRPokxHfZucvcheh68a0co1MUmqNWbalXjOOFCNZszn6AGAy2QkGjHp3XuJw6DqmsFFapSZU06SrXQghxPfPXXfdhclkYvDgwWRkZOB2u3n99df54IMPGDZsGP/85z954IEHYh1ms+RRrIiq/2zYz+r/7iEblZIsC3//+XgSW1mj7niK3EVQP/FCUbOxafuMGbFencT6GbGJiYMi+4cC8VisfmpNZhI1cIQs1JiCVJtrCHhD2JxtG58QQojOpX///qxcubLRtvz8fC6//PJG22bNmoWmGQVR77//fubNm9deIR6V9NiJqFnwZQFPvL6J7JCKpsKv7ji1zZM6qC91ohgTH3pa41AVH7puosynY08wZrpmZoyI7K+HkwCoMxvT1xO1htUn3NS6ZPUJIYQQnZckdqLN6brOo4u28cB/tzDOa3QKj5jUg5TUk5uVdDQFrgIUkxuAU1XjNye/lo6apGAyh9A0lW7dDid2pvoJFHXGE1nSwsYxlQ5ZVkwIIUTnJomdaFPBsMb/vbOJ55ftpkdIJTdsQjUrjDovL2pt7qkuQFFAD9sYFygHwBNMw5ZZn+T5krHbD09BtzlyAPA6jPF02fUzY902N1WVnqjFKYQQQkSbJHaizdQFQtz46hreWbsPVYHrEpMBGDwhh/gUW3TaDNZR6TXq1mmBDAZ69wJQHYyPzIiF7o2OcST0BCDgNBK/htUn6qxuysurohKnEEII0R4ksRNtorI2wI9eXMWn28uwmVWenjyY4AEvqqpwyvk9o9ZukbsIPWw84g2HM8iqMUqdlPqskRmxjvoZsQ0SE4zew1B8Q5FiYxxe0Oyiqkp67IQQQnRektiJk7avqo6rXljBhr3VJDks/GPWaSjbjDFvA8Zlk5gWnbF1UD8jFqM3UCOL+KDRY3fAC/ZkoycvKWlwo2OSknoZ+ycYPXq5IWPmbNjsxlMdmwWqhRBCiLYgiZ04KVsPurny+RXsKaslJ8nOu7eMp6dioWhzBYoCoy6I3tg6aCh1YjxSTTInY1JcABzwhrHHGz1xWVmnNDomNbUXuq6gWyCsO8ioL1Ksm9zUuZsuESOEEEJ0FpLYiRP21Z4Kpv15JaUeP/2z4nn31gn0zUxgTf2asP1OzSI5M7rLxxS5i1BUI4EbajK+zgEtFSVFQTVphMMmsrOHNjrGanUQDBi9iD7FecTqEwG8dbJerBBCiM5LEjtxQhZ9c5DrXv4ajy/EqfkpvH3TBLolOag4UMOe9WUAjL4gP+px7K7ejWoyHp+OCxv/rQ2lYcswZrwGfKlYLNYmx4UDxsoXdaoVp65jDhtlWTzBmqjHLIQQQkSLJHai1V77qohb/r6OQEhjyuAsXrvhNJLqV2tY+2ERAH1OySA1J+5Yp2kThe5iALRgIqf4DwLgCiZGZsQqao/mD9SSAaizGMWJnSEjsatW6wgFws0fI4QQ4ntPURQWLlwY6zCOShI70WK6rvPE4u3cu/AbdB1+OLYnz/94FPb65Ki6pI5da0oAGD01P+rxVPuqqfEZPXNaIJ28+jViy312HCnGI1WHs1+zx5rNGQDUWY2lyJI140eh0iZFioUQQnRektiJFgmFNX79r80888kuAO44tx8PXzEUs+nwV2jtokJ0HfKHpZGRmxD1mArdheiaHYCwnkmK3+i9O+hVsSfVApCSPKTZY+1xRk+e1zg8Ms6uwuGWxE4IIUSbCQTa998USezEcfmCYW5+fR3//HovqgK/vXwod57XH0VRIvu4y71sX9V+vXUAxZ5iwHgEbFbSseqlAOz3BbDHGYndd2fENohLzAcgEGckdN0aVp+wu3BV1UYxaiGEEB1Zfn4+Tz31VKNtI0eO5IEHHmh2/wceeICBAweyadOmyPEPPfQQ1113HYmJidx4441Rjrgxc7u2Jjqd6roAN7yyhrVFVVjNKs9ccwoXDM1ust+6xcXomk7uoBSyeyW1S2yFrkJQjd+EepksKIpOWI8jmGJCUXVCIQtZWQObPTYpsRduN4TqE7ue4TrAjtfipqy8igHktMs1CCHE94Wu64QCWkzaNlvVRp0RbUHXdW6//Xb+97//8cEHHzB8+PDIe4899hj33Xcf999/f5u22RKS2ImjOlDt5fqXv2ZnaQ2JdjN/vf5UxvZKbbJfTZWfrSsOADBmaq92i6/IXYSqGoWQT9FDANSGMiMzYoP+dEwmU7PHpqT0Zu8+CMcbPXV5oRrATsDsorLSHf3ghRDieyYU0PjLHZ/FpO0bnz4Li635fw9ORCgU4tprr2X9+vUsX76chITGw4/OOeccfvGLX7RZe60hiZ1o1s4SD9e9/DUHXT6yE+288tOxDMhuftzc+iVFaCGdnH7J5PRLbrcYd1fvRlFD6LrKuGA1AO5gEs5uxlJiqpp71GNTUnqiaSohq46mm8iqH2Onmd24q+qiHrsQQojO684778Rms/HVV1+RmpqK2924Q2DMmDExikwSO9GMNYWV3PDKGlzeIH0y4nj1htPontz8smB17gDfft7QW5ffbjHquk6x2yhvogXSGOQ1Jk5U+p04UqoAiIvvf9TjzWYLQb8Tm6OGgBJHZshI5ozVJ2TyhBBCtDWzVeXGp8+KWdstpaoquq432hYMNl6V6LzzzuOf//wnH330ET/84Q+bnCMuLvrlvo5GEjvRyJItJcz+xzr8IY1Teibz8vWnkhLXtMBvgw0fFxMOamT1SqTHwJR2i7PMW4Y/YEa1gBZKJ8u3DYBDPhP2RCNJS0kZeqxToIUSgBrqVBvpYQ9grD5RUyvrxQohRFtTFKVNH4dGS0ZGBgcPHoy8drvdFBQUNNrn0ksv5ZJLLuFHP/oRiqIwderU9g7zqGRWrIh44+tibnptDf6QxrkDM/nHz8YdM6nz1QTZ/Nl+wOita+uBqcdS5C6KlDrR9QziwkYc+/wBbE5jVmu3bsfpCteMRLTOYq5ffcL4H4476IlS1EIIITq6c845h9dee43PP/+czZs3c/311zc7XvuKK67gtdde44YbbuDf//53DCJtnvTYCXRd59lPdvHEkh0ATBvTg4evGNaoRl1zNn6yl5A/THpuPHlD09oj1IhCdyGoRnwZihNFCaHpVuqSTSgKBAJ20tPzj3kOiyUT2ILXqoAf4sNmqk1hqvU6NE1HVdsvURVCCNEx3HPPPRQUFHDxxReTlJTEQw891KTHrsFVV11FKBRi5syZxMXFcdVVV7VztE1JYvc9F9Z07v/PN7z+lTFGbfbZffnFlP7H7X3ze0Ns+nQfAGMubN/eOoBidzGKYjxyHVDftC+ciS3DmEofDqQfNyZHfE+CGvjsOnggJQzVQKXNjdcTIC7JFsUrEEII0RElJibyxhtvNNp2/fXXR/7+3fF306ZN44ILLiAxMRGAwsLCqMd4LPIo9nvMFwzz87+v4/WvilEUmHfpEO46f0CLkrTNn+4j4A2R0i2O3iMz2iHaxva49qCYjEemY8NGgucJpuBINWbEmix5xz1HfH2RYr/TSAYzwkbJlEqHmzqXTKAQQgjR+XSIxO6Pf/wj+fn52O12TjvtNL7++usWHffGG2+gKAqXX355dAPsglzeINe9/DWLvj2E1aTy3A9Hcf2E/BYdG/CF2Lh0LwBjLsxDicEjy11Vu1EUHT1sZYzvEACVgTicycbEh/j4Acc9R1KSUXMvHGckdD3CRjLntrvxVMsECiGEEJ1PzBO7N998k7lz53L//fezbt06RowYwfnnn09paekxjyssLOSuu+7ijDPOaKdIu44St4/pf17J1wWVJNjMLPjpqVw0vFuLj/92+QF8tUGSMh30HZMVxUibF9bCHPQYJU20QAZ5PuMxcqnPgj3RmDiRmjrsuOdJS+sLQCjO6LHrGTKO9VpclJVXtnncQgghRLTFPLF74oknmDVrFjNnzmTw4MG88MILOJ1OXn755aMeEw6H+fGPf8y8efPo3bt3O0bb+e0qreHK51ew7ZCHjAQbb940ngl90lt8fCgQZv3HRiI1+oK8mEwwOFB7gFDIGP8WDmeQHDJ6Dw+EQ9gcRk9bTs7o454nISGLcMiM32b8GOTU99gFzG7KK13RCF0IIYSIqphOnggEAqxdu5Z77rknsk1VVSZPnszKlSuPetyDDz5IZmYmN9xwA59//vkx2/D7/fj9/sjrhurQwWCwScHBttRw7mi20Vrr91Zz0+vrqaoLkp/m5OXrR5Gb4mhVjN8s34/XHSA+1UbvUWkxub7dlbsBo9SJkwTMeNF1leoEnUwg4HcSF5fRJLbm7kkwEIfJ6SKAg4zI6hMuqitrOtS968o64s/K953ck46ps92XYDCIrutomoamxWaN2PbQMJmi4VpPlKZp6LpOMBhsUl6lNfc8poldeXk54XCYrKzGj/OysrLYtm1bs8d88cUXvPTSS2zYsKFFbcyfP5958+Y12b548WKcTmerY26tJUuWRL2Nlvi2SuFvO1SCmkLPOJ1ZvdxsXrmMza04hx6GQ5/FASrmbi4WfbQoWuEe00r/SlCMJCxXN3rbAlo61vo1Yn11KXz44YdHPf7Ie6IHndidLnyqnYyQMRlDN3k4VFTGBx98EK1LEM3oKD8r4jC5Jx1TZ7kvZrOZ7OxsampqCAS6/oQ0j+fkaqAGAgG8Xi/Lly8nFAo1eq+uruVLXXaqcicej4ef/OQnvPjii6Snt+zx4T333MPcuXMjr91uN7m5uUyZMiUyNTkagsEgS5Ys4bzzzsNisUStnZZ4Z91+Xlq1hbCmc2a/NJ6ZPoI4W+tv/dYvD7LfvwtnkpUf3DARkyU2T/I3r9mMsrUGgJEYCZ4nlIa9fkas3dmPyZObVgFv7p4s/t/fgIPUWcxkBIxzKaof1WTpUJXEu7KO9LMiDHJPOqbOdl98Ph979+4lPj4eu90e63CiRtd1PB4PCQkJJ1X6y+fz4XA4OPPMM5t8Xt9di/ZYYprYpaenYzKZKCkpabS9pKSE7OzsJvvv3r2bwsJCLrnkksi2hm5Ps9nM9u3b6dOnT6NjbDYbNlvTemQWi6VdfjDaq53m6LrO88t284ePtgNw5aju/P4Hw7Ecp/Bwc8JhjQ1LjLp1o6bkYXfGrsZbobsQ1WT89jIuUA1AdSAeZ5LxxU9MGnjMz/zIe2K1ZgOb8VpVsv06lrBK0KThDng6xf84u5JY/qyI5sk96Zg6y30Jh8MoioKqqqhqzIf0R01DHtJwrSdKVVVj2bVm7m9r7ndMP2mr1cro0aNZunRpZJumaSxdupTx48c32X/gwIFs3ryZDRs2RP5ceumlnH322WzYsIHc3Nz2DP/46sdsxYKm6cz775ZIUnfTWb15/OoRJ5TUAez8ugRPhQ9HgoXBZ+S0ZaittrvKqACuBRMY6jOSzXKfDXui0YuXnjaixedy1tey89X/cpRQv6xYpVbXpAilEEII0dHF/FHs3Llzuf766xkzZgxjx47lqaeeora2lpkzZwJw3XXX0b17d+bPn4/dbmfo0MYLuycnJwM02R5Lnz7zFGv37MYZCsMRvYvtxR8KM/etjby/yVjE+N6LB3PD6b1O+HyaprN2UREAIyf3xGKN3SLOgXCAslovihm0YAaZgY0AHNRCJNr86Drk5Ixq8fkSknrhK4eAw/iNKzWsUwlU2jz460LY4zr+b8VCCCHalq7r3HTTTbzzzjtUVVWRlJTEjBkzeOqpp2Id2nHFPLGbPn06ZWVl3HfffRw6dIiRI0eyaNGiyISK4uLiTteF6w4FqUlOI1Db/ovJe3xBbnptLSt2V2AxKTw+bSSXjji5Hrbda0upLqnDFmdm6Fnd2yjSE7PPsw9Nc2DCg0lLwY5Rz648USMR8PsTSEhoefmWpKR8ysohVF+kODscYheHV5+QxE4IIb5/Fi1axIIFC1i2bBm9e/dGVVUcDkesw2qRmCd2ALNnz2b27NnNvrds2bJjHrtgwYK2D+gkDRgzlvWffErA4STg8WBJTW2Xdks9Pma8vJotB93EWU38+SdjOL1fy5Oc5uiazpoPCwEYcU4uVntsvzKF7kL0+q9tJlYAgloypvrL1EOtK5icltaPXbsh6DQeu3YPewEHHpubGpeP1Jy4NotdCCFE57B79266devGhAkTYh1Kq3WurrBOot+Eicb4OtXEjk+XHv+ANlBQXssP/rSCLQfdpMdbefOm8Sed1AEUbCyn8kAtVruJ4Wf3aINIT06RuwhFMWa/9sdIxmpDGThSjG1We+sKVsfFpRAMWvFbjR+F3JAPAK/FTXlFVVuFLYQQopOYMWMGt912G8XFxSiKQn5+PpMmTWLOnDmRffLz83n44Yf56U9/SlJSEkOHDuUvf/lL7II+giR2UWAym7H7jRUQdm/5NurtbdxbzQ/+tIK9lV7y0py8e8sEhnZPOunz6vrh3rphZ/fA5oz9Y8lCVyGqyZj9OipoTJZwBRNxJBuzZBMTB7XqfIqiEArEEzIrhDFHihQHzC7KK6rbLnAhhPie03WdoM8Xkz+tmQz39NNP8+CDD9KjRw8OHjzI6tWrm93v8ccfZ8yYMaxdu5YbbriBn//852zfvr2tPq4T1iEexXZFySaVQ8AhV3SXpvpsRxm3vL6WukCYod0T+duMsWQktE0pkqJvKigr9mC2mRhxbseYcbyreheKGkTXVU7zlQFQ7rfjSDgAQEZGy2fERoQSQanEpzrIqF9WTDO5qa6qbbO4hRDi+y7k9/PM9VfFpO3bX3kHSwtr6SUlJZGQkIDJZGq29FqDqVOncuutt6JpGnPmzOGFF17g008/ZcCAAW0V9gmRHrso6V7/ZXCr0cud/7V+HzcsWE1dIMzpfdN548bxbZbU6brOmg8KARh6Zncc8dY2Oe/JKqzeD4AeSCU/YJQ6KSGM2RJE15VWzYhtoCrGGMg6s4XMkNFjp5vd1FT72ihqIYQQXc3w4cMjf1cUhezsbEpLS2MYkUF67KJkwNhxrP1oMQG7A19lJfY2nkDx4vI9/O6DrQBcOiKHx64egdXcdnn6vu1VlBS4MVlURk7uGL11dcE6qurCmKygh9JI1DYAUB6v0R3w+5JwOBJafV6brRsAXqtKRu3h1SfcNdJjJ4QQbcVss3H7K+/ErO229t2iwYqidIg1cSWxi5K8UaNR3v8A3Wzm2yWLGT39mjY5r6bpPPzBVv76hVGk94bTe/GbqYNQ1RNfxqQ5a+t76wafnkNcUuxWmThSkbsIHQdQTaLuREEjrDsJp9UvwBw+epf5sTiTelHnA79dx1mjYw2rBEwa1f6WL+EihBDi2BRFafHjUHHi5FFslKiqis1nDOjftXVLm5wzENKY+9aGSFL366kDuffiwW2e1B3YVc3+HdWoJoVTzuvZpuc+GUWeIhquNLf+q+sNZ+KoXyPW5uh7QudNTMoHIOAwEsTEsNFKZVh67IQQQnQukthFkbN+hmWJ5+QLFdf4Q9zwymoWbjiAWVV4YtoIbjyzz/EPPAENvXUDJ3QjIbXj/HZV5CpCUY1keWjYSObcwWQcSca2pKTWzYhtkJxifI4NRYrTw0ZXepWlllAgdsvCCSGEEK0lj2KjKN7ppBJwm0+uTEh5jZ+Zf1vN5v0unFYTz/94FJMGZLZNkN9RUuCmeEsliqowakpeVNo4UQWuApT6Uidj/dUAVPgdOBKMpdMyM085ofOmpfZG1yFgN3rqssNBtmGmwuGi1hUgKaNzVBsXQgjRNubMmdOobt13F0soLCxscsy6des6xEpZsY+gK9r+IabXLmFwnPHINGR3UHPgwAmdqqjCKDy8eb+L1Dgr/5g1LmpJHRCpWzdgbFaHS2h2VO1EUXR0zcpInzE7tlTVMZnCaJpKTs7w45yheXZ7PMGAA7+tvkhx2KhB6LG5qXXJzFghhBCdhyR20RCoRS1eST91O0owAIrC5o8Xt/o03+x38YM/raCooo4eKQ7euXk8I3OT2z7eeuX7PBRuKgcFRl3QsXrrAPa6ygHQAulkho1EuSzeeHzq96ZgtZ54IhoOxBGwqugoZIWMc3otbioqZQKFEEKIzuOkEzu3283ChQvZunVrW8TTJXhSk9md58SXdBBnwBgLVrBrV6vO8eWucq75y1eU1wQY1C2R926ZQO+M+GiEG7HmgyIA+o7OJCW7Y62RWu2rptZnPCq1hxMwEUTTLfjrq8goereTayCchK4o+FV7ZPWJoNlFebksKyaEEKLzaHViN23aNJ577jkAvF4vY8aMYdq0aQwfPpx33323zQPsjNyUUZjnpCTTQprJmGlZWtvyGZb/2XiAGX/7mhp/iPG903jzpnFkJkZ3EkPlwVp2rzcKK465MD+qbZ2IIk8RumJ8BhmaUSzZH87AXr9GrD2u30md36Qa6+p6zZZIYqeZ3FRWnvzEFyGEEKK9tDqxW758OWeccQYA//rXv9B1nerqap555hl++9vftnmAnVFi4kgA3AlmeiYaMyw9lpat3PDyFwXc/s/1BMM6Fw3vxoKfnkqiPfprtK5dVAg69BqRTlr36PYMnogidxGKYiRcfTXjv55QKo4kI2FOThl6Uue3O3IA8FpMZByx+oTH5T2p8wohhBDtqdWJncvlIrV+FYVFixbxgx/8AKfTyUUXXcTOnTvbPMDOKK70EEO31tDjoI8+3fYCELbZqSrYc9RjdF3nkQ+38eD/jJp3Mybk8+w1p2Azm6Ier6usjp1flwAwZmp+1Ns7EYWuQhTV6D0bGawBoDLoxBFv/D0768RmxDaIT+kNgN9OpMdOUf243TUndV4hhBCiPbU6scvNzWXlypXU1tayaNEipkyZAkBVVRV2qSgNgFJ9kKwyH+kVAaymragBPygK3yz9uNn9g2GNX7y9kRc+2w3A/50/gPsvafvCw0ezdlERug49h6SRmZfYLm221h7XHlST0Tt3mr8MgFITqKpGOGwmK2vwSZ0/Mak+sXNoxOk6Vs347Ku8MnlCCCFE59HqxG7OnDn8+Mc/pkePHnTr1o1JkyYBxiPaYcOGtXV8nVJtqbG2aoInhFutJi5YP4GisKDJvnWBELNeXcN76/ZjUhUevWo4Pz+7L4rSPkmdp9LH9pWHADj1ovx2afNE7Kw0eju1UDz9A/sAqIgzetYCvlTMJ1krMLm+xy7kNB6dJxsTY6nQpMdOCCFE59HqAsW33norY8eOZe/evZx33nmRYny9e/eWMXb1LAOGEVrlwKx7CZkU0s06HqDc27gmWmVtgJkLVrNxbzV2i8offzSKcwdltWus6z4qQtN0ug9IIbt3Uru23VK6rrPf5QITmAIp2NmCrqvUpOkkAgrdT7qNtNR8NE0hYDMS6oywRikKFaY6tLCGapLKQEIIITq+E/rXasyYMVx00UXs37+fUH3Nr4suuoiJEye2aXCdlaVHAgEGAGAN6uQnGQPwa602dN2YJbu3so6r/rSCjXurSXZa+PvPxrV7Uldb7Wfrl8aqDad20LF1AGXeMgJhY/JJkmbUqgtoadjqZ8Q64wecdBtms5VgwBkpUpxTv2RZlcON1xM86fMLIYToGpYtW4aiKFRXVwOwYMEC8vI6Tu3XVid2dXV13HDDDTidToYMGUJxcTEAt912G4888kibB9gZqVYTYYcxmD/JEyK/mzF2LmyzU7Z1K1sPuvnBn1awp7yW7slG4eHReSntHuf6JcWEQxrd+iSR0z+53dtvqSJ3EXp953KP+rFvteE0nInGmLuUlCFt0k44EI/fZkxW6RYOAOCxuah1+dvk/EIIIUS0tTqxu+eee9i4cSPLli1rNFli8uTJvPnmm20aXGemdxsNQJIniM5OTH7jMeyy/y1i2gsrKfX4GZCVwLu3TKBvZkK7x+f1BPh2ubEs15ip+e02pu9EGKVOjORqcNj4HKuCcdjjjMSuW/1nfbIULYmwSSGoWMisL3nitbipklp2QgghOolWJ3YLFy7kueee4/TTT2+UDAwZMoTdu3e3aXCdWr/T0AGHT6PWEiC+fgLF9j0FePwhxvZK5a2bx5OdFJuZxBs+3ksoqJGZl0Du4NSYxNBSha5CVJMLgDEBYyWIMrOCouiEglbS0/u2STtmUwYAXrOV9CNWnygtr2yT8wshhOgcNE1j/vz59OrVC4fDwYgRI3jnnXdiHVaLtHryRFlZGZmZTRehr62t7dC9Pu3N0rsbASUbm34IUIjTfLhIwmRXuWBINk9dMxK7Jfo16prjqw2yeZkxs7Sj99YB7KjegaIG0HWFMV5jTGBFnIYdCPjTMJna5nN0OHMJAT6Licz6MXbG6hNS8kQIIU6WruvoQS0mbSsWtVX/1s2fP5/XX3+dF154gX79+rF8+XKuvfZaMjIyohhl22h1YjdmzBjef/99brvtNoDIB/XXv/6V8ePHt210nZgpxYZPG4JNOUScN4zVfADIIuSM47kfnYI5hrMsN32yl6A/TFr3ePKHpccsjpbaU2kkoQSTydCN9Ww9yWHsgEnt0WbtxKf0ptoNPjukew6vPuGurmuzNoQQ4vtKD2ocuG9FTNrOeXACirVlnQB+v5+HH36Yjz/+OJLX9O7dmy+++II///nP3HjjjdEM9aS1OrF7+OGHufDCC9myZQuhUIinn36aLVu2sGLFCj777LNoxNgpKYqC2zqAxOBSktwh+ufsprBqJJrVyqEN6+gxekxM4gp4Q2z61EiURl+Yh9JORZBPVFgLc8hTh2IBZ8hY6iyoJWFKNWaqxiUOarO2kpJ7Ue2GgEOnW9Xh1Seq3TLGTgghvi927dpFXV0d5513XqPtgUCAU045uVWO2kOrE7vTTz+djRs3Mn/+fIYNG8bixYsZNWoUK1eulALFR/AGwnwW7MuPgURPkLT8KsyHfITsDrZ8+UXMErvNn+3DXxciJdtJn1FNH6l3NAdqDxDW7ZiBjLBRhLgunIEz0SgcnJbadt+51NS+FBVDqH71CZum4Fd1Kr2uNmtDCCG+rxSLSs6DE2LWdkvV1Bj/vrz//vt07964TqrNZuvw8wlaldgFg0Fuuukm7r33Xl588cVoxdTpVdcF+Okra9F93bjGbsOk+QmaISHkpwoHxQf2xySuoD/Mho+NtWtHX5DXbkuWnYxidzENUfbRjJqJrlA8dqfR65jdbVSbtZWU1J1w2BSpZZcS0jlkhfKQrD4hhBAnS1GUFj8OjaXBgwdjs9koLi7mrLPOavJ+l0rsLBYL7777Lvfee2+04ukSnl+2m3XF1aSoOn764GQL5rBOlsVPFVBZX0qjvX37+X58NUES0+30O7V9iyGfqEJ3IYpqjHEbHjASrHKLkeoFAnbSUtuuKKTJZCLoj8NvNSZOZIVDHMJMhVqHrusdfpKJEEKIk5eQkMBdd93FnXfeiaZpnH766bhcLr788ksSExM7VDHi5rR6BP/ll1/OwoULoxBK1zH3vP5cMjybm4aFCduNHqUkT4i8zAMAeO0OwvUrdrSXUDDM+iVGMenRF+R3miWyClwFKPWlTsYGygCoqF/PNeRPb/NkSwvG46vvsesWWX3Cg7+ufe+XEEKI2HnooYe49957mT9/PoMGDeKCCy7g/fffp1evXrEO7bhaPcauX79+PPjgg3z55ZeMHj2auLi4Ru/ffvvtbRZcZ2W3mHji6uF88ME+9OwxUPg6iZ4QmVk7oHoEutlC8Vcr6XX6Ge0W09YvD1LnChCfYmPAuOx2a/dk7ajciaJo6JqFwQHj8asnWSMJMJt7tnl7qp5C0LIfDYXM+lp2HpubWpcfe5ylzdsTQgjR8SiKwh133MEdd9zR7PsNy4MCzJgxgyuvvLK9QjuuVid2L730EsnJyaxdu5a1a9c2ek9RFEnsvkPpNxYKIc4bJmBxYfH7CNqdbFn1VbslduGQxrqPjDIho87Pw2TuHL11AHsqSwCwBJIwoxHWHej1M2Ljkwa3eXsWcwYoCj6zjYz6R+Y+swt3VR1pOfFt3p4QQgjRllqd2BUUFEQjji7L3KcngY/Tserl6CgkBv1U2J3sLy1ptxi2rzpETZUfZ6KVQRO7tVu7JysQDlDlDaJaISlsrNDhDWfiqJ8Rm542vM3bdMT3JAB4LSYyIqtPuCkpr6AXHX8WsRBCiO+3k+q60XW9UXekaMqUaiOoDAXA4Q+TE2esYlCltc/npoU11n5YCMApU3pijtFqFydin2cfmm4DoEf9fBN3OAGb3VgvNien7UvGJKT0AcBvUyKJXdjsoqJSSp4IIYTo+E4osXv11VcZNmwYDocDh8PB8OHDee2119o6ti5BURT05FMBSHSHyM00JjD47A7CgUDU29+5phR3uQ97vIUhZ3Q//gEdiDEj1pi0MDDkBaC8/jGy3xdHUlLbz+xNTukNGEWKGxI7TB5clbVt3pYQQgjR1lqd2D3xxBPccsstTJ06lbfeeou33nqLCy64gJtvvpknn3wyGjF2fr3GAsbM2KT4XaBp6CYzOz9bFtVmNU2P9NaNnJyLxdZ5euugvoadaqz6MCpYDUBVnNHTGQ5GZ72+tLR+AAQdOpmhhtUnfFS7ZPUJIYQQHV+rx9g9++yz/OlPf+K6666LbLv00ksZMmQIDzzwAHfeeWebBtgVmAeOIrzWgjkcJGwJYvXXEXDEs2PdWgaeNyVq7e5ZX0bVoTpsTjPDzmq7NVXby87qnagmYzzdWN9BADxJGg7AaolOHaH4+HRCIQt+q6l+9Qnwq1BeVx2V9oQQQoi21Ooeu4MHDzJhQtMlQSZMmMDBgwfbJKiuxtozBb+SD4CqQVLIGCO2v7w8am3qms6aDwoBGH52D6yOVufwMbejwqjurYQcpGs+dN1MMM2YEZuQPCQqbSqKQsgfF6lllxYyauaVhaTHTgghRMfX6sSub9++vPXWW022v/nmm/Tr169NgupqVJsJzTYagITaED2SjISuOoptFm4up2J/DRabieHn5Eaxpegpqq4CwBk0yoz4tIzDM2LTR0StXS2UgN9q/GhkhY1EskyVMXZCCCE6vlZ348ybN4/p06ezfPlyJk6cCMCXX37J0qVLm034RL3sMVD4BknuEN0zilhfMhC/3UmgrharM+74x7eCrh/urRs2qUenLKxbF6zDE1AwWyEjbIwNdGuJWKwV6Dp07972M2IbqHoqfpsxySU7HAJsVNtqCQbCWDrBOodCCCFi54EHHmDhwoVs2LAhJu23usfuBz/4AatWrSI9PZ2FCxeycOFC0tPT+frrr7niiiuiEWOnE9JCfFvxLQdCByLblP7G4+u4ujBxccUQDoPJxPalS9u8/b1bKikt8mC2qIw4t5P21rmLACOJ6h02ZsZWWozfQ/y+BOLikqPWttWaha4q+FUL6fUzY2tsLupc/qi1KYQQQrSFExp4NXr0aF5//fW2jqXLWPDtAp5e9zRDLUP5GT8DwNqvF4ElKVj1KnQV7L46fHEJ7Ny8kWGXXNpmbR/ZWzfkzO44E61tdu72VOQpQlGMsYjDgsbj10qHMSNWD0a3ULAzIQ9fGHxWU2RmrNfixl3lJSnDGdW2hRBCiJPR6h67Dz74gI8++qjJ9o8++ogPP/ywTYLq7EZljgKgIFQQKeBsTncQVAYBYAtqpChGsnKwqqpN2z6wo5qDu12YzCqnnNf2a6m2l8LqQlRTNQCn+o1VOjxJxkQGq713VNtOSusLgM+mRnrsgiYXpeWVUW1XCCFE7E2aNInbb7+dX/7yl6SmppKdnc0DDzwQeb+4uJjLLruM+Ph4EhMTmT59OqWlpU3O8+c//5nc3FycTifTpk3D5WqfQvetTuzuvvtuwg2FW4+g6zp33313mwTV2Q1NH4rNZKNWr6XAbSzBpigKelJDPbsgPVKNGcQupW3XbV1TX7du0MRuxCXb2vTc7WlH1Q4UNQC6wqCAC11XCNTPiE1KGRbVtpOT64sU23Uy67/rmslNeWV1VNsVQgjRMbzyyivExcWxatUqHn30UR588EGWLFmCpmlcdtllVFZW8tlnn7FkyRIKCgr46U9/2uj4Xbt28dZbb/Hf//6XRYsWsX79em699dZ2ib3Vj2J37tzJ4MFNF18fOHAgu3btapOgOjurycqw9GGsKVnDutJ1DEgfYLyRdxpUQZI7RFZGARwcRcDuxFddjT05+aTbPbTHxb5tVaiqwilTOm9vHcCOSmPygiUYhxUI6GnYkuoAyMiM3oxYgLT6HrugXSG9sv6XGLOb6sqaqLYrhBBdma7rBIPBmLRtsVhQFKXF+w8fPpz7778fgH79+vHcc8+xtH5M/ObNmykoKCA31xjDvmDBAoYNG8bq1as57bTTAPD5fLz66qt0726s+PTss89y0UUX8fjjj5Odnd2Wl9ZEqxO7pKQk9uzZQ35+fqPtu3btIi6ubWd3dmZjMsewpmQNa0vX8sPBPwTAPGg02gYTllCYOGcFSjiEbjKz9eMlnHLV1SfdZsPYugHjs0lMc5z0+WJpv8sNJkgOGb2Obj0Js9mFpinkdBsZ1bYdjkSCATs+q4+eR6w+UeVyR7VdIYToyoLBIA8//HBM2v71r3+N1dryMefDhw9v9Lpbt26UlpaydetWcnNzI0kdwODBg0lKSmLr1q2RxK5nz56RpA5g/PjxaJrG9u3bo57Ytfo54GWXXcacOXPYvXt3ZNuuXbv4xS9+waWXtt0kgM5udKZRt25t6drIODtrXhp+xfgyKCjYfUZttJ1bvj3p9kqL3BR9U4GiwKjzo7MqQ3up9lXjCxslWrrXd5hVmY3fQQK+JOz2+KjHEPLH4bep9atPGPevtLZtx0MKIYTomCyWxmXCFEVB07QYRdM6re6xe/TRR7ngggsYOHAgPXoYy1Tt27ePM844g8cee6zNA+yshqYPxYyZcm85Re4i8pPyUe1mwtbR4C8kvi5EhrWSYpIocZ98T9DaD4sA6Dc2i+TMzj1zs8hTBBjJ1MCQF4Cq+g5IPZTVLjHooUT8thIUID2ssV81UeqXHjshhDhRFouFX//61zFruy0MGjSIvXv3snfv3kiv3ZYtW3C5XI2GqRUXF3PgwAFycnIA+Oqrr1BVlQEDBrRJHMdyQo9iV6xYwZIlS9i4cSMOh4Phw4dz5plnRiO+TstmstHD1IPCcCFrStaQn5RvvJF1KhS/S5I7SPfUAxR7euE2nVzR24r9NezZUAYKjD4//6Rjj7UidxFK/UoPpwSMXrKa+hmxdkffdonBpKRGVp/IDgXZbzFRpta1S9tCCNEVKYrSqsehHdHkyZMZNmwYP/7xj3nqqacIhULceuutTJw4kTFjDhfOt9vtXH/99Tz22GO43W5uv/12pk2bFvXHsHACj2LBuDlTpkzh//7v/5g9e7YkdUfRy9wLgDUlayLb1H7jAYivDZORXAhA0O6gpqzpVOmWWls/E7bPKRmk5nT+cY4FroJIqZNT/Mbya75Uo0hxclp0Z8Q2sNmyCZkVwopKRv3M2GpbDeFw5+iKF0II0fYUReHf//43KSkpnHnmmUyePJlevXrx8ssvN9qvb9++XHnllUydOpUpU6YwfPhwnn/++XaJscU9ditXrqSiooKLL744su3VV1/l/vvvp7a2lssvv5xnn30Wm63zlthoa/nmfPDD6kOr0XUdRVGwDOhP8JMELLoHp7UOJRREN1v4dvFiTvvxta1uo+pQLTvXGknhmKn5bXsBMbKtYhuKoqFoJrLCYUJaAuZko7csM/OUdokhLqkXtQEFr8UcSexqrB687iDxKfIdF0KIrmrZsmVNti1cuDDy9549e/Lvf/878lrTNNxHDKl64IEHInXvbrnllmiFeVQt7rF78MEH+fbbw4P8N2/ezA033MDkyZO5++67+e9//8v8+fOjEmRnlWvOxaJaKK0rZZ9nH2AUKg4oxjN2S0gjLmB8Gfbs2H5CbaxbVAQ65A9PJ71HQtsEHmM7Kw4BEBd0ogI1pGAyhQmHTXTr1j49dklp/QDw2w732PksLmpc3nZpXwghhDgRLU7sNmzYwLnnnht5/cYbb3Daaafx4osvMnfuXJ555hneeuutqATZWVkVK0PShgCHH8cqqoKWaEyHTqwJkRVn9LaV1La+RpqrzMv2r41VGcZcmN8GEceeruuU1BhLiWWEjLGHVWZjTEbAl4zF0j69ZSkph4sUZ4QaVp9wU1YuM2OFEEJ0XC1O7KqqqsjKOjwj8bPPPuPCCy+MvD711FPZu3fvCQXxxz/+kfz8fOx2O6eddhpff/31Ufd97733GDNmDMnJycTFxTFy5Ehee+21E2o3Wg7VHuKdne+xObgrUvZk9aHVkffVnvWJnTtIdorRk1djbv2MnXWLi9A1ndzBqWT1SmyDyGOvzFtGSDMSut4ho5BltaO+qGQ4+oNOG6Sl9UbXlUY9dprJRakkdkIIITqwFid2WVlZFBQYy2MFAgHWrVvHuHHjIu97PJ4Tmk785ptvMnfuXO6//37WrVvHiBEjOP/885tddw0gNTWV3/zmN6xcuZJNmzYxc+ZMZs6c2ez6tbHy8NbVzD3QjXfsSZHE7sgJFKZBY9FQsQV1MhOMZDhkc+BqRWLsqfSxbYWxLFlXGVsHDTNijYRuaNADgCfRSKyccf3bLQ6LxU7Q72iU2GFyU13labcYhBBCiNZqcWI3depU7r77bj7//HPuuecenE4nZ5xxRuT9TZs20adPn1YH8MQTTzBr1ixmzpzJ4MGDeeGFF3A6nU1mmDSYNGkSV1xxBYMGDaJPnz7ccccdDB8+nC+++KLVbUfLyLQ+6KZEyqw9GJw6GLNi5mDtQfbX7AfA2isDv2rUtrGbwqhBPygKmz9e0uI21i8pRgvr5PRLJqdvcjQuIyaMxM5InkYFjBmx/oYZsenDj3pcNIQDRpHihkexislHZXX7LOIshBBCnIgWz4p96KGHuPLKKznrrLOIj4/nlVdeaVSP5uWXX2bKlCmtajwQCLB27VruueeeyDZVVZk8eTIrV6487vG6rvPJJ5+wfft2fv/73ze7j9/vx+/3R143zFwJBoNRW7Pukqx8fl2wlbAlm89LtjM4bTCbyjexav8qLul9CZggZDkF/Ptw+kIkalVUk03B7p2c1oKY6twBtnxxAIBTzu8Rs7X3omF75XZUk5HY9QkG0HQbJBsTFtLThp/UtTYc29Jz6OFE/FaV+PrVJ/yqwiFPRZf6vDuC1t4XEX1yTzqmznZfgsEguq6jaVqnWbXhRDSsLtVwrSdK07TIerqm79S3bc09b3Fil56ezvLly3G5XMTHxzdp9O233yY+vnVLPZWXlxMOhxuN3QPjse+2bduOepzL5aJ79+74/X5MJhPPP/885513XrP7zp8/n3nz5jXZvnjxYpzO6K3QkGg347Z256XNa+npSwZg4bqFmLYZn9sItQ8JQKInREb8PqqD2RyqreWDDz447rmrt9kIB61Yk8Ns2LWSjbuPe0inscJljK80h6wkaRoeUlBNIcIhM+vWFaAoRSfdxpIlLesZDdY58KerKEBmOMxe1cy+2ooW3SPRei29L6L9yD3pmDrLfTGbzWRnZ1NTU0MgEIh1OFHn8ZzcUJ1AIIDX62X58uWEQqFG79XVtbxA/gmtPNGc1NTU1p7qhCUkJLBhwwZqampYunQpc+fOpXfv3kyaNKnJvvfccw9z586NvHa73eTm5jJlyhQSE6M34eDddZ+xuA6K49K465RpLF+2nFJLKVOnTgXAl5ANy58ioSZETuZ+dpaMwWd3Rt4/Gl9NkH8s/RrQOOea4fQc0n6fe3v4wxsvgQ4pQWP2a7XZBoQI+FK56KKLj33wcQSDQZYsWcJ5553XovGgny9ZTsC6GR3ICIfYazFTZQ0e9x6J1mntfRHRJ/ekY+ps98Xn87F3717i4+Ox2+2xDidqdF3H4/GQkJCAoignfB6fz4fD4eDMM89s8nm5W7H0aKsTu7aUnp6OyWSipKSk0faSkpJjLruhqip9+xpLS40cOZKtW7cyf/78ZhM7m83WbNFki8US1R+MK3LyWbyrhjKlOwPTB2JSTOyv3U+5v5xu8d1g8BCCnzux6HVkOssACNvsuAsKSOt/9EkCa5cXEwpopOfG03tE5kl9iTqasBam0qdhskL3+hUeqh3GMFBFz2mz+9XSe5+Q0he3V8FvNpNZP87OZanFbDZ3qc+9o4j2z6RoPbknHVNnuS/hcBhFUVBVFVU9oYWuOoWGx68N13qiVFU1FjJo5v625n7H9JO2Wq2MHj2apUuXRrZpmsbSpUsZP358i8+jaVqjcXQdwXmZuSiaH82UxJJDOxmcZiwO3DA71pwZR0A1iuDatDCmgDGObPOnS5s/IeCvC7L5U6M8ypip+V0uuThYexC9/u8Dg8bnUZNg/MDEJUR/4eTvSk43fnnw2VTSI6tPuPHXho51mBBCiE5s0qRJzJkzB4D8/HyeeuqpmMbTWjFPoefOncuLL77IK6+8wtatW7nllluora1l5syZAFx33XWNJlfMnz+fJUuWsGfPHrZu3crjjz/Oa6+9xrXXtn45rmiyqSppQaMcyX8P7WNMtrE48JGFivV4o55dQm2IVLPRa1lYdPQxZJs+3UfAFyY1J47eIzKiGX5MFLmLUBSjOPHIgFEvzp9iDBhNTR/R7vGkphqJXcBujLED8Fnc1FT72j0WIYQQ7W/16tXceOONkdeKojRaXqwjalFiN2rUKKqqjH9oH3zwwVYN4jue6dOn89hjj3HfffcxcuRINmzYwKJFiyITKoqLizl48GBk/9raWm699VaGDBnCxIkTeffdd3n99df52c9+1mYxtZUBIaPXaVOdypis+sTu0OF6duQadQCT3CGyk4xrLA803/MY8IXY+IlR5270hXkoatfqrQMocBWgmqoB6B+sQ9dNhFOMAbfduo1u93iSk3PRNBW/TSX9iNUnyiur2z0WIYQQ7S8jIyOqEy2joUWJ3datW6mtrQVg3rx51NS0fvmrY5k9ezZFRUX4/X5WrVrFaaedFnlv2bJlLFiwIPL6t7/9LTt37sTr9VJZWcmKFSuYPn16m8bTVsZpRjmYajWXnPieqIpKsaeYklqjd848eBw6CvaARk6C0VNXZ7VHpk4f6ZvP9uOvDZGU6aDv6Kwm73cFOyp3oqh+0KFnKEidkgwmCAZtpKX1bvd4TCYzAb8Tv1WN9NhpJjdlZbL6hBBCfB8c+Sg2Pz8fgCuuuAJFUSKvO5oWTZ4YOXIkM2fO5PTTT0fXdR577LGjlja577772jTAzqyvbsas1RJS43j/wC4Gpg5kS8UW1pSs4aLeF2HNz8SvZmHXDpFirQFdR7PaOLR5E92GH370GAyE2fBxMQCjL8hH7YK9dQBby42VTZwhOzYdKs0OwEfQlxqzgbdaIB6/rZyMcP1UfZOLikopUiyEEN83q1evJjMzk7/97W9ccMEFTcq+dRQtSuwWLFjA/fffz//+9z8UReHDDz/EbG56qKIoktgdQQV6WzzsCMexuLyUs7NObZTYqU4LIctw8B/CEQxhDXkIWBL5dvlnjRK7LZ8fwOsJkpBmp/9pXbO3DqCo2gUKZAaNJK7abvzXRPeYxaRoSfitKj2PWH2ioro6ZvEIIURnZRTw9cakbVV1nPSEw4wMY2x7cnLyMSt3xFqLErsBAwbwxhtvAMZ03KVLl5KZmRnVwLqKSSmJ7CiHbT47d+WP5pUtrzQeZ5c+AfYvJskTJMNxgP2hRIr37Yu8HQ5qrF9sPKYddX4eJlPM57tERSAcwBPUMFuhd8iYMNEwIzY+aVDM4rKo6fgtTVefEEII0Tqa5mXZZ8Ni0vakszZjMnWusXInqtVZgqZpktS1wvQeRpmOWnNPEu2ZKCgUugspqzNq1yl96mfGekJkJhpryVYcUXF668qD1LoCxCXbGDS+WztH3372efYBRiI3NGgUYmyYEZuWMTJGUYHd2QO/zVS/+oRxXw755FGsEEKIjumEChTv3r2bp556iq1btwIwePBg7rjjDvr06dOmwXUF/eMTceguvEoS/zlYyMDUgWyt3MrakrVc0OsCrIOGE/rchln30yNuP+sroc5mJxwOAwrrFhm9dadM6YnJ0jV76wAK3YUoqjFBZ0jQWJYllBICFHJyxsQsrsS0vlS6FYImlYxwmL0WCyVK280KF0KI7wtVdTDprM0xa7stWCyW+n+fO65WZwofffQRgwcP5uuvv2b48OEMHz6cVatWMWTIkE6zfl17G2w3Sph8VlnN6CyjbEekUHFWHH7VSIgTVT/oGrrFyr7Vq9mx6hCeSh+OBAtDTs+JTfDtpNBVGCl1kh8M4iORsEkh4HeQnBy7MXZJqUYRaZ9VJaN+nF21uTZm8QghRGelKAomkzMmf9qqoH9+fj5Lly7l0KFDkTJwHU2rE7u7776bO++8k1WrVvHEE0/wxBNPsGrVKubMmcOvfvWraMTY6Z2fYTy63hNMiiR2qw+tBuoLFceNBSChLkg85QB8u/JL1n5o9NaNPK8nZmvHnH3TVr6p2IKihFE1lexQGLfZGAsR8qfFdIWNtLT6IsU2hYz639JqLR4CPll9Qgghvm8ef/xxlixZQm5uLqecckqsw2lWqx/Fbt26lbfeeqvJ9p/+9KedbtmN9jI9dyAP79tGwNIDTfWjoLDHtYcKbwVpjjSUHuNgywKSPEHS4w5SU5fJnv3lKDVebHFmhp4Zux6r9rKt1BhfmBK0oAIuuwkIYVFzYxpXQkIW4ZAZv00lw9ew+oSLOncAqz2mSy0LIYSIgmXLlkX+XlhY2Oi9Sy65hEsuuaR9A2qlVvfYZWRksGHDhibbN2zYIJMqjiLLbidZN2ZSflBygH4pxuO9tSVrAVAHjUcHHD6NnHijXl21YhQpHnlu7vcigThYYyzT1SNkXHdtvPHf+JQhMYsJjFngQX+ckdgdsfpEZYU7pnEJIYQQzWl1xjBr1ixuvPFG9uzZw4QJEwD48ssv+f3vf8/cuXPbPMCuYmSczrI6WOHycUXWGHZU7WD1odVMyZ+CrU93/Go6dq2cbnYjAQzZzZgDCsMm9Yhx5NFXF6zDGw5jMcGAoDExoWFGbEZm7Lu6tWA8fqtKRv2sWM3kprS8gt503DpGQgghvp9andjde++9JCQk8Pjjj3PPPfcAkJOTwwMPPMDtt9/e5gF2RhU1fj7ecpCCaoWp9dsuzu7Bsj0+9msZjMhI4h/b/hGZQKE6LQQtQ7D7PyMh7EPRg+gmC937erA5LbG7kHZS7ClGwUjkhgaNUiL+pDCgkpPT/mvEfpeqJeO3HV5WDJOb8gopeSKEEKLjafWjWEVRuPPOO9m3bx8ulwuXy8W+ffu44447YjrIvSN5a80+fvXet3x28PDncUX3vqCHCJvTcWk2AHZV76LKZ8yqUdJOByCpJkSCzahxF6rb2s6Rx0ahuxBVNR5t9goGCWInaFHw++JJSMiIcXRgMWfis5lIDzesPuGlvLpjzoYSQgjx/XZShdESEhJISEhoq1i6jHMHGWMNd7oU6gLG47s4s5kspRKAxeWV9E02ZluuK1kHgNp7HACJniDJTmO/QxWl7Rp3rOyq2oVqNhK7/GAIjzkeFAXNnxbjyAzO+Fz8VpUETceuGUWUD7pl9QkhhBAdT9eteBtD/TLj6ZFsJ6QrrNxdGdk+NtF4rLq2Rjtc9qTEKHtiHnwKYcWCSYMejoMAVOvtHHiMfFu2AwBb2ESypuGqnyxiMfeMZVgRiWn9CFoUNEWJ9Nrt90qPnRBCiI5HErsoUBSFSQOMR4if7iiLbL+qu1GIuIzuDEkbChBZN9aSHY9XyQcg13wAAJ/dSdjna6+wY2ZHfc9kVtD4OtbUz4hNTBses5iOlJLeDxSFgFWJjLMrQVafEEII0fFIYhclZ9cndsu2l6PrRqJybmYuqu5DN8WzL2D0Su2o2oHL7+Lg7mrcfmNx5GR/LRZTLZhMbP/0k9hcQDsqrTVW5ugdCgDgT+44M2IBUlONx+ZHljypNtXEMiQhhBCiWa1K7ILBIOeeey47d+6MVjxdxmn5KVhVnRKPn28PGOPHzKpCz/pls5ZV1dArqRc6OmtL1rLmg0JK/UbNtkRPiFSbUbB3+4b1MYm/vVT7qgnpRrI0JGCsEetP0NF1he7dYz8jFiAuLoVg0Gokdg2rT5hrCIe0GEcmhBBCNNaqxM5isbBp06ZoxdKl2CwmBiQZPXWfbDs8CeKMlHgAvqkzc2rWqQAs37GCvVurKA72ByDOG6abcy8AByor6cqKPEUoiheA3kE/Ycz47Cp+bwIOR2KMozss5Iurr2XXsPqEG68nEOOohBBCRIOu69x4442kpqaiKEqzCzN0VK1+FHvttdfy0ksvRSOWLmdwipHYLT0isbsmdwAALlMuvZKNFSi+Kl4FQOLw3vhNKQD0tB0CwN3FS8gUugpR63sx84MhaupnxOrB2Jc5OZIeSmjUYxcyuXBV1cY4KiGEENGwaNEiFixYwP/+9z8OHjzI0KFDYx1Si7W6QHEoFOLll1/m448/ZvTo0cTFxTV6/4knnmiz4Dq7wclGYrdpXzVlHj8ZCTZGJadj1bYRUBPY7TM+/v1qEQFzHSMv7k3g5UHYwitIoQbQ8dud+D0ebF20rMy2yu0oqjFBpGcoRJnT+ExslvwYRtWUSU/BbzWRUT8OUDO5OVRWTvfeHaMkixBCiLaze/duunXrFllh67sCgQBWq7Wdo2qZVvfYffPNN4waNYqEhAR27NjB+vXrI386U1dle0i2wZCcBHQdlm03eu0URaGfzejpWeEOkq5lg6KjjKokOcuJkjIRgMTaIE5bJagqW5cuidk1RNs3pbsBSAqasOs6tcaTapLSO8aM2AZWSya+I3rsMLkpq6iOaUxCCCHa3owZM7jtttsoLi5GURTy8/OZNGkSs2fPZs6cOaSnp3P++ecDRmfWiBEj6N69O3l5edx6663U1MR2cl2re+w+/fTTaMTRZZ3dP4NvD3j4ZFspV4/JBeCctFS+PQS7vYmMKutFedYhanobkyXU3uPhECR5QqTG76POn8aubzYz8vIrY3kZUbOn0liaK7d+IoI/KQSYycweFcOomnIm5OH3Hk7sFJOXsoquPf5RCCHakq7r1GmxmXTmVNUWr4719NNP06dPH/7yl7+wevVqTCYTV199Na+88gq33HILX375ZWRfVVV56qmnyMjIoLS0lNmzZ/PLX/6S559/PlqXclytTuwa7Nq1i927d3PmmWficDjQdV2WFGvG2QMyeG7ZHpbvKCMQ0rCaVX7UcxDPHtpNrTWH9Nq+wEq+rTEmpZgHjya80ow5HCLPUcQ+1wgOurrmuqS6rlPt96NaYUDQqAvnTQBNU+nWbWRsg/uOpIwBlJQYq0/YNA2/qrLfVXb8A4UQQgBQp2n0Wb45Jm3vPnMYcSZTi/ZNSkoiISEBk8lEdnZ2ZHu/fv149NFHG+07Z84cNE3D7XYzdOhQfvvb33LzzTfHNLFr9aPYiooKzj33XPr378/UqVM5eNBYJeGGG27gF7/4RZsH2NkNzUkkPd5GbSDM1wVGD0+vuATiwy50RSFoGwjAlsot1ARqsHRLwmfqAUB3s7G/W23Zl7GzKfOWoWEsudYv6EVHoc5hwu9NwmZzxji6xlLS+6GrCgHz4V67fd7q2AYlhBCi3Ywe3bQE18cff8x5553H4MGDSUpK4ic/+QkVFRXU1cWuiH2re+zuvPNOLBYLxcXFDBo0KLJ9+vTpzJ07l8cff7xNA+zsVFXh7AEZvL12H59sK+X0fukADKpSWJ0Oe3vGk+vMZa9nL+tL13NGjzPQHKPBU0hSsA6TKUjQ5qCuogJnWtcaqF/kLkJRjLEI+cEQtSYnuqpAqGPNiAVIS+2DrkPAZqw+sc9i4ZAus2KFEKKlnKrK7jOHxaztk/XdyaKFhYVcfPHF3Hzzzdx9993k5uayYsUKbrjhBgKBAE5nbDooWn2lixcv5ve//z09evRotL1fv34UFRW1WWBdybmDMgFYuq0EXddxl3vptd14bL0tXWN0pvFbwJoSY3kxtdsZgDHOLsFRAqrKlo8XxyDy6CpwFaCaqwHICwbx2I0ZRjZb7xhG1TybzUkw4MBvU0mX1SeEEKLVFEUhzmSKyZ9oDBVbu3Ytmqbx2GOPceqpp9K/f38OHDjQ5u20VqsTu9ra2maz0MrKSmw2W5sE1dWc3i8Di0mhqKKOPeW1rF9cTF5JCEXX8dnSiXcYz/Ab1o1VB44HIK4uTKa9GIBd27bGJvgo+qZsC4oSwqQpdAuFqan/ZSilgywl9l0hvxO/1RRZL7bOXIOu6TGOSgghRCz07duXYDDIc889R2FhIa+99hovvPBCrMNqfWJ3xhln8Oqrr0ZeK4qCpmk8+uijnH322W0aXFcRbzMzrr7e2YfrDrBlxQHsQZ20UDUAO3xGovxtxbfUBeuw9u+N35SIAvSy7gOgxOOJRehRtbnEWF0jK6RgomFGLGRnd4ylxJoIJRo9dg2rT5jd+OqCMQ5KCCFELIwYMYInnniCRx99lAkTJvCPf/yD+fPnxzqs1o+xe/TRRzn33HNZs2YNgUCAX/7yl3z77bdUVlY2mgIsGjt7QCaf7yzn/dX7uDgE3fomMSK5kqW1sMHnoHt8d/bX7GdD6QYmdJ9Anbk/tvAaMhUXoOMxW2J9CW1ur6cGFGMpMQBvnEo4bCI7u2NW+DaTis+mRnrsQiY37iovjviOWaRSCCHEiZkzZw5z5syJvF62bFmz+915553ccccduN1uEhMTUVWVn/zkJ+0T5FG0usdu6NCh7Nixg9NPP53LLruM2tparrzyStavX0+fPn2iEWOX0DDObrvHi0/RGTM1n8ty8gA4qGczMmMkAKtLVgOgJBuFipO8fmy2WkI2B+76GchdQVgLUxs0erv615c6qXWaCHiTMXfQJNZmzcZvPTzGTjO5KCkvj3FUQgghxGEnVMcuKSmJ3/zmN20dS5eWlxZHjt3KAV+AqmwruYNSyQgnc8eOdWimZExWYyZoZJxdr4lQ8jRJ7hBJ8Qcp9ffjmyUfMeG6GTG8irZzsPYgYCwllh8M4VPthM0qSigrtoEdQ1xSPn734R47TG7KyqtiG5QQQghxhBNK7KqqqnjppZfYutUY0D948GBmzpxJampqmwbXlfhqguR6dA5YoCTLiqIoOMwmuqkVHNCz2Rkw1oL9puIbvCEv5sGnon2lYglp9LQWUko/CnbtovlV6zqfIncRquoGID8YxGO3A+Bw9I1lWMeUnDmQQ77DY+wUk5fSiooYRyWEEEIc1upHscuXLyc/P59nnnmGqqoqqqqqeOaZZ+jVqxfLly+PRoxdwsZP99LLZ0y3XlPqIlw/m3JckjGTeIsvmey4bEJaiI1lG7F0T8FnzgEg11ICQGld16mbtrN6J4rJSOzygqHIjNjUDraU2JFS0/sTMis4ULDVL4uzt7o0xlEJIYQQh7U6sfv5z3/O9OnTKSgo4L333uO9995jz549XHPNNfz85z+PRoydnt8bYtMn+8gJq8RZTFTVBdmwtxqAq7v3A6DC1INh9Qvfrz60GsWkEHKMACAtXIOihKmxdJ1B+psObUNRdBxhhRRNw5doJErZ3TrojFggJaUnmq4SsKmkh414i+vkUawQQoiOo9WJ3a5du/jFL36B6Yg110wmE3PnzmXXrl1tGlxXsXnZPgLeEOnZcZw90JhE8ck2oxfuzIzumLQ6dNVJyGSsStEwzs6UdRYASZ4AcXFVhG0OKgsLYnAFbW9L+SEAegbDKIDXqRIKWcjIGBDbwI7BbLYS9DsJWBUyw0ZploOaFCkWQgjRcbQ6sRs1alRkbN2Rtm7dyogRI9okqK4k6A+z8WOjXtvoC/M5d3D9KhRbjUd4JkUh3+ICYHcwGYDN5ZvxhXyoA4yZsfG1YdKcRj27zR8vac/wo+ZQrRcw1ogFqHWaCdalNPqFoSMK+ePw21QyGlafULvO43EhhBCdX4smT2zatCny99tvv5077riDXbt2MW7cOAC++uor/vjHP/LII49EJ8pObOsXB/HVBknMcNBvTCYZvhCqAtsOedhf7aV7soMzUxLYXQ47gpn0dGRS6i1lU9kmRg8cSeDDOKxaLb1MRRQxkqIu0GMXCAfwhQNYTJAfChJUzASsCoo3O9ahHZcSTsRvVcmoMx7F1smyYkIIITqQFiV2I0eORFEUdP3w8km//OUvm+z3ox/9iOnTp7dddJ2cHoaNnxg9baMvyEM1qaTGWTmlZwpri6r4ZFspPxmXx496DuJv5XvxWHoyKG0IpftKWVOyhrHdxlJn6YPVv4kcxZh9Webzx/KS2sQ+zz5Uxahdlx8I4rHZQFGIi+8f48iOz6KkGT12HuNRrN/sJuALYbWf0ARzIYQQok216F+jgoLO30sUC7X7LHjdQeJTbQw47XBv1DkDM1lbVMWn9Ynd0MRUbNo3+NUk6hRj6bE1JcY4O5LGQ+kmUvxeLBYftdbOvx5vkbsIRTUmHeSHQtQmGNeU1m1MLMNqEbu9G35NJaN+8kTI5KbG5SPVHh/jyIQQQogWJnZ5eXnRjqPLCYc0PHuMWayjpuRhMh8eznjuoEz+8NF2vtxVjjcQxmE1MdDmZWMwiYKQMYFiY+lG/GE/prwzofTPJLqDxMeXURXM5dC335I9ZEhMrqstbK3YhmoyxtblBkPsTzRWmujWCRK7+OTe+EMqGaEAAJrJTWl5JalZktgJIYSIvRN6fnTgwAG++OILSktL0erreTW4/fbb2ySwzm7HqhLCPhVnopVBE7s1em9AVgLdkx3sr/ayYnc55w7KYnJGGhsPQIHWk3x7GhW+CjaXbWb4kLFoqxVsQZ3utkKqyOXb5cs6dWK37uAOANKC4NR1Y+JEwEZaWn5sA2uBlOxBHPSoZNf32GFyUVJWwUB6xjYwIYQQghOYFbtgwQJ69erFDTfcwGOPPcaTTz4Z+fPUU09FIcTORwtrbFhijK0bfm4PzJbGMz0VReGc+rInS7cZs2N/2HMwAD5rLn1TBgHG41hLbjo+s7HMVr56AIDivcXRv4go2lllPIbtHTLGC9Y5TQR9qSiKEsuwWiQ1rT8Bq0p6fbkTxeSlRFafEEKILuWdd95h2LBhOBwO0tLSmDx5MrW1tcyYMYPLL7+cefPmkZGRQWJiIrfccguBQCBy7KJFizj99NNJTk4mLS2Niy++mN27d7db7K3usbv33nu57777uOeee1DVVueF3ws7VpfgqfChWjUGTWx+puc5AzN57asiPt1Wiq7r9HDEkaCX41HS8SjG0mxrDq3h5hE3E3IMA88hMrVqQKciEGy/i4mCSm8dWKB3MEAYFa9dxRzodvwDO4DExG6ENDNmsxmrphNQFYoqD8U6LCGE6PB0XccbDMekbYfF1OLOg4MHD/LDH/6QRx99lCuuuAKPx8Pnn38emUC6dOlS7HY7y5Yto7CwkJkzZxIfH88f/vAHAGpra5k7dy7Dhw+npqaG++67jyuuuIINGza0S97U6sSurq6Oa665RpK6Y3AkWEnNcRKKr8Jia74u2/g+adgtKgddPrYe9DA4J5HhjjBf+qBQM5LBjWUbCYaDqJmTwLOEpNoATqeLuqATXdc7RQ/Xd9UF6wjpfsxAfjBErc1qzIhNGBTr0FrEZDIR9DkJ2SrJCIfZr5opktUnhBDiuLzBMIPv+ygmbW958Hyc1palPAcPHiQUCnHllVdG5hgMGzYs8r7VauXll1/G6XQyZMgQHnjgAX71q1/x+9//HlVV+cEPftDofC+//DIZGRls2bKFoUOHtt1FHUWrs7MbbriBt99+OxqxdBl5Q9L4wa9GkdArcNR97BYTp/c1Jko0rEIxNctYG3a/MoAUWwq+sI9vKr7B3N8oVJxQEyI5/hCaxcretWujfBXRUewpRlE8AOQFg9TEGV/B9JyOP3GiQTgQR8CqkBE2fvM8GPbEOCIhhBBtZcSIEZx77rkMGzaMq6++mhdffJGqqqpG7zudzsjr8ePHU1NTw969xmIEO3fu5Ic//CG9e/cmMTGR/Px8AIqL22cYVat77ObPn8/FF1/MokWLGDZsGBaLpdH7TzzxRJsF15kpqoJynLT5nIFZfLy1lKXbSpl9Tj+u6jGA3xRuJmTJJDepH1WlX7Pm0BqGD7yO4Ed2LJqPfFMBBxjI1hWf03NM50mGGuxx7UE11Zc6CYbwZRjfn+7dT41lWK2ihpMarT5RpcjqE0IIcTwOi4ktD54fs7ZbymQysWTJElasWMHixYt59tln+c1vfsOqVatadPwll1xCXl4eL774Ijk5OWiaxtChQxuNw4umE0rsPvroIwYMMNb0PPJxYGd8NBhLDRMoNuytpqLGT1q8jQylnDKy8CgZAKw+tJpZw2dRZ+mFxb+VHhiTLfYeOBCzuE/G5pJvUdQQJh1yQiG2OB0E/E6SkjrHGDsAqykdv1Ul02ckdnWqrD4hhBDHoyhKix+HxpqiKEycOJGJEydy3333kZeXx7/+9S8ANm7ciNfrxeFwAMbqW/Hx8eTm5lJRUcH27dt58cUXOeOMMwD44osv2jX2Vn/Cjz/+OC+//DIzZsyIQjjfL9lJdgZ3S2TLQTfLtpfxg9E9GB1vYlENFOs9ANhQtoGgFoTE06BsK2nBGlQ1SGUoNgNQT9aGQ0WAUb/OhDEjNuRNjW1QreRw9MAfUEmvfxTrN7sJh7RGtQqFEEJ0TqtWrWLp0qVMmTKFzMxMVq1aRVlZGYMGDWLTpk0EAgFuuOEG/t//+38UFhYyb948fvazn6GqKikpKaSlpfGXv/yFbt26UVxczN13392u8bf6XyKbzcbEiROjEcv30rmDjF67T+rLnlyekw9AqXkYSbYkvCEvWyq2YOp5NgBJ7hAJCRV47Q7CoVBMYj4Ze9xuAHoFA+hAncOEReke26BaKSG1j9FjV5/YhUxual2df6k3IYQQkJiYyPLly5k6dSr9+/fn//2//8fjjz/OhRdeCMC5555Lv379OPPMM5k+fTqXXHJJJHlTVZU33niDtWvXMnToUO68887IbNn20uoeuzvuuINnn32WZ555JhrxfO+cMzCTZz/ZxfIdZQRCGlOze6Nu/xrNnERWfG9c/vWsPrSaQUMuQV8L9oBGVupeXOZsCleuoM8ZZ8b6Elqlxu9FtRrj6+osVjSTQnxS55gR2yC522AOlJtIr199Qje5KK+sIjHNEePIhBBCnKxBgwaxaNGiY+4zb9485s2bB/D/27vP8DjO89D7/5nZjkXvIACCJEiCRexFFMUiVlWrNzuRrRM75VhJ/DJ2bDnHkmwnkWzZPkpi2XKSY0mJrUi2ZMm2OkWJpAobSIIkSIAVBED0vn13dmbeD7NYkiIlsQAYlOd3XXtxMTs7c+8OsXvjKfeDruv4Eo0WAGvWrOHQoUNn7d9fKmUoXHSL3c6dO3n22WeZOHEiN910E7fddttZN+HizC7OIDvFgT8ap/JkNw5FZlxiHVWfZLbmVbZVYi/NJWIzZ9GWyebMmtqdFzaQc7jojfSiYy4lVqaqBBMzYvOKF1sZ1kXLyZ5M1Hm6xU5SfLS1d1sclSAIgiBcQotdRkaGSOAGkCxLXFORx4u7T7Gptp2rynNYkuGmsQdOSROwAXvb9qLJOqprOu7AVgr1bsDgVHub1eFflHp/PbLcB8B4NU44w0zsxo0bWbN7U1KyiekOUvs3KGFaujqsDEkQBEEQgEtI7J5++ukBD+LJJ5/k8ccfp7W1ldmzZ/Nv//ZvLFq06Lz7/sd//Af/9V//RXV1NQDz58/nn//5nz9x/5FgVSKxe6+2ne/cOJ27i6fwm552ehzzmOhIxR/zU9NVw4TcFRDYSmYogtMZpCc4dE27A+F473EkpT+xU2n3eIiGvaSkjKzJE5IkoUY82G1KcvWJk10tVoclCIIgDLJnnnnG6hA+k+XT+F544QU2bNjAww8/zJ49e5g9ezbr16+nvb39vPtv3ryZe++9l/fee49t27ZRUlLCunXraGpqGuLIB86yyTnYZIkTnUFOdAS4KrsQux4AxU2Wpwwwu2OVySsASPXHSfe2E3G50YaoLs5A2N1SjSQZpGgG2bpO0KOgRbOtDuuSaDEvmtNIFik+ERBdsYIgCIL1LjqxmzBhAhMnTvzE28X6yU9+wle+8hXuv/9+pk+fzlNPPYXH4+GXv/zleff/9a9/zf/+3/+bOXPmUFFRwX/+53+i6zqbNm266HMPF6kuO4snmq1W79a2I0kSE+3mQEyfbC4vVtlWiWP6FcRlB4oBpc6ToNg4uuU9q8K+aPvbzFatCfEYEuaMWIdUbG1Ql0jR01GdJBO7ZrH6hCAIgjAMXHRX7Ne+9rWzflZVlb179/Lmm2/yjW9846KOFYvF2L17Nw8++GBymyzLrFmzhm3btl3QMUKhEKqqkpU1srrzPm5VRT4fHuvi3dp2vrxsIiuzMzjcDs3yZNxsZE/bHkizE7GX4o0eo9RooRI4vGcPFWutqeR9sZoCAZDN8XURm424XSYt64rPfuIw5LTlmatPJIoU9yKKFAuCIAjWu6RyJ+fz5JNPUllZeVHH6uzsRNM08vPzz9qen59PbW3tBR3jm9/8JkVFRaxZs+a8j0ejUaLR0zXG+qckq6qKqqoXFe/F6D/2hZ5jeXkmADvruun2h7iraDK/aG8i4FpAti2FgBqguqOaMu98iB4jT+1DkjSaOjsH9XUMFMMwCMdD2BzmjNiQp3+N2PlDFv/FXpNP4/IUEQ3L5AbMxC4oB0bEdRiOBvK6CANDXJPhaaRdF1VVMQwDXdfRdd3qcAZNfymT/td6qXRdxzAMVFVFUc5eAu1irvmAre1x3XXX8eCDDw7K5IpP8thjj/H888+zefNmXC7Xefd59NFHk7VmzvT222+ftYjvYNm4ceMF75vnUmiPwL/99h3mZBs4PSlEbTnYyAGC/Hrzr/miNol0ID2gkpLSQ2/Ayeuvvz5o8Q8Un+5DwlxTtUyNE0qTMQyJ6upODh0a2vgv5pp8kpgf0pxysis2pvh57bXXEavqXbqBuC7CwBLXZHgaKdfFZrNRUFBAIBAYsnVSreT3X96QnFgsRjgcZuvWrcQ/tgBBKBS64OMMWGL34osvXnR3aE5ODoqi0NZ2dtmOtrY2CgoKPvW5P/rRj3jsscd45513mDVr1ifu9+CDD7Jhw4bkzz6fLznhIi0t7aLivRiqqrJx40bWrl2L3W6/oOfskw7zy4/q6U0p4frrZ/LUjo3sVSHuLYfeekLZIcpm/2+M5/8Zd0QnL7+JE+6ZrF25EvsQJKmXY3fbbqS3zfp841WVoMdBNJTKjTfeOmQxXMo1+STNzeNo3fdf5GrmX1FxpY9Vy9fgTnUMRKhjykBeF2FgiGsyPI206xKJRGhsbMTr9X5i48toYBgGfr+f1NRUpMv46z4SieB2u1m+fPk579eZBZA/y0UndnPnzj0rcMMwaG1tpaOjg5/97GcXdSyHw8H8+fPZtGkTt9xyC0ByIsQDDzzwic/74Q9/yD/90z/x1ltvsWDBp9dAczqdOJ3Oc7bb7fYh+cW4mPOsmVHALz+qZ+uRTmTFxvq8PPY2QbttOl42sadjD87l44jYMnHHeyhT6jkhz+bY1i3Muulzg/xKLs/hvqPIivkXx3g1Tq3HjRHLseTDaSCufX5+BfUOmdzEmr2G0ofPFyItK2UgQhyThup3Urhw4poMTyPlumiahiRJyLKMLFtehOOCrVy5kjlz5vDEE09c0P793a/9r/VSybKMJEnnvb4Xc70vOrHrT8DODCQ3N5eVK1dSUVFxsYdjw4YNfPGLX2TBggUsWrSIJ554gmAwyP333w/Afffdx7hx43j00UcB+MEPfsBDDz3Ec889R1lZGa2trQB4vV68Xu9Fn384WViWRarTRlcwxr5TvXy+dAaPnaoh7J5PjuLGH/NzLHCcItcU3IEdjNM7ATi6f9+wT+wqT5ljJvPicTyGQcij4IyVWhzVpXO5vAQNFxN0c9KErPTR2tFJcVmuxZEJgiAIY9lFJ3YPP/zwgAZw991309HRwUMPPURraytz5szhzTffTE6oaGhoOCsD/vnPf04sFuOOO+44J65HHnlkQGMbanZFZvmUXF470MJ7te38XelUMuikV8ojxV1CJHCEytZKbs5eAYEdZIVD2GwRWnqH/9iFQ91mElqmxlFlmahDJj31k7vQR4J4NAWP1AuAoURo7mgHRta6t4IgCMLoMizaRh944AHq6+uJRqPs2LGDxYtPrx26efPmsyo9nzx5EsMwzrmN9KSu36oKc33YTTVmgebZHnO2jU8x673tat2FbfJKANL8Kmmp7fgk5dwDDTOdYbNly5wRq4AkUVB6pcVRXR495sXpAIduXqPjXc0WRyQIgiAMBF3X+fu//3uysrIoKChI5hgnT55EkiSqqqqS+/b29pKZmcnmzZsBM2+RJIlNmzaxYMECPB4PV111FYcPHx6S2C84sZNlGUVRPvVmsw3YXIwxa+XUXCQJDrX4aOkLc2OBmdB1OmYDsLt9N8r0OcRlG4oO4131xFxuIn29Fkb96TRdI6aZM2LHq3FCHhldlyksnG1xZJfHZmSgu/TkzNjjfrH6xKVoqO5G9Q+LvzEFQRhMhgGxoDU34+KW4Hz22WdJSUlhx44d/PCHP+R73/veRc9G/od/+Ad+/OMfU1lZic1m43/9r/91Uc+/VBecib388suf+Ni2bdv413/911Fdp2aoZHudzC3JYE9DL+/WtnPb/Kn8/Ym9xFyzcChO+qJ9nJSaKLKPwxutp0RqZq8sc2jjRubdcafV4Z9XS7AFSTKngZepKsEshWgoHbt9ZM+SctkLUB2Qo2k02W00xy981pJgajvp481fHERxuTHuHFlrHwuCcJHUEPxzkTXn/nYzOC58ctusWbOSQ88mT57MT3/6UzZt2sTkyZMv+Bj/9E//xIoV5lKg3/rWt7jhhhuIRCKDPkP4gv9Mvvnmm8+5VVRU8Mwzz/CjH/2IO++8c8iaGUe71dPM8YXv1rSTYrORJ3WCZMPlMlvvKlsr0bxzAShQewCDo4cOWhXuZ6rrq0NWzFInZWqcoEeBWI7FUV0+j7eUqFMmL9Fi12sELY5o5Dm53xx7qUVkOk+J1TsEQRgePl5GrbCw8BPXsL+QYxQWFgJc9DEuxSX1nTY3N/Pwww/z7LPPsn79eqqqqpg5c+ZAxzZmXTM1j8ffOsyHxzuJqBoL0+y86gO/Mh44TmVbJbeMWwNdr5AeiOF2+2jrGL6Vcfe1VyPJKophUBSPc8pjw6VNsDqsy5aRN5VIt5IseRKUxXqxF6u+uit5v/FQD0WTRvbSgIIgfAq7x2w5s+rcF7P7x8qLSJKEruvJyZzGGV27n7QqxJnH6C8TNxQ9mxc1sKWvr49vfvOblJeXc/DgQTZt2sQf//hHkdQNsGmFqRSmu4ioOtuOd3FH0UQAepzzALPYrzx9GQApYY1cbxM+ZfiOb9zZVAdAiRpHkiQibpnM/DnWBjUAsgqnm+vF9q8+IfvP+mUXPl3IF6Oj4XQy3Hiox8JoBEEYdJJkdodacRugZYFyc82SVi0tLcltZ06kGA4uOLH74Q9/yMSJE3n11Vf5n//5Hz766COWLVs2mLGNWZIknZ4dW9vGmvwyZD2M6pqBTbbTHenmVI5KxGaunFFmryfuchMcgibeS3G8t78bViXsljEkiYKSkT0jFiAreyIRh5JM7OJKH2pEsziqkaPhkNlal5JpFhBvP+kjEhwZa2AKgjA2ud1urrzySh577DFqamrYsmULDz30kNVhneWCE7tvfetbRCIRysvLefbZZ7ntttvOexMGxuppZmL3bk07iiRRausByYbDmRhn17mbqHMSAOP0dpAkDmx8y7J4P01ftL/USZyQR0HTFAoKZlgc1eWz25wEDE8ysZOUXnp7xDixC9WQ6IadvDAPm1fDMKCxRswsFgRhePvlL39JPB5n/vz5fO1rX+N73/ue1SGd5YL77+67777LWgNNuDhXTcrBZZdp7otQ2+rn6owUTnaDzzYBG3VUtlVyffYyCO4lJ+JHllVOHD3CcGsHi2kxNCOADRgfVwmmKsSCGSjDuOv4YkRjKXgMs0VSUny0dnSSV5RhbVAjgK4bNCSSuNLpmRw7epxAQKGhuovJC/Itjk4QhLGsvx7dmV555ZXk/WnTpvHRRx8lf9Z1nZ6enuT68ytXrjxnWM6cOXOGbKjOBX+7nlkkWBh8LrvCVZNyeLe2nXdr27ln9lR+1d1KwL2QDP+7VLZWYpv4CDT8K+n+OKneTtqbh986paf8p5DlPqB/RqwdKZ5ncVQDx4h58chmgWhdidDU3sosyi2OavhrP+kjGozj9NjIK0vDlRsnUOeg/lA3hm4gyeKPSEEQhEshqoIOY/3j7N6tbWd+Zj4O3YfqnIoi2emKdNE0IQdNUrBpBiXuevy24bco9LHeY0hKL5CoYeex4XaO/Bmx/exSFm6njj3xl9jRTrH6xIXonw1bXJGFrEg4MzXsToWwLybKngiCIFwGkdgNY/2J3Z6GHnpCKuUOP0h2FKdZ4HFv5BBhRwEApXITmtNFb2ODZfGez85TB5AkgxRdJ1vTCbkVsgoWWB3WgHE7CsGpJUueHPF1WhzRyNBw0Ezsxs80y5tIMhRNyQDOLoEiCIIgXByR2A1jRRluphWmYRiw+XA7q7LNL8GA3ezqq2yrREsxCyAWxjtBgup3Lm7Jk8G2u70JgPGqSsSpoCsSReOXWBzVwPGmj0d1SskJFM2qWH3is4R8MdrrzTInpTOy2dvQS1cESqZnAiKxEwRBuBwisRvmVlWYNXPerW3nC6XmTNKQayEAu1t3IxeuBiAzGMXpDHHixAlrAv0Ep/xnjq+TiasOcnJGzxi0jPzpRM6oZdejiyLFn6UxUeYkp8RLfTDK3f+5k58dUiiZlgFAW12fKHsiCIJwiURiN8ytqjBnCG450kGx20uK3oXqnIwsKbSH22ktnwpASkgjO6WZznDYynDPEYqdXiM25FGIhdKTlbtHg5zCGUQd8unVJyQxPuyz1B9MzIadkc1rB5oxDOiMStSFY2QWpoiyJ4IgCJdh9HzDjlJzSjLISnHgj8SpPNnDDHcUZAeyYxwA+1xtRG0pSECZ4yRBh8PagM8QUkPomIndeDVO0GND1kZXKYv09GLCdltyvdiYIlrsPo2uG8nCxONnZPP2wbbkYxtr2hk/Mxs4XeNOEARBuDgisRvmFFli5dT+7tg2rs0zJ0sE7GZL3e7OPUScZQAU04rmcNFx5LAlsX5cg78BWTm96kTQo+BxjZ5uWABFUfAbKeQkEjtD7kVTB38twJGqv8yJw20jlKZwtP10C+fGmnbGzzDHkfaXPREEQRAujkjsRoDVie7YTbXt3F0yHQyNiGc+ALtad0GmORkhN+pDkjSqN79rWaxnOth1CFkJAv0tdgq54xZZHNXAi6gpZCRWEpOVHny9IWsDGsbqE7NhS6ZlsrHGXAJvTkk6imRwvCNION0myp4IgiBcBpHYjQDLpuRgkyVOdATx+zWy6EB1lCNJCm2hNjpKzckUGX6VFE8P9fX1Fkds+qixFoDceBybIhO3yxSNH25rY1w+I56GSzJrfRuKn9YOUfLkk/R3sZbOyObtQ60A3DKniMlpZuvcO4c7KK4Qs2MFQRh+Vq5cyde+9jWrw/hMIrEbAdJcdhaWmV1U79a2MydFAtkJdrOe3b4cA12SsccNilPq6YzGrAw36UCHOX7KXCNWIhZzkZlZanFUA89OFl6b+aukKVEaO1osjmh4CvtjtDeYYxDdpV72NvQCsKYil1nZZmL31sFWSmckxtkdFImdIAjCxRKJ3QixetrpVShuLiwBIOiYDsDu4AHCjhwAxsuNhJzOIVuT7tO0B81SJ+NVlZDHRjyUMSrXG/Z6xuE5Y/WJI21NFkc0PDUc6gYDsou9fNhkjr2cU5JBfpqLmZkGkgRVjb24xptL47WeEGVPBEEQLpZI7EaI/lUodtR1sSp7IpIRJeaeDcDutt2oHrPGXaHWiW530nxgv2Wx9otq/aVOzPF1ilZgcUSDw5s+AcmlJkueHO7rsDii4am/a3X8jGzeOmh2w66fYf6fSHfAnOJ0ALa19ImyJ4IgWCoYDHLffffh9XopLCzkxz/+8VmPR6NRvv71rzNu3DhSU1NZs2YNmzdvTj7+yCOPMGfOnLOe88QTT1BWVjbosYvEboSYmOtlQk4KqmZQeaKHQsmsZwcyzcFm2vMXA5AdCmGzRTi4dYul8fZGepEkcxWG/hmx3pTJlsY0WDKLZhJzSMmZsadifRZHNPzoukHjITNJy5qcxrbjZpK3bsbp8jdrEq3Sbx9sTc6OFWVPBGH0MAyDkBqy5HaxvVjf+MY32LJlC7///e95++232bx5M3v27Ek+/sADD7Bt2zaef/55qqqquPnmm7n++us5evToQL9tF81mdQDChbtmah51nXW8W9vO4okOXva5MOxFSOopDhRkMaUWvEGNzIw2GpusLblR56tDVhItNGqcUx43uaWjZymxM+UUTOOkUybPbyZ2vbqYzflx7fU+IkEVh9vGoViUuG5QnudlUq4XVTW7W9dNz+Pxt4+y7XgXD949Ad5pTJY9keTR14UvCGNNOB5m8XOLLTn3js/vwGP3XNC+gUCA//f//h+/+tWvWL3aXN3p2Wefpbi4GICGhgaefvppGhoaKCoqQtd1/vqv/5otW7bw9NNP88///M+D9jouhGixG0H6x9m9d7id24vNenBh10wA9sqNxGwuJGCC8wRdatyqMM14Wg8iySo2wyBP14k6ZcaVjr4ZsQBebx5hxZ5ssQtKokjxx/V3w5plTsxJNeumn12suiw7hSn5XuK6Qa0aFWVPBEGwxPHjx4nFYixefDoJzcrKYupUs37sgQMH0DSNKVOm4PV6SUtLo7i4mC1btnD8+HGrwk4SLXYjyMKyLLxOG52BGNnRdGz6KVTXTPC/ye6O3UQcJTjiRymhhV0uN5qmoSiKJbF+eMpsji5W46gehWg0hbS00bXqRD9ZlvEbXvLivQCoss/agIah/i7VgopMNr9TDZweX3emddMLONJ2jI217dxUkUndvk7qq7vILU0d0ngFQRh4bpubHZ/fYdm5B0ogEEBRFHbv3o2iKOi6TiAQSCZ5YH4vfLz7t793YrCJFrsRxGGTWT7FnP36Xm074219qM4pgMSpwClaM8zJFHlqL4bNRuOunZbFerTHrOU2Ph4n5JGJhzIti2UoBDUv2YkWO1nuQRerJiSdWeakyQOhmEZBmotZxemENZ2/qm3kLYf5Ydif7G050kF+op6dKHsiCKODJEl47B5LbhdTkWHSpEnY7XZ27DidhPb09HDkyBEA5s6di6ZptLe3U15eTnl5ORMnTqS8vJyCAvMzLDc3l9bW1rOSu6qqqoF5Iz+DSOxGmFWJVSjePdzOskwvhuxGT9Szqy6YAECGP4bb1ceh7R9ZFmdPxGy1MkudKNiNQstiGQpGPA2PYTd/UHoI+aPWBjSMnFnmZOtJcwLFuhn5SJLEH9p7ebXTxyvODLrUODPHpVGU7iIU02g2q56IsieCIAwpr9fLn/3Zn/GNb3yDd999l+rqar70pS8hy2bKNGXKFL7whS9w33338bvf/Y66ujp2797NY489xmuvvQaYxYw7Ojr44Q9/yPHjx3nyySd54403hiR+kdiNMCun5iJJUN3k49rMSQBEXFcAUJUSQJcknKpBkbeBUy2tlsRoGAZx/ewZsampFZbEMlTscg4e2RzZoCtB2sTqE0nJ8XXTs3gnMb6uv2XupTYz0dMliT929CFJEusSj73f0C3KngiCYInHH3+cZcuWcdNNN7FmzRquvvpq5s+fn3z86aef5r777uPv/u7vmDZtGn/yJ3/Crl27KC01i/BPmzaNn/3sZzz55JPMnj2bnTt38vWvf31IYheJ3QiT43UyuzgDgJYWHZfeg+oya9jt6asmbDfLRExQGujRrZkZ2xnuRJJ6gdM17PInLLUklqGSmlJMis1s6o8rURrbrUmqh5szy5z05drpCsZId9tZNCGL1qjK+z2nJ0b8rsMsE9NfAuWdmnaKp4vuWEEQhp7X6+W///u/CQaDtLa28o1vfIPNmzfzxBNPAGC32/nud79LXV0dkUiEmpoaXnrpJa644orkMf7yL/+ShoYGAoEAzz77LN/+9rc5efLkoMcuErsRaHWiWPGmmnamOEPJcXb1/npaUsxWvEK9g4jLjRYf+tmxR3uOotjMlQWK1Tghp8K4kkVDHsdQSs8qx+syZwEDHGpttDii4SFZ5sSlUNlrJnGrK/KwKzK/a+vBAKa4bciGwV5/mBOhKIvKssjw2OkOxujNNbu36w+aZU8EQRCETycSuxFoVaLsyYfHOlmZkYUhe9CS68aaZVBywgEku8Gx97cOeXzbTu0HycCj67gdNiLRVDyejCGPYyhlFV+B7FTJTUygqOltszii4aF/NmxxRSZvH0qUOUm0yPV3w14Z/A8qtNrkNpsiszoxlnRvXwibKHsiCIJwwURiNwJNL0yjIM1FWNWYopuTEqKuWQDsT3cAkBqMk+Ft53DlriGPb3tLA2AWJo55DLTw6J4RC5CTP42YU0ouK3YqIlafALOlDUAr9XCqJ4zTJrN8Si41gTAHAxEUdJZKm1mpvAnAS209GIaRTP7ermlj3JQM81hiFQpBEITPJBK7EUiSJK5JdMfurwuQqrejOs3JCXvVOmKKA9mAMmcdTZ3tQx5fg8/8Mi9LzIh1SsVDHsNQc7vTCcquZItdjy6KFIf9MdrrzUk0B7UYAMun5OJx2Hipzeyqv0Lfh5cA89mFE5WT4Ri7fSGWT87FZZdp6g2jlZrV4sU4O0EQhM8mErsR6sxxdjPdKqrLrIhd56ujyW12y5bKTfQaQ78UUyCxVur4xMSJtIzpQx6DFQKGJ5nYhRCJXbLMyTgvm08k1oadno9uGPwukditkN5BNyRcRJmnmzWjXmzrwe1QWDElF4Aawyx1IsqeCIIgfDaR2I1QS8tzcNrMFo2F9jwMOYW4fRwAe9PLAMhXe4g6XaiR8JDFpekaunF2qZOCstE9I7ZfQE9NdsXqUo/F0Vivv4XNXe6lpsWHLMGaafl81BugOariNqLMYTeHeq+hO5zBculdAP7Q3kNM11k33Sx7svlEpyh7Iggj2MdXYBDOb6DeJ5HYjVBuh8JVk7IBcPnSwIgTS6wbuz/D3J4ZiOL0RDn83ntDFldLsAWbYn6hl6lxAi47RSULhuz8VtL0dNJ081dKVrrH9IeZoRtmix1wzGm+D4smZJGZ4kh2wy40PsCByi7q2B9KYyYHSDP8dKsam7v9rJ6WhyJL1Lb6cU3yAqI7VhBGErvdnNUeCoUsjmRk6H+f+t+3SyXWih3BVlXk8d7hDrYd7SJnSh8+ZwX432Kv1I4BuGI6BZkNHN23l5nXXT8kMR3qrAElCEAWMnXRNJzOlCE5t9WcSi4y/atP+IiG47g8l/cLOlK11/uJBMwyJ5vbza759TMKCGs6r7b3ArBc2kxzOI19gVZOKQYr0VnKe7zB53ixrYd1M9JZPCGLj453cdxl4AEaEmVPJHnohxgIgnBxFEUhIyOD9nZzrLfHc3FLe40Uuq4Ti8WIRCLJ1SkuhmEYhEIh2tvbycjIuOw13kViN4JdU5EHvz/I7voerpyh8J5ujrM7Eayn2ZXJuEgPE+wnOXhq6CYvvFdvLvCeE9dQPKBHsobs3FZLSx1PUDbX540rQTq6uinx5FsclTXqEy1raVPSqaxvAmDt9Hw2dvnwazqZRg9TqeHNWAYQp0uTOB7M5OqUrbzB53irsw9fXGP9jAI+Ot7F9nYf65wKoUTZk9zSVOtenCAIF6x/7dT+5G40MgyDcDiM2+2+rMQ1IyMj+X5dDpHYjWDFmR4qClKpbfUzMZbNu4qduH0cNrWJXd4ixkV6KDLa+WgI/0Kqam8GzDViox5wyqN/Rmy/jJwpyPVmt6OqxGhsaaGkZGwmdv1dps0ZCkYDzByXRnGmh384YK7IsYx3MXSJjwIRJGQMDCqjce5KqaNQb6aFIl7t6GXt9Hwe/sNB9jT2cEd5Ed0He6iv7hKJnSCMEJIkUVhYSF5eHqo6Oic/qarK1q1bWb58+SV3o9rt9stuqesnErsRblVFHrWtfnraFOT8CKpzOja1iar0PG7pPEhuxI/qdhLx+3GlDv6XYVuoByQoi8cJZihkZF3x2U8aJbJLZiEdjGEz7MQlif2t9VzFHKvDGnLhQIy2k+YEmr1Bs1t+/fQCumJxNnWZ25eyldpwBgE9wu3lt/HO8XfYHerl5nQby5R3+Q1/wkutPXx+bjazitPZf6qPpkwFN2bSuOD6MotenSAIl0JRlAFLXIYbRVGIx+O4XK7LHh83EMTkiRFudWIVivePdFBIJzGXWc9unz0KQFpAJdXbQ807G4cknoiamBEbUwl6bBRNWj4k5x0OsnOnIDljyZInh3rG5uoTjYkyJ94iD9vrzYkS62YU8IeOXuIGlBj1FHOK7YmBwrNyZjHDPoOYIVEdTmUp7wPwUW+ApkiM9TPMrol9if1F2RNBEIRPJhK7EW5OSSaZHju+SJypcSeq0xxndyx6ig67HcWAMlcdxw4eGPRYVE1FwpwJOT4ex++yUzhuzqCfd7hwONyEZNfp1SfCY7PkSf/4uu4iJ7G4Tlm2hyn5Xl5qNf9vLOc9fKqTgxGJSRmTeHj7wxxQDyAj82EwRA6dTDUOYQC/a+th3XSzO3tHfQ/uArcoeyIIgvApRGI3wimyxMqpZqtdpj8dQ0knbjMLFO/wml+IpcopWvsGf4mrBn8Dis38Us/TwB9Lx2ZzDPp5h5MzixR3a2OvSLGhG2aLHXBIN1ebWDejgPpIjEpfCMnQWcL7VEUc6Ei4FTcAfsNPRVYFdTGZ9qiHZWwGzGLFk3JTmJiTQkzT6S5yAqLsiSAIwicRid0osCqxCsXhhjB23YfqmgbA7pQcAArjXfjkwR/bsKtpP4YcRzEM0hwKRiRn0M853AQ1LzmJxC5sjL31Ytsb/IT9KopLZltTLwDrZ+TzUqvZejmD/WTSy0dBlRRbCoe6DiWfG1JDgMTuMCxiGzZD5XAwQk0oyrpEd2yNYSaL/WVPBEEQhLOJxG4UWD4lF0WWONYeoCTmS64bu89tzo3JCoUxvDKhrsFt5Xiv8TAA4+JxpJQ4blvpoJ5vOIrpmWTHdQBkeey1KvW3pAXHewhE4+R4ncwpzkgWJb6arTREUmhVZcrSy9DRmRaNYTcMTvpPkuvOZXtIx22EmccuAF5s7WbdjER3bHMvOOVk2RNBEAThbCKxGwXS3XYWlmUCMC7oSk6gOBbvoE+WcEd08r3NVG98e1DjONxtThYYr8YJe2SycmcP6vmGI6ejAA9m97Mk91objAXqq83E7rjLbE1bOz2ffYEwJ8JRHEaUhexgZzhu7ttXD8Cf9/ZxXSBR1NqVRZ8mcyScwlK2AvByWy9XjEsnL9VJIKoRLDW7b+tFd6wgCMI5RGI3SvR3x+pdLgwlg7itEAOD7V4z4ZvgqOP44ZpBjaE7MVnAXCPWRtHkFYN6vuEoM70MV2L1CUPxEVc1iyMaOv1lTgwMdiXKmqyfkc+Lida6BexA0WPsDsqUppYSiAcoUuOsDIX5vM8cj3is9xgKCjtCMeawlxQjQGtMZVtfkLWJSRQnEkmjGGcnCIJwLpHYjRKrKswvvQMNflyxTtREq90uj7nyQ7HRSpt/cLuuNK0XMNeI9Tsc5OVPH9TzDUeZ+dPwKGYXuKqE6OoaO+Ps+suchAqcdARieJ02FkzI4pV2M7Fbylaqw07ChkRMM8fK3eP306GtYnw0lbmRCJqhMT59PAfCCrE4XMmHALzY1p0se7Kry4+OQetxUfZEEATh40RiN0pMyk1hfLaHmKZT7IugOs0JFFVuFwB5sT4CtsGrRx1SQ9gSY8qK4ho98UwUZezVv84unUOq3WyliyoqDa1NFkc0dPq7RhszzYk611Tksc0XpFvVSDX6uIJ97AjpeGweWkOtuHSdW31BjPg9+LQb+bzP/MOjPdhOHIm9YYWlbAHgtY4+Zo3PJNVloysUI5DnEGVPBEEQzkMkdqOEJEnJ7tg0nys5geIofvySRHoghiM9Ql9z86Cc/3jvcXSb2TqVITsgOvZmxAJkZU8g3RXFZpjdhVXN9RZHNDT6y5wYGFQFzULC66bnJydNLOV9fKrC4YhMtisbgBsDQaLaLHSjACN+I8sCGvnxOIF4gCxXFtuDMIXD5BptBDWdzb3+5P/x/uRRdMcKgiCcTSR2o0j/l15bi4EupxG35aNjUOlxo+gwPuUk1e8MzgSKzQ1VIBm4dZ1Ut06Ko2xQzjPcKYoNQyFZ8qS6u8XiiIZGf5mTPrdMoy+CQ5FZMCmbNzvNZH8pW9kVBgOJU4FTAHzBF0BT78EzNYyuhOnTV3NPotXOJtloVGVaok6uTkyi+G1rz1mrUBgYouyJIAjCx4jEbhRZNCGLFIdCVyBGWl97sjt2h8ecQFGmNFB37NignPvDU3WAOSM2nqKRXTB/UM4zEgQND3mJ1ScaQ73WBjNE+lvO2vLNiSNLy7PZ4g8Q0Q0KjSYmcJydQYV8Tz4GBovDEbJihejGVP646/ccjNSCege3+oI4dZ32cDuKZGNnSOeqRGK3ucfHjLIMHDaZJn+UXpckyp4IgiB8jOWJ3ZNPPklZWRkul4vFixezc+fOT9z34MGD3H777ZSVlSFJEk888cTQBToCOG0KyybnApDTpycnUOxxewAo1DppT6y3OdDqfR0AjFdVQh6FcVNWDsp5RoKgfrpIcbc6NiZP9Jc56S8gvG5GwRndsFuoizjojMv0Rcz34ws+PxH1dvrsp+jsaqSmaRua5EHV5nFDois3151LZchGvtHCROMomgEb+wIsKze7+VsTSaQoeyIIgnCapYndCy+8wIYNG3j44YfZs2cPs2fPZv369bS3t593/1AoxMSJE3nssccoKCgY4mhHhlXTzO5YuuzJcXZHlBhBSSI7HCLsHJxL7o/0lzqJ0+dwkZ09aVDOMxJEyEouK6Yx+gf3RwIqbSd9+CSdo31hJAlmTcrkgx6zJW0p77MjBG6bm4geoVhVmRd0ousr2d5oTo7QDY2T2hF09W4+32eWPmkPtRHQJQ6FbVydmETx0hndsTWGOSNWjLMTBEE4zdLE7ic/+Qlf+cpXuP/++5k+fTpPPfUUHo+HX/7yl+fdf+HChTz++OPcc889OJ3OIY52ZLgmsW5sc6eKEfegKbloGOx1OUkJa2RmddNVd2LAz6sYnQCUqnF645nIsuWNwZZx2Ivw6ubgfknqtDiawddQ0wUGNOeYs6Dnl2ayJRjGAKYah0jXO9kbVHBIZuHme30BAtoNBJRmesNt5JSWIckKexu2oBllZMdKWRiOoGOQ7khnR1DiSj5ENjT2+kNMLEtHluC4L0yfpNN6wkc0JMqeCIIggIWJXSwWY/fu3axZs+Z0MLLMmjVr2LZtm1VhjXi5qU5mF6cDkNHRTSyxbuz2FC8AEx0nOLBp04Cesy/ah6yYLVPpODDUvAE9/kiTlT0Jj2EmMYyB1Scaqs1r3184eP2MAl5qM7ctZSv7QjIxJPrUPty6zg3+GMQ/x66WDwC4+t4vkjZpKqoRo8k4SlS9gy8kChZH4xEORhSkeJBZVAGwyR9kQZlZn7EpWzFn5Nb0DOVLFgRBGLYsKzTW2dmJpmnk5+eftT0/P5/a2toBO080GiUajSZ/9vnMiviqqqKqg/dXfv+xB/Mcn2TFlBz2neojpQc6MitwB7dS6UoBOimRWthVd2JA49rXeoC4LQxAhkMm7pxoyev+LEN1TTLzp+E6YgcMNCVANBpDlqVBPadVDN2g/mAXYcmgNmD+Hygt8XLwZDOKEWcx23g6pJDhyKA31svnAkEi8RUEJR/twQYKJk+lYOp0MmfMxl93hN2NWxhX8hXmBT0UqXGa7aBINipDKkvTtlLFfF5q7ebLU3PYWdfNCZfBdKDuQAfjZ2Va+2aMIlZ+fgmfTFyX4WkorsvFHHvUV5B99NFH+e53v3vO9rfffhuPxzPo59+4ceOgn+PjHAEAG71tBurUqQDU2gxCkkRerIf2cJDXX399wM73om87AFmaRkpKlKOBtAE9/kAb7GuiqT14FBnQiClhfv/KqzhdyqCe0yqxPplIIIUTTg3NgEKPwa8P14AznbnsJqKGOR51gNELEtzbF4D4XexuM1eUkMZN4J133sHm8ZI6YQp9Rw/RFDtKse1z3Ot7kR9nZ+LQ7ewIqGxI24nLCNMQheauBgBqAyFWSW6O7W0hmHEMaXTmz5ax4vNL+GziugxPg3ldQhcx8dGyxC4nJwdFUWhraztre1tb24BOjHjwwQfZsGFD8mefz0dJSQnr1q0jLS1twM7zcaqqsnHjRtauXYvdbh+085yPYRj898mttPmjyH0ONCUHtE6qnE4WBaPoaXD99dcP2Pn+/eWdEDbXiI2lwoq1XyYjo3jAjj9Qhuqa6LrO5md/AkBEiTNp+lRmVUwZtPNZac+bDbRTT1OWAmGV2xZN4tepGsTiLGUrO0MyTtlFVI+yNBTGE7uCkGGjOXiM/ElTuOPP/px4PM7GjRv53F88wK+/+Tfsa/+I4uI/4Xr/C/wsUycsRwhrMq1RlYXO7bzPNQRmTGfaqXpqWv2cdOlMDyssnrWcnBKv1W/JqGDl55fwycR1GZ6G4rr09zZeCMsSO4fDwfz589m0aRO33HILYH4hbtq0iQceeGDAzuN0Os870cJutw/JL8ZQnefjVk3L4392NpLWFUDNq0AJfsBOj4uruiOUZjTRdeQwBTNmDsi52oJdIJszYnvtbqbnThiQ4w6WobgmabY4NkMmLknsa2lg/hUzBvV8VjlV04OKQW1iuENhWQatLW14jACzjN08GlAwdHOG8Od9fnT1bvZ37wJg6Z2fx+FwICWa2TILCrli1Vr2bXyDLqOF7Pgqbgp8yG/SUklRUtgZVLnauZX3uYZXO318ZUY+Na1+GjJkpoeh6XAfhRNFd+xAsurzS/h04roMT4N5XS7muJZOXdywYQP/8R//wbPPPktNTQ1/9Vd/RTAY5P777wfgvvvu48EHH0zuH4vFqKqqoqqqilgsRlNTE1VVVRwbpKK7I1n/7Fi6ZFSH2R27y50CwHhbPdVbNg/YueJxs9zEeFWlR8sasOOOZDq2ZC27/Z2jc/WJSFClrc7HSbtOVDcYl+GmMlHHbjHbqI9o9OkyMeKMV1UqQvnE9BLq+qopKJ9C2Zxzi1gvuuVOZMXGnpYPkNQ7uLsvCEBIC1IZtDFZP0iG0U1vXCN9XCoAh6NRYhii7IkgCAIWJ3Z33303P/rRj3jooYeYM2cOVVVVvPnmm8kJFQ0NDbS0nP5SbG5uZu7cucydO5eWlhZ+9KMfMXfuXL785S9b9RKGraXlOThsMqGggapPBuCQXSEsSYzT22k41Tgg5zEMAxtmceJszYauifqCAGHdS25i9YmG0OhMOBoPdWMY0JBmtritmp7Hax2nlxDbHrThkVwA3OvzE1Pv4FDfbgx0ltxxb7Kl7kxpOXnMXLmG7lgrvVoEb2weV4bN0ikqCgfDcBXvA7BNi1Ca5SGmG5y0i7IngiAIMAxWnnjggQeor68nGo2yY8cOFi9enHxs8+bNPPPMM8mfy8rKMAzjnNvmzZuHPvBhLsVpY8lEc7F1pcuGpmQRl2C/00FOJECXGhmQ83SEOojbzC/zNMVBakr5gBx3pAsbGckixb7Y6CzFUX+wCx2DI5jJVMY4L35NJ9vooESrZX9YIWRESNF1VvvsaNpCjvXuJX/iZCbMWfCJxzVb7RSqOj7CUO/mTxIFi23IbAvYWJpYYuydLj8rKsyVVupTEWVPBEEQGAaJnTB4VidWofB0qslVKHa5XKSENJxZfrRE4nE5PmraiybHkQ2DbJdGfvGVl33M0UBxFpOZeHsN/fwrqYxkhm52fTbadAKaTlaKgyrFfMFL2cq+sIwNs7XuVn8ANX4jR/wHiBvqJ7bW9UvPy2fGitW0husIxNOZGiymRFWJEedoTCYtXk+xUU/UMHAVmcMLjkhxNAyxvJggCGOeSOxGsf5xdtFeCdVmjrPb6XEjARNTGmjau+eyz/H2yRoAiuJx7KkRiqdec9nHHA2y8yvw6Im5SfLoW1aso9FP2K8mixJfPSWX93rNlrWlbOXDgEKUKJJhcHtfDNRrOdyzi/yJ5Uyct/Azj7/41ruQFYX9XduJx+/iXp+5PJkbJ7sCClcnWu12SSrZKQ5Cmk6jTafhYBeGYQzSqxYEQRj+RGI3ipVkeZiS78UwIB4yZ6pWOxxEJSiVmjn44QeXfY7armbAnBHrUzykpuZe9jFHg/ySWbgwV58w5Aufpj5SNBzswsDguFMHwDMuhbgBZcZxbGoTLTGzbt+ycARnbDkngieI6mGuvP3TW+v6pecVMH35KhqDtUTUClb5XHh0nTAxPgzakuPstvtCXDXV/D933GUQ6ovReSowSK9aEARh+BOJ3Si3qsKciGLvcKApGagS7Hc6yY93c6ql+bKP3xcy10ItU1V6NFFqol/O+Lm4ZHN6elwJjLpWpPrqbtoUgx5Nw+NQ2O8wu2GvZisfBmwoiY+We/v8SOrt1PTsIK9sEpPmL7rgcyy+9W6QJQ72VKKrn+NmvzlDNqw56I30MM2oBsBW4AbghFPHwKC+WnTHCoIwdonEbpTrH2cndxmoDnOcXaXLSVYwQp904ZWsP4lNMwtMF8QlVKPwso83WnhTsvEoZqtVVI4QCkY/4xkjh1nmpI+jdjOZWzApmz3BCJKhscj4gJ0BG3FJZ2JMZUJoBo2hXoLxPq68454Laq3rl5FvttrVBQ6gqSu5zZdYtoc4WwI2rmYLAJW2OCkOhV5No1URZU8EQRjbRGI3ys0tySDDY0dTJeKJsie7XC7scYO8rPbLmkCh6RpGYvxYKk7S06YNSMyjRapiJjEhm0Z9a5PF0Qyc/jIndW6zFdJZYC7NN5MDNId9SLrZUvl5nx9DvZdDPdvJHT+B8gUXP7HmylvvRpd0avqq8URXcXUoDBIcDNmYrW/HbsQ4GlWZO8mcAX7UromyJ4IgjGkisRvlbIrMiinmGCStrxSAfS4nMaDM1UjdRx9e8rEbfY1EbGb3WIZDobBs6WXHO5qky3FsiS7YHQ3HLY5m4NQf7KJH1mkzNGyyxD6XOc5uKVvZ5LcTkeOkajpL/Lm0hZz0xtpZcoFj6z4uo6CQ6cuu4ZhvD0b0c9yTKFgsI3MwFGUelQBI/d2xbkOUPREEYUwTid0YsKrC7I5V2r3ocjoxSeKA08k4o43anTsu+bhvndyDIRm4dJ3slDDFU1YMVMijgqE7yU60iO7rGB0tdv1lTo4kumFnlGbQoGs4jQjTtB20hM3WutsCAVDv5FDvdnJKyyhfeOllcBbfeheqEeOYv5EJodmUxVRUSec9n52lie7YvQ4NuyLRYWh0ybooeyIIwpglErsxYMWUXBRZwghKqDZzMfpKt5PciI9TbZe+3NWWxiMAjFfjxGx23O60AYl3tAgbmeT1rz7h77Q4moHRX+bkuMNspbMXmt2wC9jBNn+cqKIjGQY39tnoDU2kPdLAktvvQZIv/aMms3Ac065eweG+XRC7i8/7zLIqwZidwtg+vIaPTgwqSjMAOGbXRNkTQRDGLJHYjQEZHgfzx5szVuPRSYA5gSI1FCfu6b3k4zb0tALmGrG9upgR+3GSuyTZYheNtVoczcBoONhFQDJoUszErtpzuht2p98s77IyFMYduYGa3l3klIxn8qKrLvu8i2+7h4gepN4fYbFvHF5dJ6JobPRLXEliOEG+2R171KmLsieCIIxZIrEbI1YnumP17hIA9jpdxIHi9Ga0WOySjqlFzNa+4rhOlKIBiXM0yS64gjTNnBmr66Ojxa6+uptjiW7YsgIvvTaZNKMXZ+QAYcMcQ3dXX5RwZClNoaNceZmtdf2yisZRsXQ5tX07sKl3cqvfTNqOBBxcZZjFig94dCQJWmQdvyRmxwqCMDaJxG6M6B9nR0cmupxKVJY46HQw3tbEkS3vXdIxZaMDgHTdSUbGjIEKddQomjgPl5EoUiyN/MH8Hy9z0t8NexUf8HafjbhkUB6LURy6mpq+/WQVlzBl8cBNqFl829344t20+LO4oc+JZBgEZZ3uwHHyjFYidoXxBamA2R0r6tkJgjAWicRujCjP81KS5QZDRsUse1LpclEQ76J29+6LPp6qqai2PgDSFAfjJouJEx+XWzo7ufqEroz81Scaa7qJGAaNdrP79XCKOYZtkb6F1rC5fNq9fUG0yI2cDFRz5W13D0hrXb/scSVUXLWc2r6dpERuZkUoDMAWn5OliSXGjHxzfVpR9kQQhLFKJHZjhCRJrE6sQqEFzeXFdrmcZIVCtPZe/AoU1Z21hG1mF26Wy2BcuSh18nFOZwpO2UzsVPnyi0FbraG6ixN2DQ3IzXQRS3FQZJyi1tdISDFI1zTm+Suo7asjo7CQKUuuHvAYrrztHjpjzfQGr+COPjNp64rDzLg5O/ao1+wObrTrhA1dlD0RBGHMEYndGNLfHat3JsbZuZzIqoEnrf2ij/WHY3sByNQ0vA4Vh8MzcIGOIh7ZbMkKK1Fi0ZHbemToBvWHujmaaK1TEnXjlrKV/X1m8nq7P4ASuZ3jvr1cefs9yLIy4HFkF5cwdckyanp3UxpcSXkshirDtp5uJhlH0FPs5Ga50YHjNk2UPREEYcwRid0YsnhiFh6HghHIQ5dSCMsyNU4HJSlNxILBizrW7paTgLlGbEBPH4RoR4fUxK9YSNGpb738tXmt0nkqgN8XpS4xvq4hzUzaCiNb6JINZMNgdV8Ox/oCeAvzmHrVskGLZcnt99AcOUE4vJq7+8yW0BNBO0sNs9VOy3UCZnesKHsiCMJYIxK7McRpU7i6PAeQiWvlgNkdW0wbNe++c1HH6utrBKBUjRORxg10qKNGBgY2w8CQYNvJo1aHc8nqq7uot+nEJPCm2NHTHUw1DrGj25ydujoUJjVyG0d8lVx5292D0lrXL7u4lClXXk1Nbw3zfDNJ0zT8ioEU+BDZ0GjJNIskn7Tr9PVFRdkTQRDGFJHYjTGrp5ndsZqvDDAnUOTF+ji6f99FHUdSzVInWZqDjJw5AxniqCIb3mQtu6r2kdti13CwK1nmhDwnSBILtU00quZHyM19Mg19abjz0qm4avmgx7PktrtpCByC8M3c7jdbm6t6NGaxFyPNjtfrQJWg3qaLsieCIIwpIrEbY66Z2l/Pzlw3dq/LiScUoztcf1HH0WVzULoXFyUVawY2yFHEcJeQm0jsWvpOWRzNpYkEVZpP9CYTu+5sJzZDpbd3F6oMFdEYJYHrqO3dxeJb70ZWBq+1rl9OaRnli5dwuLeVa/oKkA2DZglmxN4ESULNMVvtjoqyJ4IgjDEisRtj8tJczCpOR48WouMmKMsctTvIS7/wpcWCsSBBm9m9lW5XKJq4aLDCHfGyiueSGTfvRyOXvnyblRprummSdUIyOBwKeqaT2cYuagLm2LU7+yK0+6Ziy3Ex7eqVQxbXlXfcywn/PlJDt7IqUfrkVPdhXEYIf445ueO4XaP5RJ8oeyIIwpghErsxyJwdK6PFJgLmOLtxzmZCvb0X9Pz3T1URS6wJmmvXURT74AU7wo2bciUe3ZwZqycKOo80DQe7krNh9RwHyBLFodfwyeas6Dn+q6jprRqy1rp+uaVlTFi4kOM9BjclZuYejcF8bQt6pgOHUyEsQ6OsibIngiCMGSKxG4P6y55ofWUAVLpdFGqdHHrn7Qt6/usnDgBQFNdQcA5KjKNFbvEM3Ib5Hulyn8XRXDxDN6g/2JVcbSKU58ZjBDjVbXbd3+4LEvRdjZZpMH3ZNUMe35W338NR3x5K/dczNRpDlcDrfxNkCTXb/IPjmF2UPREEYewQid0YNLMondxUJ1rALFS8x+kkMxzk2KELm0BxtPUEYJY6ETNiP53N5sCZWH0iroy82ZmdpwLUB6L0KQayIqFnO5kVe40GJBTDYFnfZA711rL41ruGtLWuX17ZRErmz6axt4DbfWZ3a11fF5l6O9F8s7biUbtO/cFOUfZEEIQxQSR2Y5AsS6yamoceKcIwXPgVmXoUNP3YBT0/HmgAIC8uk1GwcDBDHRWcktliF5XDFkdy8c5srdOzHGCTsfdsAmBtMITTfx3h1BDTl62yLMYrb7+Xw31VzO1bRqam0SNLVIR/g57tQlYkfLLByYAoeyIIwtggErsxatU0c5xdPFwGJNaNTWu9oOcamGPF0nQXpTPXD1KEo4c70WIXVmJomm5xNBfnzDInar6bnPgJjkfNosDX9WZwqLuVRbfchWKzWRZj/oRJFMyZRk/vbG71mcmz2r0LFIl4dmLsXaJYsSAIwmgnErsx6uryHOyKhOY3u2MrXU6KlFb87W2f+dyYYo4V88pO8kvnDGaYo0KaYSY9AcWguf3il2+zSjSkUlvXS7vN7MLUcl1M8v0KVZKYEY1S6L+BPnc3M1ZY11rXb8nt93Cot5plvdNQDIN6Q2dcdDvxZHesKHsiCMLYIBK7MSrFaePKidloIXNm7G6Xk9xYD9Vvf/oEivZABz57FIB0mwNZFv+FPkuOoaAkVp/YeuKw1eFcsMaaHo7aEt2wmQ6wG3T5zdUzbumTONIJi269E8Vm/azo/InlZF1Rhty3grVBs0VxXM8L6DkukKBTMaip6xVlTwRBGPXEt/IYtrrCHGeHbsenKLSrOvXHdn7qc149UYkmgVPXyZPEYPQL4XQVnl59ouWExdFcuPrqzuT4Oi3fTWnwj/RJkB3XuKJ3DR3OFmasXG1xlKdddcfnOdhdz9reXABORTuQZT9apjnG8YgtLsqeCIIw6onEbgxbVZEPKMRDZUBiFQpn3ac+Z0vdQQBK43EkOW+QIxwd0ksXkJsYW9fZ9env73Bh6AY1BztpUsy4tTwXmT2vAXCrP0pjZx4Lb7ltWLTW9cufWI53Wj4FveuZEY2iShJTfP+Fnu8C4JhdLC8mCMLoJxK7Maw020N5nhctNAmAXS4XBa5Pn0DR02F2JRarOt7CJYMe42hQdsUKUjXzVy0SHRnrxXaeClAdiWBIoKfasUt1NBtRbIbBVT3zaVaamLFyrdVhnmPJHfdyqNPPTX1mwhn370LLNe83KToHD3aIsieCIIxqIrEb41ZX5BEPmRModruc5NFBT0PDJ+6vx8xlsTI0FxPnfW5IYhzpsgqn4tHN2Zma1G1xNBfmzDInWr6Lip6nAVgfCBPquIJ5N9+MzT58Wuv6FZRPwTE5jZndq8mOa/RJBunxbehpdpDgQDgiyp4IgjCqicRujFtVkYceLkbSFXoVBX88zP6Nb3zi/qpijlHy4CarcOpQhTmiybKM00gkdrLP4mguzNHqDk7azG5YIydGR8xM9lf1jeek0cTMVeusDO9TLbnz85xod3Oz35woUdLzPFq+uXasKHsiCMJoJxK7MW7++Ew8TjtGaDwA1bKdrqaPzruvYRgEbEEAUmW3mBF7EZyGOc5LVYIWR/LZoiGV7Y29aBLoboVxsd+jSRKzIlHS2q9m1i03DsvWun6Fk6diTHCypHshNsOgjSByptnS3GDTObx/ZK7ZKwiCcCHEN/MYZ1NkVk/NJxoqB2CX20Wmu/G8+x7pPokvUf4ix7CuIO1I5MBM7KJy1OJIPltjTQ9H+suc5NuxhbYCcH2fl+Oxbq64Zvi21vW78q576WkrY20gAsCk8P+gp9jQJNh2SpQ9EQRh9BKJncCa6fln17Ozn38CxYu1OwDI0DTy5NQhi2808CQSu4CiDvvB+8erOzmRGF+XmlZJQNLJi8cpb1/JtM+tx+ZwWBzhZyuaMo3IOBures2JQb3qMYy8GABHbZooeyIIwqglEjuBFVNy0aPFyLpMt6IQNfpoO3JuId3a43sAKFXjpJYsHeowR7SMxOQJv2LQ1jV8x3gZhsH7h9qISmA4JPJjvwfgRh/UBw1mrR45S8gtuusenC3zmRWJoklQ5HkTgBN2jeMHOi2OThAEYXCIxE4gw+NgelEGtnARAIcNOPj278/ZL+w/CUB23E75otuHMsQRb5w9M7H6hMR7x2qsDucTdZ4KUB0zu4ttBU10SX7shsGCzispv3HliGit6zeuYjp9uTau7csEQNY+xHDqxCTYWtM27FtOrRILx9n+yglatqRQtbERLT6y1jcWhLFOJHYCADfOLMYfMme57nU6ifVtP2efuGS2cqTqbjLyJw5pfCNd7oSFydUnqo/tsziaT3ayupOjdvOLfLzLTO7XBaJ0dmVzxdprrQztkiy4527KWq4iLx4nIGlkFOwG4EAsSleTKHtyJsMwOLy9hV8/vJ39m5rQQjI7/3CS57+/U8wkFoQRRCR2AgCrp+UlCxVXulxkuk6ds0/YZpbqcEspQxrbaDBp/rVkmnkdHT3HrA3mU3xQ1UpQNsDho1uuB2BZ93RKb1iK3eG0OLqLV1wxgx5vKtf7FACynG8BcNShcUJ0xyZ1NPh5+Ud7eOeZGkK+GGm5LtImR3Gn2ultC/HHf9vH6z/fj68zbHWogiB8BpHYCQBMzvPikcej6BKdNgVVOftLL67F6bWZXXTphseKEEe0jLzxpGrmTOKY3m5xNOcXDalsbzeT97KCN9AkmBOOIrVOZta66yyO7tLNu/cu5rYtxqEbdCoBXN7jhCV4v+rTV1kZCyIBlS3PHea3j+6i5XgfNofMlbdM5M4H55NWHuPu7yxg9qoSJFmibl8nz313B7teqyMe06wOXRCETyASOwEASZJYP60YdyQHgBOSRmPV3uTjW5qqCSkgGQbjJZHYXQpXYgJFXBmeRYoba3o4bNdAUom6ze7iNb2F5K1bgt3psji6S1c8fSYhClkTNEucjM95FYDt7b4xW/ZE1w2qtzbxq4e3Ub21CcOAyQvy+MJ3r2T+tWUodvOrweG2cfVdk7n7HxZSNDkDTdXZ+cc6/ud7O6jbJ5ZnE4ThSCR2QtKNM4sJBs1xdgdtCkff+3Xysbf3vgtAYVyjtHiRJfGNdE7D7MqMS8NzbNf2PS30ygYF6VsJyDr58TiFzbOZfe0NVod22Wb/6V0s7ZwOQJurGdnWQ61Do+HQyFjibSC1HO/jxccq2fLcYaLBOFlFKdzy/81l3Zdn4s00E3h/JM5JP0RVs2Uue5yXWzbMZd2XZ5CS4cTXGeH1nx/g1Z/up7ctZOXLEQThY0RiJyRdOTGbUKQCgEqXEyV2epB/26n9ABTEJcpXfNGS+EY6u2EuaxVTht8XoWEYvHusAzBIyTYLEl/X5yZz+VLsrpHbWtevZMYsHMEK5kZiaJJEedYf8EsG2/aMne7YYF+Ud545xO8e301Hg/+s1rhxU82Zw8c7Ajz8+2qWPb6F/1ttY/mPt/Kjtw7T2hdBkiQmL8jn848sZt76UmRFouFgF//z/R1sf+U4alR0zwrCcCCWDxCSXHaFidmTaTeg3WZDdZ7+0osa5riwNM2FN7PAqhBHNGdibGJYjlkcybm6mgLsk2Kku2tod0Rx6jozW+Yz53/fbHVoA2b6n97FNa9vZ29hJ4GMWuhQ2XS8gz81DCRJsjq8QaNpOgfeO8XOV+tQI2byNe2qQq68ZRKeNAe6bvBubRvPfFTP1iOnl1uzSQbdQZWfvneMp7Yc59qZBXzpqjLmj89kya3lVCwp5P3fHKXxUDe736zn8I5Wlt4xmUnzckf1+ykIw51I7ISzfH5OBU9XZdDt6aXOFkHTNBRFIar0AuDWvdYGOIJ5dLPFLqDELY7kXHsqW+nCYGb2q9QDqwOQNXv5qGit61dyxRyKn51DQe6btNpsjE/fxP6+a+lqCpBTPDpXUmms7eb954/Q02q2EueNT2XZPVMomJCOL6Ly/z6o47+3neRkl/m4BOSmOukKRonrEk6bTKrLRmcgxqv7W3h1fwszx6XxpasmcOOsQm7669nU7evkg98cxd8d4a3/qKa4IpNld00hq0jMnhcEK4iuWOEs104vIp5YXuyobFD3wSYA/DZz8foURGJ3qXKVNAD6FOjy9VkczdneqG7FYeuk0WvWK1vcPp3Zd9xhcVQDS5Ikpvzpn7K+1/w/7Mz8kB7DYNeuFosjG3j+7ghv/vsB/vBEFT2tIVxeO9f8aQV3fHMBgRSZ77xSzZX/vInvv3qIk10hHIqMyyZjAB3+MMVpjSwsrybL1UxnwJwN73EoKLJEdZOPr/92H0sfe5efbDyCZ0Iqn39kMQtvKEOxyZyq7eGFf9zJhy8eJRYefn/ECMJoJ1rshLMUpLsIMBvYw16nnZbKX1Gw+Go67RogkUea1SGOWDPHzULxbUeTJN7cu40vrBgeBX+j4TgfhX1UZP+OOkliXlilpGQ1Dpfb6tAGXOnsucz4n7m4sj6kxaWS497PGwfTue7WKVaHNiDiqkbVxgZ2v1FPXNWRJJi5opgFN5axrbGHR5/eyftHT5cycigyMU0nrsWYlFdP3oQY3WnZHJTmclhy4pkYZLZ+iJTuHppPpnKyuxiQsSsSXcEY//buMX6+2eymvX9pGfcsLuDDF49xcn8nVe80cmRnG1fdXs6URfmie1YQhohI7IRzLB4/hx0BaLXZ8HGMF3e/RVyScOgGCwpmWR3eiDV9+R1k/f4pOmwKh2reh2GS2NXsa6dNjyJnnABgefd4Zv9/91kc1eCQJIlpt/8vrtnxEW+kQXH263zUNotoOI7TPbI/Dk/u7+T93xzB1xkBoLA8nbm3TmRTcw/f+fmH1HedPWnHLseYWHSSjGJo8o6jWroaQzI7ceR4Ny71MGHHBHYoCyEXlByVaUYt2b1tdDc4ON5WhoFCXDfO6aZdc1UBu146Tl9HmHeePsTB95tYfs+UUdvlLQjDycj+JBMGxV8umsOJ1z20uUMcdwWpO7AR3FAU17li3Z9bHd6IlZ5TRLom0WEDX6TZ6nCSXt7VSEXGGzQpUBiPM8O1Cod79NYqHL9wMYv+MIM30g5x0ttLrLWN6r1tzL9qnNWhXZLethAf/PYo9dVmN3pKuoNx68axxRfg/zy7g9AZxYTtcoyJpadIK4ajnklUSdcAIMd7cES3kxGqxBY+SoxeAFIBh5RDzDONPvc8DjorMLKugCwo008wPnCC9pMO6lvHoRu2ZDdtdoqDe64qYXYsh7pNTbQc6+M3/7SLmSuKWXTTBFwp9qF+mwRhzBCJnXCOOcWZ2MIl4D7MCSmGX20GN2TH7bjSc6wOb0RL0eyARlQeHmPsDMPg7e42Ugt3AbC6N525f/XXFkc1uCRJYt7qLzP3yN+w12WjIvt3vFg5fcQldmpUo/KNk1S904AeN0ABY34Wb8cjfLTxUHI/RYpTXNBFarnGYfcU9kkTkLVe7KEaUiOv44lUo2tmUqgDMcxC5JlR6HZJxIxOCL5PevB9AGRbAUHXLJpd06n3LsSYlULOFe1M8h2n7Zibts5suoIxntxyHEWWWDsvl1l+Cf1gHwc2n+JoZRtLbp3EtCWFSLLonhWEgSYSO+EcsiyhO64ADlPjgKKoOSYnRRez3C6XS3cCIeKy3+pQAGg62Ydd3kWLU8Ol6ywKL8XpGb2tdf0mrFzDsg9L2VvSTGt6PU1NDRjGlSNiHJhhGBzb3c5HLx0j0BMlIhmcKnWw3YjScqSpfy+y0oO4J2o05EzkqJGOPVKDved3ZEcOIsfbksfTMRO58ojG4miYKyNh5kajpOkGnbJMpdvFdoebHS4Xp1wKerwVd6AVd+BtAOL2UsKu6ex1TkOdOxm3oVHS3EDPSSf+kIc3a9t5E5gyMYVZfomSjhjv/XctB7c2sfzeqeSXiXG7gjCQRGInnNe62dfy38d+S7Pdhs3oBhRcuvgAvlxmkeIQqjw8ihT/+v1j5GZtpAdYHrKx5GuPWB3SkJAkiaXTv8SL3d+n2a4wyfEajXXrKZ2YYXVon6qrKcD7Lxyh6UgvnbJOdabBPkkl5jPH1dkUDVexTndxCl1SI/ZoLd7WZ7DFz575KxkGU2MqiyIRFoajzItGSNPN5cHi2Ai6xnM8nkKu1MvaQAvXSub/105FptLlYqfLyU6Xi3qHHZvagE1tAP+bGEjE7eNp8k5DXTANPZpFZkMfwVY7R7qDHAG8OTKzIwpXNPho/0El05cWceUtE3F7HUP6XgrCaCUSO+G8/nLhfDYddHLKFaPBoQCQamRYG9Qo4DA8QBdROWJ1KAC82/oBrXkBQGJp1yxc3rEzuH3arfew/F/+leczA0Qyq/j3Lfv5x4nLrQ7rvKIhlZ2v1rFv8ymOyRp7vXHqbToYgAFKmh99XBukHEeP1pLdfW4iVxFTWRCJsCgcZW40QrpuoBo2gq4S1HEzCZQvJaViBbbcqXg0nerXX+f6669HkQy0lgMEa95DOrGNJV01rA20oEg9dCgyu1wudrmcVLpcnHTYsasnsasnwf8GIKHmjkcqqgD/BOSGPAIRNx/adLalq0yJKTRta+TYnjau/NwkZiwfhyy6ZzEMg0hAJdATxd8dwd8dIdATxdcZorPZxda+o3jSnLi9dlwpdlxe89b/s8NtGxGtz8LgGBaJ3ZNPPsnjjz9Oa2srs2fP5t/+7d9YtOiT1yP97W9/y3e+8x1OnjzJ5MmT+cEPfsD1118/hBGPfl6njdRYHrhOJbfNzBgdJSGs5Eh0Z4dl6xefDwZjZDlfo1mSmBUxuPav/8XqkIaUJEmsSbmFV/T/oskpk9L5MjC8EjtDN6jd3sK7Lx9jZyzM3lQVnyQhKX5snjrs2XW43EeIY46Rwyw3eVYitzASZV4kgjtuI+AqRs+7AmnSVegzrsGeM4UM+TzlTDX99H2bA6VkPmkl8894XCXevB979SYWntzBks5DpMZb6bJJVLqc7HK5qHQ7qbefkegpwAQJxSgkHJxMvHsCtXIZtQ4X+VqMPS8dYukHTay+ZyqF5RmD9I4OD2pUI9BzOmHr/zdwRhKnqfonPNtObdunL4UnyxLORJLn9p5O/M76OeWMZNDrwOFSRDI4Slie2L3wwgts2LCBp556isWLF/PEE0+wfv16Dh8+TF5e3jn7f/TRR9x77708+uij3HjjjTz33HPccsst7Nmzh5kzZ1rwCkYvr1QGmIldmqZz7c1ftTSe0cBrmN3ZPsX6dTV//LtXOZnaDMgs9pXgycyyOqQht+jLf8+ip37LVk8Uxf0Bfn+U1FSn1WEB0HbSxwu/OsjbwTZqnGEcGcfIStmPN6UBv+N0V36c012r/YnczJCGLBeiFy7EccVSvDNWoeRMJut8SdylUOzYSuaT8bFkL6tpP0sOvMOCum3YGw8RllvY67Gzy2226jXa7WhSMw5vMw7vFiQDUqPpaMFJvBO8gncj4/njUx3cPqWUG+6eSkr68LgWF0PXdIJ9MTNJ64kQ6E4kbD3RZDIXDZ5ZuNlAUmJgDxO3RdBsMbSMGJqiEnOoxGxxoopGTNKJYqAbBnZJwm5I2AwJuyFj1xUcuoJdM282XcHQbKgRG8GQHbnFhhx3YGgOdM2ObigYRrLB17xJILkUZJeC4lJQ3DbsbgWb24YjxY7Tk/jXa8PjdeD22nG6bThsMnZFxqZI2OXEv4q5TRGtr5awPLH7yU9+wle+8hXuv/9+AJ566ilee+01fvnLX/Ktb33rnP3/5V/+hWuvvZZvfOMbAHz/+99n48aN/PSnP+Wpp54a0thHu9uvvo/dVe+jSxJ5cRlvdr7VIY14JZllwE56FYm2tjby8617T092/zeBDJlCVedLd//UsjisJEkSV4fnstWznVpPmH989jF+8MDDlsbU0xnkO0//kkbpEKSeIJTXgcdptvD6zthvajTGwkiE2cE45ZE0UnLn4JqxktQr1mLLnQRD3fqi2LGXzier9MxkL052w14WH9iIeuR9ev1HOJwSYa/HwS6Xk1N2Oz5XH7j24Mreg2xAT8TFr4KF/Po/ypnvXcS3v3wnNpsyJC/BMAzQNIx43LypKvTfj8fRYyqRQJS+rggdnX20dvnoCPjoUgP4CROVwsSUKDE5hiaraJKKRhyNOAYahjuOPk7DQAM0MMztEnGQNJDMfw0pjiFpGJKOLmvokn76Rv+SURKyYf4rISEl74NkSP33kttJbEtuRyL5DOk8jyW2EZWQoxJSt4SEnGjVk5ANGUmSkTG3m/fkxHal/yckQ0FCTvx/TJzTkBPnUBI/K4mfzWdJKMlzSSggyciSgpS4yZKCLNvM+7INRbKjyDZkxY5is2NTHNhkOzabE7vdjsPmwu5w47A7cDlcOG12XA4HTocNh03CYbeh2GTs9sTNpmCTJRyKPCKHBlia2MViMXbv3s2DDz6Y3CbLMmvWrGHbtm3nfc62bdvYsGHDWdvWr1/PK6+8ct79o9Eo0Wg0+bPPZ340qqqKqg5ed1j/sQfzHINt3YwFPLVT5qTTIC3uHtGvBYbHNVm9/E7+ZcsL6JLEn/5xVeJDuP/jjjM+bM2/opPbjTMfPb39cnSkml8R0yNFuAtLLXtfrL4utz/wJL//5UIOunU+8vyGdf/5G4DkF2T//eS2/vufck367xtnbDPOeMw459HTorJBS965LWtTozFmR+JU+BSm2yaQc8V1pM65FnvuxLOSOANQ45e3lNdAXhOleA4ZxXPgum+QC0zWNVaf3E1g9+u0HH+PQ7Z2alIN9rgcNNlttLgj4K4D6qg33mbHL//J+hYIzNnDcckgLhmoEubNJRFzgya6MK1lQH+uTOzCnqIYBhKgGCBhIAOyYSbNEiR/7r8vnfmYQSKdPf35XRDLYa26dqBfWdLF/C5a+vvS2dmJpmnntFrk5+dTW1t73ue0traed//W1vOPOXj00Uf57ne/e872t99+G88QlHXYuHHjoJ9jMBXF8jnpbCUtns/rr79udTgDwuprMj4mU+c0aLFbvVSzTJqmM11fPiyurZXXpTQ0g4PuA/QqMr1D0zjEJ6fn5vaJMY1y1cHkPgcTtQnEJ6xGTXz2HQOOxYHKw8DhQYtwUK9JyiKYtYg0YJGusaLrGPET73IstYujKVEO2+O02hUahlVv7Jmp/SfsYRg4DAOHAXbAboDNINl1agMUQ8JmyChIKIaMzZAS2yQUndP/6uZzbbrZ9Wo3ZGTDTDJ1DHQMDECXSNyXEvfNrlXzfmKbZP5rSAa6JCUfh8TPGBiSkeyWNYz++4l/+ZR/k/t8fHv/8RP/nnW8RIwYZ9w//Tw9sY8uJf5Nvs7T2833QUruczEJdv++can/ul6e9HhwUH9fQqELr6QwHP4QGlQPPvjgWS18Pp+PkpIS1q1bR1ra4JXvUFWVjRs3snbtWuz2kVtlfUnXXJ5+5Qd85b7vkZoyssudDJdrkrHTwWuVL5l/6hn9H3HmB575c2LLGY+R+DCUEh+OJO6f0+bT3+2SeET+jA+s8rQK7v+rc4c8DKXhcF2u53py//1bdKu95tueeL9JfCEZiWthJJpRT381mY/rJH6UDPMbiv5m2HNb/AwkpOTjJB+REoeTJYn1U5azbM0XB+vlfibrrsn/x7rEPT2u8tyvv8+BQP0AfO+e2V567t0LIsk4JRtOxYHH4SLd4yXbm0lOehZZaXnkpOWRnl6E3ZOFZBuc0i3D4Xfl4/R4HC0aRY9G0KJR4pEo8XCIYDBIIBQkGPETjIYIRSMEolFC0SghNU44rmEYnzRBJEE6s038AhgkjqklPh91JOLJFFiXdDB0dPRE0qknk0nQ0ROfwXp/airpif85ejIBNZsFMffFAMn8/ffE3YN6Xfp7Gy+EpYldTk4OiqLQ1tZ21va2tjYKCgrO+5yCgoKL2t/pdOJ0nvsnn91uH5JfjKE6z2DJKyjlm3/5pNVhDCirr8mKpdexYul1lp1/uLL6unzjqz+27NzDlaXXxG7n/i8/as25hzmrf1fOYreD2211FJZSVZXXX399UK/LxRzX0r4gh8PB/Pnz2bRpU3Kbruts2rSJJUuWnPc5S5YsOWt/MLsLPml/QRAEQRCEscLyrtgNGzbwxS9+kQULFrBo0SKeeOIJgsFgcpbsfffdx7hx43j0UfMvt7/9279lxYoV/PjHP+aGG27g+eefp7Kykn//93+38mUIgiAIgiBYzvLE7u6776ajo4OHHnqI1tZW5syZw5tvvpmcINHQ0IB8Ru2lq666iueee47/83/+D9/+9reZPHkyr7zyiqhhJwiCIAjCmGd5YgfwwAMP8MADD5z3sc2bN5+z7c477+TOO+8c5KgEQRAEQRBGFqvrLQiCIAiCIAgDRCR2giAIgiAIo4RI7ARBEARBEEYJkdgJgiAIgiCMEiKxEwRBEARBGCVEYicIgiAIgjBKiMROEARBEARhlBCJnSAIgiAIwighEjtBEARBEIRRQiR2giAIgiAIo8SwWFJsKBmGAYDP5xvU86iqSigUwufzYbfbB/VcwoUR12R4Etdl+BHXZHgS12V4Gorr0p+z9Ocwn2bMJXZ+vx+AkpISiyMRBEEQBEG4cH6/n/T09E/dRzIuJP0bRXRdp7m5mdTUVCRJGrTz+Hw+SkpKaGxsJC0tbdDOI1w4cU2GJ3Fdhh9xTYYncV2Gp6G4LoZh4Pf7KSoqQpY/fRTdmGuxk2WZ4uLiITtfWlqa+AUcZsQ1GZ7EdRl+xDUZnsR1GZ4G+7p8VktdPzF5QhAEQRAEYZQQiZ0gCIIgCMIoIRK7QeJ0Onn44YdxOp1WhyIkiGsyPInrMvyIazI8iesyPA236zLmJk8IgiAIgiCMVqLFThAEQRAEYZQQiZ0gCIIgCMIoIRI7QRAEQRCEUUIkdoPgySefpKysDJfLxeLFi9m5c6fVIY1pW7du5aabbqKoqAhJknjllVesDmnMe/TRR1m4cCGpqank5eVxyy23cPjwYavDGvN+/vOfM2vWrGQ9riVLlvDGG29YHZZwhsceewxJkvja175mdShj2iOPPIIkSWfdKioqrA4LEIndgHvhhRfYsGEDDz/8MHv27GH27NmsX7+e9vZ2q0Mbs4LBILNnz+bJJ5+0OhQhYcuWLXz1q19l+/btbNy4EVVVWbduHcFg0OrQxrTi4mIee+wxdu/eTWVlJatWreLmm2/m4MGDVocmALt27eIXv/gFs2bNsjoUAZgxYwYtLS3J2wcffGB1SICYFTvgFi9ezMKFC/npT38KmEuYlZSU8Nd//dd861vfsjg6QZIkXn75ZW655RarQxHO0NHRQV5eHlu2bGH58uVWhyOcISsri8cff5w/+7M/szqUMS0QCDBv3jx+9rOf8Y//+I/MmTOHJ554wuqwxqxHHnmEV155haqqKqtDOYdosRtAsViM3bt3s2bNmuQ2WZZZs2YN27ZtszAyQRje+vr6ADOJEIYHTdN4/vnnCQaDLFmyxOpwxryvfvWr3HDDDWd9vwjWOnr0KEVFRUycOJEvfOELNDQ0WB0SMAbXih1MnZ2daJpGfn7+Wdvz8/Opra21KCpBGN50XedrX/saS5cuZebMmVaHM+YdOHCAJUuWEIlE8Hq9vPzyy0yfPt3qsMa0559/nj179rBr1y6rQxESFi9ezDPPPMPUqVNpaWnhu9/9LsuWLaO6uprU1FRLYxOJnSAIlvrqV79KdXX1sBmfMtZNnTqVqqoq+vr6ePHFF/niF7/Ili1bRHJnkcbGRv72b/+WjRs34nK5rA5HSLjuuuuS92fNmsXixYsZP348v/nNbywftiASuwGUk5ODoii0tbWdtb2trY2CggKLohKE4euBBx7g1VdfZevWrRQXF1sdjgA4HA7Ky8sBmD9/Prt27eJf/uVf+MUvfmFxZGPT7t27aW9vZ968ecltmqaxdetWfvrTnxKNRlEUxcIIBYCMjAymTJnCsWPHrA5FjLEbSA6Hg/nz57Np06bkNl3X2bRpkxijIghnMAyDBx54gJdffpl3332XCRMmWB2S8Al0XScajVodxpi1evVqDhw4QFVVVfK2YMECvvCFL1BVVSWSumEiEAhw/PhxCgsLrQ5FtNgNtA0bNvDFL36RBQsWsGjRIp544gmCwSD333+/1aGNWYFA4Ky/ourq6qiqqiIrK4vS0lILIxu7vvrVr/Lcc8/x+9//ntTUVFpbWwFIT0/H7XZbHN3Y9eCDD3LddddRWlqK3+/nueeeY/Pmzbz11ltWhzZmpaamnjP2NCUlhezsbDEm1UJf//rXuemmmxg/fjzNzc08/PDDKIrCvffea3VoIrEbaHfffTcdHR089NBDtLa2MmfOHN58881zJlQIQ6eyspJrrrkm+fOGDRsA+OIXv8gzzzxjUVRj289//nMAVq5cedb2p59+mi996UtDH5AAQHt7O/fddx8tLS2kp6cza9Ys3nrrLdauXWt1aIIwrJw6dYp7772Xrq4ucnNzufrqq9m+fTu5ublWhybq2AmCIAiCIIwWYoydIAiCIAjCKCESO0EQBEEQhFFCJHaCIAiCIAijhEjsBEEQBEEQRgmR2AmCIAiCIIwSIrETBEEQBEEYJURiJwiCIAiCMEqIxE4QBEEQBGGUEImdIAiCIAjCKCESO0EQBKCjo4O/+qu/orS0FKfTSUFBAevXr+fDDz+0OjRBEIQLJtaKFQRBAG6//XZisRjPPvssEydOpK2tjU2bNtHV1TUo54vFYjgcjkE5tiAIY5dosRMEYczr7e3l/fff5wc/+AHXXHMN48ePZ9GiRTz44IN87nOfS+7zF3/xF+Tn5+NyuZg5cyavvvpq8hgvvfQSM2bMwOl0UlZWxo9//OOzzlFWVsb3v/997rvvPtLS0vjzP/9zAD744AOWLVuG2+2mpKSEv/mbvyEYDA7dixcEYVQRiZ0gCGOe1+vF6/XyyiuvEI1Gz3lc13Wuu+46PvzwQ371q19x6NAhHnvsMRRFAWD37t3cdddd3HPPPRw4cIBHHnmE73znOzzzzDNnHedHP/oRs2fPZu/evXznO9/h+PHjXHvttdx+++3s37+fF154gQ8++IAHHnhgKF62IAijkGQYhmF1EIIgCFZ76aWX+MpXvkI4HGbevHmsWLGCe+65h1mzZvH2229z3XXXUVNTw5QpU8557he+8AU6Ojp4++23k9v+/u//ntdee42DBw8CZovd3Llzefnll5P7fPnLX0ZRFH7xi18kt33wwQesWLGCYDCIy+UaxFcsCMJoJFrsBEEQMMfYNTc384c//IFrr72WzZs3M2/ePJ555hmqqqooLi4+b1IHUFNTw9KlS8/atnTpUo4ePYqmacltCxYsOGufffv28cwzzyRbDL1eL+vXr0fXderq6gb+RQqCMOqJyROCIAgJLpeLtWvXsnbtWr7zne/w5S9/mYcffpivf/3rA3L8lJSUs34OBAL8xV/8BX/zN39zzr6lpaUDck5BEMYWkdgJgiB8gunTp/PKK68wa9YsTp06xZEjR87bajdt2rRzyqJ8+OGHTJkyJTkO73zmzZvHoUOHKC8vH/DYBUEYm0RXrCAIY15XVxerVq3iV7/6Ffv376euro7f/va3/PCHP+Tmm29mxYoVLF++nNtvv52NGzdSV1fHG2+8wZtvvgnA3/3d37Fp0ya+//3vc+TIEZ599ll++tOffmZL3ze/+U0++ugjHnjgAaqqqjh69Ci///3vxeQJQRAumWixEwRhzPN6vSxevJj/+3//L8ePH0dVVUpKSvjKV77Ct7/9bcCcXPH1r3+de++9l2AwSHl5OY899hhgtrz95je/4aGHHuL73/8+hYWFfO973+NLX/rSp5531qxZbNmyhX/4h39g2bJlGIbBpEmTuPvuuwf7JQuCMEqJWbGCIAiCIAijhOiKFQRBEARBGCVEYicIgiAIgjBKiMROEARBEARhlBCJnSAIgiAIwighEjtBEARBEIRRQiR2giAIgiAIo4RI7ARBEARBEEYJkdgJgiAIgiCMEiKxEwRBEARBGCVEYicIgiAIgjBKiMROEARBEARhlBCJnSAIgiAIwijx/wNTh3860CIVggAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for lang, scores in lang_to_scores.items():\n", + " num_scores = len(scores)\n", + " counts = Counter(scores)\n", + " x = sorted(counts.keys())\n", + " y = [counts[val]/num_scores for val in x]\n", + " plt.plot(x, y, label=lang)\n", + "\n", + "plt.xlabel(\"Score\")\n", + "plt.ylabel(\"Number of Scores\")\n", + "plt.title(\"Score Distribution per Language\")\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "7cd98dd1", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyoRJREFUeJzs3Xd4U2X7wPHvyWw60r2YbaFlly0yZChDQHGAICCKAyciIK/Cq8gSQQSVIeIG0Z8girzKUBCsyKZAAdmUUUYHdK808/dHIFoBbaFtWrw/15ULcnLOc+7TkzR3n6k4HA4HQgghhBCiylO5OwAhhBBCCFE2JLETQgghhLhJSGInhBBCCHGTkMROCCGEEOImIYmdEEIIIcRNQhI7IYQQQoibhCR2QgghhBA3CUnshBBCCCFuEhp3B1DR7HY758+fx8fHB0VR3B2OEEIIIcTfcjgc5ObmUq1aNVSqv6+T+9cldufPn6dmzZruDkMIIYQQolTOnDlDjRo1/naff11i5+PjAzh/OEajsdzOY7FYWLt2Ld27d0er1ZbbeUTJyT2pnOS+VD5yTyonuS+VU0Xcl5ycHGrWrOnKYf7Ovy6xu9z8ajQayz2x8/T0xGg0ygewkpB7UjnJfal85J5UTnJfKqeKvC8l6UImgyeEEEIIIW4SktgJIYQQQtwkJLETQgghhLhJ/Ov62AkhhBBVic1mw2KxYLFY0Gg0mEwmbDabu8MSl5TFfdFqtajV6jKJRxI7IYQQohJyOBykpKSQlZXleh4WFsaZM2dkHtZKpKzui5+fH2FhYTd8byWxE0IIISqhy0ldSEgInp6eOBwO8vLy8Pb2/sdJakXFsdvtN3RfHA4HBQUFpKWlARAeHn5D8UhiJ4QQQlQyNpvNldQFBgYCzgTCbDbj4eEhiV0lUhb3xWAwAJCWlkZISMgNNcvKO0MIIYSoZCwWCwCenp5ujkRUlMv3+vK9v16S2AkhhBCVlPSl+/coq3stiZ0QQgghxE1CEjshhBBCVCoLFy7Ez8+vQs4VFxeHoiiu0cdVnVsTu40bN3L33XdTrVo1FEVhxYoV/3hMXFwcLVq0QK/XU7duXRYuXFjucQohhBCiZIYOHYqiKK5HYGAgd955J/v27XN3aFfVrl07kpOT8fX1dXcoZcKtiV1+fj5NmzblvffeK9H+J0+epHfv3nTp0oWEhARGjhzJE088wU8//VTOkQohhBCipO68806Sk5NJTk5m/fr1aDQa7rrrLneHdQWLxYJOpyuT+eMqC7cmdj179uT111/nvvvuK9H+CxYsIDIyklmzZtGgQQOGDx9Ov379eOedd8o5UiGEEEKUlF6vJywsjLCwMJo1a8bYsWM5c+YMFy5cuGrTZ0JCAoqicOrUqWuW+frrrxMSEoKPjw9PPPEEY8eOpVmzZq7Xd+7cSbdu3QgKCsLX15dOnTqxe/fuYmUoisL7779Pnz598PLyYurUqVfEk56ezsCBA6levTqenp40adKEr776qlg5nTt3ZsSIEbz00ksEBQVRr149Jk2adKM/tjJRpeax27p1K127di22rUePHowcOfKaxxQVFVFUVOR6npOTA+BanqU8fPDxaOLte/CzBdLN0q1cziFK7/L9Lq/7Lq6P3JfKR+6J+1ksFhwOB3a7HbvdDjjnSys021AXWSq8dsmgVZf4nA6HwxU7QF5eHosXL6Zu3br4+/sXu54////P2/66/csvv2Tq1KnMmzeP9u3bs3TpUt5++20iIyNd+2RnZzNkyBBmz56Nw+Hg7bffplevXhw5cgQfHx9XfBMnTuSNN97g7bffRqPRcOLEiWLnLigooEWLFvznP//BaDSyevVqhgwZQmRkJLfccournEWLFjFq1Ci2bNlCXFwczz77LO3ataNbt+v73rfb7TgcDiwWyxXz2JXms1ilEruUlBRCQ0OLbQsNDSUnJ4fCwkLXBH9/Nm3atKtm0WvXri23+YH2Wo+zy5hN7aJsFn2wgWpRsqZfZbJu3Tp3hyCuQu5L5SP3xH00Gg1hYWHk5eVhNpsBKDTbaPv2NrfEs3X0rRh0JZs012KxsGrVKoxGI+DsdhUWFsaSJUvIy8ujoKAAgNzcXNeEvvn5+YAzCczJycFkMuFwOFyVMXPmzOGhhx6ib9++ALzwwgusWbOG/Px81z6tWrUqFsdbb73FsmXLWLNmDXfeeadre9++fV3lAFfE4+Pjw7Bhw1yvP/zww6xatYovv/yS+vXrA2C1WmnYsKGrYunBBx/ko48+Ys2aNbRp06ZEP6e/MpvNFBYWsnHjRqxWa7HXLsdYElUqsbse48aNY/To0a7nOTk51KxZk+7du7vedGVNteIse/Le57ReYVfWb8TkDaVD3yhUahmE7E4Wi4V169bRrVs3tFqtu8MRl8h9qXzknrifyWTizJkzeHt74+HhAYC6yH01qD5GHzx1JUsZtFotnTt3Zv78+QBkZmby/vvv079/f7Zt2+aqVPHx8XF9D3t5eQHg7e2N0WjEw8MDRVFcrx8/fpznnnuu2Pd227Zt+eWXX1zbUlNTGT9+PL/++itpaWnYbDYKCgpIT0+/4rg/P/9rPDabjWnTprFs2TLOnTuH2WymqKgIo9HoOk6j0RAbG4vRaMThcJCbm0v16tXJzs6+7tzCZDJhMBjo2LGj655fdjl5LYkqldiFhYWRmppabFtqaipGo/GqtXXgbOfX6/VXbNdqteX2C+vuB55j5fxP2eJlJsNrMwd/605uaiE9hjXG4KMrl3OKkivPey+un9yXykfuifvYbDYURUGlUrlqtTx1GraOvhUfo0+FLylWmqZYRVHw9vYmJibGta1Vq1b4+vryySef0L17d9d+l6/DZnO2bF2+3svb/3ydf95++fg/7/Poo4+Snp7O7NmzqV27Nnq9nrZt22KxWIod5+Pjc0W5fy5/xowZzJkzh3fffZcmTZrg5eXFyJEjryhHp9OhUqlcTcGKouBwOK773qhUKhRFuernrjSfwyqV2LVt25bVq1cX27Zu3Tratm3rpoiu7RZzGFu8kjjhlYU6KI3ORxWWTYun5zNNCK7p888FCCGEEH+iKAoGnRpPnabKrRV7OYkrLCwkODgYgOTkZPz9/QHn4Im/U69ePXbu3MnDDz/s2rZz585i+2zevJn58+fTq1cvAM6cOcPFixdLHevmzZu55557eOihhwBn37ejR4/SsGHDUpflDm59Z+Tl5ZGQkOC6oSdPniQhIYGkpCTA2Yz655v49NNPc+LECV566SUOHz7M/Pnz+frrrxk1apQ7wv9bvbpPponJgk1RyAv6jnSVjdwME8tn7OLYztR/LkAIIYSoooqKikhJSSElJYVDhw7x/PPPk5eXx913303dunWpWbMmEydO5NixY6xatYpZs2b9bXnPP/88n3zyCYsWLeLYsWO8/vrr7Nu3r1gtYnR0NIsXL+bQoUNs376dwYMHX7M17+9ER0ezbt06tmzZwqFDh3jqqaeuaC2szNya2MXHx9O8eXOaN28OwOjRo2nevDmvvfYa4MzmLyd5AJGRkaxatYp169bRtGlTZs2axccff0yPHj3cEv/fCYqOpb3V2W6f5XOERYGZnPNwYLXYWfvJAbYsP47d7nBzlEIIIUTZ+/HHHwkPDyc8PJw2bdqwc+dOli1bRufOndFqtXz11VccPnyY2NhY3nzzTV5//fW/LW/w4MGMGzeOMWPG0KJFC06ePMnQoUOL9UX75JNPyMzMpEWLFgwZMoQRI0YQEhJS6thfffVVWrRoQY8ePejcuTNhYWHce++9pS7HXRSHw/Gvyi5ycnLw9fW9oQ6OJWGxWFg/7UFmVD/IBY0GdWofstLbMUDvTa00Z1+CWo0C6PZYIzy8pA9LRbBYLKxevZpevXpJv6FKRO5L5SP3xP1MJhMnT54kMjLSlbzY7XZycnIwGo1Vrim2PHTr1o2wsDAWL17s1jjK6r5c7Z5fVprcRd4Z5aig7v3caXIOWfY1xqHT21lqziOrqRGNVkXSgQy+eTOejPP5bo5UCCGEqLwKCgp4++23OXDgAIcPH2bChAn8/PPPPPLII+4OrdKRxK4cqb28aWnyQ+NwkGHIAY/zAHx0OhWf3tXxDtCTnVbINzPiOZFwwc3RCiGEEJWToiisXr2ajh070rJlS3744Qe+/fbbKxYtEJLYlTuNrhvd8gsB8PdaR6d6gQBM3HScRo/EUC3aD4vJxpoF+9m56iQO6XcnhBBCFGMwGPj5559JT08nPz+f3bt3c//997s7rEpJErty1vqRsXS1OZO1IuNRdp49Q5d6wZitdkYs30eHJxrQpHMNAHb8cJIfP/wds8n6d0UKIYQQQlyVJHblTGswoC2MpGFRETaVA7vHNtpEBhAV5MX5bBPPL02g3QN16TKkPiqNwomEC3w7YxdZaSVfPkQIIYQQAiSxqxBe1R+gX74zUfPy38S8jYeZM7AZXjo1205kMH3NYRq2r8Z9o1vg6asj43w+30yPJ+lgupsjF0IIIURVIoldBWg5cBgxig9+NhtmbQEm1UG2n8xkVv+mAHy86ST/SzhHWJQv/ce1JjTSSFGBlZVz97JnbRL/shlphBBCCHGdJLGrAGq1mqS8RvTNzQPAM+A3Zm84QqeYEJ7rUgeAl7/dx8HzOXj56blvdAsatAvH4YAty4+z7tODWMw2d16CEEIIIaoASewqSFTLR+lhNaNyOHB4nSLPep4vtp1mdLd6dIwJxmSx89QX8WQVmFFrVXQZUp+OD8agUikc25nK8rd2kZthcvdlCCGEEOVm4cKF+Pn5uZ5PnDiRZs2alejY0ux7M5PEroI06tmbbFUtuhQ4pz7R+m9lXtwxTBYbcx5sRq0AT85kFPL8V3uw2R0oikKTzjXoM7IZHt5aLp7JY9m0nZw/lunmKxFCCCGubejQoSiKgqIo6HQ66taty+TJk7FaSz/jw5gxY1i/fn05RHnzksSuAp3JbsqA3FwA9H7xZJvy+Hzrafw8dXwwpCUGrZrfjl1k5tojrmOqx/jzwLhWBNX0pjDXwv/eSWB/3FnpdyeEEKLSuvPOO0lOTubYsWO8+OKLTJw4kbfeeqvU5Xh7exMYGFgOEd68JLGrQK17PkF1nQd1zGYcKita310s+PU4eUVWGoQbebNfLADvxyWyen+y6zhjoIH7/9OS6Nah2O0ONi45yi9fHMZmsbvrUoQQQohr0uv1hIWFUbt2bZ555hm6du3K999/T2ZmJg8//DD+/v54enrSs2dPjh07ds1y/tq8GhcXxy233IKXlxd+fn60b9+e06dPFztm8eLFRERE4Ovry4MPPkjupQqVfwtJ7CpQRJs2HLTFMDDHOYhCF7iV7EIzi7acAqBP02oMuy0SgDHL9nI09Y83o1anpttjDWl7fx0UBQ5tTmbFO7vJzy6q8OsQQgghSsNgMGA2mxk6dCjx8fF8//33bN26FYfDQa9evbBYLP9YhtVq5d5776VTp07s27ePrVu38uSTT6IoimufxMREVqxYwcqVK1m5ciW//vor06dPL89Lq3QksatgOfnN6WYuxNtuR6W9iNrrOB9uPEGOyfmmfvnO+rSrE0iB2cZTi3eRXfjHm11RFFp0r81dw5ui99SQciKHZW/sJOVktrsuRwghREVxOMBSAOb8in9cZ/cfh8PBzz//zE8//UStWrX4/vvv+fjjj7ntttto2rQpX375JefOnWPFihX/WFZOTg7Z2dncdddd1KlThwYNGvDII49Qq1Yt1z52u52FCxfSuHFjbrvtNoYMGfKv66OncXcA/zadBj5B8pofuDc3jy98jWiDt5J9KobPNp3iha7RaNQq5g1qwd1zN3HyYj6jlybw0cOtUKn++IukVqNA+o1txer395OZnM93s3bTeVB9GrQLd+OVCSGEKFeWAvzea+Cec//3POi8Srz7ypUr8fb2xmKxYLfbGTRoEPfffz8rV66kTZs2rv0CAwOpV68ehw4d+scyAwICGDp0KD169KBbt2507dqV/v37Ex7+x3dfREQEPj4+rufh4eGkpaWVOO6bgdTYVbDQmHrsy2vIgEvNsVrDYRRtOh9vOuGqnQvwcg6m0GtUrD+cxuz1V/Y/8AvxpN/LLYlsGoTd6mDD54f4belRbDbpdyeEEMK9unTpQkJCAseOHaOwsJBFixYVazK9Xp999hlbt26lXbt2LF26lJiYGLZt2+Z6XavVFttfURTs9n/X96LU2LmBp6YlvupNtC8oZLOnAW3IDnLP9eSTTScZ3S0GgMbVfXnjvia8uGwvs9cfo3F1X7o1DC1Wjs5DQ8+nmrBz9Sl2rjzJvl/Okn4+jx7DGmPw1rnj0oQQQpQXrSdZzx3C6OODSlXB9TJaz1Lt7uXlRd26dYtta9CgAVarle3bt9OuXTsA0tPTOXLkCA0bNixx2c2bN6d58+aMGzeOtm3b8n//93/ceuutpYrvZiY1dm7QechjHNRFMCjHOThCa9wJiplPN50kq8Ds2q9vyxoMbRcBwOilCSReyLuiLEWlcMtdkfR8uglavZpzR7JY9kY8F878u0YBCSHETU9RnAmWzqviH2VQ2xYdHc0999zDsGHD2LRpE3v37uWhhx6ievXq3HPPPf94/MmTJxk3bhxbt27l9OnTrF27lmPHjtGggZuapyspSezcwLdaOAcuNOTWIhM1LBZUFKAO3UdekZWPfjtRbN9XejfglogAcousPLV4F3lFV5/gMapZMH1fbolvsIHcDBPLZ+ziWHxqRVyOEEIIUSKfffYZLVu25K677qJt27Y4HA5Wr159RRPq1Xh6enL48GH69u1LTEwMTz75JM899xxPPfVUBURedSiOf9lMtzk5Ofj6+pKdnY3RaCy381gsFlavXk2vXr2u+ob9ae5sGthm8ovdwcxAf6xKDQoPPoeXTsNvL99OgNcfTakXcou4e+4mUnJM9GgUyvuDWxYbTPFnpnwL6z45QNLBDABa9KhFm3vqXHP/f5N/uifCPeS+VD5yT9zPZDJx8uRJIiMj8fDwAJwjPnNycjAajRXfFCuuqazuy9Xu+WWlyV3kneEmnYY+yj7qc29eHnq7A43jLErgGfLNNj7cWLzWLthHz/sPtUCnVvHTgVTe/zXxmuV6eGnpPbwpzbs7h3/v/imJVe/to6jgn+cIEkIIIUTVJomdm3j4GElKqYtOo3BXXj4A2rDtACzacoqLecUnHm5ey5/J9zQCYObaI8QdufbwbZVKod39den2eEM0WhVJB9JZNj2ejPP55XQ1QgghhKgMJLFzoyb1WpHoE8rAS4ModPY9OPzyKLTY+OAqtXIP3lKLgbfUwuGAEV/t4XT63ydqMa3DuP8/LfEO0JOdVsg3M+I5kXChXK5FCCGEEO4niZ0b3TpoMLtMsdSzWGhZaELBjqZmAgCLt50mLdd0xTET+zSkeS0/ckzOwRQF5qsPprgsuJYP/ce1plq0HxaTjTUL9rNz1Ukc9n9V10ohhBDiX0ESOzfS6j0ovFCDDB+9q9bOw74RfG2YLHYWxJ244hi9Rs2Ch1oS5K3ncEouL32zj38a/2Lw0dFnZDOadK4BwI4fTvLjh79jNv19UiiEEEKIqkUSOzdr3aYdB3W1ub2gkGCbDZU9ByKcCd0X20+TmnNlrV2o0YP3H2qBRqWwcl8yH/928h/Po1ar6PhgDF2G1EelUTiRcIFvZ+wi+0JBmV+TEEIIIdxDEjs3a3bvfezKbIpKBQMu19oRh8oPzFY78385ftXjWkcE8Nrdzpm6p605xObjF0t0vobtq3Hf6BZ4+urIOJ/PsmnxnLk0NYoQQgghqjZJ7NxMrVbjbQrknK+Rfjl5aB2gNSdiiXQmeV/tOENyduFVjx1ya236tayB3QHD/283ZzNLVvsWFuVL/3GtCY00UlRg5Ye5CexZm/SPTbpCCCGEqNwksasE2t/Rjb1KAwLtdrrnO0e6eqh+RefvwGyz8941au0UReH1exvTpLovmQUWnlq8C5PFVqJzevnpuW90Cxq0C8fhgC3Lj/PzZwexmkt2vBBCCCEqH0nsKoH6d3TlQFp9CvUq1/qx+oLt5EU5V59YuvPMNWvjPLRqFgxpSYCXjgPnc/jvd/tLXPOm1qroMqQ+tw2IQVEpHN2RyvKZu8nNuLJfnxBCCFFRhg4dyr333ut63rlzZ0aOHOm2eKoSSewqiRoqHxJ9QogtMtPAYkfBgl67Da8gBxab45q1dgDV/QzMG9QctUph+e5zLNpyqsTnVRSF2C41uOeFZnh4a7mQlMuyaTs5fyyzDK5KCCHEv82fk7KySsiWL1/OlClTbricfwNJ7CqJTvfcR7y5OQCDs5xJlSFvA5kRPgAsiz/LmYxr96FrVyeIcT3rA/D6qkNsP5FeqvNXr+fPA+NaEVTTm8JcC/97J4H9cWel350QQgi3CwgIwMfHx91hVAmS2FUSNVu2IjUlnHSjnjvz8/F1qFHb0tEYjuIfomC1O5i74djflvF4h0juaVYNq93Bc/+3+5qDLq7FGGjg/v+0JLpVCHa7g41LjhL3xWFsFvuNXJoQQoh/oaFDh/Lrr78ye/ZsFEVBURROnTqFzWbj8ccfJzIyEoPBQL169Zg9e/bflvXXmr/FixfTqlUrfHx8CAsLY9CgQaSl/bHUZlxcHIqisH79elq1aoWnpyft2rXjyJEj5XW5lYYkdpVIlNGPQ/ra6B1wf24OAIbcdVyobQDg293nOHXx2suIKYrC9PtjaRBu5GKemae/2E2RtXSDIbQ6Nd0eb0Tb++qAAgc3J7Pind3kZxf988FCCCHEJbNnz6Zt27YMGzaM5ORkkpOTqVmzJna7nRo1arBs2TIOHjzIa6+9xn//+1++/vrrEpdtsViYMmUKe/fuZcWKFZw6dYqhQ4desd8rr7zCrFmziI+PR6PR8Nhjj5XhFVZOGncHIP7Q+cHBfPFNMreqjzEoK4tFRm90RYfI88+jWjUt58/bmLPhGG/3b3bNMgw6NR881JK7521i75ksJvzvANP7xpYqDkVRaNGjNoE1vFn3yQFSTuSw7I2d3Pl0E8IifW/wKoUQQlwPh8NBobUQjUWDSlWx9TIGjQFFUUp1jK+vLzqdDk9PT8LCwlzb1Wo1kyZNcj2PjIxk69atfP311/Tv379EZf85QYuKimLOnDm0bt2avLw8vL29Xa9NnTqVTp06ATB27Fh69+6NyWTCw8OjVNdSlUhiV4kE162L7aIn52r7UDs9h9uKVPyqt2HI+5nkGr3hvI0Ve84xvEtdooK9r1lOrUBP5g5sztDPdrBk5xlia/gxqE2tUsdTu1Eg/V5uxeoF+8lMzue7WbvpPKg+DdqF38hlCiGEuA6F1kK6r+rulnNvH7QdT61nmZX33nvv8emnn5KUlERhYSFms5lmzZqV+Phdu3YxceJE9u7dS2ZmJna7s8tQUlISDRs2dO0XG/tHxUZ4uPO7Ky0tjVq1Sv+dWFVIU2wlUy8slL2KcxDEQ5kpAHjkb8Lk60XdWnrsDpiz/u/72gF0jAlmTI96AEz4/nd2nb6+Ua5+oZ70e7klkU2DsFsdbPj8EL8tPYrNJv3uhBBClN6SJUsYM2YMjz/+OGvXriUhIYFHH30Us9lcouPz8/Pp0aMHRqORL7/8kp07d/Ldd98BXFGGVqt1/f9yjePlJPBmJTV2lUyXIUOZveACXT3iaVNYSBRGTjhy8Mj7jeRqTSAJ/rf3PMNvr0vdkL8fIfRMpzr8fi6b1ftTeOaLXax8vgMhxtJXP+s8NPR8qgk7V59i58qT7PvlLOnn8+gxrDEGb931XqoQQohSMGgMrO29Fh8fH7c0xV4PnU6HzVa8r/fmzZtp164dzz77rGtbYmJiics8fPgw6enpTJ8+nZo1awIQHx9/XfHdjKTGrpLxDg3FM9dOok8ICtAv2zltiUfez6Qbw2lWxxuHA979+Z9r7RRFYUa/pkSHeJOWW8SzX+7GbL2+v1QUlcItd0XS8+kmaPVqzh3JYtkb8Vw4k3td5QkhhCgdRVEwaAx4aj0r/FHa/nWXRUREsH37dk6dOsXFixex2+1ER0cTHx/PTz/9xNGjRxk/fjw7d+4scZm1atVCp9Mxd+5cTpw4wffffy9z3P2JJHaVUJOoKOItzXEAfTNT8FZ7orGmojPtJznMmUit2p/MkZR/Tqq89Ro+fLgVPh4a4k9n8vqqgzcUW1SzYPq+3BLfYAO5GSaWz9jFsfjUGypTCCHEzWnMmDGo1WoaNmxIcHAwSUlJPPXUU9x///0MGDCANm3akJ6eXqz27p8EBwezcOFCli1bRsOGDZk+fTozZ84sx6uoWhTHv2wG2pycHHx9fcnOzsZoNJbbeSwWC6tXr6ZXr17F2vhLoig3lzdnTOXZgE8IyjYzuUYzlmkzKPJoSk7wKO5IKmLz4Ux6NQlj/uCWJSpz/aFUHl/krKp+q18sD7SqWepr+jNTvoV1nxwg6WAGAC161KbNPVGoVNf3V11FuJF7IsqP3JfKR+6J+5lMJk6ePElkZKRrBKfdbicnJwej0VjhTbHi2srqvlztnl9WmtxF3hmVkN7HhwCTmcP62gAMvOhsdtWZ9qGyXuRiWCaKAqv3p3DwfE6JyryjQSijusYA8MqK39l3NuuGYvTw0tJ7eFOad3eOLNr902lWvbePogLLDZUrhBBCiOsniV0l1SK2KfH5rbGqFaJN+bTV1UHBgSHvZ/ZpA+naKASAd38+WuIyn7+9Ll0bhGK22nl68S4u5t3YpMMqlUK7++vS7fGGaLQqkg6ks2x6PBnJ155EWQghhBDlRxK7SqrNgIHkZPpy1t85X939F84DYMiLwwEUVHfW2q09mMrv57JLVKZKpfD2gKZEBXlxPtvE8P/bjbUMpi2JaR3G/f9piXeAnuy0Qr55M56Tey/ccLlCCCGEKB1J7CoptU5HqM3KPqUBAHdkHqOmoRqKw4RHwRY22vXcFeucbLE0tXZGDy0fPtwSL52abScymLbmcJnEG1zLhwfGtqZatB8Wk43V7+9n56qTOOz/qi6cQgghhFtJYleJtWnbgd+zmpFvUKN12LnXFAiAIedHLIoRfWQeKgV+PpTG3jNZJS63bogPs/o3BeCTTSf5X8K5MonX06ijz8hmNOlUHYAdP5zkx49+x2yylkn5QgghhPh7kthVYk3uvht7rooTxmAA7k6Ox0PtgcaajLboMP/LL+K+5s4k6p1S1NoB3Nk4nOe61AHg5W/3ceB8yZpz/4laraLjwHp0GVIflUbhxJ4LfDtjF9kXCsqkfCGEEEJcmyR2lZharaa6SmGXpSkOILwwlV6+bQEw5P5EriqYGvXsqFUKcUcusDupdMuGje5Wj04xwZgsdp7+YheZ+SVbzqUkGravxn2jW+DpqyPjfD7LpsVz5tLUKEIIIYQoH5LYVXIdetxJUlYM6X56AO45kwSAvnA3Kms6izNS6NviUq3dutLV2qlVCnMebE6tAE/OZBQyYskebGXYJy4sypf+41oTGmmkqMDKD3MT2LM2iX/Z1IlCCCFEhZHErpKL7tQZTZ6JQx7O+eIaZWyjVXBLwIFH3nrOU43WTT3RqBR+O3aRnadKVyvm66nlgyEtMWjV/HbsIjPXHinT+L389Nw7ujn124XjcMCW5cf5+bODWM22fz5YCCGEEKUiiV0VEGEwsCu/JRa1gt5ayP0mZ5LnlbceHGbeTznqWkmitLV2AA3CjbzZLxaA9+MSWb0/ueyCBzRaNbcPqc9tA2JQVApHd6SyfOZucjNMZXoeIYQQN6eIiAjefffda77euXNnRo4cWaKySrNvVSSJXRXQqW8/snJCORfgnNOufeI6Qj1DwV6AvmAHBy2h3HVLEFq1wpbEdLadSC/1Ofo0rcaTHaMAGLNsL0dT/3kd2tJQFIXYLjW454VmeHhruZCUy7JpOzl/LKtMzyOEEMJ9FEX528fEiRPL5bzLly9nypQp5VJ2VSOJXRVQPbYphoJ89ir1AfAtOEy/sF4AeOesAkXDnLN7GdDaWWv39rqj19WP7aUe9WhfN5ACs40nP48nu7DslwerXs+fB8a1IqimN4W5Fv73zh5+//Ws9LsTQoibQHJysuvx7rvvYjQai20bM2ZMqcozm0s2qC8gIAAfH5/rCfmmI4ldFVHX34+DWc3IM6hRO+z0PJGCVqVFZTmLpiiR3/KNPNSuJjq1ih0nM9iaWPpaO41axdyBLajuZ+BUegGjliZgL4cJho2BBu7/T0uiW4Vgtzv49aujxH15BJvlxlfBEEII4T5hYWGuh6+vL4qiuJ4vWLCADh06FNv/3XffJSIiwvV86NCh3HvvvUydOpVq1apRr169q57n448/xs/Pj/Xr1wNXNq/Onz+f6OhoPDw8CA0NpV+/fsWOt9vtvPTSSwQEBBAWFlZuNYnuIIldFXH7oCEUmTw56RsEQNC5FdwZcScAXjk/YFd58v65PQxq4+x/d721dgFeOj4Y0hK9RsWGw2m8u/5Y2V3En2h1aro93oi299UBBQ5uOs+Kd/aQn31j69cKIcTNyuFwYC8sxF5QUOGPimxVWb9+PUeOHGHdunWsXLnyitdnzJjB2LFjWbt2LXfccccVr8fHxzNixAgmT57MkSNH+PHHH+nYsWOxfRYtWoSXlxfbt29nxowZTJ48mXXr1pXbNVUkjbsDECXjHxGBd0EeuyxNacxavMyp9LU34wd+QG9KQLFlsyJDYfNtkXy1I4n405lsOn6R26KDS32uxtV9mXZ/E0Z/vZc564/RpLov3RqGlvk1KYpCix61CazhzbpPDpByIptlb+yk59OxhEYay/x8QghRlTkKC0ntcjupbjh3vd27UDw9K+RcXl5efPzxx+h0uitee/nll1m8eDG//vorjRo1uurxSUlJeHl5cdddd+Hj40Pt2rVp3rx5sX1iY2OZMGECANHR0cybN4/169fTrVu3sr+gCiY1dlVIg2rVSMqM4eKlOe3q7ltObFAsDocNz9yfKFL58X+p+xncpjZw/bV2APe3qMHQdhEAjFqaQOKFvDK5hqup3SiQfi+3wj/Mk/xsM9/N2s3hrWU7MlcIIUTV0KRJk6smdbNmzeKjjz5i06ZN10zqALp160bt2rWJiopiyJAhfPnllxQUFF/9KDY2ttjz8PBw0tLSyuYC3Exq7KqQzg8PZefsdzlkqElw1nEMWb8wIOJ99l3ch09+HPm+ffn0fDYbOzXl/3acZk9SFnFHL9ClXsh1ne+V3g04eD6HHacyePLzeFY81x4fD20ZX5WTX6gn/V5uxbrPDnJq30XWLzrEhaRc2vWri1otf38IIYRiMBD6ywaMPj6oVBX7e1ExGG64DJVKdUVlg8Vy5SA9Ly+vqx5/2223sWrVKr7++mvGjh17zfP4+Piwe/du4uLiWLt2La+99hoTJ05k586d+Pn5AaDVFv8uUxQFu/3m6Oct35hViFdQEP6FBSTkt8CiUdDZTNx2LIcAjwBstlx0+dvJUkL4JesED7eNAJzz2l1vrZ1WreK9wS0IM3qQeCGfMcv2lstgist0Bg29nm5C694RAOz75Sw/zEmgMK/sljoTQoiqSlEUVAYDKk/PCn8oinLD8QcHB5OSklLsOykhIaHEx99yyy2sWbOGN954g5kzZ/7tvhqNhq5duzJjxgz27dvHqVOn2LBhw/WGXqVIYlfFxEZHk5FTzTWnnfroR/SLcY72CchfBcDME6d4qmMUnjo1+85ms+Hw9VcvB/voef+hFujUKn46kMr7vybe+EX8DUWlcMvdUfR8qglavZpzR7JYNi2ei2fLdl49IYQQFatz585cuHCBGTNmkJiYyHvvvceaNWtKVUa7du1YvXo1kyZNuuaExStXrmTOnDkkJCRw+vRpPv/8c+x2+zVH2N5sJLGrYjoMeQTFamWvyvkG9S48wL2G21AramxFSaiLTnPGUY3jRRddtXY30tcOoHktfybf4+zPMHPtEX45Uv79EKKaB9P35ZYYgw3kppv49s1dHIt3R5dhIYQQZaFBgwbMnz+f9957j6ZNm7Jjx45Sz2sH0KFDB1atWsWrr77K3Llzr3jdz8+P5cuXc/vtt9OgQQMWLFjAV1999bf98m4miuNfNjNsTk4Ovr6+ZGdnYzSW38hLi8XC6tWr6dWr1xVt+Tfqvf+8SG6Ag+c0C/HJt5FT63kmRhWw7vQ68GzBhaBRNNWe56vmXbntzQ3km218MKQlPRqF3dB5//vdfv5vexJGDw0/PN+B2oFX7wdRlkz5FtZ+coAzB51r4LboUZs290ShUpW+WaA874m4fnJfKh+5J+5nMpk4efIkkZGReHh4AM6513JycjAajRXex05cW1ndl6vd88tKk7vIO6MKatW8OaYiIyeNgQCoU5YyMHogABrT7yj2fPaZg8nFxKPtIwF49+djN9w/bsLdDWley48ck5WnFu+iwGy9sQspAQ8vLXcNb0rzbs75+Xb/dJpV7+2jqKDsV8UQQgghqjq3J3bvvfceEREReHh40KZNG3bs2PG3+7/77rvUq1cPg8FAzZo1GTVqFCbTv2sx+Vb9H0RtNrHb2hQ74GVOo+EJC9H+0VjtZow53+NQtLx6YBtP3BaJj17DoeQcfjqQckPn1WvULHioJcE+eg6n5PLSN/sqZNJKlUqhXd+6dHusIWqtiqQD6SybHk9Gcn65n1sIIYSoStya2C1dupTRo0czYcIEdu/eTdOmTenRo8c155L5v//7P8aOHcuECRM4dOgQn3zyCUuXLuW///1vBUfuXmqNhjC7jTMZMVwMcM5pZ9s9h0H1BwHgZ9oGDjsbcr1Qa+HRDs5au3d+PnrDtXahRg/mD26BRqWwcl8yH/124sYuphRibgmj739a4h2gJzutkG/ejOfkvosVdn4hhBCisnNrYvf2228zbNgwHn30URo2bMiCBQvw9PTk008/ver+W7ZsoX379gwaNIiIiAi6d+/OwIED/7GW72bUtmNnbDYdRzxqAGDI+YU7A7rgo/OhwJyBIX8TNpUXUw5t4/EOkfh4aDiamseq/Tc+8W/riAAm3N0QgOlrDrPpWMUlV8G1fHhgbGuqRfthMdlY/f4+4lefxFGO07AIIYQQVYXbJig2m83s2rWLcePGubapVCq6du3K1q1br3pMu3bt+OKLL9ixYwe33HILJ06cYPXq1QwZMuSa5ykqKqKo6I/1R3NycgBn5+CrTYxYVi6XXV7niOnaDc2vv7KnoDlttCfQWUyY4r7nnqh7+OLwF4SbfuGEd0eWXbAxqZ6dx9rVZvaGRN79+Sjd6gehvo7BB382oGU1Es5k8u3u8zz/1W6WP30rNfxvfALLktAaFHo914gt357g4G/JbP/+JKmnc+gypB5avfqax5X3PRHXR+5L5SP3xP0sFotzbVi73TVx7uWuL5e3i8qhrO6L3W7H4XBgsVhQq4t/l5Xms+i2xO7ixYvYbDZCQ4uvQRoaGsrhw4evesygQYO4ePEiHTp0wOFwYLVaefrpp/+2KXbatGlMmjTpiu1r167FswLWvSvPRYX9TYVcyKrO+VAvIlLzsB39gGDlSRQUcguOoy46QaE+ihd/+oZOFm881WoSL+QzdfGPtAq+8RqutlrY4aXmTL6FIR9s5IVGNnTXzqvKnjf4N9aSeUDPqb3pLE78jaAWhWi8/v7abpaFnm82cl8qH7kn7qPRaAgLCyMvLw+zufgk7bm5Mq9nZXSj98VsNlNYWMjGjRuxWosPTvzrkmh/p0otKRYXF8cbb7zB/PnzadOmDcePH+eFF15gypQpjB8//qrHjBs3jtGjR7ue5+TkULNmTbp3717u052sW7eObt26ldt0Aaf8/fhywy/sVdcjgl0YLYcZ0LAzO8/uZNP5TdQqWMlJ/Qh+9Q5i9m23k+p7grd/Ps6mTB/++1A7NGWwVNctt5m49/2tnM23sLmoJjP6Ni6TGcpLI/VkDus+PkRBjpnMeD/ueLQ+Ner7X7FfRdwTUXpyXyofuSfuZzKZOHPmDN7e3q6pLxwOB7m5ufj4+FT471lxbWV1X0wmEwaDgY4dO151upOScltiFxQUhFqtJjW1+KSzqamphIVdfb618ePHM2TIEJ544gnAuVBwfn4+Tz75JK+88spV54/R6/Xo9fortmu12gr5hVWe54nu2An9yh84nNmU270S8Mm3Yd/0CYN7DWbT+U3YCg+AMZd0dShr0k7z2G11+GzLaU6mF7D6wAX6tqxxwzHUCtLy3qCWPPTJdlbsTaZZLX+GXppipaLUiAmk/39bs+aD/aSezGHN/N9pe39dmnWtedUPWUXde1E6cl8qH7kn7mOz2ZxLiKlUru+2y818l7eLyqGs7otKpUJRlKt+7krzOXTbO0On09GyZUvWr1/v2ma321m/fj1t27a96jEFBQVX/NAut0P/y+ZZdon08qSw0JdTvgEAqNO+5tagNtQ21qbQWkD1gh8AmH78GN56DU91qgPAnA3HsNrKpo9G2zqB/LdXAwCmrDrE9hPpZVJuaXj56bl3dHPqtwvH4YAt3x7n54UHsZptFR6LEEII4S5uTflHjx7NRx99xKJFizh06BDPPPMM+fn5PProowA8/PDDxQZX3H333bz//vssWbKEkydPsm7dOsaPH8/dd999RUfDf4tO/fqDw8FuW1PsCnha0rBs28aD9R4EwLdoHzgcnLCFsiczlYfb1ibQS8fp9AKW7zlXZnE81j6Ce5pVw2Z38Nz/7SY5u7DMyi4pjVbN7UPqc9uAaBSVwtHtqSyfuZvcjH/XPIdCCFHZDR06lHvvvbfMyz116hSKopCQkFDiYyZOnEizZs3KPBZ3cWtiN2DAAGbOnMlrr71Gs2bNSEhI4Mcff3QNqEhKSiI5+Y/pOV599VVefPFFXn31VRo2bMjjjz9Ojx49+OCDD9x1CW4X3qgxnvm5nEmP4aK/s8nZsmse99S9B4PGwIWCcwQU/AyKivGH9uCp0/D05Vq79cewlFGtnaIoTL8/lgbhRi7mmXn6i90UWSu+tkxRFGK71KTPC83w8NJyISmXZdN2cv5YVoXHIoQQ/0adO3dm5MiRV2xfuHAhfn5+5XrumjVrkpycTOPGjUt8zJgxY4q1HlZ1bm+kHz58OKdPn6aoqIjt27fTpk0b12txcXEsXLjQ9Vyj0TBhwgSOHz9OYWEhSUlJvPfee+X+RqnsYoICsVr1HDFUA8CQF4chG/rU6QNAlD0BgF2mAM4X5vHQrbUJ8tZzNrOQb3adLbM4DDo1Hw5piZ+nlr1nsnhtxQG3NZHXqOfPA+NaEVTTm8JcC/97Zw8HfzvPv7TFXgghqrS/jgy+FrVaTVhYGBpNyYcQeHt7ExgYeL2hVTpuT+zEjes8eAjY7ewtaIFZq6C1mzBtWOZqjj2T9Tuept9xKDrGH9iOQafm2c7OWrt5G45jtpbdfEg1AzyZO7A5KgWWxp/h/3YklVnZpWUMMnD/f1pSt1UIdruDTV8nknVA/6/tjymEEJXVzp07CQ4O5s033wT+aB79+OOPiYyMdI0S/fHHH+nQoQN+fn4EBgZy1113kZiY6Crnr02xcXFxKIrC+vXradWqFZ6enrRr144jR464jvlrU+zOnTvp1q0bQUFB+Pr60qlTJ3bv3l0sXkVR+Pjjj7nvvvvw9vamZcuWfP/99+X00ykdSexuAn41a2EsyCU9qwbnA70AcJz4mDq+dWgT1ga7w04j+zYAfsrWU2C1MqhNLUKNes5lFfJ1/Jkyjee26GD+06M+ABO/P8Cu05llWn5paHVquj/eiLb31QEF8s/oOHvIffEIIcT1cjgcWM02LEUV/yjPP4g3bNhAt27dmDp1Ki+//LJr+/Hjx/n2229Zvny5K1HLz89n9OjRxMfHs379elQqFffdd98/Tgz8yiuvMGvWLOLj49FoNDz22GPX3Dc3N5dHHnmETZs2sW3bNqKjo+nVq9cV89RNmjSJ/v37k5CQQLdu3RgyZAgZGRnX/4MoI1VqHjtxbY1q1mJrZjb7lDpEsBevooMUHTrBwPoD2Z6ynczcvWi0KVi1YUw/vIPJjdvxbOe6TPj+AO/9cpx+LWvgoS27AShPd4pi/7ksVu9P4ZkvdrHy+Q6EGD3++cByoCgKLXrUJi0ph8RdF7h4Jo+opqH/fKAQQlQiVrOdpa/tdcu5n5zd6W9X9rle3333HQ8//DAff/wxAwYMKPaa2Wzm888/Jzg42LWtb9++xfb59NNPCQ4O5uDBg3/br27q1Kl06tQJgLFjx9K7d29MJtMV88UB3H777cWef/jhh/j5+fHrr79y1113ubYPHTqUgQMHYrfbGT9+PB988AE7duzgzjvvLPkPoBxIjd1N4raHh6LYrBzOaU6OtwYVDiwbP6ZTzU6EeYWRXZRFY/smAL5MNWF3OBjQuibhvh4kZ5tYurNsa+0UReGtfk2JCfUmLbeIZ7/cXaZNvtcjINy50khmSsln8BZCCFE+tm/fzgMPPMDixYuvSOoAateuXSypAzh27BgDBw4kKioKo9FIREQE4Bxs+XdiY2Nd/w8PDwcgLS3tqvumpqYybNgwoqOj8fX1xWg0kpeXd8U5/lyml5cXRqPxmmVWJKmxu0l4+vvjX5hPhtqfpOq+NM5LR5O+DJV5CgPqDWD27tl4FB1E0eSTrw7g05O/80RUE57rUpdXV/zO/LjjDGhds0xr7bz0Gj4Y0oo+8zYRfzqTKSsPMuXeko9UKmv+4c5maknshBBVkUanYsDkpvj4GCt8gmKNruTnMxqNZGdnX7E9KysLX19f1/M6deoQGBjIp59+Su/eva+YhNfLy+uKMu6++25q167NRx99RLVq1bDb7TRu3PgfB1f8uezLE9dfq/n2kUceIT09ndmzZ1O7dm30ej1t27a94hx/jVdRlEqxhq/U2N1EmtZ3ThK829IEuwIG6wWKNv1G3+i+6FQ6ErOOEWNz9rWbe/o8AP1b1aS6n4HUnCL+b3vZD3SIDPJi9oPNUBRYvO10mffnKw3/MGeNXVZqIXa7DKAQQlQtiqKg0anR6iv+UZqlsurVq3fFYAOA3bt3ExMT43oeFBTEhg0bOH78OP379//Hhe7T09M5cuQIr776KnfccQcNGjQgM7Ps+0xv3ryZESNG0KtXLxo1aoRer+fixYtlfp7yIondTaTd4IdQWcycyazPhcBLc9olvI+/hz89I3sCUEdJBIeVVEJZm3IKnUbF8NvrAjA/LpHCclip4fb6oYzq6vwwv7rid/adzSrzc5SET5AHqBzYLHZy0yt+AmUhhPg3eOaZZzh69CgjRoxg3759HDlyhLfffpuvvvqKF198sdi+ISEhbNiwgcOHDzNw4ECsVus1y/X39ycwMJAPP/yQ48ePs2HDhmJrwZeV6OhoFi9ezKFDh9i+fTuDBw/GYDCU+XnKiyR2NxGtwZNgSxEWi4FEXQgAhoI4LClZDGwwEIA9qVupbk0A4PWjhwDo17IGNQMMXMwr4ottp8sltuFd6tK1QShmq52nF+/iYl5RuZzn76hUClovZzV5xvn8Cj+/EEL8G0RFRbFx40YOHz5M165dadOmDV9//TXLli276sCCsLAwNmzYwP79+xk8eDA229UrGFQqFUuWLGHXrl00btyYUaNG8dZbb5V5/J988gmZmZm0aNGCIUOGMGLECEJCQsr8POVFcfzLJvXKycnB19eX7OxsjEZjuZ3HYrGwevVqevXqVaGLaMd/vYSVBw8T5H+CYfk/oDfbyY95C69BTzJ49WD2XdjHbbX7sNzxADjsbGhVm4bGQL6OP8NL3+wj0EvHby93wVNX9t0vc0wW7n1vMycu5HNrVABfPN4Gjbri/rawWCwsfmMDhclabr03ipZ3RlTYucW1ueuzIq5N7on7mUwmTp48WWwON7vdTk5ODkZjxfexE9dWVvflavf8stLkLvLOuMk0v78f6iIT6Vm1SQ50Vh07Tn2Gw+5gUP1BABxJ24av5SgoKl49uAuA+5tXp3agJ+n5Zj7fWj61dkYPLR8OaYmXTs22ExlMW3O4XM7zd7Tel2rskqXGTgghxM1HErubjFqjoZrDjsOh5oCjNgBe5kOY9h2le+3uBHoEklaYRhePkwBsK/DlgsmERq1ixO3RAHzwayJ5Rdfu53Aj6ob4MKt/MwA+2XSS/yWcK5fzXIvWx5nYZSbLyFghhBA3H0nsbkJtL02ueCi3Bdk+GhQcWDd/ilat5YF6DwBQkHcAvfU8dkXPhEPOkbL3NKtGVJAXmQUWFm05VW7x3dk4jOFdnAM2Xv52HwfOXzksvrxovJ19NzKT83HIyFghhBA3GUnsbkINuvVAW5hPXn4Q53x9ANBmfIM938wDMQ+gUTTsubCHTh7OJteVGWqKbDY0ahUvdHXW2n248QS5pr8fen4jRnWLoXO9YEwWO08t3kVmfskWeL5RGoMDtUbBarGTk26qkHMKIYQQFUUSu5uQoijU0moBhT2m+tgU8LBdxPTbr4R4hnBH7TsACHckobZlYlb5MPOos6/dXbHVqBviTXahhc82nyq3GNUqhdkDmlM70JOzmYWMWLIHWwXUoCkq8A1xzmcn/eyEEELcbK4rscvKyuLjjz9m3LhxrgVvd+/ezblzFdtfSlxbx7v7gMPB6ZxYLgTpALDt+xDANYhiQ9LPtNY6a+0WJeficDhQqxReuMNZa/fRbyfILiy/WjtfTy0fDGmJQavmt2MXeeunI+V2rj/zv7y0mCR2QgghbjKlTuz27dtHTEwMb775JjNnziQrKwuA5cuXM27cuLKOT1yn2m1uxaMgD7PZk9O6QAAMhXGYz2bQPKQ59fzrYbKZaOuZiWIvJEcJ5Msk5yjV3k3CiQn1Jtdk5ZNNJ8s1zvphRt56wLne3oJfE1m1L7lczwd/rEAhc9kJIYS42ZQ6sRs9ejRDhw7l2LFjxeZZ6dWrFxs3bizT4MSNifJx9q9LyG2KSadC4zBj3rAURVEYWN85YfEvST8RrSQC8PZJ55JiKpXiWinis00nySoo3/5vd8VW46mOUQD855u9HEnJLdfzXa6xk6ZYIYQQN5tSJ3Y7d+7kqaeeumJ79erVSUlJKZOgRNnoMuBBsNtJzYsmJdiZhCtJi3BY7fSK6oVRZ+Rc3jnuD7CCw8Z5Ryi/XXA2p/doFEaDcCO5RVY+/q18a+0A/tOjHu3rBlJgtvHU4vhybQK+XGOXmSIjY4UQQtxcSr28gF6vJycn54rtR48eJTg4uEyCEmUjuF59vAryyPc2csxWjQiO42k9hGnPYQytG3J/9P0sPLCQQxe2EqZ4kKKuz6Qj+/k5uDoqlcLIrtE8tXgXn20+SXSoN6pSLAJ9Pe6KrcbB8zmcSi9g4IdbebpTnVItPP1PbDYbJ3LgziADKo2C1WwnN8OEMajqrAEohBBVVefOnWnWrBnvvvtumZW5cOFCRo4c6eoWVlb7VmWlTuz69OnD5MmT+frrrwHnCMykpCRefvll+vbtW+YBihtTLySY3QVFHMhqTmvjKfxyrFi3fgqtZzKg3gAWHVjElvNbGNLsdt7OgN/NwSTmZVPH25fuDUNpVM3IgfM5vLAkoULjPpicy4hyOaeG9u2y8Q/1JP1cPhnn8yWxE0KIMjR06FAWLVp0xfbt27fToEGDMj3XgAED6NWrV5mWWdWVOrGbNWsW/fr1IyQkhMLCQjp16kRKSgpt27Zl6tSp5RGjuAGdhzzC7vffJ8tUnZQQL/xystFmLceWM5Uaxhp0qtGJuLNxWE2JeFt15GkieeXgTpbc0hVFUZh2fxNmrT2K2Wov1zgd/NEkeiG3iMQLzv5vMaHeBHjpyuQciWl5XMgzs+dMFlHhXs7ELjmfiNigMilfCCGE05133slnn31WbFtwcDBqtbpMz2MwGDAY5I/zPyt1Yufr68u6devYvHkze/fuJS8vjxYtWtC1a9fyiE/cIGN4NXwL8sj29uX3vCiiVXvwsKeT/+t6vO7uxcD6A4k7G8f3id/Tr149FubAxlxvssxm/HQ6Ymv4seixWyo87onfH2DhllOczzIxf3BL6oZ433CZb689zJwNiRxNzaNluB8gU54IIUR50Ov1hIWFFdv216bYiIgInnzySY4fP86yZcvw9/fn1Vdf5cknnwTg1KlTREZG8u233zJ37ly2b99OdHQ0CxYsoG3btsCVzat79+5l5MiRxMfHoygK0dHRfPDBB7Rq1coVx08//cTIkSM5c+YMHTp04LPPPiM8PLz8fygVpFSDJywWCxqNht9//5327dvz7LPP8tJLL0lSV8k1rh0JwPGspqQF6QGw//4pDoeDW6vdSoQxgnxLPg088tFaU7CrPJh0aLs7Q+aV3g24JTKAvCIrTy2OL5NVMGIuJYfH0vIICPcCZGSsEKLqcDgcWIpMWEwV/3A4ymeg2axZs2jVqhV79uzh2Wef5ZlnnuHIkeJzmr7yyiuMGTOGhIQEYmJiGDhwIFbr1dczHzx4MDVq1GDnzp3s2rWLsWPHotVqXa8XFBQwc+ZMFi9ezMaNG0lKSmLMmDHlcm3uUqoaO61WS61atbDZbOUVjygHtz38CFvemoFJ40+K3odwivA0/4rl1EV0kcE8WP9Bpu+YzvJj39ItdDCrTWEsv+jgTZsdndo9i5No1SreG9SCu+duIvFCPi9+vZcFD7VEpbr+wRQxoX8kdn6XpzxJKcBhd6DcQLlCCFERrEVFfD7iCbece8Sib9D+aYqzf7Jy5Uq8vf9oaenZs+dV9+vVqxfPPvssAC+//DLvvPMOv/zyC/Xq1XPtM2bMGHr37g3ApEmTaNSoEcePH6d+/fpXlJeUlMR//vMf12vR0dHFXrdYLCxYsIA6deoAMHz4cCZPnlzi66oKSv2t/corr/Df//7XteKEqPw8fH0JNBUCsC+jEYV6FWqHGfMvSwG4p849eGo8OZF9gvtDfVHZsilSGZmbmODGqCHYR8+CIS3RqVWsPZjK/LjjN1RerQBPNIoDk8VOttqBSq1gLbKRmyFrxgohRFnq0qULCQkJrsecOXOuul9sbKzr/4qiEBYWRlpa2jX3udxk+td9Lhs9ejRPPPEEXbt2Zfr06SQmJhZ73dPT05XUXS7vWmVVVaXuYzdv3jyOHz9OtWrVqF27Nl5eXsVe3717d5kFJ8pOs0aN+fl0EqfzG5BaYycRZwtQzi3GYXkGb503fer0YcmRJaw7tZqWujbstPny0dlMRkc7ynTKkVLHXdOPKfc24uVv9zNr3VEaVfelS72Q6ypLrVII84Sz+XD8Qj5+oZ5knHcOoJCRsUKIyk6j1/PwnI8x+hhRqSq2NUWj15dqfy8vL+rWrfuP+/25mRScyZ3dbr/mPpe/j/66z2UTJ05k0KBBrFq1ijVr1jBhwgSWLFnCfffdd83zlVczs7uUOrG79957yyEMUd7aDhrMhkkTsesMnLEHEEEBnrbDmOJ/x9C2KQPrD2TJkSXEnY1jZpcBDDlaRJYqkOXnE+lb/Z8/nOVpQOta7DubzZfbk3jhqz18P7wDEUFe/3zgVYQbHJzNVziamkt0uJcrsYtoIiNjhRCVm6IoaPUeaD08Kjyxq0piYmKIiYlh1KhRDBw4kM8++8yV2P0blDqxmzBhQnnEIcqZWq8n1GohWafn4IWmNPZNwT/binXbImj7NlF+Udwafivbkrfxe9p26ighJNKIGcfdn9gBTLi7EYeSc9idlMVTi3ex/Nl2eOlL/fYl3NP5l9mR1DzaVPODXTIyVgghbgaFhYX85z//oV+/fkRGRnL27Fl27tz5r5tj97pT/l27dvHFF1/wxRdfsGfPnrKMSZSTNrfeCkByUR3S/J1Nj7rc77BmOvvfXV4/dvmx5YyKjACHndP2ULZnuH+pOJ1GxfsPtSTYR8+R1Fxe+nbfdVWfX1pNjKMpufiHXRoZe14SOyGEqOrUajXp6ek8/PDDxMTE0L9/f3r27MmkSZPcHVqFKnWVR1paGg8++CBxcXH4+fkBkJWVRZcuXViyZIksK1aJNbnnPlbu2InVw8CpvOrUUR1Gb88gP24dmvv60KlGJ6p5VeN8/nnU1jSCbEVc1NRnwqF9/Ng+7J9PUM5CjR68P7gFD364jVX7kmlaw5cnO9b55wP/5HKNXeKFPHxCncltRkoBDod7+xIKIcTNYuHChVfdHhcXV+z5qVOnrtgnISHB9f+IiIgr/oD38/Mrtm3o0KEMHToUAJ1Ox1dffXXNuP6872X33nuv9LF7/vnnyc3N5cCBA66lQQ4ePMgjjzzCiBEj/vaHKtxLrVZTTXGQBBxKi6VJ+EmqpRbhOLgQxz13o1apGVB/AO/seoevDn/Fk3WG8UYq7C0K4LOkJDzUpW/6LHNa6HVnTb7bc47XE46R4m0jOrRkkxfbbTZSPTR46dXkF9nIUNmLjYw1BsoACiGEEFVbqb+pf/zxR37++edi6701bNiQ9957j+7du5dpcKLs3da1O1/+tokspRoZnh5UowiDdSPm4ynoY8K5v+79zE+Yz6GMQ7zU2h/Ps6co0EYwLrGSTW8T66xBnJ9dANkFJT/Opzr1/dPJT7EVGxmbmVwgiZ0QQogqr9SJnd1uv2K4MDiHEF9r+LGoPKLv6Irupx8xe3pz7EI0dTx2YzBZKPh1KfqYkfh5+NEzsicrjq/g66NfM6pmF2ae3IddqQS1dTfIpgnHrvHH4lEEwNHUXBqFXRoZez6f2o0D3RyhEEIIcWNK/W19++2388ILL/DVV19RrVo1AM6dO8eoUaO44447yjxAUfZqe+g5BhzLaESzOgeJPFOAOvn/sBcNR6XXMLD+QFYcX8G6U+tY2+o/PFPPv1L2QTifXch9720mI9/MPc2q81a/2L/tJ9d/ywq2Wv0pNNgAFUdScrmtWiCJuyEjRQZQCCGEqPpKPSp23rx55OTkEBERQZ06dahTpw6RkZHk5OQwd+7c8ohRlLFO99wPDgcFugAyFWfzo8F+BNO2vQA0DGxIs+BmWB1Wvjn6DRqVBq1aW+ketQOMvDfoFtQqLf9LSOXL7ef+dv/GPs6+eDmezr9njqbm/rFmrIyMFUIIcRModWJXs2ZNdu/ezapVqxg5ciQjR45k9erV7N69mxo1apRHjKKM1WjZEkN+HgBHkmPJ8NWiALadn7v2GdRgEABfH/0ai83ijjBLpG2dQP7by9nf8/VVh9h2Iv2a+7bxd/bLy/f2B+B0RgGGIOfah5nJ+ZWyVlIIIYQojeuax05RFLp168bzzz/P888/T9euXcs6LlHO6vgZAUjMjeZCoHOpGH3+/7BccA5E6FqrK0GGIC4WXmR90nq3xVkSj7WP4N5m1bDZHQz/v90kZxdedb92QZFgL8Lh4YHRU4PDARewoVIpWIps5GUWVXDkQgghRNkqdWI3YsSIqy7mO2/ePEaOHFkWMYkK0GXgYLDbsXp4kVnoi1WtoHNkUhS3BgCtWssDMQ8A8H+H/8+dof4jRVGYdn8sDcONXMwz8/QXuzFZbFfs56PzQm9NBcDX1/nWP34xH99Q56zFGbIChRBCiCqu1IMnvv32W77//vsrtrdr147p06fz7rvvlkVcopwF1qmLd0Eued6+HDrbgprVL1I9pQiOLMZhvx9FpfBAzAN8tO8j9qTtYcKWCehUOneH/beaNrNyVpXMYbOdfl9/S9s6xUe52u12jDnnuRD4BA5PZ+J3NDWXFuGeZCbnk5mcT+1GMjJWCCFE1VXqxC49PR1fX98rthuNRi5evFgmQYmK0SAsnJ15BZyx1STbW0t1ijDYNlF06BwejWoQ7BlMt4hurDm5huXHlrs73JIxgg44bYXTR66+i86zNXmGUACOpOTSNTyIRC7IAAohhLhJTJw4kRUrVhRbyeLfotSJXd26dfnxxx8ZPnx4se1r1qwhKiqqzAIT5a/Tw4+yc+4c7Do96Rk1KPA4iqfJQuHGJdBoDAAvt36ZGP8YimxVp/9Z/KlMNh+/iFoFfVvUJNzPOUBi45mNHMw4iMZymlzPmoCZo6m5+MfWBqQpVgghylJKSgrTpk1j1apVnD17Fl9fX+rWrctDDz3EI488gqenp7tDvCmVOrEbPXo0w4cP58KFC9x+++0ArF+/nlmzZkkzbBXjHRKMX2EeWd6+/H4ulmr1k6hzugDVhaXYC15A5akl0BDIE02ecHeopeJo6mD4/+1h1f5k1m7Ws/L5DoQYPTCoDBzMOIjaco5cox8epJGcbUIb4Bw8cnlkrKwZK4QQN+bEiRO0b98ePz8/3njjDZo0aYJer2f//v18+OGHVK9enT59+lxxnMViueoiCKLkSj144rHHHmPWrFl88skndOnShS5duvDFF1/w/vvvM2zYsPKIUZSj2Dp1AEjThmDSqHAAnvajFG7d7d7AboCiKMzoF0tMqDdpuUU88+VuzFY7Ub7OGmWNOQl0WgJ9nL88Uh02FJWC2WQjP6vq1EwKIURl9eyzz6LRaIiPj6d///40aNCAqKgo7rnnHlatWsXdd98NOH9fv//++/Tp0wcvLy+mTp0KwP/+9z9atGiBh4cHUVFRTJo0CavV6io/KyuLJ554guDgYIxGI7fffjt79+69ZjyJiYlERUUxfPjwm35qq+ua7uSZZ57h7NmzpKamkpOTw4kTJ3j44YfLOjZRATo8/CiK1YJDoyUltREZfs5kxxG/2M2R3RgvvYYPh7TCx0PDrtOZTFl5kLp+dQFQW1PBYcHL6KyZO34xD78Q50TN0s9OCFFZORwOHGY7drOtwh+lSYbS09NZu3Ytzz33HF5eXlfd588tIxMnTuS+++5j//79PPbYY/z22288/PDDvPDCCxw8eJAPPviAhQsXupI+gAceeIC0tDTWrFnDrl27aNGiBXfccQcZGVeua75v3z46dOjAoEGDmDdv3k3fKnNDC4AGBwfz66+/UlBQwK233oq/v39ZxSUqiM7LiyBTIRe8texPiaFaswMEZlnQm37AkjwNbbiPu0O8bhFBXsx+sBmPL4pn8bbTNAjzwgMPTJhQW1KweTqT2KMpubQN9yIzpYCM5HxqychYIUQl5LDYyX/7AO7487Pa5HYoOnWJ9j1+/DgOh4N69eoV2x4UFITJZALgueee48033wRg0KBBPProo679HnvsMcaOHcsjjzwCQFRUFFOmTOGll15iwoQJbNq0iR07dpCWloZe7+xKM3PmTFasWME333zDk08+6Spry5Yt3HXXXbzyyiu8+OKL1/8DqEJKXGP35ptvMn78eNdzh8PBnXfeSZcuXejduzcNGjTgwIED5RKkKF8tY5sCkGXwx2HVYFUraB1ZFP2y2s2R3bjb64cyqmsMABNXHsaXEAA0lrPkGZx/gR5JzcX/8tJiMoBCCCHKxY4dO0hISKBRo0YUFf3R7aVVq1bF9tu7dy+TJ0/G29vb9Rg2bBjJyckUFBSwd+9e8vLyCAwMLLbPyZMnSUxMdJWTlJREt27deO211/41SR2UosZu6dKlvPzyy67n33zzDRs3buS3336jQYMGPPzww0yaNImvv/66XAIV5af1wEGsnfAadp2eU2dvwTd4I9VTTHD8Sxy2B1DU19ViX2kM71KX/eeyWXcwlbTsMPBNQm05S7ZnfaCAIym5+DePBJwDKIQQojJStCq8RjfCx+iDSlWxv5cVbcnPV7duXRRF4ciR4nNOXZ45w2AwFNv+1+bavLw8Jk2axP33339F2R4eHuTl5REeHk5cXNwVr/v5+bn+HxwcTLVq1fjqq6947LHHMBqNJb6GqqzEd+rkyZPExsa6nq9evZp+/frRvn17AgICePXVV9m6dWu5BCnKl1qrJfzSerAHs2qQZXTm+572zZj2n3FnaGVCpVJ4u39TavgbKCx0zl+nsZzF5O2HokBmgQX8nJMvZ5yXNWOFEJWToigoOhUqnbrCH6XplxYYGEi3bt2YN28e+fml/2O5RYsWHDlyhLp1617xUKlUtGjRgpSUFDQazRWvBwUFucoxGAysXLkSDw8PevToQW5ubqljqYpKnNhZrVZXWzbA1q1badeunet5tWrVZILiKuzW9h0AyPPyQV1gJN+gRoUV66Ylbo6sbPh4aOkSE4S9KAy4NDJWrRDi63xPp9isfxoZa3ZnqEIIUeXNnz8fq9VKq1atWLp0KYcOHeLIkSN88cUXHD58GLX62v31XnvtNT7//HMmTZrEgQMHOHToEEuWLOHVV18FoGvXrrRt25Z7772XtWvXcurUKbZs2cIrr7xCfHx8sbK8vLxYtWoVGo2Gnj17kpeXV67XXRmUOLGrU6cOGzduBJzt1kePHqVjx46u18+ePUtgoHQ6r6oa330PmsICUFQcSLqVlBBnwqO5+DW2vJsj0WkQ7oO9yFljp7JdBHsRHpdq5o9fzMc3+NLI2OSb/4MvhBDlqU6dOuzZs4euXbsybtw4mjZtSqtWrZg7dy5jxoxhypQp1zy2R48erFy5krVr19K6dWtuvfVW3nnnHWrXdk4mrygKq1evpmPHjjz66KPExMTw4IMPcvr0aUJDQ68oz9vbmzVr1uBwOOjdu/d11SJWJSXuY/fcc88xfPhwfvvtN7Zt20bbtm1p2LCh6/UNGzbQvHnzcglSlD9FUaipVnESOF4YQH2dggMwcJy8zTvx7tHe3SHesAZhRhw2b7B5o6jz0FjPY7nU1+Noai6dqnmRlVpAZnIBtRrKHylCCHEjwsPDmTt3LnPnzr3mPtfq+tKjRw969OhxzeN8fHyYM2cOc+bMuerrEydOZOLEia7n3t7ebN68uWSBV3ElrrEbNmwYc+bMISMjg44dO/Ltt98We/38+fM89thjZR6gqDgd7uwJQKGnN6q8CNL9L81pt/uLm6LfWXSIFyocWE3OkbFq81lyLvXhPZKaS8DlkbHnpcZOCCFE1VSqeewee+yxayZv8+fPL5OAhPvU6dgJ/cofKPL0ZvepZjRvfJqgTAse5lVkfXcERa9zd4g3xG6387hGx+KiMPA6gcZylhzPpqjI5WhKLv6tnKtwZCQXuDlSIYQQ4vrc0ATF4uYTaTBwGDht96K1DSwaBa01G8+Ex3E49P94fGU3kgC2FDUgCVBbzpLv64O3Oo98s40ib+fHITNF1owVQghRNUliJ4rp1O8BDn/zLWaDF+a8FqSE7KDmeRN61e/uDq3MdLWE8SmXRsaqFEL89JxPN5Fqt6IoUFRgpSDbjJdf1U9khRBC/LtIYieKCW8Si+eihRR4G9lxOpLG7faS5atFZa/6fezC0ooIzLTQwZHCp4DanoViL0Dr44B0OHYxH98QT7JSnUuLSWInhBCiqpHETlwhOsCfvWYb51QGeqSpORKlwXETNEuqbQ4CMy3UUR/FbvFFpc1GbTlHkcE558nR1Fy6hztHxmacz6dmgwA3RyyEEEKUjiR24gqdBw9h7yefYtMbSMvtRedNX+Co+nkd50O8AfC2p6IURYM22zmAwtAYgCMpuQyIqAYJkJFyc89zJIQQ4uZ03YndokWL8Pf3p0+fPgBcvHiRt99+mzfeeKPMghPu4V87AmN+Ljk+vmxP86T5I1+AteifD6zk9AfmQcoedDYTwUUBXPR2TnmS7XkrWjI4fiEP31s9Acg8L4mdEEKIque6Eju73c6LL75IrVq1XIldeno6b775piR2N4mGNWqwLTuXNLUWa/SdaDRad4d0wzzzTlNwai+eJjuxZoUNgMZyBpu/Bz5aFSaLnXxP59SOGckyMlYIIUTVU+IJiv9s+/bt5Ofns3//fpKTk8s6JlEJdBzyCIrNil2rY/vXS90dTpnQh7Un39OZoN5KBuBM7FAUgv3/tGbs5ZGxOTfHUmpCCCGu38KFC/Hz83N3GCV2XYnd6tWr6dq1K82aNWP16tVlHZOoBDyDgvAvdDZH7t6b4N5gykpoA8waDwDacBYAlT0PxZaD2ts56vf4xXyMrjVjpTlWCCFKa+jQoSiKwvTp04ttX7FiRZVsBRkwYABHjx51dxgldl2J3Zo1a7jrrrvo1auXJHY3sdjoegBkaD0w3QyLJms9saqcNXOh9mTsZueoV43lHAUGG+AcGfvH0mI3wTULIYQbeHh48Oabb5KZmVlmZZrN7mlFMRgMhISEuOXc16PUfexSUlJISEigd+/enDlzhtmzZ2O1Wq87gPfee4+33nqLlJQUmjZtyty5c7nllluuuX9WVhavvPIKy5cvJyMjg9q1a/Puu+/Sq1ev645BXF37IUP4depUHFods6ZMRuWwuzukG1YnoC61ScNgyUZXFIJVl4HacpZsQwhg4UhKLg/XqcnJvRfJlBo7IYS4Ll27duX48eNMmzaNGTNmXHWfb7/9ltdee43jx48THh7O888/z4svvuh6PSIigscff5xjx46xYsUK7r//fvLy8ggLC2PevHkAjBw5ktmzZ3Po0CHq16+P2WzG39+f//3vf3Tt2hW73c6bb77Jhx9+SEpKCjExMYwfP55+/fq5zvP999/z4osvcubMGdq2bcvQoUMZOnQomZmZ+Pn5sXDhQkaOHElWVhYAiYmJjB49mm3btpGfn0+DBg145ZVXXGMOLsf+5JNPcvz4cZYtW4a/vz+vvvoqTz75ZDn8tIsrdWK3Zs0aGjVqRI0aNahevTparZZNmzYRHh5e6pMvXbqU0aNHs2DBAtq0acO7775Ljx49OHLkyFWzY7PZTLdu3QgJCeGbb76hevXqnD59ukq1fVclWk8vwswmkrU6LB4Gd4dTJk7Y62NVb0VjcxBh9uI4XFoztiN6TJxKL8CrrTTFCiEqH4fDgcViwWw2o1JdV4PbddNqtaVqRlWr1bzxxhsMGjSIESNGUKNGjWKv79q1i/79+zNx4kQGDBjAli1bePbZZwkMDGTo0KGu/WbOnMlrr73GhAkTAGdXsA8++MD1+q+//kpQUBBxcXHUr1+fnTt3YrFYaNeuHQDTpk3jiy++YMGCBURHR7Nx40YeeughgoOD6dSpEydPnqRfv3688MILPPHEE+zZs4cxY8b87bXl5eXRq1cvpk6dil6vZ9GiRQwcOJBDhw4RERHh2m/WrFlMmTKF//73v3zzzTc888wzdOrUiXr16pX453g9Sp3YrVq1it69ewOgKArdu3dn1apVPPHEE6U++dtvv82wYcN49NFHAViwYAGrVq3i008/ZezYsVfs/+mnn5KRkcGWLVvQap2d4P/8QxRlb8hL49iy6DPMFks5n6n8V7Y4eDGdPIzk+Wjwy7XQ0l7gTOzMSTj8dXh7aMgzWckxOH95ZZyXkbFCiMrDYrHw3nvvueXc//3vf9HpdKU65r777qNZs2ZMmDCBTz75pNhrb7/9NnfccQfjx48HICYmhoMHD/LWW28VS+xuv/32YrV4nTt35oUXXuDChQtoNBoOHjzI+PHjiYuL4+mnnyYuLo7WrVvj6elJUVERb7zxBj///DNt27YFICoqik2bNvHBBx/QqVMnPvjgA+rVq8dbb70FQL169fj999+ZOnXqNa+radOmNG3a1PV88uTJfPvtt/zwww88//zzru29evXi2WefBeDll1/mnXfe4ZdffqlciZ3VauXnn39m1KhRrm09e/bkjTfe4IknnsDhKPmXs9lsZteuXYwbN861TaVS0bVrV7Zu3XrVY77//nvatm3Lc889x//+9z+Cg4MZNGgQL7/8Mmq1+qrHFBUVUVT0xxxsOTk5gPMDYinHZOVy2eV5joqg9fOj0wuj/nnHKiB/+hscsDnI1HrjRya3OFJZCqgtzoEUAf5a8pKtnCsqco2MzckowNNYul9monRuls/KzUTuiftZLBYcDgd2ux273dkNpjTfsWXtz3H8E4fD4Yp92rRpdO3aldGjR7uOt9vtHDp0iD59+hQrs23btrz77rtYLBbXd3rLli2L7dOwYUMCAgL45Zdf0Ol0NG/enF69evHee+9ht9uJi4ujU6dO2O12jh49SkFBAd26dSsWn9lspnnz5tjtdg4fPkyrVq2KnaNVq1bFrvnPcYOzxm7SpEmsXr2a5ORkrFYrhYWFnD59ulg5TZo0KfY8LCyM1NTUa/4c7Xa7q1b2rzlNaT6Lpa6x2759e7Fss3///txyyy1ERkZy6NChEpdz8eJFbDYboaGhxbaHhoZy+PDhqx5z4sQJNmzYwODBg1m9ejXHjx/n2WefxWKxuKpp/2ratGlMmjTpiu1r167F09OzxPFer3Xr1pX7OUTJWNRqsFlJVQKIJJOmthQcDg9UmFDZssgnD1Czdsd+WhsMWAtU/Pi/X/AItLk79H8F+axUPnJP3Eej0RAWFkZeXp5r0IDD4eC5555zSzyFhYWYTKYS7WuxWLBareTk5NCsWTNuv/12XnrpJQYNGgQ4K1hsNhtFRUWuypbL57j8ulqtxm63o1ari+0DzgRw3bp16PV6br31ViIiIjCZTGzbto2tW7fyzDPPkJOTQ2pqKuDs9vXX7mI6nY6cnBysVisWi6XYOQoKCgDIzc1FpVJhMplwOByufUaNGkVcXBxTpkwhMjISg8HAI488Qn5+vmsfu92OzWYrVq7dbqewsPCK67nMbDZTWFjIxo0brxi7cDmmkihVYqfRaK6oQtTpdMTExACUe/Wi3W4nJCSEDz/8ELVaTcuWLTl37hxvvfXWNRO7cePGMXr0aNfznJwcatasSffu3TEajeUWq8ViYd26dXTr1s3VbCzcK6/NLRyd/z7n7NWARPyt6WBuCvo01JazKEFhkGzG5hNC9Tp6Tu/PIKZWYxp3qu7u0G9q8lmpfOSeuJ/JZOLMmTN4e3vj4eGcpsnhcJCbm4uPj0+l7iKi1WrRaDSu79i33nqLFi1a0KhRIwCMRiONGjUiPj6+2Pfwnj17iImJwd/fH3C24nl4eFzxXX3HHXfw8ccfo9frmTJlCn5+fnTs2JEFCxZQVFREt27d8PLyonXr1uj1ei5evEjPnj2vGmujRo1Ys2ZNsXMcPHgQAB8fH4xGIx4eHiiK4tonPj6eRx991JWo5ubmkpSUhE6nc+1ztdjVajV6vf6auYfJZMJgMNCxY0fXPb/sWsng1bhtrdigoCDUarUro74sNTWVsLCwqx4THh6OVqstVkXZoEEDUlJSMJvNV23/1+v16PX6K7ZrtdoK+YVVUecR/8w7MAitqYAkU20c/IbOasG3KIAcfRoay1myPWoAZo6l5RNYL4jT+zPITiuS+1dB5LNS+cg9cR+bzYaiKKhUKtdAictNeJe3V1aKohSLsWnTpgwePJi5c+cCzqRnzJgxtG7dmqlTpzJgwAC2bt3Ke++9x/z584td29WutUuXLowePRqdTkfHjh1RqVR06dLFVaaPjw8Avr6+jBkzxtVHr0OHDmRnZ7N582aMRiOPPPIITz/9NO+88w7jxo3j8ccfJyEhgUWLFgHOROzPP//L/0ZHR/Pdd9/Rp08fFEXh1VdfdTWT/1Psf3fvVCoViqJc9XNXms+h294ZOp2Oli1bsn79etc2u93O+vXrXZ0c/6p9+/YcP368WPv00aNHCQ8PL3WnTvHv5FFkIrswkEIP5x8HDW3OD6PacpZcL+dfUWczC/EIcv61JFOeCCHEjZs8eXKx7+4WLVrw9ddfs2TJEho3bsxrr73G5MmTiw2cuJYmTZrg5+dHs2bN8Pb2BpyDKmw2G507dy6275QpUxg/fjzTpk2jQYMG3HnnnaxatYrIyEgAIiMj+eabb1i+fDmxsbG8//77vPLKKwBXrRQC58APf39/2rVrx913302PHj2IjY29jp9K+XBbjR3A6NGjeeSRR2jVqhW33HIL7777Lvn5+a5Rsg8//DDVq1dn2rRpADzzzDPMmzePF154geeff55jx47xxhtvMGLECHdehqhCvBSFXFRk6wx4mvJoQTbbAI35NOjV+HvryMwzk3Xp8ywjY4UQonQWLlx4xbaIiIhiAxkB+vbtS9++fa9ZzqlTp666XaVSkZGRUWxbs2bNrjq4RFEUXnjhBV544YVrnqdPnz7F5qCbOnUqNWrUcDWHXp7X7s/XsmHDBtdzu93OQw89VKyJ9WqxJyQkXDOGsuTWxG7AgAFcuHCB1157jZSUFJo1a8aPP/7oGlCRlJRUrMqyZs2a/PTTT4waNYrY2FiqV6/OCy+8wMsvv+yuSxBVjPelOQ/T1H6Ek0cLWxoAGut5cNjx9dOSmWcm2WoFBUz5FgpzLTIyVgghblLz58+ndevWBAYGsnnzZt566y2GDx/u7rCu2w0ndjk5OWzYsIF69erRoEGDUh8/fPjwa/4A4+LirtjWtm1btm3bVurzCAHgGVEXTiZy3hFGU85Sz3IBhz0ERWVBZbuI3dP5kTh+MZ/IIAM5FwrJSM6XxE4IIW5Sx44d4/XXXycjI4NatWrx4osvFpuKraopdR+7/v37u5byKCwspFWrVvTv35/Y2Fi+/fbbMg9QiLKk9vdDYyrkjLkmAMaifNTmYAA05rPkeTir8o+l/bFmrPSzE0KIm9c777zD+fPnMZlMHD16lPHjx6PRuLVB84aUOrHbuHEjt912GwDfffcdDoeDrKws5syZw+uvv17mAQpR1rwsZpILamBVK6gcUMPqXEJMbTlHpsE58uhIyh+JXcZ5SeyEEEJUDaVO7LKzswkICADgxx9/pG/fvnh6etK7d2+OHTtW5gEKUdYCPDxwoCHHwzlCorHDOemmxnKWwksjrNJyi9AEOptfZc1YIYQQVUWpE7uaNWuydetW8vPz+fHHH+nevTsAmZmZV0yoJ0RlVLOmsxn2osY5gqmZPQsAjfkUaFSE+DrfxxmXutVJYieEEKKqKHViN3LkSAYPHkyNGjUIDw93zRmzceNGmjRpUtbxCVHmYtq2B4eDFEIAiLVcAEBtTQWHDW9f5xx3rpGxeRYKc81ui1cIIYQoqVInds8++yxbt27l008/ZfPmza7pSKKioqSPnagSQho2QlVk4qzFuVRYlCkbh12Hgg21NQ2Lp3MSzeMX8zAGXqq9k352QgghqoDrWnmiVatW9O7dm3PnzrkWqu3duzft27cv0+CEKA+KouBpNnG6MAIHYLDY8DY71yZUW86S4xxLwdGUvD8GUEhzrBBCiCqg1IldQUEBjz/+OJ6enjRq1IikpCQAnn/+eaZPn17mAQpRHvy1GoocnhTonaNg61xa6UZjOUOmwVlLdyQ1F78wT0ASOyGEKAuKorBixYq/3Wfo0KHce++9FRLPP+ncuTMjR450dxilUurEbty4cezdu5e4uLhigyW6du3K0qVLyzQ4IcpL9bBwADK0zlGwjRzOxE1tPovZy4BapZBdaIEA5wgKmctOCCFK5u8Ss+TkZHr27Ak4l91SFKXCltq6HsuXL2fKlCnuDqNUSp3YrVixgnnz5tGhQ4di62c2atSIxMTEMg1OiPJSr9UtAKQogQA0sWUCoLWcBpVCiJ/zj5Z0Z4We1NgJIUQZCAsLQ6/XuzuMEgsICMDHx8fdYZRKqRO7CxcuEBIScsX2/Px8WShdVBk12tyKqsjEeVs1ABqZsgBQWS+Aw4LBeGlkrMUCQGGujIwVQogb9eem2MjISACaN2+OoiiuWTYumzlzJuHh4QQGBvLcc89hufT7+K/lXObn58fChQtdz19++WViYmLw9PQkKiqK8ePHFytj4sSJNGvWjMWLFxMREYGvry8PPvggubm5rn3+2hS7ePFiWrVqhY+PD2FhYQwaNIi0tDTX63FxcSiKwvr162nVqhWenp60a9eOI0eOXOdPrPRKndi1atWKVatWuZ5fTuY+/vhj2rZtW3aRCVGOtDod+qJCTptqA1C7oBDF5oGCA7UlmSLXyNh8fC6PjJVaOyGEGzkcDmy2Qmy2ggp/OByOMr+eHTt2APDzzz+TnJzM8uXLXa/98ssvJCYm8ssvv7Bo0SIWLlxYLGkrCR8fHxYuXMjBgweZPXs2H330Ee+8806xfRITE1mxYgUrV65k5cqV/Prrr387XsBisTBlyhT27t3LihUrOHXqFI8++ugV+73yyivMmjWL+Ph4NBoNjz32WKlivxGlXgztjTfeoGfPnhw8eBCr1crs2bM5ePAgW7Zs4ddffy2PGIUoF34KJNsDsahVaG12QmwGUtUmNJZzZHvUB+Boai6dqvmQm24iMzmf6jH+bo5aCPFvZbcXkrC3g1vO3bnTftRqzzItMzjYuU53YGAgYWFhxV7z9/dn3rx5qNVq6tevT+/evVm/fj3Dhg0rcfmvvvqq6/8RERGMGTOGJUuW8NJLL7m22+12Fi5c6GpuHTJkCOvXr2fq1KlXLfPPCVpUVBRz5syhdevW5OXlYTQaXa9NnTqVTp06ATB27Fh69+6NyWSqkIUcSl1j16FDB/bu3YvVaqVJkyasXbuWkJAQtm7dSsuWLcsjRiHKRXhQEKCQrXP+sqprtwHOKU8yPZ1znhxNzcMv9PLI2AK3xCmEEP82jRo1Qq1Wu56Hh4cXa/IsiaVLl9K+fXvCwsLw9vbm1Vdfdc3kcVlERESxPnT/dJ5du3Zx9913U6tWLXx8fFzJ29mzZ4vtFxsbW6xMoNTxX69S1dhZLBaeeuopxo8fz0cffVReMQlRIeo0bcbuHbtIVfkTRB6N7LlsBjTmJAqMejzVKgotNix+zhEUGcl57g1YCPGvplIZaNZ0E0ajj2txgIo8d0XSarXFniuKgt1uL/b8r83Df+4/t3XrVgYPHsykSZPo0aMHvr6+LFmyhFmzZpXqPH+Wn59Pjx496NGjB19++SXBwcEkJSXRo0ePYuf+a7mXu6xdq9yyVqrETqvV8u233zJ+/PjyikeIChPVviPK5i0k20NpxBkaWrIAXzSXRsaGBnhw9kIBFzXOXx5SYyeEcCdFUVCrDajVnhWe2JUHnc45nZTNZiv1scHBwSQnJ7ueHzt2jIKCP35Hb9myhdq1a/PKK6+4tp0+ffoGooXDhw+Tnp7O9OnTXWuOx8fH31CZ5aHU74x77733HycXFKIqMPj6ojMVkGSuBUCjfGeNnMqWCXYTuksjY8+bL42MzTFjyrNcvTAhhBAu2dnZJCQkFHucOXOm2D4hISEYDAZ+/PFHUlNTyc7OLnH5t99+O/PmzWPPnj3Ex8fz9NNPF6sli46OJikpiSVLlpCYmMicOXP47rvvbuiaatWqhU6nY+7cuZw4cYLvv/++Us5xV+rBE9HR0UyePJnNmzfTsmVLvLy8ir0+YsSIMgtOiPLmY7eTbKuGAwgrsqGzeWBWm9BYzlPoEQBAYno+rQI8yM0wkZGcT7VoP7fGLIQQlV1cXBzNmzcvtu3xxx8v9lyj0TBnzhwmT57Ma6+9xm233UZcXFyJyp81axaPPvoot912G9WqVWP27Nns2rXL9XqfPn0YNWoUw4cPp6ioiN69ezN+/HgmTpx43dcUHBzMwoUL+e9//8ucOXNo0aIFM2fOpE+fPtddZnlQHKUcw3x53pmrFqYonDhx4oaDKk85OTn4+vqSnZ1dbARLWbNYLKxevZpevXpd0YYv3ONq92TZxFc5gIYXdfPxMRfRp0YDTmrzyQkYhmdRUwrj86gf5sNwjS+nf0+n06B6NO5Y3c1XcnORz0rlI/fE/UwmEydPniQyMtI1ktJut5OTk4PRaLwpmmJvFmV1X652zy8rTe5S6hq7kydPlvYQISqtyHoNOHDkGBfVvviQRoy9iJOAxnKWLM9b0ZNH4oU8fJqFw+/pMpedEEKISu2GUn6Hw1EukxYKUVHqdOyEYjWTjHM+pQY254zjGnMSDg8tBp0ai81B4aX+dhnnJbETQghReV1XYvf555/TpEkTDAYDBoOB2NhYFi9eXNaxCVHu/KpVR1NYwFlLDQAamJwDKDSWJFAUQgKcQ/zT1c4/YDKlxk4IIUQlVuqm2Lfffpvx48czfPhw2rdvD8CmTZt4+umnuXjxIqNGjSrzIIUoL4qi4G21cs7qTOwa5ZogAFT2XBR7PmofBVLgvNmMJ1CQY8aUb8HDS/odCSGEqHxKndjNnTuX999/n4cffti1rU+fPjRq1IiJEydKYieqnCBPA8fwxKJS42u34W3Xkacyo7acI98jBIDj6fm0C9CTl1HkHBlb18+9QQshhBBXUeqm2OTkZNq1a3fF9nbt2hWbLFCIqqJ2nTqAQrrW2/nc7mx21VjOkuHh7Ft3NDWPgHDn1D7Sz04IIURlVerErm7dunz99ddXbF+6dCnR0dFlEpQQFalOuw5gtZKqBAEQYy8EQG0+S66Xc53YU+n5eIc6+9tJPzshhBCVVambYidNmsSAAQPYuHGjq4/d5s2bWb9+/VUTPiEqu5CYeqhN+ZzzqEZTEqlnyQOdH1rzKfBXYTRoySm0kOt1aWSsJHZCCCEqqVLX2PXt25ft27cTFBTEihUrWLFiBUFBQezYsYP77ruvPGIUolypNVo8LWbOWZ0TDzfOMzm3W86BohAQ4Jwo8qLGuYCzJHZCCCEqq1LX2AG0bNmSL774oqxjEcJtAnRazuOHA4gptIADVBSg2LJRvJ1//5wvsuAPFGTLyFghhKgqFi5cyMiRI8nKynJ3KBWi1DV2q1ev5qeffrpi+08//cSaNWvKJCghKlrNGjWxoCVHa8DgcBDocP7No7GcI9fDWVN3PD0fb389IP3shBDiWoYOHYqiKFc8jh8/7u7Q/hVKndiNHTsWm812xXaHw8HYsWPLJCghKlqdW24Fm40LKn8AIh0WANSWs2R4OJO8oym5f4yMlcROCCGu6c477yQ5ObnY469rzZvNZjdFd3MrdWJ37NgxGjZseMX2+vXrSzYuqqzw2KaoTQWct4UBEG0rAEBjPkuBl3M07PlsE/oQZ387SeyEEOLa9Ho9YWFhxR533HEHw4cPZ+TIkQQFBdGjRw8Afv/9d3r27Im3tzehoaEMGTKEixcvusrq3LkzI0aM4KWXXiIgIICwsDAmTpxY7HxZWVk89dRThIaG4uHhQePGjVm5cmWxfX766ScaNGiAt7e3K/G8GZU6sfP19eXEiRNXbD9+/DheXl5lEpQQFc3Dyxt9USFnL61AUa+wCACN+SRoVQT46ADI8XJ+ZKQpVghR0RwOBwU2OwU2O/k2W4U+ympd+EWLFqHT6di8eTMLFiwgKyuL22+/nebNmxMfH8+PP/5Iamoq/fv3v+I4Ly8vtm/fzowZM5g8eTLr1q0DwG6307NnTzZv3swXX3zBwYMHmT59Omq12nV8QUEBM2fOZPHixWzcuJGkpCTGjBlTJtdU2ZR68MQ999zDyJEj+e6776hTpw7gTOpefPFF+vTpU+YBClFR/NQqUgkGoHFeEfiCxnoeHA78/D3IyDVzUeX85SaTFAshKlqh3UGLfUluOXdixyZ4/SlR+icrV67E29vb9bxnz54AREdHM2PGDNf2119/nebNm/PGG2+4tn366afUrFmTo0ePEhMTA0BsbCwTJkxwlTFv3jzWr19Pt27d+Pnnn9mxYweHDh1y7R8VFVUsHovFwoIFC1x5y/Dhw5k8eXJpfgRVRqlr7GbMmIGXlxf169cnMjKSyMhIGjRoQGBgIDNnziyPGIWoENVDQ8nGhyKVhiizBZUDFIcZlS0T26XK6HNFzj4h+dlmigosboxWCCEqry5dupCQkOB6zJkzB3DOqvFne/fu5ZdffsHb29v1qF+/PgCJiYmu/WJjY4sdFx4eTlpaGgAJCQnUqFHDldRdjaenpyup++vxN5tS19j5+vqyZcsW1q1bx969ezEYDMTGxtKxY8fyiE+IChPZrAU7t2znotaX6vZ0whwK5xUHastZcvQRABy/mE9dfz15mUVkJBcQXsfXvUELIf41DCqF3bG1MBqNKCqlQs/tqSpdPZCXlxd169a96vY/y8vL4+677+bNN9+8Yt/w8HDX/7Xa4tNLKYqC3e6cscBgMPxjPFc7vqyalyub65rHTlEUunfvTvfu3cs6HiHcpnrLVqh++YUUXQjVSSfKYeI8ejSWs6R7RKMCjqbmMjA8mLzMIjKT8yWxE0JUGEVR8FSr8FSrUJUy0aqsWrRowbfffktERAQazXWlJMTGxnL27NliTbf/ZiV+Z2zduvWKESaff/45kZGRhISE8OSTT1JUVFTmAQpRUYxBIWhNBZyzVgMg+tJQfI35DGZvPQqQnm9GHeScy0762QkhxI157rnnyMjIYODAgezcuZPExER++uknHn300atOrXY1nTp1omPHjvTt25d169Zx8uRJ1qxZw48//ljO0VdOJU7sJk+ezIEDB1zP9+/fz+OPP07Xrl0ZO3YsP/zwA9OmTSuXIIWoCIqiYHRACiEANMz/08hYtYpgP+dUJ9mezo9NRookdkIIcSOqVavG5s2bsdlsdO/enSZNmjBy5Ej8/PxKVSv57bff0rp1awYOHEjDhg156aWXSpwY3mxKXO+ZkJDAlClTXM+XLFlCmzZt+OijjwCoWbMmEyZMuGJuGSGqkrAAfw4DdqCeyVljp7amgsOOj5+etCwTF1R2NEiNnRBCXM3ChQuvuj0uLu6q26Ojo1m+fPk1y7vacStWrCj2PCAggE8//fSqxw8dOpShQ4cW23bvvffetH3sSpwOZ2ZmEhoa6nr+66+/uoYvA7Ru3ZozZ86UbXRCVLDIho2wONRkq72oabGicYCCFZXtIhZP5z7nTM6avPysIooKrW6MVgghhCiuxIldaGgoJ0+eBJzLgOzevZtbb73V9Xpubu4Vo06EqGpqtG6DqqiQVCUIDVATZ1W+xnyWTA/nX3fHL+bj5SdrxgohhKh8SpzY9erVi7Fjx/Lbb78xbtw4PD09ue2221yv79u3r9gcMUJURYE1azmXFrs0gCLKdmkAheUsGQbn6hNHU/PwD3MOr5elxYQQQlQmJU7spkyZgkajoVOnTnz00Ud89NFH6HQ61+uffvqpTH8iqjy1Rou31eoaQBFTeKmfnfk0Nk8dGpVCXpEVu4yMFUIIUQmVePBEUFAQGzduJDs7G29v72JrsAEsW7as2PIhQlRVId4+JON8LzcoKAIf0FhOg0oh2N9AcnoB2QZZM1YIIUTlU+oZDn19fa9I6sA5IuXPNXhCVFW1o+uS4/CiSNEQY3YuG6a2XgCHDS8/53v8wqW+d9IUK4QQojK5OaauFqIM1WzdBlVREWmqAMKtNjxwoGBHbU3FZHAOoDh7aSqUvMwizDIyVgghRCUhiZ0QfxFSNwaVKZ/ztjBUQC27M3FTW86S4exax/H0fDx9nbV3MlGxEEKIykISOyH+Qu/phafFTArOeRvrWpzNsRrzWTI9nZndsbQ8/MKcE9vJAAohhBCVRYkSuxYtWpCZmQk4lxYrKCgo16CEcLdADz2pBAFQv/CPpcUcBg06jQqz1Y4lwFljJwMohBCicurcuTMjR44s830rsxIldocOHSI/3/nlNWnSJPLy8so1KCHcrWatCNIIurS02KUaO8sZUBRCApxz2GUZFEAGUAghxF9duHCBZ555hlq1aqHX6wkLC6NHjx5s3ry5QuNYvnx5seVQ/w1KNN1Js2bNePTRR+nQoQMOh4OZM2dec2qT1157rUwDFMIdarZqjW3lajINRuqanYmbypYBDjN6Xx2k5ZOGDX8ksRNCiL/q27cvZrOZRYsWERUVRWpqKuvXryc9Pb1C4wgICKjQ81UGJaqxW7hwIYGBgaxcuRJFUVizZg3ffffdFY+/LsorRFUVWq8BalMBKY4Qgm02vLGj4EBtSabAYAfg7KXJi/MyijCbZGSsEEIAZGVl8dtvv/Hmm2/SpUsXateuzS233MK4cePo06cPAIqi8P7779OzZ08MBgNRUVF88803xcp5+eWXiYmJwdPTk6ioKMaPH4/lUp9ngIkTJ9KsWTMWL15MREQEvr6+PPjgg+Tm5rr2+Wvz6vz584mOjsbDw4PQ0FD69etX7Jx2u52XXnqJgIAAwsLCmDhxYtn/gMpZiWrs6tWrx5IlSwBQqVSsX7+ekJCQcg1MCHfyCQxCZy4kxRFKI44TabOyX61DYzlLuj4YcI6MbWPUUZBjJjO5gNBIo5ujFkLczBwOB4VmGxqzFZWqYsc+GrRqFEUp0b7e3t54e3uzYsUKbr31VvR6/VX3Gz9+PNOnT2f27NksXryYBx98kP3799OgQQMAfHx8WLhwIdWqVWP//v0MGzYMHx8fXnrpJVcZiYmJrFixgpUrV5KZmUn//v2ZPn06U6dOveJ88fHxjBgxgsWLF9OuXTsyMjL47bffiu2zaNEiRo8ezfbt29m6dStDhw6lffv2dOvWraQ/Krcr8coTl9nt9vKIQ4hKRVEU/DUaUi4NoKhbZGa/pw6N5Rw5nrfiAZy8mI8xPIyCHDMZyXmS2AkhylWhxUbbt7e55dwHJ/fAU1eylEGj0bBw4UKGDRvGggULaNGiBZ06deLBBx8kNjbWtd8DDzzAE088ATiXLV23bh1z585l/vz5ALz66quufSMiIhgzZgxLliwpltjZ7XYWLlyIj48PAEOGDGH9+vVXTeySkpLw8vLirrvuwsfHh9q1a9O8efNi+8TGxjJhwgQAoqOjmTdvHuvXr69Sid11pfyJiYk8//zzdO3ala5duzJixAgSExPLOjYh3Kp6WBipOGvn6hc4m101RSdAr8JLr8Fmd1DorwUgI1lGigshxGV9+/bl/PnzfP/999x5553ExcXRokULFi5c6Nqnbdu2xY5p27Ythw4dcj1funQp7du3JywsDG9vb1599VWSkpKKHRMREeFK6gDCw8NJS0u7akzdunWjdu3aREVFMWTIEL788ssrZvn4c+L5T+VVVqWusfvpp5/o06cPzZo1o3379gBs3ryZRo0a8cMPP1SprFaIv1OzWQt2/rYZk15H9OW57CxnQVEIDDCQn5xLll5BQeayE0KUP4NWzdbRt+Jj9HFLU2xpeXh40K1bN7p168b48eN54oknmDBhAkOHDv3HY7du3crgwYOZNGkSPXr0wNfXlyVLljBr1qxi+2m12mLPFUW5Zsuij48Pu3fvJi4ujrVr1/Laa68xceJEdu7ciZ+fX6nLq6xKndiNHTuWUaNGMX369Cu2v/zyy5LYiZtGWKMmqNf9TIo+iLrmFABU9mywm9AYtZAMadgIReayE0KUP0VRMOjUeOo0FZ7YlYWGDRsWG2S5bds2Hn744WLPLzeNbtmyhdq1a/PKK6+4Xj99+vQNx6DRaFytjRMmTMDPz48NGzZw//3333DZlUWpE7tDhw7x9ddfX7H9scce49133y2LmISoFAKq1XCOjDWGEOE4j5/DRpaiRmM5T56Hc1WKMwVFhAK5GSbMJis6j1J/pIQQ4qaSnp7OAw88wGOPPUZsbCw+Pj7Ex8czY8YM7rnnHtd+y5Yto1WrVnTo0IEvv/ySHTt28MknnwDO/m1JSUksWbKE1q1bs2rVKr777rsbimvlypWcOHGCjh074u/vz+rVq7Hb7dSrV++Gyq1sSp3yBwcHk5CQcMX2hIQEGSkrbipqjQZfBVc/uzrWP9aMvah3fnSOp+dhMF5agSJF+tkJIYS3tzdt2rThnXfeoWPHjjRu3Jjx48czbNgw5s2b59pv0qRJLFmyhNjYWD7//HO++uorGjZsCECfPn0YNWoUw4cPp1mzZmzZsoXx48ffUFx+fn4sX76c22+/nQYNGrBgwQK++uorGjVqdEPlVjalrl4YNmwYTz75JCdOnKBdu3aAs4/dm2++yejRo8s8QCHcKTwokJRLH5MYk5ldWj0a8xnyvdvjAZzJKMQr1JfCHDMZ5/MJjZCRsUKIfze9Xs+0adOYNm3a3+5XrVo11q5de83XZ8yYwYwZM4pt+/OcdBMnTrxinrmRI0cW2ycuLs71/w4dOhR7/ldXe60qzs9b6sRu/Pjx+Pj4MGvWLMaNGwc4b87EiRMZMWJEmQcohDvVbBTLwb0J2LVQz2QGH9CaE0Gn/v/27juwqvJ84Pj3nDuz9wIySdhLCCAiIIIgKFVrFa1WpZZahToQB1oFqy24cFRctYr9WautirUqW1EZikyRnUAIIXvn3iR3nt8fN7kQEyyRJPcmeT41Te571nPycpMn73kHYUEGqqwOasM9nW2ln50QQghfa3VipygKd911F3fddZd3dudThxoL0ZXEDx6C+5utlBvC6e3wPGrVOfMBiIgIoMrqoMKkYQLKCyWxE0II4VtnNawmJCSkTZK6ZcuWkZKSgtlsZvTo0WzduvWMjnvnnXdQFIXLL7/8rGMQoiUxyWmeARTEkm73THmiuq0obitKiOfvoiLNBciUJ0IIcaY0TZPf3e3E5+Ol3333XebNm8fChQvZsWMHQ4cOZerUqf9zQsCcnBzmz5/PuHHjOihS0R2ZAgMJcjkpJIZgTSPW7UnidPY8qkwa4BkZC1BTVo/D5vJZrEIIIYTPE7ulS5cye/ZsZs2axYABA3j55ZcJDAzk9ddfP+0xLpfLO3FhWlpaB0YruqO4sNCTI2O9ExWfoNTcMDK21EpASEM/O3kcK4QQwod8OumW3W5n+/bt3kEYAKqqMnnyZLZs2XLa4/74xz8SGxvLzTff3GwB3x+y2WzYbDbv6+rqagAcDgeOhl/S7aHx3O15DdE6P7VOEnpnsD33MOihb52dLSYzescxLKEXYAaKa2wYYsOoq3FQcryaiB4B7RB91yXvFf8jdeJ7DocDTdNwu93elQ80TfN+7myrIXRlbVUvbrcbTdNwOBzodE1X+mjNe7FViZ3D4eDiiy/m5ZdfJiMjozWHtqi0tBSXy0VcXFyT8ri4OA4cONDiMRs3buRvf/tbi3PptWTx4sU88sgjzcrXrFlDYGBgq2NurbVr17b7NUTrtLZOrHYn1nqoCzadXFrMfhT0KsEmsNggu66UGExs27SHrLLt7RF2lyfvFf8jdeI7er2e+Ph4LBYLdru9ybbGgYvCv5xtvdjtdurq6vjyyy9xNsyb2uiHa9r+mFYldgaDge+++641h7SpmpoafvWrX/HXv/6V6OjoMzpmwYIFTebXq66uJjExkSlTphAa2n5zjjkcDtauXctFF13UbO054Rs/tU5qykp5+bFFFAbHkG4vAkDvKAAgOi4US241xqQ4yK8kMiiBi6d3rcku25u8V/yP1Inv1dfXc/z4cYKDgzGbzYCnRaimpoaQkBAURfFxhKJRW9VLfX09AQEBjB8/3lvnjRqfNp6JVj+Kvf766/nb3/7WbK3YnyI6OhqdTkdRUVGT8qKiIuLj45vtn52dTU5ODjNmzPCWNTZ76vV6Dh48SO/evZscYzKZMJlMzc5lMBg65AdWR11HnLnW1klEXDwmu40iYhjqOIGiaUA9iqsKgj2rTpTgJgyoLKyV+v6J5L3if6ROfMflcqEoCqqqeteFbfx911gu/ENb1YuqqiiK0uL7rjXvw1Yndk6nk9dff51169YxYsQIgoKCmmxfunTpGZ/LaDQyYsQI1q9f7x327Ha7Wb9+PXPnzm22f79+/dizZ0+Tsj/84Q/U1NTw3HPPkZiY2NrbEeJ/UhSF6MAAConhXE2jh9vFCZ0evSOPcnMqALlWG+lAdcPIWINJ9+MnFUII4dduuukmKisrO93qE61O7L7//nuGDx8OwKFDh5ps+ylNkPPmzePGG28kMzOTUaNG8eyzz2K1Wpk1axYAN9xwAz179mTx4sWYzWYGDRrU5Pjw8HCAZuVCtKWeqWkcKXWDDjJsdk4EehK7MlMGBjwjY6eHmKmvcVJRaCU2WZYWE0J0T6dLiDZs2MDEiROpqKjw/u72Z88995x3YERn0urE7vPPP2/TAGbOnElJSQkPP/wwhYWFDBs2jFWrVnkHVOTm5kqTs/C5HkPPYesnebiDFPrYHGwIBL09h7pwAyYFquoc6GIioKaGigJJ7IQQorNqfAweFhbm61B+kp+cMWVlZbF69Wrq6uoAziqrnTt3LseOHcNms/HNN98wevRo77YNGzawfPny0x67fPnyTtdMKjqf2N4ZaPU2SokgvWFkrMGeAzqF6HDP9CaWcM/fSeWyZqwQQvyoRYsWMWzYsCZlzz77LCkpKd7XN910E5dffjlPPfUUCQkJREVFMWfOnCZTfxQUFHDJJZcQEBBAamoqb7/9NikpKTz77LPefZYuXcrgwYMJCgoiMTGR2267DYvF4t2+fPlywsPD+eijjxgwYAAmk4nc3Fzv9RutWrWK888/n/DwcKKiorj00kvJzs72bs/JyUFRFD744AMmTpxIYGAgQ4cO/dHp29pDqxO7srIyJk2aRJ8+fZg+fToFBZ7RgTfffDN33313mwcohD+I7NELva2OImK8S4vpnEWgaQSFewbnVDT0bS0vOPNh6UIIccY0DRy1YLd2/IePHkl+/vnnZGdn8/nnn/Pmm2+yfPnyJo09N9xwA/n5+WzYsIH333+fV199tdnKVaqq8vzzz7N3717efPNNPvvsM+69994m+9TW1vL444/z2muvsXfvXmJjY5vFYrVamTdvHtu2bWP9+vWoqsoVV1zRbO66Bx98kPnz57Nr1y769OnDtdde22z6kvbU6kexd911FwaDgdzcXPr37+8tnzlzJvPmzePpp59u0wCF8AeqTkekQU8R0UxwHESnabhwoLrKcQZ55kMsdDuJBMrzLT9+MiGE+CkctYQv6/+/92sPD+SDMeh/79fg448/Jjg4uEmZy9X6JRcjIiJ44YUX0Ol09OvXj0suuYT169cze/ZsDhw4wLp16/j222/JzMwE4LXXXms2z+6dd97p/TolJYXHHnuM3/3ud7z44ovecofDwYsvvsjQoUNPG8uVV17Z5PXrr79OTEwM+/btIykpyVs+f/58LrnkEgAeeeQRBg4cSFZWFv369Wv1/f8UrW6xW7NmDY8//ji9evVqUp6RkcGxY8faLDAh/E2PHr0ockdjAJJdnr++9I48yjwznpBrqQcaRsbaZc1YIUT3NXHiRHbt2tXk47XXXmv1eQYOHNhkFYaEhARvi9zBgwfR6/XeAZ0A6enpRERENDnHunXrmDRpEj179iQkJIRf/epXlJWVNZn012g0MmTIkB+N5fDhw1x77bWkpaURGhrqfWycm5vbZL9Tz5OQkADQrBWxPbW6xc5qtba4YkN5eXmL88UJ0VUkDBnG4Y3FEADp9XaOBBvQOfKoCBiACc/IWFNwIDaLk8rCWmKSQnwdshCiKzEEUjlnP6EhIR0/qNDQupWagoKCSE9Pb1KWl5fn/VpV1WZ981taNuuH87cpitKqZbtycnK49NJLufXWW/nTn/5EZGQkGzdu5Oabb8Zut3vzmYCAgP85s8eMGTNITk7mr3/9Kz169MDtdjNo0KBmK4OcGnPjOTtyCbhW/8sYN24cf//7372vG7/JTzzxBBMnTmzT4ITwJ3EZfbHWQS1m79JiBvsRtEA9ep1CncOFFuuZLVwGUAgh2pyieBIsY1DHf7TxShcxMTEUFhY2Se7OdKnQRn379sXpdLJz505vWVZWFhUVFd7X27dvx+128/TTT3PuuefSp08f8vPzWx1vWVkZBw8e5A9/+AOTJk2if//+Ta7jT1rdYvfEE08wadIktm3bht1u595772Xv3r2Ul5ezadOm9ohRCL8Qk5yCrr6WImLIsJcCYLQfA1UhJiKAgtJaLCF6jEhiJ4QQP+aCCy6gpKSEJ554gl/84hesWrWKlStXtmqpz379+jF58mR++9vf8tJLL2EwGLj77rubtL6lp6fjcDj4y1/+wowZM9i0aRMvv/xyq+ONiIggKiqKV199lYSEBHJzc7n//vtbfZ6O0OoWu0GDBnHo0CHOP/98LrvsMqxWKz//+c/ZuXNns+W8hOhKjAGBhKBRSDS9G0bGKs5S0NyYwzwd7cqMnr8+y/MlsRNCiNPp378/L774IsuWLWPo0KFs3bqV+fPnt/o8f//734mLi2P8+PFcccUVzJ49m5CQEO9aq0OHDmXp0qU8/vjjDBo0iH/84x8sXry41ddRVZV33nmH7du3M2jQIO666y6efPLJVp+nIyhaZ5xW+SxUV1cTFhZGVVVVq/4yaC2Hw8Gnn37K9OnTZa1FP9EWdfL+H+5BpzvKDGUto1ISsSsKZQlPkVISRv6eMianRnHOzlrCYgK4/tExbXwHXZO8V/yP1Inv1dfXc/ToUVJTU71Jitvtprq6mtDQUJm4/zTy8vJITEz0DpjoCG1VLy3VeaPW5C6tfhQLUFFRwd/+9jf2798PwIABA5g1axaRkZE/5XRCdBo9Bgzi+z1l6EyQ5nBwwGhE78ij1OR5o+VabJwDVJXW4bS70BtlzVghhGgvn332GRaLhcGDB1NQUMC9995LSkoK48eP93VoPtPq1PLLL78kJSWF559/noqKCioqKnj++edJTU3lyy+/bI8YhfAbcf0HUFZrxI1Chs3zOFbvyKMm0NOqcbTcij5IBxpUFMlExUII0Z4cDgcPPPAAAwcO5IorriAmJoYNGzZ065bmVrfYzZkzh5kzZ/LSSy9555ZxuVzcdtttzJkzhz179rR5kEL4i9jktIalxSLp7bADQRjt2dSG6jAbddTbXbhizGC1Up5vJSZRpjwRQoj2MnXqVKZOnerrMPxKq1vssrKyuPvuu5tMGKjT6Zg3bx5ZWVltGpwQ/iYoIpIAp50iosloGEBhdOSCohAV4ekTYQnxvDcqZGSsEEKIDtbqxG748OHevnWn2r9//48uxSFEV6AoCrHh4RRq0aQ3zGWnOctBc2IM9YyMLW8cGSuJnRBCiA52Ro9iv/vuO+/Xt99+O3fccQdZWVmce+65AHz99dcsW7aMJUuWtE+UQviRhL79KTxWSYLiItDtplZV0TmLqA2MAqDA6SQRSeyEEEJ0vDNK7IYNG4aiKE1miL733nub7ffLX/6SmTNntl10Qvih+AGD+G7/DpQw6G13sMdsQufIo9joSeyO1dQzCqguqcPpcKE3yMhYIYQQHeOMErujR4+2dxxCdBqxKWnU1mlYwwLIcHgSO4M9F2tQJmYgt6IWNTAYd62LyqJaonvJAAohhBAd44wSu+Tk5PaOQ4hOIyKhJwZbPUVEk26vBMBsz8YaphIcoMdS58QRa0KXU0t5vlUSOyGEEB3mJ01QnJ+fz8aNGykuLsbtdjfZdvvtt7dJYEL4K1WnIzookCItht72EsAzlx2KQniEGUudhZpgHeFIPzshhBAdq9WJ3fLly7nlllswGo1ERUV5F9oFz4hBSexEdxCflk5JeSVjHHYA3K4q0OzoQhrWjNVrnsRO1owVQnRThYWFLF68mE8++YS8vDzCwsJIT0/n+uuv58YbbyQwMNDXIXZJrU7sHnroIR5++GEWLFgga9WJbituwGB2rNtPtN5NmMtFlU6HzlGAJSAOgHyHg95ARaGsPiGE6H6OHDnC2LFjCQ8P589//jODBw/GZDKxZ88eXn31VXr27MnPfvazVp/XbrdjNBrbIeKuo9WZWW1tLddcc40kdaJbi03tTZlVRUMh3X5yabFik2f7sZp6AKqKa3E6XL4KUwghfOK2225Dr9ezbds2rr76avr3709aWhqXXXYZn3zyCTNmzACgsrKS3/zmN8TExBAaGsqFF17I7t27vedZtGgRw4YN47XXXiM1NRWz2TMRvKIovPLKK1x66aUEBgbSv39/tmzZQlZWFhdccAFBQUGcd955ZGdne8+VnZ3NZZddRlxcHMHBwYwcOZJ169Y1iTslJYU///nP/PrXvyYkJISkpCReffXVDviOtZ1WZ2c333wz//73v9sjFiE6jZjkFO/SYo0TFRvsOTiCPH9JFlTXQ6AOTYPKojpfhiqE6CI0TaPOWUeto7bDP06d7ux/KSsrY82aNcyZM4egoKAW92nsxnXVVVdRXFzMypUr2b59O8OHD2fSpEmUl5d7983KyuL999/ngw8+YNeuXd7yRx99lBtuuIFdu3bRr18/fvnLX3LLLbewYMECtm3bhqZpzJ0717u/xWJh+vTprF+/np07d3LxxRczY8YMcnNzm8T29NNPk5mZyc6dO7ntttu49dZbOXjw4Bnfv6+1+lHs4sWLufTSS1m1ahWDBw9uttDu0qVL2yw4IfyV0RxAhF5PITGk2/MACHAcwWJQCQ82UmmxY4s2Ysqto6LASnSvYB9HLITo7OqcdUz5ZIpPrv3NL78h0HBmfeKysrLQNI2+ffs2KY+Ojqa+3vM0Y86cOcyYMYOtW7dSXFyMyeR53PHUU0/x4Ycf8t577/Hb3/4W8Dx+/fvf/05MTEyT882aNYurr74agPvuu48xY8bw0EMPedeOveOOO5g1a5Z3/6FDhzZZIevRRx9lxYoVfPTRR00SwOnTp3Pbbbd5z/vMM8/w+eefN7sff/WTErvVq1d7b/CHgyeE6C7ikpIpsZeR7vDM86h35AMQEm6m0mKnOlhHDDIyVgghALZu3Yrb7ea6667DZrOxe/duLBYLUVFRTfarq6tr8gg1OTm5WVIHMGTIEO/XcXGe/s2DBw9uUlZfX091dTWhoaFYLBYWLVrEJ598QkFBAU6nk7q6umYtdqeeV1EU4uPjKS4uPrub70CtTuyefvppXn/9dW666aZ2CEeIziN+wCBytmYxwuB5FOt0WcBdjxLieVuV6tyS2Akh2kyAPoA1l6whJCSkw/u5B+gDznjf9PR0FEVp9vgyLS3Nc64Az7ksFgsJCQls2LCh2TnCw8O9X5/uce6pTwwbG5ZaKmuclm3+/PmsXbuWp556ivT0dAICAvjFL36B3W4/7Xkbz/PDqd38WasTO5PJxNixY9sjFiE6ldi0dL75XE94gJtop4tSvQ694wSV5p6AZ2Rsf2TKEyFE21AUhQB9AIGGQL8ewBgVFcVFF13ECy+8wO9///vTJmbDhw+nsLAQvV5PSkpKu8e1adMmbrrpJq644grAk1jm5OS0+3U7Wqv/Zdxxxx385S9/aY9YhOhUYlLSqKt1YSWA9Ib57PSOPEpNnr8Sc6obRsaW1OFydJ6/9oQQ4my9+OKLOJ1OMjMzeffdd9m/fz8HDx7krbfe4sCBA+h0OiZPnsyYMWO4/PLLWbNmDTk5OWzevJkHH3yQbdu2tXlMGRkZ3gEYu3fv5pe//GWnaok7U61usdu6dSufffYZH3/8MQMHDmzWZPnBBx+0WXBC+LOg8AgCNXfD0mI1fB0QgMl+hPrQcShAea0dR0AQhjo3lcW1RPWUARRCiO6hd+/e7Ny5kz//+c8sWLCAvLw8TCYTAwYMYP78+dx2220oisKnn37Kgw8+yKxZsygpKSE+Pp7x48d7+8y1paVLl/LrX/+a8847j+joaO677z6qq6vb/Dq+1urELjw8nJ///OftEYsQnYqiKMTF96DYXUyG3TM0P8BxhCq9SmSYibIqG7ZoI4bj9ZQXWCWxE0J0KwkJCfzlL3/50ad8ISEhPP/88zz//PMtbl+0aBGLFi1qVv7D6VdSUlKalV1wwQVNylJSUvjss8+a7DNnzpwmr1t6NHvqFCudQasTuzfeeKM94hCiU4rrN4CyAzn0bpjLTnEWARAUbqasykZ1kEow0s9OCCFEx/Df3pdCdAKx6X0orjXR2944MrYOxWXBFez5m6lE5/lrsUJGxgohhOgArW6xS01N/dH56o4cOXJWAQnRmcQmp1FqUQiIUOjhcJJv0KN3nKDcmAxAvt3OUGTKEyGEEB2j1YndnXfe2eS1w+Fg586drFq1invuuaet4hKiU4jo0QOd3U4pEfR2OMg36NE5jlMZkIYJyKmqQ8NAZXEdLqcbnV4ayYUQQrSfVid2d9xxR4vly5Yta5fhyUL4M1XVER0VTbEWQ7q9kK8CAwh0ZFEfPgmdqmCxu7CZTZjrNSqLZGSsEEKI9tVmzQfTpk3j/fffb6vTCdFpxPfpR5kzioyGuewCHMdAVYgKNwNQG20E5HGsEKL1uuI8a6JlbVXXrW6xO5333nuPyMjItjqdEJ1GXEZfDmdvZmDDAAq3oxg0DXOYCcrrqA5SiUQSOyHEmTMajaiqSn5+PjExMRiNRjRNw263U19f79crT3Q3brf7rOqlsV5LSkpQVRWj0XhW8bQ6sTvnnHOaDJ7QNI3CwkJKSkp48cUXzyoYITqjmOQ0vqqBS0OdqJqG021HcVfhCPK02JWqblKQkbFCiDOnqiqpqakUFBSQn58PeH7f1tXVERAQ8KODGEXHaqt6CQwMJCkp6ayT9lYndpdffnmT16qqEhMTwwUXXEC/fv3OKhghOqOYpBTqal24NDOJTifHDAb0jhMUG3sDcMLmIBMoL6j1baBCiE7FaDSSlJSE0+nE5XLhcDj48ssvGT9+fLNVn4TvtEW96HQ69Hp9myTsrU7sFi5ceNYXFaIrMZjNRAQFU6TFkG6v9SR29uPUBvbFBByrrsONkaqiWhkZK4RoFUVRMBgMGAwGdDodTqcTs9ksiZ0f8bd6kd8wQrSBuN7plLliSG/oZxfiOIQWqMOoV7E53VgDVNxujariOh9HKoQQois748ROVVV0Ot2Pfuj1bTYWQ4hOJbZPf8rsoaQ3LC1mdOSCohAZ4elnVxfp+StOBlAIIYRoT2ecia1YseK027Zs2cLzzz8vw7JFtxWbksaBNXrGhjUsLeYoA03DEGqEklqqAlVikcROCCFE+zrjxO6yyy5rVnbw4EHuv/9+/vvf/3Ldddfxxz/+sU2DE6KziE1Jo6TGTS+HC72m4cSJ6iqjLsAzIXGJ4iYDKM+XxE4IIUT7+Ul97PLz85k9ezaDBw/G6XSya9cu3nzzTZKTk9s6PiE6haDwCAJUHVVaJCkNj2P1jjyKTZ7tJ2yeyYsrCiWxE0II0X5aldhVVVVx3333kZ6ezt69e1m/fj3//e9/GTRoUHvFJ0SnEZuSRpn75AAKgz0Xe7Cnb11eTT1OPMuKuVzSZUEIIUT7OOPE7oknniAtLY2PP/6Yf/7zn2zevJlx48a1Z2xCdCpxfftT7ojwDqAIcRwCk0qASYfTrVFjVnC7ZGSsEEKI9nPGfezuv/9+AgICSE9P58033+TNN99scb8PPvigzYITojOJTUlj3zcB3hY7vSMPFIWICDN1hVZqIw1E5Dsoz7cSmRDk42iFEEJ0RWec2N1www2yhIkQPyI2JY311S5GxHgSO4ejAjQ3SrARsFIVoNAT6WcnhBCi/ZxxYrd8+fJ2DEOIzi88PgGHDcIdRkxuNzYVVGcJ1eZQAIoVNwOQkbFCCCHaj6w8IUQbUVUd0T16UaHFkOZwAqB3HKc8wPM2O1HvGRkrc9kJIYRoL5LYCdGG4vr0p9wZTYbdk8SZ7UdxBXsaxvMtNuwyMlYIIUQ7ksROiDYUm9qbMlsQvRtGxgY7ssCoIyTQM+1JZcPI2OoSGRkrhBCi7UliJ0Qbik1Jo7BG8Y6MVR35AISGe2YqrovwtN5JPzshhBDtQRI7IdpQdFIypdUu0mwuAOzOStCcOIM8CV2l2TOyXPrZCSGEaA+S2AnRhgwmM6GRMRhc4QS53WiAzlFIpcnzVitWPH3rKiSxE0II0Q4ksROijcVl9KPSFUPvUyYqrg7SAZBXZwOkxU4IIUT7OON57IQQZyY2LZ3ygjAyHIV8ZzYR5MjCFjwKgNI6B3WKjoqiWr7/8gSNc34rigKnzP/tKVc8nxv3ObnBexwdMGe48r8ucpYxuN0unHUy+bkQQrQFSeyEaGOxKWnsXmPyDqAIdByhXK8SHmKkssZOpVkhoE7ji7cP+jhS/6ELCMR1mRuDwdeRCCFE5yaJnRBtLCY5lROVds5pmMtOsXtGxgaEmaissRMxOoa0StA0DYCGTzS+0AC0U8u1xv8820/d/yy0/jytOKAVu5Ycr8FeB4e3FjN4QmJrgxJCCHEKSeyEaGNB4REoxlB62j3NTzaXFdx2bGZPl9ZKs8K03w3yZYh+ZfvqHL5ecYSda48z8PyeqDrp+iuEED+V/AQVoh3E9s5Ac0QT7nKhAXpnPpUNS4sdLKrxbXB+ZsD58ahGNzWl9Rz6tsjX4QghRKcmiZ0Q7SC2dwZVzihvPzudI4+6hqXFDhXVeB/DCtAbdQSneL5P21cew+2W740QQvxUktgJ0Q5iU9IorQv0Li0Waj+IFmRAUaCy1kFJjc3HEfqX4GQ7pkA9lUW1ZG8v9nU4QgjRaflFYrds2TJSUlIwm82MHj2arVu3nnbfv/71r4wbN46IiAgiIiKYPHnyj+4vhC/EJKeRX+Umo6HFzuzIAZ1CRJgZkMexP6TqYfDEngBsW5mDJq12Qgjxk/g8sXv33XeZN28eCxcuZMeOHQwdOpSpU6dSXNzyX+0bNmzg2muv5fPPP2fLli0kJiYyZcoUTpw40cGRC3F64fHxVNj1pNmdACj2QgD0DY9jDxZKYvdDA8f3wGjWUZ5v5ciuEl+HI4QQnZLPE7ulS5cye/ZsZs2axYABA3j55ZcJDAzk9ddfb3H/f/zjH9x2220MGzaMfv368dprr+F2u1m/fn0HRy7E6amqjqjEVKJsoQDUuetR3HXUNoyMPSQtds2YAvUMudAz3cm2lTnSD1EIIX4Cn053Yrfb2b59OwsWLPCWqarK5MmT2bJlyxmdo7a2FofDQWRkZIvbbTYbNtvJ/kzV1dUAOBwOHA39n9pD47nb8xqidTq6TqLTMnAfiyHGWUGJXo/OcYLqwARU4EBhtfzbaHBqvQwYH8/u9ccpPW4he2cRyYOjfBxd9yQ/v/yT1It/6oh6ac25fZrYlZaW4nK5iIuLa1IeFxfHgQMHzugc9913Hz169GDy5Mktbl+8eDGPPPJIs/I1a9YQGBjY+qBbae3ate1+DdE6HVUnVTVWwutDSXcUU6LXY7DnUh+SjAk4kF/Fs/9cCTRdkUtBa7qEGCe/VpSmr9tCq8/TigPOdFcFiA04WS+mHkYcR0189u4eYnNrm9y36Fjy88s/Sb34p/asl9ra2jPet1NPULxkyRLeeecdNmzYgNlsbnGfBQsWMG/ePO/r6upqb7+80NDQdovN4XCwdu1aLrroIgyyTpJf6Og6KcrOYOczX5Jud7AlIIAwx0Hqwiei1ynYXbBsn67dY+gsegZqrJo3EbPJSN04O28v/BZHFQxJG0Ni/whfh9ftyM8v/yT14p86ol4anzaeCZ8mdtHR0eh0OoqKmk5KWlRURHx8/I8e+9RTT7FkyRLWrVvHkCFDTrufyWTCZDI1KzcYDB3yxuio64gz11F1EpfWmxM1zpMjY+1HQVUYPiyOqjwrDYuHoWknV+DSGpcUg5PLiP2gvLHrmdaadbta0NoubO3V5a24pp4TtfDx3hKuHZ2CIdLAoHE92f3ZcXatPk7q4BgUabbzCfn55Z+kXvxTe9ZLa87r08TOaDQyYsQI1q9fz+WXXw7gHQgxd+7c0x73xBNP8Kc//YnVq1eTmZnZQdEK0ToGowlTVC962PcD4HZ4Rnq6ewWw+qoRvgzNr7yy4TCLVx3iufVZXDE8EbNBxzlTkvj+yxMUZFdx4lAlvfpKq50QQpwJn4+KnTdvHn/9619588032b9/P7feeitWq5VZs2YBcMMNNzQZXPH444/z0EMP8frrr5OSkkJhYSGFhYVYLBZf3YIQpxWb0Y/IOs/AnjrNieKqIatO/q2e6rpRiUQYNQqrbby5OQeAoHAT/ccmALDt06M+jE4IIToXnyd2M2fO5KmnnuLhhx9m2LBh7Nq1i1WrVnkHVOTm5lJQUODd/6WXXsJut/OLX/yChIQE78dTTz3lq1sQ4rRiU9Kw2yPp6fDMZ6d3nKAEHU6ZgNfLZNAxPdENwLLPs6iq9Ty6Hj41GVWncOJgJQVZlT6MUAghOg+fJ3YAc+fO5dixY9hsNr755htGjx7t3bZhwwaWL1/ufZ2T45nf6ocfixYt6vjAhfgfYlLSKLWavUuLmew5uBQdOfWypNipMmM0+sQGU13v5MUvsgAIiTTTb0xjq12OD6MTQojOwy8SOyG6qtjkVPJq3KTb7QCEOg4CsLPC6suw/I6qwPwpGQC8sSmH/Mo6wNNqp6gKufvKKTp65qPChBCiu5LEToh2FBgWjlUfSm+7y/Pa5ukvtrmowpdh+aUL+kQzKjUSu9PNs+sOARAWE0DfUZ5uGdtW5vgwOiGE6BwksROinUX37k+cLQQAm7MCNI291WU+jsr/KIrC/dP6AfDe9jzvsmsjpqWgKJDzXSklx2UpNiGE+DGS2AnRzmLTehNeG4mqadTjRnVXkedy+josvzQ8KYKLB8bj1uCJVZ7H1uFxgaRnelrttktfOyGE+FGdeuUJITqDmOQ0LN+EkuQoJ8doQOfIo8I0gDv353r3UX6wjNjJz0qL26Hl152RprkJ05mZ3vD6nov7snZ/Eev2F/FtTjkjUyIZMS2Zw98Wkb2zhLJ8C1E9gn0asxBC+CtJ7IRoZ7GpaRy2qKQ7HOQYDYTYD1JuHsQ7heW+Ds1v6ANjmFlvJ91goHdMMFdnJvLPrbksWXmA9343hqgewfQ+J4bsnSVsX3mMKTcP9HXIQgjhlySxE6KdhcfGU2BTSLc7WBcEw+wriXTVs7esP1qTNjfl5LJhP2i7a17e8uvW832bX0lwAtWBkdx38ATvjchAURTunJzBip15bD9Wwdp9RUwZGM+I6Slk7ywha1sRoy5NJTwu0NehCyGE35HEToh2pqgqwYl9CbLvA8BSX8vN6gdcEePjwPxEPj1YoC1lU00tH5dUMSM2nLhQMzefn8qyz7N5YvVBLuwXS0xiCClDosn5rpTtK3OYdNMAX4cuhBB+RxI7ITpAbO8MgvPCASf5Th35JDE87hwAtFPa49C05mWNfmzbT9IGq19oZ38OtfI7Zjg/ZAVXce/+XCZGhhCs13HLhN7845tcsootvL8jj5kjk8icnkLOd6Uc3FpE5iWphMUEnP09CCFEFyKJnRAdICY5DXV/BHqtGJuq8EFVOL+6cKmvw/ILZeXbqd35KzZzPkXuBB49fILH+ycRajYwd2I6j32yn2fWHuZnQ3sSlxJK0oBIcveVs2P1MSZe38/X4QshhF+RxE6IDhCbksZhq4lUh4PDRiPFFcV8cfwLFKVpH7eTo2CV5mU0HxqrnGUfuR9e/yed4yxjcLlcOGyZ3GR+jcd5iL8XlHF9r2gGhwTyqzHJvLEphxOVdSzfnMOtF/Qmc3oKufvKObClgMzpKYREms/6HoQQoquQxE6IDhCVmMRntZBu9yR2BruOuZ/N9XVYfiNOF8GCRDfnujbytXI+t+4+yhdjB2DS67h7Sh/m/Ws3L27I4tpRiSSkh9OzbzgnDlayY/UxJlzb19fhCyGE35DETogOYDCacIQlkGbfC0AEehKiBnn7y2mn9HfTWui35t3vlG3aWfaRa+3xLcXVFgqthRQ5Ktitnsf1ruXs1s4hyxHE33KL+W1yHJcN68mrXx7hQGENL27I5oHp/cmcnsqJgzvZv6mAzGkpBIWb2iU2IYTobCSxE6KDxKQPwGXdAkCdzsqKS//p44j8w+a8zdyy/hbeOLKZZwZkclXNP/k7v+Gx7HyuSIgkxmjgvov7MWv5tyzfnMNN56XQs084Cb3DKMiuYueaXM6/OsPXtyGEEH5BEjshOkhMShqureGAhSJ9LS9/9TLQtF+dgoLnvx98rZzsZ3dqvzhVaftVAc+0311b7adpGiP0I9ju3M5TOUeYF13PV9oFHFXS+f3uo7wzsg8X9I1hdGok3xwt55m1h3jyqqFkTk/hv3/Zzd6vTjD84mQCQ41nFI8QQnRlktgJ0UFik9MoWxdCgLuaOlVl2ZFlvg7JbwS4AkgJSSGnNoedDObXvMrD2hI2WGpZX1LFpJgw7p/Wjyte3Mz7O/L4zbg0+gyIJDY5hOJjNexal8t5P0/39W0IIYTPSWInRAeJSUnl+1o9C8oq+CQojAJjWsMWrYX/b6GssYubcmrpj2jzLnEt9f07e5VqJXW6OrRaDR063srdw+N9+nJR3SrWMJ25e46yc8IQzkmKYNqgeFZ+X8iTqw/w2o0jybwklU9f/I49X5xg+JRkzMGGNohICCE6L0nshOgggaFhlKqB3GixcoXFis0dcsrWU5cQU35QfvK1prW0/Wy09vi2X4Jsn8nAzT1tHFOPkWnKZJttG88cy2Nu3Am2amOoUCJYuDeXx4ekMH9qX9bsK2Ld/mK2Hi1n5OAoohODKT1uYfdnxxn9s7T/fUEhhOjCJLETogOFpg6kpmYHIYYyTOpBX4fjF4Y7YUF5MI9GR7K9fjv9Tf3Zb9vP985Urte9wQvM4/9KyrnZEkefmGBmjkzk7W9yWbJyP+/feh6Z01NY9cr3fPfZcYZNTsQUKK12QojuSxI7ITpQbGo6//efdEZFhDA4tNLzfNX7PPPUpcVO/Qwop0w30maPWNtn+hJoXbue22XkKirZYg5kXbCZ43XHCdIF8U7+Ef6U2otBzl18rw7jpq2H2TRxMHdOymDFjhPsyK1kzb4ipgyNI7JHEOX5Vr77PI+Rl6S2230JIYS/k8ROiA4Uk5JGncvIgdCJZC5+1tfh+AXHgTXYX5/NH0tL+N7Ui0KDhWRXMlbVyvN5xdwY/3ce0AZwRDHyalYht2QkcPP5qbzweRZPrDrApH6xZE5LYc3f9rL7s+MMnZSI0Sw/2oQQ3ZP89BOiA8Ume/qAlebmsPnfbwMN04F4VwtTQGk6pckPX3v2b5z+5Cy1ckmx1i1Bdmb7ut0u9JHnMsS6gaXFRfyqRzzHdMfo6+7LQcdBjtoVfmb8gPe5hj/l5HN1cgy/nZDGP745RnaJlfe253F1ZiLhHx+lsqiW7784wfCpya26LyGE6CoksROiA4XFxmEOCqbeamHLe2/7Ohy/oegN9Oo3gMH2HdxVXsFTUREc5jBxzjjeKyrkoaStbNbGUaDvya+3HGTFhIHMvTCDRz/exzPrDnHZsJ6MmJbM+uX72bUul8EX9MJg0vn6toQQosNJYidEB1JUlUtuv4esbd8AWpN+c94lvjStYWqTU5YRO6Uf3sljznZJsdYecOZHtGb5sZLcHMqOH2NFQRLXBOXzKwrZEhDIpkATde469C4jrxaUcmP86yzhIba47KzOK+f6c5N4feNRTlTW8cbmo/xuXBrffnyU6tJ69n51gmGTk1p7h0II0elJYidEB0sZNoKUYSN8HYbfqKko5417fk9NWRkfh1zIzy0f82e1hCt79qBUX02SLYlcey7V9YWcZ/6Szcp4bv8+m709RjB/ah/uenc3L23I5tqRSYy4OIXP3zrAzrW5DJrQE71BWu2EEN1L269HJIQQrWAODiFhwlTMwcEU5Bzni+BphNqMPFFSgqJBrimXlPoU3i+p4jI+IlCzUmUycOeWLC4b2pN+8SHU1Dt5cUMWfc+NJzjSRG2Vnf2bCnx9a0II0eEksRNC+JwxNIxL7rwfVafn+/35fK8fTWadnd9VVgGQZ8ojrD6SfxYWcLXm6Zu4oq6aveUW7pvWD4A3Nx+joKae4VM8Ayd2rD6Gy+n2zQ0JIYSPSGInhPALPfsNZMotvwdg/QE3J+qTuaWyihF1NpyqE03VKK0LIKB+K2naYVw6PbO+2c+EjGjOTYvE7nLzzNrD9B+bQGCYEUuFjQNbpNVOCNG9SGInhPAbAydMYvQVVwPw7+PJWK1hPF5SSpjLTaWxklh7LP8pqeca7S0UzUVeoJEndxzj/mn9AfhgZx5ZZdamrXYuabUTQnQfktgJIfzK2Kuvp8/osbhdbv5VPoKIWj1/LikF4HjgceItiawrPswUVgLwUmkhseFmpg+OR9PgiVUHGTCuBwEhBqpL6zm8tciXtyOEEB1KEjshhF9RVJWL584jPr0PVRYHn1Zncr7Vzg1V1QAUBhZSUxVHau1HRGhl1JsCuPGL75k/pS86VeGzA8XsyKv0TneyfdUx3O72Wz5NCCH8iSR2Qgi/YzCauPyehwiJjiG7VGV7TR/uLK9kYL0dh86BW3GzttjNVdpbAOwNVNhSVM01IxMBWLLqAAPH98AUpKeyqJas7dJqJ4ToHiSxE0L4paDwCK64byHGgAC+zI+myBLNkyUlBLndlJvLiaiNZ3/JNwzRduBWdPzxaBa/HptCgEHHztxKPs8uY9gkT6K37dNjaNJqJ4ToBiSxE0L4rZikFC694z4URccHeX2ItBhZVFoOwLHgY9hK0hlZ/38YNBtVwaE8uPUwvxmXCsATqw/Qf0JPjAF6KgqsZO8s8eWtCCFEh5DETgjh11LPyWTiTbNxaDr+daI/F1XXc2W1BRTID8xnVy5coq0AYIupnoyeYUQEGjhSYuWjvYUMmdgLgG0rc1q11JkQQnRGktgJIfzeORfPYNjUSym3B7G2uA/3lVeQbrdj09uoR6WuaC09tDxs+kAW7t/L7yb0BuCZtYfoM74HBpOOsjwLOd+V+vhOhBCifUliJ4ToFCbeOJvUYSPYWxlDdkU8TxWXYnJrFAcUU1OaxETb6wAURkaw22KhV0QAxTU23t6Zx+ALGlrtPpVWOyFE1yaJnRCiU1B1Oi654z6iE5NZV5hGWLWZB8o8/e2yQrMpyHYwxv0FmqKyXi3jyhGeZO7lDdkknxeH3qhSfKyG3H3lvrwNIYRoV5LYCSE6DVNgIFfctxBTaCQrTvTnkiob0yxWNEUjO6CY2ML/EqhZqDJH8u/iHPrFh1Bjc/L6t7kMHN8TgG2fSKudEKLrksROCNGphMbEcvk9D1FLKCvz+/BwaTmJDge1+lpyqlQm2d4GIC8+jKT4YAD+vuUYcaNi0OlVCo9UceJghS9vQQgh2o0kdkKITichoy8Xz5lHtiWKfSU9ebK4DL2mkR9UQH12Ab21g9gVE1+b8hnaKwy7y81LX+cw4PwegKevnRBCdEWS2AkhOqW+Y87n/GtuYGNJCmEVZuaVVwLwXfARBhe8j6q5KA7vRYXRAsCKnScIHBaBqlM4caiS/KxK3wUvhBDtRBI7IUSnNeryqxgwYTIf5/fn5+X1XGCtxa242V17nLH2jwEoSjXSNz4YTYNlW47S77wEQFrthBBdkyR2QohOS1EUJs+eS3j6OXxyoh+PlJQT53RiMVqoP7aJSK2UKn0kpRElqAp8frAEd/9QFFXh+L5yio5W+/oWhBCiTUliJ4To1PQGA5fNf5Ca0P7sK0rk8eIyVE0jx1zAkMI3AChMTCEyTAfA81uO0mdULADbPj3qs7iFEKI9SGInhOj0AkJCueK+heyq70dEWSC3VlYBcNC2l/7163Epepz9bRh0CruPV1KZHoSiQM6eMkpya3wcvRBCtB1J7IQQXUJkj178bN4fWF04gJklNkbX1eNUXdgL3sfotlAYmkxARB0AL36dQ8qIhla7lTk+jFoIIdqWJHZCiC4jadAQzr/5Tj7N68djxWVEulxU62pIL3oWAOuQaAw6OFJqJS/RBAoc2VlC2QmLbwMXQog2IomdEKJLGTxxColTZrEvP5k/lZQBUOI4SLx1NVZDGMFJVgD+uu0YvYZGAbBdWu2EEF2EJHZCiC5n3LU3Ykn/BTFFwcyq9Ix8VUvfQXWWUJCegV7voqTGxsF4PQCHtxdTUWj1ZchCCNEmJLETQnQ5iqoy7fd3s9N0MdcX2hhSb8OhOOlR/DgoLkz9PD/6/m9nHtEDI0CD7auO+ThqIYQ4e5LYCSG6JIPJzKX3/JEvLOfy56JyQlxubM4iwiv/SVmPnpgC7NTYnOyKUgA4tLWIyuJaNLeGpmk+jl4IIX4ava8DEEKI9hIcGcWEu5ey64nreMR8lHlxMRhq1mAwD6O+fzLKjhre25vPg31jsR6s5h8Pf938JAooAIqCojS+Vk4pb9h26r5tRVFa+rJJbJ5PSvOyFvdXTt3lB+doWlZvD2KjJYu+oxNISAtDUdv0zoQQ7UQSOyFElxabkkbvm5+j9v9+xcyAGt4NDSGy9AWKE5YQHmGnrsLIN2EawwwqToe7+Qk00AA0De3Uwi5PZd9XBez7qoDgCBPpmXH0GRlHdGIwSotZoxDCH0hiJ4To8nqPGMWO/Me4afMd7DTZOWSC8LKXqOwzD9M3Zaw6VMxt95xHRmQwWkMm1/g01vtY1lumoWkN5d59Tpa3mRbO1dIj4iZF3lC1Jq9Pu3/DDt6yhs9Op5Mv1m8iUpdCzndlWCps7Fqby661uYTHBZKRGUvGyDgi4oNac0dCiA4giZ0Qols459JfsClvP38ufIFfJcZQZ9tPgHk1atxInEUaT6w9xP/dPNrXYfoFh8NBQKyLidP7omgqx74v4/C3ReTsKaOyqJZvP8nh209yiE4MJmNkHBmZcYREmn0dthACSeyEEN2EoiiMmf0A3zz2PQ+UbeShmCiCqt6nMiUDfXEoXx0u5ZUvsokPMzc5Brzd6Bq+big7pT/dySeTSst929ryPn5s22ku/uPHNC9zulwcqFQ4r9ZBTFggvYfH0nt4LPY6J0d3l3Do22KO7y+n9LiF0uMWtnyQTUJ6GBmZcaSPiCUgxNiqexJCtB1J7IQQ3YZOr2fEvW9waNH5XBpQxcfBQURYXqSy132oxxUWrzzg6xD9iI6X939O/4RQzk2L4ty0SEanRtH33AT6nptAncVO9o4SDn9bRP7hSgqyqijIquKrfx0msV8EGSPjSB0WgylAfs0I0ZHkHSeE6FZMgUEk3fURv3l+LHt6OzhmqCIw8l1U+5VoZU7c2qmzQHmas7zd0lrsQ6ecflOrnGw6+0nnOuODmjfRtXSopim40bGvoJp9BdW8vukoCtAnLoSx6dGeRC8zlkHje2KpqOfwtmIOf1tESW4NufvKyd1Xju4fB0keFEXGyDhSBkehN+p+yp0JIVpBEjshRLcTlpBI3cz/47GPrubXSTFg342l92AyhsYQhGcFCgUN5QcpT+Prlsp/WNYeWr5Gy9c93ePXMz2HHhehtZVYigLJK4nmhCWOOmcgB4tqOFhU4030UmOCGJ8Rw9j0aKaOHYZW4+DwtiIOf1tERWEtR3aVcGRXCQaTjtRh0WRkxpE4IBKdTqZRFaI9SGInhOiW4odNwHb0XuYfWcri6EhCKt7msDYTTTFySu+5UzIkpWm5t6Xu1BTq1H06SKsvd6YH6HDp++JKiUdLCyJaK6aP7TjmimrqSkwUl0dSZQvhSImVIyVWlm/OAaBXRADn9Y5i8lXJnGsyUbSnnMPfFlNTXs+hb4o49E0R5iADvYfHkDEyjh7p4TJHnhBtSBI7IUS3lXzF3bB0Ixdav+OzoECCK//p65D8klsNwamP56ghDldgAs70QFz6AFRXEFGVFRjLrdSWG7HUBpFXUce/tuXxr215AMSGmBjeP5yxsTFElzgp2F1KXY2DvV/ls/erfILCTaRnxtJnZBwxSSEyR54QZ0kSOyFEt5Z0x7+549HBJEZWk6/Xo3HyweQPv26kKUqL2/1l2uL/FYd2BrmTTVE4rtdTotejumtQ7TUY7Ieb7edWQ6mJ7oEjIQGFWNx1URiqg1DLgrBbzRTX2Fi1t4hVe4sAjcgQHX17hjDArSf8uA1rpY3d646ze91xwmICvNOnRPaQOfKE+Cn8IrFbtmwZTz75JIWFhQwdOpS//OUvjBo16rT7//vf/+ahhx4iJyeHjIwMHn/8caZPn96BEQshugpFpyfprs+58a1b0VWf4AezDnNqmqQ0rD6htJTuaW2V2rU0q3DL+/0wP2vc7Uf7+7UwQXFLOzltdQSr1bh0NnINeo4ZDBwz6Dmmb/hs0FOl06G5q9HbqtHbThlRHOT5CCUExR2J3RFHrSUBtzWKCns0WwqdbEEFk0ZMSD0pqp7EikB6ltZS9WkO2z7NIapnMBkjY0kZEo2hLQZdtEFDoK9bE50OB656BXudE51OjyqPsEULfJ7Yvfvuu8ybN4+XX36Z0aNH8+yzzzJ16lQOHjxIbGxss/03b97Mtddey+LFi7n00kt5++23ufzyy9mxYweDBg3ywR0IITo7fVg8MXNW+DoMv+FwOPj000+ZPn06Zpz0qzpBauEhbPkHcBRl4S49ilpzgjpXBcVGO/kmlZyGhC/XYCDHoKdOVbFRA2oNmI5hNgFRnvPrNAhxmDHbQ9DsURTY4tkflYTV3pNog0Zf1UJinYmCT4r5+sNAn34v/E8wyz/fAoDOoGIw6TAYdRjMOvRGned144dRxWDSN2xr+Nrk+aw3qhhbOEZv0snAlk7O54nd0qVLmT17NrNmzQLg5Zdf5pNPPuH111/n/vvvb7b/c889x8UXX8w999wDwKOPPsratWt54YUXePnllzs0diGE6PIMASjR6Zij0zEPav5kJFHTGFFXgaMkm7q8fdjy9uPI309FTS6FSjVFRicFZhpa/TyJn0NRqDTWg7EeKAEOoADBgObWKHXosdkDOGYPQ9WCvZNCn52zP4e/PGr3NBw2TpStgNbYmuiZIFuxK2A/dTJttWFYT2OJioKCCqApqIrnlXLq/zQVFQU01bO94bPnTDo8W1VU9CiKgqroUNGhqjpQdOhUHYqqoCh6z2ediqKqqKoOVVFRFB2qqqKoenSqCooevapHVVVUVY9Op0en6tHpdA2fDegNBgyqAVVnQG/QY1AMGAx69DodBp2CruGzXlXQ63WoqoKqU9HpFFRVQadX0SkKOp2CTvXct05V0ClKl2r99GliZ7fb2b59OwsWLPCWqarK5MmT2bJlS4vHbNmyhXnz5jUpmzp1Kh9++GGL+9tsNmw2m/d1dXU14PmL1OFwnOUdnF7judvzGqJ1pE78k9SL/2l1nRhCoMcwAnoMI6ChF00M0Kdxu9uJqzKP+uP7sB78hsKCHRyvLyBfX0+BWaPIBHkGlXy9HpuqcMLkApMFsLTxnQmfc7f9KRVNQ+Vk6q5qjePTNe84daWhHKCxPVIBFI0m+yg/KKdZmdK0vGG/eHs0Fzkuavuba9Can48+TexKS0txuVzExcU1KY+Li+PAgZZngC8sLGxx/8LCwhb3X7x4MY888kiz8jVr1hAY2P5N/GvXrm33a4jWkTrxT1Iv/qdd6iR4NGSMRgF6NnwAqM46TGX7qS3ZyQmKKTBDqdmFRef0i5ayjpin8Ey4G7KKkz06NW9kbgBF+8Ggnh++PuXrU/ZtWn7yrI15mOfcJ183OU6h2Xmal3m+g43xu737tUFLqqLgOrVAafZFuwt3Wtv1Z1htbe0Z7+vzR7HtbcGCBU1a+Kqrq0lMTGTKlCmEhoa223UdDgdr167loosuwmAwtNt1xJmTOvFPUi/+R+rEP3V0vWiahuZyoblcuB0ONKcTl8OB5nLidjhwOpy47TbsDge2+nocDhu1tjocTjv1DhsOpwObw4Hd6cDmcGJzOrE7ndhdLuwut3fAkaadTB+VxlRUc6PgxtWQEroVDXB7E1U0N248Cbe3VNG82xvLG1NUraH1zoUbFXB5SxvSWeVkguyJSWs4RvMmozSckVOu4UlONQKcge1aL41PG8+ETxO76OhodDodRUVFTcqLioqIj49v8Zj4+PhW7W8ymTCZTM3KDQZDh7wxOuo64sxJnfgnqRf/I3Xin6Re/EvjYKP2rJfWnNenQ1+MRiMjRoxg/fr13jK328369esZM2ZMi8eMGTOmyf7geVxwuv2FEEIIIboLnz+KnTdvHjfeeCOZmZmMGjWKZ599FqvV6h0le8MNN9CzZ08WL14MwB133MGECRN4+umnueSSS3jnnXfYtm0br776qi9vQwghhBDC53ye2M2cOZOSkhIefvhhCgsLGTZsGKtWrfIOkMjNzUVVTzYsnnfeebz99tv84Q9/4IEHHiAjI4MPP/xQ5rATQgghRLfn88QOYO7cucydO7fFbRs2bGhWdtVVV3HVVVe1c1RCCCGEEJ2LTC8thBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFF+MVasR1J0zQAqqur2/U6DoeD2tpaqqurMRgM7XotcWakTvyT1Iv/kTrxT1Iv/qkj6qUxZ2nMYX5Mt0vsampqAEhMTPRxJEIIIYQQZ66mpoawsLAf3UfRziT960Lcbjf5+fmEhISgKEq7Xae6uprExESOHz9OaGhou11HnDmpE/8k9eJ/pE78k9SLf+qIetE0jZqaGnr06IGq/ngvum7XYqeqKr169eqw64WGhsob0M9InfgnqRf/I3Xin6Re/FN718v/aqlrJIMnhBBCCCG6CEnshBBCCCG6CEns2onJZGLhwoWYTCZfhyIaSJ34J6kX/yN14p+kXvyTv9VLtxs8IYQQQgjRVUmLnRBCCCFEFyGJnRBCCCFEFyGJnRBCCCFEFyGJXTtYtmwZKSkpmM1mRo8ezdatW30dUrf25ZdfMmPGDHr06IGiKHz44Ye+DqnbW7x4MSNHjiQkJITY2Fguv/xyDh486Ouwur2XXnqJIUOGeOfjGjNmDCtXrvR1WOIUS5YsQVEU7rzzTl+H0q0tWrQIRVGafPTr18/XYQGS2LW5d999l3nz5rFw4UJ27NjB0KFDmTp1KsXFxb4OrduyWq0MHTqUZcuW+ToU0eCLL75gzpw5fP3116xduxaHw8GUKVOwWq2+Dq1b69WrF0uWLGH79u1s27aNCy+8kMsuu4y9e/f6OjQBfPvtt7zyyisMGTLE16EIYODAgRQUFHg/Nm7c6OuQABkV2+ZGjx7NyJEjeeGFFwDPEmaJiYn8/ve/5/777/dxdEJRFFasWMHll1/u61DEKUpKSoiNjeWLL75g/Pjxvg5HnCIyMpInn3ySm2++2dehdGsWi4Xhw4fz4osv8thjjzFs2DCeffZZX4fVbS1atIgPP/yQXbt2+TqUZqTFrg3Z7Xa2b9/O5MmTvWWqqjJ58mS2bNniw8iE8G9VVVWAJ4kQ/sHlcvHOO+9gtVoZM2aMr8Pp9ubMmcMll1zS5PeL8K3Dhw/To0cP0tLSuO6668jNzfV1SEA3XCu2PZWWluJyuYiLi2tSHhcXx4EDB3wUlRD+ze12c+eddzJ27FgGDRrk63C6vT179jBmzBjq6+sJDg5mxYoVDBgwwNdhdWvvvPMOO3bs4Ntvv/V1KKLB6NGjWb58OX379qWgoIBHHnmEcePG8f333xMSEuLT2CSxE0L41Jw5c/j+++/9pn9Kd9e3b1927dpFVVUV7733HjfeeCNffPGFJHc+cvz4ce644w7Wrl2L2Wz2dTiiwbRp07xfDxkyhNGjR5OcnMy//vUvn3dbkMSuDUVHR6PT6SgqKmpSXlRURHx8vI+iEsJ/zZ07l48//pgvv/ySXr16+TocARiNRtLT0wEYMWIE3377Lc899xyvvPKKjyPrnrZv305xcTHDhw/3lrlcLr788kteeOEFbDYbOp3OhxEKgPDwcPr06UNWVpavQ5E+dm3JaDQyYsQI1q9f7y1zu92sX79e+qgIcQpN05g7dy4rVqzgs88+IzU11dchidNwu93YbDZfh9FtTZo0iT179rBr1y7vR2ZmJtdddx27du2SpM5PWCwWsrOzSUhI8HUo0mLX1ubNm8eNN95IZmYmo0aN4tlnn8VqtTJr1ixfh9ZtWSyWJn9FHT16lF27dhEZGUlSUpIPI+u+5syZw9tvv81//vMfQkJCKCwsBCAsLIyAgAAfR9d9LViwgGnTppGUlERNTQ1vv/02GzZsYPXq1b4OrdsKCQlp1vc0KCiIqKgo6ZPqQ/Pnz2fGjBkkJyeTn5/PwoUL0el0XHvttb4OTRK7tjZz5kxKSkp4+OGHKSwsZNiwYaxatarZgArRcbZt28bEiRO9r+fNmwfAjTfeyPLly30UVff20ksvAXDBBRc0KX/jjTe46aabOj4gAUBxcTE33HADBQUFhIWFMWTIEFavXs1FF13k69CE8Ct5eXlce+21lJWVERMTw/nnn8/XX39NTEyMr0OTeeyEEEIIIboK6WMnhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBCCNFFSGInhBBASUkJt956K0lJSZhMJuLj45k6dSqbNm3ydWhCCHHGZK1YIYQArrzySux2O2+++SZpaWkUFRWxfv16ysrK2uV6drsdo9HYLucWQnRf0mInhOj2Kisr+eqrr3j88ceZOHEiycnJjBo1igULFvCzn/3Mu88tt9xCXFwcZrOZQYMG8fHHH3vP8f777zNw4EBMJhMpKSk8/fTTTa6RkpLCo48+yg033EBoaCi//e1vAdi4cSPjxo0jICCAxMREbr/9dqxWa8fdvBCiS5HETgjR7QUHBxMcHMyHH36IzWZrtt3tdjNt2jQ2bdrEW2+9xb59+1iyZAk6nQ6A7du3c/XVV3PNNdewZ88eFi1axEMPPcTy5cubnOepp55i6NCh7Ny5k4ceeojs7GwuvvhirrzySr777jveffddNm7cyNy5czvitoUQXZCiaZrm6yCEEMLX3n//fWbPnk1dXR3Dhw9nwoQJXHPNNQwZMoQ1a9Ywbdo09u/fT58+fZode91111FSUsKaNWu8Zffeey+ffPIJe/fuBTwtdueccw4rVqzw7vOb3/wGnU7HK6+84i3buHEjEyZMwGq1Yjab2/GOhRBdkbTYCSEEnj52+fn5fPTRR1x88cVs2LCB4cOHs3z5cnbt2kWvXr1aTOoA9u/fz9ixY5uUjR07lsOHD+NyubxlmZmZTfbZvXs3y5cv97YYBgcHM3XqVNxuN0ePHm37mxRCdHkyeEIIIRqYzWYuuugiLrroIh566CF+85vfsHDhQubPn98m5w8KCmry2mKxcMstt3D77bc32zcpKalNrimE6F4ksRNCiNMYMGAAH374IUOGDCEvL49Dhw612GrXv3//ZtOibNq0iT59+nj74bVk+PDh7Nu3j/T09DaPXQjRPcmjWCFEt1dWVsaFF17IW2+9xXfffcfRo0f597//zRNPPMFll13GhAkTGD9+PFdeeSVr167l6NGjrFy5klWrVgFw9913s379eh599FEOHTrEm2++yQsvvPA/W/ruu+8+Nm/ezNy5c9m1axeHDx/mP//5jwyeEEL8ZNJiJ4To9oKDgxk9ejTPPPMM2dnZOBwOEhMTmT17Ng888ADgGVwxf/58rr32WqxWK+np6SxZsgTwtLz961//4uGHH+bRRx8lISGBP/7xj9x0000/et0hQ4bwxRdf8OCDDzJu3Dg0TaN3797MnDmzvW9ZCNFFyahYIYQQQoguQh7FCiGEEEJ0EZLYCSGEEEJ0EZLYCSGEEEJ0EZLYCSGEEEJ0EZLYCSGEEEJ0EZLYCSGEEEJ0EZLYCSGEEEJ0EZLYCSGEEEJ0EZLYCSGEEEJ0EZLYCSGEEEJ0EZLYCSGEEEJ0EZLYCSGEEEJ0Ef8PkzylHzCLsDUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for lang, scores in lang_to_scores.items():\n", + " num_scores = len(scores)\n", + " counts = Counter(scores)\n", + " all_scores = sorted(set(scores))\n", + " \n", + " # Ensure all relevant score levels are included\n", + " all_scores_sorted = sorted(all_scores)\n", + "\n", + " # Compute cumulative counts from the right\n", + " y_cumulative = []\n", + " for i, score in enumerate(all_scores_sorted):\n", + " count = sum(counts[s]/num_scores for s in all_scores_sorted[i:])\n", + " y_cumulative.append(count)\n", + "\n", + " plt.plot(all_scores_sorted, y_cumulative, label=language_codes_500k_docs[lang])\n", + "\n", + "plt.xlabel(\"Score\")\n", + "plt.ylabel(\"Number of Scores ≥ Score\")\n", + "# plt.title(\"Right-Cumulative Score Distribution per Language\")\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.tight_layout()\n", + "plt.savefig(plot_path / f\"llm_annotator_cummulative_score_dist_{model}.pdf\", format=\"pdf\", bbox_inches=\"tight\", pad_inches=0)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e393e456", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cecd2c02", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "22168b01", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'pol': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/pol_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'ita': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/ita_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'fin': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/fin_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'ell': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/ell_Grek_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'nob': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/nob_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'lit': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/lit_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'fra': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/fra_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'spa': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/spa_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl'),\n", + " 'hun': PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/educational_content/Mistral-Small-3.1-24B-Instruct-2503_aggregated/hun_Latn_sampled_500k_Mistral-Small-3.1-24B-Instruct-2503_aggregated_scores_majority.jsonl')}" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "language_codes_500k_docs = {\n", + " \"spa\": \"Spanish\",\n", + " \"fra\": \"French\",\n", + " \"ita\": \"Italian\",\n", + " \"pol\": \"Polish\",\n", + " \"ell\": \"Greek\", # Modern Greek\n", + " \"nob\": \"Norwegian\", # Norwegian Bokmål (dominant variety)\n", + " \"hun\": \"Hungarian\",\n", + " \"fin\": \"Finnish\",\n", + " \"lit\": \"Lithuanian\",\n", + "}\n", + "model = ablated_models[2]\n", + "model_annotations_paths = list((annotated_500k_samples_path / f\"{model}_aggregated\").glob(\"**/*.jsonl\"))\n", + "# filter only the languages that we want to check\n", + "model_annotations_paths = {path.stem.split(\"_\")[0]: path for path in model_annotations_paths if path.stem.split(\"_\")[0] in language_codes_500k_docs.keys()}\n", + "model_annotations_paths" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "3cf84acb", + "metadata": {}, + "outputs": [], + "source": [ + "lang_to_scores = {lang: list() for lang in model_annotations_paths.keys()}\n", + "\n", + "for lang, model_annotations_path in model_annotations_paths.items():\n", + " with open(model_annotations_path, 'r') as f:\n", + " for line in f:\n", + " json_line = json.loads(line)\n", + " try:\n", + " score = float(json_line[\"score\"])\n", + " except: \n", + " continue\n", + " lang_to_scores[lang].append(score)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "06bad9bb", + "metadata": {}, + "outputs": [], + "source": [ + "series_list = []\n", + "\n", + "for lang, scores in lang_to_scores.items():\n", + " num_scores = len(scores)\n", + " counts = Counter(scores)\n", + " all_scores = sorted(set(scores))\n", + " \n", + " # Ensure all relevant score levels are included\n", + " all_scores_sorted = sorted(all_scores)\n", + "\n", + " # Compute cumulative counts from the right\n", + " y_cumulative = []\n", + " for i, score in enumerate(all_scores_sorted):\n", + " count = sum(counts[s]/num_scores for s in all_scores_sorted[i:])\n", + " y_cumulative.append(count)\n", + " \n", + " series_list.append((all_scores_sorted, y_cumulative))" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "bcaa53ba", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAY5JJREFUeJzt3Xl4U1X+BvD3Zm/apvu+UPZ9R7EsIlqoGyM6CqIjpY64gaIdXHBhkVFEVHBkUxRFlB8Io+AKdNCCIAiCIAJlh9LSne5b0uT8/ggNDW1pC21um7yf5+GhObn35puTpHl77zn3SkIIASIiIiInoZC7ACIiIqKmxHBDREREToXhhoiIiJwKww0RERE5FYYbIiIicioMN0RERORUGG6IiIjIqTDcEBERkVNhuCEiIiKnwnBD5OSOHz+OkSNHwsvLC5IkYf369XKX1GJMmDABUVFRcpdRrzNnzkCSJHz66acNXvbtt99u9rqioqJw5513NvvjNIWZM2dCkiS5yyAHYbhxIp9++ikkSYIkSdi+fXuN+4UQiIiIgCRJreYXUlNZuHAhunbtCq1Wi7CwMCQkJKCkpMRumaovhdr+rV692m7Z9evXo0uXLvDy8sKoUaNw/vz5Go/5t7/9DY8++mij6jSbzfjkk09w0003wdfXF1qtFlFRUYiPj8fvv/9uW67qta7eVpe4uDgcPHgQr7/+OlauXIkBAwY0qiZHO3PmDOLj49G+fXvodDoEBwfjxhtvxIwZM+QurUX54YcfMHPmzGbZtiu/BhMmTLD77Gu1WnTq1AnTp09HeXm53OVRA6nkLoCank6nw6pVqzBkyBC79q1btyI1NRVarVamyuTxwgsv4K233sK9996LKVOm4PDhw3j//fdx6NAhbNq0qcby48aNw+23327XFh0dbfv51KlTGDt2LMaOHYvo6GgsWLAA8fHxdtvatGkTtm3bhuPHjze4zrKyMtxzzz3YuHEjbrzxRrz00kvw9fXFmTNn8OWXX2LFihVISUlBeHh4o7a5c+dOvPzyy5g8eXKD15PLiRMncN1118HNzQ0PP/wwoqKikJ6ejn379mHu3LmYNWtWkz7esmXLYLFYmnSbzaFNmzYoKyuDWq22tf3www9YtGhRkwccR78GLZFWq8VHH30EACgoKMCGDRswe/ZsnDx5El988YXM1VFDMNw4odtvvx1r167Ff/7zH6hUl17iVatWoX///sjJyZGxuquTlJSE4cOH4/Tp0406jJCeno53330XDz30ED777DNbe6dOnfDUU0/h22+/xahRo+zW6devH/7xj3/Uuc3NmzcjPDwcK1asgCRJ6Nq1K26++WaUl5dDp9OhsrISzz77LKZPn46AgIAG1/rcc89h48aNmD9/Pp555hm7+2bMmIH58+c3eFtVsrOzAQDe3t71LltSUgJ3d/dGP0ZTmj9/PoqLi7F//360adPG7r6srKwme5yq51o9LLRkkiRBp9M55LEc9Ro0VHl5OTQaDRQKxx1oUKlUdr8DnnzySQwaNAj/93//h3fffRdBQUEOq4WuDg9LOaFx48YhNzcXiYmJtjaj0Yh169bhgQceqHUdi8WCBQsWoHv37tDpdAgKCsJjjz2GvLw8u+U2bNiAO+64A6GhodBqtWjfvj1mz54Ns9lst9xNN92EHj164PDhwxg+fDj0ej3CwsLw1ltvNf0TvoKdO3eisrIS999/v1171e3LDzdVKSkpgdForPW+srIyeHt7247f+/r6QgiBsrIyANZDYGazGU899VSD60xNTcUHH3yAESNG1Ag2AKBUKjF16tRG7bWZOXOm7cvpueeegyRJtmBYNf7g8OHDeOCBB+Dj42Pb01dZWYnZs2ejffv2tsNiL730EioqKuy2XzXeIikpCQMGDICbmxt69uyJpKQkAMBXX32Fnj17QqfToX///vjjjz/qrfnkyZMIDw+v8aUKAIGBgTXafvzxRwwdOhTu7u7w9PTEHXfcgUOHDtktM2HCBHh4eODkyZO4/fbb4enpiQcffNB23+VhuaGfhd9//x2xsbHw9/eHm5sb2rZti4cffviKzy8hIQF+fn4QQtjannrqKUiShP/85z+2tszMTEiShCVLlgCoOeZmwoQJWLRoEQDYHUK53Icffmh7Ha+77jrs2bPnivUBjX8NAGD79u24/vrrodPp0K5dO7s/JADgwoULmDp1Knr27AkPDw8YDAbcdtttOHDggN1ySUlJtsPAr7zyCsLCwqDX61FYWAgA+O2333DrrbfCy8sLer0ew4YNw44dO2qt57rrroNOp0P79u3xwQcf1Pu8r0SSJAwZMgRCCJw6dcrWfvbsWTz55JPo3Lkz3Nzc4Ofnh/vuuw9nzpyxW7/qMPKOHTuQkJCAgIAAuLu74+6777b9AVLFYrFg5syZCA0NhV6vx/Dhw3H48GFERUVhwoQJdsvm5+fjmWeeQUREBLRaLTp06IC5c+e2ir2RzU6Q0/jkk08EALFnzx4xaNAg8dBDD9nuW79+vVAoFCItLU20adNG3HHHHXbrPvLII0KlUomJEyeKpUuXihdeeEG4u7uL6667ThiNRttyo0ePFmPGjBHz5s0TS5YsEffdd58AIKZOnWq3vWHDhonQ0FAREREhpkyZIhYvXixuvvlmAUD88MMPjX5uP//8swAgTp8+3aj1Vq1aJQCIn376ya69pKREABCdO3e2tZ0+fVoAEB4eHgKAkCRJDBgwQGzatMlu3V9++UVIkiRWrVolTp06JcaMGSM6dOgghBAiKytLeHt7i++++65RdX744YcCgPjss88atHz117ouBw4cEPPnzxcAxLhx48TKlSvF119/LYQQYsaMGQKA6Natm7jrrrvE4sWLxaJFi4QQQsTFxQkA4t577xWLFi0S48ePFwDE6NGj7bbfpk0b0blzZxESEiJmzpwp5s+fL8LCwoSHh4f4/PPPRWRkpHjzzTfFm2++Kby8vESHDh2E2Wy+4vN69NFHhVKpFFu2bKm3Dz777DMhSZK49dZbxfvvvy/mzp0roqKihLe3t937JC4uTmi1WtG+fXsRFxcnli5dauvnuLg40aZNG7vtNuSzkJmZKXx8fESnTp3EvHnzxLJly8TLL78sunbtesWav/rqKwFAHDx40NbWu3dvoVAoxL333mtrW7t2rQAg/vrrLyHEpffmJ598IoQQ4tdffxUjRowQAMTKlStt/6ov27dvX9GhQwcxd+5c8dZbbwl/f38RHh5u93muTWNeg6r3QFBQkHjppZfEwoULRb9+/YQkSbbahRBiz549on379uLFF18UH3zwgXjttddEWFiY8PLyEmlpabblqj7n3bp1E3369BHvvvuumDNnjigpKRFbtmwRGo1GREdHi3feeUfMnz9f9OrVS2g0GvHbb7/ZtvHnn38KNzc3ERkZKebMmSNmz54tgoKCRK9evURDvvLi4uKEu7t7jfZ7771XABBHjhyxta1du1b07t1bTJ8+XXz44YfipZdeEj4+PqJNmzaipKTEtlzV57Vv377i5ptvFu+//77417/+JZRKpRgzZozd4zz//PMCgBg1apRYuHChmDhxoggPDxf+/v4iLi7OtlxJSYno1auX8PPzEy+99JJYunSpGD9+vJAkSUyZMqXe5+nsGG6cSPUvvIULFwpPT09RWloqhBDivvvuE8OHDxdCiBrh5pdffhEAxBdffGG3vY0bN9Zor9pedY899pjQ6/WivLzc1jZs2LAaX9YVFRUiODhY/P3vf2/0c7vacLN3714BQMyePduuveq5eXh42NrOnj0rRo4cKZYsWSK++eYbsWDBAhEZGSkUCkWNsPL0008LAAKA8PX1tYWniRMniltvvbXRz+/ZZ58VAMQff/zRoOUbEm6EuPRFN2/ePLv2qnAzbtw4u/b9+/cLAOKRRx6xa586dWqNkNimTRsBQPz666+2tk2bNgkAws3NTZw9e9bW/sEHHwgA4ueff75ivX/99Zdwc3MTAESfPn3ElClTxPr16+2+KIQQoqioSHh7e4uJEyfatWdkZAgvLy+79qqw9uKLL9Z4vMvDTUM/C19//XWD+v9yWVlZAoBYvHixEEKI/Px8oVAoxH333SeCgoJsyz399NPC19dXWCwWIUTNcCOEEJMmTar1y7pqWT8/P3HhwgVb+4YNGwQA8e23316xxoa+BkJceg9s27bN7jlqtVrxr3/9y9ZWXl5eI9iePn1aaLVa8dprr9naqj7n7dq1s/tdY7FYRMeOHUVsbKytT4Sw/j5q27atGDFihK1t9OjRQqfT2b3/Dh8+LJRKZaPCTXZ2tsjOzhYnTpwQb7/9tpAkSfTo0aPG419u586dNX73VX1eY2Ji7NZ/9tlnhVKpFPn5+UII6/tXpVLV+ENi5syZAoBduJk9e7Zwd3cXx44ds1v2xRdfFEqlUqSkpNT7XJ0ZD0s5qTFjxqCsrAzfffcdioqK8N1339V5SGrt2rXw8vLCiBEjkJOTY/vXv39/eHh44Oeff7Yt6+bmZvu5qKgIOTk5GDp0KEpLS5GcnGy3XQ8PD7vj1hqNBtdff73dbt26FBQU2NVSUFAAAMjLy7NrLy4uvuJ2+vXrh4EDB2Lu3Ln45JNPcObMGfz444947LHHoFarbYeSACAyMhKbNm3C448/jlGjRmHKlCn4448/EBAQgH/96192233vvfdw9uxZ/Pbbbzh79iyGDx+O/fv347PPPsP8+fNRUFCAf/zjHwgLC8NNN92EI0eOXLHOqt3unp6e9fZNU3r88cftbv/www8ArIdPqqt6/t9//71de7du3ewGWw8cOBAAcPPNNyMyMrJGe32vfffu3bF//3784x//wJkzZ/Dee+9h9OjRCAoKwrJly2zLJSYmIj8/H+PGjbN7PyiVSgwcONDuPVvliSeeuOJjAw3/LFSNYfruu+9gMpnq3W6VgIAAdOnSBdu2bQMA7NixA0qlEs899xwyMzNtA9B/+eUXDBky5JqmLo8dOxY+Pj6220OHDgXQdK9BlW7dutm2XfUcO3fubPc4Wq3WNmbGbDYjNzcXHh4e6Ny5M/bt21djm3FxcXa/a/bv34/jx4/jgQceQG5uru11KSkpwS233IJt27bBYrHAbDZj06ZNGD16tN37r2vXroiNja2vy2xKSkoQEBCAgIAAdOjQAVOnTsXgwYOxYcMGu9ekeo0mkwm5ubno0KEDvL29a31ejz76qN36Q4cOhdlsxtmzZwEAW7ZsQWVlJZ588km79Wo7xL127VoMHToUPj4+du/VmJgYmM1m23vMVXFAsZMKCAhATEwMVq1ahdLSUpjNZtx77721Lnv8+HEUFBTUeTy9+iDCQ4cO4ZVXXsFPP/1k+0KuUhVAqoSHh9f45ezj44M///yz3vrvuusubN26tUZ7v3797G7HxcXVe+6P//73vxg7dqxtPIRSqURCQgK2bt2Ko0ePXnFdX19fxMfH480330RqaqrdmJfIyEi7X6BPP/00Hn/8cXTp0gX/+Mc/cO7cOWzYsAErVqzAqFGjkJycbDfAuzqDwQDAGhgdqW3btna3z549C4VCgQ4dOti1BwcHw9vb2/ZLuEr15w8AXl5eAICIiIha2y8ft1KbTp06YeXKlTCbzTh8+DC+++47vPXWW3j00UfRtm1bxMTE2ELAzTffXOs2qvqzikqlatB4pYZ+FoYNG4a///3vmDVrFubPn4+bbroJo0ePxgMPPFDvbMShQ4faQuQvv/yCAQMGYMCAAfD19cUvv/yCoKAgHDhwoM4/Rhrq8temKug01WtQ1+NUPVb1x7FYLHjvvfewePFinD592m6Mnp+fX431L39fVr3ecXFxddZcUFCAiooKlJWVoWPHjjXu79y5s63f66PT6fDtt98CsI6He+utt5CVlWUXZgDr+Ls5c+bgk08+QVpamt1Yqst/HwL1vyZVn6/LP3++vr52QRWw9smff/5Z56QFOQZ/tyQMN07sgQcewMSJE5GRkYHbbrutzhkzFosFgYGBdU5xrPrw5OfnY9iwYTAYDHjttdds58DYt28fXnjhhRqD2JRKZa3bq/4LoC7vvPOO3S/HAwcOYOrUqfj888/tZiqEhobWu62wsDBs374dx48fR0ZGBjp27Ijg4GCEhoaiU6dO9a5f9UV94cKFOr8g16xZgyNHjuCbb76B2WzGl19+ic2bN2PAgAHo3r07li1bhl27dtWYnl+lS5cuAICDBw+iT58+9dbUVC7/ZV2loXsM6nqNr+W1r76Nnj17omfPnoiOjsbw4cPxxRdfICYmxvZeW7lyJYKDg2use3mIrL7n4Eoa+lmQJAnr1q3Drl278O2332LTpk14+OGH8c4772DXrl3w8PCo8zGGDBmCZcuW4dSpU/jll18wdOhQ24DVX375BaGhobBYLHZ7Q65Gc78GjXmcN954A6+++ioefvhhzJ49G76+vlAoFHjmmWdqHfx6+fuyapl58+bV+fnw8PCoMej9aimVSrvnGBsbiy5duuCxxx7DN998Y2t/6qmn8Mknn+CZZ55BdHS07USZ999/f63PqylekyoWiwUjRozA888/X+v9Dfnd5swYbpzY3Xffjcceewy7du3CmjVr6lyuffv2+N///ofBgwfX+WUHWGcy5Obm4quvvsKNN95oaz99+nST1g0A/fv3t7td9WU1ePDgqz6jbMeOHW1/0R0+fBjp6ek1Zh/Upmr3el1/IZWWluK5557D7Nmz4e3tjczMTJhMJlvwcnNzg4+PD9LS0up8jNtuuw1KpRKff/45HnrooUY+s6bTpk0bWCwWHD9+HF27drW1Z2ZmIj8/v9YZNI5QdeLB9PR0ANb3LGCdvVP9S+haNfSzUOWGG27ADTfcgNdffx2rVq3Cgw8+iNWrV+ORRx6pc52q0JKYmIg9e/bgxRdfBADceOONWLJkCUJDQ+Hu7l7jM3A5R59t9/LXoDHWrVuH4cOH4+OPP7Zrz8/Ph7+/f73rV73eBoPhiq93QEAA3Nzcaj2/VH17aa8kJCQEzz77LGbNmoVdu3bhhhtuAGB9XnFxcXjnnXdsy5aXlyM/P/+qHqfq83XixAm7vVe5ubk19ri1b98excXFTfr+dyYcc+PEPDw8sGTJEsycObPGuVyqGzNmDMxmM2bPnl3jvsrKStsHteqvjup/ZRiNRixevLhpC29mFosFzz//PPR6vd2Yk8unZAJAWloali9fjl69eiEkJKTW7c2dOxc+Pj6YOHEiAOtudpVKZRuDlJOTg+zs7Fr3MFSJiIjAxIkTsXnzZrz//vu11vzOO+8gNTW1Uc+1sapOXrhgwQK79nfffRcAcMcddzTr4//yyy+1jmGpOpzQuXNnANa/pA0GA954441al6/ttWyIhn4W8vLyavy1XbVHob69B23btkVYWBjmz58Pk8mEwYMHA7CGnpMnT2LdunW44YYb6jyEWaXqnERX+0Val4a+Bo2hVCpr9NfatWuvGPir69+/P9q3b4+333671nF2Va+3UqlEbGws1q9fj5SUFNv9R44cqfWEnY3x1FNPQa/X480337S11fa83n///RqnxmioW265BSqVynYKgCoLFy6sseyYMWOwc+fOWp9Xfn4+Kisrr6oGZ8E9N07uSseoqwwbNgyPPfYY5syZg/3792PkyJFQq9U4fvw41q5di/feew/33nsvBg0aBB8fH8TFxeHpp5+GJElYuXLlVe1SdaQpU6agvLwcffr0gclkwqpVq7B7926sWLHC7hj4888/j5MnT+KWW25BaGgozpw5gw8++AAlJSV47733at12SkoK5s2bh++//94W/lQqFe666y4888wzSElJwddff43Q0FC7gbe1eeedd3Dy5Ek8/fTT+Oqrr3DnnXfCx8cHKSkpWLt2LZKTk2ucr6ep9e7dG3Fxcfjwww9thyGr+mr06NEYPnx4sz7+3LlzsXfvXtxzzz3o1asXAGDfvn347LPP4OvrazsHkMFgwJIlS/DQQw+hX79+uP/++xEQEICUlBR8//33GDx4cK1fCPVp6GdhxYoVWLx4Me6++260b98eRUVFWLZsGQwGQ42zW9dm6NChWL16NXr27GkbS9GvXz+4u7vj2LFjDRpvU7Vn5+mnn0ZsbCyUSmWTvD8a+ho0xp133onXXnsN8fHxGDRoEA4ePIgvvvgC7dq1a9D6CoUCH330EW677TZ0794d8fHxCAsLQ1paGn7++WcYDAbbGJlZs2Zh48aNGDp0KJ588klUVlbi/fffR/fu3Rs03q8ufn5+iI+Px+LFi3HkyBF07doVd955J1auXAkvLy9069YNO3fuxP/+979axxE1RFBQEKZMmYJ33nkHf/vb33DrrbfiwIED+PHHH+Hv72+3t+65557DN998gzvvvBMTJkxA//79UVJSgoMHD2LdunU4c+ZMg/aKOS2ZZmlRM2jo9ODaznMjhPVcK/379xdubm7C09NT9OzZUzz//PPi/PnztmV27NghbrjhBuHm5iZCQ0PF888/b5v+W32a77Bhw0T37t1rPEZt5xVpiKudCi6EtV969+4t3N3dhaenp7jllltqnPdGCOs5cW688UYREBAgVCqV8Pf3F3fffbfYu3dvndu+7777xD333FOjPTMzU4waNUp4enqKfv36id9//71BtVZWVoqPPvpIDB06VHh5eQm1Wi3atGkj4uPj7aaJN9VU8Ozs7BrrmEwmMWvWLNG2bVuhVqtFRESEmDZtmt1UfyHqfh8BEJMmTWpQHZfbsWOHmDRpkujRo4ft+UdGRooJEyaIkydP1lj+559/FrGxscLLy0vodDrRvn17MWHCBLv+ruu8JVX31fZ+rO+zsG/fPjFu3DgRGRkptFqtCAwMFHfeeWeDX+dFixYJAOKJJ56wa4+JiREAapxjprap4JWVleKpp54SAQEBQpIk2zTnK/U1ADFjxowr1taY16Cu98CwYcPEsGHDbLfLy8vFv/71LxESEiLc3NzE4MGDxc6dO2ssV/U5X7t2ba21/fHHH+Kee+4Rfn5+QqvVijZt2ogxY8bU6K+tW7eK/v37C41GI9q1ayeWLl1qe8/X50rvl5MnTwqlUmmbkp2Xlyfi4+OFv7+/8PDwELGxsSI5OVm0adPGbtp2XZ/Xqudb/XdnZWWlePXVV0VwcLBwc3MTN998szhy5Ijw8/MTjz/+uN36RUVFYtq0aaJDhw5Co9EIf39/MWjQIPH222/Xez4jZycJ0cL/7CYiInJh+fn58PHxwb///W+8/PLLcpfTKnDMDRERUQtR/dxbVarGwN10002OLaYV45gbIiKiFmLNmjX49NNPcfvtt8PDwwPbt2/H//3f/2HkyJG2wedUP4YbIiKiFqJXr15QqVR46623UFhYaBtk/O9//1vu0loVjrkhIiIip8IxN0RERORUGG6IiIjIqbjcmBuLxYLz58/D09PT4acvJyIioqsjhEBRURFCQ0PrvVacy4Wb8+fP17hiMREREbUO586dq/MixlVcLtx4enoCsHaOwWBo0m2bTCZs3rzZdsp2ah7sZ8dgPzsG+9lx2NeO0Vz9XFhYiIiICNv3+JW4XLipOhRlMBiaJdzo9XoYDAZ+cJoR+9kx2M+OwX52HPa1YzR3PzdkSAkHFBMREZFTYbghIiIip8JwQ0RERE7F5cbcEBER1cVsNsNkMsldRqtmMpmgUqlQXl4Os9ncqHU1Gk2907wbguGGiIhcnhACGRkZyM/Pl7uUVk8IgeDgYJw7d67R55NTKBRo27YtNBrNNdXAcENERC6vKtgEBgZCr9fzJK/XwGKxoLi4GB4eHo3aC1N1kt309HRERkZe02vAcENERC7NbDbbgo2fn5/c5bR6FosFRqMROp2u0YeYAgICcP78eVRWVl7TNHIOKCYiIpdWNcZGr9fLXAlVHY5q7FidyzHcEBERoWEnh6Pm1VSvAcMNERERORVZw822bdswatQohIaGQpIkrF+/vt51kpKS0K9fP2i1WnTo0AGffvpps9dJRERErYes4aakpAS9e/fGokWLGrT86dOncccdd2D48OHYv38/nnnmGTzyyCPYtGlTM1dKRETU8kyYMAGSJOHxxx+vcd+kSZMgSRImTJjg+MJkJutsqdtuuw233XZbg5dfunQp2rZti3feeQcA0LVrV2zfvh3z589HbGxsc5XZYNlFFUgrkbsKIiJyJREREVi9ejXmz58PNzc3AEB5eTlWrVqFyMhImauTR6uaCr5z507ExMTYtcXGxuKZZ56pc52KigpUVFTYbhcWFgKwjo5vyrNQbjqUiSlr/kSEuxITeHbLZlX1uvEsos2L/ewY7GfHqauvTSYThBCwWCywWCxylHbVhBDo27cvTp06hXXr1uHBBx8EAKxbtw6RkZGIioqye25vvfUWli1bhoyMDHTq1Akvv/wy7r33XgDWGUqPPfYYfv75Z2RkZCAyMhJPPPEEnn76advjxcfHIz8/H0OGDMG7774Lo9GIsWPHYv78+bap20II2/+N7U+LxQIhBEwmE5RKpd19jfmMtKpwk5GRgaCgILu2oKAgFBYWoqyszJZYq5szZw5mzZpVo33z5s1NOu2v0AgIocSZYgkrNyQimDMKm11iYqLcJbgE9rNjsJ8d5/K+VqlUCA4ORnFxMYxGIwDrF3O5SZ6go1MrGjxryGQyobKyEuPGjcPHH3+MUaNGAQA++ugj3H///di+fTtMJhMKCwvx9ttvY+3atXj77bfRvn17/Prrrxg/fjzc3d0xePBgmEwmBAQEYPny5fD19cVvv/2GZ599Fl5eXrj77rttj/fzzz/Dz88PGzZswKlTp/DPf/4TnTt3RlxcnF1tRUVFjX7uRqMRZWVl2LZtGyorK+3uKy0tbfB2WlW4uRrTpk1DQkKC7XZhYSEiIiIwcuRIGAyGJn2sn4v34aejOTjv1hYP3961SbdNl5hMJiQmJmLEiBHXdJInujL2s2Ownx2nrr4uLy/HuXPn4OHhAZ1OBwAoNVai71x5AudfM0dAr2nY17NarYZKpcI///lPvPbaa8jLywMA/Pbbb/jyyy+xa9cuqNVqaLVazJ8/H5s3b0Z0dDQAoFevXti7dy8+//xz2xCROXPm2Lbds2dPHDhwAN99950tuKjVavj6+uKDDz6AUqnEgAED8N///he//vornnrqKQDWYFhUVARPT89GT+0uLy+Hm5sbbrzxRttrUaXqyEtDtKpwExwcjMzMTLu2zMxMGAyGWvfaAIBWq4VWq63Rrlarm/wXyZgB4fjpaA6++TMDL9/ZAxoVZ9o3p+Z4Dakm9rNjsJ8d5/K+NpvNkCQJCoXCdkbdprh449WqXkd9JEmCJEkICgrCHXfcgc8++wxCCNxxxx0IDAy03X/q1CmUlpbWGJ9qNBrRt29f2+MtWrQIy5cvR0pKCsrKymA0GtGnTx/b/ZIkoXv37nb9FxoaioMHD9qWqToUVdWnjX3ukiTV+nlozOejVYWb6Oho/PDDD3ZtiYmJthQqt2Ed/WFQC+SVmvBTciZu7REid0lERHQV3NRKHH5Nnokqbmpl/QvV4uGHH8bkyZMBoMYs5OLiYgDA999/j7CwMLv7qnYArF69GlOnTsU777yD6OhoeHp6Yt68efjtt9/slr88ZEiS1OLGKskaboqLi3HixAnb7dOnT2P//v3w9fVFZGQkpk2bhrS0NHz22WcAgMcffxwLFy7E888/j4cffhg//fQTvvzyS3z//fdyPQU7KqUC1wUIbDkvYc2ecww3REStlCRJDT401FLceuutMBqNkCSpxh6abt26QavVIiUlBcOGDat1/R07dmDQoEF48sknbW0nT55s1pqbi6yv3O+//47hw4fbbleNjYmLi8Onn36K9PR0pKSk2O5v27Ytvv/+ezz77LN47733EB4ejo8++qhFTAOvckOgBVvOK7D1WDYyCsoR7KWrfyUiIqJrpFQqceTIEdvP1Xl6emLq1Kl49tlnYbFYMGTIEBQUFGDHjh0wGAyIi4tDx44d8dlnn2HTpk1o27YtVq5ciT179qBt27ZyPJ1rImu4uemmm2xTxmpT29mHb7rpJvzxxx/NWNW1CXQDBrTxxu9n87Fu7zlMvrmj3CUREZGLuNJEmdmzZyMgIABz5szBqVOn4O3tjX79+uGll14CADz22GP4448/MHbsWEiShHHjxuHJJ5/Ejz/+6Kjym0zr2ufWStzXPwy/n83Hmj3n8ORNHaBQ8GJsRETU9Oq7BFH1yxpJkoQpU6ZgypQptS6r1WrxySef4JNPPrFrrz6DqrbHW7BgQUPLdRhO52kGt3YPgrtWiXN5Zfjt9AW5yyEiInIpDDfNQK9R4W+9QwEAa/ak1LM0ERERNSWGm2YyZkAEAOCHvzJQUMbTqhMRETkKw00z6RPhjQ6BHjBWWvDtgfNyl0NEROQyGG6aiSRJuP86696b/9vNQ1NERESOwnDTjO7uGwaVQsKh84U4kt7wa2IQERHR1WO4aUZ+Hlrc0jUQALDqN+69ISIicgSGm2Z2//WRAID1+9NQUWmWuRoiIiLnx3DTzG7sGIAATy2Kyiux+a/M+lcgIiKia8Jw08yUCgn39Q8HAHz+21mZqyEiInJ+vPyCA9x/XSQWJ53E7tMXkJpXinAfvdwlERFRA/zvsGP3uMd0C2rU8kVFRXj11Vfx9ddfIysrC3379sV7772H6667zrbMhAkTsGLFCrv1YmNjsXHjRgBARUUFHnnkEWzYsAHBwcFYvHgxYmJibMvOmzcPKSkpeP/99+utp7CwEG+++SbWrVuHlJQUeHt7o0ePHnjyySdx9913Q5Ik3HTTTejTp0+zXraB4cYBIv306N/GB3vP5uGLXSl44bYucpdERERO4JFHHsFff/2FlStXIjQ0FJ9//jliYmJw+PBhhIWF2Za79dZb7a4ZpdVqbT9/+OGH2Lt3L3bu3Ikff/wRDzzwADIzMyFJEk6fPo1ly5bh999/r7eW/Px829XGX3rpJQwdOhQajQZbt27F888/j5tvvhne3t5N+vzrwnDjIA9eH4m9Z/Pw1R+peC62My+mSURE16SsrAz//e9/sWHDBtx4440AgJkzZ+Lbb7/FkiVL8O9//9u2rFarRXBwcK3bOXLkCP72t7+he/fuaNeuHZ577jnk5OQgICAATzzxBObOnXvFq41Xeemll3DmzBkkJyfDw8MDBoMBCoUCnTp1wrhx46DT6ZrmiTcAx9w4yO29QuCuUSKzsAJJx7LkLoeIiFq5yspKmM3mGqHBzc0N27dvt2tLSkpCYGAgOnfujCeeeAK5ubm2+3r37o3t27ejrKwMmzZtQkhICPz9/fHFF19Ap9Ph7rvvrrcWi8WC1atX48EHH0RoaGiN+z08PKBSOW5/CsONg+jUStzWMwQAsHInBxYTEdG18fT0RHR0NGbPno3z58/DbDbj888/x86dO5Genm5b7tZbb8Vnn32GLVu2YO7cudi6dStuu+02mM3W05M8/PDD6N27N7p164bXX38dX375JfLy8jB9+nS8//77eOWVV9ChQwfExsYiLS2t1lpycnKQl5eHLl1axrALHpZyoPHRbbBubyq2n8jBheIK+Hpo61+JiIioDitXrsTDDz+MsLAwKJVK9OvXD+PGjcPevXtty9x///22n3v27IlevXqhffv2SEpKwi233AK1Wo1FixbZbTc+Ph5PP/00/vjjD6xfvx4HDhzAW2+9haeffhr//e9/a9QhhGi+J3kVuOfGgXqGeaGtvztMZoHPecZiIiK6Ru3bt8fWrVtRXFyMc+fOYffu3TCZTGjXrl2d67Rr1w7+/v44ceJErff//PPPOHToECZPnoykpCTcfvvtcHd3x5gxY5CUlFTrOgEBAfD29kZycnJTPK1rxnDjQJJ06Zw3X+1LlbkaIiJyFu7u7ggJCUFeXh42bdqEu+66q85lU1NTkZubi5CQkBr3lZeXY9KkSfjggw+gVCphNpthMpkAACaTyXYo63IKhQL3338/vvjiC5w/f77G/cXFxaisrLzKZ9d4DDcONu76SKgUEs7klmLnyRy5yyEiolZs06ZN2LhxI06fPo3ExEQMHz4cXbp0QXx8PABrqHjuueewa9cunDlzBlu2bMFdd91lG0NzudmzZ+P2229H3759AQCDBw/GV199hT///BMLFy7E4MGD66zl9ddfR0REBKKjo7F69WocPnwYx48fx/Lly9G3b18UFxc3TyfUgmNuHMzHXYMhHf2RdDQbn+9KQXR7f7lLIiKiVqqgoADTpk1DamoqfH198fe//x2vv/461Go1AECpVOLPP//EihUrkJ+fj9DQUIwcORKzZ8+2O9cNAPz111/48ssvsX//flvbvffei6SkJAwdOhSdO3fGqlWr6qzF19cXu3btwpw5c/D2229jypQp8PHxQc+ePTFv3jx4eXk1Sx/UhuFGBuOuj0TS0Wz8fDQL+aVGeOs1cpdERES1aOwZgx1tzJgxGDNmTJ33u7m5YdOmTQ3aVo8ePXD8+HG7NoVCgcWLF2Px4sUN2oaXlxfeeOMNvPjii7bz3FyurnE7TYmHpWQwomsQ/D00KDWasWbPObnLISIicioMNzJQKCTccfGcNxv2n4fF0rKm0BEREbVmDDcyGT8oChKAw+mF2JeSJ3c5REREToPhRibtAzzQM8w6uOr/dvOcN0RERE2F4UZGd/ezXrH1p+Qs5BZXyFwNEZFra2ln2XVFTfUaMNzI6N5+4dBrlMgrNeG7A+n1r0BERE2uatp0aWmpzJWQ0WgEYJ3Cfi04FVxGnm5qDO8cgO8PZuDbP89j7PUR0Kmv7QUlIqLGUSqV8Pb2RlZWFgBAr9dDkiSZq2q9LBYLjEYjysvLa50KfqX1srOzodfrr/kK4gw3MhtzXQS+P5iBP87l49D5QvRv4yN3SURELic4OBgAbAGHrp4QAmVlZXBzc2t0SFQoFIiMjLzmcMlwI7PB7f3Rxk+Ps7ml+O++VPSN8IZCwb8YiIgcSZIkhISEIDAw0HYtJbo6JpMJ27Ztw4033mg75NdQGo2mUXt76sJwIzOVUoHbeoRg6daT2Ho0G+kFZQjz0ctdFhGRS1Iqldc83sPVKZVKVFZWQqfTNTrcNBUOKG4B7hsQBrVSQlp+GZKOZstdDhERUavGcNMCtPXzsI212Xw4E/mlRpkrIiIiar0YbloAhULC33pbz3mz+/QFHM8skrkiIiKi1ovhpoUY0S0Q/h4alJnM2HgoE+Ums9wlERERtUoMNy2Ev4cWwzoFAAB+OZ6N1LwymSsiIiJqnRhuWghJknB3vzBIAI5lFmNfSh6vFk5ERHQVGG5akJ5h3ugeagAAJCVnIb2wXOaKiIiIWh+GmxbEy02NW7oGAgB+PZmLMzklMldERETU+jDctDC39giBh1aF/DITfjuVi7wSTgsnIiJqDIabFibSV48b2vkCAH45kYNzebxKLRERUWMw3LQw7loVYrtbL+D257kCnMgq5rRwIiKiRmC4aYGui/JFW393mIXAzpO5SOXeGyIiogZjuGmBgr10GNLBHwCw/UQOUvPKOC2ciIiogRhuWiCdWomYroHQKBVILyjH0YwiTgsnIiJqIIabFqpdwKWLaf5yPAfnLvDQFBERUUMw3LRQQQYdhna0Hprac+YCcooqOC2ciIioARhuWiiNSoEb2vki0FOLikoLfj+bx2nhREREDcBw04KFeLtdGlh8PAfZRRWcFk5ERFQPhpsWLMBDiyEd/SFJwInsYpzPL+O0cCIionow3LRgKqUCHQM90TPMCwCw40Qu0vLLYea0cCIiojox3LRwQV5aDL14aOrXkzkoM1Yig9PCiYiI6sRw08L5u2vRt403PHUqFJZX4mBqAaeFExERXQHDTQunUEgI9dJjUDs/ANYzFheXV+ICp4UTERHViuGmFQj20mHIxXPeHEwrQH6pkXtviIiI6iB7uFm0aBGioqKg0+kwcOBA7N69+4rLL1iwAJ07d4abmxsiIiLw7LPPorzcuceg+OjViPJ3R/sAd1gEsPNULnKKK1Bm5LRwIiKiy8kabtasWYOEhATMmDED+/btQ+/evREbG4usrKxal1+1ahVefPFFzJgxA0eOHMHHH3+MNWvW4KWXXnJw5Y4lSRKCDPYX07RYBKeFExER1ULWcPPuu+9i4sSJiI+PR7du3bB06VLo9XosX7681uV//fVXDB48GA888ACioqIwcuRIjBs3rt69Pc4gyKDDdVG+0KoUyCyswPGsYqTll3FaOBER0WVUcj2w0WjE3r17MW3aNFubQqFATEwMdu7cWes6gwYNwueff47du3fj+uuvx6lTp/DDDz/goYceqvNxKioqUFFRYbtdWFgIADCZTDCZTE30bGDbZvX/m5JeBXjrFBjQxhs7Tl7A9uPZ6OjvhtTcIoR6uzX547VkzdnPdAn72THYz47DvnaM5urnxmxPtnCTk5MDs9mMoKAgu/agoCAkJyfXus4DDzyAnJwcDBkyBEIIVFZW4vHHH7/iYak5c+Zg1qxZNdo3b94MvV5/bU+iDomJic2yXQC4zg3YARV+P5OLu/yysP8UsL/ZHq1la85+pkvYz47BfnYc9rVjNHU/l5Y2fCiGbOHmaiQlJeGNN97A4sWLMXDgQJw4cQJTpkzB7Nmz8eqrr9a6zrRp05CQkGC7XVhYiIiICIwcORIGg6FJ6zOZTEhMTMSIESOgVqubdNsAUGqshNvJXASnJCOjsAJ/KdrixnZ+6B3pDR+9pskfr6Vq7n4mK/azY7CfHYd97RjN1c9VR14aQrZw4+/vD6VSiczMTLv2zMxMBAcH17rOq6++ioceegiPPPIIAKBnz54oKSnBo48+ipdffhkKRc0hRFqtFlqttka7Wq1utjd3c23bS62GwcMNQzoEYN2+VOw4eQHDOgchvdCEQC/3Jn+8lq45X0O6hP3sGOxnx2FfO0ZT93NjtiXbgGKNRoP+/ftjy5YttjaLxYItW7YgOjq61nVKS0trBBilUgkAEMI1BtaGeOkQ3d4PSknCqZwSpOWXcVo4ERFRNbLOlkpISMCyZcuwYsUKHDlyBE888QRKSkoQHx8PABg/frzdgONRo0ZhyZIlWL16NU6fPo3ExES8+uqrGDVqlC3kOLsggw5ebmr0CrdeTHP7iRwIAU4LJyIiukjWMTdjx45FdnY2pk+fjoyMDPTp0wcbN260DTJOSUmx21PzyiuvQJIkvPLKK0hLS0NAQABGjRqF119/Xa6n4HA6tRLeejUGd/DHH+fysfNkLv7eNwxp+WVoF+ABpUKSu0QiIiJZyT6gePLkyZg8eXKt9yUlJdndVqlUmDFjBmbMmOGAylquYC8deoZ5wctNjYIyEw6kFqB/Gx+kF5Qh3Kd5ZoARERG1FrJffoEaL9BTB7VKwqD2ly6mCQDnLpTJWRYREVGLwHDTCmlUCvi6a22XY/jrfAHySo0oqeDVwomIiBhuWqlggw5BBh06BnpACGCHbe8NBxYTEZFrY7hppQI8tVAqJAzpaN17s+NELixCcFo4ERG5PIabVkqpkBDgqcWASB/o1ApkF1fgWGYRhADOcVo4ERG5MIabVizIoINWrcT1Ub4ALg0sPs+rhRMRkQtjuGnF/Nw1UCkl28DivWfzUGqsRKVZ4Hw+Z04REZFrYrhpxRQKCYGeOrT1d0eotw4ms8Bvpy8AAFLzGG6IiMg1Mdy0ciFeOkjSpb03VbOmSioqkVtcIWdpREREsmC4aeW89Wpo1QpEt/ODUiHhTG6pbUDxOe69ISIiF8Rw08pJkoRggw6eOjX6RHgDALYft+69yeW0cCIickEMN04gyEsHALZDU7tO5cJktnBaOBERuSSGGydg0Kmh1yjRPcQAH70aJUYz9p/LB8Bp4URE5HoYbpxEkJcOCoWEwe2te2+qDk1xWjgREbkahhsnEXLx0NTgi4emDqcX2mZL8dAUERG5EoYbJ6HXqOCpUyHAU4suwZ4QAHaczAUAlFaYOS2ciIhcBsONEwnxcgMAu3PeWIR1vA2nhRMRkatguHEigQYtJAnoF+kDN7USuSVGJKcXAbBOCy81VspcIRERUfNjuHEiOrUS3no1NCoFbmhnfzFNIXhJBiIicg0MN04myGA/sHhfSh6KK6x7bM7nl6HSbJGtNiIiIkdguHEyQQYdFAqgja8eET5uqLQI7L54Mc1Ks0B6QbnMFRIRETUvhhsno1Yq4OuutbuY5i/Hs233c1o4ERE5O4YbJxR88dDUwHZ+UCkknMsrw9ncEgCcFk5ERM6P4cYJBXhqoVRI8NCq0DfSG8ClgcUAp4UTEZFzY7hxQkqFhABPLYBL57z57fQFGCutg4lzijgtnIiInBfDjZOqmjXVNcQAP3cNSo1m/JGSZ7uf08KJiMhZMdw4KT93DVRKCQpJsk0L/6Xaoam0/DKYOC2ciIicEMONk1IopEvnvGnvBwlAckYRsousg4nNZsG9N0RE5JQYbpxY1awpPw8tuoYYAAA7Tl7ae5NyoRRmi5ClNiIioubCcOPEfNw10KqtL7HdxTQvBhpTpQVp3HtDRERORiV3AdS8gg06nM0tRd9Ib7hrlMgrNeFweiF6hHkBAM5eKEGotw4KSZK50oZRKFpHnUREJB+GGycX5GUNN2qlAgPb+eGn5Cz8ciLHFm4qTBYkHc2uZystR7CXDp0D9XKXQURELRgPSzk5g04NvVYJABh68dDU/nP5KCo3yVnWVcsoKMeZnBK5yyAiohaM4cYFVA0sjvDVo42fHmaLwK5TF2Su6uox3BAR0ZUw3LiAYC+d7eeqgcXbT+RACM6UIiIi58Nw4wL0GhUMbmoAwMC2vlArJaTll+F0LveAEBGR82G4cRFVh6b0GhX6RfoAAHacyJWzJCIiombBcOMiAg1aVM32HtrRemhq16lclBnNMlZ1bSpMrbd2IiJqPgw3LkKnVsJbrwEAdA7yRLCXDhWVFvxa7YzFrU1xKw5mRETUfBhuXEjVwGJJknBL50AAwE9Hs2BppQOLSysq5S6BiIhaIIYbFxLoqYXi4ise3d4PbmolMgsrcPh8obyFXaVihhsiIqoFz1DsQtRKBfzctcguqoBOrcTgDn7435EsbDyUYbsGVUsX4KGFl9ZaawnDDRER1YLhxsUEe+mQXVQBABjeORBbjmQhOaMIyRuPylxZwyglCY8ObYMuAMqMZgghILWS62IREZFjMNy4GH8PLZRKCWazQJBBhzt6hWDP6dZxtmKj2YK8UhM+2nEWk7oC3S0CZSYz9Bq+jYmI6BJ+K7gYpUJCgIcWGQXlAIDRfcIwuk+YzFU1jNkisDjpBA6kFuDDZCVebleB4opKhhsiIrLTOgZaUJMKMujqX6gFUiokPHpjO0T56VFaKWHbiVyUVHA6OBER2WO4cUH+HhqoVa3zpdeqlBjS3hcAkJZXxkHFRERUQ+v8hqNrIkkSAj21cpdx1cK93QAAqfnlKCpnuCEiInsMNy4qxKt1HpoCgDBva+35ZSZkF5XDYmmdJyEkIqLmwXDjorz1Gug1SrnLuCo6tRJ+WmugSblQilJeY4qIiKphuHFhIRcP77RGIXpruOG4GyIiuhzDjQsL8dKhtZ7/LlRv/T81r4yXYSAiIjsMNy5Mp1bCz6N1DiwOrdpzk1+GYg4qJiKiahhuXFyod+scWBxSLdwUlZtkroaIiFoSntrVxQV4aBHirYNoJROO8ktNKDNXIsANUCkkVFRacO5CKSwWAYWilR5jIyKiJsVw4+IkSUL3UC+5y2iwMqMZe05loVQCQr10SMkrs467MVbCoFPLXR4REbUAsh+WWrRoEaKioqDT6TBw4EDs3r37isvn5+dj0qRJCAkJgVarRadOnfDDDz84qFqSm5tGiV4R3gCAMB/rIbVUzpgiIqJqZN1zs2bNGiQkJGDp0qUYOHAgFixYgNjYWBw9ehSBgYE1ljcajRgxYgQCAwOxbt06hIWF4ezZs/D29nZ88SQb94sXyrSeqTgPqfkMN0REdIms4ebdd9/FxIkTER8fDwBYunQpvv/+eyxfvhwvvvhijeWXL1+OCxcu4Ndff4VabT0EERUV5ciSqQWpOlNxal4pL8NAREQ2soUbo9GIvXv3Ytq0abY2hUKBmJgY7Ny5s9Z1vvnmG0RHR2PSpEnYsGEDAgIC8MADD+CFF16AUln72XYrKipQUVFhu11YWAgAMJlMMJmadpZN1faaertkr6p/wwwaAEBWUQVyC8tgMnnIWZbT4fvZMdjPjsO+dozm6ufGbE+2cJOTkwOz2YygoCC79qCgICQnJ9e6zqlTp/DTTz/hwQcfxA8//IATJ07gySefhMlkwowZM2pdZ86cOZg1a1aN9s2bN0Ov11/7E6lFYmJis2yX7Kkz/oK7SomSSgnJB/ag5KTcFTknvp8dg/3sOOxrx2jqfi4tLW3wsq1qtpTFYkFgYCA+/PBDKJVK9O/fH2lpaZg3b16d4WbatGlISEiw3S4sLERERARGjhwJg8HQpPWZTCYkJiZixIgRtsNm1PSq+jmk+/WIOH0MyZnFyHFvi3HDO8Dgxn5vKnw/Owb72XHY147RXP1cdeSlIWQLN/7+/lAqlcjMzLRrz8zMRHBwcK3rhISEQK1W2x2C6tq1KzIyMmA0GqHRaGqso9VqodXWPAuvWq1utjd3c26bLjHodQj31SM5sxhpBUaUWyT4sd+bHN/PjsF+dhz2tWM0dT83ZluyTQXXaDTo378/tmzZYmuzWCzYsmULoqOja11n8ODBOHHiBCwWi63t2LFjCAkJqTXYkHPz1KkQ7m09tJiaV8oZU0REBEDm89wkJCRg2bJlWLFiBY4cOYInnngCJSUlttlT48ePtxtw/MQTT+DChQuYMmUKjh07hu+//x5vvPEGJk2aJNdTIBm5a5UI87Fe2Tw1v4wzpoiICIDMY27Gjh2L7OxsTJ8+HRkZGejTpw82btxoG2SckpICheJS/oqIiMCmTZvw7LPPolevXggLC8OUKVPwwgsvyPUUSEZ6tQrhvjpIAIrKK3E+vwz92/jIXRYREclM9gHFkydPxuTJk2u9LykpqUZbdHQ0du3a1cxVUWugUEjw0WsR6KlFZlEFTmeXwFhpgUYl+4m3iYhIRvwWoFbNU6eqdmiK426IiIjhhlo5T60a4T5Vg4rLUMxwQ0Tk8hhuqFXz0KkQ5m3dc5OWz3BDREQMN9TKeWhVCL94WOp8fhkKy3hadSIiV8dwQ62aRqVAuK8bNCoFTGaBUznFcpdEREQyY7ihVs/LTYNQL+sVws/mlKLcZJa5IiIikhPDDbV61kNTFwcV55dxxhQRkYtjuKFWz1N3adxNWl4ZSiq454aIyJUx3FCrV31QcWpeGYoqOKiYiMiVMdxQq6fXKBHpaz0slV1cgdxio8wVERGRnBhuqNWTJAkh3m7wclMDAI5lFMlcERERyYnhhpyCh1aF8Isn80u5UIoyI8fdEBG5KoYbcgoe2mrXmOJlGIiIXBrDDTmF6jOmUvNLGW6IiFwYww05BethKeug4rS8MhSXc8YUEZGrYrghp6BSKtAuwB0KCSgxmnEur0zukoiISCYMN+Q0fD00CDJYL8NwPLMIQgiZKyIiIjkw3JDTqH4yv5QLpSjljCkiIpfEcENOw0OnQtjF6eBp+ZwxRUTkqhhuyGl4atWXLqDJ6eBERC6L4YachptGiTZ+1nCTXlCOglJehoGIyBUx3JBTaeuvh06tgNkicCKrWO5yiIhIBg0ON+fPn2/OOoiahKdOYxt3cyKrGBYLZ0wREbmaBoeb7t27Y9WqVc1ZC9E189Cp7MbdlBg57oaIyNU0ONy8/vrreOyxx3DffffhwoULzVkT0VWrfgFNDiomInJNDQ43Tz75JP7880/k5uaiW7du+Pbbb5uzLqKr4qlVIdy36hpTZShhuCEicjmqxizctm1b/PTTT1i4cCHuuecedO3aFSqV/Sb27dvXpAUSNYZCIaFjoCcA4EKJERmFFehw8TYREbmGRoUbADh79iy++uor+Pj44K677qoRbojkFuylg69egwulRhxNL8KQDv5yl0RERA7UqGSybNky/Otf/0JMTAwOHTqEgICA5qqL6Kp5aFUI83HDhVIjTuUUo9JsgUrJsx4QEbmKBoebW2+9Fbt378bChQsxfvz45qyJ6JpYZ0y54WBagXXGVIUZXnqGGyIiV9HgcGM2m/Hnn38iPDy8OeshumbVZ0yl5ZWh2FgJL71a5qqIiMhRGhxuEhMTm7MOoiajUyvRNsAdwMULaJabALjJWxQRETkM99WTU+oQ6AGlQkKZyYzTuSVyl0NERA7EcENOyUevQYiXDgBwNL1I5mqIiMiRGG7IKXnoVLZrTJ3JLYWx0iJzRURE5CgMN+SUPHVqhPtcGlTMMxUTEbkOhhtySu4aJSJ8qy6gWcprTBERuRCGG3JKkiShU6AHACCjsBwXSowyV0RERI7CcENOK9JPD71GCYsAjmVyUDERkatguCGnZdBpbONuGG6IiFwHww05LU+dCuHe1nE3KbmlKDeZZa6IiIgcgeGGnJaHznoBTQBIzeeMKSIiV8FwQ05LrVSgnf/FyzBcvIAmERE5P4YbcmpdQjwBAPllJqTll8pcDREROQLDDTm1AE8d/D00AIDkDA4qJiJyBQw35NQ8dSqE+1gHFR/PLJa5GiIicgSGG3Jq1hlT1kHF5y6UoszIcTdERM6O4YacmptaiUi/i5dhyC9DUYVJ5oqIiKi5MdyQU5MkCZ2CrIOKz+eXoaic08GJiJwdww05vQ6BHlArJVRUWnAqm+NuiIicHcMNOT0vNzVCvKzjbo6kc8YUEZGzY7ghp2edMWUNN6eyiyGEkLkiIiJqTgw35PQ8tJfCzbkLZSjhjCkiIqfGcENOT6VUoL2/BwAgNb+U15giInJyDDfkErqEWmdMZRVWIKe4QuZqiIioOTHckEuI8NHDU6eCAHAkvVDucoiIqBm1iHCzaNEiREVFQafTYeDAgdi9e3eD1lu9ejUkScLo0aObt0Bq9Tyqnan4GC/DQETk1GQPN2vWrEFCQgJmzJiBffv2oXfv3oiNjUVWVtYV1ztz5gymTp2KoUOHOqhSas08tWqEXRxUfDq7GBYLZ0wRETkr2cPNu+++i4kTJyI+Ph7dunXD0qVLodfrsXz58jrXMZvNePDBBzFr1iy0a9fOgdVSa+WmUSLS9+JlGPLKUGzkoGIiImcla7gxGo3Yu3cvYmJibG0KhQIxMTHYuXNnneu99tprCAwMxD//+U9HlElOouoyDKn5ZZwxRUTkxFRyPnhOTg7MZjOCgoLs2oOCgpCcnFzrOtu3b8fHH3+M/fv3N+gxKioqUFFxaXZMYaF1MKnJZILJ1LQXUazaXlNvl+xdbT93CtBDAlBUXomz2YXw18v69m/x+H52DPaz47CvHaO5+rkx22tVv92Liorw0EMPYdmyZfD392/QOnPmzMGsWbNqtG/evBl6vb6pSwQAJCYmNst2yd7V9HOATomscglbd/yGzEMcd9MQfD87BvvZcdjXjtHU/VxaWtrgZWUNN/7+/lAqlcjMzLRrz8zMRHBwcI3lT548iTNnzmDUqFG2NovFAgBQqVQ4evQo2rdvb7fOtGnTkJCQYLtdWFiIiIgIjBw5EgaDoSmfDkwmExITEzFixAio1eom3TZdcrX9XFhuQnjqPmSdK0C+Rxvcfnu3Zqyy9eP72THYz47DvnaM5urnqiMvDSFruNFoNOjfvz+2bNlim85tsViwZcsWTJ48ucbyXbp0wcGDB+3aXnnlFRQVFeG9995DREREjXW0Wi20Wm2NdrVa3Wxv7ubcNl3S2H72VqoQ4eeOfecKcPZCGSSFEiql7GPqWzy+nx2D/ew47GvHaOp+bsy2ZD8slZCQgLi4OAwYMADXX389FixYgJKSEsTHxwMAxo8fj7CwMMyZMwc6nQ49evSwW9/b2xsAarQTXU6pkNDO3x2AdcZUSYUZXnqGGyIiZyN7uBk7diyys7Mxffp0ZGRkoE+fPti4caNtkHFKSgoUCn4BUdPoEmw9FJleUIb8ciO89PzrjYjI2cgebgBg8uTJtR6GAoCkpKQrrvvpp582fUHktDoEeUCjUsBYacGxjGK08XWXuyQiImpi3CVCLsXLTY2wi5dhSM7gNaaIiJwRww25FA/tpWtMHec1poiInBLDDbkUnVqJSD/r+Y1SLpTCWGmRuSIiImpqDDfkcqouw5CWV4ZiXoaBiMjpMNyQy+keap0xlV1cgezCcpmrISKipsZwQy4n1NsNXm7WKeCH0jmomIjI2TDckMvx1KkQ7mMdVHw0o0jmaoiIqKkx3JDLcdeoEHEx3JzI5owpIiJnw3BDLkehkNAuwAMAcO5CKcpNZpkrIiKipsRwQy6pS7B1xlRqXhmKyk0yV0NERE2J4YZcUtcQAxQSUGo040xOqdzlEBFRE2K4IZfk665BsEEHADh0vkDmaoiIqCkx3JBL8tCpEHZxUPExXoaBiMipMNyQS9KqlGjjZ70i+KmcYgghZK6IiIiaCsMNuayOQdYZU6l5ZSjjjCkiIqfBcEMuq8fFyzCkF5Qjv8QoczVERNRUGG7IZbXz94CbWgmzReAIz1RMROQ0GG7IZXm6qRHmbR1UfCSd4YaIyFkw3JDLctcoEe5bNWOKF9AkInIWDDfksiRJQvsA64ypM7mlsFg4Y4qIyBkw3JBL61x1GYYLZSgxVspcDRERNQWGG3Jp3UO8AAAXSo3IKCiXuRoiImoKDDfk0kK83eDrrgEA/JXGyzAQETkDhhtyaZ46FcKrZkxxOjgRkVNguCGXplYq0MZfDwA4mcVrTBEROQOGG3J5HQOtg4rP5Jag0myRuRoiIrpWDDfk8rqFWC/DkJZfhuJyzpgiImrtGG7I5XUN8YRSIaHcZMGJbB6aIiJq7RhuyOV56zUI8dIBAA6d55mKiYhaO4Ybcnl6jRIRPtZBxcmcMUVE1Oox3JDLkyQJ7S5ehuEUD0sREbV6DDdEADoHWWdMnbtQCmMlZ0wREbVmDDdEAHqEWS/DkFFYjrwSo8zVEBHRtWC4IQLQ1l8Pd40SFgEcOs/LMBARtWYMN0QAPHRqhPlYL8NwKJ0zpoiIWjOGGyJcvAyDn3VQ8fFMzpgiImrNGG6ILuoU6AEAOJVdInMlRER0LRhuiC7qcvEyDOfyylBuMstcDRERXS2GG6KLeoZZw01BmQmpeaUyV0NERFeL4YbookCDDgEeWgDAwVTOmCIiaq0Ybogu0mtUiPC1zpg6wsswEBG1Wgw3RNW0DeCMKSKi1o7hhqiaqsswnMkthRBC5mqIiOhqMNwQVdM9xHoZhrT8MhSXV8pcDRERXQ2GG6JquoR4Qq2UYKy04BgPTRERtUoMN0TVeLmpEeptHVT813lehoGIqDViuCGqRqVUoI2vHgCQnMFwQ0TUGjHcEF2mw8XLMJzMLpa5EiIiuhoMN0SX6XrxMgxnc0thsXDGFBFRa8NwQ3SZnuHWGVNZhRXILq6QuRoiImoshhuiy7TxdYenTgUB4K80XoaBiKi1YbghuoybRokIH+ug4sPpHFRMRNTaMNwQ1aLdxcswHOM1poiIWh2GG6JadAqqmjFVInMlRETUWAw3RLXoFmodVJxyoRTGSrPM1RARUWMw3BDVomeoFyQJKK6oRMqFUrnLISKiRmgR4WbRokWIioqCTqfDwIEDsXv37jqXXbZsGYYOHQofHx/4+PggJibmissTXQ0/Dw2CPHUAgIOpnDFFRNSayB5u1qxZg4SEBMyYMQP79u1D7969ERsbi6ysrFqXT0pKwrhx4/Dzzz9j586diIiIwMiRI5GWlubgysmZqZQKRPpVzZjioGIiotZE9nDz7rvvYuLEiYiPj0e3bt2wdOlS6PV6LF++vNblv/jiCzz55JPo06cPunTpgo8++ggWiwVbtmxxcOXk7DpcnDF1PIvhhoioNZE13BiNRuzduxcxMTG2NoVCgZiYGOzcubNB2ygtLYXJZIKvr29zlUkuqkuw9TIMp3M4Y4qIqDVRyfngOTk5MJvNCAoKsmsPCgpCcnJyg7bxwgsvIDQ01C4gVVdRUYGKikun0C8stJ6UzWQywWQyXWXltavaXlNvl+w5qp+7BFv33KTllaGgpBR6jbpZH6+l4fvZMdjPjsO+dozm6ufGbE/WcHOt3nzzTaxevRpJSUnQ6XS1LjNnzhzMmjWrRvvmzZuh1+ubpa7ExMRm2S7Za+5+tghAo1DCaAHWfJuIILdmfbgWi+9nx2A/Ow772jGaup9LSxs+c1XWcOPv7w+lUonMzEy79szMTAQHB19x3bfffhtvvvkm/ve//6FXr151Ljdt2jQkJCTYbhcWFtoGIRsMhmt7ApcxmUxITEzEiBEjoFa71l/5juTIfn7/xHacyimFKrQHbo+ObNbHamn4fnYM9rPjsK8do7n6uerIS0PIGm40Gg369++PLVu2YPTo0QBgGxw8efLkOtd766238Prrr2PTpk0YMGDAFR9Dq9VCq9XWaFer1c325m7ObdMljujndgEeOJVTimPZJS77mvL97BjsZ8dhXztGU/dzY7Yl+2yphIQELFu2DCtWrMCRI0fwxBNPoKSkBPHx8QCA8ePHY9q0abbl586di1dffRXLly9HVFQUMjIykJGRgeLiYrmeAjmxjhcvw3Aii+8vIqLWQvYxN2PHjkV2djamT5+OjIwM9OnTBxs3brQNMk5JSYFCcSmDLVmyBEajEffee6/ddmbMmIGZM2c6snRyAV1DrIcuz+byLMVERK2F7OEGACZPnlznYaikpCS722fOnGn+gogu6h3mDQDILq5AdlE5AjxrH7hOREQth+yHpYhasnBfPbzdrMd5D/AyDERErQLDDdEVKBUS2lRdhuF8w0fqExGRfBhuiOrRLsA6qPhoBi/DQETUGjDcENWjS7AnAOBkNmdMERG1Bi1iQDFRS9Y9zDpjKuVCKXaezEG4jx4+7hoAgHTZstLlDdXvq7F0y1O9fqV8ZRARXROGG6J69Az1hkICSo1mnLtQhpIKs9wlOYSfnvGGiFonHpYiqoeXXo0QL+uFpdLyy2SuxnFyiqwXnC2u4EUGiah1YbghaoAof+uMqdQ81zuZ37FMjjUiotaF4YaoAToGWgcVp+a5zp6bKoWlJpcMdUTUejHcEDVA15BLM6bOu9ChqSonsophrLTIXQYRUYNwQDFRA/SL9IEEIKfYiOnfHEKApxZqRS2zn6TLbzZshtTls6waOq9KutL0rDq23ZDtS5KEjgF6DPcA9AAqzQLHs4rQPdSrgZUREcmH4YaoAdoFeODZmE746WgWDqYWIPviYFtndjqnBDtUSoxRXcDgjoFIzy9HmLcbvPUauUsjIroihhuiBlAqJAyI8kG3UAMKy0w4X1D/oSkh6t9ubcsINGDFhm6/1vXqX7HUaMb3f55HemEFPtmZAnedBn0ivHEkvQg3tPNt0B4jIiK5MNwQNZCHToVSoxkGNzUMFy+m6cz6Rxjw+U9/YEemAit2nkH7gO4ArCczbOPnLnN1RER144Biogby0LrW3wIqhYS7oywI89KhqLwSn+06CyEETmWXoNzkGicyJKLWieGGqIE8dK4VbgBArQAeHhQJpULCHyn52HXqAswWwYuIElGLxnBD1EAGnRoqpeuNNYn01eNvvUMBAKt2p+BCiRHZRRXIKXb+QdVE1Dq53p+iRFdJp1bixo4ByC6uQF6p0dZefXxuXWN1GzpI+Go0ZGDx1cgpvHTivlu7B+PAuXycyinBJztO49kRnXA0owg+7TRQ1jYlnohIRgw3RI2gUEgIMugQZNDJXUqzK/PTYfMx60wxSZLw8JC2eO3bwziSUYSko9m4uUsgTueUoEOgh9ylEhHZ4WEpIqqVSmn99dAp2AAACDbocG//cADAur2pyCgoR8qFEpRUVMpWIxFRbRhuiOiKggxaRPhaLxx6U+cAdAsxwGi24OMdp2GqFEjm4GIiamEYboioXh0DPeCtV0MhSZgwKApuaiVO55Tgx7/SkVdiREZBudwlEhHZMNwQUb0UCgk9wrygUSng667BgwMjAQDfHkjH2dwSHMssgsnMC2sSUcvAcENEDaJTK9Er3AuSBAxs64v+kT4wC4GPt59GSUUlTmWXyF0iEREAhhsiagRvvQYdAz0hSRL+cUMkDDoVzheUY/0faUjNK0VhuUnuEomIGG6IqHEi/fQI9tLBU6fG+OgoAMDmw5k4mlGE5PSiBl2Yk4ioOTHcEFGjdQ0xwF2rQp8Ibwzp4A8BYPmO08gqLEdafv1XTCciak4MN0TUaEqFhN4RXlAqJYwdEAF/Dw1yio1Ys+ccTmQVo6KSF9YkIvkw3BDRVdFrVOgeaoCbRon4QW0hAfjlRA72nc3D8cxiucsjIhfGcENEVy3QU4cof3d0DvZETLcgAMCnv57B8cwi5JUY61mbiKh5MNwQ0TVpH+AOXw8N7ukbhlAvHQrLK/H5byk4kl4Ii4WDi4nI8RhuiOiaSJKEHqFe8NSp8fCQtlBKEvaezcPPyVlIuVBa/waIiJoYww0RXTONSoGe4V5oF+COO3uHAAC+2J2CvWfzUG7i4GIiciyGGyJqEl5uanQONuD2HiFo6++OUqMZy7efRnJ6odylEZGLYbghoiYT5u2GCF89Hh4cBbVSwqH0Qqzdm4qsIl5Yk4gch+GGiJpUl2BPdA424O/9wgEAa/emYtvRHJg5uJiIHIThhoialEIhoVe4F2J7BKNLsCeMlRYs2XoCJ7KK5C6NiFwEww0RNTmdWoleYV54eHAU3NRKnMwuwYfbTqG4olLu0ojIBTDcEFGz8PPQ4rq2fhh3fQQAYP3+89j4V7rMVRGRK2C4IaJm09bfHX/rHYq+kd4wWwTmJx7H2dwSucsiIifHcENEzap7mBceG9oOnjoV0vLL8NbGozCZLXKXRUROjOGGiJqVWqnA4I7+mDAoCgDww8F0rP8jTd6iiMipMdwQUbPz1Knx4MA2GNTeDwLAWxuPIj2/TO6yiMhJMdwQkUMEe+kwdWRn+LprkF1cgVc3/AUheO4bImp6DDdE5DB9Irzx9M0dAAD/O5KFtb+nylwRETkjhhsichiFQsL910citnsQAOCNH44go4CHp4ioaTHcEJFD6dRKzBzVHSFeOuSXmfD8uj/lLomInAzDDRE5XIi3G2aO6g6FBGw7noMvfjsrd0lE5EQYbohIFrE9gjF2gPXsxW/8cISzp4ioyTDcEJFspo/qhrb+7iipMOPp1X9w9hQRNQmGGyKSjZtGhffu7wOVUsKeM3n4dMcZuUsiIifAcENEsuoV7o3Jw63Tw9/cmIwTWUUyV0RErR3DDRHJ7umbO6J3uBcqKi3454rfUVxRKXdJRNSKqeQugIhIoZCwbPwAxC7YhrO5pZjyf3/gP+P6Qrpsmeqky/+3vxvS5Q11aOhyjdGYLXKcEVHTY7ghohYh0KDDBw/1x7hlv2FLcha6z9jUrI9XI4BcHo5q3C3VeWd9YaZG8Kq2hiQBnkollp7+FZF+7ugcbECPUAN6h3sh0KBrlvBF5OwYboioxbi+rR9eu6s7Zn5zCCZz8+7RqLF1Uc/91VuuuTT7DVRUSsjJKMaRjGJsOpRpa/fQqtDW3x0dgzzQLcSAHmFe6BLsCW+95loLIHJqDDdE1KI8OLANRvUKRXGFqc5lLJaabeLy/y873NP4MGPdRvXtXL5MQ44oXakOAaDcaMRPW3fAp20PnM4tw4msYpzJLUF6QTmKKypxMK0AB9MK8BXSbOv5umvQIcADXUM80S3UgE5BnugY5AkPLX+lEwEtJNwsWrQI8+bNQ0ZGBnr37o33338f119/fZ3Lr127Fq+++irOnDmDjh07Yu7cubj99tsdWDERNSeDmxoGN7XcZTiEyWTCWQNw+8BIqNWXnnO5yYzjmcU4mJaP5IwiHM8qxqnsYmQWVuBCiRG7Sy5g95kLdtsK8dKhc7AnugQb0DnYA52CPNE+wAM6tdLRT4tIVrKHmzVr1iAhIQFLly7FwIEDsWDBAsTGxuLo0aMIDAyssfyvv/6KcePGYc6cObjzzjuxatUqjB49Gvv27UOPHj1keAZERE1Pp1aiZ7gXeoZ72bUXV1TieGYRkjOKkJxeiOSMIpzIKkZuiRHpBeVILyhH0tFs2/IKCYj01aNLsAGdgj3ROcgTnYM9EOnrDo2KE2bJOckebt59911MnDgR8fHxAIClS5fi+++/x/Lly/Hiiy/WWP69997Drbfeiueeew4AMHv2bCQmJmLhwoVYunSpQ2snInI0D60KfSN90DfSx649r8SIY5lFOJZZhKMXw8+xjCIUllfiTG4pzuSWYuOhDNvykgT4e2jh566xDVquPnS5+jjmqp8vHwh9+TrVV6ptFtultprL1fU4tf1ov02pznovv99iEcjJUWBt9l5IklRrHZIEKC/ep5AApUKCQpKgUFhvK6SLty/eV2O5i7cVijqWs22r9m1IkmRdpuqxFLVvQ5Kki4952XIX75Mk63Oy//lij1S/72K7dLEdl92u/po0dDuVZhMKjJCVrOHGaDRi7969mDZtmq1NoVAgJiYGO3furHWdnTt3IiEhwa4tNjYW69evr3X5iooKVFRU2G4XFhYCsO4KNpnqPqZ/Naq219TbJXvsZ8dgPztGU/Wzh0ZCvwgD+kUYbG1CCGQXG3EssxjHs6z/qn4uNZqRXVSB7KKKK2zVGSlwtCBX7iKcXpSHEvc203dsQ8gabnJycmA2mxEUFGTXHhQUhOTk5FrXycjIqHX5jIyMWpefM2cOZs2aVaN98+bN0Ov1V1n5lSUmJjbLdske+9kx2M+O0dz9HAQgSAMMiQBEOFBSCeRVACWVNaeaixo/1BywXevy1W7Ut1xtg7GvuE49k9WaatuWi+sLAJaL/wth3375bYuQammrexsN324t2xBS3du9bFtVT01c/KHmoPvL2i67Xb1/6l3usja1QjT5e7q0tLTBy8p+WKq5TZs2zW5PT2FhISIiIjBy5EgYDIYrrNl4JpMJiYmJGDFihN3AQGpa7GfHYD87BvvZcdjXjtFc/Vx15KUhZA03/v7+UCqVyMzMtGvPzMxEcHBwresEBwc3anmtVgutVlujXa1WN9ubuzm3TZewnx2D/ewY7GfHYV87RlP3c2O2JetQeY1Gg/79+2PLli22NovFgi1btiA6OrrWdaKjo+2WB6y7c+tanoiIiFyL7IelEhISEBcXhwEDBuD666/HggULUFJSYps9NX78eISFhWHOnDkAgClTpmDYsGF45513cMcdd2D16tX4/fff8eGHH8r5NIiIiKiFkD3cjB07FtnZ2Zg+fToyMjLQp08fbNy40TZoOCUlBQrFpR1MgwYNwqpVq/DKK6/gpZdeQseOHbF+/Xqe44aIiIgAtIBwAwCTJ0/G5MmTa70vKSmpRtt9992H++67r5mrIiIiotaIp6ckIiIip8JwQ0RERE6F4YaIiIicCsMNERERORWGGyIiInIqDDdERETkVBhuiIiIyKkw3BAREZFTYbghIiIip9IizlDsSEIIAI27dHpDmUwmlJaWorCwkFecbUbsZ8dgPzsG+9lx2NeO0Vz9XPW9XfU9fiUuF26KiooAABERETJXQkRERI1VVFQELy+vKy4jiYZEICdisVhw/vx5eHp6QpKkJt12YWEhIiIicO7cORgMhibdNl3CfnYM9rNjsJ8dh33tGM3Vz0IIFBUVITQ01O6C2rVxuT03CoUC4eHhzfoYBoOBHxwHYD87BvvZMdjPjsO+dozm6Of69thU4YBiIiIicioMN0RERORUGG6akFarxYwZM6DVauUuxamxnx2D/ewY7GfHYV87RkvoZ5cbUExERETOjXtuiIiIyKkw3BAREZFTYbghIiIip8JwQ0RERE6F4aaJLFq0CFFRUdDpdBg4cCB2794td0lOZ9u2bRg1ahRCQ0MhSRLWr18vd0lOac6cObjuuuvg6emJwMBAjB49GkePHpW7LKezZMkS9OrVy3ais+joaPz4449yl+X03nzzTUiShGeeeUbuUpzKzJkzIUmS3b8uXbrIVg/DTRNYs2YNEhISMGPGDOzbtw+9e/dGbGwssrKy5C7NqZSUlKB3795YtGiR3KU4ta1bt2LSpEnYtWsXEhMTYTKZMHLkSJSUlMhdmlMJDw/Hm2++ib179+L333/HzTffjLvuuguHDh2SuzSntWfPHnzwwQfo1auX3KU4pe7duyM9Pd32b/v27bLVwqngTWDgwIG47rrrsHDhQgDW61dFRETgqaeewosvvihzdc5JkiR8/fXXGD16tNylOL3s7GwEBgZi69atuPHGG+Uux6n5+vpi3rx5+Oc//yl3KU6nuLgY/fr1w+LFi/Hvf/8bffr0wYIFC+Quy2nMnDkT69evx/79++UuBQD33Fwzo9GIvXv3IiYmxtamUCgQExODnTt3ylgZUdMoKCgAYP3ipeZhNpuxevVqlJSUIDo6Wu5ynNKkSZNwxx132P2upqZ1/PhxhIaGol27dnjwwQeRkpIiWy0ud+HMppaTkwOz2YygoCC79qCgICQnJ8tUFVHTsFgseOaZZzB48GD06NFD7nKczsGDBxEdHY3y8nJ4eHjg66+/Rrdu3eQuy+msXr0a+/btw549e+QuxWkNHDgQn376KTp37oz09HTMmjULQ4cOxV9//QVPT0+H18NwQ0R1mjRpEv766y9Zj507s86dO2P//v0oKCjAunXrEBcXh61btzLgNKFz585hypQpSExMhE6nk7scp3XbbbfZfu7VqxcGDhyINm3a4Msvv5TlMCvDzTXy9/eHUqlEZmamXXtmZiaCg4Nlqoro2k2ePBnfffcdtm3bhvDwcLnLcUoajQYdOnQAAPTv3x979uzBe++9hw8++EDmypzH3r17kZWVhX79+tnazGYztm3bhoULF6KiogJKpVLGCp2Tt7c3OnXqhBMnTsjy+Bxzc400Gg369++PLVu22NosFgu2bNnCY+fUKgkhMHnyZHz99df46aef0LZtW7lLchkWiwUVFRVyl+FUbrnlFhw8eBD79++3/RswYAAefPBB7N+/n8GmmRQXF+PkyZMICQmR5fG556YJJCQkIC4uDgMGDMD111+PBQsWoKSkBPHx8XKX5lSKi4vt/go4ffo09u/fD19fX0RGRspYmXOZNGkSVq1ahQ0bNsDT0xMZGRkAAC8vL7i5uclcnfOYNm0abrvtNkRGRqKoqAirVq1CUlISNm3aJHdpTsXT07PGeDF3d3f4+flxHFkTmjp1KkaNGoU2bdrg/PnzmDFjBpRKJcaNGydLPQw3TWDs2LHIzs7G9OnTkZGRgT59+mDjxo01BhnTtfn9998xfPhw2+2EhAQAQFxcHD799FOZqnI+S5YsAQDcdNNNdu2ffPIJJkyY4PiCnFRWVhbGjx+P9PR0eHl5oVevXti0aRNGjBghd2lEjZaamopx48YhNzcXAQEBGDJkCHbt2oWAgABZ6uF5boiIiMipcMwNERERORWGGyIiInIqDDdERETkVBhuiIiIyKkw3BAREZFTYbghIiIip8JwQ0RERE6F4YaIiIicCsMNEbVqZrMZgwYNwj333GPXXlBQgIiICLz88ssyVUZEcuEZiomo1Tt27Bj69OmDZcuW4cEHHwQAjB8/HgcOHMCePXug0WhkrpCIHInhhoicwn/+8x/MnDkThw4dwu7du3Hfffdhz5496N27t9ylEZGDMdwQkVMQQuDmm2+GUqnEwYMH8dRTT+GVV16RuywikgHDDRE5jeTkZHTt2hU9e/bEvn37oFKp5C6JiGTAAcVE5DSWL18OvV6P06dPIzU1Ve5yiEgm3HNDRE7h119/xbBhw7B582b8+9//BgD873//gyRJMldGRI7GPTdE1OqVlpZiwoQJeOKJJzB8+HB8/PHH2L17N5YuXSp3aUQkA+65IaJWb8qUKfjhhx9w4MAB6PV6AMAHH3yAqVOn4uDBg4iKipK3QCJyKIYbImrVtm7diltuuQVJSUkYMmSI3X2xsbGorKzk4SkiF8NwQ0RERE6FY26IiIjIqTDcEBERkVNhuCEiIiKnwnBDREREToXhhoiIiJwKww0RERE5FYYbIiIicioMN0RERORUGG6IiIjIqTDcEBERkVNhuCEiIiKnwnBDRERETuX/AVSefcph25lDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from scipy.interpolate import interp1d\n", + "\n", + "# Example: All share same min/max x (0 to 4), but vary inside\n", + "# series_list = [\n", + "\n", + "# (np.array([0.0, 1.0, 2.5, 4.0]), np.array([1.0, 2.0, 1.5, 3.0])),\n", + "# (np.array([0.0, 1.5, 3.0, 4.0]), np.array([1.2, 1.9, 2.0, 2.8])),\n", + "# (np.array([0.0, 0.8, 2.0, 4.0]), np.array([0.8, 1.9, 1.4, 3.2])),\n", + "# ]\n", + "\n", + "# Step 1: Define common grid\n", + "x_min = series_list[0][0][0]\n", + "x_max = series_list[0][0][-1]\n", + "common_x = np.linspace(x_min, x_max, 200)\n", + "\n", + "# Step 2: Interpolate each series onto the grid\n", + "interpolated_ys = []\n", + "for x, y in series_list:\n", + " f = interp1d(x, y, kind='linear', bounds_error=False, fill_value=np.nan)\n", + " interpolated_ys.append(f(common_x))\n", + "\n", + "Y = np.vstack(interpolated_ys)\n", + "\n", + "# Step 3: Compute mean and 95% CI, ignoring NaNs\n", + "mean_y = np.nanmean(Y, axis=0)\n", + "std_y = np.nanstd(Y, axis=0)\n", + "n = np.sum(~np.isnan(Y), axis=0)\n", + "ci = 2.575 * std_y / np.sqrt(n)\n", + "\n", + "# Step 4: Plot\n", + "plt.plot(common_x, mean_y, label='Mean')\n", + "plt.fill_between(common_x, mean_y - ci, mean_y + ci, alpha=0.3, label='95% CI')\n", + "plt.xlabel(\"X\")\n", + "plt.ylabel(\"Y\")\n", + "plt.legend()\n", + "plt.title(\"Mean + 95% CI from Series with Shared Range\")\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "dee2de32", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZolJREFUeJzt3Xd8U+X+B/BPkqbpLqML6IIOoEApFCl7FioyRJElXIZcXFRGUQGVJd4LKPBDAUW5MryobJALMkplyBIEy15lFQpdQPdKk/P7oyQ2tIWkJD1p8nm/Xn3RPDnje/Ik6ZfnPEMiCIIAIiIiIqr2pGIHQERERETGwcSOiIiIyEIwsSMiIiKyEEzsiIiIiCwEEzsiIiIiC8HEjoiIiMhCMLEjIiIishBM7IiIiIgsBBM7IiIiIgvBxI6eW5cuXdClS5dK79u0aVPjBmRBJBIJZs2aZdRjPk99UeXdunULEokEq1evNvm5Vq9eDYlEglu3bmnL/P390adPH5OfGwAOHDgAiUSCAwcOVMn5iOhvTOyoDM0fBc2PjY0N6tWrh1GjRiEpKUmUmO7du4dZs2YhPj7e4H23bt2KXr16wc3NDba2tqhbty4GDRqE3377zfiBmomLFy9i1qxZOn/YxaZWq/HDDz8gIiICtWrVgrOzM4KDgzFixAgcP35c7PAM9uRnpFatWggPD8eECRNw8eJFo53n66+/rpJksDLMOTYxVWUSTfQkG7EDIPP16aefon79+igoKMDx48exevVqHD58GOfPn4ednZ12u71795o8lnv37mH27Nnw9/dHWFiYXvsIgoA33ngDq1evRosWLRATEwMvLy/cv38fW7duRffu3XHkyBG0a9fOtMGL4OLFi5g9eza6dOkCf39/neeqor7KM378eCxbtgwvv/wyhg0bBhsbG1y5cgW7du1CgwYN0KZNG1Hieh49evTAiBEjIAgCMjMzcebMGaxZswZff/015s+fj5iYGO22fn5+yM/Ph1wuN+gcX3/9Ndzc3DBq1Ci99/nHP/6BIUOGQKFQGHQuQ1UUW6dOnZCfnw9bW1uTnp+IymJiRxXq1asXWrVqBQD45z//CTc3N8yfPx/bt2/HoEGDtNuZ65f3woULsXr1akycOBGLFi2CRCLRPvfxxx/jv//9L2xsrO8jIEZ9paSk4Ouvv8bYsWPx3Xff6Ty3ePFipKWlVVksxcXFUKvVRnkdgoODMXz4cJ2yefPmoW/fvpg8eTIaNWqEl156CUBJC1/p/xCZQm5uLhwdHSGTySCTyUx6rqeRSqUmv1YxGfM9RGRsvBVLeuvYsSMA4Pr16zrl5fXZun37Nvr16wdHR0d4eHhg0qRJ2LNnT4X9bi5evIiuXbvCwcEB9erVw+eff6597sCBA3jhhRcAAKNHj9be/nraLaD8/HzMnTsXjRo1woIFC3SSOo1//OMfaN26NQBg1qxZ5W7ztL5KBw4cQKtWrWBvb49mzZppr2vLli1o1qwZ7OzsEB4ejr/++uuZrxcAjBo1qkzr2pNu376Nd999Fw0bNoS9vT1q166NgQMH6sS3evVqDBw4EADQtWtX7eulia/0+VNSUmBjY4PZs2eXOdeVK1cgkUiwdOlSbVlGRgYmTpwIHx8fKBQKBAYGYv78+VCr1U+N++bNmxAEAe3bty/znEQigYeHh05ZRkYGJk2aBH9/fygUCnh7e2PEiBFIT0/XbpOamooxY8bA09MTdnZ2aN68OdasWaNzHE2/tgULFmDx4sUICAiAQqHQ3iq9fPkyXnvtNdSqVQt2dnZo1aoVtm/f/tRreZbatWtj3bp1sLGxwb/+9a8ysZR+3yYnJ2P06NHw9vaGQqFAnTp18PLLL2vr09/fHxcuXMDBgwe19aipO8178+DBg3j33Xfh4eEBb29vnefKuxW/d+9ehIWFwc7ODiEhIdiyZYvO8/p+Fp4WW0V97DZu3Ijw8HDY29vDzc0Nw4cPL9O9Y9SoUXByckJSUhL69+8PJycnuLu74/3334dKpXrGq//35/NZ1wno935+1nuosn7//XcMHDgQvr6+UCgU8PHxwaRJk5Cfn1/p1+PBgwf4xz/+ARcXF9SoUQMjR47EmTNnyrzvDPkOWrBgAdq1a4fatWvD3t4e4eHh2LRpU5l98/PzMX78eLi5ucHZ2Rn9+vVDUlJSuf2Ek5KS8MYbb8DT0xMKhQJNmjTBypUrDXr9qGLW11xBlab5Qq9Zs+ZTt8vNzUW3bt1w//59TJgwAV5eXvjpp5+wf//+crd/9OgRXnzxRbz66qsYNGgQNm3ahClTpqBZs2bo1asXGjdujE8//RQzZszAm2++qU0wn3YL9fDhw3j48CEmTpxokpaLhIQEvP7663jrrbcwfPhwLFiwAH379sXy5cvx0Ucf4d133wUAzJ07F4MGDcKVK1cglT7//6NOnjyJo0ePYsiQIfD29satW7fwzTffoEuXLrh48SIcHBzQqVMnjB8/Hl999RU++ugjNG7cGAC0/5bm6emJzp07Y8OGDZg5c6bOc+vXr4dMJtMmiXl5eejcuTOSkpLw1ltvwdfXF0ePHsW0adNw//59LF68uMK4/fz8AJT8YR84cCAcHBwq3DYnJwcdO3bEpUuX8MYbb6Bly5ZIT0/H9u3bcffuXbi5uSE/Px9dunRBQkICoqOjUb9+fWzcuBGjRo1CRkYGJkyYoHPMVatWoaCgAG+++SYUCgVq1aqFCxcuoH379qhXrx6mTp0KR0dHbNiwAf3798fmzZvxyiuv6FUn5fH19UXnzp2xf/9+ZGVlwcXFpdztBgwYgAsXLuC9996Dv78/UlNTERsbi8TERPj7+2Px4sV477334OTkhI8//hhASZ2V9u6778Ld3R0zZsxAbm7uU+O6du0aBg8ejLfffhsjR47EqlWrMHDgQOzevRs9evQw6Br1ia201atXY/To0XjhhRcwd+5cpKSk4Msvv8SRI0fw119/oUaNGtptVSoVoqKiEBERgQULFmDfvn1YuHAhAgIC8M477zwzNn2u09D3c3nvoeexceNG5OXl4Z133kHt2rVx4sQJLFmyBHfv3sXGjRt1ttXn9VCr1ejbty9OnDiBd955B40aNcIvv/yCkSNHPlecX375Jfr164dhw4ahqKgI69atw8CBA7Fjxw707t1bu92oUaOwYcMG/OMf/0CbNm1w8OBBnec1UlJS0KZNG0gkEkRHR8Pd3R27du3CmDFjkJWVhYkTJz5XvARAIHrCqlWrBADCvn37hLS0NOHOnTvCpk2bBHd3d0GhUAh37tzR2b5z585C586dtY8XLlwoABC2bdumLcvPzxcaNWokABD279+vsy8A4YcfftCWFRYWCl5eXsKAAQO0ZSdPnhQACKtWrdLrGr788ksBgLB161a9tp85c6ZQ3sdB81rcvHlTW+bn5ycAEI4ePaot27NnjwBAsLe3F27fvq0t//bbb8u95tKvl8bIkSMFPz8/nTIAwsyZM7WP8/Lyyux37NixMq/hxo0by5y3ovNrYjx37pzOdiEhIUK3bt20j+fMmSM4OjoKV69e1dlu6tSpgkwmExITE8ucq7QRI0YIAISaNWsKr7zyirBgwQLh0qVLZbabMWOGAEDYsmVLmefUarUgCIKwePFiAYCwdu1a7XNFRUVC27ZtBScnJyErK0sQBEG4efOmAEBwcXERUlNTdY7VvXt3oVmzZkJBQYHO8du1aycEBQU99VoEoaRuxo0bV+HzEyZMEAAIZ86c0YlF8x5+9OiRAED44osvnnqeJk2alPt+0bw3O3ToIBQXF5f7XHnv282bN2vLMjMzhTp16ggtWrTQlhnyWagotv379+u8/4qKigQPDw+hadOmQn5+vna7HTt2CACEGTNmaMtGjhwpABA+/fRTnWO2aNFCCA8PL3OuJ+l7nfq+n5/2HnpaDL17937qNuV9lufOnStIJBKd7xB9X4/NmzcLAITFixdry1QqldCtW7cy352GfAc9GWdRUZHQtGlTne+GU6dOCQCEiRMn6mw7atSoMt9hY8aMEerUqSOkp6frbDtkyBDB1dW13NeFDMNbsVShyMhIuLu7w8fHB6+99hocHR2xfft27e2eiuzevRv16tVDv379tGV2dnYYO3Zsuds7OTnp9FOytbVF69atcePGjUrHnpWVBQBwdnau9DGeJiQkBG3bttU+joiIAAB069YNvr6+Zcqf51pKs7e31/6uVCrx4MEDBAYGokaNGjh9+nSljvnqq6/CxsYG69ev15adP38eFy9exODBg7VlGzduRMeOHVGzZk2kp6drfyIjI6FSqXDo0KGnnmfVqlVYunQp6tevj61bt+L9999H48aN0b17d53bcZs3b0bz5s3LbTHT3CL89ddf4eXlhaFDh2qfk8vlGD9+PHJycnDw4EGd/QYMGAB3d3ft44cPH+K3337DoEGDkJ2drb2WBw8eICoqCteuXXvuEeBOTk4AgOzs7HKft7e3h62tLQ4cOIBHjx5V+jxjx47Vu1W6bt26Oq+ri4sLRowYgb/++gvJycmVjuFZ/vzzT6SmpuLdd9/V6XvXu3dvNGrUCDt37iyzz9tvv63zuGPHjnp/jvS5TkPfz0++h55X6c9ybm4u0tPT0a5dOwiCUKb7BvDs12P37t2Qy+U637NSqRTjxo0zWpyPHj1CZmYmOnbsqPN9s3v3bgDQ3qnQeO+993QeC4KAzZs3o2/fvhAEQed1j4qKQmZmZqW/x+hvvBVLFVq2bBmCg4ORmZmJlStX4tChQ3qNsrt9+zYCAgLK9NMJDAwsd3tvb+8y29asWRNnz5595rlycnKQk5OjfSyTyeDu7q699VXRH9XnVTp5AwBXV1cAgI+PT7nlz/OHuzRN38FVq1YhKSkJgiBon8vMzKzUMd3c3NC9e3ds2LABc+bMAVByG9bGxgavvvqqdrtr167h7NmzFf5xS01Nfep5NH9kxo0bhwcPHuDIkSNYvnw5du3ahSFDhuD3338HUNKHc8CAAU891u3btxEUFFTm9rbmdvPt27d1yuvXr6/zOCEhAYIgYPr06Zg+fXqF11OvXr2nxvE0mvdlRf+5UCgUmD9/PiZPngxPT0+0adMGffr0wYgRI+Dl5aX3eZ68tqcJDAws81kLDg4GUNLVwpDzGkJTHw0bNizzXKNGjXD48GGdMjs7uzLvs5o1a+r9OdLnOg19PxvyOusjMTERM2bMwPbt28tc15OfZX1ej9u3b6NOnTplujlU9L2rrx07duCzzz5DfHw8CgsLteWlX9/bt29DKpWWeY2ePHdaWhoyMjLw3XfflRlEpfGs7xF6NiZ2VKHWrVtrR8X2798fHTp0wOuvv44rV65oWyOMoaLWhtJJS0UWLFig0/Hfz88Pt27dQqNGjQAA586dQ//+/Z95nPI6iwOosLN2RTHrcy0SiaTca9OnY/h7772HVatWYeLEiWjbti1cXV0hkUgwZMiQZw5geJohQ4Zg9OjRiI+PR1hYGDZs2IDu3bvDzc1Nu41arUaPHj3w4YcflnsMzR9OfdSuXRv9+vVDv3790KVLFxw8eBC3b9/W9sUzttKtDgC0r9X777+PqKiocvd53j+I58+fh0wme2pCMHHiRPTt2xfbtm3Dnj17MH36dMydOxe//fYbWrRoodd5nry252XoZ8EUqmJEr6HvZ2O+ziqVCj169MDDhw8xZcoUNGrUCI6OjkhKSsKoUaPKfJaN/Xro+x30+++/o1+/fujUqRO+/vpr1KlTB3K5HKtWrcJPP/1k8Hk11zV8+PAK+/6FhoYafFzSxcSO9CKTyTB37lx07doVS5cuxdSpUyvc1s/PDxcvXoQgCDp/JBISEip9/or+2IwYMQIdOnTQPtZ8+Xbo0AE1a9bEzz//jI8++uiZX4yaASEZGRk6nbifbPkxhpo1a5Z7S0mfc23atAkjR47EwoULtWUFBQXIyMjQ2a6i16si/fv3x1tvvaW9HXv16lVMmzZNZ5uAgADk5OQgMjLSoGM/S6tWrXDw4EHcv38ffn5+CAgIwPnz55+6j5+fH86ePQu1Wq3Tanf58mXt80/ToEEDACW3b419PUBJa8zBgwfRtm3bZ3YHCAgIwOTJkzF58mRcu3YNYWFhWLhwIdauXQvA8Lp8Gk1LZeljXr16FQC0oyEN+SzoG5umPq5cuYJu3brpPHflyhWjJ/T6XKep3s/6OHfuHK5evYo1a9ZgxIgR2vLY2NhKH9PPzw/79+9HXl6eTqtded+7+n4Hbd68GXZ2dtizZ4/O3ZpVq1aVObdarcbNmzcRFBRU4bnd3d3h7OwMlUolyutuLdjHjvTWpUsXtG7dGosXL0ZBQUGF20VFRSEpKUln2oiCggKsWLGi0ud2dHQEgDIJTIMGDRAZGan90Uyn4eDggClTpuDSpUuYMmVKuf87Xbt2LU6cOAGg5EsegE6/mtzc3DLTZxhDQEAALl++rDN325kzZ3DkyJFn7iuTycpcy5IlS8r8T7ui16siNWrUQFRUFDZs2IB169bB1ta2TEvnoEGDcOzYMezZs6fM/hkZGSguLq7w+MnJyeVOD1FUVIS4uDhIpVJtC9mAAQNw5swZbN26tcz2mmt/6aWXkJycrNMvsLi4GEuWLIGTkxM6d+781Ov18PBAly5d8O233+L+/ftlnn+eefUePnyIoUOHQqVSaUeLlicvL6/M5yggIADOzs46t7wcHR31rsdnuXfvns7rmpWVhR9++AFhYWHa27CGfBb0ja1Vq1bw8PDA8uXLda5t165duHTpUrmjJ5+HPtf5PO/n56X5j2bpz7IgCPjyyy8rfcyoqCgolUqd71m1Wo1ly5aV2Vbf7yCZTAaJRKLz/XLr1i1s27atzLmBkgmrS1uyZEmZ4w0YMACbN28u9z9vVTmfpSVjix0Z5IMPPsDAgQOxevXqMp15Nd566y0sXboUQ4cOxYQJE1CnTh38+OOP2k7TlWmBCAgIQI0aNbB8+XI4OzvD0dERERERT73N9cEHH+DChQtYuHAh9u/fj9deew1eXl5ITk7Gtm3bcOLECRw9ehQA0LNnT/j6+mLMmDH44IMPIJPJsHLlSri7uyMxMdHgeJ/mjTfewKJFixAVFYUxY8YgNTUVy5cvR5MmTbSDPirSp08f/Pe//4WrqytCQkJw7Ngx7Nu3D7Vr19bZLiwsDDKZDPPnz0dmZiYUCgW6detWZr640gYPHozhw4fj66+/RlRUlE5rDVDyem7fvh19+vTBqFGjEB4ejtzcXJw7dw6bNm3CrVu3dG7dlnb37l20bt0a3bp1Q/fu3eHl5YXU1FT8/PPPOHPmDCZOnKjd94MPPsCmTZswcOBAvPHGGwgPD8fDhw+xfft2LF++HM2bN8ebb76Jb7/9FqNGjcKpU6fg7++PTZs24ciRI1i8eLFeg2aWLVuGDh06oFmzZhg7diwaNGiAlJQUHDt2DHfv3sWZM2eeeYyrV69i7dq1EAQBWVlZOHPmDDZu3IicnBwsWrQIL7744lP37d69OwYNGoSQkBDY2Nhg69atSElJwZAhQ7TbhYeH45tvvsFnn32GwMBAeHh4lGn10ldwcDDGjBmDkydPwtPTEytXrkRKSopOC4whnwV9Y5PL5Zg/fz5Gjx6Nzp07Y+jQodrpTvz9/TFp0qRKXc/zXOfzvJ/1kZCQgM8++6xMeYsWLdCzZ08EBATg/fffR1JSElxcXLB58+bn6ovbv39/tG7dGpMnT0ZCQgIaNWqE7du34+HDhwB0v3f1/Q7q3bu39n38+uuvIzU1FcuWLUNgYKBOH+jw8HAMGDAAixcvxoMHD7TTnWhaSUufe968edi/fz8iIiIwduxYhISE4OHDhzh9+jT27dunjZeeQ1UPwyXzp5nW4OTJk2WeU6lUQkBAgBAQEKCdYqG8ofM3btwQevfuLdjb2wvu7u7C5MmTtcPxjx8/rt2uc+fOQpMmTcqcp7xh97/88osQEhIi2NjYGDT1yaZNm4SePXsKtWrVEmxsbIQ6deoIgwcPFg4cOKCz3alTp4SIiAjB1tZW8PX1FRYtWlThtBHlTWWAcqa/0EyV8OSUFmvXrhUaNGgg2NraCmFhYcKePXv0mu7k0aNHwujRowU3NzfByclJiIqKEi5fviz4+fkJI0eO1Nl3xYoVQoMGDQSZTKYz9URFUx1kZWUJ9vb2ZaYRKS07O1uYNm2aEBgYKNja2gpubm5Cu3bthAULFghFRUXl7qM59pdffilERUUJ3t7eglwuF5ydnYW2bdsKK1as0E5jovHgwQMhOjpaqFevnmBrayt4e3sLI0eO1JkiISUlRfta2NraCs2aNSvznqjo9de4fv26MGLECMHLy0uQy+VCvXr1hD59+gibNm2q8Fo0AGh/pFKpUKNGDaFFixbChAkThAsXLpTZ/snpTtLT04Vx48YJjRo1EhwdHQVXV1chIiJC2LBhg85+ycnJQu/evQVnZ2cBgLbunvY5fdr7ds+ePUJoaKigUCiERo0aCRs3biyzv76fhYpie3K6E43169cLLVq0EBQKhVCrVi1h2LBhwt27d3W2GTlypODo6FgmpoqmYXmSIdepz/v5We+himIo/f4o/TNmzBhBEATh4sWLQmRkpODk5CS4ubkJY8eOFc6cOVPmu82Q1yMtLU14/fXXBWdnZ8HV1VUYNWqUcOTIEQGAsG7dOp1t9f0O+v7774WgoCDt67hq1apyz52bmyuMGzdOqFWrluDk5CT0799fuHLligBAmDdvns62KSkpwrhx4wQfHx9BLpcLXl5eQvfu3YXvvvtO79eYKiYRBD16qBMZweLFizFp0iTcvXv3uUYbEhFVxN/fH02bNsWOHTvEDsUsbNu2Da+88goOHz5c7sovphQfH48WLVpg7dq1GDZsWJWe25qxjx2ZxJPL4hQUFODbb79FUFAQkzoiIhN48ntXpVJhyZIlcHFxQcuWLav03EDJf+alUik6depk0nOTLvaxI5N49dVX4evri7CwMGRmZmLt2rW4fPkyfvzxR7FDIyKySO+99x7y8/PRtm1bFBYWYsuWLTh69Cj+/e9/G31anCd9/vnnOHXqFLp27QobGxvs2rULu3btwptvvllmfk8yLSZ2ZBJRUVH4z3/+gx9//BEqlQohISFYt26dzkoGRERkPN26dcPChQuxY8cOFBQUIDAwEEuWLEF0dLTJz92uXTvExsZizpw5yMnJga+vL2bNmvXUkeFkGuxjR0RERGQh2MeOiIiIyEIwsSMiIiKyEFbXx06tVuPevXtwdnY26lI9RERERKYgCAKys7NRt25dnWUUy2N1id29e/c4QoeIiIiqnTt37sDb2/up21hdYqdZaujOnTtwcXEx2XmUSiX27t2Lnj17Qi6Xm+w8pD/WiXlivZgf1ol5Yr2Yp6qol6ysLPj4+Oi1XKLVJXaa268uLi4mT+wcHBzg4uLCD6CZYJ2YJ9aL+WGdmCfWi3mqynrRpwsZB08QERERWQgmdkREREQWgokdERERkYWwuj52REREZP5UKhWUSqXYYTyTUqmEjY0NCgoKoFKpKnUMuVwOmUxmlHiY2BEREZHZEAQBycnJyMjIEDsUvQiCAC8vL9y5c+e55setUaMGvLy8nnuOXSZ2REREZDY0SZ2HhwccHBzMfjEBtVqNnJwcODk5PXPy4PIIgoC8vDykpqYCAOrUqfNc8TCxIyIiIrOgUqm0SV3t2rXFDkcvarUaRUVFsLOzq1RiBwD29vYAgNTUVHh4eDzXbVkOniAiIiKzoOlT5+DgIHIkVU9zzc/br5CJHREREZkVc7/9agrGumYmdkREREQWQtTE7tChQ+jbty/q1q0LiUSCbdu2PXOfAwcOoGXLllAoFAgMDMTq1atNHicRERFRRfr06YNJkyYBAPz9/bF48WLRYhE1scvNzUXz5s2xbNkyvba/efMmevfuja5duyI+Ph4TJ07EP//5T+zZs8fEkRIRERE928mTJ/Hmm29qH+vbcGUsoo6K7dWrF3r16qX39suXL0f9+vWxcOFCAEDjxo1x+PBh/N///R+ioqJMFSYRERGRXtzd3UU9f7Wa7uTYsWOIjIzUKYuKisLEiRPFCagCadmFuJqcgRtZwF+JGZDLbSCVSCCTSiCRQPu7VFKSyUslEsgkj597XF7y+PHv0r9/L3Ocx/tZY0dTIiIic+Pv74+JEydi4sSJ8Pf3BwC88sorAAA/Pz/cunXLpOevVoldcnIyPD09dco8PT2RlZWF/Px87TwwpRUWFqKwsFD7OCsrC0DJcGJTLVWy/1IyPtxyHoANvrxwwiTneJIm0ZM++a+0dNnfv0vKSRgr3g+AnnmjRM8N9c1DDUlXn5XcCmo1hHwp2nXORw1HAw5MJqX5HFaHpYOsBevEPFlDvSiVSgiCALVaDbVaDUEQkK+s3DJdz8teLtOr0UQQBO3varVaW6ZWq/HHH3/Ay8sL33//PV588UXIZDLtNk/SXK9SqSwzj50hdV6tErvKmDt3LmbPnl2mfO/evSabJ+fyAwk87KRQAxAEQACgfvyvYY/1T2sEAVAJAkre/sIztrZmUny16QBaufM1MjexsbFih0BPYJ2YJ0uuFxsbG3h5eSEnJwdFRUXIL1Kh7aLjosRyLKYN7G31nyi4qKgIWVlZUKvVKCgoQFZWFhQKBQBAoVBocw5NA1N5++fn5+PQoUMoLi7WeS4vL0/vOKpVYufl5YWUlBSdspSUFLi4uJTbWgcA06ZNQ0xMjPZxVlYWfHx80LNnT7i4uJgkzpcAvK9UIjY2Fj169IBcLq/0sQRBgFoAVGrh79+Fv39XCwLU6lK/a/8t+V0QBKjUJWW6x9LdTvO78Ph5zb5qQYBKzxyo9P9anr6hUTeDvqdd/+cdHLz2APZeDfBSVEM9j06mpjTSZ4WMh3VinqyhXgoKCnDnzh04OTnBzs4ONkXFz97JRJxdnOFg++w0SfO3z9bWFi4uLpBKpbCzs9PJMezt7Z+ZcxQUFMDe3h6dOnWCnZ2dznMVJYPlqVaJXdu2bfHrr7/qlMXGxqJt27YV7qNQKLQZc2lyubxKPhhVdR56tvtZBTh47QFupOexTswQPyvmh3Viniy5XlQqVUkXIakUUqkUjgo5Ln4qzuBIfW/Flr61qllSTHMNpcuftdyYVCqFRCIpt34NqW9RE7ucnBwkJCRoH9+8eRPx8fGoVasWfH19MW3aNCQlJeGHH34AALz99ttYunQpPvzwQ7zxxhv47bffsGHDBuzcuVOsS6BqJNC9pGNdQlquyJEQEZE+JBKJXq1m5kwul0Olqrp+gqLOY/fnn3+iRYsWaNGiBQAgJiYGLVq0wIwZMwAA9+/fR2Jionb7+vXrY+fOnYiNjUXz5s2xcOFC/Oc//+FUJ6SXIA8nAEDiwzwUiNQZl4iIrIu/vz/i4uKQnJyMR48emfx8oqbBXbp0eWq/rPJWlejSpQv++usvE0ZFlsrNyRYOMgF5Kgmup+WgSV1XsUMiIiILt3DhQsTExGDFihWoV68epzshMhaJRAIvB+BGNpCQysSOiIiMY8eOHdrBEU8mbn379kXfvn2rLBZRb8USVTUvh5IW4qsp2SJHQkREZHxM7MiqeNmXJHbXUnJEjoSIiMj4mNiRVfF6PCf1tVQmdkREZHmY2JFV0bTY3X6Qy5GxRERkcZjYkVVxkQOu9jZQC8ANzmdHREQWhokdWRWJ5O/57K6lcgAFEZE5Kr2ag7Uw1jVzuhOyOgHuTvjzdgYHUBARmRlbW1tIpVLcu3cP7u7usLW11WtZLzGp1WoUFRWhoKDgmcuGlUcQBBQVFSEtLQ1SqRS2trbPFQ8TO7I6QR4lS4txyhMiIvMilUpRv3593L9/H/fu3RM7HL0IgoD8/HzY29s/VxLq4OAAX1/fSiWHpTGxI6sTqL0VyxY7IiJzY2trC19fXxQXF1fpGquVpVQqcejQIXTq1AlyubxSx5DJZLCxsTFK6yQTO7I6mj52mpGxdnKZyBEREVFpEokEcrm80olSVZLJZCguLoadnZ1ZxMvBE2R13J1s4Wov58hYIiKyOEzsyOpIJBKOjCUiIovExI6sUpCnMwAuLUZERJaFiR1ZJU2LHUfGEhGRJWFiR1Yp+HGLXQJHxhIRkQVhYkdWKdizpMXuFteMJSIiC8LEjqySu7MCLnZcM5aIiCwLEzuyShKJRHs7liNjiYjIUjCxI6vFkbFERGRpmNiR1eJcdkREZGmY2JHVCmaLHRERWRgmdmS1gjgyloiILAwTO7JaHqVGxt5M58hYIiKq/pjYkdUqPTKWK1AQEZElYGJHVk1zO5YrUBARkSVgYkdWLciDLXZERGQ5mNiRVdO02HFkLBERWQImdmTVNH3sbj3IRWExR8YSEVH1xsSOrJoH14wlIiILwsSOrJpEIvl7aTEOoCAiomqOiR1ZvWBtPzsOoCAiouqNiR1ZvUCOjCUiIgvBxI6snrbFjrdiiYiommNiR1ZPMzL29oM8jowlIqJqjYkdWT0PZwWc7WygUgtcM5aIiKo1JnZk9XTXjOXtWCIiqr6Y2BEBCPLgyFgiIqr+mNgRAX/PZccWOyIiqsaY2BHh75GxV1PZYkdERNUXEzsiAEEeHBlLRETVHxM7IgCeLhwZS0RE1R8TOyI8XjP28QAKjowlIqLqiokd0WOaKU8SODKWiIiqKSZ2RI8FcS47IiKq5pjYET2mncuOI2OJiKiaYmJH9JjmVuwtjowlIqJqiokd0WOeLgo4KzgyloiIqi8mdkSPSSQSBHlqlhZjPzsiIqp+mNgRlRKsXVqM/eyIiKj6YWJHVEqgdgAFW+yIiKj6YWJHVEqwdsoTttgREVH1w8SOqBRNHzuOjCUiouqIiR1RKV4udtqRsbfS88QOh4iIyCBM7IhKKT0ylrdjiYioumFiR/SEIA+OjCUiouqJiR3RE7Rz2XFkLBERVTNM7IieEMSRsUREVE0xsSN6QnCpkbFFxWqRoyEiItKf6IndsmXL4O/vDzs7O0RERODEiRNP3X7x4sVo2LAh7O3t4ePjg0mTJqGgoKCKoiVrUHpkLNeMJSKi6kTUxG79+vWIiYnBzJkzcfr0aTRv3hxRUVFITU0td/uffvoJU6dOxcyZM3Hp0iV8//33WL9+PT766KMqjpwsmUQiQSBHxhIRUTUkamK3aNEijB07FqNHj0ZISAiWL18OBwcHrFy5stztjx49ivbt2+P111+Hv78/evbsiaFDhz6zlY/IUMGakbEcQEFERNWIaIldUVERTp06hcjIyL+DkUoRGRmJY8eOlbtPu3btcOrUKW0id+PGDfz666946aWXqiRmsh7akbFssSMiomrERqwTp6enQ6VSwdPTU6fc09MTly9fLnef119/Henp6ejQoQMEQUBxcTHefvvtp96KLSwsRGFhofZxVlYWAECpVEKpVBrhSsqnObYpz0GGMaROGtS2B1ByK5Z1aFr8rJgf1ol5Yr2Yp6qoF0OOLVpiVxkHDhzAv//9b3z99deIiIhAQkICJkyYgDlz5mD69Onl7jN37lzMnj27TPnevXvh4OBg6pARGxtr8nOQYfSpk4xCALDBzfQcbN/xK2xEH2Zk+fhZMT+sE/PEejFPpqyXvDz9l7iUCIIgmCySpygqKoKDgwM2bdqE/v37a8tHjhyJjIwM/PLLL2X26dixI9q0aYMvvvhCW7Z27Vq8+eabyMnJgVRa9q9veS12Pj4+SE9Ph4uLi3EvqhSlUonY2Fj06NEDcrncZOch/RlSJ4IgoOW/9iOnsBg7o9si+PHcdmR8/KyYH9aJeWK9mKeqqJesrCy4ubkhMzPzmbmLaC12tra2CA8PR1xcnDaxU6vViIuLQ3R0dLn75OXllUneZDIZgJI/xOVRKBRQKBRlyuVyeZV8MKrqPKQ/feskyNMJfyVm4ObDAjTxrlUFkVk3flbMD+vEPLFezJMp68WQ44p6KzYmJgYjR45Eq1at0Lp1ayxevBi5ubkYPXo0AGDEiBGoV68e5s6dCwDo27cvFi1ahBYtWmhvxU6fPh19+/bVJnhExhLs4Yy/EjNwNYUjY4mIqHoQNbEbPHgw0tLSMGPGDCQnJyMsLAy7d+/WDqhITEzUaaH75JNPIJFI8MknnyApKQnu7u7o27cv/vWvf4l1CWTBNCNjE1I5MpaIiKoH0QdPREdHV3jr9cCBAzqPbWxsMHPmTMycObMKIiNr9/easWyxIyKi6oFj/YgqEOTxeM3Y9FyuGUtERNUCEzuiCtRxLVkztlgt4NYDrhlLRETmj4kdUQW4ZiwREVU3TOyInkJzO/Ya+9kREVE1wMSO6Ck0ExNf48hYIiKqBpjYET1FoIfmVixb7IiIyPwxsSN6Ck2LHUfGEhFRdcDEjugp6rjawYkjY4mIqJqoVGKXkZGB//znP5g2bRoePnwIADh9+jSSkpKMGhyR2CQSifZ2LAdQEBGRuTM4sTt79iyCg4Mxf/58LFiwABkZGQCALVu2YNq0acaOj0h0wZzyhIiIqgmDE7uYmBiMGjUK165dg52dnbb8pZdewqFDh4waHJE5CPLgyFgiIqoeDE7sTp48ibfeeqtMeb169ZCcnGyUoIjMSZAnb8USEVH1YHBip1AokJWVVab86tWrcHd3N0pQROZEMzL2JkfGEhGRmTM4sevXrx8+/fRTKJVKACWdyxMTEzFlyhQMGDDA6AESia30yNjbHBlLRERmzODEbuHChcjJyYGHhwfy8/PRuXNnBAYGwtnZGf/6179MESORqEqPjOVExUREZM5sDN3B1dUVsbGxOHLkCM6cOYOcnBy0bNkSkZGRpoiPyCwEeTgh/k4GrqZkozfqiB0OERFRuQxK7JRKJezt7REfH4/27dujffv2poqLyKxo+tklpLLFjoiIzJdBt2Llcjl8fX2hUqlMFQ+RWQriXHZERFQNGNzH7uOPP8ZHH32kXXGCyBoElRoZq1RxZCwREZkng/vYLV26FAkJCahbty78/Pzg6Oio8/zp06eNFhyRuajragdHWxlyi1S4lZ6rTfSIiIjMicGJXf/+/U0QBpF5k0gkCPR0xpk7GbiaksPEjoiIzJLBid3MmTNNEQeR2Qv2cMKZOxmPlxbjyFgiIjI/Bid2GqdOncKlS5cAAE2aNEGLFi2MFhSROdKMjOXSYkREZK4MTuxSU1MxZMgQHDhwADVq1AAAZGRkoGvXrli3bh2XFSOLFciRsUREZOYMHhX73nvvITs7GxcuXMDDhw/x8OFDnD9/HllZWRg/frwpYiQyC8EcGUtERGbO4Ba73bt3Y9++fWjcuLG2LCQkBMuWLUPPnj2NGhyROeHIWCIiMncGt9ip1WrI5fIy5XK5HGo1WzHIcmlGxgLANa5AQUREZsjgxK5bt26YMGEC7t27py1LSkrCpEmT0L17d6MGR2Rugj3Yz46IiMyXwYnd0qVLkZWVBX9/fwQEBCAgIAD169dHVlYWlixZYooYicyGZmkxjowlIiJzZHAfOx8fH5w+fRr79u3D5cuXAQCNGzdGZGSk0YMjMjdB2luxbLEjIiLzU6l57CQSCXr06IEePXoYOx4isxb0+FasZmSsXGZwozcREZHJGPxXafz48fjqq6/KlC9duhQTJ040RkxEZqteDXs42sqgVAm4/SBX7HCIiIh0GJzYbd68Ge3bty9T3q5dO2zatMkoQRGZq9IjY6+ynx0REZkZgxO7Bw8ewNXVtUy5i4sL0tPTjRIUkTkL4shYIiIyUwYndoGBgdi9e3eZ8l27dqFBgwZGCYrInAVrRsZyLjsiIjIzBg+eiImJQXR0NNLS0tCtWzcAQFxcHBYuXIjFixcbOz4isxPk8XhkLFvsiIjIzBic2L3xxhsoLCzEv/71L8yZMwcA4O/vj2+++QYjRowweoBE5kYzlx1HxhIRkbmp1HQn77zzDt555x2kpaXB3t4eTk5Oxo6LyGxpRsbmFqlw+0EuAj24ZiwREZmH52pqcHd3x6lTp7Br1y48evTIWDERmTWJRIJA7QAK9rMjIiLzoXdiN3/+fEyfPl37WBAEvPjii+jatSt69+6Nxo0b48KFCyYJksjcaFegYGJHRERmRO/Ebv369WjatKn28aZNm3Do0CH8/vvvSE9PR6tWrTB79myTBElkbrRTnnBpMSIiMiN6J3Y3b95EaGio9vGvv/6K1157De3bt0etWrXwySef4NixYyYJksjcBD9usUtgix0REZkRvRO74uJiKBQK7eNjx46hXbt22sd169blBMVkNTQjY2+k50CpUoscDRERUQm9E7uAgAAcOnQIAJCYmIirV6+iU6dO2ufv3r2L2rVrGz9CIjNU19UeDlwzloiIzIze052MGzcO0dHR+P3333H8+HG0bdsWISEh2ud/++03tGjRwiRBEpkbqVSCIA8nnLmbiWspOZzyhIiIzILeLXZjx47FV199hYcPH6JTp07YvHmzzvP37t3DG2+8YfQAicyVZmQspzwhIiJzYdAExW+88UaFydvXX39tlICIqgvNyNhrHBlLRERmgmshEVVSMOeyIyIiM8PEjqiSNKtPcGQsERGZCyZ2RJVUr0bpkbF5YodDRETExI6osjQjYwHgWgr72RERkfiY2BE9B800J9dS2c+OiIjEV+nEbs2aNdi+fbv2cXp6Oj766COjBEVUXQQ/XoHiKlvsiIjIDFQqsVOr1Zg8eTJmzZqlLXvw4AHmz59vrLiIqgXN0mIcGUtEROagUondH3/8gdzcXJw7dw737983dkxE1UbQ41uxN9JzUMyRsUREJLJKJXa//vorIiMjERYWhl9//dXYMRFVG6VHxt7iyFgiIhJZpRK7Xbt2oU+fPnjppZeY2JFVk0ol2vnsErgCBRERiczgxC45ORnx8fHo3bs3XnzxRcTFxaG4uNgUsRFVC5rbsVwzloiIxGbQWrFASWtdkyZN4O3tjXr16kEul+Pw4cOoU6eOKeIjMntBHBlLRERmwuAWu507d6J3794AAIlEgp49e2Lnzp2VDmDZsmXw9/eHnZ0dIiIicOLEiadun5GRgXHjxqFOnTpQKBQIDg7m7WASlWbKkwTOZUdERCIzKLErLi7Gvn37tIkdAPTq1Uub2AmCYNDJ169fj5iYGMycOROnT59G8+bNERUVhdTU1HK3LyoqQo8ePXDr1i1s2rQJV65cwYoVK1CvXj2DzktkTNqRsWm5HBlLRESiMvhW7B9//IGGDRtqHw8aNAitW7dG/fr1cenSJYOOtWjRIowdOxajR48GACxfvhw7d+7EypUrMXXq1DLbr1y5Eg8fPsTRo0chl8sBAP7+/oZeApFR1athD3u5DPlKFW4/zEOAu5PYIRERkZUyqMXOxsZGJ6kDAFtbWwQHB0Mul5d57mmKiopw6tQpREZG/h2MVIrIyEgcO3as3H22b9+Otm3bYty4cfD09ETTpk3x73//GyqVypDLIDIqqVRSaqJi9rMjIiLxGNxiZyzp6elQqVTw9PTUKff09MTly5fL3efGjRv47bffMGzYMPz6669ISEjAu+++C6VSiZkzZ5a7T2FhIQoLC7WPs7KyAABKpRJKpdJIV1OW5timPAcZxpR1EuDmgLN3M3HpXia6N3Qz+vEtGT8r5od1Yp5YL+apKurFkGOLlthVhlqthoeHB7777jvIZDKEh4cjKSkJX3zxRYWJ3dy5czF79uwy5Xv37oWDg4OpQ0ZsbKzJz0GGMUWdqB5KAMjw+5lraJB/xejHtwb8rJgf1ol5Yr2YJ1PWS16e/hPgi5bYubm5QSaTISUlRac8JSUFXl5e5e5Tp04dyOVyyGQybVnjxo2RnJyMoqIi2Nraltln2rRpiImJ0T7OysqCj48PevbsCRcXFyNdTVlKpRKxsbHo0aOHtj8gicuUdWJ/JQ3b1/6FXBsXvPRSO6Me29Lxs2J+WCfmifVinqqiXjR3G/UhWmJna2uL8PBwxMXFoX///gBKWuTi4uIQHR1d7j7t27fHTz/9BLVaDam0pHvg1atXUadOnXKTOgBQKBRQKBRlyuVyeZV8MKrqPKQ/U9RJ47o1AAA30/MgkcpgI6vUoi5WjZ8V88M6MU+sF/Nkynox5LjP/dcnKysL27ZtM3hELADExMRgxYoVWLNmDS5duoR33nkHubm52lGyI0aMwLRp07Tbv/POO3j48CEmTJiAq1evYufOnfj3v/+NcePGPe9lED0XzcjYIpUatx9yzVgiIhKHwS12gwYNQqdOnRAdHY38/Hy0atUKt27dgiAIWLduHQYMGKD3sQYPHoy0tDTMmDEDycnJCAsLw+7du7UDKhITE7UtcwDg4+ODPXv2YNKkSQgNDUW9evUwYcIETJkyxdDLIDIqzZqx55IycS0lm1OeEBGRKAxO7A4dOoSPP/4YALB161YIgoCMjAysWbMGn332mUGJHQBER0dXeOv1wIEDZcratm2L48ePGxo2kckFeWoSuxy82FTsaIiIyBoZfCs2MzMTtWrVAgDs3r0bAwYMgIODA3r37o1r164ZPUCi6iLYs2QFiqtcWoyIiERicGLn4+ODY8eOITc3F7t370bPnj0BAI8ePYKdnZ3RAySqLoI8OEkxERGJy+BbsRMnTsSwYcPg5OQEX19fdOnSBUDJLdpmzZoZOz6iakPTYqdZM5YjY4mIqKoZnNi9++67aN26Ne7cuYMePXpoBzc0aNAAn332mdEDJKouuGYsERGJrVJNCq1atULv3r2RlJSE4uJiAEDv3r3Rvn17owZHVJ1oRsYCwLUU9rMjIqKqZ3Bil5eXhzFjxsDBwQFNmjRBYmIiAOC9997DvHnzjB4gUXUS5Ml+dkREJB6DE7tp06bhzJkzOHDggM5gicjISKxfv96owRFVN0EeHBlLRETiMbiP3bZt27B+/Xq0adMGEolEW96kSRNcv37dqMERVTfBbLEjIiIRGdxil5aWBg8PjzLlubm5OokekTXStNhpRsYSERFVJYMTu1atWmHnzp3ax5pk7j//+Q/atm1rvMiIqiHvmn+vGZvINWOJiKiKGXwr9t///jd69eqFixcvori4GF9++SUuXryIo0eP4uDBg6aIkajaKL1m7NWUHDTglCdERFSFDG6x69ChA86cOYPi4mI0a9YMe/fuhYeHB44dO4bw8HBTxEhUrXAFCiIiEotBLXZKpRJvvfUWpk+fjhUrVpgqJqJqLejxChTXODKWiIiqmEEtdnK5HJs3bzZVLEQWQdNid5UtdkREVMUMvhXbv39/bNu2zQShEFkG7Zqx6RwZS0REVcvgwRNBQUH49NNPceTIEYSHh8PR0VHn+fHjxxstOKLqyLumPezkUhQoS0bGcgAFERFVFYMTu++//x41atTAqVOncOrUKZ3nJBIJEzuyepqRseeTsjgyloiIqpTBid3NmzdNEQeRRQn2cMb5pCwkpGYD8BI7HCIishIG97ErTRAECIJgrFiILEagp2YABUfGEhFR1alUYvfDDz+gWbNmsLe3h729PUJDQ/Hf//7X2LERVVvBHpzyhIiIqp7Bt2IXLVqE6dOnIzo6Gu3btwcAHD58GG+//TbS09MxadIkowdJVN1oRsZeT8uBSi1AJuU6ykREZHoGJ3ZLlizBN998gxEjRmjL+vXrhyZNmmDWrFlM7IigOzL29oNcDqAgIqIqYfCt2Pv376Ndu3Zlytu1a4f79+8bJSii6k4zMhbg7VgiIqo6Bid2gYGB2LBhQ5ny9evXIygoyChBEVkCbT87rkBBRERVxOBbsbNnz8bgwYNx6NAhbR+7I0eOIC4urtyEj8haaUbGssWOiIiqisEtdgMGDMAff/wBNzc3bNu2Ddu2bYObmxtOnDiBV155xRQxElVLmhY7TnlCRERVxeAWOwAIDw/H2rVrjR0LkUUJetxix5GxRERUVQxusfv111+xZ8+eMuV79uzBrl27jBIUkSXwqekAO7kURcUla8YSERGZmsGJ3dSpU6FSqcqUC4KAqVOnGiUoIktQemTsVQ6gICKiKmBwYnft2jWEhISUKW/UqBESEhKMEhSRpQh63M8ugQMoiIioChic2Lm6uuLGjRtlyhMSEuDo6GiUoIgsRZAnW+yIiKjqGJzYvfzyy5g4cSKuX7+uLUtISMDkyZPRr18/owZHVN0FcWQsERFVIYMTu88//xyOjo5o1KgR6tevj/r166Nx48aoXbs2FixYYIoYiaqt4CdGxhIREZmSwdOduLq64ujRo4iNjcWZM2dgb2+P0NBQdOrUyRTxEVVr3o9HxhYoS0bG1ndjdwUiIjKdSs1jJ5FI0LNnT/Ts2dPY8RBZFJlUggB3J1y4l4WrKdlM7IiIyKT0vhV77Ngx7NixQ6fshx9+QP369eHh4YE333wThYWFRg+QqLoL9uTIWCIiqhp6J3affvopLly4oH187tw5jBkzBpGRkZg6dSr+97//Ye7cuSYJkqg641x2RERUVfRO7OLj49G9e3ft43Xr1iEiIgIrVqxATEwMvvrqK2zYsMEkQRJVZ5oWu2scGUtERCamd2L36NEjeHp6ah8fPHgQvXr10j5+4YUXcOfOHeNGR2QBODKWiIiqit6JnaenJ27evAkAKCoqwunTp9GmTRvt89nZ2ZDL5caPkKia867pAIWNFIVcM5aIiExM78TupZdewtSpU/H7779j2rRpcHBwQMeOHbXPnz17FgEBASYJkqg6k5VaM/Ya+9kREZEJ6Z3YzZkzBzY2NujcuTNWrFiBFStWwNbWVvv8ypUrOf0JUQWCNIkdR8YSEZEJ6T2PnZubGw4dOoTMzEw4OTlBJpPpPL9x40Y4OTkZPUAiSxCkHUDBFjsiIjKdSq08UZ5atWo9dzBElkozMpZrxhIRkSkZvFYsERlOcyuWI2OJiMiUmNgRVQGfWn+PjL3DkbFERGQiTOyIqoBmzViAK1AQEZHp6JXYtWzZEo8ePQJQsrRYXh5bHIgMpZmomCNjiYjIVPRK7C5duoTc3FwAwOzZs5GTwz9MRIbiyFgiIjI1vUbFhoWFYfTo0ejQoQMEQcCCBQsqnNpkxowZRg2QyFJoBlBwZCwREZmKXond6tWrMXPmTOzYsQMSiQS7du2CjU3ZXSUSCRM7ogpopjzRjIyVSSUiR0RERJZGr8SuYcOGWLduHQBAKpUiLi4OHh4eJg2MyNI8OTLW381R7JCIiMjCGDwqVq1WM6kjqoTSI2M5gIKIiEyhUtOdXL9+He+99x4iIyMRGRmJ8ePH4/r168aOjcjiaEbGcsoTIiIyBYMTuz179iAkJAQnTpxAaGgoQkND8ccff6BJkyaIjY01RYxEFoMjY4mIyJQMXit26tSpmDRpEubNm1emfMqUKejRo4fRgiOyNJqRsbwVS0REpmBwYnfp0iVs2LChTPkbb7yBxYsXGyMmIoulabFLSM3B7vPJkDznwFhLGFerVqmQVSR2FERElsHgxM7d3R3x8fEICgrSKY+Pj+egCqJn8C01MvbttafEDsdseNjJMKifIHYYRETVnsGJ3dixY/Hmm2/ixo0baNeuHQDgyJEjmD9/PmJiYoweIJElkUklmNarEbafuSd2KHqpilTr0v0spBaocfj6A3QPqVMFZyQislwGJ3bTp0+Hs7MzFi5ciGnTpgEA6tati1mzZmH8+PGVCmLZsmX44osvkJycjObNm2PJkiVo3br1M/dbt24dhg4dipdffhnbtm2r1LmJqtqo9vUxqn19scMwGzN/OYc1xxLx04k7TOyIiJ6TwaNiJRIJJk2ahLt37yIzMxOZmZm4e/cuJkyYAEklOgytX78eMTExmDlzJk6fPo3mzZsjKioKqampT93v1q1beP/999GxY0eDz0lE5mPoCz4AgP1X0pCUkS9yNERE1Vul5rHTcHZ2hrOz83MFsGjRIowdOxajR49GSEgIli9fDgcHB6xcubLCfVQqFYYNG4bZs2ejQYMGz3V+IhJXgLsjglzUUAvA+hOJYodDRFStPVdi97yKiopw6tQpREZGasukUikiIyNx7NixCvf79NNP4eHhgTFjxlRFmERkYu29SnrzrTt5B0qVWuRoiIiqL4P72BlTeno6VCoVPD09dco9PT1x+fLlcvc5fPgwvv/+e8THx+t1jsLCQhQWFmofZ2VlAQCUSiWUSmXlAteD5timPAcZhnVinpRKJZrVFFDb0Rap2YXYdTYJvZp6iR2WVeNnxTyxXsxTVdSLIccWNbEzVHZ2Nv7xj39gxYoVcHNz02ufuXPnYvbs2WXK9+7dCwcHB2OHWAZX4zA/rBPzYyMFwmsUYG+uFEt2xUNIZKudOeBnxTyxXsyTKeslLy9P720lgiDoPaOBUqnEiy++iOXLl5eZx64yioqK4ODggE2bNqF///7a8pEjRyIjIwO//PKLzvbx8fFo0aIFZDKZtkytLvkDIJVKceXKFQQEBOjsU16LnY+PD9LT0+Hi4vLc11ARpVKJ2NhY9OjRA3K53GTnIf2xTsyTpl6atO6Inl8dg1oA9oxvjwbujmKHZrX4WTFPrBfzVBX1kpWVBTc3N2RmZj4zdzGoxU4ul+Ps2bPPFVxptra2CA8PR1xcnDaxU6vViIuLQ3R0dJntGzVqhHPnzumUffLJJ8jOzsaXX34JHx+fMvsoFAooFIoy5XK5vEo+GFV1HtIf68Q8+bk5o1sjD+y7lIoNp+9hep8QsUOyevysmCfWi3kyZb0YclyDB08MHz4c33//vaG7VSgmJgYrVqzAmjVrcOnSJbzzzjvIzc3F6NGjAQAjRozQzpdnZ2eHpk2b6vzUqFEDzs7OaNq0KWxtbY0WFxFVvWFt/AAAm07dRYFSJXI0RETVj8F97IqLi7Fy5Urs27cP4eHhcHTUvV2yaNEig443ePBgpKWlYcaMGUhOTkZYWBh2796tHVCRmJgIqVTUwbtEVEU6BbnDu6Y97j7Kx//O3MPAVmVb4YmIqGIGJ3bnz59Hy5YtAQBXr17Vea4yExQDQHR0dLm3XgHgwIEDT9139erVlTonEZkfmVSC1yN88fnuK1j7RyITOyIiAxmc2O3fv98UcRARAQAGtfLB/8VexZk7GTiflImm9VzFDomIqNqo9D3OhIQE7NmzB/n5JUsAGTC4loioQm5OCvRqWrJm7I9/3BY5GiKi6sXgxO7Bgwfo3r07goOD8dJLL+H+/fsAgDFjxmDy5MlGD5CIrM+wCF8AwLa/7iGrgJOxEhHpy+DEbtKkSZDL5UhMTNSZ4Hfw4MHYvXu3UYMjIuvUun4tBHs6IV+pwtbTSWKHQ0RUbRic2O3duxfz58+Ht7e3TnlQUBBu3+ZtEyJ6fhKJBMMiSqY+WXv8Nrt6EBHpyeDELjc3t9yluB4+fFjuRMBERJXxSst6sJfLcC01BydvPRI7HCKiasHgxK5jx4744YcftI8lEgnUajU+//xzdO3a1ajBEZH1crGT4+WwugBKWu2IiOjZDJ7u5PPPP0f37t3x559/oqioCB9++CEuXLiAhw8f4siRI6aIkYis1PA2flh38g52nb+P9JwQuDnxrgAR0dMY3GLXtGlTXL16FR06dMDLL7+M3NxcvPrqq/jrr78QEBBgihiJyEo1reeK5j41oFQJ2PDnHbHDISIyewa32AGAq6srPv74Y2PHQkRUxvAIX5y5k4Gf/kjE250CIJVWboUbIiJrUKnE7tGjR/j+++9x6dIlAEBISAhGjx6NWrVqGTU4IqK+zetizo6LuPsoHwevpaFrQw+xQyIiMlsG34o9dOgQ/P398dVXX+HRo0d49OgRvvrqK9SvXx+HDh0yRYxEZMXs5DK8Fl6yZuyPHERBRPRUBid248aNw+DBg3Hz5k1s2bIFW7ZswY0bNzBkyBCMGzfOFDESkZUb1qZkJYrfLqciKSNf5GiIiMyXwYldQkICJk+eDJlMpi2TyWSIiYlBQkKCUYMjIgKAAHcntAuoDbUA/PxHotjhEBGZLYMTu5YtW2r71pV26dIlNG/e3ChBERE9aXibkpUo1p28A6VKLXI0RETmSa/BE2fPntX+Pn78eEyYMAEJCQlo06YNAOD48eNYtmwZ5s2bZ5ooicjq9QjxhLuzAmnZhdh7IQW9Q+uIHRIRkdnRK7ELCwuDRCLRWa/xww8/LLPd66+/jsGDBxsvOiKix+QyKYa84IMlvyVg7fHbTOyIiMqhV2J38+ZNU8dBRPRMQ1v7Ytn+BBy78QAJqTkI9HASOyQiIrOiV2Ln5+dn6jiIiJ6pbg17dGvkiX2XUvDTH4mY0TdE7JCIiMxKpSYovnfvHg4fPozU1FSo1bqdmMePH2+UwIiIyjOsjS/2XUrBplN38EFUQ9jbyp69ExGRlTA4sVu9ejXeeust2Nraonbt2pBI/l7eRyKRMLEjIpPqHOQOn1r2uPMwH/87ew+DWvmIHRIRkdkweLqT6dOnY8aMGcjMzMStW7dw8+ZN7c+NGzdMESMRkZZUKsHrrUu6h3AlCiIiXQYndnl5eRgyZAikUoN3JSIyikGtvGErk+LM3Uycu5spdjhERGbD4OxszJgx2LhxoyliISLSS20nBXo18wIA/PgHW+2IiDQM7mM3d+5c9OnTB7t370azZs0gl8t1nl+0aJHRgiMiqsiwCD/8En8Pv8Tfw0e9G8PFTv7snYiILFylErs9e/agYcOGAFBm8AQRUVV4wb8mgj2dcDUlB1tO3cWo9vXFDomISHQGJ3YLFy7EypUrMWrUKBOEQ0SkH4lEguFt/DDjlwtY+0ciRrbz538uicjqGdzHTqFQoH379qaIhYjIIK+0qAcHWxkSUnNw4uZDscMhIhKdwYndhAkTsGTJElPEQkRkEGc7OV4OqwsAWPtHosjREBGJz+BbsSdOnMBvv/2GHTt2oEmTJmUGT2zZssVowRERPcuwCD/8fOIOdp+/j7TsELg7K8QOiYhINAYndjVq1MCrr75qiliIiAzWtJ4rwnxqIP5OBjb8eQfjugaKHRIRkWgMTuxWrVplijiIiCpteBs/xN/JwE9/JOLtzgGQSTmIgoisE5ePIKJqr09oHbjay5GUkY9DV9PEDoeISDQGt9jVr1//qVMKcL1YIqpqdnIZXgv3xveHb2Lt8dvo2shD7JCIiERhcGI3ceJEncdKpRJ//fUXdu/ejQ8++MBYcRERGWRYhC++P3wTv11Jxd1HefCu6SB2SEREVc7gxG7ChAnlli9btgx//vnncwdERFQZDdyd0D6wNo4kPMDPJxLxQVQjsUMiIqpyRutj16tXL2zevNlYhyMiMtjwCD8AwPqTd1BUrBY5GiKiqme0xG7Tpk2oVauWsQ5HRGSwyBBPeDgrkJ5ThL0Xk8UOh4ioyhl8K7ZFixY6gycEQUBycjLS0tLw9ddfGzU4IiJDyGVSDHnBB1/9loC1x2+jT2hdsUMiIqpSBid2/fv313kslUrh7u6OLl26oFEj9mkhInENae2LpfsTcPzGQySkZiPQw1nskIiIqozBid3MmTNNEQcRkVHUrWGP7o09EXsxBWuPJ2JWvyZih0REVGU4QTERWZxhEb4AgM2n7yK/SCVyNEREVUfvxE4qlUImkz31x8bG4AZAIiKj6xTkDt9aDsguKMb/ztwTOxwioiqjdya2devWCp87duwYvvrqK6jVnF6AiMQnlUrweoQv5u26jLV/3MagF3zEDomIqErondi9/PLLZcquXLmCqVOn4n//+x+GDRuGTz/91KjBERFV1sBwbyzaexVn72bi7N0MhHrXEDskIiKTq1Qfu3v37mHs2LFo1qwZiouLER8fjzVr1sDPz8/Y8RERVUptJwV6NfMCAKw9flvkaIiIqoZBiV1mZiamTJmCwMBAXLhwAXFxcfjf//6Hpk2bmio+IqJKG96m5D+b28/cQ2a+UuRoiIhMT+/E7vPPP0eDBg2wY8cO/Pzzzzh69Cg6duxoytiIiJ5LK7+aaOjpjAKlGltO3xU7HCIik9O7j93UqVNhb2+PwMBArFmzBmvWrCl3uy1bthgtOCKi5yGRSDC8jS+m/3IBP/6RiFHt/HVWziEisjR6J3YjRozgFyIRVTv9W9TD3F2XkZCag+M3HqJtQG2xQyIiMhm9E7vVq1ebMAwiItNwtpPj5bB6+PlEIn784zYTOyKyaFx5gogs3vA2JStR7LmQjLTsQpGjISIyHSZ2RGTxmtR1RQvfGlCqBGz4847Y4RARmQwTOyKyCsMjSqY++emPRKjUgsjREBGZBhM7IrIKvUPrwNVejqSMfBy4kip2OEREJsHEjoisgp1choHh3gCAH/9IFDkaIiLTYGJHRFZj2OOVKPZfScWdh3kiR0NEZHxM7IjIatR3c0SHQDcIAvDzCbbaEZHlYWJHRFZlWETJ1Ccb/ryDomK1yNEQERmXWSR2y5Ytg7+/P+zs7BAREYETJ05UuO2KFSvQsWNH1KxZEzVr1kRkZORTtyciKi0yxBMezgqk5xRhz4VkscMhIjIq0RO79evXIyYmBjNnzsTp06fRvHlzREVFITW1/FFrBw4cwNChQ7F//34cO3YMPj4+6NmzJ5KSkqo4ciKqjuQyKYa0Lmm1W3v8tsjREBEZl+iJ3aJFizB27FiMHj0aISEhWL58ORwcHLBy5cpyt//xxx/x7rvvIiwsDI0aNcJ//vMfqNVqxMXFVXHkRFRdDW3tA5lUgj9uPsS1lGyxwyEiMhq914o1haKiIpw6dQrTpk3TlkmlUkRGRuLYsWN6HSMvLw9KpRK1atUq9/nCwkIUFv69hFBWVhYAQKlUQqlUPkf0T6c5tinPQYZhnZgnMerFzcEG3Rq6I/ZSKn44dgszejeqsnNXB/ysmCfWi3mqinox5NiiJnbp6elQqVTw9PTUKff09MTly5f1OsaUKVNQt25dREZGlvv83LlzMXv27DLle/fuhYODg+FBGyg2Ntbk5yDDsE7MU1XXSwAkiIUMG0/eRjP1DShkVXr6aoGfFfPEejFPpqyXvDz9p2cSNbF7XvPmzcO6detw4MAB2NnZlbvNtGnTEBMTo32clZWl7Zfn4uJistiUSiViY2PRo0cPyOVyk52H9Mc6MU9i1cuLagG/fnkYiQ/zUVw3FK88nryY+FkxV6wX81QV9aK526gPURM7Nzc3yGQypKSk6JSnpKTAy8vrqfsuWLAA8+bNw759+xAaGlrhdgqFAgqFoky5XC6vkg9GVZ2H9Mc6MU9i1MuwCD/M3XUZP59Mwutt6lfpuasDflbME+vFPJmyXgw5rqiDJ2xtbREeHq4z8EEzEKJt27YV7vf5559jzpw52L17N1q1alUVoRKRBRrYyge2MinOJWXizJ0MscMhInpuoo+KjYmJwYoVK7BmzRpcunQJ77zzDnJzczF69GgAwIgRI3QGV8yfPx/Tp0/HypUr4e/vj+TkZCQnJyMnJ0esSyCiaqqWoy1ealZyd4BTnxCRJRA9sRs8eDAWLFiAGTNmICwsDPHx8di9e7d2QEViYiLu37+v3f6bb75BUVERXnvtNdSpU0f7s2DBArEugYiqseGP14/939l7yMzjaEMiqt7MYvBEdHQ0oqOjy33uwIEDOo9v3bpl+oCIyGqE+9VEIy9nXE7OxsT1f8GvtuNzHU8iASSQQCIBpBJAIpFoy0oeA1KJBBL8/ZzmsVQq0R7jeZUcsXJUKhVu3pegS1ExXNmXi6haMYvEjohILBKJBMPb+OGTbeex/0oagDSxQzITMgg7LmPR4BZiB0JEBmBiR0RWb8gLPigqVuNhbtFzHUeAAEEABADqx7+ohZIytVDqeUHQbqPZXtBuJzz39TzvIYqKVdh+5h62/HUPr7T0Rscg9+eOiYiqBhM7IrJ6NjIp3ujA6U40lEolHqUk4VCyBNO2nMOeiZ3gqOCfC6LqQPTBE0REZH76+KpRr4Yd7j7Kx4K9V8QOh4j0xMSOiIjKUMiAOS+HAABWH72FU7cfiRwREemDiR0REZWrY6AbXgv3hiAAUzafRWGxSuyQiOgZmNgREVGFPundGG5OCiSk5mDZbwlih0NEz8DEjoiIKlTDwRZzXm4CAPj6wHVcuq//YuREVPWY2BER0VP1alYHLzbxQrFawJTNZ1GsUosdEhFVgIkdERE906cvN4GLnQ3O3s3EyiM3xQ6HiCrAxI6IiJ7Jw8UOn/QpGSW7cO9V3ErPFTkiIioPEzsiItLLwHBvdAh0Q2GxGlM2n4Va/fyrZBCRcTGxIyIivUgkEsx9tRns5TL8cfMh1p28I3ZIRPQEJnZERKQ3n1oOeD+qIQBg7q+XcD8zX+SIiKg0JnZERGSQUe38EeZTA9mFxfhk63kIAm/JEpkLJnZERGQQmVSCz18LhVwmQdzlVPzv7H2xQyKix5jYERGRwYI9nRHdNQgAMGv7BTzMLRI5IiICmNgREVElvdMlAA09nfEwtwif/u+C2OEQEZjYERFRJdnaSDH/tVBIJcC2+HvYfzlV7JCIrB4TOyIiqrQwnxoY06E+AODjreeQXaAUOSIi68bEjoiInktMj4bwreWAe5kF+Hz3FbHDIbJqTOyIiOi52NvKMG9AMwDAf4/fxombD0WOiMh6MbEjIqLn1i7ADUNb+wAApmw+iwKlSuSIiKwTEzsiIjKKqb0aw9NFgZvpufgy7prY4RBZJSZ2RERkFK72cnzWv+SW7HeHbuB8UqbIERFZHyZ2RERkND1CPNE7tA5UagEfbjoLpUotdkhEVoWJHRERGdWsvk1Qw0GOi/ez8N2hG2KHQ2RVmNgREZFRuTsrMKNPCADgy7hrSEjNETkiIuvBxI6IiIzulRb10DnYHUXFakzdfBZqtSB2SERWgYkdEREZnUQiwb9eaQpHWxn+vP0Ia/+4LXZIRFaBiR0REZmEd00HTOnVCAAwf9dl3H2UJ3JERJaPiR0REZnM8Ag/tPKridwiFT7eeh6CwFuyRKbExI6IiExGKpVg/muhsLWR4uDVNGz9K0nskIgsGhM7IiIyqQB3J0zoHgQA+HTHRaRlF4ocEZHlYmJHREQm92anBgip44KMPCVm/e+C2OEQWSwmdkREZHJymRSfvxYKmVSCnWfvY++FZLFDIrJITOyIiKhKNK3nijc7NQAATP/lPDLzlSJHRGR5mNgREVGVmdA9CA3cHJGSVYh5uy6JHQ6RxWFiR0REVcZOLsPcV5sBAH4+cQdHE9JFjojIsjCxIyKiKhXRoDaGt/EFAEzdcg75RSqRIyKyHEzsiIioyk15sRHquNoh8WEeFsVeETscIovBxI6IiKqcs50c/3qlKQDg+8M3EX8nQ9yAiCwEEzsiIhJFt0ae6B9WF2oBmLLpLIqK1WKHRFTtMbEjIiLRzOjbBLUcbXElJRvfHLgudjhE1R4TOyIiEk0tR1vM6tcEALB0/zVcTckWOSKi6o2JHRERiapvaB1ENvaAUiXgw01noVILYodEVG0xsSMiIlFJJBLM6d8UzgobxN/JwOqjt8QOiajaYmJHRESiq+Nqj2kvNQYALNhzBYkP8kSOiKh6YmJHRERmYcgLPmjToBbylSpM23oWgsBbskSGYmJHRERmQSqVYN6roVDYSHEk4QE2/nlX7JCIqh0mdkREZDb83RwR0yMYADBn50WkZBWIHBFR9WIjdgBERESljelQHzvO3se5pEx8vPUc3ukS+Mx9JJKnPAdAJpVAKpHARiaBTCKBVFryr0xa8rvN4+dlUs3zgI1UCqkUJY8lkqeeoyoIggDenaZnYWJHRERmxUYmxfwBoei39DD2XUrFvkupYodkNhxsZNiYdgqhPjUQWs8VTeu5wrumPSRiZ51kNpjYERGR2Qmp64IZfUOw6sgtqJ/STKVPC5ZaEKBWC1AJAlTqv3/UAlCsVkOthvY5c5dXLMGR6w9w5PoDbVlNBzma1nNFs3quCPUuSfbq1WCyZ62Y2BERkVka0dYfI9r6V9n5BKEk2StJ+koSvWJ1SVL4tOSyqiiVSmz6NQ6u9UNxMTkb55IycSU5G4/ylPj9Wjp+v5au3baWo+3jZM8FzerVQDNvV9R1tWOyZwWY2BEREaFkomSZpKQ/njlSKqXwcQJeesEbcrkcAFBYrMKVx0neubuZ2mTvYW4RDl1Nw6Gradr9a2uTPVc08y75tw6TPYvDxI6IiKiaUtjIEOpdA6HeNYCIkrICZdlk72pKNh7kFuHg1TQcLJXsuTmVSvYeJ3xeLkz2qjMmdkRERBbETi5Dc58aaO5TQ1tWoFThcnI2zt3NKEn4krJwNSUb6TlFOHAlDQeulE72FCW3cL1raPvtebrYiXAlVBlM7IiIiCycnVyGMJ8aCHsi2bt0P0unZe9aag7Scwqx/0oa9pdK9tydFX+36j1u2WOyZ57MIrFbtmwZvvjiCyQnJ6N58+ZYsmQJWrduXeH2GzduxPTp03Hr1i0EBQVh/vz5eOmll6owYiIiourNTi5DC9+aaOFbU1tWoFTh4v0sbaJ3/vFt3LTsQvx2ORW/Xf576hkPTbLn/XfC58FkT3SiJ3br169HTEwMli9fjoiICCxevBhRUVG4cuUKPDw8ymx/9OhRDB06FHPnzkWfPn3w008/oX///jh9+jSaNm0qwhUQERFZBju5DC19a6JlqWQvv0iT7GXgXFIWziVlICE1B6nZhYi7nIq4Usmep4umZa8Gmnm7oGk9V3g4M9mrSqIndosWLcLYsWMxevRoAMDy5cuxc+dOrFy5ElOnTi2z/ZdffokXX3wRH3zwAQBgzpw5iI2NxdKlS7F8+fIqjZ2IiMjS2dvKEO5XE+F+fyd7eUXFuHQ/C2cft+ydu5uJ62k5SMkqREqW7qTSXi52aPq4r16zx5MquzsrxLgUqyBqYldUVIRTp05h2rRp2jKpVIrIyEgcO3as3H2OHTuGmJgYnbKoqChs27at3O0LCwtRWFiofZyVlQWgZD4gpVL5nFdQMc2xTXkOMgzrxDyxXswP68Q8mVO9yCVAaF1nhNZ1BuANQJPsZePcvSxcSMrCuXtZuJGei+SsAiRnFWDfpRTt/l4uCtR2sq2SWCUw7QhfQRBQTypFjyrIKfQhamKXnp4OlUoFT09PnXJPT09cvny53H2Sk5PL3T45Obnc7efOnYvZs2eXKd+7dy8cHBwqGbn+YmNjTX4OMgzrxDyxXswP68Q8mXu9eADwcAC6BgKF9YG7ucCdXAnu5EhwJ1eC1HwgOasQyVmFzzxWdWHnZtp6ycvL03tb0W/Fmtq0adN0WviysrLg4+ODnj17wsXFxWTnVSqViI2NRY8ePbQTSZK4WCfmifViflgn5slS6iWnsBiXk7ORW1hs8nNVxXohxcUq3Lhw2qT1ornbqA9REzs3NzfIZDKkpKTolKekpMDLy6vcfby8vAzaXqFQQKEoey9fLpdXyQejqs5D+mOdmCfWi/lhnZin6l4vNeVytA20FzsMo1Eqlfj1lmnrxZDjSk0SgZ5sbW0RHh6OuLg4bZlarUZcXBzatm1b7j5t27bV2R4oaf6saHsiIiIiayH6rdiYmBiMHDkSrVq1QuvWrbF48WLk5uZqR8mOGDEC9erVw9y5cwEAEyZMQOfOnbFw4UL07t0b69atw59//onvvvtOzMsgIiIiEp3oid3gwYORlpaGGTNmIDk5GWFhYdi9e7d2gERiYiKk0r8bFtu1a4effvoJn3zyCT766CMEBQVh27ZtnMOOiIiIrJ7oiR0AREdHIzo6utznDhw4UKZs4MCBGDhwoImjIiIiIqpeRO1jR0RERETGw8SOiIiIyEIwsSMiIiKyEEzsiIiIiCwEEzsiIiIiC8HEjoiIiMhCMLEjIiIishBM7IiIiIgsBBM7IiIiIgvBxI6IiIjIQpjFkmJVSRAEAEBWVpZJz6NUKpGXl4esrCzI5XKTnov0wzoxT6wX88M6MU+sF/NUFfWiyVk0OczTWF1il52dDQDw8fERORIiIiIi/WVnZ8PV1fWp20gEfdI/C6JWq3Hv3j04OztDIpGY7DxZWVnw8fHBnTt34OLiYrLzkP5YJ+aJ9WJ+WCfmifVinqqiXgRBQHZ2NurWrQup9Om96KyuxU4qlcLb27vKzufi4sIPoJlhnZgn1ov5YZ2YJ9aLeTJ1vTyrpU6DgyeIiIiILAQTOyIiIiILwcTORBQKBWbOnAmFQiF2KPQY68Q8sV7MD+vEPLFezJO51YvVDZ4gIiIislRssSMiIiKyEEzsiIiIiCwEEzsiIiIiC8HEzgSWLVsGf39/2NnZISIiAidOnBA7JKt26NAh9O3bF3Xr1oVEIsG2bdvEDsnqzZ07Fy+88AKcnZ3h4eGB/v3748qVK2KHZfW++eYbhIaGaufjatu2LXbt2iV2WFTKvHnzIJFIMHHiRLFDsWqzZs2CRCLR+WnUqJHYYQFgYmd069evR0xMDGbOnInTp0+jefPmiIqKQmpqqtihWa3c3Fw0b94cy5YtEzsUeuzgwYMYN24cjh8/jtjYWCiVSvTs2RO5ublih2bVvL29MW/ePJw6dQp//vknunXrhpdffhkXLlwQOzQCcPLkSXz77bcIDQ0VOxQC0KRJE9y/f1/7c/jwYbFDAsBRsUYXERGBF154AUuXLgVQsoSZj48P3nvvPUydOlXk6EgikWDr1q3o37+/2KFQKWlpafDw8MDBgwfRqVMnscOhUmrVqoUvvvgCY8aMETsUq5aTk4OWLVvi66+/xmeffYawsDAsXrxY7LCs1qxZs7Bt2zbEx8eLHUoZbLEzoqKiIpw6dQqRkZHaMqlUisjISBw7dkzEyIjMW2ZmJoCSJILMg0qlwrp165Cbm4u2bduKHY7VGzduHHr37q3z94XEde3aNdStWxcNGjTAsGHDkJiYKHZIAKxwrVhTSk9Ph0qlgqenp065p6cnLl++LFJUROZNrVZj4sSJaN++PZo2bSp2OFbv3LlzaNu2LQoKCuDk5IStW7ciJCRE7LCs2rp163D69GmcPHlS7FDosYiICKxevRoNGzbE/fv3MXv2bHTs2BHnz5+Hs7OzqLExsSMiUY0bNw7nz583m/4p1q5hw4aIj49HZmYmNm3ahJEjR+LgwYNM7kRy584dTJgwAbGxsbCzsxM7HHqsV69e2t9DQ0MREREBPz8/bNiwQfRuC0zsjMjNzQ0ymQwpKSk65SkpKfDy8hIpKiLzFR0djR07duDQoUPw9vYWOxwCYGtri8DAQABAeHg4Tp48iS+//BLffvutyJFZp1OnTiE1NRUtW7bUlqlUKhw6dAhLly5FYWEhZDKZiBESANSoUQPBwcFISEgQOxT2sTMmW1tbhIeHIy4uTlumVqsRFxfHPipEpQiCgOjoaGzduhW//fYb6tevL3ZIVAG1Wo3CwkKxw7Ba3bt3x7lz5xAfH6/9adWqFYYNG4b4+HgmdWYiJycH169fR506dcQOhS12xhYTE4ORI0eiVatWaN26NRYvXozc3FyMHj1a7NCsVk5Ojs7/om7evIn4+HjUqlULvr6+IkZmvcaNG4effvoJv/zyC5ydnZGcnAwAcHV1hb29vcjRWa9p06ahV69e8PX1RXZ2Nn766SccOHAAe/bsETs0q+Xs7Fym76mjoyNq167NPqkiev/999G3b1/4+fnh3r17mDlzJmQyGYYOHSp2aEzsjG3w4MFIS0vDjBkzkJycjLCwMOzevbvMgAqqOn/++Se6du2qfRwTEwMAGDlyJFavXi1SVNbtm2++AQB06dJFp3zVqlUYNWpU1QdEAIDU1FSMGDEC9+/fh6urK0JDQ7Fnzx706NFD7NCIzMrdu3cxdOhQPHjwAO7u7ujQoQOOHz8Od3d3sUPjPHZEREREloJ97IiIiIgsBBM7IiIiIgvBxI6IiIjIQjCxIyIiIrIQTOyIiIiILAQTOyIiIiILwcSOiIiIyEIwsSMiIiKyEEzsiIiIiCwEEzsiIgBpaWl455134OvrC4VCAS8vL0RFReHIkSNih0ZEpDeuFUtEBGDAgAEoKirCmjVr0KBBA6SkpCAuLg4PHjwwyfmKiopga2trkmMTkfViix0RWb2MjAz8/vvvmD9/Prp27Qo/Pz+0bt0a06ZNQ79+/bTbvPXWW/D09ISdnR2aNm2KHTt2aI+xefNmNGnSBAqFAv7+/li4cKHOOfz9/TFnzhyMGDECLi4uePPNNwEAhw8fRseOHWFvbw8fHx+MHz8eubm5VXfxRGRRmNgRkdVzcnKCk5MTtm3bhsLCwjLPq9Vq9OrVC0eOHMHatWtx8eJFzJs3DzKZDABw6tQpDBo0CEOGDMG5c+cwa9YsTJ8+HatXr9Y5zoIFC9C8eXP89ddfmD59Oq5fv44XX3wRAwYMwNmzZ7F+/XocPnwY0dHRVXHZRGSBJIIgCGIHQUQkts2bN2Ps2LHIz89Hy5Yt0blzZwwZMgShoaHYu3cvevXqhUuXLiE4OLjMvsOGDUNaWhr27t2rLfvwww+xc+dOXLhwAUBJi12LFi2wdetW7Tb//Oc/IZPJ8O2332rLDh8+jM6dOyM3Nxd2dnYmvGIiskRssSMiQkkfu3v37mH79u148cUXceDAAbRs2RKrV69GfHw8vL29y03qAODSpUto3769Tln79u1x7do1qFQqbVmrVq10tjlz5gxWr16tbTF0cnJCVFQU1Go1bt68afyLJCKLx8ETRESP2dnZoUePHujRowemT5+Of/7zn5g5cybef/99oxzf0dFR53FOTg7eeustjB8/vsy2vr6+RjknEVkXJnZERBUICQnBtm3bEBoairt37+Lq1avltto1bty4zLQoR44cQXBwsLYfXnlatmyJixcvIjAw0OixE5F14q1YIrJ6Dx48QLdu3bB27VqcPXsWN2/exMaNG/H555/j5ZdfRufOndGpUycMGDAAsbGxuHnzJnbt2oXdu3cDACZPnoy4uDjMmTMHV69exZo1a7B06dJntvRNmTIFR48eRXR0NOLj43Ht2jX88ssvHDxBRJXGFjsisnpOTk6IiIjA//3f/+H69etQKpXw8fHB2LFj8dFHHwEoGVzx/vvvY+jQocjNzUVgYCDmzZsHoKTlbcOGDZgxYwbmzJmDOnXq4NNPP8WoUaOeet7Q0FAcPHgQH3/8MTp27AhBEBAQEIDBgweb+pKJyEJxVCwRERGRheCtWCIiIiILwcSOiIiIyEIwsSMiIiKyEEzsiIiIiCwEEzsiIiIiC8HEjoiIiMhCMLEjIiIishBM7IiIiIgsBBM7IiIiIgvBxI6IiIjIQjCxIyIiIrIQTOyIiIiILMT/A7cZbbVOwGuKAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(all_scores_sorted, y_cumulative, label=lang)\n", + "\n", + "plt.xlabel(\"Score\")\n", + "plt.ylabel(\"Number of Scores ≥ Score\")\n", + "plt.title(\"Right-Cumulative Score Distribution per Language\")\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.tight_layout()\n", + "# plt.savefig(plot_path / f\"llm_annotator_cummulative_score_dist_{model}.pdf\", format=\"pdf\", bbox_inches=\"tight\", pad_inches=0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "5b50d0e9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[1.0000000000000002,\n", + " 0.6353215582720513,\n", + " 0.6353175298556016,\n", + " 0.13247044652982135,\n", + " 0.1323314661623089,\n", + " 0.13232139512118482,\n", + " 0.13228916778958774,\n", + " 0.012359181667482417,\n", + " 0.012240343382218164,\n", + " 0.012232286549318893,\n", + " 0.012169846094349538,\n", + " 0.0015448977084353025,\n", + " 0.0015328124590863954,\n", + " 0.0015287840426367596,\n", + " 0.0015247556261871239,\n", + " 4.229837272117517e-05]" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_cumulative" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b0ba49e8", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "12321a47", + "metadata": {}, + "outputs": [], + "source": [ + "series_list = []\n", + "\n", + "for lang, scores in lang_to_scores.items():\n", + " num_scores = len(scores)\n", + " counts = Counter(scores)\n", + " all_scores = sorted(set(scores))\n", + " \n", + " # Ensure all relevant score levels are included\n", + " all_scores_sorted = sorted(all_scores)\n", + "\n", + " # Compute cumulative counts from the right\n", + " y_cumulative = []\n", + " for i, score in enumerate(all_scores_sorted):\n", + " count = sum(counts[s]/num_scores for s in all_scores_sorted[i:])\n", + " y_cumulative.append(count)\n", + " \n", + " series_list.append((all_scores_sorted, y_cumulative))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "49c90381", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b6a3ed6d", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2e9093fb", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a37ce0d6", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4508855c", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "b96015d0", + "metadata": {}, + "source": [ + "## Human Annotations without Integer Scores" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "6fbcc419", + "metadata": {}, + "outputs": [], + "source": [ + "de_511 = Path(\"/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_human_as_a_judge/human_aggregated_scores/511_test_documents_educational_content_de_deepl.jsonl\")\n", + "en_511 = Path(\"/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_human_as_a_judge/human_aggregated_scores/511_test_documents_educational_content_en.jsonl\")\n", + "en_non_agg = Path(\"/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_human_as_a_judge/human_raw_scores/annotations__educational_content__en__gt.jsonl\")" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "dcabba2d", + "metadata": {}, + "outputs": [], + "source": [ + "de_511_list = []\n", + "en_511_list = []\n", + "en_non_agg_list = []\n", + "with open(de_511, 'r') as f:\n", + " for line in f:\n", + " de_511_list.append(json.loads(line))\n", + "\n", + "with open(en_511, 'r') as f:\n", + " for line in f:\n", + " en_511_list.append(json.loads(line))\n", + "\n", + "with open(en_non_agg, 'r') as f:\n", + " for line in f:\n", + " en_non_agg_list.append(json.loads(line))" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "b1412f3a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(511, 511)" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(en_511_list), len(de_511_list)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "1ed7ccc4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Document ID: 0\n", + "Score: 2.0\n", + "Scores: [2, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 1\n", + "Score: 3.0\n", + "Scores: [3, 3, 1]\n", + "========================================================================================================\n", + "Document ID: 2\n", + "Score: 1.6666666666666667\n", + "Scores: [4, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 3\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 4\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 5\n", + "Score: 0.0\n", + "Scores: [0, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 6\n", + "Score: 0.0\n", + "Scores: [2, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 7\n", + "Score: 1.0\n", + "Scores: [1, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 8\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 9\n", + "Score: 1.6666666666666667\n", + "Scores: [3, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 10\n", + "Score: 2.0\n", + "Scores: [2, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 11\n", + "Score: 2.0\n", + "Scores: [2, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 12\n", + "Score: 2.0\n", + "Scores: [2, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 13\n", + "Score: 3.0\n", + "Scores: [3, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 14\n", + "Score: 3.0\n", + "Scores: [0, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 15\n", + "Score: 2.0\n", + "Scores: [2, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 16\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 17\n", + "Score: 1.0\n", + "Scores: [1, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 18\n", + "Score: 2.0\n", + "Scores: [2, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 19\n", + "Score: 4.0\n", + "Scores: [3, 4, 4]\n", + "========================================================================================================\n", + "Document ID: 20\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 21\n", + "Score: 2.0\n", + "Scores: [2, 2, 1]\n", + "========================================================================================================\n", + "Document ID: 22\n", + "Score: 2.0\n", + "Scores: [3, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 23\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 24\n", + "Score: 1.0\n", + "Scores: [1, 2, 1]\n", + "========================================================================================================\n", + "Document ID: 25\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 26\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 27\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 28\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 29\n", + "Score: 1.0\n", + "Scores: [2, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 30\n", + "Score: 1.6666666666666667\n", + "Scores: [3, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 31\n", + "Score: 0.0\n", + "Scores: [0, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 32\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 33\n", + "Score: 2.0\n", + "Scores: [2, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 34\n", + "Score: 1.0\n", + "Scores: [0, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 35\n", + "Score: 1.0\n", + "Scores: [2, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 36\n", + "Score: 1.0\n", + "Scores: [0, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 37\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 38\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 39\n", + "Score: 3.0\n", + "Scores: [2, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 40\n", + "Score: 3.0\n", + "Scores: [3, 3, 2]\n", + "========================================================================================================\n", + "Document ID: 41\n", + "Score: 2.0\n", + "Scores: [1, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 42\n", + "Score: 1.0\n", + "Scores: [1, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 43\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 44\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 45\n", + "Score: 4.0\n", + "Scores: [4, 4, 1]\n", + "========================================================================================================\n", + "Document ID: 46\n", + "Score: 3.0\n", + "Scores: [3, 3, 1]\n", + "========================================================================================================\n", + "Document ID: 47\n", + "Score: 2.0\n", + "Scores: [2, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 48\n", + "Score: 1.0\n", + "Scores: [3, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 49\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 50\n", + "Score: 2.0\n", + "Scores: [0, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 51\n", + "Score: 0.0\n", + "Scores: [0, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 52\n", + "Score: 2.0\n", + "Scores: [1, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 53\n", + "Score: 5.0\n", + "Scores: [5, 5, 5]\n", + "========================================================================================================\n", + "Document ID: 54\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 55\n", + "Score: 0.0\n", + "Scores: [0, 0, 4]\n", + "========================================================================================================\n", + "Document ID: 56\n", + "Score: 2.6666666666666665\n", + "Scores: [4, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 57\n", + "Score: 1.0\n", + "Scores: [2, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 58\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 59\n", + "Score: 1.0\n", + "Scores: [1, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 60\n", + "Score: 3.0\n", + "Scores: [3, 0, 3]\n", + "========================================================================================================\n", + "Document ID: 61\n", + "Score: 3.0\n", + "Scores: [4, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 62\n", + "Score: 1.0\n", + "Scores: [0, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 63\n", + "Score: 1.6666666666666667\n", + "Scores: [0, 3, 2]\n", + "========================================================================================================\n", + "Document ID: 64\n", + "Score: 3.0\n", + "Scores: [3, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 65\n", + "Score: 3.0\n", + "Scores: [3, 3, 1]\n", + "========================================================================================================\n", + "Document ID: 66\n", + "Score: 1.6666666666666667\n", + "Scores: [3, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 67\n", + "Score: 2.0\n", + "Scores: [3, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 68\n", + "Score: 3.0\n", + "Scores: [3, 3, 2]\n", + "========================================================================================================\n", + "Document ID: 69\n", + "Score: 3.0\n", + "Scores: [3, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 70\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 71\n", + "Score: 1.0\n", + "Scores: [1, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 72\n", + "Score: 1.0\n", + "Scores: [2, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 73\n", + "Score: 3.0\n", + "Scores: [2, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 74\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 75\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 76\n", + "Score: 1.0\n", + "Scores: [1, 0, 2]\n", + "========================================================================================================\n", + "Document ID: 77\n", + "Score: 1.0\n", + "Scores: [1, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 78\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 79\n", + "Score: 3.0\n", + "Scores: [3, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 80\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 81\n", + "Score: 3.0\n", + "Scores: [3, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 82\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 83\n", + "Score: 1.3333333333333333\n", + "Scores: [3, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 84\n", + "Score: 3.0\n", + "Scores: [4, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 85\n", + "Score: 1.0\n", + "Scores: [1, 0, 2]\n", + "========================================================================================================\n", + "Document ID: 86\n", + "Score: 3.0\n", + "Scores: [3, 3, 5]\n", + "========================================================================================================\n", + "Document ID: 87\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 88\n", + "Score: 1.0\n", + "Scores: [2, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 89\n", + "Score: 1.3333333333333333\n", + "Scores: [0, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 90\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 91\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 92\n", + "Score: 1.0\n", + "Scores: [2, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 93\n", + "Score: 3.0\n", + "Scores: [3, 3, 5]\n", + "========================================================================================================\n", + "Document ID: 94\n", + "Score: 2.0\n", + "Scores: [2, 2, 1]\n", + "========================================================================================================\n", + "Document ID: 95\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 96\n", + "Score: 1.3333333333333333\n", + "Scores: [0, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 97\n", + "Score: 4.0\n", + "Scores: [4, 4, 4]\n", + "========================================================================================================\n", + "Document ID: 98\n", + "Score: 1.0\n", + "Scores: [1, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 99\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 100\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 101\n", + "Score: 3.3333333333333335\n", + "Scores: [3, 2, 5]\n", + "========================================================================================================\n", + "Document ID: 102\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 103\n", + "Score: 1.3333333333333333\n", + "Scores: [0, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 104\n", + "Score: 1.6666666666666667\n", + "Scores: [3, 0, 2]\n", + "========================================================================================================\n", + "Document ID: 105\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 106\n", + "Score: 2.0\n", + "Scores: [2, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 107\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 108\n", + "Score: 2.0\n", + "Scores: [2, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 109\n", + "Score: 1.6666666666666667\n", + "Scores: [3, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 110\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 111\n", + "Score: 2.0\n", + "Scores: [3, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 112\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 113\n", + "Score: 2.0\n", + "Scores: [2, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 114\n", + "Score: 1.0\n", + "Scores: [1, 1, 4]\n", + "========================================================================================================\n", + "Document ID: 115\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 116\n", + "Score: 3.0\n", + "Scores: [3, 2, 4]\n", + "========================================================================================================\n", + "Document ID: 117\n", + "Score: 2.3333333333333335\n", + "Scores: [1, 2, 4]\n", + "========================================================================================================\n", + "Document ID: 118\n", + "Score: 3.0\n", + "Scores: [3, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 119\n", + "Score: 2.3333333333333335\n", + "Scores: [4, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 120\n", + "Score: 3.0\n", + "Scores: [4, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 121\n", + "Score: 1.0\n", + "Scores: [1, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 122\n", + "Score: 3.0\n", + "Scores: [3, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 123\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 124\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 125\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 126\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 127\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 128\n", + "Score: 1.3333333333333333\n", + "Scores: [1, 3, 0]\n", + "========================================================================================================\n", + "Document ID: 129\n", + "Score: 0.0\n", + "Scores: [0, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 130\n", + "Score: 1.0\n", + "Scores: [2, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 131\n", + "Score: 1.0\n", + "Scores: [1, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 132\n", + "Score: 1.0\n", + "Scores: [0, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 133\n", + "Score: 3.0\n", + "Scores: [4, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 134\n", + "Score: 1.0\n", + "Scores: [1, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 135\n", + "Score: 4.0\n", + "Scores: [4, 4, 4]\n", + "========================================================================================================\n", + "Document ID: 136\n", + "Score: 3.0\n", + "Scores: [3, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 137\n", + "Score: 2.0\n", + "Scores: [2, 0, 2]\n", + "========================================================================================================\n", + "Document ID: 138\n", + "Score: 2.0\n", + "Scores: [2, 2, 1]\n", + "========================================================================================================\n", + "Document ID: 139\n", + "Score: 1.6666666666666667\n", + "Scores: [2, 0, 3]\n", + "========================================================================================================\n", + "Document ID: 140\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 141\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 142\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 143\n", + "Score: 2.0\n", + "Scores: [2, 4, 0]\n", + "========================================================================================================\n", + "Document ID: 144\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 145\n", + "Score: 3.0\n", + "Scores: [5, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 146\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 147\n", + "Score: 3.0\n", + "Scores: [5, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 148\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 149\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 150\n", + "Score: 1.0\n", + "Scores: [0, 2, 1]\n", + "========================================================================================================\n", + "Document ID: 151\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 152\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 153\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 154\n", + "Score: 1.0\n", + "Scores: [1, 0, 2]\n", + "========================================================================================================\n", + "Document ID: 155\n", + "Score: 0.0\n", + "Scores: [2, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 156\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 157\n", + "Score: 2.0\n", + "Scores: [3, 2, 1]\n", + "========================================================================================================\n", + "Document ID: 158\n", + "Score: 0.0\n", + "Scores: [2, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 159\n", + "Score: 3.0\n", + "Scores: [2, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 160\n", + "Score: 0.0\n", + "Scores: [2, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 161\n", + "Score: 1.0\n", + "Scores: [0, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 162\n", + "Score: 1.0\n", + "Scores: [0, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 163\n", + "Score: 1.6666666666666667\n", + "Scores: [3, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 164\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 165\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 166\n", + "Score: 1.0\n", + "Scores: [1, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 167\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 168\n", + "Score: 3.0\n", + "Scores: [1, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 169\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 170\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 171\n", + "Score: 2.0\n", + "Scores: [2, 0, 2]\n", + "========================================================================================================\n", + "Document ID: 172\n", + "Score: 0.0\n", + "Scores: [0, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 173\n", + "Score: 3.0\n", + "Scores: [3, 1, 5]\n", + "========================================================================================================\n", + "Document ID: 174\n", + "Score: 3.0\n", + "Scores: [3, 3, 2]\n", + "========================================================================================================\n", + "Document ID: 175\n", + "Score: 1.0\n", + "Scores: [1, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 176\n", + "Score: 2.0\n", + "Scores: [1, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 177\n", + "Score: 1.0\n", + "Scores: [2, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 178\n", + "Score: 2.0\n", + "Scores: [2, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 179\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 180\n", + "Score: 1.3333333333333333\n", + "Scores: [1, 0, 3]\n", + "========================================================================================================\n", + "Document ID: 181\n", + "Score: 2.3333333333333335\n", + "Scores: [2, 1, 4]\n", + "========================================================================================================\n", + "Document ID: 182\n", + "Score: 0.0\n", + "Scores: [0, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 183\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 184\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 185\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 186\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 187\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 188\n", + "Score: 1.0\n", + "Scores: [1, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 189\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 190\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 191\n", + "Score: 2.0\n", + "Scores: [2, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 192\n", + "Score: 2.0\n", + "Scores: [4, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 193\n", + "Score: 1.0\n", + "Scores: [1, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 194\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 195\n", + "Score: 0.0\n", + "Scores: [0, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 196\n", + "Score: 1.0\n", + "Scores: [1, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 197\n", + "Score: 3.0\n", + "Scores: [2, 4, 3]\n", + "========================================================================================================\n", + "Document ID: 198\n", + "Score: 2.3333333333333335\n", + "Scores: [4, 2, 1]\n", + "========================================================================================================\n", + "Document ID: 199\n", + "Score: 2.0\n", + "Scores: [1, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 200\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 201\n", + "Score: 2.0\n", + "Scores: [3, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 202\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 203\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 204\n", + "Score: 1.0\n", + "Scores: [3, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 205\n", + "Score: 1.3333333333333333\n", + "Scores: [1, 0, 3]\n", + "========================================================================================================\n", + "Document ID: 206\n", + "Score: 0.0\n", + "Scores: [0, 0, 3]\n", + "========================================================================================================\n", + "Document ID: 207\n", + "Score: 3.0\n", + "Scores: [3, 3, 1]\n", + "========================================================================================================\n", + "Document ID: 208\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 209\n", + "Score: 2.0\n", + "Scores: [3, 2, 1]\n", + "========================================================================================================\n", + "Document ID: 210\n", + "Score: 1.0\n", + "Scores: [1, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 211\n", + "Score: 3.0\n", + "Scores: [3, 4, 3]\n", + "========================================================================================================\n", + "Document ID: 212\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 213\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 214\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 215\n", + "Score: 2.0\n", + "Scores: [2, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 216\n", + "Score: 3.0\n", + "Scores: [3, 3, 2]\n", + "========================================================================================================\n", + "Document ID: 217\n", + "Score: 1.3333333333333333\n", + "Scores: [0, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 218\n", + "Score: 1.0\n", + "Scores: [2, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 219\n", + "Score: 2.0\n", + "Scores: [1, 3, 2]\n", + "========================================================================================================\n", + "Document ID: 220\n", + "Score: 2.0\n", + "Scores: [2, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 221\n", + "Score: 3.0\n", + "Scores: [3, 3, 1]\n", + "========================================================================================================\n", + "Document ID: 222\n", + "Score: 2.0\n", + "Scores: [4, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 223\n", + "Score: 2.3333333333333335\n", + "Scores: [1, 2, 4]\n", + "========================================================================================================\n", + "Document ID: 224\n", + "Score: 1.6666666666666667\n", + "Scores: [4, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 225\n", + "Score: 2.0\n", + "Scores: [3, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 226\n", + "Score: 3.0\n", + "Scores: [3, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 227\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 228\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 229\n", + "Score: 2.0\n", + "Scores: [4, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 230\n", + "Score: 2.0\n", + "Scores: [2, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 231\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 232\n", + "Score: 1.0\n", + "Scores: [1, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 233\n", + "Score: 3.0\n", + "Scores: [2, 3, 4]\n", + "========================================================================================================\n", + "Document ID: 234\n", + "Score: 2.0\n", + "Scores: [2, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 235\n", + "Score: 2.0\n", + "Scores: [2, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 236\n", + "Score: 4.0\n", + "Scores: [4, 3, 4]\n", + "========================================================================================================\n", + "Document ID: 237\n", + "Score: 3.0\n", + "Scores: [3, 4, 3]\n", + "========================================================================================================\n", + "Document ID: 238\n", + "Score: 2.0\n", + "Scores: [2, 2, 1]\n", + "========================================================================================================\n", + "Document ID: 239\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 240\n", + "Score: 0.0\n", + "Scores: [3, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 241\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 242\n", + "Score: 1.0\n", + "Scores: [1, 2, 1]\n", + "========================================================================================================\n", + "Document ID: 243\n", + "Score: 1.3333333333333333\n", + "Scores: [0, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 244\n", + "Score: 1.0\n", + "Scores: [1, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 245\n", + "Score: 2.6666666666666665\n", + "Scores: [4, 3, 1]\n", + "========================================================================================================\n", + "Document ID: 246\n", + "Score: 0.0\n", + "Scores: [0, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 247\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 248\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 249\n", + "Score: 1.0\n", + "Scores: [1, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 250\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 251\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 252\n", + "Score: 0.0\n", + "Scores: [0, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 253\n", + "Score: 1.0\n", + "Scores: [1, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 254\n", + "Score: 3.0\n", + "Scores: [2, 4, 3]\n", + "========================================================================================================\n", + "Document ID: 255\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 256\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 257\n", + "Score: 3.0\n", + "Scores: [3, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 258\n", + "Score: 2.0\n", + "Scores: [2, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 259\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 260\n", + "Score: 2.0\n", + "Scores: [2, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 261\n", + "Score: 2.6666666666666665\n", + "Scores: [3, 4, 1]\n", + "========================================================================================================\n", + "Document ID: 262\n", + "Score: 1.0\n", + "Scores: [1, 3, 1]\n", + "========================================================================================================\n", + "Document ID: 263\n", + "Score: 3.0\n", + "Scores: [3, 3, 4]\n", + "========================================================================================================\n", + "Document ID: 264\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 265\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 266\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 267\n", + "Score: 3.0\n", + "Scores: [3, 3, 4]\n", + "========================================================================================================\n", + "Document ID: 268\n", + "Score: 2.0\n", + "Scores: [3, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 269\n", + "Score: 3.0\n", + "Scores: [3, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 270\n", + "Score: 3.0\n", + "Scores: [3, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 271\n", + "Score: 1.0\n", + "Scores: [1, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 272\n", + "Score: 3.0\n", + "Scores: [1, 3, 5]\n", + "========================================================================================================\n", + "Document ID: 273\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 274\n", + "Score: 3.3333333333333335\n", + "Scores: [3, 2, 5]\n", + "========================================================================================================\n", + "Document ID: 275\n", + "Score: 2.3333333333333335\n", + "Scores: [4, 2, 1]\n", + "========================================================================================================\n", + "Document ID: 276\n", + "Score: 1.0\n", + "Scores: [1, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 277\n", + "Score: 2.0\n", + "Scores: [3, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 278\n", + "Score: 2.0\n", + "Scores: [1, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 279\n", + "Score: 2.0\n", + "Scores: [2, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 280\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 281\n", + "Score: 1.0\n", + "Scores: [1, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 282\n", + "Score: 3.0\n", + "Scores: [3, 3, 1]\n", + "========================================================================================================\n", + "Document ID: 283\n", + "Score: 0.0\n", + "Scores: [0, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 284\n", + "Score: 0.0\n", + "Scores: [0, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 285\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 286\n", + "Score: 3.0\n", + "Scores: [3, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 287\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 288\n", + "Score: 0.0\n", + "Scores: [0, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 289\n", + "Score: 2.0\n", + "Scores: [1, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 290\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 291\n", + "Score: 0.0\n", + "Scores: [0, 0, 2]\n", + "========================================================================================================\n", + "Document ID: 292\n", + "Score: 1.3333333333333333\n", + "Scores: [0, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 293\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 294\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 295\n", + "Score: 1.0\n", + "Scores: [0, 2, 1]\n", + "========================================================================================================\n", + "Document ID: 296\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 297\n", + "Score: 3.0\n", + "Scores: [3, 4, 3]\n", + "========================================================================================================\n", + "Document ID: 298\n", + "Score: 3.0\n", + "Scores: [3, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 299\n", + "Score: 1.0\n", + "Scores: [1, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 300\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 301\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 302\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 303\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 304\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 305\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 306\n", + "Score: 3.3333333333333335\n", + "Scores: [1, 4, 5]\n", + "========================================================================================================\n", + "Document ID: 307\n", + "Score: 2.0\n", + "Scores: [2, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 308\n", + "Score: 2.0\n", + "Scores: [2, 3, 1]\n", + "========================================================================================================\n", + "Document ID: 309\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 310\n", + "Score: 1.0\n", + "Scores: [1, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 311\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 312\n", + "Score: 2.3333333333333335\n", + "Scores: [2, 1, 4]\n", + "========================================================================================================\n", + "Document ID: 313\n", + "Score: 2.0\n", + "Scores: [2, 5, 2]\n", + "========================================================================================================\n", + "Document ID: 314\n", + "Score: 4.0\n", + "Scores: [4, 4, 3]\n", + "========================================================================================================\n", + "Document ID: 315\n", + "Score: 4.0\n", + "Scores: [4, 4, 1]\n", + "========================================================================================================\n", + "Document ID: 316\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 317\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 318\n", + "Score: 1.0\n", + "Scores: [1, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 319\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 320\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 321\n", + "Score: 2.0\n", + "Scores: [0, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 322\n", + "Score: 1.0\n", + "Scores: [0, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 323\n", + "Score: 0.0\n", + "Scores: [0, 3, 0]\n", + "========================================================================================================\n", + "Document ID: 324\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 325\n", + "Score: 2.0\n", + "Scores: [2, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 326\n", + "Score: 1.0\n", + "Scores: [1, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 327\n", + "Score: 2.0\n", + "Scores: [3, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 328\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 329\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 330\n", + "Score: 1.0\n", + "Scores: [1, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 331\n", + "Score: 3.0\n", + "Scores: [4, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 332\n", + "Score: 3.0\n", + "Scores: [4, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 333\n", + "Score: 1.0\n", + "Scores: [2, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 334\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 335\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 336\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 337\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 338\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 339\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 340\n", + "Score: 2.0\n", + "Scores: [2, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 341\n", + "Score: 2.6666666666666665\n", + "Scores: [4, 3, 1]\n", + "========================================================================================================\n", + "Document ID: 342\n", + "Score: 1.0\n", + "Scores: [3, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 343\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 344\n", + "Score: 1.0\n", + "Scores: [1, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 345\n", + "Score: 5.0\n", + "Scores: [5, 5, 4]\n", + "========================================================================================================\n", + "Document ID: 346\n", + "Score: 2.0\n", + "Scores: [2, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 347\n", + "Score: 1.0\n", + "Scores: [2, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 348\n", + "Score: 0.0\n", + "Scores: [2, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 349\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 350\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 351\n", + "Score: 2.0\n", + "Scores: [4, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 352\n", + "Score: 4.0\n", + "Scores: [4, 1, 4]\n", + "========================================================================================================\n", + "Document ID: 353\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 354\n", + "Score: 0.0\n", + "Scores: [2, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 355\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 356\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 357\n", + "Score: 1.0\n", + "Scores: [0, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 358\n", + "Score: 3.0\n", + "Scores: [3, 3, 4]\n", + "========================================================================================================\n", + "Document ID: 359\n", + "Score: 1.6666666666666667\n", + "Scores: [2, 3, 0]\n", + "========================================================================================================\n", + "Document ID: 360\n", + "Score: 2.0\n", + "Scores: [2, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 361\n", + "Score: 3.3333333333333335\n", + "Scores: [3, 2, 5]\n", + "========================================================================================================\n", + "Document ID: 362\n", + "Score: 3.0\n", + "Scores: [3, 3, 5]\n", + "========================================================================================================\n", + "Document ID: 363\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 364\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 365\n", + "Score: 3.0\n", + "Scores: [2, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 366\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 367\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 368\n", + "Score: 1.0\n", + "Scores: [2, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 369\n", + "Score: 4.0\n", + "Scores: [4, 3, 4]\n", + "========================================================================================================\n", + "Document ID: 370\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 371\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 372\n", + "Score: 2.3333333333333335\n", + "Scores: [4, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 373\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 374\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 375\n", + "Score: 3.0\n", + "Scores: [3, 2, 4]\n", + "========================================================================================================\n", + "Document ID: 376\n", + "Score: 2.0\n", + "Scores: [2, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 377\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 378\n", + "Score: 2.0\n", + "Scores: [1, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 379\n", + "Score: 4.0\n", + "Scores: [4, 2, 4]\n", + "========================================================================================================\n", + "Document ID: 380\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 381\n", + "Score: 2.0\n", + "Scores: [3, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 382\n", + "Score: 2.0\n", + "Scores: [2, 0, 2]\n", + "========================================================================================================\n", + "Document ID: 383\n", + "Score: 1.0\n", + "Scores: [1, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 384\n", + "Score: 2.0\n", + "Scores: [2, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 385\n", + "Score: 1.0\n", + "Scores: [1, 2, 1]\n", + "========================================================================================================\n", + "Document ID: 386\n", + "Score: 1.3333333333333333\n", + "Scores: [3, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 387\n", + "Score: 1.0\n", + "Scores: [1, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 388\n", + "Score: 4.0\n", + "Scores: [4, 4, 4]\n", + "========================================================================================================\n", + "Document ID: 389\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 390\n", + "Score: 3.0\n", + "Scores: [3, 3, 4]\n", + "========================================================================================================\n", + "Document ID: 391\n", + "Score: 2.0\n", + "Scores: [2, 2, 1]\n", + "========================================================================================================\n", + "Document ID: 392\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 393\n", + "Score: 3.0\n", + "Scores: [4, 3, 2]\n", + "========================================================================================================\n", + "Document ID: 394\n", + "Score: 0.0\n", + "Scores: [0, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 395\n", + "Score: 2.0\n", + "Scores: [3, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 396\n", + "Score: 3.0\n", + "Scores: [3, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 397\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 398\n", + "Score: 1.0\n", + "Scores: [3, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 399\n", + "Score: 1.0\n", + "Scores: [2, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 400\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 401\n", + "Score: 0.0\n", + "Scores: [0, 0, 2]\n", + "========================================================================================================\n", + "Document ID: 402\n", + "Score: 1.0\n", + "Scores: [3, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 403\n", + "Score: 2.0\n", + "Scores: [2, 0, 2]\n", + "========================================================================================================\n", + "Document ID: 404\n", + "Score: 1.0\n", + "Scores: [1, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 405\n", + "Score: 0.0\n", + "Scores: [3, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 406\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 407\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 408\n", + "Score: 1.0\n", + "Scores: [1, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 409\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 410\n", + "Score: 1.3333333333333333\n", + "Scores: [3, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 411\n", + "Score: 2.0\n", + "Scores: [2, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 412\n", + "Score: 1.6666666666666667\n", + "Scores: [0, 3, 2]\n", + "========================================================================================================\n", + "Document ID: 413\n", + "Score: 3.0\n", + "Scores: [3, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 414\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 415\n", + "Score: 2.0\n", + "Scores: [2, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 416\n", + "Score: 3.0\n", + "Scores: [3, 3, 0]\n", + "========================================================================================================\n", + "Document ID: 417\n", + "Score: 1.0\n", + "Scores: [1, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 418\n", + "Score: 4.0\n", + "Scores: [4, 3, 4]\n", + "========================================================================================================\n", + "Document ID: 419\n", + "Score: 1.6666666666666667\n", + "Scores: [0, 3, 2]\n", + "========================================================================================================\n", + "Document ID: 420\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 421\n", + "Score: 0.0\n", + "Scores: [0, 0, 2]\n", + "========================================================================================================\n", + "Document ID: 422\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 423\n", + "Score: 2.0\n", + "Scores: [3, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 424\n", + "Score: 2.0\n", + "Scores: [2, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 425\n", + "Score: 2.0\n", + "Scores: [3, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 426\n", + "Score: 2.0\n", + "Scores: [1, 3, 2]\n", + "========================================================================================================\n", + "Document ID: 427\n", + "Score: 1.0\n", + "Scores: [0, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 428\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 429\n", + "Score: 3.0\n", + "Scores: [3, 3, 4]\n", + "========================================================================================================\n", + "Document ID: 430\n", + "Score: 3.0\n", + "Scores: [3, 5, 3]\n", + "========================================================================================================\n", + "Document ID: 431\n", + "Score: 1.0\n", + "Scores: [0, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 432\n", + "Score: 2.3333333333333335\n", + "Scores: [1, 2, 4]\n", + "========================================================================================================\n", + "Document ID: 433\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 434\n", + "Score: 0.0\n", + "Scores: [3, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 435\n", + "Score: 2.0\n", + "Scores: [3, 2, 2]\n", + "========================================================================================================\n", + "Document ID: 436\n", + "Score: 3.0\n", + "Scores: [3, 0, 3]\n", + "========================================================================================================\n", + "Document ID: 437\n", + "Score: 3.0\n", + "Scores: [4, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 438\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 439\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 440\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 441\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 442\n", + "Score: 1.0\n", + "Scores: [1, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 443\n", + "Score: 0.0\n", + "Scores: [3, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 444\n", + "Score: 2.3333333333333335\n", + "Scores: [3, 0, 4]\n", + "========================================================================================================\n", + "Document ID: 445\n", + "Score: 2.0\n", + "Scores: [2, 3, 1]\n", + "========================================================================================================\n", + "Document ID: 446\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 447\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 448\n", + "Score: 3.0\n", + "Scores: [3, 3, 2]\n", + "========================================================================================================\n", + "Document ID: 449\n", + "Score: 0.0\n", + "Scores: [0, 3, 0]\n", + "========================================================================================================\n", + "Document ID: 450\n", + "Score: 2.0\n", + "Scores: [2, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 451\n", + "Score: 1.0\n", + "Scores: [1, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 452\n", + "Score: 1.0\n", + "Scores: [1, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 453\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 454\n", + "Score: 3.0\n", + "Scores: [3, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 455\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 456\n", + "Score: 1.0\n", + "Scores: [1, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 457\n", + "Score: 2.6666666666666665\n", + "Scores: [4, 3, 1]\n", + "========================================================================================================\n", + "Document ID: 458\n", + "Score: 2.0\n", + "Scores: [2, 1, 3]\n", + "========================================================================================================\n", + "Document ID: 459\n", + "Score: 3.0\n", + "Scores: [3, 2, 4]\n", + "========================================================================================================\n", + "Document ID: 460\n", + "Score: 0.0\n", + "Scores: [3, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 461\n", + "Score: 3.0\n", + "Scores: [3, 3, 0]\n", + "========================================================================================================\n", + "Document ID: 462\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 463\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 464\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 465\n", + "Score: 3.0\n", + "Scores: [3, 4, 3]\n", + "========================================================================================================\n", + "Document ID: 466\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 467\n", + "Score: 3.0\n", + "Scores: [3, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 468\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 469\n", + "Score: 1.0\n", + "Scores: [1, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 470\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 471\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 472\n", + "Score: 1.0\n", + "Scores: [0, 2, 1]\n", + "========================================================================================================\n", + "Document ID: 473\n", + "Score: 1.0\n", + "Scores: [2, 0, 1]\n", + "========================================================================================================\n", + "Document ID: 474\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 475\n", + "Score: 2.0\n", + "Scores: [2, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 476\n", + "Score: 4.0\n", + "Scores: [4, 2, 4]\n", + "========================================================================================================\n", + "Document ID: 477\n", + "Score: 1.0\n", + "Scores: [1, 1, 4]\n", + "========================================================================================================\n", + "Document ID: 478\n", + "Score: 2.3333333333333335\n", + "Scores: [1, 4, 2]\n", + "========================================================================================================\n", + "Document ID: 479\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 480\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 481\n", + "Score: 3.0\n", + "Scores: [3, 3, 1]\n", + "========================================================================================================\n", + "Document ID: 482\n", + "Score: 2.0\n", + "Scores: [2, 2, 3]\n", + "========================================================================================================\n", + "Document ID: 483\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 484\n", + "Score: 2.0\n", + "Scores: [2, 0, 2]\n", + "========================================================================================================\n", + "Document ID: 485\n", + "Score: 3.0\n", + "Scores: [2, 3, 4]\n", + "========================================================================================================\n", + "Document ID: 486\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 487\n", + "Score: 1.0\n", + "Scores: [1, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 488\n", + "Score: 3.0\n", + "Scores: [4, 3, 2]\n", + "========================================================================================================\n", + "Document ID: 489\n", + "Score: 1.0\n", + "Scores: [2, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 490\n", + "Score: 3.0\n", + "Scores: [3, 4, 2]\n", + "========================================================================================================\n", + "Document ID: 491\n", + "Score: 1.0\n", + "Scores: [2, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 492\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 493\n", + "Score: 1.0\n", + "Scores: [2, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 494\n", + "Score: 1.0\n", + "Scores: [0, 1, 2]\n", + "========================================================================================================\n", + "Document ID: 495\n", + "Score: 0.0\n", + "Scores: [0, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 496\n", + "Score: 3.0\n", + "Scores: [1, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 497\n", + "Score: 1.0\n", + "Scores: [1, 1, 0]\n", + "========================================================================================================\n", + "Document ID: 498\n", + "Score: 2.0\n", + "Scores: [2, 2, 0]\n", + "========================================================================================================\n", + "Document ID: 499\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 500\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 501\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 502\n", + "Score: 2.3333333333333335\n", + "Scores: [4, 3, 0]\n", + "========================================================================================================\n", + "Document ID: 503\n", + "Score: 0.0\n", + "Scores: [0, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 504\n", + "Score: 1.0\n", + "Scores: [1, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 505\n", + "Score: 3.0\n", + "Scores: [1, 3, 3]\n", + "========================================================================================================\n", + "Document ID: 506\n", + "Score: 0.0\n", + "Scores: [1, 0, 0]\n", + "========================================================================================================\n", + "Document ID: 507\n", + "Score: 1.0\n", + "Scores: [1, 1, 1]\n", + "========================================================================================================\n", + "Document ID: 508\n", + "Score: 3.0\n", + "Scores: [3, 3, 1]\n", + "========================================================================================================\n", + "Document ID: 509\n", + "Score: 3.0\n", + "Scores: [2, 3, 4]\n", + "========================================================================================================\n", + "Document ID: 510\n", + "Score: 2.0\n", + "Scores: [2, 1, 2]\n", + "========================================================================================================\n", + "Number of documents with non-integer scores: 46\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from ml_filter.analysis.utils import most_frequent_average\n", + "\n", + "non_int_counter = 0\n", + "for d1, d2, d3 in zip(en_511_list, de_511_list, en_non_agg_list):\n", + " assert d1[\"document_id\"] == d2[\"document_id\"]\n", + " assert d1[\"score\"] == d2[\"score\"]\n", + " d3_scores = [int(x) for x in d3[\"scores\"]]\n", + " assert most_frequent_average(d3_scores) == d1[\"score\"]\n", + " if not isinstance(d1[\"score\"], int):\n", + " non_int_counter += not d2[\"score\"].is_integer()\n", + " print(f\"Document ID: {d1['document_id']}\")\n", + " print(f\"Score: {d1['score']}\")\n", + " print(f\"Scores: {d3_scores}\")\n", + " print(\"========================================================================================================\")\n", + "print (f\"Number of documents with non-integer scores: {non_int_counter}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "00d16f23", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "c153a2c2", + "metadata": {}, + "source": [ + "## LLM annotations without integer scores\n", + "\n", + "these are jsut some consistency checks!" + ] + }, + { + "cell_type": "markdown", + "id": "d69dd482", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "6ebedb78", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/bg/annotations__educational_content__bg__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/nn/annotations__educational_content__nn__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/sq/annotations__educational_content__sq__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/nb/annotations__educational_content__nb__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/et/annotations__educational_content__et__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/fi/annotations__educational_content__fi__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/sh/annotations__educational_content__sh__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/hy/annotations__educational_content__hy__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/hr/annotations__educational_content__hr__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/el/annotations__educational_content__el__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/mt/annotations__educational_content__mt__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/eu/annotations__educational_content__eu__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/da/annotations__educational_content__da__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/mk/annotations__educational_content__mk__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/sv/annotations__educational_content__sv__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/pl/annotations__educational_content__pl__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/cs/annotations__educational_content__cs__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/es/annotations__educational_content__es__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/tr/annotations__educational_content__tr__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/fr/annotations__educational_content__fr__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/nl/annotations__educational_content__nl__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/de/annotations__educational_content__de__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/it/annotations__educational_content__it__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/ro/annotations__educational_content__ro__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/lt/annotations__educational_content__lt__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/pt/annotations__educational_content__pt__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/ga/annotations__educational_content__ga__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/sr/annotations__educational_content__sr__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/gl/annotations__educational_content__gl__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/sl/annotations__educational_content__sl__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/lv/annotations__educational_content__lv__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/hu/annotations__educational_content__hu__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/uk/annotations__educational_content__uk__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/ca/annotations__educational_content__ca__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/sk/annotations__educational_content__sk__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/is/annotations__educational_content__is__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.1-8B-Instruct/en/annotations__educational_content__en__Llama-3.1-8B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/bg/annotations__educational_content__bg__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/nn/annotations__educational_content__nn__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/sq/annotations__educational_content__sq__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/nb/annotations__educational_content__nb__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/et/annotations__educational_content__et__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/fi/annotations__educational_content__fi__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/sh/annotations__educational_content__sh__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/hy/annotations__educational_content__hy__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/hr/annotations__educational_content__hr__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/el/annotations__educational_content__el__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/mt/annotations__educational_content__mt__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/eu/annotations__educational_content__eu__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/da/annotations__educational_content__da__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/mk/annotations__educational_content__mk__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/sv/annotations__educational_content__sv__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/pl/annotations__educational_content__pl__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/cs/annotations__educational_content__cs__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/es/annotations__educational_content__es__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/tr/annotations__educational_content__tr__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/fr/annotations__educational_content__fr__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/nl/annotations__educational_content__nl__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/de/annotations__educational_content__de__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/it/annotations__educational_content__it__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/ro/annotations__educational_content__ro__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/lt/annotations__educational_content__lt__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/pt/annotations__educational_content__pt__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/ga/annotations__educational_content__ga__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/sr/annotations__educational_content__sr__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/gl/annotations__educational_content__gl__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/sl/annotations__educational_content__sl__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/lv/annotations__educational_content__lv__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/hu/annotations__educational_content__hu__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/uk/annotations__educational_content__uk__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/ca/annotations__educational_content__ca__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/sk/annotations__educational_content__sk__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/is/annotations__educational_content__is__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-72B-Instruct/en/annotations__educational_content__en__Qwen2.5-72B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/bg/annotations__educational_content__bg__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/nn/annotations__educational_content__nn__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/sq/annotations__educational_content__sq__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/nb/annotations__educational_content__nb__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/et/annotations__educational_content__et__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/fi/annotations__educational_content__fi__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/sh/annotations__educational_content__sh__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/hy/annotations__educational_content__hy__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/hr/annotations__educational_content__hr__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/el/annotations__educational_content__el__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/mt/annotations__educational_content__mt__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/eu/annotations__educational_content__eu__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/da/annotations__educational_content__da__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/mk/annotations__educational_content__mk__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/sv/annotations__educational_content__sv__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/pl/annotations__educational_content__pl__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/cs/annotations__educational_content__cs__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/es/annotations__educational_content__es__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/tr/annotations__educational_content__tr__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/fr/annotations__educational_content__fr__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/nl/annotations__educational_content__nl__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/de/annotations__educational_content__de__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/it/annotations__educational_content__it__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/ro/annotations__educational_content__ro__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/lt/annotations__educational_content__lt__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/pt/annotations__educational_content__pt__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/ga/annotations__educational_content__ga__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/sr/annotations__educational_content__sr__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/gl/annotations__educational_content__gl__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/sl/annotations__educational_content__sl__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/lv/annotations__educational_content__lv__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/hu/annotations__educational_content__hu__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/uk/annotations__educational_content__uk__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/ca/annotations__educational_content__ca__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/sk/annotations__educational_content__sk__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/is/annotations__educational_content__is__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-3-27b-it/en/annotations__educational_content__en__gemma-3-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/bg/annotations__educational_content__bg__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/nn/annotations__educational_content__nn__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/sq/annotations__educational_content__sq__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/nb/annotations__educational_content__nb__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/et/annotations__educational_content__et__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/fi/annotations__educational_content__fi__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/sh/annotations__educational_content__sh__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/hy/annotations__educational_content__hy__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/hr/annotations__educational_content__hr__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/el/annotations__educational_content__el__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/mt/annotations__educational_content__mt__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/eu/annotations__educational_content__eu__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/da/annotations__educational_content__da__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/mk/annotations__educational_content__mk__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/sv/annotations__educational_content__sv__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/pl/annotations__educational_content__pl__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/cs/annotations__educational_content__cs__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/es/annotations__educational_content__es__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/tr/annotations__educational_content__tr__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/fr/annotations__educational_content__fr__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/nl/annotations__educational_content__nl__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/de/annotations__educational_content__de__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/it/annotations__educational_content__it__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/ro/annotations__educational_content__ro__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/lt/annotations__educational_content__lt__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/pt/annotations__educational_content__pt__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/ga/annotations__educational_content__ga__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/sr/annotations__educational_content__sr__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/gl/annotations__educational_content__gl__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/sl/annotations__educational_content__sl__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/lv/annotations__educational_content__lv__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/hu/annotations__educational_content__hu__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/uk/annotations__educational_content__uk__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/ca/annotations__educational_content__ca__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/sk/annotations__educational_content__sk__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/is/annotations__educational_content__is__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-27b-it/en/annotations__educational_content__en__gemma-2-27b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/bg/annotations__educational_content__bg__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/nn/annotations__educational_content__nn__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/sq/annotations__educational_content__sq__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/nb/annotations__educational_content__nb__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/et/annotations__educational_content__et__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/fi/annotations__educational_content__fi__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/sh/annotations__educational_content__sh__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/hy/annotations__educational_content__hy__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/hr/annotations__educational_content__hr__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/el/annotations__educational_content__el__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/mt/annotations__educational_content__mt__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/eu/annotations__educational_content__eu__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/da/annotations__educational_content__da__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/mk/annotations__educational_content__mk__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/sv/annotations__educational_content__sv__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/pl/annotations__educational_content__pl__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/cs/annotations__educational_content__cs__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/es/annotations__educational_content__es__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/tr/annotations__educational_content__tr__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/fr/annotations__educational_content__fr__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/nl/annotations__educational_content__nl__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/de/annotations__educational_content__de__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/it/annotations__educational_content__it__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/ro/annotations__educational_content__ro__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/lt/annotations__educational_content__lt__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/pt/annotations__educational_content__pt__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/ga/annotations__educational_content__ga__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/sr/annotations__educational_content__sr__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/gl/annotations__educational_content__gl__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/sl/annotations__educational_content__sl__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/lv/annotations__educational_content__lv__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/hu/annotations__educational_content__hu__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/uk/annotations__educational_content__uk__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/ca/annotations__educational_content__ca__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/sk/annotations__educational_content__sk__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/is/annotations__educational_content__is__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Mistral-Small-3.1-24B-Instruct-2503/en/annotations__educational_content__en__Mistral-Small-3.1-24B-Instruct-2503.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/bg/annotations__educational_content__bg__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/nn/annotations__educational_content__nn__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/sq/annotations__educational_content__sq__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/nb/annotations__educational_content__nb__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/et/annotations__educational_content__et__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/fi/annotations__educational_content__fi__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/sh/annotations__educational_content__sh__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/hy/annotations__educational_content__hy__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/hr/annotations__educational_content__hr__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/el/annotations__educational_content__el__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/mt/annotations__educational_content__mt__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/eu/annotations__educational_content__eu__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/da/annotations__educational_content__da__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/mk/annotations__educational_content__mk__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/sv/annotations__educational_content__sv__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/pl/annotations__educational_content__pl__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/cs/annotations__educational_content__cs__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/es/annotations__educational_content__es__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/tr/annotations__educational_content__tr__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/fr/annotations__educational_content__fr__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/nl/annotations__educational_content__nl__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/de/annotations__educational_content__de__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/it/annotations__educational_content__it__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/ro/annotations__educational_content__ro__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/lt/annotations__educational_content__lt__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/pt/annotations__educational_content__pt__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/ga/annotations__educational_content__ga__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/sr/annotations__educational_content__sr__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/gl/annotations__educational_content__gl__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/sl/annotations__educational_content__sl__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/lv/annotations__educational_content__lv__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/hu/annotations__educational_content__hu__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/uk/annotations__educational_content__uk__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/ca/annotations__educational_content__ca__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/sk/annotations__educational_content__sk__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/is/annotations__educational_content__is__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-7B-Instruct/en/annotations__educational_content__en__Qwen2.5-7B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/bg/annotations__educational_content__bg__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/nn/annotations__educational_content__nn__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/sq/annotations__educational_content__sq__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/nb/annotations__educational_content__nb__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/et/annotations__educational_content__et__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/fi/annotations__educational_content__fi__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/sh/annotations__educational_content__sh__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/hy/annotations__educational_content__hy__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/hr/annotations__educational_content__hr__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/el/annotations__educational_content__el__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/mt/annotations__educational_content__mt__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/eu/annotations__educational_content__eu__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/da/annotations__educational_content__da__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/mk/annotations__educational_content__mk__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/sv/annotations__educational_content__sv__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/pl/annotations__educational_content__pl__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/cs/annotations__educational_content__cs__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/es/annotations__educational_content__es__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/tr/annotations__educational_content__tr__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/fr/annotations__educational_content__fr__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/nl/annotations__educational_content__nl__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/de/annotations__educational_content__de__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/it/annotations__educational_content__it__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/ro/annotations__educational_content__ro__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/lt/annotations__educational_content__lt__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/pt/annotations__educational_content__pt__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/ga/annotations__educational_content__ga__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/sr/annotations__educational_content__sr__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/gl/annotations__educational_content__gl__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/sl/annotations__educational_content__sl__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/lv/annotations__educational_content__lv__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/hu/annotations__educational_content__hu__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/uk/annotations__educational_content__uk__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/ca/annotations__educational_content__ca__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/sk/annotations__educational_content__sk__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/is/annotations__educational_content__is__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-32B-Instruct/en/annotations__educational_content__en__Qwen2.5-32B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/bg/annotations__educational_content__bg__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/nn/annotations__educational_content__nn__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/sq/annotations__educational_content__sq__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/nb/annotations__educational_content__nb__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/et/annotations__educational_content__et__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/fi/annotations__educational_content__fi__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/sh/annotations__educational_content__sh__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/hy/annotations__educational_content__hy__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/hr/annotations__educational_content__hr__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/el/annotations__educational_content__el__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/mt/annotations__educational_content__mt__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/eu/annotations__educational_content__eu__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/da/annotations__educational_content__da__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/mk/annotations__educational_content__mk__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/sv/annotations__educational_content__sv__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/pl/annotations__educational_content__pl__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/cs/annotations__educational_content__cs__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/es/annotations__educational_content__es__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/tr/annotations__educational_content__tr__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/fr/annotations__educational_content__fr__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/nl/annotations__educational_content__nl__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/de/annotations__educational_content__de__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/it/annotations__educational_content__it__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/ro/annotations__educational_content__ro__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/lt/annotations__educational_content__lt__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/pt/annotations__educational_content__pt__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/ga/annotations__educational_content__ga__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/sr/annotations__educational_content__sr__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/gl/annotations__educational_content__gl__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/sl/annotations__educational_content__sl__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/lv/annotations__educational_content__lv__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/hu/annotations__educational_content__hu__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/uk/annotations__educational_content__uk__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/ca/annotations__educational_content__ca__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/sk/annotations__educational_content__sk__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/is/annotations__educational_content__is__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/phi-4/en/annotations__educational_content__en__phi-4.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/bg/annotations__educational_content__bg__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/nn/annotations__educational_content__nn__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/sq/annotations__educational_content__sq__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/nb/annotations__educational_content__nb__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/et/annotations__educational_content__et__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/fi/annotations__educational_content__fi__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/sh/annotations__educational_content__sh__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/hy/annotations__educational_content__hy__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/hr/annotations__educational_content__hr__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/el/annotations__educational_content__el__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/mt/annotations__educational_content__mt__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/eu/annotations__educational_content__eu__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/da/annotations__educational_content__da__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/mk/annotations__educational_content__mk__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/sv/annotations__educational_content__sv__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/pl/annotations__educational_content__pl__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/cs/annotations__educational_content__cs__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/es/annotations__educational_content__es__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/tr/annotations__educational_content__tr__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/fr/annotations__educational_content__fr__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/nl/annotations__educational_content__nl__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/de/annotations__educational_content__de__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/it/annotations__educational_content__it__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/ro/annotations__educational_content__ro__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/lt/annotations__educational_content__lt__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/pt/annotations__educational_content__pt__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/ga/annotations__educational_content__ga__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/sr/annotations__educational_content__sr__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/gl/annotations__educational_content__gl__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/sl/annotations__educational_content__sl__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/lv/annotations__educational_content__lv__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/hu/annotations__educational_content__hu__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/uk/annotations__educational_content__uk__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/ca/annotations__educational_content__ca__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/sk/annotations__educational_content__sk__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/is/annotations__educational_content__is__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.3-70B-Instruct/en/annotations__educational_content__en__Llama-3.3-70B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/bg/annotations__educational_content__bg__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/nn/annotations__educational_content__nn__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/sq/annotations__educational_content__sq__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/nb/annotations__educational_content__nb__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/et/annotations__educational_content__et__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/fi/annotations__educational_content__fi__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/sh/annotations__educational_content__sh__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/hy/annotations__educational_content__hy__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/hr/annotations__educational_content__hr__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/el/annotations__educational_content__el__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/mt/annotations__educational_content__mt__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/eu/annotations__educational_content__eu__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/da/annotations__educational_content__da__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/mk/annotations__educational_content__mk__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/sv/annotations__educational_content__sv__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/pl/annotations__educational_content__pl__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/cs/annotations__educational_content__cs__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/es/annotations__educational_content__es__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/tr/annotations__educational_content__tr__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/fr/annotations__educational_content__fr__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/nl/annotations__educational_content__nl__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/de/annotations__educational_content__de__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/it/annotations__educational_content__it__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/ro/annotations__educational_content__ro__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/lt/annotations__educational_content__lt__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/pt/annotations__educational_content__pt__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/ga/annotations__educational_content__ga__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/sr/annotations__educational_content__sr__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/gl/annotations__educational_content__gl__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/sl/annotations__educational_content__sl__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/lv/annotations__educational_content__lv__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/hu/annotations__educational_content__hu__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/uk/annotations__educational_content__uk__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/ca/annotations__educational_content__ca__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/sk/annotations__educational_content__sk__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/is/annotations__educational_content__is__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Qwen2.5-14B-Instruct/en/annotations__educational_content__en__Qwen2.5-14B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/bg/annotations__educational_content__bg__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/nn/annotations__educational_content__nn__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/sq/annotations__educational_content__sq__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/nb/annotations__educational_content__nb__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/et/annotations__educational_content__et__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/fi/annotations__educational_content__fi__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/sh/annotations__educational_content__sh__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/hy/annotations__educational_content__hy__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/hr/annotations__educational_content__hr__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/el/annotations__educational_content__el__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/mt/annotations__educational_content__mt__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/eu/annotations__educational_content__eu__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/da/annotations__educational_content__da__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/mk/annotations__educational_content__mk__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/sv/annotations__educational_content__sv__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/pl/annotations__educational_content__pl__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/cs/annotations__educational_content__cs__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/es/annotations__educational_content__es__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/tr/annotations__educational_content__tr__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/fr/annotations__educational_content__fr__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/nl/annotations__educational_content__nl__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/de/annotations__educational_content__de__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/it/annotations__educational_content__it__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/ro/annotations__educational_content__ro__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/lt/annotations__educational_content__lt__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/pt/annotations__educational_content__pt__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/ga/annotations__educational_content__ga__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/sr/annotations__educational_content__sr__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/gl/annotations__educational_content__gl__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/sl/annotations__educational_content__sl__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/lv/annotations__educational_content__lv__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/hu/annotations__educational_content__hu__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/uk/annotations__educational_content__uk__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/ca/annotations__educational_content__ca__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/sk/annotations__educational_content__sk__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/is/annotations__educational_content__is__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/Llama-3.2-3B-Instruct/en/annotations__educational_content__en__Llama-3.2-3B-Instruct.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/bg/annotations__educational_content__bg__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/nn/annotations__educational_content__nn__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/sq/annotations__educational_content__sq__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/nb/annotations__educational_content__nb__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/et/annotations__educational_content__et__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/fi/annotations__educational_content__fi__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/sh/annotations__educational_content__sh__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/hy/annotations__educational_content__hy__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/hr/annotations__educational_content__hr__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/el/annotations__educational_content__el__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/mt/annotations__educational_content__mt__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/eu/annotations__educational_content__eu__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/da/annotations__educational_content__da__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/mk/annotations__educational_content__mk__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/sv/annotations__educational_content__sv__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/pl/annotations__educational_content__pl__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/cs/annotations__educational_content__cs__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/es/annotations__educational_content__es__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/tr/annotations__educational_content__tr__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/fr/annotations__educational_content__fr__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/nl/annotations__educational_content__nl__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/de/annotations__educational_content__de__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/it/annotations__educational_content__it__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/ro/annotations__educational_content__ro__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/lt/annotations__educational_content__lt__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/pt/annotations__educational_content__pt__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/ga/annotations__educational_content__ga__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/sr/annotations__educational_content__sr__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/gl/annotations__educational_content__gl__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/sl/annotations__educational_content__sl__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/lv/annotations__educational_content__lv__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/hu/annotations__educational_content__hu__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/uk/annotations__educational_content__uk__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/ca/annotations__educational_content__ca__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/sk/annotations__educational_content__sk__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/is/annotations__educational_content__is__gemma-2-9b-it.jsonl'),\n", + " PosixPath('/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations/gemma-2-9b-it/en/annotations__educational_content__en__gemma-2-9b-it.jsonl')]" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "score_path = Path(\"/raid/s3/opengptx/max_lue/repositories/ml_filter/ml_filter_paper/data/edu_content/predictions/511_test_documents_educational_content_llm_as_a_judge/raw_annotations\")\n", + "score_paths = list(score_path.glob(\"**/*.jsonl\"))\n", + "score_paths" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "1b122cb3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total samples: 226392\n", + "Total non-integer scores: 5059\n", + "Total invalid scores: 10436\n", + "Non-integer ratio: 0.022\n", + "Invalid ratio: 0.046\n" + ] + } + ], + "source": [ + "total_samples = 0\n", + "total_non_int = 0\n", + "total_invalid = 0 \n", + "for path in score_paths:\n", + " with open(path, 'r') as f:\n", + " for line in f:\n", + " json_line = json.loads(line)\n", + " scores = [score for score in json_line[\"scores\"] if score is not None and score.is_integer()]\n", + " if len(scores) == 0: \n", + " total_invalid += 1\n", + " total_samples += 1\n", + " continue\n", + " score = most_frequent_average(scores)\n", + " if not score.is_integer():\n", + " total_non_int += 1\n", + " total_samples += 1\n", + "print(f\"Total samples: {total_samples}\")\n", + "print(f\"Total non-integer scores: {total_non_int}\")\n", + "print(f\"Total invalid scores: {total_invalid}\")\n", + "print(f\"Non-integer ratio: {total_non_int / total_samples:.3f}\")\n", + "print(f\"Invalid ratio: {total_invalid / total_samples:.3f}\")\n" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "a21457a3", + "id": "530cf387", "metadata": {}, "outputs": [], "source": [] diff --git a/src/ml_filter/__init__.py b/src/ml_filter/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/src/ml_filter/__main__.py b/src/ml_filter/__main__.py index 7e8ca271..e2c44228 100644 --- a/src/ml_filter/__main__.py +++ b/src/ml_filter/__main__.py @@ -10,7 +10,10 @@ from ml_filter.analysis.aggregate_scores import aggregate_human_annotations, aggregate_scores from ml_filter.analysis.collect_ir_metrics import collect_ir_metrics -from ml_filter.analysis.evaluate_predicted_annotations import evaluate_predicted_annotations +from ml_filter.analysis.evaluate_predicted_annotations import ( + evaluate_predicted_annotations, + evaluate_prediction_correlation, +) from ml_filter.analysis.plot_score_distributions import plot_differences_in_scores, plot_scores from ml_filter.compare_experiments import compare_experiments from ml_filter.data_processing.deduplication import deduplicate_jsonl @@ -287,6 +290,15 @@ def evaluate_predicted_annotations_cli( ) +@main.command(name="evaluate_prediction_correlation") +@input_directory_option +def evaluate_prediction_correlation_cli( + input_directory: Path, +) -> None: + model_filters = ["gemma-3-27b-it", "Llama-3.3-70B-Instruct", "Mistral-Small-3.1-24B-Instruct-2503"] + evaluate_prediction_correlation(input_directory=input_directory, model_filters=model_filters) + + @main.command(name="aggregate_scores") @input_directory_option @output_directory_option diff --git a/src/ml_filter/analysis/evaluate_predicted_annotations.py b/src/ml_filter/analysis/evaluate_predicted_annotations.py index 5b5bb8de..fcaa04e9 100644 --- a/src/ml_filter/analysis/evaluate_predicted_annotations.py +++ b/src/ml_filter/analysis/evaluate_predicted_annotations.py @@ -1,7 +1,9 @@ +import itertools import logging from pathlib import Path -from ml_filter.analysis.interrater_reliability import compute_interrater_reliability_metrics +from ml_filter.analysis.interrater_reliability import compute_interrater_reliability_metrics, compute_metrics +from ml_filter.analysis.utils import get_common_docs, get_document_scores_df from ml_filter.utils.logging import get_logger logger = get_logger(name=__name__, level=logging.INFO) # Set up logging @@ -75,3 +77,42 @@ def evaluate_predicted_annotations( lang=lang, ) logger.info(f"Metrics successfully written to {lang_dir}") + + +def evaluate_prediction_correlation( + input_directory: Path, + model_filters: list[str], +) -> None: + # Find all files matching the pattern in the directory and subdirectories + files = list(input_directory.rglob("annotations_*.jsonl")) + + # Check if there is at least one file + if len(files) < 2: + raise ValueError(f"No annotation files found in {input_directory} or its subdirectories.") + + filtered_file_paths = [ + file_path for file_path in files if any(model_filter in str(file_path) for model_filter in model_filters) + ] + + scores_df = get_document_scores_df( + input_file_paths=filtered_file_paths, + aggregation_strategy="majority", + valid_labels=[0, 1, 2, 3, 4, 5], + ) + + # create all pairs + model_pairs = list(itertools.combinations(model_filters, 2)) + for model_pair in model_pairs: + model_1, model_2 = model_pair + common_docs_df = get_common_docs(scores_df, model_1, model_2) + valid_docs_df = common_docs_df[ + (common_docs_df["score_0"] != "invalid") & (common_docs_df["score_1"] != "invalid") + ] + valid_docs_df = valid_docs_df[valid_docs_df["prompt_lang"] != "en"] + + metrics = compute_metrics( + num_total_docs=len(common_docs_df), + valid_docs_df=valid_docs_df, + thresholds=[1], + ) + print(float(metrics["metrics"]["Spearman"])) diff --git a/src/ml_filter/analysis/interrater_reliability.py b/src/ml_filter/analysis/interrater_reliability.py index 02efdb83..af112603 100644 --- a/src/ml_filter/analysis/interrater_reliability.py +++ b/src/ml_filter/analysis/interrater_reliability.py @@ -10,7 +10,7 @@ import numpy as np import pandas as pd from scipy.stats import kendalltau, spearmanr -from sklearn.metrics import cohen_kappa_score, f1_score +from sklearn.metrics import cohen_kappa_score, f1_score, ndcg_score, precision_score, recall_score from statsmodels.stats.inter_rater import fleiss_kappa from ml_filter.analysis.plot_score_distributions import plot_confusion_matrix @@ -189,7 +189,33 @@ def compute_gt_metrics( # Othwerwise, zipping will will proive the wrong results class_f1_scores = f1_score(ground_truth_rounded, predictions_rounded, average=None, labels=valid_labels) for valid_label, f1 in zip(valid_labels, class_f1_scores): - gt_metrics[f"F1-{valid_label}"] = f1 + gt_metrics[f"F1-{valid_label}_vs_rest"] = f1 + + # f1 score at threshold + for t in np.array(list(range(5))) + 0.5: + ground_truth_rounded_bin = (np.array(ground_truth_rounded) >= t).astype(int) + predictions_rounded_bin = (np.array(predictions_rounded) >= t).astype(int) + gt_metrics[f"F1-{t}"] = f1_score( + ground_truth_rounded_bin, + predictions_rounded_bin, + labels=[int(valid_label) for valid_label in valid_labels], + zero_division=0, + ) + gt_metrics[f"Recall-{t}"] = recall_score( + ground_truth_rounded_bin, + predictions_rounded_bin, + labels=[int(valid_label) for valid_label in valid_labels], + zero_division=0, + ) + gt_metrics[f"Precision-{t}"] = precision_score( + ground_truth_rounded_bin, + predictions_rounded_bin, + labels=[int(valid_label) for valid_label in valid_labels], + zero_division=0, + ) + + # NDCG@all + gt_metrics["NDCG@all"] = ndcg_score(y_true=[ground_truth_scores], y_score=[predicted_scores], k=None) return gt_metrics @@ -215,7 +241,7 @@ def plot_invalid_docs_histogram( plt.hist(correct_scores_of_invalid_docs, bins=[0, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5], alpha=0.5, edgecolor="black") plt.xlabel("Scores") plt.ylabel("Frequency") - plt.title(f"Histogram of Invalid Scores for {annotator_name} and langauge {language}.") + plt.title(f"Histogram of invalid scores for {annotator_name} and language {language}.") plt.grid(True) plt.savefig(output_file_path) @@ -368,12 +394,15 @@ def compare_annotator_to_gt( gt_idx = 0 ground_truth_scores = valid_docs_df["score_0"].to_list() predicted_scores = valid_docs_df["score_1"].to_list() - else: + elif annotators[1] == "gt": annotator_idx = 0 gt_idx = 1 ground_truth_scores = valid_docs_df["score_1"].to_list() predicted_scores = valid_docs_df["score_0"].to_list() + else: + raise ValueError(f"Expected one of the annotators to be 'gt', but found {annotators[0]} and {annotators[1]}") + annotator_name = annotators[annotator_idx] gt_metrics = compute_gt_metrics( @@ -399,7 +428,7 @@ def compare_annotator_to_gt( plot_confusion_matrix( cm_dict=cm, annotator_name=annotator_name, - output_file_path=output_dir / f"confusion_matrix_{annotator_name}_gt.png", + output_file_path=output_dir / f"confusion_matrix_{annotator_name}_gt_{lang}.pdf", valid_labels=[int(valid_label) for valid_label in valid_labels], language=lang, ) diff --git a/src/ml_filter/analysis/plot_score_distributions.py b/src/ml_filter/analysis/plot_score_distributions.py index 277f54dc..12d270f2 100644 --- a/src/ml_filter/analysis/plot_score_distributions.py +++ b/src/ml_filter/analysis/plot_score_distributions.py @@ -177,14 +177,25 @@ def plot_confusion_matrix( cm_array = np.array(cm_array) # Plot the confusion matrix - plt.figure(figsize=(10, 6)) + plt.figure(figsize=(6.66, 4)) # Normalize the confusion matrix cm_normalized = cm_array.astype("float") / cm_array.sum(axis=1)[:, np.newaxis] xlabels = [label if label != -1 else "invalid" for label in all_labels] - sns.heatmap(cm_normalized, annot=True, fmt=".2f", cmap="Blues", xticklabels=xlabels, yticklabels=valid_labels) - plt.xlabel("Predicted") - plt.ylabel("True") - plt.title(f"Confusion Matrix for {annotator_name} and language {language}.") - plt.savefig(output_file_path) + sns.heatmap( + cm_normalized, + annot=True, + fmt=".2f", + cmap="Blues", + xticklabels=xlabels, + yticklabels=valid_labels, + annot_kws={"size": 14}, + ) + plt.xlabel("Predicted", fontsize=16) + plt.ylabel("True", fontsize=16) + plt.xticks(fontsize=14) + plt.yticks(fontsize=14) + # plt.title(f"Confusion Matrix for {annotator_name} and language {language}.") + plt.tight_layout() + plt.savefig(output_file_path, format="pdf", bbox_inches="tight") plt.show() diff --git a/src/ml_filter/analysis/utils.py b/src/ml_filter/analysis/utils.py index 8ef29199..e9022b8e 100644 --- a/src/ml_filter/analysis/utils.py +++ b/src/ml_filter/analysis/utils.py @@ -6,6 +6,8 @@ import pandas as pd +from ml_filter.utils.logging import get_logger + def custom_round(x: int | float) -> int: """Rounds values > x.5 to x+1 and values < x.5 to x. @@ -83,6 +85,10 @@ def get_document_scores_df( with open(file_path, "r") as f: for line in f: json_obj = json.loads(line) + if "document_id" not in json_obj or json_obj["document_id"] is None: + raise ValueError( + f"Document ID is missing in the JSON object: {json_obj}. Please check the input file." + ) # replace invalid scores with None scores = [] @@ -124,6 +130,19 @@ def get_document_scores_df( ) document_scores_df = pd.DataFrame(document_scores) + + # make sure that we have the same number of documents with the same doc_id for each annotator + doc_ids_per_annotator = document_scores_df.groupby(by=["annotator", "prompt", "prompt_lang"])["doc_id"].apply(set) + first_doc_ids = next(iter(doc_ids_per_annotator)) + for index, doc_ids in zip(doc_ids_per_annotator.index, doc_ids_per_annotator): + if not doc_ids == first_doc_ids: + if len(doc_ids - first_doc_ids) > 0: + get_logger(name="main").warning( + f"{'__'.join(doc_ids_per_annotator.index[0])} misses: {doc_ids - first_doc_ids}" + ) + if len(first_doc_ids - doc_ids) > 0: + get_logger(name="main").warning(f"{'__'.join(index)} misses: {first_doc_ids - doc_ids}") + return document_scores_df @@ -171,7 +190,12 @@ def get_common_docs(document_scores_df: pd.DataFrame, annotator_0: str, annotato f"while annotator {annotator_1} has {len(annotator_1_df)} documents." ) # only consider documents that are annotated by both annotators and have valid scores - common_docs_df = pd.merge(annotator_0_df, annotator_1_df, on=["doc_id", "prompt"], suffixes=("_0", "_1")) + common_docs_df = pd.merge( + annotator_0_df, annotator_1_df, on=["doc_id", "prompt_lang", "prompt"], suffixes=("_0", "_1") + ) + + if len(common_docs_df) * 2 != len(document_scores_df): + get_logger(name="main").warning("Not all documents can be matched on columns doc_id and prompt.") # add rounded scores for each annotator for idx in (0, 1):