Skip to content

Commit 7d19d9f

Browse files
Docs preview for PR #3292.
1 parent 5f30fc5 commit 7d19d9f

File tree

10 files changed

+18
-18
lines changed

10 files changed

+18
-18
lines changed

pr-3292/api/languages/python_api.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2317,7 +2317,7 @@ <h3>Spin Operators<a class="headerlink" href="#spin-operators" title="Permalink
23172317
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">random</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#cudaq.operators.spin.SpinOperator.random" title="Permalink to this definition">¶</a></dt>
23182318
<dd><dl class="py function">
23192319
<dt class="sig sig-object py">
2320-
<span class="sig-name descname"><span class="pre">random</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">qubit_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">term_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">seed</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4265818946</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#cudaq.operators.spin.SpinOperator" title="cudaq.operators.spin.SpinOperator"><span class="pre">SpinOperator</span></a></span></span></dt>
2320+
<span class="sig-name descname"><span class="pre">random</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">qubit_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">term_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">seed</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2613604646</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#cudaq.operators.spin.SpinOperator" title="cudaq.operators.spin.SpinOperator"><span class="pre">SpinOperator</span></a></span></span></dt>
23212321
<dd></dd></dl>
23222322

23232323
<p>Return a random spin operator with the given number of terms (<code class="code docutils literal notranslate"><span class="pre">term_count</span></code>) where each term acts on all targets in the open range [0, qubit_count). An optional seed value may also be provided.</p>

pr-3292/applications/python/adapt_qaoa.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -939,7 +939,7 @@ <h1>ADAPT-QAOA algorithm<a class="headerlink" href="#ADAPT-QAOA-algorithm" title
939939
parameter</p>
940940
<p>3- Optimize all parameters currently in the Ansatz <span class="math notranslate nohighlight">\(\beta_m, \gamma_m = 1, 2, ...k\)</span> such that <span class="math notranslate nohighlight">\(\braket{\psi (k)|H_C|\psi(k)}\)</span> is minimized, and return to the second step.</p>
941941
<p>Below is a schematic representation of the ADAPT-QAOA algorithm explained above.</p>
942-
<div><p><img alt="5d314decf1de4effa2506c4a4608f34b" class="no-scaled-link" src="../../_images/adapt-qaoa.png" style="width: 1000px;" /></p>
942+
<div><p><img alt="4836137793984825a4433b12e86e6cb0" class="no-scaled-link" src="../../_images/adapt-qaoa.png" style="width: 1000px;" /></p>
943943
</div><div class="nbinput nblast docutils container">
944944
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[15]:
945945
</pre></div>

pr-3292/applications/python/adapt_vqe.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -936,7 +936,7 @@ <h1>ADAPT-VQE algorithm<a class="headerlink" href="#ADAPT-VQE-algorithm" title="
936936
<p>7- Perform a VQE experiment to re-optimize all parameters in the ansatz.</p>
937937
<p>8- go to step 4</p>
938938
<p>Below is a Schematic depiction of the ADAPT-VQE algorithm</p>
939-
<div><p><img alt="f49a1f9fb86f43a5961ec5e37b4011f6" class="no-scaled-link" src="../../_images/adapt-vqe.png" style="width: 800px;" /></p>
939+
<div><p><img alt="158644e3f90744fb94009bfa8593f3a3" class="no-scaled-link" src="../../_images/adapt-vqe.png" style="width: 800px;" /></p>
940940
</div><div class="nbinput docutils container">
941941
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[1]:
942942
</pre></div>

pr-3292/applications/python/deutsch_algorithm.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -996,7 +996,7 @@ <h2>XOR <span class="math notranslate nohighlight">\(\oplus\)</span><a class="he
996996
</section>
997997
<section id="Quantum-oracles">
998998
<h2>Quantum oracles<a class="headerlink" href="#Quantum-oracles" title="Permalink to this heading"></a></h2>
999-
<p><img alt="fed3ec4f04e84737802291e7a2cf2593" class="no-scaled-link" src="../../_images/oracle.png" style="width: 300px; height: 150px;" /></p>
999+
<p><img alt="c9c2d7341e244a058e48f92810aae8b4" class="no-scaled-link" src="../../_images/oracle.png" style="width: 300px; height: 150px;" /></p>
10001000
<p>Suppose we have <span class="math notranslate nohighlight">\(f(x): \{0,1\} \longrightarrow \{0,1\}\)</span>. We can compute this function on a quantum computer using oracles which we treat as black box functions that yield the output with an appropriate sequence of logical gates.</p>
10011001
<p>Above you see an oracle represented as <span class="math notranslate nohighlight">\(U_f\)</span> which allows us to transform the state <span class="math notranslate nohighlight">\(\ket{x}\ket{y}\)</span> into:</p>
10021002
<div class="math notranslate nohighlight">
@@ -1044,7 +1044,7 @@ <h2>Quantum parallelism<a class="headerlink" href="#Quantum-parallelism" title="
10441044
<h2>Deutsch’s Algorithm:<a class="headerlink" href="#Deutsch's-Algorithm:" title="Permalink to this heading"></a></h2>
10451045
<p>Our aim is to find out if <span class="math notranslate nohighlight">\(f: \{0,1\} \longrightarrow \{0,1\}\)</span> is a constant or a balanced function? If constant, <span class="math notranslate nohighlight">\(f(0) = f(1)\)</span>, and if balanced, <span class="math notranslate nohighlight">\(f(0) \neq f(1)\)</span>.</p>
10461046
<p>We step through the circuit diagram below and follow the math after the application of each gate.</p>
1047-
<p><img alt="e09df5e4720941a6a152127597cf8160" class="no-scaled-link" src="../../_images/deutsch.png" style="width: 500px; height: 210px;" /></p>
1047+
<p><img alt="d9acd46d27fb4f6bb6c7cf22907ae848" class="no-scaled-link" src="../../_images/deutsch.png" style="width: 500px; height: 210px;" /></p>
10481048
<div class="math notranslate nohighlight">
10491049
\[\ket{\psi_0} = \ket{01}
10501050
\tag{1}\]</div>

pr-3292/applications/python/edge_detection.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -976,7 +976,7 @@ <h2>Image<a class="headerlink" href="#Image" title="Permalink to this heading">
976976
<section id="Quantum-Probability-Image-Encoding-(QPIE):">
977977
<h2>Quantum Probability Image Encoding (QPIE):<a class="headerlink" href="#Quantum-Probability-Image-Encoding-(QPIE):" title="Permalink to this heading"></a></h2>
978978
<p>Lets take as an example a classical 2x2 image (4 pixels). We can label each pixel with its position</p>
979-
<div><p><img alt="63ae28aeedd14332a459775351d5e8c5" class="no-scaled-link" src="../../_images/pixels-img.png" style="width: 200px;" /></p>
979+
<div><p><img alt="f647881e23a945daa3eb60a1e75622e6" class="no-scaled-link" src="../../_images/pixels-img.png" style="width: 200px;" /></p>
980980
</div><p>Each pixel will have its own color intensity represented along with its position label as an 8-bit black and white color. To convert the pixel intensity to probability amplitudes of a quantum state</p>
981981
<div class="math notranslate nohighlight">
982982
\[c_i = \frac{I_{yx}}{\sqrt(\sum I^2_{yx})}\]</div>

pr-3292/applications/python/grovers.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1018,7 +1018,7 @@ <h3>Good and Bad States<a class="headerlink" href="#Good-and-Bad-States" title="
10181018
<p>Let us now examine the geometric picture behind our current discussion. We’ll consider the ambient Hilbert space to be spanned by the standard basis vectors <span class="math notranslate nohighlight">\(|0\rangle, |1\rangle, \dots, |N-1\rangle\)</span>, where the full dimension is <span class="math notranslate nohighlight">\(N = 2^n\)</span>. Since the uniform superposition state <span class="math notranslate nohighlight">\(|\xi\rangle\)</span> can be expressed as a linear combination of the states <span class="math notranslate nohighlight">\(|G\rangle\)</span> and <span class="math notranslate nohighlight">\(|B\rangle\)</span> with real coefficients, all three states <span class="math notranslate nohighlight">\(|\xi\rangle, |G\rangle,\)</span> and <span class="math notranslate nohighlight">\(|B\rangle\)</span>
10191019
reside in a two-dimensional real subspace of the ambient Hilbert space, which we can visualize as a 2D plane as in the image below. Since, <span class="math notranslate nohighlight">\(|G\rangle\)</span> and <span class="math notranslate nohighlight">\(|B\rangle\)</span> are orthogonal, we can imagine them graphed as unit vectors in the positive <span class="math notranslate nohighlight">\(y\)</span> and positive <span class="math notranslate nohighlight">\(x\)</span> directions, respectively. From our previous expression, <span class="math notranslate nohighlight">\(\ket{\xi} = \sin(\theta) |G\rangle + \cos(\theta) |B\rangle,\)</span> we see that the state <span class="math notranslate nohighlight">\(|\xi\rangle\)</span> forms an angle <span class="math notranslate nohighlight">\(\theta\)</span> with
10201020
<span class="math notranslate nohighlight">\(|B\rangle\)</span>.</p>
1021-
<div style="text-align: center;"><p><img alt="8305194a875c4781ab922f082c6a6403" src="../../_images/grovers-2D-plane.png" /></p>
1021+
<div style="text-align: center;"><p><img alt="41efc79ced9f4210b6f185f0a9cdf889" src="../../_images/grovers-2D-plane.png" /></p>
10221022
</div><p>Given that the number of marked states <span class="math notranslate nohighlight">\(t\)</span> is typically small compared to <span class="math notranslate nohighlight">\(N\)</span>, it follows that <span class="math notranslate nohighlight">\(\theta = \arcsin\left(\sqrt{\frac{t}{N}}\right)\)</span> is a small angle. This assumption is reasonable, as otherwise, a sufficient number of independent queries to the oracle would likely yield a solution through classical search methods.</p>
10231023
</section>
10241024
<section id="Step-2:-Oracle-application">
@@ -1133,9 +1133,9 @@ <h4>Completing Step 3<a class="headerlink" href="#Completing-Step-3" title="Perm
11331133
<div class="math notranslate nohighlight">
11341134
\[\mathcal{G} = r_\xi \circ r_B = H^{\otimes n} \big( 2|0^{\otimes n} \rangle \langle 0^{\otimes n}| - \text{Id} \big) H^{\otimes n} \mathcal{O}_f.\]</div>
11351135
<p>The circuit diagram below puts together steps 1 through 3:</p>
1136-
<div style="text-align: center;"><p><img alt="f6638c5cfb7444dba39003f17394b901" src="../../_images/grovers-steps1-3.png" /></p>
1136+
<div style="text-align: center;"><p><img alt="fe7d427dbc2543e789e74ac9baa1b924" src="../../_images/grovers-steps1-3.png" /></p>
11371137
</div><p>Running this circuit initializes <span class="math notranslate nohighlight">\(\ket{\xi}\)</span> and performs a rotation by <span class="math notranslate nohighlight">\(2\theta\)</span> (twice the angle between <span class="math notranslate nohighlight">\(|\xi\rangle\)</span> and <span class="math notranslate nohighlight">\(|B\rangle\)</span>) in the direction from <span class="math notranslate nohighlight">\(|B\rangle\)</span> to <span class="math notranslate nohighlight">\(|G\rangle\)</span>.</p>
1138-
<div style="text-align: center;"><p><img alt="f22e0d45c24342e798160a2726f7ca0a" src="../../_images/grovers-full-rotation.png" /></p>
1138+
<div style="text-align: center;"><p><img alt="a94c53031c5448b0838496c0f7567f44" src="../../_images/grovers-full-rotation.png" /></p>
11391139
</div><p>Let’s verify that the state resulting from one iteration of Grover’s algorithm brings us closer to the good state, <span class="math notranslate nohighlight">\(\ket{G}\)</span>. In particular, notice that the amplitudes of <code class="docutils literal notranslate"><span class="pre">1001</span></code> and <code class="docutils literal notranslate"><span class="pre">1111</span></code> in the resulting state have been amplified compared to the equal superposition of states.</p>
11401140
<div class="nbinput docutils container">
11411141
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[18]:

pr-3292/applications/python/qm_mm_pe.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -936,7 +936,7 @@ <h2>Key concepts:<a class="headerlink" href="#Key-concepts:" title="Permalink to
936936
</section>
937937
<section id="PE-VQE-SCF-Algorithm-Steps">
938938
<h2>PE-VQE-SCF Algorithm Steps<a class="headerlink" href="#PE-VQE-SCF-Algorithm-Steps" title="Permalink to this heading"></a></h2>
939-
<div><p><img alt="60156ee499074131b3b5bd5946f77b15" class="no-scaled-link" src="../../_images/qm-mm-pe.png" style="width: 600px;" /></p>
939+
<div><p><img alt="b3f04e72c32f4551972348b8e9fae8c6" class="no-scaled-link" src="../../_images/qm-mm-pe.png" style="width: 600px;" /></p>
940940
</div><section id="Step-1:-Initialize-(Classical-pre-processing)">
941941
<h3>Step 1: Initialize (Classical pre-processing)<a class="headerlink" href="#Step-1:-Initialize-(Classical-pre-processing)" title="Permalink to this heading"></a></h3>
942942
<ul class="simple">

pr-3292/applications/python/quantum_transformer.html

Lines changed: 5 additions & 5 deletions
Large diffs are not rendered by default.

pr-3292/examples/python/performance_optimizations.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -924,9 +924,9 @@ <h1>Optimizing Performance<a class="headerlink" href="#Optimizing-Performance" t
924924
<section id="Gate-Fusion">
925925
<h2>Gate Fusion<a class="headerlink" href="#Gate-Fusion" title="Permalink to this heading"></a></h2>
926926
<p>Gate fusion is an optimization technique where consecutive gates are combined into a single gate operation to improve the efficiency of the simulation (See figure below). By targeting the <code class="docutils literal notranslate"><span class="pre">nvidia-mgpu</span></code> backend and setting the <code class="docutils literal notranslate"><span class="pre">CUDAQ_MGPU_FUSE</span></code> environment variable, you can select the degree of fusion that takes place. A full command line example would look like <code class="docutils literal notranslate"><span class="pre">CUDAQ_MGPU_FUSE=4</span> <span class="pre">python</span> <span class="pre">c2h2VQE.py</span> <span class="pre">--target</span> <span class="pre">nvidia</span> <span class="pre">--target-option</span> <span class="pre">fp64,mgpu</span></code></p>
927-
<p><img alt="ecdfba88a6a9420a8de09d7bfe9ea7e7" src="../../_images/gate-fuse.png" /></p>
927+
<p><img alt="e88fe1daed704e32b0d098006b749246" src="../../_images/gate-fuse.png" /></p>
928928
<p>The importance of gate fusion is system dependent, but can have a large influence on the performance of the simulation. See the example below for a 24 qubit VQE experiment where changing the fusion level resulted in significant performance boosts.</p>
929-
<p><img alt="09d1421237644502a8a80454b7031e48" src="../../_images/gatefusion.png" /></p>
929+
<p><img alt="516932ac79994a4e828dae6c8b8440b7" src="../../_images/gatefusion.png" /></p>
930930
</section>
931931
</section>
932932

pr-3292/searchindex.js

Lines changed: 1 addition & 1 deletion
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

0 commit comments

Comments
 (0)