Skip to content

Context aware Interpolation Pipeline

Davis edited this page Aug 26, 2018 · 2 revisions

Test-running the Context-Aware Interpolation training

Creating a TFRecord dataset

  1. Download DAVIS.

  2. If you wish to add more images, be sure that they are organized like DAVIS. For example, in DAVIS/JPEGImages/480p, the structure is:

    <directory to images>
        <shot_0>
            <image_0>.(png | jpg)
            ...
            <image_n>.(png | jpg)
        <shot_1>
        ...
        <shot_n>
    
  3. Run the following command from the project root directory:

    python -m mains.create_davis_dataset -d path/to/DAVIS -o path/to/tfrecords_dir
    
  4. Expected output in the specified output directory should be:

    <tfrecords_dir>
        ...
        0_interp_dataset_train.tfrecords
        ...
        n_interp_dataset_train.tfrecords
        
        0_interp_dataset_valid.tfrecords
        ...
        n_interp_dataset_valid.tfrecords
    

Training

  1. Have your tf records and pre-trained PWC-Net weights prepared.

  2. Run the following command:

    python -m mains.train_context_interp -d path/to/tfrecords_dir -c path/to/checkpoints_dir -w path/to/pwcnet_weights.npz
    
  3. Launch tensorboard.

    tensorboard --logdir=path/to/checkpoints_dir
    

Clone this wiki locally