|
29 | 29 | weight_quantize_xpu, |
30 | 30 | xpu_moe_layer, |
31 | 31 | ) |
| 32 | +from fastdeploy.model_executor.utils import default_weight_loader, set_weight_attrs |
| 33 | +from fastdeploy.platforms import current_platform |
32 | 34 |
|
33 | 35 |
|
34 | 36 | class XPUMoEMethod(MoEMethodBase): |
@@ -61,78 +63,155 @@ def create_weights(self, layer: nn.Layer, **extra_weight_attrs): |
61 | 63 | """ |
62 | 64 | create weight process. |
63 | 65 | """ |
64 | | - self.up_gate_proj_weight_shape = [ |
65 | | - layer.num_local_experts, |
66 | | - layer.moe_intermediate_size * 2, |
67 | | - layer.hidden_size, |
68 | | - ] |
69 | | - self.down_proj_weight_shape = [ |
70 | | - layer.num_local_experts, |
71 | | - layer.hidden_size, |
72 | | - layer.moe_intermediate_size, |
73 | | - ] |
74 | | - if self.moe_quant_type in ["weight_only_int4", "w4a8"]: |
75 | | - self.up_gate_proj_weight_shape[-1] //= 2 |
76 | | - self.down_proj_weight_shape[-1] //= 2 |
77 | | - |
78 | | - setattr( |
79 | | - layer, |
80 | | - self.added_weight_attrs[0], |
81 | | - layer.create_parameter( |
| 66 | + if layer.fd_config.load_config.load_choices == "default_v1" and self.moe_quant_type in ["w16a16"]: |
| 67 | + if current_platform.is_cuda(): |
| 68 | + self.up_gate_proj_weight_shape = [ |
| 69 | + layer.num_local_experts, |
| 70 | + layer.hidden_size, |
| 71 | + layer.moe_intermediate_size * 2, |
| 72 | + ] |
| 73 | + self.down_proj_weight_shape = [layer.num_local_experts, layer.moe_intermediate_size, layer.hidden_size] |
| 74 | + extra_weight_attrs = {**extra_weight_attrs, "SHARD_ID_TO_SHARDED_DIM": {"gate": 1, "down": 0, "up": 1}} |
| 75 | + else: |
| 76 | + self.up_gate_proj_weight_shape = [ |
| 77 | + layer.num_local_experts, |
| 78 | + layer.moe_intermediate_size * 2, |
| 79 | + layer.hidden_size, |
| 80 | + ] |
| 81 | + self.down_proj_weight_shape = [layer.num_local_experts, layer.hidden_size, layer.moe_intermediate_size] |
| 82 | + extra_weight_attrs = {**extra_weight_attrs, "SHARD_ID_TO_SHARDED_DIM": {"gate": 0, "down": 1, "up": 0}} |
| 83 | + |
| 84 | + layer.up_gate_proj_weight = layer.create_parameter( |
82 | 85 | shape=self.up_gate_proj_weight_shape, |
83 | | - dtype=self.weight_dtype, |
| 86 | + dtype=layer.weight_dtype, |
84 | 87 | default_initializer=paddle.nn.initializer.Constant(0), |
85 | | - ), |
86 | | - ) |
87 | | - setattr( |
88 | | - layer, |
89 | | - self.added_weight_attrs[1], |
90 | | - layer.create_parameter( |
| 88 | + ) |
| 89 | + |
| 90 | + layer.down_proj_weight = layer.create_parameter( |
91 | 91 | shape=self.down_proj_weight_shape, |
92 | | - dtype=self.weight_dtype, |
| 92 | + dtype=layer.weight_dtype, |
93 | 93 | default_initializer=paddle.nn.initializer.Constant(0), |
94 | | - ), |
95 | | - ) |
| 94 | + ) |
96 | 95 |
|
97 | | - if self.moe_quant_type in ["weight_only_int8", "w8a8", "weight_only_int4", "w4a8"]: |
98 | | - self.up_gate_proj_scale_shape = [ |
| 96 | + set_weight_attrs( |
| 97 | + layer.up_gate_proj_weight, |
| 98 | + { |
| 99 | + "weight_loader": extra_weight_attrs.get("weight_loader", default_weight_loader(layer.fd_config)), |
| 100 | + "weight_need_transpose": extra_weight_attrs.get("model_format") == "torch", |
| 101 | + }, |
| 102 | + ) |
| 103 | + set_weight_attrs( |
| 104 | + layer.down_proj_weight, |
| 105 | + { |
| 106 | + "weight_loader": extra_weight_attrs.get("weight_loader", default_weight_loader(layer.fd_config)), |
| 107 | + "weight_need_transpose": extra_weight_attrs.get("model_format") == "torch", |
| 108 | + }, |
| 109 | + ) |
| 110 | + |
| 111 | + if layer.with_bias: |
| 112 | + layer.up_gate_proj_bias = layer.create_parameter( |
| 113 | + shape=[layer.num_experts, layer.moe_intermediate_size * 2], |
| 114 | + dtype=layer.weight_dtype, |
| 115 | + default_initializer=paddle.nn.initializer.Constant(0), |
| 116 | + ) |
| 117 | + |
| 118 | + layer.down_proj_bias = layer.create_parameter( |
| 119 | + shape=[layer.num_experts, layer.hidden_size], |
| 120 | + dtype=layer.weight_dtype, |
| 121 | + default_initializer=paddle.nn.initializer.Constant(0), |
| 122 | + ) |
| 123 | + set_weight_attrs( |
| 124 | + layer.up_gate_proj_bias, |
| 125 | + { |
| 126 | + "weight_loader": extra_weight_attrs.get( |
| 127 | + "weight_loader", default_weight_loader(layer.fd_config) |
| 128 | + ), |
| 129 | + "model_format": extra_weight_attrs.get("model_format", ""), |
| 130 | + }, |
| 131 | + ) |
| 132 | + set_weight_attrs( |
| 133 | + layer.down_proj_bias, |
| 134 | + { |
| 135 | + "weight_loader": extra_weight_attrs.get( |
| 136 | + "weight_loader", default_weight_loader(layer.fd_config) |
| 137 | + ), |
| 138 | + "model_format": extra_weight_attrs.get("model_format", ""), |
| 139 | + }, |
| 140 | + ) |
| 141 | + |
| 142 | + else: |
| 143 | + self.up_gate_proj_weight_shape = [ |
99 | 144 | layer.num_local_experts, |
100 | 145 | layer.moe_intermediate_size * 2, |
| 146 | + layer.hidden_size, |
101 | 147 | ] |
102 | | - self.down_proj_scale_shape = [ |
| 148 | + self.down_proj_weight_shape = [ |
103 | 149 | layer.num_local_experts, |
104 | 150 | layer.hidden_size, |
| 151 | + layer.moe_intermediate_size, |
105 | 152 | ] |
| 153 | + if self.moe_quant_type in ["weight_only_int4", "w4a8"]: |
| 154 | + self.up_gate_proj_weight_shape[-1] //= 2 |
| 155 | + self.down_proj_weight_shape[-1] //= 2 |
| 156 | + |
106 | 157 | setattr( |
107 | 158 | layer, |
108 | | - self.added_scale_attrs[0], |
| 159 | + self.added_weight_attrs[0], |
109 | 160 | layer.create_parameter( |
110 | | - shape=self.up_gate_proj_scale_shape, |
111 | | - dtype=self.scale_dtype, |
| 161 | + shape=self.up_gate_proj_weight_shape, |
| 162 | + dtype=self.weight_dtype, |
112 | 163 | default_initializer=paddle.nn.initializer.Constant(0), |
113 | 164 | ), |
114 | 165 | ) |
115 | 166 | setattr( |
116 | 167 | layer, |
117 | | - self.added_scale_attrs[1], |
| 168 | + self.added_weight_attrs[1], |
118 | 169 | layer.create_parameter( |
119 | | - shape=self.down_proj_scale_shape, |
120 | | - dtype=self.scale_dtype, |
| 170 | + shape=self.down_proj_weight_shape, |
| 171 | + dtype=self.weight_dtype, |
121 | 172 | default_initializer=paddle.nn.initializer.Constant(0), |
122 | 173 | ), |
123 | 174 | ) |
124 | 175 |
|
125 | | - if self.moe_quant_type in ["w8a8", "w4a8"]: |
126 | | - for in_scale_name in self.added_in_scale_attrs: |
| 176 | + if self.moe_quant_type in ["weight_only_int8", "w8a8", "weight_only_int4", "w4a8"]: |
| 177 | + self.up_gate_proj_scale_shape = [ |
| 178 | + layer.num_local_experts, |
| 179 | + layer.moe_intermediate_size * 2, |
| 180 | + ] |
| 181 | + self.down_proj_scale_shape = [ |
| 182 | + layer.num_local_experts, |
| 183 | + layer.hidden_size, |
| 184 | + ] |
127 | 185 | setattr( |
128 | 186 | layer, |
129 | | - in_scale_name, |
| 187 | + self.added_scale_attrs[0], |
130 | 188 | layer.create_parameter( |
131 | | - shape=[layer.num_local_experts], |
| 189 | + shape=self.up_gate_proj_scale_shape, |
132 | 190 | dtype=self.scale_dtype, |
133 | 191 | default_initializer=paddle.nn.initializer.Constant(0), |
134 | 192 | ), |
135 | 193 | ) |
| 194 | + setattr( |
| 195 | + layer, |
| 196 | + self.added_scale_attrs[1], |
| 197 | + layer.create_parameter( |
| 198 | + shape=self.down_proj_scale_shape, |
| 199 | + dtype=self.scale_dtype, |
| 200 | + default_initializer=paddle.nn.initializer.Constant(0), |
| 201 | + ), |
| 202 | + ) |
| 203 | + |
| 204 | + if self.moe_quant_type in ["w8a8", "w4a8"]: |
| 205 | + for in_scale_name in self.added_in_scale_attrs: |
| 206 | + setattr( |
| 207 | + layer, |
| 208 | + in_scale_name, |
| 209 | + layer.create_parameter( |
| 210 | + shape=[layer.num_local_experts], |
| 211 | + dtype=self.scale_dtype, |
| 212 | + default_initializer=paddle.nn.initializer.Constant(0), |
| 213 | + ), |
| 214 | + ) |
136 | 215 |
|
137 | 216 | def process_loaded_weights(self, layer: nn.Layer, state_dict): |
138 | 217 | up_gate_proj_weights, down_proj_weights, _, _ = layer.extract_moe_ffn_weights(state_dict) |
|
0 commit comments