|
| 1 | +package enchantrix |
| 2 | + |
| 3 | +import ( |
| 4 | + "crypto/rand" |
| 5 | + "crypto/sha256" |
| 6 | + "encoding/binary" |
| 7 | + "errors" |
| 8 | + "io" |
| 9 | + |
| 10 | + "golang.org/x/crypto/chacha20poly1305" |
| 11 | +) |
| 12 | + |
| 13 | +var ( |
| 14 | + // ErrInvalidKey is returned when the encryption key is invalid. |
| 15 | + ErrInvalidKey = errors.New("enchantrix: invalid key size, must be 32 bytes") |
| 16 | + // ErrCiphertextTooShort is returned when the ciphertext is too short to decrypt. |
| 17 | + ErrCiphertextTooShort = errors.New("enchantrix: ciphertext too short") |
| 18 | + // ErrDecryptionFailed is returned when decryption or authentication fails. |
| 19 | + ErrDecryptionFailed = errors.New("enchantrix: decryption failed") |
| 20 | + // ErrNoKeyConfigured is returned when no encryption key has been set. |
| 21 | + ErrNoKeyConfigured = errors.New("enchantrix: no encryption key configured") |
| 22 | +) |
| 23 | + |
| 24 | +// PreObfuscator applies a reversible transformation to data before encryption. |
| 25 | +// This ensures that raw plaintext is never sent directly to CPU encryption routines. |
| 26 | +type PreObfuscator interface { |
| 27 | + // Obfuscate transforms plaintext before encryption. |
| 28 | + Obfuscate(data []byte, entropy []byte) []byte |
| 29 | + // Deobfuscate reverses the transformation after decryption. |
| 30 | + Deobfuscate(data []byte, entropy []byte) []byte |
| 31 | +} |
| 32 | + |
| 33 | +// XORObfuscator performs XOR-based obfuscation using entropy-derived key stream. |
| 34 | +// This is a reversible transformation that ensures no cleartext patterns remain. |
| 35 | +type XORObfuscator struct{} |
| 36 | + |
| 37 | +// Obfuscate XORs the data with a key stream derived from the entropy. |
| 38 | +func (x *XORObfuscator) Obfuscate(data []byte, entropy []byte) []byte { |
| 39 | + if len(data) == 0 { |
| 40 | + return data |
| 41 | + } |
| 42 | + return x.transform(data, entropy) |
| 43 | +} |
| 44 | + |
| 45 | +// Deobfuscate reverses the XOR transformation (XOR is symmetric). |
| 46 | +func (x *XORObfuscator) Deobfuscate(data []byte, entropy []byte) []byte { |
| 47 | + if len(data) == 0 { |
| 48 | + return data |
| 49 | + } |
| 50 | + return x.transform(data, entropy) |
| 51 | +} |
| 52 | + |
| 53 | +// transform applies XOR with an entropy-derived key stream. |
| 54 | +func (x *XORObfuscator) transform(data []byte, entropy []byte) []byte { |
| 55 | + result := make([]byte, len(data)) |
| 56 | + keyStream := x.deriveKeyStream(entropy, len(data)) |
| 57 | + for i := range data { |
| 58 | + result[i] = data[i] ^ keyStream[i] |
| 59 | + } |
| 60 | + return result |
| 61 | +} |
| 62 | + |
| 63 | +// deriveKeyStream creates a deterministic key stream from entropy. |
| 64 | +func (x *XORObfuscator) deriveKeyStream(entropy []byte, length int) []byte { |
| 65 | + stream := make([]byte, length) |
| 66 | + h := sha256.New() |
| 67 | + |
| 68 | + // Generate key stream in 32-byte blocks |
| 69 | + blockNum := uint64(0) |
| 70 | + offset := 0 |
| 71 | + for offset < length { |
| 72 | + h.Reset() |
| 73 | + h.Write(entropy) |
| 74 | + var blockBytes [8]byte |
| 75 | + binary.BigEndian.PutUint64(blockBytes[:], blockNum) |
| 76 | + h.Write(blockBytes[:]) |
| 77 | + block := h.Sum(nil) |
| 78 | + |
| 79 | + copyLen := len(block) |
| 80 | + if offset+copyLen > length { |
| 81 | + copyLen = length - offset |
| 82 | + } |
| 83 | + copy(stream[offset:], block[:copyLen]) |
| 84 | + offset += copyLen |
| 85 | + blockNum++ |
| 86 | + } |
| 87 | + return stream |
| 88 | +} |
| 89 | + |
| 90 | +// ShuffleMaskObfuscator applies byte-level shuffling based on entropy. |
| 91 | +// This provides additional diffusion before encryption. |
| 92 | +type ShuffleMaskObfuscator struct{} |
| 93 | + |
| 94 | +// Obfuscate shuffles bytes and applies a mask derived from entropy. |
| 95 | +func (s *ShuffleMaskObfuscator) Obfuscate(data []byte, entropy []byte) []byte { |
| 96 | + if len(data) == 0 { |
| 97 | + return data |
| 98 | + } |
| 99 | + |
| 100 | + result := make([]byte, len(data)) |
| 101 | + copy(result, data) |
| 102 | + |
| 103 | + // Generate permutation and mask from entropy |
| 104 | + perm := s.generatePermutation(entropy, len(data)) |
| 105 | + mask := s.deriveMask(entropy, len(data)) |
| 106 | + |
| 107 | + // Apply mask first, then shuffle |
| 108 | + for i := range result { |
| 109 | + result[i] ^= mask[i] |
| 110 | + } |
| 111 | + |
| 112 | + // Shuffle using Fisher-Yates with deterministic seed |
| 113 | + shuffled := make([]byte, len(data)) |
| 114 | + for i, p := range perm { |
| 115 | + shuffled[i] = result[p] |
| 116 | + } |
| 117 | + |
| 118 | + return shuffled |
| 119 | +} |
| 120 | + |
| 121 | +// Deobfuscate reverses the shuffle and mask operations. |
| 122 | +func (s *ShuffleMaskObfuscator) Deobfuscate(data []byte, entropy []byte) []byte { |
| 123 | + if len(data) == 0 { |
| 124 | + return data |
| 125 | + } |
| 126 | + |
| 127 | + result := make([]byte, len(data)) |
| 128 | + |
| 129 | + // Generate permutation and mask from entropy |
| 130 | + perm := s.generatePermutation(entropy, len(data)) |
| 131 | + mask := s.deriveMask(entropy, len(data)) |
| 132 | + |
| 133 | + // Unshuffle first |
| 134 | + for i, p := range perm { |
| 135 | + result[p] = data[i] |
| 136 | + } |
| 137 | + |
| 138 | + // Remove mask |
| 139 | + for i := range result { |
| 140 | + result[i] ^= mask[i] |
| 141 | + } |
| 142 | + |
| 143 | + return result |
| 144 | +} |
| 145 | + |
| 146 | +// generatePermutation creates a deterministic permutation from entropy. |
| 147 | +func (s *ShuffleMaskObfuscator) generatePermutation(entropy []byte, length int) []int { |
| 148 | + perm := make([]int, length) |
| 149 | + for i := range perm { |
| 150 | + perm[i] = i |
| 151 | + } |
| 152 | + |
| 153 | + // Use entropy to seed a deterministic shuffle |
| 154 | + h := sha256.New() |
| 155 | + h.Write(entropy) |
| 156 | + h.Write([]byte("permutation")) |
| 157 | + seed := h.Sum(nil) |
| 158 | + |
| 159 | + // Fisher-Yates shuffle with deterministic randomness |
| 160 | + for i := length - 1; i > 0; i-- { |
| 161 | + h.Reset() |
| 162 | + h.Write(seed) |
| 163 | + var iBytes [8]byte |
| 164 | + binary.BigEndian.PutUint64(iBytes[:], uint64(i)) |
| 165 | + h.Write(iBytes[:]) |
| 166 | + jBytes := h.Sum(nil) |
| 167 | + j := int(binary.BigEndian.Uint64(jBytes[:8]) % uint64(i+1)) |
| 168 | + perm[i], perm[j] = perm[j], perm[i] |
| 169 | + } |
| 170 | + |
| 171 | + return perm |
| 172 | +} |
| 173 | + |
| 174 | +// deriveMask creates a mask byte array from entropy. |
| 175 | +func (s *ShuffleMaskObfuscator) deriveMask(entropy []byte, length int) []byte { |
| 176 | + mask := make([]byte, length) |
| 177 | + h := sha256.New() |
| 178 | + |
| 179 | + blockNum := uint64(0) |
| 180 | + offset := 0 |
| 181 | + for offset < length { |
| 182 | + h.Reset() |
| 183 | + h.Write(entropy) |
| 184 | + h.Write([]byte("mask")) |
| 185 | + var blockBytes [8]byte |
| 186 | + binary.BigEndian.PutUint64(blockBytes[:], blockNum) |
| 187 | + h.Write(blockBytes[:]) |
| 188 | + block := h.Sum(nil) |
| 189 | + |
| 190 | + copyLen := len(block) |
| 191 | + if offset+copyLen > length { |
| 192 | + copyLen = length - offset |
| 193 | + } |
| 194 | + copy(mask[offset:], block[:copyLen]) |
| 195 | + offset += copyLen |
| 196 | + blockNum++ |
| 197 | + } |
| 198 | + return mask |
| 199 | +} |
| 200 | + |
| 201 | +// ChaChaPolySigil is a Sigil that encrypts/decrypts data using ChaCha20-Poly1305. |
| 202 | +// It applies pre-obfuscation before encryption to ensure raw plaintext never |
| 203 | +// goes directly to CPU encryption routines. |
| 204 | +// |
| 205 | +// The output format is: |
| 206 | +// [24-byte nonce][encrypted(obfuscated(plaintext))] |
| 207 | +// |
| 208 | +// Unlike demo implementations, the nonce is ONLY embedded in the ciphertext, |
| 209 | +// not exposed separately in headers. |
| 210 | +type ChaChaPolySigil struct { |
| 211 | + Key []byte |
| 212 | + Obfuscator PreObfuscator |
| 213 | + randReader io.Reader // for testing injection |
| 214 | +} |
| 215 | + |
| 216 | +// NewChaChaPolySigil creates a new encryption sigil with the given key. |
| 217 | +// The key must be exactly 32 bytes. |
| 218 | +func NewChaChaPolySigil(key []byte) (*ChaChaPolySigil, error) { |
| 219 | + if len(key) != 32 { |
| 220 | + return nil, ErrInvalidKey |
| 221 | + } |
| 222 | + |
| 223 | + keyCopy := make([]byte, 32) |
| 224 | + copy(keyCopy, key) |
| 225 | + |
| 226 | + return &ChaChaPolySigil{ |
| 227 | + Key: keyCopy, |
| 228 | + Obfuscator: &XORObfuscator{}, |
| 229 | + randReader: rand.Reader, |
| 230 | + }, nil |
| 231 | +} |
| 232 | + |
| 233 | +// NewChaChaPolySigilWithObfuscator creates a new encryption sigil with custom obfuscator. |
| 234 | +func NewChaChaPolySigilWithObfuscator(key []byte, obfuscator PreObfuscator) (*ChaChaPolySigil, error) { |
| 235 | + sigil, err := NewChaChaPolySigil(key) |
| 236 | + if err != nil { |
| 237 | + return nil, err |
| 238 | + } |
| 239 | + if obfuscator != nil { |
| 240 | + sigil.Obfuscator = obfuscator |
| 241 | + } |
| 242 | + return sigil, nil |
| 243 | +} |
| 244 | + |
| 245 | +// In encrypts the data with pre-obfuscation. |
| 246 | +// The flow is: plaintext -> obfuscate -> encrypt |
| 247 | +func (s *ChaChaPolySigil) In(data []byte) ([]byte, error) { |
| 248 | + if s.Key == nil { |
| 249 | + return nil, ErrNoKeyConfigured |
| 250 | + } |
| 251 | + if data == nil { |
| 252 | + return nil, nil |
| 253 | + } |
| 254 | + |
| 255 | + aead, err := chacha20poly1305.NewX(s.Key) |
| 256 | + if err != nil { |
| 257 | + return nil, err |
| 258 | + } |
| 259 | + |
| 260 | + // Generate nonce |
| 261 | + nonce := make([]byte, aead.NonceSize()) |
| 262 | + reader := s.randReader |
| 263 | + if reader == nil { |
| 264 | + reader = rand.Reader |
| 265 | + } |
| 266 | + if _, err := io.ReadFull(reader, nonce); err != nil { |
| 267 | + return nil, err |
| 268 | + } |
| 269 | + |
| 270 | + // Pre-obfuscate the plaintext using nonce as entropy |
| 271 | + // This ensures CPU encryption routines never see raw plaintext |
| 272 | + obfuscated := data |
| 273 | + if s.Obfuscator != nil { |
| 274 | + obfuscated = s.Obfuscator.Obfuscate(data, nonce) |
| 275 | + } |
| 276 | + |
| 277 | + // Encrypt the obfuscated data |
| 278 | + // Output: [nonce | ciphertext | auth tag] |
| 279 | + ciphertext := aead.Seal(nonce, nonce, obfuscated, nil) |
| 280 | + |
| 281 | + return ciphertext, nil |
| 282 | +} |
| 283 | + |
| 284 | +// Out decrypts the data and reverses obfuscation. |
| 285 | +// The flow is: decrypt -> deobfuscate -> plaintext |
| 286 | +func (s *ChaChaPolySigil) Out(data []byte) ([]byte, error) { |
| 287 | + if s.Key == nil { |
| 288 | + return nil, ErrNoKeyConfigured |
| 289 | + } |
| 290 | + if data == nil { |
| 291 | + return nil, nil |
| 292 | + } |
| 293 | + |
| 294 | + aead, err := chacha20poly1305.NewX(s.Key) |
| 295 | + if err != nil { |
| 296 | + return nil, err |
| 297 | + } |
| 298 | + |
| 299 | + minLen := aead.NonceSize() + aead.Overhead() |
| 300 | + if len(data) < minLen { |
| 301 | + return nil, ErrCiphertextTooShort |
| 302 | + } |
| 303 | + |
| 304 | + // Extract nonce from ciphertext |
| 305 | + nonce := data[:aead.NonceSize()] |
| 306 | + ciphertext := data[aead.NonceSize():] |
| 307 | + |
| 308 | + // Decrypt |
| 309 | + obfuscated, err := aead.Open(nil, nonce, ciphertext, nil) |
| 310 | + if err != nil { |
| 311 | + return nil, ErrDecryptionFailed |
| 312 | + } |
| 313 | + |
| 314 | + // Deobfuscate using the same nonce as entropy |
| 315 | + plaintext := obfuscated |
| 316 | + if s.Obfuscator != nil { |
| 317 | + plaintext = s.Obfuscator.Deobfuscate(obfuscated, nonce) |
| 318 | + } |
| 319 | + |
| 320 | + if len(plaintext) == 0 { |
| 321 | + return []byte{}, nil |
| 322 | + } |
| 323 | + |
| 324 | + return plaintext, nil |
| 325 | +} |
| 326 | + |
| 327 | +// GetNonceFromCiphertext extracts the nonce from encrypted output. |
| 328 | +// This is provided for debugging/logging purposes only. |
| 329 | +// The nonce should NOT be stored separately in headers. |
| 330 | +func GetNonceFromCiphertext(ciphertext []byte) ([]byte, error) { |
| 331 | + nonceSize := chacha20poly1305.NonceSizeX |
| 332 | + if len(ciphertext) < nonceSize { |
| 333 | + return nil, ErrCiphertextTooShort |
| 334 | + } |
| 335 | + nonceCopy := make([]byte, nonceSize) |
| 336 | + copy(nonceCopy, ciphertext[:nonceSize]) |
| 337 | + return nonceCopy, nil |
| 338 | +} |
0 commit comments