|
| 1 | +package com.thealgorithms.datastructures.trees; |
| 2 | + |
| 3 | +import java.util.ArrayList; |
| 4 | +import java.util.Arrays; |
| 5 | +import java.util.List; |
| 6 | + |
| 7 | +/** |
| 8 | + * Centroid Decomposition is a divide-and-conquer technique for trees. |
| 9 | + * It recursively partitions a tree by finding centroids - nodes whose removal |
| 10 | + * creates balanced subtrees (each with at most N/2 nodes). |
| 11 | + * |
| 12 | + * <p> |
| 13 | + * Time Complexity: O(N log N) for construction |
| 14 | + * Space Complexity: O(N) |
| 15 | + * |
| 16 | + * <p> |
| 17 | + * Applications: |
| 18 | + * - Distance queries on trees |
| 19 | + * - Path counting problems |
| 20 | + * - Nearest neighbor searches |
| 21 | + * |
| 22 | + * @see <a href="https://en.wikipedia.org/wiki/Centroid_decomposition">Centroid Decomposition</a> |
| 23 | + * @see <a href="https://codeforces.com/blog/entry/81661">Centroid Decomposition Tutorial</a> |
| 24 | + * @author lens161 |
| 25 | + */ |
| 26 | +public final class CentroidDecomposition { |
| 27 | + |
| 28 | + private CentroidDecomposition() { |
| 29 | + } |
| 30 | + |
| 31 | + /** |
| 32 | + * Represents the centroid tree structure. |
| 33 | + */ |
| 34 | + public static final class CentroidTree { |
| 35 | + private final int n; |
| 36 | + private final List<List<Integer>> adj; |
| 37 | + private final int[] parent; |
| 38 | + private final int[] subtreeSize; |
| 39 | + private final boolean[] removed; |
| 40 | + private int root; |
| 41 | + |
| 42 | + /** |
| 43 | + * Constructs a centroid tree from an adjacency list. |
| 44 | + * |
| 45 | + * @param adj adjacency list representation of the tree (0-indexed) |
| 46 | + * @throws IllegalArgumentException if tree is empty or null |
| 47 | + */ |
| 48 | + public CentroidTree(List<List<Integer>> adj) { |
| 49 | + if (adj == null || adj.isEmpty()) { |
| 50 | + throw new IllegalArgumentException("Tree cannot be empty or null"); |
| 51 | + } |
| 52 | + |
| 53 | + this.n = adj.size(); |
| 54 | + this.adj = adj; |
| 55 | + this.parent = new int[n]; |
| 56 | + this.subtreeSize = new int[n]; |
| 57 | + this.removed = new boolean[n]; |
| 58 | + Arrays.fill(parent, -1); |
| 59 | + |
| 60 | + // Build centroid tree starting from node 0 |
| 61 | + this.root = decompose(0, -1); |
| 62 | + } |
| 63 | + |
| 64 | + /** |
| 65 | + * Recursively builds the centroid tree. |
| 66 | + * |
| 67 | + * @param u current node |
| 68 | + * @param p parent in centroid tree |
| 69 | + * @return centroid of current component |
| 70 | + */ |
| 71 | + private int decompose(int u, int p) { |
| 72 | + int size = getSubtreeSize(u, -1); |
| 73 | + int centroid = findCentroid(u, -1, size); |
| 74 | + |
| 75 | + removed[centroid] = true; |
| 76 | + parent[centroid] = p; |
| 77 | + |
| 78 | + // Recursively decompose each subtree |
| 79 | + for (int v : adj.get(centroid)) { |
| 80 | + if (!removed[v]) { |
| 81 | + decompose(v, centroid); |
| 82 | + } |
| 83 | + } |
| 84 | + |
| 85 | + return centroid; |
| 86 | + } |
| 87 | + |
| 88 | + /** |
| 89 | + * Calculates subtree size from node u. |
| 90 | + * |
| 91 | + * @param u current node |
| 92 | + * @param p parent node (-1 for root) |
| 93 | + * @return size of subtree rooted at u |
| 94 | + */ |
| 95 | + private int getSubtreeSize(int u, int p) { |
| 96 | + subtreeSize[u] = 1; |
| 97 | + for (int v : adj.get(u)) { |
| 98 | + if (v != p && !removed[v]) { |
| 99 | + subtreeSize[u] += getSubtreeSize(v, u); |
| 100 | + } |
| 101 | + } |
| 102 | + return subtreeSize[u]; |
| 103 | + } |
| 104 | + |
| 105 | + /** |
| 106 | + * Finds the centroid of a subtree. |
| 107 | + * A centroid is a node whose removal creates components with size <= totalSize/2. |
| 108 | + * |
| 109 | + * @param u current node |
| 110 | + * @param p parent node |
| 111 | + * @param totalSize total size of current component |
| 112 | + * @return centroid node |
| 113 | + */ |
| 114 | + private int findCentroid(int u, int p, int totalSize) { |
| 115 | + for (int v : adj.get(u)) { |
| 116 | + if (v != p && !removed[v] && subtreeSize[v] > totalSize / 2) { |
| 117 | + return findCentroid(v, u, totalSize); |
| 118 | + } |
| 119 | + } |
| 120 | + return u; |
| 121 | + } |
| 122 | + |
| 123 | + /** |
| 124 | + * Gets the parent of a node in the centroid tree. |
| 125 | + * |
| 126 | + * @param node the node |
| 127 | + * @return parent node in centroid tree, or -1 if root |
| 128 | + */ |
| 129 | + public int getParent(int node) { |
| 130 | + if (node < 0 || node >= n) { |
| 131 | + throw new IllegalArgumentException("Invalid node: " + node); |
| 132 | + } |
| 133 | + return parent[node]; |
| 134 | + } |
| 135 | + |
| 136 | + /** |
| 137 | + * Gets the root of the centroid tree. |
| 138 | + * |
| 139 | + * @return root node |
| 140 | + */ |
| 141 | + public int getRoot() { |
| 142 | + return root; |
| 143 | + } |
| 144 | + |
| 145 | + /** |
| 146 | + * Gets the number of nodes in the tree. |
| 147 | + * |
| 148 | + * @return number of nodes |
| 149 | + */ |
| 150 | + public int size() { |
| 151 | + return n; |
| 152 | + } |
| 153 | + |
| 154 | + /** |
| 155 | + * Returns the centroid tree structure as a string. |
| 156 | + * Format: node -> parent (or ROOT for root node) |
| 157 | + * |
| 158 | + * @return string representation |
| 159 | + */ |
| 160 | + @Override |
| 161 | + public String toString() { |
| 162 | + StringBuilder sb = new StringBuilder("Centroid Tree:\n"); |
| 163 | + for (int i = 0; i < n; i++) { |
| 164 | + sb.append("Node ").append(i).append(" -> "); |
| 165 | + if (parent[i] == -1) { |
| 166 | + sb.append("ROOT"); |
| 167 | + } else { |
| 168 | + sb.append("Parent ").append(parent[i]); |
| 169 | + } |
| 170 | + sb.append("\n"); |
| 171 | + } |
| 172 | + return sb.toString(); |
| 173 | + } |
| 174 | + } |
| 175 | + |
| 176 | + /** |
| 177 | + * Creates a centroid tree from an edge list. |
| 178 | + * |
| 179 | + * @param n number of nodes (0-indexed: 0 to n-1) |
| 180 | + * @param edges list of edges where each edge is [u, v] |
| 181 | + * @return CentroidTree object |
| 182 | + * @throws IllegalArgumentException if n <= 0 or edges is invalid |
| 183 | + */ |
| 184 | + public static CentroidTree buildFromEdges(int n, int[][] edges) { |
| 185 | + if (n <= 0) { |
| 186 | + throw new IllegalArgumentException("Number of nodes must be positive"); |
| 187 | + } |
| 188 | + if (edges == null) { |
| 189 | + throw new IllegalArgumentException("Edges cannot be null"); |
| 190 | + } |
| 191 | + if (edges.length != n - 1) { |
| 192 | + throw new IllegalArgumentException("Tree must have exactly n-1 edges"); |
| 193 | + } |
| 194 | + |
| 195 | + List<List<Integer>> adj = new ArrayList<>(); |
| 196 | + for (int i = 0; i < n; i++) { |
| 197 | + adj.add(new ArrayList<>()); |
| 198 | + } |
| 199 | + |
| 200 | + for (int[] edge : edges) { |
| 201 | + if (edge.length != 2) { |
| 202 | + throw new IllegalArgumentException("Each edge must have exactly 2 nodes"); |
| 203 | + } |
| 204 | + int u = edge[0]; |
| 205 | + int v = edge[1]; |
| 206 | + |
| 207 | + if (u < 0 || u >= n || v < 0 || v >= n) { |
| 208 | + throw new IllegalArgumentException("Invalid node in edge: [" + u + ", " + v + "]"); |
| 209 | + } |
| 210 | + |
| 211 | + adj.get(u).add(v); |
| 212 | + adj.get(v).add(u); |
| 213 | + } |
| 214 | + |
| 215 | + return new CentroidTree(adj); |
| 216 | + } |
| 217 | +} |
0 commit comments