@@ -269,8 +269,7 @@ RunWaterBalance <- function(r.grid, tr.stress.periods,
269269
270270 comp <- entity.components [[i ]]@ data
271271 comp <- comp [comp $ Source == " Mixed" , cols ]
272- names(comp ) <- c(" EntityName" , " area.mix" , " et.mix" , " precip.mix" ,
273- " cir.mix" )
272+ names(comp ) <- c(" EntityName" , " area.mix" , " et.mix" , " precip.mix" , " cir.mix" )
274273 d <- suppressWarnings(dplyr :: left_join(d , comp , by = " EntityName" ))
275274 d $ cir.mix [is.na(d $ cir.mix )] <- 0
276275
@@ -312,8 +311,7 @@ RunWaterBalance <- function(r.grid, tr.stress.periods,
312311 d $ hg.mix [is.src ] <- d $ SWDel [is.src ]
313312 d $ gw.dem.mix [is.src ] <- d $ cir.mix [is.src ] / d $ Eff [is.src ] - d $ hg.mix [is.src ]
314313 d $ gw.dem.mix [is.src & d $ cir.mix < = 0 ] <- 0
315- d $ gw.div.est [is.src ] <- d $ WWDiv [is.src ] - d $ gw.dem.mix [is.src ] -
316- d $ GWDiv [is.src ]
314+ d $ gw.div.est [is.src ] <- d $ WWDiv [is.src ] - d $ gw.dem.mix [is.src ] - d $ GWDiv [is.src ]
317315 is.pos <- is.src & d $ gw.div.est > = 0
318316 d $ gw.div.est [is.pos ] <- 0
319317 d $ rech.mix [is.src ] <- d $ hg.mix [is.src ] - d $ GWDiv [is.src ] + d $ WWDiv [is.src ] -
@@ -346,8 +344,7 @@ RunWaterBalance <- function(r.grid, tr.stress.periods,
346344 d $ gw.dem.gw [is.src & d $ cir.gw < = 0 ] <- 0
347345 d $ gw.div.est [is.src ] <- - d $ gw.dem.gw [is.src ] - d $ GWDiv [is.src ]
348346 d $ gw.div.est [is.src & d $ gw.div.est > 0 ] <- 0
349- d $ rech.gw [is.src ] <- - d $ GWDiv [is.src ] - d $ gw.div.est [is.src ] -
350- d $ cir.gw [is.src ]
347+ d $ rech.gw [is.src ] <- - d $ GWDiv [is.src ] - d $ gw.div.est [is.src ] - d $ cir.gw [is.src ]
351348
352349 return (d )
353350 }
@@ -357,18 +354,13 @@ RunWaterBalance <- function(r.grid, tr.stress.periods,
357354 cols <- names(div.by.entity [[1 ]])
358355 FUN <- function (i ) {
359356 d <- data.frame (EntityName = levels(irr.entities @ data $ EntityName ))
360-
361357 d <- suppressWarnings(dplyr :: left_join(d , sw.div.by.entity [[i ]], by = " EntityName" ))
362358 d $ SWDiv [is.na(d $ SWDiv )] <- 0
363-
364359 d <- suppressWarnings(dplyr :: left_join(d , gw.div.by.entity [[i ]], by = " EntityName" ))
365360 d $ GWDiv [is.na(d $ GWDiv )] <- 0
366-
367361 d <- suppressWarnings(dplyr :: left_join(d , ww.div.by.entity [[i ]], by = " EntityName" ))
368362 d $ WWDiv [is.na(d $ WWDiv )] <- 0
369-
370363 d $ rech.gw <- d $ SWDiv - d $ GWDiv + d $ WWDiv
371-
372364 d [, cols [! cols %in% names(d )]] <- NA
373365 return (d [, cols ])
374366 }
@@ -383,8 +375,7 @@ RunWaterBalance <- function(r.grid, tr.stress.periods,
383375
384376 cols <- names(div.by.entity [[1 ]])
385377 d <- dplyr :: bind_rows(lapply(div.by.entity , function (i ) i [, cols ]))
386- year.month <- rep(names(div.by.entity ),
387- times = vapply(div.by.entity , nrow , 0L ))
378+ year.month <- rep(names(div.by.entity ), times = vapply(div.by.entity , nrow , 0L ))
388379 d <- cbind(YearMonth = year.month , d )
389380 rownames(d ) <- NULL
390381 d <- d [order(d $ EntityName ), c(2 , 1 , 3 : ncol(d ))]
@@ -464,12 +455,10 @@ RunWaterBalance <- function(r.grid, tr.stress.periods,
464455 FUN <- function (i ) {
465456 d <- comb.sw.irr
466457 d $ sw.rate <- 0
467- priority.cut <- priority.cuts [priority.cuts $ YearMonth == i ,
468- " Pdate_BWR" ]
458+ priority.cut <- priority.cuts [priority.cuts $ YearMonth == i , " Pdate_BWR" ]
469459 is.lt <- ! is.sc.src & (! is.na(priority.cut ) & d $ Pdate < priority.cut )
470460 d $ sw.rate [is.lt ] <- d $ MaxDivRate [is.lt ]
471- priority.cut <- priority.cuts [priority.cuts $ YearMonth == i ,
472- " Pdate_SC" ]
461+ priority.cut <- priority.cuts [priority.cuts $ YearMonth == i , " Pdate_SC" ]
473462 is.lt <- is.sc.src & (! is.na(priority.cut ) & d $ Pdate < priority.cut )
474463 d $ sw.rate [is.lt ] <- d $ MaxDivRate [is.lt ]
475464 d <- dplyr :: summarise_(dplyr :: group_by_(d , " WaterRight" ),
@@ -486,8 +475,7 @@ RunWaterBalance <- function(r.grid, tr.stress.periods,
486475 d <- d [is.est , ]
487476 d.agg <- dplyr :: summarise_(dplyr :: group_by_(d , " EntityName" ),
488477 gw.rate = " sum(gw.rate, na.rm=TRUE)" )
489- d $ fraction <- d $ gw.rate /
490- d.agg $ gw.rate [match(d $ EntityName , d.agg $ EntityName )]
478+ d $ fraction <- d $ gw.rate / d.agg $ gw.rate [match(d $ EntityName , d.agg $ EntityName )]
491479 d $ gw.div <- 0
492480 div <- div.by.entity [[i ]][, c(" EntityName" , " gw.div.est" )]
493481 idxs <- match(d $ EntityName , div $ EntityName )
@@ -499,8 +487,7 @@ RunWaterBalance <- function(r.grid, tr.stress.periods,
499487 names(rech.by.pod ) <- yr.mo.irr
500488
501489 FUN <- function (i ) {
502- rec <- gw.div.by.wmis.no [gw.div.by.wmis.no $ YearMonth == i ,
503- c(" WMISNumber" , " GWDiv" )]
490+ rec <- gw.div.by.wmis.no [gw.div.by.wmis.no $ YearMonth == i , c(" WMISNumber" , " GWDiv" )]
504491 est <- rech.by.pod [[i ]][, c(" WMISNumber" , " gw.div" )]
505492 est <- dplyr :: summarise_(dplyr :: group_by_(est , " WMISNumber" ),
506493 gw.div = " sum(gw.div, na.rm=TRUE)" )
@@ -517,7 +504,8 @@ RunWaterBalance <- function(r.grid, tr.stress.periods,
517504
518505 is.non.irr <- div.gw $ YearMonth %in% yr.mo.non.irr
519506 d <- div.gw [is.non.irr , c(" WMISNumber" , " YearMonth" , " GWDiv" )]
520-
507+ d <- aggregate(d $ GWDiv , by = list (paste(d [, 1 ], d [, 2 ])), sum )
508+ d <- data.frame (do.call(rbind , strsplit(d [, 1 ], split = " " )), d [, 2 ])
521509 rows <- match(d [, 1 ], rownames(pod.rech ))
522510 cols <- match(d [, 2 ], colnames(pod.rech ))
523511 pod.rech [cbind(rows , cols )] <- d [, 3 ]
0 commit comments