Skip to content

Commit e3baf59

Browse files
committed
Use symmetric form of normality
I noted that every time I used normal it was under sym This felt like a good reason to reverse it
1 parent 69be655 commit e3baf59

File tree

2 files changed

+4
-5
lines changed

2 files changed

+4
-5
lines changed

src/Algebra/Construct/Quotient/Group.agda

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -66,15 +66,14 @@ open AlgDefs _≋_
6666
≋-∙-cong : Congruent₂ _∙_
6767
≋-∙-cong {x} {y} {u} {v} (g by ιg∙x≈y) (h by ιh∙u≈v) = g N.∙ h′ by begin
6868
ι (g N.∙ h′) ∙ (x ∙ u) ≈⟨ ∙-congʳ (ι.∙-homo g h′) ⟩
69-
(ι g ∙ ι h′) ∙ (x ∙ u) ≈⟨ uv∙wx≈u[vw∙x] (ι g) (ι h′) x u ⟩
70-
ι g ∙ ((ι h′ ∙ x) ∙ u) ≈⟨ uv≈w⇒xu∙v≈xw (uv≈w⇒u∙vx≈wx (normal h x .proj₂) u) (ι g) ⟨
69+
(ι g ∙ ι h′) ∙ (x ∙ u) ≈⟨ uv≈wx⇒yu∙vz≈yw∙xz (normal h x .proj₂) (ι g) u ⟩
7170
(ι g ∙ x) ∙ (ι h ∙ u) ≈⟨ ∙-cong ιg∙x≈y ιh∙u≈v ⟩
7271
y ∙ v ∎
7372
where h′ = normal h x .proj₁
7473

7574
≋-⁻¹-cong : Congruent₁ _⁻¹
7675
≋-⁻¹-cong {x} {y} (g by ιg∙x≈y) = h by begin
77-
ι h ∙ x ⁻¹ ≈⟨ normal (g N.⁻¹) (x ⁻¹) .proj₂
76+
ι h ∙ x ⁻¹ ≈⟨ normal (g N.⁻¹) (x ⁻¹) .proj₂
7877
x ⁻¹ ∙ ι (g N.⁻¹) ≈⟨ ∙-congˡ (ι.⁻¹-homo g) ⟩
7978
x ⁻¹ ∙ ι g ⁻¹ ≈⟨ ⁻¹-anti-homo-∙ (ι g) x ⟨
8079
(ι g ∙ x) ⁻¹ ≈⟨ ⁻¹-cong ιg∙x≈y ⟩

src/Algebra/NormalSubgroup.agda

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ private
2020

2121
-- every element of the subgroup commutes in G
2222
Normal : {c′ ℓ′} Subgroup c′ ℓ′ Set (c ⊔ ℓ ⊔ c′)
23-
Normal subgroup = n g ∃[ n′ ] g G.∙ ι n G.≈ ι n′ G.∙ g
23+
Normal subgroup = n g ∃[ n′ ] ι n′ G.∙ g G.≈ g G.∙ ι n
2424
where open Subgroup subgroup
2525

2626
record NormalSubgroup c′ ℓ′ : Set (c ⊔ ℓ ⊔ suc (c′ ⊔ ℓ′)) where
@@ -31,5 +31,5 @@ record NormalSubgroup c′ ℓ′ : Set (c ⊔ ℓ ⊔ suc (c′ ⊔ ℓ′)) wh
3131
open Subgroup subgroup public
3232

3333
abelian⇒subgroup-normal : {c′ ℓ′} Commutative G._≈_ G._∙_ (subgroup : Subgroup c′ ℓ′) Normal subgroup
34-
abelian⇒subgroup-normal ∙-comm subgroup n g = n , ∙-comm g (ι n)
34+
abelian⇒subgroup-normal ∙-comm subgroup n g = n , ∙-comm (ι n) g
3535
where open Subgroup subgroup

0 commit comments

Comments
 (0)