-
Notifications
You must be signed in to change notification settings - Fork 5
Description
hi i want to train Iudex, I composed up docker and ran python soulsai\distributed\client\main.py, but I encounter this problem:
PS E:\For the Dark Soul\SoulsAI> python soulsai\distributed\client\main.py
INFO:soulsai.distributed.client.dqn_client:Launching DQN client
INFO:soulsai.distributed.client.dqn_client:Press 'Enter' to end training
INFO:soulsai.distributed.client.connector:Waiting for model download...
INFO:soulsai.distributed.client.connector:Download complete, connector initialized
INFO:soulsai.distributed.client.dqn_client:Client node running
Traceback (most recent call last):
File "E:\For the Dark Soul\SoulsAI\soulsai\distributed\client\main.py", line 36, in
dqn_client(config)
File "E:\For the Dark Soul\SoulsAI\soulsai\distributed\client\dqn_client.py", line 52, in dqn_client
_dqn_client(config)
File "E:\For the Dark Soul\SoulsAI\soulsai\distributed\client\dqn_client.py", line 109, in _dqn_client
sample = con.transforms"obs"
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\thand\anaconda3\envs\soulsAI_env\Lib\site-packages\torch\nn\modules\module.py", line 1751, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\thand\anaconda3\envs\soulsAI_env\Lib\site-packages\torch\nn\modules\module.py", line 1762, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\For the Dark Soul\SoulsAI\soulsai\core\transform.py", line 172, in forward
x[sample_key][..., idx] = (x[sample_key][..., idx] - mean[..., idx]) / std[..., idx]
~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~
RuntimeError: The size of tensor a (74) must match the size of tensor b (8) at non-singleton dimension 1
[W520 16:19:36.000000000 CudaIPCTypes.cpp:16] Producer process has been terminated before all shared CUDA tensors released. See Note [Sharing CUDA tensors]
I tried to change many values in config.yaml but nothing seems to work:
Environment information
env:
name: SoulsGymIudex-v0
vectorize: False
kwargs:
game_speed: 1.
obs_shape: [74]
n_actions: 20
wrappers:
IudexObservationWrapper:
kwargs:
max_env_steps: null
Algorithm choice
algorithm: DQN
DQN parameters
dqn:
batch_size: 64
train_epochs: 25
update_samples: 25
fill_buffer: False
min_samples: null
max_model_delay: 10
agent:
type: DQNAgent
kwargs:
lr: 0.001
gamma: 0.99
multistep: 4
grad_clip: 1.
q_clip: 2
device: cuda
network:
type: DQN
kwargs:
input_dims: 74
output_dims: 20
layer_dims: 128
replay_buffer:
type: ReplayBuffer
kwargs:
max_size: 100_000
observation_transform:
type: Normalize
kwargs:
keys:
- obs
shapes:
- [8]
Can you look into this issue please? ty