An interactive web application for visualizing global historical climate data and future climate projections. It show temperature, precipitation, and other climate variables with support for multiple climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) and time periods (2020-2100).
- CRU TS (Climatic Research Unit Time-Series): https://catalogue.ceda.ac.uk/uuid/ec331e93d21347e6bf5fa4b9c68dbd2c/
- Historic 1970-2000 WorldClim data: https://www.worldclim.org/data/worldclim21.html
- WorldClim: Downscaled CMIP5 and CMIP6 model outputs for 2021–2100: https://www.worldclim.org/data/cmip6/cmip6_clim5m.html
- CHELSA Climatologies at high resolution for the earth’s land surface areas: https://chelsa-climate.org/downloads/
- https://interactive-atlas.ipcc.ch/
- ERA5 monthly averaged data on single levels from 1940 to present: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview
- ERA5 post-processed daily statistics on single levels from 1940 to present: https://cds.climate.copernicus.eu/datasets/derived-era5-single-levels-daily-statistics?tab=overview
- Copernicus Climate Data Store - CMIP6 climate projections: https://cds.climate.copernicus.eu/datasets/projections-cmip6?tab=overview
- NASA NEX-GDDP-CMIP6 (~25 km resolution): https://registry.opendata.aws/nex-gddp-cmip6/
- CHELSA (~1km resolution): https://chelsa-climate.org/
GDAL is needed for the gdal2tiles.py script that creates map-tiles from a single image (matplotlib plot).
Install GDAL with conda to prevent the need to install a hugh number of system level dependencies:
conda install -c conda-forge gdal==3.11.0WARNING: tippecanoe 1.19.1 is the latest version that produces valid GeoJSON due to issue mapbox/tippecanoe#652
TODO: migrate to active fork https://github.com/felt/tippecanoe
sudo apt install libsqlite3-dev
git clone https://github.com/mapbox/tippecanoe.git
cd tippecanoe
git checkout tags/1.19.1
make -j
make installnpm install -g tileserver-glRun:
python scrips/create_contour.pyto create contour and raster mbtiles.
python scripts/create_tileserver_config.pyto generate the tileserver config.
uvicorn api.main:app --reloadtileserver-gl --config tileserver_config_dev.json --port 8080In ./client run:
ng serveOr run against the openclimatemap.org API and tileserver:
ng serve --configuration=production-backend
Run:
pytestBuild and deploy client and backend:
bash scripts/deploy.shTODO: include create tiles, create config and upload tiles
Deploy the client angular app:
bash scripts/deploy_client.shbash scripts/deploy_backend.shIf you have locally created tiles, upload them to the server with:
rsync -avP data/tiles openclimatemap.org:/home/bart/climatemaps/data/