|
| 1 | +#include <array> |
| 2 | +#include <cstdint> |
| 3 | +#include <vector> |
| 4 | +#include <limits> |
| 5 | +#include <cmath> |
| 6 | +#include <algorithm> |
| 7 | + |
| 8 | +#if defined(__ARM_NEON) |
| 9 | +#include <arm_neon.h> |
| 10 | +#elif defined(__AVX__) |
| 11 | +#include <immintrin.h> |
| 12 | +#endif |
| 13 | + |
| 14 | + |
| 15 | +template<typename T> |
| 16 | +using Vec3 = std::array<T, 3>; |
| 17 | + |
| 18 | +typedef Vec3<float> Vec3_f; |
| 19 | +typedef Vec3<double> Vec3_d; |
| 20 | + |
| 21 | + |
| 22 | +template<typename T> |
| 23 | +inline T dot(const Vec3<T>& a, const Vec3<T>& b) { |
| 24 | + return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; |
| 25 | +} |
| 26 | + |
| 27 | + |
| 28 | +template<typename T> |
| 29 | +inline Vec3<T> cross(const Vec3<T>& a, const Vec3<T>& b) { |
| 30 | + return { |
| 31 | + a[1] * b[2] - a[2] * b[1], |
| 32 | + a[2] * b[0] - a[0] * b[2], |
| 33 | + a[0] * b[1] - a[1] * b[0] |
| 34 | + }; |
| 35 | +} |
| 36 | + |
| 37 | +template<typename T> |
| 38 | +inline Vec3<T> operator-(const Vec3<T>& a, const Vec3<T>& b) { |
| 39 | + return {a[0] - b[0], a[1] - b[1], a[2] - b[2]}; |
| 40 | +} |
| 41 | + |
| 42 | +template<typename T> |
| 43 | +inline int support_vector(const std::vector<Vec3<T>>& vertices, const Vec3<T>& d, Vec3<T>& support) { |
| 44 | + T highest = -std::numeric_limits<T>::max(); |
| 45 | + support[0]=0; |
| 46 | + support[1]=0; |
| 47 | + support[2]=0; |
| 48 | + int support_i = -1; |
| 49 | + |
| 50 | + for (size_t i = 0; i < vertices.size(); ++i) { |
| 51 | + T dot_value = dot(vertices[i], d); |
| 52 | + if (dot_value > highest) { |
| 53 | + highest = dot_value; |
| 54 | + support[0] = vertices[i][0]; |
| 55 | + support[1] = vertices[i][1]; |
| 56 | + support[2] = vertices[i][2]; |
| 57 | + support_i = i; |
| 58 | + } |
| 59 | + } |
| 60 | + |
| 61 | + return support_i; |
| 62 | +} |
| 63 | + |
| 64 | +template<typename T> |
| 65 | +bool handle_simplex(std::vector<Vec3<T>>& simplex, Vec3<T>& d, T tol) { |
| 66 | + switch (simplex.size()) { |
| 67 | + case 2: { |
| 68 | + const auto& a = simplex[1]; |
| 69 | + const auto& b = simplex[0]; |
| 70 | + Vec3<T> ab = b - a; |
| 71 | + Vec3<T> ao = {-a[0], -a[1], -a[2]}; |
| 72 | + |
| 73 | + if (dot(ab, ao) > tol) { |
| 74 | + d = cross(cross(ab, ao), ab); |
| 75 | + } else { |
| 76 | + simplex.erase(simplex.begin()); |
| 77 | + d = ao; |
| 78 | + } |
| 79 | + break; |
| 80 | + } |
| 81 | + case 3: { |
| 82 | + const auto& a = simplex[2]; |
| 83 | + const auto& b = simplex[1]; |
| 84 | + const auto& c = simplex[0]; |
| 85 | + Vec3<T> ab = b - a; |
| 86 | + Vec3<T> ac = c - a; |
| 87 | + Vec3<T> ao = {-a[0], -a[1], -a[2]}; |
| 88 | + Vec3<T> abc = cross(ab, ac); |
| 89 | + |
| 90 | + if (dot(cross(abc, ac), ao) > tol) { |
| 91 | + if (dot(ac, ao) > 0) { |
| 92 | + simplex.erase(simplex.begin() + 1); |
| 93 | + d = cross(cross(ac, ao), ac); |
| 94 | + } else { |
| 95 | + simplex.erase(simplex.begin()); |
| 96 | + return handle_simplex<T>(simplex, d, tol); |
| 97 | + } |
| 98 | + } else { |
| 99 | + if (dot(cross(ab, abc), ao) > tol) { |
| 100 | + simplex.erase(simplex.begin()); |
| 101 | + return handle_simplex<T>(simplex, d, tol); |
| 102 | + } else { |
| 103 | + if (dot(abc, ao) > tol) { |
| 104 | + d = abc; |
| 105 | + } else { |
| 106 | + std::swap(simplex[0], simplex[1]); |
| 107 | + d = {-abc[0], -abc[1], -abc[2]}; |
| 108 | + } |
| 109 | + } |
| 110 | + } |
| 111 | + break; |
| 112 | + } |
| 113 | + case 4: { |
| 114 | + const auto& a = simplex[3]; |
| 115 | + const auto& b = simplex[2]; |
| 116 | + const auto& c = simplex[1]; |
| 117 | + const auto& d_point = simplex[0]; |
| 118 | + |
| 119 | + Vec3<T> ab = b - a; |
| 120 | + Vec3<T> ac = c - a; |
| 121 | + Vec3<T> ad = d_point - a; |
| 122 | + Vec3<T> ao = {-a[0], -a[1], -a[2]}; |
| 123 | + |
| 124 | + Vec3<T> abc = cross<T>(ab, ac); |
| 125 | + Vec3<T> acd = cross<T>(ac, ad); |
| 126 | + Vec3<T> adb = cross<T>(ad, ab); |
| 127 | + |
| 128 | + if (dot(abc, ao) > tol) { |
| 129 | + simplex.erase(simplex.begin()); |
| 130 | + return handle_simplex<T>(simplex, d, tol); |
| 131 | + } else if (dot(acd, ao) > tol) { |
| 132 | + simplex.erase(simplex.begin() + 1); |
| 133 | + return handle_simplex<T>(simplex, d, tol); |
| 134 | + } else if (dot(adb, ao) > tol) { |
| 135 | + simplex.erase(simplex.begin() + 2); |
| 136 | + return handle_simplex<T>(simplex, d, tol); |
| 137 | + } else { |
| 138 | + return true; |
| 139 | + } |
| 140 | + } |
| 141 | + } |
| 142 | + return false; |
| 143 | +} |
| 144 | + |
| 145 | +inline bool isVisited(bool* arr, const size_t cols, const size_t i, const size_t j) { |
| 146 | + return arr[i * cols + j]; |
| 147 | + }; |
| 148 | +inline Vec3_d& getVisited(Vec3_d* tt, const size_t cols, const size_t i, const size_t j) { |
| 149 | + return tt[i * cols + j]; |
| 150 | + }; |
| 151 | +inline void setVisited(bool* arr, Vec3<double>* tt, const size_t cols, const size_t i, const size_t j, const Vec3_d& val) { |
| 152 | + arr[i * cols + j]=true; |
| 153 | + tt[i*cols+j]=val; |
| 154 | +}; |
| 155 | +bool gjk_collision_detection(const std::vector<Vec3<double>>& vertices1, const std::vector<Vec3<double>>& vertices2, double tol , size_t max_iter) { |
| 156 | + if (max_iter == 0) { |
| 157 | + max_iter = vertices1.size() * vertices2.size(); |
| 158 | + } |
| 159 | + const size_t rows=vertices1.size(); |
| 160 | + const size_t cols=vertices2.size(); |
| 161 | + bool* arr= new bool[rows * cols]; |
| 162 | + Vec3<double>* tt= new Vec3<double>[rows * cols]; |
| 163 | + |
| 164 | + std::vector<Vec3<double>> simplex; |
| 165 | + simplex.reserve(4); // Pre-allocate space for efficiency |
| 166 | + |
| 167 | + auto support = [&](const Vec3<double>& d, size_t &i_index, size_t &j_index) -> Vec3<double> { |
| 168 | + Vec3<double> p1; |
| 169 | + Vec3<double> p2; |
| 170 | + i_index = support_vector<double>(vertices1, d, p1); |
| 171 | + j_index = support_vector<double>(vertices2, {-d[0], -d[1], -d[2]}, p2); |
| 172 | + |
| 173 | + return p1 - p2; |
| 174 | + }; |
| 175 | + size_t i,j; |
| 176 | + Vec3<double> d = {0, 0, 1}; |
| 177 | + auto new_point=support(d, i,j); |
| 178 | + setVisited(arr,tt,cols,i,j, new_point); |
| 179 | + simplex.push_back(new_point); |
| 180 | + d = {-simplex[0][0], -simplex[0][1], -simplex[0][2]}; |
| 181 | + |
| 182 | + for (size_t iter = 0; iter < max_iter; ++iter) { |
| 183 | + new_point = support(d,i,j ); |
| 184 | + if (isVisited(arr,cols, i,j)){ |
| 185 | + auto vec=new_point-getVisited(tt, cols, i,j); |
| 186 | + |
| 187 | + |
| 188 | + if (dot(vec, vec)==0){ |
| 189 | + delete tt; |
| 190 | + delete arr; |
| 191 | + return true; |
| 192 | + } |
| 193 | + } else{ |
| 194 | + setVisited(arr,tt, cols,i,j, new_point); |
| 195 | + } |
| 196 | + |
| 197 | + |
| 198 | + if (dot(new_point, d) < 0) { |
| 199 | + delete tt; |
| 200 | + delete arr; |
| 201 | + return false; |
| 202 | + } |
| 203 | + |
| 204 | + simplex.push_back(new_point); |
| 205 | + |
| 206 | + if (handle_simplex<double>(simplex, d, tol)) { |
| 207 | + delete tt; |
| 208 | + delete arr; |
| 209 | + return true; |
| 210 | + } |
| 211 | + } |
| 212 | + |
| 213 | + delete tt; |
| 214 | + delete arr; |
| 215 | + |
| 216 | + return false; |
| 217 | +} |
| 218 | + |
| 219 | + |
0 commit comments