diff --git a/ML Algorithms/logistic regression b/ML Algorithms/logistic regression new file mode 100644 index 00000000..3238a972 --- /dev/null +++ b/ML Algorithms/logistic regression @@ -0,0 +1,26 @@ +##Logistic Reg +##Library +import pandas as pd +from sklearn.model_selection import train_test_split +import statsmodels.api as sm +from sklearn import metrics + +#Read Data ( set your file path) +data = pd.read_csv('logistic_regression_data.csv') +data.info() + +#Dummies +modeling_data = pd.get_dummies(data, columns=['Dependents'],drop_first=True) + +#Dependent & Independent Variable split +Y = modeling_data['Churn'] +X = modeling_data.drop(['Churn'], axis=1) + +#Model Training +log_reg = sm.Logit(Y.astype(float), X.astype(float)).fit() +print(log_reg.summary()) + +Y_pred = log_reg.predict(X) +Predicted_Churn = [1 if x > 0.5 else 0 for x in Y_pred] + +print(metrics.classification_report(Y, Predicted_Churn))