generated from amazon-archives/__template_Apache-2.0
-
Notifications
You must be signed in to change notification settings - Fork 731
Closed
Description
I'm having this exception while preparing features for a training, the system is Ubuntu 24.04, here's the relevant info:
// build.sbt:
libraryDependencies += "ai.djl" % "api" % "0.34.0"
libraryDependencies += "ai.djl.pytorch" % "pytorch-engine" % "0.34.0"
libraryDependencies += "ai.djl.pytorch" % "pytorch-jni" % "2.7.1-0.34.0"
libraryDependencies += ("ai.djl.pytorch" % "pytorch-native-cu124" % "2.5.1").classifier("linux-x86_64")// Where this happens in code:
println(s"targetShape=$targetShape")
featureNDArrays :+= manager.create(splitFeatures.toArray).reshape(targetShape).toType(DataType.FLOAT32, false)
valueNDArrays :+= manager.create(splitValues.toArray).toType(DataType.FLOAT32, false)
...targetShape=(-1, 48, 10)
ai.djl.engine.EngineException: Could not run 'aten::empty_strided' with arguments from the 'CUDA' backend. This could be because the operator doesn't exist for this backend, or was omitted during the selective/custom build process (if using custom build). If you are a Facebook employee using PyTorch on mobile, please visit https://fburl.com/ptmfixes for possible resolutions. 'aten::empty_strided' is only available for these backends: [CPU, Meta, QuantizedCPU, BackendSelect, Python, FuncTorchDynamicLayerBackMode, Functionalize, Named, Conjugate, Negative, ZeroTensor, ADInplaceOrView, AutogradOther, AutogradCPU, AutogradCUDA, AutogradHIP, AutogradXLA, AutogradMPS, AutogradIPU, AutogradXPU, AutogradHPU, AutogradVE, AutogradLazy, AutogradMTIA, AutogradPrivateUse1, AutogradPrivateUse2, AutogradPrivateUse3, AutogradMeta, AutogradNestedTensor, Tracer, AutocastCPU, AutocastMTIA, AutocastXPU, AutocastMPS, AutocastCUDA, FuncTorchBatched, BatchedNestedTensor, FuncTorchVmapMode, Batched, VmapMode, FuncTorchGradWrapper, PythonTLSSnapshot, FuncTorchDynamicLayerFrontMode, PreDispatch, PythonDispatcher].
CPU: registered at /pytorch/build/aten/src/ATen/RegisterCPU_2.cpp:2484 [kernel]
Meta: registered at /pytorch/build/aten/src/ATen/RegisterMeta_0.cpp:5517 [kernel]
QuantizedCPU: registered at /pytorch/build/aten/src/ATen/RegisterQuantizedCPU_0.cpp:485 [kernel]
BackendSelect: registered at /pytorch/build/aten/src/ATen/RegisterBackendSelect.cpp:792 [kernel]
Python: registered at /pytorch/aten/src/ATen/core/PythonFallbackKernel.cpp:194 [backend fallback]
FuncTorchDynamicLayerBackMode: registered at /pytorch/aten/src/ATen/functorch/DynamicLayer.cpp:479 [backend fallback]
Functionalize: registered at /pytorch/aten/src/ATen/FunctionalizeFallbackKernel.cpp:349 [backend fallback]
Named: registered at /pytorch/aten/src/ATen/core/NamedRegistrations.cpp:7 [backend fallback]
Conjugate: fallthrough registered at /pytorch/aten/src/ATen/ConjugateFallback.cpp:21 [kernel]
Negative: fallthrough registered at /pytorch/aten/src/ATen/native/NegateFallback.cpp:22 [kernel]
ZeroTensor: fallthrough registered at /pytorch/aten/src/ATen/ZeroTensorFallback.cpp:90 [kernel]
ADInplaceOrView: fallthrough registered at /pytorch/aten/src/ATen/core/VariableFallbackKernel.cpp:100 [backend fallback]
AutogradOther: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradCPU: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradCUDA: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradHIP: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradXLA: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradMPS: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradIPU: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradXPU: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradHPU: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradVE: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradLazy: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradMTIA: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradPrivateUse1: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradPrivateUse2: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradPrivateUse3: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradMeta: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
AutogradNestedTensor: registered at /pytorch/torch/csrc/autograd/generated/VariableType_2.cpp:20142 [autograd kernel]
Tracer: registered at /pytorch/torch/csrc/autograd/generated/TraceType_2.cpp:17801 [kernel]
AutocastCPU: fallthrough registered at /pytorch/aten/src/ATen/autocast_mode.cpp:322 [backend fallback]
AutocastMTIA: fallthrough registered at /pytorch/aten/src/ATen/autocast_mode.cpp:466 [backend fallback]
AutocastXPU: fallthrough registered at /pytorch/aten/src/ATen/autocast_mode.cpp:504 [backend fallback]
AutocastMPS: fallthrough registered at /pytorch/aten/src/ATen/autocast_mode.cpp:209 [backend fallback]
AutocastCUDA: fallthrough registered at /pytorch/aten/src/ATen/autocast_mode.cpp:165 [backend fallback]
FuncTorchBatched: registered at /pytorch/aten/src/ATen/functorch/LegacyBatchingRegistrations.cpp:731 [backend fallback]
BatchedNestedTensor: registered at /pytorch/aten/src/ATen/functorch/LegacyBatchingRegistrations.cpp:758 [backend fallback]
FuncTorchVmapMode: fallthrough registered at /pytorch/aten/src/ATen/functorch/VmapModeRegistrations.cpp:27 [backend fallback]
Batched: registered at /pytorch/aten/src/ATen/LegacyBatchingRegistrations.cpp:1075 [backend fallback]
VmapMode: fallthrough registered at /pytorch/aten/src/ATen/VmapModeRegistrations.cpp:33 [backend fallback]
FuncTorchGradWrapper: registered at /pytorch/aten/src/ATen/functorch/TensorWrapper.cpp:208 [backend fallback]
PythonTLSSnapshot: registered at /pytorch/aten/src/ATen/core/PythonFallbackKernel.cpp:202 [backend fallback]
FuncTorchDynamicLayerFrontMode: registered at /pytorch/aten/src/ATen/functorch/DynamicLayer.cpp:475 [backend fallback]
PreDispatch: registered at /pytorch/aten/src/ATen/core/PythonFallbackKernel.cpp:206 [backend fallback]
PythonDispatcher: registered at /pytorch/aten/src/ATen/core/PythonFallbackKernel.cpp:198 [backend fallback]
at ai.djl.pytorch.jni.PyTorchLibrary.torchFromBlob(Native Method)
at ai.djl.pytorch.jni.JniUtils.createNdFromByteBuffer(JniUtils.java:162)
at ai.djl.pytorch.engine.PtNDManager.create(PtNDManager.java:77)
at ai.djl.pytorch.engine.PtNDManager.create(PtNDManager.java:31)
at ai.djl.ndarray.NDManager.create(NDManager.java:510)
at ai.djl.ndarray.NDManager.create(NDManager.java:449)
at fovea.utils.Common$.$anonfun$featuresToNDArray$1(Common.scala:40)
at fovea.utils.Common$.$anonfun$featuresToNDArray$1$adapted(Common.scala:37)
$ nvidia-smi
Fri Sep 26 19:53:24 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 580.65.06 Driver Version: 580.65.06 CUDA Version: 13.0 |
+-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce RTX 5090 Off | 00000000:05:00.0 On | N/A |
| 0% 43C P8 37W / 450W | 512MiB / 32607MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 0 N/A N/A 2665 G /usr/lib/xorg/Xorg 153MiB |
| 0 N/A N/A 2893 G /usr/bin/gnome-shell 41MiB |
| 0 N/A N/A 10518 G /usr/bin/nautilus 19MiB |
| 0 N/A N/A 11589 G .../6836/usr/lib/firefox/firefox 213MiB |
| 0 N/A N/A 14389 G ...6798/usr/bin/telegram-desktop 6MiB |
+-----------------------------------------------------------------------------------------+$ dpkg -l | grep cudnn
ii cudnn9-cuda-13 9.13.0.50-1 amd64 NVIDIA cuDNN for CUDA 13
ii cudnn9-cuda-13-0 9.13.0.50-1 amd64 NVIDIA cuDNN for CUDA 13.0
ii libcudnn9-cuda-13 9.13.0.50-1 amd64 cuDNN runtime libraries for CUDA 13.0
ii libcudnn9-dev-cuda-13 9.13.0.50-1 amd64 cuDNN development libraries for CUDA 13.0
ii libcudnn9-headers-cuda-13 9.13.0.50-1 amd64 cuDNN header files for CUDA 13.0
ii libcudnn9-static-cuda-13 9.13.0.50-1 amd64 cuDNN static libraries for CUDA 13.0Metadata
Metadata
Assignees
Labels
No labels