Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ We start with a high level overview of some foundational concepts in numerical l

### [2. Topic Modeling with NMF and SVD](http://nbviewer.jupyter.org/github/fastai/numerical-linear-algebra/blob/master/nbs/2.%20Topic%20Modeling%20with%20NMF%20and%20SVD.ipynb) ([Video 2](https://www.youtube.com/watch?v=kgd40iDT8yY&list=PLtmWHNX-gukIc92m1K0P6bIOnZb-mg0hY&index=2) and [Video 3](https://www.youtube.com/watch?v=C8KEtrWjjyo&index=3&list=PLtmWHNX-gukIc92m1K0P6bIOnZb-mg0hY))
We will use the newsgroups dataset to try to identify the topics of different posts. We use a term-document matrix that represents the frequency of the vocabulary in the documents. We factor it using NMF, and then with SVD.
- [Topic Frequency-Inverse Document Frequency (TF-IDF)](http://nbviewer.jupyter.org/github/fastai/numerical-linear-algebra/blob/master/nbs/2.%20Topic%20Modeling%20with%20NMF%20and%20SVD.ipynb#TF-IDF)
- [Term Frequency-Inverse Document Frequency (TF-IDF)](http://nbviewer.jupyter.org/github/fastai/numerical-linear-algebra/blob/master/nbs/2.%20Topic%20Modeling%20with%20NMF%20and%20SVD.ipynb#TF-IDF)
- [Singular Value Decomposition (SVD)](http://nbviewer.jupyter.org/github/fastai/numerical-linear-algebra/blob/master/nbs/2.%20Topic%20Modeling%20with%20NMF%20and%20SVD.ipynb#Singular-Value-Decomposition-(SVD))
- [Non-negative Matrix Factorization (NMF)](http://nbviewer.jupyter.org/github/fastai/numerical-linear-algebra/blob/master/nbs/2.%20Topic%20Modeling%20with%20NMF%20and%20SVD.ipynb#Non-negative-Matrix-Factorization-(NMF))
- [Stochastic Gradient Descent (SGD)](http://nbviewer.jupyter.org/github/fastai/numerical-linear-algebra/blob/master/nbs/2.%20Topic%20Modeling%20with%20NMF%20and%20SVD.ipynb#Gradient-Descent)
Expand Down