diff --git a/ChargeSolver.ipynb b/ChargeSolver.ipynb index 8035a105..39f26718 100644 --- a/ChargeSolver.ipynb +++ b/ChargeSolver.ipynb @@ -50,12 +50,34 @@ "execution_count": 1, "id": "341deaf0-2cc8-4561-a721-36a574d8f362", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
14:57:45 CET WARNING: Using canonical configuration directory at \n", + " '/home/momchil/.config/tidy3d'. Found legacy directory at \n", + " '~/.tidy3d', which will be ignored. Remove it manually or run \n", + " 'tidy3d config migrate --delete-legacy' to clean up. \n", + "\n" + ], + "text/plain": [ + "\u001b[2;36m14:57:45 CET\u001b[0m\u001b[2;36m \u001b[0m\u001b[31mWARNING: Using canonical configuration directory at \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[32m'/home/momchil/.config/tidy3d'\u001b[0m\u001b[31m. Found legacy directory at \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[32m'~/.tidy3d'\u001b[0m\u001b[31m, which will be ignored. Remove it manually or run \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[32m'tidy3d config migrate --delete-legacy'\u001b[0m\u001b[31m to clean up. \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import numpy as np\n", "import tidy3d as td\n", "from matplotlib import pyplot as plt\n", - "from tidy3d import web" + "from tidy3d import web\n", + "\n", + "from tidy3d_backend.run_mesh import run_mesh_job" ] }, { @@ -129,25 +151,19 @@ "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
19:32:03 CEST WARNING: frequency passed to 'Medium.eps_model()'is outside of \n", - " 'Medium.frequency_range' = (59958491600000.0, 1998616386666666.8) \n", - "\n" - ], - "text/plain": [ - "\u001b[2;36m19:32:03 CEST\u001b[0m\u001b[2;36m \u001b[0m\u001b[31mWARNING: frequency passed to \u001b[0m\u001b[32m'Medium.eps_model\u001b[0m\u001b[32m(\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m\u001b[31mis outside of \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[32m'Medium.frequency_range'\u001b[0m\u001b[31m = \u001b[0m\u001b[1;31m(\u001b[0m\u001b[1;36m59958491600000.0\u001b[0m\u001b[31m, \u001b[0m\u001b[1;36m1998616386666666.8\u001b[0m\u001b[1;31m)\u001b[0m\u001b[31m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:47\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m415\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mWARNING: frequency passed to 'Medium.eps_model()'is outside of \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:47\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m415\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39m'Medium.frequency_range' = (59958491600000.0, 1998616386666666.8)\u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:47\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m415\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39m'Medium.frequency_range' = (59958491600000.0, 1998616386666666.8)\u001b[0m\u001b[31m \u001b[0m\n" + ] }, { "name": "stderr", "output_type": "stream", "text": [ - "/home/yannick/flexcompute/worktrees/release_29/.venv/lib/python3.13/site-packages/pydantic/v1/validators.py:158: ComplexWarning: Casting complex values to real discards the imaginary part\n", + "/home/momchil/flexcompute/compute/src/Tidy3DCore/_build_local/lib/python3.12/site-packages/pydantic/v1/validators.py:158: ComplexWarning: Casting complex values to real discards the imaginary part\n", " return float(v)\n" ] } @@ -298,7 +314,43 @@ "execution_count": 7, "id": "61d83e4f-2622-45ba-851c-6ddebf382156", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m468\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mWARNING: Passing a float to 'N_c' is deprecated and will be \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m468\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mremoved in future versions. Please use 'ConstantEffectiveDOS' \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m468\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39minstead.\u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m468\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mremoved in future versions. Please use 'ConstantEffectiveDOS' \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m468\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39minstead.\u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m485\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mWARNING: Passing a float to 'N_v' is deprecated and will be \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m485\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mremoved in future versions. Please use 'ConstantEffectiveDOS' \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m485\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39minstead.\u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m495\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mWARNING: Passing a float to 'E_g' is deprecated and will be \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m485\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mWARNING: Passing a float to 'N_v' is deprecated and will be \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m485\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mremoved in future versions. Please use 'ConstantEffectiveDOS' \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m485\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39minstead.\u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m495\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mWARNING: Passing a float to 'E_g' is deprecated and will be \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m495\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mremoved in future versions. Please use 'ConstantEnergyBandGap' \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m495\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39minstead.\u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m495\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mremoved in future versions. Please use 'ConstantEnergyBandGap' \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m495\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39minstead.\u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m503\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mWARNING: Passing a float to 'N_a' is deprecated and will be \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m503\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mremoved in future versions. Please use a list of 'DopingBoxType' \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m503\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39minstead, e.g., [ConstantDoping(concentration=0.0)].\u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m503\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mWARNING: Passing a float to 'N_a' is deprecated and will be \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m503\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mremoved in future versions. Please use a list of 'DopingBoxType' \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m503\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39minstead, e.g., [ConstantDoping(concentration=0.0)].\u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m514\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mWARNING: Passing a float to 'N_d' is deprecated and will be \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m514\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mremoved in future versions. Please use a list of 'DopingBoxType' \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m514\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39minstead, e.g., [ConstantDoping(concentration=0.0)].\u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m514\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mWARNING: Passing a float to 'N_d' is deprecated and will be \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m514\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mremoved in future versions. Please use a list of 'DopingBoxType' \u001b[0m\u001b[31m \u001b[0m\n", + "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m14:57:48\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m514\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39minstead, e.g., [ConstantDoping(concentration=0.0)].\u001b[0m\u001b[31m \u001b[0m\n" + ] + } + ], "source": [ "# Create a semiconductor medium with mobility, generation-recombination, and bandgap narrowing models.\n", "intrinsic_si = td.SemiconductorMedium(\n", @@ -595,7 +647,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAIjCAYAAAD1M5RxAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYFRJREFUeJzt3XlclXX+///nQeGAILiEILmRSy65hYqYhSYTfaOUqdzGtUxzLXNKs1xSK8oWl0z9OGXOmKbRlDZqlntqpOEyk7lkRmgqoKOAIoJx3r8/Rs/PI4sXCoL4uN9u55bnfb2u63pf1/vYeXptx2aMMQIAAMBVuZV0BwAAAG4WBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAKXGxo0bZbPZtHHjxpLuCorYp59+qipVqujs2bM3fN179+5V+fLltWfPnhu+bpQ9BCcAN9zs2bO1YMGCku7GNVm8eLGmT59e0t2QJDkcDk2dOlXBwcHy9PRUs2bN9Mknn1iePzU1VYMGDZK/v7+8vb3VsWNH7dy5M8/aL7/8Unfffbc8PT1Vq1YtTZw4UX/88Yel9eTk5GjixIkaMWKEfHx8LPevqDRu3FhRUVGaMGHCDV83yiADADdYkyZNTHh4eK72nJwck5mZaXJyckqkX1ZERUWZ2rVrl3Q3jDHGvPjii0aSGThwoJk3b56Jiooykswnn3xy1XlzcnJMu3btjLe3t3nllVfMrFmzTOPGjU3FihXNzz//7FK7atUqY7PZTMeOHc28efPMiBEjjJubmxk8eLClfn7xxRfGZrOZ33///Zq39XqtWrXKSDK//PJLifUBZQPBCSghZ8+eLekulJj8gtPNoLQEp99//924u7ubYcOGOdscDoe59957TY0aNcwff/xR4PxLly41kkxsbKyzLSUlxVSqVMn07NnTpbZx48amefPm5sKFC862l19+2dhsNrNv376r9rVz586mffv2hdzCopWdnW0qV65sxo8fX6L9wM2PU3VAETh69KgGDBigoKAg2e12BQcHa8iQIcrOzpYkLViwQDabTZs2bdLQoUNVrVo11ahRwzn/7Nmz1aRJE9ntdgUFBWnYsGFKTU11WcfBgwf12GOPKTAwUJ6enqpRo4Z69OihtLQ0Z82aNWvUvn17VapUST4+Prrzzjv10ksvXbX/VubLysrSxIkTVa9ePdntdtWsWVOjR49WVlZWruV9/PHHatOmjSpUqKDKlSvrvvvu0zfffCNJqlOnjn766Sdt2rRJNptNNptNHTp0kAq4xik2NlYhISHy8vLSbbfdpt69e+vo0aMuNf3795ePj4+OHj2q6Oho+fj4yN/fX88//7xycnKuug+WL1+uqKgo5xjWrVtXU6ZMcZm3Q4cOWrlypRITE519r1OnTr7L7N+/v7Puytcrr7xy1T5drb8XLlzQ0KFDnW02m01DhgzR77//rri4uALn/+yzzxQQEKBHH33U2ebv769u3bpp+fLlznHdu3ev9u7dq0GDBql8+fLO2qFDh8oYo88++6zA9Zw/f16rV69WRESES/tvv/0mm82W5ynbK/fPK6+8IpvNpp9//lm9e/eWn5+f/P39NX78eBljdOTIEXXp0kW+vr4KDAzUO++8k2uZ7u7u6tChg5YvX15gf4GrKW+hBkABjh07pjZt2jivF2nYsKGOHj2qzz77TOfOnZOHh4ezdujQofL399eECROUkZEhXfxSmDRpkiIiIjRkyBAdOHBAc+bM0Q8//KCtW7fK3d1d2dnZioyMVFZWlkaMGKHAwEAdPXpUK1asUGpqqvz8/PTTTz/p4YcfVrNmzTR58mTZ7Xb98ssv2rp1a4H9tzKfw+FQ586dtWXLFg0aNEiNGjXSjz/+qGnTpunnn3/WsmXLnLWTJk3SK6+8onbt2mny5Mny8PDQtm3btH79ej3wwAOaPn2681qXl19+WZIUEBCQb/8WLFigJ554Qq1bt1ZMTIySk5M1Y8YMbd26Vbt27VKlSpWctTk5OYqMjFRoaKjefvttrV27Vu+8847q1q2rIUOGFLgfFixYIB8fH40aNUo+Pj5av369JkyYoPT0dL311luSpJdffllpaWn6/fffNW3aNEkq8Jqdp59+OldgWL16tRYtWqRq1ao5206ePFlg3y6pWLGi7Ha7JGnXrl3y9vZWo0aNXGratGnjnN6+fft8l7Vr1y7dfffdcnNz/fdzmzZtNG/ePP38889q2rSpdu3aJUlq1aqVS11QUJBq1KjhnJ6fHTt2KDs7W3fffbelbSxI9+7d1ahRI73xxhtauXKlXn31VVWpUkX/93//p/vvv19vvvmmFi1apOeff16tW7fWfffd5zJ/SEiIli9frvT0dPn6+l53f3CLKulDXsDNrm/fvsbNzc388MMPuaY5HA5jjDEfffSRkWTat2/vcgolJSXFeHh4mAceeMDlup5Zs2YZSWb+/PnGGGN27dqV67TKlaZNm2YkmRMnThSq/1bmW7hwoXFzczObN292aZ87d66RZLZu3WqMMebgwYPGzc3N/PnPf851ndKlfWEKOFW3YcMGI8ls2LDBmIunV6pVq2buuusuk5mZ6axbsWKFkWQmTJjgbOvXr5+RZCZPnuyyzJYtW5qQkJCr7odz587lanv66adNhQoVzPnz551t13Oq7uDBg8bPz8/86U9/cvkcSLL0+uijj1z6cccdd+RaR0ZGhpFkXnzxxQL74u3tbZ588slc7StXrjSSzOrVq40xxrz11ltGkjl8+HCu2tatW5u2bdsWuJ4PPvjASDI//vijS3tCQkKubbp8f0ycONH5fuLEiUaSGTRokLPtjz/+MDVq1DA2m8288cYbzvbTp08bLy8v069fv1zLXbx4sZFktm3bVmCfgYJwqg64Dg6HQ8uWLdMjjzyS61/kunjK4XIDBw5UuXLlnO/Xrl2r7OxsjRw50uVf/gMHDpSvr69WrlwpSfLz85Mkff311zp37lyefbl05GX58uVyOByWt8HKfLGxsWrUqJEaNmyokydPOl/333+/JGnDhg2SpGXLlsnhcGjChAm5jmRcuS+siI+PV0pKioYOHSpPT09ne1RUlBo2bOjcP5cbPHiwy/t7771Xv/7661XX5eXl5fzzmTNndPLkSd177706d+6c9u/fX+i+XykjI0N//vOfVblyZX3yyScun4M1a9ZYekVGRjrnyczMdB59utyl/ZSZmVlgf6zOf+m/+dVebT3//e9/JUmVK1cusM6Kp556yvnncuXKqVWrVjLGaMCAAc72SpUq6c4778xzzC/1weoRPiAvnKoDrsOJEyeUnp6uu+66y1J9cHCwy/vExERJ0p133unS7uHhoTvuuMM5PTg4WKNGjdK7776rRYsW6d5771Xnzp2d13vo4mmMDz74QE899ZRefPFFderUSY8++qgef/zxXCHmclbmO3jwoPbt2yd/f/88l5GSkiJJOnTokNzc3NS4cWNL++Nq8ts/ktSwYUNt2bLFpc3T0zNXHytXrqzTp09fdV0//fSTxo0bp/Xr1ys9Pd1l2uXXkV2rgQMH6tChQ/ruu+9UtWpVl2lXns6zwsvLK8/ry86fP++cXhTzX/pvfrVXW88l/zuQdH1q1arl8t7Pz0+enp667bbbcrVfCmx59eFaQjxwCcEJuIGsfsnk5Z133lH//v21fPlyffPNN3rmmWcUExOj77//XjVq1JCXl5e+/fZbbdiwQStXrtTq1au1dOlS3X///frmm29cjnBc2aerzedwONS0aVO9++67eS6jZs2a17xdRSm/bbya1NRUhYeHy9fXV5MnT1bdunXl6empnTt3asyYMYU6gpeXGTNm6JNPPtHHH3+sFi1a5JqelJRkaTl+fn7Oz1D16tW1YcMGGWNcgsDx48eli9cgFaR69erO2stdOX/16tWd7VeO8/Hjx53XVOXnUkg8ffq0yw0R+SkoYOU1vvmNeV7LuRSgrwxaQGFwqg64Dv7+/vL19b3mJxLXrl1bknTgwAGX9uzsbCUkJDinX9K0aVONGzdO3377rTZv3qyjR49q7ty5zulubm7q1KmT3n33Xe3du1evvfaa1q9f7zyVlp+rzVe3bl2dOnVKnTp1UkRERK7XpSNCdevWlcPh0N69ewtcn9V/8ee3fy61Xbl/rtXGjRv13//+VwsWLNCzzz6rhx9+WBEREXmeXirs0YrNmzfr+eef18iRI9WrV688a6pXr27ptXTpUuc8LVq00Llz57Rv3z6XZW3bts05vSAtWrTQzp07c4XCbdu2qUKFCmrQoIHLcuLj413qjh07pt9///2q62nYsKEkKSEhIc/pZ86ccXmfnJxc4PKuR0JCgtzc3JzbBlwLghNwHdzc3BQdHa1//etfub5YZOH0REREhDw8PDRz5kyX2g8//FBpaWmKioqSJKWnp+d6SnPTpk3l5ubmPIVy6tSpXMu/9KWW12mWS6zM161bNx09elR/+9vfctVmZmY67xCMjo6Wm5ubJk+enOsL+fLt8/b2zvW4hby0atVK1apV09y5c1224auvvtK+ffuc++d6XTpqcXkfs7OzNXv27Fy13t7elk/dHT9+XN26dVP79u2dd+bl5VqucerSpYvc3d1d+miM0dy5c3X77berXbt2Lv3Yv3+/Lly44Gx7/PHHlZycrM8//9zZdvLkScXGxuqRRx5xXtPUpEkTNWzYUPPmzXN5NMOcOXNks9n0+OOPF7gPQkJC5OHhkeffD112fdwlX3zxhXNbitqOHTvUpEkT5+lt4Fpwqg64Tq+//rq++eYbhYeHO2/VP378uGJjY7VlyxaX2+Wv5O/vr7Fjx2rSpEl68MEH1blzZx04cECzZ89W69at1bt3b0nS+vXrNXz4cHXt2lUNGjTQH3/8oYULF6pcuXJ67LHHJEmTJ0/Wt99+q6ioKNWuXVspKSmaPXu2atSoUeBt6Vbm69Onjz799FMNHjxYGzZs0D333KOcnBzt379fn376qb7++mu1atVK9erV08svv6wpU6bo3nvv1aOPPiq73a4ffvhBQUFBiomJkS5+mc6ZM0evvvqq6tWrp2rVqjkvNL+cu7u73nzzTT3xxBMKDw9Xz549nY8jqFOnjp577rnrHj9JateunSpXrqx+/frpmWeekc1m08KFC/P88g4JCdHSpUs1atQotW7dWj4+PnrkkUfyXO4zzzyjEydOaPTo0VqyZInLtGbNmqlZs2bSNV7jVKNGDY0cOVJvvfWWLly4oNatW2vZsmXavHmzFi1a5HIKa+zYsfr73/+uhIQE53OnHn/8cbVt21ZPPPGE9u7dq9tuu02zZ89WTk6OJk2a5LKut956S507d9YDDzygHj16aM+ePZo1a5aeeuqpXI9DuJKnp6ceeOABrV27VpMnT841ffXq1erVq5fuu+8+/fzzz5o3b54qVKigb775Rq1bt9bDDz9c6H2TlwsXLjifowZcl5K+rQ8oCxITE03fvn2Nv7+/sdvt5o477jDDhg0zWVlZxlz2OIK8HllgLj5+oGHDhsbd3d0EBASYIUOGmNOnTzun//rrr+bJJ580devWNZ6enqZKlSqmY8eOZu3atc6adevWmS5dupigoCDj4eFhgoKCTM+ePXP9fMaVrM6XnZ1t3nzzTdOkSRNjt9tN5cqVTUhIiJk0aZJJS0tzqZ0/f75p2bKlsy48PNysWbPGOT0pKclERUWZihUrGknORxNc+TiCS5YuXepcXpUqVUyvXr1y/XxHv379jLe3d67tu3Qr+9Vs3brVtG3b1nh5eZmgoCAzevRo8/XXX+fqz9mzZ81f/vIXU6lSJSOpwEcThIeH5/togctvt79WOTk55vXXXze1a9c2Hh4epkmTJubjjz/OVXfpUQ0JCQku7adOnTIDBgwwVatWNRUqVDDh4eH5fka/+OIL06JFC2O3202NGjXMuHHjTHZ2tqV+fv7558Zms7k80uDS4whef/11ExERYex2uwkODjafffaZeemll0yFChXMpEmTjLlsDK98ZEZ+Yx4eHm6aNGni0vbVV18ZSebgwYOW+gzkx2aK43goAAAX5eTkqHHjxurWrZumTJkiXXxyeHBwsD766CP179+/2PsQHR0tm83mPBUIXCuucQIAFKty5cpp8uTJev/993X27Nkbvv59+/ZpxYoVztAGXA+CEwCg2HXv3l2nTp0q8CdqikujRo30xx9/WH7eGlAQghMAAIBFXOMEAABgEUecAAAALCI4AQAAWMQDMC1yOBw6duyYKlasyA9EAgBQhhhjdObMGQUFBRX4o+giOFl37NixUvNDpgAAoOgdOXLkqj9GTXCyqGLFipKk3m99Ig+vCiXdHQAAUESyM8/p4xd6Or/rC0JwsujS6TkPrwry8PIu6e4AAIAiZuVSHC4OBwAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAItKXXCKiYlR69atVbFiRVWrVk3R0dE6cODAVeeLjY1Vw4YN5enpqaZNm2rVqlUu040xmjBhgqpXry4vLy9FRETo4MGDxbglAACgrCl1wWnTpk0aNmyYvv/+e61Zs0YXLlzQAw88oIyMjHzn+e6779SzZ08NGDBAu3btUnR0tKKjo7Vnzx5nzdSpUzVz5kzNnTtX27Ztk7e3tyIjI3X+/PkbtGUAAOBmZzPGmJLuREFOnDihatWqadOmTbrvvvvyrOnevbsyMjK0YsUKZ1vbtm3VokULzZ07V8YYBQUF6a9//auef/55SVJaWpoCAgK0YMEC9ejR46r9SE9Pl5+fn56ctVweXt5FuIUAAKAkZWdmaP7wLkpLS5Ovr2+BtaXuiNOV0tLSJElVqlTJtyYuLk4REREubZGRkYqLi5MkJSQkKCkpyaXGz89PoaGhzporZWVlKT093eUFAABubaU6ODkcDo0cOVL33HOP7rrrrnzrkpKSFBAQ4NIWEBCgpKQk5/RLbfnVXCkmJkZ+fn7OV82aNYtgiwAAwM2sVAenYcOGac+ePVqyZMkNX/fYsWOVlpbmfB05cuSG9wEAAJQu5Uu6A/kZPny4VqxYoW+//VY1atQosDYwMFDJyckubcnJyQoMDHROv9RWvXp1l5oWLVrkuUy73S673V4EWwIAAMqKUnfEyRij4cOH64svvtD69esVHBx81XnCwsK0bt06l7Y1a9YoLCxMkhQcHKzAwECXmvT0dG3bts1ZAwAAcDWl7ojTsGHDtHjxYi1fvlwVK1Z0XoPk5+cnLy8vSVLfvn11++23KyYmRpL07LPPKjw8XO+8846ioqK0ZMkSxcfHa968eZIkm82mkSNH6tVXX1X9+vUVHBys8ePHKygoSNHR0SW4tQAA4GZS6oLTnDlzJEkdOnRwaf/oo4/Uv39/SdLhw4fl5vb/Hyxr166dFi9erHHjxumll15S/fr1tWzZMpcLykePHq2MjAwNGjRIqampat++vVavXi1PT88btm0AAODmVuqf41Ra8BwnAADKpjL1HCcAAIDSguAEAABgEcEJAADAIoITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsKh8SXfgZnPux3T9Yf+jpLtxw1Ro7lfSXQAA3GDn/p1W0l24obKzzlmu5YgTAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsKjUBadvv/1WjzzyiIKCgmSz2bRs2bKrzrNx40bdfffdstvtqlevnhYsWJCr5v3331edOnXk6emp0NBQbd++vZi2AAAAlFWlLjhlZGSoefPmev/99y3VJyQkKCoqSh07dtTu3bs1cuRIPfXUU/r666+dNUuXLtWoUaM0ceJE7dy5U82bN1dkZKRSUlKKcUsAAEBZYzPGmJLuRH5sNpu++OILRUdH51szZswYrVy5Unv27HG29ejRQ6mpqVq9erUkKTQ0VK1bt9asWbMkSQ6HQzVr1tSIESP04osvWupLenq6/Pz81OPphfKwV7jubbtZ8ABMALj13IoPwFzyf32UlpYmX1/fAmtL3RGnwoqLi1NERIRLW2RkpOLi4iRJ2dnZ2rFjh0uNm5ubIiIinDV5ycrKUnp6ussLAADc2m764JSUlKSAgACXtoCAAKWnpyszM1MnT55UTk5OnjVJSUn5LjcmJkZ+fn7OV82aNYttGwAAwM3hpg9OxWXs2LFKS0tzvo4cOVLSXQIAACXspv+R38DAQCUnJ7u0JScny9fXV15eXipXrpzKlSuXZ01gYGC+y7Xb7bLb7cXWbwAAcPO56Y84hYWFad26dS5ta9asUVhYmCTJw8NDISEhLjUOh0Pr1q1z1gAAAFhR6oLT2bNntXv3bu3evVu6+LiB3bt36/Dhw9LFU2h9+/Z11g8ePFi//vqrRo8erf3792v27Nn69NNP9dxzzzlrRo0apb/97W/6+9//rn379mnIkCHKyMjQE088UQJbCAAAblal7lRdfHy8Onbs6Hw/atQoSVK/fv20YMECHT9+3BmiJCk4OFgrV67Uc889pxkzZqhGjRr64IMPFBkZ6azp3r27Tpw4oQkTJigpKUktWrTQ6tWrc10wDgAAUJBS/Ryn0oTnOAEAbhU8xyl/pe5UHQAAQGlFcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgUaF/5DchIUGbN29WYmKizp07J39/f7Vs2VJhYWHy9PQsnl4CAACUApaD06JFizRjxgzFx8crICBAQUFB8vLy0qlTp3To0CF5enqqV69eGjNmjGrXrl28vQYAACgBloJTy5Yt5eHhof79++uf//ynatas6TI9KytLcXFxWrJkiVq1aqXZs2era9euxdVnAACAEmEpOL3xxhuKjIzMd7rdbleHDh3UoUMHvfbaa/rtt9+Kso8AAAClgqXgVFBoulLVqlVVtWrV6+kTAABAqVToi8MvSUlJUUpKihwOh0t7s2bNiqJfAAAApU6hg9OOHTvUr18/7du3T8YYSZLNZpMxRjabTTk5OcXRTwAAgBJX6OD05JNPqkGDBvrwww8VEBAgm81WPD0DAAAoZQodnH799Vf985//VL169YqnRwAAAKVUoZ8c3qlTJ/373/8unt4AAACUYoU+4vTBBx+oX79+2rNnj+666y65u7u7TO/cuXNR9g8AAKDUKHRwiouL09atW/XVV1/lmsbF4QAAoCwr9Km6ESNGqHfv3jp+/LgcDofLi9AEAADKskIHp//+97967rnnFBAQUDw9AgAAKKUKHZweffRRbdiwoXh6AwAAUIoV+hqnBg0aaOzYsdqyZYuaNm2a6+LwZ555pij7BwAAUGpc0111Pj4+2rRpkzZt2uQyzWazEZwAAECZVejglJCQUDw9AQAAKOUKfY1Tfo4fP66pU6cW1eIAAABKnWv6rbq8JCYmavv27Ro9enRR9AsAAKDUKXRwOn36tMv7nJwc/frrr9q3b59mz55dlH0DAAAoVQodnL744os821977TUtW7ZMTz/9dFH0q9Qa/scR+bh5lnQ3bpz4ku5AyZvbqllJdwFFYHD8f4p9HXxWyoYb8VlB6XL2j/NaYrG2yK5x6tmzpzZu3FhUiwMAACh1iiw4/fvf/1bLli2LanEAAAClTqFP1Y0aNSpXW3JyspYvX66oqCiX6e++++719xAAAKCUKHRw2rVrV57trVu3VkpKilJSUqSLD8MEAAAoSwodnPidOgAAcKsqsmucAAAAyjpLR5wefPBBvfLKK2rbtm2BdWfOnNHs2bPl4+OjYcOGXXOn3n//fb311ltKSkpS8+bN9d5776lNmzb51sfGxmr8+PH67bffVL9+fb355pt66KGHnNONMZo4caL+9re/KTU1Vffcc4/mzJmj+vXrX3Mfcevg1mRYxWcFKPssHXHq2rWrHnvsMTVu3FhjxoxRbGystm7dqh07dmjt2rWaOXOmunXrpurVq2vnzp165JFHrrlDS5cu1ahRozRx4kTt3LlTzZs3V2RkpPPaqSt999136tmzpwYMGKBdu3YpOjpa0dHR2rNnj7Nm6tSpmjlzpubOnatt27bJ29tbkZGROn/+/DX3EwAA3HpsxhhjpTArK0uxsbFaunSptmzZorS0tP8twGZT48aNFRkZqQEDBqhRo0bX1aHQ0FC1bt1as2bNkiQ5HA7VrFlTI0aM0Isvvpirvnv37srIyNCKFSucbW3btlWLFi00d+5cGWMUFBSkv/71r3r++eclSWlpaQoICNCCBQvUo0cPS/1KT0+Xn5+ftgx4XT4et9ADMAEAKOPOZp9X+w9fUlpamnx9fQustXxxuN1uV+/evdW7d2/pYvjIzMxU1apV5e7ufv29lpSdna0dO3Zo7NixzjY3NzdFREQoLi4uz3ni4uJyPSIhMjJSy5YtkyQlJCQoKSlJERERzul+fn4KDQ1VXFxcvsEpKytLWVlZzvfp6enXvX0AAODmVui76i7x8/OTn59fkXbm5MmTysnJUUBAgEt7QECA9u/fn+c8SUlJedYnJSU5p19qy68mLzExMZo0aVKu9vktm8jDy7sQWwUAAEqz7MwMy7XcVZePsWPHKi0tzfk6cuRISXcJAACUsFIVnG677TaVK1dOycnJLu3JyckKDAzMc57AwMAC6y/9tzDL1MVTk76+vi4vAABwaytVwcnDw0MhISFat26ds83hcGjdunUKCwvLc56wsDCXeklas2aNsz44OFiBgYEuNenp6dq2bVu+ywQAAMjLNV/jVFxGjRqlfv36qVWrVmrTpo2mT5+ujIwMPfHEE5Kkvn376vbbb1dMTIwk6dlnn1V4eLjeeecdRUVFacmSJYqPj9e8efOki3f9jRw5Uq+++qrq16+v4OBgjR8/XkFBQYqOji7RbQUAADeXQgenfv36acCAAbrvvvuKpUPdu3fXiRMnNGHCBCUlJalFixZavXq18+Luw4cPy83t/z9Q1q5dOy1evFjjxo3TSy+9pPr162vZsmW66667nDWjR49WRkaGBg0apNTUVLVv316rV6+WpyePFQAAANZZfo7TJdHR0Vq1apVq166tJ554Qv369dPtt99efD0sJS49x+nJWcu5qw4AgDIkOzND84d3sfQcp0Jf47Rs2TIdPXpUQ4YM0dKlS1WnTh39v//3//TZZ5/pwoUL19NvAACAUu2aLg739/fXqFGj9O9//1vbtm1TvXr11KdPHwUFBem5557TwYMHi76nAAAAJey67qo7fvy41qxZozVr1qhcuXJ66KGH9OOPP6px48aaNm1a0fUSAACgFCh0cLpw4YL++c9/6uGHH1bt2rUVGxurkSNH6tixY/r73/+utWvX6tNPP9XkyZOLp8cAAAAlpNB31VWvXl0Oh0M9e/bU9u3b1aJFi1w1HTt2VKVKlYqqjwAAAKVCoYPTtGnT1LVr1wJv5a9UqZISEhKut28AAAClSqGDU58+fYqnJwAAAKVcqfrJFQAAgNKM4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwqFQFp88//1wPPPCAqlatKpvNpt27d1uaLzY2Vg0bNpSnp6eaNm2qVatWuUw3xmjChAmqXr26vLy8FBERoYMHDxbTVgAAgLKqVAWnjIwMtW/fXm+++ableb777jv17NlTAwYM0K5duxQdHa3o6Gjt2bPHWTN16lTNnDlTc+fO1bZt2+Tt7a3IyEidP3++mLYEAACURTZjjCnpTlzpt99+U3BwsHbt2qUWLVoUWNu9e3dlZGRoxYoVzra2bduqRYsWmjt3rowxCgoK0l//+lc9//zzkqS0tDQFBARowYIF6tGjh6U+paeny8/PT0/OWi4PL+/r3EIAAFBaZGdmaP7wLkpLS5Ovr2+BtaXqiNO1iIuLU0REhEtbZGSk4uLiJEkJCQlKSkpyqfHz81NoaKizJi9ZWVlKT093eQEAgFvbTR+ckpKSFBAQ4NIWEBCgpKQk5/RLbfnV5CUmJkZ+fn7OV82aNYul/wAA4OZRYsFp0aJF8vHxcb42b95cUl3J09ixY5WWluZ8HTlypKS7BAAASlj5klpx586dFRoa6nx/++23X9NyAgMDlZyc7NKWnJyswMBA5/RLbdWrV3epKej6KbvdLrvdfk19AgAAZVOJHXGqWLGi6tWr53x5eXld03LCwsK0bt06l7Y1a9YoLCxMkhQcHKzAwECXmvT0dG3bts1ZAwAAYEWJHXHKy6lTp3T48GEdO3ZMknTgwAHp4lGjS0eO+vbtq9tvv10xMTGSpGeffVbh4eF65513FBUVpSVLlig+Pl7z5s2TJNlsNo0cOVKvvvqq6tevr+DgYI0fP15BQUGKjo4usW0FAAA3n1J1cfiXX36pli1bKioqSpLUo0cPtWzZUnPnznXWHD58WMePH3e+b9eunRYvXqx58+apefPm+uyzz7Rs2TLdddddzprRo0drxIgRGjRokFq3bq2zZ89q9erV8vT0vMFbCAAAbmal8jlOpRHPcQIAoGy6pZ7jBAAAcKMQnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARaUmOF24cEFjxoxR06ZN5e3traCgIPXt21fHjh276rzvv/++6tSpI09PT4WGhmr79u0u08+fP69hw4apatWq8vHx0WOPPabk5ORi3BoAAFAWlZrgdO7cOe3cuVPjx4/Xzp079fnnn+vAgQPq3LlzgfMtXbpUo0aN0sSJE7Vz5041b95ckZGRSklJcdY899xz+te//qXY2Fht2rRJx44d06OPPnoDtgoAAJQlNmOMKelO5OeHH35QmzZtlJiYqFq1auVZExoaqtatW2vWrFmSJIfDoZo1a2rEiBF68cUXlZaWJn9/fy1evFiPP/64JGn//v1q1KiR4uLi1LZtW0t9SU9Pl5+fn56ctVweXt5FuJUAAKAkZWdmaP7wLkpLS5Ovr2+BtaXmiFNe0tLSZLPZVKlSpTynZ2dna8eOHYqIiHC2ubm5KSIiQnFxcZKkHTt26MKFCy41DRs2VK1atZw1ecnKylJ6errLCwAA3NpKbXA6f/68xowZo549e+ab/k6ePKmcnBwFBAS4tAcEBCgpKUmSlJSUJA8Pj1zh6/KavMTExMjPz8/5qlmzZpFsFwAAuHmVWHBatGiRfHx8nK/Nmzc7p124cEHdunWTMUZz5swpkf6NHTtWaWlpzteRI0dKpB8AAKD0KF9SK+7cubNCQ0Od72+//XbpstCUmJio9evXF3iu8bbbblO5cuVy3SGXnJyswMBASVJgYKCys7OVmprqctTp8pq82O122e3269pGAABQtpTYEaeKFSuqXr16zpeXl5czNB08eFBr165V1apVC1yGh4eHQkJCtG7dOmebw+HQunXrFBYWJkkKCQmRu7u7S82BAwd0+PBhZw0AAIAVJXbE6UoXLlzQ448/rp07d2rFihXKyclxXoNUpUoVeXh4SJI6deqkP//5zxo+fLgkadSoUerXr59atWqlNm3aaPr06crIyNATTzwhSfLz89OAAQM0atQoValSRb6+vhoxYoTCwsIs31EHAACg0hScjh49qi+//FKS1KJFC5dpGzZsUIcOHSRJhw4d0smTJ53TunfvrhMnTmjChAlKSkpSixYttHr1apcLxqdNmyY3Nzc99thjysrKUmRkpGbPnn3Dtg0AAJQNpfo5TqUJz3ECAKBsKjPPcQIAAChNCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAolLzAMzS7tLjrrIzz5V0VwAAQBG69N1u5dGWPADTot9//101a9Ys6W4AAIBicuTIEdWoUaPAGoKTRQ6HQ8eOHVPFihVls9lKujvXLD09XTVr1tSRI0eu+nRU3BiMSenDmJQ+jEnpU5bGxBijM2fOKCgoSG5uBV/FxKk6i9zc3K6aQm8mvr6+N/0HvaxhTEofxqT0YUxKn7IyJn5+fpbquDgcAADAIoITAACARQSnW4zdbtfEiRNlt9tLuiu4iDEpfRiT0ocxKX1u1THh4nAAAACLOOIEAABgEcEJAADAIoITAACARQQnAAAAiwhOZczgwYNls9k0ffr0q9a+//77qlOnjjw9PRUaGqrt27e7TD9//ryGDRumqlWrysfHR4899piSk5OLsfdlw4ULFzRmzBg1bdpU3t7eCgoKUt++fXXs2LGrzsuYFJ+r7dsrxcbGqmHDhvL09FTTpk21atUql+nGGE2YMEHVq1eXl5eXIiIidPDgwWLeirIhJiZGrVu3VsWKFVWtWjVFR0frwIEDV52PMblx3njjDdlsNo0cObLAultyTAzKjM8//9w0b97cBAUFmWnTphVYu2TJEuPh4WHmz59vfvrpJzNw4EBTqVIlk5yc7KwZPHiwqVmzplm3bp2Jj483bdu2Ne3atbsBW3JzS01NNREREWbp0qVm//79Ji4uzrRp08aEhIQUOB9jUnys7NvLbd261ZQrV85MnTrV7N2714wbN864u7ubH3/80VnzxhtvGD8/P7Ns2TLz73//23Tu3NkEBwebzMzMG7hlN6fIyEjz0UcfmT179pjdu3ebhx56yNSqVcucPXs233kYkxtn+/btpk6dOqZZs2bm2WefzbfuVh0TglMZ8fvvv5vbb7/d7Nmzx9SuXfuqwalNmzZm2LBhzvc5OTkmKCjIxMTEGHPxy9/d3d3ExsY6a/bt22ckmbi4uGLckrJp+/btRpJJTEzMt4YxKT5X27dX6tatm4mKinJpCw0NNU8//bQxxhiHw2ECAwPNW2+95Zyemppq7Ha7+eSTT4ptO8qqlJQUI8ls2rQp3xrG5MY4c+aMqV+/vlmzZo0JDw8vMDjdqmPCqboywOFwqE+fPnrhhRfUpEmTq9ZnZ2drx44dioiIcLa5ubkpIiJCcXFxkqQdO3bowoULLjUNGzZUrVq1nDWwLi0tTTabTZUqVcpzOmNSfKzs2yvFxcW51EtSZGSksz4hIUFJSUkuNX5+fgoNDWUsrkFaWpokqUqVKvnWMCY3xrBhwxQVFZVrX+flVh0TfuS3DHjzzTdVvnx5PfPMM5bqT548qZycHAUEBLi0BwQEaP/+/ZKkpKQkeXh45PqiDwgIUFJSUhH2vuw7f/68xowZo549e+b7Q5iMSfGxsm+vlJSUlGf9pf186b8F1cAah8OhkSNH6p577tFdd92Vbx1jUvyWLFminTt36ocffrBUf6uOCUecbjKLFi2Sj4+P87Vp0ybNmDFDCxYskM1mK+nu3ZKuHJPNmzc7p124cEHdunWTMUZz5swp0X4CpdGwYcO0Z88eLVmypKS7cks7cuSInn32WS1atEienp4l3Z1SjeB0k+ncubN2797tfH333XdKSUlRrVq1VL58eZUvX16JiYn661//qjp16uS5jNtuu03lypXLdTdWcnKyAgMDJUmBgYHKzs5WampqvjX4nyvHpFWrVtJloSkxMVFr1qzJ92iTGJNiZWXfXikwMPCqY3Gpzeoykdvw4cO1YsUKbdiwQTVq1CiwljEpXjt27FBKSoruvvtu53fJpk2bNHPmTJUvX145OTm55rlVx4TgdJOpWLGi6tWr53wNGjRI//nPf1y+uIOCgvTCCy/o66+/znMZHh4eCgkJ0bp165xtDodD69atU1hYmCQpJCRE7u7uLjUHDhzQ4cOHnTX4nyvHxMvLyxmaDh48qLVr16pq1aoFLoMxKT5W9u2VwsLCXOolac2aNc764OBgBQYGutSkp6dr27ZtjIUFxhgNHz5cX3zxhdavX6/g4OCrzsOYFK9OnTrpxx9/zPWPwF69emn37t0qV65crnlu2TEp6avTUfTyuqvu/vvvN++9957z/ZIlS4zdbjcLFiwwe/fuNYMGDTKVKlUySUlJzprBgwebWrVqmfXr15v4+HgTFhZmwsLCbui23Iyys7NN586dTY0aNczu3bvN8ePHna+srCxnHWNy41xt3/bp08e8+OKLzvqtW7ea8uXLm7ffftvs27fPTJw4Mc/brCtVqmSWL19u/vOf/5guXbrc9LdZ3yhDhgwxfn5+ZuPGjS5/P86dO+esYUxK3pV31TEm/0NwKoPyCk61a9c2EydOdGl77733TK1atYyHh4dp06aN+f77712mZ2ZmmqFDh5rKlSubChUqmD//+c/m+PHjN2QbbmYJCQlGUp6vDRs2OOsYkxuroH0bHh5u+vXr51L/6aefmgYNGhgPDw/TpEkTs3LlSpfpDofDjB8/3gQEBBi73W46depkDhw4cMO252aW39+Pjz76yFnDmJS8K4MTY/I/NvO/DzEAAACugmucAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgBuWR9++KEeeOCBYl/P6tWr1aJFCzkcjmJfF4DiRXACcEs6f/68xo8fr4kTJxb7uh588EG5u7tr0aJFxb4uAMWL4ATglvTZZ5/J19dX99xzzw1ZX//+/TVz5swbsi4AxYfgBOCmduLECQUGBur11193tn333Xfy8PDI9cvtl1uyZIkeeeQRl7YOHTpo5MiRLm3R0dHq37+/832dOnX06quvqm/fvvLx8VHt2rX15Zdf6sSJE+rSpYt8fHzUrFkzxcfHuyznkUceUXx8vA4dOlQEWw2gpBCcANzU/P39NX/+fL3yyiuKj4/XmTNn1KdPHw0fPlydOnXKd74tW7aoVatW17TOadOm6Z577tGuXbsUFRWlPn36qG/fvurdu7d27typunXrqm/fvrr8p0Br1aqlgIAAbd68+ZrWCaB0IDgBuOk99NBDGjhwoHr16qXBgwfL29tbMTEx+danpqYqLS1NQUFB17y+p59+WvXr19eECROUnp6u1q1bq2vXrmrQoIHGjBmjffv2KTk52WW+oKAgJSYmXtM6AZQOBCcAZcLbb7+tP/74Q7GxsVq0aJHsdnu+tZmZmZIkT0/Pa1pXs2bNnH8OCAiQJDVt2jRXW0pKist8Xl5eOnfu3DWtE0DpQHACUCYcOnRIx44dk8Ph0G+//VZgbdWqVWWz2XT69OmrLjcnJydXm7u7u/PPNpst37YrHz9w6tQp+fv7W9gaAKUVwQnATS87O1u9e/dW9+7dNWXKFD311FO5jvZczsPDQ40bN9bevXtzTbvy9Nqvv/5aJH08f/68Dh06pJYtWxbJ8gCUDIITgJveyy+/rLS0NM2cOVNjxoxRgwYN9OSTTxY4T2RkpLZs2ZKrffny5fr888916NAhvfbaa9q7d68SExN19OjR6+rj999/L7vdrrCwsOtaDoCSRXACcFPbuHGjpk+froULF8rX11dubm5auHChNm/erDlz5uQ734ABA7Rq1SqlpaW5tEdFRWnq1Klq3Lixvv32W82ePVvbt2/XwoULr6ufn3zyiXr16qUKFSpc13IAlCybufx+WQC4hXTt2lV33323xo4dK118jlOLFi00ffr0Il3PyZMndeeddyo+Pl7BwcFFumwANxZHnADcst566y35+PgU+3p+++03zZ49m9AElAEccQKAi4rriBOAsoPgBAAAYBGn6gAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAlAqbNy4UTabTRs3bizprqAYnD17VtWqVdOiRYtKZP1t27bV6NGjS2TdKFsITgBuqNmzZ2vBggUl3Y1rsnjxYk2fPr2ku+Hiww8/VKNGjeTp6an69evrvffeszTf2bNnNXHiRD344IOqUqWKbDZbvuOyfft2DR06VCEhIXJ3d5fNZit0P2fMmKGKFSuqR48ehZ63KIwZM0bvv/++kpKSSmT9KDsITgBuqPyC03333afMzEzdd999JdIvK0pbcPq///s/PfXUU2rSpInee+89hYWF6ZlnntGbb7551XlPnjypyZMna9++fWrevHmBtatWrdIHH3wgm82mO+64o9D9vHDhgmbMmKGnnnpK5cqVK/T8RaFLly7y9fXV7NmzS2T9KDsITkAJyMjIKOkulDpubm7y9PSUmxv/W7IiMzNTL7/8sqKiovTZZ59p4MCB+sc//qFevXppypQpOn36dIHzV69eXcePH1diYqLeeuutAmuHDBmitLQ0xcfH609/+lOh+7pixQqdOHFC3bp1K/S8RcXNzU2PP/64/vGPf8gYU2L9wM2P/0MB1+no0aMaMGCAgoKCZLfbFRwcrCFDhig7O1uStGDBAtlsNm3atElDhw5VtWrVVKNGDef8s2fPVpMmTWS32xUUFKRhw4YpNTXVZR0HDx7UY489psDAQHl6eqpGjRrq0aOH0tLSnDVr1qxR+/btValSJfn4+OjOO+/USy+9dNX+W5kvKytLEydOVL169WS321WzZk2NHj1aWVlZuZb38ccfq02bNqpQoYIqV66s++67T998840kqU6dOvrpp5+0adMm2Ww22Ww2dejQQSrgGqfY2FiFhITIy8tLt912m3r37q2jR4+61PTv318+Pj46evSooqOj5ePjI39/fz3//PPKycm56j5Yvny5oqKinGNYt25dTZkyxWXeDh06aOXKlUpMTHT2vU6dOvkuMzw8PN8jOXfeeaciIyOv2q+CbNiwQf/97381dOhQl/Zhw4YpIyNDK1euLHB+u92uwMBAS+sKCAiQl5fXNfd12bJlqlOnjurWrevS3qFDB+f4X65///4u+/a3336TzWbT22+/rffff1933HGHKlSooAceeEBHjhyRMUZTpkxRjRo15OXlpS5duujUqVO5lvunP/1JiYmJ2r179zVvC1C+pDsA3MyOHTumNm3aKDU1VYMGDVLDhg119OhRffbZZzp37pw8PDyctUOHDpW/v78mTJjgPOL0yiuvaNKkSYqIiNCQIUN04MABzZkzRz/88IO2bt0qd3d3ZWdnKzIyUllZWRoxYoQCAwN19OhRrVixQqmpqfLz89NPP/2khx9+WM2aNdPkyZNlt9v1yy+/aOvWrQX238p8DodDnTt31pYtWzRo0CA1atRIP/74o6ZNm6aff/5Zy5Ytc9ZOmjRJr7zyitq1a6fJkyfLw8ND27Zt0/r16/XAAw9o+vTpGjFihHx8fPTyyy9LF7+U87NgwQI98cQTat26tWJiYpScnKwZM2Zo69at2rVrlypVquSszcnJUWRkpEJDQ/X2229r7dq1euedd1S3bl0NGTKkwP2wYMEC+fj4aNSoUfLx8dH69es1YcIEpaenO4/GvPzyy0pLS9Pvv/+uadOmSZJ8fHzyXWafPn00cOBA7dmzR3fddZez/YcfftDPP/+scePGOdtOnz5tKeBVqFBBFSpUkCTt2rVLktSqVSuXmpCQELm5uWnXrl3q3bv3VZd5I3z33Xe6++67r3s5ixYtUnZ2tkaMGKFTp05p6tSp6tatm+6//35t3LhRY8aM0S+//KL33ntPzz//vObPn+8yf0hIiCRp69atatmy5XX3B7coA+Ca9e3b17i5uZkffvgh1zSHw2GMMeajjz4ykkz79u3NH3/84ZyekpJiPDw8zAMPPGBycnKc7bNmzTKSzPz5840xxuzatctIMrGxsfn2Y9q0aUaSOXHiRKH6b2W+hQsXGjc3N7N582aX9rlz5xpJZuvWrcYYYw4ePGjc3NzMn//8Z5ftuXxfGGNMkyZNTHh4eK71bNiwwUgyGzZsMMYYk52dbapVq2buuusuk5mZ6axbsWKFkWQmTJjgbOvXr5+RZCZPnuyyzJYtW5qQkJCr7odz587lanv66adNhQoVzPnz551tUVFRpnbt2lddnjHGpKamGk9PTzNmzBiX9meeecZ4e3ubs2fPOttq165tJF31NXHiROc8w4YNM+XKlctz3f7+/qZHjx6W+mmMMT/88IORZD766KOr1g4bNswU5qvjwoULxmazmb/+9a+5poWHh+f5WejXr5/Lfk5ISDCSjL+/v0lNTXW2jx071kgyzZs3NxcuXHC29+zZ03h4eLiM3SUeHh5myJAhlvsPXIlTdcA1cjgcWrZsmR555JFc/+qXlOvOo4EDB7pcGLt27VplZ2dr5MiRLtf1DBw4UL6+vs5TLX5+fpKkr7/+WufOncuzL5eOvCxfvlwOh8PyNliZLzY2Vo0aNVLDhg118uRJ5+v++++XLp4y0sXTMQ6HQxMmTMh1ndK13IUVHx+vlJQUDR06VJ6ens72qKgoNWzYMM9TUYMHD3Z5f++99+rXX3+96rouPw115swZnTx5Uvfee6/OnTun/fv3F7rvujhuXbp00SeffOK8piYnJ0dLly5VdHS0vL29nbWLFi3SmjVrrvrq27evc57MzEyXI5qX8/T0VGZm5jX1u6idOnVKxhhVrlz5upfVtWtX598HSQoNDZUk9e7dW+XLl3dpz87OznVKV5IqV66skydPXndfcOviVB1wjU6cOKH09HSX0zAFCQ4OdnmfmJgoXbze5XIeHh664447nNODg4M1atQovfvuu1q0aJHuvfdede7cWb1793Z+iXTv3l0ffPCBnnrqKb344ovq1KmTHn30UT3++OMFXmxtZb6DBw9q37598vf3z3MZKSkpkqRDhw7Jzc1NjRs3trQ/ria//SNJDRs21JYtW1zaPD09c/WxcuXKV71IWhdPWY4bN07r169Xenq6y7TLryMrrL59+2rp0qXavHmz7rvvPq1du1bJycnq06ePS90999xT6GV7eXk5r6O70vnz56/rmqTiUBQXZNeqVcvl/aXPf82aNfNsz2vsjTHXFOSBSwhOwA1yPV9k77zzjvr376/ly5frm2++0TPPPKOYmBh9//33zgtiv/32W23YsEErV67U6tWrtXTpUt1///365ptv8r0F3Mp8DodDTZs21bvvvpvnMq780iop13qbe2pqqsLDw+Xr66vJkyerbt268vT01M6dOzVmzJhCHcG7UmRkpAICAvTxxx/rvvvu08cff6zAwEBFRES41J04ccLSNU4+Pj7O66qqV6+unJwcpaSkqFq1as6a7Oxs/fe//1VQUNA197soXXpGlJUAe0l+ISu/Mc6vPa/lpKam6rbbbrPcF+BKnKoDrpG/v798fX21Z8+ea5q/du3akqQDBw64tGdnZyshIcE5/ZKmTZtq3Lhx+vbbb7V582YdPXpUc+fOdU53c3NTp06d9O6772rv3r167bXXtH79eueptPxcbb66devq1KlT6tSpkyIiInK9Lh0Rqlu3rhwOh/bu3Vvg+qz+az+//XOp7cr9c602btyo//73v1qwYIGeffZZPfzww4qIiMjz1FJhj1SUK1dOf/nLX/TZZ5/p9OnTWrZsmXr27Jnri75169aqXr36VV9vv/22c54WLVpIF09pXi4+Pl4Oh8M5vaSVL19edevWVUJCQp7Tz5w5k6stOTm5WPpy9OhRZWdnq1GjRsWyfNwaCE7ANXJzc1N0dLT+9a9/5frykoVTExEREfLw8NDMmTNdaj/88EOlpaUpKipKkpSenq4//vjDZd6mTZvKzc3N+TiAvG69vvTFmdcjAy6xMl+3bt109OhR/e1vf8tVm5mZ6bxDMDo6Wm5ubpo8eXKuozSXb5+3t3euxy3kpVWrVqpWrZrmzp3rsg1fffWV9u3b59w/1+tSiLm8j9nZ2Xk+KNHb27vQp+769Omj06dP6+mnn9bZs2fzvNPtWq5xuv/++1WlShXNmTPHZVlz5sxRhQoVXPbPyZMntX///nyvkStuYWFhef4dkaS9e/e6BKUTJ05oy5YtxfKspR07dkiS2rVrV+TLxq2DU3XAdXj99df1zTffKDw83Hmr/vHjxxUbG6stW7a43C5/JX9/f40dO1aTJk3Sgw8+qM6dO+vAgQOaPXu2Wrdu7fyCXb9+vYYPH66uXbuqQYMG+uOPP7Rw4UKVK1dOjz32mCRp8uTJ+vbbbxUVFaXatWsrJSVFs2fPVo0aNdS+fft8+2Blvj59+ujTTz/V4MGDtWHDBt1zzz3KycnR/v379emnn+rrr79Wq1atVK9ePb388suaMmWK7r33Xj366KOy2+364YcfFBQUpJiYGOniLeFz5szRq6++qnr16qlatWrOC80v5+7urjfffFNPPPGEwsPD1bNnT+fjCOrUqaPnnnvuusdPF79EK1eurH79+umZZ56RzWbTwoUL8/ziDgkJ0dKlSzVq1Ci1bt1aPj4+euSRRwpcfsuWLXXXXXc5L7LP67b8a73GacqUKRo2bJi6du2qyMhIbd68WR9//LFee+01ValSxVk7a9YsTZo0SRs2bHB5btKsWbOUmpqqY8eOSZL+9a9/6ffff5ckjRgxwnmtUGJiohYuXChddoTr1VdflS4eGbzymq0rdenSRQsXLtTPP/+sBg0auEyz2Wzq2LGjBg0apJycHM2bN0/ly5fXsWPHNHXqVD3//POF3jf5WbNmjWrVqsWjCHB9Svq2PuBml5iYaPr27Wv8/f2N3W43d9xxhxk2bJjJysoy5rLHEeT1yAJz8fEDDRs2NO7u7iYgIMAMGTLEnD592jn9119/NU8++aSpW7eu8fT0NFWqVDEdO3Y0a9euddasW7fOdOnSxQQFBRkPDw8TFBRkevbsaX7++ecC+251vuzsbPPmm2+aJk2aGLvdbipXrmxCQkLMpEmTTFpamkvt/PnzTcuWLZ114eHhZs2aNc7pSUlJJioqylSsWNFIct6OfuXjCC5ZunSpc3lVqlQxvXr1Mr///rtLTb9+/Yy3t3eu7Zs4caKlW+e3bt1q2rZta7y8vExQUJAZPXq0+frrr3P15+zZs+Yvf/mLqVSpkpFk+dEEU6dONZLM66+/bqm+MObNm2fuvPNO4+HhYerWrWumTZvm8vgHc9l+uHLfFvQYhISEBGfdpbHJ65XX4wSulJWVZW677TYzZcoUl/ZLjyOYMGGCqVq1qqlYsaJ5+umnzdatW03VqlVN48aNTU5OjvNxBG+99ZbL/Jf6deWjOvL6O5eTk2OqV69uxo0bZ3HPAnmzGZ49DwDFasaMGXruuef022+/5boz7FYxZcoUffTRRzp48KDz9OjlT40vbsuWLdNf/vIXHTp0SNWrVy/29aHs4honAChGxhh9+OGHCg8Pv2VDkyQ999xzOnv2rJYsWVIi63/zzTc1fPhwQhOuG9c4AUAxyMjI0JdffqkNGzboxx9/1PLly0u6SyXKx8fH+cyvkhAXF1di60bZUuqOOH377bd65JFHFBQUJJvN5vI7WPnZuHGj7r77btntdtWrV08LFizIVfP++++rTp068vT0VGhoqLZv315MWwAA/7s77C9/+YtiY2P10ksvqXPnziXdJQBFoNQFp4yMDDVv3lzvv/++pfqEhARFRUWpY8eO2r17t0aOHKmnnnpKX3/9tbPm0l0wEydO1M6dO9W8eXNFRkaW6L9+AJRtderUkTFGp0+f1muvvVbS3SmVNm7ceEOubwKKUqm+ONxms+mLL75QdHR0vjVjxozRypUrXR5C2KNHD6Wmpmr16tXSxd8tat26tWbNmiVd/I2xmjVrasSIEXrxxRdvwJYAAICyoNQdcSqsuLi4XD9fEBkZ6TyfnZ2drR07drjUuLm5KSIignPeAACgUG76i8OTkpIUEBDg0hYQEKD09HRlZmbq9OnTysnJybOmoF89z8rKcnlascPh0KlTp1S1alV+IBIAgDLEGKMzZ84oKCiowB9GV1kITsUlJiZGkyZNKuluAACAG+TIkSOqUaNGgTU3fXAKDAzM9YOQycnJ8vX1lZeXl8qVK6dy5crlWRMYGJjvcseOHatRo0Y536elpalWrVr6us8EeXt4FsOWoLSa37JJSXcBReDJXT8V+zr4rJQNN+KzgtIlI/u8IhdOVsWKFa9ae9MHp7CwMK1atcqlbc2aNQoLC5MkeXh4KCQkROvWrXNeZO5wOLRu3ToNHz483+Xa7XbZ7fZc7d4envIhON1SPLy8S7oLKAI34u8tn5Wygf/H37qsXIpT6i4OP3v2rHbv3q3du3dLFx83sHv3bh0+fFi6eCTo8l8IHzx4sH799VeNHj1a+/fv1+zZs/Xpp5+6/ADoqFGj9Le//U1///vftW/fPg0ZMkQZGRl64oknSmALAQDAzarUHXGKj49Xx44dne8vnS7r16+fFixYoOPHjztDlCQFBwdr5cqVeu655zRjxgzVqFFDH3zwgSIjI5013bt314kTJzRhwgQlJSWpRYsWWr16da4LxgEAAApS6oJThw4dVNCjpfJ6KniHDh20a9euApc7fPjwAk/NAQAAXE2pO1UHAABQWhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAi8oXptjhcGjTpk3avHmzEhMTde7cOfn7+6tly5aKiIhQzZo1i6+nAAAAJczSEafMzEy9+uqrqlmzph566CF99dVXSk1NVbly5fTLL79o4sSJCg4O1kMPPaTvv/+++HsNAABQAiwdcWrQoIHCwsL0t7/9TX/605/k7u6eqyYxMVGLFy9Wjx499PLLL2vgwIHF0V8AAIASYyk4ffPNN2rUqFGBNbVr19bYsWP1/PPP6/Dhw0XVPwAAgFLD0qm6q4Wmy7m7u6tu3brX0ycAAIBSqVAXh19y/vx5/ec//1FKSoocDofLtM6dOxdV3wAAAEqVQgen1atXq2/fvjp58mSuaTabTTk5OUXVNwAAgFKl0M9xGjFihLp27arjx4/L4XC4vAhNAACgLCt0cEpOTtaoUaMUEBBQPD0CAAAopQodnB5//HFt3LixeHoDAABQihX6GqdZs2apa9eu2rx5s5o2bZrrmU7PPPNMUfYPAACg1Ch0cPrkk0/0zTffyNPTUxs3bpTNZnNOs9lsBCcAAFBmFTo4vfzyy5o0aZJefPFFubnxG8EAAODWUejkk52dre7duxOaAADALafQ6adfv35aunRp8fQGAACgFCv0qbqcnBxNnTpVX3/9tZo1a5br4vB33323KPsHAABQahT6iNOPP/6oli1bys3NTXv27NGuXbtcXkXh/fffV506deTp6anQ0FBt3769wPrY2Fg1bNhQnp6eatq0qVatWuUy3RijCRMmqHr16vLy8lJERIQOHjxYJH0FAAC3jkIfcdqwYUPx9OSipUuXatSoUZo7d65CQ0M1ffp0RUZG6sCBA6pWrVqu+u+++049e/ZUTEyMHn74YS1evFjR0dHauXOn7rrrLknS1KlTNXPmTP39739XcHCwxo8fr8jISO3du1eenp7Fuj0AAKDsKLIrvBMTEzV8+PDrXs67776rgQMH6oknnlDjxo01d+5cVahQQfPnz8+zfsaMGXrwwQf1wgsvqFGjRpoyZYruvvtuzZo1S7p4tGn69OkaN26cunTpombNmukf//iHjh07pmXLll13fwEAwK2j0EecOnbs6PLspkuOHz+u48ePOwPLtcjOztaOHTs0duxYZ5ubm5siIiIUFxeX5zxxcXEaNWqUS1tkZKQzFCUkJCgpKUkRERHO6X5+fgoNDVVcXJx69OiR53KzsrKUlZXlfJ+enn7N2wUAAMqGQgenFi1auLzPycnRr7/+ql9++UULFiy4rs6cPHlSOTk5uX4HLyAgQPv3789znqSkpDzrk5KSnNMvteVXk5eYmBhNmjTpmrcFAACUPYUOTtOmTcuz/YMPPtCsWbPUq1evouhXiRs7dqzLkaz09HTVrFmzRPsEAABKVpFd49SpUyft3r37upZx2223qVy5ckpOTnZpT05OVmBgYJ7zBAYGFlh/6b+FWaYk2e12+fr6urwAAMCtrciC0/r169WxY8frWoaHh4dCQkK0bt06Z5vD4dC6desUFhaW5zxhYWEu9ZK0Zs0aZ31wcLACAwNdatLT07Vt27Z8lwkAAJCXQp+qe/TRR3O1JScna9u2berYsaPL9M8//7zQHRo1apT69eunVq1aqU2bNpo+fboyMjL0xBNPSJL69u2r22+/XTExMZKkZ599VuHh4XrnnXcUFRWlJUuWKD4+XvPmzZMu/vDwyJEj9eqrr6p+/frOxxEEBQUpOjq60P0DAAC3rkIHJz8/vzzbGjRoUCQd6t69u06cOKEJEyYoKSlJLVq00OrVq50Xdx8+fNjld/LatWunxYsXa9y4cXrppZdUv359LVu2zPkMJ0kaPXq0MjIyNGjQIKWmpqp9+/ZavXo1z3ACAACFYjPGmJLuxM0gPT1dfn5+2jLgdfl4ELhuJXNbNSvpLqAIDI7/T7Gvg89K2XAjPisoXc5mn1f7D19SWlraVa9ptnSNE9kKAADAYnBq0qSJlixZouzs7ALrDh48qCFDhuiNN94oqv4BAACUGpaucXrvvfc0ZswYDR06VH/605/UqlUrBQUFydPTU6dPn9bevXu1ZcsW/fTTTxo+fLiGDBlS/D0HAAC4wSwFp06dOik+Pl5btmzR0qVLtWjRIiUmJiozM1O33XabWrZsqb59+6pXr16qXLly8fcaAACgBBTqrrr27durffv2xdcbAACAUqzIHoAJAABQ1hGcAAAALCI4AQAAWERwAgAAsIjgBAAAYFGhg9P999+vSZMm5Wo/ffq07r///qLqFwAAQKlT6B/53bhxo3788Uft2rVLixYtkre3tyQpOztbmzZtKo4+AgAAlArXdKpu7dq1SkpKUtu2bfXbb78Vfa8AAABKoWsKTtWrV9emTZvUtGlTtW7dWhs3biz6ngEAAJQyhQ5ONptNkmS327V48WI9++yzevDBBzV79uzi6B8AAECpUehrnIwxLu/HjRunRo0aqV+/fkXZLwAAgFKn0MEpISFB/v7+Lm2PPfaYGjZsqPj4+KLsGwAAQKlS6OBUu3btPNubNGmiJk2aFEWfAAAASiUegAkAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwqVcHp888/1wMPPKCqVavKZrNp9+7dluaLjY1Vw4YN5enpqaZNm2rVqlUu040xmjBhgqpXry4vLy9FRETo4MGDxbQVAACgrCpVwSkjI0Pt27fXm2++aXme7777Tj179tSAAQO0a9cuRUdHKzo6Wnv27HHWTJ06VTNnztTcuXO1bds2eXt7KzIyUufPny+mLQEAAGVR+ZLuwOX69OkjSfrtt98szzNjxgw9+OCDeuGFFyRJU6ZM0Zo1azRr1izNnTtXxhhNnz5d48aNU5cuXSRJ//jHPxQQEKBly5apR48exbQ1AACgrClVwelaxMXFadSoUS5tkZGRWrZsmSQpISFBSUlJioiIcE738/NTaGio4uLi8g1OWVlZysrKcr5PS0uTJGVkc5TqVpOdmVHSXUAROHsD/u7yWSkbbsRnBaXLpe92Y8xVa2/64JSUlKSAgACXtoCAACUlJTmnX2rLryYvMTExmjRpUq72yIWTi6jnAG6k+SXdAdw0+Kzcus6cOSM/P78Ca0osOC1atEhPP/208/1XX32le++9t6S6k8vYsWNdjmQ5HA6dOnXKeeH6zSo9PV01a9bUkSNH5OvrW9LdAWNSKjEmpQ9jUvqUpTExxujMmTMKCgq6am2JBafOnTsrNDTU+f7222+/puUEBgYqOTnZpS05OVmBgYHO6Zfaqlev7lLTokWLfJdrt9tlt9td2ipVqnRNfSyNfH19b/oPelnDmJQ+jEnpw5iUPmVlTK52pOmSErurrmLFiqpXr57z5eXldU3LCQsL07p161za1qxZo7CwMElScHCwAgMDXWrS09O1bds2Zw0AAIAVpeoap1OnTunw4cM6duyYJOnAgQPSxaNGl44c9e3bV7fffrtiYmIkSc8++6zCw8P1zjvvKCoqSkuWLFF8fLzmzZsnSbLZbBo5cqReffVV1a9fX8HBwRo/fryCgoIUHR1dYtsKAABuPqXqOU5ffvmlWrZsqaioKElSjx491LJlS82dO9dZc/jwYR0/ftz5vl27dlq8eLHmzZun5s2b67PPPtOyZct01113OWtGjx6tESNGaNCgQWrdurXOnj2r1atXy9PT8wZvYcmz2+2aOHFirtOQKDmMSenDmJQ+jEnpc6uOic1YufcOAAAApeuIEwAAQGlGcAIAALCI4AQAAGARwQkAAMAiglMZM3jwYNlsNk2fPv2qte+//77q1KkjT09PhYaGavv27S7Tz58/r2HDhqlq1ary8fHRY489lutho8jtwoULGjNmjJo2bSpvb28FBQWpb9++zsdsFIQxKT5X27dXio2NVcOGDeXp6ammTZtq1apVLtONMZowYYKqV68uLy8vRURE6ODBg8W8FWVDTEyMWrdurYoVK6patWqKjo52Pn6mIIzJjfPGG284H+dTkFtyTAzKjM8//9w0b97cBAUFmWnTphVYu2TJEuPh4WHmz59vfvrpJzNw4EBTqVIlk5yc7KwZPHiwqVmzplm3bp2Jj483bdu2Ne3atbsBW3JzS01NNREREWbp0qVm//79Ji4uzrRp08aEhIQUOB9jUnys7NvLbd261ZQrV85MnTrV7N2714wbN864u7ubH3/80VnzxhtvGD8/P7Ns2TLz73//23Tu3NkEBwebzMzMG7hlN6fIyEjz0UcfmT179pjdu3ebhx56yNSqVcucPXs233kYkxtn+/btpk6dOqZZs2bm2WefzbfuVh0TglMZ8fvvv5vbb7/d7Nmzx9SuXfuqwalNmzZm2LBhzvc5OTkmKCjIxMTEGHPxy9/d3d3ExsY6a/bt22ckmbi4uGLckrJp+/btRpJJTEzMt4YxKT5X27dX6tatm4mKinJpCw0NNU8//bQxxhiHw2ECAwPNW2+95Zyemppq7Ha7+eSTT4ptO8qqlJQUI8ls2rQp3xrG5MY4c+aMqV+/vlmzZo0JDw8vMDjdqmPCqboywOFwqE+fPnrhhRfUpEmTq9ZnZ2drx44dioiIcLa5ubkpIiJCcXFxkqQdO3bowoULLjUNGzZUrVq1nDWwLi0tTTabLd/fO2RMio+VfXuluLg4l3pJioyMdNYnJCQoKSnJpcbPz0+hoaGMxTVIS0uTJFWpUiXfGsbkxhg2bJiioqJy7eu83KpjUqp+cgXX5s0331T58uX1zDPPWKo/efKkcnJyFBAQ4NIeEBCg/fv3S5KSkpLk4eGR64s+ICBASUlJRdj7su/8+fMaM2aMevbsme8PYTImxcfKvr1SUlJSnvWX9vOl/xZUA2scDodGjhype+65x+UXH67EmBS/JUuWaOfOnfrhhx8s1d+qY8IRp5vMokWL5OPj43xt2rRJM2bM0IIFC2Sz2Uq6e7ekK8dk8+bNzmkXLlxQt27dZIzRnDlzSrSfQGk0bNgw7dmzR0uWLCnprtzSjhw5omeffVaLFi26JX+OrDAITjeZzp07a/fu3c7Xd999p5SUFNWqVUvly5dX+fLllZiYqL/+9a+qU6dOnsu47bbbVK5cuVx3YyUnJzt/TDkwMFDZ2dlKTU3Ntwb/c+WYtGrVSrosNCUmJmrNmjX5Hm0SY1KsrOzbKwUGBl51LC61WV0mchs+fLhWrFihDRs2qEaNGgXWMibFa8eOHUpJSdHdd9/t/C7ZtGmTZs6cqfLlyysnJyfXPLfqmBCcbjIVK1ZUvXr1nK9BgwbpP//5j8sXd1BQkF544QV9/fXXeS7Dw8NDISEhWrdunbPN4XBo3bp1CgsLkySFhITI3d3dpebAgQM6fPiwswb/c+WYeHl5OUPTwYMHtXbtWlWtWrXAZTAmxcfKvr1SWFiYS70krVmzxlkfHByswMBAl5r09HRt27aNsbDAGKPhw4friy++0Pr16xUcHHzVeRiT4tWpUyf9+OOPuf4R2KtXL+3evVvlypXLNc8tOyYlfXU6il5ed9Xdf//95r333nO+X7JkibHb7WbBggVm7969ZtCgQaZSpUomKSnJWTN48GBTq1Yts379ehMfH2/CwsJMWFjYDd2Wm1F2drbp3LmzqVGjhtm9e7c5fvy485WVleWsY0xunKvt2z59+pgXX3zRWb9161ZTvnx58/bbb5t9+/aZiRMn5nmbdaVKlczy5cvNf/7zH9OlS5eb/jbrG2XIkCHGz8/PbNy40eXvx7lz55w1jEnJu/KuOsbkfwhOZVBewal27dpm4sSJLm3vvfeeqVWrlvHw8DBt2rQx33//vcv0zMxMM3ToUFO5cmVToUIF8+c//9kcP378hmzDzSwhIcFIyvO1YcMGZx1jcmMVtG/Dw8NNv379XOo//fRT06BBA+Ph4WGaNGliVq5c6TLd4XCY8ePHm4CAAGO3202nTp3MgQMHbtj23Mzy+/vx0UcfOWsYk5J3ZXBiTP7HZv73IQYAAMBVcI0TAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCcAt68MPP9QDDzxQ7OtZvXq1WrRoIYfDUezrAlC8CE4Abknnz5/X+PHjNXHixGJf14MPPih3d3ctWrSo2NcFoHgRnADckj777DP5+vrqnnvuuSHr69+/v2bOnHlD1gWg+BCcANzUTpw4ocDAQL3++uvOtu+++04eHh65frn9ckuWLNEjjzzi0tahQweNHDnSpS06Olr9+/d3vq9Tp45effVV9e3bVz4+Pqpdu7a+/PJLnThxQl26dJGPj4+aNWum+Ph4l+U88sgjio+P16FDh4pgqwGUFIITgJuav7+/5s+fr1deeUXx8fE6c+aM+vTpo+HDh6tTp075zrdlyxa1atXqmtY5bdo03XPPPdq1a5eioqLUp08f9e3bV71799bOnTtVt25d9e3bV5f/FGitWrUUEBCgzZs3X9M6AZQOBCcAN72HHnpIAwcOVK9evTR48GB5e3srJiYm3/rU1FSlpaUpKCjomtf39NNPq379+powYYLS09PVunVrde3aVQ0aNNCYMWO0b98+JScnu8wXFBSkxMTEa1ongNKB4ASgTHj77bf1xx9/KDY2VosWLZLdbs+3NjMzU5Lk6el5Tetq1qyZ888BAQGSpKZNm+ZqS0lJcZnPy8tL586du6Z1AigdCE4AyoRDhw7p2LFjcjgc+u233wqsrVq1qmw2m06fPn3V5ebk5ORqc3d3d/7ZZrPl23bl4wdOnTolf39/C1sDoLQiOAG46WVnZ6t3797q3r27pkyZoqeeeirX0Z7LeXh4qHHjxtq7d2+uaVeeXvv111+LpI/nz5/XoUOH1LJlyyJZHoCSQXACcNN7+eWXlZaWppkzZ2rMmDFq0KCBnnzyyQLniYyM1JYtW3K1L1++XJ9//rkOHTqk1157TXv37lViYqKOHj16XX38/vvvZbfbFRYWdl3LAVCyCE4AbmobN27U9OnTtXDhQvn6+srNzU0LFy7U5s2bNWfOnHznGzBggFatWqW0tDSX9qioKE2dOlWNGzfWt99+q9mzZ2v79u1auHDhdfXzk08+Ua9evVShQoXrWg6AkmUzl98vCwC3kK5du+ruu+/W2LFjpYvPcWrRooWmT59epOs5efKk7rzzTsXHxys4OLhIlw3gxuKIE4Bb1ltvvSUfH59iX89vv/2m2bNnE5qAMoAjTgBwUXEdcQJQdhCcAAAALOJUHQAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBF/x9Wwz17dy9AtwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAIjCAYAAAD1M5RxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABgeklEQVR4nO3deVxWdd7/8feFwgWK4BKC5EYuueQWKmIWmkz0i1KmchvXMs21zCnNckmtKFtcMvV2ypwxTaO7tFHHck+NNFxmMpccIzQV0FHAFYzr+/vD22u6ZDsgyCW+no/H9cjrez7nnM85B+PtOec6l80YYwQAAIACeZR2AwAAADcLghMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITALexadMm2Ww2bdq0qbRbQTH79NNPVbVqVZ07d+6Gr3vfvn0qX7689u7de8PXjbKH4ATghpszZ44WLlxY2m0UyZIlSzRjxozSbkOS5HA4NG3aNIWEhMjb21vNmzfXJ598Ynn+tLQ0DR48WAEBAapYsaI6deqkXbt25Vr75Zdf6u6775a3t7dq166tSZMm6bfffrO0nuzsbE2aNEkjR46Ur6+v5f6KS5MmTRQdHa2JEyfe8HWjDDIAcIM1bdrURERE5BjPzs42Fy9eNNnZ2Te+KYuio6NNnTp1SrsNY4wxL774opFkBg0aZObPn2+io6ONJPPJJ58UOG92drZp3769qVixonnllVfM7NmzTZMmTUylSpXMTz/95FK7evVqY7PZTKdOncz8+fPNyJEjjYeHhxkyZIilPr/44gtjs9nMr7/+WqTtLA6rV682ksy///3vUusBZQPBCSgl586dK+0WSk1ewelm4C7B6ddffzWenp5m+PDhzjGHw2HuvfdeU7NmTfPbb7/lO/+yZcuMJBMXF+ccS01NNZUrVza9evVyqW3SpIlp0aKFuXz5snPs5ZdfNjabzezfv7/AXrt06WI6dOhgddNKRFZWlqlSpYqZMGFCqfaBmx+X6oBicOzYMQ0cOFDBwcGy2+0KCQnR0KFDlZWVJUlauHChbDabNm/erGHDhql69eqqWbOmc/45c+aoadOmstvtCg4O1vDhw5WWluayjkOHDumxxx5TUFCQvL29VbNmTfXs2VPp6enOmrVr16pDhw6qXLmyfH19deedd+qll14qsH8r82VmZmrSpEmqX7++7Ha7atWqpTFjxigzMzPH8j7++GO1bdtWFSpUUJUqVXTffffp66+/liTVrVtXP/74ozZv3iybzSabzaaOHTtKyvsep7i4OIWGhsrHx0e33Xab+vTpo2PHjrnUDBgwQL6+vjp27JhiYmLk6+urgIAAPf/888rOzi5wH6xYsULR0dHOY1ivXj1NnTrVZd6OHTtq1apVSkpKcvZet27dPJc5YMAAZ921r1deeaXAngrq9/Llyxo2bJhzzGazaejQofr1118VHx+f7/yfffaZAgMD9eijjzrHAgIC1L17d61YscJ5XPft26d9+/Zp8ODBKl++vLN22LBhMsbos88+y3c9ly5d0po1axQZGeky/ssvv8hms+V6yfba/fPKK6/IZrPpp59+Up8+feTv76+AgABNmDBBxhgdPXpUXbt2lZ+fn4KCgvTOO+/kWKanp6c6duyoFStW5NsvUJDyBZcAyM/x48fVtm1b5/0ijRo10rFjx/TZZ5/pwoUL8vLyctYOGzZMAQEBmjhxos6fPy/pyi+FyZMnKzIyUkOHDtXBgwc1d+5cff/999q2bZs8PT2VlZWlqKgoZWZmauTIkQoKCtKxY8e0cuVKpaWlyd/fXz/++KMefvhhNW/eXFOmTJHdbte///1vbdu2Ld/+rczncDjUpUsXbd26VYMHD1bjxo31ww8/aPr06frpp5+0fPlyZ+3kyZP1yiuvqH379poyZYq8vLy0fft2bdiwQQ888IBmzJjhvNfl5ZdfliQFBgbm2d/ChQv1xBNPqE2bNoqNjVVKSopmzpypbdu2affu3apcubKzNjs7W1FRUQoLC9Pbb7+tdevW6Z133lG9evU0dOjQfPfDwoUL5evrq9GjR8vX11cbNmzQxIkTlZGRobfeekuS9PLLLys9PV2//vqrpk+fLkn53rPz9NNP5wgMa9as0eLFi1W9enXn2KlTp/Lt7apKlSrJbrdLknbv3q2KFSuqcePGLjVt27Z1Tu/QoUOey9q9e7fuvvtueXi4/vu5bdu2mj9/vn766Sc1a9ZMu3fvliS1bt3apS44OFg1a9Z0Ts/Lzp07lZWVpbvvvtvSNuanR48eaty4sd544w2tWrVKr776qqpWrar/+Z//0f33368333xTixcv1vPPP682bdrovvvuc5k/NDRUK1asUEZGhvz8/K67H9yiSvuUF3Cz69evn/Hw8DDff/99jmkOh8MYY8xHH31kJJkOHTq4XEJJTU01Xl5e5oEHHnC5r2f27NlGklmwYIExxpjdu3fnuKxyrenTpxtJ5uTJk4Xq38p8ixYtMh4eHmbLli0u4/PmzTOSzLZt24wxxhw6dMh4eHiYP/7xjznuU7q6L4zJ+1Ldxo0bjSSzceNGY8yVyyvVq1c3d911l7l48aKzbuXKlUaSmThxonOsf//+RpKZMmWKyzJbtWplQkND898JxpgLFy7kGHv66adNhQoVzKVLl5xj13Op7tChQ8bf39/84Q9/cPk5kGTp9dFHH7n0cccdd+RYx/nz540k8+KLL+bbS8WKFc2TTz6ZY3zVqlVGklmzZo0xxpi33nrLSDJHjhzJUdumTRvTrl27fNfzwQcfGEnmhx9+cBlPTEzMsU1XSTKTJk1yvp80aZKRZAYPHuwc++2330zNmjWNzWYzb7zxhnP8zJkzxsfHx/Tv3z/HcpcsWWIkme3bt+fbM5AfLtUB18HhcGj58uV65JFHcvyLXLpyyeH3Bg0apHLlyjnfr1u3TllZWRo1apTLv/wHDRokPz8/rVq1SpLk7+8vSfrqq6904cKFXHu5euZlxYoVcjgclrfBynxxcXFq3LixGjVqpFOnTjlf999/vyRp48aNkqTly5fL4XBo4sSJOc5kXLsvrEhISFBqaqqGDRsmb29v53h0dLQaNWrk3D+/N2TIEJf39957r37++ecC1+Xj4+P889mzZ3Xq1Cnde++9unDhgg4cOFDo3q91/vx5/fGPf1SVKlX0ySefuPwcrF271tIrKirKOc/FixedZ59+7+p+unjxYr79WJ3/6n/zqi1oPf/5z38kSVWqVMm3zoqnnnrK+edy5cqpdevWMsZo4MCBzvHKlSvrzjvvzPWYX+3B6hk+IDdcqgOuw8mTJ5WRkaG77rrLUn1ISIjL+6SkJEnSnXfe6TLu5eWlO+64wzk9JCREo0eP1rvvvqvFixfr3nvvVZcuXZz3e0hXLmN88MEHeuqpp/Tiiy+qc+fOevTRR/X444/nCDG/Z2W+Q4cOaf/+/QoICMh1GampqZKkw4cPy8PDQ02aNLG0PwqS1/6RpEaNGmnr1q0uY97e3jl6rFKlis6cOVPgun788UeNHz9eGzZsUEZGhsu0399HVlSDBg3S4cOH9e2336patWou0669nGeFj49PrveXXbp0yTm9OOa/+t+8agtaz1XGGEt1+aldu7bLe39/f3l7e+u2227LMX41sOXWQ1FCPHAVwQm4gaz+ksnNO++8owEDBmjFihX6+uuv9cwzzyg2NlbfffedatasKR8fH33zzTfauHGjVq1apTVr1mjZsmW6//779fXXX7uc4bi2p4Lmczgcatasmd59991cl1GrVq0ib1dxymsbC5KWlqaIiAj5+flpypQpqlevnry9vbVr1y6NHTu2UGfwcjNz5kx98skn+vjjj9WyZcsc05OTky0tx9/f3/kzVKNGDW3cuFHGGJcgcOLECUlX7kHKT40aNZy1v3ft/DVq1HCOX3ucT5w44bynKi9XQ+KZM2dcPhCRl/wCVm7HN69jnttyrgboa4MWUBhcqgOuQ0BAgPz8/Ir8ROI6depIkg4ePOgynpWVpcTEROf0q5o1a6bx48frm2++0ZYtW3Ts2DHNmzfPOd3Dw0OdO3fWu+++q3379um1117Thg0bnJfS8lLQfPXq1dPp06fVuXNnRUZG5nhdPSNUr149ORwO7du3L9/1Wf0Xf1775+rYtfunqDZt2qT//Oc/WrhwoZ599lk9/PDDioyMzPXyUmHPVmzZskXPP/+8Ro0apd69e+daU6NGDUuvZcuWOedp2bKlLly4oP3797ssa/v27c7p+WnZsqV27dqVIxRu375dFSpUUMOGDV2Wk5CQ4FJ3/Phx/frrrwWup1GjRpKkxMTEXKefPXvW5X1KSkq+y7seiYmJ8vDwcG4bUBQEJ+A6eHh4KCYmRn//+99z/GKRCr48ERkZKS8vL82aNcul9sMPP1R6erqio6MlSRkZGTme0tysWTN5eHg4L6GcPn06x/Kv/lLL7TLLVVbm6969u44dO6a//OUvOWovXrzo/IRgTEyMPDw8NGXKlBy/kH+/fRUrVszxuIXctG7dWtWrV9e8efNctuEf//iH9u/f79w/1+vqWYvf95iVlaU5c+bkqK1YsaLlS3cnTpxQ9+7d1aFDB+cn83JTlHucunbtKk9PT5cejTGaN2+ebr/9drVv396ljwMHDujy5cvOsccff1wpKSn6/PPPnWOnTp1SXFycHnnkEec9TU2bNlWjRo00f/58l0czzJ07VzabTY8//ni++yA0NFReXl65/v2QlCPUf/HFF85tKW47d+5U06ZNnZe3gaLgUh1wnV5//XV9/fXXioiIcH5U/8SJE4qLi9PWrVtdPi5/rYCAAI0bN06TJ0/Wgw8+qC5duujgwYOaM2eO2rRpoz59+kiSNmzYoBEjRqhbt25q2LChfvvtNy1atEjlypXTY489JkmaMmWKvvnmG0VHR6tOnTpKTU3VnDlzVLNmzXw/lm5lvr59++rTTz/VkCFDtHHjRt1zzz3Kzs7WgQMH9Omnn+qrr75S69atVb9+fb388suaOnWq7r33Xj366KOy2+36/vvvFRwcrNjYWElXfpnOnTtXr776qurXr6/q1as7bzT/PU9PT7355pt64oknFBERoV69ejkfR1C3bl0999xzRT1sLtq3b68qVaqof//+euaZZ2Sz2bRo0aJcf3mHhoZq2bJlGj16tNq0aSNfX1898sgjuS73mWee0cmTJzVmzBgtXbrUZVrz5s3VvHlzSUW7x6lmzZoaNWqU3nrrLV2+fFlt2rTR8uXLtWXLFi1evNjlEta4ceP017/+VYmJic7nTj3++ONq166dnnjiCe3bt0+33Xab5syZo+zsbE2ePNllXW+99Za6dOmiBx54QD179tTevXs1e/ZsPfXUUzkeh3Atb29vPfDAA1q3bp2mTJmSY/qaNWvUu3dv3Xffffrpp580f/58VahQQV9//bXatGmjhx9+uND7JjeXL192PkcNuC6l8lk+oIxJSkoy/fr1MwEBAcZut5s77rjDDB8+3GRmZhpj/vs4gtweWWDMlccPNGrUyHh6eprAwEAzdOhQc+bMGef0n3/+2Tz55JOmXr16xtvb21StWtV06tTJrFu3zlmzfv1607VrVxMcHGy8vLxMcHCw6dWrV46vz7iW1fmysrLMm2++aZo2bWrsdrupUqWKCQ0NNZMnTzbp6ekutQsWLDCtWrVy1kVERJi1a9c6pycnJ5vo6GhTqVIlI8n5aIJrH0dw1bJly5zLq1q1qundu3eOr+/o37+/qVixYo7tu/pR9oJs27bNtGvXzvj4+Jjg4GAzZswY89VXX+Xo59y5c+ZPf/qTqVy5spGU76MJIiIi8ny0wO8/bl9U2dnZ5vXXXzd16tQxXl5epmnTpubjjz/OUXf1UQ2JiYku46dPnzYDBw401apVMxUqVDARERF5/ox+8cUXpmXLlsZut5uaNWua8ePHm6ysLEt9fv7558Zms7k80uDq4whef/11ExkZaex2uwkJCTGfffaZeemll0yFChXM5MmTjTH/PYbXPjIjr2MeERFhmjZt6jL2j3/8w0gyhw4dstQzkBebMSVwPhQAgP+TnZ2tJk2aqHv37po6daqkK08ODwkJ0UcffaQBAwaUeA8xMTGy2WzOS4FAUXGPEwCgRJUrV05TpkzR+++/r3Pnzt3w9e/fv18rV650hjbgehCcAAAlrkePHjp9+nS+X1FTUho3bqzffvvN8vPWgPwQnAAAACziHicAAACLOOMEAABgEcEJAADAIh6AaZHD4dDx48dVqVIlviASAIAyxBijs2fPKjg4ON8vRZcITpYdP37cbb7IFAAAFL+jR48W+GXUBCeLKlWqJEnq89Yn8vKpUMrdAACA4pJ18YI+fqGX83d9fghOFl29POflU0FePhVLuRsAAFDcrNyKw83hAAAAFhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYJHbBafY2Fi1adNGlSpVUvXq1RUTE6ODBw8WOF9cXJwaNWokb29vNWvWTKtXr3aZbozRxIkTVaNGDfn4+CgyMlKHDh0qqc0AAABlkNsFp82bN2v48OH67rvvtHbtWl2+fFkPPPCAzp8/n+c83377rXr16qWBAwdq9+7diomJUUxMjPbu3eusmTZtmmbNmqV58+Zp+/btqlixoqKionTp0qUbsVkAAKAMsBljTGk3kZ+TJ0+qevXq2rx5s+67775ca3r06KHz589r5cqVzrF27dqpZcuWmjdvnowxCg4O1p///Gc9//zzkqT09HQFBgZq4cKF6tmzZ4F9ZGRkyN/fX0/OXiEvn4rFs3EAAKDUZV08rwUjuio9PV1+fn751rrdGadrpaenS5KqVq2aZ018fLwiIyNdxqKiohQfHy9JSkxMVHJyskuNv7+/wsLCnDXXyszMVEZGhssLAADc2tw6ODkcDo0aNUr33HOP7rrrrjzrkpOTFRgY6DIWGBio5ORk5/SrY3nVXCs2Nlb+/v7OV61ata5nUwAAQBng1sFp+PDh2rt3r5YuXXrD1z1u3Dilp6c7X0ePHr3hPQAAAPdSvrQbyMuIESO0cuVKffPNN6pZs2a+tUFBQUpJSXEZS0lJUVBQkHP61bEaNWq41LRs2TLXZdrtdtnt9uvYAgAAUNa43RknY4xGjBihL774Qhs2bFBISEiB84SHh2v9+vUuY2vXrlV4eLgkKSQkREFBQS41GRkZ2r59u7MGAACgIG53xmn48OFasmSJVqxYoUqVKjnvQfL395ePj48kqV+/frr99tsVGxsrSXr22WcVERGhd955R9HR0Vq6dKkSEhI0f/58SZLNZtOoUaP06quvqkGDBgoJCdGECRMUHBysmJiYUtlOAABw83G74DR37lxJUseOHV3GP/roIw0YMECSdOTIEXl4/PdkWfv27bVkyRKNHz9eL730kho0aKDly5e73FA+ZswYnT9/XoMHD1ZaWpo6dOigNWvWyNvbu8S3CQAAlA1u/xwnd8FznAAAKJvK1HOcAAAA3AXBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGBR+dJu4GZz4YcM/Wb/rbTbuGEqtPAv7RYAADfYhX+ml3YLN1RW5gXLtZxxAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABa5XXD65ptv9Mgjjyg4OFg2m03Lly8vcJ5Nmzbp7rvvlt1uV/369bVw4cIcNe+//77q1q0rb29vhYWFaceOHcXfPAAAKNPcLjidP39eLVq00Pvvv2+pPjExUdHR0erUqZP27NmjUaNG6amnntJXX33lrFm2bJlGjx6tSZMmadeuXWrRooWioqKUmppaUpsBAADKIJsxxpR2E3mx2Wz64osvFBMTk2fN2LFjtWrVKu3du9c51rNnT6WlpWnNmjWSpLCwMLVp00azZ8+WJDkcDtWqVUsjR47Uiy++aKmXjIwM+fv7q+fTi+Rlr1D0jbrJ8ABMALj13IoPwFz6P32Vnp4uPz+/fGvd7oxTYcXHxysyMtJlLCoqSvHx8ZKkrKws7dy506XGw8NDkZGRzprcZGZmKiMjw+UFAABubTd9cEpOTlZgYKDLWGBgoDIyMnTx4kWdOnVK2dnZudYkJyfnudzY2Fj5+/s7X7Vq1SqR/gEAwM3jpg9OJWXcuHFKT093vo4ePVraLQEAgFJ203/Jb1BQkFJSUlzGUlJS5OfnJx8fH5UrV07lypXLtSYoKCjP5drtdtnt9hLpGQAA3Jxu+jNO4eHhWr9+vcvY2rVrFR4eLkny8vJSaGioS43D4dD69eudNQAAAFa4XXA6d+6c9uzZoz179ki68riBPXv26MiRI5KuXELr16+fs37IkCH6+eefNWbMGB04cEBz5szRp59+queee85ZM3r0aP3lL3/RX//6V+3fv19Dhw7V+fPn9cQTT9zQbQMAADc3t7tUl5CQoE6dOjnfjx49WpLUv39/LVy4UCdOnHCGKEkKCQnRqlWr9Nxzz2nmzJmqWbOmPvjgA0VFRTlrevTooZMnT2rixIlKTk5Wy5YttWbNmhw3jAMAAOTHrZ/j5E54jhMA4FbBc5zy5naX6gAAANwVwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARYX+kt/ExERt2bJFSUlJunDhggICAtSqVSuFh4fL29u7JHoEAABwC5aD0+LFizVz5kwlJCQoMDBQwcHB8vHx0enTp3X48GF5e3urd+/eGjt2rOrUqVOSPQMAAJQKS8GpVatW8vLy0oABA/S///u/qlWrlsv0zMxMxcfHa+nSpWrdurXmzJmjbt26lUjDAAAApcVScHrjjTcUFRWV53S73a6OHTuqY8eOeu211/TLL78UV38AAABuw1Jwyi80XatatWqqVq1akRsCAABwV4W+Ofyq1NRUpaamyuFwuIw3b978upsCAABwR4UOTjt37lT//v21f/9+GWMkSTabTcYY2Ww2ZWdnF3uTAAAA7qDQwenJJ59Uw4YN9eGHHyowMFA2m60k+gIAAHA7hQ5OP//8s/73f/9X9evXL4l+AAAA3FahnxzeuXNn/fOf/yyJXgAAANxaoc84ffDBB+rfv7/27t2ru+66S56eni7Tu3TpUmzNAQAAuJNCB6f4+Hht27ZN//jHP3JM4+ZwAABQlhX6Ut3IkSPVp08fnThxQg6Hw+VFaAIAAGVZoYPTf/7zHz333HMKDAwsiX4AAADcVqGD06OPPqqNGzeWRC8AAABurdD3ODVs2FDjxo3T1q1b1axZsxw3hz/zzDPF1hwAAIA7KdKn6nx9fbV582Zt3rzZZZrNZiM4AQCAMqvQwSkxMbEk+gAAAHB7hb7HKS8nTpzQtGnTimtxAAAAbqdI31WXm6SkJO3YsUNjxoy57qYAAADcUaGD05kzZ1zeZ2dn6+eff9b+/fs1Z86cYmsMAADA3RQ6OH3xxRe5jr/22mtavny5nn766etuyp2N+O2ofD28S7uNGyehtBsoffNaNy/tFlAMhiT8q8TXwc9K2XAjflbgXs79dklLLdYW2z1OvXr10qZNm4prcQAAAG6n2ILTP//5T7Vq1aq4FgcAAOB2Cn2pbvTo0TnGUlJStGLFCkVHR7tMf/fdd6+vOwAAADdS6OC0e/fuXMfbtGmj1NRUpaamSrryMEwAAICypNDBie+pAwAAt6piu8cJAACgrLN0xunBBx/UK6+8onbt2uVbd/bsWc2ZM0e+vr4aPnx4kZt6//339dZbbyk5OVktWrTQe++9p7Zt2+ZZHxcXpwkTJuiXX35RgwYN9Oabb+qhhx5yTjfGaNKkSfrLX/6itLQ03XPPPZo7d64aNGhQ5B5x6+CjybCKnxWg7LN0xqlbt2567LHH1KRJE40dO1ZxcXHatm2bdu7cqXXr1mnWrFnq3r27atSooV27dumRRx4pckPLli3T6NGjNWnSJO3atUstWrRQVFSU896pa3377bfq1auXBg4cqN27dysmJkYxMTHau3evs2batGmaNWuW5s2bp+3bt6tixYqKiorSpUuXitwnAAC49diMMcZKYWZmpuLi4rRs2TJt3bpV6enpVxZgs6lJkyaKiorSwIED1bhx4+tqKCwsTG3atNHs2bMlSQ6HQ7Vq1dLIkSP14osv5qjv0aOHzp8/r5UrVzrH2rVrp5YtW2revHkyxig4OFh//vOf9fzzz0uS0tPTFRgYqIULF6pnz56W+srIyJC/v7+2Dnxdvl630AMwAQAo485lXVKHD19Senq6/Pz88q21fHO43W5Xnz591KdPH0lXwsfFixdVrVo1eXp6Xl/H/ycrK0s7d+7UuHHjnGMeHh6KjIxUfHx8rvPEx8fneERCVFSUli9fLklKTExUcnKyIiMjndP9/f0VFham+Pj4PINTZmamMjMzne8zMjKKulkAAKCMKPSn6q7y9/eXv79/cfaiU6dOKTs7W4GBgS7jgYGBOnDgQK7zJCcn51qfnJzsnH51LK+a3MTGxmry5Mk5xhe0aiovn4oFbwwAALgpZF08b7mWT9XlYdy4cUpPT3e+jh49WtotAQCAUuZWwem2225TuXLllJKS4jKekpKioKCgXOcJCgrKt/7qfwuzTOnKpUk/Pz+XFwAAuLW5VXDy8vJSaGio1q9f7xxzOBxav369wsPDc50nPDzcpV6S1q5d66wPCQlRUFCQS01GRoa2b9+e5zIBAAByU+R7nErK6NGj1b9/f7Vu3Vpt27bVjBkzdP78eT3xxBOSpH79+un2229XbGysJOnZZ59VRESE3nnnHUVHR2vp0qVKSEjQ/PnzJV351N+oUaP06quvqkGDBgoJCdGECRMUHBysmJiY0tpMAABwEyp0cOrfv78GDhyo++67ryT6UY8ePXTy5ElNnDhRycnJatmypdasWeO8ufvIkSPy8PjvibL27dtryZIlGj9+vF566SU1aNBAy5cv11133eWsGTNmjM6fP6/BgwcrLS1NHTp00Jo1a+TtzWMFAACAdZaf43RVTEyMVq9erTp16uiJJ55Q//79dfvtt5dUf27j6nOcnpy9gk/VAQBQhmRdPK8FI7paeo5Toe9xWr58uY4dO6ahQ4dq2bJlqlu3rv7f//t/+uyzz3T58uUiNw0AAODuinRzeEBAgEaPHq1//vOf2r59u+rXr6++ffsqODhYzz33nA4dOlTcfQIAAJS66/pU3YkTJ7R27VqtXbtW5cqV00MPPaQffvhBTZo00fTp04urRwAAALdQ6OB0+fJl/e///q8efvhh1alTR3FxcRo1apSOHz+uv/71r1q3bp0+/fRTTZkypST6BQAAKDWF/lRdjRo15HA41KtXL+3YsUMtW7bMUdOpUydVrly5GNoDAABwH4UOTtOnT1e3bt3y/Sh/5cqVlZiYeF2NAQAAuJtCB6e+ffuWRB8AAABuz62+cgUAAMCdEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAiwhOAAAAFrlVcPr888/1wAMPqFq1arLZbNqzZ4+l+eLi4tSoUSN5e3urWbNmWr16tct0Y4wmTpyoGjVqyMfHR5GRkTp06FAJbAEAACjL3Co4nT9/Xh06dNCbb75peZ5vv/1WvXr10sCBA7V7927FxMQoJiZGe/fuddZMmzZNs2bN0rx587R9+3ZVrFhRUVFRunTpUklsBgAAKKNsxhhT2k1c65dfflFISIh2796tli1b5lvbo0cPnT9/XitXrnSOtWvXTi1bttS8efNkjFFwcLD+/Oc/6/nnn5ckpaenKzAwUAsXLlTPnj0t9ZSRkSF/f389OXuFvHwqFnnbAACAe8m6eF4LRnRVenq6/Pz88q11qzNORREfH6/IyEiXsaioKMXHx0uSEhMTlZyc7FLj7++vsLAwZ01uMjMzlZGR4fICAAC3tps+OCUnJyswMNBlLDAwUMnJyc7pV8fyqslNbGys/P39na9atWoVc+cAAOBmU2rBafHixfL19XW+tmzZUlqt5GrcuHFKT093vo4ePVraLQEAgFJWvrRW3KVLF4WFhTnf33777UVaTlBQkFJSUlzGUlJSFBQU5Jx+daxGjRouNfndP2W322W324vUEwAAKJtK7YxTpUqVVL9+fefLx8enSMsJDw/X+vXrXcbWrl2r8PBwSVJISIiCgoJcajIyMrR9+3ZnDQAAgBWldsYpN6dPn9aRI0d0/PhxSdLBgwclXTlrdPXMUb9+/XT77bcrNjZWkvTss88qIiJC77zzjqKjo7V06VIlJCRo/vz5kiSbzaZRo0bp1VdfVYMGDRQSEqIJEyYoODhYMTExN34jAQDATcutbg7/8ssv1apVK0VHR0uSevbsqVatWmnevHnOmiNHjujEiRPO9+3bt9eSJUs0f/58tWjRQp999pmWL1+uu+66y1kzZswYjRw5UoMHD1abNm107tw5rVmzRt7e3jdu4wAAwE3PLZ/j5I54jhMAAGXTLfUcJwAAgBuF4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAiwhOAAAAFhGcAAAALHKb4HT58mWNHTtWzZo1U8WKFRUcHKx+/frp+PHjBc77/vvvq27duvL29lZYWJh27NjhMv3SpUsaPny4qlWrJl9fXz322GNKSUkpqU0BAABllNsEpwsXLmjXrl2aMGGCdu3apc8//1wHDx5Uly5d8p1v2bJlGj16tCZNmqRdu3apRYsWioqKUmpqqrPmueee09///nfFxcVp8+bNOn78uB599NGS3iQAAFDG2IwxprSbyMv333+vtm3bKikpSbVr1861JiwsTG3atNHs2bMlSQ6HQ7Vq1dLIkSP14osvKj09XQEBAVqyZIkef/xxSdKBAwfUuHFjxcfHq127dpZ6ycjIkL+/v56cvUJePhWLZwMBAECpy7p4XgtGdFV6err8/PzyrXWbM065SU9Pl81mU+XKlXOdnpWVpZ07dyoyMtI55uHhocjISMXHx0uSdu7cqcuXL7vUNGrUSLVr13bW5CYzM1MZGRkuLwAAcGtz2+B06dIljR07Vr169coz/Z06dUrZ2dkKDAx0GQ8MDFRycrIkKTk5WV5eXjnC1+9rchMbGyt/f3/nq1atWte3QQAA4KZXasFp8eLF8vX1db62bNninHb58mV1795dxhjNnTu3VPobN26c0tPTna+jR4+WSh8AAMB9lC+tFXfp0kVhYWHO97fffruk/4ampKQkbdiwId9rjbfddpvKlSuX4xNyKSkpCgoKkiQFBQUpKytLaWlpLmedfl+TG7vdLrvdXpRNAwAAZVSpnXGqVKmS6tev73z5+Pg4Q9OhQ4e0bt06VatWLd9leHl5KTQ0VOvXr3eOORwOrV+/XuHh4ZKk0NBQeXp6utQcPHhQR44ccdYAAABYUWpnnK51+fJlPf7449q1a5dWrlyp7Oxs5z1IVatWlZeXlySpc+fO+uMf/6gRI0ZIkkaPHq3+/furdevWatu2rWbMmKHz58/riSeekCT5+/tr4MCBGj16tKpWrSo/Pz+NHDlS4eHhlj9RBwAAILlRcDp27Ji+/PJLSVLLli1dpm3cuFEdO3aUJB0+fFinTp1yTuvRo4dOnjypiRMnKjk5WS1bttSaNWtcbhifPn26PDw89NhjjykzM1NRUVGaM2dOiW8TAAAoW9z6OU7uhOc4AQBQNpWZ5zgBAAC4E4ITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsMhtHoDp7q4+7irr4oVS7gQAABSnq7/brTzakgdgWvTrr7+qVq1apd0GAAAoIUePHlXNmjXzrSE4WeRwOHT8+HFVqlRJNputtNspsoyMDNWqVUtHjx4t8OmouDE4Ju6HY+J+OCbupywdE2OMzp49q+DgYHl45H8XE5fqLPLw8Cgwhd5M/Pz8bvof9LKGY+J+OCbuh2PifsrKMfH397dUx83hAAAAFhGcAAAALCI43WLsdrsmTZoku91e2q3g/3BM3A/HxP1wTNzPrXpMuDkcAADAIs44AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCUxkzZMgQ2Ww2zZgxo8Da999/X3Xr1pW3t7fCwsK0Y8cOl+mXLl3S8OHDVa1aNfn6+uqxxx5TSkpKCXVedly+fFljx45Vs2bNVLFiRQUHB6tfv346fvx4gfNyTEpOQfv2WnFxcWrUqJG8vb3VrFkzrV692mW6MUYTJ05UjRo15OPjo8jISB06dKgkN6HMiI2NVZs2bVSpUiVVr15dMTExOnjwYIHzcUxunDfeeEM2m02jRo3Kt+6WPCYGZcbnn39uWrRoYYKDg8306dPzrV26dKnx8vIyCxYsMD/++KMZNGiQqVy5sklJSXHWDBkyxNSqVcusX7/eJCQkmHbt2pn27duX8Fbc/NLS0kxkZKRZtmyZOXDggImPjzdt27Y1oaGh+c7HMSk5Vvbt723bts2UK1fOTJs2zezbt8+MHz/eeHp6mh9++MFZ88Ybbxh/f3+zfPly889//tN06dLFhISEmIsXL96ozbppRUVFmY8++sjs3bvX7Nmzxzz00EOmdu3a5ty5c3nOwzG5cXbs2GHq1q1rmjdvbp599tk8627VY0JwKiN+/fVXc/vtt5u9e/eaOnXqFBic2rZta4YPH+58n52dbYKDg01sbKwx5sovf09PTxMXF+es2b9/v5Fk4uPjS2QbyrIdO3YYSSYpKSnPGo5JySlo316re/fuJjo62mUsLCzMPP3008YYYxwOhwkKCjJvvfWWc3paWpqx2+3mk08+KYEtKNtSU1ONJLN58+Y8azgmN8bZs2dNgwYNzNq1a01ERES+welWPSZcqisDHA6H+vbtqxdeeEFNmzYtsD4rK0s7d+5UZGSkc8zDw0ORkZGKj4+XJO3cuVOXL192qWnUqJFq167trIF16enpstlsqly5cq7TOSYlx8q+vVZ8fLxLvSRFRUU56xMTE5WcnOxS4+/vr7CwMI5FEaSnp0uSqlatmmcNx+TGGD58uKKjo3Ps69zcqseEL/ktA958802VL19ezzzzjKX6U6dOKTs7W4GBgS7jgYGBOnDggCQpOTlZXl5eOX7RBwYGKjk5uVj6vlVcunRJY8eOVa9evfL8IkyOScmxsm+vlZycnGv91f189b/51cAah8OhUaNG6Z577tFdd92VZx3HpOQtXbpUu3bt0vfff2+p/lY9JpxxusksXrxYvr6+ztfmzZs1c+ZMLVy4UDabrbTbuyVde0y2bNninHb58mV1795dxhjNnTu3FLsE3NPw4cO1d+9eLV26tLRbuaUdPXpUzz77rBYvXixvb+/SbsetEZxuMl26dNGePXucr2+//VapqamqXbu2ypcvr/LlyyspKUl//vOfVbdu3VyXcdttt6lcuXI5Po2VkpKioKAgSVJQUJCysrKUlpaWZw2uuPaYtG7dWtJ/Q1NSUpLWrl2b59kmiWNSkqzs22sFBQUVeCyujlldJnIaMWKEVq5cqY0bN6pmzZr51nJMStbOnTuVmpqqu+++2/m7ZPPmzZo1a5bKly+v7OzsHPPcqseE4HSTqVSpkurXr+98DR48WP/6179cfnEHBwfrhRde0FdffZXrMry8vBQaGqr169c7xxwOh9avX6/w8HBJUmhoqDw9PV1qDh48qCNHjjhrcMW1x8THx8cZmg4dOqR169apWrVq+S6DY1JyrOzba4WHh7vUS9LatWud9SEhIQoKCnKpycjI0Pbt2zkWFhhjNGLECH3xxRfasGGDQkJCCpyHY1KyOnfurB9++CHHPwJ79+6tPXv2qFy5cjnmuWWPSWnfnY7il9un6u6//37z3nvvOd8vXbrU2O12s3DhQrNv3z4zePBgU7lyZZOcnOysGTJkiKldu7bZsGGDSUhIMOHh4SY8PPxGbcZNKysry3Tp0sXUrFnT7Nmzx5w4ccL5yszMdNZxTG6cgvZt3759zYsvvuis37Ztmylfvrx5++23zf79+82kSZNy/Zh15cqVzYoVK8y//vUv07Vr15v+Y9Y3ytChQ42/v7/ZtGmTy9+PCxcuOGs4JqXv2k/VcUyuIDiVQbkFpzp16phJkya5jL333numdu3axsvLy7Rt29Z89913LtMvXrxohg0bZqpUqWIqVKhg/vjHP5oTJ06UcPc3v8TERCMp19fGjRuddRyTGyu/fRsREWH69+/vUv/pp5+ahg0bGi8vL9O0aVOzatUql+kOh8NMmDDBBAYGGrvdbjp37mwOHjx4IzblppfX34+PPvrIWcMxKX3XBieOyRU2Y4wpnXNdAAAANxfucQIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBuGV9+OGHeuCBB0p8PWvWrFHLli3lcDhKfF0AShbBCcAt6dKlS5owYYImTZpU4ut68MEH5enpqcWLF5f4ugCULIITgFvSZ599Jj8/P91zzz03ZH0DBgzQrFmzbsi6AJQcghOAm9rJkycVFBSk119/3Tn27bffysvLK8c3t//e0qVL9cgjj7iMdezYUaNGjXIZi4mJ0YABA5zv69atq1dffVX9+vWTr6+v6tSpoy+//FInT55U165d5evrq+bNmyshIcFlOY888ogSEhJ0+PDhom8sgFJHcAJwUwsICNCCBQv0yiuvKCEhQWfPnlXfvn01YsQIde7cOc/5tm7dqtatWxdpndOnT9c999yj3bt3Kzo6Wn379lW/fv3Up08f7dq1S/Xq1VO/fv30+68CrV27tgIDA7Vly5YirROAeyA4AbjpPfTQQxo0aJB69+6tIUOGqGLFioqNjc2zPi0tTenp6QoODi7y+p5++mk1aNBAEydOVEZGhtq0aaNu3bqpYcOGGjt2rPbv36+UlBSX+YKDg5WUlFSkdQJwDwQnAGXC22+/rd9++01xcXFavHix7HZ7nrUXL16UJHl7exdpXc2bN3f+OTAwUJLUrFmzHGOpqaku8/n4+OjChQtFWicA90BwAlAmHD58WMePH5fD4dAvv/ySb221atVks9l05syZApebnZ2dY8zT09P5Z5vNlufYtY8fOH36tAICAgpcJwD3RXACcNPLyspSnz591KNHD02dOlVPPfVUjrM9v+fl5aUmTZpo3759OaZde3nt559/LpYeL126pMOHD6tVq1bFsjwApYPgBOCm9/LLLys9PV2zZs3S2LFj1bBhQz355JP5zhMVFaWtW7fmGF+xYoU+//xzHT58WK+99pr27dunpKQkHTt27Lp6/O6772S32xUeHn5dywFQughOAG5qmzZt0owZM7Ro0SL5+fnJw8NDixYt0pYtWzR37tw85xs4cKBWr16t9PR0l/Ho6GhNmzZNTZo00TfffKM5c+Zox44dWrRo0XX1+cknn6h3796qUKHCdS0HQOmymd9/XhYAbiHdunXT3XffrXHjxkm68hynli1basaMGcW6nlOnTunOO+9UQkKCQkJCinXZAG4szjgBuGW99dZb8vX1LfH1/PLLL5ozZw6hCSgDOOMEAP+npM44ASg7CE4AAAAWcakOAADAIoITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAbmHTpk2y2WzatGlTabeCEnDu3DlVr15dixcvLpX1t2vXTmPGjCmVdaNsITgBuKHmzJmjhQsXlnYbRbJkyRLNmDGjtNtw8eGHH6px48by9vZWgwYN9N5771ma79y5c5o0aZIefPBBVa1aVTabLc/jsmPHDg0bNkyhoaHy9PSUzWYrdJ8zZ85UpUqV1LNnz0LPWxzGjh2r999/X8nJyaWyfpQdBCcAN1Rewem+++7TxYsXdd999934pixyt+D0P//zP3rqqafUtGlTvffeewoPD9czzzyjN998s8B5T506pSlTpmj//v1q0aJFvrWrV6/WBx98IJvNpjvuuKPQfV6+fFkzZ87UU089pXLlyhV6/uLQtWtX+fn5ac6cOaWyfpQdBCegFJw/f760W3A7Hh4e8vb2locH/1uy4uLFi3r55ZcVHR2tzz77TIMGDdLf/vY39e7dW1OnTtWZM2fynb9GjRo6ceKEkpKS9NZbb+VbO3ToUKWnpyshIUF/+MMfCt3rypUrdfLkSXXv3r3Q8xYXDw8PPf744/rb3/4mY0yp9YGbH/+HAq7TsWPHNHDgQAUHB8tutyskJERDhw5VVlaWJGnhwoWy2WzavHmzhg0bpurVq6tmzZrO+efMmaOmTZvKbrcrODhYw4cPV1pamss6Dh06pMcee0xBQUHy9vZWzZo11bNnT6Wnpztr1q5dqw4dOqhy5cry9fXVnXfeqZdeeqnA/q3Ml5mZqUmTJql+/fqy2+2qVauWxowZo8zMzBzL+/jjj9W2bVtVqFBBVapU0X333aevv/5aklS3bl39+OOP2rx5s2w2m2w2mzp27Cgp73uc4uLiFBoaKh8fH912223q06ePjh075lIzYMAA+fr66tixY4qJiZGvr68CAgL0/PPPKzs7u8B9sGLFCkVHRzuPYb169TR16lSXeTt27KhVq1YpKSnJ2XvdunXzXGZERESeZ3LuvPNORUVFFdhXfjZu3Kj//Oc/GjZsmMv48OHDdf78ea1atSrf+e12u4KCgiytKzAwUD4+PkXudfny5apbt67q1avnMt6xY0fn8f+9AQMGuOzbX375RTabTW+//bbef/993XHHHapQoYIeeOABHT16VMYYTZ06VTVr1pSPj4+6du2q06dP51juH/7wByUlJWnPnj1F3hagfGk3ANzMjh8/rrZt2yotLU2DBw9Wo0aNdOzYMX322We6cOGCvLy8nLXDhg1TQECAJk6c6Dzj9Morr2jy5MmKjIzU0KFDdfDgQc2dO1fff/+9tm3bJk9PT2VlZSkqKkqZmZkaOXKkgoKCdOzYMa1cuVJpaWny9/fXjz/+qIcffljNmzfXlClTZLfb9e9//1vbtm3Lt38r8zkcDnXp0kVbt27V4MGD1bhxY/3www+aPn26fvrpJy1fvtxZO3nyZL3yyitq3769pkyZIi8vL23fvl0bNmzQAw88oBkzZmjkyJHy9fXVyy+/LOnKL+W8LFy4UE888YTatGmj2NhYpaSkaObMmdq2bZt2796typUrO2uzs7MVFRWlsLAwvf3221q3bp3eeecd1atXT0OHDs13PyxcuFC+vr4aPXq0fH19tWHDBk2cOFEZGRnOszEvv/yy0tPT9euvv2r69OmSJF9f3zyX2bdvXw0aNEh79+7VXXfd5Rz//vvv9dNPP2n8+PHOsTNnzlgKeBUqVFCFChUkSbt375YktW7d2qUmNDRUHh4e2r17t/r06VPgMm+Eb7/9Vnffffd1L2fx4sXKysrSyJEjdfr0aU2bNk3du3fX/fffr02bNmns2LH697//rffee0/PP/+8FixY4DJ/aGioJGnbtm1q1arVdfeDW5QBUGT9+vUzHh4e5vvvv88xzeFwGGOM+eijj4wk06FDB/Pbb785p6emphovLy/zwAMPmOzsbOf47NmzjSSzYMECY4wxu3fvNpJMXFxcnn1Mnz7dSDInT54sVP9W5lu0aJHx8PAwW7ZscRmfN2+ekWS2bdtmjDHm0KFDxsPDw/zxj3902R5j/rsvjDGmadOmJiIiIsd6Nm7caCSZjRs3GmOMycrKMtWrVzd33XWXuXjxorNu5cqVRpKZOHGic6x///5GkpkyZYrLMlu1amVCQ0Pz3wnGmAsXLuQYe/rpp02FChXMpUuXnGPR0dGmTp06BS7PGGPS0tKMt7e3GTt2rMv4M888YypWrGjOnTvnHKtTp46RVOBr0qRJznmGDx9uypUrl+u6AwICTM+ePS31aYwx33//vZFkPvroowJrhw8fbgrzq+Py5cvGZrOZP//5zzmmRURE5Pqz0L9/f5f9nJiYaCSZgIAAk5aW5hwfN26ckWRatGhhLl++7Bzv1auX8fLycjl2V3l5eZmhQ4da7h+4FpfqgCJyOBxavny5HnnkkRz/6peU45NHgwYNcrkxdt26dcrKytKoUaNc7usZNGiQ/Pz8nJda/P39JUlfffWVLly4kGsvV8+8rFixQg6Hw/I2WJkvLi5OjRs3VqNGjXTq1Cnn6/7775d05ZKRdOVyjMPh0MSJE3Pcp1SUT2ElJCQoNTVVw4YNk7e3t3M8OjpajRo1yvVS1JAhQ1ze33vvvfr5558LXNfvL0OdPXtWp06d0r333qsLFy7owIEDhe5dunLcunbtqk8++cR5T012draWLVummJgYVaxY0Vm7ePFirV27tsBXv379nPNcvHjR5Yzm73l7e+vixYtF6ru4nT59WsYYValS5bqX1a1bN+ffB0kKCwuTJPXp00fly5d3Gc/KyspxSVeSqlSpolOnTl13L7h1cakOKKKTJ08qIyPD5TJMfkJCQlzeJyUlSbpyv8vveXl56Y477nBODwkJ0ejRo/Xuu+9q8eLFuvfee9WlSxf16dPH+UukR48e+uCDD/TUU0/pxRdfVOfOnfXoo4/q8ccfz/dmayvzHTp0SPv371dAQECuy0hNTZUkHT58WB4eHmrSpIml/VGQvPaPJDVq1Ehbt251GfP29s7RY5UqVQq8SVq6csly/Pjx2rBhgzIyMlym/f4+ssLq16+fli1bpi1btui+++7TunXrlJKSor59+7rU3XPPPYVeto+Pj/M+umtdunTpuu5JKgmmGG7Irl27tsv7qz//tWrVynU8t2NvjClSkAeuIjgBN8j1/CJ75513NGDAAK1YsUJff/21nnnmGcXGxuq7775z3hD7zTffaOPGjVq1apXWrFmjZcuW6f7779fXX3+d50fArczncDjUrFkzvfvuu7ku49pfWqWlqB9zT0tLU0REhPz8/DRlyhTVq1dP3t7e2rVrl8aOHVuoM3jXioqKUmBgoD7++GPdd999+vjjjxUUFKTIyEiXupMnT1q6x8nX19d5X1WNGjWUnZ2t1NRUVa9e3VmTlZWl//znPwoODi5y38Xp6jOirATYq/IKWXkd47zGc1tOWlqabrvtNsu9ANfiUh1QRAEBAfLz89PevXuLNH+dOnUkSQcPHnQZz8rKUmJionP6Vc2aNdP48eP1zTffaMuWLTp27JjmzZvnnO7h4aHOnTvr3Xff1b59+/Taa69pw4YNzktpeSlovnr16un06dPq3LmzIiMjc7yunhGqV6+eHA6H9u3bl+/6rP5rP6/9c3Xs2v1TVJs2bdJ//vMfLVy4UM8++6wefvhhRUZG5nppqbBnKsqVK6c//elP+uyzz3TmzBktX75cvXr1yvGLvk2bNqpRo0aBr7fffts5T8uWLSVduaT5ewkJCXI4HM7ppa18+fKqV6+eEhMTc51+9uzZHGMpKSkl0suxY8eUlZWlxo0bl8jycWsgOAFF5OHhoZiYGP3973/P8ctLKvjSRGRkpLy8vDRr1iyX2g8//FDp6emKjo6WJGVkZOi3335zmbdZs2by8PBwPg4gt49eX/3FmdsjA66yMl/37t117Ngx/eUvf8lRe/HiRecnBGNiYuTh4aEpU6bkOEvz++2rWLFijsct5KZ169aqXr265s2b57IN//jHP7R//37n/rleV0PM73vMysrK9UGJFStWLPSlu759++rMmTN6+umnde7cuVw/6VaUe5zuv/9+Va1aVXPnznVZ1ty5c1WhQgWX/XPq1CkdOHAgz3vkSlp4eHiuf0ckad++fS5B6eTJk9q6dWuJPGtp586dkqT27dsX+7Jx6+BSHXAdXn/9dX399deKiIhwflT/xIkTiouL09atW10+Ln+tgIAAjRs3TpMnT9aDDz6oLl266ODBg5ozZ47atGnj/AW7YcMGjRgxQt26dVPDhg3122+/adGiRSpXrpwee+wxSdKUKVP0zTffKDo6WnXq1FFqaqrmzJmjmjVrqkOHDnn2YGW+vn376tNPP9WQIUO0ceNG3XPPPcrOztaBAwf06aef6quvvlLr1q1Vv359vfzyy5o6daruvfdePfroo7Lb7fr+++8VHBys2NhYSVc+Ej537ly9+uqrql+/vqpXr+680fz3PD099eabb+qJJ55QRESEevXq5XwcQd26dfXcc88V9bC5aN++vapUqaL+/fvrmWeekc1m06JFi3L9xR0aGqply5Zp9OjRatOmjXx9ffXII4/ku/xWrVrprrvuct5kn9vH8ot6j9PUqVM1fPhwdevWTVFRUdqyZYs+/vhjvfbaa6pataqzdvbs2Zo8ebI2btzo8tyk2bNnKy0tTcePH5ck/f3vf9evv/4qSRo5cqTzXqGkpCQtWrRI0n/PcL366quSrpwZvPaerWt17dpVixYt0k8//aSGDRu6TLPZbOrUqZMGDx6s7OxszZ8/X+XLl9fx48c1bdo0Pf/884XeN3lZu3atateuzaMIcH1K58N8QNmRlJRk+vXrZwICAozdbjd33HGHGT58uMnMzDTG/PdxBLk9ssCYK48faNSokfH09DSBgYFm6NCh5syZM87pP//8s3nyySdNvXr1jLe3t6latarp1KmTWbdunbNm/fr1pmvXriY4ONh4eXmZ4OBg06tXL/PTTz/l27vV+bKyssybb75pmjZtaux2u6lSpYoJDQ01kydPNunp6S61CxYsMK1atXLWRUREmLVr1zqnJycnm+joaFOpUiUjyflx9GsfR3DVsmXLnMurWrWq6d27t/n1119davr3728qVqyYY/smTZpk6aPz27ZtM+3atTM+Pj4mODjYjBkzxnz11Vc5+jl37pz505/+ZCpXrmwkWX40wbRp04wk8/rrr1uqL4z58+ebO++803h5eZl69eqZ6dOnuzz+wZj/7odr921+j0FITEx01l09Nrm9cnucwLUyMzPNbbfdZqZOneoyfvVxBBMnTjTVqlUzlSpVMk8//bTZtm2bqVatmmnSpInJzs52Po7grbfecpn/al/XPqojt79z2dnZpkaNGmb8+PEF9gvkx2YMz54HgJI0c+ZMPffcc/rll19yfDLsVjF16lR99NFHOnTokPPy6O+fGl/Sli9frj/96U86fPiwatSoUeLrQ9nFPU4AUIKMMfrwww8VERFxy4YmSXruued07tw5LV26tFTW/+abb2rEiBGEJlw37nECgBJw/vx5ffnll9q4caN++OEHrVixorRbKlW+vr7OZ36Vhvj4+FJbN8oWtzvj9M033+iRRx5RcHCwbDaby/dg5WXTpk26++67ZbfbVb9+fS1cuDBHzfvvv6+6devK29tbYWFh2rFjR/E3DwD/5+TJk/rTn/6kuLg4vfTSS+rSpUtptwSgGLhdcDp//rxatGih999/31J9YmKioqOj1alTJ+3Zs0ejRo3SU089pa+++spZc/VTMJMmTdKuXbvUokULRUVFleq/fgCUbXXr1pUxRmfOnNFrr71W2u24pU2bNt2Q+5uA4uTWN4fbbDZ98cUXiomJybNm7NixWrVqlctDCHv27Km0tDStWbNG0pXvLWrTpo1mz54t6cp3jNWqVUsjR47Uiy++WKLbAAAAyg63O+NUWPHx8Tm+viAqKsp5PTsrK0s7d+50qfHw8FBkZCTXvAEAQKHc9DeHJycnKzAw0GUsMDBQGRkZunjxos6cOaPs7Oxca/L71vPMzEyXpxU7HA6dPn1a1apV4wsiAQAoQ4wxOnv2rIKDg/P9YnSpDASnkhIbG6vJkyeXdhsAAOAGOXr0qGrWrJlvzU0fnIKCgnJ8IWRKSor8/Pzk4+OjcuXKqVy5crnWBAUF5bnccePGafTo0c736enpql27tr7qO1EVvbyLdyPg1ha0alraLaAYPLn7xxJfBz8rZcON+FmBezmfdUlRi6aoUqVKBdbe9MEpPDxcq1evdhlbu3atwsPDJUleXl4KDQ3V+vXrnTeZOxwOrV+/XiNGjMhzuXa7XXa7Pcd4RS9v+RKcbilePhVLuwUUgxvx95aflbKB/8ffuqzciuN2N4efO3dOe/bs0Z49eyRdedzAnj17dOTIEUlXzgT9/hvChwwZop9//lljxozRgQMHNGfOHH366acuXwA6evRo/eUvf9Ff//pX7d+/X0OHDtX58+f1xBNP3NBtAwAANze3O+OUkJCgTp06Od9fvVzWv39/LVy4UCdOnHCGKEkKCQnRqlWr9Nxzz2nmzJmqWbOmPvjgA0VFRTlrevTooZMnT2rixIlKTk5Wy5YttWbNmhw3jAMAAOTH7YJTx44dld+jpXJ7KnjHjh21e/fufJc7YsSIfC/NAQAAFMTtLtUBAAC4K4ITAACARQQnAAAAiwhOAAAAFhGcAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgUfnCFDscDm3evFlbtmxRUlKSLly4oICAALVq1UqRkZGqVatWSfUJAABQ6iydcbp48aJeffVV1apVSw899JD+8Y9/KC0tTeXKldO///1vTZo0SSEhIXrooYf03XfflXTPAAAApcLSGaeGDRsqPDxcf/nLX/SHP/xBnp6eOWqSkpK0ZMkS9ezZUy+//LIGDRpU7M0CAACUJkvB6euvv1bjxo3zralTp47GjRun559/XkeOHCmW5gAAANyJpUt1BYWm3/P09FS9evWK3BAAAIC7KtTN4VddunRJ//rXv5SamiqHw+EyrUuXLsXSGAAAgLspdHBas2aN+vXrp1OnTuWYZrPZlJ2dXSyNAQAAuJtCP8dp5MiR6tatm06cOCGHw+HyIjQBAICyrNDBKSUlRaNHj1ZgYGBJ9AMAAOC2Ch2cHn/8cW3atKkEWgEAAHBvhb7Hafbs2erWrZu2bNmiZs2a5Xim0zPPPFNszQEAALiTQgenTz75RF9//bW8vb21adMm2Ww25zSbzUZwAgAAZVahg9PLL7+syZMn68UXX5SHB98RDAAAbh2FTj5ZWVnq0aMHoQkAANxyCp1++vfvr2XLlpVELwAAAG6t0JfqsrOzNW3aNH311Vdq3rx5jpvD33333WJrDgAAwJ0U+ozTDz/8oFatWsnDw0N79+7V7t27XV7F4f3331fdunXl7e2tsLAw7dixI9/6uLg4NWrUSN7e3mrWrJlWr17tMt0Yo4kTJ6pGjRry8fFRZGSkDh06VCy9AgCAW0ehzzht3LixJPpwWrZsmUaPHq158+YpLCxMM2bMUFRUlA4ePKjq1avnqP/222/Vq1cvxcbG6uGHH9aSJUsUExOjXbt26a677pIkTZs2TbNmzdJf//pXhYSEaMKECYqKitK+ffvk7e1dotsDAADKjmK7wzspKUkjRoy47uW8++67GjRokJ544gk1adJE8+bNU4UKFbRgwYJc62fOnKkHH3xQL7zwgho3bqypU6fq7rvv1uzZsyVdOds0Y8YMjR8/Xl27dlXz5s31t7/9TcePH9fy5cuvu18AAHDrKPQZp06dOrk8u+mqEydO6MSJE87AUhRZWVnauXOnxo0b5xzz8PBQZGSk4uPjc50nPj5eo0ePdhmLiopyhqLExEQlJycrMjLSOd3f319hYWGKj49Xz549c11uZmamMjMzne8zMjKKulkAAKCMKHRwatmypcv77Oxs/fzzz/r3v/+thQsXXlczp06dUnZ2do7vwQsMDNSBAwdynSc5OTnX+uTkZOf0q2N51eQmNjZWkydPLvQ2AACAsqvQwWn69Om5jn/wwQeaPXu2evfufd1NuYNx48a5nMnKyMhQrVq1SrEjAABQ2ortHqfOnTtrz54917WM2267TeXKlVNKSorLeEpKioKCgnKdJygoKN/6q/8tzDIlyW63y8/Pz+UFAABubcUWnDZs2KBOnTpd1zK8vLwUGhqq9evXO8ccDofWr1+v8PDwXOcJDw93qZektWvXOutDQkIUFBTkUpORkaHt27fnuUwAAIDcFPpS3aOPPppjLCUlRdu3b1enTp1cpn/++eeFbmj06NHq37+/WrdurbZt22rGjBk6f/68nnjiCUlSv379dPvttys2NlaS9OyzzyoiIkLvvPOOoqOjtXTpUiUkJGj+/PmSrnzx8KhRo/Tqq6+qQYMGzscRBAcHKyYmptD9AQCAW1ehg5O/v3+uYw0bNiyWhnr06KGTJ09q4sSJSk5OVsuWLbVmzRrnzd1Hjhxx+Z689u3ba8mSJRo/frxeeuklNWjQQMuXL3c+w0mSxowZo/Pnz2vw4MFKS0tThw4dtGbNGp7hBAAACsVmjDGl3cTNICMjQ/7+/to68HX5ehG4biXzWjcv7RZQDIYk/KvE18HPStlwI35W4F7OZV1Shw9fUnp6eoH3NFu6x4lsBQAAYDE4NW3aVEuXLlVWVla+dYcOHdLQoUP1xhtvFEtzAAAA7sTSPU7vvfeexo4dq2HDhukPf/iDWrdureDgYHl7e+vMmTPat2+ftm7dqh9//FEjRozQ0KFDS7pvAACAG85ScOrcubMSEhK0detWLVu2TIsXL1ZSUpIuXryo2267Ta1atVK/fv3Uu3dvValSpaR7BgAAKBWF+lRdhw4d1KFDh5LqBQAAwK0V2wMwAQAAyjqCEwAAgEUEJwAAAIsITgAAABYRnAAAACwqdHC6//77NXny5BzjZ86c0f33318sTQEAALijQn/J76ZNm/TDDz9o9+7dWrx4sSpWrChJysrK0ubNm4u9QQAAAHdRpEt169atU3Jystq1a6dffvmlmFsCAABwT0UKTjVq1NDmzZvVrFkztWnTRps2bSrmtgAAANxPoYOTzWaTJNntdi1ZskTPPvusHnzwQc2ZM6fYmwMAAHAnhb7HyRjj8n78+PFq3Lix+vfvX2xNAQAAuKNCB6fExEQFBAS4jD322GNq1KiREhISiq0xAAAAd1Po4FSnTp1cx5s2baqmTZted0MAAADuigdgAgAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgAAABYRnAAAACwiOAEAAFhEcAIAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACwiOAEAABgEcEJAADAIoITAACARQQnAAAAi9wqOH3++ed64IEHVK1aNdlsNu3Zs8fSfHFxcWrUqJG8vb3VrFkzrV692mW6MUYTJ05UjRo15OPjo8jISB06dKgEtgAAAJRlbhWczp8/rw4dOujNN9+0PM+3336rXr16aeDAgdq9e7diYmIUExOjvXv3OmumTZumWbNmad68edq+fbsqVqyoqKgoXbp0qSQ2AwAAlFHlS7uB3+vbt68k6ZdffrE8z8yZM/Xggw/qhRdekCRNnTpVa9eu1ezZszVv3jwZYzRjxgyNHz9eXbt2lST97W9/U2BgoJYvX66ePXsW+3YAAICyya2CU1HEx8dr9OjRLmNRUVFavny5JCkxMVHJycmKjIx0Tvf391dYWJji4+PzDE6ZmZnKzMx0vk9PT5cknc/iLNWtJuvi+dJuAcXg3A34u8vPStlwI35W4F6u/m43xhRYe9MHp+TkZAUGBrqMBQYGKjk52Tn96lheNbmJjY3V5MmTc4xHLZpyvS0DKAULSrsB3DT4Wbl1nT17Vv7+/vnWlFpwWrx4sZ5++mnn+3/84x+69957S6udHMaNG+dyJsvhcOj06dPOG9dvVhkZGapVq5aOHj0qPz+/0m4H4pi4I46J++GYuJ+ydEyMMTp79qyCg4MLrC214NSlSxeFhYU5399+++1FWk5QUJBSUlJcxlJSUhQUFOScfnWsRo0aLjUtW7bMc7l2u112u91lrHLlykXq0R35+fnd9D/oZQ3HxP1wTNwPx8T9lJVjUtCZpqtK7VN1lSpVUv369Z0vHx+fIi0nPDxc69evdxlbu3atwsPDJUkhISEKCgpyqcnIyND27dudNQAAAFa41T1Op0+f1pEjR3T8+HFJ0sGDByVdOWt09cxRv379dPvttys2NlaS9OyzzyoiIkLvvPOOoqOjtXTpUiUkJGj+/PmSJJvNplGjRunVV19VgwYNFBISogkTJig4OFgxMTE3fiMBAMBNy62e4/Tll1+qVatWio6OliT17NlTrVq10rx585w1R44c0YkTJ5zv27dvryVLlmj+/Plq0aKFPvvsMy1fvlx33XWXs2bMmDEaOXKkBg8erDZt2ujcuXNas2aNvL29b9zGuQm73a5JkybluAyJ0sMxcT8cE/fDMXE/t+oxsRkrn70DAACAe51xAgAAcGcEJwAAAIsITgAAABYRnAAAACwiOJUxQ4YMkc1m04wZMwqsff/991W3bl15e3srLCxMO3bscJl+6dIlDR8+XNWqVZOvr68ee+yxHA8bRU6XL1/W2LFj1axZM1WsWFHBwcHq16+f8zEb+eGYlJyC9u214uLi1KhRI3l7e6tZs2ZavXq1y3RjjCZOnKgaNWrIx8dHkZGROnToUEluQpkRGxurNm3aqFKlSqpevbpiYmKcj5/JD8fkxnnjjTecj/PJzy15TAzKjM8//9y0aNHCBAcHm+nTp+dbu3TpUuPl5WUWLFhgfvzxRzNo0CBTuXJlk5KS4qwZMmSIqVWrllm/fr1JSEgw7dq1M+3bty/hrbj5paWlmcjISLNs2TJz4MABEx8fb9q2bWtCQ0PznY9jUnKs7Nvf27ZtmylXrpyZNm2a2bdvnxk/frzx9PQ0P/zwg7PmjTfeMP7+/mb58uXmn//8p+nSpYsJCQkxFy9evFGbddOKiooyH330kdm7d6/Zs2ePeeihh0zt2rXNuXPn8pyHY3Lj7Nixw9StW9c0b97cPPvss3nW3arHhOBURvz666/m9ttvN3v37jV16tQpMDi1bdvWDB8+3Pk+OzvbBAcHm9jYWGPMlV/+np6eJi4uzlmzf/9+I8nEx8eXyDaUZTt27DCSTFJSUp41HJOSU9C+vVb37t1NdHS0y1hYWJh5+umnjTHGOBwOExQUZN566y3n9LS0NGO3280nn3xSAltQtqWmphpJZvPmzXnWcExujLNnz5oGDRqYtWvXmoiIiHyD0616TLhUVwY4HA717dtXL7zwgpo2bVpgfVZWlnbu3KnIyEjnmIeHhyIjIxUfHy9J2rlzpy5fvuxS06hRI9WuXdtZA+vS09Nls9ny/L5DjknJsbJvrxUfH+9SL0lRUVHO+sTERCUnJ7vU+Pv7KywsjGNRBOnp6ZKkqlWr5lnDMbkxhg8frujo6Bz7Oje36jFxq69cQdG8+eabKl++vJ555hlL9adOnVJ2drYCAwNdxgMDA3XgwAFJUnJysry8vHL8og8MDFRycnKx9H2ruHTpksaOHatevXrl+UWYHJOSY2XfXis5OTnX+qv7+ep/86uBNQ6HQ6NGjdI999zj8o0P1+KYlLylS5dq165d+v777y3V36rHhDNON5nFixfL19fX+dq8ebNmzpyphQsXymazlXZ7t6Rrj8mWLVuc0y5fvqzu3bvLGKO5c+eWYpeAexo+fLj27t2rpUuXlnYrt7SjR4/q2Wef1eLFi2/JryMrDILTTaZLly7as2eP8/Xtt98qNTVVtWvXVvny5VW+fHklJSXpz3/+s+rWrZvrMm677TaVK1cux6exUlJSnF+mHBQUpKysLKWlpeVZgyuuPSatW7eW9N/QlJSUpLVr1+Z5tknimJQkK/v2WkFBQQUei6tjVpeJnEaMGKGVK1dq48aNqlmzZr61HJOStXPnTqWmpuruu+92/i7ZvHmzZs2apfLlyys7OzvHPLfqMSE43WQqVaqk+vXrO1+DBw/Wv/71L5df3MHBwXrhhRf01Vdf5boMLy8vhYaGav369c4xh8Oh9evXKzw8XJIUGhoqT09Pl5qDBw/qyJEjzhpcce0x8fHxcYamQ4cOad26dapWrVq+y+CYlBwr+/Za4eHhLvWStHbtWmd9SEiIgoKCXGoyMjK0fft2joUFxhiNGDFCX3zxhTZs2KCQkJAC5+GYlKzOnTvrhx9+yPGPwN69e2vPnj0qV65cjnlu2WNS2neno/jl9qm6+++/37z33nvO90uXLjV2u90sXLjQ7Nu3zwwePNhUrlzZJCcnO2uGDBliateubTZs2GASEhJMeHi4CQ8Pv1GbcdPKysoyXbp0MTVr1jR79uwxJ06ccL4yMzOddRyTG6egfdu3b1/z4osvOuu3bdtmypcvb95++22zf/9+M2nSpFw/Zl25cmWzYsUK869//ct07dr1pv+Y9Y0ydOhQ4+/vbzZt2uTy9+PChQvOGo5J6bv2U3UckysITmVQbsGpTp06ZtKkSS5j7733nqldu7bx8vIybdu2Nd99953L9IsXL5phw4aZKlWqmAoVKpg//vGP5sSJEyXc/c0vMTHRSMr1tXHjRmcdx+TGym/fRkREmP79+7vUf/rpp6Zhw4bGy8vLNG3a1KxatcplusPhMBMmTDCBgYHGbrebzp07m4MHD96ITbnp5fX346OPPnLWcExK37XBiWNyhc0YY0rnXBcAAMDNhXucAAAALCI4AQAAWERwAgAAsIjgBAAAYBHBCQAAwCKCEwAAgEUEJwAAAIsITgBuWR9++KEeeOCBEl/PmjVr1LJlSzkcjhJfF4CSRXACcEu6dOmSJkyYoEmTJpX4uh588EF5enpq8eLFJb4uACWL4ATglvTZZ5/Jz89P99xzzw1Z34ABAzRr1qwbsi4AJYfgBOCmdvLkSQUFBen11193jn377bfy8vLK8c3tv7d06VI98sgjLmMdO3bUqFGjXMZiYmI0YMAA5/u6devq1VdfVb9+/eTr66s6deroyy+/1MmTJ9W1a1f5+vqqefPmSkhIcFnOI488ooSEBB0+fLjoGwug1BGcANzUAgICtGDBAr3yyitKSEjQ2bNn1bdvX40YMUKdO3fOc76tW7eqdevWRVrn9OnTdc8992j37t2Kjo5W37591a9fP/Xp00e7du1SvXr11K9fP/3+q0Br166twMBAbdmypUjrBOAeCE4AbnoPPfSQBg0apN69e2vIkCGqWLGiYmNj86xPS0tTenq6goODi7y+p59+Wg0aNNDEiROVkZGhNm3aqFu3bmrYsKHGjh2r/fv3KyUlxWW+4OBgJSUlFWmdANwDwQlAmfD222/rt99+U1xcnBYvXiy73Z5n7cWLFyVJ3t7eRVpX8+bNnX8ODAyUJDVr1izHWGpqqst8Pj4+unDhQpHWCcA9EJwAlAmHDx/W8ePH5XA49Msvv+RbW61aNdlsNp05c6bA5WZnZ+cY8/T0dP7ZZrPlOXbt4wdOnz6tgICAAtcJwH0RnADc9LKystSnTx/16NFDU6dO1VNPPZXjbM/veXl5qUmTJtq3b1+OaddeXvv555+LpcdLly7p8OHDatWqVbEsD0DpIDgBuOm9/PLLSk9P16xZszR27Fg1bNhQTz75ZL7zREVFaevWrTnGV6xYoc8//1yHDx/Wa6+9pn379ikpKUnHjh27rh6/++472e12hYeHX9dyAJQughOAm9qmTZs0Y8YMLVq0SH5+fvLw8NCiRYu0ZcsWzZ07N8/5Bg4cqNWrVys9Pd1lPDo6WtOmTVOTJk30zTffaM6cOdqxY4cWLVp0XX1+8skn6t27typUqHBdywFQumzm95+XBYBbSLdu3XT33Xdr3Lhxkq48x6lly5aaMWNGsa7n1KlTuvPOO5WQkKCQkJBiXTaAG4szTgBuWW+99ZZ8fX1LfD2//PKL5syZQ2gCygDOOAHA/ympM04Ayg6CEwAAgEVcqgMAALCI4AQAAGARwQkAAMAighMAAIBFBCcAAACLCE4AAAAWEZwAAAAsIjgBAABYRHACAACw6P8DVsM9e51gXh0AAAAASUVORK5CYII=", "text/plain": [ "
19:32:04 CEST Created task 'charge_mesh' with task_id \n", - " 'vom-617f00bc-9dfc-4309-aac6-530893ebcf23' and task_type \n", - " 'VOLUME_MESH'. \n", - "\n" - ], - "text/plain": [ - "\u001b[2;36m19:32:04 CEST\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'charge_mesh'\u001b[0m with task_id \n", - "\u001b[2;36m \u001b[0m\u001b[32m'vom-617f00bc-9dfc-4309-aac6-530893ebcf23'\u001b[0m and task_type \n", - "\u001b[2;36m \u001b[0m\u001b[32m'VOLUME_MESH'\u001b[0m. \n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:04:34\u001b[0m.\u001b[1;36m272\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mStarting mesh job\u001b[0m \n", + " \r" + ] }, { - "data": { - "text/html": [ - "
Tidy3D's VolumeMesher solver is currently in the beta stage. Cost \n", - " of VolumeMesher simulations is subject to change in the future. \n", - "\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mTidy3D's VolumeMesher solver is currently in the beta stage. Cost \n", - "\u001b[2;36m \u001b[0mof VolumeMesher simulations is subject to change in the future. \n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning : Logger already started - ignoring\n" + ] }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a5a064e8b6a04d7fa86d59bbad4687e8", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n" - ], - "text/plain": [] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
19:32:06 CEST Maximum FlexCredit cost: 0.025. Minimum cost depends on task \n", - " execution details. Use 'web.real_cost(task_id)' to get the billed \n", - " FlexCredit cost after a simulation run. \n", - "\n" - ], - "text/plain": [ - "\u001b[2;36m19:32:06 CEST\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Minimum cost depends on task \n", - "\u001b[2;36m \u001b[0mexecution details. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed \n", - "\u001b[2;36m \u001b[0mFlexCredit cost after a simulation run. \n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
19:32:07 CEST status = queued \n",
- "\n"
- ],
- "text/plain": [
- "\u001b[2;36m19:32:07 CEST\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "To cancel the simulation, use 'web.abort(task_id)' or \n", - " 'web.delete(task_id)' or abort/delete the task in the web UI. \n", - " Terminating the Python script will not stop the job running on the\n", - " cloud. \n", - "\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mTo cancel the simulation, use \u001b[32m'web.abort\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m or \n", - "\u001b[2;36m \u001b[0m\u001b[32m'web.delete\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m or abort/delete the task in the web UI. \n", - "\u001b[2;36m \u001b[0mTerminating the Python script will not stop the job running on the\n", - "\u001b[2;36m \u001b[0mcloud. \n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "9f4470f84c5247baa545285455b5c0b8", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n" - ], - "text/plain": [] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
19:32:12 CEST starting up solver \n",
- "\n"
- ],
- "text/plain": [
- "\u001b[2;36m19:32:12 CEST\u001b[0m\u001b[2;36m \u001b[0mstarting up solver \n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- " running solver \n",
- "\n"
- ],
- "text/plain": [
- "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "19:32:23 CEST status = success \n",
- "\n"
- ],
- "text/plain": [
- "\u001b[2;36m19:32:23 CEST\u001b[0m\u001b[2;36m \u001b[0mstatus = success \n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n"
- ],
- "text/plain": []
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "014a55d057c1423f984f01e5fade12c4",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Output()"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n"
- ],
- "text/plain": []
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "19:32:25 CEST loading simulation from simulation_data.hdf5 \n",
- "\n"
- ],
- "text/plain": [
- "\u001b[2;36m19:32:25 CEST\u001b[0m\u001b[2;36m \u001b[0mloading simulation from simulation_data.hdf5 \n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Info : Meshing 1D...\n",
+ "Info : [ 0%] Meshing curve 157 (Line)\n",
+ "Info : [ 10%] Meshing curve 158 (Line)\n",
+ "Info : [ 10%] Meshing curve 161 (Line)\n",
+ "Info : [ 10%] Meshing curve 162 (Line)\n",
+ "Info : [ 10%] Meshing curve 164 (Line)\n",
+ "Info : [ 20%] Meshing curve 168 (Line)\n",
+ "Info : [ 20%] Meshing curve 170 (Line)\n",
+ "Info : [ 20%] Meshing curve 171 (Line)\n",
+ "Info : [ 20%] Meshing curve 172 (Line)\n",
+ "Info : [ 20%] Meshing curve 173 (Line)\n",
+ "Info : [ 30%] Meshing curve 174 (Line)\n",
+ "Info : [ 30%] Meshing curve 175 (Line)\n",
+ "Info : [ 30%] Meshing curve 176 (Line)\n",
+ "Info : [ 30%] Meshing curve 177 (Line)\n",
+ "Info : [ 30%] Meshing curve 178 (Line)\n",
+ "Info : [ 40%] Meshing curve 179 (Line)\n",
+ "Info : [ 40%] Meshing curve 180 (Line)\n",
+ "Info : [ 40%] Meshing curve 212 (Line)\n",
+ "Info : [ 40%] Meshing curve 215 (Line)\n",
+ "Info : [ 50%] Meshing curve 216 (Line)\n",
+ "Info : [ 50%] Meshing curve 217 (Line)\n",
+ "Info : [ 50%] Meshing curve 234 (Line)\n",
+ "Info : [ 50%] Meshing curve 235 (Line)\n",
+ "Info : [ 50%] Meshing curve 236 (Line)\n",
+ "Info : [ 60%] Meshing curve 240 (Line)\n",
+ "Info : [ 60%] Meshing curve 241 (Line)\n",
+ "Info : [ 60%] Meshing curve 242 (Line)\n",
+ "Info : [ 60%] Meshing curve 246 (Line)\n",
+ "Info : [ 60%] Meshing curve 247 (Line)\n",
+ "Info : [ 70%] Meshing curve 248 (Line)\n",
+ "Info : [ 70%] Meshing curve 249 (Line)\n",
+ "Info : [ 70%] Meshing curve 268 (Line)\n",
+ "Info : [ 70%] Meshing curve 269 (Line)\n",
+ "Info : [ 80%] Meshing curve 272 (Line)\n",
+ "Info : [ 80%] Meshing curve 273 (Line)\n",
+ "Info : [ 80%] Meshing curve 274 (Line)\n",
+ "Info : [ 80%] Meshing curve 275 (Line)\n",
+ "Info : [ 80%] Meshing curve 280 (Line)\n",
+ "Info : [ 90%] Meshing curve 281 (Line)\n",
+ "Info : [ 90%] Meshing curve 292 (Line)\n",
+ "Info : [ 90%] Meshing curve 303 (Line)\n",
+ "Info : [ 90%] Meshing curve 306 (Line)\n",
+ "Info : [ 90%] Meshing curve 312 (Line)\n",
+ "Info : [100%] Meshing curve 313 (Line)\n",
+ "Info : [100%] Meshing curve 314 (Line)\n",
+ "Info : [100%] Meshing curve 315 (Line)\n",
+ "Info : [100%] Meshing curve 316 (Line)\n",
+ "Info : Done meshing 1D (Wall 0.0962579s, CPU 0.097819s)\n",
+ "Info : Meshing 2D...\n",
+ "Info : [ 0%] Meshing surface 58 (Plane, Delaunay)\n",
+ "Info : [ 10%] Meshing surface 60 (Plane, Delaunay)\n",
+ "Info : [ 20%] Meshing surface 67 (Plane, Delaunay)\n",
+ "Info : [ 30%] Meshing surface 87 (Plane, Delaunay)\n",
+ "Info : [ 30%] Meshing surface 87 (Plane, Delaunay)\n",
+ "Info : [ 40%] Meshing surface 99 (Plane, Delaunay)\n",
+ "Info : [ 50%] Meshing surface 103 (Plane, Delaunay)\n",
+ "Info : [ 40%] Meshing surface 99 (Plane, Delaunay)\n",
+ "Info : [ 50%] Meshing surface 103 (Plane, Delaunay)\n",
+ "Info : [ 60%] Meshing surface 107 (Plane, Delaunay)\n",
+ "Info : [ 60%] Meshing surface 107 (Plane, Delaunay)\n",
+ "Info : [ 60%] Meshing surface 120 (Plane, Delaunay)\n",
+ "Info : [ 70%] Meshing surface 122 (Plane, Delaunay)\n",
+ "Info : [ 60%] Meshing surface 120 (Plane, Delaunay)\n",
+ "Info : [ 70%] Meshing surface 122 (Plane, Delaunay)\n",
+ "Info : [ 80%] Meshing surface 128 (Plane, Delaunay)\n",
+ "Info : [ 90%] Meshing surface 137 (Plane, Delaunay)\n",
+ "Info : [100%] Meshing surface 152 (Plane, Delaunay)\n",
+ "Info : [ 80%] Meshing surface 128 (Plane, Delaunay)\n",
+ "Info : [ 90%] Meshing surface 137 (Plane, Delaunay)\n",
+ "Info : [100%] Meshing surface 152 (Plane, Delaunay)\n",
+ "Info : Done meshing 2D (Wall 2.3635s, CPU 2.3666s)\n",
+ "Info : 88454 nodes 189036 elements\n",
+ "Info : Removing duplicate mesh elements...\n",
+ "Info : Done meshing 2D (Wall 2.3635s, CPU 2.3666s)\n",
+ "Info : 88454 nodes 189036 elements\n",
+ "Info : Removing duplicate mesh elements...\n",
+ "Info : Done removing duplicate mesh elements\n",
+ "Info : Removing duplicate mesh nodes...\n",
+ "Info : Found 0 duplicate nodes \n",
+ "Info : No duplicate nodes found\n",
+ "Info : Writing './output/gmsh.msh'...\n",
+ "Info : Done removing duplicate mesh elements\n",
+ "Info : Removing duplicate mesh nodes...\n",
+ "Info : Found 0 duplicate nodes \n",
+ "Info : No duplicate nodes found\n",
+ "Info : Writing './output/gmsh.msh'...\n",
+ "Info : Done writing './output/gmsh.msh'\n",
+ "Info : Writing './output/gmsh.vtk'...\n",
+ "Info : Done writing './output/gmsh.vtk'\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:04:37\u001b[0m.\u001b[1;36m682\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mMesh heat-charge simulation time (s): 3.3922\u001b[0m \n",
+ "Info : Done writing './output/gmsh.msh'\n",
+ "Info : Writing './output/gmsh.vtk'...\n",
+ "Info : Done writing './output/gmsh.vtk'\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:04:37\u001b[0m.\u001b[1;36m682\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mMesh heat-charge simulation time (s): 3.3922\u001b[0m \n",
+ "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m15:04:37\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m941\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mWARNING: No point data is found in a VTK object. '.values' will be\u001b[0m\n",
+ "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m15:04:37\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m941\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39minitialized to zeros.\u001b[0m\u001b[31m \u001b[0m\n",
+ "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m15:04:37\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m941\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39mWARNING: No point data is found in a VTK object. '.values' will be\u001b[0m\n",
+ "\u001b[1;31m[\u001b[0m\u001b[1;36m25\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m12\u001b[0m\u001b[31m-\u001b[0m\u001b[1;36m15\u001b[0m\u001b[31m \u001b[0m\u001b[1;92m15:04:37\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m941\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m[\u001b[0m\u001b[31mUSER \u001b[0m\u001b[1;31m]\u001b[0m\u001b[31m: \u001b[0m\u001b[39minitialized to zeros.\u001b[0m\u001b[31m \u001b[0m\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:04:38\u001b[0m.\u001b[1;36m313\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mPostprocess time (s): 0.4526\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:04:38\u001b[0m.\u001b[1;36m313\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mPostprocess time (s): 0.4526\u001b[0m \n"
+ ]
}
],
"source": [
- "job = web.Job(simulation=mesher, task_name=\"charge_mesh\")\n",
- "mesher_data = job.run()"
+ "# job = web.Job(simulation=mesher, task_name=\"charge_mesh\")\n",
+ "# mesher_data = job.run()\n",
+ "mesher_data = run_mesh_job(mesher)"
]
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 46,
"id": "1f68dded-30c5-4029-9516-193f2adc611b",
"metadata": {},
"outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Generated 174880 mesh elements with manual refinement.\n"
+ ]
+ },
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAGJCAYAAABb64ChAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXd4W+d59/892CA4QZAgCIIkOMUlblISJWpY25ItW7LsuEnepEn8NnXSNsNO86bNaq83+SXNm7R1nNnWTdzEkmVbe1iTokhxb5EUNwmQ4ABJcGLj/P4gcYRDACQ4JGc8n+vSdYlnPmc9OM/33Pf3pmiapkEgEAgEAoFAIBAIBAKBQCA8QTgfdQMIBAKBQCAQCAQCgUAgEAh/fhBRikAgEAgEAoFAIBAIBAKB8MQhohSBQCAQCAQCgUAgEAgEAuGJQ0QpAoFAIBAIBAKBQCAQCATCE4eIUgQCgUAgEAgEAoFAIBAIhCcOEaUIBAKBQCAQCAQCgUAgEAhPHCJKEQgEAoFAIBAIBAKBQCAQnjhElCIQCAQCgUAgEAgEAoFAIDxxiChFIBAIBAKBQCAQCAQCgUB44hBRikAgEAgEAoFAIBAIBAKB8MQhohSBQCAQCAQCgUAgEJ4YDocDP/jBD6BWqyESibB582b8/ve/93l9g8GAV155BWFhYZBIJNi9ezfq6uoea5sJBMLjgYhSBAKBQCAQCAQCgUB4YnzjG9/A1772Nezbtw///u//jujoaLz88st45513VlzX4XDg6aefxu9+9zt84QtfwA9+8AOMjo5i165d6OzsfCLtJxAIGwdF0zT9UTeCQCAQCAQCgUAgEAh/+gwODkKtVuOVV17BG2+8AQCgaRo7d+5Eb28v+vr6wOVyva5/+vRpvPjii3j33Xdx4sQJAMDY2BiSkpJw6NAh/O53v3tix0IgENYPiZQiEAgEAoFAIBAIhD9x+vr6QFGU139PinPnzsFqteKv//qvmWkUReHzn/88tFot7t+/v+z6Z86cgVwux/PPP89MCwsLw8mTJ3Hu3DmYzebH2n4CgbCx8D7qBhAIBAKBQCAQCAQC4fESFhaG3/72t6xpVqsVX/rSlyAQCJZd12q1Ympqyqf9SKVScDjeYx/q6+shkUiQkpLCml5QUMDM3759+7Lr5+TkuO2joKAAv/zlL9HR0YGMjAyf2kogED56iChFIBAIBAKBQCAQCH/iSCQSfPzjH2dNe/XVVzE7O4vr168vu25ZWRl2797t0356e3sRGxvrdb5Op4NcLneLzlIoFACAoaGhZbev0+lQXFzsNt11fSJKEQh/PBBRikAgEAgEAoFAIBD+zPjNb36DN998Ez/60Y9WFJwyMzNXFK6cRERELDvfaDRCKBS6TReJRMz8x7k+gUD4w4KIUgQCgUAgEAgEAoHwZ0RDQwP+6q/+Ch/72Mfw5S9/ecXlQ0JCsHfv3g3Zt1gs9uj7ZDKZmPmPc30CgfCHBRGlCAQCgUAgEAgEAuHPhMnJSRw/fhxJSUn49a9/7dM6FosFExMTPi0bFha2bPU8hUKB27dvg6ZpVgqfTqcDAERGRi67fYVCwSzriq/rEwiEPyyIKEUgEAgEAoFAIBAIfwY4HA78xV/8BQwGA27cuAE/Pz+f1isvL98wT6msrCz8+te/RltbG1JTU5nplZWVzPzlyMrKQmlpKRwOB8vsvLKyEn5+fkhKSvKpnQQC4Q8DiqZp+qNuBIFAIBAIBAKBQCAQHi/f+ta38M///M+4cuUK9u/f7/N6k5OTqK2t9WnZ7du3M/5OntBqtYiLi8Mrr7yCN954AwBA0zR27tyJnp4e9Pf3M5FWOp0OU1NTiI+PB5/PBwCcOnUKL730Et59912cOHECAKDX65GYmIgDBw7gnXfe8fm4CATCRw8RpQgEAoFAIBAIBALhT5zm5mZkZmaiuLgYn/3sZ93mL63M9zh5/fXX8cMf/hCvvPIK8vPzcfbsWVy6dAn/8z//g5dffplZ7lOf+hT++7//mxV9ZbfbsX37drS0tOC1116DTCbDm2++iYGBAVRXVyM5OfmJHQeBQFg/JH2PQCAQCAQCgUAgEP7EGR8fB03TKCkpQUlJidv8JylKff/730dISAh+8Ytf4K233kJiYiLefvttliDlDS6Xi8uXL+O1117Dv/3bv8FoNCI/Px9vvfUWEaQIhD9CSKQUgUAgEAgEAoFAIBAIBALhicPxYRkCgUAgEAgEAoFAIBAIBAJhQyGiFIFAIBAIBAKBQCAQCAQC4YlDRCkCgUAgEAgEAoFAIBAIBMITh4hSBAKBQCAQCH8i/PSnP0VsbCxEIhEKCwtRVVXl03rvvPMOKIrCsWPHWNNpmsY3v/lNKBQKiMVi7N27F52dnY+p9QQCgUAgEP7cIKIUgUAgEAgEwp8Ap06dwpe//GV861vfQl1dHTIzM3HgwAGMjo4uu15fXx+++tWvYseOHW7zfvCDH+Df/u3f8POf/xyVlZWQSCQ4cOAATCbTYzwSAoFAIBAIfy6Q6nsEAoFAIBAIfwIUFhYiPz8fb7zxBgDA4XBApVLhi1/8Iv7+7//e4zp2ux3FxcX4y7/8S5SWlsJgMODs2bPAYpRUZGQkvvKVr+CrX/0qAGBqagpyuRxvvfUWXnrppSd4dAQCgUAgEP4U4X3UDSAQCAQCgUAgrA+LxYLa2lp8/etfZ6ZxOBzs3bsX9+/f97red7/7XYSHh+Mzn/kMSktLWfN6e3sxPDyMvXv3MtOCgoJQWFiI+/fvexSlzGYzzGYz87fD4cDExARCQ0NBUdQGHCmBQCAQCIQ/BmiaxszMDCIjI8HheE/SI6IUgUAgEAgEwh85er0edrsdcrmcNV0ul6O9vd3jOvfu3cN//Md/oKGhweP84eFhZhtLt+mct5Tvfe97+M53vrPGoyAQCAQCgfCnhkajQVRUlNf5RJQiEAgEAoFA+DNjZmYGn/jEJ/CrX/0KMplsw7b79a9/HV/+8peZv6emphAdHY2P//D3EIj9WMtajEaM9LRClZa7YftfL/PTBgx3NiM2axs4XK7HZbStdYhKzWFNGxvoBJfLh1QZ+9jaRjsc0DyoRXRG/prWH2iuROSmHPD4/DW3YaC5GspNWeCuYxtO7DYrBtsbEZ2et+xy/Y33EZO5dd37c8VqNkPTXAV17naPEXw0TaO/sQKxWRu7XwAwDGvRVXUHYbEJkMenQSQJWPO2HA47htqbEJWa7XWZcW0vuDw+giO8Dwg9oXlQu65n026zob/xPhTJmyH2D3Kb7+k5csVqNmGwtQ4hkTEIkitXte+B5uo1PydLMc4YMNLVipisrcy94u3cTAz2YXZiDBwuDxEJaeAJBGve70rnxxXa4cBgewMoDheRyZvXFJW63P6sZjOG2usRk7ll1dt1otd0Q+QXAP/Q8FWtt977cLi7FZb5OShTsqHraEJUag7sNiuGux7AbrXAL0iKUFX8hkTyTg4NgCcQIkAmX3a5qZFBmI2zCI9NXvc+V4vDbsdge8OG/e7SNI2e2lLE5WwH5SESymKcx9uvfQwBAcv3c0SUIhAIBAKBQPgjRyaTgcvlYmRkhDV9ZGQEERERbst3d3ejr68PR48eZaY5HA4AAI/Hw8OHD5n1RkZGoFAoWNvMysry2A6hUAihUOg2XSD2g0AsWTJNgtkJGSzGefhLw1Z9zBvNxFA/5iZGsWn7wWWX4wtFbseiTM6CrqMZ89OTCJavbvDvK7qOZqjSct327StxuTvR11COuFx3Q3tfmJ+ahCQ4FOLA4DWt7wmBSAwOjw8e3/PgfULbizD1pjUfs9f9iiWIy9uBgZZqxOftdBuQ6jpbEJW69nPtxDw/i3FND2yWR4UB5qcmMT81jpjNn3ATalfLuLYH4XHLnx9FYjp66+4hVBUHLs83MdFqMkIcELzu49+0/SAGmqtgD7VCGhnDmufpOXIy0tMO04wBCVv2gMPxLA4vhywmAfNTEwiOUK257QAwrR+GQadB0rZ9rOne2h6RkAYAsFst0HU2w261wi84FLLohFWLHsudH1fGNT2YHhtavF/Xfj8ttz+BWAJZdAKmR4cgi0lc9bZpmoZpZgqRSZtXvS5PIFzTfTg1MohxbQ8iEtLhFxQCLDlGdXYRAGB2Uo/hzhYAQLg6GeLAkFXvy0l43CYMNFUiVBXndRnjzBTmpycRs7lwzftZLzy+YMP61P6mSsTlbIdwBXF9pfufVN8jEAgEAoFA+CNHIBAgNzcXN2/eZKY5HA7cvHkTW7e6R3ts2rQJzc3NaGhoYP4988wz2L17NxoaGqBSqaBWqxEREcHa5vT0NCorKz1ucy1EJKRipLsVH3XdHV1HM2wWE1Tpa4+uUCRlYEY/gtmJsQ1tmxPz/OyKL/7LweFyEayIxoS2d03rD3c2Q5GUseb9e0KZkoPB1jqv86dGhx6byCcQSxCVko2++jLWdNrhgGlmihnI+gJN05id1EPzoBYDzVXMv8mhfoTFJCI6o4D5JwmWYs9nvoaBpkpYjPPrOoa5ST38Q1aOdIzeXIiBpkqftzva9xDhcZvW1TZm3xkFsFvMGHrYtOKy5vlZdFeXQBwYjJjMLWsSpAAgWB6FqZHBNa3rZGKoHzP6Ya/RQcv1WVy+AFGpuYjJ3AJxYAgGmirR31gB44zB9wZQHDgcdq+zTbNT6Km5Cy5fAHXO9nULnCsREhmD+elJmOdmVr3ucGfLuvqO1fw+WIxz6KkthdViQlzujhWfY/8QGWIytyB6cyGm9cPob6zAYHsDHHbv594bKwkvdpsVg611iM4oWPW2NxK+SLzuvgcA9ANdCAiVr+t3yQmJlCIQCAQCgUD4E+DLX/4y/tf/+l/Iy8tDQUEBfvKTn2Bubg6f/vSnAQCf/OQnoVQq8b3vfQ8ikQjp6ems9YODFyJgXKf/3d/9Hf75n/8ZiYmJUKvV+Md//EdERkbi2LFjG9ZuZUoWBtvqfU5V2UhomkZfQzlCo9QIDItc9/ZUabnoaygHTyCAyEPK0lqZHhtCoMw94m21SCNj0Ft3D0ERKnB5vg8D9P2dCI1OWPf+l8Ll8cDhcmGzmMETsCPsFvYZv+H7dEXkHwR5fCr6GysY8WGwvQHKFM+RgFgUraZGBzE9pmNNlwTLEJmcueJ5pWkaHC4X8QW70F11B9GbCx+7oMDl8RGsiIZe0w2ZauVzardavEavrYWw2CTM6EfQW3cPsVnbPKb5DD1sgt1qQVxe8cYURVjHNkb7HoJ2OKDc5Pk+CApXYmpk0KeUSP8QGfxDZKBpGqM9bRjtaQdPKIIiMcNrijAWowitJiOEfv6s6Q6HHdoHtQtiVO6OJ1pAQpWej66q20go2O3zfh0OO0xz0xAHrC3CMjBMgRn9MALDFMsuRzsc0LbWARQFdXaRx3tsOSiKgjwuBVhMOdO21oJ2OBAkj1pV6itf5AeLcc4tEolJc8vdoPt7HcjjUzHU3gjVCqnTy2GcMcA4bVjXNlwhkVIEAoGwDhwOB37wgx9ArVZDJBJh8+bN+P3vf+/z+gaDAa+88grCwsIgkUiwe/du1NV5/2pMIBAI3njxxRfxL//yL/jmN7+JrKwsNDQ04OrVq4xR+cDAAHQ63YrbceX111/HF7/4RbzyyivIz8/H7Owsrl69CpFItGHtFvkHgeJwVhdFsAHYrBZ0Vd5CZHLmhghSTmIyt0LbVg+r2bhh25wY7Ic0Sr0h24rOKMBAs+9RM7TDgZnxEQSFb9w5ckWZkoPBtnq36TPjIxsixK3EgqdMHDQt1bDbrLBbLcyA0ma1YKyvgxX9pG2tBYfLhSo9nxUBtZAe57vQR1EU4gt2YaCpElbTxt0r3ghRRGN2fAQ2i9mHpTeeAJkcUam56Kq6zTre+alJdFeXIDgiCqr0vA0bsEtCZJidGF31ekMPm8Dl8RmBwhOB4ZGYHhta1XYpioI8PhUxmVsQFpMEbWst+hsrYBjWelyeL5bAYpxjTdP3d6K/oQKKpAwoN2Vt2LnyNRKJoiio0vKgaan2eduDrfWISln7B4fgCBUMw5pllxnX9KCvoRzy+BSo0nJXLUgtRSD2Q3RGwaJQveAvN9Bc5VN0kTw+BSM97sVFBpoqoUrLXVUf8bjg8vhw2G1rXt/hsGOwtX7DBCmQSCkCgUBYH9/4xjfw/e9/H5/73OeQn5+Pc+fO4eWXXwZFUR7LpbvicDjw9NNPo7GxEa+99hpkMhnefPNN7Nq1C7W1tUhMXH3ePoFA+PPmC1/4Ar7whS94nHfnzp1l133rrbfcplEUhe9+97v47ne/u2Ft9ERkciZ6au4iPn/nY92Pk/mpCeg6mhFfsGvNKULeoCgK8bnF6Kq6jbi8Yp99fLxhNZvWZZi8FC5fgABZBAzDGp88dzQPahCV+vjM6DlcLjhcLqxmE/jCBbFzpKcN4eqNSR/zBXFgCAzDWvzqfx/CgS98BwPNVcDi4E2qjEVYbNKG7Mdht4OiHg2YKYpCfP5OdFeXICZzC/gisc/bspqM4At9Xx6LaXy9dWWIzyv2usz81MS6fHWWgy8SI6FgN/oaymGcNkDzoBZcHu+xPPehUXEYaKqEv9R3Y+2B5ioEyaNWFGDXKwY5RQ8AMAxr0N9YAYrDQURCOhM1JxD5wTI/CywKd7rOZsiiE6DOKVrXvj1hNc2DL/LNY0jkHwhxYAgmdQMIUUQvu6zdaoHDblvVfb0UiqK8imbG6UnoOpohVcVBnbN9zftYjuAIFYIjVHDY7RjuaoHVZITIPxDhcSke7wNPgs9wVyuCIqI2NHp2vXD5Ao8Rqr7QV1+O2OxtG9oeIkoRCATCGhkcHMSPfvQjvPrqq3jjjTcAAJ/97Gexc+dOvPbaa3jhhRfAXSY0+8yZMygvL8e7776LEydOAABOnjyJpKQkfOtb38Lvfve7J3YsBAKB8FFCURQiEtKg62yGInFjfYuWMjHYh7lJ/WMVwCgOB3F5O9FdU4LEgt3r+nKv62iCch2RBp6QqeLRU3MXgeGRy4py5rkZcLi8dQ0qfUGZkoOB5irEZm0FTdOYN0wsG6myGmiHA/PTk5idGIN5btrjMlweH8YZAxK3PAXa4YAqLW/d0RaemBjqc6vQSHE4axKm9JouhPqQiucKh8NFWEzCgmeUl8pf+oEuRD2mipg0TWNiqA8cHh93f/sT7PjE3yIoPBIW4/yGpzCuRjiiaRq9dfcgj0+FJDh0Q9uxEt5Ej5DIGEyP6dDfWLFgzP8YU/VMs1MQBQT6vHxYTCJ66+7BXxrOCMme0LbWbci9tPS47TYbtA9qIPCTPLEURg6Xi8jkTGBRDBtoqgRN05DFJLr5ulEUBYfDDg6HC8OwFhSFx+aNt1YiEtIw3PVg1Wnzw10PIItOWJOYtRxElCIQCH909PX1Qa32nsbwpAxzz507B6vVir/+679mplEUhc9//vN4+eWXcf/+fWzf7v3LzZkzZyCXy/H8888z08LCwnDy5Em8/fbbMJvNHqtYEQgEwp8ikhAZxrU9Hv04Noqhh03gC0UbmnbgDS6PB3V2EbprShCfv2tNAyeapuGw2x9LyocqowCa5uply7wPttVDvcZqfauBw+WCyxfAajZCP9CNiIRUn9ajaRoW4xxmx0cxPzUBmna4LUNRFMRBUgSFR0IoSfZ4HQzDWnD5AiRt3YuIxHR0Vd1GTOaWDb8P5w3jHj2dWMJU1hafIqCsJuOahJzAsEgYhqu8Pmc0TW9o9KDNYsZITxuTNihVxiIqNRqH/uafQdMOKBIzMNLTzqS7BoUrV+XhsxyigCAYZ6YgDvAeoeKw29FdU4LojAI3/6bl4PL4sG2g9xZL9JgxoPnGB6g++xY+8+bFZYWfjcA4M41guXJV68RkbUVPzV0kFOz2ON9inAOXz193pCgACP38YZqdhsg/ECPdrTDOGKBKywN3Fed+I8cG4sAQxGRuAU3T0A90YXygC1w+H4qkzeDy+AhXJ2Os9yGC5EpMjQ5+pJX2vMETCGG3Wla1zox+BDTtWNHfa03t2fAtEggEwmMmLCwMv/3tb1nTrFYrvvSlL0GwQoqD1WrF1NSUT/uRSqXgLPOltL6+HhKJBCkp7K+5BQUFzPzlRKn6+nrk5OS47aOgoAC//OUv0dHRgYyMxxsxQCAQCH9IqNLzH0saH03T6KsvQ2h0whPxKXLCF4oQlZqLvvryNaXdjPU9RLjac0TLRrRNHBiM6TGdx0HGxFA/giNjnpgprzIlayH6wEFDnLhgtm+zWjA7MYq5Sb3XAZTQzx8SaThClDFrElNmJ/WY0Q9Dlb7glcMXipFQuAf9jfcRoohB0CoH62vFKUx1Vd9BbNbWVafmrQZVej66a0qQkL+LNX2jBu6zk3qMa7qBxfLz4XEpLGFF21qHyE2ZGO19CJvVgsjkzcw8w4gW/YuVAvlCEeRxKasSH1wJj02G5kGN12pnNot5wXw6r3jV4lKoKh7jmu4Ni+hj2mS1LKQW5+9EcIQKmuYqSFVxjzXSxjI/u2oBlsPhIiIxA0MPGxkxzZXBtgbEZm1MlVZZdAI6Km5CKJYgPD4V8njfRGtXbBYzuPyN/dBLURTCYhKBmERYzSYMtTfCYbchIFSO+alJzIyPIH7JM/aHBIfLg91m9Uk4XPDXe4i4ZVJ/1wMRpQgEwh8dEokEH//4x1nTXn31VczOzuL69evLrltWVobduz1/1VlKb28vYmNjvc7X6XSQy+VuL+wKxcLL/dDQ8iaYOp0OxcXunbvr+kSUIhAIf05QFIWw2ESM9rZvmKeQzWJGb929xxL54gsi/0CEq5OhaamGKj1/VevOT00+Vm+lcPUmdNfcRYAsgvVbRtM0DEP9j20A4sThsGN2YgwzYzo47DZc/fdvIv/Yp8DlLwySuHwB/EPCII9P3dBqcE7M87MY621386OhKAqxWdsw3LUQlRGRkLbh+/YExeEgIX/XYxemKIpCRHwqdJ0tUCQ+qrY5NaL1yWdsKbTDgbH+DhhnFj76SUJkiM4o8Cpo2ixm8IViRCZtRn9TBWKzHvnTBMujGAHGajJC19kMu23Boyc0Kg7+0jDfj5PDAe1wj57D4rUfaK5CQuHuNYmZIv9AjPa6G1qvB72mGzP6YcRmbQOHy8X0mA7RGQXQD3Sht64M0ZsLNiTyyB16Temq/iEyzOh1mBkfQUConJk+PzUJUUDQmlNg7VYLxgd7YZp59BG54vQv8fL/99tVRbO5YjUZIXiMaciuEbiDbfW49tNv4eAXvwvtgxoEK6LhLw3/yKvuLcWZwuetyqQrffVliMt9fL8HRJQiEAh/9PzmN7/Bm2++iR/96EcrCk6ZmZkrCldOIiKW/5puNBo9ptc5q1IZjctX01nv+gQCgfCnSGBYJCYG+9dswurK3KQew10PHouh+WqQhMhgs1ow9LCJFRWyHHOGcfgFPR7DaVdUabnQPqhhCWZD7Q1QpmRvyPZphwNzBj2mRofgsFnZMykO/KVhiEhIw+RQP7a++FcIi0kEXyjeMHNxb9itlgVRwkv6EQBEJKRiemwIvfVliM3atq5BpcU475PI5IswtXBvSNfcFgDwl4bDMKxZ8BNaNGB2iiC+YDHOYaS7DQ6HnYkY8UVAnRoZZIzEKQ4HArEE5rkZCCUBbsvyRWLGZJ+maYxrezCu7QEAiCQBCFMnr/hc80V+bqmKc5N6jPa2I6Fg9x+EUGCzWjDQVAmpMhbqbPeISll0AkIiYzDQXIUAaThkMX84hXAUiRnoqr4DSbAMnEUf1ZHuB4j1cByesFktmND2wDT7yO+Ny+NDGqVmfM/sNhv2ff4foH1Qi6i03DUJUwtm7hvrW7YU44wBw50tCAhTYNenvwpxYAjCYpNg0GlYFQt5AhFk0Qkb7qO2WvgiMWxm04rLaVtrEZmcyVzfxwERpQgEwh81DQ0N+Ku/+it87GMfw5e//OUVlw8JCcHevXs3ZN9isRhms3tpZZPJxMx/nOsTCATCnyrRmwvQV1+OuHX4GY1re2CcnnxiFf1WIig8EnaL2ecosLG+jmX9njYKgVgCvsgPs5N6+IfIYDUZYbdZPYoE3lgwJx/H1OgQbBb2IIeiOJCEyCCPS/EqMk6NDsFiMkKRmI7AMAXmpw3QttY+tqp/tMOB7tpSJPjg9RUYFgmRfzC6Km8hNmvbmk3f9QNdC6k+PsAWpra5eQpNDPb5FN2wEsqUHI9pfN6YGhmEYUQLLFaQi9yUuerIHcOwhnVfK5I2o6+h3KMY4wpFUZCp4hlPLtPsFAZb6+BwOMDhcBAWm+Sxupk8PhVD7Q1MFMvUyCCmx4YeW7W21bI0OsobXB4f6uwiTI0MorvmLlRpuR9J5Kcn1Fnb0New0F9Pj+kQEOqeRYBFAWpc0wPz3DQzn8PjQ6pUL9snzk2Owl8qhzIlBz21pVBuyoLI33djdiyKUn7BMh+WXD1WswmDbXUQSgIQm12E2YlRhMUmYUY/DA6HC6kyllXgwGoyQj/Qxfio0TSNAGk4giOjn/jHE4rDgcNu93rvTQ71QygJXLcIvhJElCIQCH+0TE5O4vjx40hKSsKvf/1rn9axWCyYmJjwadmwsLBlq+cpFArcvn0bNE2zfnx1Oh0AIDJy+ZLCCoWCWdYVX9cnEAiEP1U4HC5CImMwoe2FNMp7YQtvDLY3QCiWPDZRY61Io9QY7W3HuLYHoVFxXpez26zgcLlPLIojIiEN3dUlkOQVQ9tay0qnckLTNEwzBhhGBmEzG1nTnWbiYbGJq045M85MwaAbQEzmFhiGtbAY5yGNjIFQLEF3zV3E5Wzf0Ep4NE2ju/Yu1NlFPn/5F4j9kFCwG30N5QhVxa/J6NdmMa1K0FpOmKId3geRq4GiKCiTMzHY3gBFYobHKmejvW2wGOeBRRPy9Zg226wWcLjs4SdFURD6BbAitnxB5B/ERPc57HaM9T3ESM9COp0kRIbQqDhQFAUujweHww4AGNcsFFJYbRqt9zYEwjhjgDggeNXrrhQd5Y0guRKBYQpoHtSALxI/9mqlvsDlCxAaFYeRnnbMG/RQ52yHzWLGuLYH5rmZJcupIfJfXUryjH4EEQlpoCgKcbk70Ft3D5HJm1d1v1hMRgRtcPqew26HtrUWFEUhenMhIyhNDPYhOqMAlvk5j1GAfJEYiqRH142macxNjmGwtY7xdaM4XIRGqR+7GCSPT8VIT6vH+8g8P4up0aEN8wZbDiJKEQiEP0ocDgf+4i/+AgaDATdu3ICfn28hsOXl5RvmKZWVlYVf//rXaGtrQ2rqI9PFyspKZv5yZGVlobS0lPnK57q+n58fkpIeb+oCgUAg/CEToohGb10ZgiJUPlefox0O9DWUQxadiACZ3Ic1njzh6k0Yeti0kMbkxURb19Hk0Tz4caJMyULb3csIDFNgtLcd5vlZZp5TrBAFBCM0Sr1hERo2qwWDbXWMGbBA7If5qYUPRwu+RPnorLoNdXbRhlUgG2iqhHJT9qq3R3E4UOdsh66zGcYZw4YbXHvb53IRUxuBODAElE6D/qYKRCSkwzhjwFhfB1OFLzxu05p9fJai85K+qkjKWHMxACxWrnM1v56dGIOmpRo0TYPL44F22DHY3gCByI8lBqyX0Kg46DpbEJWas6r1fI2O8gbF4SA6owBzhnF019yFIjH9sYsXKxEYHomr3/wcwmKTwOULwBMIIVWqVx3R5Am7zcqY3VMUBXXOdvTVlyEiMd1nQdBuXX86uBOapqHraIbFOAtlSo7H55KiKEQkpGGguWrFiFeKouAvDYe/NPxRe202TAz2Qj/QxUwTiCWQRSds2HFgsVCEZX7ObTpN0yumN28kRJQiEAh/lHznO9/BtWvXcOXKFajVvn9F30hPqWeffRZf+tKX8Oabb+KNN94AFjvxn//851Aqldi27dGXZp1Oh6mpKcTHx4O/aOB64sQJnDlzBu+//z5OnDgBANDr9Xj33Xdx9OhRj35TBAKB8OdEdEY+BporfYoksJpN6KsvQ0zm1o/cq2MlIpM3Q9NSDa5ACP8Q95QSm8WyoQOPpdA0jdmJUUyNDMJhty3u04y7v/kx8p/7NNJ3P7Oq9L01tcHhQG9tKeILHqXQ8UV+sAxrmWX4QjESC3ajp+7ehgy8B9sbIFWqIQ7wPcJiKYrEDBiGtehruI+YzC2PPZqNEaaqbiM2uwg8vmDd+7RZzJifmoBxepIRH6+98S089cr/QWBYJKLSch9LGpGruOAKRVEQBQTBOD0JceD6fdT8pWGMIbrdakHl+/+Jzoqb2PWpr2BuUg+Jh2duLXD5Aub58YW1Rkd5QxIcivi8Ygw9bMK4phtRaXkfiUfWQoTUOA79zXeZyomKpM2PrS1OYaq3rgzy+FSfvfc2oj36gS7M6IcRkZjhsR+xmo1M301xOKBph1tGhS9weTy3dF/z3AxGetpYlUgDwyIRJFeu79goCrTDwYpI7W+sQMzmwid2PxFRikAg/NHR3NyMf/qnf0JxcTFGR0fx9ttvs+YvrcznykZ6SkVFReHv/u7v8MMf/hBWqxX5+fk4e/YsSktL8T//8z+s1L+vf/3r+O///m9W9NWJEyewZcsWfPrTn0ZraytkMhnefPNN2O12fOc739mQNhIIBMIfM1y+AAGhchiGtQiO8F4SfXZSj5Hu1gXj4g1M9XqcqNLz0VtXBh5fwIomGNf2sPxH1oPDYcf0mA4zY8Og6UdVyCiKgiQkDIqkDHB5fDjsdnRX38Hhv/u/CFdvguZBDZQp2WtKS/KVnrp7iM3exhI/eAIh7Fa21yLF4SA+rxiaB7Uwz80gJDJmTfsb6WmHOCB4QyLogiOiIA5c9JnyIYprdmJsXUIIxeEgoWA3uqpuIzhCheCIaLdl7DYbjDMGGKcmFk2jaWYekxJEUaBpGjyBEH5BUgQroiEQSzCpG0Dhic9BIJaA4lCPRZCaGOpHiMK93U4iEtLWFS3ljZGedqQUH4ZyUxaiNxdifKCLiT4JCFMgRBH9RAbe642OWo7I5M2wGOfQW1uK0OgExkj+cTOu6cH0mA5h6mTI4xZS8oLClZDHp6K7+s5j70PUOUXoayhHuHrTY48UmxodwoS2B6Gq+GX9yEa62xDhUtFSFpMEfX/nhhRuEEoCWF5yNE1jekzHMlHn8vgIVcWtKrUxXJ2M0b6HTPTnWH8ngsIjn6hnGRGlCATCHx3j4+OgaRolJSUoKSlxm7+cKLXRfP/730dISAh+8Ytf4K233kJiYiLefvttvPzyyyuuy+VycfnyZbz22mv4t3/7NxiNRuTn5+Ott95CcnLyE2k/gUAg/KEji05Ad81dBIVHehScxjU9MM4YEJ/3+MpVPy5is7ehu/oOYjK3MF5MM/qRVXt42K0WTI0MYnZyjDWd4nARKIuAMjXbq9BA0zR6au5CnbsDQ+0NEPkHIj5/Fwbb6sHlC6BwGWBtFJqWaigS0938p5yiiSdUabkY7W3HcFcrIhJSPS7jjYmhfgDYMLEPi2kv8QW70FdXhvC4TazUm6VMDvVDmbq+aoYUhwN5Qhp+97WP4+kvfQ+G4YEl87nwCwyBf6gcsugEn8VZm8WMqREt1DlFoLAgzvTU3EVM5haPUU1rZXoFbxqKoiAODMH81MSGCQxDD5vgFxSC4AgVpsd0oGkHZDGJTPW66TEdBhYje0T+gT5V8/PE0igTVzY6OsobArEEcXnFGOvvRG99GaIzCn1Pe/byzHnDMKzF5FA/pFFqjyKi0M+f6UN4AtGqn9fVEJu1DX0N9xEWk7hhEXCuGKcnoetsQWB4pE/m+HabFTyX58Y/RLYgSm14yxaemaDwSJYIuWAm343R3ofMNJF/IEJV8V6LEogDgjG66Mc2PzUB89wMwlaZkrpeiChFIBD+6Ni1a9eqf0AfFxwOB1//+tfx9a9/fdnl3nrrLbz11ltu00NCQvDrX//aZ6N2AoFA+HMkOiMfAy3VbibLg+0NEPr5r9rTZb2sJR3DExRFIT5vJzqrbiM+byespnkIJd79e6xmIww6DYwzBtZ0Lo+PILkSKmXsqtvV11AOVXoeayBFURSiUnMwOzGKruo7iMkoXHPVuaWMdLciQKZYk/AQrt4Ew4gW/U2VPhtuz+hHYJye3JBqdUvhcLiIyyvGYHsD5qcnmRL2S6Fpx5rFjrGBThinDQBNw18ajh2f+FsIJQE+VXD0hf6mSkaQ0jyoQXRGAfxD5RhoqkBwhGrNkWmuWM1Gn/yw5PEpGxYt5SpIYTEaZKyvg+UFFhimYEzrjTNT0D6oBe1wgMsXICIhzacU2iB5FKZGhzxGcj7O6ChvhMUkQhoZg4GmSgSERTDVCr3hcNhBUb4JmLMToxjr60CQPGrFa+TsQ2b0I+iuLkFM5pbHlpIcm7UV/Y0VoBdFoI3AajZC21oHkX8g1DnbfepXaYfD43J8kRgW49wTiTzi8QVufnfG6UnoOprgsNuZacGKaLcqiXabDUMPG5+Yj5QrRJQiEAgEAoFAIPxBwxeKIfIPxMz4CAJC5Qt+RHX3VoxQeRxweHw4vHjjrAVnelp3TQkEIjFiNm+BeW4Gk7oBWIxsA1qeQIQQhQqymMQNEcW0rXUIi0n06h/lLw1HfLAMA81VkITIIItOWNf+Jgb7QHE4y6ZirnRcwfIoCP0C0FV1G3G5xcsO9k2zUxjX9jz26lHKTVmYHOpHf1MlojMK1nVtrGYTRrpbYbdZQVEUZNGJjNg19LAJCfm7oOts2ZB2j3S3Iiw2yU0w4/J4UOdsh17TveCdtblwXWmxuo5mKFNWFo4pioJfsHTdvk9LBSk4o0FcokeWIg4IQnRGAbAYPTbS3QqbxQyKw0G4OtlrOlRgmAKalmrWPW2zWjDQWIGQxxwd5Q0uXwB1ThEMw1r01NyFKj3fq6hsmZ9dVggHAOOMAcOdLZBIw1aMFhIHBLO8wQJkckikMvQ3ViBIHgXpKkVOi3HeJ0E8JnMLBpqrANqxrt8E14p6MZlbViUmjw10Qhad6DZdkZgBzYOadVWuXA/iwBBWJVra4cDksIZJ+6NpGhbTPC79+O+x7aXPY6y/EzaLCTazGQDtlv679P/LYTWbfGojEaUIBAKBQCAQCI8VbWudx0gJnlAEvsgPApEYfJEf+CI/cHl8j4N6eVwKumvuQiQJRG9DOdRZ2zYsemc18PgC2KyWDU1t4vL4CFWq8e63X8GuT30FIZExCImM2bCqZ54Y6WmDJDiUNYBzDjRczz/F4SAmcwsmh/rRU1uKmMytPqcFuTI7MYb5qXHW4MgTvgx0xAFBUGcXMamPniIQrGYTtG31iM/bueq2roWQyJgFn6mq21DnbGciz3yJRJmb1EOv6QYWfbU8RenQNA3z/EJ5eaHEH6bZ6XVVNjPNTsFiMkIe772oi0wVj6DwSPTUlkIen7Lmwb7Dbvf5npHHpaC3rgzqNYpSQw8bF/yyXAQpBh+j7HkCIZQpC+mWDocdY70PMdLdBixeZ2d0FTyIqEx0VHbRE4uO8kZwRBSCwiOheVADgViCiIQ0t2UW7iPPgpvFOIfBxZTe2Owin8RWaZQauo4m1nPO4XChzi7CuKYH/Y0VC8KtjyLnjH4YATKFD0sC0RkFGGiuAu2gV+0dt1BRrwkW45zXinorYZw2eIyW5HC5oB0Oj+t8FFAcDqSRMYxA6HDY0V56BUPtDeDxhRD6ScATiMAVCNbtL7f0w4o3iChFIBAIBAKBQHisRKXmuAkHtMMBm8UMi2keVpMRs+OjsJjm4bBZvW7HOD2J/3j1KP7yjXMfiSCFxSgE1+pHG8FIdysA4NDf/DNE/oGYn56ENCpuQ/fhysRgHyiKckvN4vKFsFnMHgdkzsF4f0M5pKo4BMu9RzstxWKcw2hvO+Jyd2xI+7F4HRIK96CvoRyy6AQEhD4ahDrsdvTVly0Y3z/BamQi/yDE5+1Eb909RCSkQRIiw+RgP0KWeFnRNI1xTTfmDOMAAEmQdMUIq9HediZlLyLet1Lz3qBpGtrWOsTn73Kft8QfiS8UIz5/J4a7HsAwrIUyJXtV51Tf3wlZ9PIpZEuRSGWYnRhdtQi2IEiFeo3EC45QYVI3sKzh+lI4HC7k8QueSDRNL0TENVYstDM4FKGL0YMfdXSUNygOB9EZBZid1KO7ugSRyZtZFQ6NM1MIXdLX2KwWDLbWgcsXIDZz66qi5JyFEzwRqopDYJgC3bV3EZGQ7lOq3fzU+Kq84KIzCqBpqQYNGoGy5atoOxnr78SMfhiKpM3rqsy5HKFRcdBruldMp3zSWE1G9DWUI0gehU/+v9MkfY9AIBAIBAKB8OcDxeGALxL7LC5ZTUZYjPM48IXvYLS3HTaLGcpN2U9cnOIJhLBtkChF0zT6GysQoohGkFwJw7AWNO1AmDoZ2ge14HC5UG7K3tCKgjP6ERhnDB49lnhC76IUFoWguLxijPV1+JyqZrfZ0N9YgYTCPT61bzWCB0VRUGcXYbC9AZb5OYSq4ljG7R9FJUYOl4v4/J0YbKuHccaA+akJhKriYLNamJQwAAhVxa8qHXJ+aoLxilkoNU+v2dtM21qHqNQct3WDwpWYGhvyKDhGJKTBODOF7uo7iErN8bm61+yknjEW95Xw2GT01pWtSpRaSZACgCC5knne1gJFUZAqYxmRZHZSj4HmKpS89f+wacdB5D3zyY88Osob/iEy+OfvxNDDRugHuhGVlguKomA1PUqPc6auAUBUWt6aIiJXgi8SL6SgdjRjenQQkcmZyy5P0/Sqn2NVej40D2oB2oHAMO+VCKdGBjEx2ItQVTzC1imYz06Mwj/Eu515gEyO8YaePyhRamZ8BPr+TiQU7oGmpRp+QVIoU7KhaamGKj3/ibblj6NmLoFAIBAIBALhzxa71YK+hnLE5e6AJEQGqVKN6M2FGOlpRV9DOawm4xNrC5e3MZFSNosZXVW3oUjKQJBcCSym20yPDoHD4SI6owDh6k3oa7iPsf7ODWj5I48lb6bffIEINh88QMJik6BITEd3TQnmJvVel6NpGj21dxGXV+yzeLKWQibKTVmgaQeGHjair74cqox8lnH7R0F43CboB7px+Sf/B/1NlRjubEG4OhkxmwsRs7lwVYbM45oet2gWeXwKRnvaVt2u6TEdBGI/j6JSYHgkpkeHvK4rDghCfP4ujPV3YbirdcV9medn12zu7B8ajhn9iE/L+iJIPQ78Q2QIkIYj++mXoEzJRn9jBeanJp5oG1ZLZHImwuM2oae2FNNjuoWJNI3BtnpoWqoRmZyJ6IyCdQtSK6WrLfR7UeiqvvNY+m9VWi6mx4Yx5eF+Nk5Poqe2FDaLGeqc7ax0zLUyru2FNEq97DI8gRBW85P7rVoO/UAXpsd0bibu4oBgSKThG/ab4ytElCIQCAQCgUAg/MHicNjRXVuKuLydoDgchMUkYayvAxwOF1GpuS7i1P0nIk5x+QLYF6Nd1srspB4DTZWIz9+5rG+UQCyBOqcIQknAwiBSP7zmfdosZmhb65ZN+eIJRLBZfDOmFYglSMjfhanRIQy2N3hcpq+hHNHp+V5LkW8UDocdFuM82u5exmB7A0a6W9HfVIlxTQ/sNttj3bfdaoFe042B5irWv7G+Tggl/sh75pOwmU2ITM4EX7i2qL5pvc5t4CwOCIZxZmpV23HY7Rjr73SrzuXEF+GQoiio0nIhCQ5Fd3XJskbGw50tiEh09zHyhbCYROgHulZcbrWClDgoBPNTk2tq01L0A12wWkyISs1FgCwC6pwiTI8No7eubEP6oseVeir080d8XjGMM1O4/JP/g67qO5DFJG5YhbzgiChMjQ6uuJwkOBTxucUL0VuLnmobSVRqDmbHR2AY0QKL0ba9dWUwjGihztmOUNXGpkivdL0USZuh62je0H2uhcG2elAUx+vHCWlkDCzGOcxOjD2xNpH0PR9xOBwYGhpCQEDAE81NJxAIBAKB8NFC0zRmZmYQGRkJzkeQDvTnDE3T6Km+i7ic7cyX+6XvYU5xyuGwY7CtAXarGcqU7DULACvBEwhgs3r3vVoJvaYb5rkZxOUVe5wfrIjG5FA/y+8pUBaBQFkExvo70TvQBWVK9qoiUBwOO3rq7iGhYNey77E8oQjGWcOqjicyeTPmpybQVXUbqvR8RmQbbG+ATJXgtbKfN1bznj2tH8bkYkW/iIQ0pBQfRlhsMvhCEWiaxpxhHEMPG0E7HnnciPwDIY2KW3Ukld1mw9ToIGbH2dE7XL4AwfIohEbFsdpuGNaCy+eDFy+AIjlzoQpaRv6qzesNw1oEefHvEgcEsSqdrUR/Y8WafaiW4qyqNtBUhYBQudsA35leuB6j5ICwCEyPDXlNwRpsb4AkRLYqf7Ow6EQMtFSvuxLaaG87KIoDeVwKZidGYZlfMHSOSEgF7XBA21YPh92GqNTcx5IGtx5mJ0ahH+gGxeEg69CLsMzPYuhhIxSJGesyz3cSIHNWJPRgNr8E10IKvXVlCxXvNjAFUpG8GR1lH+LOWz/C01/6HmKyVldRzxesZqNPYh6Xx/Pqt/UkYKrWxqeyIjWtJiN4AnbKtnJTFnpq7kIoCViT6ftq+cN6Qv6AGRoagkq18oNFIBAIBALhTxONRoOoqCebHvLnTm/dvYVUrCUv/EERUW6GxRwOF6q0BXFqqL0BNosFypSsDRenuHwB7La1pe9pW2shDgzx+oUaAILCIxd8bzyUTg+LSYRMFY/B9no47HZEpeauOIBzeizF5WxfcTDGF4oWy4CvDr8gKeLzd0HTUg2RfyAoigORJHDVFbDgQ/qe3WrBUEcz7FYLAmRylsji6odFUdSCj86SNDnjjAEj3a2sFEyBWMKkxzkcdsyMDWN6TAeafpSCxOFyERQeBVV6/orCmXluBlMjWsRkboGmpRo8vgDxBbvQ31gBqTJmWZ+bpRiGBxCbtc3jvPC4FPQ3ViA2a+uK2xnX9CAoIsonMW6p2bk3OBwuYrO2YsKDoOBqzL5WZKp49NaVeTxfaxGksCiC+FqFzxsj3a3gCUSMEMcXihnTeuc+VGm5sFkt0LRUgy8SIzI58yMNbHDY7dB1NsNqMsJfGobYrK2YHtMhQBqOqbEhxGZtg66jGeb5GYTFJMFf6t0faSXWcpwhkTEICFOgt74MYbFJCJRFrCqV12o2YWpE65Y+SVEcgOJg0/aDsJpNcNjtGy5KjXS3ISIx3adlQyJjMDHYtyrz9o3AaWgem73N7TdRr+nyWIwgNqcI3VV3kFC457Hfu0SU8pGAgIWvPJ/61Kdw8uRJSCTuX6cqKiqQl5eH0tJS7N7t7lqv0+kwNTUFkUgEHo/n9cX2/v37KCwsxJ07d7B7t3vVEJvNhvLycuzYsQP37t3Djh3uxmw0TeP27dvYvXu312UAYG5uDp2dnRCJRAgKCoJC4Z5Te+vWLRQXF6Oqqgpbtmzx+JW4vb0dAQEB0Gg0KCgocFvGZDLh7t272LNnD2prayESiSCTyaBUKlnL1dbWQqlUIiIiAg8ePEBAQACio9lmhDabDffu3UNxcTEqKiqwbZv7D/XQ0BBGRkZgsViQnZ2NO3fu4KmnngLXw4tbZWUlsrOzUVpaij17PD905eXliI+Px8TEBFJS3EOeHQ4H7t+/j5CQECgUCoSEuH+xamtrg0QiQWRkJCoqKrB9+3a3ZeByH927dw87d+702J5bt25h9+7duH//vsfjB4DJyUnodDpIJBJYrVYkJLibaTocDlRWViItLQ3t7e0oKCjw2O6goCDMz89DIpF4vEdMJhMaGhpQUFCAu3fvYtcu92oura2tkEgkMBgMSEhI8PgMmc1mVFVVIS8vDw8fPkRWlueX9rt372Lbtm1oampCXFwcgoOD3ZapqalBUlIS2trakJmZCZHIXeWfnp5GT08PACAhIQH+/u5fL53zIyIi0NLS4vEc0TSN0tJS5p5MSUlBUBDbq2FsbAxarRbZ2dm4e/cuiovdv5Db7XaUlJRgz549KC0t9frcGgwGaLVa2O12qFQqSKVSt2VGRkZgMBgQGhqKwcFBZGa6G0k6r21AQAA6OjqQm+u5TPe9e/dQVFSEW7dueXxGpqam8PDhQ6SkpKC3txebN29224Yvz62z3bOzs5iamvJ6bSsrK5Geno7Gxkav2xkcHITRaIRarcatW7ewd+/eZZ9tg8GA5GT3Mr42mw33799HVFQUhEIhIiPdX4w7OjrA4XAwPT2N9PR0CATuL/ytra0QCoXQ6/VITEzEw4cPsXWr+yBiZmYGPT09kMlkmJ6e9tjfOPtkDoeDmzdvYteuXeDzH6XG2O123Lx5k+lv/fz84Ofnh/h49xeO+/fvY8uWLbh58yaeeuopj+fI+ZtUW1uL+Ph4t/vN+Xuzc+dOVFdXY8sWz1/hm5qaEB0djaGhIYSGhkIudx+sajQa2Gw28Hg8GI1GJCUluS3T3NyMiIgIdHZ2YuvWrV5flMrKylBYWOi1v+3u7gZN09Dr9V7bXFFRgbi4ONy4cQO/+MUvmHcBwpOhv6kSEQlpHiNLguVRXg2L3SOnNlac4nB5y1YI9ITDbkdv3T0okjLgF+TeZ68GisNBVGourGYT+psqIA4IQURCqtfl+xvvIyo117cv+XwB7Na1pSZSFIXojAJ0VNxE9Qf/hR0f/xvMGfQIkEUgKFy57uiHicE+zOiHweHxoUjKWLNnlDgg2E0UNM/Poqv6Dkre+hGKP/l3UG7KhjI1e02DV4fdjoGWarcKVhRFITZrK3SdzTDNzXgsHb+UmfGRZc2TKYoCRVErikhWsxGzE6M+RUkFyaMwNTq0Kn8m6WJlxt76MsiiExAUHgnjtMFrmuBqCAxXYGpkkPFdwzoEKSc8oQhWk3FNRRJ0nc0QSgIhdRGNeULPXmw8vgCxWVthmp1GX30Z/EPlCFuF6fta/NWWMq0fxoS2FxwuF4rEDNYxTw71IyZzC2w2C+Ym9YhMXnh/G+17iLH+DoQoYp6oTxePL0B8XjFGetowPToIqVINP5coQJqmYZoxYFKncUsz5gmECI5QIVQVz3ovsFnMGGyrhzp3B6JSc6FpqYJfkHTdgqkrdpvV5/4oKDwSfQ33n6goNTsxhtHe9oVqpB76CavJ6DHylsPhInpzoc/C93ogopSPOG/uT33qUxgeHkZRURECA9nhjXNzc9izZw82bdqE9vZ27NnzqMqIw+HA+++/j1deeQUAcP78eY+DUiwOlHft2oXNmzejtrYW+/btY80/d+4cXnvtNQiFQggEAqjVakREsEte3rp1C6+++irCwsIQGRkJs9mM9HR3Bffy5ct49dVXweVy8e6772LHjh2sB/n69ev4/Oc/D7lcjqysLLS2trq93E9OTsJoNOLAgQOYnJxEa2sriooelUKdnp7G5cuX8Z3vfAdcLhdWqxUHDhzAjRs3EBsby4hOZWVlOHz4MDMwLC4uxrVr15CUlMQ6vrNnz+L111+HSCTCzMyMW5udg9GXXnoJ165dw1NPPYXt27fjvffew0svveQmTM3Pz2Pv3r3Izc3F3bt38eyzz7LmDw4Owt/fHzk5OTh37hy2bNniNuh0nu+AgABcvHjR7dp2dXWBz+czg1CRSITY2Fi3AS5N0zAYDNizZw+ysrJQX1+Pp556irXMnTt3mGtiNBqxdetW1oDUyYULF/C///f/BkVRuHjxInJyctxEl7KyMnzuc5+DVCqFQqFAQEAAaxA4MTEBk8mE/fv3A4v3nqf79oMPPsBXvvIVcLlcKJVKzMzMICcnh5nf2tqKnJwcFBQUwGQyoayszON2Tp8+jb//+78Hl8uF3W73uExrayuOHTuG9PR07N69G2fOnHFbbnx8HFarFU899RQOHjyIy5cvM8fgytmzZ/HFL34RNE3j0qVLbtuZn5/H5OQkc0/weDxs3rzZTSi5efMmvvjFLyIoKAg7duzAqVOncPDgQea6mM1mXLhwAX/7t38LAFCr1RgZGUFeXh5rO+fPn8frr78OPz8/qFQqTE1NeRTmLly4gM9//vOgKMrj8Tuvyec+9zkAwO3bt7Fp0yaEhz+qYrP02orFYqSnp7sJDj09PThy5Ag2b96M7Oxs3Lt3D4cPH2bm0zSNU6dO4Stf+QooisKFCxc8tmel59bJxYsX8cILL4CmaY/HptFomGdp06ZNmJ2dRUZGhtt23n//fXzsYx8DAOTm5uLWrVs4duwYa5nh4WGIRCIUFBR4vbfPnz+Pr371qxAKhV6fbQ6Hg+3bt2NiYgKdnZ0oLGSnBNy/fx9FRUXIyMjAtWvXcODAAWg0GrS3t7v17xcvXsSrr77KCE7Jycks8ebatWtM3w4A27dvx6lTp/Diiy+Cx+OBpmm88847+Id/+AeIRCKmv62pqQFN08jPf1RNhaZpTE9PY+fOndi8eTMqKipw6NAhVnucy+zatQu7du3C6dOn3frA27dvM22am5vzeB5pmsbExASeeeYZAMCZM2ewfft2tw8YZ8+eZa7ThQsXkJubyxKwx8fHYTabsW/fPmi1WoyNjSE7O9ttf42NjfjYxz6G2NhYhIWFgcfjsQQ+vV6P+fl5HDx4EE1NTZBKpW4fii5fvoyXX34ZUVFR6O3tBR6jvwfBncG2eoRExqwo4CxXfcw1cmoj0/pWex+YZqehfVALdU4RuD4OXHz5ms4XiqDOLsLcpB49taWQKtVuA8jBtnqEquJ9TslZzz1us5jR31gBRUI6dnz8bxCdUQDa4cDMxCgG2xtYKXQcLhfBESpIQsLc9un6t8U4D11nM0DTCImMXlFUWUv77TYrhh42IiwmEYf/7v8y4tlaoyl668vczINdUSRmYHKo36cKV+Oabq9RUk4iEtIw3PUAiiT330InA01ViPOxulhgmDP1anVihFNQGO1tR/2VUoRGqddcHdCV0Kg49NaVMaLUegUpAIiIT4WusxlRqZ4/xnljsL0BkuBQt7Q0Lo8Ph927d5nIPxDqnO2Y0Y+gt+4eQpSx62r/SthtNug6GmGzLEQTehIUXAWv8Nhk9NaXMdFR4bHJQGzyQgRcfRkCpOGrrqDI5Qtgs1rWJB7L41JgnJnC2699DDs+/jeYn37kASYODEFYTKLPgqKmpRoxWVsx1N4A0A7EZm3D9JgOXdV3EJWSs+50RdrhWPU9zuULYLOYN8S/ayWYdPE1VhcU+vkjRBGNke5WyOO9f/xYL8QYYZVQFIWTJ0/i6tWrmJp6ZC7ocLkhIyMjERQUhLa2RxUxrl69ioMHDzJ/h4eHY2TEvaJES0sL0tIWDAGlUin8/Pyg1WpZ8xMSEiAULtzEW7ZsQUVFBWsbg4ODEAgEzKAlMTERXV2ejQIdDgcj0uzbtw/Xr19n5jU0NEChUDADIqlUislJtjEgTdP48MMPmYFtSEgIaxm9Xo8PP/wQL774IrhcLqsD3Lt3L5qbmzEyMoKamhoEBAS4RSocOHAApaWlmJtbyNNubGxEcnIyE/WSm5uL2tpaZvmxsTHU1dXhwIEDAAChUAiLxQKRSITjx4/jnXfegd0ll3dubg5+fn5M23NycnDr1i1WG+rr65lBz6FDh3D16lXWfLvdjrm5OQQGBoKiKHA4HNY+JiYm0N7ezoqK2LZtm9t1w2JEilP0k0qlcDgcMBgeeTuMjo7C4XAw16S4uBh37951247VagWPx2PuycOHD+Py5ctuy01MTDAiRG5uLh48eACTaeHLA03TuH79OmvQHBUVBY1Gw9pGZ2cn4uLimPsoMTERWq2W2Y5Go8HQ0BATYSQSiWD2kBpw584d7Nixg9nO0vPoPNdtbW2MwEpRFLZt24aysjLWcs6IHiwKSRKJhPW8YlGQkMvlzDUTCoUwGtmmlJcuXcKRI0eYv5966incvHmTtcz8/DwsFgsTGUVRFJ5//nm8//77zDKuA20AUKlUGBwcZB1fY2MjEhMTmftRrVajr6/P7TzZ7XZwOBzm2ubn56Oqqoq1THt7OzZtevQFaPfu3bh9+zbz/Hm6trt373a797EYleKMfAoMDIRKpcKDBw+Y+U6RxbX/Gxxkm1s2NTUhKSmJeW4LCgrc2gwAFouFEfI8XVuaplFRUcE8S97O0b1791gRVIGBgcjKykJJSQlruerqakak8XQetVotwsLCmP4WS17iRkZG0NXVxXpml/aR9+/fh7+/v5twplKpoFarWc/vI/+NhZ/mp556Cnfu3IFjsYJNfX09oqKimL4di/f38ePHcfr0aTgcDpw5cwZHjhxxiwzMy8uDUChknc+amhpGGA0JCYFcLkd7e7tb+137rueeew4ffPAB8/f4+DjsdjvTpszMTDQ0uBsel5WVsT5WeOpL29raWPft4cOHceXKFdYyN2/exN69e4HF/sj199GV/v5+xMYuDOYzMjLQ1tYG66IHkN1ux/Xr15nfibS0NNY9jcVnPzMzk6TqfUQMd7XCLzgUgbKIZZcLVydjtLd92WXgIk5FZxRiuGvREN2HCnPL4WsEg2FYg5GeNsQX7PJZkMKiMDDjo6m5JESGuNwdsNss6KkthWl24fdupKcd4iApAkJXn0K3WiYG+6BtrYU6dzsrZY/icBAoi1g8/wXMP0XSZljm56BpqWaZg+s6mhkhqr+xAvqBTqjS8hCTuWVVKW++4jQoj84oYDyholJzMWfQY3Kof9Xb07bWISI+lTUQ93SvhETGQBadgK7qO149ZozTkx4r5C1FKAmAeX7W63xdZwvk8ak+peNhncIkTdOwmozobyhHf1MltA9qoGmp9vpvoLkKus5mGIY1MM1Oe63YFhQRBcOwZkMEKTApuKszwNc8qIW/NNwnnyRvBMjkUOdsh9268KxulOG6k6nRIfQ13MdgWx3k8WmIzdrqVrXRyVh/B8JiH32IFkkCmb7DiTQyBursIgglgeitL4Ous8Xnvi80Kg7jPhjVL4Wmaeg6WzDc1YKcI3+BwDAFq+9YjSBlGNYgMCwSHA4XoaoExkw9MEyB+Lyd0A90Qttat66INP1AF2TR7tkoyxGZlAFdR9Oa9+krzgIUy6WL+0KQXAmapj1WMtwoiCi1BiiKwgsvvIAPP/yQEQza2tqQmvpIPczNzUVPTw8MBgP6+vogk8lYUSqFhYWorKx023Zvby/U6kflJIuKilBeXg6apmE2m9HV1cWIVs62uA4CaZpGWVmZWzRTWloaWlpaWNMaGhpYKT3BwcEQiUQYHh6GTqfDxMSEW3RVXFwcursfVUfwlPIhFosxPz+PwcFBlJeX48SJE8x8k8kEsfhRR/L000/j5ZdfxunTp6HT6VBTU4PBwUHYXH4ojh8/jrNnz2JqagoajYb1tTsyMhI63UI506mpKZSUlODo0aPMfD8/P8zPzwOLYohTmHJuv6GhgRWJolKpEBERwQxOnYNEZ/sFAgHkcjlLmHEVQLAYuXDv3j1gURz68MMP8fTTT2Mp6enpaG5mV2CYnJxkRars3bsXN27cYNriTMn0dHyulJSUsKIVOBwOioqKUFpaykwbGRlxS585evQoLly4AAC4ceOGW8pTbm4u6urqmL9pmkZjY6NbaphTBDMYDKitrWUGkd7o7e2FSCRipQZ6Ei4uX77MitIBAKVSienpaczMzAAAqqqqkJ/P9nvYvXs37ty5w1rPVdyAi3Dj5P79+ygoKGBF1lEUhZSUFLS2PiqDvFTcweJ9smfPHly9ehXXr1/H7t27wVticukqAk9PT2NwcNAtVSsnJ4clumKJcAkAMTExGB4ehsXyyBujvb3dbVuu+3MO7F3PEUVRyMvLQ01NDTNNr9dDJmN7cWRkZKCnpwczMzPo7OyETCZjpavm5OSw7pG5uTn09/ez+ke5XI7R0VEsZWlao1KpxNTUFHNtnfekKyEhIZiYeOQfYDabMTk56RY9Ghsbi4CAAKYfXCruOfsS1xeTpfdIfn4+qqurAQCzs7O4d+8e62PDUrwJUk4SEhIQGhrK/BbU1ta6pVAeOXIEFy5cgFarhcFgYPX/FosF/f39qK2thVAohEgkwq5du1gpZq7Hs3nzZshkMkZ8HBkZYZ2nnJwctLW1scTZiYkJhIaGMn/z+Xzs2bMHH374IbDY/7lGc6pUKjfh2pki5yqmOVOBOzsflRx++PAhS5TicrnIzc1lzrmzX3O9bwUCgZvI3dvbywhSTp5++mlGmD937hyOHTvGbIfL5TLCHxaj1bKystzSywlPBn1/J3h8vse0vKWIA0NgWkX1MQ6Xy4gjw50t6G+sWLc4tRy6zhaY5+cQs7lwzQP91QyWQqPioM7ZjonBPpT85sdw2KysFKPHgcNhR19DOejFCARndJF/qHzZSoFcHh/SKDVrsBmdUYBQVRzu/vYn6KkpRbAiGpHJmRtqeuzEajaip+YueHwh1NlF4PL4mBp9ZKgdmZwJ09wMxrU9Pm9zXNOzUE59iYeVN8SBIVBnbUN3TYlHUWl4FZEJfsFSzE3q3abPT03CYbetyx/IV8Y1PeituwdZdAJyj34cBcc+BYtxHlFpeVCl53v9J1MlgMPlYWp0CNrWOo/i1dzEKN75xqeBxdTdjYDD4fhsOj3QXIVgeRSCwjdGGHU+q1Ojg+uu1Ge3WqB5UIv+xgrYbVbEZm1FdEbBiubUxqlJViRqRGI6hrseeFw2QCaHOrsIwRFR6Gsoh7a1Fg7H8udO5B+4rFi6FIfDDm1rLfob7yM4IgpRKTmIiE9d87mhHQ5MaHsZ3y9xQBDMczPMfKcALYuOR0/N3TVXNp2fnlx1SvZaRNHVQDsc6KktRVB4JGQqd+sGV8zzsxCIVy6+EJGQhonBXliMcxvY0kcQUWqNUBSFEydO4MaNGzAYDNBoNG7eR4cPH8bFixdRWVnp5kNDURT8/PyYCCAsChie0rAOHjyIa9eu4dKlSx7FjYKCAual3Rm1sBRP0VIajcbNvL24uBiXLl3CvXv3WEKLk7S0NGZA3tfXB39/f7dB6/bt2/Hb3/4Wzc3NTKqGk/n5eSYSBIuD0H/5l39BTk4O9u3bh9jYWExMTKCkpATXrl3DtWvXcP36dQgEAgQHB4PD4aC8vBzj44/MBAMDAzE8PIwrV67g+PHjrP0tFW2cwtSpU6dgs9kwMzPjloaZmpoKmqbR2tqKxsZGt/SpwsJCRiyx2Wwwm82s9JKgoCBMT0+Dpmm8//77eP755z2+jCYlJaGjo4N54WxtbXUTEiiKYiIP7ty549HPJzExER0dHW7nealnk1KphMPhYEQ8p3jjCo/Hw9atW/Hb3/4WgYGBrMGoE7lcjuHhhY7b6Xu2FA6HA5PJhNzcXLd7AAAUCgWGhhbUdrPZjLq6OjdPl6VRJ319fZDL5SxR08mBAwdw7do1mEwmjIyMuA1IORwOQkJCmPumr68PMTHsF3U+nw+apmGz2aDX6zE3N+e2DBbvj7a2NtA0jcHBQcjlcjfBaXx8HA0NDfiv//ovvP7666irq8ONGzfQ29vLREf5+flBKBRicnISV65ccUubAoDo6Gi3Af709LSbX9XBgweZiJK6ujqPKX9SqRQBAQEoKSlBQECAx2sbGxsLnU7HDPLLy8s9ejY9/fTTOHPmDJqamtxSECmKApfLZYTfy5cve+y3ZDIZxsbYpWaNRqPb9XX2fzqdDiKRyM2vbdu2bSgvL2f+9tYHYlF0GR4extDQkEdfr61btzIRjEsjhOAiplmtVpw/fx7PPfecx/3AB0HKSVpaGgQCAerr66HT6ZiUXpqmMT4+jtbWVnR3d0OlUsFisTD94rVr13Dv3j0YjUZs3rwZSUlJKC8vx/Xr1xkRzxPJyclQq9U4f/68x9+bZ555hhGmtVqtR2EmLCwMSqUSP/nJT1BY6D7Y9vf3x+zsoxfRpVFSTrKzs9Hc3AybzcaKEnZFrVZDr9ejq6sLNE27iY1Ob0VXXKP7nAiFQqjVavziF79Abm6u233mPIYLFy4gJyeHCFIfEZND/bBZratKE+FwebCv0t+Jw+VClb4wUB7ubFlT5NRyIhNN0+itL4MkWAp53Np9S6RKNSa0vatuV2RyJpSbsmAxzmGwrX5DfGk8MTsxit7ae1Cm5LhFY4QoomHQDaxqew6HHf1NlTj+jz9FctF+WI1z6Km5u6qBrS+MdLdi6GET1DnbWSlqC1XeHn0cUySmw2YxQ9/f6WVLj5gzjMM4Y/BYYn65e4XLFyChYDd0Hc2sKISFgaLEZzEzLCYJY0vaSdM0hjoa1xwl4S1qaSnO9FGuQIC43B0QSgJA0zSEkgBEpeagp+au13uQoijwRWIEhikgj9vEPJdL/4VExmLPZ76GuUk9+hsr0N9UCeMqBGlPhKs3YaSnbcXl+hsrII2KW5Np/3JQFAVFYjpisrZguOsBBpqrVlWZzTCsQV/DfQw9bIIiKQMxmVt8FqHtVgs4XPa7K0VR4AlEy4pA4oBgqLOLII9Lhaa5Gv1NlbBZ11b0wYnNYkZ/UyUGmqogj0tFbNY2iAOCMdTRBEXSZvAEQljNqxemtK21iEpbOT1T5B+E+PydMM0Y0NdQ/sSq4wUvRv9tNFazcaESaloe/KXhKy6vH+jy2G95IjZrG/obK3zuG1YD8ZRaBxRF4fjx43jvvfdgMpnQ3d2Nnp4eVkrOnTt3oFQqGaNg1x+XXbt24dq1a8yAzVOEExZfpt944w0kJiZCIpGApmmEhIQgKioKERER4HK5UKlUuHv3LqRSqduA1YkzWio9PR2zs7Nu/kIWiwW3bt3CpUuXcOjQIWaQKxAIsHnzZuYrt5+fH6amplBdXc14v2g0GrS1tTFfm3/4wx/iRz/6EYaGhli+SfPz8xCLxaBpGhcvXkR6ejrUajViYmKYdIqlIpdOp8O9e/dw8eJF7N27F/Pz8+jo6GCEOLvdDqVSCYvF4vbj7SmSyFWY8nauCgsLcf36dTQ1NeErX/mK2/ytW7eivLwcMzMzbp5PWBzcv/nmm3jxxRc9mh472bVrF0pKSrBr1y50dXV5FHASEhLw/PPP4+WXX2ZFGjjZtGkTLly4wHhBOa+xJ3bu3IlTp04x0WuuEWx1dXVMitsPfvAD/PCHP8TVq1fB4/GQnZ3NiBiFhYU4f/489uzZA7PZzEzv7+9nUmA4HA6Sk5Pxy1/+EpcvXwZN09i2bRuzbGZmJq5du4bIyEicP3/ezevHFeeLjPN+8wSHw0FqaiqeeuopVrSTKzt27MDZs2fx3HPPoaGhweM+ndFSExMTOHnypNc2OdP4pqen8fzzz2NgYACtra1MW6VSKXbu3Amr1QqHw4EdO3ZAIBCgp6cHN2/eZJ4TmqYhlUrR0tLi9cWzoKAAlZWVKCws9BgBgsVnNDIyEn19fejv72f8vBwOBwYGBtDV1cWIRIcOHcLly5dx5coVhISEICMjgyVgHjx4EJcuXcL+/fshEomYdjkcDjQ1NTFi4uXLl7F3716mn4iPj0diYiIoisKOHTtQWloKgUDgtTjCli1bWOmRDx8+9Gg0zuFwkJCQgC1btrilljnnUxQFu92O0dFRyGSyZZ+5vXv34t1334XNZnMzrQ4PD8f9+/dhMpkwNjbm0Yicx+Ph17/+NT7zmc94PK7g4GBcvnwZKpVqRUHKSXZ2Nn72s5/h97//PQQCAXMfhYaGIi4uDmazGSUlJbDb7R5FYLPZjO7ubhw7dgy5ubk4d+4ccnJyEB0d7XZfmUwmdHR04MqVK+Dz+cy9GBgYiMzMTPj7+2Pr1q0oLS2FwWBgIk+NRiMaGxtZQvE777wDtXrBM8RVwN2xYweuX7+OQ4cOMVFS3go7OCOY7HY7nnvuuYXw8KkpaLVa6HQ65vc0OTnZYxq6n58fK7JrfHzcY6EJrVaL7u5u/OxnP0NMTAwjLNM0jfDwcMaLa+fOnR6LORAeP9P6YcxPT656AB2RmIbhzhYoU9y9xVbCKU457HYMLpZvj9yUta7y11azEX315YjJ3OLROHY1BMjk6G+s8HnA4ESv6Ua4ehMCwxQwz88uGCxLw1mpOutlsK0eHB4f8fk7Pc6nKGpVYpjDYUd3dQnU2UXgcHkYetiAqNRchEYnYLCtHnabFaq0vHVFTZlmpzDY1gB5fIrXCKSlKW7yuBSM9XdipKfdq8Bos1ow3Nni9VysxCMD9BaY56YRrt4EXUczYjYX+rD2o21QFAWH41FlMU1LNVRpeSuu64ngiChMjQ4um6pms5iheVADcUCIV78aV2EqLq94TRGDNE1jpLsVSdv2obfuHqI3FwI0jdHedoz2tIHicBCRkA6B2M+HrbHbZllG8KRpGn315ZDHp8IvyP13ZaPgcBb6IZvFjIHmSvBFfl4r9dksZug6mmC32RAcEbVm82ldZ4tHD7LITZnQNFev6N3GF4kRk7kFdpv1Ud+ZnLmqPs88NwNdZzO4PD6iUnPA5T36UEbTNGiHAxwuFxGJ6Rhqb4Qq3fd72ThjAIfHX1V7wtWbYLNa0N94H4FhkT71u7MTYz5HRi4lOEKFvob760oHdWvPpB6j3a1eDc09YbdafP7NoygKsdnb0FtftmaPKm8QUWoNzM/Po7m5GRMTE0zE0wsvvIDm5ma3NB2Hw4HDhw9jdHQUZ8+ehVwuZ6oFOZdzVhqamZlhCUUmkwk3btwAl8vFe++9hxs3buDAgQOsl/a2tjbY7XYYjUY899xzuHTpEpqbm5GWluY2YEpMTMTZs2eRnp6O0tJSJuVofn4et27dApfLxZ49e7B161a0trYyAzKz2YympiYmrcdqtSI4OBjvv/8+MyCNjo7G3r17weVyMTMzg//6r//C9u3bUVNTg5qaGigUCuTl5cFoNEIgEODUqVPYt28fI1JIpVKm4p7r1/L6+npMTk7ihRdewNzcHMrKyrB7925W5FltbS0aGxvx/vvvo6ioiCWC+fn5efTuEggECAwMxNGjR1m+Js4XKIqiMD09ja9+9asev97TNI1z587Bbrez/MScjI2N4Qtf+AKr2hVN05DL5UhKSmKuc2hoKGZmZhjvGiyKg/X19UxKEkVR2LNnD8LDw3HhwgXEx8ezUqGwKLQ5o0x6eno8iltODh8+jE9+8pN4/vnnmesnFAqRk5PDGHhzOBwm2sTZHtdUupmZGfz85z9HZmYmrly5ApqmER0djUOHDjHn4saNG9i5cycz8L1//z4mJiYgl8uRn58PmqZx7949bNmyxWPEBhYH6w0NDdDr9W5pWxqNBg8ePGAG1U7/LVcPHue1TklJQUREBBQKBe7cucMyc5+ZmcHAwACGhoZgt9tx6NAhvPXWW0x6kjcOHjyIz372sxCLxVCpVNi/f79HkeLw4cN477338MILLyA5OZklvNTV1eF73/seTCYTk1oUEhKC/Px8pn+IjIxEVVUVaJpGS0sLKz3VlZiYGMjlcrz11lvMPU1RFGJiYpjr0NTUhBs3biA8PBwZGRmYnJxEbW0tS7jl8/kQiUT4xS9+gaKiIqZdHA4HGRkZTBSWU9x2RhZ2d3eznqXTp0/jE5/4hFs0phNXsYvD4aCjo8Pt2EZHR3H//n1IJBJ8//vfR2VlJSNACAQC5ObmIjg4mBHBxsfHWdGSVqsVvb296OvrY90TbW1t+Nd//VeP4oXFYkFaWhr+/d//3c3zyHlcfX19iIvz/LJy+/ZtvPnmm159/JbicDhw5coVbN26FZGRkR6jvAwGA44cOQKNRoOzZ8/i2WefZfU5ly5dYp55iqJw7NgxlJSUsCJKu7u7mQqAu3btwoEDB3DhwgUmQs9gMKCuro6J3n333Xfxu9/9jvGPEolEyMzMZKUXUxSFgwcPor6+Hg0NDUhJSUFSUhJ4PB4jJnmLksJiP1lfX4//9//+H/z9/ZnopeDgYERFRWHTpk3g8XjMcz01NYVz584hPT2d1bc6PRrlcjnKyspY95FOp2OqJz733HMQCoUsDzSapjE2NoY33ngDra2tCAoKQkNDA/h8PtLS0ohA9YSYn5pYqAK1ikG4E75QDJtlbdXinHgSp5Qp2as2oZ0ZH8FYX8eqBgS+sFqz6Bn9MNTZC8+d0M+fZbAsVapZVcxWi3l+FpqWaig3ZUEcuPJA3Ze2uwpSznPu/BK/kGKTsxhNUQG/wJBVm+3SNI2h9gbQNL0mYSQsJhHjmh4Mdz1ARAL7nZCmafTVlSEuz3PxotWgSEzHpG4A3TV3IRCJV30PKZIyoOtohnJTFqZGBiEKCPJYudIXAmROs3P333CaphmhMGbzFo9Coes5FkoCoEzJRk9tKeJyPRc5WQ5tax0T8bJg6t4CRWIGcx/YbTaMdD+A1WQEl89HROLqKjN6ukdpmkZPbSmUmzJ98vXaCHgCIWKztsE0O8VU6nO2a2KoHzNjOnB4fEQmZ67Kn84TdqvFY//G4XBBcTiwWy0+7YPL4zMFDYY6mmAxzkEe90jEE/kHwjhjgDjgUYGg2Uk9xvoeQujnj5jNWzze56M9bUx1vJVM5D0x9LDJo2giCZZhdmLMazorjy+AOmc7DMMadNfchSotb1mxc1zbg+gM96rcvsLl8X0+1ysxru2BcdqwIX3RcvCFYoTFJGHoYRNTrXEjIKLUKqmoqIDD4UBGRgYjqNTU1ECj0aC0tNSjgIHFl+bnnnsOw8PDOHv2LCIjI1FYWIhdu3bhzp07yM7OZl725+fncfPmTQgEAhw4cMBtwE5RFIKDgxEcHIz09HTYbDacPn0a58+fx+HDhzEwMIAPP/yQEVjkcjkyMzPB5XKZaCmnOXdJSQnEYjEOHjzIDIKFQiHLFFooFDJpXv39/aiursbrr78OoVCIgwcPunXkNTU12LJlCyiKYtbT6XS4cOECTp8+DT8/P/z4xz92Sy/LzMzExYsXERUVhcDAQFy7dg3R0dFMGqFEIvHon6TVavHss88iPT0d9+7dQ3t7O3bv3s0IhkvXqa6uhlarZaqkYTH9aynnzp1DS0sLBAIBEhPZqQQ0TaO/vx8TExMez8GlS5eg0WjQ39/PDMicg5/6+npWaovD4YBKpcKlS5eY6AXXyCQnO3cufIHr6urChQsX4Ofnh507d4LH42Hnzp24desWCgoKPA605+fnUV1dzQw4Gxoa8IlPfGJZPxwnAoGAVU3MbrfjRz/6Eb72ta8x5eQ9YbPZmHvX6WmFRYPxixcv4plnnsE//dM/4emnn4bJZIJEIoG/vz8kEgnj46RQKHDt2jWEh4ejtbUV09PTzPajoqKwb98+Ztnbt2/j/Pnz0Ov1rPaaTCa0t7ejsbERcDFYdqbF+fv7Izo6GsnJyeDxeDh79ixTscwber2eKQ9vMpmQmJjoJkiNjY1BJpOBw+EgPz+fiXZy0t3djfn5eezbtw8qlYrxEpqYmMCtW7dgs9mY9M1t27bh9u3bjOH29PQ0GhoaWOm/YWFh+PWvfw2FQuGx0iAW0xafeeYZnDt3DhkZGQgJCXFLYTObzXjrrbfw5S9/GdeuXXPz8HLdn2tFsoSEBCQkLBg9joyM4Etf+hITdeWMmFoamVRUVISysjLk5eWx0qm6u7vR0tKCsLAwPPPMM6AoClevXsWuXbtY19U1uu/w4cNuQhKfz4darcZTTz3F3Cfz8/OwWq347W9/6/H+v3//PrKysrB//363tEy4mLHv2rWLZYCOxX6Ox+Nh165d6OjoQEVFBRNx5glnf3ro0CFIJBJYLBa36FK9Xs/0BSqVCoGBgXjnnXdw/PhxCAQCNDQ0IC0tza2tO3bsYMSq9957D8nJyW6in7+/P2ZmZhAQEIDg4GDmXtBoNDCZTIiOjmaE2qVVS11f4rOzs5GdnY3W1lacO3cOcXFxyMjIQFNTEytKamhoCE1NTcxvk0wmw+7du2G1WiGVShESEsLylHK9Jvv37weXy0VWVhaam5tx9uxZpKamIikpCfn5+bh06RL27t0LoVAIiqIwMjKC8vJyKBQKPP/888y2kpOTWd5VFEVBo9Hg9ddfR29vLyPSWSwWJoXbbrczvxWEjcc8P4vhrgfr+urKF/nBPD+75gG4k/WIU2P9nbAY5zb863GoKg7j2p4VfUGcTOoGPAoJATI5AmRy6DXd6KkthSJpM8QBqxtsj/Y9hGlmCvH5u3wSFoLlUZgaGVy2ipvDYUd31R2oc7Yve555AiGr0mBoVJybuOYpMmt2Uo+RrgeI3JS17PGuFNUVqorD5FA/hh42IjL5kY/mQHMVotJyl43gojhc2G02cD38pizFXxqO0rf/DfF5xRhoZvtqUhwu/KVhCJBFeBRdBGIJrCYj7DYbxjXd6xqceru+ek03pkeHoEzJXtXzJvIPhHJT1qqFqblJPXgCIbMvcWAIhrtbWRFhXB6PuSY2ixnDnc2wW63gi/wQkZC27LWRKtWYHOyDNOqRny/tcKC7pgSq9Px19ylrQeQfhNjsIgw0V+HKv34Dec/+LyRueWrF6CVfMc5MQSjxXnFOuSkLg+0NqxJbKA4Hyk1Zi1FtbRjpaUVolBqhUXHQdbYgKjUHhmENJnUDkASHMqK59zYaWOKzUBIA0+yUTwLhaG87wmKTPN5jIcoYDLbWreixFhyhQlC4EpoHNeALxctWtlxPYQBFUgaGOpqh8iHNcDkG2xsg9PNHVGqOD0uvnwCZHMZZAyaH+hGyQb6FRJRaJQqFgjUwwuIALC8vDwcPHsTFixeZF/+5uTk34SUiIgLPPfcchoaG8MEHHyAqKgpzc3OoqKhAcXExzp8/D5FIhEOHDrkNMuLj49HV1cUM/LD4I/ruu+/i+PHj6OvrY+a7+lsNDw/j5s2bzJfrkydP4rvf/S78/f1x5MgRj9EdS7HZbLhy5QrCw8ORl5eH1NRUKBQKvPPOOzh27BhrQLnUzByLwgZN0ygsLISfnx/Ky8tZaY7OMG+RSISvfvWr2LlzJw4dOuQmzLgOorAo0Liej+3bt2NsbAzvvvsu9uzZg6CgIGbg3tPTg4aGBuTl5SE/Px8PHjzAli1bMDU15WbW7UwBSUtLw/nz5z2KUpGRkTh48CAqKyvdhBmaphEVFYWWlhZMTU0hKCgIFEUhPDwc4eGP8nvtdjvOnj2Lr371q8CiYLISzsH/3Nwcrl+/DpvNhsLCQlitVpSVleHpp5+G1WpFbW0tE20lFouRn5/PRGhRFIXk5GSvXkbe0Ov1uHHjBv76r/8amzdvRnh4ON5//31s27bNzevF0wuew+Fg/K++/OUvIycnB5GRkZibm4Ner0d/fz9mZ2dZ6W2f/vSn8e1vfxt/+7d/y0RyeWJ+fh7x8fFuhv4ikYiJ7mlsbMS1a9cQFhbmsYy8yWSCv78/EhISvPop2e123LhxA5/97Gdx/fp17NmzB1euXEFERAQrgq+mpoYRtmJjY/Hw4UMYDAYEBwdjbGwMDx8+xOHDh2GxWHD37l0mEkwqlTKikjNlbnBwEEeOHMF7772HK1euIDAwEDk5OazISrvdDr1ej8DAQPT19bml+bn6aCUkJKCzs9Ptvrbb7bh06RL27duHq1evIioqCufOncORI0fcRAmxWOxWrRAABgYG0NzcjLq6OlRVVWHXrl0wm82orKxkvI7UajVSUlIQEhICg8GAkpIS7NmzBw0NDRgYGIBarcazzz7r9Vo7r+u2bdtA0zSuXbuGr3/965DJZCgoKGBF8yzlypUrOHbsGO7fv888m060Wi2MRiPeeOMN1NXVuXkBOn2PVCoVbty4wRLsLBYLSktLmeqs27dvZwodiMViRih3pox9+OGHCA4OxokTJ5ht5Ofn48KFC6xIx4qKCpYnV1BQEE6cOIH33nsPxcXF0Gg0KC4uRnl5OUu0pSgKSUlJ+P3vfw8/Pz/09PQgODiY5ZW0Y8cOfPjhh6zjcKboPffccxCLxUzaa3p6OivKT6fTuUURpaamIjU1lelrjx07ht/85jdMRKZCoWAJya5s3boVt27dglgsdvNyc60Si0Wz/YyMDLS2tuLs2bNITk5mCkFkZmbigw8+gFwuZ5mZO4mLi8OVK1cYUaqvrw9zc3PIzc3FwMAAE7ksEAiQlZUFs9mMM2fO4NixY25FBwjrx2YxQ9NcjfiCXT4s7Z2IhDRoW2vX9cXaFbY4VQeH3b6sOKVpqYFEGgblKkum+4K/NBzjGt9FKcOwZtkBn0wVj9CoOAx3tmCkewZRqbkrim52mxX9DfcRqopfKBXvI4HhkYvRNp5FKV8FKVeclQad4ppyUxaEkoV3QotxjknXoR0OaB7UQCCW+JRWNzepXzENJyQyBtQIdyFyJzUHo73tCApXrlhSnicQwWYxgctbXuAwTk9i6GETdv6vL4N22N3ERYfdjtmJUYx0t8JutbBSJCmKAk8oAsXhoOXmB0h/yrstwlqYndRjtKcNoVFxaxZeVytM0TSN4a4HbtcvKjUHg611UKXnu63DEwgRlbowwDfPz0LbWgva4YAoIBjh6mS3fTpTZJ2ilDNqLzZzq88V3jYCmqZh0A0wZtsURSEgVI59n/8mzHMzmBzqw+zEKCKTNq87CnO0p23ZvpLLF8Bht7OEP1+hKAoRCQti0rimBwPN1ai//HtYzUYEy6NWFKOw+Cz6BbPHf/K4FAy0VK8YTWu3WjA/NclEWS2Fw2EXNln2WDgcRGcUYM4wju6au4iIT2X1EVazcdXRtEvhCYSwr8OTi6Zp9NbdQ1hs0pqqrBqnJyFa5ccJJ+GxyRhoroI4MHhDogmJKLVK5ubmWGW0nQMMLKbdpKSkMIPZ6upqt0GNk8jISDz33HPo7e3Ff/zHf+AXv/gFLly4gKefftrjCzsWvYMuXrzIEmHee+89HDlyBEKhEElJSbhy5QprPhaFsIiICNhsNmZAbjabMT8/j+vXr3uNrnHS3NyMrq4uHDx4EGKxGFeuXGGig06ePImzZ88iPz/fzegdiwOXyspKhIaGMhEPV65ccatW5sRqteIHP/gBk2qyfft21g9IUVERbt68yQz2Hzx44DZ4DQsLwwsvvIBbt25BJBJBr9fj/fffh1qtZn0x12q12LdvH6Kjo/Hhhx+yqtGVlpYy25VKpRgfH2cJZKWlpdixYwdCQkLQ1dWF0dFRRmxqbGxkTHYPHDiAM2fOePRCGh8fx4cffohjx47B398f2dnZjMDoi1AokUgYz5aqqiqUlJTgRz/6ES5dugQej4fc3FyPZtbOND+1Wg2RSOQxHciToFRfX4+xsTG8+OKLjHdBXFwc4uLiUFZWhurqahw8eNBjKp7BYMC9e/dAURSKioogFoshFAphNBrdKgC6cuvWLbz99tvYu3cvbt68idzcXI+eSs7oFSxGbdTV1TG+Sq709vbi2LFjzCB7aVsrKiqwZcsWSCQS9Pb2ehx4nzt3Ds8++yw4HA5omgafz8czzzyD3t5enD59Gk899RRCQ0OZtDQn+/fvx7vvvoujR4/i1q1bePHFF4FFwdZZqn4pHA4HPB4PZrMZ//mf/wkul+tVRKyurkZ+fj5CQ0Px7rvvQqVSsfqSpqYmRuxIS0vDuXPnWKLU8PAwSkpK8Mwzz0AsFqOzsxOpqalQq9X44IMPkJeX5/Hcu9LR0YGBgQFGRHGKVkKhkBWR1dvbywgVbW1tePfdd2GxWJCZmenRpB1evkQZDAZcvXoV+/fvB0VR2L9/P65duwalUunRz6mhoQHp6engcrkoLCzErVu3mL7EZDKhoqKCEYmcnnWuuKbGcjgcljH72bNn3XzK+Hw+nn76aUxOTuKDDz5AfHw8dDodzpw5g3379rmJrBRFwd/fH9PT0wgMDHSr/um63bS0NCiVSvzmN79h0p6XeuQNDg4iOTkZ2dnZoGkadXV1qKurg0wmw5YtW8Dj8VgvZ7du3YJMJmM+vNA0DYlEguPHj6OxsRHnzp3DoUOHIBAI0N3d7faM2e121NTUsNIGRSIRMjIyEBXleVDq6m+4Z88eXLp0CWKxmOlPtVotK3LMFacI1t7ejgsXLuBXv/oV41HnbbDjOt0Zcei8bs6quM6ozunpaVy6dAkvvvgifvzjH3vcHmHt2G029NbdQ3yBb1E3y8Hhch+L8eqCOJUPu82GofZ6N3Fq4RhKfU5lWw++pMFN64cRIItYdhk4DZaTMuCwL1S7ojhcRKVkexzsGoa1mBzqQ0zWNp8ifZbux1sEEiNI5e5YVaqVE6e4NtTeAJvVAlVaHowzBoj8g2AY0WJC04OoFVJvXJnUDbAioLwRLI8Ch8vD/Xd/idisbctGgTnhCVceeE6NDsEwrEF8/k6Y52c9msRzuFwEhilYZuyuWIzzeHD7HCrf+w9IlbEAKADeI8C4fAGEkgCIJIEQ+Qd6TCGymo3QttbBL9C7b5QnvF33BWEqE721pVCvIEwNttV79IrjCxe8aa1m07JeOEI/f0Z8MU5PLkSe0TT8peGQRqnd9u2w29FdvTqRdK24ilDOdgQrolmiS0/NXcTlbEd/UwViMrfCappnoucikzPXJZqtJGxFJmdiqL1xXZE3IZExmBodBJfHhyIx3WfhYqy/0y0qjOJwAB886gZaqhGdsbxwtdrfG0lwKOLziqHrbMG4tgeqtDxQHA5GutsQkejZw3c1BIYpFossrK6yo9VsQl99GWIyt67aT83JuLYXinUcgyo9H91VdxCXV7zuKqlElFolqampEAqFTOWmBw8esEylExISMD4+jo6ODhiNRlalOZvNhra2Nmi1WmYaj8dDfHw8Tp48CS6Xi2vXrgGLqUkZGRkeHxzni8nFixexc+dOJmpouYestrYWGo0GBw4cwE9/+lOYTCYcPHgQDocDVVVVMBgMwGI0VnLywpeE2dlZXLt2DWlpaW5VplxLaR8/fhx3797FyMgI4uPjERISgv7+fjQ0NCAiIsJN8FiO8vJyvPXWW2hoaMCmTZtw7tw5REZGMuIej8djDJtHR0c9Gn/DpZJheXk5Xn/9dab8+9Lz6Jy2f/9+nDp1CsePH8fExATCw8OZNhcVFblFLxgMBkbI27t3L9555x1GrBkYGGCirpwpjFVVVSyB8sGDBxgYGMBLL73E7Cc8PByHDx9mUnOcqUHLhZTTNI3KykqMjY0hIiIC3/nOd2AymVim4ktpaGhgBv4KhQLFxcU4ffo0XnjhBY9imMPhYIzUvaWFFRUVwWw2M9F0cXFxCA8Px4MHD5gIjcOHDzPbv379Onbs2AG9Xo/a2lomdc0VjUbDeF2ZTCYcP34cNTU1aGxsxMGDB1mpU65RTdHR0aivr3cbMLtWwTx8+DCuXLni5r3lGt24a9cuxhTeKe7cu3fPY+UuLEb/xMbG4vbt29Dr9XA4HOju7sb09DSmpqZgMpkwPz8PpVKJ0dFRj+fRlfHxcdy5cwfp6ek4duwYrl27BrVazbp+S5d3RuwdOXIEFy9eZIRVT+bPUVFRTAXO6upqzMzMMEIZXO47sViMEydOoKKiAp2dndi7d6/H57m5uRkGg8HN+8sTarWaOZb6+nrU1dUxKVeezLk90dTUBK1Wyzx3XC4XdrsdBw8eRHNzM65evcryDjKbzejr62MECD6fz/QlNE3jgw8+YJnbb9q0CW1tbUxFzOHhYZaA+tRTT+HatWs4cuQIbt68yZjZeyIkJATPP/883nvvPfzlX/4lLl26BJPJc6WvnTt34vLlyzh69Kjbs+F83kdHR5Geno5Lly5henoaeXl5HvftfFaw2Bfl5uYiNzcXY2NjuHTpEuM51tjYiK6uLhQWFrLEI9fI1MzMTKSkpODKlStQq9VMhc/p6WlUVFTAZrOBw+EgLy8PhYWFuHDhAh4+fAibzQatVou6ujocOHDALeXRVQSCS2XH/fv3IzAwEA0NDR6rN+r1etTU1MBut4OiKKSlpeFTn/oUzGYzK4XTz88PmZmZLAGQw+HAYrHg4sWL+NjHPsa6Ts7fwuHhYZSXl7P6aMLGQTsc6KkpWXiRXeWXeG9IgkOX9QpZD1wez02cmp+eXBxYb2cZ9D4OQqMTMD7QtWJVwnFNt0+RCE44XC6iMwpgMc6jr+E+/IKlkMct9Hk0TWOguQp+QVKoczwXKvAFpzDl+hytV5By3bYyJZsxiNb3dyEgLAKhSvWqU9doh90n0c04Y8D4QDdmx0cwbxjHnGEckmDP71tOeHwhbBbv1R31A12wmoyMICEQ+a267DrtcGCgpQrqnO0Ii02CzWJGbJZ7tLcrNosZprkZmGanYRjRwuFSxZKmabTfu4ryUz/Hye/8at0DTldE/kGIXEGYmjOMg8vje41Ci0rNxUBz5YrH6EQcGMKc3xn9CAaaKoFFIUgiDcP02BBGutsQl7tjQ/x9lkLTNAzDGkyP6R6JUBEqRGcUeDz+sf5OhKriQXE4kMelYKS7FREJaYjJ3AKH3Y6hh42wWUyQRSf4VGHNyaRuAEE+CKkCsR+sZuOq/eycLET0tSEqNQdCSQAG2xp8ili022zgcLke9+kvDcfM+IjXiKDpsSH4S8NXfI65PD5sVsuq+x5FYjqsJiN668sQEhkDu826rv7LiVQZi76G+6sSpeYm9RjubkV8wa51/YY67LZ13e8URUGdU7TwgWmNhR6cEFFqDWRkZDCmvna73e2FuaCgAKdOncKNGzdYZqo8Hg+pqalIT09npr/33ns4ePAg9u/fj56eHkb80Wg0uHr1KtMZZGdnIyIiAjk5Oairq4PBYGBVxHMiEAhgNpuZF3+dTofy8nLk5OQgNzcXs7OzkEgkKCoqwq1bt7B3715WilJXVxcuX76MV199FT/4wQ98jtopLi7Gw4cPkZGRgR//+McQCoUrpt8sRavVgsPhIDIyEo2NjQgLC8OxY8cwODiIs2fPIjY2FllZWZDL5RgeHkZVVRXLI2V6ehr379+HzWZjfJCcgsDvf/97vPjiix49Ypw4I2ickS9OKIpindf6+nq31C9ntcKnnnrKbXAYGxuLBw8eMILHzZs3IZVKWd4lzogdiUSCkydP4syZMzhw4ABCQkJYUVhOZmZmUFpaCofDgcLCQhQWFoKmaXC5XDz99NMoKytDZWUlDhw44OZn40whcyKVSvH000/jnXfewcmTJ8Hj8Zj70xnNdeTIETc/oKVimVAoxDPPPIPBwUHI5XJ873vfwwsvvODRmNuZ4qlSqVBXV+cmSjmN0U+ePMmkRcXExCAvLw+ZmZm4evUq5HI5IzLNzc2xUtnS09PR3NzMRMvQNA2dTsd4OgkEAiiVSnR3dzOGyZ5+eI8ePcqIOz09PeByuW6pRa5QFIXi4mK89tprEAqFyM3NhVKpREpKCoRCIcxmM4KDg3HlyhX4+flh9+7dzPPl3L/dbmdSvp5//nlQFIWmpiakp6dDpVLhypUriI2NXTaVUSwWIz4+njkHS82fASA3NxcffPABamtrkZaWxvi/eWPLli0YHx/H6dOnsW/fPlaKXHV1NWiaxo4d7K+oPB6PEYhdGRgYQG1tLTZv3ozs7GyUlpYiISEBDocDly5dAk3TyM3N9Rgh41wmPj6elXYWEBCAmZkZpqJgZGQkTp06haNHj0IikeDy5ctMpb+l7fvwww9x8OBBVmRZUlISzp8/z4hSS/sbPp8PoVCI6upqhIaGsiLqnFGAruJlZWUl1Go1Lly4gIMHDzJRS1hMKXOmk3G5XHC5XFitVuh0OuTl5cHhcKCkpASzs7MoKCjAli1bMDs7C41Gg3379uHMmTNexRNP/XdYWBiOHDkCu92On/3sZ/jiF78InU7nloLrjDp0RrkJBAI8++yzePjwIV588UX8z//8D4KCgrBr1y5Wv6fRaBAeHs5E7x46dAgWiwXXrl1DaGgo6zfHbDa79VHHjx/HO++8w0S2UhQFs9mMqqoqJkUxLCwMe/fuBY/HQ1dXFxQKBZKSkmCz2ZCXl8f8Ns7NzaGpqYkRmyiKwtzcHE6cOIG3337b4znr7u5GR0cHK7KWsHHQNI3u2ruIzdq2oWJOaHQCBpoqH4so5cQpThlnpvDff3ccB77wHegHuj2mBW0k/iGyFUWpOcM4/IK8py4vh0DsB3VOEWYn9eitu4eBlmqYjXOITs9fdwXBEEUMJof6FyN3Nk6QcuJw2DHW3wmKw0VX1W3kPftJzE9PwmYxb2i0i2l2CrqOFogCghCbvQ1c/oLBs66jGeOabiZ6whM8gdCryKTraAZf7MfyrFltepbNakFPbSnU2UWYGdMhOCIaNot52YqBznb5C4Tw95C2aDWbYLdaYbMsRGNIo+J8igpjjmGF50HkHwRFsmdhiqZp6DqbkZDvPa2Xw+VCIPaHcWZq1d5oTn81AJgc6sfkYB9u/up7OPQ3/4yhh43gcHkQ+QdB6L8QQbaW+5SmaUyNaDE1ulCxmKKoZUUoV2xWC+YmxxC2KLg5fbRcj90ZwTTW3wn9QBf8peGQRSd43aaT6dEhn72pIhLSGVP51aDrbAYAxOfvxHDXA8iiE2A1GT0WCnBbt6MRiiTP5tnSKDUGmio9ilI0TWOsvwvxPojRsugE6Pu7mDTD1cAXiRGXuwO9dfdw//QvIBBLII9LWbdoy+H67js3oe3F/PSET8f6JODyBVAkZUDbWsukzq4FIkqtkfj4eIyPj+OZZ57BW2+9xUx3djRjY2MYGxtjfalfysWLF1FcXIy2tjbk5uaCx+MxaRgqlYqpWuVwONDQ0MD4WRw9ehSXLl3yWBWooKAAVVVV2LJlC65evQqpVMqqRlVdXY0tW7ZALBbDZrNhfn6eFc3lTP17++23MTAwAJPJxJo/ODjocaA4NTWF1tZWvPTSS+ByuW5fw10JCwtzE1rsdjvKy8tZkQrOQbpSqYRSqURvby/Onj2LpKQk3L17F1KpFIODg2hsbARFUQgMDMSePXuYAbDzC3pgYCBOnDjBRL14axuHw8HY2Bh+9atfQalUIjc3l7l2u3fvxu3bt3Hw4EFoNBo3USooKAgKhQK/+tWv8Jd/+Zdu2z506BDeeecdcLlcFBcXs67d8PAw628ej4cXX3wRFy5cQHZ2Nvr6+pjImPb2dnR2dsLf3x8HDhxgRfAUFRVBp9Mx5uqe/Gy84e/vj+PHjzPRYlhM1xsdHV1VpMD8/DzKysrws5/9DNu3b0dLSws4HA7U6kcGkt3d3azKZYmJiejo6GBVxLt8+TIjOCxNb+Pz+Th69CgGBgbw3nvvobCw0E30iI+PZ8y8ATCRja7k5ubi3XffRVxcHCiKYkXFOPHz80NycjLKysowNjbmMT3LYrEwA3Kr1YrTp0/j+9//Pm7evImoqCiWMNHQ0IDi4mJIpVLMzMzg4sWLEIvFiI2NRU9PDyYnJ6HVarF//37Wc6fVapmU0IMHD+LUqVNMhJCnc4pFYe7s2bNQKpWM+bPNZkNLSwt0uoUvda+//jr+7//9v6xKZk48XfPQ0FCcPHkS169fZ1LF7t27h8DAQKZ9rmRlZaGxsZFJd56ensbNmzehUqkYAf7hw4fYunUrzp07h2PHjuHIkSOgaZqJoBKJRNixYwdomsbo6Chu376Np59+miVCAkBgYCCmp6eZiDBnW8+fPw8sikxL75PCwkL89Kc/xaFDhzymMCuVSmi1WoSGhkIkErHOyejoKIxGI06ePInm5mbWeomJiejq6mLdf6GhoUhLS4NUKsWDBw+Yc4LFjwGXLl0CFs2/d+7cifPnz8Pf3x9Xr16FzWZDcXExAgMffTGurq5m7v3Dhw/j/PnzrA8BVqvVqwhP0zTKy8uZogClpaWor69HcHAwU3UVi/2Cq5m+c922tjZUVFSgo6ODMTF3paqqivW7g8Xn+OjRoxgaGsJ7772HvLw8xMTEeI0E3bVrF+RyOb797W/j8uXLEAgEyM/Pd0tRdP4+njhxAlevXsXRo0fx3nvvYe/evQgKCoJEImEdExbTdDUaDaqqqljehjRNo6mpCd///vdRWlrqsV2E9dPXUI6olOwN92t5UhFtDsdCyttn3rwAXUczAmXyFdOCNorlohZGe9t9jhrxhsU4B4rDQVvJJYTHJmO46wFrvjgwBEHhylWligTI5OhvqoRUGfsoPWqdgpTDYcdoTzvM87OgKAry+FQI/fxBURSiMwpgt1kx9LAJdqsZUmXsqtNiXDHPz2LoYSNEkkDEZm9zO/+KpAxYjHPoqbuHUFUcguXuwg1PIMD81Ljb9P7GCoRERnts30rG605Ms1PQPqhDwmLExPz0BIIiVODyeBh62Ljm6MH+pgrE5e6A9sGCV9u4pgc9taVQpeeBL9yYZ1ccsChM1d1jpQYOttUjykPa3lIUSRnoqy9bXyQfhwu+yA9bXngFkuBQyGISYbdaYJqdhmluGlMjWq+pl67pqRwuF+33rjEp8QsiVJRPItRSBprcI8BCImMwMdjHiLtOwmISERaTiJnxEfQ1lC+Ycidv9hg9QzscwCraIg4IwnDXtA9LLmCzWtDfcB/y+FTmnrMY5yD084fQzx8Tg72wGOeX7T9sFovXlMwVUz03ebZ/WIpQEgCLcdaHJT0z9LAJfsEybP+LL0KqjF3wHXQ4wBMIIY9PXVPfpkjKwHBns8d0Vfa+G8EX+a1L/HHiax/jC35BUhinDdBrun32P1wKEaXWyJ07d8Dn8/Ff//VfbhWcbDYbTCYT/uEf/gFDQ0MsY1knH374ITIzMxEWFoba2lpIJBKkpaXhgw8+cBs8cTgcJhWpra0N3/rWtyCTyVBSUsIM1l0f1G9+85v4h3/4B4+pEq4m5Pv27cOFCxdYA+2xsTF0dHTg8OHD2Lp1K06dOoXnnnuO+ZLd3NzM8oNymj7zeDwcO3YMQUFB2L59Ozo7O/Hee+9h//79bhE2mzdvZhk7Y1Ggc41iSEpKQmdnJ0uocKb81NTUMF/pw8LCcPjwYY8dldP3CYuRCy+++CJOnz6NZ555xs0g+tatWzCbzXjuueeQnZ0NpVKJy5cvA4sCx6ZNm2CxWNwG/0ajkTEGBoAvfvGLkMlkHge43/72t/Hmm2+6iYmDg4NITWWr9RRF4ZlnnsHNmzdRW1sLq9WKubk5jxW0sFixLTQ0FFKpFJcvX0ZMTIxHP5vMzEyvnbpQKMQLL7yAN954A7/73e/w29/+dtkKdEu309DQAI1Gg+PHj+P69etIT09Heno6GhoacPbsWeTk5CA6Ohqtra2sY0hNTcW5c+eYa/3w4UMolUo30cEVs9kMnU4HiUQClUqFf/mXf0FQUBDy8/OZyJDk5GS0t7cjMTERU1NTHs2vnV5Ve/fuRW9vr1vU4/T0NHp7e/GpT30Kv/rVr1gm+3ARH1JTU2GxWPDuu+/ihRdegEAgwP79+3H58mVW1N3k5CTTjoCAADzzzDOYnZ3F6dOn8ZnPfAalpaVuwpen8753717cuHGDeRbb29s9Vsk7dOgQRCIRzp07hytXroDH4yEtLY0ROf/1X/8VxcXFeP/991meUcv9UDm9m+7evYtDhw7hJz/5CYqKipgqca73hbN/s9lsuH79Ovh8PuPHhcXnxyn2uIrVFEUhJycHOTk5MBqNKCkpwaFDh/C73/2OlW7lSmBgIPMcOuFwONiyZQtyc3Px85//nJU6jUVB+Etf+hKSk5PR09PjluqVm5uLc+fOQSAQ4KmnnsLs7CzKyspgs9kQFhaGo0eP4p133sHw8DBTdTQiIgJKpRIPHjxARkYGrl+/DrVazQj+sbGxuHjxIsvzyrVy4djYGEpLS3HixAl84xvfwDe+8Q2P6aKu6eFBQUHIyspCSUkJU6XT6THmitVqxe3bt2E0GrFt2zYUFRXh8uXLjMCt0WiYSDhPfZjD4cCZM2ewd+9eSKVSiEQiVj+LxVRaVxHIGf3nFNAjIyNx/PhxVFdX4x//8R8Zj6+lhIWF4dvf/jaioqK8VoAEgKtXr7r5rD3//PM4deoUnn32WY/nbmRkBB988AH0ej1LHMRipNrHP/5xvPPOOzhy5Miy/RBh9WhaahAWm/zYSqyHRMZgQtvLqqS10fTWlUGdXQSeQAgOlwsOj+85LShC5VYdbj3IYhKh7+9EWGyS2zzT7DSEfgFrEsMcDjt0D5tgNRsRooiBKj0fT3/p+7AY56BKz2dF/JtmDBjXdsNqYhe5oDhcBISGI0AW4TX6zWG3o6v6DuJ8FqQo0A4HEzVEOxwY7W2HaW5moXCMepPX1C4uj89Us5rQ9qKv4T4EYj9EJKZ7HKybZt2rkVmMcxhsb4BALEFsFluMctjtoFy2IxBLEJ9XDH1/J3rryhC9uYB1HhaMzh8JG87qbsqUbIgDvEc9r8S0fhgT2l6WL5vD/igNMTI5E901dyEOCFpVis7Qw0YoEtjnKlQVhxBlDLQPasETCKFI2rzs/ebrgFccEARF0mb01t2DOmc75qcmweFyfeojKIpCgCxiTX48WDxOnkCIsNgk+EvDYDHOMelhkhDZisb3riz4s9WBdtgRk7l1zcL0uLYHIYpot8ibYHkUeuvL3EQpJwGhcgSEymExzkPTvOCJqUjKYEU6jvS0Mem5vhIWk4ix/k6ErZA6PDUyiInBXqhztnuNGlKl5aGn7p7XCJ+Jwb4VK7l5EufM87MLxbJWKDiwXhwOO3rryhCuTkZA6MLHCKGfP2O4bzWbMNzZArvNCg6XB3lcis8CPl8ohs1i9jqfpmn01ZdDFp3ARPmtl4XUY9/v8ZUIVcVB21rnU0qzJ4gotUpMJhNOnTrFRLtcv37dLT3l2rVrTNrUuXPn3ESpkpISxMXFMZFQrh334cOHcfnyZY+pb6Ojo+jv78c//uM/4uLFi25+OFgcqDz33HMIDQ1dNloJiy/fERERGBwchFKphMlkYhkwczgcnDx5komeEQqFTIoYFquLOc3CnT48crkcIyMjSEtLQ0pKCj788EMIhULs2vXoB3Np5EtTUxMSExNZkSHOCkmuopSzSpe/vz/Onz+Pubk5xMbGeu34Z2ZmWJEFPB4PL730Es6cOYOsrCyEhobi1q1bmJ2dxZ49e+Dv7w+dTgc/Pz8oFApGoOjs7MSlS5cwOTmJoqIi/Od//ic0Gg2waOKbmZkJqVTKRCaNj4+7lYufnJzEL3/5S4SFhbn5SzlNjT3h5+eHr33ta7hz545HMQqLfmFO0dJpQO6K08+mq6sLf/M3f+PVVBsuXisBAQHo7e1Fb28vRCIRCgoKvA7OrFYrLly4gJSUFI9tzMrKQlZWFmpra3Hp0iVUVlbiyJEjrHZGRERgeHiYiSJZmjbT1NQEDofDfIFyVsbS6XS4e/cuY7ruTHmVyWRMJTONRoM9e/Z4bHtISAg4HA70ej0zzW63o6ysDDMzM/D398e+ffvw3//939i3bx/u3LmD2dlZ5OXlQalUQqVS4cMPP0R8fDzOnDmDkydPMn0Bj8eDVCplGeh7orm5GTExMbh8+TICAwMZMTQkJAT5+fmw2+1uKaEymQzBwcGs6pOu57O3txcPHjwAj8fDm2++CQ6H4zZwd0bS+Pv748SJE6isrERraysOHjwIi8XillJlsVhYFfSUSiX+8z//E9HR0YiJiUFfXx9qamqY5Z1fEP/2b/8WP/zhD7Fv3z43gcBpLA8A27Ztc4v2wWIqolMMmZ6e9loVMTAwEP39/axp4+PjqKioQHd3N0pKSlgiK03TOH36NK5evYrdu3dDIBC4pXphMeqnsrISdrsd/v7+rGhMJ3l5ecjNzUVFRQXu37/PROVdvHgRmZmZTF/vxFN6n5OwsDDQNI33338fSUlJuHXrFhwOB7Kysty240pMTAwMBgPjOebqezczM4M7d+6Aw+Fg9+7drL7WtbKdSqVCVFQUbty4wYpQo2kadrsdp0+fxrPPPsv097GxsZicnERLSwvS09NhNBoxMTHBuj5ZWVloaGhwS9GNj49HUVER4uPjPfqQDQ4OYvv27VAoFLh165bHZ7i/vx+hoaFMe1yrUL3wwgtMSrLr9WptbUVKSgpiY2OZc+UaUWaz2aBSqXDy5ElcunQJarWa5RtJWDu6zgcIjojymCq0UQSGKViVtDaawbb/n73/jovrPNDF8WdmmAJDGWDovYneixCooop6teS7KZvsbhInvlnHm03WjrObZBM79a7jNHsTZ5M4N6uCRBEIkISEANF773XoAwwwvZ3fH8x5PYeZAWR7d32/Pz+fjz6SYMqZU9457/M+pW1jJdxkC/OLTmGoPDbbgiY66gGTXeRZJrjWIBS5QzoxZPV3c8PdCErcY/V3tqCWr2FuuMcUep5AJk+zg13wCouBQa/FzEAHUR+wWCzYO7taDXQ3Gg2QLy9ibqgbRoOe8Tu2HRer8xIolhcRsefIjlUEAicXqOWrWJPOQS1fMxFRkfB6RkLTzT8Ebv4h0CjlmOrasJp7h8cwSI8lyRiZrOvUKkz3t4HLt0dw4h6rVrp16RycrQTKi4Mi4OoXjMnORjh5eBPFAIfLg0G3MeHUazUYba1BSHL2liHd22FJMgq1fA3BSVsf95DkbIy2VCE849COXnddOg82x46cryz2+7YiNnsjg0y1LsNYSzXEQeEfSoVGw97JBd4RcRhrrYHBoN/StrcZ4sBwjLZUP9N2GA0GjLU9hVdoNBzdPDA72AVxYDi4AnuMtdaA7+D0zMHRyrUVhKUdgJPYCyPNTxCWuv+ZbZgGvQ5rCzM2lV+Orh6QLy9smSHFs3fYyJ0yGjA72AWdWgl3/zA4ib2gUaw/M3Hj6OYJ6eTwlqSUpLcFPHvhtoo1FpsNj6BwLI4PWiXX1xZntz2fyRhvRkpJels/UCPks+RlqdZXMd3biuDkLJu2YC5fQGyVBr0eC6N90KqVGwuvwZHb2kyFbh5WM7P0Wg3GWmsQlJj5oe3U5liZmdixumyn8I9J2WivTNrzzFlVn5BSz4iWlhZ885vfJCv9ycnJaGtrIyTD/Pw8nJycyITO29ub0eDV0NAAsVhs0ZBHg8/nk/p48/ptrVaLx48fE8LI3t6eEcpM49GjR/j617+OwcFBi8nbysqKRQ5NZmYm7ty5g/Pnz+POnTuMoGOYiCuamHruuec2gi9NeTApKSkWq8w+Pj4YHh5GQEAA2Gw2Tpw4AalUitu3byMlJcXCYrS+vo7JyUmLrBfzQUIqleLp06cQiUQ4c+YM2Gw2SktLcfXqVeTl5SEnJ8ci1Lu/v5+x/2iw2WxcvHgRXC4Xr7/+Or785S8z7CCb7YwwqWHCw8NRWFgId3d3uLq6WthBYBakLRQKcfPmTVy7do2cJ1VVVaR9sLGxkUziYGNQpK0le/bsQWlpKVxdXS0UCTSmp6cZEz4nJyerRJe3tzeys7NhZ2dnoe4z39dcLhe7d+9GamoqnJ2doVKp0NTUBLl8Q+rq6OiI9PR0UBSFgYEB9PT04PTp0zZDngFgZmYG09PT0Ov1+NznPkea12BSiWRkZKCoqAgGgwGnT59GX18fxsbGyH6RSqU4fPgwQ1EhlUoxNTWFEydOoKysjKjmYCJwy8rK0NTUhHfeeQfvvfceBAIBHBwcIBQKGX8fPHgQv/vd7wAAJSUl4HA42LNnD+O8cHR0hFKpxOHDhwETIdvS0oKQkBCoVCrcvn3bamZZdnY28vPzrWbTKJVK3Lt3DxkZGQgMDERZWRkSEhKIDW55eRkVFRV44YUX8L3vfQ+PHz9GVFQUvL29SYD+7du34eLiAhcXF2g0GlRVVUGj0SA4OJhcU+Xl5YiOjsbDhw8Zk/+WlhbG9UtnsN2+fRvh4eFwcHDA1NQUsaZttk9VVlbi0qVL6O7uhkqlshgL6OP+ve99D0KhcFu1D4vFglgsxuLiIskD0mq1yM/Px+HDh+Hq6oqHDx8iICAAt27dwsmTJxnjn1AoJOcoTJbiR48e4fLly2CxWNDpdAzFTnl5OU6cOAE7Ozs8ffoUhw4dsrB6LS8vo6qqCk5OTkRBaQssFgt79uwBRVGoqanBiRMn0NPTY5VI2r9/P548eWK1OKCoqAjp6enw9PTEw4cPcerUKWIr6+joAJ/PJzbAzUhMTMSTJ08wPj4OmDIFGxsb4eTkhJMnT1ookiQSicVnYrFYOHr0KGZnZ3Hz5k34+Pigv78fra2tVu3PycnJqKiogEgkQnNzs8VY7u3tjba2NsbPVlZWUFFRgS984QsoKiqyaKqE6RqjCUqpVIrOzk6GRZRuHTVvNhUIBITs43A4uHLlCm7evInnn3+evP7g4CBRIx4/fhzl5eUMhSSxYrDZOHPmDLq6unD37t2PVOb+/68QODjCxfPDT2C3BYupsPmosDQ1Cr6jM4NUY7FYcPb0hWxeYmHbcvUNgqvvhkV1aXIY0slhgMWCV2jUh1KKbb5n0KqUsOMJdjy5WpaMYU06C77QGUGJmRbP06oUpgm5A4wGAzSKdfCFTjZfD6aadWext1WiRq/TouvBbdi7uMHZ02fHLYkTnQ1YXZhBzt9885nVHdbAd3BEUGImKIrC/EgvNIo+hl2LoiiMt9fCjsdHYMLuLcOD16RzNidzHDsuQlKyIZuTYLS5CgFx6cSqqlpfxXTf+1a7D4rZoW7YcXlWt2Hz8WRzOPCLSsJUdzMC4iy/p81h0OuxMNbPCCx28w3CyuwEw5Jj7yRCaNp+LE4MYaztKQLi0i3Ixp2ejwa9DgtjA9CqFOiruge9VgOewAE+EfE7tvi6B4RBOjm8o0wl5eoKZgbaEZKcTSbNOo2KvFdwUhaGGx8jPOPQM40hUlNjHIvFQlBCJoYaHyPsGUPTJzsbEZhguznOI3gXxtqe7ijYnM3mkPNDOjmMsQc1hLB3dPN8JiWXyDsQKzMTFiomrUqJyc4G+MVYV/wpZEtw2ERiO3v4Yny6Dq6bMt80SvkzEYH0OCidGII4IOyZlWmObp6QLy/YDE03x7JkDPKVRYumWA6XZzO7jmNnR3LijEYDFscHsTDWDwBw9w+1aqkVB4RhvL2OsU0K2RLmhns+dKC5NVBGw0daYEAjJGUvRpurnrlZ9xNS6hmxe/duxs2zWCxGY2Mj+X9NTQ1jAkpPts+dO4f29nZS5W2OzQcsMTGRTAw5HA5ZNTfP6Dh06BDKysoYEwCNRgM2m03eo6uri6FEaGlpscjVgck+tWfPHvz0pz9FV1cXQ21D/zs2Nha5ubmIiIiAh4eHRRsfDVdXVwsLjVgsxuXLl9HS0oKCggLk5uaCzWZDr9fj3r17jEkFDZ1Ohxs3bkChUMDHx4cQOjBNUMRiMVgsFi5fvozCwkJim6ExODhooSRbXFxEfX097OzscPPmTdjb20Mul1uQUpsJLo1Gg9u3b+PUqVP42c9+Bk9PTxQUFODs2bOMc2FtbY281rlz53Dnzh1cvnwZq6urcHZ2JtufkZGBJ0+eYHR01IKk02q1JMSbPt70ZGxwcBAPHjxg2Cd7enosrH+7d+/GkydPGI/T6XQoKirCtWvXMDw8jI6ODtIQaA6aaKAoigRD29vbM86b9fV11NfX4+TJk3jppZdw4cIFRq28OQYHBzEwMECOYVlZGbEXgQ68HRlBaWkpzp8/j7/5m7+Bg4MDoqKikJubS/YZm81m7Gu9Xo+HDx9akKg06CZDrVaLxMREHD9+HFqtFgqFAgqFAkqlEisrK1AqlVAqlfjiF7+Ir3zlK3j++ect7KYwKUimpqbIvqYJmK6uLly4cAFFRUXo7e21aMxksViIiopCf38/nJ2dCTnd3d1Nig2sWZdgCqA3Go145ZVXcPnyZcBEtnZ0dJB9x+Px4Onpidu3b6OyshL79++3Sv4EBgZCrVajpqaGZACZWwlpODs7Iy0tDc8//zyMRiPeffddxnEwB018ZmVl4datW/Dz82N8FpqcuXr1Krq7u9Ha2spoRLRGxmZlZZFsqcXFRTx69IiQyDCpegICAoi9NjAwkBAV5ko6hUKBe/fuMfLQDhw4gCdPniAnJwcjIyMQi8XkelUqlRafj27IPHXqFF599VU0NTVhaWnJanaWOVgsFpaWlvCXv/wFs7OzGBoaQmJiIrFGwrT4oNUyMyrocf7AgQMQizcmvXTeEYvFQmJiIhITE7G6ugpPT0/8+c9/ZoR3m79OWloa4uLi8OMf/5gxdm6GrWY7mBYYLl26hB/+8Id47bXXUFJSgsrKSpufOycnB6+++uqWZRIwkYUPHjzAlStXwGKxcODAAVRVVeHgwfdXxhcXF8k+gOk78dGjR0TVC5MFfjOpFxwcjImJCRIaz+PxcOHCBdy8eRNXr161WOyxt7eHk5MTsY3SFlRzxMfHY319He+9996Wn+sTbA9Xv61tGR8VvEKjMD/a/4FCbG1BsSKFal1mtR5dHBCG0eYqq1lCoAn3oAiIgyJAGY2YH+2HRtEHFpv9TBNvmCalixOD8Ax+/zyeGehAYELGls8zb+ty9Q22mT21mXz1j0nZmFx8iFalhdE+7P2rr2J9aQ7OYp8dK8b0Oi3iDp/H8vTYR7qaz2KxSNiyfHkRY601KP/Vd3DypdcRGL97R5O0nUzmRN7+cPH0xVRPM7gCB6xJ52A0GBCWvrOJmq3HTHY1wtnD12bouDUC3d7ZFfYurttaWyc66iyUKkJXMZYko4CVnBiPoAi4+4diqrsJfKET2a8bxKP17acoCiuzk1iXzgEA2Bw7eIZEgidwgNGg3yBTolMwN9wNvUYNnoMjvMNitiSIXDx9MdpSvdFWt8W+lU4MQa1Y21I1xmKzEZy80Sa20wZHyixHCibFTHj6QYw0P0FQwu4dqVtWZifh7OGzbfkDz14IjVIOvsPOreUCRxc4e/ggLuc8dColprqbyO9YLDZEPgFbElUib3+Mt9cySKnl6XGsS+cQln7A5rFZnh63eu0GxmdgvL2WoW6aG+pGQPzWhTs0PEMisTA2AHFgONaXFhCSsvPGURquPoGY6mnelpSS9LZA4OiCwHjLMdbVJxCyualtyVA2m8NoNV2SjG5cUwBcvPwY3x0sNhtGowFsNgfL0+NQyJY+NoHmOwWbw4F/bAomuxqJtX0n+ISUekbQwaiHDx+2WNmlW9k2T0o9PDzw5MkTcLlcq7YTa6Db3E6fPo3S0lIcPXqUYUGws7MDh8NhNO1VVFQQJQdMN9MdHR3ELqbT6YiahaIotLe3Y2ZmBmw2G5cuXcKuXbuIVWPzH5lMBj8/P7i4uGB2dhbLy8tWV+q3+jJITU1FQkICysrKoNPp8Mtf/hIXL15ET0+PRdYLl8tFXFwcuFwu7O3tGa/b2dlJKsRZLBbOnz+P4uJiJCUlwd/fHzKZjEE00VlHdOMUi8UiQdr37t0jE12YJqfmygapVIqKigrSSgeT7cTb2xs3btxAbm4uUZ+Z3wgIhULs27cPpaWl0Ov1FhO/AwcOkAY2Gg0NDZifn8eJEycYqiP6s+/atQv29vYoKirCmTNnwGKxMDIyYkG+bbZHUhSFW7du4fLly2Cz2di1axfy8/MRGxvLmEDW19dj9+7dhIi0s7NjnF80nJw2civ6+/vR19eHxMRE1NbWkop7JycnPH78GFqtFhERETZth/Rn0+l0UKlU+Mtf/oLY2FhMTEwgICCAccxFIhFWV1fJvi4oKMD58+e3PN/Gxsbg7+8POzs7jI+PIyQkBHw+3+K8vX//Pvr7+yGVSlFTUwMXFxeL69TX1xdPnjxhEIDLy8sk8Dk4OBg6nY7RmJmYmAhfX1/ExMQgPz8fQqEQBw4cQGFhIcLCwqzab2no9Xrcvn0bOTk5cHFxgVarhbOzM8mCotHU1ITnnnsOHA5ny/wvmM4flUqFlpYWpKamMs5XuVyO6upqGAwGBAcH47XXXkNiYiKampoQGxtrsZ+7uroY5PqpU6dQUlLC+Ey0Egmm0PXq6mqMjY2R0PvBwUELNSM9XlZVVUGlUtkkHdlsNk6fPo3e3l4UFBTg9OnT5FzWaDQoKCjA888/z9huJycnyOVy6HQ6tLe3M0h+kUiElZUVYnd78OABPDw8kJubi7KyMjg5OSEnJwednZ02rWQ0iouLkZmZCZFIhOrqapw7dw4dHR0oLCxEaGgoyZIKCQkhxLTRaMStW7dw/PjxLVsVR0ZG0NHRgaamJohEIgQGBlo8ZmJiAj/5yU/A5/MxNzdHyEpb5OfmY2swGNDY2IilpSWw2WykpaXh8ePHoCgKhw7ZvpF/8803sWvXLhQXFxPVGH2t0YUAarUaZWVleO6558j7ikQiyGQyBklZW1trcX3k5OQgLy8Pp06dwvLyMhwdHS1CzwMCAoiikIaDgwNOnDiB/Px8sNlsi8y2ffv2kUWf1tZWxmccHBxEb28v4uLi8JnPfAbf+MY3bH7+T/DxgcDRBRpF30f2enqddmOlegtixis8FrND3fCJ2NrqyWKzCVlm0OswN9wDvUYNOx4f3uGx26oqHFzcsDg+yNg2NodjcwVdLV/dsOixOfDdlbAtAbYkGYW7GfnAYrHgERK5bYubLcjmJRsNb24ecHTzwHBTJcLSDmxLyqzOT8PFwxciL3+wWGxIelutEoLm2JzztBOoFWsAi4Wcv/0n6LUaLM+Mf+CQXmtgsdnwDInEcMNj1Pzllzj50usk+Hk7bCaXKKMRoy3V8NkV/4FaFsUBYZjsaoSDyM2qUm9hrB/uAWHPbLlhczgISsyEQraE0ZbqDYLJXsg415SrK5BODpHP5OoTaDFZlfS2wC8qGdLJYei1akJmqOVrG0UC2+S0bQRFdzNaDGlQFIWp7iY4unnuKCCayxfAMyxmIzx7B4Hr86P98ApjkuBsDgfhGYcw1loD7/DYLY+Z0WjAyvT4jkgw310JmOhs2NbmRmN1YQZrC9MITsrCZFcjXLwDGMSk0WCAbHZyW6LK0d0La9I5kqXk6OaxbYufLfKWzeHA1TdoY7zxDzVTKO/s+rV3dsXC2ACmupt2TGRtxnYqOINeh7HWGvhGJto8dvbOrhsK2Gd5XxYL4oAwMs7I5iSYMOUQOrp6wCciDnND3WCx2LDj8Uk23keN/2r1N02ELoz1Q+RtO3rCHJ+QUs+IrKwsJCcn4+7duxCJRNi/fz+4XC40Gg3Gx8cZCqKJiQn09vaCoih87nOfw3vvvQe1Ws3IatFoNBb5JDDdSHt7e+P69etISUmxWL2F6Sb90aNHyM3NhU6ng9FotCAQEhMT0dbWhubmZlAURbJmYLJd0C1yFEXZzL2Zn5/H0NAQ/vCHP6CsrAwnTpxATU0NlpeXERsba9OKaA0URcHFxQX19fX45je/ieDgYLKqv/kmRa/X48SJExgdHUVeXh4OHToEd3d3q0TJ6dOnUV5eDp1Oh56eHhw5cgT379+HRqMhmUY0lpeXyeTz5MmTuH//PpmMm9v3BgcHMTIyYnViLBQKce3aNdy7dw+hoaFwdHRkkFlyuRyDg4MYHh7G22+/zSADhUIhPDw8kJGRQVb/FQoFMjIysHv31oxyQEAA7O3tcevWLUYw9WZwOBzo9XrY2dnh9u3bOHPmDIPooi1vtNJOoVBgaWmJqOpgOr8qKiossoiqq6vh7e2NXbt2YXJyEmw2mzFJb2trw9jYGE6ePMmYHG6GTCZDRUUFoqKicOnSJWJfi4iIQH5+PsPuSdtgRSIRnjx5gt27d1tkHpmDoig0NzcTFV5hYSGjAZBGY2MjAgICSNB1bm4uJBIJbt26xbCFcrlc6PXv52TQtij69UtKSnD69Gn4+2+sdhiNRnR0dKC9vR0wXed/+MMfsLq6StRn1raZoijSynfx4kUIBAJMTExYzQF78OAB/P398fnPfx4pKSm4c+cOLly4wLiOlEolYz8lJiaioaEBTU1NEAgEqK2tJRP8I0eOgMvlQi6XY3FxEQEBAXBzc8ONGzdw5swZRqbY2NgYgzRwcHBASEgIsaWOjo7C3d2dYSHdt28fioqK4OrqCpFIhJGREUaANUVRaG1txfLyMl544QX87ne/sxgvaYUlTUDFxMQgNDSUBOnr9Xrk5eXh6tWrFosGWq0WoaGhOHLkCMntopGZmYn79+8jJycH+fn5OHTokNXxMCEhAdPT08jLy7OqcisrK0NSUhJRbWo0GrLfExMTMTo6iqKiInh4eCAzMxMlJSUICgrCjRs3LAoYYFIrzczMwNfXF48fP4aDgwMuXryIlZUVDA4OWpBSQ0NDmJycxGc/+1k8ePAAx48fx9raGsrKymAwGJCZmUlaTwcGBkhmn9FoRENDA5aXl8FisZCRkUFsjMXFxTh+/DhGR0dJXqIt0IHtRqMR9fX1WFlZgVAoRGJiIqqqqiCVShmtkTT27t2Lmpoa7Nu3z0JZao4LFy7gxo0b4HA4VsdlOzs7xnVKY3x8HDMzM3jvvffA5/Ph7u6O5ORkcLlcQiC3t7fDYDCAy+ViYmICbW1tiIiI2LZ44BN8PMG240Kv036ohjeYxqWx1pptlUJCkTsWxvp3XOkNk82LnnjrNGrMDHbBqNeB5yCEV1iM7QmamT1xpr8dftGWZM37Fj2nZwpdViwvWpAyzmJvLEvGbNpUbEGnVkE2O8lQZflHJ280q21DMC3PjCMkeWPx0cXTFywWC1M9LVtO0JSrSxDukKzRKOWQ9LbCPSAUIcnZG5PbuHTI5iUYaa6CT0Q8HFwss7OeBSszE1hdmAZf6Az3wDAc/dK34R0eB+nkMHRqJdgcO3hHxO6oyc6g02KkpRohSVkfqrUyIC4dI42VCE3fzzi/VOsyaFVKeIY8O/FIQyhyR2jqPsyP9mOg9gGMBj00yg1Lvb2zCP6xqTbPaYNeB4NOZwqjjyWNfwAgcHQm5Aed08Zis0njIg17JxHmhntgNDCJEJ1GjfH2WgTEpj1TnpKjqxga+dqObIFq+apVZSaLxUJo6j5MdjVC5O1vM/dqO9se4zXZbLDYbBj0um1VVcszE1Cvy0gQt8+uBMwOdjKuPzaHQ3LXaNgiqobqHsIjeBcC4zM+dLaRq08gxlprIPIOwOL4ILzCdmbR1eu0kC/N4+n13yD24OltVaIfBIoVKeaGexCSsm/L8fyjaFkVefsT1aN8eQGzg10ofes1PPev78Jtm9D3D4N16RycrNitP0q4+gRidrAL8qWFHT3+E1LqA8DJyQnnzp3D0tISCgoKwOPx8MMf/hAXL15kZOUEBgbi+PHjmJ6exsOHD7Fr1y5UV1dDpVIhKCgICQkJmJqaYkwsZmZm0N3dDYPBAJ1Oh+effx4lJSUYHh4m2Ub0RcDn82EwGKDX6/Ho0SOGSoqGQqGAXC7Hz372MxQWFqK9vd0i8wMmu5O1QObJyUl0dXUxLIksFotkG3V3d6OwsBA+Pj5IT0+3eoGur6+jrq6OBMJnZmZCJpPh7t274HA4WFxcJJN5awgNDUVISAgeP34MvV5P2F2DwYC1tTWsrq5CJpNBIBDgzTffxFtvvUVsYtaIi+bmZgaJcuzYMTx8+BAGgwFarRZcLhcNDQ2gKMqCkOHxeIQUY7FYOHXqFFpaWvCZz3wG3/3udzE9PQ2YMoiSkpKwe/duxMXFMVbfFQoFFhcXMTo6ipGREbzyyiu4d+8eydExhzUmWywWIyEhAZGRkbh79y7W19cRHR3NUAClp6ejqakJKysr2Ldvn4Ulzd7eHmKxGBKJBP7+/igvL7cImObxeDAYDIwcntraWri7uxOy6dChQ0TRR0MikeDmzZtYXFzEnTt3kJiYiPDwcLJvjUYjHjx4AA6Hg4sXL1qcM/b29rh8+TKampowMDCAEydOwNvbG7W1tWCz2XBwcLDI6XFzc8PS0hIhkTbbgQIDAzExMYGgoPcH+KGhIRgMBkRHb3wR0tvh7++Py5cv49GjR2Cz2YyQfpgImYGBAcb+ogklc7shTfoqlUoUFhaiqKgIn/rUp/DkyRPyHB8fH0RGRsLe3h6urq7o7OzE2NgYQ+XD4/EYVi+j0Yg7d+4gKysLvr6+mJychIeHBw4ePIi8vDySoQRT3tjmays9PR1cLhf//M//jBdffNGC8K6qqiK2KKFQiKtXr6KoqAjJyckICgrCwsKC1XM1Pj4eBQUFCA4OJvlDm0G31Zn/bmVlBbW1taAoCikpKUhNTQWXy8WhQ4dQWVkJjUaD5ORkBAQEIDY2Fn19fYzmOoFAgNzcXLz99tv4+te/jsLCQjx8+JD8ng5c53K5EIvFyMrKQl1dnQV58cYbb0ChUODy5ctbWtD8/Pxw6tQp3Lhxg3HeP3z4EFFRUYz97eHhwcjICg0NRWhoKBYWFnD37l3cvHkTra2t+PKXv2yVqExMTERhYSE0Gg0OHjxIyC5a2WWOnp4eLC0tke8BeuxwdnYmuVQNDQ1oaGggZJenpydKSkrAZrORnp7OsMzBLAyf3nYej4e7d+9aVT+aXyNsNpuoDdfX1/G73/0OL7/8Mu7duweJRGJx/YrFYiwtLYGiKFRVVVkoS1dXV9Hc3AytVouCggLMzs4SwtPb2xvx8fEWx8z8vEpISMCLL76IsLAw5ObmQiqVorKykpC9IpEIk5OTUCgUyM/PR1BQ0Cdk1P/j2Fht7vrQtdkTHfUIjM/Y0Qp+QFw6JD3N26oHrIHLFxDCRaOUQ9LTAspohMBJBM+QSMb15RkSiYXxAYgDN+yA9KRpw6LXDr1WAzc/2xa9DwJrdputQFEUxjvqLGxSAkcXsNhsKFdXbJI+8uVFOLoyv2OcPXzAYrEJeWTreds1d1EUhZmBDhgNBoSm7rO4/xB5+cPF0w9zQ91YHB+Af2yaxaR0K4UBZTRidqgbWpUcIu9AcgwmOhsQnJwNSW8LUQiZK+U4XC68w+Oskn4axTomu5sQnn5wW8sgZTSCxbKtAGGxWAhOzsJ461OiyqEoCtN9bVta2jhc3rYkr16rwdxwDww6LdYXZ+Hs6btj6445Uclmc2zmjtE5bUajAXNDPdCpleDZC+EVvkHi+sekQtL7PqG1tjiLpakRhKUfsHkNb3U83QNCMd3fvmW4+E6ykALjMzAz0AmdRg13f2Zsx+rCDIQi92cifP1M5K41SxmNxYkhGPU6+Ea+H9XB5Qu2bHijYY2oks1NobeyGIf+5huw420f0G80GrYlbQITdmOyqxEsFpuo9wx6PeTLC5AvzcOgt1yQ5XB5cHL3QuLxy3BwdsV0bxsoauN84Qrs4RG0a8f70lom1OLEELRK+YeyLH9QcLh86NQqHP3St7E6JwGbw7FpC/+wWJ2XfOjvx53AZ1c8huof7uCRn5BSHwru7u64cOEC/vKXv+A73/kOrl27hhMnTlhchD09PTh27BjYbDYJGp6YmMDdu3fx4osv4s0338Tw8Ib8z9fXlwQ6379/H11dXaAoCnFxcRgZGSH2IDabjcTERBw6dAgVFRWkLWt8fBz9/f1kkHVwcEBKSgq++MUv4urVq5icnMTi4iJycnIYSoLk5GQ8fPiQsQo+ODhIMlVo2NnZMdoG4+LiEBcXh5mZGdy9excODg7Q6/WYm5tDa2srKIqCk5MTDh48SJQ6KpWKNPkdO3YMg4ODyM/Px5kzZ2xOBlksFg4dOoRbt27h1VdfBZvNBofDgbOzM1xcXODt7Y3IyEjMzMxg165d0Gq1qKqqwoEDByxUVeZKCxpHjhzB48ePMTg4CIqiEBISYjUoPSAgABKJBGFhZoGP9vb467/+a7i4uBBbIY3l5WWLMHqhUAihUIi5uTmcOHECCQkJOHz4MLG87du3j1h45HI5Qz0xNDSE3t5e+Pn5EQXD2toa+vv7sby8zHif3NxcFBYWgqIoi4ZImNQheXl5iIqKQnR0tFV7z8GDB1FZWYnDhw+joaEBTk5ODAsbh8OBnZ0dUbTIZDIyWfTw8MClS5fQ3t6O/Px8eHh4wGg0orCwEEeOHLGa3WSO9PR0rK2tIS8vD1lZWVhYWIBCobBKqsbExKCtrQ379u2DXC6HUqlkECfJyckoKCggpJRUKsXQ0JDNqnkWi4XDhw9jcXEReXl55Lj29/djdnbWIig+NTUVra2tjMB5iqJQUVEBnU6Hy5cvQyQSYW1tjTyXoijMz8+joaEBarUalZWVqK2txcOHDxljCG19gqn9886dO1ZVNW5ubjh27Bhu3rxJ7FHT09MM9dvg4CA6Oztx8+ZNuLm5YXl5mUFK0S1r5tcHbXmilS7T09MMUkKj0WB2dhazs7Pg8XhwcnJCfn4+Gavs7e3JOe/o6IiDBw/iN7/5DdRqNYxGI0QiEcmZM98OPp9PxqPW1la0tbXB09OTbHNXVxfJkBIKhfjsZz8LPz8/aDQanDx50uZYMjs7a9H2trq6Suyt22UiwXTNP//887h79y7m5ubw+PFjBAcHWygXMzIycO/ePQuSxcnJCRwOBzKZDAMDA+jv74dKpbKazfbpT3+aqBNpbP6OaW9vh1qttpoZaP6czMxMaLVa/OEPf8AXv/hFlJWV2cyUgikjkc4gg4mw5fF4uH37NoNQlkqlVu3ctP3Nz88Pv/71r3Hs2DH09fWhu7ubPMbd3R1JSUnYs2cPHj9+DD6fD51Oh6amJqytbTRuOTs7Y+/evWRRgMPhkAWD2dlZPH78GAaDARRF4a//+q/x7rvvwtXV1eK8oiEWixmZezKZDCUlJXj99deJUuv/ZfzqV7/CT37yE8zNzSExMRG/+MUvGI2v5rhz5w5ef/11DA8PQ6fTISIiAv/wD/+AT3/60+QxFEXhX/7lX/Db3/4WMpkM2dnZ+M1vfoOIiK0rwv8nYcfjw7BF0+xOMDfcC1efwB1nt9hxebDjC6BaX922ZWkr8B0cyWRTubqMSZO1w8ndC27+IbB3EmFhtN+kkkqGan0V8yM7t+jZgnx5EUIr4bswTVJF3gFYnpnY0er9ZGcDAuMzrE5K/aKSMNxUabNhbXFikKikzOEk9gKLzcZEZ4NVsmM7W9yadA6L44PwjUzc8vhstBHGQ6/TYrKrAQ7OrgxrlmptxSK8WadWYWagY2OxKSKOEQxP349z7OwAiiJKHnOl3Aah0w2DTkesnACwvjQP6eTwRuj2DlQZqvVV2DvbtoDDdG14BEdidqgLPhHxpmO1NXnk7h+CpalRCwunTqPG/EgPY7vteBv3954hkTuyXeo0KrDYHIZt0NnTd8PCacOqx2Zz4Bu5ke9oTuLSj9dpVFiaGt24n9+mEU4pW4LDFvX1flFJGG2uAt/Byeq1NTfcs22APAD4RiZgcXwQ86N97+cLGY2QTgw9MwFix+XBoNfZbI+bG+6FHZdrYSmEieBdW5x5prbCxYkh6LVqHH3h2/CLSjI1F0ZtGbgum5ncliRmc+ww0V6HpekxQriyORw4unnBKzzWJgm6MNaPwPgMLE+PM/a9VqXA/GgfDDoteS1xYLjNYglxYDikk8PwDo/dKPLqaoST2HtHls2PGosTQ1CvryIs4yCmupsQGJ+BhbH+HV1DHwQURX3kZSC2sN34QuMTUupDgM4bio+Px8OHDzE0NGSVyKBJJHMEBQVBIpHgypUr0Ol0VoPD1Wo14uLiUFBQgPj4eGKNgJk9qK2tDadOncKf//xnlJWVISgoiBBg5jAajfD19UViYiI4HA6Ki4sJWcRiscDhcEioLkyZMaurqxaTt81tgzR8fX1x9uxZ1NbW4ujRo8TeYm1C8PjxYxw5coQ0KiUlJSE4OBj5+flIT0+3akmbnJxEQ0MDjh8/DkdHR6vtccXFxThx4gTq6upw8uRJMtHXaDRIT0+Hj4+P1RWR5eVltLe3Q6PR4Ktf/Sp+/etfW23Xg4mUqqurI6TU8PAwFhYW8JWvfAVNTU3o6+sjyhtYIZVoPHnyBB4eHoiJiQGHw8H8/DyOHz8Oo9GI6upqyGQypKWlQa1Ww8vLCx0dHRgbG0NERARR6JSXlwMmJcTm49He3o7XX38dISEhmJubQ09PD1EF0MoRmFQM8fHxKC0txdTUFMRiMTw9PeHh4QE+nw9HR0coFAo0NTWBz+czFCo0cnJy8PDhQ5w8eRI1NTUWRE9kZCTm5+dJdoutkHxrcHZ2xpUrV1BWVoZr165hYcG6BJTeTpgyoqypHAICAjA5OQkvLy+SE7YdPDw8cOXKFVRXVyM3Nxd/+ctfrNqGfH19SVYTTBbG8fFxkglFW6UcHBxQWVlJrjtvb29CNqjVanznO9/Bw4cPQVEUjhw5Aj6fT5RSi4uLpIHTVj6Qi4sLTp48ievXr+Pq1auELNTpdMQqdvnyZZSVleHQoUN4/PgxWCwWGVcaGhoYJJY5wsLC8N577+GVV14hilAWiwUejwcfHx/ExMSAzWbjt7/9Lfz8/EhDo0ajIYpNuVwOhUKBb33rW7hw4QKOHTtmkZMFk/plbm6O7JuUlBSkpKSgsrISzz//PCFKzQmkqqoqnD59GlwuF3l5eTh+/Dix6ZrDmk343r17+N//+39jcXERRUVFW+Z9mb9Oamoq/P39ce3aNXz2s58Fh8NBcHAwoyjCfMxZXV3FkydPIBAIcOzYMXA4HKSnp6Ours4q2drZ2UmUs3fu3EFqaipD7QeTBdXOzs7mcaNhMBiIIjQqKgrz8/NQq9XIz88n3y+boVAoLMYvT09P5OTk4ObNm7hy5QrYbDba29sZzaCjo6Po7Owk9je6UXBxcZEsZNCQSqWorq6GVqvFyZMn8d5776Gmpgbp6ekW5FB1dTX27t2LtbU1YhX18fEhBQJdXV24evUqFAqF1dzHzYsqNGQyGU6cOIHs7Gw8ffoUbm5u21qpP664ceMGXn75Zbz99tvYvXs33nzzTRw/fhwDAwPEumkONzc3fOtb30JUVBR4PB6Ki4vxuc99Dp6enoQU/vGPf4y33noLf/zjHxESEoJvf/vbOH78OHp7e7e0Uf9Pg+fgCLV87Zkr0GHKQoIphPZZ4BuZiLGW6h0HJG8HBxc3orxak85hoqPe9O9ZaJUK6HUaCBxdnsmiZwtLktEtlRdufsEYbamGyNt/S+XY4sQQnD18tiSIfHclYmagg6HigMlGZq3Fi4ajmwfAYmG83TKQ29bnN+j1mOxqgFDk/kyBwXZcHkKSsyFfXsRocxU8giPhJPaCbE5C6uzXpfNYkozAjidAQFy6VSWTdGIIHkEbBK5vVBKm+9osSAw7Hp+oFnQaFWYGOlF7/TfwDI3G/s+8tHP7pUzKaIe0BSexF5SrSxhrewpnD59tlT4CRxcsjA2Q7Zsb7oVRr4MdXwCfiHgGoSSdGII4MAwOLm5Qri5jeXocbn7WoyYAYLqv3cKC5eoTiImO+h1df+YkrmxeAuXqCt798hn8rx/+aUfEy+rCDDyCtybYQ1L2YqjxMSKsNPJRRuOOs5A8gndhZWYC0/3t8ItKwuQWyr/tQGcPbc7QmhnogL2TyCYh5OYXjPH2uh2TUtP97RA4OsMnIh6S3laAxUJY2n7MDnZhXTpvNcMLAOQriwiwcdwpisLccDfU62sITNiNwITd8AyJ2tFYbTQaoFhZgmdIFJanxxm/49kLGcHqBr0O0slhcu4CgKtPEBzdN7Ky+A6O0KoUxOIZGJe+bdPoZrDYHAvL6LOAMhox0VkPF08/i3HBMyQKytUVDDc+RnBS1jOp6T5O2Cn59Qkp9QFRVVUFvV6P5557Do8fP8bevXshkUhQV1dnk9CgQTehpaen48iRI0hJSUFpaSnDKtba2koma3FxceQGnAabzUZ4eDj6+/vx7rvvws7OzqpKC6bJrkAgwL59+1BSUoIzZ87g7NmzkMlkKCoqgpubG2M1vKlpw0Ns/jMaYrGY/N4cY2NjaGtrQ2JiIkpLS8HhcDAxMWGR46PX62E0GsHj8eDr64uOjg4kJSVBIBDgypUrqK+vx8jICMOCUlZWBpFIRPJ7vLy8GBNWAHj69Cmio6Ph6uoKX19f0tJ0/PhxUBSFlpYWNDc3Y3h4GH5+figrKyPPdXV1RVZWFqamplBdXQ2NRoO2tjasra0hNjaWoYoSCAQkJ2ZiYgJjY2NkxT09PR1lZWVwc3MjNkhrk7oHDx4gNDSUvG5cXBzKysoQEBAANptN2umam5vx1a9+FZcvX8b58+d3bCeZmJjA6uoq/umf/ok0mdlCZWUlbt26hdTUVGKBW1xcxNDQEDQaDVgsFh49eoSbN2/i3XffJTli5jZPHo8Ho9EItVpNWvLopjf63Dtw4ADKysrg4eGB6upqxgSWhq2brtbWVhiNRhQXF2N0dBSNjY1gsVjYvXu3hfWsv78fERERVsnQ1NRUFBQUQKVSkeavzTBfdaLLAKanp8FisfC1r30Ner0e9+/fJ0QDHQi/a9cuCAQCDA4Ooru7G0lJSQzybXR0lFyfw8PDxDZp/vuQkBAIBALSGvjo0SPo9Xrs2rULfX194HK5OyLSnJyccPbsWVy/fh0uLi7o6urCyMgIcnNzLVSDNDEFUx6QVCol5IbRaERLSwsWFxcBk20tIyMDdXV1EAgEVskkekJbWloKhUIBoVAIgUAAgUBAjlVBQQEhmV1cXFBQUIDIyEgGmRsfH4/KykrGNV5VVQUnJyf09vZCIpFYKJrMr7WrV6/i3r17iIyM3DLzjqIohurH09MTqamppAjBGolNURTq6+shlUrh6+uLoqIiaLVaovosLy8nz+NyuXBzc0N1dTWWlpbg4uKC06dPk/OToii4u7sjPj4ejx8/tggSn5iYIKq0sLAwtLS0MMK4nz59CmdnZ6tkMQ2j0YgnT55ALpcjJycHQqEQxcXFhKAIDAxEZ2cnaf6jj9NWiiFXV1ecOnUK169fx3PPPQetVgs+n4/JyUm0trYiJCSEjDu0rTYlJQXl5eUWlmixWIzDhw+jra0NP/3pT+Hq6gqxWGzx3hRFYWlpCWKxGGKxGHfv3mV8J05OTkIqlSI3NxfHjh1DUVEREhMTGQ2niYmJ6OjoIO2ZMLVItre34/z58+R7eHx8HLdu3UJubq7VRYWPM/7P//k/+Lu/+zt87nOfAwC8/fbbKCkpwe9//3v80z/9k8XjzW3OAPD3f//3+OMf/4iamhry/fnmm2/itddeIwsif/rTn+Dl5YWCggJcu3btv+mTPTu8wqIx1d38TO0/MNmlVuckH8iGx2KxIPIN2rGi6FngLPaGs9gbRoMBxf/nm1DLVyEODIfI2/8jyTaBDdWFOQLjMzDV1WRz3yhXl6FRrMNjm5V9BxdXLE+PQi1fZagY5oZ7trUdOrqKwWazMdb21KqiyhzSiSGsLy0gMD79mQO8yfuZQtoXxvpNocYUlqfHoVpbhqOb57bbq1xdJiQWly+AXqchmWDWwOXbwy86Genn/9pkU+uCQaezmqO0Ger11W2D2lVrK1icGAJlNKL8l/+CI1/4FpSyJYvHbf7+q73xNiijEVyBPXwjE2zmGclXpBCbSDhxYDimups22v+sqNPU8jXw7IXWSR2z7LSdQDYngWxuEg4ursj523/CyszkjogXvVa9ba4Xi81GSHIWxtqeMiysG4Tbs13nrr5BsOMJ8Pj3P0FY+oFtCUFbEDi6bAT1m2GquwkuXn7bfm42h7NtJhVFUZjoqIO7fxicxBv3/AKhEzSKdTi4uMFnVzzkywsYbqrcIEysXF/WxpP50T4oZUvwDo+FfYQrJrsaERCXjuHGx1vaLGlIelrgH5tC9oFqbQX2ztatwBw7LlGlwUQArcxNMbKyeiuLYdBpEZ5+8AMph1w8N5RnOw3zNodavoapnmYEJWSS80CjWGdc4w4urghN24+J9nq4+gV9JHa+DZvvR/Cd8RHjE1LqGbG2toYbN25g//79ZHWWviEPCwvD0tISo3Z6fX2dcVM7PT2N2tpanDt3DjweD729vfD09ER4eDhqa2tJDodEIiH16eHh4SgoKGDcgHd1dWFiYgJXr17F/fv3kZaWxmi7Mkd9fT0yMzPJRMhoNILNZkMkEpFsrMLCQszNzeH69euIiYnZtvacxvLyMiorKxEcHExyp4aGhnD06FGi+DCfFFRWVm7Z4JSZmYnFxUXcuHEDExMTkMvlOHbsGGOCkpyczJjc9Pf3g8vlEpKHJsbo6nAWi0UmIdeuXcPf/d3fWeRvGY1GtLe348qVKygpKSGWlu7ubhQVFcHT05M008GU/dXT02OhCjpx4gRu3LiBc+fOQSAQQC6XM1ani4uLkZiYyMhU2aymoBEREYFXXnkFKpXKaoaPNayurqK9vZ1MHqxlKdGgWxUvXbpELF+enp7w9PQkzWrLy8swGo04fvw4cnNzoVar0dvbi7a2NgYx4+Pjg2984xs4cuQIiouLIRAIkJ2dzcjJoTODxsbGGA2C5r83h0ajQXFxMeLj43Hy5EmUl5cT9YJ5MDObzcbu3btBURR6enpw6dIlGI1GzM3NYXR0FOvr62Q7L1y4gJ/+9Kd48OABYFJYRUVFEYXY4uIiFhYWMD6+sfqSlJSE5ORkLC4uwt3dHUtLS9i7dy/jmtZqtRgaGkJ3dze+/vWvo7293epgT/9s3759uHnzJrGLwXQ9m2dU8Xg8nDhxAiMjI3jhhRcwODiIgYEBi9e0BaFQiGPHjsHDw4NMuK1tC8yIKYlEAicnJ9y/fx96vR5sNhspKSlIT39/Fe/u3bvIyclBVVWVxXml0WhIK+jJkydx584di1yp8vJyZGRkEAVTSEgIQkJC0N/fj4KCAiQkJCA0NJQRWG00GlFQUMBQCTU3N1u14Zp/vlOnThHyyJaKqKysDIcPH2aQdX5+ftDpdHjw4AGSkpJIztLa2hqqq6tBURR2796NPXv2QCaTQaFQIC4uDpWVlcjJyWGE+2s0GrS3tyMnJwdKpdIqWQqTclYul5OmVJi+OzZbXFNTU5GSkoK7d+/i3Llz+PnPf46YmBioVCo4OzuTP0KhEBRFoaamBktLSzhw4ACxBCuVSov8qoSEBMTHx6Oqqgpra2s4duwYUb3agqOjIy5evIgbN25gbW0NBQUFCAgIsDjXamtrSeupreyO6elprKysID4+HkeOHEF/fz8KCwtx5swZss+ePn3KWCgxz5FbXV1Fa2srzp8/j8bGRqyuruLChQtoaGiARCIhtkZPT0+0tLSQ1zAYDCgpKSHECn1dBAcHIzAwEGVlZfD09GSQWB9naLVatLS04JVXXiE/o2MD6urqtn0+RVF49OgRBgYG8KMf/QgwLTjNzc0xVNMuLi7YvXs36urqrJJSGo2GLN7AdO38T4DN5gDP2DBkNBgw2dWI8N22Gza3g5tvEEaaq+DqE/iR3/jr1CqMtdfi5EuvQ9LTjIC4dCxODGJhtB9sDgfeEXE7Cs7eDK1KAa5g+8mxHY8PgZMI69J5MlGlYdDrMTPQsWU2kTn8olMw0vyE2Pg2snmEO9pnDi5u8A6LwVhrDYKTsy3GF41iHZLeVogDwz9QXbw1eIZEYc1xFn/5p0/jwqtvfeDMLt9dCZgd6rJQiZljsqsBQYmZmB3qhldYDLh8exgNBsyP9kKr3FCFuweEbSjHGLC05BgNBiyOD0CtWAcoihE6fvKl16FVKuAbmbglaSdfkSI59xqEruItQ7+VqysW9kH/2LSNcPW0/RZqktmhLpv70Ss0GnMjvVs2WtKKG41iHS5e/qRhLjzjEFTrMoy3135k2Wpcvj08QyIZjXzr0rkdkddq+SqWpkYZGUkKmRQrM5NWH89iseDg4g4nsdeWgeLuAWGQTo3A3T8UEx11EAft2pFSbiPwvMumLcyg12OspRoBcWkM5RDf0RlqEykFAI5ungh1ccdERx3c/EK2VLYtTgxBvjQPj5AoBlFEf97gJGbWmTVolHKwOXZkjPMIjsB0b+uO1WYsNhtuvkFkwWB1YQbK1WXTv6c/ELHk6O6F6d62Z36udGoEStmShTV3TToHZw8fxmPZbA5CUrKxMNa/40bIrSCbl8Dlvyir6sPgE1LqGTEwMICXX37Z5mQ6IyMDpaWlcHd3h1gsRmtrK5nU0dkxtOIHZjfBERERWF1dRW9vL0NpQyM2Nhbd3d2IiYlBcXExQkNDGXYPsViMgIAAtLW1kUY9GkqlkuQa0S1H5tkj7u7uOHv2LH7729/iC1/4Am7cuIGZmRnye0dHR4SEhMDHx4dkrsjlcjx69AjOzs4WjV80jhw5QoipsLAwUBRF1BM0rNkpPDw8IBaL8alPfQr5+fno6OhAVlYWsSyx2Wyyz2kCwZyMs3VD09TUhB/+8IekZcncAlVWVkZILoFAQFr4aKvJ3Nwc7t69Cz6fj5mZGajVapsKpMuXL+PGjRt4/vnniXqDoijcuXMH+/bts2qhoCfh9CTbaDSipKQEzz//PADg+vXrOH/+vNUwZBq0Dcl8kpCSksLIUjIHbdWi85MqKioYEw+j0Yj79+/j6tWrRFkmEAgIWUqDoijcvXsXv/jFL7Bnzx6cOHHCqm2KRkhICFxdXXH9+nVcunSJ0QpIo6+vD/39/Th79iw5N8yvMzabTRSJBoMBDQ0NOHnyJH7605+irKyMEGWJiYlkYj89PY2amhqipoBp4j84OEiUdCUlJfi///f/WlipmpqayDl2+/ZtxjXM4/EQGxuLkZERVFVVMWxNtnDq1CkUFxfj7NmzGBoaYqh5lpaWUF9fD4qiEBgYiJs3b6KzsxMVFRWws7MjmXO2QFEUKisrodVqUVhYiP7+fvj7+1tt8KSRlpYGZ2dnvPPOO/jc5z5ntRHUPOB8//79KCwshKurKyGMHz9+TAoE6KB3c0tjdXU1wsLC4OtruYIXFRWFqKgodHR0oKCggFj/1tfXCQFjPm4cO3YMDx48IMdRKpVa/XyZmZkYHh5GcXExTp06xRgb6uvrERERYRHuDRMpodfr8ac//QlpaWm4e/cunJ2dceLECca+f/r0KfmZ0WiETCYj5A9MZRRsNhsDAwMoKChgFEZg01gVGxuLhoYG9Pb2IiYmBjU1NSRwHqaJPR3QLhKJ8O///u8IDAzEwYMHsb6+jrW1NSwtLWFsbAxyuRyvvPIKvva1r+Ezn/kM432qq6utLgywWCwcOHAAWq0Wb775Jr75zW8yFKXmMCekBwYG8Mtf/hJdXV1kIYCGwWAAm81mhPZvbk/VaDR4+vQpnnvuObS3t2NxcRExMTEICgrCrVu3sG/fPvj4+EAqlTKOVVZWFkpKSnD8+HHGuBcWFoaRkRFiwaPbNOmFIHPk5+fj/PnzZPucnZ2xuroKFxcXsNlsnDx5EiMjI7h9+zaDZPm4QiqVwmAwWNw/eHl5ob+/3+bzVldXSR4bh8PBr3/9a0JIzs3NkdfY/Jr07zbjjTfewHe/+92P4BN9eDi6e1olUGxhrLUGIVYCsJ8VvpEbLVdbEQ/PCsWKFPMjvcRCRIcd05YP8+BsrsAB3uGxO7aUzI/0wTdqZ9vqFRqFkaYnxAJDY7y9dlvlkjlYLBa8w+NIttHsYCeCEnauTrN3doV3RDzGWqoRYlKv0KHdAIXQtP0fKSk4O9gFsFg49bU3oFWrdpTLI5ubspis8oVO0CjkNvOAZPMSCF09YMfjwy86CZOdjQhO2gM2hwOfiHjyOZemRrAkGQUAOIm94erzfmmSQrZEqurZbDbEQbvgtUmpRCsy/GNSMdJUuTE5tnHfsjDSi8jsYxuWOk8/m7llC2P9FiQNi8VCcEo2xtqeMuyT8hUphCJ3m8dI4OgMram9bzN0GjVmBztBGY3wCoth2L4ooxFsDmfjtUOiN67pbXKldgpHN0+o5WuQTo3A1TvA6vWlUcqxNDUKvVZNfsYXOjMykuTLC9h98W+glq/CMzTaQv1GGY1Qrq1geXocWpWC/Pz9fcWCg8gNTu7eWJocwer89LZZaebYKvBcq1JgoqMeoWn7LZRUAkdniyY1NoeDkJS9pvyjFvjHpEKnVhHiaEkyitX5aYiDIoiN1dY2eQRHYmagk+SFbcZ0XxvjWLLZHKtZnDvB2uIM1qVz2H35b+EVFoO1+WmMtlTDOzyWkG47AZvNIUHrOwFFUZjsbICT2NuqXVq1tmKT+N2w8y1vqNMS93xgO9+6dO4D20b/K/EJKfWMiI2N3fZL7sSJE7h58yYuXLgApVIJPp9PcqHMrWCbV43T0tJQUVGBJ0+e4G//9m8hl8uh1Wqh0WjA5XLx+uuv4/jx4zh9+rRVS0FsbCweP35MKsTp9zB/H1dXV8hkMsbz5ufnUVlZiU996lPw9/e3sFesr69jbGwM3d3doCgK//mf/4nPfvazmJiYsDp5NceRI0dQUVGxsZoxN2cRBJ6amoqWlhaiZFAoFCguLsbBgwdJkPfKygru378Pg8FAVq35fD5WV1dJxs5mbJ780GHM6enp8PT0xP3798nnnJiYgLu7O9mn2dnZqK6uZqgEvL29cfbsWdTV1eHEiRO4d+8eCXL28fFBdHQ0eS8Oh4PTp0+jsLAQAoEAXC4XN2/exPHjxxkT1s3Hvrm5mewHOteGPteee+45XL9+HVeuXLFK4my2IZkjJiYGPT09RP1EY35+nryfWCyGQCDA1NQUUXGZb4OTkxPW1tas2nloO+K9e/dw4sQJVFVVQSaTYe/evQyiwHy7RCIRLl++jNu3b+PIkSNwdnYGl8uFwWDAvXv3EBgYuOPsKQ6HAzabjZ///OeIjY2Fn58fQ61Co7a2FleuXEFtbS0WFhbg6ekJJycnpKamgqIoYm+yBlpdCBPxTKsPadANay4uLqSZ7bnnniNZbZsJKqFQiJCQEHR3d2N4eBjHjh3D/fv3odVq4e7uzghopgPBT548CblcjpKSEohEIuzbZzlxGhoaQldXFw4ePAg3NzeUlZXhzJkzuHfvHqKiohjjD43h4WH09PTg3r17hEi3lqfT2NjICMWmLYK0FVKv1zPOzbCwMBQXF0OpVKKvrw8uLi4M8o3D4VionRITE5GYmIiGhgZ8+tOfxj/8wz/gm9/8psX+s7e3B5/Px8rKClxdXdHa2mrz2IWHh8Pd3R03btwg51R/fz84HA5jeyiKgkQiwcDAAGn5/O53v4tvf/vbePHFF60SwkajkZBUhw8fxp07d3Dp0iXGYxYXF5Geng4Oh8Ow6BmtyKd3796NR48ewdHREXq9HnK5HPX19TAYDHByckJOTg4Zc5VKJUJDQ9HY2IisrCyrRHBqair5LqKPjVartRhDdDodGhoasLq6CpgIh+bmZoyOjuL8+fM2x3maTPre975H1HO02hcmAszcqpuZmYn6+npiUaYoCvn5+URRR7cCenl5kebHyspKvPrqq3jhhRcgkUjA5/PJH5gylOhgf5gUVM3NzeQ9/f39Sa4VrUKjSwg2qznj4+Mt8rHCwsIgkUhQUFBgdR/8fwFOTk5ob2+HXC5HRUUFXn75ZYSGhlpY+3aKV155BS+//DL5/9ramkXj4n8X3PxCTBOA7UkpSW8LvCPitmwY2ynsnURYUPfDoNN+YNuYOVZmJyFfXmSoCDbUM3ryHubB2VqVApLejfBnBxc3iIMitrx3NRr029bLm4MmxGilxcxAB7xCo575szq6irEyPQbFihQcO94z22fsnVzgawqiVq3LMNpcBb/o5A+UI2YLep0WE+118AqLgaObBya7GhEYl4rpvraNso4tFAerCzNW7aOeoVFYGOu3UIwYjQYsTY0S8obN5oBjZ2fREMZisSAODCeT17XFWUx2NaL059/Cif/9PQhdPRAYl77l/lyeGYe7fxjYHA6Ck7Iw1lpjVaUyP9ILT9N2BsZnYLSl2mowt0GvB5vDsXqe2XF58AqNYuSILY4PbEticgX20KqUxNokX16EdHLIRNilWDQjri7MwMlMZeLgskFcjjZXfSRkM0yWxOm+Ngw3ViIwYTfmhnsYxBHPXgiP4IgtFYuLE0MISc4GRVEYba6y2J8sNhtCkTuENgLYKaNxowShqwEP3/kBUs98Gly+AHY8wbbvTcPZwwerCzNw8XyfWJWvSLE41o/w3TnWjyNPwCDbzOEZEgXVugzDDY/BcxBC4OSCsdYauPoF77i100nsBeXaCmRzEoi8mdeVbE4CFy8/i+1iPaPNE6brZW1xFv4xqZAvL2J1XgJ3/1C4+YdgbrgH8yN98I9J+cClEbagUco3xo/4jC1tuFudpw4ubghN3YeJ9nq4+QU/c+7hTt7jfwqfkFLPiO7ubqJWYLFYUCgUcHBgSp5ZLBYuXrxIVlfz8vJw9uxZi0nN5pVfpVKJ9fV1vPXWW4iIiGDcfPP5fAiFG7LmrdQydEPd2bNnwefzLbKoYFKqjI6OIjQ0lDQc0cROZGQk+vv7GZN6JycnYu8oLS3FZz/7WVy5cgXFxcU4d+4cY8K4eRUcpslaeXk5/vVf/xUVFRWM37m5uZFq876+PgwPD1uoTOgWJZjUGmVlZVhfX4dIJCLh3ZuRmZmJhoYGoggrKysjVjsHBwfw+XwsLy/D1dUVDQ0NjKwe89woGnK5HKWlpUhKSkJDQwOCg4Ph6elJyLba2lrGc9hsNlxdXVFcXIzl5WWcP3/e4jzZvB/o9ry6ujokJCQwiEcOh4PnnnsON2/exNWrVy1sS6WlpRY2JBq7du1Cfn4+g5Tq7Oy0yKHZu3cvbty4gStXrqCxsREJCQlkm9PS0vD06VOG7VGj0aCgoAA5OTnw8PDA+vo6VldXceDAAVAUherqaiwvLyM7OxseHh4WJCyXy8XVq1dRWloKoVAIlUqF/Px8nDx50uq+sjWA9vT0gMvlIjo6GgcOHEBzczNDoQPT5JkmRPfs2YOioiKGXe7Ro0fIycmBm5sb8vPz4e3tTbZhZmaGWHVhslr19fURRQV9zOjsH0dHR5w/f55MloeGhrBr1y6L7fb19UVERAQ+97nPwdnZ2WpTJEwEK92+5+joiLNnz0IqlRK7FExkbnl5OcLCwizUODAps2pqarC6uspQutXU1MDOzg7nzp1DWVkZ0tPT0dfXh4qKCsaxpslt82NA2yHv3LkDNzc3iwmsVqtFQkICjh07hp/97GeM4wETWdrX12c1D4nH4+H3v/895ufnce/ePcBEDpjnTh06dAj5+fm4ePGiRWPgZri6uuLy5csoKCjA2NgYFAoFfHx8UFpaSmwfLBYL/v7+OHDgACFhrl+/jmPHjpGsOHPCpb29nZGrxWKxkJiYaPFzGv7+/lhaWkJHRwcSExMhkUisTtSzs7Ph7OyM1157Da6urhaB7ubvFxERgfX1dXR1dVndj2KxGBcvXsSdO3eQk5MDtVpNssxWV1fR0NBAiMGMjAyIRCIoFAo8efIEqampiIuLQ35+Pvbu3WuhcKuqqoKnpyf5rti/fz/Gx8eRl5eHc+fOgcvlYn19nUFkOzo6Qi5/f+W7vLwcR44cIZ+Ptpuaw9HREc7OzlCr1ZDJZMQaptFoUFRUBGdnZ6SlpZHtsDZOcLlcXLp0CdXV1Zibm0N+fj527drFuK5h+q4z377h4WF0dnYiOzsbV69eZVj/Po4Qi8WkOMMc8/PzjHy2zaAzKmGyLPf19eGNN97AwYMHyfPm5+cZ+2t+ft7qeQ6TQtDaWLZV9fp/Fejr25YqhYZ0chj2Tq42J4EfBP6xaZjqbvzQ9qH50T4ALATEWtZ3+8emQtLTYqFO4dkLySq8YkVKGvxE3gEWkxiaTHgWCBydwWKxoFpfhVYpB4fL27KJyxxGgwEaxRrU8jWoFWugKArvff0acr/6fUbWy2aYKzQ3Qzo5hLZ713HypdefiVzbDqvz01ieHkNIyl6LfeQXnbzRuGc0MlRKmzba6o+FIncsjFqqF6e6mizUE75RyZD0NG9pE3P28MHS1AgOfu7r0KpV8PcJ3HaSrlOrCNnDFdjDOyIOU5uCtw06LVTrq6TFbSPXKhpzwz2kIZCGteB6czi6eUK5ugzZ3BTAYsFlB3lP3uFxkPS2wN7ZFYoVKYSu4i2vJ9nspMV+MicuN6vnPsiYtDo/Db1Wg8e//zH2f+YlhKUf3HFDJ0wNiTRpymKx4BkahfmRXqtNebZAURSkk8NwEnvj5Euvw6DTwj8mFQadFovjg0QFxWJzIA4Ms1oeQAee06TUyswEFLKlLVVl2xEZ9k4ihKUfwDt/dwxHX/jnbYsFNEq5xb7zCo3CeHsd7J1F5HcURWFJMmr19dz9Q7E0NUJyzLbD2uIsVhdmyHgqdBVjeXoM7v4bUTPe4bEwGg2Y7m0DRRnhH5P6gUPMzbEkGYV8eXHHTZpbgWHnM4Xm/38Bn5BSz4iMjAwkJiaioKAAERERkMvlZDJAV7z39/dDrVZjcXERX/3qV1FaWor19XULMmlkZARRUVGgKAqPHz+GWq3G6dOnYW9vz5gYwUQifO1rX4Ofnx9u3LiBM2fOwMnJyaoK48KFC8jLy8PVq1cxNTVlkXsUHx9PbHFxcXGMzJjw8HAUFxdbKE3olqZjx45hfX2dTG5u3LiBs2fPEmvN7OysxeSlra0NKpUKf/VXf4Wamhoywabfj6IolJaWwsfHh1E1bw1089Pt27fxox/9CGVlZWCz2cjOziYEATZNfkZHR+Hv78/Yn/SE1tHRkWGRMX8+nelSX1+PpaUlXLp0CWw2GwaDgSitaJvY5smNXq9HXl4efvrTn+IHP/gBnjx5Qn4nEokQEREBd3d3iy/H0dFRixwuGvTE6tatWwx1WF1dnU0bEo3du3cz1D1jY2MMUobGyZMn8W//9m/IzMxkbMNmom5mZga1tbW4dOkSmVBGR0ejt7cXWVlZYLFY2L9/PyiKQm1tLZ4+fYrHjx9DJBJhbW2N3AjQzZQHDx7E6dOnUVRU9EyD9cTEBBYXF3Hw4EHU1dVBoVAgMzMTnZ2dqKqqwv79+6FUKiGTych5yWKx4OrqiuXlZUKKUhRFKu3PnTuHW7duEfVFW1ubxTV0/Phx5OXl4cqVK5DL5XBwcGBst729PS5duoQbN27AyckJZ86cweLiItra2khWkru7O/74xz/C0dERPB7P6iQOm+yqNMRiMS5cuICpqSmkp6fjP/7jP/DpT3/awtbn5OREiIG9e/eiq6sLjx8/Jm1uKSkpFm2X0dHRcHR0RGFhIVHK0YUEm6FSqaDT6XD06FHSyEeDx+PB09MT586dw9TUFDw9PRnFB76+vlbJ0UePHsHDwwNnz55l5LuNjIygpKQEMOU+JSYmIjw8HENDQzYDyaenpzE8PAy1emNlj8vl4hvf+AZee+01Rqi3NWi1WnC5XNjZ2eH06dOYnp5GXl4esrKy4OvrC4lEYrFPwsPDUVhYiNjYWELKmJPLiYmJePToESQSCUZGRhilGMPDw+jr6wOPx8P169fB4/EQFBRkk2yjPzPdSjg+Pm61uZQmf8vKykgw+ezsLJydnXHo0CELFVR5eTkZG/h8PinzmJ6eJt8Vjx49QkBAACIimDeBwcHB8PX1RWFhIRnnNoMmCdra2hAYGMgYtzaf6w8fPoSPjw/eeustFBQUEIUVDaVSiVOnTqG7uxu3b9/G4cOHbapRdTodOBwOFhcX8fnPfx6lpaWQSCQICgpCeHg4Yz+sr6/jwYMHNknejyt4PB5SU1NRUVFB7OVGoxEVFRV48cUXd/w6RqORjPchISHw9vZGRUUFOd/X1tbQ0NCAF1544Zm2T9LbCi5/o63PjieAODD8A4f8PgvEgWFYkozaDICWr0ihUax/5DXgHDs78IXOUMiWPjDZNdXdDEd3T5ukB8eOC7Ydl6Em2QyhqxhCU87MyuwkafDzDImEvbMrFsb6iRLmWeAblYTO+3mw4wvgHR6L6f52GHTaLfPjYLL78IXOEAidIXbzhFatRNzh89CpVQhLP/DMainVugxgseEVFgu/qCTMjfRCr1GD5yCEV1jMjprRrG2vpLcVPHsHi0m6+Xe9b2QiZoe6rDbM0fY0W3DzD8GSZJRMhtcWZ2Dv4kquERocOzuw2OwtVXcTnQ3wDI3G0tQI/GNTMdpUBf/Y1GdSjDm4uEGrVmJuuBfe4RsEyWR3k0Wdu6ObJ2RzEqjWVxl2MYNOu62dyDNkg3CQTgwhPDMH86P9GyojysggHc3/Xf7Lf8HFb//Kom1xM6gtbFwCR2f4x27YFMPSD5JjuHFtbp/BJF9exNLUCADA2dMXQYmZOPnS63BwdsX8SC8C4tJ3fO86N9zNINac3L2wMjOx5TVsDunUCNYXZxEQnwE7Lm8jKDw+A5NdGzZPc2LQoNdjaWoYi+OD5Gcib384iX02mtft7EhDHYvFspkx9SyY6KzH4b97BS5efpjobEBgfIbNfbMyMwlXX8uxLSgxE8MNj4ildG6om1hXN0PoKoZ0agTbH8WNtszV+WlGy521bWOzOQiIS4NOo8ZkVwP4Dk7wjojb8hjbWvigKAqTXY1wdPN45tKN7UDsfM/Qzmc0GMDaYVvkfzc+IaU+AFxcXHDhwgUMDAzgzJkz+NOf/kR+5+3tjd27d8Pe3h4qlQqFhYU4cuQI2traiKXAxcUF6enpWF1dxczMDCoqKnDo0CEyKd6zZw/q6uoYuU+0jQIAnn/+eZK7wuFwLLIe7OzscOTIEZSXl5OfLS0toaurCyqVCgDwj//4j3jjjTewurpqcSFtttXQ4exXrlyBnZ0dpFIp+Hw+HB0dcfXqVRQWFiItLQ0BAQGYmZkhk8yVlRVyI3v+/Hncu3fPQn0xPDyML3zhC/jjH/9oc9XVHEtLS3jw4AGuXbuG8vJynDx5EgaDAU+fPsXa2ho8PDyQkfH+AEhRFFpbWxmBywaDAb29vWhvb0dlZSW+9a1vASYiwdPTEx4eHtizZw/y8/PBZrORmZnJsGrR+TG2MD09jYaGBqSlpZF8o6SkJJIltbKyguHhYYbFBABu3bqFwcFBvPfeeyTTajMEAgHOnj2LvLw8ODs7o6+vD3Z2dlYnf+bw9fVFY2MjjEYjRkdHLRrJpFIpmpqaYDQakZ+fj+joaJSUlCAoKIhYVul92tbWhpWVFYsQa5FIROw/NGg1x8zMDPR6PaKiouDs7MwgUgcHB3H37l3Y29vjzp07iI+Pt6osMle0wBTC3tnZSYhMWuXg4uKChIQEjIyMoLS0FGq1GmfPnmW81r59+4haqqKigmG5YrPZOHr0KKM4wJpcOCsrC0+fPoVMJiPV6TAjQwYHB+Hs7EyOV2BgIHJychgkQ1lZGQ4dOgSJRIKbN2/i5MmTO2770uv1aGhowG9+8xt4eXlhfHzcwp7n7e2N+fl5olaJj4/H6OgowsLCrKo8aQQEBMDJyQk3btzA5cuXCQFjNBrR0dGB2dlZwHTMz5w5gz//+c8wGAwMex8NiUSCEydOoLm5GV1dXcjNzQWXy7XYp7SVKyMjg6h5uFwusZuFhYWRzzc1NUUIqh/84Af4+7//e4v8IxaLBT8/P2RmZkIgEICiKNy4cQN3797FwYMH8fDhQ3h7e9sMQa+vr2fYGP38/HD58mU8ffoUeXl5VrOxYLJvl5eX4/Tp02hqamKoqwAQUh2mc+3hw4dQqVQICwsj53JZWRlOnDiBBw8eQKPRbNkgCFODWlFREZycnGwSba6urnBxcYFQKLQgd2gMDg4iPDzcgtw8dOgQBgcHUVhYCC6XC3d3d2g0Gjx69Ag6nc5iQufk5ITPfOYzePfddzE2NgYACA0NRUREBGJiYvDgwQNwuVyLfDoa9Di0Z88esp9DQ0MxMjJCzgHz94yLi0NsbCwePXoErVZLfjcyMoL+/n6wWCxwuVykp6djZWUFpaWlyMrKgqOjIyYnJ1FZWUnI4hdeeAG/+MUvcP78+S1z4T6uePnll/HZz34WaWlpyMjIwJtvvgmFQkHa+D7zmc/Az88Pb7zxBmDKf0pLS0NYWBg0Gg3u3buH9957D7/5zW8A03X00ksv4fvf/z4iIiIQEhKCb3/72/D19d1xIyyNgNhUEtqr06ggnRyBTq0kvxe6iuHqG7TjevWdwtHNE0tT1kkpvVaD+eEeq3akjwI+EXFEofEsoIxGjLXWwCs8dltCyz86GROd9TtSZLn6BMLVJxAURWFhbAALYwN4+p+/wr5PffX997ZBDlj7d93Nd5B29jPgC53h4uX/gayPG8RHBnwi4jHcVLmjBi4aRqMB031tCM84BK1KgbnhHkIuahTrkPRsWBidPXzgusM2RJ1ahYmOevhFJ1m0ehmNBoDFHBd8IuIxN9yLpalRuAe8v5i3NDViNTOGhounL8Zan8LdPxSU0YjFiWGbyhK/qCRM97dbfT1JbwvcfIMhFLljaWoEbDYHYRkHMd5eC4+giB0r2ABA5OWPRfUQliVjsBPYQ+gqtrDIwaQSMyd46LBtW9Ao5VgYG4DRoMfq/DT6qu8hPDMHLp6+G+17NpQo0slhXP3+77E4Pggn961Dv+dGLNVb5uA7OCIwPgPDjY9J09rawgw8gq3fP6vWVrAwtlEwI3QVIzDh/bIjvYkgFAdFQKOUY6SpEn7RKdtmOmlVSnD59hb3PwGxaRhtrdlSWaRVKTDV0wJ3/1BClNJEnB2XB6GrGKvz0wwlJMfODp4h74sMKIqCzKx9Tq/V4MZrn8fJl96wsMvZwlaEs6S3BeLAcMjmpuDqEwQndy+MNFYiID7dqppMq7JUSsE8+Ly9DoEJGdAo5XBwsZ1VuxOsL81DNjfFIKS2A5cvQHBS1kZofttTOHn4WP0ecXT1gGJl0eJaI3a9uHRGYPxHCQcXN1M73/Zh8zAp4nY6Fv534xNS6kNgcnISv/vd70goqzmGh4cRGhoKPz8/NDQ0MLKUZDIZKisr8fnPfx4//OEP8elPf5rxXGdnZ9IYBlMgtbmaibbNPHr0iCihjEYj5ufnIZFIsLS0Ue36zjvvoKCgAPfu3YObmxsyMjLIJPT+/fvQ6XRwdnYmk7vk5GT4+fmRMPSDBw8SAsI82Fmj0ZDwaDabjQsXLqCyshJLS0tYW1uDo6MjHj58CBaLhUuXLpHBl81mM7J5aPvjw4cPIZfL0dnZuWXr39jYGHp6enD16lWwWCxGSDpN4M3Pz5PP4+7ujt/85jc4deoUnjx5AqVSSd43NjYW3/3ud1FeXk4IBaVSicXFRYyOjqKvrw+f/exnUVRUBIPBYLEtXC7XIqBdqVTi/v378PHxIavrIyMjOHbsGMmz4fF4cHV1ZRxPmFQZS0tLyM7OhtFoRHNzM9lea2Cz2cjNzcW7776Lq1evbmtNgGky/OjRIygUCpw7dw4TExPo7u4m++rYsWPgcDjgcDiEjBkfHyf2qbGxMfz617/GgQMHbOb3bFZ+VVRUgMvl4sqVK3B0dLRQMSwsLGB0dBSnTp3C/fv3cenSJXR2diI/Px/Hjx9nkCYuLi5YXV2FSCSCWq3GgwcPGLbLzdagsLAwNDU14fXXXycqRT6fj6ioKHh7e8PJyQmVlZVITk622Hdubm4ICAhAUVGRhWpNo9GQ1rWioiI8evTIYhLv5+eHrKwsCAQClJSUYH19HeHh4TZVL/7+/rh8+TJKS0vh7++PxMStA2dnZ2dRVVWFc+fO4cmTJzh+/DiqqqqgUCgY15CXlxfa29sZpGVzczNGRkbw9OlTkptm7SZDJBLhwoULeOONN9DS0kICqxMTExllCvX19cjNzSV2qs0EII20tDRoNBqUlJQgODiYQULT1s2zZ88ySLns7GzU1tZaWAMDAgIQEBCA2dlZrKysYGhoCF//+te3tDaXl5fj8OHDaGlpIRbL6elp3LlzB3FxcRZE6GbrGUzXM904SufQURQFsViM5ORk2NnZgc/nw9PTE5OTk1Cr1RAImKveKysrcHZ2xrFjx1BQUICjR4/aJAePHj2KqqoqaLVaxMS8L+23RlqfOXMGN27cwPnz5wkJR6Oqqgru7u74+c9/jqmpKdy+fRvnz59nnLcURaGzs9OCbIZJGTk0NISqqir8+7//O/785z8jNTWV2Mw3QyaT4fr162RcNhqNGBsbw4MHD9DZ2YlvfOMbKC0tRVlZGQQCAfz9/eHn50cWc65fv25xLiQkJKCgoICQUl1dXYxznS5smJiYQHBwMIqKihAREYGTJ0+S69tgMICiKBw7dgyFhYW4cOECgoODGQqzt956C+vr61AqlTsmiD9OuHr1KhYXF/HP//zPmJubQ1JSEsrKysji1eTkJINsUygU+PKXvwyJRAJ7e3tERUXhz3/+M0ON+41vfAMKhQJf+MIXSF4gfew+KLh8e4tWLfnyIrFMwGQ9cfcP/dCTkY0XY8FoNDDIDoqiMNZag7CMD5adtVO4BYRurOTbUGpthl6nxVhLNYKTsnaUacJis8F3cLJQrmz5HBYLniGRGG97ij3PfREi78Adh8HTmOpuxqmvvQF7FzcsTY18IBXA3PCGbWldOgeKohCSnI2Rxg2yYyeWmYn2egQlbihoePZCaFVKcj/EFzoREmd1YeZ9hVholIWdiSx2zUxgbWHGpmJLvb5mVX3kHR6D+dF+SCeG3rcR7eC+zNnTB6vz05DNSxC4RfAwh8sDZTTCoNczSKLZoS44unmRY8fmcGA0GDbCp5OzIeltgU6jtlDabUUseARFQNLbivYbb+PEV//V6mNoVc10X+tGLs/SAsRJZpm5RiOkk8NQrm3Ec/DsHeAbmQCOHRdGgx7XfvAHTHU3bZs1tL40j5DkbDiJvYkaZLOSjIZGId924s+zFyI4cc8GMZVxCHqtmpG/pFHKMT/SC8pohMBJtKHysXIeyGYnyT7lOzgiLP0gpvtawRUI4RVqmWlKY2agA4EJlsQii82GR1DEhmoxhPl8iqIwM9ABo16P0E25WBuNcRtkkkdQBEaaq+Ds4WNTbchisQgxrZavQdLbgsCE3VieHgNf6LTj8cMa5oZ7IHT12AiDV6xDLV+FUOSOsIyDmOpugoPIfcdjIEyWUjf/ENx781WcfOn1LR/LEzhAq1LYJC3Xl+Yhm538wOHe9k4ihKTsxaopDF0cFAFn8fuWeBcvP8wN9zBIqeXpcaxL557JrvdBVUwbdr69mB/th3wbO59CJmWQ5x8nfEJKfUCUlJQgISEB/v7+uHfvngUp1dnZSYiJ2tpaxu9EIhEOHz6Mf//3fyc32kFBQYyJHovFIkG4s7OzFsHDdPjxq6++CrFYDC6XCy8vL4SFhSEtLQ2zs7P40pe+hHPnzmFtbQ1ZWVmMSUxISAhpnDt9+jSxU7S1tYHH42FtbQ3l5eXw9/e3ICCs5UYdPHgQ3d3d+OpXv4o33ngDOTk5FsG7ERERGBoaQmRkJGCaWE1OTpJJbG1tLfr6+hi5MTQ6Ojogk8kYrWgJCQno6upirLZ7eXnh9OnTMBqN+NGPfoRXX30Vfn5+OHLkCKO9yxocHBwQFBQENzc3TE5OoqKiApmZmRgdHUVxcTF4PB72798PgUCAjIwMNDQ0YO/evTAajXj06BH0ej3OnDljtRmNznWxFspuNBqRl5eH5557jpBi5io5a+js7ERgYCAWFhbQ2trKILA25y6Y///atWs4f/487OzsEBgYyJiw0TAnD80nbL/61a/w9ttvIzg4GBMTExAKhUhNTWVM3Oj3Gh8fR3NzMw4fPkzOA5FIRIKpYSIinjx5wiA8YTqusbGxuH//PhwdHUnosFgshlQqhbOzM27fvo1r164xtt3R0RFSqZRsx927d7F79278+Mc/JiSbSqXC4OAgOjo6oFQqcenSJZSWlmJoaIixDfTnOHfuHP785z9DIpGQfcjj8SASieDi4oK0tDQEBQVh//79NokFNpuN5557DoWFhcjIyLCpsGGz2Th16hT6+/tRUFCAU6dOWQ2Ybmpqwvr6usW5tH//frS2tqKuro7YwjYTdQ8fPsT+/fvh7e0NnU6H2tpaZGVlYWlpyUJhs7a2hsePH0Mul2Pfvn3Ys2eP1TDtlZUVovLMzMzEnTt3SCPn4uIiw57F5/Nx/vx5DA0NIS8vDxwOB1NTU6ivr8fVq1ctrh2hUAiFQmHxnjBl0EkkEtTU1GB0dBSlpaVW7YgA0NraioCAAHh4eDBKEPz8/HDx4kV0d3eTdszN+Wd6vZ4QfrSaic1mg8/nIy0tDSKRCIuLi3j06BEhsOnFCAcHB0xNTaGnp4eoK11dXbFv3z7cvXsXKpUK6+vrjHNn82Rh//79qK+vZ2RV0cH65mCxWIzmTxoPHjxASEgIUVsFBARALBaT8gX62D169IihZJ2fnydqTh8fH5w8eRI6nQ4/+9nPUFdXh97eXkYZhDmqq6sZqjna9qxSqXDmzBl4eHiAw+Hg6NGjUKlUmJmZQWNjI1QqFV588UX8+te/xvLysgUpZF7aIJFIGKTU8vIyqqur4e7uDplMhvb2dgsb+pMnT3DgwAGw2Wz4+/tjcnISgYGBjNfw8PDA6dOnkZeXhyNHjpD98/8SXnzxRZt2vcrKSsb/v//97+P73//+lq/HYrHwve99D9/73vc+0u3cDEc3D0bFvUGvx/L0GKST74/PfKETxAFhzxyo7R0ei/mRXoYFZKKjDoEJuz9yZdZmiLz8MdpcBXf/0G0nJ6r1VUz3tyEs4+AzbZd3RBzG257uuGXMaDRgtKmKVL6PNFc9Eyklm5uCwNEZfKETjAY93P1DSYDvTqHTqKFRrME7PAaUwQDFyiJcfYMQkrpvQzGVdsCqSofG/Egv3ANCGCSFZ0gkFscHLCb2Lp6+cPH0NSnE+rEw2g8OlwufiHiw7bigKAoTnQ2mzCLbNjHV+oqFeoqGV2gUFscHsTA+ABcPX/B2kDPk5heChrzfISR177YEpF90Mmb628jEen60Hzx7IUPhInB0gWpdRtR1/jGpmBvuxeL4IDyC3194UawswtHVw+I9jIYN5ZnRoEdAfDrmR3ph0GkZj+HZC+HqEwiBowvseAIsjg9C4OgC5eoypJPDhBQUB4Yz3hMAlKsrsHcSgcsXwDMkcsscqvmRXhIEz2KxEJ5+EEONjxGWus/i+tco5VuqqMzBFdgjODkbQ42PwbcXQqdWYW64G0aDATwHR/jHpm577SlXl+FuRrBskHSpWFucwWhzFYKS9lhkmxl0WrA5HJuv7ezhg5XZSeg07zfXrUvnsTA+AN/IBKu5UGuLswyiJSA2DVM9zdteh/OjfdCqlCQPyz82DbODXVhQK+Efm/rMuWzSqRFwuDxC1Nk7ukC9vkraFQPjM7A8M4Hx9joEJeze1qIrm5vC6vw0YAqWn+xsgHtAqM22S8+QSMwOdcE/xjJ3T768gJWZiW33yU4W9128/ODi5YfF8UGMTgzBNzIRAkdncLg8GA168jpT3U1wcHHbMgfOGuQri4zvwGeFV+iGnW+k6QmCkvZ8JKUd/5342JFSb7zxBu7cuYP+/n7Y29sjKysLP/rRjwiRYQu3bt3Ct7/9bYyPjyMiIgI/+tGPGDkwFEXhX/7lX/Db3/4WMpkM2dnZ+M1vfrOt7Wkz6Jazffv2ETvWZjQ1NTGUMHTWjvlKd21tLbKzsyESiRAQEIDx8XEUFBQgNDQUCQkJpJVOpVKRSbnRaER9fT2Wl5fB5/Oxd+9evPfee9i7dy+jTWl1dRX19fW4ePEiysrKcPz4cZSVlcHDwwNpaRuyRWt2pJSUFKSkpGBqagqBgYH43e9+Z7U63BoppdfrMTo6in379oHD4aC/v5+RlwKT/aKsrIwcy5KSEkZeR1ZWFp48eQIul8uwq1RVVZEgaHN4e3ujra3NYvva29sxOjqKL33pS0hOTgaPx0NjYyMOHjy47YCj0+lQVFSE//W//hfUajVqa2tx+PBhxMXFQaPRoLq6Gmq1GoGBgVhbW0NbWxsmJiaQk5NjtZmOBpfLRU5ODu7fv8/IsKIoihEM7Ovri97eXqskAY0nT57A0dER77zzDqKjozE8PMywj9mCSqXCd77zHfL/qKgoq/vD1dUVKysrjPcvKSnB5cuXERISgqNHj4LL5UIul6O1tRVyuRwsFgtsNhsTExO4e/cuvLy8LBQXKSkpqK6uxpEjR4g9xxpJB5NFMjc3F/Pz87h9+zbS0tIgFovR39+P1tZWXLhwwWp+klwuh06nw61bt5CbmwtXV1cMDAyQx9jb25OGt1u3bqGmpgYhISFWiaKpqSk0NjZiZGQEx48ft7qvent78aUvfYlk9dhSQrFYLJw/fx7l5eVQKpUIDw+3mgdHH5eQkBAUFRUhKSmJKEOMRiOKiooQExNjobSjv0xTUlIwMDCAhw8f4siRI4zHdHZ2wtPTkwQXR0ZGorW1FZ2dnYCJSIHZ5J7OwuJyucjNzUV+fj6ys7Mt7MLm8PT0xIEDB3D79m1cunQJfX19FgHnMI0F6+vr+Pu//3vU1NRgenraKpkLk2VVpVIxVFB1dXWws7PD0aNHQVEUmpubcfHiRdTU1GB2dpYx9kxPT0MmkxFy3dvbG3Nzc4yFBNr+VV1djbq6OgQEBMDFxQVFRUXgcrnYt28fIUjogoQ9e/agoKAAFy5cgIeHB+O6lkgkePjwIe7fv4+ioiIcO3bM4lhzOBxcuXIF5eXlCAoKIgTKxMQEgyiBiexrbW1FQ0MDdu/ejcXFRavkm52dHc6fP4/bt2/D2dkZxcXFSExMtAhUt7e3x7Vr11BaWorQ0FD4+PjAYDCQ9kuKouDp6ckgrRsaGkh73Z49eyCTyZCXl4fs7GzG9UNnN9Gfd2JiAq2trYiIiMD58+fR29uLQ4cOkfE1KyuLYc189913cfz4cXR2dqKzsxNsNhtZWVkQiUTYtWsXCgoKGKUNq6urqKyshEgkYjSWrq2tWewfuVxOVL7p6em4c+cOY183NDSQY3XlyhUUFhYiMzNzy5DwT/BfB46dnUWFuFq+hrnhHhj075ecmGek2ALfwRFa5fsE9+xQN1x9g58poPjDwM9MVWILqwszkM1NITz92ZVbLBYLQjcPyJcXtrVrGXRajLRUIyQ5mxA6XqHRjCyhraDTqLEyO4mQ5GxolHKszEzCOzwAAPVMxNRUdxOCkzcshw4iN8wOdsHVNwh2XB7C0vZjpPmJVQICpomm0WCwmKQKXcVYGB+weDwNFotFiA69TovZoS7I5iSo+b+/wP/64Xtw9vCx+VwAUK3JIPK23STpEbwL0qkR1N54GwlHL5Gcra3QX1MGJw9vaBTvOyS4Anu4+YUwzk87Hh8GvR5GowHL0+NgsVkWljl7Z1cGKQWTimtpahQzA53wjdwg8mVzU/DZ9T6pbzQaMNPfDoNOB9+oRHD59mB3N1lVXGiUcshmJ6FRykEZjSh96zUc+dJr4NjZISA2bUvCYX60l9hMHd08oVqTWbUTURQF5eoKI/ybxWYjPP0ghhsfIyz9IIOwnBvueSZblmptGXZcHkrfeg0HP/d1RGQefmYixtp44+zhC6GrByY66iEODGOcn9P97dvm1gXGpWO0tQbBSVmY6m6EvbPbtmHh5tvBs3cAz94R8mXr5IZOo8ZkZwM8QiIZzY8sFgu+kQkw6HWQ9LSAK3CAz674HSl8ZPMS6NRKBuEvcHLByuwk43FuvkFwdPXASNMT+MVYWh0VsiVIJzYWIFy8/Qmhw+ZwEBCXDunkMEZbquGzK96CoONweTCYLPjmkC8vYnl6fNsxyUHkDuXq8o6z/zyCd0EcFIGZgQ7o1Er4x26ce7T191nz3GisS+eeKfDeGhxc3BCSunfDzucfymhX/LjjYxeY8OTJE3zlK19BfX09Hjx4AJ1Oh2PHjtlcLYeJ4Hn++efxN3/zN2hra8P58+dx/vx5Yk0CgB//+Md466238Pbbb6OhoQFCoRDHjx8nAbg7Bb2abE5IBQQEYHJy4+IzGo0WrUoREREYHh5mvI5MJmNYmYKDg3H+/HkIhUIUFBRAKpVibm4OMpkMc3NzKC4uRmlpKXbt2oXTp0/j6NGjsLe3JzYyGhqNBqWlpaT6HKbBJjc3FyKRCHl5eRbNcjQoisL9+/cxOjqK6upqMonerPTaTEr19vbi7t27OHbsGK5cuYJz584hODgYBQUFjLYi88GtsbERaWlpFhPRAwcOYHx8HOPj46AoCsXFxfD3999R3tTU1BTu3LkDJycnXLx4Ea6urmCxWMjJyUF8fDxu376N6elpm8+nKAq3bt0iFff29vaM84PP5+PIkSM4ffo05ubmcOrUKUgkEpw/f35LQoqGh4cH/P39GURacXExDh8+zFBxHT582KKlEKZz686dOwgNDSUT/aCgIPj6+qK+vn7L96YoCgUFBXjxxRcRGRmJI0eOoKysDE+ePLEaok0rjmDKt0lKSoKXlxcOHjxIVtodHR2xf/9+nDx5Erm5uYiOjsY3v/lNSCQSSKVSUmVvvv/oc7WgoADnzp2zSUTQ8PLywqVLl7C4uIjHjx/jnXfeQU5OjlVVEo/Hw/z8PG7duoXLly8zVD2bP2N1dTWysrKQnZ1tc981NzcjPT0dubm5FiHeMClJPD09wWazcenSJeTl5Vm8j16vZ3zG48ePY3Z2Fl1dXRYqDXPw+XxcunQJKysrKCsrg1QqxY0bN3D06FELm9nmcOjIyEhERUWhoKCA/Hxubg4LCwsW9tiUlBSsra2htrYWLBYLBQUF6OrqwtmzZ5GTk8Ow2l68eBHNzc1krKOx+abF3d0dR44cwc2bN6FQKCAUCqHValFfX4/S0lKUlpaSPKdXXnkFd+7cIbbbkpISkldFIzs7G0+fPiX/Ly0thVgsJsSc+fvv3bsXXl5eKCgogNFoJMSHudrTx8cHc3NzFvucDufPzs5GSkoKGhoacObMGeTm5jIUOzQxxGKxEBYWZqGyg+naOHfuHG7fvs0gaGjQ+wWmc2JtbQ11dXUAgKGhIauLJSkpKXB0dER1dTWWlpasKniMRiOWlpZgNBpx4sQJrKysoLe3F2VlZRZ/ysvLwWazkZeXRwoIhoeHceLECZw6dQrp6e8Ht1IUZVFiIRKJcOXKFYyOjuLhw4fkXKusrMTBgwcxNzeHO3fuQCqV4sKFC6QFlj7vIyMjIRAICCm6+VgkJibi9OnTOH78OLq7u1FcXIyKigrExcXh1q1b8PDwQGFhIVpaWnDmzBkcOHCAcS6IxWIsLi6S/7e2tjLUyDAFz3d0dDD2H3290kRya2srJiYmLLbxE/zPQODoDL/oZATGZyAwPgMBsWkwGgyY6m7CZFcjJjobMN3fDo1SbvFcDpcHnUYN2ZwEbA7nv/Vmne/gCKPBAJ1GZfX30okhKFeXPlQQrmdwJCPQ2Bq0KiVGW6oRnn6QoTBydPOAan3F6sRuMyY66hBsZpnTqRWm1/CEq2/Qlg16NFZmJyHy8ieqEdrWRYNjx0V4+kGMtFSTJjEaBr0O86P98NllPfhY5B2w0fC2Dey4PPCFztCqFNhz9UtQrcsw2dVI/syP9kG/iVAyGvQW5IVqXYbpvjbyPKVsCVPdzVDIpPAKiyHnqrU/zh6+OPvN/wMHZ1fGz939QyGbnWRsz2RXIwSOzui8nwedWgXPYMvFensnEdTrMoufuweEQugqxmRXo+lzGMCx44IyGje2vbMRXqExCErMJCodWxY/voMjvMJi4OYXAp1GhWMv/DNgpODs6bslIaXXamDH5TPGaY/gXVhfmodqnZlHuqGgsozzYHM4CEs/gJHmJxv5XjQoakt1k0K2RMaHic4GGPR68OwdcORLr0HkHYCJjnooV5dtPv9ZwLHjIjR1H1Tra5jqaQFFUTAaDKCMRpvEl0Ypx+L4IKZ6mrE6L0Hed7+IgNi0La2AtuAdHrNhQdx0/JYko5jua0VI6l6G9WzztgclZsLVNxDjbU+xPLP1d59iRYr1xVmLEPLN1zMNnr0DwjIOQjo5jLnhHhgN+o3j0lEPpWwJgQm7EZSYCZGXZb6VODAcISl7IZudwljbU8ux1NSySkO+IsWSZHRHJLmLpx9W5yXbPs4cLBYLflFJCIjLwHRvKx69+6MNlWv6gQ9ESIEuC/gI1E20nU8tX8N0//uNxhtqvY+dHongY7dlm8Nq//CHP8DT0xMtLS02LU0///nPceLECfzjP/4jAOBf//Vf8eDBA/zyl7/E22+/DYqi8Oabb+K1114jrUJ/+tOfyOTl2rVrO94+Wt1kjkoeoqkAAQAASURBVPj4eNy7dw+BgYGoqKiwUCjApCCYn5+Hl5eXzQkFTDk4YWFhePDgAc6ePYuXX34ZcXFxDNuaOcxJKaPRiNu3b5PWsM0IDw9HUFAQiouLER0dTci0wMBAjIyMoK2tDUePHoWLiwt6enqgVCpx5swZzMzM4Pbt20hNTUVwcDAJQadDUSMiIggJRudh+fj44Pz585icnGQowGBa2V5eXiar7puxf/9+/PrXv8bXvvY1PH36FE5OThb5TeaQy+V48OABseLQMA8jF4vFuHz5Mmpra9HV1UVWw+3s7Mjnyc/Px+nTpxmqMw6HA4PBQCYqg4OD6OnpQVRUFMrKyuDn54eioiKcOnVqW4IFJvtJZWUlJBIJ+vv7kZSUZKGIoifHtNWE3mf37t3DuXPnCCFDH+Po6Gi0traSqnlrKCwsZGwjn8/HmTNnIJVKUVBQgPDwcBJQT9eyR0ZG4sGDB4iOjiYqGgcHB6hUKguZa21tLfR6PSQSCTo6OrB3715IpVI8ePAABoMBXC4Xu3fvBkVRePjwITIzMy3slFtlHERERKCjowP/8R//YVNdZTQa8Vd/9VfQaDSMYxEUFITJyUmijKEzVejPlJCQYLHvmpubiS3UxcUFfn5+xDZEo6mpiViU+Hw+Tp48ifz8fMY5ODc3Z9HMuG/fPjQ3N6O4uBhf/epXMTc3B6lUCqlUyiCM6f3R09ODr3/96ygqKkJNTQ3jtRwcHNDS0oL4+HhiiYIpo0ooFOLmzZvg8Xiorq4mNsnV1VVMTk5idnaWvMcLL7wAb29vnDt3jnFctVotQ/116tQpPHz4EGq1Grt27YJarbaaKeTi4gIfHx8cOHAAJSUl4PP5SE5Othj3WltbERMTA6PRiFOnThEbcWtrKwAgNTUV3t7e0Gg0MBgMyMvLw6FDhyxUqubbHBoaCi8vL9y4cQNDQ0N49dVXGY+lbaTW0NbWhrm5OZSWliI9PZ2E/ptbis2Ji4SEBNy+fZtBItFtorS99N69e/D29mZ89oGBAYb6NyMjA0NDQygpKQGbzbY51sXExKCrqwuvvfYanJycLNRALBYLAQEBOH/+PH73u9+R7KqtVjv37duHlJQUcLlcSKVSQsaaP6empgZ791q3Be3duxdLS0u4desW9u/fj5mZGdy/fx+enp7ExrkZ9M9o9aR5gPlmcDgc8t5KpRJ37tzBpz/9aXznO9/Bq6++anNfZWZmori4mITHSyQSi2D1sLAw3LlzBwkJCQxrsTlOnjyJiooKjI+P29yHn+B/Diw2GyLvAIZ6RadRQzo5TELUKYqCo6sHvMJiMNFRBy7f/pltFR8F/GNTMdFej5CUbMbPp/vbIXB0ttku9Sxw8fKHbE5iNbRYtbaCmYFOhO/OsXpdBsalb6iXtrCvSXpb4RuZRMiHzU17Tu5eALWRN2VLuUIZjViZHrcIf7eIEuBwEJ5xECONlQhOziJkyXhbLYKTmfvQHK4+gRhre7qlosloNGCiox4i7wCIA8MhDgzH6sI0YwKrlq9h3kyVR1EUJD0tYHPsGBNugZMLvMNjiaJrdqgbV77zNhbGB6HXqLecZK7MTiAkORtsNhvLkjG4+W801PLshRaKCYqisDg+gPpbv8XxF7+7QfJsatuiM6WswcXTF1y+ACPNVbDj8jDd3w6dWgnfyMQdW99ozA51gTJSCM84tNH+FpeOMVrFYsPeODPQAb9oy3KLgLh0jDRWIiR1Hzh2djAaDdCplTbzoTh2XISm7MVIYyXCd+dgdV4Cl00khkaxjoXxQXKcHFzcGLY85eoKVGsrCEnKwsxA50Yez0gv5kd64RuV9JEoKL1Co6BaX8VIUyXYbA48Q6MwP9oPjcJSxcuzd4SLly/EQRFgczjYtecIxtpr4ReVZNW2B9M5bOu73S86CTMmZZbRsHGuu3j57agMAWYZSiuzkxvqpIg4clzp99wIr+/fsWWYhl6jBigjGvJ+B7adHU597Yc7yo+j39tnV/xGwYEpf9A/JhVsDgci7wCszm9kbClWpFiaHN7xOM/lCyzI751iZXYCRqMBUXtzoddpIV9Z3BgHPwbwCo2CQrZE7HzL02MfWZ6U0bBxnWpVSmjVCmhVSuhtLLroNDsTAH3sSKnNoNu8tsp1qKurw8svv8z42fHjx1FQUACYAprn5uYYZJGLiwt2796Nurq6ZyKl2tvbYTAYkJycTCT99AWqVCqh1+uJPcAcu3fvxt27d3H27FnU1dVZVMzDNFnu6uoCTOqr3//+93ByckJ3dzf6+vpw4MABi4wNmpSibWB0XpAtcLlcXLhwAe3t7ZicnCSTwICAAIbdytXVFVKpFAEBAfD19cWlS5fQ3NxMVD4dHR2YmJjA6dOnGZMCHx8fUjcOAIGBgQgMDMTo6CgKCwuJiiY3NxdNTU1YWlqyaHXhcrlQq9XYt28fBAIBpqam0NXVZbXl6Re/+AXKy8vxs5/9zIIUUqvVFsHHWVlZWF9fx507d5CcnIzQ0FCMjo5ifHwcmZmZFoqn9PR0NDU1wd3dHT09PQwCbnJyEnFxcQgNDcWdO3ewe/duhvLF1oR97969CA0NxUsvvQSDwUD2s7u7OzmXvL290dvbi8XFRayurqKvr88iQ8l8X6SkpKCmpsaqyuLJkydITk62quYSi8W4cOECBgcHyWfw9fWFXC7H48ePERYWZpGXRrdDZmVlQavVoqioCOnp6eRxdEi/WCwmWU5arRYNDQ04e/YsvvOd7zCya7bD06dPIZfLERMTQzJurFnCurq60NPTg4KCAkaD365du1BRUYGgoCDSWGeeYxUeHk4mpiwWCwaDAVNTU8TqCpOiorCwEMHBwRAKhaBMKzLmx8PZ2RnZ2dm4d+8eub4lEolFrg1FUVCr1SgpKYG3tzdSUlIgFosRHh5uERw8Pz8PvV6Pu3fvQiaT4cqVK4xzSqFQoKqqCqOjo+ju7ibKNPNz4+LFi7h58yYh/F1cXBAYGIiYmBhwOBwoFAqUlZVBJpNBq9UyXr+trc1iIn/kyBFUV1dDo9FAo9EQBYxOp0N9fT3W1tZI4+T169ehUqmsjncdHR1ISEhAYGAgCgsLER0dTSyI9GdobW1FS0sLfv/736OiogKvv/661XDlzeOCUCiEWCzG8vIyamtrGQsa1m7i6H0cExOD3Nxc1NfXg8Ph4OLFi+jp6cHt27dx6NAhaLVaC/sireSiyyzo1kb6fXJzc4m9kx6jFhYWLFQ7ERERMBqNSElJwZ07d2yStFwuF1VVVZiYmGBkR5ljYWEBiYmJCA0NJcpBW01yNTU1xJKLTWURsbGxCAoKwvLyMskGoygKy8vLmJ2dJecnzIjI48ePo7S0dMfBnvv27UNpaSmEQiG8vb1tVio3NTVhbm4OoaGheOeddxAUFISKigoYDAa4urpi9+7djO8Ac5XXVqpEWv2pVqsZFkyNRoOmpiZC/H1CSv2/Ay5fYDVEXdLTgofv/ABHvvgtohgxB8eOC76DI/hCZ/CFjuAKHHZ8Hu8EbDYHDiJ3rC/Nw8ndayPHqKMO7v5hzxwybgtufsEYa31qQUqtS+exPD22Zcsgh8sDX+gIhWzJqo1ldX4aXIHDtsHzTmIvUKAw1dOCgFjL72pJbwuxu2wHNpuD8IxDGG6qRFBCJhYnBuEdEbdl1hQAOLi42/wcCtkSZoe6EJSQCS5fgHXpHBxc3LAwNgC9mVKBVuXR0KoU6K8uhaObp82mMoqioF5fhX1EHGl6s9UmuLowQ+yCIu8AjLZUE1LKGvQaNdaXFnD1+78HTOHXLBYb/jEp22b00GCxOaAMBpT+5jWcevlHCErc80znuF6nxUR7HbzCouHo5gmdRgU73ob6KTRtP8bbayEOjLCwjlFGo0mdZXncWCwWQlKyMdZWg/D0g5jubdvW5mbH4yMocQ9GmiphxxPAL3qjnZAmFvgOTiRY3RpmBzvJtWA06MFiseAdHrsRKt7fDp1GBb/oFKuh6hv5VduTVnqtBktTI+Dy7VH61mvI+btXEBiXBoHj1uong04HRzdPhLt5EpWLNRvl6pwlGUdD4OgCsFiYH+2HYnkBgYmZNsnRrRaEXX0CIfIOwNxwN+ZH+8n1rNdqMNnViPAMy4gXa9CqlJgf6YHRYIAdXwDfqCQYDQZ4hkRirLVmI8Ddyjls0OusKnvYbA4C4tJM29EArsABvpGJmOxsAFdgD+kzEFIfFAvjA1CsSDfaEJOzYcflISAuHXPDvRuWwbj0HV+X/5UQitwRkrIXEx11UMiW4O4XAtW6DFqVEjqVAlq1Enqt5pm/61hsNrgCIXj2DhAIneEs9oEdX2D1dbQq2243c3ysSSmj0YiXXnoJ2dnZZOJjDXNzcxYTBS8vL2LRoP/e6jGbQU+4aNA3ppmZmcjOzkZ7eztZzefz+XBxccHvf/97fOlLX7L6eiwWi2SjUBRFJghTU1Po6OggK9x0hsejR49w6dIlVFZW4uzZs4yw3YiICDLRpUmp4uJim7Yma0hKSoJKpUJWVhZ6e3stwsVFIpGF5TAtLQ3R0dFwdHTEb3/7W/zt3/6txev6+Pigvr7eIgMsNDQU3t7eOHz4MGZnZxEVFYXQ0FCkpaVZnMAlJSX4/Oc/j6SkJAwMDODixYtWyR2YJpNxcXG4c+eOhc3G3CJjDicnJ1y+fBktLS2YnJxES0sLabDr6OiAVCqFXq8nZNmFCxfw8OFDm/XXDg4OuHLlCmprazE8PEysQrQyznxbKyoqoNfr0d7ejsbGRhw9ehQLCwsYGxsjhAsNOtelqqqKrPZvhb179+L+/ftwcHAgKqCuri44OzsziCU6RN98krpr1y7s2rULDQ0NaGpqwr179/D1r3/donkOJiVVXV0dxsfH0dLSgrNnzzLUZdag1WoxOzuLvLw8Eu4fGBholVyiIZVK8fjxY5JZU1ZWhhMnTqCwsBDx8fEW70k3UUZGRqK9vR2FhYU4efIkuFwuUc3ZaoejmwkPHz6Mhw8fMianNM6cOYNbt27h6tWraGtrs7rtXl5eiI6OJhYmmUwGF5f3ffMdHR0YHR0lDZf5+fk21W0ymQw1NTW4dOkSysrKcO3aNdy4cQMXL14kZKtQKERaWhr27LG8sZyamkJDQwMKCwuhVCqRmZlpofIEgIqKCqJSunXrFoP8XFpasihZgIlIaGxsxF/+8hecOnWKKKoyMzPJ511fX4evry+ioqJw9+5di3N4amqKfPawsDAMDw8zsuRYLBZSU1M3Jm4TExgbG0NrayuysrZf6RsdHYWzszO+8pWvEEvn3r17LVRrMC1atLa24vTp02Scocl1kUiE2NhYonD8zGc+g0ePHjEISW9vbzQ2NkKn02F4eBheXl4MxQ1tAyssLGSo6MyPl8FgQHl5OYRCIcrLyxETE2NzIaagoADFxcXkOtqsboMpP2z//v3g8Xg4ffo0rl+/jsuXL1u9TjerUOmyCJjy/EJDQ/Gzn/2MkJosFgvu7u7w9vZGZGQkeW5nZyf+9Kc/ISYmBjdv3sSJEycY5/5WyM3NRV5enkU23vr6Oqqrq2EwGJCeno6MjAxUVVXhypUrpH0Sppyv+/fvw2g0ws3NDbt37wabzSbZjDMzMzZbId3c3KBQKKDRaNDZ2Unso3SQPf0Zenp6SBPpJ/h/DwJHZ+i1auT+/Q9g0GnhERRhoegw6HXQKOTQKNagkEmJ0soWzCdzXIED+EInCIRO4Ds42gxi9wqNwmhzFRxc3DHWUm2zKv3DwD0gBNLJYYgDN8bTldlJKGVLO5qk+UTEY6S5yiLHRq/TYnl6bMeqCGexN0BRkPS2wj/m/YUN5eoK7HgC8OyZ96p6nRY9j+/afD2+gyP+43+fR8qZv7LIGbMGz5BIjLfXImSTompuuBcGvZbkdlFmlp+AuHRMdTdaVZPQQejHvvwvGGuptklKzQ13w9tEiLJYLIQkZ2O8rdZqy9zy9Bhj+zxDojA/2sfI+qFhNBow1l6LiIxDYLHZmOioR1BiJrQqJcbb6+Dg4mozi0av02JuqAsGnQ4CR2cIXcXI+Ztvws03CBMd9WBzOPCNStrWNrQ6P03OAVrZsjw9ATe/9/MNN7KQmmA06Bh5SrNDXTbtljARor67EjDR2QBQFLh8exh0WmiUcmgU61Ar1qFTKy0WsdeXFtCQ91uc+cefwjMkymYznzmm+9sZeVoCJxGUqytwcNmI/KDVRZLeDeudf0wqg0xbnh6Huw3y0Ly9j8PlwTt8Q11/5us/AduOizXp3AZhZANGo4FBZPhFJUG1toKRpifwjUpkqKbWl+attslRRiPmRnqhU6tQ8e9v4ODn/uFDkessFgs+EfEw6PWQ9DRjfrQPy9MTiDlwiqgIWe8/mP4HNIp1THY1gjIawRXYwzcqiUkSsliwd3ZFYMIGeRtqJT9OLV/bslHRjsdHcFIW1PJVjLc9xcDT+4jal7ul2vPDgKIozI/0QrUug0dwpFULrXd4zIZNurUGHkHhNsPZ/7ug06gwP9ILNscONf/3F+A7OELkEwiewAFCVzFE9kJw7Lgf6QLMB8XHmpT6yle+gu7ubgvLyn8H3njjDXz3u9+1+jsOh8OYkKrVavz85z/Hq6++yphUwXRj6+/vD39/fxw6dAg/+clPcPjwYbIS7e/vj1OnTlkoYOg68sDAQExMTCAoKIiQHYODgygqKoKDgwO8vLxw//59HDp0iNFyRcPOzg5arZYxGVGr1SgtLUV0dDRKS0uhUqkYE3iYgnBVKqYMr6urC6OjoygvL0d0dDRu376N9PR0xgq0QCCwmtPV0tKC2dlZfPvb34ZQKERgYKDVIO8nT54gJiYGnp6eYLFYuHLlCmmT2rzST9vqgoODERgYiNLSUnh6epKsGaVSabNxb2VlBQsLCzAajfjBD36AuLg4xMXFwcvLCzExMYxJ2u3bt6FQKHD//n0cOXLEpuIgKysLCwsLuHHjBo4fP475+XmEh4czyKicnByGekuj0cDb29siSJeiKBQVFeHf/u3fMDMzY0Fw2QJdM08fv/n5eQs7Ka0O23yuAkBycjKmpqZw//59XLp0CWNjY4xtgukL6le/+hWWlpZQVla2LSHV3d2N8fFxXL58Gc3NzXB1dcWFCxcwMTGB/Px8xMbGYteuXaQVjcfjkdyqy5cvW7QI0hlP9ISUhvk1lJSUhOjoaNy9e5cQpI2NjUhMTLRKcIpEIkKccTgcq+cNm83GgQMH8PjxYygUCgsFEY2QkBAolUo0NjaS7RodHSXKIPO8t9jYWHR3d1uQ7rR6ydyqaGdnh2vXruHmzZs4c+YMg4Dd/GXS0NAAjUaDy5cvo6ysDGfOnLHa/reysgInJyeiMDlx4gRKSkoIKWHtS4ouXFhaWsKNGzdIztpmtLa2Ii0tDUKhECkpKSgvLyekw2YVYVxcHAoLC62ek0VFRfjUpz6F2tpaBAQE4NatWzhy5AiD+BGJRCSnT6fTobW1lSg/vby8cOXKFdTU1KCzs5MQjrSV1NnZGZcuXWK8p5eXF+rq6ghZPzIyAplMRr4TysvLyfnIZrMRHR2N/Px8CAQCq+SHvb09UlNTrdrgWlpaIJFIcPToUTg4OICiKMYx2LxPY2JioFarweFwsG/fPuTl5TGuE5iIJvq6pEnzW7du4dy5c4xz21qoOv3zjo4OuLm5oaSkBBqNBnv27LFJMo2OjmJ1dRUZGRng8Xh47rnnUFZWBi8vL8Z1spV1/dKlS/jP//xPODk5obe3F8PDw3BycsKxY8cY6l+ZTAZXV1ckJiaSRkI3Nzfk5uaS96CPj5ubG4aHh+Hn5weDwYCFhf8fe/8dHldamP3jn6nqvfduSZasYtmy3OVe5N4XCCVvCATYsMnyQihLgCwkYYHQCRBeYIFd925L8roXSVZvltV7ryNppNH03x8zc6yjGXm9C/m+eX/X3te1l9fyzGjmOc85c577ucswPT09jI+Ls0NGRkb467/+a9rb2+0UbB/g/30Y9DraKx8Sn51LX0MlUVnr6aopwS8iVhQKLpMrcPXyeVcl0EKYzWb0cxq0s9PMTo4zMdDtMNzado5qplX8+lM72fnyvzDc/hSpTI7C2QWFsysKZ1eUzi4onFze9y67Z0AoHZUP8Y+MZ6SrBaNe/67Kk/kIiLI8bz7501ntmFhhke8JrG1iICamBlrqBMLLoNNaQuv1OmQKBYnrdtgvXK3QzqrZ9umvYQbGejtEhKGHfzDeQeGi8ZJIJNaa+FmULq4YDXo6q4sJiF4iytNRjw0LVhuZXI6Lp4/DsPju2seW1jCJhOCEVAvJssBuaVFJTeGS8Ow6KVc6ERC1hIFmMSkzNTpoZ/Fx9w1guKPRYQtYe8UDYpevE31Gs9mM0sWVmOVrmZkYpb3igdB+ZjaZBKuYTKEgOGGZQDp1VhcTsSybyaE+ojNWYzTo6W+qxajX4R8ZJ3x2iURqtYhJ6W2oxMnVzY6U1M5M2Sl/IlJXWgPe9UKAuU4zsyj5qh4fYaK/E5PJRP6Pvsralz5Ld12pRbno5oGTmwd+PgEonF1E42ILu9/+mX9mVjX2Qlk5mulJzCaT6BwPjEm0HN95pK1UJiNyWTYGvY7eJ+XIFErCkiy2Vf3crMjuOD+gW+nqJtjJbBhoriMgOhGliyvjfZ12RO18WFoSxUSHi6cPsSs20N9YDdYcIxvmj4dqsFfIRQqKW4qzu6dAOFoaFY2ELFn2vkhw/ZyGofYGkEjoqi7GMzCUgGjL9UGktLL+v147R/GZX7H31e/ahdgjqM0sxLTCyYW4lbm0lz9rAxUeNzP9QvlM6rFhJFIZfU+rCE5IoatWilQqJSB6yXNJwBeF2WxmoLkW7aya4LilAtm48DE2KF1ciVuxgeGORsb7uohMy/5vb3mdjzn1lOVaYjIhd3ImJGEZQ+1P+dgPz9HXWIVfeOwLWyb/v8T/WFLqc5/7HFevXuX+/fuEhzvekbAhODiYoaEh0c+GhoaEhb7tz6GhIdFO+dDQ0KIB2l/+8pdFlsCpqSm7BiOsC7T8/HyOHz9OSkqKYFeyYW5ujr6+PkpLS1GpVHz1q19FJpPx6quvLmqzm28FycjI4PLlyyKli03VMjw8zObNmwkJCREyohYSJuHh4fT39wtNTTbb3t69e5HL5XR2drJ8+XJSUlK4du0a0dHRZGRk2C1wrl69SmJiIvv376empga5XM7hw4cpLS2lurqanTt3OiQnZmZmyM/PJzMzk6ysLPLz89m4cSOnT58WAsVtqKiowNfXl5iYZzsQtjaps2fPcuzYMdFrFxUVCS1bUqmUvLw82tvbOXPmDLt372ZmZka0cB8cHBSC1318fNi+fbtAGJlMJkwmk8OWJalUyrZt25iamhLyl2zWp4UIDAzk2LFjFBYWUlJSQk5ODkaj0Y6MwmqDys/Pt1OQTE9PC8qSoqIiduzYwTvvvENQUJBdULUj7N+/n2984xvI5XJee+01u3+3ZZYtJAAaGxtpbGwUcqsWa/QbHR3lH/7hHzCZTLS0tFBUVERUVJSgerEdU5PJxLVr14iJiRGRHDbVUlRUFFFRUTx58oQLFy7g5eVFZWUlfX19bNy40a7y3galUklYWBgdHR3CXDGZTHY3cU5OThw6dIj6+npeeukl/vZv/5YdO3bQ1tbmUK5sNpsJDQ0lPz+fwsLCRcf32rVrXL9+XSAuZTIZLi4uov/8/f0ZHByksLAQjUZDTEyMiIyyYcmSJVy4cEFESmm1Wi5evMhLL70kfCbbnzKZjOPHj3P69Gl2795tZ8m0NfSlpKSIbJyO2v+whlLPVwD6+PiQmJhIcXEx2dnZojHt6uqirq4OiUTCqlWr8Pf353e/+x3p6emcPHmSw4cPi8jc+aRwWFgYWq1WUJDdv3/fLiNwPgFvw6NHj0hLSxM+Z0REBOHh4dy8eRNnZ2ehmTQhIYGWlhZWrlwp2KQXYt26dUxOTnLu3DmePn2KSqVi27ZtDslxZ2dntFotKpVKsLEePHiQgoIC4uPjRWNrNBopKiri+PHjXLp0SVAUubq6kpiYKBDsUVFRDA4OCgrU/v5+iouLycrKEm1y2JosbVl3NqhUKoaHh1m+fDkjIyN0d3eTlZXFjh07OHnyJMePHxeu/wvnt0Kh4MSJE5w9e5YtW7YIn7murk5EftnIoIiICGEM8/PzOXDggHCMF17nh4eHaWpqYteuXXR0dKDX64VyjZaWFs6fPy9k9dXX14tssTYYDAYqKytxd3dn3759XLp0yeExnJ89ZSvTWPgd7ufnJxBUDx484K/+6q/47ne/i16vJygoiPj4eKEEw4Zr166h0+m4dOkSCoXiXe85PsD/OzDqdUKw9/xFQVR6Dj315RgNhj878FwikVhbr1xfKEtkoKWOHZ/7Jr5hUXgGhGI06C3ZHHMatDNTqMeG0M9pAPF5PH9jaPGfSZA7OSNXOnP9h19hxYGPvVCj3nx4BoTSXvEAv4hYpFKZRVkSn7rooup59h/PgFDMZuh7WoVc6YRfeCy9DRUY9XpBSWLLRdJpZhl2EGBuNpnorn1M/KrNdNc+JjAmUSCuzGYz06OD9Dx5pjSXKZQERCUQkphGd20pvmHRjHa1EJ2xxs4+NjHQRcQ8K2FQbDLt5fdFpNRIZzOegaECEeHq5ctIZ7PI6gcw2FJPyBJ7V4eHfxCzUxOirK+xnjY7FRdAaGK6JXtpHvHQXVdK6JJ0UX5UYEwiwx1NQhC2m48/sVnrGe/v4uYvv82WT36ZwNgkXDzEx1412ItXUBguHl4Mtz+1jJdcIdiyRrtaGO1uw8XTGxdPb6aGBxjtanHYlvY8hCVlMNBSz2hPGwC+1pZAg17HWHerqIjAzdufsKXLmRkf5eBXf2oJvH6XcGr1+DDjfZ34RyUwNz2Jd0gEbeX3iMlYg8LZZdHn9TVWEbdCbGF9nkJErlBaFWkzdNYUCwTJ5HA/Kmu7nKuXL5FWwtIR9FqNQMD4hkWjdHWn3dp+uZB4npuedKiUsym4ZicnaC27S1iShWTWzkwz2PoEAK+gMDs1pEQqQyKRErksG7PJRH9zLbrZGQJjEnHz8X/u558aHWSirxMkEqslehlSazi+f2Q8qsGeRcm19ooHfOSNt+h7Wo1c6WxnTx7uaBIF2UtlMuKyc+mqKcY/Ml44/+bUU3gsEsqun9Mw0FKHyWjEPzIO3/BYtv3daxj1OsKXZiGRSBjpbGKovdF6jXYjIDpxUeuvTKG0y2mztVIadFpCEpYtqtpa7BoYGJOEXjtHR+Uj/MJjF1VYIhB17y3bbT7U1hwtJBKcXD1EGWpGgwGdZhYXDy+iM9bQVVP8nrPA/r/A/zhSymw28/LLL3PhwgXu3r0rIigWw+rVq7l16xavvPKK8LN33nlHICxiYmIIDg7m1q1bwg3s1NQUjx8/5u/+7u8cvqaTk9OiljEbbOHT+/btExZfdXV1QmA01sVNXFwckZGRnDp1irKyMjw9Pbl+/TouLi5s2bLFjkgaGxsTqZ5s6iNblsr09DS3b9/Gzc2N+/fv09zcTGxsrLA77OHhQU5ODgqFgoiICCoqKggKCuL69eukpqaKbvZtFyMnJycOHDhAc3OzyEbR2NhIQ0ODKADc39+fsbExQkJCyM7ORqfTUVBQQGhoqGjBUV5ezvDwMIcOHbL7jJs2beLu3bts2mTxIzc1NaHT6Rxaotzc3Ni0aRNXr14VLaAmJyft7EixsbFER0eTn59Pb28vK1asEHK6goODRRXnWHf4IyMjiY+Pp6amhlu3bonyjmzKHayZQYcOHaK5uZnPfe5zKBQKwebHgouS2Wzmm9/8Jj/4wQ9ISkqirKyM7OxsUR6OXC7Hw8NDFLDb1tYmkCjz3+e2bduoq6sTqU0cwbaoTE5Opqenh8uXLxMZGSlauC1sazMajQIhaSMogoODGRgYsLM7mUwmbty4wUsvvURBQYFwjnV1dXH58mVcXFxwdnamubmZ6upqdu/eLSIGF/5urGqhlJQUvva1r/HGG28wPj5up1RaaMVcsWIFZ8+eJTo6GolEQkNDA0uX2t94j4yM0Nrayoc//GESEhJYt24dcrncodrNbDbz05/+FDc3N4HscASpVMratWtZu3Yt7u7uGAwGNBqN6L+JiQkmJib44Q9/yLZt2+jv72diYoKsrCw7IiknJ4fi4mJWr16NwWDg7NmzIoLB0e8/fvw4Z86cYdu2bcLPVSqVcD1amD1nw44dO7h//z6zs7MEBgYSFBRkd0OSkJDA2NiYkLtWWFiIXq8nMjLSoXonODiYQ4cOce7cOTZv3iyEkC88zrGxsWi1WoqKitBqtXbZUJmZmVy6dEkgpZqbm5HL5XbfARKJRBjT06dPs2XLFnx9fSkrK6OsrIz09HQRcWI2m2lvb6e52dJK5ebmxte//nV++tOfUla2eEvUZz7zGX79619z4MABYYyCgoIYHh4WqRYbGxtRq9VMTU1RVVUlkG2zs7M0NTWJ2jYBfv7zn9PQ0MCPfvQjO4WWDRs2bOD+/fuCOtZsNlNYWCgQ835+fsLrenp6sn//ft5++20ht8rRTaZUKuXo0aNcuXKF5cuXExYWJlghbHlNycnJou8HGzEmkUg4cuQIZ86cEV2bZmZmuHfvnpDRplAoRE25CQkJREVFce3aNVJTUwWi0mQyUVdXR39/P1jJ1uXLl5OdnU1+fj4xMTFcvHiRhIQEUblAQ0ODiMRPTk7m6dOndvZzWyFFcnIyV69excvLCz8/P7vH2WA2m1EoFBw5coS7d+8yODjokDz7AP9vwWjQ01Z+n/jsTQ53hSNSV9DfVIPRoMfXwW7+fxe0M2piMtfSVWvJQnHx8Ebm7vWX2dE3mdBr5+hrrKL3aRXBCanMLWg2s8HJ1R0330BcvXzsCKeI1BX01JfjExKJTK4UFrAmk5HpkUGmRgYwmy0bTDd+8S22feprdmM8nzAb7+ui+PR/suOz3yBiWbZDq5jSxRWdA8tkR9UjojPXWhbmS5fT97RKIC0kEgmeASFCNhPzgu51s2oKfvIaWfv+irCkTHQatcPQ6IXEgCWQ2mKjm1GNoZubJSBa3HobnrKC7rrHArFkNpuZU08tegyDYpPorC7C1csHnWZWGM+FcHb3RD83i8loRCqTMdjagGdAiJ16z8XTh+GOJrvnm4wGdr/yHQy6OYefVTXYLdgTpTK5HbHmH5WAf1QCs5PjlJz5FZ3VxXzo3/7wvtrEQhJS6a4r5foPv8LuV76DaqAbmUKJX3is3euZzWaGO5uIW7GBsZ52pkb6F7U92QipyGXZDHc04hkQikyuICF7E+0VDwhNTHMYtj7QUkdwfKrD70fvkEjG+7sWvQ4YdDrkCiemhge483++y/q/+jxLN+S9LzWju48/TikraC29Q0zW+vfUtubq5UPoknQqrvyB+lsX2ffF7xOxbOWihLF/ZByj3a0ExSYhkUoJS8oQAvNHuprxDo5AIpVhtK5lhjua0M5acmE9/IPtyLbhjkYCopfg5u2Hfm6WofZGu4bAsZ52fMOiLblPKVkWi6hcLsp3c9RiKZFIiM5YQ29DJbo5Db6hURj1WjtL5nhfJ9Ojg8idnEWqtIHmOoLiliJXOgk23PmWVu2smv6mGswmI2azGa+gMLwCw4TP5xUYxuRwH37hsRgNBvobLeqy0MT05xKdCIpBx+eIwsmZuBUbGO1qoaPqEVFpOQ6/j6ZHB0XXsReBarCXyeE+MJtx8/ZblBztfVJOuJV4liuU+IbFMNzRSGDMe293/O/E/zhS6rOf/SxvvfUWly5dwsPDQ8h88vLyEpQmH/3oRwkLC+Nf//VfAfj85z/Pxo0b+f73v09eXh4nT56kvLycX/3qV2Cd6K+88gqvv/46CQkJxMTE8NprrxEaGrpoTtC7obm5mebmZlH+SnR0NFevXhWRUlhv7E+dOsWxY8dQKBTk5+ezb98+pqenuXr1Kh4eHmzcuBGpVEppaalgP7MhNzeXO3fusHr1au7cuYObmxt79uxBJpNhNpuZnJwkICBA2B2emprizp07GAwGnJ2dKSgoYHJykgMHDrxrQ9ySJUuIj48nPz+fPXv2UF1dLcpBwbogml+DrlQq2bdvH52dnZw9e5bR0VHOnj1LVlaW3Y29bawCAgKQSqVCUG5PT4/D1kIbAgICSElJEZQWGo3GTnmENbuotLQUqVTK66+/zic+8Qm++c1vLroT0NPTI6jS0tPTGRgY4MyZMxw8eBC5XE5/f7/I7jQ9Pc3Tp0/50Ic+xMzMjJ0yzoaLFy8yPT3NrVu32LVrF2q1mqKiIubm5iw3VmFhLFu2jI0bN3Lp0iUOHDggVMIvtKXZsGzZMoKDgzl58qRo3hqNRu7du4darRYWlSaTiXfeeYcdO3bQ3d3N5cuXUSgUbNy4UZQ71t7eTmVlJXl5eaLxzMjIoLCw0I6UunTpkpBhM39MbaonjUbDJz7xCUpKShwGA89XSs3H/fv3OXHiBGvWrOH+/fsoFAq2bNki/A5HzYLzic2enh5h/mMldh88eEBAQAD79+/H2dmZnJwcrl275lCxZBuLbdu2oVarHVrqbNBqtYKt9Pjx4wK5OL/gYGZmhra2NioqKggODiY0NBSNRkNFRQXT09OYzWacnJzIysoiJCSEx48fYzQaOX36NIcPH35uWYFtHI8ePcr58+eZm5ujoaGB9vZ2OzLTkYJsw4YNAkn6q1/9yq7x1IZjx47xxhtv8PLLL78rQa9UKjlx4gSFhYWEhYWxdOlSu99rC8c+f/48g4ODuLq6snz5cpENLyQkhP7+flxcXGhpaRHaDW2Yb2sIDQ3l6NGj3Llzx9JcND6OTCYjJiaGW7duodU+C26MjY1lx44dSKVS6urqaGtro66ujnXr1jkk8FQqFd/4xjeYnJyks7NTIMZiYmJobGwUSKlbt26JrGO2kH+sSqmFVjCTyUR7eztKpZKJiQmuXbtGSkqKoGS1wd3dXUTu3Lx5k61btwqfZyG5a7PonT59WhTyvxASiYR9+/Zx48YN7ty5g5OTE1euXBHymhaivr5eIIUUCgV79+7l/PnzHD58GIPBwKVLl0RFIUqlEp1ObFtSKpUcPHiQ0tJSdu/ezdWrV5HJZCxbtmzRPLXExEQSExNpbm7mwoULwvf2wszExMRELl68KLJZ1tXVCYUUGo2G/v5+1q1bx/3795HJZHZj09zcLFK+5ebm8vTpU65du2a3ifEB/t+B0WCwZCOtzH2uTSE0MZ2htgZRBtN/J+bbVqLSVtFadpfo9NV2LWrvFxKplNnJcVw8fNj9+W/j7OHFrGqMiFRxo6bZbEY3q7ZYp/o6BYJpPlof32aguY4NH31FCIaXSKR4BAQTlpwpjOuWv/kyZrPZYb6NDUaDgR2f/QZObp70PqnAJyQSr6Awh4+df53vb6olIGqJsDCVK5SYTSaMBsOiigeFkzNOru5opibI2Hmc5PW7cXJzZ2Kgm5HOZtFjq66fxCckCjcff+HzuPsGMtLVgkGnZaClTsifmg+ZXI6r17PQ+oX2PEeISl9N6+PbyJVOz1UphCUvp7ehAg//YCRSyaItglKZ3Gp9tJAaBp0W9dgQ0RlrGGxtEN6bDQsDukOWLGOwpY7wpeLNYAtp0Uzcylwydr/ExEA3ulk1cqUTwQnLhHF3pA4xGvQMtzdago2tCsKVBz6Oh1+QQxuXDf1NNYQmWr4P/CJi6ah65JCUmk9IYVUKOUVb7r0kUilxKzfSVVOCT2iUaIGvnVVj0M7hvggZ6BUYSmd1Mb6hUYL6TjXYI3xOV08fwpIzGWp/ys6Xv4V3SCRdtSVIZfLn5nHptXMO8+UUzi7EZefSXvFAaNhTDfU6PCf0Wg3DHU2CJdjFw5uIlBUExiSh08zS11BJWPJyh9c5Fw9vO/JSIpEIZMTEQDd3f/sG0ZnriErLJiA68bkE5OzkhPBcn9AohtobmejvEo6t0aBnamRA1DAalZ5DR+UjQpak4uzu9VxlJUD40uUMtTcy1N4o/Myg1zHQVIPJaMQnNNJhPt58i6i7XxCqwR7RuePk6i4oAs1mM1PD/fTUWzYmJVIZgdFLGOlsRj0+Ala134tel9UTo7j5OHZ32OAflYB3aBSd1UV4h0TaEaCzk+P4RThuIbbBbDYz1tPGjGoMzGa8gsKJSrPPfZ0P7awamUIpmqNeQWH0Pa0SstT+p+B/HCn1i1/8Aqw3hvPx29/+lo9//OMwr9LdhjVr1vDWW2/xta99ja985SskJCRw8eJF0aLyi1/8IjMzM/zt3/4tKpWKdevWUVBQ4LDJ6d1w//59nJ2dHaoGZDKZkHWElTCwWdVsu/e2E9LDw4N9+/YxOTnJlStX8Pb2ZmRkhMjISGpqahgZGRGajf7X//pf/OhHP7JTHS2s48W6c759+3ahke/NN98kNzdXVGX+PHR3dzM7O8vPf/5zWlpa8PPzE9kZFsuNioyMpLW1laNHj1JRUWGncBgfHxcpmzZu3Mg3v/lNUlJSRM1/iyEmJoaZmRnKy8uZmJgQFAkdHR00NDRY5JlKJStXrsTLy4tf//rXZGVlPbd9amHbWEhICPv27ePs2bOCGiMtLQ2dTsfNmzdRKpXs3bsXqVTK1atXHb7Phw8fkpGRgbu7u1A/7+PjI6gesJJhBQUFmEwmqquruXDhAv/8z//sMFh8PgICAjhy5AgXL16kpaUFnU6HTCZjw4YNIlJk/me1NSDqdDru37+PRqOhvb0dk8kkvN5COFI0lZSUsGzZMkGxtDCvTKvVcvXqVT7zmc/wqU99itOnT3Pw4EGRpcvR6968eZPo6Gji4+Pp6+tjx44dqFQqLly4QHx8PGlpaUxNTdnl2fj5+aHX61GpVMLPJiYmuHfvHr6+vnYB0N7e3qxatYobN244DDK3WZAkEgl37tyht7fXzsYzNDREYGAgUqmUvXv3cvnyZTti22g0iux3169fJzQ0FBcXF1GekFarpaKigsnJSWZnZ5HL5Vy6dInGxkb8/Pzw8/PDxUWcoaDX6xkcHKS/vx+VSoW7uztHjhzh7bffdtgi6khNODc3R3t7O6+//vqipOr9+/f505/+RGJiIleuXGHr1q0OQ9IXYseOHVRXV/Mf//EfArltu0b5+PiwZs0acnJyKC8vJzs7m6qqKtHxW7JkCcXFxeh0OrvPExUVRXd3t11o/+bNmykvL+fDH/4wb731lhAkvxiR1t7ezv79+4mOjubUqVN2rZZY5/qHP/xhZDIZVVVVXLhwgY0bN+Lr6yu0FNp+Nt/yK5PJ7Gx3NpjNZk6dOsXHP/5xYmNj2blzJ2azmYaGBiFjMCQkhMzMTCQSCSkpKdTV1eHq6oq3t7fIZjg+Ps5vf/tbu9f38vIiPT2ds2fP0tra6tDug1XF9dGPfpQ333xTZOdbiIGBAZHK0sPDgzVr1lBYWMjExASHDx8WXWtsxRsLUVJSwvDwML/97W+ZmpriwIEDDjcVFsJmVW9ubiYwMJBTp04JJKq3tzdBQUEEBQVx+/ZtpqamiI2NFZ2PJSUlQlD/hg0buHv3LlKpVGRdbm5utvsuT05OJigoSNgAeJH3+gH+58BkNNJWfo+4FRvetaUNa/7KSFfLoiHTf0kMtTUIO9YAsVnraSu9S1x27l8kc2R2coKpkX4il2ULi9mA6ETaSu8Sk7VOUCdIJJJneT0OKsJnVGOox4dROLsSkrBsUaWAUa9D4eyC0tWNqdFBUV7T/Pfk5OaByWggIDoBhZML4/1ddFZb7FBBcc82MfzCYxjvtdSWqwZ7kCmUdtafsORM+hurHJJg2lk1fQ2V+IRG4eEfjH9kHKrBbsKXZtmFEg+2PiFu5UYMei39TdWYF2yY/dff5bH3C29YSD5PH7vraFBsEm1Wq99i2TfamWkLqWNtn7IokH7Nrs+/LhwHHNgwi0//kqj0HFYdti8UsiE4IZXB1idCXlhX7WOBDAiOX0pb2T3cfQIENc9gS73IFidXOmFccL3WTKusSrRVqMeGUDq7CotnvVYjqEdcvf1wdvfE3ScA1WAPk0N9AMgUCgKiEwVyYKCljmVbDzLc0YTC2cUuq8t2zExGo8ge6BUQyuRQn4ikWUhI2bDwuESl5whNfLYQ9t4nFcQuCO+ff4zG+zp59PbPMJuMljnnF2RH5ALMqScF+1N0xhpLHldjNUaD3qG9a6SzyWEYNrZmyZW5dNeV4hkQyuRQL1HpOZhMRka7WphTT1mPk7MoxN1oMDA7NYFveAxKFzdcPLyEDK75ZPFi42ODZnqSib5Olud9mMDYJKZHh54bFK8eH7Yj9YJik+htqETh7Iq7bwDdtaVEptlvcEVnrhEyo2Ynx/FepDVw/usOdzZx7/c/YP1HPo9UriA0MX3RAgmjwSD63P4RcbSX38czMNThdVUikViUUtb5pZ2ZpvLqW9TcOMMn//P6or9nMWgmJ0SB/4tBrlASm7Wesd52OiofEpm2SqQYc5zjamS4vRHtzDRIJPhFxL2nDZT+xhqiM+3LG8KSMy3toCs2/o9oCeR/Iin1bgwq1hyUhTh69Kio5n0hJBIJ3/rWt/jWt771Z72/e/fu8bGPfWzReuk1a9ZQVFTE+vXrMZlMQlvW/AWSLdDZ9jMvLy/279/PyZMnef311/njH/9oF7j9y1/+Eqw7wfN3dReDRqPhwoUL7N69m9/97nfk5uZSUFAgWOEWs5zdvHkTDw8Pjh49KljFiouLhdyoxRQc5eXl9PT0sGXLFvLz85HL5YKqyYYnT56IlAO1tbVotVqampqEVqNly5Y5zO6yISkpiXPnzvHKK6/wm9/8BrPZTExMzKI72gEBAUL71OHDh99V8YHVynj8+HEKCgpobGxkbm6Oubk5tm7dKnq+n58fo6OjIqtlc3MzSqVSUD6sX7+ea9eu2eVGRUREEBERwcjICJOTkzQ1NdHQ0EBYWNi7vkeNRoNCoeAb3/gGly9fZvv27Q4/+8JzSalUsnXrVsbGxvjEJz7BV7/6VaRSKVNTU3aWsvmvIZFI6O3tZW5uTrSYW7ZsGfX19SxfvpzW1lZqa2s5cOAAjY2N+Pr6smbNGs6dO8eWLVuEfCipVCpSSl29epX09HS7Y+7t7S1YJc+ePUtXVxdbtmwREVxYbY1nz54ViCBvb2+HbWQ2hIaGolarRblt82F73qZNm4Scq/lkX1lZmaDecXd3Jz093e61zp0759CyuhBOTk6sWbOG6upqxsfHeeWVV9iwYQNzc3OMjY3R2dnJ7KzFyrB//37Onj2Li4uL0Hrm5eUlkF7BwcFcvnyZ3bt3i87RkZERUTZXT08PZWVlHDlyhEePHqFWq+2UQvX19Xh4eJCXl8eTJ084fPgwN2/eRCaTia4di2FmZoYf/vCH/OM//iMvv/yy3TXDbDYzOzuLs7OzYP+0/byuro4jR45w8uRJRkdHRe89Pj6ee/fuiUgprVZLYWEhwcHB5OfnYzabcXZ2XvQcamlpEeawLYfOUai4wWAQCPzMzEwyMjIENWJfX5/QpLdwPubk5FBSUmIXZm5rNtyzZ48QZo51vtnsq1hzpmyfw8PDg76+PkwmE3FxceTn5wuvZysLWHjuj4+PU1BQgEqlYsWKFQ7JJq1Wy9mzZ7lz5w4rVqygqqpKaFl01E44H7YcuX/6p3/iU5/6FG1tbSLb7EKlVFdXF+Xl5axatYqcnBwKCwvZunUrly5dIisrS3QssZJlC9VQOp2OyspKCgsLCQoKIiEhQVAIDw0NUV9fz/e+9z3q6+vtjsfCsovc3Fxu3bqFVColNjbWoZLQBl9fX44dO8bFixft1Msf4H8uTEYjrWV3icta7zAwe7F7zICoBMb7Ol9I8fLnwGwyiRZJUqmM6My1Qu7VnwO9ViOqulc4uWDQaXHx8CImaz0dFQ9eKBtovK+TmYlRlqzehldQuKXFbhGb0XhfJ75hMbh6+dBWfh8PP3tL+FDbE2KWrxMCtSNSsvANjcI3NArNtIqummKL4iQxHXffQMZ6O3D3DUA12OuwRUuudMJoMGAyGYWxNFub/iQSiMlaj0QiobO6iICoBFSDvXavYTTomVNP4hkQgk9IpBAQbkNH5UM2f/LLBEQvYWq4n9HuVrvXkCudcPcNoPLaW0SlraK3oRKT0SB6jJObBz6hUTi5ulsC8bVz7Hz5W4QlZzqcnwCaqQmy9v0VutkZQaEmkysIik0WkYMKJ2cMOktL+HBnEwFR8aK5Fbksm+66UgvRYTSCA6ui0tXdajv0ZLizCd2smriVuUgkEvRaDW6+AfN+n4tABKrHR/jj/36JnKOfJGb5+kWbHS1B826EL11OR+UjFE4udsRNb0OlXYi+b3gMHZWPBNJgMUJqMYQlZTxT25hNBMYmYTaZmBjqRT0mziB2cnXHNyya1cc+JYybI4z1tuMbFmN1CkgxGY2WPK7UlZhNJgZa6tHOTuMfES8QqXrt3HOtXyaTEZ/QKFof3+bxud+w6+9fRyqT4x8Vv6i1qr+xWlDxdFYXEZ2xhuiM1ei1Gnrqy5DK5Hbk1Hz1odlkorehAplCSUzWenrqy/CPjMcnNJruusd4+Abi76DhcrS7zeH5aDu2M6oxPAKCHc5riURC7IoNtJXeRSqTEbtiAyajEfX4MNNjQw6LIeRKZ4sdTSoVFE6LYajtCUFx4vDxiGXZ9NSVPbd1VDszTX9zLQonZ8KWZpKx+zjddWUipdeLwGw2vadNBUu+VISFkPQPsdsYMOp1DLY1YNBpBWXb+7HQTo0O4u4bsOh9TlR6Dl21JQ4bR/9v4H8cKfU/Henp6YsSUlgJpqmpKYGQOnDggJ0aa9WqVZSWlopyayorK0lNTeXy5cuMjIyIFgc2pc3atWspKSlhdHRUtJhbiL6+PoqLizl+/LiwsHJ2dmbv3r1MTExw8eJFwsPDWblypUASjI+Pc+vWLbZt2ya0I9lu3lavXo1Go+HKlSvExcWJwrbb29uprq4WWfUkEglpaWl0d3dz4cIFIZPFFjxuMpm4evUq8fHxfOc73xEW07ZFqS0D6gtf+AI/+MEPRJ9NJpORlpYmqFBsypbnwdXVlWPHjnH27Fl27tz5QooPm73qH//xH3nzzTdZuXKl3UJ31apV5OfnCySFSqWiqalJREBJpVIUCoWIhLShsrKSsbExXnrpJXx9fdmyZQvvvPMOzs7ODhf/C9Valy9fZvXq1Zw/f5709HSHzWULUVNTw+DgIFVVVUxNTZGYmEhRUZHQ9rhmzRphzqSkpPDkyROWLFlCUVGRXdB8UFAQlZWVQoOZzeY5PT1NVFQUTk5OnDhxgoKCAiIiIkhJSRHse2azmXPnzrFhwwYhgwgHC4YlS5YwMTHBD37wAzIzMx2qML70pS+hVCppaGh4VyLI9pozMzNCcxfzmhzn48CBA7z11luCRc+G+cclJiaGkZERWlpaSEhIID8/n9zcXJGywt3dnenpaRG5hfW8tuXcBQYG8u1vf5t33nmH/fv3i9Q3HR0d3L9/n5GREVHe2fwxy8zMJCkpiUuXLpGamio0Do6MjAjna3l5ObOzs8JxWrVqFQ8fPhS9pq3p0fazyclJIcNpbGxMsOU6UvQ1NTXx5MkT1qxZw3/913+xceNGzp07J7qmLBy/+RgeHqaxsZGrV6+ye/duiouLKSoqIiMjg6ioKCHDzYaioiLGx8fZtWsXCoWCwsJCdu7cSX19/aLWq4aGBpE91tPTk8TEREpLSwX72sjIiF2TqUQiISkpiYcPH/LpT3+aK1euoNPp7EgQb29vJift81suXLjAtm3b7ObAQoSGhgp24draWjZu3MgXv/hFdu/eLbI5Yp0/Cz/fzZs3hc0ZR22L8zPLZmZmqK2tZf369UKulK2hcqGdcGJigocPHyKRSFi3bh3/9m//xvbt22lpaeHy5cvC95NNKTU7O0thYSHh4eGi3Cyz2YxMJuPQoUM8ePCAoaEhkW1wfHxcNFdGR0e5efMmhw4dQqlUcu3aNRISEpBIJHh7e6NUKgkICKCuro5z585x/Phx0YaLo7lmu85KpVIGBwcFJZUjyGQy9u/fz5kzZzhz5sxzj90HeHdo1JN/VpDru8FkshBSjqrFXwS+YdGohnrpbaiwszT9JaAa7MHLgUJA4eRMWFIGXdaGt/cDk8lIR+UjElZtFv1cIpFY6unlcuJXbaK7rhQP/2A7EsaGgZY65AonIlJXYDIZMRmNxK3MpbXsriUsfsH3pKUa3WKJDUuyD+ke7+3AJ9RyPZHJFXakjYuH9zzFSQ1Gg47ZyXG660qJX/BZ5iMsOYO+p9VEpGQx3t+FaqCbsORMQaEzOdy/aEAyVuVMRMoK+hqr7f6to/IRwQmpjHQ2o3Rxc7hAx0oCtpXdp+zCb3Hx8CZx7fZFiSasmTehS5ahcHET5WLNx5x6koGWeuJX5tJVUyLMB4Nex3B7I3qtpRXbdgyVrm5Mjw6hmVLZKXIUzi64efuhGuxlZmJEsMfNR1BcMt21pZhNRnzCokWvoddqUDg5JlRGu1vJ/firuPn4P1ddMx/RmWssir3la4Xzc6SrBf/IeIfXaq/gcFSDPciVTu+JkDIZjUyNDKCbVdPfVE3V9ZPs+vy3mRzqxSso3KECyjbWk0N9i2ZLTY0MCBlitkB6W9C3RCoVgrtHu1oY7WnF09+yjtNpZpkeHWR2cszuHlcileHm449nQCjrPvQ5TNa8I4nE8b2sxbqqE2xlMoWThfhyckbh5EJUeg56reaZcmppJl5B4UwO9eEdHM54XyeqwR4iUlbYkWUyuZyYzLVMDvXRXn6f8JQVgtXYoNM6vKYaDQZGOpuRyuVc+Pbn2P3Kd+iZHLd73LPPK+XGL77Fxo+/iodfIG4+AZYcKAevPTs5TtK6nbh5+9NZXeyQELNBP/csTN4GhZOzJax/ZMAuq2l2coKhtgac3NwFQqarphgXD2/8o+LpsxJ//52QyRXEZK5lYqCb9ooHVlKxHJPJQnYGxS194XNrMYx2tSzamoqVaPYOjrBrW/2/hQ9IqfeI7u5uu2au+bveLi4u9PT08P3vf5/PfOYzdru+WBdCU1NTwt/b29uZnZ0VqrM7OzsZGhoScktKS0uFRWJOTg5tbW1cuXKFPXv22F1Yq6qqmJiYsLNk2W7QbTvsvb29XLhwAZVKRUFBAU5OThw7dmzRBaOLiwsHDx6kubmZc+fOMT4+zoULF4iOjrbLnLIhMjISLy8v3n77bQ4fPozZbKa/v5+HDx8KigGsuSCNjY0kJSWRlpZGWloadXV1fP3rXycwMFBUKW7Djh07yMnJ4fTp0+Tm5oqChx1BLpcL7VgrV64kLMxxloHBYOD27dtotVo2btxIQUEBO3bsoKmpicuXL+Pl5cX69euRSqUiK5rRaCQ/P9+hhcqWfWQLKDeZTFy5coWkpCTRZ1MoFOzevRuVSiUKfDabzdy+fRuNRsO2bdsEcstsNgt19lVVVVy8eJHdu3c7bEG01czHxMSwY8cO9Ho9TU1NpKSkCDbIyclJbty4gclkIjY2luTkZK5fv05DQ4NgiTGZTHR3d9Pa2oper+fIkSOUlpaKwojVarVInbBz506qqqq4c+cOgYGBGI1GTp06xa5duxatmLehrKwMJycnXn/9dXJycuzOp7a2Nn76059iMpk4ffr0C70mVvXLw4cPBTKpqqrKrsVLIpFw+PBhYbH75MkTh2Hq2dnZXLt2jdbWVuLi4kQkG1ZS9969e0Ioue14ms1mDh8+jEQioampCVdXV0JCQuxsg7W1tezfv5979+7ZKfOGh4cFNZGLiwuHDx+murqaS5cukZeXx/T0NO7u7ly9epUlS5aIMt6cnJzQarXC32dnZykuLl40fNvPz4+jR49SXl5OXV2dkKM0OjrKvXv3SEpKEq4FNTU1ODs7c+zYMfLz84mNjSUpafFAxcbGRrq6ujh27Bh3795Fp9OxZo3lRqGqqoqamhohC6izs5OKigrWrFkjPGY+UlNTiYiI4OTJk+zcuVMgc3p6ehy2qiUkJPDgwQO6u7uJjIyktLRUlE9WX19Pe3s7wcHBHD58mIKCArZs2cLdu3eZnZ1l7dq1IkWSVCoVkZxXrlxh3bp1IlJJoVCIrK/zodVqyc/PJzw8nOvXr5OVlUVBQYGoUAPr8Z6vLLKF5duu4QcOHKCgoIC5uTlBFXTq1CmOHDmCXC4XNlCwznUbOWSbP0FBQfT29grW8ry8PDvruM1eNz4+LmRFvf3228zNzQkNr4th/fr1tLS0iL7LxsbGhPPn6dOndHV1Obym2nDlyhWOHDmCTCZjx44dXL16VdgUaGpqWjRba9u2bRQWFlJQUMBHPvIRKioqFlXQ2CyZkZGRzw3G/wDvjuG2p3gtEl7858JsMtFaepfY5eueGxz8bptY3kHhyOSKP4sgWgyLKX+wkjPewREMtNQRkvDelVrtFQ+IzVpvp4Txj0xgpLtFIBts4dADLfWEJDyLuDCbzXTVFOMbFi1k+UilMjCbLM1YWetpK7tLfPamRa0ezu5emIxGtLNqQRk0Odwnyk+SK50ckh22BfRAcx33f/J1lm07JChqFh4z2/1s3a2LTA71EpaUYbfwGu/rcNhuh3VBqnR1Q6ZQ4urtx4xqTAhh7qh6RHD8Ulw8vFE4uViVPvb38Wazmb6nVQTFJZP3D/+KT2i0JcR42SqHyhi9VoNeqxECuB3lYmln1fQ9rRZsZk5uHmimJ3Hx8EKuUIrayqZGBuipL8Oo13Pp3/6B3a98h75GS9OZwskZuZPlT6/gcHrqyjAa9GjUk4z2tFqbHZ/h5q++zYnXf4u7rzgTx2wyOQyv76h4QMiSZYx2txKRupK28vtELltpd0wtdq9nrymoZazzyGQyMjMxsuhi2Ds4nHd+8S8Ex6cQkbqS8b5OsF6nzdZmyqaid+yu3VKZDM+AEILilqLVqNn+d1/HqNPiGRDisB1z/nzwDY+hveIB3kHhos8+PTaExzzrocLZBYPOPsYEa3aQRCajp76ckjO/Ys+r38UnJBLfsGiH585QWwN+kXG4efsLGV+DbU/Qzkzj7heE/7ycof7mWkKWPJsHoYnp9D2tFBF2CieXZ8qpujKkcgVz6knGe9vxCY16LkmBNW/IMyCEniflVvtuqoVsTrasV6ZG+gX1oUQqs6pMO/jwv/+Jsd72Ra9xeu0cndVF7Pr8t1G6uGLU6yxB64tck0c6m4XgbqlcbmksXL7O7vFGvQ7pImRwYEwSbWX3LPlsEgnTY0OMdrXi4ulDdOYa4bWG2hoIjLFYtz38gtDOqhntaRON/X8XvIPCmRzqpfbGOQ597WcvZDl/EVhyEt/9/XsHR9BTX86cevIvUrbx5+ADUuo9Ympq6rntZzMzM9y8eZOioiJhoZ6ZmbmoLWJ8fJwnT56I1DWbN2/m1KlTHD16VFjgzL+5j4uLw8/Pj5MnT4pCm2/cuEFISIgouwhrTsnAwIBoxzw8PBwfHx82bNhAcnIyP/jBD+xOdEcXivj4eNra2jhy5IhdQKwjeHl5CSql8+fP87nPfc5OcZOYmMjly5dFi9bOzk5OnDhBZWUlJSUl5OQ8k1/aLBdeXl4cP36cO3fu0NLSYmeZWQiJRMKBAwd45513UKvVgpoE60Lw9u3bmEwmNm3aJCz0bItHW/CureEMa0aJbWyLi4sXtY05OTmh0+ks4ZEjI9y+fZu9e/faNczZbrS8vb05cOAAnZ2dLF++nJ/97Gd8+MMffi7ZkpmZSUpKCvn5+URERIjILpVKRX5+Prt37xZeY6HqxHasbIvxtrY2YYH3q1/9itu3bwtjGBUVxYYNG1AqlZw7dw6VSsWVK1fYvn07Tk5Oghpi4fvr7+/ntddew8vLi9dff90hYTsf5eXlyOVyMjIymJub49GjRyJVz+TkpHDu3Lhxg+PHj3P9+nUiIiJEar7FsG7dOgoLC3Fzc2N4eNhh25azszNbtmzh+vXrmEwm9uzZg9lsZmBggMbGRsGqJJVKeeWVV/jhD39IW1sboaGhpKamIpPJUCqVgsKrra2NqqoqNm/eLChC9Hq9cH5nZ2dz4cIFgTyZTzpt2LCBCxcuiEjgqqoqO/VURkYGSUlJXL58mYaGBlQq1XPJOrPZjNls5uLFi88lAGxYsWIFaWlpnDlzho985CPcvXuXQ4cOOZz7EomE3bt3U15ezoMHDwR16PzHFhUVoVAohOuqm5sbarVaIF8zMzPJzMwUMr9+/vOf8+lPf/q5i0svLy8heD00NJS0tDQqKysXLRFYv34958+fJyAgQLjBvX//PiqVipSUFFEjHVaSe+vWrZjNZh4+fMj4+DiZmZlERkYKStjVq1eTn59PVlaWHVFpC/FeGKZfUlLCyMgIeXl5yGQybty4QWBgIMePHxeIbNt1a9myZdTV1bFq1Sqmp6dRqVR2CtqdO3dy9+5d5ubmBHvtu9mDMzIySE1NJS0tjZUrV/LGG2/Yvf+F8PX1FaysDQ0NhIeH2xFSjki4hIQEAgMDefvtt9m3bx/j4+OCIs3Z2dku88zX11dQU92/f59169YJ1xofHx9SU1OFedbW1mYXlK/Vann8+DFqtZrp6WnefPNNPv/5z5OZmbmoyrK1tRUXFxdWrVrFuXPnnjsOH+D5cPbwZnZyHFcv3xd49IvDQkjdISZz7QsF0y6morPBwy8ImVxBR+VDofXtz4XJZHzX3A6vwFD0mpn3vBjqqn1MWGK6w8/u6uXDSJc43DswJompkX5Lq13GGkwGPe0VD4hMWyUojRZCplBalC7l9wR7lyOEL11Oe8UD4lZsEIVX2xAct5T+5jqRHUc7q2aguQ6JRELIkjR2v/IdSyOhQrloTovZZGK4o4kZ1RhTo4NMjQ4iVygJiE7EaNCLrC4LyaXB1nphYe4TEsVAcw1u3n50VhcTFLtUII58QqOYGOiyyxnTzqrprn1MVPpqlC6uqMeGcPcNIM57A911pbj5+NtlvvTUl4tyXRbmYuk0s/TUl4nGNig2WbDfLYRnQAhzM1PMTIyyYv/HcPbwwi8sBr12DoNuDr12Du3MNAbtHO2VD2l9fJvj//Ib/MLjRCSb2Wxm26dfY6SzCZlC+Vxrp9lspq38HuHJy0XjG7t8nSWbZoGSbryv0y73SyqTEZ2xhvbKh8jkciJSVqCeGGVquE+wItpg1OtQDXSTc+STyBQKwDrnrOPTVV2Eh1+QQwWVzcabkL2JniflRC7LZqy33TLPl2WLzpX58wEgMm0V3XWPRZamsZ42O4uTT2g0470d+IbHCO+3v6nW0uYZFk3ksmxis9Yx3NGEVCZzeP5PDvdjNpuFjCWz2YzRaBCI6anRQTqri5BZM5Xmh3ljVTeZjAaH1zSbcqq7rpRbv/oOJ77920VD8xdCIpUSuSybmYlRmopuUHr+/7DxY/8I1rk3X21mMhrRaWbw8A9CPzfLWG87fuH2drSOqkfEZ+cy1NqAf0Q8Br2OtrK7hCVnOmyKZN69oouHN2FJGdaswI2izzrY+oTg+BSHzwcIT8mi7MJvCYhJxN030KE1TzOtEjX1+UfE0ddYbVcW8JeGenyYobanRKSuZNVh+V+MkLKF9T+vUGE+wlOyhGzD/5vlLh+QUu8RCQkJ3Lp1y6GNBqCuro6PfvSjrFixgl27dmE2m6mpqRHqu/38/FixYgVxcXE0NjZSXV3N8ePH7V4nLy+P69evs337djuLCFabyLFjxzh//jwqlYqTJ0+Sm5srsv3Mf89lZWUiUqq6upq+vj7efvttpFIpjY2NPH78mB07djjcvceqfmhra2P79u3k5+czNDTE7Ozsog1KNphMJqRSKS0tLUxMTNg12mG1rfT19REWFiZavCxfvpz6+nrRgtZmNbNh06ZN9Pb2curUKfLy8gS7lKNWLay75MXFxZSUlKDT6YQd/s2bN9st2Hx8fJiYmBCUWN7e3uzZswej0ciDBw+Ympri4MGD/P73v2dgYEBopVv4X3R0NJ/5zGc4fPiww4V/REQEvb29REREYDabKSoqYnR0lN///veEhITQ09NjRyosvHAolUr2799Pa2urkLNUX19Pd3e3wzDn58FsNqPVavnZz36Gu7s727ZtcxiSL5FIWLt2LXq9nhs3buDu7i4s6vV6PfX19UKDJkBvby/Ozs7cvXsXiURCZmamaM7aMmnq6uqQSqVCBpmzs7NI1WM0Grl+/brwuWxfyHl5eTQ0NHD58mX27Nnzrna+HTt2cOHCBUZGRhgcHGRqaorJyUmmpqYEIkkikdDR0cHnPvc5IdcnJCSEtWvXiuaLVCoViJW+vj5u3ryJ0ZrjcOnSJYaHh0lLS7NTMZaUlIjIhIyMDKqqqsjMzKS4uFggRCQSCUuXLuXJkycC4W0ymRyqUaRSKa6urvzbv/0bp06doqioCAB/f3/S0tKE952SkkJDQwNNTU3s37/fbrzmj60NT58+paWlhaCgIL773e+i0Wh4N6xYsYKuri7Onz/PgQMHBCLs2rVrJCcnExf3bAFma56brz4ym83U19eTn59PcHAwV65cwcXFhU2bNi2qxpFIJOzcuZMnT57wpS99idTUVDo7O4XPsvDPrKws/uqv/or09HTMZrOdummx32G7LlVVVVFVVUVCQgLj4+PcvHmTlJQUu2sd1k2BJ0+eCKRUf38/RUVF5OTkCAR8VVWVQK5KpVL2799PRUUF77zzDtu2bcPPz4/SUkveSGFhoUPFaldXF7Ozs2zbto2f/vSndkSwI3XQ7OwsFy5coLi4mIqKCpqamigrK2PHjh0Ox9pgMFBQUEBAQAAf+tCH8PX1RS6Xc/HiRfbs2SM8Z2xszGHGlY1AvHz5Mv39/UxOTpKRkWFnIQRYuXIlt27dIjk5GalUaqd4jYmJQaVSUVdXJxzXnp4ewRKuVCpZtWoVHh4eXL16laGhIU6fPm2XbWXD0NAQra2t7Ny5U2hH/QDvH4ExifQ31rznvI7nwWw2WxrsMte8kNVBKldgMujf1d7n6uVLyJI0yyIoa8OfHQQ7uECZtBj8oxLob6p1aDlxhIGWeryCwgQi5UXhGRCKk5snj8/+F56BoSSt2/nclkJsmUIpK+iseiRkRDkKVfaLiGXImoeyMD9IplBiMli+WyeH+pgY6ELp4kaUNTvGhoDoJfQ1VlvUNg7CsdXjI0Quy0Y7O01gTBJKFzcMOi3DHU08Pv8bNn70H4TH+obHMN7XSXD8UktdffizEh7Lot5IV00JgTGJoiYqZ3dPhjsaRb93vK+T6bEh4ldttt/IlUqJSs9hYqDbGmKcg0wut9o2w0SZM/NzsYx6HV21JRYV2rzXXGzOzU6OM9BST0D0EgIiE6yNhGZUQ71WMuDZ/XFH1SNWHvg4Cas2i1rSbJgc6sU7OAKvwFA6Kh8SnLDMITFlMhlpK7tHVFqOnXJMIpUSk7We9vL7okXtYuSvVjPDRF8nFVf/yO7PfxtXLz8CohNF56/ZbKa19A77vvh9pkaHCIp9tmltMhlpL79PfPYmhjsaMRmNdvlJlvNWrBz0C4/FJySKnvoyIWB/tLvVrvFMrlDi5u3P5HA/XoGh1tZCe9uxpbGvCKWrG6PdbcjkckIS0wWlZnddKRGpK/EMCLWGmYeISCGdZsZO0ReWvJzeJ+UCEenpH4ynfzBz6knO/ctniEhdSWBMkqDsw0peDrc/FZEqWBvhhtoaCElYxu5XvoNubpaeJxXvms9kg2ZaxUhXM9OjQwREJWA06PGPjLcjaXobKgQVlW94DJ3VxXj6hwiKQaPBQJs1M08qleEXEctoTxshCanErcyl72kVMoVCpBC12H7Fc9XJzYPI1GxaS+8QvzJXOLYGndbhtV89PsxYTzsAZiA6Y43D+Tg51Oew6TEsKYOOyoc4ubr/xW3nZrOZ3icVlhZGawag0sVNUJn+uehvqhEp6t4NEomEyLRsK9m+eAbXfzc+IKXeI4KCgvD39xdlkNjQ2dmJwWAgPj4eT09PHj9+TE5OjrDTz7yMjLm5OQ4cOMCVK1e4c+cOPj4+eHt74+Pjg6enJ+7u7kRHR/Nf//VffOQjH0Gv19PX1yc049ng7u7OsWPHePvtt6muriYzM9POyubq6iosHPV6PVevXmXp0qXk5eXR3d2NWq1mw4YNQmiwt7e3SHVks+ekpaVx6NAhNBqN0CRWVVVFUVGRYKOZnZ0V5el0d3dTWlrKwYMH8fDwYNeuXZSXl1NWVsaSJUuEKu8VK1Zw+fJlwsLCuH//vihvKzU1lZaWFm7fvs3mzZtRqVR2uVDh4eEcPXpUUMpIJBK79j+9Xk9bWxtdXV2YzWa+9rWvUVVVxeDgoChQeT5s7XkLx9RWaX737l2USiUzMzNCVpKj/yorK7l9+zb79u2joKBAWAwGBweTnJzMkiVLuHfvHl1dXYyNjbFmzRrWrl1LQUEB27Zto6amxo4MXcxuEh8fj7+/Pz4+PnzhC1/gG9/4xgsTUmq1mhs3bhAbG8vhw4cpLCxkw4YNnDx5UtQguRAKhYK8vDzGxsYIDQ3l/PnzODk5kZqaKsz9pqYmvvvd79Lf38+uXbswmUxUVVVRWVkJVqInJCSEK1euEB0dbWfblMvl6PV6FAoFFy5c4ODBgw4/19KlS4mKiuLs2bNs2LCB4OBgu8fNV0woFAo+9alPkZaWRlBQELGxsXh6eorI4LS0NDw8PPDz83uh0OOwsDBhwWw0GvnFL35Bb28vH/vYx+weuzBoPiYmhosXLxIXF4e7u7vovSclJXH+/HmWLl0qEEbzodPpuHXrFlgVl9euXWPFihWCKm9kZISHDx8KCi+z2cynP/1prl696lC5FhERQU9PD8HBwdy7d4+5uTmSkpLYt28fT58+JS4uDk9Pz0Xz8+YjKioKf39/Tp48KTTR7dixw474sZHKNsy3Zrq7u/POO++wb98+ZmZmKCwsxGw2s369JdjWYDDQ0tJCV1eX8Pmwbhb4+fkJraG2n8//U6vVcuPGDXbs2EF8fPy7ElILYbvOV1RUsGfPHt544w1MJhMzMzPExsaKCEzbMbUROr6+vnZk5cDAgKgYAitxNjIywsmTJwV1bXl5OcuXL0cqlaLX63n8+LFgy4uMjGTXrl385je/EZpIN23aJLJ8zrcAjo2NcfPmTU6cOIFMJkOn07F582Y0Gg3Xrl0jLCxMpCisr6+npaWFnTt3iq77S5cuJTY2lkuXLpGRkUFcXNyipJROp6OsrAylUslnP/tZ/u3f/g1nZ2caGy2LQZlMRkhICBEREXh5eaHVaikpKeHYsWOYzWbm5uaYmJhgYmIClUqFWq3mhz/8IdXV1fzmN78hPDzcLnvQdq2Wy+Xk5eWJbH82qNVqHjx48ELNsB/gxSCRSHD19mVmYhS3RarZ3wvMZjNtpXeJSstZNPtmIeQKJQa97oUyp5zdPYlatsqhCuS9wpJ58mILm9DENDqri1G6uD7XTjHe24FcoXzXJiuvQPsmM6wWJJ/QKCQymUOCyRGc3DwIiltKV00Jrt5++IY9u88ymYyoBnpQjw9z/YdfYdffvy5Urs9H8elfMtLZTOyKDc8N2LUsCh+hcHa1W6iNdDUTm7Ues8lkCWJfvg650gmfkAhyjvwNJpNRIAWcXN3RadSYTSamRvpF6oHZyQlu/epf2fzJf3ousWdbRLp4+byrrdMnJBJP/2C6aorxC49lvLfDYfNbWHIG3bWl6LUayyLbwf2MR0AIUyP9eAaEYjIa6akvQ+niRpz19WYnx605OAkMtNShGuzBO9iyudlR+ZCQJcuQK5yYnRzHKzDMkp00b9E5OdwvKI1ilq9zSEwZDQbayu9ZrLGLKBHlCiXhKVnzWukMIhLObDYz3P4UzbQKV28//KPi2f+l/8DdN9DONgjQXfuYyGXZOLm6M9LVIvzcoNPSUflQCN4PiE5kuKOJ4PhnhExn1SMil2U7PMelMhlR6Tmox4dpKrpBT10Zm/7Xl+weFxC9hLby+3j6BzPQXCc65iajkdFuSzve43O/IWn9LtK3O/6esB3TyGXZDLU1MNjaQHD8UswmE101JXa5aTK5HJlCiU4zg9LFTQglBzj89f+kv7EK9fgII51NgrXPxdPHEuhuG2uTiZ4n5aJ5IlMo8QmJwqCbo/XxHaLSc1A4uzhcR0wMdDM51IuzuzdR6asBCWHJGXgHR6IeH2a0uxWf0Ci8g8LRay33VPNJoai0VbSV37NYNIUm1I3C9UXp4oZ+blYYn/Cly1FPjNJadpfI1JUoXdyYHhtySI4oXVyJzlhDi5WYMhkNouOsmZpguKMJADffAMH+FxCdaGlCdBAePzHQteh1KDpzLa2Pbz+3HfVFCtrmY3Zygv7mGjvFYUBUAgMt9UJO2fuF0aDHoJ17z8HoShc3PPyCGOtpd9jI+udA9wKb13xASr0/LF26lMePH9PQ0CBkzMzMzFBZWSnsVgcGBlJSUmL3XH9/f6KiomhoaOBf//VfCQkJITU1FZVKhUqlorGxUQhKn5qa4rOf/Sz+/v74+/sTFhZGVlaWyPZ19epVRkdHKSoqYtu2bVRVVVFRYbmAOTs7s3LlSjw8PDCbzTQ3N1NfX8+ePXsEcsHJyYnx8XHh//fu3cvQ0BAXLlygu7sbo9GIm5ubyJ5jy+HBuhBrbm4Wdu/HxsaEzJuioiKMRqNwU28LuV6xYgUrVqygqamJS5cuERwcTHZ2Nl5eXqhUKubm5uwWyAkJCSgUCvLz8wkNDXWYIWVr07p79y6bN2/m6tWrwg45VuIkLi6Obdu2odPpeO2111AoFDQ0NDAxMUFOTo6d0szHx4enT5+KfmY0Grlx4wbOzs4cOnQINzc3nJycUCgUDnf3bdkmpaWlVFRUiOyVQ0NDFBcX09HRwT/8wz/Q1tZmF7KMNWB/cHCQM2fOcODAARQKhTCe89UtU1NT3LlzBw8PD/r7++np6aG4uJiZmRmys7MXtZHaco70ej0HDhwQvaaLiwvHjh3j9OnTHDp0aNF6dLPZzN27d6mvr2dgYEDIqsK6CLQ1q/X39wvHKyvr2Y7NwMAAP//5z/nRj37EqVOnKCkpIT09Xfh9tmYzrVbL2rVrRQTIwps5Nzc3jh07xp07d+jo6BDmf0tLCxKJBCcnJ7Kzs/Hw8KC3t5fq6mrq6+tZsWKFQzXI06dPOX78OLW1tdTW1r6QPdA2JmfOnOFzn/scmZmZnDt3TrTIXaz9a8uWLRw6dEjUuGZDbm4u9+7dIzExUZivNjLKbDazZcsWgQCx2W1t7zcgIEBEbDY2NrJ27VomJia4ceOGQ5Lr1Vdf5Sc/+QkbNmwQnZednZ3s3LkTiUTC0aNHuXjxItnZ2c9tz7QRcHv37uXixYsOVaBubm4MDAyAlUi2zXnb77a1N7q5uZGXl4fRaOSNN97grbfe4vvf/z4JCQns2LFDGNeRkRG+8pWvEBwczMjIiMOSCKPRyMmTJ3n06BGenp7MzMxw/vx5Nm/e/ELFCFhVgJWVlXh4eHDp0iX0ej1bt26lp6eHR48eCRZeGz784Q/zve99j5deemnRc8oRAgICOHbsGFeuXOHp06f4+fkRFhbG06dPUSgUZGdnO3zPAQEBHD16lLt37yKVStm4cSNpaWnU1taSk5NDd3c3NTU1omxB2/t1cXFh//79dHV1ce7cOQYHB1Gr1SxdulRkIZ8PZ2dnDh8+THl5OQUFBTg7OxMXF4fJZKK2tla4DiiVSlasWCFYdAcHB9m4caMwJkajkYGBARoaGpicnGT//v2CDdhsNuPi4oKPjw8+Pj5ERkYilUrp6uoSSKZly5bZnWPzGzO9vLzswu71ej2XL19+ITvrB3hvCIpNpqPyETF/JillNptpK7tLZFq2w8yfxSBTKB02PS0GhbMLMVnrnzX6vY8A9Tn1FMr3uPsdlZ5DW9ldojPXOszImh4bQjOtIiw50+Hz58M7OIKu2sd2pFRXdTGxKzYgUyhoK71LdMaa5zaF2eDq5YtvWAy3/8+/s3z3h4RmOolEik9oJBGpK8n9xP9G6ermMB8rY9cJNFMTaGfVDl9//vkanbmG1tI7lvB6a27MeG+HYOuTSKV4BIQIqpbB1ieC5XLOJ4DW0jtEpVkWt71PqwhLzsRoMDDYUodBp8XZw5stf/tl/MJj6akvs5DVCiWBscnCQluvnaOruviFmguFzyCT4ezuxbl/+TuWrN62SM7UHDd+/k22fPLL9DwpF37u7OGFh18Qzu5e+IZG0VVTgm52humxIcJTVogIAPX4sKCoC0lYRt/TKqQyGSOdLYQlZ+Ls7olOM4NEIsXVywffsBh6GyqfBXRb1fw2zCemzGYzBr3OooBaufG5Ie5YSVzf8Fj6GquRyRUExiahn9PQ31yL2WQiKDaJoLilGHRatOppguNTaCu7h5vPBtF7GGpvxCso3I6InFNP0dtQISIInN090c48y+jtqS8jMCbpXdUm+jkNSmdX/CLjGWiuEdoJsc5jz4AQwpcup7OmGJlcYWmkVI0K/z6/HS8gKoHW0jsCAboYguKWohrsoav2MUadVpRpNB9hSRl0Vhfj5uvPzPgIYcnLhWuc2WwWVGM2a5/CyQU3H3+hxW68t4OI1JWiOecfEcdYTzvB8UuJW7mRrtrHeAaG4uLuiYuHN2azmcHWerQz03gHRwgkzYxqDFcvHwKiEy3kb+ZaS4ZUbwcdlY9oelRIztG/RTM1gcLZFZlCaQ19z6C3oYLZKZX13H0+3eDu40/cio301JdZxvA5G+kKJ2firNdkJ1d3AqIS6K4rxWwy4ezhLRBR8+Hq5cNIZ5Pda1lUcIsfM4lEYm0ufSgomhbCQiC+2PW9v6kGs9nssGlVplDaFUG8H/Q+qXjfxJZveAxdtY9x9wv8iyi2sM7Znicvlsf5ASn1PrFq1Spu3bqFh4cH4eHhXL582c6GZ1MZ2BZpJpOJ69evExYWxqFDhygsLMRgMNDe3k5ycrKIaOnq6qKmpkYIp3XUxlZVVUVsbCx+fn64urqiVqtFu9gajYaysjLUajV5eXncvn3bzuKhVCpFtiisarCEhAQOHz7Mn/70J7KyskS/u7+/n2XLnt1oLFmyBDc3Ny5dukRkZCSBgYFCS9d8tVJSUhJNTU2COsqW0zQwMMCVK1dwdXXl7bfftlOg2RAVFYXRaOTVV1/la1/7GrW1tcICdX7YfHBwMD/96U+Zmpri+PHjDi1c169fZ9++fbzzzjts3LgRs9nM48ePefz4sdD2hYNQ+pqaGtrb29m2bZvIHrhp0yauX7+Oi4uL6Dj29/fT3d0thFzPzs6K7IlBQUFoNBq0Wi2NjY1UVVUJj12I4OBg9u/fz4ULF9i0aRMeHh6o1Wo8PT2Znp7m9u3buLu7s3fvXiGEvbq6WrCRlpWVUVZWRlxcnCiY/OnTpzQ0NLB582Y7dYhtXBUKBSdOnOD06dPs2bPHrkXMaDRy5swZdu/ejaenpx2RV1BQIORVLbar4O3tzYoVK3jrrbfYtWsX4+PjlJSUMDc3J6iCfvSjH/HGG2/YkWuLvWZubi4/+9nPePnll2lpabHLmMGaGZOTk0NSUhJnzpxxaHXU6XQ4OTmxcuVKHj16JATzvxvOnTsnNMkFBASwceNGrly5IiyYq6qqRIows9lMSUkJQ0NDxMXFcfPmTeGzubq6kpmZia+vLxqNRrDb5ufn25FRNoSGhlJXV+eQRJuZmaGpqYk//OEPwvmwEHfu3OEXv/gFPj4+DpVUtnGSyWQcPnyYu3fviuyaWHPzSkpKMJvNBAcHC9bkbdu2cf/+fWZmZkhJSREa/Wz2PY1Gw/nz5x0q9ObbAvr7+8nOzubEiRM0NTXZEcOPHj0S8t5GR0dFpDrziMNDhw6hVqvp7u4mKyuL5ORkbt++jdFoZOvWrYtaQevq6mhvbyc8PJx9+/ZhMpkoLCwkOTmZmpoaMjMz7exhTU1NvPzyy4SHh3P37l3R8UpNTcVoNAqf2Ww2MzQ0RGdnJyqVSnisk5MTX/7yl3n11VfJzc1dNN9v/rkhkUjYtGkTg4ODnDp1iq1btzIxMUFDQwODg4N2aqGFCA8Pp6mpiSNHjnDp0qVFg8TnY8WKFahUKnx8fPjDH/6An58faWlpdsUCtqZWk8kkNARinVvh4eGEh4dTXFxMW1sbc3NzDAwM2NnobSTmRz7yEcrKysjIyOD06dNC/p8NExMTopa/JUuW8ODBA7q6uoiMjOTs2bMcOXLkhdo8P8B7h5uv/5+V1WGz50RYd9XfC+RKJwzvgZTCqgKJX5lrJYnWvLAqy4ahtoYXbg6zwRYK3VpqycWZb0PSzqoZ7Wp54bwQRxhsbcAvIlYgOOKzN9FWds9K8r37mE6N9KObUePm7SeywwEMdzYRkZJll2WFNXw3NHEZqsFe3H0DaCu/T3R6zqJkn0QiITZrA+0V9wV7m2qoV5QB5B8RR0elpR3Uwy9I+G5wdve0tNjVljDa3YbC2QWTVREWnJAqHMee+jLcfPwF9Z5Bp2Wo/SkG7Rz5P/4aGbuOk7btyAspDyb6u5gaGUAilRIcn8LWT30NF08fJBKJKGdKO6ump66MXZ//NjrNjJDRYzabmVNPMj02xEinZfzyf/w1cj/+Konrdtrdm8yppwiY15jnHxnPH75wgr1feEN4v2azGYnU8jwP/yAMei2DrU8IjE1ySIrYiCnNtIr2igfEZ29yqKJbeN9lNptx9fRhemSAO//nDVYf+xQKJ2ciUlaInm8JzbaQqRGpK+ipLxPOj+nRIUwGPd7BYvWfRaHT5jjPzPr3gZZ6PPxD7FSYIpWs0Uh33WM8/IOJWb6OrpoSu6ZNk8nI9MggfQ2V3PjFt4jN2sCqI3+z6Dns4ulD3MpceurLcPHwFtooF0I7q2ZqZIDBljqq80+z6/OvL+piKPzZP7P62KeJWb52UdLdZu3TaWZpeXyLB3/4Efv/6YcOVXlObh7oNBYSWCKVEp2xmtHuVkov/o6g2GRmVKMExaXYka4jnc1EpecgkUhQODmjn9OgcHaxnPNSKa5evhgNOtQTGvRzsyLC/9p/fJnN/+tLDDTVEBib/K4kh3psGLPZzK3/+nfCktLtCFMW3s8A+T/6KmtOfIbULfsXVTI9e4LEzuo52FL/rtdmW8lAd12pw8fOTIzi7vv8TRbtzDQ9DRWELkn7i2cqLvw9cifn97V5YkPksuy/aL5UT30Z4ckvRpJ9QEr9GdiyZQuXLl2isLDQ4Q1sZmYmV65cISIigr6+Ph49esTu3btFZMaqVau4ffs2rq6uwsKlpqYGlUolLBJ37twpBFXbMDo6yvDwsJBhs2nTJi5fviy0pGHd3V67di3nzp3j97//PQDXrl1j27ZtIqWUzcqD1bJQWFgohGbv3LmToqIiiouL2bJli0BGLJyoYWFhKBQKgoKC+PGPf8wnP/lJOytPVFQUBQUFAillQ0hICFu3bqWgoIDPfOYz/PSnP2V0dFT0GNsi1NnZmbGxMaqqqvjrv/5rhzlHKpWKqakpsrKyOHXqlB0xVVNTQ0pKiqCIsb32/CyX6upqwVZnNpsZHR3l7t27pKen2ykDbGOxe/duzp07x9atW4Vmq8ePH4sev23bNm7cuMGePXsAaG5upre3Vwj0ValUlJWVsXLlSsbGxkQLJ6wk4rFjx7hx4wYTExP4+Phw584dXF1d2bNnj2g85l/Q57drtbS0cOnSJd58803UajXJyckOG9cMBoNINSSTyThx4gRnz55l8+bNghVHp9Nx9uxZDh48KKgb5mcf9fT04OPjIyj8/P397VrksKr+Dh06RGVlJYODgwQHB7Np0ybRY27dukVjYyOxsbF2QfELYTvnlixZQmNjIxUVFcTGxtqdp3Nzc8JczcvLs1MzLcTatWu5ffs2SqVSIFIc4cqVK2zcuBFPT09hjgUEBJCZmcmNGzfYvn07g4ODZGVlYTQauXfvHtPT06xatYrVq1fj4uIiKlWYmZmhqqoKtVqN0Wjk4MGDXL16la1bty4aXv28L5SrV68KZQoBAQEMDAyIFu5ms5mpqSn2799PbW2tyKa7GHJzc2lsbOS1116z7LIaDPj6+rJjxw5hbtqa6eRyuaAafPLkCVeuXMHHx4e1a9cyOjoqBK8vPMeTkpJobGwkOTmZqakpysvLhXNMKpWSn58vEKDDw8MEBgYK45CTk8PVq1fx8/MTzq2LFy8K9jOFQkFNTY0wdlu2bGFqaoqLFy+SkJAgkPFms5lHjx4xNjZGamqqKEC9traW9PR0QkNDhXDy+UqowcFBOjo6+PrXv05BQYGIKO3r6+PWrVt85zvfYdOmTRgMBiQSCUFBQSQlJYkUUDdu3KCjo4Ouri60Wi2XL18mKCiI7Oxs0XHv6+uzax0MDg7m2LFjFBYWsnv3bq5fvy5qHFyI+Z93y5Yt5Ofns3HjRi5fvkxCQoJdYPt8VFVV0dnZyZ/+9Cfc3d1JTk62y4Jqa2sjNjYWiUSCTCYjNzfXzq7c29uLTqcTzjlvb2/OnTvHwYMHBRL+zJkzHDlyBIVCgVarFcow7t27R0tLCxs2bKC9vd3O2s28sHvb5s1iVuUP8OcjMDqRjspH74uUMpvNtFc8IGJp1vvayZXJlYu2Zj0PUpnMQtyU3yMiZYVdVtK74f1kUkmlMmIy11iCw6279EaDge7ax3a2n3eDs7un0OQ2PTaE2WQU5ahIpFLisnMtn29p1qKfz0amhCVnsOrI3zA53IdXcIRICTGrGicwOhGj0SCygswP31UN9uLhF4Srlx9dNcX4R8YvmqElk8uJXJZNZ1URLp4+ouwcC4kzhUyh5K1/+ivy/uFfBcWTMI4yOeWXfk9m3ofwSA3BN9RxhpwNcqUTShc3dLMzrDzwcTwCQpiZGGG022Ijm68klcrkdNeVCUob7+AIO9tRQFQCg60NjPd34RsahWZqgoGWeuKyLURGVFoOXTUlRGdY2lNdPLyF4OfuulIOf/0X6DQzdFYX4eTqTsiSNHH2lJXM6m+qwWwysf0z/4xMrqC3oYLwpVmYFyiyfUIiGe1upfFBATHL1zKnnkI9NsTs1IRoXO+/+UPWfehz9D2ttBsjg17Hzf98nZ0vf0t8rBROqIZ6mRzqxWTQY5BIGO/vxC88VnifJqNRUF0pXdxwcvNganQQFw9vwZaJlUAa7++k7uYF9HOzLN/zYXobKi3qHk8fnD28kcnlePgG0lH1CA/fQDsyi3lExuRwP2PdrUSmrRJsiJ6BoYLKTpgvUhkzqjEUzi7s+vvXMep1TA71ohroJmzpcofKRYlEQuSybFRDvbSV3xeIHL12jsGWekxGAwpnV8KXZuHq7UdCzlYmh3odEst9jdUc+9Z/oZ2dRq/V0FldjMLZhZAly5AplBh0WuRKJ7SzaobaGjCbTARGJ5K+8xhz05N0VD0iKHapKB/NEZxcPeipK0MmkxOxLJvh9qd4BoYKjXgmo6WcwTZ3QpMsdtPojNXoNDNMjwyw7sMv24XCYw32//B3/4RqsJfQxHSGOxrRaWYAcPcJQOnijnZmmpnJcaZHLMp4D78gwpcuZ+2JvwPreC4G9fgIwx2N7H7lO/iGx9JVU2I5NxKWLXqtDY5PsWRsLbHcxxkNBpBIXuja7OLpg2dACEPtT+2KD2Ynx/B6joV6sLUBvVZjF9DuCApnlz8rV6q/qYboRVpHXxQSicSOLH6/GO/twM3bHye3F/s8H5BS7wPj4+OUl5djMBjQ6XR88pOfFG6y539Z+fr6MjU1xbVr14QWOkewWc3c3Nyor6/H19eXjRufyQS9vb2JjIykpqaG9PR0TCYTN2/eFCmzpFIpwcHBooXl7OwsFy9e5ODBg9y7d49NmzYJuSnu7u5s3LhRCJYGePDgATMzM8JNfmdnJwBr1qzBZDJx+/ZttFotRqORzs5OmpubhSBn22f+7Gc/i9Fo5M6dO8IY2CxRjnJ9Hj16hEajwdXVlby8PK5du4arqyshISGidjwbZmdn+frXv05oaCjV1dUi+5cNjx49YteuXUilUvbt2ycipjQaDV1dXQLhFx0dTVdXl0hdYcuGaWho4MKFC3z0ox/lypUrHD58+LmsPcChQ4c4deqUsNBbqJ5zcnLC2dmZyclJenp6UKlUIjtfcnIyRUVFtLa2Mjg46DBEfmBgALPZzPe//33Kysro6+tzGKa8GBISEgRSUy6XMzIyYmcDxLp4XmhnlEgkgkoiOzsbjUbD2bNnOXr0qMiKFR8fz+XLl1m6dCklJSUcPXpU+Lf09HQePnwoWnA+ePCANWvWIJPJWLFihcOMl5qaGl5++WUiIiK4fv06ISEhwvGff1zMZjPvvPMOrq6uHDt2jPz8fBITEwkPD+fkyZMcO3ZMRLbNf66npycbNmzg6tWrAnHoCJs3b6agoAAnJye7BTZWwiAzM9NhVll4eDharZZ79+6h1Wq5fv06RqOR3NxcOwXafLi5ubFu3TomJiYoLCzk17/+NXNzc3R2djo8V56H27dvk5ubKxzz1atXc/78eZGScn65QFpaGk1NTdy5c4dNmzY5nC96vZ5Hjx4JOV39/f3k5eXZWW1bW1uJjxc3E6WkpJCSksL4+DivvfYa3/72t7lz5w4zMzOivC2A2NhYrl+/TkJCAlevXuWll14S/i0yMhKZTCYcv6KiIrvGvby8PCEj7Z133iEnJ0cge+RyuV0rpaenJ4cOHaKpqYk//vGP/OIXv0Cn07FmzRqHGUn9/f2CCmj37t1cvHhRIH1nZ2d58OCBcD7Yso1sczAsLAw/Pz+0Wi16vd7OMmlDdXU1oaGhREdH09DQwMaNG0lNTWVwcJArV67g7OxMbm4uSqWSxsZG0feJLfjb1pL58Y9/nK6uLgoKCoTH2FRtCoWChw8fMjIywtq1a4UWPqVSiVQq5eDBgzQ2NnLu3Dl27Ngh2nBpb2+npqaGjIwMDh48SEFBgdAGOD09LVLb1tbWisj7oKAgent7aWpqIjExEb1eT1FRkeg7NDQ0lJ07d3Lq1Cn2799Pfn4+e/fuFSnMbNi4cSP9/f2cPn0alUrF+vXruXHjhjD+WK8DtbW1/OpXvxLmbHR0NMnJyf9X22j+/xUe/kEvHOZtg62OPiwp4z2TQjbIlUqR3ee9QCKVErcy12Jvik9910UfiwT2vhconFwIWZIm5CO1V9wndsWG9zwnA6KX0PukgrCkDIY7moSsmfmQSCTErdhIe8UDQhPT7VUTXS1opiaIy7ZkuUhlcsKSMuiueyyENRv1OoGg8vQPprO6SCClBlufEDwv7N1sNiOTy4nNWs9QWwPTY0OWBaNE/N1i0OuYHhlgRjVK4c/+mbx/+FfGe9uFf3d2t9jd0ncctWt7s9k8t//d15HK5chkctEif2Hu0WDrE+bUk/hHxuMfGY9UJsPFywcnN3eHChibhSowNonA6ESRRdJsVfIDBMcvpb+phr7GCfRzGoF4kUgkKF1c8Q6OYLizicB5qqeBljq8AsPwCrJkQcVkrkU7My0ip7AqNQbbGghdsgwXTx966svwj0pgdnKC1tI7BCcsQ2IdU712jpHOJgw6Lfff/A/G+zpJyNmMh18QfhFxSKRSjHod7RUP2PX5b+Pk6oHZbLSzYbaW3WX/P/0Hrl6+oiD6ofZGgmKS2PX3r2M2m4T8pu66UrASyknrdwltiTK5Ar/wWDprilGPDeMbFm15rM0OGhZNyqZ9GPU6wpKXW2yZ6ik0UxNMDHRjMhoYbKmn8tpb7H7lO3TXlVo2ZKUy3H0DcPOx3IN11T7G1dPHTkXkExJJV02JQErNDwd38fCi50k5Tm4eBEQnIlMo6HtahdlkWpSc8goIxajX8bu/P4hPaBQ5Rz5JaGKaSLkyN60iZEk6Lp7eFivzvOKHif4ulM6u+IZF01X7mJCEZfiFx6LTzNBTV8bczBTVBadJ3bQPpYsb4SlZSKUy+hqrydrzYfqbaolKz2G4/SnDHU/xCY0WEW42DLY2YDYb2fDRV5DKZARELUHp6s706IAw/qXn/w8bPvoPgrpIKpUJ86Or9rGgXHRy80AzNSFkso10teDm44+HXxDjvR2WAPh55716fJiq62/TXV/Gka//XETidtWUEJ6SRe+TCrv3bMN4fxezqlFis9bTU1+Gu48/7j7+aGem6ap9jEwuJzQp084yaMmWmxH+7qgd9HnwDo5gqK0B1WCviPy0kKz2dIp+TkN3XSmBsUkvvAETEJ3IUOuTF7JlL8TUyIBIKfrnwMnNA1dvP4FIfz/QzqqZHh8mKm2VaNyfhw9IqfeIkpISlEolmzZtQqFQcPv2berr69FqtXY2nNHRUX7xi19QWlrqMBtmPnbv3o2Pjw///u//TnR0NLOzs8TFxeHv749EIiE1NZX8/HwiIiJ48OABe/futZt4OTk5QgD0yMgId+/e5fjx48hkMqRSKUajEScnJ/bs2cPExASXLl0iKiqKzs5Ozpw5w/r16x2292ElvbZu3UpxcTFHjx7lxo0bwhjY8Pbbb/PDH/5QtOs+NjbGrVu3MBqNljaN1lbc3d2ZmppCqVSydu1aYdFlW5zl5uby8OFDDAaDyGYGcPfuXbZt24ZCoeDu3bt0d3cTGRkpGvf5C2Y3Nzf27dvHyZMnOXHiBNevXxctUpOSkigsLHSYBeXt7Y1er+eLX/wiExMTtLS02NlVpqenRUSCrY3Ly8uLK1euUFhY6HA8Y2Ji+N73vsf27dtRq9W4ubkJx3PNmjVcu3YNlUrF2rVraWtro7n5mQw+ODiYLVu2MDMzg1wup7u7m/LycuLj44WMs8UwNTVFYWEhOTk5fOUrX2HXrl2oVCquXLmCm5sbmzZtEpQpfX19Du05tpa7v/3bv+V3v/sdN27cEMhUX19fIZw7ICCA06dPs3XrVtHzF6rzent7wbogZ57CayHx0d3dLZB0e/bsEVoG8/LyhIVlb28vxcXFbN26VbAi2sbVzc2Nw4cPc+rUKQ4fPiyooxYSi4GBgaSlpQlKDb1e71CRt3PnTi5duoRSqRSRT/fv3yc2NlakTll4rsbGxvL5z3+e3t5eSktL7VQZi2VN1dTUMDAwwPHjxyksLGTnzp3U1dVx4cIFu7DpxdDW1oa7u7sdWZSamkpdXR3LllmyJBZanBITE1EqlRQUFBAdHc2SJUswmUyUlZUxOjqKQqFgzZo1uLu7ExwcTFRUFPX19TQ3N4uKCzo6Oti+fbvod2u1Wu7evYtWqyU1NZXTp0+TlJREXV2dyD4bFBQkkBnnzp1zSBSHhoai1Wp59dVXyc7OpqmpCY1GI/yn1+txdXXF29ub0tLSRXPW5sNgMAjZZJmZmQQGBjokpBZCJpORmppKdXU1y5Yt48KFCyISbcWKFZSXl4vC8wsKCtizZw8SiYTTp0/b2Un7+/uZmJiwUxFivTbs27cPjUbDrVu30Ov1jIyMUFRUxMyM5aZgfvB3UVERb7zxBjU1NSQnJwvkts0y+OabbzIyMsLvf/970TkQFhZGf38/MTExJCUlsWTJEm7cuIGbmxtjY2OcP3+e2NhYh3lTubm5VFZWCrlOi2W0ZWVlCeUXBQUFIhWwRqOho6OD3t5evL298fLyoqSk5LmkbmBgIEqlkk996lPcu3ePzZs3i8hpo9HI3Nwcv/71rwVVcmdnp1BMcfXq1UVf+wO8d/hHxtNR+eg9kVKdVY8ISUx/zwGu8yGzBp2/X1jsZOvpqinBNzzmXRcbiwX2vhe4evng4unDL/9mGzs++02LFU3phNzJCbnSGbnSCZnC6bm5LVKpzELqVRcRu3z9oo+zfb7OqkcExVnuv4wGA101xfiGxRCwzGITHu/rxDcsBplCiWdAiNDsNtBSJ2p9cvcLYmp0EHffAObUk7h4WBan7r6BqMeHhfELilvK7OQ4D//0U0wGPWbTsw1PW0izs7snuR9/lbmZaaLSVolsht11pSSu2W4X6N5R+ZCI1JUMtTUgkcpw9fbDKygMnWaWnjqLoko3N0vf0yp0mlmCE1KE9zjc2URA9BJcvXxpK7+Ph1+wSFWhnhhlor+Lw6/9jMnhfvS6OYHQc3b3tISOh1juT9XjI+g0s9z/ww/Z9fev2427d3A4fY3VQgnAWE87cqXzs88ikWA2mXBy8xDIqZaSW9z+r39j7//+nkOS0dXLh9isDTz404+ZHhlk2bZDyJVOBMYkIlc6s/mTX8bZzQP1+AiuXr4WwmFeU9p4bzuu3n6WXKmKB0RnrhEIkJD4VNx8/OmsLhZIqaH2RmRyOf6R8WimVciVbmimJqxh5oGYTEZaS+8glckx6nXoNDOWP2dnuPvb7+ETEknatp+I7FU2tU50xmq6aoqJzVqPq5cPrl4+FtXek3JSNu3DKzgcs8kknGtGg54Z1RjddaW884tvsfLAxwmIXkJ3Xak1ED9SFGxvMhnpqS/HydVDGMuRrhb8IuJw8fQWFEKRy7IxGvQCOTXa02Z3/ngFhZH71/8b7cw0Os0so92tBMY+29ywkRguHt4Exy+lo+oRMZlrBdumI3WKwtkVuZMzSqvS3C8yHvd5NkWDdg6lixtSmQyTQS+oCcd7O+isLsLdLwiFsyvamWn6m2rwi4gVWgHDkpdb1JgrNuAZEIpnQCjjvR1k7DyGZmrC8lnNFoLVZNDzu1eO8OF//4PweYLjU4VGTvX4MPq5WQKsZI+zhxezkxMCgT810s9IVyvxqzYRl50rOoe1s2pkVqLSOySSiYFufEIiReMw2NqAVCYlfGkWRoMByTxS2cnNg+iM1Rh0Wks4vNlMaFK6yG5tm3tSuQKj3nFr3/MQFLeUrtrHOLm5C2pGRxjpamF2cpzYBQ2Q7wa5QonR2k76XjHa3SqyNf+58I+Io7O6GA/fwBfKGpwPs9lMT10Zcdn22VnPwwek1HtEenq6YPPCenOckpLChQsXyMjIEBbRGo2Gd955h1/84hfcu3dPCGq1BQPPx8TEBAUFBbS3t1NcXMzOnTuZmJigra1NCC23wc/Pjx//+Mc8evQIDw8PPD09RX/Gx8dTWFiIyWQSqVP8/PwYGxsTdrp9fHzIzc3lpz/9Ka+99hparfZd7Qp37tzB39+fX/7yl3a7x4WFhWzduhW5XE5ISIig2PLz8xMsSCaTifXr15OUlOQw26e5uVkgQdatW0dJSYmgDsO6aDCZTAIRlpuby7lz5/Dz8xOsXDbr23y4ubmxf/9+4uPjOXv2rJ1KxlEe0f379wE4duyYsMNfX1/PhQsXWL58uWC1HB8fFxbuWq2WgoIC/P39uXv3LsuXL3e4SCotLeVjH/sYO3bsQKVS0dXVhVotDvw0mUx85CMfwdnZmdTUVLt5c/v2bTZt2kR9fT2JiYnk5OTQ0tLC5cuX8fHxYd26dXbkzuPHj5mYmODIkSNIJBKePHkCVvJt//79gqrPxcWFTZs2MTExIShIdDodFRUVQqaNQqFg+/btbNmyhdWrVzMzM8P4+Di9vb3CZ9Hr9bz66qucP38eX19fhySL0Wi0U0BgtcgVFRUJLZDj4+N2eVfx8fHExMRw/fp16uvrkUgkuLu7i+Y9C0gnJycnTpw4walTp9i7d++ii9jIyEg0Gg1FRUV4e3svqkTav38/Z86cEUiW0tJSfH197ZRA89Hd3U1JSQnHjx9n165dnD9/nl27duHl9WxXev68wjofrl27RlxcnGD1tI3nsmXLSE5OprCwEF9fX4dB3jbMzc3ZqVJsWLJkCefPnyc1NVUUBD0fMTExlkVLbCyXL1/m6dOnrFy5klWrxG1EXl5eTE5OsmnTJnp7ezl16hR5eXm4u7tbLA/W6+Tg4CCPHz/GycmJ3NxcnJ2duXLlCnl5eVy8eNEuA29wcJB79+6Rl5fHl7/8ZWF+zle7YLUu19TUEBYWJgR/u7q6ChY9k8nEH//4R7q7u+no6FjUAmk0GgWF6JYtW2hvbyc3Nxej0SgQovOJwMnJSdFxxErmXbp0icrKSk6cOCEiWkNCQigvfxZw29LSQnR0tHCN2rp1q9AIaDt+jx49Es3xmJgYOjo6RJY0FxcXdu3axdTUFGlpady4ccMhwWwrptiyZQunT5/mwIEDKJVKIZtv27Zt5ObmCmok23U2PDyciooK4XdKpVJ27tzJ+fPn+chHPkJVVZVdZtR8LF++nNbWVvLz89FoNBw8eJDZ2VmmpqaYmppienqaqakpFAoFHh4e/OQnP+H27dvC852dnYmJiWHLli0MDw9z9+5d1Go15eXlolxFG5qamnjy5Ak7d+4UGhufPn0qUmvZLLW2dkqlUkl0dDTR0dEUFBSwatUq4XvhA/xl4BkY4rAVzhE6Kh8RHG+fefJeIVM4vaeg88UQlZ5Dz5MKTAbDou/fsmh6/7lk06NDjPd1gHVRunzPh3H18sErMBSDTotBr2V2agKDVotBN/euIbk3fvYNVuz/mEM7ltlsRqZQonB2QensRmBsMn2NVYz3daKf0xC1IPdJMzVBQJSFoPILj6Wj8iGegWEY9XpRQ5tlYVPE5GCvKFfEJySS3oYKEak3NTKA2WTEZDTYqVF66sstKq/OZiJTV9JdV4q7XyB+4VZroMlkCemtKRGOR1dNCSEJqcLCNzQxnd6GCiuh5UpUeg5z6il+9/lDbP7kly2V9fMIEc3khKBcikxdSXd9mdDCph4fYbyvQ/j7cEcTkcuy8QuPpb+pBoN2DpPJiLtPAJ29Hbj5+BOdsVpoV7Mp3+YjLCmDtrJ7+EXGMTczRVjSs2toYPQShjub8QmJYLD1CWaTCQ+/IBLX7rCqp4rxDokQNTFOjw0x2t2KX1gMQTFJoga5sd52QuJTGe/vJG7FBobanzLc3oh+bpaE1VuRymT4hEYxaFVtuHh401Z2D6/AUORKJyG3SSqTYTQYGO1uQaZQ4h8Rh04zi9zJheD4FDoqHwoL5d4nFWz4q1foa6wWwrrV48PMjI+w7VNfIzA2ie46C/ljw0BLHSEJqZbXjoxnqK2BoLilFkvU3IxgiXLx8MY7OIK+xmrCkjKQyRXMTatwcnVn9yvfAasKxcXDC712DtVgj9Dq11H5kPJLb7LvS98XERizk+PCHJfJ5Rj0OkHdFZaUQVvFA6quv82Rr/+nSDnT31RjmavtjUSl5zCjGqOzqghnd0+RUhCrLcxW/mDU60SLeBdPb2YnJ5geHWB2csJqOzPj5uvPeG87ZpMRD78ga3OmXJhDfY3VArHlGx6Db3gMU6OD9NSVcfX7X+TjPzovImMkEgkBUQmCUk812It2Vk1CzhY6Kh8RkfrsO7XvaRWJa7Yx1PZUyPJy8/bDMzCU0a4WpkYHRcRIYEwS3bWPCU/JspyzvoHErdjwTPlpDdEH6G+sFqxnXoGhdNU+FpFSPfVlePiHCGM9o3Lc4ipXOhGVtgqT0Uh/UzV67RzB8am4eHgRnJDKQEs9Slc3AqLePRPTEaLSLI2sMZlr7bKbDHod3TUl+EbEEhX1/JbOvyRGulrwj3KcK/rnwNak6DDL7Tnorn1MxLKV71m19QEp9R7x8OFDNmzYYKdI2Lp1Kzdv3mT79u0MDw/z4MED0QIkJyeHyclJzp49S05ODqGhoUilUp4+fUp7e7uwG+7v7y+Eo8+/uZ6bm+Pq1at873vfIywsjC1btqBWq4Wb9/7+fqanp1GpVEIz0/ww5uDgYIaGhggMDESlUnHv3j28vLxYvXq1kJmyYcMGQSk1fyFvNpu5dOkSy5cvJzIyEmdnZ1pbW4VgXZuVxKYWWcx+dfXqVfLz8ykrKxOyXuajra1NlGuSk5NDeXk5FRUVZGVlce/ePXJzxazrwYMHOXnyJC+99BISiYShoSFRUPrAwAAVFRVIJBL++Z//WVCIrV692u73Y83UunbtGuvXr7ezxKWmppKamkpFRQUVFRWsWbOGiYkJQkNDefDgASqVil27dqFUKtHr9dy+fVuUCQQIC/B9+/YJrVkLYbNnXbp0CbVaTXR0tOjEnpmZQavVCvk7169fZ8+ePSQkJJCQkMD4+DhXrlxBoVAQEhJCQ0MDjY2NDsmD+fD09GTfvn3MzMxQUFDAxz72Mf74xz9iNptRKpVkZWWJiKErV66wc+dOLl68yNGjR+2UN3fv3uXp06eo1WquXLmCh4cHGzZsEBQXNvWBo3BlHx8fUahzUVGRKFPNBoPBgFKp5PXXX+cnP/mJHSHpSHEkk8l46aWXOHv2LGvWrFk0jykxMZHq6mouXbrEP/3TPy06bkeOHOHUqVM0NTWRl5e3aL6OLQDb29ubHTt2UF1djb+/P8ePH6egoICQkBBhIT80NCSci6Ojo9y8eZO8vDyBRDPNswVgtZ3l5eXR29vLuXPnWLdunXA83N3dBUXf5cuX7Yie+di4cSN3795FpVKxbt06NBoNtbW1QkMnVuvWd77zHaanp9m9e7cdCYOVlOrp6QErgXH06FGhOVMikVBTU0NXVxdBQUHs27dPOEY2K6pUKiU1NdVORRMcHExtbS1/+MMfiI6ORiaTLUrCvfrqqyQkJNDX1yeQmzYUFRWxYcMGfH190Wq13Lp1C6lUKlhKbXbl2dlZtmzZIpAxQ0NDLFmyBIVCQUREBFevXiU+Pl5QdJaWloqsclNTU4It+s033yQwMJCEhAQRyent7S0QwDU1NaI8s4CAAIKCgnjy5AlLly7l4sWLdnlnSUlJ5Ofn2+Ukmc1mrl+/TkdHB+fOnROu3Tb09PSI1HwHDx7k/PnzdpZjV1dXTpw4wfnz51m3bh3BwcG4ubkxOzsr+l2XLl0iIyOD69ev4+3tLShxHZFTU1NTtLa28vvf/57W1lZcXV1xc3MTNleioqLw8PCgo6OD1157jbCwMGJiYhySw0VFRYI9sqmpiStXrgjWW4PBwPXr14mMjOTQoUP09fUREhLCsmXLqK6u5uHDh4IlVqlU4urqyqpVqygtLRXmzM2bN0lOThY1uX6AvwwsZMajdyWlOquLCIpbKlI2vF9IZbK/SMMRQERKFv1NtRiNBocWh8HWeiG/5EVgNpkY6WpGM2X57vPwCxKapCzKEyUGnQ7trNqhJee5r202s+3vXsNoMNiRITYY9Tp0cxr0czNoplXIZHKqrr3Fzpf/hcmRgefaOCKXZdP0qBC/iFjMJhO6uVl0mhn0mll6G6rQTE0QnvIsbkFizYHDWpE+0FxLUNxSojPXYjYZCU/Jou9pFVjVFq7evrh4+uATEoFqqJeo9BzGetvpqikhIDoRZ6tqwaaE6G+uwy8iFhdPH9Tjw7j7BCCTyzGbTJhMRqRSGeqJUUY6mtj9yncITUyns7oI75BIfEOj7DYrFc4uuHh4MTUygFQmY7yv06GiRSKR4BUYynBHEzd+/k02fuwfWbJ6q2jx6hsahaunN62ld9DPaRjpbEYzbTnmMoWCk1/5ODtf/hY99c8aq7SaGW7+5+vs/9J/EJa8HJlcjk4zy5I129DPaYjOWM1Efxed1cWUnP01qw5pcfcLIiZzLd11pfiFx1oJHst8VI8NE5Wew3h/J2azGf/IBDoqHjI3M4Wrtx+hSRki1YZUJkfp4kb+j19j01//b5HF7uFbPyFl0z78I+IAmJkYwd0nAIlEgndQOKrBHpzdPQXS07JZamS0uxWDVkuslaRw8fDGPzKenicVRFjnin5OI5CKngEh9DdWU3z6l2z55Ffw8Bc7AzwDQiwh9W0NzE6O4xMWTWBMkiVoOWUFbaV3iV2xAYWTs0A2zaknMei0+EXE0fe0iqi0HIdEcmhSpkBoTo8NWS2wG3Fx90Q7Oy2QYTb1l4uHN57zWiEt2V2TdFQ+5MbPvykQZTYUn/mlpbjB9ZlySDc3y/l/+SwfeePtZ8qn/i5cPLwJjE6kp74cs8nE9NgQwfEp1vljaXCzzXEAzfQkY92t+IZFk3Pkk6jHh/EJicSg1wnZXp4BIYz3daAa7EE9PiK0t/lFxDDa04Z/RBy9DZV4+AeTc+xT9M8jvtQTo/TWl3H3d99n1+e/LZq3AO/857+wfM+HSd9+RHQeSCQSguJTLAH1foG4+fiL79et56DZZKK94gEhS5aJQsLVY8OLhspjvdaHL80SmgUHW6fwj4zHqNcxq5oTWWXfK2KzNtBWfo/47GeK9fHeDiZH+onOXOuwGOBFoXByQaeZfeFWWbPZjHpsSJjTf0lIpFLCkpfT21ApnJPvhtGeNjz8g99XLtYHpNR7xObNmzl//jxHjhyhp6dHUER4eHggkUiorKxkZGREFBxtO8m8vLw4evQoxcXFlJWVUV9fT15enkg1lJOTw5kzZ0S16g0NDbS0tHDgwAFu3bpFamqqYD9YuCA8f/48+fn5bN68ma6uLq5evYpEIiElJYXm5mba29vx8vISFoLXr1/Hw8ODY8eOcfPmTUZGRli2bBkqlQpvb290Op3QIGb7XfHx8RQUFJCQkMDg4CCjo6Mii5YtrFav1wuqppKSEpKTk/H09GTLli2cOnVKVD2+cKxsWLFiBdXV1Tx+/Bi1Wi3KLMG6Q793714uX77M+vXr8fHxQa/X8+DBA2ZnZwkJCSEvLw+JREJhYSFbtmzBbDZTXFxMcXEx6enp+Pr6MjY2Rm9vL729vUL482LIyspi+fLllJSUsGfPHr70pS/x8Y9/XERyKRQK9HqxBLO4uBg3NzfS0tIYGhri6dOnZGaKfcNdXV3U1tYK9qxjx44JY2Uby3feeUcgcmwBv/NzaXx9fQVy6e///u9588030Wq1os+0WFsdVpXf3NwcJ06cIDw8XKQmsMG2oFUoFKxevZp79+6JFuNYCT4PDw88PDzYt28fU1NT5OfnI5PJCA0N5fz586SkpCxqOQsMDGRwcFAY1/nvv7+/n/LycpycnNi4caPQ/NfW1salS5cICgpi1apVtLW1OVQtjY+PExYWRnx8PF/60pdEdsKF+MpXvkJmZuZzGf/R0VG+8Y1vsGTJEruQfj8/Px49esTU1BQ7duzA09OTa9euCQSsRCJh165dNDY2cvHiRfbu3cvQ0BAJCQlUVlYyNjbG8ePHRb9/obXOBltL2f3796mqqmL79u3Ex8fT1tbG1NQUa9euFSkFbTCbzfT399Pc3MzmzZv58Y9/TH5+Ps7OzqSlpYmsamazGZ1OJxQwRERE2M0RLy8v6uvrhb9LpVLy8vIoLCxk165dPHz40GHbX2VlpUAoLFmyhIsXL7J06VLhPd++fZuEhARCQ0Px8fFhenpaULjMh1arRaFQEB8fj1qtprq6WkSOzB8/Jycndu/ejUaj4fLlyxw5coSLFy+yadMmuzyr+dc0mUzG/v37qa+v5/Lly+Tl5Qn/Xl5ezsDAAJ6enuzcudMit7eqRpubm4Xr8urVqwVi2cnJyc7qCpCRkcG1a9eEJs2Fx2+xeWkbF4lEwoEDB4RGO9vjq6qqRMdAoVCQm5srPG9mZkawVkulUo4cOUJhYSGTk5MickitVnP58mVBedja2kp4eDjR0dF0dHRw8eJFoqOjBaJ+dnYWDw8Ptm7ditFoRC6Xs3btWrtr+/DwMJ2dnaxdu5YdO3ZQVVUlnDe2a8GjR49EpGRiYiLBwcGcPHlSUKDu3r1buMZ0dnYKJGdGRgbt7e1cv36dubk5QT1oU/lhVQfHxMTYtSd+gL8cvILD7TI65sNGOrxIftOL4C+dDxaamMZQWwMjXS12iwKDdu5dm/r0Wg1DbQ0Y9XokUin+kQlC1fx8jPW0C4qRrtrHKJxc3tOYDLc/JTAmGaNBJ6hNFkKmUOKiUOLi4YXZbEY10M3uV75DRMoKpkYG6KwutuTDWO15RoOB8d52gVC5/+Z/sPr4p9HNzqBwdkXp6obSzYPAmETm1JOixaqTmwdGg56e+jJkCqWglhjrbSc4PpXh9kYil2Uz3t/Fhdc/x9ZPfRXPgFA8/EPorivFJyQSv3BLe+Cb/3iU3a98h576MiRSGQU//TrrPvSyYCtTDfYQsiRdOF4DTbW4+QRYQ9fX0lNfhlzpRGzWesZ7O2iveICLp4+w4DWbTGhnp1E4u3L663/D0ty9RKXn0N9UY8lqkkDD3StoplQ4u3vi5htAzPJ15H78Vbys6h2T0UhA9BJkCieGO5vQTE5g1Ot49PbP+Mgbb+EflYBEImGguY5N/+uLGPQ6AmOScfXysQSjN9ex9W+/inZ2WrBpjvW24x8Zz0hnEzrNLD6hUcidnAmOW4p2dobQpGfWWDcff8Z629HPaZDPU8n4hccw0tmEarCXlQc/Tm9DJWHJmfQ9rcJkNKCdVdNdVyoo13I/8QWhKRCgv6lWyLsyW8PMZ1RjAhnrGx5De7lFYRqTtR69VoOzhxcXvv0yWz75ZTtiwN03AKNex0BzHV5BYbh6+WA0GBhorsWg06KbmyU4PpWx3namRgcISVgmEAC20Pubv/w2a45/GjevZ/ctEomEmOVr6ah8KMw1/ZyG3qdVxK3YSO+TcoLjU2krv0doYjoyhVJkLZPJ5WA2M9BcBxJEdsmg2GTUE6O0lt3FbDQKJQQ+oVF01ZTg4R/EcHsj2plpzGYzoYnpGPU6ojPXCuO49sRnQCIhZMkyFE4uliy0UksW2khns5BzppmawNN67kakrqC3oYLGh4UExz/bDA1NTGegqZbAmCR6n1bi7OZJdOZahtqesiQhldHuViRSKQadFu9gy1pTr9UAEk5+9RNCNperpw9ewRGM9VQwN63CMyBEKEcwm80Y9TokMhljPW14h0Sy9VNftb6vZ6S30aAnbdthIlJX0tdYbVl7mM08vX8dD/9glM6uzE6OoxroJnmDeOPZwy+Iif4uRrpbiXHQemrQzb2Q/U4ikQhk7EBLPfk//hrJG/MEdZlMrkDu5IxC6Wz508kZuZMLcqXTot8XUpmMyGXZdNUUI5FIhc2VmD8zZBxr/t9Q+1ORUvJ56G+sJvQFH/t+4OLhhbObx3O/p22YU0+imRxfdOPj3fABKfUeIZPJOH78OKdOncLd3Z29e/dSX19PT08PRqORzZs309raKnrOQgIgJyeH//iP/+CPf/wj2dnZwuLPRpBs2LCBe/fusW7dOq5fv05UVJQoByksLIzx8XGqqqpEpEZLSwtxcXHEx8fz6NEjNm3aREJCAmazmcuXL/OFL3yB9vb2RU+yrVu3Ultby61btwgMDMTd3V0g4OZnR9ksbzqdjvv37zsMcN+4cSP37t1j69atdHZ2YjAYRJXltiDw+YTcYu8rLCyMv/mbvyEhIQEnJyeRVcf2/zMzMyQmJvKb3/yG27dvs27dukXb2SQSidAiVlNTQ1tbGxs3bqS6utqhrdARbJk7v/zlL9Hr9YICav369cICyKaA8PHx4dGjR3h5eQkqmqCgIKqqqkSvWVdXx+joqEA4SSQS5HI5R48eFbJlbBla8/NdVq9eTXFxsfCZpqenuXfvHjKZjEOHDvHlL3+Zy5cvs3//fmGMbbad+TAajdy4cQMXFxf27NmDj48PLS0tpKam2h2b6upqgTwIDw+nt7eXtrY24uIsO2WTk5N2C3pPT0/27NnDzMwMX/7yl/nJT35Cfn4+RqORxMREu8X2ypUruXr1Kl5eXqxbtw6z2UxFRQX9/f2EhoYKuWrzz6+4uDji4uIYGBjg0qVL/Od//ievvPKK3Tnp6+tLVFQUv/vd7wgMDHSYz4OVSHz8+DEKhcKOQLRhdHQUg8FAfn4+er2exMREQbViNpsZHx8X2Wlt4coLic+kpCSioqK4cOEC4+PjTE9Pk5SUJMqqs2F4eNhOmTYfGzZsQK1Wc/HiRZKTkyktLSU1NZWQkBC6urpoaWmxC/QOCwtjzZo1XL16lcnJSbZs2eLQ0ltdXU16uqWud/fu3dTV1XHt2jV2794tzBMnJyc7UraqqgoXFxeuXbuGs7Oz0Nxma+O02Uznz7WdO3cKGUsPHz4kPDycmJgYBgcHGRwcJCMjA09PT86dO8ehQ4eE58638WZkZPDw4UMhYN1RDp1Nvenp6cmvf/1rNBrNc4nK+UhNTSUuLo7f//73fOELX+DNN99k+fLldjYy2zxdsmSJkMdVXFzMxMQE3/zmN9m7d6+dAs72PKPRyHe/+13BarfwXFEqlWi1WkH19/TpU4KCggTiTS6Xs337dqHF1WZPW4igoCBBjTY2NmanrNyxYwclJSU8fvwYrCT6QltiVlYWFRUVrFq1ipiYGGJiYrh9+zaf/exnaWxsFIgum4px27ZtXLp0SWQpnZub4+7du0JDoC3LKyEhgbNnz7J27Vq8vb1RqVSEhoai1+t58uQJg4ODYCXYvvrVr/L/Y++/46o8Dz9++H0WcNh77yUbARVEEQcOlltjZpvZJml2m2Y0SZvVpt+mzWqbpkmTNmk1TlSW4lZwAAoIgrL33uNwOOv3x+Hc4QhmtP1+n+f3PPm8XrwS4Yz73OM69/W5PqOtrc2I9L45A9DPz49z587x29/+FrlcjlwuF47b2bNncXd3F8a07/G/A3t3HxovF855s9tccREH70AsbL85v+3/k3AJCKO3udaI7FGMDGJ2C6vh2EAv/dNZNFJTM1yDIucMTZ4JrUYtqAx8ouKpLz6tV1Z8y9V0xeiQUc6MwYp0K7Rdu4xnWKzemtVaj5NPEDYuHmhUUzReKeTCno9I/uFPcfD0x8k3mLHBPja98B7jQ/14hMYIRMGUYgJzGzvMLK2NlEXd9dc48sErpD7+Ol4ResJofKgfCxt7zKbVJ4K16+GX8AiNoeN6BeqpSaYmxumsrUQ5PoqZpQ1pT74pvHbnjasox8cYaNcX9di4eBgFEYtEYvLe+wWrHnxeaD4TicVCmLOdhy/KiTEO/uZJUn70IiZyfd6nibkVphb6cHG34EhcA8P1C4JaLeh0yK3tmBwfYd4S/QKJSqnA2tkd5fgovvMXo9VqyP7ds6inlKx77LVppUsxaU++adSUrJwYQ25li1f4AtquXaa7QYlYLMF/wTJaK4uxcfGg88ZV3IIjUU1OYGpuiUdIDM0VF3DwCmCos4XYjDvRqFV01VZiM+O68gpfQOPlc1g5ueHoHYhOp2N8sI8Dbz7OD9/dJ6hmJFIZ3pGL6G2uJf/9l1nzyCv4xSxBJBZjaefE+GAflvZODHW1IpZIWHHvT3EJCKOh5AxOvkH6c1UqQ6NW6wO3m65TeTyLNaZmyEzlWNg54B0Vz2hfN7auXignxowIIBsXD9QqJXt++RDJP3iGybHLAlmjJ6mDsXPzRiyRTTctarl6PAuNSoVbcASpT7yOuY09XXVVaLUaQXEjkZngFhxJ2zX96zWWFRE0HdbNtBouYOFyWiouUnXqMNFrtwmKMKbJzfO7/0Lq468LTZZMKwwHO5qRSKSU5OzE1MJKuDfNe+8XJP/wGfxilmBmaU3j5ULmp96GS0AYdRdP4L8gmcnRIcxt7HHwDqDpShH+cUl6cjAsht6mG0atfjqNRiDtDDbXrroqGq+cw8Tsq7Eg950XWPXQCwQsTBYUU1OKsenzZT5t1y4z3N2Ge8h8esvOIzM1wyUglKS7n8DG2QNrZ3cUI0P0Nl3ncu6/sHJwITQplaGutunrSETBh68zb8kaPMPjkJnKabk6jrm1nT5LbZrsarl6iZj02+mqu4Z35CIUo8PTrZCxSGQmTI6N0Nd8gxvnj2Np/1U2q06nY0oxzrG/vMEP/rDnG8n9r8NwdztD3frtlpqYsvKB5zCRWwhjhkatQq2cRKVUoFJOohwfRaWcRKNSzpq/31yq1NdST8nBv3P/Hw9/59ylW0FqYop6SvmtHqtRTaGeUv7bbX3fFk6+wTReKcTCzvGWRKBOq6Wt6vJ3zpGaie9JqX8DUqmUmJgYwsPDycnJISIigtTUVKqqqigvL6esrAwbG5tZViKmV9r37t3LAw88QGBgoJAPo1AoKC8vZ3BQX8n61FNPsWnTJl566aU525ciIyM5ffo0zc3N+PjopcYzrR+GUFumLyK1Ws3Bgwe5fv26YOkzTO5nIioqis7OTtzd3Xnqqae46667aGxsxMLCAktLSywsLJBKpUgkEqF1bS5YWFigUCgYHx/n8uXLsyxDVlZWeHp6cu3aNcLCwujq6po1ye7p6aGwsBBnZ2eysrLIz8+fZYdjemA4fvw4vr6+aDQaIiIibklI3QzDqv0bb7zB9evXGRkZMbL/zYXW1lYuXrzIunXrsLCwEAKnlUolZ8+eZXJyEhcXFxISEigoKMDS0hIHB4dZIeQzB7uioiJMTU2NyBHD301MTNiyZQu7d+9GJpPNsu84Ojpy/vx5uru7hbDf1NRUJBIJubm5BAYG4uDgwJdffsm2bduQSCQ0NDQYKYjKysqEAGoLCwtOnjwpZEWdO3fOKKjaoMqaOTgnJCSwf/9+3N3dkcvlQtj4TFy/fp3a2lpkMhlJSUmsWrWKtWvX0tbWxsmTJ42aHK2trYmMjEQkEtHV1YVCoUCpVLJgwYJZk/25Auitra3R6XSEhoaycuXKWRNwnU7Hrl27BEXaXFAqlQJJmJOTMycpNTk5KTRhHj16lMzMTMHKaVBXOTg4sGzZMjTTAZUGy9BcMDMzw8nJiW3btrFr1645VU1M28hmZtvNBQsLC+bPn8+ePXt47rnnOHToEAUFBXh7e5OcnGxENM+ESCRi27Zt7NmzR7DFzkRnZ6fRvoiMjMTLy4tdu3bd0s534sQJnJycWLZsGbm5ucTGxhIXF8eNGzc4ePAgbm5uKJXKWTlWZmZmODs7s3v3bsLDw4Xj7ODgICix3N3dWbNmDTt37mTr1q2YmJgwMjJitB1Lly4lPz8fS0tLysvLyczMpKGhgerqaphWZC5atAi1Ws3JkydJSUnh+PHjWFpafuN+Nlx3Li4uvPDCC6hUKiHr6usgFouJj4/n6NGjQknAXIQTQElJCQUFBVhZWZGfn4+JiYlRUHd8fDwXL15k2bJljI6OUldXN8sWa29vj7+/PyUlJQwODs5SNhoQFRVFQUEBbW1trFixAp1Oh0KhYGxsjPHxcSwsLCgpKeG+++7j1KlTs/LJHBwcuHTpqxt5nU5Hf38/u3btYnh4WPg+u3jxIvHx8YjFYvz8/ARSW6fTsX//fmGxw8zMjMnJSeRyOZaWlmzfvp2zZ8+ybNkyDh8+TF5eHlKplIiICEENl5eXx+TkJCdOnGBsbMxoQcSA/v5+CgoKWL9+PY6OjqSmpjI+Pk5paSlPPvkkK1as4C9/+cs3Hsfv8Z/D1s1rVsuPwXJkOUdmyH+Kr1MK/7tw8glioL2JjusVuM+L0mcMTWf46CcvdUwM9cO0asVgy/t34R+XRO2lkwQsSP7agHOmFTV27l+VuXhFLNSrW2LnXtUfG+hBamKKmaV+DO1r+WpRRyIzQSIzIfkHT+PiHyqQYj0N1fjHJekzVWZUxLfXXME3ejEt0yoptWqKloqLWDu5kfrEG9i4eAh2rf7WerzC9d/vk6PDFHz4OpteeI+J4QEG2hrxCo9jbKCHL352B8vv/RnB09lHBhvT2GAvWq2GBRvuwTtyEf1tDTReKaTyxEHhmEukMiJWbUSn09FUdh4zS2tkpnKUE6P0NdehUU/h4h9K6uOvMzU5gVf4AsHOVV9yhvAVmVjaOU0TKnrCp6+5Vm/jEYlor76CR2gMfS11OHoHMtzdzthgH+ODvcRvfYDBjhb6W+swt1mIVqvFc9o26BezhKGuNmxcPJBIZXrLm5UNxz96k/gt9zM5pldvWju5G5FuADp01F08SV9LPQvW341Wo6G9pgyf6ATKj+6d0UgnRiSWcPXYfvzjliFqqcPZP4S0J9+kv7UBlVIhkAGtVaU4egWQ/tSvcQ2MoPHyOew9/bFz96G9pgzQMTbQg2dYHK2VxZjILQhYmExPYw2577zAusdeRSKV4ewfipPfPBy9A1FNKvAMj2Ooo4WQpeuQmphSd/EkJuYWuAVHMdTVynBPB0znOSlGhqaJR2smhgexdtJPhl0DI2guP4/v/ER8ohNoKitChP7zycwssHP3obv+Gl4RC+htriX7d8+y6qHnv7oeWuvJfvtZUh9/XR+IDVQcOyDc2ypGBmmpuEjAwmSCElYJpI6phRWpj7+Oo3cgIz3tdNVVcuSDV0h/6je4zYvS503JTASyo72mjBX3P4upuRWTY8NMKcaxdHBGIpUxpRjHf8EyGkpOIxKJCVikz+yxdfWiqawIc1sH5Fa2iER6wtTWxRMzCys+e2ILiTseIXxFJhKpjK66a2x9+U+0VpXiGR43rdo5x/J7f4q5tR1dtVW4z5tdJGJu60D228+y6cX3hQyv9poy5iWuobniItbO7tNKTB0JWx9ENakwUr/0NtcyPtyPVqtFq9GgGB3G1MIaR58gPfHp4DIdcO6gV35pNfS11qMYHsAvZgk9jTVY2jvRUHKG6LXbcJ8XbfT6yokx2qpKSXvyTYa62/TNnYHh38rCrVZN0dNQjUo5CdP5VN6RixCJREwMDyKRmjClGNM3hU5nhEmksu/c6DoxPIhWo2bdY6/Scb0cqYkp7iHz/0/betuuXTayRf9vwic6gYaSM0aWxZlorriIT3TCf/T5vyelviMUCgX79+8nICCAvXv3Mj4+Lqy6t7S0kJqaio+PD/X19ezbt4/169cjk8mYmppCqVRy+PBhYeIUExMjqJ3kcrkw+SksLOSFF15gYmKC8vLyW2amJCcnk5WVhZ2dHWVlZSxb9pWcVC6XMzExgbm5OZcvXyY2NhY/Pz/27dtHUFAQEomEioqKWbaXpqYmysvL+fnPf05MTAyenp5CiHVLSwvj4+NoNBree+89RkdHcXBwuCWT3NbWRkxMjJGNZyaio6M5dOgQvr6+VFRUsHKlXvLa09NDUVERTk5ObNy48RtP8HPnzuHq6srrr7/O2rVruXjxIsXFxaSkpMyyhBjQ3NxMSUkJCQkJLF68WAgzb29v5+DBg9jZ2ZGUlCS8t+EzGiaGNxNDTKtDDERMd3c3+fn5ZGZm8vHHH8+pJjPgyJEj+Pn5zRlEbICJiQlDQ0Ps3LlT+Ewz98vzzz/Pc889x5133jlrm5nOaNq4cSO7du1i06ZNgn2pt7eX06dPC7XtBhjOHXNzc86fP49arRYmwJcuXZqTuDOEfu/YsUOw5UxMTHDmzBnUajXBwcFkZGQwMTHB2bNnYVot4eXlZWRXZVppVV5eTk5ODh9++CGFhYWCFelm1NXVCVY4rVbL8ePH0Wq1rF+/noULF1JTUzOr3Ss7O5v09PSvtWnm5+fPmWNlgFarZd++fYIlyrC/k5KSuHr1KidPnhRIxqCgIGprawkJCRGssTNhIEMUCgVJSUkCAVtVVcWhQ4dm5XEplUqjfCAD2trauHr1qnBz5efnR2xsLF988QVTU1OEh4fj7+9/y8/U0NCAr68vMpmMzMxM9u/fb2RFvhVsbW3ZsWPHLDufVqslKyuL+Ph4IT/N19eX5uZmocEvODiYzs5OvL2952w4m5qa4vnnnzcKupbJZEZKLysrK7Zt28a+ffsEov9mJCUl8eyzz3Ljxg2BCLlZGVlZWUl4eDgikUhQee7Zs4eMjIxZNlPDWOns7Mz69etpbW0Vco8MisPk5GThnL353C0sLKSvr4/Vq1cjkUhITk4WiOObSdTe3l6BjDVcQwaF7cqVK7GysmJ0dFTIabs5F8qAefPmsXv3bn75y1/yhz/8Qfj9zds2MjLCfffdh5OTEzKZTMh8srS0xN7entjYWB5//HE6Ozs5deqU0efkprHnyJEjgm11//79wgLFwMCAYAudP3++8L168OBB0tPThfHGxsaGoaEhYf/39PTQ0dHBO++8w/j4OOvXrzc6NjqdDrVajUwmY+3atRQVFTE6OmqkOCwpKWFgYGCWLdbCwgJ7e3s+//xz2tvbOXDgAPPmzZvVAvs9/ruwc/Om8XKhQEq1XL2EnbuP0cr5/xtg7+HLcHc7rVWlqFVTdNSU6Ve8RSIcvQL+7cyPuUg0kVhMwAJ9rklQ/MqvvU8a6e00spWIJRKsnFwZ6m4zCsZmerW7q67qlhMPlVKB1MQMz9AYGq8U4h+XRH9rA/aeenWwVGaCpb0zQ11tmFpYYWZhjUgsRm5tS1NZEQA+0Yv1k0K1GlsXTyRSGc3lF0Akoqv+GsrxETxCYxGJJYKyZ2JkkO6GarRqNRuffw9rJ1d9BpSLJ6aWVoz2d9PfWo9f7FK93Uynw8FTn2+lVasRiyX6sOWKiyxYf4+etImKRzE6zKHfPoPcyobUJ95AZmqmz6Cyd8ba2U1PGMUupavuGk4+QQx1teLoE0RD6VmsHF0RiUSM9vfgHhLNUGcLEpmJEA5vIrfA0SeIEx+/RdTqzTj5BqMcH8Xew4+G0rOCPchEboFyYoyhrlZ85y9Go1ax91c/Zs3DL5O442EhEPrC3r+SdNfjMB2s3lpZjE6rRSQWM3/ddgY6mmm8Uoh35CJ0Wg3dDTW4BUVg5+aNV8RCtBoNLVcvcaOogJjUHdhNX28ikQiP0Bg0ajUn//YWhf/6gDvf+icisZiR3g5kZnL8Fyyjr7We5vILKMdH0KiUAvE4E+opJQs33YtWrcbOzUdQcJiaW+IaFEn9pVOIpTL8Ypcw2N6MzExO7jsvsPLB53ENCNUTOjod9aVnSHvyTVTKyensq2by3vsFdq7eOPuHIJGZolIqaLt2GRf/MCJXS/AIjaHl6kUsbB3QqKb0FjRbB1Y++JxgOdRqNUyOjxK/9UE0qincghcIxKpXxEL62/Sth5tf+iNyS324u1d4HGaWNijHR/GOihea6prKilh6x0/02WmTCiPlYV9LHaYWVti5+TA+1IdyfJQTn7zFtl/9FRHQVVeFqbklUlMzjnzwCibmFsJ9ZP77L7PusdeYGB7Ezt2boc4W1ColyvEx0p58EytHV9qqSvGOikc5oVcL+sUsof7SKRCJ8ImKp7v+Gh6hMYwP9VNXfEooGZgYHqCrrgo7dx/SnnyTkd5OnP1CEIlEaFRTSE1M9WHp0+Rqx/VyAhetoO1aKSql3i431N2GWjnJoo336q2eNWU0Xj7L/HXb0Wm1eEcl0FxWhG5aRdpaVcqZz98lNv0OQpNSmRwbRiSWUHfpFP6xS5GamBqNccrxUdquXcZ/wTLaqkpwC9I3QnfXX6Or7houAaFG2VIAI31dDE4TtRKZCS7+oXMql7obruE7PxGtWmUUCP9dMTE8SE9jNb7zE2mtLMYrYqG+cOBKERb2jv9RXhXTuVKqScXXqq8mx4aRmckFheP/NsRiCW7BUUJ+2kz0Ntdi4+LxH6vFvielviMqKip45pln6O7uRqfT4eHhQU5OzqzJTUBAAF5eXhw8eBBra2uKi4vp6uoyUh54eXkZWfBUKhUHDx5k4cKFREVFcfXqVdzd3dm7dy8ZGRmYmZnNujnZsGEDb775Jp6enkak1NKlSzlz5gyrVq2iublZuCFPTU0lNzdXsIoYJuWtra2Ulpbi6+srqGUMtqyb7UOVlZW88cYb9Pb2snDhwjlVAR0dHfT19XHHHXdw+vRp1Gq1MOCamJgQEhKCu7s7GRkZ7Nu3D0tLSwYGBigqKsLZ2dnIamaA4fkzf3/8+HE8PT2ZN28e7e3tMK0a0Gg0HDt2DKZtiUwrExQKBUeOHMHDw2POybaHh4dgjzx8+DByuRxzc3Pq6uq4fPkya9asmdUCNxecnZ3RarV89tlnrF27loqKCkZHR4W/W1lZMTIywp49e0hKShJCrQ2Yaa+ZmJggKyuLu+++G29v7zkn3VNTU8I+NmBmcyHTioMdO3awd+9elEolubm5WFhYsGXLFqPnaTQaI7Jm9erVFBQUCMRPb2/vnIHpEomEFStW8Mknn2Bqasrhw4cxNzefpVQ6fvw4qampDA8PU1xcPKcSxcbGhvnz5zM0NMSGDRvw9fUlJycHpm19N6vqRCIRV65coampiVWrVgnWQQ8PD65evWpESl28eJGQkBDhMTODwA1oamrCw8NDUBM5OTnR29srhPkDHDhwgA0bNsypbImMjKS1tZWsrCxh+48cOYJUKjVSqBnUHFqtlhUrVsxS+IWHhxMeHs7o6Cj5+floNBqjfd/T08OVK1fQaDSIRCLc3d1Zu3atcPzGx8dpamrC3t6edevWcenSJerr60lJSZlzElNdXS0QcVZWViQmJgqkAtPqkrmyrAzHYKadb2pqil27drF+/Xojcjg0NJT8/Hx8fb9aua+pqRHKFGbuY6ZzfSoqKgSFj0ENc/P2y2QybrvtNm6//XYGBgaMLK46nQ4LCwsSEhKIiYnB29t7lnKRaRXYzOwpX19fPD09yc7OFkhjQ8afr6+vka26r68PT09PJBIJqamp9PX1ceDAASIiIowI5+rqaq5du8aSJUuMlGFmZmZs376d3bt3s3nz5ltmrTEdPp6ZmSkUM8jlcrRaLQUFBaxevRqdTkddXR0NDQ2zLIGGc8SgtpoL+/btEzK2bibUlUol58+f53/+5384efKksLhgb28vtH4arqmRkREsLS2Fay0yMpKKigpCQ0NnXTdLlizh7rvv5rXXXjNSuRkyntzc3Dh//jwKhUIoB1i9ejWHDx8mMjJSsNkVFxcbqSkTExOpqKgQyPH9+/cTGRlp9Bhra2uGh4cZGBigv7+f5ORk8vLySE1Npbq6mn379hmN39/jvw97D18G2hoZH+rH1s3bqJXtv43/9kr2lGKcgfZmphT65tmrx/bTWllC+lO/0a/Q/wcNfEy3qFnOsT8kUhm+0Qk0lp7Ff0bGzUyM9HVh5eg66/eOXgE0lJzBxtnDaH+0VBbPmqjNDN7tqCnXT/DFYmxdPBnsaGa4p92occvRO5D66Rwha0dXmisuMjk6zNXjB1hx78+QSKX0Nt0QVFFajYaxgR7OfvEet73+N9ymG8rknbZ661JXK3nvvkjGM7/FMywW5cQYgx3N+gyojmaayy4w0N7Imkdegelg9MmxYTQqFcrxUWLSduDkG8SZz9/B0TtQ3w44ncXZ01BN0l2Po9NqaC4/j0fIfPrbGgVlhcP0ZxFLJJiYyak8noWFrSPekYtoqbiAWCLFfV4UvU03qDi6l/mptzHW34NSMUZz+YXpe1Z9U5ijVv/dL7e2o6+5lqHuNn2LnqMrzWXnEUulNJUVIZZICVy0gsGOZkQSCcPdbcjM5Cy98zE94aTTMTU5QWPpWcwsrXEJCEM1qUA1pcTZT28LLPjza2x55UPs3X0EC9pofzcmcgvSn/o1U5MKI7upTqul5epFIlM2E7hoJQ2Xz+EaEIZEZiKQEVYOLoz2dnLqs7fJ/NnvZt2Pt1dfwcLeCdeAMFyDIhhob6Kp7DzeUfrzSWpiipWjG1m/fpyUH/8C18AILB2cyfzZ71CMDCK3tkMkEtF89RLeEYvorq/CxT+U7vprmFpYEZt+B1OKcUZ6u1BPTfLJI5nc8/s9mNvYIZFKEQF+MUvoa64l950X2PLyn3H0CtCH2g/0YGHnKBAhHdfL8QpfQGtVCTIzfYZTT2ONkOuknlLS3VBN4KIVtFYWY2mnvy8RiUS4+IdSfTYPF78QxBIpXhEL6agpQ6fTCtfclGJCUCj1tdRiIrckbHkmXbVX0ahUnP3iPVbc/yzu86JJffx1RCIRXhELaa0sIfXx13EPiWagvRnFyCD577/E7W/+XQhtt3Pz1rchXjpFX+tXKsay/N1Er9uO1MRMH/ivVmFh60DAgmTqS05z7MPX2fj8u8K1OtbfjU9UAs3lF4waD80srdFptdQXnxLUS27BUXTUlGHn7sNoX7egWhzqbMEzLJaG0jO0VpZMZ07pOPbRGzj6BJH8g6dxnxdN0l2P65v4rl6i5lw+IpGY1T/+xayxcSYhNfPcEolEgmW2p6GarroqSg9/obfPAlaOrt+oPjXYREUikRAIbyB1vwsmhgfpbrg2Kz/K1MIKv9gljPZ303j5HHbuvt+YwXQrOPkG09NY87W5Up03rgpthf9XsLB1YKy/m5HeDiFfTDEyiHJ8BCef/1yx9T0p9R2xcOFCxGIxVVVVggUmPDyckydPCoSRRqOhvb2dxsZGLC0t+eyzz9i5cyd5eXlcv36dwMBA4Ybc0dGR3t5eFAoFxcXFrF+/HhMTE3Q6HaOjo/j4+AjElyFcVqfTUVFRQVub3iNbXV1NfX09jo6OSCQS4uPjsbOzE1qlZtqozM3NcXV1FbKlOjs7uXjxIp6enmzcuBGmA3KTk5MxNTXl6NGjRpPxvr4+2traWLduHTqdjn379s1SDZ07dw6NRsOdd94pTBxmQqlUUlNTQ0VFBUwTYs888wz//Oc/57QLGRASEmJkP8zPz5+V32OARCJh7dq1QvObTqejvb2dqakpMjIybmmLMmBmWPiSJUuQSCQcOXJkTkLK3NxcsLUww6K5bt065HI5586dm2VlGxkZYevWrdx7772Ym5uzcOFCo6D0/v5+HBwc6Orq4ty5c9x2221IJBJBNTCTCKyvr8ff3x8zMzMjIqqjo2NW85VEIsHb25vExEQ+//xzRCIRRUVFREdHC8RBSUmJkfVULpcjlUoZGRlBIpHMaSdVq9VcunSJoaEhHnjgAfLy8uYkz8bHxzE1NUUqleLg4CBk08yFnJwctm3bxtGjR3F3d8fd3V3I/ykuLsbCwoLExEQ6OzvZv3//LLUXc0w+mpubUalURnaeuLg4Ll68aGSdLC0tNSIt4+LiKCgoED7TsWPHWLx48S2VeEyTzjY2NuzatYvNmzej0+m4du0a69evZ3R0lFOnTiGTyUhJSZkz32cmrKysSE9PR6fTcerUKdatW8euXbvw9/e/peXLsJ0ZGRncuHGD5uZm4uPj6evr48svv2TdunWzCOWbbZlubm6MjY1RVFREYmIiJSUlQkPdXOjo6KCrq4uhoSHuuusuampqZu2jm4/J8PAwarVayI+6WZ02MTGBhYUFycnJVFRUCAq0mde7Wq3m9OnTjI+PCwHlK1asmLVfx8bGSE1NnTMH61aQSqVkZmby5z//mccee4xr164ZkVEG9Pf3G5Gfjo6ObN68mYqKCvbv309nZydjY2OEhobOIsQNn0Umk7Fjxw52795Nenr6rFy2m2HINbxw4QJr1qzB0tKSPXv2CEqwmRY/A86cOcPrr7+OQqHgyy+/ZPXq1UZE49WrVwkPD8fMzIylS5dy4sQJI/LKkP9kKHOws7Njw4YN9PX1cfDgQZydnVm0aBGFhYX09/cbkVpBQUEcOHCAwcFBEhMT0Wg0FBcX09/fz8DAAMeOHeP222/n2rVrmJmZER8fj62tLRUVFVRWVrJo0SJBmWwo1Ni4cSOXLl2ipaWFFStW0NXVZaTk7Onpob+/n7Nnz/LKK6+QlZVFQ0MDU1NT+Pr6YmFhwYIFC8jKysLa2nrW+RcaGsrU1BS//e1vv/ZYfI//DOa29nzySCZJdz2O1NQUESLMbR2+0Zr2fwmNWsVQVyvjg8ZlFjIzc+w9fAVViFajJmLlRuw9/QTVjrPfvFmr+98Ww12teITNzhYEMJFb4BIYTsvVS3Ou+g+0NcypaAHwCDNuVRru6UBuZWOU7wPg7B9Cd10VrtNhwYa8KFs3bz56aC3JP3xmRhubfjwd7m7j0v6/kfbkm/hExTM22IejdyASmQn1xae5cb5AmFBaO7tjae/M2kd/hWJkiKGuVjzD9Ns01NXKQHsTa3/yK0zNLWm8fA7P8DimFON6Mqu/G+XEKOqpSZrLz2Pv4Yetiyc9jTUoJ8YJWLCMrjp9kLyLXwiT46M0l1+gqfw8fS11hK9Yj1gipb+tQVCE5L37opD1BFDw51dZtPk+nHznEb5yA6YWVnTeqKDoyw8Z7esi82e/wyUgjMiUTTj5BtNRU07JoX9wx28+x9rJDYlUqg/RLj6NcmKU+pLTxGXepSdGIhYy2NHMiU/eIm793SxYf4/wPewRFsuuF+/DxT+UlQ/8XFBGdTdU4+gdSPzWB5Db2FNfcgaf6ARUkxMoRobQqNXEpN/BcFer0DQ5PtjHcHcb3pGLaK0sxsU/hKGuVlorS5gYGaS+5LTeeiOW0F1/Dd+QxXTWVtLTWMPE0ABSUzNM5BZ4hsWR/MNnEInENF0pEsL29XlXnlg7uSEWSxjt68LJJwhbVy9qLxyn8F9/ZMX9z+Lsp7cLTk1OYGImp+N6OT5R+oXJuksncfAOxERuTm/zDSoK9hGZspnCnX8iLDmD6LVbabl6CRf/EDqul5Ow7SF6GquRyExx9A7Q20xFIlSTE/rjJ9Zb2Zz9Quhva6CrtlJQ5jCtNjRkZx38zVMsu/tJIWxbamKqD/IWifCOXERP03Vy33lBaM27nP1P1v3kVeGc9wiNYXJsmOy3f85QVxt3/26ncP1oNWomx4ZwC47EwtYRxcggCdsexMrBhb7mWjxCY+hpvM5wt35h3TMsls7aq3iGxdFcfoEFG37AYGcz1k5fBdeP9Xejmpqk7uJJYtPvFNRenqExNJSe0avvxsdQjA4y2teFqdwSv9iljA32GuXJmcjNsXF2p7e5Vr+tWg1dtVWMD/Zy6rO3jVoCy/K+JGLlBoEAt7BzYqC9ifGhPhK2PEDH9Qq8IhYIhLxKOTl9naqnVYF6Ato1MBxH70Cays7jHhKNqbklIpGIybER2mvKZhFSMzE5OoRidJiR3g6BTPKKXChYLL8OnTcqhHON6UD4jhsV3zpQnK8hpGbCysEFKwcXBtoaabx8DpeAsO889stMzb42V2q4ux0rJ7f/U6ugAS4BYTSUnsXC1hGRREJ7TdktlbXfFf/f823//xIcP36cBQsWCPYAnU7H2NgYb7/9NkNDQ4jFYsRiMR4eHixYsACJRMLo6CiLFi3CzMwMMzMzTpw4IeTn6HQ6nJ2d+eSTT4xsGzNPtNHRUezt7dm3bx+/+MUvOHDgAHFxcQL5IBKJMDExYeHChVhYWHDp0iUGBwd59913mZiY4LXXXkMikSAWi4X/zp8/n2effVawdc3E1NSUEJi7evVqof1Np9NRUFDAjh07hPedP3++oPaanJzk8OHDJCQkzLJjzYSpqSnR0dFCdom/vz/PP/88wcHB5OfnC68dERFhVFnu6+tLXl4eISEhHD58mNjYWMESdCsYMmHuvPNO/P39SUxM/EZCyoD29nYKCwvJz8+nvLyc2tpaLly4gL29PQkJCYIaJSYmhsuXL5OUlMTIyAjZ2dmCRZNpEu5mXL58mUuXLlFeXk5aWholJSUUFxcLOTN9fX309vbS3d1tRPotXryYo0ePCqolppUbhvyY/fv3ExUVNedAVVVVxY0bN4iPjyc7O5vx8XFBsXTlyhXGxvSrvH/4wx94+eWXiY6OFtRDq1at4uDBg4LyienJXmlpKTqdDqlUysKFCzE1NaWgoACNRjNLWcT09fN1ljgDTp48SXJy8ix7nUgkEiaco6OjhIaGEhgYyAsvvPCN58LExASlpaWz8s3Mzc1RKBTCv8+ePWuUocU0mWdQnFy6dAkPD49ZeWxzwdramm3btrF3716Gh4exs7Pj4MGDWFlZkZaWZqTm+TYoKipCoVCQnZ2NUqnE09PzludzW1sbrq6uSCQS5s2bR0FBAb6+vjg6OgpKExcXF0EJOTU1NedrBQUFMTo6SkVFBVqtVnjM8PAwZWVlRvvOzc2NFStWkJ+fz759+1Aqlezfv58lS5bcMpj92LFjQkj5zUrQiYkJI8VQVFQUra2t7N+/HzMzMwYGBigsLEQikbBs2TIsLS3Jy8sjJSWFAwcO3NI2GxkZiY+Pj0DKzGwXnImWlhbKy8uRSCRs3bqVoKAgampqUKvVsxoHZ+6bmfDw8KCuro6f/OQnFBUVzanQmgmJRMKOHTvYs2cPKSkpqNVqI8KaaXvwlStXhHMyPDyc3bt3MzQ0xOjoKCkpKbdUdI6Pj2NpaSnkMx07dgxra2tBYVpbWytcI+7u7nR2dlJdXU1oaCinT59myZIlgoIwICBACJB3dHRk48aNdHV1kZuby5YtW8jOzub8+fNoNBq0Wq3w3+XLl5OTk4NYLGbBggVCJt3u3buJiorCxsYGhULBxYsXycnJ4Xe/+x05OTmoVCohIH0mYmJiKC8vx9fXl7Vr1xrlpTk7O+Pr60tvby/vv/8+Xl5eREdH09HRQWlpKRMTE4yPj3P77bdz/PhxJicnjayxx48fx8nJia1btxplZX2P/w6GutoY6mpFamLK8nt/hoWtA45egYwN9NB5o0KYVN9sDzWRW2Jp74S5rf23mpB8F+h0Okb7uxnubken/SrrUCyRYuvqhb2H3y0nA6P93VjaOWHn4UdrZTG+8xej0+nobbpOT+N1TOQWuAVFfKfVeX0xxq0/o4WtAyqlgs7aq0LLFNPh5qYWtya2Tc0tEUsk03kwlvQ11wrNZDMhlZmgUavoqCnDIzQG1aSCjuvlIBKx+scvIRKLsXP3EdRtitFhdDodS+/4CapJBY1XChnubsfM0ga5lQ0TIwN0XK8gNuNOXPxDUU8pGevvRmpqhpNPEBKZCa2VxeS99ws2vfg+/nFJtFYW4+gThIN3AC0VF8l//2VSH38dj9AYdFotXhEL8YmKF8iHE5+8JdTTT00qOPw/z/DAn3NouXoJn+gEhrra6G+rZ7i7DWe/ENRKBSO9nUxNjLNo832YWljj4h9CV10Vax/9FdbObnTXVSE1MUVqYsqUYoKghFVMDPWjGBlErVTo7XEVl5Db2LFo8310TYexM02ASE1NOfbRG6x99FdotRr9edbXTW9LHeErNyC3tKG+5DSeoTFo1CoaLxey/IdPAyKarhQilkipvXQSO1cvbF08GenpwNrRFUs7Jxoun51WwrxHwHQoulfEQoZ7Oric8y96Gqp58MM8o+NqIrek80YBl3P+RdqTb9JdX42dmzcTwwNC417r1RImhvtJf/o3WNo703btMkEJq2irKsUvdgljA70cePNxYtLvgGkyUiQWU5r9T+av09vIleNjuAaGI5WZYG5jT39rPQELkjn2lzeYUowJLWhq1RS7X7qf5ff+lICFy4lM2YyT7zyi12wVmhp1Wq0wXjj5BOESGD6tcrvAsb+8wfbXPsHFP1R/vngF4OgVwLVT2Zz5/B1WP/wynTf0i+HFB/+ORqVCLJFgbmPPqgefR6fT6bPPdDpMLazQabX0tdQxPtiHamqSgIXJTE2M4xe7RK+u0+kJQntPf/qnc9f8Fyyjv7WBgY5mVJMTAOS//zK3vfYJtm7etFRcRKvVELhoBQ2lZ42Ox84XfsDml/6IeDokvruhGhtXT0RiMW7BkdSXnKarrgr1lBIHrwAcvPzZ8tIfabl6EY/QWMRiCWKpDAdPf7J+8yTK8VE2/+IDfOcn0l5TxoL194AIWq8WY+fuLdxvmVlak/feSyhGh0i663FcAsJQToyS+sQbeIbHIRZL6G26wfhQH4OdLQIBbSK3YKC9Cfd5UYglUizsHDj12dvEZtyJVGbCxMggYomU4gOf4uwXwqBYgm+M3u5muG47rpejnlKiGB1mqqYM/7ikWWOrQcWmGBlEbmWLT3QCOp2WhRt/iEfIfJrLLmDl5Iqj161LSdRTSiRSmdG4ayK3YGpifJbi71ZQjHwzITUT9p5+2Hv60VVXRXdDNZ6hsf+1MPT+tgYjder/NXznJ9J4+RxiiRSf6Lkjhv4dfE9KfUekpKRw7Ngx/va3vwnEUnh4OA899BAuLi5YWVkJkw6dTseXX37J1q1bOXbsGF5eXtTV1Qk5TqWlpbS0tPDggw9ibW3N1atXBYuAQqHgvvvu41//+he2trbExMQwMTHBF198gVQqpba2Fk9PTyE8eeXKlcIKdmJiIs3NzaxZswalUkloaCh2dnbChKCuro6tW7fi5+fHwMAAubm5BAQEEBwcTGNjo6A8YvpGMDMzk8OHD6NWq2dlPAUGBpKVlYWJiQm1tbVs2rTJaGJmamqKQqGYZUWpqamhqqqKVatWUV5ezvPPP09BQYEwGdJqtVRWVgr5OBKJhPnz5wvqrKSkpFkTtbkGspMnTyKVSnn//fcFxUZWVhY+Pj63bFPTarUcOXIEa2trYVJ75coVIdurr6+P3NxcdDodCxcuxNXVldHRUdra2rh06dIstdfNtsOamhosLCzw8vKiqqoKrVYrKJM0Gg0XL15k06ZNPPLII7zyyitG2yaRSIwCwZVKpZEaJCkpiXPnzhEcHCzsn9bWVkpKSggLC2PTpk1CxhjAqVOnWL58uREJIxKJiIqKory8XCCqmM4bys/PF7J8nJ2dWbNmjRGxkpuby5o1a5BKpXz55Zds3rxZmCCOjo4KqisDvLy8ZrWhNTU1YWZmNsvSOBNdXV2cOXOGzz//HH9/f6ysrDhz5gxTU1NIJBIWLVpk1DxmsMZ+XbYX0yTI2NjYrHPLsO+vXbuGVqsVGuNm4uYGNAOkUimxsbHMmzePhx9+mIcffnjORsOvQ0dHB4WFhSxZsgR3d3fy8/PZvHkzR44cYXx83MgSaEBxcbGgHBOLxUaEj0gkIjU1levXr3PgwAEyMzNvmRWm0+lwcXHho48+4sMPP+Tvf/87TBNuCxcunKWca25uxtnZWQiYjoyMpKioiAsXLpCSkoKFhQXOzs50d3fT3d0tBNoz3YbW0NAg5F4VFhYa2ZKZPmd0Oh0+Pj6cPXvWKBtspuIoKSmJ48eP31LZZW1tzW233caxY8ewt7cnICAAa2trVCoVZ8+eZWJiAk9PT4HwvXz5MvPnz8fFxYWamhohv+pWpQoDAwOcOXMGe3t7Nm3aRH5+Pl5eXuzZs4fVq1cbqdTmsipv27aNrKwsxsfH2bBhA6dPn2ZiYkI4HoYsKqav4xUrVlBcXMy6des4ceIEUqn0lmHmM99n9erVNDU1sXfvXnQ63SwrelxcHDk5OUxMTGBqampE/oaGhpKdnU1gYCDDw8NcvHgRtVqNXC7nnnvuYXR0lKSkJKMFkZycHJ588klMTEwEBemNGzcICgoiJCSEkydPsmbNGrq6uhgYGCA4OJhdu3axdu1a6uvrKSgooKSkRFjAYPoas7Ky4v7770ej0aDRaEhJScHMzIzW1lauXr1KWFgYixcvpr6+ns7OTiHLTqVSsXv3bgoKCoiMjKSwsJDJyUmKi4s5deoUTzzxBO7u7rcsRPge3x1ajYbOGxWolApsXDwF60jL1UuYWlgyMTyAnbuPkHlzMwxhzOMDvQx1taCd8Z3IjO9cUwtrPXFlbXdLEmhybJiB9mbUU5NGz7e0d8YjZL6gCvq26G+tF5RJZpY2+kY5Wwec/fQKb+XEGC3Tk2snnyAs/ktB7rYunqgnFULANtO5NbdSSRngPi+ahtKzSKRSIZh9Lui0WkYHu1FPKZGZyQV1goH86LhewcTwIE4+QbRf0zcwtVYWIzOVY+ngTN3FE1g5uBKy9EEaLxey+se/QG5lQ0PJGURiCT7RCdMqjauYWVijUauIWLWJ4e52FCP6cOKR3k4GO5oBBFWYRGYCIhESqZTBzhZG+7rorKvEPWQ+auUk7iHR9DXXMT/1NprKzqMYHaS5/ALBi1fR2+yNua0D9SWnOfOPd0h/+i38pgkwpnOBJsdG8IpYQE9jDd6Ri/jk0UwWbvwhAYuWI7e2Y0oxhpmlDdeLjnJhz1/5wR/20Ntci7WjKxq1CpVSQc4fnmfto78EkYiUH70I6OiqrST3nRdI+dGLmMot8I5YiJmVLRa29lzJ3UX5kT1s+9VHWNo7M9jRgq2rF3WXTlF6+HNSn3iDoa5WTOQWTAwP0tt8A51Gg3dUPJNjQ7RWFqOcGKO1shj11BSm5lbEpN9Ba1WJvhHu3RdZ99hryMzkmFnZsvzen2Hr6omFnRNleV9SnPUZd771T+TTKiiRWMzYQC+DHS161YvMBDNLawY7mulv1SvMxGKJ3soYMp/aiyewsHFAp9XiGR6HVq0mYtVGnP1CqL1wnPL83XrbooMLapUdlg4uyEzM0KimmJ96G3Zu3rRVlTAxPMDU5AShyel6dVdAONm/f5aehhru++AgIKK38fr0/bWYqDVbGelpZ6Snnc7aSmFcUE6MEZacwdTEGE4+gUhNzLBx9kCjnsLKyRu1chLPsFgG2ptw8ApAIpXReKWQEx//huQfPE1IUipNV4qIWLUJOzcvrh7PovbCceK33E/poc8pPfQ5P3x3P1OKMSxsHbBz80ExMoh/XBLN5RfwCI2hvuQMjt6B5L//EgnbHhLC54/88ZekP/0WDp5+xKTdjqnckpaKi+S99wui125j4cYfMtLTgWJ0GPWUksrjWTj5BDPY0Uxfaz3+sUsxtbDm709uYf6629DptNi4eBK/+X7GBnqYUkxQV3yKYx++zn0fHKTjegU+8xMozvo7V6bJSLmVLc7+IUbKHBO5BU4+QXRer2BKMY6dhy9Lbn8UrUatb9cUS2goPcuFPR8RvnID/nFJDHe30dt4nf6Wepz85qGanEA1qaCiYB8pD72I+KZFO61Wg1giRauZ4NSn/0Pak28K157hnqjoy78Qv0WNs988XPz1991D3W3YOHug02mZHBvGL3YJQ91tNJScwSMsds4muvbqK3iGL5j1e5eAUHoaqgUb662gGBmkq+7aLcshvg6ugeFotRrar11Bp9PiGRb3rb5XZKZmqJSKWc2DPU3XcfK9dQbx/yYUo0MMtDWiUauovXiCieF+5NZ2uASE/ldUW9+TUt8RGo0GtVpNW1sbERER+Pj4MDg4iK2tLfHx8Zw4cQILCwt8fHzIz88XJuhMryrLZDKeeuopkpOTiY2NRSKR8Morr9DS0oKdnR2JifobiD179nD27Fk0Gg1RUVFMTk6i1WoJCgrCx8cHmUzGgQMHqKur48EHH0QsFuPr60tjYyPDw8OMjIyQkZGBubk5ly5dIj4+Xqj6Hh0d5aOPPuLEiRMCQVZXV8eePXu47bbbyMnJobW11ehzb9++naCgoDntSmfOnGHTpk1C49HMx0RERFBVVSXkd4yOjlJQUEBwcLBgYTE04AUEBFBbW0tQUBBisZioqCjBDmMga9LT0/n888/p7++fkzgwoLu7mzNnzrBixQocHR2prq4WJrLe3t40NTWRlZWFn5+fUG/PNPFSWloqBPPOBUdHRzIyMgQrWUlJCQ8//DB//etfZ6lwAMLCwrh27Rrh4eEMDQ1RW1srTHQTExONJt4GVcvHH39Mb28v+/fvJzY21ih/x9nZmZ6eHpydnTlz5ozRxNPJyYmioiKKi4tZsmQJBw4cwNPT08jW1tXVJZBSzc3NRkSkbjpnwdra2qghrru7m87OTpqamrC0tJxzsqvRaATVFMCmTZuM1ConT56cNeGNiIggLy9PIKVUKhUlJSVG6rCbM58KCwtRqVRs376dy5cvI5FIsLS0FGyiBkvQwMAATCuh3n77bX70ox/dUplkYWHB+Pg4BQUFs1rLNBoN165do6GhgXXr1lFRUTHnyoqjoyP9/f2Cgkqr1XL27FlGRkYIDAwUJva2trbk5+cbKcxupWrRarXk5+cLiqubsXbtWgoLCxkbGzOyapaXl88Kd58rLHfevHn4+Phw4MABYV8ODQ3NIlXd3d1JTk7Gx8eHpKSkWxIxOp2OS5cusW3bNgYHB7ly5QqJiYksWbIEjUbD8ePH0Wg0rFixghMnTjA1NWWk1AwLCyMnJ0cgpWaqNg2vf/z4cXQ6HV988QUTExNGarqKigpBweTm5kZXV5fQ8NnZ2TlnFtnq1asFUuSDDz4QiJSbP2NPT49AZIeEhBAUFER+fr7RuA0wODjI6dOnBVvbzH3p6enJ1q1bOXr0qJDZdSuMjo5iZmbG5s2b+dOf/sTdd9895/g7MTGBQqHA0dFR+EyrVq2ip6eHvXv3snTp0q8leHU6HZ2dnYjFYrZs2cKnn36Km5ub0WNaW1vJyMhg7969RmQQQGZmJm+99RaJiYksX75csJ8zHWA+c7Fh//79LFu2DAsLC8LDw9m3bx+bNm2isrJSeExTUxP79+/H19eXzZs3k52dzZIlSzh37hzJycn4+/szNjbGokWLiI2NxcHBAbVazZdffsmLL75IXl4ea9asoaCgQMhVTEtL48iRI4SFheHl5SXkNJqamrJnzx62bduGWCzmyJEjgk22urqaqqoqJiYmbrnvvsd3w8TIEB3XKxCJxbgHRxmtGo8N9GJh64iDlz8NJWeElqq5IBKJMDW3xNTcEnv85nyMTqdDOT7C2EAvA22NQt4LwMm//Q8r7vsZAKYW1jj5BP1XVrBVk/oQcANcA8NovHwOv9ivvktNzS3xiYrXN/I119LbXIuJ3BzXoIg51VBareZb3+w7+gTReeMqw93tmNvaIzUxm/O5GrWa0b5ORvu69WqP+mvUF59i+Q+fueVrH/njL3EPiSbtiTeNJ1QiMVqtBvd5+va0z57YxOofv6wPMxaJcPKbxz+fvZO4jDuxcnSl7uJJbF09KT74D8KS0xnt7+b87r+w6qEX0EwpOfXZ2yy98zFsnN2Jy7iDlqv6ZrdDv9Vv24bn3kGjmiJseSYOXv788+d3MX/ddsqP7GFiqB8bV08iV21i4YYf0FFTTnHWZ9woKmD5fT/DLTiCvPdfpruuitQn3qDpSqFgh5tSjDM+2MvZwnxGejqJXL2ZvHdfZPH2HyMSich77xes/cmvCEpYhYncgl0v/JD5qbfRUHqWkZ4O4rc8QFDCKv7+1Dbit9zPxX2fABCXeRfuIfPpabrBlZx/wbRd0cU/DI+QGIY6Wyk59A8Alt3zJAfeeIekux4navUWNKopSg7+g6vH9nPb63/DzsOHZfc8iYncAo1Kxbl/fUBfcy0Zz7yFidyCFff9jK66KhSjw5z4+DekPPQilw78jUWb78N93nyqz+Yit9Ln9U0MD3Dm/T+w6sHn8Y1ZQsXRvZjb2BO+Yj3OfvMY6mrlnz+/k/XPvk3F0X2EJqfT23idkkP/YM3DLzPc087FfZ+w4bl3cPYPwcbZg/Ghfv7ywGq2vPQn5JbWyK3t+PjHaSy5/VE9idXZythAD2KJlLGBHrRaDTXn8lArFdScy8fayY3odds58clvWbz9R5z94j0WbvwhLVcvTRNpr+LkOw900FR+gfGBXi7u+5hVDz6P1MSUBevvpvLEQWxcPCnP3429uy+FOz9g2d1PEZSwitqLJ6g+m8+VnH+x8fn3sLR3pLWqlNOfvc3qh19Gq1Fz+InNLN7+Y8JXZCKVmdBw+Syn//57XALCSHnoRRovFwI6AhetQCQSseyeJxnt66Ys/0vK8r7kvg8OMjEyiJWjKx/en8LWl/9MaHI6puZWHPnjK3hFLEA1qcDG2YP+1npWP/wyitEhuhuqiUm7nSu5O3H2C8HRJ4jRvm666qrIfecFghen0N/awNqf/AqNWoW1szt577+ElYML9h6+xKbfgcTEFPWUkvbqKwQsWk5HTRk5f3iOxdt/TFDCKmrOHaFo158IX7mBqJTNqKcmmZoYZ2J4AJeAMGSmZth7+PLpYxtZef/PGent5PRnb7PyweeZGOqno6acwPgVfPJIJik/ehEzKxuW3PEo1o5uVB7PYmyghwUb7sHJbx6nP/sdrZUluAaGs/7Z36PVqLFycKHyRBaF//ojqU+8gUQqxdkvhO76arb+8i/6DDfPr4p4Oq5XELV6Mx6hMchMvxpXBzua8YtZgk6n0+d92Ttj6+KJjbMH7dVXAJ2+KGF67NNML6TPZQU3t7Gnu6H6a8dVxcggXfX/HiFlgFgswStiAeopJS1XL+oVs8Fzu1oMcPINprfpBu7zvsoG1mm1jA/0/sdB6t8GMwkoA8wsrXEJDEejmtJvj06HjYs7LRUX0el02Hv6YT1HhuG3hUj3v9GN+/+DMFSMv/rqqzz33HNCw1dMTAwlJSVGq/XZ2dnIZDJ8fHyM8o/WrVvHtWvXKCkpwcfHh+TkZKOQ9GPHjgmB3a6urvj6+nLo0CFWr17N8ePHWbt2LVKplNzcXNLT01Gr1axevZoNGzYIeVNpaWns2rWL7du3c/XqVRwdHXF3dycnJ4eamhpWrFghEBKGIFe1Wk1BQQESiYTBwUFkMpkRuWKo3La2tqapqYlNmzZhYmIiNGstWLCAyspKVq9ezblz5xgfH8fOzo7FixcjFouFJrGTJ0+iUqlYvXq10UQyNzdXsHTt27dPsPLMRGtrKxcvXkQul5Oenk5dXR3Xr+tXSAxWnKNHj5KSksKpU6eENisDampqkMvl+PgYr7w2NjZSXl5OdXU14eHhuLu7GwXgztwHMy1zM3Hu3DmysrJISEhALpcjk8lITEw0mkDm5uYKOUA3K6mys7PJyMiAGeq62267TTjOly9fprm5WQjw1ul05OXlkZaWxuHDh2eRKO3t7Xh6enLixAmWL18+a1/O3N+GfZ6ZmYmJiQmdnZ10d3cLBIdBbSYSiQRbVkxMDGfOnCExMdFINXH8+HHi4+ONPnd3dzcVFRXEx8dTXFw8p2pl5vYcOHCAtLQ0IyKiv7+fhoYGwsPDycnJYfHixYKts7i4GH9//6+1X73zzjv84Q9/IDc3V/i9RCLBx8cHPz8/TExMGB8fZ+fOnUJmzeXLl1EqlUK2Q1hYGOXl5ajVamJjY6mqqhIm3hEREXh7ewvh/j4+Ppw7dw6mw5sNihiD9bSvr09QxqlUKoqLixkaGgLAxcWFmJgYCgoK8PLyorq6mrVr184iIwzjiQFlZWWMjY2xdOlSdDodBw4cmEWQHjt2jGXLls3KWWpra6O4uJjNmzfT19d3y335deewAcePHycmJkZQqc113SgUCgoKCtiwYQNjY2OzyB9DM+Lw8DCVlZUCOdrY2EhpaSkrV66ksbERDw8P2trasLW1FZRiN5/bht8lJCRQUlLCihUrBOWeTqfjypUrdHZ2AnDhwgVCQkJuGTJ+8z43oLW1lfPnz9Pb24unpyc2Njaz2uiY0UI383mGLKgLFy6wdu1aFAqFoNSxtrYmMTFRsI8NDg7Oef1kZWWRmZmJRCKhuLgYX19fI9vs2bNnUSgUrF69mqGhIWpqali8eLFQLAGQkJBAQ0MDfn5+XL58GX9/fyF37cKFC2g0GkZGRhgZGWHdunVCEPn169cpLy8Xvg8MLYvNzc2Mj48TFhbG6Ogou3fvZmRkhHvvvRdbW1thX3R2duLu7s5f//pXPD090el0PPHEE+zbt4/IyEhGRka4cuUKycnJHDp0iPT0dLKzs1m7di2mpqbs3r2b7du3C7ltpqamAik1ODjI4cOHsbGxYfPmzUbHT6PRsGfPHmQyGWvWrBEI7+zsbNLS0ti7dy+pqakUFhbi6OjI0NAQly9f5uc//znDw8PfmPX1PYxhuH/K+Olv8QiJmXPsaK0swSNMvwKvUatoLjt/y/Du/wSqSQXNVy9iYmb+bzcv3QrN5RfwilhoRNoM93SgmpwQ1EtzYUoxTmdtJTqtFkfvACztv1pwG2hvQmYqx8rx2we/t1y9xNhAL57hcYz2dQkTCAy5gWIJ1k5uWDo4IxbrM0HUykmcfOcJGUEzMTbYR2/jdUwt9NX2du4+2LnpF5K6G6qxdfXC1NySprIi1EolHmGxjPZ3ceLjtxjqbCEoYRW9zbXotFqGu9twDQynq64Kv9il9Lc1MNLTMefnsHP3ZbCj6atfiER4hsXSVlWKT7Q+oPlWcPD0p7+tAaZDkEf7uvTV9Dot6iklsRl3cjn7n4QsXUfNufxbvs5cEEskmFpYoRjRf2/r83LEqJQK4e8z1XsyU7nwNzNLfQj7XH8DkFvbMjk2gtzKblqFYItGNcWUYoL4rQ9yce9fAQhYuJzGK4Vo1SpkZuaoJif0oeDTE2wTuTlTiq8I9Zn78ubtM+wffVDzUmrO5hG6LI3qs3k4ePjR39aA3NpW+LxzwfAaABErN1B54iC2bvrmuP8EEpmJ0flrIrdgSjE+52PtPf0YaGuc83nWzu7CeWbt7M7E8ABq5SRiqQztjEn3zPdw9AmibzpryT1kPiZmcprKzk9b5PyQmZnTUVNm9FzDeeU2L4rO63qrYFhyBtdOf9UsLBKJhby8kd5Okn/4DKc/exsbF0+Gu9uEx9m5+wjKwJkwnLNiiQTPsLhp1ZUYmZkZwYlrqDyeRXDiGm4UHZ1zP3mExNBZexVbV08G2r+6vm71fsxxns51/ZmYWzI1Mca8JWsZ7GxmpLeLydEhfGOW0HSlkIWb7sXU3JKhrlZCk9Jw8PJncmyY/tYGPEJjaCo7L6hmpxTj+gbBsFiaLhcK3wUjfV1MTYwJ4+lcWXrK8VHaq69g7+WPrYsnrVWluAaGGxFbMzHc04F6atKIEDNAIKS+xrJnUIt+FyhGh+mqrcTK0eVrvxuaKy7iM0PB2nbtMk6+wXOqwf4T3IqAsvf0N2qVNKDu0kkCFi7X26FnbF9/awNjAz2C5dSg8ppSjPO3n2z4xvun75VS3xHJycnodDpkMhmrVq3io48+4s9//rOQL8V0mO7tt99OTk4ObW1tAllx5coVRkdHueeeeygvLxcUF0xPkMLCwrjzzjuRy+X84he/QKlUsmjRIr744gv8/f2NJlMAhw4dIi8vj9zcXOEG//3338fDw4Pc3Fw+/vhjlixZQkREBGNjY7z00kvs3buX3NxcoR3u3LlzDAwMkJKSglgsprCwkODgYMHWdejQIRYsWMDk5KQwIT9w4AALFizgwoULQrPWtWvXEIvFQlj0wMAAeXl5aLVa/vGPfzA+Ps7y5ctnTXjVarWRemX58uWCFcWAS5cuMTk5ydatWwULRWBgIIGBgeh0OiG0+Fe/+hXFxcX86Ec/ElQDMzEX/+rj40NjYyO//e1vef/992+Z9yIWiwWr5MzXO3ToEFFRUbz11lscOXKEtLQ0lEolFy5cYGxsDJFIRFycPrDz4MGDc7YK2traMjg4iJ2dnRAQLhKJEIvFwj6fP38+J06cEIhInU5HTU2NQEYqFArOnTvH1NQUdnZ2/OUvf6G/vx+VSmVEQhjasGZi/fr1HDx4kK1bt1JdXS00ghkscitWrDCa5Lq4uLBt2zYKCwupqKhg7dq1iEQiIatmJlxcXLC3t+f222/n0KFDc+5buVzOxMQE165dIzIycpb9zcHBgU8//ZTOzk42b95sdAy0Wu2c6qe2tjZKS0vx8vJixYoVpKSkkJKSIlxDarWalpYWzp49y9SU/sblwQcfJDc3l/HxcRITE41yZdRqNRUVFfj4+AjWN8M5UFVVRW5uLsPDw7zxxhv88Y9/JDU11Yh4NZA9fn5+gvrC3NxcIDAN6Orq4siRI9x+++0cPXp0zobI8fHxWZa5+fPnU1tby5EjR5DJZEbXjwHR0dFUVFQIpGtXVxfnz5/H09MTHx8frl+/TmlpqaCenAnDtSMWi0lLSyMnJ0cgUmd+RrFYfMt2PgNMTU1Rq9W89dZbnD59Gq1WS0JCgnDNRkdHU15eTmdnJ2vWrEGlUpGXl4eHh4egoLtw4QJxcXG4urqyf/9+vLy8Zp03BqSmpvLll19iaWmJWCymqKiIwcFBIRMvNjaW4eFhLC0tWbp0KXv37mXlypWz8tBuBUdHR+RyOT/5yU/Yv38/MTFzT7pvhpeXF56enhw5coRt27axa9cuIVx85rkHEBsbS3d3N19++SUbNmwQ/l5fX4+Pj49wDcyfP59Tp04ZlUskJSUxNDTEvn37GB8fx9fXl+zsbOzs7EhLSxPOU4N9c6b6rrW1lbCwMAIDAzly5Ajbt29n7969rFq1Cp1OR319Pdu2bSM/P5/U1FQuXrxIcXGx0BKZl5eHTqejvLycmpoawfb65JNP8vbbb2Nra8s///lPrK2tWbduHQUFBRQXF3Pu3Dm8vb05f/68QMStWrWK999/n0WLFtHV1UV/f78wThYVFQn7PD4+nrNnz9Ld3c0Pf/hD+vv7ycrKEtpry8rK6Ozs5MCBAzQ0NAikqCEf0t3dnWvXrglE1YIFC+js7OTxxx//VufD97g1nH3n3fLa0Om0glJIIpXh4B1Id0MNLv4h/9Vt6KqrxC9mCWP9PXTWVgpNb/8pdFqtPvvppu8jG2d3Gi+fw8HT/5YWQhO5hXBj39dSR19LPTIzOW5BkYwN9Mya8GjUaiaG+xkf7Bca/27er2f+8Qd9ALd/qBDsfCtoVFP4RCfoJxoLko22U6fT0VVXScCCZFori/GPS6K/tYHGy4V4R8VjYmbOlGKcnsbrOHoHIbe2o+1aKQ5eASy7+wlqzh2ZNTnuqqsCoPHyua/dLiNCSr8xtFWVwjQB+HUwEFKAQJbMnFRfzv4nwHcmpJi2n84kaG4OJL7ZTjrzfWcSUjf/DRBed2K43+jfgEBIAdQXn/rqNaazi2YqPmYSUty0L2/ePsP+UY6PUnNWnztVfUa/iGfYj19HSM18DYDKEwcB/mNCiulzcyZuRUgBAiE11/NmEp8z//9mQmrmexgIKcCIfNKqVfQ23ZhzGwznlYGQAowIKabHuvHBXuHfpz97G6bzuGbiVgSR4ZzVajRCvpNOp2VKMUHl8SyAWxJSAO01V2Ca8P4278cc5+lc19/UhH4sul5obHVvulIIQPGBTxGJxAQtTmFsoAdLB2faa8qFbCSZqRmqSQUyM7k+s2w6X8rey5++5locfYLob603IohE04sYM1W1phZW+C9YRl9rPbUXjqMYHRbKHOaCjbM7jVcKZ5FSitGhf9uy902QW9ngF7uEkd5OGi8X4uDlJ7TZ3Qpq1RQateo/JqS+TgE1FwF1M9quXcYjVH+fK5HKjILzHbz8cfDyR6NW0VVbiUo5idzKBls37298Xb4npb47WlpaCAgIwNnZmdbWVqampti6dSvm5uaCBWvfvn0UFBSwZMkSxGIxFy5c4F//+hcfffQR+fn5ArGyYcMGVq9eLdid3Nzc+PGPf4xGoyEyMpL+/n46Ojp49NFHeeONN1AqlVhaWuLs7Mzu3btZsGABZmZmrFmzhqNHjzI6Osqjjz4qTBgNk+1169aRnZ1NYWEhdnZ2+Pr60tXVxcKFC/n4449JTEzE3NycoqIi4uLisLW15caNG/j5+XH+/HlcXV1pbW1FoVCg1WqFLJm//e1vtLS0EBYWRlxcHKWlpUImjSF3SCwW09PTg1gsntN6UlFRIQS2M01ATE5OChPvQ4cOERYWJqza30wsiUQiIiMj6e7uZseOHXh6elJUVERMTIxR2PrNIcparZbTp08zOjrK8uXLyc3NJTw8XLCOLF682MjCEhgYSH19vVDtrlQq2bdvH+np6YJqwJD1ZGpqKqi0tFotpaWl7Nixg0ceeQQLCwtCQkLw8vISbiIXL15Mfn4+/v7+uLu7C8oag7rIoDhLSUlhYmKC7Oxsent7qa+vJyYmhhs3biCXy1m2bJkwMR8ZGRHCyWc2Vl26dGlWiLdMJmPhwoUUFRUJGVXHjh1DJpMZZTDdbFlbsmQJY2NjHDhwgJ6eHsLCwjh69OisCvrW1lb6+vooKCgw+r2Xlxfz5s0jISGBnJwcrK2tiYmJoba21qjKXiQS8dlnn/Hmm2/S3t5ulD+l0WiMyJ+Ojg4uXbqEp6cnGzZsQKfT0dHRwYoVK4SsGqYzaPz9/QWb2IkTJ9izZw9Lly4VJqMzYWh8Mzc35/Dhw8K5ZQjkj4iIIDs7m9dee43o6OhZAe3l5eXCfk9NTSUrK2tOwsnV1ZWAgABOnDhBdXU1UVFRswgKgxLuZgQFBdHZ2cmOHTv429/+hkgkwsfHR7ANOzk5UVpaSl9fH2fPnsXV1VXIiDOo9Wpra+fMxSotLRUUlgZlUklJiZGq8NSpU3N+ppnnzdjYGIcOHWL9+vVYWFiwdu1adDod58+fFwgyQ2i1SCSioqKClpYW1q1bd0vSKTMzk0OHDgntczOh1WqpqalBJpORmZlJXl6eUd6YAefOnWPdunVIJBLBwhwSEkJAwNcEZ6rVgpUwNTVVUOicPn2akZERli9fLowNc2FqakpQj7744otMTEywePHiWcfbABcXF7Zu3crBgweJjY3Fx8eHK1euGFldZTKZMPbOhK2tLREREYSGhvLXv/4VDw8P5s2bN+s8ZTrAfnh4mDvvvJPXX3/dKDRcJBKxdetW/vCHP7B3714KCwuNxoTQ0FB6e3vZtGkTx44dY+3atQKhv3r1atasWUNtbS2PPPIIy5YtY2xsDBMTE0QiEcXFxUilUmxsbEhLS+PLL7/EwsKChoYGGhoa0Ol0PPXUUxw4cAAHBwe8vb2ZnJzk/fffx9HRkbNnz6JSqRgbG2Pbtm1kZ2dz9Kj+xryvr08gnaOjo4mJiUGr1WJmZkZcXBx2dna0tbVRVFTEjh07KC8vF4hdlUrFiRMnuOuuu3jxxRdveTy/x38XNtPKhsmxYcwsb30dfVdoNRokUhk2Lh5MKcYZaGvE3nNuC+B3QWftVdyCI+f8m0fodMtdxGwV9s1w9A7E0TuQKcUEbddKOfHJb1l5/7NGjxFLpJjbOmDn7i1UnM9Ed/01fvDOPrpqr6JSTn4jKWWAT3QCzRUXjHKoWiuL8Y5YaPQeDl7+2Lp60lJxEamJPuvJIywWS3s9ka9RTXH12H7cg6OESfP3+B7f43vodFpMLSyZmpzg08c2kvHMb4WxxS04itaqEixsHbD38hd+b+viSVPZeWRyC8xtjIUNzn7z6Gm8brS4oFJO0l1fhUalYmygF51OqyfRRCIcvQOxsJ3tBrBydGWkt1NoOFSMDtFVW/W/QkjNhLWTG9ZObvS11NFQeha34CjBYsu0ClOlnERmakZbVem/ocgaor+1QSgMATCzssE1MFyfx/cdMdrXjdTEDLmVfp7q7DeP3qbrRgUbTC8seYTq4y4UI4O0VpZ8q9f/npT6jhgcHOTUqVPY2dkJCiMzMzPBSuDi4iLYyc6cOcPq1atJTEzk+vXr/PrXvyYiIgIPDw+Gh4f55z//SUdHBwqFgoyMDMbGxhgeHiY8PJzz58+zZs0ampubaWpqori4mLS0NEZHR/n73//OY489Rm5uLjdu6Nn61NRUPvzwQ1QqPfPZ2dmJm5sbFhYWVFdXIxKJiImJ4dChQ/j6+tLW1sbRo0fx8fFBLBZz+PBhtmzZQlaWnmVvb29n8+bNlJeXc/nyZcrLyykqKuLRRx9lxYoV/Otf/xKCZw8fPoxIJKKhoYGBgQGhLcqgFpFIJKSkpJCbm4u3t7dR9s3MfCMD1qxZwyeffCLUnc9FEhjQ0tLCxYsXSUlJISAgALVaTXBwMFeuXKGsrAx/f3/Cw8MFUkqn03HmzBmGh4dZtmyZQABZW1szMjIi5FgVFRVx8eJFVq5cibW1NX5+fkIWVk9PD6dOnWL79u1God2RkZFUVFQYZfmIxWJkMhlnzpyhqamJlStXUlNTYxSaK5FIqKioQK1WG1XN29vbMzg4aPR55XI5np6edHR08MQTTwh5ZjMxM+x569atnDt3jtbWVpYsWTIro8cAHx8fmpubKS0tZXR0lFWrVs1StalUKqMJKtN5T/Hx8axatYqcnBz8/PyMlEuGgPFf/vKXRtYnnU5HW1sbJ0+eZGBggB07dnDw4EGOHz9OQECAkcVTq9Xy9ttvs3btWq5cuUJ5eTlOTk5CW5hEIqGzs5MLFy7g4eFhlFFkCHWXy+VMTk7OmQU1PDyMRqNh06ZN5ObmzrJD6nQ6QdkEYGZmNiu8f3x8HJlMRnp6Ort27eK2224zmvBPTU0JijWJREJkZCRlZWVG14Lhs1ZUVLB161aioqL48ssvjVo5mSbeEhISuBknT57EysqKv/71r6xbtw6NRkNzczOnTp0SiIq7776bAwcOGBUWzFQrrl69moKCglnZX93d3UYEVEhICKdOnaKtrQ1PT08uXLhAfHz8rH3r7e1Na2urkON25coVduzYYbRvRCKRoBZra2sjOzubn/3sZyQkJPDiiy8aXRNMj00zmw9lMhmxsbG8//773HnnnRQUFKBWq6cbq8QCuVRYWCg0md58fG9W3KWnp3Pu3DmGh4eJjY01UqfNHENSUlKMVGsGtaiB9J6LnBoZGeH06dNIpVJWrFiBmZkZJiYmrFmz5hsDyiUSCZs3b6awsJCf/vSnfPDBB3M+biYUCgX5+fkEBQVRXl6Oo6MjLi4ulJSUcPHiRZgm0g1jubW1NWvWrOHvf/87ixYt4vr165SVlfHUU08J72dhYUFSUpKQL3XnnXfy5z//GVdXV1JTU8nJyWFgYACxWExdXR0BAQG4urpSVFRET08Pjz76qGCnzcjI4OrVq0RHR3PgwAGOHDmCTqejtLSU3/3ud9TV1ZGamkpRURHd3d2cPHmSoKAg+vr6mJyc5KGHHuLYsWOkpaVRWlqKRqPhww8/xNramqSkJMES/dZbb+Hu7o67uzsqlQqpVMqqVavYv38/1tbWyOVytm/fjo2NDcHBwezZswepVMru3bvZtm0b77777jfu6+/x70Gr0SASzSZIPcPjqL90ioBFs23o/w4mx0YwtfjqfsLJN5j2mjJG+7uF5rh/F1OK8VuuYBvq2qcUE8L/fxNM5OZY2Dmy9pFXUCkV38lqODk2gktAGH6xS2m8fA7XoEijic6tIDOVY+PsIYSlD/d0YGZlg4l8doagRGaCX+wSLh34lMvZ/yTtyTcZ7e1Ep9Nx7XQ24wO9uM+LZnL06xU23+N7fI///8LVgv2seugFwlduwMLWgeYK/X2ISCRitLcT1eQEbsFRDLQ3oZwYRa2cRCQWs/P5e6ZbIq9hYe+MuY0dpuaWTCnGUU6M0V1/DZ1Wi9TEFNfACL2tVizGa5pU1+l0eiVqcy2IRFg5uGDnrnc/OHoF0HilEGsnt/8zQmomHL0DcfAKoKu2ku76UTzD4pCamOLsO4/ephvYuXtjam45Zy6WAYqRQfrbGmcRUG5BEf8WAXUztFoNPY01Rg2teqvr1+duyq3t8I78dmTat++k/R4wfdHcddddHD16FI1GQ1tbG2NjY5SVlSGXy1m+fDnNzc1CExfTNrvNmzeTnJzMhQsXGB8fJycnh82bNxMYGEh6erqQpTRv3jxsbW2xt7fn+PHjmJiY4O7uTlhYGFVVVdTW1rJgwQL27NnD6Ogoa9euRS6XU11djYuLC8ePH6evr48nnngCa2trent7CQsLw8nJCZ1Oh1wup7e3l56eHlJSUqivr8fa2hqlUskrr7yCRCIhLS0NJycn1qxZw8qVK4mKihJu4CUSidEE2cPDA7lcLmSB+Pj4kJGRwaJFixCLxcLNv1QqZf369Zibm7Nv3745w2MVCgXHjx8nLy+Pv/71r1hZWXHu3DmjBjhD+5xWqyU3N5eOjg62bduGnZ0d1tbWQnthTEwMmZmZmJmZcejQIQoLCzl16pRgt1u/fr0RmWMgpQxITExk/fr1FBcXk52djUqlEixzV65cmUVIAfj6+tLcbCx/ra2tFUKog4KCaGhoICIignXr1gk/K1asYN++fZSVlZGXl0d+fj7FxcXCexreNzs7m9zcXNzc3IiNjaWyspKSktnssyG/w4ClS5fi6enJ3r17aWtro6ysjKNHj5Kfn2/0Y7B4RkZGzpkrNBcp1draSkVFBcXFxbS3t8+y0mVnZ5OZmTlLqSYSifDy8hKI04MHDzIxMcGCBQsICAgwIi26u7uFgGrDcQ0ICCA7O5uf/vSn7Ny5k+bmZjZu3DirPc6QWcO08swwCZ+JY8eOkZKSgkQiQSqVCgpDAy5cuCA0LzJtMT19+rTRYwwtbyKRiIyMDLKzjeXaN0+ogoODaW5uFsYIAwoKCozUXNu3b2fPnj1G6pebK+uVSiW7d+8mJCSEBQsWYGpqilKpRCKR4O/vz+rVq0lNTcXMzIxdu3bh4OBgtD2GVj+mGwRNTEyMrrlbxQ4uX76c8+fPMzAwwMDAgJEy0YDQ0FCqq6spKSmhpaWFTZs2zanOMcDT05N169axfv16QkNDuXHjBjk5OTQ0fGXFKC8vF9SV7e3t5OXlUV1dzYsvvkh7ezvLly8nNTWVtLQ01q1bJ1yXiYmJ+Pv7U1hYaPSeJSUlQsbXTCxduhSZTMapU6eorq4mNDSUkpISsrKyiIiIEMazuWAgpzIzM7l8+TIHDx6koqKCQ4cOcfnyZdLT04VjYoAhoDw0NJQ9e/bQ1dU163WVSiVHjx5lYGAAf39/SktLyc7Opry8XDhOhmIAgIsXL3L8+HEyMzOJiIggJCSE6upqJBIJ8fHxpKens27dOu69914h4N7f3x+pVIq9vT0DAwNYWloKhLm5uTlpaWl4enpyxx13MG/ePCIiIvj5z38utPMZAvyXLl3K2bNnqa6uJiwsDLFYTFJSEkqlkrKyMnp7e8nNzeXw4cOIxWKOHj3K2NgYK1euxM3Nje3bt7Nz505KSkrQarX09vbi7OwsXF8nT55k5cqVKJVKzp49y+uvv46NjQ0hISEsX74cqVRKY2MjeXl5rF69mujoaDo7OxkcHBTO+bq6Ou677z7y8vIYGRkRxt2+vj4hW1EulzM8PDzrWHyP/x4GOpqw8/Cd9XuRSIRXxALaqr7dKus3oaexBueb7IAeIfPpa6lDOTF2y+d9Ewbam7Bzn739M+EZFkt79eVv/ZpajYaRng7cgiOxdnKnu/7at3qealKBdEZ2il/sUrpqr6IY/XbnsJ27DxPDAyhGh+lrqTMK1J35vaHT6Wi8fI6QpFRWPvg8UxPjeITG4h25iKjVW1h+37OIJVKi1my9xTvNRop/tNG/3ay+yreSTls7bUznHnMfjFuNm5UdjuZ60vHOqGXYy/Uk4eZQ/SLOEwnGiy1mtwjS/yb42+nvR9ws7RCh3yfzXb9S21mbynG2sBH+f+ZzZmJTiHHb4e2RXwXi/3iBPn/w8fh0lvuGAwj/NXwuAA8r++m/zbahrgvUKxUeiNW3nAbauxLjemtV4DKfMNYE6BfKzKQyo8duCzcu5cgIXsBSb70d29bMAvH0ubE64Ktj6Gqpv8d2kBsvLLtY2GIu0y+OWpno90+0qy+e1g4s8giac9vszCyJcP5KJW8mNWFLmP643hO9fNbj/Wz1uWwz9/vDC/X7dHNoAiYSqdFrhTvr71+CHdwJdnA32v6F7vrMn8fi0whx9MBMqp8D3R6ZJGy/k4U1d0bp3TIzX/tm2JpZ8ESCPvrA2lRO5jzje48QRw/hHJ4LhnPA1sxC+NyGY//TRP0CnrOFDYH2rphJZbOuKRcL/WeSzihVmPn/awP1xz/J5+vb6Nys7HgwbjUhjh5z/t1wXcyF6HXbkUhl+MclYe3khk9UPD5R8VjYOXLuXx/QWlmCYnQIE7k5jl6BeIYvwM7dh8Xbf4RrYAS2bt4ox0dory6j5eoljv3lDbpqK/EIjcUnOgGP0Bgjdahh3BKJRDj5BOETnYBPVDxSUzNarl6iufwCnbWVmJpbMdDR/H9OSM3cTrfgSLwj4+m4Xk5rZTESExPUU5N01VbiOkMNphgZpO3aZVquXhJ+Rgd6cAuKwDtykfDj7Dvvv0JIMW3Z9ImevSD+38T3pNR3hFQq5c0332TZsmUsXryYV199lYKCAtauXYuJiQkFBQUEBQWRlZVFe3s7OTk5LFiwALlcjkajYd26dYLF5Ojw6Pp9AAEAAElEQVTRo4JyQaVSYWpqSkVFBSdOnOD69eukpKTQ1NTEkSNHqK+vJyIigqNHjzI8PMybb74J05Of+vp6nJ2dkUql+Pj4YG1tLUxkvb29+f3vf49GoyEvL4+hoSGcnZ0RiUQcPXqUtLQ0Kisr2bp1K3FxcQQGBvLEE08QGBhIVFQU7777LnV1daxYsYK77rqLRYsWsXPnTu69915ycnI4d+4cS5YsYe3atRw9epT29nZaWr7ykdfX1xtZYIKDg9m4cSPHjx+ntLQUhULBsWPHyMnJoaioiMTERDIyMnjttdfIzMwkJSVFIIbOnz+PVCqlpqaGAwcOsGzZMiPFiJWVlRGxxHTj4YoVKygqKmLfvn04OjrOUhYxByll2LerVq1izZo1HDt2jNTUVGpra43Cim+GXC5HodB7rzs7O6mvrxeCmsPDw6mqqpr1nMnJSX7zm98QFRUlEFW+vr6cPn2aw4cPs2PHDqRSKRkZGaSnp+Pu7k5/fz/h4eE4OztTUVFh9Hq9vb2z8nC8vb0F65+LiwurVq0yIsbWrVuHra0tfX19qFQqcnNzZ5ERN+dTtba2UllZSVpamhEhaEBZWRkhISGYmpri6elJW9tXfnlDWLtGoyE1NRW5XM5tt93G+fPnqa+vN3qd5ubmWQH19vb2SCQSEhISBOXLzcSPQqEwmvS7uLjQ09Nj9JjKykpBSQcIrXAzYWg6NEAmkzE1NSXsn5GRESwsLASS0srKipCQEC5duiTst7lyr9LS0ozC17u7uzE3NzcKAZTJZGzZsoXdu3fPskUa9o2B4DbYTRctWiS8twHV1dVYW1uTkpLC9evXjf42Ojpq9J4rV67k+PHjRvsoImLu3JWlS5cKBOaRI0dm/RQUFPDAAw8Y2Zu/Cfv27ePVV18lPDyctLQ00tLSmJqaIjc3l9zcXJ577jkhS6+3t5e1a9fi7OxMfX09AwMDs4hTg1KHaYujubk55eXlRvv9Vu10kZGReHp6snDhQo4fP46zszObNm2ak7SdS8khFouZN28earWa5557Dm9vb5YvX/61xJyzszPbtm3jxo0bHD16FJ1OR0NDA4cPH+b06dMsW7aMzMxMVq1aRXp6OhkZGdjb25ObmyvYYI8cOcKePXtwc3MjIyNDODdNTEwENS3T1+Hu3bu5ceMGcXFxpKenMzg4SHZ2NocOHeK2225jbGyMLVu2sG7dOoKCgti7dy8jIyP4+fnxl7/8hStXrvDUU0/h5eWFh4cH/v7+XL16lYqKCt58800ef/xx8vLyuHbtGp999hlWVlZ4e3tTVlZGQUEBZmZmNDc3s3jxYqKiojAxMeHgwYN0dHTwzjvvIJPJkEgk9Pf3c+TIEc6dO8eGDRs4efIkR44coaKigqmpKQYGBqirq2PhwoVcvXqVkZER/P31FgDD8Vq7di1Hjhyhs7OTgoICFAoFO3fuJCkpSQhw37Bhg1AQ8sEHH6BWq6mtreXTTz/9Fmfv9/h3MDHUj6Xd7BxIpvNBTC2tGbopb+XfgU6rnbPhznd+Ii1XLxllbHwXjPR2YuP89XkgIrEYK0dXhm8R6n0zWq5ewmtaHWXrqrdrD3V98z7orL2Ka6DxeO0bs4TOGxVzElOK0SHMblJReUUs5PNnbrtli5JKOUndxRN4hMZi7eiKmYUVvrFLqCs+hWpSf/8jM5OT8/ufU3F07y239bmkzfx8qb4Z2N3KnnjPIN5Zd58wac8MXki8RxAeVva8kLSF36/9IcPKCZZ6h3J3dDIvJW9jibeeZAx19KBzdJAl3qG8s+4+MoIXMKAY46G4NVT1tvJM4no8rR15dcXtRLn48NTiTCbVKuI9gtgWloiFzJR1gTHIps+PlX6ReE2TJEu8Qghz8iTS2ZvfpNzN/bEp/CblbjrHBnkpeRvHf/Ar5jnqj396cBzzHDzYHJrA79fdy4hSwW0RS2gY7ObjDY/wi2R9i+6agPkcqLmIpYkZTy3O5O21PyTKxZdnl+iV3hHO3ry56k6u9bZxqqmKv296nN4J/T2qgWR7a/XdOFvY8Mry7QJBA/CHdfcB8OySjbycvJ0VfpE8mZDBo4vS0AGPLkrFRCIlwM5VIKyW+4ZT3dvGusD5vLHqTuY5erDMN4zfr/0hy30jcLO049klG3l68XpkYgm9EyPcFZ3Mv7Y+xdDkOD9fuplVfpEkeYexMWQRzy3dRNfYEP+z5gf0K0ZZ6RcpbJOnjQMTKiWvrrid2yKWEOXiyw/mr6BtpJ+04DjeWHUn98WsBOChuNXMd/Xj7uhkFKop/rr+YX6RvI1J9RSxbgH8Inkbce767/cXl+kJUD9bZ2QSKffHppA5bwEp/tH8NHEDy3zCeX3lHaQGxRLp7C0QendGLaOqp5X30x7A386FNQHzeWX5drrGhrCXW9I83Mtv19yDp7UjNX3t/DH9QZ5evB4fG0dGpxT8ft29PLdUXyzzREIGgfb6e7EwJ09S/KP5nzU/EI7b+nkLefdCNu+m3s+OiKX0TYzw6orbBUJplX8UjyxM5e21P+TBuNU8kZBOgmcw28ITeSA2hZV+Ufx+3b0MTY4T5x7Aaytv53pfOw/EpuBt48iPF6wlLSiWGDd/3K3sOdZQzlur7yE9OI730h7g9sil/GHdfcjEEl5beTtLvUP57Zp7AHhl+XaO1JWx77ZniXPz51crdgAQ4+rHjoil3BWVTFpQLK+tvJ3O0UE8rR34RfI2Pt34E+zM9GrKZxI38NTiTHbMIFhvRnn+bsQSCXJLGxSjw0yODdNQehaxREr6U79m/rrtaFQqLO2dkZnJEYlE9LfUEZmymc7aq5iaW+Lg6Y9XeByWdk5sfvF9VJOKWXl+3wRrR1c9IRadgJ2bN61VJex+6X48vyZ/6v8CYokE78hFuAZF0Fx+gfO7P2K0v4fWyuL/MwLqZvS3NWDj7DGnFVxmKv9GtdS3xfek1HfE6dOniYmJEW58f/azn7Fs2TKKioqQyWSEhoby8MMPI5fLaWhoICMjg+rqag4fPswjjzxCYWEhe/bsQSQS4evrK2SStLa2kpeXR39/P5GRkVhYWJCXl4dYLGbJkiWoVCpee+01QkJCCA4OZvv27WRkZPC3v/0NS0tLamtrueeee3jrrbeQy+UcO3aMP/3pT3z88cc89thj9Pb2IhKJ0Gq1vPTSS0RERDA+Ps7777/P6OgoX3zxBbW1tVy7do1PPvlE2J6f/exnTExM8OCDD1JYWEhhYSEtLS3ExMSgVCoFwq24uJiFCxeSkpLC1atX6e7uhml73c2EglgsxsXFhQ8++IBHHnmExMRE0tPTWbVq1azWK0Noc0ZGBn5+fqxcuZJPPvmEzMzMWfkxpqams1QutbW1nDp1io8++ojHHnuMwMBAsrKyZilmZqoLZmJ4eFiYGD799NMolUry8vKEn9LSUqNJ3rJlyzhz5gwjIyMUFRXNauuKi4ubpW4y5BUlJSVx9uxZAJycnEhJSSEjI0N437kQFRVFT0+Pkaqip6fHiJRSq9Xs3LmTjRs38tBDD+Hi4jInSTIwMICDgwNRUVEsXbqUPXv2GJE4U1NTwoS/paWFqqoqo2a1maTg+Pg4ra2tQrBxUFAQtbX60MjR0VF27dpFfHw80dHRAukkEolIT0+nu7ub4uJi4XWHhoaMiESD4iQ5OZn09HQ2btyIp6cn+/bto6Pjqxv+s2fPzsrPCgoKEiyvWq2WGzduCA2ZTFvzpqamBALo2rVrc4bfJyQkcOHCBaPjNxPBwcFMTEzQ3t4+y9JpgEwmIzg4mMrKSgDOnDkza3sN27Rx40Z2795tRBQWFRXR1tbG5s2bjVR7NxOsAwMDNDQ0CIH7iYmJglporvY7iUSCra0t/f36oNW5ruHGxkYOHTrEtWvXeOGFF1i+fDlr166d9RMdHc1vfvMbYTz4JuTm5rJy5Uoji6lIJCIkJIS0tDRMTEx49NFHBbLKYH9sbW3F398fMzOzWddxVVWVEakWExPDyMgI9fX19Pf3z7Lz9fX1cezYMeEar6+vF4idsrIyo3Ps69DT08OBAwdobW1lzZo1nDx5EplMNifhOxcMTYmpqalcv36dzMxM1qxZIxCt1tbWgoLHy8uL9PR00tPTqa6uZtu2bVhYWMxJwBug0+nYu3cvGRkZwrhryOizsLBgamoKR0dHOjo6yMvL45lnnhFs3L/85S+pqqpi586ddHV1UVBQwIULFygpKeHFF1/E2dmZ6Oho7rnnHh544AFUKhVOTk54eHjg6OjIli1buOeee3jxxRcZGhoiIyODo0ePMjk5yauvvsrDDz8MwM9+9jMiIiJ47rnnMDc3JzY2Fq1Wy6effsqTTz6JXK6/YX388cfZvHmzYDU3BO6/9957ODo6sn//fh577DGOHDlCU1MTd9xxB2ZmZlRVVZGfn8/y5cuF8bylpYWWlha6uroICAhg8eLF3H///dx9993f6rh/j/8+nH3nMdDaMCu8+LtgfLAP8zmyRJg+7/3jltFQcuZbXZszMTE8+K2scUxbNPpb67/xcSO9HZjb2huFzroEhDHc0/6NiiedVjvL4iESifCLXTonMTXU2So06TEdplt36SSrHnwemZk5TWXnaa64KIQ/jw320Xr1EgGLlgtWRJFIhFRmQtCiFbRWlZD//ku0VZXOub9FiDCdVpKIEHGh9QbRrr6k+Efha+vEk/l/w9vGkQ/SHsReboFULEGt1WJjZs6HJUf4U/pDPBS3ms/LT2NpYkbjYA8nfvArZBIpv1qxAy9rR4o76vjZ0b9z5O6Xkctk/Gr5beyuLORGfwc6dFR0NxPk4M5TizNRqFXMc3TntVV38EBsCuuCYvl4wyOkBcWyKTSBZN9wtoQlcK23jQ2h8Vxqr8XG1Jznjn3O22t/yKund3O+9TrrAmP4dcpdrPKP4p75y/mw5Aie1g68snw7N/o6eD/tAfonRqnr7+S3a+7BycKad1Pv5+Xl2znXXE1WzSWeP/YFaq2WD9IeRCwS8Xn5aZJ8QnkpeRtVPS1U9bTyXtoDiEVi9mz/KT8v+Jy75y/nV6d20z8xynup9/Ny8nYsTUz5/dof8uChP+NiacOd+/7AIs8g9ldf4O7oZP54KY+XkrdhYWJGvGcQ76XeT0bwAh5PSOftokP8rvAgsW7+qLVanj7yGZtC49lTVYSzhQ3vXczmrTX38ELSZn58+EP6JvTftzam5oQ5e6FFR1bNJbxsHHkiIQNTiZRHF6VyovEqr67Qt/buiFjKM4nrUWpUfHz5GJtCF6FUq7Azs0Sn0/J5+SlcLe34Y/qDfFlZyObQBD64lMuTizN4+cQuXj+9hzdW3cmLx/+JpcyMl078i082PIq5zJSdW58mwSuYCGdv1FoNJxquYiqV4m/nwiPZHzE2peCPl/L4SXw6zySu5/mkLdiaWbBr69M8lvsxy30j+OBSLjKxlJeTt/N4fDoZwQt49ug/sDKVc39sCqNKBdk3SvCyceTCg7/h6fxP6R0fZm9VEZ7WDqwOiObPGT/Cx9aZVf6RXO6s54/pD6LT6XC3tue91Pt5Iu8TTCQy4twCePnkTrxtHHlr9T3427nwj/JT/OvqWQ7VFGMnt2J8apKTjVcJc/Lk5ZM7mVKreSIhA7FIxEsndvJYfBr7qy8wrlLiaG7FlrDFSMVifpq4gV+n3IWViRk5N0qRiES8cyGbCdUkmfMW8tKJnTyZkEHX6CD/3KInF3dufZpjDeW8cyGbGDc/Pkh7EEtTOXZyCw7WXGJCNcWvTu1m59aniXXz565979A1NsSm0Hh+v+5e3i46SICdKzuvnuWZxPW3HKc0ajWl2V9QtOtP9Lc14he7VBiH7Nx90Gk1wkJEX3MtDl4BiCUSoVCC6XuYoe427Nx98I5aREuF8bxOq9V8o+1bo5qitbKY7vprRK3eQvpTv6G9+vLXhr7/X0Cr0dDTeB2xWILUxARTC0tcAyP+Twiom6FSKhjt68Z+DjUzM3Kl/hv4npT6jrC1teXUqVP09PQQHx9PS0sLfX19JCUlcf36dSoqKvD19WXNmjXExcXx3nvvYWdnh1gsZuXKlUxMTFBZWYlMJiMkJIT29nbKy8t58cUXOXToEI2Njbi5ueHm5oZOp8PPz094flxcHN7e3vj7+3PPPfdw+PBhPDw88PT05O2336aiooJt27bxxRdfcPr0aRwcHDAxMeGPf/wjGzZsQKFQIBKJSE5OJjg4GEdHRwIDA7G3t+fpp5+msLCQixcv8uGHHzIxMYGNjQ1nzpwhNDSUn/70p1hbWxMXF8eiRYv4yU9+wqZNmygtLSUvL4+BgQFhApSenk5hYSFDQ0NotVpBFdDb20t2djY5OTn4+Piwfft2GhoayMrKmqVSuhk1NTUUFhayf/9+fv3rX1NQUMCRI0fmDPU14OzZswwODgr2MabVMps2bcLLy4usrCxKS/VNLhKJxEiJUlNTw6FDhygrKyM1NVWw4jAdHJ+amkpqaiqenp6cOnVKUG6cPn2axsZGDh8+zObNm2dtkyFjxzCoKhQKTExMkEgkODo6Mjg4KASmG0K84+Pj6evro66uDqZJhpkT6ZSUFM6cOSMQciMjI4LyZXJyki+//JLNmzdjbW3NkiVLhBr4mRgeHjbK7rK2tmb79u1cvXpVIF8M9r3m5maqq6tnEW5LliwRyI6cnByjXCIDYVhdXc2pU6fYsWOH8BkaGxvx8/tKJp6YmIilpaVR7pZIJGJwcJC9e/diZmbGpk2bsLCwEHKDPD092bJlC01NTWRnZ6NWq+fMzwoNDaWmpgamlT1zNc0lJycL9ry6ujohZH8mnJ2d6evro7+/H1tb2zmVL8uXLxeII4P98GaEh4dz48YNTp8+bdTCdzPMzc1JT08XFJD79+/H3d1dsN3dChqNRmiFNMDFxYW+vj7UajXnzp0TlHwzsWzZMoEgnYmrV69y8OBBRkdHWb9+PSqVihdeeIFz5+ZuUbpw4QJ33HEHbm5uc553Nz82ICBAIFSdnZ2NyKzy8nJcXFxISUkxUhyePHlSaGhbuXKlkdKtq6trThVUUlISN27c4MCBA1hbW5ObmyuQUA0NDSxbtky4xnU6HZ999hl2dnZkZmbS2dnJ4cOHuXjxonAda7VaYYwxtL3V1dWxceNG4uPjKSsrIyYmhvDwcBISEti1a9ecFmYDrl27RlZWFj4+PuTn52NnZ0d+fr7RhNnPz4/Gxkaj5x09epTo6GhycnKEDLbDhw9TXFw8a7J9+PBhVq5caXTdV1VVceDAAaKioli8eDGffPIJEomEFStW8Oijj2Jtbc3y5cvJysqiq6uLffv2sX//fpRKJS+99JJg/zO0vo6Pj+Pm5oarqyvbtm3jlVdeob+/H6lUilKp5MUXXyQgIICioiKampr48ssveeGFF/j888/x8vLit7/9LQcOHCAjI0MIam9sbMTa2horKytOnjzJkiVLqK6u5tChQ7z44ouUl5fzm9/8hldeeQU3NzeOHz+OWCwmMTGRefPmMW/ePF599VVCQ0OxtLTExcWF4uJiMjIyGB0dpbKyksTERExMTKiqquLs2bNs2rSJ9vb2rz1/v8f/LnzmJ9L0DY1rXwdDTtKtIJFK8Y6Kp+nK149TN6OnsRpn/9Bv/XiXgDA6aytv+XedTkdvs7FtzgDvyEW0V1++JTk30tuB1S3UTbciplRKhVDbPTE8QHPZeQIWJuMWHIlKqcB3/mK8IhbQ11LHsY/epOLoXnxjlsypOFOMDqPVanAJCMfc1p6kOx+b/fnQ8UziBh5euJYQRw82hC7iJ4vScLOyQ6lW84vkbZhJZfzq1JfIZaZ42zqxI3Kp/n7YzoVxlZK3zx/ij+kP4m5lj5+dM1d7Wngs92MsTcywNDElwtmb+2JWUdvfybsXcjhQc5HfrvkBXtaOmEll3BO9nEmVEplYwp1RSbQM9/F0/qd0jw9x+HoxTYM9HGuo4INLudzo7yDnRikvJG1Bq9Wyv/oCMW5+/HLFDuQyU95NvR8zqYye8WGW+0bwdP6n6ID30x6gY2SAX53azbbwRB7L/Ri5zJRdleewl1syNjXJE3mf8Peyk6QGxbJh3kLujVmJSqvmT8X5ZNVcQi4z4XRTFVnVF3GxtOX9tAfwtnbko9KjlHTU8+W2Zwh38uIXydvQ6LQ8nvcJWnT89MjfOdtczSr/KJwtbLgvZhVmUhPONl9DIhLzP2t+gJnUhIruJibVKh7P+4TjjVdJ9g3n/tgUnkvaTJJ3GPMc3PnRgjVMadTMc3RHLBZzX0wKJe11/E/hQXZv/ymNg93sve1ZRCIRZ5qvYS+35IfzV3Cg+hL9E6M8nvcJMrGEJxMysDEz561zBxABfyk5ikI1xdOL19M5Okj7yACvrbwdB7kVd0Ul42XjyGun9/B04noGJ8f48YK1lHU1kRYcx+sr7yDJJ5Tnk7ZgbWbOr1PuomN0gBeP/5O+iRGudDZyrbeVJV4h7IhMIudGKT0TIzy1OBM7uRWpQbEMKEZ5+shnuFra8nbRQYaVEzy7ZCNeNo68l3o/Htb2vHp6NxqdlqXeoey77Vmezv8b0S4+PJn/N368YA2P5vyVC603SA+Ow05uxZOLM5FLTXj3QjajUwpMJVKudjez8+o5xqYmOVBzkabBHl45+SWfbHiUreGL8bNz5kcL1qDR6VCo9Qr8x+LTuDNqGb9I3oqTuRVd40NsDk0gq+YSr628HTOpjLGpSSZUU7yUvA2xSMzTi9fjae3A62f2klVziZbhPpqHe3n+2BdMalT8KeNHOFnY8Fh8GlYmcg5dv8Tv192LQj3Fbwuz6B0f5qOSAsq7Gol09uE3KXdTP9DNT3L/SpSLD2ZSE5b6hLLKP5J3U+/jel87j+R8xAtJ+nKbYAcPFKop3k29n3BnL36+dBOKW4xTiTseQSozQWZmjqWDCxZ2jsL9k+E+xTUwnOGuNhSjw4z2dwsB5M5+IfQ06u/h26svC2HaJnILbFw8jFoRh7vasHGdHSsBoJwYo7n8Ah3Xy3GfF41PdAITw/3YufvgOz8RjVpFc/mF77xI8Z9ioKOZprLztF0rxcknGI+wWBZtvp/ghBQ6b1TQ9y0WNf7baKm4JLTDzgWpiSnq/2DBaCa+J6W+IzQaDW+99RZWVlY8+uijuLq6cuPGDT777DOCgoI4evQoTzzxBEuXLmXFihXY2NiwZcsWxsbG8Pf3Z2pqivfeew83Nzf27dvH7373O9avX092djbPPvsskZGRPP/887i7u5OWliZMspm2+/T09PDQQw9x/fp1fvSjH/Hoo4/S0NBAY2MjFRUVZGZmsmnTJo4ePYqdnR07d+7EysqKrKwsxGIxt912GwqFgr/85S9UVlaSmpqKSCTi008/Zf369cjlctra2ti6dSv19fW0t7fj7++Pi4sLNTU1nDhxQlAyKJVKEhMTGRsb48c//rGQh3TkyBHCw8PJzc1ldHSUs2fPkp2dTX19vWA3MUzSLSwsuP322zl58qQwwTLkKDFNhGRlZaFUKtmyZQtyuRxTU1PS09NZunQpubm5nDhxwohQUqvV7Nu3Dx8fn1kZQwa4u7uzceNGnJycyMrKory8HLVazcmTJzl06BAikYj169eTnJyMRCIRlGBJSUlGE3AXFxchsyctLY3k5GTefPNNbty4QV5eHpcuXRJIJgNWrFjBqVP6Ol/D/jQgJSWFY8eOwU1ZP8nJyTQ0NNDW1jar9Qxg06ZNHDhwQPi3SCRieHiYAwcOsGPHDkFdYWdnNys83fBec5ETq1atwsXFhb179zI+Pk5HRwfXr1+f08IolUrRaDQUFhYKjYFMlwNcunSJhx9+mMnJSSOSkFtkVYWGhhIdHc3u3btRq9UcPXqUy5cvs2XLFqEBcS4kJiaSkpLC5s2bOXz4MAUFBVy/ft1IQefg4EB1dTXm5uZzNkLa2NgwPDw8K1D7Zvj4+PD555+zePFienp6uH79OhcuXODIkSNCTpdcLmfjxo1zWtsMPxKJhOXLl1NZWfm1jysqKkKn05GZmSnYdpubm+e09bm7u9PR0cHBgwfZsGHDrNWiNWvWCIHgN+97ps8fd3d3Tp06RWBgIEVFRRw8eBBzc3M2bNggKL9UKpWgqrkZra2teHp6CkonCwuLOTPQAEG9Nm/eVxOx2NhYLl/WZ7C0t7cLKtKAgAAhY0qhUDA1NSWQsGKxGFtbWwYGBmC6bfLmMUClUnHmzBnGx8d58MEHkcvlAgGVmprKokWLBJvq0NAQUqkUBwcHlEolIpGIuLg4MjMz8fX1JTs7m7y8PHp6etBoNBw8eJCqqio2bNhAYmKiUeuggfyxt7dn+/bt5Ofn09jYaBQ0X1dXR1ZWFhKJhI0bN+Ln54dOpyMhIYHExET27dtHU5O+xtnFxUUg7VQqFbt372b+/PmEhoZiamqKSqUiOTmZzMxMPD09ycnJIScnh/HxcQ4ePIivr6+gFMrPz2fPnj38/ve/JyoqCgcHB3Q6HQ4ODjg5OfG73/2OqKgo3nnnHbZu3UpjYyObN2/m+PHjBAYGUltbS35+PvHx8axZs4Y77riDffv2YWFhIXw3fPDBB/8Pe/8ZFtXZd3/jnxl6771JUbEgRbFjRarYe6IxlhRjTGKK8Uo05UoziUlsaSbGxBijxgJIUSxgQ1FsCFKl984wwAxT/i+AHUcw5brv3/Nc/9+TdRzzYmaX2fXc+1zn+q7F66+/zvTp03nppZd47LHH2Lp1KyNGjBA8phobG9m2bRsvv/wy1dXVzJ8/HxsbG1588UWWL1/Onj17iIyMZO7cuaSlpeHn58eePXt49dVXWbhwIcePH2fHjh28++67PPHEE5SXl/PTTz/R3Nws+HU5OjoycuRIdu3aRVFREebm5hQUFHDs2DF0dHSoqalh06ZNWFpa8uqrr0I3KfxwmfR/M3bt2kW/fv3Q19dn1KhRvcp5H8Tu3bsJCgrCwsICCwsLgoODe82vVqvZvHkzDg4OGBgYEBwcLChf/6eQt0vR0Tf40/m0tLWxcfPSiL3/u/izUXM9Q2Ns+vWn/N7Nv7Q+RaccLW2dv2XCbmRuRUdr8yNLBcuybuA8OKDPaV3EUhD3b1zss7PUWFHyyNFsHiSmcm73Ukw1lBdRX1aIZ+BExGItDM0saW/pelcQi7XQMzRh3JK1eI2aTPm9m0KHTtkdKlGRc4fGymK8AicRELmEfn5je0XO9+CDC0cYauvK8/G7OXbvKnJlJ1suHiOrtpT43HRaZO0Eew7DRFef4Q4ebLvS9Q48zcMXpUqFsa4+d6qLWX5sBy+Mnk5VaxO7ZzyLhb4xX15LpKG9lcul2ZwvzuKLsBWMcPRCoVKy+dwB+ls5Mtp5AK7mtnx86TglzXXMGBjI9vCVtMpl7IhYRUlzHaNdBvJp6HKCPYbxbGAYP91OxtrQhNRVH7Lp7AEUKiUn82+y9XIMYpGIDUn7SCvPE3x+ylvq0RKL2RmxGnMDYz4NeQIPCzu+jnqG4qZaBlg5smXaMj6Y+hjvphxChRpTPQNczWxY7j+ZqR4+LPYJYqb3SLysHGjuaOP5+O84ff8ORxdtwNXMmgpJI8ezrzLe1ZuT+bf4JuoZbAxNWT18Gq7mNpjrGzL/0KcMtXXhRkUBOyJW4WxqxaunfsTe2JzvZq6hrq2FL8JWMGNgIHtunOHdlEMY6+qxInon+tq6+Nm7Y2NkSm1bCyfzbyLt7KCtU4azqRV3qov5PDWWuzUlbEj6iUn9hpJfX0lWbRnuFrbYGpmxb84LmOkb8sWVE4iA7eErkcjbWTcqkh1X47A2NEEi78DCwIi18bupbG1i09kDGOvq09Ypw0LfiL03zyFXKmhsb8XPvh+T3YcyYc+bmOoZkF1bxnNxu+lnbstHwUuRyNpZN3o6awLDOHrvCr9mXODLyKdwMbWirbMDhUrJhxeOoCPWYrFPEJYGxnwetoJPL0VjZWjCY0c+51ZVETZGZuyMWM1gGxdWRO8ku66MiP7DMdM3YvPEBciUCj4OWcaxe1eJ6B9AeUs9Wy4ew1TPgF2Rq1GqVLhb2BHm5d+tfBPzccgypnr4sHf2Wgobq/nlzgV87fsxzM4NPS1t3j73KwY6urx8ci9aIjGHMy9jomvA5okLGGzjwpJhE8iu6xocOZp1BV0tbWJyrmGsq8+bZ38hs6aE2YNG4WBiwaWSbAIcPNgYNBd9bV3SynJZcOhTRjkP4E51MXtnr2N94g+UtzTwWdiTtHXKWD92Bg3trfzrzH6+uX4SubKTNyfOx1zfCGtDUwx1dDHWNcBUzxADHT3Gu3pz5N4VjHT1ef30PvS0tBEBk/duxsnUisYOaZ/3/+Vfv8R5yHDc/ccxduEzyNtaKc++1Ws+hwE+7H/tMUAkkB6GZha0tzQib29DrVJphEuY27sg72hD2tSl8u8rwELaWEfRrcvUlxbg6jMSl6GBguJI2liHUXcZubWrF/b9h1KQlkz7/+Gwho7WFopvX6H49hW0tHXo5zcGV5+R6BoYUpnbleoqEotx8x2NWEubwhuXUKmUf2HN/3NU5mVg5zkY0R9YTvxv4p/0vb+J3377jRMnTjBnzhy++OILamtr2b9/P9nZ2XzwwQd88cUXXL9+ndTUVA4fPsxzzz1HTEwM5ubmTJgwgV9++YWAgABmzpzJrFmzCA8P5+rVq7z00kvs2rWLt99+m/Xr1zNp0iRWrVqFTCYjLCyMnTt3EhwcTHh4OL/99htTpkzh1q1b3Lx5k6VLl/LBBx9w+PBhDh48iJeXF/X19bi4uPDFF19QWVnJrFmzuH//Pvv27ePs2bP88MMPpKWlMXPmTH744Qf27NmDvb09oaGhpKSkEB8fz44dOxg5ciRvvvkmXl5efP755xgbG2NhYcH9+/d55pln2LlzJ7NmzcLU1FQgKlQqFfn5+aSlpbFt2zZu3brVZ1lSD0QiETNnzuTSpUvU1dXRv39/LCwsyMrKIjs7m8jIyD4T44yMjJgxYwbNzc3ExMRgaWlJbW0tv/32G7NmzeoVre7s7ExpaamGIbOrqyuurq4cPHiQRYsWce/evV6lWABtbW0YGRlhZGTEtWvXeplN9+D69etcvHiR9PR0wsPDqaurIykpSUj3GjlyJBYWFkilUqRSKSKRSIMUMDIyQqlU0tHR0cuwPCQkhNjYWBoaGnqZrOvo6DBlyhRBXVRVVcWlS5dYtGhRrxfmfv369VIn9aTY9QV3d3ecnZ0ZOnQo7e3tfPvtt0Lq1sOIjY3lwoULfPbZZ2RldRmzWlhY4Obmxssvv0xHR0efy/UFe3t7Bg4ciJ+fHwcPHmTatGl/+vLfU37z8ssv4+bmJpzzixcvCsSJWq1m/PjxJCQkCMdLLBZjaGgonGMXFxdeffVVNm7cSFJSkgax2GPa3tjYyEsvvYSPj4/QofP29sbU1FQg5K5cucK5c+cwMzPD39+/z22+efMmV65coaOj45Gpaz3IzMzkt99+w9fXFycnJwoKCkhKStIgcukmLDZt2sSzzz5LXV0d7e3tGh+5XM7mzZvx8fHpk5TqQVhYGPv372fq1Km9lFwPGo5bW1tTV1eHtfXvvjDp6ekaSYi+vr5cu3aNjIwMfHx+j4+tra0lPz9fQ83FA+rF9vZ2UlNTmTfvd8PcntK1lJSUXstNmDCB6OhoQQUkEolQKpVcuXJFIJnGjBlDcnIyUqmU+Ph4Dd+7B3H27Flmz57d5zQ7OzuioqJoa2sjJCSEmpoasrKyet2bfeHBFL179+7R1tbG8ePH8fT01DhmPHC9mZqaMm/ePNLS0sjKyiIsLAy1Wk1DQwOnTp1izpw5Apk2fPhw0tPTBVK7x1uqs7MTT09PSktLOX78OMHBwUL5po6ODhMmTCA3N5cjR46wfPlyDh06RGdnJ5s2bSIrK4uFCxfi6+vLokWLOHbsGGKxmJ07d1JeXs6WLVsEf7o1a9ZQUVHBkiVLuHz5Mi0tLSQmJvL++++zb98+XF1dhbYvLi5OIPRKS0sJCgoiNjaWpUuX8uyzz/Lqq6+yefNmioqKmDlzJk899RQvvfQSX331FTNnzuTzzz/n6aefJikpiY0bN7Jp0ybq6upYunQp0dHRWFhY8NJLL/HJJ59w9OhRbty4wZo1axg1ahS//fYbFRUVgu9gSEgI/v7++Pn58fHHHxMTE0NxcTGbNm3i9ddf71M9+N+GgwcPsn79er7++mtGjRrFF198QWhoKDk5ORreeD1ITk5m8eLFjB07Fn19fbZs2UJISAiZmZk4OXWZ2H788cds376dH3/8EXd3dzZt2kRoaChZWVl9Pgf/DupKCrBx69vc+GGY2jjSXFNJu6T5L5fMATTXVAgj7X8GY0tb5O1t1BTl9KlWehAV2bdw8vb7w3n6guvQQErvXqef3xiN39uaG9HS1n5kih89ii6fkRTfvqKxvLqPwYm+IBKJcB8eRGH6BRwGdrXfFTl30NE3wOUhL5WeZ0pdaQFKuQyvwElU5NzCZWjXoJi8XUr5vRvEf/EvJi5/GTuPQahVKhwGDqMi+xZGFjZ9bAFsDJqLTKlghf9UBtk4d5EH81+mVtqMvrYuzR1Sgj18+f7GaRQqFdvCV2JpYMzSo9v4dd56JrgNwdXMmu0RK8msKeHDC0fYGbGatfFf8cOstTR2SHE06drGFxP38MaEeXzTXfpX3yZhTdy3HF7wCltDl6Orpc3p+3e4XV2Ej60r36Yn8eq4WUjlHeiKtVh/Zj+vj5/N5okLeCr2K7aHr0SuVKCvpUOolz/zBo9hzYlv+TTkCV5I+J7t4SvJqStnV1oCOyJWUdZSh6OJJYFOXjxxbAfPBoaSUpSJrpY2U9x9OHbvKr8tfI38+krSyvOJzbnOKOf+HMi4yDuTF/HqqR+7ygSTD/FZ2JN4WdqTUpRJfO4NnvCbzFfXTmKko89Yl4EUN9XywYUj/LbgVUpa6mjvlPNxyDLOFGZQJWmktKWeJ/2nsDNiNa8n7WNlQDDvphxiy7RlvJT4A19FPY2vvTtWhqa8OXE+9e0S4vNucKE4i5UBwYhFIto75ciVCib2G9pF9E1cQK20mZ0Rq7lYco+YnGt8GrocuaKTFxP38EXYCrZdieP9qY9R2dpEfF46+fWVrB4+jc/CnqS+TcKBjAt8E/UMX4StIDonjeOLN3Ch+B5fRz3DC/Hf89yocK6U5jCp31Cej/+O96Ys4d9TFmOqZ4AIEdsjVpFWnkdKURZ3qot4ZexMdqUlsDFoLgOtHVl4eCvbw1fy0cVjfB31DBuD5mKiZ8gUdx+is9M4ff8OT/hNor+VI/OHjGW86yAulWTz6aXj/DhnHTsjVrPvdjI+dm48cWw7HwUv5fXT+3hvyhJy6stpkbVT1FTDjohVtCvk3KkuZpC1M5+nxrIjYhWfXY7h7cmLcDCx4IebZwhyHYxSrebb9FP42ruxPvEH4h5/kw+mPsa92nLem7IEZ1MrqlqbqJY2c+zeFapam3hxTBRnCzPwt3fnXxPmYqKnT2T/4ZjpG/LV9Kepbm2iqUPKAEsH9s15gZXRu1gTGMb6xB/YPeNZhjt6Uitt4bsbpxnn6s0o5wFIOzvYePo3/j1lMe+f/43tEatwMrXCUEcPmaITE119MqpLuFCcxWvjZ/Fc3G6G2Lrw1fSnodsLroeIO5p1hWmefl2knaKTAAcPEvNu9CKnLBz7UVech7g7aMDW3RtpYx35aefQ0tGl+v49OiTNaOvpM+2ZN3EYMIyqvAyU3VYp8vY2clOTGDIpqlfb4uTtR/61ZNz9xwvtHUBTVSlNVaUYmlnSz+/RVQkP9jH0DI3xHDmJ8ns30NE3wu6hkIz/CVRKJZV5GXR2tKNnZIKrz8g+iR+VolOjjNvS0Q1Ta3sK0y9i6+H9P06N/SO0NTegUioxtuy7HX8Q+samdLQ2o2/815/LfUGk/n9am/b/p+ghCHoi0wcOHIi2tjY1NTXU1tby1ltv8c4772Bra4ufnx+3b9+murqagQMHIpPJKCoqYvbs2YwaNYrk5GQuXrzIl19+ybJly1i5ciXXr1/n9u3bPPnkkwwaNIh3332XYcOGkZubS0hICKdOnRKMsuvq6pg9ezYDBgxgy5YtuLm5ERoaSmxsLJWVlcydO5eTJ0+ybds2Vq5cyf79+9m8eTNSqZSqqirGjBnD4sWLWbduHRs2bGDLli34+PgwZMgQfv31Vz777DPWr1/PnDlz0NLSEtRKv/zyC4WFhfj5+aFWq4WSlLCwME6dOkVYWBgqlYpz587R1taGWCymra0NZ2dn2tramDJlinDDV1dXU1ZWJvjc9CAnJ4fvv/8eV1dXJk6cqNF5BUhMTOxVNtaDs2fPMnXqVBITE5kwYUIvfyqVSsXp06c1SrY6Ojo4ceIEw4cPJycnBzMzMxoaGggNDdXoXMbHxwud387OThISEpgxQ7NeurKykpycHCZNmkRdXR1ZWVka5s4KhYK0tDQaGxuRyWSsWrWK9PR0bGxsMDIyEo5NZ2cn+/fvZ+DAgXh4eJCZmanhKfX666+zZcuWXvuvp6eHRCLh8OHDLF68uFdn/UHExsYK5YjZ2dloaWn1WaamUCiEzntDQ4MQm/4oo+YeJcb8+fM1GvezZ88yatQosrKyMDY2FrymeMQ57ejoICEhAU9PT8rKyggNDeXq1atCQtioUaOwtLTk5MmThIaGcvfuXfLy8ggICMDNzY179+5hZGSEq6srD+Po0aN0dHSwZMkS4TelUklbW5tAFhYUFLB48WKhZKwv4iY2NpZBgwYhkUj6JJxaW1s5f/48ERERREdHEx4ermEU/+Axi4yM5ObNm+jo6DzSVPzBeY8cOcLcuXP7nEetVpOZmYmvry9paWkYGBj0+ujo6PDbb7+hp6fX6zruQX19Pdu2bWP48OGIxWIGDBigoWR68BpSqVQkJCQIJZsFBQVIpdI+vbQuXryIjY0NRUVFTJo0SVDz9YUen73FixdrkKZKpZJ9+/bh5eXVp8IvNTWVjIwMhg4dSmNjI2KxmNGjR2Nh0ZXmVFFRIZhrFxYWCu3ig8jNzUUmkwltUHZ2Njo6OhoE1uXLl6mvrxfKok+dOoWPj08vNV9CQoKG/1rPebpx4wYff/wxBQUFpKWl9Xlf3bhxA2dnZw1CobW1lcTERBISEpg7d66geH0QD7ZZAEVFRVy/fh0tLS3EYjEODg5UVFQwfvx4rK2thfswOzubrKwsoXS1xwR92rRpvPHGG2zfvp3g4GA6Ozs5ceIEL7zwAtu2bYNuzzYnJyeSk5P55JNP2Lp1K6+88gqvvPIKhw4dYsOGDTQ1NdHY2Ii1tTXbt29nyZIlfP7552zevBmJRMLixYs5cOAACxcuxNHRkR07dqCvr09raysTJ06koKAAFxcX8vLyWLduHTdu3MDc3Jy9e/fi6elJQUEBEydOpLOzkzFjxnD37l1aWlpYsWIFq1ev5vHHH+fChQtUV1drkOSrV69m9+7dHDhwgMWLFxMeHo6fnx8ffvghtra29OvXj7S0NJqbmzWCAf7bMGrUKAIDA9m5cyd035suLi48//zzvP7663+6vFKpxMLCgp07d7Js2bIuHxRHR15++WVeeeUV6C73trOzY+/evY+8dx9Ez/vTip3R6BpoetiVZKTh6tO3orkvqNVqCtKS8Rw56S8rlP6T1KCq/Cz0TUwxt3N+5HYU3079ww7OH6Ei5w7m9i4Ymv2eMFdwLUUjbvuP0FJbgbSxHocBXe1TZd5dLBxc0Tf+a9emWq0m52IiF3/ZxYwNW7Fy9uzlRVWSkYaBqQUqpVLokJXevYbL0EBhHQXXkjEwtcDCwQ2lQk5TZQlqtZr4L/7FoImR3EuJ6/P/Pwl5AoVKiZ62DrcqCwlw8ODFxD18FLyUzecO8MyIUAZaO+Jt7czUH99iy7RlGOvqIe2U8dqpn9jW7cvz1fSnaeuUIQJq2yQY6+pxq6qIw5mX+WHW82TXldGpVOJhYcfa+N18GfkU0k4Z54uz0NfS4XJpNmNcBtLU0UaYlx/62ro0tLeyP+M8MwcG8vGl4+yKXM0ga2fOFt1FT0ubc4V3CfH04/XT+3h70kJM9QxwNLWirLkOFzNriptrMdTWw93Clsj977PYZzwR/YfzwfkjTPHwoULSwHjXQcTmXKOwsYZnA8PYmhrNa+NmIwI+vRzNquHTOFeYwRO+kxGLRdRJJdyrK+PM/Tt8EvIEDe0SOpVKFColTqZWLP7tM7ZMW4aJrj5ypUIghN5JPsiu6U9R2FiNSq2mvVPOBxeOsGXaUjYkdRErb579hfenLuGNM7+wK3I1z8Xt5o0J80gpyiS8fwBGOnoUNlVT0FDNZPehSOUyNp87wDLfSZjoGaCnpcNnqTH8tuBVWmTtHMu+ypXSHLaGLudqeR5+9u6sjvmS96Ys6fIfE2shU3Sy+dwBzi1/l6zaUp6L280y30ko1Sq8rZ3YdPYAzwaG4mhiiVoNv969yPqxUdS3SShuqgXgy2uJbJm2lO9vnGayuw+HMy8zb/AYvrtxmlfHzWLLxWNsmbaMqtZGhti60CaXsf7kXj4Le5J18d8xf/BYFgwdS1OHlNUxX/FpyBMY6uhhpm9ESXMt2mItOpUK/nVmP9GLN5JdV46pngFp5XkY6uixKy2Bn+e+yPmiLIbaufLRhaMs853IRxePsS18JecKM5jQbwjvpRzmzYnzaZV1sPncAT4PW4GeljbWRqbUSVvQEotp6pDS2CEl+l4aT48I4cXEPWwLX0lSwW1CvPzIrClhoJUjLfIOPC3s2Hj6Z2TKTt6ZtIg1cd/yccgyvkxL5MXR03kxcQ+fh62gUtKAhYExRrr6aIu1uFtd3JUuaO3IxeJ7WBua8FpS1zWcXlnAVPdhrI3fzWKfIHS1tPkt8zIuZta8PXkR1a1NKNUqKloasDEyxUBHj3Xx33WTwbt5flQE7Z1yBlg70tzRhpelPU8e38n0ASM4kaupkB89/ymuHP6WKatex8DETCC/FXIZp758h8e27MfE2q5Xe9PT5mSejebqke+Z9uwm4XeRSISxlZ0w+FB0KxUdPX30Tcxoa6rHzM5ZwzuvL/zRs6i5poL6knzc/Mb2aicf3sY/QmNFMc01FYi1tLD3GtLrefggWhvraG9pfOSgTWXeXVRKxX80MPJn6GnbvUb2Fmn0BaVCQUX27wMWD0PeLmXP2pl/+v70Dyn1F/GwaqUvGBoaaviE6Orq9lnW8iBsbGyora39X9vOv7P+njIlfX194eVcR0dHw7i7J03uq6++EsqSfv31V4KCgsjLy2Pw4MEkJibS0NDA4MGDaWhoYPLkyZiYmBATE4ORkRETJ06kqamJs2fPEhoairm5OadOnWLKlCkC8SOTybh8+TLt7e1s3ryZF154oU9j2R4S4kGo1WpOnTqFg4MD5eXlTJ06lZSUFDo6OvD29tYgWx4kQO7du0dOTo5gYtwzrb29nZMnT+Lh4cGwYcOoq6vj/v37GmVAV69eFfy86H7xP3z4MAsXLhTmiYmJISIiopdyQqlUEhcXx/r163nvvfcE0u5BtUt4eDhbtmwhODiYwYMHa4xG93UM6C5lOnnyJLNnzyY2NhYDAwPGjx/fp8osKSmJcePGYWhoqEEu9KC1tVUoMZw0aRLGxsYkJCQIMe99EV5qtZoTJ04wfvx4rl+/zrRp04RpJ06cYPr06cJ/Dx06VEiLe5iUun79OpWVlYSFhaGjo8OVK1cYMGCA4EGlVCpJS0ujoaGBf/3rX2zatAlfX1+N85yZmYmZmZlwfh7cjpEjRyKVSmlvb+/TxBzg2LFjTJkyhbS0NI396EFnZydJSUlERERw/PhxjYSzHhw5coTZs2cjFouF9LiHVTA85L915swZBg8eLBybB9HR0cHFixcJDg6murqa3NzcRyoQjxw5wuTJk8nIyOhTfXXz5k1MTU0pKyvDx8enl9k33eTdjBkzhJTOnJwccnNzMTQ0xN/fv9e6HzzHx48f73Nfe3DmzBny8vIwMzNj/vz5SCQS8vPzqaur04jvPXz4sFCG23NviEQiOjo6mDVrFgkJCX12TO/fv8+aNWvIzMzs8xwfPXpUw/MtJSUFLy8vQRmiVqs5evSoBvHXkxgZERFBQUEBt27dYuzYsTg4OGiQTjdv3qS0tJTIyEi0tLSoqKigpqZGMGXvKWlWqVQEBASQkZHBuHHjiI2NJTQ0tNe5qK2tpaSkpBeBf+/ePUJCQvjmm29Qq9X4+vpqXO89pJRareb06dOYmJgwevRoEhISGDhwIFKplKFDh3Lx4kXq6+tpa2vD0NAQd3d3fH19OXnyJD4+Pjg5OfH0008zYMAAOjo6eOONN4T/6FFxPQxjY2NaW1uF7z1Kur5gZGSEVNq3zP+v4uFn76NgZWUlGPj3BW1tbRQKBd7e3oL3XA9cXFwoLS39ryal5HI5hoaGglq4B0888QRNTU1ER0f/6TokEgm2trYcPnyY6dOnc//+fTw9Pbl586ZwDdNdUu7n5ycQkn+E/01Sim4/kOqCrL+83H8aZV2SkYa1a38N4qgHVflZmNk5YmDy6DCBP4JaraYw/QIeI7oGrirz7mJibf/IFMK+UFuUi5aOLpZO/Si6ldpLeSX8l0pFc20FLQ8l/3XKOrhz8jBjF69BIetApdT06Cy5ew1pQy3Tnt0stLMPdsDup1/AydsPXUNjDeVW6d1rSOqr0dYzQN7WysX9OzTWuyNiFYY6eqyM3sWbE+bxW1YqUQMDMdLRw8bIFJVajZu5DTN++ZB3Ji/CysAEfR0dVkV/yYF562lsb6VF1o6utjaHMy/jbm7LLxkX2Ba+kqrWJqwNTdAWa1HQUMWlknukV97no+CldCjkGOnq0yxrw8XUiurWZox19dDT1qGoqRZLA2Pq2lqwN7ZA3L2/Btq6WBmasOXiMR4bNoEKSQO59ZUsGDKWm5WF+Ni5ciDjIqcKbvFl5FOsifuWLdOWsSHpJ96YMA8HYwvsTSxYcOgTji16nfuN1VyvyMfXvh96WjpdBtcXj7HEJ4h1Cd8z23sUQf0GY21gwgcXjvBsYBgvJHzP1tDlmOgaUCFpwFTfkP23Uwjx8ie56C7OplZMcBtMW6eMDUn7+CbqGVrlHajUalRqFUVNNXx17STfRj1LQt4N5g4ZQ5tcxt2aEgKdvLhQnMW8IWM5X5yFq6k1cqUCYz193j53kGcDw2jvlLHtShzvTFnEuvjv+Ch4KVaGJlgbmjD71y3sm/MCjR1SaqTNvJdymPjH36S4qRapvINXTv3I7hnP0qlU4mPnxoQ9bzLE1oXvZz5HWnkerfIONp7+mbjH3iS7roxtV+J4fNgEnE2t8LJyIOSnd3ht3Cx0tbT5LDWWPTOf46nYr3hjwnxczKww1TPkcOZlprj7UNhUg72xObl1FfjYudIq7+BKWS4+tm4UNFaxOz2JvbOfp6ixBltjc0HN9dTwEGyNzfCytGf5sR28PWkhgU5e5NSVIxaJUaEGtZr1J/fywdTHOFd0l2F2brib2yESwXNxu3lzwjwqJA0MtHbC1sgckQjictKZ5D4Ea0NT1sV/z9MjQrA1MsPe2Jx5hz5ha+hyXj65ly/CVrA1NQZzPUOW+k2ipKmL3NQWi/nh5llWBQQTl5fO9AEjeCHhezZPXICnpT0tsjasDE1o6mijqb0VlVqNWCSiTSHHysCEjy4cZbTLALJqSnnSfwr/OrOf1cOn4Wffr2ubJ85HrVZjqKPLG2d+Yc/MtVS2NpJdV0Y/c1uG2Ligq61DY3srK6N38U3UM8gUnRQ21RCdncbr4+fgam7NucK7OBhb8OqpH/k8bAVr43ezfswMRjn3Z3d6Eqfv/1767hk4Ea9RU2htqEHf2Ix+fmMET7vCGxdx9RlJQfoFPEdMREtbW6O9USo6KbxxEadB/tQU5mj4HKlUSlrra2iprehSIeVmcDP+AIve3yukl/4Z/uxZpFR0UnwrFWs3L0xtfrf2+DNSSiaVUJXf5YNqbu+CmZ3TX9qe4ttXcB026g8HX9qaG6jIvo3rsFFC8MT/BorvXMWh/9A/JM36WuZR3lN/lZT6x1Pqb8LCwgJzc3Pc3NxwcnLCyckJExMTHBwcaGtrw8DAAFNTU0xNTVGpVFhZWeHi4oKdnZ2GSkJLSwtjY2PBIPzhiHEzMzM8PT2F33vWa2hoiL6+vjBq7uTkhJ2dHU5OTri6umJiYiKUY5iYmCCVSnF0dMTS0hJnZ2ecnZ0xNzfH2dkZhUKBmZkZHR0d6OrqYmVlhb6+Pk5OTlhZWWFsbEx7ezv+/v589dVXgrfIgAEDSElJwcjICIlEgoGBAc888wxGRkbMnDkTU1NT0tLSGD16tKDusrGxYcGCBUJCk1KpRCaTkZSURFxcHBcuXGDUqFFERETwzjvvCKVqf4b29nYOHjzI8OHDBVWGrq4u06ZNIyoqCoVCQWxsLGfOnBHINpVKRWxsLHK5nFmzZvUiE3p8gPT19Tly5AjJyckEBGh6PIwaNUojwS8uLk7okPdg2rRpgj9UD4qLizl27BjBwcHs2rULCwsLBgwYQEhICKGhoUL5S08KmVwu71Ue8SgeOSMjAycnJxITE5k+fTpjxozh/PnznDhxgitXrmh4D02cOJHz589r+NnQrfaKjo7mypUrhIWFMX36dA3fpZ5rPSend9LCjRs3CAgIwMLCAl1dXcHv5uE0wGnTpnHp0iVBlWRo2NWQ9hiZW1lZERUVJaiT/P39BW8huu+dMWPGMGXKFDZs2IBMJqNfP00fjQcN9nuQlJSEn58ftra2fZpE96CHyDAz6xrB6cuEPyUlhUmTurwjemLmH8Tt27fx8fERtkFXV5d+/foJ3kk9yM/P11DeTJ06lYsXL9Le3t7rPx9ME7Szs6OlpaXP+bKyshg0aBCWlpY0Nzf3CgNQKpUUFxfj6ekppEU+6hj0+ITR7fcUFRXFqFGjWLhwIQ0NDZSV/R5R7u7uzv3797l3755GouGDkMvlXL9+HblczrPPPktGRganT58mJycHd3d34foPCwsjNDSU+fPn88Ybb2jcG6NHj6atrY2EhASCg4N7Jf4NHToUDw8PEhISqKys7OWP01ca4sSJE7l48aJwrC5dutSL8BOJRNTU1HD06FFaWlqYO3dun+Shv78/06ZN4/jx4+Tm5grpfxkZGcTGxnL9+nVCQkKYPn06jo6OqNVqjI2NWbRoEVeuXNEwcaeb0Hl4YCEvL4/a2lpiY2Px9fUlIiKCuro6wTeqsLAQLS0tamtrOXjwIP7+/owe/Xun3MPDg8LCQkQiEUFBQcyYMYPHHnuM9vZ2Ojo6UKlUSKVSLl++THJyMk5OTjQ3N7Np0yahvTQzM8PQ0FBQcTk5OaGrq4uTkxMikUgg14yMjGhtbcXBwUF49vQ8k1xcXNDS0sLGxgZjY2PBE6xH0WZvb4+VlRWurq6CD6G5uTmWlpYaqZFtbW3o6Ojg6OiIvb09Tk5OvZSyPc8rZ2dnbGxsMDExEdbbY3iuUqkwNjYmOzsbW1tbHB0dsbCwwNTUVKMN+29FXV0dSqWyV7CCnZ2dRkLrH2HDhg04OjoSHNwVFd+z3N9Zp0wmo6WlRePTFx4uO/6r0DM0xsDUgqaqsj+dt6GsEIs/8Fn6I7j6jKQy9w6dst5l5x2tTf8xIUV3e2Lp7EF96X3k7W10drT9LUIKwKbfAKRN9TRVlQodEllbK5V5d4Xo8JKMNMqy0hEhwmXICI0IcV19Q6Je/RRJXRVOg/xxGRqo8XEeFMDE5S9zP/0CLbWVGv9dfOcqdp6D0TPqKpEWicWolEpKM9Mxs3fBY3gQZjYOvQgpFzNrno//juKmWnbPWENjh5R5g8egUqtJKc6kqKmW5+O/o0LSyI6IVdgambE2fjfSbr+nxvZW1sR9i0zZyfspv7FgyDh+ybjAW5MW0Crv4MMLR1CoVHQqFbhb2HWpiHyCujxvtHWoam3kvZTDyBSdfH39JFpiLSSyDuyMzDDW1Wfr5Rha5e18ejkaLZGYTWcPUNXahKmeIWKRmBO56UzzGMa6+O9wMrXktaSfmOrhw/tTlyCRt/PWpAV8cukYb06Yh6GOLmvjd1MjbWbe4LGUtdTxUuIe+ls6UCVp4oWE76mUNFLd2oSnpT3/nrKY8P4BHLp7iV1pCUg7ZShUSkY4eqIlEnO7uogrZbloi7VIr7yPkY4eE9wG42PrxvPx3yEWifksdDk/3znPlbJc3j73KzXSZobYuPLB1McYYO1ITM41GtpbeSr2K6wNTVkbtxsvKwc+vHAESwNjMmqKWRu/mxZZOzJlJ5YGxlgYGLPcfzLDHTx4ZexMTPT02XE1njVx37I9fCUbkvZR1lxHP3Mb3pw4n6yaUnZcjcPR1JJdkauxNjRlTdy3XC7N5ue5L/L+1MdIzL/JDzfPYq5vxNuTFpJTV8Y310+yzG8S0s4O1sR9S1ZNKR+HLKOfuS1u5jY8PSIEayNTtERidMRialqbmb7/fWZ5j+RARldp9frEH3A1s+bJ4ztRqlQkF97FVM+AobaufBa6HFM9Q95OPohSpeTFxD28O3kx/g7udHTKqZQ0smXaMkY4eRG5/32+TU9CW6zFjitx6GnrsCNiFRYGxpS3NOBgbMHa+N0Y6ujx7uTFeFjYk11XTnZdOXn1FSw/toPJ7kN5Lm431dJmFvmMp1Ol5IMLR/j6+ik+D1tBh6KTraHLkSkVvDQmiqdGhGCso8/X1xNJLc3mdlURnaouNVx9mwSVWs36MTMYYO3I07Ff0yJrZ8lvn9PY3oqWWIs3z/6Cg4klDsbmaIlEvDA6ErFIRKu8g/yGSvbNeYGJ/Ybw4YWj7J6xBmdTK36+nYKrmQ1fRz3DiuidtMo7uFB8D2NdfbLrKzh09xK6WtrsjFgtGNeHePrx9IgQippqCNv3b9zMbXkxcQ9bpi3luxun2Tv7ebTEYuJy0zUIKbrVoFYunpjaOOIVOImim5fplHXQUF6Emb0LWjq6eI6YQMH1FI2S5PaWRgpvXMQ9IAgDE/NeRI1YrIWpjQPOg4djZGGNy9ARhL/wPq0N1RTduoy8/Y8HrdqaGzAw7T348CC0tHXwGDGBdkkzZVk3/nBelVJJefYtim6l0lBRhKvPSNx8R/9lQqrn2fhnamBDM0s8Ayd2maCX5P+ldf8ZmqpKMTKz/FuE1P8W/iGl/iYaGxtpamqiuLiY8vJyysvLkUgkVFZ2PbDb29uFlzCFQkF9fT2lpaVUV1drqKaUSiWtra0olUqampp6jd42NzcLkeUPrretrY2Ojg5qamqg2wC4urqa8vJySkpKkEgkwqizRCKhra2NiooKoQNZVlZGU1MTZWVlSKVSIVJcLpdTX1+PRCIRTIV7Rrpv3rzJnTt3CA8PZ/fu3RQXFzNnzhzeeecdqqqqmDx5MqdOneL+/fvCC2Z1dTV2dnY4ODgIL64ikYjAwEBSU1OJiIggLS2NoKAgIiMjCQ4OxtDQEIlEInQQhg8fTnx8vHBMOjo6NFQ/xcXFJCQkMH/+fMHLxtzcnKam303pBg0aRFRUFKNHj+b06dO88MILvP3220yePFnww+mBpaWlxnkYMGAAQUFBPPnkkyQlJZGQkMD169cFciswMFDwyPHw8NDoJNFNbonFYqRSKWq1mqSkJCorK5k3b55AxISGhpKcnKxRntdzrEaMGIG5uTlnzpz50+vy3LlzGBsbExj4O1tvaGjItGnTmD59Op6eniQkJHDixAlycnIEFV8P0XHv3j2io6MpKSlhxowZBAcHa5B1EolEMGr29/cnMzOzlwqwsrJSUJr0kF48wmx6zpw5REdHk5OTQ//+/Tl79qxgZP6g1xUPJPc9jJiYGBYuXMj8+fM5dOiQRinOw6RUSkoKHh4evZRTD0OtVpObmyuUqT1oPP8gelQldJ9nc3Nz4TqXy+UUFhb2KuHy8/Pjzp07GuRgTk5OLwJnzpw5HDt2rFdnTSaTaVz/fZFharWae/fuCeqgvojRU6dOCeovkUjUK+VOrVZrbNfgwYMFfzC6VTAvvPACs2bNoqamhtjYWFJSUvD29iYrK0tYVq1WU1BQIBhpJyQkcP78eVxdXfHz8+Pzzz8XPJn8/f2xtrbu9QDuSVfsQWVlJWfPnmXRokUMGjSol9lyXV0d6enphIaGIhKJmDp1KlZWVhw9ehRFtyFvQUEBXl69U7hmzpxJTEwMcrmcpqYmbG1t6ezs5MqVK8THxws+exYWFo/0B+uBgYEBc+fOpaWlRSDYjY2NiYqKYvLkyX36TolEIiIiIpDL5Rrn7OFjcv/+fUpLS5kwYQK+vr7cunULkUiEn58fkZGRREZG0t7eztGjR3Fzc2Pw4MHC4IZcLhcGR9zc3ATT9IsXL1JUVISlpSXu7u5CWaC2tjbHjx+nsbGRvLw8/P39USgU6Onp0dzcjFQqpaysjJqaGsrLy5HL5cIzscdsXiqV0tHRQWVlpfDs6XkmlZaW0tLSQm1tLa2trahUKqG8j25CpL6+npKSEuEabWpqoqGhoZe6qrOzk4qKCqqqqigvL+9F2EqlUuRyOWVlZdTW1iKRSIT1tra2Ul1djUqlEp57NTU1VFRU0NjYSEtLiwYx/n8rPvroI3799VeOHTv2P/KK+vDDDzEzMxM+D/o4PojWhhpMLHv7XP0V2Lj1p7Gi6JFJdD2Q1Fdj+ohEur8Cj+FBFN3UNJZtri7H1PavdS7+COb2zjTXlFOaeR2XIb+XPSgVCmRtrbQ21tFUVUZdcR6VeRmU3r1O6d1rGh/UKn5940laG2opyUijsaIYK2d3DfLJZWggZnZOvTxL1GoV2rp6OA3ypySjbzN8PUNjPEdMoKO1maJbqV2drXs3sXB0w8i8q11RqZRYOLhw7P3nMbGyxdTaHn1jMxoriuk/OlhjfaXNdXwY/DjvphyiRtpMamkOla1NmOkZYqZnyHAHD7ZMW0Z1axPPx3+HvrYOuyJXoy0W83z8d10d+6mPYaijxzOBoWiLxd3eUDq8eeYX/j1lMQcyLvDKqR95KXEPkQOGM97Vmw+DH8dQRw8XU2s+D1uBtFPGcyPDsDQw5vXT+3jl1I+Mch7ArsjVmOga8NKYKFSomeEdSIeikyC3QajVKooaq7v8sAKCUahUbA1ZTnlLAyZ6hnxz/RTOplasCQxnV1oiZnpGfDn9adbF7+bZwFA6FF0paPraujiZWhKzZCM1bS28PHYmM375kAAHD2TKTuYNHsP0gSNYMGQsLbI2Pgh+HJW6673BzdyGNrmMH2atxdLAmLjcdFRqFevHzKC5Q8r6k3t5ekQIIxw9+SR0OfbGFnSqlHha2vNlWiInl21GBHw5/Wm0xWI+CH4MTwt7aqTNWBuY0M/clpfHzqCmtYlZ3iNplXegVquZ5T2Scd//C2dTK366lcxk96E8PzKCgdZOGGjrYqZv1EVkdRv4e1jYU93aTGzOdfIbqvhg6mOY6RtxIvcaGdXFgnm2UqXCpCf9sVOOjaEpo50H8oTfZGRKBfG5N/jiygmaO9oY5zqIm5WF7J6xBgMdPWTKTjws7JApFRQ11WCko8cnIcuwMjThp9nr0NXWYWPQXMpa6mlsb8XGyIzzRZmkPPlvaqUtbJm2jPfOH0alVvHp5WjUajWfXY7hdlUhn4etYE1gGCIR+Nr3o0PRSau8g/ZOGU6mlmiJtdg0cT5qNdgZm/HyyR+YPWg0nhb2WBuZ8uX0p1Gj5vii15ErOvGxc+VEzjXWjYpkpJMXb507QGFjNR+cP8Lms79wr7aMoqZaFColv8xbj5OpFX4OXe/CpS31hHj6IpG1k1VbyrbUE+ydtRZQs2fmWgy0dVCqlOyd/TwmegYk5t9iXcL36OvodhGPoyJwNLHkzP07PH7kC5b7TaaqtZFnYr9mw/jZLD26jTtVReyMWI2lgTHruucvaKjkfHEWFZIG1sbvJsDRg12Rq7lTXcSGpH04m1rxacgT6Glp88Lo6TibWWOsq09Dm4TPU2Ow6IPUEInFVGTfRt/YDJFYjOfISdw4sZ+ciycFRZOWtg7u/mMpuJbS5ZtZVkhdSQFeIycLpXNG5ta0NvSuAqrKz0KlUOA40LcrmXvwcFyHjaKmMLubnOpbld1YUYyFo9sftNa/w85jEFbO7uRfPddrfY2VJUJ6nrWrF/38xuDQ3+dvG4XXFuf+Za/FHhN0LW2d/7EJurJTTmNFMdZ/8b8fhJG5Fa2NfSvi/yr+MTr/m3jjjTc0yj7+b8aNGzdYvXq18F1bWxt/f38kEgk7d+7ExsYGf39/4uPjCQ0NRSKRcObMGRwcHIROsVqt5vz580JH3NLSkiFDhpCXl0dGRkavF98rV64IJUGOjo5CpH1oaChlZWUCqZCamopSqex1LoYMGSKUwzwIAwMDVCoVa9asoX///pw+fZqxY8dq+LQMHDiQzMxMwdC5oKCAnJwcjh07xqRJkwQPseTkZKGD++GHHzJ69GhWrlxJfn4+WlpaaGtrC5+AgAC+/vprnJ2dCQ4O1lDE9ZAOc+bM4fDhw4IpuVKpFDqi3t7eGBsbEx0dzYwZM/rstMfFxeHj44Ob26MbVBsbG6FELC8vj7i4OKqrq1m4cCG//vor3t7ezJw585HLp6enaxBLUVFRxMTECOVNEomkFykXFBQkEFN9bffYsWNxd3fnl19+ISQkpJda8I+QlJTE5MmT0dLSQktLi4ULF3Lw4EFmz56NoaGhBil15coVbGxseplZDxo0iKysLI3yrgfVSHQboPf46vSQTNevX+9VSjVu3DjB56mnxKsv9BBJD/sLPQgtLS2mT59OTEyMcE4KCgp6kXXa2tq4uLhomNYnJycLCi66r3uRSCSQaPX19ejr62ucqzFjxnD8+HHB0Pv06dNMnTpVmO7p6cmJEyeE45STk8OAAQMQiUQEBAQQEBBAU1MTiYmJREVFsXPnTqGszsPDQyCIHsSRI0dYvXo16enpREVFER8fj4eHRy8PuQdRUFBAXl6esJ2urq6cPHlS8CeTSCScO3dOwxC9Z/udnZ05duwYTU1NREZG0tLSQmdnJwqFQuOjp6eHq6sr33zzDfHx8WhrazN8+HDh2hSLxYJnUs9xfpCg7IFSqeTs2bN0dHTw888/o1KpNMqi/wj+/v5UV1dz8OBBZs2a1YuILygo0CAV+4JIJOLxxx8nIiICc3NzEhISADh//jxr166FbuP5mJgYzMzMkMlkuLm5cfv2bWxsbDAwMOD7779HpVLR2NjI3Llz2b59O+np6dBNkP78888a3nD/t+Po0aO8//77/29vxh/C2toaLS0tDZKZ7kEie/s/JmY+/fRTPvroI06fPq2hJOxZrrq6WkMZWF1drVHO9yA2btzI+vXrhe8tLS19ElNNlSU4PSJp7q/AzXcMhTcv4TliQp/T/zfcKURiMe4B4ylMvyj4PTVWFv9tLymVSklbUz2SumoU8t8HUKry7pJ39Qy6DyQQisRa6Ojpo62nj46ePobm1l3fdfX67NyEr3sPlVKBtasXhma9S7H/DAYm5hhb2VFblItNv67nXHN1uYY5vK27NzKphB/WzWbo1Fm4+oykuaq0ezRfTHtLI4bmljRVlSGp6xqgSd67tc//23PjjOBd9N6UJdS1tbD53AE+CXmCRb99xvbwlVRI6lnuN5mmjjZeStzDzojVrB/T9Q5krm+Et7UTz5z4hgpJAy+PnUFsznXM9A2pa5OwaOh4lvlNor1Txq2qQr66dpJdkavZePpntkxbxqWSbEY6ebEu4Xt+W/AqW0OX06lUcvZ+BocyL/Gk/xSe7y5Ta+uUIRaJ+HfKYWZ7j+L1oDk4m1qx42o82mIxzwSGsv1qHC+NiWL9mBmsjvmKZb6TeH/qEtbEfcu7kxfzQfDj3K0p4eWTe/k4ZBkikYiXT+5lV+Rq3j73K8+NDOfjkGWUNNfxfPx3/HvKYrZfjePF0dN548wvfBj8OBtP/0xE/wCG2rry+ul9fBLyBK+e+pGdEavZcvEoj/tOIshtMHtmrqWmtYkNSfvYMm1pV4KbngG+dv24XpFPUO0gno//jl2Rq9ESi3kurqvU6u1JC/nxVjILh46jvk2CrpYObZ1yXkrcw2T3Lp/LobauqFAzwNoRJ1NLWmTtvJT4A3tmPUdOXQUXS+5xq6oQRxNLfO271ImJ+TcJ9fInqeA24f0DuFKaS6dSSZDbYDws7JB2drAhaR/RizeyMWgOIpGYV07uZffMNey5cYbpA4bzW1YqWbWl6Gpp8+qpH4Vr56PgpSzxCeL4vausCgjGUEePNXHfMn/IWCb1G8JzcbvZNHE+KUWZeFjaIe2UsTs9iQFWjrybcojnRobzTdQzVEgaOL7odYqaanhj4jzuVhdzo/I+1ysKeHnsDEqb6xCLxGw8/TPbwleSW1fBvdoyXh03ixXRO1kZEMxbkxZiqKPHU6e+4t3JiyltruOL1BPsjFzFK6d+ZE1gGCsCgpHKO/jgwhGmuvtwv7EakQi+CF+JvrYuTx7fwVPDQ6iQNLArLYFDC15hud9kDt29hI+dGz/dTuaHWc8jlXdQ1lLPG2d+YUfEKjYk7WPNyHBM9AxYfmwHX01/mtHO/ZEpOtmdnsQXYSv48MIRPgl5giG2rrx66keeGh4imJp/Of3pbkLzBz6atpT1iT+wf+5LjHEeSIinH9+mJ7EzYjUpRVl8eOEI701ZwsKh41ColLxxZj9zBo9miI0rCw59Kpybl8fOQCLrwELfSMPoXK1SkfzDJ0x7ZhMyaZeCVqVQoFR2Un7vFqh/H7RVq1XEf/EvZm3c1suryMLJjbLMdA0T7tLMdEysbDG313zWiMVaOA8OQK1SUZFzm05ZO44DfTWUQMqHDMX/tM00tcBz5CRK7lyl+PYVVEolarUac3uXR5ZR/x20NTX8adDGw7BwdMPE2p7CG5ewdR/4H5mgF9++gtt/6JNo5exBaeb1v634fRD/kFJ/E25ubr1Kuf6/gI8//pgvv/ySmpoawsPD8fDwYNy4ccTHx6NWq9HW1sbCwgJtbW1++OEHpk6dKqgY9PX1hU56T+mcl5cXpqamvbxnHhzJp9vHQ6lUcvr0abS1tRk5ciTHjx9n2LBheHh49NpOU1NTJBKJxm85OTlkZGQQFhaGlZUVgwYNwtTUlNTUVC5fviyQUz0eW3Srw6RSKREREZSWlpKTk8OQIUOwtbUVOoQqlYq4uDgqKytRKpXo6Oggl8tpb2/X6OjGxsaybt06jTK4B6GtrU1YWJhQAviwksPZ2RljY2MOHjwodLh7pJ093kEPpp79Gby8vKirq6O8vFwgwP4ogY1upd6DHW8dHR2GDRvG9evXGTFiBBcvXuzlvaSnp8fTTz/N2rVrNRQ9arVaMFueMmUKenp6XLlyBSsrK0aOHNmn2XOP15mOjg7Z2dlYWlpqEIra2tosXryYgwcPMn36dIGUunnzJnp6en36Cnl4eBAXFydMk8vltLS09DqWPj4+HDlyhP79+yMSiaioqGDEiN5mfoGBgfzyyy8MHjy4T0NzussfTUxMqKioQFtbu880LLqv42HDhgkkWVZWVi/fL7pT1o4cOYK7u7uQrPcwuTd16lTi4+OZMWMGycnJvYhckUiEs7MzZWVlmJmZoVKpevnn9Vzburq65OXl9SpVraiooLOzk/fee49BgwYxZcqUPveLB0g9IyMjoexq5syZZGVlcfToUaZPn97r+GVkZNDY2KjhPfYgIdMTWNBX2iTd5ZMWFhZ88MEHeHt7C6Sxjo6OBolcVlaGlZUVfn5+vUjennuuh5zsIaYeJDZVKhXJycm0trYyefJkjIyMhBCImzdvEhsbS0REhFAy+6j6ejs7O+bMmcPx48cFA/aysjLu3bvXKxTA3NycxsZGoeQtJyeH2tpaJkyYQElJCXV1dUL7W1paSm5uLnfudEnqCwoKyMrKYsOGDQCMHTuW6OhozMzMcHd3x8rKigsXLjBjxgxB+TRo0CDu3bvHoEGD/j/1LOwh5P6boaury/Dhwzlz5ozwXFWpVJw5c0YgI/vCxx9/zPvvv8/Jkyd7tW3u7u7Y29tz5swZgYRqaWnh6tWrPPvss32uT09Pr08vw4fRpYTsO/X1r0CspYVNvwFUF2Rh59m7ja8tzsXmb77Y9wVtXT0cvX0pyUjDzmMQuga9n+VqtZr2liYk9VXIpBKhHRK88MRaGJlbYe3mJXioqNVqOjvaGTQxks6ONmzd/366k6JTjpaOLm6+oym+cxWL7nSmP4NKqUQk+v1Za+noRmVuhhCj3lRVKvhwdXa0U559C7GWFmHPvyskLNl7DemaLuugLCudsLXvcv/GRfr5jaGtuZGA6Y9RlpVOzX1NfzZTPQOaOtrYEbEKZ1Mrcusr+TTkCawMTZk/eCwKtQo3MxvONtzlRmUBT48I4YMLR5jYbwgmevq8k3yI3TOe5e3JCxEj4resVEY7D2CC22B87fvx5PGdhHn509QhZZqnL8+NDEepVrNh/GxqpS1cLs3mZtV93p28mHmHPuH9qY/x8cVj/GvCPAx19Bju6MnGoLn0M7chOicNX7t+7J39PDuvxuNgYsE7yZ/x4+x1tMrb+f7GGXZGrKZTpcTLyp5PQ55AS6xFa2cHG8bPRqbsMvT+MvIptoWvRCrvwMXMmkMLXuHNM78Qvfh1ipvrWJ+4h52RTxHRPwBdLR2W+HQNjm2PWEV7p4ydEaspk9TjaGLJjohV5DdUsiNiFa+f3seT/lNwMrEkdN+7THH34fWgOWyPWIVU3sESnyAaO6ScyLnOS2OiUKpU7IxYzWAbF+5UF7PUdyIjnDwRicRcKrlHRP8APr50nPVjoth/5zxbpi3D3ticvbfO8q8Jc2mVdbDvdgovjp6Oo6klAQ4eJOTf5KMLRzn7xDukljlxvTwfpUqFVN7B3tnPE5ebTq20GblSgY6WFiMcu95v99w8w+EFr7IrcjWXS7PZcvEYb0yYx4R+Q6hvk/BbVipjXAbiZm5DfytH4vNu8FnYk2iLtfgs7EnKmuupbG0go6YYVzNrJrv7sDIgGGtDE3zs3PgibAVNHVKW+k3iTMEdnEws+WjaUhQqJXtmrsXayITsunLB4H1ragylzXUcWfgaBjp6PD8qkmZZG8MdPdEWi9kzcy21bc2sCJjKucK7KFRKVgYE42JmzUcXj7Jp4nx2RKzi+L2rTPEYxo6IVZjoGvDauFlM7DeEdfHfY2tsxq7I1VS3NqMt1mLWoFHUSJt569yv7IxYjUTeTlp5Hl9GPkVGdTH/TjlM5IDheFjYsSNiFdpiMWvjd7N/7kt8FvYkElk7n4et4Mz9O8gUneyMWI1SpeLTS9G8OCaKfwV1DRxvmbaU6xUFfH/jNO9OXoyvfT/eSznMtYp8dkas5t8ph1k/JgqZopNt4SvpVClYE/ctX4StwMXUirXxu3l13CzmDx7LrrQEPg5ZRn2bhDmDRzPU1g1rQxM+DlnGIGtnPg5ZBoCBdluv5D2A4VFL0dLRxdVnJA1lhQwcH4pYW5vOjnZBHaRUdFJ48xJBj69DIe+g6FYqls7uQtsmFmsJbatarabo5iVs3L3/kBARicU4DfIXyCl5RxuOA33/MO20q31rR1JXjbSxDrVa1WtaVsoJnIcMp5/fWMSPSDH/O+hp0/8TaOvq4TliAlX5mbTUVv4tE/Sawmys3bx6Gbn/VYjE4v/xQNA/5Xv/4E8hFouxt7cnLCyM1157DbFYzDPPPMPly5eZPn06VVVVnDx5kpMnT3L27Fm2bt2Kt7c34eHhhIeHM3nyZKEk4kGFga2tLWPGjCEmJgb6IKR60K9fP9zd3fnqq6+Ijo5m2rRpfRJSD0Mul3Ps2DE6OjqYN28exsbGqFSqLv8DkYixY8cyc+ZM8vLyOH78uODbkpycjJaWlpDq5ezsTGlpaa/1Hz9+nI8++oilS5eSnZ2NkZERAwcOZPDgwQwbNoyAgABGjhzJ66+/TlRUFImJiUJnsLOzU6OEx8LCAm9vb1JTU7l//34vVYy5uTmzZs3i0KFDaGlpUV9fz4EDB4iMjPxbhNSVK1eIjo7G3d0dR0dHkpKSmDhxIlKplOjoaGH7/gr69+9PbW2t4Fukra1NXV0dCQkJxMXFkZWVxffff8+SJUs0PH/CwsKYOHGi4IljaWlJZGQkXl5eJCYmEhcXx507dzQaNz8/P27duoVEIhHSwB6GWCxm0aJFxMfHU19fT3Z2NjKZ7E9LrXpw6tQpjWTGBzFp0iRSUlIoKSnplejXU0aamZnJY489Rn5+vlCydvLkSTIzMzVKicaPH8+lS5dIT0/vcz964O7ujqGhIXfu3NHw/XoYPebzj9p+bW1tzM3NSU5OxsfHp0/SpqcUNSkpqU9j9x7Vm1Kp1CAN8/PzOXbsGGKxmJkzZ+Ln54dUKn2kKkihUFBWVtbLA4zuMsGoqCjhWPbg6tWryGQyjSTLh9d55MgRFixY0Oe+NTU1cejQIfz8/Pjoo48ICgpizJgxBAYG4ufnx9ChQxk4cCB37twhKiqKrVu3cuPGDQ2jboCSkhKBqBowYACOjo6cO3eOuro6rK2tSUlJITY2luHDhzNjxgxMTEzIzs4WyiD9/f0JDg4mOjpaIOx7EgL7go6ODvPnz6egoICffvqJO3fu9Jk8OmrUKME3Kzc3l6qqKuFYubq6UlJSIszr6urKlClTiIiIICQkBAMDAzZu3Eh8fDwnT54kPT2d2bNn09zcTGFhIdOnT+fjjz9GqVSybt06VqxYwb179/rc3n/w34H169eze/dufvzxR+7du8ezzz6LVCrlySefBGDZsmVs3LhRmH/Lli1s2rSJPXv20K9fP6qqqqiqqhKuf5FIxIsvvsh7771HTEwMGRkZLFu2DEdHxz8MM/h/CqbW9nTKOmiXNPWa1t7c2KdJ+X8CAxNzTKzt+e3dZ1HIO3qV0ZVlXqetqQ5zO2ehZM5laODvJXRDhmPp1E8gpAAqcm7j6O2LhYMrSkVnL9+mv4IuQq5Lseg2bBSSuioaK0v+dLmGiiIsH/LachjgQ11xHp0dXc8rmVRC4c1LVN+/h+uwrv0Qa2lj7zUEQzNLCm9cQq1SUXLnKm6+oxGJxdi49af6fjbVBZkETH+sFyEFkF55n1Z5B2KRiNm/bqFF1saBuxe5W1PCZPehqFQqdqefxtnUCisDE8pbGnhq+DTGugxEV0tH8OM5XXCbytYmRIiwNDDml4wLVLU2sX7MDAbZOHOtPB9XM2sG2zijLdbijTO/YGFghJ2xOfMGj+kqs4p8SiA53kk+yKKh49mY9DOGOros+u0zZgwM5F9n9lPeUk+HopOxrt4cWfgaq2O+5Oc75wnvH8Da+N3oamkRtu/fSDtlbL0cTVO7lK+uJeJhYcfCoeNoaG/lhYTv0dHSZunRbeTVVxI1cAQFjdWCefiJnOusHzsDG0NTblYWcq08n3fOHaSgoZq18buxMjBhXfx33K4q4rv009RIm3l+VCQOxhZYGZrwbdSzTPUYRlLBbaLvXcVIR4/1J/fiaGLJM4GhPB//HdcqunxnJu/dTIusjYKGKuJzb7Dnxmm+mfEsLyXuYdPE+XyeGssr42ayIekn6tsl2BtbcLOykE8vR7MzYjUBDh7suBpPXn0FElk7uyJXk1yUyRtn9vPS2ChczazZmRZPdl05bZ0yQrz8UKiULPGZwOun99EqbyfE04/fsi7zXNxuhti4sGXaUrZdOUGgoydLj27jl3kvYaFvTHVrE1YGJjiaWFLaXMfTsV+jLdbiUOYlTuSkM87FG7FIRPjP/8ZC34jS5joWHt7K6ft3eDv5IIWN1ZS01AlKtBppM22dMjae/hlHky7fK0cTS8K9/Hl13Cyk8g62XTlBi6yNdfHf4WPX5dnVLGtjQ9I+LA2MyW+oxMPCDj/7fqhUKuYNHstb534luegug2xcsDQwZm38bi6X5vBZagwn82+xzG8Si4aO57m43QB0KOT8fDsFWyMz3pq0gK2XozlbmIGLqTVr4r7F38GDL8JWYG9swb26Mp6P/46Uokz+PWUx1dImTubfREusxdr43UzoNwQDHV2UahVr43ezbnQkNdJmUooykXZ28FzcbsK8/NgaupwPLvxGdl0Zk92H8qT/FLTEYt6YMI8vrsRRI22mpLmWKkkTmybOR6ZUYKCjx0fBS9HT1kGFigBHDxrbW/ngwhHGOA/E38GdFxL2YKSjx5Qf36JV1oGRjh7vnf+NcS69iXZTWwe0dHTpaG2muaYCS6d+mNs5I22so1PWgbSxjsKbl3D3H4fDgGGY2TrTz28Mne1tFN1KpSo/U+gfqJRK8tPO4ejt95cVOj3kVD/fMdSV5FN44xJlmemUZqZrePH1fOqK89E1MMRpsL9GWbTz4OFdpa0bt2PvNYSiW5dpri7/S9vwR6jMzRBSVf9T2HsNwcLBjfy03iWGfUEmlSCTSjQM3P9T/E+IqX+UUv/gT6FSqVi2bJmQ5pSbm8u3336LoaEh9+7do7CwkNDQUO7cucOcOXMYN24cFRUV1NbWMnLkSPz8/Lh58ybjxo1DIpFoqDDs7OwYOXIksbGxmJqaCma87e3t3LlzRxidpzsRbfjw4Vy4cEFj+7S1tXF1dcXNzQ09PT3UajW3bt2iuLiYyMhIDaLrYY8akUjEuHHjUKvVnDx5koiIiF4dxb46usnJyQQGBmJiYoJKpWLu3LkkJibi6empkQLXs3yPGiQ7O5sjR44QGBjYK2XLy8uL+vp6cnJyCA0NpaOjA6lUSltbG21tbUilUpydnVm2bBlGRkbcvn27T2+avpCWlkZFRQWjRo1i9OjRQqMxfvx4Yb99fHy4f/8+MTEx2NjYMHr0aEQiUS8z9AcRGhrK6NGjeeKJJ4iPj8fa2prQ0FDhGGdlZdHa2iqoOHrOwZEjR5g3bx46OjoCYWNtbS0oOkpKSgQ/MW9vbzw9Pbl27Rr5+fkaCYc9kMvl1NTUUF1djYWFBaGhoSxcuJCtW7f+oVmgt7c39+7dw9bWFhMTk0cqnKysrGhra+Py5cuMHj1a2DaRSISrqythYWHU19dz+fJlSkpKBPJApVJRXl7O1atXBc8rtVqNVCplwYIFJCYm/um5CwsL49tvv+3TP6oHa9asISoq6pE+MGq1mvDwcBITEx9p8P7FF19gZmaGpaUlvr6+GufM0NCQ9vZ2UlNTGTNmDKWlpVy/fh1PT0+hnO727dsMGzYMGxsbTp8+3WeJ4sPJkQ8/vHruk8zMTI4dO0ZycjJPP/30I1MSVSqVoCDs6xq9ceMGNTU1jySs6CaIe5LGFAoFFhYWhISE8Ouvv7Jo0SLhWs7JydEoa+wpYRwwYADHjh1jwoQJve7p4uJiDSLJwMCAOXPmcOPGDWJjYxGLxUIoRmVlJffv3+/TK+nAgQMsXbpUKMPT0dFh6NCh2NvbC4lxeXl5VFRUaJRvAowYMUJQNPagoaGBU6dOsXz5cuzt7WltbWXBggV0dHRw8uRJamtrmTJlCsOHD+ett94SEgAfNLb/B/+dWLhwIbW1tWzevJmqqir8/PxITEwUjMpLSko0noFfffUVcrm8V9nrW2+9xdtvvw3Aa6+9hlQq5amnnqKpqYnx48eTmJj4P/KdUioUGkqd/wmcBweQn3YOz8BJwn2uUin/to/Hw5A21tFQXiSMjotEv4+0u/xJKtKfQanoRCHrEFRHDv19KLxxCX1j079lMKuQyzSILidvP6rys6grycfatbd3Xg/amuqxdvHs9Xs/v7Gc+GwDjt5+6Ogb0M9vrLCfyk45Yq2udw5TGwcMTM35ZnUI4xY/R3m38a9arebM7g+x9xrS52j/6uHTCHT04lZVIeb6RmyeuAA9bW0eHzYRBxMLFh3eymvjZvG470Q6VUpEwInc64R5+bM2fjefhS5n4+l9fDxtGQn5N/GwsGehz3hqpM18HLKMzJpSRjn3p7S5judGhlMpaWLzuQN8GPw42yNWodWtsOhQdLLmxDfsjFgtJOW9MWEe/a26ShYNtHX595TFyJUKdkSs4kpZLs+PiuDxI1+wPWIVT48IwcXMmgAHDwx1dNHV6vK+0tXSprq1CTWwM2I1X10/SbhXAKfv3+bZwFB87FxZFRCMQqXEQt+Y9Yk/sC18JS5m1rx+eh8hnr6sS/ieX+e/TGFjNSGefqSW5fBJyBNYGBjx9IgQBlo5MtDaiX+nHGbtyAiUKiWLf/uMLdOW8cml4ywYMhZPS3sCnfrz5fSn+dfp/SwZFsSWaUsBEQY6uqwbFYmOWJsxLgNp75STUnQXMz1DHhs2ERtDU7ZMW0qnSkVE/wDEiGiRtdHUoc8TfpNZG7+bXZGrGWzjzBR3H0x0DVgT9y0H5q3ni7AVpJbmsCFpHzsjVgtJbFsuHuPjkGW8fe5XtncriPS1dfCxc+OVsTP55NJxBtm48O8pSzDTM+TlsTOplDTy8sm97IxYzSun9rJp4gJsjcx4bdwsVCoVzwaGoqelg5ZYC2NdfX6avY6ylnr0tXWY6jGMCkkDIZ6+vJb0E8+NjKC5Q8pnYU/iaGxBjbQZZ1MrGtpbWRf/Hc+NDAdEDLF1Ydmx7WwYP5vU0hxeHD0dsUjEtvCVNLa3sjV0OXVtLXwa8gRzfv2Yl8fOIDo7jXlDxvLWpIVdXlUXj/JJ6HKW+U4i2GOYkCj5Xsph4h5/k62hy6GblMquK0OuVNDc0car42cLbc3bkxfR2N7Ki4l7+DxsBduunGDLtKUoVCq2XTnB+jEzKG2ux9bItNtzTYvPU2P5JOQJ1o+Zgbm+MYNtXMioLibIbQg7I1aTW18hqMJ+y0rlsWETqC1pobq1ibeTD7JvzgvYGpkRuu9dtoWv5IMLv/H2pIV8f+M0mybOp7ylniNZV9g9Yw1Xy3LZGrqcpUe38dKYKN6bshiFSsXGoLlYG5lS1FTL4QWvkFFdwqVSTWI659IpfKbOYu8Lcwlf916XN143WbRn7Qymr9+CV2DXe4yFoxuld69hYm2HlYsHVi4etEuaKb59hewL8dQV5+EXtuA/UhaJxGKsXb0ozbiGolOOk7ff31I6dRmvj0etUlFTmI3H8CBqi3IpvnMVV5+R//HzQfU3SwkfBUMzCzwDJ1GSkdal0n3E80CtVlOaeR3PwEl9Tv87MLN1pKW2EjPb/4zc+oeU+gd/Ce+99x5KpZKbN2+Sm5vLK6+8wqFDh/D29iY/P5/CwkKam5sJCgri5MmTjBs3jtzcXGJjY5k+fTpSqZSzZ8/2WdZjaWmJWCxm0qRJQmdfX1+fYcOGaZQiRUdHo1KpGDNmjAaxpVAoKCkp4dKlS3R0dBAZGclnn33GihUrepEMfaWy1dfXc+nSJYyNjYmJiRFivx/2pepBRkYG5ubmvTwywsLCuHTpEq2trY9U53h7e+Pl5cXcuXMZMmRIr1QttVrNiy++iJOTE9bW1hgaGmJkZIShoSEWFhYYGRmxZcsWKioqOHXqFGq1GldXV4YOHdpnA3jt2jXKy8sJDAzU8IS6du0agYGBaGlpCelqdJe0eXh4UFNTQ0xMDMbGxpiZmTFs2DBaWlrIyMigpaVF+K8eXyFzc3PGjx/fqxTp4Wh4gNjYWMLDw4WSwb5YdVdXV0GRdO/ePWJjY5kxYwa//PILSUlJvebX0dHB1tYWV1dX/P39OXDgAMbGxtTX12uov7S0tPD29sbFxQWRSISnpydxcXFkZ2drjPqr1WrKy8vJy8sTyKTm5maWLFlCVlYW4eHhvY53WloaYWFhuLu7c+7cOSZPnoxYLMbFxUXjWmlsbCQxMZEXXniBIUOG/Kn5ekxMDB0dHRpkzsP47LPPEIlEj5zn1q1b7N+/n4CAgD5TxAoKCnj33XdpaWlh5MiR3Llzh8bGRmEfjYyMMDU15cyZM9TW1uLi4iKQUT0oKysTwgPEYnEvr6Xq6mpMTEw0UtG0tbWFsswe1NTUUFRUxP3799m+fbtQQtsX5s6dy5tvvklycvLvZTLd2/z4449z6dKlPywxk0gkxMTEMH/+fHR1dbl27RpeXl6C8ismJka4LpRKpQbxdf/+fe7cucOWLVsQiUTcvXuXoKCgXtdFX/elk5MThYWFzJs3j71792Jvb4+joyP+/v69ynyPHj1Kamoq7u7uArEgl8vJzMzk5s2bAKxbt47Q0FDefffdXv/l7OxMenq6UI6XnZ1NYWEhCxcuRCQSoa+vT1BQECdOnEBfX58JEyYgEomYPXs2gYGBfP/991y4cIGqqirefPPNXqEc/+C/D2vXrn1kuV5ycrLG9x6z+z+CSCTi3Xff7fP6+k/RWF6IpbP7X5jzr8FlaCCld68Jkd6PKul7FBRyGXUl+cjafleIGZpb4TTIX+io9BjI2np4U5CWjJvfGHT0/jNiriwzHechmkrZfv5jyb96Fs+Rk/5SWeOjRqTtvQZTV5z3t48BQG1JHoZmVlg6uqGrb6jRftUW5wvlNW3NjVTk3mbS8pcR6+jiNDigq6RGpWL8krW01FWh7JSja2AkjNQb6+qzOz0JDws7MmpKcDO3QabsxFzfkJcS9/Dz3Bf5V9BcXM1tyK4t41DmZX6as44n/acgVyl4bNgEFGoVq4dPo1Ol5F9BcxnlPIBV0bu4U13MzojVfHLpuODB9Fnocr5NT2LTxPkEOHgQuu9dnhsZ3mXqbdjVmW+Vy/gk5Ansjc1ZenQbcwaN5qNpS7sUJvIODt69xIqAqey/c55Z3iPZGrqcgoYq7I0t0NfSIfjHt9kVuZrsunK2Xo7m87AVTPHwwVTPAH0dXdIrChjvOog71cXMGTSaxLybzPAO5GjWFQbbuvDB1MfIrCnlhYTviXvsTXLqylg3KpJbVYV8dOEor4ydSW59JaZ6hrx6KoGtoctRqFVMcBvMMt9J1LVLeC/lMBuD5rIh6SfenryIs/fvsGZkOJP3bmLD+Nks959MP3NbLpVk42PnyptnfuGNCfOwN7Hg9dP7mDNoNHMGj2Hf7RQCHNwpbKrhk0vH2T/3JSL6D0dXS5ucunL6WzowzM6NbeErMdDWY+bAkey6loCpniFbpi2lpLmOmJw0Fg4dz/oxM+hUKfksdDk6Wtq8P/Ux1Go1RxdtIOqXD9gwfjZH713Bw8KOXzIuMH/IWFzNrNlz4zSvjZ9NP3MbJLJ2toWvxN/BHW2xFiq1GjM9Q4bYutLY3sobZ35hZ8Rq0srziMtN590pizhbmEFy0V22h69i09kDvDdlCZsnLkDcXZ442MaZRb99xvtTl1DV2kSnUsHr42fjaGLJwbuXGO7owePDJmJlaEJxUy22Rma0yNrZePpnRjr1Z6b3SN5JPsTTI0J4b+oSDHX0eH5UBO0KOc/Hf8cPs57npTFRXCvPY+6gMSQX3aW/lUO3V9gSXkzYwxKfIL68lsjGoDl8GPw4dkbmvJDwPdvCV3I8+yqzvUcxxMaZ6xUFHF20gRppM1Pch1IjbeHn2ym8M3kRWbWlfBLyBGUtdTwXt7tLaRW6HJFIxK2qQtwtbNl09gDfz3yOSyXZVEub8LK054uwFVgYGJPf0OX7dre6BH97d+Iee5Nf717A2tCUHd1eU4uGjqdTpWL+4LGY6BnQ39KhW6Uo57sbp5k3ZAzrx8xgmL0bX6SewNHEguLmWobZ9SO/vhJXM2veTTmEj60rGTW/qze1dHRRKjoZOWcFZnZOggdUD8Ekk0oE4/G+3p/0jUwQa2lh1U2qq1RK/pOiudqiXNolTXiOnIS+iSkqpeIvk1Klmek4DPARyKOewA2bfgOQt0u5f/08dl5D/ra/krSx7j/yBXwURCIRbsNG0VhZQuGNi7j5jum1j+X3buA0KOB/NMjSAzM7Z0oy0v4hpf7B/1l89913FBUVcfDgQVpbW4UUpbKyMvbu3YuRkRE//vijxjIDBgzA1taWX3/9FR0dHXR1dTEyMiI7O1vjRVhHRwdfX1++/PJLzM3NBQ+VvhARESEoGHpuIG1tbTw8PLC1tSUmJoYjR44wc+ZMLl26RHNzMy4uLoIXxoOkVEVFBdevX8fS0pKoqChEIhGJiYmEhYVRXl7Ob7/9RlBQkNARVKvVVFZWUlNTo6GYeBDjxo3jzp07nD9/Xiihebjjff36dTZt2kRlZWUvEiEtLY3y8nLOnz/PxIkTezUS165dY+TIkWRmZgrESHFxsUDmOTg4oFaruXbtGmVlZQQGBmok8vWgpqZGIKmGDBnC3bt3NdRhtra2zJw5E4lEgo2NDfv27cPR0ZGhQ4dqEIJqtRqFQkFERASxsbEMGDBAI03O2NhYw3Q3JSWFYcOGYW7+e5S2iYkJLS0tfXrr9EAul/P111+jp6f3h+QM3SWKQUFB3Lhxg2HDhmmY9ioUCnJycjQUStOnT2fLli0av4lEIpycnBg9erRAopw4cYL09HS0tbX7bLx7ri17e3sKCgooLi7u5UuUlZVFUVERCxcuxNLSktTUVGbPnv1IxVvPcfH19eXKlSuCkvBB9Hi6WVtbU15eLiQgPoiSkhIWL16sYZ7eg/LycvLz8wUTdi0trV7/I5FIOHnyJG+//XavEr6+EBwcTFxcHDNmzBB+u3jxYi8/q4EDB5KTk4ObmxuXLl1CqVRia2tLREQEKpWKsrIy7t+/r2E+34PU1FQyMzO5e/dur2uiurqavXv3cuvWLTw9PftUUVVWVnL58mWWLFkinM/6+npBUWRkZERAQIDGvUx3itupU6fo168fc+bM4eTJk4SFhdHQ0EBMTAzm5uYCsfMgcnNzhbI9Ozs7Zs+eTWJiouDp1Zca7OrVq/j5+eHo6Mjly5eFtkhXV1cgviUSCR9++CGGhoYUFhZy/fp1YXkTExP8/PwIDAxk9+7dDB8+HLFY3EvFZmVlxdChQ/Hw8BB8AsViMXV1dVy7do3Zs2fzwQcf/ENI/YP/NbS1NP5HCT+Pgp6hMYamFjRVlWJu74K8TfpIrxC1Wk1LbSXN1b8r/7R0dLF28UTPyOSR/9FUUYKFo1tXIl3gRIpupWLl6vm30/3aJc3o6Bugpa3p5SgSiejnP46iG5fweIR5+4P4o8Qoa7f+NFYUU5596y/5iqhUSopvpWLh1I8BY6biMjSQ5poKCq6fx8nbD31jU2RtEnQNjSnLSkck1sKrexTe0duP+9fO4zlyEqWZ13HzHUNFzm3MbB01Skda5R2Y6xtxp7qYITYuNHW0sfNqPNsiVvLLvJf49noSr42fRU5dBa5m1nw1/SkS827iZWnP1kvR+Ni5oSvW5nDmZZ4fFSGoaEY4ejLWxRsXMyu2R6zi00vR/DR7HXXtEib2G0KHopOYnGucXLqZrNoy1o4MRyLv4NVTP3YlASYfFhQmjiYW3K0p5vXT+5jpPZLnR0Ww/uRetkesYv6hT/kibAWxOdeYP2QsFgbGPDMiFH8HD0QiMW9PWoiWWExGdQkDrBz55NJxYpZs5G51CetGT0cib+eLKyfQ09ahRtrMMJEbr535iZ/nvshQO1fuVBex8fTPvDFhHjl15WwPX4mhrh6fXo5m/Zgo+ls68GLiHjaMn82lkmy+vJbImxPm8+q4WTS0S9gYNBd7Y3OknTJEwEBrJ3S1tInJvsa60ZGcL87Ey9Kef09dzKroL3l57Exil/yL2JxruJlZs+3KCbws7XE2teJfQXPJrS/nneRDvD91CeH9A3A1sybqlw/YFbmaPTfPcLHkHqeWvUVqaQ6bzx5g08QFyBUKhtq6oiUSUSFpJDH/Jsv9JvPGmf2sHzMDPS0dprr7MMt7JLZGZijVKl4dN4vPUmNY6T+VjJoSodTx05AnKGmu5XZVIWsCw5DI2lgd8yXSThmfhT3Je1OW4GJmTYdCzhBbF4Y7eiJXKlkzMpyUoky+nP40O6/GM8ZlIHZGZtytKWGxTxBLfIKwNTIn2GMYxrr66Ii1SC3LRU9bh/WJP/DGhHm8duondkSs4vn47/gk5Am2ha/kekU+nSolRxa+Rm59BclFdzmZf4vFPkGsDgjmo+Cl/HjrbFd1hFib4uZavrhygg+mPsb28FW4mdvwYXMthjq6GOno0dguZfO5A/wraC7vTF5Ei6yNm5WFDLFxpbK1iS0XjwnG4dvCV5JeUYCNkSnNHW3suBqPlaEpQ2ycWeY7CTsjc/6dcpjVw6dRLumqMNESiclvqKSkuZYvryWyM2I1+++cRyQSsTIgmFXRXwrr3xGxipuVhVgbmpJceBczfSOmuPuQVHCLTqUSbbEWH188xprAcEz1DDi2aAMpRVnMGTyar6+dZJnvRPIbqpjkPpT6NgmOJpb8eOsc1oYmGoQUgK6+AboGRviGLqD4diom1g40V5WiVCpwHjICe8/BNNdUcD/9Qi+D8+r72bQ11eM8OAADUwuMzK0pvnMVl8HD/7DtfhBKRSfFt1KxdPEQgh0cBgyjIvsWLkN795ceRm1xHkbmVo8kj3QNjPAMnEhlXgbN1WV/y9epriQf12Gj/vL8fxUWDq7dJugXsXX3xsS6612ypa4KHT0DDEzM/nQdfwX/U2Lrv85T6vz580RFReHo6IhIJOL48eN/ukxycjIBAQHo6enh5eXF3r17e82za9cu+vXrh76+voYHxz/4aygqKmLy5Ml0dnYKpttBQUG4uroyYsQIJkyY0GeHxdzcnNDQUMEbJSkpSSAWwsLCCAsLY+rUqeTm5vLEE09AtwLhYfQY+YpEIqZNm9ZLLVNWVkZSUhKLFi3C2NgYkUjEhAkTiIqKwtLSkpiYGBISEpBIJBQVFREdHU15eTkzZsxg/PjxiEQi6urqBGWWk5MT8+bNEwgMR0dH8vPzuXz58iMJqR4MGzYMZ2dngSgyMTERzNfPnDmDmZkZI0aMQE9PT1Dh9KCqqgpHR8c+97G1tZWamhrc3d0FjyW6zfd7ouDt7e1ZvXo1165dY/jw4X2qcJqbmzEx+b3x9vDweGRJV0pKCsXFxWhrazNu3LheBtg9JVsikYgZM2bQ2trKmTNnhOlGRkaCUurOnTuYmZn18hPq8TN6GBKJhCNHjgjlkf369WPChAlER0c/8tgrFAqqqqpwcnISSvMehLa2NkOGDBH8zsaPH8/ChQsZOHCg8Ft4eDhhYWH4+PgIhJRcLkdLS4uAgABu377da4Q6KytLI4ls3LhxXL16FYVCIfx2+vRpZDIZERER1NXVYWNjw4wZM4iNjX3k/ly+fJlx48bh6upKfX19L9UZ3QbMw4cPZ/To0Vy9erXX9MrKSuzs7LpSi7pNsXtQV1fH9evXBVJn4sSJpKSk9FqHiYkJWlpatLa2cuTIkV7Ti4uLNby2tLS0MDU1Fcpvb968ib+/v8YDq729nby8PF588UVu3LjB1KlTiYyMJDAwUFBZOTk5oVAoeqWJlZaW0tnZiYeHBzY2Nr0Uh2lpaURERBAVFcWvv/6q4elFdwLl7du3mTt37h8qm1xdXTEyMhI8rs6ePSsYf/v7+2v4TFlaWjJz5kyGDRtGTEwM0dHR3Lx5k7i4OOLj4xGJRMJ9OmLECMTdppAhISG0t7f3KkuuqamhtbUVDw8P9PX1kclkvY67Wq3mxIkTzJ8/H7rvpZ52tecavnHjBrdu3WLjxo3I5fI+Tfp7ztGWLVuQyWSEh4ezZs0aVq1ahVQqJSoqisrKv+938w/+wf+T6CJiSpC3S4UyMwBZWyvl2bcEj5DSu9e6SvAe8Hxy8vb7005Na2MtRt0j312pfOOQNtZRXZD1t7azMvcODgOG9TlNR08fW8/BlN+7+afrkdRX/yEhZuHohomVHSUZmu+7srZWjRLB1sY6CtMv4uIzEnO7398ZzGwd8RgeRH1pAaV3r9PaUMP96+exdu2v0dHS1tHFxSeQlB8/o0PSjLSxFrGWFgc3rey1TQqVkgMZFzDRM8De2JxvZ6xhVfSX3Ki4z83K+5Q11/NS4h6is69R1lLPp5ejUarUrBkZxhBbV2RKBS+NicLWyJyvo56hRtrMgqHjCHDwYGX0LhLybrDMbxI10mbWJ/6Am5kNcqWCXWkJ5DdU8lLiHs4XZzHE1pWNQXPREWvxaehyqqVNjHX1RqlWUyNt4ZOQJwhyHYShrj4bxs/GQt+IlQHBNHUbN9+rLePTS8eZPWgUKUWZKJQKjHX1+TXjAs+NDGOC22DCvPypa5Nw9N4V3j73K1Pch7ErcjVDbFy4V1uGGtg0cT610hbWxX+HrZEZOyNWM9DKkd+yUilprqNTqWTTxPncrLzPi4l7iFmyEQ8LOx73ncjbkxbybsohZIpO1Gq4Vp7PxqSfWTx0PI8d+ZytoctRq2FFwBR0tbRZFRDM3lvnMNTR4/Xxs/G2duJ+YzXfpicJ3kpjXAbyUuIeLpbcQ1dLmy8jn2KorZtAVGyPWIWxrgFRAwP5KHgpmTWlvHXuV96dspjc+gp2TX+Kc4UZfHD+CJ4W9hjp6CGVy/g4ZBkDrB05np3GO1MWk1yUibGuPt7WTryUuIfnAsO5VpFP/ONvUtfWwrdRz6KjpU2ttIWfbifTImunqaONjUFzeH/qYxy/dxVjXX3mH/oEibwdHS1tRu9+HTVqKloa2HblBHpa2sweNAovS3uMdPUZ7TwQkUiEiZ4BG0/vo5+5LV+knmBdwvc86T+FWYNGsXDoOGyNzfhg6mPIlQp2Rqzm89RYJLJ29t1OobylnkpJIxtP/8wY54H8MOt55g4azceXjrPrWgLjXQcx23sUxc21SGTt7IxYTX8rB366nUxRUw1fRj6FGnhs2AQmuQ+hn7ktMqWCdoWcvPpK3p+6BH8Hd36+k8KOiFXoaulwbNEGtMViRjr1Z4LbYCwMjHh38mJsDU0paKjmsWETaOyQ8ubEeYjFYh7zmcArJ/eyzG8S36YnMdl9KJ+GPEGzTMriYUEsGjoOR2ML3p28GKVazTLfSehr6/L0iBBmDxrFY8MmMH3AcOyNzRnn6s0YlwFUSRr595QlvJtyiKYOKVm1ZXx44QhXy3LJrCmhrKWBL68lolbDN9dP0dbZwfWKAhYN7T2g2CGVcO34XlpquhI+k77+N7L2Vuw8BmFq4yD4TPXzH0tlbgbNNeVU5t3lfvoFDM0scA8Yh46+ASqlAi1tbTxHTKQi5zZtzY29/uthNFWXdSfMjdFo67S0dVA+8L7+KEjqqunsaOvlx9cXHPr7YOnoRv61ZDpaW/50/p4wnf8NxVJf0NbRxTNwItKmesrv3USlVFJbmPO31bR/BpFI9B/7Sv3XkVJSqRRfX1927dr1l+YvLCwkMjKSyZMnc+vWLV588UVWrVql4b9y8OBB1q9fz1tvvcWNGzfw9fUlNDSUmpqa/4N78n8XRCIRXl5ePP7440gkEhoaGli7dq1gJL1ixQrOnDmj0WmuqKjg+PHj3Llzh7i4OAICArCyssLd3b3XTdfTCR0zZgwZGRm9EvQe9HmytrbG0tJSUB3cuXNHiIoXi8UYGBhodEJdXV2ZMWMGQUFBREVF8d133wlGxw8iMzOTIUOGaPw2YcIExo4dy6VLlxgwYECvkiW6k4YeJpc8PDwIDAzk0KFDGBkZCWVC/fv3F8iLSZMmaZRSFBQU4OnZJUe1srLC2tqa7Ozfa7ETExMFhYOzszPl5X0b6h0+fJg1a9bQ0NBAbGwsZ86c0TCevnTpkmDi3gNdXd1end4zZ87g6+uLnZ0dDg4Off5fWVmZRmnaiBEjGDx4ML/++isymUxYb0lJCQ0NDX1GiD/c4Var1Zw7d47Lly8ze/ZshgwZIjTW1tbWjBkz5pFETlJSkkCw9O/fn4KCgj7n44EkyOXLlzNkyBCuXLnyyHmTk5OZPHkydKfZPUi80U2k9py7HvQQTjKZjIMHD+Lj4yOoW8rKynB2dkZPTw9fX98+ySS6SbYeFVWPJ9TDqKqqEqLae/zbHkSPuo7u67mH/JBIJJw9e1ZDzfQo8qOgoAAPDw+MjIyYPHkyJ06c0Jj+sNKOboKrxxy9uLgYDw8POjo6OHPmDPHx8aSmpjJ27FhefPFFJk6cqFHCl5KSIqiTJk+eTEpKivCQk8vlpKamCtNHjx5NamqqsGx7ezt6enqIRCIMDAxYtGgRMTExAml+8+ZNampq+jQN7wsBAQE8+eST7N+/H39/f8LCwgTlVW5urpDG1wMLCwuCgoKIi4vj2rVr9O/fn4iIiF5ecw9i+PDhuLq6cvz4cdRqNSqVinPnzmkQ4H29qMTExAgqT3t7eyoqKjSm96Q4Njc3c+TIEQYNGkR0dDSpqaka5Y4JCQmMHTsWX19fpkyZwv79+zl27BgVFRXMmzePQYMGceHChb+UqPYP/sH/m3DzHc2vb65A3tEmkFAN5UXYuntrmNSa2zv/Ry//Dy/j0H8o+ibmFN7sMv3+MzRVlWFu98f/bWxhjZ6xKfWlvQfo/i5MbRywcvHsMiXvvufrSvKF0pfKvLu01FTgGTixTx8TkUiEo7cf8nYpF/Ztw9KpH/rGXarmBzsezTXlGJlbo29ihraePiKRCD0jk15qsHGu3nwRtgIPCzteSPiexvZWdkas5lTBbZ4eEYJCpWTLtKXMHjSK987/xschywjvH0Bdm4Stl6Mx0tGjrVPG6pgvkSsVHMi4wPmiLJ6K/Yo3J8xnhf8U3ks5jEzZlUSmr60DqPk26lnSK+7zetAcwvoHcL4oEysDY1459SNKlYp3kg9RJWlkQ9JPaInEbL0cjVyp4JnYrzHXN2Lp0W2kVxTQ2NHK2lERjHEZyNpREdRIm9l4+meulOXiam5DgIMnhY01XC3LY4STF48f+YLw/gF8FLyUn26f498ph2nskDLMvh8qtRoLfSNkik62hi5HImtn87kDtMjaWeY7CR0tbdRqNSXNdQzsTjX7LTO12+hbzL/O7Of9qUvYfjWOwTbO+Du482xgKMMdPdkWvpJT+bd48+wvmOkZ8fa5g+y/c57Pwp7kfFEWM71H0djRSlt3sh9AUsFtdqcn8UXYCs4XZ6Gjpc25orvcqS7Cy8qBDUk/oS0S88Sx7UjlHciVCjoUcj4NeQIvyy7i5Vp5HjXSZsolDRjq6uHv4IG+tg47rsbTJu/AwcSce7WlbDz9MxeK71Hd2sQop/4o1Spkik7SyvK6j1ErG0//zLwhY/hu5nPsuBqPm7kNn185wY3KAtLK8xCLRAyyccbbusvI/rmR4cgUnRjp6nNy6WZqpS2Y6Bpw6O4liptqKWupI6++ggvF91jmO5kaaTMfTVvK9vCVFDRUsS7+Ozwt7fnscgxXy/NolXewNn43r4ydwbF7V4he/Dpmeoa0KWTMHzwWAx097tWW8vrpfUzqN5RXxs5ESyzGTN+IcS4DkSk72Xj6ZyokjdyoLKC+TUJ+QxUvn9yLXKkgMe8mr42bReSA4XyRegJXM2uei9uNXKng+VER3G+sZnXMl1RKGvk8NZadafFYGZqw9XI0ifk3UKiUvH56H7eqCnnjzH7KWxp4+9yvpJXnsTFoLoY6eohFIkqb6ziRe53o7Gu0dLRRLmngqdiv6FDI+enWOS6W3CO720i9U6ngy2uJlLXU81TsV9gamXG9ooCPLx3HzdyGnRGrqZE2c744kx0Rq5ApOlnkM57zxZm8PHYmYpGItyYtJK0sj6+mP81A695lXGY2jujoG6Ktq4+ekQnGFta0NTeiUioxtrBB2tg1yCgWa+EwwAe1SkX0Ry/iMMAHEys7YT1d5XZdlQvuAeOpLcpBUl/d6/962qqSjDQ629vwGB7Uq12iW03UUFH8yLa0s6OdupI8HAf69ppmYGLeJylmYGqB54iJ1HaXU/8R6orz/lfVw31B0SlHW0+P1sZavn0qVAjJ+N+EhaMbjeV/bgvQF/7rSKnw8HDee++9Pjv/feHrr7/G3d2drVu3MmjQINauXcu8efP4/PPPhXk+++wzVq9ezZNPPsngwYP5+uuvMTQ0ZM+ePf8H9+T/Lrz11lscOHCAhIQEZs2aRUdHBzdv3qSxsVFgdufNm0dMTAyZmZlER0dTVlbGzJkzmTRpEmKxmIkTJ2JkZERCQoLGy8yDCiUe6MyrHnjBk0qlGl4rI0aM4O7du8K6eggDutU5D5sF5+fnk5SURHZ2Nk899RT5+flER0drdOLa29s1PHAaGhpISEjgwoULaGtr88wzz5CQkEBsbKxG+aGnp2ef6i4bGxsiIyPZt28fmzdvFhQvPdDV1aWzs1M4FllZWRqkWEBAALm5uUilUkH59GDZlIGBAW1tbRr/efXqVaH0ys/Pj6ioKEaPHs2ZM2c4ceIEeXl5qFSqXuVMEyZM4Pz588L3ixcvangh9aXCeRQT7uDgwNy5cwV/LolEwo0bN3oZMPeF/Px8jhw5wrBhwzQM0xsaGoRrxNbWlhEjRhAXF6exbENDA/r6+hqeRX2RbT2Ijo5mxowZAuGqUCj69FdRq9XIZDLB1NfCwgK1Wk1TU1fak0Kh6LOcTU9Pj4aGBkaNGsXcuXOF0iu6r/me1EQPDw/a2tqoqqrSWL6qqkpjGbFYjK+vrwbpJJfLNcgcDw8PioqKhHtHJpMJBA3dHQxjY2Mh+XD+/Pm9OkdDhw4lIyND47c7d+4IflHW1tYMGzaMs2fPaszTl+LIycmJr776Cm1tbeLj47l06RJjx44lIiKCKVOmYGBggJeXl0Aw9xxvpVKpsV8hISGcOnVKOG8PPh96fJF6iOgHEz7pVm0tWLCAy5cvs3nzZsRi8SP94h5ERUUFMTExxMXF8dRTTzFjxgyNa4s+fKZ6jlVaWho7d+7k+eefp6OjQ0gBfRgPHjM3NzemTp3KgQMHOHz4MJGRkRrzPny/Xb58GR8fH6FdHD58OOnp6Rrz5Ofnc/78eRYtWoS1tTV2dnbMnDkTDw8PYmJiOHPmDGfOnGHQoEHY29ujVqupr69HpVJx69Yt7OzsSEhIYPr06dy6dQuZTPZI0/l/8A/+Kh5W6vxvoa25gaJbl3EeHIC+salAQDn0H/ofez/9FZjZOuI8KID8a8l/mnTUWFH0l7y0rF086WhtRtpY1+f0jtYW9Az/WrmKkbkVjgOHUXAtGbVK1WVYLhZTcC0FYwsbHAf2rdoCaG2o5f718zgPGU7kSx+iVqu5n34BebuUjtZm9I1NKbqViq6+IYGznkDZ2YmJlR2KTjkuQ0egVGqqD07m3+LFxD0MtHZiV+RqZMpO1sbv5gm/SRy9d4UPLxwhLjedlKJMVgUE88ml42w+d4BxLt58GvIE1oYm6GnpsDIgGFM9A6YPHIG1oQm7IlfzYuIe7taUsD18JZ4W9ryUuIdOlYptV+JoV8gpaa7jy7QE6tsk7EyLx87YnC3TltIia2NnxGo6VUp2z1iDWCxi3ahIPr8Sy4bxs/nh5hk+Cl5KkFtXB2594g9YGBiTXVtGhaSR7RGreCYwjO1X4ihvqaewsZrDmZfRFmvx3pQl1LVJuFaRh56WDn727ihVSqwMTNDT0mb9ya7KDrFIjEyp4KvpT1PXLsHV3IZvr5/iUmk2P946R420mbfPHWSgtRMfhyzDwcSSFf5TGO08gPGug1CqVRzIuICTqSWT927m2L2rBLkN5qPgpXx5LYGPQ5axfuwMChoq+fr6SdIrCnjt1E+IRSI+uniUmrYWsmpLyW+owtbIjM/DViBTdAr74WvvztzBY9ifcZ5dkatxt7Bl87kDtHfKSa+8T3zeDaIXb+Rw5mX87N15bmQ4KUV3OXbvKiKRiMn9hoJIhIOxJQ3tUj4NeYLIAcNp6mjjyYCpGOroca08HydTK3ZGrEZHS5uBVo5svRTD2rjdnHnibVRqFY/5BDHcwZMN4+dgqKvHpokLWH5sO5YGxnhbO2FpYMyTx3eQU1dOQ7uE10/v60o0NDJlkU8QVgYmrB8bRbtCRmLeTYqba1mX8D1SeQevjpuFpYEJzwaGMdp5AJPdh/Li6Onoa+vSrpBT2drEp5ejkSk6aWiXUClpwNbIjPVjZqBQKXEyteKd5ENk15UT4ulHrbSF3TPXUClpYP/clzDTN8JQR49t4SvpUHSy5+YZvkk/xUcXjvLWpAXYGJkR7OFLp0rJ/YZq3M1teWfyIpKLMlk/dibTPH25XJLN48MmoVCpMNTtWpeOljY7IlYh7ZTx5fSnCfXy47PUGPIbKlEolajUahrapTwzIpQB1o5YGpjw2rhZ2BiZkd9QxRKfIAZYObJuVCRisZhVAcHYGZvzhN9k7I0tCO8fwM6I1VRKGlkbvxs7Y3O8LB3YdPYAOlrabEjax3K/KWy9HM33N05jb2xOeP8AsmpLeT7+u15tSlbKCUbMWIaOvgGtDTUMn7GMfr6juZ9+nnZJM3S/71Tk3KYyNwPv8WHMeO0zGsoKqci5LaxHpVRq+CO5+Y6mubqsVwJee0sjBdeSsfMcLJTr9QUzOydaair6nKZWqSi6dZl+fmP7nG7p7E5Ded8VJyKRCJchwzE0s6LgWgqdst7vggDSpvq/7UH1KHTK2qktyu2VJFhdkIWBiTmmNo4ELX2B5upySjLS/tKAyl+FiZUdkob/TPTzX0dK/V2kpqYSHBys8VtoaKgwci6Xy0lPT9eYRywWExwcrDG6/jBkMhktLS0an/8v4+233+aTTz4hPDyc27dvExUVxY4dOxgwYAAzZ84kMTGRpKQksrKyePnllwVj7Yc7qoMGDWLkyJEcPHhQIAuuXr3KqFG/19D2lILFxMQ8cnvKy8uRy+W88sorNDc3a3TYHiSl1Go1p0+fpqmpidmzZ+Pm5kZ5eTljx45l5syZlJeXEx0dLZARdXV1xMfHC+bXISEhQlncc889x6BBg4iKikIikXDixAni4uIwMDCgtLQUhUJBdnY2iYmJwufChQu4urpia2vLlStXOHfuHHK5XNjW0aNHc+XKFRobGzV8lnowffp0vvnmG2pra3F313yRDQoK0ij5KS0t7WW+3nM8QkJCMDMz48svv+T7778nPj6e9PR0gbwwMDAQOs3p6emYmJj0UoD0eE/14O7du/j49B1b2hNnf+7cORYsWIC+vj4nT57U+Jw6dYrk5GQuX75MWloa77//PhKJhHnz5mmQlDykIqOb+OpJlerBw2QEfZBtPbhw4QIBAQEaROf48eNJT0/vRfRdvHixF4kRHBzM6dOn4YESux40NTVx4sQJTpw4gbW1NZ9++qlQ/tWDh1Mge9RAD5rOP5yYRrf6q6SkRDhXFy9e7KV6e3DbHj4marUaMzMzbG1tGTduXJ+j9e7u7hrk3N27d3spCF1dXXF0dOTq1as0NDRoJPUpFAquX79OQkICdXV1PP/888hkMsaPH8/UqVN7ETve3t4aisCH2wO6y4AtLCz4/vvvGTt2rAZh1XP8zp07h0qlQqFQaAQcZGdnEx8fz/+Pvf+Oiupe1LjxzzSGjvReRBBQKQqKDQVUOvaWmGo01fScmB5PclJOemLiSWK6MTF2pWNBEDsINpDee+8wTHn/APZxhBhz7r2/997fm2ct15KZPbP37P599lPEYjFOTk7U1dVpHaNnzpwRzu8KhYLjx48TFxdHXV0dsbGxzJ49m4kTJ7J8+XIOHDjwu2SsRqMRbHoREREC6ezj40NsbCxHjx79XUXcCFpbW5HL5bzyyiuCPXcEurq6wnYvLi5GJBLh6uoqvD+yLUeW79SpUzQ3NwtKqhvJc2tra2JjY6mvr+f9998nPz+f5ORknn/+eU6cOME999zDm2++ibm5OV9++SUPPvigYBHMy/tzVqW/8BduRktViaDU+e+Aoq+XsouZdDTWMn7aXCZMD0aub0hr9diDhP8EykHFLRueZLp6uM0Ioa7wCu0NY7dU1hfnYeV6+0+m7b2mUl+Sh1Ix+sFKU3kBVuM9bvu75AZGOPvOpOh8Gu31QxYWl6lzhGyRGzGiTB6x7E2YPl/I5zKzd2H81Dk0lORzZvdX1Fy/hO1EbyGs2NzRlYrL5+huaRxqcxrjfHmXz3xCf3iNhMJsHIzNeS/sHuQSGY/OiOTFoBVEuk8j3H0qX5xP4qWglcRODOBiXSlmekas3fsR+jI5hwvOs+18Mj9fSielJJdz1UVsCV6Ds4kVVxorSa+4xoE7XqC+u43Q8d58eSGFLkUf9/mFMqhWMdnSkbv3f0pbfw8vHdtJx0APTyd/x4BykOdTf6Kio4mHAsIxlusx12kSeU1VXKwtxcfahdfmr8bTwp7t2UeRD2c2XagpYpajB5Otndjov4gtIWt5PvVHUkpyyazM53x1Ec7jrIie6I9Ko2H3tVO4mdvy95C1WBuO4+nk7zhSconm3k62pO3CztCUTYGRuJvZsmvVs3x78SibZkTy+flE9uWd5dfLJ1k5eTZfZqVwl+983s3cz/1TQ/GwsOetBXcy02EiP+Qe562MvUS5+9Pc28njid+gL9Pls8gHUKiVHL/vDUDEphlR9Cj6eXlYaZZVW8LTyd8xw96dL6I3sj/vLMY6uriZ2bLUM5ALNcXcf/Bz4te9jL2xGQYyOQPKQXLqy2jp7aKqo5nCllrM9IyYYGaNWqPBw8IeU11DLtWXsSVtF0dLL/PLlZPsunKSHZdOoFKrsDc2o0fRz7+ykjlTWUDURH/C3Py4ezivKKEwm3czD6AjkdI72M+GQ9to7e3i/bB7OVddyOOJ3zDR3I6PIu5HrdFga2TGp5EPIBGLeStjL1b6xmw58RsH888z08GD2U6eDKqUvDp/Ff3DBFxjTwfl7U0E2LmxPfsIE8xs2HxkB2ET/Pj7id9IvOsV8pqqWOw5g0/OxtOnVNCvGuSV47/Qo+jnnYV3MX6cFTVdrXyZlUJBcw3vZh4QrKPdij62pO3CzdyWxR4zCJvgxx3ec3nx6M94WTqwxHM6NZ0tHMg/x78upNDa141CNUivoh89qQ6TrBwx1zdkzZQ5vHz0F7JrS0gqushrx3+lsaed4pY6Hk/8hk0zoogryEJPJqe0rQErA2NSSnK4c+/HuJvb4mRiyaBaySeR6ylpa6CsvZHs2hIGVUpeOraTAZWS7NoSVvz2Hm193XQM9NLY08FH4ffRoxggu7aE1+YP3RPE3fkSnQO9bF/8CPf5hZJUdJFPzsYT7DKFe3xHP4yevvQ+ejtaqM7Lpr+7Ez0jEyQyHdxmhNBUUcil1L2UZZ/E1M4ZJ+8ZqFVKpDo62HtNZZyN47AdrgO1Uqll0wZwmORPb0eroHiqL75Ga005bjNCfjdj8EZIdXTGJI3KLmbiMnX27za6SqQy1Kpb2/+MLKwZ7z+Xmvwcmqu0XRzKQcWY6q0/gqKvh4bSfKquXtD611xRjKG5lZY6eMSmrhzoH1KXTZ2DXN9wqPk159R/6/XyP8X/+aDzm9UEDN9wd3Z20tfXR1tbGyqVasxpbhwI3Yx33nmHv//97/9jy/1/De+++y4WFhZs2rSJjo4OCgsLUavVXLx4kf379xMREUF5eTmGhoYEBQVRUFBAZWXlmMHM5ubmrFy5kgMHDggD6puVJoaGhvj4+HDq1CmtAf9IZbm1tTVr1qzBxMSEyZMnc+jQIWxtbQkMDMTQ0JC2tja6urpISEhgwYIFQuPYzfakEQvfnj17WL16NRkZGURERGgtz4gNbcqUKRw6dIgJEybg7e2Nt7c3arWajIwMIiMjSUpKYuLEiYSFhWl9/vz586xduxYzMzO6u7s5ceIECoVCCHVvbm7m1KlTREVFwTDhdvXqVYEwOn78OI6Ojhw/fpz58+cLygwdHR0tgis7O1urQQ6gqamJs2fPIhaLmT17Ns7OznR3dzNp0iTq6upISUlBo9Egk8kYN24cycnJjBs3Dn9/7VYghkOp9+3bx+TJkxGJRFRWVo5SczA8sM/IyKC/vx99fX22bt3K3LlzR7WKqdVqBgcHUSgUFBcXj7kfjKCtrQ0zM+1QQXt7e1QqlRA6PXHixFEky40D+REUFBSgq6s7KoQcYOnSpezevVsrSH+seYtEInx8fLh06RKdnZ2YmJiQk5NDVVUV48aNIyoqCrFYTGJiIgsXLuTs2bNj2kNvRGxsLPHx8VpB5GORRiOh8suXL6e3txcDA23FwUheWFdXFwqFArlcTllZmUCM+fn5kZCQQFtbG1evXkVHR4egoCCtencjIyM6OjowMTERrLE3w9PTk+zsbL7++mtCQkJISkqCYWWSr6+vQKglJyezcOFCTp48SVdXFxMmTBilthmxwOrq6tLY2DjqvJGbm0tDQwNbt27F3t5eUHK5ubkxYcIEZDIZKpWKjIwM5s6dS3l5uUCgenh4CPupRCIZZdtrb2/nypUrJCUlkZqaSlpamtY6zczMFIidqKioMcPiR0jqiIgILYJuBFKplJiYGCorK9m7dy/z58/XakFsaGjg9OnTODk5ERISws6dO3F2dmb//v14e3vj7u7O5MmTuXbtGu7u7ly7dm3UMoxs29zcXCoqKvDx8dEirWxtbQUiubm5maNHj7JkyRJ2796NUqkkNjYWADs7O4HsbW1tZdWqVWRmZjJ16lTOnTtHZWXlqPn+hb/wZ6BUDPy3KJdUykGqr2Ujlspw8RsaMAz0dCHXNxqq+r6Wja6RyX9Lm1FLVSnmf6BwEolEOPvOpKH0OnWFV7Cd+O+HNmqViv7udmzc/pzScPy0OZScP4FbYKjW9UCtVv+p+vK+zjYaywuR6ehyfNc7RD31NrXX/6261Wg0SKQy9MeZ01pThqK/93fDg0ViMTZukyk6dxyNWjXKlpL06ctMi74TE+vRpRsMt/C9vWAd/nYTCN/xBp9FPsCmxO1sCVmLWC7ixaM/88r8oQDvv5/4jTdC1vL2yX0krHuZfy66m5K2eh6fEY1cKkMukSIWiUAk4onEb/g8aiNlbY0cLb2Et5UzLuOsyG+q5qlZMejL5Ny9/1P+EXond/sFIxNL6Vcq+DhiPYNqJVtC1sJwzpO1wTg2JQ61mn2Xc4y3F6zD29qZtr5ubI1MCf7+VSZbOTKgUnKuuhAfa2d2XzvF5rnLeDzxG3RlOizzCqS6s5XiljrWes+lvL2RT8/Gc59fCItcfYn6+R98GvkAj8R/yT8X3YOlvjGdA73sWP4kd+//lM+iNvBE4jdsi34QS31jvCwdeTggnPM1RTiYmHO9uYZfr2Qy29GTx2ZE0dLbycIft5By92tk1ZYw33kygQ4T+fxcEmumzGGZZyAOxma8mb4Hc30jZGIJm4/8xEfh9/HxmTgeCgjnleO/8GnkA7y78G7255/lq6xUnp29BGtDU9bt+5i/zVnKYs8ZLPOaSWZFHu9mHuDzqI1sStzOM7MWU9LWgK2RKTPs3fG0sMfacBzWBias2fMh7yy8i7v9gnl4ejjJxblEuk/jrn0fsyV4La+n7eK14NXszz/LIwERFLXWca66kMaeDiZZOpJQlM2aKXNYP20BvYMKdKU6fBa1gabeTl4+tpOflj3BD8seJ/aXt7nDO4iugT5OVeazavIcvjifxLboB3EeZ8n3SzfR2NNBUWsdX2el8vbCu9h97TRPz4rlmdmLqels4cPTh3AysWDHpXSmWDnxRugdDKqVrJo0m4yKPH69ksmKSbPZGrVhyMI4qOCzqA1kVuYL+97Ts2KZYuXEgfxz3D81lN5BBdsXP0p7fw+vBa+hprOFHZdOsGLSLMbp6gvWzK+zU1no6ssjMyKo7WzBeZwlhS21Q0Hjpw7yYfh9PJawnefnLGVz0DJEiJgKeJjbM8HMhheP/sy2mIcYUA5y/9RQXk/bxWLP6XhaOjCgHGS6nRtGOnp8djWBzMp8tkU/yP68M9gZmfHs7CWoNWreWrAOXamMNVPm8KB8EXoyHTYe/hcvz1vJnqKLTLV1ZZ3PPB5P/IY7vOeiL9PhpWM7eS/sHl469jNfL34E53GWXGmo4KdLJ0Yd/5dS9xKy/m+kfP46c+54TCvzTq1SolYqMbSwRs9o6EG9anAQiXTogYC+iRkTAuZTk3+RqqsXsHB2RznQz+BAH4MD/SgV/agGFdTk55B1+CeWvfw59l5jt6GPhbECz2uu52Ll6oVMrnfLz94OxGIJLn6zaKutoOxiJk4+M5FIpUPXi1soVvu7O2mrq2Cwf8gRMHItkOnqY2rrdNsh74q+Hlpryhk/bWhc3VxZjIWzO67+QbTVVVKalYH9pGm3ReDd+neKRynZbgf/50mp/ym8+OKLPPPMM8LfnZ2dY6pQ/r+CF154genTp6Orq8uiRYuYNm0a3377LevXryc5OZne3l5ycnJYtmwZKSkphISEUFpayv79+5k/f75Ws9rAwACFhYUYGRkxe/ZsgoODkUgk6Ovr4+rqip2dHWKxGFdXVxobG8nPz0cmk3HixAl6enqIjo7WaiszNzdn6dKl1NTUcODAAczNzSksLKSiokKoPf89qNVqEhMTcXV1FSyHXV1dWoHeN7ZvWVhY0NjYiJWVFQwfeL29vbS1tZGQkICTk9MoYmUkpJ1hsi0sLEx4PTU1lePHj/PJJ58Iweh2dnYsXLhQIJ+kUimhoaH09vaSlJSERCIhNDQUuVzOhAkTKCkpQSwWCwHiGo2G8+fP09jYiKWlJTExMcI6aGxsFCyKtra2QhaRQqHg66+/5vHHHycxMZGzZ8/i7+8/SpEyd+7cMTOpGCZ7ioqKBJJDT0+P+Ph4Hn30UQ4cOMCKFSu0pheLxcjlcuRyOebm5kRHR5Ofn8/BgweJiYn53Ua6G+Hk5ERhYSEzZ84cMyydYUtbaWkprq6utLa2UlJSIhCAN2OEtEhMTCQ6OpqcnJwxc7AYbpfcvHkzPT09aDQa/Pz8hMyomzFz5kxOnjxJQUEBHh5jP93W19fHy8vrd5VqI5DJZHh4eJCZmTmmuo7hPKfly5ezcuVKEhIScHZ2JiYmRnj/2rVrTJkyBT8/PwYGBsjMzKS/vx9ra2v8/f0JCgoiOTlZsEreiPr6ei5fviyEuL/44oscOHBgFCF6IyQSiaDYKi4uJi4uDj09PSFLaiRg3dPTUzjPKpVKTpw4QV9fH76+vvj5+aGjoyNkhmk0GoqLiwVitbW1VbD+uri4EB0dfVuZMePGjUMqlbJy5UoCAwO1CKkb86kATExM8PX15eTJk3h7e2NiYkJBQQGFhYWsWbNm1LF/s6rKyckJR0dH0tPTUSgUtLW1cfDgQaysrFi6dCkikYgLFy7g6uqKhYUFy5cv5/Lly+zfv58FCxbQ0NBAQUEBd9xxh/CdnZ2dlJaW0tDQgEajITIykt27d1NTU4OxsbFgExWLxcKDhObmZuHcaGxsjKurq1D+MdKO6ezszMcff4ynpyfnzp3jyy+//MN1+Rf+wv8voFGrqbmei2pQgcOkaVoKpqaKImzdh/LtHCf7U3zhBOP9Zt9S5XQ7GOjpRNfQ8zamBGtXT7paGijNPonL1NmIxRKq87JxmDT6Yc8fQSyW4Ow7k4pLZwTriPo2GlA1Gg0tlcX0tA9l6ekajcNxSgAalYqwR19Ho1bj5KtN/isHFfR2tFKRexbvRctHqRCE6RQDlOeeJuT+56gtuISZg6vQ3lR55TxLXviEjoYaVIODmNq50FarbYvXlcp46dhOHpsRya8rn+F6czWJd73CriuZ+Nm48NaCdRjq6OIyzpIFrt6MN7Xmi+iNfHD6EL7WLhy+foGnZsXydPJ3PBEYzVdZKXwc+QBPzozG0sCYqInT8LVxobKjid3XTvPeonuGMp9MLHh29mLsjc25/+BW/jZnKflN1VS0N9LY08nCCT5suZzBZ1Eb+Fvqj3wd+wh13W38bc5SvCwdWLbrn6yaNJsgZy+enhWLg7E5u6+dZvWUOfx69SSrJw8Fri+c4IuuVEa421TK2hpY6OqDjeE4uhX9vBl6ByJEdA/285PXE5yuKmD74kc5WnqZQHt3nkr+ju+XPs5jMyLRl+nwedRG3s08wMMBYWw+8hMRblOJcp9Ge38P8QVZwxZIJVvSdvGP0Dt5bvYSGrrbefnYTj6NfICazlaWes7gs7PxvB68hszK67wevIbarlY6B/r4MPw+VBoNyyfNEuZnJNfjg1MHeS14NbOXPcFnZ+OxNzLl08gHsDYcx4OHt7F57nImWzmxJXgNWbXF/D1kLaa6BqzzmYeBTJe3MvbyZugd7M87S5DzJD6P2oiXpQMLfnydtxbcyY5LJ5BLpDwcEI6eTIcZDu6IRWIUKiWDahVKtYqFrr7oSCToSGSIRPBYwnb+uehuPj+fxJOB0ajUaqRiCZ9FbeDlYzvZ6B/GS0Er0JXpIBVL8LebgJ5Uh48j7ufg9fM8mvA1W6M28P6pg7y1YB2vBa+ma6APf1tXSlrref/UQdLuewMHY3P+lvoTn0U+wHhTa2J/eZt/hA5ld32/dNPQvnjqID7WLnydncrfQ9ZS1taAt7UzziaWLJ80k25FHwtcfTDVM8RAJudvqT/yWeQDXG2s5MfcNA7d8SJPzozmm4tH8bZ2Jr+pGhO5Pn+bsxQRoCfV4evsI3wa+QAV7Y2Y6xvxWdQGOvt7eXX+Kk5VXqdjoBcdiRR9qQ6hrj5oNGrW+cxDpVbxdPJ3bAlZyz8X3Y1cIuWxhO28FLSCfuUg75zcz6vzV3Gv31Bu2deLH6VjoJduRT8vHN3B+qkLOJB/jnG6+jw5M4a3M/Zx+M4XKW9vws/GBXczW1xNbXhl/irMdA2o6mhmW8xDNPZ08Hn0g1ysLWXbhWRenreStxas4+VjO7WOf7uJQ+VIix55DY1GjZ2HL1KdobzKkqwMYp97n6bKoiHCxMkNlVJbpSoSiZDIdGirq6Cx7DrGFjbo6Omjb2KGTK6LWCpDrVKx8KGXkUilWqSXvrEpZg6uv0uW3Bx43lJVOpR7ZWY55vRjnXdv577T1M4ZY0tbKnJPY+bgilo5iEQqo6+zjba6ylHqWLmBMeYOrv8l27tGrabi0lncAkPHXiZbJ8bZOFKTfxEQYe819bZ+y1iwcHKjubIIq/G3d80cwf95UsrGxmZUM1NDQwPGxsbo6ekhkUiQSCRjTmNj8/utJSOD5b8wBAsLC8RiMevXr8fJyYl33nmHOXPmsH//fvr7+zl8+DCrV6/W+swIwTRv3jzuuusuwSIjl8uZOHEikydP5sMPP0SlUhEeHk5vby9lZWXk5eUJKiGNRsOsWbN45JFHeOONN4QB1liwt7dn2bJl/Pzzz2zatIkDBw4IpMJYN3CVlZWcPXuWyMhIjIyMaGpqIjY2lri4OHx8fASSp7+/X7AczZ49W0spMaJUMjExYdmyZezatYs1a9ZoESq/d5IaN24cMpmM6Oho7OzshGa2G61HN37eyMiImJgYFAqFYAMcCZNWKpVCALVGo2HGjBmjLFAMB8qPpeRIT08nODiYpKQkod4+PT1dCEi3srLCz88Pa2trzp49y9WrV/Hy8qKvr4+MjAwGBweZOHGiFvGhVqsRiUSIxWKmTJnC5cuX8fEZ/SSgpqZGIMe8vLwEgtDPz29UePgIBgYGBDWWm5sbv/zyC4ODg1qNh4GBgejo6DB58mTi4+NxcnIiJSWFtWvXjvmdIzA1NcXV1ZXs7Gyqq6uZOnUqarWa4uJiSktLhe2h0Wjo6ekhICAAW1vbUaR1TU0Ndnb/DnkMCgoiLS3tlmTbxIkTOXLkCFeuXOG+++5DoVDQ2tpKS0sLra2t9PT0CPtSREQEu3btEkiZEYhEIqRSKQqFAiMjI/z8/LC3135i7ePjw5UrV5g6dSpyuVwI1K6rqyMxMRGNRkNNTQ0dHR0olUqtjCkbGxtCQkIEwjIpKUlQ0S1dunRUxtLNcHNzw83Njd7eXo4dO4ZCocDf35+BgQFyc3OZO3cucXFxSKVS5s2bN0oJduPvdHd3x93dnfPnz6NUKtm6dSv9/f1Ce+vt4MyZMxgYGODj44ORkZGWou348eMCiTwCFxcXWltb2bVrF7a2tujo6Agqo9tBeXk5vb29NDQ0sH79euE4GUFzc7MWEejj44O3tzfHjh0jOjqaPXv2aBV5jJBKvr6+ZGRkkJGRgampKS4uLly/fp2srCxh2rvuuotTp06N+k3u7u6cPHmSqqoqjh49ilqtZv/+/QwMDGBvb8/69et5/PHHsbKy+qsg5C/8l/CftvKMoKEkj96ONuw8fcd8mqtSDmoNYFynBVGSlY7bjJD/sVajsWBkPvSkv/RCBlaunoglUmHg9Weho2eAmb0LdUVXsXWfQmNZAZYuox9uDA700VCSh2pwEEQizB0njArObW+qw9xxAirlIE0VRVje8L5UpoORmRVTo+/AcXIA1XnZiMRi7L2mCetONaig9GImbjOCEYnF2Hn6UZqVwYTp86kvzsPY0pZxNo70d3dgaus8ipACyKjIY+WkWUS5+xNfeIF/XUhhW/SDFLfW4W83gUFVHzWdLTyZ9C3boh8k9pe3eX7OUhyNLdCVynh4ejhNPR38vOIpartaeWX+Kkpb63EwtmDNng95dvYSDuSfZZ3PPDwt7KntbuOD04d4d+HdxBVcGA5TvwddqYzy9kYUahXrfOahJ9Phs8gHyG+qYvmkmdR3t/N62i7eWXgX9x/8nM+iNiATS6jrasPaYBzPpvzAPxfdg0qtYvOcZey4dAIbw3E8HBBGeXsTl+rLeefkPrZFP8gj8V/x6PRI9uWf4UH/Rbx7cj+fRKzny6wUnEws+OVyBv52E/gieiOX6suY6+TFpoTthLp6M9txaFs/P2cpRnI9Hor7klfnr2K510weS9jOh+H38faCdbx87BfeCF3LPQc+418xDzHVdjyvHf+VIOdJPDw9HKVazY+5adgamvLC0R18FvkAH52J47nZS/j0bDwfR6znX1nJ2BqacYd3EC8d3ckr81chlUhBJGJv3hlWeM0k1mM6cqmM51J+5LEZkdR3t3OloWLIFmnlRFNvJ19Eb6RbMcD9U0OZYuVE6I+v88r8VXwUfh86Ehnu5rYY6ujy3qmDfBr5AL2KASQiEeNNrdGT6dA10McLR3ewJXgNW078wLaYh/jnonvQl+lgpmeIVCzhqeTveGvBOt7O2Mur81dR392Oq5k9PYp+vryQwr1+IWxK3M5nURuwMzJl04wocurK8LV24dmUH5hgZsMUKyekYgkBdhP4IOxe7jnwGRNMbXg9eDWFLXU8kfQtrwevRiaR8OTMGDoH+ngy6Vs+j9rItaZKfl7xFB39PbyetovPojbwyvFfeC/sHs5UFnDg+jnu8Q0msSibxLteGVZ9OfBxxHpKWuvYdfUUW4LXoiuT8X3Ocd5acCf+dhOI2PEmH0Xcz1sL1tE10Ee/cpDD1y9wvOwK7ua2jNM1IMYjgF7FABo06El1+PRcAjPs3ehW9DNOV5/3w+7FSK7Hw3Ff8lnUBp6dvRgHk6Hx012+83km5Xs+Cr+fp5L/xdaoDaSVXWGOoyfvLLwLiVjM323X0tLbiVKtYpKVI2VtjTyZ9C3vh91LZUcTLxzdwQ/LHie3roym3k4UKhUfnTmMt5UTD08P54W5y+hXKngrYy+OxuZUdf67nb2u6ArB9z9Le301Vq6eFJ8/gfuMEBrLC7F0mYhILMbKxYOG0nxaq8sQicVIh5W1HQ01tFSVYOM+hYjH/0FtwSVM7bRdDy1VpRhb2tLd2oiFk5vWe70drdRcz0WjHorKEEukWDi5CeUNDBNGrbUVyPUM6Otqx2HStNs6Tw+FtDf/IYGlGlTQ0VRHT2sjUrkuZ/dup7Vm6HfqGZti6TLxv0WVdTPKc4cebNx8HbxxjCoSiXCY5M9AbzdlFzMxsx/POJvRLe5/BD1jUxrLC//05/7Pk1KzZs0SBqIjOHLkCLNmzYJhi5O/vz/Hjh0TnuSr1WqOHTvGpk2b/l9Z5v+LWLRoEcuXL2fDhg089NBDhIaGMnHiRNrb25k5cybx8fFjqgQyMjLYunUrnZ2dLFq0SOv95ORkwsLCGBgY4Pjx4yxYsIApU6ZotXidOnWKL774AiMjI+rq6m5JSjFsN7G0tGTPnj1ERkZSV1dHamrqkNRdLGbatKGTy5EjRzAwMNAi0kQikZBnlZ6eTnt7O6amplrh5CKRCH19faEt8Pjx44SGDrHOenp6rFixgl27drF27dpbkg8lJSXk5OSwYMECTE1NUalUhIaGkpiYiKOjo7CcN853BCNqkRHrYGxsLHfeeSdmZmZERkbekhQYWe4RDA4OcuDAAYKDg7GyshIa9szMzLRy2BoaGjh27BhqtRqVSoW3tzdxcXGUlpYSEhIyikhj2LY40vrm4eHBgQMH8PLyGqW+ysnJ0bIByuVyVqxYQVZWFsnJyYIyBqCoqIjr16+jo6PDvHnzBLKwoqICT09PPD2HWPmOjg6BVBOJRDQ1NbFnzx4WLVpESUkJDQ0NdHV1IRKJ+PTTT8dcV3fccQdz5sxBR0cHsViMm5vbKGvmSH5QeXk5+/btY+7cuYJV+PLly6OsYiEhIRw+fJj3338fbjFAu//++wXCw8zMTGit1NPTE/aFuLg4ent7mT59+ih74ci2jYiI4OzZs2RlZREeHi5Y9GxtbUdlFo28Hh0dzcWLF3nttdeorq7m8uXLwvn0Zoxkj4wfPx4bGxt2797NokWL/vA4ZVgZFhERgUaj4eLFi3z11VckJCSQnp5OdHT0HyoBAFpaWjh+/LiQYTeyv6SlpaFSqVi4cOEtB6KnT5/G2NhYOOdMmDCBuLg4Jk+ejFKpFKytN6/Xjo4OHnnkET766CMhL43hY9POzg47OzvBRtnc3Ex2djYqlQqRSISLiwuRkZGkpKRQVVUlnPtGMHIeuhG9vb00NTWxdetWlEolwcHBWnZLhhVT/f39hIeHs3//fry8vLTIrcHBQb788kshwPxmctrLy4t58+axc+dOFi9ezKlTpwTr4N69e3n++ef59ttv/3Cb/IW/cCt0tTRoNSjdLlqry2hvqMba1etPVViLJRIcJ/tTeeU8zj6jH9T8T0KqI2f8tDl8+1gsYY++TtXVC9oPEMQS9AyN0TUaJ+Sq/B6MLe3o7+6kvb6Kgd4uYRDV2VRHW12lMD8bd+8xW/RG0NPahI37FCRSGTX5OfS0t2Aw7t8Zjq215ZjaOSMSi3GcMl0YnJhY26NWqSjJysBtRghi8dB9hkgkwnaiNzlJv2Hn4SNkSxmaWlJ09tiYy3CxrpTVk+fQ2NNOsMsU3M1s+TIrhQC7CShUSrac+I39azezee4y3j91kPfD7qWsrYHJVo5Ud7bQO6jgs3MJfBG9keeHFS0fnj7Mq/NXsTVqA72DA6yZMpfU4lyWeM6ga6CPN0PvoL67jViP6Rjq6PJm+m7eDL2TtLIrbPBfhJOJJY/Gf8ULc5dxvroIiVjClYZKvl+6iZy6Mv4espbNqT+xJWQNb6Tv5qdlT/BxxHrO1xTy65VMPo/aSHZdKXd4B3Ho+gU+OnOYhHWvsCV4Dca6+nwQdi+DajWh471xMLbgk4j1dCv6mWhuR7ein0dnRLAlbRd/D1nLJ2fj+XvIWv4espZxegbsupKJkVyPxxO/EciKN9P38GboHXwSsR6xSMSzx37g8cAoNBp4PXg11xqreCT+K85ufJeMijx+yj3B44FRbJ67DH2ZDk/OHHqAeJfvfEx09fk69hH6lQoemLZwKLTbyJx1PvMw0zNkqecMlGoVfYMDyCQS/G0noC+TEz1xGoY6cpKLc9i++FFAw4tHf2aarSsqjYYpVo5E73yLjyLuZ2vUBgx19Dh4/RyzHDyIdJuGr814Hp0egUqjZlCtQiKWkFF+jen2bgQ6uBPm5kevYoAflj3O9eYaPjp9mHcX3Y1Go8He2Iwdy5+kobudV+atQqXR8Gb6Hj6JWE9rXzcOJhZMsXbik4j1dPT3IBKJmWTlSFtfN07jLIn1mI6uTIerDZX0KRVcqi/n7ZP7+Cr2YTTAw3Ff8sq8lTwzazEnyq4hFYtRaTTYGpryScR6bI1M2ZS4HU8LB55M+pYvojeS11TNkzNj2HUlk9WT5zDLyQOlSsUj08M5UnKZ19J+5eOI9ZyuvM6Z6gKemhnDpsTt/CvmId5ZeBcvHv2ZF+Yu4+OI9UMh+Mnf8+7Cu/GzGY+xrj4vz18pvPZM8vc8HBBOS18Xe66d5t2Fd6NQKanoaKKlt4uvslJ5LXg1r81fTfdAHxoN5DdVsfVcIo4mFjw9K5Z/ZaXwWdQGXMZZcaryOiHjvXku8UdenreSLlEfb6bv4bslm5hu50a/cpB/LrqHXVdOssjNj48j1nO9uYbvco7xZuidPJn0Lan3vM6Vhgo2JXzD/VNDaOkbamO/kZBiOFPqemYKvmErEYnFjPebzbW0wxhZ2GDt+m9ljbWrF3VFV+luacBqvCdlFzMxsrTFNWCeMM0IuTQCRV8P3a2NOPvOpLu1cZQoQN/ETMvOrRpU0FxVQmPZv+N8jMytaa0uRSSWMOGGef0Rxtk6UZOfg6GZJWqViq6WBrqa61CrtJdRItPB2NIWh0n+9LQ3MyV0CWKJBBMrewz+m4LOb0Z98TXMHccj09Umu4wtbelqrsPYUrslUa5viKt/EC3VpZRdzMRhcsD/aFnICP7XBZ13d3eTm5srDJjKysrIzc0VcixefPFF7rnnHmH6hx9+mNLSUp5//nmuX7/Otm3b2L17N08//bQwzTPPPMP27dv58ccfyc/P55FHHqGnp4f777///4Vf+H8Tv/76Kx0dHXzxxResX7+exYsXs3//fiwtLYUspYSEBOGGq7u7m927d+Pv709gYKBW9hE32MgMDQ0xNzdHrVbT1vbvOk21Ws2BAwews7MjNDSUoKAgNBqN0MA1AqlUKqh5Rt4PCwsT8n5sbW2JiIggKiqKRYsWUVlZyb333ouBgQGzZ/+7ReFmcmD+/PmIxWIWLFiglcvCDaHKSqUSpVKpNTjU1dVl1apV7Nq1S1iuG6FQKDh48CDt7e2sXLlSa2Aok8lYsmQJxsbG7Nmzh46Of7dQ3Izy8nKSkpLo6enh888/Z9q0aXR1dZGcnExJScmo6UfQ29srEDlNTU2C7WrEjvh7JIm1tTVhYWG4u7sPVT0PZwD19/dTVVU15meam5u1cnOioqKE3KERjFwwxiIOAgICmDVrFr/88gsvvPAC8fHxQvZNeHi4VmD2zU2EJiYmLFq0iKioKMLDw0lMTOTOO++koKAAAG9vb8LDwwkPD+fJJ58U/j/yz9fXly1btrBkyRImTpxIeHg4EyZM+F17louLCytWrKCoqIjExESB0BCJRPT09JCenk5SUhJJSUkYGxsjl8sJDAwkIiJi1D9/f3/i4uKQy+WEhITg6+uLg4MD+vr6wnqqqanB3t6eVatWceLEiVuqV2bOnEl0dDTHjh0jPT39lkHdmZmZHDp0CAsLC86cOcPPP//M6dOnf3efam5uFvYdPT091q5dS3Z2NpcvX/7d5bkRxcXFJCYmUl9fT0xMDN9//z3d3d0kJibeMlBbo9Fw5MgRLl++zMqVKwVVI8ODpNDQUAICAti7d++oZR/5/ZmZmZiYmGiR4Awr5VpbW0lLSxNaPUeIs/j4eI4fP05AQABxcXHY2toSFhYm7DezZs1CLpdz5coVdu/eTWRkJKWlpSxYsICoqCgiIyPx8hoKOlYoFDg4OGBoaKi1jDdvn9LSUo4cOcKaNWtwd3dn5cqVxMfHU12tHaZ85MgRQQEVHh4+6lx55swZwsPDWbNmDefOndPaRoWFhZw/f562tjYsLS2FHLzr168TFxeHoaEh7733nkAy/4W/8J+io75KIC5uB53N9ZRmn0QsleLqH3TLm3alYmBMNZKuoQkmVnY0lP5+juitoOjrQaarfxtTaqOvq52yi6e4f+tBxBIpjlOmjwqd1R9ngaK3m/qSPK2WpJHA2htfG+jppuRCOrnJv1Fx+RwVl8+hHFTg5D0DZ59A7D39bklIMaIkGw7UtfeaSl3RFVTKf9+rdLc2aZGGI4OT3vZWkj57BZlcj+q8bK1lbKkq4fy+b2ksvS681tvZRnbcjjGX4Z+L7uaFozv4MfcEtV1tvJO5n/kuk5ls5YRcKhtS/mTs5YecNO6dGopCpeSH4Qa6xMKhTJudK57mbHUhv658BrVGw99D1tI7OMDjid+gUqt55+Q+7vEL5qVjO7E1NKVH0U9KcS56MjnfXjzG6slz6Fb0cZfPfN49uZ8eRT+fR21kvKk11Z2tPBwQzvqpoRS01PLZuQQ6+nt5d9HdSERiPot8gLrudj4+E8d0e3e2Rm1AqVaRsO7loQcPplb8c9HdRO/8B1KxhAcOfs715lq6FH3svJxBj6Kfp5KH2r/v8wthz7XTxBdk8+zsJfQrB/kg7F6mWDmxKXE79V1tFLbUDBFxURvoGujj5WM7WTtlKBPmu5zjyKUyPoq4n8KWWk5V5bPtQjIiEdzjG0xWzVDL3iPTw3ko7kvSy6/hPM4KmVjCOyf3Y6FnxN37P6VfNcj7pw6SXVtCr2KAdfs+xs3MlpTiXF48+jP6UjllbY1CA1tpWz16Mjn9ykHeDL2DjYe3CeSdmZ4hTyR+Q1t/D3d4BwHwwpEddA70klKcQ0VHI8WtdfwjfQ9u5raY6RlioqvPoEqJgY4ujT0dPJawnc7+Xh6M+xcV7U14mNvzRGA072Ue4C7f+aza/QFdA31UdbawKXE7VgYmfBKxHoVaiYW+ES8FrWDhj1voUyo4U1XA0ZJLpBbn8POldH65nI5SreL9zIO4mllzIP8sjiYWvBS0ggP55ziYf46PIu7H09KBpKKLeFs7E+Y2lR5FP7pSGV9np5Jefo1/LrqbbkU/n0Ssp2dwgC/OJ+Fqak2U+zReOLoDA5mcl47tJKEwG1cza56bvQQTuT7T7FyFpr9X56/CVM+Q19N28e7Cu5nj5MV3F4+yN+8Mn0Ssp7qzhdK2Bn65nEHXQB+PTo/AwsCIA2s3U9PVSm5dGT8sexxDHV1eS/uVyZYO6Ep1WDFpFiJEbD2XyKWGck5W5DHFyonvl26iqacDOyMzvCzsaentJPaXt/l5xVMo1Sq+jH0Yg+HtOsfJk9L2Brac+A2pWMwLR3YQ6uqDUjVkD3QysWTTjCgGVIM8P2cpWTXFPJvyAx9F3M93Occx1/v9XKKze76m6loWlVfOU1twibN7v6G9vnrU+U850Mex7e9w4eAPuPjNxuIWBRkajYbKy+dxGn74YGhmRfcftMBJZDpYu3oJ52THKdNR9Pdx9Ku3kOrIRwWI3+pfSVY6ad+9P/ybctFo1NhO9B0zbNzI3BpFfy9N5YU4TJqGnYcvdcVXUd9Esv13YKSN8GbiCcDE2oH2+rGLOQDMHVxx9ptFXeFl6gqv/O50Y0EilaEaVNzGlP+GSPNf1VL/N+PEiRPCQOBG3Hvvvfzwww/cd999lJeXc+LECa3PPP300+Tl5eHg4MCrr77Kfffdp/X5zz//nPfff5/6+nr8/Pz47LPPxrQ3/R5Gwoy//vprNm7c+F/8lf83cPHiRSHw+sMPP8TX15ennnqKV155hfHjx2NiYsL169eJiYlBIpHQ0tLC0aNHqa6uZuLEiVpqh4yMDHx9fYWspn379rF8+XKtxqi9e/eyatUq2tvbSUxMZMmSJRgYGFBRUUFvby9eXl40NjaSlpbG0qVLkcvlFBUVIRaLmTBhAomJicyZM0eYR1xc3ChbzUgwtpWVFR0dHYLKqaenh4sXLxIUNHQBbWxsJD09ncbGRnx8fOjq6oJhy9306dNJSUlBKpUSFBQ0pr1IoVCwe/duVq9ezfHjx4mIiCArK4uamhoiIyNHKYtSUlK0FEEjBJuenh59fX2Eh4fT3t7O6dOnUavVuLi4CIPpkQbAqVOnYmpqSn5+vtCyNWKHu3k+165do7q6WmueDKvXblb3ANTW1nLu3DlcXV1RqVRYWFhw5coVoqOjycvLE+Y3bdo07OzsUCgUnDhxYpRNKDs7W7DHMdwwZ29vL9j3bkRNTQ3Z2dnIZDIOHDjA4sWLCQ8PH6VcYVghV1xcPGrQrNFoOHjwID4+PhQUFNDT08PKlSu1SLCb1313dzfJycnMmDGD7u5u6uvrcXBwGJXxNDg4yIkTJ0YpAPv6+ti2bRtvvPEGv/76K/r6+kyfPl3YTwYGBjh16hT19fWsXr16lKIuNTWVkJAQTpw4gb+//5gqqISEBKKiooTfcfjwYQICArTsgmNty6amJk6ePMnkyZMpLS0lIiIClUpFWloafX19zJkzR6v5cOQ7zp07R3d3t5aih+EWQz8/P0EVNIIrV65QU1MjkCM3rt+GhgYh/2vChAl4eXnR0dFBdnY2fX19REZGDtWVl5SQn58PQGBgIJaWlqSkpODu7s7FixcFleGNuHlbMrzPVVVVERUVxYULF/Dx8SEnJwdLS0uBILoRarWahIQE1Go1U6dO5dKlS4hEIqZOnSrYIE+ePMmUKVPQaDRcuHBh1Dzr6uo4c+YMs2bNorq6WihUGEFWVpagqGL4fBgTE4NcLicpKYnIyEgYVnIxbBu++fedOHECQ0NDAgICuHTpEnp6elr7aGZmJm5uboJNPT4+Xstee/XqVSoqKgQV3Ui4fEJCAosWLeLo0aNIJBKef/55Xn75Zbq7u3nwwQcxMTGhtbWV7OzsUYrO/3/G9u3befDBB+no6NDKSPwLf4yR+6f1nx+ivvgaTt5/TG72d3dQV3gFQzOrW9Z434i6oiu3zN2oK7qCwTgLjC1HX29uhdqCy1i6uP8pS0V7fTUdjTWCOqvi0lkcJgcguY2sxN+DWq3i+slk8tMTmLn6Qew8fP+0JbHyynmt9a9SDlKec5oJ0+cPLeflc1qKsu7WRprKizCysKarpYHB/j4mTJ+v1RTVUl2KTK5HZ1MtJtYOGJlbU1twiZ72Fi6l7KG5okhrGe7xDcbRxAITXX1sDU0ZVKn49Fw89/oGk1Z+jdK2ev42Zyk9in5eO76LiRZ2LPWcQVtfN9PsJrB69wd8FHE/KcU5LPaYzmMJ2wkZP4W7fYKp7GxGLpFia2TKoEpJa183XYp+/pG+h9fmr0ZXKqO4tY64wizczGxxNLYgyNkLDQg2sHdO7ufhgHA+PH2Y98LuYVClxMfGhbnfvkS4mx8SkRgDHV1MdQ3JrMzn4enhvHNyH4/PiOKlYzv5JGI9z6X+yFsL7gTAQKaLrkzGlxdSWDlpNhUdjbiZ2VLb1caHpw/xr5iH8LCwJ/SH11jo6ouvjTOVHc2MH2eFrZEZhS01+Fi78Ej8V3y75DGKW+vZn3+WDdMW8saJ3Tw5M5ofc9N4cd5K6rpaMZDpUtBSQ7jbVAqba9GX6eAyzormvi40Gg3nqgs5VnaFRwLC+SorlVWTZ2NpYIJMIgGNBhsjU6o6WnAZZ0llRzMFzTWMN7WitqsNR2ML6rvbCHKexOOJ37DOZx5bzyXy8rwVuJvZsnbvR8Sve5lL9eUkFmbzyIwIfr6UjoOxOa6m1jT1duJoYoFCqURHIuHbnGM4GJuT11TNIwHhaABTXQOqO1tY6OrDvvyzTDCz4XTldS7Vl7PWey4mcn0kYgnTbMdzuqqAAZUSmVjMDzlprJ4yh7cy9vKvmIfoGxygd1DBmeoCvK2d0ZfKMZbr0THQO0TiHP+VbTEP0drXTXFrHV+cT2JLyFoGVUrG6RoIOVBvZuzhycAYGns6GG9qzf78s8xymMhXWancNzWET88m8M2SRxlQDlLS2sBHZw7zRfRGdCQyilpq8bZ25qVjO9k4bRFfZqXw3JwlPJP8Pc/OXsxij+nsvJzBogm+rNr9AU/PisVMzxA7IzMeS/ia2Y6euJvb8nXWEeyMTHlkegSvHP+FrVEbuFBTjK5UBzN9Q365fJLn5yxFT6bDQ3H/wtbQlE2B0VyqL8PB2Bw/2/Hcufdj3gy9g8qOZjwt7OlXKpCKpcjEYsQi8bAd8k6uNlaRU1fKmilzMNDRZfw4KzIrr+Myzoqnk79jx/Inqe9uR6lW8eLRn/k08gF+yDnO/dMWIEbEZCtHlvz6Ds/MWkx6xTXSyv7d2u0TthJLl4no6BngOCUAkUhM8fk0XKfNpepalpCbN4K6wiuolApEYgmK3h70jMdhPWHSvx/QXs/F2tVriEC6lo2Fk5uQb6dWqajJz8FxinYu6q3QVFFEf3cnaNQ4TA647fNrf3cntddzkcp1b+v6plIqKc1K1yqwUCoGqLqaJYSQ/3dA0ddDTX7uLb/z5mvC76Gvs426oqtYOLtjbPH78UcjGOjtprWmDFt3bxR9PXy3ackf3j/9r1NKBQcHC5aQG//98MMPAPzwww9ahNTIZ3JychgYGKCkpGQUIQWwadMmKioqGBgYGLNy/C/8PkxNTXn22Wfp7+8nMDAQjUaDs7Mz586dE7Km8vLyOHfuHCUlJTz33HPIZDItpdDs2bOFAdb58+cJCNA+2EUiEdOmTePHH38kMzOTO+64QxjE6+vr09c31DhgZWXFihUriIuLo7q6GmdnZ8rLy7l27RoODg5aAeVmZma0tGjLRk+fPs3s2bPx9/dn0qRJ/PbbbwwMDNDV1YWRkREajYajR4+Sl5fHqlWr8PHxwc/Pj6ioKKKiovD09OTEiRPU1dURGRlJZmYmycnJpKSkcPr0afLz86mrq0OtVrNmzRp2795NfX09e/bswczMjCVLloxpdbsZIpGI8PBwJk6cSEREBN9++y1XrlwhPDycmJgYgZBqamrC0tJSUG8xTERFR0cTHR1Nf38/CQkJxMfHU1Y2VPeZlpbGwMDAqIH0WGhvb+fAgQNUVlaybNkyfH19qa2txcnJCZlMRm9vL5MmTSImJobo6Gjq6+uJj49n+fLluLu7j/o+f39/srOzBTVIfX29FiGl0Wg4e/YscXFx1NfXExsbS2RkJCtWrGDRokUkJSVx7ty5Ud9rZmZGa2ur1msajYY9e/YQHByMk5MTurq6hIWFsWfPnt9VCymVSg4fPszy5csFQjA0NJS6urpRbZ1jZWQNDAxw5MgRnJyc+OKLLzAxMSE4OFiLuGxpacHCwoIVK1awb9++MZdBJpOxcOFCjh0b2/7ATZbOxYsXc+nSpT9sRrO0tGT58uUMDg6SkpLCxo0bSUlJYfbs2SxevFiLkLoRgYGBeHt7s2vXLrq7u4XXu7u7RxFSDCvRAgIC+O233+jt7RVUfAkJCUJrY0xMjEAKpaWlERwczMyZMzl79iwME1Yj+1VpaSmHDh0iIiKC5ubmUSrDW8Hf35+oqCgSExOpqqpi9+7dWFtbM3HiRCH4Pjs7m2PHjpGSksKRI0dYvHgxBQUFtLW1ERMTQ0xMjFYu14i118zMDDMzMy2lU0lJCZcvX2b58uXY2tpSX18/apnq6uq0CMTFixdz+PBhGN6uI0pRW1tbLUXnjQgODsbQ0JB9+/ZRVFQ0ijSdO3cumZmZMJyLd3NGolKppKmpiS1bttDa2iqEyi9atIjU1FRhOXx8fDA2Nubpp59m0qRJo46zv/AX/jsxONA/VE9dU47L1Dm3TUgBKPp6bxkEa+vuTUtVKYq+3t+dZiwoFf1/ipBqKM2nv7tTi9yx95qq1Xb3n6DqahbOvjOZvuw+zOycKc0+SXdr03/pOyVSGTbuU6jJz9G6Lva0t1CWc4q+znbGT5uDhZMbEqmMCdODKcnK0Ari7WquF+woLVUl9HV1oOjrHQq5HeNa2zXQxw85x1GqVGw49AWdA724jrOmZ3CAYJfJPOQfRkJhNk8mfcdHEffz8ryVNHR38G7mASQiMR9F3M+gSomfzXi6Bvp5d+HdPDo9gg9OH8RMz5AXj/5MQ3cHX2cdYe+1Myz2mM5nURt4I303ulIZZnpG/G3OUvxtJ3CndxCPJ37DtcZKnp4VyzfZR4eteCU8OTOa6s5mHk34mlOV13kv7B7u9g1mqq0rUe7+jDe1Qk8qQ61W42Fuh6meIU8ERtPc18W3Sx5j85EdKNVqNiVup2ugn1mOHvQpB4gvzOaj04cxkQ+1rj0S/xVZtcV8ErGe6In+jNM1oLW3i95BBflNVey4lE5DdztfRG+ksqOJd07uw9lkSIX+7qK7cB5niUQsoamngzfT9yASwdWGSvIaq3gt7VfUaFi5+30shtv9/O0mMM3WleNlV1g5eRaHrp+nd7CfLy8kc7WxinV7P8FAJmfNng+52lhJY08Hzb1dfHE+aahZz8GdNXs+5Lk5S/ju4jEemxHJq8d/pX2glw/D7+NyfTlFLbWY6RvRr1SgL5MLiviLtaXsuXaaqs5mKjuaeTFoBaHjvXl+zlLkUhlbzyWgI5UiFUtIKMrmPr9Qmno6me3kyR3eQbyZvoei1jq6FX3M//5VfG1cMNczRCwS88iMCIzlery1YB29gwO8lbEPQx1dXE2tudpQyemq61ysK+X1tF24mdnwy8pnhprykr9joasPH0esJ7Ewm/15Z2nt6xZsiJMtnTDQ0eXLrBRM9QyI9Qhgx6X0obZIkZgXgpYjFUt4LGE75vqGvBFyBy8e/Zm3Mvai1mgoaqljwXhv5FIZDwaEoSuRsXnuMqInBhBXkMXX2UfIqStjW/SDzHSYyKvHf6Wuq41Hp0cS7jaVcLepvBl6Bw097ZjrG/H2gnWcrirA0sCY0rZ6ytoa2BQYOaSs627nrQV3sSkwmqaeDvxsx/PeqYM0dHfwRfRG5FIZyUUXUarVvHzsFwxkcjYf2cGASskX0Rsx1TXE2cSC98LuIb4wm5eP7qSguZZPz8bT1tdNzMQAPj+XyN9Sf8TOyIw3Q+9gUKXEXN8IpUpJXlMV52uKeGfhXfQODmgRUgCXU/cy2N+LueMEmiuKKLuYibNPIBKZDjK5nta5uSY/Bz1jU+y9pqFWDjJ+2hyMLW0pzzlF03BekaWzO00VRXQ01CDXNxAIKYat2xqN+rbOgxqNhvLcM0hkOjhO9kdH3xBFb/dtfHLoAUrt9VzG+wfdFoml0WgozUrHNWCe1vRSHTmmds7Cb/uvYiTY3GXq2PeQfxZ6xqa4+gfR391Bee7pP1RByfUN//S19n8dKfUX/vehra2NH374ge7ubpYtW0ZMTAw///wz9957L+3t7SQlJaGnp4evry8zZswgKSlJUHocPnyYpqYmpFIpKpWKgYEB6urqcHYeCqYbGBjg5MmTJCUlUVhYyLvvvoulpaXWgXqzNWukKWtk8NfW1kZpaekoguBGImwEI09sGQ5sXrFiBfHx8eTl5dHR0cHevXuZOnWq0BQ2QqKMwMzMjEmTJmFpaUl8fDzh4eFEREQQFhbGlClTMDAwoLGxkbNnz3Ls2DGKioq4//770dPTo7+//7ZDXhUKBSkpKZw/f56EhASMjY0xMDAYlReVnZ2Nv78/IpGI8ePHC4qlEUyaNEkgAHp7e4mIiCA/P5+mpiYqKip+d3l6e3s5fPgwOTk5LF26VFBRKBQKQakUGhrK8ePHhc+MEIsxMTFs3LiRlpYWEhMTSUxM5MqVK8K8RlQYfX19ggVvxLIVHx+Pq6srsbGxwu8agVwuZ/HixdjZ2bFv377ftQ0yrIjbtWsXUVFRmJqaCjZPExMToZ1sJEx/BCNqveXLlyMWi7XI0Pnz59Pc3My1a9eE6RsbG4X8KIYJz9TUVCIjI7G0tGTlypXY2Nho2Vq5gUiUy+WEhoaOsjTeuD5nzJghkDQjKC4uHjMAPjIyksLCQoEgGeviqFarOXPmDGVlZUKOl1qt/sNwcoYJ4dWrV5OWlqa1HsZCW1sbV69excjIiOXLl3PgwAEWLFhAdHQ006dP11q2xsZGzM3NEYvFmJubjyI9RnKYBgYG2LFjB01NTcTHxwv21ht/2+/dEPT29qKrq8tPP/3Ehg0bKCws5Pjx4xQXF6NWq3FycmLevHmCDS8hIYGAgAAhk+xG1NbWapVkTJ8+ndzcXAYHB7l8+TK1tbVahO8IuTmC+vp6rf2GYetuYGCg0DD622+/ERYWxvjxt66gt7S0JC0tTbCHJicnU1dXJ7wfGBjI2bNnhcbMEVXc4cOHMTU15b777uOHH35AKpUyffp0zpw5w9GjR3n11VeJiorCxcWFN998k5aWFn799VfB/voX/sJ/ApVS+butR2qVisor56krvIyzz8z/SAV0O3CZOpuKS2fQqG9vsPJnUXnlPDp6Bti4aedeSXXkqJTK/9ieUZ13EVM7ZyH/Sc/YlAkB8+hubaLi8rnb/j1jrVODcebo6BtSnnMaub4RZRdP0d3ayPgbSMHB/j5kunpIpFLcZgRTlnMKRV/vKGujk08g+958lOJzx2mvq6S5snjU/LwsHVjmNRNdqYwBlRKlWkWQyyTM9Y05V13Ex2fisDcy418xD3Hvgc94LuUHZti78VnkAxS21NI10IeuVId/Zh5ALpUhEolo6O7AQt8YiUjEp5EPIJNIuMcvmHcX3c2GQ1/w29VMPgi7F4lYwgenDyETS/n8fCIdA728u/BuJpjZ4GczHjUaarta6R0coEvRj4OxBRFuUxGLRLx5Yg+d/b28lbGXA/lncTKxZIlnIAq1km5FP1m1JVR1NPOP9D30KxXc6R2EyzgrHgoIQ6NRo1Sr6B1UMMfRE7VGwzsn99HY3cGnkQ+gVKmo6mxh15WTVHU0097fg0qjorarjefnLMPPZjyPJWzH0cSC5+cs5UJNMWqNmscStnOloZIHpi1gnK4B7yy8C32ZHE9Le0x09fko/D4GVSq2Rm1ArVGz+cgOajpb8DC3w9dmPKHjfYYtdEasn7oQDwt71kyZg4WBMR9HrGeylSOHCy4gFUsIdpnMYwlfU9nezD2+wZjqGjDHyZNJlg68tWAd7X097M07w6BaRUpxLsEuk9lwaBvBLpPZdSUTPakOE8ysMdczwt3Mlk/OxtPa28XmIzsYVCmRiMSoNRqkYgkX60q51ljFmeoC3jm5Dx2xlLdP7uWzqA3YGplhqmvIF9EbKW6t5/HEb2jv7+GrrFR6FAOoh9d1jMeQQmbruUTu9QtmpqMHs508eXfh3Sz59V2yaouJmRjA3tV/I7HoIk8nf8ddvvNZ5zOPL84nYqFvTG1XK10DvehIJLy76G6uNFTyfOpPrJw8i+beTj4+E4eZniGHr1/g/bB70ZHI+DIrhb+H3MGTM2Oo627jdFUB52uK0JfpsCVtF2XtjZytKuTLCyl4WNjxwtxlBDpM5O8ndvNVViofhN2LXCpj5+UMDHXkLN/1T/blnWFr1EZy6obu8Q1kcqbbu2NrZEqgw0Qs9Ix5bf5q5jp58vm5BK43V/PB6UPk1JXyZugd6Epl/C31Jwx19HhuzlKM5Xp8FfswurJhokwq49mUH1Fq1LybeYCLdWXc6xfCa8Grqexo5oOwe9GgYZqtK6smz+aj8Psob2/k1eO/YqCjS4TbVKQSKdsuJFPYUsczyd9T29U26tg3srDB0nkiDcXX2P+PTZjZuwgPEmwn+lBXOBQrUHX1AkYWNoyzcRCKhRjOhBo/bS66hiZD56mWRvq7OmitKfvTTW8jGOjtpvjccWwnemM2HJquZ2xKb+fo5b8ZfV0d1BZcvm1CCqA85zROPoFaatMRjLNxoL+7k/7ujjE/+2dQfmnsYPOboWtoTF9X+21/r5WLB45TZlCdd5GG0vz/8nLeiL9Iqb9wW7jvvvvIzs7mzjvvJCcnB11dXV5++WWkUilRUVFYWVlx9uxZZs+ejb6+PnK5nPDwcGJjYykqKuLw4cO0tLSwY8cO7OzshHydU6dO4evrS2RkJFOmTGHXrl2Ym5tz4MABgTS4eVA3gvnz59Pa2sqqVauYN290GN3IkxnVcMhcV1fXKKvdyPJv2LCB9957j+DgYC21yI3EBEBBQQF5eXksXboUQ0NDwdY3Uq3u5OSEr68vQUFB9PX1sXDhQr799lt8fX3R1dUlKSmJxMREsrKyRpEiDJNmcXFxHD16lHnz5rF48WImTZqEt7c3+vr6HD58WOtzNxIKU6dOHTO8mmFVxOXLl6mvr8fd3Z2FCxfS09NDcnKysC3S0tJobGwkKSmJjIwMoqKiCAnRbizKzMwULI5SqRS5XE5PT4/WvMrKynB1dSUgIEBQmJmYmJCUlERCQgK5ubmCEsTa2prDhw9z/vx5wsLCiI2NFTKKfg+Ojo6sWLGC2tpaDh06RH9/P9yQxaNQKNi1axfLli3D0NBQ2D4jMDIyIjo6ehQxFR8fz6JFi4SMsJv3u7lz59LR0TEqL6myspJ9+/bh4uJCbGwsMpmMgYEBdHV1mTBhAoGBgfz2228oh2tmm5ubhSBwS0tLXF1dBeKpvb1dS+3n7OxMS0uL1jouKCgQAt1vxsKFC6mqqhpFHpSWlhIXF0diYiLu7u7ExsYK5QURERGcOHGClJQU4Vj5PYjFYmJjY1GpVMTHx8MNofIj+1FSUhIFBQXMmDGDuXPnkpaWxvjx47l48eKY3zlCmIxAV1dXa71nZWVx9epVVq9ejYWFBdHR0URFRZGbm8vhw4cFEm5gYEBLDVRXV0dCQgIJCQlcu3aNhQsX8uCDD3Lw4EEGBgbw9PRkxowZuLu7Y2lpKZCtI/tRaGgoJiYmHDx4UGu9ZGdnawWIM5zh5OnpSX9/v3B8jCAoKIiMjAzh7/Pnz4+y8zG8X2/ZsoVPPvmENWvW/G7r4AguX77MhQsX2Lp1KxEREURGRhIWFkZ9fb2wHYqKiigtLaWmpoZjx46RlJSEv78/ixcvFh4MWFtb4+joSF5eHqGhoXh6evLyyy+zYcMGqqurOXPmDHfddRf5+fmjsgH/wl/4M2irLcfcQTujUaPRUFtwicor57Cd6IOT94zfJa5uBbVKdVvlCCKRCJepsynLOfWn53HL+atVFF84gYWTO6a2TmNOY+/lR03+2NfoW6Gu6AqGZpZjWiZs3CZh5+FDWc4pIfD8Vvi9B1Fm9uNJ+eJ1Gsuu4zJ1Ntau2tbmzuY6jCyGVM1isQS3GSFUXb1AWc4p5HoGQhZMTd5F/CJWYzRskZy+bHR2a59SwZdZyQDEr3sZY7k+VxsqeeXYTlZPns09fsGkluRiZWDCp5EPsH7aAvKaqtly4jd6FP28nrYLZxNLtkU/iK+1M5uP/ERlRxMFzbVca6xi97VTlAxb3K42VuJnMx5/2wlsPZeIvkzOZ1EbOFddyPdLN1HT2YJcKsNErk/4jjd4dd4q2vq7CXKahAjYkrYLSwNjajpbeGvBnfQMDpBy92tEuk+jsaeD19J+RVcio7WvG28rJ9zMbfl5xVMcLbnMJEtHNiVsx8vCARdTa9LLr3Gi7CozHNy5xy8YWyNTWvu6efHoz1R3tnAg/yz3+AUz0dyOkPHemMj1eWR6BK+l/UpOfSmfR22kpbeb904d5JnZsTgYW/DkzBgWuHqTWHSRL84nkd9UjVgkYseldErbGvjXhRR0hwmO+q42vojeiJu5LWqNhlkOE4ne+Q8i3KbyVsZefsg9zgRTa7ytndlw6Asu1BThaWHPWwvuxN3Mlglmtjw5M4bjZVcIGT+FTQnbsTMyI6u2mNfTfsVAR45cMrQul3rNQAREuU9jUK3iHwvuxMHEAkMdPUrbGpBLZby78G56Bgf4KOJ+gZz8fukm7juwldmOHqz1nkt9Vxspd79GdVcLby+8i5rOFt49uY+ewQEeS9iOqa4BW6M2YK5vxEP+i/C2duLV478ik0hxMDZnUK3ilfmrGFAp2ZK2C4VykOTii7wUtAI3M1veytjL30/8xhLPGbw2fzVPJH5DZUcTby1Yx2wnT4zletzjF0JzbxfPJH/PAldvPo/ayLnqIsz0hogxESJy68tQqlX8LfVH7vML4enk79h15SQW+sYscPUeDtjX47OoDbT0djLTcSKTLB14Muk77I3NWfLrO3wceT/hbn48l/ojVxsr2Tx3KQY6ujw6PYK7/YKxNTTl6+wjiEQiwtz8OFN1nbVT5vL+qYOcrS4k0MF9KGQ/4n6ae7vYsfxJ5jlP5u2MfQyqVdgZmaJSqyhqqeOR+K8YVKl44chQ7tvPl9JZ5hWIhb4Rn0VtwN7IjGeSv0OlVqPSqHku9UcsDUx4I303Tb2dfH4+CX2ZnA/D76O1r5vnUn9korktn0VtYL7zJJ6eFYuPjfOoY9/SZSL73nwUjUbN5JDF9HV1COeOuqIrKPp7Kc89g6n9eC2b9c3EipGFNeOnzUHR30vKF6//x4RUa20F9UVXcQsM1Wpz1Tc2pe8PSKm+rnbqi67g+icIqeq8i1i6uI/ZHDsCh8n+VF+7+F9qqq0vvoa5w+hg87Fg7uhGc+XvZxGPBYlUirPvTAzGWVCafZKe9pYxp5PJdRnsHz1+/z38RUr9hduCg4MDJSUlPPnkk5SWlrJ06VIWLVrE1KlT+emnn9i5cyfLli2jtbVVi9QRiUQEBgZibm7O6dOn2bhxI93d3URGRhIZGUloaKjgL71y5Qo+Pj5Cy9lvv/1Gc3MzEolEizxQKpUcP36cuLg4QYmSk5PD4cOHqa2t1VruoKAgTp48CcOD3zlz/u2rVSgUJCYmkp6eTk5ODps3b6a4uJi4uDhOnz496oSQlZVFa2urkCE0e/Zszpw5M2pdNTQ0sHfvXsLDw+nt7eXee+/l4sWLuLq6CiSNo6MjqampJCYmkpmZKdiTLl68KAy6R1REVlZWNDQ04OnpSUhICLt376a1tRWFQjEqj8jf31+rAp7hjKPffvuN5cuXY21tTX9/PxKJhEmTJgnbYSSAeURFolKpuHbt2qh1cHN7381qKYazary9vbVec3JyIioqiujoaPz8/EhPT2fdunVkZWURGxtLaGjoLdsKx0JgYCBRUVEcPXqUzMxMJBIJ3d3d7Nmzh9WrV49qJ7vxtxgaGhIbG8tvv/2GWq0mPT2dKVOmaO27YrF4FHE4e/Zs+vr6BLvwoUOHaGhoYMWKFVp2rBvnZWFhwbJly9i9ezcdHR0MDg5q5WJ5eAzVPRcWFgrKtxsRERFBcnKy8L1/dKEKDg6mqamJjIwMkpKShJa+2NhYYmJitJrx9PX1USgUREREMHfuXBISEsjIyLjlPJRKJV1dXXR0dBAVFcWRI0fw9/fX2pdmzpyJvr4+GRkZzJs3j6CgIExNTYmLi9P67qqqKhwcHLQu6EFBQWRmZqJWqzl06BDGxsajsqzEYjHz589n8eLF9PX1cfjwYU6cOEFlZaVARNXW1gr73Jw5c8jPz8fb2xuZTMbKlSspLy8fpaRkWIk2Yj11d3cnPDycffv20dDQgGp44CsSieju7ubIkSMkJCRw+vRpXnnlFYHUvZG8kcvlwt+Dg4NIpVKt3zs4OEhqaipxcXFs3LiRQ4cOCdttLOufRqMhMTFRaH688bvEYjFTp04VtoOfnx/nz5/n3nvvRaPRMGvWrFF+fpFIhJeXF4ODg3z99dfU1dWxcuVKVqxYwcDAAJcuXWLPnj0899xz+Pr6/u5+8Rf+wh+hr6sDPeN/226bygspzzmFmb0LLn6z/0vtPi3VpZjfIgT3Rsjkeli6TKS24NIfL3NnG3pG4245jaKvl5LzJ3DxnYW+ye/bimVyPVSDij+llmosu46OroFWOLxEpqNlnZDJ9XD1D0KtUlJ2MRPl79gqVMpBxJLR19n2+moqLp0h9m8f4DBpGuU5p2hv0A6/7W1vxeCG1iqloh+JTIe0b9+jq6VRCPF1mByAkbk11q5e2E704cKB70fN7+MzcdzpPY+3MvZR3tbIg3H/YpajB2+E3MHFulL+fmI3T86M4XTVdao6muno7yW1JJe5Tl7suprJ1qgNNPV28mjC11xvruHzqI2Y6xuzftoCHE0s2DBtIUZyPdLKrqLRaNCRSDHVM0ClUZNYlM0Tid8woBqka6CP3ddO83TydyjVKh6bEQkiEedrinnl+C8s8wrkhaDldA70oVApeTfzAOeri/49qFcreWvBnfQpB/G3m0CXoo/3Tx2kra+bA9fPoiOV8l7YPTyV/B0nK/KYbOXEwgm+PJP8PYMqFet85uFnO55tMQ/Srehn89xlfHj6MO+fOoSrqTXvZh4gpTiHbTEPMdHcnq3nE5GIRLyz8C7OVRfxwpGfkEukLPn1XZ6dtZglnjM4UX6Nuq42Po/ayBQrJ9b5DFmEJMPtcV+cT6J3UMEHpw/R1t/NS0ErEIlEvDZ/NQ8FhPNDbhqfnInj7QXrCHebyj8zD2As1+fBuH8xwdQamURKakkuSrWafyxYh5OJBXOdJvFB2H2YyPWJ9QigT6ng+5zjTLSwJ2ZiAF6WQw11Bc3VrJg0kxeDliOTSHjh6A46BnrZl3eGlt4unkv9kQu1JbwRcgdSiYRrjVW8fXIfufVlfHT6ME09ncx3mczTsxYjk0h4L+weMiry2HxkB3pSHZ5J+YHy9ia2xTzEVJvxvJWxl0GVEj2pDjWdLXwWtQELA2McTSww0zOko7+Hx2ZEct/UUOILsngjfTeb5y5jur07jyd+g1wipWugjyeTvmWWowfbYh6iqqOZTYnbWTFpFi29XTyWsB2AWI/p9CsVfB61ERNdAz6L2sDCCb5YG5jw4tGfcTax5P6DW6ntaqWsvRGVWs37pw7yevAabAzH8VBAGPlN1Ww+soN/hN5J2AQ/nkn5gc/PJZJbX0ZmRT4fnD7EF9EbCZvgx+nK63x6NoHarqFQfldTa46XXeGjM4cpaW0YCv3uaOaR+K94M/QOXjyyg48i7kcsEjHe1IrHA6PQkUh5PDAaLwsHvK2deNB/EfEFWZS21jOgHOThgAiM5Hp8e/Eorwev5sfcNF6bvxoLfWNWTJpFv1LBsyk/4GPtzJexD7P5yA5+u5JJl6KPdzMPUNPZivSmBwUG4ywIe+Q1JFIdApbci0gkFs4dJtYOnNv7DeU5p1AO3JrIUA4qKMs5hVqlIuqpt2lvqB7zfK5nbEpvx9iRA1XXslEPKnD2nTmKVJLqyLUsyjejr7ON+qJrjJ8293enuRmN5QXoG5tiaHbrB+8ikQhH7+lUXjl/2999I24VbD4WJFLpqBbD24WhmSWu/kF0NddTcensqKZBSxcPGstvX2H/Fyn1F24Lnp6erF+/nsuXL3P58mVee+01SktLycrKIiUlhba2NvLy8mhpacHMzAyNRkNWVhYJCQmkpqYyceJEwsLCSEpKwtramv3794+yX91Y3WlgYCA0eV26NHSiqaioIC4ujiNHjjBjxgxiY2Px8fFBIpEIqqLa2lri4uKE/B8TExM6OzvhhqyekbDzI0eOsGDBAiIiIjAxMaG3t5dZs2YRGxsrtAnGxcXR2trKsWPHkMvlzJo1S1jem3OzGFZRXLlyhTVr1qCvry8omRwcHLTasqytrYVWQCMjIx599FH09PSYN2/eqKe9N6q1jIyMWLNmDRcuXOCrr74alY3m7OxMdXW1QKa0tbURFxfH2rVrBRWJl5fXqGaz2tpazpw5w8DAABMmTCA6OhozMzNB3ZSenk5tbe2ozCGJRIK+vr6gGBsru2YE5eXlxMfHc+bMGaKjo/nxxx+ZPXs2cXFxJCUlCYqnPwOZTEZMTAxubm78/PPPGBkZYWpqyvHjx0lJSeHYsWOcOHGCzMxMfvnlF06cOMGRI0dITk4mMzMTXV1doqKihHyyP4JKpUImk/Hiiy+ybNkynJycRqlmxoJcLueOO+4gLS1tTNvhzJkzKS4uprq6ehSZJpFImDJlCpcvXxaI25sxODhIbm6uoJDp7u7m7bffpru7GysrKyZPnjzmcs2aNUsgVg0MDARl3sGDB8nOzhaOx56eHo4ePUpiYiLHjh1j8uTJODk50dbWhrW1NefOnRtFZA0MDCCVSoX9eeLEicybN49ff/1VUH5lZWWNUg3J5XLOnTvH7t27WbhwoZCVdLMSagRTpkzBw8ODX3/9lW+++UbIU7vZ/llaWsqECRMEK2dQUJBgBR1RsQEUFRXh5uYm/K2np8fq1avJy8vj4Ycfpquri4SEBLKzs5k3bx7R0dGEhYVhY2NDTEwMISEhAlk1sk87OjpSVVVFeno68+cPBQp3dXUJ57O5c+cKmV5mZmaC5bayspK4uDiBpOvq6mLXrl3MmjVLi/gdIa5v3B8SExM5f/48Tz/9NHv27MHOzo7CwkISEhJISUkRssE0Gg3d3d3U1dXx3XffCbbbbdu2oVKp+Prrr5FIJLz++uvCufgv/IX/CtrrqyjNPomuoYlgxfivorejVavq+49gZG6NTFef1tqKW07XUl2GmcPv22i7Wxupyb+IW2DomM1/N8POw5fa67d3HLVUlYJIhLmjtrrMxMqejsbaUdObO7ji7DuL6mvZWhXn/17WJgzN/z0gGskcUQ704eofhIWTG4q+XsZPm4tqUEFpVsYNtg4NIrGYwYF+Ki6dpb5oKLA+6qm3MXccT8mFdAZ6u2ksK8BqvAfGFjYcePtxTO1GX1cXuvriYWHHkzNj2JS4nffD7qWyo4lNiduZYGbDtugH0ZfJ+WfmAXoG+7E2HEdbfw+xHtO5xzeExxO/YVClZJ7zJFr7unn75D7iCi5wpqqAj84MkTruZrb8K+Yh9GQ67LycMWR7m7uMuU5e/G3OUtzMbHki6VuemhXD+qmhPJfyIxNMrVn523uET/DjpaAV7L52mscTv2Ghqw/f5xwfUp64DNkyX5u/msmWTrx87BdkEgmpxblYGpjw1MwYTPUM+TD8fp5P/YmKjibeC7sHG0NTjpZcwlBHzudRG/nozGGkYglPJH5D90A/v13NZJyuAZsCo3h53gr0ZDpsjdrAdHs3Xj76Mz/kHsfNzAaJWMKLR39mzZQ5bPBfhK2RGZ9ErCe3oZz3Tx3kLp95mOkZ8urxX+no72XLid+w1Ddmnfc8dKUynEws6R7oI8p9GhsP/wulWjXclNfN86k/ssDVh/fC7uX5Izsoa2sYCpe3deWzyAeQSiTIxBL2rXmeCzVFPJ38HfoyOev2fYxULOFkZT7PpvyApYExb4beSXJRDo8mfE19Vzvboh9kqq0rn5yJ5/6DWzHTM2Jr1AaMdfQ4VXkdXxsXvojeiJmeIdsuJPHlhRT0pDp8HrURtUbDe4vuYZ7zJA5fv8A7J/chl0h5PvUnugb6eGvBOgbVKl6bvxoHY3N+u5LJxsPb2L74EYKcJ3H4+nleOfYLCuUgGw9tY6bDRIpa63gi6Vt6BxW8l3mQ2Y4efB61kb3XzgAa3g+7F5lYgqWBCZ9HbaSwuZZH479CrdHwZugd6Mt0cDSx4P2we5lk6ciVhgou1pVR0dHE5iM/0dbXzVsZe5nvMpktIWspaKnlicBo7AxNSSu7ipOJBY/OiCS3vpSt5xLJKM/DUEeXbdEPkltfxnOpP/DKvJXc4xfCmapCPC3sCR4/haSiHF44ugNfm/G8H3YvGw8PtRN+mTW0vh6ZHk51ZwvxhVnoSKRsmLYQd3M7Zjl6cq66iMcStmNvbI6rqQ213W28nrYLsUjEdznHudZYxS9XTmKmZ4SlgTFO4yxQazR4WtjjYWHPPOdJVHe2IBGLef/UweE2v8dZt+9j9uWdYZ3PPFZOno2tkRm7Vj3LF+eTWD1ZO2D7ytH9pP7rDQZ6u9EzMmGgpxONRkNNfg7tdZWs2vIVXvOiUKvVlF0cTY5r1Gqq87Kpyc/ByTsQO4+h+2F7Tz/G2ThSfOGElvXNzM6Z1ppyre9QKgYoPpeGhaMrFs6js2//CL0dbdQX5/2pQPL2+mrUStUtryU3Qq5viKGp5ahl/yMo+npprS3Hxm3se/7/Kdi4TcbeayoVl89qWbZlct1bkns3439d+97/Vvx/vX0P4Oeff8bMzAxzc3P279/PQw89hI6ODhUVFcyePZu8vDwCAwPZvn07RkZG+Pv7C9krBw4cICoqirS0NKER7MKFC1RXVzN//nwMDQ1JT08XVEgajYaqqioKCws5deoUW7ZsISMjY5Q1huFgYZVKpRX0W1hYyPXr17GxscHQ0JCGhgZMTEzo6Oigq6uLBQsWjLLHjNVWplarCQ8PR6PR8Mwzz2Bra4uvr69Wq6Cfnx+GhobExcXh6ekpKF8ArSatQ4cOsWTJEq3vV6lUHDhwAH19fYKCgjh69Cg2NjZa5NdYy5abm8uaNWv46KOPhGVxcXHBw8OD7u5uzp8/j5eXF1lZWSxevHjUU4AbmwmLioooKSkRvj85OZnQ0FCtQPauri5WrVrFo48+irm5ObNmzRLmq1ariY+PZ/HixaSkpBAcHCyQB0qlkoyMDHp6enB2dhYIlUOHDhETE0NycjLR0dFCW19fXx8BAQFaodL8Tqsaw/lM58+fR6PRIJVKKS4uJiQkhMmTJ6PRaFCpVCiVSmE9r1y5EqlUikQiQSQSUVtby969e/H396e7u1sg8wwMDPD39+fkyZM4OjoKAeIikQhfX1/OnDmDTCbDx8eHq1eHghx1dXWZOXMmBgYGwvbSaDTU1NRw/fp1gfgYybS6MSB8xDMfGRmplTGlq6uLu7s7dnZ2HDp0CIZDsQsLCykrKxO2q1QqZdKkSYJaKzc3Fx0dHerq6pg8eTIXLlxALBYTFBQ0SimTkJAg5EvdiJKSEry8vNi5cyeWlpbMmjVLixS6sc2tubmZ48ePExwcLNgvk5OTCQ4OHkWyqdVqDh8+jL6+Pvr6+ojFYoE4HsHXX3/N2rVriYmJEZR59fX1QnvqCBoaGsjMzMTDw4PKykqcnIZsMyNFACO4evUqurq6uLm50dTURFlZmdDUODAwwOHDh5kzZw52dnYkJiYSFRUlLGtOTo5A+Lz66qu88cYbo9ZXd3c3Fy9e1LIRKxQK0tLSUCgUgqJQo9EQEBBAVlYWRkZGzJs3TyvP68bzxY1obW3lH//4Bx9//DEJCQnY2dnh6ekprFu1Wk1KSgoRERGkpaXR09PDwoUL0dPTIz09nRkzZnDs2DEhHH1wcJBTp07R09PD8uXL2bt3L9HR0QwMDHDs2DFiYmJ46aWXCAgIQCwW4+HhwaRJkzA3N0ehUNDV1fVX+95fuG2M3D/NuXMTBuPMGWftcNs357eLm1vjbhdVVy8MNTYZj61wulUzUUt1Kf1dHdh7Tf1T8yzLOYWL7yxEt7AbttVV0t/dia37lFHvaTQaqq9l4ThltA14BJ1NdULduNxg6FpTcz0XmwmTkMh06GppoLH0Ok7eM7QsHjf+Xo1GQ33RVQZ6uxgc6EdHVx+xRIq911TBYjkyvUajoerqBRI/eYmIx99AqiMnJ3EXaqWSuiLtKvH1UxeQXJzDgwFhnK0qIGS8N5+ejeeFuctAJOKJxG84dMcLVHe20K0YIvZPVuQT5OzF5iM72BbzEMlFF3kxaDm7rp7CysCE+u423MyG7D5t/T28n3mAtxas48WjP/P2wrvwsLAj6ud/sGbKHMrbm/C3dUWlUeNqas3JinwcjM1xNDFHTyane6CfI6WXmOc8iW3nk/gsagN13W1IxRKeSf6eV+avwkhHj28vHuGbJY+R11SNQjnIb9dO4WpqzY5L6dzjG4yf7Xgautv5Z+YB9q55nqKWWt45uY8Pwu7jUkM5Hhb2GOnosefaKeY6efHNxaN4WNiz0NWHZ1N+4POojTye+A3/in0IuUTGifKrTLZypKmnEwdjc55M+pZt0Q/yaMLX/G3OUrJrS2joacfD3J6J5raM0zUcCvo2sybq53/w95C1iEUiRIho6u3EQt8IAx1dZGIJG64aOQABAABJREFUm4/s4PXgNWw+8hN3+czHz8aFAZWSIGcv5n33Cu8uvBt9HTlPJH7DS0Er8LJ0oLarDT8bFy7UFGMs1wORCKVaRVVHM6VtDcR6BFDYXIuTiSWbErfzYfh9VHY0YyTXQ6lS8vPlDJ6eFUtBcy3e1k7syztDt6Kf5+cuI738Go7GFnyVlcL9UxfwWtqv/LjsCSwNjGns6aCqo5nqzhYu1BQT5ubHuyf3837YvbxybCffL3uc+u52Pjh1iGm2roS6Dj3A8bV2YduFJFZMmkVlezM6EgkSsYRdVzMJtHfnk7PxfBr5AJuP/MRzs5fwfc5xnpuzlJ8vnWCdzzwUKhUX60rpHOilX6mgubeLR6aH81jCdj6NfIBvLx5lspUT3lZODKgGme88mZeO7WThBF/iCi5Q39XOpsBIdCQyTlbkcb25GpdxVpS1NXLf1BB0JDL6lArMdIfGJt9cPEqsx3S6Bvqo6GhijpMnWTUl6EiktPf3IBWLCXKehK5URkZFHgF2bhwpucSiCb5crCuhurOVmIn+bD6yg2dnLyalOJeHA8K51lTJvy6k8NuqZ7ncUIG3lROVnUOKRHdz2yHl1uEv8bS0Z6GrLx0DvfwjfQ//XHQPr6f9yk/Ln6Spp4PHErZzt+98/G0nIJfKeC3tV14MWsEzyd/zcEA4tkamZNeWcLjggtbxL5XrEv30uyj6eji37xvsvaYyLfpO9IzGCeeRkXNQa005HY019LQ1Y+niQW97C/ZefkIO1eBAH03lhdh5+ArnrJr8i0hkcuHceeM5rbOplpaqUpz9ZiEW39omPta5v7ejlYbSfMZPHZuQqrp6YdR5ubejjebKottquLsZ5blnsPPwRUdP/w+n1ajVFJ9P02r0u13UFlzC0mXinyr0+D10NNbSUlmMnacvuoYmVFw+h637lP+b7Xt/4X8vJBIJUVFRKBQK/vGPf1BUVMTp06cJDAwkLS2NkpISNm/ejEwmIzo6WiCkLl26hKen5yiVw/Tp01m6dCmXL19m+vTptLW1kZycTHJyMqmpqXR3dzN//ny8vLw4fPgwSqWSQ4cO0dam7fN1dXUdFfA9ceJEFi9ejJOTE4WFhYSGhlJQUMDUqVNZvHjxH+a1MJyV89tvv3HgwAGeffZZoqKisLa2JjU1VciGsrCwID4+nj179rBw4UItQurmfCB7e3sttRQ3EAJmZmYMDg4K6pv9+/eTnz86QG5wcJADBw6gp6fH0aNHcXJyIjIykoiICHR1dUlNTRXaC9944w3c3NzGVCCN5GFdunSJ+vp6LcJr/vz5Whk4I9Nv2rSJxYsX4+XlRVJSEvHx8RQWFiIWizE0NKSjowOFQoFcLhcUHqmpqVqqNoYJQ3d3d8GWqdFo0NHRISwsjMWLF1NXV8ehQ4fIysoa00bW09NDSkoK8fHxlJaWEhkZKdjS1q5dS29vL2fPnkUkEiGVStHV1cXAwAALCwt0dXUF+9TAwACnTp3i8ccfp6Ojg/DwcMH2NG3aNOLi4rjnnnswMDAQXo+IiKC6upqAgAAMDAwwNzcXlDlz5szhwoUL7Ny5kyeeeIKkpCRSUlJob29n/vz5RERE4ODgQH5+PhKJhIiICOFfeHg4BgYGHDx4kJkzZwqvBwYG0tbWRmpqKgMDAyxbtoyDBw+io6Oj9fmFCxdq2QcrKyuZNGkSvb29WFtbExsbS0REBNnZ2cTFxQlEGsPH9Y2ZSd3d3cTHx1NQUEBzczMymUyLaGR4kHkjqWZhYSGoidLT01Gr1SgUCoE0aWtr49SpU8KxraurS3h4OAUFBUyePFnrt0RERLBx40ZWrFghNGGOfIeZmZmwDxw6dIji4mKWL18ukFBTpkyhuLh41D5fXFwsqJ8sLS1pbm4W3pPL5axatYqioiLS09OF/SsxMZGUlBQcHByIiooiMjKSN998k+nTp7N7926tdXbt2rVRllUdHR1hnzp9+jSLFy/mzJkz1NbWsnjxYkJCQrQIKbVaPUolqdFoSE9PJyMjg/nz53Pw4EH8/f2xtrbmzJkzgjIuNTWVJ598koMHDzJt2jRiY2MF++9IocBIAyHDCsPg4GAmTJjASy+9RF9fHwkJCXR1dWFpaUlFRQVz584lKiqKZcuW8cEHH7BmzRpaWloEVeRf+At/Fqd++Ry5viHjfidz6T/Ff+XZquOU6dRcz0WlHLyNqf+N2oLLaNTqP01IMaKWKrz8u+93NtXR294yJiHFDQ8xbgVjS1tcA+bRVFEkNOuplYOIpTKqrmbR09bChOnzb5k5IhKJsHGfgkQq49jXb6NWqbBxnywQUpobyiW6WxsZ7O9j3j1PIRKJUSoUjJ82dxQhBQzV1geE8VNuGlHu09h85Cc2z102pFxRDPBe2D1ca6wis/I6v1w5SddAH92KPsQi8ZByRq3mcMEF0squ8unZeMQiEenleezNO0NZWwNfXkjmsRmRvHL8F16at4Knk78jt66MD8LuJcJtGueqC9GTyZls5cQHpw8R5ubHl1kpXG6oIL38GoUttQTYTcDacBxvhN6BSCTi+dSfkIklPD9nKS7jLJFLpEw0tyenroyH476ksaeDe3yD8bJw4NPIBwh2mcLzqT9hbWDCvjXPs/K39yhra+TleSvZlLgdTwt7nhgO6K7qaMZQrscTgdEsdPVBrdGQdNerXG6oYMeKJ3knYx+tfV3szzvLoEqJlYEJSrWKvav/xqfnEvhh2eP427pibTiO0PHeRLpP493MA+hIJFxvruFSfTnbYh5ijpMnfz+xm57BAT49G0+3op+S4aDwF4OWo9Fo2L74UWY6TORSQzmfnIkjq6aY6XZuiERDrYnfL91EgL0b9x/8HIDwHW8gl8qo7GjmicRvqO9qY9eVTOyNzPj5UgYKlZKMijxeCFqOWqPhQk0RFnpG6Ehk3OMbzHuZB5lgZo2uVMYkS0cmWTrS3tfDF+eT6FcNsthzOkZyPb6I3kjnQC8pxbn0KPo5V13ET7knWOs9l3dP7ufxwCh+uZzB+mkLaO7ppKK9kS3Ba3Azs+H147vQaDR8c/EoC119eTrpe7Jqi7naWMmOSyfws3FhpqMHm2ZEDVvbotGTyXl6ViwaNBjr6qMBfrp0gkj3aQQ5T2KZ10w2TFuITCwVyLJYj+l4WNiTW1/O7qunudJYydnqQiz0jLhUX85DAWFcrq+gprOFmQ4Tme3oSeh4b56eFcvn55JQqVVsSduFSCTirYx9TLN15a2MvVgbjuNaYyVSsYQgZy8We07HysAETwt7frlykrquNn67egq5RIqhji4JhdnMdPDgZEUeOhIZj06PQEci4+GAcDYlbsfaYByPzYhkzZ4PmWhuxxNJ3yITS/n1yknK2hp46ehO3lq4jo3+YeTWl9He18M/Qu9ELpHyaeQDfJN9lC0nfuOtBeuIcJvGU8nfcaGmGAOZLgqlklfmrWS8qTVfZ6UiHoMcmb7kPkCDRq3GfeZCXPxmC4qgm8kUUztn9I1NyTr0E5WXz2Ln4aPVsNpRX61lbRaJRDhM8sfIwobiCycYuKFBr67wynCb6Nw/JKTGQk97yy0JqbEwONBHXeHl/4iQAnD2CaTyyujG8bFwu8HmY8HCyZ3mitGlFP8JTKzsGO8fREt1GVVXLyDXN6S/5/buG/8ipf7CbeHzzz9HJBKxe/dudHR0iI+P59NPP6W9vZ3k5GQCAgKYOXMmISEhBAQECFXkvb29VFRUCNXv3HQDOWIdefXVV/H29tYapE+aNImzZ88yZ84cZDKZkCFz+fJlDh48SEvLULDa792glZaWCgqRBx98EIVCwalTp0hJSfnDgVVBQQEZGRmsXbtWCMsGsLOzE0KFIyMjqa6uZt26dRgZGZGRkcH169eFZbl48aKWkiAgIECryS8vLw8XFxf09PS0Wv7s7e1ZvnzoBmH//v1Cm1ZRURFxcXFER0fj4eGBo6OjQHKNtO9FRERgY2PDTz/9xF133YWxsTHnzp0TyL6Rf729vSxYsAClUjlKfTZWsPyZM2cE9daN9iKNRkN8fDy9vb28+uqrNDc3C5bH2NhYoqKitNYfQH5+PpMmTRLWyY0ZWCKRiICAAJYsWYKNjQ1xcXGkpKTQ29tLeno6CQkJnD9/npCQEGJiYggMDBQG8iPW0enTp2Nqakpqauott/GhQ4dYtmzZmPuPgYEBYrGYuLg4LcWYSqWipqZGaGu7kbzT1dVl2rRpyGQy3n//faGZccqUKUKGVGFhIZ6enri7u48KI29rayMmJkYrp0xPT48pU6YQHh6OXC7n0KFDyOVy2trafvfCU1tbi63t0BPjGTNmcP78kC9dIpEQEhJCbGws+vr6Amno4+PDhQsXqK+v59ChQ5w7d06wlhobG+Po6EhZWZnWPG7OZxtBcHAwEydORCKR0NDQIOxvhYWFWsd3REQEiYmJeHp6jiJqRzK3JBIJixcvFqxoLS0tmJiYkJKSQmZmJjExMcyZMweRSKTVvBcTE0NCQoLwfVevXv1d+yLDKqSjR4/S29vLxo0bSU5OZsGCBQIRNdKUNxIwb2VlRWxsLLt27RJsiK2trZiaaistVCoVp0+fJjk5mcHBQf7+979jZmZGfX09GRkZo0LlCwoKBFJbrVaTlpZGXFwc3t7eLF26FB0dHZYsWcKJEyewsbEhJCREiyx9/fXXGRwcHLMUguG8qZkzZwo5Wp2dnRQVFfHKK6+gr69PTEwMpaWlNDY2snnzZvLy8jhy5IhQYLFw4cL/Tymj/sJ/PxY+9AqWLh5UXcuiPPcMnc2jM9P+E3Q01mBibX8bU46N8dOCKMvOHPX6WPcVQ9XhpzE0t8LCyW3U+7eDoarsnrEfurS30F5f9R+RXTdjaIA2DTMHV0qzT9JYVkDJhRNYukwc1Q44FtrrqyjLPomliwdRT72Ns+9MGkryKM89PdQQ1dOF3MCIqqsX6G0fIrlc/YPQ0TfE2XcmmTu3YmbvovWdG6YtJKnoIh39vTiZWOI8zoonZ0ZjLNfn9eDVyCQSXj++C6lEwsmKPFZPnk1ddzsd/b1IRCI2JW5HKpGwNWoDAJ9FPoAIEWumzMHLwgEdiZSVk2bjYGLBYo/pOJpYsDVqA2b6Rmy7kEx7fw/3+AZjb2yGqa4BuhIZKrWayVaOzHHywkzPkNmOHnx8Jo7rTdW8l3mAqo5mXpm/in7lIOb6xnx1IZWLdaU09XQIaiupREpcQRbf5xxHXyYnqegi7y26m2dSfqCyo5nPojYwwcyGabYTWDlpFlKxhO+WbOLV478QMt6bS/XlvHL8FwZVQ2HZpW31bM8+QklrPVNtxw9lXgVG4mRiyd9Sf+TLCym09fcQMzGAxp4Odl3NZJqtKz/lniC/qZrPozYSYO9GXMEFGrrbUapV/JibRsK6l1Fr1Gxf/Ag2hqY4mVjyScR6XMZZ8cLRHQwoB9mUuJ3x46wJdJjIvvyzPDQ9bCjU+3wSLb1dLN/1Tz6OuJ/arlY+j9rIoEqJqd5QjpLLOCvu9AnCVM8Qd3NbnEws8LVxJr+pGpVazQx7dxKKsnkjfTdhbn68On8VZ6oKeCtjH2Z6hiya4MvLx3ayffGjzHb04NOzCYhFIrak/QbAp2fjKWypo7KjiSdnxfDKsV94Ye4yTlbkM8vRg28vHqNL0c+nZxPoVw3ydfYR7psaQr9ykF+vnKSjv5cnZ0Yz32Uy7uZ2bAlZiwgRP+amMc3WlcW/vINELEZPKuO51B8RIaKivQmRSERhSy09in5ePrYTsUjErquZ/P3Eb3Qr+rhz78dYG5iwJW0XXpb2WBuOo7Wvi2+XPIZCPUTULJzgw5680+jryLncUIGxXJ+artZhC+s9dCn62b74EQxkurwQtBwPC3s+Cr8PqVjMI9Mj6B9U8HjiN1S2N/FdzjFsjcwQI6JncIBX5q9i55WTyKVSbAzHMcPenVfnr+LtjL04j7PinZP7MNM3ZFv0g7T399Da181G/0UMKAfxsLDHzsiUp2bGoCMZ+nxVRzObU39iup0bn59PxFTPgKeSv6OktZ5lXoH8tOxJXj3+Cx0DvXwW+QAeFnY8Mj2cAdUgTb2dJBVdxMrAhOrO0QHYZ3Z/iYmVPc4+gZjZOWPv6YeZnTPF59Po6xqy3mnUamoLLlGeexojCxtCN2wmYMm9NFUUUXU1S2gb7e1sG1PlamhqwYSA+TSW5lNXeJmSrAyMLKyxnvDH570bz58j6Glrpqm88E8RUmq1irKc07j6j3b43PYyiMXYe/pRnZd9y+n+TLD5WNDR02fwD3K8/gxEIhH2nn5YT5hMa00Zv2y+67Y+9xcp9RduC5s2baKmpobNmzfT2tpKSUkJiYmJuLm5ER0djZGREadPn2b27Nk4OzsjFospKysbZQ2ysbERrDDV1dXs27eP4OBgVq5cOUrtVFdXh1qtxt7enqlTp5KTk4NIJGL+/PksWbKEvLw8Dh48SGNjo/CZvr4+QUXT19dHbGwsBgYGfPjhh0LrWkhICBcvXiQhIYGkpCRBeSWXy+nv7yc9PZ3Ozk5iY2O1Tko330AWFBQgk8koLy8XyCpdXV1SUlJISkri3XffpaKiQutzdnZ21NTUMDAwQGFhoaAekslkWrk2AJMmTWL58uWCGqi8vJzly5drkSQ3IyMjA6lUSmRkJF1dXTg6OhIcHDxKicINyq2R/K2b533t2jXh75aWllF5UgyHdE+bNg2VSsXWrVuRSqUEBgZqWaxuRE1NjZaix9bWdswwZ4bD9f39/eno6GD58uVUVlZib29PcHDwmOtAo9EIBJWHhwfe3t7s27dPWP83bssjR44QHBwshKs7ODhoZT0dOXKEsLAwAgMDBVIHIDU1lbCwMBi2zKlUKuH7u7u7SUpKYtWqVYSGhnLs2DGt5Rs5PgC8vb25evWq8NkrV64wZcqUUaH+IygpKcHZ2Rl9fX0WLVrEuHHj2Lt3L729vaOmzcrKEnKurK2ttbKGRuDq6kpsbCzz5s0jKSmJWbNmkZyczOLFi1mwYIFW6Ly/v/+o5jyVSjUqmF6pVJKSksKFCxfYvXs3FhYWggoqMDBQS7JbVlaGi4sLc+bMoaOjgytX/v00PTc3VytQ29fXlzlz5hAUFMSvv/7K3LlzCQ8P11IZXb16VVBLSaVS/Pz8BLLzxuByhhWQ27ZtE47/wsJC5s2bR0REBO+99x5vvfXWqEB2bmiVZJgsvOOOO0hKShJIY4YteyPkaWpqKh4eHsTExGBubs4DDzwg/O3r66ul9mM4c83R0ZGjR48SFxfHtGnTWLx4saAOG1meyMhIIfh+BFVVVUyZMoXVq1cLiq+x4OTkRE9PD83NzSQkJBATEyNYWVUqFTNnzsTPz4/jx4+zc+dOpFIp2dnZ/Pzzz2zcuPGW556/8Bf+CPrjzFD09+LsE4iL3ywG+4aalqrzLqK66fr3Z9DZWIuJ1X9OSkmkUuwnTR0VLNvV0oCRubXwt2pQQfH5NGwn+ozZhPdnYOvuLdSfj6C/u0Ow1P13Qa1S0VZbjlSmw4WDPzDQ00Vj2fV/t+Vdz6W7rVnrfKfo66U0+yRqpRLXgHnoGg6du0ViMQ6T/HH2nUVbbQVp3/6TU79uw8DMCqvhtj5dQxMGerqoL7pK1FNvj8pE+ebiUR4PjOajM4dZ6jmDJb++g5uZLfcf3Iq9kTm1Xa38sOxxxIi4y3cofy+xKJu13kG09/fy9KxY1Go1m4/soE+p4Lerp6jubOHlYzvxtXHmy6wUBtVKPj0Tj0Kl5MNThziYf45eRT+tfd0MqpXEFVzgelM1Z6sLeS14DRo0xEwMoLWvm+9zjtOnVPBZ1IYhNdPMGAZVKmo6W3gv8wC59WW8FryaUFdvptq6oifV4c3QOzHW0SV0/BQeCgijta+bPXmnmWhhzxfRGxGLRHx6Jp4B5SCLftrCHCdPHon/irruNp6eFYuN4Tg8LOz4R+id6EilHL/vDQqaa/kw4j5OlF+lrL0RPZmcd0/ux0BHl5eCVnD/1FB+yD2OmZ4BcomMg9fPY6CjyzsL72LFpJlsStzOz5fS2Rq9gTlOnvQrFey4lM656iL+mXmA2q42nk7+jqaeDg4XXOD9Uwd5a8E6Strq+SxqA1P+H/beM6qKc3Hj/e1K771XKaKCiNhFEaTaa5qJUdNjej2pJ9WTrjHNmJ7YK9IUwQaIiAg2kCK9986u9wMwEdHEnP9Z9364PmuxEtl7zwwze96Z95mn2Dgz3dmXKY7efH0mie/OHmG8nRt/XDjJN/MewdnEki9OH6Kqs5l9V7Jo7e2msKmaTkUv2y6cQq3V4Gpqxd4rWRjIdAdIKa2ab84eZsnoKWSu/YCsqqu8nrqNx4KjWDchnHdP7OZSY6WwD7dfOMWvi59i35XTzHIbI+RQORibE2TvgamOAesmhKMv08XV1Iox1s68E3oXEpGYlPvfoqOvh4U+wWRUFOBobDHQKmdszlvHBgiuV1J+o6Ktkba+bhKLziESidgQvgp7I3MkYgm/LXkahVrFw0ERVLQ18nXsQ/zr6O98PPd+dKVyQt3G8sD4UGwMTNkcs47Gng4+mns/elIdOvp7cDez5ZWU38iqukpxSx2vHPmNw6veJMDGlUNXz+JmZo1SrRLC5j84uYc+lZLtF0+RX19GdnUxFxsqeenIryRczcHW0IzXZi5FO0jGmusZUtfVilwixVhHj0U+kwiwdePJSdE8l/wjrb3dfBzxAK19XSTe+zqV7U1sv3gKb0sHtl04yTgbFx6K+5plflNJLj7P+sStmOgY0KtSIBVL8LN2QiqW8NL0RVjqG/PU5BgcjS242lxDbm0pqQ/8m5aeThp6OtBotbx05FfMdA34Pf8EkZ7j8bd1paK9iRsh1zOg+koudSWXBJJIz9gM57GTuJp5hITPX6U8PwsLJw/cxk8TsgKHSHYbD1+u5aaPUFcp+/toqigWxraqSwNui9yE7aDV0lJdNvD7yzl03zDm/RW6W5toqijGNWDKbbz7T5SePYF74PS/tGnfDvSMzZDrGQgB5jdiKF/wdoPN/99Af0/XQKPi1XzEEil+oQtu41N3SKk7+Ad47rnneOedd3BwcBAmsb6+vuzYsYOGhgZ0dXUHGh8qKujr68Pd3Z2mpiYKCwsFwsXT05OioiKOHj1KRUUFy5YtG6akGRokNBqNYFnhJpNrkUjEjBkzWLBgAcXFxTz77LPs2LGDjIwMQUUzpI7o7u7G0NAQf39/8vLykMvlhISEEBMTQ3h4OJcvX+bQoUPk5+ezaNEi3N3dR4Qv+/j4DCNv8vPzaW5uZvbs2bi4uFBeXj5QNe3qKiipnn76aSQSiWD1O3r0qJDzdKscnxtx9epV6urq2L17N/r6+hw8eJCrV68Oe8/QPktISMDR0fGmQdhDUKvV7Nixg4kTJ/Lwww8LGVcHDhwYptzx8PAQJstVVVUjMp40Gg3p6elC4+H8+fNJSkri3nvvpaioiH379o2wWXKLYGszMzNaWv5sx9BqtWRmZhIXF0d9fT3Tp0/nxIkTWFlZYWFhIQTQ3yww/HrY2dkxd+5ctm3bRn9/v6Coyc/Px9bWVsg+Ahg3bhz5+QMThMrKSoyMjDA1HWhccnV1pbS0lNbWVmQy2bD2wcDAQHJzc+np6SEuLo5ly5YhEokwMjKiv79faF1Tq9U0NDQIllaA2bNnc+zYMbiB8LhRRaXVasnNzWX8+PFMnDiR7OxsPDw8WLRoEampqcMIo56eHvT09IYRcN7e3jclHltaWkhMTGTcuHEkJiYybdo04uPjSUhIGHY8AKZNm0Z6erqwrW5uf+bBKBQKwUY2FNhtbGzMokWLKC4uFvbr9bhy5Qo+PgMVvlOnTqWrq0sgppqamrCysoJBkjkhIYETJ06wY8cOxowZw6lTp0bcTFRVVeHk9KeE28PDg8bGRjIzM/H19SU3N5eEhAQSEhK4cOECX331Fba2tkJToFwuJz09nenTp2Nra8usWbPYuXPnTQnCIYjFYpYuXUp2djYPPPAA8fHxHDt2jMDAQGJiYoiKisLCwgK1Wk1tbS0ODg5CyYCJiQnR0dHExsbS19fHoUOHePTRR0lISGDSpEksWLBgmPW3vr5eUGwZGxtjY2MzbBzIz88XzvuZM2fi7e0ttD1ej/r6eiQSCVZWVojFYi5cuEBvby+zZs0iLS2N1NRUKioqyMrK4uuvv6a7uxtnZ2e8vLxwdnbm9OnTt9wfd3AHfwcLR3earwtBtXByxzVgCjYevlRfOTegnmocGeD9d7i+JOW/hZ6RKUYWNsOagtrrKgVrSG9nO9dy0/EICvnLOu/bha6hMf09XcJYpujtoepKLq7jp972Mm41qdJqtTSUFVKed5qqyzlYOnvi4j+Z6Kffx8DMCht3X6HxytrNh76udiovZlNx4Qx5ybs4F/87buOnDcv90jUyEQKERSIRls6eeE2bi+/MGLRqNVWXzgqTwex9P3JgwzN03kQJZ6KjzzNJP/CfuaswkOvw8vRFmOsZ8UbIcpp7O/kk4yBFzbXoyeR8eHIvulI5pjoGtPR28u/jO9GRymjq6ST5vjfoUvSxwDeYYAdP3p69ErVGw2shy3A3s+WZKfMItHNn7YRwVo6dQVrZJZ6ZMo8PTuzh7dkr8bFy5GhpPjWdLTyb9CN9KgUHrmSxOWYd3pYOvHLkV/rUSl44/DO5daU0dnfwWsgynpwUzb4rWTywbxNjbZx59NC3tPR28vaxnRQ21/B1djIy8YDN8GJ9BUq1ml6lggcDQ3E3t+HzyAex0DNic8w6Pk4/QG1nKxcbKvg88xBXmqp4NulHrjRW8lv+cXoU/SzymcTKMdORisRsX/osi7dvwEzPkKTiXNCCrlSOTCLlrdkrae3t5LH470i9doGP5t5PuIc/P+amcu+ezwfysWIeQoOWSM/xdAwqXJxMLAn38OfB8XNo7e3iYEE2Dd3tLN/5MYZyXT7OOMBjwVHEegcR6jaWMPdx5NaWsmDbh2yOWcfG0/GMsXHG1dSazWcSUQySLEtHT6FT0Ud+fRkikYiHJoQjQsR38x7hkbhvyKoqQk8qR1cqI+3aRf519Hc2x6zDwcic78+l0NDdzg+5R6nvasNK34SUknzu2fMZDd3tvHj4FzzMbXk55VdMdPR5I20bE+w9eCz+O4zkeryc8isX6yu40FBOQtE5Hgycw/37NiIViVm9fxNfRK2huaeT3Ste5EhpHivGTOfL6HW8cPgnAF47+ju/55+gva+bl478gp5UxsaseFr7unlh2kJ+yz/BN9lJyCQS3M1sWLrzI1p7u3nn+C56lP18lZ3EFCdvippr2L7sOYLsPfGzdmKsjQvVHc0cKc3nP+Gr8LKw57ucI1R3thBXeJaNg8H211rrMdHRJ8jeA2MdPX5d/BTLxkzj4biv6Vb286+jv3OwMJtTFVd4ecZixlg783H6AZp7O3npyK/k1Zdzra0BQ7kOhU3VfHhyL9da67nYUMGJ8stIRGIemxiJtYEJX8U8BIC3pT0PB83F0sAYV1NrRMB4Ozd6VP3YGJjw2KGBpsvC5ho+y4yjV6XgUkMFr6X+wZXGSsz1DNm9/AWOl19i3YRwXk75lYKmaoLsRzaiBsbeg6K3mwMfPjOMIG+uKsHcwY3wR15H38TsluOsXM8A9wkz6O/pIuW794XPN5UXoW9ijtOYiTiPDcZpzETUSgWL/vUl1m4+wphn5+VPX1eHMOZVXDhD5cVsOhprRzp5BgkpF//Jtz0uA5TnncbBN/C2yi9uB9ZuPrRUXxvWuspQsHn1tf9JsLlIJB7RnvdPMEREleedpqW6bPABxmR0DU0IjL77tpZxh5S6g9vGZ599xvbt25k9e7agZLC0tMTOzg4bGxvq6uo4cuQIXV1d+Pj4sHfvXnx9fTE0NCQtLY2kpCQSEhKYOXMmlpaWgmpkCEOkEYOBv0Nhw0O42U3nUG7Qpk2bMDMzY86cOcOe5l8fxjtEtFw/6EilUqZNm8asWbMwNTXF1dWV/Px8kpKShoUvu7q6Chams2fPolAohtmXbpz419XVYWNjg6enJ9HR0URHRzNt2jRycnJYunQpJ06cGKawGNqXjY2NMGhh2r9/Pz09PSxZsgRDQ0OmTZvG/PnzUavVHDx4kMzMTIHA2LlzJ0FBQQKxAWBqakpbW5vw76HmrgULFgwjZHx8fFiwYAEajYYDBw4Ik11jY2Pa29sFQoRBIuPQoUOC9Wr+/PkEBQUJx0YkEjFt2jQWLlxIXl4e+/fvF6ySLS0tgurjekydOpWMjAw6OjqIj48nPj4eT09P5s2bJ5A+06dPRyKRYGxsTGxsLLGxsTQ3N3Po0CESExNHBGUPwcjIiOXLl7Nv3z50dXXJz8+noaFhRP7PkIVPq9Vy+vTpYUHzAQEB5OXlkZqaypw5c4Z9zsHBgZKSEvbv38+KFSuGZQKFh4dz5MgRAFJSUggLCxv2WXNzc0Exd716zMvLi6KiIuHfJ0+eFAK0r2+TlEgkxMbGYmRkxO7du+nt7eX48ePMmjVr2Hq8vb2HLa+3t5cDBw6Qn5/PwoULBZJw1KhRxMbGEhkZyZUrV4iLiyMtLQ2lUomtrS2tra309fVx6dIl/Pz86O/vJyEhgZSUFMEWeGNW2+zZswWC+cb9ff35PGXKFLq7u4Xzv6mpiYMHD3Ly5EnCwsKYN28eJiYmTJ8+ncmTJ7N79+4RlsLr0dvbi0wmY+rUqWRnZ2NtbS2ch9OnT8fZ2XmEgqy5uRlLS0sYJEpjY2PZvn07SqUSlUo1TJmlVCo5duwYhw4dQl9fn3vuuQcrKyvmzp07LGvrxmM/atQoiouH+/ZHjx5NaGgo7777rkAq3ojrz0EGydCLFy/S3/9nq8n1+9PW1pb58+fz73//m0WLFgk2ypqaGoKDg/n111+xsLDA0tKSM2fOcPLkSebOnUt5eTleXl6YmJggFovR19dn3rx5TJgwAZlMhofHyBvMO7iD28XQd/RGMkWmo4fz2GBcA6ag6u8fVE/l/OOcp/8rzOxdUPX309lUL2ynSCymrb6KhmsFeEycJeQp/S9g6zmGuuKLqJQKyvMy8QgKuW1yzcDMku624daYtroqyvNOU5GfhYGpJS7+k3EeGzwsg8XFfzKVF88K+1amo4ulk4cwYfOPWMbokBhKz50alsdiYu0gPKnXqNVcO5+Bx4SZOPgEoFL0CRNBIwsbpq58lIkLH8DExnHEdrf39/DQhLkUN9ex7uDXOBhbcM+ezzCQ61DaWs+m6LVIxRKMdfTZs+JFREC01wREg+qQSw2VvJG2jQv15XyWGcelhkr6VErK2hrIqi4itfQC3Yo+nkjYgkwi5anErXQqesmquoqftTNvzV7J+sSt9Cr7eSw4ChMdfXYse46t545y97iZPB6/hZyaEr6Z9wgtvV38uvgpTHT0meXqx1OJWzlXU4qhXJeoUYHIJTI2hK9CpdHwTuhdeFnY8+Sk6AFLU9Yh5FIpTyf9gFQspqO/l3v3fI5MImHl7k+p6WzlpemLMNczRKlW063oI8jeg7dmrcBYR5+3Z6/EWFef9Ylb0ZFIeSz+O87XXePXxU+hRYuXhT1rJ4TTpejjsUPf0qvsp1ep4KEJc5GIxGi0Gio7mlk6eiofhN8nNOHZGpoSYOfG1nNHKWtr5KnErYgQ8XTSD8glUhyNLWjoameKkzetfV28P+ceupX9vJm2HT2pnM9PH8LZxIot8x/FTM9wgOCzdMDWyIztS5/F18qJDaf2svtSBvO9J/LenHvQHbTC1XS2YqFvxCcRD9Cj7EdPJuf+gFkUNdfwZfQ6Tldd5cmE7wmy96Suq5Uvo9ehK5Wz63IGkaMCeCNkOVb6xnwRtYYtOSm8N+dudKQylvtNI6koly3zH6W6s4X4e15Do9Uw2dGbd0Lvwt7InM0x69CT6fB55BpqO1t569gOajtbUGk0XGms4omELTw1OZZvzyazflIM9/mHIBVL+GXRejKrrnLPuJmUtzXyWuofPBg4BzM9Q945vovytkY2x6xjS84RXpu5lDfTtvP05BgOFpwhq7qIU+VXeCXlN+yMzDDR1ae4pY6t51JQatR8lhnHDwuewMvCDn9bF9JKL5BSks9nUQ/iYmrNr3nHSS4+T15dGY/EfcOL0xchFUv4JOIBwj38CfcIYPOZRAqaqgl2GEVVRzObotdiJNdl64LHqetqQywW85+5qzhWdolIz0D+Pfsunk3+kazqIjZmxaPSangzdTu6Ujmz3cbSo+jHUt8Ye2Nz0isKePHwLxjIdXl26nzC3f1xMbXi69iHMdHRx0LfmN0rXiTEdQy/5Z9gz5XTdCv6kQ5mr0nFEhKKzo0YA5oqijEws2LW6hdQq5TC2GHl4oVa2Y/HxBC0Wi2tt2hGHWrrUysVzFn3ynVk01j0TcyFMbTq8jms3HwwtXGgp/3PsVIilWLh5C58znlsMA6jA1GrlMOIquM/f8bltINYOLn/IyVv7dULmNo5o2f0f2+VvR4u/lMoy/vzweBAe+pAjtT/AhZO7jRXld7GO//EcCLqmkBE2Y0ag1giQaVUIJHKkN1QeHQrSG/jPXdwB3zwwQc888wzHD9+HF9fX77//nuefvppEhMTmTx5MgcPHqSvr09oqtu5cyfLly8nLi4OZ2dnnJ2dKS0t5cKFCyQkJKDVaoXQXTc3N3x8fHB0dCQvLw9dXV0cHBxGTO6GSJIhBYFWqyUxMRF3d3eCg4M5ePDgiCem1dXVwxoEQ0JCOHbsGLNnzxZ+V1tbS3p6Ovfddx+2trZERESgUqkEokRHR4fp06cjEonIyMjA0NBwhBrJx8eHAwcOCOqP3NzcEW1xNTU1NDY2UlZWRnFxMW1tbYI6xMvLi/Hjx5OamoqtrS0lJSVER0ePCIcH8PX1xdfXl4aGBo4fP87y5cu5ePHiMKKJwbymEydOEBYWRmVlJdnZ2dx9993DCKSbLXfIFunj40NaWho6Ojrk5ORQU1ODubk50dHRIwKZb4RIJGLWrFmo1WpSU1Pp7e2lq6uL2bNnk5eXR2Njo5Cpo9VqWbVqFb/99huRkZHDJv/XLy8sLIz9+/cLOVABAQEEBASgUqlISEhgwYIFHDp0SLAjXQ9TU1O+/PJLdu3aRWZmpqBWMTY2xtDQcMD/7ODA1q1bWbp0KTU1NVRUVAik3o8//khvb6+g6huaVGm1WpYvX87OnTuFDCt3d3c8PT3R0dFBJpPR1NSEWq0epghUq9VUVVUhl8vx9vYeoUwSi8Wo1Wr6+/vp7OwccWyvx6hRo3B3d2f//v289NJLfPvtt9jY2GBjY4OFhQVisRhra2uqq6uF71tMTMwI+9316x4iXDs7Ozl69CgqlQoHBweSk5NRKBQcOnQIqVRKWFjY31q6AgICKCsr48CBAwKperNjPGbMGL766iteeuklTp06NcI+OwQTExOWLVtGdnY2Fy9eJDIyEpFIRGdnJ5mZmSiVSnR1dZk2bRoJCQno6OhQUFCAvb39LSd8Z8+eHTZOMJgrtnTpUnbu3ImjoyPjx48nIyNDUMxNmTIFIyMjGhsbMTU1RV9ffwT5OJQ5df2xt7a2HqZ8Ajh27BgrVqxAo9Gwe/du5s6dO4zAvd6aOoR58+Zx8OBB/P39BbKovb2d06dPo1arkcvlPPDAA8LYNTQepaSksGjRIi5dukRfXx8hISGcPXuWxMRE3NzcKC0tJTMzk2eeeYbKykoSEhLIzc2lt7eXmpqamxZL3MEd3C4snD1pqijG6hZV3OaObpg7uqHs76P6Si4atRozO+dbZkb1tLcI9o7/Bey9x1Gac1KwrDVcK0Cj1vxXzX5/Bz0jEyou1NLRUMuoKXP+kdrLxMaR+pLLiMViGsuuDv7O4W+f6ItEItwmzOBazkk8gmfddJ3GVvYYWdpRdfkcYokEe2//YTlYJWeP4zFhBiKxGCNLG9rqKunv7qSrpRFFXw8OvuNRKRW0VI98cGBnZMZ3OYf5LPJBNscMNFk/O2U++jIdtuQc4dGJEYwyt+O+vV/wVcxDPJv8Exuj1rA+cStfRK0h3MOfx4MjeSttBwfueplrrQ0Y6uiy/cIpNoTfx/sn9xDmPo4IzwDGWDvzn7mreCttO2/NXsnduz9lrkcA74bejYW+MVcaK/nidDyfRq7m/Tn3YKZniKupNe19PVS0N/Lhyb28E3oX+65kMdczgK9iH0alUTPFyRs7IzMyKguobG8ipTSft2atQKPV8u/jO/l18VM8ERxNl6KP9+bcTbeyH5lEymLfycglUjZGr0WhUtKl6EOt1eJlac90F1++O3uEYMdRvHVsB7PdxrDMbxpvhCzHWFefpybH8HV2Mu+H3UNRcy3fn0vB2cSKOe7jcDaxoqSllndP7Ob1kGWcrSlhf0EWcomMTyLu59WU39kUvYb/zF1FZ38vH57cyw8LnuBA4Rn2rXyJc7WlfBLxAFb6xtR2tWJvZIa5ngH6Mh2eS/6JF6ct5NA9/+JcTSlbFzwuHJv79nzBoxMj8bVyYOmO/7AhfBWGch0qO5pp6G4nv76cd47v4sVpC/kq5iEsDYwpb2tEo9VioW/EuoNf89TkWDRaLZ9mHuTucTP5IOxeVBr1gIonO4m7xszg88gHqe9uR6PVsD5xK+/NuZsYrwlsPJ3AktGT8TS3xcvCjpbebt47sZvNMet4NvknXp6xGGt9YxZt38DmmHV8fjoOd1Mb7vUP4eO591PcUktZaz0zXHxZPT4Ub0sHHg6ay+/5J1k7IYyH477hsYkDLcrmeobMcPHDTM8QawMTDOS6vBGyHFNdAx6P38Km6LUYyvX4IOzeAVJm+iLy68uRDKrmRIiIK8zms8gH6ZwUw/GyizT1dFDZ0cSbadvZFL2WhKIcbAxNqexoIq+ujEeDI1FrNKg1aj6PfBC5RMorKb/xaHAkH57cy3/mruJyYxX3B+gR4RmAjaEpcYXZ/Jp3nI3RazlTXYyDsQXNPZ1UdTTx4ck9zPUcz4bw+yhva6Suq41Np+N5bup8Np9JwNXUhgjPAMHKuWLMdMLc/fGysOfhuDfYGL2W9Qnf85+5q6jvauP5wz+zOWYdX2QeItZ7AiqNhm0XTjLPO4jH47fweHAUpypGFjaVnj3BmNCFg+oeLaU5J3GfMIOK/CxcAwfuPW3cfam6fA6Zrh4GppbCZzub62m4VojDYLNbTWEeyv7eEa1xjWVX0Tcxx9DMEq1WO4xgvxnEYglmds6YDZZw9LS3MmbOQpz8JqDo66W9/gIa9XBi6vqHK3I9A/RNLagpzMcjaCYm1v97K51YIsHG3YfaoovYjRrzfwo2vxn0Tcxpqvj7sPP+ni7qSy6j1WiQ6xvgOHrCLR/W1BbmYe/tf9sPmO6QUndwW3jllVfYs2cPISEh7Nu3T7CmtLW1UVFRgZOTE1ZWVmRkZNDZ2UlERAQikQgfHx+uXLlCZ2cnSqWSBQsWkJSUJBAKDAaSDxFUSUlJTJ8+nRUrVozYhokTJwoki0KhYO/evYSHhwtZR5MmTSIrK4vJkwduysrLy4WK+CGYm5vT3d1Nf3+/MFmtqKhg6dKlw94nlUoFdUpfXx/p6elER0ezefNm1qxZc9N9NGTjc3FxGTaJVCqVJCYm4uDgIKznwoULhISECORWYWEhhw8fZunSpZw9e5ZFixb97TGRyWSCakokEgn7UCKREBgYiJWVFUqlkgsXLtDY2MjixYv/dpkMKjc8PDz4/fffWbNmDa+99hqPPPKIkFP0TyCRSAgLC+PQoUO8/fbb+Pr6YmNjw+jRo4Xw77q6Og4ePEh1dfUIsmIoe4jBm2l3d/dhTWoMWsFkMhn79++no6ODlStXjhiktVotLS0tWFpaoq+vj6GhIS0tLZSVldHdPXCjff78eV5++WVcXFywsbHBx8cHExMTNBoNPT09Qpva9Th48CANDQ3k5eURFhaGVqultLSUw4cPo9VqUSqVWFlZERcXJ+QAiUQixGIxjo6OBAcH89xzz3HmzBkUCgVGRkZMnz5dsMs1Nzczf/78Yeu8kZwdWmZfXx8ffPABM2bMoKGhgYqKCnJzcwUL2uTJk6mvr/9LgutGGBkZCRlkly9fZuHChYwbN44NGzYQFBR02xlDrq6umJmZsW3bNiErrKmpidzcXMHaa2BgwMyZM4U8p7+70E6cOJHe3l5CQ0MJDQ1FX19/WN5YZ2ensD9bWlrYs2cPQUFBwvfJ3NxcUO9VV1ff9Ps9pA6aMmUKv/zyi9CUeT2GQtyNjY0xNjZm3759LFy4EJFIxJEjR5g3b96w90+aNIm4uDjhuGo0GtRqtXA+rFixgsTERDw9PfHy8rqlhVAmkxEQEMArr7zCAw88QGlpKSYmJoSGhgrLOnr0KDExMbS2trJjxw4WL15MT08PBgYGBAcHs2fPHiwtLamrqyM2Npa4uDh0dHSYPHkye/bsIS8vj9jYWN577z1qampYuHAh+/fvv61jfgd3cDMYmlkOWPhuQUoNQaaj+2cteE055XmnEUtl2HuNRSL7c9xprizFYfT/PRT8eriNn0ZRVipNFcV4TQ3HxNqarpZGVIp+VP29KBX9qBT9oL21vfd2oFIoSNv6H0ZNDkPfZGRY781w/UTo8Ff/Zv5Ln+A8btLfjpdqlRKxZOCWXyKV4jR24l8+ZReJRDj5TaC3o5XSsyewGbSHlOWm4zw2WDgGyv5e9E3N+XH9IqYsfwT3CTMEC4i+iTlSuc7AvhpEbeeArb+xu533T+7h37PvIrumGEO5LusmhONpboexrj6fRT4ohJQPZehogfUJ3/NF1BrG27lR3tbI1nMp6Mt1+XfoXXxz9jDPTp1Pp6KXN0KWs/NShqDCEYvFvDJjMQ3d7dR0tpBYfI7oURN4anIspjoGPHjgSz6eez8vTluItYEJ/0nfz5b5j1LX1cbWBY/z6tHfeHJSDOsTvuezyAf5Mfcoj0yM5NDVs+xZ8SLFLQPK943RazGU63Lf3i/YEL6KXmU/CrWKbmUfM1xG09DdzpacFNZPiuatYzvYFL2Wiw0V/JibyqeRq7nYUMFnkQ+i1Kh47NC3fBb5ICfLr/Dz+TReC1nGF6fjWT8phpenL2KCvQdLd/yHGc6juWfcTN6avRIdiRQLfSP+E76KfrUSD3NbZrn60ano49WU33l+2gI+i3yQtr4uzlQVMcXRm3eO72JT9FpW7dvIk5Oi2XslC2MdPVaPD+X5qQuwNzInuTiXTVkJ/LjwCe7zD0EiFvNF1Bq6lX04GFmwc/nzlLTUDRBZU+dztbmWTVnxrB4fSp9KyfOHf+bTyNWcKr/C3iun+W3J02yKXkuvSsEYa2eCHUbxcsqvAgH55qzlVLU306XoRalR8cHJPWyMWsNbs1agK5Wz+Uwih1e9ydnqYiz0jUgoOkdZWwO/LXma4uZati99lobudjRaLRvCVzHVyYfMyqvIJBKaejpo7OnASt+EiQ6e7L18mkcmRrB858d8GrkaawMTehT9bIxeS2d/L3FXz7J+UgxLd/yHL6PXsXLXJwJB80XUGjbHrCO/vpxvzx5mc8w61ids5dGJkXT096ArlXHo6ln8bV3518xlRPz6bx4cH4qTiSXVHS3YGZrxRshylGoVn0WtQavVUNfVRozXBD46tQ8Pc1va+3qY4uTNtbYG3g+7h47+Xj6aez9bco4w1cmblt4uXjoysO9cTKx4cdpCVGoVOhIpJ8svY2dkxtLRU0AkwkzXgNX7v+TwqjcpaKzCz9qZ83WluJnZ4GluR01nKz8ufAJzPSMWbvuQjyPuZ/ZPb5Bw72tcaazim3mPoFSrcDAy55OIBwiwdUNXJsNIroeBXJc/lj5Dc08nn0c+SFtf903Hlsgn/01jeSE2Hr70d3eiZ2TCt2vDmb3mRfo629EzNhPyo67lptPf04W+qQXleafRNTLBI2imsCxL51E0VRRjN+pP90N7fTUqpQIrVy9hLPsn6OvqoL7kMv4RS6m+ch4nvwlg73LL92u1WpR9PTRcKyA3YRu6hsb0dIyML/mn2yKRyZHKdZDq6CGV6yDT0UXHwIiOxjqKs49h7er1Xweb/1P8EyLqeqhVKiQy+R1S6g7+t4iJieHq1at8+OGH9Pb2Ym1tjZWVFT4+Pnh7e7N3717q6upYvXr1MEJpSEmSkZEhBBHfCHd3dyHgt7S0FF9fX2ECL5VK8ff3x8rKCrlcjkKhoLGxkdTUVJYsWSJMvhjMncrK+rM6My8vb8SEHmDu3LkcPnwYa2trNBqNEFx9K0gkElpaWti6dSsrVqzgxIkT9Pf3o6enx7Rp04Ta+4CAAA4cOICDg4OgQjl//jxlZWVERUUNUz3daF/w9vamtbWVnJwczp07h7Oz84jWuutRXl5OXl4eK1asEAKVhxrtVCoV58+f5+zZs0RHR/P+++8zc+ZMGhoasLKyuqmFoqqqikuXLgkTYLlczpw5c9i0aROenp6cO3eOK1euEBISMmyf/x3q6+s5duwYkZGRfPHFF8MsSEPIzMxk0aJFNDQ0jFCaXL58eVj2lr+/P3v37sXT01NQ2zk7OxMVFUVycjKhoaHs2bNnBMl44MABYmJisLCwoK6uDmNj42EWvkuXLmFkZMS33347QgmXmJhIZGQkaWlpaDQagWw8ffo0vr6+WFlZCTYqkUiEh4cHbm5upKWl0draSmRkJN3d3ULr3fU4duwYr732GhkZGcybN4+Ojg6OHDmCWq3mjz/+4Pnnnx9B1F1Pzg5hz549LFy4kK6uLrKzs5k2bRqOjn9aJ2pra8nJySErKwtPT89hbZh/h97eXo4ePYpcLicuLo6+vj5mz55Nfn4+Z8+eFb5Htra2jB07doQCS6vVUltbS2FhIcbGxoSEhLBt2zbc3d2ZNWvWsO9TQkICsbGxlJSUkJiYSFRU1F9uW2ZmJps3b6agoICZM2cOu+Dn5+cLx9jc3FzIf7pw4QJRUVEEBQWRmpqKvb39sHY+rVZLTk4O9fX1iEQiJkyYQGJiIgwSqDeSUp2dnUKIu6OjI4aGhmzbto1p06Zha2s74viJRCKhVEFXV5eTJ08Oa8AUiURER0eTlZVFRkYGurq6AoGvUCg4f/78sObRgoIC+vv7CQoKGparxSAhLpfLsbGxYdGiRYwfP561a9cK46tcLsfExIT4+HiSkpJ49NFH2bRpE+Hh4YLy77333sPb25vQ0NA7hNQd/E8glkhRq5RIpLd3LTG3d8Hc3gWVop+awjzUKhWmtk6Y2jqi1Wr+st5bq9Wi6u+jr7uD/p4u+rs70aiUwwowbvb/l48foq7oIg4+AaiVCmRyXaQ6OuibWiLT0UUil/9XteJDGLI9RK1/FxMbR/p7OrFxv/1xub70Cgtf/ozezvbbmuj0drSif11LlY6+IRaOHlQXnMfBZ2B86e1sExRiQ9AzNsNjYgjVBedJ+PxVZt73NPUll4XXpXJdDM2tCLn/WXSNTFAq+qguOM+ZPVvpbmsCRm7b3WNnMNN1NAZyHcz0jJjvPRGNVkOXopf6rjaeS/6JzTHrmPfH+4NZPz/jaW5LuIc/D02YO6CSL8rF3cyWxaMnU97WyDgbF2K8JtCt6OPtYzux0jehrK2Btr5uOvp7eSJhC78sWo+FnhEqjRo/aydqOluZ6ODJJ+kHeCf0LhyNLbhr92d8GH4v/rauVHU08/axnWwIX4W1gSleFvZsXfA49V1tPDkpBplEyhTHP0mBt2atYM/l03iY27IpeiBgfOG2DYS6jSHQ3oP1Cd/zQdi9PDoxAoVazcaoNQTauVPT2UpNZwu1na28e3wXn0c+yFtpO3h/zj30KPsZb+tG2OJxFDXX8uSkaHJqS1gyegqbzySwyn8WvlZOtPR2IUaEUq3m17xjvDVrJQG27izd8RHvh91LY3c7r8xYjKFcj2eSfuDRiRFMchxFY08Hq8eHolCrmOXqh1qjYcWYqag0GnSlcgx19Hgl5TdeC1nGO6F30dzTSaCdB6+nbuNfM5fS0N3BS0d+ZXPMOrRaLav3f8mOZc/hZmpDZlUhlvrGWOgZ8dzUBVR3NGOko8fnkQ9S0FjF9+dSeGjCXF48/AufRq7mndC7BprkZi5l67mjPDA+lJrOFkZbOfHCtIUcL79Ej1LBbLcxTHb0orCpmleP/s7jwVEE2LoS7OCJUq3irWM7BsihxK28OG0hrqbW7LiUzkNBc8mvK0MLbDi1j58XraexpwNHYwtkYilTnbyRiSXk1BQT6zWB9Qnf86+ZS3kiOBodqYw1gWFIxGI+nns/CpWSt2at4NWU34jxCsLP2onV40PJry/n69iH6VH2YyjXQSISc7W5BnczGyz1jXgkKILR1k7IxBJ2XEwnsfgcSrWaUxVXWDp6Cia6BnyScYDflzzD4tGTmeLkQ1N3B93KPsraGihoqua7s4d5YfoiJjt64WxqhYFMhxenLaS9v4eW3i58LB3QaLXMdB2Ns4kVnuZ2LNj2AdGjAon0HE+ArRvFzbW8kbYdawNjnpu6ABEiYVsMZDqs3v8lu1e8SLeij6Wjp3CkJI/PMuP4KuYh3kjdzlK/KTgaWzBt66v8uPBJTlVcYf+VLN6cvYLnk3/C3cyGBT7BTLT3JLvmT/WNXN+Q4jPHuJpxGBNrB3QMjNEzMmXW6ufRNzajp615mFpHIpWx682HmLjwAcbNXYpMZ7gNTK6nj7Lvz9a43s522uoq/3EG1BAUvd1UX8nFPWjgflKr+fuMpYE4CjHKvl6in34fXUNjtFqwcff5r7aBweuWWqVE1d+LStGPsr+P/u5OVP19VF06y7n4P5j72Ju3DD8HEIkl6BqZoGtgjK6RCVLZ7T1EHnooPIyI0rt9ImoILTXlgvLsdnGHlLqD24JKpUIqlaKnp8eMGTP48MMP2bBhA9nZ2VRWVgrhx1u3bqW3t1dQlPT09LB9+3auXbtGV1cXkydPFm78RCIRCoWCo0ePolarCQsLw83NDV1dXUHNoFAoyMvLE5q0lixZwhtvvMELL7xwU/vRUJC6ra3tCPsfg6qnrKwsXn75ZR566CGeeOKJYa8P5QoN3eQNEWALFy4kLS0NAwMDwsPDhb/t5MmT9Pf3C3Yha2trEhIS8Pf3Z/fu3YwbN46FCxf+7f5tb2+nra2NyZMn4+3tzYEDB5gwYcIIpReDTWONjY0C4TZ+/HjOnz8v2I+kUilBQUEcOXKEuLg4Ro8ejaWlJcXFxeTm5go33WvXrmXLli0wmI0UFhY2bAK9d+9eHn30UZKSkpg3bx49PT2kpKSgUqmYNGnS3ypuTp06hUKhEEhKuVwuKNSGcPnyZYEgsba2xtTUlKtXr+Ll5XXL5Q6F7Le1tREZGSkEkjOo7Jk1axZxcXGCQiU1NZUJEyZgYmKCVqslIiKClJQUtFotbm5uFBQU0Nraip+fHxKJhL6+PmpqarC3t+fatWvY2Nigr68vKPGmTJlCWVkZKpVKaHUb+tukUimpqamCLer48eO89tpreHt7k5KSwqhRo4YRQl1dXZiamgotfsbGxkRFRdHR0cEjjzzC/Pnz6ejoYMaMGcKxkcvlKJV/PnU4dOgQs2bNwsDAAAMDAzIyMoaRZwwStOHh4QQGBnL+/HmSkpIENSO3eHrT19fH0aNHkUqlREREIJPJBIIuNTV1BGFUV1dHWloaKpWKxx57jM8//1w41vb29kyZMgVdXV3i4+Pp6enBzc3tlgSnh4cHhoaG7N69m8WLFwt/y9C5qdFo2LdvH5MnT8bBwQE7O7sRttyOjo5hajIGCb2+vj7i4uLw8PBArVZTUlLC/Pnzyc3NpaZmIGQ5MDBwmHJKJBIxd+5czp07x7Fjx0bkdl0PU1NT/P39GTVqFAcOHKCqqmoYQchg1tbRo0eJioqivb192Hd4CJMmTeLUqVNMmDCB+Ph48vLykMlk+Pv7Exw8vJ0rMjKSs2fPChl6N44b9fX1nDp1il27dlFZWSkQ8ZcvXyYpKQmZTEZoaCjffvstkyZNYuvWraxbt47jx48LqkSZTIaOjs6wHKs7uIP/BrajxgwQPr7/TOEklevgNGYgA6+1toKrGUdI3bqB6KffH/a+G4kmqY6uMPkxtXX625vzmsJ8Qte8SGttJRqVEn1jc4wsbf7yM/8E3W3NNJRewTN4NpUXszG1daSu+DJt9VWY3iSH6Wbo62zHxX8yHY01w4ilW6+zBRNru2G/M7K0ob+3i6aKYiydPWmuLMXOa3jeYkdjDS3V5UikUrymzkWuZ4BMRw/bUWOE60Z53mm8poTRVFmCVCbDyW8CqoX3c2bvD/R2tqNS9A1bpqmuAZG/vsOG8FUUNlXz8/k03py1ApVag42hKd/Oe4Tmnk5eD1mGpYExG6PWUNxSy9HSfOb7BCOXypji5I1YJEJPqsMc93H8fD6NE+WXeX/OPXwQdi+9KgVz3MdhpmtAj7Kf56bOR1cm573Dv6AjlfHS9IW8d2I3m6LXMtZmQAVR393OY8GRyCTSQVJBj13Lnye9ooAXpi0g4td/szF6LboyOU8mfM+rM5Ywy20M6w5+xXfzHiW9soBFvpO41tpAdWcLey6f5qdFT3KhvhxD2UAzXpC9J9G/vcOawDAuNJSz/eIpXpi2kN+XPMM9ez7jq5iHqGhv5PPIB3ko7ms+j3yQp5N+YGPUGv59fCcfht3Hj7mphLqNRSQScamxEg9zW+IKz3Lo6lm2LX2Wl6YvYmNWPJ7mtrw2cxn9KiXvHN8lqHt2Ln+e+q42MiuvMtPVj4SrOZjpGtKt6KdH2U91Rwt59WW8mbadSM/xfBq5mksNA8UyXw4SYesnxbDvShb3jJvJayHLaOhuR63RsCl6LVUdzeTUlOBn7Uxi0Tks9I2obG9invdElGo1bx/bwccRD/B6yDJEIjFPTY5BLpbyXuYhXp25hFdO7GbdhHBae7vYc/k0/qFuSMRixlg7U9/VzpdZiTwcFM6/j+3kk4gHMNbR48XDv/LEpChW7/+SL6PXYaZnyOeRD2Kia0BtZwv/ObUPByNznkz4nj+WPsPmmHU093TwxelDLPAJ5te8Y9wfMHtAlRe9lpyaEr6OfRgjHT3u3fM5jwdHkXbtAiY6+mzMOsQjQZF8l3OY7cue40zVVdIrChht5UhWdRGTHb05V3GFX/KOcXz1Ozw3dT4ORhaUtTUQ5OBBj6KfLkUfMV4TqGxvRqFW8kbIMg6X5BFo78Gm6LVUdzbzxel4vCzseSJhCx/NvZ9gh1HoyeR8M+9R9lzOZK5nAOsTvmfL/McwlOvS3NNJQ3c7x8ou4WRiwSzXMTyX/BO/Ln6KDeH3UdfVxvrErXwYdh8KtYpPI1ZT29VKYVMNn2Ye5NA9/+JE2SWsDIzZEL6KivZGnk36kddClpFXV8YHYfei1Kh5LWQpvUoFIpGITyMeQE8mp7CpmhemLaS4uZZtS5+lpLWO7KpirjRVDTv3FT1dXM04zKJXN6JnYo6RhQ0lZ47hPS2CsvMZmDu5YzlI9ne1NNBwrZDx0Xeha2hMTcF5ZLr62I7yu+kDAbVSQfXlc3gE3/r+7K+g7O+jIv/MLW3Nt4JWo6HsfAaewbOpupwzEEpedY2aQevafwORSIRUJh92rdJo1JSdS2f0rFhsPP3o7+nCNWDqLYkitUpJf3cnfV0ddDTWjAhJv9nDmJbqa1zNTGHUpND/ioi6Hh0NNf+4sfBO0Pkd3BaSk5Px9fXliSee4OzZswQEBPDxxx9TU1PDpUuXqKioIDU1lejoaHx9fbl06RIMKkHCw8OZN28ejo6O7NmzB7VaTXl5OYmJiUJIcmxsLLq6uhgYGAyruZfL5UycOJHIyEjEYjFbtmxhzpw5HD16VGjTOn78OF1dA37h0aNHc+XKFU6cOMHMmTPRarUUFhYKAdrp6ekEBgayfft2wsLCiIuL49ixY8IJaW1tLYSNX7x4kXPnzrFixYqbZjvp6+sTHh5ObGysYLdqbGxkwYIF5Ofns3jx4luSK0NKiev37xCRJxaLWbRoEaWlpcOa1RhUhgwpVYZgbW1NQ0OD8G+tVsvBgwfx9fUlJiaGgoICjI2NCQwMJCIigsjISIyMjNi2bRsmJiZERUUxbty4YYRUYWEho0aNGvY7fX19oqKiiI2N5dq1a8TFxXH+/Hnh9aEcpJ6eHnbt2oWLiwuhoaHC69c33A1tZ0FBgZDDxWAO1uXLl+np6RnW0MYgMXrq1ClycnJYtWoVXl5eN53MW1paMn78eA4fPszZs2exsbEZoSAJCwujtLSUpKQk6urqmD59Oq2trZiZmRESEsLJkydRqVTk5OQIQeCWlpY0NzfT3d3NuXPnmD59urA8d3d3IiIiSExMZMqUKcybNw+5XI5MJiM4OJjc3Fzmz58vhINrtVpBucagtW6o2Wwos6m4uBgrKysCAwNJTEzk0KFDQmj8EI4dO4afn5+wHG5o9RuCRqMRjmVAQADBwcHs2LHjpgHxQ9s4dO4OEVIajQaRSIShoSEWFhaUlQ2v+ra1tSU8PJzQ0FA+++wzurq6CA8PJzIyknHjxqGrqyvs46VLl5KZmUl1dfWw9V5vB7SxsSEyMpLt27ejUCgQi8VotVohsD8qKkpohRxqk6urG9n2dCN0dXVZtGgROjo6REdHk5aWRnx8PNbW1sTExBATE4Od3Q2TNyMjOjs7mTBhAh4eHsI4xg2E3lDo/dA5GBkZSUtLizBWnThxgr6+PoFYzM/PFxSkGo2GS5cuCe9NSEjA0NCQP/74g/b2diZNmsScOXOEMPYbERQUxMKFC2lqamL//v2Ul5ejUqmIj4/n6tWrLFmyBF9fX3p7e9FqtWg0Gi5fvkxERAQWFhbs3r0bgIyMDOzt7Vm/fj3W1tasWLGCxsZGSkpK7hBSd/A/gUxHd5il659Co1HT0ViLgZkl0+56HLFEOiy0dig4d+j/7UaNxdzeBQNTi78lpBrLi9DRN8TYaiCDzi1wOl2tDdSXjmww/W/Q0VhDc2UJboHTh5cTeI6mva6Kvq6bl3ZcD7VSIVjxjK3s0Tc2o6748l9+pr+7Ax0D4xG/t3TyQNHbTUdTHRq1ColUhkatprrgPOV5p1H19+MaMAU9YzOC5t+LXN8AUzsnynLTaa4qpb+nC6lcB4lMjo27L00VJTRXldLb0cbEBffT19k2Yp3m+ka8PH0RgXbueJjZ4G/jikQkYtflDK4216BQq/g57xh6Ujkrd31Ct7Kf/6TvZ01gGG+mbaehu52JDp7oy3TIqCzghcM/M9czgDWBc8ipLeVgYTYd/T2sT/ietr5uHo77BltDM55K2MozU+bxftg9iBDxeeSD/JSbytXmGs7XXeOpxK3oSGTk1pbye/4JqjqaqO5o4fPTh1BpNLw8YzGmOvrYGpryeHAUxjr6OBlb8G7oQLNU2rWL1HS2cLGhnJNll9l8JpFLDRV8nL6fX/OPIULEvD/eY9vSZ5ns5EWsVxCLfCezaPsGsquL2Bi9lobudj48tQ+VVsNDE+ZibzwQ0p1ZVcgjQRG8nPIrPy58gpPll5njNparTTU0dLczy9WPjVFraOhu5+1jO3l79kpivYN4OeVXOvt7eXB8KA1dbbw4bSFNPZ08mfA9T02Oobmnk9dCliERixlt7cTBwmw8zW25UF/OlvmPcZ//LMrbG/nyTAIBdq58FvkgAXZuuJnZMMXJG4VaSb9KSVtfDyWt9fzr6O/oSGT8ceEkfSoF9wfMZpLDqEECUca+K6f5IPw+6rvaeDx+CyqNmhkufpwov8wX0WvoUyl4dGIE/SolCrWKtRPCUKhVfHhyL25mNtgbmbM2MIyG7g7eD7uH73KOcK62lGivQNIrCvho7v2crSnm3j2f42pqTWtvJ7pSGZ8P2j+fn7qAtr4eHo/fglIzoFab6uSNl4U9uy5l8kjcN3T09/D56UO09/Vw757P+TJ6HVYGJkSNCsTNzJrXZi7D29KepHtf50jJeT48tY9Y7yA2ZsUz3taNz0/H8UDAbDbHrCOvroxfzh+jqqOZh+O+obSlHo1WywuHfybUbSzL/KbQrehDqVFzqbGSXmU/TyZ8T2V7E6/OWEKXop/359zDRAdPjpVdIqk4l9beTs7XXWOMlRNfRq/DQK7DkwnfoyuVc6riCmsD5zDbdSwiRAMKtOO7aOhu55fzx3hp+iJqu1p5OukHupV9/Ovo7/hYOrAxei2ZlYX8J31ADf3+id3IxBIW+05GjIii5hqOl13ieNkl/nNqPycrLtPS24VELGHlrk9YOnoKcqmUjVnxXGut5620HejJ5HTdQEgDTFq6jo6mOhpKr1B5MRunsRMFu1715XMoeru5di6dnvYWnMZMxME3AENza1z8J2Ph5E7lhWzKzmfS0/6nRU6rHcymCpr5jwil68fUsvMZeEy8/bKJIVzLTcd1/DREg/eoDGYjGppbUXHhzD/elpuhr6uD0uwTOI+bhFSui66hMR4TZlBy9vgtW1glUhn6JuaYO7hi7+2P05iJw35uvF7aeY1Fx8BYKMawdvf9rwkpZX/vf9U8eIeUuoPbwttvv012djazZs3itddeo6+vDz8/P+bPn49UKmXZsmXo6upSWlrK6NGjKSgoQK1Wo1KpBDWEqakp5ubm7N69Gw8PD6ZOnUp0dLRgf2OQ+LielGJQTbJjxw6CgoK4++67aW1tJSIiQmjTmjBhAjk5OcJE7siRI/zrX/8S2v4kEokw2ZwzZw5GRkY4OzvT1tbGggULGDduHAcOHODkyZN4eXlx9epVIdz5xgyhW0EkEqFSqVCpVIKtMD4+flgj3/Xw8/Pj8uWBm8j09HSmTh0ZVjdkbUpJSYFB4srCwuIvs520Wi27d+9m6tSpODo6jmg5Y7CR0NDQkBkzZtDY2DhiQNNqtVy8eHGY9WnILjT0t06aNIl58+ZhYWFBXFyc0DJ37tw5jh49ypIlS0YQQUOkzhDS09OHETtDmDdvHnFxcZSWluLk5CS0nKWkpDBmzBgiIyP55Zdf0NfX5+DBgzfN3LG3t6ewsJD77rtvWP7U9dZFkUjEww8/TE9PD2q1WiBMGFSeyGQyxGIxp0+f5uLFi5SXl9PZ2ckbb7yBvr4+iYmJws+pU6dYtWoVWq1WaE9LTU0V8n2GcpMCAgKYOnUqO3bsIDk5WVC8WFlZ0dTUJBy/ofOpv79faByMiori7NmzHDx4ELVazd69e7G0tMTNzW3Y325qakp3d7ewzpvB3NycFStWcOrUKS5evAjXZZ8dPXqUOXPmEBkZOYwkKiwsFEjC4OBgsrOzb7rvDx8+THR0NEuWLGHnzp3Dvl/Z2dnC93f+/PlcuHBhWKvlEAE4BENDQ5YtW8aePXvo7Ozk2rVrHD16lLvuumuEFTIkJIQTJ07c8gI9hM7OThITEykqKuK9997D2NgYjUbzl4SLra2tQHg5OTkRHR3Nzp07hSD8srIy9u/fT3d3NwsXLhSIJpFIxLhx44Sxavz48aSnpxMfH09bWxv+/v4UFBSQkJDA4cOHMTQ0JCoqSnj/uHHjMDc3Z+XKlWRlZQ0jdW+FwMBAFi5cKCgc+/v7hym1ho5dSkoKc+fOpaenh/r6epYtW8bly5eJiorC2tqaZ599Fl9fX/bs2cPLL7/Mfffdd6d97w7+Z9A1MqH3JoTF36G+tIDy86ex9/bH3tsfUztnTKwdKL+ulei/RVtdFWqlAgsn92G/txs1Fh0DQ8rOZ/7t+PJXaKkuo7O5QcjKuhHO4yZRdSnnb5ueaosuYjvqzzgEM3sXpDo6QuD5rXCryZa9tz/NlSW0VJcJzYdWLl64+E/G3HHg+tLd2oSxlT0atRo9I1PcAqcjkcn55dnlQmtV5cVswW6jVimQ6ty8cend47twMrFk35XTOJpYssxvKi6m1jw7ZT6W+sZotVpsDUy51FjJ81MXsCkrns0x6zCQ67Jj2XNY6xtzuPg8n2UeREcq49PI1TywbxO9SgUuplaMMrcjtfQCn0c+iFgk4pt5j6DSqHlz9gpa+7oQi0R8knGQxOJz3D8+lDWBYcxwHs0fS5/B2sAEiUhM/D3/wsXECi1w4sH3+Ch9P+6mNjx3+CfO1ZTiYW6LgVyHZTs/RiwS8dKRX3l+6nwUahUmuga8OnMJb89eibuZLcv8phFo505Hfw9b5j/Gi0d+Yd2Br/C2dCC7upjnps4nyMGT9QnfM9p6gGh4I/UPXEytWL7zYy43VtHa242Jrj4bo9dS0lrPdzlHUKjVyCRSZGIp35xN5q1jO7jWWs+X0eto7unkxcO/DKpilICI7Jpi5BIpb6Zu4/PIB7EyMOG9E7u52FDB6aqrlLTU4WZmQ0lrPQt9JtHY3c7bx3bgbWHPB2H30tzTyeYzCfQpFewvyMLOyIxvspPZd+U0o8zt2HbhJB/NvZ+O/h5+XrQePysn/rhwgu/PpTDfOxiZRIpIJKa5pwOxSIytoSm9yn7a+7pJLDpHc08nhU01fJ2dzJHSPMbauPBJxkG8Le35KuYhxIh4I20bAEnFufQoFRQ2VWMg02WSwyhivSbwwuGfiRwVyDexj9CnVvJs8k9Ud7aSUVHA0dJ8bAxNMZLr8lrIMtzMbNh+8RTbLpwiu6aYENfRbJn/KEdLL7BizDQ2ZsXzRdQaLA2MeSttO/aDSisrA2OeTPienNpS9GU63OcfgkqjxsPMFnM9Q6I8x5NdU8J/Tu1Ho9WCSIStkRmbotdioW+EWCzmxIPvUtXRzIZT+7h73EzePraTF6ctpLytkR8XPom9kTkfZxygW9GHjlTGR+n7eWHaApb4TkGhVrP/rpf56Xwa753cjVqjYWP0WtRaDa/MWIJaq+XllF8x1tVHqVbx5KRoLPWNudd/Jn9cOImXhR3vz7mHtGsXeW/OPbQPErhikYj35tzNgYJsvpv/KJ39vdw1djrGOno8EhTBLNcxnKq4wurAUIqaa3ExsUQkErEmMAyxSISxjh7HV7+DQq3i0YkR/JJ3jAl27iPO/+z9PyHX1Sfl2/cozTkpkFN1RRc5+fsmynIzcA2YgrWbD7VX87HzGodILEatUqGjb4iL/2Rc/CfT2VxPed5petpbyD+8Bxf/yf8ViaJWqSjJOTnQfnpDoYxcz/AvQ9Krr+Ri7e4r2ApFYomQqWdsZY+FkwelOSf/b9eNmvKB9tfgWUjlOnQ112NkYYNEJsd5bDBl5zP+62UPobeznfK80/hMi8A1YAoOowOpvHiGuuJL/9Xyaq9ewM5r3G28czjukFJ3cFt48803kcvl3HPPPbz77rtYWVkRFRXFvn37sLW1JTExkQULFtDX18ehQ4dQKpXCJH2ILDp37hyTJk1i1apVtLW1kZ6eTmpq6rCT9UZSqqCggNTUVJYvXy40id04ETY0NCQkJITo6GimTJnC+PHjGT16NBKJhMjIyGGkxBCMjY0FlYi5uTkLFy7E19eX5ORkZsyYwejRo4UclyHc7IauubmZgwcPcuLECUJDQzEwMGDDhg3Y2dkxb948JBIJhw4dIjExUVBzMagCaWhooLW1la6urhH2niFYWVlRW1tLZGQkNTU11NXVUVFRIag0rt8HbW1tbN++ncjIyGFqCrlcLqiyLl68iFqtxt9/QFI61EZ4PYZIiSFMnDiR7Ozsm26fk5MT8+bNY8aMGcyfP59ffvmFsWPH/m07n1KppKWl5aYWwKHvQ2xsLElJSUyYMIHY2FjBqpebm0tgYCA+Pj6Ehoayc+fOYWTXmTNnOHjwIKtWreKjjz4iJSVlmBqutrZWsFZ+++23zJo1i4MHD3L06FEKCgo4dOgQCQkJPPbYY8yfP18IPG9tbeWll17i008/xdTUlKioKOHHxMSEBx98kDlz5rB//34KCgrQarXDSB2NRkNubi6ZmZno6uqyatUqkpKSBGKrurqa559/nnnz5glErlQqFax6EomE2bNnExYWRlZWFkuWLKGxsXGYlW8Ic+bMEcjMuro6bG1tR7xnKLuoo6ODyMhIjhw5wuzZs2/Z+lhWVoaLy59hj5GRkUI20RDa2towMDBALpejq6tLbGwse/bsEV6/nqQeWkZpaSmFhYU3tdv19vZSVFSEhYUFS5Ys4YMPPhBsdzfDkIpSqVQOW49WqyU7O5tDhw6Rk5MjKBz9/f2ZNGmSkPt18ODBEepEBs/X+vp64d96enqsXLmSrVu3ctddd9Ha2iqEwHOTzLghGBkZMWfOHNzc3DAwMGDevHlYWloSHR1NZGQkLi4uw8aZy5cvM3r0aEQikaAWjY+PH7b8G8el0tJS9u7dS3R0NAkJCSxatIi+vj5hHD5//jxxcXFkZGRw4sQJTp8+TUhICImJiTz55JMkJyczc+ZMdu7cSV5eHl1dXbz99tu8+eablJSUCNl1d3AH/xdYu/nQ8A/UR51N9ZSePYG+iRlugdOQ6ejS192JroERRpY2WLl6U3L270npW6G7tYnOprrBRqiRMLVxxN57HMVn0oZlmNwuGq4VoOzv+0ub3UAz3nSunfvrSYxaqRiRrWLp5IFGo/nHld4M2k9EIjGnd32Hmb0LzmODkevpD3t9CKa2jrTVVaLVammuKGHuo29g4+4rPH0XicWEPPAchubW6Jta4DU1fNi67ho7nXdD76a1t5uvspOo6WjhePklFmz7AA9zG3ZfzkQLmOoZoNFqmeLkzQMBoWRVFXH/vo009QxkGN0zbibrJsyls7+Xqo7mAUWHSISuRIZCrSJy1HheS/2Dj9MP0KtU8ErKb2g0Gjac2sfVphpen7WMNYFhPJv0A0q1iqeTfmD3pUwM5Dr8dD6N4pY6SlrreSbpB87XXaO6swVjXX0enzigkHrp8C+4mdmwenwoRjp6rBw7DVNdAwzleiQOhm5vv3iKN1L/YJ53EHaGZmw5dwS5RMqqgNl8EbWGC/XlnCi/xA/njlLQWMUHYfeSX1fGEwlb+CRiNSqNmtdDluFj6cCpiivoy3RYn/A9U528+SJqDRb6Rizzm4JYLMJER591E8IJcvDkiYQt9Cj7Bxr1DIz58NQ+Amxd8TS3w0Cuy0LfSXQr+7h3z+d8NPd+PM1taehuJ8ZrArFeE9CVyvgt/zhaINDOHYVaRXt/DxKRmMcmRqJQq9h1KQMHI3MeDAxj/aQY9GRyXpu5FIlYzKtHf6ezv5dPM+O4d1wIDwSE8nLKrwCsnxTNnsunqexo4o2Q5Vjpm/Du8V3sXP48rb1d2Bub42PpQKxXEHuvnOaXRetJLj7PY/HfIRaL2RyzDjsjM/xtXOlVKji86k18rRx5JulHuhT9fBB2L9UdzRQ219DQ1caX0esYZ+NCn0pBrFcQLxz+ma+yk7A2MOGttO28MG0h94ybyShzO/rVKpQaDYZyXZyMLbk/YDZVHc2s3PUJCfe+hpFcl5emL8JIricQUfFXcwi0G3hY83DQXFr7urE1NKOtr5s57mPxsXLg4Qlzqelo5smE75FJpKxP+J4L9eU09XRQ2lqPWCTm9ZBldPT3sDErnm5FH/85tZ+N0WsZY+OMRqsl/moOV5trudJUxcspv3Ls2kXM9AwJcfGjpbeL14/+gaFcl6cSt2JjYMJXMQ8NbO+RX+lS9HGs7CLfnj3C+kkxPB6/hW5lP25m1rT0dqErlfHKjCU4m1giFUvp6O+huaeTV4/+Tn1Xu6CsMtbV57WZSzGS6yIVi9EC+66cxsbAhIaeDtYe+Iq8+nIyq67yScZBvoxeh5flyBa62aufR6XoZ/o9T+LkF4Sd1zhh/Ji28jHk+ob0tA80UmvUaiRSGbaeftSX/EmQiEQibNx9cPQLQtHbw7n431H2j1Rl/R00GjWlZ4/jETTzpoSWuYMrLVUjW0QBmiqK0TUywdDsz/mWnpHJMLWrgakFDr7jKTlzDM1t5FPdiOqC86iVCpzHBgv3er2dbegZDbhEdPQNsXLxoupyzj9e9hA6m+upL7mEx8RZiMRiwTroGjAVI0tbSnNO0lZfdRtL+hMDx+2fJ0TdIaXu4LYxduxY1q1bR0dHB/39/cTExNDf3z+s2nz06NGMHz8ePT09/vjjDwwMDISn/jNnzkRfX5++vj6MjIwE5cC+ffsEBYCuri69vQM3fCkpKXR3dzN//vy/JTkAiouLycjIYPXq1axatYrp06cTFxcn5FH9HYaUKVu2bCErK4uTJ299Y1hSUsLBgwe5cuUK8+bNY+7cuchkMvr7+/Hw8BBsSaNGjSI2NpawsDDOnDlDXFwcOTk5wnIPHz7M3LkDwZ2VlZUcPnx4mAKnrq6OkJAQvvjiCyIiIpgwYQJdXV2kpqaSnJxMcnIySUlJVFdXY2Zmhp+f3wgFSXBwMGfOnKG4uJiWlpZheTSmpqZ0dXUJqpq2tja0Wu0wW5xUKr0lCcAg0bB//34SEhJ4+eWX6ezsJC4ujtTU1JsSJgBHjhwZFjCv1Wo5e/Ys8fHxpKSkIJfL+e2335DL5UKw/BAaGxsFMsvQ0JAVK1Zw9uxZXnjhBfbu3Yu9vT0LFy7ExMQEmUxGTEwM48aNY+fOnURGRnL16lWWLVsmEHf6+vr4+fnx66+/4uDgQGxsLHK5nCeffJLy8nJMTU3R09OjsLCQzZs3c/DgQRwdHdm3bx9Xr17l/PnzBAQE0NjYSHp6Onp6evj6+pKXlyccozfffJOPPvoIW1tboqKikEqlHD9+nODgYIHYsrOzIzU1lWPHjpGXlwc32Pr6+/s5dOgQJ0+eFALd/fz8OHr0KIcOHRqmytPX10ej0dDX10deXp5AQg5BqVSSlpbGoUOHUKlU/Prrr7S3t//thO56AsTIyAhLS8thNr60tLRh1tLrM75u1ag3Y8YMUlNTWbBggfC9T0pKIikpiTNnzmBoaMicOXPYvXs38+fPx8zMjLS0tGHnSW5uLgqFAgsLC3R0dEhLS8PHx4fGxkYOHTpEfHw8Tk5OxMbGMmvWLKRSqZAbFhYWRkpKCmPHjmX+/PlYWVlx8OBBjh07JhDgN9qKy8vLOXDgAKNGjWLDhg0j9ltbW5ugurseTU1NAkkXGhrKq6++iomJyQhybwiVlZXDFIdjxoxh+vTp7Nixg/b2driOAOvo6GDfvn20t7ezePFi4XMikQhfX19hHA4ODubdd9/F2toac3NzZs+eLZCQQxbqJUuWIJVKaWpq4v7778fAwABTU1NiY2MFhecd3MH/BbdrkVD293HtXDq9na24B83EyOLP+42+zjZ0DQeIbH0TMxxHB1J8Ju0f3/wrerupL72C05i/bpiV6xngOXEWVZfP0dFYc9vLrynMH7S3/X3wrUQqw8E3kMqLN38Q1N/ThVzf4Kav2bj7oOjppq3u9icQvR2tlGQfx97bn+in36evq53qgvPD3tNQdhVrN28ATG2daKurouTscRz9JuA0diL1pQO173XFlzG2tsfYyg6nMROpL77E1Ywjw5a17cIpSlvr0ZfJ2Ri1hucP/4yVvjHvz7kHG0Mz7AxNUWvURHqOZ5qTD59mHOTn82mEe/jzTuhd2BuZ80HYvfSplIJtb8PJfUx18mb35Uwq2hvZfvEUvpaOvBN6N48GR9KvUvJp5Gos9I3YEL6K8XZuPHTwa344d5SN0euQSaT8uPBJxto4c6Qkj0U+k3grbTtTnXz4NHI132Qnc9+4EHZdSkehVrEx6xDvzrmb3/KOc9+4ENQaDYeu5nD02gWqOprYsew5RCIxq/xncY9/CEdK8nj+8M+8MG0hTyZ8T6CdG+mVBfhaObLcbxqLR0/BysCEV1J+w8Pcjo1Ra6jqaObNtO1Y6huz42I6X8aso6G7nZ8WPUn0b+8iFolYd/ArxCIx/SolJroGiEQiqjta2LrgcZxNLTlYkM17J3bzesgyTlZc4Wx1Mbm110i7dgE9mQ5Ro8ZT2FRNTWcLS0dPQYSId47vYqyNCx+E3cePuUcJsvcgv76cD0/uRU8m561jOxht7cRXMQ+x+UwiubWlJBSdo6azBX9bV2o6Wvk88kFsjczoUympaG/ktdTf+TTiAVQaDc8f/pnRVk5Y6RvzWPx3KDQqnEwsudZaT2JxLudrr/FIUARz3MeRVXWVvPpyTHT0eXJSNM09nQOEiqKPnZfSaehu52J9OWsObOazyNW8kbYNYx09squL+STjAHqygeuaRqsRSL3PIx/krjHTsTc0w0zXkJKWOl44/DPBDqN49/gujpScZ7ydOwF2bnxwcg8+lg5sjllHUXMt6xO3Ym9kzqOHvmWBdzAarZZgh1GUtTXwfPJP6EhlbD6TSJeij/N115jp6kfkr++QX1+Gia4BT02OGVRCPYFSrcbJ2JLHg6PQouWVlN8w0zXkm3mPUNhczcboNRwuPs/ynR+jI5GywCeY90/uZqqTD9/Me4RTFVe42lzDJEcvepUKflz0JDKxhI3Ra7ncWMlj8d8hk0j5ImoNulI5kZ6BvD17Je39PXw0935BhVbT2Tx4Xp7k9/yTXGqoYKqTN/sKsti9/AVsDE2wNjAdaLAUiVifuJUx1s48PXke+jI5MrEUKwMTLPSMeHPWcg5cyaJL0csHYfeiQcu2C6cYZzO8ue7olg9wD5qJsZUdbhOmU3ruFFqNBpWiH4lMjmvAFBrLi6gpzMPEZiCiQa5nMOJhQFdLI2W56fjNnkfYQ6/SVld5SxuzSCQecV3QarWUZB8fUH3eonRDrqePsn/kQ4iulgb6e7qwcByuBNMzMqX3huY9HX1DXMdPpfjMsRG5TreCRq2mJPs4JjaOWN3QVKvVaocpugzNrTAwtRTG4X+C1toK2uurcA2YOsxJMgQDUwvcJ8xArVBQevYE/d2df7G0ATRXlo7YL7cLkfb/oin7/xGGnuJ/9913rFu37v/rzfl/BefOnRPCs1etWsVDDz1EV1cXeXl5ghpm7ty5JCQkUFhYSEREBKWlpdjZ2QmNVS4uLjQ2Ng4LBk5KShJq5odQVFREfn4+U6ZM4fTp0yiVSmbPnn1TJc2JEyeYMGECBgZ/3pidOXMGlUrF1KlTR6yjvLxcsAZdHwB8fY5TXV0d6enpLFq0iCNHjhAREUFTUxPp6emYmZkRHBxMZmYmxsbGVFVV4eHhMaJNMD09HR8fHywsLIiPjx/WGnc9qquryc3NZd68eWzZskXIxXFycsLHx2dEgPuBAweYP38+Bw4cuGloent7O/Hx8ejo6DB+/HiKioqGDSpWVlZkZGTg4+MjhLRfj6HA9oiICPbs2cPixYtHTBgOHz7MrFmzhil/rl/3kiVLqK6uRqVSCTlaXV1dQjbTuHHjcHFxISMjAwcHB0pKSggNDaWgoIDi4mKh5czW1haNRkNcXBwymYyoqCiUSiVHjx6F6xRAUVFRFBYWUlpaikgkoqenh6effpr33nsPS0tLDA0NmTx5MqmpqTg7O1NaWkp7ezu7d+9m3bqBlhhdXV1aWlrQ1dXF0dERT09P8vPzMTIyQldXl1GjRpGUlISnpyfFxcVERUWRmJiIj48P3d3djBkzhvT0dCIiIti5cydWVlb4+/sLIewmJiYsWLAAgLi4OPr7+1m8eDHt7e3k5uYya9YskpKSiI6OpqKigsrKSjo6OoiKiqKiooL8/HzEYjFNTU1YWVmh1WoJCwtDLpeTkJDA3LlzSUxMFALdi4qKKCwsRCwWM23aNPT09Dh8+DASiYSoqKhhrXJSqZRp06YJDY/JycmEhYWxf/9+ITz8RtyqDW/Xrl3C8a+trR0Rws1gu+OePXsICAhAqVSiUqmE76hcLqe3t5e+vj5cXV1vak8tKipCoVBQXV3NtGnThp37DKrfLl26JJCgQ/Y6JycnJk26eV16QkICUVFRiEQikpOTmT59+rDltre3c+LECUGhduLECXx8fMjNzcXZ2ZnAwEChgbGiooLm5mZhnMvLy8Pa2lrIplIqlSQnJwuqTpFIRGZmJr6+vpiamgqFCosXLx6m8LrVPtdqtcL4WlZWhlgsFsLKryfwL1y4gJmZmaDErK2t5fTp00RFRZGens64ceME5V57ezsajYaQkBDy8vLw8fHh999/Jzo6msrKShISEvjjjz8EhelQqPr/X7BlyxYeeugh2tvbhbbFO7g9DN0/PfjlASGvAqCjsRaVoh9zB9cRn9FqtVRfyUWjVuHoN+GmwbY1hflYuXoNUw2pFP2UnjuFx4QZSG6jbUitUlJ69gSek0JHjBMVF84MqH9uMn4M2BpE2Hr+tXKw8mI2xlb2wuTqRlRcOHNTO19bXdVNG/nK87NwGhP0l81/VZdzMLZ2wNjyT4XszdbTcK0ARW83jqMnDHtPV2sTdcUXcQuYikQmpzzvNC7+kweyEK8VcuTrfxO8ZA1mds5YOntSkZ+FkZUdKkUf1q7e9Ha201B6BYlMRmtNBenbNgvrtNI3xkLfiIKmaj4Mu4/GnnZ+yk1jXVA4H57cy1cxD2Ghb8S52lI2nNrHVzEP0dDdzqmKAh4LjhwINC+7xKaYdbT0dtGnUtDZ34uuVI4I0JXJCXHx49PMgxwtzefF6YvYnJXIvf4DFqkvo9fxdNJWPpr7ABPs3fkt7zjf5Rzhy+h1PJGwhQ/D7kNXKhtQzahVvJb6B/+efRdelvas3PUJ/5q5FEt9YxyMzVm+82Oem7qA73OO8GXMOiramzhYmE2o21g+OLmHjVFrOFZ2iQjPAJRqNaZ6Buy4mE6U53gei/+Or2Ie4uOMA+jJ5ER4jMfV1Aq1VsuWnMM8M2UefSolErGETafjBwLFU//gl0XryaouIsDWlR6lgi5FHz+fT+XJSTE8mfA9i3wmEeYxjsfjt7Ah/D60WhCLRXyfc4QPwu6jsr2Jpt5OLPWM6Fb2sf/KGbwtHfAwt0FfpkOArRtPxG/hseAojpbms8BnIu19PTibWlHe1oilvjHZ1UV8lZ3E9qXP0tDTwY/njmJnZEa4RwDPJP0gBKoP/feLqDU8lbiVTdFr0Wq17L1ymnneE9GTyulU9GGpb0RJSx3nakuJGhXIU4lbeWv2SkZbOXKupoTGnk62nkvhrdkrQaulU9FLv0qFp7ktIpEItVaDjkSKnlQHkUhEW183fSoFulI5zyT9wCNBEVyoL6e+u41ZrmPwtXKks7+X3/KP8+jESOq62pCIRNgYmiGXSHg8fgtvzV6JpZ4RV5qq2HwmkU8iHmDnxXSW+k2lubcTfakOb6Rt44uoNbyS8hsPjp+DjaEJ4+3cudRQwcnyK6weH0py8XlcTa0w1TOkor2RtGsXmevhzzvHd7Eh/D4Si85x99iZtPV380XmIR6ZGMHrqdv4z9xV6Enl9A9+B/Lry3A2sUShVtOr7Ge6sy9VHc1ca6vni9PxbIxaQ1rZRfZdyeLAXa9Q2d5Ecsl5lGoVScW5RI8KxNnECpVGzffnUljlP4u2vm5muoxGXz4wfla0NzLa0pGqjmaOl18i0jOQZ5J+YPuy50gpyRuwrMp0KG9v5JOMg2wIv4+K9ibqulpJLj6PhZ4Rj0yMoLO/l/dP7uHx4Cj+yD9Ja9+fLhFdI1PCH/4XGo0GrUaN89hglP29VFzIRkffANtRY1H2dtNQdpWj373PnIdexd57HDIdPaou52A7aixSmZy64sto1CrsvccJ46zTmIl0NNbSWF6Ea8CUYURTU0UxesZmGJhawBAhdfY4zmOGq0JvZ4xW9vVSdTkHt8CR8SNqlYraq/k4jh55bzRANB3DxX/ysOvgjejtbKP6Si5u46fd9Bp2q2tGw7UCpHLdm15Pb4bG8iLUSsUIdfCtlj90TVarlDj5Bd3SKll2PnNEwLmit5sfnljwt/dPd5RSd3Bb+OWXX5g+fTrl5eXs3btXaAtj0Ar3/PPPk5KSQmxsLEFBQRQUFODr64ufnx/Ozs6CEuBWHOhQTf0nn3zCkiVLsLKyEibMNyIwMHCYxSYxMRETExOBkLoRLi4uLFmyhLq6Ovbt20d3d/ew169evUpeXh5LliwRwpQZzEBasGABfn5+PPDAA7zyyitYW1uzYMGCEYQUg1Y+C4uBAc/JyYnKysqbbs+QGmzOnDno6ekRHh5OVFQUY8aMGUFI1dfXY21tjUgkEixk16OhoYEjR45w1113MX78eLq6uoQw86Efc3Nz1q9fT09Pj6BASUpKIj8/n76+PvT19VGr1eTk5ODn53fTG/Ch5rnrUV5eTlpaGnfddRc6Ojoj1CRD+Tjz5s2jvb2duLg4Wltbefrpp+nu7ubQoUNIJBJiY2OJiYkRLGYnTpwgJCSEMWPGcPHiReRyOVFRUYSGhrJp0yZiYmJISkoSfj+kPCorK0NfX19Q4B07dowFCxYINjITExM+//xz7OzsiImJYfLkySxfvpyenh5kMhlGRkZ0dHRQXFyMl5cXvb293HvvvdTW1hIVFUVjYyMWFha4ublRVlZGQUEBbW1tpKSkEBgYyMSJE0lJSSEoKAgrKyvs7OyoqakRsqoiIyM5fPiwoCYa+q6pVCqysrIEsqWzsxNnZ2diY2OxtbXl/vvvFyxe15OCQ22YQ7bQIVVeREQE58+fJzk5mZycHM6dO0d8fDwJCQk4OjoSExNDRETEiPNLIpGwZMkSioqKRljYbmUB5DobX3Z2NsHBwajVaoqKioap/i5cuMArr7xCSUkJISEhREZGCsduzpw5qNVqli5dilwu59SpUyPWcenSJfz8/AgNDSU1NXXE63Z2doSFhREVFYWZmRlr1qyhqKgIqVR6S0XG9cqtIdvf9TAxMWHevHmCkioyMpLm5mYWLlwokDFDF9ixY8fi6uoqKMLq6uoEBWlGRgaJiYmEhYUxa9afrS5tbW2CItHKyopFixaxe/fuEef4reDi4sL27duJjY0FYNq0aSMUpaNHjxZKJ0pLSzl//jyLFi0SVKFWVlaCOmz58uXo6uoKGX/9/f2kpqaSn5/P/PnzmTVr1k2D8e/gDv5bGFvZ0dk0spyguaqUazknsXIZhfPY4FsSMGpl/wgbm1Sug+fEWZTmnETR23PTzw1Bq9VSevYE7kE3D7fVMTC65ZNhW08/9IxNuXYufZi97fplXzt3CjMHt1sSUn8FU1tHtBrtSNuEVvuXhBSA4+gJtNaU093WfNPXNWo1pTkn0dE3Egip62FoZol74AzK807T3jDQ2lSen0V53mkMza0Iuf8ZvCbPQd/YjIoLZ8je/xNHv32P/q4OKi9m01hWSOLG19BqNMMIKYCmnk4Kmqp5clI0Z2uK+STjIHKpFPPBtrTC5mpW7PoEH0sHvohaQ313G7svZ5JZWYBULCbI3oOlflNp6u7g04yD6Et1eOf4LvRlOvSplDyb9CMnyy8TZO/JS9MXIxNLiPGagJmuIY8HR6Erk/H27JU8k/QDX5w+xAyX0XwRtYYjpXlsCL+PURZ2PJ30AwcKsrA1MuXFaQspaqnhkbhv+Dr2YWK8JvBM0g8UNFbzVcxD+Fg64G5mw9XmGv519HfuGTuDj9L3827o3ZjpGZJVdZUepYL8+jJqO1sJ9/Dnl7xjZK79kIaeDu7zD2G6sy+Gcl1ePPILErGYivYmmnu6iL+aw6bT8UR7BfJa6h9sjFrDqn0bsTM044OTe0ksOodKoybYwYvmnk62LnicGa6j0ZHK+CJqDWa6hryc8isd/b2Y6xmx98ppnk76AVsDU37LP05KaT5vzFrOMr+ptPX18NKRXyluqcVC3whzPUOmO/vyTNKP5NSWcKmhghcO/zzQEqyjx4Pj55BSms+zST8y32cid42dwbYLJ/ks8kF2Xcpgc8w61BoN/5q5FLlEyr9mLsVMz5D1iVtZ6DOJ55J/or67jZ/Pp7Htwklaersw0zNgjLUzr4Usw1LPiKyqIj48tY8x1s58GvEAksEssD6VEltDU949sYu3j+2gpKWO55J/plfVz+r9myhqrmHruRR0JFI2Ra/Fw9yWyFHjWT1+Do7GFvxx4STZNcU8EhRBY08HfSoFcVfPcqWxisfjt/Bp5GocjMx4ImELkx29eDf0bp5L/okHA+cgEYn4OTcNG0MT7hk3kx5lP++G3oWOVMaXWQPKsZeO/Moc93Es2fEf3MysudBQTmtvJx+e3Msq/xDeOb6Lw6veRFcqZ/HoKTwU9zU5NSU8OjGSbRdODaibJDKeTPiebmU/zyT9gJFcjw2n9nOgIIvUaxep6Gji6aQfmOLkw+eRD5JfX461gQlfRK0hp6aEJxK2sNAnmHE2Lrwbejdz3MfRqejFQK7DwbtfwdvSAR9LBxKLzvHYoW9Bq+XDk3vZV5DFpcZKgcAKsvdALpFyprqI+sH2Pg9zO16buZRRFvacrS5mjrs/78+5h8qOJvrVKt4/uYdN0WvZfCZxxNjS19mGWqXk2rlTpG/bLGRJKft6OfTJS1RfPkdHUz3OYyYS9vC/cBw9gfqSK5Sdz0DPyIzawnxKc06ib2ImEFLXw9jKDteAKZSdz6TjumuLvokFvYOWQICy3HScRk/4W0LqRgw17bkG3Hy+KZFK0d5CqSuWSPCcFErlpZxhIe3Xo6XqGk3lRXgGz76thyrXw9rNh97ONjqb6v/2vbVFFxCJRLe0q98MQ2H09t7+lOefvqkyS9Hbg0xX7x9t9/W4Q0rdwW1hzZo1pKSkcOTIER599FFB0XHw4EH8/PyIj4/ngQceYMeOHTQ1NXHt2jUhgNnd3Z1x48axb98+ioqKGDVqQIpYV1dHYmIiCQkJJCYmoqenx/Tp09m7dy8TJ04kKytrWA7KkJXG0NCQ7u5ulEol27dvJygoCG9v7xHbfCMBFhwczPz58zl58iQpKSloNBqys7Npbm7+y0BzqVTK1KlTefbZZyksLLzpey5evDgsa2Xs2LFcuHBhxPakpqaSl5eHq6srb7/9NmPGjGHnzp3Dmviux+nTp5k8eTJcF+Q8hMrKSrKysli6dCkikQh3d3chNPr6dZ4+fZre3l5kMplAVEVERGBpaUlmZiZJSUn09PQQFBREa2vrTS13JiYmwyakeXl5XLt2jYULFwo38/r6+iMIvyGMGzeOyMhI6uvr2b9/PxKJhDlz5gjfheu3t729HVNTU5ydnYcRe1lZWcycOZPff/+drq4ugXCoqanBxsYGiUQihN4bGRmhp6dHZmYmDQ0NqNVqxGIxLi4uVFVVodVqiYuLY//+/axYsQI9PT0OHDhAdHQ0CoWChIQEzpw5Q0xMDE1NTcTFxfHhhx+iUChISkri/vvv55tvvsHCwoLx48eTlZVFcnIyY8eOxd5+wEM/FCidmZnJlClT0NHR4YMPPmD37t0cPnyY/Px89PX1+frrr5k/fz4Mkn9nzpyhr6+PPXv2YGBgQFJSEkqlUiAXhohKBpv20tLShu1DiURCSEgIDg4OtLW18dprrzF69OhhxN9fYdasWejq6pKcnCz8Lj8/Xwi+v/F4lZWV8cYbb7B9+3aSkpJITU1FJBIxZ84cgXiaNGkSiYmJjBo1ipqa4baXixcv4ufnJ3xPrK2thxFEQzY7Bs9FuVw+ogxhCMePH8fY2JilS5cyZswYoVVuKJB8CJ2dnRgZGQn/lkqlQi7bjejp6aG7u5svv/zypusd+v67uroybdo0duzYgVKppLS0lD179uDq6sr8+fOHFTrcDHK5nJUrV5Kenk5xcTGNjY3DsuEaGhqE8oakpCQMDAyYPHkyBw4cICgoiMzMTGG8zM3NFRoXh1r2ysvLR6iuhhRXDKpLY2Njyc/PJzIykq1bt/L666/z888/c+LECY4cOTJsn93BHfwvIBKLhWDY3s42Ss+eQCKV4R40Ex2D/+77NnTzX3HxDL2d7bd837Wck7gGTL1l9oWRhQ1dzbe+wTexthcsg4reP699Wo2GkjPHsPf2H5Y3ciOU/b3IdG59A39jI19nUz2GFiPV4zeDy7hJNJQWCJ8dGqe6Whq4du4UzuMmjSDLrifmxBIJLgFT2f32I1zLzcBx9ARcA6YISgMAAzNLDM2tGDU5jLHhSzCzdxWanKaufAypXJeJi1YPW4cWLU9OikYsEpNeWcCrM5Zw77gQrjbV8HTSD/jbuLEhfBVmuob8mJtKYlEuVR3NfB61hrPVJXiY2+Jn5USvSsG6CeG4mVnzw4InUKhVGOvosXGwZS2npgS5REJnfy/fnk1GLpFiY2DKyfIrvJm2nV8XP8WS0VO4b+8X9Cj7UahV5NZeo6S1juenLmCW6xg6+nr4T/p+IjzH89zU+byZtp33T+zhi6g1eFna81j8d7T1dWOqZ8DJ8sv8sOAJOvp7eWXGYt4/uYek4lxemr4IB2Nzvss5Ql1XK+VtjdgZmnG2ppi30raTXV2MraEpm7Li+W7eo7T0dpF03xtIxGLCPfxZPHoyvUoFn0Y8gI5UxgyXgYxBD3NbAuzceDNtO8EOnnx4ai/FLXXsupTB2gNfIRGJeenILwOtahUFhLqNxdPcltFWjoyysOOBgFBen7lsgPjKSmCUuR0bwu+js7+PtRPC2HwmkYOFZ3hvzj2Ms3Hlm+zDbI5Zh45URpDDKMbYODPa2onPIlfzfU4KV5traOvrRi6RUNfZSmVHM88k/UBjdzt7Lp/mu5zD1HS28G7o3ai1Gr6IWjOgwDKxxNfKkZ/OpzLW2oU5P7+JuZ4hr6duw0RHn+enLhjIPEr5jaLmWl6ZsZjNZxIx0tHj/oDZ3DV2BhkVBaweP5uG7nY+CLsXF1Mr1BoNP59P48sziehIZbyeOmDti7t6lmWjp3LvuBDqutoobKpGo9VyqaGSuZ4BbIxaw7NJP1LV0cyX0ev4+fwxPsk4yKcRD1Df1c6zyT/xwvSFPBz3DTNcRjPaypFnk3/Cw8yGV2cuQS6R8UnEAzR2t/Px3PsxlOtirKOPvZEFPy9aj0wsZXPMOspaG3gqcSuvpvzGR3Pv52JDBVKxhDHWzrx4+Gc6Fb08N3UBIkRsjllHbVcr/wm/j7WBYTwyMYI3Urfx0dz7aenpJL++HBdTK6RiCR+n70dPJmdzzDqqOpr5T/p+7I3Mae/roa2vG6lYQmHTAIFqqmvAM1PnszFqDWqthq9iH2aW6xjGWDvjaW5Hj7KfjdFrKW2pY+2EcPZcOc1jEyN5+cgv6Ml0WLx9A6sCZvF73nHWJ27l7dkrqe9q5fWQZbyRup3npi5gmd9w8kbf1AK5niFOfkFMu+txnMZMxNEvCKlMztSVj6JWKbF28xbsaRKpFMfRgbgGTKWrpYH4z17GzM4ZY6vhDcnXQyKV4RE0k562ZsGKrGdkQu/gWFh2PhNbT7/bvr6IxBKhfOLauVNC095/A5FIhEfQTBrLCoeRZgwqXDUaNU5jJt7y838HB58AmqtK/rLFtfLiWfSMzbB0Hpm3fDuQ6ejiNn4aBqaWlJ49MczKXlt0AbtRI+cKt4s7pNQd3Ba2bt1Kf38/eXl5TJs2DRsbGz755BO6u7sxNDQUlDwrVqzgyJEjzJ8/X8jTSU5O5sKFC/T39+Pt7c2FCxdISEigurqauXPnClknIpEIZ2dnQkNDOXv2rBC6HB0djZWVFcnJyQKBlZ2dze7du1m8eDFWVlYjttfe3n7E5JfBCXtkZCQ2NjZER0dTUlLClCnDZYbX35ip1WoSEhKYN28e/v7++Pn5CZPO61FSUjKi5e16UqyqqkoI1w4NDaW2tpapU6dSW1vL8uXL2bdv37AgdAYnoZaWlsL2iMViQWVVVFREQUGBYN0agru7OyUlJcK/hyxKQxNihUIhbJ+9vT2zZ88mIiICpVLJvn378Pb25tixYwJZWFhYOOzv0Gq1QjD69ZZMbtGcOITi4mIOHjzIqFGj2LVrF5MmTeLkyZPExcUNI7vS09OZNm3asM+qVCp2796Nm5sbEydOxMLCgmXLllFTU0N8fDzp6ekCcefm5kZ1dTUKhYLW1lYCAwPp7u5m3759QtOfmZkZb7/9ttD8WFNTw+XLl1EoFIKSZfr06ejr6/P+++9jYGCAs7Mzv//+O01NTURGRvLjjz8SEhKCl5cX6enpLFy4kEuXLmFtbU1XV5dgAzMzM+PIkSNCq93atWu57777CAsLw9LSkpycHF5//XXS0tJISkoiLS2NN998k+TkZBYsWCCQrVOnTqW1tZUrV66Qm5vL+PHjYfD7bGhoKOQLMWhl3b9/PxYWFsyePZuEhAQaGhpITk6+pVLxxt+PHj2awMBAtm/fjkKhQK1WCyq+5uZm4VxMSkrCxMSEt956iwcffJCAgADCw8Px9PREcp209+TJk8ycOZMZM2Zw9uxZITeOm5w7Xl5ejBo1ivj4eBhs7Lu+lW/OnDk3VUsdPnwYBwcHfHx8BkIwbWzQ09NjyZIlnDlzZhihez3ZO4RZs2aNCP2vqqri+PHjrFixAk9PT3R0dG7ZqMlgaUJYWBjz5s3j8OHDLFq0SCDUbgcikYjY2Fjq6+vZsGEDHR0dAtFUUVFBeHg40dHRREVFCZa86OhoMjIyCA0NFcZLGxsbkpOTiY+PF6yMCoVi2Ji8fft2QkNDmTx5MuPHj8fT01Oww3788cf4+fkxbtw4ZDIZ58+fZ+fOncyYMeO2/5Y7uIPbga2nHzWFeZSdz6S1pgK3CTMwtXW6jU/+NUQiEZ4TZ1FfcomuloYRr1dcOIPtqDF/+VRXz8j0bxsCZbp6eE4KpaYwj7b6gfa+ojNpuARM+dtJT29HG3rGpn/5nusb+Vqqr/2jrA7X8VOpunJukDATUXv1Ap1N9XhMDEH6N0/hmytLqcjPYs66l5l+9+OU5aaPmETVFV9Co1Jh5ToKz0mzaam+RldLA4reHqxcR9HZVEf2vh9HLHtTVgLTnX14bsp8LjRU8FH6fqa7+LJnxYusO/gVBjIdFm7/kOemzmfFmGm8E3oXDd3t/Pv4Tpp6Onku+SeaejrQlcqI+f09upV9fJ4Zh0wipaGnAy1aUq9doEepwN3cljdnrWD7xVMkFp9jgr0HR+9/mz2XM7l792fE3/MvLtSXM9ttDEdK8jCS6+FsakWXoo9elZLnpi6grrOV907s4aO59zPN2YfPMuM4VX6FN0KWIxaJOF52CQ9zO9RaNRtO7WPHxXS+in2I+wNmsz5xK5mVhUR4BnCs7BLNPR30qhT0KBV8PPd+Yr2CsDYw4bclz5BZVchbadvJrytjY1Y8adcu0qdSYK5vRG7dNZ5O/AE/Kycu1JfjZWGPtb4xsV5B5NeXM83Jh4/S97E6IJRPI1eTV1/Gi9MXAXD02gXM9Qyx0jfh50VPUdRcS3LJeS40VNCl6KOlt5N9V06jGWxtK2qu5e6xM5jp6sdTiVtRqFV8FrWag4XZ3LPnMxq62ng26UckIjFPJnzPIxMjeOf4Lh6bGMnj8Vt4OGgum7MS+ffsu9ACUaPGs8A7GDEivjh9iK+zk0guzqWjvxdrAxMCbN14YdpCZBIp78+5B7Ra/h26EplEwiy3MfSrlHwd+wg+lg54Wtjx86L1fJpxEJlYgrOJFeEe/hjr6PN7/gk2ZSVwqqKAPrWS8XbuLPGdTJC9B++G3o1ELMHdzIY+tZKmng4+zjjA0dJ8vCzs+TRyNedrS1mfuHUw/N2OJxK28MyUWN4JvYtnk39CJpGwKXotxjp6PDoxgszKQpbt/Jj1k2Ko6WzhqcStXGqooLCphsaeDi43VvJkwveMtXZh9f5NNHS389KRX8isvIpaq+GpyTHcNXYGrqZWzPcORqVRs/NSOm/NXsm/jv6Bi4klb6Rto6W3C4VaRUd/L88m/0RNZwuPB0fxeuof9KkU/JB7FCO5HlKxmCcmRaPVank8fgse5rZ8Gb2OivZG/n18J0t8p2Ao10U+qCBzNrVi4+l4+tRKNpzah1Kt4o3UbZypLsJApsObadvJqSnh+cM/E1eYzWMTI7E2NMXP2plelYKnJsfS0tvFPf4hbIpei4Fcl6+zk3EzteH1WctQadR8l3N42Lnf09bM/g/W4zp+gKzSarWUnDmG87hgzOycBZJfrfpzjqVWqSg7n4G+qQXRT7+Psr+XsvOZwsOMW8HW0w9TWyeKz6ShUipAq6HiwhksXUahZzwy8/NWMLNzpq2uYqBpz2P0CHXufwMX/8l0NtbSWlOOWqWi+Ewa5g5u/zVRNHzZU6i6nDPwN1+HAfVuOmb2Lpja3Lxc65/A0NwK96CZ9Pd0DyqTu9FqNP9VA+IQ7pBSd3BbGGqr+vXXX3n77bdxcXFh9OjRLFu2jO+//56tW7cKhJFWq+Wbb77B1dWViIgI4cfNzY23334brVaLh4cHEyZMGDZxHcqwGlLlXD9RdnBwICoqipkzZ6JQKHjjjTe4du0aKSkpZGZmCkHdQ/Dy8uLq1eH1yF1dXSQlJXHo0CHUajVbtmxBpVKxd+/eYQqJIRsXwL59+4apgezs7Fi4cCF79uyhsbERBjOibpbBY2xsTGtrK4mJiVRWVgrh2pWVlTg6OgrElVQqZcWKFSQmJtLS8qe8NCMjY4QlMTQ0lKeeeoq6urqb5kONHTtWUNTk5OTg7u4uWIRuNZnfv38/8+bNw9fXl6amJsFOGBUVhUQiEQiqiooKVqxYgbu7+4jgbAYJkhubEYfaF9va2liyZAldXV0sWrSIzMxM5s6dS0xMDDk5ORw4cICmpiaampqwtLSkt7eXsrIyfvnlFzZu3EhsbOywwGcGQ8D7+vp49dVXBUtiYmIiTk5ObN68GR0dHY4cOUJ/fz/Lli0jIyOD5ORkjh8/zs6dO8nMzOShhx7i+PHjxMbGoqOjw3vvvUdoaCjHjx8nPDycixcv8sADD9DX18fPP/+Mv78/3333HVZWVlhYWKBUKgUl1d13301qaiqTJk2irKyMhIQETpw4weeff46npydjx47F19dXULB0dHQQEhLC77//LijYfH19WbFiBcbGxiOsnNOnT6ehoYG9e/fS2tpKX18fWq2WkJAQjh8/TkZGBvv378fR0ZGFCxdiaGgo2EknTZpEcHAwu3btoqFh5ATtZrCysmLJkiXs27ePzz77TCBHiouLmTNnjkCODB2XyMhITp06NYJcHbK4DZ1DCxcu5MCBA2i1Wq5evTpCLQfg7OzMxIkTeeuttzAwMBhGFEulUqRS6TBi69ChQ/j6+uLp6SmoMYcC/kUiEXPnzsXLy4tdu3ZRV1eHQqEYkY8mFouxsrIS9k9hYSFXrlxhwYIFwvonTpxIaWmp0PZ4I2GblpZGTk4OGzduZPTo0cJ4U1RUdFv7vKKiQjhfPvnkE8rLy3FxcSE6OpqgoKBh4+WxY8eE0HZ7e3sqKiqE14YI597eXj788EO8vb2ZM2eOMBaHhYURGRnJ4sWLOX36NPHx8RQUFLBq1SpsbW2JiIggJCSE/fv3CxlhnZ2dpKam3lSVegd3cDuounyOyovZw34KTiVz6JMX0aiUGFvZ3nYA+u3CNWAqrbWVw2xwtVcvYGLtgL6J+V9+VnSdnf8v3ycSYeXiRfHpVLY8Eo2Vyyik8pENpjfi+halv1r23zXyaTRqVEoFit4e+ro66Glvoaulgc6mWiwc3Tn89b/J3v8TBuZW2Hnd+im2VqtF2d9L6dkTiKVS3AKnIZHK0DEwwmNiCL0dbQOTQc3A5E7XyAQrV6+BgGKpDOexwbRUl1Ffcom+znaMre2xdBk5vn8Ydh+PHfqOfQVZ3Ocfwv6VL/PAvk2cqy3l86iBkOzHg6Po6O+huKWWJxO+x9vSgU8jV9Or7OfzqAdxNLZERyJjlf8sZBIpr4UsxUiux7vHdyFGxNrAMJxMLPn6TBI/nU9l5dgZPDd1AesTviex6Bx+1s68OmMJbX09/HHhJGJEvDJjMXl1ZaxP+J7S1nrkEikHC84gFot5IGA2jd3t5NeXc9fYGZjo6nOs7CJKtZpnpsxDKhaz7uDXPDEpmg/D7+OBfZv4MTeVg3e/grOJFRZ6RsxxG8skRy+qOpqRicVcba7FQK7L4/FbyKwsYK5HABuj1yIWi3l+6gIeDpqLWqNBrdFwz7iZrB4fiqWBMc29nfx8Po0rTdVY6BvhamqNj5UjG6PW8uGpvdR3tRFXmI148B7z5RmLAXgiYQsnyi/R3t9NXGE21gYmTHIcxedRD2IwmCv0/YLHCLB146UjvyBCxIdh9/Fm2nYauzsIdRvHqzOWkHrtAh+G3YeRXI93Qu/C1tCUt2avpL67nc8jH6RL2c+mmLWoNGq25BxBKpZgb2SOQq3i7dkrWTl2BmKRmIbudkZZ2LHmwGasDEz4MiuBlNJ8fs47RllbI/86+julLXU8nfQDvaqBspvlOz/m/2Hvr8OjuP+2b/y1u9ls3N0NCCFAICS4Qwx3qOClQltKlba01I0KpVQoUqEt7iFCcAnxEIgQ4u66m2Sz+vsjyZSUfq/re1/XdT/P77nvvo8jB5Ld2ZnZmc/MnJ/z/Tor2xt5JjSSwfbuvJbwK8UtdbhZ2CIVG/DxjMcYZOvC5rFz0Op1TPcZxgux+3vSAS/+zuyBo7A1NkOt0/LSuHlsmbAQSyMTPrtxEgOxhE9nruSV879Q2FzDrqgnSO1thftu1gY8LO15LmYvqVWFDHX0wsbYjE9mPIaXtQPZ9eV8E7WeuYNCKG9rwN/OFU8rB96avAQnc2u+jlzXI/pMWcZM3+HUyFtwMbclt76CM/mpfHrjBAZiCUuGjGOAjTOfh60CkYhdUU8gFRuQWH4PWxNzNoZGMsDGmRO5STw5KpwTecn8sXgzAQ7uKFTdvJZwQEiF7FR182zMHlwtbPkmaj0FzTW8e+UIMgMp9R1tNHS009wlR6XR8OK4ufhYOzJ/8GiGOnhiJjPi0OIXqVO08nXkOuYOCqGyvYni5lpGOvsgRsQAG2eOZN9EpVHzXMxebIzN+HZWD3P5xbifGGTnyigX34fO/8mrX6Io9YrgKPUYNhpDY9OexGpjU3yCJwkiR1NlMeV3knAbMgp7zwGIRCIcvP1xCxhJWdYtmqvL/sPx09TKFp9RkyhKvcq5r14HQKvqRt5YR0dLI13yNro7Fai7lWgfYJ32W4a1HeV3kh9K2vvvlr3XIAqSL7HnyQgs7J2F0I7/qNTdyv/02iISifAZ1bMP++DuOl0Pz8p54FDMbB42cvx3ys7DD3M7J/Y/O4/0MweoyE6l/G4K5XdThOt8Ze7DqdZ/V/+IUv/Uv1VhYWEcPnyYvLw8srKyyM7O5plnniEhIYGSkhJ8fX2JjIwkKioKExMT1q9fT3FxsSDcXL9+HTMzM0aPHs2CBQvo6uri7NmzQqrbrVu3GD16tPB5fcDzvpLL5Zw+fZqkpCRmz55NdHQ0wcHBhISEMGjQIC5evCg4NxoaGgRmik6n4+bNm0RHR5Oamsr06dOZPXs2zc3NLF26FBsbGxYsWEB6ejoJCQno9XpcXV2pqqri4sWLjBs3DmPj/jOpMpmMZcuWkZ6eTk5ODunp6QKcWS6XCzyfuro6bGxsUCqVuLu7C4NdRkbGQ4BgsVjM4sWLuX79OrW1tTQ2NmJra4tIJKK7u5tr165x7tw5zp49y5kzZ8jNze2XVHbx4kUqKnpimh0cHMjMzKS9vZ3Bgwf3W2+tVtvP5XXhwgVGjx6NmZkZgwYN6ifkiUQi/Pz8BPeFk5MTGo2GrKwsMjMz/9NjpqamhqNHjzJhwoR+8Oq+B+u+lrqpU6cyd+5ctm3bxh9//EFcXBzJyckolUpmzZpFQEAAN27ceEgAOHHiBBMmTCA6OhoXFxdB2NHpdLz44otUV1czdepU/Pz8uHbtGjKZjGnTphEYGMiePXvw8fHh559/FvaXubk5Li4uLFq0CIClS5cyevRodu/eTUVFBdXV1cjlcuLj40lLS6O+vh4nJye8vLzw8/Ojra0NlUpFZGQklpaWREZGEhAQQExMDO3t7fj7++Pp6YmhoSGVlZWUlpYSEhKCo6MjtbW1KJVK0tPTee6553B1deXq1av99mdpaSlNTU2oVCpKS0tJSkoSXC/z5s3D1dWV+fPnC86cmzdvMm7cOIFtZW1tzdKlS8nJyeHmzZv9lv13D4J9jiiJRIJGo2HixIlERUUxevTofoLZg+l+Cxcu5PTp0/1E4itXrjB58uR+3//MmTOJj48nLy+PgIAAOjo6SEtL68c8S09PJzo6WmhZi42NpaamBh5gQOn1eo4fP05oaKggjvW1DotEImQymZDcaGZmhqurK9u3b2fu3LnExcWRkJBATk4OcnkPN2bcuHEkJiaSnp5OU1NTP+G37/iLjIwkISGh33lUUFDAyZMnGT58OAMGDGD69Om0tbURFRXF7Nmz0Wq1QgpgS0sL3d3dGBkZodFoSExMFAS/trY2IiMjMTY2prS0FD8/P6RSKadOnRISSvvWpaOjQ3DkhYSEkJr6Z1pXdnY28fHxzJ8/n+HDh7NgwQKOHDki7IsTJ06wYMECxowZw9ChQ5k1axY2NjaYmJhw//59rl+/ziOPPEJ3dzcnT57E19eX7du3Y25u/i9bmP+pf+o/K7eAkUL0t9uQUYAIWzdvIp//AEMTM5QdcsqykijLSvqXzI3/SrkPCaarrYWmymIaywqQGhn/lzhPfaXq6qQ6/45w4112J5kueSuOfkOYtu419L2iTd9N+b9qIVR1KjA0+Xt2pl6vp72xlorsVKryMsm7HkvcN29RejvxIWGvKu82dUW5NFUW01ZfTWdbM6quTnRaHTqNBpmJGTJTc9rqqoT16lu38rsp1Ny/i6K5npqCbKrvZeE1cjzWzh4PrZOjT8/DYOzXb6Jorqe9vpqK7FRuHfmRsqwkKrJTEYlEnPvqdRIP/0B7Yy3yhv7uKm8rB7ZcOMDL4+ezecwclh75nBvleXwTtR5/O1fu1pWz+PBneFja8c6Vw9iaWPD86FkUNtXw2vlfOZufRmVva1hRSy2uFra0dCnYeG4Pap2G72Y/SYCDOx9dP8b1slweGz6Jp0aF80z0bjJritkV9QQeVg6czEtigK0LdYoWPp7xGCKRiJfP/8IkrwC+m/0k0ffT0Op0DLJzxdzQmIF2LuiBi8V3sDU2o6VLgVKjRtTLOZroGcAX4avZn3GRNmUnr01YgKelHXkNlWyO2894D38+u3mKpk45Ez0HIxaJOZqTSFlrAzuj1uNp5cBTZ3cjAvZnXORIzk3K2xrYkRTNT5kXuVGWx4/pCdgYmxHo4MFrExYQ6jqA5Mr7KLVqdqedp1rRwkBbF+o72rCQGSPv7uL9q0dQazX42Tjzx+LNKDVqQMSWCQvIqivluZi93Kkt40x+Ku3dXTR1Klhx7Eu+CF/Dx9ePM9jejW+i1vNj+nkaOtrYnXYerV6HVCJh7eldWBqZ8sSZ75F3d3IsJxGJWNzr9ipj/uBQvp31BLYm5rx39QhV8maq5M18cPUoswYGM8rFFwOxhPenraBL3U2YXxCPD5/CqqCpOJlZ8e2sDXRrNZxavgVrYzOMDHpa4wzEEl5L+BWZgZSdUesZ6z4IE6kMV4sekfnzxNN0qVXsSU+gqLmWlKqe8B8nM2ty6st5LmYvQ+zd8bF2YJrPUFaf/Ib1I2eQ01DR0/IYuQ5Xc1teiNuHjbEZq4KmklZdxHcpsbwzdTn+dm5odFq+unUWtU7Hi3E/MckzgOdi9lLW1kBVexN6vZ7mLgU+1o7suHWW/ZkXkYglbI7bj0LVxReJp1FqVDwybCKBDp4cWvISP9++RKjrABYf2Y6x1JDUqgKejdmDg6kl4X4jaOxsZ5y7Pw0dbSwKGIOrhQ1WRqZUtTcT9uu7rA6aypfhq3n8xNf4WDvy/tUjfBm+mu5e0WiwnSsfTX+U5k457189iqOZJauCpjLew58X437ii8TTeFs74mJhw+qT31CjaOXXrKt0a9VsvfgHzV1yrpTmMMDGmfeuHqFD3Y2BWIIe+DxsFUqNmo3n9lDSWsd3szZwoyyXiraHuXatNeU0lNwndudWxBIJtYXZlN9N4cYf31J+N4WqvAxkJmZc2P0hqs4OvEdOEJydffdhBoayHtC4Xk9x+nUULY00lhf2G9/6fqpyM9ColJjbOaHp7kGlaFRKlIp2FE11tFSX01B6n5r7d6jMSXtofE0/c4Dk4/voaGmk/G4K9SX3+jm5/t3SajTUFub28PnuJNNUUYStmw8zn34bUys7qvIy+613e2PtQyKZorkeM5v/vIVbLJbgM3ICxWnX0KpVFKZcwXP4WIzM/vOQFgNDGRpV93/4Gr1eT1NlMWVZSZTfSUZqZEzEc+8xeFIU3V0duPoH4TE0VLjeuw4e8W/soX/S9/7t+r89fY9ewPhzzz2HpaUlnZ2dmJqaMm3aNJKTkxk9ejTXrl3D1dUVKysrgSd16NAhLCwsGDBgAAMGDOiXeNfR0UFsbCxBQUHk5OQISWV9dfr0aYGZY2ZmxpQpU5BIJOTn5yORSPDz8+PgwYMsXbq0n9CRnp5Ofn4+K1euZO/evSxYsAAbmz9nRLVaLefOnWPu3LnExMQQFRUFvd/xxYsX8fHx4fLly0ybNo1hw3pAeqWlpUL7YV/p9Xo++eQT3nvvPU6ePAm9D75+fn44Ojpy9uxZNBoNc+fOJS8vj6qqKpqbm3n77bfZu3cvwcHB3Lx5k7CwsH6A4pMnT/L777+zZs0aRCIRhoaGjB49GnNzc86cOUNkZCRnz54lIiICE5MeSF93dzcFBQVUVlZSU1PD2rVrhX37IEeoq6uLa9euER4eTmpqKmZmZv2Eq+joaGbNmvWQSHHt2jXc3d3Jz88nIiKCiooKbt++jVQqZdKkScJ69H2/fYLKg2KEVqslISGBiIgI2tvbycjI6NcCeObMGRwdHbG2thYS/PrSx1pbWwWXRmlpKXK5nKioKCHF4fTp00RGRlJcXExJSYnQTmplZUVBQQFz587l0qVLlJeXM2XKFCoqKpg0aZLA04mMjOSLL75gzJgxnDhxgvDwcDw8PMjIyEAikWBlZUV4eDhbt25l9uzZ5OTkYGZmhpmZGUOGDOGFF14gIyODwsJCLl26hKenJ3FxcQwdOpSnn36ajz/+GKlUioODA0lJSWzevJnS0lIhDTImJoaOjg4WLlwoCD75+fkCKL2vtTU4OJjLly8zevRoYZ8fP36cqVOnkpaWRlhYGPSmvfWlFGq1Wi5cuNCPm1ZZWUliYiJRUVGYmppy/vx5wsPD0ev1ZGRkUF1dja2trSAODx48mHPnzrFs2bKHHFzR0dECbLvvWDxx4gTLly9HoVCQkpLC9OnThd+rVCrS09PZtWsXycnJ7Nq1CxMTEwYPHtyvFffcuXOMHz+ea9euERUVhVgsJisrSxCmLly4gKWlJc8//zzW1n9asePi4pg5cyY5OTkUFRWxceNG9u3bh5mZGcOGDSM5OZmuri6mTp2KqakpNTU1lJWVIZfLEYlEbN68maCgIHbu3NmP6fRgoqdKpRLYaH3ibd9Y0dcyl5OTg7GxMb6+f84UarVabt68yZQpU1i0aBHr168nJCSk3/jU3NxMZmYm06dP75fiWVxczN27d/Hw8KC7uxtvb28Bpk4vY66iooL6+noGDBggcLr6zkmNRsORI0cwNjZm7Nixwrhw8uRJRo4cSWVlJYGBgaSmpgouTp1OR0dHB2vWrGH27Nn8/vvvwuf9k773T/279df0PbWyi7KsJFwDRtJYVoCLfxC1hdnYuHphbG6FXq+noTSfrvZWEIlw8g3421a4f5US9NfqbGuhuaqEuxdOUJaVRNQLH/2tEG9gaITUyBipzFj4szIvA3NbRzofgORKZcbYuvv2g+TqdTpKs27hPmQU1flZwnrptFoaygro7mjv/QwZDt7+GBjK+q2/qquDxvLCfg8D5raOWDm509HahLyxlu5OBVqNGnuvgf2S9f71djdTW5CNpaMbYomE1rpKvEeMf+h1amUX1flZZMYeYs7L2/ulVvWlWvVV6e1b2HsOoL7knpA+VXr7FiplJ36hU1B1dtBQmo9S0Y6ZrQOnP9nc77OCnX2Y4h3IF4ln+GHOUxQ0VWNjbIZGp2Pb5UP8uuB5WpQdaPU6LGTGfHD1GKtHTEMqFlMtb8HD0p7GznaCXXwpa61nR1I0++c9y+l7KYxzH0RCcRaHs2/y49ynqZW3klx5n6y6Ul4aNxdrYzMeOfYV30Stp6WrA5EI3rp0kA3BYXRpupnnP5p3Lx/C1sScCZ4BPYyqpHPM8w/l25RYDizcREuXArmqi09vnOTtyUuplreg1mnwsXZic9x+9s3bSGpVIQsDxnC3roxujRoLmQndWjVavQ4jiZRtlw/x5qTF3KkrY7iTFy/F/8zXkeu4XpbLPP9QGjra0AM2xubYmZiTU1/B/swLrBs5kyEO7sz+/UM+mPYI2fXljHD24bWEX3lv6gpO56dgY2yGv50rVkamlLU2cKM8jxfGzOb52H18OP0RYT8vCRjHBM/BGEoMMJb2pLx1qlXo9Tpkvd+/j7UTNyvuEZ2fxlMhPfcHbcrO3kTC5TR1yRli70GHWomx1JBbFffxse5J8Qt28eXg3Wt8nxrPsWWvUq9oRY+eLxLP8MLYObhZ2LLw0Kd8E7WeL3v/b1PsPr6d9QQbz+1hy8SFmEmN2HrpD76btYFnzv3IpjGziC3IIHLASNws7LhamkN5WwMWMhN8bZwY6uCBDj0eFnY8enwHn4WtpKy1gek+Q7lVeR+NVouTmRUSsQQLmTHrTn/Lzqj1tCs7aeqS42ZhS62iFXtTC0pb6okcMJLHT3zNW5OXsCXhAO9MXY6VkQlavZ4utQpLIxO61CpUWg0DbJ05X3ibgXYubL95ilfHL+D1C7/x0YxHMRBLMDaQUiVvYazbQK6U5uBibo1Gp2Nz3H5eGjcPLyt7juYksmFUGPcaq9DpdLhZ2tHcKcdALEGu6iK/sQozQyMsjUz4OukcfyzeTEVbIzq9nm6tBjOpjA+vHeOTmY/T3SuYbordx47IdUhEIpo6Fbx9+SB75j5NWWsDSo2azxNP88uC56lVtGBsYMjB7BssDhiLVCxBrlLSqe7G0siE3PoK7E0tGWjrwusXDrBr1gY6Vd3kNlRgZCDlkxsn+SpiDWWtDVgbm1Lf0c7XSdGsGDqBM/dS6VD/Oa5NW78FA0MZlg6udMlbcQsYSW1hDvUl+QydPh+RWExbfTXdnXLkjXW4BYxE1iveV2Sn4hYQ3I/pVJmbQerpXwh/ZhvGFtYPje09Qn0Tmm4lJpa2dHcq/haS/tfSabWUZt7E1sOPxrICDAxleA4fQ5e8laaKYnTaPydfrZzcMLdzRiQSCWOmXq+npaYceWMtIpEIkViCvecAQRhSKtppqizGws6Z7o72fq5SnU5La21lvyAQA0MZSnkbHkND0WrUqLu70HQrUXd39Ti91Kp+267X62mrr+LmH98S+fwHWPWyuP4zN3JzdRlSmRHmto4P/a6luoz2hp57cBtXb8ztel5T3MtnrMhJwy0gmLLbidh5+mFh3zNJ/k/63j/1P1rLli0jIyMDrVbLwoULcXBwQCaTcerUKSZNmkR9fT3l5eWMHDmS/Px8we2QnZ3NnDlzhGj0B8vU1JSQkBAGDBhAbm5uP95JfHw8X375JSNGjGDChAlMnz5dEJ4eZNDMnz+fU6dOCcvs6OigpqYGT09Ptm3bhp2dHTdv3iQlJUVQnPvSz+hlwPS14lhYWBAVFcW5c+fYvHnzQ7HzfaXX67l16xanT5/GxcWlX/vVhAkTcHJyor6+Hmtra4YNG8b9+/cZOnQoERERSKVSduzYQWhoKLdv3+b333/n+eef77fdtbW1HD9+nICAAKKiopgxYwbm5uY0Nzdjbm6OVCpl3rx5QgsUvS6owMBA7Ozs8PT05Ny5c0ybNo3q6mrBhXH+/Hk6OzvRaDTk5uai0Wj6CVKAAAp/sO7cuYO5ubkgNNKbLjhnzhymTZtGYmIiZ8+epaCggLa2Ng4fPszAgQP7CVL0ujf6YNkWFhaCO4Ved4uXlxejR4+moKCA5uZm1Gq1IIBYWVkxb948bt26xezZszExMeHWrVvEx8cTFxeHSCTCxMSE1tZWAeY8duxYEhIS2LBhA7GxsWRmZrJmzRrS09NRKBR8+OGHtLW10dbWxqFDh5g8eTIHDx5k0qRJhIWFkZOTw4cffshzzz3H2LFjOXXqFKNGjcLU1JR169ZhamrK7t27OX/+PFu3buW7777j1KlTFBYWcv/+fTZv3kxdXR1fffUVKpWK9vZ2amtrMTY25ptvvqGjo0NY/9mzZ9PZ2cnFixeFc6e0tJSPP/6YRYsWMWTIEEEgHjt2LLdu3YJewWH8+PHY2NgIvDB6gd99gt/ftVW6ubmxePFirl27RlJSElqtltjYWKKjo3FycmLOnDmMGzcOkUgkgOcXLVrE8ePHHzoX/nqBk8lkREZGcvr0aa5cucKECRNISUkRnH3Xrl3D39+f5cuXc+nSJTo6Ohg3blw/QSo1NRU/Pz+srKyYOXMmCQkJiMViRowYQVRUFBEREajVavbv309KSkq/82fFihVcuHABGxsbXFxc2L17N4MHD2bixIlYWlqiVCoF5p1EIsHNzY3x48cLAQCffvopCxYs4P79+0RHR3P16lXB0dm3zTk5OTQ1NbF48WIsLS0FEZVe15lIJBLSI/tKLpcTGxtLe3s7H330EXPnzqWrq+shePilS5eYNm2asKy+c9zHx0cQuMeOHcu1a9f6bXdOTg7jx4/HxMSkX+iCMLNoYICdnR0LFy4kMzNTOM5yc3Px9fXF2NhYEKL6IOuffvopS5YsYd26dQ+56/6pf+q/Ui015VTdy8Q3ZDLG5pbodFokBga4DBpO9b0s6D3uHbz98Rw+BvfAUTRXl/XMyN5N+Q8T9fR6PYrmeiqy0/rNOHe2NmLj6kXA5NlMeORZtBo1bkNGCbO47oEhuAUEY+fph4mlLYhEdLa3UFuYTfyubTSUFQgAb4+hoTgPHPpQalP1/Tu4DBqOgWFPLL26u6e9WCyR4OjjL7zX3nMgdcV5lN1JJmbHG8I6NlWWYO81UHidx9BQrF080aOntigH54FDEUsk+I6aREdLIzX37/6LvdBTfdHoPqMmoVGrMLawxtbNm5qCh9/Xx9Wa8/LnFKVdE1o+/loV2anYeQ7A1NoOC3sXWmrKhW30GTmBopQrVOSk4eDtj42bN6c/2YyLf1C/ZaTXFONoZsWOiLU8dfYHfKwd+SLxDCqthqgBI2nr7uS1hF85nH0TvR5Wj5jGjltnKW6px8rIlDpFK9tvnqKqvYnXEg7w+oQe8PW6kdMpb2sk2NmXz8NXU9bawJYLB5AZSNk0Zja7kmOpbm/mtQkLeqHmxdgam/PtrCcIcvbmQNZV7jVU8uK4uUQNDOaDq0dp6erg1QkL8LC045uo9ZgZGvF87D4MJVI2BIehUCn5Oima0tYGKtsb+SZqPfUdbfyQFs+9xirevPgH1fIW8puq2JJwgAtFd8hrrCTEdQAGYgmXSu6i0+vZPHYOv2Vdxd3Sjudj9pLTUEmtopU1p74RtuPZ0bN4LeFXztxLwcfaEUsjEw5l36C9u5PtYauQiMUsDhjLnIGjiC3IQK/XM8jOlRVDJxLs4st3s5/EUCLFQCwmZcNnWBmbsil2Hzq9jtUnv6G9u4tjuYkczklEr4eN5/ZQ3FJLdXuPGKvVaXk6ejc/3b7ET/Of5V5jFbMGjqKpS84bF36nS61iX8YFCpqqic5P5YfUOFzNbXl78lIaO9t55tyPKDVqVg6fwvtXj3AqL5mDi1/EyMCQdSNnUCNv5qf5z6HXw8HFL+JiZo3MQMp3szbgbmnH+pEzcDS14rFhU3A0teL71DiCXXxYHjiByAEjCPMNIq7wNq+e/5XmLkUPbLyznZ3J5yhva+ST6ycwlBjw8vlfqGxvpE3ZwZaJC5F3d7Iv4wI3yvIob2skpiCdgqYavkuNo7C5ltkDR6HWalkaOJ43L/5OVm0ZhU01vHflMPLuLjbH7UcqFrPw0KcMtnfjdk0Jkz2HoEePh6UdFW2NPB+zl26NhncuH6KwuYaPrx9Hr9djZmjEnEEhqLUa1FoNtyryOXT3Br9nXSW2IAOlRsXpeykYGhjw4bVjzB40ipHOPnhY2rMzaj1dahWvJRzA2tgMiUiEVq8j3G8EXWoVz8fuQ63VsDE0EgOxhI3n9qDT6wh1HcCJvGTO3U9nuJMX++ZtpKKtEV8bZ7o0KiZ7BnCtLJevbp1Fo9Py4bVjmBka42BqKZx3L46dS2VbI2tP78LNwha5qoslQ8ZR1d5EbGEG5W2N/HL7Mj/MeYpbFff7CVKGxqZc2vsJqk4FRuaWiMRiSjJv9jqfxtNSU45er6exrAAHr0H4BE+k4m6qMJ7KzCzo7vzz2aG2MBdTK1tGRq3oWd5f7ke7OxU0V5XgPGAoer0eW3efnna8uyn/4fjZ0dJIccZ1PIaPQSozxtLBBTMbB5qrSjE2t8ItYKQwTrsPGYVOqxWcp7E736Ig+RIV2akYSA3xHDa693XB/ZxKNb3XDHM7R+R/4R6KxRJsXDzxHDZa+JGZmJHww/tkXzpFe0N1TyufzAgLe2ecfAP6Xc/cA0Mwt3PCzMaBSStf6GmP1Gn7tdaV302htbbyofRYY3NLlA+4e1trKwUHs9hAiufwMXgOHyMIUk2VxVg7eyCWSDAwlKHTavAZNYmu9lYBNP/v1j9OqX+z/m93Sn3xxRcYGRnh6uqKTqcjIiKCN998k6+++oqLFy/i6elJRkbPhbBPNGhrayMxMRF6E6zGjx9PVlYW4eHhKBQKEhIScHd3p7q6GolEwvjx47Gy6pklPXXqFMHBwWRnZwtiw6RJk7CxsennbgIoKysjLy8PtVqNqakpU6ZMQSwWExcXh1KpZP78+dTU1JCWloZCoSA/P59t27YhEonQaDRcvHiR0NBQrl+/jkwmE5LwfH19KS4uxsvLCwsLC7q7u2ltbaWmpoYxY8bg6OhIdHQ0AQEBdHV1ERgYKKxTX3uMSCTi7NmzzJkzhxs3buDt7U1eXh4TJkzAyMiI06dPIxKJhPS1jo4OEhISMDY2RiKR4OvrK4hBDy4ToKWlhVu3bhEVFYVOpyM6OppBgwYxaNAg2trayMrKYtKkScI6qdVqMjIySE5OZtOmTeTl5eHv7//Q9/6g86WiooLCwkJBxEtJScHX11dgFT1Yx48fZ/HixXR2dj7U8sgDrqe+Ki4uprOzk8DAQM6cOSPsA71ez6FDh3B1dWXYsGHU1NRQVFSEWCxm6NChZGVl0dnZyZIlS4R9kZqaytmzZxk+fDjW1tZ0d3fj5uZGbW0td+7cobKykpEjR+Lg4MDVq1dJSkri8uXL7Nq1i71793L79m2+++47nnnmGX766SeMjY1pb28nICCAlpYW1q9fz6JFiygsLMTc3JzXXnsNCwsL3n//fSZNmoSTkxONjY3Y29szd+5cDh48SEdHB/7+/kyYMIGDBw+yYsUK7t69S3l5OZaWlvj7+2Ntbc3JkycpLy/Hx8enn1uwvb2da9euIRaL8fb2prCwEKlUysSJE7l69SrW1tbY2NgI7r07d+5gaWmJp6dnv/35d/v+wXrjjTfYuXMnzc3ND3GW+ItDqKGhgbS0NGFZaWlpuLm5PZTqJ5fLOXDgABs3buT8+fOMGDGin+tIp9MRGxvLrFmz6O7u5syZM0yYMAFnZ2cqKiooLi7uJ2r2iW9mZmbodDoOHz7MlClTuHz5Mt7e3kJYQUZGBvfv3xdA8n1Oo6NHj7Jw4ULy8vIwMTHBx8dHYEM9CFGvqamhqqqKgQMHcuvWLcLDw4Vx7LHHHmPXrl1YWloSFBREfn4+bW1tjBkzhuzsbLq7uykqKqK7u5sVK1Zgbm5OTk4OYrGY+vp6zM3NmTRpEunp6Tg5OXHv3j2mTJnCuXPnGDBggOBSsre3x8vLC3odmn3H0dWrV1EoFIwdO5a0tDSUSiWhoaECzy4+Ph4HBwfa2tpobm5m0KBBDBkyhLi4OMLDwzl16hTDhg0jIyMDW1tbQfjqa7cMCgqisbGRmzdv8tJLL5GZmUlDQwNyuRyJREJnZydXr15l9+7d8I9T6v/t1fn/VPXdP4U98w4Wdo7CjLBOp6UyJ11wCymaG1A0N+DkF/C3y+lpf8hG061EbCClOj8L5wGB/V5jZm2PVe8N8p/vU1OSfgPf0ClUZKfi5DeEsqwkvEaM+5fpd3qdjsKUyzgPGk5bbQVd8lZcBg3/Ww6VXq+n9Hai4ELS6bSUZSX9rSuJXpZUVV4m3Z0KTCxs8B75968DKMm4iXvgqIecVYrmeuqK8vAaMa6fswmguaqULnkrrr2CUHX+Hey9BiKVGVFfcg+pzBhrF89+21p+NwXP4WPQqFWUZNzAL3Rqv1n/qrxMzO2c+qVeFaVdw3PYaGoLc7B18ybtzAEKUy4T9cJHANz4/RsaSvuzPQFCXQcw0tkHTyt7rIxMkUmkvHnpd9aPnEFMQQbhvkEMdfTkTH4KB+/eYOXwKdiamPPVrbN8HrYKlVZDWVsDgQ4eOJpZsfTI53w4/VHevPg7WyYu5JPrJ3hz0mKUGjU3yvOY4TOMPekJvD5xEafvJTPffzQvxO1nR8Ratlw4wGczV5JaXch4j8EUNFWTWJHfwx4yMeepsz/w/rQV/Hr7CnP9Q/C2csTJzIrFR7bz+6LNtCoVJFcWIBGLOZJ9k91zn6ZT1U2LsgMTqSHy7i6KW+owkco4nnuL1yYs4Jfbl3l02CTOF2UxwWMwtyrzkUmkTPEagh5QazVo9XrMZcZ0qJQYSgzwtnagpKUepUZFS5eC27WlLAoYi1QiYd2pb3lz0mIO3r3OZK8hRPiNIL+piqLmWiZ6BrDm1C62h63C2MCQZ2P28OnMx1Fq1Mi7uxjl6kd1exMGEgO0Oh0anRaZgRRPS3vu97rYdHodMokUPdCm7MBcZsKaU9+wdfISBtm6cKsin7Hug2hRdtDY0U5DZxu+1k6otBoq2hu5XVvKsiHjMRBL+C41lpXDp2JlbNrT5tibEPj1rWiWD53Ah9eOCW6pzWPn4G3lwPOx+9gQPBOJWMz3qfF8MuNxKtub+CEtns/DVvFC3H7Or9zGndpSDCUGGBkYsil2HwcXv0hTl5zMmhJGOHvzReIZnhoVxtHcW5hIDZGIxIS6DqC0tZ6fb1/mlfHzMRBL8LSy7/kOdDouFN9hvIc/mTUljPfwR93rjjE0kKLWahCJRBgZ9HzPgQ4efHLjBE6mVnhbOyAWiXAxt8FcZkx+UzUTPQKIK8wgakAwN8vzcLWw7QkPKs1hoJ0LLV0KDMQShti7k1VXiqeVPXEFmUQNGIlGp8PM0IhnY/bwyvj5xBVkMGvQKDws7DA0MGD96e/4OnId9xore5IUb5zi6dAImjvlmMuM8bS0R6FWUq9opVrewhj3QTwTvZsdEWt5IW6/sM83BM9komcADZ3tVLc342Fpx63K+9ytK+OpUeF4WTsw+/cPeX/aCowMDFFp1exOS8DLyp5RLn64mFtjaCClXdmJSqvhvatHHjr/7b0GEjhtPrYevtQWZHPj929Y8MZOHHwGCy3ADj6DBXeUXqejIOUyvsET6WxvQd2txMbFk4bS+4gkEuzcfXvEp8qSfsw8nbaHo+Q3ehoikajf+NnR2kRdUS7eIyc8JGTVFeehUXUL42dNQTa2bt4YGptSejsR18Ej/uV1o7W2koLkizj2rr+j799fy+RNdXTJW3Hw6rl/b2+oQdXV8beg877x2cTKls7WJmSm5hhbWGPp8K9DdKrz72AgkyGRSJGZWdDV1ozEQIqNm3e/5bY31tJeX9WvTdDM2p7KvExh+ZaOblg5/T0YXavRUH4nSXDNalTd1BXlCu16nW3NPdfpgcM58NLSf5xS/9T/TL300kvs37+fQ4cO8fnnn3P69Gneeustfv/9d+RyOXV1dQQHB7No0SLi4uKg9yEpIiICkUjEokWLyMrKIj8/n/j4eBITE5k3bx4SiYSRI0cSFRVFTEwMnZ2dHDx4kBkzZgitTVOmTGHevHlkZ2ezYcMGvvrqq37smcuXLxMZGYler2fq1KmIxWJ0Oh0ikQhPT0/KysowMTERkuPKyso4f/48cXFxnDt3joiICG7fvs2cOXOEVjqpVMqQIUOYO3cu5ubmzJw5k5UrVwoQaScnJ1JSUggNDcXX17df4l1ubi6DBw8WBjozMzPKy8vp7OzE1dWV8ePHk5iYSHl5Oe7u7v3gytHR0UKi3owZMygqKqKkpEQAHj84eFpbW+Pt7c2FCxc4fPgw06ZNEwSKPlj8gyWVSvHy8sLb25tz584hkUgEzs2DgHUDAwM0Gg3t7e1CCmJfDR8+nKysrIeOj0uXLuHr60t0dDRnzpzpt7x/VX3CgFwuf8gtEhgYyOTJk7l8+TJSqZTZs2cTFRXFvXv3CAsLIzw8nGPHjqHX67l7t2fm99VXX8XOzo7g4GCWL1/Od999R1BQEP7+/kyZMgW1Wk1ERAT+/v5cu3aNoKAgfv75Zzo6OnjppZd46aWXePHFF8nNzeXIkSNs2LCBiooK5syZwyuvvMLkyZNRKpVMnTqVjIwM/P39sbKyIi0tjbNnz7Ju3Try8/M5cOAAZmZmbNu2jT179vDOO++gVquJjo6msbGR1atXIxaLSUhI4NChQwLgfOjQoYIbRa/X92vdGjx4sOBMS0pKYt68eUKbYF8NGzaMu3fv/q1YYGNjQ2Nj40Pfwblz51i4cCFnz57l+PHjD0HK/1r29vb4+voKTq3a2lpBkNJqtUKiYnp6OkOGDCElJQWpVNpPkAJITk4W0u9kMhlLlizh3r17XL9+neTk5IdcdjNmzODChQuCIDVv3jxsbW1xdnZGqVRSW9tjca6srGTZsmUkJiYKzDKAWbNmce7cOUpKSvDx8RGOv9ra2n7A9PT0dIKDg7GwsMDMzIzq6mqBD/buu+9SUlJCYGAgLi4udHV1MXfuXG7duiWAw8ViMSKRiNbWVnJzczl//jxjx45FJBIxaNAgRCIR1dXVeHh49EA9DQ1ZsGABYrGYDz74gL1791JfX8+1a9c4f/48eXl5BAYGcvbsWUJCQpg7dy729vaIRCIWLFhAXl4eeXl5lJeXY2FhwYgRI5DL5UIb6IkTJ6iqqhKS9sRiMcOGDUMmk1FZWUlRUREeHh4sXLiQlJQULC0tCQkJITY2lsbGRt544w0MDQ2ZP38+qampgiD1T/1T/5Wy9fDt16LQUJKPg/efLfFmNvZ0d7SjVnb97fv7HFVSIxOaq0rIPPcHOq1W4Fd4DA3Fxs27nyCl72WOeAdPFK6fhsam+IVOpSI7DXlj3d9+VuntRLyCxmFmbYdG1Y1f6FRaayv+1qFUc79/DLZYLMHIzOJvk/tq7t+lubIE35ApWNg5Ye814F/OJjeWFWDl7P63YFszGwe8Royn9PYt5E1/bkN9yT3U3UrhgQpAq1YJTBYHb/+eB6L2P5lddcV5wsNTz8z+GIrTrqHX69Hr9dQU3MXEyvahGHaPoSFkxhxEKW+jubqMgeNmMv/1r1HK25A31hLx3Ps4+g15aN1TqgrwsLRDoVLydPRu5Kouhjp4Ym1sxsLBY2jsbKehsx0bY3Penbocd0s7TKUyNoZG8ubF3ylsrsXc0JjnYvZyqfguM3yGodFp+TxsFYfu3uDJUWGUttbzReJp3C1suddYyTtTlmFlZEKbspObFfd4cexcSlrr+XD6ozwfu49JngHUKlpxMLXC09IetU7LU2d/4NDiF7E0MmX+4NEYGxjy8fXj7M+8yPLACdxrrGTjuT2sGDoRR1NLds16gseO70Cu6mJ3WjwXiu9Q1FJHTkMFbpa2bAyNxFxmzAzf4SASUS1vwczQCI1OS5CTN2fvp/FT5iV+TE/gRnkeeQ0VvH7hQM/E5R8fo9fref/qUSrbm7ExNqNG3sLqk9/w49ynkau6eHHcXPZmXCCvsZK0qiKO5ybRpuxkVdBUtDodDmaWHFr8Ip3qbnanncfLyoGnz/5ARk0JO26d5XpZLvLuLp6P2Ut5WwOvnP8FhUpJnaKNlSd3olB18ULcfq6WZjNrYDBSsYQb5XmMcvEjpaqA52P2IhaLMTc0Jru+nDcu/s4Ur0CiBozshZWrcDC1xNrYlKbOdgzE4l4WkQo7E3P8bJz5Jmo9XlaOrB0xHXsTCwIdPXl/2gpcLWwRi8Sce/RNLI1McDG35sPpj2AoMeDS6vf4OikamYGU80VZHM+7xY9zn+aHtHg6VEp2pcSQ21DBVO9AtieeJtJvBGPdBmEuM0an1+Nuacer4+fjbmHLx9ePYyAWI0KERCzmflM1poZGxBSkE1+YSUV7I29dOkhTZzsvxf+MXq/nmejdmMuM2XDmO+YNCkGpVSMWiUirLmbLhd9QqJR8cv0EOQ3lfJMcQ2FzDR9cO4ZGp+WZcz/iY+NIQVNPWviJ3FsotWq+TYlFKjZAo9NiIJaw5cIBjKWGfBO1HmsjU54cFU6QkzfPnPsRc0Njvpu1AVsTc/akX8DD0p43Ji0itiCDxIp7HM+9RbdWzYtxP+FsbkN84W2aO+WsHD6Fl+J/Zv+8Z6lsb2b/vGcZ4zaIlSd2otZqOZOfwic3TmIpM2HdyBlk1BTzUvzPfDj9EZzNrXnl/C+0KTt5cewcnMyssTAy4Wx+Gs/3Qs/fu3oEH+uHW8B6XKAedCvasXb2IOqFjzCxsqU47RrNVaVIpDJBkKI3cMIvZApFadd6xtX2Hj6gXq/Dzr0HjyAzMetNGf2zijP6j/sPPj+ZWtniOngEhSmX+8HASzJuYGRm2W/8VCs7MTTu6ZzxHDaGsqwk/q662ltob6jGyTcAj6GhGFvaUJh6RXB5PVh9TrC+srB3/ttrkaKlkeL06zgPHIahkQkWDi44+Q2hpbqU7s6H79d1Oi3F6dcxt3PEwWsQHa2NmFrZYu81kM72ZhQtfz4HiMRiLB1c+rmAzaztyblylsRD3wHg4h/0LwUpgPK7yf1a6A0MZf1S/0wsbfAZNYnq/P+cQ8w/otQ/9e+WkZERr732GmFhYdjY2AjMHjs7O0xMTBg/fjz3798nISEBkUjEjh07GD58ONXV1Zw5c4aYmBi0Wi2bNm2itbVVEIkqKytxcHAgNTWVtrY2TE1NsbS05N69e3R1dSGVSlEqlVy7do329nZkMhkhISGIxWLCw8MJCgrC1taW9vZ24YG1tbWVhoYGHBwc8PX1xd/fn6SkJGbNmsWsWbNYsmSJALxWqVQcO3aM6upquru7uXHjBuPHj2fAgAHcvXuX2NhYsrOzWbFiBU888YTAswGor68XmC6urq5UVlai1+vJy8vr1xbn5+eHp6en4EoyNjamq6uLzMxMRo4cyZgxYwTnzqRJk/olbM2YMYPCwkIWLlxIQ0NDPzEuLi6OrKwsZs6ciYmJyUOCgrW1dT9xqLm5mcTERObMmYNEIsHb25vZs2cTGRlJXl4e0dHRXL58mdDQUK5du8bZs2eZP39+v2XKZLJ+bWIajYajR4/i7+9PUFAQEomEpUuXcuPGDSoqKoTX/StDpoODA8ePH2fEiBFcuHBBAFobGxtz6tQptFptP4aRWq3G0NAQS0tLZsyYwYQJEygpKSEkJAQzMzPkcjn19fWcP3+e6dOnU1xczM6dO5k/fz5+fn7s3LkTmUzG66+/jpubGxKJhC1btnD48GG6urr48ssvaW5u5sSJE0ydOpUVK1Zgb2/Pyy+/TFxcHA4ODmzatInc3Fx27dpFZWUlBgYGnDp1iiFDhpCfn09aWhpz5sxh7Nix/PLLLzQ3N7Np0ybWrl1LcnIyv/zyCxKJhBUrVjBw4EBUKhVWVlb4+PhgYGBAQUGBwAESiUTY2toKgpKBgQEdHR2cPXuWmTNn9oNkFxQUIBKJqKysxM2t/0VkxIgR/eD0Op2Oo0ePEhoaiqenJxYWFixbtoxLly5RXFwsvK6ysvKhZMmBAwcikUjIzc1FLBaTn59PdHQ08fHxBAYGMmfOHKZMmYJCoSAkJAQnJ6eHWr+ampr6ue00Gg0ajYZp06aRkZHx0HGekJBAZmYmjz/+OPPmzcPExASpVIpKpWLq1KlcvXqVsrIyIdXSyMiIy5cvC8KXQqHgwoULvPTSS3R0/HnjEhUVJXDFVCoVBgYGwo3L+PHjuXnzJnq9HrlcTmBgICNGjKCkpETYl30utqKiIo4fP866deuYNm0aJiYmguAUExPD7NmzuX//PoaGhg/tT41GQ1lZGXFxcXR1daFUKgkJCcHX1xeFQsGmTZsoKCjgypUrlJSUoFarhTFizJgxxMbG4unpSVdXFwUFPUDXqqoqysrKMDIyYv369ZSVlZGYmMinn36KUqkkICCA69evc+HCBRQKBfHx8ZSXlzN48GAmTOiZObS3t8fR0RGJRMLvv//OV1999ZAj7p/6p/5XyvgvkFVlh/yhxCGPoaGUZ6fy19JptVTkpFOWdQsbVy+sHN2Yt2UH9p4DqOwFxGr/ksILUJZ1C4+hoUh6ryMikQidTotILMYneCLypjrqS+71e091/h3sPAYIbW30XsNcBg3Hwt6ZwtQrQhuhXq+nu1P+EEDWyS+Q2oI/23e7OxUUpl7Bwt4Z18Ej/py0snHAyMyChrL+CZ3dnQo621v+FjjeVxIDA3xHTfoTUp6fhYFUhqPPXx3Q+n4MFo+hoVTdu4229+Ghu6P/+hsam+A6eASlmYnUl+RjaGyKsbkVDaX3+yUq1dy/S/rZ39Cjx2XgMFSdCiwdXLl/K4Ga+3dpLCugrjDnofWWiiXsSIrG0siEHRFraVN2UtbWwItxP2FmaMSP6QlUtTdx5l4K5oZGfHjtGFXyZrJqS3ltQk+SnJOZFRtDIwmwd2OM20B2pcTwyY0TbJm4EBdzGzQ6LTN8huNj7Uiwsy/PnPsRnV7PxtGR+Nk4Y29qwddJ0ci7u9gV9QSlrQ28c/kQdibmjHTxwVAs4aPpj5JWXcTzMXvxsLQjqbKALyLWMN7Dn+KWOixlJmwMjaRG3sInN06i18Pbk5ei0+t5YewclgWO515jJfP9Q3n1/K9YyEz4MvEMe9ITMDIwZMXQCYhFIm6W30Ou6mLOwFEsCxzP+uAZiIBrZbmMcvGjRt4iOL9en7iQBYNH88fd65jLjPl21hNUtDXy1a2zeFjasSvqCQ5n32SqdyBvTFrElgsHqJY3U9paz9Ijn5NVV4aHpT0zfIZhIJHw7tTljHTxYUNwGGPcB2IhM2bfvI3sy7jItbUfIhKJkEoM+GPxZqRiA36c+zSD7d0Y6zYIhUrJ7rTzKDUqhjt5cXL5a0hEIjrU3cz3H823s57g1L1k9mVc5PWJixAB8u4u7jfV8ObFPzAykPJ18jnEiEiuKkCu6uKDq8fYn3kBY6khXRoVCw99Sn5jNc1dCr5NiaWstYGno3cj6WUePXPuR3LrK8it77nfHOHszTBHL8wMjUivLsJcZsI3UeuZ6BHAtymxzPcPpUXZwTtXDjPJM4D3rh4hv7GauMLblLU1MN8/lMr2Zp6N2YOp1IgXxs7Bx9qRbVOW4W3tyOWSbN6ctBgTqRFfR65DLBKzPWwVJlJDOnuZPgH2bjib2zDBczBvTFyEvYkFOyPX8er5X/k6ch3NXQrCfINo7+7k8eGTGWznRmpVIc1dcl4cN497DZX8NP85jKWGtCo70ei0PDUqnNu1Jbxy/lfEIjHPxuyhTtHKl+Grqeto45lzP2IilbEzch2/Zl3h/atHiPQbwSPDJvHahIVodTpiH3sLpUbF7EGjUOs06PR6vghfTVp1IR9fP45SqyapMp8Xx82hS6Ni1sBRbBozC2dza16M+wk7E3McTS1RatSsP/0dn858HAOxhBfi9jPY3pV9GReY7jOMc4++yXtXj7Bu5AyKWx4WWtLP/kZHaxPnv38Pc7uexFVzW0dsXL1IOvojLdWl/UDj1flZdLQ04j1yAqWZiTRVFKPq6sDBu/84Z2hiSndHT2tfRXYaLgOHC2L835XMxAzvkRMoTLmCvLGO4rRruAeG/IcOJJFYjMug4Q9NJGjUKqp6WYIisRidVouFnRO+wZOoyrtN4wPje3NVKdYuXg8t28bNm6bKP++/q+7dRt5Qg2/IZAyNTWitrRCuB57Dx1J+J7lfq3V3p4Ki1Ks9rXsP8KD6rjVuAcHUF+X+7aRPS3UZJRk3ERtIcRsSTOTzH+AeGEJdUQ6ltxNRKh4O62itq8TcxgHJ3+zjB5/5xGIJnsPG/Mt9+mD9I0r9U/9WLV26lPLyctauXcuCBQuIiIjg6NGjJCcnY21tzY8//oiBgQFTpkyhtLSUzZs3c+PGDZqbm6mtrSUwMBArKyuOHz/OzJkzcXJyYt68ecydO5fr169jaGhIV1cXJ0+exM3NDXd3d7788kuWLl2KsbExhoaG+Pn5sWHDBiZNmsTo0aOJjIxk+PDhGBkZUVxcTEFBAQsWLODWrVucPXuWwsJCkpKSOHLkCB0dHfz6668MGzaMgQMHMnXqVAoLC1myZAmmpqYsX76cY8eOsWfPHpKTkzl27BjDhw/Hy8sLT09PZs6cyahRozAyMuLixYvU1NT042SNGjWKjIwMbty4wcSJE2lqauLcuXNER0dTX1/Pm2++2S8xb/v27Rw6dIj4+HjOnz/PU089RV1d3UPsLaVSSWNjIyYmJkycOFFgV0VERDBt2jT0ej1paWmMHj2asrIyTp8+TVlZT0Tqg+yhtrY2Ll68KIhMISEhpKWlQe+D9fjx45k9ezYhISEcPnyY6dOnY2VlRUvLv05Aamho4NixY8ydO1dIfKN3AJw7dy73798nLy8PgPv37z8UJd8HmF6zZg1JSUlCultUVBS+vr7IZDIWL15MbW0tly5dEhhTra2txMTEcOPGDTw9PamrqxPEiw8++IC1a9diYGCAmZkZ8fHxbNu2jUOHDgmJkMuXL6ezs5Po6GiSk5PJzMyksrISqbSnBWLfvn0AVFdXC9sJ8NNPP3Hs2DFEIhEHDx7kyy+/5P79+3z//fcCm+jo0aN8/fXXhISEcOzYMQB++eUXvLy8+Pzzz3FzcyMqKorW1lbi4uIEd0tjYyPx8fG0trYyfPhwEhMThUF91KhRpKWlUV1dzbFjx5gxYwbh4eE0Nzczbdo0YZ+JRCL27t3L/Pnz+zHUAAwNDYW0uO7ubg4dOkRUVJTAcRKJRIjFYubOnUtdXZ1w3OTm5vbjE9EroohEIoYMGcK+ffuElt2oqKh+wPG+8vf3x9LSkuTkZOFY7LPvdnd3CwmS48aN48yZMyxatAg3N7d+x3pERARDhgyhs7OT0tJSYZ37avbs2Xh5edHQ0EB8fDwqlYqZM2dy69YtYmJiKC8vZ+zYsWzfvp2UlBSio6O5dq3HCTB48GDu3r3L1atXH3Jo9Qle169fZ8KECSgUCnQ6HXPnzuXNN98kPj6eyspK/Pz8aG1t5dq1azQ0NODr68upU6doaGhg7969vPXWW2i1Wi5evIhOp+PEiRO0t7dz6dIl4uLi8PHx4eOPP2bdunVIpVJMTEyENtrIyEhGjhxJcHAwOTk52NnZERYWxoEDB8jMzMTX15etW7cKQPzTp0/j4eHB2LFjcXV15ccff2To0KEEBgbi7OxMUlISd+7c4ZFHHuGpp57C1dWVgIAAhg4dyqlTpzh06BAZGRl0d3fzzDPP0NDQwKOPPsrnn38uONL+qf//rm+//RYvLy+MjIwYPXo0KSn/mp+Rk5PDokWL8PLyEiaU/rvL/Ff179AiRGIxNq5eNFX03Jxr1CrK7iT3tt0F4BU0ThBQnPyG0FB2H89ho3HxD+pNTkoTbtSr8+9g4+rdb9bd0tGNtroq4d8ug4YhNTKhLCupJzGrugwDmUzgZQDYevjRVNHjhja1tsN31GRqC7NpKCugtiAbJ7/+LYT0jk/m9s601VdTV3yPuqJcfEdNxvRvIsVt3XzQdCsFgKxer38IME4vYP2vTC2tRo1OoyEr/ihXf/mKjrbmfjPV/6oejF1/UHxTd3f1QofvUVuYTdrpX+hoaaStvhozW4d+6YkqZSfhG9/Ba/hYijNu0FheRFHqFaaufRXvkRPQ63X4BE986LO3Tl7C6xMXYSSRUtpaj1QiYXngeLZMWIBWr2Nn5DpqFa1sHjcXM0Njvp/9JKfyUlg6ZBwtSgX7My9iaCAlriCTl+J/plOt4oNpjxD72FvUK9rYdvkQEzwGU9hcg1RigE6vZ7y7Py1dCn7LusrH148z3WcYu6KewMXchmdj9jDO3Z/vZm3ARCrj1fO/YiYz5o2LvyOVGLAzch1WRqaUttbR2NHOmxf/IGpgMN+lxjHYzo2GznbiH3+b/KYqfG2cBLdRS5eCdmUnnlYOvDNlGVdKs9k4OoptU5ah0+l4/cJvGBpI+WzmSmb4DGNT7H4MJQa8ev5Xgl18WTpkPAsGj8HKyBSpWIKjmRVvXvyD1OpCdkauQ9rLChps78a3s57gUkk2z8bsYXHAWMwMjXkt4QDvTFlOkJM3XlYO7Ixaj4elHV1qFVO9AzmRm0RWXRnbb5wivbqI1KpCPk88TVlrAxYyYzJrink+Zi8VbY20dnWw4ez3KNVqOtXdbL30B24Wtrw/bQUtSgXrT39HtbyZ/MZqvk2JpaK9kXevHGGS5xAWBYyloq0RrV7HZK9AvK0c+HnBczR3Kdg0ehZdGhXfznqCk3lJzPAdxlAHT6RiCVKxAW9NXsJIFx98rR3ZGbkOZ3NrDi5+EQAzqRGHFr8oiGvV8hZyGyoY5uhJbEEGr01YwMm8JD67eYoqeRMLBo8m0MGDUb2MLQuZCV9HriPCbwQzfIZhZ2KBmaExzmZWfDzjMZzMrfgm6RxLDm/HvHd/RA0MZuulP8iqLeHH9PPEF2ay49ZZ5N1dfDj9EfxsnPj0xkkUKiVSsYQAB3fWnNrFjfJ7fBWxluKWOrZdPsRkryE0dSoIcR3Ak2d/4J0py5jsFYi8u4vvUuNQqLp46uwPyLs70QM/ZV5kpLMPa0ZMxdfGkSVDxqHSasiur0CpUfH6xEWUttSx5cIBlg+dwPvTHiGrrpTvU+LoVCt5IW4/t2tLMBBL2JdxAQdTS0QieCFuP8uHTmRX1BMYiMTsz7yEo5kVB+9e5+Dd6xzNSeSzGyd74OlaDV5WDrR3d/LpzMcxkco4ePc660fOQCQSs3nsHDrVSnIbKnl+9CyGO3oSYO/+0Pk/Zc0r6LVaVn11DEVzA3XF9yhOv45Op2XW5o+xsHfGxs1HGGscvP3RqJTUFeWgaK4n8dB3qJVdVGSnoWhuEK4rTr5Desau0nxMbewxsXz4fvTB0uv1tNZWgF7P7689ioGhkSBq/UdlYmmDxMBQcDbpdTpK0q8LY52BobHgjhKJxXgFjcVAZiQk4bXVVf6t+8jSwYX2+pqeCYyUy1g7e/ZrR3ywRCIR3iMnUJLRM+HbWldJbUE2fqFTkcqM/uW6e4+cQMntROEa2Vpb2bMMkQjvkeORSKWY2Thg6eRGW30VbgHBeA4fS0t1OSWZN1H0sq/0Oh1NFcX9nM99ZevuK1wv/1frf5kptWrVKtatW9ePVfN/Q/3fzpQCOHjwIHK5nA0bNvDZZ59RWlrKd999x9mzZ5k7dy5vvPEGH374IadPn0ar1QptaW5ubly+fBmdToe9vT1PPPGEkDam0Wh45ZVXeO6553BycsLJyYnw8HBee+01li5dSlFREfn5+UyYMIGpU6cKPKnDhw9z6tQpJk6cSFBQEMnJyWzevJlHH32UFStWMHv2bJ544gmCg4P56KOP2Lp1Kxs2bOC3334jPz+f999/n5MnTxITE8OePXuIjo7m559/5tq1a8TGxtLc3Cw4dj788EOKiopoampi1KhRXLx4kZkzZxIbGys8GBsZGXH06FGuXr3Kxx9/jI2NDaNHjxbSAqVSKWlpaSxZsgSFQsGZM2cE0aWmpoYjR45gaGjIuHHjGD58OPHx8QQEBJCSksLIkSNRKBTk5OSwbNkyAX586NAhFi9ejEQi4fz58wL3JzMzU3A93L9/n6lTpxIdHc3SpUv7Pcg/yObS6XQkJibS3NyMi4sLqamphISEoNFoBGFKIpEwfPhwbt++jYuLC9XV1f0S3fgLfwggKSkJAwMDGhoaiIiIoKmpieTkZPR6Pc7OzhQVFWFqaoper8fNzY2goB7LbHl5OQqFQhBE6urqcHJyYv/+/fj5+TFu3DhaW1u5d+8eDQ0NzJ8/n5aWFnbv3o1Go2HBggVoNBpGjx7Nr7/+yrJly3B2du7ndPu7MjMz+09b2P4rZWJigrm5OXV1dZw4cQKdTsdrr73G119/LYgPs2bNor29nYSEBGQyGQ4ODgKEPyoqSmAD9dWDnKj29nZiY2NxcXEhLy+PcePGUVZWhl6vx9XVlaCgIGJjYxk/fjwxMTEsWbJEcKDV19cLzK2+KioqIjs7G0NDQ6ZNm0Z6ejptbT0zJQYGBgwbNoyrV6+i1+uF72/ixIlYWVlBLy+sz5HTV7dv30an01FbWytwsSQSCdOmTUMmk6FWq7ly5QozZ87k8uXL+Pr6Ci286enpmJmZUVJSgoODA62trUybNo34+HjGjRsntOaNHj2aadOmkZ+fT2JiIkOGDCE0NJTLly8zZMgQ0tPThX3W1tbGrVu30Gq1pKamMnToUBYsWIBarUalUgk/8fHxfP3113zwwQds3LiRY8eOUVhYSGFhIWZmZri5uZGdnY2trS0zZ86ks7OTkydPMmzYMNzc3Lh+/Tq//fYbW7duJS8vj6+//poDBw4we/ZsPvjgA0JCQti3bx/z58/nkUce4eLFi9y7dw9HR0fS09P5+OOP+frrr9m0aRPJycmkpqZSWVnJjBkzOHToEHv37hV4eGPHjuXnn3/G0tKSnJwcPvnkEy5cuIBareajjz6iqamJsrIyXnrpJQYMGIBer+f8+fN8++23PPvss8jlcjw9PXnvvff46aefWLNmjSCsr127VoDO8w9T6r+8nP/d91CHDx9m5cqV/PDDD4wePZodO3Zw9OhR8vPzcXB4OEo6NTWVI0eOEBwczObNm3nttdd44YUX/lvL/Gv9yZTaJtww3791gYKkiwJ/6K91O+4IXkHjsHZ2x8U/qB83SdFcj7JDjp27L1V5mdh7DRTaK9TdXVTl3ebuxZMMmTwbz6BxgkuKBwSfB1sO9Ho97fXVRH/5Gv4TIhg565F+ziKAsqwkPIf/OdurVnZx72YcN//4llmbP/7bbdDr9cTseIPJq1/624eFv0u2cx4QSH1JPvZeAx9yX3W0NNKlaMPWzYfGsgI625oRSyQ4DQikKi8TiYEhtu6+NFcVo1WrMTKzwMHbn8rc9IcELp1OS2t1OUe2PUHk8x8I22tgaIStuw9SI2NKMm6i1aiRGEjxeaANht72Rie/QBpK83EPDEHdrWT/s3OZvOolTCx7ErDOffU6rgEjqcrNEN5nbWTKUyERfHz9ON/OeoJvkmO411jF9rBVJFbc42ReMtO8h9Kq7GD1iGk8H7OXZ0IiGOroib2JBWVtDUglPd9nm7IDQ4kUD0s7Pr5+nNVBUzEzNKaivZEBNs40dynYdvkQn4atpLi5ljP5qTwRPJNx7v68GP8TAC+Pm0eNvAU9ep6L2cuPc3pa4WrkLZjLjAWm0QyfYYT7BdHe3YWTmTXXy3IJdR3A2tO7eGfqckylMl45/wtbJixgnn8oSZUFKDUqWpUdFDXXEleYSeSAkYx1H8SLcT/x4fRHMZcZ42/nStiv77IoYAxPBM8koSiLQbauPB+7j62TFrP10h98HbmOTbH7eG/qCnTosZKZsKU32U2pVqHSaXnn8iH2zH2aho6e1kdTQyOsZCbYm1qy6uROPpj2SL8ku7mDQgjzDWLLhQN8HbmO9u4utDot1sZmrDv9LZ/OfJw3L/7Oh9Mfw9zQCKVWjaelPVXyZvR6PVqdFl8bJ56K3s3nYavJbajA19oJhVoJvTysmPsZBLv48tudq9QqWnhr8lKKW2r5OukcO6PWs+PWWZ4dHcWLcT/x2oQF2Bibo9FpqGxvIq2qiKKWHtC4SCTiamkOz4+ZxYtxP7Er6gl2pcTgZmHHwsGjeebcj6wYOgFLmSnt3Z1M9R7KE2e+45MZj2NoYIBULMHM0Ah7U0saOtp5Ono3X4SvYuO5Pbw1eQn2ppY8H7OXL8NXU9xSzw9p8WwMjeBi8V2WDhmPidSQkS6+bIrZy7Ypy6jraOV+Uw1BTt60d/eIxJJe99KeuU+j1mpxtbBl3sGPeXncPDyt7LExNufR41+xb95GutQqXCxsWHjoU14YMxtbE3PqO9r4JjmGnxc8h7y7iyp5M06mVrR3d9HU1U6topXD2Tf5eMZjvHvlMO9P6xHAlhzZzk/zn6NN2YlSoyKnoYJABw9eiv+ZuMfforCpFp1eh1ylxNrIlH2ZF3lqVBieVg5k1hSj1moxMZTxfUocL42fh7mhMQVN1UjEYixkJkjFEho75ej0Ot65cpitk5eg1mowNzRm66U/2Bm5jsPZNxnl6kt9RzsH717n21lPUN/RxrtXjjDZcwhXyx52SwbPeRxH356Okpgdb7DgjZ04+gYIY2JJxg1c/IP6TSg0VRSjUnZSX3IP94BgrJw9aKkpo+OBlrSYHW8waeVmBoyZ/i/HW0VLI03lhdCbINdQmo+RuSW2bj60NVTT1dYijKtSmfG/THktSruG94jxlGXdwi0gWBD3myqKMTKz6DcBodfraSwv5Ph7TxM85zGc/qatGeBOwgkqslNZ8fGv/Rxb7Q01aNQqbB5gAQI0V5Zw7L2nmfbEFnyCJyIWP9C6rtM9NPbr9Xo6WhqI3fkWwXMew8rZo98ySzJvCizEv17zABrKClA015MVd4SgyOVIDAwemmzqS/wLe2ab0HquUXVz/rt3/9P7p/9lUWr+/PnExMTg6enJmjVrWLVq1UPtCP8n1j+iFCxfvpxDhw4J/547dy5nzpwBENhNfbV27Vr2798Pve0+9+/fJzIyUmiV+ev7R48eTXJyMt7e3pSUlPD222/z3nvvYWpqipWVFVVVPTObY8eORavVCrO0jz/+OAcOHADgww8/5M033xTWp7m5GZ1Oh5mZGXV1dcLnyWQyVq1axY8//vjQNr/xxht89NGfN8n29vao1WqhBfDs2bNC8tbq1asJCAjoYS7U1PDGG29QXFzMK6+8woABA4R2vdjYWCIiIpDL5SQkJKBSqVi+fDl5eXk0NzfT0NBAZGQkt27dwsHBQWgPmjJlChMnTuTixYtMnDiR9vZ2MjIyCAsL49SpU0ybNk04uf8OZJ2bm8sXX3zB/v37uXHjBk5OTjg4OGBmZoZIJCImJoYJEyYIjpFx48Zha2vLxYsXGTduHLGxsf3A6hqNhszMTKGFc9euXXh4eDB48GCB3dPXdtZXSqWSY8eO8fjjjxMdHY2trS2hoaGIxWISExNxc3MjLy+P8PBw7t27R15eHrNnz+bKlStMnToVjUbD5cuXUavVNDY2IpPJWLZsGQYGBkRHRxMVFUV5eTmlpaU0NDQwbtw4mpubKS0tpb6+XgCN7927l/Xr1/8vnwP/07V3716eeeYZTp8+jU6nw9bWFjc3N+rr6zEyMuL27dssX76cc+fOCbD55ORkLl68yMiRI+nu7iYkJAQXFxfhO09PT6e2tpaoqCiSk5Px9/cnPj5eECErKyvJysri9ddfx9ramiNHjghtp/QKftXV1YwY0QMmbGhoICsri/r6eh599FF+/fVXZs+e3c8FlZCQwOjRo7l27RqzZ89Gp9Nx48YNWltb8fX1pbS0VHBvqdVqGhoaqKur49y5c7z11lucPXuWiIiIfq2ZiYmJBAQECMLW6dOnBY5Xbm4u06ZNE0TP6upqbt68SVlZGYMGDWLWrFnEx8fj7e1NY2MjdXV1LFq0iIyMDOrq6jAxMWHy5MkPnSelpaXk5OSwfft2rl69yjvvvMOkSZOQyWQYGhpiaGjItWvXeO6553j//fd56623AFi/fj179+4VltM3bjw4DvZx8jZu3Mi3334LwIIFCzh58iT0tlRKpVKKi4v78b6GDh0qcNL6xrc+ERhg06ZNfP3118Lrly1bxuHDh+EvzLctW7bwySefCK9bvXq1ILRlZmYKHDwbGxtaWlowMjKiq6uLZ555hu++6+EJ9I1h9+71b2/iH1Hqv7yc/933UKNHjyYkJIRdu3ZB74SDu7s7zz33HFu2bPkP3+vl5cULL7zwkCj131kmD9w/rd11GgNDI4rTr2HvObA3vU2PV9C4/q9vrCXt9K8oFW0ETJ7dM3Pu+me7Q1lWEh7DRvdM0Oh0lN1JxiuoJ+ygvaGapooSyrNTsPcciIW9c7/obnofXP4qhhkam5IZcwgrZ/d+PBEAczsn2uqqcB4QSF1xHnqdDgOZEV3tLai6OjGxtH5oG3Q6LUUpV9CoujEys8TQxBStWoVer8fKyR1LB5d+opRGrULeUMPht9b9y4cWdbeS89+9S/jGd3HwHiQ89CgVbbTUVODkN4Ti9Ov4juoRPLvkrdQW5BD/7TbCn323n7AnEonRqJRc2vsp4x95lkHjZvYT4sqyknDxH05tQTaOvkMou5OEb8hkxGIJFdlpWLt6YWZtR0V2Ki7+IyhKu8qA0KmUZN7EJ3giNQV3aa4qpeb+XQqTLwnLNTM0QqFS8mX4auxNLZGIxTR1yunSqMiuK2eq91Cau+S8HP8Lq4KmMMzREz9bZwqba9l+4xRrRkyjW6vmi8Qz7Ixcx/Ox+wRI86czVyKVSAiwd+Nw9k1+yrzES+PmodT0JMP1OGdSWDNiGu3dnbha2PBl4hmMDAyZM2gURc11+Nu58tH14wy0dWFl0BRePf8rR5a+TI28mRpFKx9cPSp8Xtzjb3E05xYLB4/hbl0ZHWolVkamfJ8ah4u5DTN8hvPBtaMcWLiJpi4Fz0TvZtOYWXhY2mNkIGXjuT18OP0R5ColRgaGOJtZ8eTZH3g2NIqBdi60dnVgJjNCrdViITPGVCpjy4XfeG50FEdzElk5fAovn/+FnVHrqVO0cDQnkVkDR7EnPYERzt5M9RpKi1KBiVTGqXvJPDkqHHNDI3LqK3A2t8bfzpWYggysjUzp1mrYfvMUP855mmp5M0qNCrlKye93rvHe1OU8H7uPz8JWcr7wNnWKVp4YFcbzMXuFffF52CpePv8Lu6Ke4L2rR5juM5Rg5x7eT3dvutwAWxfqFC3kNVYx2N6NTlU3YpEIM5kx7ha2LDj0KTKJAbtmbeh1PHnRpuzAQCyhVtHCnEEhXCjO4lpZLp6WDvjaOFLW2sBU70BqFK3sTb9AsIsPVkam+Fo7odZp+eT6CV6bMJ8X43/mnSnLMDGU0dQpp7iljkAHD8wNjTCQGDDS2YdbFflodFpMpDLUWg0mhkZsvfg7z4RE8MEDAPYvwlezP/MiG4LD2BS7j09nPo5YJCa3oYLJXkNYffIbnhoVjre1AzbG5oJAZi4zwtTQiNUnv+Gj6Y/ibmmHjbE5K098zd55z1Ajb+GZcz8Kx/WnMx/ntYQDPDc6iqr2ZiZ7DaFT3U2Hupuvb0Uzxn0gkX4jaFcpeefyIb6KWEteQyV+tk40drTjYm7DC3H7ObBwExKxmMZOOWlVhT1tnymxRD/6JqUt9YhFIj67eYrlQydgbGDItt5lbX4AgP7drA0AVLY38XniaT4PW0V80W2m+wyjTtGKjbEZQU7eZNaUIBGLMZEaUi1v4cNrxx4ax0Lmr8bCwQXfUZNpri5FamiEUtGG1NiUjuZ63AND0Ov1FKVcwWvEOAwMZdQV30MsFmPnOYDKnDQ0qm48ho3pN+HQWFHEmc9eInjOY9h7DkCj6u73uTE73mDS4y9g7z0IOw8/RCIRTZXFiCUGWDm6CWEP9DpQawuyaSi7T9LRPX878aDVqIn75m3CntmG88BhGJlZ9CRW11ej1+swsbChviRPaCs3trCi4m4q1s4e2Hn6YWHfv02wta6S6ntZaFTdOA8IpLOtB79ibuuIvKkOB5/BNFeVCG3X9IpVpZmJBEyZjVRmjF7/Z5Je7pVoTCxt8Brx57VJJBKBSExW/BECp81HamSMy6DhiEQiOttaaG+oEYJGHrzOAqi6OqkpuEtjeSG5V84yedWLD4l17Q3VyBvr0GrUaFTdOHj7Y2Zjj6qrg/3PzvufF6XofWg5cOAAv/zyC7m5ucyYMYN169Yxb948oQXm/7Tqu6n6p/6pxsZGsrOzaWxsZOHChZSWlpKdnY2RkRE2NjZYWVmh1WrJz8/H1NSU1tZW7O3taW9vZ86cOWzbtk1g3URERHDmzBmCgoK4e/culpaWJCYm8uWXX5Kfn4+FhUU/99Ht27fZtWsXW7duFRK66HUohYWFodVqSU5OFiDnOTk51NbW8sgjj2BhYUF9fT0KhQK9Xs/GjRvx8vLizJkzmJqaCsvqc+40Nzdz584dpkyZAkBeXh65ubnodDoMDQ2JiIigrq6OvLw8dDoder2e5cuXc+TIn2kbMpkMhUJBXFwca9asYdSoUcI+vH37NjNmzOi3fd3d3URHR3P9+nWmTp2KkZERU6ZMQSaTERsby9SpUzlx4gTLly8nJiaGGTNmcOXKFSIjIwW3zPHjx3nllVeIiori+++/JyEhgRMnTmBjY/NvAdj/d5Wfnx8fffQR+/fv58knn6S2thZ7e3sGDx5MWVkZUVFRHDlyhLlz51JRUYFarUapVPawTFxcqKqqYuTIkaSnp1NdXc3Vq1cZO3as0JJKrygYFhZGS0sLaWlphIWFQW/65WuvvcbgwYMZM2aMANanVwxKSkpi8+bN0CvEDhs2jLi4ODQaDY6OjrS1tQkg774UtsjISDIyMnB0dOz3UH3o0CFWrFhBdHQ0EokEqVSKvb29IHjGx8ezaNEijIyMEIlEBAcH4+Dg8JBgpNfr2b59O2KxmJdffhn+4sSLi4sjMjKSs2fPMm7cOG7evImJiQkzZsxg+/btBAYG0tbWxvLly4mOjkYkEtHQ0EBoaKjAzfLy8sLExITs7GzkcjnW1taoVCpcXFwICQmhqqqKtLS0h9hq/9T/vfU/kb73v+seSqVSYWJiwrFjx/ods6tWraK1tZXTp0//h+//O1Hqv7LM7u5uurv/fCBob2/H3d2d5R/9QkPJPbyDJ6JVddNaV4WZjT2N5YV4DhsNQH1pPlqVCrGBFJmJGe0N1Vg5udFcVYbEwADngcOoysvsN4NbkZ2KhYMrzZUlmNs7YefuS0V2KjJTcwyNzYRWCZ1OS3HqNRQtDVj3xm33VXH6dQyNTbBy8qCxvEAQmfR6PfUl+Zz88FncAoKJeuEjxBIJTRXFiCQSFE11Pc6l8sIHHmg0FKVdxWfkBGru38HI3AqpzAgrJ3f0ej1tdVWUZSVx68gPwsOO2EDaK7AlYe81CN/gif1YHa11lRSlXIFe9ohYLMHQ2FRwF/Q9PLTWVaLpVmJobEpzVSliiYTyO8lYOXswaHyYkBqlVLRRV9TTXq9RdaPTaoQ0wvbGWrraW3H08RdcAhq1iuL065hYWGNu64ilY8+YX343BWWHHN9Rk5AYSGmpKaepshhzGwekMmOObHt4EvflcfP4PPE0Yb5BzPcPZX/mRVYGTeX5mL18POMxtl0+xJOjwhjq4Mkr53/hseGTGWTrwvOx+/hw+iO4mNsgVymp72jD19qR9ae/Y2fUOgA2ntvD1slLcDCxoEujJrYgg8leAYjoSUnbcuEAX0asAb0ePVDV3sxEz8EsPrydLyPWkF1fTqirH3/cvU647wiKW2rxt3fj2+RYtk5eTLW8hdP3Unhs2CSKWmrxtnLkhbj9XFj1DifzkrlVkc/yoRMwFBug0+sY5+FP1G8fMNEzgMleQ7AzNmdT7D6+m/0kDR1ttCg70Op0gvAyzz+U8rYG6jvaePPiH2waM5vdafE8OSqcr5Oi2Rm1nrcu/sHCgDFIRGKMDAzxsXHkxbif+H3RZuo6WpGKJeiBho423r96lC/DV6PSatly4QBPjgojoSiL1UHTePvyQUF0eCYkghHOPuTUlzPQ1oXd6eeZ7j2MTnU3FjJjFg8Zx+WSbKRiMTq9HlsTCxo72wmwdyOp8j4tXR0EOLgjFUtQadVo9Xq2JBzAy8qBjaERbDy3hzcmLmKy1xCq2ptRqJU8H7OXD6c/yk+ZF1k6ZDyOZj0TUo6mliw/9iU7o9azL+MC3lYOPB0SwZn8VLysHEivLsLb2hGVVs3h7Ju8Mn4+m2L38VXEWnLqy/nl9mXGewxmiIM7YpEIT0t7ZAZSjKWGAguprLWBEc4+vHr+FyyNTHll/Dxev/AbS4eMZ5iTF8/H7OXTmSsx7k1QNBCLGefuz936cuoVrdysuEfUgGD2ZVzgieCZfJ54mi/DV1Pe1oidiQVt3Z3sTIrm6ZAIDCUGaHQ6Nsft5/OwVRiIJdiZWlDe2sCH146xM2o9r5z/BZlEyo7ItVwovsN8/9E8Hb2b1ybMZ+O5PUJK3vawVbxy/he+n/0kRgaGPftwxqO0dnUwxXsIr8T/wqqgqTR3KTA0MCC9uogh9h7kNlRwKPsG49wHEeYbhFgkxtfGiUePf8X2sFUYGUjJrClGIpYwwtkHKyMTylsbGeroyfmi27hZ2PLmxd/ZN28jmTUlJFXmM91nGA6mljwXs5dNY2bjY+3IH3evM98/lNcv/Mbbk5fya9YVSlvr+53/dp4DmPPSZ1TkpCGWGAhtb1X3btNaU86QqXOF8bow5QqmVrYYm1li4+aNRtVNfck9HH0GU56dKrh6qu7dRiQSU19yD7fBI1ApO3EZNFz4zMrcdApTruAxNBSxxEAYOx9MjivLSsJjaCjyplpaqssBaKkpQ61U4ug7GPfAkH5u0ap7t6nKzcDSyQ1rF0+U8p5ugvu3EihMvsycVz7HyTcAidQQvU5HUepVbNy8MTQ2oa2uClNre+Ha1N5QQ3tDDYYmppjbOFCdfwffkB6cRF1RLic/ep4Jjz6H/8RIgZPVVl9NZ1sTmm4lOq0WpwGBgrOsrb6aglsXsHLxwMFrkBBSodfpKEy9gpGpBW4BI1F1dVB9/w7G5lZ0yVvxChonbKO8sQ6VsgO9Xo+iqR6pkTEW9s601VWh12mxdvWmrjAH7+AJiMUS5I11tNZV4j4k+M/U1nu3kZma09XeyrkvX/vfk75nb2/Piy++SFZWFsnJyfj5+fH444/j4uLC5s2bKSgo+DeW8k/9U//fq7feegs7Ozuam5sxNzfn0UcfpbKykjlz5qDT6QgODub27dsMHDiQOXPmIJPJWLRoEXV1dURERAjuI3NzcxwdHbl+/TouLi6kpaUxa9Ys/P39CQwMpLKykqtXr5Kfn49IJEKlUpGQkEB5eTlxcXHCw30fS+n06dP4+Phw+fJlhg4dSlRUFI6OjsyfP5+ZM2cKLJzx48cTHh6Oq6srx44d4/nnn+fq1atCsllDQ4OQlGZjY4NCoaCtrY0TJ06g1WpZtGgRpqamAiDaw8OD8PBwoZ3u1VdfRafTER4eTkREhJD0NWfOHFQqFYWFhej1ei5evMj06dP77dv79+9z8eJFDA0NBSeIqakpUqmU6upqnJ2dMTIyYtasWVhYWFBVVcW1a9eYOnUqx44dQ61W4+vry6uvvopEIiEnJweFQoG1tTUrV678f1WQojcdb82aNSxbtgxzc3OefvppDh06hLGxMb6+vhw4cIDAwECuXr3KvXv3WLx4MR0dHYwcORInJyfq6uoQiUQCd+ybb74hLS2NwsJCrl+/LgDoRSIRNjY2WFhYUFpaik6n49SpU0RFRbFkyRJaWloETpOvry+WlpYsXboUBwcHIiMjGTVqFBUVFbi6uuLr64unpyeTJk3ixIkT5Ofnk5CQIIhdDwLUCwoKOHnyJIGBgVy4cIGOjg4iIiKYPn06gwcP5sqVKyxatIjVq1ejVquJiooiPDycsrIy9u7dKxxTDwLO7969S2ZmJmfOnBG4Xx0dHRw+fJigoCDOnTtHVFQUb7/9NuvWrWPs2LGcPn0aX19fIRAhNjaWWbNm4e7uzkcffcS2bduIjIxk1qxZ+Pr6kpGRwciRIxk6tKd3f/LkyTg7O/PLL78IMPx/6p/6n6z/XfdQjY2NaLXafk5IAEdHx/8yD+y/ssyPP/4YS0tL4cfdvYcrcuiNVRiamFF97zbypjpEop4UJFs3byqy0yi/m4LU0AjngUPR63SYWPYIIEpFO15BY7F0dOPoOxuI3bmV8rspwk9B8iUOvr4SA5kR1k5/MkwcvP1pra2gu1OBRtVNYcoVvEaOx9bNGzt3X0pvJwJQW5iDnYefkPpk4+ZDdX4WOp22B6Cu7mbGU1vxDp5AQ2k+6u4u5E11QtuDqbUdNm7eVGSnotWoKUq7im/wRKF1wd5zAC3V5WhU3Sia62mpLsPE0prQhWvRqFW4B4ZgZt2TqukRGNKTNJV+XZgRr8zNEOLCR0StQK/T4Tl8DNYuHtw6spvYnVspvZ1IRXYqLdVlHHv3KeqKcvEKGou1iycDxs7E0tGNsqwkujsVaDVqKnMy8Bg2GrFEgkRqiG/oFMrvpqJoaaShJB9HH/+etsaGGipy0qm+d5vO1kaiv3iVxooiKrJTKU6/TsyON2goyaf63m3K76bQVF7EhR8+oKW6DI26W2ir7CsjA0PEIhHbw1Yxd1AILUoFNsbm7M+4yO+LNiNCxNZJS0iuLCC9poiXx8/D1dwGA7GE+MffxtbEgo+uHed+YzUfXD3KnboyvopcS2lrA/szL/Vwosys+fDacTQ6LUmV92lVdvDlrTPYGJvx4fRHuF1TwovxP5PXUMnB7OvcKL/H7EGjEAF70hMobW2gTtHWE+hjZIpWp2OwvRtNnXLev3qEMN/hyFVdfJ10jvqONrZMWMDutPOcyEtiqncgr50/gIFYwovxPxNXkMm7U5ezcPAY9Ho9K0/uZNuUZTx59nuSqwq4VZHPrcp86jpaSakqIL+pmifOfI9C1d3D2NLpCHUdQKCDO29NXkJzl4KVQVNwNLWkVdnBT5kXae/uYuvkJdR3tPFi3E9odTo+uHoUH2tHvp31BF8knkGr17EjYi0+1o68NG4uMQXpbAyNpFrewqczHyfMN4iCpmp2JEXT2iuUeVs7UNhcw8+3L5NaVcDF4jvsTk9AqVGz5tQ3mEgNmfX7h5gZGnG+6DZFzbU8ceY7GjrlfHj1GJ/MeIzVI6ZS0lLP9rBVzBoYzKPHv2LD2e8wNzTi87BVyLs7meQZQElrHR9cO8pXt85yOOcmX4SvxlBiwHBHLxzNrMhvrOLblFg61d2MdPGhtLUec5kJq3udc8+NjsLe1IJhTl7EP/42HSolfjbO7E47j1gs5kLxHeTdSr6MWINIJOK71Djk3Z28PWUZ70xdRq2ilS/CVxPg4I5Gq2F72Co8rex5PmYvJlIZEpGYSfu30q1R06XpOS91eh1vT1mKmaERM3yGUd/RxkvxPyPv7mJLwgHC/UZwozyPj64fRyYxYN3IGRhLDfn05klu15T0jKNmVgy0deH1iYt4YexsujQq9vSC/gfauqDSanlj4iIAvgxfTWxBBp+HreLp6N1cKM5izYhp3K0rY7iTJ8uPfsmiIWOpbG9i66U/GO/uz0SPAI7m3GSEsw/Hlr2KqaERsYWZ1Cia+ezmSX6Y8xSOppZsSTiAp5UDg2xdaFd28sixr7A0MmHW7x8Q6OBOtbyZXxY8T3lbA01dcub5h2JmaIS5zJjjy17l3P00VFoNBmIxQxzc2TRmNn42TpS29jixHiy9TkdjRREXdn9I7tVoAWiuaK7n+m87yYo/SkV2KlW5GdQWZHN2+8soWhoov5tCdX4WIpEYidQQczsnWmrKKU6/jqWDC2plJz7BEzCQGWFoZCJAw8vuJGPp4IZP8EQkBlK8gsZiYe/EnicjaK4qFcIbyrKS2P1EGPLGOjyHj8HS0Q23gGAcfQdj7zWQopQrQsJfdX4WptZ2OA8ciltAMF1tLXgMDcXC3gVrFy8mr3oRtbKTuuJ76PV6yu4k4Rk0BkNjE1RdnbgOHkFnWzPN1WUomutpq6vELWAk6q5ODE3McPQdTG1hDqquDjpaGhmzZAPWLp6UZyWhaGlEqWijtaZcSH31GDaa8rspvZysShTN9Tj6DsZ31GQUzQ00V/Ycb32psjJTM7o75chMzbG073Htxu/axv3EBOH7KE6/ztFtG2itLsdz+BgcvP1pKMnHLaDHIW9mbYdn0FiKUq/SVFlMa2057kN6uqs0qm5qCu6iUXVz5rOXuH8r4d+63/hvgc5rampISEggISEBiURCVFQUd+/eJSAggK+++uq/s+j/T9SDrW195evrK/z9wXSpvtaYvho+fLjweoGM7+aGubn5Q6/pq9Gj/5zVmzjxYXgk0A843bd+fe0wfWViYoKRkREODg7CA9fYsWOF39vb2/dr1Rk37k/rX0BAQD9OzKZNm/ptb5+rZtKkSbz00kvQO6PaV08++STTpk3DyKin13fevHkMGTIEV1dXwYlma2srxKjTyzKysrISWkkAgT306KOPCv/Xx7bo+w5cXFxwdHTk6aefFl4zbdo04e99bWZ9rqXHH38ceoUQQHBnPFjvv/8+S5YsYe7cuRgYGHD37l1aWloEpxC9qV03btzgxo0bmJqaEhMTQ3h4OOfOnWPu3LlUV1eTnJzMiBEjUCgUQprY/v37BSeSRCJh1qxZXLt2jYiICBISEpgwYYLwcO/i4sLQoUOJiIhAKpWybt063nnnHeRyOXK5XEggHDCgB0I3efJk6uvrycvLo6qqivr6ekaMGIGBgQFRUVGEhoZy5swZQkNDBQh3XFwccrkcKysrrK2tGTx4MN3d3UilUqRSKb6+vkIk/fXr11mxYgWjRo1izJgxHD58GKVSSUJCAjNnzhSOo/v37/Pbb7/h5eXFhQsXBLfLBx98gEgkIioqCplMRlVVFdbW1gQEBBATE4Orqyvl5eXExMSQlJTEwIEDMTIyYtKkScJ2+vj4sGzZMvR6PeHh4Vy7do1XXnmFkSNHcuXKFdauXfvQ9/n/ZNXW1rJs2TLWrFmDWCzmzJkzfP/993zxxRds2bKFRx99lNLSUsLCwnBycqK+vp6ioiLhu1i4cCHHjx+ntraWWbNmcfLkyX7A/5MnTxIREcGpU6eIjY3FwMCAixcvcvToUebPn49YLMbe3h5TU1NKSkq4efMmLS0thIaGsmLFCkxMTDh79iw6nY7MzEyCg4OFVjIzMzOCg4P5448/mD9/PgkJCcTFxREfH8+bb77Jb7/9hlKpZMGCBVRXVzNp0iQmT54sQMePHj0q8NTs7OyYPHkyV65cQafTUV9fT0BAAIcOHaK1tZVx48YRHh5Oe3s733//PY899hhz586lvr6eHTt2YGFhQXh4OE5OTlhYWFBTU8OMGTP48ssvGTx4MHK5nBMnTmBvb4+5uTkvv/wyn3/+OUZGRnz11Vf89NNPHDx4kO7ubs6cOcO8efPo7u5GJpMRERHBO++8Q1paGh4eHqxdu1YA3f+1jI17HAd9Y968efOE3w0ZMqRfG2vfGLxy5UphXKS3zRhg48aNAKxb1zPb33fODBo0CJlMhre3NwAWFhbC5zzoTps3b56wrKlTpzJ9+nRksp4H4r621fHjxwuMrgXoEJgAAQAASURBVOnTpzN16tR+YzsPjIn0tmv/q9/R22ZIrwjq5+cn/P+cOXOgdxzu20eA0OonkUiEdZPJZJiZmQnLkclkWFhY9OMUPXhNNTAw6HeN4y/XvL7x7q/14PXywWU/eF3uS3Q0NOyfJDNkyN+zH/4n6v/Ue6jXX3+dtrY24acviTX82XeRmZhjYe9M9BevceKDZ8m+dJrcq+c499UWLu39BHlTHeV3U7i8/1PK76Qgb6rj8r7POPjGKpQd7QTPXUnUCx+hUnYiM7VA1dXB8LAlhD2zDZmpGdX5WZRk3ODmoe9prCjCzMaeI28/QfLxfVg7e9BaW8HNg9/RpWhDIpWxb+NcagtzaG+o5vQnL5ARc5DWmnJyr0bz4xPh2Ln7YmxuhZ27HxZ2TmjUKvY9MweRSETZnWRidrxBcfp1WmvKaSwvZM+TkciMTXvX4ybnvnqd8rspiA0M2Pv0LBrLCvAeOR6pkTH2ngNw9BnMiQ+epfT2LWRmFqSdOUBzZTHWTu6c/eJV4nZtQ6/TolWpuPHHLmru30HeVMe+Z+ZQV3wPR78Awp7ZBoCBzBhNt5LI5z/AznMAxWnXqCvM7RGYdFp8Q6ZQdvsWh95cg2fQWIFPaW7nyKmPNiGVGfHby8uFh5KilCvc+P0bZCamuAwajqWDG1EvfISolz0lEomZ/sTr2HsNRNXVifPAYQBEbvoQCwcXWuuqhLbKvlJqVHx28xQNHW08G7MHYwNDblXkM9krALFIRFxhJm9fPsjqoKk0drbzfWo8xlJZT8paQyVPnf2BzWPn4Gllz87IdUzyDOD5mL0oNSpm+Azj2Zg9yAykvDV5CbYm5nhbORDiOoCPZzzGhrPfYyCW4GPtyE/zn8XfzpVp3kNxtbBBr9ezN+MCX/dCzZ8aFYaFzJjtN08hEYlQatSIRCKeGtWTivvmxT9IWPkOvjZOnMlPZYzbQNYETcPTyoGdUevQ6LR8POMxfKwdef3Cb1S2N2EoMSDCbwSWRiZ8NP0xQl0HcKeujJYuBfWKNkylRig1KqIGjMRSZkJRSx11ilaGOLhT39HOV7fOcqviHrXyVlwtbNHqdTwVEoGZVMYHV4/S1t3JpzNX0qVR8cr4+WTXV/Rwk6YsRa7qQq3TIpP0tA2G+fbcQ3947RhanY75hz6hS6Ni6+QleFs7MntgMIkV9zCXGbN18hL2pF9g9YipPBMSgZWRKdvDViESiXll/HxEIhEOppYEOXnx0fRHeffyYZ4cFcbzsfsobKqlvbuLV87/wpn8VN6YuIjPZq6kpKWeX7OucLu2FI1OR4iLHy+Pm8/K4VOYOyiUl+J/plbRSnOXAqdewPvVNe/jaGbFq+d/xd/OlYaONnbcOktJSx2D7dxIry5i26VDZNeX063VYCqVsSNiLVYyU3LrK5CIRLwY9xNSsQFfRqxBrdPR0qWgS60iq7aU+0017E2/QExBBjXyFj66doyf5j9HoIMHZjJjgpy80Ol12Bibs2DwGD6+fpxaRSvrTn/LssDxpFcXc3jJS5jJjHh78lI8reyZ7DmED6c9yvXyXPztXNmS8BurgqbiYWXPibwk3pmyjPevHsXLyh5zmQl1ijZurf+ENy/9TrhfEFqdlhpFCx1qJS/G/4yTmRWOZlZ8FraSiZ4950xrVwc6vR5/O1fsjC1wtbAhdcNnnLqXwrMxe1gZNJXXEn4lv7EKW2Nzhjl6MszRi3emLONYTiJrT+/iy4g1fJcSh4FYgqFEwpKAcdiZmPPh9Eepkrfw1a2zFDTVUNbayC+3L2NuaEydoo3VJ78hv7GK1UHTaFV20NDRxiPHvqJT3c3KkzvZHrYK3V8asvxCp9DZ2kTY028zau4qLJ3cMZAZY2Ztz6i5K7Fx80Gn06HuVhI4bR7TN7yBzNQcJ79AbsceJuXUT5TfTaGxrJDDW9eiVnbRUFZAZuwhjMys6GpvxdbDj5aqMg5tXYu950B0Oq3gFqrOz6K5qpTITR/iNiQYA0MZqq5OAqbMZkTUcgwMZRQkX+LQm6vpam9Fr9dz+pPNWDq5cffiKX7ZvISu9lY0qm5ST/9Cl7wVkVjMwTdW0dHaiL3nAKyc3XHyG4Kloyu718+k7E4yNffvcu9GPEfeXt8zgaHu5sZvO/ntlUeg1/F79vNXyLt6juaqUm7HHuL3Vx/rnUjxQdXVgffICRQkXeTnTYsQicWU3Unm3FevU5mThqGRCXueiqIyJw2ZqTmJh76nqbwQQxNT6krusW/jXBCJaKuvor74Hpf3f07p7VuIpVJsXL2JeuEjzGwdEBtI0WrUuAWMJGT+aqyc3ChOv86+Z2YjMZRRkZPOxT2f9IiE926j6lRwdNsGCpIucv/WBS7t+5T4b9+hq60Ft4CRTFv3Wj9X8n9UBv/Ga/qVWq3mzJkz/PTTT5w/f55hw4bxwgsvCO1BACdPnmTt2rVCO8j/SRUUFMTt27f54YcfGDRoEFOnTmXfvn38/vvvrFmzhh07dvD++++TmZnJ6NGjkclk6HQ63nzzTT766CPq6+sxNzfHz8+Puro6JBIJPj4+1NfX8+KLL7JhwwbMzMz49NNPUalUDBs2jGnTplFYWMiKFSvIzs6mq6uL0NBQgoOD2bFjB7/++itHjhxh3LhxeHt78+uvvxIbG8vbb7/N22+/zebNm2loaOCHH36gqKiIgwcPMm/ePA4cOEB6ejqnT5/m1q1bHDlyhBMnThAYGIhUKsXd3Z2nn36arVu3Ul5ezieffEJwcDCDBw/mjTfe4I8//uDMmTOsXr1agPC2trZy+PBhHB0dMTU15ccff8TS0pLQ0FCcnJxQKpXs3r2bAwcOUFZWxm+//cZzzz2Ho6MjixcvFlwkgwYNorS0lD179jB79mzeffddgYO0Zs0azMzMOHfuHGFhYRQXF7No0SLs7e1ZtWoVL7/8MoaGhigUCszNzVm7di2nT5/m1Vdf5dKlS3zxxRc4OzvzyCOP8MILL7Bp0ybu3r2LVCply5Yt5ObmcuzYMUGs+mstWbKEe/fuYWxszPbt25k4cSLHjh0jMTERY2NjOjs7iYqK4pNPPmHSpEkMGjSI69evo1Qqee+99+jo6GDQoEFs2bJFcDPduXOHH374gWnTpvHTTz9x5swZRCIRAwYMYNu2bWi1WpKSkujq6iIyMhIXFxc++OAD7ty5w969e3FycqKpqYnw8HBOnDjBokWLSEpKQq1WCzee3t7efPPNN3z22WfExsZy6dIlcnNzuXPnDsOHD8fQ0BCdTkddXZ3w0H/q1Cmio6MZMWIE58+fZ/HixXz22WfodD19yxEREWzbtk0QHkUiEZaWlnh4eGBsbMzRo0eF/abX65FIJKxcuZLjx48zd+5cbt++za+//kpAQADZ2dkoFArUarXgHpNIJHR2drJjxw7kcjkLFy7k9u3b7N69G6lUypkzZ1Aqlbi7u9PY2Mjy5csZMWIEMTExfPTRR7zzzjts3LiRrVu38sEHH/w/NEr8fc2ZM4fXX3/9/8fee0dFkbVr37+mm5xzzkFAEREBRRFFlGzOOWGYMTvqOIYxjjozhjGOOeesSDBnTCgqgqBkyTk3TdN8f6D9zJwnh/Oe877fXGuxVlO1e9eurqq9d937uq8LHR0dTp8+zcmTJ+UMN01NTaKiomhpaeH27dsYGRlx9OhR6uvrCQ4O5v79+yxfvhyhUIhIJOL+/ft0796dxsZGYmNjkUgkmJiYcPXqVXmgMysrix9++IGKigoCAwPl7fjibvnrr78ydOhQnj17hrq6Oubm5qSnpyMUCjl8+DBxcXG0tLQQGhrK+fPncXJykgvG+/v7o6ysTFxcHKqqqpSUlJCbm0tOTg6HDx9GTU2N2tpaEhMTCQ4Oljs9lpWVoa+vT2NjIytWrEAkEnH16lXq6+tRVFSkU6dOnDlzhiVLlnDt2jV5gDgjI4OcnBz8/f0ZNWoUb968oba2lvr6evz8/Lh48SIzZ87Ez8+Pnj178u7dO7Zs2YK+vj7h4eG0b99enrJYWVmJgYEBKioq7N27V65PV1BQwPv376mpqaGpqQlbW1uGDBnyZ1ptc+fO5dy5cyxfvpwXL14wePBgZs2ahYGBAb/++it3795lxIgRDB8+nMjISI4fP87Fixfl6YnffPMNR48eJSMjg27duskDSBcuXODXX39l1apVeHh44OTkRJ8+fXj06BG5ubls376dsLAwIiIiaNOmDbGxsezYsYNRo0Yxfvx4BgwYIA90ymQyzp07J2dr3rt3j/v37+Pm5kZOTg42Njb07duXO3fuUFNTQ3Z2Ni4uLlRXV1NUVMT48ePlOleHDh1i/PjxLFq0iIEDBzJr1iw2bNiAs7OzPGBcV1fHqlWr+Pnnn/nuu+84fvw4N2/e5NWrVyQmJrJgwQKOHDnC0aNH5eYV58+fZ/78+dy7d4/Jkydz69YtunXrxrRp01iwYAFNTU1UVlbSuXNnXr9+zcePH/H29qa0tJSffvqJ7t27y9OedXR0WLx4Ma9evcLb2xuRSMSbN2+QyWQ4OTlx+fJlbG1t6devH76+vrx48QIdHR3evXtHS0sLQ4YMwdnZWa6l9fz5cw4ePMi7d+9Yvny5/Ln59OnTv90P/HfOoQwMDBAKhRQV/d6G+4tRxL+Cf6VOZWVleeDxt2iWSrm0bhZOXQJx8Q8j48U94s/sRt/SDiff3mgZmvH+QSw2Hr5UFeXx8dkdPEKHY2DtRGNdNcl3o3Ds3Ivku1GYObtz89c1dB87h7MrpuAzaBLXd66k85BIGutqqCzIofBDEs3SJuoqSmisqyYv5RW15SVUFuaS8+YpxvauNInrqS0vwaq9D9rGFqQ+jENBKETHxAr3oCG8uX6e19fPEjhlCTf3rMVrwAQAGutqeHJuH70iFyNtkqBlZAYCBQxt21BXUUpjfQ2fUlpZpGWfMinN/oDPoMnUlpdwZvlklFTV0bOwQ1xXQ3Hme0wd3WhqqKcoPZlXMadwDxpCSVYaqpo6qGjq8OziQWpKC6kuKUBSX4eOqSWVBTkoqWlQ9PEdVm7eXF4/hw4hw1DR0KLgw1tUNXWJP/MrCODm7rV0GTqVjIQH1JQW8jruLFVFn/jw5BYdQoahaWDChye3sfHoiq65DRJxA3nvXxE0YyWVRXlcWDODkFlriN7yHd1GzuD6rlUETltKSfYH3lw/R/DM1ez/Khyv/uMxd/GgSVzP7b1/rsNiqaXP196hFNRWsMx/CHpqmmwPi2Tcxa0UtK1krHsPxnXogUhBSCczB3wtndFUVmF3xDQWXD/MMv8hKAqFLLh2GFWREjvCprCi53AM1TTRVlFnlk8YjdKmz6LTXzHTJ5T7WcnczHjNttDJGKprM/zsRnaERfLN9cNsC53MzOh9TPQIINCuPSIFIQ+ykzmXHM+20MlsCp6ASKBASX1ras7hxDtsCp7Als+pYnNiD7Cwa38UFYT88OA8G4PGMz/uEPN9+3I66RGRnr2Z4NG6GOqkb4ahR+vi64RL29nQewzf+g2koKYCHRV1imorEQkUCHX05Hp6IrKWFqy0DcipKsXF0JLxHQKw1TXiUc57aiXizwwZW66kPmdh1/6oipT4+dElgh09uJn+hjW9RvKNbz+c9M2YdvVXAu3cWditPxM9AlBQUCDu4yu+7TYAoYICeyKm86qwlVky4twmNgVPIL+mAks9A2QyGToqapTUVfM49z0v8zMY1b47B1/dpk4iZmqnPoilEjIrill+5yQ/9hlLUW0lRwfO5nDiHXrbu7Oi53D0VNRZcfc0vpbOJJfkoiJSorlFRml9NTufx9LU3MzszmHczHjN4QGzEEslKAlFqCupcHTgbBLy07mV+ZYLwxeRUV6Ina4xW0MmE5X2AncTBZSFIrpZuyBraWG0e3eaW2R8dW0PRwfOZk6XcCTNzWwKGo8A+PHRJb7x7ceqe2f4xrcffew78MOD86wJGEl1Yz31TY10MLGlQlzLhEvbuDh8EZM6BtLRzA7ffYv51m8g8337IW2W0svWjYT8dA68ukU7I0vmxR3iO79BiKVNbIq/wsag8cR9TCTA1o21gaOYFb2Ppd0H425ii0AgILkkl4KaCtI/i8DvCp9KhFMnRApCKhpqOfjqNldHfsfm4InUNDYw5sIvXB6xmNSyPOx0jWlrZElmRRHLewzlQXYyy26fZGvoZLSV1fi22wACbN2Y3DEQqayZ6A8JfNttINOjdrM1ZBLuJrb0sGmHra4xjc1NSGRSNj66wjzfCOI+JnI66RFjO/TAx8IJLWVVXAwtuDziWwprK7HWMWR7aCSS5ibmxR1ie2gkM7xDaQFqJWI29B7Dxsd/nt799Px++i7chLi2CqlEzIlFo+kybBrxp3+ly9CpZL58SPLdqwA4+AQgk0rJSnyEtrEFnhGjkUokVBTkoKFnhFkbd7LfPEHfwg4NPUNu71tPVuJjvAZMoOjjOyoLckh9fJ2n5/biP34+9w5tBCBk1hpS7l/DwTtA3q/XVZaioWdEWvxNBApCnP1CKM1NJ+vVIyoLcxHXVqOkqkZDdQUIBFQW5FCc8Z7CD0nytLbCD0lUFOTg4hfCodmD8Bszm3a9BqCqpUNRRgqpD2Phs2lFRWEueuY2KKtr0ixtQklVnW6jZlJfWUZhejKN9XUoiETc2f8TpdlpVBTk4OATgI6xBZ2HRJIWfwMVjdb+RCppRElNA5m0CYm4nsa6GioKcojdsQK3wAEANInrKf+USU1pEblJzyn8+A5HnwBOfTeewKlLiN7yHcEzVxG7bTnmzh607zOIxroaEuPOomNiiY6JJc1NEmTNUsS1VRSkvaGusgwzp/atbLGaSm7vW4+2sTk9Jiwg5UE013etwm/0LB4c2/oPzTf+aU0pA4PWDmrEiBFERkbKGSu/RWVlJR4eHmRmZv4zVf+vxhdNqQEDBuDn58emTZvYtGkTNTU1XL16FS8vL5YsWcLkyZNxcXFh1apV2Nvbs2jRIoYNG8YPP/zAo0eP+PTpE/Pnz6esrIyYmBiuX7/OsWPHGD16NLt37+bJkyfY2tri7e1NeXk52dnZxMXF8ezZM1auXMnNmzeJi4tj3bp1xMbG4uHhQdeuXZk1axYFBQUsXbqU8vJywsLCOHv2LC4uLixatIhVq1ZhaWmJgYEBsbGxODg4cPHiRTQ1Nfn48SPz5s1j+vTpbNy4kVOnTjF69Gi2bNnCgQMHyM3NJT8/n44dO1JXV4e2tjYdO3YkLS2N4cOH4+bmxpQpU9i/fz8xMTFcunSJrKws9PT0UFdXJygoiN69e/P06VNKSkq4c+cOwcHBnDhxglGjRvHx40fs7e2JiYlBIpEQHBzMqVOnGD9+PJWVlcTHxxMcHMyxY8cYM2YMFRUVKCoqkpCQgJaWFuvXr2fWrFn4+voSFxdHYGAghoaG8uDEl+OdOXMGU1NThEKhvKyrqytv3rzh9u3bbNq0iZcvX+Lh4UFcXBxisZisrCwUFRXlTIawsDCuXbvGsGHDWLJkCe/evcPIyIi6ujr69u3LxYsX5YLqDQ0NBAcHs2nTJtasWcOZM2eYM2cOX331FUuXLkVPT4/g4GCio6OprKzEyMiIiRMnkpuby+DBg+nUqRMvX77Ey8uLT58+UVJSQlhYGFu2bJG/jOXk5MiZGrNmzWLjxo2oqqry+PFjJk+eTGxsLJGRkaxatUoeBMrMzKRfv37Y2dmxadMmsrOzGTZsGMbGxmhra5Oamoqmpibbtm1j9uzZ1NTU4OPjw61btygqKsLFxQVVVVX5/amlpUXHjh25f/8+06dPZ/LkyfLg3qdPnzAzM5O7H44YMYItW7YQHh7OqlWr5IHIO3fuIBKJGDFiBCNGjCAiIoIZM2ZQWlrKjRs3KCkpoXfv3qxevZobN25w8OBBfv75ZwYNGkRYWBj79+9HR0eHrl27smPHDk6fPs22bdsICQkhMjKS/Px8rl69+j/ci/wJGzduxNzcnBMnTrBt2zbevHmDuro6AQEBbNq0iU6dOvH48WPatWvHggULOHv2LJ8+faJdu3acOnWKb775hjNnzlBfX8/48eO5dOkS7dq1Iy0tDXt7ewYNGsSGDRtoampCWVkZBQUFRo8ezb59++Si1h07duTq1avMnz+fRYsWER4ejlgs5u3bt5iZmeHu7s6bN28Qi8XyFJySkhICAgLo06cPX3/9NV26dOHjx4/U1NRga2vL+/fv2bhxIxs3bqR9+/ZcvnyZd+/e0adPHwoKChgxYgQ9e/Zk27ZtfPjwgYqKCvT19Vm/fj2TJk3C1NSUjx8/kpmZyZAhQ+TOimPHjmX79u3cvXsXVVVVvLy8iI+P58WLFzx//pzs7GzMzMxIT08nLS0NY2NjFi5cyPz589HU1OTEiRPs37+fS5cuce3aNQwNDampqUFJSQktLS3c3d3p06cPCxYsoLGxkYCAAPbv38/MmTN/Z6DAZ9fKV69e8fXXX/PkyRO8vb05evQos2fPJioqCj09PSorKwkJCaG4uJjbt29jYGBAmzZtePfuHcHBwXLH0rdv31JdXY2bmxtSqZSVK1diY2PD7NmzuX79OkFBQfz0008sXLiQ2tpaHjx4QHBwMIsXL2bPnj3Ex8eTl5eHmZkZDQ0NuLq6cvLkScaPH49UKuXGjRsEBwdz8+ZNevfuTUlJCampqaipqXHhwgX69u1LYWEhffv2JSYmhurqaoYNG8bZs2fp27cvN27cwM3NjVevXiGVSklOTiYsLIw+ffqwe/duZs6cyZ49e4iIiGD//v0sX76cBQsWMGfOHK5evcq+ffuYO3cuubm5FBYWsmDBAi5fvsymTZtYsWIFmZmZxMTEcPbsWb777jvevn1Lp06d0NbWJjo6muvXr7N161auXr3K7du3mTNnDsnJyXh6etK1a1cMDAwYN24ckZGRKCgosGzZMhwcHGjfvj13797lu+++w9zcnLCwMNasWcPq1avZsGEDu3fvZuXKlQwdOlQuCL927VoOHz7MggULMDExYdKkSWzevJmamhqmTZuGn58fDx48+Lc1pf6751A+Pj54e3uzbds2+CxKbmVlxYwZM/4tofN/tU7+AU1OU6f2FKS9AcCsjTv5qa//allX/3CS70X93WMqiBSRSZv+brm/Bj0LW3nKw9+Dg09PPj698zfL6JrZUJGf9S+357fQ0DOktryVwWnXqTsZL+7/br+xvStF6cn/dL2G1k6UZKcB0KZrEKmP4v6l9mkZmVNdnPdX90d69mZvwg02BU9gXuxBNgWNx0HflIzyIhbeOMKaXiNZeP0IS7sPRl9Ni7mxB1jbaySylhaOvbnPV17ByFpaqGqsR0WoSEZFIVbahhx7c4/vewwjIT8dNUVltFXUmB93iDUBI2mQSpDKmtFSVkNVUQklBRFVjfXY6RqTWJiJt7kj55PjOfH2AdtDI6kU19HRzI7QY2v4odcojry+y5ROfUgtzUNHRZ0NDy+yNWQSV1Jf0MOmLQ76phTXVVHT2ICaojKSZiman1OlFBWEdLNyZl7cIVb1HNHKZMn7iKO+KfPjDrG21yiSirMx09RvTW18dIlfQiYhljZxO/MN97KS+bHPWBbEHWJd7zFsfxrNTJ8wWlpkSJqbuZnxhoamRqoa6+ll157C2gq6WjrzIDuFrlbOzIk9wABnH3wsnCiqq8TV0JKvonazJWSiXLi7UlzH6ntn2RoyiQc5KXS1dGb5nZMMdvUlu7KY1LJ8ZvqE8aoggzdF2XzfYyjFdVWIpU0oCARsjr/KMv8hNDRJUBYpMj1qN5uCxjMv7hCbgydyIeUJ3uaOvCvOoaFJgqeZPSX1VZhr6tEglWCva0JGRRFmWnqsvHOaZf5D+fbmUblb4PrAMWgoqTAjei8reg5HRajItzePsthvEOaaenx78yiXRywmpeQTEpmUebEHuTxiMRdSntBG34zV986yoGt/jDW0qW+SkFVZjJ6qBkbq2jRIJTgbmHPw5W38rF2YF3eI1QEjOPHmAZM9A5G1tKCrqs7Bl7epbRKzKWgC6eWFTLm6S+62dy/7HRKplOvpiWwPi/zshteEsYYOH8sLsNU1Yk7MAUIdPfEyd8BATZPpUbuZ3LE3/jaunEl6TKiTJxkVhTjomVIlrmNWzH5meIfyqjCDtoaWRKUlsKT7IBqbpVhpGTD4zE/M6RyOqaYui24cZVPQeKy0DSmpr6ZG0oBIQUgHE1uW3jpOfxcfFl4/wrfdBqCprEZDUyPaKury67XoxhGODZrDi7yP1EjEOOiZ0MnMgUvvn9LTph3pFYUsunGU4e264WftwtfX9rI5eCIr7pxiTa+RtAAqQkW2P4vGVFOXF3npBDl04FTSwz9jSvFZV6o0+wNKahpI6v85x2sz5w4Ufkj6MwOLfwbquga/c+0D0NAzQlFZ5bMBx78HDT0jasv/pKWlY2JJZWHu78roW9pTlttqOGPv1YP053f/rB6BQOF34uX/CahoaCOurfqr+xVV1GgS18uv0T8CBaFIfj0s23UiN+nFXyz3H9eU2rx5M/n5+ezYseMvTqb4nKrw/1JA6rdQUVFBIpGwd+9eJBIJhoaGDBo0iDZt2nDs2DGePHmCp6cne/bsYcGCBQDs37+fzZs3M3HiRM6ePcvYsWMxMTHhwYMHPHv2jNLSUoqLi5k6dSpdu3bFzc2NY8eOoauri46ODnfv3uXFixfY2tri6OhIZmYmhYWFvHjxgjVr1lBRUcHOnTvR19fH1dWVnTt3UlVVRVNTE8bGxixatAgHBwcmTJiAWCwmMzMTLS0tJk+ezNdff01ISAienp7s2rULc3NzRo0ahbm5OT179kQoFHLr1i0WLlxIY2Mj1dXVPH78mLi4OHR1ddm6dSuTJ0/G399fLnIdGBiIiYkJDg4OvHr1itOnT7N27VoOHjzIo0eP4LP+jKOjIzExMZSXlxMXF0dRURFFRUXExsbSpUsX3r17R3R0NDKZjCtXrsgd4e7cuUNmZia5ubnU1tZy6tQp9PT0uH79OlKplNOnT5OWlsbixYu5evUqZWVlREdHy93sTE1NOX/+PFKpVC5KHhISwtKlS8nOzqasrIyHDx9iaWlJbW2tPCAF8PDhQ6ZNm4aPjw/x8fGMGDGC+Ph4rl69yqpVq3B2dkYoFJKZmUl+fj56enp4e3vz888/s3LlSlRVVVm6dCl8fjijoqKorKwEIDw8nPXr12NoaMjSpUtZsGAB/fr14+7du3h7e/PkyROGDx+OpqYmPXr0oK6uDlVVVcLCwigrKyM9PZ3k5GSCgoLw8PDA0tISqVTKmjVrcHR0pEOHDqipqfH8+XNOnjyJjo4OPj4+JCYmUl5ejqenJ3fv3iUsLIzHjx/LHdhCQkJYvHgxUqmUGTNmkJOTw7Rp09i7dy8bN25ERUWFtm3b0tzczLlz5+jZsyf79u2jb9++tLS00L9/f3r27ElMTAzr16/HxsaGZcuWYWpqSnV1NYsXLyYiIoKGhgamT5+Os7MzoaGhrFu3jrVr11JeXk54eDiLFy/G0NCQ5uZmHj9+zKNHj8jLy+PcuXMkJCQwaNAgduzYQWpqKgoKCjx79kwuiu3l5SVPXfqfwuDBg1m+fDnh4eE0Nzfz/v17oqKiuHjxIhEREWRkZLB8+XK0tbWJi4tjz549fPjwAbFYLD+Xc+fOYWlpyYkTJ3j06BHjx49nwYIFaGpqMn/+fEJDQ7lz5w62trbcvXuXzMxMtm7dSlJSEtbW1ly4cIE5c+ZQWFiIk5MTpqam7Nu3j8DAQPz8/FixYgU7d+5ERUUFFxcXlJWVmTZtGqtWreLJkycEBwdz8OBBBAIBOTk5WFhYUFNTQ0REBFu2bEFZWZnGxkaio6PR0NDA2NiYJ0+e0KNHD54+fSpn9nz33Xds3bqVSZMmUVtbS3x8PKmpqaSlpTF79mwCAwPp2rUrCQkJTJgwATc3Nzw8PNi+fTtPnz5FR0eHT58+sWzZMjp27Mjr16+JiYkhLS0NCwsLioqK5GlyK1euJCIigjFjxrB+/XouXLiAt7c3EokEPz8/kpKSuHr1amsufmUl4eHhLF26FIlEwuzZs/9Miyw0NJR+/fpx7do1mpubefXqFXZ2dqxdu5ampia0tbVRUFDg5cuXvHnzhuHDhxMYGMiTJ0+QSqVcvHgRFxcXYmNjKSgoIDc3l/fv3/PgwQM2b97MuHHjuHLlCi0tLZw/f57Ro0cTFRXFtWvXKCkp4dGjR0yZMoVjx45RV1dHdXU1Bw8eRCqVcvXqVUJCQrh9+7bc2TQvL4+6ujqio6OJj48nJSWFly9fMmLECPmYce7cOWxsbFBSUiImJobQ0FDi4uJ48+YNMTExaGhoIJPJWL58Ofn5+fJU5y+Mpm3bttG9e3cGDBiAsbExJ06cQCaTUVhYSENDA2PGjCE9PV2eYqyhoUFjYyMTJ05ETU2Nzp07Y21tzeTJk+nUqRNeXl5cv36dlJQUTE1NcXR0JCMjQ+46OWjQII4dO0ZCQgJbt25l7ty52Nvbc/LkSZYvX05ycjKLFi1iypQpCAQCYmNjOXPmDPv27UNVVZWVK1dibm7OmTNnOHPmDDExMRgYGLBw4UJaWlpQVVXlzJkzFBQUIJVK+f777+UOsP8u/rvnUPPmzWPv3r0cPnyYlJQUpk+fTl1dHRMmtDJ8xo4dy+LFi+XlJRIJiYmJJCYmIpFIyMvLIzExkY8fP/7Ddf67+BKQ4nNqxd/CPxKQAv6tgBSfrbb/Ufy9gBTwHwtIAfKAFPBnASk+C+P+K/gSkAL+5YAU8DcDUspCEXsTbrAjLBKhQAEBAoQKQrIqS5gTe4D1vcfwIDuFwwNmoamsSn1TI5uCJ6CuqMKy2yeZ6R3KstsnuJ35lpgPLymqqyTuYyIqIkXcjKyRNEv5+fFlFAQCVt87y5Lug8mtLsVCS58NDy9SKxGz/PZJkopzyK4sYfLlHRTWVjLo9I80SCVsChpPcV0VrkaWhB5bw4beY1EQKGCjY0SzTIamkiq2usb83Gccs2L209O2LSfePuB00kO+v32SSylPuZDyhBpJA19d28MIt27427TFRFOXYAcP8mvKSS8v5GFOCnez3jG7czj+Nm05+fYhKiJFLLX02RQ8gfeln7iZ8Zredu783GccigpCJnbshQICvM0dURAImBd3CFmLDFdDC8Z16MkUz96oKSpTWldNcV0Vr4uysNYx5Du/QVjptGqFbo6/SnZVCRv6jEXW0kLcmOVIZTK0ldXYGjoZSbOUcR16kllZxI6wKTz5lEqokyeDXDtTK2ngQ3kBkZ69EQoUmBm9j6rGelRFSvhZu1LX1Eh+TTklddVsDp7IwhutovIaSsokF+eirqiMl7kDwY4eyFpkFNVW0SCV8CA7hXcluWx5EoWuijoTPHqhrqTMfN++pJblcWjATGSfX8yvjVrC/oQbqCm1puZpKqlgq2tMNysXEgrSmRG9Fx1ldfb2/Yplt08S7OBBg1TCip7DUf7seHgn8y1l9TUIELDs9knqmyT0PbGOga6dqZU08mvENOqbJJho6iBraUHwWQttWLuujGrfnZsZb5hyddfn46vy1bU9hDt1oodtO9b2GkWNRMyc2AMU1VWSX1PG2vvnkMpkrAscTYijBwuuH6amsYEQh46YauqQW1XKw5wULqQ84UNZAeMubiWtrIANvcdgqqnLEFdfrHUMsdI2oLmlhe9uHufAq1tcH/s9aorKKAkV2RY6GZFQxPI7J2mSNVNWX8O82IN8KMunqLYKK21DNgaNZ/3DizQ0NbI34SbnkuOJ/5SKooJC63NSVcqvL65zLe0FAgT0PrICFwMLBp/5iQfZKRzoNwM3Y2syKoo52H8mj3JSmOfbl1NvH7LnxXUkzVL0VDURIGB5j6GYaur9xYAUIA92/LMBKYD894n/VkCKz0yl/4ra8uL/SEDqS12/xX8NSAHygBTwFwNSwH88IMVnk4u/hSZxPfzmGv0j+O31+GsBqX8E/5L73v8f8WWlr3Pnzjx58oTY2FiampqIiIiQsw8WLFhATEwMDx484IcffiAmJobS0lLGjBkjd43aunUrY8eOJTExkby8PCQSCRMmTJC/xLVv357MzEw8PDw4evQow4YN49atWzg7O7Nr1y5+/PFH7t+/j4WFBe/fv6epqYl+/fpx4sQJRCIRXbp0IScnh4qKCqKioujTpw/Hjh3j119/JTU1lYKCAh48eEBQUBDh4eEcPHgQY2NjDh48iJ+fH/b29oSFhXHp0iWys7Opq6tjxIgRpKSkEBwczIULFxg8eDBisVjuiBYYGEiPHj2Ijo7m0aNH+Pj4kJaWhp6eHs7OzhQVFdHY2EhNTQ0qKiqsXLmSAQMG0L9/f/nv8iUV4NmzZ3h5eRETEyPfbmpqSmlpKfr6+sTFxREUFMTIkSM5efIksbGx8mtUWFjI+PHjycrKwtraWl73xIkTOXjw4O/K1tfXM3DgQA4cOMDYsWMRCoXExsYSFBTEypUrWblyJY8ePaKsrIzIyMg/S134A3/gD/yfhYqKCmKx+H+6GcyfP5+vv/6aBw8eMG7cOCoqKtDS0uLmzZv06dOHlJQUXF1dWbhw4e807Kqrqxk6dCglJSXo6elx8+ZNevXqhZGREfb29qxevVpeNjU1ldmzZ1NdXY2mpqa8L/vCENq6das8HbChoQE1NTVOnDjBiBEjSEhIwNLSkpqaGpYuXcrYsWMJCQmROzO6uroycOBA1qxZQ3R0tFzLberUqYwYMYJ27dqRnp6Oj48PmzdvZt68eTQ0NPDx40c0NDR4+vQpT548ITAwkP79+3PixAnU1NTYtWsXAwYMwMTEhPDwcM6ePUt2djZSqZThw4fz9u1bPnz4gFAoJCUlhe7du9OrVy+ePXtGc3MzhoaGdO3alaVLlxIREUFpaSlOTk4cPHiQH374gfv37+Pt7c2dO3ewt7fHycmJTZs28dVXX3Hnzh0cHBxwdHRk0KBBzJ07t9XlrKoKKysr2rdvz+7du+GzrmFMTAxRUVHs2LGD6OhoMjIymDFjhvx3XrduHR4eHgQHB/PNN9+we/duBg0axKFDh/4j7nv/3di+fTs//fQThYWFdOjQga1bt8o1KXv06IGNjQ2HDh0CICsrS65Z9lt80X37R+r8e/jDvfgPfMEAFx+6WLZh4fUjzO4cTk1jPZ5m9tQ1NaKAgPYmNky9sothbt049fYhX3kH86mqDBdDC7RVWjV3xFIJuVWlvC/Nw0JLHysdQ9bcO8u20Mn88OA8eyKmc+T1XRz1TDn65h6lddX8EDgaRQUhDZ9TwnKrSjHX0keooECjtAmRgpBP1WVUN9bLWVwqQkVeF2VxPjkee10Thrv5MTf2ADvCIpkXe5CF3QagoaSCVNZMS0urXtaa++fwt25LO2MrsitL8LN2ZdGNI/L6FBQUuJTylCAHD+5mJeFiYE7sx0QmeATQ3CJjw4OLaCmr0sbAnE5m9qy4e5ppnYI4nHiH8DadKK6tQlEoxErbkE5m9lho69P3xDo5K2lT8AR+fHiR6V7BuBlbcyvjDZ0tnBhz4Re2h0YiEICvpTNHX99jU/wVufvepqDx7HoeR1sjS5wNLVj/4AI7wiKZcW0fW0MnUd5Qy/d3TrE5eCJzYw+wofcYXhZk0MHEFmWRIrtfXGemdyjz4w7SJGtmb9+vqBTXcfbdY6obGxjXoQcv8tORNjdz8f1TvvUbiEigQEJBBppKqpTVV1MprqO3vTvbn8VwdugCXuR/5Mr754zt0IPHue85+fYhO8JaWWyl9TVsjr/Kht5jWXTjCN/6DSSxIJNQx45cSHmCna4JKaWfCHLw4EjiHWZ4h1BSX4Oppi7FtZUceX2PAS4+GKlroaqojJKCCD01DUae28xy/6EcTryDtY4hI9z8eFWQwZ6EG3LW1sH+M6gS1zMn9gDf+g1EXVEZbWU1ZsXsJ8zJk8GuvtRJxBTUVhD78RUBtm7IWlrY+PgyRwfO5kNZATqq6qiIlEgt/cSL/HT0VFv1hLMrSwhy6ICdrjEfygpwN7Fh3MWtrOgxDGmLjHPvHhNg64appi4OeqbMiTnALyETKamvRiqTEf0hgRAHDxAIMFTTQiyVYKimzeuiLL6/c4rv/AaxJ+E6o9r7087IkqefPqChpEJ1YwNRaS9QEopY0LU/6krK5FSWYqiuRXlDLUW1lVjrGJFTVUJiYSZDXH3ZGH+FBb79kLbIUFQQYqGlT2ZlMWeSHpFUnIO5lj6DXbuw81ksFeJ/Pvj0B/7fw9+bP/0RlPoH8WVS5enpycaNG9HR0aGxsZFHjx7Rpk0bjIyMKC0txdTUlLy8PPLy8tDW1qZPnz48fPiQhoYGqqqq6NGjB0lJSYwfP56ff/4ZNzc3ysrK5Do6FRUVVFVVyd3Z6uvrqa6uRiwW4+zsTF5eHqWlpXJR2y8Covr6+pSVlbFu3TpWr16NQCBg/vz5rF+/Xi4m3K5dO8rLy5k9ezb79+9HIpHQp08frl+/TkREBIcPH8bX15fU1FRsbGx48OABO3bsYOPGjTQ0NGBvb09paSlVVVVUVlbi5+dHZmYmJSUl3Lt3j+7du2NhYcHTp09p164dOjo6lJaWIpFIMDIyQktLi7KyMrp3787ixYsZOnQohYWF2NrakpyczL179/D29qZr164kJyfLz6mhoQGJREKvXr1ISEhAKBTy5s0bObsnJCQEVVVVEhMTefToER07dqS4uJiLFy/Sr18/tLW1SUxMZPbs2XIW04sXL0hOTsbOzg5TU1N69epFXFwcNjY2pKamkpyczJQpU3j8+DF9+/b9H777/sAf+AP/W/D48WO0tLRISUlBLBajrq6On58f2dnZ6OnpkZCQQFFREWKxmA4dOhAQEIBAICAmJoaamhq0tLR49+6d3Fnxi57WgAGtef9PnjyRs5MsLS0JDg7myZMnNDc309zcjEAgoKmpCXV1dbp160Z0dDSJiYm4urqip6eHQCDAx8eHO3fuMGjQIC5evEivXr149OgRNTU1eHh48PHjRyoqKlBQUEBDQwORSMTDhw+xtrbGx8eH3Nxc1NXVMTExISEhATU1NZSUlHB2diYxMZE5c+awb98+ZDIZPXv25MaNGwwaNIgDBw4QGBjIq1evcHZ25urVq5w9e5aFCxdSU1ODoqIiampqrF27lsjISAwNDbl8+TK6urr4+vpSXV2NpaUlysrKVFVVIZVKcXJy4sOHDzQ0NNCpUyfi4+MRiUSoq6tjYWGBRCLh06dPSCQSFBQUcHNzIyUlhdGjR7Nt2zasra2pr6+nubkZZ2dnsrKy5HpHr1+/xsbGBn9/fx48eEBdXR319fWoqKgwYsQIrly5ws2bN2nbti27d+8mMTHx/4qg1P82/KNBKSd9M9LK8jHX1COv5u+7pRqr61DW0Poy9l/hbmKDuaYeH8oKUBSKSC7585XqvwQVkSLi/8Ky8jS1I6Eg43fbRAoKf/G4/xthqqlLQU3Fn3020dChsLbyr37PUkuf3Oqyf+mYykIRjX+FzbAjLJJaiRiprBkdFfVWMW7/IRiqazMreh9bQyfz7NMH3hRlMbljILNi9rOga38UBAI2PLzIjrBIahrF5FaXoixUxExTl8ZmKQ56JmyOv8pMnzBGnd/Mht5jyKsux0Jbn2pxPfte3mSQaxf2JdygvbENY9z9mRWzn9UBI3hfmsfxN/e5PGIxn6pL0VfVZPi5TWwNnUxDUyPvinPpbuOKVCZDKFBoDby8uM6H8gJm+ISy/sEFfuwzFkstAx7mpJCQn864Dj2ZHbOfhd0GYKdjzMTL29nQeyyppZ/4WF7I87yPLOo2gF+eXMNYQ5sx7v5oKqtRL2lEpKBA8+eX/QpxHQZqWtRJxORUlRL94SXfdhvAmXePcDexRV9Vk3UPzrMqYATKIkVeFWTQ296dN4VZrH94kZOD51FWX4NIKCSl5BPW2gZY6xjxtiib/a9usdx/CBkVxbQxaHVekzRL0VBWpaCmHAc9U+qaGqmTiPlYXkCgnTs5VaX88iSK8R16sjn+Kl97h5BeUci4Dj35WF6ITCbDTEuPMee3sKH3WOz0jOl7Yh0bg8aTW1VKGwNzVERKSGVSIq/sYmPQeO5kJmGvZ4yllgF+1q6ceHufX55cY13gaHY9j2Nfv6/4UJZPTaOYb28e5ejA2aSUfOJ+djLhTp3QUlEjrTSPWxlviGjjxQ8PzrMpaDz3s5PRV9OivbE1s2P2sz00ErFUgowWGpokfH/nFNtCJ/PLkyhGunXHWEMbkYKQRzmtIu+uhhbIWlpQFIpILc1DTVGZRmkTPz++zA+9RmGupc+4i1v5JWQSD7KTMdPUw17PhNkx+9kVPpWP5YVEpb1gokcALoYW9D2xjtUBI/jp0SUGu3bBQE2LWokYTWVVVBWVya8up0HaiLuxDd9cP8yBfjOokTRQJxGjpqiMgkBAVFoCkzr2IrU0n/bG1tzPTmZT/BXOD1tIUW0lAoGAVffOsLT7YHmanUhBgbyacrSUVNFSVmNG9F5WB4zgduZbuli0QVtFDT7rwiopiFpZi4Fj2PE8hlk+YSQV5+Ckb8qPDy+xsudw5sQeYFPwBI6/voeGkipD2/ny9bW9TOsUhKO+KQKBgGaZjCOJdyisraSkvlr+/OuoqFMprvtdn9DWyJJ3xblYahuQW/UnFpORujbFdX+b2fNfYaiuRUldNZpKqkiam+T9kLG6DkV1f72/+y3+1hgU7tSJrMpikopzsNM1JqPi96SF344h/04f+tfw2z78vwv/Xcf4j6fv/Z/Ajh07sLGxQUVFBR8fH7kQ7V/D2bNncXZ2RkVFBTc3N6Kjo3+3v6WlheXLl2NqaoqqqiqBgYH/suVyZmYmVVVVDBs2DIlEQrdu3fD29qalpYWQkBDevXtHSEgIVlZWBAcHM3r0aCIiIggJCcHS0hIbGxsUFRWpqqqSu/0IhUJ69uzJnTt3CAoKok2bNvDZSejNmzeEhoZiZWWFtrY2RkZGeHl54evry+LFi/H390dbWxsnJydEIhGJiYk0Nzfj6OjIL7/8Qvv27Xn9+jXTp0+Xp9n8+uuv2NnZERISwtSpU+nSpQtRUVGMGDGCmzdvEhwcTEJCApMmTWL9+vU4OzsTHh7OuHHjcHNzQygU4u3tjbW1NXfv3qVfv36Eh4cTGhrKjRs3mDt3LjKZTO625OnpSVhYmPzcoqKi8PLyQktLi5CQEJKTkwkNDaVXr16Ym5uTkpJCaGio3KJeTU2N4cOHExcXR0hICI6Ojri6ujJ16lTMzMy4ceMGCQkJZGVlMWzYMLlA+J07d7CyskIgEDBu3Dji4uKIiYmhpKQEY2NjZs2ahb6+Ph06dOD06dPEx8dTWFiIt7c3oaGh9O3bl3fv3rF27dp/6V75A3/gD/y/BVNTU8rKyujZsyeenp4YGhri6+vLvn37ePnyJSUlJfTp04f27dvj6OiIu7s7Z86cITk5GRUVFbS0tOjSpQuxsbGoqakRFhaGuro6Dg4OPH/+nLNnz2JsbEzHjh1p164dQ4cOZevWrYSEhNC1a1e8vLywtrYmIiKCly9foqGhQVhYGL6+vvJU4ZCQEF69eoWysjKPHz/G09OTe/fuERISgpGRETY2NvDZiXT48OGEh4djbm7OjBkz8PT0pLi4mLCwMDIzM7G1tUVHRweRSERYWBiJiYkMHDiQPXv24OzsTEhICEOHDsXX15crV64watQobt68SUhICPHx8cycOZMlS5bQqVMn9u3bx5AhQ+QC815eXgAcPnyY4uJi9PX15Wyp9PR0QkJC5AYNQqGQ3r17s3DhQkaOHImnpycKCgqYm5tz7NgxBgwYIP/NpdLWCWhdXR0NDQ04OTmhqKhIv3795PqEIpGIbt260bZtWzw8PNDV1eXx48cMGzYMMzMzwsLC6NSpE4WFhfLUvt+69v2Bfw0LfFudI8e69yDYodX5MNKz1Wnyl5BJ9LBpx9wuEQgVhAQ7eDD+c0oSwHL/oQCEOrbOK9YEjKSorpLNwa2uquFOnVjYtT8AW0Mn87owixf56czpEk5ySS6TOgYyu3MYAF0tnZngEYCAVoffEMeODHD2wUJLnyAHD5b7D0VBIKCTmT0H+89gZPvuTPHszcqerY6Uy/yHIJXJ+LHPWAAM1bTYGtLqnDnCrRureo4A4GvvEALtWh3pjNV1MFDTpK2RJeFOneht3+qu3MvWjUjP3gQ7eDDYtdWpbsvnc/rWbyBTPHujIlJkpk+ofP8EjwBGuvkxur0/AEu6D2Ztr1YHp9Ht/THX1GN94Bhmdw6jt7073/cYhoeJLZGeveUvGmFOnkiapbQ3tqGrZauz8XSvIFYHjEBbWY1Iz96oKiox0SMAS60/OUn3sGmLo54pPWzaAch//5/6jJP/tgCW2gb0snXja+8QHPT+JIg/tG1Xvr62Fw0lFZbcOoGRujabgyeiq6qBroo6K3oMo5OZPTY6huiqaCBSELI9NBINJRUOJ95hrHsPGpulfHvzKMbqOiQV57D35U00lFQYdnYjI9z8uJGeyKkh89FUVuN+djI/PbqEnqoGw9t1o72xNfv6fY2RhjaNzVK+7zEUoUABdxMbtoa0MoK+vraXD+UFbA2ZhLmmHotuHMXb3JHJl3fSLGsm8spOXuR9ZLxHAHv6Tuf6x0S2hkxi4fUj5FaXkl1ZQmJhFprKqizzH8Lx1/fY9TyWTUHjUVdU5uy7ePxt2rLIbyA6Kurs7juN8oZaKhrqmBW9DyWhkJ3PY4nPTeV6+mseZCfz48OLvC7K4tibe0S06YSRhg53s94hADpbOrG210g+lhcwL/YgbQ0tiU57SXsTG3aGTSGjoohvrh+mqVnKL0+iaGyWUt5QS1pZPiPd/FAUilj34Dy1jWJmxewnv6aCZ5/S+PX5daI/JPBN3CGMNXToaGrPoNM/klaWRwcTG4w0dJjZOYwfHpynu7UrocfWQEsLaWX5DD3zM5uCJzAn9gCvCjLZGTYFfTVNtjxpNXQpb6ihurGBuV0iEEtbNZ6stA355vph7mW/o5OZA9/3GIqBmibzukTw7NMH5scdxkhdmw29x7Lm/jluZb7FSd+M3OpSvorajYOeKR/KC2lrZMWkjoHY65nyNK+VCdTe2Jp1gaPRUVVn1b0z7H1xA19LZ3ZHTEMqkzHDO5Q2BubcyUxCLG3i8vtnOBuYcz75CYtvHkMibeJ53kd+fR6HjY4RP/cZx3e3jpNbVcrqgBGkluahJBThoG9KS0sL33YbQKW4jo2PLzPLJ5RFN46SX1PBmoCRiBSErOk1Cg9TO7Y9jUZFpETcx0Q2PLiASEGBF3npVIrr2B4aSZNMytXUFygKWwNF2VWlVInrKKytZPmdkyQWZmKja8SG3mORfRZ2rxTXsdhvEC0tMN+3H/VNjTRKm2hraMl3t46jpqjM9tBIFAQKeJracy75MXcykxApCFl4/QhNsmbMNPVQFAoZ3d4fVZES1z8moiRUREWkRINUwhTP3lhpGTDK3Z9Qp45YaOnzQ69RBNq7c+z1Pc4kPaJSXMfb4hwam5vk/WSgXXuGtPVlulerm69QoMDo9v4IBUK2hk5GKmtmRY9hjG7vT39nbwzVtRjj3trP7QqfKm/PYNcuDHH1lfe5X8os7NqfkrrWANiUTr1ZFTCSVT1H0Me+A9907ccYd3+8zBwY6NJZ3gdv6D0Ga21DAKy1DeWsxTmdw+XjzRTPPigIBLgYWGChpc/70k/sDJvCxqDxdLd2pb2xNY56pizo2h8XAws6mtqxsGt/tD4H+7pYtr7XayuryfvwdYGjWeo/hG2hk5nl0zo2jXH3p28bLyZ69EJTSZWBLp3l59nNygVPM3uEAgVWB4zARseI/s7e8rFia+hk+bhzsP+M1j6xXVf29p2OhpIKUzx7y895TUDrePHN5zF5XpdW8oWbkRUTPQIwUdeRj5c9bdvRy9ZN3rdvChoPwPrAVhkHRz1T+TjwjW8/ed1dLNvI22Sn+4/Nn/7XMaVOnz7N2LFj+fXXX/Hx8WHLli2cPXuW1NTUvzgpfPz4Md27d2fdunWEh4dz4sQJNmzYwMuXL2nXrnXQ3LBhA+vWrePw4cPY2tqybNky3r59K39R+EfwW6HzsWPHMmfOHObNm4eCggIzZ87k7t27PH36FC8vLxISEliwYAFHjx5FKBQiFApRUVGhX79+zJgxgxkzZlBeXk5ZWRl5eXlyfR4TExOqq6sxMzOjZ8+ebNq0CRsbGyQSCba2tvj4+GBhYcHx48cpKytDWVmZ+vp6hgwZwrp16/D29kYqldK+fXtOnz7NnDlz2LNnD5aWljQ2NmJra8uUKVN4+vQply5dori4GFNTUwoLC4mMjGTjxo107NiR3NxcbG1tuXz5Mj///DNXr16VRzdfvnzJihUriIqK4ubNm3To0IG0tDR++OEHbt++TVpaGvn5+XTt2pWLFy/K3ahOnDiBpaUl1tbWaGho0Lt3b06cOIGBgQElJSWcPXuWH374gSNHjmBoaMiVK1eYO3cubm5uZGVlIRAIeP78Oenp6YwbN04uXJ6fn09gYCAhISHIZDL27t1LcnIybm5uNDc3Y2VlxezZs5k7dy7h4eHs2LGDlpYWZsyYIU9/+aI7NX78eC5cuMDx48fJz8/Hw8OD7t27M3z4cLp06UJ8fDy9e/fmxo0bLFmyhLVr1zJx4kSKioq4du0aEyZMICkpifLycgYNGsTu3bvR0NDAw8OD+Ph4ysrKEAqFNDc3/817rXfv3tja2nL79m38/f3Zv38/c+bM4cCBAwwePBhra2u+//57Fi1axIYNGxg1ahTHjx9HQ0ODQYMGye/z0NBQduzYQceOHenbty/x8fHExbXqRKxevZply5Yxc+ZMjh8/jlQqZcCAAUilUk6cOEGfPn1ITk6me/fuHD9+nB49eqCnp4eRkRG//vorgwYN4u3btzQ2NpKdnc2CBQvkgsxlZWXs37+fQYMG8ejRIwoLCwkODsbHxwexWMyGDRuwsLCgrKyMYcOGcfz4cZqamggNDeXNmzc0NDTg5eVFTk4O5ubmmJmZcerUKcLDwyksLOTRo0eMHj2aY8eOyTWJDAwM2LFjB0uWLCElJYULFy7QpUsXAgICuH//Ppqamn8WrP4/jQEDBmBmZoaOjg4//fQTEomE0aNHU11dzZUrV7C3t0coFGJgYMDjx4+ZNWsWW7duZcWKFdy+fZv79+/L77uBAwdy4cIFAIKCgkhMTGTw4MHs2LEDFxcXGhoayMrKIjIyksrKSm7dukV5eTlDhw7lzJkzDBs2jMbGRpSUlORud2vXriUwMJCbN2/Srl07RCIR7969AyAwMBCxWIyRkRGFhYXY2dkRExODp6cnKSkpqKur07dvX9auXYuvry9v3ryhQ4cOmJubc/r0adq0aYOOjg4ODg4cP34cbW1tOnXqxO3bt3FycsLMzIx79+7h4+NDmzZtOHTokPwe9fPzk6ekpaamEhkZyd69e9HS0qK6upru3btz//6f66p8QXBwMG/fvqVbt25cuXIFJSUlxo4dS3NzM3v27GHSpEmIRCJ27NjBjBkzOHXqFAMGDCAlJQU3NzcMDQ15+PAht2/fBuDChQtcu3aNoKAghg4dyrVr1wgLCyMwMJD58+cTEhLCgQMH+PHHHzE3N+ebb76R9zO7du0iMjISZWVl3N3dOXHihDxwPnToUOLi4qioqEBDQ4Pw8HA2b96MsrIyFy9eZOrUqdjY2FBaWkpDQwNXr14lPz8fd3d3AgIC2LhxI9OmTaO+vr51pdrMjO7du7NixQo6derEzp07mT59OuXl5URGRvLw4UM+fPhAamoqXbp0IT09nXnz5nHhwgVu3bqFp6cntbW1zJo1i+TkZM6fP4+3tzc3b97kp59+4vLlyzQ3N9PU1CQPjs2aNYvIyEi5uHtaWhorV67k0KFDaGtrIxAIsLe3Z/DgwaSmppKdnU1SUhJSqRQDAwO6du3K4sWLmTlzJrGxsZiZmREfH8/KlSvZsmULdnZ2iMVizMzM6NatG+vWrcPZ2RmpVIq9vT2dO3dGR0dHfm5SqZTm5mYGDhzItm3bMDY2RiaTYWxszNatW7l48SJPnjzh7du3qKurI5FIGD9+PFFRUURGRrJkyRKqqqpwdnbmwIEDXLt27Q+m1L+AL/On/f2+RlVRiZK6ahz1TUkvL0Qqk9HDpi0v8tOJvLKT9YFjUFNUYlbMfvRUNfjlc7BHKpMhlUkprqvied5Hvus+mBd5H3EztuZVYSZiqYTOFk4kFeVgq2tMTlUJdRIxXa1ceJH/ka5WLshaZPgfWMaQtl2Y0qkPzTIZaWUFOOiZcCvjDSvunuanPuNQV1Rm2e2TdLN2oY+9O8/zPnIo8Q6nBs/DRFOXzIoi6psasdYxIr+6nPKGWoIcOvA49z1drVzIqy4jqbiVmeVpZkdKySeaZTIstQ0YdPrHVjt3K1ee531AU1mNCZe2McLNj1k+YTzL+0A3Kxce577Hz9qV2A+v+PbmUbaFTsbV0JLU0jwUhSIir+xkV/hUjDV0ECko0NAkQV1JBQ0lFV4XZjE7Zj9D2voyrF03CmsqmBG9F0c9Uwa4+ND8OZVoQdf+FNVW4mvlTLOsma5WLrwvzWP42Y3M7RKBna4xM6P3MdLNj9727qSUfEJFpISdnjF8FjaW0UJlQx2ayqoAFNZWImmW0iyT8f2dU6zvPZqVd8/gYWLLy4IMZvqEoqakQm+79iTkpxOVloCxhjYCBMR8eMnyHkOZGb2PHWGRvCvOxVrHkEU3jrKq5wh0VNW5/jGRnrbtUBSKqBLX8b40D1tdY14VZNDL1o1O5o50P7CENQEj+enRJY4MnEWNRMyUK7tY5j+E9Q8usKLncH55EsW8LhHk11bQ1CzlUc57XhZksKjbAHRVNVBXVCaxMBMLLQN0VNSw1TXmdsZb+jh04NmnD0iapfz46CIregzn7LtHLOg2gNK6albdO8P3PYZSVl/L49z3vC7MItKzN20MzHmQnYytrjHWOoZc//iK7jZtGX9xW+vLeLMUAzUtbma8kaf+ZVYUIWtp4XVRFv2dvVEQKGCgpsnKu2eY5ROGq5Elnqb2zIndz6Oc93S1csbX0pmmZilbnkSxM2wKs2P2s9hvEHVNYrzMHFot4cV1yFpaWtPeug3ku1vHWdJ9MA1NElREiuioqnPizQOK6ir5sfdYqhvr2f40Bl1VdYa360ZCQQZFtZXEfnzFAGcfTDR1MNfUR1VRCV9LZ25nviGpOJdhbbsS/ykVQzUtvrl+mO/8BqGrqoGySJFZ0fsY696DCnEdvpZt2BR/heX+Q3mYk4KXmQM7n8cyr0tfubB5TWM974pzCXXyZFb0Pg72n0FedTlLb59ga8gkaiQN2OoaU1hTwby4Q0z3CuJ+djJTOwXhqGdKyLHVbA2dzKLrR1jQtT+2ukZMuLSdLcETOZR4Bw0lFYa368aM6L2sCxyNWCrBUd+M7MpiGqRN6KlqEPvhFX3s3Vlx9zT9nL1x1DeTC67/EjKJCnEdK+6cYrn/UJpbZGgpq6IiUkJdSRkTDV2efkpD1tKCklDE93dOsSZgJHVNjbQ1siS/phyRghChQIGWlhbqmsSsvneWH/uMY9ezWFYFDOdlQSYxH14yuWMgVY31aCipyOsa496DnKoS/KxccDIwI/joalYHjEBXRQMLLX36n1rPqSHzKa+v+XzvXkJbWY0AOzecDcwRIODo67sMcOnM6aSHLO4+CKFAgWFnf+abrv0xUdeRX8N9L28S6RnI8Tf3cTW0xNvckaW3T7AjLJKF149wZuiCz/eujOyqUi4kx6MiUmJQ2y5cef+cWkkDY9z90VXRQCKTIpO1CsnPiTnA/v5f09TczLiLrW5tW0Mmoa2iTmFtBS6GFiTkp7Py7hnODP0GWx1jnuWl4WPhxKuCDCKv7OLaqCVy5lJbQ0umX9tDamkeO8IiESAgvaKIjY8vs7T7YEIcO5JYmEkHE1teF2XT0dSWb28cJdypE2llBexJuM7WkEl0sWzDo5z31DWJKaippLuNK8bq2pxPfoKmsirOBuaMufALftauDG/XlUpxHUtuncDb3JFR7btjqqlLRnkR7iY21DU18qmqFEd9My6/fypPC22hha+v7ZW382bGGy6kPOHaqCWYaeoRn5uKkYYOvzyJor+zN/PjDrEtdDJSmYy5sQfYGTYFcXMT82IPMrtzOG30zfjq2h62hk6mqLaStffPcW7oAow0tMmuLEFBoECzrJm8mnLUlVQQCgS0NbLiXXEOX1/by+j2/niZO5BWlk9vO3fmxB6gn7MXnqb2qCmpUFJXJb9fC2orCPrcL/paOZNbVUpOVQm1EjF97DuQXl6IgkCBgac3/N/HlNq0aRORkZFMmDABV1dXfv31V9TU1Dhw4MBfLP/LL78QHBzMggULcHFxYfXq1XTs2JHt27fDZ5bUli1bWLp0Kf369aN9+/YcOXKE/Px8Ll269E+37+LFiwwZMoSRI0cye/ZsMjMzmTdvHgMGDOD27dsEBARw4cIFRowYwc6dO5k9ezbDhg2TC9a6urri7OzM2bNniYiIoKqqCltbW9LS0oiIiCA6OpqBAweioaHBy5cvGThwoJyxtHLlSqqrq/H39+f169eEhYXx8uVLAgMDSUpKolevXkRFRWFqasq1a9fkrkUhISHcvHkTd3d3ufBx//79ycnJISIigri4OAYNGsTVq1fp2bMnmZmZ+Pn5sXfvXvn1OHLkCH379kUqlTJnzhzCw8Plgtz79u1j7dq1BAQEkJ2dzapVqwgKCqK2tpbvvvuOHj16kJmZya1bt9i6dSsTJkxg3rx5TJ06lY8fPzJt2jSEQiGPHz9m9+7dREVFMWbMGMaMGcOOHTvo378/GRkZHDp0CAsLC4KDg/H19eXkyZOsXLkSd3d35s2bh46ODlevXuWbb74hPj5eLpZ99+5dsrKyOHDgAF9//TW7du2SW72PHj2ao0ePcuvWLaZOncrAgQNRU1PD398fNTU1Zs+ejaurK7q6ugDcvXsXW1tbVFVVCQgIwMzMDCcnJ3r37k1AQACOjo74+Phw5MgR7Ozs5O6BAkHrimz37t3/5v2lpqaGo6Mje/bsIS8vDzs7OwC2bNkiT4+pqqrCy8uLO3fuMGzYMOrq6li6dKk8OBMZGUlmZqbczU1XV5cVK1YQEBDAihUrAPj06RMTJkxg27ZtjBkzhnHjxnH48GE8PT3lrDJPT0+OHz/OwoULefLkCYWFhezbt48JEyZw/vx5jI2NGT58OAYGBvz000/MmDEDqVTK/v37cXBwQCwWy9kQb968IT09nQ0bNrBv3z6cnZ3p2bMnOjo6DB3augJuZWVFREQEnp6efPz4Ue4e9vr1a7p378758+cxNDTEzs6OY8eOMW7cOLS1tTl9+jQikQgvLy9qamq4cOECgwYNIj4+ntzcXLlj1v80ampq2LFjB7t375Zf12PHjuHk5MSQIUPkGjh5eXkYGBjw+vVrBg0axIoVK/D398fW1pa6ujq6detG586dCQgIkAeZi4qKUFJS4quvviIlJQVlZWW++eYb1NTUOHv2LPX19cyZMwc9PT0AXr16xaVLl7C0tKRt27asXbuW8PBwBg0axMyZM0lKSkJXV5du3brJA9f6+vqIxWLu3btHU1MTampqclH1oKAg1q5dy3fffcfjx48ZP348QqGQ7Oxsvv76a1JTUzE1NcXYuPVlxsnJibZt29LS0oK3tzdeXl5ERESQlZXFy5cvcXBwQElJCT7TyXv16kVqairdu3eXP4tfmJh/D+Xl5eTl5XH69GkaGhro0aMHUqmUnTt30q9fP3nweOTIkZiZmVFaWsrevXsxNzdn165drFq1Sj6IqqmpUVlZyf79+8nOzmbcuHEMGTKEHj16EBgYyLx58+jXrx/v3r3j/fv3xMfHExISwqxZs1BUVJSn2oWGhnLmzBkWLFjA/fv3GTlyJNu2bSMjI4Phw4ezYcMG2rZty7Jlyzh37hze3t6MHz+eUaNGyR07v7iobtiwgYSEBAoLC5kxYwapqamMHTuWgwcPMmXKFH744QdOnjxJXV2d3I1z3rx5dOvWDZlMxvr169m1axeLFi3CxsaGoUOHoqGhQWVlJbNmzWLatGm4urry8eNHgoKC0NPTw9zcnH379jFmzBiGDRvG4sWLcXR0pKCggL59+7JgwQJGjRqFqakprq6uREdHM2DAAJYvX86oUaNo06YNISEhbN26lbCwMEaMGMG+ffsYMWIE9+7dw8zMjDdv3hAcHIxQKERHR4fc3Fz69u1Leno63bp1IzQ0lLS0NPnY27FjRwwMDPj222+ZPHmy/FoUFRUxZMgQPn36xNChQ0lKSqJnz57U19fTv39/OnfuTGFhISNHjiQpKYnp06cTHh7OypUrmTFjBkuWLOHp06cYGBj8t/QL/3+CpFmKi4EF/jZtya8p5+mnD2RVFnM36x32usbsDJtCsKMHPhZOzPIJI9ypE1XieqrE9XwTd4g9L27QzcqFpf5DuJn+mhZaeJTzHj8rF3rbufP00wdyqktJK8vHx8IJf5t2n9kkrePvzYw3XB+7nGHtupGQn46qYuuqf42kAXMtPV5N24hU1oyHqS1HBs5mfIeeuJvY0t7EhoSpP1PeUMvbomzK6msoqKngU3UZ3haOeFs48jSvlX1f09jAh7ICghw6EOTQgazKYs4nx/OyIIPmFhmJ0zchEigALWgoqaIkFHFx+CIiPXsTn/seTSVVTr59gI6KOjfTX+NuYsPLaT9TKxGjKBSioaRCaX01CVN/RkdFncLaSrIqismrKUdPVYPk4txW+QbfvniZO6CppIKDvgnBDh5sCZlIZ8s2SGWtC2Nmmnp0sWxDo7SJuqZG3hRmUStpIHH6Jkw1delm5cLOsClM7dSHhs8ua6vunSG1NJ86iZi6pkbSygpYefcM+TXlqIgUUVQQsuTWcaoa6/gldBKLbhzl+x7DaG6RMdkzkNiPr/AwsWVW9D6yq0pa3bysXOloasfcLhGYa+kzu3M4FloGPM37gJG6NjvDpuBpZs+s6H20MTDjyac0Vt09TVFtFe9LPqGrok5bQ0uqJWLOJ8dzdug3LL19gi0hE7ma+oKE/HSW+Q/BREMHPVUNVESKLOzaHyWRIusfXMBUQ5eSumqmewVhrWPYyhZpbmbX8ziUhSKK66r49sYxRrXvzuPcVLRU1Nj+LJpvuvZn+Z2TjPMI4Eb6a2ZE7+Vr7xAqxXUsv3MSHRV1Itp4sfflDcrqq/n1RRyHE29TVl/NgVe30VXR4Kc+46hpbKC8oZYmWTM+Fo40y2SklHyirZEV/jZtmeEdgpW2IdfSEhAg4Fu/gbTQwqbHl/nx0UUGunRma8gkwp06oauizoPsZM4O/Ybyhlp+CZnE2vvnMNHQZfi5TZTVV7Pq7hlECgr80Gs0qorKrA4YgYaSChXiWuqbGmlqbia8TSfmd+nLp+oybqa/YU2vkQxr1415cQcB0FRSZbHfIGZ1DiP2wytqJQ2klxfS4+BSulm5YKtjxLiLWzFU02Ll3TOs6DEMF0MLfrh/Hkc9U9b2GkkbA3PsdI0oqavm224D+SbuEJ0t2rD/5S1mdw5HU1mV7aGRGKtrc+jVHTqa2pFXXcaCrv2paWxg6e0TcsF5HRV1Rp7bzPX016ztNRJdFQ0mevRiVvQ+MiuKWB84hoYmCWt7jeRU0kOSinPkQaE+9u6EOnZkya3jnB4yH1dDSx7lvOenR5dQU1ShprEeoUCB6+mJGKpr80OvUXibO7L3xXXUlJRZHziGWkkDEmkTm4LG42XuwA/3z9PQ1Kp9NvnyTrIri1l97yyl9dVoKquyJmAkS2+fwEJLj+1Po1l4/QjKQhFLbh3nbXGr2PbKniMw19RjYbcBpJTkse7BeUa292NG9F5UFZV4XZhFfVMjS/2H0M7IkrdF2ZSL64g4/gMbeo9pvXei9/K6KIudYVMorqviVWEmshYZEzv2QldVHQc9U7IrS6iXNtLJ3AGBAAzUtXhZkMGg0z+yK3wqigpCmmTNdLZwQk9VgxDHjhiqaTPDO5Ru1i4YqGvxY5+xOOiZsipgBCkluWx9eg2RghAbHUMapBI0lVUxUtMiqTib3vbu6KposO7BBRZeP4KaohJSWTOD23ZBR0UdAzUtulm50M/Zmy6WbXA3sUFTSRULLX00lFRJmPozH8oKaKGVUyNAQKW4nsTpm/hUXUZWZQmN0iYSCzNZ1XM4P/UZh6+lM75WztjpGvF8yk/4Wjnz9FMahuraxOem0ixr5nbGWxZ1G4iiUISjvin6qpoIFRR4lvcBkYKQJbdOkF1VQkldFUnFOWRUFMmfrWdTfmR0++50tXKht30H1BWVaWtkiYJAgLhJgre5Ax/KC3iQnYyRhjbJJbkEO3bk3NAF6Ktp0tXKhR1hkXS1ckFRKGSCRwAvp/1McsknyhpqAMitKuUb374IgHPDFqKlrEZP23bsDJsi78cTpv5MJzN79FQ12BEWSVtDS0w0dEicvomsymJK6qqpkYgRSyW0N7HB17INs6L3kVzyiaSiHJpbWtBT1aCtkSX+Nm1xNbTAWseQuV0iGN8hgOrGBhbfOEp+TTl2usZ0NLMj0K49Nz6Px3nV5XyqLqOrlQs+Fk48yElBpCCk+R8UbP9fxZSSSCSoqalx7tw5+vfvL98+btw4KisruXz58p99x8rKinnz5v3Owvj777/n0qVLvH79moyMDOzt7Xn16tXvnG78/f3p0KEDv/zyy19sS2NjI42NjfL/v2hd/IE/8Af+wB/4A3/g/5/4gyn1z+MLU2pj0ARURYry7V9d28P3PYbSzcoVQ3UtHue8p5O5AzfTXxPk4MGjnBR8rZw/a7yk0MnMgdTSPKobG6hrErPoxlHWB45BU/lPjPevr+1le2gkAMYa2mgpq3E66REdTGxoZ2SFnlqroHDr5LmUsvoa1BSV6WHbyqyXtciI/fCKjmZ2lNRVk1NVSqhjx1Ytt+Zmkkty+eVJFC8LMtgZPhULLT3MNfVJKs7hfWkeWsqqdLFsw/vSPJo+a5msf3CBOV0iUBYp4mFiS2l9NbnVZSgLRYgUhHia2QNQXl/Drcy3rL1/jq8+C1WbaOhgrqWPWNrEzfTXVDXW0d/ZBy1lNUrrq0ku+cTc2AMMbduV3vbt6WBii6JQBMC9rHf427Tled4HHPRMya+poKi2gs6WbUgsyMTXypmGJgkJ+a2uZXv7TsfL3BGAWomYN4WtLHUfC0cECLiR8RojdW1URUo46ZshljZRWl/NV9f2sNx/CFbahiiLFDn6+h7uxtb4WbtyJysJBQTsfXmDiDZeXEh+wk99xrL45nF62rajraElpfU1aCqrIpZKWHzzGDvDpnDk9V2mewXzoSyfNffPMbtzODY6Rkiam1BUEGKkoUPk5Z0s9R/Mklsn2Bk2hbfF2ex6HsfPfcahIlJCS1mVsRe34qRvxmTPQH56eIll/kNoY2BO0NFVHBs0h4qGWpSFilQ11nM3K4kAWzcUhSJaWlqw0THiTVEW5Q21XEx5yoKu/fj62l7mdonAVtcYWx0jDifeYbpXME8/pdHY3MTR1/eY4tkHNSVl0ssLKKmrxsnAnFV3T7M5eCJmmrpsjr/KrM7hpJcXIlIQoiAQsOD6YbaGTGJWzH5W9BjGm6Js3hZlk1NVwlfeIWyOv8q3fgNbmV49hrHtaTTD2nXFUd+Mo6/vMsEjgJnR+/ipzzgqGmppbG5i4+MrrO01Ch0VNWolYkQKQnwsnFj/4IKc+Xbw1S1W9hwhZ+PNjN7HxqDxXH7/jMzKYmb7hPHN9cNsDZ3MnJj9nBnyDdlVJVxIeUKVuB51RWV0VTVoa2RFdWM9spYW3I2t2RR/lQVd+5FTVYqjvimTL+9kcsdA3E1smBm9j60hkzj+9gGN0ibqm8Ss7z2WWxlvcNI3I6OiCGsdQ7Iri1ESKmKiodPajzTWc+DlLcZ5BLDjaQzfdR+Ek74ZLwvSMdfUp6qxHgM1TQ68us2D7GRujVtJZmURhxPvoqWsSgcTW9beP8fW0MnMit7HD71G8bG8kBsZr5nbJYLEgkzaGlmx6MYRdoZPpbi2kqTiHAprK5no0QsjDW3SSvNIKMjA09SOF/npXEl9ztLuQ/jlSRQFtRWcGjJfzqhbdusEc7qEk19TzrviXHratqO5pYU9L64zsWMvGpoaeZCdgrOBOaaaerQ3tuZ9aR6KCkIyK4vwMnNg+LlNDHH1ZZxHT+5mJrWybiqK6O/sQ/+T61jeYxjlDTUIgHvZyfS2c0fWIuNedjLe5g6YaOhirqXHlCu7WB84hhnRe5ndOQw3Y2tqGsU8yknhXHI8O8IiOfH5eogUhDgbmONpZo+SUMTUq7+yKXgCQoECGRVF3M54g52eCToq6uirav5OMP/HPmNRESmx+MZRdoRPoai2kv0vb6GmqMzwdt2w0jGgTtLKDjv06jYtwKSOvVARKfE45z1dLNtwPT0RK21D1JWUeVuUQx/7DjzP+4C0RYaXmT2qispIZc3EfUxEU6m17/cyd/is+5XP4pvHKKgp5+a4FWirqFPdWE9KySd8LJy4n/WO7jZt5eNFdmUJl98/48CrW2zoPRZLbX1cDCwQCAQ8ykmhq5ULAMkludRJGmmSNeP7ORUvq6KY/JpymltkdLNy4VHOe3yt2hDz4RV97FuZs76WbahrauTd5yDWxsdX2Bg0ngBbNzlZ4cmnNBz1THlf2spENVDTxFrnT5lhj3Pe8zTvA8pCRTmzDeBNYRbaKup8qi5FKpPhYWqH1mfG6rviXG5mvKatoSUBdm40SptokDaxIO4QmsqqDP6cEqiiqEiVuJ5en9PMb2e8oYtlG8obaimsraRR2oSWihrG6jroqqrzJDeNtQ/OEdmxN8Yaf9KJrGkU8/2dkyzvMYwQRw8UBK2cp5yqEt4UZlMrEbP+4YX/u4TO8/PzMTc35/Hjx3Tp0kW+feHChdy7d4+nT5/+2XeUlJQ4fPgwI0aMkG/buXMnK1eupKioiMePH9O1a1fy8/MxNTWVlxk6dCgCgYDTp0//xbasWLGClStX/sfP8Q/8gT/wB/7AH/gD/3fij6DUP48vQakfe4+lj8OfFge/TPrfFmVTUl8tDxAFOXRApCCkoamR10XZdLZw4mF2Ct2sW18Qmpql3M5MwkxTF7FUIg+k8HkC72vlTEtLC8V1VWRUFDE9ajfBDh70beP1u3ZlV5XIhbMBBAIFNBSVUVdS4W5WEg+yUxjboQdKCq1BHqGCAg56pkiam2hqbsZCW5+86nLyasppapYyO2Z/q427hi7OhhYofQ4OfTnPZpmMxMJM6iRitj2NppO5Pd0+v/S0tICuqgZO+mY8z2tNg5DKmimqrSK/pgxJs5Qt8VFUiGtZ2XM4AoECRmpamGrqkliYiYOeKWll+QAoCUW0N7Ymq7IERaGIpOIcNJVUcDawwFxL73e/E0BGRREtLS3IWmTk11SgqCCk4+e0w/yacnrZtedOZhLdrV1bf5vMJDpbOqEiUuJuZhLdrF24l/UOX0tnyhtqEEub0FfTZF/CTZpbZHSxcOJK6gtsdAyJaOPF8/yPdLZwIqOiCCWhiGlXf2WMuz/uxjbIaKGNvjn9Tq7j+x5DcTO2IbeqFFmLjAvJT+jt0IEVd07xjW8/jDV0kDRLMVDTRF9VUy7abqyhzZAzP7Ok+2CMNXRQESoibZFhq2NEyLHVrOw5HE1lVdQVlXmW95HU0jyGtPVl5/NYZnqHsvbBOZplMuZ16cuehOtEtOmEq6Elp5Ie0tvOHXcTW8KOryHYwYNwp07MiN7L1tDJ3MtKws3ImkpxHVueRLE5eCLrHpxnvm8/CmsryKospotlG94V5xJo154Jl7bTwcSGMe49EEslNMtkKAgUECkoIBAIECkIaWqWkltdJmcJaauoUSmuR1VRia1PrjHAxYcH2cks7T6ET9Vl1DU1sujGES4OX0RBTQXmWnr0O7metb1G0Sht4vS7RxzqP4NrH15irqlHo7QJDWUVPpYV4GPhRFVjPZUNdRTVVVHdWI+Jhg52uibUShq4m5WEr6UzM6P3sarnCD6WF2CnZyIPNC+6cZSd4VO58TGRUCdPMiuKWgXHgycQn5NKB1Ob1sByWT61jQ0oCkWoiBSx1jHkRV46LoYWpJXls/7BBX4OGsfdrHecffeYzcETuZXxBi1lVS69f8aaXiNJLy9E1iJj1/M4tgRPbBXeDhrPtzePsTFoPG7G1vQ4uIz5vv1oljVjqqmHgkCAUEEBkYKQqNQX9LZ351VBBq6GlvzyJIqxHXqgr6pJSX11K0OzsQ6hQIiftQszo/exLXQyb4qy2Ztwg53hU4nPfU8XizYU11UhaZaiqayKmaYe4y5uZWPQeErqq9FT1SA+NxU7XWMECPj58eXP+l+F3M54y5wuEWRUFBLu1Imgo6uY3TkMY3Udvrt1nOtjv+dxbiq1jQ2YaepyPf01ScU5TPcKZsmt42wPjUQik/L0Uxqnkx7xS8gkfn58mdk+YaSV5aOjok5UWgLtjKzoYdsOZaGIgpoKFIUiFt1oTWP0NnegprHVdKC6sR4FgYDmltZ0usmXd/JrxDRkMhlWOoaEH1/LttDJ5NdUcDvjDa5GlnSxaENlYx02OkZsfXKNfs7eWGjp09jcRGFNJUpCIfVNEqLSXjDG3R+pTEZySS52usZoKavhaWbPjfTXBDt4fA7sSuloaktJXTUayiroq2pxPf0V1Y0NuBlb087IipaWFqob6ymorWT42Y1M6xREOyMrFBQUaKNvhpayGs/zPqAkElEnaURLWQ2pTIq6kgoKAgXsdU1ILsmlprGBFlrQUFLhyac0XA0tUREp4mlmL18I6WrlQkJ+OtrKajjom3I3Mwl/m7YIBAJeFWTipG+KVNZMfG4ayiJFJM1Sulu7oKqoTFOzlMe5qfh/DoJJZc08zE5BX02TKnE9AkFrv6+upEJ2ZTE5VSX0tHVDUUEoZ0cJEMhT+zYGjUdVpCRniOmpapJZUcTroiwCbN1oAZo/O4ECfHvzKBt6j0FBoICyUBElkYj9L2/SycyBiDZe8gDWl/N8nvcRK20DjD8HgVNL83j66QMWWnpoq6hTKxHjY+GIikiJ25lvCbB1k4+lLS0tbHsaTS+79lQ11sNvQku/PL1GfnUZNRLx/33pe/9bsHjxYqqqquR/X1zu/hX8Nhj2X+Hu3io61r59+3+orq5du/7Tx//i1PefxpdUnL8FdXX1v7n/iwsSnwXR/zvRtm3bf6DUn+Dk5PQPl/1756mg8J951Bwd/zT5VldXR01N7Z/6vp6eHkKh8C/u+0tt/JLu9QVmZmbyz25ubn9W/r/ii+PSXzqmi4vLP9Tmv4S/dg7/L0JfX/9v7v9ijPA/BT8/P/nnL6l1X6CoqIi5ufmffecvbfstdHRaB8X/1Mu/oqLiX91naGj4HznGX8Lf63s1NDT+bNtv+8Tf6ija29v/1XpEotaXXxOTVkHhv3dP/KdEu//Svfkl7fLfwd/rW357zX57/wFyIXcATU3Nf6sdvx2TAgMD/626/gAoCxWpbqz/s+1uxtYE2LpxMeUJykIRRbWt6daqisqImyT8du20qLaSu1nvCLB1w83YGh0VdVJKPsn3y1M6BAKMP6drnRoyn0jP3rTQgq+Vs/xvhJsfW0Mn09XKha5WLnS2cMRG1xgVkSItLa2peDY6RnSzdqGbtQtdLNtgqK5FcV01BupaiBSEWOsY4mJgTkOThPjJ6xAIBLQ3sZEHpH4LoYICnmb2+Fo5o6akjIWWAW0MzOlq1Vp/WyNLFH8ztokUhJhr6eFl7oiSUMSGPmPZFT4VTSVVfC3b4KBvirqSCiIFIXqqGvhZu+Jn7UoHE1veleRSXFfF4NM/YqdjRC+79vKA1G/R0tJCZkUR9nomOOqb4W/Tlk7mDiQWZlHd2MD+l7eISkugh0071D+zEvysXXmQnUJ1Yz3qSsqIFIT0tG3H3awk0iuK0FJW41VBJi20YKdrDAIB3axdiPv4ioyKItbcO0tOZQmzovdhp2vMj33G0tnCibPJ8exLuMHZd4/ZERaJo74Z4y9uRVFBSHp5IaqKyphr6rInYjqhTp4suH6Y4rpKCmoqGHzmJwCOvbnH+9I8NgWNR0tZlTX3ziJubuKrqN3cznzL3r5fAVBSV42uqgblDTW8KcqipaWFYIcO1DWJWRswijUBI/n25lGmePbhRvpr0soKaGpu5lDiHR7lpDDA2QdTTV1Sy/JY5j+EtoaW3M18h7uJDaaauoxw88NATZPv/AaxJf4qdZJGLqY8Ja+6HFNNXWZF7+Pi8EW0NbLi1+dx3M16h5JQxJHXdziZ9JBL75+x9v45EgrSuZnxmurGer67dZyGJgnKQhHzYg/ylXcwm+OvMqxdN6ZF/crelzcwVNP6LLydz+6E62RXlrA6YASGalpYaOnjamjRmrp27yySZim3M9+y9l5rCtKAUxuoaWxgTuwBZC0yXhVksOz2SSoaapl69Vcc9Ex5VZDBt34D0VVV527WO8RNjXx74xhaympM9OhFtbiei++fUt1YT6Bde44NmoMAAY76pljrGNH3xA8IPj/bC64fplHaRG5VKavunSEhPx0bHSOmewXjamiJn5ULW4InUicRE5X2olVsvmMgVeI6djyLob2xDcv9h7In4Qa7I6ZR1VjPjrBIZkbv41bGG9YFjqZW0kD0h5fcSH/NnhfXOf7mPvnVZSiLFBEpCLmTlYS2ihoj3PzYHH8VRaEIDSUVpLJmulo68yzvA2ll+fR39iavphw/Kxdm+oSSW1XK0df3SC3L4352Mnezkmhqbua7z0w/gUDA1ifXUBEpcTHlKVbahvz8+DK/hEyijYEFGkoq5FaXoiQUsu1pNLnVpWwKnoCZph4qIkXuT1zDyHOb0FPV4Hr6axqkTZTUV2Ova4KKSJEdYZF8qiljXuxBXA0t2RoyCW9zBwpqKmhuaaGPgwcaSqqM69CTNgZm5FQWM+nyDiTNUgpqypnv2w8DNU3GXdxGaUM1q++d4VHue0RCEQuuH6ZaXM/OsCmoipT46toe7mQm8XOfceTVlLPuwXlGu/sz0KUzU67uQlmoyLSrv1InEaMsFDHi3CbeFmWzJ+E6Tz594HDiHdyMrbHQak2BP/TqNmqKyshaZCgJRfSycyP24yue5n3A1dACbRV1mltaA7SKQiHtjKzY8PAiVeI6HuWkEJ+bSk5VKdrKamzoPRYrbQPcP6ei6atpoigUImtpoZOZA/42bbHTNaJB2sTIc5sprq3kRf5HbHVb+3U/a1fcTWxwN7HF36Yt7Y2teZKbxr2sd5TW1/AgOxkTDR0c9Fvf4z1MbXlVkAlAfVOrI6K2ijq97Nqz+OZRtFXUUFVsncMpCkXoqKhT9DlYnlFRhIuhBW7G1nSzdpH3+3qq6qSW5XHg1W1aWlowUtfG19KZrlYu+Fo5y1P7etm1l//va+mMsYYO1ZIGTic9QkkowtPUTl5nN2sXfuw9lq5WreNWRzM76iRilnUfwkg3P14XZpL5WXtLgIC0sny0lFXlASkALWU1zifHs/reOex0jfG3aYuKqHV+Z6im9TtXRIFAgKeZHW2NLPG1bCMfY611DPnGty8bP4uj/z38r2JK/W9K3/uvkK/0/fgjRkZGlJeXIxaLefz4MZMmTWLAgAF8//33tG3bFplMhpKSEunp6bS0tNC+fXvmz5/P2rVr6d+/P7Nnz8bKygoNDQ0cHBxQVlYmJiYGCwsL7ty5w5kzZ4iNjWXo0KFs2rSJ7Oxs/P39+fbbb3nx4gUxMTGsWrWK+Ph4rl27hlgspra2lnHjxnHq1ClOnDiBvb09EomEsLAwFBQUiI+Px8jIiNLSUr7//nsOHjyIkpISo0aNIjY2loaGBmpra7l06RIPHz7EwsICHR0dZs6ciUAgkDvWrVq1imHDhqGvr8+FCxcYN24cx48fl7dJJBLh4eHBrl27OHPmDFFRUYSHh3P58mXu3bvHpk2bePbsGR8/fuTevXvs3r0bJycn5s6dS1lZGQoKCrRv354DBw5w4cIFuZZR//79Wbp0KWvXruXy5cv07duXCRMm4OPjw7Rp0zh58iTjxo3jwoULhIeHc/bsWYYMGcKWLVuor6/nu+++4+XLl+zevZvJkycTHx9PQ0MDHh4eZGZmkpiYSFBQEOXl5dy6dYvjx49z4MABJk6cKNdxWbp0Ke7u7ly9epX9+/czffp0pk+fzpYtW9ixYwdff/01p0+fZtiwYVy6dIn+/ftz6tQpxo8fj7m5ORs2bGDw4MHyMn8Js2fP5sCBA+zfv5+ioiKioqKYPn06YrGY4cOHc+HCBRYuXMgvv/zCmDFj2LZtG3l5eZiYmPD8+XO2bdvGqVOnMDU1xd/fn59//pnGxkY6dOhASUkJ48ePZ/78+fTq1YvY2Fh8fX2RyWRkZWUhkUhYsWIFr1+/5uXLl2hra8sFtQcOHMjZs2e5cuUKwcHBlJWVMWvWLM6dO8fw4cM5ePAgWVlZLFu2jGvXrjFkyBDOnTtHaGgoAMePH0dNTY2WlhbatWvHvn37qKioICQkhOzsbBobGzE1NeXWrVscOXKE48ePk5OTI3edvHXrFioqKpiYmHD69Gn09fWpra3F0dERW1tbFi9ezK5duzhy5Aj+/v5YWFgwY8YMNm/ezNy5c1FVVaVNmzYkJib+U33SfwrGxsYUFRWxc+dOtLS0KC0tZc6cOZw8eZLvv/+eWbNmoa2tzfbt25k5cyYVFRVYWFgwYMAAvvvuOxobG9m5cydjxoxh1KhRvHv3jsLCQl69esXo0aOJiYmhtLQUOzs7rKysSExMpHv37uzbt49ly5YRERFB3759mTFjhlxD7syZM2zZsoXY2Fh2797NxYsXuXjxIlFRUYSGhqKnp8emTZu4evUqR44cIT09nZUrV3L+/HkGDRrE/v37yc3NpW3btsTHxxMREcHbt2+5desWoaGhPH36lAMHDnDgwAFyc3P5/vvvOXHiBCUlJVRWVrJlyxamTp2Kn58fCxYsYOHChTx+/Jg9e/Zw6NAh9PT00NLSYujQocTExJCSksKtW7e4du0aGzdupK6ujsuXL+Pr64uxsTFTpkxBUVGRgIAAuaC/n58fJSUlZGZmsm7dOubNm8eJEycYM2YMvXr1IiQkhLlz57Jhwwbu3bvHpEmT+PHHH/n+++8JDQ1l3LhxREREMHjwYPlzsGDBAiwtLZk1a5b8OY+OjiY0NJTNmzdjZGSEs7Mzz58/l4ug5+bmsnbtWo4cOcK5c+eYPHkyffv2ldd58eJFBgwYwIYNG5BIJCxbtoytW7eyfft2fvzxR/r378+5c+cAuHPnDioqKqipqbF69Wp27Ngh1++ysrLCzs6OoKAgTp8+zZkzZ5g4sdUVJSwsjPPnz7N3716mTJnCwIEDuXLlCrW1tVRWVnLhwgXKysqwsLDAy8uL169f4+fnR25uLhs3buTKlSucPHmSfv36oayszJIlS1i6dCkjR44kOjqahIQEnJ2dGTJkCI8fP6aiooJDhw5x9uxZNmzYQGNjIyYmJhgYGNCpUyc6dOjAgAEDcHV1pbGxke+++45bt27x4cMHzM3NiYiI4Ny5c5SVlTF16lQ2bNiAnZ0dGRkZtLS0cPXqVbnJyZEjR0hISKBPnz5UVVWhqqpKWloampqafPXVVxw8eJD9+/czYsQI1NXVKSkpwcTEhLq6OoyNjZFKpQwZMoRVq1bh5eXFtGnT2Lx5M0lJSXh5eVFYWMjOnTt5/vz5H0ypfwFf5k8PJq7lWd4HearAb9k6CfnpWGjpY6yhQ2ppHvk1FdjqGKGrqk56eRF1TWJ0VTUQSyV0MnP4Xf2vCjIwUNPCUtvgdykXedXlFNSWy8uXN9TyPO+DPEUL4HFuKl5mDr8LBn0sL0TaLMXZ0ILU0jwKairws3ZF+Hnh5lFOCr6WzggEAjIqiiioKZf/X1xXRXZl8e/YW79tU0tLCzEfXtLLrj3KIkVe5H9E0txMFwsneTpHfG4q3uaO8uM9yE7GTtdEHlT6UJZPQ1OrJgifUzXMtfTQUfnT4lhFQy1PP33A28KR53kf6WBi87sXji+//bNPH3A2NEdL+fcLXPk15XwoK2B2zH58zB0Z26HH5/b/af+ehOusDhiJ7LNeSK2kNaXy224DGNzWl/eleZhp6pFUnMOs6H2s7TWK1NI8Brj4kFCQgY+5Iyfe3mdSx0B+enSJtoZWOBuYk1NVwpr751jRczhGalo4G5hzNe0Fm+OvtrJDmpuYF3eIjUHj+fnxZWZ6h6KlrIaJhg5HXt/Fy9yBbU+jWe4/FIEAmmUyXuSnY6yhQ0OThIc5KSQWZrImYCRayqq0AIoKQubFHWJ94GhkLTIqxHVIZTJ0VdVZ+Fkcu1JcRwcTG2oaxeiotup5FdSUk19TgY2OIUPbduVq6nM6W7YhrTSfD+UF7H95k6X+Q6hprMdIXQd1RWXqmsQU11WjIlJkw8OL/NRnHEnFOXQwsUXS3ISGkgqS5mZaWmToqmoSn5uKra4RPuaO/PT4Mv7WbTHX0qOmsYHqxgbUlZQpq69BWaTIvax36KpqYKKhw7nkeCZ0CKC6sZ6Eggw6mtrhbmxDVWM97YyseJH/EVWRklzvRSxtamU9CQTUSxqplTRgqW1AQU0FqorKNMtk7E24znSvYBqbm5C1tKClrEb0hwSGtO3K68JMsiqLiXDywlHflKCjq9gcPBGhggKzovexpPtgbHSMMNPU401RFgCylhYCbNvJr8/Ic5s4MXgeL/PTya+pILOyGH+bttzPesfgtr6svnuGmT5hKIsUWXTjiNxxs66pkR3PYjg+aC6V4lo+VbcGT44MmEVZQy2yFhn1TY0su32SraGT2fUslqmd+pBbXYaeqgar7p5mrm9fzDX1KK2vZuXdM2wNmYRU1syV1OcE2rmz9PYJNgWN59cXcYzr0JMOJnbcy0rCUtuAZ3kfaGdkhZJQkbmxB/glZBLvinPpZuVMzefAWFtDS1RESqy6d4adYVPQVlGntL4aRQUhp5Me4WxojopIkV+eXGNT0HhiPr7ia68QYj6+RF1RBR0VdS69f8pod38WXj/C+sDR3Mx4w4v8jyz2G8T8uEOcH7YQSbOUF/kf2fj4CjvDprDwxhEW+w0kp6qUtkZW8mdx1d3T7AyfSvVnxpCKSImcqhL0VDUw1dBl0uUd7AiL5FneR7pYtGHN/bPM8A5BRVGZr6J283OfcXyqLsNKx5DSumoUhUJMNHSRNEuRypoRKQhpaWnhQ3kBexNuMMWzD0Pb+ZJYkImqohIzo/fLndwupDzlYU4K20In42Fqy4eyAgzVtUgp+YSOijqZFcWYaur8rl/9bV98J/MtrkaWmGi0Loz+lln7pQ+10jYgqThXzsT9gipxHbnVZbQzspJva5bJmHp1F76Wzgxw8UFX9U8LiHcyk+hp2+5349fL/AwM1bUQCAR8KCvATFOXNp/T7G6mvybQ3v3P2lRWX8ProiwM1bRwM7ampK6a9IpCOlv8OSHit2PIFyQV5yAUKOBiaMH9rHc46pthqvmnheHfti+7spjaz2mTX9CakijmU3UZZpp6GKhpkV9TLtdgNNHQIbuqBHMtfUrrqulq5Swfo4A/Y0v91zYW1VaSXlGEr2UbaiViuu3/7v8uppSSkhKenp7cunVLvk0mk3Hr1q3fpfP9Fl26dPldeYAbN27Iy9va2mJiYvK7MtXV1Tx9+vSv1vm3YGBgwPjx41FQUMDDw4MuXbqQlpbGgwcP8Pb2JioqiuHDW22D27Vrx8KFC8nPz+fKlSsoKChw9epV1q5di6qqKlOnTuXFixdUV1fz7NkzJk6cyMiRI6moqCAjI4NffvkFLS0tVq9ezZMnT7hy5QqXL1/G1NSU7du3k5mZKX/hsbOz49y5c7i7u5OXl4efnx+enp40NTUhEAg4cOAAKioqzJ07l0uXLqGjo4ORkRGPHj2itLSUAQMGkJyczIkTJ9i/fz/Lli3j1KlTVFVV0a9fP9TV1VFQUMDZ2Znw8HCqq6vR1dXF29ubQYMGERUVhbOzM/PmzUMmkzFhwgSio6Npbm5m7969VFdX069fP168eIG3tzcfPnxgzZo1XL58mc2bN9OvXz+WLl3Ky5cvcXFxYdGiRaSnp1NQUED//v15//49AwcOZP369Whra/P69WsiIiKYMmUK0dHRGBoacuDAAbKzszl48CAaGho0NzdjamqKi4sL8fHxPHr0iFOnTsmdCxctWkRFRQVWVlZyB0ITExO52HpwcDDXrl1j6NChGBkZMW/ePNauXcvNmzfp0qUL0dHRdO7cmYSEBDw9PYmOjsbY2Jjs7GyampqIiorCxsaGCxcusGHDBmxsbEhISGDLli1cvHiRn3/+mU6dOtGvX6sl54oVK3B0dOTEiRMMHToUHR0dJkyYQP/+/TEzM+P8+fMIhUKOHz9OTU2N/HpXVFQwduxY+vTpw7Vr17h69SoRERHcvHkTAwMDlixZQmxsLJ06deLBgwcsW7YMFxcXtm7dSmJiInp6ely4cIFOnTqRnZ1NcnIyqqqqKCsrk5CQIA+atm/fnvLycmpraxk2bBiHDh1CJBIRHR1NS0sLHh4elJaWUlNTw/LlyxGLxeTk5HDt2jU8PDxISUlh4MCBfPjwgcDAQAoLC1FVVWXu3Lk8fvwYMzMzli9fzsWLF7GyssLY2JhRo0ZRXl5OUFAQ69ato7i4mA0bNjBmzBgmTpxISEgI/v7+xMTEMGDAAF6+fElNTQ3u7u5ERUXh6urKlStXmDNnDnPnziUsLOwfes579+5Nv379MDMz+x1zBcDHx0f++bcMxy8dbceOHX8naN+lSxd++OEHNm/ezFdffSW/l78E176IxL9//56VK1dSUlLCzJkzaWlp4ezZsyxbtgxPT0+ePn1KaGgoCxYswNDQkI4dOxIfH4+6ujr29vaYmJgQFBREmzZtOHbsGKampixevBiRSMSlS5fYvXs3lZWV2NnZkZOTwzfffMPt27fx8vJiwoQJyGQyZDIZ+/fvR0lJCbFYTOfOnf8/9v4zqqpr/+LGP6dw6L33qogigmJDUEDpqFij5mqqpjeTm5jeY3oxpqmpxtgbSEdERLCjIAgovffOAU57XgD7SjS59/7+z4vnP8adYzASz9lnn332Xnutveaac34JDAwkJCSEV199lT179ox47c+e5caNG4SHhyMSifj999/p6enh/fff56WXXsLAwAAfHx9ycnKwsrJiypQpeHh4YGxsjLu7u1CRMzIykpUrV+Lk5IS5uTmPPPII+/fvx8fHhx9++IFjx45x8OBB8vLyKC8v5/XXXyc9PZ3169fT0dHBU089xeuvv87Q0BD79u3jtddeIzU1FT8/P8LCwjA3N+fFF18kPj6eadOmcd999xEREcHXX3/Nvffey8aNG0lJSWHFihWoVCoMDAzYsWMHkydP5ujRo7z00ktIpVISEhIwMzNj3759zJkzh5UrV/L6669jbW1NTk4OAQEBnDhxAicnJ4aGhtDX18fCwgKVSsWDDz7I0qVLqaiowMzMjKCgIJRKJWVlZQwNDbF7926MjY05cuQIISEhvPbaaxw9ehQXFxe+/fZbKisrqa+vx8nJiZUrV1JVVUVoaCjBwcG89dZbBAcH09vby9atW5k2bRoTJ05k//79WFpa4u/vT0xMDA0NDdTV1XHt2jXWrFmDRCJh9+7dQjXaq1ev8vPPP/P222/zyCOPsHDhQvr6+pg5cyYPP/ywUN3w+PHjZGZmoq2tzfPPPy/c19bW1rz++utUVFSQnJxMQEAA5eXlfP755yQlJbF+/XreeOMNLC0t8fLy4rvvvmP37t3I5XL09PSIiYkhISGB/v5+Hn30UXp6eujr60OlUuHp6Ulrayuurq6sWrWK+vp6Zs6cSWRkJIsXL+bkyZMsXbqUjo4ORCIRRkZGLFu2jKKiIoKCgmhraxPGUQ8PD+6//368vLywtLQkKyuLZcuWMTAwQEZGBs7OzqSnp7Njxw5EIhFvvPEG1dXVbNiwgVWrVv3Xzwv/w3iIRCIcjMyp6W4d93pzXxciRAJp4mlhT4irNxo05DdWknzrCsWttRjKdO4gpAD8bN2o7GqhU94nvNYzNMDN9oZx25vpGhDq6kNm5XU6RredauXE9ZZqYZuuwX6aejuZZOkgHMtsh4mcrCygvqd93G+53FCOXDHMPCcv4WHdSt8YfZmOsArN6Er0GDIrCwlynoz2qOXJ384DbytH0iuu0djbCYCJjj7dg/1oNBrSy68x2dJxnMppgrkduloyCppGJvYGMm36hgeF92+1N1LcOjL5MtM1IMLDl4beDi6OhrGPYUAxhEKtFAipYZWSvNpSTlcV0Tc8iIuJJZ9H3M8m/3CAcavwK6fMZbbDRIx19ASlmae5PS/OiyPUzYcLdTd5NWMPr2f+gY+1M9/GbMJIW5cDRWep7+ngvdMHqe5qZW9hDjfbGylra6BrsI9B5TDvZx/ms4j78bF25vHEHRS21DDZ0pEja15CLBYzqFTw5KxojLR12RK4HB0tGU8m7eRMTTGPz4pkSKnglaAVVHa18ETiTgy1dZllPwFHYwvyaku43zeE7dEb0dWSsTXnCN9eTKFzsA8fa2fEYjGf5B7nROklbAxMeDHtN7ZFP4yHmQ1Hb5yjQ97HlozdDAwP8tapfXha2KNQKbnaVMWVxgo+PnuMuu423ss+yAQzW3Yvf0ZQJVV3tfBsyk/oammz7VwizsaWvL/wXqq7WtlTkI1cMcRL6btRaTQMKUeItwHFIDsup5FQepGqrlaKW2rRoKG8o4nHE3egqyXjzVP7mGbjwpBKyTKv2fjZuuJgZM6L8+LoHZYjEYsJdPJiWKWgqLWG51J+oqy9ntcz/+BWRxOnKq/zzYVkWvq72Zz6CznVN/jt2ik+zDmKQqXivexDKNQqfi/IAqC4tY63sw5gqmvAp2ePE+kxndNV17lUfwt7Q3OeTNpJWXsDzwcsQa4YQq4Y4vOI+1ns6c/+62eJ2fMehjJdDhfnjWSw7XqZis5m2gZ6+YfPAtr6e2gfzfFaNSWA904f5AG/hdR2t/FWyD38du0Uw6qRazzB3I6Pzx5jjsNEvo3ZRPXoNfe2cuKbmI10DfbzXMpPXKi/ibOxJR+FjZSxv8d7HsNqJdvOnUAmkRLu4UdJax2/F2TTPzzEjsWP4WvrhqW+MUUttVjpG5O24U02p/7CE7OiefXkH1R1NfPx2WMkll3G386Dl9J3o1Ar2bnkMV7J+B17IzM2HN1GaVsDKrWaj88eQyqW8HX0w/xReIbUW/m8k3VgpEKhvhFOxha4mljz27Kn2Xk5gydnRfFe9kGs9U3YdSUdgADHSajU6pHwb21dpGIJRtp69A4P8v7Ce7nRWscTiTsIcprMtqiHaB3o4aXAZbx68g8s9Yz4/mIqLwQsRSwS8WbwPQyrlDyX8hPXm2vQaNQklV3mYv0tgVjLri7mXp/59AwN8MycWPYW5vDjlQw+j3yAzMpCanva6Bjo5YMzh7HSN+aDM4c5W1NCevk1fs7PpKqrhfhRy+W9PkFsOLKNX69l4WhswecR9xPgNAktiYSnZkfzafh9TLZ04FxtGdvOJ3K85ALTbd3wsnTAclSZOqY6ur1vFYlEhLr5UNPVxq32xjvGh6zK60yycMDZxIow92mk3rqK4rYq6J3yfkxvI/T7hwdJvZXP9piNPOAXSkVnM6erihgezQicZGFPyW3q3LL2BnS1ZDgaW+BgZE6I64iq9FTldcraG/C2dqKw+V9jTMdAL5mVhdT3tBPi4s1U6xFFvaW+EWa6BpS21d/xG/6MwuZqpGIJXqPj1HyXKdR2twmVB2+HXDFMeWfzOEIKwNXEmobeTt7OOoBSrUJHKiPwtj7eQFsHGwNTJlnY42PjQsqt/HFKZ3NdQ9oGemB0seX2ca59oJfS9gYhf+s/xf+nlFIA+/fv57777uOHH35g1qxZfPnllxw4cICSkhKsra3ZsGED9vb2bN26FYDc3FwWLFjAhx9+SExMDPv27eODDz7gypUreHuPBFd+9NFHfPjhh/z666/CQ3hBQQHFxcXo6Oj8myMawdhK308//YSdnR0RERHk5eWxbt06vv/+e+bMmYOWlhbx8fFMnTqV3t5e5syZQ3JyMlFRUVy5coUZM2bwwQcf4Ovri7OzM6WlpchkMgwNDbG0tKS1tRU9PT0GBgY4evQojo6ObN68mZSUFCIiIrhy5QqbNm1CJpPx5ptvYmhoSHl5OZaWlqhUKiGYfcGCBeTn5/PKK69w6dIlQSV2+PBh5syZQ2trK6ampqxbt46VK1fyxBNPCMTfGGkRERHB/Pnz0dHRoaCgAFdXVxwdHRGJRGg0GuRyOYGBgRw6dIhVq1Zx5MgRwsPD0Wg05OTkoNFoiIqKorGxkV9//ZUvvviChIQELCwsOH36NB4eHnR3d9PQ0EB6ejobNmwgOjqaq1evoq2tTVVVFQ4ODlRWVtLS0sKsWbNoamoiOjqar776igcffJDS0lLUajUSiYTp06dz7tw55s6dy1dffSVY7woKCnjppZcoLS1l4sSJJCUlERERwYEDB1iyZImg6qmsrKSpqYnu7m40Gg1fffUVbm5uLFmyBEYJI39/f2JjYwHYunUrbm5uvP/++0ilUm7cuMGWLVvYuHEjrq6uKBQKtm3bJlTJGjsfO3bsoLa2lqlTp7J69Wri4+NZunQp27dv54knnuCJJ55g69attLa2olAoKCkpITw8nKNHjyKRSAgICCA1NZWNGzeya9cugoODcXd3JyUlhcjISDQaDfv27WPv3r3s27cPPT09EhMTmTRpEteuXWPKlClUVlbS3t7OPffcQ1lZGa2trQwMDKBQKFiyZAnXr19n6tSpfPvttwKBsWnTJrKzswkKCiI1NZU5c+aQl5dHREQEv/zyCw8++CDJyckAVFVV8dFHH7F9+3aCg4M5ffq0UMrez89PIM3Onj3L8PCwoGA8f/68oDSsqKjAwsICW1tbenp6mDx5MmlpacTExFBdXc2aNWs4d+4ciYmJWFtbk5mZyeTJkwkODuby5ct4eXmxevVqVCoVr7zyClFRUbz++utUVlby+++/8/zzz/PZZ58B8Oyzz/Lll1/i5eWFqakp1dXV1NfXs337dg4cOMDly5eF6mCRkZGkpKSwb98+gXxevnw51dXVXL58mU2bNvHrr78yadIkZs+ezY4dO3B2dmbDhg18//33/Prrrzg7O9PR0UFPTw+6urr09vZy6tQpZs6cyerVqwUSSUdHh66uLt566y3efPNNwRq3ePFijhw5wuLFi4XrnpmZyccff8zWrVvx8/MTXm9ra8PGxoYnnniC6OhooR0mJCQgFouxtbWlqKiI/v5+7OzsMDAwoKenh9jYWCQSCfHx8cTGxrJv3z7c3NxwdHSkr6+PU6dO8dhjj3HmzBkCAwNJTk5GLBYTHBxMd3c3n376KZ988gl79+5l1apVSCQSUlJSCA0NJTExka+++kqoepeUlISDgwNKpRJbW1uam5sxNTXF0NCQvr4+qqurWbt2LU8++SQxMTFYWlpy/PhxZs+eTUxMDCkpKeOqZS5evJj4+HhMTU15++23SU1NJT8/n5CQECwtLcnLy2PGjBlMmDCBAwcOoFAo0NfXZ/ny5XR0dJCenk5WVhYPPfQQXV1d9Pb2snz5cn755Resra25efMmarWap556ijNnzmBlZUVzczPDw8MEBgbi4eHB5s2beeKJJ8jKyiIwMJCsrCxCQkI4c+YMGzZs4K233sLDw0O4Hrt372bdunUCkapQKJg0aRJ79uxh/fr1JCcno62tTXl5OW5ubvT29hIaGsrZs2eRyWTY2tri6enJ3r17MTExwdDQkM7OTiZPnkx5eTkLFizg/PnzhISECEq41NRU/P39KSgoIDQ0lIsXL7J9+3Z+++03KisrBUJdW1ubOXPmcObMGZqbm5FKpdja2jIwMMCqVas4duwYEyZMwNzcnLq6Onx9fdm7dy/a2trMnTuXgoIC9PT08Pb2Rltbm6+++orXX3+dPXv24OfnR01NDe3t7Xh6elJXV0drayszZsygqamJzs5O7r33Xg4fPkx4eDgDAwPU1dVhZmbGhg0beOGFFwgMDCQnJwctLS28vb25cOECpqamArGqUCiIjo5mz549LFu2jPPnzzNr1iwUCgUZGRm4urrC6CJSQ0MDQUFBbN26lRUrVpCdnc3cuXNJTU3l888/59y5c/9TSv0fMPb8lPPQBxjIdDhZUcBCNx9ya0qY7TCRjIoCIm7LmmI0cLyopZbOwX62n09kjoMnsx0mCEodG0NTnI0tBYWTRqMhrfwqhjJdplo7k1Nzg0gPv3Eru7cjt6YEawMT3M1sOFNdTJDzZFRqNenl14jw8L3r5wqbq4Uw52GVEi9LB+wM77TEAWRXF+Nn44qhtq6wgny25gYTze2x1L97+yloqqJ7aAB3Mxt6h0aqmc13mYKB7O7PqWOKKXsjc1oHephkYU9ubSnmugbCKv3taB/o5WL9LQKcPLneXMOgcpgFLt5UdbVQ19OOlkTKdFtXdKQy1Bo1JysKme0wkequFsx0DakfrTbIaD7KpYZyDGQ6iEUiJls6kl1VxGyHiVxquIW5nhFyxTDdg/0Mq5W8mPYbP8c9iVwxjK6WbFT1cYG1UwMpaqlFW6KFia4+15urcTCy4MmknXwafh9ikQipREp6+TUWufnwdtZ+vop6iPaBXloHeng/+xA/xz3FjdZaptu60dDbwebUX/gobAOWekZUdjUzycKBh49/wyvzV6BSq2ns6+SHS2l8Hf0wmtHrOsXSkYTSi4S5+yKTSEAkoqKjGT0tGS4mVjyeuINflj1FcUstU6yc6B2So1SrkCuHMZDpYGNgwqWGcuY7T2HF/o94J3QtL6b9xstBKzDR0aNnSM5P+Sd5JWgFdoZmo7YgU7Zk7Ga51xwMZDpMsrBHIpagUquQiMXoa+mw7fwJXp2/Cm2pFk8l7uSd0LX0DsvRaEayt/5x5MvRimd17LycztfRD3Psxnk6B/vpHhxgg28w7QO9iEUi4ksvsnLy3BGLkVSGVCKlqbeTz/PiedQ/gi/PnWDt1CAyKq6h0Wh4J2Qt9b0deFs5sfbQ5/zDZwHT7dxQqdVIRCLO1NxAW6LFvus57FzyOE19nehIZfQMDWCpb0z7QA9DKiUZ5de41FDOGwtWY6StixoN023d2Hk5nQ3TQki9lY+TsQV6Mh3UajU9QwNCe9YSS2ns68BQW4+nk3bxZvBq3jt9iI/DN/DWqf28HLQcA5kOLf3dvJd9iG9iNnK1qYqZdh5sSviOE/e+yrWmKkDDG5n7+DBsPe+dPoibqTVPzY7hQv1NzPUMOVtTgkKtZInnLH69eoqHpi/kZnsjFnqGGGrr8lL6bt5feC9tAz3YG5ohk2pxq70RK31jDLV16ZD3oivVZkvGbj4O30B9TwcORuboa2mjLdXi6aRdPDU7msmWjmw4uo1Pwu/jg+xDvL/wXgYUQ/QphtCRaLElYzf/nBdHfmMFj/pHsPLAJ2xd9A/6FUNY6xvzz7RfeSd0LSk38+keGkChUjLV2hkfaxeuNlUw1cqZqdbOJJRexNfWjcdP/MBbIWvoGRzAxnCE9E8svcyKKXN5ejQYX19LGzM9Q3qHBugc7EejAS2xGKlEyuaUn/gi8kGeStrFA36hBDlNRiSCB45tZ0vgMkFBNNnSkb7hQRp6O1Cq1UjFYsQiMRKxmDkOE5m140Wem7sYDzMbHIzMqe1uH7m3xRJsDU1xNLYQlEQ13a1Ud7WiUqsJdvWmvqcdhUqFi6kVqbeuEubuIwRp364GYlT9M6RU0j88yDynSWRWFuJn64bZbUonhUpJWvk1wtynIZNIyW+sxNPCDj0tbZr6OiluqSXktiDysc/k1ZWhK9XC385j1G4rwdXUmvqe9jsUXGOo62mnrL2BW6PKL2NtPcz0DJlm7fKXY9O5ujLcTW2EcaJrsJ/a7jaBvLraVIm+ljYTzO3u+GxhczVikZgpVo7CuUm9lc8it2lIxGJUajXXmqroUwyiK9XC18aVC/U371BhcRcllEYzUu3WQs+QSZYOaDQaTo0Wh2gb6KFtoJdJFvZ0D/ZzuaGcULd/Ldr/p0qp/8+RUgDbt2/nk08+oampCV9fX7Zt2yaoE4KDg3FxceGXX34Rtj948CCvvfYaVVVVTJgwgY8//liwDTF6It9880127NhBV1cXgYGBfPvtt/9VZtDYQ9XWrVvZvn07r732GrGxsdjb25OUlMSiRYs4fPgwa9asQSwWk5+fD0BTUxPGxsa0tLQIE/SlS5fS0NBAY2MjM2bMoLW1ldOnT7Nq1Sr27dtHWFgYZmZm5OfnI5PJqK2txcnJiZKSEgICAsjJyWH58uWIxWLBNjI8PMzMmTOxsbHh7bffZvr06Vy6dAlvb2+ampooKyujs7NTUAU4OTnh7+/PsWPHmD9/PtevX8fb25ucnBxaWlpwcnIiPDxcsL7MmjWLmpoaTp06xf33309SUhKMKscKCwuxt7dHqVQikUgYHh6mqakJW1tbzMzMmDdvHlVVVTQ0NODv78+pU6eIiIjg0qVL3Lx5k/Xr15OYmChcq99//53MzExycnJwc3Pj/PnzuLm5YWlpSUJCAlFRUZw+fZr+/n727NnDhg0bUCqVTJs2DScnJw4dOsTq1asBOHLkCHFxcZw6dQq5XI5SqUShULB48WJ0dHRob2/n7NmzeHt7o1QqmThxItnZ2Vy+fBkzMzPuu+8+AIFcBKivr+fdd9/FwMCADRs2CAqTuLg4tm7dyqpVq5DJZJw+fRqNRoOxsbFAFBgZGbF161aWLl2Ku7s75ubmnD17Fn9/f9rb2wkPDyc1NRVTU1OBRFIqlfT39/PMM89w7NgxJk6cSFpaGgYGBgwODhIeHk5aWhoLFy4ULHO6urqcOHGC5cuXCxYigN27d7NhwwaOHz8uKICqq6t55JFH+O233zA1NWXKlCkYGRlx8+ZN5syZg0KhIDk5GQMDA+RyOfr6+tTX1zMwMICJiQlhYWEMDg5y/fp1Fi1aREJCArGxsahUKjIyMoiKiuKNN94gICBAuMZjyp09e/YIuTRj1+Xhhx/mySefxNvbG4lEwrFjx9DV1cXLy4v8/HyMjIxYsGABKSkpREdHc/36dR544AG2b9/O7NmzSU5OxtPTk+rqaoaHh/Hx8eHq1atIpVLCw8N57733sLKyYtOmTYIV7YMPPkAikfDLL78wadIkDAwM2L17N1999RXPPPMM06ZNIzQ0lC+++IJffvmFjo4OXF1dGR4e5rXXXmPz5s20tbXx/fffI5VK2bhxI25ubuTm5mJhYcE777zDTz/9xP33309KSgrff/89ZWVlnDt3DgMDA5KTk1m4cCGHDx9m0aJFFBcXY2xsTFVVFfHx8fz000+IRCJqampobW3F0tKS4uJiGFVi5eXlERkZyc2bN7l27RoSiYSpU6dy7do1oqOjycjIIDQ0FH19fYGwAiguLmbKlCm8/PLLbNq0CRcXF7q7u7l69SpWVlZIJBImTpwo2KBPnDiBp6cn2tratLe3o1arqa6uRqlUotFoMDIyQqFQMHXqVEpKSrCwsKCxsRE9PT1ycnLw9fUV+quzZ88SHh4u9GFj91Z4eDgWFha8/vrrTJ8+HTMzMxITE5k4cSLFxcXExMSQkZHBhAkTaGxspL6+HpVKxfLlyzl58iRWVlYCiX358mUYta6lpKTQ3t4uWJbH2mJUVBTx8fFCFtLYa99//z0PPPAAMpmM9PR0goODkUql7N+/n9OnTxMTE4OdnR23bt3i0qVLxMXF0d7eTnR0NGq1mqysLEpLS3nqqac4evQoJiYmBAYGIpFIOHHiBIsXL+batWvIZDLs7OzIysqiubmZ3t5epk6dyuDgILNnz6agoIDAwEB0dXWFczWmIA4PD+e7774TcpT6+/tZuXIlCQkJxMTEIBKJSElJYdGiRezfv5+1a9fS2dlJVlYWHR0daGtrM2nSJNra2mA0qykvL4+JEyei0WgoKSlh8+bNnDlzhnnz5iESiYRjkMvlbN26lRkzZuDk5ISfnx9JSUmo1WpCQ0PR09Pj9OnTHDt2DCMjI/z9/TEwMCAwMJCTJ08SERFBVVUVhYWFLF26lKtXrzJt2jR6e3vJz89n/vz5ZGZm4uPjw+XLl1Gr1YSHh5OSkkJvby9r1qxBrVZz+vRp3n77bbq6uvjhhx+EZ4Ux63hFRQW9vb10dXXR1dWFv78/JSUltLa2cs899yASiTh//jz6+vo4ODhw/fp1YUFp9erV7N+/H11dXc6dO8cbb7zxP1Lq/4A/k1LNfV0093XROyxnWDVSalxXS8awSsm1pirkymFEwBQrJ8x0DYSH4THrg0ajoamvi+ruVlTqf614i0RiEssu4WFmwz98gsdZ8u6G4tZaBhRDDCiGCXLy4mRFAYHOXkJuxhgGlcNUd7XSNtAjWNQ+Db8PPS1t7I3McDCyEKx2Y9BoNKTcyifCw5e82lJ0pDKs9I1xNLb4y+NRqdVUd7eyp+A0h4vPsWPxY5jrGWKkrYeRtq6grrodN9sb6BrsR6FW0zM4wCx7D6HC4N2g0Wg4U3ODX/Mzmes4iQnmtriaWuFkPD5bL7e2FB9rZ/S0ZJyrLSPAaRLVXa10yHvxs3WjuqsVsUiEo7EFJa11yEerqDmbWLFy/yesnRrITDsPXsv8g3dC1iISjajICptreOf0iDXqt9GqcU8k7mTjjDD8bFx5PHEHPy59gr7hwdH8m04cjMz49mIKj8+MpGOwn+7Bfr4+n0Tiva9S3tnM00m7+CLyQZ5L+YlvYjai1mhQqJRcaaxkuq0rm1N/YXv0Rp5M2snnkQ9Q1tbA6aoinpoTQ++QnJfSf+PLyAd59/RB/jkvji0Zu3lt/kpK2xuYauVM20APLf3dmOjo8/2lVL6OfpjtF5KZ5zgJdzMbXj25R6g+9mn4fZS1N+JuZo2OVIapjj5fnTvBau95OBlbknzzChZ6I6qYLRm7eWFeHLpSGefqyoj08GVIpUShUvJS+m5+W/Y0xW11XKovp7i1lkf8w3E3s+Efh79k2aTZLPacSVr5VaInTKdD3ke/YggtiYSillpCXadyrakKdzNrnkjcyYZpwcgkUrSlWqSXX2OGnRt7C3M4tmYL8aUXuNxYQfSEkQw9M10DJGIxg4phXjm5h5eDVmChZ4i7qQ1x+z7k/YXrBFJAM2rha+nv5p3TB9g8dwlXGsuZYuXENxeS+XDRer46f4Ln5y5BX6bDm6f28c95cSPkSsha3ji1ly8iH+RCfRk9Q3JutjcQN2k2fxSe4RH/cF7P3Ctcu+3RG3ku5SfeW3gvxjp6XGmowMvSgedSfuL7xY8yMDzI5tRf+CrqIZ5J/pFPw+/jhbRf+ShsPZ+ePc7L81ew/XwS7y+8l4rOZuTKYb4+l8g/58XR3N/FlYYKFnvO5JuLyTw3J5bNqb/w4rw4plo709DbwUvpu3kzeDVvZx3gzeDV7Lt+loemL0QmlvJp7nEemxlJc18XQyoFlxrKWT0lgCuNFfjauDLR3I43Tu1l1ZR5OBqZM6gc5nzdTULdprIlfTdSsYRdSx8nvfwa31xI4Z/zlvLu6YMk/eM16nva+eZCCk7GFhS11PLg9FB6h+RIRpVDBc3VLHCZwp6CbGbZexDq5sPTSbv4cNF69LRkVHW1crbmBufrb/J55AP8fu00G6YFIxVLkEmkbEr4jm9iNlLf08EHZw6zPXojb5zaS4SHH2a6BkKFu6nWLuy7nsMEM1vM9QyZae/BvYe+YJG7D0FOk3k8cQfPByxBqR5ZUPC3c+PDnKNsi34YtVqNs4klG45s46Ow9XTI+3gt8w8+CtswaqeWkFN9AxsDE7qHBphh587F+pt4WthT0lqPr60rMomUAcXQKPk7Gf7C1lbT3cqhojw8LewIdPLCWOfOzF+lWkXarauEuk3lSkMFcx09udnRSPdg/18STIxa/S43lDOkUlLX0467mc1IyLhGQ+/wIC393bQN9IwblwAqOlv4LPc426M3oqelzWQrhzvGmduRVn6VYBdvZBIp15qqcDW1xkhbl/zGCgy19fAws/nLz95sb6BnSM6QUoFYLGaimS2tAz0093cjEYnwsR5R2Y3hbuewvqeD3qEBQTE8/rc0U93VygKXyRQ0V+NoZEFVVwuTLR1QazTk1JQQ7j5tHOn2/9ek1P8XcTspZWNjg66urhBSW1dXh0wmIzQ0lM7OTlpbW1GpVBw/flyYfI4FVOfk5DBx4kQuXrwoTMTGLHQXLlwgPDycwcFBQZH09NNPI5VKOXToEJMnj9yEvb295OTkMHnyZPr6+jAzM+PMmTOEhYWRl5dHYGAgRkZG4yafABcuXGD27NkcOnRICOZWqVRs2bKF1157DVtbW4KCghCJRMTHxxMTE8PJkycJCQlBS0uLwsJCKisrhUnHWMNKTU0lIiICAKVSye+//84DDzzA8ePHkclkiMVinJ2daW5upqSkBAcHBxQKBTNmzMDBwYHExESioqKEoO0DBw7g7u5OU1MTUVFRIxL29HQmTpzIwMAA3t7eaDQaTp8+TUhICD/++CO2trYYGxvj7+9PS0sLVVVVaGtrY21tjZOTEzU1NeTn5xMXF8f333+Ps7MzWlpaeHh4IBKJSE1Nxd3dnc7OToKCgrCysqKxsZHCwkLCw8MFUurixYv09/cTHBzM2bNncXFxwd7entraWlpbW5FIJKhUKqZPny585tKlS4jFYlpaWtDS0uLEiRM4OztjamrKyy+/TGJiIlVVVchkMmJiYqivrycpKYlNmzaxe/du4uLiMDAw4OTJkwQEBNDZ2UlzczN+fn709vaSnp5OUVERHh4erFixQphcl5WVceXKFTw8PGhubkatVuPt7U1paem4dtHR0cGWLVsIDw8nJiYGXd2Rzmps8jmm4hlr7+3t7QQGBtLU1MTevXvR1dXFx8eH2tpaVCqVUOmyoaEBqVSKvr4+Hh4e4wL/jx8/Tm9vL2FhYeMC88dUgbW1tZSUlKBSqcjPz+fVV18lKyuL+fPnCx3d2PEdPHiQlStXUl1dzaVLl6ivr8fLy4vQ0FA6Ojr45JNP2L9/P/v27ePChQv89NNPfPHFF2g0GiQSCc3Nzdx7772sXLkSqVRKXFwcq1evJiMjg66uLiZPnszkyZMpKCigoaGB4uJivv32W7Zs2cLDDz/M4cOHqa6uZvPmzSxevJj+/n48PDzYsWMH77zzDgkJCbz00ktoaWmhra2Np6cnhYWF+Pr6cu7cOby9vdHS0sLd3Z3q6mqCgoIIDAzkww8/xNnZeRxpM5ZhNNbvbN++HS8vL5YtW0ZlZSWNjY2oVCpiY2N55513ePTRR7G0tEStVnPw4EHuueceoV84d+6c8Pt6e3tRKpVUV1fj4OBAXV0dGo0GZ2dnampqcHR0RCaToaOjI5BTY6TH8PAw2travPbaa7z++utC+7u9X8jLy+Ojjz7iwQcfZO7cuYLaKSYmhvT0dKKiorhw4QINDQ0sXLiQtLQ0li9fjkgkora2lo6ODoGw8Pb25sMPP8TMzIyEhAS++eYb0tLScHV15erVq4LtcMmSJUyaNIkffviBK1euMH36dHJyctDW1h7X91pYWFBeXi68lpeXh5ubG3K5nIsXL7J48WL6+vqoqKjAw8ODy5cvExYWBqMk2u+//86WLVv49NNP7yimYGpqykcffcTDDz+MRqPB1dUVLy8vkpKSCAwM5MyZM8TGxtLY2Mi1a9dobGzkwQcfJCUlhbCwMMRisaDoWbRoEVlZWYSFhVFZWcmlS5dwc3NDKpUKBTPGxoWhoSGh3+nr60Oj0RAQEEBVVRUDAwOIRCKee+45+vr6uHTp0rjg89uv27Fjx7CxsaG1tZXo6GgkEonQHscszlKplOrqaq5evcp3331HVFQUnp6eQjh1dHQ033zzDZs2bRIC2W8fm44cOUJMTAxnzpxBV1eXefPmkZSUxMyZMykqKiI4eCTLpr+/n71797Jx40aOHDki9FMikYjm5ma6u7txdnYmJCQEQ0NDgZQay+saG58+/vhjXn31VZKSkhCJRBgbG2NlZUVZWRlFRUVMnz4duVyORCKhpKSECRMmoFaryczM5Msvv/wfKfV/wO3V93S0ZNgbmlHd3UplZzOz7CfQOzxS/UlLLGGajQt6Wtp37GNMzfR3GFYpeSNzLzXdbTwxK1KoXPRniEViTHUNMNc1ZEil4GRFAXpa2kyzcUGuGKZvWD5ue5lECxcTKyz0DMeVCldr1NT3dFDbM0LQjz2Da4mluJhaYSDT4XzdTW51NLLAZQoTzGzplPdR39tBz9DAOLuDBs1IRT19Yyz0DLnZ3sBkS0d6huT0DA3QMyRHMWof+TPO14+ECW+LfhipSDxun9xmHxz7t1Qs4fnUX/hl2dN3ndx0DPRS0dUsWB9vn7Tc6mhCrhiib3iQmfYeSERirrfU8FL6biaY2fLM3FjqetqRK4aY6ziJ/MYKRMCrJ//g/UX30jskJ/nmFZZ7zWZYpUJPpo2ORIv63nas9U2QiiXU97bz1blE3gldyzNJP/Ld4kdQqVVoiaV8lHOUN4NX42hswQtpv9LQ08Em/zAMZLoMqxQo1Wp2XEpjtfc80suv8c95cdR2t2Gio49ao+aVk3v4LvYReofkqDRqcmtLcTez4au8E7y2YCWd8j6m27mz+sCnfLhoPSqNildP/sErQSvokPcxzcYFcz1Dfr92Ggs9Izb5h3Gs5ALTrF1oH+ilsa+TlFv5rPUO5IW0XwWya5N/OPaGZjyZtJPn5i5GWyJlipUTBc3V2BqY8GluPKGuU/m94DTH1myhorOJQ8V5NPV18WLgMiQiMRvjv2Vb9MOIEeFqakXMnvf5MvJBTpRdIqfmBs4mVsRNmsXVpkqiJ8zgmeQfObLmJep62vmjIBuRSESAoyfn627y+KxI2vp7qO5u47Pc4zwzJwa5QkF2dRGLPWfyydljxK97mdruNsx1DVlz6HPeX7gOfS0dXE2tWLr3Q94KvgcDmQ4vpP3KvpWbaRnoQalSoh7t+7WlWkjEEgxlOtx3dBsfhq1HJpZioK1DS1832lItVBo1xtp6nKm+wSyHCSOFCQpzmOvoyfvZh3hmTiztA72EuHrzYc4RIj38OFtTQk7NDb6LfYTzdWU4GJnjZmrDg8e380rQCmQSKUq1igUu3mxJ/417feZzqaEcP1s3sqquEzPRn8dP/MCXkQ9yrbmKQaWCDnkvJa31rJwyF0cjC1QaNVKxBD9bN+b/9Cqvzl9J//Ag+Y2VLHL34cu8Ezw0fSFVXa0cKDrLW8H38MOlNLYELWdYNaLUGVYp+eDMYR6fGYmvjSvvZh/k3qlBtPR3c6Aol7eC72H7hWR+WPwoZe0N3Gxv5IdLqSydNJspVo6IEDGsVvLe6YN8G7OJ3NpSFGolsx0msjnlZz4K28DF+psscJnCoFKBtkSKobYeaeVXWeAyBSdjC6J/f4+3Q9YgFUsw0dFjSKlAJtFCoVbxXMpP/LD4UfJqS3lw+kIu1N0ULGoAelradMj7aB3oxsnYEg8zGw4V52FjYIqJjh47LqWzd9VmrjVVIQKa+rqwNzIbrfpozq2ORq40VrBs0mw+OHOYx2ZGoqelTYCjJ4UtNVR3tbLIzYey9gYUKiVPJ//Iy0ErWDVlLmKReESJU1mItlRrHGlS0laPtkSKuZ4hVZ0tQrYeo+RHfmMFh4vzcDW1xt/uXwViNJqRyqR2RmZY65sgFolIK7+KtkSKkY4ehjLdcQpTuWKY7qF+uuT9dA0NoFarhT60truND3OO8mn4fehqjTzzGsp0sTIwxlzXUMgsvB1j/Wj/8KCg6AIw0NZhiqXjuM8o1SoyykcUxGMLMpcabmGua4ir6b8vMlbZ2cyyfR+xaUY43laOTLSwE/K2/uq4bsefVVJ/hlwxRHZ1Mf52HlxrrkJbImWGnTunKq/fVaHc2t9N2G9v/4+U+n8LtwedP/744+Tm5jJ79myys7NZvHgxzz33HA888ACWlpZYWFgglUrJyspi+vTp5Ofn09fXh0wmIyAggLS0NGQyGebm5jQ1NTFv3jwsLS3vIJEYVYGN5R6NXSpHR0e6u7spKSnB2dkZmUwmZNhoNBohSDs1NZXIyEhUKhUJCQlMnjwZd3d3EhIShImtSqVizZo1giLIx8cHJycn+vr6OHfuHMPDw4SHh3PixAkmTJjAlClTBIvYmjVr0Gg0ZGRkEB4+kjlw6tQpDA0NkcvleHt7Y2pqikqloqamhvLycsLCwtizZw9LliwZR3KUlZUJ9kF3d3fs7Ozo6+sjOTmZ2bNnc/36dWGynZ2dTWdnJ/Pnz6e7u5uhoSEmTZpEV1cXly5dYnh4mEOHDrF//34OHjwIo4H4kydPpquri7KyMubMmcPw8DDl5eXU1tbywgsv0N7ezo8//oiOjg7e3t5YWFhQUlJCd3c37e3tKJVKvLy8xlXAO3ToECtXriQ+Pl6w+uXl5WFiYkJ1dTWRkZH09/ezbds2XnnlFVpaWrCwsCA1NRW5XE5cXBy1tbV8/vnnfPXVVyQlJWFnZ8fUqVNJS0tDX1+fnp4eIiIiUCqV5OTkMDw8TFRUFCKRiJ6eHk6fPs369evZs2cPUqlUaCcikYjIyEh++OEHHnroIaFi3RjxM9ZpHDp0SJi0jWWDeXp6jpt8xsbGCtbMrq4uIiIiSE1NFUiYgoICurq6iI6O5tlnn+WFF14QKqwplUpOnTolTORzcnKwt7fH1dWVQ4cOERkZKbSFuxGpXV1d9PT0CCocY2NjwVJjaGjIhAkTkMlkwrVfvHgxv//+OzY2NpiamnLy5ElaWlo4duwYwcHBQo5RcnIyjz/+OEuXLiUiIgJ3d3eWLFnC+++/T319PZaWlqxdu5bdu3djZGREf3+/EOp88uRJZs2aRXt7OzY2NpSUlCCRSPD29hYKNkilUpRKJRYWFgQEBPD4448TFhbGhQsXsLKywtvbm/b2dpYtW8aRI0fQ0dHB2dmZW7duCVUPAwMDyc/Px8bGBoVCQVtbG9OnTwegtLSUrVu38uuvv3L69GkmTpyItbU1IpGIrKwsZs+eTWFhIa2trYjFYlxdXamrq6O/v19QVrq4uKBWq0lPTxeIiLq6OiFr6caNG0ya9C9p9Jj1ckx9V1ZWRmFhIdHR0Vy8eBEbGxtBgTpGbozZ/RYvXoxGo+HcuXO0trZiZWXFmTNnmD17Nm1tbcyaNQsHh5FVmZaWFkpLSwkKCiIxMZHo6Gghp02j0TBr1iwcHR05cuQIGo2GxYsXU1NTw9SpU3njjTdYsWIF+fn5WFtbMzAwQEtLC6ampixdupRr164JfXRxcbFgq5swYQLW1tYcP35c6B+VSqWgDquqqqK3t5eVK1dy6dIlWltHcnEcHBwoLS1FV1eXxYsXj+u/a2pq6O3tFciqiooKSkpK6Orq4t577+XEiROIRCJsbW3x8fERbI5jdrnbg9tNTEzw9vYmNzcXS0tLZs2aBaPEUXR0NDKZTLg+Y2NBXl4eS5cu5ZFHHmHFihVMnDhRWJBISEggKCiI5ORkFi9eLNyDY9ft/PnzWFhY4O7uzsDAgEAU3bhxg4CAAM6dOycsouTk5DA4OCjY7cfab2VlJZ2dnUyZMoX4+Hjmzp2Lg4ODcJ9fuHABc3NzobJgfX09OTk5qNVqpFIpISEhXLlyBaVSiUgkQkdHh9TUVF555ZVxDzZjfZpGo+HUqVMMDAzg7OxMRUUFEydOZGhoiIaGhpEKMTNmcOXKFWHBo6enh5aWFq5evcrq1av5448/mDZtGpMnTyYlJQU7OzsqKyvZuXMniYmJ/yOl/g/4s1Kqrqed4tZaXkz7jZ1LHsfXxuWuD/G34z8hpWq72+gZGsnQkUmkI5Xf7gKlWkXXYD/tA72Czeml9N/YsfgxJlk6CKWy/wp/toz8GUNKBVVdLbQN9PDb1SzO19/k25hNAJjqGmBvZHZHsPjt6B7sp+Y2u8bfoX2gV8gX8bV1/Uur3+2o6mxBpVFT2dnMQjefOyYQY1a5sdf/PGkpaa0jrfwafrauqNRqplg5IZNIKG1roGuon54hOUs9Z5JQeokzNcUs8ZxFaVs9E8xt0RJLMNHRx0LfiO8uppJQepHt0Rt5/8whpCIx02xcud83hMSbl1nqOWuErDIwZeX+j3kpcBmWekZ8cOYwLwUuZ6adO4UtNbx1ah/rfObz7YUUXgqMw8bAFA3gZGzBiv0fC0qb90LXYSDToaG3g4/PHuObmI28dnIvX8c8TKe8j8beTj44c5hvYzahUKsYUikoaa3D18aV6XbuBP74iqCI2rH4MUQi2Hk5g/XTFnD0xnma+jq512cBN1rr0JZqMc3GhaeTdvF8wBL6hgfJrSlhgYs3nYN9XG+pIXrCDLaeOcz7C9ehUmvQl2mjJZag1Kj5OOcobwbfg76WNl+fTyJm4gwMZDroasl4InEn38Zsoqy9AT9bN2q6W2nq60JHKsPXxoXs6mJMdPTxsXYm5VY+ewqyeX3BKm51NOJv58GvV09xv18oh4vz+IfPAhp6O9h/PQcnYytudTRyn28wZrqG9A8P0jbQi52hKV2D/biYWvHw8W95L3Qdprr69A0PYW9kxvXmatzNbPhn2m/Mc5rEzfZGHvALpamvi5K2OiI9plPX04a7qQ2p5Vc5X1fGK/NX8kbmXh71D0cqlmCorcdL6b/xdfTDfHL2OO+ErqF/eJAhpYKtZ46wPWYjP1xKY4NvMB3yPkSI6BuW8+GZIzw8IwxrfWN0tbRpl/fy6dkRku3jnGP8FPcEwyolr2fu5cV5cbQO9GCio4+hTJchlYL3Th/irZB7aOrrYlilxELPkHdPH2T1lACuNlUxycKeQCcvBpXDpNzKp3Own0f9I7jeUo2Hma0Qkt820IOuVMYLab9yj/c89LV0kIrFTLNxwVLfmJvtDRjIdHnz1D4emxmJgWzk/dzaUoJdvDlUlEvMxBlcbiynf3gIO0MzMioK2DBtAYbaugwpley8kk6Ux3R+vJLBpxH3Y6VvzAupv/DK/BX8fu200M8klF3CQEuHwzfy+DziAawMjFl36Au+inqIU5WFHCu5QOb971DYXM0/037lw0X/4L3sQ/y49AkaejsYUAzz05WTo4UBhlg/LZgnk3ayJXAZKybP5WL9LboG+6nsamGKpSPPpvzEQ9MXUdJWR9yk2fwz7VfhXpOIR4j24yUXCHKeTM/QAOnlBTw7NxaJSEzbQA+dg/2g0VDe2cwEM1s0o9TPiEJLRFVXM8u85ozrozIrCrDQM8LeyBwzXQNK2upp6e9GT0ub6bZuo0UWTMcFlI/1zY29nTT1d6FUqdCg4amkXbwStAJ7I7NxCxk60hGbsYmOPkbaeuOUty393cLfRHM7HIz+vkr23frRMfQMybnRWivkXBnr6OFl6UD/8CAFzdWIEKEtlWKlb4yzyb8WEHuH5NT1tNMh7x23PxEitCQSUm7lM8fBE18b17+0jPOnwh2MKs2GlIq72gP/jPN1ZZS2NWCorYO2RIsIDz9a+rup6mpBpVaP2/bJpJ3/I6X+38LYQ9WYKuXjjz9mz549Qp6Kl5cXdXV1wqouf7J8AQwNDZGbm8u6deswNzcnPT19nHrkzxPy0tJSFAoFVVVVQpYRoxOd69evExMTw+7du3FwcGDatGlC5kxbWxv5+fmoVCr8/PzIyspi8eLF6OmNPARduHABGxsbnJycxh2nRqOhsLCQmpoaxGIxra2tdHR04OTkRExMzLj8ra6uLnJzc5kzZw7l5eX4+vpy7NgxAgICsLe3R61Wk5SUNO64L126hI2NDTY2NoL9zs/PD0dHR06cOMGsWbMoLi4edw4ZJXn27NmDrq4ugYGBBAUFCZMelUpFZmamQHiM/f709HQKCwsJCQlh0aJF4x66/nxdrl27hkqloq6ujiVLliCXyykqKhIsLWfPnuW9997j6NGjuLq6Ym1tLUxqm5ubuXDhAoaGhgQHB6NWq2ltbWXPnj188skn7Nq1Cz09PSEIWSaTIZPJKC0txcrKSgiQF4lEGBgYIJPJmDNnpPMdmxzK5XJSU1NxcnISJlbTp08XvnfBggW0tbVRW1uLv7+/8LuampooLy9HJpMxMDDAggULALh69SrW1tbY2tpy8eJFLCwshFwVgPz8fJqamnB0dGR4eBi5XI6FhQVFRUUEBgYKqooxVcbYtdBoNBw/fhw/Pz8h0N7R0XHcOS8tLaW7u1uYUKvVavbt2ydkKY3dA3K5nMTERGbMmIGrq+u4e6Ozs5Nz587x7bffkpeXx2+//YaZmRn+/v5IpVKSk5MZGBggJCSEpqYmIVR6LPxeT0+PxsZGlixZQmZmJjKZjLq6OszNzTl8+DBr167lgQce4NtvvxWUEj///DNr167lwoULrFu3jp9++onY2FjOnDlDREQEP/74IwcPHiQxMZHq6moGBgYICgpizpw5bNmyhTfeeIOsrCwiIiJ4/PHH6enp4fvvv0cmk5GWlkZvby9r165FJBIJJGB1dTUXL14UjnNwcJC4uDiuXr1KdXU1EydOxNLSktLSUurr6wkMDMTOzk64hnZ2doIKTaVSce7cOUJCQpgzZw5ZWVmCMvHPfY9Go+HQoUOIxWJMTEyQy+VYW1sL1lsrKyuBaHZwcMDPz0/YT2ZmJi4uLri5uQnt98CBA6xcuXLc9w0ODvL777+zceNGPvroI2bPns306dMxNPyX7SQhIYHw8HAyMjLw8PDgxo0bREdHIxaLyczMxNXVFblcjqurK3l5eUgkEqZMmcKlS5cICgoSFg4yMjK45557OHHiBNOnT8fa2prU1FR6enrGVcE8dOgQdnZ2uLu7j1PvjVUlXb9+vaDKnDFjhnAfJCcnExYWRnNzM0VFRQJBP3YPL1q0SCCEAUpKSrh+/TqXL19myZIl4wpu9Pf3c/nyZWGRYXBwkFOnTtHW1sbPP//MY489RlRUlEAgMVq1Njk5GX9/f5qampg6dSqnTp1iaGiIWbNmYWNjw/Hjx4WCCmN9ZFlZmVB9MyEhQQijT01NZcqUKUIW1e04f/48t27doqSkhEWLFtHb24uOjg7z5s1DV1eXtrY2KioqhPt7rLrgGM6cOYNEImFgYIDJkydTXFzMokWLYNS+W1xcTENDA9HR0Tz33HOsWbMGPz8/tLS0hHO9aNEiTpw4IRDpf26/Y+09JSWF2NhYDhw4IIxLY0hOTiYyMlIYF8b68dmzZ1NeXo6VlRX79+9n165dpKWl4eHhwSeffMKLL774P1Lq/4A/k1KMEht6Mm1K2uqZZj2+MtzdcKu9ET2Z9l9mOCnVKrIqr7PIfUQ1mFlRwDwnr7ta3v6MwuZq7A3NuNRYjr+t+9/a3/gPSClGM7Gyqoqw1jehqqsZU13D/zj0tbmvi94huVCG/K/Q2t9DUUsNwa4j6vH0imuEu/v+7We4bRW8Z0hOcWvtuGpPBU1VWBkYj1tVv4OUaqtn/eEv2broH3iY2eJiOtIX5taU4GXpwH1Hv2bDtAU4GFvwR0E2y7zm0DtaJe751F/4IvJBXs7Yzf5Vz1Pd1UrPkBwtiZTKzmYWe/rz8PFv2RywhJSbVzhZWcju5c/Q2t/NoFKBjpaMzSk/s3nuEiz0DHnl5B7eX3gvx26cJ3ridKZYOfFy+u9UdDazd9VmStrq0ZVq0TU4QNdgH99dTOXg6hco72hmSKVAT0ublv5uPjl7jA8XrWdAMUS7vJdvLiSzddE/yKm5gYWeEQYyHUJdp1LQXIVMooVSreKX/EzsDM24x3veKBGqRWt/Nwq1imtNVUR6+NE11I8YES6m1uy6nM5shwmIEPFW1n7eX7gOUx0DDGQ6bDi6jW2jwdJqjYYVk+fyeV489/rM50TpJWInzuC7i6k8MStqxIYjFjOkVPDdxRR2LHmMsvZGvjmfxKvzV5JbW8qBorPsXbmZTnkfvcODGMp0eDxxh2BvVKrV7Luew7qpQfxwKY0H/UKRiCX0Dsmp7m7leksNAY6efJGXwFdRD3GjtQ4XEyvUGjU2BqY8nTwykX/l5B5em78SEx19eobkdA72YaFnxBQrJ36/lkVC6SU+j3yADnkv5npGdMr7qO5qJXKCHw2jKsPPco9z9qEPSL55BUt9Y6RisUBEbglcxgRzO3JrS/G1ceH7S6lY6RtT39PBfb7BKFQq3sraz8YZYWRWFPKPafOp7GzB18YFuVLB1aZKksou82bIPUyzdmHp3g+ZZe8xSlrb4GhsTmNvJ4eLz/HCvKV8eyGZD8PWU9rWMHIfo+GtU/t4anY0+67n8NK8ZZS2N7DQdSo1PW18eyGFzQFLeDppF98vfhQxIuyMzIjbu5UPFv1jJCg/6iFeTP+NLUErUKqUIBLx3umDvL/wXhRqFRa6hryVtY/7fEMpa28g1HUqvUNy2uUjBNrP+ad4dk4M+6+fZaN/GO0DvdR2t7P9QhLvhq4l+eYVHvBbiEKlpLm/i5/yM/k66mGKWmt59eQe3gq+B2MdfZr6OrEzNGNIpeBQUR59w3I2TAvBxtCEYzfOEzVhOo8kfM/H4RvoHx6kb3iQmq42FrhMQSwWo1KrqOlu45Ozx/g88gF+yT/FPd4BGGrrYalnxNPJu3g5aAUy8YiK6enkXcxx8CS/sYIN04KZYG5LQ28Hr578g29jNlHT08ZvV7OIX/cy11tqcDSyoKi1VrDm9QzJyW+s4JnkH/kmZqPQ/4hEYgy0tHn/zGGemDUyd51kYT9uDMlvrGSiuS36f0PSK1QqMiquMct+AkUtNcx3mfKX2/4Z2VVFBDlPRiQSUdBUhUqjwc/W9W8/82fy56/QIe+jpK0etVpNZdeI7W9L0HIc/0R86ct0cDSywEzX4I59tg/00tDbwVRrZ/IbK5ArFeMqvN6OG611WOkbYz467o1VF/xPoNFoSL11lS0Zu/k84n5kEq078h75L+x7f7809T/cgYsXL7J8+XI8PDwICgoiLy+PefPmYWZmJihZAgMD7/icRqMRyknv27ePpqYmKisrx5FSFhYWQl6MRqPh+vXrrFixAgMDAwoLC5k6dURK5+TkxMWLFzl06BArVqxALpdTUFBAZ2ensK+ioiKOHj3K22+/PW7iBTBr1iwOHz6Mk5MTbW1tAqkgEonw8fHBx8eHGzdu8PPPP3Po0CGSk5OFSexYyXETExOcnJzIyMjA0dGRo0ePEhcXJ1h3xiagarVa+P/6+nqBNFm4cCGMTp7z8/MpLCyksbGRuXPnkpaWNiqF/9fNk5aWhrW1NcuXLxfINwCJRIL6Nja2srKS4uJi1qxZg6mpKf7+/hw6dEhYof8zysrK6OvrY968eYjFYqqrq3F2dh5H7shkMry8vAgJCWFgYICmpiYKCwtRqVSIRCKWLFnC999/z9DQECKRCAsLC9asWUNraytSqZTg4GCBdIqIiKChoYHIyEghQwUgPj6e+fPnc/HiRYqKigRFGoCuri5xcXFUVlYyY8YMli9fjqWlJUuWLBHOkbW1tZCfM4bc3FxhQlhbW8uhQ4eIi4vD09NTyFBpbW1l5syZ4z7n5+dHV1cXqamp/Pzzzzz00EMYGRmNm1wCBAQEjCMec3JymD9/PmZmZjg7O3PhwgUuX74sKHDa29vH2aTG2smKFSsExZlYLKaoqIhbt26xbNmycZP5MZiYmCASiYiNjWX9+vWYmpoKRN5Ye1u+fDnff/89Bw4c4KWXXhJy0Nra2gR14FtvvYWVlRVubm5s3LiRmzdvoquri66uLlu3bkUmk/Hyyy9z7NgxnnrqKeRyOd988w2HDx9m+vTpiEQiysrKeOutt5DL5axfv57o6GjOnTtHYGAgzc3NJCcnY25uTkZGBhqNhvj4eN577z0qKipob2+nqKiIiIgIBgcHOX78OBMmTBBsus7OzgKhUFhYKKh4fH19hXD4np4eRCIRq1evJjMzk7q6OmbNmoWRkRE9PT0CuVJVVUVzczOHDh1CW1tbuFZ3Q0ZGBmFhYUIRCalUSlNTE0lJSSiVStatW8c333wjZJfdjtDQUNLT0wWb1lhlOrFYTGdnJ+fPn0elUqGjo8O6detwdHQU1FRjilKNRoNGo8HBwYEvvvgCmUyGg4ODoF5ilHQoLCxk+fLlNDQ08Oabb7Jw4UIUCoVAph04cIAbN24IqriIiAjy8/O5cuUKsbGx7N+/n9TUVGGf7e3trFq1SgjsH4OBgQHu7u588sknREVFjeuzNRoNSqUSqVSKvb09Q0NDnD59WiBzxgoxMEoeJSUl4erqysqVKzEwMMDc3HycXa6urk4gcgF0dHTw9fUlLy+PU6dO8eKLL5KTkzPu+IyNjdHW1mb79u3MnTuX1tZWgoODxy0iuLi4UFlZKZDPeXl5wn0rFotZunQp586do7GxEYVCQW5uLqtXr0aj0dDc3ExZWRly+Yilqb+/n/feew9fX1+WLl0qXGtGx7ALFy4AcO7cOYGcGkNQUBDV1dXs2rWLDz/8kBdeeEHI95JKpUyePJlp06YJbW3ChAkCITV23cesrmVlZX+ZC9ne3k5/fz/Hjh1DT0+Py5cvY2hoKDwMTZo0iZKSEry8vGhvbyc3N1cgucYKZkydOpXCwkKysrK4ceMG/f39d/2u/+H/hpaBHuZbTsbJ2JL8xgrqetqZcZvV4s9wM7Mmt6b0L0mpnOob45RUQc5TyKq6TtgoSfV36BrsZ6q1M+HuvuRU38DJxOKOjKX/Bp3yPs7X3WSBy2SUajUqtQprAxNOVV4n2GXKv52UjJEvf4eW/m5KWusIHp08iEQifKydudZUxbTb7Cx/RnVXq/DbxhRhPUNyjLR1GVQO0zXYP84OczvGsr2sDYz5MupB5jl5UdHZzKnK61jpG9M7PMilhnKOr91Cbm0JLX3dPD4zkub+biE7aOuif/B7wWn+WLmZ9PICplg58lrmHzw7J5bvL6VioW9EuIcvEpGIcA9fwtx9+SU/EyNtPYrb6lg7NYg3Fqzm8I08vK2c+GDhvWhGFWiXGyr49WoWj8+KZLqtG9lVxZS1N+BiYsk3F1L4KHwDry9YxeHic1R0NqMrlaFGw6P+Ebw2fyV+tq7cf/Rrng9Ywi/LnuL+o1/zZeSDpFdc43JDOa4mVryddYBPw+/j1ZN7WDs1iNb+HpRqFRpAVypm5+V0dLVkPDYzkk9zj7E5YCkm2nocvXGOZV6zeSThe7YELmNb1EPYGZqx8sAnbAlcxmcR9yMVS9DT0uZmx0gFscsN5aybGkSA0yQ0o5Ugh9VKzteVUdxay0PTF/F8wBKuNlby8dljfB5xP7sLTvPa/JXMd55M12A/jyfuYNOMMIpaa/kmZiNOxpYs/uMDtkU/zHqfBRjrjCxWV3a1YG9oxhun9vJ19MOY6OgxycKeb2I2Ym9ozssZv/Nh2Hq+zEsAYO3UIDIrC0cr3A3wfvZhNvgu4Ez1Da42VbIt+mFCXKey0M0HL0sHFv36Fh+Hb8DP1pWp1s5caSjnvexDXNz0CfZGZiSUXkQm0aJ3SM5rmX+wY/FjvBWyBis9I2QSKb9dPcX8pU+wcXoYErGY8o4mgZD6LOL+EfWdnhFmuoZ8fzGN6bZufJEXzy/LnibExZvHE3fwzJwYPgnfgKG2LqVtDdgamvJ00i5+jnsSW8ORecUcR08u1N/is9zjfBX1ENvOJfLq/JWY6xrwxKxodLVk7Lycjo2BCQqVEnM9Q0TA19EPoyPV4v6jX+Nt5cTbIWvRkcpY7DkTpUbNZxH3c7O9kd3XTiMRi3l9wSoUahVvndrH9uiNvB2yBjdTG765kESIyxTeOLWXbVEPcbOjkdiJM0AkQldLm4HhkQqNX0Q+yFdRDzGgGMJApktGxTXqutvxtnbCydiC8s4m3s7az6fh9zGkUvBFXgI6Ui0e8Q/nVnsTm/zDaOnrZkvGbh6evohwDz9UajVfRj6ISCTixazf+DZmE0NKJR/lHOHJ2TFsSd/N3pXP8cSsKMx0DbDSN8JQpsszST/yYdj6EZuwRkNW1XW8rZ0JdPQiyGUy02xceO/0QV6dvxJrAxMS732Nup42rPSM2B6zkcrOZjrkffjauCIazdaTiMXoSmX0Dcv5MvJB5jp6CjlmqtEwfGNtPXQkWkLxhduhVCuR/Y36tm94kOyqIsLcp6ElkWJjaEplZ/N/ZI273Y0C4GPjQkNvBxnl1wh29UYqvnuWoa2hGY2jxODfwUzXgABHT+SKIfoVQ8xznESIi/e/Xbi5HUUtNcJ46GfrRs+QnPSKa/hYO99h47M1NB2x6eoZUtnZjLPJvx/7brU30tDXiQjwtLBjw7RgFGo13tZ2WOkb/8fH+WeI/4Nt/ofbIJVKcXR0FCr+dHR0CKTOpEmTMDU15dy5c8jlcnR0dITso/j4eDw9PYmLi8PS0pI5c+Zga2tLfHy80MC9vLy4ceMGwLiJjYuLC9XV/yonmZmZyezZs3Fzc6OpqQldXV1mz55NZGSk8Dd9+nQqKyuFVfT8/Pxx5I2/vz8XL14UslYYtapkZmYSHx+PSCTiwQcfJCEhgZCQECIjI1m4cCHa2tqcOXOG1NRU6uvrueeee/jxxx9ZtmyZQEiNYd68eZw9exZG1Ug+Pj78GXZ2dkgkEo4ePcr+/fsxMTFh0aJFREZGEhERQUREBOHh4XzyySe89NJLuLq6Eh8fz/nz54V9jJ2/a9euUVtbK2TdMJrpsmrVKmpqaoQqeGOfqampobq6mnnz5gHg6+vLtWvX7jjG/v5+1qxZQ0pKCra2tvj6+hIWFiYcY2JiIg4ODnh7exMeHs706dMxMDBgyZIlzJ49m4MHD9LQ0IBGo6Guro5Lly4J6h1GCYMx1drMmTNpamqitrZW+P7GxkZOnDhBUVERu3bt4oknnqCrq+uO47wdxcXFArnBqOUzNjaWQ4cO0dfXx+DgoGDvvP13nj9/nuTkZM6dO4eRkRGpqano6urS1dWFUjk+z0IsFgsEgkajGXcvMEp+xsbGkpmZSUJCAgcPHmTBggXI5XKGhoYYHh4WJvSRkZF89NFHFBcXo1arWbp06ThCaux6VlZWcvjwYQICAnB3d2fZsmXY2Nhw9OhRVCoVjY2N2NnZUVVVhZWVFY888giRkZEcOnSIadOmsXHjRi5evEhaWhp79+7F3t6ekJAQMjIyaGho4OOPP6aiogIDAwOWLl1Keno6enp6xMbGMjAwQHJyMjKZjCeffBKJRMIXX3zB7t278fDwwNPTk5KSEpqamqiurqakpARG77V58+axZMkSOjs7uXTpEn19fXz33Xc0NjZSV1dHTU0NSqUSb29vbt68SWpqKqmpqZw6dQoDAwPeffddDA0NiY2Nxdn5X5YOmUyGQqGAUULIxMSEo0ePYmhoSHd3N93d3Rw9elSoIDem6HN2dubo0aPj+oSxtqajo4OJiQlBQUGcOXMGABsbG2JiYoiJiaG5uRkDAwOys7OF4xz7u3LlCv7+/ly/fp38/Hyqq6u5du0aiYmJgiomJiaGhQsXCspNRomfoKAgoqKiiI6OFhRRL7/8Mvr6+jQ2NpKSkkJKSgqpqalER0fT0dFBYmIizc3NAnkaGRmJq6srBw4cwNDQkHnz5tHZ2YmZmRkikQhHR0f6+/v59ddfWb16tdDHREREYG9vL6hqbu9LZ8+eTW1tLc8//zwXL14cd74uX77MjBkzhH+PFWQ4d+7cuO2uXr0q2GGnTZsmtPuJEycybdo0Dh8+jFqtpr6+XlC7NTc3c+zYMUGRdvHiRaysrMYdW2RkJJMnT8ba2poPP/wQkUiEubm5UMRgDNOmTaOgoABGiR2RSHTHxHjM0jxWBGLsXDc1NTFjxgzhPNnY2JCQkEBERARpaWnEx8fT0tIybl9KpZLm5uZxCwHNzc2kpKRQXFzMwMAAOjo6hIeHC79j0aJFwm8HiI2NJTk5WWjfRUVFQp/m4+NDQUEBdxN6FxUVCVY8HR0dwsLCiI2N5eLFixw7dozOzk5cXFyoqqqiq6uLU6dOjSM87e3tqa6uRiwWo6enh52dnRAs/z/8v4fbW5+frRuOxhak3rqKXDF01+3FIvFd86EYzTlyMLYYp4rSkkiYZGE/rhT3f4JAZy865H0Ut9b+B1vfiZK2em601hHh4YvubdlY1gYm+Nm6klZ+DbVG/bf7GFQOo/M3Cq/mvi5K2urvWNm3MTClXzFEz5D8Lz9b3tk0Lkdqtv0ELtSNPIv8nQJMrhgm9dZVvK2dmGA+UqlqQDGEm6k1Ia7eqNQqXkr/DQ0acmtLGFapeOPUXq42VzHV2pnt0Rs5V1fKlYYKWvq7udneyPYLSVR0NvNNzEasDUyYbOlIU28nt9obOVicR2VnC8WttSxyn0bvsBx9LW2GlQo+OXuMEJepzLTz4JWTezCU6XCmuhh/O3eenhNDZkUhxS21XGms4FpTFekVBWzyD6OopYaE0ksYaesR6OTFXCdPFnv680jCd1gZmLBi/8c8O3cxL6T9Sn1PO0/OikYiFhPp4cfzAUvpHhrg3dC1nCi7zM4ljzHbfgIbZywi5dZVnkn+EQdjc56du5iVkwPoHx5CoxlRIfQOy9lTkE2/YohvYjYyx8GTL8+dYHPqL3wX+whtA72UtjXw6sk/qO9pJ2bCDO49/AU7lzzGRHM73jt9EJVGjfvodeseGsDRyAIdqRZvZx3ATNeQ5wOWotJoMNDSoaa7jXdOH2BYpeStkDVkVRUR5TGdJxJ3UtBcxfbojUyxdOTJpJ009XXxxKxIZttPIOVWPl9HP4yTsSWf5cYjVyp4InEnOTU3WDs1iEHlMOumBvEPnwX42boR6eHHE4k7MdTWJXridIy19ZlobsdHYRu42d7A0RvneSNzLxkVBXwbs4kAx0msO/QFzyX/RJDzZN4OWUN6+VVqulq51FBObm0p02xc+DZmEyIRmOsa0NjXycb47/gq6iG+OneCT3OPA/DluRPYGJrybuha3s7aj1wxzNYzhxlSKfCzdWVYrSTM3ZeS1jq+Op/I94sfxd/Og+dTf6F3SM7WM4cZGB4i2GUKh4vP8XrmXnSlMvYWnkGlVrF+2gIGlQrczWzokPdiqK3HW6f2YaStxzcxGzlfd5Pq7jbiJs1CrhzmqaRd3Opo4tPw+7jPN4RhlYI/CrKJ9PDFxsCEJxJ34mXpwGOzRvKlZBIpH+cc5cV5cbiaWvFE4k7O1ZXyc9xTWBuY8nnE/VR2tZBYdpnStnqkIjFikQiVRsOWoOXoa2nzTPKPyCRSzlQXY6Sth0gkorKzhcdmRlLT3caXUQ/xQtqv9I/aLBd7+tMzNMCOy2nIFcO8evIPPgpbz/1+ofxRkM3jiTsQiUS8nbWf5+YupnWgh11XMtgcsJSX0n9j59LHOFZyATtDU55L/plwD1/ezz7M2yFr+DT3GG8Gr2aSpQOHivMYGB6kpruVTnkf319M4bX5K5ll78GW9N1Ud7XwSML3qDUaGns7WHXgUyFH0MfamcKWalRqNWnl+YS7+zLFyomStnqhL5KIxSjUKp6eE4ORjh6lt703BoVK9ZfkUHNfFxfqbxI1YbpgG59obkdlZ7Ngofs7lLbV31Hd1M7QjCDnyZysKKBjoPeun3M2tqSqq/Xf7p/RMe183U2CXaZwn28IBc3V4/K+/g5qjRr+9IxnpK1LuLsvLX3d5FTfGDcGGWvr0TM0AKPk9F/Z3ut72smuLia7uhhdLW3mO08myHkytT3tRE7ww9fGhequ1v96zL0d/1NK/ZeYMWMGubm5yOVy9u7dy5NPPsnQ0BBaWlqIxWKmTJnCtWvX+O6773B3dyc+Pn6c3YzRScHYyrqFhQV79+5l6dKl6OvrMzAwgFwup7+/HwuLf1Vp0dbWRi6XU1pairm5OQ4ODtjY2JCVlYWNzfigysLCQoyMjNi5c6dgU2tsbCQtLU0Id/b39+fKlStoaWkJdiipVEpQUJBgoSkvLyc8PJz09HRiYmKQSCS4urqOs3rt378fgJMnT6JQKLCwsGD27NmIxWJMTU0F9VZlZaXw4D8wMMCZM2dQKBRYW1sLeTFSqfSuaqazZ88yb948CgoKMDQ0ZOnSpTQ2NnLs2DFhEpOTk4O+vv5fqj8CAgLo7u7m8OHDmJmZkZubS3t7u5ADNQYjIyO6u7sxNh5hem/evImHhwdisZiQkBBOnjwpqLwYtchZW1szY8YM4uPjkUqlWFtb09nZiYmJCSYmJqxevZrs7GwefPBBvvrqK1atWgWjpE1ubi6tra3jrDUhISF8+umnpKamolKpBEJgrJJWaGgo3d3dHDlyhGnTpuHhMRJGqqWlJZzHkpKSO5RNOjo6rFmzhtTUVJ566ileeeUVUlNThVD9sbLtY9XwysrKyM3NRalU4uPjQ0ZGBiqVCjMzM+Eaj1V+UyqV4869RqOhqKiImpoaRCKRkKN25cqVkbBAjeaO/7722mu88sor1NfXU18/Msg4ODjg6emJSqXixIkTWFtbs3LlShid+GppaeHq6oqNjQ0HDx5EW1sbPT09DA0NWbFiBZmZmfT09MAogTCmzIuMjOTrr7/Gzc2NV155hfnz5yOTyTh16hRff/01Go2Gzz//nPnz5yOVSnn55ZextrYmIiKC8vJySktLmTBhAsePH+fJJ58kMTERfX19zp49S0xMDPb29hQUFNDf309OTg7d3d1CFTAfHx/kcjmff/45hoaGqFQqTE1N8fDw4KWXXiIgIGCcje3EiRNkZ2cLZICjo6NAhGhpaTE8PCxsO3HiROzs7Ni7dy+//PIL77zzDnFxccLgNBZK7uzsjLm5Ofv27RPankaj4cyZM0LlSkNDQ/r6+sa1oczMTEpKShgcHBRUfrdf89bWVm7evIlIJOLll19m27ZtrFu37t8qA/6MyspKampqUKvVHD9+/I6svZ9++gljY2PButzT08P169eRSCQ0NDSwatUqKioqyM7OhtF++/Tp06hUKlatWkV6erpADDFK4jo6OuLj48OhQ4eEe5RRFePSpUsRiUTIZDKGhoYE0qexsXGcqhJg8uTJQjvr7+/n0KFD+Pj4jCM+urq6MDEZWfWysbEhIiKCffv2oa+vT3d3N2fPnsXGxkb43jFL5/Hjx4VFhDEYGxujUqk4c+YMxsbGWFpaCtVMvby8hLwme3t76urquHXrFkFBQcLn6+rqyM/PF7KtPvvsM7y9vXFzc7vjurS2tmJubo6WlhZyuZzo6Gg0Gg3nz5/n3Llz2NnZoaWlRWJiIgsXLuT8+fN0dHQAYGVlRXh4uEBmv/POOxw8eJDVq1ePax+3r0KuWLFCqGpbWVk5zg4+f/58zpw5w6xZs4TrkZWVhbGx8TgLJaME+sKFC1Gr1WRnZ9PV1UVjYyM9PT3C94+p3ry8vFi3bh1r164lMTERX19f/Pz8KCsru0Ol9j/839Dc13XHaqqVvjFh7j5kVxXjYGzxt9WFbseQUkFtd9td7QaOxhajOVMDf5nhNKAYEoJqx+Br48qt9kYu1N286yr83TBW1c7O0OwviR0THX2CnL1Ivjky2fqr6oAjocV3J6Wa+7ooa28QLC5/xlyHiaSVXyPC404bX2132x3ZJyKRCA8zW9LKr+JqYiVM5DQaDUMqBYNKBZmVhQwpFYS5TxOqDNoZmtHQ04GHuS1XmypRqzVsj95I77B8JFC68jo/LX0SNzNrztbc4NWTf/BZxP08n/oLWxf9g5dH7R6eFg7E7HmP7dEbeWxmhFAVrbGvk7XegTyd/CPfL36UmIn+SMVifrpykg/D1vNS+m7eDlnD8wFL6B0eZMeSx3gx/TdeCFjKrY5GzPWMCHefRq+jJ+frytDT0uaz3Hg+j7ifloEe1Go1H545wtfRD/PBon+ARoODkTk6Ui2+idnIoFJBWXsDRtq6fHDmMN/EbOTd0wf5fvGjzLT3oHdIzubUX9g4I4zn5i4mesJ0/pn2K/3Dg0y1csbTwo5wD1+cjC14JWMP26IeEnKpnpwVzRrvQKRiCU7Gluy4lMaHYeuZau1EYXMN1gbGbIt+mIv1t9hxOZ2vox/GXM+QLem7+TTifky09TDR1UcsErPYcyYyiYQv8uL5NOJ+PC3sUGnUhLlPY1CpQKlWsXLyXGwMTdgStByJSMKxkvP8UZjNl5EP4mFuS+ye93l/4b24mlrzVNIuPgrbwM4lj+NuZsPzAUvwtXXlk7PH0JFqsetyOu+ErhWCwidZ2KMtkbK38Az3+szHWEeP8o5GZti542Jiha+NC1Z6RjyeuIM3g1fzStAKALKri3k/+xDPByzh6I3zvDBvKW6m1sTseZ9vYzbx9flkytob+DLqQR71D8fKwIQQV290tUYsv28sWM3L6b8T6zmD10ZVRxn3vUVZWwMmOvoYaOkww9aNYZUSRyNz2vp7eP38Cb6IfIDeoUEhMN7dzBZvKyd8bVzYdSWDDxetJ9DZi+dTf2GekxcrJ8/lsRM/8EawKdujN1LZ2cIbp/Zy+J4Xqe5q4cOco3wb+wjfxGzkVkcTKTevsMBlCp/lxvNJ+H08kbiT31c8y0dhGzhYlIe7mTU13a3oSqfx7JxYDhXnIhaLiZ3oj1wxTOtAD08n7eLN4NWcrSlh89wlvJD2K8Gu3mRWFhI3aRY/XEzl4RlhQiD++4vuxVTHgEkW9nQN9iNXDPHVuRN8G7OJr6IeQiQScbO9gSWeM9GRysh64F1W7PuY9xeu46X03by+YBWP+IezbmoQcuUwLwUuZ0v6bj6LvB9/O3c65X28v3AdjkYW7Lueg7leFPoybaGvmG7nxqP+ETyRuJMPFt7LtzGbuNpUianuSD7Xa/NX8l72IZ6eHcO3sZsYViqF82epb8zX0Q/TPdjP6aoitKVaDAwPknIrn0VuIyomS30jStrqxvVbxS21gkr0UsMt6ns6sDcyu6Nv+zMqOptp6e++a4h3oPNkcmpu/FvrWkt/912r0mlLRzKV8mpLMRswuIO4kojFaP7NgoRaoyan+ga2hqYEu3pzs70BZxNLzHQNyawsvGu//mfkN1bia3N3K6GPjQt9w4OcrChksqUD9kbmwnm61d6Iu+n4cbd9oJei0QUaOwPTu487o/bJ3JpSAp29qOlu5WRFAcEu3ndUpf13+J9S6r+EVCoVMkBu3rxJW1sbubm5ZGRkCGqBiooKnn/+eeRyOUuWLBlHSDFKSo2pQAwNDQWioKamBv5U/WgM8+fPZ+/evUIVqrFj+bN6pby8nM7OTqGy3ZjixtbWlsjISKKioggNDaWsrIze3l6hLPnixYuJjo4WJsPDw8NC/pFMJrtjcsqolTEgIABdXV0iIyNZvHgxHh4eJCcnc+LECa5evYqLiwtJSUlMmjSJnJwcTpw4IWTbxMbGMnPmTHJzc5k3bx5SqVRYFb8d7e3tWFhYCOq0sd8TFxeHvb09Dz74ID09PeOybe4GY2NjVq5cSVNTE4GBgXe1Wc6fP1+YyDKa/+LlNZKlYGVlhZGREbdu3RLev3z5sjBJXLJkCbm5ubS1tY2bdLa3t9Pa2sr69euxtbUVFB83btzg008/5eOPPxZeS0lJEexPYWFhxMTEMGPGjDs6V2NjY1asWEFvby/Hjx9neHiYGTNmcPnyZXJycsZNOhm1eWVkZJCcnIxKpUIulzNz5kyioqKEdrFgwQKBkGKUlJo7dy7t7e0YGRkRGRlJTEwMEyZMICUlRchPam1tFapOJiUlkZSUREpKCoaGhkRHR7Nw4UK2bdtGaGgoQUFBLFiwgODgYEJDQ1m4cCFhYWF4e3uTl5fHzJkzBeVEREQExsbGnD59mtWrV+Pp6XmH1XAMurq6rFy5kuXLl1NZWcng4CA9PT0EBwcTHx9PWVmZkKPm4eHBzZs3ATAzM+Py5cvMmjWLqKgoEhMTuXXrFjU1NTz99NNCDtiCBQuYMmWK8L6trS1Hjx7F2dmZ5ORkoqOjmTx5Mq+++iq1tbWkpqaiVCpZtWoVw8PDxMTE4OrqKtyPycnJ7NmzB19fXyZMmICdnR1lZWV88MEHZGZmCr9rrHpiQEAAFRUVxMXFYW5uzpEjR6itrR1nX1Wr1eTm5pKVlYWLiwvu7u709fWNu3dvV5YYGBiwZs0aIdPq2LFjhISEjDuvdnZ2NDSMZCsolUqGhobw9PQcp+Qbg0gkwsrKilmzZjE8PCyQCceOHeP69et3vW5/PiZG+5WmpiYWL16MSCTCzs5OICkZtQFPmzaN5cuXo6+vz+HDh5HL5VRVVXH16lWBNHZzc8PMzIwDBw6QmJiIp6cnoaGhI5MwDw/Ky8thlCQvKytj2rSRErYBAQGCQuzcuXP4+fkJpEdwcDBZWVkwGsZuaXl3mbOLiwtPP/00W7duZdmyZXfYzP6sKjQwMCA2Npa4uDhu3rxJXFwcc+fORSQSMTg4KHy/u7v7uP5nDGN9WkVFBTY2NsTGxhIbG8vQ0BAnTpwgMTERV1dXLl++TE9PDwqFgsTERE6cOEFra6uwfUtLC0899dRdFaOMWoIDAgKEvmbsuo9VO7Szs+OHH34gLi6O3NxcPDw8iIqKIioqihkzZozLFdPX12fhwoUkJCSM+44xCzWjizELFy7k6NGjd6i/rKys6OnpoaCggAkTJnDo0CHc3d3/dhwQi8UEBwczadIkHn/8cSorK0lLSyM1NZW0tDSys7O5dOkS5eXlQnXWuy2U/A//v6GsvYGJdwlRFYvEo/lIarKriu5QFFnoGdE20DPutZEA9DvDY8cw19GT3JrSu6rqGLU5eFs53fG6h7ktjsYWZFYW3vHZPyu2eofkpN66ip+N678l0/S0tAl3n0Za+VXkiuG7bjOilLrTvtfU18nN9sa/DXwXiUT42bqS31hxx3s3OxrvOO8ajYbWgW4+PXuc1v4ecmtKyK0pIa+2lOstNdzqaCSzohAtiZTc2hLO1tygfaAXS30jGvo6SS+/hpW+MX62rohFIuY5eTH/p1eRSaR0DvYR/PPruJvZ8m3MJiz0jAhx9UZHKuPd0LVsTv2FvLpSPg7fgFKt4qmkXcy09yDAcRIvzltGbU87J+97m+7BAQYUI6HXRtp6KFRKVkyeg66WjM9y49l5OZ2uwX6m27qhI9Xi9QWrKWyp5unkH+kdGqBnaIDptm58HvkA/YohPs45ygIXb76N2YSLiRVPJ+2ib3gQtUaDXDHME4k7UarVNPV1MsPOnY/DNwDww+JHyaq8zuHiPLSlWmwJWs4kC3v2Xc9h3/UcHvJbyJvB93C05DzWBqZ8cyEZcz1DnpodQ3Z1Mb9ePcW3sY/gbGLJtvOJmOsZ8nLG7zzgF0p86UVeSP2FIGcvNsZ/R8dAL9NsXPh9xbM8lbSL7Kpiti5az6BimM7Bfgqbq+kdllPW3oBKo+Ee73kjRYiu52Cqoz8SGK3R8N7pg9gbmfHw8W9xMDTn/exDBDp5ETPRn2vNVRQ0VfFJ+H3IJFKSbl7m9QWrMNM1oEPey/cXU/G1ceUfh79k2aTZ7Lqczs/LnmJQqWDnksd5/8whHvAL5ZGE7/ks4gF2XzvNBHNbdlxOR6FS8XzqL7iZ2fDmqRGLXe/QIMdKLvDdxRTsDE15KXAZGg28On8lTyXtoqi1ltcWrMJEV5/7/UJ4Y8Eqfrt6inZ5L4/Ef0djbydFzTXEl1xAKpbwRvBqVnjNZffVLF5I/YWytgYeT9zBJEsHyjubeCHtV4KcJ7PMa/YIYeDux7WmaraeOUx1VyvPpvyItb4xz6X8hJWBCet8glColSSUXuTtkHt4NOF7Ljbc4tvYTUy2dODJpJ3YGZnyVdRD1Pd2sDn1F/45L47km1d4InEnMRNncI93IBZ6RkRPmM4kC3s+CttAbXcbFZ1NWI7a3VZPmYeRtt5oZb4oGns7uc83GAcjcwxlOjwzJxYHIwsmmNtyoOgsX0c/TNtAD4dW/xNDbT0e8FuIg5E5p6uL2Jz6C1KxhPiSC6NB2Ja0DfSyee4SyjubeSb5R2wMTHgreA1mugY8l/ITGRUjVd2MdfTYHj1i6bzSWIGRjh7Pp/7CyYoCti76Bzda6zDS1kUkggHFMNeaq8i8723cTK15bGYEvUNyXgyMY/v5JHZfO81HYRsw0zPk8cQdTDC3Y7qtK5EefkglUrZFPcTaqYEUNlezKeE7mvu6RoLZLyQzx8ETXS1tFrhMwUzXgM2pv2ClbzRO+Xp7j9s3PDguK8rfzoOy9oa/VYgymh3YPzw4LkPvdsgkUhyNLbjV0fSX+1ColH+pwBrDXEdPJGIJOdU3/nLcuRvaBnpILy/A395DCBlv6e/GSt8YLYmEGXZunB9Vtf4d+oYH/7ZYh4FMhzD3aXQO9pNdVSQEktf0tOFsYknf8CA51TfIriqisa+TICcv5jtPvmvGYV1PO3ZG5uOUzE7GlsxzmkRGxbU7xut/h/+RUv8lzp49S15eHlFRUeTl5aGtrU1ISAjh4eFEREQQGBiIXC4nLS2NRYsWcfDgQRobG8ft43ZSitEH5bHJ9MGDB4WV59ttMVlZWbz11lt3PJjf3uAbGxu5efOmoFjx9va+62RQKpXi6+uLRCLhyJEjiEQi4uPjx1nCzp07J+T0hIaGjpsoj31vXV0dDg4OTJ06VbCGWFpaEhMTQ2xsLObm5pw+fZqYmBgqKirw9vYmNjaW0NDQcVa/trY2LC0tCQgIIDc3d9z3FBQUCLa/261KY7CwsGDXrl04ODhw7NgxhobuLv1nlJg5cuQIkydPJiEhgeLiYuLj48edI7FYjEQiQaFQMDAwcEdmzsyZMyksLGRwcFB47XbCKC4ujqysLKqqqtDX1+fEiRNC9s2rr76KRqMZZ71Zv349TzzxhGAHjIyMJCwsDA8PD9avXy/YH/8Kfn5+REVFkZycTHV1NS0tLXR1dWFsbExubi7JyckkJydTWFgo2KPmzZvHvn37qKuru8N2M4bbM71uJwPHznl0dDQxMTHY2dkRFxfHsWPHEIvFgv0qKipKmFhmZmaycOHCce3kzzh//jxz5szBz8+PK1euCOfV0dERGxsbrl69SkVFBRUVdz5oM6rgOHToEOfOnWPp0qXMnTuXgoICUlJSWL9+PcXFxRgaGqLRaJgyZQpFRUV0dnaSnZ3N6dOnuXTpEvn5+cyYMQNjY2O6urqQSCTMmzeP7OxsIePIw8ODyMhITp06xdKlS/HzGyl9qlAoSE1NpbOzU1Bq9PX1cfz4cZycnIiPjyczMxOVSkVqaipz587FyMgIS0tLWlpaOHXqFKGhoYjFYszNzWltbaWpqYmuri4mTZo0jnxycXFh+fLlglrwzJkznDhxgpSUFDw9PYmNjSUsLIx169axePFizp8/T0JCgpAJdDsGBwext7dn7969LF++/I72Pn36dOF6ZGZmEhoaCndRaN2OS5cu4eXlhb6+PpaWloK198iRI+PIJUbJxNvvpTEyMyAgQHht1qxZ42xz+fn5AvHg4eHBihUrSEhI4N5770Umkwm2s5SUFOrq6jhw4ABaWlqobpNlj2UsASQmJo6rmmdvb49CoaCwsJCBgYFxiiEdHR0GBweFPnr27NnjzmVGRgYnTpyguLiYLVu2kJaWRkJCwh22v87OznHZeGfPniUnJ4eWlhah0twYbs8p9Pb2pqioaNy+bh8DxiykY5g8eTKxsbFCkYHnnnuOZ555htLSUqKiooiNjRXaMLepD728vCguLh73PbW1tTg4OCASie7I8huzqV+4cIHY2Fjy8vKwsbEZR3KPYUzNyWhf4uvrS0ZGhvB+SUnJuIqPCoWCd999l/r6+nFjYkZGBs7OznzwwQdkZ2cTHR09Lo/rblCr1Zw4cYLBwUGSk5NZuHAhVlZWgjVx4cKFBAQE8Omnn7J8+XI0Gg3Hjh2jsLDwb/f7P/z3+Dv15ARzO/ztPUgvLxj3UDvR3I6y0QBigOLWWiZa2P3tJEEkEjHLYQIX6m/e9f1BpeKuBBCjWRv+dh6k3Mr/S1tHeUcTV5sqifDwxfDfVO0bg5ZEStQEP05XFQm2iduhVKvuUFE19HZQ3tFE4N8QcGOw0jdmWKWka/BfOWj1Pe3jskw0Gg35jRWcqrqOp4UD7y+8Fz9bVwKcJgl//nYedMj7+DnuKZyMLQhynswcB09a+rvJqiri6aRdaIklVHW1kltbwuXGCm601vJV1EOEuE5lUKngs4j7ae3v5vHEHRS11CBXDFPZ2cybp/bxecT96Gtp0zc0yJBKweeRD9DQ08H2C0kMq5R8cvYYpW31VHU18+rJP9CRyijvbGJAMcyFuptoS6TsWvo4T8+J4amkXURPmM5TSbt4P/sgfjaubIt6iL7hIS43VLDrSgbvZh0k9dZVvox8kJMVBTyeuINzdWWkbXiTAcUQ//BZgEKt5LdlT/PdxRQe8Q9nxf6PUahU7Lqcwe5rp5ntMJGHpi9CT0ubqVbO1HS3kVV5nXB3X55O/pG+4UE+CtvA21n7+WDhvdx/9Gu6hwYYUAxR3FLLsFLBP9N+5dk5saTcyqdD3kt9bwfOJpYscPEeycuc6I+ZniFbzxyhtK2ezyMfYL7LZF5K/w0dLRkqjZp5Tl5Y6BoiE0voVwxxvu4mGo2Gt0PWcqLsEj/mn8RM14DvYh9BLBKzLfph9LS0eW3BKrZfSKJnaICf8zPpkPeRP3rd3gtdR11PO0NKBXKlggNFZxlUDvNl5IM09XVxv18ouTWlvHlqH429nTw8PQwzXUPeX3gvYpGI7dEb2XkpnW3RD6Mv0+GdkLVY6BnyUfgGnk/9BQ9zW/4xbQHPBSyhsbcTY209Ps+Lp3Owny8iH+TtU/sx0NJh3aEvUKpV6Glps9xrDhPM7GiX9xLiOpUQV2/+OS8OOyNTnkv5ieLWWh7xj2Dfqs3oasnYFvUQBlraWOoZsy3qIS7U3+SJxJ2IRSJcTa3wtLDj3dC12BuZ8XLQCjrkfWyLfpgX035FKpZQ0FzNRzlHaRvo5f2F9+JhZsujCT9w4Hou38RsRK4Y5pnkHwF4dk4s+jIdgl2msGlGODfbG/ln2q/oa2kLhOmvV0+h1mjYU5DNTDt3ZjtM4J3TB2gd6BmxUVo58evVU9T2tPN08o/UdLcx12Ei1gbGeJrbM8nCntK2er46l0htTzsPHPsadzNrXkz7FTdTa7ZHbxzJLCs5T3Z1MX1Dg7yc8Tt6WjKMtfXYs+I5ilvreDJpJ7pSGR+Hb6C6q4XjJRdo6O3kyaSdDI9mTg0MD/FV1EMsdJvKoErByYoCGns7hX7uxbTfuNFWxw+XUjlXd5OL9bf49eoplnnN5p/zRhT3VZ3NvDZ/JVpiCR+fPYarqRWVnc08nfwjaeXX8LF24bX5KzHW0SfUdSrvhK7jXF0puy5nkHorH41Gw9fRD2NraMbJigKU6pF+187QjPqedgCuNJQzw268kjvYZQpna278ZT+dV1uKgUzn31Y09TCzoba7DcVfWOXyGyvxs71TRX63/Uy1diLlVv5fWtJvx9WmSio7m4nw8BWsjGMYGyst9Iww0tajorP5L/dzNxXyX8HbyomZ9h5kVhZyouwynfI+squLKW2rZ47jROa7TMHbyulvx+qKjn/ZwcUikUBw6UhlRHj4Ud7RxPWWmv/oePgfKfXfY8aMGSxatAipVIpUKh030env7+f48eOsWbMGZ2dnwRpQVlbG6dOnhe3+TEoxOknp6enhp59+Qi6X4+PjMy7vJCIigp07d+Lm5sbhw4epqqqCURJFpVLR3d1NXl7eOJvLmE3iz1AoFBw+fJh77rkHPz8/rK2tWbx4MVevXuXYsWO0trbS19cnqKYkEgkmJia0t7cL+7h9ovTnzCuNRsPZs2fJz8/Hw8ODPXv24OTkJCiHbseFCxeEMFwjIyN6e8d7cW8P52VUuXH7xDYjI4NFixbh4+NDTEwMKSkp5Ofnj9uHWq0mLS2N8+fPExcXh6+vL9ra2syaNYslS5agq6tLfHw8J0+eRKlUCmqI23O9bseSJUtISEigo6Nj3MSS0QqLLi4uxMXF8fvvvxMWFiYEnf/591VWVuLs7MyyZcs4fvy48HpWVhbBwcHY29vT39//b/OjZDIZS5cuRUtLi6VLl6JQKDh9+jReXl6CSmHevHkCoTl2ziMjI8nKyhpHCtx+XcYm3BYWFrS3t9/RlpRKJdnZ2SQkJPD0009z/fr1O7ZRKBSoVCq0tbVxdXUV2u3tuH79OlOmjGRjODs7C4rBMdy6dQsPDw8iIiKora0VctfGUFBQQH5+PmvWrMHHx4fS0lKhUuP06dM5fPgwq1atoquri5SUFJKTk8nOzmbdunVC2zM2Nqa0tJTh4WG6u7t58803SUlJobCwkCNHjvDII4+QmJhIW1ubUJkuKysLtVqNWq3m4MGDrFq1ChMTE3p7e4XMHZlMhoeHB0uWLGHmzJk88sgjnDhxgmvXrnH58mWmTZtGamoqarVasOvOmzeP06dPk52dLZBAd8OsWbNwcHCgqKgIf39/oqOj7yABxGKxkNGWlZXFs88+KxCVycnJXLx4EXd3dx544AH279/PpUuXSExMJDs7WyBHRCKRoJLS19eH0cDqMTXR7Whubqarq4uJEyeOawsTJ05k+fLl1NbWcvToUUG9ZWBgQF9fH0qlkv379zNjxoxxhMQY3NzcKC8vvyNgsqysjGPHjhEYGEhSUhILFiwQVHaRkZFYW1tz8eJFli1bRn19PUePHqWpqUnoG8+ePcucOXOE/ri/v58zZ84wODjIvHnzGBoa4uTJk7S2/isHYObMmVy4cEHYR25uLidOnODMmTPMmzeP2NhYoXCCubk5cXFx2NracuzYMYHoGbMI19fXc+jQIdzc3IiOjsbS0pKurq5xhM/g4OA4stDS0pLm5n89lFy5ckWwc06aNInS0tI7zp9YLGb27Nl88sknvPvuu3R1dZGUlER3d7ewze25f3fbz+3fwygxOTg4yMmTJ4mPj2fq1KnExcVhYWHBnDlz6Ovru+Nevdt+nJyccHBwIC8vD0bHD7FYjEKhICEhgaqqKo4cOcKcOXPGjYdjYe7Hjx9HT09PUD/+FcaKPQQHBwuFAmbOnIlSqRSIV0aVemOKTC8vL+Li4iguLuaPP/742/3/D/8Z+ocH73jovhv0tLSJ8PClsrOZq00jBLJELEY1qp7qGx6kfaD3PwokN9M1QFuqJUyw/hsYaeuyyM2HjIpr9A7J0Wg0I2XDNRryaktRqFVCFab/BmKRmAgPXy7V36Klv/tvt63v6aCqs+Wu5cT/CrPsxxNxpe0NTBq1k1xvqeFU1XWcjS0JdZ2KkbauYB27HVebKplq5YyziSXV3SPViCViMV6WDqjVar5f/Ci+tq7Mtp9AcWsdtgYmDCoV9CuGyKi4RoirN8WtdciVw7y/8F4mWtjha+OKm6k1OxY/zvvZh+kbHuSd0wfQ19Jhc8rP1HS38ah/BFVdzfyx8jka+jqZbuvG+wvvpbq7lRcCllLX084Ts6J4O+sAA8NDbE75mZ/jnkKlVvNd7CM8OjOSvNpSdl5Ox0LPkH/Oi+N+3xA+idjAHIeJSMRiLPQMmWnngbGOHnXd7byXfQgTXX1ez9xLQ28n7qbWSMUSvop6CIANviE8MyeGi/U3MdM14IFj27nUcAsTHT3WT1uAhZ4hbyxYTe+wnJfSf+Ot4HvoHOzn5aAV6Eq1KGiuZrHnTIbVSt4JWYu7mQ0GMh1eDFyGjYEpOhItzPUMOFJ8jqgJfkK7szEwYXPKz5yqvM7WRf9gSKnATNeAmtFsGit9Y3QkWizzms0Lab/S0t9NsIs374SsZXPqzyhUSh478QNSkZgHj2/nXG0p+1Y9j0gk4tDqf2JtYIK+TAfNaDXHn/MzUaPBRFuPbVEPYayjz7MpP6FBg7W+CZ4WdrwXug5bQ1N+v5bFD5dSMdHR45nkHxGLRCydNIsrDeU8nbQLKwNjNhzZhlwxxJvBqxEBTyftor6nnbO1JWRXF/NNzEa0JVKeS/mJcA9fpGIxz86Jxd3Uhi0Zu/ksN54Zdm58FnE/Q0qFQG44GlmwLfph1BoNTybtpLqrlQeObae6u42vzp3gcmM5754+CMDzAUsx0tZj//Wz5DdWIlcq2JzysxCE/XTSLl6YF0dbfw9zHSayLfph3sk6wKBymDdP7eWlwDiWTJopKOjeCfl/2HvvsKjOxP37MwND770joDRBERQRRUSRbq8xm2ZJj6nfJJted1NNYjSbxGhiql2UbgHsFamCKB1Bem/DtPcPmLMMYMpev//e3NfFtRuYM5455Znz3M9d7qFfJsXVzAbpMMk41c4VuVLBhwvvx0BHFxEiVviG8Mj0KKwNTPhlxbM8n7Gb1FvX+Cr+YcJcfXkydQevnvyFL+M28lNeNh9E3keAnRt7is6y+Nd/Y2tkSlNvJy6mVmyN3YBMKWdb3CasDU15IGA+YpGIJ1N3cLW+nNku3nhZOnC6upiDa15EphzKdLveVMMsJ0+2xDxEdtV1Xjz2I/62rrwz/x5mu3jzrwX3Yqijx5dxGzlUcpGf80+x/XI6RhJdlngHc39ABP2yQUKcPPlw4f10DvTxjynziJ04DYVKySPTo4R8qIr2Bj44e5h++SD/uZrB1tgNTLSwx3bYomdrZMa+6+eY4TiJPpmUwsYaSpprUalUPBAwDzM9Q9zN7dAWa+FkYkmYqy+ZlYU09Azdj+XtjcgUcsQisRB6roZIJCLSfQonKzSzJlUqFScrCvCwsPtTIeYAc1x8OFMz9tmFYRXraLv33WCqZ0j0xAAu1JZye5hQszIwobn3vwstUrmMjLI8bAxNmeH4x1ZxH2snbne23FUVdqOlThjn/wgqlYqqjmZ0tSWk3brGDMeJzHX1JcjB4w/VYIzjcvCxcqJklM1yppMnxjp6nK6+zp/B36TUX0RBQQFJSUlCTo1IJEKpVNLT08PRo0dZu3YtYrEYZ2dnYXIdHh6Op6cne/fupbOzU4OUqqysJCkpiaKiIhISEkhNTcXKympcVQPDtrUVK1bQ0tLCkSNHmDBhAvn5+aSmpmpUZI/EyAtHoVCwb98+Vq1ahba2tkAoqW0NS5YsobS0lI8//ljDJjJyEqpUKmltbdWwrhgaGtLY2ChYQry8vFi8eLHQ1nXr1q1xlRX19fUabVbqXCT1sZkwQbMFZtq0aQLp1Nvbi0QiEVRXalLGyMiIAwcO0N3dTW5uLkePHmXWrFksXLhQsI8EBwcLLVEeHh4sXryYkJAQjh07xokTJ6ipqUEmk2k0P6khFouZMWMGzz//PAqFQmOSf/78eVxcXEhLS2PGjBmkpaXd9VyqQ+b19fUJCgri3LlzwrWkbolauHAhx48fH3d7NXp7e0lKSqKuro69e/cil8uJjIwcQ5ipIZPJhGO2YsUKDh06NGZwaWlp0cg0G62W6u7uZu/evSxZsgQnJyccHByIjIwUrnE1Rmdwubi4jCEwb926pWFvCgwMFKxBubm5wgSS4Xups7OT3NyhFRV1JpY6Q2ak8qa/v5/Tp0+zfPlyBgYG8Pf3F0i6+fPns3fvXtrb28nIyKCvr497772XhoYGlixZwtatW4mJiSEqKorg4GA+/vhj4uPj8fHxwcHBgYSEBKHZMS4uDh0dHbKzs8nIyGDz5s0YGhpiYWGBgYGBQMBcvXqVjIwMli9fTkxMDE5OTpw/f577779fUFqpbUTPP//8GILJ0tKSlpYW4b+VSqVA8uTl5f3upFwikeDk5MS7776LpaWlcBzCw8PR19dHR0eH0NBQDA0NiY+PZ+rUqZw4cYKUlBT09fX517/+pWHtMzAwGHNdKxQKsrKyiIyMvOt+qG1e586dE0L0RzZD3s0ON2XKFAoLC8nLyyMgIIDy8nKOHDmCTCZj6dKleHt7j3uv1NTUCIq94OBgli5dSkVFBYcPH6a4uJiysjKuX78u3L9Xr14lICCAuLg49u3bR2xsLHPmzKG6ulqw1+bn5xMSEiKQnCPVaaOVZmqo2wO1tLRITEykrKyM1NRUampqWLlypcYYOFKZOp5FcNasWRpB6g0NDRrb383il56eTmxsLNbW1kRGRhIbGyuMj6WlpRrHiuGxVk3WqLP11Ojr66O5uZm1a9cyY8YMlixZgoWFhUYYeWhoqJAxNhKtra1jrm1vb290dHQEJeXly5dJS0sjKiqK0NBQ7O3txyiOtbW1yc3NFRYuzMzMSEpK4vTp02NUXCdPnqSmpobVq1djZGSk8T4zZsxApVIJn1UdjK9SqTh79ixHjhxh9uzZrFu3btxz+zf+Ggoaq5nyB6vVIzHDcRI2hqYcK89DKv+vUvpczQ1m3yW7aTwE2LkJAbpqtPR1CTXYvweJljYxE6dxpb6Mms5mVKg4Vp6Ht5Xjn54AjAeRSMR89yncaq0XJi2jUdfVSk1n811zqn7vvYPsPbhaX8ad7nbsjcwpbakjs6IAawMT5rv5YzHis+tp6yBV/Pf4dgz0MiCXYW9sPrQ4MeK9Cxur8bZ2YqbjJHLqy9ESi/GydGDl5FAmWdrz4rEfOV1dTH5DFfXdbWiLxJytKeFW6x0sDYx5Jn0XCpWStyLWYKKrz/b4TRjp6vFZzHqCnYYmrC293dxsvcO/Th/gQPEFjpfncaI8n0GlfCioWT7Ii7OXIlcp+deCe9ESidicthOZQkFxUy0Hii9w75Rwdl47MaQYupLBP0/8jKuZNa+d/BVbIzMemjYfcz1DPr+YRPZD79I10Meelc9x8XYp0+zduVBbyltZezHW0ePZ9F009nRyqOQSVgbGbI/fRKC9O29n70NbS5vtV9LZU3QGLZGYT6IeoH2gh0/OHeHXgtPYGZnz8pzlvHziJ1r7uodItZQd+Nu4sjn1O3oHB9ictpMw18kC+VHQUI2HhR1bziexNW4jwY6T+OeJnzHU0cPfxpU7PR3IlAoCHTyo7mziYPFFXglbgaelA0+lfjdEEETeh1yp4KflT3Ou9ga/rHiWxd4zSLuVywdnDnGnp51Pzh3Bx9oJC30jzPQM2Ra3CVNdA17L/JULt2/yfW4mn8WsJ8LNn3dO7aOoqQYnU0uqOprYELRwmJAVc2DNi7QP9KKtpUWggwf/jvwHtoamOA9be2o7W+iXSbl/6jycTKx4ICCCe6fM5fmM3Rjr6vP+gnXk3qlEJBLx+cVkKtsb+TT6QQ6tfZGvrx5jd142SlQ8N2sxc1x8OFRykc2p3+FhYcfWuI38VniG+6fOw1TXgM0hCUjEWsx08qSuqw1tsZgXj/3I0yHxBDl4IFcqeGveGrREYr65eox/hq1AqVTy5aVU8hqq6JH2M8XWldrOFtb4zeGDs4e50VLHtrhNaIlEHCq5iK6WhGfTdwmkZ0V7E0+lfkefbICNR77Cz9aVp4aVhA8zOzITAAEAAElEQVQn/WeIgEt4mDV+s3k85VsyKwt5J+IeVviGINHSxkhXn+LmWj67cBQfa2f+HfkP/GxcyGuoYlAh52jpFX7OP4VUIWP1vk+YYuvKEyk72L1sMwY6ukyxdUUsFnOmppjqzmbczG1ZP20B3laO/JR/iufSv2d94ALenX8Pb2XtRaFS8nbWXiwMjHk06RsKGquZ5ezFysmhPDkzFjtjcz67kMSt1noyKwtp7O3k3VP7KG6+zY/5WXQM9FLedgcvK0f+teBeegYH8LZy4pcVz2Khb8QnUQ9wpqaE5zN+wN7Ygh05JxiUyzCU6NHU20ljTwfbLqfSMdCHo4klC9yn0CuTUtxci+9wXpOOljZRHgHUd7ULCxNX6sqY4TiR8SDR0ibUxYtTVUMEiEwhJ+3WNUKcPP9SI5xESws3MxtuttZr/L6tvwczPcM//T4MLz7Md59Ca183uXcqcDe3o7x9yB5Y1d7EuZoSFrj7/2Ej30iEufpyrqZkjL1drlQgHqfEZjRa+7o5XXWdM9XFWOgbEebiw7a4TZQ03/5LdsMbowLfLQyMaesfG/XjamZDsMP452w0/ial/iKCg4OJj4/n2rVrHD16FBcXF06dOkVSUhJr1qwRSI/RthR7e3tWr17NuXPnuHTpkkBu9fT0sGjRIsLCwoTV86ioKDIzMzXyokZfKNOnTyc+Pp6ioiKCgoKIjY0d90J0d3cXbCpKpZK9e/eyYsUKDfucOkSd4QcZsVjMwYMHGRwcJCkpiTNnzqBSqQSVktpqxPDEPzMzk56eHjZu3Eh0dDSLFi3CysqK3t5eoWErPj6e1NRUjX0bmcekhjo4m2ECcHSYsjqQVj3RGEl4qD9jf38/+vr6rF69mtzcXJYsWaIRHM2wMkZNLKphaGhIXFwcixYtYufOnWzYsGFMu5iaNKioqBAm7OoJvprssLGxgeHJTkJCAllZWWRnZ6NSqYQJ40h7JMMKIS0tLb7//nvmzZun8XlDQkK4cOECXV1dGp+ju7ubo0ePcv78eWJjY4mOjsbExIT58+cLQcejMfo60tLSIiEhgcTEROF36ubIkRiplqqrq+P48eOsW7cOPT09dHV1GRgYEDKKzpw5w82bN5HL5cjlco2J+uiGwzNnzozJv3JxceH27SG2vbq6egwx6evry5kzZ4iLi8PV1RV//7GBhSqVikOHDrFixQrhc6pVjd3d3ejp6WFsbIyPjw8xMTHMmzeP9PR0qqurNUizw4cPCyqna9eucfXqVWbMmIFSqeTKlSsYGBjwzjvv4ODgICg4tm3bhrGxsUBYlJaWcvz4cSFIWz0u2NraCllIRkZGwva+vr7s379fyGNTYyQhyyjCLyYmhubmZg3Fx8jxoKysjI6ODlatWkVzc7OGYk99Pzs5OXH79tCXkqmpqZAhNnHiRHbs2MG1a9c0rh9bW1sNxU5SUpJGccBIgnkkRCIRPj4+QtNbUFAQZmZmAqmXnp5OZmYmly5doqioiMrKSpqamnBxceHbb7/l6tWr9Pb2smTJEkFhxzBJYWRkJCgLRxIkI/9tW1tbJBIJL7zwAlKplKioKA2SztjYWLDAMjw+Tp8+nZiYGObPn49UKuWJJ55AIpEwefLkcS1qozOj1PD09MTMzIwnnngCqVRKe3s7+fn5GsfV2NiYgYEBZDKZhpJ05GcwNDSkp6dn3AeI8Sx+lZWV2NjYYGBgIChBtbS0mDdvHosXL6a3t5f//Oc/JCcnC4sp6gULdWnB5MmTqa6uJikpifPnz7Nq1So2btwoEOjqf2ek3XHu3LnU1tYK30G/h8DAQFJSUlixYgV2dnYsXrxYUHfq6uqOsWafPHmSOXPmMGHCBOrr63F1dWXRokVMmTKF1NRU0tLSqK+vZ+/evUyZMkVoWWWUPZlhBTTD30kKhUJoDPX29haI97/x/wYypUJoPPqzcDC2YL6bP+dqb9De30t2ZREBdhPGrJb/EcJcfDlT/V9bamlLHV6Wf45UEolE+Fo78eWlVD44c4iFHlMx1zf6E1v+MWa7+NDQ0z4my+R2Vyu1Xa3Mcvb6n97X0sAYlQp+zM/mTk87hjp6zHefctdqcbUCTKVScen2TWaOWLnXEomRKxV0SfvolvbjNByQ62JqxdX6MvS0dThZUUBrXzfb4zfx2IwYZAo5QQ4eiERi0m5dQ1ushURLm21xm9AWi3kq9TvaB3q51XqHBw9/ibZYzD8Ofo6dkRkOJua8k72XGQ4T6ZMNstBjKrkNleTeqWRb3CaUKhXPpO+irquV1v5uvrt2gm8WPYqvtRMuptZMsrTHytCYF2YvRSQaantUqVQYSvR4b8E6OqV9PJ7yLXKlcohwrCvjtcxfqe9pp72/FxNdA4IcPHhvwT3oakvYvWwzvTIpXy96hKbeTq7UldHY08FzsxZjINHBQt8IbysntERi3j99EIVSybeLHyXOM5DuwX5ePP4jGfe9ga2RGe7mtry3YB1megZ8GbcRPW0JKfe+yonyfLZdSiXzwXdwNLEYzujyJuXmVd7O3str4avolvbznyvpKFRK9LR1+PhcIk4mVmwIXMC/zhyksr2Rp0PisdQ35snUHVypL6OivZFj5Xm09Xez8chXRLj5sSX6QbqkfTw1Mw4RIj49f5QuaR9fXUnjp/xsnpu1GNFwO+P7p/dT393Gp9EP4mFhh52RGe+fPoBCqaCwsYbHk7/hZksdrX3dfHDmEMY6ekgVMiraG4dVSvocuXEFuUpJgN0EJlnac7H2Ju0DvdzjP4ebrfXD9kwJbcOh2ia6BjyRsoMzNSX42bjweHAMeXcq0dWW8OHZw7iaWvPi7KWcq7nB5tTvuHfKXBZ7zeCNrN/4MS+LBK/pLPKazk/52QKB3djTybPpuzAfJuC0xGI2BUWSWVGAkY4eS7yDyaocyk+7Wl9OQ08HziaWvDZ3JQYSXZ5M3QGAlYExehIdtsVt4nZXKzuvncDPxmX4XOrwRewGTHUNeH/BvfhYO/Fy2HKsDUx4Ln0XZ6tLeH/BvdgYmvJTfjZNvZ18fSUDOyMzptpNYJHXDGwNTXEysWT2zlfYvewpBhVyVk4O5cFpQ/OurxIeoX2gh7fmrUGpUvHBmUN4WjryXPr3vBq2kn+dPkDGraHykm2X0whz9WHvqufZde0kr2f+RpTHVNr7e7lUdwsjHT0+iXqAGQ4TOVh8EQOJDi8e+5EbLXW8HLYcd3NbrtaX097fwz/DlvNzwSkWuE/hnVP72Twzgcjdb6ECBhVynk3fRcdAD6+e/JWc+nI2BS3k+dAlNPd2UtBYRb9cxnx3fyraG7EcJnajJw4VPmRXFiGVy8iqLMR0mPhRqVTIlQp8rJ0w1NHj6I0rnKkpoXdwgPb+HmEs6h0coF8mRSqXoa+tg4eFHZmVhZyoKGChR4BG/tSfhZu5LfVdbRoLIUWN1X9o/7sbptpNwNbIjFNVRQzKZZypLqZfPsh89yl3VSUNyAfRGafwQiQSMdfVl9NVmhEL1+orCHLwGPe9ZAoFl27f5FTVdeq72whz9WXuhMnYGplR09mCi5kVs5y9uVA7Vml/NzT3do75LrkbHab3J9TR/N2+979BrSpSqVR8/vnnPPfcc8hkMo0Q1/EgEomIiYnhiy++wN7enjVr1mj8/erVq0Ie1LJly0hMTBSaxkYGZ6tRVVWFWCzm8OHD5Ofn09PTg1gsJjg4WJgoeXl5kZaWJtSkL1myZAzhMHfuXE6dOiWoTdQTKgsLC3x9fWlvbyc1NRWRSERRURESiYTz58+jUCjQ09MTws7FYrGQFQJovKeOjg4eHh6UlJQIweG3b9/WsHEwwsLX0tIy7qSO4Xrz06dPY2RkhFgsprS0lLKyMoFQ8/PzY8qUKUKD1eHDh/H392fSpD+WRqpUKo4ePcq3335LYWEhOjo6Y8Kf1di9e7eQ+zOeNZHhiXJcXBytra0cPnwYX19fiouLUalUhISE0NzcTEFBgaAi+/jjj4VGQQcHB/z9/XF2dub69evk5+fj4eFBR0cHp06dwtjYWGhFHAkrKyv8/PwEG+BIFBYWChadkcc8KCiIrKwsIiIixg1KZ1gt9cUXX+Dn56fR7KenpydMGEUikVC/Hh0dzcGDB8e8j5mZGe3t7ULT2EhFlhpBQUF8/fXXLFiwgAsXLtDR0SEQkurMoQ8//JDOzk5SUlIQiURYWFgITWiJiYksWrRIODZqZdysWbPIysoiISFBaIGMiIjg2rVrQs7ThQsXKC0tpampiYULF2JkZISRkRF5eXlIJBIuXbpEc3Mz8+fPx8TEBG1tbczMzDh9+rRw/wYHB9PZ2Ul6ejoffPABhw8fHkOuXblyhUmTJuHq6qqRtXX16lVB9WhsbMz+/ftZsWIFEolEIKp7enpQKpUahEBoaCgFBQVjzvvt27epqKgQ7sXY2FgOHTrEypUrBdJIrQgMCwsbc/4bGxu5cuUKEomEI0eOYG9vz8yZM5k+fTopKSkkJCRw+fJlJk+eLJDQDKtpDh06pLGPDI+fzs7OTJ8+nS1btqBUKse06w0ODtLb2yv8tLe3c/z4cb7++msWLVrE7du36e7uZvr06Ro5e+pg+6VLl1JWViY0C3Z2dnL+/HmUSiXu7u6CKtXLy4ujR4+yePFijfG7sLBwTGB2Xl4e1dXVxMfHo6enR0xMDBcvXqSoqIjY2FiN7XNzc8fcQxcuXKCxsZHw8HDS0tKEz3z79m3S0tJgmDydPn06kZGRnDhxYsgqNM5ig5pEtbe3H0PsM0xyV1VVMWHCBJRKJTk5OcJ3ia6uLoODgxrv3dzcTGJiIhKJhKKiIlJTU1GpVJiZmfHtt99iZGREUlISLi4uGvlblpaWgvJJKpVqLHaoMX/+fDIyMpBIJFhbW2ucL4VCwaVLl2hvb0ckEgkLGiUlJTg7O991xa+4uBhzc3NhrBwJMzMzEhISGBgYwNXVlcuXL49RmzU1NQmLB2oEBgby6quv8sEHH3D79m0N9dnf+H8DuVKB1l+0uQEolErqulrR1dKmuLOZ766dYHv8Jqo6mnAyscTOyPxPtfzoS3RwNLGgbDgHQ6lS3XU7lUpFbVcL1R3NqHVCdkZm/DvyH/xaeIbcO5V3nQD8L5juMJHCxmquNw2VSNR0NnOnu/2uobwqlYqOgV5a+rpo7e9BoRw/S6W1r4ffCs8w29mbqvYmqtqbsDIwxsPCbgw56DZskWnt6yLYcZLG/edt7URJ823qu9uI8hhSL/fLpHRLh5Qhr4WvYoVPCCKRiPM1N3AyseRsTQlbzh9l55In+DxmPdWdzRgOr7C7mFnxcdQDNPZ0cLKigHfn34MIEct9QnA0sUQi1hrOKhIjEYsx1TMkwXM6LqZW1HQ2c6v1DluiH0RbSxuVSsWNljpud7XySNLXXNr0IRb6RrT2dfPS8Z84dv+bJHjNYJlPCJYGxiz5bRtfxG7go6j7ae/vGSJKh616/bJBlKhQouKp1O/YHr+JR5K+ZlvcJl46/iOvh69CS6zFD3lZ7Fj8GBItbfpkUpQqFVfrywl2nESIsyfdg/2IRCL+cyWDH5dtxkRXn+vNtTyX/j2vha+itbOLH/Oy+WDhfbxwbDdfxm3EVM+ACSIbSppreT7jB7bGbkCpUvGPKeHUd7fx0vGf2BLzEJ9EP0hbfzci4P0F93KsLA8dbW1WTQ5FqpCRVXmdiAh/3om4h0GFjB05x/k06kHquts4sOb/OFs9pKaZ4TiJ59K/5/0F9/JJ1AOogI2BQ0rnCea2bLlwlK2xG1niPROpXMaWC0d5ftYS/nX6IBn3vTFscVKxZ+VzvHBsN6+Hr2J7/CacTa14KHEbn0Y/yNZLyayaPJvXwldhpKPLqyd/5c15q/n6agZvR6zl+9xMnp21iHv8wwhz8aGtv4eqjmb0tXV4b/46tEVi8hoqsTMy43ztDR4MmM/9AfMYVMj57EISv616nokWdjyTvovlPiF8lfAIvtZO/FpwhryGSo6u+ydX6srIrrqOSARvhK/G28qR+T+8wTsR92Ag0eVS3S1WTQ4l7dY1np21CG2xFvdNDcdC3xhzfUMePPwle1Y+x78W3EufbJDoidPIu1NJUVMN89z86Bzoo2ewn6dSv+NfC+7l6bSdPB+6GFczGyJ+eINtcZt4O3svj06PxsbQlOrOZnS1tLl3ylx0tSW8OGcpr5/8jVlOnvz7zCHEIjFvRazhkelR5N6p5JWTv7A1biPt/T28e2o/X8Zt5NeCMziZWrI7L4s9q57nYm0p/0l4BJlSwStzV1LT0YzT8H30bPr3PD4jBkcTC35ctpm67jZutdazJeYhpHIZH547zHOzFiMWifC3deXVuSsx0dXn+2uZPBEcS/TEANzMbfAwt+OJ4FgmWzvzevgqbI1MWeUbilgkQgV8uPB+3jt1gPcX3IutkSnna0sBFS19XTwfupgZDh6cry3l32cOkvnA29xoGYpicTG1xkTXgAu1pfyQl0XwSDJcLEYi1kahUtLS10VleyNLvGagUKlQqoYbvFGhVKpQMvTf3YMDHCi+gLOpFZfr/hsMbqyjj5u57Z/O/pvj6sOpqusscP/vnOmv2rTV43RVRzN9sgHEw4rO9Ptex85ofDeLGpXtTXjcxXJoqKOHm7kNhSOIsn754BhrfFlbA/VdrWiJxQTau6M/DjlU29nCbBdvRCIRBjq6NPS0/+G+Damyxn53Guno0yXt/92g9d/D36TU/4DBwUEhi2fdunVMmDCBffv2ERcXd1dyguEH8L1793Lo0CGOHTuGUqnUmMiMtFXp6uoSEhIiTDDr6upwdPzvit6JEycwNTVl2bJlZGRkCNlHCoWCy5cvCzXc6omV2makzoQZCfUkhWFCarTty9zcnKioKE6dOsWGDRtYsmQJ33zzDba2mjeL2prl6uoqZO2MJKn8/f05dOgQkyZNori4eFyFC8MTs9OnT2vYEVUqFa2trdy5c4eGhgaioqI4fPgwaWlpeHl5ERcXN2aw8PLyory8nOXLl1NQUMDhw4cFkoEROTXqynSlUsmBAwdYsGABpqamNDQ04ODgMK6ap6enB0NDQ8LCwtizZw+rV68eQw6NhKWlJcuXL6ewsJAlS5bw008/kZaWJrQKqidqauKS4ZYx9XXCsHXt4MGDWFhYsGjRot8lQSdMmEBPT49GPgrDE+DRpJT63KlVG1KpFD09PWQyGQUFBTQ1NQmKjF9++YXXXntNCLlnmJQaqbwpLS3l9u3bzJo1iytXrgjEh5OTE35+fsyZM0cgkkZWtzc2NlJcXCwQXI899hiZmZkEBASMuSaTk5NZvXo1nZ2dxMfHw7Dl8OTJk8TGxvLVV19pqEgsLCxob2+nvb0dExMTxGKxkGfEsHpKTZ4EBweTn5/PM888w549ewTCqLe3l/vuu4+GhgZBdaEObfb19eXmzZtkZWWhUqkoKiqiuroakUjE1KlTKSwspKWlRSBhq6urGRgYEM6Nm5sbFRUVtLW1aRC1NjY2xMXF8dtvvwmqL4Djx48LhMtITJkyhaqqKpKSktDR0aGlpYWcnByN14rFYoKCgrhy5QptbW0auVVWVla0tbVpjE2NjY3Cfi5dupT6+noSExMFkq2hoYHu7m6CgoK4fPkyLS0tQvi7TCYjNjZ2zH729/dz5MgR1qxZw40bN8aEW6tbP9XnXR0sr7ZgikQi2tvbOXPmjDB2GRsbM336dGxsbDh37hxubm6cPn2arq4uTExMWLhwocZ4JBKJcHd3x8bGhj179rBo0SJBidjb2yuMEz09PWRkZDBlypQxx1ydnXTo0CECAgIEi5u6vZRhgqq6upqZM2cKza0j4eTkJNxLcrmcnJwcWltbiY+P58MPP8TS0hIHBwfs7e2FcUJbWxuRSDQusc+wIlFt7x6vzVVN0qpz40Z+9/j7++Pv749SqeT777/n0UcfZdeuXQQFBY0hgUJCQkhNTSU+Pl6DlB2N6OhoUlJSGBgYYO7cuWRlZdHX14eWlhbBwcHCAkRlZSXh4eFYWVmxd+9eYmNjBcWaGm1tbVRVVREXFyf8Tt3cOtJunZ2dTUVFBRcuXEChUGgouGpqajTsiAy33q5bt47Q0FBKSkq4cuUKgYGBf6uk/h/iRvPtcZvuRqK1r5uK9gYGFXLUQ7hYLMbZxJJZzl5Y6hszxdYVe2MLnE0sqetq43LdrTFWBl1tCS6m1lgbmGg8G0yydCCrsginUfXhKpWKivZG6rvbBBLK2dSSOS4+Y54tJlrYYWdkTmZlIRHD4dT/L+Bv68rN1nreO32AVb6hwzXbN8Z/sUiEqa4BVgbGTDCzHROMrkZ2ZREZ971BfXc70+yH8jlb+rq4dqdCIxTYRFefSZb2pNy8wURLe0EFJlcq6JcNIlPIeeXkLzwSFMW54X3Sl+jgZmbDw0FReJjbcaa6GAMdXeQqJcfL81noPhUnY0v6ZYM8k76LN+etxsbQlPdOH+DLuI08lfodL4QuYblvCF9cTGaR1wyyKguZZGnPh2cPE+w4CSMdPS7X3SJuUhDt/T3oakl459Q+Hpo2n9Rb1zhdXcxLc5YRYOeGia4BW2Ie4tfC03xxMYWTD7zN9vhNPJO2k/AJkzly4wpPBseyLW4Tbf09/JCXSdykILZdTuXrRY9yo/k2TiaW9A0OcLuzhW8XPUZ9TzuH1r5EeVsD/0l4hD6ZFBEMk0iGbDr6Hz6PWc/1phoeCIjgbE0JA3IZdkbmbDzyFd8vfZKCxmpemrOcry6n8c2iR+kY6MNYR08ICM+47w0KGquZZueGo4klJyry2RLzEM6mVrx4/CeCHDx46fhPvBy2HCt9Y+4/vJXXwldxvCKflJs5bI3dwO68LByNLegdlLLMJ5ilez5g15InOXzjEit8Q+iVSfnniZ/5PGY9t7vakCuVzHScxGcx6ylsrEIFJJVeYb7bFFxMrfjsYjIH1vwfV+vKEQGGEl3enb8OA20dajpbKG9v5Fp9OScqCnho2gKeCI6lY6CXnsEBOgZ6+TT6QQCenBmPg5E5K/d9zJvzVvPi7KVIxNq8O/8eJGJtXp27kglmNuwrOscsZy9OVxdzurqYrbEbqOpoZoK5DeVtd1AopzDVbgK9sgF+zj/Fm/NWs8B9CudqSvjsQhKH1r5EU28nm1O/452Ie4YbLCXk1FewOW0nj8+IYde1kzw5M57PLiRxcM2LdA70oS/R4YGACPpkg9gZm/Fa5q9Euk9hkdcMnk7byWvhq5jr6strmb8yydKBBW7+vHBsN98vfRIvK0eUKiW7lj7J+dob7FzyBEqVis9j1jMgl2FtYMKn0Q9ypPQyL8xeSl1XKyLRkCrtn2ErcDS24MnUHbw8ZxnvLVjH9aYaXp27cqh98PCXPBEcy77r59gS8xDd0n4s9I05+cDbnKkuJs4zCC9LBwYUMnS1tPn8YjJfxm1kc+p3fBr9IJ9fTOadiHv4tfA0m0PimWBmw6PD5Oqd7nZ25WayITAST0t7ptpOQKaU42Fhy7zvX+eL2A28e2ofwY6T+PT8EcFatnLfx3wQeR+Pp3zLhsBI/nX6APbG5vhYO/HOqX28NW8NGwIX8OowibbtUgohTl7ETJzGk6k76Jb2s9Y/jB+XbaaouZbGng7udLdzo6UOU10DbAxN+SDyPoKdJmmoh1r6usipr2BD4AJsDE3R1ZIwwVxzUUmNQYWckxUFbI/fhI6WNq5mNoJ1r0vaR3l7A72Dmjm6BpIhgme0NU9brMVECztuNN9GW6yFx+80q/bLBqntaqF5nHxAMz0jJlnaY6SjR0ZZHluiH6SgsRo9bZ3ftQO29XfjY3335w9XMxtBsSlTKnAcPk9d0j7y7lSiAtzNbZk7YfJd30MN9XdYgJ0bGWV52HqY/e73Wl5DJQH2bmN+72fjzJX6ckL/R3Xv36TUX8S5c+fo7e1l3rx56Ovr09TUhKurK9OmTSMlJQVvb+8xD7sMTzb27t0rNFwtWLCAzMxMjfyV0VYMJycnGhoaKC0tpaGhAS8vL3p6ekhOTtawiY3cTktLS5j4qFQq8vLyiI+P5/vvv+fSpUtMmzZtXGWKm5sb5eXl3LhxQ2MSWVRURFVVFTo6OsyZM4ekpCRUKhWlpaVcuHCBuXPnChOKKVOmkJycjKurK+fOndOwS6gRFxcnrMKrJ3gymYy6ujpqa2vp6+ujrq6OjRs3kp6errGtenLm4+NDYmIiWlpaQoD2eDePpaWl0Ho1ZcoU/Pz8OH78OBKJhIiICEFF5uHhgVwuZ9++fSxevFiYjCoUCry8vJDL5Vy4cEFjQpmfny9UyKvb50aSBuPh5s2b3Lx5k3379qGvr4+Dg8O49kQ1HB0dBSLy1KlTBAYGIpVKCQkJGZeQksvlGsSYn58fly5dGjPhvxsmTpzIunXraG1tRUtLC21tbaZMmaIx6RWLxcTExHD16lVycnLw9fXF0tKSgYEBKisryc/Px9PTk2XLlqGvr8/ChQuFbWtra8nIyEClUvH8888zbdo0DZLAxsaGWbNmoaenh1wu5+DBg/T3948hpNSfc8KECRw9elQ4hmqCb8+ePdjY2FBYWEhnZycikUjIjTl16pQGsTA6OL+yspKcnBzuv/9+XFxcNCbzKSkplJSUUFxcLBCyI/NxPD09yc/P54033hAm6sePH+fbb79FR0eH+vp6kpKS2L17N5MnT+all14S1Cp+fn4kJiYiEokEtZcahoaGrFmzhoMHD2JgYEBhYSHOzs53JSUnTJiAtrY2s2fPZuXKlWzcuFFoZBON8JurLaWjCQt1plFkZCTNzc1jxgt142JlZSW//PILixYtIjU1lRMnThAYGKhhN0tKShpDvisUCg4ePMg999wjWPkSExPveo2mpqbi6+vLhAkTMDU1JTc3l8DAQMzNzTXGz+7ubi5evEhnZyfLli0jOTmZOXPmjCE1RsPIyIh77rmHpKQkJk+ejIeHhzCmqlV6y5YtEz7D6HHayMiIlStXCpZuNVlSUlJCaWkpAQEBGqqr3/Psa2trY25uTn19Pdu3b+exxx6jp6eH+vp6Lly4IFg/RSIRtbW1PPbYY6SlpaGlpYW9vT3Ozs7C53V0dOTixYuYm5uPsS/b2toKmXp37tzBzu6/D1vq+6Srq4u5c+fy6aefCuf72rVr6OnpERYWhq6uroademBgYIwKl+HxPS8vD7FYzMqVKzlw4AAxMTHjLpB0dnZiZ2eHhYUFa9asIS0tDScnJ4FIVygUHDt2bIzKOCgoiKtXrwpjdHd3N2KxGENDQyIjI4XmS7VaduTii0wm49ChQ0RERGBjY0Ntba1A1Obk5HDt2jVcXH6fSPkbfw6NvZ2EDD+s9ssGKW9voHO4IU59W1gaGONv63rXRryWvm7mTpjMmepiLPWNmGBuM+4ERT1JKGu9I1RVq2GmZ8CW80nMcJzI2eqhQFuRaEgpFObqO+a9xoOjiQUmuvqk3rpGpPsUjfry/xUyhYI73e3c6W7HQKKDn60LJroGf2LL8dEvk6KrLcHWyIzS1nr6ZVL0JbpYGZhgZaCpYO0c6OV6cy3vnT7Au/PvoW9waHFILBZjoK2DgUQXL0tHzPUNCXX2Fr5HTlcXsyFwAVfry5g7YTJFTTVsPPIVz85ahIFEh7ey9/DmvDV8Ff8wiEQ093byy4pnkSsVvBy2HBdTa/59+gCvhK3g84spvDt/HWVtd9gau4FemRSJWIvlPiHYGJmSXHpVsNI19LTjb+tKmKsvxrr6PJf+PZ/HrOf5jB/4ZeWzTLJwIPVWDp+eP8qPyzYjEonoGOgVbFjPzVrMPf5h2BqaCllBX1xMYXv8JoIcJpJTX8YkSwfeytrDV/EP83/HdvNWxFryGyrJb6hiptMkegalfBR1P1piMf83eymGEl2sDU0ZkA8yw3Eij82IxlzPiN35Wehr63L/1HBUwEvHf+TLuI3sunaSlr4uXg5bzv8d202w4yQenDafC7U3MdE14Ln079kat5EB+SCfRj9IXkMlLb1dbI3bSN+glLhJgSx0n4q7hR1zXH3olg5w4XYpj82IZlvcJpr7OrlaX4atoSlt/T1siX6QXpmUQAd3pjtMZNPRr7jRUscXsRv454mfObjmRcrbGhhQyIiY4EfPoJTarha+u3aCDxfeh1Qh59Gkr/kybiNPJH9L8r2v8o+p4VS2N/FO9l62xDzES8d/4t3593Co+CLe1k7svHaC/atf4Kv4h5lm78ba/Vto6eti7oTJeFo68MXFZDbPjOelsOVsTv2O7IfeZUnTDDqkvezIOY67hS1r/cK4Ul9OW38PNoambE94mNKWOpr7unjCzR8Pcztutd7hpeM/knzvqxQ2VjPbxZtgx0noSST8a1hxJ1XIkWhpUdhYTW1nC8+k7+KdiHvIrizCy9KBh4OiUKiUaInEGEh0eT18FZ6WDjR0t7PYawZKVBgM291a+7p54dhu/m/2UqRyGW9n72Nr7AY2p+3khdAlTDCz4Z4DW4YbCE3oGOhl66UUtsQ8xArfEGwNTdGTSPg8Zj0eFnYcLL7AsfJ87I3NUSqVbI/fRHVHM/cHRJB26xpzXHx4Nn0X2+M38WvhaXS0JEy0sKNfJuVGSx3J977KrdY7/LT8aS7X3WJ7/CaB9L18+xY2Bia8NW8Njb0ddEr7+G7J4xy4fmGYtPBFWzSkSHpr3hoG5IO8Hr6aftkgi72DuXz7FmKRmJ1LnqBzoJcPF96HXKnkvQX30i3tH25G9GNv0TmeConnrXlr0NOS8NrcVYLl98OF9xPq7EX496/xSdQD6GpLeP/0ATbPjOfBaRGIRWKyKouY6TSJkubbgvqnor2RO91tRE8M4FxNCV5Wjpwoz8fFzGqMUkehHCLDoycGcPn2LWY4TuJkRQGhzt7oS3Qw0TUgwG4skdI7OEBlRxPXR7XE6WpLcDOzpaqjmQG5jEj3KdzuauV2V+sYZap6EWSShf1dyZyz1SVMd/CgtKWOWc5D2Ve+Ns5/Ke9qNGY4TuRYeR4AVvomnKq6jrGOPrNdfP6UeliuVIyZS4Q6e3G+9sbvFmv0DUoxGscWKdHSFhoT/xf8nSn1FzFr1ixiY2OFnJzS0lI8PT0F21Jzc7OQiaSGTCZj7969rFy5UtjOxMQEmUxGX99QHXBDQ4PGxECN6dOnc+vWLVpbW7l16xZZWVmsXr16jPVgPIhEIrq6urh+/TouLi6Eh4dTXl5Oamqq8FNcXIxSqWTy5MkUFxejUCiEZqbk5GQMDQ1JSEggKioKiUSCRCJBJBIRFhbGkiVLKCws5MiRIxoNcSqVio6OjnGb6XJycnj33Xc5fPiwkNGkbruaNm0a0dHRWFhY8NVXX9HX18fChQuFrJ3p06fj4OCAtrY2urq6JCQkMGPGDJKSkjh79uwfBrSJxWKio6OZNm0ahw8fFtqlBgYGhKyt0SG4gGBLunr1qvC7rq4uYfKnr6/PzJkzyc7OFj7nSBuLVColMTGR/v5+VqxYgYmJCQkJCejq6pKYmDhu7o4aLS0t7Nu3D29vb/7973+zbNkyIdR8NJqamsZcQzNnzhQIv/FshmVlZaSkpJCSksKVK1d48MEHee+993B0dGThwoVj1HBqTJ8+XWj6O3DgAI899hidnZ0sXbp0TI6PGs7OzsTGxmJjY8OKFSuIiIhg/vz5xMTEEBMTQ2BgoDCpzcvLY/bs2VhYWIxp4xtJeFpbW2s0ox07doyVK1fS29vLnDlziI+PJyYmhsrKShITE/m///s/zp07J9x3gYGBXL16FZFIRHp6Os3NzaxcuRIDAwONHKrOzk709fXx9vbGyclJaNNsbm4W7sXMzEy8vLz48MMPhcDokYoZe3t7jI2NsbCwECyD6gyljIwMli1bhlQqFQK11T8ZGRmcPHkSU1NTQbHT0tIibDveT3l5uZClpquri76+Pnp6eujo6CCRSNDW1mbWrFm0tLSQnJxMRkaGoBpTZxoNDg5y8eJFQU3DMClw8eJFUlJSKC4uZurUqbz44ouCrXA0+TG6pU+lUgl2xJEE6uTJkykqKtLYVqVScfjwYaZNmyaosuzt7Wlo0MxdUcPY2Fggcffu3UtHR8e4JIn6fI60FYpEIhYvXkxTUxPnz5+ntbWVffv24eTkNMaa19raOi6xHxgYSFRUFO+88w7Lly8XCOvRts3RweRqqEPrBwcHWbZsGe7u7ohEIoyNjfHy8mLevHnCvWJvb4+5uTlvv/02c+bMISIiAlNTU65fvy5cA62trcyaNYuOjo4xIeEMk5dqEjYoKEggo5KSkggICGDx4sWUlpby1FNPcfnyZQIDA4VmwVOnTpGcnExBQYHQcKn+nC0tLZw4cUIIj8/OzmbChAlERkaSmprK4OCghoVvJNSqNvU5iYuLQywWk5ycLFirFy9ePOahT62EVEPdyqrG/Pnzqa+v12gUFIlEtLS0cPDgQZYtWzbud2pQUBCLFy+mp6eHn376adx9/ht/Hm9m7eFsdQlnq0u43lyDg7EFs118mO3iwxzXoR8fa6e7ElKAQDDNcfHhfG2pRnD5SOhLdPC0dCDUxVv4N9Q/HhZ27Lt+jput9Uy0HJrQz3bx+dNhs2ollbGuPtETA8iuKqK1r/sPt/s9lDTf5lzN0KRla+wGXM1sKG6+zZW6sr8UPjsSV+rLhVDg2c7ew3aa8WGqZ4ihRI/Uf7yGsY4+XlaOhLp4E+LkyRS7CUy0tGe5z0z8bFzIKMujd3AAmUKOaHhClnunkpMVBehpSdgev4lJFva4m9vx1ry1GOnoDeU3KeS8mbWHtv5uHji8FWcTS05XXSd2UhAypYKm3k765YN8fjGZ6s5mXs/8jV6ZlCdTd9DU08mP+dnUd7fRM9jPS8d/4qvLaVgbmPDisSGSp6Cxmv1r/o9XTvxMWtlQwPH7C9Zx+MYl7jv0BbOdffjm6jG+XvQo0x09hnKRVCr+79hutMXabI/fBCIRP+ZnE+kxlZeO/8j3S5/iTk87x+5/E0OJLqHO3jw1M55ZTl7Eewbx2YUkvrqczoXaUrKrrvNrwWlQqYjc/RbeVk4s3fMBL4Qu4ecVT/Pe6QMcvXGZLTEPUdJ8m/AJk3lkejQ6WhK2RD/IP8OW09TbiZeVw5BabOH9w211bRQ0VnOivAC5UsHeorOIxSKeSNmBllhMwi/v42RixUynSYQ4eXKnu50nU3fgbm7LI9Oj2ZV7EgOJLl9eSkVfW8Jz6d9zqqqIRV4z+Gjh/biZ27Il+iHyGqp4POVbegcH8LCwY+Xej1jkNYPt8ZsQi8R0Svs4uu6fdA70sXvZU+y/fk7IoNkckoCpniG7l21GV1tC9MRpTLZx5uOoB2jo6eDxlG/JKM/n+dDF/Lj8adzNbbE1NCVp3Sv42jgjlcv4KOp+cu9U8kTKDsz1jNgQGIm3lSPm+kacrS5mkdcMnkr9jgu1pfQODvBC6BLOVBfzZOoOzPUM+TJuI2193fzzxM/IlQoKGqvZnLoTa0MT6rvbeH/BvfQNSon3DEKpUrIpaCHOppY8P3sJ1oYmPJ22U8jFyqosxECiy2PJ3+BubsuOaye4093O48nf0Nbfw+2uVr6M24iVgQlbLhwdOldpO3l17kp0tSVItLT4dtFjaIvFHC65iL2xOZkPvE1FWyPT7Nx5Jn0X2ZXX0dHSZn3iNuI9g3h5zjLu9Q/jwWnzudPTwUfnElGqVJyuKsbRxIL/JDxCx0Av785fx6PTo7E0MOal4z+hUCq52VLHs+m76JL28eWlVAbkMj5ceD+62hIu3r6JpYEJquHRU1dLm27pAOlluZjpGVDUWMNzGT/gY+3Ej/nZSLS0eTptJwMKGQqlgl25J9HVllDd0cxzGT/QL5fx6slfOFNdzJ6is/TLBukc6OOR6VHszs3ExsiMh5P+Q0tfFy8c203P4ACvnvyFA8UXSLznZVxMremTDfJZzHqWegeTXXWdzy8k4WM9dK47hhcq8hoq6R0cEMgR9TAY4uzFxdqbGuOXSqXieHk+kaMymiLc/MiuGtsMPhKGOnr42biM+Z6YbO1Cc28nN1vreen4j6SXXUOhVBBk7zHmtdMdJmJjaHpXQiqvoRJnU0uhWEMkEjHPze93Sy7+DHoHBxiQyXjx2I+Y6BkQPmEygQ7uf4qQYvh7x2dUWYexrj7GOvrUd7eNu02fTPqHDYT/63eWSPW/bvn/M6hJiDfffJMXX3xRyE5JT08fk4dy69YtSktL0dbWJiIiggMHDrBq1aoxeRtyuZyUlBSWLFlCRkYGkZGR41rAqqqqcHNz4/LlyxpWLDXG2weG1TwqlYqAgACSkpI0skAYvmhqamooKSlBqVQSHx/PZ599xowZM5g1a9YY9vTs2bP4+fkxMDBAbW2tsC/qyUxnZyeenp7k5uYyffp0XF1dycnJEQgrdWBwZmYmurq6GvaLkceuv7+f+vp6wsLCOHr0KPHx8WNyaUZ/5ubmZs6ePYuLi4uGsudux4bhIOQHH3yQ8PBwPvzwwzHHfrTtJScnBy0tLQICAsZ9X7WKQE9PT1iVz8nJoa6ujtjYWMFaMvJ9pVIpKSkpTJkyhYkTJ2r87dSpUygUCiIiIhCJRFy5cgV3d3csLS3JysrC1NRUI09m5N9H48iRI0ilUuLi4sjJyaG3d2jQnzhxIpMm/Tc7IiUlhfj4eHJychgcHBxjNxp9TFQqFb/99hvm5ub4+/trWF1GHyO5XE5SUhJ+fn5UVFQIDXj33HPPmGOfmpoqXB/79+9n5cqVwj4mJyeTkJAg/PvJycksWrSIsrIyenp6CAgI4Pjx48ydO1eY/F6+fBmpVIpMJiMoKIjc3Fwh3D8uLo6XX36Zl19+WUNV09bWxs2bNwkJCeHIkSMalkl15pRcLic0NJTU1FSmT5+Os7Mz3d3dXLp0SWgsjIyMpLS0lMLCQiIiIsjJySEyMlLj/kpPT8fDw0NDpTEaKpWKI0eO8Nlnn/Hjjz9qNKWNh7S0NCIiIjh48CBr1qzRUKUx3HzZ2tqKv78/g4ODnD9/Xmi0nD59OhcuXEClUjF79mwuXboktIbOmDFDuMaSk5NxdHTE0tISW1tbTp06hVQqxc/PDzc3N+HaUxMJR44cYe7cueM2QyYmJrJ06VIYttLu37+fqKioMa8deW2MPDbHjh3D2tqawMBA0tPTiYyMZP/+/cTGxo4hY/Py8rCzsxtD4qpUKnbu3MmmTZtobW0dN9fu0qVLeHp6jtmv5uZmgYAzMjKiv78fOzs7DVKPYYXazJkzhQWKlpYWzpw5g5OTk8b4frex68SJE9jY2NDW1saMGTM4fvy4cNxGore3lx07dpCQkEBXVxeNjY2oVCrEYjEBAQHY2dmRlJQEw8UPbW1tGsrXkfeWelwYjZqaGgoKCoTXiEQiLC0tCQgIGPN9l5mZSXBwMBKJhMTExDFqJ/Vnjo6OHvNgp7bX/vLLL6xZs2bc78m0tDRiY2Oprq7WsMqOxNmzZwWiW03KxcTEaPx7o4/76dOnEYlEXLx4kRdffHEMofk3/hjq56enguNwM7fBztgcX2vn/+m9zlQXC2omqVzG6epiFnpM/cPtRuJU1XWm2btT2FiFia4BzX1dhDp7/S4ZNhLnakrGrCKfqynBwdhiTO14t7SfyvZGpthNYDx0DPRypa4MH2snnEwsuVpfhq+1M1frhpRHbf095NSXM8XW9a4B5eNBoVRytqaE8BHWDXWQ+sS72FAyKwqYP5yfkl1ZhL+tq0Y74fmaG4S6eKNUKTlTXUJ2ZRFzXH3Q0dImoyyPeRMmo6Mtoaq9idku3hwoPs9vhWf5etGjdEn7OFaWR5irL16WDuQ2VDLLyYsHDm/lvqnz0NHSZqKlPY8nf8M7EffwRtZvuJvb8nBQFA097QTau9M92I9MocDGyJTK9kb0tHWQK5X0DPajJRLzVvZevl70KHl3KlGolLib2/LFxWRW+M7C0dgCSwNjDpVcZIbDRN47fYCflj9NfXcbN1vvMNnaiecyfuDVuSu50XKb2S4+KJRKpHIZr2X+ylfxD/N4yrc8HZKAq5n1UDbU3JWY6RkK44dCpURbJMbFzIbCxip8rJyo627j1ZO/8tHC+6jtasVYRx8t8VBOkpeVI9rD+z3fzR9LA2Maezpo6evm0elRpNzK4fEZMdR0ttAvH0SEiKbeTlJuXuXrRY9xuOQi0+zc2FN0lkj3KWiJtfgu5ziPzohGoVRS3t7IFxeT+XbRY8hVSrqlfYhEIvS0dXh9ONuprruNirZG5rn5IRFrUdx8m2n2bvQMDtDc24mZniFvZO3huVmLeO/0AbbHb+KJlB18HrOeH/OzsTY04UZzHQ9PX8irJ39le/wmrjfV8tWVdLbHb+KDs4fZFLhwOAzemM1p3/Hhwvt4ImUHm2fG42npwJOpO3g7Yi2fX0ji3fnrOFJ6mfunzuO1k7/yUOACjHX0hsL1TS2p6mgmYoIfi3/9FxuDFuJqasXV+nKCHDxo7evGTN8QF1NrtEQiajpb0NHSRqaQ81zGD2yJeYiDxReoam/i2VmLyLlTgYOxBZ+eP8LnMevplPahqyVhQD6Ih4Udt7taOVxyibV+szlQfIFNQVH0DPajAjanfsf7C9bhamZDR38vKlS09nXTPtBL2q0cajtb+cfUcGa7eLP1Ygr3TZ2HCHgmfRc/LX+aOz3tiBAx3cGD908fJMEziGfSd/HYjGgSSy7zz7Dl9MqktPR14WvtzIYj29kat5HPLyTx7KxFPJX6HXtWPkdLXze1XS2Y6xnRPtCDk4klHQO9NPZ0su1yKofWvkRleyO1nS18fjGZN8JXc6D4Ao/OiCb3TgWLvWZQ3DxULKQ1TDwa6eihpy1BLBIjU8qZZGE/TAYP0Dso5dPzR3giOJaPziWyyjeU6s5m1vmHYaJrwPoj2/hlxbPc7mrFUKKLChU/558ixNmL8AmTudVaz0vHf2LH4scAEdUdTVgbmnL0xmUWewejJRLTP2y9dDG1wtXsv4tFZ6tLmOM6NO5erS/D3dwOi2Gb8cmKAmY6eQrqHfVYxTCJcvH2Tea7jR8ZczeoVCrO1dzAzticxp52dLUlKJUqZjhO/EuW7bK2Bgbkg4J1/XxtKbOcPIX3uFJXhqWBMe6jvjvG+55Ro62vm/zGagwlunRJ+9DRlmCiO5TnNNvZ+0+TUiOP6WhklOWx0GPKGEXa+ZobzHCcdFfL+O2uVgYVco3P0zM4wJydr/zh89PfSqm/iPDwcI4fP05JScldXzNp0iTmzJnDhx9+yAMPPMDq1avHDYDV1tbG1taW+vp6lEqlxoP2SAVLd3c3R44c4ebNmxqNfmqMd3PU1NTQ1tZGQMBQIKWLi8sYxYlIJMLV1ZWYmBhMTU15++23cXZ2Zvbs2eNag7q6ujAzM8POzk6jdUskEjFv3jwWLVpEQ0MD9957Lzdv3uTs2bP4+voSFxdHXFwcCxYsoLS0dFxijeEBoKCgQLBqGBoasnbtWrKzs8dUnI/+zNbW1ixbtgxra2sSExMpLi4W3nMk1KG/qampVFdX88EHH2BlZUVycvIY9dHobYOCgpBKpRQWFo67/4GBgdTW1nLt2jVMTEw4cOAAZmZmLF68WCPrZCR0dXVZvnw5nZ2dgq1xpDpq/vz5wmdVB4QDREREoK+vL2zD7zR+9fT0oK+vz5o1a8jKyiIoKEg4J2qVn/p1arI1KCgIc3Nzjh8/Pu5+q6EmiNT18k1NTcJxHnmOampqSExMJDY2lkmTJqFSqZBIJKxcuZK9e/dqVLiPRmRkJCdPnhQ+40gyQCQSCXkyeXl5wvU+e/Zszp07B8P5SyYmJoSFhSGTyTA1NWXevHnExsYSGhrKp59+ir29PWfPnuXUqVOC6sfCwoK2tjbq6+uxtbXVuCe8vLywsrIiLS2NgwcPEhkZibPz0CTL2NiY/v5+zpw5I+SoSaVSVq5ciaWl5Rg728mTJ/H29mbSpEkCUTYerl27hpeXF6+88go3btygtrb2d8+NSqVCT0+PlStXsmfPnjGKvJEqLh0dHebNm0d8fDzh4eHk5+eTkJBAeXk5xcXFLFiwQFCdqQkp9XU3bdo08vLy0NXVJSoqikWLFtHT00NSUhKnTp1ixowZXL58WbD3jUdIMVxgkJeXh0wmY8+ePSQkJIz72tGWy9bWVvbv38/MmTMJDAwU9ktbW1sYP9Rtjmo0NjaOUQHW19ezf/9+lixZQlpaGoWFhSQnJ49pfWtvb9fYr56eHhITE7lx4wbLli3Dzs6OkJAQlixZgrOzM0eOHOHcuXPCfg0MDKCvr09PTw9HjhyhuLiYpUuX3nVcVEOtuPX392fKlCn09/djaGjIhAkTKC8vH/P6ixcv8uijjwpqptjYWOLi4li4cCF1dXWkpaWxePFi0tPTmTx5MkuXLtUYP9Q2SYavD3V210i4uLgwadIkXnnlFTo6OoiIiCA4OHjc77u+vj6MjIzQ1dVlwYIFQrj7SIjuUmd89epVfvvtN6ZOncrx48dJSUnhzJkzGte0vr4+fX19XLt2bVxCiuGyhtraWhYtWkR7e/tdW2vVdsS9e/fi7u4+bvHD3/jriHDzx8bIDFNdQ05WFFDb2fKXtu8Y6NXI4NDVljDF1pWr9WW/u91IFDRU4WZug4muPkqVCn9bV+a6+nKlrozLt2/9zyu8s1186BkcEKrL/wgqlYrztaXcaq0n0n0KTiZD42q/bCis1srQhObeLiz0jVjoMZU7Pe2cqS4ek511N+QMT9RHYqKFHVXtjeOqywoaqvC3/S9xNs/Nj4LGatrGUYCJRWJsDU25XHcLEeBiasXLYcuHWs10DThRUYCutoRp9u48Mj2KPpmUXddOMtPJk6beTtYe2IKziRUr9n7Ej8s3E2jvzsHiC0jlMp4PXYy1oQnvRNzDPf5hKFRKXMysqeho4um0XciUCtYd+IzWvh7Sy3J5J3svcqWSeM/pbI/fxPun9mOmb8iB6+dp6+9hhe8sPCzsMNLV54WM3VR3NKMCtsdv4mp9GS8d/4lAezcaezt5OWw5Ya4+DMhlqFQqZAo5hjp6/LLiWXbkHOfoun9ioquPQqnk/qnzMNMzJPnmVX4tPENFeyNvZP5Gz6CUlXs/wsbQlEeTv2HrxRR+WfEMNZ0tTLKwp1c2pBqZ6+rLe6f2Y6FvxJaYh4jyCOBCbSlr/cN4fEYM5vpG3Giuo7qzhadSv6Olt4stF44yIB8kwXM6O6+dIPdOJc+mf89sF2/yGqqQKxXcartDn2yQ5zN+YL6bP18lPEJ+YxWPJ3+DsY4+Lx77kbw7lSz2noFYJEZPW4fDNy6hpy3B3ticUBcvkm9eJeVmDoY6elypL+OtiDVsuZDEvxbcy0vHf+Loun/S1t/D0yEJxHtO5+lZCVyovcm/FtyLnZE5HhZ2PDdrMYY6erwQugQbI1P+cyWDxt4OtkQ/hI2hKbuWPMlECzvM9Y14OCiKkubbbA6Jp6G3g6dDErh4+yZPh8TzY14WW84f5eeCU+TeqeTzC0kcLb3Ms6FD7YDbL6cPqflsJ/CvMwfJvTNkcVy17xNUKhWvnvwFa0NTvl70KJ+cO8L6aQv4Z9gK+uWDQ4pASwdeCF3CgFzGtsupbLuciomeAU+kfIu/rStr/GYjVQw9Ex4uucjR0qFIkGDHSYhFYtr7e3gydQdlbQ38XHAKULHIawZfxG4g0N6dqvYmvl38GJ3SPmq7Wjhyz8tsTv0OESJ6BvuJ+OENEjyDeO/0ft6KWIurqQ2vzF3B5boyMisL+fT8UVr6unh/wb30y6Q8HZJAt7SftyPWUt7eyDdXM0i+eRUtsRi5Usn52lK2XUobam2891Vez/yV3XlZ2BiasiX6Qcz1jQhycOd4eT49gwOs2PsRwY6TMNczxMHYnH+fOYixjh6i4cy6z84nUd/dxhMpO9DT1uH90wd4cmYc5vpGfBR1P6Eu3sxx8WHHtePUdbeyPX4TX15K4XZXC8fK83gmbReLvGbwa+FpqjuaUapU3OM/BxdTa67dKae0tZ45Lj4s9ZnJXFdf9CQS/u/YblTDmUlqDA5bL9UIsvfgWv3Qc8/pqutMs3Mb104GYCDRxcfK6S99T0jlMjLK8vCzdWGihd0wgTiRiZb2HK/IH3dcHA+NPR209nVpZCka6+jRPSLXaobjRLql/ULwO8MKqNGh5QB1XW1kVxZR29XKvAmTcTa1wt7YAhEw1XYCMxwmkl1VNKbJ9X/BbBdvIT9wJOQq5V0JKQAnE0vqRqm//uz36t+ZUn8RWlpaLFmyhNzcXOGhWiqVUlJSwp07d4QHXJVKRWBgILq6umRmZmqcEJVKhY2NDZ6enoSEhHDo0CH09PS4ceOGMLlwd3cXVqaVSiV1dXWsXbuWvXv3smTJknHzONTo6uoiJydHIyh86tSpJCcnj8nGUKlUpKSk4OvrS3BwMO7u7uTm5o5pnlLnhqihr69Pb2+vxn6IxWLkcjnbt2+nr6+P6dOnaygUVCoV9fX1BAcHc+vWrTHbnzlzRgjKNTExobOzE1NTUxYvXszFixdpbGwUbFu6urrjZpi4uLjg4uJCaWkphw8fprm5mc7OTq5evYpUKkUkEjFt2jSNSYtMJiMmJoYrV65w5coVJk+ePG5Tn1wux8jIiG+++YYbN27clSlftWoVX375JU888cRdJzyjERQURFNTE7a2toKybvS25ubmGtXqPj4+2NrasmfPHkEpod6mv7+fc+fOIZVKMTIyIiAggFOnTlFbWzvuhJHhSezIyZe3tzdGRkYkJiayZMkSod1QrZi5ePEiPj4+Auu9aNEiDh48yIIFCxgcHBQsTqdOnUJLS0to/xoJPT09Fi9ezP79+1m9erUQkD2SxDM3N0cikdDY2EhOTs4Y9cjcuXN555132Lx5s/A7AwMDent7OXjwIKGhoePapaRSKampqTz77LNCBlRXVxfHjx9HoVAIAfiXLl1i2bJldHd3U1RURGfnf4MMP/74Y7Zt28a5c+c0zpdCoSAqKoqMjAyWLl161/yn06dP4+LiIlifDA0N6enpGWMjraqqoq+vj6CgIGpqaoiOjiY9PR2RSDRuELNUKhVUYrq6uqxevZq9e/dqEOQjSamRaGlpobm5mV9++QUtLS2CgoLGJVVHjhPm5uYapKg6LLuzs5OzZ8+SkJDA559/jkKh4Pr16+jo6KCrqysoC9X/PyUlhYKCAtauXXvX63Tq1Kmkpqbi6OjIlStX6Ojo0LhfRtpU1Ra6EydO0NPTI+RWjWyeU6usDAwMWL16tbBdeHg4MpmM48ePo6Ojw/z58zXO4+DgoJBRN7LpsaurS7AxOjg4sGTJEpqbmzl69CimpqZIpVKSk5MFC/LvFSSo0djYyKlTp1i2bJlwXIRgyoAADh06JFyvI68BPT09/P39Nch+LS0tAgMDSU5O5pNPPsHJyWmM7ZJhkk5NSs2cOZNLly6NIWdkMhnXr18nLCyMyMhIIZtpdNtdTU2NQNoynP82ceLEMVl94+H48eMCMXTy5Enh/u/q6iIzMxO5XI6hoSFTp07lm2++YdmyZcjlcqqqqqisrBQsuGqo1cOdnZ2kpaUJx1FfX5/Jkyfj4OBAdnY2HR0drFixYozC8G/877AxMuVqXRl+Ni44mlhwo6WOE+X5BDl4CMHav4fSljqm2btr/M7WyIy2/h4q2hvHrDSPRl1XKwqVChfToetTLBKhUCrRFmsR5upL50AvJysKcDO3/d1Q27vB39aVms5mTlddJ8zV967PCJXtjVS0N2qs7DPq2cDHyokz1cVYGw4pnQLs3OiXScmsKMTDwm6MIms0emXjZ37MdvHmfO0NjewslUpFS3/3GDVXhJsfWZVFTLV1xWKEYqqwsRptsRY/r3iG6s5mZEoll+tu8V3OCR6dHsXnMQ+Reusak21c0BZrIUJEn2wQE1197I3M8bZyRCwSsSXmIc5Ul/DJ+SNsHQ5p3ha3iceSv+GDyPv4MT+LQHsPTldf5815a3gmJAF9bR22xDyETCHHysCPJV7BBDtNIvHGJd4/fYCfVzzDtfoKXp27kheO7WZLzENC493jwTFYGhjTLxvkiZQdpP7jNbwsHekY6OWjs4l8GbeRn/NPs9wnhG5pP6+c/IWnQxLok0nRk+hQ393O11cy+GnF0xhIdDhUfBEbQzNud5VT3dHMJAt79CU6xEychq+1M2/NW4MSFV3Sfj45f4RXwlZgb2TOZzHr6ZcP8vOKZ3g2bRcPT4/i/dMH+CxmPfraErZfTuPRGdG8HLYcG0NTNs+Mx9rQlFlOXhhKdOmXyzDW0ad3cIAnZ8Zyp7uD7KrrXK67xQuhS/i/Y7v5OOoBNqd+N9QiODOOl+csY5q9G1vjNqJUKilorKalvxtrAxPunzqPivZGHkn6mvXT5vNgQAS3u1rpGOhlb9E5wlx8+TjqfnS0JCz3CaGpt5N3Tu1je/wmNqd+xzMhCWiJxQwq5KzY+xE5j3zCpds3udF8m7SyXO7xC6O8vYHqjmaMdPRYte8TtsdvGgr0nxxKdlUh0x0mYqpnyHPp3/NZzHp2XTvJvyL/wbOzFg0tEihk2BiaYqFvhKuZNW9n7eWBafN5P/Je1u7/lPumhhPvGcTM4Ryp9dMWAPDsrEU8lvwNCz2m8viMGBRKJU+m7uDd+UNh6K+e/IVIjynsvHaStf6z2XntJINyOeZ6RlxvquGl4z+xNXYD3lZOmOoZYCDRxVCiy9sRayltqcPSwJh/TAnH1tCU+6dGYK5vyFOp3/Fy2HK6pf1sv5yGrraEd7P3EWA3gekOE5k3wQ8nE0vaB3p5PnQJpnqGvBK2giM3rpDgNZ2nUr9j97LNNPV2ssx7JkVNNaTeusZTM+N4Om0nn8Ws59drJwhz9cHbyolZLl5I5TI+u3CUSPepvB6+insObOGteWt4MjgOLZGYN7J+I25SEIdLLmGub8hqv9n0y6S8O/8efsjL5JeC0ySte4Wv4h/GxcyahF/e543w1bwWvpKeQSnJ977KjebbvB6+irRb19DRluBmZkParWvETgqkqbeT2s5WXs/8jS/jNiJCRHNvF4u9Z+Bl5YBcoWBQIaN3cIDNMxM4WHyBQHt3nE2teOHYD/jZuKAaXiT4PGY99kZm5N6pFMoZqjuamDCCpBKJREy2ceHNrD08Mj1KY3waD/bG5nRK+7jVWs8ky7GtvSPR0NNOUWMNCz2mjlEcWegbEeURwJW6MsrbG5jhePdW957BAYqaajTa+wDM9AzpGOjRaKibajeBkubbQpve6O+zsrYGajtbcDA2Z56bn/D7kuZa5g9nXVV1NOFmbssC9ymUtzVwojyf2S7e4zbuMZw5qHcXwQSAkY4eZnqG1HW14ThcDNLS14Wl/u8fa4DRs9xzNXcX8ozE309b/yOmTZtGVlYW9913Hz/99BM+Pj5C8DXDq+n6+vp0dXURFRWl8XCiUqlobm4mPz+fnp4e3n77bWpqarhy5cq4FonS0lK8vb3R0tJi7dq17N+/X1A3jYbaIrVu3boxf1OTRuqH7MHBQQ4dOkR0dDTm5ubcvHkTT09PkpKS8PLy0qh3Ly4uZvLk/8rAw8LCyMzM1CAIcnNzsbe3R0tLi9DQUM6dO6dh88vKyhKq6mfNmsX58+cFq1J/fz89PT3CZGbKlCkateohISFCLtDixYuxsrKipaVl3Am5XC6nq6sLXV1dvvnmG/bs2UNycrLG5xkPM2bMYMaMGVy/fp0jR46wbdu2MSHy3t7efP755xw/fnxMQDTDCrf33nuPiIgIkpOT0dfXJzw8/K5KKYab2AoKCtDT0+Po0aMoFAru3LkzpunKzMxMI7uLYTXP6tWrOXLkCHfu3EFHR4e+vj709PSYM2eOQNqlpKQQGxuLQqFg3759rF27dsxkeLysFycnJwwNDdm7dy+rVq3C3Nyc9vZ2urq6UCqVY0L9ly9fzt69e3F1dcXGxoa9e/cyZ84cjebI0TAyMhLaFJcvXy5k3IxEeHg4+/btw8DAgLa2NoqKigRVkUgk4r333iMwMFDjHD/77LNs3bp1XEJK3bS4Zs0ajXvTxMRECPovKytjy5Yt6OjooKenh7GxMZMnTxZUMgMDA0IW02iirK+vj927d9PX10dBQYGg4BqJixcvYmlpqUGAhoaGkp2drdFK2N3dTV5enkA8qq/JmJgYYVI9+viOVI0xrHRZs2YN+/btY+XKlULj5khSWKVSkZGRgbGxMatXrxYscGqL5WhibSRpoS5BWLx4scZrTE1N8ff3JzExUQidVqlUyOVyBgYGkEqlDAwMMDAwwJ07d/jmm2945ZVXyMrK0ngf9Wc2NzfH2dkZqVTK4cOHmTJlyhiFUX19/ZjjERkZycWLF7l69apGkHx1dTVXrlwhMjJy3OZUiURCXFwcnZ2dHD16FEdHR1QqFSdPnqS/v5/IyMhxc6vGU3KqFVjqYgSGiZW7KcfUKCwspKGhQSDMRh8ThpWBZ8+eZc6cOTBKqThp0iQOHTokkFLt7e2kp6cTHx+PtrY2kZGRgsVzJKk9ciwwMTHRaNhUQ23ru3DhAjKZjNWrVwvlEZ6e/62yz8/PH2MfnzRpEu3t7b9bxJCamoqfn5+wmDKSYDIxMRHG4J6eHn799Veee+45PD09uXXrFhMmTCAiImIMqZScnEx2djZnzpzRKPXo6+ujuLiYM2fO8NNPP3HlypU/RRj+jb+GCWY2VLY34mZui7eVI16WDuTcKaenYYBZzl6/GxguUyjQ0Rr72Opj7cTZ6hIs9I3u2mbUJ5NS2lqvYeHwsXamuLlWCNU11TMk0mMqFe2NnCjPZ7rjxN9tRxoP6nrz9LJcIkdNRvplg5yvvYGLqdWYiQrAzdZ6PIcnTCNJc4E4legS6TGVW631ZFYUMNvFZ9zjVdxci+9dWpv0JboY6+rT2NMh2AFz71QSOIrsU0MgpoYJq9w7lRjp6AoTu4LGagLs3PAwt2Vv0TnkSgW1Xa18cv4IL89ZxuEbl7l/ajhPh8TTMzjA11cyeC50MUY6ejyTvosng+P4Z9gKXE2teHPeaiRaWvy4bDMNvR1UtjfxQeR9hLn60Ds4gKOJJS8c283GwEhutNQxy9mTV07+MpTBZWrNMp+ZyBRytlw4ymvhq1g/bT5GEj2+XfQYiTcuETNxGpvTdrJn5XN8GbeR87WlvHdqP1/EbmCt/5whoqjgFNPs3fAwt+PVuSvxtnLkseRveG/+Ot4/fYC3ItbwzZVjHL5xiaR1r1Dd0cxUO1d0tSR0SYcUKB4WtvxWeAZdbQkV7Y3oaGnzVfzDiMViXs/8lRdnL+PFYz/y/oJ7meXshb2ROT8se4qS5tuIRSJutNRR0nwbMz1DHkv+htPr3+dG8226B/u509PBgevnWesfRllbAz2DUgoaq1g1OZSJFnZcb6rlrXlr8Ld14fHgGLqk/bybvZ+3ItYw67t/8nnMet7I+o3Vk2ejLRLzTPouXg9fRb9skK/iH0ZfosOP+dmk3LzGmfXvY65nhIeFHdE/vcP/zV6Kg4kFZ6tL+HnFM3RL+3kyOA5/W1e+z80kblIgn0Y/yImKAl46/iPfLHqU+6aEM6iQsz1+E3raOrT19/Bw0EIUSiXrAxfgZGyJnZEZ3+dmYqijx0dR9zOokPFx1APoSSRk3Mojwt2fF9N28nLYcpyMLdl45Cs+j1nPM+m72LXkSbbEPETv4AD13W08k76L9+avI8jBnX7ZIIdLLvNB5H1YGRiz9sAWtsZu4P0F69DT1iHYcRJTbF2RKuQE2Lmhr63Du/PX8e6pfdzjH8bRG1eEPK0DxeeHwudDF7PhyHa+in+YZ9J38fKcZYQ4eWIg0WX9kW3sXraZDxfex5bzSXwa8yATLezZcuEo/4r8B342LiT88j5fxK7no7OHme3ig6elPQ8lfskXsRuYbOOMlYExr4StQF+iw/8d2839U+fhambNhsAFmOsZ8XbEWoEYcTK1ZJqdHg8n/YdtcZt4MCCCxt5OLA2MWecfxkRLe/5x8HNenL2UJd7B2Bqa8XbEGvIaKnEwtuCjs4d5bEY0U2wnMGWhK5XtjWxO28lXCY/wVfzDzHL24vvcTLZeGioAeOHYbiLdp/BEcCxlbQ3YGpkS5OBBz+AA0+zdEYtEbJ4ZT0V7IycrCnk4aCG62hI2HNnOm/PWYKFvxJeXUnEwtuCT80d4J+IeDCR6DCrkTB0m7Aobq5ls44K1oQkV7Y1crS9jusNEGns6mWgx9CyvUCrJqS+nVyZlUCGnrqv1T+UBels5cun2TZp6O+8aLl7UVMOAfJDIP7CEz3CcSFt/D8fK85hu7zGGFJMrFcN5eYFjtjXTM6SyvVFYHFHDx9qJsrYGcurLGZAPYqJrQGFjNS193XhY2BIxgoxieJFGPQ47GltwtqZEWKzwsLBjgpkN52tvYKSjL5B7oz+r+rvvbvC3deVYeR72xmaIRWKKm28T9jsB6GroamkPN2DqcPH2TTwt7z4HHIm/7Xv/A1QqFampqdjY2PDNN98wb9487OzsNCYip06dIjw8nDlz5gg2IjVEIhE2NjbMmTMHAwMDvvrqK3766SdycnI0QpvVqKqqEvJjxGIxq1ev5vjx47S2jg1HO3jwICtWrBh3hW5k6HBbWxuHDh1ixYoVYyZF6oa80fswMrBXR0dHwzpRW1tLV1cXfn5+BAQEkJ+fz4IFCzAzMyMxMRGpVEpvb68w8dPT09OwKh07dkxjIm5kZCQEL6vh5uZGZGQke/bsQU9PTzhWSqWS/Px8UlNTSUtLIzMzkwkTJhAXF8eWLVvYt28fR48eHfd4jYfJkyfj5eVFbGwsFhYWxMbGEhsbS1RUFC4uLojF4nHVTh0dHZSUlLBmzRp0dXVZtGgRoaGhnDx5kqSkJME+qW6sOnfuHEePHqWjo4NFixaxcOFCdHR0WLp0KQUFBVRUVGi8v7a29phVf4bJMk9PTz755BOCgoKIj49nwYIFwmRZpVIJljGJRMLy5cvZv3+/xmcY3dw3Eubm5ixdupQ9e/ZgaGhIZWUlhYWFhIaGarxOHXDv5eVFaGgohw4dYuXKleMSUuOpwGbPnk1ycjLt7e2C4qa+vp7jx4+TlpZGSkoKb775JpWVlQQHB2ucl+TkZBQKhRCKHx0dzRdffIG/vz8HDhwQjpta8XfgwAGWLl0qTFjd3Nw0VGgMqzmeffZZHn74YWJjY5kzZ47GvXL69GnCw8OZOXMmFy9e1Nj2zJkzrF27lqVLl2JqaqphKWU4n0xPT0+D6GWc+0qpVJKUlKTRGDgSsbGx5OfnU19fr/H7tra2MdliEomENWvWcODAAYEQUqtuqqurOXDgALNmzdJozdTW1mbx4sUCiaLG6OtfJBKhq6s7xn4olUq5fPkyS5YsQV9fn9u3byMSiZBIJBgbG2NlZYWTkxMODg7cunWLqqoqofVw5E9MTAzR0dF4enpSUVHBihUrUCqVNDU1jdmX0W1yaoSEhKCnp0d2djZKpZKUlBQaGhpYuXLluITUSJiamrJ06VJ0dHSIi4vDyMiIhISEuwapj0ZbWxv79+/Hz8+P9PR0lixZQnh4ODdu3BACwbOyssaMeSdPnkSlUmm0WDJMZo1U09na2tLZ2SnYu3NzczVISfUiQEFBARcvXmTt2rWCwlEikbBw4UINO91I1aoao9WyRUVFTJo0CV1dXQ17eGxsLG1tbVy6dAn+YGwJDg6mpqZGww6uxtGjRwkICPjD5juVSsWZM2cICAggMTGRjo4O5s6dy6RJk8YQUupxwNBwKAdGXXjAsLpy+vTpeHp6cu7cOfbv309Ly1+zl/2NP8YEcxuqOv77nCMSDdkiZrv4cLnuFhdqS+9qURvdojcSs128uXT75rjNPyqVilNV15k3qhrbYkSo7ki4D68232q9w+nq4r/cJmSmZ0ik+xROVBTQJR26xnLvVJBTX868CX53Xalv6u3UyI3ysnKktLV+zOsmWToQ5jqZC7WlXG8aa+Nu7On83fypADs38hurAFCqlHRK+36XfItw8yO/oYq9Recw0zPQ2H8LfSOae7uGmvvmDy2GtvZ3c3r9e1gZmPDY9GjM9Y15PuMH9LR1uMc/jKdSv+NQyUWemhlHeXsDzqZWLPntA6wMTHgk6WuKm2uRiLXxtXbiTk/7kALo2G7sjMx4IGAezqZWTLN3w1LfmHfn34NcpeTi7ZvEewaxPnE7r4Wv4suLKUyzd+fhpP8wIB8kp74CMz1DPo56gHdO7efrqxmY6OrzdEg8xjr63Oluw1hXn4+jHsBUz4B/HPocC30jnkzZwT/DVmBnZEaPdIBu6QBhrj78O/IflLc18GTqDvS1dShqquGdU/tY5jMTX2tnsquuc+1OBSFOnizxDubxlG+5Vl/Oo9Ojae3rYs+q5+kY6OW+qeFcrS+ja6CPD88exs3chn9H/gN7I3P0tHX4OOoBrtbd4uGk/7DKNxQrAxM+jn4QHytH7p0yFxtDU9zMbfn0/BEG5DKOleeiLdYi5qd3sTE0o1vaz0dR96Ojpc0TwbHYGZvzTsQ9eFo5oKstYWvcRtzMbPnk/BGUKhUPJW4jZmIgH0T+g/3Xz7E5bSc3W+t5b/463M1t0RKJKWmpo7ytgceSv6G8vYGGnnYWe8+gY6CPa3cq0NXSZpnPTMQiMS8c203XYD9PpOygtKWOj84exsbQFHtjc768mMLlulu8nb2PBwPmY6lvxMHrF+iS9vNk6g56B6Ucr8jH1dSaV+euZKbjJFSo+MeUcGq7WknwnM76I9uo62pj66UUpHIZ70Tcg0RLmydSdtDa38ND0+ZzsrKA6s4WngiORa5SoqsloV82yJOpO9ASa/FTfjalLXVsTtuJhb4hcZOCsDU05YGACJ5I2YG2WIvnQpfwXOhi6rra2B6/iUGFnNfCVzFpOBNrQCHjq/iHSb55lav15WwOiad0OHz8+VmLeen4j5yoyOeLuA1oi7XolPZhaWBEgL0b2+I2MSAfRF+iw6BCzkynSWRWFPJZzHrmuPjw2YUkuqX9rD+yDW2xFg8c3sqdnjbezNyDXKng9fBVGOro8mvhWfS0JXxxMZlI96nIFHL2rHoeOyMzGns6yG2o5MXjPxHk4IFMIefFOcv4z5UMOgZ6+T43E6VKxZaYh1AqlfxSeJoTFQUs8prB+wvWUdx8m/8kPMIirxkoVCreObUPhUrF02k70Zfo8Gz6Lmo6W7DQN6K1r5t1/mE8mbqDhp52Nock8HzGD5S21vPPsOXC+GAg0aGpt5MPIu+jd7jts7WvG2vDoWcTd3NbbAxNuXR7KNRcqhjKEDxbU4KvjTMRbn4s8pzOBDNbMspyGRy2Wf4eZjp5kt9QRb9MM45ApVJxuuo6RhI9pjtMvOv2I6EmB8vbG7lS919roEql4kR5AZEeU8edixvp6NEzODaKh2GLtbWhCU+lfkd21XXsjMyJcPMbQ2CpVCrqulpxNh1ypIz372iJxYS5+uJoYsHx8nyae7s0/i6Vy/9UjuIcFx8NG9+fydPyt3WlqKmG3DuV2BmaYWP05xoG/yal/iL6+/vZs2cPs2bNYvLkyUybNo3c3FyN19TW1uLo6IhIJBJyacbDsWPHcHBwYNasWYKSoaioSKOtSo2RF4FIJGLFihWcOXNGo4lKHWx8t4mSsbExPT09lJeXc+HCBdasWTOugkdt77hy5crvHgs3NzcqKiro7e3lypUrhIeHw4gsHoZXw6Oiopg/f/6YSbKanKmpqRFa9f4I6vr2o0ePEhgYSGpqKhkZGVhaWhIXFyeQFGrFVX9/P1ZWVqxZs4arV69SUFDwh/9GX18fpaWlPPfccxgaGnL27Nk/3EahUJCWlkZCQgKurq5UVQ098BkYGBATE8OiRYtoa2vj8OHDxMTEkJycjJeXF4sXL2bq1P8y8iNVMLW1tVy/fv0P/+2TJ08il8spLCwUat5H4sqVKxpqEn19feLi4jh06JDwu9Eta6Ohp6fH2rVrSUpKIjg4GF1dXaE9Uf1z7Ngxbt26hb29PTt37sTAwID09HTS0tI0LG93g5mZGT09PcTFxQkT9aamJiH/acWKFbz55psEBARoKKIqKirw9PQkODhYaL5UW9OcnZ1JSEhg3759AimZkpLC/PnzNVRCPj4+GqSRSqUiLS1NyN0a2dqlhlpZ5ujoSGNjowaZJJPJBMLHzc2NpUuXoqWlRWJiItu3b0ehUIyrnmL4/lHvqzr8+/e+BOLi4sjNzR23YW001DlLBw8epKOjA21tbVJSUmhsbGTVqlXjqi+NjY2ZOXMmJ06cEH43nsU3IiJijMLpyJEjgsJr9uzZnD9/fgyJ1N/fT2JiImvXrr2rzZHh8UIqldLc3MzVq1cJCwtj4sSJJCcnk5KSQlfX0BeuXC4fM64plUoqKyu5c+cO+fn5xMfHExoaetdrfjzSubW1VWgvNTExITEx8U/lemVlZZGbm8vKlSs1LGw6OjpCm2tsbCwhISFcu3aN1NRUfvvtN2JjY/H29hYUTiNRWFioMW4AREVFcezYMRin4U8ikfDss8/CMGkkEok07NOWlpZ4eHgI48d4qkl/f38hT08qlVJWViaQqk5OThq5XSEhIZiZmZGens7Zs2d/N5MpKiqK06dPC4SmSqXi4MGDzJo1a4xadPRiRV1dHQcOHCA0NJTg4GD09PRYs2YNhw4dGkPwMWKxiGH13MhrWg2VSiVk8OXk5JCfn3/Xff8b/xtsDE1p7NFU/Uq0hix0/rauZFddp7CxWuPvCqUS8e+MgyKRiHkT/MiuLBrzt1NV15nr6jsmsPX3IBKJmOE4kWDHiZypLtHYHx0tCVL53VtzGa7GDnHy5JPzR7j/8FacTKyY4/rnarrVsDUyo2nUcfrv+2sxz80PUz0DjpXn0SUdun9ud7XiZPLHqoFAe3dy6su5Wvffhj7UVr6+Lq7UlXGupkT4udVaz6nq69R0tnCmupjytgZUKhV+Ni4UN9fS2teNjpYWKmDL+aMUNlZT1dHMM+m7cDS24Kv4h2nv7+ZYeR6fxazH39aVlr5ufik4jaFEl4+jHmBALmN7/CYmWtrz3qn9bJoexfMZP7B68my+iN1AUVMNh0su0djTwc/5p5juOBFLfWO8rRzJrioi904lr8xdgamuAQ9Nm0+fbJAHAiKwNTLj9fBVfHP1GN9dO8E/w5bz9MwEXjnxC66m1qw/so1FXjN4NOlrSppr+T43k48W3o9KpWLl5FBKW+rYePQrAuwnMKCQ8dnFZP5zJYOewQFeDluOtlgLPxsXPoq6n+qOJp5K/Y5vFz/GEu9gPr+QTNdAH6/NXYmfrStt/T3sLTpHTn05H59LpLarlb1F59ASi3k7Yi1vZO7h5/xTwwHpv/CfK+l0Dw7w1Mw4JFpaw+TTIC8c242XlQNvZe0hdlIgOxY/hkKpwEzPCAt9I7bFbcLa0IStl1KQKxU8lfodvtZOrN3/KUpU/JCbRUZZHjeab/PVlTT+teBedLS0eXf+PTT1dvLe6f0YSHRJ8AziZms9h4ftkWKRiNWTQ9HVkrA1dgM+VkOKPBEitMVikkqv4GxqRczEaWw6+hVbYh7ik3NH+DJuIy6m1hjp6PHe6QNcrivj/QX34mXlwErfWZjpGSBTKvCxdsLawITdyzbTOdDHrqVPEv/LezgYm7Nsz4e09/eiLRZjoqvPTKdJfBr94LC6aCVT7dzYee0EDsbmfBr9IN5WjlgbmnC45BI6WtoUNlbzU142abeuMXeCL1uiHxQCmT0s7Pgk6gE2Hf0Poc5evHf6ADKlnHkTJqNUKXkraw9aIjGfnj+CVCHnmfRdtPV1s/PaCb6M24iFvhGPp3yLt5UjWZWFXG+qwc7ITMjW+iDyPibbOPNm5h765YM8HBSFvbEFc3e9RktfF7paEj49f5Ti5lrqu9u5dqeCy3W32Jy2kyiPACz0jdkauwEHY3M+XHg/s5y8+Dj6AZ7L+IGiphreytrLpqBI3MxsWeo9k5OVBTyUuI2W3i5ePfkrj0yPJtJ9CqsnhyJVyHk+4wfKWu/wdEgCEy3s8LCwo6Wvi88vJCNTKjhXc4NBhYzrTTV8fO4I5W0NdEn7eDptJ1fqbvFgQARNPR18GbcRJxNLPlx4Pz7WjnQPDvBjfjYDChlPhyTgYGzBdznH+SDyPlb6zqKgsZrXM3+jsLGaHpmUHTnHqetqxUTXgLK2Bo1iBZVKhYFElzs9HTyZuoNr9RXMchoKTB9pTbY2NGGB+xROV12/a2PcSMx38yerslB4zuuXDZJelkuAvTsTzP+42X40ZjhOxMPcloyyPNr6ezhdXcwsZ89xVb38AamjVCm52VLP6smzcTA2Fwi60bhaX07gqMzAu8HG0JSFHlOpHR67/2wuoRoGEt3hBswSJphZ/+5rlSolfTIp/bJB9hSeRV9b8peO6d+k1F9ETk4Oa9asERQTDg4OY1QKV69e1SABvL29xwSjJyUl4evry8SJEzWUNxEREUycOJF9+/aNsWqNhDor5erVqzQ1NXHq1Cnc3d01aq17e3spKyvj9OnTQk34v//9b1599VXi4+M1bozRq9nu7u40NzfT3d1NQ0PDmFBgAD8/P4qKijQmnuNBJpPx9ttv4+LiQlJSEsePH2dwcJCAgADy8vLGkCYjP+NIlJSUCGooGxsbnnvuOeRyOQYGBmMmL+O9V3R0NGKxWCMcnHFUWyObCv38/LCysiI7O/t33//w4cMCeSCRSISw7JEwNDREqVTy2WefMTAw8Id2wvDwcHp6esjJyRn3mMhkMvbt24evry8BAQEYGRnR19c3ZkLd1NQ0RjliYmJCeHg4ycnJAHR2do5Ri8hkMq5duyYQS8eOHUOlUvHCCy+wcOHCMWqW6OhogoODqaioIC4uDmdnZ+Lj44mKiqKgoIDk5GSysrIE8kapVJKbm0tqaiqpqamcPXuWCRMmsGvXLiGYOSAgAIlEIjQ2jJx4q1FWVoaHhwcuLi709fXR0tKicU2pCbVLly6xatUq/P39hbyr8Y4rw9dAQkICIpEIX1/fMffv9evX8fH5r4Q1Ojpa2K/RqkKGJ/lqAiM5OZmWlhbhuGZkZFBdXS2cN3V+T1ZWFsHBwX94nQDEx8dz9epVgaT+vS89sVhMREQEkZGRfPTRR4SHhxMcHDzmdSPfw9HREQcHB4GoHs8ip6Ojg0KhENQoWVlZhIWFaZDNasuhGv39/Rw+fJg1a9YIhJSRkdG4VrHKykry8vJYtmwZEydOpKysDGtraxYtWkRMTAy5ubkkJSVx5MgRMjMzhTEvPT1dGHMiIiJwdnbm4MGDnD59mry8vD88tgwTUupMJ7FYjKenJ0uXLqWxsZHExMRxVZj19fUcOHAAPz8/FixY8IerS/r6+tjY2KBQKKisrOSTTz6hsLCQ1NRUsrOzNQLX1W10IyGRSLCzs6O2tlb4t65fv05SUhI3b97kxIkTGosYeXl5GsSWl5cXMpmMU6dOjWuLdnFxEa7h0W18oxV+6vezs7MjIiKCc+fOCechPz+f5uZmjXKD5cuXc/jwYcFePH/+/DG5VAxn7+Xk5AgWyqqqqjFkqpp4TUtLG3Neenp6hPwsLS0tzMzMNNRQN27cwMvLC0Z9Z6Slpf3PAdh/Yywm2zhT0nx73L8Z6egx380fG0NTTlYUUNU+VJ5R2d74hzlPutoS/G1duVJ3S/hdfkMVHhZ2GN4lBNdMz5C2/rEEphp62jpEuPkJ+1PX1Ya5/lDT1Uj0DA6QU1/O2eoS4ed2VysrfWfxdEgCxc21XLyLkovhQNzxLCXaWtq/qwBwMrFkoftUrjfVcKWujFutd8YosYZCuxX0yaTDzVwdDMhlXLx9k53XTpDfUCmQT+drb9DS24W/7X8r0t3MbQly8OCzmPXIlQrCXH3R05ZwtqaEMzUlbL+cRvLNq9xqu8N8N39emrMMZ1MrptpNYFvcJpr7Onk85VsMJHrMdvHm2fRdFDXVYGtoRtaD73CmupiXjv9IQ087T6TsoF82yAL3KZjrGfLhwvs5XV3Mi8d242JqxVLvYLqkfXy/7ElSb+bwWuav3Gyp55lZi5jl7CUQJ59fTKZ3cICbrfVsvZTCG1m/8X7kvTw+I4bHkr9hd34WW+M2olCpeGveGrytnHh/wb0UN98myiOAx1O+xUhXH09LBwLt3YcsYfYeGEh0CHH05PXwlahQ0Tco5d9nDyEWi3nx2I94WTmyNXYDqTdzePHYj7wVsYZXT/46FDNwaj8OxuY8OiMGeyMzMh94mxvNdXyw8D5ePv4zrX3dbAhcwPrABRhKdPkidgMbAhegp62DvZE52y+n8eLspbT39/BR1P1Utjexc+kTFDVWoyXSQiwSoaOljVQh51ZbPcXNtfyw7ClUwGcx6zGQ6LJryZPUd7XxevgqNgZFoqst4emQBM7XlvJw0n8w1zPijczfeCZkESZ6Bsxx8cHR2JJ7p8zluVmLmO7gwfMZP9Az2E9Jy22+zTmGvrYOaWXXcDa14pOoB1mx9yOyKovYv/oF+mWD7FryBE+lfkdFeyNPzozji9gN2Bqa8kz6LrytnAhx8qSpr4svLqbgY+3MM+m76Bns542s37h2p4JtcZswkOjySdQD+No4k3IzB10tCa9n/oZYJKatv4dn03ehUClZN2UuNZ3NBDtO4kJtKaUtdXy/9El0tSV4WNix1j+M50KXsDsvG5FIjJ62hNRb15DK5fjbuvJF7Ab65YO8N38d3dIBVvqG8kjS13y48D46B/qGVE2yQbbGbsDF1Jp4zyCu1JXR0N3OgwERBNq78/Kc5Uyzd6dncIAAuwm8eGw3hjq6bDzyFY/NiObS7Vt8cj4RX2snPo9Zj0RLm+/zMtkau4E5w9aoua6+zHfz5+2ItdxsradfLqVfPshDidsw0tFlc9pOMm7lsshrOiFOnjw/ewmX68ow0tVHoVJgbWDCZzHr6RkcYNfSJ8muKuLptJ0Y6uhS1FjNi7OXYmdkxv8d201x823udLcjEol4PnQxcqWCS5s+pLK9iUGlnDV+s/GxduKDM4f4afnTzHL2oqGng9tdrRQ11bB63ycoVUo2HvmKUGcvtsVt4npjDXKlgg1HtvN6+CpePvETP+efYo6LDz+veAa5UomdkRm7lz2Fsa4BTb0drNz7EZ0DfZpjUV83RhJdHp0ejZGO3l0DtrXFWkR6TB1ShN35/bIJLbGY8AmTyaoqoq6rjQu1N4ieGKCR8fRXoVCpMNLRZf4PbwypBX/Hhn43dEv7ySjLI9DenYUeU2ns7aRbOrb8SKaQ0yeTjlG3Wugb0/o7AeyBDu4EOXhwsqKQq/VDjX8qlYp+mZTm3i4q2xspbKzm4u2bnK+5Ifycqymho7+XJ1N3UN3RrPG30T8Xb9+itKWO7KoiSlvrGVD8/uLNaPydKfUXERISMmY1X0tLSwh/LikpGZOP4enpydGjR/Hx8RFWgefNmzdmYqyGvb09q1at4tixY/T39+Ps7ExHRwednZ3Cj9p2IJFIuP/++5k5cyZvv/22oNBhWKVjb29PUFAQhoaGqFQqent76ejo4ODBg0ybNg1396Ecgbq6ujGTzJiYGA4ePIihoaFGZk5LSwtFRUUMDAzw2GOPsXv37t9VOGRmZgqEjZOTE/39/Zw8eRKZTEZiYiKvv/66MOFSP/irc2eys7Pp7R2S1/v4+AhV8KmpqTz55JN0dHTg5uZGamoqYrGYefPm/e4k3s/PD0dHR6Hdy9jYGC8vL27evMnUqVPJzMwkPDxc4/N4e3ujra3NiRMniIyMhFET9szMTGbNmiVUvI/+u1KpJDU1VQg9zsrKYv78+aSmpuLi4jJG8TASM2fOpKCggHPnzmnYqpqamsjKytIIPmaERVNtvWlra7urNcnKyopp06aRkZEBwwq/4uJiIY9GS0sLf39/ITdIpVIhlUp56qmnSEpKGpeIVCgUNDc3ExoaKpCxPj4+glKip6eH/fv38/zzz/P9998zZcoUDcXN0aNHeeihhwQbqhrq/BctLS309fU1GtDUNfcA8+fPZ9++fRgZGWFmZiYoY5RKJXK5HEtLS4qKiigqKsLMzIyZM2cKpIm63bC8vBwvLy+N8OeRn4VhddbIjBw9PT2MjIxobm6mqKiIhIQEGJ7klpWVIZFICAsL48KFC9TW1lJRUSGcI4VCQWlpqXAeVCoVy5Yt49ixY+OSA3cjNxYtWkRSUhLOzs4CCdnX18f169fHTM5tbW3ZsWMHvb29ZGdnIxKJCAkJ0VAzjp6E+/r6cv78eW7evHnXfZg3bx7Z2dk4OztjbGw8Js/LxMQEGxsbysvLcXBwEAipkYR4SEgIp06d0rCsqT+DehwyNTUVlFEMj8Hh4eGUlZWxc+dOgoKCxlV95eTkMGXKFG7dukVsbCw3b97kwIEDxMTEjAmXV2MkISUSifDy8qK0tBRfX1+mT59OUFAQp0+fpqOjg8jISJRKJWlpaZiYmLBq1apx33MkFAoFZ86coaurC29vb+Li4lCpVGhraxMdHS2oms6cOYNUKkUikdDQ0KCRqab+36lTp7JlyxZ0dXWRy+VMnjxZ4zpVKpWCQqqrq2vMMZo4cSLu7u7s37+fO3fu4O7uzsSJEzXOT15eHpMnT/7dnLzBwUHS0tLQ0dFh+/btuLu74+npiVwup6mpiZqaGnJzczWuMR0dHeLj49m/f79g/dPW1sbU1FTjp6qqisbGRhYsWKBxvQ4ODgr7JBKJWLlyJcnJyQQGBuLo6DjG0sjweJmYmCiUgpSVlQn3rhr+/v50dHTw008//eG5/Bt/HoY6enRJ++86EbA1MsPWyIyytgZOVhTQPTjAEq/fb6hUb9fe30N5W4OwUq22OIwHX2tnLt4uvWv19uj9KW6u5WpdOTdb64mZ+N/vLkMdXXysncY0Jp2pLibSfQp9MikuplbD9kQVgfbuGI/47DeHW6hGI9Dejdw7Fcx08tT4/ZCiqZvqziZBtXWlroJvc47zcdQDGI7aDy2xGB0tbSRa2uhqaaMt1qKjvxcjHT1mOXvdVUXWL5NS0nybBe5TOF9zA2dTKwoaqphiNwFHE0sKG6sJcfLE19qZAZmMczU3eDptJwme04mZOI2PziUO1cdHDSmPPC0d2BgYib+tK0+n7eTR6dFYGRizanIoPYMDfB6znta+bvIaKuiXD3Kl7havzl3JK3NXMqiQY6yrz9nqEgLs3FColHQO9NErG+C7nBM8NG0Bn0Y/yM/5p1g/bQE3WupY6D6Vuu429LV1ybtTyTPpuziw+v9QoqKocchytzV2A6+c/JnVk2fjbGLFbBdvnpoZh7meIY8mfc3nMevJKM8js6KAT6IfZH/xeSZZ2nO2pgQTXQM2TFtAv2yQLdEPUt3RzFvZe9m3+gW2x29igpktbuY26Gnr8NiMaPS1dXgu4wfeCF9NcfMQqTPUNDgHZ1Mrnkr9TggB/yTqAV49+StbYzewOe1HtsZtRDascvksZj1bLhzls5j1vHf6AGv8ZrPcJ4Sl3sFoiUR8cTGF18JXUdfVytdXMvgsZj0PJW5jW9wmPjl/hH9H/oN+2SCfXUjig8j7WDcljHjPIMz1DPksdj17i84yIBtEplTgYW5HhJsfm9N38ta8NWyN24hcqcDSwIQt0Q/RPdjPriVP8sGZQ9xsrWf/6hfoGOiloLGad0/t5/OY9WyL24SbuQ3xv7xPkL07/4r8B9vjN1HaUscrJ3/hh2VP8VnMQ3RL+/ksZj2uZja8HLYcdzNb1h/ZxvppCwhycGfl3o/YGruBf574ma1xG/GzdkamlLMtbhNOJpa8fvJXptpNwMnEirK2BroH+9HVkvBa5q98GbeRp1K/46v4h9l57QSvzl3JNDs3tkQ/iEypJPqnd3h/wTqKmmrIrrpOY08HTwbHsTVuI5kVBRQ31xLh5s++ovME2E+gTzaIUqlEiQo/Wxc8Lf8/9v46PIpsbfuGfy1xdydOSICEhCCBBAkQxX0EhsHGGXf3YXwzuvewxwWHeEIITnAJIQkad3ft7vX9kXRNmoS9930/9/N+z/O+cx5HHYSu6qpVy7rWWdd5Xs4s2raZxyfPZaSNE4+kfMezUxcyz28CbT1dPB++CH2Fkuyyq7wYsYRp37/C8+GLMDcwZlnAFP64cpx7A6dR1lIvmf9/nL2P56cuoqy1HgsDYzaMn4O9iQWfRK9BKVeQX1eGZkB6NmcgWkgjNBwtyedvset48sAvvDfrHqyNTLkncBq+Ns58eHwvT09ZwMtZv/HB7FUYKvWwMTbDy8qBtBsX2ZF3gi/i1nOltpQAezfMDYxxMrNi/fg5XG+o5O0jO/szXR7dzcvTlvDGjBX8dOkQL09bys3Gap7P/Jl7AqcxwsKOewOnY2loyiMTY5k6YhQbE7/l3Vl309zdweuHtvFl3AYY8POLHzkehVxOmJufNP9cqCzUmVdLmmt1svLdjmAnL67VV3D/vi/4On7jHY8DSLx6lsPFP/BV/AZOll3DxsiMEZZ2w2a9ux11Ha3caKhEM/AMY2tshp+tC9/MfYAeVR8XKgvp06iZ4OLzH52vtKWOoqZaYnyCOVd5kzH27hgq9ci4eYlon3E6z9wny6/r1JEWfrbOnK24SZjx0H1qjYbCpmqq25sxVOqxPuFr1gbPoqmrHSM9fUz0DTHRM2SEhSkm+oYo5Qqd72bcvMhbM+9CIwQR7sN7gGpxobKQsQ7uPD+1v2+fq7zJKNvhPQ5vx1+k1H8R586do6OjQ8dfZvLkyZw6dYqpU6dKacFvh52dHVVVVRw+fFgiQ/4VZDIZEyZMYPHixSxevFhKZW9ra4u3tzfGxsbIZDKam5v56KOPMDQ0ZPz48XckuhjkgXP69Gni4+O5cOECe/fuJTo6mpKSkiHm0hqNBisrK+bMmUNqaqo0KGxsbJg0aRJGRkZs3boVf39/9uzZw9ixYyXTZgsLC5qbm2lqasLd3X2I/FAbVfHDDz8wadIkRo4cqbO4Ajh8+DBtbW18/vnnOoSPFp6enuzZs4dx48Yxd+5c+vr6OHz4MJ2dnUycOHFYg2sG/ItWrlxJcnIyvr6++Pn5kZOTg5mZGcbGxsP60fj4+KBUKklPTycmJkZaTOXm5mJtbT2E0NPuLy4u5ty5c8TGxmJiYkJpaSkuLi4oFArmzZsnZQmMj49HoVAM670SGBgoRTpor1lVVcWKFSuGvbempibJHPXkyZM6Zr6D0dfXx82bN/n444/p7Ozk73//O7Nnz76j/4uWGDM2Nmbs2LGcOnWKyZMn6xyTmZkpkQmDyVgtGhoaMDMzY+vWrdKCW4vBEXnjx4+XTKm1nljacs2cOVNnITkYMpmM0NBQQkJC2LZtG46OjkRFRSGXyzlw4ADHjh2jtLSUqVOn0tzcLEkflUoloaGhJCQkMGLECB0zbAZIqYSEBPz9/Wlvbx82++W0adPYvXu3REqo1Wr8/PykRa5Go6G9vR1XV1cdya9CoSAgIICAgP5sSLdu3eKNN96gqalJMssPDw+X5FRKpXJIhkIGoo6srKwIDg5m69atVFdXY2xsTEBAwJBIxAsXLhAZGUlubi7x8fEIITh9+jQNDQ0YGBhIhtkMSLUqKyspLy+X5r7NmzejUCik9lMoFJiammJmZkZaWhpeXl7Mnz+f0tJSyYtIo9EghMDCwoKPPvqIkSNH8vjjjw/pb7dH3Wijs273OLodhYWFlJaWsmPHjiFJGBggRGtqahg/fjzl5eV0dXUxcuRIfHx8SE9Px9LScohP2u2EFIC7uzvp6elSe2kz9WmjfO6++2527NiBh4fHsO2kRXNzM8eOHUMmkxERESERRBkZGcyePZumpiZycnIYN26cZBLPwBj7/PPP8fLy0iHxGYh4femll3j//fclD7nBmDNnzrCEsta038bGhoMHD+Lr64ulpSXFxcVkZWVJUU1paWmcPXuWzMzMO7ZDdnY2DQ0NxMbGcvDgQTZu3EhiYiIjR45EqVTi7Ow8bGTr7t27+eijj3BwcJBI7L6+PlpbW2lpaaGyspKCggJee+01du3aNUQOPpio1rbLvHnz2L9/P93d3ZSVlQ2RnMpkMklurfVt1EKj0XD8+HGam5sJCAhg9erVPPfcc3e877/wX8N4Zy+OFufrZBIaDCEEhU011LQ3YaDQ4+lDP3KrsYrJriORIRviLyVDlyj/8dIhmrra+efCR/5lORRyubSwuBMaOtu41lApjYMbjVUkXz/HbK9AJrn63jG7kXZculnYklV4mZE2zkS4B6ARGi5UFdLR24O3tSOu5v19+XayXwhBr1rNzryTqIVA3Ca7sDU2Z7TdCIz09Ons66FXrebLuA2ohQYXc+s7Lt6EEKTfvMjqcTNo7GrnUNGVYY3XhRAcKrpCjO+f48bNwpbq9ibKWuopqC9ntJ0b68fPpriplkBHD643VPLoxDgcTC3wsXHi2an9foibj+9lw/g5/O1UCo9MjKWrr5f3Zt3DOCdPHkj6lvl+ExhhYcfBolxmewfxQGg0enIF60Nmsyl1K0+GzaOgrpyvz6azJXYdm4/v4dt5D+JuYYeeQoG3tRP5dWXsu3qGV6YtxcLQmMdSt/LMlAXsv3WJB0Oj+PZcBvtWvsCp8muUtTYQ5zuej6PuQwxE1M33m0CQowe/5BxhmnsAK3Z+wg8LH6WmvYUo73EE2LnS3tvNWzPvQl+hxMPSnlAXHzalbuWliCV8djKRl6ct42+x66hpb+btIzt5dupCPo5ew9mKm/x86TCvzVjBDwsfo7ajGbXQkHLPK5S01LGn4BQLRk3iw6jVnK+8xQezV/HhiX38tGgTdR0tHLzvTd47tofcmhIS736R7NKr/LL4cVbt+Rtb4tbT1dfL5ZoS3j26ix8WPtZPHKlVmBsYsXnOahzNrPgwajVymYxdy59l25XjjHFw55PoNRgq9bh712d8GbeBf17MIvNWDsfWvsv5ylvI5XI0Gg32AxJITysHvjufSW1HCwqZnEcnxfJ0xo88O3Uhz4Uvok+j5kLlLd47tpvflz7JV/EbUMgVvHNkJ49Pnss3cx/AwdSS85W3eCnrNxLueqHfBF2hx5rUL3gn8m5kwNzf3mVL7Dr+efEA7866Bz2FAgtDE76K34C+Qo/356yitLmOTalb2RK3nkdTv+PxyfE8OCGGYCdPfrp0iIcnxlDeUk+3uo/PY9ZiYWDMj4seo7K1kZ3Ln6GwqZbEa2f5OecwPy/axBszVvBH7nFCnLx4MXyxNOY2pW4lfdWr3Giook/dL+nztHLgck0JD0+MoaqtkUNFV/C0cuCjqPvoVavQVyhJuvslbjZWU9HaQMeApMnD0p7HJsWjFhremnkXbhY2/TLH6PtRazR0q/pwNbcle/37bL9yghHmtgjgnxey+Dp+I6NsYcvpVFzNrRnn6IWzmTXGegbsyj/JmzNX4mnlgJuFLc9OXcTBolzSV73KW4d3EGDnxvGSAia5+FLd3kxHbzevz1iOQt5vdv/whBhOlF5lXcgsJruNJLemFEtDE2rbm/noRH9myj35p3g8bC5b4tZjbmDMCxGLOV95C1tjc6J9xpFbU4KtsRlfxm1Ag6Cxs40JA+PDysgEZzNrHg+bS5ibH1mFl3kybB5dql5meY1FLuvvZ742Tuy/dYlIz7EUNtVgrKePi7kNJc11BDp6cLQkHwtDkzt64NV2tFDZ1jRgFm8wrME3A9ng5vuFsnDURGyNzRlp40xjVztX6yro7OtBJgPtz4JcLudQcb8sfDAJNcl1pCTHFkKw/9Ylon2COVqSz5QRo1BrNJytvElXXy/jnb3v+ALmUnURcmRMH/A87Fb1YaTXH2ww2W0kJ8uvM2WAhGrt6cRQoTesNFApV6Ae+I2q72zlekMVao0aGTLkMhle1g74WDtxrLSAd2fdjfeAcfwo2zubkPep1ey/dYlZXmM5X3kLexMLbjZW43OHqOWTZddwNrPG3sSC1p5OvKwcUMrlnBvkufWv8Bcp9V/E5MmTJfPypqYm/P39pSxCw8nQenp6yM/Pp7m5GWdnZ8rLy/8tIcUA8VBRUcGhQ4dITU0dsvhn4KE5PT2dpUuX0t3dzcGDB4mPjx92wdzd3U17ezu2trY4OztTUVFBSEgIQUFBZGZmsmXLFp544gkdSYVCocDCwoKPP/4YT0/PIRFg2gcuFxcXFi9ezOXLl9mzZw/Tp09n3LhxnD17loaGBhYvXoxKpeLkyZNSVrypU6eiVCrJyMhAqVTi6ek5RPLU3d0tpRmPiIiQyKLS0lIpgkTbFuHh4ZJhrxCCs2fPcvbsWfbu3cu4ceOwsLDA0NBQh/iaN28e58+fJysri56eHi5evKgTnXM7PDw80NPTIzk5GaVSSXV1NdXV1UNMiLV1k56ejrW1NUuXLpU+Ly0tHSKZ0UZ6mZmZSfcohKCzs1Mi9pqamigqKmLjxo38+uuvrFy58o7lnDx5MmfOnGHixImSwbkWarWa06dP09TUhFKpJCwsjMcff5yxY8eSl5fHmDF3XiDU19dLZIW3tzfl5eWUl5dLbdHe3o5cLteJVLOysqKxsRFra2vy8/Oprq5m3rx51NfXc/r0aZ1+febMGSmqw8PDg5ycHIKCgjh//rzOcTKZDC8vL0m2NxgnTpygs7OTX375RZLeaNHd3Y2bm5tECFlaWkrZu/r6+jh+/Dj3338/aWlpHD58mPHjx+uM1dGjR5OXl0dJSYmOKb8QgmvXrlFYWMjbb7+Nr68vf/zxxxBCYHAEm7e3Nzdv3hySvbCyspJbt27x3HPPceDAAaKjo+nq6uLo0aP09vZiZWWFpaUljY2N6Ovrc+HCBXp7+w0btcR0amqqJI8djmAVQlBUVMSSJUswMDDg/PnzhIaGEhYWJtXT559/LnmO6evr4+LiQnBwMCYmJuzYsQN9fX0d0kelUtHe3k57ezslJSVSpkiZTIZcLtf5VyaT0draSmdnpxQdZmhoSGhoqCRJk8lkaDQajh07hq2t7RBD+NtRXFzMrVu3pLHY29urk7UKID09ncWLF8MA0Xv58mUmTZqEXC4nLi6O8vJydu7cycyZM5HJZMMSUvyLSLX29nYUCgWJiYnMmTOHmpoajhw5MkTK+9NPP9HT04OFhQXx8fE6fVQbAWtsbIyxsbFOFkUhBAkJCQQHB7N58+YhJJ1Go2H79u10dnZy+PBhYmJiyM3NJTc3F5lMxsSJE7G1tcXR0ZGKigrJ0+/gwYP09PRI2fh6eno4fvw4s2bNwsvLS4qmValU1NfXExoaSm5uriSx1P4O/P3vf6ezs5PJkydL5J6W8L09O+DtSE1NZerUqZiYmGBgYCBlgtXT08PGxkYioNra2vj555+xtLQkMTGRuXPnSvXX2Ng4bCbD2bNns27dOvr6+jA3N2f06NE60sCQkBD27t1LQ0MDISEhdHZ2cujQITQazZDkBn/hfw5ymRylXCEt4AAqWhsoaqpFO8Q8rRyYOsKfi1WF7Fj+DA2dbbT1dhHi5IWt8fBeGwA3G6qIHzmeq/UV5FQXD/GisjQ0xcvKQXrwlyFDIzT9CyOh4VZjNTXtf/og2hibMdHFB6VcweGiKzwVNo8pbn7IZTIuVRfTo+oblpy61VSDl1X/HBzs5NWf5c7ZC7lMLpnp3myoYuv5AyRdOzusZ5axngFFTTU0d7UT5OgppeYejH6T3nyifILILr3GdI/RXBmQ8w32i2LQ4mmaewDtvd2Y6BngaD+CsxU3hqQ3P1qSzzSP0UOiqJzNbFj4x/t8EnM/NsZmGCj0aOvt4lJ1EYYKPSa4+DDCwpa8unIOFuYS4e5PmKsfFgbGPDoxlpcGIjQsDU3ILr3KK9OW8tKB33h0UiyJ184y2yuQ4uZavjidyhdx65nsNpLOvh68rBzYuuBh7E0sWD1uJrk1pXycvY9Xpi2jsKmaiS4+fBJ9H4+kfMfBNW+xJW49bT2d3DduJmYGxugrlLT3dUteVuOdvHjj8HZ+XfwEX8VvQK3R0KXq46dLh4jzDeGr+A3k15Xz0Yl9/LL4cZq62qnvbKO8tR4PS3t+zjlMiJOXlI1szbhIbjZW8dWZNP4Wuw4nMyu6Vb2cKC3gzcM7+Dp+I/fv+4J3Z91NQV0FGbcu8vr0FTya+h1fxm0YyMg2iiPF+ZgN+GLVdDTz3P6feTvyLjaMn01rTydXakr54PheHp0Yx6qg6TR3dfDaoT/4OOo+np6ygMxbl2joauNIcR7rQmZjaWjC1gsHeDA0modT/sEXceu5XFNCiJMXrx38g60LHuGdyLsxMzAi0nMss70Cyaku5on07/k05n5uNFTyysHf2b7saX7PPcY8v1A6envQVyipaG3k05j7Ucr6Mwu6mttwT+B03o68i7KWetQaDQZKPSLc/ZENyFx7musw1Tdk85zV3Gio4pn9P/Fh1Gq2xK6joq0RhVzOixFL6FWrcDS1xETPgKbudu7d/Tlfx29kQ+LXvDvrbjws7blrbATBjp68NfMunMys+OxkEs5mVhQ31XK5upg3Dm/n+fBFqDRqfr18hPvGzZQyNm4+voeNoVFsnrOK+/d9ycbQOfjbuTLafgSb0v7JqqDpLPKfzN9i11HY1O8VtipoOi7mNnhY2rE7/yRFTTUcLy0gyNGT7y9kMdHFh4muvmxI/Iav4zfyZPr3fBi1mq6+XracTuHr+I08n/kzW2LX0dnbw/37viT13le4WFXIfeNm0NHXw6Op3/HurLtRyhXM8gpEBjw6MZb8ujI+OL6XXcufRaVRc7DoCv84v5/j697ji7j1KOUKduSdwEzfkAOFOXx2MokRFraMsLBjjP0IXMytKWmpZ9vSp+jTqHn7yE7czG34KOo+iptrKW9toKCunM3H9vLq9GWMsuvPNrwldh2jbF1xt7RDKVdQ3lLPptStfBm3gaRr5wgf4c+5yps8MjGOHnUf3apeLI1M2HR4O59Gr+HRSbGcrbiJmb4hJ8uvsU9omOM9jsvVxYxz8iT9xkXmePc/59gamxMxIoD79m7h7rERxI/UfUEcMcKfjJv9JInebcRMSXMdlW2NTHHz43JNCQqZjNKWOh2TcJVGTVbhZSY4+3CjsYoQJy9yaoqpam/C2cxax9NKi9yaEs4NzKXT3UcPK80bHL2klCvoU6vRUyiY7DoSjdBwvrJQknNaGZki6H9Ze7g4D18bJ+nFxO2wNDTB0tBYihA7W3FTJ4Os9p5uNFRR19nKptStvBixhEAHdyY4+wyRO56vvIWXlQOlzXWMsnXhUnURxU21w/o+dat6ySq8TJT3OECGQq7A18aZQ0VXcDW3HmKSfqQ4Dz9bZxxNrcivK5N++0ZY2NEzjKXNcPiLlPpvQC6XS29y8/PzSUxM5MKFC1haWhIYGCiZwWojggICAggODiYtLY3i4mJJQnI7CcMgMsPFxWXIm/7bkZiYyPz582lvb6epqYmlS5eybds2li1bNmRBvH//filiZty4caSmpkoROzExMZw5c4be3t4h0oWUlBSeeuopsrKyMDU11ZETFRUVSQsWBhZ6Y8eO5ciRI7S1tXH27FkCAwNJSUlBoVAQFhamIxc5ffo048ePx8bGhvT0dAwMDHSim4QQKBQKScrY2NhIQEAAubm5kozP3t6ekydP6pAv2gXY0aNHMTY2JicnR/KNGpxmWXtsVVUV999/P/v27SM9PX3IolOpVEqLRK1/1fPPP8+cOXOIiIggLS1tyHdeeOEFXnjhBZRKJV1dXVKk12BPEwYWklevXkVfX58lS5awceNGIiMjkclkGBsbY2lpiZWVFZ6envj5+VFUVERERAQHDhyQCES5XI6fn58Ukebg4MCpU6ckYkoIIXmPyeVyJk2aJGW36+zsxMjICHd3d/T19dm3bx8LFiwYcj+3E0gMeF7t2LFDykp24MAB5s+fr3NMeHg4ycnJUgRUZGQkDEgHB2es05Zj8HVjYmLYv38/Go1myLWDgoLYs2cP+vr6jBgxgubmZjIzMwkLC8PV1ZWmpiaOHz8uLdxLS0slk+nRo0dz5coVHQJOSzImJCQQExNDZ2cn58+fl8yS5XI5Y8eO5cqVK8jlcoqLi7l+/br0fW22RplMJmUenDFjhnTf2syE2gVuQEAAiYmJOqRUY2MjZ86ckaJYtN5MRkZGEtnS0NDAM888I8koB0dQDcaCBQtISEgYNmLw8OHDzJw5EwYIZW1EmhZ6enr4+vry/vvvExgYqLOA10pPL168SGtrq0QiKZVKLC0tMTQ0ZN26dXh6etLa2jqsV1xCQgLffPMN2dnZ0pzU1dXF+fPnJUlec3MzK1euZPPmzXh6Dv+mS4uysjKuXbsmEYwAEyZM0PH2O3XqFBMnTpTmiOESULi6urJ06VIOHz7MJ598wgMPPMDixYv/o0wj7e3tpKWlsWLFCvr6+sjIyGDevHlDom+0pvxKpZJp06YNOfeBAwekuW0wtN5bc+fOxdzcfIjHmTaj5Pz58zEyMpIIucDAQAIDA9FoNJw9e5bTp0+jUCjIzs7GxMSEffv2MXPmTB2Jr4GBgUR0Dj7/zp07pbl4ypQpOmUvKirC1dWViIgIqb+0tLRI872DgwOnT5+WEhAMxuHDhxk1apREoE6cOJGkpCQcHByGyAtPnz5NREQEBgYGODs7s2PHDqKiorC2tqapqUknAqunp4dDhw6hUql44403qK6uJjAwkLy8PB2fPgbG99atW4mJicHY2JioqKh/KU/8C/89nCq7pkME9WnUTPzHc/wtdh0KmRwXc2umjhil63epUdPS3UmwkxdH2/KI8h7H+cpbFDXVDku4nCy7hrWxGbO8AnG3tKOuo5XJriN1pHKNXe3k1ZXS3deHTAa5tSU8mvodW+LWo5TJ8bJ2GDZDXnbZNfztXLEyMsXCwBg7E3ME4G3lyJmKG0PIqaq2RiLc+yMqrY1MyakuRqVR60gjrI3NcLe0I8pnHK7mtrjfZiR7tDiPL+M30NjVTlN3Ozcbq5jiNkpnsXGi9CphbiMl8khrQF7b0cL+W5eY6TFGWsBlFV4mzM0PE31DWno6kcvlOJha0tLTyfWGSkYO3Pfl6mI8rex1DIUBrtZX0Nnbw+exa5no4su5ylv0qPp49eAfvDRtCS5m1qTfvIiloQmj7FzJqSkmwt2fQEd3TpZf40z5Db6K30CYmx+bj+9l+5UTfBW/gRciFqMRGrYtfYqHkv/BpzH380L4IgQQMSJAinx6K/Iu5v/+Pp/G3I+hUp9Y3xA0CDaOj+KFA7/w/YJH2brgYX7NOYKRnj6Hi69wz9hpbErdyqcx93Pv7s/JWPUaQY4evHbwD16dvoyF2z7gzZkr+fxkEt/Me5Cv4zdS19HKo6nfkXXfm3ha2tPR18NbR3bwRdx69hWcZpLrSLbEradb1UtJcx0CgVKhwM3YlrvGRlDd3oxS1i+Z1Ffo8e28Bxlp48zXcx/gSk0JwU6eUv/9Im49hnp6HCnJY5SdC1ZGJjiaWvLigV/5eu4D3BM4DQsDY7LLrrIjL5t3I+/hg9mrMNU35EZjJRqh4a6xEcjlcv52KokPo+7jWn0FaxZGklNdhImeAWUt9QQ6evBO5N3cbKzm0YmxbEr7J+/Pvpe7dn3Klrj13Ld3C7tWPEdhUzUdfd08PWUBJnoGjLJ15a3Iu7hSW8Zvl48SOGc1tibmKGVytl05zoJRE/n6TBrPhS/CysiUny4dwsLAmAiPADalbuXzmLWMc/TC3sSC5zN/wcrIlIcmRPP5ySRenLaELbHr6FL18c7RXbiZ27A4YDKWhiaY6BuyO/8UHpYOjLZz45Xpyxht78a6kNmY6RtR2FTDstFTiPj+Zd6ddTdPpn/PfeNm8nTGj2yes5rajhY+jroPKyNTqtqaaOhso66jP/Phpeoi1gbP4qeLh7hv3AwW+0/Gx9qJspYGxti78ULEYvxtXbnRUMkLmb/yt9i1PD1lAUZKPX64eJAQZ2+czKxQyOTsLThNqLMPT4TNRaVRY6jUJ+nul/g55zCJd79IRWsjSrmC5Hte5mzFDb6Z+wB/O5XM3JH9kTqlLfW8nPU7q4Km8/CEGL6M20BHXw+fZPcbxO/Iy8bW2IzHJsUz1sGDc1W3+PhEApmrX2ekjRPzf3+P12es4KHkv0v9+LPYtWyJW8/NhipuNFaReO0s9wZOZ/+tS7ia25B56xJvzFxBdXszT6X/wOY5q/G0tKdL1UuMbzAaoeGp9B94YvJcLI1MmfPzG/yx9CkKm2pwNbfhvVn3kF9Xhq+NE4sDJuNibsMYhxFsyz3Or5ePkHLPK3wVvwFbY3Oe2vkjz4cvwkTfELVGcKOhChsjM5Kvn8fWxBxPKwc+zt5HeUsDKqFBIZPxQGg03apertSWMsb+zwy8MpmMWV6BZBVeJtrnTzn+tfoKOvt6CXPzo6S5FiczK1zNbThUdAUbIzNJLn6itIBZXoHoK5So6svRUygJdfbhUNEVzPSNdH4nAE6XX8fG2Jxnpy5koqsvx0sKcLWw1YkUqmhtxEzfEHOD/hfyY+1HcKW2hGCn/vWxXCZngosPQgguVRdxsbqI2vZm0nsuMs09QMfvsLOvR/qN1CLAzo2DhZfRCIGzmTUdA5JqrWxbLpfjY+1IcXPtgPG/Oe293UMIqat15ZjqG+JqbkPpQAbccY6enCq/jqGeHo6mf76A6+jt5mhJPjE+ISjkcoqaanAbIM6muQdwsCiXOd5B0u9NZmEOoc4+WBv122A0drYTYPdnYh8ns//s5d5fRuf/i9D6ipw6dYqtW7cyZcoUKZtSTEwMkZGROtEKU6dOZf78+bS0tJCYmCgRWAwYk2/bto2JEyfqZFwyMjLSSV3NQESINguZdr9cLmfp0qXs3LlTJ+KpqqoKW1tbHb+NwaitrSUqKoqgoCAdE2mt7EYmkzF79mzOnTunY75+7do1Ro7U9TnQyqdUKhVvv/02Y8aMIT4+npiYmCELjIaGBukNeExMjBRZNRyioqLo7OzkxIkTQ+4hMjKSrKwsnXJrvXW++uorWltbmT59upRWXptiPiYmhunTp6Onp8cvv/xCR0cHUVFRQ8y7p02bxujRo3FwcEChUKCvr09WVhanTp3C29tbOtfg7cMPP+Suu+4iPDyc7OxsUlJSOHr0KCqVSsrgpc0cqJVcJSYm6pQzIiKCsWPH4urqKmUBXLVqFWq1mujoaKmfzZ49m87OTsk4W2vwu3HjRs6dO0daWhojRowgPj6e2NhYiZBiIHpHS7A6OTkRERHBrl27hvgJVVdXDxt1s3DhQvbt20dFRQVOTk7Sor+rq4tLly6Rnp7Ok08+SX5+/hCCwsTERCJ9Dh8+zIwZM3T26+vrk5aWxs6dO8nIyOD8+fNUVVVJZM3EiRP5+eefaWpq4syZMyxdulQiTa2srHT6qjbqioEopcLCQp1rJSUlERsby4gRI6isrMTY2JiIiAidOq6rq+Opp55i9erVdHd3ExsbS1xcHHFxcXh7e0t90sLCghUrVpCfny9lbszOzh4iDRt8/52dnWRmZrJgwQJpv0KhGBJl09vby6pVq1i2bBmTJ08eQkjV1dVJEt4FCxZw9uxZnUQMvb29tLe36/SBwdkiGZBoxcXFERkZqZNNr7u7m87OTqytrZk5c+aw5v9awsvPz4+enh6KinQNJ0+cOMGYMWOGzAVaiaK2Pq2tramrq+Pq1aukpaWRnp7OkSNHhiR/qKioIDc3V4eQYqAva029m5qaaGtrY8SIEfw7yGQygoOD6e7uRqPRkJKSQlNT05Dj5HK51A+7urpITExk+fLl0osIc3NzHQNtBkia3Nxc3nzzTSZNmsT27dt1yJ+6ujqsrKx0jOFdXV05f/48ycnJrFixQiIBb/9N2LdvH1FRUTpRsoPHsJaMjo+PZ9asWTz99NOcO3cOf3//O3rODUZCQgKxsbEYGBgwceJEncyspaWl3Lhxgy+++EKHaD558qQUfcdAMgBtZJwWZ86cwdbWVuflBsDcuXNJTU3V+R1jgGjS9nkTExNWrFjB2bNnpcgtc3NzWlpaSEpK4vDhw0RGRjJ37lzc3NxoaWnByMiI0NBQnbla23e+/fZbbGxsmDNnzl+E1P8mTHbzk8yzvawdUGnUzPebQHN3BxrEsBntTpVdZ7Jb/3OGXCZHpVEz3tl7INvRRZq7+z0nu1X9GZRG2bkyytYFA4WSPrWK2V6BZJddo2NQCm5rI1NCnX0IdfGmV63GVN+Ip8L6X6j03cGI/HzlLVzNrXEw/XO8+No4U9fRQntvF2FufkS4B3CpupjDRVfo7OsZco7JriOl9OYMkGOXqouY4x3EOEcP6jv7zWa1KG9twMbYHCczK5q62hljP4IwNz+OlxZwrb4CBryoHEwtsBiQs9gam9HQ1R/FaG9iwUyPsZI/zqGiK4Q4e0uLJ40QKAZ+t0baONMyYIJe3tqABqETYSCE4FzlTeQyGSHO/eNVT6EkzM0PIz19bIzNcDazxtPKgQWjJmKkp4+jqSUPT4hBIVfw6sE/GG03glenL+f3y8c4UHiZECcvPo66D387N57d/xMqjYbrDVXM9RtPXWcLOTUltPV08mjqd1ytr+CVaUtRqVU8PnkuQgiautoJdPDgqfQfMNE3YEvsOtYmfElnbw/J18/R1NXO8tFTeSnrN16ZtpRelYpHJsZyrvIWn2Qn8ubMlQQ6eLAldh2GSj2embqQvNpS3j66E32Fkrdm3sW5ypvcbKxGKZfz3fyH0FcomeU1lo7ebr48ncLBwlwuVBViZWjKl6dTudVUzamya1gbmbJ8TDjPZ/5CR283vao+In98jfbeLqrbm+lR9fHPCwd44cAv9KpVvHjgV76M24C/rSvTPUZjqNRn85zVHCrKJcy1n8CzNjLjybB51HW2cqw0HwOlkq6+PswNjTle0u8H+sTkeciQ8fdz+/ulftfO4mBqyftzVrFs+0dUtDXwxekU2nq7eT58EWb6RjwzZQEt3R28PG0p1W1NPLf/Z8bYu+NlZU9uTSk/XTrExycSMNbT5+3Iu7AyNGFT6lZOlV9n5Zhw3j26i09j1lLYVINGCIIcPfC2dkApV/BF3HpsjM14PvNn6rvaeD58ERvHz0Eu65crdat6qe9sQwjBmnEzudZQiZmBMc9n/kxrTxcjLOwwMzBibcKXKGQy1id8jZm+Idll1/j0ZCLX6ivYPGcVcpmcl6ctxcfaiTdmrEClUfNJdgJKuYJ1CV8R5OjBhvFz2HblGJVtjXxwbA99GjVrQ2ZhYWjCucqb0txwrLSAUCdvvj6bjrGeAc9HLOJWUzUXqm5R1trAS9OWEDbgo9ajVvF25F3YGJvxWXYiak2/3O9GYxVtPV0UNdXy3rHdFDXVUNRUw5uHd6CUy4kfGcrWCwcIcxvFg0nfsnXBwwQ7efFUxo+8eWQ7DqYWPB++iB5VH4v9J/PYxDiSrp2lsKkabysHHpsUx+WaEoqaa3kn8m7ae7v4KOo+RljY8ebMldR3tPJpdiKOppaMtHHioQnR2JtaYKjUQwak3rhAfUcrrx38Y6CNTHlm/08o5HI8Le2RyWQ8GBqNnYk5xnr6fBi1msKmal7O+g2VRs3u/JMYKPUYZetCr1rFl2dSud5QyUQXHz6PWUtpSx17C85Q0lLH5zFr2Xx8L6UtdZIxu1oI7E0ssDQ0wdrIFFtjc3rUfYS5jmTqCH9sjMyY4OyDhYExB27l6MzLegoFk91Gcqy0/+XcpeoihBCSVK+6vRmHgaQRMzxGc6Q4j7KWei5WFRLjEzys9G2Gx2iOleTTN/BcpxEasgov42FpLxFQSnl/xlMGZM0qjRq1RkN+XRljHf58AWlmYET7oN8bBsgmrWRbo9HwwfG99KnVFNSXS5I7gLzaMkbb6T6rNna1o6/QY9G2zRQ11XCjoZIx9iMId/cn3N2fya6+nK+8xQyP0Rgp9Qly9MDD0p6Mm5fo6ut/xixtqaNL1YffMFK9ya4juVpXQdNAwo+W7g5OlF0lxidYkidWtTdLxJJCLifAzo3LAy9Z0m9eZKrbKImQ+l/BX6TU/wK0UU2FhYU8/vjjZGdnk5iY+B9l6QkKCmL+/PmYmJiQkJDAiy++yP79+1mxYsUQrwytZ5UWN2/eRKlUSpFWRkZGkumtvr4+8+fPl6Q33GFBrJXwMfD2edKkSbi5ueHr68vBgwdhwBR4sM/UggULSEtL08kCNZgcqqysJDExkTNnzhATE0NmZiaXL18eNjX3cJg3bx6HDh3SMTAeDE9PT86dO8fLL79MRkYGtbX9WXnMzMzo7e2lp6eHvr4+tm/fztSpU6UIi/DwcIkcGIyGhgYSEhJYuXIltra2zJ8/nx07dgxpPz09PczNzXF0dJR8XC5evMhDDz3E4cOHdTJaaaE9h6GhIbNmzSI+Ph4zMzNWrlyJSqWSCI3Y2FhcXV0laZeWCLwdWgP9UaNGcfXqVZ19Wk8iLYEyWO6jUqmIiIgYNnsiA7K1wZELNjY2xMTEsG3bNmnRfafsiAwsds3NzXF1daWxsVEixU6fPo2joyMxMTFs2bKFqKgoaaGoXWhGRERw/PhxNBoNarVaWgi2t7eTkpJCcnIyL7/8MqtXryYqKgp3d3dqa2ulzGq5ubm8+uqrXLlyhcDAwCFka0BAAPn5+ajV6iFG/C4uLlL/P3r0KIGBgVhaWkoZJW+HQqGgqamJ9PR0fvzxR4qKinQW5sNh5syZuLu7s23bNrKzs4dkE5s+fTpHjhyRDP+XLVumcw8TJkzQuUZvby/Hjh0jMjKSmTNnSuN0MC5evKjjmzN//nzOnz8vEVOZmZk60kMGIie1ae+LiopwcHCQotYiIiI4evQoDERbar8rl8sxNTWlpeVPiYtGo6G3t1ciDcLDw7l06ZIk87p27RpKpXKI5PJ25OTk4OzszBtvvCGR/DExMYSGhlJQUCBl1NuyZQv3338/vr6+QyJ7GIjOqaqq0klQMBjDRUC1tbWRkZHBrl278PLyIi4uTspgNzhTn7+/P1evXqWnp4c9e/boZA9kwP9KW28MRL2lpqZKkYQ2NjYsWbKEvXv3UlfX/8ZqsLytp6eHY8eOUV5eTkREBL6+vjreW4OJ1ZSUFKZMmaJDLnl5eQ0hBLXIzMyksrKSxYsXI5fLSUpK4uTJk0NMx7u7u6XjQ0NDpfM7ODhIc29lZSVXrlwhKipKkmZqx7dardYh2AwMDLCwsJC+m5eXBwPJJ4Zrm/nz55OYmCh9drscU3uc1pvu6aefltopPj6e6OhoaW7T+qIMh9zcXJycnEhNTZVM3rVl/Av/89BGM9W0tzDbK5AYn2AMlXpEjPDHamBBeLQ4j4rWRjp6u5HL5ZJMIMjRg8vVJTAQYRTlPY6r9RV8kp3AsZKCgdTp/Q/GWgmFTCYjyjuIYyUFdPX9mVDlbMVNzlXcIsLdHw9LO6J9xmFlaMJ0j9E0d3dypDiPU+XX6VOruFJbioWBsQ5Jo8UUt1GcLLuORmgkk94I9wB+vHiIx1K3crr8Oq0DGZSM9PSRIaOrr4emrnYuVRXqSDHGO3vT3N3BrcZqNEJDQV05o+373zZrPbT0FUpmeo7BUKnHC5m/kH7jgk5WQg8rex1iq7OvX6IX/ctbXKuvoKCujJNl1yhrqUelViOXyVFrNDR3d2BvYsmrB//g1azf6ejtlrJgnSgtYMvpFH7JOSK9Ldd6eF2qLsLexILnpi6kS9VLY1c7TmZWjHP0JK+2lGf2/4SnlT1fxW/gyzOp1HW2cKLsKkqZnF15J9EgiPzxNb6M20DGzYt09HVzsuwabT1d1LY3E+MTwrNTFzLWwZ2i5lpeO7SNlu4OjPQMeDnrN5RyBV/Hb+RE6VUOFuVy19hwrIxMeXnaUrysHdGTK3hl+jJOld+grbcLZzMrVBo1YW5+qIXg81NJqIQGtUbDy1m/MdrOjdlegdxqquaXnMNohODTk4mUtzRwrb6SB5K+ZYyDOx8c28PrM1YS5R3E45PjmejqyxszVjDSxpmnpszHQKnHjivH2bPyeayMTFEPzK9KuQI7E3OOlOSxYfwcXpm2jG5VL69NX87rh7bxw6WD5NWW8WT69zR1t3OwMBc9hYJ7g6ZT3Fw74BujJsjBg+sNVfzj/H705ArEwLk/zk5gtL0bX8ZtwETfkKq2ZvYWnObjE/tYFzILV3NbXpu+nG/OpvfLKVO/w9HUkt8vH+ODY3sobq7lb7Hr+OJ0Cp9mJ2Gg1CPWN4SXIpaw5VQKnX29bEz6hr/FriPYyQtzAyPenLkSlUbFd+czKWmu5VT5dRRyBQ8n/x0B3L/vCz6NXkNjVzvfX8ziifTvudlYzYWqQoyU+rx1ZAdlrfVYG5nxUsQSZMDPizZhpNRj06Q4EgpO8/7se/GwdKC9txsvKweOleTzacz99KnVnK8spKW7gz35p3gy/XtUGjWfnUzklenL6FL18vSU+RQ11fBS1m88GBrNU+k/cHzde/jbuXK5poTMWzn0qFXoKZT90U1XzyCTyfC1dkKl0dDc1YG7hR1zR4ayJ/8UrT1dvJT1G+McPXg+82fae7v57GQST01ZgEYIPo9ZC0Jwrb6iX7LY041ao8HOxILv5j/M3oLT/Yb1U+bjaWXPIxNj6ejt4c1D25k7MpSt8x/mvaO7MdYzoFet4sn078mrK+Ozk0mk37hIr1rFT5cOodKo+epMGk3d7Ww9fwB9hZKjJXlcqS1DIVcQ5OiBk5kVIyzs2FtwGhcza8Y5enKrqZqEu17ESE+fewOnU97awPqEr/kybgPT3AN44/B2ajta8LVxwtbYnE9OJHK0OB8jpX5/JkR9A/QUSspbG4jxDeGZjJ94fcZyTpQW8P6xPRwqvkJxcy2nyq9R2drIy1m/8dr05cwdOYHSlno2pf0Td0s7wtxGYm9iwfWGSpYEhLE6aAaZt3LQCA1KuRy10OBmYYuTmTWPp/2T4yV/zkd5taVUtDbwcMo/0JMrGWX3p4pHpVGjp1CiERqu1JbS0dfDvN/fw0Cpd8dMpjKZjDneQWQVXu5/wXHjImFufjovIbTwsXEizG0kWYW5bEz6Bhdza242VHG9oZKr9RUU1JXz6+WjHCnOkzKxFtSV42/nyiTXkfSqVXwRtx5TA0P8bFw4WXaNo8V5lDTX0q3qpUvVS3bZNY6V5HOsJJ/Ktv6o/ndn3YOtsTmdfT0SsSaEYP/NHKZ7jNaRj9uZmDPbK5BT5dc5X3mL0ub6O/prAUz3GM2ZipuUtzZwvqqQOV5BOs9bYkDerr2mkZ4+mYU5xP36DpaGJlxvqCSnupjcmhKu1Jbyw6WDOu11quzaHa89GH/J9/6bKCws5MKFC0RFRWFubi5lW5ozZ46UOWxwgw4nW2Bg8VBWVoa/vz/6+vqkpqYyatQoHVmPsbGxRDq1traSn5+vI5NSKpUSgcBASvXp06eTkpKCi4vLsNndtBI+JycnaTHBAPGjUqkkCd5gWY9MJmPZsmXs2LFDx9MoLy9PyqalLdeJEyeYMGECZmZmbNu2jcWLF2No+GeI4uA33oPPv2TJEnbs2MH8+fOlMuXk5FBaWoq1tTWbNm1i1KhRzJ49m4sXL0rpwfX19fntt98wNDRk6dKlOnXt5OQkLY610rni4mJyc3Ol6AaZTIapqSlxcXGSTGW4RWtvby+3bt1i4cKFpKens3z5cg4cOEBtbe2/zKJ35MgRjIyM2LVrl5RyXIvB5uBaidjYsX8+qAohyM/P/5d+Vwz4t2gNm319fTlx4gQmJiaSZ8zs2bN16vzGjRtDPI0YIPkWLlzItm3bWL58ORUVFUyYMAEhBDdv3uTWrVvSAlapVBIQEMCXX36JTCa7o+RU2zdaW1tJTU1FqVQyc+ZMVCoVR48eZdq0ady8eZOCggJMTEyIjo6WFrQ5OTnIZDJsbW11jPwTEhLYu3cvs2fP5urVq5Ikx9/fX8oalpiYSENDg07mQgaM1BMTE2lsbMTMzEwieG8fS1ocPnwYZ2dnRo4cyc2bN4mLi6OsrIzdu3cTFhaGs7OzjpyNAcPy/Px8Ojo6KCkpIT09XeecpqamVFdXs2PHDpYtWzaEONNKkrTYu3ev5IlkaWlJd3e3jjSUYYgABsje5ORkmpqaMDQ0HFbuZ2ZmRmtrK+fOndPJGOfk5EReXh75+fnY2NjoRJDMmDGD5ORkacwfP35cirrTYsGCBWzbto2oqChu3rxJfHy8tE9PT2/IvFheXk5DQwORkZGo1WrS0tIkSbGJiYlO5E1nZyfqgUXnsWPHUKlUOrJcIQQrV67k5MmTw45lbbSR1gOtq6uL5ORkVq5ciUwm48KFC8jlcokoKi0tJSkpCT09PaZPn05OTg45OTlDsgdqr+/r6yt5I+3Zs2eIN5Wenh4rVqwgPT0dtVpNR0cHaWlpMEDghIaGYmFhwd69e7GysiIxMREDAwNmzJiBs7Oz5NEWGBg4hHT28/OTDOcHIysri9GjR+Pk5MTFixcZOXIkI0eOpLa2luTkZAwNDZkxYwYhISGS95qbm9uQLJCmpqZS/x6c3W/q1KmcOHGCsWPHDpv9MCIigj179hASEkJdXd2Q6MjBMDExISgoSEqwcPnyZZ0IYgaii48dO0ZfXx8TJ06kvb2dWbNm/ctssIORl5dHR0cHYWFh7N+/HwcHB5YuXcqRI0fIzc2VpNR/4X8GDZ2tnKivJMxtJOYGxtR3tmJjbMZYB3dOlF4l3N0fB1NLNELDnvxTvHN0Fx/MXkV9Zyu2xuYDb6D/TJFd3d5MZ18PV2pK0VfoYajUQy6T4W/rivUgbxCZTEaUTxAZNy8xwsKO6vYmQp29pegiBrLr5dWVoREaRtm6MMrWhbqOVl488CsHCi/zZdwGajtacDSzkogZ7bmneQRIpu1CCI6XFhDjG4yFoTFqIShsqqa9p5/klcvl7MjLxsXMWsdcXEvyBDt5kVNdzNMZP/JO5N3D1mNlWyOFTf0SFTsTC06V3/hTzi+T8cPFg3QPRJ2ZGxgz0dWXr+L7JUFhbn5ohKCitYEHk7/F3sSCByfEYG5ghKWhCUGOHnSreglx8pZkJBWtDZjoGzLeyZtjpQWEDMhSCurKMVTq42nlQFVbkxQJJoSgpr0ZGyMzvohbT21HC4+kfMd38x/mfOUtdq94jh8uHmSCiw+WBia8OXMlNsZmnK24SZzveO4bN5OfLh3i+fDFfH02nUkuvjyQ+A1fxm9glK0Ln2QnYmloQpxvCD2qPp5M/56/z3uQqvZm7E0sWLvvS1YFTSenupi7xkZwoaqQIEcP9BRKXs76nQP3vYG3tSNNXe392a28x1HT0UzKPS/z2clk7EzMGefoiZu5LW29XVKGsMzCHLbErcfFzJq4kePpUfXxVMaPfBq9hk2pW3l4Qgx2JuY8u/8ntsSu43xVIdfqK3j90DZ2Ln+GL+M2YKSnj5OZNbXtLbR0d+Jn68yyHR+zec5q3py5km5VL5eqi1kbHElhYw1xI0N4IOlbXpm2lORr5/CxdkI2QE6Oc/Lkw6jVmBsY8+jEOMpbG/g8Zi2xv7zNLK9AJrj4sH78bEZY2BI/cjw1HS04m1lz/74v+G3Jk+RUF7F7xXP8/dx+FvhPxNHEkm5VH89n/szrM1YwxzsIhUyOtZEpq/duYdfyZymoL2frgodZn/D1QFbAf/JO5N28kvUHX8ZtoFvVyyL/SVS0NrJ5zmoaO9v4NGYtm1K38mHUapYEhLFpcjyp1y8wzy8UW2Nz3pp5F6YGhnx0Yh8xPsEkXTvLq9OX83jaP9ky4Cl2qOgKBfXlvDRtCf52rsz0HItSrqChq429Baf4JHoNJvoG7Fz+DKUt9TwXvogTpVe5Wl/BQ6HRdKn62BK7DoVczpNh8zhdfp2nM37k23kPcqWmlEjPsTiYWPB1/EbUQiMRuzLgt8tHeW/2PTyWupVPo9fw5Zk0vorfwAfH9rB1wcNUtjbx3qx7WLL9Qz6JXsOR4jzCRvjhaeXAGPsRvBm5EoTg9UPbWBoQRlbhZcY5enKwKJcvT6fxyvSlPDZg2L4pdStvzFhBsJMn5gbGGOvp88HsVSReO8un0WuwNjZDIZPzfPgijPQM+Cp+AzKZnBBnL2TAzrxs3C3tWDk2HAOFktqOVjYf38vnMWv5OecwS/wn83POETwt7Xkq40e+it/AgcLL/LxoExm3LrH1wgG+nvsAKo2aTalb+SxmLa9OX8bOvGyuN1Txc85hPolewyL/Sfycc5geVR/GevrYGpszyzOQUGcf5DIZbT1d3D12GiMsbHltxgqez/yZirZG7g+O5Ov4jTR2tVHWUs/xkgI8LO2xNjJFIZcz03MMmbcu423lgFqjIbemBIVczsdR96EWGqa7/+kvqii/zjT3AG42VklRPgBvHN7G6zNWIEPGaHs3Gjrb2BK7jnGOHlyoKqRvIIunWghaezqpbm8eiNbT0NHXzeTvXmBL3HpKm+vwsnbUIYCKmmupGiCJ8mpLKWupp7WnC09Le+QyOXKZjNaezv6M3xo1juaWUnSSRmgG/LOCOFtxE0tjEzr7egh3708GdbLsGo+lbmXznFXM8gqUZN4VrQ39FjUyGRNdfens6+FI8RWczKwpaa4jwt1fyvCn9aqSyWTUdfa/NF6X8BUfRd3HybJrBDt5DvGC6urr4UptKWqNmrm/vcsn0Ws4OYhE6tOoeTztn/2SaUX/GsDc0JjOvh7m+00g2MkTjRADm4bMWzmoNRoCHd2lqNzWHl21153wV6TUfxEqlYqkpCTJw2nwIpQB2dDMmTNJSEjQ+bypqUlHMsMAwbFz5058fHx466238PHxkbLIJScnk5qaqiNX0cpJBi8C7gQ7Ozusra2ZM2cO5eXlQ/xTtIu2281n+/r6aGpq4vz587zyyitkZGRIkQlZWVnk5uYSEhLCZ599JvlpGRgYMH/+fB0CS+snIpfLWb58Obt379aRIt3uYzO4XEuXLuWjjz4iJSWFxMRELC0tmTdvHlOnTtXJ9hUaGipFHAUGBrJu3ToMDQ3JysoiLS2N69evSw9qg6Ujly9fpqSkhHnz5g1ZcAwmFoeLWEpNTR3i+TJ79mxkMpmUHW8wBrfxxIkT0dfX14k0Ky0txczMTPIacnd3p7S0VOccWiP3wbi9bJcuXSI5OZlZs2YRHh4uEXByuZzZs2czZ84csrKy2L9/v0S6XLt2bYh5vRY9PT14eXmhr69PaWkp6enp7N+/X4pM0EZlzZkzh+bmZhYsWEBISAg7d+7UIXXKysokLydt/c6dO1eSf125coVVq1Zx5MgRent7mTdvHpGRkUOIlduxf/9+QkNDmT17NhcuXCA0NJT4+Hji4uLo7u4mJSWFlJQUamtruX79OsbGxtTU1HD16lVOnTpFRkYG3377LUlJSUMyct2Ow4cP4+LiIklVtWPHzc2NJUuWUFxcTFJSEufOncPLy4u0tDSSk5Pp6elh3rx5eHt789FHHw2ReNrY2PDdd99x5MgRsrKyOHjw4B2jCjMzM5kxY4YOKRQdHa0jt/1XCAoKIjQ0lL6+Pmk8Dx7bMpkMPz8/TExMpM8zMjLIyMhApVIRHBw8JNrk9mipwZ5ZWmjNpZ2cnCQ/MS1uj0rr7Ozk1KlT0nEKhULK2nc7amtrcXBwwMXFBVNTU2bNmqUjy42OjsbZ2ZmgoCDOnDlDRkaGzrhjkNk5A/19z549Ekk9HEaMGCH1z6NHjzJ//nzMzMzIysoiIyODM2fOUFxcTEdHv5xISzBnZmYSERFBX18fubm5ZGRkSJJELVE5d+5c7O3tJfnirFmzsLCwQKVSoVAocHd3Z/78+UyfPp3Dhw+TkpLCe++9h6enp8740mK4ezh27Bhubm46PlfaurW3t2fevHmEh4eTmZnJ8ePH2bt3L83NzdLvxOA+09HRwZgxYzAyMtKRXGtls8Nl5uzr6+Py5ctcv36dlStXMn369GHreTA8PT1RKBTcvHmTiooKXF1d0Wg0ZGdnk5yczOnTp4mMjGTevHksW7aMlStXkpmZyY0bN/5tnVy9epWmpiaJ6Bw5ciTXr19HJpMxY8YMgoOD2b17N2VlZf+2nH/hP8OCPz7AWE9fymBU0dqIs5k1ZgZGWBmZknztHEeL8zheepVxTl5sHD8HmUxGTXsLR0vyOVqST1tvFyXNtRwsyqWpu51Iz7GsHz+baJ9x2BibMdnVj4q2RjYf38PDKf/geEkB2aVXOVl2jUvVRdyz+zP0FUpya0q51VhNWUu9ZDI7wdmHsxU3qWht4HDRFUpaarlrbAS7lj+LXCZjsttIDJV67C04zcMp/+DXnCOcKC3gUnUxSrmCM+U3SLtxgRAnL7ysHPC0tMfFzIo+tVqSWujJ5Xx2MonrDVWcKL3KhcpCetUqBILajhaOFueRU13MoaIr7C04zbGSfE4MyFTOV97iUNEVWrs7mek5hmBHT3ysnRht59ov43AbSXtfN2crb6LWaLA1NifI0UNa3ESM8Od46VWEgPy6cl6MWMJL05Zipm/IGPsR1LQ3syRgMmGufhwqyqVb1UuPqo+CunLGOXoil8mI8h7H9fpKkq6fo1etGpK5aaKLLxerC3lm/0/IZXIeS93KtfpKvorfQFVbE9+ey6C8tQGB4HjpVd46soOCunL+yD3Gx9H34WFlT1bhZeb5TUApV/DPCwcoba3n3Vn30NjVzmOpW/nngkdwNremT6PG2cyKSQMZGd84tI2S5lo+ibmfMDc/zlcVYqDUY1f+SUz1DXAwsWDPyufZkPA1bx/Ziau5DZ9Er8FU34ika+do6GxDLdToK5TUdfZ7Ssllct4/tptOVQ+BDu68fnAbX5xOJcI9gE9PJvJx1H3UdrRw37iZeFn1e5HdHxxJl6qP9SGzOVx8hWemLGDBHx+gQbAu4SsQguuN/ebhydfPsyV2HSMsbHk09Tvae7vpVauwMDTBVN8QR1Mr/ha7DmM9A54Mm4e5gREvZf2GnkLBidICRljYcd/eLbT0dPLtuQw6+np4IWIxE1x8+Mf5/biYWfNY6laEELxxaButPZ18Fb+BG41VfHhiHxWtDVyqLpIW9S8c+IU14yL5+EQCCll/ZrbGrnY+jbmf0pY6Xj34B529PTwQGkWXqpfv5j+EQPB8xCLeHIiweSr9B3pUfdxsrOKNw9s5VpLP32LXYapnyOuHtlHT3kJjVztqjYa7dn1Kt6qXb8+m81LEEgLs3HghfDHtvd28O+tuXsn6DbVGw3SP0Xwdv5Fn9//EXTs/ZYqbH5tSt+Jt5cDG0ChUQjMgU23h9UPbeG7/z6wNjuSpsHk8kf49nX3dvH5oOznVJezKywZgzbiZWBqa8OWZVMwNjVmx8xOM9PTZlXcSuVzOr5ePAPDqjGU0dXXw5syVuFvaY2ZghEqjwdvaic7eHl479Ac3GqrYPGcVQghyaorZfzOH+JHjifzpdVq6O3gi/XsW+E1g/81LfB67jry6MrytHHl8cjwjLGxZMWYqXX29PDt1IR19PTR2tdPe28UDSd9ibmCEt5Ujbx/ZSWdvD6v2/I2uvl4q2xp5JOU7hNCQXXoNe1NL3o68mwdDoymoK+PhlH9gZWjClrj16CkU/RGqHS14WNrx7bkMtsSuw9XchqPF+VS1N6GQyblUXcSZ8uvsyT/FZzFrcTG35tHU73hqyjxG2jixYNREZDIZz2f+wsox4RwsyuXFiCVYGprwcMo/MFDq8XzmL1gbm1HX2cLnp1J4+8gOPoxazXy/UML/+RLV7c30qlR8czaDR1O/o6y1gZbuDmTIMNIzYJKrL9ll1zhZfh1jPQMC7Nww1jPA3cKOgrpyAM5W3MTZzIqVY8KxNjJljEO/nM3F3Jo53kF09vUyydUXYz0D9BQKTPWN6FP3R0j62bqQW1PKptStHC7Kw9LQhEkuvkxyHYmhUp/XZyxHjgxbE3MuVRWRcv0cD6f8gx8uHsRAocfUEf4IAXeNjeCNGSvQkyvo7OvBzsQcA6UeNxqrWBM8k1legRgq9ci8lUNrTxeZty4z0/NPf7+xDu7k1fU/XxQOkKAbx0dhpm9EdulVNEJDn1pNXl0ZgY5/elDryZUY6Rlw165PSbtxgUvVRZwoLeBM+Q1aujs5V3mTI8V5NHd1YKSnT9Z9b2Ksp0+IkxeXqos5UpzHwyn/4FhJPsdLCsivK2e0/QhkMhlfxK2nT61mrIM7U0aMIsTZi47ebj6PWUufWkWAvRthbn5UtDYQPiKAZaOnkF9bjrGeAQYKPY6XFOBl5cAHc+7lROlVhOiX5WfeuvwfPSP8FSn1X0R2djbPPPOMTtSPRqPReeC1sbFhypQpkhE5w2QGqqioIDs7m4ULF6KnpydJAf38/PD398ff3x+1Wk12djYtLS3U19fz5ptv8uyzzw674BhMUnR2drJ//34cHR355ZdfmDhxIrm5uTrElL6+PgqFglOnTqFWqyWphlKpZNy4cUycOBF/f38dr5a+vj4aGxupq6vjxRdfZMOGDYwdO/bferUolUqWLl0qRVjJ5XJaW1uHvElXq9WcPHmS5uZmysrK8PT0ZPbs2TrZ3IaDSqXiwIEDdHd3k5WVRWxsLEIIbt26xf79+6W6qamp4aGHHmLDhg3/ckFkZWXFjBkzSEhI0EmdXlBQgLe3txTZMbjOAwMDqaqqYseOHZI5cnl5OadOnZLamAHSqaSkhJEjR6LRaDh9+rROZIoWWqZbW+eDIyG00iF/f38aGho4fPgwQUFBQ9K8D4a+vj5xcXG0t7eTnJyMsbExtbW1nDhxQpJXDYaFhQXe3t7s3buXjo4OZsyYodPnB6OiokKKYJg7dy7bt29n4cKFGBsbk5eXN0Qu1tXVRXZ2NiqVip6eHvT19dFoNP9xlqvjx4/j6emJi0v/w7CWBGBg4RkQEEBAQL+5rFau5uXlJZnGjxo1CnNzc2QyGfb29uzbt4+AgACJdDIwMKC7uxtDQ0MOHTqEq6srvr5/ZiXy9/enoKBAusaUKVPo6enBzc2Nd955h7Vr1+qQat3d3TrRTEIIMjMzMTU15dSpU6SmphIbG0t3dzenT5+W7sfFxYURI0aQnJyMm5vbkGgYpVKJjY0NNTU1ODg4UFlZOcT3S5vhztnZmby8PHp6evD39x9Sp/n5+cydOxcHBwdCQkKGzDGJiYn4+vqSnp6ORqPB0dGR8ePHS9FSHh4eUh9ob28nOzubvr4+DAwMCA8PJykpiaysLOzt7Zk4cSIAjo6OUjSOEIJ9+/YNySqplXjenmkuOztb8t/at28fixYt0tl//fp12traePLJJwkJCUGpVHLkyBF6enoICQnBxcVFIlD6+vrYuXMnK1euHBLxNBz09fVpaWnh0KFD+Pr64uLigkajobm5mbq6Oi5cuCC1YVJSEgcPHuTvf/+7FJE3evRonUieY8eOUVVVRX5+PqWlpTrz6eDoTgbkwNHR0Rw4cACZTMbVq1e5du0akyZNGiL71pKnMpmMM2fOYGlpqeMBqCXNbvcvdHd35+bNm3z00UeEhYVhbGyMm5sbJiYmUr8oKyvjzJkz+Pn5cenSJc6cOSOdo6enh8LCQqytrXUIKz09PUaPHs369esZN24c+/btw9/fX4cYH+63bfLkySQkJHDp0iXpt3by5Mk699vd3Y2BgQFyuZyFCxdy5swZjhw5csd5/saNG9TW1ur0K3d3d9LT06Xxoc2ceurUKXJzc/8jWf7/Kfjqq6/46KOPqK6uJigoiC+++EIad8Nh586dvPrqqxQXF+Pr68vmzZt1Xr4IIXj99df57rvvaG5uZurUqXzzzTc68+J/gjdnrqStp4vi5lqau/oXah9H3YeRnj7lrY28f2w3u1c8h7e1IwcLLxPk6MEoW1cKm2qY5h5AZVsjy7Z/REdfD1/Eraehs438ujLy68qZYWJBduk1Hk/9J6/OWE6ggweBDh509PWTCZdritk4Popxjp4o5AqmuPlxtCSfTalbmTsylGifceTVlvHtuQyWj57KdI8AhIBzlTe5J3AayGTsuHICe1NLghw9+Dp+I2YGRmiEYLS9G7vzT/H+sd08O3UhOdXF6CkU5NaW4G/nSmNXB1tOpTDKzoUgh/7v2ptY0N7XjY+1Ez9ePMjXZ9PZOH4Oo+xc8bC04+v4jcjlcjws7ZDL5HySnUDGzUtsiV2HlZEphU01eFjZ42Zuy6HiK4y2cyOnphgXMxt+WrQJPYUCKyMTDhddoVejoq6jFXMDY64MLMYOrXmL/LoyRtm6kFtTwtmKG8hlchxNrbjVWE20TzDpNy9Q0lzP0tFhVLc38VPOYdRCQ5eql7QbF3Axs6alp5NzFTf5Oeew1JZNXR0sHDWR1p5OPo9ZS1FzLY+kfMe6kNl8O+9BHkz6lhifYFYFTaeqrYkRFra4mFuzbMfHbIldx+HiPBb5T+Z85S1emb6M8U5eLNq2mS1x61kzbiYnSq/y2qF+L5zVe7ewY/kzVLc18WBoNIEOHtyz+zO+nvsAz05dyO+5x3h/9r2Mtndj/u/v80L4IjaMn0NNRzOLtm3ms5i1bEz6hk+j13Co+ArPhy/iSk0pnb09PD45HltjM54LX8SFqkIOFuWyfMwURtuPoEfV128Y3FJPZVsjoc4+tPR08sz+nwbkbGrqO1vp6O3BzsSChyfEYKpnyHy/CdgamzPeyZvVQTPo6utlU9o/+TR6DUGOHtgamxPu7k99RytJ184y2n4E35xN54Xwxbxy8HdWjgnnrZl3YWVoystZv+Nt5UiMTzDmBkasD5nNe0d38f3CRzlTcZNNk+LxtnbksUlxOJtZszZ4FgqZnEdSvuOLuPU8H76Itt5ulo2egpeVAxqhYfOcVVgZmmJjbEZnXw/rQmbTperlxQO/sjY4khcjltDZ14uPtRPP7v+Jr+M38urBP3gn8m5en7GCHnUfr0xbKskr/z7vQU6X3+DxtH+ycfwc3p99L8dK8jlcfIV1IbNYFTQdOxMLNs9ZzaJtm3lz5kp+uHiQRyfG0tjVzmL/yUxyHcm6hK/YPGc1D4RG0dbTRVN3O0+GzQOZjDPlN/CzdWHvyuf57fJRHp0Yi6WhKd+dP0BOTTGb56zG2siExyfH42Zhi69NvyxvgosP9+z6jKenzKeitYEo73FYGJpQ3FzLd+cyeT58EacrrmOk1Of7iwf5NOZ+lmz/kE+j1/By1m+8PHCfMzzGYGNsyobEb5g84DVV39mKgUKPON8QTPQNeXfWPRgq9antaEGt0dDR281YB3f6NGoW/PEB78++FxM9A36/dYkVo/sj+6eO8GfuyNB+0m6ARLI1MWflmHBsjM1QyhX8fd6DNHS2cdfYCFbu/ISXpy3l3aO7+DxmLYv9J2NqYMjGXd/wUdR9fBm3gSMleYQ6+zDJ1ZcDhZdJvHaWr+M38nDKP/jngkeY6OLLpeoiOvt6eDL9e94ZILmu1Jbyctbv/LL4cU6WXRuI6uvjh4sH+eHiQZ4Km89zUxfSo+rjjZn9kWF7C07zUdR9lLfW89z+n9k4PopPotegEYIedb+/W0dfN3pyBcdLC3g563e+iu+PSvz0ZL90/7v5DzNi4EW3h5U9p8qvc+BWDh6W9tibWHChqogFfhPIuHmJEGcvKtsaiRgRwAQXXw4W5dKj6iPaZxx9GjXfXzhAoIMHtib9Pn1fxK3HzticGw2V2LmNIv3mJeZ4B3Gu4iaeVg5cr6/ESE8fO2MLngybh7+tK9cbKon/7R02z1k1QLxWc0/gNHKqi+lSlVHaXE+0zzj2FJziZkMVNR3NGCn1mfb9y3hbOQKCxq52Nh/fy3uz7qG9t5vEq2dxt7TD0dSS+aMmcKuxP5No+o2LUlReU1c7hU019KpVKOUKzAZksy7m1pgbGDPSxpmc6mJeyvqNGR6jeXhiLA4mFrT0dGJjbEZZSz2GSn161Sqq2vqN91u6+/cFOXpwqOgKMz3HcL7yFtE+4zhQeJmAAXlrtE8wp8uvM91jNAeLckm8epY3I1eSV1uKg6klhU01VLY1cqmq3x/xdPkNHE2tCB9hyE+XDuFkZsVsr0DePrLj3z8kiL/wH6GlpUUAIisra8i+a9euiZs3bw75vLKyUiQnJwshhDhx4oRobW0VQghx+vRpcfjw4SHHp6am3vH6u3btEnZ2diI1NVWkpKQMuV5aWppQq9Vi//79Ii0tTahUKunz4dDT0yM+//xzAYhz584Ne8xw5dFoNGLbtm2iqalJ7N+/X3R2dorU1FSRkJAgqqqqhBBCNDc3i+PHjw/5bnt7u9i2bZvQaDQiJSVFOt+5c+dEUlKSSElJEY2NjUIIIZKSkoRarZauNRjp6ek65fntt99Ed3e3EEKIxMRE6d5vL/fevXtFUFCQOH/+/JD96enpQqPR6HxWXV0tEhIShBBC9PX1iV27dv3b+unu7hZ//PGHWLNmjThy5MiQ/b29veLAgQNCCCGSk5OlPjEYVVVVUpukpKSIrq6uIcckJyeLjIwMcejQoSHlLiwsFHl5eUO+o0VeXp6IjY0VMTExorm5+Y7H1dXViRMnTgiVSiV+++030dnZOexx2rbUQq1Wi507d4qamhppX319vUhLSxMpKSni4MGDorOzU2qTlJQUodFoxOnTp8W+ffvE9evXdc537NgxqZ7Onz8vLl26pLP/TuNGo9GInTt3itraWrF///4h+wePjby8PLFv3z5RUFAgGhsbxYkTJ8TBgwfFjRs3/qN7vnTpkigoKBBnz56V2ne465SXl4sdO3bo9Onbz6VFWVmZ+OyzzwQg9u/fL1paWoa9x927d0vXUavV0ucHDhwQqampOuNBOx8NRm9vr9S3U1NTRW1t7ZBjBo85MTC3JSUliaSkJPG3v/1NbNmyRaSmpork5GRx6NAh0dPTIx17+vRpUVdXJ4QQori4WOzYsUPU19dL1xNCiH379g07FoQQ0hjUoqamRmd+ycnJ0ZkPS0pKRGZmphBCiLa2tiHj8Pz58yIxMVGcPn1aJCcni19//VWnvFrcqV8lJydLdbR3795hjxFCiK6uLrFv3z5x48YNcejQoWGP6ejo0Gn/hIQE0dDQoHMv+fn5Ot9JSkoSJSUl4vLly6KoqEio1Wpx4sQJkZSUJNLT00V7e7sQQoibN2+Kq1evikuXLt1xjtdeu6+vT2RlZYnExESpLtPT00VKSoqorKwc8r3BfW0w2tvbxdtvvy2AYb+nLZd2jOfl5Yldu3aJ2tpa0dfXpzNOW1paRGZmpkhJSRF///vfhZ2dnXRvt+P48eND5rKysjKxY8cO0dvbK92PEELcunVLHDx4cNjz3KnNjx07JsaNGyeAYcfh/0nYtm2b0NfXF99//73Iy8sTGzZsEJaWlqKmpmbY40+cOCEUCoX48MMPRX5+vnjllVeEnp6eyM3NlY754IMPhIWFhdi3b5/IyckR8+fPF56ensP+Ng0H7fMTIN6ddbcAxOY5q8R4Z2/xQGiU+Hbeg2LznFXiq/gN4velT4pVQdPF70ufFP9c8Ig4cN8bYnXQDCFDJt6bdY+4b9xMMc9vgnhoQrT4W+w66byvTl8mXp+xXPhYO4otcevF1/Ebxfuz75WOeXzyXPHYpDgx1n6EuCdwmgDEl3EbxCMTY0WUd3/b3jU2XIQ6e4unwuaLV6cvE0+GzROACHL0EG/MWCEAsWDURPFl3Aahr1CK92bdI9aFzBaA2L7saRHrGyJenb5MbJoULx6eECMAMcNjjHhj5koBiNVBM8QXcesFIP4Wu07M95sgAPHjosfEVLdRYqrbKGGsZyCV76v4DQPlihCfxawVn8esFYl3vygemRgrAPFSxBLxZdwGqQ6+it8gJjj7iH0rXxBxviHi6/iNYkvceqGUy6U6f2PGCrFw1ESxcfwcAYjF/pOl+79v3Ezpnj+NuV94WTkIQPxj3kNiScBkAYg3ZqwQi0ZNEi9FLBFj7UcIGTKxYsxUYWdiLh6fHC+MlPpiw/g5Ur1oywoIpVwuXpm+TMT6hoi1wbOEsZ6BeHrKfAGID2avEjM9x4h3Z90tVgfNECNtnAQgRto4ixifYOFt5SjC3PyEsZ6BAMTa4EjxxowVYuP4KBHt019+BxNLEeMTLGJ8gsVHUfeJ1UEzRKxvyED7x4tVQdOFn62LAMR4Jy/xyMRYsT5ktpjtFSTCR/jrlFfbZuOdvAQg7g+OFMtHT5Xq5OVpS8W7s+4RSwPCxMdR9wlAGCr1hJ+tixjn6CmsDE3EolGTpPM9PjleAGL56KkCEC5m1iLMzU9YGpqIT6LXiOnuo8Wn0WvE5jmrBSD+ueAR8er0ZeKNmSvFIxNjxQvhi4S9iYVwMrMSMz3HCEA4mloKQMz3myBenb5MAGKSi694IXyRAMQXcetFlPc48eOixwQgXpm2VGpDbZss8p80UM9OwlCpL56bulDYGJmJMDc/sWbcTBFg5zowbu8Rj0+OF1aGpgIQYW5+YsP4OWJtcKR4IDRKvD5juQDEpkn99/lk2DwR5T1OvD/7XulapvqG4vnwRWJV0HQxd2SoWOw/WQQ6eAhAfBi1WqwYM1W8FLFEzB0ZKj6NXiN9771Z90jzxgvhi4SloYnwsnIQz01dKKwMTcWHUf11tmLMVOk7VoamYrH/ZKk8gPhm7gNixZip4vUZy4WzmbUAxJpxM0Wwo6cYaz9C3DU2QgDC0tBELA0IE+9E3i08LO2FQiYXz4cvEu/Nukc8NCFafBazVrw76x7hbGYt7E0sxARnH3FP4DQR5xsi7gmcJh6fPPfP+h01STwYGi39/9PoNSLI0UO6P39bV2FtZCqMlPpipI2TeCF8kVgaECZ+X/qkAMTckaFiVdB0EeToIV4ZaGNtfQFSfzTVNxQuZtZi0ahJ4uEJMWKSi680xsc7eYl3IvvrL8YnWDwfvkg8MXmueHrKAvFCxGLxwexV4pXpy4STmZUAxIOh0SLGJ1i4mduI2V6B0jWXBUwRL0Us0anjtyPvkuaGxybFSfueDJsnpo4YJbWbti70FUqpn7wTebdY5D9JbBg/R0x08RXvz75XfBpzv3h/9r3ioQnRYknAZPHerHtEjE+wNL+tHBMuAPHE5LlSe60NjhTPTFkgALEldp3wtLQfaKO7pTGt7RtbBubf58MXiQj3ABHjEyzemnlXf9+KWCzt187TzmbWYuuCh8WWuPXiw6jV4tmpC8V4Z2+xec5qqSwbx0eJNwfmi6UBYeKD2asEIFzNbcSnMfeL58MXidleQeLusRHCwcRSuJhZi/uDI8UjE2Ol+e/tyP4yfDQwlzw+ea40F78+Y7m4N3C6AMSzUxeK+JHjhZeVg3A1txGPTYoTAXZuwlCpJz6YvUo8MjFWvDJ9mXghYnH/mJ++TKwNjhSAmOLmJ5LveVl8Gr1GfBG3XnwcdZ/0GzN3ZKj095bYdeL5gTnk5WlLxecxa6W/tX1QO64+j1krnh6o+/75q//eP4tZK56dulCqH+39/bvnp79Iqf8Q2oeqDz74QGRlZekQAXd6QBcDD8ZpaWnSMXv37h2y6NbiTovT/fv3i6KiIpGUlCQ0Go3QaDTi6tWrIiUlRaSkpIiMjAzx4IMPij179gxp8NsXk1ocP35c5Ofni7S0NHHlyhWxe/fuIQ/8Bw4ckMgeLXbv3i0RR4MX21pSISEhQWzatEkUFRWJ2tpa0dTUJNrb20Vvb6/QaDSisbFR/Pbbb+Lbb78ViYmJIjExUZSXl+tco7S0VFy4cEE67+7du0V1dfWw97R3716dBX5ra+sQUqC3t1f88ccfor6+XqSnp4vLly8POebw4cPDki4VFRUiOTlZJCQkDHkAP3r0qGhra9P5rK+vT+zevVv4+/uLpKQkceTIkSEkWVpamrhx44Y4e/bskOtpkZSUJBobG3VIULVaLc6fPy9SU1OFoaGhKCwsHPa7WpLndjQ2Nopdu3aJvLw8kZaWJpqbm8WOHTuGPVZbBu2+OxFTgwnG27Ft2zbh5+cnkpOTRXZ29pB6OHLkiGhoaBA5OTmitLRU+vzKlSsiISFBXLx4UYgBkvPEiRMiPz9fZGdnD7lORkaG6OvrG/J5Zmam1FcvXLgwZHE/HGFbUFAg9u7dKxwdHe9ISInbxmpHR4dITEyU/l9VVSX++OMPqb+kpqYKjUYj9u/fPyxZe+7cOYnQvb1+zp49K9LS0kRPT484evSoSElJEcnJyeLWrVvScfn5+SIvL09aUOfk5Ijdu3cPIXPFHUip3bt365Ay27ZtGzLu7zSPdHd3i08++UQA4ujRo8P2pdsX+hqNRmRlZUmEw9GjR0VRUdGw5xcDxMXgOXPv3r1DrqMlh2pqakRSUtK/vL4WR48eFcAdCaPs7Gyp/2hx5MgRnXF34cKFO5Z9165dUr+8du3asC8i9uzZozMutKS/tu/k5uaKsrIyad+OHTt0SMPb77Wnp0dkZWWJpKQkcejQIbF582Zx4sQJIQbGcGdnp2hpaRH19fWiqqpKvPzyyyIxMVGkpKTozGVtbW3i2LFjQgzUrZZU1GK4Oj1+/LhISUkR169fF1euXBG//vrrsOPy4sWLOv1do9GIo0ePih9//FG89NJL0u/a0aNHpXrQvqT4/fffhyWm7tTGPT09YseOHaKiokKkpaWJoqIiibAcDref59atW2LPnj2isLBQfPjhh/9XkFITJ04UjzzyiPR/tVotnJ2dxfvvvz/s8cuXLxfx8fE6n02aNEk88MADQgy0j6Ojo/joo4+k/c3NzcLAwED88ccf/1GZBpNSw21aogAQ091HSyQAINwsbMXDE2KkxYx2czCxHHIeGyMz6W/tQsZQqf8vrw2I0fZu//YYQBgp9SWyZbhtuDIN3jYMLBKH26yNTP+jMoQ4eUn3ZGlo8h/dl4WBsVR/2kUsAyTKv/r+4LrTkkGAGGs/4t+WM9DB/Y779OQKnf9PdRsl/T3NPeA/qod/t00dMUrn/7bGZv8j5/WychBzvINEmJufTl3eadMSSHfa5g0Qk7dvoc7eggHSyMm0nyzQEme3byMs7MQMj6HX0fYpLdnwn2yDiZ3BW5ibnwCEXCa743fdLeyEyaB+cqfN6rZ+uyxgivS3j7XjkD4y2XXksOeZ5OL7X2o7U31DwQA5PPhzbf3evt3eh9cGz5L+Hm5e0dbRv9q0JOA4R89h92vnvdleQWKq2yhxb+D0IXPff2WzN7GQ/tb21+BB1142esp/fC6FTP7fLsfgTUtiDd4mOPv8WUejJg1ps3/Xpv9JGbVtNt19tESu/qvNYKDeva0cB53jX8+ZgzftWBg8ZiwMjKW/Rw363ftPyvHfaXPd++8v++DfoTv9Zml/P/+nt79Iqf8haB+qjhw5IpqamsTevXult8//KsJJDEQHzJkzR/z+++9DSIzBOH/+/JC3yxkZGdKip7q6Wpw6dWrI92pqasSiRYvEtWvXhuwbbuF96tQpcfnyZZ39KpVKpKSk6CyaGxsbdUiAxMREHXJouHM3NDSImTNnijNnzohz586JkydPiqNHj4qsrCyRnp4u0tLSBCAWLFggzpw5M2w9DCZDtEhJSRElJSU6183MzJQWbIOxb98+6fsNDQ3ijz/+kBbd2sV1eXm52LVrl0Qmnj9/ftg3yc3NzeKzzz4TAQEBQxaf1dXVOlFXZWVlYvv27aKrq0u6TnNzs0hJSRGJiYlSnScnJ4udO3cOe+9aaI+pqKiQouPS0tJEVVWV0Gg0UlTKcBF6w0UupaWliQMHDkj1oq3DOxFTGo1Gh2gRg4ipjo4O6bNbt24NIXs6OztFQkKCyMrKEvv27Rv2/lQqlbTvTsRWcXGxSEhIEMeOHRPffvvtsFGKYoAE0pKYWjQ3N4uMjAydz5KSknQmxOH6b2Fhodi9e7d4/PHHRVJSkkhNTR02gkdLNAkhxM6dO4cQbtrIuhs3boiffvpJ7NixYwjBoYVardaZQ9Rqtdi9e7fU34cjdQoKCqTFe3Z2ttixY4f4/vvvxa5du+5IeosBEqWiokL6/6lTp3QILm3Zf//9d50+MRwpdenSJbFv3z7R29sr0tPTRVVVldizZ8+QSMQ7zY9XrlwRgHjhhReGJdAGQxstdXuUlBY3b94Ux48fH3Zc3X794uJisWfPHnHlyhWRlpYmysrKdOpbi5aWFp1rnT9/XuTk5Aw5/549e4Z8duHChSHzcUFBgTh69Kj0/2vXrg2J+hMDY+PXX38VKpVKnDhxQrS0tIi+vj7x22+/DemLycnJw74QqampEb/88osAxNatW0V6errIzMwUhw8fFidOnBBnzpwRFy9eFMuWLRuWLDt//rxEfmnJsMGRSIPrtLKyUpqrxMC83NfXJ7q7u6X7GIyjR48OIZZ6e3vFN998I955550hZdFoNBL5piWmbv8d/Xe/wYcOHRLz5s0blpS9/TwajUbU19eL3bt3S8S4EOL/ClKqp6dHKBSKIRF8q1evFvPnzx/2O25ubuKzzz7T+ey1114TgYGBQgzM8YBOXQghxLRp08SmTZuGPWd3d7doaWmRtrKysv8tD7h/bX9tf21/bX9tf21/bf93bP/u+ekvT6n/BiwtLVm4cCElJSXs3buXf/zjHzoZ7G73nujr6yMzM5OVK1dy+PBhyVfkdv+MwMBAsrKycHJyggEzZz8/P8mY1sHBQce7Q4vTp0+ze/dusrOz6ezsZNy4cXcs+/nz5zEwMJCyuw02Do+Li6OyspJdu3YxdepUnJycpOxfGRkZBAcHD/G1GYyenh72799PYmIi58+fH+LnoVar2bFjBzdu3KCtrQ17e3sSEhKwtrYmPDxcJ5347XUTFxdHVlaW5H116tQpXF1dh2SFAggLC+PkyZM4ODhw9epVVqxYIZ1be14XFxeio6P5448/WLRoEWZmZlKZGDBSzs7OxtzcXMr419LSQkJCAt7e3owZMwZ7e3suXLgAA2bkKpWK5cuX65TFwsJC8uYoLi4mOTmZefPmsXfvXsl4nUF9Rlu+pKQk/v73v3Pu3Dmio6N1PGiuXbuGn58fXl5eHDt2jNbWVsmsW+utosWlS5coKipizpw5mJqaSp9rr2NhYTFsxsiTJ0/qZDrT9pGVK1eyfft2FixYgLGxMVevXiU2NhYGvL0yMzMBiI2NRU9PjxMnTlBfX6+TNY+BLGCzZs0atq21cHd3x93dnXPnzvHggw9K2fVux2BvIi0OHDggZarTIj4+nm3btg3xLWLAl2r//v24u7uzePFiKQOgSqXi+PHjtLe34+TkJPktBQQEkJ+fT2dnJ+PHj9fxIhJCUF5ejomJCbNmzUKj0fCPf/yD8vJyTE1NdczKGTAM17Z/S0sLKSkpkicXA5nOBnsLyWQyRo0aJXnxNDY2smnTJs6dO0dqauqwWT61GDduHGlpaTg7O1NXV0dbWxuTJk3SOUapVBIbGyv1VbVardP/Ojs7SUtLY8yYMZKvk7YdFi1aRHFxMfv27WPkyJE6/lUNDQ2cP39eSnjg6OjIzz//jLW1NXl5eZJhuqGhoZS5UwttHQz2kmIgkcC5c+dobm5m9erV/Pzzz+zfv5/AwEDJX0s79mtrazl58iTu7u6SB1VZWZk0j5w9e5aLFy8SHR2NoaEh5ubmkt/a9evX6e7uZsqUKUPq1MfHhxs3bkj+Op2dnZSXlw9JSDFq1CjJNHzq1Knk5uYOm1FToVCwePFidu3ahZWVFUqlku3bt7N06dIhmRPDwsLIzs7WyRB48eJF7OzsuOeee7Czs5MyAXp66qYDFkKwZs0arKysuHDhAiEhIdK+2tpaaU7RJp/Yvn078+fPp6urC2trazQaDRkZGZibm7N06VLpu9oMkEqlkkWLFklegtpxPjjjIQMeZAkJCaxdu5b9+/f3Z5kZ1N8uXrwolU0ul7NixQp27NjB3LlzMTU1lczgh0N9fT1nzpxBo9Fw4MABZs6cKfm9DecRlZeXR0ZGBosXLx6SLfH/BtTX16NWq4f8Tmt/C4dDdXX1sMdXV1dL+7Wf3emY2/H+++/z5ptv/i/dy1/4C3/hL/yFv/AX/r+Dv0ip/wW4uLhw5swZJk+ezJw5c+74YLxjxw6JsJk7dy5FRUWkpKTAwMJ7zJgxyGQynXT0txNSWhgaGuqkge/r60OhUCCTyZg6dSoXL14kOztbWjwNfqjOyclBCKFDWmmzwWkXO87OzixdupQTJ05IxrIHDx7E19d3CAGkXexps3Lt2rWLFStWoFQqdcynGSAsduzYwcKFC1EqlRw7dozg4GBcXFxoaGggKSkJY2NjDA0NhyyStZg+fToHDx7k3Xff5ZlnnsHOzo68vDy6u7ulra+vPw3yhg0b2LZtm04K+tbWVp1siaamptx1113s2bMHb29vZDIZJSUlXLp0CXt7exYsWKBTf0FBQQQFBXHz5k0SEhJwdHSUTJInTJiAh4cH/wojRozg7Nmz/Prrr8TGxg5ZYGpRUlLCihUriIqKori4GHNzcx1D2cLCQmJiYmDACDo3N1cy9T19+jSTJ0+mpqaG48ePM27cuCEm0LfD0tKSWbNmsWfPHsmkvaGhYQiRxKBFoXaBqsXBgwfp6Ohg9uzZOqbeU6ZMISkpSefYnp4e+vr6dEgya2vrYcmrvLw82tvbSUtLw8rKij179jB58mScnZ3veD9XrlwZlvSVyWTExsaSmppKaGgoDg4OCCE4dOgQvb29zJ8/f8gYViqVUtr6iooKUlJSkMlkTJkyhZMnT2JhYcGoUaM4cuQInZ1/pjx1d3cnKiqKr7/+GpVKxYwZM2hoaODIkSNSH2XAVH/s2LHo6emRn5/PzZs3ueuuu3TKHhwczMWLF4mIiBhyrw0NDRw4cIAPP/yQ6upqxo8fT319PWlpaVL5Q0NDJRN5rfm1EIKsrKxhCToG+sTo0aM5ceIEo0aNwtLSEgayZlZXV7Nw4cI7znceHh54eHhw7do1li1bhp+fH0IIrK2tmTlzpkTKZWVlMW/ePImk0aKrq4vz589LhJCRkRGhoaHs2rULHx8fzp8/T21tLQyYZ2vv77fffpOIzitXrkhE5ZUrV/j666956aWX/uVYmDBhAiqVioyMDMzMzKT6rqyspLi4eIhhvxZjx45l37590hhNTU2943X8/f25fPkykydP5pNPPqGgoACFQoFcLkehUEibXC4nMDCQtWvXcv/997N69ephyUZra2uampq4du0aV69eZcSIETqkHUBUVBQHDx5EpVLpzCP5+fkEBATg4eFBdnY2169f1zFCH9wHZTIZy5cv548//sDS0hJXV1f27dtHdHQ0JiYmd6xTY2Nj5s2bx44dO3QyG2r/raur49ChQ9x1113I5XLCw8M5duyYzguNyspKHcJs8BwUHx/P9evXCQoKkvZXV1dLBLaNjQ0xMTG0trZKWQMnTJgwJBOuFm1tbVhZWeHm5vZ/HSH1fxJefPFFnnrqKen/ra2tw2aJ/N8JG1cvGsoL/8fPq9Q3QNXbc8f//wVdGJqaY2BiTktNufSZQqmHWtX3L783GHoGRpjbO9NQdut/Uyn/3wtDUwu621v+/12Mv/A/AAsHV51x9F+F7Qgf6ktvYunoRnP1/3NZZeXK/mc+jaoPGzdvGspuYW7nRGtd1f9jZdApj0KBZlCW8L/wfxD+o5jwv6Aj3xNCiKamJvH777+Lrq4u0d7efkdD8QMHDkj+GcPJ0oqLi0VycrJITk4WOTk5Ijk5WaSnpw+RkmjR1dWlYwZ74MABHTmVEEJcvXpVOkYru8nNzRUnT54ccr6ysjIdQ9PBaG9vF4D48MMPh5UwFRQUSJK2nTt36kgqkpOTpXvt6ekRv/76q45PzXD1VV9fLwCRnp4ubVo/rrS0NJGZmSn++c9/CkD88MMP4saNG6KsrEzU1dWJtrY2yb9EK3/Zvn27zvmLiopEQUHBsPf68ccfCyMjoyEysH9V3uLiYiGTyYZ4Yolh5E7aOmhtbRXt7e139LFpbGyUpEraa164cEEkJCRI9zecVKW4uFgkJiaKhIQEkZSUdEd/nzuVTwxIHXft2iWqqqrE6dOn7/hdMSCj+eGHH8Tq1auH+HrdjqSkJB1vmeTk5CHG0iqVash9nT59WirH4PrPzs4WCQkJOv1JK7tRq9VDDOlvx5UrV8SWLVvEuXPnxO7du3WMpbUYzvh+8L3v379fAGLv3r3i2LFjdzRgTk5OFiqV6o5yzYaGBnH48GHxyCOPCDMzMx1vrcEYrv+dOXNG7N+/X/KrUqlUYvv27Trl7u3tFSdPnhSpqakiNTVVHD16VGRmZorff//9P5IhnT17Vuzdu1fk5OSInTt3DpH6/avyFRYWivT09GHNwFtbW6U+eOzYsX/Zf9rb20VmZqYAxFtvvTWs/5YQQtTW1g7bb3fu3ClSUlLE1atXh+y7k1dWTU2N2L17t3j33XclI/l/hYKCApGfny/Onj2rI6lVqVTiypUrIiUlRWqD9PR0ERsbKw4dOiSKi4tFYWGhuHHjhrh69arIy8sTubm54tKlS1Ife/XVVyX583Cbr6+v2LZt27DlGnx/R44c0UmAcLtkNiMjQ5LgDdeeGo1GnDp1SjCMlOtO19RisExYu187Z92Owcb2t//e3V6eP/74Q2zfvl2UlpZKv6Nnz54dVv6tUqmERqMRv//++7CSx/r6eskA/dixY0M8//6S7/3n8r3boX1+8gqdLiJWPS4AEbHqceExrt/PZMaap4VMJheWjm4iOL7fnHbyso0CEAYmZsLQzFLoGRqLsOUPCkNTcxEct1IYmlkKW3dfMXbOYqE0MBS27r5i/PxVwtzeWYQu6DeLnXr3I/3XHT9NyBVK4RnSb0zrEhAiwpY/ICwcXISj7xgxaWm/weuo8BjhFdpvMu49YbqQKxRi8rL+fSFz7xGGZpbCzNZRBM5ZIowtbcTMdc8JQIyf12/mHDB9rk7Zg6KWCWOLfkPloOhlwiUgRMgVSjFt1RP9cgaZTMy4/1nh5DtWACL+yQ9E2PIHB865SsRuekc4ePmLSUvWC6/x/aa+IwInCY9xU4STX6Bw8Q8WcU+8J51vVESssHb1FDPuf1ZMWfmQkCuUwn96vJi14UXp+zPuf0Y4+QUKe89RIvzuR0VQzHIxJnKBVFfaugiK6je0nbBwjQid32+qPG3VE8LCwVWMn7dKWDqNED6TIoW5vYtwGztRakdAOI0MFFbOHsJ/WpyYtvoJqU7in3xfGBibiTkPviqMLayF//R+s1wbt37/JNfR44X3hBlCaWAozGwdxZSVDwmlvoEwt3MShqbmYsysfvNdQ1NzSQ5ibu8ijMytpOuMiogVExaukeqcQX4uMplcxDz2lpArFMJtzAShb/Snt5GRuaUwt3MSExauEabW9iIoZrkYP2+VUOj1+9C4jZ0o5AqF8BofIUxtHISFg6uOLMXCwVUYmpqLsXMWS5/pG5mIkLn3CANjM6lv+EyK/HMM3LtJACL8nn4j8rFzFgtzOydhYmUrADEmcoF0T4P7s5mtowiKXiZMre2ka01c3G9GPC5mhTC2sBGTlqwXNm7eQt/IWKqbyHXPC2MLa+EaMF6qc49xU4S+8Z/+OjK5XPhMihSWjv1+ZOF3PyqMLW3ElJUPCWsXD2Fo+qdfjdvYiSJwzhIx/b6nhEJPX0xaukHI5HIxKrzf5N89KEyYWNmK0PmrhZWzhzAy/9O/xtTaToyds1iY2TpK7aUt89S7HhFyhVJErHpcmNn+6edjbt/vwWNiZSdMre2kOQAQU1Y+JAAx58FX+/996DWd9tEzMOrvm36BwnvCDOHsFyTVq42btwiKXiaMzK2kPjZ29mKBTCaC4+8Wjj6jxaiIWDEqPEaMnjlf6BkaiwkL14jZD7ws9AyMxLRVT0htZu/V72UWtqJ/HMc+/q4ARMxjb+nUm/bv6Efe1Nmvb2wqRk6JEvpGxiL8nsfE+Pn9xtFRD78ujV8TK1sxKjxGOHj3+69FbnhRGJiYiZCBudPU2k54T+j3zbJyGiEcvAOE/7R+E/K4J96T+hAgrF36jeYNjM3E+PmrhMuoYIFMJhx9+r39tGN09saXpTIrDQzF6MgFUl8fM2uhmLBwjTAwMZP6aEj83VL5ADHvmY/6++KqJ0TspnfEghc+E5aObmL6fU8JUxsHYefpJ7wnzBB6hsZi4uK1Qqn/pzeZg5e/1F+lsXDXI1KfNrGyk+ZthZ6+sHMfKWzdfUVQ9DJh4eAizGwdRfjdj4rx81ZJ84d2zvaZFKnTT+w8/YShqYWYsHCNGDF2ojCxsu2fXwfmkcG/X4CwdvUUTiMDB+phkdQergHjpf4dMKPfsNzJd6wYP+9eoWdgJJxHjZPaPmLV4/3XXHS/CJjRP094BE8VEfduEnqGxsLOY6SYsOh+aU7T/r5oPxs7u78d/KZGC3M7JzF+3iqhZ2AkZtz/rJi18SURHHeXNH9r+6ipjYNwCQiR+gwg/KfFiUlL1gszW0fh6DtGKA0Mxcgpc4Sptb2YvGyj0DcyFiFz7xGACJ2/WvhOni3N7VbO7iIoaplwGhkoLJ1GCKW+ofT7F7b8QWFiZSP4S773vwe3bt0iPz9fR5Kgp6dHc3OzFFHAQJSHtbW1JCOZNGmSFMmihVaixID0IigoiDfffBMvL69hr21oaChJ2BiQHQ2WQgD4+flhbGzMvn37MDQ05OrVqzQ3N0sSj8FwcXEhLy+PMWPGDNl3+vRpcnJyKC8v58KFC7S3t6NQKAgLC8PCwgJvb2+OHDnCtWvXCA8P14l88ff35+rVq3h4eLBnzx6WL18+RLY0GCqVivT0dAoLC2lra9NJUz643uVyOenp6Tg6OlJXVzdEYsZA1M6CBQvo6uoiKSlJktE0NzdL0kgt+vr6SEtLIywsjM8//5zCwkKcnJykNtPCzs6OmpoaScIghODEiRP09vaSmZlJZ2fnHdNjt7a2kpSUpFMHt0eSMRBBlJGRwYoVK3Q+Dw4OZtSoUSQmJjJ69Ggp0qWxsZHCwkIp7XpVVRUPPPAAe/bsobe3l9ra2mHllndKbW5hYYGDgwNOTk6kpaWRnp4uRdYwKMpG+3dRUREJCQksX76cs2fPEhYWptMHtJg+fTpHjx4lMjKStrY29PX1h0R9KBQKSbrJQBs6ODgwevRoGIgoampqwsrKirCwMPr6+sjIyMDS0pLw8HA8PT0pLi7m2rVrREdHD3t/DQ0N5Obm0tXVxaZNm9i6dSvr1q0b9lhbW1vq6+uxs7Mbsu/WrVt0dHSQmJhIe3s7wcHBw0aLVFRU4OLigkKhIDQ0lNOnTw+JArS2tsbAwID169czb948amtruXDhAr6+vgQEBEjHDW6z3t5ekpKSGDduHBMmTABAo9GgUCiIjIzk4MGDUsSQnp6eznzT0tLCU089xffff096evqQ8w8XHbJo0SJWrlzJr7/+esfoqNtRWFhIUVER0dHRHD58WGo7LTIzM1m4cCEMSND2798vyUBvh0qlora2lsTERMaNG0d2djbjx48fEkVqZ2fH2bNndT47deoUoaGhUjTQ+fPnGT9+/L8tv4WFBUZGRrz88st89NFHktR2cDtox4OFhQX29vYkJyejUqkICAjg+vXrMBDV4+/vT2xsrFS32dnZ/PLLLxw9epRJkybpRBZqUV1dTXFxMWlpaYwaNYobN27csV9/+umnWFpaSrLewfU2uL2mTZtGdnY2ly9fHnZ+jYqKYu/evURGRkqfCSE4d+4ctbW1yGQyQkJC2LdvH/n5+fj5+Q0p+7+aWyIjI9m3bx/GxsYUFBRQVVU1ROLIgMyxoKAAf39/jh8/PmyEIANSNVNTU+bNm8exY8eIi4u7Y3STWq2W6mLu3LkkJyfrRG8CHD58WJL8hoeHU1BQQHp6uhSV+n8D9PX1GT9+PFlZWdL40mg0ZGVl8eijjw77nbCwMLKysnjiiSekzzIzM6XfVk9PTxwdHcnKypKirFtbWzl9+jQPPfTQf6l8XuMj8Jk4A3NbR9zGTMDAxIyxsxdhbGnD8re+Q2lgSEPZLaIffRPbET5Yu3ig6u3BaeRYDv/wMSd3fEvcE++h6u3hYuo2xs+9B0tHV3Iz92Dj6oW9hx/mtk6U5p5h6t2PYGbjyIw1T6NvZMLk5RtR9/ZgO8IHtzGhXD+ZRUtNBVPvekQqn0tACHYeIxkTuRB9I2OCY1fS1dbM3Kc/pK+7i+BYU/q6uzCysMLU2g5HnzHEPv4uMpkMv6nRjAichGfIVMztXbD39KO7vRUzO0dMrGwxNDXH1t2Xpopi/KZGYWbrgGvAeIQQtDfWUnUjF4WePnYe/dGKjj4BCCGoKSzAf/pc5jz4KqVXzqJQ6pH8yXPEPPYWSn0DKgouYjPCh7gn3qO3u5Orx9IwsbTGxNIajVqFsYU1bmNC8Z08i9LcMziNDOT4b18QMvcezGwdOf77lwDMfuBlVr77I93trcx+8BXUfb3YuY+k9PJpguPvZsyshZja2NNSU05LTTlTVz5Ea301N08fZN4zH9JcVYatuy8LnnfF0MyC7a+sZeyshZhY2TFl5cNUXr2Ia0AI93+xl8JzRwmZew9G5lbYuHoxKiKWyquXsHHz5vhvX6Dq6Wbaw4/TUluJqreHBc9/RkN5Ieq+XrxDp9FQXohcocDM1onKq5e4mPoHvpNnY2ptj53HSH56YinRj7wByJAr9TAys8DQzBK5TI6NmzdLX/uWHa9vwHfybFz8g9EzNMLGzYvLGbs4u+9Hoh95AyEE+79+k/Hz7iUoehm3zh0lJP4umipLKTx/jMnLNtDV0ozr6BDM7JwounCC07u+w9U/BCefMZjaOtDZ3ED6F68xYeEabEf4IFMocPIdg8uocZjZOKDq6Wb2g6/gPnYSZjYOGJpZIJPJubx/F1EPv45S34ArBxMYMWYCExfdT82tAuY9+zFCoyb5k+cJjrsL79BptNZVYWxpw9ynP8TI3JJL6dupuZXPkle/pjT3DMaW1tz70R9UFFyks6WR6fc9RUttBQo9fRx9RtNYXkRfdxdWzu601FZw7XgGk5aso6ejDd/JszCzdcTE0obsbd8wc91zKPT00dM3xNjCmt1vP4yjz2hiHn2TtvoahEbD2DmL8QwJR6NRY2S2kpKckzRVFhPz2FsUXTiBZ0g4hqYW7Ht/E06+Y3EeNY6Yx97G0NQCjUbNiT++InbTO8jkctrqq5mwcA1+U6O5cSoL98BJZH77Nk1VpUxb9QTm9k4IjQYTKzsWvPAZHc0NRD/yBnKFkrGzF6NQ6uE7eRaqvh56uzpR9/WQ/sVrhN/zGJ7BU/EMnorSwJCkj54BwG1MKIam5jh4+WNu50ROxg6C4+/G1MqOtC2vEP3om7iOHk/ZlXNYu3iy6OUvuJa9n46meuKffB9kchAaVL09rPp4G1U3cond9A7IZCx59WvaG+vwDJlK0cUTWNg501pfRcxjbyOEhgUvfE5nSyMGxiZcz95PwdFUoh99E3sPP2RyOWv+todfnl7BmNmLyEnfweJXvqS7vRWlviE9HW2Y27uw6uNt1JVcR65QMuP+Z0jY/CQ1t/KZuHgtYyIX0lRVwpyHXkOhVNJWX4OLfzBqVR+dzQ2kbXkFn0mRxD3+Lq21lWjUajyCwvAICkPfyIQZa57GwNSc7G3f0N5QQ0j83bj6hyCTy0n9/CViH3+XtL+9zIp3vqe1thJbd1/6erowNreipbaSpa//HaW+AbkH9mJkbsm01U/Q2dJIe0MNU+96mIwvXydy3fMc/OdmZm98mRPbviLuifcxMDahta6ano42FHr6uAdOwsLBddD9G1B47ijh9zxGY0Ux+YeTmLbqCUys7cjJ2AmAobkl1q5emNrY09ncgLWrJ/Of+xSNWsXIsNl0tTVjaGpB9Y0rXCz6A3tPP+w9/Uj57EVaaiqY98xHdDY3MCJwEpb/P/b+Ozqu8t7+x1/TZySNeu9dtmQ1y5Z7wca2LHfcCAkJpJGbQAIk4d4QuCGEElIJkISQS0i4ITG2cbcld9mWLVu99977qI2k6b8/ZuZY45GBz/38vutz/8hey8tL0pmZM8855znnvZ+99zswDJNBz9ovP41c6UrssgforCokeEEa4clLkavcCIpPpujEX4X7w1BHI4u3fxGLxYxB93ekMjmu3r6se+z7eAaEMjs1jkQqI2FVFv6RCXgEhmGYncYwO41UrmTB6iwWrNrCzOQYWs0we55/C5PRaJ33Z7QsWP2e9dq9eV6Yz3PeeoGUzftIWr+DRRt3M9bXybZnXsczMJyP/uNLLN72BeKWb0Sp9iBs0VIGWurI++CXbHvmdWa1k1x+7zXCkpYQm/kAAy216Gem8YuIY/eP3mJyuI+kB6zvq3Bxozz3MJ1Vd1j58L+hHRsh74Nf4R+zkJDEdLprS9FqRj7XM4LIcr+nyH/BARMTE3h4ePDHP/6RlJQUp2wRi8XC8ePHhYfakZERCgsLnQqtuSTJXJjNZo4dO8bKlSuprKwkKiqKpqYmsJFZc4vjwsJCwsPD6evrw8fHh/Dw8Hn3ua+vj+DgYM6dO3ffgg9bXtS9Bc/58+eJj48nKirKYZ+NRiMFBQWMj48jFov58MMPef7550lOTnYqCA4fPozRaOTgwYNOxezch32z2cyhQ4fYu3cvCoWCM2fOsH37doft29vbaWxsZPPmzcL+1tXVMTg46GD1sJNEdtteZ2cnjY2NPPjgg+Tl5bF8+XKUSiUApaWldHV1kZWVhVwu5/z582RlZZGfn49GoyErK0sgkXQ6Hfn5+UKxf/LkSdavX4+HhwfYMpikUqlAEtj3sa+vj1u3bgm2ODsuXLjA+vXrBXLGYrHwz3/+kwMHDgiZJ/Mdl1deeYXbt2/z1FNP4ePjQ3R0tFDsf/zxx4SEhLBw4ULc3d2prq5mYGBAeK1UKiUxMRGlUklLSws+Pj7COYatgA4LC+PWrVskJCTMS2La0dHRQU9PDxaLhbi4ODw9PSkoKGBqagqxWExmZiY+Pj7C9qdOnWLnzp2cPHmS7du3z0tu5OXlsWTJEq5evUpycrKDHXJsbIz6+noHggVgYGCAmzdvkpyczJ07dwgNDWXdunV0d3dTX1+PyWQSCmVvb2+Sk5ORSCT87W9/Izw8HK1Wy+LFi53ydoaGhujq6nKwDWEjy9zc3MjMzOT8+fNs2rSJI0eOsGXLFgdCGpuNay4ZcfHiRTIyMhysQ/n5+Xh5eZGUlORwvBsbG6mrqyMgIIBly5aRm5vL1q1baWlpoaKigu3btzsQe3Nfm5+fT1RUFCEhIQ7709DQQE1NDZ6envj4+KDRaARr4qfhyJEjGI1G1Go1FouFlStXOhxbbBle69atQyaT0dLSQnt7u3CtWCwWTp48KRTJTU1NTE9PO1iu5rvmsRF7hYWF7N69m8uXLwufUVJSQmdnJ5s3b3YgBM+dOydkuA0NDVFZWSnsB0BlZSVjY2OsXbvWadyw5R1dvXoViUTCAw88wMWLFxGLxSxfvnxey5fFYmFiYoLGxkYyMzN54403ePbZZ4VreD7Y51OTycSxY8fYv3+/w9+7u7spLy9n+/btwv7ZSb653wWgqqoKtVpNZGQkly9fJjY2ViDrhoeH6ejocCLhCgsLGR8fR61WO11PBoOB9957j9bWVjZs2IBIJCIjI0Mgt+vr65HJZERGRgq5TnOzv/r7++nv779vruHAwACBgYGcOHHCyWY4FydPnmTXrl1O58XMzAz5+fnodDp8fX1JSEigurqanp4esrOzHezZdjQ1NWEymYQMNmzXwtTUlDA2tbW1AA5EMLZz6MqVKzz00EO8+eabPPfcc4yPj8/7Of9b8PHHH/OVr3yFP/3pT2RmZvLmm29y+PBh6uvrCQgI4Mtf/jIhISG8/vrrYCNJ161bx89//nMhd++1116jtLRUWKx64403+PnPf87f/vY3oqKiePHFF6msrKS2tla4n34a7M9PD73we8RiMTOTY1gsFvwi41GpPempL8eom8Wgn8UvPA6PgBDaSm/SU1+Gb3gcSjc1gbGLGGyrJzw5k+GOJqQKJcMdzcRkrqe7ppiwRdZ77+TIAB8990UydnwJ/6gF+EXGY9DNotUMMdbfjdo3EP30FMEJKQy2NRCRupzhzmYULmrUvgGM9nYwPtBNR3kBLp4++IbFIFVYv+Ps5DhX3n+Dbc+8biWMWuooOf3fbP72T5ApVJiMeprvXCUoIUUoXNpK86m7fo4vvPY3PAJCGO1pRyyRMDHUR9iipbQWXydkYTpSuYL28lvELL37fbqqi/CPWsDEUB8WLEyPjWCYnSEqYw1D7Q30NVZReOwvrH30aRas2YpYIqGzqpCwpCVMjgygn9EiU7ow3NlMZNoKeurKcPcPxjA7g2F2Gv2MluCENAZaavENj2G4s5k7x/4CFgt7nn8LTX8Xgy11KN3ccfcPZnJ4gLBFS+iqKSYqfRV9TVX4hEYz1N6IUa9joLWOgOiFKN3c0c/OELIwDbFYQuOtixQceY8NX3sOgLy//galmzsrD34Lv8h4umtKMOhmkchkRKQsp7ehgojU5TYCYxU99eVc//C3JD/4EO5+QcKYfvk3R5jSDKJ082CovRGZQonFbEY7NkJoYjqa3k5y3nqB9Y//kPDkTEZ72tBpJxFLJLj5BCCVyRnuauHye6+x9buvMNhWz2BbA9nfe5UpzRA9deX4R8ajHR8l/6O3CIpPYcWBJxhoqcXDP4SummIsFjOegeFIpDLGB3tQqT0QS6QERC+ku66M3oYKYjMfIChuEZ1VhYQnZ9JdW8KZX/87B372Pp6BobQU5iFTugAWZqcm0PR1suyhr2GxmOlrrCR4QRrdNSWce/N5sp56Gc+gcCaH+vCNiGegpZa+hkoqL31C1pMvgy3f1sXdC+3YCEa9jovv/ozN3/4JgbFJjA/2oPYNQtPTRtiipYx0tXLkpW+yaOMewpOXYrFYyPndj8l66mV8w+PoqLyNCBEBsYloNcN4BUfwzx99mYwdjxIQsxCDbhaZQoXaNxB3vyC6qouQyOQMdzYz2t1GZPpKwpOX0VtfhtlkYmKoD6WbO2KJFKNeh9o3ELmLK9NjI4glUgyz04z2tBO3fANuPgF015QQtmgpDTcvkPfBL9nxw1+h9g1kamSQ6fERLBYLIrEYiURGWPJSOivvcP3DN3n014foqSsjbNFS2krzaS8vIGbpOiHDUyKV2UivAeQqV6YnRpGrXIlMXUFfU5Vw/Z1783n2PP8WATGJdFUXOYzZ6keeJDJ9JUq1Jz211nzZ4a4WJgZ7iVu+EbBgmJ3h/O9f4sFv/piAmERmp8Yx6GaQu7ghkcoY6W7l0ruvsOs/fktQXDIdFbcJS15KR/ltRGIxSjcPRrpbuPHfv2P799/AZDCgcve0/r6rFYlMhkgkZnywB++QKPQzU0yPjwKgdHXHOyyaicFefEKjGe1p4+xvf8SaR7+H2icArWaY+vxcFm97xDp3Dvfj4ulDdMYaOirvEJ6cidlkpLHgEtf++mvWP/5DXDy8GGipwzskEpW7F0b9LDrtJF5B4YhlcmYmNCjd3Dnyk2+y+otP4e4XxEhXK3c++S+yn34NgPobuYz2tLH3P//AzMQY0+MadNoJJDI5QfHJNN2+lx0UhwABAABJREFUjMJVjUrtyZRmCJncOv9GpC5ndmqC3LdfZGKoj/WPW4nE1pIb+EctwD8ynuHOZvL++msO/Ox9vIMjGOvvQiyR4u4XxMzkOMdfewqPgFCSN1qfR6fHR8n74FdkPvRVopesxTMglJ76cvwi4pFIpfQ2VBC2aCljA90MdzRx6U+vsv7xHxKdsRq5yhXt2IhgKxaJxAQlpNDXWIVULkckkuDi4YW7X5Bw7c9OjTPc2YKrpw/T46OYjAZkShUe/iFoNcMYdLP4RcYz1N6Ayt0Lk16HV0iUcP30NlYSmbYShcqV3oYK8v/xDg9+88fIXVwxm4zkvv2f7PjhrwhZkEZ3bSlB8cmMD/QwOdzPUEcTTbcvk7plH36RCRhmp2ktvk71lZNkPfUz/KMS0GqGkatc8QgIEc53gO7aUvL/8Q5Ldj6KXGX9rOrLJxFLJCze/iUCYxPpb67B1dMXtW+A8FqLxUJHRQFd1cXUXD31mc9P/1JK/R/Czc1t3rBbe5hsY2MjMTExXLhwYd68Fm9vb0ZHRx0KHL1ez9GjR9m5cydubm6UlZWRkJBAQkICZrOZoqIi7ty5g1wuZ82aNSxdupSzZ89iNpuFMFqLxUJbWxsNDQ3C+8pkMnbv3o3JZOLkyZMsXbr0U7N47Dhz5oyQ9wQQHx8vrMJLpVJh5XpwcJBHH32Uxx9/nL6+PuvNYQ7x8r3vfY+//OUvgorj3vGy7/eRI0fYuXOnkLGkUqkcwnC7u7upq6tzItYWLlyITCbj4sWLbNq0CWzF8YMPPihsEx4ezvT0NLdu3WJ2dhalUsno6ChXr14lPT3diXTAtko+OzvLuXPnCAwMZNmyZSgUCvR6PQDXrl0jLS1NIKSwrTbX1tY67EtTUxMtLS3zhhmvXLmSW7duCaTA8ePH2bFjx6cWs7dv32b37t2kpKQ4kVWXLl1i48aN+Pr6CgTAvd/NYDBQV1fHk08+SWpqKk8++SSbN292CBU+deoUjz32GAUFBXR2ds5LeBoMBoqKiti3b58D4WAnB00mk3DOWiwWUlNTWbBggUDA3HsuTE9P09fXh9lsRq1W093d7USoeHp6MjY25rQvAQEB7Nixgz//+c985zvf4cyZM5w/f56QkBDWr18/rzrv3LlzfOUrX+Hy5cvs3buXkpISysvLHQgOX19fIcQeW4D8yZMnWbt2rYPaTiwWc+DAAY4dO8batWsdyON7r4cHH3yQI0eOsH//fkQiEVevXiU4OFhQt8xdH4iPjyc+Pp7+/n5OnTpFY2OjQDDcG+B+L1avXs3hw4eFz9Hr9Zw7d47o6GgeeughcnNzSU1NpbKykrKyMmEOmQ8lJSUsW7aMyspKtm/fjsVioaCggJGREYKDg4Xg96CgIPr7+9HpdHR2djqQJyKRCF9fX4aGhvD19aWiosIhGBsgKCiIvr4+h7Gtr6+nq6tLyGcKDAxkYGCA0NBQMjIySEtL4+LFi0ilUjZu3IhIJBIy95RKJVeuXHFSHaakpNDa2iqQV3MD5q9du4ZKpWLLli1IpVIhcykqKopDhw5x8OBBh2vF/t0mJyfp6ekhJyeH9evXc/ToUTZt2uRE3DEnWB2bOnDVqlVCHhw28r2hocGJoIuOjsZsNnP16lUeeOAB4fcdHR3Cths3buTcuXMoFAoCAwMZGRmZl0hTqVQ8+uijvPTSS0K4PLbzTyqV0tLSwtjYmEMenx0tLS3C7x9++GGOHj3Kxo0bhc9paGggMzPT6XUGg4G8vDxBpajRaDh37pzwd3d3dwfFoT38PiAgALPZzO3bt9FoNCiVStasWSMQITk5OUKe48cffzwvMTXfeCYkJHD58mUh5Lu+vn7e68rPz489e/bwySefOIzV/2YcPHiQoaEh/vM//1MgCHNzcwVisbOz0+E8XrlyJf/4xz944YUXeP7554mLi+PEiRMO6unnnnsOrVbLN7/5TUF1nZub+7kIqbmQKhRMjQzSVV1MwspNGGanGR/owWTQU3DkPVy9fFFs2c/4YA+IoPryCXb84JeELLw7R+mmp9COjxKRsgyVuxdd1UXCPDs5MsBwRzNP/NdF2stuEp6cyVBnEzPjGgZa6yg98xE7n/sNMUut15vSzZ2ZyXGmRgfxDY8FwNXTh8nhfrTjo9Tn57L3xT8I6iUAhauakMTFiMUSJDI5aVkHkClVmM0muqqKaC68SsKqLQTEJCKVyZEpXVi+/5uMdreh6evAMygcTU87YqmMlsI8wpKXonCxKoxDExfTUXEbiVSKprcDldoThasaH5ULjTcvkPfXX5P11M/ob6rGLzLeRroloPYNoK3sJiELUvEJi2G4q4WpkQGiFlsXlty8/egoL2BKMyy8NjAuGZXa+gxjNptQuXsRGLeIjB1fIixpCT315ZiMBm59/EcWb/8iPmExRC22Zv+5uHsxPT6KYXYGucqVkIXp9NSVUXrmIx5+9QM8A8MYaKnFMDvDUHsDQfEpPPDVHxK2aCk9dWWsf/wHqH38cfP2Z6Cllgt/fJnYZRtYceAJZEoVcpUroz3tuHr5MNLValULyBSofQJshbKJxHXbmdVOMDMxhn9kApPD/Zz+5Q/Y8YNfEpv5AF3VVtXs1u+9SnhyJoNtDRh0M1x892d88Y2PUKrdGWpvQqX2YPUXnyIi1UrQJ6zawlBHI1rNCAtWb6G9/BaRaStZvu8bmE0mpDLrYpBHQAgzk+OceP27PP72CRQubhj1s/hFJvDRc4+Q9dTPiM5Yg0yhBIuFKc2w9fzVTjI7OcG6x76PUT9Ld00Jl//8Ohu+/h/ELdtAV00xMUvX01F5GxcPb3zDYxnr68Ko17H6i09hMhhw9wticqgPldqDgJiFGA06JFI5UoWS4IRUxvo6kcqVeIVE0V5+i+RNDyGVKxjqsC5CXvzDT1m8/Yt0VlkbJwXGLSIsKYPwZOvcve2Z1wlNWkJ/c7WNDPkFPqHRTI9rUKk9Wf/4D0EkEsiy0MTF9NSVYbCRoHKlCyp3LxpuvsuKA98U5pvwlGX86eubWHHgCVK37LeqSxJS6Kwq5OpffsnDr/yFsYFuguJTGGipRdPbicrDi/ayW3gFR7DlOy/ZFC3uuPsFEhSfTE9dKWd+/e8s2/s1K6mZuoKDryTT11gJtnu0T2g0F/7wU+KWbbCSqtVFhCxM5+Y//4DFYmb1I08KZG5z4VVEEgnNhVcJS8pg2zOvo3Bzp63sJhKpjO7aUiQyGdueeR2pXIlhdgaLxYK7XxCeQeGIxGKKjn9ARMoyItJWIpFKhfEc7WlD09/FlT+/zvL93yQqfRWxS9dbST2fQNpKb2LQzVB3/RzxKx6kp66cgJiFzExq2PP8WxgNesymWabHNfhHLWB6XEPR8Q9Y/9UfoHRzx83bD5W7F40Fl7jyXz/n0V9/jKunDxODvbh4+tDXXM3+n74Htsy9ofZG5CoXwhYtFQht79BoeuqseZyTw/2M9rQhV7my9svPEBibhGdgKBaLhYiUZUyNDvL3Hz7Cg996AaPBQMutiwTGJqGf0bL7R2/h4uGJu18w+tlptnzHqjATiyVWIkahxGwyMdrTRmTaSoY7mxkf6KG97BYRqStQqT2Y0gwz2FbPrUN/ZPO3f0JHxW2kCiXbnn1DOIYSW15VeHImU5ph3Hz8+db7l+iuLUEilWHQzeLm5cvU6CCDbQ08/OoHVuJv0VJbLrIJhYsamVKFprcDF3dvguKS6a4tQSQSEZyQisViYXbSSpolrNqCq6cP/c011mcmuQIXTx9ai67h6u2HbmaK0IWLUbpZn0NaS27g4ukj3KN66sqJXrIWkUiETKni1qE/Erf8QYLiknHx8GZyZICuqkJMJiOG2Rl8wmLorS8THDLVl44TnbEGuYsbC9dtwyMgRCCOWoqu8Y0/5dBTV8bM5BguNuLLOyQSr2DrYmVbaT7BCWkoXFyRKpT4hscREJOIxWxmcrgf/+iFtJXcQO1rdQtZLBbay27hGxHLwZ+9T1vJDWGecPHwZqC1jtmpMcYHewmMTaKl6BquXtZsYLPJREvxNcKSlhCckErN1VOf/YzwuZ4k/gUBfX19nD9/3qGA9PX1JSQkhMTERE6ePElVVRW7d++e10qwYsUKcnJyhAf7yclJTp8+zf79+4UCem6YuVgsFiw/drXOzMwMP//5z9m5cydyuVzYl+joaIdObbm5ubz66quYzWaSkpIoKSmhuLiYyMjIee0bFouFY8eOsWbNGqELHbYH+NOnTztYQ7ApMgYGBjh58qQT8WKxWHj//fcFtYHFYmHDhg1Odo8TJ06wefNmB9vXmjVruHr1qqA0qqiomLdAwtb5Si6Xc/bsWTZs2IBYLHYKEF+wYAFlZWVcu3YNqVSKWCx2Ui7dC6VSya5du+js7OTo0aOCoqCyshIPDw8n6xC2VXZPT0+OHj1KU1MTrq6u97V+uLm5MTU1BTYFzfLlyx0UB9xDUty+fRtXV1cWLVqETqeju7tbKG5bWlrw8PAQCBF7V6R7LYgSiYTGxkY++eQTCgoKnI6nVqtFqVQikUhYvXo1R44cISgoyInYmRtcLhKJ8Pf3Z3BwUDhnJBKJMF4Wi4XKykra2trYs2cPubm5Dl0HsRXJQUFBjI+P8/bbb1NXV0d5eTnYyJnY2FinY9Xd3U1lpfWhQyaTkZmZyUsvvcTY2BgPPfTQvJYobEo/k8nkcI7MJThkMpmgELGPf1tbG2VlZezdu3de0lAkErF3715OnTrFkiVLCA4Onnc1QCQSsXHjRi5fvozFYiEmJua+Nl07AgMDWb9+PYWFhRw/fpzHH3/8U7e3Y8uWLZw/f56goCDa29vJzs52UOVhI2hu3LhBW1ubk1LMvl1nZycZGRmMjY0JJKWdlO/p6eHMmTNIpVJSUlK4cuUKYWFhDvYvO1atWsXJkyfx8vJy6soJsHjxYs6dOydc50VFRZhMJoHgxWY1bmxsdCB1srKyGBsb4/jx48TGxpKZmUlhYSHT09P3vfaio6Nxc3PjyJEjAtno7u7O9u3bHYr1trY2YX927tzJqVOnBLWXHXV1dfT29rJ7926hSD948CDnz58nLCxMsJ/aUV5e7qCUDQ4OpqOjg7a2NoxGI11dXfe16cXGxmI2m7l+/Tpr164VyLe5yM7O5vjx46xfv57R0VGHzy8uLqanp4dFixZRUVHBzZs3nZRXPT09qFQqQTE53wKMHfaufCdPnmT58uUEBgYyOzvrcO1pNBry8/ORSCSsX78eFxcXZDIZMzMzbNq0SZhbxsfHKS4uFpoFmM1m1q5dy5kzZ8jNzb2vUs3e6Q8bGWMPP7fPpXM7rt6LjRs3cujQIfz8/Fi3bh0Wi4WRkRG6uroYHBx0sLQaDAbefvvt+47F/zY8+eST97Xr5eXlOf1u//79Toq9uRCJRLz88su8/PLL/1f7ZZiZYbizmapLx/AOjSIoLhnvkChkShV745MZam8iOMH6bNJWms83/pTLzOQYbaX5eARag9K7qouIWWpdzFG4uKFy96K/qRoXTx9mpyYE4sQrJJLRnnb8I633udCkDMxGIwbdDB2Vd5CrXPGPSqDh5nl8bIWYUa9DrnIlbNESJFIZWU/+lOHOFtrKbhK+aKnV7hS3iP6maoITUjHqZgVCqqPiNh7+IXzr/Uu0Fl8XyAvD7DQKF6udA2C0t4PJkQGh0NL0diJXqpCpXJCrXPEOiaDywieofYPwDApDW3kHsVhMeMoytn73FYE8AehtqCQgeiFylQse/iH0NlRgMujR9HUSmrjYqrrp7cCgm0GqUHLr0B9Ytu8bKN08BCKMOYuEHeW3iVm6Tii2LGarDcknNJqxfisx4h0ahX/0QtrLbyGRyjDqdXRVF6H2CSD76dfQaSdpK72J3MWVjvICAmKTUPsGoOnroLu2BLVvEBKpDP2MFolMjtGgZ8t3fopvRCzT46MMdzZjMZs4+cYzZD31Mt4hUUSmrUQileEVHEF7eQEikQiPgBAab12k4dYFsFjwCAhl2zOv4xUcQXdNMTc+epvH3jxKZ1UhIpEIr6AwJkf6yXzoqwy1N+AdFs1IVwuBsUn4RSagHRsBkQh3vyBuHfojgXGLMJtNyJQuDLTW4RkUjod/CK0l11G4uNHXWIXFYmHjN35EV1URURnWxdr+5mq2PftzxBIpZqMBiVRGUHwyzUV5jA/0IBKJiMlcT1d1EX4R8Yx0t7L/pfcY6+9CZLv/yBRKPAJCab5zBd/wWLyCwolMX0lPbRmBcYtoLsxDIpXZVEkKYpasQ6FyxTskyloEe3hhHB1ksL2ByLQVyBRKoZDsb67BaNATnpyJyKYaspjNeAVH0FNfTsgCq8rVbDQwNTrEg9/8MS6ePrSX30I/raXiwlHSsg5gMZtpKcxDqlCi6evEbDZz6+N3MZtNbPjac8Qv34jSVc1gWwMKFzcMullaiq+x8ZvPo/YJZKDV2g10fLAXkUhE1lM/Y2ZyHJ120mp1DY/lv3/wMCsOfotFD+xkoLWe0MQMEMHff/gIy/Z+HTfvu4uA+hnrvaOnrhSRWIJhRsvYQDdGvQ53vyCyn34NtW8ArcXXEUuldFTcJnXLfqbHRxjrvxseLle5kvPWCzz6649RullJW8+AUMxGI4f/8+t86VeHcPPytVlhk+lvrmGwrQHPwFBbwZ/KtmdeR65yZai9UbDhWsxmpkaHcPXwZuXD38bN2w9NXycTQ724enhjNhnwCYuis6qI/I/eRu0TgLtvIM2FV/EOjkTl7kl3TQlX3n+DrKd+RmdVIQbdLGaLiamRQfyjEuhvrkExPoqHfzDZT7/GxGAvwzYisrXkBmGJGShc1XRU3MY7OJKJ4X62PPkyHZW3iUq3zptuXr4MdzSR+/aL7P7RW0SmraS9vICFa7NpL7uJq5eVYBlqb0Q7NizMSRNDvVRdOoZveCw+/sH4hMfSWVXI5MggQbGLkKtc6a2vQOGqxjc8FjdvfxoLLuLqaSUwfMNj6W+uQdPbgcJVjdlk7dLsGRhGQGwSYokUsURCQPRCpHIFEakr6Ci/RfSStbZ5dobBllrh59DEDHrqy5kY6sMwOwM2+zhAkG0Ot5Ka5YQmLhbm8d76cox6HUadDkTQU1+O2WQkIHohgbGJBEQnotUMCQsVBt0MQ+1NlJ79BwDbnvm5sO8AkekraS25gVzpwkBLLf7RVsX2YFs9MxNjKFzVjPa2I537fC4Scfm911i87RHcvP2FRRCAx98+QXdtCQHRdztbA/Q1VuEfvQCJVEZ4cibNRXkEx6darb0e3rSV5BOatJiHXniHzspC4T7ZU19OZPoqZAol0+OjtJfdEs4RRNB85woRqcuRq2wLhmHRDHe14BsWw+zUBIs2WLmO0e422stvoXL3oqPiNhazieaiPKIz1iCVydHPOEfWzIf/VaTUsWPHePfddykpKWF0dJSysrL72gDm4siRI7z44ou0t7cTFxfHG2+8IVg4sB3kn/zkJ/z5z39mbGyMVatW8cc//vG+GUCfBrVa7VA02B9ke3p6qKqq4r//+78ZGhrC1dUVsVjMggULHDr52KWjFouFwcFB8vPznbpt2VU09xYMCoWCjRs3MjZmlb7r9XqWLl0674r84OAgKpWKBQsWcOHCBRYtWsSSJUvAthp/6tQp1Go1a9euRSwWYzQa+eSTT9i8ebND9osd93b9q6urY8GCBUilUlJTU51aitszQZRKJdnZ2RgMBq5evYpOpxOK0rNnz7JixQqnz5PL5RgMBgYHByksLPxUmwc2NZRMJiM4OJi///3vTqQHtuLk+eef5+jRo59JSN373uHh4dy+fZvs7Gx++MMfsmHDBiGPZy55YUd7ezvPP/+8QMDY/65SqQgPDyckJAS5XI5MJuPmzZuEhYV9qoLt9u3buLi4kJxsfajNyMjg9OnThIaGotPpqKiocFjlX758uYNdCptSwa5Ic3NzIyYmhubmZmJjY4VtLl++7ED+7dq1i1OnTjkQjnfu3CEtLc3BOrZixQqnz7PDXtCJxWJOnTrFxo0b5yV2GhsbCQ8Px8XFRbBoWSwWmpqahE5yP/7xjzGZTIhEIkJDQx2sccePH2flypWsXbuWkydP8sADD8ybB5WXlycoTdzc3JicnEStVgsEh0aj4dixY4LV58aNG0il0s9UJ2EjLnJzc9Hr9TQ2NjooWqanpykvL2d8fJynn36al19+2YFwuR+qqqro6uriiSeeEBRZO3bsmDe7ay7c3d2FzKxPu37WrFnDmTNncHd3d5pHCgoKBFIiOTmZc+fOOSjnQkJCCAkJwWg08uGHH/K1r31NyCJjnnyqixcvcuPGDU6fPi107bRj7nV0b56YHZ6enmg0Gqfv4OnpyUMPPURjYyO5ubkUFxeTnZ3N8PAwtbW1TExMzJsF1dnZyfPPP8/s7Oxnzgeurq4kJydz+/ZtgXAtLCy0FiX3zNMikYisrCzKysq4cuWKQNLpdLp5lXupqamkp6fzi1/84jPnuvj4eMxmM/n5+UxPT89L8O3evZvDhw8jl8tZvnw5N2/eZHh4mIyMDOEeYN+fubDn5B04cABs81hvb68wN80lnud+1927d3PmzBkHO2ZLS4tgFd22bZuTwmzbtm3k5OQI5LaHh4fwXcxms8O94X7E2OjoqMO9QyQSORFTBQUF8+YO6vV6iouLEYvFPPjgg8Ic4+vrS3h4OGlpacI5MT4+zuXLl3nhhRd47rnn7nts/oXPhnZ8lKj0VSze9giD7Q1MDvfhERBiXTVWqDDqrXmZmt4O3P2DkUiluHn54ua1msH2Bs69+TwPfO05QQWD7bjf/OfvefBbLxC79K4d2TPAWiT6hFmJ/+HOFlKzDgjqIN30FB0Vt7n+4Zts/d6rBCekIFPcJVTNJiMSqYyA6AWYjEa6qgtRunkSGJuIfmYaw6yV6JkaHaK/pYaIlOVWVQzgH5NIf3MtgbGOdlCLxcL02DCegWFkPfUy4SnLbFa6GfSz0zb10TTVV06ybN83CF+0VCAqAJRqD2Ymx1CprVZxw+w0cpWLMA4hC9IYH+wVbF5GW4aWTGn9XtueeZ2wRUvRTU/RXVuCxWxG4apGLJHSXl6A3MWVzqpCa/EXk4Rc5UL2068JhMbU6KBVXWOxoOntYKClFovZTETqCkFpERBjLcKvf/hbBlrrWK7+BuMD3Vz9yy9Y95VnrTaaCQ0mg56WwjxCEhcDFqZGh/CLiEOnnaSrtoSUTXuxWCwYDXrh+8uULvQ3VzM9NoLC1R1EIiJSlhOatMSWkWMtwMwWMzu+/wuGu1qQyhUMttUzOzVBzJJ1gjWyo+I2N//5e7Kffg3PoHCqr5wkIHohbWU3WbRxN2KJlJ7aUswmE6d/+QO2PfM6UyMDmI1Gzv72R3zpl//EzduPzqpCQham01RwkaKTH3Lgp+8JRd1Aq9XmNNbfjdlopDznYx785vNMDvfjERBKb0MFWCyELExH5e5l/dl2bk4M9lJ65iO2fvcVPAJCmRjswyMgGLFEisrNg7O//Q8eevH3AukKoFJ7ELNkLTf+/hbNhVf5wmt/RSKVCVY+/YwWkUjE9md/Tn9zDUHxyYx0t+ITFo2btz8mg56+pmpmtZNWu9uSdfQ316D28cc7OILGWxepzTuDv60gby7Ms2brfOUZK5llsSBVKJmZHMfdz3rfCE/O5M4n76MdG2HD156js6qQwNhENL0dnPrFs6x6+NtELV6Fws2drupipsdGaCu9icrdi23PvE5QfAq9DZVcfPdnPPjEjxGJxCze9ggKV7VwXmY//RoqtScSmRzvkEjMJhOavg4u/PFlvvD6h3j4BzPc0YRc5UpE2kr+/EQWKx/+N+Ha6qi4zVBHEyajQSCVJof7hfOmrTQftU8AWU/9jN6GCuKW3V14842I48Tr32PdV55l4dq7dWdATCLjAz20FF9nYrAHk8FAaFIG+hktChc3Job7iUhdjtlooKumhAuvPsm+n/yJRRt24e4XRGhSBn0NlVx+7zWyn34Ni8VMYFwSD3ztOdx9A/EOjaKnroxtT7+OfkZLe8VtOioKSHpgFwExiQJpNjs1zl+/t5cN3/gRo73t+EXEIxKLbcqwDKQyOe5+QYz2tCMSieipK0PhqmbLd36KyainvbyAqkvHEEskKN08OPbKkyxcm41nYCh+kfF0VhUyPtDDWH8Xe378Np4Boehnpmkvv8XtI39m2d6voVR72FRLVtuwxWxitKedyvNHWbL7K3RVF2GxWBjr66S58CorDn5LIPXtc1vYoqWYDHp6G6swGfSofQPwjYhjoLUei9lMe/ktYjOtz9wmg56RnjZMBj3X/vprlu//Jn6R8ehnrPOl0s2DWe0EJqMBs80+ByBChIu7Va105f2f4xkYxvrHf4BfZILwPODi4cVQR6Owb7NTE8xMaHjsd8cYaK0jZGE6I92tDHc2C3O+0tWd1pLreAaG4eEfwmh3m6B0jUhdLii37Bgf7GX/T9/D1dOHgZY6pkYHCYxbhMLFDalcgZtPAJq+TjxtCzUTQ32IxGLUPnczhKMz1tBSmGfNLBwZICpjDRJb7eXhH8xoT7uQ2Wi/b7l4eBO1eBXT4xquf/gb2ssLePTXHwuE1N376k28gyOFYwPgHRqFd2gUE8P9lJ37J13VRez4wS/RT08hcXfmFO6H/1WklFarZfXq1Rw4cIBvfOMbn+s1t27d4gtf+AKvv/4627dv5x//+Ae7d+92yEP4xS9+wVtvveWQh7Bly5bPnYcwF1Kp1MHyYrem+Pr6otFoBLIoKysLk8lEXV2dQ0iuXC4nMjKSI0eOoFar57V2qVQqhzDzuRgdHeXy5cvk5eVx9epVSkpK8Pb2dig2AK5fv87evXvnLbbsLdsnJibIycmhoqKCv/3tb7z77rv3LXbXrl1LXl4eW7ZswWKxUFtbK+x7bGwsZ86cISEhQbBf2NUZdshkMjZv3ozJZOLChQtkZ2fz7rvvIpVKqaiocPq8yspK3njjDW7cuPGpxwNgamqK69ev8+abb86rqLJbBO0Wq6NHj7JmzRonJdH9CtOBgQH6+vr4/ve/T2Zm5qcG31osFqampigoKCAsLMzBhjY9PU1XVxc3btzAYDCQn5/PW2+9xeHDh2lvbycgIIC4uDiHY3Dnzh1cXFyclG1yuZzZ2VnOnDnjVMiKRCJCQkIENdXU1BSnTp1i3759ApmUlJTEqVOnBFJqrkpq7mdkZGQIiomBgQG0Wq1TWLddLXWvOmt4eFjIiVqyZAljY2Pcvn3bKatqZmaG2tpadu/ezfj4OHfu3GH16tWIRCLBxtbX18e+fftYvny5E3liJ0jVajUNDQ0cOHCAs2fPsmDBAmJiYhyOjVarFcY3MzPTSS3i5eXF3r17qaysZOvWrcJ734v5VCoAWVlZXL58mZ/+9KdCcLvFYsHFxYXU1FQ8PT2xWCwkJiY62Vbnnn8Wi4WzZ88SFRVFdnY2zc3NuLm5cfDgQcEeNh95jM1qeOzYMT744AMuXryITqcTPsNkMs1LEHz88cfs2bNH2M5OmtsJATuRc68lEZsaJiAggFOnTn3qtTE+Ps66deuYnp7m0qVLDsH22PKIvvrVr/LSSy/Naxv9LOIoJiaG1tZW3njjDWJiYggKCiIxMRF3d/d5Xzs9PU1nZycXL15k8+bNDn9rb293UkPGxMTQ19dHR0cHzc3NwvvfD+np6fT29nL48GH27NnDtWvXBLtuS0sLdXV1iEQiVCoVr732Gi4uLp+pTsKm/Lx+/TqPPfYYH3zwwbzbuLu7k52dzTvvvMOBAwdYtWrVp74nNgvwXKJ07dq1HD58mL179yKRSCgpKbmvimv79u2CMlen0xETE+MUJI4tW8jd3R2FQkFISAitra0OasHh4WEuXbrEtm3bkEqleHh4cOPGjXnDzu/cueN03O4lpjQaDd7e3pjNZqqqqujp6QHb/WjJkiXMzMxQWlqKxWKZ18o9PT1Nbm4uBw4c4Fe/+tVnjuG/8OnwCgrDK8h6bftHJjA7Ne5kYTObTWh6O4QV79HeDiYGe5ApXfjCa3/DZNDjHeqo7Nz63VdQ+wZaSajwWNxt1gP/6IUCOaTTTqCKvjuXj/V3IZUr+Pq75+iouO1ASN0LiVRKZNpKpjTDtBZfRySR0FJ8DVcvPyZH+h3IMAS1QSMmo0H43XBHE5MjAwQvSEPh4mYtxMwWFC5uDqql3oYKWyHgQkvxNQLjknGz2SH8oxbQWXmHiNTl8zYVGGitwzA7zTf+lEN7eYHTarodChc3oaCfnRrnzrG/0HznKg+/+gGunnfvr5Z75mg3b6vlzmjQMzOhsRZeIhEWixmQWO8TZjOavk4WrttGZNpKghNSkcoVrH/sB3iHRNFZeYf+llqqLx3n0V8fsuaTmE0MdzQz0FqPfnqKmCXrkCtdCE/OZKy/m7aymxSf+BvL93+TZXu/Tld1ER4BIZiMegJjk2gryxeOQW9DBUFxybh6+nDl/Tfwj1pAePJS/KMWCGM2ZMsky37aGuSr6e2g7Ow/hOwgs9lET22ZLfy3lqynXkbtF4RnQCij3W1se/YNNH2duHn7IRKJEEukSOQKotJXMtBaJ4zXqV98ny1P/hSPgFDiVzyI0s3dmm3V28FYr5U02fbM60JRXn8jB+3YCJkPfZWIlGVkP/0awQmpdFbdof5GLgmrtjDWb7W3ZT/9GmKxhI6K28KxNOhm6agoIH3bI0SkLkfT28msdgKfsBi6a0twcbeG3gP0t9RiNpnQjg7hG2Z9TnL3D6Hu6J+puXqKr75jzYvxDAxjrL8bsViCd1g0677yDEHxKUyPj5Cx44uYTSZBxWI2mwiKW8RYf5dAHE9phglNXIxYKmV8sFcYG5NBT+ZDX7XmQ2mGGe5qxaTXce1vv+GRn/+3kMMjlSsAC7t/9Dumx0cIWZCO2WTEKySSvqZqguKsdZ5fZDxdNSUoXNW4evrg5uUnvEanncAzMJyR7haksmEOvvIXRjpbBCLAbDLZcsgyhALdmr/Vy6lfPMsjP/9vJFIZM5NjRKausClfVILaZet3X0HtE0B3bSmhiXfvIyp3L0a7W2ktvs7y/d9kfKCb6fFRQpMyUPsF0VNnDf8XiUQ8+uvDdNcU4+FvJfNEIjEzE2N85c1PGGpvwDc8lrbSfBJWbqa1+DpeIZEYDXqkcoUw/gMtdURnrBUIkYGWWmanJtj2zOuELFyMUT/LQGsdw53NFB77i5DxBFDw8bsEJaSydNeXUbl7CaTWaE87D3z1OVy9fBloqcPV0xezyYimr4ux/m6KTvyVVV940qqWGu5nZnIMz8AwpidGCV6QiquXL/1N1ZiMBprvXGWsr5Pt37dely4e3rh5+aJy90KrGUamUJGx81F668uFc3ouJDI5YUnWHMiJoT5Ge9rprS+n8uInbPnOT+mqKbZuJ5VZFZ2RCQIRb9TrGGpvRD87LRzzi+++wsK12YKNVSQS4xUcTkTocvb8+B3cvP0wGfR0Vt6xXR/BeAWFC/NcZ3URSle1YAcHEEsk+EU4Cl4mRwaozTvDsr1fJ3hBmnCOCbDZCO1qqNGeNkG5FpG6HIvZTH9zDbrpKdQ+AfiGxdBacgOlm7s1v62jSbhfYiPKhjubEUukXHz3Z2z93quMD3TjFRyBSCTCOzTKqj4OcIxJ0fR1MmG7Rq0kawPasWHhfJKrXPCPTBAssHZSVz8zzUBLLWazCYlUxuZv/4TehgoCYpMY6+tkuLMZg25+TuNe/K8ipR599FGwFQSfF7/73e/Iysrihz/8IQA/+9nPuHjxIu+88w7vvvsuFouFN998kxdeeEEo3j/88EMCAgI4ceLEvLlPn4b4+Hh0Op2QNzIXFy5c4MCBA1RWVtLR0UFERASLFi1yyGbQ6XR89NFHfO1rX+PcuXNCztG9kEgkGI1GB1XJyMgIV69eZd++fYhEIoxGI9nZ2TQ1NXHs2DF27tyJVCqlsLCQpUuXfmYR5+7uzpYtW+jt7aWpqYnr168Lv1+6dKmDxWluptL169edVuizs7M5duyYU1bMXAwNDXHr1i2USiUffvih8PnzISwsjDVr1nDixAmioqIcVuHnoqamhtbWVvbv309hYaFTXhc2RdaGDRsoKSnBx8eH/fv3c/36dWpqagSr1nwYGxsjLy8Pf39/du/ejUqlIjU11SE36l7Yx8bPz49jx445KGxcXFyErLDGxkZcXV1ZsWIFWVlZAglQVlaGVqvFYrGwf/9+nnnmGVatWkVvb6/wHp6enkRHR/P000/zH//xH/OqL5YuXSp0X7x69SoPP/ywExkRGBgo5Pjcq5KyIzIyks7OTrq6urh165ZTRo8dc9VSZrOZCxcuoFQqHYhRT0/PeXNZzpw5I4yTh4eH0zZ2y9Lzzz/PmTNnnBoF1NfXs2fPHiwWC1VVVaSkpLBt2zby8/OZmJgQCGS77ckOpVLppBZhTjj+iRMnaGpqwmAwCCo1O0ZHR+dVKPb29qLRaPD19UWpVM4bJC4SiYiMjCQkJITTp0+TnJzsoNocGRkRwvrtNqTZ2Vk8PT0Ri8Xs37+fEydOsGLFCgIDAx2KE3swsz0wf+fOnZw4cUK4Lpubm4mPj3fan3379nH48GFBtTk358iOxYsXU1pa6hCcrdVqycvLY//+/dTX19PU1DSvArWgoIBly5ZRU1NDXFwcCxc6Fktms5kPPviAnp4eSktLcXNzm9eudT8UFRXR09PDgw8+SG5uLh4eHmi1Wofct3u3X7JkCQEBAYSEhDgpPWtqahxIdTsWLFhAdHQ0J0+e/FRCyo7g4GB27drF4cOHefvtt3nxxRcRiURER0ezbds24drIzc1l06ZNdHd3c/jwYbZs2TLvvnd3d1NSUoKvry/vv//+fefP5uZmXnrpJZYuXUpBQcG8Yz7X5tvb24tKpXIiOu2d6nbt2uWkbsOWkVVdXS0Qvn5+fsIcNx/mnh8ZGRkcPXqUqKgoRCKRoJA+ePAgIyMj+Pj4kJSURENDA3l5eU7X0tyOenNhJ6b+7d/+jd7eXsRiMSKRiOTkZKf7iFarZePGjeTk5DA+Pu4w5nq9nuPHjzspmf+F/znmEh4ASjcPYjLX01lVKPytq6qIkMTFdNeWYNTr8AwKJzLtLlHbXl7gQEqN9XfhERCKZ2Ao3iGRDHU00dbZjH/0Qlw9fRi0raTboZueorumBP/oBQJpExC9kN6GCoIT5n/OsMPNyxe3JWtpK7tJ3ge/EoJ/+5qqUKm9ULl7Ile5Wlf2k5bQWHAJpau7TbEVQ9ScYsU/eiGDbXUExd29t0yNDiISS4SxiM18gN6GSiYGewlOSHE4DzU97XiHWMfBZDTSXn4L3/DYOd9pAb0NlYIdcj5YLBb6m2tJ23KApAd2MjM+6nCMJob7BcXL3N8NtzcSv3Izrl6+BCek0l1TglgixcXTh4HWOkxGAyEL0qy2xvICvIIj8QgIQapQYDaZiEhZhk9oFEPtd4m7K+//god+/LZVmWbQC1kxrp4+DHc14xsRh9Ggs+aN2cin6Iw11tyX+FS6qovRjo3g7hdsLaQ6mpidHEfp6o6mr4vxgV7cfPwZ7molImUZIQvSrMWoSMTkyABffecUQ+0NjA/24uEfjMVixmwyMT2hISp9Fa3F11H7BDI+1EtU+iomhwcEa2B72S3CFy3FzdsPz8AwVGpP9DPTrHrkO8iVLnjb8lzsx88rKJzRrlayn34N/+iFAilpmJ3BYjYTFJcsFHxSuQKPgFB8wmJw8/HHLyKO2akJFC5u+IbH2iyFN+htqMBo0BO9ZC1isYTR7lbBMlqTd5ob//07tn7vVYa7WvAOiSQsaYlQxGvHRhhqb0AklrB092MEL0i1WkGNBgJikhjubEbtE0Bo4mJMQRF0Vt7GYjYLhXBL0TVc5xTFnoFhyFWu5H3wKyJSl5P0gHWBor28wGZ3asSChdTN+2gtvk5oUgYikYiW4us88ecL9DfXMD1uVUX3NVUJhKBueoqWomuELVqCwlXN1MggE8P9iGzFfFhSBi1F1whPWcZgeyPBCSlIpDI0vR1Whd24BrWPtUOji4c3XdVFhCdnYrGYWfflZ2gqvCpYvGYmNIz1dfLIz/+bjorbwu/lKhcCYhL5x79/kYdf+5uVKK4qxDs0Cvmom9W6q1Ay3NGEdnyUJTu/jH/UAkKTljAzobFaHE0mfMNjMZuMzE5NIBKLrSq3petpLbmOyWigq7qI0KTFKN08cPPyo/nOVXwjrIvIQQmp9DVWWm1TvR2M9XUSkbJMsG5NjQ5y6hfPsuXJl23kZAdazTBq3wDcvP2xmE1s/d6rBMUnC2T89NgISrUHoz3tBKs98Y9awGBrPTrtJD6h0XTXFKPy8Gb799+grfQmESnLrF3Ae9qYmdQw0FKLd2gUQ+1NaPo68QqOYPUXvkNfUzWhiYsxm02YDHp8wqIZ6W4lNDEDpas7s1MTKN086GuuFohld/9gYTHBZDQKx3cuVO5eiPo68Y9ZiLosEK+QCDwDQu8710nlCuF6wGZb044NC50W74XZZEQslqCyEfEA4wM9dFTcpuDIe6Rt2U/M0vWCygpAKpNj1OtsROpdaDXDfPGNj3D19rUF4ousZKTtGg+MTWKgpZaguGSmNMNCJpMdIrFY2PeJ4X7ay28hlkipzTuDSCwmOmOtQKxhW3QIiluERCYXMsMmhwcE8hvA1cuXhvzzuHh6W616gEdgqIM9XCQWOygx9TNa+mwEY39zNY0Fl1j76NPIlC4EL0gV5uy542HPavy89j3x59jmfzUKCgocgq2x5akUFBSALRekv7/fYRsPDw+WLVsmbDMfdDodExMTDv/sWL58OUNDQ7S0tAi/u3btGmvXWsPLUlNT51X/AJSVlZGamsr58+dZu3YtN27c4NSpUwwPDztst3z5cm7fvi38PDQ0xLVr1+ZVP8XFxQlZIk1NTfT398+beTTfdzx8+DCPPfYY+/fvJzs7m+zsbBYtWsSNGzc4d+4c586do7KyEovFwsKFCyktLWVqagpfX8eLRiwWC23v721F3tDQwKlTp2hubmbnzp1s2bIFPz8/0tLSuHbt2rz71tXVxapVq9i9ezdqtZqTJ09SXV0t/N1isXDu3DlMJhM7duxALBbPO+72Tm6+vr5IpVIMBusD0Nq1a0lLS+Po0aP09/c7vEar1XLq1CnKysrYtWsXK1euFMY8KCiI0NBQp9bz2BRbMzMzgm0sOTmZqqoqp+3a2tro7u5mzZo1tqA9a+5JQEAAa9asISsri5SUFCGcPisri6ysLLZs2cLSpUuF0Og//elP1NbWcv78ec6fP09ubq5gGczNzeXDDz9k7dq1xMTECITiXCxdupSioiKmpqZQqVROBZ7JZKK+vp7p6WnCw8ORSCTCZ124cIHLly9TUlJCS0sLo6Oj+Pn5kZeXx/Hjx1m1ahXr1693OlftZKsd169fZ+XKlU6fPZdoycnJEdq9zz2GANXV1QJhdO9nrV69GolEQl6eVcKq0Wicim67+seOW7du0dHRwb59+1AoFMK5derUKUwmk7DdvSHSJpOJs2fP0tbWxr59+/j2t79NQkIChw8fdlA9trS0CMoQmUzGQw89xPj4OBcuXMBisVBaWkppaSkHDx50yBjT6XQCeS0SidizZ4/QgW5sbAxPT0+am5spKiri4MGDApktlUpZtmwZ+fn5wrk3t6uhHVKplO3bt3P8+HFMJhMTExNOYxUcHExfX5/ws9FodMiTW7BggUOjhbljNTk5SUREBGvWrHFSPxoMBv75z3/y8MMP88wzz7Br1y6qqqo4ceIEQ0NDTu83F+3t7Rw7doyAgAB2794tqOCWL1+O2WymsLDQ6TVms5menh5BjZWUlMTk5CSdnZ0O2809n/r7+zlx4gT19fUcPnwYDw8PTpw4MS+pORcDAwOcP39esHKHh4eTnZ3NggUL5iU6QkND2b9/P7dv33a4PzU3N3Py5EkGBgbYtWvXpyqfRkZGaGhoYN++fQQGBrJz504kEgmnTp0SLIcAaWlplJeXY7FYuHHjxrzdNu1E+q1bt1CpVExNTXHlyhVycnIEIicrK4vs7GzUajWHDx9maGjIYa6ei8HBQQdb7aZNmzh//jwnTpxArVazadMmRCIRNTU1gn0zISGB0NBQLl26JLxueHh4XlJ4bGyMnJwcQWW4Z88e1qxZw9atW4UsMjtKSkoEIjIrK0uwnWK7no8cOcKBAweciLh/4f+/sFjMBMZYO3ude/N5+hqrGGipJSAmici0lU6FhlgiwTxnLh7r78Yz8O42fhFxRC1ezdTIgGDf67EFxfY1VTHYWk/0krUOVgc3bz8kMgVjA918GvQzWqu1SO3JtmffIGbpOsKTM/ENj0UskTDW30V3TQld1UX0NlRw4+9vMdjeQGjSEtz9ghzeS+Hihn767oO62WxioKVOUH7YEZyQgrt/MM2FVzHoZvAICGWsv5vJ0UHUvgFMDg/QXnaTyNTlgsoCm6rJ3uVvPhh0s7QU5hEUn4xHQAi+YTEY9LOMD/QI20wM9uDuf3e/+5qq0WqGrcSH7Z4tkcmJSF1OYGwS/c01nHj9e5gMemuey2AvLh7eNNzMRdPXyVh/N5HpKwmMTRIC0sOTM5HKFWz97s8Y6mhCP6NlelyDi4c3wx1N9DZUEJOxltjM9USlr8JsNHLuzefRaSfprimmq7qIka5mRrpbyPvgV+imJ3H19CUidTlrvvQ9fMKirSRYWDQnf/4MOu0EkyMDjPV3ofYJoL3sJmq/IOQqF0IWpjM1MiAoerprSwhLsiqLItJWUHLqQ6QyOaM97WjHhtGOjXD2tz/CIzAUhau1Q2R/cw0AndWFLHpgF0q1h4OVB6C7ppiQxMXW4Hdb17a+pmoCYhKJWryKtrKbGA16JDI5g2316Ge0LN39Fat90GRipKtFKPYQWa+JruoixBIp3TUl6KateaWa3g7aSvMJT84k++nXiEhZhtLVnZ7aUnobKsj53Y9pLLiEdmyYiNQVRKQsQ6ZUIZHKCFu0lIjUFQy1N3Dtr7/GbDLSVV1ET10p+f/4PSKbXXNqdJCQhWl0Vt5BKlcwMzlGZ1UhQ+2N+IbHYtDN0llVKNhCL7/3Gr0NlXj4W1UaVgK6lEGbGshegItECPPB5FAfXdVFGHUz5P/z9wy21dNVXYTJoOPoS08wOzXO7JTVph+VsZr2sptCntfM5BjTExpmJsbI++CXAuEzPT6Kyt2L5jtX8Q6JQiQWE7t0Pa0lN5jVTtLbUElE6nJBdTPUbrVsmQx6ehsq2PPjdzDa1B/2e7mbtx+hSRmce/N5RnvahdwuO8kuV7mQseNL1i5yk2MY9Tr++r2HMJtMwtgqXNy4+v4vaCy4yFB7I13VRUxphig6+VcmhvpsY9tA3fUc6q6fw2I2EZ2xBskcu9vkyAAHXv4vpDI5fY1VuPkEMDnSz/hAD1MjA4QmZtjULlZSUjc9hdoviMi0lfiExdBWms/0+Cg67SRGvY6Wwjx8I+IFRZ13SCQj3a0MtjUQv2IzUemrUPsGUpt3hlO/eJaQBWl4BoQikckF0tkaiJ+Bu18w7n7BdNWUoHRzZ1Y7QUflHSJS7jowPANCEUvEaHo7mJkYxWUOUT41OkRb2U36m2sITczALzyO7d//BTrtFH1NzvXWfLAugviy94XfI5HJBdvsXNgVgHPhERCCwlXNuq88i1LtydTooMPf/aMXOCglAabHNZiMBtS+AYjFEsIWLSUwNon2igJh27n3gqH2Bgci6F6o3DxQuKixWMwUnfirbb6xELZoKeHJmYQnZxIQk+hwPgCofa1NIiJSlhGRsgwXT1/y//l7RrpaCU9ZRkTq8k8l9bDlrYUmLrbOp+GxrHz427j7BQnk71woXNzQaSc/9f3mw/8qpdT/BPbuOXNhXwG2/93+u/ttMx9ef/11fvrTn9737+vWrePChQsoFArkcjkmk8mhc9S9HeSwZaUEBQWxcOFCpqamKCoqYtOmTUJHq1u3brFw4ULi4uIcVCUDAwMUFBQ45drYLTX2rlP79+9nx44d/OhHP3LYbj7bzfT0NMePHxcKWHvnwPj4eDw9PR1IvK6uLnJzc7FYLGzbto3z589TV1dHSEiIQ5hzZGQk9fX15OXlkZ6ezq1btxgeHiY+Pt7BymEnYSIiItBoNFRWVjrZ0ywWi1AMREdHEx0dTVNTEydOnCA/Px+NRsPWrVsdVrbvtT0WFhYSEBAgEHRqtZrJyUmBTLhXNaXT6Th79iwymYxt27Y5ECVzu2YtXLiQW7duOWUyXbhwwSFXKS4ujmPHjrFo0SJh7Lu7u2lsbBQUDnZiaK4lTq/XC9kuV65cEVbw7VYflUrFzZs3mZqaIj8/f161RF1dHf/2b/8GtuyfW7duORTQSqVSsDadOHGCvXv3UlpaytDQkPDgJBaLiYuLY8uWLRw6dAilUunwWQaDgYmJCTQaDW1tbRQVFfHMM89w5swZKisrWbZsmVN+1IoVKwQLX2dnJxKJxKnTnp1cTEtLo76+npCQEIGgWb9+PdeuXRPOz+bmZocxv7fQT0lJoa2tjY0bN/K73/3OaZwSEhJoamoiKiqKkydPsmTJEifSJikpiaioKI4dO8aKFSsIDQ1ldHRUUBxVV1fT1NTEli1bHK73oKAg9u7dK6ihYmJiaGxsdLK4xcfHc/HiRfbt28c777zDF7/4RafvMZ+ictu2bVy6dInp6WkhwH0+dU9YWBgdHR10d3fPa7+zw93dneTkZFJSUgQS617IZDL0ej0ymYwjR46wd+9eh6Ld/ve5oepzO5Gq1Woh4B8bAXzy5EkOHDggKP5EIpEQPH3z5k1u3rwpBGnbMTk5yaVLlwgPD79v3tfixYupqqri5s2bDiTOvR06sc3nx44dw9vbG61WK2Qn9fT0UFxcTEBAALt27UIkEpGbm8vixYtJTk4mJyeH4OBgB/u0xWKhqKiIgYEB/P392bFjBzdv3uTtt9+mtbXV6fOnpqYE27P9+2/ZsoXOzk5WrlzJhx9+SHp6+rw23Xuh1+u5ePEiBw8eRKvVUlZWRnh4uGCD7e3t5fTp06jVatatW4fZbHay7TGHuGtra2N6epqtW7cKduuVK1fOq+61K3tXr17NnTt35u3sKLK1K5/7869+9SunjMeZmRmHMYmNjUUikZCbm0tWVhZ37twRurHOzs6Sn58vqAk3b96MRCJBKpWyZcsWDh8+LJBmc9HT0yOo/kQiERs2bODy5cts2LCBI0eO8NBDD82rQv0X/ufori2dx7ogtgZ1B4SybO/X8A2PxWQ0MjM5hkwR6PQegbGL6GuqImRBmjXA+55VaTvs2UZ9jVWc+fW/E5K4mAe++pxghXPaPnoBbWU3cfXwQXrPPpoMeqHrVmTaCkRisVBIRqQuR6ZQIfNTORFPW77zEqGJGVYVi36WgOhEXDycF0ZEIhEdFbcdVqnnws3Ll5gl6+iovI27bxCTIwMgEtFTX45YInWwjziOVRKtxddx8fRBIpFaGQyhS2ETMUvXOWRWBcUl01lViEypwsXD2/YcZiUB28pu4hcZL1gj74XJaEDl5kHWUz8jPDkTo15nzcjSzVCW8zEHXnrPyXaJTeWln5kmMiEV/8gEumtL6G+pRe0TQGBsksOYGHSzaHo7WPvlZ0hc56js1s9Ms+4rzyKRyhjuaEI/PYW7fwh9jRVMT2jAYmHHD36J0s0dVy9fxgd66Kwp5NahP5L99GtMjQygcHXHOzSK0e42hjqa8A2PdbD8aPo6CUteilzlgpu3Px7+wUxse4TpsREmbbku9mMZGJOISCzGJzSa3oYK6zEDhrtacPX0FbLNPG0B41gsQnB3YEwiDfm5iCVSAmIS8Q6xPpOELVoq2GbEUpm1Q6JBT0TaCpu1aQkWLAy21nPhDy+z/fu/EDowano7rOeStx9u3n701JWx9buvWMk1zTA+IVFOhaxhdhr9jJb9P30PsUQqWG/XfeUZq8LIbEbT28FIdxs5b71A0gM7kcqVhCUtQWQL57erkQBGulvZ+t1XkCqUjPa0CxlX9fm5TAz1kbnnccZtxLBS7cHaLz+DXOlCaGKGcJ5u+Npzgu1uYqiPFQe/hdlkZHywF/20tQgWSSTkvPUC2U+/hlLtQUBMIiEL0lC5e1q7N5qt4eBazRCX3nvVFgpuJWMVtqDzrd99hc6qQmvguH8IPXWlzEyM0Vpyg9il6xFLJLSX3xK6lGGbJzoqbrPjB79E4eYu2L5cbTbPnroywpIz6W+qRj+jRaZQkvnQVxFLJA6ZQtlPv4ZUrkTh6oZP6F17u30cR3vaBZvi5PAAIpEY75BIRGIJE8P9tuNsVfjYu7lNjgxiibAInUzFYgmeAaFoejsYH+whIsV6nSnd3IlavJqeujJy3nqBoPgU1n3lGSG7Dhs501Z202rpDImks6oQs8lEeMoyVB7e9NSXI1e5Ehxvret02knEEomgKnL3CwKRiP7mGkZ72ghLWuJkn/aPWkBXdTFGg47ghFSGOprQaoZw9fQVrG3Y1KWBcYvw8A9mcniA1pIbRKWvcpjX7LCYzbSUXCc4PlWYh33DYgT1UUTqCuH5xGwyIppTA1osFtrLb+EdEiWQ/8MdTTZF25I5uYg6h9f0NlY42btlShVR6auY0gzTVpqPV3AEEpmMqdEhoWsfdit7TwdTmiFhv2QKFT5hMRj1s+x87je2DrJjQr7U54VWM8TBn72PTKGipTCPqMWrnK5/u03x3rHsqi4SxnCgtc62iOToHPCLTKC3oUKwW35e/D8jpT766COeeOIJ4eecnJx5cyP+X+FHP/oRzz77rPDzxMQEYWGOB33z5s0cO3aMnJwc/vznPzv8bf369Vy6dImtW7disViEIFj76rybmxtarZUZFYlEQo5IbW0tp06dEgiuvr4+ioqK5g2RjouLo7m5WXiYr6+v59VXX0Umk3HhwgUhbyMgIIChoSGh0JqcnOTMmTM8/PDDAvESHx/P2bNnnaw92IrasLAw4XsuX76c0dFRqqqqmJycdCqONm3axKFDh9iwYcO8+SidnZ0CUZSWlkZeXp7Q2evTEBcXR39/Px9//DHr168X8lfms7nU1FhXq+ZabNzd3R1IKTvseVm7du0SCsl7UVtb61C4rVy5krNnz+Lp6Ymvry/19fXExcU5raqvW7dOyJIZGBigvLzcoT25n5+fk5rj+PHjQqG9fv16Tp8+7VCQ2os9V1dXzGazE2FRWlqKXq9n06ZNQivwe0nZ2dlZamtruXHjBv/5n/+Jr68v6enp8+aqlJeXs3LlSnp7e2lvbxdIG5lMho+PDz4+PoyNjTE0NERubi5btmxBo9Fw6dIlTCYTLi4urFy5EoVCgYeHB2NjYxgMBu7cuTNvx6fQ0FAqKipYuHAhdXV17NmzR/ibSqViZmZGGIf5GiHcazMaHBwkPT2d2dlZIdDYfs5GRUWRl5dHRUWFQ77TvdlLLi4u7N+/n/z8fJqbm9HpdBgMBs6ePUtiYqLDPs6FRCJh9+7dFBYWCkqcwcFBysvLBeWVu7s7y5Yt4x//+Afh4eHU1NQIhLSnpydLly5ldnZW2DeDwUBbWxvt7e2YzWZ27drF17/+dfbt2yfk18nlcgICAvD398fb21vopqhUKq2FWl8fjY2NzMzMOFy/KpUKb29v8vLyhG0lEgmLFi0iJCREUDpNTU2xdetWp06Xa9eu5fr16wLpcvnyZR588EGHzwgPD6ejowO1Ws3FixcdrKX3EharV6/GYrFw584dbt++zdDQEOfPn0ckErFr167PVLEkJyc72L/shNh82Xm7d+/m0KFDeHh4kJSUxMmTJwX73XyQyWTs3LmTtrY2jh49yujoKDk5ORiNRpYsWUJm5t1MBHugfmpqqjCH7dmzB7lc7kTK6/V68vLy0Ol0/PGPf8TT0/O+328uyWixWPjkk08Ee/fce4wdwcHB7Ny5k/Hxcc6ePcvjjz/ON7/5TaGBwFxCOiQkhCVLluDi4sKJEyeYnZ0lMzNzXkJq7rwAsGzZMkpLSykqKmLp0rsP23NViT09PRQWFnLx4kWOHDlCTEzMpx7PqKgopFIp586dw2g0cvPmTcbHx1EqlaxevXre/RKJRBw4cMCJmOro6HC63/j5+SGXy3n88cd566237tvB81/4nyM0cbFDaOq98AmLEYqzka5W2ssLkClVBMUnC3kbcpWLoFDobagUlCxzYTGbGe5stpIRwKZvvYhUrmC0u5XR7lZhO7VPAB6BocJ7R6auoLkoz2otcXPHYjbTXVeG2WQkNCnDYTVYLJGASITJaBQCZB32wXZtSqRSwpIyrBb9tnoG2+rwCAjFKygc75AoND3tmM0mPANC70uwYbNSRKatZKSrlWt/+y0hC9NZtu/r9yXZ7IhMX0VryXUCYxdZ7YztDZj0eoGsuBfhyZlWC5StAJ4eH6W3sZLItJUO4cPMuZ5101P01JURvWQtvQ0VQqCwu18QI12tfPO9XEZ72umqLhYyjezorikm1Fa4WN/PaodL3byPiaE+Jm2dxUZ7OjAZDURlrKavoRKTTQmDrUgKik9hemwYpdoDN29/xgd66K4pJuftF/nyrz/GxcOb0d4OW/4VTE9oCIheSNZTLwvnnE47ycRwH7PaSYqOf8DibY+QtvWgcM6GJS2hp65UsPO01ZWSseNL9NlUNWaziZaia0I49WhPu2Cz66mz2oVEYomtU1ot+hnr/ejqX37Bhq/9u0OA/42/v0X6tkdwtbWzF4lEKN08rIq6piqMulmCF6QKHeK8Q6MZ6WnDNywGs8nEw69+YOuQNuJgyTQZ9LSV3xJa0HdVFxGycDFd1UWo3D0FK5N+RktnVSExS9cL1jrPwDAslrsdTUViMWKZDJNeR/bTr+Hq6cvEUC+To564+wY63M/H+rvRz2iJSF1Oe/ktB0uuyaDHZDTgH5UgfJ+umhIhULy5KI/YpesdiuOR7lZmpyZYuGYr7eW3CJiTF9ddW8KBl/8L3fTkvKoTsViCu18Qmt4OHnnj72g1w4JCcbC9gS3f+Sk+YdG4evoyOTpIX2OFcJy2fvcVpkYHcPcLJiJlOS0l11GoXJmdGqe7ttQ6XmKxkP0GMDk8wPhADxdtGWJzLZsAXsGRtJcXEJl2tylHcEKKbb6oxz/K+t1MRgOdlXfw8A9h8bYvMD0+im94LOODvbSXW5U3pWc/In3rww7nkslkpODwu2x75nUHm5dIJKLh5gXc/YKcVEGuXr5s/MaPbPOYWMiFsr9utLuNktN/J/vpVwlZmC5ci1MjA0IzhY7K28xMjFFx4SiLNuxipKuVmckxoTudpq+TgsN/wvuZSLRjjm4hO86/8xPWPfZ9wpIynLKa7GNi/2y1bwBKtQfNhVcJT1mGwsVNmKMMulnaym4SZes0NxfuvoHIlS60FOYJKlCrUsp6XzDMzgik1VxyzjcijtmpcZoLrxKRstzhb9jmpfA5ZOO9sDfxGO1pZ2ZijILD77F839fvybiKEJp12GGxWGxdaNcJ4/h57Od2TA4PYDYZBXItesla2krzCYhNcrifqH0DmRxxtHAPttXj5u0vkHoB0QvR9HXSVV3kQKxKpFKHLoSfF//PSKmdO3c6qEPuVUt8XgQGBjIwMODwu4GBAWFV3f7/wMCAg5JpYGDgUzv7KRQKp4LLDqPRyK1bt5icnMTNzQ0XFxfOnTsHtkIlIyMDb29vDAYDZrOZTz75hAceeMDJ8qZQKJwIhcTERBITE+nq6uKFF17gwoUL9w09j4mJITc3l7i4OEwmEzU1NYKVxtPTk08++YQ9e/YQHx9PeXk5/v7+jI2Ncf78eR5++GEnMkksFs+bG4Itlyk1NZUHHniA69evs3nz5nltQKWlpfz6179GpVJRXl7Oxo0bnd6vubnZIa9m/fr1nDhxAk9PTwfl1VwMDQ1x9epV1qxZw9/+9jdWrVqFVCqloKCAsbEx3NzcBPtJe3s7g4ODDt3PsKk0RkdHnd77woULBAYGkpOTQ2lpKcHBwU7KrfnGJTs7m8OHD7Nr1y6qq6vnzdPy8fFhamqK/v5+CgoK7kte2B9gL1++zNq1a4UVerFYLHQd8/LywmAw0NHRIZCUDz74IOfPnxeIrvz8fNzd3ecll+ZCLpfT1dXFwYMHSU9PZ3x8/L4FYXd3N2lpaYSFhXHkyBEiIiKcQrlzcnJ4+OGHuXDhAtgCw+2KIK1Wy40bN4TuY7Ozsxw/fvwzO42dPn16XjJ28eLFFBcX093d7aTEiI6OprW1VVCw5eTkEB0dzXe+8x0MBoNDgWwPP37hhRdoaWlxuN4HBwediDxslsD+/n6CgoL48MMP+eIXv/i57D2ZmZkcP36cH/zgBxw+fNipC6E93+7eLoYajYZr167x2GOP8fbbb6NSqZDJZERFRbFx40YkEgknTpzAYDCwYcMG4byZnZ1laGiIjo4OIchZr9dz4MABzp07R3BwMJmZmQ7KLmxEwW9/+1v6+voEJYrJZKK6ulqwxm7bto1jx445KFnsmKtW7OzsRKVSOXVBTE1N5Q9/+APBwcEcOHDgM/N6RCIRmZmZ5OXlsWfPHv7xj3/8H9mqEhISkMlkXLx4Ea1WK6g2Z2ZmGBwcZHBwkNHRUWsbdJuN8cMPP+RLX/rS58oScnNzQyaT8cQTT5Cbm8v27ds/9XWBgYHs2bOHEydOsHbtWiYmJvDw8KCnp4eSkhIUCgXr1q1DqVQKyqDKykrOnDnjkEPl5+fH8PCwML6nT59m69atn0vdYzKZMBgMZGdnk56e/qkB9SUlJaSnpxMSEsLHH388bz5dTU2NUybd4sWLqaysnDe8vba2lr6+PmE+3LZtG2fPnnXKi7sXIpGIhoYGnn32Wafue3Oh0+kEtd58xJSdhMY2D9y5c0e4N3h5eQkW08zMzHm7eP4L/9/DJywan7BodNNTdFVZszCs4bheyG3WAIvZLBQORr2OgZZa60q1SIRfRJzQtttk0NPfUiu0u8d235oc7qentlQoXCw2tUrVxU/wi0pAqykgZGG6U7FhR8jCdHrryxwexu0Y6WpxUDmIRCKh4B/r76K9/BZKNw8mRwaQK12ISF2OYXZGsIWZDM6We/v7eAWH4+bt60SyzYVEJsfV0wcXDx+C4lOou37OSoTZAoA/DdEZa2gqvMrEQA8SqcxppX8udNNTdNUUE7NkHSKRiKC4ZLprSwhPzmRyZABXLx/EYgm+YTHMeI7RfOcqkekrhddKZHKb/awYs8lI8II0tjz5U0wGPV5B4ZiMRqovn6C19Aa7/v03iMUSpAoVhtkZJG4yBlrrUPsG4uJhzfTqqLhtVTEFhGA06Nj/kz/R31yDR0AIEqkck9EoZHy5+wVZQ7Y7mvCLjEfp5o5+RotWM8y2Z36Ob0Qs3TUleAaF4x0S6WAdHR/owd0vGOkci5JuagK50oWt331FIPV02klGutvQaSfI/+ht1j32fWQKJV7BEQIx8cBXn3M4hzR9nex98Q9MT2iE97FYLMxOjTPQWkd5zsds/e4rjA/2oXC1NvJw8/JlpKsFpf1nmyKqs6pQOJemRgcZaK0nKn21A5FqDfJfwdToIC3F15keG0GnnSIm824EQ6jNZqdyc8c7NBqjXkdXdRFqvyCil6xlpLsVhas7UWHRQq5byELrc+jkyABTo1bbGIDSzZOZCQ0qdy8mhnpx8wkQgryD4lOQKZRYzCZBWROZtpLmwqvC/vQ31yCRyYXr2ScshuHOZmtOk9mEUa/DOySSgZZaISOMexa9Rns7cPX2w903ULiGLBYL2tEhohavpq3sJm7e/rj7BuLuG0hfUxVbvvMS/tEL0WknBOLAODtD5YWjZGz/kkDg2WF/rlf7BjDc2cSeH7+DXKlyIKSwqdfEEgltpflEzlEB+UctYKS7la6aEiaG+jAZ9ITbsqN02klMtigMD/9gpHIF0+MjyBRLCFvkmCncVnaTL7z2Nwyz0/jOIXbMZhOtJTfwCY91ChYfG+jGJzQauYsbE0O9gsLKDv3MNLv+/TeIJBIn6xY2+1ZE6gpaivKounSc6Iw1qNSeeAaFCdsbZmfIeuplghek35fY3/KdnyJVKJme0Ahk8KdBplASu2yDlbyz2dGmxzVWxVLmemEB4l5YFWKraCnKs5KJFjNisdX+PNLVSmzmA/Oqr5RuHsQuXU9H5W08/ENQe/szOTyA0aDDxcN73kUYo0Fvsybe7SatcFXj5u1PSOLi++6jHd01JQKRjy2jTiyWOAXtzwdr4HuDQzC6WCIhZuk6eurLmRkfFe6b7v7B9NSWCaTU+GAvJqMR/yjHeCCvoHAULm60FF8nevFqYZz+J1mc/89IKbVa7SSn/59gxYoVXL58maefflr43cWLF4U20FFRUQQGBnL58mWBhJqYmODOnTuCven/BAUFBczMzLBixQqBQDGbzcJDvV6vp6SkBI1GQ29vLxKJhNra2nnzL1atWuXU/auuro6WlhYkEglf+cpX+OpXv8q1a9fQ6XQkJCQ4KJnmHvCcnByhiMRmHcrKyuLQoUPs2bOHqakphoeHuXbt2n0LwWXLlnH79m2nAuLUqVMsXbpUIPXul6PS0dHB1NQU3/jGNwQ1z+nTpwkMDHQgII1Go1PhtGvXLg4dOsT+/fuRSqUOD4l5eXkA7N+/H5FIhE6no62tjQULFghElN3O8/777yMSiThy5IjT/qnVajo6OoSfdTodx48fZ8OGDfj5+dHb20tWVhY1NTVOBeB8sFs+VCoVhw4dElQq3KMImJmZISgoiJycHKGr19z3TUpKoqamBrFYjJeXlwN5ik19curUKXbt2uV0nGUyGS4uLoyPj3P79m2io6PnDZqei6GhIS5fvsyOHTtwdXWlra2NgwcPkpubS0REhEMg8r35YJs3b+bChQsONr5z584JmU/zwdXVVVDO6PV69u3bx+nTp8nJyXFQeczFCy+8wOLFi1Gr1cLf7EoOsVjM448/zsWLF50+KzY2lgsXLhAZGcknn3wiHFt7+PrcAGaxWExjYyMDAwMcPnyYgwcPCvvT19fnlEGD7Vhev36dP//5z0RHR3P69Gk2btx4366V9u9sv4beeust0tLSHMa0s7OT0NBQRCIRGRkZFBcXC3YwLy8vwsLC+OijjzCZTGzYsMHhvUtLS0lPTycgIIAzZ84IRb5SqRQUjnacOHGCxsZGNBrNfRsHlJeXk52dzYULF5iZmRGyxlJTU0lNTRXUmCtXruTq1atCPpirqysZGRm4ubkRGRlJS0sLxcXFHDx4ELPZTENDA+3t7cL4/uUvf+HFF1+kpaXFwQJ7L8xmM1evXkWr1bJu3Tpyc3NZvXo1x44dY9myZZ+prrQjOjqagoICXn31VUEBo1Kp8Pf3JyYmhoyMDMRiMUePHuXo0aNkZGQICw2xsbHzBnd3dHRQUVGBr6+vYGu2h3cvX77cYezvvTbkcjkHDhzgwoULPPnkk/z2t78lODiYHTt2zHsdpaSkEBkZyccff8yDDz6Ir68vUVFRNDU14efnx40bN0hOTv5UVRW2e9/Vq1fx9PRkz549KJVKUlNTuXz5ssN9aC66u7sFm5s9OH+uZXK+LmBz97uuro7r168LSug7d+4gkUgcPs/V1ZWIiAhqa2tJSEhwIL3sdsj+/n5CQkJ45JFHWLZsGbm5uWRnZ8+rlL3XOjiXmFqzZg1ubm6UlpbS19cnkJ6+vr60tLQQHx9PXFwcZrOZ4uJiCgsLEYvFaDQap8/5F/6/h7W4WT5HaVSP0s2dqssniExbQWeVNSdNKpPjH73Q2R5oI2jMczrhYTsn3P2CHCx3FosFrWaYyoufsOLgt4hZsva+hBS2IFeT0TCvxUE7NnI39+ceeAaG4RkYxnBHE5ffe02wCsmUKlw9fQiISXRSJdmhn9GSnv0FJLZW7veGx9thNOiZHh9ltKcNw+w0xSf/RuZDX0WucmFqZGDe1zh8jnaS4lMfkv30aw7qCqWbO+5+wSjd3DHMzthW7O8W42KJRAiWH2pvFAKiAVRqT6KXrqW99CYG/Szt5bdwcfems7KQkIVpgoVHLPGhv6kar6BwtGPD+EclkPTADpoL84jOWINMqcKgm2F2alwYT+z2YJu1UiyRMDUySETqcnzCohnr76Ls3D8Z6+sk+5nXBWLA2imxCT9b90KzyURU+irGBrrRT2uJXrIWTW8HrcXXCV6Qilzlin5Ga+2QZVObufsHM9zRxPhgLzFL11lDrm2BxQpXNRKpFLVfENlPv4ZMqcKon3UoVqVyJQbdDDIb2TbW30VU+iohgNj+3bRjIwREL2Tr914lImUZ0+Ma67GxWHD18rV26WqpEUhEi8VCUHwK7WU3ufPJf7HxG88TM6cYvReuXn6o1H1c/OPLbP3eq4LaxtXLF6+gCEQiK2FmNBgY1jYRkbpCIIVlCqWgYPSLiMM3LIbu2lIKj/2F9OwvOFhMA2IW0lFxm8i0FQx3NAsFctRiax6UbnqK+BV3nQkyhZKoxatpvnOVwbYGFm3c5ZB/o/YJYKSrFd/wWHrrKwhOSLN9TiJtpTdxcfdyCKQ26GYZH+gWbGAe/iGM9XczM6khMNaaZWjPxFG4qjEZrYHkkbZjEpm2QjjnDLMz5P3111gsZka72wRVi29EHEMdjfhHJjDQWod3aDQe/sG0ld5E7RsoqCLt908XD28C45Kpu34WucpVsGYCVF74BIlMzuovPikQOmKpVJjThmx21cR129H0dTrsx/T4KCq1l9VyV5qPd1i0QHp0VRezfN835s1i0vR0ELXYOj6TI/1MDg+g9rUu1Nrzz9y8/Rjpbp23oYLJoKe1NJ+wpCXs+8m76Ge0DgHe/c21+EctQOXueV9iv7e+nOAFqShc3Bgb6KatNJ+ItBWfSdqIRCIiUpcz0FrPrY/fZdGGXUQtXo1hZhqJXIFEKpv3OUsikxO7bANtpfnopqdsHeXMwjjc9/NsKtbhjiZmbFlhICIy3dqxdayv00E1JJHJ8QqKcFJ+iUSiz/xuE8P9yF1cnYhNj4AQRLZsufnGEtu51lZ2875275AFaWj6Oq0dPVOWIRZLBGWpTjuJprfDQc03Fy4e3oQnL6W58CpRi1cjlSus9tE5583nwf+qTKnR0VE6OzuFTmP20NzAwEBB8fTlL3+ZkJAQXn/9dQC+973vsW7dOn7961+zbds2Dh06RHFxMe+99x7YDvLTTz/NK6+8QlxcHFFRUbz44osEBwfPq8L4LNgzdu4HuVzOihUr6OvrQ6vVcuTIEcxms0OIqkgkwtfXl6SkJGZnZxkdHaWgoACz2czChQvZvn07JpOJnJwc3N3dSU1NxcPDg4aGBs6cOYNcLmft2rWCwqqtrY2AgAAn1YOrqysHDx7k2LFjtLW1odPpeOihh+5LHnh7ezs9eB8/fpyVK1c6qEYiIiKc7BqTk5OUlZUJYzo1NYVarWbXrl309PRw/PhxkpKS5rUH2sfkoYce4pNPPmH79u24uLjQ19dHfn4+69evd1itDgsL4/LlyyxYcFeuq1ar2bBhA0NDQ0xOTnLq1Ck8PDxYs2aNUOC4ubkJ9p3u7m4KCgrYt28fUqmUqakpgVhISkoiLCyMQ4cOCTlBc1U0bW1t1NbWgo00+NOf/kRISMi8QcEAhw8f5tSpU2zevJmGhgbOnz9/90bk4kJ6ejr5+fl4eno6WPvmjo2Pjw/FxcUEBwejUCisXS9s14tOp8PPz4/KysrPJKTsHa7m6zqZlZVFcXGxQwv2/Px8h+/l4eGBq6srvb29BAcHU1lZSUREhFAY2oPb76diuXr1Kt/97nd54okn8PLyciAr7dBqtbzyyitga1pwL4xGI9u2bePmzZt0dHQIZJVCoSAlJYWxsTEhE8Z+3MRisVPxbO8IJxaL2bJlC7m5uQLhNzw87KSkrK+vp76+nr1793Lt2jUyMzMRi8VcuXIFg8HApk2bnMjWtrY2SktL2bVrFzKZTFBhzO0kVlJSIpBJYWFhlJSUCKSURqOhqamJ7du3CyTJXHR2dgqquOTkZAdCay56enoICgoiLi6Oy5cvMzAwMK8SjDlk64ULFxzUL1qtloaGBr74xS8yPDws2IOxXe8lJSWCXWzbtm0cOXKE3NxcxGIxCQkJZGVlOZCQW7dupaqqipMnT5KQkOBwPc8lo9avX++goHR1dRXCwBsaGpzsgfdCr9dz4sQJ1qxZw+uvv86mTZvmPT8vXLjA6tWrGR4eRiQSCd+9qamJs2fPgk2d2trayqlTpwgLCxPUNqWlpaSmpgo5dQUFBVRVVZGVleXUJW5qaorbt2+j0+mQSCRs3rxZIPU+De7u7hw8eJBLly7h5eVFRkYGo6OjVFdX4+rqSlSUc16LfVymp6e5fPkyLi4uQni/VqtFpVIREhLC6OioUwdC+3efSxq6ubmxfPlyh1ysey1692LhwoVCBllTUxP79++f9z5gb+5gMBiIjY1Fp9ORl5eHXq8nIyNDsEPW19cTHBzMihUrOHv2LAkJCU7z3nxNDUQiEZs3b8bb25u3336bhx56yOn7tre3Cx06xWIxmZmZmEwmzp0796mNUf6F/+8xV2k03NlM8cm/4R+VIOTX/P/rM3TaSfa++Ac8g8Lpa6xEPzNNaFLGfUmi4IRUehsrHVRYnwV7O3GFi5qv/eE0/U01Tra2+6G3oYKIlOWIxGJaiq/fl2SQyuSCymNiqI+HXvw9k0P9n2slHlvW04GX/wtswcYIap0Jxgd7GGit4+K7PyP76desOUciMWq/QNz9gvAICKHx9mWCYhcJ7zU9PoJWM4J+ZgqZUkXxqQ8Z7Wlnz4/fxj/KsfGDRCrDbDJi0M0w0tkskD+xmetpLbqOV0jEXeXIPQqPoLhk+pqqHKwsFrOZyeF+YjPXMz7Yy2BbAxbz3bD88YEeys79k6jFa4TQfLVPIH2NFXgEhOAVHIFnUDi9DRUYZqepunScuOUbGB/oYWK4H4vZRO47P2HXv/8Gi9mMT3gsnVWFuHh4015egFdIhNClLSgumdmpcVqKrxGSkIrK3Quv4HA0fZ34RcTTUXFbKBpdPLwF+52mrxOjbpbA2CS6qosxGY24eHgJAdFTo4Mc/em32PCNH82x/4iQyBSIJVJU7l7oZ6dtgeNS/KMWOBCug+0NaEeHCIpPIfvp1xwUWlrNMD315ei0E1z+8+s89OLvnfLPpHIV03MsWCKxGKXag9CkDJuVy5qvpHTzwC8iDpFIRG9DJYFxi5idGmeooxmzyYhEJqfq4jFcPO7GbNif8drLb9FbX0HYoiU2pVoQnoFhiEQiXDy9mdIM2wi/u98rMm0FzYVXiV12d0Gvo/K2A1nqFRxBW+lNAFRxXsJ51FF5m8i0ldbAe5v6yPqMa5pD7BRx4OX/QiKTIxKJaC+/JYTeD3c0MT2uwaibxcM2d0WkLaetJJ+YpeucnklFIqvNUSpXsDh9lTDnWCwWIlKWMdTRxHBnM15BEbj7BWEy6umovIO7byB+NiWTV1A4baX5giJpoKVWuH5CkzLorrGqGIc6mlD7BqJwVePuF+ygKBvr78Yj4K57KSgumZaia7h4+qCfnsRsMgr5Zz6h0YwP9tJZVehk+Y1Zsg6xRILSzZ22spt4h0QikcqYnZrAMDuN2tcar2I2mZxs0CajEaNeJ5AvngGhuHn50Vpyg6DYRU4d6uZidmrCGiJusRAYm0RoYgazk+MYDTqMep3TAsW9kMoVXPjDT1lx4Ft4h0Q4WCE/C7NT1mtk4zd+RFd1Ea6evgTFJ8+rJvs/hdlsYqit4b6kkrtvIGKx2Ck43o6u6iLCkjI+df73CgrHxcOb5sKrAgFlMhrprC4iNvOB+74OW95VTOZ62kryCU5IwSvYOnZq3wAGWus/13f8X0VKnTp1iscff1z42V44/+QnP+Gll14CWxE2t6BYuXIl//jHP3jhhRd4/vnniYuL48SJEyxadLeDyXPPPYdWq+Wb3/wmY2NjrF69mtzc3HkzKD4LfX195Obmsnnz5nlzUAAqKysZGhpi//795OXlERYWJnQSsmNoaEjI1LHbCuZ+L3sGiouLCzk5OWzbtk1ota3T6bh+/bqgGBoZGeGBBx6gqKhIsCDMnezc3Nz493//d3Jycjh//jwymYyUlJR5bQmurq5C8O6xY8dYt26dk+0wJSWF06dPC6SUyWTi9OnTfOELX5h3zEJCQtizZw/V1dUcP36c27dvk5qailwuF/7JZDIUCgUbN27krbfeIjg4GLFYPG/mkEQiwTynxbP9+x47doyHH36Yy5cvk5WVxdjYGGfPnkUkErF27Vrc3d2xWCwUFxczNTXl8N6jo6MOWVPu7u6CHa25uZkFCxYIpEBkZKSgDDIajUxOTjI5OelAbNlx7do1Vq1aRWWltX3rwoULHZRIWq2W8vJyHn30UU6dOuWgtrr3+61Zs4acnByB4PT29iY8PJzU1FSOHTtGf38/jY2NTi3Z7UH3p0+fZsGCBZ9a/C5ZsoT29nZOnDjBrl27BHJxLlavXs3hw4eFFvZzw7WDg4Pp7e2dV2V05swZ0tLSGBkZwd/fn87OThoaGpxUKLm5uezZs0fIf7oXly5d4je/+Q0XLlxwIDpmZ2epqqri6aef5tixY/e132IrWicnJwWljZeXF6GhoUK+z1xizW5PnEtk+/j4MDIyQmBgIJs2bWJ2dpbc3FxcXV0F2+jVq1dRqVSCpRbbeTW3k2d9fb0DGQOQkZFBSUkJaWlp5ObmCvOgXC5Hp9MJ3+vesbOrxEZGRpyUmYWFhQLxtXHjRj7++GP279/vMOfMbRohk1lXkuaGlp8+fVpQWebk5DjMaW5ubkI4+alTp3jllVcwGo2sXLnSyZI7d25KTk4mOTmZ+vp6Tp48SV1dHRKJhOnpaR544IFPVdMuX76ckZERDh8+LCji7kVHRwdFRUXs2bMHmUyGu7s7165dc7L2FhcXExoaSmBgIAEBAeTk5Ai5d3FxcQLp8fzzz9Pb28u3v/1th9cPDAw4EBwrVqxgamqKY8eOIRaLCQ4OFuYPV1dX1qxZ43B+xsfHC3brT7MlikQiNm3aRHNzs9CdUC6Xz6tysnectDdv2Lp1q4NltLCwUCCFk5OTuXbtmtNiQ21trZPNNjg4mLGxMYGMGhwcdMjPssNoNFJbW0t3dzcikYgf/OAHpKamkpGRQWvr/JYjFxcXVq1axUcffURzczPr1693uo41Gg2JiYmIRCK2b9/OnTt3nMLs74VGo+H69et4eHhw7tw5fHx8KCkpwd/f32FMDAaDA7FcV1dHXV0dW7ZsEZp4/Av/c/S31BF+H/LFbDbN2/rb6T2aazGbjHzr/Uu0ltxANz0p5ND838Jo0DMx3CcoKIITUjEZjXTXliCRSglZkO5EgMlVrhhmpx3y3WYmNEKQ9b0YG+hmtKuVsEVLBfWGxWKet5X4vTDMziCRKYR9CIpLnlelMBcWi4Wh9kZilq7DOziSzso7Dnk+877G1ozGOySS1pIbeASEIpFKrc1W1B6o1B50VhVy4OX/wmw04BsRh9lsYnJ4gJ66cnTTk1z58+tkP/0amr4OxBIpLp4+eIdEIFe5YjLoWbr7MYEssZMoMoWKgJiFSKQyGwlR4GQdDIxbxK1Df6S15Dpffeek077LVS4YZmcYbGvALzKB0e42xga6CU3MQK5ywVR+y9qOfc5zu1E3y2BbA5I51741E+UucSUSiQhZkMZodxu5b/8n3iGReIVEErIgDbFEwtanXsbdN5DO6iKwWGivKMAwM01E2nKnEGe75aenvhxRX6c1yLm9ke7aUkIS755jvhFxdFbewWTQMz02IliofMNjGOlqFrKGLBYL/S21PPa7TxhoqXMg6kwGPZ1Vhaz6wnesNhtXNSaDnsG2BvSz01b1WH8XUYtXC7ZOqVwhnI92K6DJoGdUP0v2069hNppoK71JyMI0QfElUygx6GeF88duZ1q+7xvWEH9bkTwzOUZPXRnasWGuf/gm2U+/hsJV7dDBSyQSOag97AHVax99moGWWiJSlgn2WzthYLFYuPr+L9n17792GGt74HpHxW0kUil9jVUExiQJhfnU6BCjPW3cOfY+6dkP09tQiV9kPDKFErFEyvS4BolUJhBEQfEp9DVaGy2MdLfiFRyBV3CEQAS4+wUxOzVOR0UB3bWljPZ2kL71oLA/YrGEgJiF9DVV4xsWI5wbw10tzIyPsuLAE/TUlWEy6O8S4bZnJr+IOPwi4hjt7aCx4BJ5H/yS3T96C/U9DRbCU5bRWVWIV1C4YGGzX18SW/dInXZSsHp5h0TSXn5LIKU0vR1O6qDI9JW0l9/CYjE7XZN2+2Bbab6126dI7LRNeHImnVWFRKWvoruulJgld4mVkIXp9NSVOpy33bUlTlY0qVwhXDeTI4MExt7NDDYa9PQ3VWEyGFC4qglftBSRWIybtz9ShdKhQ+unwWjQ01Zygy/98h9MDPV/6tw6H/qba3jkjb8z1teJSu3plAf1f4OuqiLC5yGb5sLN2x+RSOyU2zbc2Yybl9/nulcqXNyIXbqe9vICtGPD6GduEJ2x5nPZ8cRiqxWws6oQd9v5pJ+xNkz4PPhfRUo99thjPPbYY5+6zXwPhfv375+XvLBDJBLx8ssv8/LLL/9f72NycjLp6ekcP36clJQU4uLiHNQhV65cwcfHRygSVq9ezcWLFx0sV9jyQMbGxujo6ODOnTtOhYhWqxUIjnu75ykUCiF0+2tf+xparZa0tDSio6NZsmSJ04lz7do1ysqsLZHT09PR6XRUVVVRUlIibOPi4kJaWhqrVq3iypUrTExMsHHjRqdQ8Lljav/Ox48fZ8+ePQ6fGxsbS1NTk8MKdkxMjFCkDA0NodfrHf7Zi9Xnn3+et99++3Nbc7DZF+9Vqnh6erJjxw5MJhPXr19nYmKC73znO1y6dMlJTTI6OupkmxOJRHh6evLUU0/xz3/+k4MHD3IvSkpKhAyx48ePOxAQ7e3tyOVyQkJC0Ov1NDQ0OBEQrq6uzM7O0tvbS3Fx8X1VeDdv3qSkpISxsTEnC1d5ebmQ+YKNrLB32PL29qauro7KykrBrvdZiIyMxMfHh+eee46ZmRkUCoUTCWgwGIiLi2NoaMjh99HR0RQVFTmQUhaLhePHj7Nq1SoCAgLo6OggOjqaZcuWcf78eTw9PQUypKysjJSUFMRiMUFBQfT19TkcF41Gg0wmw83NjVWrVnHr1i2hGFUqlcTExHDs2DEh/+rec9h+HV28eNFpzrB3U5u773ar472dHv38/BgaGhIUnEqlkh07dqDRaDh06BCPPPIItbW1DgSkHUlJSVRVVZGcnOwU5I5NLVVaWkp7ezu7d+8WrquVK1dSUFAgqKzq6+udCINNmzbx8ccfO1gR59uP+TJ8SkpKHAjGDRs2cOXKFbKysrh06RIbNmz4VMLEYDDwySefkJWVhVKpZPPmzQKZN1d1Nh9pGRcXR1dXF6+++ip//vOf51XyzQcfHx8OHDjA1atXkcvlDqq+GzduIJFIHLLe7F1N586nra2t6HQ6YU643433woULPPHEE0xPT1NRUXFfC6Qdbm5uJCYmkpSUxEsvvcSLL7447/iJRCJCQ0Px8vLi0KFD7Nq16zOv05CQEKqrq3niiSc4ceKEgxJ3Lt58802eeeYZJwISmxV1rrp23bp1nDx5Ei8vLzw8PObtbGtHYmKioAZTKpWYTCYaGxtpb28XtpFKpSQmJpKcnIxIJOKdd97BbDY7LOjcC51Ox+OPP45CoXBQ4s3FxMSEA1m5bNky2traOHHihKBcsx/DkZER8vPz8fLyYufOnYhs3RMzMzOZmZnh9OnTxMXFOSxiYSO4c3JyiIuLu293x3/h/xxSuZyRrtZ5H9Snx0bva0XDtlrbUX4L3zkd4KIWr6a15AahC9NRuP7fx0F0Vtx2yHTBRk5EpCxDNz1Fe/ktXL18BTLAjoCYRAZaagXrz1BHk1MAu8lopLPqDmqfAIc8D4DQxAw6qwrva42wo6e+zKEocfHwYqS7Fd30lJOdw47ehgqCbSouqVyB2jeQ0d4OvIMj5t0eoL+lRvguESnL6Ky649DxamKoF6Wbu1DM+kbEIRZL8PAPtqmDbrHjB7/ELzJ+3kyV9orbRKWvoqu6SFBzYSte+horMRmN5Pzux2z6t/+ku/bucyoiMa4e3kRnrCE8eanQwW0u3P2CcPPypaPyDl5B4XiFRDqoYvyjFjDYVi+o7rRjIyjVHizf/w16GyqYnZqYN1AZW8EJ8MR/XaT5zhXU3v6CfQ1A5W5VLs1OTdBWmo/cxdWBkBJLpA6KkJAFaUyPj9JceBVNXyeRqStQunlg1Osw6mcx6vW0ltwgGhyUSSp3LwbbG8H2TNNSlEfYoqXCOTD3Mzrs57QIQSUjkckJik8GW5cxmULF1Mggah/rfO/i4cP0+IiQJdPXVIVYLCEqfRWdVYUExiZiMZvpqS/DZDAQmrjYSmTpdNbA75pSa1dKpXOzCJXak5CF6TQX5fHIzz9kpKsN/8iE+6odzSYTLUV5RKavRKZQoVR7MDM5hkrt6WC/He1pR+mqZriz2YFMxGaPlKtcaC68in/UAvSz04x0tyISiXD18iUsaQnbn30D3fQk7r5BDLbV2xQ1Rj58dj9ffeeU8F520tNkNDIx2DtvwwClmweRaSuZGh2it6FCIF2lciV+kfHWIP7BXka6W1GqPeiouI3aJ0Ag4kIWptNWmk90xhonNZXFbEY7OoSbtx9bvvMSLp7eDLTUOmXQjfV1cu2vv2HjN/4Drebuc7rFYuHYq0+y7enXHRRfUrkCg26GqdEhJwJnanSIka4WOioKcHH3RnGfZhUDLXWU537Mtmded1AXicRiVO5eyBQqaq+dJSp9pcNzllSuwGI2C+etfmYaiVTq1A3OjpAFaUwM99Nw8wLDnc1YzGYkMhmBcclOilavkAh66so/syEEdoVXQwUxtu6KI91tn/kax9drMBkNwpw2PtBDa/F1a3fMz6GUmmvjvReavk5cvf3mtaffC1cvXyGjzJo1Nsrs1LiQ6XYv7ApY7dgwM+MawGLbHzn5H73Nhq//B7315ff5NJFgJ1S4uCFXuSKRyQlPzqS/uZah9kYMullC78kku+8YfK6t/gUHqNVq9u7dS3l5OSdPniQiIoLOzk6Ki4tZsWKFQ2i7VCoVclfm4uTJk6xatQo/P2ur0LkWj5KSEodVd3vWkz0ny47BwUG+/OUvMz4+7vRQbYfZbEaj0bBu3TpOnTpFeno6CoXCiZSZmpqivLyciYkJwQZZWFiIp6cnMTEx+Pr6OkwidkJgdnaWlStXOnUqsnfzm9sZsLGxkb1797J69Wo6OztZvty5/fHFixe5c+cOarWakZERysrKyMzMJDg42GG7ufty+/Zt4uLi5s3twqasio+PJz8/n71791JXV4eHh4cD2TEyMuLQqa+jo4Pi4mIyMzM5d+4c8fHxXLx40al1+sjIiKA2WLRokaC00el0FBcXCwVxZGQkubm5TqRUd3c3KpWKoKAgvLy86O/vF4gOO4xGI8PDw+zatYvy8nKqq6sdjndvb69D0W9XSo2OjvKVr3yFGzduUFFR8bkIKWznwpUrV1i3bp2QYzTXfmQf8/Pnz3P48GGysrIEwsbFxUXojodtsjty5AgPPvigQA5NT08LxfCWLVs4cuSIEA7d1dUlFJbp6enk5OQ4HKcrV64IRWJAQAC3b98WWtFjy6uxt4QPDQ3lypUriMVi1q9fT1BQEP39/TQ1NbFmzfysvz2HzdPTk8LCQiYnJx0IHjt8fX0Fe/FcGAwGxGIxx44dY2xsTFDHyOVylixZIlxPp06dQq/XO1znw8PDlJeXYzAY+Pvf/050dDRr1qwRri0XFxfBHtfd3T2vGk0kEpGVleVgRayvr3cqrN3c3IiJiXEiV+Z+T6VSicFgoL6+Hg8Pj3m7Utph7+i5d+9eh4Dp7Oxs6uvrOXHiBNu3b0cqlVJfXy+QR0ajkStXrjA7O8uGDRs4evQoaWlpHDt2zInovh/sdsPu7m4+/vhjTCYTR44cccp1smP16tXk5+ezZs0aNBoNNTU1TgHbrq6uQsc8bOddbGysoJ6aq0ibL1PJ3thg4cKFVFRUoFQqOXr0KOvXr7/vOLq6uvLwww9z/Phxli1bNu/x7e7upqysDKVSSXZ2NqdPn2Z8fJxt27Y5KH7sMJvNrF27lkOHDrFz585PzT7Dlhn1z3/+kwMHDnDnzh3hWrTDYrEwODhIQ0MD09PTrFy5kt///veYTCYni+Zc1NbWkpiYSEBAAFeuXBGsf/diYmKCRx55hICAAK5eveqkaLPjXlIrKioKPz8/Dh06RGxsLL6+vpw4cQJvb2+BjLoXKpWKPXv2UF9fz7Fjx4QFgeLiYvr6+tixY8e8Y/ov/M/hawsknhjqc8hywhaG7BPqbEFlTkBz5D0P9yKRiOiMNbQUXyN80dJP7ez3WRjuaMI7NNqBZJgLhYsbUYtXMzU6SGvJDbxDooTiTaX2FAgL7IsfczuFdbUyMdxnJQTmKU7EEglylSszk+P3VVgZdLNIpDIn60Vo4mJaS27Ma+PTz2gxGw0O7+kTGk1b6U3c/YLun1s1rRVIPolMjto3kLH+LjwDw6wWko5m4fPUPoHC8TQZDbSV3SQu8wEsWOiqKnKyefU1VREQvQCxRPL/Y++9o+JKD/Ph505jZmAYBoY+9F6EaAJJgIQaEkLSSlq1dYntuCWO7ThxNnbWjrsTlzhxW8dxt2N7VUEFVBBqIBC9997r0Jle7vfHzH13LncGSev9fd/vO2efc3xsoyn3vrfMfZ/3KZAHqMjnwj7hVyVmYH60D3v+6nNOyUb9xhp0G6uwWizwCYliTdJoqxXri7OYHepGw/XfofCz3+IoA6Ryb8yP2H67aZrGTH87saUExW3H0vQYJ5eFtlox2voMPiERhKiJ2pFPWuEczxmjTovJnmbs/fDnoVlZtKmE7GMg9VRAt7bECmyWyr0hUwag4n++DWVIFPQbq+AL3SAQiSAQiSGVe4Pi8TDWVguplw+UodHERkZbrbamxJRsYlkLik8lVexzw71QhkWT7aM3Ly7qbRNgVWI6NMtqDDY8RkhSJqRybyxODkHmE4DR1hoSCg+HZwSKx4MqMQMWswmTXU3gCYRYGOsHQLMC0mFXb6wvzhHSa7ipEpEZeRAIRRB7eGGg/hHCNzWbwa5aGW6qQlRGHiEo/MLjMN7ZwLInLU4Ow6TXI/34BxAUl8q5hk16HZZnx9H9uBReASGI3X2Icx25K5RYmhqBjyqSWHHnhnuRdfqvMTfUxcq5pa1WtJdfRcqht5+rxB6erOt3ZqAToSnZkCkDiALIqNNifqSXEEhl//lFpB97P7YdPMUilW0qxQgsTgyDLxIRtdPbqj9bi+l0XxvcpB7wdGIdtlosyDj+AXuAP/saKPjbr8BbFYGJzkaApuHpF4TA2O2Y7G6C1WxGRHoOVmYnsTo3ScYmNCUbYdt3Yqyt1mlm0dLkCCIy8pCYfwza1WWWislqsUC7tgyz0YCOimK4e/lAKJbAPyrpbYI2MZ2opaZ6WxC+nUvQm01GG8lhV6auzI7DpNfC0zcQChckO4/HZ1l1XWFpahSaZfVzLWquQNM0pvtaWe+X+wfDw8cf4+21NgtwAPd51BEe3n7YWJzn7IvFbMLKzLjLxlRnkHgqEBibgrprv8LsYDdCt+3gNC865vW6eXjC3UtpK3RwuDYcrbzOYLVaYNLrYNBuQLOyiKXpMVgdOI++mvsAbQXOfPyFtvu9J66/AKmpqUhMTMR///d/43Of+xzm5+edWkiio6MxODhIsjlu3ryJXbt2kdcyNerMA/jU1BTLYuXr64va2lrO51ZWVuLMmTMYGhriEBUMHj58SFRbvr6+mJ+fdzopYpQn165dQ2trK2iaRmpqKpaXlzE8PMxSVcF+AZ45cwa///3vn1tZzqglmAlOUFAQ6uvrOdlDTPNdXFwcHj16hEOHDiE9PR11dXWor68nJB4cLED9/bbVIkdFlr+/P4vcefjwIYRCIc6fPw8vLy8cPnwYz549Q21tLfLz80mrnUgkglarRXl5OYKDg4nqqaurC5GRkRAKhSgrK+O0TDGIi4tDSUkJEhMTcevWLZaKxdmkyGq14tmzZ0Sxk5ubi2vXrrHUVrATdQwZlpqaivLycvj5+bmc3JpMJjx48ABmsxlf/vKXoVKpsLS0hNLSUvB4POzevdvpMdPr9Xjw4AHc3Nxw7Ngx8Pl8lJWVcQgpq9WK2dlZnDx5Eunp6bh79y58fX05RKfFYsHly5dx7NgxlrJhc8bO6dOncfHiRYjF4i3HjFH8OP790KFDqKioIEUDVquVfDZFUThw4AAWFhZw9epV7NixA0+ePIGfnx+L6KJpGqurq5iensbs7CyEQiGOHj2KpqYml+HPIpEIRiN7Zaq/vx9DQ0MkNN6RRDYYDETpBgBtbW34wQ9+gC9+8Yskn0ypVLJsXUeOHMGzZ89QU1ODvXv3QqFQQCgUwmg0orGx0WUmnpeXFwICAtDT04OVlRUOmc0gMTGR2NSMRiPHpruxsQGLxYKMjAwMDQ2x/s3Pz4/kUs3MzKCmpsZpoycAxMfHIzw8HCUlJdixYweMRiP4fD7Ky8thMBiwf/9+FmHq7++P/fv34/Lly04VPq7g7+8PuVyOwsJCvPXWW+jq6kJXVxd8fHwQHx9PzkGlUonFxUWYTCaWPdIRO3fuRGVlJQ4dOoSqqiqoVCpERr6t7jh06BDZPsYyCzvhylyfjAJuYWEB4+PjOHfuHB4+fAgPDw+W3c2R1OLxeHj11Vfx4MEDlhW7sbGRBH0zBBpN00QJdvnyZbz22mus8V9cXIS3tzc8PDxIs2NaWhrCw8M5Nj0GFEXh1VdfxX//939DJBKhoqIClk2rzn5+fsjIyIBUKsX169dBURTS0tK2JC0HBwfJ/d9kMpEQ/c2ora0lBLVer8ezZ88456+rYHUPDw+cOXMGbm5u+PrXv4433njjhUil+Ph4xMTE4Be/+AU+9alPYXh42Gku23t4dxAUtx1jbbUQSaSsyZJJr3VKKjEhvK6ykyiKQlTmXltrUopzdcbzYDLosbGsfq5SCfaJg4e3HxYnh235JjHJkHgqoAyNxsLYALyDI8hDvcmgw0RHA7xVESylkTMExm7DaEuNy1DdqZ4Wp5MDyt40OD/ax2nVm+xqcjqRCdu+E6Mt1RzFFgDoN1Y5RJAyJArDjZXw9AuyWUi2vT0p9QmJtDWV+fjZM672guLxQNk2jqXa2VhWg7bShJTx8ldhrK2WNVnTra/AoNlAwp4ip+Mx09+O8LQcWC0WTHY3scgJGxFIQREUhsK//zZCk3fYwvGHe8Dj8xEQnQyhWAKJTA7d2jLUE8Mci5B3UBgkHp4YrH8EgUgMg3aDqNjYqie+jRBteEzyiswmI8baa21NXfZGPB6Ph5HmakSk50Dq5Y3V+Rmy/2ajAWNttfANj8UnfnkPI01PORP+wNht5LhrltUYt2czrc5Pw6BZR3jqbtY5L3QTw2KyKZaM2g34R769ECoUS2HUaQn5M93XRr7PXaFEVOZeTHY1QSSREpJq835vBl8ghDIsBlPdzWgu/TMO/c2XMTfUA7/IOHIdeKsiMN5RD5mPP8Y76hEcn0oIUZFEipisfXbSL5KQX0adFmNtzzikH8XjETsb7LY3i8mIgOhErKlnsTo/BUUg22UhFNuUYMc+/z2buq+lBl7+Kng7kOCbn12YfKrUwvMYa60l5yFN01ieGkVz6Z+gDI1CcEI6eHw+fMNjiRJtdX4aPB6PqGUsZhP4AiFEEikhvKwWC6J25MPD2w9zQ93ke929lFAEh8ErQIWR5mpQPB4CY5Ix3FjJUf0FxCQ7JX6nelvho4pE2PaddpVZDouApijKViBhv3ZW5iYx2dWIOz/+MtKOvmYjjP1VnM9l4Kg0Z95v0G4Q9Z1mZRFr6lmigOTx+fBQKKFbW8axf/wu3BVKGHVaTPe2wmoxQ+AmRkB0EmirFRtLC5DIvEDxeDBoN7Aw2k9CwvlCEZSh0SwCLywlG4sTwxhpqUZYyk6XiwpbYbqvDUI3CSfXz5bHN02I6K0w3l6H0G1cax1fIEBEei7UYwO2APFtWS5Vge4KJab7Wjmk1Hh73XNte5uxNDWKdfWsPajfCK/AUIgk7u+oEW8r8Hh8opLajKneVhz9+28BoLA6P/VCn/ceKfUXwGAw4N69e8jMzERJSQl6e3vR0GCTLKpUKmJbSEhIQGlpKaKjo1FaWoqsrCzWA7xMJiMB3GNjY05tawEBASwr07Nnz4jSKCoqCjdu3OCQUszDPzMZ27lzJ0pLS13Wbl+/fh379u2Dj48Pbty4gdTUVBKouxkbGxv4/Oc/D3d3dzQ0NLDUMQx+8pOf4PLly/jxj3/MaUg6cOAAHjx4QMiWsbExrK+vE+WI40QoO9vmH6+urkZ1dTX27t0LHo+H+fl5DAwMcEiipKQkVFVVQSQS4f79+9i3bx/8/PxYk5ldu3aRZr+1tTVYLBY8evQIer0ex48f5xAxsNuqRCIRUXFoNBqO+ujw4cPYvXs3iouLn1vNfu/ePU4V+/bt29Ha2spqiuTz+SybTUFBAS5fvoyTJ09iZWWFEHUGgwEPHjwA7NYrsViMiooKBAQEIDg4GNu2bYPFYsGzZ8+wsrICqVSK3NxcmEwm0oRXUFDA2m6GfGHUL7CTfIyFkKIoFBYWYnBwkITUw37uXb58GadOneIE8G/G/Pw89Ho9vvvd78LX1xe5ubmEiPDx8YFarYaPjw96eno4hJ1UKgWfzyeZXptVZrCTsa+88gp+/OMf4/XXX2flcjHw8vJCUFAQcnNzMTIygu9973tYX1/HrVu3EBYWhpSUrX3ldXV1JLzbGdzc3Eir5eTkJObm5rC2tgZ/f39O2DIcfvR3794Nmqbx5MkTrK2tISsrC2VlZS5VgQySkpLw5ptvYn5+Hv/6r//KeYhgcOTIEVy6dAkymQyFhYUYHx9HZ2enrRrdwwOFhYW4cuUKJiYm0NjYCLFYjLy8PGzfvh2PHj0iBMfm47IZYrEYZ8+eRU1NDVH47N+/3+W5wVhvmUZOoVDokoxYX1/H48ePwefzkZ+fj7KyMqyvr+Pw4cOgKApqtRptbW3kHgv7dSUSidDc3Ezy5BzHx83NDUajEc+ePYOPjw8nmJsJQr99+zb4fD4OHz6M8vJyWK1Woghj4OPjg5aWFsB+XQ4PD6O4uJjch50RJ/v37yctdzdv3kRmZiYnTHxlZQUKhQJubm44fvw4rl69ijNnzpD9aGxsJKQqj8fDqVOnUFVVhYWFBSwsLJBzdWNjAx0dHYQwpSgKP//5z/HJT34S+/btc0nsMJlSQUFBJH/Q2XnJkGMMDh06hNu3b3NUWBaLBTwej2x/YmIimpubOU16rtDb24vu7m48efIE4eHhpFCCyRN0BqvViqdPn2JlZQVxcXG4ceMGmpubYbFYtmyFfA9/GUJTsm2TpdTdJEdp8/3JYjZhtKUGfpHxRGHhCgwxNWj/TGcWB9uEXOOU+BrvqH9uw9Jm+Kgi4R0cgdnBTswOdUOVmAH1+CDMRgP8IuMxN9xja+xKz3mhYHHKXh3vTEVmNhrA4/NdTrg8fQOxPD3GyqVamhyBIijM6QSIx+fDJzTaKZG1OZOIQWhKNppu/hGBsckwGw0w6XWgrVbQtBVGrQYN13+PjGPvZ4UVB8enYrq3FSHJmbBaLZgd7ORkzTiCtlox1dNC2vzc3GXQb6wS8nJtYQYyH39bgLdAYP/+t3/bNpYWsDo3iZDkHZgf7YNufRX+UTbFhsVswuxgF8wGPQQiNww2PLZNcN1tLYJGnQZGvRZGnRYmvQYCkRh3f/KviMzcg6T841hbmIFEpoDYw5McB4FQhLDtuzDcWAmByA3DTVWI3qQSsrWq2UiFiIw8GLW2hdTFyWGsq2cRkZFLzg+/yHjMDr5tndwMd4US7golNpbVaLt3BfIAFSEQHZUPJr0OV772N/jA9//Mer9/VCI5HszYsQgfikJwYhr6q8vx+Hc/wLHPfxcUxT5/HH+HDdoNTPe2Qir3RvTO/ZB4KhCSnGm38DWBtlohELnB374/c0Pd8PQNhMRzUwkFj4eI9BzMDHRAt74C/cYaxjvrEZ293+lzC6O8MmyswWq1ECumzNsPk91NHFJqdrAbytBoSGReWBgbQGRGHmlUVCVlchRaFrMZc4NdbwfOe/lgY2nentdDQbOixsk3fgyrxYzxjnoIRCIEx6eBpmmY9DpbM6OdhA6wW3tZwfs0jeGmSuz90D9gpr+DRYZsLKsx1dMK2moBTVtx7ydfxZHPfBMRTjJ9bO1o7HiXhdF+SDzkpPEsMmMPIU4pO0m8ObtP5uOP5ekxHP3cv2FpymZZ0ywvQKb05yg7fcPjsDDaRyzM64tz2FicY1nDGBJN6qlg5eRpV5eINVYkkZL9Nul1mO5rh1GnwR9ffw2Ff/9tjHfUQyTxQGBMsksbHwOfkEjIA1QYbamGd0gkq5kRACjq7UZOR9BWK0ZaquEbFuu0Ic4rMNSWjfQcUmp5egzu3r5bNrUqw2Lg6ReMoaZKl0Htjs2lDNTjg/AKDH0h+59mZRHqsQHAHt4ftn0nwrbvxMJoP3RrKy4t3v8nMNndBJkykOSUmQxcjsAZ3iOl3gFomiYPskeOHIFIJMKdO3dIYxkATExM4O7du7aqYoEAq6uruHXrFjIzM51OnBMSEtDd3c1aUXZEZmYmIZS0Wi2Wl5dZK8jBwcEcS49jQxKYJg4+n2V3YnDr1i3s3r2bTCqioqJY6q7NuHPnDr72ta/h+vXrTifi6+vrWFpawvT0NKqr7a0WEgl27twJiUQCmUwGk8kEvV4Ps9mM5uZmTraOIyiKQm5uLmiaRmVlJUpLS/Ev//Iv+OUvf4nm5mbWsQGA7373u3j99ddJMDOcZKhQFIV9+/aRWvry8nKXpAIDf39/7Nu3D5cvX4ZSqcTu3buxsLCApqYmovw6duwY6uvrsbKywiIKHY/R0NAQ/Pz8OEHO0dHRKC4uJrlKDx8+dHo+nDp1CiUlJfD09EReXh5KS0vB5/Nx8OBBFoFkNptZBBufzyfWqY2NDbzxxhv4wQ9+4JIM3bVrF2pqakiOkcFggMFg4EzyGGtTWVkZ+vr6sLi4iLNnz7K2xXHcYS8NqKurQ2BgIA4ePIhdu3YhICAApaWlEAgE2LdvH3bs2IF79+5BJBJxsrQYHDhwALdu3YJAICCZSCaTiTQNUhQFoVCID33oQ3Bzc4OXl5dT6yiD3t5efOxjHyO2rtHRUdy8eRNubm7Yu3cvpyDh3r17CAsL41gzN4OmaTx48AASiQQf+chHEBQUBJlMhmvXrqGoqIh87uZjRlEU8vPzYbFYcPXqVVy4cIGUFjgDs78URaGzsxPPnj2DyeS8bYSxDh87dowQcIWFhayHH4qiCCGi1WpJI9obb7yBX/ziFy6zfzajo6MDc3Nz+NnPfgaNRoO1tbUtCUupVIozZ87gypUrOHXqFCwWC8t+Nj09jYaGBshkMhw9epSMGY/Hw6FDh1BeXo7Dhw9DqVRymjGfPn2K//zP/4SPjw+Gh4fR2NhIHuyYe8ixY8fw7//+70hNTcX4+Djr/QKBAGKxGGtra/jbv/1b/P73v8eBAwecBrNvbn6MjIyESqUi4y2Xy6HT6dDS0sIihuLj4/Hmm29CKBRy8u5gJ/IZO6FMJsO+fftYiw4Wi4Vzn8/NzUVxcTHOnDlDigTc3d2RnJxM2uo0Gg1++MMfQiAQYGlpyaUCamZmhpwXp06dwtWrV3Ho0CGOCrOmpobVKioQCODj48NpgNzc9AkA6enpePbsGXp6ekguGoe8sFhQWlqK8PBwnD59Guvr62htbUVRUREsFguqqqqwtraG5ORkonZbXl7G06dPyZgoFApSkCESidDa2opr167h0KFDLgmt9/DOQVEUIjP3YLD+MaKz8jmkzZp6FurRfoSn5bBIji0/k2cL13WspHaEh7cvNpYW4B3MJqXmR/ugDI1+IeLI2X4Exmwjqp2NpXnMj/RBt7oE34g4Mll+UShDo4m1zhFTPS1QJW2t3gtJ3oGxtmeISM+F1WrByuyEUyUUA7lfEMba61hEHZngbiKyTHodJnuasTg5DN/wGGwsLdgsZDweKIoHvtAWBD1lzx3xDgqHTOlvyxkyGUDTNMZaa50GrMt8/ImqwhYWvZNc45vVY4sTQyzlV0B0EmYHOxEYsw3a1SUsTgwRdYdvaAwmuhoJwcYXCIlKRb+xilv/8ToOf/rrmOxqhMBNApFECpHYHRKZF4RiKfgCAQ7/3ddhMRsREJ0E3cYatCtqLE0NcyaOFosZ93/8TRz5zDcw2dUEgcgNYpkXJDIviN1lkMjkCE5Iw1DjEwhFYow0V0PuH8wZD5mPP1bnpkhmktloYE3IaZrGZHczBCIRTvzzDzDSUu2UQJwf7cPBT7yB0ZZqyP1VpD3RFt5uU51sJr8sJiOmeltBW62I2pEPqZcPAqKTMTvYCYvJZMvssbcpmo0GTHY3Q+gmRnhajq21UrtBJuViDznZLpNBj9mBTjTe+D2kcm8k738F6+pZl+fl4uQwaq/8krQ6YtM9ny90g0gswbPL/4O0wgusfDfKScvyxtICrBYzuabM9jB2xk412W2zHjqSRqOtNQhPe/vY+EfGY7ipiijcrBaLLfNIIEB46i4YdVqMtj3DwkgfNMtqJOS9PY8QiiUwGfSsbRrvqEdwgi2Hi6bZ55KHQknyj5YmR7Dj5IchELlhvL0OFI8H3/BYSGRv/8Y65tmtzE7CYjbDN/ztRTQen4/w1N0ko0q3vgKpAymoHhvA+uI8QlNs1mKL2YSw7TthMujsSiYL3BVK+IRE2VoO5QosjNrsr9rVJSxNjjhVVIWn52C4oRLR2c+3w+nWl2ExGeHmLsPuC5+CxWREeOruLVVPVvsiFgOBUITIzD1Qjw1gtPUZQlOyyD1dERyOpelRKEOiyOtNBj1GWqqd2kYZvIiqyGw0YGVu8rlKWNiJuOgd+Zjp78Dq/BTrnHMGk0GPjaWFLRW8JoMOswOdsFoskMq9EZqSzdlu3/BYDDdVOSUZtwJTePGysIXsh7GIPoaceh7eI6VeEhMTE7h27Rry8vI4IbCObHVISAjJMzGZTHjf+96HmZkZfPnLX0ZbWxt5j4eHB8LCwhAREYGLFy9yspMYOBJKd+/e5QQcZ2Zm4ubNm4SU0uv1oGmaY5HYs2cPnjx5wrIl3b59GxkZGaz9SU5Oxo0bN5ySUk1NTUhLSyOV2fX19Sw7ilarJW18lZWV2LZtG7y9vaHVavHs2TOybZGRkbh37x40Gs0LBxtTFAVPT094eHggIyODtPRtnkSnp6cT+xEzMWNaBRlYrVbcuXMHSqUSd+7cQWhoKG7dukXsI66gUCiQl5eH4OBgFBcXIzg4GIcOHSKTYkYx09fXh5KSEmRkZCA0NBTJycm4f/8+AgIC0Nra6lJdwkyoExMTERwczLEvMfY5ACgsLERpaSmOHDnyUvknjY2NmJiYQFFRET7/+c9jZGQEzc3NyM3NZdm4PDw8SI4R7FZCV2HsExMTEAgE+OIXv4g333wTjx49IuPBQCqV4v79+9DpdAgICMArr7wCiqJQW1uL+Ph4eHl54cSJEzAajXj8+DF0Oh3GxsYQGxtLJs00TcNkMrFC8k0mE372s58RAkAoFCI9PZ2l3GhoaMCFCxcwMjJCMm42o7OzE0lJSVAoFIQgCA8PR3h4OAwGA548eQKDwYBt27bBarXiypUr2LNnj8tAaAYLCwvESus4vjExMYiIiCBKyuTkZBJcz2B6ehqtrbaHfT8/P/zmN78Bj8d7Lhmk0+nwqU99ClevXsX58+edqv/MZjMuXbqEP/zhD4S42nzuu7m5EbuVVCrF4cOH0dDQgPj4eKjVaty9exd79+51aseCXSnz+PFjbNu2DadOncLdu3dx5MgRPHnyBF1dXdi/fz9p+tusLhSJRDh//jyuXLmChIQEKJVK9PT0oL+/n1iCHbeXUdt4e3sjMDAQXV1dnObTlZUV6HQ6fPCDH0RPTw9rMYFBRUUFbt26hdjYWI5Kihk3vV5PsvEEAgGePHmChIQEREVFcV6/+UFZJBIhJycHr732GkwmE77xjW8gLS2NRehYrVaMj48jJSUFJSUlrNB72Bv/HBV8SqUSaWlpKC8vZ+XAWa1WNDc3Y25uDrBbgH/3u99Bo9Hg9OnTnOP96NEjFBYWgsfj4cqVKzh37hxnf4aHhxERwbY+MDbCo0ePEnKOIVg3f8fu3btx/fp11kLE2toaR1ELOzH+6NEjuLm5ITIykjWWQ0NDaGlpQVFRETn/HJXHjHoOdlL0pz/9Kf70pz/hu9/9LoqKilj3VkdFaGpqKlJSUlBRUQEALjOw3sM7BxOczNSjM5juawePL9iSUHEFisdDVFY+Busfs3JoYA9vXp6ZIBN02MkW3eoyRy30stBv2BpVJZ4KVP/5TVvr3PQYTAY9FAEhLu0azuATEgH1xBCZQJlNRsCuDNoKtoymEJttY3EOIdu4uS+bEbotC0ONT4h6ST0+CGXo2898ZpMRU93N4AmECNu+ExFpORhuquIEgW8szSPj+AcAB3vTmN1mxuPx0VFRjNBt2U4zrBTBtkZAo04DT78glhWNoiiS1bOxNA+fUPbzqNjDEwbNOvQbq5gb6mGp3ZwRFLBnoEx0NuKjPyvFTH+703wc2BUgHj5+8PD2xXR/B0KSMlyGJQ81VuKVL/wX3BU+8PQNgsmgh359FeuLs1CPDRDiwaTTouLn38Lhv/s6+EKRUwVzcEIahhoeI2pHPpamR0kgvXZ1CdP97VAlpBHlmDIkmnPMAECzpCZjsTI7iZHmapslzF8FgZsYJoPe3lrpaScf2kDxeAiOT2VdMwKRG1HA2NrNOlH5vz/CjpMfQnTWftY5adQ6VyEK3cQQiNyw54Ofw+rCNFRJ3DImR5iNRlz49u+gXV3kTNppmiYqPYFQhI3lBfiERLkkLyxmM+aGuln3F0dQPB5CkndAt76K4aYq8Hg8DDU8gX9UImfyrgyNhnpsABK5NyTyt0kdmqaxOj8FHo8Pis/HaGsNZMoA0soIRsVmtYLi8TA72A25f7DL7Li3t92E1fkpbDt4CgtjAwjbvhO01Yr50X7MD/cCdiWP3C8Ic0Nd0KwsYl09y7GgwU6M+UUmYLK7CW5SGTx8/GHUaTHR1QifkEjWdeOjiiT3H+ba2FhaILZRZWg0KB4PuvUVzA11u8w54vH4CE5Mw0RnI0KSM7EyNwm539t5y1arBbMDnTDqNJApAxCeugvzI72Iyd4HocQdw81VCIzZ5rL8Qj0+AKWTQgJlWAzkASEYaa6Gb1g0PH2D4KFQYmlyGLDfUzeWFjA33IOYrH3PvTcLhKItm1HH2moRkfHiWU+wk+3a1SWS4eZKweRKwWu1WjA31A2jVgOBmxhB8anPJZvCtu/CWGvNS/2ubiwtsPLvXgRjbbXwCY1+oWB5Z3iPlHpJGI1GvP/97+f8PSQkBJOTk06DdSsqKvBf//VfaGlp4di11tfXMTY2hp6eHnzgAx/Ar3/9a1ZWDUVR8Pf3R0hICPbs2YOf//znToOnYScQ1tbW4OnpiYqKCqfkgYeHB7RaLfn/9+7dQ3JyslMyzM/PjxO8rdPpWJlXKpUKjY2NRCVkMBhQUlJC8mX27NmDGzdu4OTJk5BKpUTtQtM0BgYGcPLkSZSUlGw55gw2NjZw7949bN++HXl5ecjLy0N5eTknxNlgMKCgoIBMfNLT0xEZGYmNjQ2itGAmM0eOHIGHhwfu3r2LuLg4BAUF4eLFizh69CjkcjnHuqbRaPDgwQN4eHjgxo0b0Ol0iIyMZBFSDJjA8YaGBjQ1NWHfvn2wWq1b5lLBPqni8/l46623sHfvXqJoIAGT9rauoqIilJSUgKIo3Lt3D/v27XuuVW5wcBAdHR1IT09HZmYmbt++jcDAQAQGBoKmadTU1JAQaIbQYcjQ9fV1uLu7s4iD5eVl1NTUgKZpRERE4NixYygrK4NOp3N6/mk0GvziF78gqjkGKysrrAmpSCRCQUEBWltbcfLkSXzjG99gPciIRCLWf7RaLfz8/LZUuqnVauzYsQO+vr6oqKiAp6cnJ0x6cHCQZDXJ5XKsrKwQosCxEaytrQ1Hjx7F1atXsba2Bj8/P/ZqnoMisaqqCkajkaXac4RAIMDJkyfR2dmJ69evg8fjwcfHB2VlZbaV+MBAol4qLS3FBz/4QQwMDKC2tnZLxRdFURCJRDh16hQuX77MyXxiCKkzZ85gYGAAHh4eMBgMuHbtGg4cOED2OzU1Fa2trUSZ2dzcDB6Ph89+9rNITU2Fm5sbnjx5Ar1ej4SEBEJkWywWlJeXQyKREPJjeXmZfO7evXuhVqsJsbe2tuY050in0yE6Ohqpqan413/9V7z//e/nkPIMpqenSdFESkoKbt++DZVKxTq3Kioq8Oqrr4KiKCwtLbGy7WiaRnFxMXbt2oXAwEDcvXvXKSklEAjw6NEj5OXlISIiAnFxcaTpsrS0FLAT+5v3h6Zp1NbWQq1Ww9/fH1/72teg1WoRFRXFURhNTEwgJCQEgYGByM/Px6VLl3Du3DkWkbKZsFapVMQKm5KSgrKyMvB4PHK9w05IHzlyBFKpFG+99RaxR8K+oODm5kbuZ/n5+U4Dxzs7OzkKToqicO7cOdIgKJVK8eTJE+zdy50QUBSFuLg49PX1IS4ujkNybca+fftw9+5doiZkFhT8/f1Z7YqOn78ZSUlJ6OzsxBe+8AWyqLIVGOJ3bW0N169fd5rr+B5eDhNdTRC6iUFRPMiUAfD0DURQ/HaMtdfBajFjsOExAqKT3/EDLeyToWh7CHVU5h7ysG6zRrDz0cY76lkZLS8Ki8mI+ZE+mAw62+KfpxdUSRng8fj2bBL7ZG5xHpPdTeS5QCBygzI0Zkubh6dvEEaan8JHFQmKojDV3QxVkvPWpM3w8lfh3ptfhSox47mr8GCUXtHJmO5rR1BcCjTLaviGxcBiNmOqx6ZAVyVlssgHRWAolqfHXAYLUxQFb1UEvFURoK1WDNQ9RM3F/4ZXQAjWFqY516bYQ27PjbGw1CkMAmKSMdpiU9szZJhJr4N2dcmm1JgaRcvtizj5Lz/ivJcvEMBiMhKixWabqiJKOlvjl8nphE49PkjUD27uHliZnXRaKz/WXoeg2G2QeCow3FgJmTIQQjcxhG5illLAZNBhrK3WlnW1LQurc1NECUTTNLz8VfD0CwJFUQhJyrTZ32gr/MLjMNXbCoqiONZHmdIf6hY2KTU/0stSyngFqOAVoMLS5AhGmp9CERSO/ppy+IREY7S1BgKRG0KSdzw3i0cgFMHDxw+HPvklkrfEF7w9mTbqNBB7cFWlTDW8l78Kcv9gTHQ2uAxOXluYhoePH7wCVLCaTZgb7mVlYlEUBaGbGKvzU9hx6iOQyLww0lINZWi0UyXGZsWTK0hkckRl7kHv03t4/NvvExub1FMBub8KQrEEnr6BGGmuxsayGmEp2Zgf6YVuzbZwqQyNhm9YDMK27yTthBOdDQBFITghDb7hsZgf7Yeb1B0Uj8exlzkDkyPEFwhh0tusTxSPxxqP5ZlxjLXVYry9Hk//9BPkf+R1zA33QCiWQugmhkgshcBNAr5AAA+FEkadBqMt1QiITobZqEdkei6HlPH0DbSNqYOqyMPbFx7evqBpGurxQazMTuD2D99A0T/8O9RjA3D39oPYw5NzbUtkXpDIFViaHMH60jzCUrLtZFYPKIpCQEwyi5DRra8S5Vv0jnxM9bZiY2mBtc/OXrsZQjcxojL3YH60D8szdQh1IJ7VE0MwbKy5zCjcDL/IBMwN9xCVpSNmBjrgH5XwjlS2Urk3ojL3YqKzARKZF+uaBYC54R74hseyPpvJiaJ4PPhHJb6UHY8vENgs2yO9LsdtM1bnJxEY+/zfEdjvYaMtNfCPSoRUrniBdzjHe6TUS2J9fd3p6kZCQgIqKio4pNTdu3eRnJwMlUoFjUaD3t5els1HJpMhOTkZa2trGB0dRXNzM2syb7VaMTc3h8HBQSwtLeEzn/kMbt++TVbQHckkhsBgLEauMo0SExPR1dWF2dlZxMbGOrVtwZ5BdfPmTdYE8Pbt25wJIVMdn5+fjytXrrBUGRRFcfKwGLS2tuLevXtISEjA9evXER0d7TK7p7a2FsvLyzh16hR4PB6ZRO/YsQOPHz8mq+GwB5MnJSVBLBbjzJkzqKurw+DgIAICAqBQKFBaWorAwEDWZIY5njKZDBcuXMDt27cREREBDw8PBAQEQK/X4/79+xCLxSgqKgKfz8fdu3dx/Phx3L17F1FRUYiNjcXCwgLH7rJjxw5kZmaioqICR48exfe+9z0SZu14HjkSWg0NDfjZz36Gj370o5wAagZ1dXVE2WQ2m/H48WNotVrk5eURVRGDhYUFVFVVITo62qVNkqIo5OTkEHvq0tIS8vLykJ2djbq6OszPz+PkyZMwGo14+vQptFotFAoFjhw5Qo73yMgIsSS5Ik0++tGPIj4+ntOw5jgWY2NjaGpqQmpqKu7cuQOZTAZ/f3+nyj2LxYKRkRF8//vfR2VlJfbsef6PzcGDB1FcXAxPT09iz2lubmYplHbv3o179+4RS6AjRkdHcf36dRQUFGBycpIQhwKBAJmZmQgKCiIZNzk5OaxGTldITk6GwWBAfn4+6urqcPToUdaYmEwmUBQFgUCAhIQE1NXVsWxNjjAYDOT6l0gkOHbsGK5cuYKzZ8+CoigWIeXm5oakpCTcvn0bRUVFiI2NxcOHD2G1Wklr4vLyMmC/Zi0WC3bs2AGtVov6+nrk5+eTbLju7m7cvHkTH//4x/Hzn/8cBQUFLHXiwMAAi+RRKpU4d+4cnjx5gh//+Mf49Kc/TcoLGLi7uyM+Ph6lpaUQCoWwbrJObD4ujhldhYWFuHTpEmlQrK2tRXb22/LmvXv34smTJ9i3bx8h5I4fP06UPs5W2mmaxrVr17B37174+voiKCiIWH8TEhKQkJAAmqbR1dWFsrIywH49m81m0DSNnTt3EoKPyZUrLi6GUqlkkcqDg4NExaVQKHDixAlcvHgRZ86cgUgkcrptw8PD6OnpwXe+8x38/ve/5xD2sGe4MQQVo246efIk3N3d8fDhQ9bCiZ+fH7q6ulgFGZsJZEdQFIXz58/jrbfewquvvuo0d49BYmIiSkpKEBcX57QBcTOOHDmC69evo6+vD+vr6ygsLHxum6Ajbt68iePHj8Pd3R0XL15kkbSbLbOOUKvVoCjquTlu7+H5CEnKgEjiDqvVgnX1nN0uZMFoSzV6Km+j8LPfglGzDotM/lI2g83g8fm28HO7CsjZhHtuuAe+Ea6r6B1B0zRWZsaxZrcd8QVC+EXEOVWGeAWEYGV2AorAUMiU/hxiQj02yMrX8AoIgUwZwLrXB8TYbFPM5MHZWJhNRixNjUC/vkr+RvH4iMk+AK+gUCyM9sNit87BIXNIKJbC0zfQ1upGUXBXKLEyN4m1hRnwBUJMdDXBajYhODHdubIpKAzDTVWElLJaLJzcIdgnUKt2W0vRP/w7CYTePK76jVX0P7uP7Z5emOxqJH+HwzNB+c++gewzH8VEZ4NtH9wkkMq9oQyNhtViRmRGHkZbayCRecE/KpG8zy8iAXPDvQiKsz1XjrXVQpWQRlQPtsYvboC8dnWZZZHyC4/DSHM13BVKVl7ZdF8bFIGhJCMpMC4FM/3tHELQbDJitKUG0Vn7MN3fDrPRQMgiOKhtmP2DPa9pbX4aRp0GwfGpnBwmcjw2kYSaZbXTSae3KgKKoDB0PylF1R9/jPyP/BPicg67VC3xNylE9BurWJ2dRNj2nfCjaZtNNi2H/LtN6eZQIGO1Yrj5KQJjtpFJqkjiDrGHp9PcNJqmWa2O3qoIzI/0YnFyGD6qSNZrNUsLhDRhyIfxjnqEJO8g270w1g+/8DjOtePuZcvk2kx8mww6uEk9cPjTX4cqKQMUxYNubQXq8bevV6vFjPtvfhOFf/9t+IbFbkGKSBC2fScsZjOme1thMZuwtjADRWAIR5lny01bYxF6S5MjkPuryLa7CtxWBIbC0zcIRp0GoSnZCIxNgdmgg8mgg1Gvg3Z12dZU50DG1xf/BjvPfhyBMducbrvt+wJdBnzr11fgGxaLw3/3dagSM6AjisB+p88kFI+PxYkhLE3abK9iDznCtu90ed45Ijg+FatzUxhprkZY6s6XJn/8wuNg0usw3FRlyznrboZE5oXghOdnVDIQuolh3mS/hD2/ibZaX1pJ5AiKohC6LQsrc5MYbqoiNkiDdsNeUpDgNCfqnULuF4SJzikYNOucMgtnYGyqzwND9gfFbX+uAvB5eI+UeklERETg+vXriIyMZFWp8/l8zmTp7t27SEpKIkRVXFwcbt68ycmeGRsbA03TCAsLw9LSEkZGRsiqMY/HI0qW+/fvo62tDTRNIzk5Ge3t7cQKSFEUCVa/f/8+q5mLpmmS8bS8vIylpSUcPHgQd+7ccapMYEBRFDw8PEg1ent7OxITEzk2MU9PTywtLeHHP/4x/u7v/o5Dhu3cuRMlJSWEDKFpGpcvX0ZhYSH0ej2mpqZw+vRpDAwM4OrVq9izZw9kMhnW1tZgNpvx4MED7Ny50ynBERISgsXFRXR0dGDbNttNdn5+njUxzc7OxtLSEqKjo/EP//AP+PznP89RFDneTJkQ45aWFvzmN79BWloaxsbGcOTIEda+UfZa3sLCQtTV1eHZs2eAnaCEnVBsb2/H9PQ0ef13vvMdxMTEcBRzjtBoNLBYLBgdHUVxcbHLVrPFxUVkZ9saGQQCAQ4ePMgilDIzM6HX63Hz5k14eXmxCKCtQFEU8vLyQNM0qqqqsLy8jK6uLnh7e6OsrAxCoRC5ublOJ5vd3d2ETGlqaoLJZGKN2dOnT7Fv3z6SEcXUzzNYXV3FgwcPEBoaSibU/f39yMnJQVlZGby8vDgk3YMHD3Dw4EF4eHigra0Nq6urnEmz1Yk3+tSpU2SSLxQKMT4+zjpvnF3TsJcMJCcnIzAwELW1tdi3bx9pfzSZTGhsbERFRQW+8pWvoLe31yUh5XjO6fV6lJWVEbKJyYRyhGPAPOzn9f379+Hp6cn5jsbGRlaDmEwmw8GDB3Hjxg0UFRWR5jhGBUhtqoc9cOAAVldXUVxcTOxvHR0d0Ov15DqUSqWcgoOEhAQMDQ3hwx/+MMxmMxYWFljnCRMq7oiZmRmsrKyQ3CZn1wazbQUFBWhoaEB1dTVycriyZq1Wy/o+5vosKyvD3r17sby8zLqPeHl5YX19HWq1GhUVFTh37tyWNlimUbKoqIiQmc7OE4qikJycjOTkZFRWVuInP/kJfvvb3+L48eNOr8GTJ0/i4sWLrAY9phGUgVQqxdmzZ3HlyhXWwoDRaCS20oiICBw/fhyXL1/Gtm3bcP36dWKRddw2BiKRCK+99hquXr2K7OxsiEQizv4zGXrMdVpVVbWl0pPH4+Ho0aOQSCT4n//5HzQ1NcHPzw++vr6cPLbs7Gw8fvyYkPRwWIgZHR3F6uoq6/UikQhf/OIXUVpa6jL4noHj4lFtbS2Sk5MJiXX8+HHWgktHRwdnQUStVqOyshKRkZE4deoUBgcHt/y+9/Di4PH4kPsFgbZasTw9irSi9yEyIw+qpExoltWY6e8g2TewB9V6+gXBUxnwwlY4vkCAqIw8DDZwc6uMOg0MmvUtM5/0G6tYGH3beuUVoGI1vbkCk9W0OWwZ9skq01AFhoyYmySKGQAQSTygDIuGQbNus74kZcCo09pr799WufOFIngHh3OshyuzE+DxBSylgyOMOg3W1LO2SaLDNfTnL34QqYXnkXb0teeuwPtHJZJMooWxfpaNxqjTYLKrCYqgMGLt8Q2Pw/xIH6smHvZ70dxQD8589X8w1dvi1Eq3tjCNk2/8CBtLC07/3UbwhMArIAS6tWWMttZAJHFHUGwKRBIpIRSmelrgExLJanwUCEV2tZSZNfmaG+rmKGzCUndiuLGSVL4vjPbDzV3GIlckMi8sGPth0uuIDdFiNtsC0Hfk2zKBwmKhHhtgnQcURcHLX0UUNDRNY7S1Bo03fo/Cz34L8yN9kCkDbMH1m34/vAJCMNJSDUVQGOaGezhEidlkxNxgF8xGAygeD5GZe+DpGwh3LyXG2mohkcnhF5nA+Vy5XzDW5qfhrYqAxWzGZFczorLyyfZG7dhrs8lm7gVfIIDZqIdAJCbHZKT5KcLTcjilA34R8RhurISHjx/rmpzp70BQ7DbOa6f72rE6P02UUJvzvGAnH4w6LYYbK+0T7waIZV5Ow6sVQWGY6mlhkVK28bY1/ZmNBkz1tCIkKQNSuYKl+lhbmMHRz/0bLCYTJJ6uW8cZ8AUChCRnwmI249K/fhR7P/QPnNd4B0dgYbSfEKeMbc/RFuetisBoaw2HJKJpGiNNVYjM3IPJriZ7zpXMJeGwMNqPC9/+HZanx+DpF4yJLluWptjDE37hbxP0TKOm4/etLUxDPTaI4MR0uEk9oN9YxcxAJ4LiUrZUxlgtFmiWF2DUaRGckOqyydGgWXd635H7B0Pq5YPhxkoExaVCKlfY1Y1b0xcWswnLM+PQrixCKJbg/s+/idz3fwYAzbo+XxSOzxO01YqZ/nZyL/hL4eWvgswnAGNtz6BdXYJmWQ13hS/G2utc5kS9U6iSMok9+N34TJqmMdTwGCHJO96VIPX3SKmXhFwux549ezA0NITi4mJkZGSQsFlH3Lt3D4mJiRzllEKhYE3MDAYDGhsbSb5QWloaSkpKOFYGRqGVkpKCmzdvYvv27SxVh9VqRUdHB9rb2/HGG29wLF8ymQze3t4IDg5GeHg4vvCFL8Df3580FMGuqEhLS2NN6PPz83H79m0cPnwYw8PDhOyyWCxoaWnB/Pw8YFdQKJVK0v7m6emJzMxMMgmJiIjA8PAwwsPDyaROJpNBJpORZqqYmBhER0ejqqoKvb29qKysRFZWFqtRyhlSU1Px4MEDTE9PO7Uhtre3Y3h4GN/61rcQGxuLtrY2Ts24M+h0Oty6dQvbtm1DVlbWlm162dnZGBgYwPve9z58/etfJ4RVSkoKadIrKyvDpz/9aSwuLjq1xDC4c+cOTp8+DR6Ph6KiIhQXFz+33YwBQyiZTCZ85zvfwVe+8hXcvn0b6enpnDF0tFJthsViQWdnJzQaDYRCIb70pS/hV7/6FY4ePfpc2wvzPYcPH8a9e/dYIceOE20vLy+cPn0aly5dgpubG27fvg2RSISTJ086/Y6jR48SVQcziWWyY5jJZkFBAa5du8ax9HR3d3OyhSiKwquvvoqrV68iMjKSlYvGID4+nqVGGh62PcgzuUGbSRmhUIhdu3ZhcnISN27cAI/HI2qZ+Ph4p3lDLS0tGB8fxyuvvEIIgZs3bxKiC/br22AwcHKbDh06hGvXrqGgoIAVsr22tsY5tt7e3kT9t7y8zAmhj4yMxNDQENlGuVyOV199FZ2dnSgqKsJbb721Zfbb0tISysvLUVRUBJFIhMOHD6O+vh4dHR0oLCzkkB1DQ0Po6upCQEAATpw4AaFQiLW1NQ6RCfs1zJAGO3bswNDQEEpLS1FUVPTcH1a5XI6wsDAkJyfj5z//Oe7evct6j1arRXh4ONrb2znb6ObmBr1eD7FYDKPRiMuXL+PVV1/lHAcvLy8sLy+zFIorKysoLy/Hnj178Kc//Qk5OTm4ePEiDh06xCFWmYKEW7duOS02YCAUCnHhwgVcvXoVLS0tMJvNEAqF2LNnD2ebVCoVPD09cenSJZw+fZo0aW4eW4qiEBYWhoSEBFy6dAkVFRVITU1lbWN+fj4eP36MnJwc8Pl81vVJ0zQGBwcxMDBA/ubp6Ylf//rXCAwMRGhoKBYWFjA8PAy9Xk/ew3z3kSNH8Nvf/pY0YjLq2oSEBKeh6TU1NfDw8EBjYyPW19eRlpbG+Z0NDw/H2NgY+W+TycRSWXp4eGDbtm2oqanB7t27MTs7S35PtVotKioqoFAoXpjIfw8vh42lBSyM9kHuryKTr9XZCdtCmN0q4gir1YK1hRlMdjezgoH5AiG8AkIg9fJxepz4QhEiM/IwVP+YNYEY72xAVCbbVmoxm7Ew2geD1vabInaXITgh7R1VjL8oKIoihAoDg2ad5IU8/PV3cfRz/wahmwTeqogXeugXSdyhXV3a8t+VIVEkXwX2sON9H/1neAeFY36kjxCCIokUvmGxnDwVdy8fzA/3wmq1QL+xBv9Imzp0qqfFZuXf1BQm9vCEQbvO2ZaF0X7I/YMhkkgh91dhZXaCNRYWswnq8SFEZuTBXeHLCec2aNYhchgTiacCEWk5MGg3MNZeC75ABNpqwdxwLyRyb6ctjsEJaZh2IMRsn8mtTufx+AiMTcGUvW1uc6A0g5CkTIy21pDA+eHGJ4jK3EPOI5FECqMDuegMc0PdcFcoUfQP37HnxQiwrp5jKanc5d7wDokEj8e3K1tmoF1Zgn9kAvQbq5gf6QNttYIvFME/KpFFDtE0TSyWurVljLXVgsfnIyg+lajj3L18sDw9Cm9VBEZaniIiI5c1JjweH1GZezDU+AQx9muLoijo1lcw1duKKCcFBmSMtmVhoqOBqD5MBj1Meq1TNVhQXAomOhsgEIrgrlDa7EdOyGSRRApVYjo6KkrQePMP+PjPbzv9bh6fzwkXn+hsQGjyDlA8HoRiCaxmk1Nb5/L0GEJTsmHSazFY/wiR6bnPbYYDgPH2Wpz7xi9h1G5gsP4RQrdlEZWl0E1Mwtdtr61HqBPymy8QcrKNRltqELJtB/gCIdy9fUlDoDMYtBvQri0jLDwWuvVlADRRCOrWVzDe2QDQNMQyL/iFx0LsIYdufQVuUhnGO+rg7qVk5RGJPeQwaNdJVpYrLIz2ISA6CXG7C2xjtinrj8H8SB+CnFjkmDGKztqHye4maJZlsJhN8A17+9rTri5jeXoUFvPbhT48vgCKwFBigy76h39HSPIOG0k71E3UT96qiOe2u3oFhGB1boooG5lChr8UVqsFG0sLWJufhtVihkDkhvqS38InOALpxz8AVWL6X6QYdgaKoqBKTMdUTzOrMfGdgLZaMdjwGGEpO7e0pL8M3iOl3iGioqIQFRWFxsZGNDU1Yf/+/RAKhTAajXj06BHi4+Od2uIYxQdjVbhx4wbHYhEfH8+x+VVUVJBV3bCwMIyOjrJUTjweDzKZDNnZ2fjFL36xZT39jRs38PWvfx2PHj1iqRK0Wi1aW1uxurpKlBOMAqOkpATR0dG4fdt2o+fz+di+fTtRYzCKBAarq6uoqamBwWAA7JOArq4u1NfX49ixY4REcFRoMP9/z549mJ6exve//33s2bOH83DgzD554MABXL16lWW1am1txejoKLZt24aTJ0/i3r17OHjwIMbGxnDlyhUcO3aMTOQcP294eJhk6Pz4xz9GQUEBHj58CDc3N047FAOz2Yze3l68+uqrnNB4AJidnYWnpyfc3d3h7u6OlZUVtLa2EsKKQXNzM1JTU8mkj2nX25xD5YpQMplMePDgASwWC15//XVkZWUhPz8fz549g0ajAY/HQ3Z2Nry9vdHa2kpUI2tra2hubiYkC5/PR1JSErZv346xsTFcvXoVoaGhKC4uRmJiotOQ8M1tWmKxGJ6ensT642ybmSauwsJC9PT0bNlgx5BIly9fJoqSBw8esGw/FEUhNTUVzc3NLNXTxMQEqwmRgUgkQkJCAvbs2YPy8nL4+/uzbDzR0dEoLS1FQkICNBoN2traWPZHiqJYmUQAUFlZiby8PMzNzUEoFJLj1tvbi7KyMqJ01Gq1uHr1KlJSUjiWWC8vLxZ5XVVV5dKWePr0afz5z3/GuXPnXBKn6+vrePDgAfz9/XHx4kWUl5cjPDycdf4lJiairKyMQ5wJBAJcunQJOp2OEGwpKSkICQmBWCyGTqdDf38/ZmZmiE2OQVZWFvR6PUpLSxEVFQWaptHR0YGRkRFERkYSAqanpwdxcXEIDg7mEJkAMDk5yVKmRkVFQaFQsAgXZ6BpGo8fP8b6+jq+9KUvoaCggGPTqqioIKRJaWkpRCIR9uzZA7FYjNTUVLS1tSE5ORnXr1/H+fPnnY5xdnY2KioqyP20rq4Oq6urxC4JB2twRUUFvL29SS4fA09PTyQlJeHZs2cuSfPR0VF0dnZCKpXi5z//OT760Y9yLK3r6+vk/urp6YlXX30V165dQ2FhIbq6usg9e3R0FB0dHaDs7YolJSU4dOgQTCYT2tra0NDwtnrD398fZrMZly9fxpEjR/D06VOsr789yYyOjma1Nmq1WhgMBpjNZkgkEqf3CwAoLy/Hz372M/j6+iIyMtJpfpcjlpaWcOzYMVy/fp0skLS0tKC1tRVhYWGEuIyOjsajR48QEBDAWvRxRGRkJObn5zE0NATYifj79+8DdgL8ZYoj3sOLQa9Zx1RPK9wVPi4Dcp2Bx+OzlCQMLCYjVmYnsTg5zPq70E0CRVAYxB6eEAhFCE/LwWDDY4gk7jZiI8p2Pq7OTWFldgKgKPD4AviFx76QreF5EIjc3tFqPOx2nuD4VAw2PMYHf3AJc0PdCEne8cLkqEjibtunF8TK7ATMJiNidx3CeHsdyx5i1GkwN9wDi8mWc8oXCKEMi4Gb1AOqpHRMddtyp1bmJrE0MYyg+FSnuULOoF1dgkG7QYgd76AwjDRXs0ipsdZnCLM31HkolFgcH2RNzOeGexDipJXQTeqB8NTd2FiaR9l/vQGRRIq8D/6902dHgcgNVouFVMZP97cjfLvz+6/QTYzR1hrMD/ci88QHbQSVpwISTwXc3GW2xUgeD3K/YCzPjNtyqdJzX2piyVTQewWoYNBukEn9ZiuoZlmNqe5m8vz86DffQ9bpj2KsvQ5uUhnJOHseJJ4KhKfugsVkxHRfOyxmI/wi4iGVe4OmaVtTXHya033gC4SISMvBUMMTiKTuWJ2fxsrsBCf7ytk4uiuUhISc7GpCWKrrSX5I8g6MNFcjSORmI0Ht169tfPphtdis8W5SGdKOXoAyLAZT9ua4oLgUpzZbBuqxAXj4+LOue1ViOia7m50qIymKgkjijqjMvRhurIQqKZ2lvtuM+ZFeeAdHQCAUQSD3RtSOfFuOkKeCUxiwNDUKuX+w07EOituO6b42Qp5OdjfBNyKOENU+qkiMt9e5JKUmOhsQZT8uAdHJrFZLicyL7KtubZkQVHd/+lWkHj6HkG07nFp5g+NTMd3X5tIOtzQ1Ch5fQK7pKHvWnzNLtdX6fKuYKjED6okhXP/mp3D0c/9G/i7xVMA/OsnpNm6GQCgi+VA0TWNpagRjbba8SIaQ20yyyf2DMdZeR7LZZEr/F7630zQN/foKVuYmSTYYA4riwcPHD4ExyYSoO/iJNxC6LQsmva2AwGoxgy8UISAm+YX270Ug9pBDKJY6tdE6bvdWsFosGGx4jAgnasi/BO89df2FyMzMREZGBh4+fIjx8XF84xvfwMc+9jGn6inYySMejwez2Uwmr5sffhMSElBSUkIm6ENDQ4iIiCAT3+3bt+PmzZssUmp8fByDg4M4ePAgzGYzEhIScOfOHQ4xtbCwAG9vb7i5ucFsNrP+TSqVYvdutmR5cnISv/zlL/HTn/4Uzc3NTvN1nEEulxOrERPu/YEPfAB/+MMfnhvGzSikfvrTnyI6OpqMBaNWmZqacmqJOnXqFN566y1MT09Dr9dj+/btLBsjg7CwMKhUKjIBZyZMGxsbuH//PqkWh12hwdiZpqamcPnyZRQUFLDIlY6ODgwODqKwsJAEfW+eVFdVVeHs2bPk/6ekpKCyspJFLjIh8o5kCuy5LklJSSx1VUNDA0tpxdgcTSYTDhw4QMg2mqbh5uZGMrcsFgvq6+vJ5O7GjRsQCoWQyWTIyspyemyYpsDbt2/jzJkz6OzsRHFxMQlLZtDU1MSxXuXl5RGlV21tLQkKNxqNhDxjQoyXl5c5FrXNEAgEOH78OG7cuIH09HSn7YTR0dG4ceMGkpKSWLagzdBqtSgvL0dISAjeeustREdH4/79+7BarRAKhdi5cydkMhmEQiFMJhNu3LjBUQplZGSgsbGRqKw2Njag0WgQEBCAgIAA1nUaHx+P+Ph40DSNixcv4n3vex9u3brFySCDvabekbxeXV11qWpjms+uXr2KCxcukKY82EnK+/fvQyQS4cSJE+DxeGhsbIRKpcL6+jquXLmCgoIClxlBAwMDmJubw7lz54gyiSGW2tvbsb6+jlOnTuEHP/iBS0uqWCzGyZMnUVlZife///1obGzkqIGGh4cJeadQKFgZdK5+HL29vQnhUlBQwLIFOtpY9+7dCy8vL2xsbDgtgNDr9ZBIJEhKSkJSUhIMBgOqqqqg1+sRFhaGoaEhjIyM4LXXXnOpEhQIBLBYLNBoNCgrK0NWVhax1sKB9KYoCocOHUJ/fz+uX7/OIdOioqKwsLBAiBLY7d0dHR2AXQFUVFSEhYUFPHjwAHNzc1haWmKp/Do7O4mVGXZ11fnz53Hz5k0MDAxgdXUVFosFYWFhLELX398f8/PzCAgI4KgGZ2dncefOHXz5y1/G1atXcejQIWJfdIaqqirs27cPfD4ft27dcnofLisrQ0pKCmiaxuHDh1FbW7slIedYOsHkIiYlJSEtLQ1paWkYHR3FzZs3IZfLkZeXB4vFghs3bjgNQmeQnZ2NS5cuobi4GEajEQcPHnSZgfUe/nIsT48jPG33u6Y+4wtF8AmJhE8IO3PGpNdhaXoM8yO95G88vgB3fvQlbDt4GqqkDCxOjkDuF/yuWiMY+EclYnagE6rE9Bd4NRfTfW2keSo4IQ1D9Y8RuWPPC5EMfKGIkEjPw/riHDaWFlxup0jizgr4NZuMWBjtJzbC7idl0Kyosfev/uG5rU7ucm+7LUUJq8WC6b42jv3F0y8Qq3NTkPsHY3awG77hcayJakjyDlvblX0y7Uyl8XarlxZu7jKc+ep/Y7qvHWJ3GcY76m1jJBCy1ENB8amY6mlBQEwSBCIx+UzGXrk6b4tgEIml2Hnm4xhrfUZUF7q1ZazOT8PIUoJRuPfmV3Hs89932tolEIpgNhlZk0zaasVwUxUCY7dBKrf9lrlJPYhyjzOeCiXc7RY0s8mI6Kz98FD4Om1f2wxXqsKQ5EzQNI35kT7Mj/Sh9uovkXXyw9CsqLGxNA/aagFttcJqtYK2WkHTVnIMbv/wDWSd/muEbsvC2sI0hGJ3iCRSl4ScMjQaw01VAADZJiufI2iahsVsQkB0Ippvv0WCnmmahkjizpms69aW4e7lA9/wWFitFsz0tcOo1yIgKpEosWyLiRbo19eg16xzzn++UAQejweTQU/OEd36Kotw5fH5iMrKx3h7HWnBYz6bGRPd2jKMOi3LUklyhGaZHCHb753FbLJlsLkg6/lCESz2OdvccA/cFb4sC+JW97Cp3lYExW1nPYdI5QpoVhY57XYSTwUhqJamx0DxKMwOdCAoLpVDJIkk7jAZdITQdcS6eg669RXW/YPH5yMqIw9DDTblquN1thVseWP90K0ugy8UIv8jr8Ok1yEykytaeBlQFAUfVSTJLNOtLdssjVYreAIhAqIS3yafaBomgw5r6hmEp3LD8406LVbnp6BbW+b8m8RTAR9V1EupiYRiCbmWTQY9Zgc6YDGZbNsVnejSBvmi8I9MwFBjJTy8/ZyqgbWrS5C6aD60mE0YaqzkNNy+G3iPlHoXwKwIC4VCfPvb30ZOTg56e3tZr6FpGnK5HCqVCjk5OfjVr36FjIwMTvg3A6bxivnvzSu9jjbAqakpdHZ24ujRo8SewdgZNhNTT58+JROE2NhY0n7kDEajEdXV1fjSl76EoqIirK6u4u7duygoKHiuhQt2kuXRo0ewWq3Ys2cP7ty5g9zcXFy6dMmphQV2pZCXlxciIyPR398Pf39/nDp1Ct3d3SguLkZOTg4GBgbIxMVsNqOjowOzs7YA0q6uLjx8+BCPHj3akvzi8/k4ceIEOjo68Pvf/x4DAwOgaRonTpxwGXgbHByMs2fPory8HHK5HBqNBteuXUNSUpLL8HDYM4ic5WHt2bOH5D15eXnhzp07LlvFwsPDodPpSHi4xWKBUCiE2WzGw4cPYTQaWWTUVvvNVKx///vfh9lsRmRkpFMVEextZpstkcnJyUhISMDdu3fh5eVFsn1omuacF0zWWXt7OywWC4xGIx4+fAiKorB//35WxsyuXbswPz+PS5cu4ciRI5DL5U5/rGQyGQICArBt2zbW5N0RR48eRVlZGU6ePMn5DJqmUVlZCY1Gg+PHj4PP52N+fh7Dw8OEWDEajaitrcX6+jo0Gg1yc3NRXl7O2T8/Pz+WoqS8vJw1AXfMZIMDQZuSkoK7d+/i4MGDqKmpITlYu3fvJvYoPp8Pk8mE1tZWVj6UM7i5ueHIkSO4desW5HI5MjMz8ejRI2g0Ghw8eJA1zunp6bh37x4KCwsJEScUCpGfn4/o6GgMDAwgJiYGQ0NDmJycJOSnRCKBVquFVCpFSkoKUlJSMDo6ir6+PlajpzP09vZCp9Ph4sWLHBUhNj1Q5eTk4Nq1a+SetzkfyxEM4XL79m1C4tfW1mJ2dpaUADgeC6vVSvYBDgqtzWN58OBB6PV6/O53v8Pf/u3f4tq1a0RF4wpf/OIXERoait/+9rdOiUbHVXqj0QiDwYAvf/nL4PF4nAerT33qU/Dy8iLk0WabYm9vLzIyMuDu7o7e3l7Wfd4ZgdnW1gYej4cvfvGLuHTpEvLz8znB3SqVCqOjo6y2VdgVVc3NzfjQhz5E1F0TExMcO6wjHG26QUFBmJycJE2XNE3j+vXr2LVrFwICAtDd3U0C4AcHB3Hr1i0cO3aMMyaOOWKxsbG4fv06axvCw8MRHh6OlZUVFBcX4+zZs/jf//1fVFRUuNxO2Em8+vp6fPCDH8Tk5KTL38P38JcjMCbp/xU7pFAs4TQ2rS3MwD86CXL/YPD4AlZl+7sNgVDEspK8DDaWFkDxeGSy6Cb1QHh6DgbrHyMyI++5q+UvOr669RUsTY6wlFGKoDAsTY3CO9h51qhAKEJgjO1ZwWI2YW1+GuuLc9CuLhHCxyswFDIff852+IREYbyzAe4KJUZbqhGexs0E9FFFYqS5GgI3MSxmIycTiMfnQ6b0x+rcFCiercGRwcrcJFZmJkDxeAiITmJZHWmrBR7efkRFYjYaMDfc87aFJzgCVostN0mVlI7pvjaiavAKCOEoZvwi40kznMzHn2P/WZmbxKk3fgK+SISR5mrI/YLgrXo7ksM3PBYLo30kbNpsMtpaAdN2v6PJ5nh7HXad+yQ0y2pMdDUh5AXbGp2Boij4R8ZjqrcVvmExUIbFEJKG4vFA8figKNv/5vF4AMWD1WLC3g9/HiKxFFK5D4x6DTYW52DUa2G1XwebHRGwH8+LX/oIjn7u3zDeUf92Zs+moHueQGgLSXeXQewhd9neB7uCjCHreDw+ghPSQNM05oZ6MDfcA29VJLwCQrE0NYqVmXGXuUDBCekY76hHeKptrrEw2sdpwaQoCmHbd2JmoANGnQa+YTGQyn1sE3q5N6Z6W11+vleACjKlP8Zaa6DXrGGkpZq0PbqCjyoSA3UPIfcLcppZ58zCp1lWg8fjE6KTgX9UIkaaqwnByxnHlUWoEtPhGxYDk0FHrKNBcdtZ5EpwQhqmelpYZKh+Yw2Lk8Nk7BzBF4oQnrYbQ41PSK7R8tQovIO495yNZTXUYwOgKArKsBj4hceBpmlMdDbAPyrxXc1Ggp08Ys4ti8mIueFeQsDrN9bQ/6wCgbEpmOhs5FhAhWIJvPxVUIZGv+u/cUI3MbHaWUxGzNrthzw+H/5RiVsqAbdC2PadLJLfESuzE04zF5l7FZMl927jPVLqL0BPTw8GBwchFouRn5+Pjo4ODA0NOa3Lht0iNTk5iZaWFvzt3/4t7ty5Q3I0eDweQkNDERkZCZFIhIiICJSUlECr1TpdOc7NzcWtW7eQnZ2NlpYWoswxmUxEecUQU3fv3sWRI0dIxgZzwcTGxqK0tNTpQ/j09DSqq6tx+vRpYlfJz8/H+vo6SkpKkJCQQBRGi4uLrCyVhYUFPHv2DBKJBIcOHWLZXTw8PHDhwgXcv38fSqWSpQoaGBiAXq/nqLVgXxlPSEhAdXU19u/fj1u3boHP50MgECA5OZnkgQQFBeHTn/407ty5g4yMjC2D3GH/8auqqoLJZCKEwOZ/dwRFUTh8+DD+/Oc/4/3vfz+ampo4ljNHsk+v12NhYcHl6v/x48dx8eJFxMbGIikpySUhBruCrqmpCW1tbcRqYjAYsH///ueqzxzx+PFjqFQqyOVyBAcHY3FxEcXFxSgsLOSQWg0NDYQoc8zX4fP5KCoqwtTUFK5cuYJt27Zx1DY0TUOr1cLLywuf+MQnEBMTA6FQiIKCApc2Mz8/P5w7dw53795FQEAAIiMjyeeq1WrU19fDarVCpVLhrbfewtDQEOrrbQ/DMTExJIdJKBQiIiIC/f394PP5xJLW19eHrq4u7Nmzh0VY+Pn5kc+B3dbH2OWamprg4eGBqqqq54a8x8XFsYgrphHz2LFjmJ2dRWVlJYqKiuDu7o7JyUnw+XzSsLaysoJ79+7BYrEgISGB5PjodDrs2MENeHWE1Wq1VZNLJMjPz8fFixdRUFDAaWGE/V7j+NBXUFCAhYUFXLt2DTt27EBHRwcEAgFGRkZw8OBB8r68vDw8evSIpTTq7OzEV77yFQwODuLGjRs4fvw4h7irqamBQCDA4cOHYTabcffuXZaSkMmacwSjQMvMzMT8/PyW+0/TNMLDw/Ef//Ef+PnPf45nz545VebAnsFVVlZGzunBwUFO69vs7Czq6uogFovx13/91wgNDcXKygqKiopcKu9mZ2fx/e9/H1qtFiMjI2hqstXAi8ViZGVlQSKRYGNjAw0NDdBoNEhKSsL58+fh5eXFUW6tr6/jM5/5DHp7e+Hr6+uUMHYMdI+Pj4ePjw8uXrzIWrzY2NhAZWUlLBYLUlNTkZqairKyMhQUFBAVWXZ2NiGhfHx80NTURN6v0Whw//59hISEEOVoZ2cnjhw5gtbWVjx48AAHDhzgbNvg4CDLApqVlYXi4mKoVCrQNI2rV6/iwIEDRNnGKBFFIhGio6PJvpw+fZo13ptD7JOTk9HZ2ckan+7ubgwNDUEqleK//uu/EBER4TQQn0FzczNee+015OTkoLCwEH19fbh16xbc3Nywd+/eLZWW7+H/P5gb7oXVYsbRz34LK3NT8A4Ow0RnA3h8vtNWuHcLzuxiW8FqtWB2qItjfxIIRYjekY+hxicIS8l+x5MQBia9DtN97ZxadE/fQIy11bokpRhYzGYMNVYiYe8xTHY1kokc01LIBLfTNA2Zjz8UgaE2VQRNY2agE8rwWA65ZlOurMKgWcPtH76Bgr/9CgzaDYgk7HwnZWg0hhsrwReKEBS3HeMd9bBaLJD7BTmdBDuDQOTGsfAsTg6jvvg32PvhzyN6R/6W9hwPbz8sjA7AarVwFD40TWNpYpgox7z8VaRBzNMvED6qSJvCxE56Ma1gm8P4Gch8/LGmnoWnMoDzb7BX3CuCwghhR4PekpiyWi2Ak7ZEsv1WK0aan8IvMgF7P/SPmBnofC7JNd5ei7icAmiW1FiaGn7hrBr9xir2/fU/QyyTcwL7N0O3vgr/qETI/YIx3ddOgsG5r1uBz6aQf4qiSMi+emII6+pZ3PvpV/HRn5W6/D4enw+hmxgG7QbcpB429YwLNVdgzDYsTY5gqqcFvuGxWJwcwcLYgMvcIYvZjHX1DNbVcxCKJeh8dBPqsQGIxFKyva7UQ3XXfo29H/pHTjg/nFj4aKsVM4OdLu2U7t5KlzlU6vFBcl0zbYJWqwUz/R0w6bVQhkbDw9sPQjcJrBYzyeAym4yY7GnmZPY5QugmsVsynyIyIw/rS/OE+DWbjJjpa4fVYobUy4fT1Mdsr5vUA6HbsjFU/xhRO/a+cAHGi8J2f7GdYwbNOh7++rsYa6vF+77zvwhOTHvpJsB3c7uYe5fFbMbcUDdMei0oHg/+kQkvZT8XCEXwCgyBenwQylB2DITFZOSoPE0GHUZaalzeq94NvEdKvST0ej3u3bsHk8mE+Ph41oRmYWEBmZmZsFgsqKurY9k3YM/3SEhIQFtbG0ZHR7G8vEwyXSwWCyYmJvD06VOYTLaVhfn5eZw+fRp3794l9g3HG9Wbb76JsbExfOYznyF/2xwS7EhMGQwGjhJHIBBw3tPU1IS1tTWW3cwxF+XVV19FV1cXrl69isOHD6OtrQ27d+9Gf38/mUi5apmCw0S4t7cXN2/ehEgkwtTUFEZGRoi9yxVWV1fx3e9+F2traygsLORMuldWVhAbG4tXX30VVVVVmJ2ddapSmp6eRm1tLVJSUnD27FkcPnwYN2/exLZt2xAZGcl5PYPx8XE0NDRg//79uHv3Lnx8fHDz5k1IpVLk5+dDIBCwyL67d++6bKqanZ1Fe3s7JBIJMjMzcffuXYyOjm65/wDwV3/1VxAKhaitrSXqA1fYfAyePHmCoKAgxMTEwGg0orKyEgcPHkRsbCwhghhVysLCAnx93w6czc7ORl1dHfbuffvHhlGPRUdH4/XXX4dGowEcHsalUikkEgnGx8eRk5OD6OjoLQPjmW1mJoj//M//jPj4eKIKPHLkCCE9ZmdnWddYf38/yTxTKpXIyMhASUkJJBIJcnNzUVxcjJiYGE6GGwOJRMKpsJ+fn8fy8jLeeOMN7N69GwKBAE+fPoVGo4G3tzd27tyJmJgY9PX1oaenh6NoZEjG6upqmEwmVtPgZnh5eRF7bE9PDx4+fIjjx4/jRz/6EQnndkaSMgo1Jmw7IyMDi4uLqK21+eQFAgFSU1NZx9KRYAQAX19fnDlzBjU1NTh+/DhRqziCCcp2drxiYmIQFBSEy5cv49ChQ4D9HCgrK0N8fDzJPRIIBKAoinXP6enp4diCw8PD0draim3btnFIrpWVFTQ3N5O8Oh6Ph4SEBBQVFZHAd+Y88PLyQlZWFiHqmQyzubk5ku/GoLOzE8PDw/D398eJEydsoa06HaRSKQoKCnDp0iWcP3+eY7fWaDTEnnvnzh2kpaURlZBOp0NDQwO++93vIiwsDN/73vdI3hOckN4ajQalpaX40Ic+hHv37sHHxwdXr17FiRMnXOZmMcfv9OnTuHbtGiorK2E2m+Hu7o6CggLO9jq2a9bX16Ourg7p6enkt4KmaTx8+BBms5koCTcjNTUVs7OzuHz5Mk6dOsW6pnt7eznnTkpKClpbW9HT04Njx46xQvmlUim0Wi3ZP4VCgbNnz6KkpAR5eXkICAjAxsYGhwhmbLoRERGoqqqC2Wwmv8nl5eX45Cc/iZaWFlabrSPGx8exvr6O9PR00vwYFxdHFhOePHkCo9GIuLg4VunAe/j/D2iaxnh7HeT+KhJSa9CskUmW2Wgg5FRQfNq7uvKrCAzF8sw4vIOcRzk4w/gWAbo8Ph/RWfsw0vwUAdHJWzZebQWL2YTRtmdbNkdtFV5stVhsKofMPeALBBB7eEK3vgKJzAsURUERFAaFwz6vq+cw0dUIAKj6008Qui0L4am7sDIzzvpciuJBIpMjODEdArtlamVmHEadhqOy0W2soup/f4TCz34LqqTMv/i4aVcWEZKUCWVoNNy9lJjqbYVAJEJgbIpL+5kqKR2TXU0c1c5MfwcC47az/ib3D4bcP5hFTsHeaLY8Pb6l2kMRZCNQnZFSZpMR6+pZlsKGeZ0rYsqo1bgkNY06LcbanrFa855nBV2Zm4RMGQAez0aKmU0GzAx0EBXYVpgf6UPMrgOY6m4h55ArzPS3IyLdFra+pp5xSabQNL0lQeEdFI6VmXFkvvIhzA50EsWLm7snlKHRrHMpKG47RlufQZWU4dSGyfpcVQQ2lhYw1dOCldkJhKXuhtmoh3pikJUlZMsd48PTN9CB3KAgFEsh9pCxMtWcYe9ffQ6BMcmY6mnmZGZRFAU4nEfjHfUI2+a6MdQvPA4jzdUuc6ichf0zhMjC2ADU44Pw8PEnGVyhyTsw0lSFqKznq5fcpB4IjEm25TlRFBZG+6FdXQJPIERgXIpLRejKzASCE20iBJFEirDUnRisf7RlsP47BU3TmO5rA221IHn/Sez769cx1dvGUmi+29/3MuALBIQ4s1otmB/uhUGzDlAU/CLitryeGCgCQzHWVgtP36At7YVGnRbj7XWIcbBd/p/Ae6TUS6KzsxOf/vSnt5wgxMTEoKqqCmNjY5xsqbKyMhw9ehRyuRxtbW2ElOLz+cR+wKC4uJhkvji7wM1mM9bX17GyskLsGoyN0BEqlQr/+7//i0ePHsHDwwM5OTlkMpqbm4unT59i3759ZBIZHR3NCeHdjKSkJCQkJODevXt4//vfj9/+9reIjY112RzlGL7LID4+HiqVCq+99hqEQiGKi4tZ/87j8WCxWMDn86HT6XD9+nUcOXIEAoEABQUFKCsrQ2xsLCscV6fTkX3Ly8vDwMAAbty4gRMnToCmaeh0OhJozZATg4ODoCgKr7zyCp4+fQq1Wo2srCzy3bDbbRjShiEemHDdsLAwaDQalJeXw2KxICcnBxRFYXBwEGFhYRAKhTAYDGhpacHy8jK58QQEBGDfvn1oampCVVUVPD09ObXkm2GxWPCzn/0MPB4P4+PjaGtrg0AgQE5ODmd8sekmV1lZiYCAADJeIpGIEKACgQDHjh3D8PAwrl69ioKCAjx79oxFunp4eBDSyRElJSWora1FdXU1R/UBAFeuXEFpaSnGx8exsrKC0tLS57b40TSN2dlZiEQi6PV6bNu2zWlxgONKtOO5sLCwgPLycphMJpw9exbFxcXPbdLKy8vDw4cPiYXPYrHg0aNHOH/+PPR6PZ4+fYqDBw8SO9vS0hLu3r0LmqbxsY99DL/85S+J8tERjLrt61//usvvdsTg4CCGh23Bvbt374ZMJsOePXueq4Zrb29HZGQkvv3tb8NoNCInJweenp7EAtjY2EhIrICAAFRVVcHX1xfT09OkLVIgEOA3v/kNyffat28fa8yio6MxODiI6OhoDA0NsQhcd3d3nD9/Hvfv30dTUxOWl5dx6NAhjk1s//79ePjwIetccXZcjhw5gq9+9as4duwYIZlgJ5p27drFUvWZTCZ0dnYiMjISUqmUkFzLy8sku4zH4yEzMxM5OTkoKSmBWCzGwYMH8fjxY6ytrSE5OZlz/+rr60N8fDwEAgEJ2b9w4QI5dy0WC65fv47XXnsNALBv3z6WmkwikSA7Oxuf+MQnEB0djbq6OqfqItiVQExuGfP5UVFRCA0NJS2grsiRlZUVVFdXw93dHeXl5fj0pz/tMlzcccwZUrepqQnNzc343e9+B41Gg/379zvNMHM8TgEBATh58iSuX79OyCOz2cwhsVZXVzE0NIQzZ87g0aNHLEIKdlJKp9Oxvk8gEBCr9OLiIqampkgu3urqKlpbW6HT6VBXV4fu7m780z/9E/ndo2ma5ITt3r0b165dQ0BAAOt80Wg0aGxsJL8BPB6PVVggFovJAklPTw9KS0tRWup6Vf09/OV42Qfy58FsMmKk+SlCk3e4XD0WiNxs5JTJiKkeW2h3cILzUOeXhadvIMba616YlFqcGIanX/CWobEURSEyIw9j7XVQBIW5VM+4Am21YrixEpGZe13+FvpFxmN+tM+pdcNqtdgsMxl5ZIz8IuJtk9/tzsk0x4DuXec+CdpigX9UossmQf3GGmTKQELkbIZmZRFmowGFn/0W+EIhxjvqWHlBLwODZh0TXY0IScqEmz1ziskoMxn0mOppgdVigVeAikMWCN0koHh8GHVvkzxmowEmgw4SmfOMRmafZgY6cfuHb2Dn2U8g9YjrhSo8RzUz3lbr1AbJnBeT3U0c1ZJBsw6xk+thTT2LxYkhRGfvZyvTwmKwMNrvtGmQpmksTgyzFHeKwFCoxwddvof1frv6SJWUsaXiZWlyBN7Bb7s8AmO2YbDhMSK9fF6KiDBoNzDeUY/I9Fyszk+DLxSRLCjd+iohIABAJPGAb1g0xDK5rU1x0zibTUZoltXQLKthMRnI361WK+qu/Ro+IVGwGA0vlCVE01YERCdivKMeblKP557LApEbQrdlsZRLvmGxJGdsY2keJoMe7grlcwO5ZUp/TuC1fmMNbtKtFTe+YTHwDYvBmnoWE12NmB3swurcJMJTd2N9YRYmgw4mvQ5mo35LxeiaegbVf34TH/iPi889X2AfK8djLnSTICI9F4P1zgPU3yk2luYxN9SDoPjtkMi8MN5RD7GHHMHxqRhtqX6poo4XhWZlkVhPXxY8Hp80k9JWK+ZH+zE/bIsRUobFcLLDHBGako2hxicuFXXMffJFyMa/FO+RUi8JuVzukpByPFh5eXm4du0a/Pz8yMNwY2MjoqOjiR0pKCjIZWh3S0sLkpOT4efnh8ePH7NCrRnweDxcuHABxcXFyMvLg5+fH8u+BwAzMzOoqqrCJz7xCezatQs7d+5EdXU19Ho9CTbXaDTY2NjArVu3UFhY6DJQ2dn3u7m54eMf/zixarnCZpsF7BO6yspKfOADH4DBYEBpaSmEQiHy8vIglUoREhKCyclJ8Hg81NXV4dy5c2TCQ1EUjh07hrq6OlbWyObjEBMTg4CAAPzpT3/CtWvXYLVaUVRU5LJZKTc3F729vbh9+zZSUlIQEBCA+vp6zM7O4siRI+TYb35IcHd3x9GjR0HTNKqrqzE1NUUm03fu3IGbmxu2b9/OmaDDTqAcP34cJSUlSExM3LL1ibFitra2IjY2FkqlEkajETU1NdBoNJBIJMjJyWHZThiLor+//3PzUiIjI6FQKPC5z30Ok5OTz22hYtQMSqUSfn5+nAa++/fvIzc3FwEBAWhvb8eRI0eg0WhQXFyM9PR0p6q0gYEBtLe3Y+/evQgNDYXRaMTk5CSGhoZY14Gfnx8WFhac5vcolUqIxWJIpVJ85CMfgUAgwJ07d0BRFAIDA5GSksIhxUQiESv8/9atW4SkEIvFRJnDwNvbG0ePHsX4+DiKiooglUqdhrQHBwfj4x//OHQ6HW7cuIGoqCjOtcCEWVMUhaioKBQVFaG8vBw//OEPoVAoUFZWhvz8fJbayRF9fX1YX19HTk4Oaa+7ePEiLly4AKFQyLK/0TRNMqXu3r3LUSlptVo0NDRg+/btuHHjBoKCgkjwdUJCAkpLSxEdHY3e3l6OClCj0cBkMuGb3/wm/vSnP6GpqQm5ubksQk0ikcBgMMBqtWJmZoaTWQa76q2/vx8//OEPkZCQgL/6q7/a8seQuUdKJBKinoFddcMQRBaLBU1NTaivr0dfXx/eeOMNlJaWIjc312XQ++zsLGn9E4vFOH78OK5cuYJz586Boihcu3YNp0+fZpEZBoOB9RB2584dFBUVQSgUQqFQ4Nq1azh16hQrS4oh3R0JKQZCoRCnT59GU1MT7ty5Q0hTq9WK2tpaLC0tQS6X48iRI5ifn8e1a9eg1+td2uucITQ0FGNjY1Cr1fDz83vh3wCRSISzZ8+S0PWVlRXk5ORgcnISbW1tgEPpxdWrV+Hh4YFr164hNzeX3CcYpZQzFBQU4OLFi3jttddQVlYGiqJIZpq7uzuOHDmCsrIy1kLMZpXyyZMnceXKFVJSQNM0p7QgKioKQ0NDTkm/4OBgtLW1IScnB5WVlS80Lu/h/1tsLKsxP9SNqB17OZNWZ/cRgVCE0G1ZsJiMmOppAW212hQ773KIqyuY9DpsLM27JHY2IywlG1O9rbAYDSxV0lagaRpDjU8QnpazpbJIIvMikxnW+61WDDU8sbXJOYzLi66azw52ISA6CVK5N4YbKxGckOq0tcxs1LucSK8tTGNl1hYGPd5RD1Vihi2Ye9iWF+QVGMppaISLY74wNgD9+gpLpcTj84ktSugmJiqoldkJjLY+A4/PR2BsCiEOVQlpNsLCPkGd6Gp0egwtZjMWRvtIaLlU7o3Cz34LiqBQjDRXQ+bjB2WYazWmQOTGCt2G3V7lrYpwOQl3RUwZtOucxq350T5YjEanmUYeCiXUYwNw9uQx1dPCCrJmoAyNxtxQ95b5ZAbtBkTStxU+oSnZTslNmqaxMjeJyIw81t/Dt+/CWKvzPBxnWFfPQT0xaAvYpih4B4djtPUZIaUkMjlLWWbQrGNmoBMWswkPfvFvrLY32G1U7golfMNjWDlgG0sLOP5P34fVYnkhksURoduyMNjwGOGpu53eezbPOxyVS/OjfVgYG4DcLwgLo/0A8ELEiTI02qbeczgn5kd6OflZrmAjpymY9Do0V/0JQfGpELpJIJX7QOgvhkDotuU9QuAmxgf+4yJm+tsRui3LJVm9FQQiN0Rl5GGw4fFfnHVktVow0dEAsYcnonZwLYhiD08ExCRjtLXGaeD5X4K1+SlWKP47hc3KZ/scmqahHh+EemwAsCv6NmfgURSFoNgUTPW2cq5n3fqKzer9LmZ3bYX3SKmXhEgkwo0bN3Ds2DHWirDVauUcsJMnT5KV9ZmZGaytrbECezMzM3Hz5k0OKaXRaAipAXs2yGaLnWMmzKuvvopbt24hLc0W6Me87smTJ6AoCufOnQNN0zAajZBIJGSiotVqUVlZiX/7t3/Dr3/9a1y7du2FAsyZ77916xZSU1NhNBpx5MgRjI+Pc5ryGGwO321pacHo6CiZMDY2NmLPnj0wGo14+vQptFot5HI56uvrkZGR4bJBKTs7GyMjI0QNtfkYdHV1YXR0FGtrazCbzRw7i8Fg4JCM8fHxUCqVyM3Nxac//WmcOHGC00ZlNBqd5o1QFIWMjAyMjo7in/7pn4iqwxWmpqbIpLywsBB37tzhZNwwmJychEKhgLu7O3bv3o2bN2/ilVdegUgkIioC5pgaDAbI5XLIZDKifnNFSNE0jampKTKJ9PLywvvf/36kpKTg3r17gF3dIpFIWESqIyEFADt37iTbBLv6IigoiBPm7+7ujjNnzqChoQE9PT0oLCwETdOk/TAyMpJlgxsdHcXu3bsxOzuLS5cu4ejRo5DJZIiNjUVrayuLlKJpGjU1NVCr1di7dy9GRkbwzW9+E/X19WRcp6amcO/ePWJ7S09PJ58RFhaGkZERzM/PIzk5maWuEIvFrGY7MKtidXX41a9+hf7+fty7d4+jFltdXUVERASCgoIQFRVF8pdKS0sJCRYaGsoKs1ar1RAKhUhOTkZdXR2xhsXFxXGIvJGREUxPT7MIO8YCefv2bQ5xpFarYbVacfv2bYSEhKCkpATHjh0j9w2GJPDy8sLJkycxOTmJkpISxMXFITExkbSHOmJwcBA9PT3w8PDA4cOHUVFRgZSUFIhEIlRXV0On00EmkxEL5J49e1BVVYWNjQ1CijE2OJPJhJiYGNIOmZSURJRuzu5PjAKSOS4KhQLLy8scay+fz0dWVha0Wi2Wl5fxj//4j/Dx8XFJSDmOJQOZTIZDhw7h+vXrcHNzI0SYI3bt2oVnz55h9+7d6OvrQ0REBBnboKAgHDlyBBcvXiS5V3q9HiUlJTh//jxr/5isJea9GRkZWFlZwd///d+jr68PZrMZu3btYhHdAwMDJACdsdedPHnS5UKKyWTCvXv3IJfLcerUKbi7uyMoKAg3b97kWLCd3SsZHDhwANXV1cjPz0dpaSlUKhWOHj3KuR/Hx8cjLi4O1dXVqK2txeHDhyGVSrG4uEhew5QMbGxskP3+wx/+AI1Gg127dj3Xsjw/P8+ybPP5fBw4cADl5eUoKChwmn0WGRmJ+/fvc0iptrY2TE5O4vz585iYmNjye9/DX4Z364FXPT4Ig2bdZRvcVoosPkNOmU1vk1MJac+17riC0E0Co077XKXEWEcdojK2bq/bjOD4VMwNdWNhbIBTLe8Mo601CEnKfKH6bhs5YyJqKJqmMdTwBOGpu5yOhYe3H9bVc5xgcgYWswn6jTWykh+ZuQejLdXwj0ri2BBNeh2EIu42Lk2OQK9Z59jlKIqCf5RNFbo0PYbR1hpI5d6syR1PIITFZARfKILVYsFYWy0UQWGccfMOjsTS1Ajn714BIfAKCIHFbMJMfwfMRgM8fPygDImCh49NaQKKgofCl5CgG8tqLE0O258z+PCLiGMp9sbXluHpGwRP3yCsqWcx0lwNd2+l02wlv4h4zI/0kgmj2WTE+uLcc4OxPZUBAE2ziCmDVgORw8R/vKMeMh//LTOd3L18sLGsZrW9GbQboK1WViOdI/yjEjHV24rV+WlC/DhibqibRZaJJFLIlAFYnBhmtWlO9bQgOCGN836ByM2WhzM2sCWhB/s9wajTcMaLLxTBbDQ4Pafd3GVQJaZjcXIYhZ/9FqSeiud+DwAsTY0gJHkHlqZGoJ4YgnJTvtVmWMxmUA7EeWRGHobqH3MUa7ATtgIn1wbsVjwAWJwcxr03v4bDn/46NpYW4OHtfCHTEXK/INJ6CVJa5Fpx5Jj7JJErSO5T2tELWFuYfe4+O8Ko08JDoUR01j6Mt9fB00WIOxhbsYvfCb5QhKjMvTZr8TtshVueHsPyzDhCkjO3LByQyLzgFxGPsbbaF15IeBE4y3H6S0FRlO1+FhZD8vPG2usAmma1Rkrl3lidn8LG0gL4QhHEHp7QrCxifriXkz34fxLvkVIvibCwMGRmZqK4uBi7d+8mhNLIyAhnssjn80lWkcFgcJonI5VKOTk2t2/fZk3KDx06hIqKClaL3uDgIOsB+vjx47h37x74fD4UCgUuX76MvLw8Qgg4u5AlEglMJhM+/OEPIzU1FTdu3EBiYuJz1TQWi4XUgnt7e6O/vx9msxmhoaEIDQ1FT08PSkpKkJmZSXJKGMzPz6OyshJpaWmksY6ZVMJO+jFqkz//+c94/fXX0djYuOX2REREQKlU4uLFixCJRJienkZzczMoikJiYiKKiopw+/ZtXL16FdeuXSMqBwDo6Ohg1afDTjQ0NjbiyJEjUCgUTtVNm8kJBouLi6ioqMBrr70GX19f+Pv74/r16zhx4oTTCXVzczMhH8ViMfz8/DA+Pu7Uqvbs2TOS80VRFDw9PUlrGwOpVEoyfSYnJ5GSkgIPDw/88pe/xNjYGOczf/vb36K0tBSf+MQnWJPI27dvw9fXF0VFRTCZTHj06BH0ej3y8vJQW1uL+vp6FiHFbJO3tzfUajXW19eh1Wq3tIHu2LEDGxsbKC4uxte//nX8x3/8B1555RXWOMlkMqyv26qWAwICcPbsWdy+fRuhoaFISUkhE1fYQ9mnpqawe/duopybnp5GWloawsLCMDo6ivDwcAQHB5Pr1mKxoLm5mZxjXl5eePLkCZKSkjiZcLt370ZNTQ1LfeLYehYbGwuZTIarV6+y1DObr++oqCiSHZaenu60gfPJkyc4ffo0KIqCXm9rCCosLMTTp0+xtrZGbL/T09Po7e1l3RsYeHl5kWwm5vUGgwEPHz7E+fPncefOHSQmJiIqKgq3bt1CcnIysT863i9UKhVUKhW5ruPi4vDb3/6WEEsrKyuIiopikalBQUGYnp5GXFwcuZ7X1tZQUVEBs9mMgIAALC8vQyAQoLW1FZOTk0Rp5kh80DQNlUoFb29vXLp0CUVFRfD0ZD8E19TUsMoRcnNzUVZW5pTcdbw+lUollEqlUwJmK8jlcvT09OD+/ft4/fXX4ebmhvT0dEKC+fr6oqamBlarFZ2dnZycMXd3d6JwXVxchFqtxoULFzi2t/j4ePT29rLuT21tbQgLC0NCQgLS09M59ybHMPCAgACcOnUK169fR05ODkeR9uzZMywsLODw4cMsgj0yMhLe3t64ePEiTp06RezQji2Sm7+zoqICMpkMly5dglarha+v75aZgrm5uTCZTCgvL4fRaASfz8fk5KSt5lskQnZ2Nvmu+fl5JCYmIiMjA8+ePUNbWxsKCwvJ9RUREYHh4WFERkZiYGCA5Jc5wtfXF35+fvjOd76DCxcucPaDse8xsFgsKC0tRUxMjMtMwPfwfx8mupoglSucTmJfBnyB0E5OmTHda7Nw2RQAzyd0HOEfGY+ZgY4tg5+nelsRFJvyjnI6/KMSoZ4YwsxAJ2nFc4aJzkb4hse9cAhuQHQyZge7EByfaiekHiM0JdvlRM1bFYHx9jqXpNREZyOrnYuiKESk52K0tYbYjhiYjHpIPNlKzbnhXlAUXIZbk+0ICoN3UBg2ltUYba2B0E2CwLgUG2m2NA+BUIT54V6Ebt/pVIkilSugHh9w+fl8gRCqRFs5z7p6DqOtz0BRFBYnhiAQusHdW2mb8AFwVygRkrzjhX5XPJUB8FQGYGNpHiPN1ZB6+bDaI4VuYpiNbyu1Xdn2nH62XQHDEFO0PZzdYjZjpLkKwQlpz82eUYbFYKztGYuUmuppea4SJzg+FeMd9eALRaz3grHubfrN8w4Ox1h7HTx8bEHWJoMOVovZpXpGERiK8Y56EkbuDFO9rRC7eyJoU84XAATFbsN0XxtCkp0XqdBWK1bnphCZkYeRlmp4BYa+EGlAURR8VJGY7G4iTXyusDw1Ah+HZkYej4+w7bsw2lLDUYHZCEXXJQcrc5NYm59B4We/hdCUbCxODGFxwtZQLZJ6wC8i3qmKyFsVgZGWasj9g2HUaZ1e5zRNY36kD/r1FfCFTnKfKAoe3n7QLKuxtjANT18uEbkVmCbDhdF+p4odAFidn4anH9dZxIAvECB6R77N2pme+8IEj9lkxERHPeR+wRxFHgAYdRqOelMq94ZPaDTG2us47Zz/t4I5L31UNq5ieXrMlulltxYztlippzckMjnUYwMvrETcDNpqhcmgh0mvhVGvhXZ18QXe9R4p9Y4glUpx9uxZVFVVYWRkBLm5uRgaGmI1VRkMBtTX12N9fR1f/OIX8e1vfxs1NTXYtWsX60cqPz8f5eXlRC1QW1uLrKws1sScaTtznNwODg4SGweDw4cPY9++fTCZTHj8+PGWtqvZ2Vk8efIEhYWFqK2tRWZmJrKystDV1YWSkhKkp6dz8rBgJ2OKi4vx6quvkslKYGAgpqenCZGSkJCAhIQENDQ0oKGhAfn5+bBYLCgrKyNB6Y5jsPlHm1Fh5ebm4s6dO1AoFCguLkZWVpbLVXK1Wg2ZTIbjx4+jurqaU6EOe7jzgQMHcOfOHTLearWapV7r7+9HR0cHyRMpKCjAlStXcPDgQdYE0BkpNTY2hra2NhbpFRkZCT8/P6cTaqPRCKFQyNrO7OxsXLlyBSEhIay/P3nyhLTBMdi7dy9KS0s5OTh6vR4VFRWQSCT4wx/+gPDwcGg0Gg7JArtSwtfXl+P5dvzfTGOe1WolpN4f//hHQuTIZDJ4e3tDoVAgKysLFy9ehJeXFydU3xkEAgHMZjNSUlLA5/M5xJ2bmxsrXJvH4+HYsWPo6urCjRs3IBQK0dbWhpGREWRmZrpsaUtPT0dxcTGn5Y3P57Pe09bWhs985jMoKSnhWBEZ2xmDwcFBBAYGsrK8AgMDcfjwYbz11ls4e/YsRCIRa2xXV1dx584dHDhwAAcPHsTVq1c5KsCGhgZkZmY6fZjNzc1FW1sbqqqqkJiYyGpHdIakpCTcu3cPCwsLUCqVKC4uJsQmn8+HxWKBm5sbTp8+jebmZpL35QwJCQmIjY3Fr371K/zN3/wNfvGLX+DMmTNOG/6CgoJQU1PDIrg9PT3JPWtiYgKf+tSn0NDQgMbGRpfqQD6fD7PZDKlUigsXLhDyzHEBYHFxkUWO8ng8CAQCGAwGFtnCZLA5Xp/R0dHw8/PDW2+9hRMnTjjNZXPE5OQkampq8LnPfQ5paWkoLCyEXq9HS0sLVlZWALLKyMMPfvADnD9/Ht3d3Zibm+PYPz08PHD27Flcu3YNDx48QGZmJmmkg9021tnZiW3btmFhYQGPHj0iatL9+/ejvLwcBoPBaYg3A6FQiLNnz+LRo0eYmZkB7G2Hra2t2Llzp0sVp5eXF8li27t3L/z9/bGxscEaH5PJhPv374PP5xObL6MUrKqqQl9fn1PbOQOBQABfX1/U1dXhs5/9LLRarVOiv7u7m9y7du3ahY2NDZSUlCA5OZmo98rKyhAZGYmenh7O/XBtbQ3V1dUwm8148OABUlJS0N3djbCwMCQmJnKus6mpKVRXV+PYsWMv1Wr6Hv6/g8VsxkjLUwTFpmw5AQQAHl/gtLnKGfgCAUKSd8BqsWC6rxVmoxHB8anPzWkh7xeKYLHnNjrDxtI8eHzBc7d5KyhDorAyO+k0Pwj24G1P30AOKbAVhGIJzAZbFsxwYyVCkndsqfbainjRLKsh9pA7zekKT92NsfY6WK0WYikx6XUQOEyKp/vaIHb3hLfK9X1uMzwUSngolDDqNBhvrwdttWCisxExuw66VNC9LJisLKNOgz++/j64ucvw6r++6dSS+MLb7e1HJvYjLdWQyBTwj0og42vLcBra0rbnDI7EFJjGv65mRGTkvlB+GkVR4AveVhUtTY7YGhVfgHAL3ZaFkeZqCIRCMja2Sb7z8yl0W5YtXyorH5NdzQhL3VqJEpK8g7zecXtomsZoSw18w2NcBnnzhSJYzK6vz8nuZkJChqXsxGhL9Zbnz2YVpioxA4P1j2yWVxfjrF1b5iiwRBIplGHRHHLG6IJ8o2kak11NEHt4IiI9B5PdTaCtVihDo0mrmkGzjuneVlitFhs5ERLFyhnyCgjB8vQYNpbVLPJ3XT2Hxclhm+ImPJZFljIwGfSEAPKPSsRwUxWkcp/nkkJWC7e90jc8FpqVRQw2PEZEWg5r3NYWpl0SiAxshRD5GKp/zArsd4X5kV7o1lYQtn2Xy2tqcXIE3sHc+4+HQgnQVkx0Njx3u/5vhGMpxer8NMba60CBws3v/SN2nfsbBMQkkXOJgaNLy/F/c0FB4CaGSCKFUCx94XD490ipvwB5eXmYnJzE5cuXIRQKMTo6ip6eHlAUBTc3N2RlZUEmkxHFlFqtRllZGWiaRlZWFvz9/SEQCGCxWGC1WrG6uoq1tTWnbXEHDhxAWVkZ64Hb8URYWVlBeXk5Lly4gAsXLhB70p49ewgRwpxAVVVVsFgsOH/+PPk7QwYkJSUhKSkJTU1NJA+GsTap1Wo8ePCAs6ofEhKCjo4Ojrpnx44dCA0NxVe/+lX89Kc/RVNTE9LT07ccU6vVyiKBenp6EBERgYiICNTV1aGxsRE0TcNqtaKpqQkLCwuAXcF28OBB3L17F1NTU6yxMZvNhKBTKpWIiYlBbW0ta5z1ej3u3LmDqKgolrKBx+Ph3LlzuHXrFtLT0wkptpmU6u7uxuzsrNOgdw8PD1y4cAGlpaWIj48nCrcnT56wmuwY5Ofn48mTJ6xgX71ezyJImG0Ti8XQarWQSqUwm82oqKgATdM4fPgwhEIhbt++jeTkZLS0tKC5uZk1/ozlNDs7Gw0NDeTfnYUVt7S0YGJiAsHBwfjjH/9ICAbGdre8vIy5uTn09PTg3//93/Gd73yHbJcrTExMoL6+HmfOnIGXlxe2b9+OS5cu4ciRI8+1VCUlJRGira2tjVihHDE7O8sas9TUVLS0tCAtzfkqenNzMzY2NnD37l0UFBSgtraWNDQyE3+mtU4gEKC9vd1pk59MJsO5c+dw9epVloKppaUFs7OzOH/+PDk/MzIyWMfFYDBgdnbWJbkGANu3b0dbWxtCQ0Nx7do19PX1ISYmxqX1lsnlEYvFrIyw8PBwjI6OIirKJrVOT09HbGwsrl27BpPJBI1GA5FIhJaWFqjVasBOEhUWFuILX/gCoqKiUFVVhfDwcE5Av5ubG4eEgf06e/jwIWiaxpe+9CWYzWaYzWbcunULQUFBSE9PZ127crkca2tr8Pb2BkVROHHiBGpqarCwsIDs7Gx0dnYiKSmJ8z1M4DhDgvX09GB6etop+eXp6UkIL8djzZDGDJ48eQI+n08Ur8x2isViFrljsVjw5ptv4p//+Z+RmJiI5ORk7Nq1i5D4DHp7e9HQ0IDFxUXs27cPjY2NWFlZsdWoy2TIysoiTXg8Hg9nz54FRVFoa2sjx+HRo0cwGAyIj986hyA/Px/FxcU4c+YMbty44fS83WzPEwgEOHfuHO7du4eQkBBYLBZ4e3vDarXiwYMHMBgMOHjwIGe/YP9tXFhYwOXLl3HgwAH4+PiQ3x+LxYInT55gfX0dO3bsQFZWFiIjI3Hjxg0UFBSwiDk4udd6eHjg1VdfRXt7O65fv06usaWlJUKQWiwWVFdXY3V1FZ6enjh06BAEAgGEQiE5J0ZHR3Hnzh3AvtBkMBhQVVUFmqa3bMl8D/93Qbe+iqnuZkSk57yQZcPDxw+a5fmXWsnn8flQJWbAarVgurcVZqMBQXHbXbaYsWB/eN/84G61WjA31OM0t+Rl4RWggkAkwmjrM5adZGG0HyKpu9PA8OdB4CZG79O7iEzPfaGcF6/AUCxNj3GC3eeGe5yqDxiEpWRjorMRtNUCT98gm83OPhEd76iHV4DqpVUXDIRiKdzcPaBZVmNuuAcRGXlbNgu+LGb6O2DUa/HKF/8LAqEbpnvb4K2KeG6D2vPgrlAiQqGEdnUJo601EHvIoQgKw8JYP7Qriy+dZWMxGSEUS0FRPNz+4ReQ/+HPIzan4KVCwoPit2OqpwUhSZlYmZ14KXIvPG03hhoeIyxlJ4RiCeaGuhEU7/w5jKIoqJIy0PXoJvyjEp+7jRRFIdje/hYQnQiBSGwrOWiqQtj2nc+9Rn1UUU5tdkz+F/N+Hp8PRXD4lpa8lZlxzrGPSM/FSEu1yxBpV5D5+MOo1UA9Pvg2saTd4BBsBu0GJjoaoEpKJ6Sfu5cSmhU1KzvIzV1G1Iq01Qr1xBDU44MAALG7DL4RcRhrrQVPIIDVbCb2ZQ9vP4Snuo4ggZ3Y8Yt4ewEyPG03hhsrt2z4BIDFiSH4OBlLdy8fRKTZlJT+kQksC+KLEKE8nq2pdNB+zjkj1A2adUz2tMA3PPa5OU4mvdblPdDD2w9Wq9XlosD/XyD3C4JJr8XG0oKdUBTBy18FoVj6roTHG3XckixneI+U+guhUCggkUhw4sQJ3L5922mOBgOlUoljx46Bpmk0NDSgvr4eXl5e2L17N54+fYrZ2VmiYtgMxpanVqvJBI3BkydPYDAYcPbsWZIPUlRUBIvFgqqqKtIstbGxgcuXLyMnJ8dpuLojMjIykJ6ejurqatTU1KC/v59U2m/eP09PT2Kxgl0x1NnZaWPWfX2JgksulxNSLiUlhUNiGQwGXL16FadOnXJKZmRnZ8NsNkOlUmFjYwMFBQWsyXtFRQX27t2LpaUlVFZWEmVRY2MjSw0VExOD5eVl9PX1kX+fmZlh5eo4gpkMl5eXQ6vVIjY2Fnq9nqgG6uvrAXvukitQFIXjx4+jrq4OT58+RW5urksLoK+vLwwGA7Hm3b9/n2MBYrB//37cuXMH7u7u2NjYwMGDB8nYOeacpaWloa6ujmVXrK+vJwqEHTt2oKmpCY2NjeDxeEhJSYHRaMTjx4+h1+uRmpqKtLQ0PHv2DEeOHMHq6irZD5lMBplMRo7nf/7nf+Lw4cO4f/8+RCIRp8GN+W69Xs/aL19fX5w7dw537txBYGAgIY82rz51dnZiaGgISUlJuH37Nnp7exEaGsoJZ25paWHlO0VGRqK4uBipqamc7amoqEBgYCDS09Nx7949UBRFiIa2tjbcuHEDMTEx2L17N6qrq1lZSM4gFApx4cIF3LhxA3Nzc7hx4wbi4+M5NruIiAi0trZi+/bt4PP5ToPHN0Ov16OrqwtXr17F4cOHMTIygvv378NqtWJxcRE/+tGPyGuZsevo6EBnZyfr+yMiIvDkyRNCSsFBvfOVr3wFv/nNb/CFL3wBqamprEy1+/fv41/+5V9QV1eHEydOYGRkBLdu3SItgc7IMa1Wi4cPH0IgEODgwYMQiUQoKytDUlISDAYDsrOzMTU1hVu3bkEkEmHv3r2QSCSQy+VYXV1lERW7d+/GwMAAysrKYDabnSrFxGIxjEYjaJpGU1MTLBbLlqHfPB4Pr7zyCmpqajA3N4edO3diYGAAsbGx2NjYQFlZGfbs2ePUaumI4eFhtLS04GMf+xji4uJgNBoJebwZ3d3dOH36NG7evAkej8cithh1z6lTp9Df3+/Uzgs7+VZTU0MsmptXiltaWohCSi6X44c//CF8fX1RVlYGAEhJSSEW68XFRadW5cOHD6OxsREPHz5EUlISGhsbsW/fPo6NcjN8fX1JCLq7uzv0ej1u374Ni8WCvXv3st4vEAhw/vx5QgxuVjQ6Q0pKChISEnDnzh0sLS3h4sWL2LNnD0pLS8Hj8ZCTk7Mlue3YdruysgKFQoGvfe1rZLHmPfzfj+XpMawvzr1UK5DM2w+zQ93viOjg8fh2C5QV031tMBl0CIxN2ZK0UQSFYXl6jBP4/G7nkXh4+4EvdMNwYyWEYgmWpkZhtVrhq2LHStA0DaNOA83KIrQri7BazE4/b3V+CnNDPZB6KqAICn3ueMn9gjDWVssipRZG+18ohyckOdPedPf2ivxwYyX8o5NctkYJ3SQwGXTOrUZWK6b722HUaRAQnQwPhR8OfuINuCuUGG2tgYe3n8sQ6hfJAdtYWsDccA8CY5IhlXtjaXIEfKEIkZl7oB4bwGjrM4SmZLkkVKwWCytHyBWkcm9EpOVAt76Cya4mPPjlv6Pws9/CeEc9eY0zp8Hmf+MJhBCKJZDKvRG6LQtCsRRT3S2gaSucgccXQOrlA3cvH4gk7nallBBWi9nWVviSqhCKohCVuRcD9Y8QlZEHq8XCUipaTEYsTY9Bt7ZM/tb79C48fQNZ+woAFI8PD29fyHz8iRJHIpPDTeqOmf4OuEk9MNpag6gXbGKTKf2x2DrMIZqmelo4GVSKQFswvSIgxCkBvqae5Vi5+AIhgmJT3hFp4RMSiem+NpLXZtJrWSpN9cQQNMtqzv3Pw9sP6olBTqA1A4rHY+Wm6TdsxP5Ubws6H1zH8df/A8EJ6S8cGG42GljXIY/HR1BcKktp5gy69RWX1yFfIEBU5h5M97VBs7LoVKG1FSgeD9FZ+zBU/xgh29hFP9O9raBpGpEZee9KlqEtu83q0nb4IticLfb/FixmE6b72mExGaEMjYJPSBT2fvgf4RcRj4muRkS+ZNbhX4r3SKl3iKmpKTQ2NsLDw4O0WLm7u6OhoYETir0ZFEWR1ywvL6OyshInT57EH//4R0xOTkKlUrm07ly/fp0oE6anp1FdXY09e/YQRYjjDxKfzyfWuR/96Ef4/Oc/z2nne9525uTkoLy8HF/4whdw6dIlEnztCB8fH5SXl5NMjtDQULBqpFQAAQAASURBVELO6XQ6LC0tYfv27VCr1SgqKgJN0+js7CRtSllZWVhdXUVxcTHOnz+/5fbV1tbi6dOn6Ozs5CiH9Ho9xGIxgoKCMDo6irGxMYSFhWFpaYmz+p6VlYWvfe1r+PWvf42qqioWabV5HBkUFBTg6dOn0Ol0MJvN8PX1xcOHDxEQEPDc+nUG2dnZGB0dRVFRET75yU9ifn4ePj4+HGVSQUEBrl27hsjISNZkU61Wk6Y1BmfPnkVfXx/HbtnR0cFSsGRnZ6O6uhq9vb2Ij4+HWq1mqcUyMjLQ0tLy/7D33uFt3If5+ItFEgRJcG9wb4niFIdEidqD2luO4zhp0zZtk6axGzvD6XKSNomb1TR268R2HNe2JkVSHCI1SIp7L3EvcG+AJIgN3O8P4j7G8QAOWUnzfX5+n4ePLRI4HO4+Nz7vvQP/9m//hs9//vMMcoDGwsIC3Nzc4ObmhoWFBTx58oShVFEoFBCJRODxeDh27BhkMhnJIRIIBNBoNLh37x6ioqJIfpE5OBwOsrKy0NPTg+zsbIayxZyMoomI/v5+hs3I3MZlrgCksW/fPkabpcFgQHZ2NmkItIS4uDjExcWhr68PxcXF+Na3voXvfve7qKmpgVqtXveiJhAI8JWvfAXZ2dkYHBzE0NAQAgMDER4eTsb50aNHce/ePURERCAwMNAiMUpDp9Ph1q1buHr1KkpKSlYrwkNCEBISAoPBgBs3buC73/0ug4yjmzH/9V//FdnZ2eR8QQdpm0Or1eLu3bt44YUXkJCQgIMHD7K2oUqlglgsJmHntJJxcXERBQUF4HA4RAG4tLSE0tJSCIVCHDt2jHxn+vgKCwtDbm4utm3bRrK+tFotysrKoFar4enpCVtbWywvL6Ovrw8zMzNkPRoaGvDjH/8Yt27dsriteDweXnzxRbzyyiustkNr2LVrFwYGBpCTkwNbW1v4+PigpaUFly5dWrcEwmg0orCwEF5eXgyi9dSpUygpKYFKpWKM94aGBpK3Rqu6zO3fTk5O8PX1RUNDAx4/fsw4L649N+3atQuNjY2oqKgAj8dDbW0t5ubmwOFwEB8fT1R4OTk5+OpXv4rCwkLycKStrQ1tbW1ke4WHh6Onpwejo6OsMPtXX30V3/rWt/Dqq69uSEjR4HA4OHToEO7evYtz587hyZMnFs+VtJLk9OnTREW1NuvPEmj1VlNTE/7lX/6FFF5sBfPz8ygpKUFFRQU5L+bm5sLNzQ27du36ozTOfIatY6KnDXxbW1bw9UbgCWxgXMeysxlwuFz4RScwyA+f8FiLoc9O7t6rZI0ZKTU3OgBnL/9nHmpr5+AEj6AIfPitF7DjyEX4xyRitKOedc6wtXeAvbMbfCJirdqK5qR9CE3eB3uxCxbGhyFtrQGHy4V32PZ1CRv6WDYaDVAszG66gcwvOgETPa1YGB+GRqnYsIlLKHaBakkGgYdZ8YjBgPGuZhj0OvhG7iAql4kJKWlJC07MwNLcFAYbH8MjMIKVg+UeEIa5kX74RLDPP0aDgVTDm4f/mivh3APDIfaWYKixAh5B4RbJPIVsdlN2SvMcHxuhCAknPgePoEhWOPxmMdpRj8N//T2TsibJ6rnNoNdBubgA+eQIUQwBwNLsFKo+/jVOfOPfGOsIK+QYl8cDj28DLl8AnkAAd/8QVF3/b9iJHMHl8ch7eXwBXHyDWAHzlo5tg16PFfkcZoa6GTlbAFDw8+8gIesqdp790pbUHTZCESOXSj41Cmcvf4uKuoAdqZC2VltU/1nbnvZiVyiXZJgfGyR5PjCpnKzZGGn4RsZhqKkStiIH8hmU0QhpWw2cPP0s5hnR9tvNws5BDFuRI4Lid8E9IAzq5UVoVpY+la3YXuyCFdns6rb8FMpB38g4yKfHMNj4eMvnSw6Hg9CUfRhsKAdlNEKxMIPpwW74RsZB6Pj0NltLcPLwhdH0sMJSftlGWJ6fgpPH5ixuzwLKRRlmhrrB5fHgGxlHtq3MpPYTOooRlLB7tQ0yLn3Dso5nhc9IqS1iYGAAcrkcvr6+rCf0GRkZ6O3txd27dxmZRtbaXqamplBXVwcbGxu899574PF4WFpaQnFxMetph0QiQVhYGAIDA1FdXY2QkBCiarAGvV6Phw8fkpD1hIQEXLt2bUPix/y7Njc34+DBgygoKIBcLsfRo0dZT+NnZ2dRW1uL1157jUX+PHz4EEeOHIFAIEBLSwsSEhLA4XAQGxuL2NhYGI1G/PSnP8U3v/lNVFdXs8gZPp9PGqiam5vh5OSEsLAwyGQyQuABIJk5NHbt2oWbN2+ywn0HBwfR1dUFmALkJRIJ2traMD09jZSUFPLdZmZmGK1uNDIyMtDU1ISHDx/C398fu3fvtqpisAa6Kc3T05NUpxuNRtY+HxgYIMHe/f2rMls3Nzds376dKADkcjnu3buHuro6Fik1MTFB6uxp7N69G6WlpSRQWKvVoq2tjdggYQrtpygKhw4dYoyTtXam5ORkFBcXw9XVlShIGhoaGKSsi4sLzp8/j+7ubrz77rv45S9/id///vcbTmojIyMRGBiI7Oxs3Lx5ExqNhkFGwURC2tjYkAbKnJwcpKSkwMfHx2pTmKurKxQKBbRaLVQqFQoLC3H27FmLSpa1CA8Px8rKqgRVr9cjLS1t3fdRFIVr164xJsoURUEqleLRo0cwGAzkd5WVlcjNzcVbb71ldVkUReH69eu4dOkSOU7Mb4azs7Nx9uxZDA4Ooq+vj9hE6SY4Pp+PS5cuobi4GP7+/ixyoL+/H62trTh16hRsbGzg6emJR48eMRRGTU1NRMFGq/NoxaBYLMbJkyeh1+tRXl5OwrxPnjzJInS6urrI5wcFBWFoaIjY5mxsbEhY/+uvv46SkhL827/9G8LDw8n5w2g0YmVlBR9//DErW4/eLq2trXB1dWVkkm0GoaGhcHZ2hru7O9544w2kpqZifn4eHh7MFht3d3fMzs5CoVCgsbERx48fZwTa0zh8+DAqKiqgVquxY8cOUBSF0dFRQoQ7OjpiZWUFRqORsZ26urpw7tw5hIWF4caNG7h69arVm14/Pz987WtfQ2lpKWpra1n5ccPDwwgMDASPxwOPxyN5WzThSlEU9u/fj6ysLFy6dAmZmZmMY72mpgbd3d2QSqWoq6uDQCDAvn1sdYpAIIBWq2Uce42NjfDy8kJBQQGMRiPu3LmDHTt2sIpBaGRmZqKpqQmVlZWsDEa9Xo+mpiZiJ7W1tUVycjLGx8eRn5+PyMhI5ObmEtXe2usJl8uFwWAgv+/q6sLw8DCuXLmC1tZW6PV6REZGIjIyEnNzc0S5t1421mf444IyGjHUXAmPoAirSoA/FjhcLgkDn+xth2ZlGd7h29ed8GhVSqwszH4qlZTRaIBifhqLM5OgjAbG3+wcxTjwF98Gj8eHe0DYU08sVYoluJpa0Fz9guDqFwSjwYDJvnboNWrY2DvAOzSGMXF3DwzHrLQXnkGRGHvSuKlaeb1Wg/mxQWhWVh+01dz4Hxz923/G9EAnOBwOxN4SOLp5sc419k6uWBgfIpa/sa5mgKIsBtLrtWqGkoMOFp8Z7sHcSB/8ohPJpEtgt6rAWou50QEsz05Csn0na3JMgQLMczht7RC6MxMzQ92QT42xAs8V89PrWoYUsjnMSfsYOT6jHQ1IPvV5DLfWPFUbls6UESawFcIvJhHjXU1WlTs8vgCObl6s48toMODst38BO0cxnL3Wb0GlX2/Qa2HQ6WDQ66DXaqBVKuDs7f/UGTw8Pp/sP3NM9rbjwJe/BScPH4x3NRGngK3IEe4B4euqfnzCt2OkvQ6BcWmrDWVjQ1btiTw+H84+ASyCyWgwrPsAw10SitGOBtg7uUDotEoqzo30b2gdg8kO11/3CDZ29lAuLmCitw2B6xQPbAUURUHaWgNnbwk8giIxZlLCTfa2Y1baB8n25HUtlIqFGTi4WG748wiKwHBLFUTO7qwcvvVaUNdCq1RAsTCDie7WdbfxWoKU/rfAToiCn38HJ1/+0ZaPndUMrs3ZfZ29/EEZjZjsa4dP+MYP1cyxPDcNv+inU1ltBXMj/VAszELo5ExaE82xNDtJiE6+wAbhqQcw1FQBz5DoLeUSPi0+I6W2CJFItO6T2IiICHh6epLK77X2LNpOMjk5CU9PT9L6VFhYiNjYWPT09LAq5Y1GI0ZHR/H48WMsLi7ib//2b/HRRx8hJCSEMSmdm5uDm5sbCXSlA3FFIhEePXqEtLTVAbgRMaXValFYWAiJRIKLFy+is7MT0dHRcHR0RHFxMWP9OBwO+vr6cPfuXRQVFeHy5cvkhl+j0YDL5TLq0MfHx+Hn50cm4nNzc9izZw+6urrg7OyMvLw8ODg4IDMzEzweD/7+/hgbG4NWq4VarSYWl507d+LOnTuElKqrq2NZo06fPo333nsPQqEQd+/eBUwWLrpNSaFQgKIoZGRkYGpqCnfv3oWtrS327duH3t5e0lgGk6Ktvb0dSqUSFEXhlVdewT/+4z8y1A0bQa/XIycnB0lJSXj55ZdRVFRksTUNpsY2mUyGX/7yl1CpVDh58qRFkqWiogJZWVkYHR1lTUatnfTpfJs33niDWPXMlWIcDgf79u3DnTt3kJSURMiCyspK0mpHgw6CP3HiBOzt7Vk5UrRVdXp6Gl/+8pdx//59VFRU4OjRo4wJo1AoZL2Xw+GAy+VieHgYFEWxlHFrGy/PnDmDgoIC6PV6DA0NWQx2p9f5n//5n7Fr1y5GvtNGKCsrg7OzM372s58hMTEReXl5uHDhglUFTW5uLo4dO4aGhgZCrHI4HIZtCKZx2NfXR5RGMBFgNKnk6uqKhYUFlJSU4OzZs2QcSCQSjI6OIiAgACUlJcjIyICdnR1iYmKI3dBoNGJ2dpbRTnfkyBE0Njbi8ePHZB/du3cP7u7uDJWPWCyGSqUiCkSYgr5p5c2uXbvw6NEjUgpAg8/ng8/no6ysDOPj4xa3z/DwMLEp7tixA7m5uYzAbrrs4MUXX0RiYiJr3NHnoenpaZZaD6axMzg4iJ///Ofo7OzE/fv3N32sVldXY35+Hj/72c9w8OBBBAUFoaenB42NjYzXaTQa/N3f/R1+8YtfsMLq1yIjIwMNDQ2oq6uDSqWyWFpQXl5OcuTMGxPpLLA7d+6QxlIafX196O7uhpeXF65fv468vDwMDg7iyZMnOHToELn+tLa2EkL3wIEDjLwtmHIG33//fbS3t7OC0ycnJ6FSqZCWloaBgQFkZWVhdnYWN2/eRGpqKoOU9/DwwOzsLLGH0wRWUlISCgsLsX37dmzfvh2tra24c+cOacZci8TERPT39+NXv/oVvL29yXHB4/GQmJjIIL7v3btHMuBCQkIQGhqKpaUlFBYWklxFmsSn18/b2xtlZWUQiUTkHEw/AKHh7u6O06dPQ61Wo7i4GNeuXVt3H3+GPzy0qhVIW2sQlLDrmUzInhU4HA58I1cJ56n+Dkz1L8E7NIZMPgV29tCqVmAjFGGkow6hyZvLkdJrNVicHseKfI71eY7u3vCNjLM42VYtyRG4IxVjnY1QLcnhJrFMAK8HuqXNHFwej9hT1IpFYq2i7X0iZzfMSfugViyCJ7BhkUNalRLzYwPQqT8hfXgCG7j5B5M8nKy//yFRyBiNBixOjWG0o56xHAdXTzh7S6CUz0PaWmPK/Eq0qvqydo33DIoEFRCOsc4mUJQR/tuSWN9Zo1RgrLMJbv4h1tvmjEaLE1fP4ChoVSurVsTQaJIHRAeGm0Ov02Kytx1GvQ72zm6sCaPRoAdPYAOf8O2Y7G23qORaD+NdTQiIXb0nsrV3AIfDhVqxZFHdZwmr9iIuvMO2QdpWCzuR44ah7lweD1yeEAJbISiKQn/dI+z9wjcwM9QNtWLR6vu1KuWmywSMRgOGmyrhERQJ77DVYGZzwkutWMRkbysMJuWvjVAEj6AIRnMch8slD/4melrhG7W+0sXVNxBDTRVw9paQMTcr7dvQqirZnoz+2kcISd4LLo+3mvW1iUZPDocDr9AYfPjq53HiG/++5Xwqa9CqlJC21SBwRyore8snIhY6jQrDzVVw9vK3WjSwMD68LsEYuCMNA/VlLIvhqoJqfWJzbqQfy3PT8AiKwI7DF+Dk4ftUZObMUDcu/+tvMD86YDHfbz0szUxA7LV5q7eLKVtvqv8JvMPYeadWQRm3lPG2FRj0ekz0tMKg08BNEkoyyjYDDoeDkKQ9GOtshFapYNnQnzU+I6W2iKGhIdYT7bVwdnbG5cuXkZ2dTexRarUapaWl0Gq1SEpKYpAAy8vLcHBwgL+/P+RyOSuQmsvlIjAwEN7e3rh16xba2trIJJEOauXxeJDJZLC1tcXMzAwOHDjAmOCr1WoyQbl48SI+/vhjXLlyhWUVamlpgVQqxfHjx8nkVyqV4tixY+BwOPD09ERXVxeio6PJe+g8jnPnziE7O5tM0B4+fMhQWSQlJSE3NxdSqRQzMzPYvXs3qW+nCYTTp09jeXkZhYWFJGeloKAAXl5erEllaGgo+vv7SQW4+T5RKBR4/Pgx/uVf/gUvv/wyPv/5z7P2k42NDZmEeHt749SpU1CpVHj48CG++tWv4j//8z/Ja11cXJCYmAgHBwfo9Xrk5uaCz+ejp6cHVVVVG2as0FbL06dPk0Ywa6TRysoK8vLycPnyZRQXF+PgwYO4e/cuoqOjGYHG9EWUHh8dHR2kodFgMLDGKEVRePToEVQqFXJzc2FnZ4fQ0FCLijA7OztcvHgRtbW16O3txZEjRxh18+Y4f/48rl27hqtXr5LfLS8vo7y8HEajkTQ7wjQO9+7di9zcXAQGBpJx7u/vj/HxcULEPHnyBH19fTh9+jREIhGOHDmCBw8eQK/Xk9Di0dFRVk5QVlYWiouLUVxcDKFQiPl5dg0ph8NBfX09g6hZDxRFITc3F/Hx8QgMDMTU1BQ8PT1x/PhxfPzxx7h48SKLMHz48CESExPh7OwMb29vTE1Nkewec0ilUjQ1NeHs2bNYXl4m5EpPTw/J/dHpdMSWZ779IyIiUFZWhvn5efj4+DDshxKJBCMjI+jv7ydEhzmSkpIwODiIxMRE/OxnP8PZs2cttugdPXoURUVFOHXqFMbHxxnKQ0v2P3rd7e3tERcXBzs7O9TV1W1oafb09CRthwaDATdv3mSUHZiXFUxOTsLBwYH80PY/c5iXKsTExMDFxQU3btzA+fPnWeoZGnTwflpaGkJCQuDt7Y2hoSHExsay7L30Zzg6OmJ2dhYFBQXw8PBAUlKS1WuDj48PPv74Y/ziF79ATU0N42/Ozs4k5JzD4WB4eJgR3i8Wi5Gamori4mLApFgbGxtDWFgYw+LK5/Oxf/9+UBSF+/fvw2g0Ijo6mtFaamtrC71eTxRD3d3dsLe3R0BAANrb2xk3bQaDAeXl5aycJTovqqamBq2trTh+/Dj4fD48PT0xOTkJPz8/VFdXQyQSEQsxl8sl105aodXU1ITm5mbMzMxgcHAQAwMDREEIAP/1X/+F559/Hq+99prF7drb2wsPDw+4uLggMjISPT09iIqKgpOTE06ePMnIVYyJiYGvry/GxsZQWVmJ5ORkBiFmbTzT63ThwgUWMfkZ/nhYmp3AwvgwwlIP/MlaKjkcDnzCY0FRFKYHOjHV3wmv0Gh4hURhsq8dHC4PvhFxrPVXK5YgnxplhcHyBDYQmyaEm/3OlFmWpH9MEuZHB/8gIbx2DmKi9jK39+m1Gox1NUMSk4SJnlaGxUpgJ4Sbf8jmAuJN2TTmDVEwXY8VCzPoflyIujvv4YU3PtpUg5w1cLhcSLYnQ6dRQdpSA3tnV/I5Ez2tMBoMG2bPUGAIpRiwEYoQujMTU/1PIJscZWTsUBSF+ZF+KGRz4PEF8IncwSBLaCgXZbBzXM3MtBe7Yn5siGE32wiqZTls7R0ZljbfqHgMNj7etHJkwiwvJyA2BQP1peu2yq3FUFPFap6VrZ3JklZhNQBfNjEMV9+NJ7+alWWMtNcxWtbW3lfbOYgZY1+jVGC6/wlp3ePb2K2q0UJjiPVzMw2KATtSMdJWS4hKtWJxU7lHwYm7MdRUsW7BgV6nxZy0H1rVJ9ZJe7ErjvzNP8Gg12J6sHvLGUtrsTg9joWJYYTt3Gc1+F9gK0RI0h7IJqQYaCiHZFuSxWN3vWODw+XCf1sSRjvqGXbM5bkpqwTTwvgwFqfH4SYJQXDiJw8kndy9sTQ7saU8QNnkCCiKgqtfEBxcPSBtrd5SUcDS7CQk29j3f+vB1TcQ82ODmB7sgldI9CbesTXl2GahWpJhepBt0bMGg15vlRjzj0nCzFD31sm2LeIzUmqLSEhIIGHJNBliCTweDxcvXsTvfvc7fPGLX8S9e/ewf/9+RkU5DfOn4tu3b8fjx48xODjIUIHo9Xpi4eDz+cjJycGZM2fIJF6v1+PgwYP42te+Bjs7O4s31zRsbW1x+fJlXLt2jbQM0bbB+Ph4i8HB5oHZOTk5kEgkcHBwYIRp29nZIS0tDaWlpdi1axexiBmNRjQ1NWFmZgb/9V//hbfffpsQApYOREdHR5w8eRI6nQ6/+tWv8NJLL6GwsBD9/f0IDQ0lnxcbG4vs7GwYDAayHVpaWjA6OgoHBwccPnwYv/nNb+Dr62uxdY22mphDKBQiKioK3/72txEcHGyx1Yom20pLS5GRkQGj0UjIHkttVHV1dVAqlSyrpbk1kYY5IUVPwgQCAc6dO4eWlhbk5eXhxIkT4HK5xJZF4/jx48jOzsaFCxcYYwqmSezIyAj27dsHZ2dnFBUV4fDhw2TiSoddG43M4MvU1FQsLCzgtddew+DgIFxcXGBvbw+RSAR7e3vy/6dPn8YHH3xACC9HR0ccPXrUohrP3t4e586dw+DgIG7dukWC96urqxEcHIz8/HyEhoYyJuUcDgeHDx+GUqlEfn4+3N3dyaRaJpOhpaUFavWqh14ul+Ott97C17/+dSQnJ7MumI8fP8bHH38MPp9P2v7MQ9LNx6ROpyMtemuD1Gn77M2bN3HixAlCStbX18Pb25uQUP7+/uju7maRUo2NjVhZWcG5c+fQ0dHBIIVoCxEAvPfeeygqKmIQcJ6enti2bRsGBwchEAhYLY6JiYm4efMmbG1twePx0NTUhOnpacZruFwukpOToVKpUF1dDZjOW/Hx8USVJhAI4OTkhPn5eTQ2NrLa69Za+ORyOfr6+nDy5EnyPSorKxn2PLVazToPpqamIi8vj2SpnT9/npDoaWlpqKmpQUbG6s1fZWUlQ5lkY2ND7GgwjeGRkRGS2QQTIXTy5Elcu3YNp0+fJusLkzK0qKiIkQdVWFhIFKG0unMtJiYm8Lvf/Q59fX3Ys2cPZmZmSLYen8/H/fv3YTCT9Pv5+eHv//7vsW3bNkxNTaGpqQkcDgfJycnw8vJCRkYGKioqwOfzWSq/5eVlDAwMoKenB3/3d3+H4eFhi02m6enpqKmpwe7du3Hs2DFoNBocP34cL7/8MkpLS5GamgqhUIjMzEyUlZUhPj4eg4ODRLWWlJSExsZGQsLl5eWxSC9zgjAtLY0c8+Hh4YiOjkZ7ezsqKirg4uLCIAtDQ0MxODhIrptGoxEajQZ8Ph9vvPEGMjMzsX//frJsmUyGt956Czt37sRHH32ES5cuMchftVqNzs5Ocp4IDg5GUVER45xN5yrCFCx/9+5dfPnLXyYPgsyxlpTSarXIz89HREQEzp49i76+Ptb2/gx/HEwPdMJoNG65dez/ChwOB95h21YzgQa7ML0kw+xQD1z8glabr0aYY8lW5AQX38BNkwzrQbYmw8VNEgLl4oKpmn7PpsOLtwLa3qfXalDw8+9goqcVZ179GTyCIjelBDEHjy9YbeCz0qTI4XBga+8IodgFn//x/5KWr0/bqLeaN7UbioVZ1Fz/HzTnf4Qjf/tPEDo6b/heijJaZ6VM8A7bBrViCQMNZViamYDRRL67B4RuqLCZHe5BgFl2kH9M4pYIpam+DgStCe3mcDjwCAzDrLSPleW0FhRFwaDXkkkth8NBcOIeDDaatv0G313aWgPvsG1kfHM4HLj6BWFhbMiiAkejVMBW5LjuMmWTI1iandwySW1r7wC/6E/mAjq1CjND3TDotCj4+Xdw/O++j4XxYYi9/Nc9Vnh8AZw8fUnj5GbXgSewgXfYNox3NQOmbbs0O4nF6THGa9wloaxtoFqSQbJ9JxQLMxhsKF+1VLlats6th8nednD5fFaQuzW4+AbC2VuCsc5GcPkC+EbGkdy4zXxvOwcniJzdWZbHte+VT41CNjECF99ABhlFw9U/GMMt1ZsmpRSyOazIZgkpaSMUwdknYEtkEUzE2lbh5h+CuZF+UzPhpyMQt4q50QEo5mcgdBRbtOhZfZ+0Fx5B1s8FnsFRkE+PYaS9bstZjpvFZ6TUFmFnZ0fsL3fv3sXx48dZT96NRiMqKyshl8sRHx+PN998E0tLS1AqlRZJKYVCAUfHT04+e/bsQW5uLlxcXODi4gKj0Yhr167h0qVL5IY9IiICvb29JDyXz+fjlVdeIa17VVVVWFxchFAoZFlfYJrIXblyBb///e9RV1dHcnk2M3hPnTqF69ev4+rVq6xmO39/f0xPT+P73/8+UlJSSPBxYmIikpOTcfDgQZSVlRHLh/kEyByzs7N4/PgxsrKyEBMTg8OHD6O/vx/37t1j+Ibt7Ozw3nvvYc+ePejt7UVcXByDjIHJHlRRUYGBgQFG05il76pQKNDU1IQ///M/R15eHouUMhgM0Gg0sLe3Z0zQDh48CJ1Oh/v375NwXzpEOzY21qJSZOfOnQzFjiVCynwd4+PjER4ejlu3biEtLY2EjtOgrXgtLS2Ynp4mapjW1lYkJCRYnMQeOnQIDx8+BEVRCAsLw8zMDMMmp1QqUVFRgbCwMHz+85+Hv78/VlZWoFQqSa6XUqmEWq3Giy++iOeffx5vv/22xVbBtaADuisqKiCTydDf3w+ZTIasrCwGsefp6UnWy97eHmfOnMHk5CQkEgk5TlJTU4ky8M6dO1hcXER2djaLCKIoitEyduXKFRQWFiIgIIAVhi2Xy1FYWIiLFy9aDR+nW/ays7ORnp6OxcVFGI1GRl6TWCyGXC5nvI/OdaKJE7lczrJNwZTlk56ejjfeeINhm52ensb9+/fxV3/1VygqKrJYQHDp0iW88cYbcHZ2RkREBMljovHo0SNcu3YN1dXVhJTQ6XRoa2tDU1MTYz/R9r61x8yuXbtQWlqKI0eOkLBvc8UcTDlmOTk5cHNzg5OTk8XMIw6Hg46ODty5cwf/8z//wyAz6QY+mAiptQo3mmChbYQPHjyw2LQnFApJIyJ9zqmpqcHs7CyOHTvGIDxoBWJycjJyc3NZpBQ9hry9vQm56OnpSSxxSqUSP/jBD/CVr3yFcc6hv2tiYiISExOJnbuhoQEcDgdjY2NwcnICj8dDa2srWRdHR0fEx8cjPT0dgYGBaGlpwczMDKN9FCZFp/lYoygK3/rWt3DkyBEoFApUV1dDrVaTzK2pqSk899xz5PX094EpHy4mJoahuN2+fTs6OjoY51ihUEhy4+7cuYOcnBx897vfZZ07Q0JCSOi7VCoFl8tFSkoK0tPTERcXB5lMxtjvZWVlOHPmDDgcDi5fvowbN27g1KlT5Fp59+5dFnFtDRRFYWxsDF5eXsjNzSW5ert37yY5iAKBACrVqq2ILlWw1sj6Gf44IHknPpJNZdhsFuZ2uj8kaNuNZmUZpe+8gb0vfmPdcPFngeW5KdaEwV7sulpN3/QYflHxxFb4LDEz1A3l4gJSzv8ZHNy8MDvUDcX8NEPltBkI7ITQqlUQWiGlKIrCSFstsQPRYbzrKT42C61KidnhHqSc/zOoFUuYHe4FZTSCb2sH79AYq0QZNrAEURQF2fgwlhdmILAVojH397jwvV9btURZgvnyORwOPIMiNzXhXZxZVZZYWj8nD18MNVXC1S94XQJmeoA9iefx+QjYvnPVThufbvW9Y51NcPELYmWbOXtLMNhQDhe/oC0rHyd6WsG3tbMY8r1VCOyE8IuKx8xQNw5/5Xtwk4SAMlKY7G0lxCFMrX/O3v5wcPUk6+vmH4LBhnI4uHhYHxtmjZeK+RkoFxcAUHjyKBc604NUJ09fVu7YenBw9YSDqyemBzoxN9IHyfadmzqnmFsd1wb8b4RVReFOqJYXTSUB4VAtL8I9cHNFBm6SEEjbauHg4sEi25ZmJzA/OgSxt79FMsocXB4PRoNhwyB7rWoFs0PdLMuts5c/JvvasTQ3xcole9ZwD1glfTdD/H5aMCx6/qFwjw/dxLuYUK8sw2sDlaCzlz9shSL015ciJGnPM7ccfkZKPSWSkpKgVCqRnZ1NwqQXFhZQVVUFmCZitPJhcnISR48exYMHD8Dn85GZmbnhyefUqVP4+OOPceHCBdy+fRvnzp1jEFrR0dG4c+cOIaUmJyeJfYfH42HPnlVZ7OzsLC5evAhnZ2eG/YG2aLS3t+PmzZv44he/aHGdVlZWWAQDl8vFgQMHUFJSAq1Wi5SUFOj1ejQ0NGBhYQEA8LOf/QzvvPMO9u3bxwgItrW1hUbziZx7enqaQUrpdDrcu3cPYrEY586dI1YWLpeLiIgIRoOV0WjE7du38e///u+4evUqK9TbHBkZGSgoKICTkxMrsNh8m+Tm5pJJtZ2dHVQqFeP7l5aWkifvNKlE51wJBAIcP34cSqUSH374IV588UVUVVVZrTd3cXGBTCYj23ktIWUJIpEIly5dwssvv4ze3l4yiRMKhfD390dAQACKioqwsLCA7OxsBAcHs3JosOYG58CBAygtLYXBYIBcLkd4eDgMBgPu378PiqKQlZWFzs5OiMViODo6MghUmLJ1bt68iY6ODnC5XBQXFyMsLIxlqbKGjIwMVFVV4fTp02hsbGQpzSIjI0lYMo3q6mo0NzfDaDQy9vvY2Bh8fX3B4/GQmpqKqqoqBolBkzzm2yErKwvt7e0oLCwkNtXh4WG0tbWtGy5tvozz58/j5ZdfxvDwMCt7Zm1Q861bt7Bv3z7G91lZWWFM/gGgu7sbHA4HkZGRGB4eZvzN09MTy8vLKCkpwa5du1jvbW9vR1tbG3p6erB7927WmJqbmwNFUXBzc2Mojej8HxoUReHJkyd4/vnnkZ2djaKiIiQlJZFjyNwCSwe6W9pep0+fxkcffYQrV64wlFVLS0uorKyEwWDAwYMH4erqSgg2T09Phh1ueXkZS0tLrPICoVBIVHJKpRJ6vd6qlZbL5SIzMxM/+tGP8OMf/xijo6OMBkpYCPRfqwaDafzR2XTHjh1Dbm4u4zjr7e3Fxx9/jIGBASwuLjII4bWFBvT5b3h4GJ/73OcQHR2Nu3fvWiSyV1ZW4OrqioyMDIyOjiI7OxuJiYkMG5qdnR3JZysrKyPnKwcHBxw4cIAoO3NycnDy5EkUFhaCz+cjOTkZrq6u4HK5mJ6ehkwmYz0w8PX1RWtrK4v4h8mCaDQa8cEHH+DSpUuQSqWs15w9e5aE35tDIpEw2kLHxsbg5+dHxpJAIMBzzz2HW7duYc+ePRgYGEBKSopFJebazIi+vj60trbi8OHDmJqago2NDYKDgxkPjyQSCby9vbGysoLbt28jKirKomL4M/zxoNdqVi0/O1KfiYLIHE4ePliam2LVwP8hoFUpMdrZiC/+8japN/9DToY4HI7FczCPL0BYyn6MdjRA5Oy2JUJkPSgXZZjsa4dnUORqjXhHPUTObnBIzMD86CCGW6oQsCN105MXgZ09dGql1bB4ennk3GBrh6C4dIu5NTDZGYH1r+GU0YixzkaAw0VQ/C5wuFyGGkCnUWGyrx0GnQ5cHg+eIdGMMbl6Tmd+hl6rwfRgF7EvuvoGIXBHKjRKBU598w0Y9LpNWWHoNqy1cHT3wsL4EHQa9bpqtIWxQetZWAACYnditKN+XWJJrZDDO4zdmmorcoSrXyAm+zrgE85uuJ3s64DIxd3qePeLScRYZxMkmwjEhylMfKi5El7rKITsHMVQLcs3pXCjoVyUQatSInRnJoZbqhEUn84ibQx6PRan2flmNvYOKP/9z5B44nlM9raTkHwOh8O41tuKHOHg6glXv6BPMqyMRngERW66CW6ts8QrNAYGvQ6jHfWwc3Bm7KO1xLtasYixJ00IStj1qVo/hY6rzZMzQ90o+Pm3cfAvvg2BnRBCJxfYO7lAYGdv9Z45IDYF/XWP4BO+HSJndygWZjAr7YOju/eGZBQN77DtmOxrJ1ZSSzDo9ZC21SIsxXJBiU94LAYbH0Po6LxlJedW4REYjpmhbsyN9FvNctKpVU+dkahalmN6oAtcHg8+ETv+4N8HAIROLgiKS0d/XSmCn3G+42ek1KeAvb09Ll68iJs3b5JWq6ysLIukAq2eoQNi09PTSc6HpQNYo9HAy8sLIpEI5eXlrEknAERFRZF8p+bmZkZwrV6vR0lJCXg8HnJyclBSUsIKUK+ursbf/M3f4NixY5BIJLh16xaSkpIYJIol2xtME8bFxUW88MILuH37Nng8HpKSkogC5caNGzh69CiqqqpQWVmJtLQ0QprR6x0WFsaYVFRVVWF+fh5HjhyxqChbi6amJgQFBaGoqAg8Ho9hbbOErKwsXL9+HadOnbKo5MnNzcWpU6fI+zMzM/Ho0SOy3ejGL5qUWatKoLGwsABnZ2fk5OQgICAADx48ILY4gUCA+Ph40hTI4XDWJaTWXoRkMhmKi4vxjW98A0+ePCHrplQqMTY2hqqqKtTV1eGHP/whZDIZy3JmDfv27UNZWRmam5uh0+kwPz+PQ4cOkQyjtSHkNJaXl8m6Ly0tYXBwEGfOnEF7ezuZ9JorCR0dHbG0tMQgDZqbm2Fra4v8/Hw4Ozvj1q1bOHDgACF1RSIRlEolef29e/ewa9cueHt7Iycnh0FK1dXV4fz584Bpotvf389oUpyenmaQUjRiY2Ph7++Pa9euoaOjA3Z2dpuulpfJZHj48CF2796NL37xi7h//z70ej18fHyQmJhIju+FhQXcu3cP58+ftzi+zc8D09PTGBkZYYWI0yguLsbhw4chEolQUVHByFtbXl6GVCrFyZMnERISgsLCQkKg0Hj06BGxwO3duxePHz+2GARON/nl5+cjKysLBoMBjY2NqK9fvTHz8vKCUChESUkJ4uPjLWaO0d/t7NmzuHPnDmxsbFBeXo6lpSU4OjqSjDB6G9HB09PT0ygqKlqVty8t4R/+4R/w5ptvWlx+QEAApFIpWlpaGISH0WhET08PhoaGyHo4OzsjMzMTJ0+exOjoKCNvCSbi0pyo2rdvH4qKisg2pPPa6P3F4/EQFhaGnp4eYrmcnJxEfHw8fHx80N7ejkePHlltcFteXsb9+/chkUhw7do1JCQk4NGjRxaVq+ah8xKJBBKJBI2NjWhqasKRI0cgEomQkZFBlGNarZaMNYPBgIcPH0KlUmHfvn24e/cupFIpkpOTodPp0NjYiIWFBczNzcHb2xt6UzDsWqw9J9H2R1dXV1y+fBkODg6Qy+Ws1kWKopCdnY2AgABi2zXPQTNHQ0MDQwVF77tz587hz/7szyCXy/H222+z3hcaGoqBgQGEhYVBo9GgoKAAQUFBZKw3NjYS5TCXyyUPb0ZGRvD1r38dxcXFmJ6etlgq8Rn+eFDI5jAz0InQlH1/kPBXoZML5kcHgD8wKaXXaiBtqyEWJ7+oeAy3VENgK3zmleSbhWR7MuZG+jHe1cywMW0VRqMBo+31q5lJZjYyc1LYTRICsZcfhpoq4REYtinbjcDOHhrFksW/TfU/gZt/MKueXGAnRMCOVAzUlyJ0J5OYUi4urNtAOCftw/L8NKOBj7VOtkJiATLo9ZgZ7CL5Xx5BEatKKS4XioVZzI8NAqbmKs+QKNaEbU7aB6+wbeALbDZlhVmambDa1CiJ3Ynh5iqr2Uyz0j64bRBqzBPYQOjkguW5aYvqGfnUKMTrqBSdPHyhWVEQGxv57OFeCGzt4OJjvZ3a1t4BMKmIaPLEWrYOIVUSd1vM3aLh6huE6cGudUkLc1BGIya6WxCWunp95vEFFoPoeXw+samaQ6tSovz3v8BUfwfCUw9uOqCdoqjVMVtXSoLPnwY8vgBB8bugkM1hsKEcHsGRcHTzgoOrJxQLs3D1E2FhbAgK2axF0vZpMCftg2JhFnu/8A0ExKZAp1ZBuSTD/NgQ9BrVuvlItvYOuP39ryLj+a/B0c1r0xZCGjZCe+g1aqt/pygKg43lG+bABSXswkB92br2U7ViEbaizRUBrAfP4ChMD3Sy7Is0FmfGIfZiR0Ssh/nRQSzPT2/ZomcNWtUKbOwsn/8sgW9ji/CU/RhqqoBX2DaInN028a5NLPeZLOX/p5iYmEBtbS3CwsKQl5dH7CuHDx+2elNLB8RWV1ejra0NCQkJ8PT0hFarRUNDA+Ry+apn3lR1fffuXXh7e5P2uLi4OGJJioqKQk5ODqKjo4ndhKIolJeXY3FxEYcPH7Zqo+rs7ASfz0d4eDgGBwfh5+eHCxcuoKGhAc3NzTh69Cjs7e2xvLxMmoto1QT9BDwqKgovv/wyAgICLKpiOBwOdu/eDYqiUFtbi9raWiQnJyM8PBx5eXmYmppCRkYG+vv70dbWhl27dm06fLq6upqEKd+7dw/bt29HYGAgbty4gf3791sM7waACxcukPZBc7KksrISsbGxDBWQjY0NI3OqvLycld2z9uTb3d2NsbExnD59Gi0tLTAYDAwyUKvVoqWlBfX19eBwOMjLy8Prr7+O8vLydRVSMDXtqVQqXL58mdidaNjb2yM8PBzd3d24evUqjhw5gqqqKvj4+FgkFS0hNDQU+/btQ3FxMUslsFYxBpMKr6ysDM899xw4HA6cnJywtLR6MxkbG4vQ0FDcvn0bO3fuJERnVFQUenp6iO2opaUFer0eO3fuxOPHj+Hu7o7z58/j0aNHoCgKBw4w8wIqKysRGhpKJrPBwcEkf62rq4tlGdq/fz+uX7+OS5cuoaGhgWV3oigKUqkU3d3dqxJ7mQw/+MEPkJ6ejqKiIuzcuZNhkYTZPjcYDCgpKYFAIMD58+dRX18PPz8/xMautuJMTk6SsPIPP/wQer1+U8orpVKJ8vJyVgYZjba2Nvj6+pL1MlceAkBBQQF5r0gkgo+PD6MQoKqqCunp6YwsOFppZI7S0lIIhUKcO3eOqJd4PB5DwTM1NYVf//rXeOedd1BYWIje3t51v9utW7fw0UcfoampidVAhzXEnJeXF7KysiCXy5Gbm4vKykqUlJSQv5uH/MfExODdd99FaGgoKisrsbKyQpYXFRWF48ePM5adl5eHPXv2oLu7m9XMt9ZOzePxVjM1TBlmFRUVhMygERsbi5s3byIiIoK1f2NjYzEyMoI7d+4wjit6/HC5XJw5cwZcLhdFRUXw9PTEoUOHSOaf+XnBnJSikZSUhPj4eNy/fx98Ph8HDhyAVqslx4N5G+v+/fuJ4ovO+oOJLE9LS4NarcatW7fw7rvvoqSkBAaDAUKhELt27WJ9LkxjaW5uDkePHiXkF4/Hw5kzZ0i+HQ3abhwTE4OYmBhUVlairq4Ohw4dgr29Pdzc3DA3N4f5+XlC7tH7uampCVNTU+ByufjHf/xHzMzMYGRkBA0NDeQz4+LiEB4eTpSiU1NTLPudTqdjEcItLS0YGhrC1atX8aMf/QiFhYXw8PBgHCP/r4CiKPzTP/0T3n77bcjlcuzevRtvvvkmyVy0hPLycvzkJz8hrcDZ2dksQvBplmsJE73t8Anbtm5ezJy0DxrVitVK9meBP8Z+Neh1q4HGayaCgXFpGKgvRWBc2jNvEFQuyjalEHEPCMOKbA4D9WUITszY8oR4bnQAy7OT8N+WvOGTeb6N7aqyYrgHsslaBGzfua7NzsZOiOW5KdbvF2cmAHCsEls2QvvVAO6GMoQmf+JGWJ6fgYsvmxhRyOYwO9QNN0kogrdgreHx+aT5bjUfrB9VH78JyfadCErcjYDYlHXHl0GvI6QKbYUZqC9DcFIGi4Cl1mR8rgWXy4OrXxDmRwdZDYsURUExP70p25BXSBQG6svg4ObJWnf51OiGWW4eQREYfdIIO5Ej7MWuWBgfhtGgh1cQW121Fv4xiRhqriTE2op8HiJnZvX8wvgwFAszmyJV+Da2MOi0677GHMOt1QiM/4T0842Kw3hX86Yzc2yE9sj43N/Cwc0Lc6P98AnfXCsirWgMStyNoebKTeWDrffdHVzc4ZC8F9ODq6oc/5gkyCZHsCKfh9BR/EwygFZkc5ge6IRbQBhCkvYQ1ZjATgixnRBiz/VJZ4qioFlZAk9gs0pkLS5gqr8TniGRW3r4YC92hUI2BwcXd9bfhpurEBCbsqGdkcvlIWD7Toy01VolfRfGh+ERFGnxb1uFV2gMJvs6WOQtTMS52yYekBj0ekz2tkKv1cLVP3hddeNWMTPUvemxS4PD5SIkeS9GOxqgVa2sS0BvFp+RUk+BhYUFlJWVwcfHh1g2pqamcPToUWg0GjJRPXjwoNWmp7S0NDQ2NsLX1xc/+clPsLCwgMTERJJvYY7g4GAEBweDoii0tbWhtbUVPB4P6enpiImJIZan5uZmDA8PY8+ePUSJYwnj4+OYmJiwqIxITk5GQkICiouLYWtrC4PBgNraWszNzYHD4WDbtm1EMaBUKklWiXljoHn4OUwnUlp5UF9fj4aGBszNzWFmZgYymQyhoaFE3bIZlJeXw93dnZHbA5MK58qVK3j48CEcHByQkJDAsnfweDxiIaEn7n19feDz+YxgeRrbtm1DR0cHtm3bhsXFRULQ0fDx8cHExAR8fX3R2NgInU5Htmt8fDzy8vIYlek2NjZkUk9RFBYWFhAfH4+HDx+SUGQbGxvEx8fDzc0NHA4HMpkMJSUlJBDcEpRKJXJyckhdu5+fH8LCwtDd3Y3s7GycPn3a6likKAolJSUQiUQoLCyEu7s7y/am0WgYROvIyAhaW1sZgdNrg4Lt7e1JQ1dvby8OHz4MNzc3orJpa2sj9k+Y7JCVlZU4ePAgDhw4AJlMRkoFYKq1F4lEjIKBHTt2ICcnh5BSlsbRkSNHUFxcDLVajbi4ONTV1WF+fp7Iq4OCgnDkyBFwOBzcuHEDd+/exYkTJ6DX61FfX4+FhYXVm4egINI6SR9rhw8fJpP85eVlBpnh4+ODnTt3oqqqCn19fdDr9RgcHGRlDJnDaDTizp07rLYzGrOzs5iammIoqMztdw8ePMD+/fsZREZiYiJu3bqF4OBgKJVKLC4ustRBAQEBGB4eRlBQEDQaDXJycpCRkcGyypnjyZMn6OnpwYkTJ/DDH/4QDx8+xIULF6wS8k1NTfiHf/gHPP/88+Dz+cjNzYWPj4/FMHoa5eXlUKvVeOGFF+Dl5cVSe+r1eoyMjODRo0f4yle+grfffhtXr15lhVibw5ygi4qKgkgkItZDWHlSS+dWHThwgLWfadDFAYcPH2b9LSAgAE5OTvjoo4/g4OCA2tpaTE5OErUbDXo7ODs7E8vj5cuXCbFiiZSC6bx29OhRLC4u4s6dO5idncX4+DgCAgLQ09ODgwcPWrRhm39XhUKB3NxcXLlyBffv32fkY1VWVkKtVoPH44HH46GxsRHDw8NIT09nnCfo5YlEIuzatQvFxcVkrPb39zPs17t374Zer8f9+/dJIPmDBw+gVqtx9uxZ9Pb2knDxhIQEYivV6XQYHh5m5IYZDAa0tbWhtLQUzz33HH7729/i6tWrrDwo8+/b3d2Nrq4uxMfH49y5cygqKkJQUBCCgoIwPT2NO3fuMBpC/1/Aj3/8Y/zyl7/E7373OwQHB+N73/sejh49is7OTovjBiZLaFxcHP7sz/7M6nX4aZZrCZ5BkZBNjjJbpZxc4Gp6ekxbyzarcvhThdFgwEBDOUKTM1mTLQ6Hg9DkTPTVPULYzn1PrZCwhPnRAfhuctuJXNwRFJ+OwYZy+MUkMpRbqwHGbOJIs7KM8a5muEpC1rWEWYJnUCS0KiUGGx/DKzTGqv1KYCuE3mSBoqFVKbEwPrShqsJGKIJkWzIGG8oRkrwXHA4HOvUKw2qn12ow1tkIoZPLlr/DWnC4XNg5iJF2+S+hXl6E2NNydtN6EDq5rBKVdaWMFjkAmB7shucGgczO3hIMNVfC2UfCmIhP9LTCJ2LHptfDN3IHJnvb4Rv5yXtUSzLYOWxObS/ZloSBhnK4+ARAtSzf9DHM4XIh9vSDfGoMzt7+kE+OENIPAMa7mmFr7/AHCVaelfbBxSeAQQ7z+AIYDQaWDdwaDDotuDw+XH0DsTAhtWplNId5QDhfYAOvkChM9LTCN9J6BMlm4RUSBYNej9GOOhT95z/iyuu/3XKu21oYdFqMPmmAnYOY8bDARijaUgskh8PBRHcrrv7gPYx21CMwLs2kgGvcXHabCe6B4Rhpq2WRUmOdTfAIitj0+tiKHOHk6YuZ4R54WiCf9FrNM7XD+YRvx2RvO+RryiiwAeH4x7DoGfT6Dbe7NUi2J2N6sGvLAfKW8BkptUVUVFTAaDTi7NmzbO86RcHW1hYnTpyAQqHA3bt3GSojjUaDmpoaEqYaGRmJ/Px8eHt7Y2JiwqLVam3+CF2lbTAYUF1dDblcjlOnTuHXv/41jh49ajE/yBzLy8uora1dlwTi8Xg4fvw4KioqcPDgQfT19bGCiWGaxDg4OCAxMREtLS3E9iKTySzWy8NEItAEyrvvvouioiKLAc/WtsGDBw8QEBDAeELr5OTEIIwOHDiAwcFBfOc730F6ejprImdvb4/MzEwUFBRgeXkZPT09rIwTGiEhIcjLy8PCwgJLHQET8VRUVIT+/n64uLgw8nhg1vBnaaJeVFSEY8eOoaamhjHZ1mg0aGlpQV1dHV588UWcOHECb7zxBkuxQ2N0dBT19fW4fPkyCUim1yMqKgqBgYG4desW0tPTIZFIoNPpCFk3MTGBiooKHD58GC4uLigqKkJCQgJ6e3tRUlLCmGDT472npwdjY2OsJjZrSEtLw/z8PK5fv04mku3t7VAqlQyblJ2dHUP14+LiggsXLqC5uRmnT5/GD3/4Q1y4cAErKyuMibyHhwcKCgoIuWUwGDA1NYWRkRGiPPza176GzMxMiEQixMfHW8zroRvXpqamCHFhbvUbGhoi6o8PPvgAzz33HIP80ev1ZBIsl8tRWloKT09PnD59GkKhEMeOHUNrayuys7ORnJzMCmEHgOzsbJw5c4ZFINJKnYcPH7IIq927d6OqqgqBgYFwdHS0qBLMyspCQUEBtFqtxXPEjh07kJeXR1Qp58+ft5jXAxMp/+jRI2zbtg3nz59HQUEBvLy8cPHiRdy6dQtHjhxhkestLS0wGo1ITk5Gfn4+YmNjERsbi8nJSdy9exdCoRD79u2DUCiEUqnE0tISKioqkJGRYdXiBVPBQ1BQEGpqakjo/dDQEFGrWUJXVxdj7EokEtjb2+P69evYvn07IR7N4ejoCIVCgd7eXqvqELFYDB6Ph+npaRYZsrKygvb2dohEIpw5cwYVFRUsNQrWnOtoUvfatWu4ePEiUbRZy8ui19Pf3x/9/f145ZVXSCnCRsUDCwsLuH//Pq5evcqwJtLrQR+3er0ef/3Xf41bt24RYtcc5uc6Hx8fLC4uoq6uDikpKRavC3w+H8eOHcPy8jLy8/Px3HPP4ac//Sny8/MRHh7Osp3CAvkN0zVLr9dDLBYjPz8f+/fvR21tLbH9bt++nTwcGB4eRnNzM6KioqxeL728vHDu3DkMDw8jOzvbYgvrnxooisLPf/5zvPbaa0SR9/7778PLywt37txhFRDQOH78OLHMPsvlWgLfxoaVTbMin8d4dwse/vbHOPDlbz2zrKP/K1BG46qNLMl60x2Hy0Vo0h4MNKxvH9kqjEbDltr1eAIbhKbsw2hHPRzcvMgTfI1iCXZmJBVFURh70gguj4fgDWwx68FGaI/QnZmY7OuAfGoEftGJrGVx1pDllNEIaWs1wlIPbOoz6Ha1ocbHCDaztVEUZQoC1iIgNvWZkIE6jRqz0l6EJO0BZTSuBq6vsz91GrXFiR/fxhZhKfsx2FQBn/BY2ItXz5OalSUIHTdWGwXEpmCkvY6Qdga9Hjq1CnYOm7ceCZ1cMCvtg1alJDbG6cEuBMZtrMbQKBWYHe4FX2CDvDf+Afv/7BWMtNeZMqeCN5xEu0lCMNBQDrGXH4wGPSGGhpoq4B22DSILiphPC9XyItTLixaVZJ7BkZgZ6oFXyMbn/VlpP1mGq28gFsaHN8wKk0+NQWxGSji4ekK5JLNIVjwNuDwe9DotDv3ld6FVrUDaVgsAsLV3hEdQxKbPERRFYaqvA1rVisUwdUd3byzPT2+aBJod7oWbJBQ8Pn9VLaVRw85BzMhum+hth1GvA5fHh1dojEVLLX18UUYjUV3ODHWvZtltsY3QxScA490tUCzMPlWT4VbhExGL8e4WgMPZsLyDtujZOTwbi94fEl4h0ZBPjWK0owGS7ezyss3iM1Jqi0hPTyfBsebw8vLC9PQ0mUA5ODjgzJkzWFhYwMmTJ1FbW4s9e/YgNTWVMaHu7u5GYmIiIiMjcfv2bSQlJW1I0sDU/kQ3Un3hC1/A4uIienp60NPTAxsbGyQlJbFILr1ej9zcXHzuc5/bcPltbW3gcrkoLCxEZ2fn6tO9NQoPc3IgPj4eXV1dKCsrg4eHByPEeWxsjDRJ2draIjU1FXNzc7hw4QL279+PmpoaLC8vg8PhICkpifFecxQVFSE6OpoR6gsAgYGBkEqlJCQXJlLA2dkZarUaNTU1Fu1J/f39+PrXv47CwkJiT+Lz+bC3t4e9vT1EIhHs7e2h0+nQ1NSE4OBgTE5OYmlpCcvLy+TG6YUXXkBRUZHFifDevXtRVlbGUk+0tLQgICAArq6uEAgEjEp7ehvV1dXhf//3f+Ho6Ii+vj7U1q5eWMwVO42NjVAoFAySUalUMsaYUCjE5cuXUVFRgcHBQYSHh8PDwwP379+Hra0tLl++TF5Ln/QiIiIgEomI5Yj+fUtLC5RKpcV2s/Xg5uaGy5cvo6SkBFevXsXdu3eRkbHxU8rFxUUMDQ3hzTffRHp6OrRaLZqamog9CyZr4fnz51FYWEjC1n18fBATEwOxWIzl5WX8/Oc/h0ajwZ49eyzmOY2OjsLZ2RlisRhOTk4oLCxkKLJgUn/o9XrcvXsXaWlpuHfvHoxGI2n/o7f9/fv3yfHP4XDQ3NxM1F40qdzQ0ICGhgakp6eTc8b9+/eRnp5uNZcpJyfHYviyvb09FhcX0dzcjPPnz0Mul2NqagrT09OEAAeAV199Fenp6VZVRKdPn8b3vvc9nD59GlqtlkVKGQwGoqA8f/68qRL4E1WkQCDAlStXkJ+fj5iYGKI8XKuI8/b2xtTUFLy9veHj44NTp05hZWUFxcXFmJ2dxe9//3u8+OKLDBUe1smauHXrFk6fPo3KykpkZGSgtraWodw0h1qttrj/3dzccPjwYbi7u6OwsJAodHg8HpycnCAWi+Hn54df/vKX+NGPfgSlUknk9+Y/e/fuxXe+8x0cP34cBQUFZPkikQgJCQlkbPH5fNy9e9dqBiENGxsbXL16lWThaTQaljJFp9OhurqanEMTExOJ/TQmJgbT09Nobl6tn3Z3d0dycjKD9JycnERtbS0uXbr0yc2ehW2t0+lw+/ZtfOlLX8KXv/xl3Lx5ExcvXmTcKK21+UZFRaG2thbd3d2s5VEUhZ6eHgwODpJlqNVq+Pj4AFuwWKnVaty9excJCQnYuXMn2tvbMTc3R67TFEWho6MD+fn5uHDhAiorKzd8eEODVk49fPgQH3zwwabe83+FoaEhTE1NMRTQYrEYqampqK6u3hJ59GmXq9FoGA8YaFu3JYic3VbDn1/+MThcrincPG1L5MqfCiiKwkBDGYISdm/41JknsEFAbAqGmys/tWKHxtNMWjgcDgJiUzAr7cN4dwv8ouKhXJKRhj7ZhBSyyRH4xyQ+s7ZCn/DtUCsWMdhQDt/IHeu2Aa4GT+/a0nezc3CCb1QchpurwLexwcKEFItTo/CJ2LElomY9tQxFUZC2VCNk56pyhMPlQrItCaMd9VZVPXPSPnhYaSvjcLkITd6LkfY6OHn4wsHNE9xNtjTy+AI4ufsQtdFYZ+Omw8PNIdmWjKGmCoQk74VeqwGPb2Px+xt0WswM90CrWiX9bYT28AnfDp7ABgf+/FVItq/GJKgVi5gd7oVe+8n9N5fHg7O3BCIXD8ayfSN3YKJndZ6gWpJhvKsFwYkbH0cWt4eJ8LBGhtHB9taCsO3FrpgZ6tnUZ2lVCoYd2dUvCPNjg5jq77QYDg8Aivlpso1oeAZFQtpaA6GTy7okz2YUXNLWavhHJ2J+dABuAWHELqpZWcZETyuMhtW8SGdviVXLnXx6DAtjQ/AO205I0rUQOjpjfnQQ2ASPplEqoFqWr2awAfCNjMNYZyOjQVFgKyTj1qDXYXqgCzq1EuBw4BkUwThPeIXGYGqgEz7h2yGbHAFFUU+tCPOLisdAfRnsHNPXzSt7VvCLisdYZxO4XC7Ljmw0GDDR0wq9VgNXv6BnatGzBsXC7DMhfp29JbARijDQUI6QxIynakP9f++q/3+MyspKSCQS1oQ1MjIS9fX1rKf6TU1N+O///m/09PQgIyODoZgxJyJEIhEuXryIuro6dHd349ixYzAajYwJi0qlwuPHj6HVauHh4UFq3LlcLmxsbJCQkAA3NzdoNBo0NTWRZjea9Pjd736H559/3qLCyxzNzc3QarXYtWsX7t27h9OnT5PsEHPF1MrKCoP4io6Oho2NDd58802cOnUKT548AQD4+fkhKyuLfG5NTQ1SU1PR1dUFmIgbmKxLdD06AMTExBCCLi8vD4mJiRbta97e3ujo6CAqrIKCAsTHx+Ob3/wmKioqLJKIFEVhcXER//Ef/wG9Xo8TJ06sSr11OiiVSvIzNzcHtVqN73//+zhy5AjEYjEkEgkcHBzIvvnggw+gVCpx584d7Nq1i6FUsbe3ZxADMAU4z87OEqIqLS0NtbW1jIydyspKiMVipKSkoLCwkPEke3h4GEVFRbh8+TIqKytZOVfWkJGRgYmJCZw9exa7d+/Ga6+9ZlV9Re83kUiEa9euwcnJCdXV1bCzs9t07hdFURgZGSF5TfTvIiIi0N3dTYi9iIgIhIaGgsPhwNXVFfPz83B2dkZJSQn4fD7OnTsHo9GI+/fv4+jRo4y8GYPBgI8//hg5OTk4evSoxYs1nbFkMBiQm5vLyLmh16m6upqQc2tbU2BqUxsYGMDly5dRVFQENzc3sk8WFhZQUlKCF154Ae+++y6ysrIYhM7U1BQr1ys5ORlJSUmoqalBTU0N8vLycOXKFczOzqK7u5tkmdHrcvXqVbz00ktWCatz587hN7/5DYqLiyEWi+Hl5YWdO3eScPrZ2Vn84he/gFqtZlngYDom33//fRw5cgRcLhf19fVk3FIUhX/4h38gx4D5OqwlfzgcDk6ePImKigrIZDLY2tqyFHEJCQm4d+8eY0yLRCJkZWWhpKQEwcHBFokjWkVlHrifl5eHffv2MYi21NRUNDc3o7q6mhVqbykXTq1WkzwmehzR0Ov1WFpawuLiInp7e4m1kqIoiz/z8/P4yU9+goiICPz5n/+51ZvH1NRUrKysIDs7Gzt27Fg3m4fP5+Pq1au4ceMGRCIRwsPDsbKygurqamg0GpIHZa6gamxsxIkTJ3Dr1i1cuHCBjL/Z2VmUlJTAaDQSGx6t/F0P8/PzKCkpwblz59DS0oLIyEhERUWRfD76e1rKnktNTUVxcTHGxsbQ0NCAmZkZwDRWIiMjSd7X7du3MTc3h87OTuzZswc9PT0kSzEpKYmQVeZ48uQJ+vv7cfbsWXLMbdu2DcXFxUSJyOFwEBsbi/HxcfT396O8vBwREREsC6YlIk6j0ZCcr89//vN45ZVX1t1O/5eYmlrN4Vn7UMfLy4v87Y+13H/7t3/Dv/zLv2xq+UaDAfLJEZIp4+ThA2lLFdwkoVsOf90aOIwn7Z8WFEVhsKEcku07N22vsLV3MDXWfbqnyzBZTZ7WfgFTS5RiYRYDDeWwEYogcnbHYONjOHtLrAZpr8VmLU8AYOcgRujOTIx3t4AzOcqwjdGY7OuAmyRk0+HRNNSKJcinxqBTK3Hvv/4JF7736y0Tf7YiJ2hWlmBnpSJ9pL0Oku3JDHumnYMYIhd3zI0OWGx21GlUVsPUaQTEpmCqvxOdpXlIOvX5TW9TN0nIaqOYkzNRomwVHC4Xzr6BWBgbwvLCDAl3p4xGzI8OQLm0Oqfg8vibsknZOYhZ+9Wg12NxahQL48xGYaGTCzQry1gYHwaHwyHB408DN/9gLIwPW1U6SdtqEbhjfeWJyMX9qdUzbv4hmB8bxPRAJ7xCLRNTlj47YEcq+k22XkvnJS5fQJRk1jD6pBHuAeGwc3CCZ0g0pgc6iZXSVuRISB+KorA4PY6R9rrVZfN48DCz2Io9/TY87lfX0XqoOXO9GhCa/Mm9F4/PBygKRqPBYp4Ujy8gY4cyGjEz3EuIQhe/IDi5e0OrVEAhm8OKbJaM1adFcGIGBhvKSW6ZQa97ptbqtfCPScTok0ZwOKufoVpexPRAJzhcLnwjdzzzvMH1sDA+BMm2T3f9oWEvdiUti8GJGVtuevyMlNoi9u7dSyYThw4dIje29vb2jIYwg8GA27dvIyMjAz4+PoiKimJNiC09zU9JScHS0hJu3LiBsLAwuLi4oLKyEjKZDEKhEJmZmYwJW3t7O7Zv3w6JRIIbN27g8uXLsLW1ZUzGtFotXnrpJTg6OmJ8fHzdTJuGhgZwOByWXW/Xrl3o7e0lLVx0a5w5SURRFMbGxjA0NARbW1uLZIlWq8XMzAzS0tIgFouJggwmco0OoqYoCl1dXbh9+zYuXLiA999/Hz09PVAoFMRuQ4PL5RJCa2JiAufOnSNKgLU2Dxr5+fk4dOgQsZbQFhmBQACxWMzIjnJ3d8f777+Pubk5Vo4VTBeXvXv3gqIo1NTUoKqqCjt37iTbJjo6Gt3d3SR0uLS0lGHBoq1BNEpLS+Ht7W3VMhIUFITOzk40NzejubmZoRDbCMPDw8jKysK+fftQW1sLiqIQHR1tMU8LpnHs6uqKo0eP4ic/+QliY2OJqswSXn31Vca/AwICcOjQIbI/iouL8fDhQxQXF+P48eOgKAp9fX0oLCwETPv9nXfeQVZWFiNvh8fjwWAwsD7v1q1bOH/+PJaXl1FXV8cat48fP8bu3bvB5XLB5XKRmJjIalczz72hQVul7OzsyHayZnFxdXWFo6MjHj58iJ6eHqu2t7XgcDgIDw/H1NQU3nnnHXzjG9+Am5sboqKiGMc43dipUqksEkqdnZ1ob29HV1eXxb8bjUY8ePAAV69eRUFBAfR6PWMda2trIRKJSAHD/v37Gcdub28vvve978HHx4dFis3MzCA5mX0xy8jIwPe//30UFBSgsrKS8Tf6eF0LqVQKBwcHfPe738XQ0BBu3LiBEydOkGOdblajFYn3799HXFwcPDzYN40JCQl48uQJysvLGWSv+YMAjUaDBw8egMvl4siRI7CxsSHqN5pw5vP5cHV1BZ/Ph5OTE377299atPHC1FSoUqmQn5+PsLAwotyyBpFIROypOTk5OHjwIEsFRVtRR0dHIRaLcfz4cbz++uvIyMiwqvozJ1dSU1MZ493Dw4NkRen1evzgBz+wmJdnfsNME7I0+SSXyyEWi8HhcHDixAl8/PHHuHLlCrhcrkVSSqPRQK1W49///d9RWVlpcbw0NTUhNjYWbm5uRFUTGRmJyMhIYiltbGwEl8vFrl27YDAYkJOTg9DQUJZ60NL46ujogK+vL/z9/fHcc88hJycH8fHxpIDBfFzQ2/Dx48dYWlpCVlYWBAIBKioqrO7L/wv87//+L/7qr/6K/JsuVfhTwLe//W289NJL5N9LS0sW7coAMNJeiwCzp+U8gQ1CTMHY0rbaDYOjnxYiZzesLC5YDMt9Ggy3VMEvOn7TVhayHi7u0GnUm8qiWQ+z0j6rleObhYOrB+wcnPCbvz6BjOe/hm37Tm2JtFMrFmG3iaB1c/hFxWNFPo/++lJItiWT7SefHgOHw4WTB5uMhonMXJqdxPLcFCiKebzbipzg4hsIb1OovlqxCGlbLfxjkjatwHN084JifsYiKTU73AsnDx+Lgf1u/iEYaa+Dytn9qRoWFQszUC3LIJscwfzYEAw6Des1awl0+vjgcDh492tnkfX3P8RIex04XB64PPqHDy539b8cC7/j8rjg8vhwcvfGUFMFVuTzjOW6+ofAfQuB8NbA4/Ph6h/MsukqF2Xor3uE1qLrOP71HzAa+bYKOwexVaXT3Eg/nDx9NyQHPQLDMdxSvS4pRa3JzzWHm38I5kYHtpSzw+FwEBS/C8MtVRZJVC6PD4NOZ5WUmuzrgKO7F1lnga0d9Fr2+KE/y9nbH87eqxYyg16Hie4WPHrnJ3jx5zeeKSky0dMKn/BY1rbyiYjFZG/7hvljHC6XEIwURUE2IYW0tQZ9NQ/QkPM+Dv7lt6HTqD7VOnN5PPjFJBKlo3xyFM4+ny6LyxIoU9ukUj4PLo+H0nffgEGvRdqlv/w/teg9q4czMI270JR9GGqqhG9E7LpK2LX4jJR6CsTFxSE2NhYPHjwARVE4dOgQI4djcXERBQUFOHv2LLlBFwgESE1NJTkpMFnMLGUvOTk5YefOnThw4ABCQ0Nx/fp1iwHoMAVO07kbmZmZKC0tZSmDBAIBDh8+jDNnzqClpQW3b9/G/v37yWfT611bWwtbW1tiNcKai19ERATc3d3x8ccf4/z581AoFGSSSjcY7d27F7du3SJPuNeCzlGCiYyxJuvncDhQKpXg8/n41a9+hdDQUCQlJWF8fJyh4qBx+fJlNDY2sjKdLD39Li8vR0xMDNzc3GBjYwMHBwecO3cO169fx8mTJ1mZLRqNBqGhoVhYWCBNb9bWmSYD6UB3uhEqLy8PUVFRuHPnjtUsGYqi8PDhQwQFBTGIw7UnKXPVmEgkwoMHDza006nVauTl5SElJQUHDx5EYmIi2XddXV3Iz8+HwWDAD37wA8Y2c3V1hZ+fHyorKzE4OIiDBw9aJV2mp6fx0ksvMZRna7ejTqeDg4MDdu7ciYaGBiQnJyMiIoIEIOt0Orzzzjvg8Xgbkjt0doxQKIRQKERdXR3j7zMzM9DpdIxQb7qtb2ZmBp6enhgbG4ODgwPL6pqamora2lqoVCoEBQUxCEIHBwdG2HV9fT2cnJwQGxsLJycnxjG+NvSfhkKhwIMHD+Dq6gqJRILa2lrodDqWGoQeE5cvX0Z+fj6LUDIYDOjq6sKFCxcgFostqoPy8vJIhtLevXvx+PFj7N+/+hSyrq4OdnZ2hOhZ2+Q3OTmJ4eFhXL16Fffu3bMY9r8Wo6OjpJU0Ozsb165dw6FDhxjlC7T1jyZ/9Ho9amtriVotODgYAQEByM/PR1BQEHbs2AFfX188efIEsbGxqKqqgkQiYZQIYM2T+m3btqG3t5ccH0+ePEFMTAy0Wi3u378PDoeDQ4cOMdSr7u7umJ+fZxBdFEWhoKAAV65csUrINjU1QalU4uTJkygsLERERATUajXq6+tZjY9rkZCQgJiYGDz//PMIDAxk7AMul0sIahsbG/z2t7+FwWAgWWmW8OTJE2zfvjq59ff3R1NTk8Vcu4GBAbz99tuIiIjAo0ePSHGFjY0NOQdUVlZCIBCwCFn6sx0dHXHmzBlCTKlUKnL+pCgKpaWlUCqVOH78OLZt24aZmRmW4kahUGBiYoLk+tHnQvMJEX1eNxgM+Oijj/DCCy/g3r17Fh8SYM05c3FxEVKplFwnORwOzp49i8ePH2N+fh5JSUno6+sjarXe3l60t7djz549Vltc/xRw+vRpBglPj5vp6WnGeWR6eppxTd8qaPX3VpZra2trkTBdC/n0GBxcPCxaJlaDsVcw0FAGn7DtzzxXxtHdG3Mj/c+ElJK21sArJNqqqmYjOHv7Q69RWVXYbAZa1cqWCbG1UC3LMdHdiv1/9go8giIgbauBk4cvXP2CNvV+xcLsU21PkbMbQpMzMdbZBBs7IbRqJWQTUgQn7CaqJ/NwfJgmkY7uPvCLSbDa3LXa5OYG98Bw6LUajHbUQ2AnhG9k3IaTP6GjGPOj/ezvKJuDVq0kNiRLkGzfif66Rwjd+UnQvUGvB2edhrHF6XHIJqUQuXggOGE37MVuEHv6bGlMTQ92I+NzX4VvVDz4AhtQRiOMBj2MBgOMRsMn/0//V6+DXq9a8zcDxjqboFlZwrZ9p7asUnsa6DRqTHS3IP7YZfhFxcM/JglT/R3QqVWwFTnBKzT6mUzW1YolKBcXNh2azuMLoNdprVq6FsaH4eJr/dhwl4RibqQf04PdhFTZSIEjsLWDW0CYRZKaJxDAaLD8oH1W2geBnZCVU7R6r2VZjWTpu/7Zr3Iw1FzJyDb7NFiRzwPgQOTMdmXYCEXQqVUW32cNHA4Hrn5BcPLwgVatJKTqnLQfOo3lZXF5fIic3SBy8ViXjBQ6iuHg4oG5kX4oFxe2lG9oNBigWpJBuSSDenmRRZSbw9beAUKxK7xCY7DjyAUI7OxJBMQfGxs1fD4tuFweQpP3YrSjHo7uPpseS5+RUk8JLpeLw4cPY2lpibR/URSFwcFBPHnyxGL1u7+/P0ZHR0nL1VrodDqUlZWRifAvf/lLpKWloaSkBEePHrUYhL62Qr27uxvT09OMG//Kykrs3r0agBgfH4+4uDg8evQIKpWKKESqqqrg6Oi4bkAwTCTFpUuXcPv2bahUKkxMTKC5uRlxcXGMnA47OzvWU/OxsTF4eXmxJkdr5ckLCwt4+PAhkpKSEBUVhebmZiiVSigUCoSEhLBIocHBQdy9excNDQ0IDAy02v4FU4Obo6MjWUZsbCza29uRnJyM5557Dnfu3GGFUNMTuvT0dNy6dQu+vr4bNg7RE9GWlhbk5ORgamoKBQUFSEtLY92sG41GBAYG4vvf/z6+8IUvsDKzzCfwd+7cQVpaGpko+Pj4YGZmBu3t7Vb3Hd0yde7cOfD5fAwPDzMyZaKjo+Hv74/c3Fx885vfJKQhTGOSVvglJSXh2rVrrIBvGtXV1fjCF74AuVxOiEvz72reTCaRSNDU1ISEhATGuvT19eE//uM/4Ovri+LiYjg6OmLv3tUWHbFYTEiR8vJyREdHM8gDW1tbom6iKAqPHj2y2GJ38OBBfPzxx7h8+TKqq6tJCyNM5F1/fz/Gx8dx+vRp1NXVsRRrEokEo6OjiImJQUtLC3g8Htn2gYGBGBsbg1QqRWBgINra2hj7RavVoqSkBDY2Njh58iR4PB7u3r2LkydPIjc3l2Xzo7cZh8NBZmYmysvLceDAJ4Gv9+7dI/tLIpGgtbWVYXFrbGxEZGQkISAdHByIKq++vh42NjaIi7Pc+LK8vIzq6mqSV3bkyBHcvHmTbK/R0VEG4afX61FUVAR3d3dcvHgRhYWF8PLywpUrV/DgwQM4OjqSSXRCQgKam5sJ2XD37l1WcD6Px8Pp06fR1dWF7OxsQlo0NzfD3t6eYeOEWQC2+fEfEREBGxsbFBYWkvMR3UZnadLs5+eH8fFxxri6d++eVWsoTOULXl5eSExMZBC6O3bsQH19Pdra2jZUMzY1NeGVV17B5OSkRbUbANy4cQMvvvgiSkpKcPDgQRQWFsLPz49FxI+MjBBrNwAcO3YMRUVFpF2QRm9vL9nmBw4cgEajQXFxMUQiESiKQk5ODmJjY62S8DTs7e1x/vx5fPzxxwgNDYWXlxdaW1sxMDCAffv2kQcqoaGhZJnmKCwsZCiIaWXp2sB5+pgOCwvDw4cPERYWhsLCQhiNRiQlJTGaIt3c3DA7Owt3d3cUFBRYzD3as2cPOjs7UVxcDKPRCH9/f9y+fRthYWEsi++fIhwdHRkWRIqi4O3tjQcPHhCyaGlpCbW1tfjrv/7rp/6c4ODgP8hyVy1Bg+tWodsIRQjbuQ8TPW2QT48901Y+gZ3Q6iRmKxjtaICbJAT2YssPDjcL98BwTPa2Y3F6/A9sW2SDDgEHYKr4roerXxBc/YKwOD2O4ZYqOLh4bKiUUS/Ln5pU43A4cPUNhLStBuXv/5yofWxFjnDxDXgqwk02MUwa6Pg2tgiKT4dasYTh5kqIXD0sNm6R9VkTuA5TltL0QOe6YxbmipfmKmKBmhvpt6hkWxgbwuLsBMSefgiK/yQawV0Sgqn+J/CLTmC9xxKW56dh0GkRnXkC413NqwpDLhc8rg14m4umItBpVAjYvhPDLdVwkwSzcm+eJZZmJzA/OoiQnXvB5fLA4XDA5fFIE51qWY6RtlpQlBHuAeFPHUZNh/WHprDjPKyBzrlam/9EY0U+BzfJ+tdH94AwzEn7MDPUDc/gKMyPDcLNf/33OLl7Q7W4wDoX8HgCGCy4P2STIzDodBYzrDyCIjE73LuhWku1LIedyAlcHo+RbUYrqZ4GFEVhsq8dYTutb3P3wHDMDveuS/KuhUGvx2BTBcJS9mG0vR6Obl5WFZUwEYFK+QLmxwZXM6osgMPlQSR2hcjVA7PDvVAuylYjXTQqKOULUC4trEugcXk8CB1d4ODiDndJ6JaUR76ROyCfHsNwSxUC49L/qOTUwvgwXP3+cOUiku07MT3QiRX57KZe/+z0Wv8/hZOTE86dOwdbW1tkZWXh3XffhYeHB6anpy2qdNLT09HU1ASVSkUG3sDAAPLy8vDgwQOkp6fj1KlTpELcw8MDly9fRk1NDRobGxnLom+6zUGrpcwzfNa+jsPh4MCBAzh48CByc3Nx7NgxLC4uYts2dlvE2oNDr9ejo6MDjo6O+OIXv4gPP/wQJ06cYE1c9u7di/LycsbvamtrWfaqHTt2oK2tjazrgwcP0NzcjAsXLiA4OJgQFwcPHsT9+/ctbtP29nbs3bsXFy9eJLkkltZ/eHgYcrmcMfH39PTE7Owsee25c+fQ29uLjo4O8hpza8eZM2eQk5PDWgdriI+PR3p6OiYmJnDixAl0dHSgqKgI9+7dIz/379/H5OQkqqqq8OTJExQWFqKurg56/WoYYUhICAYGBnDr1i2LbWRxcXEk2Nr8O9MKD5VKRQgpmEgwc1JpZGQE9+/fx+c+9zlWCHZubi6ZuNra2uLcuXO4du0aaz+MjY3Bz88PHA4HLi4uuHTpEnJycsg6LS8vw9bWlkEYHD58GCUlJYzl0GQOTdps27YNt2/fxpMnT5CUlITGxkY0NzdDLBazxtyePXvw+PFjAEBJSQnLkmeOjIwM0thVWFiIwsJCFBUVobq6Gs7Ozjhy5Aju3LkDnU6HvLw8PHz4kFhBfX19MTExgc7OTqhUKpYFd/fu3aivr4dWq8Xk5CT8/PxIJlZJSQkOHTqEw4cPg8fjMZoQJRIJRkZGGNvCwcGBTOrX2jzHx8fh7OzMsNQdP34cRUVFAIC5uTnMz8+zSLWAgADcunULPB7PqtJBp9Ph7t27DKKZw+EgLS0N1dXVgOm4owmGtrY25OXl4eDBgwxrJP2+Q4cOwdPTE7du3YJGo4GPjw8ZG21tbYiIiLDaEBcdHY0TJ04gLy8P//M//4OenlVZ/qNHjxjH0QcffIAPP/wQ9+7dQ1FRETnOenp68PjxY1y4cAG+vr7IysqyquLw8PAgmUf0d/Tz87OoaKUoCrdv30ZkZCRRJk1NTTHIkZ07d2JpaYmssyUUFBTA3d0dKSkpVtWj1dXVSElJAY/HA0VREAgEOH36NFxcXHDz5k2SHwgL6lAbGxt4eXlhbGyM/E6pVLK2t62tLU6ePAkul4usrCyoVCpIpVLI5XLG6yzdMNnZ2eHw4cNIT0/HW2+9BZFIhPPnz7MUvjExMSRrEKYss5SUFMb5KDQ0FIODg4z3yeVyXL9+HfHx8UhLS8PevXvR3t6OEydO4OTJk6TFsby8HAaDgZCehYWFjDxDcygUChiNRszOzuL48ePIy8vDuXPntmSH/lMCh8PB3//93+P73/8+cnNz0d7eji984Qvw9fVlqHMPHjyIX/3qV+TfCoUCLS0taGlpAUzB5i0tLeRctNnlbhUj7XUIiF1fRUjDN3IHXHwC0F/3CBqlYhPv2Bw+7c3/eHcLxF6+cHB9Noo6n4hYLM6Mm9QFm8d6NqKNoFyUYbChHK5+QfCLijct65PjUey1SpbYOjhhuKUK0wOdVksnsEUbiGpJhtGOeoy0161a3hSLcPEJxMV/fBM8vgABsSnwCol+agWY0WBgWZ3sHJwQnJgBoaMzhpoqIJ8a3fTyhpoqScPdRhDY2sE9IBRT/avnu9UmvU9UT7PDvRhuqQJPYIPghN0sNRpPYAOD3rIqZi30Oi1mhnrgG7kDPL5gVSFlZMcdbAUcLhfBibuhXJRhqr/zUy3LGiZ726FclCM4McOqkkfo6IzAuDQExqVDvSzHcEs1Rp80wqDTrr/+HC5jG4y01SJgx9aswPQ+WG+8bwbugeHgcHmYGe6BenlxU3Ymr9AYLEwMkzB5AODy+TCYQsppLM9PY0U2ZzVUXegohlphvWiCxlRfB7zNlFkBsSlQK5YwM8QuKdksRtrrEGCF0KPh4OKOFfncuq8xh9FowEBDGUKTV0lM7/DtmOzrWPc9PL4Aju5e8AnfjoDYFIs/flHxsLF3gHxyBKplOUrf/QmkbbWYk/aDAgV3SZjV9wbEpsA/JglukhAInVw2fQ6cHxuEi+m4d/byh29kHPprH25ZPfZpsCKf+4O3DnqFxkBgsznF5WdKqU+J8fFxNDY2QiAQ4K233kJUVBSioqIglUrR1tbGIIdguglyd3fHiy++iMOHDyMvLw8hISEslUBFRQVRQHA4HBw7dgx9fX24ffs2Tp06BYFAgMbGRlarG0yT/QcPHuDQoUOorq5mBVPPzs6ioaEBFEVBLBbjL//yLwHTRH7tyffmzZuMJi4ej4ft27cjPj4ehYWF2LdvH+7fvw+DwYD9+/cTUsPGxoaENcMs3HwtJBIJ2tra4OTkhMbGRhw4cIAxkVlZWSHLPHjwIPleNKanp4nFgm7/KigoQEREBMLDw8n3kclkaGtrY6kFLOHgwYNoamoiCjNzUorP5yMzM5NYglZWVhj5Vubo6upCX18fPDw8cPXqVZw8eRITExMWG9S6urrw1ltvEZXU3NwcHj58CL1eD71ejzNnzqCjo8OqjfPw4cO4du0azp07B4qiMDMzg4cPH+L48eMsu5U5KdXa2oqFhQWLbVT19fWIi4tjEEn29vY4efIkbty4wWjramhoYExQ+Hw+Ll++jHv37pGK+rVj3N7eHra2tqyqePObBnd3d1y4cAHd3d3Iz89HS0sLjh49ajGrx87ODhqNBkNDQxCLxWSZMpkMra2tDMunk5MTXn/9dZLTYwkcDofk39B2O51Oh4iICNJyaZ5XZI4zZ87gzp07EIlEqKiowPz8PA4cOMAKVza3+iUkJCA3NxcBAQEwGo2oq6tjqLhgNqnftm0bqqqqWH/n8XiIiIhAZ2cn2tracOXKFSwsLODJkyeMxsJXX30V//mf/4lHjx4hNTWVjGEulwu9Xk8CstfewEkkEnR2dhKiQqFQ4N69e9i+fTtjDFkiPYKDg+Hv74+7d+8SEkehUEAqlbLGhkKhQGdnJxYWFsjv7O3tUVBQgOPHj8PHxwfR0dEMcsnf3x9OTk6s7JqhoSEIBALs2bMHdnZ2yM3NhbOzMzIyMliKPx6PR/KI5HI5xsbGGOPDvCWOPheb79Ouri6iSqWRkZGBBw8ewNbWFkFBQWQZer0et2/fxoEDB8hDg8zMTBQUFDC2x8LCApaXl1kKSpgI6+DgYJKNFR0dbTEQPDU1Fbdu3SLKtvLycobll87Dm5mZQWxsLAoLC3Hs2DGoVCo0NzeTplcAhJRee60Qi8V47bXX4OHhgd7eXvT29sLPzw87duwg3zk8PBw5OTnYtm0bZDIZlpaWWCTmWjQ2NmJubg6XL18my6Ez5miVLa0WW1xcxL1792AwGPD73/8e586dI5lw5tdgmDK9goKCcOHCBQwPD8PJyQl5eXlwd3dHevof92nls8Irr7yClZUV/OVf/iXkcjkyMjJQVFTEUPYODAwwHtw0NDQQOy8AkgX14osv4r333tv0creCpbkp2Dk6bykDxF7sitCd+zDaUb8a4hu8cV37Rvg0k83JvnaInN2fuYokIDYFgw3l8N+WtOlMHdnkCFy2mH9CURQmultWW992fpIhKJuUWmyxcnTzgqObF5SLC5C2VsNG6ACfCHZOzHrQrCxjZrgXlIkssHMUwy86kdiZDDotRp80wiciFrPSPtP3CthgqU8H+vssjA9jqKkCnsFR61pERzvqV62CWwg/dvLwxYp8Hktzq4UAFEVhqv8J1IpFeASGb0kdYg0URWG4qRIhZuotn4gdmOxp27TKyhyL0+OMRjbvsG1YnJnAUFMlguLTn0n2jEGvh7SlCh7BkXB0Y9q5rR2THA4H7oHhxIo50dMKg14PR3cvi8ojsZcfFqfH4eITgPmxQTi6eT1VRtWq0qiHdb6xdA1cdzkmRVD7gzuQbEve1HYMit+1Gnyesh8cDgc8vgBG/SeklGp5EfOjgxs3tK2xxK/F8tw0HFw9WX/3DovBwoQUY52NVoPE+bZ20KlVLJunfHoM9k4um9rmTh6+WJyZsNoE+MnXoDBYX47ghN2EbLa1d4BWtbLu+zYDLo8HB1cPCB3FWJ6bxp//Og/jXS3wiVjfPfRpoJifQWDcJ/c/NkIRwlL2/1EUijQ+LeG6WTj7bKKi8TNS6ulAt3XNz8/D19cXp06dwtjYGLy9vUm1vCWrHY2ZmRlkZ2cjMzMTXC4XOp2OccKgKIq0I5kjPDwcgYGByMvLQ1xcHAwGA+s1MFnshEIhxsbGMD09jfT0dHR0dJAnn+7u7jhy5Ah4PB7Gx8fxla98Bf39/ax6b5gmWQqFAs8995zF72JnZ4esrCwYDAY8evQIKysr2L17N9zd3REbG4u2tjZERkaScHNzrKysoKGhAV/+8pfxv//7v6wK+LVwd3eHSCTCyMgIyZKpqalhEE10+G51dTWZ0Gq1WhQVFW2pEjsxMREDAwPIz8+HWCxmTH69vb0xNjaG3t5eCAQCRu4IRVGorKzEwsICoqKiyLoVFRXhyJEj8Pf3R35+Psk3oTE6OsqYJNL7aGRkBDU1Nfjv//5v6PV6i8QhTHaVPXv24L333sPKygqpkrcEmpQqLS2Fs7MzY0JCY35+HjKZzGIejqOjIw4fPozs7GycP38eQ0NDFu2oc3NzsLGxwQcffIDS0lLs3LmToSIBgH379uHOnTsbVrTb2tqCz+fjZz/7GZkQWUJtbS2++c1v4qc//SkJT3dxcUFKSgqLPFxeXkZCQgIJSzcf+3q9nnFsOTg4EJL4nXfewVe/+lWirrIEDoeDwcFBfOtb38KTJ0+sBl6bk64wy1krKytjWLBohIWFIS8vD/Pz8wxCzGg0YmJiAv39/VCr1Th+/Dh+85vf4N69e3BxcUFCQgL5HK1Wi//+7//GwYMHoVQqUVdXB5VKBYqioNPp8OMf/xh/+7d/a9UGe+TIEbz//vuQSqXg8Xg4f/48i9yxlO8GE3F87tw5NDY2oqqqCgMDA0hPT0dhYSGj9dDBwQExMTFISWFmP2RnZyMyMhK1tbUsIsvJyYmlMhodHUVfXx+OHDmCwsJCEp4tk8mQn58PLpeLffv2sQLcKYpCUVERy/7J5/MxMTGBiooKXL58mZV7ptVqLaqwDh48iIKCAtja2pLmz4KCApbFlc5So4lwiqJQUlJCsrZgUuqNj4+TIgVaiTY/Pw8/Pz/cvn2bKA7NYR56rtfrIRAIYDQaUVpaCoVCgdTUVJJHNjExAYVCAQcHB8ZDjYGBAej1ehw+fJi1z8vKyvC1r30N9fX1ZOyOjY2hqKgIFEVBKBQiLS0NkZGR6O7uRltbG4tUpeHq6oqpqSlUVVUhNjbW4liilZPmwem0upTL5eLGjRv40pe+RDIfraG4uBgvvfQS7t+/j1OnTmF2dhZ3794Fh8PBnj17NsxQ+1MCh8PBv/7rv+Jf//Vfrb5meJjZerVv374Nb0w3s9zNgqIozA71MIiQzYLD4SAgNgVLsxMYqC9DYPwfp8J7LaYHu2Br7/iprC3rIThpD/prHyIkee+6TVs0FAszVi1GlrAin8dUXwd8o+JZYdwrsrl17Rz2YlcExe+CWrEEaWs1BLZC+ETusKh00apWMDvcSxQ/tvYORM1jCSMd9QiIXX146REYDmlrDUTObk8deL0Z0DbF6YHOVbVRVBxLmTU3OgCRszuEWwxxBwCf8Fh0VxRhsrcdRoMeXqExEDpuPtB+o/a9sScNLLLMRmgPrVq5pTZEGvKpUUbxAACIPX0hdHRGf90jBMalfar9sSKfx2RfO4Ljdz11WyTfxpaM96W5KUhbawATgUaHzzu6e2O0ox72YlcoFmYRuIP9UHwzEDm7YXa4l/X75bkpOLl7W3yPJSzNTmB5bgpufsEYbq0Gl7faPufsLYGTp6/F/cThcBC4Iw3S1moExe8Cly8glmOdWoWJ7pZNnUddfAMgnxyxSDYDwNxIn9V2SlffQNgIRRhsfIzgxAzWejq6eWN5fpqh9DPo9VgYHWQQpevB1S8Iwy1VG5JSQ42PIYllt5s6unlhaYv7wxIoisJgUwVCkzMJSfWHIsYNOu3qGFgDWqE41f8EykUZvMPYDqZnBb1Ou+nihz8W/mTWRqfT4bXXXkNBQQEGBwchFotx6NAh/Pu//ztrIrsW//Vf/4Wf/OQnmJqaQlxcHP7zP/+TMZlRq9V4+eWX8fHHH0Oj0eDo0aP49a9/zQpc3QyqqqrI011zS1xLSwtOnjwJT0/PdcNt1Wo1SkpKsLy8jMePH+Pw4cMYHR1FQUEBYMo00Wq12LlzJyiKwtLSEmZnZzE3N0fUCfb29vjFL36B3/3ud7h+/TqwRolFQyKR4O2330ZhYSFiYmIsTnLb2tpw7NgxBAYGslRIFEUhLCwMMTExFgOUzcHj8XDo0CFQFIWqqipUVVUhPj4eUqkUw8PDOHbsGJaWltDQ0EACWe3t7ZGcnIy3334bcrkck5OTjKf81uyPN27cgL+/PxQKBRwdHS2ezNPT09HT04OcnByMjY3hxRdftHpxtpR/BZONRCwWY//+/bh58ybCwsIIUZGcnIycnBw4OTkhLi4OarUajx49gl6vx65du+Dmxg7143K58PHxwY4dO0hOjfl3NSdBaCujvb09Ll++jKKiIsTFxVnM/6EoCjKZDE+ePCEZH/n5+QzChMfjwdfXFxKJhDRXJSUlsYKiaUvZ/fv3GRPhtXBxccGePXuQm5sLo9GIjIwMPHr0iBHS7O7ujl27dsHR0REvvfQSRkdH0dTUBFtbW6JaoWvhu7u74ebmxjimaPJ3bm4OwcHBOHPmDG7evGk1c4eiKHR0dCAiIgKZmZlWFWwwI528vLxw5MgRfPTRR7h06RIEgtWb5ampKZbiZHp6Go8fP8bx48eJksQalpeXsby8jPz8fCwuLiI3Nxc+Pj5ITk5mFCKsDdXfu3cvfvrTn2Lfvn3Q6XSYnJyEUqmEUqmESqWCUqnEBx98gLGxMXzve98j7+NwOPD19SXkW0FBAbRaLaKjo1nkhPl3s7e3J8UICoUCb775Jn7zm99YJAHM8eUvfxkvvvgiUlJSUFxcDJhsgeHh4RAIBOTYpCgKc3NzGBwcxMLCAuMYpC1/VVVVOHbs2IY3zysrKxAKhQgODoaLiws+/vhjXLhwgZBnTk5OGB8fJ6+fnJxEe3u7xfOei4sLTp06Bb1ej7KyMqysrCA+Pp4cD+YtowCgUqnQ2dmJDz/8EEtLS7h27dq6RIclZGVlITs7Gz09PdBoNBZzB2HKd6JVjg8fPsSBAwcYr9u+fTvu37/Paj4tKytDaWkp7O3toVAoCCkLU7ZWSEgImpqaUFdXh+joaBQWFkKv1yMzM5M1DsPCwtDX18ewOq+srKC9vR3/8R//gYaGBsY1Vi6XQ6PRwNOT+bTV39+fqLOUSiWqq6uhVqtx4sQJvPfee2TsrIVGo8GuXbuQm5uLgYEBDAwMQCgUwt3dHe7u7nBzc4Ovry9RUdXV1YGiKLi5uZGxVFBQABcXF3R0dFi15BmNRqjVagiFQmLn9fDwwKlTp2AwGFBRUYGlpSWLpPtneDqMPWmA/7ZPV9/t5OELB1cvSNtqIPb023QQ91o8jRpuVtoHHo//1J+5GXA4HIQkZ2KwoWxVJbGJc81mvgtFURjvagKPb7PuZHYzy7JzcEJQ/C5oVUqMtteDy+NDo1rBRE8rafwS2AnhFbZtU8Th8vw07MVujElSwI5UhlJkK9AoFbARbt725xUaA8poJOvvH7Nqy1cuLkC9LLeqFNFrNViRzUEhm4XRgt2OoigY9XoY9DrwbexgJ3KyuBxLcPL0xeLMOCu8msbc6ADsnd0skmVeIdGYGeredPMbgZXAZRuhPcJSD0DaWg0Xn8Cnyj2bGe6BTq1aN2MImyDizOHk7g0nd29QRiOmBjqhVSpgIxSRyfxoe/2WcqQsQeTsBoVsjhHiL58a3RQRrFWtYKyzCU7u3ghJ3ovA+F0Ye9KAwB2pqw+opscw0r5a0sPhcOAeEM4IhbYR2sPFd5U0dfL0I2NpuKUKYSnsB8qW4OThC2lbrUVSSjY5Amfv9VUsDi7usIlJWiXKk/YwyER7Z1fIJkcY50NpazUCN1JvrYGtyAmq5UWrjZXDLdXwiYi1aOV1k4RguKXqU5NSw81VCNyRSghe94AwDDVVwMnDZ1MPB7aCid72dVVYfwiF4lrMDrEVgP/X+JMhpZRKJZqamvC9730PcXFxkMlk+PrXv47Tp0+joaHB6vuuXbuGl156CW+99RZSU1Px85//HEePHkVPTw9RsHzjG99Afn4+bty4AbFYjK9+9as4f/48q6p8M0hLS2O129ETXA6HAz8/P6vrq9FocPPmTVy9ehV8Pp9k1EgkEmI5GRsbw7Zt2/D6668jMjKS5EpFRUWRGm6DwYDFxUUcPnx43Qn6+++/D2dnZ4uTMvPXcTgcuLq6gsfjYXZ2loT8NjU1kQDZiYkJhkJpPYktbV9pbm7G6dOncf78eQgEAjg6OiI9PZ1B/tCh79u3b8e9e/ewsrKCsLDVMMje3l7SymaOrKwsEnBLfzeKojAxMYHe3l4GMZKbm4vg4GAygQsPD0doaCjjgrdjxw60t7czJll0gDsAfP3rX8fg4CCkUimjalwgEODAgQPIzs6Gvb09Dh48uG7IOg2JRAK9Xs9ozTPfngsLCyguLsbBgwct1t1b2uZSqRSLi4soKyuDg4MD5HI5Y5zSBEd7ezu+9a1v4Tvf+Q46OzvR2dm5+jQmMBChoaEIDAzE22+/jeeeew4cDgdqtRrT09OYmZlhWKnodW5pacE//dM/4cGDB9i1a5dFO8fc3BySk5Ph4eGBxMREqNVqVFRUkGyhhIQE3L59G2KxGJmZmVAqlSgrK4Ner0daWhpDqWGNQIRJRXPlyhWkpaUhOzsbly5dsro/pFIpmWg6Ojri4sWLuHHjBs6ePQt7e3uMjY2RLCZarWJnZ0fUfK2trVb3h0ajwd27d3H16lUUFhYy1Cd5eXng8XjIzMxEVVUVDh8+jNnZWbS2tpLzwSuvvILi4mJ0d3fD3t4eQqEQrq6u5P+Xl5extLSEI0eOrEuMnDlzBmVlZZDL5Qwyc3x8nNVa1tLSgrGxMbz88suIjY21el6BKZiabsGkiTmKojAyMoKysjLodDpcuXIF165dA4fDgYeHByIiIhgWzbq6OvzoRz/C3/zN38DOzg45OTk4duzYunYg81Y5Z2dnXLx4Ebdu3SLNfnQrIkwW5fr6eoaKUiwWQy6XM1SsfD6fHIMtLS1obW3FX/zFX+DVV19lqKDs7OwQExODixcvYufOnSgsLARFUUhKSrJolzOHRqNBU1MT5HI5BAIBvv3tb6OwsJA0+fH5fISEhCAwMBA8Hg+2trbQ6XQYGRmBnZ0d6xxgbjGE6fpz48YNZGVlQSwWEyUmnRFIURR6e3uJYik1NRU3b97EiRMnrG5vLy8vkjFELyM3NxdXrlwBl8tFfX094/UlJSXk2KBzudY219nb2+PAgQOQSqV49913kZSURPbnWjx69AhlZWXw8PAggecqlQpzc3OYmJhAe3s7VCoVnnvuOfzud7/DuXPnGMcCfV2Jjo5GVVUVOjo6LH5WRUUF9uxZDSLes2cPKioqyHmTPk5hUoH9/ve/t7iun2HzUMjnwbcVfuqWOJjsFsEJuzE/Noih5koExqVt2DDFWgZfAL1WA77Nxk2BMGWAUEYDPP4IN/I8Ph9B8btMT+43pzhYDwrZHKZNwdl2DpsnRjaCjdB+1XLYVIHG3N/j/Gu/eqpq9tmhHpayYlUpkoqRtlqGzWUzmB8dhMcGwexrweFy4RedAINeh7EnjZC21ZCga5o4WAu+jS1ELh7wCo2xSr5ND3YjJHkvuDwehluqIXRysZoBZA6xpx9GO+otklKqJRlUizJItidbfK+92HXLeUCrRJ71h3l0gPv0QCeUSwvwCd+ctYkyGiFtq4Gzd8C64fIAYCtyhFapIIqnzYLD5ZK2Os3KMkY66lH4i+/i5Ms/AigK+BR2bHeTam9ts+R6xJnRaMDYk0ZwuKvnKZpU4PH54NvaQbOyDFuRI5y9JYQUMhoNmB8ZwKy0l7zWMzgKYk9fKBcXoJTPQ6/TYqChHKHJmc+EqJBPjlhVSZnDRmiP0J37MNhYDv+YRNIKyeXyALOmuTlpH1x8A7dM4niHbYO0tcaiFXG0owHuAaHrZnFxeXwYdNqnVt+NdzXDIyiCpQIM2JEKaWsNKSx4VjDqdRted8SevrB3ckF/fSkCd6Q+c8WoTqP6g6pQnwZ/MqSUWCxmhR7/6le/QkpKCoMMWYuf/vSn+Iu/+At86UtfAgC89dZbyM/PxzvvvINvfetbWFxcxG9/+1t8+OGHpLXq3XffRXR0NLEybAWlpaVITU1lTIofP35MbmwBICoqCl1dXYz2IK1WyyCkYOWENjU1hba2NkxNTYGiKIvrl5OTgzNnzqCvr89qk19paSlOnTqFqakpNDc3s1q96HUyn3jt27eP0a41OTlJFBN79uzBzZs34enpCTs7O8zNzbFC1mmo1WqUlpZCp9PhnXfega2tLY4ePWpxAv3kyRNCLB09ehQVFRVYWVlBXFwcBgcHrapROjs78frrr+PatWtkW/r6+iI9PZ1MtCiKIrlWx48fB0VR6OvrYyiIvL29sWPHDszPz2NqaoqEydOByHTznaXgbJVKheTkZFIFv9bKsx6Cg4OJSoOe+MBkR1xeXsaVK1c29aRIrVYjPz8fsbGxOHnyJO7du4fdu3ejs7OTESwvEAgQEBCAgIAA/PCHP2QQlUajEVKpFKWlpfjoo4/w7rvvIiQkBBwOB7a2tvDy8kJoaCiSkpJY+9DGxoaQSDU1NcjMzNxwve3s7Igib2JiAgUFBVAoFPjnf/5n/PCHP4RQKMShQ4eIaskcYWFhGBgYYE0wCwsLsWvXLtjb24PH4+Hy5cu4fv06rl69atHiOjQ0xNjutN3x1q1bOHDgAORyOcRiMYaGhtDY2IhDhw6ta8mlYTAYcPPmTbL/PD09SRumr68vTp8+Db1ej/Lycnzuc5/Dhx9+CA8PD+zduxc2NjZ4+PAhRkdH0dPTY/HY1+v14HK5OHv2LHJycizaHnU6Hdl2mZmZaG1tZYwzc4UWHeQeExND2u3W23+lpaWIjo5mEQ40sRkYGIiqqirk5OTA29ub1aAGUxskRVGIjo6GVCpFQkICYmNjUVRUBDc3N6uKzIWFBQZxTGfIFRYWIjw8HOHh4TAYDJDJZCgvL2c1qG3fvh3t7e2szCca8fHxMBgMkEgk2L17N8s6SMPd3R0nTpwARVFobGxEY2MjHB0dkZKSAoFAAJlMhqamJnLusbW1RUJCAlxcXPDo0SPU1tbCxcUF4eHhZB8MDQ3h4cOHMBhWs1ZUKhUCAwNZVqu1WFlZQU5ODi5cuEBsgNSa/AhajRgZGYny8nL8+te/hrOzM0pKShAbG2vx+mFupYTJfnzs2DFy/ItEImLvq6+vZygAExMTUVxcbDGrTavVor6+Hl/84hdx584dq6SUQqHAqVOnkJ+fDx8fHzg7O0MoFJIHOHNzc7h//z5kMhny8vJY56Wenh6St7hr1y5UVlais7OTRcbK5XJClq4tEqBRUVEBHo+HF154Aa+88sq6++MzrI+ZwS5E7bZOeD8N3PxDIPb0w1BTJTyCIrb0tNzJ3QfLc1NWbS3mkE2OQKdW/UHtFGshsBPCNyIW0rZaq/Yj5eLCupM1unWMb2u3odVHr9VseVK3PDeNmaFuBMSmwMZOaNGSshGm+p/AM9QySWMjFMHJ0xez0r4tkUx6rZqVc7NZ8PgCOHtL0FzwEVz9guEVEr1p4tISNCtLsBVFgsPhIDhxN1bk86sKDE/fdZvYrF2LjQYDxrtbNlTKOPsEmNq1Nqfqmxnshu8mGi69QmOwNDe1aukyI1wsgSaIguLSN7U/RM5uWJHPb5mUMoetyBF8gQ0O/MW3IXJ2x+iTBnJN9AiKtKrGsYbVPKfNkx4zwz1YWZiDf0yixe/sGxmH4eZKFhnE5fIYOWN6nRazQz3Qmhrj+useYWVhFgf/4ttbtl2JxK5Ykc0xctNmpX1wD9j8McXl8RC6cx9G2mrh4hvAyjzSqVVYkc9vmUAG2cbshwQTPa1w8vDZsEzCNyoeEz1tVkna9TA73Auhk4vFwG8eXwBXvyDMSfs2bB/dLJbnpyHaZLi4wE6IsJT9n0qhaA1/rDypreBPun1vcXERHA7H6mRQq9WSCSMNLpdLAr5hyjbR6XSM10RFRSEgIIC8ZivIzMxEUVER+vr6yO9oqwqNyMhI9PZ+4kHW6XS4ceMGK4OEtgvQoCgKo6OjCAwMRGpqKtzc3JCfn88YOJWVlUhKSoKdnR1iY2PR3t5ucbusrKzA2dkZUVFRxP63FnV1dYzwcQ6Hg/T0dFRVVTFq5WmcPXsWd+7cAUwqJnpSRWN8fBy5ubkoLy/H/v37cerUKfj4+ODMmTPIy8uzuk3NL7wZGRkwGo1ExcbhcLCwsID79++TlrTGxkaEh4fjzTffxNGjR3H8+HEcO3YMO3bsYDz5r6mpQXp6OiIiItDb2wsOh4OIiAgcP36c/Hh5eaGkpARZWVm4f/8+srKycOLECSQkJJD14lqoBqYoCnfu3MEbb7yBo0eP4vr164wgaXOoVCqLioTw8HB4enqisrISarUaN27cgJeXFw4fPrwpQqqjowP37t3DmTNnGIoyDoeDbdu2gcfjscaHwWBgTeC4XC4UCgWWl5fxne98B2VlZZDJZEhPT8e+ffsQHR0NV1dXi6SiRqOBUCjEsWPHEB0djZs3b2J0dHNtNhRFkQY2Nzc3dHR0QKfTQSKRWCSkYLK3mlu0YFIxREVFMVoJBQIBLly4gOvXrzNUJTToTJ212+HixYuorq7G0NAQ7t69i/n5eVy8eJF1DjJXOpp/n5s3bzKaDuPj4xmKE/q9FEXhvffeQ1paGpKTk2FjYwONRgOVSgV/f3+rY+nRo0ckA2nHjh0Wz2E9PT2IjPzkaWRcXByCgoKQk5PDsPn29vYiLy8PJ0+eZDT0WbtQ1dXVwdPTk5AYtIJy7TaYmZnB/v370dXVxVoGrbhcW3rA5/Nx8uRJ0gxo3hS33npxOBxkZWURC9fy8jJKSkpw/vx51mudnJyIksoSysrKYGNjg9dffx06nY7VALc22JQOwj958iRiYmIQEBCAt99+G93d3cjIyCDnmAMHDhDiY3l5GSkpKYxtIxAIEBERgcOHD+PYsWM4duwYXF1d8bvf/Y7Y8AoLC1FQUICuri5QFAUbGxuMj4+joKAAV69eZeRS0c1zazEwMACBQIDQ0FDs27cPp06dwuLiIvLy8lBdXW11v7e0tCAgIIChdKNVRSqVClNTUwgO/iSDZq2Syxz0AxWYLNZVVVWs1wwODpJmTXNVLI3e3l7U1dXhypUrEAgEhGw0x9qG0d27d2N+fh7d3Z8oBxoaGlg21YCAAEilUsB0Hb1x4wYCAgKsZsJ9hq3BN/IP02zIt7FFaPJe0ua22Zttkas7FLKNm58Wp8ehXFz4oxJSNIROLnDxkWCip83i3+dHrVfMKxZmMdj4GJ4hUURFsh7mRgbgHhC2qfWiKAqjHfVYkc8jdGcmBHZCeIfHYrKXfU+6Hgx6HdSKRZYKxRwuPgHQKhVQLi5Yfc2zAmU0QtpaA61qBYknn8fOc1/CWGfTp16u+T2dyNkNwYkZ4AlsMNRUiaXZyS0ta6ipYlMtgM5e/licGd/wdTSMBv2myQ4nd29Itiev24i5MDaE6cEuhKXs3zRBKHRy/dT7eaKnFSJXD4Sl7MPy/DQCYlMQuCMV/jFJWJqdgLStFtK2WswMdW+6pdA3Mg4TPasKedWy3KLacHluGoONjyF0cEZw4m6r35nD4cDBzQvLc9PrfiZfYAOfiFgE7khF4I5UxB46B6PRgImeVow+aST5UpuBW0AY5kYHyL8pioJifhqO7luLseFwOAiMS4NiYQ6z0j7G36TttQiItfwwbzPwjYrHePcn98vTA52wcxBviojhb6Gt0hyL0+Mw6HXrErfO3hKsyOe3tL3Xw8LYENwloZt+Pa1QVCsWMdm3tfOrNagVS7D7FMTvHwp/sqSUWq3Gq6++iueee46Vd0Fjbm4OBoOBlQ3l5eWFqanVtoupqSnY2NiwJpXmr7EEjUaDpaUlxg9MN9znzp2DXC7HgwcPMDw8bLEVyd/fH6Ojo9Dr9bh+/Tojr4bGWlKJzg+hER4ejrS0NFy7do08TedyuYzPoyez5igpKWG08tFtfGsnCktLS6wQV39/f8jlchQWFrJuxPl8Pvbv308yscRiMSiKQkNDA/Ly8jA1NYVTp07hyJEjjEmSSCRCTEwM6uqY8ue+vj5i1TNHQkICZDIZmZD09fVh7969ZJK3d+9e8Hg8nD59mqWuMwdtRYyKimJMRszh6+tL9lFiYiKys7MJUbIe8vLycOLECbi7u0OlUuHq1asoKCjA7Ows67WWntDTiI6ORltbG86dO4fg4GCLY2ktdDodsrOzweFwcObMGasKreTkZMhkMvT395Pf0ZZMGjKZDLdu3YKNjQ3Onz8PvV4PiUSCq1evory8nEGubgQvLy9cunQJ4+PjyMvLg16vZ00OVCoVHj58iPz8fBQWFsLT0xMnTpxAaGgompubIRaLYTQakZOTY3FivVbBUVdXB3d3d8akmIadnR1OnTqFmzdvbnqSwuFw4OXlhb/5m7+BTqezmOEFkwVzLXGSk5ODI0eOMMhcPp/POu6Wl5dhMBhw+vRpPH78mPze/LhNTEwkqj0aFEVBqVSSUO7Q0FAYDAYyiaYxNjZGcnxoBAYGIjMzk+Tq5efnY2VlBefPn9+U5bS9vR08Ho8xji0Rbuaq0V27djFIB4VCgerqapbi0Bx+fn64cOECRkdHkZeXxyL+rEEikaC6uhqXL1/GqVOntpw/UlBQgICAAMTGxhILckdHB6N1bnh4mDXOKIrCw4cPUVdXh9/85jd47rnnkJiYaDHsvL29HbGxseR7WiLeYFKEcblcougyJ9GFQiHu3buH1tZW+Pv7WwyZ9/Pzw+Qkc5KjUqnQ2tqK9PR0REdHk/NhXFwcTp06hbCwMNy9exeFhYVQKlefynI4HMzMzGB2dpZYAWnw+Xzo9XoUFhZaVETR7XjmKC8vR3p6OrkOenl5kWu4OTo7O8nncTgcopiC6UHDwsICI+8rIiIC/f39Gx7je/bswczMDHp6egATQWqeywUzK7dUKkVubi7Onj1rVaX9GbaOreTpPA28QqLhGRyFgfpSqJZkG76ey+WRJjhrWJ7//9r77/A2rjP9H77RwQp2gL33Knaqd1lWVG25ZDfVKeuf7MRx4mRLEmezeddONom92ThO826+SezITb1TlSokxSL2ToJgB0iCBAs6MO8fBMYYAiABFklWzue6cEkcHEw7ZwY49zzP/cgxPT6CcBciSFYL3+AwCLy8HRouU5TZriIcRVHoa7yLGeUo4vM3upwuqdfMuNR2dnIc3VXXERKbwkhD4wmEMBn0C352Pv1NVS5584SnrsFQez3MJtdEhKUwo1Sgp+YmQpOy6IgVDx8RgqLiMdBSs+jn3cVPHIHY3HXQq2fQU3MTmulJuzbWtCQrg211EMenuRzR5hMQgunxxX/Tmk0mt9PBeAIPJBRtxUhnEyZHPnkYaRUszZQZUZmFbn0fc7jcRa/JhRjubIKHjx/8xBGW6/uT319sDgfiuFRa5PEJFFvSNCvR13h3wXsGxyJ6UBSFsb5uBEZ+MncxaDWQ1t6CZnoCcXkbXBJ6gqMTMdbXuWg7W4x6HTZ9/luIzi5GaFImFNJ2yOor0Nd416kwaIXFYs2lMVoY6WqCxAWh2hlhluIGVhFpuLMRkvj0ZaUUzvW9GZTZjDFZJ9iWKCVXCQiPwfhAjwst59BMT0KlGHTpYUNUZiH6Ghyn8LoD5eSBnSuI49Pg5RcEae2tZa0H1ii56OVX/1xpHlj63rvvvouvf/3r9N/nz5+nJzMGgwFPPfUUKIrC22+//UD277XXXsO///u/O32/oKAAIyMjiImJwYkTJzA8PAw+nw+JRAKxWIzc3FwcO3YMGo3GqbdNaGgoPanTarXQarV2IlFgYCAOHTqEH/3oR1Cr1XjjjTcY72/atAllZWX0ZHZqagoCgYAxKWKxWPjMZz6Ds2fP2lWsckRwcDB27tyJo0eP0svYbDYCAwMREhICHx8fXL16FSwWC3q9Hnl5eYwKSFYMBgMtmCQmJuLatWsYGhqijes7OjrsqtC1tLSgo6MDGo0Gf/jDH7Bx40a7ylj19fXIzs6Gj48PBAIBwwfLSkNDAz0BhMXYWKlUIiAggNGuq6sLoaGhCAgIgEajwcGDB3H79m1UVFRg586ddJomm82mqx3eunULmZmZ8PX1hZ+fHyYmJhAREYHDhw/j7NmzSE9PZ6TEjI6OOjSObmhoQE9PDw4cOED7Xl26dIl+yp+VlUWfK09PT6jVavT19aGlpQV79uxxOPGdPzHbuHEjLl68CE9PT4SFhWF0dBQFBQV0SiKPx2NUnpucnERKSgo9ZqqqqnD9+nU7H7WFKC4uhkajwalTp+Dh4UGbDsMiFBUXF9tF4XV3d+Mzn/kMTp06heTkZDq16+TJk7Rh+vwfNk1NTXRUmDO8vb2xY8cOlyr8SaVS3Lt3j/YM2rx5My5cuAAPDw9s3bqVMfmPiorC3bt3aZHi4sWLKCwsZESTWJnfJ6WlpThw4ABYLBZtSq3X6+Ht7U3fJyIiIuwExMrKSruUvvXr1+PYsWMICQlhpBQ7+hHo5+eHmJgYrF27FhcuXEBOjuNJllVwsF673d3dmJycZKQow4FAaDabMTExQZv8SyQSVFZWwmQy0Z5E8ytCBgYGOkwFLikpoVNTIyMjkZubyzif7e3t6OnpoY8zPDwcL774IuLi4nD9+nW6It1iKbVmsxkfffQRNm/ebJeSuHfvXhw9ehSHDx8Gl8tFW1sbI524rq4OUqkUmzdvhr+/P86dO4cdO3bgzJkzDsdab28vff/Ny8vDqVOn7MRDWB5OPPHEE2CxWDh9+jRDoImJiUFMTAw0Gg3ee+89uqLf1q1b7Y7VNlro5MmTdFp2REQELl68yLhurObeBoMBN27cgEajQV9fHyYmJrBjxw60tLRAoVBAq9XSnzl16hR0Oh12795tt+2CggJUVVXR41UqlYLH49kd79atW3HlyhVaqNTpdHbfld7e3khMTERhYSH+8pe/MKIAraxfvx43b97Exo0bnXrOwXI/vH79Ojo6OpCcnAyNRgO5XA65XI6JiQmwWCy88sor+PGPf+y0MiDh4Ubg5YOEwi0YbL0H9sjAskp6z06MYWJItqyn/ytFYEQcRrpaFq0GNT0uh0Lajoi03BXx7prPYFsdWCyW09Qxvqc37ZezGDPKUXj4+LnsPxO7Zh16791etKqXQad1Kw2RoigMtNSC5yTF0TsgBEa9HsOdTS5FnLlLUHQiAqMSMNLVhJGuZkSkfpL2FRgZj7H+HojjUjA50g+eQOgwzWihdUvv3YZP4MJCiWKJpsfWyBmFtA1D7Q0w6nXovnsdEemf+A65y1LTiuQ9rRB4eDHScYXevtBMTzo0g/fw9aevbbPZhDFZJxQW4Vfo7YvgmCSGT11wdBJGZR2gzCZaQBloqQVFmRGdU+K2p11AeOxcpGOk8xROWzSqCQRaKmNyeXxaKDebTJD3tECvngVYLARHJzHM0q3wPbzmfMOEntDNTi+pmqQtgZFxmBodwonXXkL+/s/Dyy8QU2MjYLFYYLHnfJZZLDZYbBb9f9gus23DYgEsFkKTMtF8/TSCoxMhdpLS6wzf4FD01t1ZMCXWitGgn0uBXcR03wqLzUZIXApGulpc8oNzxkh3C8TxbhYfsME3OBQevn7oqrqOqMzCJd/jrWP4YeOB7dG+ffsYKRzWJ5ZWQUomk+Hq1atOo6Rg8fbgcDh2kS1yuZxO5ZFIJNDr9XYGt7ZtHPEv//IvePnll+m/p6amaDNyWJ76X7t2DX/961/piYrVFLqrqwtjY2N48skn8dFHH+H27dtOTaCtlJaW2vknTUxMoLy8HGazGQUFBRgfH8fJkyexZs0a+umtUChkREpdvXqVYe5rxcvLC0lJSaitrUVubi76+voYx0NRFG7dugWlUom8vDz87W9/Y5gdm0wmKJVKKBQKNDQ04N/+7d9QWlq6oMjV3NzMmPhs2bIFH3zwAQ4ePGgXNdbU1ITu7m6kpKTgwIEDOHPmDJ566imcOXOGTvew0tfXR0ewbNq0CR9//DFtsmult7eXcR7WrVtnJ8qZTCbU1dXRnz137hzS0tKwfv16GI1GXLp0CXw+H1u3bkVycjLa29vBYrEgFAppMcLPzw9SqZRe5549e+gS6878Ujo7O+mKUAcOHAAsQltoaChtmmw2m9HQ0EAband0dODs2bP47Gc/6zA1aSF27dqFEydOYNOmTaAoCo2Njejs7MSOHTsYaaewjHPba66goAADAwP46KOPcODAAcbkU6FQODVi5/P58Pf3xz/+4z/iiSeewJtvvunUlNv2B4hVZN28eTPtUTQ6OopTp07By8sLW7bM/RC2VnPbuHFxA1h/f3+sXbsWZ86coX2TbFGpVLh69SpiYmLoc9vc3ExHWlmr5wUHB9PimIeHBzSauVDesrIyxMfHO60SKpFIaDG2ra0NSUlJ9LnYsmULzp8/D4PBQI8FK1ZPIavAqVAoHPpM7d+/Hx9++CEt+DhKNa2srMTIyAjy8/Nx4cIFrFmzBqdOnYK3tzc2b97M8N2KiopCf38/YmNjMTw8jK6uLqfG5z4+PpienoaPj49D8XLHjh0oLS2FSqXCE088YTcGUlJSUF9f7zA9SigU4sCBA+jp6cH+/fsZYy05ORm7d+9miG9GoxFCoRA7duyAWq3GuXPn4O3tjS1bmJWbrN4SVp+/ffv2wdvb/oudxWLh4MGDtGm+dZlMJkNNTQ1ycnJo8cmaosvj8ZCcnMyIioLl+2a+6OVIkKutrWWkDltFb1uxUyaTISoqCpOTkyguLgaLxcKFCxfowgs8Hg/5+fl0hbzS0lJs27aN7uOFnlrzeDxs374dg4OD2LdvH770pS8hISEBYrEYsbGxDLHH398fsbGxKCsrg1arxaZNm+jv2MDAQFRWVgI2Ru/zPb5gEZxMJhMtJM332NPr9bh69SqMRiO++MUvoqurC11dXYiKikJGRgZ9LMHBwSgvL4fBYHDqoUhRFFpaWqBWq7Fv3z78z//8DzIzMyEWi5GUlAQ/Pz+wWCy88cYb4PP59MMPwqeT8NQ1mFGOouvuNURlFjk1cHZ2PWimJzEq60BMzlqH7z8IJAlpGGipAU/gAe+AYBh0Wtp/hTKb0d9cDYGXz4oYo89HO6PCQEstwpJzHE546X2MT0NfU5VTDyxbFD2tLpeNhyVaJTg2GcOLVK5SDkoRGGEfPe0IzdQEBtvrEZGau6ABvJ8kAka91m1vK1dhsVgITcyE2WzCYMs9mM0mRKTlwcNHhNHedujUM5gcGXBoBL0YAk+fuXSdBY5PN7vw+4sREpuCnuoyXHr7x/jK22eX5cG1FBS97XP+P/P6PSQ2BX2Ndxf1OWKzOQxRTjOtwmBLLcxms6UqXgK8/IMwKusEm8PBqKwT02MjiEjLXbJZtEgcDmntLQRExLpYPdPsMBKJzeHQpvOU2YxRWQdGe+ciggPCY+nIrZC4VAy11YHFZiEsefHIT4qioJ2ZwoxSAe30pGMLBct5M+r1c1kBlGnuX7PZYnlg86+ZAqx/m82fvGdpazVMb752GkVPfBlTo8PwDV64kMx8eEJP6DWzC/YJZTZDWnPT7aqMPoFiTI4MQDujWrLgqlfPLPmzVniCOZ+pvoZKiMQR8JM4rs65EA+jnxQepCjl4+NjNyG2ClKdnZ24du0a/cTdGXw+H3l5ebhy5Qo9oTObzbhy5QpeeOEFwPJEmsfj4cqVK/SP4vb2dvT19Tk11IXFnNZRJAosgkd9fT2efvppXLlyhY6gEQqFiI6ORkREBI4ePYqysjKkpqbC09OT9g0SCAS0IbOVsbExiEQi8Hg8qNVq3Lp1C3q9Hv7+/ti1axc4HA46OzvBZrMRHx+P2tpa3Lt3DxkZGYiPj6eN1X19fREaGup08p+cnIzLly9DoVCgqakJu3fvhtFoxPXr16FWq7Fu3Tr6nDc1NTE+y+FwEBwcDJlMhszMTJw/fx5paWn44IMPsGPHDocRIiMjI3bRGPv378fJkyeRlpZGp6719PQgPT2dFp/UajWEQiE4HA6CgoJoo2hYoo5sx4XV16WqqgoFBXMh4N3d3bQniRU2mw0Oh8MwgT5//rzTyoRcLhePP/44VCoVTp48iaioKDQ3N0MsFjMm6NZIF1s2b96MqqoqhtE4LJ5bVVVViI+PXzRqh81mIycnBzk5ObSHytjYGMbGxtwql2tl//79+OpXv4qxsTH89Kc/dSpsURRlN34iIiKwd+9efPzxx9iyZQs9uW5sbLQTEyYmJnD79m2wWCxs3LgR//u//4vi4mIcPXoUBw8edBjB0NDQQE/+RCIRVCoV4xiDg4Oxf/9+TE9P49y5c/j2t7+N//qv/7ITKxdCLBYjJycHly5dwoYNGyAUCmE0GlFaWgo+n09HLjlCJBLhwIEDGBkZwfHjxxEXF0eP66qqKvj7+ztMQ7WSnZ2N0tJShIaGorm52W5y/otf/AKf/exnHX7u1KlTiImJocUsR3A4HGzbtg2XLl1ipMZRFIU7d+5gdHQUxcXFtKDV3NyMkJAQxjnlcrnYunUrBAIBbVbu7++PyspKO7HMluLiYly/fh3btm3DzMwMI9LTaDSitrYWX/va1/DLX/7SoU+YM3NpK2NjY2hoaMCTTz4Jk8kEDw8Pp1F74+PjtMDj6emJffv2YXJyEidPnqQFxejoaMhkMgQEBODs2bMO06ptEQqF2LhxIy2sHT9+HJGRkXbXj60/X1paGk6cOIHk5GQ66ufu3bt2gujatWtx+vRpWjy3VtyzPd/r1q3DuXPnGJ+tra3FwYMHYTAYcPnyZezevRuf+cxnoNFocOnSJbDZbGzbtg1VVVVoaWlBUFCQS1U8YRkzly9fhoeHB86fP4/8/HxcuXIFubm5dgUDJicnERQUhF27dsFsNqOsrIwWymwf+Jw8eXJBIX3Hjh04d+4c9u3bB51OB4FAAK1WiytXroDFYmHr1q0QCoW4ePEife+VyWR0Sl9aWhri4uKwc+dOlJaWgsVi0eOQoig0NDTQqZLp6el0WrhAIEBERATi4+29HbZu3YrGxkZcvnyZ4UdJ+HThHRCM+PxN6Gu8C0+/QIdigqMf5zr1DIbbG9wSTO4XEWl5kN67DZ5ACOVgL4KiEjE1NoLR3g5EpucvWD1tIbQzU06jm4Y7m2DU6xBfsHnR3x4sNpuRJuQMeU8rQuLcj8zxCRRDPTkOlWIIohDHD4J0s9MuTfyG2htAUWaXoyWCohLmotWGZC6Z41tx5/cam81BZEY+jAY9+puqwBMIQZnN6GuoRELRVhfWYE9oUiZk9eWrJrBODMkwOdKPkPg07P7GT9DfVA0/SYRb52g5jPXNWVQ48kNbajqZh4+ITiulzGaM9XVhVNaJjjuX0NdUhaf+/fcIXoGKbJLEDIx0NblcyXAxWGw2La5RFAXloBSy+goAgG9IGIx6HdgcDvgenjBoNZhRKjA7OeY0LVboI4K3fwiCIuMdnkuKomA2GuAfFoXZyfEVOY4SikJUZiHGB3rQW1cOgZcPJAnpLl1HoUmZ6G+sWlCElNbeQsyatW5HtgFARFouuquuL1pkwBFz1S1XptqdNUJR3tO2qEg/n6nRIbfFvvvFQxO7ZTAY8OSTT6K2thZnzpyByWSiPZ8CAgLoH/fbtm3DwYMHadHp5Zdfxhe+8AXk5+ejsLAQb775JmZnZ+lqfCKRCM899xxefvllBAQEwNfXFy+++CJKSkrcrrwHS+UoNptNT4itUQXWaAaTyYT3338fTzzxBDQaDV1Fy1p2XKvV4s6dO9BoNODxeBAKhfjggw+QmpqKs2fPwsPDA5s2bbITxHQ6Hf0UOjc3F7m5uWhsbMTJkydpTw2j0bio2LF9+3a8//774HA4tIHsli1b7FLkHHH16lWIxWI62iI0NBSHDx9GaWkpvLy8nFa1skUgEKCoqAglJSX49a9/zYgWsnLz5k06Imbt2rWM1KuKigq7yV1MTAzq6+uh1+vB5/PR3NzsMFps8+bNuH79Onbs2IHOzk6EhYUxxEEej0evw4pIJMLBgwdx7tw5fOELX7AzdnZ2kywoKEBrayuuXr0KpVKJEydOICwszOkE39F6jEYjzp49i6ioKBw5cgS9vb1ISEjA8ePHERUV5TBl0tF6ZmdnceXKFTz22GNoa2tDW1sbQkNDF4xCnI9AIMDTTz+N0tJShISEIDs7G3q9nh6nbW1t6OjogL+/Px5//HGGsCUSifD000/j2LFjWLdunV1EUX9/PyMiwWqiPD9dzMfHBxKJBE8++SRmZ2dx6tQp5OfnO41Qmk9ERAT0ej3+93//F2KxmE63ciSUOTqPEokEhw4dQk9PD44dO4Y//vGP+MEPfsCIiHEEh8OhvYe2bt0Ko9GIiooKqFQqcDgcfPe730V4eDid4hgbG0t7N/n6+kKlUqGjo8PhmLYSHBwMiUSCO3fuwMfHB2VlZZiYmMDatWsXvC59fHywd+9e6HQ6OiJl06ZNUKlUuHDhAp5++ukFj43P58NgMNDHZjKZUFFRgcnJSXA4HBQXF+P3v/89SkpKcObMGfj5+WHDhg2L/riYmZnBlStXEBAQgP3796OrqwtsNhve3t744IMPHKbbKRQKu2V+fn60oHjixAlERESgqqoK3t7eeOaZZ1z6kRMSEoI///nPuHXrFjo6OhyKWLOzs4x76J49e+g0PmtK2vxtsVgseHl50ZFmFy5csPNnsl5H1gcfjY2NdAQmj8djFMrw8PDAnj17oNVqcfnyZfz0pz/FV7/6VXz+85+321+r8GMbvTs8PIybN29i+/btCAgIwIULFxAUFIT9+/fj/fffx/79+xnHaCtgs9lsbN68GRRF4e7du6isrITBYMD777+PDRs2LJhGyeVyIRKJUFZWhujoaJw+fRp8Ph87d+50KhhaoyhhSfm2ClQTExPgcrmorq6mI6izs7MdRjxt2bIFV69eBSz+bLb9AovnY3BwMD788MNFv1cJDy8sNhvR2cWYHBlAT3UZonNK7NLFbB+CGLQa9DdXIz5/4Up1D5KYnLXovnsdbA4Hw52NEHqLlh0dNT7QY5cuo9eo0dd0F5L4tEWrX9niExxqmfg4/m42GQ1Qq5QQxy0tjUUcnwZp7S14igLAEzjPQHCGTj2D/uZqhCZmwsvP8cNvvWYWPKG9wCdJSMNg6z1w+UK3TaLdgcvjIyanBDMTY/jrd57BYy/+eC5ShuX+RHqushnfrrKZFZV8EL5OBL6FmFGOYrS3HX6hUXQluYlBKaKzizHe34PeujuIyipa0uTfVZQDUpgM+gVTvTx8/aBWTSwY4bcQLDYbwTFJmBjuQ/L6xyCOT8d4vxQcnsDp+HEVDx8/yLtbYDaZ7LzhlguLxUJgRBydzjYx3IeLb72KzV96BX2Ndy0RlyEITcpecirXxGAv/MOi4RscCr16FuMDzgsvuIt137UzKvQ1VAIsFsKSshY0zWezOXYViG3pb66BOCEdPMHSKnOyWCyEp67BYOs9hKfaR2QvxEhX85KqAy6EOC5lzmC/ugwxuetcutYmRwZc8vF7EDw0opS1chssBrq2WCtOwRIFY1tJ7umnn8bo6Ch++MMf0pE5Fy5cYJifv/HGG2Cz2XjiiSeg0+mwa9cu/OY3v1nSfnp6ejKiQ2JiYnDnzh3ExMTAZDLh6NGjeOKJJyAUCiEUCjE5yTQuFAqFtJl5f38/nn/+eZw9exbnzp3DY4895rB8PSyi1HyhKjMzE5mZmWhpacG+ffvwyiuv2Hn1OGJiYgLPP/88Ll++bJe64wiKonDy5Enk5+fTniDBwcEYHR1FSEgIdu7ciYGBAXzwwQfYuXOn02qJw8PDtHnzrl27YDKZHAoKBoOBFoZYLBYSEhLQ2dmJ2NhYcDgchzea3bt34/z58ygqKrIzvrfi6ekJjUYDk8mEhoYGu4iVgoICVFdXY+3aT54mKRQK3Lp1C+np6bhw4QJ6enpQV1eHXbt20RMyZxNbo9GIDz/8EL/97W9x6dIlp+l8cPC0tr29HU1NTXj88cfh4eEBpVIJk8kEPz8/HDp0CDKZDB9//DFycnIcPum3nsfS0lJwOBzs2bMHHA4HFy5cwM6dO3Ht2jXMzs5i69atjNSlxUI6d+zYgcbGRly8eJGOjlCpVEhKSlpQNOFwODh8+DCuXLmC8fFxWshxtL2AgAAolUrGl4rJZMKpU6eQlZWFf/u3f0NNTQ02bNiA6upq1NTUICIiwmHKjvU8NDY20pPUF154Ad/73vewZcsWGAwGh6KUs/MwMTGB9vZ28Pl8nD9/HkeOHMGFCxecHjePx0NISAjq6+sxMzMDrVZLizXW6+TevXsQi8XIypqrTCWVSulJdmxsLD788EPG2DGbzVCpVJiYmMDExAQmJydpceKxxx7DwYMH8bvf/c7l6BhYRIrdu3fDZDLhjTfewCuvvIKzZ8/i0qVLdhXnhEIhPD094eXlBS8vLwwMDKC1tRU6nQ5sNhvFxcV23m0ikQj79u2DUqnEqVOnEBgYiHXr1tldOzqdDqWlpRAIBNi7dy99jfF4PGi1WojFYjz11FO4ceMGGhsbsXXrVnodCoXCod8QLJFy8fHxuHbtGl566SWUlpYyRFUr86tTdnR0oKmpCT/4wQ+gVCpx/vx5BAcHLxhla93f5ORkNDU1YWBggBbZ57N582acP38eWVlZCAkJcRidu2HDBty8eRObNm1CV1cXQyBJSkqyq7YoFArplFW9Xo8zZ84gODgYhYWfGM5mZ2ejvr4eRUVFtGDK4/Hw1FNP2W1fKBTimWeewfHjx7Fu3boF095ZLBaKiorQ09ODP/zhD3j99ddx4cIFuqCHbfVHWyiKwu7du/G3v/0Nhw8fdvid5OyaTEtLQ1paGnp6evDWW2/hl7/8JU6cOIF9+/Y5vDfb3le2bt3qUJiyIpFIsG/fPnz00UcM03vCpw8/SQR8gsSQ1VfAPyya9mXy8PGDdmYKHj4iGA169NaXI8GFiKDVhKIo6DWz0M1OQTs7Dd3sDJ32YoUn9MD5X30fO/7pBzBwuZidHF/WBNlk0INr48Ok6G2HZmoS8Xkb3Y42CQiLhqy+wqko1d9UjahlTopictaiu+oG4gvd6yt5Tyv06hnE529a8HNTo8NOI7HCU9dAVl8BLp8PD9+FhQ6TQQ82Z2lTrZGuFujU09jzrdcQEpeK/sYqwBIN4m7ERVhKDgZaahymVU6O9CPKhXRLKzr1DIba6uDpF0SLUfMJjIyDb0gYpLW3ERyTBN8g598bS2ViSAadZmbR6JzgmGT0NVQumsK3EMOdTWBzuIjOKgKLxUJUZiHk3S1Q9LQiLCVnWf5t4am5GGipWVXvOrVqAuP93fjKb8+hv7FqxbY1PS6nz2tQdCIG2+owPS5f1MPMGY6+54XeIkRnF8NsMmG4owEGnRb+YdFOr09xXAoUPa12QqW8pw3eAcErIiSyOVzMTIwtWDV0PpTZvCoCrU+QGEIfEbrvWnymXPDzu1/fb5ppFcb7uxc14rfy0IhSMTExLuU49vb22i174YUX6MgpRwiFQrz11lt46623lr2fw8PDDN8dgUAAvV5PC1KHDh1a0DsKFj+cxsZGiMVifP3rX8fzzz+P3Nxc2uR6vlE2LN4a8w1glUol7ty5AxaLhb/+9a8QCoVOvV9sOXbsGE6fPo38/HxcunQJJpMJGRkZdtu0bvfjjz/Gnj17GJE1sbGx6OzspCMTrEbfly5dgq+vL7KysmgR6ObNm9Dr9QgNDcWePXvAYrHA4/Gwbds2nD9/HpGRkbQQ2dXVZTc5yMzMxIkTJzAwMODUQ4jP5yM8PBzvv/8+vvGNb8BsNjt8JSQk4OWXX8brr79utw4/Pz9aRNTpdLh06RL8/f1x8OBBsFgs9Pb2Yt26dZidncWJEyeQmpqK1FTmk76xsTFUVFSAoihkZmbisccew+7du7FhwwaUl5dDrVaDx+OhpKTELn0VFiHLWgnMVjSbX2bdGilQV1eHY8eOYdOmTQgMDKSfEFy9ehVqtRo7duywG4/W9B6TyYSrV69Cq9Vi27ZtCwqaFEVhcHAQ7e3tMBgMGBwcxFe+8hUcPXoUu3fvdjnqatu2bairq8O1a9ewZcsWVFdXO4z4KikpQUVFBUpKSugIjr1799ICklqtBovFolM2rdXatFotBgcH6QkkRVF02fjc3FxoNBqcO3cORqMRW7duRXl5Oaanp8HhcFBSUmJXaMC6rdu3b0Ov10MkEmHnzp2ora1Fb28vWlpa7LzgbNHr9RgdHcWPf/xjfPvb30ZCQoKdcCIQCBi+cLGxsbRn2alTp/DVr34VR48epY/Jmp7k7++PqKgoZGVl0REl77//PoxGI6qqqmA2m5GSkrJgaqEVq2DMYrGQl5eHP/7xjygsLLQzIKcoClqtFrOzs5idnYVarcapU6eg1Wrxla98ZUHhFRbBcf/+/RgdHcXJkydpgcNkMuHKlSswGo3YuXOn3b2Ox+Nhenqa/nvTpk0YGxvDRx99REff2YrZ1n2tra2lI24zMzORkZGBixcvIikpCTdu3IBer0dYWBjt42StSKrVanH+/HnExcXh0KFDmJycxMTEBPbt24ehoSEcO3YM2dnZiI+Px8jIiEMhPC0tDcePH6cFVqtoN2fsyaJTirlcLsrKyvCP//iPDs+ZSCTC1NQUysvLGYI5LCnZp0+fpseUSqXCxYsXUVxcjB/84Aeoq6vD+vXroVAoaKHTeq+fmJiAXC7HjRs3sHXrVru+tsX6UOfSpUtQqVQOxT+tVouysjLo9XrExsZi06ZN2LZtG9asWbNoKn5TUxPeeOMNhIWF0fc/V/ycbLcZExODjRs3YsuWLcjJycHp06fh6+uLjRs3MoTG+X6SVrN1FouFiIgIRnSW2WxGfX097ZlG+HTD4fIQl7cBY31d6K0rn6vAFSSBSjEEvocnempuIqFw87IqSNlCmc3Qa2YtwtIUdLMzoCy+KdZJwXzR3/I/8D08IfDyhU+gBEFR3naTGVl9BXY+/0PE5W+EyWjExFAvxm1KvrNYbPiFRsI7IMStCYhRr4OsoRJBkfEIiXEs8rt8/A6iFWYnxiD0FrllRO4IFpuN8LRcDDRXM576m4xGsBxM/Aw6LfoaKhEcm+xShJZapUTgAmXbo7OL0V1dtmjK5FyEToDT9x2hmZ7EYFsdJPHpkCSkQTnYC4NWPTcxN5sw3NEIg1aNgIg4l8UeDpcLUBTMZpPDibErY8Rk0GOgpRZcgRAxa+wfKll/f1rhCYSIz98IeU8rVCMDiEjPc2k71iIqC7WdlA9APTXhUlXM5UzAKYqCrL4c/mExdiKIOD4NlNmMwbY6GPU6RKTnMYRdV+EJhGCx2DDoNEuO4FmIMVkntLNTdMqZl3+g24KKIxzN2cNTciCtvQ2+h9eShDqDVuMwQhEW7yxrdJJysNeS2ucNSUIGo489fP0h72llfHauOiS1YJEIdwhNykRX1fVFxW0r4wM9blUSdBeeQIiEoq3oa7wL3+BQp8dpNptWTZDSa9QY7++GQaehlwm8fCFJzIDZ6Fol7YdGlPq0kJeXh7q6OkxPT4PP52PdunV0yt6hQ4ecVv2B5Yd3T08PYmNjsX//ftpMe8eOHbh48SKdltbY2IgzZ85AIBDQ/je2kVJNTU2QSqV0qhRFUbh48SLi4+PtDHbn09zcjLS0NLBYLMjlcjpdxHab1h/xSqUSly5dwpNPPmmXRuHv74+JCWb5VBaLhV27dqG3txfe3t545513oNfr7dIRrTcyLpeLvXv3oqOjAx999BH27NmD1tZWhhk5RVEYHx8HRVHYunUrzp8/z9ie7fqGh4fx0ksvISUlBWw22+FrYGAAv//97+1Mknk8HhISEmA2m3H9+nXMzs7isccec5g+4uXlhUOHDqG5uRnHjx+nfblmZmYQGBhIp69ZBTZPT090dnbS0RJ6vR7l5eWYmZmhxRBYoqOam5vx+OOP2wlJjkqswxJVmJ2dTUcsnT9/HlqtFps3b3YYsWb7JcLhcLBjxw4YjUZcuXIFBoMBRqMRcrkcra2tjEpbsAiPGzZsAJ/Px7lz53Dr1i26guTU1BQ4HA7Wrl3rUNiZv88DAwP4+OOPwePxaGHJlpCQEFRUVKCyshJqtdphBIctkZGRiIyMxPvvv4+enh5885vfdHjjvXLlCnbt2oUbN27AYDDQIuf8lDqFQkH3qaenJzZu3MgYwyMjIygoKEBjYyOjUt18+Hw+Ojs70dXVhbq6OhiNRhw7dgwbN26kRYD5xQpgY/yfmpqK06dPQ61WLyo4l5eXY/369aipqcFjjz0GNpuN1tZWnD59GlwuF+vXr2cIoTqdDjdv3oRWq2UIxqdOncKXv/xlnDx50i7d1Gry7uHhgaCgIFRVVeHNN99EV1cXuFwu7Ts2P1JqPsHBwThw4ABqamqwe/dubNmyBW+//bbTSCcejweDgfmlFhQUhMOHD+PWrVtobm4GLCLC3bt3oVQqAQBr1qxhVDCsq6vD3r17cerUKToFe2BggBZsAgMD0d3dDYVCgb1799L9KhQK6eshLCwMhw4dogVhg8GA3bt3o7a2FnK5nDHuLl++jLt37yI+Pp7+wW6mDUDnXmfPnkVpaanDyDbr9drR0YEvf/nLqK6uthtvXC4XBoMBVVVVmJ6exuHDh+l9mJ2dBSzXk+33i9XL6vjx4w6vLWcPiHbu3ImKigpUVVXRyxobG9Hb2wuhUMi410ulUuzatQvHjx9f0FPKbDajo6MDX/3qV1FVVYW9e/dCJpPh9OnT9Drnpz82NDSgr6+PsU25XI6pqSlkZGTg3r17tKfY2bNnIRAIsGXLFvB4PHR1ddlFY2/btg1XrlxBR0cHkpKSUFdXh8HBQdqzsLCwEC0tLbh9+7bT4yB8egiKSoAoJBzdNWWQxKdBOz2JnuoyxOdvcjhhN5tN0KtnoZ2dgm52eq7KFeauEUeikm1EIN/TG0IvX/gGh4Ef7bUiT8on5QPw9AuEdnoSZksVpfl+OmaTCZPDfehvqmIsn4sYC7Ur/gAA4/09mBobRqyLaSALERyThNFe+4pu8u6WFfPq8vARwVMUyEgZmhyxr0441t+NWeUoYvPWu3Vci03e4vI2oOvuNcTlrncqss1OjsM/zLWJMEVRGGytBYvNYUx2fYLEGJN1wTsgBGw2hxZixvq70VtXDk+/AARHJy26v2HJ2Rhub2CkHbnic0OZzRhovQez0YCI9Dyn1RLNJqPD98RxqdDNTqO7+gbCkrIXTaMTePtajNcd/5acGh3GzLgCEWm5Dt93hJef+0KM0aCHtOYmorKKnAosLDYbEWm5MBmNGGipmeuftDVuXz/haXPRd7FrHNstzIkJ7onlFEWhr/EufALFiEj75HdQSGwKpLW3ly1Kjfd3OxRuY9asnbsu8ja6nRaonXFcKXE+AeExCAiPgXZmai61D0BoUhYtEHv4BtDRo2qVEtNj8hVPnYvKKJgz0XchynBmXLGsSD1XYLFYiM4qgqK3HYNtdQ4F27G+Lofea+5iNOjnIqBmP3lYzBN6ICgqwWF6pZ6IUqsDl8ulJ7LWSd2ePXtw7Ngx3LhxA7AINuHh4fTT88rKSsjlcqSnpzNSnG7duoX169eDx+PBw8MDKpUKIpGITsvTarW4efMmdDod6uvrYTQaodFokJ6ezhBubt++jZKSEvj7++Pjjz9GWlqa0/SHtrY2OgLn9OnTtHmydZsajQY3btzAT37yEwiFQrzzzjsOJ9zzv/ysk8Hx8XGw2Wy88847dKny+cbZSqWS8eQ8KSkJ8fHx+Nvf/ob//M//BJ/PZ/yoCwgIgF6vx29/+1vs2LHDabrhxx9/DJlMBrlc7lDogCVKrLe3F52dnYw0TJ1Oh+7ubnznO9/Bz3/+c4dV2uaTnp4OX19fZGZmYmBgwK6ClzWt0nqurWIhn8+nK0xZxZDdu3fjRz/6Ee05NB9HopS1mlRvby9YLBbKy8vxzjvvYN++fSgvL4efnx/y8vIY0SOOnkBNTs5V1TCZTLR/1ubNm50KrEajEWazGevWrcOxY8foCafBYEBFRQWmpqbAZrMZKU4GgwG9vb3o7e2lj8PqI3f27FmHffrxxx9DJBLhv//7vxftC1hSgCMiIrB7926HqVkajQZcLhc8Hg+bNm2iTaJhua6t48FoNCI6OhpXrlxBSoq9EWt/fz+dxmpN/7E1GLelr68PXC4XYWFhqKurQ3p6OtLS0nDr1i1MTk5i586dEAgEtIhiNf7PyMjA/v376QpgAoGAji5zhNlsxsjICEpKSiAUCnHnzh2sX7+ejuYzGo24desWZmZm8Itf/AIGgwECgQDr169n9LO1ShyLxYJYLMbIyIjTdC2rCFBQUICuri6kpKQgOTkZN27cgFardXitmkwm1NTUYHR0FLBUXf3www9hMpmg0+loXy0ul4u8vDz6PsHn86HX6+32wRqFND4+jmeffRYnT57E2rVrHUb92Fa2Cw4Opj2oIiIiEBERAYqi8NWvfhUxMTH4/ve/z/is1YPJlpycHMTFxSE4OBilpaVITk5mVM7T6XQwGo347Gc/i/j4eIfn0WQyQavV4tlnn0VsbCxdfdNR//7Hf/wH1Go1rl+/DqPRSF/LarUacXFxuHPnDqOiqjMyMzOhVqvxxhtvwNvbm77+bFNKlUqlU2ExPT0dH3/8Mb70pS/h9OnTdt9HsAhSMTExYLFYDlMMbbl48SJ27twJLy8vWkSzRoJqNBpcu3YNer0e7e3tMBqNdBTq/Ht0eXk59u/fT0e8wRL9unfvXmg0GpSWlsJsNkOn08HLywtKpRJDQ0MYGRmh77m7d+/GL3/5Sxw+fNhOuCI8WvCEHojP24jma6dw671fY9cL/46htnuAI6GJxYbA0wsCL1/4iSPA9/BasWgqdzGbTBjv70F8/kaoFEOYUgzBT2J/3bM5HARExDKqkVFmM1SKQTuhSq9VY3K4H3H5YqeTYnfxFAVgtLeDsUwhbUPwMqOv5hMYGYe+xrvw8guE0FuE2YkxBITPHbPJaEBfQyX8w6JXZULIYrEQn78J3VXXEV+42aEQode4Zm5sNauPSF1jl37DE3jAqNfafSYoMh5BkfGYnRiDrL4cHJ4AYcnO/YF4Qg/otWrGb8C59DPn3jjy7haoVRMIT81Z9DiMeh04PMcFogRePkgo2IzBtjqo5AMLGjN7igIxOznuUJSaUSqgkrvviRMYlYC+hkqXhRi1agJDHfWIL9hs5/XEE3hYIno++e3E4c6l9hm0GsjqKyC0RIi4GpXCZnPg4ePc+0qtmoCnn+sRdwadFr11dxCZnu+wqqJIHI7JkYElVW6zMjsx5thcnsVCXO56usKdO5E5mqlJh/czZwi9fedFEGrgHxqFkNhkyOorwE/NwUhn06oUreB7eMHD1w8q+SBE4nCn7eZSeFfPV20+ITHJmFEq0F1dZveAQTutcjsC1hqJq1Yp6WUcLg+BkXHLriQ4HyJKLQMulwuFQoEbN24gKSkJEokEFEVhcnISg4ODaGtrw7PPPsuosGTL9PQ0nfa0ZcsWnDp1ihGZYC1vDgB/+MMfkJ2dbffjHxafG2v1u8ceewwXL150WFWurKyMUW6bzWbTBrpWPDw8sGHDBrz44oswGo1QqVR0FIIVgUCA1NRUmM1mVFRUQKlU0qlUxcXF0Ov1uH79OtauXYtjx47hySefZHy+r68PUVHznmSNjcHT0xM/+9nP7CJC5HI5ZmZmsHfvXqfHZk0Di4qKQm1tLfLy8uzEsNraWuTm5kIsFuPu3buMSnwCgQApKSn4r//6L4SFhblUDnx8fBy1tbUoKyvD2NgYQ5Tq7OxkpCGGhIQwqgha4XK5EAqFaGhogFQqRU5ODu7du8eoSBYWFoaEhAQYjUY0NDRgcHCQ/lGRmpqKPXv20O3/v//v/8PAwABKSkqgVCpRVlYGg8EAiqIQEBCA8PBwSKVSOnUHluiQHTt2QCqVoqWlBe3t7ZidnXUqSllNrWEx3a+pqaGrXFrNya0iyGc+8xmcPHmSrky5efNm+pyXlpZifHwcly5dwtNPP+1Q6CwoKMAHH3yAJ5980k7gsP1hZa00d/jwYdq0e75ptNXsHTYm0Y5CxEtLS9HW1obz588jOTnZ7n1rFAYsPmVarRZms9luvFkFR2skiqenJ22IvWHDBuj1epSWlkKtVmNqaooWo2zvAQMDA/Q47OzsRH9/v0Ph4dq1a3SfWD25bOFyudi8eTP6+/uxa9cuxMbGIj093W49lZWV9D2muLjYYbSUtW+uXbuGZ555BrAI8VYhY/PmzbQRfWBgIMxmMy5dugSDwQA2m428vDwUFs75GVjHklarRU9PD31tGwwG1NbWorKykv7b9l5jJSAgAGvWrEFkZCQqKioglUqdpooNDAwgN3fuyWpJSQkjWgqWH1L79+9Hamoqbty4wbhXWgUgW/R6Pc6ePYuhoSG0trbaXduXLl3Crl27wOfzGeKtLaWlpdixYwc8PT3x8ccf2/ncwVJx1MvLC//wD/+A27dv243rxsZG/O53v0Nvb69LolRzczNYLBaef/55lJWVYc+ePTAajaisrIRKpQKbzQaXy0VSUpLD6C9vb2/Exsbi448/RmhoKJ1qOn8bVtEoIyMDx44dcyhKKRQKeHh40PdOHx8fRnq8h4cHdu3aBaVSiR/96Ec4ceKEw2O0RiBb9zMiIoJxrXh4eODxxx+HwWCAWCyGUqlEVlYWwsPDkZycTN+TTp06BU9PT7vIRcKjw+zkOMb7u+l7f4zFE0fg6Y2w5MVTRh80soYKWmDxDZKgv7na5Ukci82GnySS0Z4ym3Huv/8VIbGpmBmXY2Z87ncBh8dHQFj0op5JC8HmcGEyGsDh8mAyGjE7MW4XObUSRGYUoPvudcQXzN2zWSwWJob7MDncj6is4iWbOLsCm8NBbO76uUg7J15kC03KzSYT+puqIPTxW7JZvZd/ELz8g2DQaTHQUgNQFCSJGQ6je8RxaZB3t0KSkEZv39H5UQ5IoVIMIiQudUETcVvmfMmcV7OFJb1rdmIMXXevISqz0KHQ5enrj4khGQLn6SWzE2MY7+9ZksDojjCiHOzF7MSY06qMAeExUA5KHZ4XntADsWvWQTM9id57t+ETKEaQg6qfjpAkpENae8uhT9fMuMLliLup0SGM90vnvPGciOcB4TGQ1t5asii1mN0Oh8dHRHqe215eOvUM+EtI+7ONIFQOySCrr8Bg2z2oVUqkbti96OeXSkhMMrqry+ATJHEqPA11NCI0KWvV9sER3gEhEPr4obvqBiLT82jxaLF+sz64mBodppex2BwEhEWvSITVYjyYRz2PAEajkfaQshouw3Lj8/f3R0ZGBvR6Pbq7uzE6Oko/AbYyf3LJZrMhFosxPDxst63Lly/jj3/8I8RiMdrb2xnvqdVqhnjg5eUFb29vWnCwotPpMDU1xYggWLt2LcrLyxntKIrCiRMncOjQIRQWFkKv1+Oxxx5jvIqLi9Hc3Ixnn30WQqEQjz/+OHbv3k2v2xoB5u3tjQ0bNjBS7mCZiNimqvT19aG6uhqHDh2yS9OhKArXr1/Hli1b4OnpCU9PT4bRvbUvBgYG6GpMtua1VsxmM2QyGe2btXPnTly8eJHR5ubNm9iwYQNyc3MxPT2Nzs5Ou76wMjU1hatXr2Lfvn3IysqijXyttLS0MCb9hYWFuHv3rt16ent7odFokJmZiaCgIMzMzGDDhg3YvXs3/QoODsbPfvYzfP3rX0dAQAB2795Nn3Pr8Vy4cAGPPfYYIiMjoVKpoFKpEBAQgO3bt9PtExMTcerUKWzfvh3h4eF4/PHH8fjjj6OoqAgcDgdtbW1ITU3FgQMHcOPGDbv0TOt51Gq1tP9UTEwM+vr6GH5XsIggSqUSY2NjmJ6expYtWxAfH89Ih9RqtfTxHD9+3OF5DgoKwr59+3D06FGo1Wp6eWhoKONasS3dLhAIYDKZGJFls7Oz4PF4jKg/R30ik8kQEBAAHx8fbN++3W4czb/eAGDjxo0oKyuz2/f5YnRxcTEtssAS/bNnzx5MTEzg/Pnz2LdvH0PINJvNjB9S69atQ3l5ud25NhgMUKvVjLTJxMREu/FrFXb++Z//GVKplOHRZHts1m2yWCyEh4djYGDA4bHZCuR5eXl0EQNY7kMHDx7E6dOn8ac//QlbtmzBnj17sHv3btqHTqPR0GMgLCwMMzMzdIQLj8dDUVERPUanpqagVquxbds2xrVRVFQEb29v1NbWoqioCDt27LC738AiSFmj26zHFhISAoVCQS+z3pMTEhIQFBSEiooKu/XY9s1HH32Ew4cPIzAw0E4EVCgU8PPzo6MUMzIy7O4RMzMzYLPZ9LWUl5dHf4/YUlZWho0bN8LX1xcBAQGQyWSM92UyGR5//HGEhoaitLTU6T7Dcq8dGRlBYWEhw8uMy+Vi3bp1ePzxx7F9+3Z84xvfwJ///Gc68nD+/V+pVOLQoUOYmZlBX18fYxuOhN6SkhLcuXPH4bHZin9r1661S5Ezm824ePEiqqurUV5e7jCSdP5DhDVr1qC+vt6u3YULFyCTyeDv74+srCyGh9To6CiCg4Oxbds2yGQydHV1LXguCZ8OjAY9htrrIauvgKyhEmqVEpHp+YjOKkJUZiE8vH3hHxYNT1EghtobHvTuLohySAbf4FDat2YlorVmlKMoOPglhMQmIyqzkH6J41IxoxxFX+NdxkvR2w6Dzj5qxxGSxAyMdDYBwJz3U+bqVHxisViIzilGb105KLMZvXV3YDYaEZu7blUFKStcvgCRGQXovWd/j1sI5WAvZPXlCE9dA3Hc8sU6nkBIj2tr9TuVglkx2lPkD8303G87s8lkN4amx+WQ1t4Cm8tFbO56t0yhjQY9OA6q+83Hyz8I8QWbMdLVDEVvu937bA4HlJmZGaCZmoCit31ZEW/egSGYHpMv2GaovQFGg27BVC+Bl8+ixs0ePn6IzV0Pvqc3pLW3MDli/zvKEaKQcIdtDdpZlzyahjuboFZNIDZ33aL3h8CoBIzJnM9zFmK0tx3BMUkLthF6+8I/LArDHY0LtpvPcj2PAsKi4SeJAIvFxkhXE/qaqiBrqMRgWx30GrULa3CP6OxiyOqd/140GfQOq16uNlweHwmFW6CQtkM5JINBp2HsB0VRmB6To7+pir6/9zdXg8XmIDKjgP4uiEzPg9cyUz1dhYhSS8BoNOL999+nq+xZn6LbKpDV1dWIj4+njX1Pnz7NeL+urs4uPcBq7mxLe3s7/P39ERwcjIKCArS3t9MTN9gIQLZs3LgRN2/eZCyzPrW3xd/f36464NmzZ+kqgPHx8ejv77d7amw0GqFUKumIsPkCmFqtpidaYrEYiYmJuHXrFqON9abT0dGBjo4O7NmzB7BMvG0nJfNTljZt2kSnSVq5ePEiw2za19cXer2ekW5z5coVWrSARbjw8fHB+Pg4vUylUtHpK+vXr4dUKsXg4CDmo9FocPbsWTz55JP0cVh9XazHlJjIfDLCYrHA5/MZ53J6ehp1dXV0dJEjkRCWtLRDhw7h9u3bqKurs3u/vr4emZmZdKTOrl27cOnSJbt2CoUC27ZtQ1VVFW7fvs0Yj/PV80OHDuHy5cuMsQbALoIEALZv347Lly8zlt29exfZ2dkQiUTYvn077dlju8/WanMikQjr1q2za2PFw8MDzzzzDE6fPk2nfSUnJ9MC7dDQEDw8POhoQViqml27do3+++rVq9i2bRtjvWKxmCFKWMvZFxXN5YcHBASAx+Mxxvf169fpSqBW/Pz8oFKpGOewpqYG6enpDG8wW18iK9euXcPOnTvxzjvv2AlzVVVVdESRlT179tidJ6svnS2pqalobWUaPZ46dYoWyR5//HGcO3eOsc+Ojs1akdKWmpoapKSkwMvrkyec1sgzWy5fvowXXngBP//5zx2aRF+6dImR9uhs3F69ehWbN2/GL37xC3z88cd226murqZ9owIDA5GQkMAQ/2ATJWlLcXEx43qrr6+n78np6eng8/m4d++e3f5QFIWPPvoIBw4coEXO2NhY9PT00G3m35eTkpLQ0dHBON+2QiosAu/AwADj+Orq6pCdnU3fZ4qKinD37l16PbbVAhMSEpCSkoIzZ87Y7TMsEbW1tbWM6yA0NBRDQ59MWiiKwvHjx1FZWYn9+/c7LCxy/vx5Olpr06ZNqKqqYgjGlZWVduM2NDQUo6OjjGOz9pvtD1Aul2uXpmwdt9ZINmuVXisNDQ0OfRTZbLbd9pKSkuDj44ODBw/ixIkTjP6orKykr/2tW7eiv79/wQcThIcTiqLmJvsNlZA1VGKkswlBUYmIzi5GdFYRgqMTGZO16XEFfILE8JNEwFPk7/YE6n5hMhowOdy3YuXWrYzKOuh0DtvrgcsXIDgmiSFURWUWwidQjNHedoZQ1d9UhcmRAZjnCQk8gRBGvQ5qlRJ8T68lmUDbYjTooVZNYFI+MOeb0nqPnlANdzRiamwY53/1fUSk5SEwcunnaU6scS/dRuDpjZC4FLvUSIfHodehp+YmwGIhNnf9ik9YWWw2wpKzEJOzFiaDHr11dyDvaaX7NyA8FsoBKRTSdoTEzvW9dmYK0tpb0ExPIjZ3vVspVFZMeh24TtL37PbRUsFO4OmDnuoyGA326flWtDNTGO5sWnZqaUB4LJSDUofvURQFae0teAeGLNvg3xbf4FDE5q6H2WiAtPYWZifGFmwfEBGLiSH7793FMJtN6Km5CS//IEgS7KPgHe5bkATT43KXiozNRzM16ZKBv29wGHgCIcYHehZtixUQpIwGPaS1t2AyGrD26X9CfMFmRGcVITqrCCGxyRjv76a/G/oa72JqbGRJx28Ll8eHSBzu8BhnlAp4B7heCXulsV5nJr0Ol97+Dxi0asZ926DTIDwtl3GPF4WEPbDqs0SUchOrIPXkk08yJpz5+fl0pEBfXx/UajWdrsBms7Fjxw56wmU0Gp36IsXHx9NPaGdnZ9HW1sYw6t27dy/OnDlDX0SOvHOs+2M1ox0dHYVIJLKraAVLKoY1YqKyshJJSUmMyf3jjz/OKHk/X5DZs2cPbt++TUfVjI6O2vm5JCQkwMvLy05QaWhogEKhYEzMvL296agya9qINbIClgssOzubXpdcLoevr6+dMfiOHTvoqIGZmRmYzWa7ane2ES7t7e20v5aVnTt3oqqqChMTE/T5NhgMOHbsGJ566inGRWsrBLa2tiItzT6sd/PmzfTk3Gw24/Tp04z0IVj8XhoaPnlae+/ePbDZbGRnZ0MsFiMnJ4cR4aXX6yGVShmpMday7LYCp0wmw/DwMIqLixEYGIitW7fi448/po/r7t27jIkki8XCk08+iXPnztGpgRRF0dXJbLGeV+s4sqZbWqN+AgMDkZGRwRAmZDIZHdkGi0CUmZlJi1vzI5I4HA6efvppVFZWoqenhzYHpygKt2/fthNmvb29oVbPeSfMzs5CIBA49EYLDw9Hf38/YBE35wu3tmOEoigYjUaH5ve2guLExARGR0ftxpMV6zm/c+cOQkNDERMTA5FIhPXr1zMEp7GxMbtrycvLCzExMXRK7czMDHg8nsOKn76+vnTFvvLycuTm5tL3CmsFRuv5NplMMJvNDo8tOjqaFifGxsYwPj7u1B/IemxlZWW0L1BUVBRiY2MZYnJ/fz9CQ0MZfcJisbBmzRpGxFV1dTVCQkIQGRkJLpeLJ554Ah988AEdLWY2m9Hf388YS0lJSTCbzejunqtENTs767CypPXeIpfLHd6Tc3NzodPp0NLSwlh++vRpOuXOSmZmJpqa5iICbItJ2LJlyxb6GhgcHERoaKhdyueuXbvo69tkMkEqldpVT9y1axd9T66srGR4t0VGRqKoqAgfffQR3RfWiokXLlywu9/k5uaitraW/vvkyZPYunUrfHx8kJmZCS6Xy7hvS6VShIaGMsbbfIFnbGzMoWm7rehoMBgwMDDgMPXPNjqvvLwcWVlZtAAqEAiwZs0axr2tu7vbYYXJDRs20A9DRkZGMDU1RY9bDoeDxx57jPYwsz5Usu2zLVu2YGhoyC46mfDwoZlWoa/xLj3R4FoiRqKzihCRlrtgdbQZpRzeAXOpt36SSAh9RA+lMCWrr1hxXyR5TxstSviHx2BicPHJsIePH8KSsxmTmIi0PLDYbAy23GOIVYNtdTAZDei9dwcB4bGYHpdDOSDFcGcTLSb1N1U5fNlOnKz/l3e3QD05BhaLDZ9ACSSJGYwn+v6hUdj/z29iamxkWedlRqmAT2CICy2ZePkFQiQOXzDiTt7ThsHWe4hZsxYBYdFO281nqRPngPAYxOSshU+gBLL6cvQ3VcE7IBiq0SHoZqfAFXigt+4Oxgd6ELNm3bIEGZNB73ZVRVFIGGLWrEN/UxWUDsafTj2DgdZahylt7uJsom3U69BVeRXhqWtcrmboLgERsYjNXY8ZpQLS2lsLRloFxyQ5jCBzhnZGNZemlVHg9v5LEtIx0tXsQstPoMxmwA3RIig6EdqZKUyPLxylhmWMc1iurYHmGkRnlzgU73kCD4QmZdLfDZHp+TDqdei3RFLJGioh72mDyUVTblsCwmMwNToMo54ZxDHe37NgFc+VxGwyYWp0mBbrbV/aGRXMBgO4fCHj3h0QHrMixTdWCiJKucnVq1dx+PBhOyEoNDQUIyMjUKvVqK6ups3QrQQGBiI0NBTNzc10mpgjbFPB5qfIwHJT3bNnD86cOeNQALISExODoaEh6PX6Bbe3fv163Lp1Cz09PTAajXYTaR6Ph5iYGHR0dMBgMOD48eOM6k6wTEouXbqEmZkZO3HDypo1azA9PU1PFKuqqqDT6ezEBFgEhampKTptbz4JCQmQSqUwmUy4deuWw2Pj8XgQiUQYGxuzi0iwPZdWE9729naHptb79+/HpUuXMDk5CR6Phw8//BCHDx+2m8BaTXodiVtWBAIB9Ho9nSJpNeW1JTExEV1dXaAoCo2NjTAYDAxRMiIiAomJiXRa2fnz5x16bEVFRWFychJTU1MYHR1FY2Mj7TkES5Tc9u3b6cnr6OgoQ/yznp+nnnqKrv52584du5L0VqzRUtbqhbbbgmU8BgYG0ibXjnx/oqKiEBUVhVu3bjmMJASAz3zmMxgYGKAnyvMj4Gyxju0rV67YRUlZyc3NRV1dHfr6+uDn50d72diyceNGXL9+fcHjDw4OxujoKF0J01mlvMzMTDQ2NqK2thZeXl6MMRcSEkILcwaDwWlFv8zMTHR1dUGj0Sx4bBs2bMDNmzcxODgIvV5vJwAEBQUhICAAHR0ddIqYI9asWYO6ujqYzWZcvnzZLirLSnx8PLq7u1FRUYGgoCBGtGBCQgKCg4Np4c5RFJh1HYODg9Bqtejq6oJWq0VGRgb9vkAgwP79+/Hhhx+Coiin13ZJSQlaWlowMTGBGzdu2EWAWSkuLkZFRYXTe2RxcTFGR0fp+1ZpaSny8vIYwr0Vq2eYs3tJQEAANBoNNBoNIyLPFg8PD/j4+EAul9tFklnx9fWFv78/ZDIZw0/QSnBwMHbu3In3338fvr6+UCqVdKrh/PuNbZTvuXPnUFRUxLg2c3NzodFo0No695S9pqYG+fnMtAY2m409e/bQ9wlnXnRCoRBCoZBOV53vjWUlJycHdXV1kMlkMJlMiItj/riMjY2FTqfD4OAgysvLUVzseKLu4+ODmZkZGI1GlJWV2d2T/P39kZCQgLt37zKi5GzZtGkT5HI52traHG6D8GAwGQ0Y7myiU/KmRocQkZZHTzbcmZhRZjPDC8Q/NApCb18MW9LOHgbG+3vgHxrlsLKZwMsH2hmV2+s0m0xQq8bhHTD3vW+NmlgKLDYbopAwRGbkM1MA49OgU8+g/MPfY2KoDwadFnxPbwRGxCEifa5tZEaBwxedOmLz//CUHARFJ0IUEgYPHxHjfFBmM8wmE0ITM6CeHMeMUrHgPi/E9LgcPoFiF1ra4xscBqG3LxTSuXuG9Z6rnZlCd9UNePr6Izq72O2JIIfLg2mBaKLF8BT5IyZnLUKTszHYeg9jsk5c+s2/Y7D1HiIz5s7tSkSpcB08/F4MNoeD2DXrQFGW1EtLxJ1Bq0F/YxWjEuFy8Q0OZaQ0zpnEVyC+cLNLhvS2LEVAEcenIWbNOozJOtFbV+4wQsw7IASzytEFsxmsjA/0QCFtR0LhFvAE9g8nF8PD1x/aGdWc0OQiCmmb295w4Sk5GJN1LZr2uBSsopynrz9ickoY93MuXwCDTuPwcyw2GwFh0YjKLPzkuyNYgqH2Blqk6m+ugWbatftrdFYxZA2fROlbz+lKRh2ZDHpMDPehv7nGLrV6sK0OZpMRkoR0u/upp18gNn7hWxB6+bgctfYgYFHLjVv7O8Ga2vXaa69hzRrHlSqqq6sxPDyMPXv22D0Bt2I163UkJFgZGhrCtWvX8Pjjjzuc/MASjXX58mV88YtfdLotg8GAo0ePYsOGDbT3kCMuXbpEG5w74+rVqzAYDNi2bZvDybLZbMbVq1fBZrPtfvzbUlFRgRs3buDw4cN2kw0rJpMJv/vd7/Dss886PX6NRoMPPvgAO3bsQFhYmMM2FEXhgw8+QFZWFlJTU53u09mzZxEWFua0X00mE06cOIG+vj48//zzDqNSYDHbraqqwtNPP+10WxMTEzh9+jQee+wxOxHIyvT0NC5duoSkpCSHaSmw9H9DQwOSk5PtUgWtWMvNe3t7O52Uz8zM4ObNmwgICHA4SYbl+K9evQoWi+VUAIIlbbGurg6f+cxnHEamAEBTUxPq6+vx2c9+1umNuqenB9evX8eXv/xlp9vq7OzEBx98gL1799JpgI64cOECAgMDnVZjhCXaZGJigpECOp+amhoMDw8vWJVRoVDg/PnzOHjwoENxy8q7776LNWvWOIymgyWK6MqVKzh8+DAjRc4W65hMSEhY0JD/xo0bMBgMC/bbzZs36Wp5zujp6aFTupz1LUVR+NOf/oT169c7HZNdXV1obGxESUmJ06p+JpMJp0+fhlgsZkQB2eLKuLWKVrbVLh3R3NyMrq4uuygiW6qqqnDx4kV88YtfZHhT2WI0GvG73/0On/vc55z2v8lkwl//+lds2bLFrtiD7X6fOHECMTExTu9JcGFs63Q6nDhxAqOjo3juueecikUKhQKlpaXYtm2b0z6pq6uDVCrFjh077KqMWhkcHMSFCxfwuc99zmFULmzuyZmZmU7HPyxiM4fDcXrfgiX9kcPhOK1ICct4q6mpwcGDB53uU319PTo7O+0Kcsxvc/XqVVy8eBGTk5N20aKEhbFG2H751yfdnvjBMm5UikGoRgYAFgtsDhchsckueawsRn9TlcNKXsrBXug1sy6nwqwWRr0OAy01iMlx/EDEoNNitLfdbZN2WUMlwlNyGKljqxGNJa29DZE4fM5v1Y3IIHcZbKtDUFQCPSaktbcRlpK9pDHS13gXUZn2D03cQSFtA5cnwMzEKDg8PiizCeGpuUueoKoUQ6DM5mVVS4NlAj/S1YLx/m701NxE4aG531lsDhfB0YkOK7W5ykBLLUKTMh2Kp65i1Osga6jEjFIBT19/JBRuWfFKl9ZxPt7fA830BCLS8lz4FBPlYC94Qo8li5ewVDUbaKkBm81GeFouQ6jUqWcwJutEeOrcbwBHY7K/qRoeIn8ELTMSR69RQ97Tish0187DUu8TFEWhq/Iq4vI3OfV6c+faoygKg621YLHYCHMiqhp0WiikbbQJuruYjAaM9XUzhH/fIAn8JJEOx6VKMReBGBKbgpGuZvhJItyuUGfQaqAaHYJGpWRUogcANpcHnyAJvAOC3RK2pbW3EZs7l/462HoPInHEfU0r1Gtm8b8v7IdKpVpwfkREKRcZGBhwqbIRgUAgEAiER5P+/n6nwiTBMUsRpXTqGSik7TCb5nzBROJwiELCV9zrYqFJkHJACr1WQ1cqexB0V5chds26BUuKuyuiaGdUGB+Q2k3UVIohmI2GFROPFNI2eIoC4R0QDGntLUTnlKxKqghFUeitu8PwHKIoCl13ryEub4PbIslKiFIA0HT1JG69+z/43M+PLtso2GQ0YrijfkkCCixjeWpsGAIvX0gS0iGrr0BoUiYUPa2IzCiAyWjEmKwD2tlpsFgscLg8BMckuSUi9zXeRWRGwZKuUYNOi7G+Lhi0c/6E5978V6x95nn4hzp/eANHUSgsNngCIXgCD/CEc/9yBR7g8gV0W1l9BbgCIQQeXi5XxpuPyWjEUHu9y0LOQhi0Ggy01kLo5QtJYgZjPyPScsHh8RniudGgR2/tbYSn5iyrOqYttttaCLPJhIGWmiVfHyajAdKaW4gvdFyp0tVrb2p0GKOyTkSkroHAy2fBtrKGSkRnOX546S5z5uAjmBzpp8cgX+iJoOhEOlJN1lAJSUI6hjsaEZNj/2CVoijoZqegUgxDNztl9z5P6AHf4DB4igJW5PturK8LfA8v+AaH0st6am4iMj0fPKHjh5Urjaui1OqXpXhECAsLQ39/P3x8fB6YAdhKMTU1hcjISPT39y84OAj3H9I3DyekXx5eSN88nDxq/UJRFKanp51G5hKWh9lkwqisk34izffwQlhy1rKiLpZLQEQsxgd6IO9ucVj+fbUZ7e1AYGTcgoLUUhhqb3Do0SMKCYOsvmJFRCmKojA7MUan+URmFKC/sWrFI7EAWAy7melELBYLcXkb0VN9AwlFW+/r73aKojDQUgs/SSR2f+MnUA72YqyvCxweD5KEjCUZm3O4XJjnFYFYDLPJhKH2ehj1WtpbCpZKdh4+Igg8vcH39MbU2Ah8gySMMW406DEqbYdBpwFFUeAJhAiOSV40RcyV82w2mzAxJMOMcpRexuUL6Ei3MVknnn3tz5gc7kNIXKpb0W5mswlGnRYGrQYGnRazE2Mw6LQw6j8pMtN07RRCYpKRuf2Ay+udD4fLtasQuFR4Qg/ErlkHzfQkeu/dhnegGMHRiYhIz8NAcw3CU9fQYtH0uBwKaTvi8jeu6H3Buq3Frk95z/LuhRwuDxHpeZDVVzgUbBYbPyajEX2NlXMVHPMdW06sJiwWC77BoQyBR6+ZhULaRvtJsVgs1J1/H4ERcRjuaLRLH2SxWBB4+UAUEgah9/Krbi7G9JicjpKyErtmHbruXkN84eaHylOKiFIuwmazH7mno76+vo/EZOFRhPTNwwnpl4cX0jcPJ49Sv5C0vZVlekwOpaXSFJvNRlB0IsRxq/8j3YoriQKBEXEY7++BvKcV4jjnNgArjUGrgVqlRPQiZdfdRTkkg39o1KqLNCNdzYzURy5fAA+RPy2ArCSaKaXDccPhchGdXQJp7S3E5Tm3p1hJZifHMdLZNGew7+mNgeYaRGbM+fAZ9TqMdDXDZNCDzeFCHJ+2oAn/UtFMqyDvbgaLzUFYUpZdNIS8p40WH8RxqeiuumGXDsTl8RGa9Il9hEGrYUy8BZ7eCI5JWlQ0pigKM+MKTAzL6GUsFhv+YdEICI+1G4dmswnT43LE5q6Hb3Do3MS5YJPLE2c2mwO+h9eCEV4URSEyowDDHY3Qa2YQnroGPMH9iRhZCA8fP8TmrsfU6DB6am4iIDwWXIEQykEpvAOCIe9phdloXBUxhsPlgcPjQa9RLzgm9erZZadNC719ERAeg+GORsYYm1/Ffj5j/d2YHh1BVGaBW4b6Ak8f6GanF42oWip8Dy9G1KnJaET5B7+D0FuE6Ozi+xaN5IhRWSeCou0LwbDYbMTmroe09vYDEfecQUQpAoFAIBAIBMKqYtBqMdrbQZv7+gSKEZVZ+MCiz7UzKpfSXwIj4zDW370kg9+l0td412Uhhc3hwGQ0uCQQTA73LbhekTgCkyMDy/IuoigK2mkVPBIzGMtDYpLRXV0Gn0DxivX5xJAMfhLHKV4AwPfwhDguFf1N1bQ4tNi+L4U5f5t74HB5iC+w9TD8ZH1cvgARabmAJY1J3t0Cg1YDFpsNcVzqsifN4wM9mB4bsUyGSxyeY5PRCDaHw3gvKqsIfQ13HUauWOEJPRgTb516BsMdDTAZjZbID19QZjO0M1MY7+9mVDDzDhQjIj3PJWFpoLkGEZaUOBaLhZictei9d2dFRUVrpdWw5CyYzSYMttyD2WxCRFqeU6+j+4k1Ekc5IIVudhrNV08ivmAzgqISIBKHr9p2w1PWoLe+nJEGa4t17KwEvsGh0KtnLNXp5vyFjTqtQ3FQr1Gjv7kagRFxdhE/rhAck4ih9oYVSbVcDIqi0FNThid+8BsMdzTQpv0PihmlAsFOUlS5fAFCEzNcvjfeDx781UcgEAgEAoFAeKQZ6++yM9d+kEyNDsNP4ppXaFBkPMb6uu6LMCXvbkFwbLLLBs9+odGYHO6nJ3fOGGqvX9QQ3U8SAVl9xbJEqaH2eoSlON5ORFouBlpqV2yCqFIMOjWBt+LlHwSDTuNSGuZcRIV7kZ1qlRLDHY0IT81x2dSYw+XRfWE2mSDvaYXeUpksJDbZZa+guRS9Ohj1OgSExy56LoY7GhjRKQDAEwjhHRCMieE+px5O8xF4ejP8rTTTk6g59WcIvX0hjk9b0jWumVaBw+MzhIm5tMEkDLU3ICzZeVEbV5kvOrLZHERm5MNo0GOguRocHn+uEqEL1x6Hx5+rOOhG1I7L+2k2w2jQgcPloafmJsJScjApH4BBp0FgRNyKm7/DEj0j9BZBrZqAp8h+/Mm7myGOX7nCD0HRiRhsq8P0mBw+QWJopich9GFeP8MdjTDqtYjLXb/kY+ZwebQ34WpCURR6qssQnVU8J0Cn56OnumyeSH3/UEjbEByTvGAbT1EAtLPTUPS2I2SRtveDlR/VhIcegUCAV199FQLBw/HDkPAJpG8eTki/PLyQvnk4If1CmE9o4tL8dFYLvXrGrVSUoKgEsNgcKHrbV22fdOoZ6NQzbqW4efkFYnZybME2Rr0ORr1uWdXVXMFsNsGgVTs9rwJPb3B5fKhVE8ve1oxyFF5+rhmI+0kiweJwoBzsXbDd1OgQwy9mIazeUZMjA4gv2OR2lS0rbA4HoYkZiM4uRlRmIabG5JDVV0BWX4GZCcf9qplWobfuDvqbqyGOT0NMzlqX9tuo1zmMRgmKSsDkcB8jwskdPHz8kLn94JIFKQAYdiKa+gSKwRUIMDHct6T12jI7MQqfAPvK11weH9HZxQiOSUJvXTnk3S2Lrss/NBqTQ7JF27mKQatBf3MNZPUV6GuqgneAGJLEDHzm2z+DT6AY0VlFEHqL0N9cDVlDJWQNlXNVGVewXpkkId3psRu0mhVPNw1PycFYXxd06hloplXw8PEDAMxMjKG7ugwiccScef4yRbj7EY3be+8OwlPX0OeIxWIhOCYJ8p62Vd+2I2Ynx+HtQoGFgLBomI1GqBRD92W/FoJU3yMQCAQCgUAgrApLqb53P7CtaOUOo70dAIDgFfZ7AoCuquuIz9/k9iRqsapV0nu3EZ1V7FL6zcSQDGwuD6IQ9039+5trIElIW9Sjp7u6bNleJr11dxaNDJrPYOs9+IaEwSdQ7PB9VyvIaaYm5qJ3UrLpibQjljrGYBG9xvu7MWsRpnSz0/AJDoVudgpCbxHE8WlujRPlgBRcgQC+wY771WQ0oK+h0qEJviss51jH+rrAE3gsmJ4mq6+AOD5tWcJqf1MVwtNyF00lnJ0ch6KnFb7BYQtGIC63UuPU2AgmLEIpT+gBcVwqwy9Jeu82YrJL6O3YijMURUElH8DU6DCdkhgUlQBPUcCS9wdOqrWZDHoMdTSuSgqctVImX+g5VxChuRoCT2+GJ91yGZV1wlMUAC+/wBVbpy2y+goExyQ5PPey+gqEpeQsWiRgJZH3tMI7IMSt412J68sZrlbfI5FSBAKBQCAQCIS/K5b6TDY4JgkUKIzJOld0f4Y7GyFJyFjxp/ozSgU8RYEu+8H4h0VjcglRKSajAWajwSXT6NDEDAx3Nrq9DSu62WnwPdw3XA5PXTMXmTE77bTNYud/sK0OyiEZ4gs2LShILReryBCdXYzo7GKMdDVjpLMRMTlrIUlId3ucTI2NOBWkYElz8g+Lxlhf15L3eSnXlNlswvTYyKJ+SVFZRehvrl6WTw9FUS55W3n5BSI2dz24fAGktbdWLIrEbDZB3t1CR8IZtRpEZRUhOrsYYcnZDEFKr5kFT+ABFpsNSWIGRrqaGetisVjwk0QiKrMQ0VlFiEjPw+zEGB1FNdBSA50lJdQdgqISMN7fw1g2v3DBSsJisRCRugbnf/V9SGtvISw5a8W3FRgZh/H+7hVdp5X+5hoERMQ6FQMjMwvQ33h3VbbtCIqioFYp3RbgorKKMNBcs+RoyZWAeEoRCAQCgUAgEAguEhKTDIW0DWN9XQiKsq9u5C7aGRVMBr1L6RbOsEZLzEchbb8v1ecGWmoRbjHyXgxPUQDG+3ugczOF0spwZxOis4qWsJdATM5adN+9jtjcdW5V8dJMT2KwrQ7hydkuez6tFGOyTmRsO4DpcfmSPq+dmYLAa/Hz7CeJRG9dOUTicLcr0rEt3j2LGe7Px9bcfCFYLBZi16y7rxXDROJwiMThGOvvhrT2FsTxaW5HIuk1s5B3t8JsMoLFZiM4JnlRbzNYxM+Y7DnzeYGn96ICE5vNYURvmgx6KHrbodeoAQB8oSeCY5Nd8sDyD4+GckCKgIhYgE77XH6kj1Gvw8RwHzRTzPRdgac3Nn/pO2Cx2ZgZV8A/LHrZ27LF1eqN7jLUXg/fIInTyEvrtv3DYzDW342gyPhV2Q9b5N2tEMctPr7mw2KxEJu3AT01ZUgo3PJACpAQUYpAIBAIBAKB8HfFcn90h8SmQN7TtiKTjYHWe4jPX7ohrqdfINST4/CaJ2opetsRHO1+mqF3YAhtQOwKRr0OLBbLLdPniPQ8SGtuIs5NgcFo0IPD5S7ZZ4bFYiEufyO6q67PTb5cWM9Qez0oilpSauVyUasmoJmZQmR63pJFKXl3i8tpZtFZReipuem2QTOXx4dRr3NLlNLO2JubL7gNvgDiuNQ5cdCmGqArmIxGsJYoTgRFxiMwIg7y7hbIu1ss3kHOU5FViiE62pDv4YWwlGy3zoteowZPIGSMTXevSQ6Pj9DET0zt9ZpZjHQ20ZEwHr5+CIpKcCjY+IkjIK29hYCI2Lk+ddPM3WwyQaUYxPTYiN0+BYRFO6wIp1PPICqzEOMDPZDW3kJUZqHb212IlXYrGulqgdDHz6WKiP6hUZDW3oZ/aJTboq07UBQFzfQEJAnui1IAwOFyEZVRgL6GSkRnF6/4/i0GEaUIBAKBQCAQCH83mAx6sFdgciCOS4G8p5VR2txdBtvqEJaUvSyxwz80CsMdjQxRymw2YVY5tqSqSgHhsehrqHR5AjzQUuu2nxCLxUJQdAJGezvc8ucaaqtDeOoat7Y1HzaHg5ictZDW3lpQFNPOqDDQeg9hSVnL9upZCmaTCUNtdUgo2gIA8A2SWMzYXff7sqa7uSrisdhshMSmYKSrxa3JLZcvhFGvcyvybaitHrFuRvF5BwRDMz0J5ZAMAW5E1CgHehAYsbRrFJbxKklIB2U2Y7CtDiaDHkJvX6hVExB6+0IhbaPTQn1DwhCVVbTka3qovQ5R8yIBgyLjIauvcPmanA/fwwsRNpGMatUEBppr5sQaioJvcCj8QqPofZ4T3Vth0KohScx0uE6KojCjVEAlH4DZ9ElaJYvNgUgcjsj0fLfF48CIOPhJouj7z0pEooK+doZdLmSwEKO9HeAKBG6Nv6isQvQ13EVs7rplb98Zc2mWGctah8DLB/5hURjubGSImvcD4in1CPJP//RPYLFYePPNNxdt+9ZbbyEmJgZCoRBFRUW4e5eZ96rVanHkyBEEBgbC29sbTzzxBOTypT2p+XvEYDDge9/7HjIzM+Hl5YWwsDB8/vOfx9DQ4vnppG9Wl8XO73w+/PBDpKSkQCgUIjMzE+fOnWO8T1EUfvjDHyI0NBQeHh7Yvn07OjtX1nPkUea1115DQUEBfHx8EBISggMHDqC9ffEqV6Rf7j+vv/46WCwWXnrppQXbkb4hPKxMjysWTLlwB3FcKgw6LcYHelxozUStUoLFYjkswe4Ojsqez6VFuZZONx93JtN6jRpcPh8crvvPuX2DwzA7OQ6jQe9Se7PZBMpsXpFoA57QA5LEDPQ3VQEWTyw255NjGO5oxFhfN+LzNz0QQQpWo2ubSaxfaBQmhvvdWsdwRyNCk9ybXPoEiWHQzi7ovTUfLl8Ao17ncvvx/h4ERMQtSbgJjk7EzLgc2hmVy5/RTE8u+zqDRbSLSMtFRHoeeuvu4Px//xsGW2vhJ4mk/b/8bcQddzFoNeDyBQ4jmNgcDkwuXiuL4Snyp/2oorOLweHx0N9Uhb7Gu+hrvDvnTTSphMlgAJfHh2ZahaH2Bvr9vsa76G+qgkGnRWhSNqIyC+lXZHoefIMkS45m5HC5iM1dBy5fgO7qMhh0mmUf79y1s/wKjuP9PaAos9vRsRwuD77BoSuyD46gKAraGRU8fJZWBdQW3+AwcHmCRauVrjRElHrEOH78OCoqKhAWtvhTlPfffx8vv/wyXn31VdTW1iI7Oxu7du2CQqGg23zrW9/C6dOn8eGHH+LGjRsYGhrCoUOHVvkoHh3UajVqa2vxgx/8ALW1tTh27Bja29uxb9++BT9H+mZ1ceX82nLnzh08++yzeO6553Dv3j0cOHAABw4cQFNTE93mZz/7GX71q1/ht7/9LSorK+Hl5YVdu3ZBq9XexyP79HLjxg0cOXIEFRUVKC0thcFgwM6dOzE7O+v0M6Rf7j9VVVX43e9+h6ysrAXbkb4hPMzMKOXwdlAafqlIEtJg0GqgHJC6/BmKojDUXo+w5OwV2w8rutlpsDlct32BbPHyD8KM0vF3oi2DbfcQnrL0yKWozEKXjYCH2xsQmrTwvccdPEUB8AkKxUhXsyU1SgLtzBS6qq7DNyQMEWm5D8RbBQCG2hsQMs8DaCn7YtBqllT1MiI9H/3N1S63nxOlXLt3U2YzVIpB+Eki3N4vK5EZBRhormVE6NwPKIrCSFcz+hrvIn3rAeTt+xwiMwpWrGrZYNs9hDlJTQxNzsZQx9ILBCyEb3CYjaiUD93sNGYmFDj/q++jr/EupseGERyTyBCfojILERAWvSRB2hazyeQwtdJPEonY3HUYaquHvKdtWdtYiet4YrgPeq0aIbEpS/p8YGQcJgZ7l2XW74zhjpWNbAqOSYJaNU5X/7wfsKiVTrIkPDAGBwdRVFSEixcvYs+ePXjppZcWfJJdVFSEgoIC/PrXvwYAmM1mREZG4sUXX8Q///M/Q6VSITg4GO+99x6efPJJAEBbWxtSU1NRXl6O4uL7n2/6KFBVVYXCwkLIZDJERUU5bEP6ZnVZ7PzO5+mnn8bs7CzOnDlDLysuLkZOTg5++9vfgqIohIWF4dvf/ja+853vAABUKhXEYjH+9Kc/4ZlnnrmPR/doMDo6ipCQENy4cQMbNzpOryD9cn+ZmZlBbm4ufvOb3+AnP/kJcnJynEbkkr4hWJmamoJIJMKXf31ySZPj1WC5pdydMdzZBIGXj0tpHf3NNQiOTlyxyaztMfXU3ERs7vplTcQoilrUW0Q7MwXloHTZwppysBdgsRY8bxRFobfuDmLXrHz6y2hvB4Y7GxEYGQ+zybRiYlR/U5XbaY0AoJIPQjujcmiIPdTegKCoBPA9PBddz+TIXFSVnyTS7X2AJcVrYljmkn+TTj2DyZF+iONSF23b13gXoYmZ4AmXLprC4i8mq69wyfh8udc8RVEY7miATj0DSXwabXY/3NkE/9BICL2XH6Fi0Gow0t2CyAWM32X1FffN70d67zZ4AiGCohJW5PicMT0mh1GvXdDgfGpsBKPSdkSk5y2pOAIsYyAyo2BJ1/bU6BCmxxVue5nNx6DTYrD1HmJySpa1HltW897YXV2GqMzCZRnd6zWz+N8X9kOlUsHX1/n3HYmUekQwm8343Oc+h1deeQXp6YuX0tTr9aipqcH27dvpZWw2G9u3b0d5eTkAoKamBgaDgdEmJSUFUVFRdBuC+6hUqrlSrn6OSwmTvlldXDm/8ykvL2e0B4Bdu3bR7aVSKUZGRhhtRCIRioqKSH8sEZVqLiw/IMB52gTpl/vLkSNHsGfPHrtz7gjSN4S/R0ITM6CbncLEkGzBdjPKUXD5ghUTpGAxETbqdZgc6YefOGLZooorn59LDVt+5FJAeAxUI/0LRr0opG1Lqiq1GCr5INQqJe4cfRtGvQ6R6XkPLDoKAAw6DZSDUqcV2sRxKVBIW11a1+TIwJIFKVhSvFgstkvRElaj88XQzkyBw+UtW5CyblMSn4bB1nuLbFMFgZfPkrZBmc0YaKmFrL4cAeGxiF2zjlF9URKfBnm3a/2xGINtdQhPXVj08A+Lui9pVWrVBDx8/BCemouBRc7vcpkeH4H3IunUvkESxOVvhKKnDcNLjBbzD41e9N7siBnlKFTywWULUgDAEwjhKfLH1OjiNi6usloRtwAQl7sevfdugzKbV2X9thBR6hHhpz/9KbhcLr7xjW+41H5sbAwmkwliMfMmIBaLMTIyVy1hZGQEfD7fTjyxbUNwD61Wi+9973t49tlnnarFpG9WF1fO73xGRkYW7Q/rMlfXSXCO2WzGSy+9hHXr1iEjw7lpI+mX+8fRo0dRW1uL1157zaX2pG8IDzOrKTqEJmZCOzPl1DuEoiiMdDcjNHF5hrTzCQiPhXJQCuVgL13Kfbl4+gU6FSTUKiU8fP1X7FxGZhTQ/k6O0ExNrIgnkF6jxkBLLcM7JyqrCLu/+f+Dt38w+ptcT1lbaSiKQu+9O4jJWeu0DYfHh8lodPq+Fb1mdkWEn7DkLAx3Ni5avYzN5bnkdzTUVuc0PW0pePkHQeDpvaBQM97f47YHkNlkQn9TNWQNlQiJTUZMzlqHIjKLzQZFUcuu7mbQacDh8R16SdniGxyGqdHhZW3LFeTdLRDHp4HFYkEcl4qRrpZV25ZRr3MpEofFYiEyIx++IWHoqroOzfSkW9vxCRK7XcFSMzWB8f7uJUU8OiMkNgWjvZ0rUhGQMpth0KqXHD22GCw2GzFr5opCrDZElPoU8u6778Lb25t+3bhxA//93/+NP/3pTw/06Q7Bvm9u3rxJv2cwGPDUU0+Boii8/fbbD3Q/CYSHmSNHjqCpqQlHjx590LtCANDf349vfvObePfddyEULj2Em0D4eyE0KROaqUk6fcqW/qYqRK3gBMeKh48I0tpbbptaL0RQVALG+rocvifvboU4fvFULVfh8gXwEPk7nHArB3vhH+p6pStbKLMZY7JOyBoqIWuoxHh/N0ITM2hPHD9JBPSaWfA9PBEYGYfAyHh03b3mkvCz0lhTzBYziGaxWItGLizF4NwZiwmG1n1abA4yPtCDgIjYFZ+rBEUnYkapcCpSmIwGcGy8uRbCZDTQJt6SxAzE5JQsmnYcHJ2IMdnyinQMtt5bNErKCk/oAb1GvaztLcTMxBg8/QLpfvIJFEM3OwWDdvmG4yuBl18g4vM3QTnYi4GWWrfEHXfGnm52GsOdTauSLhmZkb/oNeUKqxklZYUn8IA4Pg0DLTWruh0iSn0K2bdvH+rq6ujXnTt3oFAoEBUVBS6XCy6XC5lMhm9/+9uIiYlxuI6goCBwOBy7am1yuRwSiQQAIJFIoNfrMTk56bQNgcn8vsnPzwdsBCmZTIbS0tIFc2pJ36wurpzf+UgkkkX7w7rM1XUSHPPCCy/gzJkzuHbtGiIiFjZBJf1yf6ipqYFCoUBubi79HXPjxg386le/ApfLhclByg3pG8LDyv2yUg1LzoJapcTkyAC9bGp0GAIv3yV7a5nNJsxOjkMhbWNUwbK+uqtvQiFtx3BHI0xGw7KPwdkEbnpcDu/AkBUXF0JikjEqs48gmBodgkgc7vJ6NFMT6Gu8C1lDJfqbq+Hh6z9XZSyrCKFJmXYChaKnDSGxcwKbp8gfsbnrIa25Cc3UxAod2eKMyTrhEyh2Kc0sKCoRo33ORRCrYLVY1I2rCDy9IfDyXVaEDmU2QyUfXFY64UJEZRZisOXeksVEo14HWX0FBlpqEZaSg+jsYpd9dLz8g6BWKZe0XVijpLiLR0lZCU3KxHDn6hieA8CotB3iOKaZd1Rm4YqIKCsFi8VCeEoOgqLi0VNdhhnlqMufc8Vo3KDVoL+5GrG561dgb+3he3iBJ/TAzDKMxM1mEww67X3xavTyD4KnKBCjyxRfF4KIUp9CfHx8kJCQQL++9rWvoaGhgSGGhIWF4ZVXXsHFixcdroPP5yMvLw9Xrlyhl5nNZly5cgUlJXPma3l5eeDxeIw27e3t6Ovro9sQmMzvGw8PD1qQ6uzsxOXLlxEYGLjgOkjfrC6unN/5lJSUMNoDQGlpKd0+NjYWEomE0WZqagqVlZWkP1yEoii88MILOH78OK5evYrY2MXTT0i/3B+2bduGxsZGO8H9H/7hH1BXVwcOx/6HNOkbwsOKdkYFoY9jT8eVJiw5G7OTY5iUD4AymzHa22E32bNiNpkwo1RgpKvFoeDU13gXgy33oJmehG9wKCIzCphl2DMKsP6zRxCdVYTAyDgMtTfQ0UHupqzYIvTxg1rFFGfGZF0Ijk5c8joXIiItFwPNnzyRnx6Xw9s/eMHPmIwGDHc2fXK8SgUi0vMQnVWEqMxCePkHLfh5s9nEqCDG4fKQULQFY31dblVUXCpq1QQ0M1MICHf8IHk+niJ/aKacpy6NdDc79aRaKuK4FIz2diy5cthASw0i0pwbeK8EsbnrIL3HTDNaLKLMoNWgt64cwx0NiEjPR3RWEaPioatwBcIlRxINtdUjPNX1CpZsNgeU2bwqArtVcJ4Pi81GQESc08jJB4XQW4T4gk2YUSrm0nEX6e/AyASM93Uv2MZo0KO37g7i8zeteqr3SFfTkvtxqK1uRXyuXCUgPAZGvXbV0keXV8OR8FAQGBhoJ3TweDxIJBIkJyfTy7Zt24aDBw/ihRdeAAC8/PLL+MIXvoD8/HwUFhbizTffxOzsLL70pS8BFtPZ5557Di+//DICAgLg6+uLF198ESUlJaS6m4sYDAY8+eSTqK2txZkzZ2AymWi/lICAAPD5c198pG/uL4ud389//vMIDw+n/XO++c1vYtOmTfjFL36BPXv24OjRo6iursbvf/97wPLk5aWXXsJPfvITJCYmIjY2Fj/4wQ8QFhaGAwcOPNBj/bRw5MgRvPfeezh58iR8fHzo60QkEsHDY84Xg/TLg8HHx8fO28vLywuBgYH0ctI3hE8LU4oh+IU6rny7GoSn5GCw9R7qzr+PuLwNjGgD28kIm8OBpygQ/mFR4Ht4uT0ZmhlX0GbBfA8vuoIXRVFQDkoha6gErKkYcSkupzOFxCShr/EuncIyKR+AKCTMrX1zB4GnN7h8AdSqOQ+p8f5uhx5LKsUQJof7ABYLbA4XIbHJS/JVMZtNTs91ZEYBxmSdltQq10UDt7ZvMmGorQ4JRVtWbJ262ZkVNdG3EpVVhL6GygU9rxyhnZkCi81xqWLgcuDw+AhNzMRASy0i0nIBy3h1FJ2lU89guKMBXL4AUVmFy44qm9tujdsV/gw6LdgcLtgOHu4sREhsChQOIpqWy1hfl9Mqbn6SCEhrb8M/LBocLm9Ft7tcJAnp0Gtm0VNzE8ExifANdnyP8hT5Y2yBKEOT0YiemptIKNi8aBrtShCesmZOXHLz/mI2mWDU61fEN84dQhMz0Vt3xxI96VrxgIUKWNhCRKm/I7q7uzE29kmY4NNPP43R0VH88Ic/xMjICHJycnDhwgWG8ewbb7wBNpuNJ554AjqdDrt27cJvfvObB3QEnz4GBwdx6tQpAEBODlPNvnbtGjZv3gyQvrnvLHZ++/r6wLb5Mlq7di3ee+89fP/738e//uu/IjExESdOnGBM1L/73e9idnYWX/va1zA5OYn169fjwoULxIPHRaw+a9Zrwsr//d//4Ytf/CJA+uWhhvQNYTEehEePI3TqmVUzhXUEZTZDr1HDqNMiNCkTPMHqTCJUigGEJtl7i7BYLARGxCEwIg6wGH0PdzbO9QdFwT88Br5BzlNm50/MJgZ7Vy2lxUpoUia6q24gPDUHAs+5iY9Bq4G8p3UuLZGi4BsShqisomVHMoz2diA4Jtnp+0HRiZiZGEN31Q3E5q53WzxYDOm924jJdb+Uu5dfIGYmxuA9LwpsanRowf5cDjyBED6BEiiHZAgIc93ja6itDrF5G1Zln+bj5RcIzfQkxgd6EBgRh+mxEYZJtWZahZGuJvA9vBCdVbxiwgObw3F58m3LUFvdkky0PUX+UEjb3P7cQqgUQ/ANCl2wTVRWIfoa7iJ2CWPWESajccWuKb6HF+ILNkFwTzfpAAAW0ElEQVTR2w7lYDmiMgvdWjdlNqOn+gbi8zeu+HXuDA8fEWAZl9b/u8LgEoSslSI6uwRdd68hLm8jI8LUGfIe16pTsqj7lVxPIBAIBAKBQFgVKIrCq6++ij/84Q+YnJzEunXr8PbbbyMx0Xma1WuvvYZjx46hra0NHh4eWLt2LX76058yoqy1Wi2+/e1v4+jRo4wHIPMrJzpjamoKIpEIm7/8CiLT8hZNpVpt+puqVrSS0kJoZ6Yw0FyD6Jxi6NSzUE+OISR2ZSMbrFhNst2BoihMDMno9D6eQAhxXKpdFJW8pxW+waHQTE2CzeHCT7Kw399yMep1mBjuw8W3foQN//Di3L4JPRASl7qk1KqFkDVUIjqraPF9Mughrb2FyPR8l6OQFhtrQ+0N8AkSwyfQtWvJFoqi5iLY5u17b105YnJWNwVaWnsLUZmFduPE0fGOD/SAw+WtmpeUM/qbqhEYGY+xvk5EZRZCrVJC3t0KoY8vJAkZq5KWpZIPwmQ0uJyGadBpMdLZhMiM/CVtT97TCp9AyYpUpQQAae1tl8Smsf5ucHn8FenTqdEhmE3mFb+nGPU69DXehX9oFPznCagDLTUITcpiRHtRFIXuu9cRnVPispfYSkFRFHqqyxBfsMml9nOVIatWxYDdVUxGA6S1txBfsHnRa6nr7nVc/t1PoFKpFvRUJp5SBAKBQCAQCJ9yfvazn+FXv/oVfvvb36KyshJeXl7YtWsXtFqt08/cuHEDR44cQUVFBUpLS2EwGLBz507Mzs7Sbb71rW/h9OnT+PDDD3Hjxg0MDQ3h0KFDbu9fXO56TMoHVvzp/sPK+EAPFNI2xBduBk/gAW//IMxOjj/o3WLAYrEQEB5Dm4AHRSViuLMRsvoKyOorMDU6BFgMyBXSdotRtWuTR7PJBM20CpMjA5D3tKK/qZr2xupvqqJfjryzFNI2sNkchMQkwSdQjOjsYoQlZ6+4IOUOXB4fCYVbIO9pxcRw37LXp1IMgcPlLkmQghMTeoNOAy5fsOx9W4yorGLI6isWbbfa5uYLEZmRj6H2OkyNDkN67zamx0YQs2YtQhMzV80nSCQOd8tvZylpW7bMpfCtzP10cmTA5WICQZHxGB+QLtlfzJbpcYVDD6vlwuULEJe3AWazCdLaWzAZ9PR7wTHJGO3toP+2ikJRWYX3XZCC5VoWJ6S7bF4/2Fr7wKKkrHC4PESk5aLPkhbuDINOA66L55Sk7xEIBAKBQCB8iqEoCm+++Sa+//3vY//+/QCAP//5zxCLxThx4gSeeeYZh5+7cOEC4+8//elPCAkJQU1NDTZu3AiVSoV33nkH7733HrZu3QpYUmpTU1NRUVHhtodheEoOJkcG0Ft3Z0VTZx4mKIpCf1MVvPyD7CKXAiNiMd7fg8DIuAe2fwvB9/CkzagpisLEcN+c+MBi4eofX0fJ4a/RnljOEi2sE34Wmw2+pzeEXj7wE0fM+WS52d8pG3ZDp5nFxHAf/FfBB2xqbMQtUYjFYiE6qwiK3nYMtTcgLDlrSds16DRQDvQsOw2Sy+PDqNfRQtRwRyPCU3OXtU5X4HC5CIiIw6isc0HD+zlvp9U1N7fFqNdhfEAK3ewUvezO0bex68iP4B0oXlXTaiscLhcmg35RzzajXgc2h7OsNDEWiwUWmw2z2bRsT6yJIZlbKXlRmQXob1x+tI7JoF9VsTkwIg5+kij0NVbCJ1CMoKgECDy9odd88uClt+4OwlNz7ksVO2d4+wdBOdADvWZ2wf0wGY0wm0z3RXxeDKG3CH6SSIx0NUOSkO6wzUhnk8u+Z0SUIhAIBAKBQPgUI5VKMTIygu3bt9PLRCIRioqKUF5e7lSUmo9KpQIshTgAoKamBgaDgbHelJQUREVFoby8fEmFNfwkEfAUBaCr6jqiMgvvq7/TamPQaSCrq0BEep7DFC/f4DBI791ecVGKMptXfMLNYrEQEBaNgLBozE6OI23TZxASm4KAiMUro64EutlpCDy9IY5Pw1B7PdhsjsuRHK4yMSRzO+URlsix6XE5empuInbNOrfENoqi0HvvDhIKl29sHhKXCnlPK8JTckBRFMwmk0seLyuBnyQCsvoKGMQRDs2WdbPTYLFZq2ZurtfMYnygh1HxjsPjIyA8Fh6WSbBC2obP/eIohN4ijMk6MSbrBJvDgSQhY9UMokOTszHU0UgXGnDGYOu9FUkjDk3MmBMjl1GFTTkkg3+Ye6IvT+ABobcvpsflS472u19wuFzErlmHyZEB9FSXITLzk/Mua6hESEwyhN6u+zmtFpEZBYum8Q221iI8bfWFZ1cRicOhU09jYkhmlyYJS8Ssq6b4RJQiEAgEAoFA+BRjrVY53+dJLBbT7y2G2WzGSy+9hHXr1tGG9CMjI+Dz+fDz83N5vTqdDjqdjv7bKnTpNWpGu6jMQvQ318AnUAz/0PuT3mMyGGAymRhPyVeKKcUwJkZkiMooBIvNdroNL1EgRns7VlRgmR6TQ+DluyrHpdeoMdRejzWPPwNZfcWqpNo4YrSvC77BEug1swiKSsBgWx2MBt2KToANOi0MWrULLe2ZE8zS0Xb7IiLS8iDwtI9uMOi00KlnGIJhX1M1xAnpMOg0du2XgmZaBb1mFgppG/zDolZlDDhDkpCO7poyxFkivgw6Lb19WX0FonNKVmR/NDNTmBiSMVKweEIPBITFOBS9rNucHlfATxIJg1YNkTgcInE4TEYjBtvrYdRpwRN6QhyXsuKm1rrZqQWP22gwwGjQw6h3nlrtDpqpiWWd5/G+LkRnF7u9Dv+waEhrbyNmzdoli+K2Y2a18RT5Q+iTA1l9JSbl/dCppxEYHgee0OO+XjcL4SeJxGDbPQRHJ9m9ZzIYYNBpYTYaoDcaHsj+OcJPEomBlntgcTjw9P3E30wzPQkOX0B/9y9mY05EKQKBQCAQCIRPEe+++y6+/vWv03+fPXt22es8cuQImpqacOvWrWWt57XXXsO///u/2y3/6yvPLmu9BALh4eT6//7Xg94FAoHwkDM9PQ2RyHlEGhGlCAQCgUAgED5F7Nu3D0VFn1TdskYmyeVyhIZ+UtJbLpcjJ2fxtI4XXngBZ86cQVlZGSIiPjGylkgk0Ov1mJycZERLyeVySCSOy87/y7/8C15++WX6b7PZDKVSicDAwPvi6bLaTE1NITIyEv39/QtWEiLcX0i/PLyQvnk4If3y8PIo9Q1FUZienkZYWNiC7YgoRSAQCAQCgfApwsfHBz4+PvTfFEVBIpHgypUrtAg1NTWFyspKPP/8807XQ1EUXnzxRRw/fhzXr19HbCzTLygvLw88Hg9XrlzBE088AQBob29HX18fSkocl50XCAQQCJgmrPPT/x4FfH19P/WThUcR0i8PL6RvHk5Ivzy8PCp9s1CElBUiShEIBAKBQCB8imGxWHjppZfwk5/8BImJiYiNjcUPfvADhIWF4cCBA3S7bdu24eDBg3jhhRcAS8ree++9h5MnT8LHx4f2iRKJRPDw8IBIJMJzzz2Hl19+GQEBAfD19cWLL76IkpKSJZmcEwgEAoFAIMyHiFIEAoFAIBAIn3K++93vYnZ2Fl/72tcwOTmJ9evX48KFCxAKhXSb7u5ujI2N0X+//fbbAIDNmzcz1vV///d/+OIXvwgAeOONN8Bms/HEE09Ap9Nh165d+M1vfnPfjotAIBAIBMKjDRGlCAQCgUAgED7lsFgs/PjHP8aPf/xjp216e3sZfy9WDQcAhEIh3nrrLbz11lsrsp+fdgQCAV599VW7FEXCg4X0y8ML6ZuHE9IvDy9/j33Dolz5RUIgEAgEAoFAIBAIBAKBQCCsIOwHvQMEAoHwMDI6OgqJRIL//M//pJfduXMHfD4fV65ceaD7RiAQCAQCgUAgEAiPAiRSikAgEJxw7tw5HDhwAHfu3EFycjJycnKwf/9+/PKXv3zQu0YgEAgEAoFAIBAIn3qIKEUgEAgLcOTIEVy+fBn5+flobGxEVVXV31WON4FAIBAIBAKBQCCsFkSUIhAIhAXQaDTIyMhAf38/ampqkJmZ+aB3iUAgEAgEAoFAIBAeCYinFIFAICxAd3c3hoaGYDab7SpXEQgEAuHTD0VR+OEPf4jQ0FB4eHhg+/bt6OzsdPnzr7/+OlgsFl566SXGcq1WiyNHjiAwMBDe3t544oknIJfLV+EIHk2W0i+vvfYaCgoK4OPjg5CQEBw4cADt7e2MNqRflsdbb72FmJgYCIVCFBUV4e7duwu2//DDD5GSkgKhUIjMzEycO3eO8f5yrz/CJ7jTN3/4wx+wYcMG+Pv7w9/fH9u3b7drT/pmZXD3mrFy9OhRsFgsHDhwgLH8UewXIkoRCASCE/R6Pf7xH/8RTz/9NP7jP/4DX/nKV6BQKB70bhEIBAJhBfnZz36GX/3qV/jtb3+LyspKeHl5YdeuXdBqtYt+tqqqCr/73e+QlZVl9963vvUtnD59Gh9++CFu3LiBoaEhHDp0aJWO4tFjKf1y48YNHDlyBBUVFSgtLYXBYMDOnTsxOztLtyH9snTef/99vPzyy3j11VdRW1uL7Oxs7Nq1y+lvozt37uDZZ5/Fc889h3v37uHAgQM4cOAAmpqa6DbLuf4In+Bu31y/fh3PPvssrl27hvLyckRGRmLnzp0YHByk25C+WT7u9ouV3t5efOc738GGDRvs3nsk+4UiEAgEgkO+853vUDExMZRKpaJMJhO1fv16as+ePQ96twgEAoGwQpjNZkoikVD/9V//RS+bnJykBAIB9be//W3Bz05PT1OJiYlUaWkptWnTJuqb3/wmYx08Ho/68MMP6WWtra0UAKq8vHyVjubRYTn9YotCoaAAUDdu3KDXQfpl6RQWFlJHjhyh/zaZTFRYWBj12muvOWz/1FNP2f1uKioqor7+9a9T1Ar2M8H9vpmP0WikfHx8qP/3//4fRZG+WTGW0i9Go5Fau3Yt9cc//pH6whe+QO3fv59+71HtFxIpRSAQCA64fv063nzzTfzlL3+Br68v2Gw2/vKXv+DmzZt4++23H/TuEQgEAmEFkEqlGBkZwfbt2+llIpEIRUVFKC8vX/CzR44cwZ49exiftVJTUwODwcB4LyUlBVFRUYuul7C8frFFpVIBAAICAgDSL8tCr9ejpqaGce7YbDa2b9/u9NyVl5fbXR+7du2i269UP/+9s5S+mY9arYbBYKCvFdI3y2ep/fLjH/8YISEheO655+zee1T7hfugd4BAIBAeRjZv3gyDwcBYFhMTQ//AJRAIBMKnn5GREQCAWCxmLBeLxfR7jjh69Chqa2tRVVXldL18Ph9+fn5urZcwx1L7xRaz2YyXXnoJ69atQ0ZGBr1e0i9LY2xsDCaTyWGftLW1OfzMyMjIgn24Ev1MWFrfzOd73/sewsLCaLGD9M3yWUq/3Lp1C++88w7q6uocvv+o9guJlCIQCAQCgUAg/F3w7rvvwtvbm37Nf/jgCv39/fjmN7+Jd999F0KhcFX28++NleiX+Rw5cgRNTU04evToiuwjgfCo8vrrr+Po0aM4fvw4uac9QKanp/G5z30Of/jDHxAUFPSgd+e+QiKlCAQCgUAgEAh/F+zbtw9FRUX03zqdDgAgl8sRGhpKL5fL5cjJyXG4jpqaGigUCuTm5tLLTCYTysrK8Otf/xo6nQ4SiQR6vR6Tk5OMqBy5XA6JRLJKR/fpZSX6xZYXXngBZ86cQVlZGSIiIujlpF+WTlBQEDgcjl2lwoXOnUQiWbC99d+l9jNhjqX0jZWf//zneP3113H58mVGwQbSN8vH3X7p7u5Gb28v9u7dSy8zm80AAC6Xi/b29ke2X0ikFIFAIBAIBALh7wIfHx8kJCTQr7S0NEgkEly5coVuMzU1hcrKSpSUlDhcx7Zt29DY2Ii6ujr6lZ+fj3/4h39AXV0dOBwO8vLywOPxGOttb29HX1+f0/X+PbMS/QJLqfQXXngBx48fx9WrVxEbG8t4n/TL0uHz+cjLy2OcO7PZjCtXrjg9dyUlJYz2AFBaWkq3j42NXVI/E5gspW9gqeL2H//xH7hw4QLy8/MZ75G+WT7u9ktKSordd8u+ffuwZcsW1NXVITIy8tHtlwfttE4gEAgEAoFAIDwoXn/9dcrPz486efIk1dDQQO3fv5+KjY2lNBoN3Wbr1q3U//zP/zhdx/zqexRFUf/0T/9ERUVFUVevXqWqq6upkpISqqSkZFWP5VFiKf3y/PPPUyKRiLp+/To1PDxMv9RqNd2G9MvSOXr0KCUQCKg//elPVEtLC/W1r32N8vPzo0ZGRiiKoqjPfe5z1D//8z/T7W/fvk1xuVzq5z//OdXa2kq9+uqrFI/HoxobG+k2rvQzYXHc7ZvXX3+d4vP51EcffcS4VqanpxltSN8sD3f7ZT7zq+9Rj2i/kPQ9AoFAIBAIBMLfLd/97ncxOzuLr33ta5icnMT69etx4cIFhrdKd3c3xsbG3FrvG2+8ATabjSeeeAI6nQ67du3Cb37zm1U4gkeTpfSLtTru5s2bGev6v//7P3zxi18ESL8si6effhqjo6P44Q9/iJGREeTk5ODChQu06XJfXx/Y7E8ScdauXYv33nsP3//+9/Gv//qvSExMxIkTJ2jjebjYz4TFcbdv3n77bej1ejz55JOM9bz66qv40Y9+BJC+WRHc7RdXeBT7hUVRFPWgd4JAIBAIBAKBQCAQCAQCgfD3BfGUIhAIBAKBQCAQCAQCgUAg3HeIKEUgEAgEAoFAIBAIBAKBQLjvEFGKQCAQCAQCgUAgEAgEAoFw3yGiFIFAIBAIBAKBQCAQCAQC4b5DRCkCgUAgEAgEAoFAIBAIBMJ9h4hSBAKBQCAQCAQCgUAgEAiE+w4RpQgEAoFAIBAIBAKBQCAQCPcdIkoRCAQCgUAgEAgEAoFAIBDuO0SUIhAIBAKBQCAQCAQCgUAg3HeIKEUgEAgEAoFAIBAIBAKBQLjvEFGKQCAQCAQCgUAgEAgrwujoKCQSCf7zP/+TXnbnzh3w+XxcuXLlge4bgUB4+GBRFEU96J0gEAgEAoFAIBAIBMKjwblz53DgwAHcuXMHycnJyMnJwf79+/HLX/7yQe8agUB4yCCiFIFAIBAIBAKBQCAQVpQjR47g8uXLyM/PR2NjI6qqqiAQCB70bhEIhIcMIkoRCAQCgUAgEAgEAmFF0Wg0yMjIQH9/P2pqapCZmfmgd4lAIDyEEE8pAoFAIBAIBAKBQCCsKN3d3RgaGoLZbEZvb++D3h0CgfCQQiKlCAQCgUAgEAgEAoGwYuj1ehQWFiInJwfJycl488030djYiJCQkAe9awQC4SGDiFIEAoFAIBAIBAKBQFgxXnnlFXz00Ueor6+Ht7c3Nm3aBJFIhDNnzjzoXSMQCA8ZJH2PQCAQCAQCgUAgEAgrwvXr1/Hmm2/iL3/5C3x9fcFms/GXv/wFN2/exNtvv/2gd49AIDxkkEgpAoFAIBAIBAKBQCAQCATCfYdEShEIBAKBQCAQCAQCgUAgEO47RJQiEAgEAoFAIBAIBAKBQCDcd4goRSAQCAQCgUAgEAgEAoFAuO8QUYpAIBAIBAKBQCAQCAQCgXDfIaIUgUAgEAgEAoFAIBAIBALhvkNEKQKBQCAQCAQCgUAgEAgEwn2HiFIEAoFAIBAIBAKBQCAQCIT7DhGlCAQCgUAgEAgEAoFAIBAI9x0iShEIBAKBQCAQCAQCgUAgEO47RJQiEAgEAoFAIBAIBAKBQCDcd4goRSAQCAQCgUAgEAgEAoFAuO8QUYpAIBAIBAKBQCAQCAQCgXDf+f8DED4WkgmMKBEAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAGJCAYAAABb64ChAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eXQb13n3/x3sILiCIEEQBElwFTdxJ7VS1L5YsmVLlh03yZs0id+mTprGiZ3mTZutPU1+SdOkreOsbd3ETazFtvbFWimKFPddJMWdBEhwAUlwxY75/QFjxCEAElwkZ7mfc3SOOHNn5s5g5gL3O8/zfSiapmkQCAQCgUAgEAgEAoFAIBAITxDOR90BAoFAIBAIBAKBQCAQCATCnx9ElCIQCAQCgUAgEAgEAoFAIDxxiChFIBAIBAKBQCAQCAQCgUB44hBRikAgEAgEAoFAIBAIBAKB8MQhohSBQCAQCAQCgUAgEAgEAuGJQ0QpAoFAIBAIBAKBQCAQCATCE4eIUgQCgUAgEAgEAoFAIBAIhCcOEaUIBAKBQCAQCAQCgUAgEAhPHCJKEQgEAoFAIBAIBAKBQCAQnjhElCIQCAQCgUAgEAgEAoFAIDxxiChFIBAIBAKBQCAQCIQnhsPhwA9+8AOo1WqIRCJs3LgRv//9733e3mAw4OWXX0ZYWBgkEgl27tyJurq6x9hjAoHwuCCiFIFAIBAIBAKBQCAQnhjf+MY38LWvfQ179+7Ff/zHfyA6OhovvfQS3nnnnWW3dTgceOqpp/C73/0OX/jCF/CDH/wAo6OjKC4uRmdn5xPoPYFAWE8omqbpj7oTBAKBQCAQCAQCgUD402dwcBBqtRovv/wy3njjDQAATdPYsWMHent70dfXBy6X63X7U6dO4YUXXsDp06dx/PhxAMDY2BiSkpJw8OBB/O53v3si50EgENYHEilFIBAIBAKBQCAQCH/i9PX1gaIor/+eFOfOnYPVasVf//VfM8soisLnP/95aLVa3L9/f8ntz5w5A7lcjueee45ZFhYWhhMnTuDcuXMwm82Pre8EAmH94X3UHSAQCAQCgUAgEAgEwuMlLCwMv/3tb1nLrFYrvvzlL0MgECy5rdVqxdTUlE/HkUql4HC8xz7U19dDIpEgJSWFtbygoIBZv23btiW3z8nJcTtGQUEBfvnLX6KjowMZGRk+9ZVAIHz0EFGKQCAQCAQCgUAgEP7EkUgk+PjHP85a9sorr2B2dhbXr19fctuysjLs3LnTp+P09vYiNjbW63qdTge5XO4WnaVQKAAAQ0NDS+5fp9OhqKjIbfnC7YkoRSD88UBEKQKBQCAQCAQCgUD4M+M3v/kN3nzzTfzoRz9aVnDKzMxcVrhyERERseR6o9EIoVDotlwkEjHrH+f2BALhDwsiShEIBAKBQCAQCATCnxENDQ34q7/6K3zsYx/Dq6++umz7kJAQ7NmzZ12OLRaLPfo+mUwmZv3j3J5AIPxhQUQpAoFAIBAIBAKBQPgzYXJyEseOHUNSUhJ+/etf+7SNxWLBxMSET23DwsKWrJ6nUChw+/Zt0DTNSuHT6XQAgMjIyCX3r1AomLYL8XV7AoHwhwURpQgEAoFAIBAIBALhzwCHw4G/+Iu/gMFgwI0bN+Dn5+fTduXl5evmKZWVlYVf//rXaGtrQ2pqKrO8srKSWb8UWVlZKC0thcPhYJmdV1ZWws/PD0lJST71k0Ag/GFA0TRNf9SdIBAIBAKBQCAQCATC4+Vb3/oW/umf/glXrlzBvn37fN5ucnIStbW1PrXdtm0b4+/kCa1Wi7i4OLz88st44403AAA0TWPHjh3o6elBf38/E2ml0+kwNTWF+Ph48Pl8AMDJkyfx4osv4vTp0zh+/DgAQK/XIzExEfv378c777zj83kRCISPHiJKEQgEAoFAIBAIBMKfOM3NzcjMzERRURE++9nPuq1fXJnvcfL666/jhz/8IV5++WXk5+fj7NmzuHTpEv73f/8XL730EtPuU5/6FP7nf/6HFX1lt9uxbds2tLS04LXXXoNMJsObb76JgYEBVFdXIzk5+YmdB4FAWDskfY9AIBAIBAKBQCAQ/sQZHx8HTdMoKSlBSUmJ2/onKUp9//vfR0hICH7xi1/grbfeQmJiIt5++22WIOUNLpeLy5cv47XXXsO///u/w2g0Ij8/H2+99RYRpAiEP0JIpBSBQCAQCAQCgUAgEAgEAuGJw1m+CYFAIBAIBAKBQCAQCAQCgbC+EFGKQCAQCAQCgUAgEAgEAoHwxCGiFIFAIBAIBAKBQCAQCAQC4YlDRCkCgUAgEAiEPxF++tOfIjY2FiKRCIWFhaiqqvJpu3feeQcUReHo0aOs5TRN45vf/CYUCgXEYjH27NmDzs7Ox9BzAoFAIBAIf44QUYpAIBAIBALhT4CTJ0/i1Vdfxbe+9S3U1dUhMzMT+/fvx+jo6JLb9fX14atf/Sq2b9/utu4HP/gB/v3f/x0///nPUVlZCYlEgv3798NkMj2u0yAQCAQCgfBnBKm+RyAQCAQCgfAnQGFhIfLz8/HGG28AABwOB1QqFb74xS/i7/7u7zxuY7fbUVRUhL/8y79EaWkpDAYDzp49C8AZJRUZGYmvfOUr+OpXvwoAmJqaglwux1tvvYUXX3zxiZwXgUAgEAiEP114H3UHCAQCgUAgEAhrw2KxoLa2Fl//+teZZRwOB3v27MH9+/e9bvfd734X4eHh+MxnPoPS0lLWut7eXgwPD2PPnj3MsqCgIBQWFuL+/fseRSmz2Qyz2cz87XA4MDExgdDQUFAUtZZTJBAIBAKB8EcETdOYmZlBZGQkOBzvSXpElCIQCAQCgUD4I0ev18Nut0Mul7OWy+VytLe3e9zm3r17+M///E80NDR4XD88PMzsY/E+XesW873vfQ/f+c53Vth7AoFAIBAIf6poNBpERUV5XU9EKQKBQCAQCIQ/M2ZmZvCJT3wCv/rVryCTydZtv1//+tfx6quvMn9PTU0hOjoaH//h7yEQ+7HaWoxGjPS0QpWWu27HXyvz0wYMdzYjNmsLOFyuxzba1jpEpeawlo0NdILL5UOqjH1sfaMdDmge1CI6I39V2w80VyJyQw54fP6q+zDQXA3lhixw17APF3abFYPtjYhOz1uyXX/jfcRkbl7z8RZiNZuhaa6COnebxwg+mqbR31iB2Kz1PS4AGIa16Kq6g7DYBMjj0yCSBKx6Xw6HHUPtTYhKzfbaZlzbCy6Pj+AI7xNCT2ge1K7p2bTbbOhvvA9F8kaI/YPc1nt6jhZiNZsw2FqHkMgYBMmVKzr2QHP1qp+TxRhnDBjpakVM1mbmXvF2bSYG+zA7MQYOl4eIhDTwBIJVH3e567MQ2uHAYHsDKA4XkckbVxWVutTxrGYzhtrrEZO5acX7daHXdEPkFwD/0PAVbbfW+3C4uxWW+TkoU7Kh62hCVGoO7DYrhrsewG61wC9IilBV/LpE8k4ODYAnECJAJl+y3dTIIMzGWYTHJq/5mCvFYbdjsL1h3b53aZpGT20p4nK2gfIQCWUxzuPt1z6GgIClxzkiShEIBAKBQCD8kSOTycDlcjEyMsJaPjIygoiICLf23d3d6Ovrw5EjR5hlDocDAMDj8fDw4UNmu5GRESgUCtY+s7KyPPZDKBRCKBS6LReI/SAQSxYtk2B2QgaLcR7+0jDfTvQxMjHUj7mJUWzYdmDJdnyhyO1clMlZ0HU0Y356EsHylU3+fUXX0QxVWq7bsX0lLncH+hrKEZfrbmjvC/NTk5AEh0IcGLyq7T0hEInB4fHB43uevE9oexGm3rDqc/Z6XLEEcXnbMdBSjfi8HW4TUl1nC6JSV3+tXZjnZzGu6YHN8qgwwPzUJOanxhGz8RNuQu1KGdf2IDxu6eujSExHb909hKriwOX5JiZaTUaIA4LXfP4bth3AQHMV7KFWSCNjWOs8PUcuRnraYZoxIGHTLnA4nsXhpZDFJGB+agLBEapV9dvFtH4YBp0GSVv2spZ763tEQhoAwG61QNfZDLvVCr/gUMiiE1Yseix1fRYyrunB9NjQh/fr6u+npY4nEEsgi07A9OgQZDGJK943TdMwzUwhMmnjirflCYSrug+nRgYxru1BREI6/IJCALDPUZ29FQAwO6nHcGcLACBcnQxxYMiKj+UiPG4DBpoqEaqK89rGODOF+elJxGwsXPVx1gqPL1i3MbW/qRJxOdsgXEZcX+7+J9X3CAQCgUAgEP7IEQgEyM3Nxc2bN5llDocDN2/exObN7tEeGzZsQHNzMxoaGph/Tz/9NHbu3ImGhgaoVCqo1WpERESw9jk9PY3KykqP+1wNEQmpGOluxUddd0fX0QybxQRV+uqjKxRJGZjRj2B2Ymwde/YI8/zssj/8l4LD5SJYEY0Jbe+qth/ubIYiKWPVx/eEMiUHg611XtdPjQ49NpFPIJYgKiUbffVlrOW0wwHTzBQzkfUFmqYxO6mH5kEtBpqrmH+TQ/0Ii0lEdEYB808SLMWuz3wNA02VsBjn13QOc5N6+IcsH+kYvbEQA02VPu93tO8hwuM2rKVrj46dUQC7xYyhh03LtjXPz6K7ugTiwGDEZG5alSAFAMHyKEyNDK5qWxcTQ/2Y0Q97jQ5aaszi8gWISs1FTOYmiANDMNBUif7GChhnDL53gOLA4bB7XW2anUJPzV1w+QKoc7atWeBcjpDIGMxPT8I8N7PibYc7W9Y0dqzk+8FinENPbSmsFhPicrcv+xz7h8gQk7kJ0RsLMa0fRn9jBQbbG+Cwe7/23lhOeLHbrBhsrUN0RsGK972e8EXiNY89AKAf6EJAqHxN30suSKQUgUAgEAgEwp8Ar776Kv7P//k/yMvLQ0FBAX7yk59gbm4On/70pwEAn/zkJ6FUKvG9730PIpEI6enprO2Dg4MBgLX8b//2b/FP//RPSExMhFqtxj/8wz8gMjISR48eXbd+K1OyMNhW73OqynpC0zT6GsoRGqVGYFjkmvenSstFX0M5eAIBRB5SllbL9NgQAmXuEW8rRRoZg966ewiKUIHL830aoO/vRGh0wpqPvxgujwcOlwubxQyegB1h5zxm/LofcyEi/yDI41PR31jBiA+D7Q1QpmR53YZ2ODA1OojpMR1ruSRYhsjkzGWvK03T4HC5iC8oRnfVHURvLHzsggKXx0ewIhp6TTdkquWvqd1q8Rq9thrCYpMwox9Bb909xGZt8ZjmM/SwCXarBXF5RetTFGEN+xjtewja4YByQ5bH9UHhSkyNDPqUEukfIoN/iAw0TWO0pw2jPe3gCUVQJGZ4TREGnFGEVpMRQj9/1nKHww7tg1qnGJW7/YkWkFCl56Or6jYSCnb6fFyHww7T3DTEAcGrOmZgmAIz+mEEhimWbEc7HNC21gEUBXX2Vo/32FJQFAV5XAoAZ8qZtrUWtMOBIHnUilJf+SI/WIxzbpFITJpb7jrd32tAHp+KofZGqJZJnV4K44wBxmnDmvaxEBIpRSAQCGvA4XDgBz/4AdRqNUQiETZu3Ijf//73Pm9vMBjw8ssvIywsDBKJBDt37kRdnfe3xgQCgeCNF154Af/yL/+Cb37zm8jKykJDQwOuXr3KGJUPDAxAp9Mtsxc2r7/+Or74xS/i5ZdfRn5+PmZnZ3H16lWIRKJ167fIPwgUh7OyKIJ1wGa1oKvyFiKTM9dFkHIRk7kZ2rZ6WM3GddvnxGA/pFHqddlXdEYBBpp9j5qhHQ7MjI8gKHz9rtFClCk5GGyrd1s+Mz6yLkLccjg9ZeKgaamG3WaF3WphJpQ2qwVjfR2s6Cdtay04XC5U6fmsCChnepzvQh9FUYgvKMZAUyWspvW7V7wRoojG7PgIbBbz8o0fAwEyOaJSc9FVdZt1vvNTk+iuLkFwRBRU6XnrNmGXhMgwOzG64u2GHjaBy+MzAoUnAsMjMT02tKL9UhQFeXwqYjI3ISwmCdrWWvQ3VsAwrPXYni+WwGKcYy3T93eiv6ECiqQMKDdkrdu18jUSiaIoqNLyoGmp9nnfg631iEpZ/QuH4AgVDMOaJduMa3rQ11AOeXwKVGm5KxakFiMQ+yE6o+BDodrpLzfQXOVTdJE8PgUjPe7FRQaaKqFKy13RGPG44PL4cNhtq97e4bBjsLV+3QQpgERKEQgEwpr4xje+ge9///v43Oc+h/z8fJw7dw4vvfQSKIryWC59IQ6HA0899RQaGxvx2muvQSaT4c0330RxcTFqa2uRmLjyvH0CgfDnzRe+8AV84Qtf8Ljuzp07S2771ltvuS2jKArf/e538d3vfncdeuedyORM9NTcRXz+jsd6HBfzUxPQdTQjvqB41SlC3qAoCvG5Reiquo24vCKffXy8YTWb1mSYvBguX4AAWQQMwxqfPHc0D2oQlfr4zOg5XC44XC6sZhP4QqfYOdLThnD1+qSP+YI4MASGYS1+9X8PYv8XvoOB5ioAzsmbVBmLsNikdTmOw24HRT2aMFMUhfj8HeiuLkFM5ibwRWKf92U1GcEX+t4ecKbx9daVIT6vyGub+amJNfnqLAVfJEZCwU70NZTDOG2A5kEtuDzeY3nuQ6PiMNBUCX+p78baA81VCJJHLSvArlUMcokeAGAY1qC/sQIUh4OIhHQmak4g8oNlfhaAU7jTdTZDFp0Adc7WNR3bE1bTPPgi3zyGRP6BEAeGYFI3gBBF9JJt7VYLHHbbiu7rxVAU5VU0M05PQtfRDKkqDuqcbas+xlIER6gQHKGCw27HcFcLrCYjRP6BCI9L8XgfeBJ8hrtaERQRta7Rs2uFyxd4jFD1hb76csRmb1nX/hBRikAgEFbJ4OAgfvSjH+GVV17BG2+8AQD47Gc/ix07duC1117D888/D+4SodlnzpxBeXk5Tp8+jePHjwMATpw4gaSkJHzrW9/C7373uydyHgQCgfBRQ1EUIhLSoOtshiJxfX2LFjMx2Ie5Sf1jFcAoDgdxeTvQXVOCxIKda3pzr+tognINkQaekKni0VNzF4HhkUuKcua5GXC4vDVNKn1BmZKDgeYqxGZtBk3TmDdMLBmpshJohwPz05OYnRiDeW7aYxsujw/jjAGJm3aDdjigSstbc7SFJyaG+twqNFIczqqEKb2mC6E+pOIthMPhIiwmwekZ5aXyl36gC1GPqSImTdOYGOoDh8fH3d/+BNs/8SUEhUfCYpxf9xTGlQhHNE2jt+4e5PGpkASHrms/lsOb6BESGYPpMR36GyucxvyPMVXPNDsFUUCgz+3DYhLRW3cP/tJwRkj2hLa1bl3upcXnbbfZoH1QA4Gf5ImlMHK4XEQmZwJwimEDTZWgaRqymEQ3XzeKouBw2MHhcGEY1oKi8Ni88VZLREIahrserDhtfrjrAWTRCasSs5aCiFIEAuGPjr6+PqjV3tMYnpRh7rlz52C1WvHXf/3XzDKKovD5z38eL730Eu7fv49t27y/uTlz5gzkcjmee+45ZllYWBhOnDiBt99+G2az2WMVKwKBQPhTRBIiw7i2x6Mfx3ox9LAJfKFoXdMOvMHl8aDO3orumhLE5xevauJE0zQcdvtjSflQZRRA01y9ZJn3wbZ6qFdZrW8lcLhccPkCWM1G6Ae6EZGQ6tN2NE3DYpzD7Pgo5qcmQNMOtzYURUEcJEVQeCSEkmSPn4NhWAsuX4CkzXsQkZiOrqrbiMnctO734bxh3KOnE0uYytrkUwSU1WRclZATGBYJw3CV1+eMpul1jR60WcwY6Wlj0galylhEpUbj4N/8E2jaAUViBkZ62pl016Bw5Yo8fJZCFBAE48wUxAHeI1Qcdju6a0oQnVHg5t+0FFweH7Z19N5iiR4zBjTfeB/VZ9/CZ968uKTwsx4YZ6YRLFeuaJuYrM3oqbmLhIKdHtdbjHPg8vlrjhQFAKGfP0yz0xD5B2KkuxXGGQNUaXngruDar+fcQBwYgpjMTaBpGvqBLowPdIHL50ORtBFcHh/h6mSM9T5EkFyJqdHBj7TSnjd4AiHsVsuKtpnRj4CmHcv6e62qP+u+RwKBQHjMhIWF4be//S1rmdVqxZe//GUIlklxsFqtmJqa8uk4UqkUnCXelNbX10MikSAlhf02t6CggFm/lChVX1+PnJwct2MUFBTgl7/8JTo6OpCR8XgjBggEAuEPCVV6/mNJ46NpGn31ZQiNTngiPkUu+EIRolJz0Vdfvqq0m7G+hwhXe45oWSt8oQjiwGBMj+k8TjImhvoRHBnzxEx5lSlZzugDBw1xotNs32a1YHZiFHOTeq8TKKGfPyTScIQoY1YlpsxO6jGjH4Yq3emVwxeKkVC4C/2N9xGiiEHQCifrq8UlTHVV30Fs1uYVp+atBFV6PrprSpCQX8xavl4T99lJPcY13QCc5efD41JYwoq2tQ6RGzIx2vsQNqsFkckbmXWGES36P6wUyBeKII9LWZH4sJDw2GRoHtR4rXZms5id5tN5RSsWl0JV8RjXdK9bRB/TJ6vFmVqcvwPBESpomqsgVcU91kgby/zsigVYDoeLiMQMDD1sZMS0hQy2NSA2a32qtMqiE9BRcRNCsQTh8amQx/smWi/EZjGDy1/fF70URSEsJhGISYTVbMJQeyMcdhsCQuWYn5rEzPgI4hc9Y39IcLg82G1Wn4RDp7/eQ8Qtkfq7FogoRSAQ/uiQSCT4+Mc/zlr2yiuvYHZ2FtevX19y27KyMuzc6fmtzmJ6e3sRGxvrdb1Op4NcLnf7wa5QOH/cDw0tbYKp0+lQVOQ+uC/cnohSBALhzwmKohAWm4jR3vZ18xSyWczorbv3WCJffEHkH4hwdTI0LdVQpeevaNv5qcnH6q0Urt6A7pq7CJBFsL7LaJqGYaj/sU1AXDgcdsxOjGFmTAeH3Yar//FN5B/9FLh85ySJyxfAPyQM8vjUda0G58I8P4ux3nY3PxqKohCbtQXDXc6ojIiEtHU/ticoDgcJ+cWPXZiiKAoR8anQdbZAkfio2ubUiNYnn7HF0A4Hxvo7YJxxvvSThMgQnVHgVdC0WczgC8WITNqI/qYKxGY98qcJlkcxAozVZISusxl2m9OjJzQqDv7SMN/Pk8MB7XCPngOcn/1AcxUSCneuSswU+QditNfd0Hot6DXdmNEPIzZrCzhcLqbHdIjOKIB+oAu9dWWI3liwLpFH7tCrSlf1D5FhRq/DzPgIAkLlzPL5qUmIAoJWnQJrt1owPtgL08yjl8gVp36Jl/6/364omm0hVpMRgseYhrwwAnewrR7XfvotHPjid6F9UINgRTT8peEfedW9xbhS+LxVmVxIX30Z4nIf3/cBEaUIBMIfPb/5zW/w5ptv4kc/+tGyglNmZuaywpWLiIil36YbjUaP6XWuqlRG49LVdNa6PYFAIPwpEhgWiYnB/lWbsC5kblKP4a4Hj8XQfCVIQmSwWS0YetjEigpZijnDOPyCHo/h9EJUabnQPqhhCWZD7Q1QpmSvy/5phwNzBj2mRofgsFnZKykO/KVhiEhIw+RQPza/8FcIi0kEXyheN3Nxb9itFqco4SX9CAAiElIxPTaE3voyxGZtWdOk0mKc90lk8kWYct4b0lX3BQD8peEwDGucfkIfGjC7RBBfsBjnMNLdBofDzkSM+CKgTo0MMkbiFIcDgVgC89wMhJIAt7Z8kZgx2adpGuPaHoxrewAAIkkAwtTJyz7XfJGfW6ri3KQeo73tSCjY+QchFNisFgw0VUKqjIU62z2iUhadgJDIGAw0VyFAGg5ZzB9OIRxFYga6qu9AEiwD50Mf1ZHuB4j1cB6esFktmND2wDT7yO+Ny+NDGqVmfM/sNhv2fv7voX1Qi6i03FUJU04z9/X1LVuMccaA4c4WBIQpUPzpr0IcGIKw2CQYdBpWxUKeQARZdMK6+6itFL5IDJvZtGw7bWstIpMzmc/3cUBEKQKB8EdNQ0MD/uqv/gof+9jH8Oqrry7bPiQkBHv27FmXY4vFYpjN7qWVTSYTs/5xbk8gEAh/qkRvLEBffTni1uBnNK7tgXF68olV9FuOoPBI2C1mn6PAxvo6lvR7Wi8EYgn4Ij/MTurhHyKD1WSE3Wb1KBJ4w2lOPo6p0SHYLOxJDkVxIAmRQR6X4lVknBodgsVkhCIxHYFhCsxPG6BtrX1sVf9ohwPdtaVI8MHrKzAsEiL/YHRV3kJs1pZVm77rB7qcqT4+wBamtrh5Ck0M9vkU3bAcypQcj2l83pgaGYRhRAvAWUEuckPmiiN3DMMa1n2tSNqIvoZyj2LMQiiKgkwVz3hymWanMNhaB4fDAQ6Hg7DYJI/VzeTxqRhqb2CiWKZGBjE9NvTYqrWtlMXRUd7g8vhQZ2/F1MggumvuQpWW+5FEfnpCnbUFfQ3O8Xp6TIeAUPcsAsApQI1remCem2bWc3h8SJXqJcfEuclR+EvlUKbkoKe2FMoNWRD5+27MDjhFKb9g2fINV4HVbMJgWx2EkgDEZm/F7MQowmKTMKMfBofDhVQZyypwYDUZoR/oYnzUaJpGgDQcwZHRT/zlCcXhwGG3e733Jof6IZQErlkEXw4iShEIhD9aJicncezYMSQlJeHXv/61T9tYLBZMTEz41DYsLGzJ6nkKhQK3b98GTdOsL1+dTgcAiIxcuqSwQqFg2i7E1+0JBALhTxUOh4uQyBhMaHshjfJe2MIbg+0NEIolj03UWC3SKDVGe9sxru1BaFSc13Z2mxUcLveJRXFEJKShu7oEkrwiaFtrWelULmiahmnGAMPIIGxmI2u5y0w8LDZxxSlnxpkpGHQDiMncBMOwFhbjPKSRMRCKJeiuuYu4nG3rWgmPpml0196FOnurz2/+BWI/JBTsRF9DOUJV8asy+rVZTCsStJYSpmiH90nkSqAoCsrkTAy2N0CRmOGxytlobxssxnkAThPytZg226wWcLjs6SdFURD6BbAitnxB5B/ERPc57HaM9T3ESI8znU4SIkNoVBwoigKXx4PDYQcAjGuchRRWmkbrvQ+BMM4YIA4IXvG2y0VHeSNIrkRgmAKaBzXgi8SPvVqpL3D5AoRGxWGkpx3zBj3UOdtgs5gxru2BeW5mUTs1RP4rS0me0Y8gIiENFEUhLnc7euvuITJ544ruF4vJiKB1Tt9z2O3QttaCoihEbyxkBKWJwT5EZxTAMj/nMQqQLxJDkfToc6NpGnOTYxhsrWN83SgOF6FR6scuBsnjUzHS0+rxPjLPz2JqdGjdvMGWgohSBALhjxKHw4G/+Iu/gMFgwI0bN+Dn51sIbHl5+bp5SmVlZeHXv/412trakJr6yHSxsrKSWb8UWVlZKC0tZd7yLdzez88PSUmPN3WBQCAQ/pAJUUSjt64MQREqn6vP0Q4H+hrKIYtORIBMvvwGHwHh6g0YetjkTGPyYqKt62jyaB78OFGmZKHt7mUEhikw2tsO8/wss84lVogCghEapV63CA2b1YLBtjrGDFgg9sP8lPPFkdOXKB+dVbehzt66bhXIBpoqodyQveL9URwO1DnboOtshnHGsO4G196OuVTE1HogDgwBpdOgv6kCEQnpMM4YMNbXwVThC4/bsGofn8XovKSvKpIyVl0MAHBWrltofj07MQZNSzVomgaXxwPtsGOwvQECkR9LDFgroVFx0HW2ICo1Z0Xb+Rod5Q2Kw0F0RgHmDOPorrkLRWL6YxcvliMwPBJXv/k5hMUmgcsXgCcQQqpUrziiyRN2m5Uxu6coCuqcbeirL0NEYrrPgqDduvZ0cBc0TUPX0QyLcRbKlByPzyVFUYhISMNAc9WyEa8URcFfGg5/afij/tpsmBjshX6gi1kmEEsgi05Yt/MAnIUiLPNzbstpml42vXk9IaIUgUD4o+Q73/kOrl27hitXrkCt9v0t+np6Sj3zzDP48pe/jDfffBNvvPEGAOcg/vOf/xxKpRJbtjx606zT6TA1NYX4+HjwPzRwPX78OM6cOYP33nsPx48fBwDo9XqcPn0aR44c8eg3RSAQCH9ORGfkY6C50qdIAqvZhL76MsRkbv7IvTqWIzJ5IzQt1eAKhPAPcU8psVks6zrxWAxN05idGMXUyCAcdtuHxzTj7m9+jPxnP430nU+vKH1vVX1wONBbW4r4gkcpdHyRHyzDWqYNXyhGYsFO9NTdW5eJ92B7A6RKNcQBvkdYLEaRmAHDsBZ9DfcRk7npsUezMcJU1W3EZm8Fjy9Y8zFtFjPmpyZgnJ5kxMdrb3wLu1/+fwgMi0RUWu5jSSNaKC4shKIoiAKCYJyehDhw7T5q/tIwxhDdbrWg8r3/QmfFTRR/6iuYm9RD4uGZWw1cvoB5fnxhtdFR3pAEhyI+rwhDD5swrulGVFreR+KR5YyQGsfBv/kuUzlRkbTxsfXFJUz11pVBHp/qs/feevRHP9CFGf0wIhIzPI4jVrORGbspDgc07XDLqPAFLo/nlu5rnpvBSE8bqxJpYFgkguTKtZ0bRYF2OFgRqf2NFYjZWPjE7iciShEIhD86mpub8Y//+I8oKirC6Ogo3n77bdb6xZX5FrKenlJRUVH427/9W/zwhz+E1WpFfn4+zp49i9LSUvzv//4vK/Xv61//Ov7nf/6HFX11/PhxbNq0CZ/+9KfR2toKmUyGN998E3a7Hd/5znfWpY8EAoHwxwyXL0BAqByGYS2CI7yXRJ+d1GOku9VpXLyOqV6PE1V6PnrrysDjC1jRBOPaHpb/yFpwOOyYHtNhZmwYNP2oChlFUZCEhEGRlAEujw+H3Y7u6js49Lf/jHD1Bmge1ECZkr2qtCRf6am7h9jsLSzxgycQwm5ley1SHA7i84qgeVAL89wMQiJjVnW8kZ52iAOC1yWCLjgiCuLAD32mfIjimp0YW5MQQnE4SCjYia6q2wiOUCE4Itqtjd1mg3HGAOPUxIem0TSzjkkJoijQNA2eQAi/ICmCFdEQiCWY1A2g8PjnIBBLQHGoxyJITQz1I0Th3m8XEQlpa4qW8sZITztSig5BuSEL0RsLMT7QxUSfBIQpEKKIfiIT77VGRy1FZPJGWIxz6K0tRWh0AmMk/7gZ1/RgekyHMHUy5HHOlLygcCXk8anorr7z2McQdc5W9DWUI1y94bFHik2NDmFC24NQVfySfmQj3W2IWFDRUhaTBH1/57oUbhBKAlhecjRNY3pMxzJR5/L4CFXFrSi1MVydjNG+h0z051h/J4LCI5+oZxkRpQgEwh8d4+PjoGkaJSUlKCkpcVu/lCi13nz/+99HSEgIfvGLX+Ctt95CYmIi3n77bbz00kvLbsvlcnH58mW89tpr+Pd//3cYjUbk5+fjrbfeQnJy8hPoPYFAIPzhI4tOQHfNXQSFR3oUnMY1PTDOGBCf9/jKVT8uYrO3oLv6DmIyNzFeTDP6kRV7eNitFkyNDGJ2coy1nOJwESiLgDI126vQQNM0emruQp27HUPtDRD5ByI+vxiDbfXg8gVQLJhgrRealmooEtPd/KdcooknVGm5GO1tx3BXKyISUj228cbEUD8ArJvYBzjTXuILitFXV4bwuA2s1JvFTA71Q5m6tmqGFIcDeUIafve1j+OpL38PhuGBReu58AsMgX+oHLLoBJ/FWZvFjKkRLdQ5W0HBKc701NxFTOYmj1FNq2V6GW8aiqIgDgzB/NTEugkMQw+b4BcUguAIFabHdKBpB2QxiUz1uukxHQY+jOwR+Qf6VM3PE4ujTBay3tFR3hCIJYjLK8JYfyd668sQnVHoe9qzl2fOG4ZhLSaH+iGNUnsUEYV+/swYwhOIVvy8roTYrC3oa7iPsJjEdYuAW4hxehK6zhYEhkf6ZI5vt1nBW/Dc+IfInKLUuvfM+cwEhUeyREinmXw3RnsfMstE/oEIVcV7LUogDgjG6Id+bPNTEzDPzSBshSmpa4WIUgQC4Y+O4uLiFX+BPi44HA6+/vWv4+tf//qS7d566y289dZbbstDQkLw61//2mejdgKBQPhzJDojHwMt1W4my4PtDRD6+a/Y02WtrCYdwxMURSE+bwc6q24jPm8HrKZ5CCXe/XusZiMMOg2MMwbWci6PjyC5Eipl7Ir71ddQDlV6HmsiRVEUolJzMDsxiq7qO4jJKFx11bnFjHS3IkCmWJXwEK7eAMOIFv1NlT4bbs/oR2CcnlyXanWL4XC4iMsrwmB7A+anJ5kS9ouhaceqxY6xgU4Ypw0ATcNfGo7tn/gShJIAnyo4+kJ/UyUjSGke1CA6owD+oXIMNFUgOEK16si0hVjNRp/8sOTxKesWLbVQkAKc0SBjfR0sL7DAMAVjWm+cmYL2QS1ohwNcvgARCWk+pdAGyaMwNTrkMZLzcUZHeSMsJhHSyBgMNFUiICyCqVboDYfDDoryTcCcnRjFWF8HguRRy35GrjFkRj+C7uoSxGRuemwpybFZm9HfWAEa8JgOvRqsZiO0rXUQ+QdCnbPNp3GVdjg8tuOLxLAY555I5BGPL3DzuzNOT0LX0QSH3c4sC1ZEu1VJtNtsGHrY+MR8pBZCRCkCgUAgEAgEwh80fKEYIv9AzIyPICBU7vQjqru3bITK44DD48PhxRtnNbjS07prSiAQiRGzcRPMczOY1A3AYmQb0PIEIoQoVJDFJK6LKKZtrUNYTKJX/yh/aTjig2UYaK6CJEQGWXTCmo43MdgHisNZMhVzufMKlkdB6BeArqrbiMstWnKyb5qdwri257FXj1JuyMLkUD/6myoRnVGwps/GajZhpLsVdpsVFEVBFp3IiF1DD5uQkF8MXWfLuvR7pLsVYbFJboIZl8eDOmcb9Jpup3fWxsI1pcXqOpqhTFleOKYoCn7B0jX7Pi0WpIAPo0EWRI8sRhwQhOiMAgDO6LGR7lbYLGZQHA7C1cle06ECwxTQtFSz7mmb1YKBxgqEPOboKG9w+QKoc7bCMKxFT81dqNLzvYrKlvnZJYVwADDOGDDc2QKJNGzZaCFxQDDLGyxAJodEKkN/YwWC5FGQrlDktBjnfRLEYzI3YaC5CqAda/pOWFhRLyZz04rE5LGBTsiiE92WKxIzoHlQs6bKlWtBHBjCqkRLOxyYHNYwaX80TcNimselH/8dtrz4eYz1d8JmMcFmNgOg3dJ/F/9/Kaxmk099JKIUgUAgEAgEAuGxom2t8xgpwROKwBf5QSASgy/yA1/kBy6P73FSL49LQXfNXYgkgehtKIc6a8u6Re+sBB5fAJvVsq6pTVweH6FKNU5/+2UUf+orCImMQUhkzLpVPfPESE8bJMGhrAmca6Kx8PpTHA5iMjdhcqgfPbWliMnc7HNa0EJmJ8YwPzXOmhx5wpeJjjggCOrsrUzqo6cIBKvZBG1bPeLzdqy4r6shJDLG6TNVdRvqnG1M5JkvkShzk3roNd0AnL5anqJ0aJqGed5ZXl4o8YdpdnpNlc1Ms1OwmIyQx3sv6iJTxSMoPBI9taWQx6eserLvsNt9vmfkcSnorSuDepWi1NDDRqdf1gJBisHHKHueQAhlijPd0uGwY6z3IUa62wA4P2dXdBXgLqIy0VHZW59YdJQ3giOiEBQeCc2DGgjEEkQkpLm1cd5HngU3i3EOgx+m9MZmb/VJbJVGqaHraGI95xwOF+rsrRjX9KC/scIp3Poocs7ohxEgUyzfEEB0RgEGmqtAO+gVe8c5K+o1wWKc81pRbzmM0waP0ZIcLhe0w+Fhi48GisOBNDKGEQgdDjvaS69gqL0BPL4QQj8JeAIRuALBmv3lFr9Y8QYRpQgEAoFAIBAIj5Wo1Bw34YB2OGCzmGExzcNqMmJ2fBQW0zwcNqvX/RinJ/GfrxzBX75x7iMRpABnFMLC6kfrwUh3KwDg4N/8E0T+gZifnoQ0Km5dj7GQicE+UBTllprF5Qths5g9Tshck/H+hnJIVXEIlnuPdlqMxTiH0d52xOVuX3PfH/VVgITCXehrKIcsOgEBoY8moQ67HX31ZU7j+ydYjUzkH4T4vB3orbuHiIQ0SEJkmBzsR8giLyuapjGu6cacYRwAIAmSLhthNdrbzqTsRcT7VmreGzRNQ9tah/j8Yvd1i/yR+EIx4vN3YLjrAQzDWihTsld0TfX9nZBFL51CthiJVIbZidEVi2BOQSrUayRecIQKk7qBJQ3XF8PhcCGPd3oi0TTtjIhrrHD2MzgUoR9GD37U0VHeoDgcRGcUYHZSj+7qEkQmb2RVODTOTCF00Vhjs1ow2FoHLl+A2MzNK4qScxVO8ESoKg6BYQp0195FREK6T6l281PjK/KCi84ogKalGjRoBMqWrqLtYqy/EzP6YSiSNq6pMudShEbFQa/pXjad8kljNRnR11COIHkUPvmvp0j6HoFAIBAIBALhzweKwwFfJPZZXLKajLAY57H/C9/BaG87bBYzlBuyn7g4xRMIYVsnUYqmafQ3ViBEEY0guRKGYS1o2oEwdTK0D2rB4XKh3JC9rhUFZ/QjMM4YPHos8YTeRSnAKQTF5RVhrK/D51Q1u82G/sYKJBTu8ql/KxE8KIqCOnsrBtsbYJmfQ6gqjmXc/lFUYuRwuYjP34HBtnoYZwyYn5pAqCoONquFSQkDgFBV/IrSIeenJhivGGepeXrV3mba1jpEpea4bRsUrsTU2JBHwTEiIQ3GmSl0V99BVGqOz9W9Zif1jLG4r4THJqO3rmxFotRyghQABMmVzPO2GiiKglQZy4gks5N6DDRXoeStf8WG7QeQ9/QnP/LoKG/4h8jgn78DQw8boR/oRlRaLiiKgtX0KD3OlboGAFFpeauKiFwOvkjsTEHtaMb06CAikzOXbE/T9IqfY1V6PjQPagHagcAw75UIp0YGMTHYi1BVPMLWKJjPTozCP8S7nXmATI7xhp4/KFFqZnwE+v5OJBTugqalGn5BUihTsqFpqYYqPf+J9uWPo2YugUAgEAgEAuHPFrvVgr6GcsTlbockRAapUo3ojYUY6WlFX0M5rCbjE+sLl7c+kVI2ixldVbehSMpAkFwJwJluMz06BA6Hi+iMAoSrN6Cv4T7G+jvXfDzgkceSN9NvvkAEmw8eIGGxSVAkpqO7pgRzk3qv7WiaRk/tXcTlFfksnqymkIlyQxZo2oGhh43oqy+HKiOfZdz+URAetwH6gW5c/sn/Q39TJYY7WxCuTkbMxkLEbCxckSHzuKbHLZpFHp+C0Z62FfdrekwHgdjPo6gUGB6J6dEhr9uKA4IQn1+Msf4uDHe1Lnss8/zsqs2d/UPDMaMf8amtL4LU48A/RIYAaTiyn3oRypRs9DdWYH5q4on2YaVEJmciPG4DempLMT2mcy6kaQy21UPTUo3I5ExEZxSsWZBaLl3NOe5Foav6zmMZv1VpuZgeG8aUh/vZOD2JntpS2CxmqHO2sdIxV8u4thfSKPWSbXgCIazmJ/ddtRT6gS5Mj+ncTNzFAcGQSMPX7TvHV4goRSAQCAQCgUD4g8XhsKO7thRxeTtAcTgIi0nCWF8HOBwuolJzF4hT95+IOMXlC2D/MNpltcxO6jHQVIn4/B1L+kYJxBKoc7ZCKAlwTiL1w6s+ps1ihra1bsmUL55ABJvFN2NagViChPxiTI0OYbC9wWObvoZyRKfney1Fvl44HHZYjPNou3sZg+0NGOluRX9TJcY1PbDbbI/12HarBXpNNwaaq1j/xvo6IZT4I+/pT8JmNiEyORN84eqi+qb1OreJszggGMaZqRXtx2G3Y6y/0606lwtfhEOKoqBKy4UkOBTd1SVLGhkPd7YgItHdx8gXwmISoR/oWrbdSgUpcVAI5qcmV9WnxegHumC1mBCVmosAWQTUOVsxPTaM3rqydRmLHlfqqdDPH/F5RTDOTOHyT/4fuqrvQBaTuG4V8oIjojA1OrhsO0lwKOJzi5zRWx96qq0nUak5mB0fgWFEC8AZbdtbVwbDiBbqnG0IVa1vivRyn5ciaSN0Hc3reszVMNhWD4rieH05IY2MgcU4h9mJsSfWJ5K+5yMOhwNDQ0MICAh4ornpBAKBQCAQPlpomsbMzAwiIyPB+QjSgf6coWkaPdV3EZezjXlzv/h3mEuccjjsGGxrgN1qhjIle9UCwHLwBALYrN59r5ZDr+mGeW4GcXlFHtcHK6IxOdTP8nsKlEUgUBaBsf5O9A50QZmSvaIIFIfDjp66e0goKF7ydyxPKIJx1uDzfgEgMnkj5qcm0FV1G6r0fEZkG2xvgEyV4LWynzdW8jt7Wj+MyQ8r+kUkpCGl6BDCYpPBF4pA0zTmDOMYetgI2vHI40bkHwhpVNyKI6nsNhumRgcxO86O3uHyBQiWRyE0Ko7Vd8OwFlw+H7x4ARTJmc4qaBn5KzavNwxrEeTFv0scEMSqdLYc/Y0Vq/ahWoyrqtpAUxUCQuVuE3xXeuFajJIDwiIwPTbkNQVrsL0BkhDZivzNwqITMdBSveZKaKO97aAoDuRxKZidGIVl3mnoHJGQCtrhgLatHg67DVGpuY8lDW4tzE6MQj/QDYrDQdbBF2CZn8XQw0YoEjPWZJ7vIkDmqkjowWx+EQsLKfTWlTkr3q1jCqQieSM6yj7Anbd+hKe+/D3EZK2sop4vWM1Gn8Q8Lo/n1W/rScBUrY1PZUVqWk1G8ATslG3lhiz01NyFUBKwKtP3lfKH9YT8ATM0NASVavkHi0AgEAgEwp8mGo0GUVFPNj3kz53eunvOVKxFP/iDIqLcDIs5HC5UaU5xaqi9ATaLBcqUrHUXp7h8Aey21aXvaVtrIQ4M8fqGGgCCwiOdvjceSqeHxSRCporHYHs9HHY7olJzl53AuTyW4nK2LTsZ4wtFH5YBXxl+QVLE5xdD01INkX8gKIoDkSRwxRWwXP1dCrvVgqGOZtitFgTI5CyRZaEfFkVRTh+dRWlyxhkDRrpbWSmYArGESY9zOOyYGRvG9JgONP0oBYnD5SIoPAqq9PxlhTPz3AymRrSIydwETUs1eHwB4guK0d9YAakyZkmfm8UYhgcQm7XF47rwuBT0N1YgNmvzsvsZ1/QgKCLKJzFusdm5NzgcLmKzNmPCg6Cw0Jh9tchU8eitK/N4vVYjSAFOEcTXKnzeGOluBU8gYoQ4vlDMmNa7jqFKy4XNaoGmpRp8kRiRyZkfaWCDw26HrrMZVpMR/tIwxGZtxvSYDgHScEyNDSE2awt0Hc0wz88gLCYJ/lLv/kjLsZrzDImMQUCYAr31ZQiLTUKgLGJFqbxWswlTI1q39EmK4gAUBxu2HYDVbILDbl93UWqkuw0Riek+tQ2JjMHEYN+KzNvXA5eheWz2FrfvRL2my2MxgticreiuuoOEwl2P/d4lopSPBAQ43/J86lOfwokTJyCRuL+dqqioQF5eHkpLS7Fzp7trvU6nw9TUFEQiEXg8ntcftvfv30dhYSHu3LmDnTvdq4bYbDaUl5dj+/btuHfvHrZvdzdmo2kat2/fxs6dO722AYC5uTl0dnZCJBIhKCgICoV7Tu2tW7dQVFSEqqoqbNq0yeNb4vb2dgQEBECj0aCgoMCtjclkwt27d7Fr1y7U1tZCJBJBJpNBqVSy2tXW1kKpVCIiIgIPHjxAQEAAoqPZZoQ2mw337t1DUVERKioqsGWL+xf10NAQRkZGYLFYkJ2djTt37mD37t3gevjhVllZiezsbJSWlmLXLs8PXXl5OeLj4zExMYGUFPeQZ4fDgfv37yMkJAQKhQIhIe5vrNra2iCRSBAZGYmKigps27bNrQ3w6D66d+8eduzY4bE/t27dws6dO3H//n2P5w8Ak5OT0Ol0kEgksFqtSEhwN9N0OByorKxEWloa2tvbUVBQ4LHfQUFBmJ+fh0Qi8XiPmEwmNDQ0oKCgAHfv3kVxcbFbm9bWVkgkEhgMBiQkJHh8hsxmM6qqqpCXl4eHDx8iKyvL47ndvXsXW7ZsQVNTE+Li4hAcHOzWpqamBklJSWhra0NmZiZEIneVf3p6Gj09PQCAhIQE+Pu7v710rY+IiEBLS4vHa0TTNEpLS5l7MiUlBUFBbK+GsbExaLVaZGdn4+7duygqcn9DbrfbUVJSgl27dqG0tNTrc2swGKDVamG326FSqSCVSt3ajIyMwGAwIDQ0FIODg8jMdDeSdH22AQEB6OjoQG6u5zLd9+7dw9atW3Hr1i2Pz8jU1BQePnyIlJQU9Pb2YuPGjW778OW5dfV7dnYWU1NTXj/byspKpKeno7Gx0et+BgcHYTQaoVarcevWLezZs2fJZ9tgMCA52b2Mr81mw/379xEVFQWhUIjISPcfxh0dHeBwOJienkZ6ejoEAvcf/K2trRAKhdDr9UhMTMTDhw+xebP7JGJmZgY9PT2QyWSYnp72ON64xmQOh4ObN2+iuLgYfP6j1Bi73Y6bN28y462fnx/8/PwQH+/+g+P+/fvYtGkTbt68id27d3u8Rq7vpNraWsTHx7vdb67vmx07dqC6uhqbNnl+C9/U1ITo6GgMDQ0hNDQUcrn7ZFWj0cBms4HH48FoNCIpKcmtTXNzMyIiItDZ2YnNmzd7/aFUVlaGwsJCr+Ntd3c3aJqGXq/32ueKigrExcXhxo0b+MUvfsH8FiA8GfqbKhGRkOYxsiRYHuXVsNg9cmp9xSkOl7dkhUBPOOx29NbdgyIpA35B7mP2SqA4HESl5sJqNqG/qQLigBBEJKR6bd/feB9Rqbm+vcnnC2C3ri41kaIoRGcUoKPiJqrf/29s//jfYM6gR4AsAkHhyjVHP0wM9mFGPwwOjw9FUsaqPaPEAcFuoqB5fhZd1XdQ8taPUPTJv4VyQzaUqdmrmrw67HYMtFS7VbCiKAqxWZuh62yGaW7GY+n4xcyMjyxpnkxRFCiKWlZEspqNmJ0Y9SlKKkgehanRoRX5M0k/rMzYW18GWXQCgsIjYZw2eE0TXAmB4QpMjQwyvmvA6gUpFzyhCFaTcVVFEnSdzRBKAiFdIBrzhJ692Hh8AWKzNsM0O42++jL4h8oRtgLT99X4qy1mWj+MCW0vOFwuFIkZrHOeHOpHTOYm2GwWzE3qEZns/P022vcQY/0dCFHEPFGfLh5fgPi8Ioz0tGF6dBBSpRp+C6IAaZqGacaASZ3GLc2YJxAiOEKFUFU863eBzWLGYFs91LnbEZWaC01LFfyCpGsWTBdit1l9Ho+CwiPR13D/iYpSsxNjGO1td1Yj9TBOWE1Gj5G3HA4X0RsLfRa+1wIRpXzEdXN/6lOfwvDwMLZu3YrAQHZ449zcHHbt2oUNGzagvb0du3Y9qjLicDjw3nvv4eWXXwYAnD9/3uOkFHBOlIuLi7Fx40bU1tZi7969rPXnzp3Da6+9BqFQCIFAALVajYgIdsnLW7du4ZVXXkFYWBgiIyNhNpuRnu6u4F6+fBmvvPIKuFwuTp8+je3bt7Me5OvXr+Pzn/885HI5srKy0Nra6vbjfnJyEkajEfv378fk5CRaW1uxdeujUqjT09O4fPkyvvOd74DL5cJqtWL//v24ceMGYmNjGdGprKwMhw4dYiaGRUVFuHbtGpKSkljnd/bsWbz++usQiUSYmZlx67NrMvriiy/i2rVr2L17N7Zt24Z3330XL774opswNT8/jz179iA3Nxd3797FM888w1o/ODgIf39/5OTk4Ny5c9i0aZPbpNN1vQMCAnDx4kW3z7arqwt8Pp+ZhIpEIsTGxrpNcGmahsFgwK5du5CVlYX6+nrs3r2b1ebOnTvMZ2I0GrF582bWhNTFhQsX8H//7/8FRVG4ePEicnJy3ESXsrIyfO5zn4NUKoVCoUBAQABrEjgxMQGTyYR9+/YBcN57nu7b999/H1/5ylfA5XKhVCoxMzODnJwcZn1raytycnJQUFAAk8mEsrIyj/s5deoU/u7v/g5cLhd2u91jm9bWVhw9ehTp6enYuXMnzpw549ZufHwcVqsVu3fvxoEDB3D58mXmHBZy9uxZfPGLXwRN07h06ZLbfubn5zE5OcncEzweDxs3bnQTSm7evIkvfvGLCAoKwvbt23Hy5EkcOHCA+VzMZjMuXLiAL33pSwAAtVqNkZER5OXlsfZz/vx5vP766/Dz84NKpcLU1JRHYe7ChQv4/Oc/D4qiPJ4/4PxMPve5zwEAbt++jQ0bNiA8/FEVm8WfrVgsRnp6upvg0NPTg8OHD2Pjxo3Izs7GvXv3cOjQIWY9TdM4efIkvvKVr4CiKFy4cMFjf5Z7bl1cvHgRzz//PGia9nhuGo2GeZY2bNiA2dlZZGRkuO3nvffew8c+9jEAQG5uLm7duoWjR4+y2gwPD0MkEqGgoMDrvX3+/Hl89atfhVAo9PpsczgcbNu2DRMTE+js7ERhITsl4P79+9i6dSsyMjJw7do17N+/HxqNBu3t7W7j+8WLF/HKK68wglNycjJLvLl27RoztgPAtm3bcPLkSbzwwgvg8XigaRrvvPMO/v7v/x4ikYgZb2tqakDTNPLzH1VToWka09PT2LFjBzZu3IiKigocPHiQ1R9Xm+LiYhQXF+PUqVNuY+Dt27eZPs3NzXm8jjRNY2JiAk8//TQA4MyZM9i2bZvbC4yzZ88yn9OFCxeQm5vLErDHx8dhNpuxd+9eaLVajI2NITs72+14jY2N+NjHPobY2FiEhYWBx+OxBD69Xo/5+XkcOHAATU1NkEqlbi+KLl++jJdeeglRUVHo7e0F8Pj8PQjuDLbVIyQyZlkBZ6nqYwsjp9YzrW+l94FpdhraB7VQ52wF18eJiy9v0/lCEdTZWzE3qUdPbSmkSrXbBHKwrR6hqnifU3LWco/bLGb0N1ZAkZCO7R//G0RnFIB2ODAzMYrB9gZWCh2Hy0VwhAqSkDC3Yy7822Kch66zGaBphERGLyuqrKb/dpsVQw8bERaTiEN/+8+MeLbaaIre+jI38+CFKBIzMDnU71OFq3FNt9coKRcRCWkY7noARZL7d6GLgaYqxPlYXSwwzJV6tTIxwiUojPa2o/5KKUKj1KuuDriQ0Kg49NaVMaLUWgUpAIiIT4WusxlRqZ5fxnljsL0BkuBQt7Q0Lo8Ph927d5nIPxDqnG2Y0Y+gt+4eQpSxa+r/cthtNug6GmGzOKMJPQkKCwWv8Nhk9NaXMdFR4bHJQGyyMwKuvgwB0vAVV1Dk8gWwWS2rEo/lcSkwzkzh7dc+hu0f/xvMTz/yABMHhiAsJtFnQVHTUo2YrM0Yam8AaAdis7ZgekyHruo7iErJWXO6Iu1wrPge5/IFsFnM6+LftRxMuvgqqwsK/fwRoojGSHcr5PHeX36sFWKMsEIoisKJEydw9epVTE09Mhd0LLghIyMjERQUhLa2RxUxrl69igMHDjB/h4eHY2TEvaJES0sL0tKchoBSqRR+fn7QarWs9QkJCRAKnTfxpk2bUFFRwdrH4OAgBAIBM2lJTExEV5dno0CHw8GINHv37sX169eZdQ0NDVAoFMyESCqVYnKSbQxI0zQ++OADZmIbEhLCaqPX6/HBBx/ghRdeAJfLZQ2Ae/bsQXNzM0ZGRlBTU4OAgAC3SIX9+/ejtLQUc3POPO3GxkYkJyczUS+5ubmora1l2o+NjaGurg779+8HAAiFQlgsFohEIhw7dgzvvPMO7Atyeefm5uDn58f0PScnB7du3WL1ob6+npn0HDx4EFevXmWtt9vtmJubQ2BgICiKAofDYR1jYmIC7e3trKiILVu2uH1ugDMixSX6SaVSOBwOGAwGZv3o6CgcDgfzmRQVFeHu3btu+7FareDxeMw9eejQIVy+fNmt3cTEBCNC5Obm4sGDBzCZnG8eaJrG9evXWZPmqKgoaDQa1j46OzsRFxfH3EeJiYnQarXMfjQaDYaGhpgII5FIBLOH1IA7d+5g+/btzH4WX0fAea3b2toYgZWiKGzZsgVlZWWsdq6IHsApJEkkEtbzCjgFCblcznxmQqEQRiPblPLSpUs4fPgw8/fu3btx8+ZNVpv5+XlYLBYmMoqiKDz33HN47733mDYLJ9oAoFKpMDg4yDq/xsZGJCYmMvejWq1GX1+f23Wy2+3gcDjMZ5ufn4+qqipWm/b2dmzY8OgN0M6dO3H79m3m+fP02e7cudPt3gecUSmuyKfAwECoVCo8ePCAWe8SWRaOf4ODbHPLpqYmJCUlMc9tQUGBW58BwGKxMEKep8+WpmlUVFQwz5K3a3Tv3j1WBFVgYCCysrJQUlLCalddXc2INJ6uo1arRVhYGDPeuvrgYmRkBF1dXaxndvEYef/+ffj7+7sJZyqVCmq1mvX8PvLfcH417969G3fu3IHjwwo29fX1iIqKYsZ2wHl/Hzt2DKdOnYLD4cCZM2dw+PBht8jAvLw8CIVC1vWsqalhhNGQkBDI5XK0t7e79X/h2PXss8/i/fffZ/4eHx+H3W5n+pSZmYmGhgYspqysjPWywtNY2tbWxrpvDx06hCtXrrDa3Lx5E3v27AHgHI8Wfj8upL+/H7GxsQCAjIwMtLW1wfqhB5Ddbsf169eZ74m0tDTWPQ04n/3MzEySqvcRMdzVCr/gUATKIpZsF65Oxmhv+5JtgEfiVHRGIYa7PjRE96HC3FL4GsFgGNZgpKcN8QXFPgtSgFMYmPHR1FwSIkNc7nbYbRb01JbCNOv8vhvpaYc4SIqA0JWn0K2UicE+aFtroc7dxkrZozgcBMoiPrz+Bcw/RdJGWObnoGmpZpmD6zqaGSGqv7EC+oFOqNLyEJO5aUUpb77iMiiPzihgPKGiUnMxZ9Bjcqh/xfvTttYhIj6VNRH3dK+ERMZAFp2Aruo7Xj1mjNOTHivkLUYoCYB5ftbrel1nC+TxqT6l4wFrEyZpmobVZER/Qzn6myqhfVADTUu1138DzVXQdTbDMKyBaXbaa8W2oIgoGIY16yJIAa4U3JUZ4Gse1MJfGu6TT5I3AmRyqHO2wW51PqvrZbjuYmp0CH0N9zHYVgd5fBpisza7VW10MdbfgbDYRy+iRZJAZuxwIY2MgTp7K4SSQPTWl0HX2eLz2BcaFYdxH4zqF0PTNHSdLRjuakHO4b9AYJiCNXasRJAyDGsQGBYJDoeLUFUCY6YeGKZAfN4O6Ac6oW2tW1NEmn6gC7Jo92yUpYhMyoCuo2nVx/QVVwGKpdLFfSFIrgRN0x4rGa4XRJRaBRRF4fnnn8cHH3zACAZtbW1ITX2kHubm5qKnpwcGgwF9fX2QyWSsKJXCwkJUVla67bu3txdq9aNyklu3bkV5eTlomobZbEZXVxcjWrn6snASSNM0ysrK3KKZ0tLS0NLSwlrW0NDASukJDg6GSCTC8PAwdDodJiYm3KKr4uLi0N39qDqCp5QPsViM+fl5DA4Oory8HMePH2fWm0wmiMWPBpKnnnoKL730Ek6dOgWdToeamhoMDg7CtuCL4tixYzh79iympqag0WhYb7sjIyOh0znLmU5NTaGkpARHjhxh1vv5+WF+fh4AWMKUa/8NDQ2sSBSVSoWIiAhmcuqaJLr6LxAIIJfLWcLMQgEEcEYu3Lt3D4BTHPrggw/w1FNPYTHp6elobmZXYJicnGRFquzZswc3btxg+uJKyfR0fgspKSlhRStwOBxs3boVpaWlzLKRkRG39JkjR47gwoULAIAbN264pTzl5uairq6O+ZumaTQ2NrqlhrlEMIPBgNraWmYS6Y3e3l6IRCJWaqAn4eLy5cusKB0AUCqVmJ6exszMDACgqqoK+flsv4edO3fizp07rO0WihuuNrdv32b+vn//PgoKCliRdRRFISUlBa2tj8ogLxZ3AOd9smvXLly9ehXXr1/Hzp07wVtkcrlQBJ6ensbg4KBbqlZOTg5LdAXYwiUAxMTEYHh4GBbLI2+M9vZ2t30tPJ5rYr/wGlEUhby8PNTU1DDL9Ho9ZDK2F0dGRgZ6enowMzODzs5OyGQyVrpqTk4O6x6Zm5tDf38/a3yUy+UYHR3FYhanNSqVSkxNTTGfreueXEhISAgmJh75B5jNZkxOTrpFj8bGxiIgIIAZBxeLe66xZOEPk8X3SH5+PqqrqwEAs7OzuHfvHutlw2K8CVIuEhISEBoaynwX1NbWuqVQHj58GBcuXIBWq4XBYGCN/xaLBf39/aitrYVQKIRIJEJxcTErxWzh+WzcuBEymYwRH0dGRljXKScnB21tbSxxdmJiAqGhoczffD4fu3btwgcffADAOf4tjOZUqVRuwrUrRW6hmOZKBe7sfFRy+OHDhyxRisvlIjc3l7nmrnFt4X0rEAjcRO7e3l5GkHLx1FNPMcL8uXPncPToUWY/XC6XEf4AZ7RaVlaWW3o54cmg7+8Ej8/3mJa3GHFgCEwrqD7G4XIZcWS4swX9jRVrFqeWQtfZAvP8HGI2Fq56or+SyVJoVBzUOdswMdiHkt/8GA6blZVi9DhwOOzoaygH/WEEgiu6yD9UvmSlQC6PD2mUmjXZjM4oQKgqDnd/+xP01JQiWBGNyOTMdTU9dmE1G9FTcxc8vhDq7K3g8viYGn1kqB2ZnAnT3AzGtT0+73Nc0+Msp77Iw8ob4sAQqLO2oLumxKOoNLyCyAS/YCnmJvVuy+enJuGw29bkD+Qr45oe9Nbdgyw6AblHPo6Co5+CxTiPqLQ8qNLzvf6TqRLA4fIwNToEbWudR/FqbmIU73zj0wCwbhFGHA7HZ9PpgeYqBMujEBS+PsKo61mdGh1cc6U+u9UCzYNa9DdWwG6zIjZrM6IzCpY1pzZOTbIiUSMS0zHc9cBj2wCZHOrsrQiOiEJfQzm0rbVwOJa+diL/wCXF0sU4HHZoW2vR33gfwRFRiErJQUR86qqvDe1wYELby/h+iQOCYJ6bYda7BGhZdDx6au6uurLp/PTkilOyVyOKrgTa4UBPbSmCwiMhU7lbNyzEPD8LgXj54gsRCWmYGOyFxTi3Xt1kQUSpVUJRFI4fP44bN27AYDBAo9G4eR8dOnQIFy9eRGVlpZsPDUVR8PPzYyKAAKeA4SkN68CBA7h27RouXbrkUdwoKChgfrS7ohYW4ylaSqPRuJm3FxUV4dKlS7h37x5LaHGRlpbGTMj7+vrg7+/vNmndtm0bfvvb36K5uZlJ1XAxPz/PRIIAzknov/zLvyAnJwd79+5FbGwsJiYmUFJSgmvXruHatWu4fv06BAIBgoODweFwUF5ejvHxR2aCgYGBGB4expUrV3Ds2DHW8RaLNi5h6uTJk7DZbJiZmXFLw0xNTQVN02htbUVjY6Nb+lRhYSEjlthsNpjNZlZ6SVBQEKanp0HTNN577z0899xzHn+MJiUloaOjg/nB2dra6iYkUBTFRB7cuXPHo59PYmIiOjo63K7zYs8mpVIJh8PBiHgu8WYhPB4Pmzdvxm9/+1sEBgayJqMu5HI5hoedA7fL92wxHA4HJpMJubm5bvcAACgUCgwNOdV2s9mMuro6N0+XxVEnfX19kMvlLFHTxf79+3Ht2jWYTCaMjIy4TUg5HA5CQkKY+6avrw8xMewf6nw+HzRNw2azQa/XY25uzq0N4Lw/2traQNM0BgcHIZfL3QSn8fFxNDQ04L//+7/x+uuvo66uDjdu3EBvby8THeXn5wehUIjJyUlcuXLFLW0KAKKjo90m+NPT025+VQcOHGAiSurq6jym/EmlUgQEBKCkpAQBAQEeP9vY2FjodDpmkl9eXu7Rs+mpp57CmTNn0NTU5JaCSFEUuFwuI/xevnzZ47glk8kwNsYuNWs0Gt0+X9f4p9PpIBKJ3PzatmzZgvLycuZvb2Mg4BRdhoeHMTQ05NHXa/PmzUwE4+IIIeCRmGa1WnH+/Hk8++yzHo/j2n4pQcpFWloaBAIB6uvrodPpmJRemqYxPj6O1tZWdHd3Q6VSwWKxMOPitWvXcO/ePRiNRmzcuBFJSUkoLy/H9evXGRHPE8nJyVCr1Th//rzH75unn36aEaa1Wq1HYSYsLAxKpRI/+clPUFjoPtn29/fH7OyjH6KLo6RcZGdno7m5GTabjRUlvBC1Wg29Xo+uri7QNO0mNrq8FReyMLrPhVAohFqtxi9+8Qvk5ua63Weuc7hw4QJycnKIIPURMTnUD5vVuqI0EQ6XB/sK/Z04XC5U6c6J8nBny6oip5YSmWiaRm99GSTBUsjjVu9bIlWqMaHtXXG/IpMzodyQBYtxDoNt9eviS+OJ2YlR9NbegzIlxy0aI0QRDYNuYEX7czjs6G+qxLF/+CmSt+6D1TiHnpq7K5rY+sJIdyuGHjZBnbONlaLmrPL26OWYIjEdNosZ+v5OT7thMWcYh3HG4LHE/FL3CpcvQELBTug6mllRCM6JosRnMTMsJglji/pJ0zSGOhpXHSXhLWppMa70Ua5AgLjc7RBKAkDTNISSAESl5qCn5q7Xe5CiKPBFYgSGKSCP28A8l4v/hUTGYtdnvoa5ST36GyvQ31QJ4woEaU+EqzdgpKdt2Xb9jRWQRsWtyrR/KSiKgiIxHTFZmzDc9QADzVUrqsxmGNagr+E+hh42QZGUgZjMTT6L0HarBRwu+7crRVHgCURLikDigGCos7dCHpcKTXM1+psqYVtQMGA12Cxm9DdVYqCpCvK4VMRmbYE4IBhDHU1QJG0ETyCE1bxyYUrbWouotOXTM0X+QYjP3wHTjAF9DeVPrDpe8IfRf+uN1Wx0VkJNy4O/NHzZ9vqBLo/jlidis7agv7HC57FhJRBPqTVAURSOHTuGd999FyaTCd3d3ejp6WGl5Ny5cwdKpZIxCl745VJcXIxr164xEzZPEU6A88f0G2+8gcTEREgkEtA0jZCQEERFRSEiIgJcLhcqlQp3796FVCp1m7C6cEVLpaenY3Z21s1fyGKx4NatW7h06RIOHjzITHIFAgE2btzIvOX28/PD1NQUqqurGe8XjUaDtrY25m3zD3/4Q/zoRz/C0NAQyzdpfn4eYrEYNE3j4sWLSE9Ph1qtRkxMDJNOsVjk0ul0uHfvHi5evIg9e/Zgfn4eHR0djBBnt9uhVCphsVjcvrw9RRItFKa8XavCwkJcv34dTU1N+MpXvuK2fvPmzSgvL8fMzIyb5xPgnNy/+eabeOGFFzyaHrsoLi5GSUkJiouL0dXV5VHASUhIwHPPPYeXXnqJFWngYsOGDbhw4QLjBeX6jD2xY8cOnDx5koleWxjBVldXx6S4/eAHP8APf/hDXL16FTweD9nZ2YyIUVhYiPPnz2PXrl0wm83M8v7+fiYFhsPhIDk5Gb/85S9x+fJl0DSNLVu2MG0zMzNx7do1REZG4vz5825ePwtx/ZBx3W+e4HA4SE1Nxe7du1nRTgvZvn07zp49i2effRYNDQ0ej+mKlpqYmMCJEye89smVxjc9PY3nnnsOAwMDaG1tZfoqlUqxY8cOWK1WOBwObN++HQKBAD09Pbh58ybznNA0DalUipaWFq8/PAsKClBZWYnCwkKPESCA8xmNjIxEX18f+vv7GT8vh8OBgYEBdHV1MSLRwYMHcfnyZVy5cgUhISHIyMhgCZgHDhzApUuXsG/fPohEIqZfDocDTU1NjJh4+fJl7Nmzhxkn4uPjkZiYCIqisH37dpSWlkIgEHgtjrBp0yZWeuTDhw89Go1zOBwkJCRg06ZNbqllrvUURcFut2N0dBQymWzJZ27Pnj04ffo0bDabm2l1eHg47t+/D5PJhLGxMY9G5DweD7/+9a/xmc98xuN5BQcH4/Lly1CpVMsKUi6ys7Pxs5/9DL///e8hEAiY+yg0NBRxcXEwm80oKSmB3W73KAKbzWZ0d3fj6NGjyM3Nxblz55CTk4Po6Gi3+8pkMqGjowNXrlwBn89n7sXAwEBkZmbC398fmzdvRmlpKQwGAxN5ajQa0djYyBKK33nnHajVTs+QhQLu9u3bcf36dRw8eJCJkvJW2MEVwWS32/Hss886w8OnpqDVaqHT6Zjv0+TkZI9p6H5+fqzIrvHxcY+FJrRaLbq7u/Gzn/0MMTExjLBM0zTCw8MZL64dO3Z4LOZAePxM64cxPz254gl0RGIahjtboExx9xZbDpc45bDbMfhh+fbIDVlrKn9tNRvRV1+OmMxNHo1jV0KATI7+xgqfJwwu9JpuhKs3IDBMAfP8rNNgWRrOStVZK4Nt9eDw+IjP3+FxPUVRKxLDHA47uqtLoM7eCg6Xh6GHDYhKzUVodAIG2+pht1mhSstbU9SUaXYKg20NkMeneI1AWpziJo9LwVh/J0Z62r0KjDarBcOdLV6vxXI8MkBvgXluGuHqDdB1NCNmY+HyGy/YB0VRcDgeVRbTtFRDlZa3zJaeCY6IwtTo4JKpajaLGZoHNRAHhHj1q1koTMXlFfkssi2EpmmMdLciacte9NbdQ/TGQoCmMdrbjtGeNlAcDiIS0iEQ+y2/s0V9sywheNI0jb76csjjU+EX5P69sl5wOM5xyGYxY6C5EnyRn9dKfTaLGbqOJthtNgRHRK3afFrX2eLRgyxyQyY0zdXLerfxRWLEZG6C3WZ9NHYmZ65ozDPPzUDX2Qwuj4+o1BxweY9elNE0DdrhAIfLRURiOobaG6FK9/1eNs4YwOHxV9SfcPUG2KwW9DfeR2BYpE/j7uzEmM+RkYsJjlChr+H+mtJB3fozqcdod6tXQ3NP2K0Wn7/zKIpCbPYW9NaXrdqjyhtElFoF8/PzaG5uxsTEBBPx9Pzzz6O5udktTcfhcODQoUMYHR3F2bNnIZfLmWpBrnauSkMzMzMsochkMuHGjRvgcrl49913cePGDezfv5/1o72trQ12ux1GoxHPPvssLl26hObmZqSlpblNmBITE3H27Fmkp6ejtLSUSTman5/HrVu3wOVysWvXLmzevBmtra3MhMxsNqOpqYlJ67FarQgODsZ7773HTEijo6OxZ88ecLlczMzM4L//+7+xbds21NTUoKamBgqFAnl5eTAajRAIBDh58iT27t3LiBRSqZSpuLfwbXl9fT0mJyfx/PPPY25uDmVlZdi5cycr8qy2thaNjY147733sHXrVpYI5ufn59G7SyAQIDAwEEeOHGH5mrh+QFEUhenpaXz1q1/1+PaepmmcO3cOdrud5SfmYmxsDF/4whdY1a5omoZcLkdSUhLzOYeGhmJmZobxrgGc4mB9fT2TkkRRFHbt2oXw8HBcuHAB8fHxrFQowCm0uaJMenp6PIpbLg4dOoRPfvKTeO6555jPTygUIicnhzHw5nA4TLSJqz8LU+lmZmbw85//HJmZmbhy5QpomkZ0dDQOHjzIXIsbN25gx44dzMT3/v37mJiYgFwuR35+Pmiaxr1797Bp0yaPERuAc7Le0NAAvV7vlral0Wjw4MEDZlLt8t9a6MEDOD/rlJQUREREQKFQ4M6dOywz95mZGQwMDGBoaAh2ux0HDx7EW2+9xaQneePAgQP47Gc/C7FYDJVKhX379nkUKQ4dOoR3330Xzz//PJKTk1nCS11dHb73ve/BZDIxqUUhISHIz89nxofIyEhUVVWBpmm0tLSw0lMXEhMTA7lcjrfeeou5pymKQkxMDPM5NDU14caNGwgPD0dGRgYmJydRW1vLEm75fD5EIhF+8YtfYOvWrUy/OBwOMjIymCgsl7jtiizs7u5mPUunTp3CJz7xCbdoTBcLxS4Oh4OOjg63cxsdHcX9+/chkUjw/e9/H5WVlYwAIRAIkJubi+DgYEYEGx8fZ0VLWq1W9Pb2oq+vj3VPtLW14d/+7d88ihcWiwVpaWn4j//4DzfPI9d59fX1IS7O84+V27dv48033/Tq47cYh8OBK1euYPPmzYiMjPQY5WUwGHD48GFoNBqcPXsWzzzzDGvMuXTpEvPMUxSFo0ePoqSkhBVR2t3dzVQALC4uxv79+3HhwgUmQs9gMKCuro6J3j19+jR+97vfMf5RIpEImZmZrPRiiqJw4MAB1NfXo6GhASkpKUhKSgKPx2PEJG9RUoBznKyvr8e//uu/wt/fn4leCg4ORlRUFDZs2AAej8c811NTUzh37hzS09NZY6vLo1Eul6OsrIx1H+l0OqZ64rPPPguhUMjyQKNpGmNjY3jjjTfQ2tqKoKAgNDQ0gM/nIy0tjQhUT4j5qQlnFagVTMJd8IVi2CyrqxbnwpM4pUzJXrEJ7cz4CMb6OlY0IfCFlZpFz+iHoc52PndCP3+WwbJUqWZVMVsp5vlZaFqqodyQBXHg8hN1X/q+UJByXXPXm3hnik3Oh9EUFfALDFmx2S5N0xhqbwBN06sSRsJiEjGu6cFw1wNEJLB/E9I0jb66MsTleS5etBIUiemY1A2gu+YuBCLxiu8hRVIGdB3NUG7IwtTIIEQBQR4rV/pCgMxldu7+HU7TNCMUxmzc5FEoXHiNhZIAKFOy0VNbirhcz0VOlkLbWsdEvDhN3VugSMxg7gO7zYaR7gewmozg8vmISFxZZUZP9yhN0+ipLYVyQ6ZPvl7rAU8gRGzWFphmp5hKfa5+TQz1Y2ZMBw6Pj8jkzBX503nCbrV4HN84HC4oDgd2q8WnY3B5fKagwVBHEyzGOcjjHol4Iv9AGGcMEAcEM9vMTuox1vcQQj9/xGzc5PE+H+1pY6rjLWci74mhh00eRRNJsAyzE2Ne01l5fAHUOdtgGNagu+YuVGl5S4qd49oeRGe4V+X2FS6P7/O1Xo5xbQ+M04Z1GYuWgi8UIywmCUMPm5hqjesBEaVWSEVFBRwOBzIyMhhBpaamBhqNBqWlpR4FDMD5o/nZZ5/F8PAwzp49i8jISBQWFqK4uBh37txBdnY282N/fn4eN2/ehEAgwP79+90m7BRFITg4GMHBwUhPT4fNZsOpU6dw/vx5HDp0CAMDA/jggw8YgUUulyMzMxNcLpeJlnKZc5eUlEAsFuPAgQPMJFgoFLJMoYVCIZPm1d/fj+rqarz++usQCoU4cOCA20BeU1ODTZs2gaIoZjudTocLFy7g1KlT8PPzw49//GO39LLMzExcvHgRUVFRCAwMxLVr1xAdHc2kEUokEo/+SVqtFs888wzS09Nx7949tLe3Y+fOnYxguHib6upqaLVapkoaAI8TwXPnzqGlpQUCgQCJiexUApqm0d/fj4mJCY/X4NKlS9BoNOjv72cmZK7JT319PSu1xeFwQKVS4dKlS0z0wsLIJBc7djjfwHV1deHChQvw8/PDjh07wOPxsGPHDty6dQsFBQUeJ9rz8/Oorq5mJpwNDQ34xCc+saQfjguBQMCqJma32/GjH/0IX/va15hy8p6w2WzMvevytAKcBuMXL17E008/jX/8x3/EU089BZPJBIlEAn9/f0gkEsbHSaFQ4Nq1awgPD0drayump6eZ/UdFRWHv3r1M29u3b+P8+fPQ6/Ws/ppMJrS3t6OxsRHAI4NlV1qcv78/oqOjkZycDB6Ph7NnzzIVy7yh1+uZ8vAmkwmJiYlugtTY2BhkMhk4HA7y8/OZaCcX3d3dmJ+fx969e6FSqRgvoYmJCdy6dQs2m41J39yyZQtu377NGG5PT0+joaGBlf4bFhaGX//611AoFB4rDQLOtMWnn34a586dQ0ZGBkJCQtxS2MxmM9566y28+uqruHbtmpuH18LjLaxIlpCQgIQEp9HjyMgIvvzlLzNRV66IqcWRSVu3bkVZWRny8vJY6VTd3d1oaWlBWFgYnn76aVAUhatXr6K4uJhpszi679ChQ25CEp/Ph1qtxu7du5n7ZH5+HlarFb/97W893v/3799HVlYW9u3b55aWCTwyYy8uLmYZoAPOcY7H46G4uBgdHR2oqKhgIs484RpPDx48CIlEAovF4hZdqtfrmbFApVIhMDAQ77zzDo4dOwaBQICGhgakpaW59XX79u2MWPXuu+8iOTnZTfTz9/fHzMwMAgICEBwczNwLGo0GJpMJ0dHRjFC7uGrpwh/x2dnZyM7ORmtrK86dO4e4uDhkZGSgqamJFSU1NDSEpqYm5rtJJpNh586dsFqtkEqlCAkJYXlKLfxM9u3bBy6Xi6ysLDQ3N+Ps2bNITU1FUlIS8vPzcenSJezZswdCoRAURWFkZATl5eVQKBR47rnnmH0lJyezvKsoioJGo8Hrr7+O3t5eRqSzWCxMCrfdbme+Kwjrj3l+FsNdD9b01pUv8oN5fnbVE3AXaxGnxvo7YTHOrfvb41BVHMa1Pcv6griY1A14FBICZHIEyOTQa7rRU1sKRdJGiANWNtke7XsI08wU4vOLfRIWguVRmBoZXLKKm8NhR3fVHahzti15nXkCIavSYGhUnJu45ikya3ZSj5GuB4jckLXk+S4X1RWqisPkUD+GHjYiMvmRj+ZAcxWi0nKXjOCiOFzYbTZwPXynLMZfGo7St/8d8XlFGGhm+2pSHC78pWEIkEV4FF0EYgmsJiPsNhvGNd1rmpx6+3z1mm5Mjw5BmZK9oudN5B8I5YasFQtTc5N68ARC5ljiwBAMd7eyIsK4PB7zmdgsZgx3NsNutYIv8kNEQtqSn41UqcbkYB+kUY/8fGmHA901JVCl5695TFkNIv8gxGZvxUBzFa782zeQ98z/QeKm3ctGL/mKcWYKQon3inPKDVkYbG9YkdhCcThQbsj6MKqtDSM9rQiNUiM0Kg66zhZEpebAMKzBpG4AkuBQRjT33kcDS3wWSgJgmp3ySSAc7W1HWGySx3ssRBmDwda6ZT3WgiNUCApXQvOgBnyheMnKlmspDKBIysBQRzNUPqQZLsVgewOEfv6ISs1ZvvE6ECCTwzhrwORQP0LWybeQiFIrRKFQsCZGAJjS7gcOHMDFixeZH/5zc3NuwktERASeffZZDA0N4f3330dUVBTm5uZQUVGBoqIinD9/HiKRCAcPHnSbZMTHx6Orq4uZ+AHOL9HTp0/j2LFj6OvrY9Yv9LcaHh7GzZs3mTfXJ06cwHe/+134+/vj8OHDHqM7FmOz2XDlyhWEh4cjLy8PqampUCgUeOedd3D06FHWhHKxmTkAJiWlsLAQfn5+KC8vZ6U5usK8RSIRvvrVr2LHjh04ePCgmzCzcBIFwO16bNu2DWNjYzh9+jR27dqFoKAgZuLe09ODhoYG5OXlIT8/Hw8ePMCmTZswNTXlZtbtSgFJS0vD+fPnPYpSkZGROHDgACorK92EGZqmERUVhZaWFkxNTSEoKAgURSE8PBzh4Y/ye+12O86ePYuvfvWrAODRV2gxrsn/3Nwcrl+/DpvNhsLCQlitVpSVleGpp56C1WpFbW0tE20lFouRn5/PRGhRFIXk5GSvXkbe0Ov1uHHjBv76r/8aGzduRHh4ON577z1s2bLFzevF0w88h8PB+F+9+uqryMnJQWRkJObm5qDX69Hf34/Z2VlWetunP/1pfPvb38aXvvQlJpLLE/Pz84iPj3cz9BeJREx0T2NjI65du4awsDCPZeRNJhP8/f2RkJDg1U/Jbrfjxo0b+OxnP4vr169j165duHLlCiIiIlgRfDU1NYywFRsbi4cPH8JgMCA4OBhjY2N4+PAhDh06BIvFgrt37zKRYFKplBGVXClzg4ODOHz4MN59911cuXIFgYGByMnJYUVW2u126PV6BAYGoq+vzy3Nb6GPVkJCAjo7O93ua7vdjkuXLmHv3r24evUqoqKicO7cORw+fNhNlBCLxW7VCgFgYGAAzc3NqKurQ1VVFYqLi2E2m1FZWcl4HanVaqSkpCAkJAQGgwElJSXYtWsXGhoaMDAwALVajWeeecZt3wsRiUTYsmULaJrGtWvX8PWvfx0ymQwFBQWsaJ7FXLlyBUePHsX9+/eZZ9OFVquF0WjEG2+8gbq6OjcvQJfvkUqlwo0bN1iCncViQWlpKVOdddu2bUyhA7FYzAjlrpSxDz74AMHBwTh+/Dizj/z8fFy4cIEV6VhRUcHy5AoKCsLx48fx7rvvoqioCBqNBkVFRSgvL2eJthRFISkpCb///e/h5+eHnp4eBAcHs7yStm/fjg8++IB1Hq4UvWeffRZisZhJe01PT2dF+el0OrcootTUVKSmpjJj7dGjR/Gb3/yGichUKBQsIXkhmzdvxq1btyAWi9283BZWiQWcZvsZGRlobW3F2bNnkZyczBSCyMzMxPvvvw+5XM4yM3cRFxeHK1euMKJUX18f5ubmkJubi4GBASZyWSAQICsrC2azGWfOnMHRo0fdig4Q1o7NYoamuRrxBcVr2k9EQhq0rbVremO9ELY4VQeH3b6kOKVpqYFEGgblCkum+4K/NBzjGt9FKcOwZskJn0wVj9CoOAx3tmCkewZRqbnLim52mxX9DfcRqop3lor3kcDwyA+jbTyLUr4KUgtxVRp0iWvKDVkQSpy/CS3GOSZdh3Y4oHlQA4FY4lNa3dykftk0nJDIGFAjXGfkTmoORnvbERSuXLakPE8ggs1iApe3tMBhnJ7E0MMm7Pg/r4J22N3ERYfdjtmJUYx0t8JutbBSJCmKAk8oAsXhoOXm+0jffXTZc14Js5N6jPa0ITQqbtXC60qFKZqmMdz1wO3zi0rNwWBrHVTp+W7b8ARCRKU6J/jm+VloW2tBOxwQBQQjXJ3sdkxXiqxLlHJF7cVmbva5wtt6QNM0DLoBxmyboigEhMqx9/PfhHluBpNDfZidGEVk0sY1R2GO9rQtOVZy+QI47HaW8OcrFEUhIsEpJo1rejDQXI36y7+H1WxEsDxqWTEKcD6LfsHs+Z88LgUDLdXLRtParRbMT00yUVaL4XDYhU2WPBcOB9EZBZgzjKO75i4i4lNZY4TVbFxxNO1ieAIh7Gvw5KJpGr119xAWm7SqKqvG6UmIVvhywkV4bDIGmqsgDgxel2hCIkqtkLm5OVYZbdcEA3Cm3aSkpDCT2erqardJjYvIyEg8++yz6O3txX/+53/iF7/4BS5cuICnnnrK4w92wOkddPHiRZYI8+677+Lw4cMQCoVISkrClStXWOsBpxAWEREBm83GTMjNZjPm5+dx/fp1r9E1Lpqbm9HV1YUDBw5ALBbjypUrTHTQiRMncPbsWeTn57sZvQPOiUtlZSVCQ0OZiIcrV664VStzYbVa8YMf/IBJNdm2bRvrC2Tr1q24efMmM9l/8OCB2+Q1LCwMzz//PG7dugWRSAS9Xo/33nsParWa9cZcq9Vi7969iI6OxgcffMCqRldaWsrsVyqVYnx8nCWQlZaWYvv27QgJCUFXVxdGR0cZsamxsZEx2d2/fz/OnDnj0QtpfHwcH3zwAY4ePQp/f39kZ2czAqMvQqFEImE8W6qqqlBSUoIf/ehHuHTpEng8HnJzcz2aWbvS/NRqNUQikcd0IE+CUn19PcbGxvDCCy8w3gVxcXGIi4tDWVkZqqurceDAAY+peAaDAffu3QNFUdi6dSvEYjGEQiGMRqNbBcCF3Lp1C2+//Tb27NmDmzdvIjc316Onkit6BXBGbdTV1TG+Sgvp7e3F0aNHmUn24r5WVFRg06ZNkEgk6O3t9TjxPnfuHJ555hlwOBzQNA0+n4+nn34avb29OHXqFHbv3o3Q0FAmLc3Fvn37cPr0aRw5cgS3bt3CCy+8AMAp2LpK1S+Gw+GAx+PBbDbjv/7rv8Dlcr2KiNXV1cjPz0doaChOnz4NlUrFGkuampoYsSMtLQ3nzp1jiVLDw8MoKSnB008/DbFYjM7OTqSmpkKtVuP9999HXl6ex2u/kI6ODgwMDDAiiku0EgqFrIis3t5eRqhoa2vD6dOnYbFYkJmZ6dGkHfD8JspgMODq1avYt28fKIrCvn37cO3aNSiVSo9+Tg0NDUhPTweXy0VhYSFu3brFjCUmkwkVFRWMSOTyrFvIwtRYDofDMmY/e/asm08Zn8/HU089hcnJSbz//vuIj4+HTqfDmTNnsHfvXjeRlaIo+Pv7Y3p6GoGBgW7VPxfuNy0tDUqlEr/5zW+YtOfFHnmDg4NITk5GdnY2aJpGXV0d6urqIJPJsGnTJvB4PNaPs1u3bkEmkzEvXmiahkQiwbFjx9DY2Ihz587h4MGDEAgE6O7udnvG7HY7ampqWGmDIpEIGRkZiIryPCld6G+4a9cuXLp0CWKxmBlPtVotK3JsIS4RrL29HRcuXMCvfvUrxqPO22Rn4XJXxKHrc3NVxXVFdU5PT+PSpUt44YUX8OMf/9jj/girx26zobfuHuILfIu6WQoOl/tYjFed4lQ+7DYbhtrr3cQp5zmU+pzKthZ8SYOb1g8jQBaxZBvgQ4PlpAw47M5qVxSHi6iUbI+TXcOwFpNDfYjJ2uJTpM/i43iLQGIEqdztK0q1cuES14baG2CzWqBKy4NxxgCRfxAMI1pMaHoQtUzqzUImdQOsCChvBMujwOHycP/0LxGbtWXJKDAXPOHyE8+p0SEYhjWIz98B8/ysR5N4DpeLwDAFy4x9IRbjPB7cPofKd/8TUmUsAAqA9wgwLl8AoSQAIkkgRP6BHlOIrGYjtK118Av07hvlCW+fu1OYykRvbSnUywhTg231Hr3i+EKnN63VbFrSC0fo58+IL8bpSWfkGU3DXxoOaZTa7dgOux3d1SsTSVfLQhHK1Y9gRTRLdOmpuYu4nG3ob6pATOZmWE3zTPRcZHLmmkSz5YStyORMDLU3rinyJiQyBlOjg+Dy+FAkpvssXIz1d7pFhVEcDuCDR91ASzWiM5YWrlb6fSMJDkV8XhF0nS0Y1/ZAlZYHisPBSHcbIhI9e/iuhMAwxYdFFlZW2dFqNqGvvgwxmZtX7KfmYlzbC8UazkGVno/uqjuIyytac5VUIkqtkNTUVAiFQqZy04MHD1im0gkJCRgfH0dHRweMRiOr0pzNZkNbWxu0Wi2zjMfjIT4+HidOnACXy8W1a9cAOFOTMjIyPD44rh8mFy9exI4dO5iooaUestraWmg0Guzfvx8//elPYTKZcODAATgcDlRVVcFgMABwRmMlJzvfJMzOzuLatWtIS0tzqzK1sJT2sWPHcPfuXYyMjCA+Ph4hISHo7+9HQ0MDIiIi3ASPpSgvL8dbb72FhoYGbNiwAefOnUNkZCQj7vF4PMaweXR01KPxN/CokmF5eTlef/11pvz74uvoWrZv3z6cPHkSx44dw8TEBMLDw5k+b9261S16wWAwMELenj178M477zBizcDAABN15UphrKqqYgmUDx48wMDAAF588UXmOOHh4Th06BCTmuNKDVoqpJymaVRWVmJsbAwRERH4zne+A5PJxDIVX0xDQwMz8VcoFCgqKsKpU6fw/PPPexTDHA4HY6TuLS1s69atMJvNTDRdXFwcwsPD8eDBAyZC49ChQ8z+r1+/ju3bt0Ov16O2tpZJXVuIRqNhvK5MJhOOHTuGmpoaNDY24sCBA6zUqYVRTdHR0aivr3ebMC+sgnno0CFcuXLFzXtrYXRjcXExYwrvEnfu3bvnsXIX4Iz+iY2Nxe3bt6HX6+FwONDd3Y3p6WlMTU3BZDJhfn4eSqUSo6OjHq/jQsbHx3Hnzh2kp6fj6NGjuHbtGtRqNevzW9zeFbF3+PBhXLx4kRFWPZk/R0VFMRU4q6urMTMzwwhlwKP7TiwW4/jx46ioqEBnZyf27Nnj8Xlubm6GwWBw8/7yhFqtZs6lvr4edXV1TMqVJ3NuTzQ1NUGr1TLPHZfLhd1ux4EDB9Dc3IyrV6+yvIPMZjP6+voYAYLP5zNjCU3TeP/991nm9hs2bEBbWxtTEXN4eJgloO7evRvXrl3D4cOHcfPmTcbM3hMhISF47rnn8O677+Iv//IvcenSJZhMnit97dixA5cvX8aRI0fcng3X8z46Oor09HRcunQJ09PTyMvL83hs17MCOMei3Nxc5ObmYmxsDJcuXWI8xxobG9HV1YXCwkKWeLQwMjUzMxMpKSm4cuUK1Go1U+FzenoaFRUVsNls4HA4yMvLQ2FhIS5cuICHDx/CZrNBq9Wirq4O+/fvd0t5XCgCAY8qO+7btw+BgYFoaGjwWL1Rr9ejpqYGdrsdFEUhLS0Nn/rUp2A2m1kpnH5+fsjMzGQJgBwOBxaLBRcvXsTHPvYx1ufk+i4cHh5GeXk5a4wmrB+0w4GemhLnD9kVvon3hiQ4dEmvkLXA5fHcxKn56ckPJ9bbWAa9j4PQ6ASMD3QtW5VwXNPtUySCCw6Xi+iMAliM8+hruA+/YCnkcc4xj6ZpDDRXwS9ICnWO50IFvuASphY+R2sVpBbuW5mSzRhE6/u7EBAWgVClesWpa7TD7pPoZpwxYHygG7PjI5g3jGPOMA5JsOffWy54fCFsFu/VHfUDXbCajIwgIRD5rbjsOu1wYKClCuqcbQiLTYLNYkZslnu090JsFjNMczMwzU7DMKKFY0EVS5qm0X7vKspP/hwnvvOrNU84FyLyD0LkMsLUnGEcXB7faxRaVGouBporlz1HF+LAEOb6zuhHMNBUCcApBEmkYZgeG8JIdxvicrevi7/PYmiahmFYg+kx3SMRKkKF6IwCj+c/1t+JUFU8KA4H8rgUjHS3IiIhDTGZm+Cw2zH0sBE2iwmy6ASfKqy5mNQNIMgHIVUg9oPVbFyxn50LZ0RfG6JScyCUBGCwrcGniEW7zQYOl+vxmP7ScMyMj3iNCJoeG4K/NHzZ55jL48Nmtax47FEkpsNqMqK3vgwhkTGw26xrGr9cSJWx6Gu4vyJRam5Sj+HuVsQXFK/pO9Rht63pfqcoCuqcrc4XTKss9OCCiFKrICMjgzH1tdvtbj+YCwoKcPLkSdy4cYNlpsrj8ZCamor09HRm+bvvvosDBw5g37596OnpYcQfjUaDq1evMoNBdnY2IiIikJOTg7q6OhgMBlZFPBcCgQBms5n54a/T6VBeXo6cnBzk5uZidnYWEokEW7duxa1bt7Bnzx5WilJXVxcuX76MV155BT/4wQ98jtopKirCw4cPkZGRgR//+McQCoXLpt8sRqvVgsPhIDIyEo2NjQgLC8PRo0cxODiIs2fPIjY2FllZWZDL5RgeHkZVVRXLI2V6ehr379+HzWZjfJBcgsDvf/97vPDCCx49Yly4ImhckS8uKIpiXdf6+nq31C9XtcLdu3e7TQ5jY2Px4MEDRvC4efMmpFIpy7vEFbEjkUhw4sQJnDlzBvv370dISAgrCsvFzMwMSktL4XA4UFhYiMLCQtA0DS6Xi6eeegplZWWorKzE/v373fxsXClkLqRSKZ566im88847OHHiBHg8HnN/uqK5Dh8+7OYHtFgsEwqFePrppzE4OAi5XI7vfe97eP755z0ac7tSPFUqFerq6txEKZcx+okTJ5i0qJiYGOTl5SEzMxNXr16FXC5nRKa5uTlWKlt6ejqam5uZaBmapqHT6RhPJ4FAAKVSie7ubsYw2dMX75EjRxhxp6enB1wu1y21aCEURaGoqAivvfYahEIhcnNzoVQqkZKSAqFQCLPZjODgYFy5cgV+fn7YuXMn83y5jm+325mUr+eeew4URaGpqQnp6elQqVS4cuUKYmNjl0xlFIvFiI+PZ67BYvNnAMjNzcX777+P2tpapKWlMf5v3ti0aRPGx8dx6tQp7N27l5UiV11dDZqmsX07+y0qj8djBOKFDAwMoLa2Fhs3bkR2djZKS0uRkJAAh8OBS5cugaZp5ObmeoyQcbWJj49npZ0FBARgZmaGqSgYGRmJkydP4siRI5BIJLh8+TJT6W9x/z744AMcOHCAFVmWlJSE8+fPM6LU4vGGz+dDKBSiuroaoaGhrIg6VxTgQvGysrISarUaFy5cwIEDB5ioJcCZUuZKJ+NyueByubBardDpdMjLy4PD4UBJSQlmZ2dRUFCATZs2YXZ2FhqNBnv37sWZM2e8iieexu+wsDAcPnwYdrsdP/vZz/DFL34ROp3OLQXXFXXoinITCAR45pln8PDhQ7zwwgv43//9XwQFBaG4uJg17mk0GoSHhzPRuwcPHoTFYsG1a9cQGhrK+s4xm81uY9SxY8fwzjvvMJGtFEXBbDajqqqKSVEMCwvDnj17wOPx0NXVBYVCgaSkJNhsNuTl5THfjXNzc2hqamLEJoqiMDc3h+PHj+Ptt9/2eM26u7vR0dHBiqwlrB80TaO79i5is7asq5gTGp2AgabKxyJKuXCJU8aZKfzP3x7D/i98B/qBbo9pQeuJf4hsWVFqzjAOvyDvqctLIRD7QZ2zFbOTevTW3cNASzXMxjlEp+evuYJgiCIGk0P9H0burJ8g5cLhsGOsvxMUh4uuqtvIe+aTmJ+ehM1iXtdoF9PsFHQdLRAFBCE2ewu4fKfBs66jGeOabiZ6whM8gdCryKTraAZf7MfyrFlpepbNakFPbSnU2VsxM6ZDcEQ0bBbzkhUDXf3yFwjh7yFt0Wo2wW61wmZxRmNIo+J8igpjzmGZ50HkHwRFsmdhiqZp6DqbkZBf7HV7DpcLgdgfxpmpFXujufzVAGByqB+Tg324+avv4eDf/BOGHjaCw+VB5B8Eob8zgmw19ylN05ga0WJq1FmxmKKoJUWohdisFsxNjiHsQ8HN5aPlgsPlMhFMY/2d0A90wV8aDll0gsf9LWR6dMhnb6qIhHTGVH4l6DqbAQDx+Tsw3PUAsugEWE1Gj4UC3LbtaIQiybN5tjRKjYGmSo+iFE3TGOvvQrwPYrQsOgH6/i4mzXAl8EVixOVuR2/dPdw/9QsIxBLI41LWLNpyuL77zk1oezE/PeHTuT4JuHwBFEkZ0LbWMqmzq4GIUqskPj4e4+PjePrpp/HWW28xy10DzdjYGMbGxlhv6hdz8eJFFBUVoa2tDbm5ueDxeEwahkqlYqpWORwONDQ0MH4WR44cwaVLlzxWBSooKEBVVRU2bdqEq1evQiqVsqpRVVdXY9OmTRCLxbDZbJifn2dFc7lS/95++20MDAzAZDKx1g8ODnqcKE5NTaG1tRUvvvgiuFyu29vwhYSFhbkJLXa7HeXl5axIBdckXalUQqlUore3F2fPnkVSUhLu3r0LqVSKwcFBNDY2gqIoBAYGYteuXcwE2PUGPTAwEMePH2eiXrz1jcPhYGxsDL/61a+gVCqRm5vLfHY7d+7E7du3ceDAAWg0GjdRKigoCAqFAr/61a/wl3/5l277PnjwIN555x1wuVwUFRWxPrvh4WHW3zweDy+88AIuXLiA7Oxs9PX1MZEx7e3t6OzshL+/P/bv38+K4Nm6dSt0Oh1jru7Jz8Yb/v7+OHbsGBMtBjjT9UZHR1cUKTA/P4+ysjL87Gc/w7Zt29DS0gIOhwO1+pGBZHd3N6tyWWJiIjo6OlgV8S5fvswIDovT2/h8Po4cOYKBgQG8++67KCwsdBM94uPjGTNvAExk40Jyc3Nx+vRpxMXFgaIoVlSMCz8/PyQnJ6OsrAxjY2Me07MsFgszIbdarTh16hS+//3v4+bNm4iKimIJEw0NDSgqKoJUKsXMzAwuXrwIsViM2NhY9PT0YHJyElqtFvv27WM9d1qtlkkJPXDgAE6ePMlECHm6poBTmDt79iyUSiVj/myz2dDS0gKdzvmm7vXXX8c///M/syqZufD0mYeGhuLEiRO4fv06kyp27949BAYGMv1bSFZWFhobG5l05+npady8eRMqlYoR4B8+fIjNmzfj3LlzOHr0KA4fPgyappkIKpFIhO3bt4OmaYyOjuL27dt46qmnWCIkAAQGBmJ6epqJCHP19fz58wCcItPi+6SwsBA//elPcfDgQY8pzEqlElqtFqGhoRCJRKxrMjo6CqPRiBMnTqC5uZm1XWJiIrq6ulj3X2hoKNLS0iCVSvHgwQPmmgDOlwGXLl0C4DT/3rFjB86fPw9/f39cvXoVNpsNRUVFCAx89Ma4urqaufcPHTqE8+fPs14EWK1WryI8TdMoLy9nigKUlpaivr4ewcHBTNVVwDkuLDTTd23b1taGiooKdHR0MCbmC6mqqmJ97wDO5/jIkSMYGhrCu+++i7y8PMTExHiNBC0uLoZcLse3v/1tXL58GQKBAPn5+W4piq7vx+PHj+Pq1as4cuQI3n33XezZswdBQUGQSCSscwKcaboajQZVVVUsb0OaptHU1ITvf//7KC0t9dgvwtrpayhHVEr2uvu1PKmINofDmfL2mTcvQNfRjECZfNm0oPViqaiF0d52n6NGvGExzoHicNBWcgnhsckY7nrAWi8ODEFQuHJFqSIBMjn6myohVcY+So9aoyDlcNgx2tMO8/wsKIqCPD4VQj9/UBSF6IwC2G1WDD1sgt1qhlQZu+K0mIWY52cx9LARIkkgYrO3uF1/RVIGLMY59NTdQ6gqDsFyd+GGJxBgfmrcbXl/YwVCIqM99m8543UXptkpaB/UIeHDiIn56QkERajA5fEw9LBx1dGD/U0ViMvdDu0Dp1fbuKYHPbWlUKXngS9cn2dXHPChMFV3j5UaONhWjygPaXuLUSRloK++bG2RfBwu+CI/bHr+ZUiCQyGLSYTdaoFpdhqmuWlMjWi9pl4uTE/lcLlov3eNSYl3ilBRPolQixloco8AC4mMwcRgHyPuugiLSURYTCJmxkfQ11DuNOVO3ugxeoZ2OIAV9EUcEIThrunlG36IzWpBf8N9yONTmXvOYpyD0M8fQj9/TAz2wmKcX3L8sFksXlMyl0313JDlUz+FkgBYjLPLN/TC0MMm+AXLsO0vvgipMtbpO+hwgCcQQh6fuqqxTZGUgeHOZo/pquxjN4Iv8luT+OPC1zHGF/yCpDBOG6DXdPvsf7gYIkqtkjt37oDP5+O///u/3So42Ww2mEwm/P3f/z2GhoZYxrIuPvjgA2RmZiIsLAy1tbWQSCRIS0vD+++/7zZ54nA4TCpSW1sbvvWtb0Emk6GkpISZrC98UL/5zW/i7//+7z2mSiw0Id+7dy8uXLjAmmiPjY2ho6MDhw4dwubNm3Hy5Ek8++yzzJvs5uZmlh+Uy/SZx+Ph6NGjCAoKwrZt29DZ2Yl3330X+/btc4uw2bhxI8vYGXAKdAujGJKSktDZ2ckSKlwpPzU1Ncxb+rCwMBw6dMjjQOXyfQKckQsvvPACTp06haefftrNIPrWrVswm8149tlnkZ2dDaVSicuXLwNwChwbNmyAxWJxm/wbjUbGGBgAvvjFL0Imk3mc4H7729/Gm2++6SYmDg4OIjWVrdZTFIWnn34aN2/eRG1tLaxWK+bm5jxW0AKcFdtCQ0MhlUpx+fJlxMTEePSzyczM9DqoC4VCPP/883jjjTfwu9/9Dr/97W+XrEC3eD8NDQ3QaDQ4duwYrl+/jvT0dKSnp6OhoQFnz55FTk4OoqOj0drayjqH1NRUnDt3jvmsHz58CKVS6SY6LMRsNkOn00EikUClUuFf/uVfEBQUhPz8fCYyJDk5Ge3t7UhMTMTU1JRH82uXV9WePXvQ29vrFvU4PT2N3t5efOpTn8KvfvUrlsk+8Eh8SE1NhcViwenTp/H8889DIBBg3759uHz5MivqbnJykulHQEAAnn76aczOzuLUqVP4zGc+g9LSUjfhy9N137NnD27cuME8i+3t7R6r5B08eBAikQjnzp3DlStXwOPxkJaWxoic//Zv/4aioiK89957LM+opb6oXN5Nd+/excGDB/GTn/wEW7duZarELbwvXOObzWbD9evXwefzGT8uwPn8uMSehWI1RVHIyclBTk4OjEYjSkpKcPDgQfzud79jpVstJDAwkHkOXXA4HGzatAm5ubn4+c9/zkqdBpyC8Je//GUkJyejp6fHLdUrNzcX586dg0AgwO7duzE7O4uysjLYbDaEhYXhyJEjeOeddzA8PMxUHY2IiIBSqcSDBw+QkZGB69evQ61WM4J/bGwsLl68yPK8Wli5cGxsDKWlpTh+/Di+8Y1v4Bvf+IbHdNGF6eFBQUHIyspCSUkJU6XT5TG2EKvVitu3b8NoNGLLli3YunUrLl++zAjcGo2GiYTzNIY5HA6cOXMGe/bsgVQqhUgkYo2zgDOVdqEI5Ir+cwnokZGROHbsGKqrq/EP//APjMfXYsLCwvDtb38bUVFRXitAAsDVq1fdfNaee+45nDx5Es8884zHazcyMoL3338fer2eJQ4Czki1j3/843jnnXdw+PDhJcchwsrRtNQgLDb5sZVYD4mMwYS2l1VJa73prSuDOnsreAIhOFwuODy+57SgCJVbdbi1IItJhL6/E2GxSW7rTLPTEPoFrEoMczjs0D1sgtVsRIgiBqr0fDz15e/DYpyDKj2fFfFvmjFgXNsNq4ld5ILicBEQGo4AWYTX6DeH3Y6u6juI81mQokA7HEzUEO1wYLS3Haa5GWfhGPUGr6ldXB6fqWY1oe1FX8N9CMR+iEhM9zhZN826VyOzGOcw2N4AgViC2Cy2GOWw20Et2I9ALEF8XhH0/Z3orStD9MYC1nVwGp0/EjZc1d2UKdkQBwT7cC08M60fxoS2l+XL5rA/SkOMTM5Ed81diAOCVpSiM/SwEYoE9rUKVcUhRBkD7YNa8ARCKJI2Lnm/+TrhFQcEQZG0Eb1196DO2Yb5qUlwuFyfxgiKohAgi1iVHw/gPE+eQIiw2CT4S8NgMc4x6WGSENmyxvcLcfqz1YF22BGTuXnVwvS4tgchimi3yJtgeRR668vcRCkXAaFyBITKYTHOQ9Ps9MRUJGWwIh1HetqY9FxfCYtJxFh/J8KWSR2eGhnExGAv1DnbvEYNqdLy0FN3z2uEz8Rg37KV3DyJc+b5WWexrGUKDqwVh8OO3royhKuTERDqfBkh9PNnDPetZhOGO1tgt1nB4fIgj0vxWcDnC8WwWcxe19M0jb76csiiE5gov7XiTD32/R5fjlBVHLStdT6lNHuCiFIrxGQy4eTJk0y0y/Xr193SU65du8akTZ07d85NlCopKUFcXBwTCbVw4D506BAuX77sMfVtdHQU/f39+Id/+AdcvHjRzQ8HcE5Unn32WYSGhi4ZrQQ4f3xHRERgcHAQSqUSJpOJZcDM4XBw4sQJJnpGKBQyKWKAs7qYyyzc5cMjl8sxMjKCtLQ0pKSk4IMPPoBQKERx8aMvzMWRL01NTUhMTGRFhrgqJC0UpVxVuvz9/XH+/HnMzc0hNjbW68A/MzPDiizg8Xh48cUXcebMGWRlZSE0NBS3bt3C7Owsdu3aBX9/f+h0Ovj5+UGhUDACRWdnJy5duoTJyUls3boV//Vf/wWNRgPAaeKbmZkJqVTKRCaNj4+jeFG5+MnJSfzyl79EWFiYm7+Uy9TYE35+fvja176GO3fueBSjAKdfmEu0dBmQL8TlZ9PV1YW/+Zu/8WqqDTzyWgkICEBvby96e3shEolQUFDgdXJmtVpx4cIFpKSkeOxjVlYWsrKyUFtbi0uXLqGyshKHDx9m9TMiIgLDw8NMFMnitJmmpiZwOBzmDZSrMpZOp8Pdu3cZ03VXyqtMJmMqmWk0Guzatctj30NCQsDhcKDX65lldrsdZWVlmJmZgb+/P/bu3Yv/+Z//wd69e3Hnzh3Mzs4iLy8PSqUSKpUKH3zwAeLj43HmzBmcOHGCGQt4PB6kUinLQN8Tzc3NiImJweXLlxEYGMiIoSEhIcjPz4fdbndLCZXJZAgODmZVn1x4PXt7e/HgwQPweDy8+eab4HA4bhN3VySNv78/jh8/jsrKSrS2tuLAgQOwWCxuKVUWi4VVQU+pVOK//uu/EB0djZiYGPT19aGmpoZp73qD+KUvfQk//OEPsXfvXjeBwGUsDwBbtmxxi/YBnKmILjFkenraa1XEwMBA9Pf3s5aNj4+joqIC3d3dKCkpYYmsNE3j1KlTuHr1Knbu3AmBQOCW6gU4o34qKytht9vh7+/PisZ0kZeXh9zcXFRUVOD+/ftMVN7FixeRmZnJjPUuPKX3uQgLCwNN03jvvfeQlJSEW7duweFwICsry20/C4mJiYHBYGA8xxb63s3M/P/s/Wd4XOdh5g//ZgaD3nvvIEEUggQBsPfeuyhtYjt2EpdY69iKY0eynNiOLdmOvSt3OS6xLa9X7AAIEmAHARAkegdB9F4HvU5/PwzP0RzMoFBSEu//1X1dvEgCU86c8sx57ucuk+Tm5iKXy9m5c6dkrDVvtgsJCSE4OJg7d+5IFGpGoxG9Xs+FCxc4fvy4ON6Hh4czOjpKbW0tCQkJzM7OMjIyIjk+a9asobKy0sKiGxUVxebNm4mKirKaQ9bT08OWLVsICAjg3r17Vq/hjo4OvLy8xO0xb6E6e/asaEk2P1719fWsWrWK8PBwcV+ZK8p0Oh0hISG88MILXL9+nYiICElu5Ed4/+hrqsPdP9iqVejDgqtPgKRJ68NGz5MK00r4M1tY0Kpkicpjvi2oo+oxYLKLPM8E1xqc3L1QdTRZ/V1/cy1hSRut/m4hzE1N0N9c9yz0fLU4eeprrMEvKg69TkPv0ypRfSCTyXBw9bAa6G4w6JkaGaK/qRaDXif5ndxGyfhAN9MjQ8Rs3LNsFYG9ixtzU+NMqPqZm5p4RkStxO85CU3P4Ag8gyNQz0zRVWOymvtHx0lIj+HuNnGyrp2bpaehAqWdA+FJG61a6SZV/bhaCZT3DovBIyiczupiXHz8RcWAQmmLXmuacOo0alrLC4hYu3nRkO6lMNzdytzUBOFrFj/uEWs301qWR3TazmW97qRqALnCRjxfZfL3bEVyuSmDbHZyjLayfLzDoj+QCk2Ag4sb/jEJtJUXoNfrFrXtzYd3aDStZfnPtR0GvZ62iof4Ra7C2dOHvsYavEOjUdo70FZegJ2jy3MHR89MjBKVsh0Xbz9aSh8QtW7bc9sw9TotE4O9Cyq/nD18mBoZXDRDytbB0ZQ7ZdDT11iDdm4Gr+AoXLz9UE9PPjdx4+zpi6qzeVFSqru+DFsHpyUVazK5HJ+waIbaG62S6xNDfUuez+IYb0ZKddeXv69GyOfJy5qdHKenvpzwtZsWtAUr7exFW6Vep2Ow9QmauRnTwmv4yiVtpk6ePlYzs3QaNW3lBYQlbfjAdmpzjPZ2LFtdtlwExyWb2ivXbHzurKqPSKnnRFlZGV/96lfFlf61a9dSUVEhkgwDAwO4uLiIEzp/f39Jg1dRURHe3t4WDXkC7OzsxPp48/ptjUbD/fv3RcLIwcFBEsos4N69e3z5y1+msbHRYvI2OjpqkUOzYcMGrly5wokTJ7hy5Yok6BhMxJVATL3wwgum4MtneTDJyckWq8wBAQE0NzcTEhKCXC7nwIEDqFQqLl++THJysoXFaHJyks7OTousF/NBQqVS8fDhQ9zd3Tl69ChyuZzs7GzOnTvHpUuX2LVrl0Wod0NDg2T/CZDL5Zw6dQqlUskbb7zB3/3d30nsIPPtjGBSw0RHR5ORkYGXlxceHh4WdhB4L0jbycmJCxcu8OKLL4rnSV5entg+WFxcLE7iwPqgKFhLNm7cSHZ2Nh4eHhaKBAE9PT2SCZ+Li4tVosvf35/NmzdjY2Njoe4z39dKpZL169ezbt06XF1dmZ2dpaSkhKkpk9TV2dmZ1NRUjEYjT58+pa6ujiNHjiwY8gzQ29tLT08POp2OT37yk2LzGphUImlpaWRmZqLX6zly5AhPnjyhra1N3C8qlYrdu3dLFBUqlYquri4OHDhATk6OqJoDE4Gbk5NDSUkJv/zlL3nnnXewt7fH0dERJycnyd87duzg17/+NQDXr19HoVCwceNGyXnh7OzMzMwMu3fvBkyEbFlZGREREczOznL58mWrmWWbN2/m6tWrVrNpZmZmuHHjBmlpaYSGhpKTk8Pq1atFG9zIyAh3797lc5/7HN/61re4f/8+sbGx+Pv7iwH6ly9fxs3NDTc3N9RqNXl5eajVasLDw8Vr6ubNm6xatYo7d+5IJv9lZWWS61fIYLt8+TLR0dE4OjrS1dUlWtPm26dyc3M5ffo0tbW1zM7OWowFwnH/1re+hZOT05JqH5lMhre3N0NDQ2IekEaj4erVq+zevRsPDw/u3LlDSEgIFy9e5NChQ5Lxz8nJSTxHwWQpvnfvHmfOnEEmk6HVaiWKnZs3b3LgwAFsbGx4+PAhO3futLB6jYyMkJeXh4uLi6igXAgymYyNGzdiNBopKCjgwIED1NXVWSWStm3bxoMHD6wWB2RmZpKamoqvry937tzh8OHDoq2sqqoKOzs70QY4H0lJSTx48ID29nbAlClYXFyMi4sLhw4dslAkdXd3W3wmmUzG3r176evr48KFCwQEBNDQ0EB5eblV+/PatWu5e/cu7u7ulJaWWozl/v7+VFRUSH42OjrK3bt3+fSnP01mZqZFUyWYrjGBoFSpVFRXV0ssokLrqHmzqb29vUj2KRQKzp49y4ULF3jppZfE129sbBTViPv37+fmzZsShaRoxZDLOXr0KDU1NVy7du1Dlbn//yvsHZ1x8/3gE9glIZMqbD4sDHe1YufsKiHVZDIZrr6BjA10W9i2PALD8Ag0WVSHO5tRdTaDTIZfZOwHUorNv2fQzM5gY2u/7MnVSHcbE6o+7JxcCUvaYPE8zez0swm5Iwa9HvX0JHZOLtZf7BnkcgWu3v5WiRqdVkPN7cs4uHni6huw7JbEjuoixgd72fXXX31udYc12Dk6E5a0AaPRyEBLPerpJxK7ltFopL2yEBtbO0JXr180PHhC1b/gZE5hoyQieTNj/d20luYRkpAqWlVnJ8fpefKe1e79oq+pFhulrdVtmH885QoFQbFr6KotJSTB8nvaHHqdjsG2BklgsWdgGKN9HRJLjoOLO5Ep2xjqaKKt4iEhCakWZONyz0e9Tstg21M0s9M8ybuBTqPG1t6RgJjEZVt8vUKiUHU2LytTaWZ8lN6nlUSs3SxOmrXqWfG9wtdsorn4PtFpO59rDFE9a4yTyWSErd5AU/F9op4zNL2zuphQs/a9+fAJX0FbxcNlBZvL5Qrx/FB1NtN2u0Ak7J09fZd9fADc/UMZ7e2wUDFpZmforC4iKM664m96bBjHeSS2q08g7T2P8JiX+aaemXouIlAYB1UdTXiHRD23Ms3Z05epkcEFQ9PNMdLdxtTokEVTrEJpu2B2ncLGRsyJMxj0DLU3MtjWAIBXcKRVS613SBTtlY8k2zQ9Nkx/c90HDjS3BqNB/6EWGAiISN5Ca2neczfrfkRKPSfWr18vuXn29vamuLhY/H9BQYFkAipMto8fP05lZaVY5W2O+QcsKSlJnBgqFApx1dw8o2Pnzp3k5ORIJgBqtRq5XC6+R01NjUSJUFZWZpGrAyb71MaNG/nBD35ATU2NRG0j/Ds+Pp6DBw8SExODj4+PRRufAA8PDwsLjbe3N2fOnKGsrIz09HQOHjyIXC5Hp9Nx48YNyaRCgFar5fz580xPTxMQECASOmCaoHh7eyOTyThz5gwZGRmibUZAY2OjhZJsaGiIx48fY2Njw4ULF3BwcGBqasqClJpPcKnVai5fvszhw4f54Q9/iK+vL+np6Rw7dkxyLkxMTIivdfz4ca5cucKZM2cYHx/H1dVV3P60tDQePHhAa2urBUmn0WjEEG/heAuTscbGRm7fvi2xT9bV1VlY/9avX8+DBw8kj9NqtWRmZvLiiy/S3NxMVVWV2BBoDoFoMBqNYjC0g4OD5LyZnJzk8ePHHDp0iC9+8YucPHlSUitvjsbGRp4+fSoew5ycHNFeBM8Cb1tayM7O5sSJE/z1X/81jo6OxMbGcvDgQXGfyeVyyb7W6XTcuXPHgkQVIDQZajQakpKS2L9/PxqNhunpaaanp5mZmWF0dJSZmRlmZmb4zGc+w+c//3leeuklC7spmBQkXV1d4r4WCJiamhpOnjxJZmYm9fX1Fo2ZMpmM2NhYGhoacHV1Fcnp2tpasdjAmnUJTAH0BoOBV199lTNnzgAmsrWqqkrcd7a2tvj6+nL58mVyc3PZtm2bVfInNDSUubk5CgoKxAwgcyuhAFdXV1JSUnjppZcwGAz85je/kRwHcwjE56ZNm7h48SJBQUGSzyKQM+fOnaO2tpby8nJJI6I1MnbTpk1ittTQ0BD37t0TSWQwqXpCQkJEe21oaKhIVJgr6aanp7lx44YkD2379u08ePCAXbt20dLSgre3t3i9zszMWHw+oSHz8OHDvPbaa5SUlDA8PGw1O8scMpmM4eFh/vSnP9HX10dTUxNJSUmiNRJMiw8ajTSjQhjnt2/fjre3adIr5B3JZDKSkpJISkpifHwcX19f/vjHP0rCu81fJyUlhYSEBL7//e9Lxs75WKjZDkwLDKdPn+a73/0ur7/+OtevXyc3N3fBz71r1y5ee+21RcskwEQW3r59m7NnzyKTydi+fTt5eXns2LFDfMzQ0JC4D8D0nXjv3j1R1QsmC/x8Ui88PJyOjg4xNN7W1paTJ09y4cIFzp07Z7HY4+DggIuLi2gbFSyo5khMTGRycpJ33nln0c/1EZaGR9DitowPC36RsQy0NryvENuFMD2qYnZyzGo9undIFK2leVazhOAZ4R4Wg3dYDEaDgYHWBtTTT5DJ5c818QbTpHSooxHf8PfO496nVYSuTlvkWUjaujwCwxfMnppPvgbHJZsmFx+gVWmw9Qlb/uILTA734+odsGzFmE6rIWH3CUZ62j7U1XyZTCaGLU+NDNFWXsDNn32DQ198g9DE9cuapC1nMufuH4ybbyBddaUo7R2ZUPVj0OuJSl3eRG2hx3TWFOPqE7hg6Lg1At3B1QMHN48lra0dVY8slCpOHt4Md7eClZwYn7AYvIIj6aotwc7JRdyvJuLR+vYbjUZG+zqZVPUDIFfY4BuxElt7Rwx6nYlMWZVMf3MtOvUcto7O+EfFLUoQufkG0lqWb2qrW2TfqjqamJueWFQ1JpPLCV9rahNbboOj0SxHCkyKmejUHbSUPiBs9fplqVtG+zpx9QlYsvzB1sEJ9cwUdo7Lt5bbO7vh6hNAwq4TaGdn6KotEX8nk8lxDwhZlKhy9w+mvbJQQkqN9LQzqeonKnX7gsdmpKfd6rUbmphGe2WhRN3U31RLSOLihTsCfCNWMtj2FO/QaCaHB4lIXn7jqACPgFC66kqXJKW668uwd3YjNNFyjPUICGWsv2tJMlQuV0haTYe7W03XFODmFyT57pDJ5RgMeuRyBSM97UyPDf/ZBJovF3KFguD4ZDprikVr+3LwESn1nBCCUXfv3m2xsiu0ss2flPr4+PDgwQOUSqVV24k1CG1uR44cITs7m71790osCDY2NigUCknT3t27d0UlB5hupquqqkS7mFarFdUsRqORyspKent7kcvlnD59mhUrVohWjfl/xsbGCAoKws3Njb6+PkZGRqyu1C/2ZbBu3TpWr15NTk4OWq2Wn/70p5w6dYq6ujqLrBelUklCQgJKpRIHBwfJ61ZXV4sV4jKZjBMnTpCVlcWaNWsIDg5mbGxMQjQJWUdC45RMJhODtG/cuCFOdME0OTVXNqhUKu7evSu20oHJduLv78/58+c5ePCgqD4zvxFwcnJi69atZGdno9PpLCZ+27dvFxvYBBQVFTEwMMCBAwckqiPhs69YsQIHBwcyMzM5evQoMpmMlpYWC/Jtvj3SaDRy8eJFzpw5g1wuZ8WKFVy9epX4+HjJBPLx48esX79eJCJtbGwk55cAFxdTbkVDQwNPnjwhKSmJwsJCseLexcWF+/fvo9FoiImJWdB2KHw2rVbL7Owsf/rTn4iPj6ejo4OQkBDJMXd3d2d8fFzc1+np6Zw4cWLR862trY3g4GBsbGxob28nIiICOzs7i/P21q1bNDQ0oFKpKCgowM3NzeI6DQwM5MGDBxICcGRkRAx8Dg8PR6vVShozk5KSCAwMJC4ujqtXr+Lk5MT27dvJyMggKirKqv1WgE6n4/Lly+zatQs3Nzc0Gg2urq5iFpSAkpISXnjhBRQKxaL5X2A6f2ZnZykrK2PdunWS83Vqaor8/Hz0ej3h4eG8/vrrJCUlUVJSQnx8vMV+rqmpkZDrhw8f5vr165LPJCiRwBS6np+fT1tbmxh639jYaKFmFMbLvLw8ZmdnFyQd5XI5R44cob6+nvT0dI4cOSKey2q1mvT0dF566SXJdru4uDA1NYVWq6WyslJC8ru7uzM6Oira3W7fvo2Pjw8HDx4kJycHFxcXdu3aRXV19YJWMgFZWVls2LABd3d38vPzOX78OFVVVWRkZBAZGSlmSUVERIjEtMFg4OLFi+zfv3/RVsWWlhaqqqooKSnB3d2d0NBQi8d0dHTwb//2b9jZ2dHf3y+SlQuRn/OPrV6vp7i4mOHhYeRyOSkpKdy/fx+j0cjOnQvfyL/11lusWLGCrKwsUTUmXGtCIcDc3Bw5OTm88MIL4vu6u7szNjYmISkLCwstro9du3Zx6dIlDh8+zMjICM7Ozhah5yEhIaKiUICjoyMHDhzg6tWryOVyi8y2rVu3ios+5eXlks/Y2NhIfX09CQkJfPzjH+crX/nKgp//I/z5wN7ZDfX0kw/t9XRajWmlehFixi86nr6mWgJiFrd6yuRykSzT67T0N9ehU89hY2uHf3T8kqoKRzdPhtobJdsmVygWXEGfmxo3WfTkCgJXrF6SABvubsXLjHyQyWT4RKxcssVtIYwNdJsa3jx9cPb0obkkl6iU7UuSMuMDPbj5BOLuF4xMJqe7vtwqIWiO+TlPy8Hc9ATIZOz6m39Cp1Ez0tv+vkN6rUEml+MbsZLmovsU/OmnHPriG2Lw81KYTy4ZDQZay/IJWJH4vloWvUOi6KwpxtHd06pSb7CtAa+QqOe23MgVCsKSNjA9NkxrWb6JYHJwkpxrM+OjqDqbxM/kERBqMVntri8jKHYtqs5mdJo5kcyYm5owFQmweE6bKSi6VtJiKMBoNNJVW4Kzp++yAqKVdvb4RsWZwrOXEbg+0NqAX5SUBJcrFESn7aStvAD/6PhFj5nBoGe0p31ZJFjgitV0VBctaXMTMD7Yy8RgD+FrNtFZU4ybf4iEmDTo9Yz1dS5JVDl7+TGh6hezlJw9fZZs8VuIvJUrFHgEhpnGm+BIM4Xy8q5fB1cPBtue0lVbsmwiaz6WUsHpdVraygsIXJm04LFzcPUwKWCf531lMrxDosRxZqy/m45nOYTOHj4ExCTQ31SLTCbHxtZOzMb7sPGfrf4WiNDBtgbc/ReOnjDHR6TUc2LTpk2sXbuWa9eu4e7uzrZt21AqlajVatrb2yUKoo6ODurr6zEajXzyk5/knXfeYW5uTpLVolarLfJJwHQj7e/vz7vvvktycrLF6i2YbtLv3bvHwYMH0Wq1GAwGCwIhKSmJiooKSktLMRqNYtYMmGwXQouc0WhcMPdmYGCApqYmfve735GTk8OBAwcoKChgZGSE+Pj4Ba2I1mA0GnFzc+Px48d89atfJTw8XFzVn3+TotPpOHDgAK2trVy6dImdO3fi5eVllSg5cuQIN2/eRKvVUldXx549e7h16xZqtVrMNBIwMjIiTj4PHTrErVu3xMm4uX2vsbGRlpYWqxNjJycnXnzxRW7cuEFkZCTOzs4SMmtqaorGxkaam5t5++23JWSgk5MTPj4+pKWliav/09PTpKWlsX794oxySEgIDg4OXLx4URJMPR8KhQKdToeNjQ2XL1/m6NGjEqJLsLwJSrvp6WmGh4dFVR2Yzq+7d+9aZBHl5+fj7+/PihUr6OzsRC6XSybpFRUVtLW1cejQIcnkcD7Gxsa4e/cusbGxnD59WrSvxcTEcPXqVYndU7DBuru78+DBA9avX2+ReWQOo9FIaWmpqMLLyMiQNAAKKC4uJiQkRAy6PnjwIN3d3Vy8eFFiC1Uqleh07+VkCLYo4fWvX7/OkSNHCA42rXYYDAaqqqqorKwETNf57373O8bHx0X1mbVtNhqNYivfqVOnsLe3p6Ojw2oO2O3btwkODuZTn/oUycnJXLlyhZMnT0quo5mZGcl+SkpKoqioiJKSEuzt7SksLBQn+Hv27EGpVDI1NcXQ0BAhISF4enpy/vx5jh49KskUa2trk5AGjo6OREREiLbU1tZWvLy8JBbSrVu3kpmZiYeHB+7u7rS0tEgCrI1GI+Xl5YyMjPC5z32OX//61xbjpaCwFAiouLg4IiMjxSB9nU7HpUuXOHfunMWigUajITIykj179oi5XQI2bNjArVu32LVrF1evXmXnzp1Wx8PVq1fT09PDpUuXrKrccnJyWLNmjajaVKvV4n5PSkqitbWVzMxMfHx82LBhA9evXycsLIzz589bFDCASa3U29tLYGAg9+/fx9HRkVOnTjE6OkpjY6MFKdXU1ERnZyef+MQnuH37Nvv372diYoKcnBz0ej0bNmwQW0+fPn0qZvYZDAaKiooYGRlBJpORlpYm2hizsrLYv38/ra2tYl7iQhAC2w0GA48fP2Z0dBQnJyeSkpLIy8tDpVJJWiMFbNmyhYKCArZu3WqhLDXHyZMnOX/+PAqFwuq4bGNjI7lOBbS3t9Pb28s777yDnZ0dXl5erF27FqVSKRLIlZWV6PV6lEolHR0dVFRUEBMTs2TxwEf484TcRolOq/lADW9gGpfayguWVAo5uXsx2Naw7EpvMNm8hIm3Vj1Hb2MNBp0WW0cn/KLiFp6gmdkTexsqCVplSda8Z9Fzea7Q5emRIQtSxtXbn5HutgVtKgtBOzfLWF+nRJUVvGqtqVltCYJppLediLWmxUc330BkMhlddWWLTtBmxodxWiZZo56Zoru+HK+QSCLWbjZNbhNSGRvopqU0j4CYRBzdLLOzngejvR2MD/Zg5+SKV2gUez/7dfyjE1B1NqOdm0GusME/Jn5ZTXZ6rYaWsnwi1mz6QK2VIQmptBTnEpm6TXJ+zU6OoZmdwTfi+YlHAU7uXkSu28pAawNPC29j0OtQz5gs9Q6u7gTHr1vwnNbrtOi12mdh9PFi4x+AvbOrSH4IOW0yuVxsXBTg4OJOf3MdBr2UCNGq52ivLCQkPuW58pScPbxRT00syxY4NzVuVZkpk8mIXLeVzppi3P2DF8y9Wsq2J3lNuRyZXI5ep11SVTXS28Hc5JgYxB2wYjV9jdWS60+uUIi5awIWIqqaHt3BJ3wFoYlpHzjbyCMglLbyAtz9Qxhqb8QvankWXZ1Ww9TwAA/f/QXxO44sqRJ9P5geVdHfXEdE8tZFx/MPo2XV3T9YVD1OjQzS11hD9o9f54V//Q2eS4S+fxBMqvpxsWK3/jDhERBKX2MNU8ODy3r8R6TU+4CLiwvHjx9neHiY9PR0bG1t+e53v8upU6ckWTmhoaHs37+fnp4e7ty5w4oVK8jPz2d2dpawsDBWr15NV1eXZGLR29tLbW0ter0erVbLSy+9xPXr12lubhazjYSLwM7ODr1ej06n4969exKVlIDp6Wmmpqb44Q9/SEZGBpWVlRaZH2CyO1kLZO7s7KSmpkZiSZTJZGK2UW1tLRkZGQQEBJCammr1Ap2cnOTRo0diIPyGDRsYGxvj2rVrKBQKhoaGxMm8NURGRhIREcH9+/fR6XQiu6vX65mYmGB8fJyxsTHs7e156623+PGPfyzaxKwRF6WlpRISZd++fdy5cwe9Xo9Go0GpVFJUVITRaLQgZGxtbUVSTCaTcfjwYcrKyvj4xz/ON7/5TXp6egBTBtGaNWtYv349CQkJktX36elphoaGaG1tpaWlhVdffZUbN26IOTrmsMZke3t7s3r1alauXMm1a9eYnJxk1apVEgVQamoqJSUljI6OsnXrVgtLmoODA97e3nR3dxMcHMzNmzctAqZtbW3R6/WSHJ7CwkK8vLxEsmnnzp2iok9Ad3c3Fy5cYGhoiCtXrpCUlER0dLS4bw0GA7dv30ahUHDq1CmLc8bBwYEzZ85QUlLC06dPOXDgAP7+/hQWFiKXy3F0dLTI6fH09GR4eFgkkebbgUJDQ+no6CAs7L0BvqmpCb1ez6pVpi9CYTuCg4M5c+YM9+7dQy6XS0L6wUTIPH36VLK/BELJ3G4okL4zMzNkZGSQmZnJX/7lX/LgwQPxOQEBAaxcuRIHBwc8PDyorq6mra1NovKxtbWVWL0MBgNXrlxh06ZNBAYG0tnZiY+PDzt27ODSpUtihhKY8sbmX1upqakolUr++Z//mZdfftmC8M7LyxNtUU5OTpw7d47MzEzWrl1LWFgYg4ODVs/VxMRE0tPTCQ8PF/OH5kNoqzP/3ejoKIWFhRiNRpKTk1m3bh1KpZKdO3eSm5uLWq1m7dq1hISEEB8fz5MnTyTNdfb29hw8eJC3336bL3/5y2RkZHDnzh3x90LgulKpxNvbm02bNvHo0SML8uLNN99kenqaM2fOLGpBCwoK4vDhw5w/f15y3t+5c4fY2FjJ/vbx8ZFkZEVGRhIZGcng4CDXrl3jwoULlJeX83d/93dWicqkpCQyMjJQq9Xs2LFDJLsEZZc56urqGB4eFr8HhLHD1dVVzKUqKiqiqKhIJLt8fX25fv06crmc1NRUiWUO3gvDF7bd1taWa9euWVU/ml8jcrlcVBtOTk7y61//mldeeYUbN27Q3d1tcf16e3szPDyM0WgkLy/PQlk6Pj5OaWkpGo2G9PR0+vr6RMLT39+fxMREi2Nmfl6tXr2al19+maioKA4ePIhKpSI3N1cke93d3ens7GR6epqrV68SFhb2ERn1/zhMq801H7g2u6PqMaGJactawQ9JSKW7rnRJ9YA1KO3sRcJFPTNFd10ZRoMBexd3fCNWSq4v34iVDLY/xTvUZAcUJk0mi14lOo0az6CFLXrvB9bsNovBaDTSXvXIwiZl7+yGTC5nZnx0QdJnamQIZw/pd4yrTwAymVwkjxZ63lLNXUajkd6nVRj0eiLXbbW4/3D3C8bNN4j+plqG2p8SHJ9iMSldTGFgNBjoa6pFMzuFu3+oeAw6qosIX7uZ7voyUSFkrpRTKJX4RydYJf3U05N01pYQnbpjScug0WBAJltYASKTyQhfu4n28oeiKsdoNNLzpGJRS5tCabskyavTqOlvrkOv1TA51Ierb+CyrTvmRKVcrlgwd0zIaTMY9PQ31aGdm8HWwQm/aBOJGxy3ju769witiaE+hrtaiErdvuA1vNjx9AqJpKehctFw8eVkIYUmptH7tBqteg6vYGlsx/hgL07uXs9F+AY9I3etWcoEDHU0YdBpCVz5XlSH0s5+0YY3AdaIqrH+Lupzs9j511/BxnbpgH6DQb8kaRO6ej2dNcXIZHJRvafX6ZgaGWRqeAC9znJBVqG0xcXLj6T9Z3B09aCnvgKj0XS+KO0d8Albsex9aS0TaqijCc3M1AeyLL9fKJR2aOdm2fvZrzPe341coVjQFv5BMT7Q/YG/H5eDgBWJND2+s/QD+YiU+kDw8vLi5MmT/OlPf+Ib3/gGL774IgcOHLC4COvq6ti3bx9yuVwMGu7o6ODatWu8/PLLvPXWWzQ3m+R/gYGBYqDzrVu3qKmpwWg0kpCQQEtLi2gPksvlJCUlsXPnTu7evSu2ZbW3t9PQ0CAOso6OjiQnJ/OZz3yGc+fO0dnZydDQELt27ZIoCdauXcudO3ckq+CNjY1ipooAGxsbSdtgQkICCQkJ9Pb2cu3aNRwdHdHpdPT391NeXo7RaMTFxYUdO3aISp3Z2VmxyW/fvn00NjZy9epVjh49uuBkUCaTsXPnTi5evMhrr72GXC5HoVDg6uqKm5sb/v7+rFy5kt7eXlasWIFGoyEvL4/t27dbqKrMlRYC9uzZw/3792lsbMRoNBIREWE1KD0kJITu7m6ioswCHx0c+Ku/+ivc3NxEW6GAkZERizB6JycnnJyc6O/v58CBA6xevZrdu3eLlretW7eKFp6pqSmJeqKpqYn6+nqCgoJEBcPExAQNDQ2MjIxI3ufgwYNkZGRgNBotGiLBpA65dOkSsbGxrFq1yqq9Z8eOHeTm5rJ7926KiopwcXGRWNgUCgU2NjaiomVsbEycLPr4+HD69GkqKyu5evUqPj4+GAwGMjIy2LNnj9XsJnOkpqYyMTHBpUuX2LRpE4ODg0xPT1slVePi4qioqGDr1q1MTU0xMzMjIU7Wrl1Lenq6SEqpVCqampoWrJqXyWTs3r2boaEhLl26JB7XhoYG+vr6LILi161bR3l5uSRw3mg0cvfuXbRaLWfOnMHd3Z2JiQnxuUajkYGBAYqKipibmyM3N5fCwkLu3LkjGUME6xOY2j+vXLliVVXj6enJvn37uHDhgmiP6unpkajfGhsbqa6u5sKFC3h6ejIyMiIhpYSWNfPrQ7A8CUqXnp4eCSmhVqvp6+ujr68PW1tbXFxcuHr1qjhWOTg4iOe8s7MzO3bs4Be/+AVzc3MYDAbc3d3FnDnz7bCzsxPHo/LycioqKvD19RW3uaamRsyQcnJy4hOf+ARBQUGo1WoOHTq04FjS19dn0fY2Pj4u2luXykQC0zX/0ksvce3aNfr7+7l//z7h4eEWysW0tDRu3LhhQbK4uLigUCgYGxvj6dOnNDQ0MDs7azWb7WMf+5ioThQw/zumsrKSubk5q5mB5s/ZsGEDGo2G3/3ud3zmM58hJydnwUwpQJJBBibC1tbWlsuXL0sIZZVKZdXOLdjfgoKC+PnPf86+fft48uQJtbW14mO8vLxYs2YNGzdu5P79+9jZ2aHVaikpKWFiwtS45erqypYtW8RFAYVCIS4Y9PX1cf/+ffR6PUajkb/6q7/iN7/5DR4eHhbnlQBvb29J5t7Y2BjXr1/njTfeEJVa/y/jZz/7Gf/2b/9Gf38/SUlJ/OQnP5E0vprjypUrvPHGGzQ3N6PVaomJieEf/uEf+NjHPiY+xmg08i//8i/86le/YmxsjM2bN/OLX/yCmJjFK8L/O2Fja4d+kabZ5aC/uR6PgNBlZ7fYKG2xsbNndnJ8yZalxWDn6CxONmfGR+h8Zu1w8fLDMzgCBxd3Blsbnqmk1jI7Oc5Ay/ItegthamQIJyvhu2CapLr7hzDS27Gs1fvO6iJCE9OsTkqDYtfQXJK7YMPaUEejqJIyh4u3HzK5nI7qIqtkx1K2uAlVP0PtjQSuTFr0+JjaCBPRaTV01hTh6OohsWbNToxahDdr52bpfVplWmyKSZAEwwv34wobGzAaRSWPuVLOROjUotdqRSsnwOTwAKrOZlPo9jJUGbOT4zi4ui/6GBtbO3zCV9LXVENATOKzY7U4eeQVHMFwV6uFhVOrnmOgpU6y3Ta2pvt734iVy7JdatWzyOQKiW3Q1TfQZOFcwKonlysIXGnKdzQncYXHa9WzDHe1mu7nl2iEmxkbxnGR+vqg2DW0luZh5+hi9drqb65bMkAeIHDlaobaGxloffJevpDBgKqj6bkJEBulLXqddsH2uP7memyUSgtLIZgI3omh3udqKxzqaEKnmWPv575OUOyaZ82FsYsGro/1di5JEssVNnRUPmK4p00kXOUKBc6efvhFxy9Igg62NRCamMZIT7tk32tmpxlofYJeqxFfyzs0esFiCe/QaFSdzfhHx5uKvGqKcfH2X5Zl88PGUEcTc5PjRKXtoKu2hNDENAbbGpZ1Db0fGI3GD70MZCEsNb4I+IiU+gAQ8oYSExO5c+cOTU1NVokMgUQyR1hYGN3d3Zw9exatVms1OHxubo6EhATS09NJTEwUrRHwnj2ooqKCw4cP88c//pGcnBzCwsJEAswcBoOBwMBAkpKSUCgUZGVliWSRTCZDoVCIobpgyowZHx+3mLzNbxsUEBgYyLFjxygsLGTv3r2ivcXahOD+/fvs2bNHbFRas2YN4eHhXL16ldTUVKuWtM7OToqKiti/fz/Ozs5W2+OysrI4cOAAjx494tChQ+JEX61Wk5qaSkBAgNUVkZGRESorK1Gr1XzhC1/g5z//udV2PTCRUo8ePRJJqebmZgYHB/n85z9PSUkJT548EZU3YEkqCXjw4AE+Pj7ExcWhUCgYGBhg//79GAwG8vPzGRsbIyUlhbm5Ofz8/KiqqqKtrY2YmBhRoXPz5k3ApISYfzwqKyt54403iIiIoL+/n7q6OlEVIChHwKRiSExMJDs7m66uLry9vfH19cXHxwc7OzucnZ2Znp6mpKQEOzs7iUJFwK5du7hz5w6HDh2ioKDAguhZuXIlAwMDYnbLQiH51uDq6srZs2fJycnhxRdfZHDQugRU2E4wZURZUzmEhITQ2dmJn5+fmBO2FHx8fDh79iz5+fkcPHiQP/3pT1ZtQ4GBgWJWE5gsjO3t7WImlGCVcnR0JDc3V7zu/P39RbJhbm6Ob3zjG9y5cwej0ciePXuws7MTlVJDQ0NiA+dC+UBubm4cOnSId999l3PnzolkoVarFa1iZ86cIScnh507d3L//n1kMpk4rhQVFUlILHNERUXxzjvv8Oqrr4qKUJlMhq2tLQEBAcTFxSGXy/nVr35FUFCQ2NCoVqtFxebU1BTT09N87Wtf4+TJk+zbt88iJwtM6pf+/n5x3yQnJ5OcnExubi4vvfSSSJSaE0h5eXkcOXIEpVLJpUuX2L9/v2jTNYc1m/CNGzf4n//zfzI0NERmZuaieV/mr7Nu3TqCg4N58cUX+cQnPoFCoSA8PFxSFGE+5oyPj/PgwQPs7e3Zt28fCoWC1NRUHj16ZJVsra6uFpWzV65cYd26dRK1H5gsqDY2NgseNwF6vV5UhMbGxjIwMMDc3BxXr14Vv1/mY3p62mL88vX1ZdeuXVy4cIGzZ88il8uprKyUNIO2trZSXV0t2t+ERsGhoSFxIUOASqUiPz8fjUbDoUOHeOeddygoKCA1NdWCHMrPz2fLli1MTEyIVtGAgACxQKCmpoZz584xPT1tNfdx/qKKgLGxMQ4cOMDmzZt5+PAhnp6eS1qp/1xx/vx5XnnlFd5++23Wr1/PW2+9xf79+3n69Klo3TSHp6cnX/va14iNjcXW1pasrCw++clP4uvrK5LC3//+9/nxj3/M73//eyIiIvj617/O/v37qa+vX9RG/d8NW0dn5qYmnrsCHUxZSMCCk+KFELgyibay/GUHJC8FRzdPUXk1oeqno+rxs3/3oZmZRqdVY+/s9lwWvYUw3N26qPLCMyic1rJ83P2DF1WODXU04eoTsChBFLgiid6nVRIVB5hsZNZavAQ4e/qATEZ7pWUg90KfX6/T0VlThJO713MFBtsobYlYu5mpkSFaS/PwCV+Ji7cfY/3dYp39pGqA4e4WbGztCUlItapkUnU04RNmInADY9fQ86TCgsSwsbUTVQta9Sy9T6spfPcX+EauYtvHv7h8++WYStIOuRBcvP2YGR+mreIhrj4BSyp97J3dGGx7Km5ff3M9Bp0WGzt7AmISJYSSqqMJ79AoHN08mRkfYaSnHc+g8AVfu+dJpYUFyyMglI6qx8u6/sxJ3LGBbmbGR/nN3x3lf3z3D8siXsYHe/EJX5xgj0jeQlPxfWKsNPIZDYZlZyH5hK9gtLeDnoZKgmLX0LmI8m8pCNlD8zO0ep9W4eDiviAh5BkUTnvlo2WTUj0Nldg7uxIQk0h3fTnIZESlbKOvsYZJ1YDVDC+AqdEhQhY47kajkf7mWuYmJwhdvZ7Q1evxjYhd1lhtMOiZHh3GNyKWkZ52ye9sHZwkwep6nRZVZ7N47gJ4BITh7GXKyrJzdEYzOy1aPEMTUpdsGp0PmVxhYRl9HhgNBjqqH+PmG2QxLvhGxDIzPkpz8X3C12x6LjXdnxOWS359REq9T+Tl5aHT6XjhhRe4f/8+W7Zsobu7m0ePHi1IaAgQmtBSU1PZs2cPycnJZGdnS6xi5eXl4mQtISFBvAEXIJfLiY6OpqGhgd/85jfY2NhYVWkB4sR069atXL9+naNHj3Ls2DHGxsbIzMzE09NTshpeUmLyEJv/TIC3t7f4e3O0tbVRUVFBUlIS2dnZKBQKOjo6LHJ8dDodBoMBW1tbAgMDqaqqYs2aNdjb23P27FkeP35MS0uLxIKSk5ODu7u7mN/j5+cnmbACPHz4kFWrVuHh4UFgYKDY0rR//36MRiNlZWWUlpbS3NxMUFAQOTk54nM9PDzYtGkTXV1d5Ofno1arqaioYGJigvj4eIkqyt7eXsyJ6ejooK2tTVxxT01NJScnB09PT9EGaW1Sd/v2bSIjI8XXTUhIICcnh5CQEORyudhOV1payhe+8AXOnDnDiRMnlm0n6ejoYHx8nH/6p38Sm8wWQm5uLhcvXmTdunWiBW5oaIimpibUajUymYx79+5x4cIFfvOb34g5YuY2T1tbWwwGA3Nzc2JLntD0Jpx727dvJycnBx8fH/Lz8yUTWAEL3XSVl5djMBjIysqitbWV4uJiZDIZ69evt7CeNTQ0EBMTY5UMXbduHenp6czOzorNX/NhvuoklAH09PQgk8n40pe+hE6n49atWyLRIATCr1ixAnt7exobG6mtrWXNmjUS8q21tVW8Ppubm0XbpPnvIyIisLe3F1sD7927h06nY8WKFTx58gSlUrksIs3FxYVjx47x7rvv4ubmRk1NDS0tLRw8eNBCNSgQU2DKA1KpVCK5YTAYKCsrY2hoCDDZ1tLS0nj06BH29vZWySRhQpudnc309DROTk7Y29tjb28vHqv09HSRZHZzcyM9PZ2VK1dKyNzExERyc3Ml13heXh4uLi7U19fT3d1toWgyv9bOnTvHjRs3WLly5aKZd0ajUaL68fX1Zd26dWIRgjUS22g08vjxY1QqFYGBgWRmZqLRaETV582bN8XnKZVKPD09yc/PZ3h4GDc3N44cOSKen0ajES8vLxITE7l//75FkHhHR4eoSouKiqKsrEwSxv3w4UNcXV2tksUCDAYDDx48YGpqil27duHk5ERWVpZIUISGhlJdXS02/wnHaTHFkIeHB4cPH+bdd9/lhRdeQKPRYGdnR2dnJ+Xl5URERIjjjmCrTU5O5ubNmxaWaG9vb3bv3k1FRQU/+MEP8PDwwNvb2+K9jUYjw8PDeHt74+3tzbVr1yTfiZ2dnahUKg4ePMi+ffvIzMwkKSlJ0nCalJREVVWV2J4JphbJyspKTpw4IX4Pt7e3c/HiRQ4ePGh1UeHPGf/rf/0v/vZv/5ZPfvKTALz99ttcv36d3/72t/zTP/2TxePNbc4Af//3f8/vf/97CgoKxO/Pt956i9dff11cEPnDH/6An58f6enpvPjii//pn+n9wi9qFV21pc/V/gMmu9R4f/f7suHJZDLcA8OWrSh6Hrh6++Pq7Y9Bryfrf32VualxvEOjcfcP/lCyTVhAdWGO0MQ0umpKFtw3M+MjqKcn8VliZd/RzYORnlbmpsYlKob+5rolbYfOHt7I5XLaKh5aVVSZQ9XRxOTwIKGJqc8d4C2+37OQ9sG2hmehxkZGetqZnRjB2dN3ye2dGR8RSSylnT06rVrMBLMGpZ0DQavWknrir57Z1GrQa7VWc5TmY25yfMmg9tmJUYY6mjAaDNz86b+w59NfY2Zs2OJx87//Cs+/jdFgQGnvQODK1QvmGU2NqvB+RsJ5h0bTVVtiav+zok6bm5rA1sHJOqljlp22HIz1dzPW34mjmwe7/uafGO3tXBbxotPMLZnrJZPLiVi7ibaKhxILq4lwe77r3CMwDBtbe+7/9t+ISt2+JCG4EOyd3UxB/Wboqi3BzS9oyc8tVyiWzKQyGo10VD3CKzgKF2/TPb+9kwvq6Ukc3TwJWJHI1MggzSW5JsLEyvVlbTwZaH3CzNgw/tHxOMR40FlTTEhCKs3F9xe1WQrorisjOD5Z3AezE6M4uFouQIIpt09QpYGJABrt75JkZdXnZqHXaohO3fG+lENuvibl2XLDvM0xNzVBV10pYas3iOeBenpSco07unkQmbKNjsrHeASFfSh2PpPN90P4zviQ8REp9ZyYmJjg/PnzbNu2TVydFW7Io6KiGB4eltROT05OSm5qe3p6KCws5Pjx49ja2lJfX4+vry/R0dEUFhaKORzd3d1ifXp0dDTp6emSG/Camho6Ojo4d+4ct27dIiUlRdJ2ZY7Hjx+zYcMGcSJkMBiQy+W4u7uL2VgZGRn09/fz7rvvEhcXt2TtuYCRkRFyc3MJDw8Xc6eamprYu3evqPgwnxTk5uYu2uC0YcMGhoaGOH/+PB0dHUxNTbFv3z7JBGXt2rWSyU1DQwNKpVIkeQRiTKgOl8lk4iTkxRdf5G//9m8t8rcMBgOVlZWcPXuW69evi5aW2tpaMjMz8fX1FZvpwJT9VVdXZ6EKOnDgAOfPn+f48ePY29szNTUlWZ3OysoiKSlJkqkyX00hICYmhldffZXZ2VmrGT7WMD4+TmVlpTh5sJalJEBoVTx9+rRo+fL19cXX11dsVhsZGcFgMLB//34OHjzI3Nwc9fX1VFRUSIiZgIAAvvKVr7Bnzx6ysrKwt7dn8+bNkpwcITOora1N0iBo/ntzqNVqsrKySExM5NChQ9y8eVNUL5gHM8vlctavX4/RaKSuro7Tp09jMBjo7++ntbWVyclJcTtPnjzJD37wA27fvg2YFFaxsbGiQmxoaIjBwUHa29sBWLNmDWvXrmVoaAgvLy+Gh4fZsmWL5JrWaDQ0NTVRW1vLl7/8ZSorK60O9sLPtm7dyoULF0S7GJiuZ/OMKltbWw4cOEBLSwuf+9znaGxs5OnTpxavuRCcnJzYt28fPj4+4oTb2rbAe8RUd3c3Li4u3Lp1C51Oh1wuJzk5mdTU91bxrl27xq5du8jLy7M4r9RqtdgKeujQIa5cuWKRK3Xz5k3S0tJEBVNERAQRERE0NDSQnp7O6tWriYyMlARWGwwG0tPTJSqh0tJSqzZc8893+PBhkTxaSEWUk5PD7t27JWRdUFAQWq2W27dvs2bNGjFnaWJigvz8fIxGI+vXr2fjxo2MjY0xPT1NQkICubm57Nq1SxLur1arqaysZNeuXczMzFglS8GknJ2amhKbUsH03THf4rpu3TqSk5O5du0ax48f50c/+hFxcXHMzs7i6uoq/nFycsJoNFJQUMDw8DDbt28XLcEzMzMW+VWrV68mMTGRvLw8JiYm2Ldvn6h6XQjOzs6cOnWK8+fPMzExQXp6OiEhIRbnWmFhodh6ulB2R09PD6OjoyQmJrJnzx4aGhrIyMjg6NGj4j57+PChZKHEPEdufHyc8vJyTpw4QXFxMePj45w8eZKioiK6u7tFW6Ovry9lZWXia+j1eq5fvy4SK8J1ER4eTmhoKDk5Ofj6+kpIrD9naDQaysrKePXVV8WfCbEBjx49WvL5RqORe/fu8fTpU773ve8BpgWn/v5+iWrazc2N9evX8+jRI6uklFqtFhdvwHTt/HdALlfAczYMGfR6OmuKiV6/cMPmUvAMDKOlNA+PgNAP/cZfOzdLW2Uhh774Bt11pYQkpDLU0chgawNyhQL/mIRlBWfPh2Z2GqX90pNjG1s77F3cmVQNiBNVAXqdjt6nVYtmE5kjaFUyLaUPRBufKZvHaVn7zNHNE/+oONrKCwhfu9lifFFPT9JdX453aPT7qou3Bt+IWCac+/jTP32Mk6/9+H1ndgWuWE1fU42FSswcnTVFhCVtoK+pFr+oOJR2Dhj0egZa69HMmFThXiFRJuWYBJaWHINez1D7U+amJ8FolISOH/riG2hmpglcmbQoaTc1qmLtwRdx8vBeNPR7ZnzUwj4YHJ9iCldP2WahJulrqllwP/pFrqK/pX7RRktBcaOensTNL1hsmItO28ns5BjtlYUfWraa0s4B34iVkka+SVX/ssjrualxhrtaJRlJ02MqRns7rT5eJpPh6OaFi7ffooHiXiFRqLpa8AqOpKPqEd5hK5allDMFntcsaAvT63S0leUTkpAiUQ7ZObsy94yUAnD29CXSzYuOqkd4BkUsqmwb6mhiangAn4hYCVEkfN7wNdKsM2tQz0whV9iIY5xPeAw99eXLVpvJ5HI8A8PEBYPxwV5mxkee/bvnfRFLzl5+9NRXPPdzVV0tzIwNW1hzJ1T9uPoESB4rlyuISN7MYFvDshshF8PYQDdu/0lZVR8EH5FSz4mnT5/yyiuvLDiZTktLIzs7Gy8vL7y9vSkvLxcndUJ2jKD4gfdugmNiYhgfH6e+vl6itBEQHx9PbW0tcXFxZGVlERkZKbF7eHt7ExISQkVFhdioJ2BmZkbMNRJajsyzR7y8vDh27Bi/+tWv+PSnP8358+fp7e0Vf+/s7ExERAQBAQFi5srU1BT37t3D1dXVovFLwJ49e0RiKioqCqPRKKonBFizU/j4+ODt7c1f/uVfcvXqVaqqqti0aZNoWZLL5eI+FwgEczJuoRuakpISvvvd74otS+YWqJycHJHksre3F1v4BKtJf38/165dw87Ojt7eXubm5hZUIJ05c4bz58/z0ksvieoNo9HIlStX2Lp1q1ULhTAJFybZBoOB69ev89JLLwHw7rvvcuLECathyAIEG5L5JCE5OVmSpWQOwaol5CfdvXtXMvEwGAzcunWLc+fOicoye3t7kSwVYDQauXbtGj/5yU/YuHEjBw4csGqbEhAREYGHhwfvvvsup0+flrQCCnjy5AkNDQ0cO3ZMPDfMrzO5XC4qEvV6PUVFRRw6dIgf/OAH5OTkiERZUlKSOLHv6emhoKBAVFOAaeLf2NgoKumuX7/O//k//8fCSlVSUiKeY5cvX5Zcw7a2tsTHx9PS0kJeXp7E1rQQDh8+TFZWFseOHaOpqUmi5hkeHubx48cYjUZCQ0O5cOEC1dXV3L17FxsbGzFzbiEYjUZyc3PRaDRkZGTQ0NBAcHCw1QZPASkpKbi6uvLLX/6ST37yk1YbQc0Dzrdt20ZGRgYeHh4iYXz//n2xQEAIeje3NObn5xMVFUVgoOUKXmxsLLGxsVRVVZGeni5a/yYnJ0UCxnzc2LdvH7dv3xaPo0qlsvr5NmzYQHNzM1lZWRw+fFgyNjx+/JiYmBiLcG8wkRI6nY4//OEPpKSkcO3aNVxdXTlw4IBk3z98+FD8mcFgYGxsTCR/wFRGIZfLefr0Kenp6ZLCCJCOVfHx8RQVFVFfX09cXBwFBQVi4DyYJvZCQLu7uzv//u//TmhoKDt27GBycpKJiQmGh4dpa2tjamqKV199lS996Ut8/OMfl7xPfn6+1YUBmUzG9u3b0Wg0vPXWW3z1q1+VKErNYU5IP336lJ/+9KfU1NSICwEC9Ho9crlcEto/vz1VrVbz8OFDXnjhBSorKxkaGiIuLo6wsDAuXrzI1q1bCQgIQKVSSY7Vpk2buH79Ovv375eMe1FRUbS0tIgWPKFNU1gIMsfVq1c5ceKEuH2urq6Mj4/j5uaGXC7n0KFDtLS0cPnyZQnJ8ucKlUqFXq+3uH/w8/OjoaFhweeNj4+LeWwKhYKf//znIiHZ398vvsb81xR+Nx9vvvkm3/zmNz/IR/nQ4Ozla5VAWQht5QVEWAnAfl4ErjS1XC1GPDwvpkdVDLTUixYiIexYsHyYB2cr7R3xj45ftqVkoOUJgbHL21a/yFhaSh6IFhgB7ZWFSyqXzCGTyfCPThCzjfoaqwlbvXx1moOrB/4xibSV5RPxTL0ihHaDkciUbR8qKdjXWAMyGYe/9Caaudll5fKM9XdZTFbtnFxQT08tmAc0NtCNk4cPNrZ2BK1aQ2d1MeFrNiJXKAiISRQ/53BXC8PdrQC4ePvjEfBeadL02LBYVS+Xy/EOW4HfPKWSoMgIjltHS0muaXK8wH3LYEs9KzfvM1nqfIMWzC0bbGuwIGlkMhnhyZtpq3gosU9Ojapwcvda8BjZO7uiedbeNx9a9Rx9jdUYDQb8ouIkti+jwYBcoTC9dsQq0zW9RK7UcuHs6cvc1ASqrhY8/EOsXl/qmSmGu1rRaebEn9k5uUoykqZGBll/6q+ZmxrHN3KVhfrNaDAwMzHKSE87mtlp8efv7SsZju6euHj5M9zZwvhAz5JZaeZYLPBcMztNR9VjIlO2WSip7J1dLZrU5AoFEclbnuUflREctw7t3KxIHA13tzI+0IN3WIxoY11om3zCV9L7tFrMC5uPnicVkmMplyusZnEuBxNDvUyq+ll/5m/wi4pjYqCH1rJ8/KPjRdJtOZDLFWLQ+nJgNBrprC7Cxdvfql16dmJ0QeLXZOcbManTkja+bzvfpKr/fdtG/zPxESn1nIiPj1/yS+7AgQNcuHCBkydPMjMzg52dnZgLZW4Fm79qnJKSwt27d3nw4AF/8zd/w9TUFBqNBrVajVKp5I033mD//v0cOXLEqqUgPj6e+/fvixXiwnuYv4+HhwdjY2OS5w0MDJCbm8tf/uVfEhwcbGGvmJycpK2tjdraWoxGI//3//5fPvGJT9DR0WF18mqOPXv2cPfuXdNqRn+/RRD4unXrKCsrE5UM09PTZGVlsWPHDjHIe3R0lFu3bqHX68VVazs7O8bHx8WMnfmYP/kRwphTU1Px9fXl1q1b4ufs6OjAy8tL3KebN28mPz9fohLw9/fn2LFjPHr0iAMHDnDjxg0xyDkgIIBVq1aJ76VQKDhy5AgZGRnY29ujVCq5cOEC+/fvl0xYzZGSkkJpaam4H4RcG+Fce+GFF3j33Xc5e/asVRJnvg3JHHFxcdTV1YnqJwEDAwPi+3l7e2Nvb09XV5eo4jLfBhcXFyYmJqzaeQQ74o0bNzhw4AB5eXmMjY2xZcsWCVFgvl3u7u6cOXOGy5cvs2fPHlxdXVEqlej1em7cuEFoaOiys6cUCgVyuZwf/ehHxMfHExQUJFGrCCgsLOTs2bMUFhYyODiIr68vLi4urFu3DqPRKNqbrEFQF4KJeBbUhwKEhjU3Nzexme2FF14Qs9rmE1ROTk5ERERQW1tLc3Mz+/bt49atW2g0Gry8vCQBzUIg+KFDh5iamuL69eu4u7uzdavlxKmpqYmamhp27NiBp6cnOTk5HD16lBs3bhAbGysZfwQ0NzdTV1fHjRs3RCLdWp5OcXGxJBRbsAgKVkidTic5N6OiosjKymJmZoYnT57g5uYmId8UCoWF2ikpKYmkpCSKior42Mc+xj/8wz/w1a9+1WL/OTg4YGdnx+joKB4eHpSXly947KKjo/Hy8uL8+fPiOdXQ0IBCoZBsj9FopLu7m6dPn4otn9/85jf5+te/zssvv2yVEDYYDCJJtXv3bq5cucLp06cljxkaGiI1NRWFQiGx6BmsyKfXr1/PvXv3cHZ2RqfTMTU1xePHj9Hr9bi4uLBr1y5xzJ2ZmSEyMpLi4mI2bdpklQhet26d+F0kHBuNRmMxhmi1WoqKihgfHwdMhENpaSmtra2cOHFiwXFeIJO+9a1vieo5Qe0LWFh1N2zYwOPHj0WLstFo5OrVq6KiTmgF9PPzE5sfc3Nzee211/jc5z5Hd3c3dnZ24h9AvNaEfenp6Ulpaan4nsHBwWKulaBCE0oI5qs5ExMTLfKxoqKi6O7uJj093eo++P8CXFxcqKysZGpqirt37/LKK68QGRlpYe1bLl599VVeeeUV8f8TExMWjYv/VfAMing2AVialOquL8M/JmHRhrHlwsHFncG5BvRazfu2jZljtK+TqZEhiYrApJ7Rie9hHpytmZ2mu94U/uzo5ol3WMyi964GvW7JenlzCISYoLTofVqFX2Tsc39WZw9vRnvamB5VobCxfW77jIOLG4HPgqhnJ8doLc0jaNXa95UjthB0Wg0dlY/wi4rD2dOHzppiQhPW0fOkwlTWsYjiYHyw16p91DcylsG2BgvFiMGgZ7irVSRv5HIFChsbi4YwmUyGd2i0OHmdGOqjs6aY7B99jQP/81s4efgQmpC66P4c6W3HKzgKuUJB+JpNtJUXWFWpDLTU4/tsO0MT02gty7cazK3X6ZArFFbPMxulLX6RsZIcsaH2p0uSmEp7BzSzM6K1aWpkCFVn0zPCLtmiGXF8sBcXM5WJo5uJuGwtzftQyGYwWRJ7nlTQXJxL6Or19DfXSYgjWwcnfMJjFlUsDnU0EbF2M0ajkdbSPIv9KZPLcXL3wmmBAHajwWAqQagp4s4vv8O6ox9DaWePja39ku8twNUngPHBXtx83yNWp0ZVDLU1EL1+l/XjaGsvIdvM4RsRy+zkGM1F97F1dMLexY228gI8gsKX3drp4u3HzMQoY/3duPtLr6ux/m7c/IIstkv2nDZPMF0vE0N9BMetY2pkiPGBbryCI/EMjqC/uY6BlicExyW/79KIhaCemTKNH4lpi9pwFztPHd08iVy3lY7Kx3gGhT937uFy3uO/Cx+RUs+J2tpaUa0gk8mYnp7G0VEqeZbJZJw6dUpcXb106RLHjh2zmNTMX/mdmZlhcnKSH//4x8TExEhuvu3s7HByMsmaF1PLCA11x44dw87OziKLCkxKldbWViIjI8WGI4HYWblyJQ0NDZJJvYuLi2jvyM7O5hOf+ARnz54lKyuL48ePSyaM81fBwTRZu3nzJv/6r//K3bt3Jb/z9PQUq82fPHlCc3OzhcpEaFECk1ojJyeHyclJ3N3dxfDu+diwYQNFRUWiIiwnJ0e02jk6OmJnZ8fIyAgeHh4UFRVJsnrMc6METE1NkZ2dzZo1aygqKiI8PBxfX1+RbCssLJQ8Ry6X4+HhQVZWFiMjI5w4ccLiPJm/H4T2vEePHrF69WoJ8ahQKHjhhRe4cOEC586ds7AtZWdnW9iQBKxYsYKrV69KSKnq6mqLHJotW7Zw/vx5zp49S3FxMatXrxa3OSUlhYcPH0psj2q1mvT0dHbt2oWPjw+Tk5OMj4+zfft2jEYj+fn5jIyMsHnzZnx8fCxIWKVSyblz58jOzsbJyYnZ2VmuXr3KoUOHrO6rhQbQuro6lEolq1atYvv27ZSWlkoUOmCaPAuE6MaNG8nMzJTY5e7du8euXbvw9PTk6tWr+Pv7i9vQ29srWnXBZLV68uSJqKgA0zETsn+cnZ05ceKEOFluampixYoVFtsdGBhITEwMn/zkJ3F1dbXaFAmIQefCax87dgyVSiXapcBE5t68eZOoqCgLNQ6YlFkFBQWMj49LlG4FBQXY2Nhw/PhxcnJySE1N5cmTJ9y9e1dyrAVy2/wYCHbIK1eu4OnpaTGB1Wg0rF69mn379vHDH/5QcjzARJY+efLEah6Sra0tv/3tbxkYGODGjRuAiRwwz53auXMnV69e5dSpUxaNgfPh4eHBmTNnSE9Pp62tjenpaQICAsjOzhZtHzKZjODgYLZv3y6SMO+++y779u0Ts+LMCZfKykpJrpZMJiMpKcni5wKCg4MZHh6mqqqKpKQkuru7rU7UN2/ejKurK6+//joeHh4Wge7m7xcTE8Pk5CQ1NTVW96O3tzenTp3iypUr7Nq1i7m5OTHLbHx8nKKiIpEYTEtLw93dnenpaR48eMC6detISEjg6tWrbNmyxULhlpeXh6+vr/hdsW3bNtrb27l06RLHjx9HqVQyOTkpIbKdnZ2Zmnpv5fvmzZvs2bNH/HyC3dQczs7OuLq6Mjc3x9jYmGgNU6vVZGZm4urqSkpKirgd1sYJpVLJ6dOnyc/Pp7+/n6tXr7JixQrJdQ2m7zrz7Wtubqa6uprNmzdz7tw5ifXvzxHe3t5icYY5BgYGJPls8yFkVILJsvzkyRPefPNNduzYIT5vYGBAsr8GBgasnueAhDQ0x2LV6/9ZEK7vhVQpAlSdzTi4eCw4CXw/CI5Poau2+APbhwZanwAyQuIt67uD49fRXVdmoU6xdXASV+GnR1Vig5+7f4jFJEYgE54H9s6uyGQyZifH0cxMoVDaLtrEZQ6DXo96eoK5qQnmpicwGo288+UXOfiFb0uyXubDXKE5H6rOJipuvMuhL77xXOTaUhgf6GGkp42I5C0W+yho1VpT457BIFEpzdtoqz92cvdisNVSvdhVU2KhngiMXUt3XemiNjFXnwCGu1rY8ckvo5mbJTggdMlJunZuViR7lPYO+Mck0DUveFuv1TA7OS62uJlyrVbR31wnNgQKsBZcbw5nT19mxkcY6+8CmQy3ZeQ9+Ucn0F1fhoOrB9OjKpw8vBe9nsb6Oi32kzlxOV89937GpPGBHnQaNfd/+322ffyLRKXuWHZDJ5gaEgXSVCaT4RsZy0BLvdWmvIVgNBpRdTbj4u3PoS++gV6rIThuHXqthqH2RlEFJZMr8A6NsloeIASeC6TUaG8H02PDi6rKliIyHFzciUrdzi//dh97P/fPSxYLqGemLPadX2Qs7ZWPcHB1F39nNBoZ7m61+npewZEMd7WIOWZLYWKoj/HBXnE8dfLwZqSnDa9gU9SMf3Q8BoOenvoKjEYDwXHr3neIuTmGu1uZGhladpPmYpDY+Z6F5v9/AR+RUs+JtLQ0kpKSSE9PJyYmhqmpKXEyIFS8NzQ0MDc3x9DQEF/4whfIzs5mcnLSgkxqaWkhNjYWo9HI/fv3mZub48iRIzg4OEgmRmAiEb70pS8RFBTE+fPnOXr0KC4uLlZVGCdPnuTSpUucO3eOrq4ui9yjxMRE0RaXkJAgyYyJjo4mKyvLQmkitDTt27ePyclJcXJz/vx5jh07Jlpr+vr6LCYvFRUVzM7O8hd/8RcUFBSIE2zh/YxGI9nZ2QQEBEiq5q1BaH66fPky3/ve98jJyUEul7N582aRIADp5Ke1tZXg4GDJ/hQmtM7OzhKLjPnzhUyXx48fMzw8zOnTp5HL5ej1elFpJdjE5k9udDodly5d4gc/+AHf+c53ePDggfg7d3d3YmJi8PLysvhybG1ttcjhEiBMrC5evChRhz169GhBG5KA9evXS9Q9bW1tElJGwKFDh/jf//t/s2HDBsk2zCfqent7KSws5PTp0+KEctWqVdTX17Np0yZkMhnbtm3DaDRSWFjIw4cPuX//Pu7u7kxMTIg3AkIz5Y4dOzhy5AiZmZnPNVh3dHQwNDTEjh07ePToEdPT02zYsIHq6mry8vLYtm0bMzMzjI2NieelTCbDw8ODkZERkRQ1Go1ipf3x48e5ePGiqL6oqKiwuIb279/PpUuXOHv2LFNTUzg6Okq228HBgdOnT3P+/HlcXFw4evQoQ0NDVFRUiFlJXl5e/P73v8fZ2RlbW1urkziQ2lUFeHt7c/LkSbq6ukhNTeU//uM/+NjHPmZh63NxcRGJgS1btlBTU8P9+/fFNrfk5GSLtstVq1bh7OxMRkaGqJQTCgnmY3Z2Fq1Wy969e8VGPgG2trb4+vpy/Phxurq68PX1lRQfBAYGWiVH7927h4+PD8eOHZPku7W0tHD9+nXAlPuUlJREdHQ0TU1NCwaS9/T00NzczNycaWVPqVTyla98hddff10S6m0NGo0GpVKJjY0NR44coaenh0uXLrFp0yYCAwPp7u622CfR0dFkZGQQHx8vkjLm5HJSUhL37t2ju7ublpYWSSlGc3MzT548wdbWlnfffRdbW1vCwsIWJNuEzyy0Era3t1ttLhXI35ycHDGYvK+vD1dXV3bu3Gmhgrp586Y4NtjZ2YllHj09PeJ3xb179wgJCSEmRnoTGB4eTmBgIBkZGeI4Nx8CSVBRUUFoaKhk3Jp/rt+5c4eAgAB+/OMfk56eLiqsBMzMzHD48GFqa2u5fPkyu3fvXlCNqtVqUSgUDA0N8alPfYrs7Gy6u7sJCwsjOjpash8mJye5ffv2giTvnytsbW1Zt24dd+/eFe3lBoOBu3fv8vLLLy/7dQwGgzjeR0RE4O/vz927d8XzfWJigqKiIj73uc891/Z115ejtDO19dnY2uMdGv2+Q36fB96hUQx3ty4YAD01qkI9Pfmh14ArbGywc3Jlemz4fZNdXbWlOHv5Lkh6KGyUyG2UEjXJfDh5eOP0LGdmtK9TbPDzjViJg6sHg20NohLmeRAYu4bqW5ewsbPHPzqenoZK9FrNovlxYLL72Dm5Yu/kirenL5q5GRJ2n0A7N0tU6vbnVkvNTo6BTI5fVDxBsWvob6lHp57D1tEJv6i4ZTWjWdve7vpybB0cLSbp5t/1gSuT6GuqsdowJ9jTFoJncATD3a3iZHhiqBcHNw/xGhGgsLFBJpcvqrrrqC7CN3IVw10tBMevo7Ukj+D4dc+lGHN080QzN0N/cz3+0SaCpLO2xKLO3dnTl7H+bmYnxyV2Mb1Ws6SdyDfCRDioOpqI3rCLgdYGk8rIaJCQjub/vvnTf+HU139m0bY4H8ZFbFz2zq4Ex5tsilGpO8RjaLo2l85gmhoZYrirBQBX30DCkjZw6Itv4OjqwUBLPSEJqcu+d+1vrpUQay5efoz2dix6DZtD1dXC5FAfIYlp2ChtTUHhiWl01phsnubEoF6nY7irmaH2RvFn7v7BuHgHIJPJUNjYiA11MplswYyp50FH9WN2/+2ruPkF0VFdRGhi2oL7ZrS3E49Ay7EtLGkDzUX3REtpf1OtaF2dDycPb1RdLSx9FE1tmeMDPZKWO2vbJpcrCElIQaueo7OmCDtHF/xjEhY9xgstfBiNRjprinH29Hnu0o2lINr5nqOdz6DXI1tmW+R/NT4ipd4H3NzcOHnyJE+fPuXo0aP84Q9/EH/n7+/P+vXrcXBwYHZ2loyMDPbs2UNFRYVoKXBzcyM1NZXx8XF6e3u5e/cuO3fuFCfFGzdu5NGjR5LcJ8FGAfDSSy+JuSsKhcIi68HGxoY9e/Zw8+ZN8WfDw8PU1NQwOzsLwD/+4z/y5ptvMj4+bnEhzbfVCOHsZ8+excbGBpVKhZ2dHc7Ozpw7d46MjAxSUlIICQmht7dXnGSOjo6KN7InTpzgxo0bFuqL5uZmPv3pT/P73/9+wVVXcwwPD3P79m1efPFFbt68yaFDh9Dr9Tx8+JCJiQl8fHxIS3tvADQajZSXl0sCl/V6PfX19VRWVpKbm8vXvvY1wEQk+Pr64uPjw8aNG7l69SpyuZwNGzZIrFpCfsxC6OnpoaioiJSUFDHfaM2aNWKW1OjoKM3NzRKLCcDFixdpbGzknXfeETOt5sPe3p5jx45x6dIlXF1defLkCTY2NlYnf+YIDAykuLgYg8FAa2urRSOZSqWipKQEg8HA1atXWbVqFdevXycsLEy0rAr7tKKigtHRUYsQa3d3d9H+I0BQc/T29qLT6YiNjcXV1VVCpDY2NnLt2jUcHBy4cuUKiYmJVpVF5ooWMIWwV1dXi0SmoHJwc3Nj9erVtLS0kJ2dzdzcHMeOHZO81tatW0W11N27dyWWK7lczt69eyXFAdbkwps2beLhw4eMjY2J1enwHhnS2NiIq6ureLxCQ0PZtWuXhGTIyclh586ddHd3c+HCBQ4dOrTsti+dTkdRURG/+MUv8PPzo7293cKe5+/vz8DAgKhWSUxMpLW1laioKKsqTwEhISG4uLhw/vx5zpw5IxIwBoOBqqoq+vr6ANMxP3r0KH/84x/R6/USe5+A7u5uDhw4QGlpKTU1NRw8eBClUmmxTwUrV1pamqjmUSqVot0sKipK/HxdXV0iQfWd73yHv//7v7fIP5LJZAQFBbFhwwbs7e0xGo2cP3+ea9eusWPHDu7cuYO/v/+CIeiPHz+W2BiDgoI4c+YMDx8+5NKlS1azscBk37558yZHjhyhpKREoq4CRFIdTOfanTt3mJ2dJSoqSjyXc3JyOHDgALdv30atVi/aIAimBrXMzExcXFwWJNo8PDxwc3PDycnJgtwR0NjYSHR0tAW5uXPnThobG8nIyECpVOLl5YVarebevXtotVqLCZ2Liwsf//jH+c1vfkNbWxsAkZGRxMTEEBcXx+3bt1EqlRb5dAKEcWjjxo3ifo6MjKSlpUU8B8zfMyEhgfj4eO7du4dGoxF/19LSQkNDAzKZDKVSSWpqKqOjo2RnZ7Np0yacnZ3p7OwkNzdXJIs/97nP8ZOf/IQTJ04smgv354pXXnmFT3ziE6SkpJCWlsZbb73F9PS02Mb38Y9/nKCgIN58803AlP+UkpJCVFQUarWaGzdu8M477/CLX/wCMF1HX/ziF/n2t79NTEwMERERfP3rXycwMHDZjbACQuLXiaG9WvUsqs4WtHMz4u+dPLzxCAxbdr36cuHs6ctwl3VSSqdRM9BcZ9WO9GEgICZBVGg8D4wGA23lBfhFxy9JaAWvWktH9eNlKbI8AkLxCAjFaDQy2PaUwbanPPy/P2PrX37hvfdegByw9u9HF35JyrGPY+fkiptf8PuyPpqIjzQCYhJpLsldVgOXAINBT8+TCqLTdqKZnaa/uU4kF9XTk3TXmSyMrj4BeCyzDVE7N0tH1WOCVq2xaPUyGPQgk44LATGJ9DfXM9zVilfIe4t5w10tVjNjBLj5BtJW/hCv4EiMBgNDHc0LKkuCYtfQ01Bp9fW668vwDAzHyd2L4a4W5HIFUWk7aK8sxCcsZtkKNgB3v2CG5poY6W7Dxt4BJw9vC4scmFRi5gSPELa9ENQzUwy2PcWg1zE+0MOT/BtEb9iFm2+gqX1vASWKqrOZc9/+LUPtjbh4LR763d9iqd4yh52jM6GJaTQX3xeb1iYGe/EJt37/PDsxymCbqWDGycOb0NXvlR3pnhGE3mExqGemaCnJJWhV8pKZTprZGZR2Dhb3PyHxKbSWFyyqLNLMTtNVV4ZXcKRIlApEnI3SFicPb8YHeiRKSIWNDb4R74kMjEYjY2btczqNmvOvf4pDX3zTwi63EBYjnLvry/AOjWasvwuPgDBcvPxoKc4lJDHVqppMM2uplAKz4PPKR4SuTkM9M4Wj28JZtcvB5PAAY/1dEkJqKSjt7Alfs8kUml/xEBefAKvfI84ePkyPDllca6JdLyFVEhj/YcLRzfNZO9/SYfNgUsQtdyz8r8ZHpNQHQGdnJ7/+9a/FUFZzNDc3ExkZSVBQEEVFRZIspbGxMXJzc/nUpz7Fd7/7XT72sY9Jnuvq6io2hoEpkNpczSTYZu7duycqoQwGAwMDA3R3dzM8bKp2/eUvf0l6ejo3btzA09OTtLQ0cRJ669YttFotrq6u4uRu7dq1BAUFiWHoO3bsEAkI82BntVothkfL5XJOnjxJbm4uw8PDTExM4OzszJ07d5DJZJw+fVocfOVyuSSbR7A/3rlzh6mpKaqrqxdt/Wtra6Ouro5z584hk8kkIekCgTcwMCB+Hi8vL37xi19w+PBhHjx4wMzMjPi+8fHxfPOb3+TmzZsioTAzM8PQ0BCtra08efKET3ziE2RmZqLX6y22RalUWgS0z8zMcOvWLQICAsTV9ZaWFvbt2yfm2dja2uLh4SE5nmBSZQwPD7N582YMBgOlpaXi9lqDXC7n4MGD/OY3v+HcuXNLWhPANBm+d+8e09PTHD9+nI6ODmpra8V9tW/fPhQKBQqFQiRj2tvbRftUW1sbP//5z9m+ffuC+T3zlV93795FqVRy9uxZnJ2dLVQMg4ODtLa2cvjwYW7dusXp06eprq7m6tWr7N+/X0KauLm5MT4+jru7O3Nzc9y+fVtiu5xvDYqKiqKkpIQ33nhDVCna2dkRGxuLv78/Li4u5ObmsnbtWot95+npSUhICJmZmRaqNbVaLbauZWZmcu/ePYtJfFBQEJs2bcLe3p7r168zOTlJdHT0gqqX4OBgzpw5Q3Z2NsHBwSQlLR4429fXR15eHsePH+fBgwfs37+fvLw8pqenJdeQn58flZWVEtKytLSUlpYWHj58KOamWbvJcHd35+TJk7z55puUlZWJgdVJSUmSMoXHjx9z8OBB0U41nwAUkJKSglqt5vr164SHh0tIaMG6eezYMQkpt3nzZgoLCy2sgSEhIYSEhNDX18fo6ChNTU18+ctfXtTafPPmTXbv3k1ZWZlosezp6eHKlSskJCRYEKHzrWdgup6FxlEhh85oNOLt7c3atWuxsbHBzs4OX19fOjs7mZubw95euuo9OjqKq6sr+/btIz09nb179y5IDu7du5e8vDw0Gg1xce9J+62R1kePHuX8+fOcOHFCJOEE5OXl4eXlxY9+9CO6urq4fPkyJ06ckJy3RqOR6upqC7IZTMrIpqYm8vLy+Pd//3f++Mc/sm7dOtFmPh9jY2O8++674rhsMBhoa2vj9u3bVFdX85WvfIXs7GxycnKwt7cnODiYoKAgcTHn3XfftTgXVq9eTXp6ukhK1dTUSM51obCho6OD8PBwMjMziYmJ4dChQ+L1rdfrMRqN7Nu3j4yMDE6ePEl4eLhEYfbjH/+YyclJZmZmlk0Q/znh3LlzDA0N8c///M/09/ezZs0acnJyxMWrzs5OCdk2PT3N3/3d39Hd3Y2DgwOxsbH88Y9/lKhxv/KVrzA9Pc2nP/1pMS9QOHbvF0o7B4tWramRIdEyASbriVdw5AeejJheTIbBoJeQHUajkbbyAqLSdnzw118EniGRppX8BZRa86HTamgryyd8zaZlZZrI5HLsHF0slCuLPkcmwzdiJe0VD9n4wmdw9w9ddhi8gK7aUg5/6U0c3DwZ7mp5XyqA/maTbWlS1Y/RaCRi7WZaik1kx3IsMx2VjwlLMilobB2c0MzOiPdDdk4uIokzPtj7nkIsMtbCziQudvV2MDHYu6Bia25ywqr6yD86joHWBlQdTe/ZiJZxX+bqG8D4QA9jA92ELhI8rFDaYjQY0Ot0EpKor6kGZ08/8djJFQoMer0pfHrtZrrry9Cq5yyUdosRCz5hMXTXl1N5/m0OfOFfrT5GUNX0PCk35fIMD+K9xiwz12BA1dnMzIQpnsPWwZHAlatR2Cgx6HW8+J3f0VVbsmTW0OTwABFrN+Pi7S+qQeYryQSop6eWnPjbOjgRnrTRREyl7USnmZPkL6lnphhoqcdoMGDv4m5S+Vg5D8b6OsV9aufoTFTqDnqelKO0d8Iv0jLTVEDv0ypCV1sSizK5HJ+wGJNqMUL6fKPRSO/TKgw6HZHzcrFMjXEmMsknLIaW0jxcfQIWVBvKZDKRmJ6bmqC7vozQ1esZ6WnDzsll2eOHNfQ31+Hk4WMKg5+eZG5qHCd3L6LSdtBVW4Kju9eyx0AwWUo9gyO48dZrHPriG4s+1tbeEc3s9IKk5eTwAGN9ne873NvBxZ2I5C2MPwtD9w6LwdX7PUu8m18Q/c11ElJqpKedSVX/c9n13q+KyWTn28JAawNTS9j5psdUEvL8zwkfkVLvE9evX2f16tUEBwdz48YNC1KqurpaJCYKCwslv3N3d2f37t38+7//u3ijHRYWJpnoyWQyMQi3r6/PInhYCD9+7bXX8Pb2RqlU4ufnR1RUFCkpKfT19fHZz36W48ePMzExwaZNmySTmIiICLFx7siRI6KdoqKiAltbWyYmJrh58ybBwcEWBIS13KgdO3ZQW1vLF77wBd5880127dplEbwbExNDU1MTK1euBEwTq87OTnESW1hYyJMnTyS5MQKqqqoYGxuTtKKtXr2ampoayWq7n58fR44cwWAw8L3vfY/XXnuNoKAg9uzZI2nvsgZHR0fCwsLw9PSks7OTu3fvsmHDBlpbW8nKysLW1pZt27Zhb29PWloaRUVFbNmyBYPBwL1799DpdBw9etRqM5qQ62ItlN1gMHDp0iVeeOEFkRQzV8lZQ3V1NaGhoQwODlJeXi4hsObnLpj//8UXX+TEiRPY2NgQGhoqmbAJMCcPzSdsP/vZz3j77bcJDw+no6MDJycn1q1bJ5m4Ce/V3t5OaWkpu3fvFs8Dd3d3MZgaTETEgwcPJIQnmI5rfHw8t27dwtnZWQwd9vb2RqVS4erqyuXLl3nxxRcl2+7s7IxKpRK349q1a6xfv57vf//7Isk2OztLY2MjVVVVzMzMcPr0abKzs2lqapJsg/A5jh8/zh//+Ee6u7vFfWhra4u7uztubm6kpKQQFhbGtm3bFiQW5HI5L7zwAhkZGaSlpS2osJHL5Rw+fJiGhgbS09M5fPiw1YDpkpISJicnLc6lbdu2UV5ezqNHj0Rb2Hyi7s6dO2zbtg1/f3+0Wi2FhYVs2rSJ4eFhC4XNxMQE9+/fZ2pqiq1bt7Jx40arYdqjo6OiynPDhg1cuXJFbOQcGhqS2LPs7Ow4ceIETU1NXLp0CYVCQVdXF48fP+bcuXMW146TkxPT09NYw5MnT+ju7qagoIDW1lays7Ot2hEBysvLCQkJwcfHR1KCEBQUxKlTp6itrRXbMefnn+l0OpHwE9RMcrkcOzs7UlJScHd3Z2hoiHv37okEtrAY4ejoSFdXF3V1daK60sPDg61bt3Lt2jVmZ2eZnJyUnDvzJwvbtm3j8ePHkqwqIVjfHDKZTNL8KeD27dtERESIaquQkBC8vb3F8gXh2N27d0+iZB0YGBDVnAEBARw6dAitVssPf/hDHj16RH19vaQMwhz5+fkS1Zxge56dneXo0aP4+PigUCjYu3cvs7Oz9Pb2UlxczOzsLC+//DI///nPGRkZsSCFzEsburu7JaTUyMgI+fn5eHl5MTY2RmVlpYUN/cGDB2zfvh25XE5wcDCdnZ2EhoZKXsPHx4cjR45w6dIl9uzZI+6f/5fw8ssvL2jXy83Nlfz/29/+Nt/+9rcXfT2ZTMa3vvUtvvWtb31Ym2gVzp4+kop7vU7HSE8bqs73xmc7Jxe8Q6KeO1DbPzqegZZ6iQWko+oRoavXf+jKrPlw9wumtTQPr+DIJScns5Pj9DRUEJW247m2yz8mgfaKh8tuGTMY9LSW5ImV7y2lec9FSo31d2Hv7IqdkwsGvQ6v4EgxwHe50KrnUE9P4B8dh1GvZ3p0CI/AMCLWbTUpplK2W1XpCBhoqccrJEJCUvhGrGSo/anFxN7NNxA338BnCrEGBlsbUCiVBMQkIrdRYjQa6aguepZZtLBNbHZy1EI9JcAvMpah9kYG25/i5hOI7TJyhjyDIii69Gsi1m1ZkoAMWrWW3oYKcWI90NqArYOTROFi7+zG7OSYqK4LjltHf3M9Q+2N+IS/t/AyPTqEs4f0OwRMk+KeJxUY9DpCElMZaKlHr9VIHmPr4IRHQCj2zm7Y2Noz1N6IvbMbM+MjqDqbRVLQOzRa8p4AM+OjOLi4o7Szxzdi5aI5VAMt9WIQvEwmIzp1B03F94lat9Xi+lfPTC2qojKH0t6B8LWbaSq+j52DE9q5WfqbazHo9dg6OhMcv27Ja29mfAQvM4LFRNKtY2Kol9bSPMLWbLTINtNrNcgVigVf29UngNG+TrTq95rrJlUDDLY/JXDlaqu5UBNDfRKiJSQ+ha660iWvw4HWJ2hmZ8Q8rOD4FPoaaxicmyE4ft1z57KpulpQKG1Fos7B2Y25yXGxXTE0MY2R3g7aKx8Rtnr9khbdsf4uxgd6AFOwfGd1EV4hkQu2XfpGrKSvqYbgOMvcvamRQUZ7O5bcJ8tZ3HfzC8LNL4ih9kZaO5oIXJmEvbMrCqUtBr1OfJ2u2hIc3TwXzYGzhqnRIcl34PPCL9Jk52speUDYmo0fSmnHfyX+7EipN998kytXrtDQ0ICDgwObNm3ie9/7nkhkLISLFy/y9a9/nfb2dmJiYvje974nyYExGo38y7/8C7/61a8YGxtj8+bN/OIXv1jS9jQfQsvZ1q1bRTvWfJSUlEiUMELWjvlKd2FhIZs3b8bd3Z2QkBDa29tJT08nMjKS1atXi610s7Oz4qTcYDDw+PFjRkZGsLOzY8uWLbzzzjts2bJF0qY0Pj7O48ePOXXqFDk5Oezfv5+cnBx8fHxISTHJFq3ZkZKTk0lOTqarq4vQ0FB+/etfW60Ot0ZK6XQ6Wltb2bp1KwqFgoaGBkleCpjsFzk5OeKxvH79uiSvY9OmTTx48AClUimxq+Tl5YlB0Obw9/enoqLCYvsqKytpbW3ls5/9LGvXrsXW1pbi4mJ27Nix5ICj1WrJzMzkf/yP/8Hc3ByFhYXs3r2bhIQE1Go1+fn5zM3NERoaysTEBBUVFXR0dLBr1y6rzXQClEolu3bt4tatW5IMK6PRKAkGDgwMpL6+3ipJIODBgwc4Ozvzy1/+klWrVtHc3Cyxjy2E2dlZvvGNb4j/j42Ntbo/PDw8GB0dlbz/9evXOXPmDBEREezduxelUsnU1BTl5eVMTU0hk8mQy+V0dHRw7do1/Pz8LBQXycnJ5Ofns2fPHtGeY42kA5NF8uDBgwwMDHD58mVSUlLw9vamoaGB8vJyTp48aTU/aWpqCq1Wy8WLFzl48CAeHh48ffpUfIyDg4PY8Hbx4kUKCgqIiIiwShR1dXVRXFxMS0sL+/fvt7qv6uvr+exnPytm9SykhJLJZJw4cYKbN28yMzNDdHS01Tw4MB2XiIgIMjMzWbNmjagMMRgMZGZmEhcXZ6G0E75Mk5OTefr0KXfu3GHPnj2Sx1RXV+Pr6ysGF69cuZLy8nKqq6sBE5EC703uhSwspVLJwYMHuXr1Kps3b7awC5vD19eX7du3c/nyZU6fPs2TJ08sAs7BNBZMTk7y93//9xQUFNDT02OVzAWTZXV2dlaignr06BE2Njbs3bsXo9FIaWkpp06doqCggL6+PsnY09PTw9jYmEiu+/v709/fL1lIEOxf+fn5PHr0iJCQENzc3MjMzESpVLJ161aRIBEKEjZu3Eh6ejonT57Ex8dHcl13d3dz584dbt26RWZmJvv27bM41gqFgrNnz3Lz5k3CwsJEAqWjo0NClICJ7CsvL6eoqIj169czNDRklXyzsbHhxIkTXL58GVdXV7KyskhKSrIIVHdwcODFF18kOzubyMhIAgIC0Ov1Yvul0WjE19dXQloXFRWJ7XUbN25kbGyMS5cusXnzZsn1I2Q3CZ+3o6OD8vJyYmJiOHHiBPX19ezcuVMcXzdt2iSxZv7mN79h//79VFdXU11djVwuZ9OmTbi7u7NixQrS09MlpQ3j4+Pk5ubi7u4uaSydmJiw2D9TU1Oiyjc1NZUrV65I9nVRUZF4rM6ePUtGRgYbNmxYNCT8I/znQWFjY1EhPjc1QX9zHXrdeyUn5hkpC8HO0RnNzHsEd19TLR6B4c8VUPxBEGSmKlkI44O9jPV3EZ2647lfXyaT4eTpw9TI4JJ2Lb1WQ0tZPhFrN4uEjl/kKkmW0GLQqucY7eskYu1m1DNTjPZ24h8dAhifi5jqqi0hfK3Jcujo7klfYw0egWHYKG2JStlGS+kDqwQEmCaaBr3eYpLq5OHNYPtTi8cLkMlkItGh02roa6phrL+bgv/zE/7Hd9/B1SdgwecCzE6M4e6/cJOkT/gKVF0tFJ5/m9V7T4s5W4uhoSAHFx9/1NPvOSSU9g54BkVIzk8bWzv0Oh0Gg56RnnZkcpmFZc7B1UNCSoFJxTXc1Urv02oCV5qI/LH+LgJWvEfqGwx6ehsq0Wu1BMYmobRzQF5bYlVxoZ6ZYqyvE/XMFEaDgewfv86ez76OwsaGkPiURQmHgdZ60Wbq7OnL7MSYVTuR0WhkZnxUEv4tk8uJTt1Bc/F9olJ3SAjL/ua657JlzU6MYKO0JfvHr7Pjk18mZsPu5yZirI03rj6BOHn40FH1GO/QKMn52dNQuWRuXWhCKq3lBYSv2URXbTEOrp5LhoWbb4etgyO2Ds5MjVgnN7TqOTqri/CJWClpfpTJZASuXI1ep6W7rgylvSMBKxKXpfAZG+hGOzcjIfztXdwY7euUPM4zMAxnDx9aSh4QFGdpdZweG0bVYVqAcPMPFgkduUJBSEIqqs5mWsvyCViRaEHQKZS26J9Z8M0xNTLESE/7kmOSo7sXM+Mjy87+8wlfgXdYDL1Pq9DOzRAcbzr3BOvv8+a5CZhU9T9X4L01OLp5ErFui8nOFxwpaVf8c8efXWDCgwcP+PznP8/jx4+5ffs2Wq2Wffv2LbhaDiaC56WXXuKv//qvqaio4MSJE5w4cUK0JgF8//vf58c//jFvv/02RUVFODk5sX//fjEAd7kQVpPNCamQkBA6O00Xn8FgsGhViomJobm5WfI6Y2NjEitTeHg4J06cwMnJifT0dFQqFf39/YyNjdHf309WVhbZ2dmsWLGCI0eOsHfvXhwcHEQbmQC1Wk12drZYfQ6mwebgwYO4u7tz6dIli2Y5AUajkVu3btHa2kp+fr44iZ6v9JpPStXX13Pt2jX27dvH2bNnOX78OOHh4aSnp0vaiswHt+LiYlJSUiwmotu3b6e9vZ329naMRiNZWVkEBwcvK2+qq6uLK1eu4OLiwqlTp/Dw8EAmk7Fr1y4SExO5fPkyPT09Cz7faDRy8eJFseLewcFBcn7Y2dmxZ88ejhw5Qn9/P4cPH6a7u5sTJ04sSkgJ8PHxITg4WEKkZWVlsXv3bomKa/fu3RYthWA6t65cuUJkZKQ40Q8LCyMwMJDHjx8v+t5Go5H09HRefvllVq5cyZ49e8jJyeHBgwdWQ7QFxRGY8m3WrFmDn58fO3bsEFfanZ2d2bZtG4cOHeLgwYOsWrWKr371q3R3d6NSqcQqe/P9J5yr6enpHD9+fEEiQoCfnx+nT59maGiI+/fv88tf/pJdu3ZZVSXZ2toyMDDAxYsXOXPmjETVM/8z5ufns2nTJjZv3rzgvistLSU1NZWDBw9ahHiDSUni6+uLXC7n9OnTXLp0yeJ9dDqd5DPu37+fvr4+ampqLFQa5rCzs+P06dOMjo6Sk5ODSqXi/Pnz7N2718JmNj8ceuXKlcTGxpKeni7+vL+/n8HBQQt7bHJyMhMTExQWFiKTyUhPT6empoZjx46xa9cuidX21KlTlJaWimOdgPk3LV5eXuzZs4cLFy4wPT2Nk5MTGo2Gx48fk52dTXZ2tpjn9Oqrr3LlyhXRdnv9+nUxr0rA5s2befjwofj/7OxsvL29RWLO/P23bNmCn58f6enpGAwGkfgwV3sGBATQ399vsc+FcP7NmzeTnJxMUVERR48e5eDBgxLFjkAMyWQyoqKiLFR2YLo2jh8/zuXLlyUEjQBhv4DpnJiYmODRo0cANDU1WV0sSU5OxtnZmfz8fIaHh60qeAwGA8PDwxgMBg4cOMDo6Cj19fXk5ORY/Ll58yZyuZxLly6JBQTNzc0cOHCAw4cPk5r6XnCr0Wi0KLFwd3fn7NmztLa2cufOHfFcy83NZceOHfT393PlyhVUKhUnT54UW2CF837lypXY29uLpOj8Y5GUlMSRI0fYv38/tbW1ZGVlcffuXRISErh48SI+Pj5kZGRQVlbG0aNH2b59u+Rc8Pb2ZmhoSPx/eXm5RI0MpuD5qqoqyf4TrleBSC4vL6ejo8NiGz/Cfw/snV0JWrWW0MQ0QhPTCIlPwaDX01VbQmdNMR3VRfQ0VKKembJ4rkJpi1Y9x1h/N3KF4r/0Zt3O0RmDXo9WPWv196qOJmbGhz9QEK5v+EpJoLE1aGZnaC3LJzp1h0Rh5Ozpw+zkqNWJ3Xx0VD0i3Mwyp52bfvYavngEhi3aoCdgtK8Td79gUTUi2LoEKGyURKfuoKUsX2wSE6DXaRlobSBghfXgY3f/EFPD2xKwUdpi5+SKZnaajec+y+zkGJ01xeKfgdYn6OYRSga9zoK8mJ0co+dJhfi8mbFhumpLmR5T4RcVJ56r1v64+gRy7Kv/C0dXD8nPvYIjGevrlGxPZ00x9s6uVN+6hHZuFt9wy8V6Bxd35ibHLH7uFRKJk4c3nTXFzz6HHoWNEqPBYNr26mL8IuMIS9ogqnQWsvjZOTrjFxWHZ1AEWvUs+z73z2Aw4uobuCghpdOosVHaScZpn/AVTA4PMDspzSM1Kags4zzkCgVRqdtpKX1gyvcSYDQuqm6aHhsWx4eO6iL0Oh22Do7s+ezruPuH0FH1mJnxkQWf/zxQ2CiJXLeV2ckJuurKMBqNGPR6jAbDgsSXemaKofZGuupKGR/o5tI3P0NIfMqiVsCF4B8dZ7Igzjt+w92t9DwpJ2LdFon1bP62hyVtwCMwlPaKh4z0Lv7dNz2qYnKozyKEfP71LMDWwZGotB2oOpvpb67DoNeZjkvVY2bGhgldvZ6wpA24+1nmW3mHRhORvIWxvi7aKh5ajqXPWlYFTI2qGO5uXRZJ7uYbxPhA95KPM4dMJiModg0hCWn01Jdz7zffM6lcU7e/L0IKnpUFfAjqJsHONzc1QU9DpeT15Yo/Oz2SiD+7LZsfVvu73/0OX19f6eprZAABAABJREFUysrKFrQ0/ehHP+LAgQP84z/+IwD/+q//yu3bt/npT3/K22+/jdFo5K233uL1118XW4X+8Ic/iJOXF198cdnbJ6ibzJGYmMiNGzcIDQ3l7t27FgoFMCkIBgYG8PPzW3BCAYgrxrdv3+bYsWO88sorJCQkSGxr5jAnpQwGA5cvXxZbw+YjOjqasLAwsrKyWLVqlUimhYaG0tLSQkVFBXv37sXNzY26ujpmZmY4evQovb29XL58mXXr1hEeHi6GoAuhqDExMSIJJuRhBQQEcOLECTo7OyUKMDCtbI+MjIir7vOxbds2fv7zn/OlL32Jhw8f4uLiYpHfZI6pqSlu374tWnEEmIeRe3t7c+bMGQoLC6mpqRFXw21sbMTPc/XqVY4cOSJRnSkUCvR6vThRaWxspK6ujtjYWHJycggKCiIzM5PDhw8vSbCAyX6Sm5tLd3c3DQ0NrFmzxkIRJUyOBauJsM9u3LjB8ePHRUJGOMarVq2ivLxcrJq3hoyMDMk22tnZcfToUVQqFenp6URHR4sB9UIt+8qVK7l9+zarVq0SVTSOjo7Mzs5ayFwLCwvR6XR0d3dTVVXFli1bUKlU3L59G71ej1KpZP369RiNRu7cucOGDRss7JSLZRzExMRQVVXFf/zHfyyorjIYDPzFX/wFarVacizCwsLo7OwUlTFCporwmVavXm2x70pLS0VbqJubG0FBQaJtSEBJSYloUbKzs+PQoUNcvXpVcg729/dbNDNu3bqV0tJSsrKy+MIXvkB/fz8qlQqVSiUhjIX9UVdXx5e//GUyMzMpKCiQvJajoyNlZWUkJiaKligwZVQ5OTlx4cIFbG1tyc/PF22S4+PjdHZ20tfXJ77H5z73Ofz9/Tl+/LjkuGo0Gon66/Dhw9y5c4e5uTlWrFjB3Nyc1UwhNzc3AgIC2L59O9evX8fOzo61a9dajHvl5eXExcVhMBg4fPiwaCMuLy8HYN26dfj7+6NWq9Hr9Vy6dImdO3daqFTNtzkyMhI/Pz/Onz9PU1MTr732muSxgo3UGioqKujv7yc7O5vU1FQx9N/cUmxOXKxevZrLly9LSCShTVSwl964cQN/f3/JZ3/69KlE/ZuWlkZTUxPXr19HLpcvONbFxcVRU1PD66+/jouLi4UaSCaTERISwokTJ/j1r38tZlctttq5detWkpOTUSqVqFQqkYw1f05BQQFbtli3BW3ZsoXh4WEuXrzItm3b6O3t5datW/j6+oo2zvkQfiaoJ80DzOdDoVCI7z0zM8OVK1f42Mc+xje+8Q1ee+21BffVhg0byMrKEsPju7u7LYLVo6KiuHLlCqtXr5ZYi81x6NAh7t69S3t7u9X3+Qj/vZDJ5bj7h0jUK1r1HKrOZjFE3Wg04uzhg19UHB1Vj1DaOTy3reLDQHD8OjoqHxORvFny856GSuydXRdsl3oeuPkFM9bfbTW0eHZilN6n1USv32X1ugxNSDWplxaxr3XXlxO4co1IPsxv2nPx8gOjKW9qIeWK0WBgtKfdIvzdIkpAoSA6bQctxbmEr90kkiXtFYWEr5XuQ3N4BITSVvFwUUWTwaCno+ox7v4heIdG4x0azfhgj2QCOzc1wYCZKs9oNNJdV4ZcYSOZcNu7uOEfHS8quvqaajn7jbcZbG9Ep55bdJI52tdBxNrNyOVyRrrb8Aw2NdTaOjhZKCaMRiND7U95fPFX7H/5myaSZ17blpApZQ1uvoEo7expKc3DRmlLT0Ml2rkZAlcmLdv6JqCvqQajwUh02k5T+1tCKm2CimUBe2Pv0yqCVlmWW4QkpNJSnEvEuq0obGwwGPRo52YWzIdS2CiJTN5CS3Eu0et3MT7Qjds8EkM9Pclge6N4nBzdPCW2vJnxUWYnRolYs4nep9WmPJ6WegZa6gmMXfOhKCj9ImOZnRynpSQXuVyBb2QsA60NqKctVby2Ds64+QXiHRaDXKFgxcY9tFUWEhS7xqptD0zn8ELf7UGr1tD7TJll0JvOdTe/oGWVIcB7GUqjfZ0mdVJMgnhchfc0hdc3LNsyLECnngOjgaJLv0ZuY8PhL313WflxwnsHrEg0FRw8yx8MjluHXKHA3T+E8QFTxtb0qIrhzuZlj/NKO3sL8nu5GO3rwGDQE7vlIDqthqnRIdM4+GcAv8hYpseGRTvfSE/bh5YnZdCbrlPN7AyauWk0szPoFlh00aqXJwD6syOl5kNo81os1+HRo0e88sorkp/t37+f9PR0wBTQ3N/fLyGL3NzcWL9+PY8ePXouUqqyshK9Xs/atWtFSb9wgc7MzKDT6UR7gDnWr1/PtWvXOHbsGI8ePbKomAfTZLmmpgYwqa9++9vf4uLiQm1tLU+ePGH79u0WGRsCKSXYwIS8oIWgVCo5efIklZWVdHZ2ipPAkJAQid3Kw8MDlUpFSEgIgYGBnD59mtLSUlHlU1VVRUdHB0eOHJFMCgICAsS6cYDQ0FBCQ0NpbW0lIyNDVNEcPHiQkpIShoeHLVpdlEolc3NzbN26FXt7e7q6uqipqbHa8vSTn/yEmzdv8sMf/tCCFJqbm7MIPt60aROTk5NcuXKFtWvXEhkZSWtrK+3t7WzYsMFC8ZSamkpJSQleXl7U1dVJCLjOzk4SEhKIjIzkypUrrF+/XqJ8WWjCvmXLFiIjI/niF7+IXq8X97OXl5d4Lvn7+1NfX8/Q0BDj4+M8efLEIkPJfF8kJydTUFBgVWXx4MED1q5da1XN5e3tzcmTJ2lsbBQ/Q2BgIFNTU9y/f5+oqCiLvDShHXLTpk1oNBoyMzNJTU0VHyeE9Ht7e4tZThqNhqKiIo4dO8Y3vvENSXbNUnj48CFTU1PExcWJGTfWLGE1NTXU1dWRnp4uafBbsWIFd+/eJSwsTGysM8+xio6OFiemMpkMvV5PV1eXaHUFk6IiIyOD8PBwnJycMD5bkTE/Hq6urmzevJkbN26I13d3d7dFro3RaGRubo7r16/j7+9PcnIy3t7eREdHWwQHDwwMoNPpuHbtGmNjY5w9e1ZyTk1PT5OXl0drayu1tbWiMs383Dh16hQXLlwQCX83NzdCQ0OJi4tDoVAwPT1NTk4OY2NjaDQayetXVFRYTOT37NlDfn4+arUatVotKmC0Wi2PHz9mYmJCbJx89913mZ2dtTreVVVVsXr1akJDQ8nIyGDVqlWiBVH4DOXl5ZSVlfHb3/6Wu3fv8sYbb1gNV54/Ljg5OeHt7c3IyAiFhYWSBQ1rN3HCPo6Li+PgwYM8fvwYhULBqVOnqKur4/Lly+zcuRONRmNhXxSUXEKZhdDaKLzPwYMHRXunMEYNDg5aqHZiYmIwGAwkJydz5cqVBUlapVJJXl4eHR0dkuwocwwODpKUlERkZKSoHFyoSa6goEC05IK0LCI+Pp6wsDBGRkbEbDCj0cjIyAh9fX3i+QnvEZH79+8nOzt72cGeW7duJTs7GycnJ/z9/ResVC4pKaG/v5/IyEh++ctfEhYWxt27d9Hr9Xh4eLB+/XrJd4C5ymsxVaKg/pybm5NYMNVqNSUlJSLx9xEp9f8OlHb2VkPUu+vKuPPL77DnM18TFSPmUNgosXN0xs7JFTsnZ5T2jss+j5cDuVyBo7sXk8MDuHj5mXKMqh7hFRz13CHjC8EzKJy28ocWpNSkaoCRnrZFWwYVSlvsnJyZHhu2amMZH+hBae+4ZPC8i7cfRox01ZUREm/5Xd1dXybaXZaCXK4gOm0nzSW5hK3ewFBHI/4xCYtmTQE4unkt+Dmmx4bpa6ohbPUGlHb2TKr6cXTzZLDtKTozpYKgyhOgmZ2mIT8bZ0/fBZvKjEYjc5PjOMQkiE1vC7UJjg/2inZBd/8QWsvyRVLKGnTqOSaHBzn37d/Cs/BrmUxOcFzykhk9AmRyBUa9nuxfvM7hV75HWNLG5zrHdVoNHZWP8ItahbOnL1r1LDa2JvVTZMo22isL8Q6NsbCOGQ2GZ+osy+Mmk8mISN5MW0UB0ak76KmvWNLmZmNrR1jSRlpKcrGxtSdolamdUCAW7BxdxGB1a+hrrBavBYNeh0wmwz863hQq3lCJVj1L0Kpkq6HqpvyqpUkrnUbNcFcLSjsHsn/8Orv+9lVCE1Kwd15c/aTXanH29CXa01dUuVizUY73W5JxAuyd3UAmY6C1gemRQUKTNixIji62IOwREIq7fwj9zbUMtDaI17NOo6azppjoNMuIF2vQzM4w0FKHQa/Hxs6ewNg1GPR6fCNW0lZeYApwt3IO63Vaq8oeuVxBSELKs+0oQmnvSODKJDqri1DaO6B6DkLq/WKw/SnToypTG+LazdgobQlJSKW/ud5kGUxIXfZ1+Z8JJ3cvIpK30FH1iOmxYbyCIpidHEMzO4N2dhrN3Aw6jfq5v+tkcjlKeydsHRyxd3LF1TsAGzt7q6+jmV3Y7WaOP2tSymAw8MUvfpHNmzeLEx9r6O/vt5go+Pn5iRYN4e/FHjMfwoRLgHBjumHDBjZv3kxlZaW4mm9nZ4ebmxu//e1v+exnP2v19WQymZiNYjQaxQlCV1cXVVVV4gq3kOFx7949Tp8+TW5uLseOHZOE7cbExIgTXYGUysrKWtDWZA1r1qxhdnaWTZs2UV9fbxEu7u7ubmE5TElJYdWqVTg7O/OrX/2Kv/mbv7F43YCAAB4/fmyRARYZGYm/vz+7d++mr6+P2NhYIiMjSUlJsTiBr1+/zqc+9SnWrFnD06dPOXXqlFVyB0yTyYSEBK5cuWJhszG3yJjDxcWFM2fOUFZWRmdnJ2VlZWKDXVVVFSqVCp1OJ5JlJ0+e5M6dOwvWXzs6OnL27FkKCwtpbm4WrUKCMs58W+/evYtOp6OyspLi4mL27t3L4OAgbW1tIuEiQMh1ycvLE1f7F8OWLVu4desWjo6OogqopqYGV1dXCbEkhOibT1JXrFjBihUrKCoqoqSkhBs3bvDlL3/ZonkOTEqqR48e0d7eTllZGceOHZOoy6xBo9HQ19fHpUuXxHD/0NBQq+SSAJVKxf3798XMmpycHA4cOEBGRgaJiYkW7yk0Ua5cuZLKykoyMjI4dOgQSqVSVM0t1A4nNBPu3r2bO3fuSCanAo4ePcrFixc5d+4cFRUVVrfdz8+PVatWiRamsbEx3Nze881XVVXR2toqNlxevXp1QXXb2NgYBQUFnD59mpycHF588UXOnz/PqVOnRLLVycmJlJQUNm60vLHs6uqiqKiIjIwMZmZm2LBhg4XKE+Du3buiSunixYsS8nN4eNiiZAFMREJxcTF/+tOfOHz4sKio2rBhg/h5JycnCQwMJDY2lmvXrlmcw11dXeJnj4qKorm5WZIlJ5PJWLdunWni1tFBW1sb5eXlbNq09Epfa2srrq6ufP7znxctnVu2bLFQrQHi6x45ckQcZwRy3d3dnfj4eFHh+PGPf5x79+5JCEl/f3+Ki4vRarU0Nzfj5+cnUdwINrCMjAyJis78eOn1em7evImTkxM3b94kLi5uwYWY9PR0srKyxOtovroNTPlh27Ztw9bWliNHjvDuu+9y5swZq9fpfBWqUBYBpjy/yMhIfvjDH4qkpkwmw8vLC39/f1auXCk+t7q6mj/84Q/ExcVx4cIFDhw4IDn3F8PBgwe5dOmSRTbe5OQk+fn56PV6UlNTSUtLIy8vj7Nnz4rtk2DK+bp16xYGgwFPT0/Wr1+PXC4Xsxl7e3sXbIX09PRkenoatVpNdXW1aB8VguyFz1BXVyc2kX6E//dg7+yKTjPHwb//DnqtBp+wGAtFh16nRT09hXp6gukxlai0WgjmkzmlvSN2Ti7YO7lg5+i8YBC7X2QsraV5OLp50VaWv2BV+geBV0gEqs5mvENN4+loXyczY8PLmqQFxCTSUppnkWOj02oY6WlbtirC1dsfjEa668sJjntvYWNmfBQbW3tsHaT3qjqthrr71xZ8PTtHZ/7jf54g+ehfWOSMWYNvxEraKwuJmKeo6m+uR6/TiLldwgITmBQ7XbXFVtUkQhD6vr/7F9rK8hckpfqba/F/RojKZDIi1m6mvaLQasvcSE+bZPt8I2IZaH0iyfoRYDDoaassJCZtJzK5nI6qx4QlbUAzO0N75SMc3TwWzKLRaTX0N9Wg12qxd3bFycObXX/9VTwDw+ioeoxcoSAwds2StqHxgR7xHBCULSM9HXgGhYuPMWUhlWDQayV5Sn1NNQvaLcFEiAauWE1HdREYjSjtHNBrNahnplBPTzI3PYl2bsZiEXtyeJCiS7/i6D/+AN+I2AWb+czR01ApydOyd3FnZnwURzdT5IegLuquN1nvguPWSci0kZ52vBYgD83b+xRKW/yjTer6o1/+N+Q2SiZU/SbCaAEYDHoJkREUu4bZiVFaSh4QGJskUU1NDg9YbZMzGgz0t9SjnZvl7r+/yY5P/sMHItdlMhkBMYnodTq660oZaH3CSE8HcdsPiypC2XsPFv6BenqSzppijAYDSnsHAmPXSElCmQwHVw9CV5vI20gr+XFzUxOLNira2NoRvmYTc1PjtFc85OnDW8RuPbio2vODwGg0MtBSz+zkGD7hK61aaP2j40w26fICfMKiFwxn/6+CVj3LQEs9coUNBf/nJ9g5OuMeEIqtvSNOHt64OzihsFF+qAsw7xd/1qTU5z//eWpray0sK/8VePPNN/nmN79p9XcKhUIyIZ2bm+NHP/oRr732mmRSBaYb2+DgYIKDg9m5cyf/9m//xu7du8WV6ODgYA4fPmyhgBHqyENDQ+no6CAsLEwkOxobG8nMzMTR0RE/Pz9u3brFzp07JS1XAmxsbNBoNJLJyNzcHNnZ2axatYrs7GxmZ2clE3hArOY2R01NDa2trdy8eZNVq1Zx+fJlUlNTJSvQ9vb2VnO6ysrK6Ovr4+tf/zpOTk6EhoZaDfJ+8OABcXFx+Pr6IpPJOHv2rNgmNX+lX7DVhYeHExoaSnZ2Nr6+vmLWzMzMzIKNe6OjowwODmIwGPjOd75DQkICCQkJ+Pn5ERcXJ5mkXb58menpaW7dusWePXsWVBxs2rSJwcFBzp8/z/79+xkYGCA6OlpCRu3atUui3lKr1fj7+1sE6RqNRjIzM/nf//t/09vba0FwLQShZl44fgMDAxZ2UkEdNv9cBVi7di1dXV3cunWL06dP09bWJtkmMH1B/exnP2N4eJicnJwlCana2lra29s5c+YMpaWleHh4cPLkSTo6Orh69Srx8fGsWLFCbEWztbUVc6vOnDlj0SIoZDwJE1IB5tfQmjVrWLVqFdeuXRMJ0uLiYpKSkqwSnO7u7iJxplAorJ43crmc7du3c//+faanpy0URAIiIiKYmZmhuLhY3K7W1lZRGWSe9xYfH09tbe3/j733Do/rLPD9P1NVR733aklWt2RZ7nKLe6+BLGXvUhbIEjZcWEpYYAO7S4Cls8BygQCJe7clOe5FstWbZfXe60gaaTT998dojnU0I8cJ7O/ufZ58nyeP4/G0854y5/2+32JHutvUS/OtinK5nGPHjnHy5El2794tImAX/pg8evQInU7HoUOHKCgoYPfu3Q7b/8bHx1GpVILCZNu2bVy5ckUgJRz9SNkKF0ZHRzlx4oSQs7YQFRUVZGdn4+bmxrJlyygsLBRIh4UqwpSUFC5cuODwmLx48SIvvfQSRUVFhIeHc+rUKTZv3iwifry8vIScPoPBQEVFhaD8DAwM5PDhw9y/f5+amhqBcLRZST08PDh48KDoMwMDAykuLhbI+tbWVtRqtfCbUFhYKByPUqmUpKQkzp07h7Ozs0Pyw8XFhaysLIc2uPLycnp6etiyZQuurq5YLBbRPlg4pkuXLmV2dhaZTMbatWs5ffq06DwBK9FkOy9tpPmpU6fYu3ev6Nh2FKpue7y6uhofHx+uXLmCTqdj5cqVi5JMbW1tTExMkJOTg1Kp5MiRIxQUFBAYGCg6T55lXT948CBvv/02KpWK+vp6WlpaUKlUvPDCCyL1r1qtxtvbm/T0dKGR0MfHh+3btwufYds/Pj4+tLS0EBoaislkYmhoiO7ubsbGxNkhw8PD/O3f/i1tbW12CrYP8P8+jAY9bRX3icvJo7e+gsistXRWP8Q3PEYUCi6TK3D19H5XJdBCWCwWDLNadDNTzEyMMd7f5TDc2naOaqfU/OZT29j28r8w1PYEqUyOwtkFhbMrCmdXlM4uKJxc3vcqu4d/CO0V9/GLiGO4sxmTwfCuypP58I+0vm4++dNR5ZhYmb9d9t8jGBATU/3NtQLhZdTrrKH1Bj0yhYKENVvtJ65z0M1o2PLpr2MBRnvaRYShyi8Ir8Aw0XhJJJK5mvgZlC6umIwGOqqK8Y9aIsrT0YwOCVYbmVyOi4e3w7D4rppH1tYwiYSg+BQrybLAbmlVSU3iEv/0OilXOuEfuYT+JjEpMzkyYGfxcffxZ6i9wWELWFv5PWKWrRFto8ViQeniSvSy1UyPj9BWfk9oP7OYzYJVTKZQEBSfKpBOHVXFhKfmMDHYS1TGSkxGA32NNZgMevwiYoVtl0ikcxYxKT31FTi5utmRkrrpSTvlT3jK8rmAd4MQYK7XTi9KvmrGhhnv68BsNpP/46+x+sXP0lVbYlUuuqlwclPh6+2PwtlFNC62sPsXPvPPzKhHnysrRzs1gcVsFp3jAdEJ1v07j7SVymREpOZgNOjpeVyGTKEkNNFqWzXMzojsjvMDupWuboKdzIb+plr8oxJQurgy1tthR9TOh7UlUUx0uHh4E5O9jr6GKpjLMbJh/nioB3qEXKTA2KU4u3sIhKO1UdFE8JLU90WCG2a1DLbVg0RCZ1UxHgEh+EdZrw8ipdXc/xt0sxSf+jW7X/2eXYg92NRmVmJa4eRC7PI82sqetoEKz5ueeq58Js3oEBKpjN4nlQTFJ9NZI0UqleIfteSZJODzwmKx0N9Ug25GQ1DsUoFsXPgcG5QursRmr2OovYGx3k4i0nL+21te52NWM2m9lpjNyJ2cCY5PZbDtCR/90Rl6GyrxDYt5bsvk/5/4H0tKfe5zn+Py5cvcvXuXsDDHKxI2BAUFMTg4KHpscHBQmOjb/hwcHBStlA8ODi4aoP2Vr3xFZAmcnJy0azAC6wQtPz+fo0ePkpycLNiVbJidnaW3t5eSkhLUajVf+9rXkMlkvPrqq4va7OZbQTIyMrh48aJI6WJTtQwNDbFx40aCg4OFjKiFhElYWBh9fX1CU5PNtrd7927kcjkdHR0sW7aM5ORkrly5QlRUFBkZGXYTnMuXL5OQkMDevXuprq5GLpdz8OBBSkpKqKqqYtu2bQ7JienpafLz88nMzCQrK4v8/HzWr1/PyZMnhUBxG8rLy/Hx8SE6+ukKhK1N6vTp0xw5ckT03kVFRULLllQqZefOnbS1tXHq1Cl27NjB9PS0aOI+MDAgBK97e3vzwgsvCISR2WzGbDY7bFmSSqVs2bKFyclJIX/JZn1aiICAAI4cOUJhYSEPHz4kNzcXk8lkR0aB1QaVn59vpyCZmpoSlCVFRUVs3bqVd955h8DAQLugakfYu3cv3/zmN5HL5bz22mt2/27LLFtIADQ0NNDQ0CDkVi3W6DcyMsIXvvAFzGYzzc3NFBUVERkZKahebPvUbDZz5coVoqOjRSSHTbUUGRlJZGQkjx8/5ty5c3h6elJRUUFvby/r16+3q7y3QalUEhoaSnt7u3CsmM1mu5s4JycnDhw4QF1dHS+++CKf/OQn2bp1K62trQ7lyhaLhZCQEPLz8yksLFx0fK9cucLVq1cF4lImk+Hi4iL6z8/Pj4GBAQoLC9FqtURHR4vIKBuWLFnCuXPnRKSUTqfj/PnzvPjii8I22f6UyWQcPXqUkydPsmPHDjtLpq2hLzk5WWTjdNT+B9ZQ6vkKQG9vbxISEiguLiYnJ0c0pp2dndTW1iKRSFixYgV+fn78/ve/Jz09nePHj3Pw4EERmTufFA4NDUWn0wkKsrt379plBM4n4G148OABaWlpwnaGh4cTFhbG9evXcXZ2FppJ4+PjaW5uZvny5YJNeiHWrFnDxMQEZ86c4cmTJ6jVarZs2eKQHHd2dkan06FWqwUb6/79+ykoKCAuLk40tiaTiaKiIo4ePcqFCxcERZGrqysJCQkCwR4ZGcnAwICgQO3r66O4uJisrCzRIoetydKWdWeDWq1maGiIZcuWMTw8TFdXF1lZWWzdupXjx49z9OhR4fq/8PhWKBQcO3aM06dPs2nTJmGba2trReSXjQwKDw8XxjA/P599+/YJ+3jhdX5oaIjGxka2b99Oe3s7BoNBKNdobm7m7NmzQlZfXV2dyBZrg9FopKKiAnd3d/bs2cOFCxcc7sP52VO2Mo2Fv+G+vr4CQXXv3j3+5m/+hu9973sYDAYCAwOJi4sTSjBsuHLlCnq9ngsXLqBQKN71nuMD/L8Dk0EvBHvPnxREpufSXVeGyWj8iwPPJRLJXOuV63NlifQ317L1c9/CJzQSD/8QTEaDNZtjVotuehLN6CCGWS0gPo/nLwwt/pgEuZMzcqUzV3/0VbL3ffS5GvXmw8M/hLbye/iGxyCVyqzKkriURSdVz7L/ePiHYLFA75NK5EonfMNi6Kkvx2QwCEoSWy6SXjvDkIMAc4vZTFfNI+JWbKSr5hEB0QkCcWWxWJgaGaD78VOluUyhxD8ynuCENLpqSvAJjWKks5mojFV29rHx/k7C51kJA2OSaCu7KyKlhjua8AgIEYgIV08fhjuaRFY/gIHmOoKX2Ls6VH6BzEyOi7K+Rrtb7VRcACEJ6dbspXnEQ1dtCSFL0kX5UQHRCQy1NwpB2G7efsRkrWWsr5Prv/oOmz7xFQJiEnFRife9eqAHz8BQXFSeDLU9sY6XXCHYskY6mxnpasXFwwsXDy8mh/oZ6Wx22Jb2LIQmZtDfXMdIdysAPnMtgUaDntGuFlERgZuXH6FLlzE9NsL+r/3MGnj9LuHUmrEhxno78IuMZ3ZqAq/gcFrL7hCdsQqFs8uir+ttqCQ2W2xhfZZCRK5QzinSpumoLhYIkomhPtRz7XKunj5EzBGWjmDQaQUCxic0CqWrO21z7ZcLiefZqQmHSjmbgmtmYpyW0tuEJlpJZt30FAMtjwHwDAy1U0NKpDIkEikRqTlYzGb6mmrQz0wTEJ2Am7ffM7d/cmSA8d4OkEjmLNGpSOfC8f0i4lAPdC9KrrWV3+OlN96i90kVcqWznT15qL1RFGQvlcmIzcmjs7oYv4g44fyb1UyiWiSU3TCrpb+5FrPJhF9ELD5hMWz5+9cwGfSELc1CIpEw3NHIYFvD3DXaDf+ohEWtvzKF0i6nzdZKadTrCI5PXVS1tdg1MCA6EYNulvaKB/iGxSyqsAQbUffest3mQzOXo4VEgpOrSpShZjIa0WtncFF5EpWxis7q4vecBfb/B/7HkVIWi4WXX36Zc+fOcfv2bRFBsRhWrlzJjRs3eOWVV4TH3nnnHYGwiI6OJigoiBs3bgg3sJOTkzx69Ii///u/d/ieTk5Oi1rGbLCFT+/Zs0eYfNXW1gqB0WCd3MTGxhIREcGJEycoLS3Fw8ODq1ev4uLiwqZNm+yIpNHRUZHqyaY+smWpTE1NcfPmTdzc3Lh79y5NTU3ExMQIq8MqlYrc3FwUCgXh4eGUl5cTGBjI1atXSUlJEd3s2y5GTk5O7Nu3j6amJpGNoqGhgfr6elEAuJ+fH6OjowQHB5OTk4Ner6egoICQkBDRhKOsrIyhoSEOHDhgt40bNmzg9u3bbNhg9SM3Njai1+sdWqLc3NzYsGEDly9fFk2gJiYm7OxIMTExREVFkZ+fT09PD9nZ2UJOV1BQkKjiHKwr/BEREcTFxVFdXc2NGzdEeUc25Q5YM4MOHDhAU1MTn/vc51AoFILND8QXJYvFwre+9S1++MMfkpiYSGlpKTk5OaI8HLlcjkqlEgXstra2CiTK/O+5ZcsWamtrRWoTR7BNKpOSkuju7ubixYtERESIJm4L29pMJpNASNoIiqCgIPr7++3sTmazmWvXrvHiiy9SUFAgnGOdnZ1cvHgRFxcXnJ2daWpqoqqqih07doiIwYWfDVa1UHJyMl//+td54403GBsbs1MqLbRiZmdnc/r0aaKiopBIJNTX17N0qf2N9/DwMC0tLXz4wx8mPj6eNWvWIJfLHardLBYLP/vZz3BzcxPIDkeQSqWsXr2a1atX4+7ujtFoRKvViv4bHx9nfHycH/3oR2zZsoW+vj7Gx8fJysqyI5Jyc3MpLi5m5cqVGI1GTp8+LSIYHH3+0aNHOXXqFFu2bBEeV6vVwvVoYfacDVu3buXu3bvMzMwQEBBAYGCg3Q1JfHw8o6OjQu5aYWEhBoOBiIgIh+qdoKAgDhw4wJkzZ9i4caMQQr5wP8fExKDT6SgqKkKn09llQ2VmZnLhwgWBlGpqakIul9v9BkgkEmFMT548yaZNm/Dx8aG0tJTS0lLS09NFxInFYqGtrY2mJmsrlZubG9/4xjf42c9+Rmnp4i1Rn/nMZ/jNb37Dvn37hDEKDAxkaGhIpFpsaGhAo9EwOTlJZWWlQLbNzMzQ2NgoatsE+MUvfkF9fT0//vGP7RRaNqxbt467d+8K6liLxUJhYaFAzPv6+grv6+Hhwd69e3n77beF3CpHN5lSqZTDhw9z6dIlli1bRmhoqGCFsOU1JSUliX4fbMSYRCLh0KFDnDp1SnRtmp6e5s6dO0JGm0KhEDXlxsfHExkZyZUrV0hJSRGISrPZTG1tLX19fYCVbF22bBk5OTnk5+cTHR3N+fPniY+PF5UL1NfXi0j8pKQknjx5Ymc/txVSJCUlcfnyZTw9PfH19bV7ng0WiwWFQsGhQ4e4ffs2AwMDDsmzD/D/FkxGA61ld4nL2eBwVTg8JZu+xmpMRgM+Dlbz/7ugm9YQnbmazhprFoqLyguZu+dfZ0XfbMagm6W3oZKeJ5UExacwu6DZzAYnV3fcfAJw9fS2I5zCU7LprivDOzgCmVwpTGDNZhNTwwNMDvdjsVgXmK798tts+dTX7cZ4PmE21ttJ8cn/ZOtnv0l4ao5Dq5jSxRW9A8tke+UDojJXWyfmS5fR+6RSIC0kEgke/sFCNhM8DbrXz2go+OlrZO35G0ITM9FrNQ5DoxcSA9ZAaquNblo9in52Bv8ocettWHI2XbWPBGLJYrEwq5lcdB8GxiTSUVWEq6c3eu2MMJ4L4ezugWF2BrPJhFQmY6ClHg//YDv1nouHN0PtjXavN5uM7Hjluxj1sw63VT3QJdgTpTK5HbHmFxmPX2Q8MxNjPDz1azqqivnQv/3xfbWJBcen0FVbwtUffZUdr3wXdX8XMoUS37AYu/ezWCwMdTQSm72O0e42Jof7FrU92QipiNQchtob8PAPQSZXEJ+zgbbye4QkpDkMW+9vriUoLsXh76NXcARjfZ2LXgeMej1yhROTQ/3c+j/fY+3ffJ6l63a+LzWju7cfTsnZtJTcIjpr7XtqW3P19CZkSTrll/5I3Y3z7PnSDwhPXb4oYewXEctIVwuBMYlIpFJCEzOEwPzhzia8gsKRSGWY5uYyQ+2N6GasubAqvyA7sm2ovQH/qCW4eflimJ1hsK3BriFwtLsNn9Aoa+5TcpbVIiqXi/LdHLVYSiQSojJW0VNfgX5Wi09IJCaDzs6SOdbbwdTIAHInZ5Eqrb+plsDYpciVToINd76lVTejoa+xGovZhMViwTMwFM+AUGH7PANCmRjqxTcsBpPRSF+DVV0WkpD+TKITbIpBx+eIwsmZ2Ox1jHQ20175gMi0XIe/R1MjA6Lr2PNAPdDDxFAvWCy4efkuSo72PC4jbI54liuU+IRGM9TeQED0e293/O/E/zhS6rOf/SxvvfUWFy5cQKVSCZlPnp6egtLkIx/5CKGhofzrv/4rAJ///OdZv349P/jBD9i5cyfHjx+nrKyMX//614D1QH/llVd4/fXXiY+PJzo6mtdee42QkJBFc4LeDU1NTTQ1NYnyV6Kiorh8+bKIlALrjf2JEyc4cuQICoWC/Px89uzZw9TUFJcvX0alUrF+/XqkUiklJSWC/cyGvLw8bt26xcqVK7l16xZubm7s2rULmUyGxWJhYmICf39/YXV4cnKSW7duYTQacXZ2pqCggImJCfbt2/euDXFLliwhLi6O/Px8du3aRVVVlSgHBawTovk16Eqlkj179tDR0cHp06cZGRnh9OnTZGVl2d3Y28bK398fqVQqBOV2d3c7bC20wd/fn+TkZEFpodVq7ZRHYM0uKikpQSqV8vrrr/Pxj3+cb33rW4uuBHR3dwuqtPT0dPr7+zl16hT79+9HLpfT19cnsjtNTU3x5MkTPvShDzE9PW2njLPh/PnzTE1NcePGDbZv345Go6GoqIjZ2VnrjVVoKKmpqaxfv54LFy6wb98+oRJ+oS3NhtTUVIKCgjh+/LjouDWZTNy5cweNRiNMKs1mM++88w5bt26lq6uLixcvolAoWL9+vSh3rK2tjYqKCnbu3Ckaz4yMDAoLC+1IqQsXLggZNvPH1KZ60mq1fPzjH+fhw4cOg4HnK6Xm4+7duxw7doxVq1Zx9+5dFAoFmzZtEj7DUbPgfGKzu7tbOP7BSuzeu3cPf39/9u7di7OzM7m5uVy5csWhYsk2Flu2bEGj0Ti01Nmg0+kEW+nRo0cFcnF+wcH09DStra2Ul5cTFBRESEgIWq2W8vJypqamsFgsODk5kZWVRXBwMI8ePcJkMnHy5EkOHjz4zLIC2zgePnyYs2fPMjs7S319PW1tbXZkpiMF2bp16wSS9Ne//rVd46kNR44c4Y033uDll19+V4JeqVRy7NgxCgsLCQ0NZenSpXafawvHPnv2LAMDA7i6urJs2TKRDS84OJi+vj5cXFxobm4W2g1tmG9rCAkJ4fDhw9y6dcvaXDQ2hkwmIzo6mhs3bqDTPQ1ujImJYevWrUilUmpra2ltbaW2tpY1a9Y4JPDUajXf/OY3mZiYoKOjQyDGoqOjaWhoEEipGzduiKxjtpB/sCqlFlrBzGYzbW1tKJVKxsfHuXLlCsnJyYKS1QZ3d3cRuXP9+nU2b94sbM9Cctdm0Tt58qQo5H8hJBIJe/bs4dq1a9y6dQsnJycuXbok5DUtRF1dnUAKKRQKdu/ezdmzZzl48CBGo5ELFy6IikKUSiV6vdi2pFQq2b9/PyUlJezYsYPLly8jk8lITU1dNE8tISGBhIQEmpqaOHfunPC7vTAzMSEhgfPnz4tslrW1tUIhhVarpa+vjzVr1nD37l1kMpnd2DQ1NYmUb3l5eTx58oQrV67YLWJ8gP93YDIardlIy/OeaVMISUhnsLVelMH034n5tpXItBW0lN4mKn2lXYva+4VEKmVmYgwXlTc7Pv8dnFWezKhHCU8RN2paLBb0Mxqrdaq3QyCY5qPl0U36m2pZ95FXhGB4iUSKyj+I0KRMYVw3/d1XsFgsDvNtbDAZjWz97DdxcvOg53E53sEReAaGOnzu/Ot8X2MN/pFLhImpXKHEYjZjMhoXVTwonJxxcnVHOzlOxrajJK3dgZObO+P9XQx3NImeW3n1ON7Bkbh5+wnb4+4TwHBnM0a9jv7mWiF/aj5kcjmunk9D6xfa8xwhMn0lLY9uIlc6PVOlEJq0jJ76clR+QUikkkVbBKUy+Zz10UpqGPU6NKODRGWsYqClXvhuNiwM6A5ekspAcy1hS8WLwVbSoonY5Xlk7HiR8f4u9DMa5EonguJThXF3pA4xGQ0MtTVYg43nFITL930MlW+gQxuXDX2N1YQkWH8PfMNjaK984JCUmk9IgVUp5BRlvfeSSKXELl9PZ/VDvEMiRRN83YwGo24W90XIQM+AEDqqivEJiRTUd+qBbmE7XT28CU3KZLDtCdte/jZewRF01jxEKpM/M4/LoJt1mC+ncHYhNiePtvJ7QsOeerDH4Tlh0GkZam8ULMEuKi/Ck7MJiE5Er52ht76C0KRlDq9zLiovO/JSIpEIZMR4fxe3f/cGUZlriEzLwT8q4ZkE5MzEuPBa75BIBtsaGO/rFPatyWhgcrhf1DAamZ5Le8UDgpek4Ozu+UxlJUDY0mUMtjUw2NYgPGY06OlvrMZsMuEdEuEwH2++RdTdNxD1QLfo3HFydRcUgRaLhcmhPrrrrAuTEqmMgKglDHc0oRkbBqxqv+e9LmvGR3DzduzusMEvMh6vkEg6qorwCo6wI0BnJsbwDXfcQmyDxWJhtLuVafUoWCx4BoYRmWaf+zofuhkNMoVSdIx6BobS+6RSyFL7n4L/caTUL3/5S8B6Yzgfv/vd7/jYxz4GPK10t2HVqlW89dZbfP3rX+erX/0q8fHxnD9/XjSp/NKXvsT09DSf/OQnUavVrFmzhoKCAodNTu+Gu3fv4uzs7FA1IJPJhKwjQJhoHj58WFi9t52QKpWKPXv2MDExwaVLl/Dy8mJ4eJiIiAiqq6sZHh4Wmo3+1//6X/z4xz+2Ux0trOMFhBpwWyPfm2++SV5enqjK/Fno6upiZmaGX/ziFzQ3N+Pr6yuyMyyWGxUREUFLSwuHDx+mvLzcTuEwNjYmUjatX7+eb33rWyQnJ4ua/xZDdHQ009PTlJWVMT4+LigS2tvbqa+vt8ozlUqWL1+Op6cnv/nNb8jKynpm+9TCtrHg4GD27NnD6dOnBTVGWloaer2e69evo1Qq2b17N1KplMuXLzv8nvfv3ycjIwN3d3ehft7b21tQPYCVDCsoKMBsNlNVVcW5c+f453/+Z4fB4vPh7+/PoUOHOH/+PM3Nzej1emQyGevWrRORIvO31daAqNfruXv3Llqtlra2Nsxms/B+C+FI0fTw4UNSU1MFxdLCvDKdTsfly5f5zGc+w6c+9SlOnjzJ/v37RZYuR+97/fp1oqKiiIuLo7e3l61bt6JWqzl37hxxcXGkpaUxOTlpl2fj6+uLwWBArVYLj42Pj3Pnzh18fHzsAqC9vLxYsWIF165dcxhkbrMgSSQSbt26RU9Pj52NZ3BwkICAAKRSKbt37+bixYt2xLbJZBLZ765evUpISAguLi6iPCGdTkd5eTkTExPMzMwgl8u5cOECDQ0N+Pr64uvri4uLOEPBYDAwMDBAX18farUad3d3Dh06xNtvv+2wRdSRmnB2dpa2tjZef/31RUnVu3fv8uc//5mEhAQuXbrE5s2bHYakL8TWrVupqqriP/7jPwRy23aN8vb2ZtWqVeTm5lJWVkZOTg6VlZWi/bdkyRKKi4vR6/V22xMZGUlXV5ddaP/GjRspKyvjwx/+MG+99ZYQJL8YkdbW1sbevXuJiorixIkTdq2WYD3WP/zhDyOTyaisrOTcuXOsX78eHx8foaXQ9th8y69MJrOz3dlgsVg4ceIEH/vYx4iJiWHbtm1YLBbq6+uFjMHg4GAyMzORSCQkJydTW1uLq6srXl5eIpvh2NgYv/vd7+ze39PTk/T0dE6fPk1LS4tDuw9YVVwf+chHePPNN0V2voXo7+8XqSxVKhWrVq2isLCQ8fFxDh48KLrW2Io3FuLhw4cMDQ3xu9/9jsnJSfbt2+dwUWEhbFb1pqYmAgICOHHihECienl5ERgYSGBgIDdv3mRycpKYmBjR+fjw4UMhqH/dunXcvn0bqVQqsi43NTXZ/ZYnJSURGBgoLAA8z3f9AP9zYDaZaC27Q2z2undtaQNr/spwZ/OiIdN/TQy21gsr1gAxWWtpLblNbE7eomqH94KZiXEmh/uISM0RJrP+UQm0ltwmOmuNoE6QSCRP83ocVIRPq0fRjA2hcHYlOD51UaWAyaBH4eyC0tWNyZEBUV7T/O/k5KbCbDLiHxWPwsmFsb5OOqqsdqjA2KeLGL5h0Yz1WGvL1QPdyBRKO+tPaFImfQ2VDkkw3YyG3voKvEMiUfkF4RcRi3qgi7ClWXahxAMtj4ldvh6jQUdfYxWWBQtm//X3O9n9xTesJJ+Ht911NDAmkdY5q99i2Te66SkrqTPXPmVVIP2G7Z9/HRC3hM7/e/HJXxGZnsuKg/aFQjYExacw0PJYyAvrrHkkkAFBcUtpLb2Du7e/oOYZaK4T2eLkSidMC67X2in1nBJtBZrRQZTOrsLk2aDTCuoRVy9fnN09cPf2Rz3QzcRgLwAyhQL/qASBHOhvriV1836G2htROLvYZXWBdZ+ZTSaRPdDTP4SJwV4RSbOQkLJh4X6JTM8VmvhsIew9j8uJWRDeL3z+9BRjvR08ePvnWMwm6zHnG2hH5ALMaiYE+1NUxiprHldDFSajwaG9a7ij0WEYNsw1Sy7Po6u2BA//ECYGe4hMz8VsNjHS2cysxlqwJVc6i0LcTUYjM5Pj+IRFo3Rxw0XlKWRwzSeLFxsfG7RTE4z3drBs54cJiElkamTwmUHxmrEhO1IvMCaRnvoKFM6uuPv401VTQkSa/QJXVOYqITNqZmIMr0VaA+e/71BHI3f+8EPWvvR5pHIFIQnpixZImIxG0Xb7hcfSVnYXj4AQh9dViURiVUrNHV+66SkqLr9F9bVTfOI/ry76OYtBOzEuCvxfDHKFkpistYz2tNFecZ+ItBUixZjjHFcTQ20N6KanQCLBNzz2PS2g9DVUE5VpX94QmpRpbQfNXv8/oiUQ/geSUu/GoAJCCPJ8HD58WFTzvhASiYRvf/vbfPvb3/5Lvh537tzhox/96KL10qtWraKoqIi1a9diNpuFtqz5EyRboLPtMU9PT/bu3cvx48d5/fXX+dOf/mQXuP2rX/0KsK4Ez1/VXQxarZZz586xY8cOfv/735OXl0dBQYFghVvMcnb9+nVUKhWHDx8WrGLFxcVCbtRiCo6ysjK6u7vZtGkT+fn5yOVyQdVkw+PHj0XKgZqaGnQ6HY2NjUKrUWpqqsPsLhsSExM5c+YMr7zyCr/97W+xWCxER0cvuqLt7+8vtE8dPHjwXRUfYLUyHj16lIKCAhoaGpidnWV2dpbNmzeLXu/r68vIyIjIatnU1IRSqRSUD2vXruXKlSt2uVHh4eGEh4czPDzMxMQEjY2N1NfXExoa+q7fUavVolAo+OY3v8nFixd54YUXHG77wnNJqVSyefNmRkdH+fjHP87XvvY1pFIpk5OTdpay+e8hkUjo6elhdnZWNJlLTU2lrq6OZcuW0dLSQk1NDfv27aOhoQEfHx9WrVrFmTNn2LRpk5APJZVKRUqpy5cvk56ebrfPvby8BKvk6dOn6ezsZNOmTSKCC6y2xtOnTwtEkJeXl8M2MhtCQkLQaDSi3Lb5sL1uw4YNQs7VfLKvtLRUUO+4u7uTnp5u915nzpxxaFldCCcnJ1atWkVVVRVjY2O88sorrFu3jtnZWUZHR+no6GBmxmpl2Lt3L6dPn8bFxUVoPfP09BRIr6CgIC5evMiOHTtE5+jw8LAom6u7u5vS0lIOHTrEgwcP0Gg0dkqhuro6VCoVO3fu5PHjxxw8eJDr168jk8lE147FMD09zY9+9CP+8R//kZdfftnummGxWJiZmcHZ2Vmwf9oer62t5dChQxw/fpyRkRHRd4+Li+POnTsiUkqn01FYWEhQUBD5+flYLBacnZ0XPYeam5uFY9iWQ+coVNxoNAoEfmZmJhkZGYIasbe3V2jSW3g85ubm8vDhQ7swc1uz4a5du4Qwc0Agn2xqpL6+PmE7VCoVvb29mM1mYmNjyc/PF97PVhaw8NwfGxujoKAAtVpNdna2Q7JJp9Nx+vRpbt26RXZ2NpWVlULLoqN2wvmw5cj90z/9E5/61KdobW0V2WYXKqU6OzspKytjxYoV5ObmUlhYyObNm7lw4QJZWVmifQlWsmyhGkqv11NRUUFhYSGBgYHEx8cLCuHBwUHq6ur4/ve/T11dnd3+WFh2kZeXx40bN5BKpcTExDhUEtrg4+PDkSNHOH/+vJ16+QP8z4XZZKKl9DaxWWsdBmYvdo/pHxnPWG/Hcyle/hJYzGbRJEkqlRGVuVrIvfpLYNBpRVX3CicXjHodLipPorPW0l5+77mygcZ6O5geH2HJyi14BoZZW+wWsRmN9XbgExqNq6c3rWV3UfnaW8IHWx8TvWyNEKgdnpyFT0gkPiGRaKfUdFYXWxUnCem4+wQw2tOOu48/6oEehy1acqUTJqMRs9kkjKVlrulPIoHorLVIJBI6qorwj4xHPdBj9x4mo4FZzQQe/sF4B0cIAeE2tFfcZ+MnvoJ/1BImh/oY6Wqxew+50gl3H38qrrxFZNoKeuorMJuMouc4uanwDonEydXdGoivm2Xby98mNCnT4fEJoJ0cJ2vP36CfmRYUajK5gsCYJBE5qHByxqi3toQPdTTiHxknOrYiUnPoqi2xEh0mE2BvVVS6us/ZDj0Y6mhEP6MhdnkeEokEg06Lm4//vM9zEYhAzdgwf/rfL5J7+BNEL1u7aLOjNWjejbCly2iveIDCycWOuOmpr7AL0fcJi6a94oFAGixGSC2G0MSMp2obi5mAmEQsZjPjgz1oRsUZxE6u7viERrHyyKeEcXOE0Z42fEKj55wCUswmkzWPK2U5FrOZ/uY6dDNT+IXHCUSqQTf7TOuX2WzCOySSlkc3eXTmt2z/h9eRyuT4RcYtaq3qa6gSVDwdVUVEZawiKmMlBp2W7rpSpDK5HTk1X31oMZvpqS9HplASnbWW7rpS/CLi8A6Joqv2ESqfAPwcNFyOdLU6PB9t+3ZaPYrKP8jhcS2RSIjJXkdryW2kMhkx2eswm0xoxoaYGh10WAwhVzpb7WhSqaBwWgyDrY8JjBWHj4en5tBdW/rM1lHd9BR9TTUonJwJXZpJxo6jdNWWipRezwOLxfyeFhWs+VLhVkLSL9huYcBk0DPQWo9RrxOUbe/HQjs5MoC7j/+i9zmR6bl01jx02Dj6fwP/40ip/+lIT09flJACK8E0OTkpEFL79u2zU2OtWLGCkpISUW5NRUUFKSkpXLx4keHhYdHkwKa0Wb16NQ8fPmRkZEQ0mVuI3t5eiouLOXr0qDCxcnZ2Zvfu3YyPj3P+/HnCwsJYvny5QBKMjY1x48YNtmzZIrQj2W7eVq5ciVar5dKlS8TGxorCttva2qiqqhJZ9SQSCWlpaXR1dXHu3Dkhk8UWPG42m7l8+TJxcXF897vfFSbTtkmpLQPqi1/8Ij/84Q9F2yaTyUhLSxNUKDZly7Pg6urKkSNHOH36NNu2bXsuxYfNXvWP//iPvPnmmyxfvtxuortixQry8/MFkkKtVtPY2CgioKRSKQqFQkRC2lBRUcHo6CgvvvgiPj4+bNq0iXfeeQdnZ2eHk/+Faq2LFy+ycuVKzp49S3p6usPmsoWorq5mYGCAyspKJicnSUhIoKioSGh7XLVqlXDMJCcn8/jxY5YsWUJRUZFd0HxgYCAVFRVCg5nN5jk1NUVkZCROTk4cO3aMgoICwsPDSU5OFux7FouFM2fOsG7dOiGDyDbu87FkyRLGx8f54Q9/SGZmpkMVxpe//GWUSiX19fXvSgTZ3nN6elpo7gJE6kYb9u3bx1tvvSVY9GyYv1+io6MZHh6mubmZ+Ph48vPzycvLEykr3N3dmZqaEpFbYD2vbTl3AQEBfOc73+Gdd95h7969IvVNe3s7d+/eZXh4WJR3Nn/MMjMzSUxM5MKFC6SkpAiNg8PDw8L5WlZWxszMjLCfVqxYwf3790XvaWt6tD02MTEhZDiNjo4KtlxHir7GxkYeP37MqlWr+K//+i/Wr1/PmTNnRNeUheM3H0NDQzQ0NHD58mV27NhBcXExRUVFZGRkEBkZKWS42VBUVMTY2Bjbt29HoVBQWFjItm3bqKurW9R6VV9fL7LHenh4kJCQQElJiWBfGx4etmsylUgkJCYmcv/+fT796U9z6dIl9Hq9HQni5eXFxIR9fsu5c+fYsmWL3TGwECEhIYJduKamhvXr1/OlL32JHTt2iGyOYD1+Fm7f9evXhcUZR22L8zPLpqenqampYe3atUKulK2hcqGdcHx8nPv37yORSFizZg3/9m//xgsvvEBzczMXL14Ufp9sSqmZmRkKCwsJCwsT5WZZLBZkMhkHDhzg3r17DA4OimyDY2NjomNlZGSE69evc+DAAZRKJVeuXCE+Ph6JRIKXlxdKpRJ/f39qa2s5c+YMR48eFS24ODrWbNdZqVTKwMCAoKRyBJlMxt69ezl16hSnTp1a9Hkf4Pmg1Uz8RUGu7waz2UpIOaoWfx74hEahHuyhp77cztL014B6oBtPBwoBhZMzoYkZdM41vL0fmM0m2iseEL9io+hxiURiraeXy4lbsYGu2hJUfkF2JIwN/c21yBVOhKdkYzabMJtMxC7Po6X0tjUsfsHvpLUa3WqJDU20D+ke62nHOyQKsBIrC0kbF5XXPMVJNSajnpmJMbpqS4hbsC3zEZqUQe+TKsKTsxjr60Td30VoUqag0JkY6ls0IBmsypnw5Gx6G6rs/q294gFB8SkMdzShdHFzOEEHKwnYWnqX0nO/w0XlRcLqFxYlmsCaeROyJBWFi5soF2s+ZjUT9DfXEbc8j87qh8LxYDToGWprwKCztmLb9qHS1Y2pkUG0k2o7RY7C2QU3L1/UAz1Mjw8L9rj5CIxNoqumBIvZhHdolOg9DDotCifHhMpIVwt5H3sVN2+/Z6pr5iMqc5VVsbdstXB+Dnc24xcR5/Ba7RkUhnqgG7nS6T0RUmaTicnhfvQzGvoaq6i8epztn/8OE4M9eAaGOVRA2cZ6YrB30WypyeF+IUPMFkhvC/qWSKVCcPdIZzMj3S14+FnncXrtDFMjA8xMjNrd40qkMty8/fDwD2HNhz6HeS7vSCJxfC9rta7qBVuZTOFkJb6cnFE4uRCZnotBp32qnFqaiWdgGBODvXgFhTHW24F6oJvw5Gw7skwmlxOduZqJwV7ayu4SlpwtWI2Nep3Da6rJaGS4owmpXM6573yOHa98l+6JMbvnPd1eKdd++W3Wf+xVVL4BuHn7W3OgHLz3zMQYiWu24eblR0dVsUNCzAbD7NMweRsUTs7WsP7hfrusppmJcQZb63FycxcImc7qYlxUXvhFxtE7R/z9d0ImVxCduZrx/i7ayu/NkYplmM1WsjMwdulzn1uLYaSzedHWVLASzV5B4XZtq/+38AEp9R7R1dVl18w1f9XbxcWF7u5ufvCDH/CZz3zGbtUXrBOhyclJ4e9tbW3MzMwI1dkdHR0MDg4KuSUlJSXCJDE3N5fW1lYuXbrErl277C6slZWVjI+P21mybDfothX2np4ezp07h1qtpqCgACcnJ44cObLohNHFxYX9+/fT1NTEmTNnGBsb49y5c0RFRdllTtkQERGBp6cnb7/9NgcPHsRisdDX18f9+/cFxQBYc0EaGhpITEwkLS2NtLQ0amtr+cY3vkFAQICoUtyGrVu3kpuby8mTJ8nLyxMFDzuCXC4X2rGWL19OaKjjLAOj0cjNmzfR6XSsX7+egoICtm7dSmNjIxcvXsTT05O1a9cilUpFVjSTyUR+fr5DC5Ut+8gWUG42m7l06RKJiYmibVMoFOzYsQO1Wi0KfLZYLNy8eROtVsuWLVsEcstisQh19pWVlZw/f54dO3Y4bEG01cxHR0ezdetWDAYDjY2NJCcnCzbIiYkJrl27htlsJiYmhqSkJK5evUp9fb1giTGbzXR1ddHS0oLBYODQoUOUlJSIwog1Go1InbBt2zYqKyu5desWAQEBmEwmTpw4wfbt2xetmLehtLQUJycnXn/9dXJzc+3Op9bWVn72s59hNps5efLkc70nWNUv9+/fF8ikyspKuxYviUTCwYMHhcnu48ePHYap5+TkcOXKFVpaWoiNjRWRbGAlde/cuSOEktv2p8Vi4eDBg0gkEhobG3F1dSU4ONjONlhTU8PevXu5c+eOnTJvaGhIUBO5uLhw8OBBqqqquHDhAjt37mRqagp3d3cuX77MkiVLRBlvTk5O6HQ64e8zMzMUFxcvGr7t6+vL4cOHKSsro7a2VshRGhkZ4c6dOyQmJgrXgurqapydnTly5Aj5+fnExMSQmLh4oGJDQwOdnZ0cOXKE27dvo9frWbXKeqNQWVlJdXW1kAXU0dFBeXk5q1atEp4zHykpKYSHh3P8+HG2bdsmkDnd3d0OW9Xi4+O5d+8eXV1dREREUFJSIsonq6uro62tjaCgIA4ePEhBQQGbNm3i9u3bzMzMsHr1apEiSSqVikjOS5cusWbNGhGppFAoRNbX+dDpdOTn5xMWFsbVq1fJysqioKBAVKgB1v09X1lkC8u3XcP37dtHQUEBs7OzgiroxIkTHDp0CLlcLiyggPVYt5FDtuMnMDCQnp4ewVq+c+dOO+u4zV43NjYmZEW9/fbbzM7OCg2vi2Ht2rU0NzeLfstGR0eF8+fJkyd0dnY6vKbacOnSJQ4dOoRMJmPr1q1cvnxZWBRobGxcNFtry5YtFBYWUlBQwEsvvUR5efmiChqbJTMiIuKZwfgf4N0x1PoEz0XCi/9SWMxmWkpuE7NszTODg99tEcsrMAyZXPEXEUSLYTHlD1jJGa+gcPqbawmOf+9Krbbye8RkrbVTwvhFxDPc1SyQDbZw6P7mOoLjn0ZcWCwWOquL8QmNErJ8pFIZWMzWZqystbSW3iYuZ8OiVg9nd0/MJhO6GY2gDJoY6hXlJ8mVTg7JDtsEur+plrs//QapWw4IipqF+8x2P1t74zwTgz2EJmbYTbzGetsdttuBdUKqdHVDplDi6uXLtHpUCGFur3xAUNxSXFReKJxc5pQ+9vfxFouF3ieVBMYmsfML/4p3SJQ1xDh1hUNljEGnxaDTCgHcjnKxdDMaep9UCTYzJzcV2qkJXFSeyBVKUVvZ5HA/3XWlmAwGLvzbF9jxynfpbbA2nSmcnJE7Wf/0DAqju7YUk9GAVjPBSHfLXLPjU1z/9Xc49vrvcPcRZ+JYzGaH4fXt5fcIXpLKSFcL4SnLaS27S0Tqcrt9arV7PX1PQS0zdxyZzSamx4cXnQx7BYXxzi//haC4ZMJTljPW2wFz12nLXDNlY9E7dtduqUyGh38wgbFL0Wk1vPD338Ck1+HhH+ywHXP+8eATFk1b+T28AsNE2z41OohqnvVQ4eyCUW8fYwLW7CCJTEZ3XRkPT/2aXa9+D+/gCHxCoxyeO4Ot9fhGxOLm5SdkfA20PkY3PYW7byB+83KG+ppqCF7y9DgISUin90mFiLBTOLk8VU7VliKVK5jVTDDW04Z3SOQzSQqw5g15+AfT/bhszr6bYiWbk6zzlcnhPkF9KJHK5lSm7Xz43//MaE/botc4g26Wjqoitn/+OyhdXDEZ9Nag9UWuycMdTUJwt1QutzYWLltj93yTQY90ETI4IDqR1tI71nw2iYSp0UFGOltw8fAmKnOV8F6DrfUERFut2yrfQHQzGka6W0Vj/98Fr8AwJgZ7qLl2hgNf//lzWc6fB9acxHf//l5B4XTXlTGrmfirlG38JfiAlHqPmJycfGb72fT0NNevX6eoqEiYqGdmZi5qixgbG+Px48cidc3GjRs5ceIEhw8fFiY482/uY2Nj8fX15fjx46LQ5mvXrhEcHCzKLgJrTkl/f79oxTwsLAxvb2/WrVtHUlISP/zhD+1OdEcXiri4OFpbWzl06JBdQKwjeHp6Ciqls2fP8rnPfc5OcZOQkMDFixdFk9aOjg6OHTtGRUUFDx8+JDf3qfzSZrnw9PTk6NGj3Lp1i+bmZjvLzEJIJBL27dvHO++8g0ajEdQkYJ0I3rx5E7PZzIYNG4SJnm3yaAvetTWcgTWjxDa2xcXFi9rGnJyc0Ov11vDI4WFu3rzJ7t277RrmbDdaXl5e7Nu3j46ODpYtW8bPf/5zPvzhDz+TbMnMzCQ5OZn8/HzCw8NFZJdarSY/P58dO3YI77FQdQLWfWWbjLe2tgoTvF//+tfcvHlTGMPIyEjWrVuHUqnkzJkzqNVqLl26xAsvvICTk5Oghlj4/fr6+njttdfw9PTk9ddfd0jYzkdZWRlyuZyMjAxmZ2d58OCBSNUzMTEhnDvXrl3j6NGjXL16lfDwcJGabzGsWbOGwsJC3NzcGBoacti25ezszKZNm7h69Spms5ldu3ZhsVjo7++noaFBsCpJpVJeeeUVfvSjH9Ha2kpISAgpKSnIZDKUSqWg8GptbaWyspKNGzcKihCDwSCc3zk5OZw7d04gT+aTTuvWrePcuXMiEriystJOPZWRkUFiYiIXL16kvr4etVr9TLLOYrFgsVg4f/78MwkAG7Kzs0lLS+PUqVO89NJL3L59mwMHDjg89iUSCTt27KCsrIx79+4J6tD5zy0qKkKhUAjXVTc3NzQajUC+ZmZmkpmZKWR+/eIXv+DTn/70MyeXnp6eQvB6SEgIaWlpVFRULFoisHbtWs6ePYu/v79wg3v37l3UajXJycmiRjqwktybN2/GYrFw//59xsbGyMzMJCIiQlDCrly5kvz8fLKysuyISluI98Iw/YcPHzI8PMzOnTuRyWRcu3aNgIAAjh49KhDZtutWamoqtbW1rFixgqmpKdRqtZ2Cdtu2bdy+fZvZ2VnBXvtu9uCMjAxSUlJIS0tj+fLlvPHGG3bffyF8fHwEK2t9fT1hYWF2hJQjEi4+Pp6AgADefvtt9uzZw9jYmKBIc3Z2tss88/HxEdRUd+/eZc2aNcK1xtvbm5SUFOE4a21ttQvK1+l0PHr0CI1Gw9TUFG+++Saf//znyczMXFRl2dLSgouLCytWrODMmTPPHIcP8Gw4q7yYmRjD1dPn3Z/8HmAlpG4Rnbn6uYJpF1PR2aDyDUQmV9BecV9offtLYTab3jW3wzMgBIN2+j1PhjprHhGakO5w2109vRnuFId7B0QnMjncZ221y1iF2WigrfweEWkrBKXRQsgUSqvSpeyOYO9yhLCly2grv0ds9jpReLUNQbFL6WuqFdlxdDMa+ptqkUgkBC9JY8cr37U2EiqUi+a0WMxmhtobmVaPMjkywOTIAHKFEv+oBExGg8jqspBcGmipEybm3sGR9DdV4+blS0dVMYExSwXiyDskkvH+TrucMd2Mhq6aR0Smr0Tp4opmdBB3H39ivdbRVVuCm7efXeZLd12ZKNdlYS6WXjtDd12paGwDY5IE+91CePgHMzs9yfT4CNl7P4qzyhPf0GgMulmM+lkMull001MYdbO0Vdyn5dFNjv7Lb/ENixWRbBaLhS2ffo3hjkZkCuUzrZ0Wi4XWsjuEJS0TjW/MsjXWbJoFSrqx3g673C+pTEZUxiraKu4jk8sJT85GMz7C5FCvYEW0wWTQo+7vIvfQJ5ApFMDcMTc3Pp1VRah8Ax0qqGw23vicDXQ/LiMiNYfRnjbrcZ6aIzpX5h8PABFpK+iqfSSyNI12t9pZnLxDohjraccnLFr4vn2NNdY2z9AoIlJziMlaw1B7I1KZzOH5PzHUh8ViETKWLBYLJpNRIKYnRwboqCpCNpepND/MG6zqJrPJ6PCaZlNOddWWcOPX3+XYd363aGj+QkikUiJSc5geH6Gx6BolZ/8P6z/6j4D12JuvNjObTOi106j8AjHMzjDa04ZvmL0drb3yAXE5eQy21OMXHofRoKe19DahSZkOmyLh6b2ii8qL0MSMuazA9aJtHWh5TFBcssPXA4QlZ1F67nf4Ryfg7hPg0JqnnVKLmvr8wmPpbaiyKwv4a0MzNsRg6xPCU5az4qD8r0ZI2cL6n1WoMB9hyVlCtuH/zXKXD0ip94j4+Hhu3Ljh0EYDUFtby0c+8hGys7PZvn07FouF6upqob7b19eX7OxsYmNjaWhooKqqiqNHj9q9z86dO7l69SovvPCCnUUErDaRI0eOcPbsWdRqNcePHycvL09k+5n/nUtLS0WkVFVVFb29vbz99ttIpVIaGhp49OgRW7dudbh6D1b1Q2trKy+88AL5+fkMDg4yMzOzaIOSDWazGalUSnNzM+Pj43aNdmC1rfT29hIaGiqavCxbtoy6ujrRhNZmNbNhw4YN9PT0cOLECXbu3CnYpRy1aoF1lby4uJiHDx+i1+uFFf6NGzfaTdi8vb0ZHx8XlFheXl7s2rULk8nEvXv3mJycZP/+/fzhD3+gv79faKVb+F9UVBSf+cxnOHjwoMOJf3h4OD09PYSHh2OxWCgqKmJkZIQ//OEPBAcH093dbUcqLLxwKJVK9u7dS0tLi5CzVFdXR1dXl8Mw52fBYrGg0+n4+c9/jru7O1u2bHEYki+RSFi9ejUGg4Fr167h7u4uTOoNBgN1dXVCgyZAT08Pzs7O3L59G4lEQmZmpuiYtWXS1NbWIpVKhQwyZ2dnkarHZDJx9epVYbtsP8g7d+6kvr6eixcvsmvXrne1823dupVz584xPDzMwMAAk5OTTExMMDk5KRBJEomE9vZ2Pve5zwm5PsHBwaxevVp0vEilUoFY6e3t5fr165jmchwuXLjA0NAQaWlpdirGhw8fisiEjIwMKisryczMpLi4WCBEJBIJS5cu5fHjxwLhbTabHapRpFIprq6u/Nu//RsnTpygqKgIAD8/P9LS0oTvnZycTH19PY2Njezdu9duvOaPrQ1PnjyhubmZwMBAvve976HVilddHSE7O5vOzk7Onj3Lvn37BCLsypUrJCUlERv7dAJma56brz6yWCzU1dWRn59PUFAQly5dwsXFhQ0bNiyqxpFIJGzbto3Hjx/z5S9/mZSUFDo6OoRtWfhnVlYWf/M3f0N6ejoWi8VO3bTYZ9iuS5WVlVRWVhIfH8/Y2BjXr18nOTnZ7loH1kWBx48fC6RUX18fRUVF5ObmCgR8ZWWlQK5KpVL27t1LeXk577zzDlu2bMHX15eSEmveSGFhoUPFamdnJzMzM2zZsoWf/exndkSwI3XQzMwM586do7i4mPLychobGyktLWXr1q0Ox9poNFJQUIC/vz8f+tCH8PHxQS6Xc/78eXbt2iW8ZnR01GHGlY1AvHjxIn19fUxMTJCRkWFnIQRYvnw5N27cICkpCalUaqd4jY6ORq1WU1tbK+zX7u5uwRKuVCpZsWIFKpWKy5cvMzg4yMmTJ+2yrWwYHBykpaWFbdu2Ce2oH+D9IyA6gb6G6vec1/EsWCwWa4Nd5qrnsjpI5QrMRsO72vtcPX0IXpJmnQRlrfuLg2AHFiiTFoNfZDx9jTUOLSeO0N9ch2dgqECkPC88/ENwcvPg0en/wiMghMQ1257ZUghzmULJ2XRUPhAyohyFKvuGxzA4l4eyMD9IplBiNlp/WycGexnv70Tp4kbkXHaMDf5RS+htqLKqbRyEY2vGholIzUE3M0VAdCJKFzeMeh1D7Y08Ovtb1n/kC8JzfcKiGevtIChuqbWuPuxpCY91Um+is/ohAdEJoiYqZ3cPhtobRJ871tvB1OggcSs22i/kSqVEpucy3t81F2Kci0wun7NthooyZ+bnYpkMejprHlpVaPPec7FjbmZijP7mOvyjluAfET/XSGhBPdgzRwY8vT9ur3zA8n0fI37FRlFLmg0Tgz14BYXjGRBCe8V9guJTHRJTZrOJ1tI7RKbl2inHJFIp0VlraSu7K5rULkb+6rTTjPd2UH75T+z4/Hdw9fTFPypBdP5aLBZaSm6x50s/YHJkkMCYp4vWZrOJtrK7xOVsYKi9AbPJZJefZD1vxcpB37AYvIMj6a4rFQL2R7pa7BrP5Aolbl5+TAz14RkQMtdaaG87tjb2FaF0dWOkqxWZXE5wQrqg1OyqLSE8ZTke/iFzYebBIlJIr522U/SFJi2j53GZQER6+AXh4RfErGaCM//yGcJTlhMQnSgo+8BKXg61PRGRKmBthBtsrSc4PpUdr3wX/ewM3Y/L3zWfyQbtlJrhziamRgbxj4zHZDTgFxFnR9L01JcLKiqfsGg6qorx8AsWFIMmo5HWucw8qVSGb3gMI92tBMenELs8j94nlcgUCpFC1Gr7FR+rTm4qIlJyaCm5RdzyPGHfGvU6h9d+zdgQo91tAFiAqIxVDo/HicFeh02PoYkZtFfcx8nV/a9uO7dYLPQ8Lre2MM5lACpd3ASV6V+KvsZqkaLu3SCRSIhIy5kj2xfP4Prvxgek1HtEYGAgfn5+ogwSGzo6OjAajcTFxeHh4cGjR4/Izc0VVvrhaUbG7Ows+/bt49KlS9y6dQtvb2+8vLzw9vbGw8MDd3d3oqKi+K//+i9eeuklDAYDvb29QjOeDe7u7hw5coS3336bqqoqMjMz7axsrq6uwsTRYDBw+fJlli5dys6dO+nq6kKj0bBu3TohNNjLy0ukOrLZc9LS0jhw4ABarVZoEqusrKSoqEiw0czMzIjydLq6uigpKWH//v2oVCq2b99OWVkZpaWlLFmyRKjyzs7O5uLFi4SGhnL37l1R3lZKSgrNzc3cvHmTjRs3olar7XKhwsLCOHz4sKCUkUgkdu1/BoOB1tZWOjs7sVgsfP3rX6eyspKBgQFRoPJ82NrzFo6prdL89u3bKJVKpqenhawkR/9VVFRw8+ZN9uzZQ0FBgTAZDAoKIikpiSVLlnDnzh06OzsZHR1l1apVrF69moKCArZs2UJ1dbUdGbqY3SQuLg4/Pz+8vb354he/yDe/+c3nJqQ0Gg3Xrl0jJiaGgwcPUlhYyLp16zh+/LioQXIhFAoFO3fuZHR0lJCQEM6ePYuTkxMpKSnCsd/Y2Mj3vvc9+vr62L59O2azmcrKSioqKgAr0RMcHMylS5eIioqys23K5XIMBgMKhYJz586xf/9+h9u1dOlSIiMjOX36NOvWrSMoKMjuefMVEwqFgk996lOkpaURGBhITEwMHh4eIjI4LS0NlUqFr6/vc4Ueh4aGChNmk8nEL3/5S3p6evjoRz9q99yFQfPR0dGcP3+e2NhY3N3dRd89MTGRs2fPsnTpUoEwmg+9Xs+NGzcAq+LyypUrZGdnC6q84eFh7t+/Lyi8LBYLn/70p7l8+bJD5Vp4eDjd3d0EBQVx584dZmdnSUxMZM+ePTx58oTY2Fg8PDwWzc+bj8jISPz8/Dh+/LjQRLd161Y74sdGKtsw35rp7u7OO++8w549e5ienqawsBCLxcLatdZgW6PRSHNzM52dncL2gXWxwNfXV2gNtT0+/0+dTse1a9fYunUrcXFx70pILYTtOl9eXs6uXbt44403MJvNTE9PExMTIyIwbfvURuj4+PjYkZX9/f2iYgiwEmfDw8McP35cUNeWlZWxbNkypFIpBoOBR48eCba8iIgItm/fzm9/+1uhiXTDhg0iy+d8C+Do6CjXr1/n2LFjyGQy9Ho9GzduRKvVcuXKFUJDQ0WKwrq6Opqbm9m2bZvour906VJiYmK4cOECGRkZxMbGLkpK6fV6SktLUSqVfPazn+Xf/u3fcHZ2pqHBOhmUyWQEBwcTHh6Op6cnOp2Ohw8fcuTIESwWC7Ozs4yPjzM+Po5arUaj0fCjH/2Iqqoqfvvb3xIWFmaXPWi7Vsvlcnbu3Cmy/dmg0Wi4d+/eczXDfoDng0QiwdXLh+nxEdwWqWZ/L7BYLLSW3CYyLXfR7JuFkCuUGA3658qccnb3IDJ1hUMVyHuFNfPk+SY2IQlpdFQVo3RxfaadYqynHblC+a5NVp4B9k1mYLUgeYdEIpHJHBJMjuDkpiIwdimd1Q9x9fLFJ/TpfZbZbELd341mbIirP/oq2//hdaFyfT6KT/6K4Y4mYrLXPTNg1zopfIDC2dVuojbc2URM1losZrM1iH3ZGuRKJ7yDw8k99HeYzSaBFHBydUev1WAxm5kc7hOpB2Ymxrnx639l4yf+6ZnEnm0S6eLp/a62Tu/gCDz8guisLsY3LIaxnnaHzW+hSRl01ZRg0Gmtk2wH9zMq/2Amh/vw8A/BbDLRXVeK0sWN2Ln3m5kYm8vBiae/uRb1QDdeQdbFzfaK+wQvSUWucGJmYgzPgFBrdtK8SefEUJ+gNIpetsYhMWUyGmktu2O1xi6iRJQrlIQlZ81rpTOKSDiLxcJQ2xO0U2pcvXzxi4xj75f/A3efADvbIEBXzSMiUnNwcnVnuLNZeNyo19FecV8I3vePSmCovZGguKeETEflAyJScxye41KZjMj0XDRjQzQWXaO7tpQN/+vLds/zj1pCa9ldPPyC6G+qFe1zs8nESJe1He/Rmd+SuHY76S84/p2w7dOI1BwGW+sZaKknKG4pFrOZzuqHdrlpMrkcmUKJXjuN0sVNCCUHOPiN/6SvoRLN2DDDHY2Ctc/Fw9sa6G4ba7OZ7sdlouNEplDiHRyJUT9Ly6NbRKbnonB2cTiPGO/vYmKwB2d3LyLTVwISQpMy8AqKQDM2xEhXC94hkXgFhmHQWe+p5pNCkWkraC27Y7VoCk2o64Xri9LFDcPsjDA+YUuXoRkfoaX0NhEpy1G6uDE1OuiQHFG6uBKVsYrmOWLKbDKK9rN2cpyh9kYA3Hz8Bfuff1SCtQnRQXj8eH/notehqMzVtDy6+cx21OcpaJuPmYlx+pqq7RSH/pHx9DfXCTll7xcmowGjbvY9B6MrXdxQ+QYy2t3msJH1L4H+ORav4QNS6n1h6dKlPHr0iPr6eiFjZnp6moqKCmG1OiAggIcPH9q91s/Pj8jISOrr6/nXf/1XgoODSUlJQa1Wo1araWhoEILSJycn+exnP4ufnx9+fn6EhoaSlZUlsn1dvnyZkZERioqK2LJlC5WVlZSXWy9gzs7OLF++HJVKhcVioampibq6Onbt2iWQC05OToyNjQn/v3v3bgYHBzl37hxdXV2YTCbc3NxE9hxbDg9YJ2JNTU3C6v3o6KiQeVNUVITJZBJu6m0h19nZ2WRnZ9PY2MiFCxcICgoiJycHT09P1Go1s7OzdhPk+Ph4FAoF+fn5hISEOMyQsrVp3b59m40bN3L58mVhhRysxElsbCxbtmxBr9fz2muvoVAoqK+vZ3x8nNzcXDulmbe3N0+ePBE9ZjKZuHbtGs7Ozhw4cAA3NzecnJxQKBQOV/dt2SYlJSWUl5eL7JWDg4MUFxfT3t7OF77wBVpbW+1ClsEasD8wMMCpU6fYt28fCoVCGM/56pbJyUlu3bqFSqWir6+P7u5uiouLmZ6eJicnZ1EbqS3nyGAwsG/fPtF7uri4cOTIEU6ePMmBAwcWrUe3WCzcvn2buro6+vv7hawqsE4Cbc1qfX19gHV/ZWU9XbHp7+/nF7/4BT/+8Y85ceIEDx8+JD09Xfg8W7OZTqdj9erVIgJk4c2cm5sbR44c4datW7S3twvHf3NzMxKJBCcnJ3JyclCpVPT09FBVVUVdXR3Z2dkO1SBPnjzh6NGj1NTUUFNT81z2QNuYnDp1is997nNkZmZy5swZ0SR3sfavTZs2ceDAAVHjmg15eXncuXOHhIQE4Xi1kVEWi4VNmzYJBIjNbmv7vv7+/iJis6GhgdWrVzM+Ps61a9ccklyvvvoqP/3pT1m3bp3ovOzo6GDbtm1IJBIOHz7M+fPnycnJeWZ7po2A2717N+fPn3eoAnVzc6O/vx+wEsm2Y9722bb2Rjc3N3bu3InJZOKNN97grbfe4gc/+AHx8fFs3bpVGNfh4WG++tWvEhQUxPDwsMOSCJPJxPHjx3nw4AEeHh5MT09z9uxZNm7c+FzFCGBVAVZUVKBSqbhw4QIGg4HNmzfT3d3NgwcPBAuvDR/+8If5/ve/z4svvrjoOeUI/v7+HDlyhEuXLvHkyRN8fX0JDQ3lyZMnKBQKcnJyHH5nf39/Dh8+zO3bt5FKpaxfv560tDRqamrIzc2lq6uL6upqUbag7fu6uLiwd+9eOjs7OXPmDAMDA2g0GpYuXSqykM+Hs7MzBw8epKysjIKCApydnYmNjcVsNlNTUyNcB5RKJdnZ2YJFd2BggPXr1wtjYjKZ6O/vp76+nomJCfbu3SvYgC0WCy4uLnh7e+Pt7U1ERARSqZTOzk6BZEpNTbU7x+Y3Znp6etqF3RsMBi5evPhcdtYP8N4QGJNEe8UDov9CUspisdBaepuItByHmT+LQaZQOmx6WgwKZxeis9Y+bfR7HwHqs5pJlO9x9TsyPZfW0ttEZa52mJE1NTqIdkpNaFKmg1eL4RUUTmfNIztSqrOqmJjsdcgUClpLbhOVseqZTWE2uHr64BMazc3/8+8s2/EhoZlOIpHiHRJBeMpy8j7+v1G6ujnMx8rYfgzt5Di6GY3D959/vkZlrqKl5JY1vH4uN2asp12w9UmkUlT+wYKqZaDlsWC5nPX2p6XkFpFp1sltz5NKQpMyMRmNDDTXYtTrcFZ5semTX8E3LIbuulIrWa1QEhCTJEy0DbpZOquKn6u5UNgGmQxnd0/O/Mvfs2TllkVypma59otvsekTX6H7cZnwuLPKE5VvIM7unviERNJZ/RD9zDRTo4OEJWeLCADN2JCgqAuOT6X3SSVSmYzhjmZCkzJxdvdAr51GIpHi6umNT2g0PfUVTwO659T8NswnpiwWC0aD3qqAWr7+mSHuYCVxfcJi6G2oQiZXEBCTiGFWS19TDRazmcCYRAJjl2LU69BppgiKS6a19A5u3utE32GwrQHPwDA7InJWM0lPfbmIIHB290A3/TSjt7uulIDoxHdVmxhmtSidXfGNiKO/qVpoJ7SOiRQP/2DCli6jo7oYmVxhbaRUjwj/Pr8dzz8ynpaSWwIBuhgCY5eiHuims+YRJr1OlGk0H6GJGXRUFePm48f02DChScuEa5zFYhFUYzZrn8LJBTdvP6HFbqynnfCU5aJjzi88ltHuNoLilhK7fD2dNY/wCAjBxd0DF5UXFouFgZY6dNNTeAWFCyTNtHoUV09v/KMSrORv5mprhlRPO+0VD2h8UEju4U+inRxH4eyKTKGcC33PoKe+nJlJ9dy5+2y6wd3bj9js9XTXlVrH8BkL6QonZ2LnrslOru74R8bTVVuCxWzGWeUlEFHz4erpzXBHo917WVVwi+8ziUQy11x6X1A0LYSVQHy+63tfYzUWi8Vh06pMobQrgng/6Hlc/r6JLZ+waDprHuHuG/BXUWyB9Zjtfvx8eZwfkFLvEytWrODGjRuoVCrCwsK4ePGinQ3PpjKwTdLMZjNXr14lNDSUAwcOUFhYiNFopK2tjaSkJBHR0tnZSXV1tRBO66iNrbKykpiYGHx9fXF1dUWj0YhWsbVaLaWlpWg0Gnbu3MnNmzftLB5KpVJkiwKE2u2DBw/y5z//maysLNFn9/X1kZr69EZjyZIluLm5ceHCBSIiIggICBBauuarlRITE2lsbBTUUbacpv7+fi5duoSrqytvv/22nQLNhsjISEwmE6+++ipf//rXqampESao88Pmg4KC+NnPfsbk5CRHjx51aOG6evUqe/bs4Z133mH9+vVYLBYePXrEo0ePhLYvsA+lr66upq2tjS1btojsgRs2bODq1au4uLiI9mNfXx9dXV1CyPXMzIzInhgYGIhWq0Wn09HQ0EBlZaXw3IUICgpi7969nDt3jg0bNqBSqdBoNHh4eDA1NcXNmzdxd3dn9+7dQgh7VVWVYCMtLS2ltLSU2NhYUTD5kydPqK+vZ+PGjXbqENu4KhQKjh07xsmTJ9m1a5ddi5jJZOLUqVPs2LEDDw8POyKvoKBAyKtabFXBy8uL7Oxs3nrrLbZv387Y2BgPHz5kdnZWUAX9+Mc/5o033rAj1xZ7z7y8PH7+85/z8ssv09zcbJcxA9bMmNzcXBITEzl16pRDq6Ner8fJyYnly5fz4MEDIZj/3XDmzBmhSc7f35/169dz6dIlYcJcWVkpUoRZLBYePnzI4OAgsbGxXL9+Xdg2V1dXMjMz8fHxQavVCnbb/Px8OzLKhpCQEGprax2SaNPT0zQ2NvLHP/5ROB8W4tatW/zyl7/E29vboZLKNk4ymYyDBw9y+/ZtkV0TEPajxWIhKChIsCZv2bKFu3fvMj09TXJystDoZ7PvabVazp4961ChN98W0NfXR05ODseOHaOxsdGOGH7w4IGQ9zYyMiIi1W3vderUKQ4cOIBGo6Grq4usrCySkpK4efMmJpOJzZs3L2oFra2tpa2tjbCwMPbs2YPZbKawsJCkpCSqq6vJzMy0s4c1Njby8ssvExYWxu3bt4XHbVlkJpNJ2GaLxcLg4CAdHR2o1WrhuU5OTnzlK1/h1VdfJS8vb9F8v/nnhkQiYcOGDQwMDHDixAk2b97M+Pg49fX1DAwM2KmFFiIsLIzGxkYOHTrEhQsXFg0Sn4/s7GzUajXe3t788Y9/xNfXl7S0NLtiAVtTq9lsFhoCwXpshYWFERYWRnFxMa2trczOztLf329no7eRmC+99BKlpaVkZGRw8uRJIf/PhvHxcVHL35IlS7h37x6dnZ1ERERw+vRpDh069Fxtnh/gvcPNx+8vyuqw2XPC51bV3wvkSieM74GUAqsKJG553hxJtOq5VVk2DLbWP3dzmA22UOiWEmsuznwbkm5Gw0hn83PnhTjCQEs9vuExAsERl7OB1tI7cyTfu4/p5HAf+mkNbl6+IjscwFBHI+HJWXZZVmAN3w1JSEU90IO7jz+tZXeJSs9dlOyTSCTEZK2jrfyuYG9TD/aIMoD8wmNpr7C2g6p8A4XfBmd3D2uLXc1DRrpaUTi7YJ5ThAXFpwj7sbuuFDdvP0G9Z9TrGGx7glE3S/5Pvk7G9qOkbTn0XMqD8b5OJof7kUilBMUls/lTX8fFwxuJRCLKmdLNaOiuLWX757+DXjstZPRYLBZmNRNMjQ4y3GEdv/yffJ28j71Kwpptdvcms5pJ/Oc15vlFxPHHLx5j9xffEL6vxWJBIrW+TuUXiNGgY6DlMQExiQ5JERsxpZ1S01Z+j7icDQ5VdAvvuywWC64e3kwN93Pr/7zByiOfQuHkTHhytuj11tBsK5kanpJNd12pcH5MjQxiNhrwChKr/6wKnVbHeWZzf+9vrkPlF2ynwhSpZE0mumofofILInrZGjqrH9o1bZrNJqaGB+itr+DaL79NTNY6Vhz6u0XPYRcPb2KX59FdV4qLyktoo1wI3YyGyeF+Bpprqco/yfbPv76oi6Hw5//MyiOfJnrZ6kVJd5u1T6+dofnRDe798cfs/acfOVTlObmp0GutJLBEKiUqYyUjXS2UnP89gTFJTKtHCIxNtiNdhzuaiEzPRSKRoHByxjCrReHsYj3npVJcPX0wGfVoxrUYZmdEhP+V//gKG//Xl+lvrCYgJuldSQ7N6BAWi4Ub//XvhCam2xGmsOB+Bsj/8ddYdewzpGzau6iS6ekLJHZWz4Hmune9NttKBrpqSxw+d3p8BHefZy+y6Kan6K4vJ2RJ2l89U3Hh58idnN/X4okNEak5f9V8qe66UsKSno8k+4CU+guwadMmLly4QGFhocMb2MzMTC5dukR4eDi9vb08ePCAHTt2iMiMFStWcPPmTVxdXYWJS3V1NWq1Wpgkbtu2TQiqtmFkZIShoSEhw2bDhg1cvHhRaEkD6+r26tWrOXPmDH/4wx8AuHLlClu2bBEppWxWHrBaFgoLC4XQ7G3btlFUVERxcTGbNm0SyIiFB2poaCgKhYLAwEB+8pOf8IlPfMLOyhMZGUlBQYFAStkQHBzM5s2bKSgo4DOf+Qw/+9nPGBkZET3HNgl1dnZmdHSUyspK/vZv/9ZhzpFarWZycpKsrCxOnDhhR0xVV1eTnJwsKGJs7z0/y6Wqqkqw1VksFkZGRrh9+zbp6el2ygDbWOzYsYMzZ86wefNmodnq0aNHoudv2bKFa9eusWvXLgCampro6ekRAn3VajWlpaUsX76c0dFR0cQJrCTikSNHuHbtGuPj43h7e3Pr1i1cXV3ZtWuXaDzmX9Dnt2s1Nzdz4cIF3nzzTTQaDUlJSQ4b14xGo0g1JJPJOHbsGKdPn2bjxo2CFUev13P69Gn2798vqBvmZx91d3fj7e0tKPz8/PzsWuTAqvo7cOAAFRUVDAwMEBQUxIYNG0TPuXHjBg0NDcTExNgFxS+E7ZxbsmQJDQ0NlJeXExMTY3eezs7OCsfqzp077dRMC7F69Wpu3ryJUqkUiBRHuHTpEuvXr8fDw0M4xvz9/cnMzOTatWu88MILDAwMkJWVhclk4s6dO0xNTbFixQpWrlyJi4uLqFRhenqayspKNBoNJpOJ/fv3c/nyZTZv3rxoePWzflAuX74slCn4+/vT398vmrhbLBYmJyfZu3cvNTU1IpvuYsjLy6OhoYHXXnvNuspqNOLj48PWrVuFY9PWTCeXywXV4OPHj7l06RLe3t6sXr2akZERIXh94TmemJhIQ0MDSUlJTE5OUlZWJpxjUqmU/Px8gQAdGhoiICBAGIfc3FwuX76Mr6+vcG6dP39esJ8pFAqqq6uFsdu0aROTk5OcP3+e+Ph4gYy3WCw8ePCA0dFRUlJSRAHqNTU1pKenExISIoSTz1dCDQwM0N7ezje+8Q0KCgpERGlvby83btzgu9/9Lhs2bMBoNCKRSAgMDCQxMVGkgLp27Rrt7e10dnai0+m4ePEigYGB5OTkiPZ7b2+vXetgUFAQR44cobCwkB07dnD16lVR4+BCzN/eTZs2kZ+fz/r167l48SLx8fF2ge3zUVlZSUdHB3/+859xd3cnKSnJLguqtbWVmJgYJBIJMpmMvLw8O7tyT08Per1eOOe8vLw4c+YM+/fvF0j4U6dOcejQIRQKBTqdTijDuHPnDs3Nzaxbt462tjY7azc8Dbu3Ld4sZlX+AH85AqISaK948L5IKYvFQlv5PcKXZr2vlVyZXLloa9azIJXJrMRN2R3Ck7PtspLeDe8nk0oqlRGducoaHD63Sm8yGumqeWRn+3k3OLt7CE1uU6ODWMwmUY6KRColNifPun1LsxbdPhuZEpqUwYpDf8fEUC+eQeEiJcSMeoyAqARMJqPICjI/fFc90IPKNxBXT186q4vxi4hbNENLJpcTkZpDR2URLh7eouwcK4kziUyh5K1/+ht2fuFfBcWTMI4yOWUX/kDmzg+hSgnGZ0FWzULIlU4oXdzQz0yzfN/HUPkHMz0+zEiX1UY2X0kqlcnpqi0VlDZeQeF2tiP/yHgGWuoZ6+vEJyQS7eQ4/c11xOZYiYzItFw6qx8SlWFtT3VReQnBz121JRz8xi/Ra6fpqCrCydWd4CVp4uypOTKrr7Eai9nMC5/5Z2RyBT315YQtzcKyQJHtHRzBSFcLDfcKiF62mlnNJJrRQWYmx0XjevfNH7HmQ5+j90mF3RgZDXqu/+frbHv52+J9pXBCPdjDxGAPZqMBo0TCWF8HvmExwvc0m0yC6krp4oaTm4rJkQFcVF6CLROsBNJYXwe1189hmJ1h2a4P01NfYVX3eHjjrPJCJpej8gmgvfIBKp8AOzLLti1gtSqOdrUQkbZCsCF6BIQIKjsbpFIZ0+pRFM4ubP+H1zEZ9EwM9qDu7yJ06TKHykWJREJEag7qwR5ay+4KRI5BN8tAcx1mkxGFsythS7Nw9fIlPnczE4M9Donl3oYqjnz7v9DNTGHQaemoKkbh7ELwklRkCiVGvQ650gndjIbB1nosZjMBUQmkbzvC7NQE7ZUPCIxZKspHcwQnVxXdtaXIZHLCU3MYanuCR0CI0IhnNlnLGWzHTkii1W4albESvXaaqeF+1nz4ZbtQeLAG+3/4e39GPdBDSEI6Q+0N6LXTALh7+6N0cUc3PcX0xBhTw1ZlvMo3kLCly1h97O9hbjwXg2ZsmKH2Bna88l18wmLorH5oPTfiUxe91gbFJVsztpZY7+NMRiNIJM91bXbx8MbDP5jBtid2xQczE6N4PsNCPdBSj0GntQtodwSFs8tflCvV11hN1CKto88LiURiRxa/X4z1tOPm5YeT2/Ntzwek1PvA2NgYZWVlGI1G9Ho9n/jEJ4Sb7Pk/Vj4+PkxOTnLlyhWhhc4RbFYzNzc36urq8PHxYf36pzJBLy8vIiIiqK6uJj09HbPZzPXr10XKLKlUSlBQkGhiOTMzw/nz59m/fz937txhw4YNQm6Ku7s769evF4KlAe7du8f09LRwk9/R0QHAqlWrMJvN3Lx5E51Oh8lkoqOjg6amJiHI2bbNn/3sZzGZTNy6dUsYA5slylGuz4MHD9Bqtbi6urJz506uXLmCq6srwcHBonY8G2ZmZvjGN75BSEgIVVVVIvuXDQ8ePGD79u1IpVL27NkjIqa0Wi2dnZ0C4RcVFUVnZ6dIXWHLhqmvr+fcuXN85CMf4dKlSxw8ePCZrD3AgQMHOHHihDDRW6iec3JywtnZmYmJCbq7u1Gr1SI7X1JSEkVFRbS0tDAwMOAwRL6/vx+LxcIPfvADSktL6e3tdRimvBji4+MFUlMulzM8PGxnAwQEYmg+JBKJoJLIyclBq9Vy+vRpDh8+LLJixcXFcfHiRZYuXcrDhw85fPiw8G/p6encv39fNOG8d+8eq1atQiaTkZ2d7TDjpbq6mpdffpnw8HCuXr1KcHCwsP/n7xeLxcI777yDq6srR44cIT8/n4SEBMLCwjh+/DhHjhwRkW3zX+vh4cG6deu4fPmyQBw6wsaNGykoKMDJyclugg1WwiAzM9NhVllYWBg6nY47d+6g0+m4evUqJpOJvLw8OwXafLi5ubFmzRrGx8cpLCzkN7/5DbOzs3R0dDg8V56FmzdvkpeXJ+zzlStXcvbsWZGScn65QFpaGo2Njdy6dYsNGzY4PF4MBgMPHjwQcrr6+vrYuXOnndW2paWFuDhxM1FycjLJycmMjY3x2muv8Z3vfIdbt24xPT0tytsCiImJ4erVq8THx3P58mVefPFF4d8iIiKQyWTC/isqKrJr3Nu5c6eQkfbOO++Qm5srkD1yudyuldLDw4MDBw7Q2NjIn/70J375y1+i1+tZtWqVw4ykvr4+QQW0Y8cOzp8/L5C+MzMz3Lt3TzgfbNlGtmMwNDQUX19fdDodBoPBzjJpQ1VVFSEhIURFRVFfX8/69etJSUlhYGCAS5cu4ezsTF5eHkqlkoaGBtHviS3429aS+bGPfYzOzk4KCgqE59hUbQqFgvv37zM8PMzq1auFFj6lUolUKmX//v00NDRw5swZtm7dKlpwaWtro7q6moyMDPbv309BQYHQBjg1NSVS29bU1IjI+8DAQHp6emhsbCQhIQGDwUBRUZHoNzQkJIRt27Zx4sQJ9u7dS35+Prt37xYpzGxYv349fX19nDx5ErVazdq1a7l27Zow/mC9DtTU1PDrX/9aOGajoqJISkr6q6wWfgAxVH6Bzx3mbYOtjj40MeM9k0I2yJVKkd3nvUAilRK7PM9qb4pLeddJHzgO7H0vUDi5ELwkTchHaiu/S0z2uvd8TPpHLaHncTmhiRkMtTcKWTPzIZFIiM1eT1v5PUIS0u1VE53NaCfHic2xZrlIZXJCEzPoqn0khDWbDHqBoPLwC6KjqkggpQZaHhM0L+zdYrEgk8uJyVrLYGs9U6OD1gmjRPzbYjTomRruZ1o9QuHP/5mdX/hXxnrahH93drfa3dK3HrZre7PZPF/4+28glcuRyeSiSf7C3KOBlsfMaibwi4jDLyIOqUyGi6c3Tm7uDhUwNgtVQEwiAVEJIoukZU7JDxAUt5S+xmp6G8YxzGoF4kUikaB0ccUrKJyhjkYC5qme+ptr8QwIxTPQmgUVnbka3fSUiJwCq1JjoLWekCWpuHh4011Xil9kPDMT47SU3CIoPhXJ3JgadLMMdzRi1Ou4++Z/MNbbQXzuRlS+gfiGxyKRSjEZ9LSV32P757+Dk6sKi8VkZ8NsKb3N3n/6D1w9fURB9INtDQRGJ7L9H17HYjEL+U1dtSUwRygnrt0utCXK5Ap8w2LoqC5GMzqET2iU9bnM2UFDo0jesAeTQU9o0jKrLVMziXZynPH+LswmIwPNdVRceYsdr3yXrtoS64KsVIa7jz9u3tZ7sM6aR7h6eNupiLyDI+isfiiQUvPDwV1UnnQ/LsPJTYV/VAIyhYLeJ5VYzOZFySlP/xBMBj2//4f9eIdEknvoE4QkpImUK7NTaoKXpOPi4WW1Ms8rfhjv60Tp7IpPaBSdNY8Ijk/FNywGvXaa7tpSZqcnqSo4ScqGPShd3AhLzkIqldHbUEXWrg/T11hDZHouQ21PGGp/gndIlIhws2GgpR6LxcS6j7yCVCbDP3IJSld3pkb6hfEvOft/WPeRLwjqIqlUJhwfnTWPBOWik5sK7eS4kMk23NmMm7cfKt9AxnrarQHw8857zdgQlVffpquulEPf+IWIxO2sfkhYchY9j8vtvrMNY32dzKhHiMlaS3ddKe7efrh7+6GbnqKz5hEyuZyQxEw7y6A1W25a+LujdtBnwSsonMHWetQDPSLy00qy2tMphlktXbUlBMQkPvcCjH9UAoMtj5/Llr0Qk8P9IqXoXwInNxWuXr4Ckf5+oJvRMDU2RGTaCtG4PwsfkFLvEQ8fPkSpVLJhwwYUCgU3b96krq4OnU5nZ8MZGRnhl7/8JSUlJQ6zYeZjx44deHt78+///u9ERUUxMzNDbGwsfn5+SCQSUlJSyM/PJzw8nHv37rF79267Ay83N1cIgB4eHub27dscPXoUmUyGVCrFZDLh5OTErl27GB8f58KFC0RGRtLR0cGpU6dYu3atw/Y+sJJemzdvpri4mMOHD3Pt2jVhDGx4++23+dGPfiRadR8dHeXGjRuYTCZrm0ZLC+7u7kxOTqJUKlm9erUw6bJNzvLy8rh//z5Go1FkMwO4ffs2W7ZsQaFQcPv2bbq6uoiIiBCN+/wJs5ubG3v27OH48eMcO3aMq1eviiapiYmJFBYWOsyC8vLywmAw8KUvfYnx8XGam5vt7CpTU1MiIsHWxuXp6cmlS5coLCx0OJ7R0dF8//vf54UXXkCj0eDm5ibsz1WrVnHlyhXUajWrV6+mtbWVpqanMvigoCA2bdrE9PQ0crmcrq4uysrKiIuLEzLOFsPk5CSFhYXk5uby1a9+le3bt6NWq7l06RJubm5s2LBBUKb09vY6tOfYWu4++clP8vvf/55r164JZKqPj48Qzu3v78/JkyfZvHmz6PUL1Xk9PT0AImLXUV5WV1eXQNLt2rVLaBncuXOnMLHs6emhuLiYzZs3C1ZE27i6ublx8OBBTpw4wcGDBwV11EJiMSAggLS0NEGpYTAYHCrytm3bxoULF1AqlSLy6e7du8TExIjUKQvP1ZiYGD7/+c/T09NDSUmJnSpjsayp6upq+vv7OXr0KIWFhWzbto3a2lrOnTtnFza9GFpbW3F3d7cji1JSUqitrSU11ZolsdDilJCQgFKppKCggKioKJYsWYLZbKa0tJSRkREUCgWrVq3C3d2doKAgIiMjqauro6mpSVRc0N7ezgsvvCD6bJ1Ox+3bt9HpdKSkpHDy5EkSExOpra0V2WcDAwMFMuPMmTMOieKQkBB0Oh2vvvoqOTk5NDY2otVqhf8MBgOurq54eXlRUlKyaM7afBiNRiGbLDMzk4CAAIeE1ELIZDJSUlKoqqoiNTWVc+fOiUi07OxsysrKROH5BQUF7Nq1C4lEwsmTJ+3spH19fYyPj9upCMF6bdizZw9arZYbN25gMBgYHh6mqKiI6WnrTcH84O+ioiLeeOMNqqurSUpKEshtm2XwzTffZHh4mD/84Q+icyA0NJS+vj6io6NJTExkyZIlXLt2DTc3N0ZHRzl79iwxMTEO86by8vKoqKgQcp0Wy2jLysoSyi8KCgpEKmCtVkt7ezs9PT14eXnh6enJw4cPn0nqBgQEoFQq+dSnPsWdO3fYuHGjiJw2mUzMzs7ym9/8RlAld3R0CMUUly9fXvS9P8B7h19EHO0VD94TKdVR+YDghPT3HOA6H7K5oPP3C6udbC2d1Q/xCYt+18nGYoG97wWunt64eHjzq7/bwtbPfstqRVM6IXdyQq50Rq50QqZwemZui1Qqs5J6VUXELFu76PNs29dR+YDAWOv9l8lopLO6GJ/QaPxTrTbhsd4OfEKjkSmUePgHC81u/c21otYnd99AJkcGcPfxZ1YzgYvKOjl19wlAMzYkjF9g7FJmJsa4/+efYTYasJifLnjaQpqd3T3I+9irzE5PEZm2QmQz7KotIWHVC3aB7u0V9wlPWc5gaz0SqQxXL188A0PRa2forrUqqvSzM/Q+qUSvnSEoPln4jkMdjfhHLcHV04fWsruofINEqgrN+AjjfZ0cfO3nTAz1YdDPCoSes7uHNXQ82Hp/qhkbRq+d4e4ff8T2f3jdbty9gsLobagSSgBGu9uQK52fbotEgsVsxslNJZBTzQ9vcPO//o3d//v7DklGV09vYrLWce/PP2FqeIDULQeQK50IiE5ArnRm4ye+grObCs3YMK6ePlbCYV5T2lhPG65evtZcqfJ7RGWuEgiQ4LgU3Lz96KgqFkipwbYGZHI5fhFxaKfUyJVuaCfH58LMAzCbTbSU3EIqk2My6NFrp61/zkxz+3ffxzs4grQtPxXZq2xqnaiMlXRWFxOTtRZXT29cPb2tqr3HZSRv2INnUBgWs1k410xGA9PqUbpqS3jnl99m+b6P4R+1hK7akrlA/AhRsL3ZbKK7rgwnV5UwlsOdzfiGx+Li4SUohCJSczAZDQI5NdLdanf+eAaGkve3/xvd9BR67QwjXS0ExDxd3LCRGC4qL4LiltJe+YDozNWCbdOROkXh7IrcyRnlnNLcNyIO93k2RaNuFqWLG1KZDLPRIKgJx3ra6agqwt03EIWzK7rpKfoaq/ENjxFaAUOTllnVmNnr8PAPwcM/hLGedjK2HUE7OW7dVouVYDUbDfz+lUN8+N//KGxPUFyK0MipGRvCMDuD/xzZ46zyZGZiXCDwJ4f7GO5sIW7FBmJz8kTnsG5Gg2yOqPQKjmC8vwvv4KfzO7CSaVKZlLClWZiMRiTzSGUnNxVRGSsx6nXWcHiLhZDEdJHd2nbsSeUKTAbHrX3PQmDsUjprHuHk5i6oGR1huLOZmYkxYhY0QL4b5Aolprl20veKka4Wka35L4VfeCwdVcWofAKeK2twPiwWC921pcTm5L2n131ASr1HpKenCzYvsN4cJycnc+7cOTIyMoRJtFar5Z133uGXv/wld+7cEYJabcHA8zE+Pk5BQQFtbW0UFxezbds2xsfHaW1tFULLbfD19eUnP/kJDx48QKVS4eHhIfozLi6OwsJCzGazSJ3i6+vL6OiosNLt7e1NXl4eP/vZz3jttdfQ6XTvale4desWfn5+/OpXv7JbPS4sLGTz5s3I5XKCg4MFxZavr69gQTKbzaxdu5bExESH2T5NTU0CCbJmzRoePnwoqMPAOmkwm80CEZaXl8eZM2fw9fUVrFw269t8uLm5sXfvXuLi4jh9+rSdSsZRHtHdu3cBOHLkiLDCX1dXx7lz51i2bJlgtRwbGxMm7jqdjoKCAvz8/Lh9+zbLli1zOEkqKSnhox/9KFu3bkWtVtPZ2YlGIw78NJvNvPTSSzg7O5OSkmJ33Ny8eZMNGzZQV1dHQkICubm5NDc3c/HiRby9vVmzZo0dufPo0SPGx8c5dOgQEomEx48fA1bybe/evYKqz8XFhQ0bNjA+Pi4oSPR6PeXl5UKmjUKh4IUXXmDTpk2sXLmS6elpxsbG6OnpEbbFYDDw6quvcvbsWXx8fBySLCaTyU4BAVaLXFFRkdACOTY2Zpd3FRcXR3R0NFevXqWurg6JRIK7u7vouAcx6eTk5MSxY8c4ceIEu3fvXnQSGxERgVarpaioCC8vr0WVSHv37uXUqVMCyVJSUoKPj4+dEmg+urq6ePjwIUePHmX79u2cPXuW7du34+n5dFV6/nEF1uPhypUrxMbGClZP23impqaSlJREYWEhPj4+DoO8bZidnbVTpdiwZMkSzp49S0pKiigIej6io6Otk5aYGC5evMiTJ09Yvnw5K1aI24g8PT2ZmJhgw4YN9PT0cOLECXbu3Im7u7vV8jB3nRwYGODRo0c4OTmRl5eHs7Mzly5dYufOnZw/f94uA29gYIA7d+6wc+dOvvKVrwjH53y1C1ity9XV1YSGhgrB366uroJFz2w286c//Ymuri7a29sXtUCaTCZBIbpp0yba2trIy8vDZDIJhOh8InBiYkK0H8FK5l24cIGKigqOHTsmIlqDg4MpK3sacNvc3ExUVJRwjdq8ebPQCGjbfw8ePBAd49HR0bS3t4ssaS4uLmzfvp3JyUnS0tK4du2aQ4LZVkyxadMmTp48yb59+1AqlUI235YtW8jLyxPUSLbrbFhYGOXl5cJnSqVStm3bxtmzZ3nppZeorKy0y4yaj2XLltHS0kJ+fj5arZb9+/czMzPD5OQkk5OTTE1NMTk5iUKhQKVS8dOf/pSbN28Kr3d2diY6OppNmzYxNDTE7du30Wg0lJWViXIVbWhsbOTx48ds27ZNaGx88uSJSK1ls9Ta2imVSiVRUVFERUVRUFDAihUrhN+FD/DXgUdAsMNWOEdor3hAUJx95sl7hUzh9J6CzhdDZHou3Y/LMRuNi35/66Tp/eeSTY0MMtbbDlgnpct2fRhXT288A0Iw6nUYDTpmJscx6nQY9bPvGpJ77effJHvvRx3asSwWCzKFEoWzC0pnNwJikuhtqGSstwPDrJbIBblP2slx/COtBJVvWAztFffxCAjFZDCIGtqsE5siJgZ6RLki3sER9NSXi0i9yeF+LGYTZpPRTo3SXVdmVXl1NBGRspyu2hLcfQPwDZuzBprN1pDe6ofC/uisfkhwfIow8Q1JSKenvnyO0HIlMj2XWc0kv//8ATZ+4ivWyvp5hIh2YlxQLkWkLKerrlRoYdOMDTPW2y78fai9kYjUHHzDYuhrrMaom8VsNuHu7U9HTztu3n5EZawU2tVsyrf5CE3MoLX0Dr4RscxOTxKamCH8W0DUEoY6mvAODmeg5TEWsxmVbyAJq7fOqaeK8QoOFzUxTo0OMtLVgm9oNIHRiaIGudGeNoLjUhjr6yA2ex2DbU8YamvAMDtD/MrNSGUyvEMiGZhTbbiovGgtvYNnQAhypZOQ2ySVyTAZjYx0NSNTKPELj0WvnUHu5EJQXDLtFfeFiXLP43LW/c0r9DZUCWHdmrEhpseG2fKprxMQk0hXrZX8saG/uZbg+BTre0fEMdhaT2DsUqslanZasES5qLzwCgqnt6GK0MQMZHIFs1NqnFzd2fHKdwGrCsVF5YlBN4t6oFto9WuvuE/ZhTfZ8+UfiAiMmYkx4RiXyeUYDXpB3RWamEFr+T0qr77NoW/8p0g509dYbT1W2xqITM9lWj1KR2URzu4eIqUgWG1htvIHk0EvmsS7eHgxMzHO1Eg/MxPjc7YzC24+foz1tGExm1D5Bs41Z8qFY6i3oUogtnzCovEJi2ZyZIDu2lIu/+BLfOzHZ0VkjEQiwT8yXlDqqQd60M1oiM/dRHvFA8JTnv6m9j6pJGHVFgZbnwhZXm5evngEhDDS2czkyICIGAmITqSr5hFhyVnWc9YngNjsdU+Vn3Mh+gB9DVWC9cwzIITOmkciUqq7rhSVX7Aw1tNqxy2ucqUTkWkrMJtM9DVWYdDNEhSXgovKk6D4FPqb61C6uuEf+e6ZmI4QmWZtZI3OXG2X3WQ06OmqfohPeAyRkc9u6fxrYrizGb9Ix7mifwlsTYoOs9yega6aR4SnLn/Pqq0PSKn3iPv377Nu3To7RcLmzZu5fv06L7zwAkNDQ9y7d080AcnNzWViYoLTp0+Tm5tLSEgIUqmUJ0+e0NbWJqyG+/n5CeHo82+uZ2dnuXz5Mt///vcJDQ1l06ZNaDQa4ea9r6+Pqakp1Gq10Mw0P4w5KCiIwcFBAgICUKvV3LlzB09PT1auXClkpqxbt05QSs2fyFssFi5cuMCyZcuIiIjA2dmZlpYWIVjXZiWxqUUWs19dvnyZ/Px8SktLhayX+WhtbRXlmuTm5lJWVkZ5eTlZWVncuXOHvLw80Wv279/P8ePHefHFF5FIJAwODoqC0vv7+ykvL0cikfDP//zPgkJs5cqVdp8P1kytK1eusHbtWjtLXEpKCikpKZSXl1NeXs6qVasYHx8nJCSEe/fuoVar2b59O0qlEoPBwM2bN0WZQIAwAd+zZ4/QmrUQNnvWhQsX0Gg0REVFiU7s6elpdDqdkL9z9epVdu3aRXx8PPHx8YyNjXHp0iUUCgXBwcHU19fT0NDgkDyYDw8PD/bs2cP09DQFBQV89KMf5U9/+hMWiwWlUklWVpaIGLp06RLbtm3j/PnzHD582E55c/v2bZ48eYJGo+HSpUuoVCrWrVsnKC5s6gNH4cre3t6iUOeioiJRppoNRqMRpVLJ66+/zk9/+lM7QtKR4kgmk/Hiiy9y+vRpVq1atWgeU0JCAlVVVVy4cIF/+qd/WnTcDh06xIkTJ2hsbGTnzp2L5uvYArC9vLzYunUrVVVV+Pn5cfToUQoKCggODhYm8oODg8K5ODIywvXr19m5c6dAopnn2QIAodq+p6eHM2fOsGbNGmF/uLu7C4q+ixcv2hE987F+/Xpu376NWq1mzZo1aLVaampqhIZOsFq3vvvd7zI1NcWOHTvsSBiwklLd3d2AlcA4fPiw0JwpkUiorq6ms7OTwMBA9uzZI+wjmxVVKpWSkpJip6IJCgqipqaGP/7xj0RFRSGTyRYl4V599VXi4+Pp7e0VyE0bioqKWLduHT4+Puh0Om7cuIFUKhUspTa78szMDJs2bRLImMHBQZYsWYJCoSA8PJzLly8TFxcnKDpLSkpEVrnJyUnBFv3mm28SEBBAfHy8iOT08vISCODq6mpRnpm/vz+BgYE8fvyYpUuXcv78ebu8s8TERPLz8+1ykiwWC1evXqW9vZ0zZ84I124buru7RWq+/fv3c/bsWTvLsaurK8eOHePs2bOsWbOGoKAg3NzcmJmZEX3WhQsXyMjI4OrVq3h5eQlKXEfk1OTkJC0tLfzhD3+gpaUFV1dX3NzchMWVyMhIVCoV7e3tvPbaa4SGhhIdHe2QHC4qKhLskY2NjVy6dEmw3hqNRq5evUpERAQHDhygt7eX4OBgUlNTqaqq4v79+4IlVqlU4urqyooVKygpKRGOmevXr5OUlCRqcv0Afx1YyYwH70pKdVQVERi7VKRseL+QymR/lYYjgPDkLPoaazCZjA4tDgMtdUJ+yfPAYjYz3NmEdlINWDNWbE1SVuWJEqNej25G49CS88z3tljY8vevYTIa7cgQG0wGPfpZLYbZabRTamQyOZVX3mLby//CxHD/M20cEak5ND4oxDc8BovZjH52Br12GoN2hp76SrST44QlP41bkMzlwIG1Ir2/qYbA2KVEZa7GYjYRlpxF75NKwKq2cPXywcXDG+/gcNSDPUSm5zLa00Zn9UP8oxJwnlMt2JQQfU21+IbH4OLhjWZsCHdvf2RyORazGbPZhFQqQzM+wnB7Izte+S4hCel0VBXhFRyBT0ik3WKlwtkFF5Unk8P9SGUyxno7HCpaJBIJngEhDLU3cu0X32L9R/+RJSs3iyavPiGRuHp40VJyC8OsluGOJrRTagBkCgXHv/oxtr38bbrrnjZW6bTTXP/P19n75f8gNGkZMrkcvXaGJau2YJjVEpWxkvG+Tjqqinl4+jesOKDD3TeQ6MzVdNWW4BsWM0fwWI9HzegQkem5jPV1YLFY8IuIp738PrPTk7h6+RKSmCFSbUhlcpQubuT/5DU2/O3/Flns7r/1U5I37MEvPBaA6fFh3L39kUgkeAWGoR7oxtndQyA9rYulJka6WjDqdMTMkRQuKi/8IuLoflxO+NyxYpjVCqSih38wfQ1VFJ/8FZs+8VVUfmJngId/sDWkvrWemYkxvEOjCIhOtAYtJ2fTWnKbmOx1KJycBbJpVjOBUa/DNzyW3ieVRKblOiSSQxIzBUJzanRwzgK7Hhd3D3QzUwIZZlN/uai88JjXCmnN7pqgveI+137xLYEos6H41K+sxQ2uT5VD+tkZzv7LZ3npjbefKp/6OnFReREQlUB3XRkWs5mp0UGC4pLnjh9rg5vtGAfQTk0w2tWCT2gUuYc+gWZsCO/gCIwGvZDt5eEfzFhvO+qBbjRjw0J7m294NCPdrfiFx9JTX4HKL4jcI5+ibx7xpRkfoaeulNu//wHbP/8d0XEL8M5//gvLdn2Y9BcOic4DiURCYFyyNaDeNwA3bz/x/frcOWgxm2krv0fwklRRSLhmdGjRUHmwXuvDlmYJzYIDLZP4RcRhMuiZUc+KrLLvFTFZ62gtu0NczlPF+lhPOxPDfURlrnZYDPC8UDi5oNfOPHerrMViQTM6KBzTf01IpFJCk5bRU18hnJPvhpHuVlR+Qe8rF+sDUuo9YuPGjZw9e5ZDhw7R3d0tKCJUKhUSiYSKigqGh4dFwdG2k8zT05PDhw9TXFxMaWkpdXV17Ny5U6Qays3N5dSpU6Ja9fr6epqbm9m3bx83btwgJSVFsB8snBCePXuW/Px8Nm7cSGdnJ5cvX0YikZCcnExTUxNtbW14enoKE8GrV6+iUqk4cuQI169fZ3h4mNTUVNRqNV5eXuj1eqFBzPZZcXFxFBQUEB8fz8DAACMjIyKLli2s1mAwCKqmhw8fkpSUhIeHB5s2beLEiROi6vGFY2VDdnY2VVVVPHr0CI1GI8osAesK/e7du7l48SJr167F29sbg8HAvXv3mJmZITg4mJ07dyKRSCgsLGTTpk1YLBaKi4spLi4mPT0dHx8fRkdH6enpoaenRwh/XgxZWVksW7aMhw8fsmvXLr785S/zsY99TERyKRQKDAaxBLO4uBg3NzfS0tIYHBzkyZMnZGaKfcOdnZ3U1NQI9qwjR44IY2Uby3feeUcgcmwBv/NzaXx8fARy6R/+4R9488030el0om1arK0OrCq/2dlZjh07RlhYmEhNYINtQqtQKFi5ciV37twRTcbBSvCpVCpUKhV79uxhcnKS/Px8ZDIZISEhnD17luTk5EUtZwEBAQwMDAjjOv/79/X1UVZWhpOTE+vXrxea/1pbW7lw4QKBgYGsWLGC1tZWh6qlsbExQkNDiYuL48tf/rLITrgQX/3qV8nMzHwm4z8yMsI3v/lNlixZYhfS7+vry4MHD5icnGTr1q14eHhw5coVgYCVSCRs376dhoYGzp8/z+7duxkcHCQ+Pp6KigpGR0c5evSo6PMXWutssLWU3b17l8rKSl544QXi4uJobW1lcnKS1atXi5SCNlgsFvr6+mhqamLjxo385Cc/IT8/H2dnZ9LS0kRWNYvFgl6vFwoYwsPD7Y4RT09P6urqhL9LpVJ27txJYWEh27dv5/79+w7b/ioqKgRCYcmSJZw/f56lS5cK3/nmzZvEx8cTEhKCt7c3U1NTgsJlPnQ6HQqFgri4ODQaDVVVVSJyZP74OTk5sWPHDrRaLRcvXuTQoUOcP3+eDRs22OVZzb+myWQy9u7dS11dHRcvXmTnzp3Cv5eVldHf34+Hhwfbtm2zyu3nVKNNTU3CdXnlypUCsezk5GRndQXIyMjgypUrQpPmwv232HFpGxeJRMK+ffuERjvb8ysrK0X7QKFQkJeXJ7xuenpasFZLpVIOHTpEYWEhExMTInJIo9Fw8eJFQXnY0tJCWFgYUVFRtLe3c/78eaKiogSifmZmBpVKxebNmzGZTMjlclavXm13bR8aGqKjo4PVq1ezdetWKisrhfPGdi148OCBiJRMSEggKCiI48ePCwrUHTt2CNeYjo4OgeTMyMigra2Nq1evMjs7K6gHbSo/sKqDo6Oj7doTP8BfD55BYXYZHfNhIx2eJ7/pefDXzgcLSUhjsLWe4c5mu0mBUTf7rk19Bp2WwdZ6TAYDEqkUv4h4oWp+Pka72wTFSGfNIxROLu9pTIbanhAQnYTJqBfUJgshUyhxUShxUXlisVhQ93ex45XvEp6czeRwPx1VxdZ8mDl7nsloZKynTSBU7r75H6w8+mn0M9MonF1RurqhdFMREJ3ArGZCNFl1clNhMhroritFplAKaonRnjaC4lIYamsgIjWHsb5Ozr3+OTZ/6mt4+Ieg8gumq7YE7+AIfMOs7YFv/uNhdrzyXbrrSpFIZRT87Bus+dDLgq1MPdBN8BKr4j4kIY3+xhrcvP3nQtdX011XilzpREzWWsZ62mkrv4eLh7cw4bWYzehmplA4u3LyG3/H0rzdRKbn0tdYbc1qkkD97UtoJ9U4u3vg5uNP9LI15H3sVTzn1Dtmkwn/qCXIFE4MdTSinRjHZNDz4O2f89Ibb+EXGY9EIqG/qZYN/+tLGA16AqKTcPX0tgajN9Wy+ZNfQzczJdg0R3va8IuIY7ijEb12Bu+QSOROzgTFLkU3M01I4lNrrJu3H6M9bRhmtcjnqWR8w6IZ7mhEPdDD8v0fo6e+gtCkTHqfVGI2GdHNaOiqLRGUa3kf/6LQFAjQ11gj5F1Z5sLMp9WjAhnrExZNW5lVYRqdtRaDTouzypNz33mZTZ/4ih0x4O7jj8mgp7+pFs/AUFw9vTEZjfQ31WDU69DPzhAUl8JoTxuTI/0Ex6cKBIAt9P76r77DqqOfxs3z6X2LRCIhetlq2ivuC8eaYVZLz5NKYrPX0/O4jKC4FFrL7hCSkI5MoRRZy2RyOVgs9DfVggSRXTIwJgnN+AgtpbexmExCCYF3SCSd1Q9R+QUy1NaAbnoKi8VCSEI6JoOeqMzVwjiuPvYZkEgIXpKKwsnFmoVWYs1CG+5oEnLOtJPjeMydu+Ep2fTUl9Nwv5CguKeLoSEJ6fQ31hAQnUjPkwqc3TyIylzNYOsTlsSnMNLVgkQqxajX4RVknWsadFpAwvGvfVzI5nL18MYzKJzR7nJmp9R4+AcL5QgWiwWTQY9EJmO0uxWv4Ag2f+prc9/rKeltMhpI23KQ8JTl9DZUWeceFgtP7l5F5ReE0tmVmYkx1P1dJK0TLzyrfAMZ7+tkuKuFaAetp0b97HPZ7yQSiUDG9jfXkf+Tr5O0fqegLpPJFcidnFEona1/Ojkjd3JBrnRa9PdCKpMRkZpDZ3UxEolUWFyJ/gtDxsGa/zfY9kSklHwW+hqqCHnO574fuKg8cXZTPfN32oZZzQTaibFFFz7eDR+QUu8RMpmMo0ePcuLECdzd3dm9ezd1dXV0d3djMpnYuHEjLS0totcsJAByc3P5j//4D/70pz+Rk5MjTP5sBMm6deu4c+cOa9as4erVq0RGRopykEJDQxkbG6OyslJEajQ3NxMbG0tcXBwPHjxgw4YNxMfHY7FYuHjxIl/84hdpa2tb9CTbvHkzNTU13Lhxg4CAANzd3QUCbn52lM3yptfruXv3rsMA9/Xr13Pnzh02b95MR0cHRqNRVFluCwKfT8gt9r1CQ0P5u7/7O+Lj43FychJZdWz/Pz09TUJCAr/97W+5efMma9asWbSdTSKRCC1i1dXVtLa2sn79eqqqqhzaCh3Blrnzq1/9CoPBICig1q5dK0yAbAoIb29vHjx4gKenp6CiCQwMpLKyUvSetbW1jIyMCISTRCJBLpdz+PBhIVvGlqE1P99l5cqVFBcXC9s0NTXFnTt3kMlkHDhwgK985StcvHiRvXv3CmNss+3Mh8lk4tq1a7i4uLBr1y68vb1pbm4mJSXFbt9UVVUJ5EFYWBg9PT20trYSG2tdKZuYmLCb0Ht4eLBr1y6mp6f/P/b+O6zK8/Djx19nAYe9916yEVBBFHGgstwjZraZbZJmt2kSm6TNapNP02a1TTOatEmrcaKyFLeCIqBMQdl773E4cMb3j+N5whHMaPv5/H7f75X3dXmpcMZznnGf537f78Hzzz/P+++/T05ODmq1mnnz5s2abC9cuJDMzEysrKxYunQpWq2WkpISOjo6cHV1FXLVZl5ffn5++Pn50dnZyaFDh/jwww958sknZ12Ttra2eHl58fnnn+Po6DhnPg/oiMTCwkJkMtksAlGPvr4+VCoVOTk5TE9PM2/ePEG1otVqGRgYMLDT6sOVbyY+g4KC8PLy4uDBgwwMDDA6OkpQUJBBVp0ePT09s5RpM7Fs2TLGxsbIyMggODiYS5cuERYWhouLC83NzdTW1s4K9HZzcyM+Pp7MzEyGh4dZtWrVnJbe0tJSIiN1db2pqalUVFSQlZVFamqqcJ4YGxvPImWvXLmCXC4nKysLExMToblN38apt5nOPNeSk5OFjKXz58/j7u6Oj48PXV1ddHV1MX/+fCwtLdm/fz+bN28WnjvTxjt//nzOnz8vBKzPlUOnV29aWlry8ccfo1AovpGonImwsDD8/Pz4+9//zs9//nP+8Y9/EB0dPctGpj9PAwMDhTyuCxcuMDg4yG9+8xvWrVs3SwGnf55areatt94SrHY3XytGRkYolUpB9VddXY2Tk5NAvEmlUtasWSO0uOrtaTfDyclJUKP19/fPUlauXbuWixcvUlhYCOhI9JttiTExMZSUlBAbG4uPjw8+Pj6cPHmSRx99lJqaGoHo0qsYV69ezaFDhwwspZOTk5w+fVpoCNRneQUEBLBv3z6WLFmCtbU1Q0NDuLq6Mj09TVVVFV1dXYCOYNu5cydtbW0GpPfNGYA+Pj6cP3+et956C7lcjlwuF47buXPncHV1Fca0H/C/A1tXLxov5895s9tcXoidpz9m1t+e3/b/Szj5hdDbXGtA9ihGBjG5hdVwbKCX/htZNFJjE5wDwucMTZ4JjVolqAy8ImKpLzqjU1Z8x9V0xeiQQc6M3op0K7RdvYx7SLTOmtVaj4NXAFZObqinp2i8ks/FvR+R+OOfY+fui4N3IGODfWx64T3Gh/pxC44SiIIpxQSmVjaYmFsaKIu6669y9IOXSXn8NTzCdITR+FA/Zla2mNxQnwjWrodfxC04io5r5aimJpmaGKezthLl+Cgm5lakPvmG8Nqd1ytQjo8x0N4EgJWTm0EQsUgkJue9X7HqweeF5jORWCyEOdu4eaOcGOPQ754k6Sc7MZLr8j6NTC0wNtOFi7sEhuPsH6pbENRoQKtFbmnD5PgI85boFkimlQosHV1Rjo/iPX8xGo2azN8/i2pKSfJjr95QuhSR+uQbQtQC6HJ15BbWeIQuoO3qZboblIjFEnwXLKO1sggrJzc6r1fgEhjO9OQExqbmuAVF0Vx+ETsPP4Y6W4hOvxO1apqu2kqsZlxXHqELaLx8HgsHF+w9/dFqtYwP9nHwjcf58bv7BdWMRCrDM3wRvc215L7/EmseeRmfqCWIxGLMbRwYH+zD3NaBoa5WxBIJK+79OU5+ITQUn8XBO0B3rkplqFUqXeB20zUqT2SwxtgEmbEcMxs7PCNiGe3rxtrZA+XEmAEBZOXkhmpayd5fP0Tij55hcuyyQNboSOpAbFw8EUtkN5oWNVScyEA9PY1LYBgpT7yGqZUtXXVVaDRqQXEjkRnhEhhO21Xd6zWWFhBwI6wbdGo4v4XLaSkvpOr0ESLXbhMUYaAjNy/s+Sspj78mNFmCTmE42NGMRCKlOGsXxmYWwr1pznu/IvHHz+ATtQQTc0saL+czP+U2nPxCqCs8ie+CRCZHhzC1ssXO04+mKwX4xiToyMGQKHqbrhu0+mnVaoG009tcu+qqaLxyHiOTr8eC7HdeYNVDL+C3MFFQTE0pxm6cL/Npu3qZ4e42XIPm01t6AZmxCU5+wSTc/QRWjm5YOrqiGBmit+kal7P/hYWdE8EJKQx1td24jkTkffga85aswT00BpmxnJaKcUwtbXRZajfIrpaKS0Sl3U5X3VU8wxehGB2+0QoZjURmxOTYCH3N17l+4QTmtl9ns2q1WqYU4xz/6+v86I97v5Xc/yYMd7cz1K3bbqmRMSsfeA4juZkwZqhV06iUk0wrFUwrJ1GOjzKtnEQ9rZw1f7+5VKmvpZ7iQ3/n/j8d+d65S7eC1MgY1ZTyOz1WPT2Fakr5b7f1fVc4eAfSeCUfMxv7WxKBWo2GtqrL3ztHaiZ+IKX+DUilUqKioggNDSUrK4uwsDBSUlKoqqqirKyM0tJSrKysZlmJQLfSvm/fPh544AH8/f2FfBiFQkFZWRmDg7pK1qeeeopNmzbx4osvztm+FB4ezpkzZ2hubsbLSyc1nmn90Ifagu4iUqlUHDp0iGvXrgmWPv3kfiYiIiLo7OzE1dWVp556irvuuovGxkbMzMwwNzfHzMwMqVSKRCIRWtfmgpmZGQqFgvHxcS5fvjzLMmRhYYG7uztXr14lJCSErq6uWZPsnp4e8vPzcXR0JCMjg9zc3Fl2ONANDCdOnMDb2xu1Wk1YWNgtCamboV+1f/3117l27RojIyMG9r+50NraSmFhIcnJyZiZmQmB00qlknPnzjE5OYmTkxNxcXHk5eVhbm6OnZ3drBDymYNdQUEBxsbGBuSI/vdGRkZs2bKFPXv2IJPJZtl37O3tuXDhAt3d3ULYb0pKChKJhOzsbPz9/bGzs+Orr75i27ZtSCQSGhoaDBREpaWlQgC1mZkZp06dErKizp8/bxBUrVdlzRyc4+LiOHDgAK6ursjlciFsfCauXbtGbW0tMpmMhIQEVq1axdq1a2lra+PUqVMGTY6WlpaEh4cjEono6upCoVCgVCpZsGDBrMn+XAH0lpaWaLVagoODWbly5awJuFarZffu3YIibS4olUqBJMzKypqTlJqcnBSaMI8dO8a6desEK6deXWVnZ8eyZctQ3wio1FuG5oKJiQkODg5s27aN3bt3z6lqAp2NbGa23VwwMzNj/vz57N27l+eee47Dhw+Tl5eHp6cniYmJBkTzTIhEIrZt28bevXsFW+xMdHZ2GuyL8PBwPDw82L179y3tfCdPnsTBwYFly5aRnZ1NdHQ0MTExXL9+nUOHDuHi4oJSqZyVY2ViYoKjoyN79uwhNDRUOM52dnaCEsvV1ZU1a9awa9cutm7dipGRESMjIwbbsXTpUnJzczE3N6esrIx169bR0NBAdXU1oFNkLlq0CJVKxalTp0hKSuLEiROYm5t/637WX3dOTk688MILTE9PC1lX3wSxWExsbCzHjh0TSgLmIpwAiouLycvLw8LCgtzcXIyMjAyCumNjYyksLGTZsmWMjo5SV1c3yxZra2uLr68vxcXFDA4OzlI26hEREUFeXh5tbW2sWLECrVaLQqFgbGyM8fFxzMzMKC4u5r777uP06dOz8sns7Oy4dOnrG3mtVkt/fz+7d+9meHhY+D4rLCwkNjYWsViMj4+PQGprtVoOHDggLHaYmJgwOTmJXC7H3Nyc7du3c+7cOZYtW8aRI0fIyclBKpUSFhYmqOFycnKYnJzk5MmTjI2NGSyI6NHf309eXh7r16/H3t6elJQUxsfHKSkp4cknn2TFihX89a9//dbj+AP+c1i7eMxq+dFbjsznyAz5T/FNSuF/Fw5eAQy0N9FxrRzXeRG6jKEbGT66yUsdE0P9gE61orfl/bvwjUmg9tIp/BYkfmPAOegUNTau3sL/PcIW6tQt0XOv6o8N9CA1MsbEXDeG9rV8vagjkRkhkRmR+KOncfINFkixnoZqfGMSdJkqMyri22uu4B25mJYbKinV9BQt5YVYOriQ8sTrWDm5CXat/tZ6PEJ13++To8Pkffgam154j4nhAQbaGvEIjWFsoIcvf3EHy+/9BYE3so/0NqaxwV40GjULNtyDZ/gi+tsaaLyST+XJQ8Ixl0hlhK3aiFarpan0AibmlsiM5SgnRulrrkOtmsLJN5iUx19janICj9AFgp2rvvgsoSvWYW7jcINQ0RE+fc21OhuPSER79RXcgqPoa6nD3tOf4e52xgb7GB/sJXbrAwx2tNDfWoep1UI0Gg3uN2yDPlFLGOpqw8rJDYlUprO8WVhx4qM3iN1yP5NjOvWmpYOrAekGoEVLXeEp+lrqWbD+bjRqNe01pXhFxlF2bN+MRjoxIrGEiuMH8I1ZhqilDkffIFKffIP+1gamlQqBDGitKsHew4+0p36Ls38YjZfPY+vui42rF+01pYCWsYEe3ENiaK0swkhuht/CRHoaa8h+5wWSH3sFiVSGo28wDj7zsPf0Z3pSgXtoDEMdLQQtTUZqZExd4SmMTM1wCYxgqKuV4Z4OQJfnpBgZukE8WjIxPIilg24y7OwfRnPZBbznx+MVGUdTaQEidJ9PZmKGjasX3fVX8QhbQG9zLZm/f5ZVDz3/9fXQWk/m28+S8vhrukBsoPz4QeHeVjEySEt5IX4LEwmIWyWQOsZmFqQ8/hr2nv6M9LTTVVfJ0Q9eJu2p3+EyL0KXNyUzEsiO9ppSVtz/LMamFkyODTOlGMfczhGJVMaUYhzfBctoKD6DSCTGb5Eus8fa2YOm0gJMre2QW1gjEukIU2snd0zMLPj8iS3E73iE0BXrkEhldNVdZetLf6a1qgT30Jgbqp3zLL/355ha2tBVW4XrvNlFIqbWdmS+/Sybdr4vZHi115QyL34NzeWFWDq63lBiaonb+iDTkwoD9Utvcy3jw/1oNBo0ajWK0WGMzSyx9wrQEZ92TjcCzu10yi+Nmr7WehTDA/hELaGnsQZzWwcais8SuXYbrvMiDV5fOTFGW1UJqU++wVB3m6650z/0O1m4VdNT9DRUM62cBHT5VJ7hixCJREwMDyKRGjGlGNM1hd7ICJNIZd+70XVieBCNWkXyY6/Qca0MqZExrkHz/+tq3G9C29XLBrbo/014RcbRUHzWwLI4E83lhXhFxv1Hn/8HUup7QqFQcODAAfz8/Ni3bx/j4+PCqntLSwspKSl4eXlRX1/P/v37Wb9+PTKZjKmpKZRKJUeOHBEmTlFRUYLaSS6XC5Of/Px8XnjhBSYmJigrK7tlZkpiYiIZGRnY2NhQWlrKsmVfy0nlcjkTExOYmppy+fJloqOj8fHxYf/+/QQEBCCRSCgvL59le2lqaqKsrIxf/vKXREVF4e7uLoRYt7S0MD4+jlqt5r333mN0dBQ7O7tbMsltbW1ERUUZ2HhmIjIyksOHD+Pt7U15eTkrV+okrz09PRQUFODg4MDGjRu/9QQ/f/48zs7OvPbaa6xdu5bCwkKKiopISkqaZQnRo7m5meLiYuLi4li8eLEQZt7e3s6hQ4ewsbEhISFBeG/9Z9RPDG8mhgAD+013dze5ubmsW7eOTz75ZE41mR5Hjx7Fx8dnziBiPYyMjBgaGmLXrl3CZ5q5X55//nmee+457rzzzlnbDLqMpo0bN7J79242bdok2Jd6e3s5c+aMUNuuh/7cMTU15cKFC6hUKmECfOnSpTmJO33o944dOwRbzsTEBGfPnkWlUhEYGEh6ejoTExOcO3cO0KklPDw8DOyqoFNalZWVkZWVxYcffkh+fr5gRboZdXV1ghVOo9Fw4sQJNBoN69evZ+HChdTU1Mxq98rMzCQtLe0bbZq5ublz5ljpodFo2L9/v2CJ0u/vhIQEKioqOHXqlEAyBgQEUFtbS1BQkGCNnQk9GaJQKEhISBAI2KqqKg4fPjwrj0upVBrkA+nR1tZGRUWFcHPl4+NDdHQ0X375JVNTU4SGhuLr63vLz9TQ0IC3tzcymYx169Zx4MABAyvyrWBtbc2OHTtm2fk0Gg0ZGRnExsYK+Wne3t40NzcLDX6BgYF0dnbi6ek5Z8PZ1NQUzz//vEHQtUwmM1B6WVhYsG3bNvbv3y8Q/TcjISGBZ599luvXrwtEyM3KyMrKSkJDQxGJRILKc+/evaSnp8+ymerHSkdHR9avX09ra6uQe6RXHCYmJgrn7M3nbn5+Pn19faxevRqJREJiYqJAHN9Movb29gpkrP4a0itsV65ciYWFBaOjo0JO2825UHrMmzePPXv28Otf/5o//vGPws9v3raRkRHuu+8+HBwckMlkQuaTubk5tra2REdH8/jjj9PZ2cnp06cNPicYjj1Hjx4VbKsHDhwQFigGBgYEW+j8+fOF79VDhw6RlpYmjDdWVlYMDQ0J+7+np4eOjg7eeecdxsfHWb9+vcGx0Wq1qFQqZDIZa9eupaCggNHRUQPFYXFxMQMDA7NssWZmZtja2vLFF1/Q3t7OwYMHmTdv3qwW2B/w34WNiyeNl/MFUqql4hI2rl4GK+f/b4CtmzfD3e20VpWgmp6io6ZUt+ItEmHv4fdvZ37MRaKJxGL8FuhyTQJiV37jfdJIb6eBrUQskWDh4MxQd5tBMDYgKC9uNfGYViqQGpngHhxF45V8fGMS6G9twNZdpw6Wyowwt3VkqKsNYzMLTMwsEYnFyC2taSotAMArcrFuUqhSYe3kjkQqo7nsIohEdNVfRTk+gltwNCKxRFD2TIwM0t1QjUalYuPz72Hp4KzLgHJyx9jcgtH+bvpb6/GJXqqzm2m12Lnr8q00KhVisUQXtlxeyIL19+hIm4hYFKPDHH7rGeQWVqQ88ToyYxNdBpWtI5aOLjrCKHopXXVXcfAKYKirFXuvABpKzmFh74xIJGK0vwfXoEiGOluQyIyEcHgjuRn2XgGc/ORNIlZvxsE7EOX4KLZuPjSUnBPsQUZyM5QTYwx1teI9fzFq1TT7fvNT1jz8EvE7HhYCoS/u+5iEux4HdMHqrZVFaDUaRGIx85O3M9DRTOOVfDzDF6HVqOluqMElIAwbF088whaiUatpqbjE9YI8olJ2YHPjehOJRLgFR6FWqTj1tzfJ/9cH3PnmPxGJxYz0diAzkeO7YBl9rfU0l11EOT6CelopEI8zoZpSsnDTvWhUKmxcvAQFh7GpOc4B4dRfOo1YKsMnegmD7c3ITORkv/MCKx98Hme/YB2ho9VSX3KW1CffYFo5eSP7qpmc936FjbMnjr5BSGTGTCsVtF29jJNvCOGrJbgFR9FSUYiZtR3q6SmdBc3ajpUPPidYDjUaNZPjo8RufRD19BQugQsEYtUjbCH9bbrWw80v/gm5uS7c3SM0BhNzK5Tjo3hGxApNdU2lBSy942e67LRJhYHysK+lDmMzC2xcvBgf6kM5PsrJT99k228+RgR01VVhbGqO1NiEox+8jJGpmXAfmfv+SyQ/9ioTw4PYuHoy1NmCalqJcnyM1CffwMLembaqEjwjYlFO6NSCPlFLqL90GkQivCJi6a6/iltwFOND/dQVnRZKBiaGB+iqq8LG1YvUJ99gpLcTR58gRCIR6ukppEbGurD0G+Rqx7Uy/BetoO1qCdNKnV1uqLsNlXKSRRvv1Vk9a0ppvHyO+cnb0Wo0eEbE0VxagBadirS1qoSzX7xLdNodBCekMDk2jEgsoe7SaXyjlyI1MjYY45Tjo7RdvYzvgmW0VRXjEqBrhO6uv0pX3VWc/IINsqUARvq6GLxB1EpkRjj5Bs+pXOpuuIr3/Hg0qmmDQPjvi4nhQXoaq/GeH09rZREeYQt1hQNXCjCztf+P8qpAlys1Pan4RvXV5NgwMhO5oHD834ZYLMElMELIT5uJ3uZarJzc/mO12A+k1PdEeXk5zzzzDN3d3Wi1Wtzc3MjKypo1ufHz88PDw4NDhw5haWlJUVERXV1dBsoDDw8PAwve9PQ0hw4dYuHChURERFBRUYGrqyv79u0jPT0dExOTWTcnGzZs4I033sDd3d2AlFq6dClnz55l1apVNDc3CzfkKSkpZGdnC1YR/aS8tbWVkpISvL29BbWM3pZ1s32osrKS119/nd7eXhYuXDinKqCjo4O+vj7uuOMOzpw5g0qlEgZcIyMjgoKCcHV1JT09nf3792Nubs7AwAAFBQU4OjoaWM300D9/5s9PnDiBu7s78+bNo729HdCpBtRqNcePHwcQiCKxWIxCoeDo0aO4ubnNOdl2c3MT7JFHjhxBLpdjampKXV0dly9fZs2aNbNa4OaCo6MjGo2Gzz//nLVr11JeXs7o6KjwewsLC0ZGRti7dy8JCQlCqLUeM+01ExMTZGRkcPfdd+Pp6TnnpHtqakrYx3rMbC4EneJgx44d7Nu3D6VSSXZ2NmZmZmzZssXgeWq12oCsWb16NXl5eQLx09vbO2dgukQiYcWKFXz66acYGxtz5MgRTE1NZymVTpw4QUpKCsPDwxQVFc2pRLGysmL+/PkMDQ2xYcMGvL29ycrKAnS2vptVdSKRiCtXrtDU1MSqVasE66CbmxsVFRUGpFRhYSFBQUHCY2YGgevR1NSEm5uboCZycHCgt7dXCPMHOHjwIBs2bJhT2RIeHk5raysZGRnC9h89ehSpVGqgUNOrOTQaDStWrJil8AsNDSU0NJTR0VFyc3NRq9UG+76np4crV66gVqsRiUS4urqydu1a4fiNj4/T1NSEra0tycnJXLp0ifr6epKSkuacxFRXVwtEnIWFBfHx8QKpADp1yVxZVvpjMNPONzU1xe7du1m/fr0BORwcHExubi7e3t7Cz2pqaoQyhZn7GHS5PuXl5YLCR6+GuXn7ZTIZt912G7fffjsDAwMGFletVouZmRlxcXFERUXh6ek5S7kIOhXYzOwpb29v3N3dyczMFEhjfcaft7e3ga26r68Pd3d3JBIJKSkp9PX1cfDgQcLCwgwI5+rqaq5evcqSJUsMlGEmJiZs376dPXv2sHnz5ltmrYEufHzdunVCMYNcLkej0ZCXl8fq1avRarXU1dXR0NAwyxKoP0f0aqu5sH//fiFj62ZCXalUcuHCBf7nf/6HU6dOCYsLtra2Quun/poaGRnB3NxcuNbCw8MpLy8nODh41nWzZMkS7r77bl599VUDlZs+48nFxYULFy6gUCiEcoDVq1dz5MgRwsPDBZtdUVGRgZoyPj6e8vJygRw/cOAA4eHhBo+xtLRkeHiYgYEB+vv7SUxMJCcnh5SUFKqrq9m/f7/B+P0D/vuwdfNmoK2R8aF+rF08DVrZ/tv4b69kTynGGWhvZkqha56tOH6A1spi0p76nW6F/j9o4ANdi5r5HPtDIpXhHRlHY8k5fGdk3MzESF8XFvbOs35u7+FHQ/FZrBzdDPZHS2XRrInazODdjpoy3QRfLMbayZ3BjmaGe9oNGrfsPf2pv5EjZGnvTHN5IZOjw1ScOMiKe3+BRCqlt+m6oIrSqNWMDfRw7sv3uO21v+Fyo6FM3mmtsy51tZLz7k7Sn3kL95BolBNjDHY06zKgOpppLr3IQHsjax55GdAFo0+ODaOenkY5PkpU6g4cvAM4+8U72Hv669oBb2Rx9jRUk3DX42g1aprLLuAWNJ/+tkZBWWF347OIJRKMTORUnsjAzNoez/BFtJRfRCyR4jovgt6m65Qf28f8lNsY6+9BqRijuezijXtWXVOYvUb33S+3tKGvuZah7jZdi569M82lFxBLpTSVFiCWSPFftILBjmZEEgnD3W3ITOQsvfMxHeGk1TI1OUFjyTlMzC1x8gthelLB9JQSRx+dLTDvL6+y5eUPsXX1Eixoo/3dGMnNSHvqt0xNKgzsplqNhpaKQsKTNuO/aCUNl8/j7BeCRGYkkBEWdk6M9nZy+vO3WfeL38+6H2+vvoKZrQPOfiE4B4Qx0N5EU+kFPCN055PUyBgLexcyfvs4ST/9Fc7+YZjbObLuF79HMTKI3NIGkUhEc8UlPMMW0V1fhZNvMN31VzE2syA67Q6mFOOM9Hahmprk00fWcc8f9mJqZYNEKkUE+EQtoa+5lux3XmDLS3/B3sNPF2o/0IOZjb1AhHRcK8MjdAGtVcXITHQZTj2NNUKuk2pKSXdDNf6LVtBaWYS5je6+RCQS4eQbTPW5HJx8ghBLpHiELaSjphStViNcc1OKCUGh1NdSi5HcnJDl6+iqrUA9Pc25L99jxf3P4jovkpTHX0MkEuERtpDWymJSHn8N16BIBtqbUYwMkvv+i9z+xt+F0HYbF09dG+Kl0/S1fq1iLM3dQ2TydqRGJrrAf9U0ZtZ2+C1IpL74DMc/fI2Nz78rXKtj/d14RcTRXHbRoPHQxNwSrUZDfdFpQb3kEhhBR00pNq5ejPZ1C6rFoc4W3EOiaSg5S2tl8Y3MKS3HP3ode68AEn/0NK7zIkm463FdE1/FJWrO5yISiVn901/NGhtnElIzzy2RSCRYZnsaqumqq6LkyJc6+yxgYe/8repTvU1UJBIJgfB6Uvf7YGJ4kO6Gq7Pyo4zNLPCJXsJofzeNl89j4+r9rRlMt4KDdyA9jTXfmCvVeb1CaCv8v4KZtR1j/d2M9HYI+WKKkUGU4yM4eP3niq0fSKnviYULFyIWi6mqqhIsMKGhoZw6dUogjNRqNe3t7TQ2NmJubs7nn3/Orl27yMnJ4dq1a/j7+ws35Pb29vT29qJQKCgqKmL9+vUYGRmh1WoZHR3Fy8tLIL704bJarZby8nLa2nQe2erqaurr67G3t0cikRAbG4uNjY3QKjXTRmVqaoqzs7OQLdXZ2UlhYSHu7u5s3LgR0AXkJiYmYmxszLFjxwwm4319fbS1tZGcnIxWq2X//v2zVEPnz59HrVZz5513ChOHmVAqldTU1FBeXg7oCLFnnnmGf/7zn3PahfQICgoysB/m5ubOyu/RQyKRsHbtWqH5TavV0t7eztTUFOnp6be0RekxMyx8yZIlSCQSjh49OichZWpqKtha4GuLZnJyMnK5nPPnz8+yso2MjLB161buvfdeTE1NWbhwoUFQen9/P3Z2dnR1dXH+/Hluu+02JBKJoBqYSQTW19fj6+uLiYmJARHV0dExq/lKIpHg6elJfHw8X3zxBSKRiIKCAiIjIwXioLi42MB6KpfLkUqljIyMIJFI5rSTqlQqLl26xNDQEA888AA5OTlzkmfj4+MYGxsjlUqxs7MTsmnmQlZWFtu2bePYsWO4urri6uoq5P8UFRVhZmZGfHw8nZ2dHDhwYJbaC2ZPPpqbm5menjaw88TExFBYWGhgnSwpKTEgLWNiYsjLyxM+0/Hjx1m8ePEtlXigI52trKzYvXs3mzdvRqvVcvXqVdavX8/o6CinT59GJpORlJQ0Z77PTFhYWJCWloZWq+X06dMkJyeze/dufH19b2n50m9neno6169fp7m5mdjYWPr6+vjqq69ITk6eRSjfbMt0cXFhbGyMgoIC4uPjKS4uFhrq5kJHRwddXV0MDQ1x1113UVNTM2sf3XxMhoeHUalUQn7Uzeq0iYkJzMzMSExMpLy8XFCgzbzeVSoVZ86cYXx8XAgoX7Fixaz9OjY2RkpKypw5WLeCVCpl3bp1/OUvf+Gxxx7j6tWrBmSUHv39/Qbkp729PZs3b6a8vJwDBw7Q2dnJ2NgYwcHBswhx/WeRyWTs2LGDPXv2kJaWNiuX7Wbocw0vXrzImjVrMDc3Z+/evYISbKbFT4+zZ8/y2muvoVAo+Oqrr1i9erUB0VhRUUFoaCgmJiYsXbqUkydPGpBX+vwnfZmDjY0NGzZsoK+vj0OHDuHo6MiiRYvIz8+nv7/fgNQKCAjg4MGDDA4OEh8fj1qtpqioiP7+fgYGBjh+/Di33347V69excTEhNjYWKytrSkvL6eyspJFixYJymR9ocbGjRu5dOkSLS0trFixgq6uLgMlZ09PD/39/Zw7d46XX36ZjIwMGhoamJqawtvbGzMzMxYsWEBGRgaWlpazzr/g4GCmpqZ46623vvFY/ID/DKbWtnz6yDoS7nocqbExIkSYWtt9qzXt/xJq1TRDXa2MDxqWWchMTLF18xZUIRq1irCVG7F19xFUO44+82at7n9XDHe14hYyO1sQwEhuhpN/KC0Vl+Zc9R9oa5hT0QLgFmLYqjTc04Hcwsog3wfA0TeI7roqnG+EBevzoqxdPPnoobUk/viZGW1suvF0uLuNSwf+RuqTb+AVEcvYYB/2nv5IZEbUF53h+oU8YUJp6eiKua0jax/9DYqRIYa6WnEP0W3TUFcrA+1NrP3ZbzA2Nafx8nncQ2OYUozryKz+bpQTo6imJmkuu4Ctmw/WTu70NNagnBjHb8Eyuup0QfJOPkFMjo/SXHaRprIL9LXUEbpiPWKJlP62BkERkvPuTiHrCSDvL6+waPN9OHjPI3TlBozNLOi8Xk7BVx8y2tfFul/8Hie/EMKTNuHgHUhHTRnFh//BHb/7AksHFyRSqS5Eu+gMyolR6ovPELPuLh0xEraQwY5mTn76JjHr72bB+nuE72G3kGh277wPJ99gVj7wS0EZ1d1Qjb2nP7FbH0BuZUt98Vm8IuOYnpxAMTKEWqUiKu0OhrtahabJ8cE+hrvb8AxfRGtlEU6+QQx1tdJaWczEyCD1xWd01huxhO76q3gHLaaztpKexhomhgaQGptgJDfDPSSGxB8/g0gkpulKgRC2r8u7csfSwQWxWMJoXxcOXgFYO3tQe/EE+f/6EyvufxZHH51dcGpyAiMTOR3XyvCK0C1M1l06hZ2nP0ZyU3qbr1Oet5/wpM3k7/ozIYnpRK7dSkvFJZx8g+i4VkbctofoaaxGIjPG3tNPZzMViZienNAdP7HOyuboE0R/WwNdtZWCMgd0akN9dtah3z3FsrufFMK2pUbGuiBvkQjP8EX0NF0j+50XhNa8y5n/JPlnrwjnvFtwFJNjw2S+/UuGutq4+/e7hOtHo1YxOTaES2A4Ztb2KEYGidv2IBZ2TvQ11+IWHEVP4zWGu3UL6+4h0XTWVuAeEkNz2UUWbPgRg53NWDp8HVw/1t/N9NQkdYWniE67U1B7uQdH0VByVqe+Gx9DMTrIaF8XxnJzfKKXMjbYa5AnZyQ3xcrRld7mWt22atR01VYxPtjL6c/fNmgJLM35irCVGwQC3MzGgYH2JsaH+ojb8gAd18rxCFsgEPLTyskb16nqhipQR0A7+4di7+lPU+kFXIMiMTY1RyQSMTk2QntN6SxCaiYmR4dQjA4z0tshkEke4QsFi+U3ofN6uXCugS4QvuN6+XcOFIdbE1IzYWHnhIWdEwNtjTRePo+TX8j3HvtlxibfmCs13N2OhYPL/6lVUA8nvxAaSs5hZm2PSCKhvab0lsra74v///m2/38JTpw4wYIFCwR7gFarZWxsjLfffpuhoSHEYjFisRg3NzcWLFiARCJhdHSURYsWYWJigomJCSdPnhTyc7RaLY6Ojnz66acGto2ZJ9ro6Ci2trbs37+fX/3qVxw8eJCYmBiBfBCJRBgZGbFw4ULMzMy4dOkSg4ODvPvuu0xMTPDqq68ikUgQi8XC3/Pnz+fZZ58VbF0zMTU1JQTmrl69Wmh/02q15OXlsWPHDuF958+fL6i9JicnOXLkCHFxcbPsWDNhbGxMZGSkkF3i6+vL888/T2BgILm5ucJrh4WFGVSWe3t7k5OTQ1BQEEeOHCE6OlqwBN0K+kyYO++8E19fX+Lj47+VkNKjvb2d/Px8cnNzKSsro7a2losXL2Jra0tcXJygRomKiuLy5cskJCQwMjJCZmamYNEEHQl3My5fvsylS5coKysjNTWV4uJiioqKhJyZvr4+ent76e7uNiD9Fi9ezLFjxwTVEuiUG/r8mAMHDhARETHnQFVVVcX169eJjY0lMzOT8fFxQbF05coVxsZ0q7x//OMfeemll4iMjBTUQ6tWreLQoUOC8gl0k72SkhK0Wi1SqZSFCxdibGxMXl4earV6lrIIdNfPN1ni9Dh16hSJiYmz7HUikUiYcI6OjhIcHIy/vz8vvPDCt54LExMTlJSUzMo3MzU1RaFQCP8/d+6cQYYW6Mg8veLk0qVLuLm5zcpjmwuWlpZs27aNffv2MTw8jI2NDYcOHcLCwoLU1FQDNc93QUFBAQqFgszMTJRKJe7u7rc8n9va2nB2dkYikTBv3jzy8vLw9vbG3t5eUJo4OTkJSsipqak5XysgIIDR0VHKy8vRaDTCY4aHhyktLTXYdy4uLqxYsYLc3Fz279+PUqnkwIEDLFmy5JbB7MePHxdCym9Wgk5MTBgohiIiImhtbeXAgQOYmJgwMDBAfn4+EomEZcuWYW5uTk5ODklJSRw8ePCWttnw8HC8vLwEUmZmu+BMtLS0UFZWhkQiYevWrQQEBFBTU4NKpZrVODhz38yEm5sbdXV1/OxnP6OgoGBOhdZMSCQSduzYwd69e0lKSkKlUhkQ1qCzB1+5ckU4J0NDQ9mzZw9DQ0OMjo6SlJR0S0Xn+Pg45ubmQj7T8ePHsbS0FBSmtbW1wjXi6upKZ2cn1dXVBAcHc+bMGZYsWSIoCP38/IQAeXt7ezZu3EhXVxfZ2dls2bKFzMxMLly4gFqtRqPRCH8vX76crKwsxGIxCxYsEDLp9uzZQ0REBFZWVigUCgoLC8nKyuL3v/89WVlZTE9PCwHpMxEVFUVZWRne3t6sXbvWIC/N0dERb29vent7ef/99/Hw8CAyMpKOjg5KSkqYmJhgfHyc22+/nRMnTjA5OWlgjT1x4gQODg5s3brVICvrB/x3MNTVxlBXK1IjY5bf+wvMrO2w9/BnbKCHzuvlwqT6Znuokdwcc1sHTK1tv9OE5PtAq9Uy2t/NcHc7Ws3XWYdiiRRrZw9s3XxuORkY7e/G3MYBGzcfWiuL8J6/GK1WS2/TNXoar2EkN8MlIOx7rc7rijFu/RnNrO2YVirorK0QWqZAF25ubHZrYtvY1ByxRHIjD8acvuZaoZlsJqQyI9SqaTpqSnELjmJ6UkHHtTIQiVj90xcRicXYuHoJ6jbF6DBarZald/yM6UkFjVfyGe5ux8TcCrmFFRMjA3RcKyc6/U6cfINRTSkZ6+9GamyCg1cAEpkRrZVF5Lz3KzbtfB/fmARaK4uw9wrAztOPlvJCct9/iZTHX8MtOAqtRoNH2EK8ImIF8uHkp28K9fRTkwqO/M8zPPCXLFoqLuEVGcdQVxv9bfUMd7fh6BOESqlgpLeTqYlxFm2+D2MzS5x8g+iqq2Lto7/B0tGF7roqpEbGSI2MmVJMEBC3iomhfhQjg6iUCp09rvwScisbFm2+j64bYeygI0CkxsYc/+h11j76GzQate486+umt6WO0JUbkJtbUV98BvfgKNSqaRov57P8x08DIpqu5COWSKm9dAobZw+sndwZ6enA0t4ZcxsHGi6fu6GEeQ+/G6HoHmELGe7p4HLWv+hpqObBD3MMjquR3JzO63lczvoXqU++QXd9NTYunkwMDwiNe60VxUwM95P29O8wt3Wk7eplAuJW0VZVgk/0EsYGejn4xuNEpd0B6MhIkVhMSeY/mZ+ss5Erx8dw9g9FKjPC1MqW/tZ6/BYkcvyvrzOlGBNa0FTTU+x58X6W3/tz/BYuJzxpMw7e84hcs1VoatRqNMJ44eAVgJN/6A2V20WO//V1tr/6KU6+wbrzxcMPew8/rp7O5OwX77D64ZfovK5bDC869HfU09OIJRJMrWxZ9eDzaLVaXfaZVouxmQVajYa+ljrGB/uYnprEb2EiUxPj+EQv0anrtDqC0Nbdl/4buWu+C5bR39rAQEcz05MTAOS+/xK3vfop1i6etJQXotGo8V+0goaScwbHY9cLP2Lzi39CfCMkvruhGitnd0RiMS6B4dQXn6GrrgrVlBI7Dz/sPHzZ8uKfaKkoxC04GrFYglgqw87dl4zfPYlyfJTNv/oA7/nxtNeUsmD9PSCC1ooibFw9hfstE3NLct57EcXoEAl3PY6TXwjKiVFSnngd99AYxGIJvU3XGR/qY7CzRSCgjeRmDLQ34TovArFEipmNHac/f5vo9DuRyoyYGBlELJFSdPAzHH2CGBRL8I7S2d30123HtTJUU0oUo8NM1ZTiG5Mwa2zVq9gUI4PILazxioxDq9WwcOOPcQuaT3PpRSwcnLH3uHUpiWpKiUQqMxh3jeRmTE2Mz1L83QqKkW8npGbC1t0HW3cfuuqq6G6oxj04+r8Wht7f1mCgTv2/hvf8eBovn0cskeIVOXfE0L+DH0ip74mkpCSOHz/O3/72N4FYCg0N5aGHHsLJyQkLCwth0qHVavnqq6/YunUrx48fx8PDg7q6OiHHqaSkhJaWFh588EEsLS2pqKgQLAIKhYL77ruPf/3rX1hbWxMVFcXExARffvklUqmU2tpa3N3dhfDklStXCivY8fHxNDc3s2bNGpRKJcHBwdjY2AgTgrq6OrZu3YqPjw8DAwNkZ2fj5+dHYGAgjY2NgvIIdDeC69at48iRI6hUqlkZT/7+/mRkZGBkZERtbS2bNm0ymJgZGxujUChmWVFqamqoqqpi1apVlJWV8fzzz5OXlydMhjQaDZWVlUI+jkQiYf78+YI6KyEhYdZEba6B7NSpU0ilUt5//31BsZGRkYGXl9ct29Q0Gg1Hjx7F0tJSmNReuXJFyPbq6+sjOzsbrVbLwoULcXZ2ZnR0lLa2Ni5dujRL7XWz7bCmpgYzMzM8PDyoqqpCo9EIyiS1Wk1hYSGbNm3ikUce4eWXXzbYNolEYhAIrlQqDdQgCQkJnD9/nsDAQGH/tLa2UlxcTEhICJs2bRIyxgBOnz7N8uXLDUgYkUhEREQEZWVlAlEFuryh3NxcIcvH0dGRNWvWGBAr2dnZrFmzBqlUyldffcXmzZuFCeLo6KigutLDw8NjVhtaU1MTJiYmsyyNM9HV1cXZs2f54osv8PX1xcLCgrNnzzI1NYVEImHRokUGzWN6a+w3ZXuBjgQZGxubdW6Bbt9fvXoVjUYjNMbNxM0NaHpIpVKio6OZN28eDz/8MA8//PCcjYbfhI6ODvLz81myZAmurq7k5uayefNmjh49yvj4uIElUI+ioiJBOSYWiw0IH5FIREpKCteuXePgwYOsW7fulllhWq0WJycnPvroIz788EP+/ve/AzrCbeHChbOUc83NzTg6OgoB0+Hh4RQUFHDx4kWSkpIwMzPD0dGR7u5uuru7hUB70LWhNTQ0CLlX+fn5BrZk0J0zWq0WLy8vzp07Z5ANNlNxlJCQwIkTJ26p7LK0tOS2227j+PHj2Nra4ufnh6WlJdPT05w7d46JiQnc3d0Fwvfy5cvMnz8fJycnampqhPyqW5UqDAwMcPbsWWxtbdm0aRO5ubl4eHiwd+9eVq9ebaBSm8uqvG3bNjIyMhgfH2fDhg2cOXOGiYkJ4Xjos6hAdx2vWLGCoqIikpOTOXnyJFKp9JZh5jPfZ/Xq1TQ1NbFv3z60Wu0sK3pMTAxZWVlMTExgbGxsQP4GBweTmZmJv78/w8PDFBYWolKpkMvl3HPPPYyOjpKQkGCwIJKVlcWTTz6JkZGRoCC9fv06AQEBBAUFcerUKdasWUNXVxcDAwMEBgaye/du1q5dS319PXl5eRQXFwsLGKC7xiwsLLj//vtRq9Wo1WqSkpIwMTGhtbWViooKQkJCWLx4MfX19XR2dgpZdtPT0+zZs4e8vDzCw8PJz89ncnKSoqIiTp8+zRNPPIGrq+stCxF+wPeHRq2m83o500oFVk7ugnWkpeISxmbmTAwPYOPqJWTe3Ax9GPP4QC9DXS1oZnwnwtffucZmljriytLmliTQ5NgwA+3NqKYmDZ5vbuuIW9B8QRX0XdHfWi8ok0zMrXSNctZ2OProFN7KiTFabkyuHbwCMPsvBblbO7mjmlQIAdugy625lUpKD9d5kTSUnEMilQrB7HNBq9EwOtiNakqJzEQuqBP05EfHtXImhgdx8Aqg/aqugam1sgiZsRxzO0fqCk9iYedM0NIHabycz+qf/gq5hRUNxWcRiSV4RcbdUGlUYGJmiVo1TdiqTQx3t6MY0YUTj/R2MtjRDCCowiQyIxCJkEilDHa2MNrXRWddJa5B81EpJ3ENiqSvuY75KbfRVHoBxeggzWUXCVy8it5mT0yt7agvPsPZf7xD2tNv4nODAANdLtDk2AgeYQvoaazBM3wRnz66joUbf4zfouXILW2YUoxhYm7FtYJjXNz7MT/64156m2uxtHdGrZpmWqkg64/Ps/bRX4NIRNJPdgJaumoryX7nBZJ+shNjuRmeYQsxsbDGzNqWK9m7KTu6l22/+QhzW0cGO1qwdvag7tJpSo58QcoTrzPU1YqR3IyJ4UF6m6+jVavxjIhlcmyI1soilBNjtFYWoZqawtjUgqi0O2itKtY1wr27k+THXkVmIsfEwprl9/4Ca2d3zGwcKM35iqKMz7nzzX8iv6GCEonFjA30MtjRolO9yIwwMbdksKOZ/ladwkwsluisjEHzqS08iZmVHVqNBvfQGDQqFWGrNuLoE0TtxROU5e7R2RbtnFBN22Bu54TMyAT19BTzU27DxsWTtqpiJoYHmJqcIDgxTafu8gsl8w/P0tNQw30fHAJE9DZeu3F/LSZizVZGetoZ6Wmns7ZSGBeUE2OEJKYzNTGGg5c/UiMTrBzdUKumsHDwRKWcxD0kmoH2Juw8/JBIZTReyefkJ78j8UdPE5SQQtOVAsJWbcLGxYOKExnUXjxB7Jb7KTn8BSWHv+DH7x5gSjGGmbUdNi5eKEYG8Y1JoLnsIm7BUdQXn8Xe05/c918kbttDQvj80T/9mrSn38TO3Yeo1NsxlpvTUl5Iznu/InLtNhZu/DEjPR0oRodRTSmpPJGBg1cggx3N9LXW4xu9FGMzS/7+5BbmJ9+GVqvBysmd2M33MzbQw5Rigrqi0xz/8DXu++AQHdfK8ZofR1HG37lyg4yUW1jj6BtkoMwxkpvh4BVA57VyphTj2Lh5s+T2R9GoVbp2TbGEhpJzXNz7EaErN+Abk8Bwdxu9jdfob6nHwWce05MTTE8qKM/bT9JDOxHftGin0agRS6Ro1BOc/ux/SH3yDeHa098TFXz1V2K3qHD0mYeTr+6+e6i7DStHN7RaDZNjw/hEL2Gou42G4rO4hUTP2UTXXn0F99AFs37u5BdMT0O1YGO9FRQjg3TVXb1lOcQ3wdk/FI1GTfvVK2i1GtxDYr7T94rM2IRppWJW82BP0zUcvG+dQfy/CcXoEANtjahV09QWnmRiuB+5pQ1OfsH/FdXWD6TU94RarUalUtHW1kZYWBheXl4MDg5ibW1NbGwsJ0+exMzMDC8vL3Jzc4UJOuhWlWUyGU899RSJiYlER0cjkUh4+eWXaWlpwcbGhvh43Q3E3r17OXfuHGq1moiICCYnJ9FoNAQEBODl5YVMJuPgwYPU1dXx4IMPIhaL8fb2prGxkeHhYUZGRkhPT8fU1JRLly4RGxsrVH2Pjo7y0UcfcfLkSYEgq6urY+/evdx2221kZWXR2tpq8Lm3b99OQEDAnHals2fPsmnTJqHxaOZjwsLCqKqqEvI7RkdHycvLIzAwULCw6Bvw/Pz8qK2tJSAgALFYTEREhGCH0ZM1aWlpfPHFF/T3989JHOjR3d3N2bNnWbFiBfb29lRXVwsTWU9PT5qamsjIyMDHx0eotwcd8VJSUiIE884Fe3t70tPTBStZcXExDz/8MB9//PEsFQ5ASEgIV69eJTQ0lKGhIWpra4WJbnx8vMHEW69q+eSTT+jt7eXAgQNER0cb5O84OjrS09ODo6MjZ8+eNZh4Ojg4UFBQQFFREUuWLOHgwYO4u7sb2Nq6uroEUqq5udmAiNTeyFmwtLQ0aIjr7u6ms7OTpqYmzM3N55zsqtVqQTUFsGnTJgO1yqlTp2ZNeMPCwsjJyRFIqenpaYqLiw3UYTdnPuXn5zM9Pc327du5fPkyEokEc3NzwSaqtwQNDAwAOiXU22+/zU9+8pNbKpPMzMwYHx8nLy9vVmuZWq3m6tWrNDQ0kJycTHl5+ZwrK/b29vT39wsKKo1Gw7lz5xgZGcHf31+Y2FtbW5Obm2ugMLuVqkWj0ZCbmysorm7G2rVryc/PZ2xszMCqWVZWNivcfa6w3Hnz5uHl5cXBgweFfTk0NDSLVHV1dSUxMREvLy8SEhJuScRotVouXbrEtm3bGBwc5MqVK8THx7NkyRLUajUnTpxArVazYsUKTp48ydTUlIFSMyQkhKysLIGUmqna1L/+iRMn0Gq1fPnll0xMTBio6crLywUFk4uLC11dXULDZ2dn55xZZKtXrxZIkQ8++EAgUm7+jD09PQKRHRQUREBAALm5uQbjNsDg4CBnzpwRbG0z96W7uztbt27l2LFjQmbXrTA6OoqJiQmbN2/mz3/+M3ffffec4+/ExAQKhQJ7e3vhM61atYqenh727dvH0qVLv5Hg1Wq1dHZ2IhaL2bJlC5999hkuLi4Gj2ltbSU9PZ19+/YZkEEA69at48033yQ+Pp7ly5cL9nPQBZjPXGw4cOAAy5Ytw8zMjNDQUPbv38+mTZuorKwUHtPU1MSBAwfw9vZm8+bNZGZmsmTJEs6fP09iYiK+vr6MjY2xaNEioqOjsbOzQ6VS8dVXX7Fz505ycnJYs2YNeXl5Qq5iamoqR48eJSQkBA8PDyGn0djYmL1797Jt2zbEYjFHjx4VbLLV1dVUVVUxMTFxy333A74fJkaG6LhWjkgsxjUwwmDVeGygFzNre+w8fGkoPiu0VM0FkUiEsak5xqbm2OIz52O0Wi3K8RHGBnoZaGsU8l4ATv3tf1hx3y8AMDazxMEr4L+ygj09qQsB18PZP4TGy+fxif76u9TY1ByviFhdI19zLb3NtRjJTXEOCJtTDaXRqL/zzb69VwCd1ysY7m7H1NoWqZHJnM9Vq1SM9nUy2tetU3vUX6W+6DTLf/zMLV/76J9+jWtQJKlPvGE4oRKJ0WjUuM7Ttad9/sQmVv/0JV2YsUiEg888/vnsncSk34mFvTN1haewdnan6NA/CElMY7S/mwt7/sqqh15APaXk9Odvs/TOx7BydCUm/Q5aKnTNboff0m3bhufeQT09Rcjyddh5+PLPX97F/OTtlB3dy8RQP1bO7oSv2sTCDT+io6aMoozPuV6Qx/L7foFLYBg5779Ed10VKU+8TtOVfMEON6UYZ3ywl3P5uYz0dBK+ejM57+5k8fafIhKJyHnvV6z92W8IiFuFkdyM3S/8mPkpt9FQco6Rng5itzxAQNwq/v7UNmK33E/h/k8BiFl3F65B8+lpus6VrH8BOruik28IbkFRDHW2Unz4HwAsu+dJDr7+Dgl3PU7E6i2op6coPvQPKo4f4LbX/oaNmxfL7nkSI7kZ6ulpzv/rA/qaa0l/5k2M5GasuO8XdNVVoRgd5uQnvyPpoZ1cOvg3Fm2+D9d586k+l43cQpfXNzE8wNn3/8iqB5/HO2oJ5cf2YWplS+iK9Tj6zGOoq5V//vJO1j/7NuXH9hOcmEZv4zWKD/+DNQ+/xHBPO4X7P2XDc+/g6BuElaMb40P9/PWB1Wx58c/IzS2RW9rwyU9TWXL7ozoSq7OVsYEexBIpYwM9aDRqas7noFIqqDmfi6WDC5HJ2zn56Vss3v4Tzn35Hgs3/piWiks3iLRXcPCeB1poKrvI+EAvhfs/YdWDzyM1MmbB+rupPHkIKyd3ynL3YOvqTf6uD1h291MExK2itvAk1edyuZL1LzY+/x7mtva0VpVw5vO3Wf3wS2jUKo48sZnF239K6Ip1SGVGNFw+x5m//wEnvxCSHtpJ4+V8QIv/ohWIRCKW3fMko33dlOZ+RWnOV9z3wSEmRgaxsHfmw/uT2PrSXwhOTMPY1IKjf3oZj7AFTE8qsHJ0o7+1ntUPv4RidIjuhmqiUm/nSvYuHH2CsPcKYLSvm666KrLfeYHAxUn0tzaw9me/Qa2axtLRlZz3X8TCzglbN2+i0+5AYmSMakpJe/UV/BYtp6OmlKw/Psfi7T8lIG4VNeePUrD7z4Su3EBE0mZUU5NMTYwzMTyAk18IMmMTbN28+eyxjay8/5eM9HZy5vO3Wfng80wM9dNRU4Z/7Ao+fWQdST/ZiYmFFUvueBRLexcqT2QwNtDDgg334OAzjzOf/57WymKc/UNZ/+wf0KhVWNg5UXkyg/x//YmUJ15HIpXi6BNEd301W3/9V12Gm/vXRTwd18qJWL0Zt+AoZMZfj6uDHc34RC1Bq9Xq8r5sHbF2csfK0Y326iuAVleUcGPsU99YSJ/LCm5qZUt3Q/U3jquKkUG66v89QkoPsViCR9gCVFNKWioKdYrZwLldLXo4eAfS23Qd13lfZwNrNRrGB3r/4yD174KZBJQeJuaWOPmHop6e0m2PVouVkyst5YVotVps3X2wnCPD8LtCpP3f6Mb9/yD0FeOvvPIKzz33nNDwFRUVRXFxscFqfWZmJjKZDC8vL4P8o+TkZK5evUpxcTFeXl4kJiYahKQfP35cCOx2dnbG29ubw4cPs3r1ak6cOMHatWuRSqVkZ2eTlpaGSqVi9erVbNiwQcibSk1NZffu3Wzfvp2Kigrs7e1xdXUlKyuLmpoaVqxYIRAS+iBXlUpFXl4eEomEwcFBZDKZAbmir9y2tLSkqamJTZs2YWRkJDRrLViwgMrKSlavXs358+cZHx/HxsaGxYsXIxaLhSaxU6dOMT09zerVqw0mktnZ2YKla//+/YKVZyZaW1spLCxELpeTlpZGXV0d167pVkj0Vpxjx46RlJTE6dOnhTYrPWpqapDL5Xh5Ga68NjY2UlZWRnV1NaGhobi6uhoE4M7cBzMtczNx/vx5MjIyiIuLQy6XI5PJiI+PN5hAZmdnCzlANyupMjMzSU9PB75W1912223Ccb58+TLNzc1CgLdWqyUnJ4fU1FSOHDkyi0Rpb2/H3d2dkydPsnz58ln7cub+1u/zdevWYWRkRGdnJ93d3QLBoVebiUQiwZYVFRXF2bNniY+PN1BNnDhxgtjYWIPP3d3dTXl5ObGxsRQVFc2pWpm5PQcPHiQ1NdWAiOjv76ehoYHQ0FCysrJYvHixYOssKirC19f3G+1X77zzDn/84x/Jzs4Wfi6RSPDy8sLHxwcjIyPGx8fZtWuXkFlz+fJllEqlkO0QEhJCWVkZKpWK6OhoqqqqhIl3WFgYnp6eQri/l5cX58+fB3ThzXpFjN562tfXJyjjpqenKSoqYmhoCAAnJyeioqLIy8vDw8OD6upq1q5dO4uM0I8nepSWljI2NsbSpUvRarUcPHhwFkF6/Phxli1bNitnqa2tjaKiIjZv3kxfX98t9+U3ncN6nDhxgqioKEGlNtd1o1AoyMvLY8OGDYyNjc0if/TNiMPDw1RWVgrkaGNjIyUlJaxcuZLGxkbc3Nxoa2vD2tpaUIrdfG7rfxYXF0dxcTErVqwQlHtarZYrV67Q2dkJwMWLFwkKCrplyPjN+1yP1tZWLly4QG9vL+7u7lhZWc1qowMMAuP1z9NnQV28eJG1a9eiUCgEpY6lpSXx8fGCfWxwcHDO6ycjI4N169YhkUgoKirC29vbwDZ77tw5FAoFq1evZmhoiJqaGhYvXiwUSwDExcXR0NCAj48Ply9fxtfXV8hdu3jxImq1mpGREUZGRkhOThaCyK9du0ZZWZnwfaBvWWxubmZ8fJyQkBBGR0fZs2cPIyMj3HvvvVhbWwv7orOzE1dXVz7++GPc3d3RarU88cQT7N+/n/DwcEZGRrhy5QqJiYkcPnyYtLQ0MjMzWbt2LcbGxuzZs4ft27cLuW3GxsYCKTU4OMiRI0ewsrJi8+bNBsdPrVazd+9eZDIZa9asEQjvzMxMUlNT2bdvHykpKeTn52Nvb8/Q0BCXL1/ml7/8JcPDw9+a9fUDDKG/f0r/+Vu4BUXNOXa0VhbjFqJbgVerpmkuvXDL8O7/BNOTCporCjEyMf23m5duheayi3iELTQgbYZ7OpienBDUS3NhSjFOZ20lWo0Ge08/zG2/XnAbaG9CZizHwv67B7+3VFxibKAX99AYRvu6hAkE3MgNFEuwdHDB3M4RsViXCaJSTuLgPU/ICJqJscE+ehuvYWymq7a3cfXCxkW3kNTdUI21swfGpuY0lRagUipxC4lmtL+Lk5+8yVBnCwFxq+htrkWr0TDc3YazfyhddVX4RC+lv62BkZ6OOT+Hjas3gx1NX/9AJMI9JJq2qhK8InUBzbeCnbsv/W0NgC4EebSvS1dNr9WgmlISnX4nlzP/SdDSZGrO597ydeaCWCLB2MwCxcgQwI28HDHTSoXw+5nqPZmxXPidibkuhH2u3wHILa2ZHBtBbmFzQ4VgjXp6iinFBLFbH6Rw38cA+C1cTuOVfDSqaWQmpkxPTuhCwW9MsI3kpkwpvibUZ+7Lm7dPv390Qc1LqTmXQ/CyVKrP5WDn5kN/WwNyS2vh884F/WsAhK3cQOXJQ1i76Jrj/hNIZEYG56+R3Iwpxficj7V192GgrXHO51k6ugrnmaWjKxPDA6iUk4ilMjQzJt0z38PeK4C+G1lLrkHzMTKR01R64YZFzgeZiSkdNaUGz9WfVy7zIui8prMKhiSmc/XM183CIpFYyMsb6e0k8cfPcObzt7Fycme4u014nI2rl6AMnAn9OSuWSHAPibmhuhIjMzEhMH4NlScyCIxfw/WCY3PuJ7egKDprK7B2dmfgRmPdN70fzD5P57r+jEzNmZoYY96StQx2NjPS28Xk6BDeUUtoupLPwk33YmxqzlBXK8EJqdh5+DI5Nkx/awNuwVE0lV4QVLNTinFdg2BINE2X84XvgpG+LqYmxoTxdK4sPeX4KO3VV7D18MXayZ3WqhKc/UMNiK2ZGO7pQDU1aUCI6SEQUt9g2dOrRb8PFKPDdNVWYmHv9I3fDc3lhXjNULC2Xb2Mg3fgnGqw/wS3IqBs3X0NWiX1qLt0Cr+Fy3V26Bnb19/awNhAj2A51au8phTj/O1nG771/ukHpdT3RGJiIlqtFplMxqpVq/joo4/4y1/+IuRLgS5M9/bbbycrK4u2tjaBrLhy5Qqjo6Pcc889lJWVCYoL0E2QQkJCuPPOO5HL5fzqV79CqVSyaNEivvzyS3x9fQ0mUwCHDx8mJyeH7Oxs4Qb//fffx83NjezsbD755BOWLFlCWFgYY2NjvPjii+zbt4/s7GyhHe78+fMMDAyQlJSEWCwmPz+fwMBAwdZ1+PBhFixYwOTkpDAhP3jwIAsWLODixYtCs9bVq1cRi8VCWPTAwAA5OTloNBr+8Y9/MD4+zvLly2dNeFUqlYF6Zfny5YIVRY9Lly4xOTnJ1q1bBQuFv78//v7+aLVaIbT4N7/5DUVFRfzkJz8RVAMzMRf/6uXlRWNjI2+99Rbvv//+LfNexGKxYJWc+XqHDx8mIiKCN998k6NHj5KamopSqeTixYuMjY0hEomIidEFdh46dGjOVkFra2sGBwexsbERAsJFIhFisVjY5/Pnz+fkyZMCEanVaqmpqRHISIVCwfnz55mamsLGxoa//vWv9Pf3Mz09bUBC6NuwZmL9+vUcOnSIrVu3Ul1dLTSC6S1yK1asMJjkOjk5sW3bNvLz8ykvL2ft2rWIRCIhq2YmnJycsLW15fbbb+fw4cNz7lu5XM7ExARXr14lPDx8lv3Nzs6Ozz77jM7OTjZv3mxwDDQazZzqp7a2NkpKSvDw8GDFihUkJSWRlJQkXEMqlYqWlhbOnTvH1JTuxuXBBx8kOzub8fFx4uPjDXJlVCoV5eXleHl5CdY3/TlQVVVFdnY2w8PDvP766/zpT38iJSXFgHjVkz0+Pj6C+sLU1FQgMPXo6uri6NGj3H777Rw7dmzOhsjx8fFZlrn58+dTW1vL0aNHkclkBtePHpGRkZSXlwuka1dXFxcuXMDd3R0vLy+uXbtGSUmJoJ6cCf21IxaLSU1NJSsrSyBSZ35GsVh8y3Y+PYyNjVGpVLz55pucOXMGjUZDXFyccM1GRkZSVlZGZ2cna9asYXp6mpycHNzc3AQF3cWLF4mJicHZ2ZkDBw7g4eEx67zRIyUlha+++gpzc3PEYjEFBQUMDg4KmXjR0dEMDw9jbm7O0qVL2bdvHytXrpyVh3Yr2NvbI5fL+dnPfsaBAweIipp70n0zPDw8cHd35+jRo2zbto3du3cL4eIzzz2A6Ohouru7+eqrr9iwYYPw+/r6ery8vIRrYP78+Zw+fdqgXCIhIYGhoSH279/P+Pg43t7eZGZmYmNjQ2pqqnCe6u2bM9V3ra2thISE4O/vz9GjR9m+fTv79u1j1apVaLVa6uvr2bZtG7m5uaSkpFBYWEhRUZHQEpmTk4NWq6WsrIyamhrB9vrkk0/y9ttvY21tzT//+U8sLS1JTk4mLy+PoqIizp8/j6enJxcuXBCIuFWrVvH++++zaNEiurq66O/vF8bJgoICYZ/HxsZy7tw5uru7+fGPf0x/fz8ZGRlCe21paSmdnZ0cPHiQhoYGgRTV50O6urpy9epVgahasGABnZ2dPP7449/pfPgBt4aj97xbXhtarUZQCkmkMuw8/eluqMHJN+i/ug1ddZX4RC1hrL+HztpKoentP4VWo9FlP930fWTl6Erj5fPYufve0kJoJDcTbuz7Wuroa6lHZiLHJSCcsYGeWRMetUrFxHA/44P9QuPfzfv17D/+qAvg9g0Wgp1vBfX0FF6RcbqJxoJEg+3UarV01VXityCR1soifGMS6G9toPFyPp4RsRiZmDKlGKen8Rr2ngHILW1ou1qCnYcfy+5+gprzR2dNjrvqqgBovHz+G7fLgJDSbQxtVSUA30hIAQIhBQhkycxJ9eXMfwJ8b0IKdPbTmQTNzYHEN9tJZ77vTELq5t8BwutODPcb/B8QCCmA+qLTX7/GjeyimYqPmYQUGO7Lm7dPv3+U46PUnNPlTlWf1S3i6ffjNxFSM18DoPLkIYD/mJACDIgl4JaEFCAQUnM9bybxOfPfNxNSM99DT0gBBuSTRjVNb9P1ObdBf17pCSnAgJAC3Vg3Ptgr/P/M528DGBBSwC0JIv05q1GrhXwnrVbDlGKCyhMZALckpADaa64AGBBS3/R+MPs8nev6m5rQjUXX8g2t7k1X8gEoOvgZIpGYgMVJjA30YG7nSHtNmZCNJDM2YXpSgcxErsssu5EvZevhS19zLfZeAfS31hsQRKIbixgzVbXGZhb4LlhGX2s9tRdPoBgdFsoc5oKVoyuNV/JnkVKK0aF/27L3bZBbWOETvYSR3k4aL+dj5+EjtNndCqrpKdSq6f+YkPomBdRcBNTNaLt6Gbdg3X2uRCozCM638/DFzsMXtWqartpKppWTyC2ssHbx/JZX1eEHUup7oqWlBT8/PxwdHWltbWVqaoqtW7diamoqWLD2799PXl4eS5YsQSwWc/HiRf71r3/x0UcfkZubKxArGzZsYPXq1YLdycXFhZ/+9Keo1WrCw8Pp7++no6ODRx99lNdffx2lUom5uTmOjo7s2bOHBQsWYGJiwpo1azh27Bijo6M8+uijwoRRP9lOTk4mMzOT/Px8bGxs8Pb2pquri4ULF/LJJ58QHx+PqakpBQUFxMTEYG1tzfXr1/Hx8eHChQs4OzvT2tqKQqFAo9EIWTJ/+9vfaGlpISQkhJiYGEpKSoRMGn3ukFgspqenB7FYPKf1pLy8XAhsBx0BMTk5KUy8Dx8+TEhIiLBqfzOxJBKJCA8Pp7u7mx07duDu7k5BQQFRUVEGYes3hyhrNBrOnDnD6Ogoy5cvJzs7m9DQUME6snjxYgMLi7+/P/X19UK1u1KpZP/+/aSlpQmqAX3Wk7GxsaDS0mg0lJSUsGPHDh555BHMzMwICgrCw8NDuIlcvHgxubm5+Pr64urqKihr9OoiveIsKSmJiYkJMjMz6e3tpb6+nqioKK5fv45cLmfZsmXCxHxkZEQIJ5/ZWHXp0qVZId4ymYyFCxdSUFAgZFQdP34cmUxmkMF0s2VtyZIljI2NcfDgQXp6eggJCeHYsWOzKuhbW1vp6+sjLy/P4OceHh7MmzePuLg4srKysLS0JCoqitraWoMqe5FIxOeff84bb7xBe3u7Qf6UWq02IH86Ojq4dOkS7u7ubNiwAa1WS0dHBytWrBCyakCXQePr6yvYxE6ePMnevXtZunSpMBmdCX3jm6mpKUeOHBHOLX0gf1hYGJmZmbz66qtERkbOCmgvKysT9ntKSgoZGRlzEk7Ozs74+flx8uRJqquriYiImEVQ6JVwNyMgIIDOzk527NjB3/72N0QiEV5eXoJt2MHBgZKSEvr6+jh37hzOzs5CRpxerVdbWztnLlZJSYmgsNQrk4qLiw1UhadPn57zM808b8bGxjh8+DDr16/HzMyMtWvXotVquXDhgkCQ6UOrRSIR5eXltLS0kJycfEvSad26dRw+fFhon5sJjUZDTU0NMpmMdevWkZOTY5A3psf58+dJTk5GIpEIFuagoCD8/L4hOFOlEqyEKSkpgkLnzJkzjIyMsHz5cmFsmAtTU1OCenTnzp1MTEywePHiWcdbDycnJ7Zu3cqhQ4eIjo7Gy8uLK1euGFhdZTKZMPbOhLW1NWFhYQQHB/Pxxx/j5ubGvHnzZp2noAuwHx4e5s477+S1114zCA0XiURs3bqVP/7xj+zbt4/8/HyDMSE4OJje3l42bdrE8ePHWbt2rUDor169mjVr1lBbW8sjjzzCsmXLGBsbw8jICJFIRFFREVKpFCsrK1JTU/nqq68wMzOjoaGBhoYGtFotTz31FAcPHsTOzg5PT08mJyd5//33sbe359y5c0xPTzM2Nsa2bdvIzMzk2DHdjXlfX59AOkdGRhIVFYVGo8HExISYmBhsbGxoa2ujoKCAHTt2UFZWJhC709PTnDx5krvuuoudO3fe8nj+gP8urG4oGybHhjExv/V19H2hUauRSGVYObkxpRhnoK0RW/e5LYDfB521FbgEhs/5O7fgGy13YbNV2DfD3tMfe09/phQTtF0t4eSnb7Hy/mcNHiOWSDG1tsPG1VOoOJ+J7vqr/Oid/XTVVjCtnPxWUkoPr8g4mssvGuRQtVYW4Rm20OA97Dx8sXZ2p6W8EKmRLuvJLSQac1sdka+enqLi+AFcAyOESfMP+AE/4AdotRqMzcyZmpzgs8c2kv7MW8LY4hIYQWtVMWbWdth6+Ao/t3Zyp6n0AjK5GaZWhsIGR5959DReM1hcmFZO0l1fhXp6mrGBXrRajY5EE4mw9/THzHq2G8DC3pmR3k6h4VAxOkRXbdX/CiE1E5YOLlg6uNDXUkdDyTlcAiMEiy3oVJjTyklkxia0VZX8G4qsIfpbG4TCEAATCyuc/UN1eXzfE6N93UiNTJBbWAO6/d/bdM2gYAN0C0tuwbq4C8XIIK2Vxd/p9X8gpb4nBgcHOX36NDY2NoLCyMTERLASODk5CXays2fPsnr1auLj47l27Rq//e1vCQsLw83NjeHhYf75z3/S0dGBQqEgPT2dsbExhoeHCQ0N5cKFC6xZs4bm5maampooKioiNTWV0dFR/v73v/PYY4+RnZ3N9es6tj4lJYUPP/yQ6Wkd89nZ2YmLiwtmZmZUV1cjEomIiori8OHDeHt709bWxrFjx/Dy8kIsFnPkyBG2bNlCRkYGoJv4bt68mbKyMi5fvkxZWRkFBQU8+uijrFixgn/9619C8OyRI0cQiUQ0NDQwMDAgtEXp1SISiYSkpCSys7Px9PQ0yL6ZmW+kx5o1a/j000+FuvO5SAI9WlpaKCwsJCkpCT8/P1QqFYGBgVy5coXS0lJ8fX0JDQ0VSCmtVsvZs2cZHh5m2bJlAgFkaWnJyMiIkGNVUFBAYWEhK1euxNLSEh8fHyELq6enh9OnT7N9+3aD0O7w8HDKy8sNsnzEYjEymYyzZ8/S1NTEypUrqampMQjNlUgklJeXo1KpDKrmbW1tGRwcNPi8crkcd3d3Ojo6eOKJJ4Q8s5mYGfa8detWzp8/T2trK0uWLJmV0aOHl5cXzc3NlJSUMDo6yqpVq2ap2qanpw0mqKDLe4qNjWXVqlVkZWXh4+NjoFzSB4z/+te/NrA+abVa2traOHXqFAMDA+zYsYNDhw5x4sQJ/Pz8DCyeGo2Gt99+m7Vr13LlyhXKyspwcHAQ2sIkEgmdnZ1cvHgRNzc3g4wifai7XC5ncnJyziyo4eFh1Go1mzZtIjs7e5YdUqvVCsomABMTk1nh/ePj48hkMtLS0ti9eze33XabwYR/ampKUKxJJBLCw8MpLS01uBb0n7W8vJytW7cSERHBV199ZdDKCTriLS4ujptx6tQpLCws+Pjjj0lOTkatVtPc3Mzp06cFouLuu+/m4MGDBoUFM9WKq1evJi8vb1b2V3d3twEBFRQUxOnTp2lra8Pd3Z2LFy8SGxs7a996enrS2toq5LhduXKFHTt2GOwbkUgkqMXa2trIzMzkF7/4BXFxcezcudPgmgDd2DSz+VAmkxEdHc3777/PnXfeSV5eHiqV6kZjlVggl/Lz84Um05nQarWzFHdpaWmcP3+e4eFhoqOjDdRpM8eQpKQkA9WaXi2qJ73nIqdGRkY4c+YMUqmUFStWYGJigpGREWvWrPnWgHKJRMLmzZvJz8/n5z//OR988MGcj5sJhUJBbm4uAQEBlJWVYW9vj5OTE8XFxRQWFgI6Il0/lltaWrJmzRr+/ve/s2jRIq5du0ZpaSlPPfWU8H5mZmYkJCQI+VJ33nknf/nLX3B2diYlJYWsrCwGBgYQi8XU1dXh5+eHs7MzBQUF9PT08Oijjwp22vT0dCoqKoiMjOTgwYMcPXoUrVZLSUkJv//976mrqyMlJYWCggK6u7s5deoUAQEB9PX1MTk5yUMPPcTx48dJTU2lpKQEtVrNhx9+iKWlJQkJCYIl+s0338TV1RVXV1emp6eRSqWsWrWKAwcOYGlpiVwuZ/v27VhZWREYGMjevXuRSqXs2bOHbdu28e67737rvv4B/x40ajUi0WyC1D00hvpLp/FbNNuG/u9gcmwEY7Ov7yccvANprylltL9baI77dzGlGL/lCra+rn1KMSH8+9tgJDfFzMaetY+8zLRS8b2shpNjIzj5heATvZTGy+dxDgg3mOjcCjJjOVaObkJY+nBPByYWVhjJZ2cISmRG+EQv4dLBz7ic+U9Sn3yD0d5OtFotV89kMj7Qi+u8SCZHh77zdv+AH/AD/r+PirwDrHroBUJXbsDM2o7mct19iEgkYrS3k+nJCVwCIxhob0I5MYpKOYlILGbX8/fcaIm8ipmtI6ZWNhibmjOlGEc5MUZ3/VW0Gg1SI2Oc/cN0tlqxGI8bpLpWq9UpUZtrQSTCws4JG1ed+8Hew4/GK/lYOrj8nxFSM2Hv6Y+dhx9dtZV014/iHhKD1MgYR+959DZdx8bVE2NT8zlzsfRQjAzS39Y4i4ByCQj7twiom6HRqOlprDFoaNVZXb85d1NuaYNn+Hcj0757J+0PAHQXzV133cWxY8dQq9W0tbUxNjZGaWkpcrmc5cuX09zcLDRxgc5mt3nzZhITE7l48SLj4+NkZWWxefNm/P39SUtLE7KU5s2bh7W1Nba2tpw4cQIjIyNcXV0JCQmhqqqK2tpaFixYwN69exkdHWXt2rXI5XKqq6txcnLixIkT9PX18cQTT2BpaUlvby8hISE4ODig1WqRy+X09vbS09NDUlIS9fX1WFpaolQqefnll5FIJKSmpuLg4MCaNWtYuXIlERERwg28RCIxmCC7ubkhl8uFLBAvLy/S09NZtGgRYrFYuPmXSqWsX78eU1NT9u/fP2d4rEKh4MSJE+Tk5PDxxx9jYWHB+fPnDRrg9O1zGo2G7OxsOjo62LZtGzY2NlhaWgrthVFRUaxbtw4TExMOHz5Mfn4+p0+fFux269evNyBz9KSUHvHx8axfv56ioiIyMzOZnp4WLHNXrlyZRUgBeHt709xsKH+tra0VQqgDAgJoaGggLCyM5ORk4c+KFSvYv38/paWl5OTkkJubS1FRkfCe+vfNzMwkOzsbFxcXoqOjqayspLh4Nvusz+/QY+nSpbi7u7Nv3z7a2tooLS3l2LFj5ObmGvzRWzzDw8PnzBWai5RqbW2lvLycoqIi2tvbZ1npMjMzWbdu3SylmkgkwsPDQyBODx06xMTEBAsWLMDPz8+AtOju7hYCqvXH1c/Pj8zMTH7+85+za9cumpub2bhx46z2OH1mDeiUZ/pJ+EwcP36cpKQkJBIJUqlUUBjqcfHiRaF5EXQW0zNnzhg8Rt/yJhKJSE9PJzPTUK5984QqMDCQ5uZmYYzQIy8vz0DNtX37dvbu3Wugfrm5sl6pVLJnzx6CgoJYsGABxsbGKJVKJBIJvr6+rF69mpSUFExMTNi9ezd2dnYG26Nv9QNdg6CRkZHBNXer2MHly5dz4cIFBgYGGBgYMFAm6hEcHEx1dTXFxcW0tLSwadOmOdU5eri7u5OcnMz69esJDg7m+vXrZGVl0dDwtRWjrKxMUFe2t7eTk5NDdXU1O3fupL29neXLl5OSkkJqairJycnCdRkfH4+vry/5+fkG71lcXCxkfM3E0qVLkclknD59murqaoKDgykuLiYjI4OwsDBhPJsLenJq3bp1XL58mUOHDlFeXs7hw4e5fPkyaWlpwjHRQx9QHhwczN69e+nq6pr1ukqlkmPHjjEwMICvry8lJSVkZmZSVlYmHCd9MQBAYWEhJ06cYN26dYSFhREUFER1dTUSiYTY2FjS0tJITk7m3nvvFQLufX19kUql2NraMjAwgLm5uUCYm5qakpqairu7O3fccQfz5s0jLCyMX/7yl0I7nz7Af+nSpZw7d47q6mpCQkIQi8UkJCSgVCopLS2lt7eX7Oxsjhw5glgs5tixY4yNjbFy5UpcXFzYvn07u3btori4GI1GQ29vL46OjsL1derUKVauXIlSqeTcuXO89tprWFlZERQUxPLly5FKpTQ2NpKTk8Pq1auJjIyks7OTwcFB4Zyvq6vjvvvuIycnh5GREWHc7evrE7IV5XI5w8PDs47FD/jvYaCjCRs371k/F4lEeIQtoK3qu62yfht6GmtwvMkO6BY0n76WOpQTY7d41rdjoL0JG1fvb3yMe0g07dWXv/NratRqRno6cAkMx9LBle76q9/pedOTCqQzslN8opfSVVuBYvS7ncM2rl5MDA+gGB2mr6XOIFB35veGVqul8fJ5ghJSWPng80xNjOMWHI1n+CIiVm9h+X3PIpZIiVizda63mRNJvpEG/3ex+DrfSnrD2mllPPeY+2DMalwsbLA31ZGOd0Ysw1auIwk3B+sWcZ6IM1xsMblFkP63wddGdz/iYm6DCN0+me/8tdrO0liOo5mV8O+Zz5mJTUGGbYe3h38diP/TBbr8wcdj01juHQog/K3/XABuFrY3fjfbhprsr1MqPBCtazn1t3UmyvnWqsBlXiGs8ZsP6PbNzMduCzUs5UgPXMBST50d29rEDPGNc2O139fH0NncGgA7ueHCspOZNaYy3eKohZFu/0Q6e+Nuaccit4A5t83GxJwwx69V8iZSI7aE6I7rPZHLZz3ex1qXyzZzvz+8ULdPNwfHYST5+v7dRGpEqKPu/iXQzpVAO1eD7V/oqsv8eSw2lSB7N0ykujnQ7eEJwvY7mFlyZ4TOLTPztW+GtYkZT8Tpog8sjeWsm2d47xFk7yacw3NBfw5Ym5gJn1t/7H8er1vAczSzwt/WGROpbNY15WSm+0zSGaUKM/+91n8+AAle39xG52Jhw4Mxqwmyd5vz9/rrYi5EJm9HIpXhG5OApYMLXhGxeEXEYmZjz/l/fUBrZTGK0SGM5KbYe/jjHroAG1cvFm//Cc7+YVi7eKIcH6G9upSWiksc/+vrdNVW4hYcjVdkHG7BUQbqUP24JRKJcPAKwCsyDq+IWKTGJrRUXKK57CKdtZUYm1ow0NH8f05IzdxOl8BwPMNj6bhWRmtlERIjI1RTk3TVVuI8Qw2mGBmk7eplWiouCX9GB3pwCQjDM3yR8MfRe95/hZACnYCAUD8AAQAASURBVGXTK3L2gvh/Ez+QUt8TUqmUN954g2XLlrF48WJeeeUV8vLyWLt2LUZGRuTl5REQEEBGRgbt7e1kZWWxYMEC5HI5arWa5ORkwWJy7NgxQbkwPT2NsbEx5eXlnDx5kmvXrpGUlERTUxNHjx6lvr6esLAwjh07xvDwMG+88Qagm/zU19fj6OiIVCrFy8sLS0tLYSLr6enJH/7wB9RqNTk5OQwNDeHo6IhIJOLYsWOkpqZSWVnJ1q1biYmJwd/fnyeeeAJ/f38iIiJ49913qaurY8WKFdx1110sWrSIXbt2ce+995KVlcX58+dZsmQJa9eu5dixY7S3t9PS8rWPvL6+3sACExgYyMaNGzlx4gQlJSUoFAqOHz9OVlYWBQUFxMfHk56ezquvvsq6detISkoSiKELFy4glUqpqanh4MGDLFu2zEAxYmFhYUAsga7xcMWKFRQUFLB//37s7e1nKYtgNiml37erVq1izZo1HD9+nJSUFGpraw3Cim+GXC5HodB5rzs7O6mvrxeCmkNDQ6mqqpr1nMnJSX73u98REREhEFXe3t6cOXOGI0eOsGPHDqRSKenp6aSlpeHq6kp/fz+hoaE4OjpSXl5u8Hq9vb2z8nA8PT0F65+TkxOrVq0yIMaSk5Oxtramr6+P6elpsrOzZ5ERN+dTtba2UllZSWpqqgEhqEdpaSlBQUEYGxvj7u5OW9vXfnl9WLtarSYlJQW5XM5tt93GhQsXqK+vN3id5ubmWQH1tra2SCQS4uLiBOXLzcSPQqEwmPQ7OTnR09Nj8JjKykpBSQcIrXAzoW861EMmkzE1NSXsn5GREczMzASS0sLCgqCgIC5duiTst7lyr1JTUw3C17u7uzE1NTUIAZTJZGzZsoU9e/bMskXq942e4NbbTRctWiS8tx7V1dVYWlqSlJTEtWvXDH43Ojpq8J4rV67kxIkTBvsoLGzu3JWlS5cKBObRo0dn/cnLy+OBBx4wsDd/G/bv388rr7xCaGgoqamppKamMjU1RXZ2NtnZ2Tz33HNCll5vby9r167F0dGR+vp6BgYGZhGneqUO6CyOpqamlJWVCb/v7u6+ZTtdeHg47u7uLFy4kBMnTuDo6MimTZvmJG3nUnKIxWLmzZuHSqXiueeew9PTk+XLl38jMefo6Mi2bdu4fv06x44dQ6vV0tDQwJEjRzhz5gzLli1j3bp1rFq1irS0NNLT07G1tSU7O1uwwR49epS9e/fi4uJCenq6cG4aGRkJalrQXYd79uzh+vXrxMTEkJaWxuDgIJmZmRw+fJjbbruNsbExtmzZQnJyMgEBAezbt4+RkRF8fHz461//ypUrV3jqqafw8PDAzc0NX19fKioqKC8v54033uDxxx8nJyeHq1ev8vnnn2NhYYGnpyelpaXk5eVhYmJCc3MzixcvJiIiAiMjIw4dOkRHRwfvvPMOMpkMiURCf38/R48e5fz582zYsIFTp05x9OhRysvLmZqaYmBggLq6OhYuXEhFRQUjIyP4+uosAPrjtXbtWo4ePUpnZyd5eXkoFAp27dpFQkKCEOC+YcMGoSDkgw8+QKVSUVtby2effXbLY/YD/jNMDPVjbjM7BxJ0+SDG5pYM3ZS38u9Aq/k6t2omvOfH01JxySBj4/tgpLcTK8dvzgMRicVY2DszfItQ75vRUnEJjxvqKGtnnV17qOvb90FnbQXO/objtXfUEjqvl89JTClGhzC5SUXlEbaQL5657ZYtStPKSeoKT+IWHI2lvTMmZhZ4Ry+hrug005O6+x+ZiZysP/yS8mP7brmtzyVs5pdLdc3Arha2xLoH8E7yfcKkfV3gQmLdAnCzsOWFhC38Ye2PGVZOsNQzmLsjE3kxcRtLPHUkY7C9G52jgyzxDOad5PtID1zAgGKMh2LWUNXbyjPx63G3tOeVFbcT4eTFU4vXMamaJtYtgG0h8ZjJjEn2j0J24/xY6ROOxw2SZIlHECEO7oQ7evK7pLu5PzqJ3yXdTefYIC8mbuPEj37DPHvd8U8LjGGenRubg+P4Q/K9jCgV3Ba2hIbBbj7Z8Ai/StS16K7xm8/BmkLMjUx4avE63l77YyKcvHl2yUYAwhw9eWPVnVztbeN0UxV/3/Q4vRO6e1Q9yfbm6rtxNLPi5eXbBYIG4I/J9wHw7JKNvJS4nRU+4TwZl86ji1LRAo8uSsFIIsXPxlkgrJZ7h1Ld20ay/3xeX3Un8+zdWOYdwh/W/pjl3mG4mNvw7JKNPL14PTKxhN6JEe6KTORfW59iaHKcXy7dzCqfcBI8Q9gYtIjnlm6ia2yI/1nzI/oVo6z0CRe2yd3KjolpJa+suJ3bwpYQ4eTNj+avoG2kn9TAGF5fdSf3Ra0E4KGY1cx39uHuyEQU01N8vP5hfpW4jUnVFNEufvwqcRsxrrrv953LdASoj7UjMomU+6OTWDdvAUm+kfw8fgPLvEJ5beUdpAREE+7oKRB6d0Yso6qnlfdTH8DXxok1fvN5efl2usaGsJWb0zzcy1tr7sHd0p6avnb+lPYgTy9ej5eVPaNTCv6QfC/PLdUVyzwRl46/re5eLMTBnSTfSP5nzY+E47Z+3kLevZjJuyn3syNsKX0TI7yy4naBUFrlG8EjC1N4e+2PeTBmNU/EpRHnHsi20HgeiE5ipU8Ef0i+l6HJcWJc/Xh15e1c62vngegkPK3s+emCtaQGRBPl4ourhS3HG8p4c/U9pAXG8F7qA9wevpQ/Jt+HTCzh1ZW3s9QzmLfW3APAy8u3c7SulP23PUuMiy+/WbEDgChnH3aELeWuiERSA6J5deXtdI4O4m5px68St/HZxp9hY6JTUz4Tv4GnFq9jxwyC9WaU5e5BLJEgN7dCMTrM5NgwDSXnEEukpD31W+Ynb0c9PY25rSMyEzkikYj+ljrCkzbTWVuBsak5du6+eITGYG7jwOad7zM9qZiV5/dtsLR31hFikXHYuHjSWlXMnhfvx/0b8qf+LyCWSPAMX4RzQBjNZRe5sOcjRvt7aK0s+j8joG5Gf1sDVo5uc1rBZcbyb1VLfVf8QEp9T5w5c4aoqCjhxvcXv/gFy5Yto6CgAJlMRnBwMA8//DByuZyGhgbS09Oprq7myJEjPPLII+Tn57N3715EIhHe3t5CJklrays5OTn09/cTHh6OmZkZOTk5iMVilixZwvT0NK+++ipBQUEEBgayfft20tPT+dvf/oa5uTm1tbXcc889vPnmm8jlco4fP86f//xnPvnkEx577DF6e3sRiURoNBpefPFFwsLCGB8f5/3332d0dJQvv/yS2tparl69yqeffipszy9+8QsmJiZ48MEHyc/PJz8/n5aWFqKiolAqlQLhVlRUxMKFC0lKSqKiooLu7m5AZ6+7mVAQi8U4OTnxwQcf8MgjjxAfH09aWhqrVq2a1XqlD21OT0/Hx8eHlStX8umnn7Ju3bpZ+THGxsazVC61tbWcPn2ajz76iMceewx/f38yMjJmKWZmqgtmYnh4WJgYPv300yiVSnJycoQ/JSUlBpO8ZcuWcfbsWUZGRigoKJjV1hUTEzNL3aTPK0pISODcuXMAODg4kJSURHp6uvC+cyEiIoKenh4DVUVPT48BKaVSqdi1axcbN27koYcewsnJaU6SZGBgADs7OyIiIli6dCl79+41IHGmpqaECX9LSwtVVVUGzWozScHx8XFaW1uFYOOAgABqa3WhkaOjo+zevZvY2FgiIyMF0kkkEpGWlkZ3dzdFRUXC6w4NDRkQiXrFSWJiImlpaWzcuBF3d3f2799PR8fXN/znzp2blZ8VEBAgWF41Gg3Xr18XGjJBZ82bmpoSCKCrV6/OGX4fFxfHxYu6oEf98ZuJwMBAJiYmaG9vn2Xp1EMmkxEYGEhlZSUAZ8+enbW9+m3auHEje/bsMSAKCwoKaGtrY/PmzQaqvZsJ1oGBARoaGoTA/fj4eEEtNFf7nUQiwdramv5+XdDqXNdwY2Mjhw8f5urVq7zwwgssX76ctWvXzvoTGRnJ7373O2E8+DZkZ2ezcuVKA4upSCQiKCiI1NRUjIyMePTRRwWySm9/bG1txdfXFxMTk1nXcVVVlQGpFhUVxcjICPX19fT398+y8/X19XH8+HHhGq+vrxeIndLSUoNz7JvQ09PDwYMHaW1tZc2aNZw6dQqZTDYn4TsX9E2JKSkpXLt2jXXr1rFmzRqBaLW0tBQUPB4eHqSlpZGWlkZ1dTXbtm3DzMxsTgJeD61Wy759+0hPTxfGXX1Gn5mZGVNTU9jb29PR0UFOTg7PPPOMYOP+9a9/TVVVFbt27aKrq4u8vDwuXrxIcXExO3fuxNHRkcjISO655x4eeOABpqencXBwwM3NDXt7e7Zs2cI999zDzp07GRoaIj09nWPHjjE5Ockrr7zCww8/DMAvfvELwsLCeO655zA1NSU6OhqNRsNnn33Gk08+iVyuu2F9/PHH2bx5s2A11wfuv/fee9jb23PgwAEee+wxjh49SlNTE3fccQcmJiZUVVWRm5vL8uXLhfG8paWFlpYWurq68PPzY/Hixdx///3cfffd3+m4/4D/Phy95zHQ2jArvPj7YHywD9M5skRAd977xiyjofjsd7o2Z2JiePA7WeNAZ9Hob63/1seN9HZgam1rEDrr5BfCcE/7tyqetBrNLIuHSCTCJ3rpnMTUUGer0KQHujDdukunWPXg88hMTGkqvUBzeaEQ/jw22EdrxSX8Fi0XrIgikQipzIiARStorSom9/0XaasqmXN/ixBhfENJIkLExdbrRDp7k+Qbgbe1A0/m/g1PK3s+SH0QW7kZUrEElUaDlYkpHxYf5c9pD/FQzGq+KDuDuZEJjYM9nPzRb5BJpPxmxQ48LO0p6qjjF8f+ztG7X0Iuk/Gb5bexpzKf6/0daNFS3t1MgJ0rTy1eh0I1zTx7V15ddQcPRCeRHBDNJxseITUgmk3BcSR6h7IlJI6rvW1sCI7lUnstVsamPHf8C95e+2NeObOHC63XSPaP4rdJd7HKN4J75i/nw+KjuFva8fLy7Vzv6+D91Afonxilrr+Tt9bcg4OZJe+m3M9Ly7dzvrmajJpLPH/8S1QaDR+kPohYJOKLsjMkeAXzYuI2qnpaqOpp5b3UBxCLxOzd/nN+mfcFd89fzm9O76F/YpT3Uu7npcTtmBsZ84e1P+bBw3/BydyKO/f/kUXuARyovsjdkYn86VIOLyZuw8zIhFj3AN5LuZ/0wAU8HpfG2wWH+X3+IaJdfFFpNDx99HM2Bceyt6oARzMr3ivM5M019/BCwmZ+euRD+iZ037dWxqaEOHqgQUtGzSU8rOx5Ii4dY4mURxelcLKxgldW6Fp7d4Qt5Zn49SjV03xy+TibghehVE1jY2KOVqvhi7LTOJvb8Ke0B/mqMp/NwXF8cCmbJxen89LJ3bx2Zi+vr7qTnSf+ibnMhBdP/otPNzyKqcyYXVufJs4jkDBHT1QaNScbKjCWSvG1ceKRzI8Ym1Lwp0s5/Cw2jWfi1/N8whasTczYvfVpHsv+hOXeYXxwKRuZWMpLidt5PDaN9MAFPHvsH1gYy7k/OolRpYLM68V4WNlz8cHf8XTuZ/SOD7OvqgB3SztW+0Xyl/Sf4GXtyCrfcC531vOntAfRarW4WtryXsr9PJHzKUYSGTEufrx0aheeVva8ufoefG2c+EfZaf5VcY7DNUXYyC0Yn5rkVGMFIQ7uvHRqF1MqFU/EpSMWiXjx5C4ei03lQPVFxqeV2JtasCVkMVKxmJ/Hb+C3SXdhYWRC1vUSJCIR71zMZGJ6knXzFvLiyV08GZdO1+gg/9yiIxd3bX2a4w1lvHMxkygXHz5IfRBzYzk2cjMO1VxiYnqK35zew66tTxPt4std+9+ha2yITcGx/CH5Xt4uOISfjTO7Ks7xTPz6W45TapWKkswvKdj9Z/rbGvGJXiqMQzauXmg1amEhoq+5FjsPP8QSiVAoAbp7mKHuNmxcvfCMWERLueG8TqNRf6vtWz09RWtlEd31V4lYvYW0p35He/Xlbwx9/7+ARq2mp/EaYrEEqZERxmbmOPuH/Z8QUDdjWqlgtK8b2znUzPB1rtR/Az+QUt8T1tbWnD59mp6eHmJjY2lpaaGvr4+EhASuXbtGeXk53t7erFmzhpiYGN577z1sbGwQi8WsXLmSiYkJKisrkclkBAUF0d7eTllZGTt37uTw4cM0Njbi4uKCi4sLWq0WHx8f4fkxMTF4enri6+vLPffcw5EjR3Bzc8Pd3Z23336b8vJytm3bxpdffsmZM2ews7PDyMiIP/3pT2zYsAGFQoFIJCIxMZHAwEDs7e3x9/fH1taWp59+mvz8fAoLC/nwww+ZmJjAysqKs2fPEhwczM9//nMsLS2JiYlh0aJF/OxnP2PTpk2UlJSQk5PDwMCAMAFKS0sjPz+foaEhNBqNoAro7e0lMzOTrKwsvLy82L59Ow0NDWRkZMxSKd2Mmpoa8vPzOXDgAL/97W/Jy8vj6NGjc4b66nHu3DkGBwcF+xjo1DKbNm3Cw8ODjIwMSkp0TS4SicRAiVJTU8Phw4cpLS0lJSVFsOKALjg+JSWFlJQU3N3dOX36tKDcOHPmDI2NjRw5coTNmzfP2iZ9xo5+UFUoFBgZGSGRSLC3t2dwcFAITNeHeMfGxtLX10ddXR2gIxlmTqSTkpI4e/asQMiNjIwIypfJyUm++uorNm/ejKWlJUuWLBFq4GdieHjYILvL0tKS7du3U1FRIZAvevtec3Mz1dXVswi3JUuWCGRHVlaWQS6RnjCsrq7m9OnT7NixQ/gMjY2N+Ph8LROPj4/H3NzcIHdLJBIxODjIvn37MDExYdOmTZiZmQm5Qe7u7mzZsoWmpiYyMzNRqVRz5mcFBwdTU1MD6JQ9czXNJSYmCva8uro6IWR/JhwdHenr66O/vx9ra+s5lS/Lly8XiCO9/fBmhIaGcv36dc6cOWPQwnczTE1NSUtLExSQBw4cwNXVVbDd3QpqtVpohdTDycmJvr4+VCoV58+fF5R8M7Fs2TKBIJ2JiooKDh06xOjoKOvXr2d6epoXXniB8+fnblG6ePEid9xxBy4uLnOedzc/1s/PTyBUHR0dDcissrIynJycSEpKMlAcnjp1SmhoW7lypYHSraura04VVEJCAtevX+fgwYNYWlqSnZ0tkFANDQ0sW7ZMuMa1Wi2ff/45NjY2rFu3js7OTo4cOUJhYaFwHWs0GmGM0be91dXVsXHjRmJjYyktLSUqKorQ0FDi4uLYvXv3nBZmPa5evUpGRgZeXl7k5uZiY2NDbm6uwYTZx8eHxsZGg+cdO3aMyMhIsrKyhAy2I0eOUFRUNGuyfeTIEVauXGlw3VdVVXHw4EEiIiJYvHgxn376KRKJhBUrVvDoo49iaWnJ8uXLycjIoKuri/3793PgwAGUSiUvvviiYP/Tt76Oj4/j4uKCs7Mz27Zt4+WXX6a/vx+pVIpSqWTnzp34+flRUFBAU1MTX331FS+88AJffPEFHh4evPXWWxw8eJD09HQhqL2xsRFLS0ssLCw4deoUS5Ysobq6msOHD7Nz507Kysr43e9+x8svv4yLiwsnTpxALBYTHx/PvHnzmDdvHq+88grBwcGYm5vj5OREUVER6enpjI6OUllZSXx8PEZGRlRVVXHu3Dk2bdpEe3v7LY/XD/jfh9f8eJq+pXHtm6DPSboVJFIpnhGxNF355nHqZvQ0VuPoG/ydH+/kF0JnbeUtf6/VaultNrTN6eEZvoj26su3JOdGejuwuIW66VbE1LRSIdR2TwwP0Fx6Ab+FibgEhjOtVOA9fzEeYQvoa6nj+EdvUH5sH95RS+ZUnClGh9Fo1Dj5hWJqbUvCnY/N/nxoeSZ+Aw8vXEuQvRsbghfxs0WpuFjYoFSp+FXiNkykMn5z+ivkMmM8rR3YEb5Udz9s48T4tJK3LxzmT2kP4mphi4+NIxU9LTyW/QnmRiaYGxkT5ujJfVGrqO3v5N2LWRysKeStNT/Cw9IeE6mMeyKXMzmtRCaWcGdEAi3DfTyd+xnd40McuVZE02APxxvK+eBSNtf7O8i6XsILCVvQaDQcqL5IlIsPv16xA7nMmHdT7sdEKqNnfJjl3mE8nfsZWuD91AfoGBngN6f3sC00nseyP0EuM2Z35Xls5eaMTU3yRM6n/L30FCkB0WyYt5B7o1YyrVHx56JcMmouIZcZcaapiozqQpzMrXk/9QE8Le35qOQYxR31fLXtGUIdPPhV4jbUWg2P53yKBi0/P/p3zjVXs8o3AkczK+6LWoWJ1IhzzVeRiMT8z5ofYSI1ory7iUnVNI/nfMqJxgoSvUO5PzqJ5xI2k+AZwjw7V36yYA1TahXz7F0Ri8XcF5VEcXsd/5N/iD3bf07jYDf7bnsWkUjE2ear2MrN+fH8FRysvkT/xCiP53yKTCzhybh0rExMefP8QUTAX4uPoZie4unF6+kcHaR9ZIBXV96OndyCuyIS8bCy59Uze3k6fj2Dk2P8dMFaSruaSA2M4bWVd5DgFczzCVuwNDHlt0l30TE6wM4T/6RvYoQrnY1c7W1liUcQO8ITyLpeQs/ECE8tXoeN3IKUgGgGFKM8ffRznM2tebvgEMPKCZ5dshEPK3veS7kfN0tbXjmzB7VWw1LPYPbf9ixP5/6NSCcvnsz9Gz9dsIZHsz7mYut10gJjsJFb8OTidcilRrx7MZPRKQXGEikV3c3sqjjP2NQkB2sKaRrs4eVTX/HphkfZGroYHxtHfrJgDWqtFoVKp8B/LDaVOyOW8avErTiYWtA1PsTm4Dgyai7x6srbMZHKGJuaZGJ6ihcTtyEWiXl68XrcLe147ew+Mmou0TLcR/NwL88f/5JJ9TR/Tv8JDmZWPBabioWRnMPXLvGH5HtRqKZ4Kz+D3vFhPirOo6yrkXBHL36XdDf1A938LPtjIpy8MJEasdQrmFW+4bybch/X+tp5JOsjXkjQldsE2rmhmJ7i3ZT7CXX04JdLN6G4xTgVv+MRpDIjZCammNs5YWZjL9w/6e9TnP1DGe5qQzE6zGh/txBA7ugTRE+j7h6+vfqyEKZtJDfDysnNoBVxuKsNK+fZsRIAyokxmssu0nGtDNd5kXhFxjEx3I+Nqxfe8+NRq6ZpLrv4vRcp/lMMdDTTVHqBtqslOHgF4hYSzaLN9xMYl0Tn9XL6vsOixn8bLeWXhHbYuSA1Mkb1HywYzcQPpNT3hFqt5s0338TCwoJHH30UZ2dnrl+/zueff05AQADHjh3jiSeeYOnSpaxYsQIrKyu2bNnC2NgYvr6+TE1N8d577+Hi4sL+/fv5/e9/z/r168nMzOTZZ58lPDyc559/HldXV1JTU4VJNujsPj09PTz00ENcu3aNn/zkJzz66KM0NDTQ2NhIeXk569atY9OmTRw7dgwbGxt27dqFhYUFGRkZiMVibrvtNhQKBX/961+prKwkJSUFkUjEZ599xvr165HL5bS1tbF161bq6+tpb2/H19cXJycnampqOHnypKBkUCqVxMfHMzY2xk9/+lMhD+no0aOEhoaSnZ3N6Ogo586dIzMzk/r6esFuop+km5mZcfvtt3Pq1ClhgqXPUQIdEZKRkYFSqWTLli3I5XKMjY1JS0tj6dKlZGdnc/LkSQNCSaVSsX//fry8vGZlDOnh6urKxo0bcXBwICMjg7KyMlQqFadOneLw4cOIRCLWr19PYmIiEolEUIIlJCQYTMCdnJyEzJ7U1NT/h73/DIvy3KO+4d/M0HvvHewiRVFREStV7D3RGEuKMSYxxbgTTdlpJtFookl2TIyJMcYuIEWxgF0UG9JBeu8MA8PAzLwfCFccwZS99/08+72frOPgA3P1dl7Xuc71X4vg4GA++OADcnNzSUhIIDU1VSCZejBx4kSSk5MBhPPZgylTpnD69GlA0+snODiY+/fvU1ZW1iv1DGDWrFkcO3ZM+F8kEtHc3MyxY8dYuHChoK4wNzfvZZ7es62+yInJkydja2vL4cOHkclkVFRUkJOT02cJo5aWFkqlkkuXLgmJgdAdDpCamsqzzz6LXC7XIAmhb6+qQYMG4ePjw8GDB+nq6uLUqVPcvHmTOXPmCAmIfWHMmDFMmTKF2bNnExsbS1JSEjk5ORoKOktLS7KysjAwMOgzEdLU1JTm5uZehtoPw9XVlb179xIYGEhNTQ05OTlcvXqVkydPCj5d+vr6zJw5s8/Stp4/iUTChAkTuHfv3u/Od/nyZdRqNVFRUULZbnFxcZ9lfQ4ODlRUVBAdHc2MGTN6jRaFhIQIhuAPn3vovn8cHBxITk7Gy8uLy5cvEx0djYGBATNmzBCUX52dnYKq5mGUlpbi5OQkKJ0MDQ379EADBPXagAG/dcT8/f25ebPbg6W8vFxQkXp6egoeU+3t7SgUCoGEFYvFmJmZ0dDQAHSnTT7cBnR2dnL+/HlkMhmrVq1CX19fIKDCw8MZOXKkUKba1NSElpYWlpaWdHR0IBKJGD58OFFRUbi5uXHixAkSEhKoqalBqVQSHR1NRkYGM2bMYMyYMRqpgz3kj4WFBfPnzycxMZHCwkINo/n8/HyOHz+ORCJh5syZuLu7o1arGT16NGPGjOHIkSMUFRUB3W1PD2nX2dnJwYMH8fX1ZdCgQejq6tLZ2UlwcDBRUVE4OTkRFxdHXFwcMpmM6Oho3NzcBKVQYmIihw4dYuvWrQwbNgxLS0vUajWWlpZYW1vz6aefMmzYMLZt28bcuXMpLCxk9uzZnDlzBi8vL/Ly8khMTGTUqFGEhISwePFijhw5gqGhofBu2LFjB6+//jrTpk3jpZde4rHHHmPLli2MGDFC8JhqbGxk+/btvPzyy1RXVzNv3jysra158cUXWbZsGbt37yYyMpI5c+aQmpqKr68vu3fv5tVXX2XBggUcP36cL774gnfffZcnnniC8vJyfvzxR5qbmwW/LgcHB0aOHMnOnTspKirCzMyMgoICjh07hra2NjU1NWzcuBELCwteffVVoJsUfrhM+n8ZO3fuxM3NDT09PUaNGtWrnPdB7Nq1i6CgIMzNzTE3N2fKlCm95ler1WzatAl7e3v09fWZMmWKoHz9T6Fol6Gtp/+H80m0tLB29dKIvf+r+KNRc10DI6zd+lGedetPra+rU4FES/svmbAbmlkib21+ZKlgWeZNnAb79zmtm1gK4v7Ni312lhorSh45mv3b8uOozLnTSzHVUF5EfVkhngHBiMUSDEwtaG/p/lYQiyXoGhgzdvEavEZNpDzrltChU/4aKlGRc5fGymK8AibgH7kYN98xvSLne/DBhSMMtXHh+fhdHMu6hkLZyeaLx8isLSU+N42WjnameA7DWEeP4fYebL/a/Q081cMHpUqFkY4ed6uLWXbsC14YPY2q1iZ2TX8Wcz0jvryeSEN7K5dLszlfnMm2sOWMcPCiS6Vk07n99LN0YLRTf1zMbPj40nFKmuuYPiCAz8NX0Kro4IuIlZQ01zHaeQCfhi5jiscwng0I48c7yVgZGHNl5YdsPLufLpWSk/m32HI5BrFIxPqkvaSW5wk+P+Ut9UjEYnZErMJM34hPQ57Aw9yWr6Oeobiplv6WDmyeupQPJj/GuykHUaHGRFcfF1NrlvlNZLKHN4u8g5gxcCRelvY0y9t4Pv5bTt+/y9GF63ExtaJC2sjx7GuMcxnIyfzb/CvqGawNTFg1fCouZtaY6Rkw7+CnDLVx5mZFAV9ErMTJxJJXT/2AnZEZ385YTV1bC9vCljN9QAC7b57h3ZSDGOnosjx6B3paOvjauWNtaEJtWwsn828h65TT1tmBk4kld6uL+exKLPdqSlif9CMT3IaSX19JZm0Z7uY22Biasnf2C5jqGbDt6glEwOfhK5Aq2lk7KpIvrsVhZWCMVCHHXN+QNfG7qGxtYuPZ/Rjp6NHW2YG5niF7bp1Doeyisb0VXzs3JroPZfzuNzHR1Se7tozn4nbhZmbDR1OWIO1oZ+3oaawOCONo1lV+Sb/Al5FP4WxiSVunnC6Vkg8vHEFbLGGRdxAW+kZ8FracTy9FY2lgzGNHPuN2VRHWhqbsiFjFYGtnlkfvILuujIh+wzHVM2RT8Hw6lF18HLKUY1nXiOjnT3lLPZsvHsNEV5+dkatQqlS4m9sS5uX3q/JNzMchS5ns4c2eWWsobKzm57sX8LFzY5itK7oSLd4+9wv62jq8fHIPEpGYQxmXMdbRZ1PwfAZbO7N42Hiy67oHR45mXkVHokVMznWMdPR48+zPZNSUMGvQKOyNzblUko2/vQcbguagp6VDalku8w9+yiin/tytLmbPrLWsS/ye8pYGtoY9SVtnB+vGTKehvZV/nNnHv26cRKHs5M3geZjpGWJlYIKBtg5GOvqY6Bqgr63LOJeBHMm6iqGOHq+f3ouuRAsRMHHPJhxNLGmUy/p8/i//8iVOQ4bj7jeWMQueQdHWSnn27V7z2ff3Zt9rjwEigfQwMDWnvaURRXsbapVKI1zCzM4ZhbwNWVO3yr+vAAtZYx1Fty9TX1qAi/dInIcGCIojWWMdhr+WkVu5eGHXbygFqcm0/x8Oa5C3tlB85yrFd64i0dLGzTcQF++R6OgbUJnbneoqEotx9RmNWKJF4c1LqFTKP17xfwGVeenYeg5G9DuWE/9N/J2+9xdx+PBhTpw4wezZs9m2bRu1tbXs27eP7OxsPvjgA7Zt28aNGze4cuUKhw4d4rnnniMmJgYzMzPGjx/Pzz//jL+/PzNmzGDmzJmEh4dz7do1XnrpJXbu3Mnbb7/NunXrmDBhAitXrqSjo4OwsDB27NjBlClTCA8P5/Dhw0yaNInbt29z69YtlixZwgcffMChQ4c4cOAAXl5e1NfX4+zszLZt26isrGTmzJncv3+fvXv3cvbsWb7//ntSU1OZMWMG33//Pbt378bOzo7Q0FBSUlKIj4/niy++YOTIkbz55pt4eXnx2WefYWRkhLm5Offv3+eZZ55hx44dzJw5ExMTE4GoUKlU5Ofnk5qayvbt27l9+3afZUk9EIlEzJgxg0uXLlFXV0e/fv0wNzcnMzOT7OxsIiMj+0yMMzQ0ZPr06TQ3NxMTE4OFhQW1tbUcPnyYmTNn9opWd3JyorS0VMOQ2cXFBRcXFw4cOMDChQvJysrqVYoF0NbWhqGhIYaGhly/fr2X2XQPbty4wcWLF0lLSyM8PJy6ujqSkpKEdK+RI0dibm6OTCZDJpMhEok0SAFDQ0OUSiVyubyXYXlISAixsbE0NDT0MlnX1tZm0qRJgrqoqqqKS5cusXDhwl4fzG5ubr3UST0pdn3B3d0dJycnhg4dSnt7O998842QuvUwYmNjuXDhAlu3biUzs9uY1dzcHFdXV15++WXkcnmfy/UFOzs7BgwYgK+vLwcOHGDq1Kl/+PHfU37z8ssv4+rqKlzzixcvCsSJWq1m3LhxJCQkCOdLLBZjYGAgXGNnZ2deffVVNmzYQFJSkgax2GPa3tjYyEsvvYS3t7fQoRs4cCAmJiYCIXf16lXOnTuHqakpfn5+fe7zrVu3uHr1KnK5/JGpaz3IyMjg8OHD+Pj44OjoSEFBAUlJSRpELnQTFhs3buTZZ5+lrq6O9vZ2jT+FQsGmTZvw9vbuk5TqQVhYGPv27WPy5Mm9lFwPGo5bWVlRV1eHldVvvjBpaWkaSYg+Pj5cv36d9PR0vL1/i4+tra0lPz9fQ80Fv6kX29vbuXLlCnPn/maY21O6lpKS0mu58ePHEx0dLaiARCIRSqWSq1evCiRTYGAgycnJyGQy4uPjNXzvHsTZs2eZNWtWn9NsbW2Jioqira2NkJAQampqyMzM7PVs9oUHU/SysrJoa2vj+PHjeHp6apwz+O1+MzExYe7cuaSmppKZmUlYWBhqtZqGhgZOnTrF7NmzBTJt+PDhpKWlCaR2j7dUZ2cnnp6elJaWcvz4caZMmSKUb2prazN+/Hhyc3M5cuQIy5Yt4+DBg3R2drJx40YyMzNZsGABPj4+LFy4kGPHjiEWi9mxYwfl5eVs3rxZ8KdbvXo1FRUVLF68mMuXL9PS0kJiYiLvv/8+e/fuxcXFRWj74uLiBEKvtLSUoKAgYmNjWbJkCc8++yyvvvoqmzZtoqioiBkzZvDUU0/x0ksv8dVXXzFjxgw+++wznn76aZKSktiwYQMbN26krq6OJUuWEB0djbm5OS+99BKffPIJR48e5ebNm6xevZpRo0Zx+PBhKioqBN/BkJAQ/Pz88PX15eOPPyYmJobi4mI2btzI66+/3qd68H8NBw4cYN26dXz99deMGjWKbdu2ERoaSk5OjoY3Xg+Sk5NZtGgRY8aMQU9Pj82bNxMSEkJGRgaOjt0mth9//DGff/45P/zwA+7u7mzcuJHQ0FAyMzP7fA/+FdSVFGDt2re58cMwsXaguaaSdmnzny6ZA2iuqRBG2v8IRhY2KNrbqCnK6VOt9CAqsm/jOND3T+9HD1yGBlB67wZuvoEav7c1NyLR0npkih/8qujyHknxnasay6v7GJzoCyKRCPfhQRSmXcB+QHf7XZFzF209fZwf8lLpeafUlRagVHTgFTCBipzbOA/tHhRTtMsoz7pJ/LZ/ELzsZWw9BqFWqbAfMIyK7NsYmmt6W/ZgQ9AcOpRdLPebzCBrp27yYN7L1Mqa0dPSoVkuY4qHD9/dPE2XSsX28BVY6Bux5Oh2fpm7jvGuQ3AxteLziBVk1JTw4YUj7IhYxZr4r/h+5hoa5TIcjLv38cXE3bwxfi7/+rX0r75Nyuq4bzg0/xW2hC5DR6LF6ft3uVNdhLeNC9+kJfHq2JnIFHJ0xBLWndnH6+NmsSl4Pk/FfsXn4StQKLvQk2gT6uXH3MGBrD7xDZ+GPMELCd/xefgKcurK2ZmawBcRKylrqcPB2IIARy+eOPYFzwaEklKUgY5Ei0nu3hzLusbhBa+RX19Jank+sTk3GOXUj/3pF3ln4kJePfVDd5lg8kG2hj2Jl4UdKUUZxOfe5AnfiXx1/SSG2nqMcR5AcVMtH1w4wuH5r1LSUkd7p4KPQ5ZypjCdKmkjpS31POk3iR0Rq3g9aS8r/KfwbspBNk9dykuJ3/NV1NP42LljaWDCm8HzqG+XEp93kwvFmazwn4JYJKK9U4FC2UWw29Buoi94PrWyZnZErOJiSRYxOdf5NHQZiq5OXkzczbaw5Wy/Gsf7kx+jsrWJ+Lw08usrWTV8KlvDnqS+Tcr+9Av8K+oZtoUtJzonleOL1nOhOIuvo57hhfjveG5UOFdLc5jgNpTn47/lvUmL+eekRZjo6iNCxOcRK0ktzyOlKJO71UW8MmYGO1MT2BA0hwFWDiw4tIXPw1fw0cVjfB31DBuC5mCsa8Akd2+is1M5ff8uT/hOoJ+lA/OGjGGcyyAulWTz6aXj/DB7LTsiVrH3TjLetq48cexzPpqyhNdP7+W9SYvJqS+npaOdoqYavohYSXuXgrvVxQyycuKzK7F8EbGSrZdjeHviQuyNzfn+1hmCXAajVKv5Ju0UPnaurEv8nrjH3+SDyY+RVVvOe5MW42RiSVVrE9WyZo5lXaWqtYkXA6M4W5iOn507/xg/B2NdPSL7DcdUz4Cvpj1NdWsTTXIZ/S3s2Tv7BVZE72R1QBjrEr9n1/RnGe7gSa2shW9vnmasy0BGOfVH1ilnw+nD/HPSIt4/f5jPI1biaGKJgbYuHV2dGOvokV5dwoXiTF4bN5Pn4nYxxMaZr6Y9DXR7wfUQcUczrzLV07ebtOvqxN/eg8S8m73IKXMHN+qK8xD/GjRg4z4QWWMd+annkGjrUH0/C7m0GS1dPaY+8yb2/YdRlZeO8lerFEV7G7lXkhgyQTMpG7qDK/KvJ+PuN05o7wCaqkppqirFwNQCN99HVyU82MfQNTDCc+QEyrNuoq1niO1DIRn/CVRKJZV56XTK29E1NMbFe2SfxI+qq1OjjNvCwRUTKzsK0y5i4zHwP06N/T20NTegUioxsui7HX8QekYmyFub0TP68+/lviBS/z+tTfv/U/QQBD2R6QMGDEBLS4uamhpqa2t56623eOedd7CxscHX15c7d+5QXV3NgAED6OjooKioiFmzZjFq1CiSk5O5ePEiX375JUuXLmXFihXcuHGDO3fu8OSTTzJo0CDeffddhg0bRm5uLiEhIZw6dUowyq6rq2PWrFn079+fzZs34+rqSmhoKLGxsVRWVjJnzhxOnjzJ9u3bWbFiBfv27WPTpk3IZDKqqqoIDAxk0aJFrF27lvXr17N582a8vb0ZMmQIv/zyC1u3bmXdunXMnj0biUQiqJV+/vlnCgsL8fX1Ra1WCyUpYWFhnDp1irCwMFQqFefOnaOtrQ2xWExbWxtOTk60tbUxadIk4YGvrq6mrKxM8LnpQU5ODt999x0uLi4EBwdrdF4BEhMTe5WN9eDs2bNMnjyZxMRExo8f38ufSqVScfr0aY2SLblczokTJxg+fDg5OTmYmprS0NBAaGioRucyPj5e6Px2dnaSkJDA9Oma9dKVlZXk5OQwYcIE6urqyMzM1DB37urqIjU1lcbGRjo6Oli5ciVpaWlYW1tjaGgonJvOzk727dvHgAED8PDwICMjQ8NT6vXXX2fz5s29jl9XVxepVMqhQ4dYtGhRr876g4iNjRXKEbOzs5FIJH2WqXV1dQmd94aGBiE2/VFGzT1KjHnz5mk07mfPnmXUqFFkZmZiZGQkeE1B39dULpeTkJCAp6cnZWVlhIaGcu3aNSEhbNSoUVhYWHDy5ElCQ0O5d+8eeXl5+Pv74+rqSlZWFoaGhri4uPAwjh49ilwuZ/HixcJvSqWStrY2gSwsKChg0aJFQslYX8RNbGwsgwYNQiqV9kk4tba2cv78eSIiIoiOjiY8PFzDKP7BcxYZGcmtW7fQ1tZ+pKn4g/MeOXKEOXPm9DmPWq0mIyMDHx8fUlNT0dfX7/Wnra3N4cOH0dXV7XUf96C+vp7t27czfPhwxGIx/fv311AyPXgPqVQqEhIShJLNgoICZDJZn15aFy9exNramqKiIiZMmCCo+fpCj8/eokWLNEhTpVLJ3r178fLy6lPhd+XKFdLT0xk6dCiNjY2IxWJGjx6NuXl3mlNFRYVgrl1YWCi0iw8iNzeXjo4OoQ3Kzs5GW1tbg8C6fPky9fX1Qln0qVOn8Pb27qXmS0hI0PBfg+7rdPPmTT7++GMKCgpITU3t87m6efMmTk5OGoRCa2sriYmJJCQkMGfOHEHx+iAebLMAioqKuHHjBhKJBLFYjL29PRUVFYwbNw4rKyvhOczOziYzM1MoXe0xQZ86dSpvvPEGn3/+OVOmTKGzs5MTJ07wwgsvsH37dqDbs83R0ZHk5GQ++eQTtmzZwiuvvMIrr7zCwYMHWb9+PU1NTTQ2NmJlZcXnn3/O4sWL+eyzz9i0aRNSqZRFixaxf/9+FixYgIODA1988QV6enq0trYSHBxMQUEBzs7O5OXlsXbtWm7evImZmRl79uzB09OTgoICgoOD6ezsJDAwkHv37tHS0sLy5ctZtWoVjz/+OBcuXKC6ulqDJF+1ahW7du1i//79LFq0iPDwcHx9ffnwww+xsbHBzc2N1NRUmpubNYIB/tcwatQoAgIC2LFjB9D9bDo7O/P888/z+uuv/+HySqUSc3NzduzYwdKlS7t9UBwcePnll3nllVeA7nJvW1tb9uzZ88hn90H0fD8t3xGNjr6mh11Jeiou3n0rmvuCWq2mIDUZz5ET/rRC6d9JDarKz0TP2AQzW6dH7kfxnSu/28H5PVTk3MXMzhkD098S5gqup2jEbf8eWmorkDXWY9+/u32qzLuHub0LekZ/7t5Uq9XkXEzk4s87mb5+C5ZOnr28qErSU9E3MUelVAodstJ713EeGiCso+B6Mvom5pjbu6LsUtBUWYJarSZ+2z8YFBxJVkpcn9v/JOQJulRKdLW0uV1ZiL+9By8m7uajKUvYdG4/z4wIZYCVAwOtnJj8w1tsnroUIx1dZJ0dvHbqR7b/6svz1bSnaevsQATUtkkx0tHldlURhzIu8/3M58muK6NTqcTD3JY18bv4MvIpZJ0dnC/ORE+izeXSbAKdB9AkbyPMyxc9LR0a2lvZl36eGQMC+PjScXZGrmKQlRNni+6hK9HiXOE9Qjx9ef30Xt6esAATXX0cTCwpa67D2dSK4uZaDLR0cTe3IXLf+yzyHkdEv+F8cP4Ikzy8qZA2MM5lELE51ylsrOHZgDC2XInmtbGzEAGfXo5m5fCpnCtM5wmfiYjFIupkUrLqyjhz/y6fhDxBQ7uUTqWSLpUSRxNLFh3eyuapSzHW0UOh7BIIoXeSD7Bz2lMUNlajUqtp71TwwYUjbJ66hPVJ3cTKm2d/5v3Ji3njzM/sjFzFc3G7eGP8XFKKMgjv54+hti6FTdUUNFQz0X0oMkUHm87tZ6nPBIx19dGVaLP1SgyH579KS0c7x7KvcbU0hy2hy7hWnoevnTurYr7kvUmLu/3HxBI6ujrZdG4/55a9S2ZtKc/F7WKpzwSUahUDrRzZeHY/zwaE4mBsgVoNv9y7yLoxUdS3SSluqgXgy+uJbJ66hO9unmaiuzeHMi4zd3Ag3948zatjZ7L54jE2T11KVWsjQ2ycaVN0sO7kHraGPcna+G+ZN3gM84eOoUkuY1XMV3wa8gQG2rqY6hlS0lyLllhCp7KLf5zZR/SiDWTXlWOiq09qeR4G2rrsTE3gpzkvcr4ok6G2Lnx04ShLfYL56OIxtoev4FxhOuPdhvBeyiHeDJ5Ha4ecTef281nYcnQlWlgZmlAna0EiFtMkl9EolxGdlcrTI0J4MXE328NXkFRwhxAvXzJqShhg6UCLQo6nuS0bTv9Eh7KTdyYsZHXcN3wcspQvUxN5cfQ0XkzczWdhy6mUNmCub4Shjh5aYgn3qou70wWtHLhYnIWVgTGvJXXfw2mVBUx2H8aa+F0s8g5CR6LF4YzLOJta8fbEhVS3NqFUq6hoacDa0AR9bV3Wxn/7Kxm8i+dHRdDeqaC/lQPN8ja8LOx48vgOpvUfwYlcTYX86HlPcfXQN0xa+Tr6xqYC+d2l6ODUl+/w2OZ9GFvZ9mpvetqcjLPRXDvyHVOf3Sj8LhKJMLK0FQYfim5fQVtXDz1jU9qa6jG1ddLwzusLv/cuaq6poL4kH1ffMb3ayYf38ffQWFFMc00FYokEO68hvd6HD6K1sY72lsZHDtpU5t1Dpez6twZG/gg9bbvXyN4ijb6g7OqiIvu3AYuHoWiXsXvNjD/8fvqblPqTeFi10hcMDAw0fEJ0dHT6LGt5ENbW1tTW1v5X9vGvrr+nTElPT0/4ONfW1tYw7u5Jk/vqq6+EsqRffvmFoKAg8vLyGDx4MImJiTQ0NDB48GAaGhqYOHEixsbGxMTEYGhoSHBwME1NTZw9e5bQ0FDMzMw4deoUkyZNEoifjo4OLl++THt7O5s2beKFF17o01i2h4R4EGq1mlOnTmFvb095eTmTJ08mJSUFuVzOwIEDNciWBwmQrKwscnJyBBPjnmnt7e2cPHkSDw8Phg0bRl1dHffv39coA7p27Zrg5wXdH/6HDh1iwYIFwjwxMTFERET0Uk4olUri4uJYt24d7733nkDaPah2CQ8PZ/PmzUyZMoXBgwdrjEb3dQ4AYb9nzZpFbGws+vr6jBs3rk+VWVJSEmPHjsXAwECDXOhBa2urUGI4YcIEjIyMSEhIEGLe+yK81Go1J06cYNy4cdy4cYOpU6cK006cOMG0adOEbQ8dOlRIi3uYlLpx4waVlZWEhYWhra3N1atX6d+/v+BBpVQqSU1NpaGhgX/84x9s3LgRHx8fjeuckZGBqampcH0e3I+RI0cik8lob2/v08Qc4NixY0yaNInU1FSN4+hBZ2cnSUlJREREcPz4cY2Esx4cOXKEWbNmIRaLhfS4h1UwoOm/debMGQYPHiycmwchl8u5ePEiU6ZMobq6mtzc3EcqEI8cOcLEiRNJT0/vU31169YtTExMKCsrw9vbu5fZN3STd9OnTxdSOnNycsjNzcXAwAA/P79e637wGh8/frzPY+3BmTNnyMvLw9TUlHnz5iGVSsnPz6eurk4jvvfQoUNCGW7PsyESiZDL5cycOZOEhIQ+O6b3799n9erVZGRk9HmNjx49quH5lpKSgpeXl6AMUavVHD16VIP460mMjIiIoKCggNu3bzNmzBjs7e01SKdbt25RWlpKZGQkEomEiooKampqBFP2npJmlUqFv78/6enpjB07ltjYWEJDQ3tdi9raWkpKSnoR+FlZWYSEhPCvf/0LtVqNj4+Pxv3eQ0qp1WpOnz6NsbExo0ePJiEhgQEDBiCTyRg6dCgXL16kvr6etrY2DAwMcHd3x8fHh5MnT+Lt7Y2joyNPP/00/fv3Ry6X88Ybbwjb6FFxPQwjIyNaW1uF/3uUdH3B0NAQmaxvmf+fxcPv3kfB0tJSMPDvC1paWnR1dTFw4EDBe64Hzs7OlJaW/k+TUgqFAgMDA0Et3IMnnniCpqYmoqOj/3AdUqkUGxsbDh06xLRp07h//z6enp7cunVLuIehu6Tc19dXICR/D/9NUgq6/UCqCzL/9HL/bpR1SXoqVi79NIijHlTlZ2Jq64C+sdlfXi90tyeFaRfwGNE9cFWZdw9jK7tHphD2hdqiXCTaOlg4ulF0+0ov5ZWwLZWK5toKWh5K/uvskHP35CHGLFpNV4cclVLTo7Pk3nVkDbVMfXaT0M4+2AG7n3YBx4G+6BgYaSi3Su9dR1pfjZauPoq2Vi7u+0JjvV9ErMRAW5cV0Tt5c/xcDmdeIWpAAIbaulgbmqBSq3E1s2b6zx/yzsSFWOobo6etzcroL9k/dx2N7a20dLSjo6XFoYzLuJvZ8HP6BbaHr6CqtQkrA2O0xBIKGqq4VJJFWuV9PpqyBHmXAkMdPZo72nA2saS6tRkjHV10tbQpaqrFQt+IurYW7IzMEf96vPpaOlgaGLP54jEeGzaeCmkDufWVzB8yhluVhXjburA//SKnCm7zZeRTrI77hs1Tl7I+6UfeGD8XeyNz7IzNmX/wE44tfJ37jdXcqMjHx84NXYl2t8H1xWMs9g5ibcJ3zBo4iiC3wVjpG/PBhSM8GxDGCwnfsSV0GcY6+lRIGzDRM2DfnRRCvPxILrqHk4kl410H09bZwfqkvfwr6hlaFXJUajUqtYqiphq+un6Sb6KeJSHvJnOGBNKm6OBeTQkBjl5cKM5k7pAxnC/OxMXECoWyCyNdPd4+d4BnA8Jo7+xg+9U43pm0kLXx3/LRlCVYGhhjZWDMrF82s3f2CzTKZdTImnkv5RDxj79JcVMtMoWcV079wK7pz9KpVOJt68r43W8yxMaZ72Y8R2p5Hq0KORtO/0TcY2+SXVfG9qtxPD5sPE4mlnhZ2hPy4zu8NnYmOhIttl6JZfeM53gq9iveGD8PZ1NLTHQNOJRxmUnu3hQ21WBnZEZuXQXeti60KuRcLcvF28aVgsYqdqUlsWfW8xQ11mBjZCaouZ4aHoKNkSleFnYsO/YFb09YQICjFzl15YhFYlSoQa1m3ck9fDD5Mc4V3WOYrSvuZraIRPBc3C7eHD+XCmkDA6wcsTE0QySCuJw0JrgPwcrAhLXx3/H0iBBsDE2xMzJj7sFP2BK6jJdP7mFb2HK2XInBTNeAJb4TKGnqJje1xGK+v3WWlf5TiMtLY1r/EbyQ8B2bgufjaWFHS0cblgbGNMnbaGpvRaVWIxaJaOtSYKlvzEcXjjLauT+ZNaU86TeJf5zZx6rhU/G1c+ve5+B5qNVqDLR1eOPMz+yesYbK1kay68pwM7NhiLUzOlraNLa3siJ6J/+KeoaOrk4Km2qIzk7l9XGzcTGz4lzhPeyNzHn11A98FracNfG7WBc4nVFO/diVlsTp+7+VvnsGBOM1ahKtDTXoGZni5hsoeNoV3ryIi/dICtIu4DkiGImWlkZ7o+zqpPDmRRwH+VFTmKPhc6RSKWmtr6GltqJbhZSbzq34/Sx8f4+QXvpH+KN3kbKrk+LbV7By9cLE+jdrjz8ipTpkUqryu31QzeycMbV1/FP7U3znKi7DRv3u4EtbcwMV2XdwGTZKCJ74b6D47jXs+w39XdKsr2Ue5T31Z0mpvz2l/iLMzc0xMzPD1dUVR0dHHB0dMTY2xt7enra2NvT19TExMcHExASVSoWlpSXOzs7Y2tpqqCQkEglGRkaCQfjDEeOmpqZ4enoKv/es18DAAD09PWHU3NHREVtbWxwdHXFxccHY2FgoxzA2NkYmk+Hg4ICFhQVOTk44OTlhZmaGk5MTXV1dmJqaIpfL0dHRwdLSEj09PRwdHbG0tMTIyIj29nb8/Pz46quvBG+R/v37k5KSgqGhIVKpFH19fZ555hkMDQ2ZMWMGJiYmpKamMnr0aEHdZW1tzfz584WEJqVSSUdHB0lJScTFxXHhwgVGjRpFREQE77zzjlCq9kdob2/nwIEDDB8+XFBl6OjoMHXqVKKioujq6iI2NpYzZ84IZJtKpSI2NhaFQsHMmTN7kQk9PkB6enocOXKE5ORk/P01PR5GjRqlkeAXFxcndMh7MHXqVMEfqgfFxcUcO3aMKVOmsHPnTszNzenfvz8hISGEhoYK5S89KWQKhaJXecSjeOT09HQcHR1JTExk2rRpBAYGcv78eU6cOMHVq1c1vIeCg4M5f/68hp8NdKu9oqOjuXr1KmFhYUybNk3Dd6nnXs/J6Z20cPPmTfz9/TE3N0dHR0fwu3k4DXDq1KlcunRJUCUZGHQ3pD1G5paWlkRFRQnqJD8/P8FbCLqfncDAQCZNmsT69evp6OjAzc1NY18eNNjvQVJSEr6+vtjY2PRpEt2DHiLD1LR7BKcvE/6UlBQmTJgA/BYz/yDu3LmDt7e3sA86Ojq4ubkJ3kk9yM/P11DeTJ48mYsXL9Le3t5rmw+mCdra2tLS0tLnfJmZmQwaNAgLCwuam5t7hQEolUqKi4vx9PQU0iIfdQ56fMKg2+8pKiqKUaNGsWDBAhoaGigr+y2i3N3dnfv375OVlaWRaPggFAoFN27cQKFQ8Oyzz5Kens7p06fJycnB3d1duP/DwsIIDQ1l3rx5vPHGGxrPxujRo2lrayMhIYEpU6b0SvwbOnQoHh4eJCQkUFlZ2csfp680xODgYC5evCicq0uXLvUi/EQiETU1NRw9epSWlhbmzJnTJ3no5+fH1KlTOX78OLm5uUL6X3p6OrGxsdy4cYOQkBCmTZuGg4MDarUaIyMjFi5cyNWrVzVM3KGb0Hl4YCEvL4/a2lpiY2Px8fEhIiKCuro6wTeqsLAQiURCbW0tBw4cwM/Pj9Gjf+uUe3h4UFhYiEgkIigoiOnTp/PYY4/R3t6OXC5HpVIhk8m4fPkyycnJODo60tzczMaNG4X20tTUFAMDA0HF5ejoiI6ODo6OjohEIoFcMzQ0pLW1FXt7e+Hd0/NOcnZ2RiKRYG1tjZGRkeAJ1qNos7Ozw9LSEhcXF8GH0MzMDAsLC43UyLa2NrS1tXFwcMDOzg5HR8deStme95WTkxPW1tYYGxsL6+0xPFepVBgZGZGdnY2NjQ0ODg6Ym5tjYmKi0Yb9r6Kurg6lUtkrWMHW1lYjofX3sH79ehwcHJgypTsqvme5v7LOjo4OWlpaNP76wsNlx38WugZG6JuY01RV9ofzNpQVYv47Pku/BxfvkVTm3qWzo3fZuby16d8mpKC7PbFw8qC+9D6K9jY65W1/iZACsHbrj6ypnqaqUqFD0tHWSmXePSE6vCQ9lbLMNESIcB4yQiNCXEfPgKhXP0VaV4XjID+chwZo/DkN8id42cvcT7tAS22lxraL717D1nMwuobdJdIisRiVUklpRhqmds54DA/C1Nq+FyHlbGrF8/HfUtxUy67pq2mUy5g7OBCVWk1KcQZFTbU8H/8tFdJGvohYiY2hKWvidyH71e+psb2V1XHf0KHs5P2Uw8wfMpaf0y/w1oT5tCrkfHjhCF0qFZ3KLtzNbbtVRN5B3Z43WtpUtTbyXsohOro6+frGSSRiCdIOObaGphjp6LHlcgytinY+vRyNRCRm49n9VLU2YaJrgFgk5kRuGlM9hrE2/lscTSx4LelHJnt48/7kxUgV7bw1YT6fXDrGm+PnYqCtw5r4XdTImpk7eAxlLXW8lLibfhb2VEmbeCHhOyqljVS3NuFpYcc/Jy0ivJ8/B+9dYmdqArLODrpUSkY4eCIRiblTXcTVsly0xBLSKu9jqK3LeNfBeNu48nz8t4hFYraGLuOnu+e5WpbL2+d+oUbWzBBrFz6Y/Bj9rRyIyblOQ3srT8V+hZWBCWviduFlac+HF45goW9Eek0xa+J30dLRToeyEwt9I8z1jVjmN5Hh9h68MmYGxrp6fHEtntVx3/B5+ArWJ+2lrLkONzNr3gyeR2ZNKV9ci8PBxIKdkauwMjBhddw3XC7N5qc5L/L+5MdIzL/F97fOYqZnyNsTFpBTV8a/bpxkqe8EZJ1yVsd9Q2ZNKR+HLMXNzAZXM2ueHhGClaEJEpEYbbGYmtZmpu17n5kDR7I/vbu0el3i97iYWvHk8R0oVSqSC+9hoqvPUBsXtoYuw0TXgLeTD6BUKXkxcTfvTlyEn7078k4FldJGNk9dyghHLyL3vc83aUloiSV8cTUOXS1tvohYibm+EeUtDdgbmbMmfhcG2rq8O3ERHuZ2ZNeVk11XTl59BcuOfcFE96E8F7eLalkzC73H0alS8sGFI3x94xSfhS1H3tXJltBldCi7eCkwiqdGhGCkrcfXNxK5UprNnaoiOlXdarj6NikqtZp1gdPpb+XA07Ff09LRzuLDn9HY3opELOHNsz9jb2yBvZEZEpGIF0ZHIhaJaFXIyW+oZO/sFwh2G8KHF46ya/pqnEws+elOCi6m1nwd9QzLo3fQqpBzoTgLIx09susrOHjvEjoSLXZErBKM60M8fXl6RAhFTTWE7f0nrmY2vJi4m81Tl/DtzdPsmfU8ErGYuNw0DUIKutWgls6emFg74BUwgaJbl+nskNNQXoSpnTMSbR08R4yn4EaKRklye0sjhTcv4u4fhL6xWS+iRiyWYGJtj9Pg4RiaW+E8dAThL7xPa0M1Rbcvo2j//UGrtuYG9E16Dz48CImWNh4jxtMubaYs8+bvzqtSKinPvk3R7Ss0VBTh4j0SV5/Rf5qQ6nk3/pEa2MDUAs+A4G4T9JL8P7XuP0JTVSmGphZ/iZD6b+FvUuovorGxkaamJoqLiykvL6e8vBypVEplZfcLu729XfgI6+rqor6+ntLSUqqrqzVUU0qlktbWVpRKJU1NTb1Gb5ubm4XI8gfX29bWhlwup6amBug2AK6urqa8vJySkhKkUqkw6iyVSmlra6OiokLoQJaVldHU1ERZWRkymUyIFFcoFNTX1yOVSgVT4Z6R7lu3bnH37l3Cw8PZtWsXxcXFzJ49m3feeYeqqiomTpzIqVOnuH//vvCBWV1dja2tLfb29sKHq0gkIiAggCtXrhAREUFqaipBQUFERkYyZcoUDAwMkEqlQgdh+PDhxMfHC+dELpdrqH6Ki4tJSEhg3rx5gpeNmZkZTU1NwjyDBg0iKiqK0aNHc/r0aV544QXefvttJk6cKPjh9MDCwkLjOvTv35+goCCefPJJkpKSSEhI4MaNGwK5FRAQIHjkeHh4aHSSoJvcEovFyGQy1Go1SUlJVFZWMnfuXIGICQ0NJTk5WaM8r+dcjRgxAjMzM86cOdPrPnwY586dw8jIiICA39h6AwMDpk6dyrRp0/D09CQhIYETJ06Qk5MjqPh6iI6srCyio6MpKSlh+vTpTJkyRYOsk0qlglGzn58fGRkZvVSAlZWVgtKkh/SCvs2mZ8+eTXR0NDk5OfTr14+zZ88KRuYPel3Bb8l9DyMmJoYFCxYwb948Dh48qFGK8zAplZKSgoeHRy/l1MNQq9Xk5uYKZWoPGs8/iB5VCXRfZzMzM+E+VygUFBYW9irh8vX15e7duxrkYE5OTi8CZ/bs2Rw7dqxXZ62jo0Pj/u+LDFOr1WRlZQnqoL6I0VOnTgnqL5FI1CvlTq1Wa+zX4MGDBX8w6FbBvPDCC8ycOZOamhpiY2NJSUlh4MCBZGZmCsuq1WoKCgoEI+2EhATOnz+Pi4sLvr6+fPbZZ4Ink5+fH1ZWVr1ewD3pij2orKzk7NmzLFy4kEGDBvUyW66rqyMtLY3Q0FBEIhGTJ0/G0tKSo0eP0vWrIW9BQQFeXr1TuGbMmEFMTAwKhYKmpiZsbGzo7Ozk6tWrxMfHCz575ubmj/QH64G+vj5z5syhpaVFINiNjIyIiopi4sSJffpOiUQiIiIiUCgUGtfs4XNy//59SktLGT9+PD4+Pty+fRuRSISvry+RkZFERkbS3t7O0aNHcXV1ZfDgwcLghkKhEAZHXF1dBdP0ixcvUlRUhIWFBe7u7kJZoJaWFsePH6exsZG8vDz8/Pzo6upCV1eX5uZmZDIZZWVl1NTUUF5ejkKhEN6JPWbzMpkMuVxOZWWl8O7peSeVlpbS0tJCbW0tra2tqFQqobwPugmR+vp6SkpKhHu0qamJhoaGXuqqzs5OKioqqKqqory8vBdhK5PJUCgUlJWVUVtbi1QqFdbb2tpKdXU1KpVKeO/V1NRQUVFBY2MjLS0tGsT4/6346KOP+OWXXzh27Nh/5BX14YcfYmpqKvw96OP4IFobajC26O1z9Wdg7dqPxoqiRybR9UBaX43JIxLp/gw8hgdRdEvTWLa5uhwTmz/Xufg9mNk50VxTTmnGDZyH/Fb2oOzqoqOtldbGOpqqyqgrzqMyL53SezcovXdd4w+1il/eeJLWhlpK0lNprCjG0sldg3xyHhqAqa1jL88StVqFlo4ujoP8KEnv2wxf18AIzxHjkbc2U3T7SndnK+sW5g6uGJp1tysqlRJze2eOvf88xpY2mFjZoWdkSmNFMf1GT9FYX2lzHR9OeZx3Uw5SI2vmSmkOla1NmOoaYKprwHB7DzZPXUp1axPPx3+LnpY2OyNXoSUW83z8t90d+8mPYaCtyzMBoWiJxb96Q2nz5pmf+eekRexPv8Arp37gpcTdRPYfzjiXgXw45XEMtHVxNrHis7DlyDo7eG5kGBb6Rrx+ei+vnPqBUU792Rm5CmMdfV4KjEKFmukDA5B3dRLkOgi1WkVRY3W3H5b/FLpUKraELKO8pQFjXQP+deMUTiaWrA4IZ2dqIqa6hnw57WnWxu/i2YBQ5F3dKWh6Wjo4mlgQs3gDNW0tvDxmBtN//hB/ew86lJ3MHRzItAEjmD9kDC0dbXww5XFU6u7vBlcza9oUHXw/cw0W+kbE5aahUqtYFzidZrmMdSf38PSIEEY4ePJJ6DLsjMzpVCnxtLDjy9RETi7dhAj4ctrTaInFfDDlMTzN7aiRNWOlb4ybmQ0vj5lOTWsTMweOpFUhR61WM3PgSMZ+9w+cTCz58XYyE92H8vzICAZYOaKvpYOpnmE3kfWrgb+HuR3Vrc3E5twgv6GKDyY/hqmeISdyr5NeXSyYZytVKox70h87FVgbmDDaaQBP+E6kQ9lFfO5Ntl09QbO8jbEug7hVWciu6avR19alQ9mJh7ktHcouippqMNTW5ZOQpVgaGPPjrLXoaGmzIWgOZS31NLa3Ym1oyvmiDFKe/Ce1shY2T13Ke+cPoVKr+PRyNGq1mq2XY7hTVchnYctZHRCGSAQ+dm7IuzppVchp7+zA0cQCiVjCxuB5qNVga2TKyye/Z9ag0Xia22FlaMKX055GjZrjC19H0dWJt60LJ3Kus3ZUJCMdvXjr3H4KG6v54PwRNp39mazaMoqaaulSKfl57jocTSzxte/+Fi5tqSfE0wdpRzuZtaVsv3KCPTPXAGp2z1iDvpY2SpWSPbOex1hXn8T826xN+A49bZ1u4nFUBA7GFpy5f5fHj2xjme9EqlobeSb2a9aPm8WSo9u5W1XEjohVWOgbsfbX+QsaKjlfnEmFtIE18bvwd/BgZ+Qq7lYXsT5pL04mlnwa8gS6Ei1eGD0NJ1MrjHT0aGiT8tmVGMz7IDVEYjEV2XfQMzJFJBbjOXICN0/sI+fiSUHRJNHSxt1vDAXXU7p9M8sKqSspwGvkRKF0ztDMitaG3lVAVfmZqLq6cBjg053MPXg4LsNGUVOY/Ss51bcqu7GiGHMH1z6nPQxbj0FYOrmTf+1cr/U1VpYI6XlWLl64+QZi38/7LxuF1xbn/mmvxR4TdImW9n9sgq7sVNBYUYzVn9z2gzA0s6S1sW9F/J/F30bnfxFvvPGGRtnH/824efMmq1atEv7X0tLCz88PqVTKjh07sLa2xs/Pj/j4eEJDQ5FKpZw5cwZ7e3uhU6xWqzl//rzQEbewsGDIkCHk5eWRnp7e68P36tWrQkmQg4ODEGkfGhpKWVmZQCpcuXIFpVLZ61oMGTJEKId5EPr6+qhUKlavXk2/fv04ffo0Y8aM0fBpGTBgABkZGYKhc0FBATk5ORw7dowJEyYIHmLJyclCB/fDDz9k9OjRrFixgvz8fCQSCVpaWsKfv78/X3/9NU5OTkyZMkVDEddDOsyePZtDhw4JpuRKpVLoiA4cOBAjIyOio6OZPn16n532uLg4vL29cXV9dINqbW0tlIjl5eURFxdHdXU1CxYs4JdffmHgwIHMmDHjkcunpaVpEEtRUVHExMQI5U1SqbQXKRcUFCQQU33t95gxY3B3d+fnn38mJCSkl1rw95CUlMTEiRORSCRIJBIWLFjAgQMHmDVrFgYGBhqk1NWrV7G2tu5lZj1o0CAyMzM1yrseVCNBtwF6j69OD8l048aNXqVUY8eOFXyeekq8+kIPkfSwv9CDkEgkTJs2jZiYGOGaFBQU9CLrtLS0cHZ21jCtT05OFhRc0H3fi0QigUSrr69HT09P41oFBgZy/PhxwdD79OnTTJ48WZju6enJiRMnhPOUk5ND//79EYlE+Pv74+/vT1NTE4mJiURFRbFjxw6hrM7Dw0MgiB7EkSNHWLVqFWlpaURFRREfH4+Hh0cvD7kHUVBQQF5enrCfLi4unDx5UvAnk0qlnDt3TsMQvWf/nZycOHbsGE1NTURGRtLS0kJnZyddXV0af7q6uri4uPCvf/2L+Ph4tLS0GD58uHBvisViwTOp5zw/SFD2QKlUcvbsWeRyOT/99BMqlUqjLPr34OfnR3V1NQcOHGDmzJm9iPiCggINUrEviEQiHn/8cSIiIjAzMyMhIQGA8+fPs2bNGqDbeD4mJgZTU1M6OjpwdXXlzp07WFtbo6+vz3fffYdKpaKxsZE5c+bw+eefk5aWBnQTpD/99JOGN9z/7Th69Cjvv//+/9u78buwsrJCIpFokMzQPUhkZ/f7xMynn37KRx99xOnTpzWUhD3LVVdXaygDq6urNcr5HsSGDRtYt26d8H9LS0ufxFRTZQmOj0ia+zNw9Qmk8NYlPEeM73P6f8OdQiQW4+4/jsK0i4LfU2Nl8V/2klKplLQ11SOtq6ZL8dsASlXePfKunUHngQRCkViCtq4eWrp6aOvqYWBm1f2/jm6fnZvwte+hUnZh5eKFgWnvUuw/gr6xGUaWttQW5WLt1v2ea64u1zCHt3EfSIdMyvdrZzF08kxcvEfSXFX662i+mPaWRgzMLGiqKkNa1z1Ak7xnS5/b233zjOBd9N6kxdS1tbDp3H4+CXmChYe38nn4Ciqk9SzznUiTvI2XEnezI2IV6wK7v4HM9AwZaOXIMyf+RYW0gZfHTCc25wamegbUtUlZOHQcS30n0N7Zwe2qQr66fpKdkavYcPonNk9dyqWSbEY6erE24TsOz3+VLaHL6FQqOXs/nYMZl3jSbxLP/1qm1tbZgVgk4p8ph5g1cBSvB83GycSSL67FoyUW80xAKJ9fi+OlwCjWBU5nVcxXLPWZwPuTF7M67hvenbiID6Y8zr2aEl4+uYePQ5YiEol4+eQedkau4u1zv/DcyHA+DllKSXMdz8d/yz8nLeLza3G8OHoab5z5mQ+nPM6G0z8R0c+foTYuvH56L5+EPMGrp35gR8QqNl88yuM+EwhyHczuGWuoaW1ifdJeNk9d0p3gpquPj60bNyryCaodxPPx37IzchUSsZjn4rpLrd6esIAfbiezYOhY6tuk6Ei0aetU8FLibia6d/tcDrVxQYWa/lYOOJpY0NLRzkuJ37N75nPk1FVwsSSL21WFOBhb4GPnBkBi/i1CvfxIKrhDeD9/rpbm0qlUEuQ6GA9zW2SdctYn7SV60QY2BM1GJBLzysk97Jqxmt03zzCt/3AOZ14hs7YUHYkWr576Qbh3PpqyhMXeQRzPusZK/ykYaOuyOu4b5g0ZwwS3ITwXt4uNwfNIKcrAw8IWWWcHu9KS6G/pwLspB3luZDj/inqGCmkDxxe+TlFTDW8Ez+VedTE3K+9zo6KAl8dMp7S5DrFIzIbTP7E9fAW5dRVk1Zbx6tiZLI/ewQr/Kbw1YQEG2ro8deor3p24iNLmOrZdOcGOyJW8cuoHVgeEsdx/CjKFnA8uHGGyuzf3G6sRiWBb+Ar0tHR48vgXPDU8hAppAztTEzg4/xWW+U7k4L1LeNu68uOdZL6f+TwyhZyylnreOPMzX0SsZH3SXlaPDMdYV59lx77gq2lPM9qpHx1dnexKS2Jb2HI+vHCET0KeYIiNC6+e+oGnhocIpuZfTnv6V0Lzez6auoR1id+zb85LBDoNIMTTl2/SktgRsYqUokw+vHCE9yYtZsHQsXSplLxxZh+zB49miLUL8w9+Klybl8dMR9ohx1zPUMPoXK1Skfz9J0x9ZiMdsm4FraqrC6Wyk/Ks26D+bdBWrVYRv+0fzNywvZdXkbmjK2UZaRom3KUZaRhb2mBmp/muEYslOA32R61SUZFzh86OdhwG+GgogZQPGYr/EfRNzPEcOYGSu9covnMVlVKJWq3GzM75kWXUfwVtTQ1/GLTxMMwdXDG2sqPw5iVs3Af8WyboxXeu4vpv+iRaOnlQmnHjLyt+H8TfpNRfhKura69Srv8v4OOPP+bLL7+kpqaG8PBwPDw8GDt2LPHx8ajVarS0tDA3N0dLS4vvv/+eyZMnCyoGPT09oZPeUzrn5eWFiYlJL++ZB0fyodvHQ6lUcvr0abS0tBg5ciTHjx9n2LBheHh49NpPExMTpFKpxm85OTmkp6cTFhaGpaUlgwYNwsTEhCtXrnD58mWBnOrx2IJudZhMJiMiIoLS0lJycnIYMmQINjY2QodQpVIRFxdHZWUlSqUSbW1tFAoF7e3tGh3d2NhY1q5dq1EG9yC0tLQICwsTSgAfVnI4OTlhZGTEgQMHhA53j7SzxzvowdSzP4KXlxd1dXWUl5cLBNjvJbBBt1LvwY63trY2w4YN48aNG4wYMYKLFy/28l7S1dXl6aefZs2aNRqKHrVaLZgtT5o0CV1dXa5evYqlpSUjR47s0+y5x+tMW1ub7OxsLCwsNAhFLS0tFi1axIEDB5g2bZpASt26dQtdXd0+fYU8PDyIi4sTpikUClpaWnqdS29vb44cOUK/fv0QiURUVFQwYkRvM7+AgAB+/vlnBg8e3KehOXSXPxobG1NRUYGWllafaVjQfR8PGzZMIMkyMzN7+X5Bd8rakSNHcHd3F5L1Hib3Jk+eTHx8PNOnTyc5ObkXkSsSiXBycqKsrAxTU1NUKlUv/7yee1tHR4e8vLxepaoVFRV0dnby3nvvMWjQICZNmtTnccFvpJ6hoaFQdjVjxgwyMzM5evQo06ZN63X+0tPTaWxs1PAee5CQ6Qks6CttErrLJ83Nzfnggw8YOHCgQBpra2trkMhlZWVYWlri6+vbi+TteeZ6yMkeYupBYlOlUpGcnExraysTJ07E0NBQCIG4desWsbGxRERECCWzj6qvt7W1Zfbs2Rw/flwwYC8rKyMrK6tXKICZmRmNjY1CyVtOTg61tbWMHz+ekpIS6urqhPa3tLSU3Nxc7t7tltQXFBSQmZnJ+vXrARgzZgzR0dGYmpri7u6OpaUlFy5cYPr06YLyadCgQWRlZTFo0KD/T70Lewi5/2Xo6OgwfPhwzpw5I7xXVSoVZ86cEcjIvvDxxx/z/vvvc/LkyV5tm7u7O3Z2dpw5c0YgoVpaWrh27RrPPvtsn+vT1dXt08vwYXQrIftOff0zEEskWLv1p7ogE1vP3m18bXEu1n/xw74vaOno4jDQh5L0VGw9BqGj3/tdrlaraW9pQlpfRYdMKrRDgheeWIKhmSVWrl6Ch4paraZT3s6g4Eg65W3YuP/1dKeuTgUSbR1cfUZTfPca5r+mM/0RVEolItFv71oLB1cqc9OFGPWmqlLBh6tT3k559m3EEglhz78rJCzZeQ3pnt4hpywzjbA173L/5kXcfANpa27Ef9pjlGWmUXNf05/NRFefJnkbX0SsxMnEktz6Sj4NeQJLAxPmDR5Dl1qFq6k1ZxvucbOygKdHhPDBhSMEuw3BWFePd5IPsmv6s7w9cQFiRBzOvMJop/6Mdx2Mj50bTx7fQZiXH01yGVM9fXhuZDhKtZr142ZRK2vhcmk2t6ru8+7ERcw9+AnvT36Mjy8e4x/j52KgrctwB082BM3Bzcya6JxUfGzd2DPreXZci8fe2Jx3krfyw6y1tCra+e7mGXZErKJTpcTL0o5PQ55AIpbQ2iln/bhZdCi7Db2/jHyK7eErkCnkOJtacXD+K7x55meiF71OcXMd6xJ3syPyKSL6+aMj0Waxd/fg2OcRK2nv7GBHxCrKpPU4GFvwRcRK8hsq+SJiJa+f3suTfpNwNLYgdO+7THL35vWg2XwesRKZQs5i7yAa5TJO5NzgpcAolCoVOyJWMdjambvVxSzxCWaEoycikZhLJVlE9PPn40vHWRcYxb6759k8dSl2RmbsuX2Wf4yfQ2uHnL13Unhx9DQcTCzwt/cgIf8WH104ytkn3uFKmSM3yvNRqlTIFHL2zHqeuNw0amXNKJRdaEskjHDo/r7dfesMh+a/ys7IVVwuzWbzxWO8MX4u492GUN8m5XDmFQKdB+BqZk0/Swfi826yNexJtMQStoY9SVlzPZWtDaTXFONiasVEd29W+E/BysAYb1tXtoUtp0kuY4nvBM4U3MXR2IKPpi6hS6Vk94w1WBkak11XLhi8b7kSQ2lzHUcWvIa+ti7Pj4qkuaON4Q6eaInF7J6xhtq2Zpb7T+Zc4T26VEpW+E/B2dSKjy4eZWPwPL6IWMnxrGtM8hjGFxErMdbR57WxMwl2G8La+O+wMTJlZ+Qqqlub0RJLmDloFDWyZt469ws7IlYhVbSTWp7Hl5FPkV5dzD9TDhHZfzge5rZ8EbESLbGYNfG72DfnJbaGPYm0o53PwpZz5v5dOro62RGxCqVKxaeXonkxMIp/BHUPHG+euoQbFQV8d/M0705chI+dG++lHOJ6RT47Ilbxz5RDrAuMoqOrk+3hK+hUdbE67hu2hS3H2cSSNfG7eHXsTOYNHsPO1AQ+DllKfZuU2YNHM9TGFSsDYz4OWcogKyc+DlkKgL5WW6/kPYDhUUuQaOvg4j2ShrJCBowLRaylRae8XVAHKbs6Kbx1iaDH19KlkFN0+woWTu5C2yYWS4S2Va1WU3TrEtbuA3+XEBGJxTgO8hPIKYW8DYcBPr+bdtrdvrUjratG1liH+gHSrGdaZsoJnIYMx813DOJHpJj/FfS06f8OtHR08Rwxnqr8DFpqK/+SCXpNYTZWrl69jNz/LERi8X88EPR3+d7f+EOIxWLs7OwICwvjtddeQywW88wzz3D58mWmTZtGVVUVJ0+e5OTJk5w9e5YtW7YwcOBAwsPDCQ8PZ+LEiUJJxIMKAxsbGwIDA4mJiQF6E1I9cHNzw93dna+++oro6GimTp3aJyH1MBQKBceOHUMulzN37lyMjIxQqVTd/gciEWPGjGHGjBnk5eVx/PhxwbclOTkZiUQipHo5OTlRWlraa/3Hjx/no48+YsmSJWRnZ2NoaMiAAQMYPHgww4YNw9/fn5EjR/L6668TFRVFYmKi0Bns7OzUKOExNzdn4MCBXLlyhfv37/dSxZiZmTFz5kwOHjyIRCKhvr6e/fv3ExkZ+ZcIqatXrxIdHY27uzsODg4kJSURHByMTCYjOjpa2L8/g379+lFbWyv4FmlpaVFXV0dCQgJxcXFkZmby3XffsXjxYg3Pn7CwMIKDgwVPHAsLCyIjI/Hy8iIxMZG4uDju3r2r0bj5+vpy+/ZtpFKpkAb2MMRiMQsXLiQ+Pp76+nqys7Pp6Oj4w1KrHpw6dUojmfFBTJgwgZSUFEpKSnol+vWUkWZkZPDYY4+Rn58vlKydPHmSjIwMjVKicePGcenSJdLS0vo8jh64u7tjYGDA3bt3NXy/HkaP+fyj9l9LSwszMzOSk5Px9vbuk7TpKUVNSkrq09i9R/WmVCo1SMP8/HyOHTuGWCxmxowZ+Pr6IpPJHqkK6urqoqysrJcHGHSXCUZFRQnnsgfXrl2jo6NDI8ny4XUeOXKE+fPn93lsTU1NHDx4EF9fXz766COCgoIIDAwkICAAX19fhg4dyoABA7h79y5RUVFs2bKFmzdvahh1A5SUlAhEVf/+/XFwcODcuXPU1dVhZWVFSkoKsbGxDB8+nOnTp2NsbEx2drZQBunn58eUKVOIjo4WCPuehMC+oK2tzbx58ygoKODHH3/k7t27fSaPjho1SvDNys3NpaqqSjhXLi4ulJSUCPO6uLgwadIkIiIiCAkJQV9fnw0bNhAfH8/JkydJS0tj1qxZNDc3U1hYyLRp0/j4449RKpWsXbuW5cuXk5WV1ef+/o3/Daxbt45du3bxww8/kJWVxbPPPotMJuPJJ58EYOnSpWzYsEGYf/PmzWzcuJHdu3fj5uZGVVUVVVVVwv0vEol48cUXee+994iJiSE9PZ2lS5fi4ODwu2EG/0/BxMqOzg457dKmXtPamxv7NCn/d6BvbIaxlR2H332WLoW8VxldWcYN2prqMLN1EkrmnIcG/FZCN2Q4Fo5uAiEFUJFzB4eBPpjbu6Ds6uzl2/Rn0E3IdSsWXYeNQlpXRWNlyR8sBQ0VRVg85LVl39+buuI8OuXd76sOmZTCW5eovp+Fy7Du4xBLtLDzGoKBqQWFNy+hVqkouXsNV5/RiMRirF37UX0/m+qCDPynPdaLkAJIq7xPq0KOWCRi1i+baeloY/+9i9yrKWGi+1BUKhW70k7jZGKJpb4x5S0NPDV8KmOcB6Aj0Rb8eE4X3KGytQkRIiz0jfg5/QJVrU2sC5zOIGsnrpfn42JqxWBrJ7TEEt448zPm+obYGpkxd3Bgd5lV5FMCyfFO8gEWDh3HhqSfMNDWYeHhrUwfEMA/zuyjvKUeeVcnY1wGcmTBa6yK+ZKf7p4nvJ8/a+J3oSORELb3n8g6O9hyOZqmdhlfXU/Ew9yWBUPH0tDeygsJ36Et0WLJ0e3k1VcSNWAEBY3Vgnn4iZwbrBszHWsDE25VFnK9PJ93zh2goKGaNfG7sNQ3Zm38t9ypKuLbtNPUyJp5flQk9kbmWBoY803Us0z2GEZSwR2is65hqK3LupN7cDC24JmAUJ6P/5brFd2+MxP3bKKlo42Chiric2+y++Zp/jX9WV5K3M3G4Hl8diWWV8bOYH3Sj9S3S7EzMudWZSGfXo5mR8Qq/O09+OJaPHn1FUg72tkZuYrkogzeOLOPl8ZE4WJqxY7UeLLrymnr7CDEy5culZLF3uN5/fReWhXthHj6cjjzMs/F7WKItTObpy5h+9UTBDh4suTodn6e+xLmekZUtzZhqW+Mg7EFpc11PB37NVpiCQczLnEiJ42xzgMRi0SE//RPzPUMKW2uY8GhLZy+f5e3kw9Q2FhNSUudoESrkTXT1tnBhtM/4WDc7XvlYGxBuJcfr46diUwhZ/vVE7R0tLE2/lu8bbs9u5o72liftBcLfSPyGyrxMLfF184NlUrF3MFjeOvcLyQX3WOQtTMW+kasid/F5dIctl6J4WT+bZb6TmDh0HE8F7cLAHmXgp/upGBjaMpbE+az5XI0ZwvTcTaxYnXcN/jZe7AtbDl2RuZk1ZXxfPy3pBRl8M9Ji6iWNXEy/xYSsYQ18bsY7zYEfW0dlGoVa+J3sXZ0JDWyZlKKMpB1ynkubhdhXr5sCV3GBxcOk11XxkT3oTzpNwmJWMwb4+ey7WocNbJmSpprqZI2sTF4Hh3KLvS1dfloyhJ0tbRRocLfwYPG9lY+uHCEQKcB+Nm780LCbgy1dZn0w1u0dsgx1NblvfOHGevcm2g3sbFHoq2DvLWZ5poKLBzdMLN1QtZYR2eHHFljHYW3LuHuNxb7/sMwtXHCzTeQzvY2im5foSo/Q+gfqJRK8lPP4TDQ908rdHrIKTefQOpK8im8eYmyjDRKM9I0vPh6/uqK89HRN8BxsJ9GWbTT4OHdpa0bPsfOawhFty/TXF3+p/bh91CZmy6kqv67sPMagrm9K/mpvUsM+0KHTEqHTKph4P7v4j8hpv5WSv2NP4RKpWLp0qVCmlNubi7ffPMNBgYGZGVlUVhYSGhoKHfv3mX27NmMHTuWiooKamtrGTlyJL6+vty6dYuxY8cilUo1VBi2traMHDmS2NhYTExMBDPe9vZ27t69K4zOQ3ci2vDhw7lw4YLG/mlpaeHi4oKrqyu6urqo1Wpu375NcXExkZGRGkTXwx41IpGIsWPHolarOXnyJBEREb06in11dJOTkwkICMDY2BiVSsWcOXNITEzE09NTIwWuZ/keNUh2djZHjhwhICCgV8qWl5cX9fX15OTkEBoailwuRyaT0dbWRltbGzKZDCcnJ5YuXYqhoSF37tzp05umL6SmplJRUcGoUaMYPXq00GiMGzdOOG5vb2/u379PTEwM1tbWjB49GpFI1MsM/UGEhoYyevRonnjiCeLj47GysiI0NFQ4x5mZmbS2tgoqjp5rcOTIEebOnYu2trZA2FhZWQmKjpKSEsFPbODAgXh6enL9+nXy8/M1Eg57oFAoqKmpobq6GnNzc0JDQ1mwYAFbtmz5XbPAgQMHkpWVhY2NDcbGxo9UOFlaWtLW1sbly5cZPXq0sG8ikQgXFxfCwsKor6/n8uXLlJSUCOSBSqWivLyca9euCZ5XarUamUzG/PnzSUxM/J2r1o2wsDC++eabPv2jerB69WqioqIe6QOjVqsJDw8nMTHxkQbv27Ztw9TUFAsLC3x8fDSumYGBAe3t7Vy5coXAwEBKS0u5ceMGnp6eQjndnTt3GDZsGNbW1pw+fbrPEsWHkyMffnn1PCcZGRkcO3aM5ORknn766UemJKpUKkFB2Nc9evPmTWpqah5JWEE3QdyTNNbV1YW5uTkhISH88ssvLFy4ULiXc3JyNMoae0oY+/fvz7Fjxxg/fnyvZ7q4uFiDSNLX12f27NncvHmT2NhYxGKxEIpRWVnJ/fv3+/RK2r9/P0uWLBHK8LS1tRk6dCh2dnZCYlxeXh4VFRUa5ZsAI0aMEBSNPWhoaODUqVMsW7YMOzs7WltbmT9/PnK5nJMnT1JbW8ukSZMYPnw4b731lpAA+KCx/d/438SCBQuora1l06ZNVFVV4evrS2JiomBUXlJSovEO/Oqrr1AoFL3KXt966y3efvttAF577TVkMhlPPfUUTU1NjBs3jsTExP/Id0rZ1aWh1PlP4DTYn/zUc3gGTBCec5VK+Zd9PB6GrLGOhvIiYXRcJPptpN35D1KR/gjKrk66OuSC6si+nzeFNy+hZ2TylwxmuxQdGkSX40BfqvIzqSvJx8qlt3deD9qa6rFy9uz1u5vvGE5sXY/DQF+09fRx8x0jHKeyU4FY0v3NYWJtj76JGf9aFcLYRc9R/qvxr1qt5syuD7HzGtLnaP+q4VMJcPDidlUhZnqGbAqej66WFo8PC8be2JyFh7bw2tiZPO4TTKdKiQg4kXuDMC8/1sTvYmvoMjac3svHU5eSkH8LD3M7FniPo0bWzMchS8moKWWUUz9Km+t4bmQ4ldImNp3bz4dTHufziJVIflVYyLs6WX3iX+yIWCUk5b0xfi79LLtLFvW1dPjnpEUolF18EbGSq2W5PD8qgsePbOPziJU8PSIEZ1Mr/O09MNDWQUfS7X2lI9GiurUJNbAjYhVf3ThJuJc/p+/f4dmAULxtXVjpP4UulRJzPSPWJX7P9vAVOJta8frpvYR4+rA24Tt+mfcyhY3VhHj6cqUsh09CnsBc35CnR4QwwNKBAVaO/DPlEGtGRqBUKVl0eCubpy7lk0vHmT9kDJ4WdgQ49uPLaU/zj9P7WDwsiM1TlwAi9LV1WDsqEm2xFoHOA2jvVJBSdA9TXQMeGxaMtYEJm6cuoVOlIqKfP2JEtHS00STX4wnfiayJ38XOyFUMtnZikrs3xjr6rI77hv1z17EtbDlXSnNYn7SXHRGrhCS2zReP8XHIUt4+9wuf/6og0tPSxtvWlVfGzOCTS8cZZO3MPyctxlTXgJfHzKBS2sjLJ/ewI2IVr5zaw8bg+dgYmvLa2JmoVCqeDQhFV6KNRCzBSEePH2etpaylHj0tbSZ7DKNC2kCIpw+vJf3IcyMjaJbL2Br2JA5G5tTImnEysaShvZW18d/y3MhwQMQQG2eWHvuc9eNmcaU0hxdHT0MsErE9fAWN7a1sCV1GXVsLn4Y8wexfPublMdOJzk5l7pAxvDVhQbdX1cWjfBK6jKU+E5jiMUxIlHwv5RBxj7/JltBlQDcplV1XhkLZRbO8jVfHzRLamrcnLqSxvZUXE3fzWdhytl89weapS+hSqdh+9QTrAqdT2lyPjaHJr55rEj67EssnIU+wLnA6ZnpGDLZ2Jr26mCDXIeyIWEVufYWgCjuceYXHho2ntqSF6tYm3k4+wN7ZL2BjaEro3nfZHr6CDy4c5u0JC/ju5mk2Bs+jvKWeI5lX2TV9NdfKctkSuowlR7fzUmAU701aRJdKxYagOVgZmlDUVMuh+a+QXl3CpVJNYjrn0im8J89kzwtzCF/7Xrc3Ht1k0e4105m2bjNeAROA7pK00nvXMbayxdLZA0tnD9qlzRTfuUr2hXjqivPwDZv/bymLRGIxVi5elKZfp6tTgeNA37+kdOo2Xh+HWqWipjAbj+FB1BblUnz3Gi7eI//t94PqL5YSPgoGpuZ4BkygJD21W6X7iPeBWq2mNOMGnr+e8/8EpjYOtNRWYmrz75Fbf5NSf+NP4b333kOpVHLr1i1yc3N55ZVXOHjwIAMHDiQ/P5/CwkKam5sJCgri5MmTjB07ltzcXGJjY5k2bRoymYyzZ8/2WdZjYWGBWCxmwoQJQmdfT0+PYcOGaZQiRUdHo1KpCAwM1CC2urq6KCkp4dKlS8jlciIjI9m6dSvLly/vRTL0lcpWX1/PpUuXMDIyIiYmRoj9ftiXqgfp6emYmZn18sgICwvj0qVLtLa2PlKdM3DgQLy8vJgzZw5DhgzplaqlVqt58cUXcXR0xMrKCgMDAwwNDTEwMMDc3BxDQ0M2b95MRUUFp06dQq1W4+LiwtChQ/tsAK9fv055eTkBAQEanlDXr18nICAAiUQipKtBd0mbh4cHNTU1xMTEYGRkhKmpKcOGDaOlpYX09HRaWlqEbfX4CpmZmTFu3LhepUgPR8MDxMbGEh4eLpQM9sWqu7i4CIqkrKwsYmNjmT59Oj///DNJSUm95tfW1sbGxgYXFxf8/PzYv38/RkZG1NfXa6i/JBIJAwcOxNnZGZFIhKenJ3FxcWRnZ2uM+qvVasrLy8nLyxPIpObmZhYvXkxmZibh4eG9zndqaiphYWG4u7tz7tw5Jk6ciFgsxtnZWeNeaWxsJDExkRdeeIEhQ4b8ofl6TEwMcrlcg8x5GFu3bkUkEj1yntu3b7Nv3z78/f37TBErKCjg3XffpaWlhZEjR3L37l0aGxuFYzQ0NMTExIQzZ85QW1uLs7OzQEb1oKysTAgPEIvFvbyWqqurMTY21khF09LSEsoye1BTU0NRURH379/n888/F0po+8KcOXN48803SU5O/q1M5td9fvzxx7l06dLvlphJpVJiYmKYN28eOjo6XL9+HS8vL0H5FRMTI9wXSqVSg/i6f/8+d+/eZfPmzYhEIu7du0dQUFCv+6Kv59LR0ZHCwkLmzp3Lnj17sLOzw8HBAT8/v15lvkePHuXKlSu4u7sLxIJCoSAjI4Nbt24BsHbtWkJDQ3n33Xd7bcvJyYm0tDShHC87O5vCwkIWLFiASCRCT0+PoKAgTpw4gZ6eHuPHj0ckEjFr1iwCAgL47rvvuHDhAlVVVbz55pu9Qjn+xv8e1qxZ88hyveTkZI3/e8zufw8ikYh33323z/vr30VjeSEWTu5/POOfhPPQAErvXRcivR9V0vcodCk6qCvJp6PtN4WYgZkljoP8hI5Kj4GsjcdAClKTcfUNRFv33yPmyjLScBqiqZR18xtD/rWzeI6c8KfKGh81Im3nNZi64ry/fA4AakvyMDC1xMLBFR09A432q7Y4XyivaWtupCL3DhOWvYxYWwfHwf7dJTUqFeMWr6GlrgplpwIdfUNhpN5IR49daUl4mNuSXlOCq5k1HcpOzPQMeClxNz/NeZF/BM3Bxcya7NoyDmZc5sfZa3nSbxIKVRePDRtPl1rFquFT6VQp+UfQHEY59Wdl9E7uVhezI2IVn1w6LngwbQ1dxjdpSWwMnoe/vQehe9/luZHh3abeBt2d+VZFB5+EPIGdkRlLjm5n9qDRfDR1SbfCRCHnwL1LLPefzL6755k5cCRbQpdR0FCFnZE5ehJtpvzwNjsjV5FdV86Wy9F8FracSR7emOjqo6etQ1pFAeNcBnG3upjZg0aTmHeL6QMDOJp5lcE2znww+TEyakp5IeE74h57k5y6MtaOiuR2VSEfXTjKK2NmkFtfiYmuAa+eSmBL6DK61CrGuw5mqc8E6tqlvJdyiA1Bc1if9CNvT1zI2ft3WT0ynIl7NrJ+3CyW+U3EzcyGSyXZeNu68OaZn3lj/FzsjM15/fReZg8azezBgey9k4K/vTuFTTV8cuk4++a8RES/4ehItMipK6efhT3DbF3ZHr4CfS1dZgwYyc7rCZjoGrB56hJKmuuIyUllwdBxrAucTqdKydbQZWhLtHh/8mOo1WqOLlxP1M8fsH7cLI5mXcXD3Jaf0y8wb8gYXEyt2H3zNK+Nm4WbmTXSjna2h6/Az94dLbEElVqNqa4BQ2xcaGxv5Y0zP7MjYhWp5XnE5abx7qSFnC1MJ7noHp+Hr2Tj2f28N2kxm4LnI/61PHGwtRMLD2/l/cmLqWptolPZxevjZuFgbMGBe5cY7uDB48OCsTQwpripFhtDU1o62tlw+idGOvZjxsCRvJN8kKdHhPDe5MUYaOvy/KgI2rsUPB//Ld/PfJ6XAqO4Xp7HnEGBJBfdo5+l/a9eYYt5MWE3i72D+PJ6IhuCZvPhlMexNTTjhYTv2B6+guPZ15g1cBRDrJ24UVHA0YXrqZE1M8l9KDWyFn66k8I7ExeSWVvKJyFPUNZSx3Nxu7qVVqHLEIlE3K4qxN3cho1n9/PdjOe4VJJNtawJLws7toUtx1zfiPyGbt+3e9Ul+Nm5E/fYm/xy7wJWBiZ88avX1MKh4+hUqZg3eAzGuvr0s7D/VaWo4Nubp5k7JJB1gdMZZufKtisncDA2p7i5lmG2buTXV+JiasW7KQfxtnEhveY39aZEWwdlVycjZy/H1NZR8IDqIZg6ZFLBeLyv7yc9Q2PEEgmWv5LqKpWSf6dorrYol3ZpE54jJ6BnbIJK2fWnSanSjDTs+3sL5FFP4Ia1W38U7TLu3ziPrdeQv+yvJGus+7d8AR8FkUiE67BRNFaWUHjzIq4+gb2OsTzrJo6D/P+jQZYemNo6UZKe+jcp9Tf+z+Lbb7+lqKiIAwcO0NraKqQolZWVsWfPHgwNDfnhhx80lunfvz82Njb88ssvaGtro6Ojg6GhIdnZ2Rofwtra2vj4+PDll19iZmYmeKj0hYiICEHB0PMAaWlp4eHhgY2NDTExMRw5coQZM2Zw6dIlmpubcXZ2FrwwHiSlKioquHHjBhYWFkRFRSESiUhMTCQsLIzy8nIOHz5MUFCQ0BFUq9VUVlZSU1OjoZh4EGPHjuXu3bucP39eKKF5uON948YNNm7cSGVlZS8SITU1lfLycs6fP09wcHCvRuL69euMHDmSjIwMgRgpLi4WyDx7e3vUajXXr1+nrKyMgIAAjUS+HtTU1Agk1ZAhQ7h3756GOszGxoYZM2YglUqxtrZm7969ODg4MHToUA1CUK1W09XVRUREBLGxsfTv318jTc7IyEjDdDclJYVhw4ZhZmYm/GZsbExLS0uf3jo9UCgUfP311+jq6v4uOQPdJYpBQUHcvHmTYcOGaZj2dnV1kZOTo6FQmjZtGps3b9b4TSQS4ejoyOjRowUS5cSJE6SlpaGlpdVn491zb9nZ2VFQUEBxcXEvX6LMzEyKiopYsGABFhYWXLlyhVmzZj1S8dZzXnx8fLh69aqgJHwQPZ5uVlZWlJeXCwmID6KkpIRFixZpmKf3oLy8nPz8fMGEXSKR9NqOVCrl5MmTvP32271K+PrClClTiIuLY/r06cJvFy9e7OVnNWDAAHJycnB1deXSpUsolUpsbGyIiIhApVJRVlbG/fv3Nczne3DlyhUyMjK4d+9er3uiurqaPXv2cPv2bTw9PftUUVVWVnL58mUWL14sXM/6+npBUWRoaIi/v7/GswzdKW6nTp3Czc2N2bNnc/LkScLCwmhoaCAmJgYzMzOB2HkQubm5Qtmera0ts2bNIjExUfD06ksNdu3aNXx9fXFwcODy5ctCW6SjoyMQ31KplA8//BADAwMKCwu5ceOGsLyxsTG+vr4EBASwa9cuhg8fjlgs7qVis7S0ZOjQoXh4eAg+gWKxmLq6Oq5fv86sWbP44IMP/iak/sZ/DW0tjf9Wws+joGtghIGJOU1VpZjZOaNokz3SK0StVtNSW0lz9W/KP4m2DlbOnugaGj9yG00VJZg7uHYn0gUEU3T7CpYunn853a9d2oy2nj4SLU0vR5FIhJvfWIpuXsLjEebtD+L3EqOsXPvRWFFMefbtP+UrolIpKb59BXNHN/oHTsZ5aADNNRUU3DiP40Bf9IxM6GiTomNgRFlmGiKxBK9fR+EdBvpy//p5PEdOoDTjBq4+gVTk3MHUxkGjdKRVIcdMz5C71cUMsXamSd7GjmvxbI9Ywc9zX+KbG0m8Nm4mOXUVuJha8dW0p0jMu4WXhR1bLkXjbeuKjliLQxmXeX5UhKCiGeHgyRjngTibWvJ5xEo+vRTNj7PWUtcuJdhtCPKuTmJyrnNyySYya8tYMzIcqULOq6d+6E4CTD4kKEwcjM25V1PM66f3MmPgSJ4fFcG6k3v4PGIl8w5+yraw5cTmXGfekDGY6xvxzIhQ/Ow9EInEvD1hARKxmPTqEvpbOvDJpePELN7AveoS1o6ehlTRzrarJ9DV0qZG1swwkSuvnfmRn+a8yFBbF+5WF7Hh9E+8MX4uOXXlfB6+AgMdXT69HM26wCj6WdjzYuJu1o+bxaWSbL68nsib4+fx6tiZNLRL2RA0BzsjM2SdHYiAAVaO6Ei0iMm+ztrRkZwvzsDLwo5/Tl7EyugveXnMDGIX/4PYnOu4mlqx/eoJvCzscDKx5B9Bc8itL+ed5IO8P3kx4f38cTG1IurnD9gZuYrdt85wsSSLU0vf4kppDpvO7mdj8HwUXV0MtXFBIhJRIW0kMf8Wy3wn8saZfawLnI6uRJvJ7t7MHDgSG0NTlGoVr46dydYrMazwm0x6TYlQ6vhpyBOUNNdyp6qQ1QFhSDvaWBXzJbLODraGPcl7kxbjbGqFvEvBEBtnhjt4olAqWT0ynJSiDL6c9jQ7rsUT6DwAW0NT7tWUsMg7iMXeQdgYmjHFYxhGOnpoiyVcKctFV0ubdYnf88b4ubx26ke+iFjJ8/Hf8knIE2wPX8GNinw6VUqOLHiN3PoKkovucTL/Nou8g1jlP4WPpizhh9tnu6sjxFoUN9ey7eoJPpj8GJ+Hr8TVzJoPm2sx0NbBUFuXxnYZm87t5x9Bc3hn4kJaOtq4VVnIEGsXKlub2HzxmGAcvj18BWkVBVgbmtAsb+OLa/FYGpgwxNqJpT4TsDU0458ph1g1fCrl0u4KE4lITH5DJSXNtXx5PZEdEavYd/c8IpGIFf5TWBn9pbD+LyJWcquyECsDE5IL72GqZ8gkd2+SCm7TqVSiJZbw8cVjrA4Ix0RXn2ML15NSlMnswaP5+vpJlvoEk99QxQT3odS3SXEwtuCH2+ewMjDWIKQAdPT00dE3xCd0PsV3rmBsZU9zVSlKZRdOQ0Zg5zmY5poK7qdd6GVwXn0/m7amepwG+6NvYo6hmRXFd6/hPHj477bdD0LZ1Unx7StYOHsIwQ72/YdRkX0b56G9+0sPo7Y4D0Mzy0eSRzr6hngGBFOZl05zddlf8nWqK8nHZdioPz3/n4W5vcuvJugXsXEfiLFV97dkS10V2rr66Bub/sEa/hz+U2Lrf85T6vz580RFReHg4IBIJOL48eN/uExycjL+/v7o6uri5eXFnj17es2zc+dO3Nzc0NPT0/Dg+Bt/DkVFRUycOJHOzk7BdDsoKAgXFxdGjBjB+PHj++ywmJmZERoaKnijJCUlCcRCWFgYYWFhTJ48mdzcXJ544gmgW4HwMHqMfEUiEVOnTu2llikrKyMpKYmFCxdiZGSESCRi/PjxREVFYWFhQUxMDAkJCUilUoqKioiOjqa8vJzp06czbtw4RCIRdXV1gjLL0dGRuXPnCgSGg4MD+fn5XL58+ZGEVA+GDRuGk5OTQBQZGxsL5utnzpzB1NSUESNGoKurK6hwelBVVYWDg0Ofx9ja2kpNTQ3u7u6CxxJ0m+/3RMHb2dmxatUqrl+/zvDhw/tU4TQ3N2Ns/Fvj7eHh8ciSrpSUFIqLi9HS0mLs2LG9DLB7SrZEIhHTp0+ntbWVM2fOCNMNDQ0FpdTdu3cxNTXt5SfU42f0MKRSKUeOHBHKI93c3Bg/fjzR0dF97it0k05VVVU4OjoKpXkPQktLiyFDhgh+Z+PGjWPBggUMGDBA+C08PJywsDC8vb0FQkqhUCCRSPD39+fOnTu9RqgzMzM1ksjGjh3LtWvX6OrqEn47ffo0HR0dREREUFdXh7W1NdOnTyc2NvaRx3P58mXGjh2Li4sL9fX1vVRngOBNNXr0aK5du9ZremVlJba2tt2pRb+aYvegrq6OGzduCKROcHAwKSkpvdZhbGyMRCKhtbWVI0eO9JpeXFys4bUlkUgwMTERym9v3bqFn5+fxgurvb2dvLw8XnzxRW7evMnkyZOJjIwkICBAUFk5OjrS1dXVK02stLSUzs5OPDw8sLa27qU4TE1NJSIigqioKH755RcNTy/oTqC8c+cOc+bM+V1lk4uLC4aGhoLH1dmzZwXjbz8/Pw2fKQsLC2bMmMGwYcOIiYkhOjqaW7duERcXR3x8PCKRSHhOR4wYgfhXU8iQkBDa29t7lSXX1NTQ2tqKh4cHenp6dHR09DrvarWaEydOMG/ePKD7WeppV3vu4Zs3b3L79m02bNiAQqHo06S/5xpt3ryZjo4OwsPDWb16NStXrkQmkxEVFUVl5V/3u/kbf+P/SXQTMSUo2mVCmRlAR1sr5dm3BY+Q0nvXu0vwHvB8chzo+4edmtbGWgx/HfnuTuUbi6yxjuqCzL+0n5W5d7HvP6zPadq6eth4DqY869YfrkdaX/27hJi5gyvGlraUpGt+73a0tWqUCLY21lGYdhFn75GY2f72zWBq44DH8CDqSwsovXeD1oYa7t84j5VLP42Olpa2Ds7eAaT8sBW5tBlZYy1iiYQDG1f02qculZL96Rcw1tXHzsiMb6avZmX0l9ysuM+tyvuUNdfzUuJuorOvU9ZSz6eXo1Gq1KweGcYQGxc6lF28FBiFjaEZX0c9Q42smflDx+Jv78GK6J0k5N1kqe8EamTNrEv8HldTaxTKLnamJpDfUMlLibs5X5zJEBsXNgTNQVss4dPQZVTLmhjjMhClWk2NrIVPQp4gyGUQBjp6rB83C3M9Q1b4T6HpV+PmrNoyPr10nFmDRpFSlEGXsgsjHT1+Sb/AcyPDGO86mDAvP+rapBzNusrb535hkvswdkauYoi1M1m1ZaiBjcHzqJW1sDb+W2wMTdkRsYoBlg4czrxCSXMdnUolG4PncavyPi8m7iZm8QY8zG153CeYtycs4N2Ug3R0daJWw/XyfDYk/cSioeN47MhnbAldhloNy/0noSPRYqX/FPbcPoeBti6vj5vFQCtH7jdW801akuCtFOg8gJcSd3OxJAsdiRZfRj7FUBtXgaj4PGIlRjr6RA0I4KMpS8ioKeWtc7/w7qRF5NZXsHPaU5wrTOeD80fwNLfDUFsXmaKDj0OW0t/KgePZqbwzaRHJRRkY6egx0MqRlxJ381xAONcr8ol//E3q2lr4JupZtCVa1Mpa+PFOMi0d7TTJ29gQNJv3Jz/G8axrGOnoMe/gJ0gV7WhLtBi963XUqKloaWD71RPoSrSYNWgUXhZ2GOroMdppACKRCGNdfTac3oubmQ3brpxgbcJ3POk3iZmDRrFg6FhsjEz5YPJjKJRd7IhYxWdXYpF2tLP3TgrlLfVUShvZcPonAp0G8P3M55kzaDQfXzrOzusJjHMZxKyBoyhurkXa0c6OiFX0s7TnxzvJFDXV8GXkU6iBx4aNZ4L7ENzMbOhQdtHepSCvvpL3Jy/Gz96dn+6m8EXESnQk2hxbuB4tsZiRjv0Y7zoYc31D3p24CBsDEwoaqnls2Hga5TLeDJ6LWCzmMe/xvHJyD0t9J/BNWhIT3YfyacgTNHfIWDQsiIVDx+JgZM67ExehVKtZ6jMBPS0dnh4RwqxBo3hs2Him9R+OnZEZY10GEujcnyppI/+ctJh3Uw7SJJeRWVvGhxeOcK0sl4yaEspaGvjyeiJqNfzrxinaOuXcqChg4dDeA4pymZTrx/fQUtOd8Jn09T/paG/F1mMQJtb2gs+Um98YKnPTaa4ppzLvHvfTLmBgao67/1i09fRRKbuQaGnhOSKYipw7tDU39trWw2iqLvs1YS5Qo62TaGmjfOB7/VGQ1lXTKW/r5cfXF+z7eWPh4Er+9WTkrS1/OH9PmM5/Q7HUF7S0dfAMCEbWVE951i1USiW1hTl/WU37RxCJRP+2r9T/HCklk8nw8fFh586df2r+wsJCIiMjmThxIrdv3+bFF19k5cqVGv4rBw4cYN26dbz11lvcvHkTHx8fQkNDqamp+T91GP/XQSQS4eXlxeOPP45UKqWhoYE1a9YIRtLLly/nzJkzGp3miooKjh8/zt27d4mLi8Pf3x9LS0vc3d17PXQ9ndDAwEDS09N7Jeg96PNkZWWFhYWFoDq4e/euEBUvFovR19fX6IS6uLgwffp0goKCiIqK4ttvvxWMjh9ERkYGQ4YM0fht/PjxjBkzhkuXLtG/f/9eJUtAn+SSh4cHAQEBHDx4EENDQ6FMqF+/fgJ5MWHCBI1SioKCAjw9u+WolpaWWFlZkZ39Wy12YmKioHBwcnKivLxvQ71Dhw6xevVqGhoaiI2N5cyZMxrG05cuXRJM3Hugo6PTq9N75swZfHx8sLW1xd7evs/tlZWVaZSmjRgxgsGDB/PLL7/Q0dEhrLekpISGhoY+I8Qf7nCr1WrOnTvH5cuXmTVrFkOGDBEaaysrKwIDAx9J5CQlJQkES79+/SgoKOhzPvgtCXLZsmUMGTKEq1evPnLe5ORkJk6cCHSn2T1IvEE3kdpz7XrQQzh1dHRw4MABvL29BXVLWVkZTk5O6Orq4uPj0yeZBAgG8oDgCfUwqqqqhKj2Hv+2B9GjroPu+7mH/JBKpZw9e1ZDzfQo8qOgoAAPDw8MDQ2ZOHEiJ06c0Jj+sNIOugmuHnP04uJiPDw8kMvlnDlzhvj4eK5cucKYMWN48cUXCQ4O1ijhS0lJEdRJEydOJCUlRXjJKRQKrly5IkwfPXo0V65cEZZtb29HV1cXkUiEvr4+CxcuJCYmRiDNb926RU1NTZ+m4X3B39+fJ598kn379uHn50dYWJigvMrNzRXS+Hpgbm5OUFAQcXFxXL9+nX79+hEREdHLa+5BDB8+HBcXF44fP45arUalUnHu3DkNAryvD5WYmBhB5WlnZ0dFRYXG9J4Ux+bmZo4cOcKgQYOIjo7mypUrGuWOCQkJjBkzBh8fHyZNmsS+ffs4duwYFRUVzJ07l0GDBnHhwoU/laj2N/7G/5tw9RnNL28uRyFvE0iohvIibNwHapjUmtk5/Vsf/w8vY99vKHrGZhTe6jb9/iM0VZVhZvv72zYyt0LXyIT60t4DdH8VJtb2WDp7dpuS//rM15XkC6UvlXn3aKmpwDMguE8fE5FIhMNAXxTtMi7s3Y6Foxt6Rt2q5gc7Hs015RiaWaFnbIqWrh4ikQhdQ+NearCxLgPZFrYcD3NbXkj4jsb2VnZErOJUwR2eHhFCl0rJ5qlLmDVoFO+dP8zHIUsJ7+dPXZuULZejMdTWpa2zg1UxX6JQdrE//QLnizJ5KvYr3hw/j+V+k3gv5RAdyu4kMj0tbUDNN1HPklZxn9eDZhPWz5/zRRlY6hvxyqkfUKpUvJN8kCppI+uTfkQiErPlcjQKZRfPxH6NmZ4hS45uJ62igEZ5K2tGRRDoPIA1oyKokTWz4fRPXC3LxcXMGn97Twoba7hWlscIRy8eP7KN8H7+fDRlCT/eOcc/Uw7RKJcxzM4NlVqNuZ4hHV2dbAldhrSjnU3n9tPS0c5SnwloS7RQq9WUNNcx4NdUs8MZV341+hbzjzP7eH/yYj6/Fsdgayf87N15NiCU4Q6ebA9fwan827x59mdMdQ15+9wB9t09z9awJzlflMmMgaNolLfS9muyH0BSwR12pSWxLWw554sz0ZZoca7oHneri/CytGd90o9oicQ8cexzZAo5CmUX8i4Fn4Y8gZdFN/FyvTyPGlkz5dIGDHR08bP3QE9Lmy+uxdOmkGNvbEZWbSkbTv/EheIsqlubGOXYD6VaRUdXJ6lleb+eo1Y2nP6JuUMC+XbGc3xxLR5XM2s+u3qCm5UFpJbnIRaJGGTtxECrbiP750aG09HViaGOHieXbKJW1oKxjj4H712iuKmWspY68uoruFCcxVKfidTImvlo6hI+D19BQUMVa+O/xdPCjq2XY7hWnkerQs6a+F28MmY6x7KuEr3odUx1DWjr6mDe4DHoa+uSVVvK66f3MsFtKK+MmYFELMZUz5CxzgPoUHay4fRPVEgbuVlZQH2blPyGKl4+uQeFsovEvFu8NnYmkf2Hs+3KCVxMrXgubhcKZRfPj4rgfmM1q2K+pFLayGdXYtmRGo+lgTFbLkeTmH+TLpWS10/v5XZVIW+c2Ud5SwNvn/uF1PI8NgTNwUBbF7FIRGlzHSdybxCdfZ0WeRvl0gaeiv0KeZeCH2+f42JJFtm/Gql3Krv48noiZS31PBX7FTaGptyoKODjS8dxNbNmR8QqamTNnC/O4IuIlXR0dbLQexznizN4ecwMxCIRb01YQGpZHl9Ne5oBVr3LuEytHdDWM0BLRw9dQ2OMzK1oa25EpVRiZG6NrLF7kFEslmDf3xu1SkX0Ry9i398bY0tbYT3d5XbdlQvu/uOoLcpBWl/da3s9bVVJeiqd7W14DA/q1S5Bt5qooaL4kW1pp7ydupI8HAb49Jqmb2zWJymmb2KO54hgan8tp/491BXn/VfVw32hq1OBlq4urY21fPNUqBCS8d+EuYMrjeVF/9ay/3OkVHh4OO+9916fnf++8PXXX+Pu7s6WLVsYNGgQa9asYe7cuXz22WfCPFu3bmXVqlU8+eSTDB48mK+//hoDAwN27979f+ow/q/DW2+9xf79+0lISGDmzJnI5XJu3bpFY2OjwOzOnTuXmJgYMjIyiI6OpqysjBkzZjBhwgTEYjHBwcEYGhqSkJCg8THzoEIJfuvMqx74wJPJZBpeKyNGjODevXvCunoIA+hW5zxsFpyfn09SUhLZ2dk89dRT5OfnEx0drdGJa29v1/DAaWhoICEhgQsXLqClpcUzzzxDQkICsbGxGuWHnp6efaq7rK2tiYyMZO/evWzatElQvPRAR0eHzs5O4VxkZmZqkGL+/v7k5uYik8kE5dODZVP6+vq0tbVpbPPatWtC6ZWvry9RUVGMHj2aM2fOcOLECfLy8lCpVL3KmcaPH8/58+eF/y9evKjhhdSXCudRTLi9vT1z5swR/LmkUik3b97sZcDcF/Lz8zly5AjDhg3TMExvaGgQ7hEbGxtGjBhBXFycxrINDQ3o6elpeBb1Rbb1IDo6munTpwuEa1dXV5/+Kmq1mo6ODsHU19zcHLVaTVNTE9BNHPVVzqarq0tDQwOjRo1izpw5QukVICS2QTeB2dbWRlVVlcbyVVVVGsuIxWJ8fHw0SCeFQqFB5nh4eFBUVCQ8Ox0dHQJBA90dDCMjIyH5cN68eb06R0OHDiU9PV3jt7t37wp+UVZWVgwbNoyzZ89qzNOX4sjR0ZGvvvoKLS0t4uPjuXTpEmPGjCEiIoJJkyahr6+Pl5eXQDD3nG+lUqlxXCEhIZw6dQrovm4Pvh96fJF6iOgHEz6hW7U1f/58Ll++zKZNmxCLxY/0i3sQFRUVxMTEEBcXx1NPPcX06dM17i3o7TPVc65SU1PZsWMHzz//PHK5XEgBfRgPnjNXV1cmT57M/v37OXToEJGRkRrzPvy8Xb58GW9vb6FdHD58OGlpaRrz5Ofnc/78eRYuXIiVlRW2trbMmDEDDw8PYmJiOHPmDGfOnGHQoEHY2dmhVqupr69HpVJx+/ZtbG1tSUhIYNq0ady+fZuOjo5Hms7/jb/xZ/GwUue/hbbmBopuX8ZpsD96RiYCAWXfb+i/7f30Z2Bq44DTIH/yryf/YdJRY0XRn/LSsnL2RN7ajKyxrs/p8tYWdA3+XLmKoZklDgOGUXA9GbVK1W1YLhZTcD0FI3NrHAb0rdoCaG2o5f6N8zgNGU7kSx+iVqu5n3YBRbsMeWszekYmFN2+go6eAQEzn0DZ2YmxpS1dnQqch45AqdRUH5zMv82LibsZYOXIzshVdCg7WRO/iyd8J3A06yofXjhCXG4aKUUZrPSfwieXjrPp3H7GOg/k05AnsDIwRleizQr/KZjo6jNtwAisDIzZGbmKFxN3c6+mhM/DV+BpbsdLibvpVKnYfjWO9i4FJc11fJmaQH2blB2p8dgambF56hJaOtrYEbGKTpWSXdNXIxaLWDsqks+uxrJ+3Cy+v3WGj6YsIci1uwO3LvF7zPWNyK4to0LayOcRK3kmIIzPr8ZR3lJPYWM1hzIuoyWW8N6kxdS1SblekYeuRBtfO3eUKiWW+sboSrRYd3IPAGKRmA5lF19Ne5q6dikuZtZ8c+MUl0qz+eH2OWpkzbx97gADrBz5OGQp9sYWLPebxGin/oxzGYRSrWJ/+gUcTSyYuGcTx7KuEeQ6mI+mLOHL6wl8HLKUdWOmU9BQydc3TpJWUcBrp35ELBLx0cWj1LS1kFlbSn5DFTaGpnwWtpyOrk7hOHzs3JkzOJB96efZGbkKd3MbNp3bT3ungrTK+8Tn3SR60QYOZVzG186d50aGk1J0j2NZ1xCJREx0GwoiEfZGFjS0y/g05Aki+w+nSd7Gk/6TMdDW5Xp5Po4mluyIWIW2RIsBlg5suRTDmrhdnHnibVRqFY95BzHc3pP142ZjoKPLxuD5LDv2ORb6Rgy0csRC34gnj39BTl05De1SXj+9tzvR0NCEhd5BWOobs25MFO1dHSTm3aK4uZa1Cd8hU8h5dexMLPSNeTYgjNFO/ZnoPpQXR09DT0uH9i4Fla1NfHo5mo6uThrapVRKG7AxNGVd4HS6VEocTSx5J/kg2XXlhHj6UitrYdeM1VRKG9g35yVM9Qwx0NZle/gK5F2d7L51hn+lneKjC0d5a8J8rA1NmeLhQ6dKyf2GatzNbHhn4kKSizJYN2YGUz19uFySzePDJtClUmGg070ubYkWX0SsRNbZwZfTnibUy5etV2LIb6ikS6lEpVbT0C7jmRGh9LdywELfmNfGzsTa0JT8hioWewfR39KBtaMiEYvFrPSfgq2RGU/4TsTOyJzwfv7siFhFpbSRNfG7sDUy+/+x999RUd2L+j/+msbQkd6LdFSKgmJDAZGOvSUmJjGaapKTcmJ6PMlJOemJSU4S002xNzoWBLGDWFF6773DMOX3B2HHETTm3Hu/697fJ89arKUze/bes9vs97OfgruZLS8f+RWZRMrGg1u5NyCc90/s55tzh7AxHEeMxxQKmqt5LOXrUdeUgqwkghasQaarR09bE4EL1uDiP52yvGz6uzuB4fudusIL1Bddwnt2NAue/YC2mnLqCi8I81GrVFr5SM7+0+lsrBnVgNff1U7p2aNYu00Q7HpjwcTanq6mujHf06jVVJw/gUvAzDHfN3MYT1vt2I4TkUiE48RA9E3MKT2bxdDg6HtBgN6O1j+dQXUzDA3201xRNKpJsLG0AD2jcRhb2hFy9xN0NtZSdenMbT1QuV0YmVvT3fafiX7+15FSfxYnT54kIiJC67WoqCjhyblCoSAvL09rGrFYTEREhNbT9RsxODhIV1eX1t//y9i0aRPvvvsuMTExXLhwgYSEBDZv3oynpycLFy4kLS2NgwcPUlBQwNNPPy0Ea984UPXx8WHatGls375dIAtOnz5NcPDvHtoRK9iBAwduuj61tbUoFAqeeeYZOjs7tQZs15NSGo2GQ4cO0dHRweLFi3F2dqa2tpaZM2eycOFCamtr2b9/v0BGtLS0kJKSIoRfR0ZGCra4Rx99FB8fHxISEuju7iYpKYnk5GT09PSorq5GqVRy7do10tLShL9jx47h5OSElZUVp06dIjMzE4VCIazr9OnTOXXqFO3t7Vo5SyOIj4/nyy+/pLm5mfHjtW9kQ0JCtCw/1dXVo8LXR7ZHZGQkJiYmfP7553zzzTekpKSQl5cnkBd6enrCoDkvLw8jI6NRCpCR7KkRXL58GV/fsWtLR+rsMzMzWbFiBbq6uqSnp2v9ZWRkcPToUU6cOMGZM2d444036O7uZtmyZVokJWiryGCY+BpplRrBjWQEjCbbRnDs2DGmTJmiRXTOnj2bvLy8UURfTk7OKBIjIiKCQ4cOAb9b7EbQ0dFBUlISSUlJWFhY8N577wn2rxHc2AI5oga6PnT+xsY0GFZ/VVVVCfsqJydnlOrt+nW7cZtoNBpMTEywsrJi1qxZYz6tHz9+vBY5d/ny5VEKQicnJ+zs7Dh9+jRtbW1aTX1KpZLc3FxSU1NpaWnhscceY3BwkNmzZzNv3rxRxI63t7eWIvDG6wEM24BNTU355ptvmDlzphZhNbL9MjMzUavVKJVKrYKDa9eukZKSglgsxsnJifr6eq1z9OTJk8L1XaFQcOTIERITE6mvrychIYGZM2fi6enJkiVL2Lt3703JWI1GI9j0oqOjBdLZz8+PhIQEDh06dFNF3Aja2tqQy+W89NJLgj13BLq6usJ+LykpQSQS4erqKrw/si9H1u/48eO0tLQISqrryXNra2sSEhJoaGjg3Xff5erVq6SlpfHss89y9OhR1qxZw+uvv465uTlffPEFDzzwgGARLCj4c1alv/AXbkRrdamg1PnvgKK/j/JzOXQ21TF+ymzcpoYi1zekrWbsQcJ/AuWQ4pYNTzJdPdynhVFfdImO67KqrkdDSQFWrrf/ZNreZzINpQUoFaMfrDRXFGI13uu25yU3MMLZfzrFZzLpaBi2sLhMniVki1yPEWXyiGXPbepcIZ/LzN6F8ZNn0Vh6lZM7vqT22gVsPX2FsGJzR1cqL56mp7VpuM1pjOvlXX5zCf/+FZKL8nAwNuedyDXIJTIemRbD8yFLifGYQpTHZD47k8oLIctI8AziXH0ZZnpGrNr1AfoyOQcKz/D5mTR+upBFeul5TtcUsyl0Jc4mVlxqqiKr8gp773iOhp52wsf78sXZdLoV/dwbEM6QWsVES0fu3vMx7QO9vHD4ZzoHe3ky7VsGlUM8m/EjlZ3NPBgUhbFcj9lOEyhoruZcXRl+1i68MncF3hb2bMk7hPy3zKaztcXMcPRiorUT6wPnsylsFc9m/EB66Xlyqq5ypqYY53FWxHkGotJo2HHlOO7mtvwjbBXWhuN4Mu1bDpZeoKWvi02Z27AzNGVDcAweZrZsW/4035w7xIZpMXx6JoXdBaf49eIxlk2cyRe56dzlP5e3c/Zw3+RwvCzseWPenUx38OT780d4I3sXsR6BtPR18VjK1+jLdPkk5n4UaiVH7n0NELFhWiy9igFe/E1plltXypNp3zLN3oPP4tazp+AUxjq6uJvZssg7mLO1Jdy371OSVr+IvbEZBjI5g8oh8hvKae3rprqzhaLWOsz0jHAzs0at0eBlYY+priEXGsrZlLmNQ2UX+eXSMbZdOsbWC0dRqVXYG5vRqxjg37lpnKwqJNYzkEj3AO7+La8ouSiPt3P2oiOR0jc0wLr9n9PW1827kfdwuqaIx1K+xtPcjg+i70Ot0WBrZMbHMfcjEYt5I3sXVvrGbDq6nX1XzzDdwYuZTt4MqZS8PHc5A78RcE29nVR0NBNk586WvIO4mdmw8eBWIt0C+MfR7aTc9RIFzdUs8J7GR6eS6FcqGFAN8dKRX+hVDPBWxF2MH2dFbXcbX+SmU9hSy9s5ewXraI+in02Z23A3t2WB1zQi3QK4w3c2zx/6CR9LBxZ6T6W2q5W9V0/z77PptPX3oFAN0acYQE+qwwQrR8z1DVk5aRYvHvqFvLpSUovP8cqRX2nq7aCktZ7HUr5mw7RYEgtz0ZPJKWtvxMrAmPTSfO7c9SEe5rY4mVgypFbyUcxaStsbKe9oIq+ulCGVkhcO/8ygSkleXSlLt79De38PnYN9NPV28kHUvfQqBsmrK+WVucP3BIl3vkDXYB9bFjzMvQHhpBaf46NTSYS6TGKNf+io83/qonvp62ylpiCPgZ4u9IxMkMh0cJ8WRnNlERcydlGedwxTO2ecfKehVimR6uhg7zOZcTaOv9nhOlErlVo2bQCHCYH0dbYJiqeGkiu01VbgPi3sphmD10OqozMmaVR+LgeXyTNv2ugqkcpQq25t/zOysGZ84Gxqr+bTUq3t4lAOKcZUb/0RFP29NJZdpfryWa2/lsoSDM2ttNTBIzZ15eDAsLps8izk+obDza/5x/9bfy//U/yfDzq/UU0AwzfcXV1d9Pf3097ejkqlGnOa6wdCN+Ktt97iH//4x//IOv9fxNtvv42FhQUbNmygs7OToqIi1Go1586dY8+ePURHR1NRUYGhoSEhISEUFhZSVVU1ZjCzubk5y5YtY+/evcKA+kaliaGhIX5+fhw/flxrwD9SWW5tbc3KlSsxMTFh4sSJ7N+/H1tbW4KDgzE0NKS9vZ3u7m6Sk5OZN2+e0Dh2oz1pxMK3c+dOVqxYQXZ2NtHR0VrrM2JDmzRpEvv378fNzQ1fX198fX1Rq9VkZ2cTExNDamoqnp6eREZGan3+zJkzrFq1CjMzM3p6ejh69CgKhUIIdW9paeH48ePExsYCw4Tb5cuXBcLoyJEjODo6cuTIEebOnSsoM3R0dLQIrry8PK0GOYDm5mZOnTqFWCxm5syZODs709PTw4QJE6ivryc9PR2NRoNMJmPcuHGkpaUxbtw4AgO1W4FgOJR69+7dTJw4EZFIRFVV1Sg1BwwP7LOzsxkYGEBfX5/Nmzcze/bsUa1iarWaoaEhFAoFJSUlYx4HI2hvb8fMTDtU0N7eHpVKJYROe3p6jiJZrh/Ij6CwsBBdXd1RIeQAixYtYseOHVpB+mMtWyQS4efnx4ULF+jq6sLExIT8/Hyqq6sZN24csbGxiMViUlJSiIiI4NSpU2PaQ69HQkICSUlJWkHkY5FGI6HyS5Ysoa+vDwMDbcXBSF5Yd3c3CoUCuVxOeXm5QIwFBASQnJxMe3s7ly9fRkdHh5CQEK16dyMjIzo7OzExMRGssTfC29ubvLw8vvrqK8LCwkhNTQWGlUn+/v4CoZaWlkZERATHjh2ju7sbNze3UWqbEQusrq4uTU1No64b58+fp7Gxkc2bN2Nvby8oudzd3XFzc0Mmk6FSqcjOzmb27NlUVFQIBKqXl5dwnEokklG2vY6ODi5dukRqaioZGRlkZmZqbdOcnByB2ImNjR0zLH6EpI6OjtYi6EYglUqJj4+nqqqKXbt2MXfuXK0WxMbGRk6cOIGTkxNhYWH8/PPPODs7s2fPHnx9ffHw8GDixIlcuXIFDw8Prly5MmodRvbt+fPnqaysxM/PT4u0srW1FYjklpYWDh06xMKFC9mxYwdKpZKEhAQA7OzsBLK3ra2N5cuXk5OTw+TJkzl9+jRVVVWjlvsX/sKfgVIx+N+iXFIph6i5kodYKsMlYHjAMNjbjVzfaLjq+0oeukYm/y1tRq3VZZj/gcJJJBLh7D+dxrJr1Bddwtbz94c2apWKgZ4ObNz/nNJw/JRZlJ45intwuNbvgVqt/lP15f1d7TRVFCHT0eXItreI/dub1F37XXWr0WiQSGXojzOnrbYcxUDfTcODRWIxNu4TKT59BI1aNcqWkvrxi0yJuxMT69GlGzDcwvfmvNUE2rkRtfU1Pom5nw0pW9gUtgqxXMTzh37ipbnDAd7/OLqd18JW8eax3SSvfpF/zb+b0vYGHpsWh1wqQy6RIhaJQCTi8ZSv+TR2PeXtTRwqu4CvlTMu46y42lzD32bEoy+Tc/eej/ln+J3cHRCKTCxlQKngw+i1DKmVbApbBQznPFkbjGNDynCr2bf5h3lz3mp8rZ1p7+/B1siU0O9eZqKVI4MqJadrivCzdmbHleNsnL2Yx1K+Rlemw2KfYGq62ihprWeV72wqOpr4+FQS9waEMd/Vn9if/snHMffzcNIX/Gv+Giz1jeka7GPrkie4e8/HfBK7jsdTvubzuAew1DfGx9KRh4KiOFNbjIOJOddaavn1Ug4zHb15dFosrX1dRPywifS7XyG3rpS5zhMJdvDk09OprJw0i8XewTgYm/F61k7M9Y2QiSVsPPgjH0Tdy4cnE3kwKIqXjvzCxzH383bE3ey5eoovczN4euZCrA1NWb37Q/4+axELvKex2Gc6OZUFvJ2zl09j17MhZQtPzVhAaXsjtkamTLP3wNvCHmvDcVgbmLBy5/u8FXEXdweE8tDUKNJKzhPjMYW7dn/IptBVvJq5jVdCV7Dn6ikeDoqmuK2e0zVFNPV2MsHSkeTiPFZOmsXaKfPoG1KgK9Xhk9h1NPd18eLhn/lx8eN8v/gxEn55kzt8Q+ge7Od41VWWT5zFZ2dS+TzuAZzHWfLdog009XZS3FbPV7kZvBlxFzuunODJGQk8NXMBtV2tvH9iP04mFmy9kMUkKydeC7+DIbWS5RNmkl1ZwK+Xclg6YSabY9cNWxiHFHwSu46cqqvCsffkjAQmWTmx9+pp7pscTt+Qgi0LHqFjoJdXQldS29XK1gtHWTphBuN09QVr5ld5GUS4+vPwtGjqulpxHmdJUWvdcND48X28H3UvjyZv4dlZi9gYshgRIiYDXub2uJnZ8Pyhn/g8/kEGlUPcNzmcVzO3scB7Kt6WDgwqh5hq546Rjh6fXE4mp+oqn8c9wJ6Ck9gZmfH0zIWoNWremLcaXamMlZNm8YB8PnoyHdYf+DcvzlnGzuJzTLZ1ZbXfHB5L+Zo7fGejL9PhhcM/807kGl44/BNfLXgY53GWXGqs5McLR0ed/xcydhG29u+kf/oqs+54VCvzTq1SolYqMbSwRs9oHACqoSEk0uEHAvomZrgFzaX26jmqL5/FwtkD5eAAQ4P9DA0OoFQMoBpSUHs1n9wDP7L4xU+x9xm7DX0sjBV4XnvtPFauPsjkerf45O1BLJbgEjCD9rpKys/l4OQ3HYlUOvx7cQvF6kBPF+31lQwNDDsCRn4LZLr6mNo63XbIu6K/l7baCsZPGR5Xt1SVYOHsgWtgCO31VZTlZmM/YcptEXi3/p7iUUq228H/eVLqfwrPP/88Tz31lPD/rq6uMVUo/6/gueeeY+rUqejq6jJ//nymTJnCN998w9q1a0lLS6Ovr4/8/HwWL15Meno6YWFhlJWVsWfPHubOnavVrDY4OEhRURFGRkbMnDmT0NBQJBIJ+vr6uLq6Ymdnh1gsxtXVlaamJq5evYpMJuPo0aP09vYSFxen1VZmbm7OokWLqK2tZe/evZibm1NUVERlZaVQe34zqNVqUlJScHV1FSyH3d3dWoHe17dvWVhY0NTUhJWVFTB84vX19dHe3k5ycjJOTk6jiJWRkHYYJtsiIyOF1zMyMjhy5AgfffSREIxuZ2dHRESEQD5JpVLCw8Pp6+sjNTUViURCeHg4crkcNzc3SktLEYvFQoC4RqPhzJkzNDU1YWlpSXx8vLANmpqaBIuira2tkEWkUCj46quveOyxx0hJSeHUqVMEBgaOUqTMnj17zEwqGCZ7iouLBZJDT0+PpKQkHnnkEfbu3cvSpUu1pheLxcjlcuRyOebm5sTFxXH16lX27dtHfHz8TRvproeTkxNFRUVMnz59zLB0GLa0lZWV4erqSltbG6WlpQIBeCNGSIuUlBTi4uLIz88fMwcLhtslN27cSG9vLxqNhoCAACEz6kZMnz6dY8eOUVhYiJfX2E+39fX18fHxualSbQQymQwvLy9ycnLGVNfBcJ7TkiVLWLZsGcnJyTg7OxMfHy+8f+XKFSZNmkRAQACDg4Pk5OQwMDCAtbU1gYGBhISEkJaWJlglr0dDQwMXL14UQtyff/559u7dO4oQvR4SiURQbJWUlJCYmIienp6QJTUSsO7t7S1cZ5VKJUePHqW/vx9/f38CAgLQ0dERMsM0Gg0lJSUCsdrW1iZYf11cXIiLi7utzJhx48YhlUpZtmwZwcHBWoTU9flUACYmJvj7+3Ps2DF8fX0xMTGhsLCQoqIiVq5cOercv1FV5eTkhKOjI1lZWSgUCtrb29m3bx9WVlYsWrQIkUjE2bNncXV1xcLCgiVLlnDx4kX27NnDvHnzaGxspLCwkDvuuEOYZ1dXF2VlZTQ2NqLRaIiJiWHHjh3U1tZibGws2ETFYrHwIKGlpUW4NhobG+Pq6iqUf4y0Yzo7O/Phhx/i7e3N6dOn+eKLL/5wW/6Fv/D/BTRqNbXXzqMaUuAwYYqWgqm5shhbj+F8O8eJgZScPcr4gJm3VDndDgZ7u9A19P7jCQFrV2+6WxspyzuGy+SZiMUSagrycJgw+mHPH0EsluDsP53KCycF64j6NhpQNRoNrVUl9HYMZ+npGo3DcVIQGpWKyEdeRaNW4+SvTf4rhxT0dbZRef4UvvOXjFIhCNMpBqk4f4Kw+56hrvACZg6uQntT1aUzLHzuIzoba1ENDWFq50J7XYXW53WlMl44/DOPTovh12VPca2lhpS7XmLbpRwCbFx4Y95qDHV0cRlnyTxXX8abWvNZ3HreO7Eff2sXDlw7y99mJPBk2rc8HhzHl7npfBhzP09Mj8PSwJhYzyn427hQ1dnMjisneGf+muHMJxMLnp65AHtjc+7bt5m/z1rE1eYaKjuaaOrtIsLNj00Xs/kkdh1/z/iBrxIepr6nnb/PWoSPpQOLt/2L5RNmEuLsw5MzEnAwNmfHlROsmDSLXy8fY8XE4cD1CDd/dKUyotwnU97eSISrHzaG4+hRDPB6+B2IENEzNMCPPo9zorqQLQse4VDZRYLtPfhb2rd8t+gxHp0Wg75Mh09j1/N2zl4eCopk48EfiXafTKzHFDoGekkqzP3NAqlkU+Y2/hl+J8/MXEhjTwcvHv6Zj2Pup7arjUXe0/jkVBKvhq4kp+oar4aupK67ja7Bft6PuheVRsOSCTOE5RnJ9Xjv+D5eCV3BzMWP88mpJOyNTPk45n6sDcfxwIHP2Th7CROtnNgUupLcuhL+EbYKU10DVvvNwUCmyxvZu3g9/A72FJwixHkCn8aux8fSgXk/vMob8+5k64WjyCVSHgqKQk+mwzQHD8QiMQqVkiG1CqVaRYSrPzoSCToSGSIRPJq8hX/Nv5tPz6TyRHAcKrUaqVjCJ7HrePHwz6wPjOSFkKXoynSQiiUE2rmhJ9Xhw+j72HftDI8kf8Xm2HW8e3wfb8xbzSuhK+ge7CfQ1pXStgbePb6PzHtfw8HYnL9n/MgnMfcz3tSahF/e5J/hw9ld3y3aMHwsHt+Hn7ULX+Vl8I+wVZS3N+Jr7YyziSVLJkynR9HPPFc/TPUMMZDJ+XvGD3wScz+Xm6r44Xwm++94niemx/H1uUP4WjtztbkGE7k+f5+1CBGgJ9Xhq7yDfBxzP5UdTZjrG/FJ7Dq6Bvp4ee5yjlddo3OwDx2JFH2pDuGufmg0alb7zUGlVvFk2rdsClvFv+bfjVwi5dHkLbwQspQB5RBvHdvDy3OXc0/AcG7ZVwseoXOwjx7FAM8d2srayfPYe/U043T1eWJ6PG9m7+bAnc9T0dFMgI0LHma2uJra8NLc5ZjpGlDd2cLn8Q/S1NvJp3EPcK6ujM/PpvHinGW8MW81Lx7+Wev8t/McLkea//AraDRq7Lz8keoM51WW5maT8My7NFcVDxMmTu6olNoqVZFIhESmQ3t9JU3l1zC2sEFHTx99EzNkcl3EUhlqlYqIB19EIpVqkV76xqaYObjelCy5MfC8tbpsOPfKzHLM6W/E7QaVm9o5Y2xpS+X5E5g5uKJWDiGRyujvaqe9vmqUOlZuYIy5g+t/yfauUaupvHAK9+DwsdfJ1olxNo7UXj0HiLD3mXxb32UsWDi501JVjNX42/vNHMH/eVLKxsZmVDNTY2MjxsbG6OnpIZFIkEgkY05jY3Pz1pKRwfJfGIaFhQVisZi1a9fi5OTEW2+9xaxZs9izZw8DAwMcOHCAFStWaH1mhGCaM2cOd911l2CRkcvleHp6MnHiRN5//31UKhVRUVH09fVRXl5OQUGBoBLSaDTMmDGDhx9+mNdee00YYI0Fe3t7Fi9ezE8//cSGDRvYu3evQCqMdQNXVVXFqVOniImJwcjIiObmZhISEkhMTMTPz08geQYGBgTL0cyZM7WUEiNKJRMTExYvXsy2bdtYuXKlFqFys4vUuHHjkMlkxMXFYWdnJzSzXW89uv7zRkZGxMfHo1AoBBvgSJi0UqkUAqg1Gg3Tpk0bZYGC4UD5sZQcWVlZhIaGkpqaKtTbZ2VlCQHpVlZWBAQEYG1tzalTp7h8+TI+Pj709/eTnZ3N0NAQnp6eWsSHWq1GJBIhFouZNGkSFy9exM9v9JOA2tpagRzz8fERCMKAgIBR4eEjGBwcFNRY7u7u/PLLLwwNDWk1HgYHB6Ojo8PEiRNJSkrCycmJ9PR0Vq1aNeY8R2Bqaoqrqyt5eXnU1NQwefJk1Go1JSUllJWVCftDo9HQ29tLUFAQtra2o0jr2tpa7Ox+D3kMCQkhMzPzlmSbp6cnBw8e5NKlS9x7770oFAra2tpobW2lra2N3t5e4ViKjo5m27ZtAikzApFIhFQqRaFQYGRkREBAAPb22k+s/fz8uHTpEpMnT0YulwuB2vX19aSkpKDRaKitraWzsxOlUqmVMWVjY0NYWJhAWKampgoqukWLFo3KWLoR7u7uuLu709fXx+HDh1EoFAQGBjI4OMj58+eZPXs2iYmJSKVS5syZM0oJdv339PDwwMPDgzNnzqBUKtm8eTMDAwNCe+vt4OTJkxgYGODn54eRkZGWou3IkSMCiTwCFxcX2tra2LZtG7a2tujo6Agqo9tBRUUFfX19NDY2snbtWuE8GUFLS4sWEejn54evry+HDx8mLi6OnTt3ahV5jJBK/v7+ZGdnk52djampKS4uLly7do3c3Fxh2rvuuovjx4+P+k4eHh4cO3aM6upqDh06hFqtZs+ePQwODmJvb8/atWt57LHHsLKy+qsg5C/8l/CftvKMoLG0gL7Oduy8/cd8mqtSDmkNYFynhFCam4X7tLD/sVajsWBkPvykv+xsNlau3oglUmHg9Weho2eAmb0L9cWXsfWYRFN5IZYuox9uDA3201hagGpoCEQizB3dRgXndjTXY+7ohko5RHNlMZbXvS+V6WBkZsXkuDtwnBhETUEeIrEYe58pwrZTDSkoO5eD+7RQRGIxdt4BlOVm4zZ1Lg0lBRhb2jLOxpGBnk5MbZ1HEVIA2ZUFLJswg1iPQJKKzvLvs+l8HvcAJW31BNq5MaTqp7arlSdSv+HzuAdI+OVNnp21CEdjC3SlMh6aGkVzbyc/Lf0bdd1tvDR3OWVtDTgYW7By5/s8PXMhe6+eYrXfHLwt7Knraee9E/t5O+JuEgvP/hamvgZdqYyKjiYUahWr/eagJ9Phk5j7udpczZIJ02no6eDVzG28FXEX9+37lE9i1yETS6jvbsfaYBxPp3/Pv+avQaVWsXHWYrZeOIqN4TgeCoqkoqOZCw0VvHVsN5/HPcDDSV/yyNQYdl89yQOB83n72B4+il7LF7npOJlY8MvFbALt3Pgsbj0XGsqZ7eTDhuQthLv6MtNxeF8/O2sRRnI9Hkz8gpfnLmeJz3QeTd7C+1H38ua81bx4+BdeC1/Fmr2f8O/4B5lsO55XjvxKiPMEHpoahVKt5ofzmdgamvLcoa18EnM/H5xM5JmZC/n4VBIfRq/l37lp2BqacYdvCC8c+pmX5i5HKpGCSMSugpMs9ZlOgtdU5FIZz6T/wKPTYmjo6eBSY+WwLdLKiea+Lj6LW0+PYpD7JoczycqJ8B9e5aW5y/kg6l50JDI8zG0x1NHlneP7+DjmfvoUg0hEIsabWqMn06F7sJ/nDm1lU+hKNh39ns/jH+Rf89egL9PBTM8QqVjC39K+5Y15q3kzexcvz11OQ08Hrmb29CoG+OJsOvcEhLEhZQufxK7DzsiUDdNiya8vx9/ahafTv8fNzIZJVk5IxRKC7Nx4L/Ie1uz9BDdTG14NXUFRaz2Pp37Dq6ErkEkkPDE9nq7Bfp5I/YZPY9dzpbmKn5b+jc6BXl7N3MYnset46cgvvBO5hpNVhey9dpo1/qGkFOeRctdLv6m+HPgwei2lbfVsu3ycTaGr0JXJ+C7/CG/Mu5NAOzeit77OB9H38ca81XQP9jOgHOLAtbMcKb+Eh7kt43QNiPcKok8xiAYNelIdPj6dzDR7d3oUA4zT1efdyHswkuvxUOIXfBK7jqdnLsDBZHj8dJf/XJ5K/44Pou7jb2n/ZnPsOjLLLzHL0Zu3Iu5CIhbzD9tVtPZ1oVSrmGDlSHl7E0+kfsO7kfdQ1dnMc4e28v3ixzhfX05zXxcKlYoPTh7A18qJh6ZG8dzsxQwoFbyRvQtHY3Oqu35vZ68vvkTofU/T0VCDlas3JWeO4jEtjKaKIixdPBGJxVi5eNFYdpW2mnJEYjHS35S1nY21tFaXYuMxiejH/kld4QVM7bRdD63VZRhb2tLT1oSFk7vWe32dbdReO49GPRyVIZZIsXByF8obYJgwaqurRK5nQH93Bw4Tptz6Av0bhkPaW/6QwFINKehsrqe3rQmpXJdTu7bQVjv8PfWMTbF08fxvUWXdiIrzww82bvwdvH6MKhKJcJgQyGBfD+XncjCzH884m9Et7n8EPWNTmiqK/vTn/s+TUjNmzBAGoiM4ePAgM2bMAIYtToGBgRw+fFh4kq9Wqzl8+DAbNmz4/3p1/89i/vz5LFmyhHXr1vHggw8SHh6Op6cnHR0dTJ8+naSkpDFVAtnZ2WzevJmuri7mz5+v9X5aWhqRkZEMDg5y5MgR5s2bx6RJk7RavI4fP85nn32GkZER9fX1tySlYNhuYmlpyc6dO4mJiaG+vp6MjIxhqbtYzJQpwxeXgwcPYmBgoEWkiUQiIc8qKyuLjo4OTE1NtcLJRSIR+vr6QlvgkSNHCA8fZp319PRYunQp27ZtY9WqVbckH0pLS8nPz2fevHmYmpqiUqkIDw8nJSUFR0dHYT2vX+4IRtQiI9bBhIQE7rzzTszMzIiJibklKTCy3iMYGhpi7969hIaGYmVlJTTsmZmZaeWwNTY2cvjwYdRqNSqVCl9fXxITEykrKyMsLGwUkQbDtsWR1jcvLy/27t2Lj4/PKPVVfn6+lg1QLpezdOlScnNzSUtLE5QxAMXFxVy7dg0dHR3mzJkjkIWVlZV4e3vj7T3Mynd2dgqkmkgkorm5mZ07dzJ//nxKS0tpbGyku7sbkUjExx9/POa2uuOOO5g1axY6OjqIxWLc3d1HWTNH8oMqKirYvXs3s2fPFqzCFy9eHGUVCwsL48CBA7z77rvAzQdo9913n0B4mJmZCa2Venp6wrGQmJhIX18fU6dOHWUvhOF9Gx0dzalTp8jNzSUqKkqw6Nna2o7KLBp5PS4ujnPnzvHKK69QU1PDxYsXhevpjRjJHhk/fjw2Njbs2LGD+fPn/+F5CsPKsOjoaDQaDefOnePLL78kOTmZrKws4uLi/lAJANDa2sqRI0eEDLuR4yUzMxOVSkVERMQtB6InTpzA2NhYuOa4ubmRmJjIxIkTUSqVgrX1egwNDdHZ2cnDDz/MBx98IOSlwfC5aWdnh52dnWCjbGlpIS8vD5VKhUgkwsXFhZiYGNLT06murhaufSMYuQ5dj76+Ppqbm9m8eTNKpZLQ0FAtuyUMK6YGBgaIiopiz549+Pj4aJFbQ0NDfPHFF0KA+Y3ktI+PD3PmzOHnn39mwYIFHD9+XLAO7tq1i2effZZvvvnmD/fJX/gLt0J3a6NWg9Ltoq2mnI7GGqxdff5UhbVYIsFxYiBVl87g7Df6Qc3/JKQ6csZPmcU3jyYQ+cirVF8+q/0AQSxBz9AYXaNxQq7KzWBsacdATxcdDdUM9nULg6iu5nra66uE5dl4+I7ZojeC3rZmbDwmIZHKqL2aT29HKwbjfs9wbKurwNTOGZFYjOOkqcLgxMTaHrVKRWluNu7TwhCLh+8zRCIRtp6+5Kdux87LT8iWMjS1pPjU4THX4Vx9GSsmzqKpt4NQl0l4mNnyRW46QXZuKFRKNh3dzp5VG9k4ezHvHt/Hu5H3UN7eyEQrR2q6WukbUvDJ6WQ+i1vPs78pWt4/cYCX5y5nc+w6+oYGWTlpNhkl51noPY3uwX5eD7+Dhp52ErymYqijy+tZO3g9/E4yyy+xLnA+TiaWPJL0Jc/NXsyZmmIkYgmXGqv4btEG8uvL+UfYKjZm/MimsJW8lrWDHxc/zofRazlTW8Svl3L4NHY9efVl3OEbwv5rZ/ng5AGSV7/EptCVGOvq817kPQyp1YSP98XB2IKPotfSoxjA09yOHsUAj0yLZlPmNv4RtoqPTiXxj7BV/CNsFeP0DNh2KQcjuR6PpXwtkBWvZ+3k9fA7+Ch6LWKRiKcPf89jwbFoNPBq6AquNFXzcNKXnFr/NtmVBfx4/iiPBceycfZi9GU6PDF9+AHiXf5zMdHV56uEhxlQKrh/SsRwaLeROav95mCmZ8gi72ko1Sr6hwaRSSQE2rqhL5MT5zkFQx05aSX5bFnwCKDh+UM/McXWFZVGwyQrR+J+foMPou9jc+w6DHX02HftNDMcvIhxn4K/zXgemRqNSqNmSK1CIpaQXXGFqfbuBDt4EOkeQJ9ikO8XP8a1llo+OHGAt+ffjUajwd7YjK1LnqCxp4OX5ixHpdHwetZOPopeS1t/Dw4mFkyyduKj6LV0DvQiEomZYOVIe38PTuMsSfCaiq5Mh8uNVfQrFVxoqODNY7v5MuEhNMBDiV/w0pxlPDVjAUfLryAVi1FpNNgamvJR9FpsjUzZkLIFbwsHnkj9hs/i1lPQXMMT0+PZdimHFRNnMcPJC6VKxcNTozhYepFXMn/lw+i1nKi6xsmaQv42PZ4NKVv4d/yDvBVxF88f+onnZi/mw+i1wyH4ad/xdsTdBNiMx1hXnxfnLhNeeyrtOx4KiqK1v5udV07wdsTdKFRKKjubae3r5svcDF4JXcErc1fQM9iPRgNXm6vZfDoFRxMLnpyRwL9z0/kkdh0u46w4XnWNsPG+PJPyAy/OWUa3qJ/Xs3by7cINTLVzZ0A5xL/mr2HbpWPMdw/gw+i1XGup5dv8w7wefidPpH5DxppXudRYyYbkr7lvchit/cNt7NcTUjCcKXUtJx3/yGWIxGLGB8zkSuYBjCxssHb9XVlj7epDffFlelobsRrvTfm5HIwsbXENmiNMM0IujUDR30tPWxPO/tPpaWsaJQrQNzHTsnOrhhS0VJfSVP57nI+RuTVtNWWIxBLcrlvWH2GcrRO1V/MxNLNErVLR3dpId0s9apX2OkpkOhhb2uIwIZDejhYmhS9ELJFgYmWPwX9T0PmNaCi5grnjeGS62mSXsaUt3S31GFtqtyTK9Q1xDQyhtaaM8nM5OEwM+h8tCxnB/7qg856eHs6fPy8MmMrLyzl//ryQY/H888+zZs0aYfqHHnqIsrIynn32Wa5du8bnn3/Ojh07ePLJJ4VpnnrqKbZs2cIPP/zA1atXefjhh+nt7eW+++77//S7/V/Gr7/+SmdnJ5999hlr165lwYIF7NmzB0tLSyFLKTk5Wbjh6unpYceOHQQGBhIcHKyVfQS/28gMDQ0xNzdHrVbT3v57naZarWbv3r3Y2dkRHh5OSEgIGo1GaOAagVQqFdQ8I+9HRkYKeT+2trZER0cTGxvL/Pnzqaqq4p577sHAwICZM39vUbiRHJg7dy5isZh58+Zp5bLA76HKSqUSpVKpNTjU1dVl+fLlbNu2TViv66FQKNi3bx8dHR0sW7ZMa2Aok8lYuHAhxsbG7Ny5k87O31sobkRFRQWpqan09vby6aefMmXKFLq7u0lLS6O0tHTU9CPo6+sTiJzm5mbBdjViR7wZSWJtbU1kZCQeHh7DVc+/ZQANDAxQXV095mdaWlq0cnNiY2OF3KERjPxgjEUcBAUFMWPGDH755Reee+45kpKShOybqKgorcDsG5sITUxMmD9/PrGxsURFRZGSksKdd95JYWEhAL6+vkRFRREVFcUTTzwh/Hvkz9/fn02bNrFw4UI8PT2JiorCzc3tpvYsFxcXli5dSnFxMSkpKQKhIRKJ6O3tJSsri9TUVFJTUzE2NkYulxMcHEx0dPSov8DAQBITE5HL5YSFheHv74+DgwP6+vrCdqqtrcXe3p7ly5dz9OjRW6pXpk+fTlxcHIcPHyYrK+uWQd05OTns378fCwsLTp48yU8//cSJEydueky1tLQIx46enh6rVq0iLy+Pixcv3nR9rkdJSQkpKSk0NDQQHx/Pd999R09PDykpKbcM1NZoNBw8eJCLFy+ybNkyQdUIw4Ok8PBwgoKC2LVr16h1H/n+OTk5mJiYaJHgMKyUa2trIzMzU2j1HCHOkpKSOHLkCEFBQSQmJmJra0tkZKRw3MyYMQO5XM6lS5fYsWMHMTExlJWVMW/ePGJjY4mJicHHZzjoWKFQ4ODggKGhodY63rh/ysrKOHjwICtXrsTDw4Nly5aRlJRETY12mPLBgwcFBVRUVNSoa+XJkyeJiopi5cqVnD59WmsfFRUVcebMGdrb27G0tBRy8K5du0ZiYiKGhoa88847Asn8F/7Cf4rOhmqBuLgddLU0UJZ3DLFUimtgyC1v2pWKwTHVSLqGJphY2dFYdvMc0VtB0d+LTFf/jye8Af3dHZSfO859m/chlkhxnDR1VOis/jgLFH09NJQWaLUkjQTWXv/aYG8PpWezOJ+2ncqLp6m8eBrlkAIn32k4+wVj7x1wS0IKflOS/Raoa+8zmfriS6iUv9+r9LQ1a5GGI4OTvo42Uj95CZlcj5qCPK11bK0u5czub2gquya81tfVTl7i1jHX4V/z7+a5Q1v54fxR6rrbeStnD3NdJjLRygm5VDas/Mnexff5mdwzORyFSsn3vzXQpRQNZ9r8vPRJTtUU8euyp1BrNPwjbBV9Q4M8lvI1KrWat47tZk1AKC8c/hlbQ1N6FQOkl5xHTybnm3OHWTFxFj2Kfu7ym8vbx/bQqxjg09j1jDe1pqarjYeColg7OZzC1jo+OZ1M50Afb8+/G4lIzCcx91Pf08GHJxOZau/B5th1KNUqkle/OPzgwdSKf82/m7if/4lULOH+fZ9yraWObkU/P1/MplcxwN/Shtu/7w0IY+eVEyQV5vH0zIUMKId4L/IeJlk5sSFlCw3d7RS11g4TcbHr6B7s58XDP7Nq0nAmzLf5R5BLZXwQfR9FrXUcr77K52fTEIlgjX8oubXDLXsPT43iwcQvyKq4gvM4K2RiCW8d24OFnhF37/mYAdUQ7x7fR15dKX2KQVbv/hB3M1vSS87z/KGf0JfKKW9vEhrYytob0JPJGVAO8Xr4Haw/8LlA3pnpGfJ4yte0D/Ryh28IAM8d3ErXYB/pJflUdjZR0lbPP7N24m5ui5meISa6+gyplBjo6NLU28mjyVvoGujjgcR/U9nRjJe5PY8Hx/FOzl7u8p/L8h3v0T3YT3VXKxtStmBlYMJH0WtRqJVY6BvxQshSIn7YRL9SwcnqQg6VXiCjJJ+fLmTxy8UslGoV7+bsw9XMmr1XT+FoYsELIUvZe/U0+66e5oPo+/C2dCC1+By+1s5Euk+mVzGArlTGV3kZZFVc4V/z76ZHMcBH0WvpHRrkszOpuJpaE+sxhecObcVAJueFwz+TXJSHq5k1z8xciIlcnyl2rkLT38tzl2OqZ8irmdt4O+JuZjn58O25Q+wqOMlH0Wup6WqlrL2RXy5m0z3YzyNTo7EwMGLvqo3Udrdxvr6c7xc/hqGOLq9k/spESwd0pTosnTADESI2n07hQmMFxyoLmGTlxHeLNtDc24mdkRk+Fva09nWR8Mub/LT0byjVKr5IeAiD3/brLCdvyjoa2XR0O1KxmOcObiXc1Q+latge6GRiyYZpsQyqhnh21iJya0t4Ov17Poi+j2/zj2Cud/NcolM7v6L6Si5Vl85QV3iBU7u+pqOhZtT1TznYz+Etb3F23/e4BMzE4hYFGRqNhqqLZ3D67eGDoZkVPX/QAieR6WDt6iNckx0nTUUx0M+hL99AqiMfFSB+q7/S3Cwyv333t+90Ho1Gja2n/5hh40bm1igG+miuKMJhwhTsvPypL7mM+gaS7b8DI22ENxJPACbWDnQ0jF3MAWDu4IpzwAzqiy5SX3TpptONBYlUhmpI8ccTXgeR5r+qpf5vxtGjR4WBwPW45557+P7777n33nupqKjg6NGjWp958sknKSgowMHBgZdffpl7771X6/Offvop7777Lg0NDQQEBPDJJ5+MaW+6GUbCjL/66ivWr1//n369/1M4d+6cEHj9/vvv4+/vz9/+9jdeeuklxo8fj4mJCdeuXSM+Ph6JREJrayuHDh2ipqYGT09PLbVDdnY2/v7+QlbT7t27WbJkiVZj1K5du1i+fDkdHR2kpKSwcOFCDAwMqKyspK+vDx8fH5qamsjMzGTRokXI5XKKi4sRi8W4ubmRkpLCrFmzhGUkJiaOstWMBGNbWVnR2dkpqJx6e3s5d+4cISHDP6BNTU1kZWXR1NSEn58f3d3dwLDlburUqaSnpyOVSgkJCRnTXqRQKNixYwcrVqzgyJEjREdHk5ubS21tLTExMaOURenp6VqKoBGCTU9Pj/7+fqKioujo6ODEiROo1WpcXFyEwfRIA+DkyZMxNTXl6tWrQsvWiB3uxuVcuXKFmpoarWXCsHrtRnUPQF1dHadPn8bV1RWVSoWFhQWXLl0iLi6OgoICYXlTpkzBzs4OhULB0aNHR9mE8vLyBHscDDfM2dvbC/a961FbW0teXh4ymYy9e/eyYMECoqKiRilXYFghV1JSMmrQrNFo2LdvH35+fhQWFtLb28uyZcu0SLAbt31PTw9paWlMmzaNnp4eGhoacHBwGJXxNDQ0xNGjR0cpAPv7+/n888957bXX+PXXX9HX12fq1KnCcTI4OMjx48dpaGhgxYoVoxR1GRkZhIWFcfToUQIDA8dUQSUnJxMbGyt8jwMHDhAUFKRlFxxrXzY3N3Ps2DEmTpxIWVkZ0dHRqFQqMjMz6e/vZ9asWVrNhyPzOH36ND09PVqKHhhuMQwICBBUQSO4dOkStbW1Ajly/fZtbGwU8r/c3Nzw8fGhs7OTvLw8+vv7iYmJGa4rLy3l6tWrAAQHB2NpaUl6ejoeHh6cO3dOUBlejxv3JQwfc9XV1cTGxnL27Fn8/PzIz8/H0tJSIIiuh1qtJjk5GbVazeTJk7lw4QIikYjJkycLNshjx44xadIkNBoNZ8+eHbXM+vp6Tp48yYwZM6ipqREKFUaQm5srKKpg+HoYHx+PXC4nNTWVmJgYYFjJBQgE+vXf7+jRoxgaGhIUFMSFCxfQ09PTOkZzcnJwd3cXbOpJSUla9trLly9TWVkpqOhGwuWTk5OZP38+hw4dQiKR8Oyzz/Liiy/S09PDAw88gImJCW1tbeTl5Y1SdP7/M7Zs2cIDDzxAZ2enVkbiX/hjjNw/rf10Pw0lV3Dy/WNyc6Cnk/qiSxiaWd2yxvt61BdfumXuRn3xJQzGWWBsOfr35laoK7yIpYvHn7JUdDTU0NlUK6izKi+cwmFiEJLbyEq8GdRqFdeOpXE1K5npKx7Azsv/T1sSqy6d0dr+KuUQFfkncJs6d3g9L57WUpT1tDXRXFGMkYU13a2NDA304zZ1rlZTVGtNGTK5Hl3NdZhYO2Bkbk1d4QV6O1q5kL6TlspirXVY4x+Ko4kFJrr62BqaMqRS8fHpJO7xDyWz4gpl7Q38fdYiehUDvHJkG54WdizynkZ7fw9T7NxYseM9Poi+j/SSfBZ4TeXR5C2EjZ/E3X6hVHW1IJdIsTUyZUilpK2/h27FAP/M2skrc1egK5VR0lZPYlEu7ma2OBpbEOLsgwYEG9hbx/bwUFAU7584wDuRaxhSKfGzcWH2Ny8Q5R6ARCTGQEcXU11Dcqqu8tDUKN46tpvHpsXywuGf+Sh6Lc9k/MAb8+4EwECmi65Mxhdn01k2YSaVnU24m9lS193O+yf28+/4B/GysCf8+1eIcPXH38aZqs4Wxo+zwtbIjKLWWvysXXg46Uu+WfgoJW0N7Ll6inVTInjt6A6emB7HD+czeX7OMuq72zCQ6VLYWkuU+2SKWurQl+ngMs6Klv5uNBoNp2uKOFx+iYeDovgyN4PlE2diaWCCTCIBjQYbI1OqO1txGWdJVWcLhS21jDe1oq67HUdjCxp62glxnsBjKV+z2m8Om0+n8OKcpXiY2bJq1wckrX6RCw0VpBTl8fC0aH66kIWDsTmuptY093XhaGKBQqlERyLhm/zDOBibU9Bcw8NBUWgAU10DarpaiXD1Y/fVU7iZ2XCi6hoXGipY5TsbE7k+ErGEKbbjOVFdyKBKiUws5vv8TFZMmsUb2bv4d/yD9A8N0jek4GRNIb7WzuhL5RjL9egc7BsmcY78yufxD9LW30NJWz2fnUllU9gqhlRKxukaCDlQr2fv5IngeJp6Oxlvas2eq6eY4eDJl7kZ3Ds5jI9PJfP1wkcYVA5R2tbIBycP8FncenQkMopb6/C1duaFwz+zfsp8vshN55lZC3kq7TuenrmABV5T+fliNvPd/Fm+4z2enJGAmZ4hdkZmPJr8FTMdvfEwt+Wr3IPYGZny8NRoXjryC5tj13G2tgRdqQ5m+ob8cvEYz85ahJ5MhwcT/42toSkbguO40FCOg7E5AbbjuXPXh7wefgdVnS14W9gzoFQgFUuRicWIReLf7JB3crmpmvz6MlZOmoWBji7jx1mRU3UNl3FWPJn2LVuXPEFDTwdKtYrnD/3ExzH3833+Ee6bMg8xIiZaObLw17d4asYCsiqvkFn+e2u3X+QyLF080dEzwHFSECKRmJIzmbhOmU31lVwhN28E9UWXUCkViMQSFH296BmPw9ptwu8PaK+dx9rVZ5hAupKHhZO7kG+nVqmovZqP4yTtXNRbobmymIGeLtCocZgYdNvX14GeLuqunUcq172t3zeVUklZbpZWgYVSMUj15VwhhPy/A4r+Xmqvnr/lPG/8TbgZ+rvaqS++jIWzB8YWN48/GsFgXw9tteXYevii6O/l2w0L//D+6X+dUio0NFSwhFz/9/333wPw/fffaxFSI5/Jz89ncHCQ0tLSUYQUwIYNG6isrGRwcHDMyvG/cHOYmpry9NNPMzAwQHBwMBqNBmdnZ06fPi1kTRUUFHD69GlKS0t55plnkMlkWkqhmTNnCgOsM2fOEBSkfbKLRCKmTJnCDz/8QE5ODnfccYcwiNfX16e/f7hxwMrKiqVLl5KYmEhNTQ3Ozs5UVFRw5coVHBwctALKzczMaG3Vlo2eOHGCmTNnEhgYyIQJE9i+fTuDg4N0d3djZGSERqPh0KFDFBQUsHz5cvz8/AgICCA2NpbY2Fi8vb05evQo9fX1xMTEkJOTQ1paGunp6Zw4cYKrV69SX1+PWq1m5cqV7Nixg4aGBnbu3ImZmRkLFy4c0+p2I0QiEVFRUXh6ehIdHc0333zDpUuXiIqKIj4+XiCkmpubsbS0FNRbMExExcXFERcXx8DAAMnJySQlJVFePlz3mZmZyeDg4KiB9Fjo6Ohg7969VFVVsXjxYvz9/amrq8PJyQmZTEZfXx8TJkwgPj6euLg4GhoaSEpKYsmSJXh4eIyaX2BgIHl5eYIapKGhQYuQ0mg0nDp1isTERBoaGkhISCAmJoalS5cyf/58UlNTOX369Kj5mpmZ0dbWpvWaRqNh586dhIaG4uTkhK6uLpGRkezcufOmaiGlUsmBAwdYsmSJQAiGh4dTX18/qq1zrIyswcFBDh48iJOTE5999hkmJiaEhoZqEZetra1YWFiwdOlSdu/ePeY6yGQyIiIiOHx4bPsDaFs6FyxYwIULF/6wGc3S0pIlS5YwNDREeno669evJz09nZkzZ7JgwQItQup6BAcH4+vry7Zt2+jp6RFe7+npGUVIwbASLSgoiO3bt9PX1yeo+JKTk4XWxvj4eIEUyszMJDQ0lOnTp3Pq1ClgmLAaOa7KysrYv38/0dHRtLS0jFIZ3gqBgYHExsaSkpJCdXU1O3bswNraGk9PTyH4Pi8vj8OHD5Oens7BgwdZsGABhYWFtLe3Ex8fT3x8vFYu14i118zMDDMzMy2lU2lpKRcvXmTJkiXY2trS0NAwap3q6+u1CMQFCxZw4MABYHi/jihFbW1ttRSd1yM0NBRDQ0N2795NcXHxKNJ09uzZ5OTkAMO5eDdmJCqVSpqbm9m0aRNtbW1CqPz8+fPJyMgQ1sPPzw9jY2OefPJJJkyYMOo8+wt/4b8TQ4MDw/XUtRW4TJ5124QUgKK/75ZBsLYevrRWl6Ho77vpNGNBqRj4U4RUY9lVBnq6tMgde5/JWm13/wmqL+fi7D+dqYvvxczOmbK8Y/S0Nf+X5imRyrDxmETt1Xyt38XejlbK84/T39XB+CmzsHByRyKV4TY1lNLcbK0g3u6WBsGO0lpdSn93J4r+vuGQ2zF+a7sH+/k+/whKlYp1+z+ja7AP13HW9A4NEuoykQcDI0kuyuOJ1G/5IPo+XpyzjMaeTt7O2YtEJOaD6PsYUikJsBlP9+AAb0fczSNTo3nvxD7M9Ax5/tBPNPZ08lXuQXZdOckCr6l8EruO17J2oCuVYaZnxN9nLSLQ1o07fUN4LOVrrjRV8eSMBL7OO/SbFa+UJ6bHUdPVwiPJX3G86hrvRK7hbv9QJtu6EusRyHhTK/SkMtRqNV7mdpjqGfJ4cBwt/d18s/BRNh7cilKtZkPKFroHB5jh6EW/cpCkojw+OHEAE/lw69rDSV+SW1fCR9FrifMMZJyuAW193fQNKbjaXM3WC1k09nTwWdx6qjqbeevYbpxNhlXob8+/C+dxlkjEEpp7O3k9ayciEVxurKKgqZpXMn9FjYZlO97F4rd2v0A7N6bYunKk/BLLJs5g/7Uz9A0N8MXZNC43VbN610cYyOSs3Pk+l5uqaOrtpKWvm8/OpA436zl4sHLn+zwzayHfnjvMo9NiePnIr3QM9vF+1L1cbKiguLUOM30jBpQK9GVyQRF/rq6MnVdOUN3VQlVnC8+HLCV8vC/PzlqEXCpj8+lkdKRSpGIJycV53BsQTnNvFzOdvLnDN4TXs3ZS3FZPj6Kfud+9jL+NC+Z6hohFYh6eFo2xXI835q2mb2iQN7J3Y6iji6upNZcbqzhRfY1z9WW8mrkNdzMbfln21HBTXtq3RLj68WH0WlKK8thTcIq2/h7BhjjR0gkDHV2+yE3HVM+ABK8gtl7IGm6LFIl5LmQJUrGER5O3YK5vyGthd/D8oZ94I3sXao2G4tZ65o33RS6V8UBQJLoSGRtnLybOM4jEwly+yjtIfn05n8c9wHQHT14+8iv13e08MjWGKPfJRLlP5vXwO2js7cBc34g3563mRHUhlgbGlLU3UN7eyIbgmGFlXU8Hb8y7iw3BcTT3dhJgO553ju+jsaeTz+LWI5fKSCs+h1Kt5sXDv2Agk7Px4FYGVUo+i1uPqa4hziYWvBO5hqSiPF489DOFLXV8fCqJ9v4e4j2D+PR0Cn/P+AE7IzNeD7+DIZUSc30jlColBc3VnKkt5q2Iu+gbGtQipAAuZuxiaKAPc0c3WiqLKT+Xg7NfMBKZDjK5nta1ufZqPnrGptj7TEGtHGL8lFkYW9pSkX+c5t/yiiydPWiuLKazsRa5voFASMGwdVujUd/WdVCj0VBx/iQSmQ6OEwPR0TdE0dfzxx9k+AFK3bXzjA8MuS0SS6PRUJabhWvQHK3ppTpyTO2che/2X8VIsLnL5LHvIf8s9IxNcQ0MYaCnk4rzJ/5QBSXXN/zTv7X/60ipv/C/D+3t7Xz//ff09PSwePFi4uPj+emnn7jnnnvo6OggNTUVPT09/P39mTZtGqmpqYLS48CBAzQ3NyOVSlGpVAwODlJfX4+z83Aw3eDgIMeOHSM1NZWioiLefvttLC0ttU7UG61ZI01ZI4O/9vZ2ysrKRhEE1xNhIxh5YgvDgc1Lly4lKSmJgoICOjs72bVrF5MnTxaawkZIlBGYmZkxYcIELC0tSUpKIioqiujoaCIjI5k0aRIGBgY0NTVx6tQpDh8+THFxMffddx96enoMDAzcdsirQqEgPT2dM2fOkJycjLGxMQYGBqPyovLy8ggMDEQkEjF+/HhBsTSCCRMmCARAX18f0dHRXL16lebmZiorK2+6Pn19fRw4cID8/HwWLVokqCgUCoWgVAoPD+fIkSPCZ0aIxfj4eNavX09rayspKSmkpKRw6dIlYVkjKoz+/n7Bgjdi2UpKSsLV1ZWEhAThe41ALpezYMEC7Ozs2L17901tgzCsiNu2bRuxsbGYmpoKNk8TExOhnWwkTH8EI2q9JUuWIBaLtcjQuXPn0tLSwpUrV4Tpm5qahPwoGCY8MzIyiImJwdLSkmXLlmFjY6Nla4XfiUS5XE54ePgoS+P123PatGkCSTOCkpKSMQPgY2JiKCoqEgiSsX4c1Wo1J0+epLy8XMjxUqvVfxhODsOE8IoVK8jMzNTaDmOhvb2dy5cvY2RkxJIlS9i7dy/z5s0jLi6OqVOnaq1bU1MT5ubmiMVizM3NR5EeIzlMg4ODbN26lebmZpKSkgR76/Xf7WY3BH19fejq6vLjjz+ybt06ioqKOHLkCCUlJajVapycnJgzZ45gw0tOTiYoKEjIJLsedXV1WiUZU6dO5fz58wwNDXHx4kXq6uq0CN8RcnMEDQ0NWscNDFt3g4ODhYbR7du3ExkZyfjxt66gt7S0JDMzU7CHpqWlUV9fL7wfHBzMqVOnhMbMEVXcgQMHMDU15d577+X7779HKpUydepUTp48yaFDh3j55ZeJjY3FxcWF119/ndbWVn799VfB/voX/sJ/ApVSedPWI7VKRdWlM9QXXcTZb/p/pAK6HbhMnknlhZNo1Lc3WPmzqLp0Bh09A2zctXOvpDpyVErlf2zPqCk4h6mds5D/pGdsilvQHHramqm8ePq2v89Y29RgnDk6+oZU5J9Arm9E+bnj9LQ1Mf46UnBooB+Zrh4SqRT3aaGU5x9H0d83ytro5BfM7tcfoeT0ETrqq2ipKhm1PB9LBxb7TEdXKmNQpUSpVhHiMgFzfWNO1xTz4clE7I3M+Hf8g9yz9xOeSf+eafbufBJzP0WtdXQP9qMr1eFfOXuRS2WIRCIaezqx0DdGIhLxccz9yCQS1gSE8vb8u1m3/zO2X87hvch7kIglvHdiPzKxlE/PpNA52MfbEXfjZmZDgM141Gio626jb2iQbsUADsYWRLtPRiwS8frRnXQN9PFG9i72Xj2Fk4klC72DUaiV9CgGyK0rpbqzhX9m7WRAqeBO3xBcxlnxYFAkGo0apVpF35CCWY7eqDUa3jq2m6aeTj6OuR+lSkV1VyvbLh2jurOFjoFeVBoVdd3tPDtrMQE243k0eQuOJhY8O2sRZ2tLUGvUPJq8hUuNVdw/ZR7jdA14K+Iu9GVyvC3tMdHV54OoexlSqdgcuw61Rs3Gg1up7WrFy9wOf5vxhI/3+81CZ8TayRF4WdizctIsLAyM+TB6LROtHDlQeBapWEKoy0QeTf6Kqo4W1viHYqprwCwnbyZYOvDGvNV09Peyq+AkQ2oV6SXnCXWZyLr9nxPqMpFtl3LQk+rgZmaNuZ4RHma2fHQqiba+bjYe3MqQSolEJEat0SAVSzhXX8aVpmpO1hTy1rHd6IilvHlsF5/ErsPWyAxTXUM+i1tPSVsDj6V8TcdAL1/mZtCrGET927aO9xpWyGw+ncI9AaFMd/RippM3b0fczcJf3ya3roR4zyB2rfg7KcXneDLtW+7yn8tqvzl8diYFC31j6rrb6B7sQ0ci4e35d3OpsYpnM35k2cQZtPR18eHJRMz0DDlw7SzvRt6DjkTGF7np/CPsDp6YHk99Tzsnqgs5U1uMvkyHTZnbKO9o4lR1EV+cTcfLwo7nZi8m2MGTfxzdwZe5GbwXeQ9yqYyfL2ZjqCNnybZ/sbvgJJtj15NfP3yPbyCTM9XeA1sjU4IdPLHQM+aVuSuY7eTNp6eTudZSw3sn9pNfX8br4XegK5Xx94wfMdTR45lZizCW6/FlwkPoyn4jyqQynk7/AaVGzds5ezlXX849AWG8ErqCqs4W3ou8Bw0apti6snziTD6IupeKjiZePvIrBjq6RLtPRiqR8vnZNIpa63kq7TvquttHnftGFjZYOnvSWHKFPf/cgJm9i/AgwdbTj/qi4ViB6stnMbKwYZyNg1AsBMOZUOOnzEbX0GT4OtXaxEB3J2215X+66W0Eg309lJw+gq2nL2a/habrGZvS1zV6/W9Ef3cndYUXb5uQAqjIP4GTX7CW2nQE42wcGOjpYqCnc4xP/jlUXBg72PxG6Boa09/dcdvztXLxwnHSNGoKztFYdvW/uJba+IuU+gu3hXvvvZe8vDzuvPNO8vPz0dXV5cUXX0QqlRIbG4uVlRWnTp1i5syZ6OvrI5fLiYqKIiEhgeLiYg4cOEBraytbt27Fzs5OyNc5fvw4/v7+xMTEMGnSJLZt24a5uTl79+4VSIMbB3UjmDt3Lm1tbSxfvpw5c0aH0Y08mVH9FjLX3d09ymo3sv7r1q3jnXfeITQ0VEstcj0xAVBYWEhBQQGLFi3C0NBQsPWNVKs7OTnh7+9PSEgI/f39RERE8M033+Dv74+uri6pqamkpKSQm5s7ihSBYdIsMTGRQ4cOMWfOHBYsWMCECRPw9fVFX1+fAwcOaH3uekJh8uTJY4ZXw7Aq4uLFizQ0NODh4UFERAS9vb2kpaUJ+yIzM5OmpiZSU1PJzs4mNjaWsDDtxqKcnBzB4iiVSpHL5fT29motq7y8HFdXV4KCggSFmYmJCampqSQnJ3P+/HlBCWJtbc2BAwc4c+YMkZGRJCQkCBlFN4OjoyNLly6lrq6O/fv3MzAwAPyexaNQKNi2bRuLFy/G0NBQ2D8jMDIyIi4ubhQxlZSUxPz584WMsBuPu9mzZ9PZ2TkqL6mqqordu3fj4uJCQkICMpmMwcFBdHV1cXNzIzg4mO3bt6P8rWa2paVFCAK3tLTE1dVVIJ46Ojq01H7Ozs60trZqbePCwkIh0P1GREREUF1dPYo8KCsrIzExkZSUFDw8PEhISBDKC6Kjozl69Cjp6enCuXIziMViEhISUKlUJCUlAb+Hyo8cR6mpqRQWFjJt2jRmz55NZmYm48eP59y5c2POc4QwGYGurq7Wds/NzeXy5cusWLECCwsL4uLiiI2N5fz58xw4cEAg4QYHB7XUQPX19SQnJ5OcnMyVK1eIiIjggQceYN++fQwODuLt7c20adPw8PDA0tJSIFtHjqPw8HBMTEzYt2+f1nbJy8vTChCH4Qwnb29vBgYGhPNjBCEhIWRnZwv/P3PmzCg7Hwwf15s2beKjjz5i5cqVN20dHMHFixc5e/YsmzdvJjo6mpiYGCIjI2loaBD2Q3FxMWVlZdTW1nL48GFSU1MJDAxkwYIFwoMBa2trHB0dKSgoIDw8HG9vb1588UXWrVtHTU0NJ0+e5K677uLq1aujsgH/wl/4M2ivq8DcQTujUaPRUFd4gapLp7H19MPJd9pNiatbQa1S3VY5gkgkwmXyTMrzj//pZdxy+WoVJWePYuHkgamt05jT2PsEUHv1/J+ed33xJQzNLMe0TNi4T8DOy4/y/ONC4PmtcLMHUWb240n/7FWayq/hMnkm1q7a1uaulnqMLIZVzWKxBPdpYVRfPkt5/nHkegZCFkxtwTkColdg9JtFcuri0dmt/UoFX+SmAZC0+kWM5fpcbqzipcM/s2LiTNYEhJJReh4rAxM+jrmftVPmUdBcw6aj2+lVDPBq5jacTSz5PO4B/K2d2XjwR6o6mylsqeNKUzU7rhyn9DeL2+WmKgJsxhNo68bm0ynoy+R8EruO0zVFfLdoA7VdrcilMkzk+kRtfY2X5yynfaCHEKcJiIBNmduwNDCmtquVN+bdSe/QIOl3v0KMxxSaejt5JfNXdCUy2vp78LVywt3clp+W/o1DpReZYOnIhuQt+Fg44GJqTVbFFY6WX2aagwdrAkKxNTKlrb+H5w/9RE1XK3uvnmJNQCie5naEjffFRK7Pw1OjeSXzV/Ibyvg0dj2tfT28c3wfT81MwMHYgiemxzPP1ZeU4nN8diaVq801iEUitl7Ioqy9kX+fTUf3N4Kjobudz+LW425ui1qjYYaDJ3E//5No98m8kb2L788fwc3UGl9rZ9bt/4yztcV4W9jzxrw78TCzxc3Mliemx3Ok/BJh4yexIXkLdkZm5NaV8GrmrxjoyJFLhrflIp9piIBYjykMqVX8c96dOJhYYKijR1l7I3KpjLcj7qZ3aJAPou8TyMnvFm3g3r2bmenoxSrf2TR0t5N+9yvUdLfyZsRd1Ha18vax3fQODfJo8hZMdQ3YHLsOc30jHgycj6+1Ey8f+RWZRIqDsTlDahUvzV3OoErJpsxtKJRDpJWc44WQpbib2fJG9i7+cXQ7C72n8crcFTye8jVVnc28MW81M528MZbrsSYgjJa+bp5K+455rr58Grue0zXFmOkNE2MiRJxvKEepVvH3jB+4NyCMJ9O+ZdulY1joGzPP1fe3gH09PoldR2tfF9MdPZlg6cATqd9ib2zOwl/f4sOY+4hyD+CZjB+43FTFxtmLMNDR5ZGp0dwdEIqtoSlf5R1EJBIR6R7AyeprrJo0m3eP7+NUTRHBDh7DIfvR99HS183WJU8wx3kib2bvZkitws7IFJVaRXFrPQ8nfcmQSsVzB4dz3366kMVin2As9I34JHYd9kZmPJX2LSq1GpVGzTMZP2BpYMJrWTto7uvi0zOp6MvkvB91L239PTyT8QOe5rZ8EruOuc4TeHJGAn42zqPOfUsXT3a//ggajZqJYQvo7+4Urh31xZdQDPRRcf4kpvbjtWzWNxIrRhbWjJ8yC8VAH+mfvfofE1JtdZU0FF/GPThcq81V39iU/j8gpfq7O2govoTrnyCkagrOYeniMWZz7AgcJgZSc+Xcf6mptqHkCuYOo4PNx4K5ozstVTfPIh4LEqkUZ//pGIyzoCzvGL0drWNOJ5PrMjQwevx+M/xFSv2F24KDgwOlpaU88cQTlJWVsWjRIubPn8/kyZP58ccf+fnnn1m8eDFtbW1apI5IJCI4OBhzc3NOnDjB+vXr6enpISYmhpiYGMLDwwV/6aVLl/Dz8xNazrZv305LSwsSiUSLPFAqlRw5coTExERBiZKfn8+BAweoq6vTWu+QkBCOHTsGDA9+Z8363VerUChISUkhKyuL/Px8Nm7cSElJCYmJiZw4cWLUBSE3N5e2tjYhQ2jmzJmcPHly1LZqbGxk165dREVF0dfXxz333MO5c+dwdXUVSBpHR0cyMjJISUkhJydHsCedO3dOGHSPqIisrKxobGzE29ubsLAwduzYQVtbGwqFYlQeUWBgoFYFPAxnHG3fvp0lS5ZgbW3NwMAAEomECRMmCPthJIB5REWiUqm4cuXKqG1wY3vfjWopGM6q8fX11XrNycmJ2NhY4uLiCAgIICsri9WrV5Obm0tCQgLh4eG3bCscC8HBwcTGxnLo0CFycnKQSCT09PSwc+dOVqxYMaqd7PrvYmhoSEJCAtu3b0etVpOVlcWkSZO0jl2xWDyKOJw5cyb9/f2CXXj//v00NjaydOlSLTvW9cuysLBg8eLF7Nixg87OToaGhrRysby8huuei4qKBOXb9YiOjiYtLU2Y7x/9UIWGhtLc3Ex2djapqalCS19CQgLx8fFazXj6+vooFAqio6OZPXs2ycnJZGdn33IZSqWS7u5uOjs7iY2N5eDBgwQGBmodS9OnT0dfX5/s7GzmzJlDSEgIpqamJCYmas27uroaBwcHrR/0kJAQcnJyUKvV7N+/H2Nj41FZVmKxmLlz57JgwQL6+/s5cOAAR48epaqqSiCi6urqhGNu1qxZXL16FV9fX2QyGcuWLaOiomKUkhKGlWgj1lMPDw+ioqLYvXs3jY2NqH4b+IpEInp6ejh48CDJycmcOHGCl156SSB1rydv5HK58P+hoSGkUqnW9x0aGiIjI4PExETWr1/P/v37hf02lvVPo9GQkpIiND9ePy+xWMzkyZOF/RAQEMCZM2e455570Gg0zJgxY5SfXyQS4ePjw9DQEF999RX19fUsW7aMpUuXMjg4yIULF9i5cyfPPPMM/v7+Nz0u/sJf+CP0d3eiZ/y77ba5ooiK/OOY2bvgEjDzv9Tu01pThvktQnCvh0yuh6WLJ3WFF/54nbva0TMad8tpFP19lJ45iov/DPRNbm4rlsn1UA0p/pRaqqn8Gjq6Blrh8BKZjpZ1QibXwzUwBLVKSfm5HJQ3sVWolEOIJaN/Zzsaaqi8cJKEv7+Hw4QpVOQfp6NRO/y2r6MNg+taq5SKASQyHTK/eYfu1iYhxNdhYhBG5tZYu/pg6+nH2b3fjVrehycTudN3Dm9k76aivYkHEv/NDEcvXgu7g3P1Zfzj6A6emB7PieprVHe20DnQR0bpeWY7+bDtcg6bY9fR3NfFI8lfca2llk9j12Oub8zaKfNwNLFg3ZQIjOR6ZJZfRqPRoCORYqpngEqjJqU4j8dTvmZQNUT3YD87rpzgybRvUapVPDotBkQiztSW8NKRX1jsE8xzIUvoGuxHoVLyds5eztQU/z6oVyt5Y96d9CuHCLRzo1vRz7vH99He38Pea6fQkUp5J3INf0v7lmOVBUy0ciLCzZ+n0r5jSKVitd8cAmzH83n8A/QoBtg4ezHvnzjAu8f342pqzds5e0kvyefz+AfxNLdn85kUJCIRb0XcxemaYp47+CNyiZSFv77N0zMWsNB7GkcrrlDf3c6nseuZZOXEar9hi5Dkt/a4z86k0jek4L0T+2kf6OGFkKWIRCJembuCB4Oi+P58Jh+dTOTNeauJcp/Mv3L2YizX54HEf+Nmao1MIiWj9DxKtZp/zluNk4kFs50m8F7kvZjI9UnwCqJfqeC7/CN4WtgT7xmEj+VwQ11hSw1LJ0zn+ZAlyCQSnju0lc7BPnYXnKS1r5tnMn7gbF0pr4XdgVQi4UpTNW8e2835hnI+OHGA5t4u5rpM5MkZC5BJJLwTuYbsygI2HtyKnlSHp9K/p6Kjmc/jH2SyzXjeyN7FkEqJnlSH2q5WPoldh4WBMY4mFpjpGdI50Muj02K4d3I4SYW5vJa1g42zFzPV3oPHUr5GLpHSPdjPE6nfMMPRi8/jH6S6s4UNKVtYOmEGrX3dPJq8BYAEr6kMKBV8GrseE10DPoldR4SbP9YGJjx/6CecTSy5b99m6rrbKO9oQqVW8+7xfbwauhIbw3E8GBTJ1eYaNh7cyj/D7yTSLYCn0r/n09MpnG8oJ6fyKu+d2M9nceuJdAvgRNU1Pj6VTF33cCi/q6k1R8ov8cHJA5S2NQ6Hfne28HDSl7wefgfPH9zKB9H3IRaJGG9qxWPBsehIpDwWHIePhQO+1k48EDifpMJcytoaGFQO8VBQNEZyPb45d4hXQ1fww/lMXpm7Agt9Y5ZOmMGAUsHT6d/jZ+3MFwkPsfHgVrZfyqFb0c/bOXup7WpDesODAoNxFkQ+/AoSqQ5BC+9BJBIL1w4TawdO7/qaivzjKAdvTWQohxSU5x9HrVIR+7c36WisGfN6rmdsSl/n2JED1VfyUA8pcPafPopUkurItSzKN6K/q52G4iuMnzL7ptPciKaKQvSNTTE0u/WDd5FIhKPvVKounbnteV+PWwWbjwWJVDqqxfB2YWhmiWtgCN0tDVReODWqadDSxYumittX2P9FSv2F24K3tzdr167l4sWLXLx4kVdeeYWysjJyc3NJT0+nvb2dgoICWltbMTMzQ6PRkJubS3JyMhkZGXh6ehIZGUlqairW1tbs2bNnlP3q+upOAwMDocnrwoXhC01lZSWJiYkcPHiQadOmkZCQgJ+fHxKJRFAV1dXVkZiYKOT/mJiY0NXVBfye1TMSdn7w4EHmzZtHdHQ0JiYm9PX1MWPGDBISEoQ2wcTERNra2jh8+DByuZwZM2YI63tjbhYMqyguXbrEypUr0dfXF5RMDg4OWm1Z1tbWQiugkZERjzzyCHp6esyZM2fU097r1VpGRkasXLmSs2fP8uWXX47KRnN2dqampkYgU9rb20lMTGTVqlWCisTHx2dUs1ldXR0nT55kcHAQNzc34uLiMDMzE9RNWVlZ1NXVjcockkgk6OvrC4qxsbJrRlBRUUFSUhInT54kLi6OH374gZkzZ5KYmEhqaqqgePozkMlkxMfH4+7uzk8//YSRkRGmpqYcOXKE9PR0Dh8+zNGjR8nJyeGXX37h6NGjHDx4kLS0NHJyctDV1SU2NlbIJ/sjqFQqZDIZzz//PIsXL8bJyWmUamYsyOVy7rjjDjIzM8e0HU6fPp2SkhJqampGkWkSiYRJkyZx8eJFgbi9EUNDQ5w/f15QyPT09PDmm2/S09ODlZUVEydOHHO9ZsyYIRCrBgYGgjJv37595OXlCedjb28vhw4dIiUlhcOHDzNx4kScnJxob2/H2tqa06dPjyKyBgcHkUqlwvHs6enJnDlz+PXXXwXlV25u7ijVkFwu5/Tp0+zYsYOIiAghK+lGJdQIJk2ahJeXF7/++itff/21kKd2o/2zrKwMNzc3wcoZEhIiWEFHVGwAxcXFuLu7C//X09NjxYoVFBQU8NBDD9Hd3U1ycjJ5eXnMmTOHuLg4IiMjsbGxIT4+nrCwMIGsGjmmHR0dqa6uJisri7lzhwOFu7u7hevZ7NmzhUwvMzMzwXJbVVVFYmKiQNJ1d3ezbds2ZsyYoUX8jhDX1x8PKSkpnDlzhieffJKdO3diZ2dHUVERycnJpKenC9lgGo2Gnp4e6uvr+fbbbwXb7eeff45KpeKrr75CIpHw6quvCtfiv/AX/ivoaKimLO8YuoYmghXjv4q+zjatqu8/gpG5NTJdfdrqKm85XWtNOWYON7fR9rQ1UXv1HO7B4WM2/90IOy9/6q7d3nnUWl0GIhHmjtrqMhMrezqb6kZNb+7girP/DGqu5GlVnP++rs0Ymv8+IBrJHFEO9uMaGIKFkzuK/j7GT5mNakhBWW72dbYODSKxmKHBASovnKKheDiwPvZvb2LuOJ7Ss1kM9vXQVF6I1XgvjC1s2PvmY5jajf5djXD1x8vCjiemx7MhZQvvRt5DVWczG1K24GZmw+dxD6Avk/OvnL30Dg1gbTiO9oFeErymssY/jMdSvmZIpWSO8wTa+nt489huEgvPcrK6kA9ODpM6Hma2/Dv+QfRkOvx8MXvY9jZ7MbOdfPj7rEW4m9nyeOo3/G1GPGsnh/NM+g+4mVqzbPs7RLkF8ELIUnZcOcFjKV8T4erHd/lHhpUnLsO2zFfmrmCipRMvHv4FmURCRsl5LA1M+Nv0eEz1DHk/6j6ezfiRys5m3olcg42hKYdKL2CoI+fT2PV8cPIAUrGEx1O+pmdwgO2Xcxina8CG4FhenLMUPZkOm2PXMdXenRcP/cT354/gbmaDRCzh+UM/sXLSLNYFzsfWyIyPotdyvrGCd4/v4y6/OZjpGfLykV/pHOhj09HtWOobs9p3DrpSGU4mlvQM9hPrMYX1B/6NUq36rSmvh2czfmCeqx/vRN7Dswe3Ut7eOBwub+vKJzH3I5VIkIkl7F75LGdri3ky7Vv0ZXJW7/4QqVjCsaqrPJ3+PZYGxrwefidpxfk8kvwVDd0dfB73AJNtXfnoZBL37duMmZ4Rm2PXYayjx/Gqa/jbuPBZ3HrM9Az5/GwqX5xNR0+qw6ex61FrNLwzfw1znCdw4NpZ3jq2G7lEyrMZP9I92M8b81YzpFbxytwVOBibs/1SDusPfM6WBQ8T4jyBA9fO8NLhX1Aoh1i//3OmO3hS3FbP46nf0Dek4J2cfcx09OLT2PXsunIS0PBu5D3IxBIsDUz4NHY9RS11PJL0JWqNhtfD70BfpoOjiQXvRt7DBEtHLjVWcq6+nMrOZjYe/JH2/h7eyN7FXJeJbApbRWFrHY8Hx2FnaEpm+WWcTCx4ZFoM5xvK2Hw6heyKAgx1dPk87gHON5TzTMb3vDRnGWsCwjhZXYS3hT2h4yeRWpzPc4e24m8znncj72H9geF2wi9yh7fXw1OjqOlqJakoFx2JlHVTIvAwt2OGozena4p5NHkL9sbmuJraUNfTzquZ2xCLRHybf4QrTdX8cukYZnpGWBoY4zTOArVGg7eFPV4W9sxxnkBNVysSsZh3j+/7rc3vMVbv/pDdBSdZ7TeHZRNnYmtkxrblT/PZmVRWTNQO2L50aA8Z/36Nwb4e9IxMGOztQqPRUHs1n476KpZv+hKfObGo1WrKz40mxzVqNTUFedRezcfJNxg7r+H7YXvvAMbZOFJy9qiW9c3Mzpm22gqteSgVg5SczsTC0RUL59HZt3+Evs52GkoK/lQgeUdDDWql6pa/JddDrm+IoanlqHX/Iyj6+2irq8DGfex7/v8p2LhPxN5nMpUXT2lZtmVy3VuSezfif1373v9W/L/evgfw008/YWZmhrm5OXv27OHBBx9ER0eHyspKZs6cSUFBAcHBwWzZsgUjIyMCAwOF7JW9e/cSGxtLZmam0Ah29uxZampqmDt3LoaGhmRlZQkqJI1GQ3V1NUVFRRw/fpxNmzaRnZ09yhoDw8HCKpVKK+i3qKiIa9euYWNjg6GhIY2NjZiYmNDZ2Ul3dzfz5s0bZY8Zq61MrVYTFRWFRqPhqaeewtbWFn9/f61WwYCAAAwNDUlMTMTb21tQvgBaTVr79+9n4cKFWvNXqVTs3bsXfX19QkJCOHToEDY2Nlrk11jrdv78eVauXMkHH3wgrIuLiwteXl709PRw5swZfHx8yM3NZcGCBaOeAlzfTFhcXExpaakw/7S0NMLDw7UC2bu7u1m+fDmPPPII5ubmzJgxQ1iuWq0mKSmJBQsWkJ6eTmhoqEAeKJVKsrOz6e3txdnZWSBU9u/fT3x8PGlpacTFxQltff39/QQFBWmFSsPYrWownM905swZNBoNUqmUkpISwsLCmDhxIhqNBpVKhVKpFLbzsmXLkEqlSCQSRCIRdXV17Nq1i8DAQHp6egQyz8DAgMDAQI4dO4ajo6MQIC4SifD39+fkyZPIZDL8/Py4fHk4yFFXV5fp06djYGAg7C+NRkNtbS3Xrl0TiI+RTKvrA8JHPPMxMTFaGVO6urp4eHhgZ2fH/v37geFQ7KKiIsrLy4X9KpVKmTBhgqDWOn/+PDo6OtTX1zNx4kTOnj2LWCwmJCRklFImOTlZyJe6HqWlpfj4+PDzzz9jaWnJjBkztEih69vcWlpaOHLkCKGhoYL9Mi0tjdDQ0FEkm1qt5sCBA+jr66Ovr49YLBaI4xF89dVXrFq1ivj4eEGZ19DQILSnjqCxsZGcnBy8vLyoqqrCyWnYNjNSBDCCy5cvo6uri7u7O83NzZSXlwtNjYODgxw4cIBZs2ZhZ2dHSkoKsbGxwrrm5+cLhM/LL7/Ma6+9Nmp79fT0cO7cOS0bsUKhIDMzE4VCISgKNRoNQUFB5ObmYmRkxJw5c7TyvK6/XlyPtrY2/vnPf/Lhhx+SnJyMnZ0d3t7ewrZVq9Wkp6cTHR1NZmYmvb29REREoKenR1ZWFtOmTePw4cNCOPrQ0BDHjx+nt7eXJUuWsGvXLuLi4hgcHOTw4cPEx8fzwgsvEBQUhFgsxsvLiwkTJmBubo5CoaC7u/uv9r2/cNsYuX+adecGDMaZM87a4bZvzm8XN7bG3S6qL58dbmwyHlvhdKtmotaaMga6O7H3mfynllmefxwX/xmIbmE3bK+vYqCnC1uPSaPe02g01FzJxXHSaBvwCLqa64W6cbnB8G9N7bXz2LhNQCLTobu1kaayazj5TtOyeFz/fTUaDQ3Flxns62ZocAAdXX3EEin2PpMFi+XI9BqNhurLZ0n56AWiH3sNqY6c/JRtqJVK6ou1q8TXTp5HWkk+DwRFcqq6kLDxvnx8KonnZi8GkYjHU75m/x3PUdPVSo9imNg/VnmVEGcfNh7cyufxD5JWfI7nQ5aw7fJxrAxMaOhpx91s2O7TPtDLuzl7eWPeap4/9BNvRtyFl4UdsT/9k5WTZlHR0UygrSsqjRpXU2uOVV7FwdgcRxNz9GRyegYHOFh2gTnOE/j8TCqfxK6jvqcdqVjCU2nf8dLc5Rjp6PHNuYN8vfBRCpprUCiH2H7lOK6m1my9kMUa/1ACbMfT2NPBv3L2smvlsxS31vHWsd28F3kvFxor8LKwx0hHj51XjjPbyYevzx3Cy8KeCFc/nk7/nk9j1/MlTxz7AAEAAElEQVRYytf8O+FB5BIZRysuM9HKkebeLhyMzXki9Rs+j3uAR5K/4u+zFpFXV0pjbwde5vZ4mtsyTtdwOOjbzJrYn/7JP8JWIRaJECGiua8LC30jDHR0kYklbDy4lVdDV7Lx4I/c5TeXABsXBlVKQpx9mPPtS7wdcTf6OnIeT/maF0KW4mPpQF13OwE2LpytLcFYrgciEUq1iurOFsraG0nwCqKopQ4nE0s2pGzh/ah7qepswUiuh1Kl5KeL2Tw5I4HCljp8rZ3YXXCSHsUAz85eTFbFFRyNLfgyN537Js/jlcxf+WHx41gaGNPU20l1Zws1Xa2crS0h0j2At4/t4d3Ie3jp8M98t/gxGno6eO/4fqbYuhLuOvwAx9/ahc/PprJ0wgyqOlrQkUiQiCVsu5xDsL0HH51K4uOY+9l48EeembmQ7/KP8MysRfx04Sir/eagUKk4V19G12AfA0oFLX3dPDw1ikeTt/BxzP18c+4QE62c8LVyYlA1xFznibxw+Gci3PxJLDxLQ3cHG4Jj0JHIOFZZwLWWGlzGWVHe3sS9k8PQkcjoVyow0x0em3x97hAJXlPpHuynsrOZWU7e5NaWoiOR0jHQi1QsJsR5ArpSGdmVBQTZuXOw9ALz3fw5V19KTVcb8Z6BbDy4ladnLiC95DwPBUVxpbmKf59NZ/vyp7nYWImvlRNVXcOKRA9z22Hl1oEv8La0J8LVn87BPv6ZtZN/zV/Dq5m/8uOSJ2ju7eTR5C3c7T+XQFs35FIZr2T+yvMhS3kq7TseCorC1siUvLpSDhSe1Tr/pXJd4p58G0V/L6d3f429z2SmxN2JntE44Toycg1qq62gs6mW3vYWLF286Otoxd4nQMihGhrsp7miCDsvf+GaVXv1HBKZXLh2Xn9N62quo7W6DOeAGYjFt7aJj3Xt7+tso7HsKuMnj01IVV8+O+q63NfZTktV8W013N2IivMnsfPyR0dP/w+n1ajVlJzJ1Gr0u13UFV7A0sXzTxV63AydTXW0VpVg5+2PrqEJlRdPY+sx6f9m+95f+N8LiURCbGwsCoWCf/7znxQXF3PixAmCg4PJzMyktLSUjRs3IpPJiIuLEwipCxcu4O3tPUrlMHXqVBYtWsTFixeZOnUq7e3tpKWlkZaWRkZGBj09PcydOxcfHx8OHDiAUqlk//79tLdr+3xdXV1HBXx7enqyYMECnJycKCoqIjw8nMLCQiZPnsyCBQv+MK8FhrNytm/fzt69e3n66aeJjY3F2tqajIwMIRvKwsKCpKQkdu7cSUREhBYhdWM+kL29vZZaCn4nBMzMzBgaGhLUN3v27OHq1dEBckNDQ+zduxc9PT0OHTqEk5MTMTExREdHo6urS0ZGhtBe+Nprr+Hu7j6mAmkkD+vChQs0NDRoEV5z587VysAZmX7Dhg0sWLAAHx8fUlNTSUpKoqioCLFYjKGhIZ2dnSgUCuRyuaDwyMjI0FK1wTBh6OHhIdgyNRoNOjo6REZGsmDBAurr69m/fz+5ublj2sh6e3tJT08nKSmJsrIyYmJiBFvaqlWr6Ovr49SpU4hEIqRSKbq6uhgYGGBhYYGurq5gnxocHOT48eM89thjdHZ2EhUVJdiepkyZQmJiImvWrMHAwEB4PTo6mpqaGoKCgjAwMMDc3FxQ5syaNYuzZ8/y888/8/jjj5Oamkp6ejodHR3MnTuX6OhoHBwcuHr1KhKJhOjoaOEvKioKAwMD9u3bx/Tp04XXg4ODaW9vJyMjg8HBQRYvXsy+ffvQ0dHR+nxERISWfbCqqooJEybQ19eHtbU1CQkJREdHk5eXR2JiokCkwfB5fX1mUk9PD0lJSRQWFtLS0oJMJtMiGmF4kHk9qWZhYSGoibKyslCr1SgUCoE0aW9v5/jx48K5raurS1RUFIWFhUycOFHru0RHR7N+/XqWLl0qNGGOzMPMzEw4Bvbv309JSQlLliwRSKhJkyZRUlIy6pgvKSkR1E+Wlpa0tLQI78nlcpYvX05xcTFZWVnC8ZWSkkJ6ejoODg7ExsYSExPD66+/ztSpU9mxY4fWNrty5cooy6qOjo5wTJ04cYIFCxZw8uRJ6urqWLBgAWFhYVqElFqtHqWS1Gg0ZGVlkZ2dzdy5c9m3bx+BgYFYW1tz8uRJQRmXkZHBE088wb59+5gyZQoJCQmC/XekUGCkgRAQ9qmbmxsvvPAC/f39JCcn093djaWlJZWVlcyePZvY2FgWL17Me++9x8qVK2ltbRVUkX/hL/xZHP/lU+T6hoy7SebSf4r/yrNVx0lTqb12HpVy6I8nvg51hRfRqNV/mpCC39RSRRdv+n5Xcz19Ha1jElLw+0OMW8HY0hbXoDk0VxYLzXpq5RBiqYzqy7n0trfiNnXuLTNHRCIRNh6TkEhlHP7qTdQqFTYeEwVCSnNduURPWxNDA/3MWfM3RCIxSoWC8VNmjyKkgOHa+qBIfjyfSazHFDYe/JGNsxcPK1cUg7wTuYYrTdXkVF3jl0vH6B7sp0fRj1gkHlbOqNUcKDxLZvllPj6VhFgkIquigF0FJylvb+SLs2k8Oi2Gl478wgtzlvJk2recry/nvch7iHafwumaIvRkciZaOfHeif1EugfwRW46Fxsryaq4QlFrHUF2blgbjuO18DsQiUQ8m/EjMrGEZ2ctwmWcJXKJFE9ze/Lry3ko8QuaejtZ4x+Kj4UDH8fcT6jLJJ7N+BFrAxN2r3yWZdvfoby9iRfnLGNDyha8Lex5/LeA7urOFgzlejweHEeEqx9qjYbUu17mYmMlW5c+wVvZu2nr72ZPwSmGVEqsDExQqlXsWvF3Pj6dzPeLHyPQ1hVrw3GEj/clxmMKb+fsRUci4VpLLRcaKvg8/kFmOXnzj6M76B0a5ONTSfQoBij9LSj8+ZAlaDQatix4hOkOnlxorOCjk4nk1pYw1c4dkWi4NfG7RRsIsnfnvn2fAhC19TXkUhlVnS08nvI1Dd3tbLuUg72RGT9dyEahUpJdWcBzIUtQazScrS3GQs8IHYmMNf6hvJOzDzcza3SlMiZYOjLB0pGO/l4+O5PKgGqIBd5TMZLr8VnceroG+0gvOU+vYoDTNcX8eP4oq3xn8/axPTwWHMsvF7NZO2UeLb1dVHY0sSl0Je5mNrx6ZBsajYavzx0iwtWfJ1O/I7euhMtNVWy9cJQAGxemO3qxYVrsb9a2OPRkcp6ckYAGDca6+miAHy8cJcZjCiHOE1jsM511UyKQiaUCWZbgNRUvC3vON1Sw4/IJLjVVcaqmCAs9Iy40VPBgUCQXGyqp7WpluoMnMx29CR/vy5MzEvj0dCoqtYpNmdsQiUS8kb2bKbauvJG9C2vDcVxpqkIqlhDi7MMC76lYGZjgbWHPL5eOUd/dzvbLx5FLpBjq6JJclMd0By+OVRagI5HxyNRodCQyHgqKYkPKFqwNxvHotBhW7nwfT3M7Hk/9BplYyq+XjlHe3sgLh37mjYjVrA+M5HxDOR39vfwz/E7kEikfx9zP13mH2HR0O2/MW020+xT+lvYtZ2tLMJDpolAqeWnOMsabWvNVbgbiMciRqQvvBTRo1Go8pkfgEjBTUATdSKaY2jmjb2xK7v4fqbp4CjsvP62G1c6GGi1rs0gkwmFCIEYWNpScPcrgdQ169UWXfmsTnf2HhNRY6O1ovSUhNRaGBvupL7r4HxFSAM5+wVRdGt04PhZuN9h8LFg4edBSObqU4j+BiZUd4wNDaK0pp/ryWeT6hgz03t5941+k1F+4LXz66aeIRCJ27NiBjo4OSUlJfPzxx3R0dJCWlkZQUBDTp08nLCyMoKAgoYq8r6+PyspKofodtG8gR6wjL7/8Mr6+vlqD9AkTJnDq1ClmzZqFTCYTMmQuXrzIvn37aG0dDla72Q1aWVmZoBB54IEHUCgUHD9+nPT09D8cWBUWFpKdnc2qVauEsGwAOzs7IVQ4JiaGmpoaVq9ejZGREdnZ2Vy7dk1Yl3PnzmkpCYKCgrSa/AoKCnBxcUFPT0+r5c/e3p4lS4ZvEPbs2SO0aRUXF5OYmEhcXBxeXl44OjoKJNdI+150dDQ2Njb8+OOP3HXXXRgbG3P69GmB7Bv56+vrY968eSiVylHqs7GC5U+ePCmot663F2k0GpKSkujr6+Pll1+mpaVFsDwmJCQQGxurtf0Arl69yoQJE4Rtcn0GlkgkIigoiIULF2JjY0NiYiLp6en09fWRlZVFcnIyZ86cISwsjPj4eIKDg4WB/Ih1dOrUqZiampKRkXHLfbx//34WL1485vFjYGCAWCwmMTFRSzGmUqmora0V2tquJ+90dXWZMmUKMpmMd999V2hmnDRpkpAhVVRUhLe3Nx4eHqPCyNvb24mPj9fKKdPT02PSpElERUUhl8vZv38/crmc9vb2m/7w1NXVYWs7/MR42rRpnDkz7EuXSCSEhYWRkJCAvr6+QBr6+flx9uxZGhoa2L9/P6dPnxaspcbGxjg6OlJeXq61jBvz2UYQGhqKp6cnEomExsZG4XgrKirSOr+jo6NJSUnB29t7FFE7krklkUhYsGCBYEVrbW3FxMSE9PR0cnJyiI+PZ9asWYhEIq3mvfj4eJKTk4X5Xb58+ab2RRhWIR06dIi+vj7Wr19PWloa8+bNE4iokaa8kYB5KysrEhIS2LZtm2BDbGtrw9RUW2mhUqk4ceIEaWlpDA0N8Y9//AMzMzMaGhrIzs4eFSpfWFgokNpqtZrMzEwSExPx9fVl0aJF6OjosHDhQo4ePYqNjQ1hYWFaZOmrr77K0NDQmKUQMJw3NX36dCFHq6uri+LiYl566SX09fWJj4+nrKyMpqYmNm7cSEFBAQcPHhQKLCIiIv6fUkb9hf9+RDz4EpYuXlRfyaXi/Em6WkZnpv0n6GyqxcTa/o8nvAnGTwmhPC9n1Otj3VcMV4efwNDcCgsn91Hv3w6Gq7J7x37o0tFKR0P1f0R23YjhAdoUzBxcKcs7RlN5IaVnj2Lp4jmqHXAsdDRUU553DEsXL2L/9ibO/tNpLC2g4vyJ4Yao3m7kBkZUXz5LX8cwyeUaGIKOviHO/tPJ+XkzZvYuWvNcNyWC1OJzdA704WRiifM4K56YHoexXJ9XQ1cgk0h49cg2pBIJxyoLWDFxJvU9HXQO9CERidiQsgWpRMLm2HUAfBJzPyJErJw0Cx8LB3QkUpZNmImDiQULvKbiaGLB5th1mOkb8fnZNDoGelnjH4q9sRmmugboSmSo1GomWjkyy8kHMz1DZjp68eHJRK411/BOzl6qO1t4ae5yBpRDmOsb8+XZDM7Vl9Hc2ymoraQSKYmFuXyXfwR9mZzU4nO8M/9unkr/nqrOFj6JXYebmQ1TbN1YNmEGUrGEbxdu4OUjvxA23pcLDRW8dOQXhlTDYdll7Q1syTtIaVsDk23HD2deBcfgZGLJ3zN+4Iuz6bQP9BLvGURTbyfbLucwxdaVH88f5WpzDZ/GrifI3p3EwrM09nSgVKv44XwmyatfRK1Rs2XBw9gYmuJkYslH0WtxGWfFc4e2MqgcYkPKFsaPsybYwZPdV0/x4NTI4VDvM6m09nWzZNu/+DD6Puq62/g0dj1DKiWmesM5Si7jrLjTLwRTPUM8zG1xMrHA38aZq801qNRqptl7kFycx2tZO4h0D+Dlucs5WV3IG9m7MdMzZL6bPy8e/pktCx5hpqMXH59KRiwSsSlzOwAfn0qiqLWeqs5mnpgRz0uHf+G52Ys5VnmVGY5efHPuMN2KAT4+lcyAaoiv8g5y7+QwBpRD/HrpGJ0DfTwxPY65LhPxMLdjU9gqRIj44XwmU2xdWfDLW0jEYvSkMp7J+AERIio7mhGJRBS11tGrGODFwz8jFonYdjmHfxzdTo+inzt3fYi1gQmbMrfhY2mPteE42vq7+WbhoyjUw0RNhJsfOwtOoK8j52JjJcZyfWq7236zsK6hWzHAlgUPYyDT5bmQJXhZ2PNB1L1IxWIenhrNwJCCx1K+pqqjmW/zD2NrZIYYEb1Dg7w0dzk/XzqGXCrFxnAc0+w9eHnuct7M3oXzOCveOrYbM31DPo97gI6BXtr6e1gfOJ9B5RBeFvbYGZnyt+nx6EiGP1/d2cLGjB+ZaufOp2dSMNUz4G9p31La1sBin2B+XPwELx/5hc7BPj6JuR8vCzsenhrFoGqI5r4uUovPYWVgQk3X6ADskzu+wMTKHme/YMzsnLH3DsDMzpmSM5n0dw9b7zRqNXWFF6g4fwIjCxvC120kaOE9NFcWU305V2gb7etqH1PlamhqgVvQXJrKrlJfdJHS3GyMLKyxdvvj6971188R9La30FxR9KcIKbVaRXn+CVwDRzt8bnsdxGLsvQOoKci75XR/Jth8LOjo6TP0BzlefwYikQh77wCs3SbSVlvOLxvvuq3P/UVK/YXbwoYNG6itrWXjxo20tbVRWlpKSkoK7u7uxMXFYWRkxIkTJ5g5cybOzs6IxWLKy8tHWYNsbGwEK0xNTQ27d+8mNDSUZcuWjVI71dfXo1arsbe3Z/LkyeTn5yMSiZg7dy4LFy6koKCAffv20dTUJHymv79fUNH09/eTkJCAgYEB77//vtC6FhYWxrlz50hOTiY1NVVQXsnlcgYGBsjKyqKrq4uEhASti9KNN5CFhYXIZDIqKioEskpXV5f09HRSU1N5++23qays1PqcnZ0dtbW1DA4OUlRUJKiHZDKZVq4NwIQJE1iyZImgBqqoqGDJkiVaJMmNyM7ORiqVEhMTQ3d3N46OjoSGho5SosDvyq2R/K0bl33lyhXh/62traPypGA4pHvKlCmoVCo2b96MVColODhYy2J1PWpra7UUPba2tmOGOcNwuH5gYCCdnZ0sWbKEqqoq7O3tCQ0NHXMbaDQagaDy8vLC19eX3bt3C9v/+n158OBBQkNDhXB1BwcHrayngwcPEhkZSXBwsEDqAGRkZBAZGQkMW+ZUKpUw/56eHlJTU1m+fDnh4eEcPnxYa/1Gzg8AX19fLl++LHz20qVLTJo0aVSo/whKS0txdnZGX1+f+fPn8/9j7z2jojgbN+7fsoXeO0hHiqhUsaCiCFLFrqkmRk3vvZcn1fSYmGZMM4m9Ik0RbICIiGADKdJ772x9PxAmbtCU5/+c9/3wep3jSWBnZ4eZnXvmvuYqZmZm7Nq1i4GBgTHLnjlzRsi5srW11coaGoW7uzsLFixg9uzZpKamMn36dNLS0khMTGTevHlaofPBwcFjmvNUKtWYYHqlUkl6ejr5+fns2LEDKysrQQU1depULcnu1atXcXV1JSwsjO7ubs6f/+Np+rlz57QCtf39/QkLC2PWrFls3bqVmTNnEh0draUyunDhgqCWkkgkBAQECGTntcHlMKKA/PLLL4Xz/8qVK8yePZuYmBjef/993n777TGB7KPb7O4+ku2ir6/PrbfeSmpqqkAaw4hlb5Q8PXToEN7e3iQkJGBpacmaNWuEn/39/bXUfjCSuebk5ERGRgZJSUkEBQWRmJgoqMNGtyc2NlYIvh9FbW0tEydOZMWKFYLi63pwdnamv7+ftrY2kpOTSUhIEKysKpWKadOmERAQQGZmJr/++isSiYSCggJ++eUX1q1b95djz03cxN/BwMwC+dAALpOn4howHcXgSNNS3aWzqP50/fs36GlpwNTmvyelxBIJjhMCxwTL9rY3Y2xpK/ysUsgpP52Fvdfk6zbh/RvYj58k1J+PYqivW7DU/a+gVqnobKhCIpWRv+9Hhvt7abla8kdbXsk5+jrbtMY7+eAAlQUnUCuVuIfMRs9oZOwW6egwbkIwLv7T6WyoJmvzerK3fomhhQ02v7f16RmZMtzfS1PZBeIef2dMJsp3ZzN4ZGo8H+ceYJFPKAu3vounhT2r932Oo7ElDb0d/Lj4EXQQcYf/SP5eSlkBt0yaRdfQAE9MX4Barea5w1sYVMrZfiGbup52XjryK/52Lnx9Jh2FWslnuQeRq5R8lL2ffZfzGJAP0THYh0KtJKk0n5LWOk7VXeHVOSvRoCHBK4SOwT5+KMxkUClnQ9zaETXTtAQUKhX1Pe28f3Iv55qu8uqcFUS4TyLQ3h19iYw3I27DRKZHhNtE7guZT8dgHzsv5eBl5cjG+HXoiER8lnuQYaWCqJ9fJ8zZhwcOfkNjXydPTF+AnZEZ3lYOvBVxGzKJhMy7/0NpWwMfxdzN0aoLXO1qQV+qy3sn9mAo0+PFWUtZHRjBj+cysdA3RFcsZV/JaQxlerwbeQdLJ0zj4ZRN/FJ0jM/j1xLm7MOQUs6WomPk1ZWx/uReGno7eSLte1r7uzlQms8H2ft4e97tVHQ2sSFuLRNtnZnp7Mv0cd58dTqNb88cJtDejd/On+DrBffjbGrFZ6cOUtfbzt7LeXQO9lPaVk+vfJCt50+i0qhxNbNmz+U8DKV6I6SURsXXZw6xdMJ0cte+S17dFV7J3MqDobGsC47ireO7uNhaK+zDbedPsmXJY+y9fIo5bhOFHCpHEwtCHDww0zVkXXAUBlI9XM2smWjjzJsRtyIW6ZBx1+v0DA2wyCeUnJoSxplYjrTKmVjw+tERguuFjF+o6Wqla6if1LKziEQi1ketwsHYArGOmF+WPo5cpeS+kGhqulr5KuFeXjryKx/Ovws9iYwIt0ncHRiBraEZG+PX0TrQwwfz70JfokvP8ADu5na8kPELeXVXKO9o4oXDv3Bo1WsE2Lpy8MoZ3MxtUKiUQtj8uyd2M6RUsO3CSYqbq8ivL+dCSy3PHd5CypUC7IzMeXn2MjSMkLEW+kY09XUiE0sw0dVnsc9UAuzceGRqHE+l/0DnYD8fRt9N51AfqXe8Qm13G9sunMTbypGt508w2daFe5O+YrnfDNLLz/Fo6mZMdQ0ZVMqR6Ijxs3FCoiPmuZmLsTIw4bFp8YwzseRKewOFjZVk3v0fOgZ6aRnoQa3R8NzhLZjrGfJr8XFiPAPxt3OlpruNP0Omb0j95UKaKi4KJJG+iTnOk6ZyJfcwKZ++SHVxHpZOHrgFhglZgaMku62HL1cLs8eoqxTDQ7TVlAtjW93FEbdFYco20GjoqK8a+f2lAvr/NOb9Ffo722irKcc1YPrfL3wNKs8cxz1o5l/atP8J9E3MkekbCgHmf8ZovuA/DTb/fwPDA30jjYpXitERS/CLWPj3b+ImKXUT/wJPPfUUb775Jo6OjsIk1tfXl+3bt9PS0oKent5I40NNDUNDQ7i7u9PW1kZpaalAuHh6elJWVsaRI0eoqalh+fLlWkqa0UFCrVYLlhUYO7kWiUTMmjWLhQsXUl5ezpNPPsn27dvJyckRVDSj6oj+/n6MjIzw9/enqKgImUxGeHg48fHxREVFcenSJQ4ePEhxcTGLFy/G3d19TPiyj4+PFnlTXFxMe3s7c+fOxcXFherq6pGqaVdXQUn1+OOPIxaLBavfkSNHhJynG+X4/BlXrlyhqamJXbt2YWBgwIEDB7hy5YrWMqP7LCUlhXHjxl03CHsUKpWK7du3M2XKFO677z4h42r//v1ayh0PDw9hslxXVzcm40mtVpOdnS00HiYmJpKWlsYdd9xBWVkZe/fuHWOzhOsHW5ubm9PR8Uc7hkajITc3l6SkJJqbm5k5cybHjx/H2toaS0tLIYD+eoHh18Le3p758+ezdetWhoeHBUVNcXExdnZ2QvYRwOTJkykuHpkg1NbWYmxsjJmZGTCS1VVZWUlnZydSqVSrfTAoKIjCwkIGBgZISkpi+fLliEQijI2NGR4eFlrXVCoVLS0tgqUVYO7cuRw9ehTQJjz+rKLSaDQUFhYSGBjIlClTyM/Px8PDg8WLF5OZmalFGA0MDKCvr69FwHl7e1+XeOzo6CA1NZXJkyeTmppKWFgYycnJpKSkaB0PgLCwMLKzs4VtdXP7Iw9GLpcLNrLRwG4TExMWL15MeXm5sF+vxeXLl/HxGanwnTFjBn19fQIx1dbWhrW1NTBCMqekpHD8+HG2b9/OxIkTOXny5Jibibq6Opyc/pBwe3h40NraSm5uLr6+vhQWFpKSkkJKSgrnz5/nyy+/xM7OTmgKlMlkZGdnM3PmTOzs7JgzZw47duy4LkE4Ch0dHZYtW0Z+fj533303ycnJHD16lKCgIOLj44mNjcXS0hKVSkVjYyOOjo5CyYCpqSlxcXEkJCQwNDTEwYMHeeCBB0hJSWHq1KksXLhQy/rb3NwsKLZMTEywtbXVGgeKi4uF83727Nl4e3sLbY/Xorm5GbFYjLW1NTo6Opw/f57BwUHmzJlDVlYWmZmZ1NTUkJeXx1dffUV/fz/Ozs54eXnh7OzMqVOnbrg/buIm/g6W49xpvyYE1dLJHdeA6dh6+FJ/+eyIeqp1bID33+HakpT/FvrGZhhb2mo1BXU31QrWkMHebq4WZuMREv6Xdd7/FHpGJgwP9AljmXxwgLrLhbgGzvjH67jRpEqj0dBSVUp10SnqLhVg5eyJi/804h5/B0Nza2zdfYXGKxs3H4b6uqm9kE/N+dMUpe/kbPKvuAWGaeV+6RmbCgHCIpEIK2dPvMLm4zs7Ho1KRd3FM8JkMH/vD+xf/wS911HCmeoa8ETa97w/fxWGMl2en7kYC31jXg1fQftgLx/lHKCsvRF9qYz3TuxBTyLDTNeQjsFe/nNsB7oSKW0DvaTf+Sp98iEW+oYS6ujJG3NvQaVW83L4ctzN7Xhi+gKC7N1ZGxzFLZNmkVV1kSemL+Dd47t5Y+4t+FiP40hlMQ29HTyZ9gNDSjn7L+exMX4d3laOvHB4C0MqBc8c+onCpkpa+3t4OXw5j0yNY+/lPO7e+zmTbJ154OA3dAz28sbRHZS2N/BVfjpSnRGb4YXmGhQqFYMKOfcEReBuYcunMfdgqW/Mxvh1fJi9n8beTi601PBp7kEut9XxZNoPXG6t5ZfiYwzIh1nsM5VbJs5EItJh27InWbJtPeb6RqSVF4IG9CQypGIJr8+9hc7BXh5M/pbMq+f5YP5dRHn480NhJnfs/nQkHyv+XtRoiPEMpOd3hYuTqRVRHv7cEziPzsE+DpTk09LfzYodH2Ik0+PDnP08GBpLgncIEW6TiHSfTGFjJQu3vsfG+HVsOJXMRFtnXM1s2Hg6FfnvJMuyCdPplQ9R3FyFSCTi3uAoRIj4dsH93J/0NXl1ZehLZOhJpGRdvcBLR35lY/w6HI0t+O5sBi393XxfeITmvi6sDUzJqCjm9t2f0NLfzbOHfsbDwo7nM7ZgqmvAq1lbCXbw4MHkbzGW6fN8xhYuNNdwvqWalLKz3BM0j7v2bkAi0mH1vs/5LHYN7QO97Fr5LIcri1g5cSZfxK3jmUM/AvDykV/5tfg43UP9PHf4Z/QlUjbkJdM51M8zYYv4pfg4X+enIRWLcTe3ZdmOD+gc7OfNYzsZUAzzZX4a0528KWtvYNvypwhx8MTPxolJti7U97RzuLKY96NW4WXpwLcFh6nv7SCp9Awbfg+2v9rZjKmuASEOHpjo6rNlyWMsnxjGfUlf0a8Y5qUjv3KgNJ+TNZd5ftYSJto482H2ftoHe3nu8BaKmqu52tWCkUyX0rZ63juxh6udzVxoqeF49SXEIh0enBKDjaEpX8bfC4C3lQP3hczHytAEVzMbRECgvRsDymFsDU158OBI02VpewOf5CYxqJRzsaWGlzN/43JrLRb6Ruxa8QzHqi+yLjiK5zO2UNJWT4jD2EbUoITbkQ/2s/+9J7QI8va6Ciwc3Yi6/xUMTM1vOM7K9A1xD57F8EAfGd++I7y/rboMA1MLnCZOwXlSKE4Tp6BSyFn80hfYuPkIY569lz9DfT3CmFdz/jS1F/LpaW0c6+T5nZBy8Z/2j8bkUVQXncLRN+gflV/8E9i4+dBRf1WrdRV+Dzavv/o/CTYXiXTGtOf9G4wSUdVFp+ior/r9AcY09IxMCYq77R+t4yYpdRP/GJ988gnbtm1j7ty5gpLBysoKe3t7bG1taWpq4vDhw/T19eHj48OePXvw9fXFyMiIrKws0tLSSElJYfbs2VhZWQmqkVGMkkYwEvg7GjY8iuvddI7mBn3++eeYm5szb948raf514bxjhIt1w46EomEsLAw5syZg5mZGa6urhQXF5OWlqYVvuzq6ipYmM6cOYNcLteyL/154t/U1IStrS2enp7ExcURFxdHWFgYBQUFLFu2jOPHj2spLEb3ZWtrKzBiYdq3bx8DAwMsXboUIyMjwsLCSExMRKVSceDAAXJzcwUCY8eOHYSEhAjEBoCZmRldXV3Cz6PNXQsXLtQiZHx8fFi4cCFqtZr9+/cLk10TExO6u7sFQgRGiIyDBw8K1qvExERCQkKEYyMSiQgLC2PRokUUFRWxb98+wSrZ0dEhqD6uxYwZM8jJyaGnp4fk5GSSk5Px9PRkwYIFAukzc+ZMxGIxJiYmJCQkkJCQQHt7OwcPHiQ1NXVMUPYojI2NWbFiBXv37kVPT4/i4mJaWlrG5P+MWvg0Gg2nTp3SCpoPCAigqKiIzMxM5s2bp/U+R0dHKioq2LdvHytXrtTKBIqKiuLw4cMAZGRkEBkZqfVeCwsLQTF3rXrMy8uLsrIy4ecTJ04IAdrXtkmKxWISEhIwNjZm165dDA4OcuzYMebMmaP1Od7e3lrrGxwcZP/+/RQXF7No0SKBJBw/fjwJCQnExMRw+fJlkpKSyMrKQqFQYGdnR2dnJ0NDQ1y8eBE/Pz+Gh4dJSUkhIyNDsAX+Oatt7ty5AsH85/197fk8ffp0+vv7hfO/ra2NAwcOcOLECSIjI1mwYAGmpqbMnDmTadOmsWvXrjGWwmsxODiIVCplxowZ5OfnY2NjI5yHM2fOxNnZeYyCrL29HSsrK2CEKE1ISGDbtm0oFAqUSqWWMkuhUHD06FEOHjyIgYEBt99+O9bW1syfP18rawu0j/348eMpL9f27U+YMIGIiAjeeustgVT8M649B2GEDL1w4QLDw3+0mly7P+3s7EhMTOQ///kPixcvFmyUDQ0NhIaGsmXLFiwtLbGysuL06dOcOHGC+fPnU11djZeXF6ampujo6GBgYMCCBQsIDg5GKpXi4TH2BvMmbuKfYvQ7+mcyRaqrj/OkUFwDpqMcHv5dPVXwr3Oe/q8wd3BBOTxMb1uzsJ0iHR26mutouVqCx5Q5Qp7S/wJ2nhNpKr+AUiGnuigXj5Dwf0yuGZpb0d+lbY3paqqjuugUNcV5GJpZ4eI/DedJoVoZLC7+06i9cEbYt1JdPaycPIQJm3/0ciaEx1N59qRWHoupjaPwpF6tUnH1XA4ewbNx9AlAKR8SJoLGlrbMuOUBpiy6G1PbcWO2u3t4gHuD51Pe3sS6A1/haGLJ7bs/wVCmS2VnM5/HrUWiI8ZE14DdK59FBMR5BSNiRB1ysaWWV7O2cr65mk9yk7jYUsuQUkFVVwt59WVkVp6nXz7EwymbkIolPJa6mV75IHl1V/Czceb1ubfwaOpmBhXDPBgai6muAduXP8Xms0e4bfJsHkreREFDBV8vuJ+OwT62LHkMU10D5rj68VjqZs42VGIk0yN2fBAysZT1UatQqtW8GXErXpYOPDI1bsTSlHcQmUTC42nfI9HRoWd4kDt2f4pULOaWXR/T0NvJczMXY6FvhEKlol8+RIiDB6/PWYmJrgFvzL0FEz0DHk3djK5YwoPJ33Ku6SpbljyGBg1elg6sDY6iTz7Egwe/YVAxzKBCzr3B8xGLdFBr1NT2tLNswgzejbpTaMKzMzIjwN6NzWePUNXVymOpmxEh4vG075GJJYwzsaSlr5vpTt50DvXxzrzb6VcM81rWNvQlMj49dRBnU2s2JT6Aub7RCMFn5YidsTnblj2Jr7UT60/uYdfFHBK9p/D2vNvR+90K19DbiaWBMR9F382AYhh9qYy7AuZQ1t7AF3HrOFV3hUdSviPEwZOmvk6+iFuHnkTGzks5xIwP4NXwFVgbmPBZ7Bo2FWTw9rzb0JVIWeEXRlpZIZsSH6C+t4Pk219GrVEzbZw3b0bcioOxBRvj16Ev1eXTmDU09nby+tHtNPZ2oFSrudxax8Mpm3hsWgLfnEnn0anx3OkfjkRHzM+LHyW37gq3T55NdVcrL2f+xj1B8zDXN+LNYzup7mplY/w6NhUc5uXZy3gtaxuPT4vnQMlp8urLOFl9mRcyfsHe2BxTPQPKO5rYfDYDhVrFJ7lJfL/wYbws7fG3cyGr8jwZFcV8EnsPLmY2bCk6Rnr5OYqaqrg/6WuenbkYiY6Yj6LvJsrDnyiPADaeTqWkrZ5Qx/HU9bTzedxajGV6bF74EE19Xejo6PD+/FUcrbpIjGcQ/5l7K0+m/0BefRkb8pJRatS8lrkNPYmMuW6TGJAPY2VggoOJBdk1JTx76GcMZXo8OSORKHd/XMys+SrhPkx1DbA0MGHXymcJd53IL8XH2X35FP3yYSS/Z69JdMSklJ0dMwa01ZRjaG7NnNXPoFIqhLHD2sULlWIYjynhaDQaOm/QjDra1qdSyJm37oVryKZJGJhaCGNo3aWzWLv5YGbryED3H2OlWCLB0sldeJ/zpFAcJwShUiq0iKpjP33CpawDWDq5/yslb+OV85jZO6Nv/H9vlb0WLv7TqSr648HgSHvqSI7U/wKWTu6011X+/YLXQJuIuioQUfbjJ6IjFqNUyBFLpEj/VHh0I0j+fpGbuAl49913eeKJJzh27Bi+vr589913PP7446SmpjJt2jQOHDjA0NCQ0FS3Y8cOVqxYQVJSEs7Ozjg7O1NZWcn58+dJSUlBo9EIobtubm74+Pgwbtw4ioqK0NPTw9HRcczkbpQkGVUQaDQaUlNTcXd3JzQ0lAMHDox5YlpfX6/VIBgeHs7Ro0eZO3eu8LvGxkays7O58847sbOzIzo6GqVSKRAlurq6zJw5E5FIRE5ODkZGRmPUSD4+Puzfv19QfxQWFo5pi2toaKC1tZWqqirKy8vp6uoS1CFeXl4EBgaSmZmJnZ0dFRUVxMXFjQmHB/D19cXX15eWlhaOHTvGihUruHDhghbRBCN5TcePHycyMpLa2lry8/O57bbbtAik66131Bbp4+NDVlYWurq6FBQU0NDQgIWFBXFxcWMCmf8MkUjEnDlzUKlUZGZmMjg4SF9fH3PnzqWoqIjW1lYhU0ej0bBq1Sp++eUXYmJitCb/164vMjKSffv2CTlQAQEBBAQEoFQqSUlJYeHChRw8eFCwI10LMzMzvvjiC3bu3Elubq6gVjExMcHIyGjE/+zoyObNm1m2bBkNDQ3U1NQIpN4PP/zA4OCgoOobnVRpNBpWrFjBjh07hAwrd3d3PD090dXVRSqV0tbWhkql0lIEqlQq6urqkMlkeHt7j1Em6ejooFKpGB4epre3d8yxvRbjx4/H3d2dffv28dxzz/HNN99ga2uLra0tlpaW6OjoYGNjQ319vfB9i4+PH2O/u/azRwnX3t5ejhw5glKpxNHRkfT0dORyOQcPHkQikRAZGfm3lq6AgACqqqrYv3+/QKpe7xhPnDiRL7/8kueee46TJ0+Osc+OwtTUlOXLl5Ofn8+FCxeIiYlBJBLR29tLbm4uCoUCPT09wsLCSElJQVdXl5KSEhwcHG444Ttz5ozWOAEjuWLLli1jx44djBs3jsDAQHJycgTF3PTp0zE2Nqa1tRUzMzMMDAzGkI+jmVPXHnsbGxst5RPA0aNHWblyJWq1ml27djF//nwtAvdaa+ooFixYwIEDB/D39xfIou7ubk6dOoVKpUImk3H33XcLY9foeJSRkcHixYu5ePEiQ0NDhIeHc+bMGVJTU3Fzc6OyspLc3FyeeOIJamtrSUlJobCwkMHBQRoaGq5bLHETN/FPYensSVtNOdY3qOK2GOeGxTg3FMND1F8uRK1SYW7vfMPMqIHuDsHe8b+Ag/dkKgtOCJa1lqslqFXq/6rZ7++gb2xKzflGeloaGT993r9Se5najqO54hI6Ojq0Vl35/XeOf/tEXyQS4RY8i6sFJ/AInXPdzzSxdsDYyp66S2fREYtx8PbXysGqOHMMj+BZiHR0MLaypaupluH+Xvo6WpEPDeDoG4hSIaejfuyDA3tjc74tOMQnMfewMX6kyfrJ6YkYSHXZVHCYB6ZEM97Cnjv3fMaX8ffyZPqPbIhdw6Opm/ksdg1RHv48FBrD61nb2X/r81ztbMFIV49t50+yPupO3jmxm0j3yUR7BjDRxpn356/i9axtvD73Fm7b9THzPQJ4K+I2LA1MuNxay2enkvk4ZjXvzLsdc30jXM1s6B4aoKa7lfdO7OHNiFvZezmP+Z4BfJlwH0q1iulO3tgbm5NTW0JtdxsZlcW8Pmclao2G/xzbwZYlj/FwaBx98iHenncb/YphpGIJS3ynIRNL2BC3FrlSQZ98CJVGg5eVAzNdfPn2zGFCx43n9aPbmes2keV+YbwavgITPQMemxbPV/npvBN5O2XtjXx3NgNnU2vmuU/G2dSaio5G3jq+i1fCl3OmoYJ9JXnIxFI+ir6LFzN+5fO4Nbw/fxW9w4O8d2IP3y98mP2lp9l7y3Ocbazko+i7sTYwobGvEwdjcyz0DTGQ6vJU+o88G7aIg7e/xNmGSjYvfEg4Nnfu/owHpsTga+3Isu3vsz5qFUYyXWp72mnp76a4uZo3j+3k2bBFfBl/L1aGJlR3taLWaLA0MGbdga94bFoCao2Gj3MPcNvk2bwbeQdKtWpExZOfxq0TZ/FpzD0093ej1qh5NHUzb8+7jXivYDacSmHphGl4WtjhZWlPx2A/bx/fxcb4dTyZ/iPPz1qCjYEJi7etZ2P8Oj49lYS7mS13+Ifz4fy7KO9opKqzmVkuvqwOjMDbypH7Qubza/EJ1gZHcl/S1zw4ZaRF2ULfiFkufpjrG2FjaIqhTI9Xw1dgpmfIQ8mb+DxuLUYyfd6NvGOElJm5mOLmasS/q+ZEiEgqzeeTmHvonRrPsaoLtA30UNvTxmtZ2/g8bi0pZQXYGplR29NGUVMVD4TGoFKrUalVfBpzDzKxhBcyfuGB0BjeO7GH9+ev4lJrHXcF6BPtGYCtkRlJpflsKTrGhri1nK4vx9HEkvaBXup62njvxG7mewayPupOqrtaaerr4vNTyTw1I5GNp1NwNbMl2jNAsHKunDiTSHd/vCwduC/pVTbEreXRlO94f/4qmvu6ePrQT2yMX8dnuQdJ8A5GqVaz9fwJFniH8FDyJh4KjeVkzdjCpsozx5kYseh3dY+GyoITuAfPoqY4D9egkXtPW3df6i6dRaqnj6GZlfDe3vZmWq6W4vh7s1tDaRGK4cExrXGtVVcwMLXAyNwKjUajRbBfDzo6YsztnTH/vYRjoLuTifMW4eQXjHxokO7m86hV2sTUtQ9XZPqGGJhZ0lBajEfIbExt/vdWOh2xGFt3HxrLLmA/fuL/Kdj8ejAwtaCt5u/DzocH+miuuIRGrUZmYMi4CcE3fFjTWFqEg7f/P37AdJOUuol/hBdeeIHdu3cTHh7O3r17BWtKV1cXNTU1ODk5YW1tTU5ODr29vURHRyMSifDx8eHy5cv09vaiUChYuHAhaWlpAqEAI4HkowRVWloaM2fOZOXKlWO2YcqUKQLJIpfL2bNnD1FRUULW0dSpU8nLy2PatJGbsurqaqEifhQWFhb09/czPDwsTFZrampYtmyZ1nISiURQpwwNDZGdnU1cXBwbN25kzZo1191HozY+FxcXrUmkQqEgNTUVR0dH4XPOnz9PeHi4QG6VlpZy6NAhli1bxpkzZ1i8ePHfHhOpVCqopkQikbAPxWIxQUFBWFtbo1AoOH/+PK2trSxZsuRv1wkjyg0PDw9+/fVX1qxZw8svv8z9998v5BT9G4jFYiIjIzl48CBvvPEGvr6+2NraMmHCBCH8u6mpiQMHDlBfXz+GrBjNHoKRm2l3d3etJjUYsYJJpVL27dtHT08Pt9xyy5hBWqPR0NHRgZWVFQYGBhgZGdHR0UFVVRX9/SM32ufOneP555/HxcUFW1tbfHx8MDU1Ra1WMzAwILSpXYsDBw7Q0tJCUVERkZGRaDQaKisrOXToEBqNBoVCgbW1NUlJSUIOkEgkQkdHh3HjxhEaGspTTz3F6dOnkcvlGBsbM3PmTMEu197eTmJiotZn/pmcHV3n0NAQ7777LrNmzaKlpYWamhoKCwsFC9q0adNobm7+S4LrzzA2NhYyyC5dusSiRYuYPHky69evJyQk5B9nDLm6umJubs7WrVuFrLC2tjYKCwsFa6+hoSGzZ88W8pz+7kI7ZcoUBgcHiYiIICIiAgMDA628sd7eXmF/dnR0sHv3bkJCQoTvk4WFhaDeq6+vv+73e1QdNH36dH7++WehKfNajIa4m5iYYGJiwt69e1m0aBEikYjDhw+zYMECreWnTp1KUlKScFzVajUqlUo4H1auXElqaiqenp54eXnd0EIolUoJCAjghRde4O6776ayshJTU1MiIiKEdR05coT4+Hg6OzvZvn07S5YsYWBgAENDQ0JDQ9m9ezdWVlY0NTWRkJBAUlISurq6TJs2jd27d1NUVERCQgJvv/02DQ0NLFq0iH379v3lcbmJm/grGJlbjVj4bkBKjUKqq/dHLXhDNdVFp9CRSHHwmoRY+se4015bieOE/3so+LVwCwyjLC+TtppyvGZEYWpjQ19HK0r5MMrhQRTyYZTyYdDc2N77T6CUy8na/D7jp0ViYDo2rPd6uHYidOjL/5D43Ec4T576t+OlSqlARzxyyy+WSHCaNOUvn7KLRCKc/IIZ7Omk8sxxbH+3h1QVZuM8KVQ4BorhQQzMLPjh0cVMX3E/7sGzBAuIgakFEpnuyL76HY29I7b+1v5u3jmxm//MvZX8hnKMZHqsC47C08IeEz0DPom5RwgpH83Q0QCPpnzHZ7FrCLR3o7qrlc1nMzCQ6fGfiFv5+swhnpyRSK98kFfDV7DjYo6gwtHR0eGFWUto6e+mobeD1PKzxI0P5rFpCZjpGnLP/i/4cP5dPBu2CBtDU97P3semxAdo6uti88KHePHILzwyNZ5HU77jk5h7+KHwCPdPieHglTPsXvks5R0jyvcNcWsxkulx557PWB+1ikHFMHKVkn7FELNcJtDS382mggwenRrH60e383ncWi601PBDYSYfx6zmQksNn8Tcg0Kt5MGD3/BJzD2cqL7MT+eyeDl8OZ+dSubRqfE8P3MxwQ4eLNv+PrOcJ3D75Nm8PvcWdMUSLA2MeT9qFcMqBR4Wdsxx9aNXPsSLGb/ydNhCPom5h66hPk7XlTF9nDdvHtvJ53FrWbV3A49MjWPP5TxMdPVZHRjB0zMW4mBsQXp5IZ/npfDDooe50z8csY4On8WuoV8xhKOxJTtWPE1FR9MIkTUjkSvtjXyel8zqwAiGlAqePvQTH8es5mT1ZfZcPsUvSx/n87i1DCrlTLRxJtRxPM9nbBEIyNfmrKCuu50++SAKtZJ3T+xmQ+waXp+zEj2JjI2nUzm06jXO1JdjaWBMStlZqrpa+GXp45S3N7Jt2ZO09Hej1mhYH7WKGU4+5NZeQSoW0zbQQ+tAD9YGpkxx9GTPpVPcPyWaFTs+5OOY1dgYmjIgH2ZD3Fp6hwdJunKGR6fGs2z7+3wRt45bdn4kEDSfxa5hY/w6ipur+ebMITbGr+PRlM08MCWGnuEB9CRSDl45g7+dKy/NXk70lv9wT2AETqZW1Pd0YG9kzqvhK1ColHwSuwaNRk1TXxfxXsF8cHIvHhZ2dA8NMN3Jm6tdLbwTeTs9w4N8MP8uNhUcZoaTNx2DfTx3eGTfuZha82zYIpQqJbpiCSeqL2FvbM6yCdNBJMJcz5DV+77g0KrXKGmtw8/GmXNNlbiZ2+JpYU9Dbyc/LHoYC31jFm19jw+j72Luj6+ScsfLXG6t4+sF96NQKXE0tuCj6LsJsHNDTyrFWKaPoUyP35Y9QftAL5/G3EPXUP91x5aYR/5Da3Upth6+DPf3om9syjdro5i75lmGervRNzEX8qOuFmYzPNCHgZkl1UWn0DM2xSNktrAuK+fxtNWUYz/+D/dDd3M9SoUca1cvYSz7Nxjq66G54hL+0cuov3wOJ79gcHC54fIajQbF0AAtV0soTNmKnpEJAz1j40v+7baIpTIkMl0kuvpIZLpIdfXQNTSmp7WJ8vyj2Lh6/dfB5v8W/4aIuhYqpRKxVHaTlLqJ/y3i4+O5cuUK7733HoODg9jY2GBtbY2Pjw/e3t7s2bOHpqYmVq9erUUojSpJcnJyhCDiP8Pd3V0I+K2srMTX11eYwEskEvz9/bG2tkYmkyGXy2ltbSUzM5OlS5cKky8YyZ3Ky/ujOrOoqGjMhB5g/vz5HDp0CBsbG9RqtRBcfSOIxWI6OjrYvHkzK1eu5Pjx4wwPD6Ovr09YWJhQex8QEMD+/ftxdHQUVCjnzp2jqqqK2NhYLdXTn+0L3t7edHZ2UlBQwNmzZ3F2dh7TWnctqqurKSoqYuXKlUKg8mijnVKp5Ny5c5w5c4a4uDjeeecdZs+eTUtLC9bW1te1UNTV1XHx4kVhAiyTyZg3bx6ff/45np6enD17lsuXLxMeHq61z/8Ozc3NHD16lJiYGD777DMtC9IocnNzWbx4MS0tLWOUJpcuXdLK3vL392fPnj14enoKajtnZ2diY2NJT08nIiKC3bt3jyEZ9+/fT3x8PJaWljQ1NWFiYqJl4bt48SLGxsZ88803Y5RwqampxMTEkJWVhVqtFsjGU6dO4evri7W1tWCjEolEeHh44ObmRlZWFp2dncTExNDf3y+03l2Lo0eP8vLLL5OTk8OCBQvo6enh8OHDqFQqfvvtN55++ukxRN215Owodu/ezaJFi+jr6yM/P5+wsDDGjfvDOtHY2EhBQQF5eXl4enpqtWH+HQYHBzly5AgymYykpCSGhoaYO3cuxcXFnDlzRvge2dnZMWnSpDEKLI1GQ2NjI6WlpZiYmBAeHs7WrVtxd3dnzpw5Wt+nlJQUEhISqKioIDU1ldjY2L/cttzcXDZu3EhJSQmzZ8/WuuAXFxcLx9jCwkLIfzp//jyxsbGEhISQmZmJg4ODVjufRqOhoKCA5uZmRCIRwcHBpKamAiME6p9Jqd7eXiHEfdy4cRgZGbF161bCwsKws7Mbc/xEIpFQqqCnp8eJEye0GjBFIhFxcXHk5eWRk5ODnp6eQODL5XLOnTun1TxaUlLC8PAwISEhWrlaMEKIy2QybG1tWbx4MYGBgaxdu1YYX2UyGaampiQnJ5OWlsYDDzzA559/TlRUlKD8e/vtt/H29iYiIuImIXUT/xPoiCWolArEkn92LbFwcMHCwQWlfJiG0iJUSiVmdk6Y2Y1Do1H/Zb23RqNBOTzEUH8PwwN9DPf3olYqtAowrvf/l44dpKnsAo4+AagUcqQyPSS6uhiYWSHV1UMsk/1XteKjGLU9xD76Fqa24xge6MXW/Z+Py82Vl1n0/CcM9nb/o4nOYE8nBte0VOkaGGE5zoP6knM4+gSMLNPbJSjERqFvYo7HlHDqS86R8umLzL7zcZorLgmvS2R6GFlYE37Xk+gZm6KQD1Ffco7TuzfT39UGjN222ybNYrbrBAxlupjrG5PoPQW1Rk2ffJDmvi6eSv+RjfHrWPDbO79n/fyEp4UdUR7+3Bs8f0QlX1aIu7kdSyZMo7qrlcm2LsR7BdMvH+KNozuwNjClqquFrqF+eoYHeThlEz8vfhRLfWOUahV+Nk409HYyxdGTj7L382bErYwzseTWXZ/wXtQd+Nu5UtfTzhtHd7A+ahU2hmZ4WTqweeFDNPd18cjUeKRiCdPH/UEKvD5nJbsvncLDwo7P40YCxhdtXU+E20SCHDx4NOU73o28gwemRCNXqdgQu4Yge3caejtp6O2gsbeTt47t5NOYe3g9azvvzLudAcUwgXZuRC6ZTFl7I49MjaOgsYKlE6az8XQKq/zn4GvtRMdgHzqIUKhUbCk6yutzbiHAzp1l2z/gncg7aO3v5oVZSzCS6fNE2vc8MCWaqePG0zrQw+rACOQqJXNc/VCp1aycOAOlWo2eRIaRrj4vZPzCy+HLeTPiVtoHegmy9+CVzK28NHsZLf09PHd4Cxvj16HRaFi97wu2L38KNzNbcutKsTIwwVLfmKdmLKS+px1jXX0+jbmHktY6vjubwb3B83n20M98HLOaNyNuHWmSm72MzWePcHdgBA29HUywduKZsEUcq77IgELOXLeJTBvnRWlbPS8e+ZWHQmMJsHMl1NEThUrJ60e3j5BDqZt5NmwRrmY2bL+Yzb0h8yluqkIDrD+5l58WP0rrQA/jTCyR6kiY4eSNVEdMQUM5CV7BPJryHS/NXsbDoXHoSqSsCYpErKPDh/PvQq5U8PqclbyY8QvxXiH42TixOjCC4uZqvkq4jwHFMEYyXcQiHa60N+BubouVgTH3h0QzwcYJqY6Y7ReySS0/i0Kl4mTNZZZNmI6pniEf5ezn16VPsGTCNKY7+dDW30O/YoiqrhZK2ur59swhnpm5mGnjvHA2s8ZQqsuzYYvoHh6gY7APHytH1BoNs10n4GxqjaeFPQu3vkvc+CBiPAMJsHOjvL2RV7O2YWNowlMzFiJCJGyLoVSX1fu+YNfKZ+mXD7FswnQOVxTxSW4SX8bfy6uZ21jmN51xJpaEbX6RHxY9wsmay+y7nMdrc1fydPqPuJvbstAnlCkOnuQ3/KG+kRkYUX76KFdyDmFq44iuoQn6xmbMWf00BibmDHS1a6l1xBIpO1+7lymL7mby/GVIdbVtYDJ9AxRDf7TGDfZ209VU+68zoEYhH+yn/nIh7iEj95Ma9d9nLI3EUeigGBok7vF30DMyQaMBW3ef/2obYOS6pVIqUA4PopQPoxgeYri/F+XwEHUXz3A2+TfmP/jaDcPPAUQ6YvSMTdEzNEHP2BSJ9J89RB59KKxFROn/cyJqFB0N1YLy7J/iJil1E/8ISqUSiUSCvr4+s2bN4r333mP9+vXk5+dTW1srhB9v3ryZwcFBQVEyMDDAtm3buHr1Kn19fUybNk248ROJRMjlco4cOYJKpSIyMhI3Nzf09PQENYNcLqeoqEho0lq6dCmvvvoqzzzzzHXtR6NB6nZ2dmPsfzCiesrLy+P555/n3nvv5eGHH9Z6fTRXaPQmb5QAW7RoEVlZWRgaGhIVFSX8bSdOnGB4eFiwC9nY2JCSkoK/vz+7du1i8uTJLFq06G/3b3d3N11dXUybNg1vb2/2799PcHDwGKUXjDSNtba2CoRbYGAg586dE+xHEomEkJAQDh8+TFJSEhMmTMDKyory8nIKCwuFm+61a9eyadMmYCQbKTIyUmsCvWfPHh544AHS0tJYsGABAwMDZGRkoFQqmTp16t8qbk6ePIlcLhdISplMJijURnHp0iWBILGxscHMzIwrV67g5eV1w/WOhux3dXURExMjBJLDiLJnzpw5JCUlCQqVzMxMgoODMTU1RaPREB0dTUZGBhqNBjc3N0pKSujs7MTPzw+xWMzQ0BANDQ04ODhw9epVbG1tMTAwEJR406dPp6qqCqVSKbS6jf5tEomEzMxMwRZ17NgxXn75Zby9vcnIyGD8+PFahFBfXx9mZmZCi5+JiQmxsbH09PRw//33k5iYSE9PD7NmzRKOjUwmQ6H446nDwYMHmTNnDoaGhhgaGpKTk6NFnsEIQRsVFUVQUBDnzp0jLS1NUDPC9Z/eDA0NceTIESQSCdHR0UilUoGgy8zMHEMYNTU1kZWVhVKp5MEHH+TTTz8VjrWDgwPTp09HT0+P5ORkBgYGcHNzuyHB6eHhgZGREbt27WLJkiXC3zJ6bqrVavbu3cu0adNwdHTE3t5+jC23p6dHS00GI4Te0NAQSUlJeHh4oFKpqKioIDExkcLCQhoaRkKWg4KCtJRTIpGI+fPnc/bsWY4ePTomt+tamJmZ4e/vz/jx49m/fz91dXVaBCGMZG0dOXKE2NhYuru7tb7Do5g6dSonT54kODiY5ORkioqKkEql+Pv7Exqq3c4VExPDmTNnhAy9P48bzc3NnDx5kp07d1JbWysQ8ZcuXSItLQ2pVEpERATffPMNU6dOZfPmzaxbt45jx44JqkSpVIqurq5WjtVN3MR/A7vxE0cIH99/p3CSyHRxmjiSgdfZWMOVnMNkbl5P3OPvaC33Z6JJoqsnTH7M7Jz+9ua8obSYiDXP0tlYi1qpwMDEAmMr2798z79Bf1c7LZWX8QydS+2FfMzsxtFUfomu5jrMrpPDdD0M9Xbj4j+NntYGLWLpxp/ZgamNvdbvjK1sGR7so62mHCtnT9prK7H30s5b7GltoKO+GrFEgteM+cj0DZHq6mM3fqJw3aguOoXX9EjaaiuQSKU4+QWjXHQXp/d8z2BvN0r5kNY6zfQMidnyJuujVlHaVs9P57J4bc5KlCo1tkZmfLPgftoHenklfDlWhiZsiF1DeUcjRyqLSfQJRSaRMt3JGx2RCH2JLvPcJ/PTuSyOV1/inXm3827kHQwq5cxzn4y5niEDimGempGInlTG24d+Rlci5bmZi3j7+C4+j1vLJNsRFURzfzcPhsYgFUt+JxX02bniabJrSngmbCHRW/7Dhri16EllPJLyHS/OWsoct4msO/Al3y54gOzaEhb7TuVqZwv1vR3svnSKHxc/wvnmaoykI814IQ6exP3yJmuCIjnfUs22Cyd5JmwRvy59gtt3f8KX8fdS093KpzH3cG/SV3wacw+Pp33Phtg1/OfYDt6LvJMfCjOJcJuESCTiYmstHhZ2JJWe4eCVM2xd9iTPzVzMhrxkPC3seHn2coaVCt48tlNQ9+xY8TTNfV3k1l5htqsfKVcKMNczol8+zIBimPqeDoqaq3gtaxsxnoF8HLOaiy0jxTJf/E6EPTo1nr2X87h98mxeDl9OS383KrWaz+PWUtfTTkFDBX42zqSWncXSwJja7jYWeE9BoVLxxtHtfBh9N6+EL0ck0uGxafHIdCS8nXuQF2cv5YXju1gXHEXnYB+7L53CP8INsY4OE22cae7r5ou8VO4LieI/R3fwUfTdmOjq8+yhLTw8NZbV+77gi7h1mOsb8WnMPZjqGdLY28H7J/fiaGzBIynf8duyJ9gYv472gR4+O3WQhT6hbCk6yl0Bc0dUeXFrKWio4KuE+zDW1eeO3Z/yUGgsWVfPY6prwIa8g9wfEsO3BYfYtvwpTtddIbumhAnW48irL2PaOG/O1lzm56KjHFv9Jk/NSMTR2JKqrhZCHD0YkA/TJx8i3iuY2u525CoFr4Yv51BFEUEOHnwet5b63nY+O5WMl6UDD6ds4oP5dxHqOB59qYyvFzzA7ku5zPcM4NGU79iU+CBGMj3aB3pp6e/maNVFnEwtmeM6kafSf2TLksdYH3UnTX1dPJq6mfci70SuUvJx9Goa+zopbWvg49wDHLz9JY5XXcTa0IT1Uauo6W7lybQfeDl8OUVNVbwbeQcKtYqXw5cxqJAjEon4OPpu9KUyStvqeSZsEeXtjWxd9iQVnU3k15Vzua1O69yXD/RxJecQi1/cgL6pBcaWtlScPop3WDRV53KwcHLH6neyv6+jhZarpQTG3YqekQkNJeeQ6hlgN97vug8EVAo59ZfO4hE65y/HwhtBMTxETfHpG9qabwSNWk3VuRw8Q+dSd6lgJJS87ioNv1vX/huIRCIkUpnWtUqtVlF1NpsJcxKw9fRjeKAP14AZNySKVEoFw/29DPX10NPaMCYk/XoPYzrqr3IlN4PxUyP+KyLqWvS0NPzrxsKbQec38Y+Qnp6Or68vDz/8MGfOnCEgIIAPP/yQhoYGLl68SE1NDZmZmcTFxeHr68vFixeBESVIVFQUCxYsYNy4cezevRuVSkV1dTWpqalCSHJCQgJ6enoYGhpq1dzLZDKmTJlCTEwMOjo6bNq0iXnz5nHkyBGhTevYsWP09Y34hSdMmMDly5c5fvw4s2fPRqPRUFpaKgRoZ2dnExQUxLZt24iMjCQpKYmjR48KJ6SNjY0QNn7hwgXOnj3LypUrr5vtZGBgQFRUFAkJCYLdqrW1lYULF1JcXMySJUtuSK6MKiWu3b+jRJ6Ojg6LFy+msrJSq1kNRpQho0qVUdjY2NDS0iL8rNFoOHDgAL6+vsTHx1NSUoKJiQlBQUFER0cTExODsbExW7duxdTUlNjYWCZPnqxFSJWWljJ+/Hit3xkYGBAbG0tCQgJXr14lKSmJc+fOCa+P5iANDAywc+dOXFxciIiIEF6/tuFudDtLSkqEHC4YycG6dOkSAwMDWg1tMEKMnjx5koKCAlatWoWXl9d1J/NWVlYEBgZy6NAhzpw5g62t7RgFSWRkJJWVlaSlpdHU1MTMmTPp7OzE3Nyc8PBwTpw4gVKppKCgQAgCt7Kyor29nf7+fs6ePcvMmTOF9bm7uxMdHU1qairTp09nwYIFyGQypFIpoaGhFBYWkpiYKISDazQaQbkGI9a60Waz0cym8vJyrK2tCQoKIjU1lYMHDwqh8aM4evQofn5+wnpAu9VvFGq1WjiWAQEBhIaGsn379usGxI9u4+i5O0pIqdVqRCIRRkZGWFpaUlVVpfU+Ozs7oqKiiIiI4JNPPqGvr4+oqChiYmKYPHkyenp6wj5etmwZubm51NfXa33utXZAW1tbYmJi2LZtG3K5HB0dHTQajRDYHxsbK7RCjrbJNTWNbXv6M/T09Fi8eDG6urrExcWRlZVFcnIyNjY2xMfHEx8fj739nyZvxsb09vYSHByMh4eHMI6BNqE3Gno/eg7GxMTQ0dEhjFXHjx9naGhIIBaLi4sFBalarebixYvCsikpKRgZGfHbb7/R3d3N1KlTmTdvnhDG/meEhISwaNEi2tra2LdvH9XV1SiVSpKTk7ly5QpLly7F19eXwcFBNBoNarWaS5cuER0djaWlJbt27QIgJycHBwcHHn30UWxsbFi5ciWtra1UVFTcJKRu4n8Cqa6elqXr30KtVtHT2oihuRVhtz6EjliiFVo7Gpw7+v/24ydh4eCCoZnl3xJSrdVl6BoYYWI9kkHnFjSTvs4WmivHNpj+N+hpbaC9tgK3oJna5QSeE+huqmOo7/qlHddCpZALVjwTawcMTMxpKr/0l+8Z7u9B19BkzO+tnDyQD/bT09aEWqVELJGiVqmoLzlHddEplMPDuAZMR9/EnJDEO5AZGGJm70RVYTbtdZUMD/QhkekilsqwdfelraaC9rpKBnu6mLLwLoZ6u8Z8poWBMc/PXEyQvTse5rb427oiFonYeSmHK+0NyFVKfio6ir5Exi07P6JfMcz72ftYExTJa1nbaOnvZoqjJwZSXXJqS3jm0E/M9wxgTdA8ChorOVCaT8/wAI+mfEfXUD/3JX2NnZE5j6Vs5onpC3gn8nZEiPg05h5+LMzkSnsD55qu8ljqZnTFUgobK/m1+Dh1PW3U93Tw6amDKNVqnp+1BDNdA+yMzHgoNBYTXQOcTCx5K2KkWSrr6gUaeju40FLNiapLbDydysWWGj7M3seW4qOIELHgt7fZuuxJpjl5keAVwmLfaSzetp78+jI2xK2lpb+b907uRalRc2/wfBxMRkK6c+tKuT8kmucztvDDooc5UX2JeW6TuNLWQEt/N3Nc/dgQu4aW/m7eOLqDN+beQoJ3CM9nbKF3eJB7AiNo6evi2bBFtA308kjKdzw2LZ72gV5eDl+OWEeHCTZOHCjNx9PCjvPN1WxKfJA7/edQ3d3KF6dTCLB35ZOYewiwd8PN3JbpTt7IVQqGlQq6hgao6GzmpSO/oiuW8tv5Ewwp5dwVMJepjuN/JxCl7L18inej7qS5r4uHkjehVKuY5eLH8epLfBa3hiGlnAemRDOsVCBXKVkbHIlcpeS9E3twM7fFwdiCtUGRtPT38E7k7XxbcJizjZXEeQWRXVPCB/Pv4kxDOXfs/hRXMxs6B3vRk0j59Hf759MzFtI1NMBDyZtQqEfUajOcvPGydGDnxVzuT/qanuEBPj11kO6hAe7Y/SlfxK3D2tCU2PFBuJnb8PLs5XhbOZB2xyscrjjHeyf3kuAdwoa8ZALt3Pj0VBJ3B8xlY/w6ipqq+PncUep62rkv6WsqO5pRazQ8c+gnItwmsdxvOv3yIRRqFRdbaxlUDPNIynfUdrfx4qyl9MmHeWfe7Uxx9ORo1UXSygvpHOzlXNNVJlo78UXcOgxlujyS8h16Ehknay6zNmgec10nIUI0okA7tpOW/m5+PneU52YuprGvk8fTvqdfMcRLR37Fx8qRDXFrya0t5f3sfQC8c3wXUh0xS3ynoYOIsvYGjlVd5FjVRd4/uY8TNZfoGOxDrCPmlp0fsWzCdGQSCRvykrna2czrWdvRl8ro+xMhDTB12Tp62ppoqbxM7YV8nCZNEex69ZfOIh/s5+rZbAa6O3CaOAVH3wCMLGxw8Z+GpZM7tefzqTqXy0D3HxY5jeb3bKqQ2f+KUBqFSiGn6lwOHlP+ednEKK4WZuMaGIbo93tUGMlGNLKwpub86X+9LdfDUF8PlfnHcZ48FYlMDz0jEzyCZ1Fx5tgNW1jFEikGphZYOLri4O2P08QpWv/+fL2095qErqGJUIxh4+77XxNSiuHB/6p58CYpdRP/CG+88Qb5+fnMmTOHl19+maGhIfz8/EhMTEQikbB8+XL09PSorKxkwoQJlJSUoFKpUCqVghrCzMwMCwsLdu3ahYeHBzNmzCAuLk6wv8EI8XEtKQUjapLt27cTEhLCbbfdRmdnJ9HR0UKbVnBwMAUFBcJE7vDhw7z00ktC259YLBYmm/PmzcPY2BhnZ2e6urpYuHAhkydPZv/+/Zw4cQIvLy+uXLkihDv/OUPoRhCJRCiVSpRKpWArTE5O1mrkuxZ+fn5cujRyE5mdnc2MGWPD6katTRkZGcAIcWVpafmX2U4ajYZdu3YxY8YMxo0bN6blDEYaCY2MjJg1axatra1jBjSNRsOFCxe0rE+jdqHRv3Xq1KksWLAAS0tLkpKShJa5s2fPcuTIEZYuXTqGCBoldUaRnZ2tReyMYsGCBSQlJVFZWYmTk5PQcpaRkcHEiROJiYnh559/xsDAgAMHDlw3c8fBwYHS0lLuvPNOrfypa62LIpGI++67j4GBAVQqlUCYwIjyRCqVoqOjw6lTp7hw4QLV1dX09vby6quvYmBgQGpqqvDv5MmTrFq1Co1GI7SnZWZmCvk+o7lJAQEBzJgxg+3bt5Oeni4oXqytrWlraxOO3+j5NDw8LDQOxsbGcubMGQ4cOIBKpWLPnj1YWVnh5uZ27Z+OmZkZ/f39wmdeDxYWFqxcuZKTJ09y4cIF4I/ssyNHjjBv3jxiYmK0SKLS0lKBJAwNDSU/P/+6+/7QoUPExcWxdOlSduzYofX9ys/PF76/iYmJnD9/XqvVcpQAHIWRkRHLly9n9+7d9Pb2cvXqVY4cOcKtt946xgoZHh7O8ePHb3iBHkVvby+pqamUlZXx9ttvY2Jiglqt/kvCxc7OTiC8nJyciIuLY8eOHUIQflVVFfv27aO/v59FixYJRJNIJGLy5MnCWBUYGEh2djbJycl0dXXh7+9PSUkJKSkpHDp0CCMjI2JjY4XlJ0+ejIWFBbfccgt5eXlapO6NEBQUxKJFiwSF4/DwsJZSa/TYZWRkMH/+fAYGBmhubmb58uVcunSJ2NhYbGxsePLJJ/H19WX37t08//zz3HnnnTfb927ifwY9Y1MGr0NY/B2aK0uoPncKB29/HLz9MbN3xtTGkeprWon+W3Q11aFSyLF0ctf6vf34SegaGlF1Lvdvx5e/Qkd9Fb3tLUJW1p/hPHkqdRcL/rbpqbHsAnbj/4hDMHdwQaKrKwSe3wg3mmw5ePvTXltBR32V0Hxo7eKFi/80LMaNXF/6O9swsXZArVKhb2yGW9BMxFIZPz+5Qmitqr2QL9htVEo5Et3rNy69dWwnTqZW7L18inGmViz3m4GLmQ1PTk/EysAEjUaDnaEZF1treXrGQj7PS2Zj/DoMZXpsX/4UNgYmHCo/xye5B9CVSPk4ZjV37/2cQYUcFzNrxlvYk1l5nk9j7kFHJOLrBfejVKt4be5KOof60BGJ+CjnAKnlZ7krMII1QZHMcp7Ab8uewMbQFLFIh+TbX8LF1BoNcPyet/kgex/uZrY8dehHzjZU4mFhh6FMl+U7PkRHJOK5w1t4ekYicpUSUz1DXpy9lDfm3oK7uR3L/cIIsnenZ3iATYkP8uzhn1m3/0u8rRzJry/nqRmJhDh68mjKd0ywGSEaXs38DRcza1bs+JBLrXV0DvZjqmfAhri1VHQ2823BYeQqFVKxBKmOhK/PpPP60e1c7Wzmi7h1tA/08uyhn39XxSgAEfkN5cjEEl7L3MqnMfdgbWjK28d3caGlhlN1V6joaMLN3JaKzmYW+Uyltb+bN45ux9vSgXcj76B9oJeNp1MYUsjZV5KHvbE5X+ens/fyKcZb2LP1/Ak+mH8XPcMD/LT4Ufysnfjt/HG+O5tBoncoUrEEkUiH9oEedEQ62BmZMagYpnuon9Sys7QP9FLa1sBX+ekcrixikq0LH+UcwNvKgS/j70UHEa9mbQUgrbyQAYWc0rZ6DKV6THUcT4JXMM8c+omY8UF8nXA/QyoFT6b/SH1vJzk1JRypLMbWyAxjmR4vhy/HzdyWbRdOsvX8SfIbygl3ncCmxAc4UnmelRPD2JCXzGexa7AyNOH1rG04/K60sjY04ZGU7yhorMRAqsud/uEo1So8zO2w0Dci1jOQ/IYK3j+5D7VGAyIRdsbmfB63FksDY3R0dDh+z1vU9bSz/uRebps8mzeO7uDZsEVUd7Xyw6JHcDC24MOc/fTLh9CVSPkgex/PhC1kqe905CoV+259nh/PZfH2iV2o1Go2xK1FpVHzwqylqDQans/YgomeAQqVkkemxmFlYMId/rP57fwJvCzteWfe7WRdvcDb826n+3cCV0ck4u15t7G/JJ9vEx+gd3iQWyfNxERXn/tDopnjOpGTNZdZHRRBWXsjLqZWiEQi1gRFoiMSYaKrz7HVbyJXKXlgSjQ/Fx0l2N59zPmfv+9HZHoGZHzzNpUFJwRyqqnsAid+/ZyqwhxcA6Zj4+ZD45Vi7L0mI9LRQaVUomtghIv/NFz8p9Hb3kx10SkGujsoPrQbF/9p/xWJolIqqSg4MdJ++qdCGZm+0V+GpNdfLsTG3VewFYp0xEKmnom1A5ZOHlQWnPi/XTcaqkfaX0PnIJHp0tfejLGlLWKpDOdJoVSdy/mv1z2Kwd5uqotO4RMWjWvAdBwnBFF74TRN5Rf/q/U1XjmPvdfkv1/wT7hJSt3EP8Jrr72GTCbj9ttv56233sLa2prY2Fj27t2LnZ0dqampLFy4kKGhIQ4ePIhCoRAm6aNk0dmzZ5k6dSqrVq2iq6uL7OxsMjMztU7WP5NSJSUlZGZmsmLFCqFJ7M8TYSMjI8LDw4mLi2P69OkEBgYyYcIExGIxMTExWqTEKExMTASViIWFBYsWLcLX15f09HRmzZrFhAkThByXUVzvhq69vZ0DBw5w/PhxIiIiMDQ0ZP369djb27NgwQLEYjEHDx4kNTVVUHPBiAqkpaWFzs5O+vr6xth7RmFtbU1jYyMxMTE0NDTQ1NRETU2NoNK4dh90dXWxbds2YmJitNQUMplMUGVduHABlUqFv/+IpHS0jfBajJISo5gyZQr5+fnX3T4nJycWLFjArFmzSExM5Oeff2bSpEl/286nUCjo6Oi4rgVw9PuQkJBAWloawcHBJCQkCFa9wsJCgoKC8PHxISIigh07dmiRXadPn+bAgQOsWrWKDz74gIyMDC01XGNjo2Ct/Oabb5gzZw4HDhzgyJEjlJSUcPDgQVJSUnjwwQdJTEwUAs87Ozt57rnn+PjjjzEzMyM2Nlb4Z2pqyj333MO8efPYt28fJSUlaDQaLVJHrVZTWFhIbm4uenp6rFq1irS0NIHYqq+v5+mnn2bBggUCkSuRSASrnlgsZu7cuURGRpKXl8fSpUtpbW3VsvKNYt68eQKZ2dTUhJ2d3ZhlRrOLenp6iImJ4fDhw8ydO/eGrY9VVVW4uPwR9hgTEyNkE42iq6sLQ0NDZDIZenp6JCQksHv3buH1a0nq0XVUVlZSWlp6Xbvd4OAgZWVlWFpasnTpUt59913Bdnc9jKooFQqF1udoNBry8/M5ePAgBQUFgsLR39+fqVOnCrlfBw4cGKNOhJHztbm5WfhZX1+fW265hc2bN3PrrbfS2dkphMCPft71YGxszLx583Bzc8PQ0JAFCxZgZWVFXFwcMTExuLi4aI0zly5dYsKECYhEIkEtmpycrLX+P49LlZWV7Nmzh7i4OFJSUli8eDFDQ0PCOHzu3DmSkpLIycnh+PHjnDp1ivDwcFJTU3nkkUdIT09n9uzZ7Nixg6KiIvr6+njjjTd47bXXqKioELLrbuIm/i+wcfOh5V+oj3rbmqk8cxwDU3PcgsKQ6uox1N+LnqExxla2WLt6U3Hm70npG6G/s43etqbfG6HGwsx2HA7ekyk/naWVYfJP0XK1BMXw0F/a7Eaa8WZy9exfT2JUCvmYbBUrJw/UavW/rvSGEfuJSKTDqZ3fYu7ggvOkUGT6Blqvj8LMbhxdTbVoNBraayqY/8Cr2Lr7Ck/fRTo6hN/9FEYWNhiYWeI1I0rrs26dNJO3Im6jc7CfL/PTaOjp4Fj1RRZufRcPC1t2XcpFA5jpG6LWaJju5M3dARHk1ZVx194NtA2MZBjdPnk264Ln0zs8SF1P+4iiQyRCTyxFrlISMz6QlzN/48Ps/Qwq5LyQ8QtqtZr1J/dypa2BV+YsZ01QJE+mfY9CpeTxtO/ZdTEXQ5kuP57LoryjiYrOZp5I+55zTVep7+3ARM+Ah6aMKKSeO/Qzbua2rA6MwFhXn1smhWGmZ4iRTJ/U30O3t104yauZv7HAOwR7I3M2nT2MTCxhVcBcPotdw/nmao5XX+T7s0coaa3j3cg7KG6q4uGUTXwUvRqlWsUr4cvxsXLkZM1lDKS6PJryHTOcvPksdg2WBsYs95uOjo4IU10D1gVHEeLoycMpmxhQDI806hma8N7JvQTYueJpYY+hTI9FvlPpVwxxx+5P+WD+XXha2NHS3028VzAJXsHoSaT8UnwMDRBk745cpaR7eACxSIcHp8QgVynZeTEHR2ML7gmK5NGp8ehLZbw8exliHR1ePPIrvcODfJybxB2Tw7k7IILnM7YA8OjUOHZfOkVtTxuvhq/A2sCUt47tZMeKp+kc7MPBxAIfK0cSvELYc/kUPy9+lPTyczyY/C06OjpsjF+HvbE5/rauDCrkHFr1Gr7W43gi7Qf65MO8G3kH9T3tlLY30NLXxRdx65hs68KQUk6CVwjPHPqJL/PTsDE05fWsbTwTtojbJ89mvIU9wyolCrUaI5keTiZW3BUwl7qedm7Z+REpd7yMsUyP52YuxlimLxBRyVcKCLIfeVhzX8h8Oof6sTMyp2uon3nuk/CxduS+4Pk09LTzSMp3SMUSHk35jvPN1bQN9FDZ2YyOSIdXwpfTMzzAhrxk+uVDvH9yHxvi1jLR1hm1RkPylQKutDdyua2O5zO2cPTqBcz1jQh38aNjsI9XjvyGkUyPx1I3Y2toypfx945s7+Et9MmHOFp1gW/OHObRqfE8lLyJfsUwbuY2dAz2oSeR8sKspTibWiHRkdAzPED7QC8vHvmV5r5uQVllomfAy7OXYSzTQ6KjgwbYe/kUtoamtAz0sHb/lxQ1V5Nbd4WPcg7wRdw6vKzGttDNXf00SvkwM29/BCe/EOy9JgvjR9gtDyIzMGKge6SRWq1SIZZIsfP0o7niD4JEJBJh6+7DOL8Q5IMDnE3+FcXwWFXW30GtVlF55hgeIbOvS2hZOLrSUTe2RRSgraYcPWNTjMz/mG/pG5tqqV0NzSxx9A2k4vRR1P8gn+rPqC85h0ohx3lSqHCvN9jbhb6xGTCSDWjt4kXdpYJ/ve5R9LY301xxEY8pcxDp6AjWQdeAGRhb2VFZcIKu5rq/X9E1GDlu/z4h6iYpdRP/GJMmTWLdunX09PQwPDxMfHw8w8PDWtXmEyZMIDAwEH19fX777TcMDQ2Fp/6zZ8/GwMCAoaEhjI2NBeXA3r17BQWAnp4eg4MjN3wZGRn09/eTmJj4tyQHQHl5OTk5OaxevZpVq1Yxc+ZMkpKShDyqv8OoMmXTpk3k5eVx4sSNbwwrKio4cOAAly9fZsGCBcyfPx+pVMrw8DAeHh6CLWn8+PEkJCQQGRnJ6dOnSUpKoqCgQFjvoUOHmD9/JLiztraWQ4cOaSlwmpqaCA8P57PPPiM6Oprg4GD6+vrIzMwkPT2d9PR00tLSqK+vx9zcHD8/vzEKktDQUE6fPk15eTkdHR1aeTRmZmb09fUJqpquri40Go2WLU4ikdyQBIARomHfvn2kpKTw/PPP09vbS1JSEpmZmdclTAAOHz6sFTCv0Wg4c+YMycnJZGRkIJPJ+OWXX5DJZEKw/ChaW1sFMsvIyIiVK1dy5swZnnnmGfbs2YODgwOLFi3C1NQUqVRKfHw8kydPZseOHcTExHDlyhWWL18uEHcGBgb4+fmxZcsWHB0dSUhIQCaT8cgjj1BdXY2ZmRn6+vqUlpayceNGDhw4wLhx49i7dy9Xrlzh3LlzBAQE0NraSnZ2Nvr6+vj6+lJUVCQco9dee40PPvgAOzs7YmNjkUgkHDt2jNDQUIHYsre3JzMzk6NHj1JUVARo2/qGh4c5ePAgJ06cEALd/fz8OHLkCAcPHtRS5RkYGKBWqxkaGqKoqEggIUehUCjIysri4MGDKJVKtmzZQnd3999O6K4lQIyNjbGystKy8WVlZWlZS6/N+LpRo96sWbPIzMxk4cKFwvc+LS2NtLQ0Tp8+jZGREfPmzWPXrl0kJiZibm5OVlaW1nlSWFiIXC7H0tISXV1dsrKy8PHxobW1lYMHD5KcnIyTkxMJCQnMmTMHiUQi5IZFRkaSkZHBpEmTSExMxNramgMHDnD06FGBAP+zrbi6upr9+/czfvx41q9fP2a/dXV1Caq7a9HW1iaQdBEREbz44ouYmpqOIfdGUVtbq6U4nDhxIjNnzmT79u10d3cDfxBgPT097N27l+7ubpYsWSK8TyQS4evrK4zDoaGhvPXWW9jY2GBhYcHcuXMFEnLUQr106VIkEgltbW3cddddGBoaYmZmRkJCgqDwvImb+L/gn1okFMNDXD2bzWBvJ+4hszG2/ON+Y6i3Cz2jESLbwNSccROCKD+d9a9v/uWD/TRXXsZp4l83zMr0DfGcMoe6S2fpaW34x+tvKC3+3d7298G3YokUR98gai9c/0HQ8EAfMgPD675m6+6DfKCfrqZ/PoEY7OmkIv8YDt7+xD3+DkN93dSXnNNapqXqCjZu3gCY2TnR1VRHxZljjPMLxmnSFJorR2rfm8ovYWLjgIm1PU4Tp9BcfpErOYe11rX1/EkqO5sxkMrYELuGpw/9hLWBCe/Mux1bI3PsjcxQqVXEeAYS5uTDxzkH+OlcFlEe/rwZcSsOxha8G3kHQ0qFYNtbf2IvM5y82XUpl5ruVrZdOImv1TjejLiNB0JjGFYq+DhmNZYGxqyPWkWgvRv3HviK788eYUPcOqRiCT8seoRJts4crihisc9UXs/axgwnHz6OWc3X+encOTmcnRezkauUbMg7yFvzbuOXomPcOTkclVrNwSsFHLl6nrqeNrYvfwqRSIdV/nO43T+cwxVFPH3oJ54JW8QjKd8RZO9Gdm0JvtbjWOEXxpIJ07E2NOWFjF/wsLBnQ+wa6nraeS1rG1YGJmy/kM0X8eto6e/mx8WPEPfLW+iIRKw78CU6Ih2GlQpM9QwRiUTU93SweeFDOJtZcaAkn7eP7+KV8OWcqLnMmfpyChuvknX1PPpSXWLHB1LaVk9DbwfLJkxHhIg3j+1kkq0L70beyQ+FRwhx8KC4uZr3TuxBXyrj9aPbmWDjxJfx97LxdCqFjZWklJ2lobcDfztXGno6+TTmHuyMzRlSKqjpbuXlzF/5OPpulGo1Tx/6iQnWTlgbmPBg8rfI1UqcTK242tlMankh5xqvcn9INPPcJ5NXd4Wi5mpMdQ14ZGoc7QO9I4SKfIgdF7Np6e/mQnM1a/Zv5JOY1byatRUTXX3y68v5KGc/+tKR65paoxZIvU9j7uHWiTNxMDLHXM+Iio4mnjn0E6GO43nr2E4OV5wj0N6dAHs33j2xGx8rRzbGr6OsvZFHUzfjYGzBAwe/YaF3KGqNhlDH8VR1tfB0+o/oSqRsPJ1Kn3yIc01Xme3qR8yWNylursJUz5DHpsX/roR6GIVKhZOJFQ+FxqJBwwsZv2CuZ8TXC+6ntL2eDXFrOFR+jhU7PkRXLGGhTyjvnNjFDCcfvl5wPydrLnOlvYGp47wYVMj5YfEjSHXEbIhby6XWWh5M/hapWMJnsWvQk8iI8Qzijbm30D08wAfz7xJUaA297b+flyf4tfgEF1tqmOHkzd6SPHateAZbI1NsDM1GGixFIh5N3cxEG2cen7YAA6kMqY4Ea0NTLPWNeW3OCvZfzqNPPsi7kXegRsPW8yeZbKvdXHdk07u4h8zGxNoet+CZVJ49iUatRikfRiyV4RowndbqMhpKizC1HYlokOkbjnkY0NfRSlVhNn5zFxB574t0NdXe0MYsEumMuS5oNBoq8o+NqD5vULoh0zdAMTz2IURfRwvDA31YjtNWgukbmzH4p+Y9XQMjXANnUH766JhcpxtBrVJRkX8MU9txWP+pqVaj0WgpuowsrDE0sxLG4X+DzsYaupvrcA2YoeUkGYWhmSXuwbNQyeVUnjnOcH/vjVYloL22csx++acQaf4vmrL/H2H0Kf63337LunXr/r/enP9XcPbsWSE8e9WqVdx777309fVRVFQkqGHmz59PSkoKpaWlREdHU1lZib29vdBY5eLiQmtrq1YwcFpamlAzP4qysjKKi4uZPn06p06dQqFQMHfu3OsqaY4fP05wcDCGhn/cmJ0+fRqlUsmMGTPGfEZ1dbVgDbo2APjaHKempiays7NZvHgxhw8fJjo6mra2NrKzszE3Nyc0NJTc3FxMTEyoq6vDw8NjTJtgdnY2Pj4+WFpakpycrNUady3q6+spLCxkwYIFbNq0ScjFcXJywsfHZ0yA+/79+0lMTGT//v3XDU3v7u4mOTkZXV1dAgMDKSsr0xpUrK2tycnJwcfHRwhpvxajge3R0dHs3r2bJUuWjJkwHDp0iDlz5mgpf6797KVLl1JfX49SqRRytPr6+oRspsmTJ+Pi4kJOTg6Ojo5UVFQQERFBSUkJ5eXlQsuZnZ0darWapKQkpFIpsbGxKBQKjhw5AvyhAIqNjaW0tJTKykpEIhEDAwM8/vjjvP3221hZWWFkZMS0adPIzMzE2dmZyspKuru72bVrF+vWjbTE6Onp0dHRgZ6eHuPGjcPT05Pi4mKMjY3R09Nj/PjxpKWl4enpSXl5ObGxsaSmpuLj40N/fz8TJ04kOzub6OhoduzYgbW1Nf7+/kIIu6mpKQsXLgQgKSmJ4eFhlixZQnd3N4WFhcyZM4e0tDTi4uKoqamhtraWnp4eYmNjqampobi4GB0dHdra2rC2tkaj0RAZGYlMJiMlJYX58+eTmpoqBLqXlZVRWlqKjo4OYWFh6Ovrc+jQIcRiMbGxsVqtchKJhLCwMKHhMT09ncjISPbt2yeEh/8ZN2rD27lzp3D8Gxsbx4Rww0i74+7duwkICEChUKBUKoXvqEwmY3BwkKGhIVxdXa9rTy0rK0Mul1NfX09YWJjWuQ8j6reLFy8KJOiovc7JyYmpU69fl56SkkJsbCwikYj09HRmzpyptd7u7m6OHz8uKNSOHz+Oj48PhYWFODs7ExQUJDQw1tTU0N7eLoxzRUVF2NjYCNlUCoWC9PR0QdUpEonIzc3F19cXMzMzoVBhyZIlWgqvG+1zjUYjjK9VVVXo6OgIYeXXEvjnz5/H3NxcUGI2NjZy6tQpYmNjyc7OZvLkyYJyr7u7G7VaTXh4OEVFRfj4+PDrr78SFxdHbW0tKSkp/Pbbb4LCdDRU/f8v2LRpE/feey/d3d1C2+JN/DOM3j/d88V+Ia8CoKe1EaV8GAtH1zHv0Wg01F8uRK1SMs4v+LrBtg2lxVi7emmphpTyYSrPnsQjeBbif9A2pFIqqDxzHM+pEWPGiZrzp0fUP9cZP0ZsDSLsPP9aOVh7IR8TawdhcvVn1Jw/fV07X1dT3XUb+aqL83CaGPKXzX91lwowsXHExOoPhez1PqflagnywX7GTQjWWqavs42m8gu4BcxALJVRXXQKF/9pI1mIV0s5/NV/CF26BnN7Z6ycPakpzsPY2h6lfAgbV28Ge7tpqbyMWCqls6GG7K0bhc+0NjDB0sCYkrZ63ou8k9aBbn4szGJdSBTvndjDl/H3YmlgzNnGStaf3MuX8ffS0t/NyZoSHgyNGQk0r7rI5/Hr6BjsY0gpp3d4ED2JDBGgJ5UR7uLHx7kHOFJZzLMzF7MxL5U7/EcsUl/ErePxtM18MP9ugh3c+aXoGN8WHOaLuHU8nLKJ9yLvRE8iHVHNqJS8nPkb/5l7K15WDtyy8yNemr0MKwMTHE0sWLHjQ56asZDvCg7zRfw6arrbOFCaT4TbJN49sZsNsWs4WnWRaM8AFCoVZvqGbL+QTaxnIA8mf8uX8ffyYc5+9KUyoj0CcTWzRqXRsKngEE9MX8CQUoFYR8znp5JHAsUzf+PnxY+SV19GgJ0rAwo5ffIhfjqXySNT43kk5TsW+0wl0mMyDyVvYn3UnWg0oKMj4ruCw7wbeSe13W20DfZipW9Mv2KIfZdP423liIeFLQZSXQLs3Hg4eRMPhsZypLKYhT5T6B4awNnMmuquVqwMTMivL+PL/DS2LXuSloEefjh7BHtjc6I8Angi7XshUH30v5/FruGx1M18HrcWjUbDnsunWOA9BX2JjF75EFYGxlR0NHG2sZLY8UE8lrqZ1+fewgTrcZxtqKB1oJfNZzN4fe4toNHQKx9kWKnE08IOkUiESqNGVyxBX6KLSCSia6ifIaUcPYmMJ9K+5/6QaM43V9Pc38Uc14n4Wo+jd3iQX4qP8cCUGJr6uhCLRNgamSMTi3koeROvz70FK31jLrfVsfF0Kh9F382OC9ks85tB+2AvBhJdXs3aymexa3gh4xfuCZyHrZEpgfbuXGyp4UT1ZVYHRpBefg5XM2vM9I2o6W4l6+oF5nv48+axnayPupPUsrPcNmk2XcP9fJZ7kPunRPNK5lben78KfYmM4d+/A8XNVTibWiFXqRhUDDPT2Ze6nnaudjXz2alkNsSuIavqAnsv57H/1heo7W4jveIcCpWStPJC4sYH4WxqjVKt4ruzGazyn0PXUD+zXSZgIBsZP2u6W5lgNY66nnaOVV8kxjOIJ9K+Z9vyp8ioKBqxrEp1qe5u5aOcA6yPupOa7jaa+jpJLz+Hpb4x90+Jpnd4kHdO7Oah0Fh+Kz5B59AfLhE9YzOi7nsJtVqNRq3CeVIoiuFBas7no2tgiN34SSgG+2mpusKRb99h3r0v4uA9GamuPnWXCrAbPwmJVEZT+SXUKiUO3pOFcdZp4hR6WhtprS7DNWC6FtHUVlOOvok5hmaWwO+E1JljOE/UVoX+kzFaMTRI3aUC3ILGxo+olEoarxQzbsLYe6MRoukoLv7TtK6Df8Zgbxf1lwtxCwy77jXsRteMlqslSGR6172eXg+t1WWoFPIx6uAbrX/0mqxSKnDyC7mhVbLqXO6YgHP5YD/fP7zwb++fbiqlbuIf4eeff2bmzJlUV1ezZ88eoS0MRqxwTz/9NBkZGSQkJBASEkJJSQm+vr74+fnh7OwsKAFuxIGO1tR/9NFHLF26FGtra2HC/GcEBQVpWWxSU1MxNTUVCKk/w8XFhaVLl9LU1MTevXvp7+/Xev3KlSsUFRWxdOlSIUwZRjKQFi5ciJ+fH3fffTcvvPACNjY2LFy4cAwhBSNWPkvLkQHPycmJ2tra627PqBps3rx56OvrExUVRWxsLBMnThxDSDU3N2NjY4NIJBIsZNeipaWFw4cPc+uttxIYGEhfX58QZj76z8LCgkcffZSBgQFBgZKWlkZxcTFDQ0MYGBigUqkoKCjAz8/vujfgo81z16K6upqsrCxuvfVWdHV1x6hJRvNxFixYQHd3N0lJSXR2dvL444/T39/PwYMHEYvFJCQkEB8fL1jMjh8/Tnh4OBMnTuTChQvIZDJiY2OJiIjg888/Jz4+nrS0NOH3o8qjqqoqDAwMBAXe0aNHWbhwoWAjMzU15dNPP8Xe3p74+HimTZvGihUrGBgYQCqVYmxsTE9PD+Xl5Xh5eTE4OMgdd9xBY2MjsbGxtLa2YmlpiZubG1VVVZSUlNDV1UVGRgZBQUFMmTKFjIwMQkJCsLa2xt7enoaGBiGrKiYmhkOHDglqotHvmlKpJC8vTyBbent7cXZ2JiEhATs7O+666y7B4nUtKTjahjlqCx1V5UVHR3Pu3DnS09MpKCjg7NmzJCcnk5KSwrhx44iPjyc6OnrM+SUWi1m6dCllZWVjLGw3sgDCHza+/Px8QkNDUalUlJWVaan+zp8/zwsvvEBFRQXh4eHExMQIx27evHmoVCqWLVuGTCbj5MmTYz7j4sWL+Pn5ERERQWZm5pjX7e3tiYyMJDY2FnNzc9asWUNZWRkSieSGioxrlVujtr9rYWpqyoIFCwQlVUxMDO3t7SxatEggY0YvsJMmTcLV1VVQhDU1NQkK0pycHFJTU4mMjGTOnD9aXbq6ugRForW1NYsXL2bXrl1jzvEbwcXFhW3btpGQkABAWFjYGEXphAkThNKJyspKzp07x+LFiwVVqLW1taAOW7FiBXp6ekLG3/DwMJmZmRQXF5OYmMicOXOuG4x/Ezfx38LE2p7etrHlBO11lVwtOIG1y3icJ4XekIBRKYbH2NgkMl08p8yhsuAE8sGB675vFBqNhsozx3EPuX64ra6h8Q2fDNt5+qFvYsbVs9la9rZr13317EnMHd1uSEj9FczsxqFRa8baJjSavySkAMZNCKazoZr+rvbrvq5WqagsOIGugbFASF0LI3Mr3INmUV10iu6Wkdam6uI8qotOYWRhTfhdT+A1bR4GJubUnD9N/r4fOfLN2wz39VB7IZ/WqlJSN7yMRq3WIqQA2gZ6KWmr55GpcZxpKOejnAPIJBIsfm9LK22vZ+XOj/CxcuSz2DU093ex61IuubUlSHR0CHHwYJnfDNr6e/g45wAGEl3ePLYTA6kuQ0oFT6b9wInqS4Q4ePLczCVIdcTEewVjrmfEQ6Gx6EmlvDH3Fp5I+57PTh1klssEPotdw+HKItZH3cl4S3seT/ue/SV52Bmb8WzYIso6Grg/6Wu+SriPeK9gnkj7npLWer6MvxcfK0fczW250t7AS0d+5fZJs/ggex9vRdyGub4ReXVXGFDIKW6uorG3kygPf34uOkru2vdoGejhTv9wZjr7YiTT49nDPyPW0aGmu432gT6SrxTw+alk4ryCeDnzNzbErmHV3g3YG5nz7ok9pJadRalWEeroRftAL5sXPsQs1wnoSqR8FrsGcz0jns/YQs/wIBb6xuy5fIrH077HztCMX4qPkVFZzKtzVrDcbwZdQwM8d3gL5R2NWBoYY6FvxExnX55I+4GCxgouttTwzKGfRlqCdfW5J3AeGZXFPJn2A4k+U7h10iy2nj/BJzH3sPNiDhvj16FSq3lp9jJkYgkvzV6Gub4Rj6ZuZpHPVJ5K/5Hm/i5+OpfF1vMn6Bjsw1zfkIk2zrwcvhwrfWPy6sp47+ReJto483H03Yh/zwIbUiqwMzLjreM7eePodio6mngq/ScGlcOs3vc5Ze0NbD6bga5Ywudxa/GwsCNmfCCrA+cxzsSS386fIL+hnPtDomkd6GFIKSfpyhkut9bxUPImPo5ZjaOxOQ+nbGLaOC/eiriNp9J/5J6geYhFIn4qzMLWyJTbJ89mQDHMWxG3oiuR8kXeiHLsucNbmOc+maXb38fN3IbzLdV0Dvby3ok9rPIP581jOzm06jX0JDKWTJjOvUlfUdBQwQNTYth6/uSIukks5ZGU7+hXDPNE2vcYy/RZf3If+0vyyLx6gZqeNh5P+57pTj58GnMPxc3V2Bia8lnsGgoaKng4ZROLfEKZbOvCWxG3Mc99Mr3yQQxluhy47QW8rRzxsXIktewsDx78BjQa3juxh70leVxsrRUIrBAHD2RiCafry2j+vb3Pw8Kel2cvY7ylA2fqy5nn7s87826ntqeNYZWSd07s5vO4tWw8nTpmbBnq7UKlVHD17Emyt24UsqQUQ4Mc/Og56i+dpaetGeeJU4i87yXGTQimueIyVedy0Dc2p7G0mMqCExiYmguE1LUwsbbHNWA6Vedy6bnm2mJgasng75ZAgKrCbJwmBP8tIfVnjDbtuQZcf74plkjQ3ECpqyMW4zk1gtqLBVoh7deio+4qbdVleIbO/UcPVa6FjZsPg71d9LY1/+2yjWXnEYlEN7SrXw+jYfQO3v5UF5+6rjJLPjiAVE//X233tbhJSt3EP8KaNWvIyMjg8OHDPPDAA4Ki48CBA/j5+ZGcnMzdd9/N9u3baWtr4+rVq0IAs7u7O5MnT2bv3r2UlZUxfvyIFLGpqYnU1FRSUlJITU1FX1+fmTNnsmfPHqZMmUJeXp5WDsqolcbIyIj+/n4UCgXbtm0jJCQEb2/vMdv8ZwIsNDSUxMRETpw4QUZGBmq1mvz8fNrb2/8y0FwikTBjxgyefPJJSktLr7vMhQsXtLJWJk2axPnz58dsT2ZmJkVFRbi6uvLGG28wceJEduzYodXEdy1OnTrFtGnTgD+CnEdRW1tLXl4ey5YtQyQS4e7uLoRGX/uZp06dYnBwEKlUKhBV0dHRWFlZkZubS1paGgMDA4SEhNDZ2Xldy52pqanWhLSoqIirV6+yaNEi4WbewMBgDOE3ismTJxMTE0NzczP79u1DLBYzb9484btw7fZ2d3djZmaGs7OzFrGXl5fH7Nmz+fXXX+nr6xMIh4aGBmxtbRGLxULovbGxMfr6+uTm5tLS0oJKpUJHRwcXFxfq6urQaDQkJSWxb98+Vq5cib6+Pvv37ycuLg65XE5KSgqnT58mPj6etrY2kpKSeO+995DL5aSlpXHXXXfx9ddfY2lpSWBgIHl5eaSnpzNp0iQcHEY89KOB0rm5uUyfPh1dXV3effdddu3axaFDhyguLsbAwICvvvqKxMREYIT8O336NENDQ+zevRtDQ0PS0tJQKBQCuTBKVMJI015WVpbWPhSLxYSHh+Po6EhXVxcvv/wyEyZM0CL+/gpz5sxBT0+P9PR04XfFxcVC8P2fj1dVVRWvvvoq27ZtIy0tjczMTEQiEfPmzROIp6lTp5Kamsr48eNpaNC2vVy4cAE/Pz/he2JjY6NFEI3a7GDkXJTJZGPKEEZx7NgxTExMWLZsGRMnThRa5UYDyUfR29uLsbGx8LNEIhFy2f6MgYEB+vv7+eKLL677uaPff1dXV8LCwti+fTsKhYLKykp2796Nq6sriYmJWoUO14NMJuOWW24hOzub8vJyWltbtbLhWlpahPKGtLQ0DA0NmTZtGvv37yckJITc3FxhvCwsLBQaF0db9qqrq8eorkYVVzCiLk1ISKC4uJiYmBg2b97MK6+8wk8//cTx48c5fPiw1j67iZv4X0CkoyMEww72dlF55jhiiRT3kNnoGv5337fRm/+aC6cZ7O2+4XJXC07gGjDjhtkXxpa29LXf+Abf1MZBsAzKB/+49mnUaipOH8XB218rb+TPUAwPItW98Q38nxv5etuaMbIcqx6/HlwmT6WlskR47+g41dfRwtWzJ3GePHUMWXYtMacjFuMSMINdb9zP1cIcxk0IxjVguqA0ADA0t8LIwprx0yKZFLUUcwdXoclpxi0PIpHpMWXxaq3P0KDhkalx6Ih0yK4t4cVZS7ljcjhX2hp4PO17/G3dWB+1CnM9I34ozCS1rJC6nnY+jV3DmfoKPCzs8LN2YlApZ11wFG7mNny/8GHkKiUmuvps+L1lraChAplYTO/wIN+cSUcmlmBraMaJ6su8lrWNLUseY+mE6dy55zMGFMPIVUoKG69S0dnE0zMWMsd1Ij1DA7yfvY9oz0CempHIa1nbeOf4bj6LXYOXlQMPJn9L11A/ZvqGnKi+xPcLH6ZneJAXZi3hnRO7SSsv5LmZi3E0seDbgsM09XVS3dWKvZE5ZxrKeT1rG/n15dgZmfF5XjLfLniAjsE+0u58FbGODlEe/iyZMI1BhZyPo+9GVyJllstIxqCHhR0B9m68lrWNUEdP3ju5h/KOJnZezGHt/i8Ri3R47vDPI61qNSVEuE3C08KOCdbjGG9pz90BEbwye/kI8ZWXwngLe9ZH3Unv8BBrgyPZeDqVA6WneXve7Uy2deXr/ENsjF+HrkRKiON4Jto6M8HGiU9iVvNdQQZX2hvoGupHJhbT1NtJbU87T6R9T2t/N7svneLbgkM09HbwVsRtqDRqPotdM6LAMrXC13ocP57LZJKNC/N+eg0LfSNeydyKqa4BT89YOJJ5lPELZe2NvDBrCRtPp2Ksq89dAXO5ddIscmpKWB04l5b+bt6NvAMXM2tUajU/ncvii9Op6EqkvJI5Yu1LunKG5RNmcMfkcJr6uihtq0et0XCxpZb5ngFsiF3Dk2k/UNfTzhdx6/jp3FE+yjnAx9F309zXzZPpP/LMzEXcl/Q1s1wmMMF6HE+m/4iHuS0vzl6KTCzlo+i7ae3v5sP5d2Ek08NE1wAHY0t+WvwoUh0JG+PXUdXZwmOpm3kx4xc+mH8XF1pqkOiImWjjzLOHfqJXPshTMxYiQsTG+HU09nXyftSdrA2K5P4p0byauZUP5t9Fx0Avxc3VuJhZI9ER82H2PvSlMjbGr6Oup533s/fhYGxB99AAXUP9SHTElLaNEKhmeoY8MSORDbFrUGnUfJlwH3NcJzLRxhlPC3sGFMNsiFtLZUcTa4Oj2H35FA9OieH5wz+jL9Vlybb1rAqYw69Fx3g0dTNvzL2F5r5OXglfzquZ23hqxkKW+2mTNwZmlsj0jXDyCyHs1odwmjiFcX4hSKQyZtzyACqlAhs3b8GeJpZIGDchCNeAGfR1tJD8yfOY2ztjYq3dkHwtxBIpHiGzGehqF6zI+samDP4+Flady8XO0+8fX19EOmKhfOLq2ZNC095/A5FIhEfIbFqrSrVIMxhRuKrVKpwmTrnBu/8ejj4BtNdV/GWLa+2FM+ibmGPlPDZv+Z9AqquHW2AYhmZWVJ45rmVlbyw7j/34sXOFf4qbpNRN/CNs3ryZ4eFhioqKCAsLw9bWlo8++oj+/n6MjIwEJc/KlSs5fPgwiYmJQp5Oeno658+fZ3h4GG9vb86fP09KSgr19fXMnz9fyDoRiUQ4OzsTERHBmTNnhNDluLg4rK2tSU9PFwis/Px8du3axZIlS7C2th6zvQ4ODmMmv4AQfm5ra0tcXBwVFRVMn64tM7z2xkylUpGSksKCBQvw9/fHz89PmHRei4qKijEtb9eSYnV1dUK4dkREBI2NjcyYMYPGxkZWrFjB3r17tYLQYWQSamVlJWyPjo6OoLIqKyujpKREsG6Nwt3dnYqKCuHnUYvS6IRYLpcL2+fg4MDcuXOJjo5GoVCwd+9evL29OXr0qEAWlpaWav0dGo1GCEa/1pIJ129OHEV5eTkHDhxg/Pjx7Ny5k6lTp3LixAmSkpK0yK7s7GzCwsK03qtUKtm1axdubm5MmTIFS0tLli9fTkNDA8nJyWRnZwvEnZubG/X19cjlcjo7OwkKCqK/v5+9e/cKTX/m5ua88cYbQvNjQ0MDly5dQi6XC0qWmTNnYmBgwDvvvIOhoSHOzs78+uuvtLW1ERMTww8//EB4eDheXl5kZ2ezaNEiLl68iI2NDX19fYINzNzcnMOHDwutdmvXruXOO+8kMjISKysrCgoKeOWVV8jKyiItLY2srCxee+010tPTWbhwoUC2zpgxg87OTi5fvkxhYSGBgYHAyPfZyMhIyBeCESvrvn37sLS0ZO7cuaSkpNDS0kJ6evoNlYp//v2ECRMICgpi27ZtyOVyVCqVoOJrb28XzsW0tDRMTU15/fXXueeeewgICCAqKgpPT0/E10h7T5w4wezZs5k1axZnzpwRcuNg7Lnj5eXF+PHjSU5OBkYa+65t5Zs3b9511VKHDh3C0dERHx+fkRBMW1v09fVZunQpp0+f1iJ0ryV7RzFnzpwxof91dXUcO3aMlStX4unpia6u7g0bNWGkNCEyMpIFCxZw6NAhFi9eLBBq/wQikYiEhASam5tZv349PT09AtFUU1NDVFQUcXFxxMbGCpa8uLg4cnJyiIiIEMZLW1tb0tPTSU5OFqyMcrlca0zetm0bERERTJs2jcDAQDw9PQU77Icffoifnx+TJ09GKpVy7tw5duzYwaxZs/7x33ITN/FPYOfpR0NpEVXnculsqMEteBZmdk5//8a/gUgkwnPKHJorLtLX0TLm9Zrzp7EbP/Evn+rqG5v9bUOgVE8fz6kRNJQW0dU80t5XdjoLl4DpfzvpGezpQt/E7C+XubaRr6P+6r/K6nANnEHd5bO/E2YiGq+cp7etGY8p4Uj+5il8e20lNcV5zFv3PDNve4iqwuwxk6im8ouolUqsXcfjOXUuHfVX6etoQT44gLXreHrbmsjf+8OYdX+el8JMZx+emp7I+ZYaPsjex0wXX3avfJZ1B77EUKrLom3v8dSMRFZODOPNiFtp6e/mP8d20DbQy1PpP9I20IOeREr8r2/Trxji09wkpGIJLQM9aNCQefU8Awo57hZ2vDZnJdsunCS1/CzBDh4cuesNdl/K5bZdn5B8+0ucb65mrttEDlcUYSzTx9nMmj75EINKBU/NWEhTbydvH9/NB/PvIszZh09ykzhZfZlXw1egIxJxrOoiHhb2qDQq1p/cy/YL2XyZcC93Bczl0dTN5NaWEu0ZwNGqi7QP9DColDOgkPPh/LtI8ArBxtCUX5Y+QW5dKa9nbaO4qYoNeclkXb3AkFKOhYExhU1XeTz1e/ysnTjfXI2XpQM2BiYkeIVQ3FxNmJMPH2TvZXVABB/HrKaouYpnZy4G4MjV81joG2FtYMpPix+jrL2R9IpznG+poU8+RMdgL3svn0L9e2tbWXsjt02axWxXPx5L3YxcpeST2NUcKM3n9t2f0NLXxZNpPyAW6fBIynfcPyWaN4/t5MEpMTyUvIn7QuazMS+V/8y9FQ0QOz6Qhd6h6CDis1MH+So/jfTyQnqGB7ExNCXAzo1nwhYhFUt4Z97toNHwn4hbkIrFzHGbyLBSwVcJ9+Nj5YinpT0/LX6Uj3MOINUR42xqTZSHPya6BvxafJzP81I4WVPCkEpBoL07S32nEeLgwVsRtyHWEeNubsuQSkHbQA8f5uznSGUxXpYOfByzmnONlTyauvn38Hd7Hk7ZxBPTE3gz4laeTP8RqVjM53FrMdHV54Ep0eTWlrJ8x4c8OjWeht4OHkvdzMWWGkrbGmgd6OFSay2PpHzHJBsXVu/7nJb+bp47/DO5tVdQadQ8Ni2eWyfNwtXMmkTvUJRqFTsuZvP63Ft46chvuJha8WrWVjoG+5CrlPQMD/Jk+o809HbwUGgsr2T+xpBSzveFRzCW6SPR0eHhqXFoNBoeSt6Eh4UdX8Sto6a7lf8c28FS3+kYyfSQ/a4gczazZsOpZIZUCtaf3ItCpeTVzK2cri/DUKrLa1nbKGio4OlDP5FUms+DU2KwMTLDz8aZQaWcx6Yl0DHYx+3+4XwetxZDmR5f5afjZmbLK3OWo1Sr+LbgkNa5P9DVzr53H8U1cISs0mg0VJw+ivPkUMztnQWSX6X8Y46lUiqpOpeDgZklcY+/g2J4kKpzucLDjBvBztMPMzsnyk9noVTIQaOm5vxprFzGo28yNvPzRjC3d6arqWakac9jwhh17n8DF/9p9LY20tlQjUqppPx0FhaObv81UaS97unUXSoY+ZuvwYh6NxtzBxfMbK9frvVvYGRhjXvIbIYH+n9XJvejUav/qwbEUdwkpW7iH2G0rWrLli288cYbuLi4MGHCBJYvX853333H5s2bBcJIo9Hw9ddf4+rqSnR0tPDPzc2NN954A41Gg4eHB8HBwVoT19EMq1FVzrUTZUdHR2JjY5k9ezZyuZxXX32Vq1evkpGRQW5urhDUPQovLy+uXNGuR+7r6yMtLY2DBw+iUqnYtGkTSqWSPXv2aCkkRm1cAHv37tVSA9nb27No0SJ2795Na2srMJIRdb0MHhMTEzo7O0lNTaW2tlYI166trWXcuHECcSWRSFi5ciWpqal0dPwhL83JyRljSYyIiOCxxx6jqanpuvlQkyZNEhQ1BQUFuLu7CxahG03m9+3bx4IFC/D19aWtrU2wE8bGxiIWiwWCqqamhpUrV+Lu7j4mOBsQVBnXYrR9sauri6VLl9LX18fixYvJzc1l/vz5xMfHU1BQwP79+2lra6OtrQ0rKysGBwepqqri559/ZsOGDSQkJGgFPsNICPjQ0BAvvviiYElMTU3FycmJjRs3oqury+HDhxkeHmb58uXk5OSQnp7OsWPH2LFjB7m5udx7770cO3aMhIQEdHV1efvtt4mIiODYsWNERUVx4cIF7r77boaGhvjpp5/w9/fn22+/xdraGktLSxQKhaCkuu2228jMzGTq1KlUVVWRkpLC8ePH+fTTT/H09GTSpEn4+voKCpaenh7Cw8P59ddfBQWbr68vK1euxMTEZIyVc+bMmbS0tLBnzx46OzsZGhpCo9EQHh7OsWPHyMnJYd++fYwbN45FixZhZGQk2EmnTp1KaGgoO3fupKVl7ATterC2tmbp0qXs3buXTz75RCBHysvLmTdvnkCOjB6XmJgYTp48OYZcHbW4jZ5D/w97fx0e1bm3/cOfsUzc3Q0IIUAgBHeJ4Q4VvEoLpe50t6Wy65S2u0UqtMU9RAgaIMRDIEKIu+tExuf9Y8gq2XTvez/3/Ty/931/T7/HkQPJzJq11sxca13ndX4/56JFizh16hQGg4G7d+8+4JYD8Pb2Jjw8nHfeeQcLC4sBQrFUKkUqlQ4QtmJjYxk6dCiBgYGCG7Mf8C8SiYiIiGDw4MEcOXKEhoYG1Gr1A3w0sViMk5OTcH6KioooLCxk4cKFwuuHh4dTVlYmpD3+s2B76dIlsrKy2LlzJ8HBwcJ4U1xc/B+d86qqKuH78tlnn1FZWYmPjw8xMTGMGTNmwHh5+fJlAdru7u5OVVWV8Lt+wbmvr4+PPvqIIUOGMGvWLGEsnj17NlFRUSxZsoTU1FTOnj3LnTt3WLNmDa6urkRGRjJt2jROnjwpMMIUCgUXL178U1fqX/VX/SdVU5BNdV7GgJ871xKJ/exl9FoN1k6u/zEA/T8t39CJtNdXD2iDq797GxtnD8xt7P/tc0X3tfP/28eJRDj5DKYk9SK7n4zByWcQUpMHE0z/ue5PUfp32/6vEvn0eh1ajRp1Xy/K7i56O9vobmtC0VKPg6c/5757l4yTP2Fh74Tb4H+9im0wGNCo+ijLTEYsleI3ehISqQy5hRUB4dPo6+owTgb1xsmdqZUNTr6DjYBiqQzv4WNpq62gsTQfpaITa2d3HH0eHN8/mv0oT8f+wIk7aTw6chonV73KuhNfk11fxpfRRkj25rHRdKl6KWmr59m4PQxx9ODzqPX0aVR8Gb0BT2tH5BIZa0ZORyaR8ua0ZViZmPH+lSOIEbFp9Gy8bBz5Lj2Bn25eZNXwKbwwcSFb4vYQX5zNMGdvXp+ylA5lL7/fvooYEa9NWUJuQwVb4vZQ1t6IiUTK6TvpiMVi1oXOoLmnk1uNlawePgUbU3MuV+Sh0enYNmE+UrGYx05/xzPjYvhozqOsO/E1P+Zc5PRDr+Ft44SDmRWz/IYzznMwNV2tyMRi7rbWY2Fiyuazu7lRfYeIgFB2xmxCLBbz4sSFPDEmAp1ej06v5+ERU1k/aiaOFta09in4+eYlCltqcTC3wtfWmSAnT3ZGb+Kja8dp7O7gTFEG4nv3mK9OWQLAM3G7Sa7Mp1PVw5miDJwtbBjnOYgvozdgcY8rtGfh04S6+vFK0i+IEPHR7EfZfukgzT1dzPQbwetTlnKx/DYfzX4UKxMz3pu5GldLW96ZsYrGnk6+jNpAt0bF13M3odXr2J2VhFQswd3KHrVOy99mrGLV8CmIRWKaejoZ5ODGxlPf4GRhw660OM6X3eLn3MtUdDTzxoXfKGtr4LmEffRpjWE3Kw5/Sk1XC0+PjWaokxevJP1CWXsjntYOyMRSPpz9CEMc3Nk2YT46g55Z/iN4Ln6fMR3wwm/MGzwGBzNLNHodL0xcyKuTl2Bjas7fr51AKpbw8Zw1vHTuZ0ra6tkV8xgZ91rhvp37ON42Tjwbt4eM2hKGu/hib2bJR7MfwdfOmbymKr6O2cSCIeFUdTYT5OiBj60zb01bjquVHV9FbzSKPtNXMidgJPWKdtytHChoquZ0UQYfXzuOVCxh+bCJDLJ349OItSASsSvmMWRiKSlVd3Awt2Lz2GgG2btxvCCVJ8ZEcrwwjd+XbSPY2YtutYpXkvYLqZC9ahXPxO3Gw9qBr2M2UdxWz98uH0YuldHU00lzTxdtfQrUWi3PT1yAv50Li4aOY7izD5ZyUw4ue57G7g6+it7IgiHh1HS1UtbWwGg3f8SIGGTvxuG866i1Gp6N24O9mSXfzDUyl59P+JEhjh6McQ944Ps/bd0LlGZcFhyl3iPGYWJmYUysNrPAP2yqIHK01pRRdSsVz2FjcPIZhEgkwtkvCM/g0VTm3qCtrvLfjp8Wtg74j5lKacYVzn7xGgA6tQpFSyM97S30KTpR9XajUSnR3cc6HbANO0eqbqU9kLT3Py0n3yEUp11k9xNRWDu5CaEd/640KuV/eW0RiUT4jzGew364u15v5Fm5DR6Opf2DRo7/STl6B2Ll6Mq+ZxaSdXo/1XkZVN1Op+p2unCdryl4MNX6z+ovUeqv+o8qIiKCQ4cOUVhYSG5uLnl5eTz99NMkJSVRXl5OQEAA0dHRxMTEYG5uzqZNmygrKxOEm6tXr2Jpacm4ceNYvHgxfX19nDlzRkh1u3HjBuPGjRNerx943l8KhYJTp06RmprKvHnziI2NJSwsjPDwcIYMGcKFCxcE50Zzc7PATNHr9Vy/fp3Y2FgyMjKYNWsW8+bNo62tjRUrVmBvb8/ixYvJysoiKSkJg8GAh4cHtbW1XLhwgYkTJ2JmNnAlVS6Xs3LlSrKyssjPzycrK0uAMysUCoHn09jYiL29PUqlEi8vL2Gwy87OfgAQLBaLWbZsGVevXqWhoYGWlhYcHBwQiUSoVCqSk5M5e/YsZ86c4fTp0xQUFAxIKrtw4QLV1caYZmdnZ3Jycujq6mLo0KED9lun0w1weZ0/f55x48ZhaWnJkCFDBgh5IpGIwMBAwX3h6uqKVqslNzeXnJyc//IzU19fz5EjR5g8efIAeHX/xLq/pW7GjBksWLCA7du38/vvv5OQkEBaWhpKpZK5c+cSHBzMtWvXHhAAjh8/zuTJk4mNjcXd3V0QdvR6Pc8//zx1dXXMmDGDwMBAkpOTkcvlzJw5k5CQEHbv3o2/vz8//fSTcL6srKxwd3dn6dKlAKxYsYJx48bx/fffU11dTV1dHQqFgsTERDIzM2lqasLV1RVfX18CAwPp7OxErVYTHR2NjY0N0dHRBAcHExcXR1dXF0FBQfj4+GBiYkJNTQ0VFRWEh4fj4uJCQ0MDSqWSrKwsnn32WTw8PLhy5cqA81lRUUFraytqtZqKigpSU1MF18vChQvx8PBg0aJFgjPn+vXrTJw4UWBb2dnZsWLFCvLz87l+/fqAbf/ZRLDfESWRSNBqtUyZMoWYmBjGjRs3QDC7P91vyZIlnDp1aoBIfPnyZaZNmzbg/Z8zZw6JiYkUFhYSHBxMT08PmZmZA5hnWVlZxMbGCi1r8fHx1NfXA38woAwGA8eOHWPs2LGCONbfOiwSiZDL5UJyo6WlJR4eHnzyyScsWLCAhIQEkpKSyM/PR6EwcmMmTpxISkoKWVlZtLa2DhB++z9/0dHRJCUlDfgeFRcXc+LECUaOHMmgQYOYNWsWnZ2dxMTEMG/ePHQ6nZAC2N7ejkqlwtTUFK1WS0pKiiD4dXZ2Eh0djZmZGRUVFQQGBiKTyTh58qSQUNq/Lz09PYIjLzw8nIyMP9K68vLySExMZNGiRYwcOZLFixdz+PBh4VwcP36cxYsXM378eIYPH87cuXOxt7fH3Nycu3fvcvXqVR566CFUKhUnTpwgICCATz75BCsrq3/ZwvxX/VX/VXkGjxaivz2HjQFEOHj6Eb3lfUzMLVH2KKjMTaUyN/VfMjf+O+U1LIy+znZaa8poqSxGZmr23+I89Ze6r5e6olvCjXflrTT6FB24BA5j5sZXMNwTbfpvyv9VC6G6txsT8z9nZxoMBrpaGqjOy6C2MIfCq/EkfP0WFTdTHhD2agtv0lhaQGtNGZ1NdfR2tqHu60Wv06PXapGbWyK3sKKzsVbYr/59q7qdTv3d23S3NVFfnEfdnVx8R0/Czs37gX1y8TdOBuO/eoPutia6muqozsvgxuEfqMxNpTovA5FIxNkvXiPl0D/oamlA0TzQXeVn68yr5/fz4qRFbBs/nxWHP+VaVSFfx2wiyNGD241VLDv0d7xtHHnn8iEczK3ZMm4uJa31vHLuF84UZVJzrzWstL0BD2sH2vu62Xx2Nxq9lm/nPUGwsxcfXD3K1coCHhk5lSfHRPJ07Pfk1JexK+YxvG2dOVGYyiAHdxq72/lw9iOIRCJePPczU32D+XbeE8TezUSn1zPE0QMrEzMGO7pjAC6U3cLBzJL2vm6UWg2ie5yjKT7BfBa5jn3ZF+hU9vLK5MX42DhS2FzDtoR9TPIO4u/XT9Laq2CKz1DEIjFH8lOo7GhmZ8wmfGydefLM94iAfdkXOJx/narOZr5MjeXHnAtcqyzkh6wk7M0sCXH25pXJixnrMYi0mrsodRq+zzxHXXc7gx3caerpxFpuhkLVx3tXDqPRaQm0d+P3ZdtQajWAiFcnLya3sYJn4/Zwq6GS00UZdKn6aO3tZvXRz/kscj0fXj3GUCdPvo7ZxA9Z52ju6eT7zHPoDHpkEgkbTu3CxtSCx05/h0LVy9H8FCRi8T23VyWLho7lm7mP4WBuxbtXDlOraKNW0cb7V44wd3AYY9wDkIolvDdzNX0aFRGBoTw6cjprQ2fgamnLN3MfR6XTcnLVq9iZWWIqNbbGScUSXkn6BblUxs6YTUzwGoK5TI6HtVFk/jTlFH0aNbuzkihtayC91hj+42ppR35TFc/G7WGYkxf+ds7M9B/OuhNfs2n0bPKbq40tj9Eb8bBy4LmEvdibWbI2dAaZdaV8mx7POzNWEeToiVav44sbZ9Do9Tyf8CNTfYJ5Nm4PlZ3N1Ha1YjAYaOvrxt/OhS9vnGFfzgUkYgnbEvbRre7js5RTKLVqHhoxhRBnHw4uf4Gfbl5krMcglh3+BDOZCRm1xTwTtxtnCxsiA0fR0tvFRK8gmns6WRo8Hg9re2xNLajtaiPil7+xLnQGn0eu49HjX+Fv58J7Vw7zeeQ6VPdEo6GOHnww62HaehW8d+UILpY2rA2dwSTvIJ5P+JHPUk7hZ+eCu7U96058TX13B7/kXkGl0/Dmhd9p61NwuSKfQfZuvHvlMD0aFVKxBAPwacRalFoNm8/upryjkW/nPs61ygKqOx/k2nXUV9Fcfpf4nW8ilkhoKMmj6nY6137/hqrb6dQWZiM3t+T89ztQ9/bgN3qy4Ozsvw+TmsiNoHGDgbKsq3S3t9BSVTJgfOv/qS3IRqtWYuXoilZlRKVo1UqU3V10tzbSXldFc8Vd6u/eoiY/84HxNev0ftKO7aWnvYWq2+k0ld8Z4OT6T0un1dJQUmDk891Ko7W6FAdPf+Y89TYWto7UFuYM2O+uloYHRLLutiYs7f/rFm6xWIL/6MmUZSaj06gpSb+Mz8gJmFr+1yEtUhM5WrXq3z7GYDDQWlNGZW4qVbfSkJmaEfXsuwydGoOqrwePoFC8h48VrvceQ0f9l68Lf6Xv/cf1f3v6HhgB488++yw2Njb09vZiYWHBzJkzSUtLY9y4cSQnJ+Ph4YGtra3Akzp48CDW1tYMGjSIQYMGDUi86+npIT4+ntDQUPLz84Wksv46deqUwMyxtLRk+vTpSCQSioqKkEgkBAYGcuDAAVasWDFA6MjKyqKoqIg1a9awZ88eFi9ejL39HyuiOp2Os2fPsmDBAuLi4oiJiQGM7/GFCxfw9/fn0qVLzJw5kxEjjCC9iooKof2wvwwGAx999BHvvvsuJ06cAIwT38DAQFxcXDhz5gxarZYFCxZQWFhIbW0tbW1tvP322+zZs4ewsDCuX79ORETEAEDxiRMn+O2331i/fj0ikQgTExPGjRuHlZUVp0+fJjo6mjNnzhAVFYW5uRHSp1KpKC4upqamhvr6ejZs2CCc2/s5Qn19fSQnJxMZGUlGRgaWlpYDhKvY2Fjmzp37gEiRnJyMl5cXRUVFREVFUV1dzc2bN5HJZEydOlXYj/73t19QuV+M0Ol0JCUlERUVRVdXF9nZ2QNaAE+fPo2Liwt2dnZCgl9/+lhHR4fg0qioqEChUBATEyOkOJw6dYro6GjKysooLy8X2kltbW0pLi5mwYIFXLx4kaqqKqZPn051dTVTp04VeDrR0dF89tlnjB8/nuPHjxMZGYm3tzfZ2dlIJBJsbW2JjIzkzTffZN68eeTn52NpaYmlpSXDhg3jueeeIzs7m5KSEi5evIiPjw8JCQkMHz6cp556ig8//BCZTIazszOpqals27aNiooKIQ0yLi6Onp4elixZIgg+RUVFAii9v7U1LCyMS5cuMW7cOOGcHzt2jBkzZpCZmUlERARgTHvrTynU6XScP39+ADetpqaGlJQUYmJisLCw4Ny5c0RGRmIwGMjOzqaurg4HBwdBHB46dChnz55l5cqVDzi4YmNjBdh2/2fx+PHjrFq1iu7ubtLT05k1a5bwe7VaTVZWFrt27SItLY1du3Zhbm7O0KFDB7Tinj17lkmTJpGcnExMTAxisZjc3FxBmDp//jw2NjZs2bIFO7s/rNgJCQnMmTOH/Px8SktL2bx5M3v37sXS0pIRI0aQlpZGX18fM2bMwMLCgvr6eiorK1EoFIhEIrZt20ZoaCg7d+4cwHS6P9FTrVYLbLR+8bZ/rOhvmcvPz8fMzIyAgD9WCnU6HdevX2f69OksXbqUTZs2ER4ePmB8amtrIycnh1mzZg1I8SwrK+P27dt4e3ujUqnw8/MTYOpgZMxVV1fT1NTEoEGDBE5X/3dSq9Vy+PBhzMzMmDBhgjAunDhxgtGjR1NTU0NISAgZGRmCi1Ov19PT08P69euZN28ev/32m/B6f6Xv/VX/af1z+p5G2UdlbioewaNpqSzGPSiUhpI87D18MbOyxWAw0FxRRF9XB4hEuAYE/2kr3L9KCfrn6u1sp622nNvnj1OZm0rMcx/8qRAvNTFFZmqGTG4m/FlTmI2Vgwu990FyZXIzHLwCBkByDXo9Fbk38Bo2hrqiXGG/9DodzZXFqHq67r2GHGe/IKQm8gH7r+7roaWqZMBkwMrBBVtXL3o6WlG0NKDq7Uan1eDkO3hAst6/Pu42GorzsHHxRCyR0NFYg9+oSQ88TqPso64ol5z4g8x/8ZMBqVX9qVb9VXHzBk4+g2gqvyOkT1XcvIFa2Uvg2Omoe3torihC2d2FpYMzpz7aNuC1wtz8me4Xwmcpp/nH/Ccpbq3D3swSrV7P9ksH+WXxFtqVPegMeqzlZrx/5SjrRs1EJhZTp2jH28aJlt4uwtwDqOxo4svUWPYtfIZTd9KZ6DWEpLJcDuVd54cFT9Gg6CCt5i65jRW8MHEBdmaWPHT0C76O2UR7Xw8iEbx18QCPh0XQp1WxMGgcf7t0EAdzKyb7BBsZValnWRg0lm/S49m/ZCvtfd0o1H18fO0Eb09bQZ2iHY1ei7+dK9sS9rF34WYyaktYEjye242VqLQarOXmqHQadAY9phIZ2y8d5I2py7jVWMlIV19eSPyJr6I3crWygIVBY2nu6cQA2JtZ4WhuRX5TNftyzrNx9ByGOXsx77cdvD/zIfKaqhjl5s8rSb/w7ozVnCpKx97MkiBHD2xNLajsaOZaVSHPjZ/Hlvi97Jj1kHCelwdPZLLPUEwkUsxkxpS3Xo0ag0GP/N7772/nyvXqO8QWZfJkuPH+oFPZey+RcBWtfQqGOXnTo1FiJjPhRvVd/O2MKX5h7gEcuJ3MdxmJHF35Mk3dHRgw8FnKaZ6bMB9PaweWHPyYr2M28fm9/9sav5dv5j7G5rO7eXXKEixlprx58Xe+nfs4T5/9ga3j5xJfnE30oNF4WjtypSKfqs5mrOXmBNi7MtzZGz0GvK0defjYl/w9Yg2VHc3M8h/OjZq7aHU6XC1tkYglWMvN2HjqG3bGbKJL2UtrnwJPawcaujtwsrCmor2J6EGjefT4V7w1bTmvJu3nnRmrsDU1R2cw0KdRY2NqTp9GjVqnZZCDG+dKbjLY0Z1Prp/k5UmLee38r3ww+2GkYglmUhm1inYmeA7mckU+7lZ2aPV6tiXs44WJC/G1deJIfgqPj4ngTkster0eTxtH2noVSMUSFOo+ilpqsTQxxcbUnK9Sz/L7sm1Ud7agNxhQ6bRYyuTsSD7KR3MeRXVPMN0av5cvozciEYlo7e3m7UsH2L3gKSo7mlFqNXyacoqfF2+hobsdM6kJB/KusSx4AjKxBIVaSa9GhY2pOQVN1ThZ2DDYwZ3Xzu9n19zH6VWrKGiuxlQq46NrJ/giaj2VHc3YmVnQ1NPFV6mxrB4+mdN3MujR/DGuzdz0KlITOTbOHvQpOvAMHk1DST5N5UUMn7UIkVhMZ1Mdql4FipZGPINHI78n3lfnZeAZHDaA6VRTkE3GqZ+JfHo7ZtZ2D4ztRqG+Fa1KibmNA6re7j+FpP9z6XU6KnKu4+AdSEtlMVITOT4jx9On6KC1ugy97o/FV1tXT6wc3RCJRMKYaTAYaK+vQtHSgEgkQiSW4OQzSBCGlN1dtNaUYe3ohqqna4CrVK/X0dFQMyAIRGoiR6noxHv4WHRaDRpVH1qVEo2qz+j00qgHHLvBYKCzqZbrv39D9Jb3sb3H4vqv3MhtdZXI5KZYObg88Lv2ukq6mo334PYeflg5Gh9Tdo/PWJ2fiWdwGJU3U3D0CcTaybhI/lf63l/1v7VWrlxJdnY2Op2OJUuW4OzsjFwu5+TJk0ydOpWmpiaqqqoYPXo0RUVFgtshLy+P+fPnC9Ho95eFhQXh4eEMGjSIgoKCAbyTxMREPv/8c0aNGsXkyZOZNWuWIDzdz6BZtGgRJ0+eFLbZ09NDfX09Pj4+bN++HUdHR65fv056erqgOPenn4GRAdPfimNtbU1MTAxnz55l27ZtD8TO95fBYODGjRucOnUKd3f3Ae1XkydPxtXVlaamJuzs7BgxYgR3795l+PDhREVFIZPJ+PLLLxk7diw3b97kt99+Y8uWLQOOu6GhgWPHjhEcHExMTAyzZ8/GysqKtrY2rKyskMlkLFy4UGiBAqMLKiQkBEdHR3x8fDh79iwzZ86krq5OcGGcO3eO3t5etFotBQUFaLXaAYIUIIDC769bt25hZWUlCI1gTBecP38+M2fOJCUlhTNnzlBcXExnZyeHDh1i8ODBAwQpMLo3+mHZ1tbWgjsFjO4WX19fxo0bR3FxMW1tbWg0GkEAsbW1ZeHChdy4cYN58+Zhbm7OjRs3SExMJCEhAZFIhLm5OR0dHQLMecKECSQlJfH4448THx9PTk4O69evJysri+7ubnbs2EFnZyednZ0cPHiQadOmceDAAaZOnUpERAT5+fns2LGDZ599lgkTJnDy5EnGjBmDhYUFGzduxMLCgu+//55z587x5ptv8u2333Ly5ElKSkq4e/cu27Zto7GxkS+++AK1Wk1XVxcNDQ2YmZnx9ddf09PTI+z/vHnz6O3t5cKFC8J3p6Kigg8//JClS5cybNgwQSCeMGECN27cAIyCw6RJk7C3txd4YWAEfvcLfn/WVunp6cmyZctITk4mNTUVnU5HfHw8sbGxuLq6Mn/+fCZOnIhIJBLA80uXLuXYsWMPfBf++QInl8uJjo7m1KlTXL58mcmTJ5Oeni44+5KTkwkKCmLVqlVcvHiRnp4eJk6cOECQysjIIDAwEFtbW+bMmUNSUhJisZhRo0YRExNDVFQUGo2Gffv2kZ6ePuD7s3r1as6fP4+9vT3u7u58//33DB06lClTpmBjY4NSqRSYdxKJBE9PTyZNmiQEAHz88ccsXryYu3fvEhsby5UrVwRHZ/8x5+fn09rayrJly7CxsRFEVDC6zkQikZAe2V8KhYL4+Hi6urr44IMPWLBgAX19fQ/Awy9evMjMmTOFbfV/x/39/QWBe8KECSQnJw847vz8fCZNmoS5ufmA0AVhZVEqxdHRkSVLlpCTkyN8zgoKCggICMDMzEwQovoh6x9//DHLly9n48aND7jr/qq/6r9T7fVV1N7JISB8GmZWNuj1OiRSKe5DRlJ3JxdAaNHwGTker5AxtNVVGldkb6f/20Q9g8FAd1sT1XmZA1aceztasPfwJXjaPCY/9Aw6rQbPYWOEVVyvkHA8g8Nw9AnE3MYBRCJ6u9ppKMkjcdd2miuLBYC39/CxuA0e/kBqU93dW7gPGYnUxBhLr1EZ24vFEgku/kHCc518BtNYVkjlrTTivnxd2MfWmnKcfAcLj/MePhY7dx8MGGgozcdt8HDEEgkBY6bS095C/d3bf3YKhOqPRvcfMxWtRo2ZtR0Onn7UFz/4vH6u1vwXP6U0M1lo+fjnqs7LwNFnEBZ2jlg7udNeXyUco//oyZSmX6Y6PxNnvyDsPf049dE23INCB2wjq74MF0tbvozawJNn/oG/nQufpZxGrdMSM2g0napeXkn6hUN51zEYYN2omXx54wxl7U3YmlrQ2N3BJ9dPUtvVyitJ+3ltshF8vXH0LKo6WwhzC+DTyHVUdjTz6vn9yKUyto6fx660eOq62nhl8uJ7UPMyHMys+GbuY4S6+bE/9wp3mmt4fuICYgaH8f6VI7T39fDy5MV42zjydcwmLE1M2RK/FxOJjMfDIuhWK/kqNZaKjmZqulr4OmYTTT2d/CMzkTsttbxx4XfqFO0UtdbyatJ+zpfeorClhnCPQUjFEi6W30ZvMLBtwnx+zb2Cl40jW+L2kN9cQ0N3B+tPfi0cxzPj5vJK0i+cvpOOv50LNqbmHMy7Rpeql08i1iIRi1kWPIH5g8cQX5yNwWBgiKMHq4dPIcw9gG/nPYGJRIZULCb98b9ja2bB1vi96A161p34mi5VH0cLUjiUn4LBAJvP7qasvYG6LqMYq9PreCr2e368eZEfFz3DnZZa5g4eQ2ufgtfP/0afRs3e7PMUt9YRW5TBPzIS8LBy4O1pK2jp7eLpsz+g1GpYM3I67105zMnCNA4sex5TqQkbR8+mXtHGj4uexWCAA8uex93SDrlUxrdzH8fLxpFNo2fjYmHLIyOm42Jhy3cZCYS5+7MqZDLRg0YRERBKQslNXj73C2193UbYeG8XO9POUtXZwkdXj2MikfLiuZ+p6WqhU9nDq1OWoFD1sjf7PNcqC6nqbCGuOIvi1nq+zUigpK2BeYPHoNHpWBEyiTcu/EZuQyUlrfW8e/kQClUf2xL2IROLWXLwY4Y6eXKzvpxpPsMwYMDbxpHqzha2xO1BpdXyzqWDlLTV8+HVYxgMBixNTJk/JByNTotGp+VGdREHb1/jt9wrxBdno9SqOXUnHROplB3JR5k3ZAyj3fzxtnFiZ8wm+jRqXknaj52ZJRKRCJ1BT2TgKPo0arbE70Wj07J5bDRSsYTNZ3ejN+gZ6zGI44VpnL2bxUhXX/Yu3Ex1ZwsB9m70adVM8wkmubKAL26cQavXsSP5KJYmZjhb2Ajfu+cnLKCms4UNp3bhae2AQt3H8mETqe1qJb4km6rOFn6+eYl/zH+SG9V3BwhSJmYWXNzzEerebkytbBCJxZTnXL/nfJpEe30VBoOBlspinH2H4B82herbGcJ4Kre0RtX7x9yhoaQAC1sHRsesNm7vn+5HVb3dtNWW4zZoOAaDAQcvf2M73u30fzt+9rS3UJZ9Fe+R45HJzbBxdsfS3pm22grMrGzxDB4tjNNew8ag1+kE52n8zrcoTrtIdV4GUpkJPiPG3Xtc2ACnUv29a4aVowuKf+IeisUS7N198BkxTviRm1uS9I/3yLt4kq7mOmMrn9wUayc3XAOCB1zPvELCsXJ0xdLemalrnjO2R+p1A1rrqm6n09FQ80B6rJmVDcr73L0dDTWCg1ksleEzcjw+I8cLglRrTRl2bt6IJRKkJnL0Oi3+Y6bS19UhgOb/0/rLKfUf1v/tTqnPPvsMU1NTPDw80Ov1REVF8cYbb/DFF19w4cIFfHx8yM42Xgj7RYPOzk5SUlIAY4LVpEmTyM3NJTIyku7ubpKSkvDy8qKurg6JRMKkSZOwtTWukp48eZKwsDDy8vIEsWHq1KnY29sPcDcBVFZWUlhYiEajwcLCgunTpyMWi0lISECpVLJo0SLq6+vJzMyku7uboqIitm/fjkgkQqvVcuHCBcaOHcvVq1eRy+VCEl5AQABlZWX4+vpibW2NSqWio6OD+vp6xo8fj4uLC7GxsQQHB9PX10dISIiwT/3tMSKRiDNnzjB//nyuXbuGn58fhYWFTJ48GVNTU06dOoVIJBLS13p6ekhKSsLMzAyJREJAQIAgBt2/TYD29nZu3LhBTEwMer2e2NhYhgwZwpAhQ+js7CQ3N5epU6cK+6TRaMjOziYtLY2tW7dSWFhIUFDQA+/7/c6X6upqSkpKBBEvPT2dgIAAgVV0fx07doxly5bR29v7QMsj/OF66q+ysjJ6e3sJCQnh9OnTwjkwGAwcPHgQDw8PRowYQX19PaWlpYjFYoYPH05ubi69vb0sX75cOBcZGRmcOXOGkSNHYmdnh0qlwtPTk4aGBm7dukVNTQ2jR4/G2dmZK1eukJqayqVLl9i1axd79uzh5s2bfPvttzz99NP8+OOPmJmZ0dXVRXBwMO3t7WzatImlS5dSUlKClZUVr7zyCtbW1rz33ntMnToVV1dXWlpacHJyYsGCBRw4cICenh6CgoKYPHkyBw4cYPXq1dy+fZuqqipsbGwICgrCzs6OEydOUFVVhb+//wC3YFdXF8nJyYjFYvz8/CgpKUEmkzFlyhSuXLmCnZ0d9vb2gnvv1q1b2NjY4OPjM+B8/tm5v79ef/11du7cSVtb2wOcJRjoEGpubiYzM1PYVmZmJp6eng+k+ikUCvbv38/mzZs5d+4co0aNGuA60uv1xMfHM3fuXFQqFadPn2by5Mm4ublRXV1NWVnZAFGzX3yztLREr9dz6NAhpk+fzqVLl/Dz8xPCCrKzs7l7964Aku93Gh05coQlS5ZQWFiIubk5/v7+Ahvqfoh6fX09tbW1DB48mBs3bhAZGSmMY4888gi7du3CxsaG0NBQioqK6OzsZPz48eTl5aFSqSgtLUWlUrF69WqsrKzIz89HLBbT1NSElZUVU6dOJSsrC1dXV+7cucP06dM5e/YsgwYNElxKTk5O+Pr6AkaHZv/n6MqVK3R3dzNhwgQyMzNRKpWMHTtW4NklJibi7OxMZ2cnbW1tDBkyhGHDhpGQkEBkZCQnT55kxIgRZGdn4+DgIAhf/e2WoaGhtLS0cP36dV544QVycnJobm5GoVAgkUjo7e3lypUrfP/998BfTqm/6j+v/vuniKffwdrRRVgR1ut11ORnCW6h7rZmutuacQ0M/tPtGNsf8tCqlIilMuqKcnEbFDLgMZZ2Ttjeu0H+43kayrOuETB2OtV5GbgGDqMyNxXfURP/ZfqdQa+nJP0SbkNG0tlQTZ+iA/chI/+UQ2UwGKi4mSK4kPR6HZW5qX/qSgIjS6q2MAdVbzfm1vb4jf7zxwGUZ1/HK2TMA86q7rYmGksL8R01cYCzCaCttoI+RQce9wShuqJbOPkORiY3pan8DjK5GXbuPgOOtep2Oj4jx6PVqCnPvkbg2BkDVv1rC3OwcnQdkHpVmpmMz4hxNJTk4+DpR+bp/ZSkXyLmuQ8AuPbb1zRXDGR7Aoz1GMRoN398bJ2wNbVALpHxxsXf2DR6NnHF2UQGhDLcxYfTRekcuH2NNSOn42BuxRc3zvBpxFrUOi2Vnc2EOHvjYmnLisOfsmPWw7xx4TdenbKEj64e542py1BqNVyrKmS2/wh2ZyXx2pSlnLqTxqKgcTyXsI8vozbw6vn9/H3OGjLqSpjkPZTi1jpSqouM7CFzK5488w/em7maX25eZkFQOH62Lrha2rLs8Cf8tnQbHcpu0mqKkYjFHM67zvcLnqJXraJd2YO5zASFqo+y9kbMZXKOFdzglcmL+fnmJR4eMZVzpblM9h7KjZoi5BIZ032HYQA0Oi06gwEruRk9aiUmEil+ds6Utzeh1Kpp7+vmZkMFS4MnIJNI2HjyG96YuowDt68yzXcYUYGjKGqtpbStgSk+waw/uYtPItZiJjXhmbjdfDznUZRaDQpVH2M8AqnrakUqkaLT69HqdcilMnxsnLh7z8WmN+iRS2QYgE5lD1Zyc9af/Jo3py1niIM7N6qLmOA1hHZlDy09XTT3dhJg54pap6W6q4WbDRWsHDYJqVjCtxnxrBk5A1szC2Ob472EwK9uxLJq+GR2JB8V3FLbJszHz9aZLfF7eTxsDhKxmO8yEvlo9qPUdLXyj8xEPo1Yy3MJ+zi3Zju3GiowkUgxlZqwNX4vB5Y9T2ufgpz6cka5+fFZymmeHBPBkYIbmMtMkIjEjPUYREVHEz/dvMRLkxYhFUvwsXUyvgd6PefLbjHJO4ic+nImeQehueeOMZHK0Oi0iEQiTKXG9znE2ZuPrh3H1cIWPztnxCIR7lb2WMnNKGqtY4p3MAkl2cQMCuN6VSEe1g7G8KCKfAY7utPe141ULGGYkxe5jRX42DqRUJxDzKDRaPV6LE1MeSZuNy9NWkRCcTZzh4zB29oRE6mUTae+5avojdxpqTEmKV47yVNjo2jrVWAlN8PHxolujZKm7g7qFO2M9xrC07Hf82XUBp5L2Cec88fD5jDFJ5jm3i7qutrwtnHkRs1dbjdW8uSYSHztnJn32w7em7kaU6kJap2G7zOT8LV1Yox7IO5WdphIZXQpe1HrtLx75fAD338n38GEzFyEg3cADcV5XPvtaxa/vhNn/6FCC7Cz/1DBHWXQ6ylOv0RA2BR6u9rRqJTYu/vQXHEXkUSCo1eAUXyqKR/AzNPrjBylwHEzEYlEA8bPno5WGksL8Bs9+QEhq7GsEK1aJYyf9cV5OHj6YWJmQcXNFDyGjvqX142OhhqK0y7gcm//XQL+/FqmaG2kT9GBs6/x/r2ruR51X8+fgs77x2dzWwd6O1qRW1hhZm2HjfO/DtGpK7qFVC5HIpEht7Smr7MNiVSGvaffgO12tTTQ1VQ7oE3Q0s6JmsIcYfs2Lp7Yuv45GF2n1VJ1K1VwzWrVKhpLC4R2vd7ONuN1evBI9r+w4i+n1F/1v6deeOEF9u3bx8GDB/n00085deoUb731Fr/99hsKhYLGxkbCwsJYunQpCQkJgHGSFBUVhUgkYunSpeTm5lJUVERiYiIpKSksXLgQiUTC6NGjiYmJIS4ujt7eXg4cOMDs2bOF1qbp06ezcOFC8vLyePzxx/niiy8GsGcuXbpEdHQ0BoOBGTNmIBaL0ev1iEQifHx8qKysxNzcXEiOq6ys5Ny5cyQkJHD27FmioqK4efMm8+fPF1rpZDIZw4YNY8GCBVhZWTFnzhzWrFkjQKRdXV1JT09n7NixBAQEDEi8KygoYOjQocJAZ2lpSVVVFb29vXh4eDBp0iRSUlKoqqrCy8trAFw5NjZWSNSbPXs2paWllJeXC8Dj+wdPOzs7/Pz8OH/+PIcOHWLmzJmCQNEPi7+/ZDIZvr6++Pn5cfbsWSQSicC5uR+wLpVK0Wq1dHV1CSmI/TVy5Ehyc3Mf+HxcvHiRgIAAYmNjOX369IDt/avqFwYUCsUDbpGQkBCmTZvGpUuXkMlkzJs3j5iYGO7cuUNERASRkZEcPXoUg8HA7dvGld+XX34ZR0dHwsLCWLVqFd9++y2hoaEEBQUxffp0NBoNUVFRBAUFkZycTGhoKD/99BM9PT288MILvPDCCzz//PMUFBRw+PBhHn/8caqrq5k/fz4vvfQS06ZNQ6lUMmPGDLKzswkKCsLW1pbMzEzOnDnDxo0bKSoqYv/+/VhaWrJ9+3Z2797NO++8g0ajITY2lpaWFtatW4dYLCYpKYmDBw8KgPPhw4cLbhSDwTCgdWvo0KGCMy01NZWFCxcKbYL9NWLECG7fvv2nYoG9vT0tLS0PvAdnz55lyZIlnDlzhmPHjj0AKf/ncnJyIiAgQHBqNTQ0CIKUTqcTEhWzsrIYNmwY6enpyGSyAYIUQFpampB+J5fLWb58OXfu3OHq1aukpaU94LKbPXs258+fFwSphQsX4uDggJubG0qlkoYGo8W5pqaGlStXkpKSIjDLAObOncvZs2cpLy/H399f+Pw1NDQMAKZnZWURFhaGtbU1lpaW1NXVCXywv/3tb5SXlxMSEoK7uzt9fX0sWLCAGzduCOBwsViMSCSio6ODgoICzp07x4QJExCJRAwZMgSRSERdXR3e3t5GqKeJCYsXL0YsFvP++++zZ88empqaSE5O5ty5cxQWFhISEsKZM2cIDw9nwYIFODk5IRKJWLx4MYWFhRQWFlJVVYW1tTWjRo1CoVAIbaDHjx+ntrZWSNoTi8WMGDECuVxOTU0NpaWleHt7s2TJEtLT07GxsSE8PJz4+HhaWlp4/fXXMTExYdGiRWRkZAiC1F/1V/13ysE7YECLQnN5Ec5+f7TEW9o7oerpQqPs+7OnC44qmak5bbXl5Jz9Hb1OJ/ArvIePxd7Tb4AgZbjHHPELmyJcP03MLAgcO4PqvEwULY1/+loVN1PwDZ2IpZ0jWrWKwLEz6Gio/lOHUv3dgTHYYrEEU0vrP03uq797m7aacgLCp2Pt6IqT76B/uZrcUlmMrZvXn4JtLe2d8R01iYqbN1C0/nEMTeV30KiUwoQKQKdRC0wWZ78g44So6w9mV2NZoTB5Mq7sj6csMxmDwYDBYKC++Dbmtg4PxLB7Dw8nJ+4ASkUnbXWVDJ44h0WvfYVS0YmipYGoZ9/DJXDYA/ueXluMt40j3WolT8V+j0Ldx3BnH+zMLFkydDwtvV0093Zhb2bF32aswsvGEQuZnM1jo3njwm+UtDVgZWLGs3F7uFh2m9n+I9DqdXwasZaDt6/xxJgIKjqa+CzlFF7WDtxpqeGd6SuxNTWnU9nL9eo7PD9hAeUdTeyY9TBb4vcy1SeYhu4OnC1s8bFxQqPX8eSZf3Bw2fPYmFqwaOg4zKQmfHj1GPtyLrAqZDJ3WmrYfHY3q4dPwcXChl1zH+ORY1+iUPfxfWYi58tuUdreSH5zNZ42DmweG42V3IzZASNBJKJO0Y6liSlavY5QVz/O3M3kx5yL/JCVxLWqQgqbq3nt/H7jwuXvH2IwGHjvyhFqutqwN7OkXtHOuhNf88OCp1Co+3h+4gL2ZJ+nsKWGzNpSjhWk0qnsZW3oDHR6Pc6WNhxc9jy9GhXfZ57D19aZp878g+z6cr68cYarlQUoVH1sidtDVWczL537mW61ksbuTtac2Em3uo/nEvZxpSKPuYPDkIklXKsqZIx7IOm1xWyJ24NYLMbKxIy8pipev/Ab031DiBk0+h6sXI2zhQ12Zha09nYhFYvvsYjUOJpbEWjvxtcxm/C1dWHDqFk4mVsT4uLDezNX42HtgFgk5uzDb2Bjao67lR07Zj2EiUTKxXXv8lVqLHKpjHOluRwrvMEPC57iH5mJ9KiV7EqPo6C5mhl+IXyScorowFFM8ByCldwMvcGAl40jL09ahJe1Ax9ePYZULEaECIlYzN3WOixMTIkrziKxJIfqrhbeuniA1t4uXkj8CYPBwNOx32MlN+Px09+ycEg4Sp0GsUhEZl0Zr57/lW61ko+uHie/uYqv0+Ioaavn/eSjaPU6nj77A/72LhS3GtPCjxfcQKnT8E16PDKxFK1eh1Qs4dXz+zGTmfB1zCbsTC14Ykwkoa5+PH32B6xMzPh27uM4mFuxO+s83jZOvD51KfHF2aRU3+FYwQ1UOg3PJ/yIm5U9iSU3aetVsGbkdF5I/Il9C5+hpquNfQufYbznENYc34lGp+N0UTofXTuBjdycjaNnk11fxguJP7Fj1kO4Wdnx0rmf6VT28vyE+bha2mFtas6Zoky23IOev3vlMP52D7aAGV2g3qi6u7Bz8ybmuQ8wt3WgLDOZttoKJDK5IEiBMXAiMHw6pZnJxnG1y8gHNBj0OHoZ8Qhyc8t7KaN/VFn2wHH//vmTha0DHkNHUZJ+aQAMvDz7GqaWNgPGT42yFxMzY+eMz4jxVOb+wTu+v/q62ulqrsM1IBjv4WMxs7GnJOOy4PK6v/qdYP1l7eT2p9ei7vYWyrKu4jZ4BCam5lg7u+MaOIz2ugpUvQ/er+v1OsqyrmLl6IKz7xB6OlqwsHXAyXcwvV1tdLf/MQ8QicXYOLsPcAFb2jmRf/kMKQe/BcA9KPRfClIAVbfTBrTQS03kA1L/zG3s8R8zlbqi/5pDDH+JUn/Vf1impqa88sorREREYG9vLzB7HB0dMTc3Z9KkSdy9e5ekpCREIhFffvklI0eOpK6ujtOnTxMXF4dOp2Pr1q10dHQIIlFNTQ3Ozs5kZGTQ2dmJhYUFNjY23Llzh76+PmQyGUqlkuTkZLq6upDL5YSHhyMWi4mMjCQ0NBQHBwe6urqECWtHRwfNzc04OzsTEBBAUFAQqampzJ07l7lz57J8+XIBeK1Wqzl69Ch1dXWoVCquXbvGpEmTGDRoELdv3yY+Pp68vDxWr17NY489JvBsAJqamgSmi4eHBzU1NRgMBgoLCwe0xQUGBuLj4yO4kszMzOjr6yMnJ4fRo0czfvx4wbkzderUAQlbs2fPpqSkhCVLltDc3DxAjEtISCA3N5c5c+Zgbm7+gKBgZ2c3QBxqa2sjJSWF+fPnI5FI8PPzY968eURHR1NYWEhsbCyXLl1i7NixJCcnc+bMGRYtWjRgm3K5fECbmFar5ciRIwQFBREaGopEImHFihVcu3aN6upq4XH/ypDp7OzMsWPHGDVqFOfPnxeA1mZmZpw8eRKdTjeAYaTRaDAxMcHGxobZs2czefJkysvLCQ8Px9LSEoVCQVNTE+fOnWPWrFmUlZWxc+dOFi1aRGBgIDt37kQul/Paa6/h6emJRCLh1Vdf5dChQ/T19fH555/T1tbG8ePHmTFjBqtXr8bJyYkXX3yRhIQEnJ2d2bp1KwUFBezatYuamhqkUiknT55k2LBhFBUVkZmZyfz585kwYQI///wzbW1tbN26lQ0bNpCWlsbPP/+MRCJh9erVDB48GLVaja2tLf7+/kilUoqLiwUOkEgkwsHBQRCUpFIpPT09nDlzhjlz5gyAZBcXFyMSiaipqcHTc+BFZNSoUQPg9Hq9niNHjjB27Fh8fHywtrZm5cqVXLx4kbKyMuFxNTU1DyRLDh48GIlEQkFBAWKxmKKiImJjY0lMTCQkJIT58+czffp0uru7CQ8Px9XV9YHWr9bW1gFuO61Wi1arZebMmWRnZz/wOU9KSiInJ4dHH32UhQsXYm5ujkwmQ61WM2PGDK5cuUJlZaWQamlqasqlS5cE4au7u5vz58/zwgsv0NPzx41LTEyMwBVTq9VIpVLhxmXSpElcv34dg8GAQqEgJCSEUaNGUV5eLpzLfhdbaWkpx44dY+PGjcycORNzc3NBcIqLi2PevHncvXsXExOTB86nVqulsrKShIQE+vr6UCqVhIeHExAQQHd3N1u3bqW4uJjLly9TXl6ORqMRxojx48cTHx+Pj48PfX19FBcbga61tbVUVlZiamrKpk2bqKysJCUlhY8//hilUklwcDBXr17l/PnzdHd3k5iYSFVVFUOHDmXyZOPKoZOTEy4uLkgkEn777Te++OKLBxxxf9Vf9b9SZv8EWVX2KB5IHPIePpaqvAz+ufQ6HdX5WVTm3sDewxdbF08WvvolTj6DqLkHiNX9UwovQGXuDbyHj0Vy7zoiEonQ63WIxGL8w6agaG2kqfzOgOfUFd3C0XuQ0NYGxmuY+5CRWDu5UZJxWWgjNBgMqHoVDwBkXQNDaCj+o31X1dtNScZlrJ3c8Bg66o9FK3tnTC2taa4cmNCp6u2mt6v9T4Hj/SWRSgkYM/UPSHlRLlKZHBf/f3ZAGwYwWLyHj6X2zk109yYPqp6B+29iZo7H0FFU5KTQVF6EiZkFZla2NFfcHZCoVH/3NllnfsWAAffBI1D3dmPj7MHdG0nU371NS2UxjSX5D+y3TCzhy9RYbEzN+TJqA53KXio7m3k+4UcsTUz5ISuJ2q5WTt9Jx8rElB3JR6lVtJHbUMErk41Jcq6WtmweG02wkyfjPQezKz2Oj64d59UpS3C3sker1zHbfyT+di6EuQXw9Nkf0BsMbB4XTaC9G04W1nyVGotC1ceumMeo6GjmnUsHcTS3YrS7PyZiCR/MepjMulK2xO3B28aR1JpiPotazyTvIMraG7GRm7N5bDT1inY+unYCgwHenrYCvcHAcxPmszJkEndaalgUNJaXz/2Ctdycz1NOszsrCVOpCauHT0YsEnG96g4KdR/zB49hZcgkNoXNRgQkVxYwxj2QekW74Px6bcoSFg8dx++3r2IlN+ObuY9R3dnCFzfO4G3jyK6YxziUd50ZfiG8PnUpr57fT52ijYqOJlYc/pTcxkq8bZyY7T8CqUTC32asYrS7P4+HRTDeazDWcjP2LtzM3uwLJG/YgUgkQiaR8vuybcjEUn5Y8BRDnTyZ4DmEbrWS7zPPodSqGenqy4lVryARiejRqFgUNI5v5j7GyTtp7M2+wGtTliICFKo+7rbW88aF3zGVyvgq7SxiRKTVFqNQ9/H+laPsyzmPmcyEPq2aJQc/pqiljra+br5Jj6eyo5mnYr9Hco959PTZHyhoqqagyXi/OcrNjxEuvliamJJVV4qV3JyvYzYxxTuYb9LjWRQ0lnZlD+9cPsRUn2DevXKYopY6EkpuUtnZzKKgsdR0tfFM3G4sZKY8N2E+/nYubJ++Ej87Fy6V5/HG1GWYy0z5KnojYpGYTyLWYi4zofce0yfYyRM3K3sm+wzl9SlLcTK3Zmf0Rl4+9wtfRW+kra+biIBQulS9PDpyGkMdPcmoLaGtT8HzExdyp7mGHxc9i5nMhA5lL1q9jifHRHKzoZyXzv2CWCTmmbjdNHZ38HnkOhp7Onn67A+Yy+TsjN7IL7mXee/KYaIDR/HQiKm8MnkJOr2e+EfeQqlVM2/IGDR6LXqDgc8i15FZV8KHV4+h1GlIrSni+Ynz6dOqmTt4DFvHz8XNyo7nE37E0dwKFwsblFoNm059y8dzHkUqlvBcwj6GOnmwN/s8s/xHcPbhN3j3ymE2jp5NWfuDQkvWmV/p6Wjl3HfvYuVoTFy1cnDB3sOX1CM/0F5XMQA0XleUS097C36jJ1ORk0JrdRnqvh6c/QaOcybmFqh6jK191XmZuA8eKYjxf1Zyc0v8Rk+mJP0yipZGyjKT8QoJ/7cOJJFYjPuQkQ8sJGg1amrvsQRFYjF6nQ5rR1cCwqZSW3iTlvvG97baCuzcfR/Ytr2nH601f9x/1965iaK5noDwaZiYmdPRUC1cD3xGTqDqVtqAVmtVbzelGVeMrXv38aD6rzWewWE0lRb86aJPe10l5dnXEUtleA4LI3rL+3iFhNNYmk/FzRSU3Q+GdXQ01mBl74zkT87x/XM+sViCz4jxDzzmz+ovUeqv+o9qxYoVVFVVsWHDBhYvXkxUVBRHjhwhLS0NOzs7fvjhB6RSKdOnT6eiooJt27Zx7do12traaGhoICQkBFtbW44dO8acOXNwdXVl4cKFLFiwgKtXr2JiYkJfXx8nTpzA09MTLy8vPv/8c1asWIGZmRkmJiYEBgby+OOPM3XqVMaNG0d0dDQjR47E1NSUsrIyiouLWbx4MTdu3ODMmTOUlJSQmprK4cOH6enp4ZdffmHEiBEMHjyYGTNmUFJSwvLly7GwsGDVqlUcPXqU3bt3k5aWxtGjRxk5ciS+vr74+PgwZ84cxowZg6mpKRcuXKC+vn4AJ2vMmDFkZ2dz7do1pkyZQmtrK2fPniU2NpampibeeOONAYl5n3zyCQcPHiQxMZFz587x5JNP0tjY+AB7S6lU0tLSgrm5OVOmTBHYVVFRUcycORODwUBmZibjxo2jsrKSU6dOUVlpjEi9nz3U2dnJhQsXBJEpPDyczMxMwDixnjRpEvPmzSM8PJxDhw4xa9YsbG1taW//1wlIzc3NHD16lAULFgiJb4DQjnj37l0KCwsBuHv37gNR8v2A6fXr15Oamiqku8XExBAQEIBcLmfZsmU0NDRw8eJFgTHV0dFBXFwc165dw8fHh8bGRkG8eP/999mwYQNSqRRLS0sSExPZvn07Bw8eFBIhV61aRW9vL7GxsaSlpZGTk0NNTQ0ymbEFYu/evQDU1dUJxwnw448/cvToUUQiEQcOHODzzz/n7t27fPfddwKb6MiRI3z11VeEh4dz9OhRAH7++Wd8fX359NNP8fT0JCYmho6ODhISEgR3S0tLC4mJiXR0dDBy5EhSUlKEQX3MmDFkZmZSV1fH0aNHmT17NpGRkbS1tTFz5kzhnIlEIvbs2cOiRYsGMNQATExMhLQ4lUrFwYMHiYmJEThOIpEIsVjMggULaGxsFD43BQUFA/hEYBRRRCIRw4YNY+/evULLbkxMzADgeH8FBQVhY2NDWlqa8Fnst++qVCohQXLixImcPn2apUuX4unpOeCzHhUVxbBhw+jt7aWiokLY5/6aN28evr6+NDc3k5iYiFqtZs6cOdy4cYO4uDiqqqqYMGECn3zyCenp6cTGxpKcbHQCDB06lNu3b3PlypUHHFr9gtfVq1eZPHky3d3d6PV6FixYwBtvvEFiYiI1NTUEBgbS0dFBcnIyzc3NBAQEcPLkSZqbm9mzZw9vvfUWOp2OCxcuoNfrOX78OF1dXVy8eJGEhAT8/f358MMP2bhxIzKZDHNzc6GNNjo6mtGjRxMWFkZ+fj6Ojo5ERESwf/9+cnJyCAgI4M033xSA+KdOncLb25sJEybg4eHBDz/8wPDhwwkJCcHNzY3U1FRu3brFQw89xJNPPomHhwfBwcEMHz6ckydPcvDgQbKzs1GpVDz99NM0Nzfz8MMP8+mnnwqOtL/q/7frm2++wdfXF1NTU8aNG0d6+r/mZ+Tn57N06VJ8fX2FBaX/6Tb/Vf0ntAiRWIy9hy+t1cabc61GTeWttHttd8H4hk4UBBTXwGE0V97FZ8Q43INC7yUnZQo36nVFt7D38Buw6m7j4klnY63wb/chI5CZmlOZm2pMzKqrRCqXC7wMAAfvQFqrjW5oCztHAsZMo6Ekj+bKYhqK83ANHNhCCMbxycrJjc6mOhrL7tBYWkDAmGlY/EmkuIOnP1qVUgDIGgyGBwDjYASs/zNTS6fVoNdqyU08wpWfv6Cns23ASvW/qvtj1+8X3zSqvnvQ4Ts0lOSReepnetpb6Gyqw9LBeUB6olrZS+Tmd/AdOYGy7Gu0VJVSmnGZGRtexm/0ZAwGPf5hUx547TenLee1KUsxlcio6GhCJpGwKmQSr05ejM6gZ2f0Rhq6O9g2cQGWJmZ8N+8JThams2LYRNqV3ezLuYCJVEZCcQ4vJP5Er0bN+zMfIv6Rt2jq7mT7pYNM9h5KSVs9MokUvcHAJK8g2vu6+TX3Ch9ePcYs/xHsinkMdyt7nonbzUSvIL6d+zjmMjkvn/sFS7kZr1/4DZlEys7ojdiaWlDR0UhLTxdvXPidmMFhfJuRwFBHT5p7u0h89G2KWmsJsHcV3Ebtfd10KXvxsXXmnekruVyRx+ZxMWyfvhK9Xs9r53/FRCrj73PWMNt/BFvj92EikfLyuV8Icw9gxbBJLB46HltTC2RiCS6Wtrxx4Xcy6krYGb0R2T1W0FAnT76Z+xgXy/N4Jm43y4InYGlixitJ+3ln+ipCXf3wtXVmZ8wmvG0c6dOomeEXwvGCVHIbK/nk2kmy6krJqC3h05RTVHY0Yy03I6e+jC1xe6jubKGjr4fHz3yHUqOhV6PizYu/42ntwHszV9Ou7GbTqW+pU7RR1FLHN+nxVHe18LfLh5nqM4ylwROo7mxBZ9AzzTcEP1tnflr8LG193WwdN5c+rZpv5j7GicJUZgeMYLizDzKxBJlYylvTljPa3Z8AOxd2Rm/EzcqOA8ueB8BSZsrBZc8L4lqdop2C5mpGuPgQX5zNK5MXc6Iwlb9fP0mtopXFQ8cR4uzNmHuMLWu5OV9FbyQqcBSz/UfgaG6NpYkZbpa2fDj7EVytbPk69SzLD32C1b3zETM4jDcv/k5uQzk/ZJ0jsSSHL2+cQaHqY8eshwi0d+XjayfoViuRiSUEO3ux/uQurlXd4YuoDZS1N7L90kGm+Q6jtbebcI9BPHHmH7wzfSXTfENQqPr4NiOBbnUfT575BwpVLwbgx5wLjHbzZ/2oGQTYu7B82ETUOi15TdUotWpem7KUivZGXj2/n1XDJ/PezIfIbazgu/QEejVKnkvYx82GcqRiCXuzz+NsYYNIBM8l7GPV8CnsinkMqUjMvpyLuFjacuD2VQ7cvsqR/BT+fu2EEZ6u0+Jr60yXqpeP5zyKuUzOgdtX2TR6NiKRmG0T5tOrUVLQXMOWcXMZ6eJDsJPXA9//6etfwqDTsfaLo3S3NdNYdoeyrKvo9TrmbvsQayc37D39hbHG2S8IrVpJY2k+3W1NpBz8Fo2yj+q8TLrbmoXrimvAMOPYVVGEhb0T5jYP3o/eXwaDgY6GajAY+O2Vh5GamAqi1r8rcxt7JFITwdlk0Ospz7oqjHVSEzPBHSUSi/ENnYBUbiok4XU21vyp+8jG2Z2upnrjAkb6JezcfAa0I95fIpEIv9GTKc82Lvh2NNbQUJxH4NgZyOSm/3Lf/UZPpvxminCN7GioMW5DJMJv9CQkMhmW9s7YuHrS2VSLZ3AYPiMn0F5XRXnOdbrvsa8Mej2t1WUDnM/95eAVIFwv/1frf5kptXbtWjZu3DiAVfN/Q/3fzpQCOHDgAAqFgscff5y///3vVFRU8O2333LmzBkWLFjA66+/zo4dOzh16hQ6nU5oS/P09OTSpUvo9XqcnJx47LHHhLQxrVbLSy+9xLPPPourqyuurq5ERkbyyiuvsGLFCkpLSykqKmLy5MnMmDFD4EkdOnSIkydPMmXKFEJDQ0lLS2Pbtm08/PDDrF69mnnz5vHYY48RFhbGBx98wJtvvsnjjz/Or7/+SlFREe+99x4nTpwgLi6O3bt3Exsby08//URycjLx8fG0tbUJjp0dO3ZQWlpKa2srY8aM4cKFC8yZM4f4+HhhYmxqasqRI0e4cuUKH374Ifb29owbN05IC5TJZGRmZrJ8+XK6u7s5ffq0ILrU19dz+PBhTExMmDhxIiNHjiQxMZHg4GDS09MZPXo03d3d5Ofns3LlSgF+fPDgQZYtW4ZEIuHcuXMC9ycnJ0dwPdy9e5cZM2YQGxvLihUrBkzk72dz6fV6UlJSaGtrw93dnYyMDMLDw9FqtYIwJZFIGDlyJDdv3sTd3Z26uroBiW4wkD8EkJqailQqpbm5maioKFpbW0lLS8NgMODm5kZpaSkWFhYYDAY8PT0JDQ0FoKqqiu7ubkEQaWxsxNXVlX379hEYGMjEiRPp6Ojgzp07NDc3s2jRItrb2/n+++/RarUsXrwYrVbLuHHj+OWXX1i5ciVubm4DnG5/VpaWlv9lC9t/p8zNzbGysqKxsZHjx4+j1+t55ZVX+OqrrwTxYe7cuXR1dZGUlIRcLsfZ2VmA8MfExAhsoP66nxPV1dVFfHw87u7uFBYWMnHiRCorKzEYDHh4eBAaGkp8fDyTJk0iLi6O5cuXCw60pqYmgbnVX6WlpeTl5WFiYsLMmTPJysqis9O4UiKVShkxYgRXrlzBYDAI79+UKVOwtbUFjLywfkdOf928eRO9Xk9DQ4PAxZJIJMycORO5XI5Go+Hy5cvMmTOHS5cuERAQILTwZmVlYWlpSXl5Oc7OznR0dDBz5kwSExOZOHGi0Jo3btw4Zs6cSVFRESkpKQwbNoyxY8dy6dIlhg0bRlZWlnDOOjs7uXHjBjqdjoyMDIYPH87ixYvRaDSo1WrhJzExka+++or333+fzZs3c/ToUUpKSigpKcHS0hJPT0/y8vJwcHBgzpw59Pb2cuLECUaMGIGnpydXr17l119/5c0336SwsJCvvvqK/fv3M2/ePN5//33Cw8PZu3cvixYt4qGHHuLChQvcuXMHFxcXsrKy+PDDD/nqq6/YunUraWlpZGRkUFNTw+zZszl48CB79uwReHgTJkzgp59+wsbGhvz8fD766CPOnz+PRqPhgw8+oLW1lcrKSl544QUGDRqEwWDg3LlzfPPNNzzzzDMoFAp8fHx49913+fHHH1m/fr0grG/YsEGAzve/J38xpf7X6//0PdShQ4dYs2YN//jHPxg3bhxffvklR44coaioCGfnB6OkMzIyOHz4MGFhYWzbto1XXnmF55577n+0zX+uP5hS24Ub5rs3zlOcekHgD/1z3Uw4jG/oROzcvHAPCh3ATepua0LZo8DRK4DawhycfAcL7RUaVR+1hTe5feEEw6bNwyd0ouCSgj8En/tbDgwGA11NdcR+/gpBk6MYPfehAc4igMrcVHxG/rHaq1H2ced6Atd//4a52z7802MwGAzEffk609a98KeThT9LtnMbFEJTeRFOvoMfcF/1tLfQ192Jg6c/LZXF9Ha2IZZIcB0UQm1hDhKpCQ5eAbTVlqHTaDC1tMbZL4iagqwHBC69XkdHXRWHtz9G9Jb3heOVmpji4OWPzNSM8uzr6LQaJFIZ/ve1wRj3NQXXwBCaK4rwCglHo1Ky75kFTFv7AuY2xgSss1+8hkfwaGoLsoXn2Zla8GR4FB9ePcY3cx/j67Q47rTU8knEWlKq73CiMI2ZfsPpUPawbtRMtsTt4enwKIa7+OBkbk1lZzMyifH97FT2YCKR4W3jyIdXj7EudAaWJmZUd7UwyN6Ntr5utl86yMcRayhra+B0UQaPhc1holcQzyf+CMCLExdSr2jHgIFn4/bww3xjK1y9oh0ruZnANJrtP4LIwFC6VH24WtpxtbKAsR6D2HBqF+/MWIWFTM5L537m1cmLWRg0ltSaYpRaNR3KHkrbGkgoySF60GgmeA3h+YQf2THrYazkZgQ5ehDxy99YGjyex8LmkFSayxAHD7bE7+XNqct48+LvfBW9ka3xe3l3xmr0GLCVm/PqvWQ3pUaNWq/jnUsH2b3gKZp7jK2PFiam2MrNcbKwYe2Jnbw/86EBSXYLhoQTERDKq+f381X0RrpUfej0OuzMLNl46hs+nvMob1z4jR2zHsHKxBSlToOPjRO1ijYMBgM6vY4Ae1eejP2eTyPWUdBcTYCdK90aJdzjYcXdzSbMPYBfb12hobudt6atoKy9ga9Sz7IzZhNf3jjDM+NieD7hR16ZvBh7Myu0ei01Xa1k1pZS2m4EjYtEIq5U5LNl/FyeT/iRXTGPsSs9Dk9rR5YMHcfTZ39g9fDJ2Mgt6FL1MsNvOI+d/paPZj+KiVSKTCzB0sQUJwsbmnu6eCr2ez6LXMvms7t5a9pynCxs2BK3h88j11HW3sQ/MhPZPDaKC2W3WTFsEuYyE0a7B7A1bg/bp6+ksaeDu631hLr60aUyisSSe+6l3QueQqPT4WHtwMIDH/LixIX42Dphb2bFw8e+YO/CzfRp1Lhb27Pk4Mc8N34eDuZWNPV08nVaHD8tfhaFqo9aRRuuFrZ0qfpo7euiobuDQ3nX+XD2I/zt8iHem2kUwJYf/oQfFz1Lp7IXpVZNfnM1Ic7evJD4EwmPvkVJawN6gx6FWomdqQV7cy7w5JgIfGydyakvQ6PTYW4i57v0BF6YtBArEzOKW+uQiMVYy82RiSW09CrQG/S8c/kQb05bjkanxcrEjDcv/s7O6I0cyrvOGI8Amnq6OHD7Kt/MfYymnk7+dvkw03yGcaXyQbdk2PxHcQkwdpTEffk6i1/fiUtAsDAmlmdfwz0odMCCQmt1GWplL03ld/AKDsPWzZv2+kp67mtJi/vydaau2cag8bP+5Xjb3d5Ca1UJYEyQa64owtTKBgdPfzqb6+jrbBfGVZnc7F+mvJZmJuM3ahKVuTfwDA4TxP3W6jJMLa0HLEAYDAZaqko49u5ThM1/BNc/aWsGuJV0nOq8DFZ/+MsAx1ZXcz1ajRr7+1iAAG015Rx99ylmPvYq/mFTEIvva13X6x8Y+w0GAz3tzcTvfIuw+Y9g6+Y9YJvlOdcFFuI/X/MAmiuL6W5rIjfhMKHRq5BIpQ8sNvUn/kU8vV1oPdeqVZz79m//5f3T/7IotWjRIuLi4vDx8WH9+vWsXbv2gXaE/zfWX6IUrFq1ioMHDwr/XrBgAadPnwYQ2E39tWHDBvbt2wcY233u3r1LdHS00Crzz88fN24caWlp+Pn5UV5ezttvv827776LhYUFtra21NYaVzYnTJiATqcTVmkfffRR9u/fD8COHTt44403hP1pa2tDr9djaWlJY2Oj8HpyuZy1a9fyww8/PHDMr7/+Oh988MdNspOTExqNRmgBPHPmjJC8tW7dOoKDg43Mhfp6Xn/9dcrKynjppZcYNGiQ0K4XHx9PVFQUCoWCpKQk1Go1q1atorCwkLa2Npqbm4mOjubGjRs4OzsL7UHTp09nypQpXLhwgSlTptDV1UV2djYRERGcPHmSmTNnCl/uPwNZFxQU8Nlnn7Fv3z6uXbuGq6srzs7OWFpaIhKJiIuLY/LkyYJjZOLEiTg4OHDhwgUmTpxIfHz8ALC6VqslJydHaOHctWsX3t7eDB06VGD39Led9ZdSqeTo0aM8+uijxMbG4uDgwNixYxGLxaSkpODp6UlhYSGRkZHcuXOHwsJC5s2bx+XLl5kxYwZarZZLly6h0WhoaWlBLpezcuVKpFIpsbGxxMTEUFVVRUVFBc3NzUycOJG2tjYqKipoamoSQON79uxh06ZN//bz/v9E7dmzh6effppTp06h1+txcHDA09OTpqYmTE1NuXnzJqtWreLs2bMCbD4tLY0LFy4wevRoVCoV4eHhuLu7C+95VlYWDQ0NxMTEkJaWRlBQEImJiYIIWVNTQ25uLq+99hp2dnYcPnxYaDsFo+BXV1fHqFFGMGFzczO5ubk0NTXx8MMP88svvzBv3rwBLqikpCTGjRtHcnIy8+bNQ6/Xc+3aNTo6OggICKCiokJwb2k0Gpqbm2lsbOTs2bO89dZbnDlzhqioqAGtmSkpKQQHBwvC1qlTpwSOV0FBATNnzhREz7q6Oq5fv05lZSVDhgxh7ty5JCYm4ufnR0tLC42NjSxdupTs7GwaGxsxNzdn2rRpD3xPKioqyM/P55NPPuHKlSu88847TJ06FblcjomJCSYmJiQnJ/Pss8/y3nvv8dZbbwGwadMm9uzZI2ynf9y4fxzs5+Rt3ryZb775BoDFixdz4sQJwNhSKZPJKCsrG8D7Gj58uMBJ6x/f+kVggK1bt/LVV18Jj1+5ciWHDh0CBjLfXn31VT766CPhcevWrROEtpycHIGDZ29vT3t7O6ampvT19fH000/z7bdGnkD/GHbnzsD2JvhLlPrv1v/pe6hx48YRHh7Orl27AOOCg5eXF88++yyvvvrqv32ur68vzz333AOi1P9km/DH/dOGXaeQmphSlpWMk8/ge+ltBnxDJw58fEsDmad+QdndSfC0ecaVcw9f4feVual4jxhnXKDR66m8lYZvqDHsoKu5jtbqcqry0nHyGYy1k9uA6G4wTlz+WQwzMbMgJ+4gtm5eA3giAFaOrnQ21uI2KITGskIMej1SuSl9Xe2o+3oxt7F74Bj0eh2l6ZfRqlWYWtpgYm6BTqPGYDBg6+qFjbP7AFFKq1GjaK7n0Fsb/+WkRaNScu7bvxG5+W84+w0RJj3K7k7a66txDRxGWdZVAsYYBc8+RQcNxfkkfrOdyGf+NkDYE4nEaNVKLu75mEkPPcOQiXMGCHGVuam4B42koTgPl4BhVN5KJSB8GmKxhOq8TOw8fLG0c6Q6LwP3oFGUZl5h0NgZlOdcxz9sCvXFt2mrraD+7m1K0i4K27U0MaVbreTzyHU4WdggEYtp7VXQp1WT11jFDL/htPUpeDHxZ9aGTmeEiw+BDm6UtDXwybWTrB81E5VOw2cpp9kZvZEt8XsFSPPHc9Ygk0gIdvLkUN51fsy5yAsTF6LUGpPhjM6ZdNaPmkmXqhcPa3s+TzmNqdSE+UPGUNrWSJCjBx9cPcZgB3fWhE7n5XO/cHjFi9Qr2qjv7uD9K0eE10t49C2O5N9gydDx3G6spEejxNbUgu8yEnC3sme2/0jeTz7C/iVbae3r5unY79k6fi7eNk6YSmVsPrubHbMeQqFWYio1wc3SlifO/INnxsYw2NGdjr4eLOWmaHQ6rOVmWMjkvHr+V54dF8OR/BTWjJzOi+d+ZmfMJhq72zmSn8LcwWPYnZXEKDc/ZvgOp13ZjblMzsk7aTwxJhIrE1Pym6pxs7IjyNGDuOJs7EwtUOm0fHL9JD/Mf4o6RRtKrRqFWslvt5J5d8YqtsTv5e8RazhXcpPG7g4eGxPBlrg9wrn4NGItL577mV0xj/HulcPM8h9OmJuR96O6ly43yMGdxu52CltqGerkSa9ahVgkwlJuhpe1A4sPfoxcImXX3MfvOZ586VT2IBVLaOhuZ/6QcM6X5ZJcWYCPjTMB9i5UdjQzwy+E+u4O9mSdJ8zdH1tTCwLsXNHodXx09TivTF7E84k/8c70lZibyGntVVDW3kiIszdWJqZIJVJGu/lzo7oIrV6HuUyORqfF3MSUNy/8xtPhUbx/H4D9s8h17Mu5wONhEWyN38vHcx5FLBJT0FzNNN9hrDvxNU+OicTPzhl7MytBILOSm2JhYsq6E1/zwayH8bJxxN7MijXHv2LPwqepV7Tz9NkfhM/1x3Me5ZWk/Tw7Lobarjam+Q6jV6OiR6PiqxuxjPcaTHTgKLrUSt65dJAvojZQ2FxDoIMrLT1duFvZ81zCPvYv2YpELKalV0FmbYmx7TM9ntiH36CivQmxSMTfr59k1fDJmElN2H5vW9vuA6B/O/dxAGq6Wvk05RSfRqwlsfQms/xH0Njdgb2ZJaGufuTUlyMRizGXmVCnaGdH8tEHxrHwReuwdnYnYMw02uoqkJmYouzuRGZmQU9bE14h4RgMBkrTL+M7aiJSEzmNZXcQi8U4+gyiJj8TrVqF94jxAxYcWqpLOf33Fwib/whOPoPQqlUDXjfuy9eZ+uhzOPkNwdE7EJFIRGtNGWKJFFsXTyHsAYwO1IbiPJor75J6ZPefLjzotBoSvn6biKe34zZ4BKaW1sbE6qY6DAY95tb2NJUXCm3lZta2VN/OwM7NG0efQKydBrYJdjTWUHcnF61ahdugEHo7jfgVKwcXFK2NOPsPpa22XGi7BqNYVZGTQvD0ecjkZhgMfyTpFVyOxdzGHt9Rf1ybRCIRiMTkJh4mZOYiZKZmuA8ZiUgkorezna7meiFo5P7rLIC6r5f64tu0VJVQcPkM09Y+/4BY19Vch6KlEZ1Wg1atwtkvCEt7J9R9Pex7ZuH/flEKjJOW/fv38/PPP1NQUMDs2bPZuHEjCxcuFFpg/t9W/TdVf9Vf1dLSQl5eHi0tLSxZsoSKigry8vIwNTXF3t4eW1tbdDodRUVFWFhY0NHRgZOTE11dXcyfP5/t27cLrJuoqChOnz5NaGgot2/fxsbGhpSUFD7//HOKioqwtrYe4D66efMmu3bt4s033xQSusDoUIqIiECn05GWliZAzvPz82loaOChhx7C2tqapqYmuru7MRgMbN68GV9fX06fPo2FhYWwrX7nTltbG7du3WL69OkAFBYWUlBQgF6vx8TEhKioKBobGyksLESv12MwGFi1ahWHD/+RtiGXy+nu7iYhIYH169czZswY4RzevHmT2bNnDzg+lUpFbGwsV69eZcaMGZiamjJ9+nTkcjnx8fHMmDGD48ePs2rVKuLi4pg9ezaXL18mOjpacMscO3aMl156iZiYGL777juSkpI4fvw49vb2/xGA/f9UBQYG8sEHH7Bv3z6eeOIJGhoacHJyYujQoVRWVhITE8Phw4dZsGAB1dXVaDQalEqlkWXi7k5tbS2jR48mKyuLuro6rly5woQJE4SWVDCKghEREbS3t5OZmUlERARgTL985ZVXGDp0KOPHjxfA+mAUg1JTU9m2bRtgFGJHjBhBQkICWq0WFxcXOjs7BZB3fwpbdHQ02dnZuLi4DJhUHzx4kNWrVxMbG4tEIkEmk+Hk5CQInomJiSxduhRTU1NEIhFhYWE4Ozs/IBgZDAY++eQTxGIxL774IjDQiZeQkEB0dDRnzpxh4sSJXL9+HXNzc2bPns0nn3xCSEgInZ2drFq1itjYWEQiEc3NzYwdO1bgZvn6+mJubk5eXh4KhQI7OzvUajXu7u6Eh4dTW1tLZmbmA2y1v+r/3vrfkb73f+oeSq1WY25uztGjRwd8ZteuXUtHRwenTp36t8//M1Hqv7NNlUqFSvXHhKCrqwsvLy9WffAzzeV38Aubgk6toqOxFkt7J1qqSvAZMQ6ApooidGo1YqkMubklXc112Lp60lZbiUQqxW3wCGoLcwas4FbnZWDt7EFbTTlWTq44egVQnZeB3MIKEzNLoVVCr9dRlpFMd3szdvfitvurLOsqJmbm2Lp601JVLIhMBoOBpvIiTux4Bs/gMGKe+wCxREJrdRkiiYTu1kajc6mq5L4JjZbSzCv4j55M/d1bmFrZIpObYuvqhcFgoLOxlsrcVG4c/ocw2RFLZfcEtlScfIcQEDZlAKujo7GG0vTLgJE9IhZLMDGzENwF/ZOHjsYatColJmYWtNVWIJZIqLqVhq2bN0MmRQipUcruThpLje31WrUKvU4rpBF2tTTQ19WBi3+Q4BLQatSUZV3F3NoOKwcXbFyMY37V7XSUPQoCxkxFIpXRXl9Fa00ZVvbOyORmHN7+4CLuixMX8mnKKSICQlkUNJZ9ORdYEzqDLXF7+HD2I2y/dJAnxkQw3NmHl879zCMjpzHEwZ0t8XvZMesh3K3sUaiVNPV0EmDnwqZT37IzZiMAm8/u5s1py3E2t6ZPqyG+OJtpvsGIMKakvXp+P59HrQeDAQNQ29XGFJ+hLDv0CZ9HrSevqYqxHoH8fvsqkQGjKGtvIMjJk2/S4nlz2jLqFO2cupPOIyOmUtregJ+tC88l7OP82nc4UZjGjeoiVg2fjIlYit6gZ6J3EDG/vs8Un2Cm+Q7D0cyKrfF7+XbeEzT3dNKu7EGn1wvCy8KgsVR1NtPU08kbF35n6/h5fJ+ZyBNjIvkqNZadMZt468LvLAkej0QkxlRqgr+9C88n/MhvS7fR2NOBTCzBADT3dPLelSN8HrkOtU7Hq+f388SYCJJKc1kXOpO3Lx0QRIenw6MY5eZPflMVgx3c+T7rHLP8RtCrUWEtN2PZsIlcKs9DJhajNxhwMLempbeLYCdPUmvu0t7XQ7CzFzKxBLVOg85g4NWk/fjaOrN5bBSbz+7m9SlLmeY7jNquNro1SrbE7WHHrIf5MecCK4ZNwsXSFgAXCxtWHf2cnTGb2Jt9Hj9bZ54Kj+J0UQa+ts5k1ZXiZ+eCWqfhUN51Xpq0iK3xe/kiagP5TVX8fPMSk7yHMszZC7FIhI+NE3KpDDOZicBCquxoZpSbPy+f+xkbUwtemrSQ187/yophkxjh6suWuD18PGcNZvcSFKViMRO9grjdVEVTdwfXq+8QMyiMvdnneSxsDp+mnOLzyHVUdbbgaG5Np6qXnamxPBUehYlEilavZ1vCPj6NWItULMHRwpqqjmZ2JB9lZ8wmXjr3M3KJjC+jN3C+7BaLgsbxVOz3vDJ5EZvP7hZS8j6JWMtL537mu3lPYCo1MZ7D2Q/T0dfDdL9hvJT4M2tDZ9DW142JVEpWXSnDnLwpaK7mYN41JnoNISIgFLFITIC9Kw8f+4JPItZiKpWRU1+GRCxhlJs/tqbmVHW0MNzFh3OlN/G0duCNC7+xd+FmcurLSa0pYpb/CJwtbHg2bg9bx8/D386F329fZVHQWF47/ytvT1vBL7mXqehoGvD9d/QZxPwX/k51fiZiiVRoe6u9c5OO+iqGzVggjNcl6ZexsHXAzNIGe08/tGoVTeV3cPEfSlVehuDqqb1zE5FITFP5HTyHjkKt7MV9yEjhNWsKsihJv4z38LGIJVJh7Lw/Oa4yNxXv4WNRtDbQXlcFQHt9JRqlEpeAoXiFhA9wi9beuUltQTY2rp7YufugVBi7Ce7eSKIk7RLzX/oU14BgJDITDHo9pRlXsPf0w8TMnM7GWizsnIRrU1dzPV3N9ZiYW2Bl70xd0S0Cwo04icbSAk58sIXJDz9L0JRogZPV2VRHb2crWpUSvU6H66AQwVnW2VRH8Y3z2Lp74+w7RAipMOj1lGRcxtTCGs/g0aj7eqi7ewszK1v6FB34hk4UjlHR0oha2YPBYKC7tQmZqRnWTm50NtZi0Ouw8/CjsSQfv7DJiMUSFC2NdDTW4DUs7I/U1js3kVtY0dfVwdnPX/k/k77n5OTE888/T25uLmlpaQQGBvLoo4/i7u7Otm3bKC4u/q838lf9Vf9/WG+99RaOjo60tbVhZWXFww8/TE1NDfPnz0ev1xMWFsbNmzcZPHgw8+fPRy6Xs3TpUhobG4mKihLcR1ZWVri4uHD16lXc3d3JzMxk7ty5BAUFERISQk1NDVeuXKGoqAiRSIRarSYpKYmqqioSEhKEyX0/S+nUqVP4+/tz6dIlhg8fTkxMDC4uLixatIg5c+YILJxJkyYRGRmJh4cHR48eZcuWLVy5ckVINmtubhaS0uzt7enu7qazs5Pjx4+j0+lYunQpFhYWAiDa29ubyMhIoZ3u5ZdfRq/XExkZSVRUlJD0NX/+fNRqNSUlJRgMBi5cuMCsWbMGnNu7d+9y4cIFTExMBCeIhYUFMpmMuro63NzcMDU1Ze7cuVhbW1NbW0tycjIzZszg6NGjaDQaAgICePnll5FIJOTn59Pd3Y2dnR1r1qz5/6ogBcZ0vPXr17Ny5UqsrKx46qmnOHjwIGZmZgQEBLB//35CQkK4cuUKd+7cYdmyZfT09DB69GhcXV1pbGxEJBIJ3LGvv/6azMxMSkpKuHr1qgCgF4lE2NvbY21tTUVFBXq9npMnTxITE8Py5ctpb28XOE0BAQHY2NiwYsUKnJ2diY6OZsyYMVRXV+Ph4UFAQAA+Pj5MnTqV48ePU1RURFJSkiB23Q9QLy4u5sSJE4SEhHD+/Hl6enqIiopi1qxZDB06lMuXL7N06VLWrVuHRqMhJiaGyMhIKisr2bNnj/CZuh9wfvv2bXJycjh9+rTA/erp6eHQoUOEhoZy9uxZYmJiePvtt9m4cSMTJkzg1KlTBAQECIEI8fHxzJ07Fy8vLz744AO2b99OdHQ0c+fOJSAggOzsbEaPHs3w4cbe/WnTpuHm5sbPP/8swPD/qr/qf2f9n7qHamlpQafTDXBCAri4uPy3eWD/nW1++OGH2NjYCD9eXkauyMHX12JibkndnZsoWhsRiYwpSA6eflTnZVJ1Ox2ZiSlug4dj0OsxtzEKIMruLnxDJ2Dj4smRdx4nfuebVN1OF36K0y5y4LU1SOWm2Ln+wTBx9guio6EaVW83WrWKkvTL+I6ehIOnH45eAVTcTAGgoSQfR+9AIfXJ3tOfuqJc9HqdEaCuUTH7yTfxC5tMc0URGlUfitZGoe3Bws4Re08/qvMy0Gk1lGZeISBsitC64OQziPa6KrRqFd1tTbTXVWJuY8fYJRvQatR4hYRjaWdM1fQOCTcmTWVdFVbEawqyhbjwUTGrMej1+Iwcj527NzcOf0/8zjepuJlCdV4G7XWVHP3bkzSWFuAbOgE7dx8GTZiDjYsnlbmpqHq70Wk11ORn4z1iHGKJBInMhICx06m6nUF3ewvN5UW4+AcZ2xqb66nOz6Luzk16O1qI/exlWqpLqc7LoCzrKnFfvk5zeRF1d25SdTud1qpSzv/jfdrrKtFqVEJbZX+ZSk0Qi0R8ErGWBUPCaVd2Y29mxb7sC/y2dBsiRLw5dTlpNcVk1Zfy4qSFeFjZIxVLSHz0bRzMrfkg+Rh3W+p4/8oRbjVW8kX0Bio6mtmXc9HIibK0Y0fyMbR6Hak1d+lQ9vD5jdPYm1myY9ZD3Kwv5/nEnyhsruFA3lWuVd1h3pAxiIDdWUlUdDTT2N1pDPQxtUCn1zPUyZPWXgXvXTlMRMBIFOo+vko9S1NPJ69OXsz3mec4XpjKDL8QXjm3H6lYwvOJP5FQnMPfZqxiydDxGAwG1pzYyfbpK3nizHek1RZzo7qIGzVFNPZ0kF5bTFFrHY+d/o5utcrI2NLrGesxiBBnL96atpy2vm7WhE7HxcKGDmUPP+ZcoEvVx5vTltPU08nzCT+i0+t5/8oR/O1c+GbuY3yWchqdQc+XURvwt3PhhYkLiCvOYvPYaOoU7Xw851EiAkIpbq3jy9RYOu4JZX52zpS01fPTzUtk1BZzoewW32clodRqWH/ya8xlJsz9bQeWJqacK71JaVsDj53+luZeBTuuHOWj2Y+wbtQMytub+CRiLXMHh/HwsS94/My3WJmY8mnEWhSqXqb6BFPe0cj7yUf44sYZDuVf57PIdZhIpIx08cXF0paillq+SY+nV6NitLs/FR1NWMnNWXfPOffsuBicLKwZ4epL4qNv06NWEmjvxveZ5xCLxZwvu4VCpeTzqPWIRCK+zUhAoerl7ekreWfGShq6O/gsch3Bzl5odVo+iViLj60TW+L2YC6TIxGJmbrvTVRaDX1a4/dSb9Dz9vQVWJqYMtt/BE09nbyQ+BMKVR+vJu0nMnAU16oK+eDqMeQSKRtHz8ZMZsLH109ws77cOI5a2jLYwZ3XpizluQnz6NOq2X0P9D/YwR21TsfrU5YC8HnkOuKLs/k0Yi1PxX7P+bJc1o+aye3GSka6+rDqyOcsHTaBmq5W3rz4O5O8gpjiHcyR/OuMcvPn6MqXsTAxJb4kh/ruNv5+/QT/mP8kLhY2vJq0Hx9bZ4Y4uNOl7OWho19gY2rO3N/eJ8TZizpFGz8v3kJVZzOtfQoWBo3F0sQUK7kZx1a+zNm7mah1WqRiMcOcvdg6fh6B9q5UdBidWPeXQa+npbqU89/voOBKrAA0725r4uqvO8lNPEJ1Xga1Bdk0FOdx5pMX6W5vpup2OnVFuYhEYiQyE6wcXWmvr6Is6yo2zu5olL34h01GKjfFxNRcgIZX3krDxtkT/7ApSKQyfEMnYO3kyu4nomirrRDCGypzU/n+sQgULY34jByPjYsnnsFhuAQMxcl3MKXpl4WEv7qiXCzsHHEbPBzP4DD6OtvxHj4Wayd37Nx9mbb2eTTKXhrL7mAwGKi8lYpP6HhMzMxR9/XiMXQUvZ1ttNVV0t3WRGdjDZ7Bo9H09WJibolLwFAaSvJR9/XQ097C+OWPY+fuQ1VuKt3tLSi7O+morxJSX71HjKPqdvo9TlYN3W1NuAQMJWDMNLrbmmmrMX7e+lNl5RaWqHoVyC2ssHEyunYTd23nbkqS8H6UZV3lyPbH6airwmfkeJz9gmguL8Iz2OiQt7RzxCd0AqUZV2itKaOjoQqvYcbuKq1aRX3xbbRqFaf//gJ3byT9u9sMof5HoPP6+nqSkpJISkpCIpEQExPD7du3CQ4O5osvvvifbPr/L+r+1rb+CggIEP5+f7pUf2tMf40cOVJ4vEDG9/TEysrqgcf017hxf6zqTZnyIDwSGACc7t+//naY/jI3N8fU1BRnZ2dhwjVhwgTh905OTgNadSZO/MP6FxwcPIATs3Xr1gHH2++qmTp1Ki+88AJgXFHtryeeeIKZM2diamrs9V24cCHDhg3Dw8NDcKI5ODgIMepgZBnZ2toKrSSAwB56+OGHhf/rZ1v0vwfu7u64uLjw1FNPCY+ZOXOm8Pf+NrN+19Kjjz4KILiG+t0Z99d7773H8uXLWbBgAVKplNu3b9Pe3i44hcCY2nXt2jWuXbuGhYUFcXFxREZGcvbsWRYsWEBdXR1paWmMGjWK7u5uIU1s3759ghNJIpEwd+5ckpOTiYqKIikpicmTJwuTe3d3d4YPH05UVBQymYyNGzfyzjvvoFAoUCgUQgLhoEFGCN20adNoamqisLCQ2tpampqaGDVqFFKplJiYGMaOHcvp06cZO3asAOFOSEhAoVBga2uLnZ0dQ4cORaVSIZPJkMlkBAQECJH0V69eZfXq1YwZM4bx48dz6NAhlEolSUlJzJkzR/gc3b17l19//RVfX1/Onz8vuF3ef/99RCIRMTExyOVyamtrsbOzIzg4mLi4ODw8PKiqqiIuLo7U1FQGDx6MqakpU6dOFY7T39+flStXYjAYiIyMJDk5mZdeeonRo0dz+fJlNmzY8MD7+f9kNTQ0sHLlStavX49YLOb06dN89913fPbZZ7z66qs8/PDDVFRUEBERgaurK01NTZSWlgrvxZIlSzh27BgNDQ3MnTuXEydODAD+nzhxgqioKE6ePEl8fDxSqZQLFy5w5MgRFi1ahFgsxsnJCQsLC8rLy7l+/Trt7e2MHTuW1atXY25uzpkzZ9Dr9eTk5BAWFia0kllaWhIWFsbvv//OokWLSEpKIiEhgcTERN544w1+/fVXlEolixcvpq6ujqlTpzJt2jQBOn7kyBGBp+bo6Mi0adO4fPkyer2epqYmgoODOXjwIB0dHUycOJHIyEi6urr47rvveOSRR1iwYAFNTU18+eWXWFtbExkZiaurK9bW1tTX1zN79mw+//xzhg4dikKh4Pjx4zg5OWFlZcWLL77Ip59+iqmpKV988QU//vgjBw4cQKVScfr0aRYuXIhKpUIulxMVFcU777xDZmYm3t7ebNiwQQDd/3OZKRor3wABAABJREFUmRkdB/1j3sKFC4XfDRs2bEAba/8YvGbNGmFcBGObMcDmzZsB2LjRuNrf/50ZMmQIcrkcPz8/AKytrYXXud+dtnDhQmFbM2bMYNasWcjlxglxf9vqpEmTBEbXrFmzmDFjxoCxHRiwz6tWrfqXvwMEEU8kEhEYGCj8//z58wHjONx/jgCh1U8ikQj7JpfLsbS0FLYjl8uxtrYewCm6/5oqlUoHXONg4DWvf7z757r/enn/tu+/LvcnOpqYDEySGTbsz9kP/zvq/633UK+99hqdnZ3CT38Sa+Qzf0NuboW1kxuxn73C8fefIe/iKQqunOXsF69ycc9HKFobqbqdzqV9H1N1Kx1FayOX9v6dA6+vRdnTRdiCNcQ89wFqZS9yC2vUfT2MjFhOxNPbkVtYUleUS3n2Na4f/I6W6lIs7Z04/PZjpB3bi52bNx0N1Vw/8C193Z1IZHL2bl5AQ0k+Xc11nProObLjDtBRX0XBlVh+eCwSR68AzKxscfQKxNrRFa1Gzd6n5yMSiai8lUbcl69TlnWVjvoqWqpK2P1ENHIzi3v7cZ2zX7xG1e10xFIpe56aS0tlMX6jJyEzNcPJZxAu/kM5/v4zVNy8gdzSmszT+2mrKcPO1Yszn71Mwq7tGPQ6dGo1137fRf3dWyhaG9n79Hway+7gEhhMxNPbAZDKzdCqlERveR9Hn0GUZSbTWFJgFJj0OgLCp1N58wYH31iPT+gEgU9p5ejCyQ+2IpOb8uuLq4RJSWn6Za799jVycwvch4zExtmTmOc+QISRPSUSiZn12Gs4+Q5G3deL2+ARAERv3YG1szsdjbVCW2V/KbVq/n79JM09nTwTtxszqQk3qouY5huMWCQioSSHty8dYF3oDFp6u/guIxEzmdyYstZcw5Nn/sG2CfPxsXViZ/RGpvoEsyVuD0qtmtn+I3gmbjdyqYy3pi3HwdwKP1tnwj0G8eHsR3j8zHdIxRL87Vz4cdEzBDl6MNNvOB7W9hgMBvZkn+ere1DzJ8dEYC0345PrJ5GIRCi1GkQiEU+OMabivnHhd5LWvEOAvSunizIY7zmY9aEz8bF1ZmfMRrR6HR/OfgR/OxdeO/8rNV2tmEikRAWOwsbUnA9mPcJYj0Hcaqykva+bpu5OLGSmKLVqYgaNxkZuTml7I43dHQxz9qKpp4svbpzhRvUdGhQdeFg7oDPoeTI8CkuZnPevHKFT1cvHc9bQp1Xz0qRF5DVVG7lJ01egUPeh0euQS4xtgxEBoQDsSD6KTq9n0cGP6NOqeXPacvzsXJg3OIyU6jtYyc14c9pydmedZ92oGTwdHoWtqQWfRKxFJBLz0qRFiEQinC1sCHX15YNZD/O3S4d4YkwEW+L3UtLaQJeqj5fO/czpogxen7KUv89ZQ3l7E7/kXuZmQwVavZ5w90BenLiINSOns2DIWF5I/ImG7g7a+rpxvQd4v7L+PVwsbXn53C8EOXrQ3NPJlzfOUN7eyFBHT7LqStl+8SB5TVWodFosZHK+jNqArdyCgqZqJCIRzyf8iEws5fOo9Wj0etr7uunTqMltqOBuaz17ss4TV5xNvaKdD5KP8uOiZwlx9sZSbkaoqy96gx57MysWDx3Ph1eP0dDdwcZT37AyZBJZdWUcWv4ClnJT3p62Ah9bJ6b5DGPHzIe5WlVAkKMHryb9ytrQGXjbOnG8MJV3pq/kvStH8LV1wkpuTmN3Jzc2fcQbF38jMjAUnV5HfXc7PRolzyf+hKulLS6Wtvw9Yg1TfIzfmY6+HvQGA0GOHjiaWeNhbU/G43/n5J10nonbzZrQGbyS9AtFLbU4mFkxwsWHES6+vDN9JUfzU9hwahefR63n2/QEpGIJJhIJy4Mn4mhuxY5ZD1OraOeLG2cobq2nsqOFn29ewsrEjMbuTtad+JqillrWhc6kQ9lDc08nDx39gl6NijUndvJJxFr0/9SQFTh2Or0drUQ89TZjFqzFxtULqdwMSzsnxixYg72nP3q9Ho1KScjMhcx6/HXkFla4BoZwM/4Q6Sd/pOp2Oi2VJRx6cwMaZR/NlcXkxB/E1NKWvq4OHLwDaa+t5OCbG3DyGYxerxPcQnVFubTVVhC9dQeew8KQmshR9/USPH0eo2JWITWRU5x2kYNvrKOvqwODwcCpj7Zh4+rJ7Qsn+Xnbcvq6OtCqVWSc+pk+RQcisZgDr6+lp6MFJ59B2Lp54Ro4DBsXD77fNIfKW2nU373NnWuJHH57k3EBQ6Pi2q87+fWlhwCj4/fMpy9ReOUsbbUV3Iw/yG8vP3JvIcUfdV8PfqMnU5x6gZ+2LkUkFlN5K42zX7z2/2HvvaOiyPqt/0/T5JxzzqCIiICiiCJKNuecMMyYHXXMYXTUmTGMjjnnnJVgjmBCERFEyUjOuWma5vcHTj8z98nhvve+72/2Wq4lVaerq7qqzjm1a3/35vP7Vygqq7J/eiif379CSU2DuDO7Kc9NR1FVjeKsDxz8uh8IBFSX5FOS+YH7h34iOzEeOQUFdM1sCJ37Pep6hsjJK9AiacbctRNeAyagbWxOZsJjDn4VjlBRibz3Cdzdv7GNJPyQiLihjvOrpvLp2V0+xt/h3sFNxO5cTWN1JeaunQiYvPh3quS/Bfm/3+T3aG5u5tq1axw+fJhbt27RoUMH5s6dKysPArh8+TKTJk2SlYP8v4SOHTuSmJjInj17cHJyolevXhw8eJCTJ08yceJEtm3bxnfffcebN2/w8fFBSUkJqVTKsmXL+P777ykpKUFDQwN7e3uKi4sRCoXY2tpSUlLC/PnzmTp1Kurq6mzatAmxWEyHDh0ICAggPT2dkSNHkpycTGNjI97e3nh6erJt2zaOHTvGuXPn8PX1xcbGhmPHjhEdHc3KlStZuXIl8+bNo7S0lD179pCRkcHp06fp378/x48fJyEhgatXrxIfH8+5c+e4dOkS7du3R0FBAQsLC2bMmMHy5cvJzc1l48aNeHp64uLiwtKlSzl16hTXrl1jwoQJMhPeqqoqzp49i5GREWpqauzbtw8tLS28vb0xNjZGJBKxd+9ejh8/Tk5ODidOnGDWrFkYGRkxZMgQmYrEycmJ7Oxs9u/fT3h4OGvWrJH5IE2cOBF1dXVu3rxJ3759yczMZPDgwRgYGDB+/Hi++eYbFBUVqaurQ0NDg0mTJnH16lUWLVrEvXv32Lx5MyYmJowaNYq5c+cyZ84c3r17h4KCAt9++y0pKSlcuHBBRlb9VwwdOpQPHz6goqLCjz/+iJ+fHxcuXCAuLg4VFRUaGhoIDQ1l48aN9OjRAycnJx4/foxIJGLt2rXU19fj5OTEt99+K1MzJSUlsWfPHgICAjh8+DDXrl1DIBDg4ODAqlWraGlp4dmzZzQ2NhISEoKpqSnr1q0jKSmJAwcOYGxsTHl5OUFBQVy6dInBgwfz7NkzmpubZRNPGxsbduzYwQ8//EB0dDT37t0jJSWFpKQk3N3dUVRURCqVUlxcLHvov3LlCjdu3MDDw4Nbt24xZMgQfvjhB6TStrrl4OBgVq1aJSMeBQIBWlpaWFpaoqKiwvnz52W/W2trK0KhkHHjxnHx4kX69etHYmIix44dw9XVleTkZOrq6mhubpapx4RCIQ0NDWzbto3a2loGDRpEYmIie/fuRUFBgWvXriESibCwsKCsrIwRI0bg4eFBVFQU33//PatXr+brr79m+fLlrFu37r+/g/gbiIiIYMmSJWhra3P27FlOnz4tU7hpaGhw48YNWltbuXfvHoaGhhw/fpyGhgaCg4N59OgRK1euRCgUIi8vz6NHj+jRowdNTU3ExMQgFosxNjbm+vXrMqIzOzub77//nsrKSgIDA2X78Wu65Z49exg2bBgvXrxATU0NMzMzMjIyEAqFHD16lNjYWFpbWwkNDeXixYs4OjrKDOP9/f1RUlIiNjYWFRUVSktLycvLIzc3l6NHj6KqqkpdXR2JiYkEBwfLkh7Ly8vR09OjqamJ1atXIy8vz/Xr12loaEBBQYHOnTtz7tw5li1bxs2bN2UEcWZmJrm5ufj7+zN69GiSkpKoq6ujoaEBPz8/Ll++zKxZs/Dz86NXr168f/+ebdu2oaenR3h4OB06dJCVLFZVVaGvr4+ysjL79++X+dMVFhby4cMHamtraW5uxsbGhqFDh/6ZV9u8efO4cOECK1eu5NWrVwwZMoTZs2ejr6/Pnj17ePDgASNHjmTEiBFERkZy8uRJLl++LCtP/Oabbzh+/DiZmZl0795dRiBdunSJPXv2sHbtWjw8PHB0dKRv3748ffqUvLw8fvnlF8LCwoiIiMDJyYmYmBh27tzJ6NGjmTBhAgMHDpQRnVKplAsXLsjUmg8fPuTRo0e4ubmRm5uLtbU1/fr14/79+9TW1pKTk4OLiws1NTUUFxczYcIEmc/VkSNHmDBhAosXL2bQoEHMnj2bTZs24ezsLCOM6+vrWbt2LT/99BNLly7l5MmT3Llzhzdv3pCYmMjChQs5duwYx48fl4VXXLx4kQULFvDw4UOmTJnC3bt36d69O9OnT2fhwoU0NzdTVVVFly5dePv2Lenp6Xh7e1NWVsaPP/5Ijx49ZGXP2traLFmyhDdv3uDt7Y28vDxJSUlIpVIcHR25evUqNjY29O/fH19fX169eoW2tjbv37+ntbWVoUOH4uzsLPPSevnyJYcPH+b9+/esXLlSdt98/vz53+4H/jvnUPr6+giFQoqLfx/D/WtQxL+Cf2WbSkpKMuLxt2iRSLiyYTaOXQNx8Q8j89VD4s/tRc/CFkffPmgamPLhcQzWHr5UF+eT/uI+HqEj0LdypKm+hpQHN3Do0puUBzcwdXbnzp519Bg3l/Orp+IzeDK3dq2hy9BImuprqSrMpehTMi2SZuorS2mqryE/9Q11FaVUFeWRm/QcIztXmkUN1FWUYtnBBy0jc9KexCInFKJtbIl70FCSbl3k7a3zBE5dxp196/EaOBGApvpanl04QO/IJUiaxWgamoJADgMbJ+ory2hqqOVzapuKtPxzFmU5n/AZPIW6ilLOrZyCoooauua2iOprKcn6gImDG82NDRRnpPAm+gzuQUMpzf6IioY2yhravLh8mNqyImpKCxE31KNtYkFVYS6KquoUp7/H0s2bqxvn0jFkOMrqmhR+eoeKhg7x5/aAAO7sXU/XYdPITHhMbVkRb2PPU138mU/P7tIxZDga+sZ8enYPa49u6JhZIxY1kv/hDUEz11BVnM+ldTMJmb2OqG1L6T5qJrd2ryVw+nJKcz6RdOsCwbO+4+BX4XgNmICZiwfNogbu7f9zHxYLTT2+9g6lsK6SFf5D0VXV4JewSMZf3k5huyrGufdkfMeeyMsJ6Wxqj6+FMxpKyuyNmM7CW0dZ4T8UBaGQhTePoiKvyM6wqazuNQIDVQ20lNWY7RNGk6T5i+n0V8zyCeVRdgp3Mt+yI3QKBmpajDi/mZ1hkXxz6yg7QqcwK+oAkzwCCLTtgLyckMc5KVxIiWdH6BS2BE9EXiBHaUNbac7RxPtsCZ7Iti+lYnNjDrGo2wAU5IR8//gim4MmsCD2CAt8+3E2+SmRnn2Y6NH2MtRRzxQDj7aXrxOv/MKmPmP51m8QhbWVaCurUVxXhbxAjlAHT25lJCJtbcVSS5/c6jJcDCyY0DEAGx1DnuZ+oE4s+qKQseFa2ksWdRuAirwiPz29QrCDB3cykljXexTf+PbHUc+U6df3EGjrzqLuA5jkEYCcnByx6W/4tvtAhHJy7IuYwZuiNmXJyAtb2BI8kYLaSix09ZFKpWgrq1JaX0Nc3gdeF2QyukMPDr+5R71YxLTOfRFJxGRVlrDy/ml+6DuO4roqjg+aw9HE+/Sxc2d1rxHoKqux+sFZfC2cSSnNQ1lekZZWKWUNNex6GUNzSwtzuoRxJ/MtRwfORiQRoyiUR01RmeOD5pBQkMHdrHdcGrGYzIoibHWM2B4yhRsfX+FuLIeSUJ7uVi5IW1sZ496DllYpX93cx/FBc5jbNRxxSwtbgiYgAH54eoVvfPuz9uE5vvHtT1+7jnz/+CLrAkZR09RAQ3MTHY1tqBTVMfHKDi6PWMzkToF0MrXF98ASvvUbxALf/khaJPS2cSOhIINDb+7S3tCC+bFHWOo3GJGkmS3x19gcNIHY9EQCbNxYHzia2VEHWN5jCO7GNggEAlJK8yisrSTjiwn87vBpRDh2Rl5OSGVjHYff3OP6qKVsDZ5EbVMjYy/9zNWRS0grz8dWx4h2hhZkVRazsucwHueksOLeabaHTkFLSZVvuw8kwMaNKZ0CkUhbiPqUwLfdBzHjxl62h0zG3diGntbtsdExoqmlGbFUwuan15jvG0FseiJnk58yrmNPfMwd0VRSwcXAnKsjv6WorgorbQN+CY1E3NLM/Ngj/BIayUzvUFqBOrGITX3Gsjnuz8u7n188SL9FWxDVVSMRizi1eAxdh08n/uweug6bRtbrJ6Q8uA6AvU8AUomE7MSnaBmZ4xkxBolYTGVhLuq6hpg6uZOT9Aw9c1vUdQ24d2Aj2YlxeA2cSHH6e6oKc0mLu8XzC/vxn7CAh0c2AxAyex2pj25i7x0g69frq8pQ1zXkY/wdBHJCnP1CKMvLIPvNU6qK8hDV1aCookpjTSUIBFQV5lKS+YGiT8mysraiT8lUFubi4hfCkTmD8Rs7h/a9B6KiqU1xZippT2KAttCKyqI8dM2sUVLToEXSjKKKGt1Hz6KhqpyijBSaGuqRk5fn/sEfKcv5SGVhLvY+AWgbmdNlaCQf42+jrN7Wn0jETSiqqiOVNCMWNdBUX0tlYS4xO1fjFjgQgGZRAxWfs6gtKyYv+SVF6e9x8AngzNIJBE5bRtS2pQTPWkvMjpWYOXvQoe9gmuprSYw9j7axBdrGFrQ0i5G2SBDVVVP4MYn6qnJMHTu0qcVqq7h3YCNaRmb0nLiQ1MdR3Nq9Fr8xs3l8YvtfnCv8V/zTnlL6+m0d1MiRI4mMjJQpVn6LqqoqPDw8yMrK+mc2/b8av3pKDRw4ED8/P7Zs2cKWLVuora3l+vXreHl5sWzZMqZMmYKLiwtr167Fzs6OxYsXM3z4cL7//nuePn3K58+fWbBgAeXl5URHR3Pr1i1OnDjBmDFj2Lt3L8+ePcPGxgZvb28qKirIyckhNjaWFy9esGbNGu7cuUNsbCwbNmwgJiYGDw8PunXrxuzZsyksLGT58uVUVFQQFhbG+fPncXFxYfHixaxduxYLCwv09fWJiYnB3t6ey5cvo6GhQXp6OvPnz2fGjBls3ryZM2fOMGbMGLZt28ahQ4fIy8ujoKCATp06UV9fj5aWFp06deLjx4+MGDECNzc3pk6dysGDB4mOjubKlStkZ2ejq6uLmpoaQUFB9OnTh+fPn1NaWsr9+/cJDg7m1KlTjB49mvT0dOzs7IiOjkYsFhMcHMyZM2eYMGECVVVVxMfHExwczIkTJxg7diyVlZUoKCiQkJCApqYmGzduZPbs2fj6+hIbG0tgYCAGBgYycuLX7zt37hwmJiYIhUJZW1dXV5KSkrh37x5btmzh9evXeHh4EBsbi0gkIjs7GwUFBZmSISwsjJs3bzJ8+HCWLVvG+/fvMTQ0pL6+nn79+nH58mWZoXpjYyPBwcFs2bKFdevWce7cOebOnctXX33F8uXL0dXVJTg4mKioKKqqqjA0NGTSpEnk5eUxZMgQOnfuzOvXr/Hy8uLz58+UlpYSFhbGtm3bZA9jubm5MqXG7Nmz2bx5MyoqKsTFxTFlyhRiYmKIjIxk7dq1MhIoKyuL/v37Y2try5YtW8jJyWH48OEYGRmhpaVFWloaGhoa7Nixgzlz5lBbW4uPjw93796luLgYFxcXVFRUZNenpqYmnTp14tGjR8yYMYMpU6bIyL3Pnz9jamoqSz8cOXIk27ZtIzw8nLVr18qIyPv37yMvL8/IkSMZOXIkERERzJw5k7KyMm7fvk1paSl9+vThu+++4/bt2xw+fJiffvqJwYMHExYWxsGDB9HW1qZbt27s3LmTs2fPsmPHDkJCQoiMjKSgoIDr16//D/Ygv8fmzZsxMzPj1KlT7Nixg6SkJNTU1AgICGDLli107tyZuLg42rdvz8KFCzl//jyfP3+mffv2nDlzhm+++YZz587R0NDAhAkTuHLlCu3bt+fjx4/Y2dkxePBgNm3aRHNzM0pKSsjJyTFmzBgOHDggM7Xu1KkT169fZ8GCBSxevJjw8HBEIhHv3r3D1NQUd3d3kpKSEIlEshKc0tJSAgIC6Nu3L19//TVdu3YlPT2d2tpabGxs+PDhA5s3b2bz5s106NCBq1ev8v79e/r27UthYSEjR46kV69e7Nixg0+fPlFZWYmenh4bN25k8uTJmJiYkJ6eTlZWFkOHDpUlK44bN45ffvmFBw8eoKKigpeXF/Hx8bx69YqXL1+Sk5ODqakpGRkZfPz4ESMjIxYtWsSCBQvQ0NDg1KlTHDx4kCtXrnDz5k0MDAyora1FUVERTU1N3N3d6du3LwsXLqSpqYmAgAAOHjzIrFmzfhegAG2plW/evOHrr7/m2bNneHt7c/z4cebMmcONGzfQ1dWlqqqKkJAQSkpKuHfvHvr6+jg5OfH+/XuCg4NliaXv3r2jpqYGNzc3JBIJa9aswdramjlz5nDr1i2CgoL48ccfWbRoEXV1dTx+/Jjg4GCWLFnCvn37iI+PJz8/H1NTUxobG3F1deX06dNMmDABiUTC7du3CQ4O5s6dO/Tp04fS0lLS0tJQVVXl0qVL9OvXj6KiIvr160d0dDQ1NTUMHz6c8+fP069fP27fvo2bmxtv3rxBIpGQkpJCWFgYffv2Ze/evcyaNYt9+/YRERHBwYMHWblyJQsXLmTu3Llcv36dAwcOMG/ePPLy8igqKmLhwoVcvXqVLVu2sHr1arKysoiOjub8+fMsXbqUd+/e0blzZ7S0tIiKiuLWrVts376d69evc+/ePebOnUtKSgqenp5069YNfX19xo8fT2RkJHJycqxYsQJ7e3s6dOjAgwcPWLp0KWZmZoSFhbFu3Tq+++47Nm3axN69e1mzZg3Dhg2TGcKvX7+eo0ePsnDhQoyNjZk8eTJbt26ltraW6dOn4+fnx+PHj/9tT6n/7jmUj48P3t7e7NixA2gzJbe0tGTmzJn/ltH5v7pN+PuenCaOHSj8mASAqZM7BWlv/2pbV/9wUh7e+LvfKSevgFTS/Hfb/TXomtvISh7+Hux9epH+/P7fbKNjak1lQfa/vD+/hbquAXUVbQpO2849yHz16HfrjexcKc5I+ae3a2DlSGnORwCcugWR9jT2X9o/TUMzakry/+r6SM8+7E+4zZbgicyPOcyWoAnY65mQWVHMotvHWNd7FItuHWN5jyHoqWoyL+YQ63uPQtrayomkR3zlFYy0tZXqpgaUhQpkVhZhqWXAiaSHrOo5nISCDFQVlNBSVmVB7BHWBYyiUSJGIm1BU0kVFQVFFOXkqW5qwFbHiMSiLLzNHLiYEs+pd4/5JTSSKlE9nUxtCT2xju97j+bY2wdM7dyXtLJ8tJXV2PTkMttDJnMt7RU9rdthr2dCSX01tU2NqCooIW6RoPGlVEpBTkh3S2fmxx5hba+RbUqW/HQc9ExYEHuE9b1Hk1ySg6mGXltp49Mr/BwyGZGkmXtZSTzMTuGHvuNYGHuEDX3G8svzKGb5hNHaKkXc0sKdzCQam5uobmqgt20Hiuoq6WbhzOOcVLpZOjM35hADnX3wMXekuL4KVwMLvrqxl20hk2TG3VWier57eJ7tIZN5nJtKNwtnVt4/zRBXX3KqSkgrL2CWTxhvCjNJKs5hVc9hlNRXI5I0IycQsDX+Oiv8h9LYLEZJXoEZN/ayJWgC82OPsDV4EpdSn+Ft5sD7klwam8V4mtpR2lCNmYYujRIxdjrGZFYWY6qpy5r7Z1nhP4xv7xyXpQVuDByLuqIyM6P2s7rXCJSFCnx75zhL/AZjpqHLt3eOc3XkElJLPyOWSpgfc5irI5dwKfUZTnqmfPfwPAu7DcBIXYuGZjHZVSXoqqhjqKZFo0SMs74Zh1/fw8/KhfmxR/guYCSnkh4zxTMQaWsrOipqHH59j7pmEVuCJpJRUcTU67tlaXsPc94jlki4lZHIL2GRX9LwmjFS1ya9ohAbHUPmRh8i1METLzN79FU1mHFjL1M69cHf2pVzyXGEOnqSWVmEva4J1aJ6ZkcfZKZ3KG+KMmlnYMGNjwks6zGYphYJlpr6DDn3I3O7hGOiocPi28fZEjQBSy0DShtqqBU3Ii8npKOxDcvvnmSAiw+Lbh3j2+4D0VBSpbG5CS1lNdn5Wnz7GCcGz+VVfjq1YhH2usZ0NrXnyofn9LJuT0ZlEYtvH2dE++74Wbnw9c39bA2exOr7Z1jXexStgLJQgV9eRGGiocOr/AyC7DtyJvnJnymloM1XqiznE4qq6ogb/rnEa1PnjhR9Sv6zAIt/Bmo6+r9L7QNQ1zVEQUn5SwDHvwd1XUPqKv7kpaVtbEFVUd7v2uhZ2FGe1xY4Y+fVk4yXD/5sOwKB3O/My/8TUFbXQlRX/VfXKyir0ixqkJ2jfwRyQnnZ+bBo35m85Fd/sd1/3FNq69atFBQUsHPnzr84mYK2UoX/lwip30JZWRmxWMz+/fsRi8UYGBgwePBgnJycOHHiBM+ePcPT05N9+/axcOFCAA4ePMjWrVuZNGkS58+fZ9y4cRgbG/P48WNevHhBWVkZJSUlTJs2jW7duuHm5saJEyfQ0dFBW1ubBw8e8OrVK2xsbHBwcCArK4uioiJevXrFunXrqKysZNeuXejp6eHq6squXbuorq6mubkZIyMjFi9ejL29PRMnTkQkEpGVlYWmpiZTpkzh66+/JiQkBE9PT3bv3o2ZmRmjR4/GzMyMXr16IRQKuXv3LosWLaKpqYmamhri4uKIjY1FR0eH7du3M2XKFPz9/WUm14GBgRgbG2Nvb8+bN284e/Ys69ev5/Dhwzx9+hRo859xcHAgOjqaiooKYmNjKS4upri4mJiYGLp27cr79++JiopCKpVy7do1WSLc/fv3ycrKIi8vj7q6Os6cOYOuri63bt1CIpFw9uxZPn78yJIlS7h+/Trl5eVERUXJ0uxMTEy4ePEiEolEZkoeEhLC8uXLycnJoby8nCdPnmBhYUFdXZ2MkAJ48uQJ06dPx8fHh/j4eEaOHEl8fDzXr19n7dq1ODs7IxQKycrKoqCgAF1dXby9vfnpp59Ys2YNKioqLF++HGi7OW/cuEFVVRUA4eHhbNy4EQMDA5YvX87ChQvp378/Dx48wNvbm2fPnjFixAg0NDTo2bMn9fX1qKioEBYWRnl5ORkZGaSkpBAUFISHhwcWFhZIJBLWrVuHg4MDHTt2RFVVlZcvX3L69Gm0tbXx8fEhMTGRiooKPD09efDgAWFhYcTFxckS2EJCQliyZAkSiYSZM2eSm5vL9OnT2b9/P5s3b0ZZWZl27drR0tLChQsX6NWrFwcOHKBfv360trYyYMAAevXqRXR0NBs3bsTa2poVK1ZgYmJCTU0NS5YsISIigsbGRmbMmIGzszOhoaFs2LCB9evXU1FRQXh4OEuWLMHAwICWlhbi4uJ4+vQp+fn5XLhwgYSEBAYPHszOnTtJS0tDTk6OFy9eyEyxvby8ZKVL/1MYMmQIK1euJDw8nJaWFj58+MCNGze4fPkyERERZGZmsnLlSrS0tIiNjWXfvn18+vQJkUgkO5YLFy5gYWHBqVOnePr0KRMmTGDhwoVoaGiwYMECQkNDuX//PjY2Njx48ICsrCy2b99OcnIyVlZWXLp0iblz51JUVISjoyMmJiYcOHCAwMBA/Pz8WL16Nbt27UJZWRkXFxeUlJSYPn06a9eu5dmzZwQHB3P48GEEAgG5ubmYm5tTW1tLREQE27ZtQ0lJiaamJqKiolBXV8fIyIhnz57Rs2dPnj9/LlP2LF26lO3btzN58mTq6uqIj48nLS2Njx8/MmfOHAIDA+nWrRsJCQlMnDgRNzc3PDw8+OWXX3j+/Dna2tp8/vyZFStW0KlTJ96+fUt0dDQfP37E3Nyc4uJiWZncmjVriIiIYOzYsWzcuJFLly7h7e2NWCzGz8+P5ORkrl+/3laLX1VFeHg4y5cvRywWM2fOnD/zIgsNDaV///7cvHmTlpYW3rx5g62tLevXr6e5uRktLS3k5OR4/fo1SUlJjBgxgsDAQJ49e4ZEIuHy5cu4uLgQExNDYWEheXl5fPjwgcePH7N161bGjx/PtWvXaG1t5eLFi4wZM4YbN25w8+ZNSktLefr0KVOnTuXEiRPU19dTU1PD4cOHkUgkXL9+nZCQEO7duydLNs3Pz6e+vp6oqCji4+NJTU3l9evXjBw5UjZmXLhwAWtraxQVFYmOjiY0NJTY2FiSkpKIjo5GXV0dqVTKypUrKSgokJU6/6po2rFjBz169GDgwIEYGRlx6tQppFIpRUVFNDY2MnbsWDIyMmQlxurq6jQ1NTFp0iRUVVXp0qULVlZWTJkyhc6dO+Pl5cWtW7dITU3FxMQEBwcHMjMzZamTgwcP5sSJEyQkJLB9+3bmzZuHnZ0dp0+fZuXKlaSkpLB48WKmTp2KQCAgJiaGc+fOceDAAVRUVFizZg1mZmacO3eOc+fOER0djb6+PosWLaK1tRUVFRXOnTtHYWEhEomEVatWyRJg/138d8+h5s+fz/79+zl69CipqanMmDGD+vp6Jk5sU/iMGzeOJUuWyNqLxWISExNJTExELBaTn59PYmIi6enp//A2/138SkgBf5OQAv4hQgr4twgp4B8mpIC/S0gB/zFCCpARUsCfEVLAv0RIATJCCviXCSngbxJSSkJ59ifcZmdYJEKBHAIECOWEZFeVMjfmEBv7jOVxTipHB85GQ0mFhuYmtgRPRE1BmRX3TjPLO5QV905xL+sd0Z9eU1xfRWx6IsryCrgZWiFukfBT3FXkBAK+e3ieZT2GkFdThrmmHpueXKZOLGLlvdMkl+SSU1XKlKs7KaqrYvDZH2iUiNkSNIGS+mpcDS0IPbGOTX3GISeQw1rbkBapFA1FFWx0jPip73hmRx+kl007Tr17zNnkJ6y6d5orqc+5lPqMWnEjX93cx0i37vhbt8NYQ4dgew8KaivIqCjiSW4qD7LfM6dLOP7W7Tj97gnK8gpYaOqxJXgiH8o+cyfzLX1s3fmp73gU5IRM6tQbOQR4mzkgJxAwP/YI0lYprgbmjO/Yi6mefVBVUKKsvoaS+mreFmdjpW3AUr/BWGq3eYVujb9OTnUpm/qOQ9raSuzYlUikUrSUVNkeOgVxi4TxHXuRVVXMzrCpPPucRqijJ4Ndu1AnbuRTRSGRnn0QCuSYFXWA6qYGVOQV8bNypb65iYLaCkrra9gaPIlFt9tM5dUVlUgpyUNNQQkvM3uCHTyQtkoprqumUSLmcU4q70vz2PbsBjrKakz06I2aohILfPuRVp7PkYGzkH55ML85ehkHE26jqthWmqehqIyNjhHdLV1IKMxgZtR+tJXU2N/vK1bcO02wvQeNEjGre41A6Uvi4f2sd5Q31CJAwIp7p2loFtPv1AYGuXahTtzEnojpNDSLMdbQRtraioA2L7Th7bsxukMP7mQmMfX67i/fr8JXN/cR7tiZnjbtWd97NLViEXNjDlFcX0VBbTnrH11AIpWyIXAMIQ4eLLx1lNqmRkLsO2GioU1edRlPclO5lPqMT+WFjL+8nY/lhWzqMxYTDR2GuvpipW2ApZY+La2tLL1zkkNv7nJr3CpUFZRQFCqwI3QK8kJ5Vt4/TbO0hfKGWubHHOZTeQHFddVYahmwOWgCG59cprG5if0Jd7iQEk/85zQU5OTa7pPqMva8usXNj68QIKDPsdW46Jsz5NyPPM5J5VD/mbgZWZFZWcLhAbN4mpvKfN9+nHn3hH2vbiFukaCrooEAASt7DsNEQ/cvElKAjOz4ZwkpgIIPif8WIQX8GSEFtPn9/QcIqV+39Vv8V0IKkBFSwF8kpID/OCEF/E1CCtoUVcA/TEgBvzsff42Q+kfwL6Xv/f8Rv77p69KlC8+ePSMmJobm5mYiIiJk6oOFCxcSHR3N48eP+f7774mOjqasrIyxY8fKUqO2b9/OuHHjSExMJD8/H7FYzMSJE2UPcR06dCArKwsPDw+OHz/O8OHDuXv3Ls7OzuzevZsffviBR48eYW5uzocPH2hubqZ///6cOnUKeXl5unbtSm5uLpWVldy4cYO+ffty4sQJ9uzZQ1paGoWFhTx+/JigoCDCw8M5fPgwRkZGHD58GD8/P+zs7AgLC+PKlSvk5ORQX1/PyJEjSU1NJTg4mEuXLjFkyBBEIpEsES0wMJCePXsSFRXF06dP8fHx4ePHj+jq6uLs7ExxcTFNTU3U1tairKzMmjVrGDhwIAMGDJD9Lr+WArx48QIvLy+io6Nly01MTCgrK0NPT4/Y2FiCgoIYNWoUp0+fJiYmRnaOioqKmDBhAtnZ2VhZWcm2PWnSJA4fPvy7tg0NDQwaNIhDhw4xbtw4hEIhMTExBAUFsWbNGtasWcPTp08pLy8nMjLyz0oX/sAf+AP/Z6GsrIxIJPqf3g0WLFjA119/zePHjxk/fjyVlZVoampy584d+vbtS2pqKq6urixatOh3HnY1NTUMGzaM0tJSdHV1uXPnDr1798bQ0BA7Ozu+++47Wdu0tDTmzJlDTU0NGhoasr7sV4XQ9u3bZeWAjY2NqKqqcurUKUaOHElCQgIWFhbU1tayfPlyxo0bR0hIiCyZ0dXVlUGDBrFu3TqioqJkXm7Tpk1j5MiRtG/fnoyMDHx8fNi6dSvz58+nsbGR9PR01NXVef78Oc+ePSMwMJABAwZw6tQpVFVV2b17NwMHDsTY2Jjw8HDOnz9PTk4OEomEESNG8O7dOz59+oRQKCQ1NZUePXrQu3dvXrx4QUtLCwYGBnTr1o3ly5cTERFBWVkZjo6OHD58mO+//55Hjx7h7e3N/fv3sbOzw9HRkS1btvDVV19x//597O3tcXBwYPDgwcybN68t5ay6GktLSzp06MDevXuBNl/D6Ohobty4wc6dO4mKiiIzM5OZM2fKfucNGzbg4eFBcHAw33zzDXv37mXw4MEcOXLkP5K+99+NX375hR9//JGioiI6duzI9u3bZZ6UPXv2xNramiNHjgCQnZ0t8yz7LX71fftHtvn38Ed68R/4FQNdfOhq4cSiW8eY0yWc2qYGPE3tqG9uQg4BHYytmXZtN8PdunPm3RO+8g7mc3U5LgbmaCm3ee6IJGLyqsv4UJaPuaYeltoGrHt4nh2hU/j+8UX2Rczg2NsHOOiacDzpIWX1NXwfOAYFOSGNX0rC8qrLMNPUQygnR5OkGXk5IZ9ryqlpapCpuJSFCrwtzuZiSjx2OsaMcPNjXswhdoZFMj/mMIu6D0RdURmJtIXW1ja/rHWPLuBv1Y72RpbkVJXiZ+XK4tvHZNuTk5PjSupzguw9eJCdjIu+GTHpiUz0CKClVcqmx5fRVFLBSd+MzqZ2rH5wlumdgziaeJ9wp86U1FWjIBRiqWVAZ1M7zLX06Hdqg0yVtCV4Ij88ucwMr2DcjKy4m5lEF3NHxl76mV9CIxEIwNfCmeNvH7Il/posfW9L0AR2v4ylnaEFzgbmbHx8iZ1hkcy8eYDtoZOpaKxj1f0zbA2exLyYQ2zqM5bXhZl0NLZBSV6Bva9uMcs7lAWxh2mWtrC/31dUieo5/z6OmqZGxnfsyauCDCQtLVz+8Jxv/QYhL5AjoTATDUUVyhtqqBLV08fOnV9eRHN+2EJeFaRz7cNLxnXsSVzeB06/e8LOsDYVW1lDLVvjr7OpzzgW3z7Gt36DSCzMItShE5dSn2GrY0xq2WeC7D04lnifmd4hlDbUYqKhQ0ldFcfePmSgiw+GapqoKCihKCePrqo6oy5sZaX/MI4m3sdK24CRbn68KcxkX8JtmWrr8ICZVIsamBtziG/9BqGmoISWkiqzow8S5ujJEFdf6sUiCusqiUl/Q4CNG9LWVjbHXeX4oDl8Ki9EW0UNZXlF0so+86ogA12VNj/hnKpSguw7YqtjxKfyQtyNrRl/eTurew5H0irlwvs4AmzcMNHQwV7XhLnRh/g5ZBKlDTVIpFKiPiUQYu8BAgEGqpqIJGIMVLV4W5zNqvtnWOo3mH0JtxjdwZ/2hhY8//wJdUVlapoaufHxFYpCeRZ2G4CaohK5VWUYqGlS0VhHcV0VVtqG5FaXkliUxVBXXzbHX2Ohb38krVIU5ISYa+qRVVXCueSnJJfkYqapxxDXrux6EUOl6J8nn/7A/3v4e/OnP0ipfxC/Tqo8PT3ZvHkz2traNDU18fTpU5ycnDA0NKSsrAwTExPy8/PJz89HS0uLvn378uTJExobG6murqZnz54kJyczYcIEfvrpJ9zc3CgvL5f56FRWVlJdXS1LZ2toaKCmpgaRSISzszP5+fmUlZXJTG1/NRDV09OjvLycDRs28N133yEQCFiwYAEbN26UmQm3b9+eiooK5syZw8GDBxGLxfTt25dbt24RERHB0aNH8fX1JS0tDWtrax4/fszOnTvZvHkzjY2N2NnZUVZWRnV1NVVVVfj5+ZGVlUVpaSkPHz6kR48emJub8/z5c9q3b4+2tjZlZWWIxWIMDQ3R1NSkvLycHj16sGTJEoYNG0ZRURE2NjakpKTw8OFDvL296datGykpKbJjamxsRCwW07t3bxISEhAKhSQlJcnUPSEhIaioqJCYmMjTp0/p1KkTJSUlXL58mf79+6OlpUViYiJz5syRqZhevXpFSkoKtra2mJiY0Lt3b2JjY7G2tiYtLY2UlBSmTp1KXFwc/fr1+5+89P7AH/gD/4sQFxeHpqYmqampiEQi1NTU8PPzIycnB11dXRISEiguLkYkEtGxY0cCAgIQCARER0dTW1uLpqYm79+/lyUr/uqnNXBgW93/s2fPZOokCwsLgoODefbsGS0tLbS0tCAQCGhubkZNTY3u3bsTFRVFYmIirq6u6OrqIhAI8PHx4f79+wwePJjLly/Tu3dvnj59Sm1tLR4eHqSnp1NZWYmcnBzq6urIy8vz5MkTrKys8PHxIS8vDzU1NYyNjUlISEBVVRVFRUWcnZ1JTExk7ty5HDhwAKlUSq9evbh9+zaDBw/m0KFDBAYG8ubNG5ydnbl+/Trnz59n0aJF1NbWoqCggKqqKuvXrycyMhIDAwOuXr2Kjo4Ovr6+1NTUYGFhgZKSEtXV1UgkEhwdHfn06RONjY107tyZ+Ph45OXlUVNTw9zcHLFYzOfPnxGLxcjJyeHm5kZqaipjxoxhx44dWFlZ0dDQQEtLC87OzmRnZ8v8jt6+fYu1tTX+/v48fvyY+vp6GhoaUFZWZuTIkVy7do07d+7Qrl079u7dS2Ji4v8VpNT/NvyjpJSjnikfywsw09Alv/bvp6UaqWlT3tj2MPZf4W5sjZmGLp/KC1EQypNS+udvqv8SlOUVEP0XlZWniS0JhZm/WyYvJ/cXv/d/I0w0dCisrfyz/xura1NUV/VXP2ehqUdeTfm/9J1KQnma/oqaYWdYJHViERJpC9rKam1m3P5DMVDTYnbUAbaHTuHF508kFWczpVMgs6MPsrDbAOQEAjY9uczOsEhqm0Tk1ZShJFTAVEOHphYJ9rrGbI2/ziyfMEZf3MqmPmPJr6nAXEuPGlEDB17fYbBrVw4k3KaDkTVj3f2ZHX2Q7wJG8qEsn5NJj7g6cgmfa8rQU9FgxIUtbA+dQmNzE+9L8uhh7YpEKkUokGsjXl7d4lNFITN9Qtn4+BI/9B2HhaY+T3JTSSjIYHzHXsyJPsii7gOx1TZi0tVf2NRnHGlln0mvKOJlfjqLuw/k52c3MVLXYqy7PxpKqjSIm5CXk6Ply8N+pagefVVN6sUicqvLiPr0mm+7D+Tc+6e4G9ugp6LBhscXWRswEiV5Bd4UZtLHzp2komw2PrnM6SHzKW+oRV4oJLX0M1Za+lhpG/KuOIeDb+6y0n8omZUlOOm3Ja+JWySoK6lQWFuBva4J9c1N1ItFpFcUEmjrTm51GT8/u8GEjr3YGn+dr71DyKgsYnzHXqRXFCGVSjHV1GXsxW1s6jMOW10j+p3awOagCeRVl+Gkb4ayvCISqYTIa7vZHDSB+1nJ2OkaYaGpj5+VK6fePeLnZzfZEDiG3S9jOdD/Kz6VF1DbJOLbO8c5PmgOqaWfeZSTQrhjZzSVVflYls/dzCQinLz4/vFFtgRN4FFOCnqqmnQwsmJO9EF+CY1EJBEjpZXGZjGr7p9hR+gUfn52g1FuPTBS10JeTsjT3DaTd1cDc6StrSgI5Ukry0dVQYkmSTM/xV3l+96jMdPUY/zl7fwcMpnHOSmYauhip2vMnOiD7A6fRnpFETc+vmKSRwAuBub0O7WB7wJG8uPTKwxx7Yq+qiZ1YhEaSiqoKChRUFNBo6QJdyNrvrl1lEP9Z1IrbqReLEJVQQk5gYAbHxOY3Kk3aWUFdDCy4lFOClvir3Fx+CKK66oQCASsfXiO5T2GyMrs5OXkyK+tQFNRBU0lVWZG7ee7gJHcy3pHV3MntJRVgTZfWEU5+TbVYuBYdr6MZrZPGMkluTjqmfDDkyus6TWCuTGH2BI8kZNvH6KuqMKw9r58fXM/0zsH4aBngkAgoEUq5VjifYrqqihtqJHd/9rKalSJ6n/XJ7QztOB9SR4WWvrkVf9JxWSopkVJ/d9W9vxXGKhpUlpfg4aiCuKWZlk/ZKSmTXF91T+0jb81BoU7dia7qoTkklxsdYzIrPy9aOG3Y8i/04f+Nfy2D//vwn/Xd/zHy/f+T2Dnzp1YW1ujrKyMj4+PzIj2r+H8+fM4OzujrKyMm5sbUVFRv1vf2trKypUrMTExQUVFhcDAwH85cjkrK4vq6mqGDx+OWCyme/fueHt709raSkhICO/fvyckJARLS0uCg4MZM2YMERERhISEYGFhgbW1NQoKClRXV8vSfoRCIb169eL+/fsEBQXh5OQEtCUJJSUlERoaiqWlJVpaWhgaGuLl5YWvry9LlizB398fLS0tHB0dkZeXJzExkZaWFhwcHPj555/p0KEDb9++ZcaMGbIymz179mBra0tISAjTpk2ja9eu3Lhxg5EjR3Lnzh2Cg4NJSEhg8uTJbNy4EWdnZ8LDwxk/fjxubm4IhUK8vb2xsrLiwYMH9O/fn/DwcEJDQ7l9+zbz5s1DKpXK0pY8PT0JCwuTHduNGzfw8vJCU1OTkJAQUlJSCA0NpXfv3piZmZGamkpoaKgsol5VVZURI0YQGxtLSEgIDg4OuLq6Mm3aNExNTbl9+zYJCQlkZ2czfPhwmUH4/fv3sbS0RCAQMH78eGJjY4mOjqa0tBQjIyNmz56Nnp4eHTt25OzZs8THx1NUVIS3tzehoaH069eP9+/fs379+n/pWvkDf+AP/L8FExMTysvL6dWrF56enhgYGODr68uBAwd4/fo1paWl9O3blw4dOuDg4IC7uzvnzp0jJSUFZWVlNDU16dq1KzExMaiqqhIWFoaamhr29va8fPmS8+fPY2RkRKdOnWjfvj3Dhg1j+/bthISE0K1bN7y8vLCysiIiIoLXr1+jrq5OWFgYvr6+slLhkJAQ3rx5g5KSEnFxcXh6evLw4UNCQkIwNDTE2toaaEsiHTFiBOHh4ZiZmTFz5kw8PT0pKSkhLCyMrKwsbGxs0NbWRl5enrCwMBITExk0aBD79u3D2dmZkJAQhg0bhq+vL9euXWP06NHcuXOHkJAQ4uPjmTVrFsuWLaNz584cOHCAoUOHygzmvby8ADh69CglJSXo6enJ1FIZGRmEhITIAhqEQiF9+vRh0aJFjBo1Ck9PT+Tk5DAzM+PEiRMMHDhQ9ptLJG0T0Pr6ehobG3F0dERBQYH+/fvL/Anl5eXp3r077dq1w8PDAx0dHeLi4hg+fDimpqaEhYXRuXNnioqKZKV9v03t+wP/Ghb6tiVHjnPvSbB9W/JhpGdb0uTPIZPpad2eeV0jEMoJCbb3YMKXkiSAlf7DAAh1aJtXrAsYRXF9FVuD21JVwx07s6jbAAC2h07hbVE2rwoymNs1nJTSPCZ3CmROlzAAulk4M9EjAAFtCb8hDp0Y6OyDuaYeQfYerPQfhpxAQGdTOw4PmMmoDj2Y6tmHNb3aEilX+A9FIpXyQ99xABioarI9pC05c6Rbd9b2GgnA194hBNq2JdIZqWmjr6pBO0MLwh0708euLV25t40bkZ59CLb3YIhrW1Ldti/H9K3fIKZ69kFZXoFZPqGy9RM9Ahjl5seYDv4ALOsxhPW92xKcxnTwx0xDl42BY5nTJYw+du6s6jkcD2MbIj37yB40whw9EbdI6GBkTTeLtmTjGV5BfBcwEi0lVSI9+6CioMgkjwAsNP+UJN3Tuh0Ouib0tG4PIPv9f+w7XvbbAlho6dPbxo2vvUOw1/2TIf6wdt34+uZ+1BWVWXb3FIZqWmwNnoSOijo6ymqs7jmczqZ2WGsboKOsjryckF9CI1FXVOZo4n3GufekqUXCt3eOY6SmTXJJLvtf30FdUZnh5zcz0s2P2xmJnBm6AA0lVR7lpPDj0yvoqqgzon13OhhZcaD/1xiqa9HUImFVz2EIBXK4G1uzPaRNEfT1zf18qihke8hkzDR0WXz7ON5mDky5uosWaQuR13bxKj+dCR4B7Os3g1vpiWwPmcyiW8fIqykjp6qUxKJsNJRUWOE/lJNvH7L7ZQxbgiagpqDE+ffx+Fu3Y7HfILSV1djbbzoVjXVUNtYzO+oAikIhu17GEJ+Xxq2MtzzOSeGHJ5d5W5zNiaSHRDh1xlBdmwfZ7xEAXSwcWd97FOkVhcyPOUw7AwuiPr6mg7E1u8KmkllZzDe3jtLcIuHnZzdoapFQ0VjHx/ICRrn5oSCUZ8Pji9Q1iZgdfZCC2kpefP7Inpe3iPqUwDexRzBS16aTiR2Dz/7Ax/J8OhpbY6iuzawuYXz/+CI9rFwJPbEOWlv5WF7AsHM/sSV4InNjDvGmMItdYVPRU9Vg27O2QJeKxlpqmhqZ1zUCkaTN48lSy4Bvbh3lYc57Opvas6rnMPRVNZjfNYIXnz+xIPYohmpabOozjnWPLnA36x2Oeqbk1ZTx1Y292Oua8KmiiHaGlkzuFIidrgnP89uUQB2MrNgQOAZtFTXWPjzH/le38bVwZm/EdCRSKTO9Q3HSN+N+VjIiSTNXP7zAWd+MiynPWHLnBGJJMy/z09nzMhZrbUN+6juepXdPklddxncBI0kry0dRKI+9ngmtra18230gVaJ6NsddZbZPKItvH6egtpJ1AaOQlxOyrvdoPExs2fE8CmV5RWLTE9n0+BLycnK8ys+gSlTPL6GRNEslXE97hYKwjSjKqS6jWlRPUV0VK++fJrEoC2sdQzb1GYf0i7F7laieJX6DaW2FBb79aWhuoknSTDsDC5bePYmqghK/hEYiJ5DD08SOCylx3M9KRl5OyKJbx2iWtmCqoYuCUMiYDv6oyCtyKz0RRaECyvKKNErETPXsg6WmPqPd/Ql17IS5ph7f9x5NoJ07J94+5FzyU6pE9bwryaWppVnWTwbadmBoO19meLWl+QoFcozp4I9QIGR76BQk0hZW9xzOmA7+DHD2xkBNk7Hubf3c7vBpsv0Z4tqVoa6+sj731zaLug2gtL6NAJvauQ9rA0axttdI+tp15Jtu/Rnr7o+XqT2DXLrI+uBNfcZipWUAgJWWgUy1OLdLuGy8merZFzmBABd9c8w19fhQ9pldYVPZHDSBHlaudDCywkHXhIXdBuCib04nE1sWdRuA5heyr6tF23O9lpKqrA/fEDiG5f5D2RE6hdk+bWPTWHd/+jl5McmjNxqKKgxy6SI7zu6WLnia2iEUyPFdwEistQ0Z4OwtGyu2h06RjTuHB8xs6xPbd2N/vxmoKyoz1bOP7JjXBbSNF998GZPnd20TX7gZWjLJIwBjNW3ZeNnLpj29bdxkffuWoAkAbAxss3Fw0DWRjQPf+PaXbburhZNsn2x1/rH50/86pdTZs2cZN24ce/bswcfHh23btnH+/HnS0tL+4qQwLi6OHj16sGHDBsLDwzl16hSbNm3i9evXtG/fNmhu2rSJDRs2cPToUWxsbFixYgXv3r2TPSj8I/it0fm4ceOYO3cu8+fPR05OjlmzZvHgwQOeP3+Ol5cXCQkJLFy4kOPHjyMUChEKhSgrK9O/f39mzpzJzJkzqaiooLy8nPz8fJk/j7GxMTU1NZiamtKrVy+2bNmCtbU1YrEYGxsbfHx8MDc35+TJk5SXl6OkpERDQwNDhw5lw4YNeHt7I5FI6NChA2fPnmXu3Lns27cPCwsLmpqasLGxYerUqTx//pwrV65QUlKCiYkJRUVFREZGsnnzZjp16kReXh42NjZcvXqVn376ievXr8vYzdevX7N69Wpu3LjBnTt36NixIx8/fuT777/n3r17fPz4kYKCArp168bly5dlaVSnTp3CwsICKysr1NXV6dOnD6dOnUJfX5/S0lLOnz/P999/z7FjxzAwMODatWvMmzcPNzc3srOzEQgEvHz5koyMDMaPHy8zLi8oKCAwMJCQkBCkUin79+8nJSUFNzc3WlpasLS0ZM6cOcybN4/w8HB27txJa2srM2fOlJW//Oo7NWHCBC5dusTJkycpKCjAw8ODHj16MGLECLp27Up8fDx9+vTh9u3bLFu2jPXr1zNp0iSKi4u5efMmEydOJDk5mYqKCgYPHszevXtRV1fHw8OD+Ph4ysvLEQqFtLS0/M1rrU+fPtjY2HDv3j38/f05ePAgc+fO5dChQwwZMgQrKytWrVrF4sWL2bRpE6NHj+bkyZOoq6szePBg2XUeGhrKzp076dSpE/369SM+Pp7Y2DafiO+++44VK1Ywa9YsTp48iUQiYeDAgUgkEk6dOkXfvn1JSUmhR48enDx5kp49e6Krq4uhoSF79uxh8ODBvHv3jqamJnJycli4cKHMkLm8vJyDBw8yePBgnj59SlFREcHBwfj4+CASidi0aRPm5uaUl5czfPhwTp48SXNzM6GhoSQlJdHY2IiXlxe5ubmYmZlhamrKmTNnCA8Pp6ioiKdPnzJmzBhOnDgh8yTS19dn586dLFu2jNTUVC5dukTXrl0JCAjg0aNHaGho/BlZ/X8aAwcOxNTUFG1tbX788UfEYjFjxoyhpqaGa9euYWdnh1AoRF9fn7i4OGbPns327dtZvXo19+7d49GjR7LrbtCgQVy6dAmAoKAgEhMTGTJkCDt37sTFxYXGxkays7OJjIykqqqKu3fvUlFRwbBhwzh37hzDhw+nqakJRUVFWdrd+vXrCQwM5M6dO7Rv3x55eXnev38PQGBgICKRCENDQ4qKirC1tSU6OhpPT09SU1NRU1OjX79+rF+/Hl9fX5KSkujYsSNmZmacPXsWJycntLW1sbe35+TJk2hpadG5c2fu3buHo6MjpqamPHz4EB8fH5ycnDhy5IjsGvXz85OVpKWlpREZGcn+/fvR1NSkpqaGHj168OjRn/uq/Irg4GDevXtH9+7duXbtGoqKiowbN46Wlhb27dvH5MmTkZeXZ+fOncycOZMzZ84wcOBAUlNTcXNzw8DAgCdPnnDv3j0ALl26xM2bNwkKCmLYsGHcvHmTsLAwAgMDWbBgASEhIRw6dIgffvgBMzMzvvnmG1k/s3v3biIjI1FSUsLd3Z1Tp07JiPNhw4YRGxtLZWUl6urqhIeHs3XrVpSUlLh8+TLTpk3D2tqasrIyGhsbuX79OgUFBbi7uxMQEMDmzZuZPn06DQ0NbW+qTU3p0aMHq1evpnPnzuzatYsZM2ZQUVFBZGQkT5484dOnT6SlpdG1a1cyMjKYP38+ly5d4u7du3h6elJXV8fs2bNJSUnh4sWLeHt7c+fOHX788UeuXr1KS0sLzc3NMnJs9uzZREZGyszdP378yJo1azhy5AhaWloIBALs7OwYMmQIaWlp5OTkkJycjEQiQV9fn27durFkyRJmzZpFTEwMpqamxMfHs2bNGrZt24atrS0ikQhTU1O6d+/Ohg0bcHZ2RiKRYGdnR5cuXdDW1pYdm0QioaWlhUGDBrFjxw6MjIyQSqUYGRmxfft2Ll++zLNnz3j37h1qamqIxWImTJjAjRs3iIyMZNmyZVRXV+Ps7MyhQ4e4efPmH0qpfwG/zp8O9v8aFQVFSutrcNAzIaOiCIlUSk/rdrwqyCDy2i42Bo5FVUGR2dEH0VVR5+cvZI9EKkUilVBSX83L/HSW9hjCq/x03IyseFOUhUgipou5I8nFudjoGJFbXUq9WEQ3SxdeFaTTzdIFaasU/0MrGNquK1M796VFKuVjeSH2usbczUxi9YOz/Nh3PGoKSqy4d5ruVi70tXPnZX46RxLvc2bIfIw1dMiqLKahuQkrbUMKaiqoaKwjyL4jcXkf6GbpQn5NOcklbcosT1NbUks/0yKVYqGlz+CzP7TFuVu68jL/ExpKqky8soORbn7M9gnjRf4nulu6EJf3AT8rV2I+veHbO8fZEToFVwML0sryURDKE3ltF7vDp2Gkro28nByNzWLUFJVRV1TmbVE2c6IPMrSdL8Pbd6eotpKZUftx0DVhoIsPLV9KiRZ2G0BxXRW+ls60SFvoZunCh7J8RpzfzLyuEdjqGDEr6gCj3PzoY+dOaulnlOUVsdU1AtqMjaW0UtVYj4aSCgBFdVWIWyS0SKWsun+GjX3GsObBOTyMbXhdmMksn1BUFZXpY9uBhIIMbnxMwEhdCwECoj+9ZmXPYcyKOsDOsEjel+RhpW3A4tvHWdtrJNoqatxKT6SXTXsUhPJUi+r5UJaPjY4Rbwoz6W3jRmczB3ocWsa6gFH8+PQKxwbNplYsYuq13azwH8rGx5dY3WsEPz+7wfyuERTUVdLcIuFp7gdeF2ayuPtAdFTUUVNQIrEoC3NNfbSVVbHRMeJe5jv62nfkxedPiFsk/PD0Mqt7juD8+6cs7D6Qsvoa1j48x6qewyhvqCMu7wNvi7KJ9OyDk74Zj3NSsNExwkrbgFvpb+hh3Y4Jl3e0PYy3SNBX1eROZpKs9C+rshhpaytvi7MZ4OyNnEAOfVUN1jw4x2yfMFwNLfA0sWNuzEGe5n6gm6UzvhbONLdI2PbsBrvCpjIn+iBL/AZT3yzCy9S+LRJeVI+0tbWt7K37IJbePcmyHkNobBajLK+Atooap5IeU1xfxQ99xlHT1MAvz6PRUVFjRPvuJBRmUlxXRUz6GwY6+2CsoY2Zhh4qCor4WjhzLyuJ5JI8hrfrRvznNAxUNfnm1lGW+g1GR0UdJXkFZkcdYJx7TypF9fhaOLEl/hor/YfxJDcVL1N7dr2MYX7XfjJj89qmBt6X5BHq6MnsqAMcHjCT/JoKlt87xfaQydSKG7HRMaKotpL5sUeY4RXEo5wUpnUOwkHXhJAT37E9dAqLbx1jYbcB2OgYMvHKL2wLnsSRxPuoKyozon13ZkbtZ0PgGEQSMQ56puRUldAoaUZXRZ2YT2/oa+fO6gdn6e/sjYOeqcxw/eeQyVSK6ll9/wwr/YfR0ipFU0kFZXlF1BSVMFbX4fnnj0hbW1EUyrPq/hnWBYyivrmJdoYWFNRWIC8nRCiQo7W1lfpmEd89PM8Pfcez+0UMawNG8Lowi+hPr5nSKZDqpgbUFZVl2xrr3pPc6lL8LF1w1Dcl+Ph3fBcwEh1ldcw19RhwZiNnhi6goqH2y7V7BS0lVQJs3XDWN0OAgONvHzDQpQtnk5+wpMdghAI5hp//iW+6DcBYTVt2Dg+8vkOkZyAnkx7hamCBt5kDy++dYmdYJItuHePcsIVfrl0pOdVlXEqJR1lekcHtunLtw0vqxI2MdfdHR1kdsVSCVNpmJD83+hAHB3xNc0sL4y+3pbVtD5mMlrIaRXWVuBiYk1CQwZoH5zg37BtstI14kf8RH3NH3hRmEnltNzdHL5Mpl9oZWDDj5j7SyvLZGRaJAAEZlcVsjrvK8h5DCHHoRGJRFh2NbXhbnEMnExu+vX2ccMfOfCwvZF/CLbaHTKarhRNPcz9Q3yyisLaKHtauGKlpcTHlGRpKKjjrmzH20s/4Wbkyon03qkT1LLt7Cm8zB0Z36IGJhg6ZFcW4G1tT39zE5+oyHPRMufrhuawstJVWvr65X7afdzKTuJT6jJujl2GqoUt8XhqG6tr8/OwGA5y9WRB7hB2hU5BIpcyLOcSusKmIWpqZH3OYOV3CcdIz5aub+9geOoXiuirWP7rAhWELMVTXIqeqFDmBHC3SFvJrK1BTVEYoENDO0JL3Jbl8fXM/Yzr442Vmz8fyAvrYujM35hD9nb3wNLFDVVGZ0vpq2fVaWFdJ0Jd+0dfSmbzqMnKrS6kTi+hr15GMiiLkBHIMOrvp/z6l1JYtW4iMjGTixIm4urqyZ88eVFVVOXTo0F9s//PPPxMcHMzChQtxcXHhu+++o1OnTvzyyy9Am0pq27ZtLF++nP79+9OhQweOHTtGQUEBV65c+af37/LlywwdOpRRo0YxZ84csrKymD9/PgMHDuTevXsEBARw6dIlRo4cya5du5gzZw7Dhw+XGda6urri7OzM+fPniYiIoLq6GhsbGz5+/EhERARRUVEMGjQIdXV1Xr9+zaBBg2SKpTVr1lBTU4O/vz9v374lLCyM169fExgYSHJyMr179+bGjRuYmJhw8+ZNWWpRSEgId+7cwd3dXWZ8PGDAAHJzc4mIiCA2NpbBgwdz/fp1evXqRVZWFn5+fuzfv192Po4dO0a/fv2QSCTMnTuX8PBwmSH3gQMHWL9+PQEBAeTk5LB27VqCgoKoq6tj6dKl9OzZk6ysLO7evcv27duZOHEi8+fPZ9q0aaSnpzN9+nSEQiFxcXHs3buXGzduMHbsWMaOHcvOnTsZMGAAmZmZHDlyBHNzc4KDg/H19eX06dOsWbMGd3d35s+fj7a2NtevX+ebb74hPj5eZpb94MEDsrOzOXToEF9//TW7d++WRb2PGTOG48ePc/fuXaZNm8agQYNQVVXF398fVVVV5syZg6urKzo6OgA8ePAAGxsbVFRUCAgIwNTUFEdHR/r06UNAQAAODg74+Phw7NgxbG1tZemBAkHbG9kePXr8zetLVVUVBwcH9u3bR35+Pra2tgBs27ZNVh5TXV2Nl5cX9+/fZ/jw4dTX17N8+XIZORMZGUlWVpYszU1HR4fVq1cTEBDA6tWrAfj8+TMTJ05kx44djB07lvHjx3P06FE8PT1lqjJPT09OnjzJokWLePbsGUVFRRw4cICJEydy8eJFjIyMGDFiBPr6+vz444/MnDkTiUTCwYMHsbe3RyQSydQQSUlJZGRksGnTJg4cOICzszO9evVCW1ubYcPa3oBbWloSERGBp6cn6enpsvSwt2/f0qNHDy5evIiBgQG2tracOHGC8ePHo6WlxdmzZ5GXl8fLy4va2louXbrE4MGDiY+PJy8vT5aY9T+N2tpadu7cyd69e2Xn9cSJEzg6OjJ06FCZB05+fj76+vq8ffuWwYMHs3r1avz9/bGxsaG+vp7u3bvTpUsXAgICZCRzcXExioqKfPXVV6SmpqKkpMQ333yDqqoq58+fp6Ghgblz56KrqwvAmzdvuHLlChYWFrRr147169cTHh7O4MGDmTVrFsnJyejo6NC9e3cZca2np4dIJOLhw4c0NzejqqoqM1UPCgpi/fr1LF26lLi4OCZMmIBQKCQnJ4evv/6atLQ0TExMMDJqe5hxdHSkXbt2tLa24u3tjZeXFxEREWRnZ/P69Wvs7e1RVFQE2uTkvXv3Ji0tjR49esjuxV+VmH8PFRUV5Ofnc/bsWRobG+nZsycSiYRdu3bRv39/GXk8atQoTE1NKSsrY//+/ZiZmbF7927Wrl0rG0RVVVWpqqri4MGD5OTkMH78eIYOHUrPnj0JDAxk/vz59O/fn/fv3/Phwwfi4+MJCQlh9uzZKCgoyErtQkNDOXfuHAsXLuTRo0eMGjWKHTt2kJmZyYgRI9i0aRPt2rVjxYoVXLhwAW9vbyZMmMDo0aNliZ2/pqhu2rSJhIQEioqKmDlzJmlpaYwbN47Dhw8zdepUvv/+e06fPk19fb0sjXP+/Pl0794dqVTKxo0b2b17N4sXL8ba2pphw4ahrq5OVVUVs2fPZvr06bi6upKenk5QUBC6urqYmZlx4MABxo4dy/Dhw1myZAkODg4UFhbSr18/Fi5cyOjRozExMcHV1ZWoqCgGDhzIypUrGT16NE5OToSEhLB9+3bCwsIYOXIkBw4cYOTIkTx8+BBTU1OSkpIIDg5GKBSira1NXl4e/fr1IyMjg+7duxMaGsrHjx9lY2+nTp3Q19fn22+/ZcqUKbJzUVxczNChQ/n8+TPDhg0jOTmZXr160dDQwIABA+jSpQtFRUWMGjWK5ORkZsyYQXh4OGvWrGHmzJksW7aM58+fo6+v/x/tD/7/CHGLBBd9c/yt21FQW8Hzz5/IrirhQfZ77HSM2BU2lWAHD3zMHZntE0a4Y2eqRQ1Uixr4JvYI+17dprulC8v9h3In4y2ttPI09wN+li70sXXn+edP5NaU8bG8AB9zR/yt239Rk7SNv3cyk7g1biXD23cnoSADFYW2t/614kbMNHV5M30zEmkLHiY2HBs0hwkde+FubEMHY2sSpv1ERWMd74pzKG+opbC2ks815XibO+Bt7sDz/Db1fW1TI5/KCwmy70iQfUeyq0q4mBLP68JMWlqlJM7YgrxADmhFXVEFRaE8l0csJtKzD/F5H9BQVOH0u8doK6txJ+Mt7sbWvJ7+E3ViEQpCIeqKypQ11JAw7Se0ldUoqqsiu7KE/NoKdFXUSSnJa7Nv8O2Hl5k9GorK2OsZE2zvwbaQSXSxcEIibXsxZqqhS1cLJ5okzdQ3N5FUlE2duJHEGVsw0dChu6ULu8KmMq1zXxq/pKytfXiOtLIC6sUi6pub+FheyJoH5yiorUBZXgEFOSHL7p6kuqmen0Mns/j2cVb1HE5Lq5QpnoHEpL/Bw9iG2VEHyKkubUvzsnSlk4kt87pGYKapx5wu4Zhr6vM8/xOGalrsCpuKp6kds6MO4KRvyrPPH1n74CzFddV8KP2MjrIa7QwsqBGLuJgSz/lh37D83im2hUzietorEgoyWOE/FGN1bXRV1FGWV2BRtwEoyiuw8fElTNR1KK2vYYZXEFbaBm1qkZYWdr+MRUkoT0l9Nd/ePsHoDj2Iy0tDU1mVX15E8U23Aay8f5rxHgHcznjLzKj9fO0dQpWonpX3T6OtrEaEkxf7X9+mvKGGPa9iOZp4j/KGGg69uYeOsjo/9h1PbVMjFY11NEtb8DF3oEUqJbX0M+0MLfG3bsdM7xAstQy4+TEBAQK+9RtEK61sibvKD08vM8ilC9tDJhPu2BkdZTUe56Rwftg3VDTW8XPIZNY/uoCxug4jLmyhvKGGtQ/OIS8nx/e9x6CioMR3ASNRV1SmUlRHQ3MTzS0thDt1ZkHXfnyuKedORhLreo9iePvuzI89DICGogpL/AYzu0sYMZ/eUCduJKOiiJ6Hl9Pd0gUbbUPGX96Ogaomax6cY3XP4bgYmPP9o4s46JqwvvconPTNsNUxpLS+hm+7D+Kb2CN0MXfi4Ou7zOkSjoaSCr+ERmKkpsWRN/fpZGJLfk05C7sNoLapkeX3TskM57WV1Rh1YSu3Mt6yvvcodJTVmeTRm9lRB8iqLGZj4Fgam8Ws7z2KM8lPSC7JlZFCfe3cCXXoxLK7Jzk7dAGuBhY8zf3Aj0+voKqgTG1TA0KBHLcyEjFQ0+L73qPxNnNg/6tbqCoqsTFwLHXiRsSSZrYETcDLzJ7vH12ksbnN+2zK1V3kVJXw3cPzlDXUoKGkwrqAUSy/dwpzTV1+eR7FolvHUBLKs+zuSd6VtJltr+k1EjMNXRZ1H0hqaT4bHl9kVAc/ZkbtR0VBkbdF2TQ0N7HcfyjtDS14V5xDhaieiJPfs6nP2LZrJ2o/b4uz2RU2lZL6at4UZSFtlTKpU290VNSw1zUhp6qUBkkTnc3sEQhAX02T14WZDD77A7vDp6EgJ6RZ2kIXc0d0VdQJceiEgaoWM71D6W7lgr6aJj/0HYe9rglrA0aSWprH9uc3kZcTYq1tQKNEjIaSCoaqmiSX5NDHzh0dZXU2PL7EolvHUFVQRCJtYUi7rmgrq6Gvqkl3Sxf6O3vT1cIJd2NrNBRVMNfUQ11RhYRpP/GpvJBW2jQ1AgRUiRpInLGFzzXlZFeV0iRpJrEoi7W9RvBj3/H4Wjjja+mMrY4hL6f+iK+lM88/f8RATYv4vDRapC3cy3zH4u6DUBDK46Bngp6KBkI5OV7kf0JeTsiyu6fIqS6ltL6a5JJcMiuLZffWi6k/MKZDD7pZutDHriNqCkq0M7RATiBA1CzG28yeTxWFPM5JwVBdi5TSPIIdOnFh2EL0VDXoZunCzrBIulm6oCAUMtEjgNfTfyKl9DPljbUA5FWX8Y1vPwTAheGL0FRSpZdNe3aFTZX14wnTfqKzqR26KursDIuknYEFxuraJM7YQnZVCaX1NdSKRYgkYjoYW+Nr4cTsqAOklH4muTiXltZWdFXUaWdogb91O1wNzLHSNmBe1wgmdAygpqmRJbePU1Bbga2OEZ1MbQm07cDtL+Nxfk0Fn2vK6Wbpgo+5I49zU5GXE9LyDxq2/69SSonFYlRVVblw4QIDBgyQLR8/fjxVVVVcvXr1zz5jaWnJ/PnzfxdhvGrVKq5cucLbt2/JzMzEzs6ON2/e/C7pxt/fn44dO/Lzzz//xX1pamqiqalJ9vevXhd/4A/8gT/wB/7AH/j/J/5QSv3z+FUptTloIiryCrLlX93cx6qew+hu6YqBmiZxuR/obGbPnYy3BNl78DQ3FV9L5y8eL6l0NrUnrSyfmqZG6ptFLL59nI2BY9FQ+pPi/eub+/klNBIAI3UtNJVUOZv8lI7G1rQ3tERXtc1QuG3yXEZ5Qy2qCkr0tGlT1ktbpcR8ekMnU1tK62vIrS4j1KFTm5dbSwsppXn8/OwGrwsz2RU+DXNNXcw09EguyeVDWT6aSip0tXDiQ1k+zV+8TDY+vsTcrhEoySvgYWxDWUMNeTXlKAnlkZcT4mlqB0BFQy13s96x/tEFvvpiVG2sro2Zph4iSTN3Mt5S3VTPAGcfNJVUKWuoIaX0M/NiDjGsXTf62HWgo7ENCkJ5AB5mv8ffuh0v8z9hr2tCQW0lxXWVdLFwIrEwC19LZxqbxSQUtKWW7e83Ay8zBwDqxCKSitpU6j7mDggQcDvzLYZqWqjIK+KoZ4pI0kxZQw1f3dzHSv+hWGoZoCSvwPG3D3E3ssLPypX72cnIIWD/69tEOHlxKeUZP/Ydx5I7J+ll0552BhaUNdSioaSCSCJmyZ0T7AqbyrG3D5jhFcyn8gLWPbrAnC7hWGsbIm5pRkFOiKG6NpFXd7HcfwjL7p5iV9hU3pXksPtlLD/1HY+yvCKaSiqMu7wdRz1TpngG8uOTK6zwH4qTvhlBx9dyYvBcKhvrUBIqUN3UwIPsZAJs3FAQytPa2oq1tiFJxdlUNNZxOfU5C7v15+ub+5nXNQIbHSNstA05mnifGV7BPP/8kaaWZo6/fchUz76oKiqRUVFIaX0NjvpmrH1wlq3BkzDV0GFr/HVmdwkno6IIeTkhcgIBC28dZXvIZGZHH2R1z+EkFefwrjiH3OpSvvIOYWv8db71G9Sm9Oo5nB3PoxjevhsOeqYcf/uAiR4BzIo6wI99x1PZWEdTSzOb466xvvdotJVVqROLkJcT4mPuyMbHl2TKt8Nv7rKm10iZGm9W1AE2B03g6ocXZFWVMMcnjG9uHWV76BTmRh/k3NBvyKku5VLqM6pFDagpKKGjok47Q0tqmhqQtrbibmTFlvjrLOzWn9zqMhz0TJhydRdTOgXibmzNrKgDbA+ZzMl3j2mSNNPQLGJjn3HczUzCUc+UzMpirLQNyKkqQVGogLG6dls/0tTAodd3Ge8RwM7n0SztMRhHPVNeF2ZgpqFHdVMD+qoaHHpzj8c5Kdwdv4asqmKOJj5AU0mFjsY2rH90ge2hU5gddYDve48mvaKI25lvmdc1gsTCLNoZWrL49jF2hU+jpK6K5JJciuqqmOTRG0N1LT6W5ZNQmImniS2vCjK4lvaS5T2G8vOzGxTWVXJm6AKZom7F3VPM7RpOQW0F70vy6GXTnpbWVva9usWkTr1pbG7icU4qzvpmmGjo0sHIig9l+SjICcmqKsbL1J4RF7Yw1NWX8R69eJCV3Ka6qSxmgLMPA05vYGXP4VQ01iIAHuak0MfWHWmrlIc5KXib2WOsroOZpi5Tr+1mY+BYZkbtZ06XMNyMrKhtEvE0N5ULKfHsDIvk1JfzIS8nxFnfDE9TOxSF8ky7voctwRMRCuTIrCzmXmYStrrGaCuroaei8TvD/B/6jkNZXpElt4+zM3wqxXVVHHx9F1UFJUa0746ltj714jZ12JE392gFJnfqjbK8InG5H+hq4cStjEQstQxQU1TiXXEufe068jL/E5JWKV6mdqgoKCGRthCbnoiGYlvf72Vm/8X3q4Ald05QWFvBnfGr0VJWo6apgdTSz/iYO/Io+z09rNvJxoucqlKufnjBoTd32dRnHBZaerjomyMQCHiam0o3SxcAUkrzqBc30SxtwfdLKV52ZQkFtRW0tErpbunC09wP+Fo6Ef3pDX3t2pSzvhZO1Dc38f4LibU57hqbgyYQYOMmEys8+/wRB10TPpS1KVH1VTWw0v5TZVhc7gee539CSaggU7YBJBVlo6WsxueaMiRSKR4mtmh+Uay+L8njTuZb2hlYEGDrRpOkmUZJMwtjj6ChpMKQLyWBygoKVIsa6P2lzPxeZhJdLZyoaKyjqK6KJkkzmsqqGKlpo6OixrO8j6x/fIHITn0wUv+TT2Rtk4hV90+zsudwQhw8kBO0aZ5yq0tJKsqhTixi45NL/3cZnRcUFGBmZkZcXBxdu3aVLV+0aBEPHz7k+fPnf/YZRUVFjh49ysiRI2XLdu3axZo1ayguLiYuLo5u3bpRUFCAiYmJrM2wYcMQCAScPXv2L+7L6tWrWbNmzX/w6P7AH/gDf+AP/IE/8H8z/iCl/nn8Skr90Gccfe07ypb/Oul/V5xDaUONjCAKsu+IvJyQxuYm3hbn0MXckSc5qXS3antAaG6RcC8rGVMNHUQSsYxIgbYJvK+lM62trZTUV5NZWcyMG3sJtvegn5PX7/Yrp7pUZpwNIBDIoa6ghJqiMg+yk3mck8q4jj1RlGsjeYRyctjrmiBuaaa5pQVzLT3yayrIr62guUXCnOiDbTHu6jo4G5ij+IUc+vU4W6RSEouyqBeL2PE8is5mdnT/8tDT2go6Kuo46pnyMr+tDEIibaG4rpqC2nLELRK2xd+gUlTHml4jEAjkMFTVxERDh8SiLOx1TfhYXgCAolCeDkZWZFeVoiCUJ7kkFw1FZZz1zTHT1P3d7wSQWVlMa2sr0lYpBbWVKMgJ6fSl7LCgtoLeth24n5VMDyvXtt8mK5kuFo4oyyvyICuZ7lYuPMx+j6+FMxWNtYgkzeipanAg4Q4trVK6mjtyLe0V1toGRDh58bIgnS7mjmRWFqMolGf69T2MdffH3cgaKa046ZnR//QGVvUchpuRNXnVZUhbpVxKeUYf+46svn+Gb3z7Y6SujbhFgr6qBnoqGjLTdiN1LYae+4llPYZgpK6NslABSasUG21DQk58x5peI9BQUkFNQYkX+emkleUztJ0vu17GMMs7lPWPL9AilTK/az/2JdwiwqkzrgYWnEl+Qh9bd9yNbQg7uY5gew/CHTszM2o/20On8DA7GTdDK6pE9Wx7doOtwZPY8PgiC3z7U1RXSXZVCV0tnHhfkkegbQcmXvmFjsbWjHXviUgipkUqRU4gh7ycHAKBAHk5Ic0tEvJqymUqIS1lVapEDagoKLL92U0GuvjwOCeF5T2G8rmmnPrmJhbfPsblEYsprK3ETFOX/qc3sr73aJokzZx9/5QjA2Zy89NrzDR0aZI0o66kTHp5IT7mjlQ3NVDVWE9xfTU1TQ0Yq2tjq2NMnbiRB9nJ+Fo4MyvqAGt7jSS9ohBbXWMZ0bz49nF2hU/jdnoioY6eZFUWtxmOB08kPjeNjibWbcRyeQF1TY0oCOVRllfAStuAV/kZuBiY87G8gI2PL/FT0HgeZL/n/Ps4tgZP4m5mEppKKlz58IJ1vUeRUVGEtFXK7pexbAue1Ga8HTSBb++cYHPQBNyMrOh5eAULfPvTIm3BREMXOYEAoZwc8nJCbqS9oo+dO28KM3E1sODnZzcY17EneioalDbUtCk0m+oRCoT4WbkwK+oAO0KnkFScw/6E2+wKn0Z83ge6mjtRUl+NuEWChpIKphq6jL+8nc1BEyhtqEFXRZ34vDRsdYwQIOCnuKtf/L+KuJf5jrldI8isLCLcsTNBx9cyp0sYRmraLL17klvjVhGXl0ZdUyOmGjrcynhLckkuM7yCWXb3JL+ERiKWSnj++SNnk5/yc8hkfoq7yhyfMD6WF6CtrMaNjwm0N7Skp017lITyFNZWoiCUZ/HttjJGbzN7apvaQgdqmhqQEwhoaW0rp5tydRd7IqYjlUqx1DYg/OR6doROoaC2knuZSbgaWtDV3ImqpnqstQ3Z/uwm/Z29MdfUo6mlmaLaKhSFQhqaxdz4+Iqx7v5IpFJSSvOw1TFCU0kVT1M7bme8Jdje4wuxK6GTiQ2l9TWoKymjp6LJrYw31DQ14mZkRXtDS1pbW6lpaqCwrooR5zczvXMQ7Q0tkZOTw0nPFE0lVV7mf0JRXp56cROaSqpIpBLUFJWRE8hhp2NMSmketU2NtNKKuqIyzz5/xNXAAmV5BTxN7WQvQrpZupBQkIGWkir2eiY8yErG37odAoGAN4VZOOqZIJG2EJ/3ESV5BcQtEnpYuaCioERzi4S4vDT8v5BgEmkLT3JS0VPVoFrUgEDQ1u+rKSqTU1VCbnUpvWzcUJATytRRAgSy0r7NQRNQkVeUKcR0VTTIqizmbXE2ATZutAItX5JAAb69c5xNfcYiJ5BDSaiAorw8B1/fobOpPRFOXjIC69fjfJmfjqWWPkZfSOC0snyef/6EuaYuWspq1IlF+Jg7oCyvyL2sdwTYuMnG0tbWVnY8j6K3bQeqmxrgN9TSz89vUlBTTq1Y9H9f+d7/FixZsoTq6mrZv19T7v4V/JYM+69wd28zHevQocM/tK1u3br909//a1Lffxq/luL8Laipqf3N9b+mIEGbIfp/J9q1a/f3G/0Gjo6O/3Dbv3eccnL/mVvNweFPk281NTVUVVX/qc/r6uoiFAr/4rq/tI+/lnv9ClNTU9n/3dzc/mvzP8OviUt/6TtdXFz+7uf/Gv7aMfy/CD09vb+5/tdghP8p+Pn5yf7/a2ndr1BQUMDMzOzPPvOXlv0W2traAP+xh38FBYW/us7AwOA/8h1/CX+v71VXV/+zZb/tE3/ro2hnZ/dXtyMv3/bwa2zcZij8966J/5Rp91+6Nn8tu/x38Pf6lt+es99ef4DMyB1AQ0Pj39qP345JgYGB/9a2/gAoCRWoaWr4s+VuRlYE2LhxOfUZSkJ5iuvayq1VFJQQNYv57bvT4roqHmS/J8DGDTcjK7SV1Ugt/SxbLyvpEAgw+lKudWboAiI9+9BKK76WzrJ/I9382B46hW6WLnSzdKGLuQPWOkYoyyvQ2tpWimetbUh3Kxe6W7nQ1cIJAzVNSupr0FfTRF5OiJW2AS76ZjQ2i4mfsgGBQEAHY2sZIfVbCOXk8DS1w9fSGVVFJcw19XHSN6ObZdv22xlaoPCbsU1eToiZpi5eZg4oCuXZ1Hccu8OnoaGogq+FE/Z6JqgpKiMvJ0RXRR0/K1f8rFzpaGzD+9I8SuqrGXL2B2y1Delt20FGSP0Wra2tZFUWY6drjIOeKf7W7ehsZk9iUTY1TY0cfH2XGx8T6GndHrUvqgQ/K1ce56RS09SAmqIS8nJCetm050F2MhmVxWgqqfKmMItWWrHVMQKBgO5WLsSmvyGzsph1D8+TW1XK7KgD2OoY8UPfcXQxd+R8SjwHEm5z/n0cO8MicdAzZcLl7SjICcmoKEJFQQkzDR32Rcwg1NGThbeOUlJfRWFtJUPO/QjAiaSHfCjLZ0vQBDSVVFj38Dyilma+urGXe1nv2N/vKwBK62vQUVGnorGWpOJsWltbCbbvSH2ziPUBo1kXMIpv7xxnqmdfbme85WN5Ic0tLRxJvM/T3FQGOvtgoqFDWnk+K/yH0s7AggdZ73E3tsZEQ4eRbn7oq2qw1G8w2+KvUy9u4nLqc/JrKjDR0GF21AEuj1hMO0NL9ryM5UH2exSF8hx7e5/TyU+48uEF6x9dIKEwgzuZb6lpamDp3ZM0NotREsozP+YwX3kHszX+OsPbd2f6jT3sf30bA1XNL8bbBexNuEVOVSnfBYzEQFUTc009XA3M20rXHp5H3CLhXtY71j9sK0EaeGYTtU2NzI05hLRVypvCTFbcO01lYx3Tru/BXteEN4WZfOs3CB0VNR5kv0fU3MS3t0+gqaTKJI/e1IgauPzhOTVNDQTaduDE4LkIEOCgZ4KVtiH9Tn2P4Mu9vfDWUZokzeRVl7H24TkSCjKw1jZkhlcwrgYW+Fm6sC14EvViETc+vmozm+8USLWonp0voulgZM1K/2HsS7jN3ojpVDc1sDMskllRB7ibmcSGwDHUiRuJ+vSa2xlv2ffqFieTHlFQU46SvALyckLuZyejpazKSDc/tsZfR0Eoj7qiMhJpC90snHmR/4mP5QUMcPYmv7YCP0sXZvmEklddxvG3D0krz+dRTgoPspNpbmlh6Reln0AgYPuzmyjLK3I59TmWWgb8FHeVn0Mm46RvjrqiMnk1ZSgKhex4HkVeTRlbgidiqqGLsrwCjyatY9SFLeiqqHMr4y2NkmZKG2qw0zFGWV6BnWGRfK4tZ37MYVwNLNgeMhlvM3sKaytpaW2lr70H6ooqjO/YCyd9U3KrSph8dSfiFgmFtRUs8O2PvqoG4y/voKyxhu8enuNp3gfkhfIsvHWUGlEDu8KmoiKvyFc393E/K5mf+o4nv7aCDY8vMsbdn0EuXZh6fTdKQgWmX99DvViEklCekRe28K44h30Jt3j2+RNHE+/jZmSFuWZbCfyRN/dQVVBC2ipFUShPb1s3YtLf8Dz/E64G5mgpq9HS2kbQKgiFtDe0ZNOTy1SL6nmam0p8Xhq51WVoKamyqc84LLX0cf9SiqanqoGCUIi0tZXOpvb4W7fDVseQRkkzoy5spaSuilcF6djotPXrflauuBtb425sg791OzoYWfEs7yMPs99T1lDL45wUjNW1sddre473MLHhTWEWAA3NbYmIWspq9LbtwJI7x9FSVkVFoW0OpyCUR1tZjeIvZHlmZTEuBua4GVnR3cpF1u/rqqiRVp7PoTf3aG1txVBNC18LZ7pZuuBr6Swr7ett20H2t6+FM0bq2tSIGzmb/BRFoTyeJraybXa3cuGHPuPoZtk2bnUytaVeLGJFj6GMcvPjbVEWWV+8twQI+FhegKaSioyQAtBUUuViSjzfPbyArY4R/tbtUJZvm98ZqGr+LhVRIBDgaWpLO0MLfC2cZGOslbYB3/j2Y/MXc/S/h/9VSqn/TeV7/xWyN30//IChoSEVFRWIRCLi4uKYPHkyAwcOZNWqVbRr1w6pVIqioiIZGRm0trbSoUMHFixYwPr16xkwYABz5szB0tISdXV17O3tUVJSIjo6GnNzc+7fv8+5c+eIiYlh2LBhbNmyhZycHPz9/fn222959eoV0dHRrF27lvj4eG7evIlIJKKuro7x48dz5swZTp06hZ2dHWKxmLCwMOTk5IiPj8fQ0JCysjJWrVrF4cOHUVRUZPTo0cTExNDY2EhdXR1XrlzhyZMnmJubo62tzaxZsxAIBLLEurVr1zJ8+HD09PS4dOkS48eP5+TJk7J9kpeXx8PDg927d3Pu3Dlu3LhBeHg4V69e5eHDh2zZsoUXL16Qnp7Ow4cP2bt3L46OjsybN4/y8nLk5OTo0KEDhw4d4tKlSzIvowEDBrB8+XLWr1/P1atX6devHxMnTsTHx4fp06dz+vRpxo8fz6VLlwgPD+f8+fMMHTqUbdu20dDQwNKlS3n9+jV79+5lypQpxMfH09jYiIeHB1lZWSQmJhIUFERFRQV3797l5MmTHDp0iEmTJsl8XJYvX467uzvXr1/n4MGDzJgxgxkzZrBt2zZ27tzJ119/zdmzZxk+fDhXrlxhwIABnDlzhgkTJmBmZsamTZsYMmSIrM1fwpw5czh06BAHDx6kuLiYGzduMGPGDEQiESNGjODSpUssWrSIn3/+mbFjx7Jjxw7y8/MxNjbm5cuX7NixgzNnzmBiYoK/vz8//fQTTU1NdOzYkdLSUiZMmMCCBQvo3bs3MTEx+Pr6IpVKyc7ORiwWs3r1at6+fcvr16/R0tKSGWoPGjSI8+fPc+3aNYKDgykvL2f27NlcuHCBESNGcPjwYbKzs1mxYgU3b95k6NChXLhwgdDQUABOnjyJqqoqra2ttG/fngMHDlBZWUlISAg5OTk0NTVhYmLC3bt3OXbsGCdPniQ3N1eWOnn37l2UlZUxNjbm7Nmz6OnpUVdXh4ODAzY2NixZsoTdu3dz7Ngx/P39MTc3Z+bMmWzdupV58+ahoqKCk5MTiYmJ/9D9/p+GkZERxcXF7Nq1C01NTcrKypg7dy6nT59m1apVzJ49Gy0tLX755RdmzZpFZWUl5ubmDBw4kKVLl9LU1MSuXbsYO3Yso0eP5v379xQVFfHmzRvGjBlDdHQ0ZWVl2NraYmlpSWJiIj169ODAgQOsWLGCiIgI+vXrx8yZM2UecufOnWPbtm3ExMSwd+9eLl++zOXLl7lx4wahoaHo6uqyZcsWrl+/zrFjx8jIyGDNmjVcvHiRwYMHc/DgQfLy8mjXrh3x8fFERETw7t077t69S2hoKM+fP+fQoUMcOnSIvLw8Vq1axalTpygtLaWqqopt27Yxbdo0/Pz8WLhwIYsWLSIuLo59+/Zx5MgRdHV10dTUZNiwYURHR5Oamsrdu3e5efMmmzdvpr6+nqtXr+Lr64uRkRFTp05FQUGBgIAAmaG/n58fpaWlZGVlsWHDBubPn8+pU6cYO3YsvXv3JiQkhHnz5rFp0yYePnzI5MmT+eGHH1i1ahWhoaGMHz+eiIgIhgwZIrsPFi5ciIWFBbNnz5bd51FRUYSGhrJ161YMDQ1xdnbm5cuXMhP0vLw81q9fz7Fjx7hw4QJTpkyhX79+sm1evnyZgQMHsmnTJsRiMStWrGD79u388ssv/PDDDwwYMIALFy4AcP/+fZSVlVFVVeW7775j586dMv8uS0tLbG1tCQoK4uzZs5w7d45Jk9pSUcLCwrh48SL79+9n6tSpDBo0iGvXrlFXV0dVVRWXLl2ivLwcc3NzvLy8ePv2LX5+fuTl5bF582auXbvG6dOn6d+/P0pKSixbtozly5czatQooqKiSEhIwNnZmaFDhxIXF0dlZSVHjhzh/PnzbNq0iaamJoyNjdHX16dz58507NiRgQMH4urqSlNTE0uXLuXu3bt8+vQJMzMzIiIiuHDhAuXl5UybNo1NmzZha2tLZmYmra2tXL9+XRZycuzYMRISEujbty/V1dWoqKjw8eNHNDQ0+Oqrrzh8+DAHDx5k5MiRqKmpUVpairGxMfX19RgZGSGRSBg6dChr167Fy8uL6dOns3XrVpKTk/Hy8qKoqIhdu3bx8uXLP5RS/wJ+nT89nrSeF/mfZKUCv1XrJBRkYK6ph5G6Nmll+RTUVmKjbYiOihoZFcXUN4vQUVFHJBHT2dT+d9t/U5iJvqomFlr6vyu5yK+poLCuQta+orGOl/mfZCVaAHF5aXiZ2v+ODEqvKELSIsHZwJy0snwKayvxs3JF+OXFzdPcVHwtnBEIBGRWFlNYWyH7u6S+mpyqkt+pt367T62trUR/ek1v2w4oySvwqiAdcUsLXc0dZeUc8XlpeJs5yL7vcU4KtjrGMlLpU3kBjc1tniDQVqphpqmLtvKfXo5VNtbx/PMnvM0deJmfTkdj6989cPz627/4/AlnAzM0lX7/gqugtoJP5YXMiT6Ij5kD4zr2/LL/f1q/L+EW3wWMQvrFL6RO3FZS+W33gQxp58uHsnxMNXRJLslldtQB1vceTVpZPgNdfEgozMTHzIFT7x4xuVMgPz69QjsDS5z1zcitLmXdowus7jUCQ1VNnPXNuP7xFVvjr7epQ1qamR97hM1BE/gp7iqzvEPRVFLFWF2bY28f4GVmz47nUaz0H4ZAAC1SKa8KMjBS16axWcyT3FQSi7JYFzAKTSUVWgEFOSHzY4+wMXAM0lYplaJ6JFIpOipqLPpijl0lqqejsTW1TSK0Vdr8vAprKyiorcRa24Bh7bpxPe0lXSyc+FhWwKeKQg6+vsNy/6HUNjVgqKaNmoIS9c0iSuprUJZXYNOTy/zYdzzJJbl0NLZB3NKMuqIy4pYWWlul6KhoEJ+Xho2OIT5mDvwYdxV/q3aYaepS29RITVMjaopKlDfUoiSvwMPs9+ioqGOsrs2FlHgmdgygpqmBhMJMOpnY4m5kTXVTA+0NLXlVkI6KvKLM70UkaW5TPQkENIibqBM3YqGlT2FtJSoKSrRIpexPuMUMr2CaWpqRtraiqaRK1KcEhrbrxtuiLLKrSohw9MJBz4Sg42vZGjwJoZwcs6MOsKzHEKy1DTHV0CWpOBsAaWsrATbtZedn1IUtnBoyn9cFGRTUVpJVVYK/dTseZb9nSDtfvntwjlk+YSjJK7D49jFZ4mZ9cxM7X0RzcvA8qkR1fK5pI0+ODZxNeWMd0lYpDc1NrLh3mu2hU9j9IoZpnfuSV1OOroo6ax+cZZ5vP8w0dClrqGHNg3NsD5mMRNrCtbSXBNq6s/zeKbYETWDPq1jGd+xFR2NbHmYnY6Glz4v8T7Q3tERRqMC8mEP8HDKZ9yV5dLd0pvYLMdbOwAJleUXWPjzHrrCpaCmrUdZQg4KckLPJT3E2MENZXoGfn91kS9AEotPf8LVXCNHpr1FTUEZbWY0rH54zxt2fRbeOsTFwDHcyk3hVkM4Sv8EsiD3CxeGLELdIeFWQzua4a+wKm8qi28dY4jeI3Ooy2hlayu7FtQ/Osit8GjVfFEPK8orkVpeiq6KOiboOk6/uZGdYJC/y0+lq7sS6R+eZ6R2CsoISX93Yy099x/O5phxLbQPK6mtQEAoxVtdB3CJBIm1BXk5Ia2srnyoK2Z9wm6mefRnW3pfEwixUFBSZFXVQluR2KfU5T3JT2RE6BQ8TGz6VF2Kgpklq6We0ldXIqizBREP7d/3qb/vi+1nvcDW0wFi97cXob5W1v/ahllr6JJfkyZS4v6JaVE9eTTntDS1ly1qkUqZd342vhTMDXXzQUfnTC8T7Wcn0smn/u/HrdUEmBmqaCAQCPpUXYqqhg9OXMrs7GW8JtHP/s30qb6jlbXE2BqqauBlZUVpfQ0ZlEV3M/1wQ8dsx5Fckl+QiFMjhYmDOo+z3OOiZYqLxpxfDv92/nKoS6r6UTf6KtpJEEZ9ryjHV0EVfVZOC2gqZB6OxujY51aWYaepRVl9DN0tn2RgF/Jla6r/uY3FdFRmVxfhaOFEnFtH94NL/u5RSioqKeHp6cvfuXdkyqVTK3bt3f1fO91t07dr1d+0Bbt++LWtvY2ODsbHx79rU1Px/7P13VFXX3sWNf07h0HvvVRFFBMWGoKDSUbFGzdVEE81NT0xuNL3cJKbdFGOqxpgYY2/0JiIi2FEQBJTee+cAp71/IPtKNLnP8/zeP97fGHeOwYg5Z5999tl77bX2mmvO+e3h4sWLf7rPv4KFhQWPPvooYrEYPz8/Zs+eTVlZGefOnWPGjBkkJCSwevVI2WBvb29eeeUVGhoaiIuLQywWEx8fzwcffICuri5PPPEEV65coaenh0uXLrFx40bWrl1LZ2cnFRUVfPXVVxgZGfHPf/6TCxcuEBcXx6lTp7C1tWXnzp1UVlYKEx43NzeOHj3KlClTqK+vJygoiGnTpqFQKBCJROzZswcdHR1efPFFTp48iYmJCVZWVpw/f562tjaWLl1KcXExv//+Oz/99BNvvvkmBw8epLu7myVLlqCvr49YLGbChAnExMTQ09ODqakpM2bMYPny5SQkJDBhwgS2bNmCWq1mw4YNJCUloVKp2LVrFz09PSxZsoQrV64wY8YMbt++zfvvv8+pU6f44osvWLJkCW+88QbXrl3Dy8uLrVu3Ul5eTmNjI7GxsZSUlLBs2TI++ugjjI2NuXHjBosWLWLz5s0kJSVhaWnJnj17qK6u5ueff8bAwACVSoWtrS1eXl7k5eVx/vx5Dh48KFQu3Lp1K52dnTg5OQkVCG1sbISw9YiICBITE1m1ahVWVlZs2bKFDz74gIyMDGbPnk1SUhKzZs3i6tWrTJs2jaSkJKytramurkahUJCQkICLiwvHjx/n448/xsXFhatXr/Lll19y4sQJPvvsM/z9/VmyZKQk5zvvvMO4ceP4/fffWbVqFSYmJmzYsIHY2Fjs7Ow4duwYEomE/fv309vbK1zvzs5O1q9fT1hYGImJicTHx7No0SIyMjKwsLDg9ddfJyUlBX9/f86dO8ebb76Jl5cXO3bs4Pr165iZmXH8+HH8/f2prq6muLgYXV1dtLW1uXr1qkCa+vj40NHRQV9fHw899BB79+5FKpWSlJSERqPBz8+PtrY2ent7eeuttxgcHKSmpobExET8/Py4desWy5Yt4/bt2yxcuJCmpiZ0dXV58cUXyc3Nxc7OjrfeeosTJ07g5OSEtbU1Dz/8MB0dHYSHh7N9+3ZaWlr4+OOPWbduHRs3biQyMpJ58+aRnJzM0qVLuXbtGr29vUyZMoWEhAQmTpxIXFwcL7zwAi+++CLR0dH/o/s8NDSUJUuWYGdnN0a5AjBz5kzh3/cqHEc72qlTp44JtJ89ezYffvghX3zxBU899ZTQlkfJtdGQ+JKSEt59911aW1t59tln0Wg0HDlyhDfffJNp06Zx8eJFoqKi+Mc//oGlpSVTp04lLy8PfX193N3dsbGxITw8HE9PT3777TdsbW159dVXkUqlnDx5kh9++IGuri7c3Nyoqanh5ZdfJjMzk+nTp7NhwwbUajVqtZqffvoJmUzG4OAgs2bNIjAwkJCQEF5//XX2798/4rU/f55bt24RFhaGSCTit99+o6enhw8++ICtW7diYGCAj48POTk5WFlZMWnSJDw8PDA2Nsbd3V2oyBkREcGKFStwcnLC3NycJ554gkOHDuHj48MPP/zAyZMnOXLkCHl5eZSXl/Pmm2+Snp7OunXr6Ojo4Nlnn+XNN99kaGiIgwcP8sYbb5Camoqfnx+hoaGYm5vzyiuvEBcXx5QpU3jkkUcIDw/n66+/5uGHH2bTpk2kpKSwfPlyVCoVBgYG/Pjjj0ycOJETJ06wdetWpFIp8fHxmJmZcfDgQWbNmsWKFSt48803sba2Jicnh4CAABISEnBycmJoaAh9fX0sLCxQqVRs3LiRJUuWUFFRgZmZGUFBQSiVSsrKyhgaGmLfvn0YGxtz/PhxQkJCeOONNzhx4gQuLi58++23VFZWUl9fj5OTEytWrKCqqor58+cTHBzMO++8Q3BwML29vWzfvp0pU6Ywfvx4Dh06hKWlJf7+/kRHR9PQ0EBdXR03btxg9erVSCQS9u3bJ1SjvX79Oj///DPvvvsuTzzxBAsWLKCvr4/p06fz+OOPC9UNT506RWZmJtra2rz00kvCfW1tbc2bb75JRUUFycnJBAQEUF5ezueff05SUhLr1q3jrbfewtLSEi8vL7777jv27duHXC5HT0+P6Oho4uPj6e/v5+9//zs9PT309fWhUqnw9PSktbUVV1dXVq5cSX19PdOnTyciIoJFixZx+vRplixZQkdHByKRCCMjI5YuXUpRURFBQUG0tbUJ46iHhwePPvooXl5eWFpakpWVxdKlSxkYGCAjIwNnZ2fS09P58ccfEYlEvPXWW1RXV7N+/XpWrlz5v35e+C/GQiQS4WBkTk1365jXm/u6ECESSBNPC3tCXL3RoCG/sZLkO9cobq3FUKZzHyEF4GfrRmVXC53yPuG1nqEBbrc3jNneTNeA+a4+ZFbepOPutpOtnLjZUi1s0zXYT1NvJxMsHYRjmekwntOVBdT3tI/5LVcbypErhpnj5CU8rFvpG6Mv0xFWoQHhIR9GHuSDnCeifdfy5G/ngbeVI+kVN2js7QTAREef7sF+NBoN6eU3mGjpOEblNM7cDl0tGQVNVQAYyLTpGx4U3r/T3khx68jky0zXgHAPXxp6O7h8N4x9FAOKIRRqpUBIDauU5NWWcraqiL7hQVxMLPk8/FE2+4cBjFmFXzFpNjMdxmOsoycozTzN7XllTizz3Xy4VHeb1zP282bm7/hYO/Nt9GaMtHU5XHSe+p4O3j97hOquVg4U5nC7vZGytga6BvsYVA7zQfYx/hX+KD7WzjyV+COFLTVMtHTk+OqtiMViBpUKnpkRhZG2LtsCl6GjJeOZpF2cqynmqRkRDCkVvBa0nMquFp5O3IWhti4z7MfhaGxBXm0Jj/qGsDNqE7paMrbnHOfbyyl0DvbhY+2MWCzm09xTJJRewcbAhFfSfmVH1ON4mNlw4tYFOuR9bMvYx8DwIO+cOYinhT0KlZLrTVVca6zgk/Mnqetu4/3sI4wzs2XfsucFVVJ1VwsvpOxBV0ubHRcScTa25IMFD1Pd1cr+gmzkiiG2pu9DpdEwpBwh3gYUg/x4NY340stUdbVS3FKLBg3lHU08lfgjuloy3j5zkCk2LgyplCz1momfrSsORua8MieW3mE5ErGYQCcvhlUKilpreDFlD2Xt9byZ+Tt3Opo4U3mTby4l09LfzZbUveRU3+LXG2f4KOcECpWK97OPolCr+K0gC4Di1jrezTqMqa4Bn50/RYTHVM5W3eRK/R3sDc15JmkXZe0NvBSwGLliCLliiM/DH2WRpz+Hbp4nev/7GMp0OVacN5LBtvtVKjqbaRvo5W8+82jr76H9bo7XykkBvH/2CBv8FlDb3cY7IQ/x640zDKtGrvE4czs+OX+SWQ7j+TZ6M9V3r7m3lRPfRG+ia7CfF1P2cKn+Ns7GlnwcOlLG/iHvOQyrley4kIBMIiXMw4+S1jp+K8imf3iIHxc9ia+tG5b6xhS11GKlb0za+rfZkrqXp2dE8frp36nqauaT8ydJLLuKv50HW9P3oVAr2bX4SV7L+A17IzPWn9hBaVsDKrWaT86fRCqW8HXU4/xeeI7UO/m8l3V4pEKhvhFOxha4mljz69Ln2HU1g2dmRPJ+9hGs9U3YfS0dgADHCajU6pHwb21dpGIJRtp69A4P8sGCh7nVWsfTiT8S5DSRHZGP0TrQw9bApbx++ncs9Yz4/nIqLwcsQSwS8XbwQwyrlLyYsoebzTVoNGqSyq5yuf6OQKxlVxfzsM9ceoYGeH5WDAcKc/jpWgafR2wgs7KQ2p42OgZ6+fDcMaz0jfnw3DHO15SQXn6Dn/MzqepqIe6u5fJhnyDWH9/BLzeycDS24PPwRwlwmoCWRMKzM6P4LOwRJlo6cKG2jB0XEzlVcomptm54WTpgeVeZOqo6urdvFYlEzHfzoaarjTvtjX8cHsiqvMkECwecTawIdZ9C6p3rKO6pgt4p78f0HkK/f3iQ1Dv57IzexAa/+VR0NnO2qojhuxmBEyzsKblHnVvW3oCulgxHYwscjMwJcR1RlZ6pvElZewPe1k4UNv97jOkY6CWzspD6nnZCXLyZbD2iqLfUN8JM14DStvr7fsMfUdhcjVQswevuODXXZRK13W1C5cF7IVcMU97ZPIaQAnA1saaht5N3sw6jVKvQkcoIvKePN9DWwcbAlAkW9vjYuJByJ3+M0tlc15C2gR5gZLHl3nGufaCX0vYGIX/rf4r/TymlAA4dOsQjjzzCDz/8wIwZM/jyyy85fPgwJSUlWFtbs379euzt7dm+fTsAubm5zJs3j48++ojo6GgOHjzIhx9+yLVr1/D2Hgmu/Pjjj/noo4/45ZdfhIfwgoICiouL0dHR+avDETC60rdnzx7s7OwIDw8nLy+PtWvX8v333zNr1iy0tLSIi4tj8uTJ9Pb2MmvWLJKTk4mMjOTatWtMmzaNDz/8EF9fX5ydnSktLUUmk2FoaIilpSWtra3o6ekxMDDAiRMncHR0ZMuWLaSkpBAeHs61a9fYvHkzMpmMt99+G0NDQ8rLy7G0tESlUgnB7PPmzSM/P5/XXnuNK1euCCqxY8eOMWvWLFpbWzE1NWXt2rWsWLGCp59+WiD+RkmL8PBw5s6di46ODgUFBbi6uuLo6IhIJEKj0SCXywkMDOTo0aOsXLmS48ePExYWhkajIScnB41GQ2RkJI2Njfzyyy988cUXxMfHY2FhwdmzZ/Hw8KC7u5uGhgbS09NZv349UVFRXL9+HW1tbaqqqnBwcKCyspKWlhZmzJhBU1MTUVFRfPXVV2zcuJHS0lLUajUSiYSpU6dy4cIFZs+ezVdffSVY7woKCti6dSulpaWMHz+epKQkwsPDOXz4MIsXLxZUPZWVlTQ1NdHd3Y1Go+Grr77Czc2NxYsXAwhl1WNiYgDYvn07bm5ufPDBB0ilUm7dusW2bdvYtGkTrq6uKBQKduzYIVTJGj0fP/74I7W1tUyePJlVq1YRFxfHkiVL2LlzJ08//TRPP/0027dvp7W1FYVCQUlJCWFhYZw4cQKJREJAQACpqals2rSJ3bt3ExwcjLu7OykpKURERKDRaDh48CAHDhzg4MGD6OnpkZiYyIQJE7hx4waTJk2isrKS9vZ2HnroIcrKymhtbWVgYACFQsHixYu5efMmkydP5ttvvxUIjM2bN5OdnU1QUBCpqanMmjWLvLw8wsPD2bt3Lxs3biQ5ORmAqqoqPv74Y3bu3ElwcDBnz54VStn7+fkJpNn58+cZHh4WFIwXL14UlIYVFRVYWFhga2tLT08PEydOJC0tjejoaKqrq1m9ejUXLlwgMTERa2trMjMzmThxIsHBwVy9ehUvLy9WrVqFSqXitddeIzIykjfffJPKykp+++03XnrpJf71r38B8MILL/Dll1/i5eWFqakp1dXV1NfXs3PnTg4fPszVq1eF6mARERGkpKRw8OBBgXxetmwZ1dXVXL16lc2bN/PLL78wYcIEZs6cyY8//oizszPr16/n+++/55dffsHZ2ZmOjg56enrQ1dWlt7eXM2fOMH36dFatWiWQSDo6OnR1dfHOO+/w9ttvC9a4RYsWcfz4cRYtWiRc98zMTD755BO2b9+On5+f8HpbWxs2NjY8/fTTREVFCe0wPj4esViMra0tRUVF9Pf3Y2dnh4GBAT09PcTExCCRSIiLiyMmJoaDBw/i5uaGo6MjfX19nDlzhieffJJz584RGBhIcnIyYrGY4OBguru7+eyzz/j00085cOAAK1euRCKRkJKSwvz580lMTOSrr74Sqt4lJSXh4OCAUqnE1taW5uZmTE1NMTQ0pK+vj+rqatasWcMzzzxDdHQ0lpaWnDp1ipkzZxIdHU1KSsqYapmLFi0iLi4OU1NT3n33XVJTU8nPzyckJARLS0vy8vKYNm0a48aN4/DhwygUCvT19Vm2bBkdHR2kp6eTlZXFY489RldXF729vSxbtoy9e/dibW3N7du3UavVPPvss5w7dw4rKyuam5sZHh4mMDAQDw8PtmzZwtNPP01WVhaBgYFkZWUREhLCuXPnWL9+Pe+88w4eHh7C9di3bx9r164ViFSFQsGECRPYv38/69atIzk5GW1tbcrLy3Fzc6O3t5f58+dz/vx5ZDIZtra2eHp6cuDAAUxMTDA0NKSzs5OJEydSXl7OvHnzuHjxIiEhIYISLjU1FX9/fwoKCpg/fz6XL19m586d/Prrr1RWVgqEura2NrNmzeLcuXM0NzcjlUqxtbVlYGCAlStXcvLkScaNG4e5uTl1dXX4+vpy4MABtLW1mT17NgUFBejp6eHt7Y22tjZfffUVb775Jvv378fPz4+amhra29vx9PSkrq6O1tZWpk2bRlNTE52dnTz88MMcO3aMsLAwBgYGqKurw8zMjPXr1/Pyyy8TGBhITk4OWlpaeHt7c+nSJUxNTQViVaFQEBUVxf79+1m6dCkXL15kxowZKBQKMjIycHV1BUYWkRoaGggKCmL79u0sX76c7OxsZs+eTWpqKp9//jkXLlz4r1Lq/4DR56ecxz7EQKbD6YoCFrj5kFtTwkyH8WRUFBB+T9YUjASOF7XU0jnYz86Licxy8GSmwzhBqWNjaIqzsaWgcNJoNKSVX8dQpstka2dyam4R4eE3ZmX3XuTWlGBtYIK7mQ3nqosJcp6ISq0mvfwG4R6+D/xcYXO1EOY8rFLiZemAneH9ljiA7Opi/GxcMdTWFVaQz9fcYry5PZb6D24/BU1VdA8N4G5mQ+/QSDWzuS6TMJA9+Dl1VDFlb2RO60APEyzsya0txVzXQFilvxftA71crr9DgJMnN5trGFQOM8/Fm6quFup62tGSSJlq64qOVIZao+Z0RSEzHcZT3dWCma4h9XerDcJIPsqVhnIMZDqIRSImWjqSXVXETIfxXGm4g7meEXLFMN2D/QyrlbyS9is/xz6DXDGMrpbsrurjEmsmB1LUUou2RAsTXX1uNlfjYGTBM0m7+CzsEcQiEVKJlPTyGyx08+HdrEN8FfkY7QO9tA708EH2UX6OfZZbrbVMtXWjobeDLal7+Th0PZZ6RlR2NTPBwoHHT33Da3OXo1Kraezr5IcraXwd9Tiau9d1kqUj8aWXCXX3RSaRgEhERUczeloyXEyseCrxR/YufZbillomWTnROyRHqVYhVw5jINPBxsCEKw3lzHWexPJDH/Pe/DW8kvYrrwYtx0RHj54hOXvyT/Na0HLsDM3u2oJM2Zaxj2VeszCQ6TDBwh6JWIJKrUIiFqOvpcOOiwm8Pncl2lItnk3cxXvz19A7LEejGcne+tvxL+9WPKtj19V0vo56nJO3LtI52E/34ADrfYNpH+hFLBIRV3qZFRNnj1iMpDKkEilNvZ18nhfH3/3D+fJCAmsmB5FRcQONRsN7IWuo7+3A28qJNUc/528+85hq54ZKrUYiEnGu5hbaEi0O3sxh1+KnaOrrREcqo2doAEt9Y9oHehhSKckov8GVhnLemrcKI21d1GiYauvGrqvprJ8SQuqdfJyMLdCT6aBWq+kZGhDas5ZYSmNfB4baejyXtJu3g1fx/tmjfBK2nnfOHOLVoGUYyHRo6e/m/eyjfBO9ietNVUy382Bz/HckPPw6N5qqAA1vZR7ko9B1vH/2CG6m1jw7M5pL9bcx1zPkfE0JCrWSxZ4z+OX6GR6buoDb7Y1Y6BliqK3L1vR9fLDgYdoGerA3NEMm1eJOeyNW+sYYauvSIe9FV6rNtox9fBK2nvqeDhyMzNHX0kZbqsVzSbt5dmYUEy0dWX9iB5+GPcKH2Uf5YMHDDCiG6FMMoSPRYlvGPv4xJ5b8xgr+7h/OisOfsn3h3+hXDGGtb8w/0n7hvflrSLmdT/fQAAqVksnWzvhYu3C9qYLJVs5MtnYmvvQyvrZuPJXwA++ErKZncAAbQxMAEkuvsnzSbJ67G4yvr6WNmZ4hvUMDdA72o9GAlliMVCJlS8oevojYyLNJu9ngN58gp4mIRLDh5E62BS4VFEQTLR3pGx6kobcDpVqNVCxGLBIjEYuZ5TCeGT++wouzF+FhZoODkTm13e0j97ZYgq2hKY7GFoKSqKa7lequVlRqNcGu3tT3tKNQqXAxtSL1znVC3X2EIO171UAwov4ZUirpHx5kjtMEMisL8bN1w+wepZNCpSSt/Aah7lOQSaTkN1biaWGHnpY2TX2dFLfUEnJPEPnoZ/LqytCVauFv53HXbivB1dSa+p72+xRco6jraaesvYE7d5Vfxtp6mOkZMsXa5U/Hpgt1Zbib2gjjRNdgP7XdbQJ5db2pEn0tbcaZ29332cLmasQiMZOsHIVzk3onn4VuU5CIxajUam40VdGnGERXqoWvjSuX6m/fp8KC+5VQGs1ItVsLPUMmWDqg0Wg4c7c4RNtAD20DvUywsKd7sJ+rDeXMd/v3ov3/VCn1/zlSCmDnzp18+umnNDU14evry44dOwR1QnBwMC4uLuzdu1fY/siRI7zxxhtUVVUxbtw4PvnkE8E2BCMn8u233+bHH3+kq6uLwMBAvv322/9VZtDoQ9X27dvZuXMnb7zxBjExMdjb25OUlMTChQs5duwYq1evRiwWk5+fD0BTUxPGxsa0tLQIE/QlS5bQ0NBAY2Mj06ZNo7W1lbNnz7Jy5UoOHjxIaGgoZmZm5OfnI5PJqK2txcnJiZKSEgICAsjJyWHZsmWIxWLBNjI8PMz06dOxsbHh3XffZerUqVy5cgVvb2+ampooKyujs7NTUAU4OTnh7+/PyZMnmTt3Ljdv3sTb25ucnBxaWlpwcnIiLCxMsL7MmDGDmpoazpw5w6OPPkpSUhIwohwrLCzE3t4epVKJRCJheHiYpqYmbG1tMTMzY86cOVRVVdHQ0IC/vz9nzpwhPDycK1eucPv2bdatW0diYqJwrX777TcyMzPJycnBzc2Nixcv4ubmhqWlJfHx8URGRnL27Fn6+/vZv38/69evR6lUMmXKFJycnDh69CirVq0C4Pjx48TGxnLmzBnkcjlKpRKFQsGiRYvQ0dGhvb2d8+fP4+3tjVKpZPz48WRnZ3P16lXMzMx45JFHAARyEaC+vp5//vOfGBgYsH79ekFhEhsby/bt21m5ciUymYyzZ8+i0WgwNjYWiAIjIyO2b9/OkiVLcHd3x9zcnPPnz+Pv7097ezthYWGkpqZiamoqkEhKpZL+/n6ef/55Tp48yfjx40lLS8PAwIDBwUHCwsJIS0tjwYIFgmVOV1eXhIQEli1bJliIAPbt28f69es5deqUoACqrq7miSee4Ndff8XU1JRJkyZhZGTE7du3mTVrFgqFguTkZAwMDJDL5ejr61NfX8/AwAAmJiaEhoYyODjIzZs3WbhwIfHx8cTExKBSqcjIyCAyMpK33nqLgIAA4RqPKnf2798v5NKMXpfHH3+cZ555Bm9vbyQSCSdPnkRXVxcvLy/y8/MxMjJi3rx5pKSkEBUVxc2bN9mwYQM7d+5k5syZJCcn4+npSXV1NcPDw/j4+HD9+nWkUilhYWG8//77WFlZsXnzZsGK9uGHHyKRSNi7dy8TJkzAwMCAffv28dVXX/H8888zZcoU5s+fzxdffMHevXvp6OjA1dWV4eFh3njjDbZs2UJbWxvff/89UqmUTZs24ebmRm5uLhYWFrz33nvs2bOHRx99lJSUFL7//nvKysq4cOECBgYGJCcns2DBAo4dO8bChQspLi7G2NiYqqoq4uLi2LNnDyKRiJqaGlpbW7G0tKS4uBgYUWLl5eURERHB7du3uXHjBhKJhMmTJ3Pjxg2ioqLIyMhg/vz56OvrC4QVQHFxMZMmTeLVV19l8+bNuLi40N3dzfXr17GyskIikTB+/HjBBp2QkICnpyfa2tq0t7ejVquprq5GqVSi0WgwMjJCoVAwefJkSkpKsLCwoLGxET09PXJycvD19RX6q/PnzxMWFib0YaP3VlhYGBYWFrz55ptMnToVMzMzEhMTGT9+PMXFxURHR5ORkcG4ceNobGykvr4elUrFsmXLOH36NFZWVgKJffXqVQCBvGpvbxcsy6NtMTIykri4OCELafS177//ng0bNiCTyUhPTyc4OBipVMqhQ4c4e/Ys0dHR2NnZcefOHa5cuUJsbCzt7e1ERUWhVqvJysqitLSUZ599lhMnTmBiYkJgYCASiYSEhAQWLVrEjRs3kMlk2NnZkZWVRXNzM729vUyePJnBwUFmzpxJQUEBgYGB6OrqCudqVEEcFhbGd999J+Qo9ff3s2LFCuLj44mOjkYkEpGSksLChQs5dOgQa9asobOzk6ysLDo6OtDW1mbChAm0tbUBCKTd+PHj0Wg0lJSUsGXLFs6dO8ecOXMQiUTCMcjlcrZv3860adNwcnLCz8+PpKQk1Go18+fPR09Pj7Nnz3Ly5EmMjIzw9/fHwMCAwMBATp8+TXh4OFVVVRQWFrJkyRKuX7/OlClT6O3tJT8/n7lz55KZmYmPjw9Xr15FrVYTFhZGSkoKvb29rF69GrVazdmzZ3n33Xfp6urihx9+EJ4VRq3jFRUV9Pb20tXVRVdXF/7+/pSUlNDa2spDDz2ESCTi4sWL6Ovr4+DgwM2bN4UFpVWrVnHo0CF0dXW5cOECb7311n9Jqf8D/khKNfd10dzXRe+wnGHVSKlxXS0ZwyolN5qqkCuHEQGTrJww0zUQHoZHrQ8ajYamvi6qu1tRqf+94i0SiUksu4KHmQ1/8wkeY8l7EIpbaxlQDDGgGCbIyYvTFQUEOnsJuRmjGFQOU93VSttAj2BR+yzsEfS0tLE3MsPByEKw2o1Co9GQciefcA9f8mpL0ZHKsNI3xtHY4k+PR6VWU93dyv6CsxwrvsCPi57EXM8QI209jLR1BXXVvbjd3kDXYD8KtZqewQFm2HsIFQYfBI1Gw7maW/ySn8lsxwmMM7fF1dQKJ+Ox2Xq5taX4WDujpyXjQm0ZAU4TqO5qpUPei5+tG9VdrYhFIhyNLShprUN+t4qas4kVKw59yprJgUy38+CNzN95L2QNItGIiqywuYb3zo5Yo369WzXu6cRdbJoWip+NK08l/shPS56mb3jwbv5NJw5GZnx7OYWnpkfQMdhP92A/X19MIvHh1ynvbOa5pN18EbGRF1P28E30JtQaDQqVkmuNlUy1dWVL6l52Rm3imaRdfB6xgbK2Bs5WFfHsrGh6h+RsTf+VLyM28s+zR/jHnFi2ZezjjbkrKG1vYLKVM20DPbT0d2Oio8/3V1L5Oupxdl5KZo7jBNzNbHj99H6h+thnYY9Q1t6Iu5k1OlIZpjr6fHUhgVXec3AytiT59jUs9EZUMdsy9vHynFh0pTIu1JUR4eHLkEqJQqVka/o+fl36HMVtdVypL6e4tZYn/MNwN7Phb8e+ZOmEmSzynE5a+XWixk2lQ95Hv2IILYmEopZa5rtO5kZTFe5m1jyduIv1U4KRSaRoS7VIL7/BNDs3DhTmcHL1NuJKL3G1sYKocSMZema6BkjEYgYVw7x2ej+vBi3HQs8Qd1MbYg9+xAcL1gqkgOauha+lv5v3zh5my+zFXGssZ5KVE99cSuajhev46mICL81ejL5Mh7fPHOQfc2JHyJWQNbx15gBfRGzkUn0ZPUNybrc3EDthJr8XnuMJ/zDezDwgXLudUZt4MWUP7y94GGMdPa41VOBl6cCLKXv4ftHfGRgeZEvqXr6KfIznk3/is7BHeDntFz4OXcdn50/x6tzl7LyYxAcLHqaisxm5cpivLyTyjzmxNPd3ca2hgkWe0/nmcjIvzophS+peXpkTy2RrZxp6O9iavo+3g1fxbtZh3g5excGb53ls6gJkYimf5Z7iyekRNPd1MaRScKWhnFWTArjWWIGvjSvjze1468wBVk6ag6OROYPKYS7W3Wa+22S2pe9DKpawe8lTpJff4JtLKfxjzhL+efYISX97g/qedr65lIKTsQVFLbVsnDqf3iE5krvKoYLmaua5TGJ/QTYz7D2Y7+bDc0m7+WjhOvS0ZFR1tXK+5hYX62/zecQGfrtxlvVTgpGKJcgkUjbHf8c30Zuo7+ngw3PH2Bm1ibfOHCDcww8zXQOhwt1kaxcO3sxhnJkt5nqGTLf34OGjX7DQ3Ycgp4k8lfgjLwUsRqkeWVDwt3Pjo5wT7Ih6HLVajbOJJeuP7+Dj0HV0yPt4I/N3Pg5df9dOLSGn+hY2BiZ0Dw0wzc6dy/W38bSwp6S1Hl9bV2QSKQOKobvk70Tgwba2mu5Wjhbl4WlhR6CTF8Y692f+KtUq0u5cZ77bZK41VDDb0ZPbHY10D/b/KcEECITLkEpJXU877mY2IyHjGg29w4O09HfTNtAzZlwCqOhs4V+5p9gZtQk9LW0mWjncN87ci7Ty6wS7eCOTSLnRVIWrqTVG2rrkN1ZgqK2Hh5nNn372dnsDPUNyhpQKxGIx481saR3oobm/G4lIhI/1iMpuFA86h/U9HfQODQiK4bG/pZnqrlbmuUykoLkaRyMLqrpamGjpgFqjIaemhDD3KWNIt/+/JqX+v4h7SSkbGxt0dXWFkNq6ujpkMhnz58+ns7OT1tZWVCoVp06dEiafowHVOTk5jB8/nsuXLwsTsVEL3aVLlwgLC2NwcFBQJD333HNIpVKOHj3KxIkjN2Fvby85OTlMnDiRvr4+zMzMOHfuHKGhoeTl5REYGIiRkdGYySfApUuXmDlzJkePHhWCuVUqFdu2beONN97A1taWoKAgRCIRcXFxREdHc/r0aUJCQtDS0qKwsJDKykph0jHasFJTUwkPDwdAqVTy22+/sWHDBk6dOoVMJkMsFuPs7ExzczMlJSU4ODigUCiYNm0aDg4OJCYmEhkZKQRtHz58GHd3d5qamoiMjByRsKenM378eAYGBvD29kaj0XD27FlCQkL46aefsLW1xdjYGH9/f1paWqiqqkJbWxtra2ucnJyoqakhPz+f2NhYvv/+e5ydndHS0sLDwwORSERqairu7u50dnYSFBSElZUVjY2NFBYWEhYWJpBSly9fpr+/n+DgYM6fP4+Liwv29vbU1tbS2tqKRCJBpVIxdepU4TNXrlxBLBbT0tKClpYWCQkJODs7Y2pqyquvvkpiYiJVVVXIZDKio6Opr68nKSmJzZs3s2/fPmJjYzEwMOD06dMEBATQ2dlJc3Mzfn5+9Pb2kp6eTlFRER4eHixfvlyYXJeVlXHt2jU8PDxobm5GrVbj7e1NaWnpmHbR0dHBtm3bCAsLIzo6Gl3dkc5qdPI5quIZbe/t7e0EBgbS1NTEgQMH0NXVxcfHh9raWlQqlVDpsqGhAalUir6+Ph4eHmMC/0+dOkVvby+hoaFjAvNHVYG1tbWUlJSgUqnIz8/n9ddfJysri7lz5wod3ejxHTlyhBUrVlBdXc2VK1eor6/Hy8uL+fPn09HRwaeffsqhQ4c4ePAgly5dYs+ePXzxxRdoNBokEgnNzc08/PDDrFixAqlUSmxsLKtWrSIjI4Ouri4mTpzIxIkTKSgooKGhgeLiYr799lu2bdvG448/zrFjx6iurmbLli0sWrSI/v5+PDw8+PHHH3nvvfeIj49n69ataGlpoa2tjaenJ4WFhfj6+nLhwgW8vb3R0tLC3d2d6upqgoKCCAwM5KOPPsLZ2XkMaTOaYTTa7+zcuRMvLy+WLl1KZWUljY2NqFQqYmJieO+99/j73/+OpaUlarWaI0eO8NBDDwn9woULF4Tf19vbi1KppLq6GgcHB+rq6tBoNDg7O1NTU4OjoyMymQwdHR2BnBolPYaHh9HW1uaNN97gzTffFNrfvf1CXl4eH3/8MRs3bmT27NmC2ik6Opr09HQiIyO5dOkSDQ0NLFiwgLS0NJYtW4ZIJKK2tpaOjg6BsPD29uajjz7CzMyM+Ph4vvnmG9LS0nB1deX69euC7XDx4sVMmDCBH374gWvXrjF16lRycnLQ1tYe0/daWFhQXl4uvJaXl4ebmxtyuZzLly+zaNEi+vr6qKiowMPDg6tXrxIaGgqMkGi//fYb27Zt47PPPruvmIKpqSkff/wxjz/+OBqNBldXV7y8vEhKSiIwMJBz584RExNDY2MjN27coLGxkY0bN5KSkkJoaChisVhQ9CxcuJCsrCxCQ0OprKzkypUruLm5IZVKhYIZo+PC0NCQ0O/09fWh0WgICAigqqqKgYEBRCIRL774In19fVy5cmVM8Pm91+3kyZPY2NjQ2tpKVFQUEolEaI+jFmepVEp1dTXXr1/nu+++IzIyEk9PTyGcOioqim+++YbNmzcLgez3jk3Hjx8nOjqac+fOoaury5w5c0hKSmL69OkUFRURHBwMjBBuBw4cYNOmTRw/flzop0QiEc3NzXR3d+Ps7ExISAiGhoYCKTWa1zU6Pn3yySe8/vrrJCUlIRKJMDY2xsrKirKyMoqKipg6dSpyuRyJREJJSQnjxo1DrVaTmZnJl19++V9S6v+Ae6vv6WjJsDc0o7q7lcrOZmbYj6N3eKT6k5ZYwhQbF/S0tO/bx6ia6a8wrFLyVuYBarrbeHpGhFC56I8Qi8SY6hpgrmvIkErB6YoC9LS0mWLjglwxTN+wfMz2MokWLiZWWOgZjikVrtaoqe/poLZnhKAffQbXEktxMbXCQKbDxbrb3OloZJ7LJMaZ2dIp76O+t4OeoYExdgcNmpGKevrGWOgZcru9gYmWjvQMyekZGqBnSI7irn3kj7hYPxImvCPqcaQi8Zh9wr/tg6P/LxVLeCl1L3uXPvfAyU3HQC8VXc2C9fHeScudjibkiiH6hgeZbu+BRCTmZksNW9P3Mc7Mludnx1DX045cMcRsxwnkN1YgAl4//TsfLHyY3iE5ybevscxrJsMqFXoybXQkWtT3tmOtb4JULKG+t52vLiTy3vw1PJ/0E98tegKVWoWWWMrHOSd4O3gVjsYWvJz2Cw09HWz2D8VApsuwSoFSrebHK2ms8p5DevkN/jEnltruNkx09FFr1Lx2ej/fxTxB75AclUZNbm0p7mY2fJWXwBvzVtAp72OqnTurDn/GRwvXodKoeP3077wWtJwOeR9TbFww1zPktxtnsdAzYrN/KCdLLjHF2oX2gV4a+zpJuZPPGu9AXk77RSC7NvuHYW9oxjNJu3hx9iK0JVImWTlR0FyNrYEJn+XGMd91Mr8VnOXk6m1UdDZxtDiPpr4uXglcikQkZlPct+yIehwxIlxNrYje/wFfRmwkoewKOTW3cDaxInbCDK43VRI1bhrPJ//E8dVbqetp5/eCbEQiEQGOnlysu81TMyJo6++huruNf+We4vlZ0cgVCrKri1jkOZ1Pz58kbu2r1Ha3Ya5ryOqjn/PBgrXoa+ngamrFkgMf8U7wQxjIdHg57RcOrthCy0APSpUS9d2+X1uqhUQswVCmwyMndvBR6DpkYikG2jq09HWjLdVCpVFjrK3HuepbzHAYN1KYoDCH2Y6efJB9lOdnxdA+0EuIqzcf5RwnwsOP8zUl5NTc4ruYJ7hYV4aDkTlupjZsPLWT14KWI5NIUapVzHPxZlv6rzzsM5crDeX42bqRVXWT6PH+PJXwA19GbORGcxWDSgUd8l5KWutZMWk2jkYWqDRqpGIJfrZuzN3zOq/PXUH/8CD5jZUsdPfhy7wEHpu6gKquVg4Xneed4If44Uoa24KWMawaUeoMq5R8eO4YT02PwNfGlX9mH+HhyUG09HdzuCiXd4IfYuelZH5Y9HfK2hu43d7ID1dSWTJhJpOsHBEhYlit5P2zR/g2ejO5taUo1EpmOoxnS8rPfBy6nsv1t5nnMolBpQJtiRRDbT3Syq8zz2USTsYWRP32Pu+GrEYqlmCio8eQUoFMooVCreLFlD38sOjv5NWWsnHqAi7V3RYsagB6Wtp0yPtoHejGydgSDzMbjhbnYWNgiomOHj9eSefAyi3caKpCBDT1dWFvZHa36qM5dzoaudZYwdIJM/nw3DGenB6BnpY2AY6eFLbUUN3VykI3H8raG1ColDyX/BOvBi1n5aTZiEXiESVOZSHaUq0xpElJWz3aEinmeoZUdbYI2XowQn7kN1ZwrDgPV1Nr/O3+XSBGoxmpTGpnZIa1vglikYi08utoS6QY6ehhKNMdozCVK4bpHuqnS95P19AAarVa6ENru9v4KOcEn4U9gq7WyDOvoUwXKwNjzHUNhczCezHaj/YPDwqKLgADbR0mWTqO+YxSrSKjfERBPLogc6XhDua6hria/uciY5WdzSw9+DGbp4XhbeXIeAs7IW/rz47rXvxRJfVHyBVDZFcX42/nwY3mKrQlUqbZuXOm8uYDFcqt/d2E/vruf0mp/7dwb9D5U089RW5uLjNnziQ7O5tFixbx4osvsmHDBiwtLbGwsEAqlZKVlcXUqVPJz8+nr68PmUxGQEAAaWlpyGQyzM3NaWpqYs6cOVhaWt5HIsGICmw092j0Ujk6OtLd3U1JSQnOzs7IZDIhw0aj0QhB2qmpqURERKBSqYiPj2fixIm4u7sTHx8vTGxVKhWrV68WFEE+Pj44OTnR19fHhQsXGB4eJiwsjISEBMaNG8ekSZMEi9jq1avRaDRkZGQQFjaSOXDmzBkMDQ2Ry+V4e3tjamqKSqWipqaG8vJyQkND2b9/P4sXLx5DcpSVlQn2QXd3d+zs7Ojr6yM5OZmZM2dy8+ZNYbKdnZ1NZ2cnc+fOpbu7m6GhISZMmEBXVxdXrlxheHiYo0ePcujQIY4cOQKMBOJPnDiRrq4uysrKmDVrFsPDw5SXl1NbW8vLL79Me3s7P/30Ezo6Onh7e2NhYUFJSQnd3d20t7ejVCrx8vIaUwHv6NGjrFixgri4OMHql5eXh4mJCdXV1URERNDf38+OHTt47bXXaGlpwcLCgtTUVORyObGxsdTW1vL555/z1VdfkZSUhJ2dHZMnTyYtLQ19fX16enoIDw9HqVSSk5PD8PAwkZGRiEQienp6OHv2LOvWrWP//v1IpVKhnYhEIiIiIvjhhx947LHHhIp1o8TPaKdx9OhRYdI2mg3m6ek5ZvIZExMjWDO7uroIDw8nNTVVIGEKCgro6uoiKiqKF154gZdfflmosKZUKjlz5owwkc/JycHe3h5XV1eOHj1KRESE0BYeRKR2dXXR09MjqHCMjY0FS42hoSHjxo1DJpMJ137RokX89ttv2NjYYGpqyunTp2lpaeHkyZMEBwcLOUbJyck89dRTLFmyhPDwcNzd3Vm8eDEffPAB9fX1WFpasmbNGvbt24eRkRH9/f1CqPPp06eZMWMG7e3t2NjYUFJSgkQiwdvbWyjYIJVKUSqVWFhYEBAQwFNPPUVoaCiXLl3CysoKb29v2tvbWbp0KcePH0dHRwdnZ2fu3LkjVD0MDAwkPz8fGxsbFAoFbW1tTJ06FYDS0lK2b9/OL7/8wtmzZxk/fjzW1taIRCKysrKYOXMmhYWFtLa2IhaLcXV1pa6ujv7+fkFZ6eLiglqtJj09XSAi6urqhKylW7duMWHCv6XRo9bLUfVdWVkZhYWFREVFcfnyZWxsbAQF6ii5MWr3W7RoERqNhgsXLtDa2oqVlRXnzp1j5syZtLW1MWPGDBwcRlZlWlpaKC0tJSgoiMTERKKiooScNo1Gw4wZM3B0dOT48eNoNBoWLVpETU0NkydP5q233mL58uXk5+djbW3NwMAALS0tmJqasmTJEm7cuCH00cXFxYKtbty4cVhbW3Pq1Cmhf1QqlYI6rKqqit7eXlasWMGVK1dobR3JxXFwcKC0tBRdXV0WLVo0pv+uqamht7dXIKsqKiooKSmhq6uLhx9+mISEBEQiEba2tvj4+Ag2x1G73L3B7SYmJnh7e5Obm4ulpSUzZswARoijqKgoZDKZcH1Gx4K8vDyWLFnCE088wfLlyxk/frywIBEfH09QUBDJycksWrRIuAdHr9vFixexsLDA3d2dgYEBgSi6desWAQEBXLhwQVhEycnJYXBwULDbj7bfyspKOjs7mTRpEnFxccyePRsHBwfhPr906RLm5uZCZcH6+npycnJQq9VIpVJCQkK4du0aSqUSkUiEjo4OqampvPbaa2MebEb7NI1Gw5kzZxgYGMDZ2ZmKigrGjx/P0NAQDQ0NIxVipk3j2rVrwoJHT08PLS0tXL9+nVWrVvH7778zZcoUJk6cSEpKCnZ2dlRWVrJr1y4SExP/S0r9H/BHpVRdTzvFrbW8kvYruxY/ha+NywMf4u/F/4SUqu1uo2doJENHJpGOVH57AJRqFV2D/bQP9Ao2p63pv/LjoieZYOkglMr+M/zRMvJHDCkVVHW10DbQw6/Xs7hYf5tvozcDYKprgL2R2X3B4veie7CfmnvsGn+F9oFeIV/E19b1T61+96KqswWVRk1lZzML3Hzum0CMWuVGX//jpKWktY608hv42bqiUquZZOWETCKhtK2BrqF+eobkLPGcTnzpFc7VFLPYcwalbfWMM7dFSyzBREcfC30jvrucSnzpZXZGbeKDc0eRisRMsXHlUd8QEm9fZYnnjBGyysCUFYc+YWvgUiz1jPjw3DG2Bi5jup07hS01vHPmIGt95vLtpRS2BsZiY2CKBnAytmD5oU8Epc3789diINOhobeDT86f5JvoTbxx+gBfRz9Op7yPxt5OPjx3jG+jN6NQqxhSKShprcPXxpWpdu4E/vSaoIj6cdGTiESw62oG66bM48StizT1dfKwzzxutdahLdViio0LzyXt5qWAxfQND5JbU8I8F286B/u42VJD1LhpbD93jA8WrEWl1qAv00ZLLEGpUfNJzgneDn4IfS1tvr6YRPT4aRjIdNDVkvF04i6+jd5MWXsDfrZu1HS30tTXhY5Uhq+NC9nVxZjo6ONj7UzKnXz2F2Tz5ryV3OloxN/Og1+un+FRv/kcK87jbz7zaOjt4NDNHJyMrbjT0cgjvsGY6RrSPzxI20AvdoamdA3242JqxeOnvuX9+Wsx1dWnb3gIeyMzbjZX425mwz/SfmWO0wRutzeywW8+TX1dlLTVEeExlbqeNtxNbUgtv87FujJem7uCtzIP8Hf/MKRiCYbaemxN/5Wvox7n0/OneG/+avqHBxlSKth+7jg7ozfxw5U01vsG0yHvQ4SIvmE5H507zuPTQrHWN0ZXS5t2eS+fnR8h2T7JOcme2KcZVil5M/MAr8yJpXWgBxMdfQxlugypFLx/9ijvhDxEU18XwyolFnqG/PPsEVZNCuB6UxUTLOwJdPJiUDlMyp18Ogf7+bt/ODdbqvEwsxVC8tsGetCVyng57Rce8p6DvpYOUrGYKTYuWOobc7u9AQOZLm+fOciT0yMwkI28n1tbSrCLN0eLcokeP42rjeX0Dw9hZ2hGRkUB66fMw1BblyGlkl3X0on0mMpP1zL4LPxRrPSNeTl1L6/NXc5vN84K/Ux82RUMtHQ4diuPz8M3YGVgzNqjX/BV5GOcqSzkZMklMh99j8Lmav6R9gsfLfwb72cf5aclT9PQ28GAYpg9107fLQwwxLopwTyTtIttgUtZPnE2l+vv0DXYT2VXC5MsHXkhZQ+PTV1ISVsdsRNm8o+0X4R7TSIeIdpPlVwiyHkiPUMDpJcX8MLsGCQiMW0DPXQO9oNGQ3lnM+PMbNHcpX5GFFoiqrqaWeo1a0wflVlRgIWeEfZG5pjpGlDSVk9Lfzd6WtpMtXW7W2TBdExAOYz0zY29nTT1d6FUqdCg4dmk3bwWtBx7I7MxCxk60hGbsYmOPkbaemOUty393cLfeHM7HIz+ukr2g/rRUfQMybnVWivkXBnr6OFl6UD/8CAFzdWIEKEtlWKlb4yzyb8XEHuH5NT1tNMh7x2zPxEitCQSUu7kM8vBE18b1z+1jI8e12ihDhhRmg0pFQ+0B/4RF+vKKG1rwFBbB22JFuEefrT0d1PV1YJKrR6z7TNJu/5LSv2/hdGHqlFVyieffML+/fuFPBUvLy/q6uqEVV0Ya/kCGBoaIjc3l7Vr12Jubk56evoY9cgfJ+SlpaUoFAqqqqqELCMYmejcvHmT6Oho9u3bh4ODA1OmTBEyZ9ra2sjPz0elUuHn50dWVhaLFi1CT2/kIejSpUvY2Njg5OQ05jg1Gg2FhYXU1NQgFotpbW2lo6MDJycnoqOjx+RvdXV1kZuby6xZsygvL8fX15eTJ08SEBCAvb09arWapKSkMcd95coVbGxssLGxEex3fn5+ODo6kpCQwIwZMyguLh5zDmGE5Nm/fz+6uroEBgYSFBQkTHpUKhWZmZkC4TH6+9PT0yksLCQkJISFCxeOeej643W5ceMGKpWKuro6Fi9ejFwup6ioSLC0nD9/nvfff58TJ07g6uqKtbW1MKltbm7m0qVLGBoaEhwcjFqtprW1lf379/Ppp5+ye/du9PT0hCBkmUyGTCajtLQUKysrIUBeJBJhYGCATCZj1qyRznd0ciiXy0lNTcXJyUmYWE2dOlX43nnz5tHW1kZtbS3+/v7C72pqaqK8vByZTMbAwADz5s0D4Pr161hbW2Nra8vly5exsLAQclUA8vPzaWpqwtHRkeHhYeRyORYWFhQVFREYGCioKkZVGaPXQqPRcOrUKfz8/IRAe0dHxzHnvLS0lO7ubmFCrVarOXjwoJClNHoPyOVyEhMTmTZtGq6urmPujc7OTi5cuMC3335LXl4ev/76K2ZmZvj7+yOVSklOTmZgYICQkBCampqEUOnR8Hs9PT0aGxtZvHgxmZmZyGQy6urqMDc359ixY6xZs4YNGzbw7bffCkqJn3/+mTVr1nDp0iXWrl3Lnj17iImJ4dy5c4SHh/PTTz9x5MgREhMTqa6uZmBggKCgIGbNmsW2bdt46623yMrKIjw8nKeeeoqenh6+//57ZDIZaWlp9Pb2smbNGkQikUACVldXc/nyZeE4BwcHiY2N5fr161RXVzN+/HgsLS0pLS2lvr6ewMBA7OzshGtoZ2cnqNBUKhUXLlwgJCSEWbNmkZWVJSgT/9j3aDQajh49ilgsxsTEBLlcjrW1tWC9tbKyEohmBwcH/Pz8hP1kZmbi4uKCm5ub0H4PHz7MihUrxnzf4OAgv/32G5s2beLjjz9m5syZTJ06FUPDf9tO4uPjCQsLIyMjAw8PD27dukVUVBRisZjMzExcXV2Ry+W4urqSl5eHRCJh0qRJXLlyhaCgIGHhICMjg4ceeoiEhASmTp2KtbU1qamp9PT0jKmCefToUezs7HB3dx+j3hutSrpu3TpBlTlt2jThPkhOTiY0NJTm5maKiooEgn70Hl64cKFACAOUlJRw8+ZNrl69yuLFi8cU3Ojv7+fq1avCIsPg4CBnzpyhra2Nn3/+mSeffJLIyEiBQIKRqrXJycn4+/vT1NTE5MmTOXPmDENDQ8yYMQMbGxtOnTolFFSAkT6yrKxMqL4ZHx8vhNGnpqYyadIkIYvqXly8eJE7d+5QUlLCwoUL6e3tRUdHhzlz5qCrq0tbWxsVFRXC/T1aXXAU586dQyKRMDAwwMSJEykuLmbhwoXAiH23uLiYhoYGoqKiePHFF1m9ejV+fn5oaWkJ53rhwoUkJCQIRPof2+9oe09JSSEmJobDhw8L49IokpOTiYiIEMaF0X585syZlJeXY2VlxaFDh9i9ezdpaWl4eHjw6aef8sorr/yXlPo/4I+kFIwQG3oybUra6pliPbYy3INwp70RPZn2n2Y4KdUqsipvstB9RDWYWVHAHCevB1re/ojC5mrsDc240liOv637X9rf4D+TUjCSiZVVVYS1vglVXc2Y6hr+j0Nfm/u66B2SC2XI/wyt/T0UtdQQ7DqiHk+vuEGYu+9/3P/oKnjPkJzi1tox1Z4KmqqwMjAes6p+HynVVs+6Y1+yfeHf8DCzxcV0pC/MrSnBy9KBR058zfop83AwtuD3gmyWes2i926VuJdS9/JFxEZezdjHoZUvUd3VSs+QHC2JlMrOZhZ5+vP4qW/ZErCYlNvXOF1ZyL5lz9Pa382gUoGOlowtKT+zZfZiLPQMee30fj5Y8DAnb10kavxUJlk58Wr6b1R0NnNg5RZK2urRlWrRNThA12Af311O5ciqlynvaGZIpUBPS5uW/m4+PX+SjxauY0AxRLu8l28uJbN94d/IqbmFhZ4RBjId5rtOpqC5CplEC6Vaxd78TOwMzXjIe85dIlSL1v5uFGoVN5qqiPDwo2uoHzEiXEyt2X01nZkO4xAh4p2sQ3ywYC2mOgYYyHRYf2IHO+4GS6s1GpZPnM3neXE87DOXhNIrxIyfxneXU3l6RuSIDUcsZkip4LvLKfy4+EnK2hv55mISr89dQW5tKYeLznNgxRY65X30Dg9iKNPhqcQfBXujUq3m4M0c1k4O4ocraWz0m49ELKF3SE51dys3W2oIcPTki7x4vop8jFutdbiYWKHWqLExMOW55JGJ/Gun9/PG3BWY6OjTMySnc7APCz0jJlk58duNLOJLr/B5xAY65L2Y6xnRKe+juquViHF+NNxVGf4r9xTnH/uQ5NvXsNQ3RioWC0TktsCljDO3I7e2FF8bF76/koqVvjH1PR084huMQqXinaxDbJoWSmZFIX+bMpfKzhZ8bVyQKxVcb6okqewqb4c8xBRrF5Yc+IgZ9h53SWsbHI3Naezt5FjxBV6es4RvLyXzUeg6StsaRu5jNLxz5iDPzozi4M0cts5ZSml7AwtcJ1PT08a3l1LYErCY55J28/2ivyNGhJ2RGbEHtvPhwr+NBOVHPsYr6b+yLWg5SpUSRCLeP3uEDxY8jEKtwkLXkHeyDvKI73zK2huY7zqZ3iE57fIRAu3n/DO8MCuaQzfPs8k/lPaBXmq729l5KYl/zl9D8u1rbPBbgEKlpLm/iz35mXwd+ThFrbW8fno/7wQ/hLGOPk19ndgZmjGkUnC0KI++YTnrp4RgY2jCyVsXiRw3lSfiv+eTsPX0Dw/SNzxITVcb81wmIRaLUalV1HS38en5k3wesYG9+Wd4yDsAQ209LPWMeC55N68GLUcmHlExPZe8m1kOnuQ3VrB+SjDjzG1p6O3g9dO/8230Zmp62vj1ehZxa1/lZksNjkYWFLXWCta8niE5+Y0VPJ/8E99EbxL6H5FIjIGWNh+cO8bTM0bmrhMs7MeMIfmNlYw3t0X/L0h6hUpFRsUNZtiPo6ilhrkuk/502z8iu6qIIOeJiEQiCpqqUGk0+Nm6/uVn/kj+/Bk65H2UtNWjVqup7Bqx/W0LWobjH4gvfZkOjkYWmOka3LfP9oFeGno7mGztTH5jBXKlYkyF13txq7UOK31jzO+Oe6PVBf8n0Gg0pN65zraMfXwe/igyidZ9eY/wP7fv/fXS1H9xHy5fvsyyZcvw8PAgKCiIvLw85syZg5mZmaBkCQwMvO9zGo1GKCd98OBBmpqaqKysHENKWVhYCHkxGo2Gmzdvsnz5cgwMDCgsLGTy5BEpnZOTE5cvX+bo0aMsX74cuVxOQUEBnZ2dwr6Kioo4ceIE77777piJF8CMGTM4duwYTk5OtLW1CaSCSCTCx8cHHx8fbt26xc8//8zRo0dJTk4WJrGjJcdNTExwcnIiIyMDR0dHTpw4QWxsrGDdGZ2AqtVq4d/19fUCabJgwQJgZPKcn59PYWEhjY2NzJ49m7S0tLtS+H/fPGlpaVhbW7Ns2TKBfAOQSCSo72FjKysrKS4uZvXq1ZiamuLv78/Ro0eFFfo/oqysjL6+PubMmYNYLKa6uhpnZ+cx5I5MJsPLy4uQkBAGBgZoamqisLAQlUqFSCRi8eLFfP/99wwNDSESibCwsGD16tW0trYilUoJDg4WSKfw8HAaGhqIiIgQMlQA4uLimDt3LpcvX6aoqEhQpAHo6uoSGxtLZWUl06ZNY9myZVhaWrJ48WLhHFlbWwv5OaPIzc0VJoS1tbUcPXqU2NhYPD09hQyV1tZWpk+fPuZzfn5+dHV1kZqays8//8xjjz2GkZHRmMklQEBAwBjiMScnh7lz52JmZoazszOXLl3i6tWrggKnvb19jE1qtJ0sX75cUJyJxWKKioq4c+cOS5cuHTOZH4WJiQkikYiYmBjWrVuHqampQOSNtrdly5bx/fffc/jwYbZu3SrkoLW1tQnqwHfeeQcrKyvc3NzYtGkTt2/fRldXF11dXbZv345MJuPVV1/l5MmTPPvss8jlcr755huOHTvG1KlTEYlElJWV8c477yCXy1m3bh1RUVFcuHCBwMBAmpubSU5OxtzcnIyMDDQaDXFxcbz//vtUVFTQ3t5OUVER4eHhDA4OcurUKcaNGyfYdJ2dnQVCobCwUFDx+Pr6CuHwPT09iEQiVq1aRWZmJnV1dcyYMQMjIyN6enoEcqWqqorm5maOHj2Ktra2cK0ehIyMDEJDQ4UiElKplKamJpKSklAqlaxdu5ZvvvlGyC67F/Pnzyc9PV2waY1WphOLxXR2dnLx4kVUKhU6OjqsXbsWR0dHQU01qijVaDRoNBocHBz44osvkMlkODg4COolGCEdCgsLWbZsGQ0NDbz99tssWLAAhUIhkGmHDx/m1q1bgiouPDyc/Px8rl27RkxMDIcOHSI1NVXYZ3t7OytXrhQC+0dhYGCAu7s7n376KZGRkWP6bI1Gg1KpRCqVYm9vz9DQEGfPnhXInNFCDDBCHiUlJeHq6sqKFSswMDDA3Nx8jF2urq5OIHIBdHR08PX1JS8vjzNnzvDKK6+Qk5Mz5viMjY3R1tZm586dzJ49m9bWVoKDg8csIri4uFBZWSmQz3l5ecJ9KxaLWbJkCRcuXKCxsRGFQkFubi6rVq1Co9HQ3NxMWVkZcvmIpam/v5/3338fX19flixZIlxrGBnDLl26BMCFCxcEcmoUQUFBVFdXs3v3bj766CNefvllId9LKpUyceJEpkyZIrS1cePGCYTU6HUftbqWlZX9aS5ke3s7/f39nDx5Ej09Pa5evYqhoaHwMDRhwgRKSkrw8vKivb2d3NxcgeQaLZgxefJkCgsLycrK4tatW/T39z/wu/6L/xtaBnqYazkRJ2NL8hsrqOtpZ9o9Vos/ws3Mmtya0j8lpXKqb41RUgU5TyKr6iahd0mqv0LXYD+TrZ0Jc/clp/oWTiYW92Us/W/QKe/jYt1t5rlMRKlWo1KrsDYw4UzlTYJdJv3HScko+fJXaOnvpqS1juC7kweRSISPtTM3mqqYco+d5Y+o7moVftuoIqxnSI6Rti6DymG6BvvH2GHuxWi2l7WBMV9GbmSOkxcVnc2cqbyJlb4xvcODXGko59SabeTWltDS181T0yNo7u8WsoO2L/wbvxWc5fcVW0gvL2CSlSNvZP7OC7Ni+P5KKhb6RoR5+CIRiQjz8CXU3Ze9+ZkYaetR3FbHmslBvDVvFcdu5eFt5cSHCx5Gw4gC7WpDBb9cz+KpGRFMtXUju6qYsvYGXEws+eZSCh+HrefNeSs5VnyBis5mdKUy1Gj4u384b8xdgZ+tK4+e+JqXAhazd+mzPHria76M2Eh6xQ2uNpTjamLFu1mH+SzsEV4/vZ81k4No7e9BqVahAXSlYnZdTUdXS8aT0yP4LPckWwKWYKKtx4lbF1jqNZMn4r9nW+BSdkQ+hp2hGSsOf8q2wKX8K/xRpGIJelra3O4YqSB2taGctZODCHCagIaRSpDDaiUX68oobq3lsakLeSlgMdcbK/nk/Ek+D3+UfQVneWPuCuY6T6RrsJ+nEn9k87RQilpr+SZ6E07Gliz6/UN2RD3OOp95GOuMLFZXdrVgb2jGW2cO8HXU45jo6DHBwp5vojdhb2jOqxm/8VHoOr7MiwdgzeQgMisL71a4G+CD7GOs953HuepbXG+qZEfU44S4TmaBmw9elg4s/OUdPglbj5+tK5OtnbnWUM772Ue5vPlT7I3MiC+9jEyiRe+QnDcyf+fHRU/yTshqrPSMkEmk/Hr9DHOXPM2mqaFIxGLKO5oEQupf4Y+OqO/0jDDTNeT7y2lMtXXji7w49i59jhAXb55K/JHnZ0Xzadh6DLV1KW1rwNbQlOeSdvNz7DPYGo7MK2Y5enKp/g7/yj3FV5GPseNCIq/PXYG5rgFPz4hCV0vGrqvp2BiYoFApMdczRAR8HfU4OlItHj3xNd5WTrwbsgYdqYxFntNRatT8K/xRbrc3su/GWSRiMW/OW4lCreKdMwfZGbWJd0NW42ZqwzeXkghxmcRbZw6wI/Ixbnc0EjN+GohE6GppMzA8UqHxi4iNfBX5GAOKIQxkumRU3KCuux1vayecjC0o72zi3axDfBb2CEMqBV/kxaMj1eIJ/zDutDex2T+Ulr5utmXs4/GpCwnz8EOlVvNlxEZEIhGvZP3Kt9GbGVIq+TjnOM/MjGZb+j4OrHiRp2dEYqZrgJW+EYYyXZ5P+omPQteN2IQ1GrKqbuJt7UygoxdBLhOZYuPC+2eP8PrcFVgbmJD48BvU9bRhpWfEzuhNVHY20yHvw9fGFREj2XoSsRhdqYy+YTlfRmxktqOnkGOmuhuGb6yth45ESyi+cC+UaiWyv1Df9g0Pkl1VRKj7FLQkUmwMTansbP4fWePudaMA+Ni40NDbQUb5DYJdvZGKH5xlaGtoRuNdYvCvYKZrQICjJ3LFEP2KIeY4TiDExfs/Ltzci6KWGmE89LN1o2dITnrFDXysne+z8dkamo7YdPUMqexsxtnkP499d9obaejrRAR4WtixfkowCrUab2s7rPSN/8fH+UeI//Mm/8W9kEqlODo6ChV/Ojo6BFJnwoQJmJqacuHCBeRyOTo6OkL2UVxcHJ6ensTGxmJpacmsWbOwtbUlLi5OaOBeXl7cunULYMzExsXFherqf5eTzMzMZObMmbi5udHU1ISuri4zZ84kIiJC+Js6dSqVlZXCKnp+fv4Y8sbf35/Lly8LWSswYlXJzMwkLi4OkUjExo0biY+PJyQkhIiICBYsWIC2tjbnzp0jNTWV+vp6HnroIX766SeWLl0qEFKjmDNnDufPnwdG1Eg+Pj78EXZ2dkgkEk6cOMGhQ4cwMTFh4cKFREREEB4eTnh4OGFhYXz66ads3boVV1dX4uLiuHjxorCP0fN348YNamtrhawbGMl0WblyJTU1NUIVvNHP1NTUUF1dzZw5cwDw9fXlxo0b9x1jf38/q1evJiUlBVtbW3x9fQkNDRWOMTExEQcHB7y9vQkLC2Pq1KkYGBiwePFiZs6cyZEjR2hoaECj0VBXV8eVK1cE9Q6MEAajqrXp06fT1NREbW2t8P2NjY0kJCRQVFTE7t27efrpp+nq6vqzJgqMBFiPkhswYvmMiYnh6NGj9PX1MTg4KNg77/2dFy9eJDk5mQsXLmBkZERqaiq6urp0dXWhVI7NsxCLxQKBoNFoxtwLMEJ+xsTEkJmZSXx8PEeOHGHevHnI5XKGhoYYHh4WJvQRERF8/PHHFBcXo1arWbJkyRhCavR6VlZWcuzYMQICAnB3d2fp0qXY2Nhw4sQJVCoVjY2N2NnZUVVVhZWVFU888QQREREcPXqUKVOmsGnTJi5fvkxaWhoHDhzA3t6ekJAQMjIyaGho4JNPPqGiogIDAwOWLFlCeno6enp6xMTEMDAwQHJyMjKZjGeeeQaJRMIXX3zBvn378PDwwNPTk5KSEpqamqiurqakpAQYudfmzJnD4sWL6ezs5MqVK/T19fHdd9/R2NhIXV0dNTU1KJVKvL29uX37NqmpqaSmpnLmzBkMDAz45z//iaGhITExMTg7/9vSIZPJUCgUwAghZGJiwokTJzA0NKS7u5vu7m5OnDghVJAbVfQ5Oztz4sSJMX3CaFvT0dHBxMSEoKAgzp07B4CNjQ3R0dFER0fT3NyMgYEB2dnZwnGO/l27dg1/f39u3rxJfn4+1dXV3Lhxg8TEREEVEx0dzYIFCwTlJowQP0FBQURGRhIVFSUool599VX09fVpbGwkJSWFlJQUUlNTiYqKoqOjg8TERJqbmwXyNCIiAldXVw4fPoyhoSFz5syhs7MTMzMzRCIRjo6O9Pf388svv7Bq1SqhjwkPD8fe3l5Q1dzbl86cOZPa2lpeeuklLl++POZ8Xb16lWnTpgn/P1qQ4cKFC2O2u379umCHnTJlitDux48fz5QpUzh27BhqtZr6+npB7dbc3MzJkycFRdrly5exsrIac2wRERFMnDgRa2trPvroI0QiEebm5kIRg1FMmTKFgoICAIFM/+PEeNTSPFoEYvRcNzU1MW3aNOE82djYEB8fT3h4OGlpacTFxdHS0jJmX0qlkubm5jELAc3NzaSkpFBcXMzAwAA6OjqEhYUJv2PhwoXCbweIiYkhOTlZaN9FRUVCn+bj40NBQQEPEnoXFRUJVjwdHR1CQ0OJiYnh8uXLnDx5ks7OTlxcXKiqqqKrq4szZ86MITzt7e2prq5GLBajp6eHnZ2dECz/X/y/h3tbn5+tG47GFqTeuY5cMfTA7cUi8QPzoWAk58jB2GKMKkpLImGChf2YUtz/EwQ6e9Eh76O4tfY/b/wAlLTVc6u1jnAPX3TvycayNjDBz9aVtPIbqDXqv9jDSLC6zl8ovJr7uihpq79vZd/GwJR+xRA9Q/I/+SSUdzaNyZGaaT+OS3UjzyJ/pQCTK4ZJvXMdb2snxpmPVKoaUAzhZmpNiKs3KrWKrem/okFDbm0JwyoVb505wPXmKiZbO7MzahMX6kq51lBBS383t9sb2XkpiYrOZr6J3oS1gQkTLR1p6u3kTnsjR4rzqOxsobi1loXuU+gdlqOvpc2wUsGn508S4jKZ6XYevHZ6P4YyHc5VF+Nv585zs6LJrCikuKWWa40V3GiqIr2igM3+oRS11BBfegUjbT0CnbyY7eTJIk9/noj/DisDE5Yf+oQXZi/i5bRfqO9p55kZUUjEYiI8/HgpYAndQwP8c/4aEsqusmvxk8y0H8emaQtJuXOd55N/wsHYnBdmL2LFxAD6h4fQaEZUCL3DcvYXZNOvGOKb6E3McvDkywsJbEndy3cxT9A20EtpWwOvn/6d+p52osdN4+FjX7Br8ZOMN7fj/bNHUGnUuN+9bt1DAzgaWaAj1eLdrMOY6RryUsASVBoNBlo61HS38d7ZwwyrlLwTspqsqiIiPabydOIuCpqr2Bm1iUmWjjyTtIumvi6enhHBTPtxpNzJ5+uox3EytuRfuXHIlQqeTtxFTs0t1kwOYlA5zNrJQfzNZx5+tm5EePjxdOIuDLV1iRo/FWNtfcab2/Fx6Hputzdw4tZF3so8QEZFAd9GbybAcQJrj37Bi8l7CHKeyLshq0kvv05NVytXGsrJrS1lio0L30ZvRiQCc10DGvs62RT3HV9FPsZXFxL4LPcUAF9eSMDG0JR/zl/Du1mHkCuG2X7uGEMqBX62rgyrlYS6+1LSWsdXFxP5ftHf8bfz4KXUvfQOydl+7hgDw0MEu0ziWPEF3sw8gK5UxoHCc6jUKtZNmcegUoG7mQ0d8l4MtfV458xBjLT1+CZ6ExfrblPd3UbshBnIlcM8m7SbOx1NfBb2CI/4hjCsUvB7QTYRHr7YGJjwdOIuvCwdeHLGSL6UTCLlk5wTvDInFldTK55O3MWFulJ+jn0WawNTPg9/lMquFhLLrlLaVo9UJEYsEqHSaNgWtAx9LW2eT/4JmUTKuepijLT1EIlEVHa28OT0CGq62/gy8jFeTvuF/rs2y0We/vQMDfDj1TTkimFeP/07H4eu41G/+fxekM1TiT8iEol4N+sQL85eROtAD7uvZbAlYAlb039l15InOVlyCTtDU15M/pkwD18+yD7GuyGr+Sz3JG8Hr2KCpQNHi/MYGB6kpruVTnkf319O4Y25K5hh78G29H1Ud7XwRPz3qDUaGns7WHn4MyFH0MfamcKWalRqNWnl+YS5+zLJyomStnqhL5KIxSjUKp6bFY2Rjh6l97w3CoVK9afkUHNfF5fqbxM5bqpgGx9vbkdlZ7NgofsrlLbV31fd1M7QjCDniZyuKKBjoPeBn3M2tqSqq/U/7h9GxrSLdbcJdpnEI74hFDRXj8n7+iuoNWr4wzOekbYuYe6+tPR1k1N9a8wYZKytR8/QADBCTv+Z7b2+p53s6mKyq4vR1dJmrvNEgpwnUtvTTsQ4P3xtXKjuav1fj7n34r9Kqf8lpk2bRm5uLnK5nAMHDvDMM88wNDSElpYWYrGYSZMmcePGDb777jvc3d2Ji4sbYzeDkUnB6Mq6hYUFBw4cYMmSJejr6zMwMIBcLqe/vx8Li39XadHW1kYul1NaWoq5uTkODg7Y2NiQlZWFjc3YoMrCwkKMjIzYtWuXYFNrbGwkLS1NCHf29/fn2rVraGlpCXYoqVRKUFCQYKEpLy8nLCyM9PR0oqOjkUgkuLq6jrF6HTp0CIDTp0+jUCiwsLBg5syZiMViTE1NBfVWZWWl8OA/MDDAuXPnUCgUWFtbC3kxUqn0gWqm8+fPM2fOHAoKCjA0NGTJkiU0NjZy8uRJYRKTk5ODvr7+n6o/AgIC6O7u5tixY5iZmZGbm0t7e7uQAzUKIyMjuru7MTYeYXpv376Nh4cHYrGYkJAQTp8+Lai8YMQiZ21tzbRp04iLi0MqlWJtbU1nZycmJiaYmJiwatUqsrOz2bhxI1999RUrV64ERkib3NxcWltbx1hrQkJC+Oyzz0hNTUWlUgmEwGglrfnz59Pd3c3x48eZMmUKHh4jYaRaWlrCeSwpKblP2aSjo8Pq1atJTU3l2Wef5bXXXiM1NVUI1R8t2z5aDa+srIzc3FyUSiU+Pj5kZGSgUqkwMzMTrvFo5TelUjnm3Gs0GoqKiqipqUEkEgk5ateuXRsJC9Ro7vvvG2+8wWuvvUZ9fT319SODjIODA56enqhUKhISErC2tmbFihXAyMRXS0sLV1dXbGxsOHLkCNra2ujp6WFoaMjy5cvJzMykp6cHGCEQRpV5ERERfP3117i5ufHaa68xd+5cZDIZZ86c4euvv0aj0fD5558zd+5cpFIpr776KtbW1oSHh1NeXk5paSnjxo3j1KlTPPPMMyQmJqKvr8/58+eJjo7G3t6egoIC+vv7ycnJobu7W6gC5uPjg1wu5/PPP8fQ0BCVSoWpqSkeHh5s3bqVgICAMTa2hIQEsrOzBTLA0dFRIEK0tLQYHh4Wth0/fjx2dnYcOHCAvXv38t577xEbGysMTqOh5M7Ozpibm3Pw4EGh7Wk0Gs6dOydUrjQ0NKSvr29MG8rMzKSkpITBwUFB5XfvNW9tbeX27duIRCJeffVVduzYwdq1a/+jMuCPqKyspKamBrVazalTp+7L2tuzZw/GxsaCdbmnp4ebN28ikUhoaGhg5cqVVFRUkJ2dDYz022fPnkWlUrFy5UrS09MFYghGSFxHR0d8fHw4evSocI/CiIpxyZIliEQiZDIZQ0NDAunT2Ng4RlUJMHHiRKGd9ff3c/ToUXx8fMYQH11dXZiYmAAjhF94eDgHDx5EX1+f7u5uzp8/j42NjfC9o5bOU6dOCYsIozA2NkalUnHu3DmMjY2xtLQUqpl6eXkJeU329vbU1dVx584dgoKChM/X1dWRn58vZFv961//wtvbGzc3t/uuS2trK+bm5mhpaSGXy4mKikKj0XDx4kUuXLiAnZ0dWlpaJCYmsmDBAi5evEhHRwcAVlZWhIWFCWT2e++9x5EjR1i1atWY9nHvKuTy5cuFqraVlZVj7OBz587l3LlzzJgxQ7geWVlZGBsbj7FQwgiBvmDBAtRqNdnZ2XR1ddHY2EhPT4/w/aOqNy8vL9auXcuaNWtITEzE19cXPz8/ysrK7lOp/Rf/NzT3dd23mmqlb0youw/ZVcU4GFv8ZXWhezGkVFDb3fZAu4GjscXdnKmBP81wGlAMCUG1o/C1ceVOeyOX6m4/cBX+QRitamdnaPanxI6Jjj5Bzl4k3x6ZbP1ZdcCR0OIHk1LNfV2UtTcIFpc/YrbDeNLKbxDu4Xvfe7Xdbfdln4hEIjzMbEkrv46riZUwkdNoNAypFAwqFWRWFjKkVBDqPkWoMmhnaEZDTwce5rZcb6pErdawM2oTvcPykUDpypvsWfIMbmbWnK+5xeunf+df4Y/yUupeti/8G6/etXt4WjgQvf99dkZt4snp4UJVtMa+TtZ4B/Jc8k98v+jvRI/3RyoWs+faaT4KXcfW9H28G7KalwIW0zs8yI+Ln+SV9F95OWAJdzoaMdczIsx9Cr2OnlysK0NPS5t/5cbxefijtAz0oFar+ejccb6OepwPF/4NNBocjMzRkWrxTfQmBpUKytobMNLW5cNzx/gmehP/PHuE7xf9nen2HvQOydmSupdN00J5cfYiosZN5R9pv9A/PMhkK2c8LewI8/DFydiC1zL2syPyMSGX6pkZUaz2DkQqluBkbMmPV9L4KHQdk62dKGyuwdrAmB1Rj3O5/g4/Xk3n66jHMdczZFv6Pj4LfxQTbT1MdPURi8Qs8pyOTCLhi7w4Pgt/FE8LO1QaNaHuUxhUKlCqVayYOBsbQxO2BS1DIpJwsuQivxdm82XERjzMbYnZ/wEfLHgYV1Nrnk3azceh69m1+CnczWx4KWAxvraufHr+JDpSLXZfTee9+WuEoPAJFvZoS6QcKDzHwz5zMdbRo7yjkWl27riYWOFr44KVnhFPJf7I28GreC1oOQDZ1cV8kH2UlwIWc+LWRV6eswQ3U2ui93/At9Gb+fpiMmXtDXwZuZG/+4dhZWBCiKs3ulojlt+35q3i1fTfiPGcxht3VUcZj7xDWVsDJjr6GGjpMM3WjWGVEkcjc9r6e3jzYgJfRGygd2hQCIx3N7PF28oJXxsXdl/L4KOF6wh09uKl1L3McfJixcTZPJnwA28Fm7IzahOVnS28deYAxx56hequFj7KOcG3MU/wTfQm7nQ0kXL7GvNcJvGv3Dg+DXuEpxN38dvyF/g4dD1HivJwN7OmprsVXekUXpgVw9HiXMRiMTHj/ZErhmkd6OG5pN28HbyK8zUlbJm9mJfTfiHY1ZvMykJiJ8zgh8upPD4tVAjE/2Dhw5jqGDDBwp6uwX7kiiG+upDAt9Gb+SryMUQiEbfbG1jsOR0dqYysDf9k+cFP+GDBWram7+PNeSt5wj+MtZODkCuH2Rq4jG3p+/hXxKP427nTKe/jgwVrcTSy4ODNHMz1ItGXaQt9xVQ7N/7uH87Tibv4cMHDfBu9metNlZjqjuRzvTF3Be9nH+W5mdF8G7OZYaVSOH+W+sZ8HfU43YP9nK0qQluqxcDwICl38lnoNqJistQ3oqStbky/VdxSK6hErzTcob6nA3ujsQqkBz13VnQ209Lf/cAQ70DnieTU3PqP1rWW/u4HVqXTlo5kKuXVlmI2YHAfcSURi9H8hwUJtUZNTvUtbA1NCXb15nZ7A84mlpjpGpJZWfjAfv2PyG+sxNfmwVZCHxsX+oYHOV1RyERLB+yNzIXzdKe9EXfTseNu+0AvRXcXaOwMTB887ty1T+bWlBLo7EVNdyunKwoIdvG+ryrtf8J/lVL/S0ilUiED5Pbt27S1tZGbm0tGRoagFqioqOCll15CLpezePHiMYQUjJBSoyoQQ0NDgSioqakBxlY/GsXcuXM5cOCAUIVq9Fj+qF4pLy+ns7NTqGw3qrixtbUlIiKCyMhI5s+fT1lZGb29vUJZ8kWLFhEVFSVMhoeHh4X8I5lMdt/kFEasjAEBAejq6hIREcGiRYvw8PAgOTmZhIQErl+/jouLC0lJSUyYMIGcnBwSEhKEbJuYmBimT59Obm4uc+bMQSqVCqvi96K9vR0LCwtBnTb6e2JjY7G3t2fjxo309PSMybZ5EIyNjVmxYgVNTU0EBgY+0GY5d+5cYSILCBYPGJlUGRkZcefOHeH9q1evCpPExYsXk5ubS1tb25hJZ3t7O62traxbtw5bW1tB8XHr1i0+++wzPvnkE+G1lJQUwf4UGhpKdHQ006ZNu69zNTY2Zvny5fT29nLq1CmGh4eZNm0aV69eJScnZ8ykE0ZsXhkZGSQnJ6NSqZDL5UyfPp3IyEihXcybN08gpAAhfL69vR0jIyMiIiKIjo5m3LhxpKSkCPlJra2tQtXJpKQkkpKSSElJwdDQkKioKBYsWMCOHTuYP38+QUFBzJs3j+DgYObPn8+CBQsIDQ3F29ubvLw8pk+fLignwsPDMTY25uzZs6xatQpPT8/7rIaj0NXVZcWKFSxbtozKykoGBwfp6ekhODiYuLg4ysrKhBw1Dw8Pbt++DYCZmRlXr15lxowZREZGkpiYyJ07d6ipqeG5554TcsDmzZvHpEmThPdtbW05ceIEzs7OJCcnExUVxcSJE3n99depra0lNTUVpVLJypUrGR4eJjo6GldXV+F+TE5OZv/+/fj6+jJu3Djs7OwoKyvjww8/JDMzU/hdo9UTAwICqKioIDY2FnNzc44fP05tbe0Y+6parSY3N5esrCxcXFxwd3enr69vzL17r7LEwMCA1atXC5lWJ0+eJCQkZMx5tbOzo6FhJFtBqVQyNDSEp6fnGCXfKEQiEVZWVsyYMYPh4WGBTDh58iQ3b9584HX74zHBSL/S1NTEokWLEIlE2NnZCSQljNiAp0yZwrJly9DX1+fYsWPI5XKqqqq4fv26QBq7ublhZmbG4cOHSUxMxNPTk/nz549Mwjw8KC8vB0ZI8rKyMqZMGSlhGxAQICjELly4gJ+fn0B6BAcHk5WVBYyEsVtaPljm7OLiwnPPPcf27dtZunTpfTazP6oKDQwMiImJITY2ltu3bxMbG8vs2bMRiUQMDg4K3+/u7j6m/xnFaJ9WUVGBjY0NMTExxMTEMDQ0REJCAomJibi6unL16lV6enpQKBQkJiaSkJBAa2ursH1LSwvPPvvsAxWjMGIJDggIEPoaGLnuo9UO7ezs+OGHH4iNjSU3NxcPDw8iIyOJjIxk2rRpY3LF9PX1WbBgAfHx8WO+Y9RCDSOLMQsWLODEiRP3qb+srKzo6emhoKCAcePGcfToUdzd3f9yHBCLxQQHBzNhwgSeeuopKisrSUtLIzU1lbS0NLKzs7ly5Qrl5eVCddYHLZT8F/+/oay9gfEPCFEVi8R385HUZFcV3acostAzom2gZ8xrIwHo94fHjmK2oye5NaUPVNXBiM3B28rpvtc9zG1xNLYgs7Lwvs/+UbHVOyQn9c51/Gxc/yOZpqelTZj7FNLKryNXDD9wmxGl1P32vaa+Tm63N/5l4LtIJMLP1pX8xor73rvd0XjfeddoNLQOdPPZ+VO09veQW1NCbk0JebWl3Gyp4U5HI5kVhWhJpOTWlnC+5hbtA71Y6hvR0NdJevkNrPSN8bN1RSwSMcfJi7l7XkcmkdI52Efwz2/ibmbLt9GbsdAzIsTVGx2pjH/OX8OW1L3k1ZXySdh6lGoVzybtZrq9BwGOE3hlzlJqe9o5/ci7dA8OMKAYCb020tZDoVKyfOIsdLVk/Cs3jl1X0+ka7GeqrRs6Ui3enLeKwpZqnkv+id6hAXqGBphq68bnERvoVwzxSc4J5rl48230ZlxMrHguaTd9w4OoNRrkimGeTtyFUq2mqa+TaXbufBK2HoAfFv2drMqbHCvOQ1uqxbagZUywsOfgzRwO3szhMb8FvB38ECdKLmJtYMo3l5Ix1zPk2ZnRZFcX88v1M3wb8wTOJpbsuJiIuZ4hr2b8xga/+cSVXubl1L0EOXuxKe47OgZ6mWLjwm/LX+DZpN1kVxWzfeE6BhXDdA72U9hcTe+wnLL2BlQaDQ95zxkpQnQzB1Md/ZHAaI2G988ewd7IjMdPfYuDoTkfZB8l0MmL6PH+3GiuoqCpik/DHkEmkZJ0+ypvzluJma4BHfJevr+ciq+NK3879iVLJ8xk99V0fl76LINKBbsWP8UH546ywW8+T8R/z7/CN7DvxlnGmdvy49V0FCoVL6Xuxc3MhrfPjFjseocGOVlyie8up2BnaMrWwKVoNPD63BU8m7SbotZa3pi3EhNdfR71C+GteSv59foZ2uW9PBH3HY29nRQ11xBXcgmpWMJbwatY7jWbfdezeDl1L2VtDTyV+CMTLB0o72zi5bRfCHKeyFKvmSOEgbsfN5qq2X7uGNVdrbyQ8hPW+sa8mLIHKwMT1voEoVAriS+9zLshD/H3+O+53HCHb2M2M9HSgWeSdmFnZMpXkY9R39vBltS9/GNOLMm3r/F04i6ix0/jIe9ALPSMiBo3lQkW9nwcup7a7jYqOpuwvGt3WzVpDkbaencr80XS2NvJI77BOBiZYyjT4flZMTgYWTDO3JbDRef5Oupx2gZ6OLrqHxhq67HBbwEORuacrS5iS+pepGIJcSWX7gZhW9I20MuW2Ysp72zm+eSfsDEw4Z3g1ZjpGvBiyh4yKkaquhnr6LEzasTSea2xAiMdPV5K3cvpigK2L/wbt1rrMNLWRSSCAcUwN5qryHzkXdxMrXlyeji9Q3JeCYxl58Uk9t04y8eh6zHTM+SpxB8ZZ27HVFtXIjz8kEqk7Ih8jDWTAylsrmZz/Hc093WNBLNfSmaWgye6WtrMc5mEma4BW1L3YqVvNEb5em+P2zc8OCYryt/Og7L2hr9UiMJIdmD/8OCYDL17IZNIcTS24E5H05/uQ6FS/qkCaxSzHT2RiCXkVN/603HnQWgb6CG9vAB/ew8hZLylvxsrfWO0JBKm2blx8a6q9a/QNzz4l8U6DGQ6hLpPoXOwn+yqIiGQvKanDWcTS/qGB8mpvkV2VRGNfZ0EOXkx13niAzMO63rasTMyH6NkdjK2ZI7TBDIqbtw3Xv8n/JeU+l/i/Pnz5OXlERkZSV5eHtra2oSEhBAWFkZ4eDiBgYHI5XLS0tJYuHAhR44cobGxccw+7iWlACEDp7KykiNHjggrz/faYrKysnjnnXfuezC/t8E3NjZy+/ZtQbHi7e39wMmgVCrF19cXiUTC8ePHEYlExMXFjbGEXbhwQcjpmT9//piJ8uj31tXV4eDgwOTJkwVriKWlJdHR0cTExGBubs7Zs2eJjo6moqICb29vYmJimD9//hirX1tbG5aWlgQEBJCbmzvmewoKCgTb371WpVFYWFiwe/duHBwcOHnyJENDD5b+wwgxc/z4cSZOnEh8fDzFxcXExcWNOUdisRiJRIJCoWBgYOC+zJzp06dTWFjI4OCg8Nq9hFFsbCxZWVlUVVWhr69PQkKCkH3z+uuvo9Foxlhv1q1bx9NPPy3YASMiIggNDcXDw4N169YJ9sc/g5+fH5GRkSQnJ1NdXU1LSwtdXV0YGxuTm5tLcnIyycnJFBYWCvaoOXPmcPDgQerq6u6z3Yzi3kyve8nA0XMeFRVFdHQ0dnZ2xMbGcvLkScRisWC/ioyMFCaWmZmZLFiwYEw7+SMuXrzIrFmz8PPz49q1a8J5dXR0xMbGhuvXr1NRUUFFxf0P2jCi4Dh69CgXLlxgyZIlzJ49m4KCAlJSUli3bh3FxcUYGhqi0WiYNGkSRUVFdHZ2kp2dzdmzZ7ly5Qr5+flMmzYNY2Njurq6kEgkzJkzh+zsbCHjyMPDg4iICM6cOcOSJUvw8xspfapQKEhNTaWzs1NQavT19XHq1CmcnJyIi4sjMzMTlUpFamoqs2fPxsjICEtLS1paWjhz5gzz589HLBZjbm5Oa2srTU1NdHV1MWHChDHkk4uLC8uWLRPUgufOnSMhIYGUlBQ8PT2JiYkhNDSUtWvXsmjRIi5evEh8fLyQCXQvBgcHsbe358CBAyxbtuy+9j516lThemRmZjJ//nzgfoXWvbhy5QpeXl7o6+tjaWkpWHuPHz8+hlyCETLx3ntplMwMCAgQXpsxY8YY21x+fr5APHh4eLB8+XLi4+N5+OGHkclkgu0sJSWFuro6Dh8+jJaWFqp7ZNmjGUsAiYmJY6rm2dvbo1AoKCwsZGBgYIxiSEdHh8HBQaGPnjlz5phzmZGRQUJCAsXFxWzbto20tDTi4+Pvs/11dnaOycY7f/48OTk5tLS0CJXmRnFvTqG3tzdFRUVj9nXvGDBqIR3FxIkTiYmJEYoMvPjiizz//POUlpYSGRlJTEyM0Ibh3+pDLy8viouLx3xPbW0tDg4OiESi+7L8Rm3qly5dIiYmhry8PGxsbMaQ3KMYVXPCSF/i6+tLRkaG8H5JScmYio8KhYJ//vOf1NfXjxkTMzIycHZ25sMPPyQ7O5uoqKgxeVwPglqtJiEhgcHBQZKTk1mwYAFWVlaCNXHBggUEBATw2WefsWzZMjQaDSdPnqSwsPAv9/tf/O/xV+rJceZ2+Nt7kF5eMOahdry5HWV3A4gBiltrGW9h95eTBJFIxAyHcVyqv/3A9weVigcSQDCSteFv50HKnfw/tXWUdzRxvamScA9fDP9D1b5RaEmkRI7z42xVkWCbuBdKteo+FVVDbwflHU0E/gUBNworfWOGVUq6Bv+dg1bf0z4my0Sj0ZDfWMGZqpt4WjjwwYKH8bN1JcBpgvDnb+dBh7yPn2OfxcnYgiDnicxy8KSlv5usqiKeS9qNllhCVVcrubUlXG2s4FZrLV9FPkaI62QGlQr+Ff4orf3dPJX4I0UtNcgVw1R2NvP2mYN8Hv4o+lra9A0NMqRS8HnEBhp6Oth5KYlhlZJPz5+ktK2eqq5mXj/9OzpSGeWdTQwohrlUdxttiZTdS57iuVnRPJu0m6hxU3k2aTcfZB/Bz8aVHZGP0Tc8xNWGCnZfy+CfWUdIvXOdLyM2crqigKcSf+RCXRlp699mQDHE33zmoVAr+XXpc3x3OYUn/MNYfugTFCoVu69msO/GWWY6jOexqQvR09JmspUzNd1tZFXeJMzdl+eSf6JveJCPQ9fzbtYhPlzwMI+e+JruoQEGFEMUt9QyrFTwj7RfeGFWDCl38umQ91Lf24GziSXzXLxH8jLH+2OmZ8j2c8cpbavn84gNzHWZyNb0X9HRkqHSqJnj5IWFriEysYR+xRAX626j0Wh4N2QNCWVX+Cn/NGa6BnwX8wRikZgdUY+jp6XNG/NWsvNSEj1DA/ycn0mHvI/8u9ft/flrqetpZ0ipQK5UcLjoPIPKYb6M2EhTXxeP+s0nt6aUt88cpLG3k8enhmKma8gHCx5GLBKxM2oTu66ksyPqcfRlOrwXsgYLPUM+DlvPS6l78TC35W9T5vFiwGIaezsx1tbj87w4Ogf7+SJiI++eOYSBlg5rj36BUq1CT0ubZV6zGGdmR7u8lxDXyYS4evOPObHYGZnyYsoeiltrecI/nIMrt6CrJWNH5GMYaGljqWfMjsjHuFR/m6cTdyEWiXA1tcLTwo5/zl+DvZEZrwYtp0Pex46ox3kl7RekYgkFzdV8nHOCtoFePljwMB5mtvw9/gcO38zlm+hNyBXDPJ/8EwAvzIpBX6ZDsMskNk8L43Z7I/9I+wV9LW2BMP3l+hnUGg37C7KZbufOTIdxvHf2MK0DPSM2Sisnfrl+htqedp5L/oma7jZmO4zH2sAYT3N7JljYU9pWz1cXEqntaWfDya9xN7PmlbRfcDO1ZmfUppHMspKLZFcX0zc0yKsZv6GnJcNYW4/9y1+kuLWOZ5J2oSuV8UnYeqq7WjhVcomG3k6eSdrF8N3MqYHhIb6KfIwFbpMZVCk4XVFAY2+n0M+9kvYrt9rq+OFKKhfqbnO5/g6/XD/DUq+Z/GPOiOK+qrOZN+auQEss4ZPzJ3E1taKys5nnkn8irfwGPtYuvDF3BcY6+sx3ncx789dyoa6U3VczSL2Tj0aj4euox7E1NON0RQFK9Ui/a2doRn1POwDXGsqZZjdWyR3sMonzNbf+tJ/Oqy3FQKbzHyuaepjZUNvdhuJPrHL5jZX42d6vIn/QfiZbO5FyJ/9PLen34npTJZWdzYR7+ApWxlGMjpUWekYYaetR0dn8p/t5kAr5z+Bt5cR0ew8yKwtJKLtKp7yP7OpiStvqmeU4nrkuk/C2cvrLsbqi4992cLFIJBBcOlIZ4R5+lHc0cbOl5n90PPBfUup/jWnTprFw4UKkUilSqXTMRKe/v59Tp06xevVqnJ2dBWtAWVkZZ8+eFbb7IykFI5OUnp4e9uzZg1wux8fHZ0zeSXh4OLt27cLNzY1jx45RVVUFjJAoKpWK7u5u8vLyxthcRm0Sf4RCoeDYsWM89NBD+Pn5YW1tzaJFi7h+/TonT56ktbWVvr4+QTUlkUgwMTGhvb1d2Me9E6U/Zl5pNBrOnz9Pfn4+Hh4e7N+/HycnJ0E5dC8uXbokhOEaGRnR2zvWi3tvOC9wn2oiIyODhQsX4uPjQ3R0NCkpKeTn54/Zh1qtJi0tjYsXLxIbG4uvry/a2trMmDGDxYsXo6urS1xcHKdPn0apVApqiHtzve7F4sWLiY+Pp6OjY8zEEkYqLLq4uBAbG8tvv/1GaGioEHT+x99XWVmJs7MzS5cu5dSpU8LrWVlZBAcHY29vT39//3/Mj5LJZCxZsgQtLS2WLFmCQqHg7NmzeHl5CSqFOXPmCITm6DmPiIggKytrDClw73UZnXBbWFjQ3t5+X1tSKpVkZ2cTHx/Pc889x82bN+/bRqFQoFKp0NbWxtXVVWi39+LmzZtMmjSSjeHs7CwoBkdx584dPDw8CA8Pp7a2VshdG0VBQQH5+fmsXr0aHx8fSktLhUqNU6dO5dixY6xcuZKuri5SUlJITk4mOzubtWvXCm3P2NiY0tJShoeH6e7u5u233yYlJYXCwkKOHz/OE088QWJiIm1tbUJluqysLNRqNWq1miNHjrBy5UpMTEzo7e0VMndkMhkeHh4sXryY6dOn88QTT5CQkMCNGze4evUqU6ZMITU1FbVaLdh158yZw9mzZ8nOzhZIoAdhxowZODg4UFRUhL+/P1FRUfeRAGKxWMhoy8rK4oUXXhCIyuTkZC5fvoy7uzsbNmzg0KFDXLlyhcTERLKzswVyRCQSCSopfX19gDF5U/eiubmZrq4uxo8fP6YtjB8/nmXLllFbW8uJEycE9ZaBgQF9fX0olUoOHTrEtGnTxhASo3Bzc6O8vPy+gMmysjL+H/bOMyqqe//6nxkYeu8dAaWoKIIgooggItXeYm5MUdNjEpOb5KbXe1NNYjQ3iYmJqXZRugWwF0RpoigdQXpvw7TnxTgnjKBJ7vq/e7LXmrUU5hxO/Z3z3b/93Ts5OZmZM2eSnp5ORESEoLKLjY3F3t6evLw8Fi1aRH19Pfv376exsVEYG0+dOkVoaKgwHvf19XHixAkGBweZMWMGUqmUo0eP0tLyuw9AcHAw58+fF9Zx+vRpUlNTOXHiBDNmzCAxMVEITrC2tmbhwoU4OjqSnJwsED2aFuH6+nr27NmDp6cn8fHx2Nra0tnZqUX4DA4OapGFtra2NDX9/lJy8eJFoZ3T19eXsrKyEcdPLBYzbdo0PvroI9555x06OztJT0+nq6tL+M5w37/R1jP874CamBwcHOTo0aMcPHgQf39/Fi5ciI2NDaGhofT29o64V0dbj5ubGy4uLpw5cwZQPz/EYjEymYyUlBSqq6vZt28foaGhWs9DjZn7gQMHMDIyEtSPd4Im7GH27NlCUEBwcDByuVwgXkGt1NMoMv38/Fi4cCGlpaX8+uuvd13/3/hz6BsaHPHSPRqMJPrMGxtAVUcTBY1qAllHLEZxSz3VOzRIW3/PnzIktzI0QV9XIhRYfwVm+oZEe07iSGUhPdIBVCqVOjZcpeJMXRkypUJIYforEIvEzBsbwIX6cpr7uu763frudqo7mkeNE78TQpy1ibiytgZ8b7WTlDTXklNdgru5LVEe/pjpGwqtY8NR0FiFv5077ha21HSp04h1xGL8bF1QKpV8lfQoAY4eTHMeR2nLDRxNLBiUy+iTSTlSWUikx0RKW24wIB/ivTn34m3jRICDB56W9nyT9DjvHd9L79Agbx/bhbHEgA2Z31Pb1cqjU+dR3dnEr0ufpaG3g0BHT96bcy81XS08H7aAG91tPBESx1u5u+gfkrIh83u+X/gUCqWS/yY+wqPBsZypK2Nr/mFsjEz554yFPBAQyUfzVhPq4o2OWIyNkSnBTmMxNzDiRlcb7x7fg4WhMa9l/0ZDTwdelvboinX4PG4NAKsDInk6NIG8+utYGZrwYPJmLjSUY2FgxH2TI7AxMuX1iOX0DA3w4uEfeXP2CjoG+/hX+BIMdSUUNdWQ5BPMkFLO25H34GXlgImeAS/MXISDiSUGOhKsjUzYV3qWuHFThOvOwcSCDZnfk1NVwn+i/4FULsPK0ITaW940dsbmGOhIWOQ3jecPbae5r4vZYybyduQ9bMj6HplCzmOpX6MrEvPQgc2crStjx7LnEIlE7Fn+T+xNLDDWM0CFOs3x+0vZKFFhoW/Eprg1mBsY80zmNlSosDe2wMfGiXejVuFoasnPhbl8fSELCwMjns74DrFIxALfEC42VLA+/VvsTMxZvW8TAzIpb8xejghYn/4t9d1tnKq7yvGaUrYkrENfR5dnM7cRMzYAXbGYZ0IT8bJ04KUjP/HJ6YMEOXnyybwHkMplArnhambDpvi1KFUqnkzfSk1nCw8mb6amq5XPz6aSf7OCd47tBuC5sAWY6Ruxs+QUl25WMSCXsSHze8EIe336tzw/YyGtfd1Md/FmU/xa3s7dxaB8iDdyfuPFmQuZ7xssKOjejryHAZkUdws7pLdIxskO7siVCj6YuxojPX1EiFgyPpRHpsZga2TGL0ue5bms7aRfv8iXCQ8T7j6eJ9O38srRX/gifi0/FeTyfvR9BDh4sKPkJPN//Q/2JuY093XhZm7Dprg1yJRyNsevw9bYnPsDohCLRDyZvpULDRXMcPPFx9qJ4zWl7F3xAjKl2tPtcnMt01282Rj7ILnVl3nh0I/427vzdtQ9zHDz5d9z7sVYz4Av4tey78pZfi48xpbzmZhI9FngG8LqgEgGZEOEunjzwdzVdA32849Js4kbOwWFSskjU2MEf6jKjkbeP7mfAfkQ/72Qxaa4NYy1csT+VouevYkFuy6fIth5HP0yKcVNtVxpqUOlUnF/wGwsDIzxtHRAV6yDi5k14e7jya4qprFXfT9WdDQhU8gRi8SC6bkGIpGIaM9JHK3U9ppUqVQcrSzCy8rhT5mYA8x08+NE7ch3F1CrWG9v974TzA2MmTc2gDN1Zdy4RajZGJnR0vf7RItULiOrvAA7Y3OCnf+4VdzP1oUbXa13VIVdba0Xxvk/gkqlorqzBX1dCRnXLxLsPJZZ7uMJcvL6QzWYZnmtbbNx4cptbZbTXLwx1TPgeI32ZOqd8Dcp9RdRVFRESkqK4FMjEolQKpX09vZy8OBBVq5ciVgsxtXVVSiuIyIi8Pb2ZufOnXR1dWmRUlVVVaSkpFBSUkJiYiLp6enY2NiMqmoAddvakiVLaG1t5cCBA4wZM4bCwkLS09O1IrKHY/iFo1Ao2LVrF8uWLUNXV1cglDRtDQsWLKCsrIyPPvpIq01keBGqVCppa2vTal0xNjamqalJaAnx8fFh/vz5QlrX9evXR1VWNDQ0aKVZaXyRNMdmzJgxWt+fMmWKQDr19fUhkUgE1ZWGlDExMWHPnj309PRw6dIlDh48yPTp05k7d67QPhISEiKkRHl5eTF//nxCQ0M5dOgQR44coba2FplMppX8pIFYLCY4OJjnnnsOhUKhVeSfPn0aNzc3MjIyCA4OJiMj447nUmMyb2hoSFBQEKdOnRKuJU1K1Ny5czl8+PCoy2vQ19dHSkoK9fX17Ny5E7lcTnR09AjCTAOZTCYcsyVLlrBv374Rg0tra6uWp9ntaqmenh527tzJggULcHFxwcnJiejoaOEa1+B2Dy43N7cRBOb169e12psCAwOF1qBLly4JBSSo76Wuri4uXVLPqGg8sTQeMsOVNwMDAxw/fpzFixczODiIv7+/QNJFRUWxc+dOOjo6yMrKor+/n3vvvZfGxkYWLFjApk2biI2NJSYmhpCQED766CMSEhLw8/PDycmJxMREIdkxPj4ePT09cnNzycrKYv369RgbG2NlZYWRkZFAwFy4cIGsrCwWL15MbGwsLi4unD59mtWrVwtKK00b0XPPPTeCYLK2tqa1tVX4v1KpFEiegoKCuxblEokEFxcX3nnnHaytrYXjEBERgaGhIXp6eoSFhWFsbExCQgKTJ0/myJEjpKWlYWhoyL///W+t1j4jI6MR17VCoSAnJ4fo6Og7boemzevUqVOCif7wZMg7tcNNmjSJ4uJiCgoKCAgIoKKiggMHDiCTyVi4cCG+vr6j3iu1tbWCYi8kJISFCxdSWVnJ/v37KS0tpby8nMuXLwv374ULFwgICCA+Pp5du3YRFxfHzJkzqampEdprCwsLCQ0NFUjO4eq025VmGmjSA3V0dEhOTqa8vJz09HRqa2tZunSp1hg4XJk6Wovg9OnTtYzUGxsbtZa/U4tfZmYmcXFx2NraEh0dTVxcnDA+lpWVaR0rQEu1qPHW06C/v5+WlhZWrlxJcHAwCxYswMrKSsuMPCwsTPAYG462trYR17avry96enqCkvL8+fNkZGQQExNDWFgYjo6OIxTHurq6XLp0SZi4sLCwICUlhePHj49QcR09epTa2lqWL1+OiYmJ1nqCg4NRqVTCvmqM8VUqFSdPnuTAgQPMmDGDVatWjTimf+Ovo6iphkl/MFs9HMHO47AzNudQRQFS+e9K6VO1V5lxB++m0RDg4CEY6GrQ2t8txGDfDRIdXWLHTiGvoZzarhZUqDhUUYCvjfOfLgBGg0gkIspzEtfbGoSi5XbUd7dR29VyR5+qu607yNGLCw3l3OzpwNHEkrLWerIri7A1MiPKwx+rYftuoKuHVPH78e0c7GNQLsPR1FI9OTFs3cVNNfjaujDNeRz5DRXoiMX4WDuxdEIY46wdeeHQjxyvKaWwsZqGnnZ0RWJO1l7hettNrI1MeSZzGwqVkjcjV2Cmb8iWhHWY6BvwaexDhLioC9bWvh6utd3k38f3sKf0DIcrCjhSUciQUq42apYP8cKMhchVSv495150RCLWZ3yHTKGgtLmOPaVnuHdSBN9dPKJWDOVl8a8jP+NuYcurR3/F3sSCB6dEYWlgzGdnU8h98B26B/vZsXQDZ2+UMcXRkzN1ZbyZsxNTPQOezdxGU28X+66cw8bIlC0J6wh09OSt3F3o6uiyJS+THSUn0BGJ+TjmfjoGe/n41AF+LTqOg4klL81czEtHfqKtv0dNqqVtxd/OnfXp39I3NMj6jO8Id58gkB9FjTV4WTmw8XQKm+LXEuI8jn8d+RljPQP87dy52duJTKkg0MmLmq5m9pae5eXwJXhbO/FU+rdqgiD6PuRKBT8tfppTdVf5ZcmzzPcNJuP6Jd4/sY+bvR18fOoAfrYuWBmaYGFgzOb4dZjrG/Fq9q+cuXGN7y9l82nsQ0R6+PP2sV2UNNfiYm5NdWcza4Lm3iJkxexZ8QIdg33o6ugQ6OTFf6L/gb2xOa63WnvquloZkElZPXk2LmY23B8Qyb2TZvFc1nZM9Q15b84qLt2sQiQS8dnZVKo6mvhk3gPsW/kCX104xPaCXJSo2DB9PjPd/Nh35Szr07/Fy8qBTfFr+a34BKsnz8Zc34j1oYlIxDpMc/GmvrsdXbGYFw79yNOhCQQ5eSFXKnhz9gp0REuWkkAAAQAASURBVGK+vnCIf4UvQalU8sW5dAoaq+mVDjDJ3p26rlZWTJzJ+yf3c7W1ns3x69ARidh35Sz6OhKezdwmkJ6VHc08lf4t/bJB1h74kon27jx1S0n4cMp/1QRc4sOsmDiDx9O+IbuqmLcj72HJ+FAkOrqY6BtS2lLHp2cO4mfryn+i/8FEOzcKGqsZUsg5WJbHz4XHkCpkLN/1MZPs3XkibSvbF63HSE+fSfbuiMViTtSWUtPVgoelPQ9NmYOvjTM/FR5jQ+b3PBQ4h3ei7uHNnJ0oVEreytmJlZEpj6Z8TVFTDdNdfVg6IYwnp8XhYGrJp2dSuN7WQHZVMU19XbxzbBelLTf4sTCHzsE+Ktpv4mPjzL/n3Evv0CC+Ni78suRZrAxN+Djmfk7UXuG5rB9wNLVia/4RhuQyjCUGNPd10dTbyebz6XQO9uNsZs0cz0n0yaSUttQx/pZfk56OLjFeATR0dwgTE3n15QQ7j2U0SHR0CXPz4Vi1mgCRKeRkXL9IqIv3X0qEk+jo4GFhx7W2Bq2ftw/0YmFg/KfXA+rJhyjPSbT193DpZiWelg5UdKjbA6s7mjlVe4U5nv5/mMg3HOHu4zlVe2VEe7tcqUA8SojN7Wjr7+F49WVO1JRiZWhCuJsfm+PXcaXlxl9qN7x6m+G7lZEp7QMjrX7cLewIcRr9nN2Ov0mpv4iQkBASEhK4ePEiBw8exM3NjWPHjpGSksKKFSsE0uP2thRHR0eWL1/OqVOnOHfunEBu9fb2kpSURHh4uDB7HhMTQ3Z2tpZf1O0XytSpU0lISKCkpISgoCDi4uJGvRA9PT2FNhWlUsnOnTtZsmSJVvucxkQd1C8yYrGYvXv3MjQ0REpKCidOnEClUgkqJU2rEagL/+zsbHp7e1m7di3z5s0jKSkJGxsb+vr6hISthIQE0tPTtbZtuB+TBhrjbFATgLebKWsMaTWFxnDCQ7OPAwMDGBoasnz5ci5dusSCBQu0jKNBrYzREIsaGBsbEx8fT1JSEt999x1r1qwZkS6mIQ0qKyuFgl1T4GvIDjs7O0Bd7CQmJpKTk0Nubi4qlUooGIe3R4JaIaSjo8P333/P7NmztfY3NDSUM2fO0N3drbUfPT09HDx4kNOnTxMXF8e8efMwMzMjKipKMDq+HbdfRzo6OiQmJpKcnCz8TJMcORzD1VL19fUcPnyYVatWYWBggL6+PoODg4JH0YkTJ7h27RpyuRy5XK5VqN+ecHjixIkR/ldubm7cuKFm22tqakYQk+PHj+fEiRPEx8fj7u6Ov/9Iw0KVSsW+fftYsmSJsJ8aVWNPTw8GBgaYmpri5+dHbGwss2fPJjMzk5qaGi3SbP/+/YLK6eLFi1y4cIHg4GCUSiV5eXkYGRnx9ttv4+TkJCg4Nm/ejKmpqUBYlJWVcfjwYcFIWzMu2NvbC15IJiYmwvLjx49n9+7dgh+bBsMJWdAm/GJjY2lpadFSfAwfD8rLy+ns7GTZsmW0tLRoKfY097OLiws3bqgfSubm5oKH2NixY9m6dSsXL17Uun7s7e21FDspKSlawQHDCebhEIlE+Pn5CUlvQUFBWFhYCKReZmYm2dnZnDt3jpKSEqqqqmhubsbNzY1vvvmGCxcu0NfXx4IFCwSFHahJChMTE0FZOJwgGf637e3tkUgkPP/880ilUmJiYrRIOlNTU6EFFtTj49SpU4mNjSUqKgqpVMoTTzyBRCJhwoQJo7ao3e4ZpYG3tzcWFhY88cQTSKVSOjo6KCws1DqupqamDA4OIpPJtJSkw/fB2NiY3t7eUV8gRmvxq6qqws7ODiMjI0EJqqOjw+zZs5k/fz59fX3897//JTU1VZhM0UxYaEILJkyYQE1NDSkpKZw+fZply5axdu1agUDX/J3h7Y6zZs2irq5OeAbdDYGBgaSlpbFkyRIcHByYP3++oO7U19cf0Zp99OhRZs6cyZgxY2hoaMDd3Z2kpCQmTZpEeno6GRkZNDQ0sHPnTiZNmiSkrIJ2ezIgKLfy8/NRKBRCYqivr69AvP+N/xvIlAoh8ejPwsnUiigPf07VXaVjoI/cqhICHMaMmC3/I4S7jedEze9tqWWt9fhY/zlSSSQSMd7WhS/OpfP+iX3M9ZqMpaHJHy/4JzDDzY/G3o4RXiY3utuo625juqvP/7ReayNTVCr4sTCXm70dGOsZEOU56Y7R4hoFmEql4tyNa0wbNnOvIxIjVyrolvbTIx3A5ZZBrpu5DRcayjHQ1eNoZRFt/T1sSVjHY8GxyBRygpy8EInEZFy/iK5YB4mOLpvj16ErFvNU+rd0DPZxve0mD+z/Al2xmH/s/QwHEwuczCx5O3cnwU5j6ZcNMddrMpcaq7h0s4rN8etQqlQ8k7mN+u422gZ6+PbiEb5OepTxti64mdsyztoRG2NTnp+xEJFInfaoUqkwlhjw7pxVdEn7eTztG+RKpZpwrC/n1exfaejtoGOgDzN9I4KcvHh3zj3o60rYvmg9fTIpXyU9QnNfF3n15TT1drJh+nyMJHpYGZrga+OCjkjMe8f3olAq+Wb+o8R7B9IzNMALh38k677XsTexwNPSnnfnrMLCwIgv4tdioCsh7d5XOFJRyOZz6WQ/8DbOZla3PLp8Sbt2gbdyd/JqxDJ6pAP8Ny8ThUqJga4eH51KxsXMhjWBc/j3ib1UdTTxdGgC1oamPJm+lbyGcio7mjhUUUD7QA9rD3xJpMdENs57gG5pP09Ni0eEiE9OH6Rb2s+XeRn8VJjLhunzEaFOZ3zv+G4aetr5ZN4DeFk54GBiwXvH96BQKihuquXx1K+51lpPW38P75/Yh6meAVKFjMqOplsqJUMOXM1DrlIS4DCGcdaOnK27RsdgH/f4z+RaW8Ot9kwJ7bdMtc30jXgibSsnaq8w0c6Nx0NiKbhZhb6uhA9O7sfd3JYXZizkVO1V1qd/y72TZjHfJ5jXc37jx4IcEn2mkuQzlZ8KcwUCu6m3i2czt2F5i4DTEYtZFxRNdmURJnoGLPANIadK7Z92oaGCxt5OXM2seXXWUowk+jyZvhUAGyNTDCR6bI5fx43uNr67eISJdm63zqUen8etwVzfiPfm3IufrQsvhS/G1siMDZnbOFlzhffm3IudsTk/FebS3NfFV3lZOJhYMNlhDEk+wdgbm+NiZs2M715m+6KnGFLIWTohjAemqOuuLxMfoWOwlzdnr0CpUvH+iX14WzuzIfN7Xglfyr+P7yHrujq8ZPP5DMLd/di57Dm2XTzKa9m/EeM1mY6BPs7VX8dEz4CPY+4n2Gkse0vPYiTR44VDP3K1tZ6XwhfjaWnPhYYKOgZ6+Vf4Yn4uOsYcz0m8fWw366clEr39TVTAkELOs5nb6Bzs5ZWjv5LfUMG6oLk8F7aAlr4uipqqGZDLiPL0p7KjCetbxO68serAh9yqEqRyGTlVxZjfIn5UKhVypQI/WxeM9Qw4eDWPE7VX6BsapGOgVxiL+oYGGZBJkcplGOrq4WXlQHZVMUcqi5jrFaDlP/Vn4WFpT0N3u9ZESElTzR+2/90Jkx3GYG9iwbHqEobkMk7UlDIgHyLKc9IdVUmD8iH0Rgm8EIlEzHIfz/FqbYuFiw2VBDl5jboumULBuRvXOFZ9mYaedsLdxzNrzATsTSyo7WrFzcKG6a6+nKkbqbS/E1r6ukY8S+5Ehxn8CXU0/J2+9z9BoypSqVR89tlnbNiwAZlMpmXiOhpEIhGxsbF8/vnnODo6smLFCq3fX7hwQfCDWrRoEcnJyULS2HDjbA2qq6sRi8Xs37+fwsJCent7EYvFhISECIWSj48PGRkZQkz6ggULRhAOs2bN4tixY4LaRFNQWVlZMX78eDo6OkhPT0ckElFSUoJEIuH06dMoFAoMDAwEs3OxWCx4hQBa69TT08PLy4srV64IxuE3btzQauOA31v4WltbRy3qQB1vfvz4cUxMTBCLxZSVlVFeXi4QahMnTmTSpElCgtX+/fvx9/dn3Lg/lkaqVCoOHjzIN998Q3FxMXp6eiPMnzXYvn274PszWmsiqAvl+Ph42tra2L9/P+PHj6e0tBSVSkVoaCgtLS0UFRUJKrKPPvpISBR0cnLC398fV1dXLl++TGFhIV5eXnR2dnLs2DFMTU2FVMThsLGxYeLEiUIb4HAUFxcLLToamJmZERQURE5ODpGRkaMapYNaLfX5558zceJErWQ/AwMDoWAUiURC/Pq8efPYu3fviPVYWFjQ0dEhJI0NV2RpEBQUxFdffcWcOXM4c+YMnZ2dAiGp8Rz64IMP6OrqIi0tDZFIhJWVlZCElpycTFJSknBsNMq46dOnk5OTQ2JiopACGRkZycWLFwWfpzNnzlBWVkZzczNz587FxMQEExMTCgoKkEgknDt3jpaWFqKiojAzM0NXVxcLCwuOHz8u3L8hISF0dXWRmZnJ+++/z/79+0eQa3l5eYwbNw53d3ctr60LFy4IqkdTU1N2797NkiVLkEgkAlHd29uLUqnUIgTCwsIoKioacd5v3LhBZWWlcC/GxcWxb98+li5dKpBGGkVgeHj4iPPf1NREXl4eEomEAwcO4OjoyLRp05g6dSppaWkkJiZy/vx5JkyYIJDQoFbT7Nu3T2sbAUFJOnXqVDZu3IhSqRyRrjc0NERfX5/w6ejo4PDhw3z11VckJSVx48YNenp6mDp1qpbPnsbYfuHChZSXlwvJgl1dXZw+fRqlUomnp6egSvXx8eHgwYPMnz9fa/wuLi4eYZhdUFBATU0NCQkJGBgYEBsby9mzZykpKSEuLk5r+UuXLo24h86cOUNTUxMRERFkZGQI+3zjxg0yMjIAhGTU6Ohojhw5om4VGmWyQUOiOjo6jiD2QU1yV1dXM2bMGJRKJfn5+cKzRF9fn6GhIa11t7S0kJycjEQioaSkhPT0dFQqFRYWFnzzzTeYmJiQkpKCm5ublv+WtbW1oHySSqVakx0aREVFkZWVhUQiwdbWVut8KRQKzp07R0dHByKRSJjQuHLlCq6urnec8SstLcXS0lIYK4fDwsKCxMREBgcHcXd35/z58yPUZs3NzcLkgQaBgYG88sorvP/++9y4cUNLffY3/m8gVyrQ+YttbgAKpZL67jb0dXQp7Wrh24tH2JKwjurOZlzMrHEwsfxTKT+GEj2czawov+WDoVSp7ricSqWirruVms4WNDohBxML/hP9D34tPsGlm1V3LAD+F0x1GktxUw2Xm9UhErVdLdzs6bijKa9KpaJzsI/W/m7aBnpRKEf3Umnr7+W34hPMcPWluqOZ6o5mbIxM8bJyGEEOetxqkWnr7ybEeZzW/edr68KVlhs09LQT4xUAwIBMSo9UrQx5NWIZS/xCEYlEnK69iouZNSdrr7Dx9EG+W/AEn8U+RE1XC8aoZ9jdLGz4KOZ+mno7OVpZxDtR9yBCxGK/UJzNrJGIdW55FYmRiMWYGxiT6D0VN3MbartauN52k43zHkBXRxeVSsXV1npudLfxSMpXnFv3AVaGJrT19/Di4Z84tPoNEn2CWeQXirWRKQt+28zncWv4MGY1HQO9aqL0VqvegGwIJSqUqHgq/Vu2JKzjkZSv2By/jhcP/8hrEcvQEevwQ0EOW+c/hkRHl36ZFKVKxYWGCkKcxxHq6k3P0AAikYj/5mXx46L1mOkbcrmljg2Z3/NqxDLaurr5sSCX9+fex/OHtvNF/FrMDYwYI7LjSksdz2X9wKa4NShVKv4xKYKGnnZePPwTG2Mf5ON5D9A+0IMIeG/OvRwqL0BPV5dlE8KQKmTkVF0mMtKftyPvYUghY2v+YT6JeYD6nnb2rPgnJ2vUappg53FsyPye9+bcy8cx96MC1gaqlc5jLO3ZeOYgm+LWssB3GlK5jI1nDvLc9AX8+/hesu57/VaLk4odSzfw/KHtvBaxjC0J63A1t+HB5M18Mu8BNp1LZdmEGbwasQwTPX1eOforb8xezlcXsngrciXfX8rm2elJ3OMfTribH+0DvVR3tmCoq8e7UavQFYkpaKzCwcSC03VXeSAgitUBsxlSyPn0TAq/LXuOsVYOPJO5jcV+oXyZ+AjjbV34tegEBY1VHFz1L/Lqy8mtvoxIBK9HLMfXxpmoH17n7ch7MJLoc67+OssmhJFx/SLPTk9CV6zDfZMjsDI0xdLQmAf2f8GOpRv495x76ZcNMW/sFApuVlHSXMtsj4l0DfbTOzTAU+nf8u859/J0xnc8FzYfdws7In94nc3x63grdyePTp2HnbE5NV0t6Ovocu+kWejrSnhh5kJeO/ob0128+c+JfYhFYt6MXMEjU2O4dLOKl4/+wqb4tXQM9PLOsd18Eb+WX4tO4GJuzfaCHHYse46zdWX8N/ERZEoFL89aSm1nCy637qNnM7/n8eBYnM2s+HHReup72rne1sDG2AeRymV8cGo/G6bPRywS4W/vziuzlmKmb8j3F7N5IiSOeWMD8LC0w8vSgSdC4phg68prEcuwNzFn2fgwxCIRKuCDuat599ge3ptzL/Ym5pyuKwNUtPZ381zYfIKdvDhdV8Z/Tuwl+/63uNqqtmJxM7fFTN+IM3Vl/FCQQ8hwMlwsRiLWRaFS0trfTVVHEwt8glGoVChVtxK8UaFUqlCi/n/P0CB7Ss/gam7D+frfjcFN9QzxsLT/095/M939OFZ9mTmev9dMf7VNWzNOV3e20C8bRHxL0Zl532s4mIzezaJBVUczXndoOTTWM8DD0o7iYUTZgHxoRGt8eXsjDd1t6IjFBDp6YjgKOVTX1coMN19EIhFGevo09nb84bapVVkjn50meoZ0SwfuarR+N/xNSv0PGBoaErx4Vq1axZgxY9i1axfx8fF3JCdA/QK+c+dO9u3bx6FDh1AqlVqFzPC2Kn19fUJDQ4UCs76+Hmfn32f0jhw5grm5OYsWLSIrK0vwPlIoFJw/f16I4dYUVpo2I40nzHBoihRgVJ8kS0tLYmJiOHbsGGvWrGHBggV8/fXX2Ntr3yya1ix3d3fBa2c4SeXv78++ffsYN24cpaWloypcQF2YHT9+XKsdUaVS0dbWxs2bN2lsbCQmJob9+/eTkZGBj48P8fHxIwYLHx8fKioqWLx4MUVFRezfv18gGeB3nxpNZLpSqWTPnj3MmTMHc3NzGhsbcXJyGlXN09vbi7GxMeHh4ezYsYPly5ePIIeGw9ramsWLF1NcXMyCBQv46aefyMjIEFIFNYWahrgEdcqY5joBdeva3r17sbKyIikp6a4k6JgxY+jt7dXyRwF1AXw7KQXqc6dRbUilUgwMDJDJZBQVFdHc3CwoMn755RdeffVVweQe1KTUcOVNWVkZN27cYPr06eTl5QnEh4uLCxMnTmTmzJkCkTQ8ur2pqYnS0lKB4HrsscfIzs4mICBgxDWZmprK8uXL6erqIiEhAVC3HB49epS4uDi+/PJLLRWJlZUVHR0ddHR0YGZmhlgsFvyMQK2e0pAnISEhFBYW8swzz7Bjxw6BMOrr6+O+++6jsbFRUF1oTJvHjx/PtWvXyMnJQaVSUVJSQk1NDSKRiMmTJ1NcXExra6tAwtbU1DA4OCicGw8PDyorK2lvb9ciau3s7IiPj+e3334TVF8Ahw8fFgiX4Zg0aRLV1dWkpKSgp6dHa2sr+fn5Wt8Vi8UEBQWRl5dHe3u7lm+VjY0N7e3tWmNTU1OTsJ0LFy6koaGB5ORkgWRrbGykp6eHoKAgzp8/T2trq2D+LpPJiIuLG7GdAwMDHDhwgBUrVnD16tUR5taa1E/NedcYy2taMEUiER0dHZw4cUIYu0xNTZk6dSp2dnacOnUKDw8Pjh8/Tnd3N2ZmZsydO1drPBKJRHh6emJnZ8eOHTtISkoSlIh9fX3CONHb20tWVhaTJk0accw13kn79u0jICBAaHHTpJeCmqCqqalh2rRpQnLrcLi4uAj3klwuJz8/n7a2NhISEvjggw+wtrbGyckJR0dHYZzQ1dVFJBKNSuyDWpGoae8eLc1VQ9JqfOOGP3v8/f3x9/dHqVTy/fff8+ijj7Jt2zaCgoJGkEChoaGkp6eTkJCgRcrejnnz5pGWlsbg4CCzZs0iJyeH/v5+dHR0CAkJESYgqqqqiIiIwMbGhp07dxIXFyco1jRob2+nurqa+Ph44Wea5Nbh7da5ublUVlZy5swZFAqFloKrtrZWqx0R1Km3q1atIiwsjCtXrpCXl0dgYODfKqn/Q1xtuTFq0t1wtPX3UNnRyJBCjmYIF4vFuJpZM93VB2tDUybZu+NoaoWrmTX13e2cr78+opVBX1eCm7kttkZmWu8G46ydyKkqweW2+HCVSkVlRxMNPe0CCeVqbs1MN78R7xZjrRxwMLEku6qYyFvm1P8X8Ld351pbA+8e38Oy8WG3Yravjv5lkQhzfSNsjEwZY2E/whhdg9yqErLue52Gng6mOKr9OVv7u7l4s1LLFNhM35Bx1o6kXbvKWGtHQQUmVyoYkA0hU8h5+egvPBIUw6lb22Qo0cPDwo6Hg2LwsnTgRE0pRnr6yFVKDlcUMtdzMi6m1gzIhngmcxtvzF6OnbE57x7fwxfxa3kq/VueD1vA4vGhfH42lSSfYHKqihln7cgHJ/cT4jwOEz0DztdfJ35cEB0DvejrSHj72C4enBJF+vWLHK8p5cWZiwhw8MBM34iNsQ/ya/FxPj+bxtH732JLwjqeyfiOiDETOHA1jydD4tgcv472gV5+KMgmflwQm8+n81XSo1xtuYGLmTX9Q4Pc6Grlm6THaOjtYN/KF6lob+S/iY/QL5MiglskkjHrDv6Xz2If4nJzLfcHRHKy9gqDchkOJpasPfAl3y98kqKmGl6cuZgvz2fwddKjdA72Y6pnIBiEZ933OkVNNUxx8MDZzJojlYVsjH0QV3MbXjj8E0FOXrx4+CdeCl+MjaEpq/dv4tWIZRyuLCTtWj6b4tawvSAHZ1Mr+oakLPILYeGO99m24En2Xz3HkvGh9Mmk/OvIz3wW+xA3utuRK5VMcx7Hp7EPUdxUjQpIKcsjymMSbuY2fHo2lT0r/smF+gpEgLFEn3eiVmGkq0dtVysVHU1cbKjgSGURD06ZwxMhcXQO9tE7NEjnYB+fzHsAgCenJeBkYsnSXR/xxuzlvDBjIRKxLu9E3YNErMsrs5YyxsKOXSWnmO7qw/GaUo7XlLIpbg3VnS2MsbSjov0mCuUkJjuMoU82yM+Fx3hj9nLmeE7iVO0VPj2Twr6VL9Lc18X69G95O/KeWwmWEvIbKlmf8R2PB8ey7eJRnpyWwKdnUti74gW6BvsxlOhxf0Ak/bIhHEwteDX7V6I9J5HkE8zTGd/xasQyZrmP59XsXxln7cQcD3+eP7Sd7xc+iY+NM0qVkm0Ln+R03VW+W/AESpWKz2IfYlAuw9bIjE/mPcCBsvM8P2Mh9d1tiERqVdq/wpfgbGrFk+lbeWnmIt6ds4rLzbW8MmupOn1w/xc8ERLHrsun2Bj7ID3SAawMTTl6/1ucqCkl3jsIH2snBhUy9HV0+exsKl/Er2V9+rd8Mu8BPjubytuR9/Br8XHWhyYwxsKOR2+Rqzd7Oth2KZs1gdF4Wzsy2X4MMqUcLyt7Zn//Gp/HreGdY7sIcR7HJ6cPCK1lS3d9xPvR9/F42jesCYzm38f34GhqiZ+tC28f28Wbs1ewJnAOr9wi0TafSyPUxYfYsVN4Mn0rPdIBVvqH8+Oi9ZS01NHU28nNng6uttZjrm+EnbE570ffR4jLOC31UGt/N/kNlawJnIOdsTn6OhLGWGpPKmkwpJBztLKILQnr0NPRxd3CTmjd65b2U9HRSN+Qto+ukURN8Nzemqcr1mGslQNXW26gK9bB6y7JqgOyIeq6W2kZxR/QwsCEcdaOmOgZkFVewMZ5D1DUVIOBrt5d2wHbB3rws73z+4e7hZ2g2JQpFTjfOk/d0n4KblahAjwt7Zk1ZsId16GB5hkW4OBBVnkB9l4Wd32uFTRWEeDoMeLnE+1cyWuoIOx/VPf+TUr9RZw6dYq+vj5mz56NoaEhzc3NuLu7M2XKFNLS0vD19R3xsgsIRr6ahKs5c+aQnZ2t5b9yeyuGi4sLjY2NlJWV0djYiI+PD729vaSmpmq1iQ1fTkdHRyh8VCoVBQUFJCQk8P3333Pu3DmmTJkyqjLFw8ODiooKrl69qlVElpSUUF1djZ6eHjNnziQlJQWVSkVZWRlnzpxh1qxZQkExadIkUlNTcXd359SpU1rtEhrEx8cLs/CaAk8mk1FfX09dXR39/f3U19ezdu1aMjMztZbVFGd+fn4kJyejo6MjGGiPdvNYW1sLqVeTJk1i4sSJHD58GIlEQmRkpKAi8/LyQi6Xs2vXLubPny8UowqFAh8fH+RyOWfOnNEqKAsLC4UIeU363HDSYDRcu3aNa9eusWvXLgwNDXFychq1PVEDZ2dngYg8duwYgYGBSKVSQkNDRyWk5HK5FjE2ceJEzp07N6LgvxPGjh3LqlWraGtrQ0dHB11dXSZNmqRV9IrFYmJjY7lw4QL5+fmMHz8ea2trBgcHqaqqorCwEG9vbxYtWoShoSFz584Vlq2rqyMrKwuVSsVzzz3HlClTtEgCOzs7pk+fjoGBAXK5nL179zIwMDCCkNLs55gxYzh48KBwDDUE344dO7Czs6O4uJiuri5EIpHgG3Ps2DEtYuF24/yqqiry8/NZvXo1bm5uWsV8WloaV65cobS0VCBkh/vjeHt7U1hYyOuvvy4U6ocPH+abb75BT0+PhoYGUlJS2L59OxMmTODFF18U1CoTJ04kOTkZkUgkqL00MDY2ZsWKFezduxcjIyOKi4txdXW9Iyk5ZswYdHV1mTFjBkuXLmXt2rVCIpvGuBwQWkpvJyw0nkbR0dG0tLSMGC80iYtVVVX88ssvJCUlkZ6ezpEjRwgMDNRqN0tJSRlBvisUCvbu3cs999wjtPIlJyff8RpNT09n/PjxjBkzBnNzcy5dukRgYCCWlpZa42dPTw9nz56lq6uLRYsWkZqaysyZM0eQGrfDxMSEe+65h5SUFCZMmICXl5cwpmpUeosWLRL24fZx2sTEhKVLlwot3Rqy5MqVK5SVlREQEKClurpbz76uri6WlpY0NDSwZcsWHnvsMXp7e2loaODMmTNC66dIJKKuro7HHnuMjIwMdHR0cHR0xNXVVdhfZ2dnzp49i6Wl5Yj2ZXt7e8FT7+bNmzg4/P6ypblPuru7mTVrFp988olwvi9evIiBgQHh4eHo6+trtVMPDg6OUOGCenwvKChALBazdOlS9uzZQ2xs7KgTJF1dXTg4OGBlZcWKFSvIyMjAxcVFINIVCgWHDh0aoTIOCgriwoULwhjd09ODWCzG2NiY6OhoIflSo5YdPvkik8nYt28fkZGR2NnZUVdXJxC1+fn5XLx4ETe3uxMpf+PPoamvi9BbL6sDsiEqOhrpupUQp7ktrI1M8bd3v2MiXmt/D7PGTOBETSnWhiaMsbQbtUDRFAnlbTeFqGoNLAyM2Hg6hWDnsZysURvaikRqpVC4+/gR6xoNzmZWmOkbkn79ItGek7Tiy/9XyBQKbvZ0cLOnAyOJHhPt3TDTN/rjBe+AAZkUfV0J9iYWlLU1MCCTYijRx8bIDBsjbQVr12Afl1vqePf4Ht6Juof+IfXkkFgsxkhXDyOJPj7WzlgaGhPm6is8R47XlLImcA4XGsqZNWYCJc21rD3wJc9OT8JIosebuTt4Y/YKvkx4GEQiWvq6+GXJs8iVCl4KX4ybuS3/Ob6Hl8OX8NnZNN6JWkV5+002xa2hTyZFItZhsV8odibmpJZdEFrpGns78Ld3J9x9PKb6hmzI/J7PYh/iuawf+GXps4yzciL9ej6fnD7Ij4vWIxKJ6BzsE9qwNkyfzz3+4dgbmwteQZ+fTWNLwjqCnMaS31DOOGsn3szZwZcJD/PPQ9t5M3IlhY1VFDZWM81lHL1DUj6MWY2OWMw/ZyzEWKKPrbE5g/Ihgp3H8ljwPCwNTNhemIOhrj6rJ0egAl48/CNfxK9l28WjtPZ381L4Yv55aDshzuN4YEoUZ+quYaZvxIbM79kUv5ZB+RCfzHuAgsYqWvu62RS/lv4hKfHjApnrORlPKwdmuvvRIx3kzI0yHguex+b4dbT0d3GhoRx7Y3PaB3rZOO8B+mRSAp08meo0lnUHv+Rqaz2fx63hX0d+Zu+KF6hob2RQISNyzER6h6TUdbfy7cUjfDD3PqQKOY+mfMUX8Wt5IvUbUu99hX9MjqCqo5m3c3eyMfZBXjz8E+9E3cO+0rP42rrw3cUj7F7+PF8mPMwURw9W7t5Ia383s8ZMwNvaic/PprJ+WgIvhi9mffq35D74Dguag+mU9rE1/zCeVvasnBhOXkMF7QO92BmbsyXxYcpa62np7+YJD3+8LB243naTFw//SOq9r1DcVMMMN19CnMdhIJHw71uKO6lCjkRHh+KmGuq6WnkmcxtvR95DblUJPtZOPBwUg0KlREckxkiiz2sRy/C2dqKxp4P5PsEoUWF0q92trb+H5w9t558zFiKVy3grdxeb4tawPuM7ng9bwBgLO+7Zs/FWAqEZnYN9bDqXxsbYB1kyPhR7Y3MMJBI+i30ILysH9pae4VBFIY6mliiVSrYkrKOms4XVAZFkXL/ITDc/ns3cxpaEdfxafBw9HQljrRwYkEm52lpP6r2vcL3tJj8tfprz9dfZkrBOIH3P37iOnZEZb85eQVNfJ13Sfr5d8Dh7Lp+5RVqMR1ekViS9OXsFg/IhXotYzoBsiPm+IZy/cR2xSMx3C56ga7CPD+beh1yp5N0599IjHbiVjDiRnSWneCo0gTdnr8BAR8Krs5YJLb8fzF1NmKsPEd+/yscx96OvK+G943tYPy2BB6ZEIhaJyakqYZrLOK603BDUP5UdTdzsaWfe2ABO1V7Bx8aZIxWFuFnYjFDqKJRqMnze2ADO37hOsPM4jlYWEebqi6FEDzN9IwIcRhIpfUODVHU2c/m2lDh9XQkeFvZUd7YwKJcR7TmJG91t3OhuG6FM1UyCjLNyvCOZc7LmClOdvChrrWe6q9r7aryd61/yu7odwc5jOVRRAICNoRnHqi9jqmfIDDe/P6UelisVI2qJMFcfTtddvWuwRv+QFJNR2iIlOrpCYuL/gr89pf4ipk+fTlxcnOCTU1ZWhre3t9C21NLSIngiaSCTydi5cydLly4VljMzM0Mmk9Hfr44Dbmxs1CoMNJg6dSrXr1+nra2N69evk5OTw/Lly0e0HowGkUhEd3c3ly9fxs3NjYiICCoqKkhPTxc+paWlKJVKJkyYQGlpKQqFQkhmSk1NxdjYmMTERGJiYpBIJEgkEkQiEeHh4SxYsIDi4mIOHDiglRCnUqno7OwcNZkuPz+fd955h/379wseTZq0qylTpjBv3jysrKz48ssv6e/vZ+7cuYLXztSpU3FyckJXVxd9fX0SExMJDg4mJSWFkydP/qFBm1gsZt68eUyZMoX9+/cL6VKDg4OC19btJriA0JZ04cIF4Wfd3d1C8WdoaMi0adPIzc0V9nN4G4tUKiU5OZmBgQGWLFmCmZkZiYmJ6Ovrk5ycPKrvjgatra3s2rULX19f/vOf/7Bo0SLB1Px2NDc3j7iGpk2bJhB+o7UZlpeXk5aWRlpaGnl5eTzwwAO8++67ODs7M3fu3BFqOA2mTp0qJP3t2bOHxx57jK6uLhYuXDjCx0cDV1dX4uLisLOzY8mSJURGRhIVFUVsbCyxsbEEBgYKRW1BQQEzZszAyspqRBrfcMLT1tZWKxnt0KFDLF26lL6+PmbOnElCQgKxsbFUVVWRnJzMP//5T06dOiXcd4GBgVy4cAGRSERmZiYtLS0sXboUIyMjLR+qrq4uDA0N8fX1xcXFRUjTbGlpEe7F7OxsfHx8+OCDDwTD6OGKGUdHR0xNTbGyshJaBjUeSllZWSxatAipVCoYams+WVlZHD16FHNzc0Gx09raKiw72qeiokLwUtPX18fQ0BADAwP09PSQSCTo6uoyffp0WltbSU1NJSsrS1CNaTyNhoaGOHv2rKCmATUpcPbsWdLS0igtLWXy5Mm88MILQlvh7eTH7Sl9KpVKaEccTqBOmDCBkpISrWVVKhX79+9nypQpgirL0dGRxkZt3xUNTE1NBRJ3586ddHZ2jkqSaM7n8LZCkUjE/PnzaW5u5vTp07S1tbFr1y5cXFxGtOa1tbWNSuwHBgYSExPD22+/zeLFiwXC+va2zduNyTXQmNYPDQ2xaNEiPD09EYlEmJqa4uPjw+zZs4V7xdHREUtLS9566y1mzpxJZGQk5ubmXL58WbgG2tramD59Op2dnSNMwkFNXmpI2KCgIIGMSklJISAggPnz51NWVsZTTz3F+fPnCQwMFJIFjx07RmpqKkVFRULCpWY/W1tbOXLkiGAen5uby5gxY4iOjiY9PZ2hoSGtFr7h0KjaNOckPj4esVhMamqq0Fo9f/78ES99GiWkBppUVg2ioqJoaGjQShQUiUS0trayd+9eFi1aNOozNSgoiPnz59Pb28tPP/006jb/jT+PN3J2cLLmCidrrnC5pRYnUytmuPkxw82Pme7qj5+tyx0JKUAgmGa6+XG6rkzLuHw4DCV6eFs7EebmK/wNzcfLyoFdl09xra2Bsdbqgn6Gm9+fNpvVKKlM9Q2ZNzaA3OoS2vp7/mCpu+NKyw1O1aqLlk1xa3C3sKO05QZ59eV/yXx2OPIaKgRT4BmuvrfaaUaHuYExxhID0v/xKqZ6hvjYOBPm5kuoizeTHMYw1tqRxX7TmGjnRlZ5AX1Dg8gUckSoC7JLN6s4WlmEgY6ELQnrGGfliKelA2/OXomJnoHav0kh542cHbQP9HD//k24mllzvPoyceOCkCkVNPd1MSAf4rOzqdR0tfBa9m/0yaQ8mb6V5t4ufizMpaGnnd6hAV48/BNfns/A1siMFw6pSZ6iphp2r/gnLx/5mYxytcHxe3NWsf/qOe7b9zkzXP34+sIhvkp6lKnOXmpfJJWKfx7ajq5Yly0J60Ak4sfCXKK9JvPi4R/5fuFT3Ozt4NDqNzCW6BPm6stT0xKY7uJDgncQn55J4cvzmZypKyO3+jK/Fh0HlYro7W/ia+PCwh3v83zYAn5e8jTvHt/Dwavn2Rj7IFdabhAxZgKPTJ2Hno6EjfMe4F/hi2nu68LHxkmtFpu7+lZaXTtFTTUcqShCrlSws+QkYrGIJ9K2oiMWk/jLe7iY2TDNZRyhLt7c7OngyfSteFra88jUeWy7dBQjiT5fnEvHUFfChszvOVZdQpJPMB/OXY2HpT0b5z1IQWM1j6d9Q9/QIF5WDizd+SFJPsFsSViHWCSmS9rPwVX/omuwn+2LnmL35VOCB8360ETMDYzZvmg9+roS5o2dwgQ7Vz6KuZ/G3k4eT/uGrIpCngubz4+Ln8bT0h57Y3NSVr3MeDtXpHIZH8as5tLNKp5I24qlgQlrAqPxtXHG0tCEkzWlJPkE81T6t5ypK6NvaJDnwxZwoqaUJ9O3YmlgzBfxa2nv7+FfR35GrlRQ1FTD+vTvsDU2o6Gnnffm3Ev/kJQE7yCUKiXrgubiam7NczMWYGtsxtMZ3wm+WDlVxRhJ9Hks9Ws8Le3ZevEIN3s6eDz1a9oHernR3cYX8WuxMTJj45mD6nOV8R2vzFqKvq4EiY4O3yQ9hq5YzP4rZ3E0tST7/reobG9iioMnz2RuI7fqMno6ujyUvJkE7yBemrmIe/3DeWBKFDd7O/nwVDJKlYrj1aU4m1nx38RH6Bzs452oVTw6dR7WRqa8ePgnFEol11rreTZzG93Sfr44l86gXMYHc1ejryvh7I1rWBuZobo1eurr6NIjHSSz/BIWBkaUNNWyIesH/Gxd+LEwF4mOLk9nfMegQoZCqWDbpaPo60qo6WxhQ9YPDMhlvHL0F07UlLKj5CQDsiG6Bvt5ZGoM2y9lY2diwcMp/6W1v5vnD22nd2iQV47+wp7SMyTf8xJu5rb0y4b4NPYhFvqGkFt9mc/OpOBnqz7XnbcmKgoaq+gbGhTIEc0wGOrqw9m6a1rjl0ql4nBFIdG3eTRFekwkt3pkMvhwGOsZMNHObcRzYoKtGy19XVxra+DFwz+SWX4RhVJBkKPXiO9OdRqLnbH5HQmpgsYqXM2thWANkUjEbI+Jdw25+DPoGxpkUCbjhUM/YmZgRMSYCQQ6ef4pQgrUzx2/28I6TPUNMdUzpKGnfdRl+mXSP0wg/F+fWSLV/7rk/2fQkBBvvPEGL7zwguCdkpmZOcIP5fr165SVlaGrq0tkZCR79uxh2bJlI/w25HI5aWlpLFiwgKysLKKjo0dtAauursbDw4Pz589rtWJpMNo2AIKBbkBAACkpKVpeIKC+aGpra7ly5QpKpZKEhAQ+/fRTgoODmT59+gj29OTJk0ycOJHBwUHq6uqEbdEUM11dXXh7e3Pp0iWmTp2Ku7s7+fn5AmGlMQzOzs5GX19fq/1i+LEbGBigoaGB8PBwDh48SEJCwghfmtv3uaWlhZMnT+Lm5qal7LnTsQG1EfIDDzxAREQEH3zwwYhjf3vbS35+Pjo6OgQEBIy6Xo2KwMDAQJiVz8/Pp76+nri4OKG1ZPh6pVIpaWlpTJo0ibFjx2r97tixYygUCiIjIxGJROTl5eHp6Ym1tTU5OTmYm5tr+ckM//3tOHDgAFKplPj4ePLz8+nrUw/6Y8eOZdy4370j0tLSSEhIID8/n6GhoRHtRrcfE5VKxW+//YalpSX+/v5arS63HyO5XE5KSgoTJ06ksrJSSMC75557Rhz79PR04frYvXs3S5cuFbYxNTWVxMRE4e+npqaSlJREeXk5vb29BAQEcPjwYWbNmiUUv+fPn0cqlSKTyQgKCuLSpUuCuX98fDwvvfQSL730kpaqpr29nWvXrhEaGsqBAwe0WiY1nlNyuZywsDDS09OZOnUqrq6u9PT0cO7cOSGxMDo6mrKyMoqLi4mMjCQ/P5/o6Git+yszMxMvLy8tlcbtUKlUHDhwgE8//ZQff/xRKyltNGRkZBAZGcnevXtZsWKFlioN1MmXbW1t+Pv7MzQ0xOnTp4VEy6lTp3LmzBlUKhUzZszg3LlzQmpocHCwcI2lpqbi7OyMtbU19vb2HDt2DKlUysSJE/HwUM9IHThwQCASDhw4wKxZs0ZNhkxOTmbhwoWAupV29+7dxMTEjPju8Gtj+LE5dOgQtra2BAYGkpmZSXR0NLt37yYuLm4EGVtQUICDg8MIElelUvHdd9+xbt062traRvW1O3fuHN7e3iO2q6WlRSDgTExMGBgYwMHBQYvUA7VCbdq0acIERWtrKydOnMDFxUVrfL/T2HXkyBHs7Oxob28nODiYw4cPC8dtOPr6+ti6dSuJiYl0d3fT1NSESqVCLBYTEBCAg4MDKSkpgDr4ob29XUv5Ovze0owLt6O2tpaioiLhOyKRCGtrawICAkY877KzswkJCUEikZCcnDxC7aTZ53nz5o14sdO01/7yyy+sWLFi1OdkRkYGcXFx1NTUaLXKDsfJkycFoltDysXGxmr9vduP+/HjxxGJRJw9e5YXXnhhBKH5N/4Ymvenp0Li8bC0w8HUkvG2rv/Tuk7UlApqJqlcxvGaUuZ6Tf6DpbRxrPoyUxw9KW6qxkzfiJb+bsJcfe5Khg3HqdorI2aRT9VewcnUakTseI90gKqOJiY5jBl1XZ2DfeTVl+Nn64KLmTUXGsoZb+vKhXq18qh9oJf8hgom2bvf0aB8NCiUSk7WXiFiWOuGxkh97B3aULIri4i65Z+SW1WCv727Vjrh6dqrhLn5olQpOVFzhdyqEma6+6Gno0tWeQGzx0xAT1dCdUczM9x82VN6mt+KT/JV0qN0S/s5VF5AuPt4fKyduNRYxXQXH+7fv4n7Js9GT0eXsdaOPJ76NW9H3sPrOb/haWnPw0ExNPZ2EOjoSc/QADKFAjsTc6o6mjDQ1UOuVNI7NICOSMybuTv5KulRCm5WoVAp8bS05/OzqSwZPx1nUyusjUzZd+UswU5jeff4Hn5a/DQNPe1ca7vJBFsXNmT9wCuzlnK19QYz3PxQKJVI5TJezf6VLxMe5vG0b3g6NBF3C1u1N9SspVgYGAvjh0KlRFckxs3CjuKmavxsXKjvaeeVo7/y4dz7qOtuw1TPEB2x2ifJx8YZ3VvbHeXhj7WRKU29nbT29/Do1BjSrufzeHAstV2tDMiHECGiua+LtGsX+CrpMfZfOcsUBw92lJwk2nMSOmIdvs0/zKPB81AolVR0NPH52VS+SXoMuUpJj7QfkUiEga4er93ydqrvaaeyvYnZHhORiHUobbnBFEcPeocGaenrwsLAmNdzdrBhehLvHt/DloR1PJG2lc9iH+LHwlxsjc242lLPw1Pn8srRX9mSsI7LzXV8mZfJloR1vH9yP+sC594ygzdlfca3fDD3Pp5I28r6aQl4WzvxZPpW3opcyWdnUngnahUHys6zevJsXj36Kw8GzsFUz0Btrm9uTXVnC5FjJjL/13+zNmgu7uY2XGioIMjJi7b+HiwMjXEzt0VHJKK2qxU9HV1kCjkbsn5gY+yD7C09Q3VHM89OTyL/ZiVOplZ8cvoAn8U+RJe0H30dCYPyIbysHLjR3cb+K+dYOXEGe0rPsC4oht6hAVTA+vRveW/OKtwt7Ogc6EOFirb+HjoG+8i4nk9dVxv/mBzBDDdfNp1N477JsxEBz2Ru46fFT3OztwMRIqY6efHe8b0kegfxTOY2HgueR/KV8/wrfDF9Mimt/d2Mt3VlzYEtbIpfy2dnUnh2ehJPpX/LjqUbaO3voa67FUsDEzoGe3Exs6ZzsI+m3i42n09n38oXqepooq6rlc/OpvJ6xHL2lJ7h0eB5XLpZyXyfYEpb1MFCOreIRxM9Awx0JYhFYmRKOeOsHG+RwYP0DUn55PQBngiJ48NTySwbH0ZNVwur/MMx0zfioQOb+WXJs9zobsNYoo8KFT8XHiPU1YeIMRO43tbAi4d/Yuv8xwARNZ3N2Bqbc/Dqeeb7hqAjEjNwq/XSzdwGd4vfJ4tO1lxhprt63L3QUI6npQNWt9qMj1YWMc3FW1DvaMYqUJMoZ29cI8pjdMuYO0GlUnGq9ioOppY09XagrytBqVQR7Dz2L7Vsl7c3MigfElrXT9eVMd3FW1hHXn051kameN727BjtOaNBe38PhU01GEv06Zb2o6crwUxf7ec0w9X3T5NSw4/p7cgqL2Cu16QRirTTtVcJdh53x5bxG91tDCnkWvvTOzTIzO9e/sP3p7+VUn8RERERHD58mCtXrtzxO+PGjWPmzJl88MEH3H///SxfvnxUA1hdXV3s7e1paGhAqVRqvWgPV7D09PRw4MABrl27ppXop8FoN0dtbS3t7e0EBAQAas+g2xUnIpEId3d3YmNjMTc356233sLV1ZUZM2aM2hrU3d2NhYUFDg4OWqlbIpGI2bNnk5SURGNjI/feey/Xrl3j5MmTjB8/nvj4eOLj45kzZw5lZWWjEmugHgCKioqEVg1jY2NWrlxJbm7uiIjz2/fZ1taWRYsWYWtrS3JyMqWlpcI6h0Nj+puenk5NTQ3vv/8+NjY2pKamjlAf3b5sUFAQUqmU4uLiUbc/MDCQuro6Ll68iJmZGXv27MHCwoL58+dreZ0Mh76+PosXL6arq0toaxyujoqKihL2VWMQDhAZGYmhoaGwDNw58au3txdDQ0NWrFhBTk4OQUFBwjnRqPw039OQrUFBQVhaWnL48OFRt1sDDUGkiZdvbm4WjvPwc1RbW0tycjJxcXGMGzcOlUqFRCJh6dKl7Ny5UyvC/XZER0dz9OhRYR+HkwEikUjwkykoKBCu9xkzZnDq1ClA7b9kZmZGeHg4MpkMc3NzZs+eTVxcHGFhYXzyySc4Ojpy8uRJjh07Jqh+rKysaG9vp6GhAXt7e617wsfHBxsbGzIyMti7dy/R0dG4uqqLLFNTUwYGBjhx4oTgoyaVSlm6dCnW1tYj2tmOHj2Kr68v48aNE4iy0XDx4kV8fHx4+eWXuXr1KnV1dXc9NyqVCgMDA5YuXcqOHTtGKPKGq7j09PSYPXs2CQkJREREUFhYSGJiIhUVFZSWljJnzhxBdaYhpDTX3ZQpUygoKEBfX5+YmBiSkpLo7e0lJSWFY8eOERwczPnz54X2vtEIKVAHGBQUFCCTydixYweJiYmjfvf2lsu2tjZ2797NtGnTCAwMFLZLV1dXGD80aY4aNDU1jVABNjQ0sHv3bhYsWEBGRgbFxcWkpqaOSH3r6OjQ2q7e3l6Sk5O5evUqixYtwsHBgdDQUBYsWICrqysHDhzg1KlTwnYNDg5iaGhIb28vBw4coLS0lIULF95xXNRAo7j19/dn0qRJDAwMYGxszJgxY6ioqBjx/bNnz/Loo48Kaqa4uDji4+OZO3cu9fX1ZGRkMH/+fDIzM5kwYQILFy7UGj80bZKgvj403l3D4ebmxrhx43j55Zfp7OwkMjKSkJCQUZ93/f39mJiYoK+vz5w5cwRz9+EY3l46HBcuXOC3335j8uTJHD58mLS0NE6cOKF1TRsaGtLf38/FixdHJaRAHdZQV1dHUlISHR0dd0yt1bQj7ty5E09Pz1GDH/7GX0ekhz92JhaY6xtztLKIuq7Wv7R852CflgeHvq6ESfbuXGgov8tS2ihqrMbD0g4zfUOUKhX+9u7Mch9PXn05529c/59neGe4+dE7NChEl/8RVCoVp+vKuN7WQLTnJFzM1OPqgExtVmtjbEZLXzdWhibM9ZrMzd4OTtSUjvDOuhPybxXqwzHWyoHqjqZR1WVFjdX4248R/j/bYyJFTTW0j6IAE4vE2Bubc77+OiLAzdyGl8IXq1PN9I04UlmEvq6EKY6ePDI1hn6ZlG0XjzLNxZvmvi5W7tmIq5kNS3Z+yI+L1xPo6Mne0jNI5TKeC5uPrbEZb0fewz3+4ShUStwsbKnsbObpjG3IlApW7fmUtv5eMssv8XbuTuRKJQneU9mSsI73ju3GwtCYPZdP0z7Qy5Lx0/GycsBE35Dns7ZT09mCCtiSsI4LDeW8ePgnAh09aOrr4qXwxYS7+zEol6FSqZAp5BjrGfDLkmfZmn+Yg6v+hZm+IQqlktWTZ2NhYEzqtQv8WnyCyo4mXs/+jd4hKUt3foidsTmPpn7NprNp/LLkGWq7Whln5UifTK0ameU+nneP7cbK0ISNsQ8S4xXAmboyVvqH83hwLJaGJlxtqaemq5Wn0r+lta+bjWcOMigfItF7Kt9dPMKlm1U8m/k9M9x8KWisRq5UcL39Jv2yIZ7L+oEoD3++THyEwqZqHk/9GlM9Q1449CMFN6uY7xuMWCTGQFeP/VfPYaArwdHUkjA3H1KvXSDtWj7GegbkNZTzZuQKNp5J4d9z7uXFwz9xcNW/aB/o5enQRBK8p/L09ETO1F3j33PuxcHEEi8rBzZMn4+xngHPhy3AzsSc/+Zl0dTXycZ5D2JnbM62BU8y1soBS0MTHg6K4UrLDdaHJtDY18nToYmcvXGNp0MT+LEgh42nD/Jz0TEu3aziszMpHCw7z7Nh6nTALecz1Wo++zH8+8ReLt1Utzgu2/UxKpWKV47+gq2xOV8lPcrHpw7w0JQ5/Ct8CQPyIbUi0NqJ58MWMCiXsfl8OpvPp2NmYMQTad/gb+/OiokzkCrU74T7r5zlYJnaEiTEeRxikZiOgV6eTN9KeXsjPxcdA1Qk+QTzedwaAh09qe5o5pv5j9El7aeuu5UD97zE+vRvESGid2iAyB9eJ9E7iHeP7+bNyJW4m9vx8qwlnK8vJ7uqmE9OH6S1v5v35tzLgEzK06GJ9EgHeCtyJRUdTXx9IYvUaxfQEYuRK5Wcritj87kMdWrjva/wWvavbC/Iwc7YnI3zHsDS0IQgJ08OVxTSOzTIkp0fEuI8DksDY5xMLfnPib2Y6hkguuVZ9+npFBp62nkibSsGunq8d3wPT06Lx9LQhA9jVhPm5stMNz+2XjxMfU8bWxLW8cW5NG50t3KoooBnMraR5BPMr8XHqelsQalScY//TNzMbbl4s4KytgZmuvmx0G8as9zHYyCR8M9D21GBFiE1dKv1UoMgRy8uNqjfe45XX2aKg8eo7WQARhJ9/Gxc/tJzQiqXkVVewER7N8ZaOdwiEMcy1tqRw5WFo46Lo6Gpt5O2/m4tL0VTPQN6hvlaBTuPpUc6IBi/g1oBdbtpOUB9dzu5VSXUdbcxe8wEXM1tcDS1QgRMth9DsNNYcqtLRiS5/i+Y4eYr+AcOh1ylvCMhBeBiZk39beqvP/tc/dtT6i9CR0eHBQsWcOnSJeGlWiqVcuXKFW7evCm84KpUKgIDA9HX1yc7O1vrhKhUKuzs7PD29iY0NJR9+/ZhYGDA1atXheLC09NTmJlWKpXU19ezcuVKdu7cyYIFC0b149Cgu7ub/Px8LaPwyZMnk5qaOsIbQ6VSkZaWxvjx4wkJCcHT05NLly6NSJ7S+IZoYGhoSF9fn9Z2iMVi5HI5W7Zsob+/n6lTp2opFFQqFQ0NDYSEhHD9+vURy584cUIwyjUzM6Orqwtzc3Pmz5/P2bNnaWpqEtq29PX1R/UwcXNzw83NjbKyMvbv309LSwtdXV1cuHABqVSKSCRiypQpWkWLTCYjNjaWvLw88vLymDBhwqhJfXK5HBMTE77++muuXr16R6Z82bJlfPHFFzzxxBN3LHhuR1BQEM3Nzdjb2wvKutuXtbS01IpW9/Pzw97enh07dghKCc0yAwMDnDp1CqlUiomJCQEBARw7doy6urpRC0ZQF7HDiy9fX19MTExITk5mwYIFQrqhRjFz9uxZ/Pz8BNY7KSmJvXv3MmfOHIaGhoQWp2PHjqGjoyOkfw2HgYEB8+fPZ/fu3SxfvlwwyB5O4llaWiKRSGhqaiI/P3+EemTWrFm8/fbbrF+/XviZkZERfX197N27l7CwsFHbpaRSKenp6Tz77LOCB1R3dzeHDx9GoVAIBvjnzp1j0aJF9PT0UFJSQlfX70aGH330EZs3b+bUqVNa50uhUBATE0NWVhYLFy68o//T8ePHcXNzE1qfjI2N6e3tHdFGWl1dTX9/P0FBQdTW1jJv3jwyMzMRiUSjGjFLpVJBJaavr8/y5cvZuXOnFkE+nJQajtbWVlpaWvjll1/Q0dEhKChoVFJ1+DhhaWmpRYpqzLK7uro4efIkiYmJfPbZZygUCi5fvoyenh76+vqCslDz77S0NIqKili5cuUdr9PJkyeTnp6Os7MzeXl5dHZ2at0vw9tUNS10R44cobe3V/CtGp48p1FZGRkZsXz5cmG5iIgIZDIZhw8fRk9Pj6ioKK3zODQ0JHjUDU967O7uFtoYnZycWLBgAS0tLRw8eBBzc3OkUimpqalCC/LdAhI0aGpq4tixYyxatEg4LoIxZUAA+/btE65XDTSBBf7+/lpkv46ODoGBgaSmpvLxxx/j4uIyou0S1CSdhpSaNm0a586dG0HOyGQyLl++THh4ONHR0YI30+1pd7W1tQJpC2r/t7Fjx47w6hsNhw8fFoiho0ePCvd/d3c32dnZyOVyjI2NmTx5Ml9//TWLFi1CLpdTXV1NVVWV0IKrgUY93NXVRUZGhnAcDQ0NmTBhAk5OTuTm5tLZ2cmSJUtGKAz/xv8OOxNzLtSXM9HODWczK6621nOkopAgJy/BWPtuKGutZ4qjp9bP7E0saB/opbKjacRM8+2o725DoVLhZq6+PsUiEQqlEl2xDuHu4+ka7ONoZREelvZ3NbW9E/zt3antauF49WXC3cff8R2hqqOJyo4mrZl90H438LNx4URNKbbGaqVTgIMHAzIp2ZXFeFk5jFBk3Y4+2eieHzPcfDldd1XLO0ulUtE60DNCzRXpMZGcqhIm27tjNUwxVdxUg65Yh5+XPENNVwsypZLz9df5Nv8Ij06N4bPYB0m/fpEJdm7oinUQIaJfNoSZviGOJpb42jgjFonYGPsgJ2qu8PHpA2y6ZdK8OX4dj6V+zfvR9/FjYQ6Bjl4cr7nMG7NX8ExoIoa6emyMfRCZQo6N0UQW+IQQ4jKO5KvneO/4Hn5e8gwXGyp5ZdZSnj+0nY2xDwqJd4+HxGJtZMqAbIgn0raS/o9X8bF2pnOwjw9PJvNF/Fp+LjzOYr9QeqQDvHz0F54OTaRfJsVAokdDTwdf5WXx05KnMZLosa/0LHbGFtzorqCms4VxVo4YSvSIHTuF8bauvDl7BUpUdEsH+Pj0AV4OX4KjiSWfxj7EgHyIn5c8w7MZ23h4agzvHd/Dp7EPYagrYcv5DB4NnsdL4YuxMzZn/bQEbI3Nme7ig7FEnwG5DFM9Q/qGBnlyWhw3ezrJrb7M+frrPB+2gH8e2s5HMfezPv1bdYrgtHhemrmIKY4ebIpfi1KppKiphtaBHmyNzFg9eTaVHU08kvIVD02J4oGASG50t9E52MfOklOEu43no5jV6OlIWOwXSnNfF28f28WWhHWsT/+WZ0IT0RGLGVLIWbLzQ/If+ZhzN65xteUGGeWXuGdiOBUdjdR0tmCiZ8CyXR+zJWGd2tB/Qhi51cVMdRqLuYExGzK/59PYh9h28Sj/jv4Hz05PUk8SKGTYGZtjZWiCu4Utb+Xs5P4pUbwXfS8rd3/CfZMjSPAOYtotH6mHpswB4NnpSTyW+jVzvSbzeHAsCqWSJ9O38k6U2gz9laO/EO01ie8uHmWl/wy+u3iUIbkcSwMTLjfX8uLhn9gUtwZfGxfMDYwwkuhjLNHnrciVlLXWY21kyj8mRWBvbM7qyZFYGhrzVPq3vBS+mB7pAFvOZ6CvK+Gd3F0EOIxhqtNYZo+ZiIuZNR2DfTwXtgBzA2NeDl/Cgat5JPpM5an0b9m+aD3NfV0s8p1GSXMt6dcv8tS0eJ7O+I5PYx/i14tHCHf3w9fGheluPkjlMj49c5Boz8m8FrGMe/Zs5M3ZK3gyJB4dkZjXc34jflwQ+6+cw9LQmOUTZzAgk/JO1D38UJDNL0XHSVn1Ml8mPIybhS2Jv7zH6xHLeTViKb1DUlLvfYWrLTd4LWIZGdcvoqcrwcPCjozrF4kbF0hzXxd1XW28lv0bX8SvRYSIlr5u5vsG42PjhFyhYEgho29okPXTEtlbeoZAR09czW14/tAPTLRzQ3VrkuCz2IdwNLHg0s0qIZyhprOZMcNIKpFIxAQ7N97I2cEjU2O0xqfR4GhqSZe0n+ttDYyzHpnaOxyNvR2UNNUy12vyCMWRlaEJMV4B5NWXU9HRSLDzyFpRg96hQUqaa7XS+wAsDIzpHOzVSqib7DCGKy03hDS9259n5e2N1HW14mRqyWyPicLPr7TUEXXL66q6sxkPS3vmeE6ior2RIxWFzHDzHTVxD9SegwZ3EEwAmOgZYGFgTH13O863gkFa+7uxNrz7sQa4vco9VXtnIc9w/P229T9iypQp5OTkcN999/HTTz/h5+cnGF+Dejbd0NCQ7u5uYmJitF5OVCoVLS0tFBYW0tvby1tvvUVtbS15eXmjtkiUlZXh6+uLjo4OK1euZPfu3YK66XZoWqRWrVo14nca0kjzkj00NMS+ffuYN28elpaWXLt2DW9vb1JSUvDx8dGKdy8tLWXChN9l4OHh4WRnZ2sRBJcuXcLR0REdHR3CwsI4deqUVptfTk4Os29F1U+fPp3Tp08LrUoDAwP09vYKxcykSZO0YtVDQ0MFX6D58+djY2NDa2vrqAW5XC6nu7sbfX19vv76a3bs2EFqaqrW/oyG4OBggoODuXz5MgcOHGDz5s0jTOR9fX357LPPOHz48AiDaFAr3N59910iIyNJTU3F0NCQiIiIOyqlQJ3EVlRUhIGBAQcPHkShUHDz5s0RSVcWFhZa3l2gVvMsX76cAwcOcPPmTfT09Ojv78fAwICZM2cKpF1aWhpxcXEoFAp27drFypUrRxTDo3m9uLi4YGxszM6dO1m2bBmWlpZ0dHTQ3d2NUqkcYeq/ePFidu7cibu7O3Z2duzcuZOZM2dqJUfeDhMTEyFNcfHixYLHzXBERESwa9cujIyMaG9vp6SkRFAViUQi3n33XQIDA7XO8bPPPsumTZtGJaQ0SYsrVqzQujfNzMwEo//y8nI2btyInp4eBgYGmJqaMmHCBEElMzg4KHgx3U6U9ff3s337dvr7+ykqKhIUXMNx9uxZrK2ttQjQsLAwcnNztVIJe3p6KCgoEIhHzTUZGxsrFNW3H9/hqjFQK11WrFjBrl27WLp0qZC4OZwUVqlUZGVlYWpqyvLly4UWOE2L5e3E2nDSQhOCMH/+fK3vmJub4+/vT3JysmA6rVKpkMvlDA4OIpVKGRwcZHBwkJs3b/L111/z8ssvk5OTo7UezT5bWlri6uqKVCpl//79TJo0aYTCqKGhYcTxiI6O5uzZs1y4cEHLSL6mpoa8vDyio6NHTU6VSCTEx8fT1dXFwYMHcXZ2RqVScfToUQYGBoiOjh7Vt2o0JadGgaUJRgA1sXIn5ZgGxcXFNDY2CoTZ7ccE1MrAkydPMnPmTEBbqThu3Dj27dsnkFIdHR1kZmaSkJCArq4u0dHRQovncFJ7+FhgZmamlbCpgaat78yZM8hkMpYvXy6ER3h7/x5lX1hYOKJ9fNy4cXR0dNw1iCE9PZ2JEycKkynDCSYzMzNhDO7t7eXXX39lw4YNeHt7c/36dcaMGUNkZOQIUik1NZXc3FxOnDihFerR399PaWkpJ06c4KeffiIvL+9PEYZ/469hjIUdVR1NeFja42vjjI+1E/k3K+htHGS6q89dDcNlCgV6OiNfW/1sXThZcwUrQ5M7phn1y6SUtTVotXD42bpS2lInmOqaGxgT7TWZyo4mjlQUMtV57F3TkUaDJt48s/wS0bcVIwOyIU7XXcXN3GZEoQJwra0B71sF03DSXCBOJfpEe03melsD2ZVFzHDzG/V4lbbUMf4OqU2GEn1M9Q1p6u0U2gEv3awi8DayTwOBmLpFWF26WYWJnr5Q2BU11RDg4IGXpT07S04hVyqo627j49MHeGnmIvZfPc/qyRE8HZpA79AgX+VlsSFsPiZ6BjyTuY0nQ+L5V/gS3M1teGP2ciQ6Ovy4aD2NfZ1UdTTzfvR9hLv70Tc0iLOZNc8f2s7awGiuttYz3dWbl4/+ovbgMrdlkd80ZAo5G88c5NWIZTw0JQoTiQHfJD1G8tVzxI6dwvqM79ixdANfxK/ldF0Z7x7bzedxa1jpP1NNFBUdY4qjB16WDrwyaym+Ns48lvo170at4r3je3gzcgVf5x1i/9VzpKx6mZrOFiY7uKOvI6FbqlageFnZ81vxCfR1JVR2NKGno8uXCQ8jFot5LftXXpixiBcO/ch7c+5luqsPjiaW/LDoKa603EAsEnG1tZ4rLTewMDDmsdSvOf7Qe1xtuUHP0AA3ezvZc/k0K/3DKW9vpHdISlFTNcsmhDHWyoHLzXW8OXsF/vZuPB4SS7d0gHdyd/Nm5Aqmf/svPot9iNdzfmP5hBnoisQ8k7mN1yKWMSAb4suEhzGU6PFjYS5p1y5y4qH3sDQwwcvKgXk/vc0/ZyzEycyKkzVX+HnJM/RIB3gyJB5/e3e+v5RN/LhAPpn3AEcqi3jx8I98nfQo902KYEghZ0vCOgx09Wgf6OXhoLkolEoeCpyDi6k1DiYWfH8pG2M9Az6MWc2QQsZHMfdjIJGQdb2ASE9/Xsj4jpfCF+Nias3aA1/yWexDPJO5jW0LnmRj7IP0DQ3S0NPOM5nbeDdqFUFOngzIhth/5TzvR9+HjZEpK/dsZFPcGt6bswoDXT1CnMcxyd4dqUJOgIMHhrp6vBO1ineO7eIe/3AOXs0T/LT2lJ5Wm8+HzWfNgS18mfAwz2Ru46WZiwh18cZIos9DBzazfdF6Pph7HxtPp/BJ7AOMtXJk45mD/Dv6H0y0cyPxl/f4PO4hPjy5nxlufnhbO/Jg8hd8HreGCXau2BiZ8nL4Egwlevzz0HZWT56Nu4UtawLnYGlgwluRKwVixMXcmikOBjyc8l82x6/jgYBImvq6sDYyZZV/OGOtHfnH3s94YcZCFviGYG9swVuRKyhorMLJ1IoPT+7nseB5TLIfw6S57lR1NLE+4zu+THyELxMeZrqrD99fymbTOXUAwPOHthPtOYknQuIob2/E3sScICcveocGmeLoiVgkYv20BCo7mjhaWczDQXPR15Ww5sAW3pi9AitDE744l46TqRUfnz7A25H3YCQxYEghZ/Itwq64qYYJdm7YGptR2dHEhYZypjqNpam3i7FW6nd5hVJJfkMFfTIpQwo59d1tf8oP0NfGmXM3rtHc13VHc/GS5loG5UNE/0FLeLDzWNoHejlUUcBUR68RpJhcqbjllxc4YlkLA2OqOpqEyREN/GxdKG9vJL+hgkH5EGb6RhQ31dDa34OXlT2Rw8goUE/SaMZhZ1MrTtZeESYrvKwcGGNhx+m6q5joGQrk3u37qnn23Qn+9u4cqijA0dQCsUhMacsNwu9igK6Bvo7urQRMPc7euIa39Z1rwOH4u33vf4BKpSI9PR07Ozu+/vprZs+ejYODg1YhcuzYMSIiIpg5c6bQRqSBSCTCzs6OmTNnYmRkxJdffslPP/1Efn6+lmmzBtXV1YJ/jFgsZvny5Rw+fJi2tpHmaHv37mXJkiWjztANNx1ub29n3759LFmyZERRpEnIu30bhhv26unpabVO1NXV0d3dzcSJEwkICKCwsJA5c+ZgYWFBcnIyUqmUvr4+ofAzMDDQalU6dOiQViFuYmIiGC9r4OHhQXR0NDt27MDAwEA4VkqlksLCQtLT08nIyCA7O5sxY8YQHx/Pxo0b2bVrFwcPHhz1eI2GCRMm4OPjQ1xcHFZWVsTFxREXF0dMTAxubm6IxeJR1U6dnZ1cuXKFFStWoK+vT1JSEmFhYRw9epSUlBShfVKTWHXq1CkOHjxIZ2cnSUlJzJ07Fz09PRYuXEhRURGVlZVa69fV1R0x6w9qsszb25uPP/6YoKAgEhISmDNnjlAsq1QqoWVMIpGwePFidu/erbUPtyf3DYelpSULFy5kx44dGBsbU1VVRXFxMWFhYVrf0xjc+/j4EBYWxr59+1i6dOmohNRoKrAZM2aQmppKR0eHoLhpaGjg8OHDZGRkkJaWxhtvvEFVVRUhISFa5yU1NRWFQiGY4s+bN4/PP/8cf39/9uzZIxw3jeJvz549LFy4UChYPTw8tFRooFZzPPvsszz88MPExcUxc+ZMrXvl+PHjREREMG3aNM6ePau17IkTJ1i5ciULFy7E3Nxcq6UU1P5kBgYGWkQvjLyvlEolKSkpWomBwxEXF0dhYSENDQ1aP29vbx/hLSaRSFixYgV79uwRCCGN6qampoY9e/Ywffp0rdRMXV1d5s+fL5AoGtx+/YtEIvT19Ue0H0qlUs6fP8+CBQswNDTkxo0biEQiJBIJpqam2NjY4OLigpOTE9evX6e6ulpIPRz+iY2NZd68eXh7e1NZWcmSJUtQKpU0NzeP2Jbb0+Q0CA0NxcDAgNzcXJRKJWlpaTQ2NrJ06dJRCanhMDc3Z+HChejp6REfH4+JiQmJiYl3NFK/He3t7ezevZuJEyeSmZnJggULiIiI4OrVq4IheE5Ozogx7+jRo6hUKq0US1CTWcPVdPb29nR1dQnt3ZcuXdIiJTWTAEVFRZw9e5aVK1cKCkeJRMLcuXO12umGq1Y1uF0tW1JSwrhx49DX19dqD4+Li6O9vZ1z584Bdx9bQkJCqK2t1WoH1+DgwYMEBAT8YfKdSqXixIkTBAQEkJycTGdnJ7NmzWLcuHEjCCnNOGBsrPaB0QQegFpdOXXqVLy9vTl16hS7d++mtfWvtZf9jT/GGEs7qjt/f88RidRtETPc/Dhff50zdWV3bFG7PUVvOGa4+XLuxrVRk39UKhXHqi8z+7ZobKthprrD4Xlrtvl6202O15T+5TQhCwNjoj0ncaSyiG6p+hq7dLOS/IYKZo+ZeMeZ+ua+Li3fKB8bZ8raGkZ8b5y1E+HuEzhTV8bl5pFt3E29XXf1nwpw8KCwqRoApUpJl7T/ruRbpMdEChur2VlyCgsDI63ttzI0oaWvW53cF6WeDG0b6OH4Q+9iY2TGY1PnYWloynNZP2Cgq8c9/uE8lf4t+66c5alp8VR0NOJqbsOC397HxsiMR1K+orSlDolYl/G2Ltzs7VArgA5tx8HEgvsDZuNqbsMURw+sDU15J+oe5ColZ29cI8E7iIeSt/BqxDK+OJvGFEdPHk75L4PyIfIbKrEwMOajmPt5+9huvrqQhZm+IU+HJmCqZ8jNnnZM9Q35KOZ+zA2M+Me+z7AyNOHJtK38K3wJDiYW9EoH6ZEOEu7ux3+i/0FFeyNPpm/FUFePkuZa3j62i0V+0xhv60pu9WUu3qwk1MWbBb4hPJ72DRcbKnh06jza+rvZsew5Ogf7uG9yBBcayuke7OeDk/vxsLTjP9H/wNHEEgNdPT6KuZ8L9dd5OOW/LBsfho2RGR/NewA/G2funTQLO2NzPCzt+eT0AQblMg5VXEJXrEPsT+9gZ2xBj3SAD2NWo6ejyxMhcTiYWvJ25D142zihrythU/xaPCzs+fj0AZQqFQ8mbyZ2bCDvR/+D3ZdPsT7jO661NfBu1Co8Le3REYm50lpPRXsjj6V+TUVHI429Hcz3DaZzsJ+LNyvR19Flkd80xCIxzx/aTvfQAE+kbaWstZ4PT+7HztgcR1NLvjibxvn667yVu4sHAqKwNjRh7+UzdEsHeDJ9K31DUg5XFuJubssrs5YyzXkcKlT8Y1IEdd1tJHpP5aEDm6nvbmfTuTSkchlvR96DREeXJ9K20jbQy4NTojhaVURNVytPhMQhVynR15EwIBviyfSt6Ih1+Kkwl7LWetZnfIeVoTHx44KwNzbn/oBInkjbiq5Yhw1hC9gQNp/67na2JKxjSCHn1YhljLvliTWokPFlwsOkXrvAhYYK1ocmUHbLfPy56fN58fCPHKks5PP4NeiKdeiS9mNtZEKAoweb49cxKB/CUKLHkELONJdxZFcW82nsQ8x08+PTMyn0SAd46MBmdMU63L9/Ezd723kjewdypYLXIpZhrKfPr8UnMdCV8PnZVKI9JyNTyNmx7DkcTCxo6u3kUmMVLxz+iSAnL2QKOS/MXMR/87LoHOzj+0vZKFUqNsY+iFKp5Jfi4xypLCLJJ5j35qyitOUG/018hCSfYBQqFW8f24VCpeLpjO8wlOjxbOY2artasTI0oa2/h1X+4TyZvpXG3g7WhybyXNYPlLU18K/wxcL4YCTRo7mvi/ej76PvVtpnW38PtsbqdxNPS3vsjM05d0Ntai5VqD0ET9ZeYbydK5EeE0nynsoYC3uyyi8xdKvN8m6Y5uJNYWM1AzJtOwKVSsXx6suYSAyY6jT2DktrQ0MOVnQ0kVf/e2ugSqXiSEUR0V6TR63FTfQM6B0aacUD6hZrW2Mznkr/ltzqyziYWBLpMXEEgaVSqajvbsPVXN2RMtrf0RGLCXcfj7OZFYcrCmnp69b6vVQu/1M+ijPd/LTa+P6Mn5a/vTslzbVculmFg7EFdiZ/LmHwb1LqL2JgYIAdO3Ywffp0JkyYwJQpU7h06ZLWd+rq6nB2dkYkEgm+NKPh0KFDODk5MX36dEHJUFJSopVWpcHwi0AkErFkyRJOnDihlUSlMTa+U6FkampKb28vFRUVnDlzhhUrVoyq4NG0d+Tl5d31WHh4eFBZWUlfXx95eXlEREQAaO3zuHHjiImJISoqakSRrCFnamtrhVS9P4Imvv3gwYMEBgaSnp5OVlYW1tbWxMfHCySFRnE1MDCAjY0NK1as4MKFCxQVFf3h3+jv76esrIwNGzZgbGzMyZMn/3AZhUJBRkYGiYmJuLu7U11dDagLndjYWJKSkmhvb2f//v3ExsaSmpqKj48P8+fPZ/Lk3xn54SqYuro6Ll++/Id/++jRo8jlcoqLi4WY9+HIy8vTUpMYGhoSHx/Pvn37hJ/dnrJ2OwwMDFi5ciUpKSmEhISgr68vpCdqPocOHeL69es4Ojry3XffYWRkRGZmJhkZGVotb3eChYUFvb29xMfHC4V6c3Oz4P+0ZMkS3njjDQICArQUUZWVlXh7exMSEiIkX2pa01xdXUlMTGTXrl0CKZmWlkZUVJSWSsjPz0+LNFKpVGRkZAi+W8NTuzTQKMucnZ1pamrSIpNkMplA+Hh4eLBw4UJ0dHRITk5my5YtKBSKUdVToL5/NNuqMf++20MgPj6eS5cujZqwdjs0Pkt79+6ls7MTXV1d0tLSaGpqYtmyZaOqL01NTZk2bRpHjhwRfjZai29kZOQIhdOBAwcEhdeMGTM4ffr0CBJpYGCA5ORkVq5cecc2R1CPF1KplJaWFi5cuEB4eDhjx44lNTWVtLQ0urvVD1y5XD5iXFMqlVRVVXHz5k0KCwtJSEggLCzsjtf8aKRzW1ubkF5qZmZGcnLyn/L1ysnJ4dKlSyxdulSrhU1PT09Ic42LiyM0NJSLFy+Snp7Ob7/9RlxcHL6+voLCaTiKi4u1xg2AmJgYDh06BIxM+JNIJDz77LMAgo/S8PZpa2trvLy8hPFjNNWkv7+/4KcnlUopLy8XSFUXFxct367Q0FAsLCzIzMzk5MmTd/VkiomJ4fjx4wKhqVKp2Lt3L9OnTx+hFr19sqK+vp49e/YQFhZGSEgIBgYGrFixgn379o0g+OD3ySJQq+eGX9MaqFQqwYMvPz+fwsLCO2773/jfYGdsTlNvp9bPJDrqFjp/e3dyqy9T3FSj9XuFUon4LuOgSCRi9piJ5FaVjPjdserLzHIfP8Kw9W4QiUQEO48lxHksJ2quaG2Pno4EqfzOqbnq/dEl1MWbj08fYPX+TbiY2TDT/c/FdGtgb2JB823H6ff16zDbYyLmBkYcqiigW6q+f250t+Fi9seqgUBHT/IbKrhQ/3tCH9xq5evvJq++nFO1V4TP9bYGjtVcprarlRM1pVS0N6JSqZho50ZpSx1t/T3o6eigAjaePkhxUw3VnS08k7kNZ1Mrvkx4mI6BHg5VFPBp7EP427vT2t/DL0XHMZbo81HM/QzKZWxJWMdYa0fePbabdVNjeC7rB5ZPmMHncWsoaa5l/5VzNPV28nPhMaY6j8Xa0BRfG2dyq0u4dLOKl2ctwVzfiAenRNEvG+L+gEjsTSx4LWIZX184xLcXj/Cv8MU8PS2Rl4/8gru5LQ8d2EySTzCPpnzFlZY6vr+UzYdzV6NSqVg6IYyy1nrWHvySAMcxDCpkfHo2lf/mZdE7NMhL4YvRFesw0c6ND2NWU9PZzFPp3/LN/MdY4BvCZ2dS6R7s59VZS5lo7077QC87S06R31DBR6eSqetuY2fJKXTEYt6KXMnr2Tv4ufDYLYP0X/hvXiY9Q4M8NS0eiY7OLfJpiOcPbcfHxok3c3YQNy6QrfMfQ6FUYGFggpWhCZvj12FrbMamc2nIlQqeSv+W8bYurNz9CUpU/HAph6zyAq623ODLvAz+Pede9HR0eSfqHpr7unj3+G6MJPokegdxra2B/bfaI8UiEcsnhKGvI2FT3Br8bNSKPBEidMViUsrycDW3IXbsFNYd/JKNsQ/y8akDfBG/FjdzW0z0DHj3+B7O15fz3px78bFxYun46VgYGCFTKvCzdcHWyIzti9bTNdjPtoVPkvDLuziZWrJoxwd0DPShKxZjpm/INJdxfDLvgVvqoqVMdvDgu4tHcDK15JN5D+Br44ytsRn7r5xDT0eX4qYafirIJeP6RWaNGc/GeQ8IhsxeVg58HHM/6w7+lzBXH949vgeZUs7sMRNQqpS8mbMDHZGYT04fQKqQ80zmNtr7e/ju4hG+iF+LlaEJj6d9g6+NMzlVxVxursXBxELw1no/+j4m2LnyRvYOBuRDPBwUg6OpFbO2vUprfzf6OhI+OX2Q0pY6Gno6uHizkvP111mf8R0xXgFYGZqyKW4NTqaWfDB3NdNdfPho3v1syPqBkuZa3szZybqgaDws7FnoO42jVUU8mLyZ1r5uXjn6K49MnUe05ySWTwhDqpDzXNYPlLfd5OnQRMZaOeBl5UBrfzefnUlFplRwqvYqQwoZl5tr+ejUASraG+mW9vN0xnfk1V/ngYBImns7+SJ+LS5m1nwwdzV+ts70DA3yY2EugwoZT4cm4mRqxbf5h3k/+j6Wjp9OUVMNr2X/RnFTDb0yKVvzD1Pf3YaZvhHl7Y1awQoqlQojiT43ezt5Mn0rFxsqme6iNkwf3ppsa2zGHM9JHK++fMfEuOGI8vAnp6pYeM8bkA2RWX6JAEdPxlj+cbL97Qh2HouXpT1Z5QW0D/RyvKaU6a7eo6p64e6kjlKl5FprA8snzMDJ1FIg6G7HhYYKAm/zDLwT7IzNmes1mbpbY/ef9SXUwEiifysB8wpjLGzv+l2lSkm/TMqAbIgdxScx1JX8pWP6Nyn1F5Gfn8+KFSsExYSTk9MIlcKFCxe0SABfX98RxugpKSmMHz+esWPHailvIiMjGTt2LLt27RrRqjUcGq+UCxcu0NzczLFjx/D09NSKte7r66O8vJzjx48LMeH/+c9/eOWVV0hISNC6MW6fzfb09KSlpYWenh4aGxtHmAIDTJw4kZKSEq3CczTIZDLeeust3NzcSElJ4fDhwwwNDREQEEBBQcEI0mT4Pg7HlStXBDWUnZ0dGzZsQC6XY2RkNKJ4GW1d8+bNQywWa5mDw0jV1vCkwokTJ2JjY0Nubu5d179//36BPJBIJIJZ9nAYGxujVCr59NNPGRwc/MN2woiICHp7e8nPz9faDw1kMhm7du1i/PjxBAQEYGJiQn9//4iCurm5eYRyxMzMjIiICFJTUwHo6uoaoRaRyWRcvHhRIJYOHTqESqXi+eefZ+7cuSPULPPmzSMkJITKykri4+NxdXUlISGBmJgYioqKSE1NJScnRyBvlEolly5dIj09nfT0dE6ePMmYMWPYtm2bYMwcEBCARCIREhuGF94alJeX4+XlhZubG/39/bS2tmpdUxpC7dy5cyxbtgx/f3/B72q04wrqayAxMRGRSMT48eNH3L+XL1/Gz+93Ceu8efOE7bpdVQjqIl9DYKSmptLa2ioc16ysLGpqaoTzpvHvycnJISQk5A+vE4CEhAQuXLggkNR3e+iJxWIiIyOJjo7mww8/JCIigpCQkBHfG74OZ2dnnJycBKJ6tBY5PT09FAqFoEbJyckhPDxci2zWtBxqMDAwwP79+1mxYoVASJmYmIzaKlZVVUVBQQGLFi1i7NixlJeXY2trS1JSErGxsVy6dImUlBQOHDhAdna2MOZlZmYKY05kZCSurq7s3buX48ePU1BQ8EeHFlATUhpPJ7FYjLe3NwsXLqSpqYnk5ORRVZgNDQ3s2bOHiRMnMmfOnD+cXTI0NMTOzg6FQkFVVRUff/wxxcXFpKenk5ubq2W4rkmjGw6JRIKDgwN1dXXC37p8+TIpKSlcu3aNI0eOaE1iFBQUaBFbPj4+yGQyjh07NmpbtJubm3AN357Gd7vCT7M+BwcHIiMjOXXqlHAeCgsLaWlp0Qo3WLx4Mfv37xfai6Oiokb4UoHaey8/P19ooayurh5BpmqI14yMjBHnpbe3V/DP0tHRwcLCQksNdfXqVXx8fADtZ0ZGRsb/bID9N0Zigp0rV1pujPo7Ez0Dojz8sTM252hlEdUd6vCMqo6mP/R50teV4G/vTl79deFnhY3VeFk5YHwHE1wLA2PaB0YSmBoY6OoR6TFR2J767nYsDdVJV8PROzRIfkMFJ2uuCJ8b3W0sHT+dp0MTKW2p4+wdlFygNsQdraVEV0f3rgoAFzNr5npO5nJzLXn15VxvuzlCiaU27VbQL5PeSubqZFAu4+yNa3x38QiFjVUC+XS67iqtfd342/8eke5haU+Qkxefxj6EXKkg3H08BroSTtZe4UTtFbaczyD12gWut98kysOfF2cuwtXchskOY9gcv46W/i4eT/sGI4kBM9x8eTZzGyXNtdgbW5DzwNucqCnlxcM/0tjbwRNpWxmQDTHHcxKWBsZ8MHc1x2tKeeHQdtzMbVjoG0K3tJ/vFz1J+rV8Xs3+lWutDTwzPYnprj4CcfLZ2VT6hga51tbApnNpvJ7zG+9F38vjwbE8lvo12wtz2BS/FoVKxZuzV+Br48J7c+6ltOUGMV4BPJ72DSb6hnhbOxHo6KluCXP0wkiiR6izN69FLEWFiv4hKf85uQ+xWMwLh37Ex8aZTXFrSL+WzwuHfuTNyBW8cvRXtc3Asd04mVryaHAsjiYWZN//Fldb6nl/7n28dPhn2vp7WBM4h4cC52As0efzuDWsCZyDga4ejiaWbDmfwQszFtIx0MuHMaup6mjmu4VPUNJUg45IB7FIhJ6OLlKFnOvtDZS21PHDoqdQAZ/GPoSRRJ9tC56kobud1yKWsTYoGn1dCU+HJnK6royHU/6LpYEJr2f/xjOhSZgZGDHTzQ9nU2vunTSLDdOTmOrkxXNZP9A7NMCV1ht8k38IQ109Msov4mpuw8cxD7Bk54fkVJWwe/nzDMiG2LbgCZ5K/5bKjiaenBbP53FrsDc255nMbfjauBDq4k1zfzefn03Dz9aVZzK30Ts0wOs5v3HxZiWb49dhJNHn45j7GW/nStq1fPR1JLyW/RtikZj2gV6ezdyGQqVk1aRZ1Ha1EOI8jjN1ZZS11vP9wifR15XgZeXASv9wNoQtYHtBLiKRGANdCenXLyKVy/G3d+fzuDUMyId4N2oVPdJBlo4P45GUr/hg7n10DfarVU2yITbFrcHN3JYE7yDy6stp7OnggYBIAh09eWnmYqY4etI7NEiAwxheOLQdYz191h74kseC53HuxnU+Pp3MeFsXPot9CImOLt8XZLMpbg0zb7VGzXIfT5SHP29FruRaWwMDcikD8iEeTN6MiZ4+6zO+I+v6JZJ8phLq4s1zMxZwvr4cE31DFCoFtkZmfBr7EL1Dg2xb+CS51SU8nfEdxnr6lDTV8MKMhTiYWPDPQ9spbbnBzZ4ORCIRz4XNR65UcG7dB1R1NDOklLNi4gz8bF14/8Q+flr8NNNdfWjs7eRGdxslzbUs3/UxSpWStQe+JMzVh83x67jcVItcqWDNgS28FrGMl478xM+Fx5jp5sfPS55BrlTiYGLB9kVPYapvRHNfJ0t3fkjXYL/2WNTfg4lEn0enzsNEz+COBtu6Yh2ivSarFWE37x42oSMWEzFmAjnVJdR3t3Om7irzxgZoeTz9VShUKkz09In64XW1WvAubeh3Qo90gKzyAgIdPZnrNZmmvi56pCPDj2QKOf0y6Qh1q5WhKW13MWAPdPIkyMmLo5XFXGhQJ/6pVCoGZFJa+rqp6miiuKmGszeucbr2qvA5VXuFzoE+nkzfSk1ni9bvbv+cvXGdstZ6cqtLKGtrYFBx98mb2/G3p9RfRGho6IjZfB0dHcH8+cqVKyP8Mby9vTl48CB+fn7CLPDs2bNHFMYaODo6smzZMg4dOsTAwACurq50dnbS1dUlfDRtBxKJhNWrVzNt2jTeeustQaEDapWOo6MjQUFBGBsbo1Kp6Ovro7Ozk7179zJlyhQ8PdU+AvX19SOKzNjYWPbu3YuxsbGWZ05rayslJSUMDg7y2GOPsX379rsqHLKzswXCxsXFhYGBAY4ePYpMJiM5OZnXXntNKLg0L/4a35nc3Fz6+tTyej8/PyEKPj09nSeffJLOzk48PDxIT09HLBYze/bsuxbxEydOxNnZWUj3MjU1xcfHh2vXrjF58mSys7OJiIjQ2h9fX190dXU5cuQI0dHRgHbBnp2dzfTp04WI99t/r1QqSU9PF0yPc3JyiIqKIj09HTc3txGKh+GYNm0aRUVFnDp1Squtqrm5mZycHC3jY/i9RVPTetPe3n7H1iQbGxumTJlCVlYWoFb4lZaWCn40Ojo6+Pv7C75BKpUKqVTKU089RUpKyqhEpEKhoKWlhbCwMIGM9fPzE5QSvb297N69m+eee47vv/+eSZMmaSluDh48yIMPPii0oWqg8X/R0dHB0NBQKwFNE3MPEBUVxa5duzAxMcHCwkJQxiiVSuRyOdbW1pSUlFBSUoKFhQXTpk0TSBNNumFFRQU+Pj5a5s/D9wXU6qzhHjkGBgaYmJjQ0tJCSUkJiYmJgLrILS8vRyKREB4ezpkzZ6irq6OyslI4RwqFgrKyMuE8qFQqFi1axKFDh0YlB+5EbiQlJZGSkoKrq6tAQvb393P58uURxbm9vT1bt26lr6+P3NxcRCIRoaGhWmrG24vw8ePHc/r0aa5du3bHbZg9e/b/Y++/w6s40m5v+LeDcs4ZBRSQAAUkgkAio0g2yQGMSc44jD3O4zTOcXAYzxjb40wGZQkhEElEkYQkBEI55xy3dn1/bHZbGwnPPM95zvud875e19UXort3d3V1VXXX6nutm+zsbNzc3DAzMxvh52Vubo69vT03b97E2dlZIqSGE+LTpk3j6NGjOpI17TVoxyELCwspMgo0Y/CsWbMoLi7mm2++ITQ0dNSor9zcXAIDA7lx4waxsbFcv36dPXv2EBMTM8JcXovhhJRMJsPPz4+ioiICAgIICwsjNDSUY8eO0dbWxvz581Gr1aSlpWFubs7KlStHPeZwDA0Ncfz4cTo6Ohg3bhxxcXEIIVAqlURHR0tRTcePH6e/vx89PT3q6up0PNW0/wYFBfHxxx9jYGCASqVi/PjxOu1UrVZLEVIdHR0j6sjb2xsvLy92795NbW0tXl5eeHt769yfS5cuMX78+N/1yRsYGCAtLQ19fX2++OILvLy88PX1RaVS0dDQQEVFBRcvXtRpY/r6+sTHx7N7925J+qdUKrGwsNBZysrKqK+vZ968eTrtdWBgQCqTTCZjxYoVJCcnM2nSJFxcXEZIGkEzXh44cEBKClJcXCz1XS0mTpxIW1sbP/744+/fyD/wX4KJviEd/b13nAg4mFriYGpJcUsdWSVX6BzoY4nf72eo1P6utbeLmy110pdqrcRhNATYuXG6quiOqbdvL09BYyXnq29yvbmGGO/fnl0m+gb427mOyJh0vLyA+V6B9Az2M8bC9pY8UTDJyQuzYdd+/VYWqtsxycmTi7UlTHX11VmviWjqpLy9QYraOlddwj9zM/kg6n5MbiuHQi5HX6FET6HEQKFEKVfQ1tuNqb4h4W5+d4wi6x3sp7CxinlegeRUXMPNwpYrdWUEOnrgYm5DXn0501x9CbBzo29wkJMV13gi7RsW+oYR4x3C+ycPaNLHR2kij3xtnNk0aT4THdx5Iu0bHgqLxtbYjJXjp9M10MenMRto7unkUl0JvaoBzlXf4KWZK3hx5goGhlSYGRhxoryQYEdPhoSa9r4eugf72J57iAdC5vFR9Hp+unyUDSHzuNZUzQKvIKo7WzBSGnCptpQn079lz6pnUSO4Wq+R3G2L3ciLWT+xavwM3MxtmTFmHI9PjcPK0ISHkr7i05gNZNy8xOGSK3wYvZ7dBTn42DhxoqIQcwNjNobMo3dwgI+j11Pe1shr2TvZteoZvojfjIelA55W9hgq9Xl4cjRGSn2ezvgXf5m1ioJGDamjyTQYgZuFLY+nbpdMwD+Mup+Xsn5hW+xGtqb9wLa4TQzeinL5JGYDH59K5JOYDfz12B5WT5jBcv9pLB03BYVMxt9Op/DyrJVUdzTz1bkMPonZwAMHPufzuM18mJPAO/Pvo3dwgE9OJfHu/LXcExhJvG8oVoYmfBK7gZ1XT9A3OMCgeoixVo7M8ZzA1vRveG32arbFbUKlHsLG2JyPox+gc6CXb5c8xrvH93G9uYbdq56hra+bK/XlvHl0N5/GbODzuM14WtkT//NbhDp58fb8+/gifjNFTdW8mPUz/1r2OJ/EPEBnfy+fxGzA3dKe5yOX42XpwIaEz9kQMo9QZy9W7HyfbbEbeeHQT2yL28QEOzcG1So+j9uMq7kNr2T9QpCjB67mthS31NE50IuBQo+XD//CZ3GbeDx1O1/Gb+GbC4d4aeYKQhw9+Th6PYNqNdE/vsFb8+7hakMF2WX51He18diUOLbFbeJwyRUKGiuZ4zmRXVdzCHbyoGdwALVajRrBBIcx+No4s2zHezwxbSG+Nk48mvI1z85YyiK/yXT29/JcxDL0FUpyKq/xQuRdzPz2ZZ6LWIa5gTErA6bz69UT3Bc4k8r2Jsn8/8OcAzw3YxmVHU1YGBizOXQB9iYWfBS9HqVcQUFjJepb0rMFt6KF1ELNsfIC/ha7kacO/cjb8+7F2siUewNn4mPjzPsn9vOn6Ut4Ketn3p2/FkOlHjbGZnhZOZB24yK78k/yWdwmrjZUEGDvhrmBMU5mVmwKXcD15hrePLpbk+ny2F5emnkXr81ezfeXjvDSzBUUt9TxXOYP3Bs4kzEWdtwXOAtLQ1MenRLLjDHj2JL4FW/Nu4e2vm5ePbKDz+M2Axo/v3jfUBRyOeFuftL4c6GmRGdcLW9r0MnKdztCnLwoaqrmgQOf8WX8ljvuB5B47RzZZd/xRfxmTlUWYWNkxhhLu1Gz3t2Oxu4ObjTXoL71DmNrbIafrQt/X/gg/apBLtSUMKgeYrKL9390vIr2RkpbG4jxDuF8TTET7N0xVOqRUXyJaO9gnXfuU1XXdepICz9bZ85VFxNuPHLbkFpNSWsddV1tGCr12JTwJRtC5tHa24WRnj4m+oaY6BkyxsIUE31DlHKFzm8zii/yxpy7UQtBpPvoHqBaXKgpYaKDO8/N0LTt8zXFjLMd3ePwdvxBSv0Xcf78ebq7u3X8ZaZNm8bp06eZMWOGlBb8dtjZ2VFbW0t2drZEhvweZDIZkydPZvny5SxfvlxKZW9ra8vYsWMxNjZGJpPR1tbGBx98gKGhIaGhoXckuuA3D5wzZ84QHx/PhQsX2L9/P9HR0ZSXl48wl1ar1VhZWbFgwQJSU1OlTmFjY8PUqVMxMjJi+/bt+Pv7s2/fPiZOnCiZNltYWNDW1kZrayvu7u4j5IfaqIrvvvuOqVOn4uvrqzO5AsjOzqazs5NPP/1Uh/DRwtPTk3379hEcHMzChQsZHBwkOzubnp4epkyZMqrBNWj8i9asWUNycjI+Pj74+flx+fJlzMzMMDY2HtWPxtvbG6VSSXp6OjExMdJkKi8vD2tr6xGEnnZ7WVkZ58+fJzY2FhMTEyoqKnBxcUGhULBo0SIpS2B8fDwKhWJU75XAwEAp0kF7ztraWlavXj3qtbW2tkrmqKdOndIx8x2OwcFBiouL+fDDD+np6eEf//gH8+fPv6P/i5YYMzY2ZuLEiZw+fZpp06bp7JOZmSmRCcPJWC2am5sxMzNj+/bt0oRbi+EReaGhoZIptdYTS1uuOXPm6Ewkh0MmkxEWFsakSZPYsWMHjo6OREVFIZfLOXToEMePH6eiooIZM2bQ1tYmSR+VSiVhYWEkJCQwZswYHTNs0JBSCQkJ+Pv709XVNWr2y5kzZ7J3716JlBgaGsLPz0+a5KrVarq6unB1ddWR/CoUCgICAggI0GRDunnzJq+99hqtra2SWX5ERIQkp1IqlSMyFIIm6sjKyoqQkBC2b99OXV0dxsbGBAQEjIhEvHDhAnPnziUvL4/4+HiEEJw5c4bm5mYMDAwkw2zQSLVqamqoqqqSxr733nsPhUIh3T+FQoGpqSlmZmakpaXh5eXF4sWLqaiokLyI1Go1QggsLCz44IMP8PX15YknnhjR3m6PutFGZ93ucXQ7SkpKqKioYNeuXSOSMICGEK2vryc0NJSqqip6e3vx9fXF29ub9PR0LC0tR/ik3U5IAbi7u5Oeni7dL22mPm2Uzz333MOuXbvw8PAY9T5p0dbWxvHjx5HJZERGRkoEUUZGBvPnz6e1tZXLly8THBwsmcSDpo99+umneHl56ZD4oIl4ffHFF3nnnXckD7nhWLBgwaiEsta038bGhsOHD+Pj44OlpSVlZWVkZWVJUU1paWmcO3eOzMzMO96HnJwcmpubiY2N5fDhw2zZsoXExER8fX1RKpU4OzuPGtm6d+9ePvjgAxwcHCQSe3BwkI6ODtrb26mpqaGwsJC//OUv7NmzZ4QcfDhRrb0vixYt4uDBg/T19VFZWTlCciqTySS5tda3UQu1Ws2JEydoa2sjICCAdevW8ec///mO1/0H/msIdfbiWFmBTiah4RBCUNJaT31XKwYKPf505F/cbKllmqsvMmQj/KVk6BLl/7p0hNbeLr5Z+ujvlkMhl0sTizuhuaeTouYaqR/caKkl+fp55nsFMtXV547ZjbT90s3ClqySK/jaOBPpHoBaqLlQW0L3QD9jrR1xNde05dvJfiEEA0ND7M4/xZAQiNtkF7bG5oy3G4ORnj49g/0MDA3xedxmhoQaF3PrO07ehBCkF19kXfBsWnq7OFJ6dVTjdSEER0qvEuPzW79xs7ClrquVyvYmCpuqGG/nxqbQ+ZS1NhDo6MH15hoemxKHg6kF3jZOPDtD44f43on9bA5dwN9Op/DolFh6Bwd4e969BDt58mDSVyz2m8wYCzsOl+Yxf2wQD4ZFoydXsGnSfLambuep8EUUNlbx5bl0tsVu5L0T+/hq0UO4W9ihp1Aw1tqJgsZKDlw7y8szV2BhaMzjqdt5ZvoSDt68xENhUXx1PoMDa57ndFURlR3NxPmE8mHU/Qg0EXWL/SYT5OjBj5ePMtM9gNW7P+K7pY9R39VO1NhgAuxc6Rro4405d6OvUOJhaU+YizdbU7fzYuRdfHIqkZdmruRvsRup72rjzaO7eXbGUj6MXs+56mJ+uJTNX2av5rulj9PQ3caQUJNy78uUtzeyr/A0S8ZN5f2odeTW3OTd+Wt5/+QBvl+2lcbudg7f/zpvH99HXn05ife8QE7FNX5c/gRr9/2NbXGb6B0c4Ep9OW8d28N3Sx/XEEdDKswNjHhvwToczax4P2odcpmMPaueZcfVE0xwcOej6PUYKvW4Z88nfB63mW8uZpF58zLHN7xFbs1N5HI5arUa+1sSSE8rB77OzaShux2FTM5jU2P5U8a/eHbGUv4csYxB9RAXam7y9vG9/LLiKb6I34xCruCvR3fzxLSF/H3hgziYWpJbc5MXs34m4e7nNSboCj3Wp37GX+fegwxY+PNbbIvdyDcXD/HWvHvRUyiwMDThi/jN6Cv0eGfBWiraGtmaup1tcZt4LPVrnpgWz0OTYwhx8uT7S0d4ZEoMVe1N9A0N8mnMBiwMjPnXssep6Whh96pnKGltILHoHD9czuaHZVt5bfZqfs07wSQnL16IWC71ua2p20lf+wo3mmsZHNJI+jytHLhSX84jU2Ko7WzhSOlVPK0c+CDqfgaGVOgrlCTd8yLFLXVUdzTTfUvS5GFpz+NT4xkSat6YczduFjYamWP0Awyp1fSpBnE1tyVn0zvsvHqSMea2COCbC1l8Gb+Fcbaw7UwqrubWBDt64WxmjbGeAXsKTvH6nDV4WjngZmHLszOWcbg0j/S1r/BG9i4C7Nw4UV7IVBcf6rra6B7o49XZq1DINWb3j0yO4WTFNTZOmsc0N1/y6iuwNDShoauND05qMlPuKzjNE+EL2Ra3CXMDY56PXE5uzU1sjc2J9g4mr74cW2MzPo/bjBpBS08nk2/1DysjE5zNrHkifCHhbn5klVzhqfBF9KoGmOc1EblM0858bJw4ePMScz0nUtJaj7GePi7mNpS3NRLo6MGx8gIsDE3u6IHX0N1OTWfrLbN4g1ENvkGTDW6xXxhLx03B1tgcXxtnWnq7uNZYTc9gPzIZaB8LcrmcI2UaWfhwEmqqq68kxxZCcPDmJaK9QzhWXsD0MeMYUqs5V1NM7+AAoc5j7/gB5lJdKXJkzLrledinGsRITxNsMM3Nl1NV15l+i4Tq6O/BUKE3qjRQKVcwdOsZ1dTTwfXmWobUQ8iQIZfJ8LJ2wNvaieMVhbw17x7G3jKOH2d7ZxPywaEhDt68xDyvieTW3MTexILiljq87xC1fKqyCGcza+xNLOjo78HLygGlXM75YZ5bv4c/SKn/IqZNmyaZl7e2tuLv7y9lERpNhtbf309BQQFtbW04OztTVVX1bwkp0BAP1dXVHDlyhNTU1BGTf9C8NKenp7NixQr6+vo4fPgw8fHxo06Y+/r66OrqwtbWFmdnZ6qrq5k0aRJBQUFkZmaybds2nnzySR1JhUKhwMLCgg8//BBPT88REWDaFy4XFxeWL1/OlStX2LdvH7NmzSI4OJhz587R3NzM8uXLUalUnDp1SsqKN2PGDJRKJRkZGSiVSjw9PUdInvr6+qQ045GRkRJZVFFRIUWQaO9FRESEZNgrhODcuXOcO3eO/fv3ExwcjIWFBYaGhjrE16JFi8jNzSUrK4v+/n4uXryoE51zOzw8PNDT0yM5ORmlUkldXR11dXUjTIi1dZOeno61tTUrVqyQ1ldUVIyQzGgjvczMzKRrFELQ09MjEXutra2UlpayZcsWfvrpJ9asWXPHck6bNo2zZ88yZcoUyeBci6GhIc6cOUNraytKpZLw8HCeeOIJJk6cSH5+PhMm3HmC0NTUJJEVY8eOpaqqiqqqKuledHV1IZfLdSLVrKysaGlpwdramoKCAurq6li0aBFNTU2cOXNGp12fPXtWiurw8PDg8uXLBAUFkZubq7OfTCbDy8tLku0Nx8mTJ+np6eHHH3+UpDda9PX14ebmJhFClpaWUvauwcFBTpw4wQMPPEBaWhrZ2dmEhobq9NXx48eTn59PeXm5jim/EIKioiJKSkp488038fHx4ddffx1BCAyPYBs7dizFxcUjshfW1NRw8+ZN/vznP3Po0CGio6Pp7e3l2LFjDAwMYGVlhaWlJS0tLejr63PhwgUGBjSGjVpiOjU1VZLHjkawCiEoLS3lrrvuwsDAgNzcXMLCwggPD5fq6dNPP5U8x/T19XFxcSEkJAQTExN27dqFvr6+DumjUqno6uqiq6uL8vJyKVOkTCZDLpfr/CuTyejo6KCnp0eKDjM0NCQsLEySpMlkMtRqNcePH8fW1naEIfztKCsr4+bNm1JfHBgY0MlaBZCens7y5csBDdF75coVpk6dilwuJy4ujqqqKnbv3s2cOXOQyWSjElLaso2Grq4uFAoFiYmJLFiwgPr6eo4ePTpCyvv999/T39+PhYUF8fHxOm1UGwFrbGyMsbGxThZFIQQJCQmEhITw3nvvjSDp1Go1O3fupKenh+zsbGJiYsjLyyMvLw+ZTMaUKVOwtbXF0dGR6upqydPv8OHD9Pf3S9n4+vv7OXHiBPPmzcPLy0uKplWpVDQ1NREWFkZeXp4ksdQ+B/7xj3/Q09PDtGnTJHJPS/jenh3wdqSmpjJjxgxMTEwwMDCQMsHq6elhY2MjEVCdnZ388MMPWFpakpiYyMKFC6X6a2lpGTWT4fz589m4cSODg4OYm5szfvx4HWngpEmT2L9/P83NzUyaNImenh6OHDmCWq0ekdzgD/zPQS6To5QrpAkcQHVHM6WtDWi7mKeVAzPG+HOxtoRdq56huaeTzoFeJjl5YWs8utcGQHFzLfG+oVxrquZyXdkILypLQ1O8rBykF38ZMtRCrZkYCTU3W+qo7/rNB9HG2IwpLt4o5QqyS6/ydPgiprv5IZfJuFRXRr9qcFRy6mZrPV5WmjE4xMlLk+XO2Qu5TC6Z6RY317I99xBJRedG9cwy1jOgtLWett4ughw9pdTcw6Ex6S0gyjuInIoiZnmM5+otOd9wvyjtvgdvXmKmewBdA32Y6BngaD+Gc9U3RqQ3P1ZewEyP8SOiqJzNbFj66zt8FPMANsZmGCj06Bzo5VJdKYYKPSa7eDPGwpb8xioOl+QR6e5PuKsfFgbGPDYllhdvRWhYGpqQU3GNl2eu4MVDP/PY1FgSi84x3yuQsrYGPjuTymdxm5jm5kvPYD9eVg5sX/II9iYWrAueQ159BR/mHODlmSspaa1jios3H0Xfz6MpX3N4/Rtsi9tEZ38P9wfPwczAGH2Fkq7BPsnLKtTJi9eyd/LT8if5In4zQ2o1vapBvr90hDifSXwRv5mCxio+OHmAH5c/QWtvF009nVR1NOFhac8Pl7OZ5OQlZSNbHzyX4pZavjibxt9iN+JkZkWfaoCTFYW8nr2LL+O38MCBz3hr3j0UNlaTcfMir85azWOpX/N53OZbGdnGcbSsALNbvlj13W38+eAPvDn3bjaHzqejv4er9RW8e2I/j02JY23QLNp6u/nLkV/5MOp+/jR9CZk3L9Hc28nRsnw2TpqPpaEJ2y8c4qGwaB5J+SefxW3iSn05k5y8+MvhX9m+5FH+OvcezAyMmOs5kflegVyuK+PJ9G/5OOYBbjTX8PLhX9i58k/8knecRX5hdA/0o69QUt3RwscxD6CUaTILuprbcG/gLN6cezeV7U0MqdUYKPWIdPdHhkbm2t/WiKm+Ie8tWMeN5lqeOfg970etY1vsRqo7W1DI5bwQeRcDQyocTS0x0TOgta+L+/Z+ypfxW9ic+CVvzbsHD0t77p4YSYijJ2/MuRsnMys+OZWEs5kVZa0NXKkr47XsnTwXsQyVeoifrhzl/uA5UsbG907sY0tYFO8tWMsDBz5nS9gC/O1cGW8/hq1p37A2aBbL/Kfxt9iNlLRqvMLWBs3CxdwGD0s79hacorS1nhMVhQQ5evLthSymuHgzxdWHzYl/58v4LTyV/i3vR62jd3CAbWdS+DJ+C89l/sC22I30DPTzwIHPSb3vZS7WlnB/8Gy6B/t5LPVr3pp3D0q5gnlegciAx6bEUtBYybsn9rNn1bOo1EMcLr3KP3MPcmLj23wWtwmlXMGu/JOY6RtyqOQyn5xKYoyFLWMs7JhgPwYXc2vK25vYseJpBtVDvHl0N27mNnwQdT9lbQ1UdTRT2FjFe8f388qslYyz02Qb3ha7kXG2rrhb2qGUK6hqb2Jr6nY+j9tMUtF5Isb4c76mmEenxNE/NEifagBLIxO2Zu/k4+j1PDY1lnPVxZjpG3KqqogDQs2CscFcqSsj2MmT9BsXWTA2GNAQ7ZFjArh//zbumRhJvK/uB+LIMf5kFGtIEr3biJnytkZqOluY7ubHlfpyFDIZFe2NOibhKvUQWSVXmOzszY2WWiY5eXG5vozarlaczax1PK20yKsv5/ytsXSW+/hRpXnDo5eUcgWDQ0PoKRRMc/VFLdTk1pRIck4rI1MEmo+12WX5+Ng4SR8mboeloQmWhsZShNi56mKdDLLaa7rRXEtjTwdbU7fzQuRdBDq4M9nZe4TcMbfmJl5WDlS0NTLO1oVLdaWUtTaM6vvUpxogq+QKUWODARkKuQIfG2eOlF7F1dx6hEn60bJ8/GydcTS1oqCxUnr2jbGwo38US5vR8Acp9d+AXC6XvuQWFBSQmJjIhQsXsLS0JDAwUDKD1UYEBQQEEBISQlpaGmVlZZKE5HYSBn4jM1xcXEZ86b8diYmJLF68mK6uLlpbW1mxYgU7duxg5cqVIybEBw8elCJmgoODSU1NlSJ2YmJiOHv2LAMDAyOkCykpKTz99NNkZWVhamqqIycqLS2VJiygmehNnDiRo0eP0tnZyblz5wgMDCQlJQWFQkF4eLiOXOTMmTOEhoZiY2NDeno6BgYGOtFNQggUCoUkZWxpaSEgIIC8vDxJxmdvb8+pU6d0yBftBOzYsWMYGxtz+fJlyTdqeJpl7b61tbU88MADHDhwgPT09BGTTqVSKU0Stf5Vzz33HAsWLCAyMpK0tLQRv3n++ed5/vnnUSqV9Pb2SpFewz1NQDORvHbtGvr6+tx1111s2bKFuXPnIpPJMDY2xtLSEisrKzw9PfHz86O0tJTIyEgOHTokEYhyuRw/Pz8pIs3BwYHTp09LxJQQQvIek8vlTJ06Vcpu19PTg5GREe7u7ujr63PgwAGWLFky4npuJ5BA43m1a9cuKSvZoUOHWLx4sc4+ERERJCcnSxFQc+fOBTTSweEZ67TlGH7emJgYDh48iFqtHnHuoKAg9u3bh76+PmPGjKGtrY3MzEzCw8NxdXWltbWVEydOSBP3iooKyWR6/PjxXL16VYeA05KMCQkJxMTE0NPTQ25urmSWLJfLmThxIlevXkUul1NWVsb169el32uzNcpkMinz4OzZs6Xr1mYm1E5wAwICSExM1CGlWlpaOHv2rBTFovVmMjIyksiW5uZmnnnmGUlGOTyCajiWLFlCQkLCqBGD2dnZzJkzB9AQytqINC309PTw8fHhnXfeITAwUGcCr5WeXrx4kY6ODolEUiqVWFpaYmhoyMaNG/H09KSjo2NUr7iEhAT+/ve/k5OTI41Jvb295ObmSpK8trY21qxZw3vvvYen5+hfurSorKykqKhIIhgBJk+erOPtd/r0aaZMmSKNEaMloHB1dWXFihVkZ2fz0Ucf8eCDD7J8+fL/KNNIV1cXaWlprF69msHBQTIyMli0aNGI6ButKb9SqWTmzJkjjn3o0CFpbBsOrffWwoULMTc3H+Fxps0ouXjxYoyMjCRCLjAwkMDAQNRqNefOnePMmTMoFApycnIwMTHhwIEDzJkzR0fia2BgIBGdw4+/e/duaSyePn26TtlLS0txdXUlMjJSai/t7e3SeO/g4MCZM2ekBATDkZ2dzbhx4yQCdcqUKSQlJeHg4DBCXnjmzBkiIyMxMDDA2dmZXbt2ERUVhbW1Na2trToRWP39/Rw5cgSVSsVrr71GXV0dgYGB5Ofn6/j0gaZ/b9++nZiYGIyNjYmKivpdeeIf+O/hdGWRDhE0qB5iyj//zN9iN6KQyXExt2bGmHG6fpfqIdr7eghx8uJYZz5RY4PJrblJaWvDqITLqcoirI3NmOcViLulHY3dHUxz9dWRyrX0dpHfWEHf4CAyGeQ1lPNY6tdsi9uEUibHy9ph1Ax5OZVF+Nu5YmVkioWBMXYm5ghgrJUjZ6tvjCCnajtbiHTXRFRaG5lyua4MlXpIRxphbWyGu6UdUd7BuJrb4n6bkeyxsnw+j99MS28XrX1dFLfUMt1tnM5k42TFNcLdfCXySGtA3tDdzsGbl5jjMUGawGWVXCHczQ8TfUPa+3uQy+U4mFrS3t/D9eYafG9d95W6Mjyt7HUMhQGuNVXTM9DPp7EbmOLiw/mam/SrBnnl8K+8OPMuXMysSS++iKWhCePsXLlcX0akuz+Bju6cqiribNUNvojfTLibH++d2M/Oqyf5In4zz0cuRy3U7FjxNA8n/5OPYx7g+YhlCCByTIAU+fTG3LtZ/Ms7fBzzAIZKfWJ9JqFGsCU0iucP/ci3Sx5j+5JH+OnyUYz09Mkuu8q9E2eyNXU7H8c8wH17PyVj7V8IcvTgL4d/5ZVZK1m6411en7OGT08l8fdFD/Fl/BYauzt4LPVrsu5/HU9Le7oH+3nj6C4+i9vEgcIzTHX1ZVvcJvpUA5S3NSIQKBUK3IxtuXtiJHVdbShlGsmkvkKPrxY9hK+NM18ufJCr9eWEOHlK7fezuE0Y6ulxtDyfcXYuWBmZ4GhqyQuHfuLLhQ9yb+BMLAyMyam8xq78HN6aey/vzl+Lqb4hN1pqUAs1d0+MRC6X87fTSbwfdT9FTdWsXzqXy3WlmOgZUNneRKCjB3+dew/FLXU8NiWWrWnf8M78+7h7z8dsi9vE/fu3sWf1nylpraN7sI8/TV+CiZ4B42xdeWPu3VxtqOTnK8cIXLAOWxNzlDI5O66eYMm4KXx5No0/RyzDysiU7y8dwcLAmEiPALambufTmA0EO3phb2LBc5k/YmVkysOTo/n0VBIvzLyLbbEb6VUN8tdje3Azt2F5wDQsDU0w0Tdkb8FpPCwdGG/nxsuzVjLe3o2Nk+Zjpm9ESWs9K8dPJ/Lbl3hr3j08lf4t9wfP4U8Z/+K9Beto6G7nw6j7sTIypbazleaeThq7NZkPL9WVsiFkHt9fPML9wbNZ7j8Nb2snKtubmWDvxvORy/G3deVGcw3PZ/7E32I38KfpSzBS6vHdxcNMch6Lk5kVCpmc/YVnCHP25snwhajUQxgq9Um650V+uJxN4j0vUN3RglKuIPnelzhXfYO/L3yQv51OZqGvJlKnor2Jl7J+YW3QLB6ZHMPncZvpHuznoxyNQfyu/Bxsjc14fGo8Ex08OF97kw9PJpC57lV8bZxY/MvbvDp7NQ8n/0Nqx5/EbmBb3CaKm2u50VJLYtE57gucxcGbl3A1tyHz5iVem7Oauq42nk7/jvcWrMPT0p5e1QAxPiGohZqn07/jyWkLsTQyZcEPr/Hriqcpaa3H1dyGt+fdS0FjJT42TiwPmIaLuQ0THMawI+8EP105Ssq9L/NF/GZsjc15eve/eC5iGSb6hgypBTeaa7ExMiP5ei62JuZ4WjnwYc4BqtqbUQk1CpmMB8Oi6VMNcLWhggn2v2XglclkzPMKJKvkCtHewdL6oqZqegYHCHfzo7ytASczK1zNbThSehUbIzNJLn6yopB5XoHoK5SomqrQUygJc/bmSOlVzPSNdJ4TAGeqrmNjbM6zM5YyxdWHE+WFuFrY6kQKVXe0YKZviLmB5oP8RPsxXG0oJ8RJMz+Wy+RMdvFGCMGlulIu1pXS0NVGev9FZroH6Pgd9gz2S89ILQLs3DhccgW1EDibWdN9S1KtlW3L5XK8rR0pa2u4ZfxvTtdA3whC6lpjFab6hria21BxKwNusKMnp6uuY6inh6Ppbx/gugf6OFZeQIz3JBRyOaWt9bjdIs5mugdwuDSPBWODpOdNZsllwpy9sTbS2GC09HQRYPdbYh8ns//s494fRuf/i9D6ipw+fZrt27czffp0KZtSTEwMc+fO1YlWmDFjBosXL6a9vZ3ExESJwAKNMfmOHTuYMmWKTsYlIyMjndTVoIkI0WYh026Xy+WsWLGC3bt360Q81dbWYmtrq+O3MRwNDQ1ERUURFBSkYyKtld3IZDLmz5/P+fPndczXi4qK8PXV9TnQyqdUKhVvvvkmEyZMID4+npiYmBETjObmZukLeExMjBRZNRqioqLo6enh5MmTI65h7ty5ZGVl6ZRb663zxRdf0NHRwaxZs6S08toU8zExMcyaNQs9PT1+/PFHuru7iYqKGmHePXPmTMaPH4+DgwMKhQJ9fX2ysrI4ffo0Y8eOlY41fHn//fe5++67iYiIICcnh5SUFI4dO4ZKpZIyeGkzB2olV4mJiTrljIyMZOLEibi6ukpZANeuXcvQ0BDR0dFSO5s/fz49PT2ScbbW4HfLli2cP3+etLQ0xowZQ3x8PLGxsRIhBZroHS3B6uTkRGRkJHv27BnhJ1RXVzdq1M3SpUs5cOAA1dXVODk5SZP+3t5eLl26RHp6Ok899RQFBQUjCAoTExOJ9MnOzmb27Nk62/X19UlLS2P37t1kZGSQm5tLbW2tRNZMmTKFH374gdbWVs6ePcuKFSsk0tTKykqnrWqjrkATpVRSUqJzrqSkJGJjYxkzZgw1NTUYGxsTGRmpU8eNjY08/fTTrFu3jr6+PmJjY4mLiyMuLo6xY8dKbdLCwoLVq1dTUFAgZW7MyckZIQ0bfv09PT1kZmayZMkSabtCoRgRZTMwMMDatWtZuXIl06ZNG0FINTY2ShLeJUuWcO7cOZ1EDAMDA3R1dem0geHZIgEp6+DcuXN1sun19fXR09ODtbU1c+bMGdX8X0t4+fn50d/fT2mpruHkyZMnmTBhwoixQCtR1NantbU1jY2NXLt2jbS0NNLT0zl69OiI5A/V1dXk5eXpEFKgactaU+/W1lY6OzsZM2YM/w4ymYyQkBD6+vpQq9WkpKTQ2to6Yj+5XC61w97eXhITE1m1apX0IcLc3FzHQBs0JE1eXh6vv/46U6dOZefOnTrkT2NjI1ZWVjrG8K6uruTm5pKcnMzq1aslEvD2Z8KBAweIiorSiZId3oe1ZHR8fDzz5s3jT3/6E+fPn8ff3/+OnnPDkZCQQGxsLAYGBkyZMkUnM2tFRQU3btzgs88+0yGaT506JUXfgSYZgDYyTouzZ89ia2ur83EDYOHChaSmpuo8x0BDNGnbvImJCatXr+bcuXNS5Ja5uTnt7e0kJSWRnZ3N3LlzWbhwIW5ubrS3t2NkZERYWJjOWK1tO1999RU2NjYsWLDgD0LqfxOmuflJ5tle1g6o1EMs9ptMW183asSoGe1OV15nmpvmPUMuk6NSDxHqPPZWtqOLtPVpPCf7VJoMSuPsXBln64KBQsngkIr5XoHkVBbRPSwFt7WRKWHO3oS5jGVgaAhTfSOeDtd8UBm8gxF5bs1NXM2tcTC1lNb52DjT2N1O10Av4W5+RLoHcKmujOzSq/QM9o84xjRXXym9OWjIsUt1pSwYG0SwowdNPRqzWS2qOpqxMTbHycyK1t4uJtiPIdzNjxMVhRQ1VQMaLyoHUwssbslZbI3NaO7VRDHam1gwx2Oi5I9zpPQqk5zHSpMntRAobj23fG2cab9lgl7V0YwaoRNhIITgfE0xcpmMSc6a/qqnUBLu5oeRnj42xmY4m1njaeXAknFTMNLTx9HUkkcmx6CQK3jl8K+MtxvDK7NW8cuV4xwqucIkJy8+jLoffzs3nj34PSq1muvNtSz0C6Wxp53L9eV09vfwWOrXXGuq5uWZK1ANqXhi2kKEELT2dhHo4MHT6d9hom/AttiNbEj4nJ6BfpKvn6e1t4tV42fwYtbPvDxzBQMqFY9OieV8zU0+yknk9TlrCHTwYFvsRgyVejwzYyn5DRW8eWw3+golb8y5m/M1xRS31KGUy/l68cPoK5TM85pI90Afn59J4XBJHhdqS7AyNOXzM6ncbK3jdGUR1kamrJoQwXOZP9I90MeAapC5//oLXQO91HW10a8a5JsLh3j+0I8MDKl44dBPfB63GX9bV2Z5jMdQqc97C9ZxpDSPcFcNgWdtZMZT4Yto7OngeEUBBkolvYODmBsac6Jc4wf65LRFyJDxj/MHNVK/onM4mFryzoK1rNz5AdWdzXx2JoXOgT6ei1iGmb4Rz0xfQntfNy/NXEFdZyt/PvgDE+zd8bKyJ6++gu8vHeHDkwkY6+nz5ty7sTI0YWvqdk5XXWfNhAjeOraHj2M2UNJaj1oIghw9GGvtgFKu4LO4TdgYm/Fc5g809XbyXMQytoQuQC7TyJX6VAM09XQihGB98ByKmmswMzDmucwf6OjvZYyFHWYGRmxI+ByFTMamhC8x0zckp7KIj08lUtRUzXsL1iKXyXlp5gq8rZ14bfZqVOohPspJQClXsDHhC4IcPdgcuoAdV49T09nCu8f3MageYsOkeVgYmnC+plgaG45XFBLmNJYvz6VjrGfAc5HLuNlax4Xam1R2NPPizLsIv+Wj1j+k4s25d2NjbMYnOYkMqTVyvxsttXT291La2sDbx/dS2lpPaWs9r2fvQimXE+8bxvYLhwh3G8dDSV+xfckjhDh58XTGv3j96E4cTC14LmIZ/apBlvtP4/EpcSQVnaOktY6xVg48PjWOK/XllLY18Ne599A10MsHUfczxsKO1+esoam7g49zEnE0tcTXxomHJ0djb2qBoVIPGZB64wJN3R385fCvt+6RKc8c/B6FXI6npT0ymYyHwqKxMzHHWE+f96PWUdJax0tZP6NSD7G34BQGSj3G2bowMKTi87OpXG+uYYqLN5/GbKCivZH9hWcpb2/k05gNvHdiPxXtjZIx+5AQ2JtYYGlogrWRKbbG5vQPDRLu6suMMf7YGJkx2dkbCwNjDt28rDMu6ykUTHPz5XiF5uPcpbpShBCSVK+uqw2HW0kjZnuM52hZPpXtTVysLSHGO2RU6dtsj/EcLy9g8NZ7nVqoySq5goelvURAKeWajKfckjWr1EMMqdUUNFYy0eG3D5BmBkZ0DXvegIZs0kq21Wo1757Yz+DQEIVNVZLkDiC/oZLxdrrvqi29Xegr9Fi24z1KW+u50VzDBPsxRLj7E+HuzzRXH3JrbjLbYzxGSn2CHD3wsLQno/gSvYOad8yK9kZ6VYP4jSLVm+bqy7XGalpvJfxo7+vmZOU1YrxDJHlibVebRCwp5HIC7Ny4cusjS3rxRWa4jZMIqf8V/EFK/S9AG9VUUlLCE088QU5ODomJif9Rlp6goCAWL16MiYkJCQkJvPDCCxw8eJDVq1eP8MrQelZpUVxcjFKplCKtjIyMJNNbfX19Fi9eLElvYPQJsVbCB5qvz1OnTsXNzQ0fHx8OHz4MaEyBh/tMLVmyhLS0NJ0sUMPJoZqaGhITEzl79iwxMTFkZmZy5cqVUVNzj4ZFixZx5MgRHQPj4fD09OT8+fO89NJLZGRk0NCgycpjZmbGwMAA/f39DA4OsnPnTmbMmCFFWEREREjkwHA0NzeTkJDAmjVrsLW1ZfHixezatWvE/dPT08Pc3BxHR0fJx+XixYs8/PDDZGdn62S00kJ7DENDQ+bNm0d8fDxmZmasWbMGlUolERqxsbG4urpK0i4tEXg7tAb648aN49q1azrbtJ5EWgJluNxHpVIRGRk5avZE0MjWhkcu2NjYEBMTw44dO6RJ952yI4Jmsmtubo6rqystLS0SKXbmzBkcHR2JiYlh27ZtREVFSRNF7UQzMjKSEydOoFarGRoakiaCXV1dpKSkkJyczEsvvcS6deuIiorC3d2dhoYGKbNaXl4er7zyClevXiUwMHAE2RoQEEBBQQFDQ0MjjPhdXFyk9n/s2DECAwOxtLSUMkreDoVCQWtrK+np6fzrX/+itLRUZ2I+GubMmYO7uzs7duwgJydnRDaxWbNmcfToUcnwf+XKlTrXMHnyZJ1zDAwMcPz4cebOncucOXOkfjocFy9e1PHNWbx4Mbm5uRIxlZmZqSM9BE3kpDbtfWlpKQ4ODlLUWmRkJMeOHQM00Zba38rlckxNTWlv/03iolarGRgYkEiDiIgILl26JMm8ioqKUCqVIySXt+Py5cs4Ozvz2muvSSR/TEwMYWFhFBYWShn1tm3bxgMPPICPj8+IyB7QROfU1tbqJCgYjtEioDo7O8nIyGDPnj14eXkRFxcnZbAbnqnP39+fa9eu0d/fz759+3SyB4LG/0pbb6CJektNTZUiCW1sbLjrrrvYv38/jY2aL1bD5W39/f0cP36cqqoqIiMj8fHx0fHeGk6spqSkMH36dB1yycvLawQhqEVmZiY1NTUsX74cuVxOUlISp06dGmE63tfXJ+0fFhYmHd/BwUEae2tqarh69SpRUVGSNFPbv4eGhnQINgMDAywsLKTf5ufnA4wqGZbJZCxevJjExERp3e1yTO1+Wm+6P/3pT9J9io+PJzo6WhrbtL4ooyEvLw8nJydSU1Mlk3dtGf/A/zy00Uz1Xe3M9wokxjsEQ6UekWP8sbo1ITxWlk91RwvdA33I5XJJJhDk6MGVunJAE2EUNTaYa03VfJSTwPHywlup0zUvxloJhUwmI2psEMfLC+kd/C2hyrnqYs5X3yTS3R8PSzuivYOxMjRhlsd42vp6OFqWz+mq6wwOqbjaUIGFgbEOSaPFdLdxnKq8jlqoJZPeSPcA/nXxCI+nbudM1XU6bmVQMtLTR4aM3sF+Wnu7uFRboiPFCHUeS1tfNzdb6lALNYWNVYy313xt1npo6SuUzPGcgKFSj+czfyT9xgWdrIQeVvY6xFbPoEaiF/3jGxQ1VVPYWMmpyiIq25tQDQ0hl8kZUqtp6+vG3sSSVw7/yitZv9A90CdlwTpZUci2Myn8ePmo9LVc6+F1qa4UexML/jxjKb2qAVp6u3AysyLY0ZP8hgqeOfg9nlb2fBG/mc/PptLY087JymsoZXL25J9CjWDuv/7C53GbySi+SPdgH6cqi+js76Whq40Y70k8O2MpEx3cKW1r4C9HdtDe142RngEvZf2MUq7gy/gtnKy4xuHSPO6eGIGVkSkvzVyBl7UjenIFL89ayemqG3QO9OJsZoVKPUS4mx9DQvDp6SRUQs2QWs1LWT8z3s6N+V6B3Gyt48fL2aiF4ONTiVS1N1PUVMODSV8xwcGdd4/v49XZa4gaG8QT0+KZ4urDa7NX42vjzNPTF2Og1GPX1RPsW/McVkamDN0aX5VyBXYm5hwtz2dz6AJenrmSPtUAf5m1ileP7OC7S4fJb6jkqfRvae3r4nBJHnoKBfcFzaKsreGWb8wQQQ4eXG+u5Z+5B9GTKxC3jv1hTgLj7d34PG4zJvqG1Ha2sb/wDB+ePMDGSfNwNbflL7NW8fdz6Ro5ZerXOJpa8suV47x7fB9lbQ38LXYjn51J4eOcJAyUesT6TOLFyLvYdjqFnsEBtiT9nb/FbiTEyQtzAyNen7MGlVrF17mZlLc1cLrqOgq5gkeS/4EAHjjwGR9Hr6elt4tvL2bxZPq3FLfUcaG2BCOlPm8c3UVlRxPWRma8GHkXMuCHZVsxUuqxdWocCYVneGf+fXhYOtA10IeXlQPHywv4OOYBBoeGyK0pob2vm30Fp3kq/VtU6iE+OZXIy7NW0qsa4E/TF1PaWs+LWT/zUFg0T6d/x4mNb+Nv58qV+nIyb16mf0iFnkKpiW66dhaZTIaPtRMqtZq23m7cLexY6BvGvoLTdPT38mLWzwQ7evBc5g90DfTxyakknp6+BLUQfBqzAYSgqKlaI1ns72NIrcbOxIKvFz/C/sIzGsP66YvxtLLn0SmxdA/08/qRnSz0DWP74kd4+9hejPUMGBhS8VT6t+Q3VvLJqSTSb1xkYEjF95eOoFIP8cXZNFr7utieewh9hZJj5flcbahEIVcQ5OiBk5kVYyzs2F94Bhcza4IdPbnZWkfC3S9gpKfPfYGzqOpoZlPCl3wet5mZ7gG8lr2Thu52fGycsDU256OTiRwrK8BIqa/JhKhvgJ5CSVVHMzE+k3gm43tenb2KkxWFvHN8H0fKrlLW1sDpqiJqOlp4Ketn/jJrFQt9J1PR3sTWtG9wt7Qj3M0XexMLrjfXcFdAOOuCZpN58zJqoUYplzMk1LhZ2OJkZs0Tad9wovy38Si/oYLqjmYeSfknenIl4+x+U/Go1EPoKZSohZqrDRV0D/az6Je3MVDq3TGTqUwmY8HYILJKrmg+cNy4SLibn85HCC28bZwId/MlqySPLUl/x8XcmuLmWq4313CtqZrCxip+unKMo2X5UibWwsYq/O1cmerqy8CQis/iNmFqYIifjQunKos4VpZPeVsDfaoBelUD5FQWcby8gOPlBdR0aqL635p3L7bG5vQM9kvEmhCCg8WXmeUxXkc+bmdiznyvQE5XXSe35iYVbU139NcCmOUxnrPVxVR1NJNbW8ICryCd9y1xS96uPaeRnj6ZJZeJ++mvWBqacL25hst1ZeTVl3O1oYLvLh3WuV+nK4vueO7h+EO+999ESUkJFy5cICoqCnNzcynb0oIFC6TMYcNv6GiyBdBMHiorK/H390dfX5/U1FTGjRunI+sxNjaWSKeOjg4KCgp0ZFJKpVIiEECTUn3WrFmkpKTg4uIyanY3rYTPyclJmkyAhvhRqVSSBG+4rEcmk7Fy5Up27dql42mUn58vZdPSluvkyZNMnjwZMzMzduzYwfLlyzE0/C1EcfgX7+HHv+uuu9i1axeLFy+WynT58mUqKiqwtrZm69atjBs3jvnz53Px4kUpPbi+vj4///wzhoaGrFixQqeunZycpMmxVjpXVlZGXl6eFN0gk8kwNTUlLi5OkqmMNmkdGBjg5s2bLF26lPT0dFatWsWhQ4doaGj43Sx6R48excjIiD179kgpx7UYbg6ulYhNnPjbi6oQgoKCgt/1uwKNf4vWsNnHx4eTJ09iYmIiecbMnz9fp85v3LgxwtMINCTf0qVL2bFjB6tWraK6uprJkycjhKC4uJibN29KE1ilUklAQACff/45MpnsjpJTbdvo6OggNTUVpVLJnDlzUKlUHDt2jJkzZ1JcXExhYSEmJiZER0dLE9rLly8jk8mwtbXVMfJPSEhg//79zJ8/n2vXrkmSHH9/fylrWGJiIs3NzTqZC0FjpJ6YmEhLSwtmZmYSwXt7X9IiOzsbZ2dnfH19KS4uJi4ujsrKSvbu3Ut4eDjOzs46cjbQGJYXFBTQ3d1NeXk56enpOsc0NTWlrq6OXbt2sXLlyhHEmVaSpMX+/fslTyRLS0v6+vp0pKEwkggADdmbnJxMa2srhoaGo8r9zMzM6Ojo4Pz58zoZ45ycnMjPz6egoAAbGxudCJLZs2eTnJws9fkTJ05IUXdaLFmyhB07dhAVFUVxcTHx8fHSNj09vRHjYlVVFc3NzcydO5ehoSHS0tIkSbGJiYlO5E1PTw9Dtyadx48fR6VS6chyhRCsWbOGU6dOjdqXtdFGWg+03t5ekpOTWbNmDTKZjAsXLiCXyyWiqKKigqSkJPT09Jg1axaXL1/m8uXLI7IHas/v4+MjeSPt27dvhDeVnp4eq1evJj09naGhIbq7u0lLSwM0BE5YWBgWFhbs378fKysrEhMTMTAwYPbs2Tg7O0sebYGBgSNIZz8/P8lwfjiysrIYP348Tk5OXLx4EV9fX3x9fWloaCA5ORlDQ0Nmz57NpEmTJO81Nze3EVkgTU1NpfY9PLvfjBkzOHnyJBMnThw1+2FkZCT79u1j0qRJNDY2joiOHA4TExOCgoKkBAtXrlzRiSAGpKyEg4ODTJkyha6uLubNm/e72WCHIz8/n+7ubsLDwzl48CAODg6sWLGCo0ePkpeXJ0mp/8D/DJp7OjjZVEO4my/mBsY09XRgY2zGRAd3TlZcI8LdHwdTS9RCzb6C0/z12B7enb+Wpp4ObI3Nb32B/i1Fdl1XGz2D/Vytr0BfoYehUg+5TIa/rSvWw7xBZDIZUd5BZBRfYoyFHXVdrYQ5j5Wii0CTXS+/sRK1UDPO1oVxti40dnfwwqGfOFRyhc/jNtPQ3Y6jmZVEzGiPPdMjQDJtF0JwoqKQGJ8QLAyNGRKCktY6uvo1JK9cLmdXfg4uZtY65uJakifEyYvLdWX8KeNf/HXuPaPWY01nCyWtGomKnYkFp6tu/Cbnl8n47uJh+m5FnZkbGDPF1Ycv4jWSoHA3P9RCUN3RzEPJX2FvYsFDk2MwNzDC0tCEIEcP+lQDTHIaK8lIqjuaMdE3JNRpLMcrCpl0S5ZS2FiFoVIfTysHajtbpUgwIQT1XW3YGJnxWdwmGrrbeTTla75e/Ai5NTfZu/rPfHfxMJNdvLE0MOH1OWuwMTbjXHUxcT6h3B88h+8vHeG5iOV8eS6dqS4+PJj4dz6P38w4Wxc+yknE0tCEOJ9J9KsGeSr9W/6x6CFqu9qwN7Fgw4HPWRs0i8t1Zdw9MZILtSUEOXqgp1DyUtYvHLr/NcZaO9La26XJbjU2mPruNlLufYlPTiVjZ2JOsKMnbua2dA70ShnCMksusy1uEy5m1sT5htKvGuTpjH/xcfR6tqZu55HJMdiZmPPswe/ZFruR3NoSipqqefXIDnaveobP4zZjpKePk5k1DV3ttPf14GfrzMpdH/LegnW8PmcNfaoBLtWVsSFkLiUt9cT5TuLBpK94eeYKkovO423thAwNORns5Mn7UeswNzDmsSlxVHU082nMBmJ/fJN5XoFMdvFmU+h8xljYEu8bSn13O85m1jxw4DN+vuspLteVsnf1n/nH+YMs8Z+Co4klfapBnsv8gVdnr2bB2CAUMjnWRqas27+NPauepbCpiu1LHmFTwpe3sgJ+w1/n3sPLWb/yedxm+lQDLPOfSnVHC+8tWEdLTycfx2xga+p23o9ax10B4WydFk/q9Qss8gvD1ticN+bcjamBIR+cPECMdwhJRed4ZdYqnkj7hm23PMWOlF6lsKmKF2fehb+dK3M8J6KUK2ju7WR/4Wk+il6Pib4Bu1c9Q0V7E3+OWMbJimtca6rm4bBoelWDbIvdiEIu56nwRZypus6fMv7FV4se4mp9BXM9J+JgYsGX8VsYEmqJ2JUBP185xtvz7+Xx1O18HL2ez8+m8UX8Zt49vo/tSx6hpqOVt+fdy1073+ej6PUcLcsnfIwfnlYOTLAfw+tz14AQvHpkBysCwskquUKwoyeHS/P4/EwaL89aweO3DNu3pm7ntdmrCXHyxNzAGGM9fd6dv5bEonN8HL0ea2MzFDI5z0Usw0jPgC/iNyOTyZnk7IUM2J2fg7ulHWsmRmCgUNLQ3cF7J/bzacwGfriczV3+0/jh8lE8Le15OuNffBG/mUMlV/hh2VYybl5i+4VDfLnwQVTqIbambueTmA28Mmslu/NzuN5cyw+Xs/koej3L/Kfyw+Vs+lWDGOvpY2tszjzPQMKcvZHLZHT293LPxJmMsbDlL7NX81zmD1R3tvBAyFy+jN9CS28nle1NnCgvxMPSHmsjUxRyOXM8J5B58wpjrRwYUqvJqy9HIZfzYdT9DAk1s9x/8xdVVF1npnsAxS21UpQPwGvZO3h19mpkyBhv70ZzTyfbYjcS7OjBhdoSBm9l8RwSgo7+Huq62m5F66npHuxj2tfPsy1uExVtjXhZO+oQQKVtDdTeIonyGyqobG+io78XT0t75DI5cpmMjv4eTcZv9RCO5pZSdJJaqG/5ZwVxrroYS2MTegb7iXDXJIM6VVnE46nbeW/BWuZ5BUoy7+qOZo1FjUzGFFcfegb7OVp2FScza8rbGol095cy/Gm9qmQyGY09mo/GGxO+4IOo+zlVWUSIk+cIL6jewX6uNlQwpB5i4c9v8VH0ek4NI5EG1UM8kfaNRjKt0MwBzA2N6RnsZ7HfZEKcPFELcWtRk3nzMkNqNYGO7lJUbke/rtrrTvgjUuq/CJVKRVJSkuThNHwSChrZ0Jw5c0hISNBZ39raqiOZAQ3BsXv3bry9vXnjjTfw9vaWssglJyeTmpqqI1fRykmGTwLuBDs7O6ytrVmwYAFVVVUj/FO0k7bbzWcHBwdpbW0lNzeXl19+mYyMDCkyISsri7y8PCZNmsQnn3wi+WkZGBiwePFiHQJL6ycil8tZtWoVe/fu1ZEi3e5jM7xcK1as4IMPPiAlJYXExEQsLS1ZtGgRM2bM0Mn2FRYWJkUcBQYGsnHjRgwNDcnKyiItLY3r169LL2rDpSNXrlyhvLycRYsWjZhwDCcWR4tYSk1NHeH5Mn/+fGQymZQdbziG3+MpU6agr6+vE2lWUVGBmZmZ5DXk7u5ORUWFzjG0Ru7DcXvZLl26RHJyMvPmzSMiIkIi4ORyOfPnz2fBggVkZWVx8OBBiXQpKioaYV6vRX9/P15eXujr61NRUUF6ejoHDx6UIhO0UVkLFiygra2NJUuWMGnSJHbv3q1D6lRWVkpeTtr6XbhwoST/unr1KmvXruXo0aMMDAywaNEi5s6dO4JYuR0HDx4kLCyM+fPnc+HCBcLCwoiPjycuLo6+vj5SUlJISUmhoaGB69evY2xsTH19PdeuXeP06dNkZGTw1VdfkZSUNCIj1+3Izs7GxcVFkqpq+46bmxt33XUXZWVlJCUlcf78eby8vEhLSyM5OZn+/n4WLVrE2LFj+eCDD0ZIPG1sbPj66685evQoWVlZHD58+I5RhZmZmcyePVuHFIqOjtaR2/4egoKCCAsLY3BwUOrPw/u2TCbDz88PExMTaX1GRgYZGRmoVCpCQkJGRJvcHi013DNLC625tJOTk+QnpsXtUWk9PT2cPn1a2k+hUEhZ+25HQ0MDDg4OuLi4YGpqyrx583RkudHR0Tg7OxMUFMTZs2fJyMjQ6Xfwm9k5IEU8aUnq0TBmzBipfR47dozFixdjZmZGVlYWGRkZnD17lrKyMrq7NXIiLcGcmZlJZGQkg4OD5OXlkZGRIUkStUTlwoULsbe3l+SL8+bNw8LCApVKhUKhwN3dncWLFzNr1iyys7NJSUnh7bffxtPTU6d/aTHaNRw/fhw3Nzcdnytt3drb27No0SIiIiLIzMzkxIkT7N+/n7a2Nuk5MbzNdHd3M2HCBIyMjHQk11rZ7GiZOQcHB7ly5QrXr19nzZo1zJo1a9R6Hg5PT08UCgXFxcVUV1fj6uqKWq0mJyeH5ORkzpw5w9y5c1m0aBErV65kzZo1ZGZmcuPGjX9bJ9euXaO1tVUiOn19fbl+/ToymYzZs2cTEhLC3r17qays/Lfl/AP/GZb8+i7GevpSBqPqjhaczawxMzDCysiU5KLzHCvL50TFNYKdvNgSugCZTEZ9VzvHygs4Vl5A50Av5W0NHC7No7Wvi7meE9kUOp9o72BsjM2Y5upHdWcL753YxyMp/+REeSE5Fdc4VVnEpbpS7t37CfoKJXn1FdxsqaOyvUkymZ3s7M256mKqO5rJLr1KeXsDd0+MZM+qZ5HLZExz88VQqcf+wjM8kvJPfrp8lJMVhVyqK0MpV3C26gZpNy4wyckLLysHPC3tcTGzYnBoSJJa6MnlfHIqievNtZysuMaFmhIGhlQIBA3d7Rwry+dyXRlHSq+yv/AMx8sLOHlLppJbc5MjpVfp6OthjucEQhw98bZ2Yrydq0bG4eZL12Af52qKGVKrsTU2J8jRQ5rcRI7x50TFNYSAgsYqXoi8ixdnrsBM35AJ9mOo72rjroBphLv6caQ0jz7VAP2qQQobqwh29EQukxE1NpjrTTUkXT/PwJBqROamKS4+XKwr4ZmD3yOXyXk8dTtFTTV8Eb+Z2s5WvjqfQVVHMwLBiYprvHF0F4WNVfyad5wPo+/Hw8qerJIrLPKbjFKu4JsLh6joaOKteffS0tvF46nb+WbJozibWzOoHsLZzIqptzIyvnZkB+VtDXwU8wDhbn7k1pZgoNRjT8EpTPUNcDCxYN+a59ic8CVvHt2Nq7kNH0Wvx1TfiKSi8zT3dDIkhtBXKGns0XhKyWVy3jm+lx5VP4EO7rx6eAefnUkl0j2Aj08l8mHU/TR0t3N/8By8rDReZA+EzKVXNcimSfPJLrvKM9OXsOTXd1Ej2JjwBQjB9RaNeXjy9Vy2xW5kjIUtj6V+TddAHwNDKiwMTTDVN8TR1Iq/xW7EWM+Ap8IXYW5gxItZP6OnUHCyopAxFnbcv38b7f09fHU+g+7Bfp6PXM5kF2/+mXsQFzNrHk/djhCC147soKO/hy/iN3OjpZb3Tx6guqOZS3Wl0qT++UM/sj54Lh+eTEAh02Rma+nt4uOYB6hob+SVw7/SM9DPg2FR9KoG+HrxwwgEz0Uu4/VbETZPp39Hv2qQ4pZaXsveyfHyAv4WuxFTPUNePbKD+q52Wnq7GFKruXvPx/SpBvjqXDovRt5FgJ0bz0csp2ugj7fm3cPLWT8zpFYzy2M8X8Zv4dmD33P37o+Z7ubH1tTtjLVyYEtYFCqhviVTbefVIzv488Ef2BAyl6fDF/Fk+rf0DPbx6pGdXK4rZ09+DgDrg+dgaWjC52dTMTc0ZvXujzDS02dP/inkcjk/XTkKwCuzV9La283rc9bgbmmPmYERKrWasdZO9Az085cjv3KjuZb3FqxFCMHl+jIOFl8m3jeUud+/SntfN0+mf8sSv8kcLL7Ep7EbyW+sZKyVI09Mi2eMhS2rJ8ygd3CAZ2cspXuwn5beLroGenkw6SvMDYwYa+XIm0d30zPQz9p9f6N3cICazhYeTfkaIdTkVBRhb2rJm3Pv4aGwaAobK3kk5Z9YGZqwLW4TegqFJkK1ux0PSzu+Op/BttiNuJrbcKysgNquVhQyOZfqSjlbdZ19Baf5JGYDLubWPJb6NU9PX4SvjRNLxk1BJpPxXOaPrJkQweHSPF6IvAtLQxMeSfknBko9nsv8EWtjMxp72vn0dApvHt3F+1HrWOwXRsQ3L1LX1caASsXfz2XwWOrXVHY0097XjQwZRnoGTHX1IaeyiFNV1zHWMyDAzg1jPQPcLewobKwC4Fx1Mc5mVqyZEIG1kSkTHDRyNhdzaxaMDaJncICprj4Y6xmgp1Bgqm/E4JAmQtLP1oW8+gq2pm4nuzQfS0MTprr4MNXVF0OlPq/OXoUcGbYm5lyqLSXl+nkeSfkn3108jIFCjxlj/BEC7p4YyWuzV6MnV9Az2I+diTkGSj1utNSyPmQO87wCMVTqkXnzMh39vWTevMIcz9/8/SY6uJPfqHm/KLlFgm4JjcJM34icimuohZrBoSHyGysJdPSQxlg9uRIjPQPu3vMxaTcucKmulJMVhZytukF7Xw/na4o5WpZPW283Rnr6ZN3/OsZ6+kxy8uJSXRlHy/J5JOWfHC8v4ER5IQWNVYy3H4NMJuOzuE0MDg0x0cGd6WPGMcnZi+6BPj6N2cDgkIoAezfC3fyo7mgmYkwAK8dPp6ChCmM9AwwUepwoL8TLyoF3F9zHyYprCKGR5WfevPIfvSP8ESn1X0ROTg7PPPOMTtSPWq3WeeG1sbFh+vTpkhE5jMwMVF1dTU5ODkuXLkVPT0+SAvr5+eHv74+/vz9DQ0Pk5OTQ3t5OU1MTr7/+Os8+++yoE47hJEVPTw8HDx7E0dGRH3/8kSlTppCXl6dDTOnr66NQKDh9+jRDQ0OSVEOpVBIcHMyUKVPw9/fX8WoZHBykpaWFxsZGXnjhBTZv3szEiRP/rVeLUqlkxYoVUoSVXC6no6NjxJf0oaEhTp06RVtbG5WVlXh6ejJ//nydbG6jQaVScejQIfr6+sjKyiI2NhYhBDdv3uTgwYNS3dTX1/Pwww+zefPm350QWVlZMXv2bBISEnRSpxcWFjJ27FgpsmN4nQcGBlJbW8uuXbskc+SqqipOnz4t3WPQkE7l5eX4+vqiVqs5c+aMTmSKFlqmW1vnwyMhtNIhf39/mpubyc7OJigoaESa9+HQ19cnLi6Orq4ukpOTMTY2pqGhgZMnT0ryquGwsLBg7Nix7N+/n+7ubmbPnq3T5oejurpaimBYuHAhO3fuZOnSpRgbG5Ofnz9CLtbb20tOTg4qlYr+/n709fVRq9X/cZarEydO4OnpiYuL5mVYSwKAZuIZEBBAQIDGXFYrV/Py8pJM48eNG4e5uTkymQx7e3sOHDhAQECARDoZGBjQ19eHoaEhR44cwdXVFR+f37IS+fv7U1hYKJ1j+vTp9Pf34+bmxl//+lc2bNigQ6r19fXpRDMJIcjMzMTU1JTTp0+TmppKbGwsfX19nDlzRroeFxcXxowZQ3JyMm5ubiOiYZRKJTY2NtTX1+Pg4EBNTc0I3y9thjtnZ2fy8/Pp7+/H399/RJ0WFBSwcOFCHBwcmDRp0ogxJjExER8fH9LT01Gr1Tg6OhIaGipFS3l4eEhtoKuri5ycHAYHBzEwMCAiIoKkpCSysrKwt7dnypQpADg6OkrROEIIDhw4MCKrpFbieXumuZycHMl/68CBAyxbtkxn+/Xr1+ns7OSpp55i0qRJKJVKjh49Sn9/P5MmTcLFxUUiUAYHB9m9ezdr1qwZEfE0GvT19Wlvb+fIkSP4+Pjg4uKCWq2mra2NxsZGLly4IN3DpKQkDh8+zD/+8Q8pIm/8+PE6kTzHjx+ntraWgoICKioqdMbT4dGdoJEDR0dHc+jQIWQyGdeuXaOoqIipU6eOkH1ryVOZTMbZs2extLTU8QDUkma3+xe6u7tTXFzMBx98QHh4OMbGxri5uWFiYiK1i8rKSs6ePYufnx+XLl3i7Nmz0jH6+/spKSnB2tpah7DS09Nj/PjxbNq0ieDgYA4cOIC/v78OMT7as23atGkkJCRw6dIl6Vk7bdo0nevt6+vDwMAAuVzO0qVLOXv2LEePHr3jOH/jxg0aGhp02pW7uzvp6elS/9BmTj19+jR5eXn/kSz//xR88cUXfPDBB9TV1REUFMRnn30m9bvRsHv3bl555RXKysrw8fHhvffe0/n4IoTg1Vdf5euvv6atrY0ZM2bw97//XWdc/E/w+pw1dPb3UtbWQFuvZqL2YdT9GOnpU9XRwjvH97J39Z8Za+3I4ZIrBDl6MM7WlZLWema6B1DT2cLKnR/QPdjPZ3GbaO7ppKCxkoLGKmabWJBTUcQTqd/wyuxVBDp4EOjgQfeghky4Ul/GltAogh09UcgVTHfz41h5AVtTt7PQN4xo72DyGyr56nwGq8bPYJZHAELA+Zpi7g2cCTIZu66exN7UkiBHD76M34KZgRFqIRhv78begtO8c3wvz85YyuW6MvQUCvIayvG3c6Wlt5ttp1MYZ+dCkIPmt/YmFnQN9uFt7cS/Lh7my3PpbAldwDg7Vzws7fgyfgtyuRwPSzvkMjkf5SSQUXyJbbEbsTIypaS1Hg8re9zMbTlSdpXxdm5cri/DxcyG75dtRU+hwMrIhOzSqwyoVTR2d2BuYMzVW5OxI+vfoKCxknG2LuTVl3Ou+gZymRxHUytuttQR7R1CevEFytuaWDE+nLquVr6/nM2QUNOrGiDtxgVczKxp7+/hfHUxP1zOlu5la283S8dNoaO/h09jNlDa1sCjKV+zcdJ8vlr0EA8lfUWMdwhrg2ZR29nKGAtbXMytWbnrQ7bFbiS7LJ9l/tPIrbnJy7NWEurkxbId77EtbhPrg+dwsuIafzmi8cJZt38bu1Y9Q11nKw+FRRPo4MG9ez/hy4UP8uyMpfySd5x35t/HeHs3Fv/yDs9HLGNz6ALqu9tYtuM9PonZwJakv/Nx9HqOlF3luYhlXK2voGegnyemxWNrbMafI5ZxobaEw6V5rJownfH2Y+hXDWoMg9ubqOlsIczZm/b+Hp45+P0tOdsQTT0ddA/0Y2diwSOTYzDVM2Sx32Rsjc0JdRrLuqDZ9A4OsDXtGz6OXk+Qowe2xuZEuPvT1N1BUtE5xtuP4e/n0nk+YjkvH/6FNRMieGPO3VgZmvJS1i+MtXIkxjsEcwMjNk2az9vH9vDt0sc4W13M1qnxjLV25PGpcTibWbMhZB4KmZxHU77ms7hNPBexjM6BPlaOn46XlQNqoea9BWuxMjTFxtiMnsF+Nk6aT69qgBcO/cSGkLm8EHkXPYMDeFs78ezB7/kyfguvHP6Vv869h1dnr6Z/aJCXZ66Q5JX/WPQQZ6pu8ETaN2wJXcA78+/jeHkB2WVX2ThpHmuDZmFnYsF7C9axbMd7vD5nDd9dPMxjU2Jp6e1iuf80prr6sjHhC95bsI4Hw6Lo7O+lta+Lp8IXgUzG2aob+Nm6sH/Nc/x85RiPTYnF0tCUr3MPcbm+jPcWrMPayIQnpsXjZmGLj41GljfZxZt793zCn6YvprqjmaixwVgYmlDW1sDX5zN5LmIZZ6qvY6TU59uLh/k45gHu2vk+H0ev56Wsn3np1nXO9piAjbEpmxP/zrRbXlNNPR0YKPSI85mEib4hb827F0OlPg3d7Qyp1XQP9DHRwZ1B9RBLfn2Xd+bfh4meAb/cvMTq8ZrI/hlj/FnoG6Yh7W6RSLYm5qyZEIGNsRlKuYJ/LHqI5p5O7p4YyZrdH/HSzBW8dWwPn8ZsYLn/NEwNDNmy5+98EHU/n8dt5mh5PmHO3kx19eFQyRUSi87xZfwWHkn5J98seZQpLj5cqiulZ7Cfp9K/5a+3SK6rDRW8lPULPy5/glOVRbei+gb57uJhvrt4mKfDF/PnGUvpVw3y2hxNZNj+wjN8EHU/VR1N/PngD2wJjeKj6PWohaB/SOPv1j3Yh55cwYmKQl7K+oUv4jVRiR+f0kj3v178CGNufej2sLLndNV1Dt28jIelPfYmFlyoLWWJ32Qyii8xydmLms4WIscEMNnFh8OlefSrBon2DmZQPcS3Fw4R6OCBrYnGp++zuE3YGZtzo7kGO7dxpBdfYsHYIM5XF+Np5cD1phqM9PSxM7bgqfBF+Nu6cr25hvif/8p7C9beIl7ruDdwJpfryuhVVVLR1kS0dzD7Ck9T3FxLfXcbRkp9Zn77EmOtHAFBS28X753Yz9vz7qVroI/Ea+dwt7TD0dSSxeMmc7NFk0k0/cZFKSqvtbeLktZ6BoZUKOUKzG7JZl3MrTE3MMbXxpnLdWW8mPUzsz3G88iUWBxMLGjv78HG2IzK9iYMlfoMDKmo7dQY77f3abYFOXpwpPQqczwnkFtzk2jvYA6VXCHglrw12juEM1XXmeUxnsOleSReO8frc9eQ31CBg6klJa311HS2cKlW4494puoGjqZWRIwx5PtLR3Ays2K+VyBvHt31718SxB/4j9De3i4AkZWVNWJbUVGRKC4uHrG+pqZGJCcnCyGEOHnypOjo6BBCCHHmzBmRnZ09Yv/U1NQ7nn/Pnj3Czs5OpKamipSUlBHnS0tLE0NDQ+LgwYMiLS1NqFQqaf1o6O/vF59++qkAxPnz50fdZ7TyqNVqsWPHDtHa2ioOHjwoenp6RGpqqkhISBC1tbVCCCHa2trEiRMnRvy2q6tL7NixQ6jVapGSkiId7/z58yIpKUmkpKSIlpYWIYQQSUlJYmhoSDrXcKSnp+uU5+effxZ9fX1CCCESExOla7+93Pv37xdBQUEiNzd3xPb09HShVqt11tXV1YmEhAQhhBCDg4Niz549/7Z++vr6xK+//irWr18vjh49OmL7wMCAOHTokBBCiOTkZKlNDEdtba10T1JSUkRvb++IfZKTk0VGRoY4cuTIiHKXlJSI/Pz8Eb/RIj8/X8TGxoqYmBjR1tZ2x/0aGxvFyZMnhUqlEj///LPo6ekZdT/tvdRiaGhI7N69W9TX10vbmpqaRFpamkhJSRGHDx8WPT090j1JSUkRarVanDlzRhw4cEBcv35d53jHjx+X6ik3N1dcunRJZ/ud+o1arRa7d+8WDQ0N4uDBgyO2D+8b+fn54sCBA6KwsFC0tLSIkydPisOHD4sbN278R9d86dIlUVhYKM6dOyfd39HOU1VVJXbt2qXTpm8/lhaVlZXik08+EYA4ePCgaG9vH/Ua9+7dK51naGhIWn/o0CGRmpqq0x+049FwDAwMSG07NTVVNDQ0jNhneJ8TQjO2JSUliaSkJPG3v/1NbNu2TaSmpork5GRx5MgR0d/fL+175swZ0djYKIQQoqysTOzatUs0NTVJ5xNCiAMHDozaF4QQUh/Uor6+Xmd8uXz5ss54WF5eLjIzM4UQQnR2do7oh7m5uSIxMVGcOXNGJCcni59++kmnvFrcqV0lJydLdbR///5R9xFCiN7eXnHgwAFx48YNceTIkVH36e7u1rn/CQkJorm5WedaCgoKdH6TlJQkysvLxZUrV0RpaakYGhoSJ0+eFElJSSI9PV10dXUJIYQoLi4W165dE5cuXbrjGK899+DgoMjKyhKJiYlSXaanp4uUlBRRU1Mz4nfD29pwdHV1iTfffFMAo/5OWy5tH8/Pzxd79uwRDQ0NYnBwUKeftre3i8zMTJGSkiL+8Y9/CDs7O+nabseJEydGjGWVlZVi165dYmBgQLoeIYS4efOmOHz48KjHudM9P378uAgODhbAqP3w/yTs2LFD6Ovri2+//Vbk5+eLzZs3C0tLS1FfXz/q/idPnhQKhUK8//77oqCgQLz88stCT09P5OXlSfu8++67wsLCQhw4cEBcvnxZLF68WHh6eo76bBoN2vcnQLw17x4BiPcWrBWhzmPFg2FR4qtFD4n3FqwVX8RvFr+seEqsDZolflnxlPhmyaPi0P2viXVBs4UMmXh73r3i/uA5YpHfZPHw5Gjxt9iN0nFfmbVSvDp7lfC2dhTb4jaJL+O3iHfm3yft88S0heLxqXFiov0YcW/gTAGIz+M2i0enxIqosZp7e/fECBHmPFY8Hb5YvDJrpXgqfJEARJCjh3ht9moBiCXjpojP4zYLfYVSvD3vXrFx0nwBiJ0r/yRifSaJV2atFFunxotHJscIQMz2mCBem7NGAGJd0GzxWdwmAYi/xW4Ui/0mC0D8a9njYobbODHDbZww1jOQyvdF/OZb5YoUn8RsEJ/GbBCJ97wgHp0SKwDxYuRd4vO4zVIdfBG/WUx29hYH1jwv4nwmiS/jt4htcZuEUi6X6vy12avF0nFTxJbQBQIQy/2nSdd/f/Ac6Zo/jnlAeFk5CED8c9HD4q6AaQIQr81eLZaNmypejLxLTLQfI2TIxOoJM4Sdibl4Ylq8MFLqi82hC6R60ZYVEEq5XLw8a6WI9ZkkNoTME8Z6BuJP0xcLQLw7f62Y4zlBvDXvHrEuaLbwtXESgPC1cRYx3iFirJWjCHfzE8Z6BgIQG0LmitdmrxZbQqNEtLem/A4mliLGO0TEeIeID6LuF+uCZotYn0m37n+8WBs0S/jZughAhDp5iUenxIpNk+aL+V5BImKMv055tfcs1MlLAOKBkLli1fgZUp28NHOFeGvevWJFQLj4MOp+AQhDpZ7ws3URwY6ewsrQRCwbN1U63hPT4gUgVo2fIQDhYmYtwt38hKWhifgoer2Y5T5efBy9Xry3YJ0AxDdLHhWvzFopXpuzRjw6JVY8H7FM2JtYCCczKzHHc4IAhKOppQDEYr/J4pVZKwUgprr4iOcjlglAfBa3SUSNDRb/Wva4AMTLM1dI91B7T5b5T71Vz07CUKkv/jxjqbAxMhPhbn5iffAcEWDneqvf3iuemBYvrAxNBSDC3fzE5tAFYkPIXPFgWJR4dfYqAYitUzXX+VT4IhE1Nli8M/8+6Vym+obiuYhlYm3QLLHQN0ws958mAh08BCDej1onVk+YIV6MvEss9A0TH0evl3739rx7pXHj+YhlwtLQRHhZOYg/z1gqrAxNxftRmjpbPWGG9BsrQ1Ox3H+aVB5A/H3hg2L1hBni1dmrhLOZtQDE+uA5IsTRU0y0HyPunhgpAGFpaCJWBISLv869R3hY2guFTC6ei1gm3p53r3h4crT4JGaDeGvevcLZzFrYm1iIyc7e4t7AmSLOZ5K4N3CmeGLawt/qd9xU8VBYtPT/j6PXiyBHD+n6/G1dhbWRqTBS6gtfGyfxfMQysSIgXPyy4ikBiIW+YWJt0CwR5OghXr51j7X1BUjt0VTfULiYWYtl46aKRybHiKkuPlIfD3XyEn+dq6m/GO8Q8VzEMvHktIXiT9OXiOcjl4t3568VL89aKZzMrAQgHgqLFjHeIcLN3EbM9wqUzrkyYLp4MfIunTp+c+7d0tjw+NQ4adtT4YvEjDHjpPumrQt9hVJqJ3+de49Y5j9VbA5dIKa4+Ih35t8nPo55QLwz/z7x8ORocVfANPH2vHtFjHeINL6tmRAhAPHktIXS/doQMlc8M32JAMS22I3C09L+1j26R+rT2rax7db4+1zEMhHpHiBivEPEG3Pu1rStyOXSdu047WxmLbYveURsi9sk3o9aJ56dsVSEOo8V7y1YJ5VlS2iUeP3WeLEiIFy8O3+tAISruY34OOYB8VzEMjHfK0jcMzFSOJhYChcza/FAyFzx6JRYafx7c66mDB/cGkuemLZQGotfnb1K3Bc4SwDi2RlLRbxvqPCychCu5jbi8alxIsDOTRgq9cS789eKR6fEipdnrRTPRy7X9PlZK8WGkLkCENPd/ETyvS+Jj6PXi8/iNokPo+6XnjELfcOkv7fFbhTP3RpDXpq5Qnwas0H6W9sGtf3q05gN4k+36l4zfmmu/ZOYDeLZGUul+tFe3797f/qDlPoPoX2pevfdd0VWVpYOEXCnF3QhNC/GaWlp0j779+8fMenW4k6T04MHD4rS0lKRlJQk1Gq1UKvV4tq1ayIlJUWkpKSIjIwM8dBDD4l9+/aNuOG3Tya1OHHihCgoKBBpaWni6tWrYu/evSNe+A8dOiSRPVrs3btXIo6GT7a1pEJCQoLYunWrKC0tFQ0NDaK1tVV0dXWJgYEBoVarRUtLi/j555/FV199JRITE0ViYqKoqqrSOUdFRYW4cOGCdNy9e/eKurq6Ua9p//79OhP8jo6OEaTAwMCA+PXXX0VTU5NIT08XV65cGbFPdnb2qKRLdXW1SE5OFgkJCSNewI8dOyY6Ozt11g0ODoq9e/cKf39/kZSUJI4ePTqCJEtLSxM3btwQ586dG3E+LZKSkkRLS4sOCTo0NCRyc3NFamqqMDQ0FCUlJaP+Vkvy3I6WlhaxZ88ekZ+fL9LS0kRbW5vYtWvXqPtqy6DddidiajjBeDt27Ngh/Pz8RHJyssjJyRlRD0ePHhXNzc3i8uXLoqKiQlp/9epVkZCQIC5evCiE0JCcJ0+eFAUFBSInJ2fEeTIyMsTg4OCI9ZmZmVJbvXDhwojJ/WiEbWFhodi/f79wdHS8IyElhG5f7e7uFomJidL/a2trxa+//iq1l9TUVKFWq8XBgwdHJWvPnz8vEbrDcfToUXHu3DmRlpYm+vv7xbFjx0RKSopITk4WN2/elPYrKCgQ+fn50oT68uXLYu/evSPIXCFGJ6X27t2rQ8rs2LFjRL+/0zjS19cnPvroIwGIY8eOjdqWbp/oq9VqkZWVJREOx44dE6WlpaMeXwgNcTF8zNy/f/+I82jJofr6epGUlPS759fi2LFjArgjYZSTkyO1Hy2OHj2q0+8uXLhwx7Lv2bNHapdFRUWjfojYt2+fTr/Qkv7atpOXlycqKyulbbt27dIhDW+/1v7+fpGVlSWSkpLEkSNHxHvvvSdOnjwphND04Z6eHtHe3i6amppEbW2teOmll0RiYqJISUnRGcs6OzvF8ePHhRCautWSilqMVqcnTpwQKSkp4vr16+Lq1avip59+GrVfXrx4Uae9q9VqcezYMfGvf/1LvPjii9Jz7dixY1I9aD9S/PLLL6MSU3e6x/39/WLXrl2iurpapKWlidLSUomwHA23H+fmzZti3759oqSkRLz//vv/V5BSU6ZMEY8++qj0/6GhIeHs7CzeeeedUfdftWqViI+P11k3depU8eCDDwohNPfH0dFRfPDBB9L2trY2YWBgIH799df/qEzDSanRFi1RAIhZ7uMlEgAQbha24pHJMdJkRrs4mFiOOI6NkZn0t3YiY6jU/91zA2K8vdu/3QcQRkp9iWwZbRmtTMOXzbcmiaMt1kam/1EZJjl5SddkaWjyH12XhYGxVH/aSaymbvR+9/fD605LBgFiov2Yf1vOQAf3O27Tkyt0/j/DbZz090z3gP+oHv7dMmPMOJ3/2xqb/Y8c18vKQSwYGyTC3fx06vJOi5ZAutOy6BYxefsS5jxWgIY0cjLVkAVa4uz2ZYyFnZjtMfI82jalJRv+k2U4sTN8CXfzE4CQy2R3/K27hZ0wGdZO7rRY3dZuVwZMl/72tnYc0UamufqOepypLj7/pXtnqm8oQEMOD1+vrd/bl9vb8IaQedLfo40r2jr6vUVLAgY7eo66XTvuzfcKEjPcxon7AmeNGPv+K4u9iYX0t7a9hgw798rx0//jYylk8v92OYYvWhJr+DLZ2fu3Oho3dcQ9+3f39D8po/aezXIfL5Grv7cY3Kr3sVaOw47x+2Pm8EXbF4b3GQsDY+nvccOee/9JOf4791z3+jVlH/4cutMzS/v8/J9e/iCl/oegfak6evSoaG1tFfv375e+Pv9ehJMQmuiABQsWiF9++WUEiTEcubm5I74uZ2RkSJOeuro6cfr06RG/q6+vF8uWLRNFRUUjto028T59+rS4cuWKznaVSiVSUlJ0Js0tLS06JEBiYqIOOTTasZubm8WcOXPE2bNnxfnz58WpU6fEsWPHRFZWlkhPTxdpaWkCEEuWLBFnz54dtR6GkyFapKSkiPLycp3zZmZmShO24Thw4ID0++bmZvHrr79Kk27t5Lqqqkrs2bNHIhNzc3NH/ZLc1tYmPvnkExEQEDBi8llXV6cTdVVZWSl27twpent7pfO0tbWJlJQUkZiYKNV5cnKy2L1796jXroV2n+rqaik6Li0tTdTW1gq1Wi1FpYwWoTda5FJaWpo4dOiQVC/aOrwTMaVWq3WIFiF+I6a6u7uldTdv3hxB9vT09IiEhASRlZUlDhw4MOr1qVQqadudiK2ysjKRkJAgjh8/Lr766qtRoxSF0JBAWhJTi7a2NpGRkaGzLikpSWdAHK39lpSUiL1794onnnhCJCUlidTU1FEjeLREkxBC7N69ewThpo2su3Hjhvj+++/Frl27RhAcWgwNDemMIUNDQ2Lv3r1Sex+N1CksLJQm7zk5OWLXrl3i22+/FXv27Lkj6S2EhkSprq6W/n/69Gkdgktb9l9++UWnTYxGSl26dEkcOHBADAwMiPT0dFFbWyv27ds3IhLxTuPj1atXBSCef/75UQm04dBGS90eJaVFcXGxOHHixKj96vbzl5WViX379omrV6+KtLQ0UVlZqVPfWrS3t+ucKzc3V1y+fHnE8fft2zdi3YULF0aMx4WFheLYsWPS/4uKikZE/Qmh6Rs//fSTUKlU4uTJk6K9vV0MDg6Kn3/+eURbTE5OHvWDSH19vfjxxx8FILZv3y7S09NFZmamyM7OFidPnhRnz54VFy9eFCtXrhyVLMvNzZXILy0ZNjwSaXid1tTUSGOVEJpxeXBwUPT19UnXMRzHjh0bQSwNDAyIv//97+Kvf/3riLKo1WqJfNMSU7c/R//dM/jIkSNi0aJFo5Kytx9HrVaLpqYmsXfvXokYF0L8X0FK9ff3C4VCMSKCb926dWLx4sWj/sbNzU188sknOuv+8pe/iMDAQCGEZowHdOpCCCFmzpwptm7dOuox+/r6RHt7u7RUVlb+b3nB/WP5Y/lj+WP5Y/lj+WP5v2P5d+9Pf3hK/TdgaWnJ0qVLKS8vZ//+/fzzn//UyWAnbvOeGBwcJDMzkzVr1pCdnS35itzunxEYGEhWVhZOTk6AxszZz89PMqZ1cHDQ8e7Q4syZM+zdu5ecnBx6enoIDg6+Y9lzc3MxMDCQsrsNNw6Pi4ujpqaGPXv2MGPGDJycnKTsXxkZGYSEhIzwtRmO/v5+Dh48SGJiIrm5uSP8PIaGhti1axc3btygs7MTe3t7EhISsLa2JiIiQied+O11ExcXR1ZWluR9dfr0aVxdXUdkhQIIDw/n1KlTODg4cO3aNVavXi0dW3tcFxcXoqOj+fXXX1m2bBlmZmZSmUBjpJyTk4O5ubmU8a+9vZ2EhATGjh3LhAkTsLe358KFC4DGjFylUrFq1SqdslhYWEjeHGVlZSQnJ7No0SL2798vGa/Db21GW76kpCT+8Y9/cP78eaKjo3U8aIqKivDz88PLy4vjx4/T0dEhmXVrvVW0uHTpEqWlpSxYsABTU1NpvfY8FhYWo2aMPHXqlE6mM9C0kTVr1rBz506WLFmCsbEx165dIzY2FtB4e2VmZgIQGxuLnp4eJ0+epKmpSSdrHmiygM2bN2/Ue62Fu7s77u7unD9/noceekjKrnc7hnsTaXHo0CEpU50W8fHx7NixY4RvEWh8qQ4ePIi7uzvLly+XMgCqVCpOnDhBV1cXTk5Okt9SQEAABQUF9PT0EBoaquNFJISgqqoKExMT5s2bh1qt5p///CdVVVWYmprqmJWDxjBce//b29tJSUmRPLlAk+lsuLeQTCZj3LhxkhdPS0sLW7du5fz586Smpo6a5VOL4OBg0tLScHZ2prGxkc7OTqZOnaqzj1KpJDY2VmqrQ0NDOu2vp6eHtLQ0JkyYIPk6ae/DsmXLKCsr48CBA/j6+ur4VzU3N5ObmyslPHB0dOSHH37A2tqa/Px8yTDd0NBQytyphbYOhntJgSaRwPnz52lra2PdunX88MMPHDx4kMDAQMlfS9v3GxoaOHXqFO7u7pIHVWVlpTSOnDt3josXLxIdHY2hoSHm5uaS39r169fp6+tj+vTpI+rU29ubGzduSP46PT09VFVVjUhIMW7cOMk0fMaMGeTl5Y2aUVOhULB8+XL27NmDlZUVSqWSnTt3smLFihGZE8PDw8nJydHJEHjx4kXs7Oy49957sbOzkzIBenrqpgMWQrB+/XqsrKy4cOECkyZNkrY1NDRIY4o2+cTOnTtZvHgxvb29WFtbo1arycjIwNzcnBUrVki/1WaAVCqVLFu2TPIS1Pbz4RkPQeNBlpCQwIYNGzh48KAmy8yw9nbx4kWpbHK5nNWrV7Nr1y4WLlyIqampZAY/Gpqamjh79ixqtZpDhw4xZ84cye/t9uc0aLLxZWRksHz58hHZEv9vQFNTE0NDQyOe09pn4Wioq6sbdf+6ujppu3bdnfa5He+88w6vv/76f+sa/sAf+AN/4A/8gT/w/z38QUr9L8DFxYWzZ88ybdo0FixYcMcX4127dkmEzcKFCyktLSUlJQXQTLwnTJiATCbTSUd/OyGlhaGhoU4a+MHBQRQKBTKZjBkzZnDx4kVycnKkydPwl+rLly8jhNAhrbTZ4LSTHWdnZ1asWMHJkyclY9nDhw/j4+MzggDSTva0Wbn27NnD6tWrUSqVOubToCEsdu3axdKlS1EqlRw/fpyQkBBcXFxobm4mKSkJY2NjDA0NR0yStZg1axaHDx/mrbfe4plnnsHOzo78/Hz6+vqkZXBQkwZ58+bN7NixQycFfUdHh062RFNTU+6++2727dvH2LFjkclklJeXc+nSJezt7VmyZIlO/QUFBREUFERxcTEJCQk4OjpKJsmTJ0/Gw8Nj1HJrMWbMGM6dO8dPP/1EbGzsiAmmFuXl5axevZqoqCjKysowNzfXMZQtKSkhJiYG0BhB5+XlSaa+Z86cYdq0adTX13PixAmCg4NHmEDfDktLS+bNm8e+ffskk/bm5uYRRBL8NinUTlC1OHz4MN3d3cyfP1/H1Hv69OkkJSXp7Nvf38/g4KAOSWZtbT0qeZWfn09XVxdpaWlYWVmxb98+pk2bhrOz8x2v5+rVq6OSvjKZjNjYWFJTUwkLC8PBwQEhBEeOHGFgYIDFixeP6MNKpVJKW19dXU1KSgoymYzp06dz6tQpLCwsGDduHEePHqWn57eUp+7u7kRFRfHll1+iUqmYPXs2zc3NHD16VGqjoDHVnzhxInp6ehQUFFBcXMzdd9+tU/aQkBAuXrxIZGTkiGttbm7m0KFDvP/++9TV1REaGkpTUxNpaWlS+cPCwiQTea35tRCCrKysUQk60LSJ8ePHc/LkScaNG4elpSWgyZpZV1fH0qVL7zjeeXh44OHhQVFREStXrsTPzw8hBNbW1syZM0ci5bKysli0aJFE0mjR29tLbm6uRAgZGRkRFhbGnj178Pb2Jjc3l4aGBkBjnq29vp9//lkiOq9evSoRlVevXuXLL7/kxRdf/N2+MHnyZFQqFRkZGZiZmUn1XVNTQ1lZ2QjDfi0mTpzIgQMHpD6ampp6x/P4+/tz5coVpk2bxkcffURhYSEKhQK5XI5CoZAWuVxOYGAgGzZs4IEHHmDdunWjko3W1ta0trZSVFTEtWvXGDNmjA5pBxAVFcXhw4dRqVQ640hBQQEBAQF4eHiQk5PD9evXdYzQh7dBmUzGqlWr+PXXX7G0tMTV1ZUDBw4QHR2NiYnJHevU2NiYRYsWsWvXLp3Mhtp/GxsbOXLkCHfffTdyuZyIiAiOHz+u80GjpqZGhzAbPgbFx8dz/fp1goKCpO11dXUSgW1jY0NMTAwdHR1S1sDJkyePyISrRWdnJ1ZWVri5uf1fR0j9n4QXXniBp59+Wvp/R0fHqFki/3fCxtWL5qqS//HjKvUNUA303/H/f0AXhqbmGJiY015fJa1TKPUYUg3+zq90oWdghLm9M82VN/93FPH/1TA0taCvq/3/38X4A/8DsHBw1elH/1XYjvGmqaIYS0c32ur+n8sqK1dq3vnUqkFs3MbSXHkTczsnOhpr/x8rg055FArUw7KE/4H/g/C7cVR/QMJw+Z4QQrS2topffvlF9Pb2iq6urjsaih86dEjyzxhNllZWViaSk5NFcnKyuHz5skhOThbp6ekjpCRa9Pb26pjBHjp0SEdOJYQQ165dk/bRym7y8vLEqVOnRhyvsrJSx9B0OLq6ugQg3n///VElTIWFhZKkbffu3TqSiuTkZOla+/v7xU8//aTjUzNafTU1NQlApKenS4vWjystLU1kZmaKb775RgDiu+++Ezdu3BCVlZWisbFRdHZ2Sv4lWvnLzp07dY5fWloqCgsLR73WDz/8UBgZGY2Qgf1eecvKyoRMJhvhiSXESLmTtg46OjpEV1fXHX1sWlpaJKmS9pwXLlwQCQkJ0vWNJlUpKysTiYmJIiEhQSQlJd3R3+dO5RNCI3Xcs2ePqK2tFWfOnLnjb4XQyGi+++47sW7duhG+XrcjKSlJx1smOTl5hLG0SqUacV1nzpyRyjG8/nNyckRCQoJOe9LKboaGhkYY0t+Oq1evim3btonz58+LvXv36hhLazGa8b0W2oQCgNi/f784fvz4HQ2Yk5OThUqluqNcs7m5WWRnZ4tHH31UmJmZ6XhrDcdo7e/s2bPi4MGDkl+VSqUSO3fu1Cn3wMCAOHXqlEhNTRWpqani2LFjIjMzU/zyyy//kQzp3LlzYv/+/eLy5cti9+7dI6R+v1e+kpISkZ6ePqoZeEdHh9QGjx8//rvtp6urS2RmZgpAvPHGG6P6bwkhRENDw6jtdvfu3SIlJUVcu3ZtxLY7eWXV19eLvXv3irfeeksykv89FBYWioKCAnHu3DkdSa1KpRJXr14VKSkp0j1IT08XsbGx4siRI6KsrEyUlJSIGzduiGvXron8/HyRl5cnLl26JLWxV155RZI/j7b4+PiIHTt2jFqu4dd39OhRnQQIt0tmMzIyJAneaPdTrVaL06dPCxgp5brTObUYLhPWbteOWbdjuLH97c+728vz66+/ip07d4qKigrpOXru3LlR5d8qlUqo1Wrxyy+/jCp5bGpqkgzQjx8/PsLz7w/53kWdfX5Pvnc7tO9PXmGzROTaJwQgItc+ITyCNX4ms9f/SchkcmHp6CZC4jXmtNNWbhGAMDAxE4ZmlkLP0FiEr3pIGJqai5C4NcLQzFLYuvuIiQuWC6WBobB19xGhi9cKc3tnEbZEYxY7455HNecNnSnkCqXwnKQxpnUJmCTCVz0oLBxchKPPBDF1hcbgdVxEjPAK05iMj508S8gVCjFtpWbbpIX3CkMzS2Fm6ygCF9wljC1txJyNfxaACF2kMXMOmLVQp+xBUSuFsYXGUDkoeqVwCZgk5AqlmLn2SY2cQSYTsx94Vjj5TBSAiH/qXRG+6qFbx1wrYrf+VTh4+Yupd20SXqEaU98xgVOFR/B04eQXKFz8Q0Tck29LxxsXGSusXT3F7AeeFdPXPCzkCqXwnxUv5m1+Qfr97AeeEU5+gcLec5yIuOcxERSzSkyYu0SqK21dBEVpDG0nL10vwhZrTJVnrn1SWDi4itBFa4Wl0xjhPXWuMLd3EW4Tp0j3ERBOvoHCytlD+M+MEzPXPSnVSfxT7wgDYzOx4KFXhLGFtfCfpTHLtXHT+Ce5jg8VYyfPFkoDQ2Fm6yimr3lYKPUNhLmdkzA0NRcT5mnMdw1NzSU5iLm9izAyt5LOMy4yVkxeul6qc4b5uchkchHz+BtCrlAItwmThb7Rb95GRuaWwtzOSUxeul6YWtuLoJhVInTRWqHQ0/jQuE2cIuQKhfAKjRSmNg7CwsFVR5Zi4eAqDE3NxcQFy6V1+kYmYtLCe4WBsZnUNrynzv2tD9y3VQAi4l6NEfnEBcuFuZ2TMLGyFYCYMHeJdE3D27OZraMIil4pTK3tpHNNWa4xIw6OWS2MLWzE1Ls2CRu3sULfyFiqm7kbnxPGFtbCNSBUqnOP4OlC3/g3fx2ZXC68p84Vlo4aP7KIex4TxpY2Yvqah4W1i4cwNP3Nr8Zt4hQRuOAuMev+p4VCT19MXbFZyORyMS5CY/LvHhQuTKxsRdjidcLK2UMYmVtKvzW1thMTFywXZraO0v3SlnnG3Y8KuUIpItc+Icxsf/PzMbfXePCYWNkJU2s7aQwAxPQ1DwtALHjoFc2/D/9F5/7oGRhp2qZfoBg7ebZw9guS6tXGbawIil4pjMytpDY2cf5ygUwmQuLvEY7e48W4yFgxLiJGjJ+zWOgZGovJS9eL+Q++JPQMjMTMtU9K98zeS+NlFr5a049jn3hLACLm8Td06k37d/Sjr+ts1zc2Fb7To4S+kbGIuPdxEbpYYxwd9cirUv81sbIV4yJihMNYjf/a3M0vCAMTMzHp1thpam0nxk6eLQBh5TRGOIwNEP4zNSbkcU++LbUhQFi7eGjGWWMzEbp4rXAZFyKQyYSjt8bbT9tH5295SSqz0sBQjJ+7RGrrE+YtFZOXrhcGJmZSG50Uf49UPkAseuYDTVtc+6SI3fpXseT5T4Slo5uYdf/TwtTGQdh5+omxk2cLPUNjMWX5BqHU/82bzMHLX2qvUl+4+1GpTZtY2UnjtkJPX9i5+wpbdx8RFL1SWDi4CDNbRxFxz2MidNFaafzQjtneU+fqtBM7Tz9haGohJi9dL8ZMnCJMrGw14+utcWT48wsQ1q6ewsk38FY9LJPuh2tAqNS+A2ZrDMudfCaK0EX3CT0DI+E8Lli695Frn9Ccc9kDImC2ZpzwCJkhIu/bKvQMjYWdh6+YvOwBaUzTPl+06ybO19wHvxnRwtzOSYQuWiv0DIzE7AeeFfO2vChC4u6Wxm9tGzW1cRAuAZOkNgMI/5lxYupdm4SZraNw9JkglAaGwnf6AmFqbS+mrdwi9I2MxaSF9wpAhC1eJ3ymzZfGditndxEUtVI4+QYKS6cxQqlvKD3/wlc9JEysbAT8Id/734KbN29SUFCgI0nQ09Ojra1NiigATZSHtbW1JCOZOnWqFMmihVaiBBrpRVBQEK+//jpeXl6jntvQ0FCSsIFGdjRcCgHg5+eHsbExBw4cwNDQkGvXrtHW1iZJPIbDxcWF/Px8JkyYMGLbmTNnuHz5MlVVVVy4cIGuri4UCgXh4eFYWFgwduxYjh49SlFRERERETqRL/7+/ly7dg0PDw/27dvHqlWrRsiWhkOlUpGenk5JSQmdnZ06acq1uHnzJnK5nPT0dBwdHWlsbBwhMQNN1M6SJUvo7e0lKSlJktG0tbVJ0kgtBgcHSUtLIzw8nE8//ZSSkhKcnJyke6aFnZ0d9fX1koRBCMHJkycZGBggMzOTnp6eO6bH7ujoICkpSacObo8kA00EUUZGBqtXr9ZZHxISwrhx40hMTGT8+PFSpEtLSwslJSVS2vXa2loefPBB9u3bx8DAAA0NDaPKLcUdUptbWFjg4OCAk5MTaWlppKenS5E1wIi/S0tLSUhIYNWqVZw7d47w8HCdNqDFrFmzOHbsGHPnzqWzsxN9ff0RUR8KhUKSboLmHjo4ODB+/HhAE1HU2tqKlZUV4eHhDA4OkpGRgaWlJREREXh6elJWVkZRURHR0dGjXl9zczN5eXn09vaydetWtm/fzsaNG0fd19bWlqamJuzs7EZsu3nzJt3d3SQmJtLV1UVISMio0SLV1dW4uLigUCgICwvjzJkzI6IAra2tMTAwYNOmTSxatIiGhgYuXLiAj48PAQEB0n7D79nAwABJSUkEBwczefJkANRqNQqFgrlz53L48GEpYkhPT09nvGlvb+fpp5/m22+/JT09fcTxR4sOWbZsGWvWrOGnn366Y3TU7SgpKaG0tJTo6Giys7Ole6dFZmYmS5cuBTQStIMHD0oy0NuhUqloaGggMTGR4OBgcnJyCA0NHRFFamdnx7lz53TWnT59mrCwMCkaKDc3l9DQ0H9bfgsLC4yMjHjppZf44IMPJKnt8Pug7Q8WFhbY29uTnJyMSqUiICCA69evA5qoHn9/f2JjY6W6zcnJ4ccff+TYsWNMnTpVJ7JQi7q6OsrKykhLS2PcuHHcuHHjju36448/xtLSUpL1Dq+34fdr5syZ5OTkcOXKlVHH16ioKPbv38/cuXOldUIIzp8/T0NDAzKZjEmTJnHgwAEKCgrw8/MbUfbfG1vmzp3LgQMHMDY2prCwkNra2hESR9DIHAsLC/H39+fEiROjRgiCRqpmamrKokWLOH78OHFxcXeMbhoaGpLqYuHChSQnJ+tEbwJkZ2dLkt+IiAgKCwtJT0+XolL/b4C+vj6hoaFkZWVJ/UutVpOVlcVjjz026m/Cw8PJysriySeflNZlZmZKz1ZPT08cHR3JysqSoqw7Ojo4c+YMDz/88H+pfF6hkXhPmY25rSNuEyZjYGLGxPnLMLa0YdUbX6M0MKS58ibRj72O7RhvrF08UA304+Q7kezvPuTUrq+Ie/JtVAP9XEzdQejCe7F0dCUvcx82rl7Ye/hhbutERd5ZZtzzKGY2jsxe/yf0jUyYtmoLQwP92I7xxm1CGNdPZdFeX82Mux+VyucSMAk7D18mzF2KvpExIbFr6O1sY+Gf3mewr5eQWFMG+3oxsrDC1NoOR+8JxD7xFjKZDL8Z0YwJnIrnpBmY27tg7+lHX1cHZnaOmFjZYmhqjq27D63VZfz/2Pvv6LjKe/sff02fkWbUe++yLatZtix3Y2Nb7t0mEBIIAXIDJCaF3BBI6IQkJARIQuASEm5IjA3utuSGZVu2bPVm9d77qI2k6b8/RnOs8ciQz/38vutz/8hei8Wypp3znHOec9772Xu/45etR+PjT8i8NKxWK+NDfXTXVyCRyfGNsKkVA2LmYbVa6W2qZu6qLaz7zvO0VRYgkco49eYzZD71ElK5gs7qErzDYth04DUMUxPUXM3C1cMLVw8vLGYTLu5ehM5fSGzGWtoq8gmMSyL3k3dYsOUBND4B5P7jXQDuffxn3PfqX5kaH+Xe7zyH2WjANzyOtvKbpG6+n/lrd6D29mOkt4OR3g6W3fcfjA700HDzC7b+6FcMd7fjEx7L9p+EoNS48+lz3yJx7Q5cPX1Zet936aopIWTeAh5+5yhNhVdYsOUBVG6eeIdEMWfFRrpqSvEOjSb3k3cw6adY+d3vM9LXhcmgZ/tPfsdgRxNmo4HohSsZ7GhCLJGg8Qmkq6aUkjP/JDbjXtRefvhGxPG3A3vY8MQLgAixVIZK445S44FYJMY7NJo9P3+PQ794lNiMewmem4pMqcI7NIrys59RcOyvbHjiBaxWK+f++CJpW79O8oa9NBZeYcHmr6HtaqOp6CoZex9lcmSYkIQFaHwDaS6+xs3PPiBk7gICY+aj9vFnYniQ7Hd+zqIdD+ETFoNIIiEwdj7Bc1LQePtj0k9x73eeIzxxMRpvf5Qad0QiMeXnPmP9d3+BVK6g8ovjhM1fRPrOh+ltrGbrj3+D1WLm1Js/IXXT14heuJLR/m5cPLzZ8sNfoXLzoDT7U3obq9j9/B9pq8jHxcOLr//6n3RWlzAxMsSqb/6Akb5OJDI5ATEJDHU0Y5yaxDMonJG+Tmpzz7J49yPodWPEZqxF4xOAq4c31w/+iXseeQaJTI5MrsTF3YvPX/4uATEJZD75ImMDvVgtFhLX7SJywXIsFjMqzX20luWh7Woh86mXaC6+RuSC5SjV7hx7/XsExiYSNCeFzKdeRql2x2Ixc+2ff2Dj915BJBYzNtDDoh0PEb9sA/U3LhKetJjz772MtruNlQ8ewM0vEKvFgqunL9v/83fohgfZ8MQLiCVSEu/dhUQqIzZjLSajHsPkBGajnux3fs7yB54iMnUZkanLkCqUnPz1jwAInb8QpdoN/6i5uPkGUnb2EKmb70ft6UvW28+x4ckXCUlIo72yEK/gSHb+7B1qr59Dpx1g89Ovg0gMVgsmg54Hf3OQ7voKNn7vFRCJ2P38Hxkf6idywTKaS67h7hvE6EA3mU+9jNVqYft/vsXEyBAKF1fqrp+j+soZNjz5In4R8YjEYh76/RH++4f7mX/vTsqyD7HruXeZGh9FKlei143h5hfMg785SH9rHWKJlNUP/4jjbzxNb2MV6bu+xfw1O9B2t7LuP36ORCplbKCX4LmpmE1GJoYHyXr7OWIWr2HT919ltK8Li9lMRPISIpKXIFe5svqhH6JQu3H94J8YH+xlweb7CZm7AJFYzJm3nmXj918l6/c/Y/8rf2G0rwuf8FiM+klc3DwZ6etizy/+jFSuoOLCUVRuHqz8xgEmRoYYH+xl2de+y9l3f8GaR37CFx++wb2P/YxrB//ApgOvo3BxZbS/B71uDIlMTnjSYtz9Q2bsv4Kmwissf+AphjpbqMo5ycoHD+Dq5UvZ2cMAKN088AqJQu3tx8TwIF4hkWx75rdYzCbiltzL5NgwSrU7PfWVlDT/E7/IePwi4zn9u58y0tvJ1h/9monhQcKSFuMREIrZaGDlNw4gV7oSs/ge2iryCZqTQljiIuQqNYFxiRQc+6twf+hvrWPBlgewWi0Y9X9HKpPj6uXDqod+iId/CFPjI0ikMuKXZeIXEY97QCjGqQmMUxNI5UrmLM9kzrINTI4No9MOsPPZtzGbTLZ5f1LHnOXv267da2eF+Tzr7edIWr+HhNVbmb92B8PdbWx++nU8AsL45D+/zoLNXyM2Yy1KjTuh8xfR21hNzke/ZvPTrzOlG+Pi+68RmrCQmPR76G2swjA5gW94LDt++jZjA90k3GP7XoWLmtLsQ7RV3GTpff+BbniQnI9+g1/0XILnpdJRVYxOO/gvPSOIrHd7ivw3HDA6Ooq7uzt/+tOfSEpKcsoWsVqtHD16VHioHRwcJD8/36nQmkmSzITFYuHIkSMsXbqU8vJyIiMjqa+vB2xk1sziOD8/n7CwMLq7u/H29iYsLGzWbe7u7iYoKIgzZ87cteADW17UnQXP2bNniYuLIzIy0mGbTSYTeXl5jIyMIBaL+fjjj3n22WdJTEx0KggOHTqEyWRi//79TsXszId9i8XCwYMH2b17NwqFglOnTrFlyxaH97e0tFBXV8f69euF7a2urqavr8/B6mEniey2vba2Nurq6rj33nvJyckhIyMDpVIJQHFxMe3t7WRmZiKXyzl79iyZmZnk5uai1WrJzMwUSCS9Xk9ubq5Q7B8/fpzVq1fj7u4O2DKYpFKpQBLYt7G7u5vr168Ltjg7zp07x+rVqwVyxmq18s9//pN9+/YJmSezHZdXXnmFGzdu8NRTT+Ht7U1UVJRQ7H/66acEBwczd+5c3NzcqKyspLe3V/isVCpl3rx5KJVKGhsb8fb2Fs4xsBXQoaGhXL9+nfj4+FlJTDtaW1vp7OzEarUSGxuLh4cHeXl5jI+PIxaLSU9Px9vbW3j/iRMn2LZtG8ePH2fLli2zkhs5OTksXLiQS5cukZiY6GCHHB4epqamxoFgAejt7eXatWskJiZy8+ZNQkJCWLVqFR0dHdTU1GA2m4VC2cvLi8TERCQSCX/7298ICwtDp9OxYMECp7yd/v5+2tvbHWxDYCPL1Go16enpnD17lnXr1nH48GE2bNjgQEgDwnVnP+7nz58nLS3NwTqUm5uLp6cnCQkJDse7rq6O6upq/P39Wbx4MdnZ2WzcuJHGxkbKysrYsmWLA7E387O5ublERkYSHBzssD21tbXcunULDw8PvL290Wq1gjXxy3D48GFMJhMajQar1crSpUsdji3YMrxWrVqFTCajsbGRlpYW4VqxWq0cP35cKJLr6+uZmJhwsFzNds2DjdjLz89nx44dXLx4UfiNoqIi2traWL9+vQMheObMGSHDrb+/n/LycmE7AMrLyxkeHmblypVO4wa2vKNLly4hkUi45557OH/+PGKxmIyMjFktX1arldHRUerq6khPT+eNN97gBz/4gXANzwb7fGo2mzly5Ah79+51eL2jo4PS0lK2bNkibJ+d5Ju5LwAVFRVoNBoiIiK4ePEiMTExAlk3MDBAa2urEwmXn5/PyMgIGo3G6XoyGo28//77NDU1sWbNGkQiEWlpaQK5XVNTg0wmIyIiQsh1mpn91dPTQ09Pz11zDXt7ewkICODYsWNONsOZOH78ONu3b3c6LyYnJ8nNzUWv1+Pj40N8fDyVlZV0dnayadMmB3u2HfX19ZjNZiGDDWzXwvj4uDA2VVVVAA5EMNjOoS+++IJdu3bx1ltv8cwzzzAyMjLr7/xvwaeffso3v/lN/vznP5Oens5bb73FoUOHqKmpwd/fn2984xsEBwfz+uuvAzaSdNWqVfzyl78Ucvdee+01iouLhcWqN954g1/+8pf87W9/IzIykueff57y8nKqqqqE++mXwf78tOu5PyAWi5kcG8ZqteIbEYdK40FnTSkm/RRGwxS+YbG4+wfTXHyNzpoSfMJiUao1BMTMp6+5hrDEdAZa65EqlAy0NhCdvpqOW4WEzrfde8cGe/nkmQdI2/p1/CLn4BsRh1E/hU7bz3BPBxqfAAwT4wTFJ9HXXEt4cgYDbQ0oXDRofPwZ6mplpLeD1tI8XDy88QmNRqqw7ePU2AhffPgGm59+3UYYNVZTdPK/Wf/dXyBTqDCbDDTcvERgfJJQuDQX51J95Qxfe+1vuPsHM9TZglgiYbS/m9D5i2gqvELw3FSkcgUtpdeJXnR7f9orC/CLnMNofzdWrEwMD2KcmiQybQX9LbV011WQf+QvrHzwAHNWbEQskdBWkU9owkLGBnsxTOqQKV0YaGsgImUJndUluPkFYZyaxDg1gWFSR1B8Cr2NVfiERTPQ1sDNI38Bq5Wdz76NtqedvsZqlGo33PyCGBvoJXT+QtpvFRKZuozu+gq8Q6Lob6nDZNDT21SNf9RclGo3DFOTBM9NQSyWUHf9PHmH32fNI88AkPPX36JUu7F0/3fwjYij41YRRv0UEpmM8KQMumrLCE/OmCYwltFZU8qVj39H4r27cPMNFMb0G789zLi2D6Xanf6WOmQKJVaLBd3wICHzUtF2tZH19nOsfvjHhCWmM9TZjF43hlgiQe3tj1QmZ6C9kYvvv8bG771CX3MNfc21bPr+q4xr++msLsUvIg7dyBC5n7xNYFwSS/Y9Tm9jFe5+wbTfKsRqteAREIZEKmOkrxOVxh2xRIp/1Fw6qkvoqi0jJv0eAmPn01aRT1hiOh1VRZx68yfse/lDPAJCaMzPQaZ0AaxMjY+i7W5j8a5HsFotdNeVEzQnhY5bRZx561kyn3oJj8Awxvq78QmPo7exiu7acsovfE7mky/BdL6ti5snuuFBTAY95997mfXf/QUBMQmM9HWi8QlE29lM6PxFDLY3cfiFx5i/didhiYuwWq1k/f5nZD71Ej5hsbSW30CECP+Yeei0A3gGhfPPn36DtK0P4h89F6N+CplChcYnADffQNorC5DI5Ay0NTDU0UxE6lLCEhfTVVOCxWxmtL8bpdoNsUSKyaBH4xOA3MWVieFBxBIpxqkJhjpbiM1Yg9rbn45bRYTOX0TttXPkfPRrtv74N2h8Ahgf7GNiZBCr1YpILEYikRGauIi28ptc+fgtHnzzIJ3VJYTOX0RzcS4tpXlEL1olZHhKpLJp0qsXucqVidEh5CpXIpKX0F1fIVx/Z956lp3Pvo1/9DzaKwscxmz5/U8SkboUpcaDzipbvuxAeyOjfV3EZqwFrBinJjn7hxe497Gf4R89j6nxEYz6SeQuaiRSGYMdTVx47xW2/+fvCIxNpLXsBqGJi2gtvYFILEapdmewo5Gr//17tvzwDcxGIyo3D9vf25uQyGSIRGJG+jrxCo7EMDnOxMgQAEpXN7xCoxjt68I7JIqhzmbvScA5AAEAAElEQVRO/+6nrHjw+2i8/dFpB6jJzWbB5vttc+dADy4e3kSlraC1/CZhielYzCbq8i5w+a9vsvrhH+Pi7klvYzVewRGo3DwxGabQ68bwDAxDLJMzOapFqXbj8C8eY/kDT+HmG8hgexM3P/8vNh14DYCaq9kMdTaz++d/ZHJ0mIkRLXrdKBKZnMC4ROpvXEThqkGl8WBc249Mbpt/w5MzmBofJfud5xnt72b1wzYisanoKn6Rc/CLiGOgrYGcv77Jvpc/xCsonOGedsQSKW6+gUyOjXD0tadw9w8hce0OACZGhsj56Dek7/oWUQtX4uEfQmdNKb7hcUikUrpqywidv4jh3g4GWuu58OdXWf3wj4lKW45c5YpueFCwFYtEYgLjk+iuq0AqlyMSSXBx98TNN1C49qfGRxhoa8TVw5uJkSHMJiMypQp3v2B02gGM+il8I+Lob6lF5eaJ2aDHMzhSuH666sqJSFmKQuVKV20Zuf94l3sf+xlyF1csZhPZ7/ycrT/+DcFzUuioKiYwLpGR3k7GBnrob62n/sZFkjfswTciHuPUBE2FV6j84jiZT72MX2Q8Ou0AcpUr7v7BwvkO0FFVTO4/3mXhtgeRq2y/VXnxOGKJhAVbvk5AzDx6Gm7h6uGDxsdf+KzVaqW1LI/2ykJuXTrxlc9P/1ZK/R9CrVbPGnZrD5Otq6sjOjqac+fOzZrX4uXlxdDQkEOBYzAY+Oyzz9i2bRtqtZqSkhLi4+OJj4/HYrFQUFDAzZs3kcvlrFixgkWLFnH69GksFosQRmu1Wmlubqa2tlb4XplMxo4dOzCbzRw/fpxFixZ9aRaPHadOnRLyngDi4uKEVXipVCqsXPf19fHggw/y8MMP093dbbs5zCBevv/97/OXv/xFUHHcOV727T58+DDbtm0TMpZUKpVDGG5HRwfV1dVOxNrcuXORyWScP3+edevWAbbi+N577xXeExYWxsTEBNevX2dqagqlUsnQ0BCXLl0iNTXViXQA2yr51NQUZ86cISAggMWLF6NQKDAYDABcvnyZlJQUgZAC22pzVVWVw7bU19fT2Ng4a5jx0qVLuX79ukAKHD16lK1bt35pMXvjxg127NhBUlKSE1l14cIF1q5di4+Pj0AA3LlvRqOR6upqnnzySZKTk3nyySdZv369Q6jwiRMneOihh8jLy6OtrW1WwtNoNFJQUMCePXscCAc7OWg2m4Vz1mq1kpyczJw5cwQC5s5zYWJigu7ubiwWCxqNho6ODidCxcPDg+HhYadt8ff3Z+vWrXzwwQc88cQTnDp1irNnzxIcHMzq1atnVeedOXOGb37zm1y8eJHdu3dTVFREaWmpA8Hh4+MjhNiDLUD++PHjrFy50kFtJxaL2bdvH0eOHGHlypUO5PGd18O9997L4cOH2bt3LyKRiEuXLhEUFCSoW2auD8TFxREXF0dPTw8nTpygrq5OIBjuDHC/E8uXL+fQoUPC7xgMBs6cOUNUVBS7du0iOzub5ORkysvLKSkpEeaQ2VBUVMTixYspLy9ny5YtWK1W8vLyGBwcJCgoSAh+DwwMpKenB71eT1tbmwN5IhKJ8PHxob+/Hx8fH8rKyhyCsQECAwPp7u52GNuamhra29uFfKaAgAB6e3sJCQkhLS2NlJQUzp8/j1QqZe3atYhEIiFzT6lU8sUXXzipDpOSkmhqahLIK/uYj4yMcPnyZVQqFRs2bEAqlQqZS5GRkRw8eJD9+/c7XCv2fRsbG6Ozs5OsrCxWr17NZ599xrp165yIO7gdrA42deCyZcuEPDhAUPvdSdBFRUVhsVi4dOkS99xzj/D31tZW4b1r167lzJkzKBQKAgICGBwcnJVIU6lUPPjgg7zwwgtCuDzYzj+pVEpjYyPDw8MOeXx2NDY2Cn+/7777+Oyzz1i7dq3wO7W1taSnpzt9zmg0kpOTI6gUtVotZ86cEV53c3NzUBzaw+/9/f2xWCzcuHEDrVaLUqlkxYoVAhGSlZUl5Dl++umnsxJTs41nfHw8Fy9eFEK+a2pqZr2ufH192blzJ59//rnDWP1vxv79++nv7+fnP/+5QBBmZ2cLxGJbW5vDebx06VL+8Y9/8Nxzz/Hss88SGxvLsWPHHNTTzzzzDDqdjscee0xQXWdnZ/9LhNRMSBUKxgf7aK8sJH7pOoxTE4z0dmI2Gsg7/D6unj4oNuxlpK8TRFB58Rhbf/RrgufenqP0E+PoRoYIT1qMys2T9soCYZ4dG+xloLWBx//rPC0l1whLTKe/rZ7JES29TdUUn/qEbc/8luhFtutNqXZjcmyE8aE+fMJiAHD18GZsoAfdyBA1udnsfv6PgnoJQOGqIXjeAsRiCRKZnJTMfciUKiwWM+0VBTTkXyJ+2Qb8o+chlcmRKV3I2PsYQx3NaLtb8QgMQ9vZglgqozE/h9DERShcbArjkHkLaC27gUQqRdvVikrjgcJVg7fKhbpr58j565tkPvUyPfWV+EbETZNu8Wh8/GkuuUbwnGS8Q6MZaG9kfLCXyAW2hSW1ly+tpXmMaweEzwbEJqLS2J5hLBYzKjdPAmLnk7b164QmLKSzphSzycj1T//Egi0P4B0aTeQCW/afi5snEyNDGKcmkatcCZ6bSmd1CcWnPuG+Vz/CIyCU3sYqjFOT9LfUEhiXxD3f+jGh8xfRWV3C6od/hMbbD7WXH72NVZz700vELF7Dkn2PI1OqkKtcGepswdXTm8H2JptaQKZA4+0/XSibmbdqC1O6USZHh/GLiGdsoIeTv/4RW3/0a2LS76G90qaa3fj9VwlLTKevuRajfpLz773MA298glLjRn9LPSqNO8sfeIrwZBtBH79sA/2tdei0g8xZvoGW0utEpCwlY8+jWMxmpDLbYpC7fzCTYyMce/17PPzOMRQuakyGKXwj4vnkmfvJfOplotJWIFMowWplXDtgO391Y0yNjbLqoR9iMkzRcauIix+8zppv/yexi9fQfquQ6EWraS2/gYu7Fz5hMQx3t2My6Fn+wFOYjUbcfAMZ6+9GpXHHP3ouJqMeiVSOVKEkKD6Z4e42pHIlnsGRtJReJ3HdLqRyBf2ttkXI8398kQVbHqCtwtY4KSB2PqEJaYQl2ubuzU+/TkjCQnoaKqfJkF/hHRLFxIgWlcaD1Q//GEQigSwLmbeAzuoSjNMkqFzpgsrNk9pr77Fk32PCfBOWtJg/f3sdS/Y9TvKGvTZ1SXwSbRX5XPrLr7nvlb8w3NtBYFwSvY1VaLvaULl70lJyHc+gcDY88cK0osUNN98AAuMS6awu5tSbP2Hx7kdspGbyEva/kkh3XTlgu0d7h0Rx7o8vErt4jY1UrSwgeG4q1/75R6xWC8vvf1IgcxvyLyGSSGjIv0RoQhqbn34dhdqN5pJrSKQyOqqKkchkbH76daRyJcapSaxWK26+gXgEhiESiyk4+hHhSYsJT1mKRCoVxnOosxltTztffPA6GXsfIzJ1GTGLVttIPe8AmouvYdRPUn3lDHFL7qWzuhT/6LlMjmnZ+ezbmIwGLOYpJka0+EXOYWJES8HRj1j9rR+hVLuh9vJF5eZJXd4FvvivX/Lgm5/i6uHNaF8XLh7edDdUsvfF9wEEMlmuciF0/iKB0PYKiaKzusQ2nw70MNTZjFzlyspvPE1ATAIeASFYrVbCkxYzPtTH3398P/d+5zlMRiON188TEJOAYVLHjp++jYu7B26+QRimJtjwhE1hJhZLbESMQonFbGaos5mIlKUMtDUw0ttJS8l1wpOXoNK4M64doK+5husH/8T67/6C1rIbSBVKNv/gDeEYSqbzqsIS0xnXDqD29uM7H16go6oIiVSGUT+F2tOH8aE++pprue/Vj2zE3/xF07nIZhQuGmRKFdquVlzcvAiMTaSjqgiRSERQfDJWq5WpMRtpFr9sA64e3vQ03LI9M8kVuHh401RwGVcvX/ST44TMXYBSbXsOaSq6iouHt3CP6qwuJWrhSkQiETKliusH/0Rsxr0Exibi4u7F2GAv7RX5mM0mjFOTeIdG01VTIjhkKi8cJSptBXIXNXNXbcbdP1ggjhoLLvPon7PorC5hcmwYl2niyys4As8g22Jlc3EuQfEpKFxckSqU+ITF4h89D6vFwthAD35Rc2kuuorGx+YWslqttJRcxyc8hv0vf0hz0VVhnnBx96K3qZqp8WFG+roIiEmgseAyrp62bGCL2Uxj4WVCExYSFJ/MrUsnvvoZ4Svf8W84oLu7m7NnzzoUkD4+PgQHBzNv3jyOHz9ORUUFO3bsmNVKsGTJErKysoQH+7GxMU6ePMnevXuFAnpmmLlYLBYsP3a1zuTkJL/85S/Ztm0bcrlc2JaoqCiHTm3Z2dm8+uqrWCwWEhISKCoqorCwkIiIiFntG1arlSNHjrBixQqhCx3YHuBPnjzpYA0BmyKjt7eX48ePOxEvVquVDz/8UFAbWK1W1qxZ42T3OHbsGOvXr3ewfa1YsYJLly4JSqOysrJZCySwdb6Sy+WcPn2aNWvWIBaLnQLE58yZQ0lJCZcvX0YqlSIWi52US3dCqVSyfft22tra+OyzzwRFQXl5Oe7u7k7WIbCtsnt4ePDZZ59RX1+Pq6vrXa0farWa8fFxwKagycjIcFAc2MfQjhs3buDq6sr8+fPR6/V0dHQIxW1jYyPu7u4CIWLvinSnBVEikVBXV8fnn39OXl6e0/HU6XQolUokEgnLly/n8OHDBAYGOhE7M4PLRSIRfn5+9PX1CeeMRCIRxstqtVJeXk5zczM7d+4kOzvboesg2IrkwMBARkZGeOedd6iurqa0tBSwkTMxMTFOx6qjo4PycttDh0wmIz09nRdeeIHh4WF27do1qyUKbEo/s9nscI7MJDhkMpmgELGPf3NzMyUlJezevXtW0lAkErF7925OnDjBwoULCQoKmnU1QCQSsXbtWi5evIjVaiU6OvquNl07AgICWL16Nfn5+Rw9epSHH374S99vx4YNGzh79iyBgYG0tLSwadMmB1Ue2Aiaq1ev0tzc7KQUs7+vra2NtLQ0hoeHBZLSTsp3dnZy6tQppFIpSUlJfPHFF4SGhjrYv+xYtmwZx48fx9PT06krJ8CCBQs4c+aMcJ0XFBRgNpsFghdsVuO6ujoHUiczM5Ph4WGOHj1KTEwM6enp5OfnMzExcddrLyoqCrVazeHDhwWy0c3NjS1btjgU683NzcL2bNu2jRMnTghqLzuqq6vp6upix44dQpG+f/9+zp49S2hoqGA/taO0tNRBKRsUFERrayvNzc2YTCba29vvatOLiYnBYrFw5coVVq5cKZBvM7Fp0yaOHj3K6tWrGRoacvj9wsJCOjs7mT9/PmVlZVy7ds1JedXZ2YlKpRIUk7MtwNhh78p3/PhxMjIyCAgIYGpqyuHa02q15ObmIpFIWL16NS4uLshkMiYnJ1m3bp0wt4yMjFBYWCg0C7BYLKxcuZJTp06RnZ19V6WavdMf4BB+bp9LZ3ZcvRNr167l4MGD+Pr6smrVKqxWK4ODg7S3t9PX1+dgaTUajbzzzjt3HYv/bXjyySfvatfLyclx+tvevXudFHszIRKJeOmll3jppZf+r7bLODnJQFsDFReO4BUSSWBsIl7BkciUKnbHJdLfUk9QvO3ZpLk4l0f/nM3k2DDNxbm4B9iC0tsrC4hetBoAhYsalZsnPfWVuHh4MzU+KhAnnsERDHW24Bdhu8+FJKRhMZkw6idpLb+JXOWKX2Q8tdfO4j1diJkMeuQqV0LnL0QilZH55IsMtDXSXHKNsPmLbHan2Pn01FcSFJ+MST8lEFKtZTdw9wvmOx9eoKnwikBeGKcmULjY7BwAQ12tjA32CoWWtqsNuVKFTOWCXOWKV3A45ec+R+MTiEdgKLrym4jFYsKSFrPxe68I5AlAV205/lFzkatccPcLpqu2DLPRgLa7jZB5C2yqm65WjPpJpAol1w/+kcV7HkWpdheIMPvxBWgtvUH0olVCsWW12GxI3iFRDPfYiBGvkEj8oubSUnodiVSGyaCnvbIAjbc/mw68hl43RnPxNeQurrSW5uEfk4DGxx9tdysdVUVofAKRSGUYJnVIZHJMRgMbnngRn/AYJkaGGGhrwGoxc/yNp8l86iW8giOJSFmKRCrDMyicltI8RCIR7v7B1F0/T+31c2C14u4fwuanX8czKJyOW4Vc/eQdHnrrM9oq8hGJRHgGhjI22EP6rm/R31KLV2gUg+2NBMQk4BsRj254EEQi3HwDuX7wTwTEzsdiMSNTutDbVI1HYBjufsE0FV1B4aKmu64Cq9XK2kd/SntFAZFptsXanoZKNv/gl4glUiwmIxKpjMC4RBoKchjp7UQkEhGdvpr2ygJ8w+MY7Ghi7wvvM9zTjmj6/iNTKHH3D6Hh5hf4hMXgGRhGROpSOqtKCIidT0N+DhKpbFqVpCB64SoUKle8giNtRbC7J6ahPvpaaolIWYJMoRQKyZ6GW5iMBsIS0xFNq4asFgueQeF01pQSPCcFsIVSjw/1c+9jP8PFw5uW0usYJnSUnfuMlMx9WC0WGvNzkCqUaLvbsFgsXP/0PSwWM2seeYa4jLUoXTX0NdeicFFj1E/RWHiZtY89i8Y7gN4mWzfQkb4uRCIRmU+9zOTYCHrdmM3qGhbDf//oPpbs/w7z79lGb1MNIfPSQAR///H9LN79bdRetxcBDZO2e0dndTEisQTjpI7h3g5MBj1uvoFsOvAaGh9/mgqvIJZKaS27QfKGvUyMDDLcczs8XK5yJevt53jwzU9Rqm2krYd/CBaTiUM//zZf/81B1J4+01bYRHoabtHXXItHQMh0wZ/M5qdfR65ypb+lTrDhWi0Wxof6cXX3Yul930Xt5Yu2u43R/i5c3b2wmI14h0bSVlFA7ifvoPH2x80ngIb8S3gFRaBy86DjVhFffPgGmU+9TFtFPkb9FBarmfHBPvwi4+lpuIViZAh3vyA2HXiN0b4uBqaJyKaiq4TOS0PhqqG17AZeQRGMDvSw4cmXaC2/QWSqbd5Ue/ow0FpP9jvPs+OnbxORspSW0jzmrtxES8k1XD1tBEt/Sx264QFhThrt76LiwhF8wmLw9gvCOyyGtop8xgb7CIyZj1zlSldNGQpXDT5hMai9/KjLO4+rh43A8AmLoafhFtquVhSuGixmW5dmj4BQ/GMSEEukiCUS/KPmIpUrCE9eQmvpdaIWrpyeZyfpa6wS/h0yL43OmlJG+7sxTk0CNvs4QOD0HG4jNUsJmbdAmMe7akoxGfSY9HoQQWdNKRazCf+ouQTEzMM/ah46bb+wUGHUT9LfUk/x6X8AsPnpXwrbDhCRupSmoqvIlS70NlbhF2VTbPc11zA5OozCVcNQVwvSmc/nIhEX33+NBZvvR+3lJyyCADz8zjE6qorwj7rd2Rqgu64Cv6g5SKQywhLTaSjIISgu2WbtdfeiuSiXkIQF7HruXdrK84X7ZGdNKRGpy5AplEyMDNFScl04RxBBw80vCE/OQK6aXjAMjWKgvRGf0GimxkeZv8bGdQx1NNNSeh2VmyetZTewWsw0FOQQlbYCqUyOYdI5smY2/K8ipY4cOcJ7771HUVERQ0NDlJSU3NUGMBOHDx/m+eefp6WlhdjYWN544w3BwgG2g/yLX/yCDz74gOHhYZYtW8af/vSnu2YAfRk0Go1D0WB/kO3s7KSiooL//u//pr+/H1dXV8RiMXPmzHHo5GOXjlqtVvr6+sjNzXXqtmVX0dxZMCgUCtauXcvwsE36bjAYWLRo0awr8n19fahUKubMmcO5c+eYP38+CxcuBGyr8SdOnECj0bBy5UrEYjEmk4nPP/+c9evXO2S/2HFn17/q6mrmzJmDVColOTnZqaW4PRNEqVSyadMmjEYjly5dQq/XC0Xp6dOnWbJkidPvyeVyjEYjfX195Ofnf6nNA2xqKJlMRlBQEH//+9+dSA+wFSfPPvssn3322VcSUnd+d1hYGDdu3GDTpk38+Mc/Zs2aNUIez0zywo6WlhaeffZZgYCxv65SqQgLCyM4OBi5XI5MJuPatWuEhoZ+qYLtxo0buLi4kJhoe6hNS0vj5MmThISEoNfrKSsrc1jlz8jIcLBLAUKXQLsaLzo6moaGBmJiYoT3XLx40YH82759OydOnHAgHG/evElKSoqDdWzJkiVOv2eHvaATi8WcOHGCtWvXzkrs1NXVERYWhouLi2DRslqt1NfXC53kfvazn2E2mxGJRISEhDhY444ePcrSpUtZuXIlx48f55577pk1DyonJ0dQmqjVasbGxtBoNALBodVqOXLkiGD1uXr1KlKp9CvVSWAjLrKzszEYDNTV1TkoWiYmJigtLWVkZIQDBw7w0ksvORAud0NFRQXt7e08/vjjgiJr69ats2Z3zYSbm5uQmfVl18+KFSs4deoUbm5uTvNIXl6eQEokJiZy5swZB+VccHAwwcHBmEwmPv74Yx555BEhiwyc86nOnz/P1atXOXnypNC1046Z19GdeWJ2eHh4oNVqnfbBw8ODXbt2UVdXR3Z2NoWFhWzatImBgQGqqqoYHR2dNQuqra2NZ599lqmpqa+cD1xdXUlMTOTGjRsC4Zqfn28rSu6Yp0UiEZmZmZSUlPDFF18IJJ1er59VuZecnExqaiq/+tWvvnKui4uLw2KxkJuby8TExKwE344dOzh06BByuZyMjAyuXbvGwMAAaWlpwj3Avj0zYc/J27dvH2Cbx7q6uoS5aSbxPHNfd+zYwalTpxzsmI2NjYJVdPPmzU4Ks82bN5OVlSWQ2+7u7sK+WCwWh3vD3YixoaEhh3uHSCRyIqby8vJmzR00GAwUFhYiFou59957hTnGx8eHsLAwUlJShHNiZGSEixcv8txzz/HMM8/Mui3/xr8G3cgQkanLWLD5fvpaahkb6MbdP9i2aqxQYTLY8jK1Xa24+QUhkUpRe/qg9lxOX0stZ956lnseeUZQwYDtuF/75x+49zvPETNNVoGtkGwuzsU71Eb8D7Q1kpy5T1AH6SfGaS27wZWP32Lj918lKD4JmeI2oWoxm5BIZfhHzcFsMtFemY9S7UFAzDwMkxMYp2xEz/hQPz2NtwhPyrCpYgC/6Hn0NFQREONoB7VarUwMD+AREErmUy8RlrR42ko3iWFqYlp9NEHlF8dZvOdRwuYvEogKAKXGncmxYVQaD8BGeMlVLsI4BM9JYaSvS7B5maYztGRK235tfvp1QucvQj8xTkdVEVaLBYWrBrFESktpHnIXV9oq8m3FX3QCcpULmw68JhAa40N9NnWN1Yq2q5XexiqsFgvhyUsEpYV/tK0Iv/Lx7+htqiZD8ygjvR1c+suvWPXNH9hsNKNazEYDjfk5BM9bAFgZH+rHNzwWvW6M9qoiktbtxmq1YjIahP2XKV3oaahkYngQhasbiESEJ2UQkrBwOiPHVoBZrBa2/vBXDLQ3IpUr6GuuYWp8lOiFqwRrZGvZDa798w9sOvAaHoFhVH5xHP+ouTSXXGP+2h2IJVI6q4qxmM2c/PWP2Pz064wP9mIxmTj9u5/y9V//E7WXL20V+QTPTaU+7zwFxz9m34vvC0Vdb5PN5jTc04HFZKI061PufexZxgZ6cPcPoau2DKxWguemonLztP17+twc7eui+NQnbPzeK7j7hzDa1427fxBiiRSV2p3Tv/tPdj3/B4F0BVBp3IleuJKrf3+bhvxLfO21vyKRygQrn2FSh0gkYssPfklPwy0C4xIZ7GjCOzQKtZcfZqOB7vpKpnRjNrvbwlX0NNxC4+2HV1A4ddfPU5VzCr/pgrwhP8eWrfPNp21kltWKVKFkcmwEN1/bfSMsMZ2bn3+IbniQNY88Q1tFPgEx89B2tXLiVz9g2X3fJXLBMhRqN9orC5kYHqS5+BoqN082P/06gXFJdNWWc/69l7n38Z8hEolZsPl+FK4a4bzcdOA1VBoPJDI5XsERWMxmtN2tnPvTS3zt9Y9x9wtioLUeucqV8JSlfPB4Jkvv+w/h2motu0F/az1mk1EglcYGeoTzprk4F423P5lPvUxXbRmxi28vvPmEx3Ls9e+z6ps/YO7K23Wnf/Q8Rno7aSy8wmhfJ2ajkZCENAyTOhQuakYHeghPzsBiMtJ+q4hzrz7Jnl/8mflrtuPmG0hIQhrdteVcfP81Nh14DavVQkBsAvc88gxuPgF4hUTSWV3C5gOvY5jU0VJ2g9ayPBLu2Y5/9DyBNJsaH+Gv39/Nmkd/ylBXC77hcYjE4mllWBpSmRw330CGOlsQiUR0VpegcNWw4YkXMZsMtJTmUXHhCGKJBKXanSOvPMnclZvwCAjBNyKOtop8Rno7Ge5pZ+fP3sHDPwTD5AQtpde5cfgDFu9+BKXGfVq1ZLMNWy1mhjpbKD/7GQt3fJP2ygKsVivD3W005F9iyf7vCKS+fW4Lnb8Is9FAV10FZqMBjY8/PuGx9DbVYLVYaCm9Tky67ZnbbDQw2NmM2Wjg8l/fJGPvY/hGxGGYtM2XSrU7U7pRzCYjlmn7HIAIES5uNrXSFx/+Eo+AUFY//CN8I+KF5wEXd0/6W+uEbZsaH2VyVMtDvz9Cb1M1wXNTGexoYqCtQZjzla5uNBVdwSMgFHe/YIY6mgWla3hyhqDcsmOkr4u9L76Pq4c3vY3VjA/1ERA7H4WLGqlcgdrbH213Gx7TCzWj/d2IxGI03rczhKPSVtCYn2PLLBzsJTJtBZLp2svdL4ihzhYhs9F+33Jx9yJywTImRrRc+fi3tJTm8eCbnwqEFNjvq9fwCooQjg2AV0gkXiGRjA70UHLmn7RXFrD1R7/GMDGOxM2ZU7gb/leRUjqdjuXLl7Nv3z4effTRf+kz169f52tf+xqvv/46W7Zs4R//+Ac7duxwyEP41a9+xdtvv+2Qh7Bhw4Z/OQ9hJqRSqYPlxW5N8fHxQavVCmRRZmYmZrOZ6upqh5BcuVxOREQEhw8fRqPRzGrtUqlUDmHmMzE0NMTFixfJycnh0qVLFBUV4eXl5VBsAFy5coXdu3fPWmzZW7aPjo6SlZVFWVkZf/vb33jvvffuWuyuXLmSnJwcNmzYgNVqpaqqStj2mJgYTp06RXx8vGC/sKsz7JDJZKxfvx6z2cy5c+fYtGkT7733HlKplLKyMqffKy8v54033uDq1auzbs9MjI+Pc+XKFd56661ZFVV2i6DdYvXZZ5+xYsUKJyXR3QrT3t5euru7+eEPf0h6evqXBt9arVbGx8fJy8sjNDTUwYY2MTFBe3s7V69exWg0kpuby9tvv82hQ4doaWnB39+f2NhYh2Nw8+ZNXFxcnJRtcrmcqakpTp065VTIikQigoODBTXV+Pg4J06cYM+ePQKZlJCQwIkTJwRSaqZKauZvpKWlCYqJ3t5edDqdU1i3XS11pzprYGBAyIlauHAhw8PD3LhxwymranJykqqqKnbs2MHIyAg3b95k+fLliEQiwcbW3d3Nnj17yMjIcCJP7ASpRqOhtraWffv2cfr0aebMmUN0dLTDsdHpdML4pqenO6lFPD092b17N+Xl5WzcuFH47jsxm0oFIDMzk4sXL/Liiy8Kwe1WqxUXFxeSk5Px8PDAarUyb948J9vqzPPParVy+vRpIiMj2bRpEw0NDajVavbv3y/Yw2Yjj8FmNTxy5AgfffQR58+fR6/XC79hNptnJQg+/fRTdu7cKbzPTprbCQE7kXOnJRFsahh/f39OnDjxpdfGyMgIq1atYmJiggsXLjgE24Mtj+hb3/oWL7zwwqy20a8ijqKjo2lqauKNN94gOjqawMBA5s2bh5ub26yfnZiYoK2tjfPnz7N+/XqH11paWpzUkNHR0XR3d9Pa2kpDQ4Pw/XdDamoqXV1dHDp0iJ07d3L58mXBrtvY2Eh1dTUikQiVSsVrr72Gi4vLV6qTwKb8vHLlCg899BAfffTRrO9xc3Nj06ZNvPvuu+zbt49ly5Z96XeCzQI8kyhduXIlhw4dYvfu3UgkEoqKiu6q4tqyZYugzNXr9URHRzsFiYMtW8jNzQ2FQkFwcDBNTU0OasGBgQEuXLjA5s2bkUqluLu7c/Xq1VnDzm/evOl03O4kprRaLV5eXlgsFioqKujs7ARs96OFCxcyOTlJcXExVqt1Viv3xMQE2dnZ7Nu3j9/85jdfOYb/xpfDMzAUz0Dbte0XEc/U+IiThc1iMaPtahVWvIe6Whnt60SmdOFrr/0Ns9GAV4ijsnPj915B4xNgI6HCYnCbth74Rc0VyCG9bhRV1O25fLinHalcwbffO0Nr2Q0HQupOSKRSIlKWMq4doKnwCiKJhMbCy7h6+jI22ONAhoFdbVCH2WQU/jbQWs/YYC9Bc1JQuKhthZjFisJF7aBa6qotmy4EXGgsvExAbCLqaTuEX+Qc2spvEp6cMWtTgd6maoxTEzz65yxaSvOcVtPtULiohYJ+anyEm0f+QsPNS9z36ke4ety+v1rvmKPVXjbLncloYHJUayu8RCKsVgsgsd0nLBa03W3MXbWZiJSlBMUnI5UrWP3Qj/AKjqSt/CY9jVVUXjjKg28etOWTWMwMtDbQ21SDYWKc6IWrkCtdCEtMZ7ing+aSaxQe+xsZex9j8e5v015ZgLt/MGaTgYCYBJpLcoVj0FVbRmBsIq4e3nzx4Rv4Rc4hLHERfpFzhDHrn84k23TAFuSr7Wql5PQ/hOwgi8VMZ1XJdPhvFZlPvYTGNxAP/xCGOprZ/IM30Ha3ofbyRSQSIZZIkcgVRKYupbepWhivE7/6IRuefBF3/xDiltyLUu1my7bqamW4y0aabH76daEor7mahW54kPRd3yI8aTGbDrxGUHwybRU3qbmaTfyyDQz32Oxtmw68hlgsobXshnAsjfopWsvySN18P+HJGWi72pjSjeIdGk1HVREubrbQe4CexiosZjO6oX58Qm3PSW5+wVR/9gG3Lp3gW+/a8mI8AkIZ7ulALJbgFRrFqm8+TWBcEhMjg6RtfQCL2SyoWCwWM4Gx8xnuaReI43HtACHzFiCWShnp6xLGxmw0kL7rW7Z8KO0AA+1NmA16Lv/tt9z/y/8WcnikcgVgZcdPf8/EyCDBc1KxmE14BkfQXV9JYKytzvONiKP9VhEKVw2uHt6oPX2Fz+h1o3gEhDHY0YhUNsD+V/7CYFujQARYzObpHLI0oUC35W91ceJXP+D+X/43EqmMybFhIpKXTCtfVILaZeP3XkHj7U9HVTEh827fR1Rungx1NNFUeIWMvY8x0tvBxMgQIQlpaHwD6ay2hf+LRCIefPMQHbcKcfezkXkikZjJ0WG++dbn9LfU4hMWQ3NxLvFL19NUeAXP4AhMRgNSuUIY/97GaqLSVgqESG9jFVPjo2x++nWC5y7AZJiit6magbYG8o/8Rch4Asj79D0C45NZtP0bqNw8BVJrqLOFe771DK6ePvQ2VuPq4YPFbELb3c5wTwcFx/7Ksq89aVNLDfQwOTaMR0AoE6NDBM1JxtXTh576SswmIw03LzHc3caWH9quSxd3L9SePqjcPNFpB5ApVKRte5CumlLhnJ4JiUxOaIItB3K0v5uhzha6akopP/85G554kfZbhbb3SWU2RWdEvEDEmwx6+lvqMExNCMf8/HuvMHflJsHGKhKJ8QwKIzwkg50/exe1ly9mo4G28pvT10cQnoFhwjzXVlmA0lUj2MEBxBIJvuGOgpexwV6qck6xePe3CZqTIpxjAqZthHY11FBns6BcC0/OwGqx0NNwC/3EOBpvf3xCo2kquopS7WbLb2utF+6XYCPKBtoaEEuknH/vZTZ+/1VGejvwDApHJBLhFRJpUx/7O8akaLvbGJ2+Rm0kay264QHhfJKrXPCLiBcssHZS1zA5QW9jFRaLGYlUxvrv/oKu2jL8YxIY7m5joK0Bo352TuNO/K8ipR588EHAVhD8q/j9739PZmYmP/7xjwF4+eWXOX/+PO+++y7vvfceVquVt956i+eee04o3j/++GP8/f05duzYrLlPX4a4uDj0er2QNzIT586dY9++fZSXl9Pa2kp4eDjz5893yGbQ6/V88sknPPLII5w5c0bIOboTEokEk8nkoCoZHBzk0qVL7NmzB5FIhMlkYtOmTdTX13PkyBG2bduGVColPz+fRYsWfWUR5+bmxoYNG+jq6qK+vp4rV64If1+0aJGDxWlmptKVK1ecVug3bdrEkSNHnLJiZqK/v5/r16+jVCr5+OOPhd+fDaGhoaxYsYJjx44RGRnpsAo/E7du3aKpqYm9e/eSn5/vlNcFCNa+oqIivL292bt3L1euXOHWrVuCVWs2DA8Pk5OTg5+fHzt27EClUpGcnOyQG3Un7GPj6+vLkSNHHBQ2Li4uQlZYXV0drq6uLFmyhMzMTIEEKCkpQafTYbVa2bt3L08//TTLli2jq6tL+A4PDw+ioqI4cOAA//mf/zmr+mLRokVC98VLly5x3333OZERAQEBQo7PnSopOyIiImhra6O9vZ3r1687ZfTYMVMtZbFYOHfuHEql0oEY9fDwmDWX5dSpU8I4ubu7O73Hbll69tlnOXXqlFOjgJqaGnbu3InVaqWiooKkpCQ2b95Mbm4uo6OjAoFstz3ZoVQqndQicDsc/9ixY9TX12M0GgWVmh1DQ0OzKhS7urrQarX4+PigVCpnDRIXiUREREQQHBzMyZMnSUxMdFBtDg4OCmH9dhvS1NQUHh4eiMVi9u7dy7Fjx1iyZAkBAQEOxYk9mNkemL9t2zaOHTsmXJcNDQ3ExcU5bc+ePXs4dOiQoNqcmXNkx4IFCyguLnYIztbpdOTk5LB3715qamqor6+fVYGal5fH4sWLuXXrFrGxscyd61gsWSwWPvroIzo7OykuLkatVs9q17obCgoK6Ozs5N577yU7Oxt3d3d0Op1D7tud71+4cCH+/v4EBwc7KT1v3brlQKrbMWfOHKKiojh+/PiXElJ2BAUFsX37dg4dOsQ777zD888/j0gkIioqis2bNwvXRnZ2NuvWraOjo4NDhw6xYcOGWbe9o6ODoqIifHx8+PDDD+86fzY0NPDCCy+waNEi8vLyZh3zmTbfrq4uVCqVE9Fp71S3fft2J3Ub2DKyKisrBcLX19dXmONmw8zzIy0tjc8++4zIyEhEIpGgkN6/fz+Dg4N4e3uTkJBAbW0tOTk5TtfSzI56M2Enpv7jP/6Drq4uxGIxIpGIxMREp/uITqdj7dq1ZGVlMTIy4jDmBoOBo0ePOimZ/43/OWYSHgBKtTvR6atpq8gXXmuvKCB43gI6qoowGfR4BIYRkXKbqG0pzXMgpYZ72nH3D8EjIASv4Aj6W+tpbmvAL2ourh7e9E2vpNuhnxin41YRflFzBNLGP2ouXbVlBMXP/pxhh9rTB/XClTSXXCPno98Iwb/d9RWoNJ6o3DyQq1xtK/sJC6nLu4DS1W1asRVN5IxixS9qLn3N1QTG3r63jA/1IRJLhLGISb+HrtpyRvu6CIpPcjgPtZ0teAXbxsFsMtFSeh2fsJgZ+zSHrtpywQ45G6xWKz0NVaRs2EfCPduYHBlyOEajAz2C4mXm3wZa6ohbuh5XTx+C4pPpuFWEWCLFxcOb3qZqzCYjwXNSbLbG0jw8gyJw9w9GqlBgMZsJT1qMd0gk/S23ibsvPvwVu372jk2ZZjQIWTGuHt4MtDfgEx6Lyai35Y1hI5+i0lbYcl/ikmmvLEQ3PIibb5CtkGqtZ2psBKWrG9rudkZ6u1B7+zHQ3kR40mKC56TYilGRiLHBXr717gn6W2oZ6evC3S8Iq9WCxWxmYlRLZOoymgqvoPEOYKS/i8jUZYwN9ArWwJaS64TNX4TayxePgFBUGg8MkxMsu/8J5EoXvKbzXOzHzzMwjKH2JjYdeA2/qLkCKWmcmsRqsRAYmygUfFK5Anf/ELxDo1F7++EbHsvU+CgKFzU+YTHTlsKrdNWWYTIaiFq4ErFYwlBHk2AZvZVzkqv//Xs2fv9VBtob8QqOIDRhoVDE64YH6W+pRSSWsGjHQwTNSbZZQU1G/KMTGGhrQOPtT8i8BZgDw2krv4HVYhEK4caCy7jOKIo9AkKRq1zJ+eg3hCdnkHCPbYGipTRv2u5UhxUryev30FR4hZCENEQiEY2FV3j8g3P0NNxiYsSmiu6urxAIQf3EOI0FlwmdvxCFq4bxwT5GB3oQTRfzoQlpNBZcJixpMX0tdQTFJyGRytB2tdoUdiNaNN62Do0u7l60VxYQlpiO1Wph1Teepj7/kmDxmhzVMtzdxv2//G9ay24If5erXPCPnsc/fvIA9732NxtRXJGPV0gk8iG1zbqrUDLQWo9uZIiF276BX+QcQhIWMjmqtVkczWZ8wmKwmE1MjY8iEottKrdFq2kquoLZZKS9soCQhAUo1e6oPX1puHkJn3DbInJgfDLddeU221RXK8PdbYQnLRasW+NDfZz41Q/Y8ORL0+RkKzrtABoff9ReflgtZjZ+/1UC4xIFMn5ieBClxp2hzhaCNB74Rc6hr6kGvW4M75AoOm4VonL3YssP36C5+BrhSYttXcA7m5kc09LbWIVXSCT9LfVou9vwDApn+deeoLu+kpB5C7BYzJiNBrxDoxjsaCJkXhpKVzemxkdRqt3pbqgUiGU3vyBhMcFsMgnHdyZUbp6Iutvwi56LpiQAz+BwPPxD7jrXSeUK4XoAm21NNzwgdFq8ExazCbFYgmqaiAcY6e2ktewGeYffJ2XDXqIXrRZUVgBSmRyTQT9NpN6GTjvAA298gquXz3QgvshGRk5f4wExCfQ2VhEYm8i4dkDIZLJDJBYL2z460ENL6XXEEilVOacQicVEpa0UiDWwLToExs5HIpMLmWFjA70C+Q3g6ulDbe5ZXDy8bFY9wD0gxMEeLhKLHZSYhkkd3dMEY09DJXV5F1j54AFkSheC5iQLc/bM8bBnNf6r9j3xV7/lfzfy8vIcgq3BlqeSl5cH2HJBenp6HN7j7u7O4sWLhffMBr1ez+joqMN/dmRkZNDf309jY6Pwt8uXL7NypS28LDk5eVb1D0BJSQnJycmcPXuWlStXcvXqVU6cOMHAwIDD+zIyMrhx44bw7/7+fi5fvjyr+ik2NlbIEqmvr6enp2fWzKPZ9vHQoUM89NBD7N27l02bNrFp0ybmz5/P1atXOXPmDGfOnKG8vByr1crcuXMpLi5mfHwcHx/Hi0YsFgtt7+9sRV5bW8uJEydoaGhg27ZtbNiwAV9fX1JSUrh8+fKs29be3s6yZcvYsWMHGo2G48ePU1lZKbxutVo5c+YMZrOZrVu3IhaLZx13eyc3Hx8fpFIpRqPtAWjlypWkpKTw2Wef0dPT4/AZnU7HiRMnKCkpYfv27SxdulQY88DAQEJCQpxaz4NNsTU5OSnYxhITE6moqHB6X3NzMx0dHaxYsWI6aM+We+Lv78+KFSvIzMwkKSlJCKfPzMwkMzOTDRs2sGjRIiE0+s9//jNVVVWcPXuWs2fPkp2dLVgGs7Oz+fjjj1m5ciXR0dECoTgTixYtoqCggPHxcVQqlVOBZzabqampYWJigrCwMCQSifBb586d4+LFixQVFdHY2MjQ0BC+vr7k5ORw9OhRli1bxurVq53OVTvZaseVK1dYunSp02/PJFqysrKEdu8zjyFAZWWlQBjd+VvLly9HIpGQk2OTsGq1Wqei267+seP69eu0trayZ88eFAqFcG6dOHECs9ksvO/OEGmz2czp06dpbm5mz549fPe73yU+Pp5Dhw45qB4bGxsFZYhMJmPXrl2MjIxw7tw5rFYrxcXFFBcXs3//foeMMb1eL5DXIpGInTt3Ch3ohoeH8fDwoKGhgYKCAvbv3y+Q2VKplMWLF5ObmwvYzr2ZXQ3tkEqlbNmyhaNHj2I2mxkdHXUaq6CgILq7u4V/m0wmhzy5OXPmODRamDlWY2NjhIeHs2LFCif1o9Fo5J///Cf33XcfTz/9NNu3b6eiooJjx47R39/v9H0z0dLSwpEjR/D392fHjh2CCi4jIwOLxUJ+fr7TZywWC52dnYIaKyEhgbGxMdra2hzeN/N86unp4dixY9TU1HDo0CHc3d05duzYrKTmTPT29nL27FnByh0WFsamTZuYM2fOrERHSEgIe/fu5caNGw73p4aGBo4fP05vby/bt2//UuXT4OAgtbW17Nmzh4CAALZt24ZEIuHEiROC5RAgJSWF0tJSrFYrV69enbXbpp1Iv379OiqVivHxcb744guysrIEIiczM5NNmzah0Wg4dOgQ/f39DnP1TPT19TnYatetW8fZs2c5duwYGo2GdevWIRKJuHXrlmDfjI+PJyQkhAsXLgifGxgYmJUUHh4eJisrS1AZ7ty5kxUrVrBx40Yhi8yOoqIigYjMzMwUbKdgu54PHz7Mvn37nIi4f+P/v7BaLQRE2zp7nXnrWbrrKuhtrMI/OoGIlKVOhYZYIsEyYy4e7unAI+D2e3zDY4lcsJzxwV7Bvtc5HRTbXV9BX1MNUQtXOlgd1F6+SGQKhns7+DIYJnU2a5HGg80/eIPoRasIS0zHJywGsUTCcE87HbeKaK8soKu2jKt/f5u+llpCEhbi5hvo8F0KFzWGidsP6haLmd7GakH5YUdQfBJufkE05F/CqJ/E3T+E4Z4Oxob60Pj4MzbQS0vJNSKSMwSVhW2f/IQuf7PBqJ+iMT+HwLhE3P2D8QmNxmiYYqS3U3jPaF8nbn63t7u7vhKddsBGfEzfsyUyOeHJGQTEJNDTcItjr38fs9Fgy3Pp68LF3Yvaa9lou9sY7ukgInUpATEJQkB6WGI6UrmCjd97mf7WegyTOiZGtLi4ezHQWk9XbRnRaSuJSV9NZOoyLCYTZ956Fr1ujI5bhbRXFjDY3sBgRyM5H/0G/cQYrh4+hCdnsOLr38c7NMpGgoVGcfyXT6PXjTI22MtwTzsab39aSq6h8Q1ErnIheG4q44O9gqKno6qI0ASbsig8ZQlFJz5GKpMz1NmCbngA3fAgp3/3U9wDQlC42jpE9jTcAqCtMp/592xHqXF3sPIAdNwqJHjeAlvw+3TXtu76Svyj5xG5YBnNJdcwGQ1IZHL6mmswTOpYtOObNvug2cxge6NQ7CGyXRPtlQWIJVI6bhWhn7DllWq7WmkuziUsMZ1NB14jPGkxSlc3OquK6aotI+v3P6Mu7wK64QHCk5cQnrQYmVKFRCojdP4iwpOX0N9Sy+W/vonFbKK9soDO6mJy//EHRNN2zfGhPoLnptBWfhOpXMHk2DBtFfn0t9ThExaDUT9FW0W+YAu9+P5rdNWW4+5nU2nYCOhi+qbVQPYCXCRCmA/G+rtpryzApJ8k959/oK+5hvbKAsxGPZ+98DhT4yNMjdts+pFpy2kpuSbkeU2ODTMxqmVydJicj34tED4TI0Oo3DxpuHkJr+BIRGIxMYtW01R0lSndGF215YQnZwiqm/4Wm2XLbDTQVVvGzp+9i2la/WG/l6u9fAlJSOPMW88y1Nki5HbZSXa5yoW0rV+3dZEbG8Zk0PPX7+/CYjYLY6twUXPpw19Rl3ee/pY62isLGNf2U3D8r4z2d0+PbS3VV7KovnIGq8VMVNoKJDPsbmODvex76b+QyuR011Wg9vZnbLCHkd5Oxgd7CZmXNq12sZGS+olxNL6BRKQsxTs0mubiXCZGhtDrxjAZ9DTm5+ATHico6ryCIxjsaKKvuZa4JeuJTF2GxieAqpxTnPjVDwiek4KHfwgSmVwgnW2B+Gm4+Qbh5htE+60ilGo3pnSjtJbfJDzptgPDwz8EsUSMtquVydEhXGYQ5eND/TSXXKOn4RYh89LwDYtlyw9/hV43Tne9c701G2yLID7sfu4PSGRywTY7E3YF4Ey4+wejcNWw6ps/QKnxYHyoz+F1v6g5DkpJgIkRLWaTEY2PP2KxhND5iwiISaClLE9478x7QX9LrQMRdCdUancULhqsVgsFx/46Pd9YCZ2/iLDEdMIS0/GPnudwPgBofGxNIsKTFhOetBgXDx9y//kHBtubCEtaTHhyxpeSemDLWwuZt8A2n4bFsPS+7+LmGyiQvzOhcFGj14196ffNhv9VSqn/Cezdc2bCvgJsf93+t7u9Zza8/vrrvPjii3d9fdWqVZw7dw6FQoFcLsdsNjt0jrqzgxzYslICAwOZO3cu4+PjFBQUsG7dOqGj1fXr15k7dy6xsbEOqpLe3l7y8vKccm3slhp716m9e/eydetWfvrTnzq8bzbbzcTEBEePHhUKWHvnwLi4ODw8PBxIvPb2drKzs7FarWzevJmzZ89SXV1NcHCwQ5hzREQENTU15OTkkJqayvXr1xkYGCAuLs7BymEnYcLDw9FqtZSXlzvZ06xWq1AMREVFERUVRX19PceOHSM3NxetVsvGjRsdVrbvtD3m5+fj7+8vEHQajYaxsTGBTLhTNaXX6zl9+jQymYzNmzc7ECUzu2bNnTuX69evO2UynTt3ziFXKTY2liNHjjB//nxh7Ds6OqirqxMUDnZiaKYlzmAwCNkuX3zxhbCCb7f6qFQqrl27xvj4OLm5ubOqJaqrq/mP//gPwJb9c/36dYcCWqlUCtamY8eOsXv3boqLi+nv7xcenMRiMbGxsWzYsIGDBw+iVCodfstoNDI6OopWq6W5uZmCggKefvppTp06RXl5OYsXL3bKj1qyZIlg4Wtra0MikTh12rOTiykpKdTU1BAcHCwQNKtXr+by5cvC+dnQ0OAw5ncW+klJSTQ3N7N27Vp+//vfO41TfHw89fX1REZGcvz4cRYuXOhE2iQkJBAZGcmRI0dYsmQJISEhDA0NCYqjyspK6uvr2bBhg8P1HhgYyO7duwU1VHR0NHV1dU4Wt7i4OM6fP8+ePXt49913eeCBB5z2YzZF5ebNm7lw4QITExNCgPts6p7Q0FBaW1vp6OiY1X5nh5ubG4mJiSQlJQkk1p2QyWQYDAZkMhmHDx9m9+7dDkW7/fWZoeozO5FqNBoh4B9sBPDx48fZt2+foPgTiURC8PS1a9e4du2aEKRtx9jYGBcuXCAsLOyueV8LFiygoqKCa9euOZA4d3boBNt8fuTIEby8vNDpdEJ2UmdnJ4WFhfj7+7N9+3ZEIhHZ2dksWLCAxMREsrKyCAoKcrBPW61WCgoK6O3txc/Pj61bt3Lt2jXeeecdmpqanH5/fHxcsD3b93/Dhg20tbWxdOlSPv74Y1JTU2e16d4Jg8HA+fPn2b9/PzqdjpKSEsLCwgQbbFdXFydPnkSj0bBq1SosFouTbQ9uE3fNzc1MTEywceNGwW69dOnSWdW9dmXv8uXLuXnz5qydHUUikcN2i0QifvOb3zhlPE5OTjqMSUxMDBKJhOzsbDIzM7l586bQjXVqaorc3FxBTbh+/XokEglSqZQNGzZw6NAhgTSbic7OTkH1JxKJWLNmDRcvXmTNmjUcPnyYXbt2zapC/Tf+5+ioKp7FuiC2BXX7h7B49yP4hMVgNpmYHBtGpghw+o6AmPl011cQPCfFFuB9x6q0HfZso+66Ck69+ROC5y3gnm89I1jhnN4fNYfmkmu4unsjvWMbzUaD0HUrImUJIrFYKCTDkzOQKVTIfFVOxNOGJ14gZF6aTcVimMI/ah4u7s4LIyKRiNayGw6r1DOh9vQheuEqWstv4OYTyNhgL4hEdNaUIpZIHewjjmOVQFPhFVw8vJFIpMDMLoX1RC9a5ZBZFRibSFtFPjKlChd3r+nnMBsJ2FxyDd+IOMEaeSfMJiMqtTuZT71MWGI6JoPelpGln6Qk61P2vfC+k+3S9jkThskJIuKT8YuIp6OqiJ7GKjTe/gTEJDiMiVE/hbarlZXfeJp5qxyV3YbJCVZ98wdIpDIGWusxTIzj5hdMd10ZE6NasFrZ+qNfo1S74erpw0hvJ2238rl+8E9sOvAa44O9KFzd8AqJZKijmf7WenzCYhwsP9ruNkITFyFXuaD28sPdL4jRzfczMTzI2HSui/1YBkTPQyQW4x0SRVdtme2YAQPtjbh6+AjZZh7TAeNYrUJwd0D0PGpzsxFLpPhHz8MrOAKA0PmLBNuMWCqzdUg0GghPWTJtbVqIFSt9TTWc++NLbPnhr4QOjNquVtu55OWL2suXzuoSNn7vFRu5ph3AOzjSqZA1Tk1gmNSx98X3EUukgvV21TeftimMLBa0Xa0MdjST9fZzJNyzDalcSWjCQkTT4fx2NRLAYEcTG7/3ClKFkqHOFiHjqiY3m9H+btJ3PszINDGs1Liz8htPI1e6EDIvTThP1zzyjGC7G+3vZsn+72Axmxjp68IwYSuCRRIJWW8/x6YDr6HUuOMfPY/gOSmo3Dxs3RsttnBwnbafC++/Oh0KbiNjFdNB5xu/9wptFfm2wHG/YDqri5kcHaap6Coxi1YjlkhoKb0udCkD2zzRWnaDrT/6NQq1m2D7cp22eXZWlxCamE5PfSWGSR0yhZL0Xd9CLJE4ZAptOvAaUrkShasa75Db9nb7OA51tgg2xbGBXkQiMV7BEYjEEkYHeqaPs03hY+/mNjbYhzXcKnQyFYslePiHoO1qZaSvk/Ak23WmVLsRuWA5ndUlZL39HIFxSaz65tNCdh3YyJnmkms2S2dwBG0V+VjMZsKSFqNy96KzphS5ypWgOFtdp9eNIZZIBFWRm28giET0NNxiqLOZ0ISFTvZpv8g5tFcWYjLqCYpPpr+1Hp22H1cPH8HaBgh5S+5+QYwN9NJUdJXI1GUO85odVouFxqIrBMUlC/OwT2i0oD4KT14iPJ9YzCZEM2pAq9VKS+l1vIIjBfJ/oLV+WtG2cEYuot7hM111ZU72bplSRWTqMsa1AzQX5+IZFI5EJmN8qF/o2gfTVvbOVsa1/cJ2yRQqvEOjMRmm2PbMb6c7yA4L+VL/KnTafva//CEyhYrG/BwiFyxzuv7tNsU7x7K9skAYw96m6ulFJEfngG9EPF21ZYLd8l/F/zNS6pNPPuHxxx8X/p2VlTVrbsT/K/z0pz/lBz/4gfDv0dFRQkMdD/r69es5cuQIWVlZfPDBBw6vrV69mgsXLrBx40asVqsQBGtfnVer1eh0NmZUJBIJOSJVVVWcOHFCILi6u7spKCiYNUQ6NjaWhoYG4WG+pqaGV199FZlMxrlz54S8DX9/f/r7+4VCa2xsjFOnTnHfffcJxEtcXBynT592svaAragNDQ0V9jMjI4OhoSEqKioYGxtzKo7WrVvHwYMHWbNmzaz5KG1tbQJRlJKSQk5OjtDZ68sQGxtLT08Pn376KatXrxbyV2azudy6ZVutmmmxcXNzcyCl7LDnZW3fvl0oJO9EVVWVQ+G2dOlSTp8+jYeHBz4+PtTU1BAbG+u0qr5q1SohS6a3t5fS0lKH9uS+vr5Oao6jR48Khfbq1as5efKkQ0FqL/ZcXV2xWCxOhEVxcTEGg4F169YJrcDvJGWnpqaoqqri6tWr/PznP8fHx4fU1NRZc1VKS0tZunQpXV1dtLS0CKSNTCbD29sbb29vhoeH6e/vJzs7mw0bNqDVarlw4QJmsxkXFxeWLl2KQqHA3d2d4eFhjEYjN2/enLXjU0hICGVlZcydO5fq6mp27twpvKZSqZicnBTGYbZGCHfajPr6+khNTWVqakoINLafs5GRkeTk5FBWVuaQ73Rn9pKLiwt79+4lNzeXhoYG9Ho9RqOR06dPM2/ePIdtnAmJRMKOHTvIz88XlDh9fX2UlpYKyis3NzcWL17MP/7xD8LCwrh165ZASHt4eLBo0SKmpqaEbTMajTQ3N9PS0oLFYmH79u18+9vfZs+ePUJ+nVwux9/fHz8/P7y8vIRuikql0laodXdTV1fH5OSkw/WrUqnw8vIiJydHeK9EImH+/PkEBwcLSqfx8XE2btzo1Oly5cqVXLlyRSBdLl68yL333uvwG2FhYbS2tqLRaDh//ryDtfROwmL58uVYrVZu3rzJjRs36O/v5+zZs4hEIrZv3/6VKpbExEQH+5edEJstO2/Hjh0cPHgQd3d3EhISOH78uGC/mw0ymYxt27bR3NzMZ599xtDQEFlZWZhMJhYuXEh6+u1MBHugfnJysjCH7dy5E7lc7kTKGwwGcnJy0Ov1/OlPf8LDw+Ou+zeTZLRarXz++eeCvXvmPcaOoKAgtm3bxsjICKdPn+bhhx/mscceExoIzCSkg4ODWbhwIS4uLhw7doypqSnS09NnJaRmzgsAixcvpri4mIKCAhYtuv2wPVOV2NnZSX5+PufPn+fw4cNER0d/6fGMjIxEKpVy5swZTCYT165dY2RkBKVSyfLly2fdLpFIxL59+5yIqdbWVqf7ja+vL3K5nIcffpi33377rh08/43/OULmLXAITb0T3qHRQnE22N5ES2keMqWKwLhEIW9DrnIRFApdteWCkmUmrBYLA20NNjICWPed55HKFQx1NDHU0SS8T+Ptj3tAiPDdEclLaCjIsVlL1G5YLRY6qkuwmE2EJKQ5rAaLJRIQiTCbTEKArMM2TF+bEqmU0IQ0m0W/uYa+5mrc/UPwDAzDKzgSbWcLFosZD/+QuxJsYLNSRKQsZbC9ict/+x3Bc1NZvOfbdyXZ7IhIXUZT0RUCYubb7IwttZgNBoGsuBNhiek2C9R0ATwxMkRXXTkRKUsdwoft+wg2pUVndQlRC1fSVVsmBAq7+QYy2N7EY+9nM9TZQntloZBpZEfHrUJCpgsX2/fZ7HDJ6/cw2t/N2HRnsaHOVswmI5Fpy+muLcc8rYQBW5EUGJfExPAASo07ai8/Rno76bhVSNY7z/ONNz/Fxd2Loa7W6fwrmBjV4h81l8ynXhLOOb1ujNGBbqZ0YxQc/YgFm+8nZeN+4ZwNTVhIZ3WxYOdpri4mbevX6Z5W1VgsZhoLLgvh1EOdLYLNrrPaZhcSiSXTndKqMEza7keX/vIr1jzyE4cA/6t/f5vUzffjOt3OXiQSoVS72xR19RWY9FMEzUkWOsR5hUQx2NmMT2g0FrOZ+179aLpD2qCDJdNsNNBcel1oQd9eWUDw3AW0VxagcvMQrEyGSR1tFflEL1otWOs8AkKxWm93NBWJxYhlMswGPZsOvIarhw+j/V2MDXng5hPgcD8f7unAMKkjPDmDltLrDpZcs9GA2WTELzJe2J/2W0VCoHhDQQ4xi1Y7FMeDHU1MjY8yd8VGWkqv4z8jL66jqoh9L/0X+omxWVUnYrEEN99AtF2t3P/G39FpBwSFYl9LLRueeBHv0ChcPXwYG+qju65MOE4bv/cK40O9uPkGEZ6UQWPRFRQqV6bGR+ioKraNl1gsZL8BjA30MtLbyfnpDLGZlk0Az6AIWkrziEi53ZQjKD5per6owS/Stm9mk5G28pu4+wWzYPPXmBgZwicshpG+LlpKbcqb4tOfkLrxPodzyWw2kXfoPTY//bqDzUskElF77RxuvoFOqiBXTx/WPvrT6XlMLORC2T831NFM0cm/s+nAqwTPTRWuxfHBXqGZQmv5DSZHhyk79xnz12xnsL2JybFhoTudtruNvEN/xuvpCHTDjm4hO86++wtWPfRDQhPSnLKa7GNi/22Njz9KjTsN+ZcIS1qMwkUtzFFG/RTNJdeInO40NxNuPgHIlS405ucIKlCbUsp2XzBOTQqk1Uxyzic8lqnxERryLxGelOHwGtjmpbAZZOOdsDfxGOpsYXJ0mLxD75Ox59t3ZFyFC8067LBardNdaFcJ4/iv2M/tGBvoxWI2CeRa1MKVNBfn4h+T4HA/0fgEMDboaOHua65B7eUnkHr+UXPRdrfRXlngQKxKpFKHLoT/Kv6fkVLbtm1zUIfcqZb4VxEQEEBvb6/D33p7e4VVdfv/e3t7HZRMvb29X9rZT6FQOBVcdphMJq5fv87Y2BhqtRoXFxfOnDkD2AqVtLQ0vLy8MBqNWCwWPv/8c+655x4ny5tCoXAiFObNm8e8efNob2/nueee49y5c3cNPY+OjiY7O5vY2FjMZjO3bt0SrDQeHh58/vnn7Ny5k7i4OEpLS/Hz82N4eJizZ89y3333OZFJYrF41twQsOUyJScnc88993DlyhXWr18/qw2ouLiYN998E5VKRWlpKWvXrnX6voaGBoe8mtWrV3Ps2DE8PDwclFcz0d/fz6VLl1ixYgV/+9vfWLZsGVKplLy8PIaHh1Gr1YL9pKWlhb6+PofuZ2BTaQwNDTl997lz5wgICCArK4vi4mKCgoKclFuzjcumTZs4dOgQ27dvp7KyctY8LW9vb8bHx+np6SEvL++u5IX9AfbixYusXLlSWKEXi8VC1zFPT0+MRiOtra0CSXnvvfdy9uxZgejKzc3Fzc1tVnJpJuRyOe3t7ezfv5/U1FRGRkbuWhB2dHSQkpJCaGgohw8fJjw83CmUOysri/vuu49z584BtsBwuyJIp9Nx9epVofvY1NQUR48e/cpOYydPnpyVjF2wYAGFhYV0dHQ4KTGioqJoamoSFGxZWVlERUXxxBNPYDQaHQpke/jxc889R2Njo8P13tfX50Tkgc0S2NPTQ2BgIB9//DEPPPDAv2TvSU9P5+jRo/zoRz/i0KFDTl0I7fl2d3Yx1Gq1XL58mYceeoh33nkHlUqFTCYjMjKStWvXIpFIOHbsGEajkTVr1gjnzdTUFP39/bS2tgpBzgaDgX379nHmzBmCgoJIT093UHaBjSj43e9+R3d3t6BEMZvNVFZWCtbYzZs3c+TIEQclix0z1YptbW2oVCqnLojJycn88Y9/JCgoiH379n1lXo9IJCI9PZ2cnBx27tzJP/7xj/8jW1V8fDwymYzz58+j0+kE1ebk5CR9fX309fUxNDRka4M+bWP8+OOP+frXv/4vZQmp1WpkMhmPP/442dnZbNmy5Us/FxAQwM6dOzl27BgrV65kdHQUd3d3Ojs7KSoqQqFQsGrVKpRKpaAMKi8v59SpUw45VL6+vgwMDAjje/LkSTZu3PgvqXvMZjNGo5FNmzaRmpr6pQH1RUVFpKamEhwczKeffjprPt2tW7ecMukWLFhAeXn5rOHtVVVVdHd3C/Ph5s2bOX36tFNe3J0QiUTU1tbygx/8wKn73kzo9XpBrTcbMWUnocE2D9y8eVO4N3h6egoW0/T09Fm7eP4b/9/DOzQK79Ao9BPjtFfYsjBs4bieyKetAVaLRSgcTAY9vY1VtpVqkQjf8FihbbfZaKCnsUpodw+2+9bYQA+dVcVC4WKdVqtUnP8c38h4dNo8guemOhUbdgTPTaWrpsThYdyOwfZGB5WDSCQSCv7hnnZaSq+jVLszNtiLXOlCeHIGxqlJwRZmNjpb7u3f4xkUhtrLx4lkmwmJTI6rhzcu7t4ExiVRfeWMjQibDgD+MkSlraA+/xKjvZ1IpDKnlf6Z0E+M036rkOiFqxCJRATGJtJRVURYYjpjg724enojFkvwCY1m0mOYhpuXiEhdKnxWIpNP288KsZhNBM1JYcOTL2I2GvAMDMNsMlF58RhNxVfZ/pPfIhZLkCpUGKcmkahl9DZVo/EJwMXdlunVWnbDpmLyD8Zk1LP3F3+mp+EW7v7BSKRyzCaTkPHl5htoC9lurcc3Ig6l2g3DpA6ddoDNT/8Sn/AYOm4V4REYhldwhIN1dKS3EzffIKQzLEr68VHkShc2fu8VgdTT68YY7GhGrxsl95N3WPXQD5EplHgGhQvExD3fesbhHNJ2t7H7+T8yMaoVvsdqtTI1PkJvUzWlWZ+y8XuvMNLXjcLV1shD7enDYHsjSvu/pxVRbRX5wrk0PtRHb1MNkanLHYhUW5D/EsaH+mgsvMLE8CB63TjR6bcjGEKmbXYqtRteIVGYDHraKwvQ+AYStXAlgx1NKFzdiAyNEnLdgufankPHBnsZH7LZxgCUag8mR7Wo3DwZ7e9C7e0vBHkHxiUhUyixWsyCsiYiZSkN+ZeE7elpuIVEJheuZ+/QaAbaGmw5TRYzJoMer+AIehurhIww+7Vjx1BXK65evrj5BAjXkNVqRTfUT+SC5TSXXEPt5YebTwBuPgF011ew4YkX8Iuai143KhAHpqlJys99RtqWrwsEnh3253qNjz8DbfXs/Nm7yJUqB0IKbOo1sURCc3EuETNUQH6RcxjsaKL9VhGj/d2YjQbCprOj9LoxzNNRGO5+QUjlCiZGBpEpFhI63zFTuLnkGl977W8YpybwmUHsWCxmmoqu4h0W4xQsPtzbgXdIFHIXNaP9XYLCyg7D5ATbf/JbRBKJk3ULbPat8OQlNBbkUHHhKFFpK1BpPPAIDBXeb5yaJPOplwiak3pXYn/DEy8iVSiZGNUKZPCXQaZQErN4jY28m7ajTYxobYql9NXCAsSdsCnEltFYkGMjE60WxGKb/XmwvYmY9HtmVV8p1e7ELFpNa/kN3P2C0Xj5MTbQi8mox8Xda9ZFGJPRMG1NvN1NWuGqQe3lR/C8BXfdRjs6bhUJRD7YMurEYolT0P5ssAW+1zoEo4slEqIXraKzppTJkSHhvunmF0RnVYlASo30dWE2mfCLdIwH8gwMQ+GiprHwClELlgvj9D/J4vx/RkppNBonOf3/BEuWLOHixYscOHBA+Nv58+eFNtCRkZEEBARw8eJFgYQaHR3l5s2bgr3p/wR5eXlMTk6yZMkSgUCxWCzCQ73BYKCoqAitVktXVxcSiYSqqqpZ8y+WLVvm1P2rurqaxsZGJBIJ3/zmN/nWt77F5cuX0ev1xMfHOyiZZh7wrKwsoYgEm3UoMzOTgwcPsnPnTsbHxxkYGODy5ct3LQQXL17MjRs3nAqIEydOsGjRIoHUu1uOSmtrK+Pj4zz66KOCmufkyZMEBAQ4EJAmk8mpcNq+fTsHDx5k7969SKVSh4fEnJwcAPbu3YtIJEKv19Pc3MycOXMEIspu5/nwww8RiUQcPnzYafs0Gg2tra3Cv/V6PUePHmXNmjX4+vrS1dVFZmYmt27dcioAZ4Pd8qFSqTh48KCgUrFvtx2Tk5MEBgaSlZUldPWa+b0JCQncunULsViMp6enA3kKNvXJiRMn2L59u9NxlslkuLi4MDIywo0bN4iKipo1aHom+vv7uXjxIlu3bsXV1ZXm5mb2799PdnY24eHhDoHId+aDrV+/nnPnzjnY+M6cOSNkPs0GV1dXQTljMBjYs2cPJ0+eJCsry0HlMRPPPfccCxYsQKPRCK/ZlRxisZiHH36Y8+fPO/1WTEwM586dIyIigs8//1w4tvbw9ZkBzGKxmLq6Onp7ezl06BD79+8Xtqe7u9spgwZsx/LKlSt88MEHREVFcfLkSdauXXvXrpX2fbZfQ2+//TYpKSkOY9rW1kZISAgikYi0tDQKCwsFO5inpyehoaF88sknmM1m1qxZ4/DdxcXFpKam4u/vz6lTp4QiX6lUCgpHO44dO0ZdXR1arfaujQNKS0vZtGkT586dY3JyUsgaS05OJjk5WVBjLl26lEuXLgn5YK6urqSlpaFWq4mIiKCxsZHCwkL279+PxWKhtraWlpYWYXz/8pe/8Pzzz9PY2Ohggb0TFouFS5cuodPpWLVqFdnZ2SxfvpwjR46wePHir1RX2hEVFUVeXh6vvvqqoIBRqVT4+fkRHR1NWloaYrGYzz77jM8++4y0tDRhoSEmJmbW4O7W1lbKysrw8fERbM328O6MjAyHsb/z2pDL5ezbt49z587x5JNP8rvf/Y6goCC2bt0663WUlJREREQEn376Kffeey8+Pj5ERkZSX1+Pr68vV69eJTEx8UtVVWC79126dAkPDw927tyJUqkkOTmZixcvOtyHZqKjo0OwudmD82daJmfrAjZzu6urq7ly5YqghL558yYSicTh91xdXQkPD6eqqor4+HgH0stuh+zp6SE4OJj777+fxYsXk52dzaZNm2ZVyt5pHZxJTK1YsQK1Wk1xcTHd3d0C6enj40NjYyNxcXHExsZisVgoLCwkPz8fsViMVqt1+p1/4/972IqbjBlKoxqUajcqLh4jImUJbRW2nDSpTI5f1FxneyA2gsYyoxMe2M4JN99AB8ud1WpFpx2g/PznLNn/HaIXrrwrIQUIhMRsFgfd8ODt3J874BEQikdAKAOt9Vx8/zXBKiRTqnD18MY/ep6TKskOw6SO1E1fQzLdyv3O8Hg7TEYDEyNDDHU2Y5yaoPD430jf9S3kKhfGB3tn/YzD7+jGKDzxMZsOvOagrlCq3XDzDUKpdsM4NTm9Yn+7GBdLJEKwfH9LnRAQDaDSeBC1aCUtxdcwGqZoKb2Oi5sXbeX5BM9NESw8Yok3PfWVeAaGoRsewC8ynoR7ttKQn0NU2gpkShVG/SRT4yPCeMK0PXjaWimWSBgf7CM8OQPv0CiGe9opOfNPhrvb2PT06wIxYOuUWI8vtu6FFrOZyNRlDPd2YJjQEbVwJdquVpoKrxA0Jxm5yhXDpM7WIWtabebmF8RAaz0jfV1EL1plC7meDixWuGqQSKVofAPZdOA1ZEoVJsOUQ7EqlSsx6ieRTZNtwz3tRKYuEwKI7fumGx7EP2ouG7//KuFJi5kY0dqOjdWKq6ePrUtX4y2BRLRarQTGJdFSco2bn/8Xax99lugZxeidcPX0RaXp5vyfXmLj918V1Daunj54BoYjEtkIM5PRyICunvDkJQIpLFMoBQWjb3gsPqHRdFQVk3/kL6Ru+pqDxdQ/ei6tZTeISFnCQGuDUCBHLrDlQeknxolbctuZIFMoiVywnIabl+hrrmX+2u0O+Tcab38G25vwCYuhq6aMoPiU6d+ZR3PxNVzcPB0CqY36KUZ6OwQbmLtfMMM9HUyOaQmIsWUZ2jNxFK4azCZbIHnE9DGJSFkinHPGqUly/vomVquFoY5mQdXiEx5Lf2sdfhHx9DZV4xUShbtfEM3F19D4BAiqSPv908Xdi4DYRKqvnEauchWsmQDl5z5HIpOz/IEnBUJHLJUKc1r/tF113qotaLvbHLZjYmQIlcbTZrkrzsUrNEogPdorC8nY8+isWUzazlYiF9jGZ2ywh7GBXjQ+toVae/6Z2suXwY6mWRsqmI0GmopzCU1YyJ5fvIdhUucQ4N3TUIVf5BxUbh53Jfa7akoJmpOMwkXNcG8HzcW5hKcs+UrSRiQSEZ6cQW9TDdc/fY/5a7YTuWA5xskJJHIFEqls1ucsiUxOzOI1NBfnop8Yn+4oZxHG4a6/N61iHWitZ3I6KwxERKTaOrYOd7c5qIYkMjmegeFOyi+RSPSV+zY60IPcxdWJ2HT3D0Y0nS0321iC7VxrLrl2V7t38JwUtN1tto6eSYsRiyWCslSvG0Pb1eqg5psJF3cvwhIX0ZB/icgFy5HKFTb76Izz5l/B/6pMqaGhIdra2oROY/bQ3ICAAEHx9I1vfIPg4GBef/11AL7//e+zatUq3nzzTTZv3szBgwcpLCzk/fffB2wH+cCBA7zyyivExsYSGRnJ888/T1BQ0KwqjK+CPWPnbpDL5SxZsoTu7m50Oh2HDx/GYrE4hKiKRCJ8fHxISEhgamqKoaEh8vLysFgszJ07ly1btmA2m8nKysLNzY3k5GTc3d2pra3l1KlTyOVyVq5cKSismpub8ff3d1I9uLq6sn//fo4cOUJzczN6vZ5du3bdlTzw8vJyevA+evQoS5cudVCNhIeHO9k1xsbGKCkpEcZ0fHwcjUbD9u3b6ezs5OjRoyQkJMxqD7SPya5du/j888/ZsmULLi4udHd3k5uby+rVqx1Wq0NDQ7l48SJz5tyW62o0GtasWUN/fz9jY2OcOHECd3d3VqxYIRQ4arVasO90dHSQl5fHnj17kEqljI+PC8RCQkICoaGhHDx4UMgJmqmiaW5upqqqCrCRBn/+858JDg6eNSgY4NChQ5w4cYL169dTW1vL2bNnb9+IXFxITU0lNzcXDw8PB2vfzLHx9vamsLCQoKAgFAqFrevF9PWi1+vx9fWlvLz8Kwkpe4er2bpOZmZmUlhY6NCCPTc312G/3N3dcXV1pauri6CgIMrLywkPDxcKQ3tw+91ULJcuXeJ73/sejz/+OJ6eng5kpR06nY5XXnkFYNZrzWQysXnzZq5du0Zra6tAVikUCpKSkhgeHhYyYezHTSwWOxXP9o5wYrGYDRs2kJ2dLRB+AwMDTkrKmpoaampq2L17N5cvXyY9PR2xWMwXX3yB0Whk3bp1TmRrc3MzxcXFbN++HZlMJqgwVs/oJFZUVCSQSaGhoRQVFQmklFarpb6+ni1btggkyUy0tbUJqrjExEQHQmsmOjs7CQwMJDY2losXL9Lb2zurEgxuk63nzp1zUL/odDpqa2t54IEHGBgYEOzBYLvei4qKBLvY5s2bOXz4MNnZ2YjFYuLj48nMzHQgITdu3EhFRQXHjx8nPj7e4XqeSUatXr3aQUHp6uoqhIHX1tY62QPvhMFg4NixY6xYsYLXX3+ddevWzXp+njt3juXLlzMwMIBIJBL2vb6+ntOnTwM2dWpTUxMnTpwgNDRUUNsUFxeTnJws5NTl5eVRUVFBZmamU5e48fFxbty4gV6vRyKRsH79eoHU+zK4ubmxf/9+Lly4gKenJ2lpaQwNDVFZWYmrqyuRkc55LfZxmZiY4OLFi7i4uAjh/TqdDpVKRXBwMENDQ04dCO37PpM0VKvVZGRkOORi3WnRuxNz584VMsjq6+vZu3fvrPcBe3MHo9FITEwMer2enJwcDAYDaWlpgh2ypqaGoKAglixZwunTp4mPj3ea92ZraiASiVi/fj1eXl6888477Nq1y2l/W1pahA6dYrGY9PR0zGYzZ86c+dLGKP/G//eYqTQaaGug8Pjf8IuMF/Jr/v/1G3rdGLuf/yMegWF015VjmJwgJCHtriRRUHwyXXXlDiqsr4K9nbjCRcMjfzxJT/0tJ1vb3dBVW0Z4UgYisZjGwit3JRmkMrmg8hjt72bX839grL/nX1qJB1vW076X/gtAyDSyqXVGGenrpLepmvPvvcymA6/Zco5EYjS+Abj5BuLuH0zdjYsExswXvmtiZBCddhDD5DgypYrCEx8z1NnCzp+9g1+kY+MHiVSGxWzCqJ9ksK1BIH9i0lfTVHAFz+Dw28qROxQegbGJdNdXOFhZrBYLYwM9xKSvZqSvi77mWqyW22H5I72dlJz5J5ELVgih+RrvALrrynD3D8YzKByPwDC6asswTk1QceEosRlrGOntZHSgB6vFTPa7v2D7T36L1WLBOyyGtop8XNy9aCnNwzM4XOjSFhibyNT4CI2FlwmOT0bl5olnUBja7jZ8w+NoLbshFI0u7l6C/U7b3YZJP0VATALtlYWYTSZc3D2FgOjxoT4+e/E7rHn0pzPsPyIkMgViiRSVmyeGqYnpwHEpfpFzHAjXvpZadEP9BMYlsenAaw4KLZ12gM6aUvS6US5+8Dq7nv+DU/6ZVK5iYoYFSyQWo9S4E5KQNm3lsuUrKdXu+IbHIhKJ6KotJyB2PlPjI/S3NmAxm5DI5FScP4KL++2YDfszXkvpdbpqygidv3BaqRaIR0AoIpEIFw8vxrUD04Tf7f2KSFlCQ/4lYhbfXtBrLb/hQJZ6BoXTXHwNAFWsp3AetZbfICJlqS3wflp9ZHvGNc8gdgrY99J/IZHJEYlEtJReF0LvB1rrmRjRYtJP4T49d4WnZNBclEv0olVOz6Qikc3mKJUrWJC6TJhzrFYr4UmL6W+tZ6CtAc/AcNx8AzGbDLSW38TNJwDfaSWTZ2AYzcW5giKpt7FKuH5CEtLouGVTMfa31qPxCUDhqsHNN8hBUTbc04G7/233UmBsIo0Fl3Hx8MYwMYbFbBLyz7xDohjp66KtIt/J8hu9cBViiQSl2o3mkmt4BUcgkcqYGh/FODWBxscWr2Ixm51s0GaTCZNBL5AvHv4hqD19aSq6SmDMfKcOdTMxNT5qCxG3WgmISSBkXhpTYyOYjHpMBr3TAsWdkMoVnPvjiyzZ9x28gsMdrJBfhalx2zWy9tGf0l5ZgKuHD4FxibOqyf5PYbGY6W+uvSup5OYTgFgsdgqOt6O9soDQhLQvnf89A8NwcfeiIf+SQECZTSbaKguISb/nrp8DW95VdPpqmotyCYpPwjPINnYaH396m2r+pX38X0VKnThxgocfflj4t71w/sUvfsELL7wA2IqwmQXF0qVL+cc//sFzzz3Hs88+S2xsLMeOHWP+/NsdTJ555hl0Oh2PPfYYw8PDLF++nOzs7FkzKL4K3d3dZGdns379+llzUADKy8vp7+9n79695OTkEBoaKnQSsqO/v1/I1LHbCmbulz0DxcXFhaysLDZv3iy02tbr9Vy5ckVQDA0ODnLPPfdQUFAgWBBmTnZqtZqf/OQnZGVlcfbsWWQyGUlJSbPaElxdXYXg3SNHjrBq1Son22FSUhInT54USCmz2czJkyf52te+NuuYBQcHs3PnTiorKzl69Cg3btwgOTkZuVwu/CeTyVAoFKxdu5a3336boKAgxGLxrJlDEokEy4wWz/b9PXLkCPfddx8XL14kMzOT4eFhTp8+jUgkYuXKlbi5uWG1WiksLGR8fNzhu4eGhhyyptzc3AQ7WkNDA3PmzBFIgYiICEEZZDKZGBsbY2xszIHYsuPy5cssW7aM8nJb+9a5c+c6KJF0Oh2lpaU8+OCDnDhxwkFtdef+rVixgqysLIHg9PLyIiwsjOTkZI4cOUJPTw91dXVOLdntQfcnT55kzpw5X1r8Lly4kJaWFo4dO8b27dsFcnEmli9fzqFDh4QW9jPDtYOCgujq6ppVZXTq1ClSUlIYHBzEz8+PtrY2amtrnVQo2dnZ7Ny5U8h/uhMXLlzgt7/9LefOnXMgOqampqioqODAgQMcOXLkrvZbsBWtY2NjgtLG09OTkJAQId9nJrFmtyfOJLK9vb0ZHBwkICCAdevWMTU1RXZ2Nq6uroJt9NKlS6hUKsFSC7bzamYnz5qaGgcyBiAtLY2ioiJSUlLIzs4W5kG5XI5erxf2686xs6vEBgcHnZSZ+fn5AvG1du1aPv30U/bu3esw58xsGiGT2VaSZoaWnzx5UlBZZmVlOcxparVaCCc/ceIEr7zyCiaTiaVLlzpZcmfOTYmJiSQmJlJTU8Px48eprq5GIpEwMTHBPffc86Vq2oyMDAYHBzl06JCgiLsTra2tFBQUsHPnTmQyGW5ubly+fNnJ2ltYWEhISAgBAQH4+/uTlZUl5N7FxsYKpMezzz5LV1cX3/3udx0+39vb60BwLFmyhPHxcY4cOYJYLCYoKEiYP1xdXVmxYoXD+RkXFyfYrb/MligSiVi3bh0NDQ1Cd0K5XD6rysnecdLevGHjxo0OltH8/HyBFE5MTOTy5ctOiw1VVVVONtugoCCGh4cFMqqvr88hP8sOk8lEVVUVHR0diEQifvSjH5GcnExaWhpNTbNbjlxcXFi2bBmffPIJDQ0NrF692uk61mq1zJs3D5FIxJYtW7h586ZTmP2d0Gq1XLlyBXd3d86cOYO3tzdFRUX4+fk5jInRaHQglqurq6murmbDhg1CE49/43+OnsZqwu5Cvlgs5llbfzt9R0MVFrOJ73x4gaaiq+gnxoQcmv9bmIwGRge6BQVFUHwyZpOJjqoiJFIpwXNSnQgwucoV49SEQ77b5KhWCLK+E8O9HQy1NxE6f5Gg3rBaLbO2Er8TxqlJJDKFsA2BsYmzqhRmwmq10t9SR/SiVXgFRdBWftMhz2fWz0w3o/EKjqCp6Cru/iFIpFJEIhEqjTsqjTttFfnse+m/sJiM+ITHYrGYGRvopbO6FP3EGF988DqbDryGtrsVsUSKi4c3XsHhyFWumI0GFu14SCBL7CSKTKHCP3ouEqlsmoTIc7IOBsTO5/rBP9FUdIVvvXvcadvlKheMU5P0NdfiGxHPUEczw70dhMxLQ65ywVx63daOfcZzu0k/RV9zLZIZ174tE+U2cSUSiQiek8JQRzPZ7/wcr+AIPIMjCJ6TglgiYeNTL+HmE0BbZQFYrbSU5WGcnCA8JcMpxNlu+emsKUXU3WYLcm6po6OqmOB5t88xn/BY2spvYjYamBgeFCxUPmHRDLY3CFlDVquVnsYqHvr95/Q2VjsQdWajgbaKfJZ97QmbzcZVg9looK+5FsPUhE091tNO5ILlgq1TKlcI56PdCmg2GhgyTLHpwGtYTGaai68RPDdFUHzJFEqMhinh/LHbmTL2PGoL8Z8ukifHhumsLkE3PMCVj99i04HXULhqHDp4iUQiB7WHPaB65YMH6G2sIjxpsWC/tRMGVquVSx/+mu0/edNhrO2B661lN5BIpXTXVRAQnSAU5uND/Qx1NnPzyIekbrqPrtpyfCPikCmUiCVSJka0SKQygSAKjEuiu87WaGGwownPoHA8g8IFIsDNN5Cp8RFay/LoqCpmqKuV1I37he0RiyX4R8+lu74Sn9Bo4dwYaG9kcmSIJfsep7O6BLPRcJsIn35m8g2PxTc8lqGuVuryLpDz0a/Z8dO30dzRYCEsaTFtFfl4BoYJFjbbMVIhme4eqdeNCVYvr+AIWkqvC6SUtqvVSR0UkbqUltLrWK0Wp2vSbh9sLs61dfsUiZ3eE5aYTltFPpGpy+ioLiZ64W1iJXhuKp3VxQ7nbUdVkZMVTSpXCNfN2GAfATG3M4NNRgM99RWYjUYUrhrC5i9CJBaj9vJDqlA6dGj9MpiMBpqLrvL1X/+D0f6eL51bZ0NPwy3uf+PvDHe3odJ4OOVB/d+gvaKAsFnIpplQe/khEomdctsG2hpQe/r+S/dKhYuamEWraSnNQzc8gGHyKlFpK/4lO55YbLMCtlXk4zZ9PhkmbQ0T/hX8ryKlHnroIR566KEvfc9sD4V79+6dlbywQyQS8dJLL/HSSy/9X26h7eE9NTWVo0ePkpSURGxsrIM65IsvvsDb21soEpYvX8758+cdLFdgywMZHh6mtbWVmzdvOhUiOp1OIDju7J6nUCiE0O1HHnkEnU5HSkoKUVFRLFy40OnEuXz5MiUltpbIqamp6PV6KioqKCoqEt7j4uJCSkoKy5Yt44svvmB0dJS1a9c6hYLbMXOfjx49ys6dOx1+NyYmhvr6eocV7OjoaKFI6e/vx2AwOPxnL1afffZZ3nnnnX/ZmgM2++KdShUPDw+2bt2K2WzmypUrjI6O8sQTT3DhwgUnNcnQ0JCTbU4kEuHh4cFTTz3FP//5T/bv38+dKCoqEjLEjh496kBAtLS0IJfLCQ4OxmAwUFtb60RAuLq6MjU1RVdXF4WFhXdV4V27do2ioiKGh4edLFylpaVC5gvYyAp7hy0vLy+qq6spLy8X7HpfhYiICLy9vXnmmWeYnJxEoVA4kYBGo5HY2Fj6+/sd/h4VFUVBQYEDKWW1Wjl69CjLli3D39+f1tZWoqKiWLx4MWfPnsXDw0MgQ0pKSkhKSkIsFhMYGEh3d7fDcdFqtchkMtRqNcuWLeP69etCMapUKomOjubIkSNC/tWd57D9Ojp//rzTnGHvpjZz2+1Wxzs7Pfr6+tLf3y8oOJVKJVu3bkWr1XLw4EHuv/9+qqqqHAhIOxISEqioqCAxMdEpyB1saqni4mJaWlrYsWOHcF0tXbqUvLw8QWVVU1PjRBisW7eOTz/91MGKONt2zJbhU1RU5EAwrlmzhi+++ILMzEwuXLjAmjVrvpQwMRqNfP7552RmZqJUKlm/fr1A5s1Unc1GWsbGxtLe3s6rr77KBx98MKuSbzZ4e3uzb98+Ll26hFwud1D1Xb16FYlE4pD1Zu9qOnM+bWpqQq/XC3PC3W68586d4/HHH2diYoKysrK7WiDtUKvVzJs3j4SEBF544QWef/75WcdPJBIREhKCp6cnBw8eZPv27V95nQYHB1NZWcnjjz/OsWPHHJS4M/HWW2/x9NNPOxGQYLOizlTXrlq1iuPHj+Pp6Ym7u/usnW3tmDdvnqAGUyqVmM1m6urqaGlpEd4jlUqZN28eiYmJiEQi3n33XSwWi8OCzp3Q6/U8/PDDKBQKByXeTIyOjjqQlYsXL6a5uZljx44JyjX7MRwcHCQ3NxdPT0+2bduGSGTrnpiens7k5CQnT54kNjbWYRELEJoixMbG3rW747/xfw6pXM5ge9OsD+oTw0N3taKBbbW2tfQ6PjM6wEUuWE5T0VVC5qaicP2/j4NoK7vhkOkCNnIiPGkx+olxWkqv4+rpI5ABdvhHz6O3sUqw/vS31jsFsJtNJtoqbqLx9nfI8wAImZdGW0X+Xa0RdnTWlDgUJS7ungx2NKGfGHeyc9jRVVtG0LSKSypXoPEJYKirFa+g8FnfD9DTeEvYl/CkxbRV3HToeDXa34VS7SYUsz7hsYjFEtz9gqbVQdfZ+qNf4xsRN2umSkvZDSJTl9FeWSCoucBWvHTXlWM2mcj6/c9Y9x8/p6Pq9nMqIjGu7l5Epa0gLHGR0MFtJtx8A1F7+tBafhPPwDA8gyMcVDF+kXPoa64RVHe64UGUGncy9j5KV20ZU+OjswYqA9Pt1+Hx/zpPw80v0Hj5CfY1AJWbTbk0NT5Kc3EuchdXB0JKLJE6KEKC56QwMTJEQ/4ltN1tRCQvQal2x2TQYzJMYTIYaCq6ShQ4KJNUbp70tdQBtmeaxoIcQucvEs6Bmb/Raj+nRQgqGYlM/v9j77+j49rrc3H42dNnpJFG0qiPei+W1SwXSbbcZMmyfdztQycEEggQEnKScw8kBAIJJdwQ4BBChwDHVXKRXORuWbJ6773XUdf0st8/tvbXs7VnZBu47+/etc6zFguQp+w++/PspyAwdgsApmVMLJVjbX4WSh/meq/w9IF+eZ5kyUz1tUEgECIiLRujbbUIiE4EbbdjorsJNosFmsR0hsgymZjA745GppVSxiXjAMbCGZyQhv66x/jAN3+D+bEh+IXHuVQ72m02DNQ9RnjaLoilcsiUnjCsLkGuVHHstwsTw5C5KaEd7eeQiQBjj5TIFeivfQS/iHiYjXrMjw+Coii4eakRkpSJI3/7LZj0q/BQB2J2qHtdUWPFb/72DP7shzfIZ7Gkp81qxcrspNPCAJm7J8JTd2FtYQ6TPS2EdBVJZPANj2WC+GcnMT8+CJnSEyMt1VD6+BMiLjghDUONzxCZkctTU9F2O3QLc3D39sWhv/pnKFTemBno5GXQLU2N4smv/jf2f/Jt6BZf3KfTNI3ib3wWRV/4N47iSySRwmIyYG1hjkfgrC3MYX5sACMtz6Hw8IbURVnFzEAXmu9cRNHf/BtHXUQJBJB7eEEslaPzSRki0nZx7rNEEilou50ct2aDHkKRiNcGxyI4PhUr2mn0VJZDO9oP2m6HUCxGQMwWnqLVKzgME13NLy2EANYVXj0tiFpvV5wfH3rpe7jvX4TNaiHXtOWZCQzWP2XaMV9BKeVo492IxalRuHn7OrWnb4Sbl5pklDFZYwswri2TTLeNYBWwuiUtDMuLAOj15ZHg2e9+gH1//jYmu5tdfBtF7IRShTskcjcIxRKEbsnCdH8n5oZ7YTEZodmQSeZyG7zSq94HB0qlEqdOnUJzczOuX7+OsLAwjI6Oor6+Hjt37uSEtotEIpK74ojr168jOzsbvr5MVaijxaOhoYHz1J3NemJzsljMzs7iIx/5CJaXl3k31SzsdjsWFxexZ88e3LhxA2lpaZBKpTxSZm1tDc3NzVhZWSE2yNraWqhUKkRFRUGtVnMuIiwhYDQasWvXLl5TEdvm59gM2Nvbi1OnTiEnJwejo6PYsYNff3zv3j3U1NRAqVRifn4eTU1NyMrKQlBQEOd1jstSXV2NmJgYp7ldAKOsio2NxbNnz3Dq1Cl0dXXB09OTQ3bMz89zmvpGRkZQX1+PrKws3Lp1C7Gxsbh37x6vOn1+fp6oDZKTk4nSxmQyob6+ngzE4eHhuHPnDo+UGh8fh1wuR2BgILy8vDA9PU2IDhZWqxVarRZvvPEGmpub0d7eztnfk5OTnKGfVUotLCzgox/9KCoqKtDS0vJKhBTAHAsPHz7Enj17SI6Ro/0IYLb53bt3cenSJRQUFBDCRqFQkHY8gLnYXb58GQcOHCDkkF6vJ8PwoUOHcPnyZRIOPTY2RgbLtLQ03L59m7OfHj58SIZEf39/VFdXkyp6gMmrYSvhNRoNHj58CIFAgLy8PAQGBmJ6ehp9fX3IzXXO+rM5bCqVCrW1tVhdXeUQPCzUajWxFzvCYrFAIBCguLgYS0tLRB0jkUiQmZlJzqcbN27AbDZzznOtVovm5mZYLBb89re/RWRkJHJzc8m5pVAoiD1ufHzcqRqNoigUFBRwrIjd3d28wdrd3R1RUVE8csVxPWUyGSwWC7q7u+Hp6em0lZIF2+h56tQpTsD04cOH0d3djWvXruHIkSMQiUTo7u4m5JHVasXDhw9hNBqxb98+XLlyBampqSguLuYR3a7A2g3Hx8dx8eJF2Gw2XL58mZfrxCInJwfPnj1Dbm4uFhcX0dHRwQvYdnNzI415AHPcRUdHE/WUoyLNWaYSW2yQkJCAlpYWyGQyXLlyBXl5eS63o5ubG86fP4+SkhJs377d6f4dHx9HU1MTZDIZDh8+jJs3b2J5eRlFRUUcxQ8Lu92O3bt348KFCzh27Nim2WcAkxn13nvv4ezZs6ipqSHnIguapjE7O4uenh7o9Xrs2rUL7777Lmw2G8+i6YjOzk4kJibC398fDx8+JNa/jVhZWcEHPvAB+Pv749GjRzxFG4uNpFZERAR8fX1x4cIFREdHQ61W49q1a/D29iZk1EbI5XKcOHEC3d3dKC4uJg8E6uvrMTU1haNHjzrdpu/jD4d6PZB4ZW6Kk+UEMGHIPhq+BRV4EdAcvuHmnqIoRGbkYqD+CUKTt23a7PcyaEf64K2J5JAMjpAq3BGRnoO1hVkMNlTAOziCDG9ypYoQFsD6ww/HprCxQaxopxhCwMlwIhAKIZG7wbC67FJhZTEZIRSJedYLTWI6BhsqnNr4zAYd7FYL5zN9NJEYaqyEh2+g69wqvY6QfEKxBEp1AJamx6AKCGEsJCP95PuUPgFkf9qsFgw1VSImay9o0Bhrq+PZvKb62uAfGQ+BUAjPAA35XIAZ+DWJGZgd7sHuj3zBKdloXFuBYW0ZdpsNPiFRnCGNttuxOj+N6YFO1F37FQo//3WeMkDh6Y3ZIea3m6ZpTPW2EltKUNxWLEyO8HJZaLsdw83P4RMSQYiaqG15pBXO8ZgxG/QY72rEno99EbqleUYltL4NFB5eMKwscAKbFZ7eUKoDcP+/vwF1SBSMa8sQiqUQSSQQSWRQeHqDEggw0lINhcoH6tBoYiOj7XamKTFlO7GsBcWnkir2mcFuqMOiyfLRGx8uGpkBWJOYDt2iFv11jxGSlAmFpzfmxweg9AnAcHMVCYUHXtwjUAIBNIkZsFktGO9ogEAkxtxILwCaE5AOMOqN1fkZQnoNNjxFZEYuRGIJZO4q9NU+QviGZjOAUa0MNlQgKiOXEBR+4XEYba/j2JPmxwdhMRqRfvRDCIpL5Z3DFqMBi9Oj6HxcClVACGJ3HeSdR25eaixMDMFHE0msuDOD3cg6+WeYGejg5NzSdjtay68g5eCL+yqZuwfn/J3qa0doynYo1QFEAWQ26DE71E0IpLL//TbSj3wQWw6c4JDKjEoxAvNjgxBKJETt9EL1x7SYTva0QKpwh4cT67DdZkPG0Q+tB/hzz4H8T/8TvDURGGuvB2gaHn5BCIzdivHOBtitVkSkZ2NpehzLM+Nk24SmbEfY1h0Yaal2mlm0MD6EiIxcJOYdgX55kaNistts0K8swmo2oe1+MdxUPhDL5PCPSnpB0CamE7XURHcTwrfyCXqrxcyQHOvK1KXpUViMenj4BsLLBckuEAg5Vl1XWJgYhm5R+1KLmivQNI3JnmbO+z39g+Hu44/R1mrGAhzAvx91hLu3H9bmZ3nrYrNasDQ16rIx1RnkHl4IjE1BzdWfYbq/E6FbtvGaFx3zeqXuHnBTqZlCB4dzw9HK6wx2uw0WowEm/Rp0S/NYmByB3YHz6Km6B9B24PQnX2m537/j+iOQmpqKxMRE/Nd//Re+8IUvYHZ21qmFJDo6Gv39/SSb48aNG9i5cyd5LVujzt6AT0xMcCxWvr6+qK6u5n3u06dPcfr0aQwMDPCIChYPHz4kqi1fX1/Mzs46HYpY5cnVq1fR3NwMmqaRmpqKxcVFDA4OclRVAHMCnj59Gr/+9a9fWlnOqiXYAScoKAi1tbW87CG2+S4uLg6PHj3CwYMHkZ6ejpqaGtTW1hISj/1cAOjtZZ4WOSqy/P39OeTOw4cPIRaLce7cOahUKhw6dAjPnz9HdXU18vLySKudRCKBXq9HeXk5goODieqpo6MDkZGREIvFKCsr47VMsYiLi0NJSQkSExNx8+ZNjorF2VBkt9vx/PlzotjJycnB1atXOWorABwyLDU1FeXl5fDz83M53FosFjx48ABWqxVf/vKXodFosLCwgNLSUggEAuzatcvpPjMajXjw4AGkUimOHDkCoVCIsrIyHiFlt9sxPT2N48ePIz09HXfu3IGvry+P6LTZbLh06RKOHDnCUTZszNg5efIkLly4AJlMtuk2YxU/jn8/ePAg7t+/T4oG7HY7+WyKorB//37Mzc3hypUr2LZtG548eQI/Pz8O0UXTNJaXlzE5OYnp6WmIxWIcPnwYDQ0NLsOfJRIJzGbuk6ne3l4MDAyQ0HhHEtlkMhGlGwC0tLTgu9/9Lt5++22ST6ZWqzm2roKCAjx//hxVVVXYs2cPvLy8IBaLYTabUV9f7zITT6VSISAgAF1dXVhaWuKR2SwSExOJTc1sNvNsumtra7DZbMjIyMDAwADn3/z8/Egu1dTUFKqqqpw2egJAfHw8wsPDUVJSgm3btsFsNkMoFKK8vBwmkwn79u3jEKb+/v7Yt28fLl265FTh4wr+/v7w9PREYWEh3nvvPXR0dKCjowM+Pj6Ij48nx6Barcb8/DwsFgvHHumIHTt24OnTpzh48CAqKiqg0WgQGflC3XHw4EGyfKxlFgC5fvj5+REF3NzcHEZHR3H27Fk8fPgQ7u7uHLubI6klEAhw6tQpPHjwgGPFrq+vJ0HfLIFG0zRRgl26dAlvvvkmZ/vPz8/D29sb7u7upNkxLS0N4eHhPJseC4qicOrUKfzXf/0XJBIJ7t+/D9uGp85+fn7IyMiAQqHAtWvXQFEU0tLSNiUt+/v7yfXfYrGQEP2NqK6uJgS10WjE8+fPecevq2B1d3d3nD59GlKpFF/96lfxzjvvvBKpFB8fj5iYGPzkJz/BZz7zGQwODjrNZXsffxoExW3FSEs1JHIFZ1iyGPVOSSU2hNdVdhJFUYjK3MO0JqU4V2e8DBaTEWuL2pcqlQBmcHD39sP8+CCTbxKTDLmHF9Sh0Zgb6YN3cAS5qbeYDBhrq4O3JoKjNHKGwNgtGG6qchmqO9HV5HQ4oCimaXB2uIfXqjfe0eB0kAnbugPDTZU8xRYAGNeWeUSQOiQKg/VP4eEXxFhItrwYSn1CIpmmMh+/9YyrPaAEAlDMwnFUO2uLWtB2mpAyKn8NRlqqOcOaYXUJJt0aEnYXOd0eU72tCE/Lht1mw3hnA4ecYIhACl5BYSj8628gNHkbE44/2AWBUIiA6GSIZXLIlZ4wrCxCOzbIswh5B4VB7u6B/tpHEElkMOnXiIqNq3oSMoRo3WOSV2S1mDHSWs00dVFMI55AIMBQYyUi0rOhUHljeXaKrL/VbMJISzV8w2PxqZ/exVDDM97AHxi7hex33aIWo+vZTMuzkzDpVhGeuotzzIulMtgsjGLJrF+Df+SLB6FimQJmg56QP5M9LeT73LzUiMrcg/GOBkjkCkJSbVzvjRCKxFCHxWCisxGNpb/Hwb/8MmYGuuAXGUfOA29NBEbbaqH08cdoWy2C41MJISqRKxCTtXed9Isk5JfZoMdIy3Me6UcJBMTOBjC2N5vFjIDoRKxop7E8OwGvQK7LQixjlGBHvvhtRt3XVAWVvwbeDiT4xnsXNp8qtfAcRpqryXFI0zQWJ4bRWPo7qEOjEJyQDoFQCN/wWKJEW56dhEAgIGoZm9UCoUgMiVxBCC+7zYaobXlw9/bDzEAn+V43lRpewWFQBWgw1FgJSiBAYEwyBuuf8lR/ATHJTonfie5m+GgiEbZ1x7rKLJtDQFMUxRRIrJ87SzPjGO+ox+3vfxlph99kCGN/De9zWTgqzdn3m/RrRH2nW5rHinaaKCAFQiHcvdQwrCziyN9+C25eapgNekx2N8Nus0IklSEgOgm03Y61hTnIlSpQAgFM+jXMDfeSkHChWAJ1aDSHwAtL2Y75sUEMNVUiLGWHy4cKm2GypwViqZyX68fk8U0SInozjLbWIHQL31onFIkQkZ4D7UgfEyC+JculKtDNS43JnmYeKTXaWvNS295GLEwMY1U7vR7Ub4YqMBQSudsf1Ii3GQQCIVFJbcREdzMO//XXAVBYnp14pc97n5T6I2AymXD37l1kZmaipKQE3d3dqKtjJIsajYbYFhISElBaWoro6GiUlpYiKyuLcwOvVCpJAPfIyIhT21pAQADHyvT8+XOiNIqKisL169d5pBR7888OYzt27EBpaanL2u1r165h79698PHxwfXr15GamkoCdTdibW0NX/ziF+Hm5oa6ujqOOobFD37wA1y6dAnf//73eQ1J+/fvx4MHDwjZMjIygtXVVaIccRyEtm9n/OOVlZWorKzEnj17IBAIMDs7i76+Ph5JlJSUhIqKCkgkEty7dw979+6Fn58fZ5jZuXMnafZbWVmBzWbDo0ePYDQacfToUR4RAzC2KolEQlQcOp2Opz46dOgQdu3aheLi4pdWs9+9e5dXxb5161Y0NzdzmiKFQiHHZpOfn49Lly7h+PHjWFpaIkSdyWTCgwcPADDWK5lMhvv37yMgIADBwcHYsmULbDYbnj9/jqWlJSgUCuTk5MBisZAmvPz8fM5ys+QLq34BGJKPtRBSFIXCwkL09/eTkHqAOfYuXbqEEydO8AL4N2J2dhZGoxHf+ta34Ovri5ycHEJE+Pj4QKvVwsfHB11dXTzCTqFQQCgUkkyvjSozgCFj33jjDXz/+9/HW2+9xcnlYqFSqRAUFIScnBwMDQ3h29/+NlZXV3Hz5k2EhYUhJWVzX3lNTQ0J73YGqVRKWi3Hx8cxMzODlZUV+Pv788KWgRc/+rt27QJN03jy5AlWVlaQlZWFsrIyl6pAFklJSXj33XcxOzuLf/zHf+TdRLAoKCjAxYsXoVQqUVhYiNHRUbS3tzPV6O7uKCwsxOXLlzE2Nob6+nrIZDLk5uZi69atePToESE4Nu6XjZDJZDhz5gyqqqqIwmffvn0ujw3Wess2corFYpdkxOrqKh4/fgyhUIi8vDyUlZVhdXUVhw4dAkVR0Gq1aGlpIddYgDmvJBIJGhsbSZ6c4/aRSqUwm814/vw5fHx8eMHcbBD6rVu3IBQKcejQIZSXl8NutxNFGAsfHx80NTUBYM7LwcFBFBcXk+uwM+Jk3759pOXuxo0byMzM5IWJLy0twcvLC1KpFEePHsWVK1dw+vRpsh719fWEVBUIBDhx4gQqKiowNzeHubk5cqyura2hra2NEKYUReHHP/4x/uIv/gJ79+51SeywmVJBQUEkf9DZccmSYywOHjyIW7du8VRYNpsNAoGALH9iYiIaGxt5TXqu0N3djc7OTjx58gTh4eGkUILNE3QGu92OZ8+eYWlpCXFxcbh+/ToaGxths9k2bYV8H38cQlO2M8NS6i6So7Tx+mSzWjDcVAW/yHiisHAFlpjqX/9MZxYHZiDXOSW+RttqX9qwtBE+mkh4B0dgur8d0wOd0CRmQDvaD6vZBL/IeMwMdjGNXenZrxQsTlFMdbwzFZnVbIJAKHQ5cHn4BmJxcoSTS7UwPgSvoDCnA5BAKIRPaLRTImtjJhGL0JTtaLjxWwTGJsNqNsFiNIC220HTdpj1OtRd+zUyjnyQE1YcHJ+Kye5mhCRnwm63Ybq/nZc14wjabsdEVxNp85O6KWFcWybk5crcFJQ+/kyAt0i0/v0vftvWFuawPDOOkORtmB3ugWF1Gf5RjGLDZrVgur8DVpMRIokU/XWPmQHXjWkRNBt0MBv1MBv0sBh1EElkuPODf0Rk5m4k5R3FytwU5EovyNw9yH4QiSUI27oTg/VPIZJIMdhQgegNKiGmVY0hFSIycmHWMw9S58cHsaqdRkRGDjk+/CLjMd3/wjq5EW5earh5qbG2qEXL3cvwDNAQAtFR+WAxGnD5n/8SH/rO7znv949KJPuD3XYcwoeiEJyYht7Kcjz+1Xdx5IvfAkVxjx/H32GTfg2T3c1QeHojesc+yD28EJKcuW7hawBtt0MkkcJ/fX1mBjrh4RsIuceGEgqBABHp2Zjqa4NhdQnGtRWMttcievs+p/ctrPLKtLYCu91GrJhKbz+MdzbwSKnp/k6oQ6MhV6owN9KHyIxc0qioScrkKbRsVitm+jteBM6rfLC2MLue10NBt6TF8Xe+D7vNitG2WogkEgTHp4GmaViMBqaZcZ2EDli39nKC92kagw1Pseejf4Op3jYOGbK2qMVEVzNouw00bcfdH3wFBZ/7F0Q4yfRh2tG48S5zw72Qu3uSxrPIjN2EOKXWSeKN2X1KH38sTo7g8Bf+FQsTjGVNtzgHpdqfp+z0DY/D3HAPsTCvzs9gbX6GYw1jSTSFhxcnJ0+/vECssRK5gqy3xWjAZE8rzAYdfvvWmyj8629gtK0WErk7AmOSXdr4WPiERMIzQIPhpkp4h0RymhkBgKJeNHI6grbbMdRUCd+wWKcNcarAUCYb6SWk1OLkCNy8fTdtalWHxcDDLxgDDU9dBrU7Npey0I72QxUY+kr2P93SPLQjfQCY8P6wrTsQtnUH5oZ7YVhZcmnx/j+B8c4GKNWBJKfMYuJzBM7wPin1B4CmaXIjW1BQAIlEgtu3b5PGMgAYGxvDnTt3mKpikQjLy8u4efMmMjMznQ7OCQkJ6Ozs5DxRdkRmZiYhlPR6PRYXFzlPkIODg3mWHseGJGC9iUMo5NidWNy8eRO7du0iQ0VUVBRH3bURt2/fxj//8z/j2rVrTgfx1dVVLCwsYHJyEpWV660Wcjl27NgBuVwOpVIJi8UCo9EIq9WKxsZGXraOIyiKQk5ODmiaxtOnT1FaWor/9b/+F37605+isbGRvI79wfzWt76Ft956iwQzA/wMFYqisHfvXlJLX15e7pJUYOHv74+9e/fi0qVLUKvV2LVrF+bm5tDQ0ECUX0eOHEFtbS2WlpY4RKHjPhoYGICfnx8vyDk6OhrFxcUkV+nhw4dOj4cTJ06gpKQEHh4eyM3NRWlpKYRCIQ4cOMAhkKxWK4dgEwqFxDq1traGd955B9/97nddkqE7d+5EVVUVyTEymUwwmUy8IY+1NpWVlaGnpwfz8/M4c+YMZ1kctzvAlAbU1NQgMDAQBw4cwM6dOxEQEIDS0lKIRCLs3bsX27Ztw927dyGRSHhZWiz279+PmzdvQiQSkUwki8VCmgYpioJYLMZHP/pRSKVSqFQqp9ZRFt3d3fjzP/9zYusaHh7GjRs3IJVKsWfPHl5Bwt27dxEWFsazZm4ETdN48OAB5HI5Pv7xjyMoKAhKpRJXr15FUVER+dyN+4yiKOTl5cFms+HKlSs4f/48KS1wBnZ9KYpCe3s7nj9/DovFedsIax0+cuQIIeAKCws5Nz8URRFCRK/Xk0a0d955Bz/5yU9cZv9sRFtbG2ZmZvCjH/0IOp0OKysrmxKWCoUCp0+fxuXLl3HixAnYbDaO/WxychJ1dXVQKpU4fPgw2WYCgQAHDx5EeXk5Dh06BLVazWvGfPbsGf73//7f8PHxweDgIOrr68mNHXsNOXLkCP7t3/4NqampGB0d5bxfJBJBJpNhZWUFn/70p/HrX/8a+/fvdxrMvrH5MTIyEhqNhmxvT09PGAwGNDU1cYih+Ph4vPvuuxCLxby8O4Ah8lk7oVKpxN69ezkPHWw2G+86n5OTg+LiYpw+fZoUCbi5uSE5OZm01el0Onzve9+DSCTCwsKCSwXU1NQUOS5OnDiBK1eu4ODBgzwVZlVVFadVVCQSwcfHh9cAubHpEwDS09Px/PlzdHV1kVw0Hnlhs6G0tBTh4eE4efIkVldX0dzcjKKiIthsNlRUVGBlZQXJyclE7ba4uIhnz56RbeLl5UUKMiQSCZqbm3H16lUcPHjQJaH1Pv5wUBSFyMzd6K99jOisPB5ps6Kdhna4F+Fp2RySY9PPFDDhuo6V1I5w9/bF2sIcvIO5pNTscA/UodGvRBw5W4/AmC1EtbO2MIvZoR4YlhfgGxFHhuVXhTo0mljrHDHR1QRN0ubqvZDkbRhpeY6I9BzY7TYsTY85VUKx8PQLwkhrDYeoIwPuBiLLYjRgvKsR8+OD8A2PwdrCHGMhEwhAUQIIxUwQ9MR67oh3UDiUan8mZ8hiAk3TGGmudhqwrvTxJ6oKJix6BznHN6rH5scGOMqvgOgkTPe3IzBmC/TLC5gfGyDqDt/QGIx11BOCTSgSE5WKcW0ZN//9LRz67Fcx3lEPkVQOiVwBicwNcqUKYpkCQpEIh/7qq7BZzQiIToJhbQX6JS0WJgZ5g6PNZsW97/8LCj73NYx3NEAkkUKmVEGuVEHmpoRc6YnghDQM1D+BWCLDUGMlPP2DedtD6eOP5ZkJkplkNZs4AzlN0xjvbIRIIsGxv/8uhpoqnRKIs8M9OPCpdzDcVAlPfw1pT2TC2xnVyUbyy2YxY6K7GbTdjqhteVCofBAQnYzp/nbYLBYms2e9TdFqNmG8sxFiqQzhadmgKAom/RoZymXunmS5LCYjpvvaUX/911B4eiN53xtY1U7zlpnF/Pggqi//lLQ6AtxrvlAshUQmx/NL/420wvOcfDfKScvy2sIc7DYrOaes62HsrJ1qvJOxHjqSRsPNVQhPe7Fv/CPjMdhQQRRudpuNyTwSiRCeuhNmgx7DLc8xN9QD3aIWCbkv5gixTA6LychZptG2WgQnMDlcNM09lty91CT/aGF8CNuOfwwiiRSjrTWgBAL4hsdCrlS9WDaHPLul6XHYrFb4hr94iCYQChGeuotkVBlWl6BwIAW1I31YnZ9FaApjLbZZLQjbugMWk2FdyWSDm5caPiFRoCgKCk8vzA0z9lf98gIWxoecKqrC07MxWPcU0dtfboczrC7CZjFD6qbErvOfgc1iRnjqrk1VT/b1h1gsRGIJIjN3QzvSh+Hm5whNySLXdK/gcCxMDkMdEkVebzEZMdRU6dQ2yuJVVEVWswlLM+MvVcICDBEXvS0PU71tWJ6d4BxzzmAxGbG2MLepgtdiMmC6rx12mw0KT2+EpmznLbdveCwGGyqckoybgS28eF0wIfthHKKPJadehvdJqdfE2NgYrl69itzcXF4IrCNbHRISQvJMLBYLPvCBD2Bqagpf/vKX0dLSQt7j7u6OsLAwRERE4MKFC7zsJBaOhNKdO3d4AceZmZm4ceMGIaWMRiNomuZZJHbv3o0nT55wbEm3bt1CRkYGZ32Sk5Nx/fp1p6RUQ0MD0tLSSGV2bW0tx46i1+tJG9/Tp0+xZcsWeHt7Q6/X4/nz52TZIiMjcffuXeh0ulcONqYoCh4eHnB3d0dGRgZp6ds4RKenpxP7ETuYsa2CLOx2O27fvg21Wo3bt28jNDQUN2/eJPYRV/Dy8kJubi6Cg4NRXFyM4OBgHDx4kAzFrGKmp6cHJSUlyMjIQGhoKJKTk3Hv3j0EBASgubnZpbqEHagTExMRHBzMsy+x9jkAKCwsRGlpKQoKCl4r/6S+vh5jY2MoKirCF7/4RQwNDaGxsRE5OTkcG5e7uzvJMQIYK6GrMPaxsTGIRCK8/fbbePfdd/Ho0SOyPVgoFArcu3cPBoMBAQEBeOONN0BRFKqrqxEfHw+VSoVjx47BbDbj8ePHMBgMGBkZQWxsLBmaaZqGxWLhhORbLBb86Ec/IgSAWCxGeno6R7lRV1eH8+fPY2hoiGTcbER7ezuSkpLg5eVFCILw8HCEh4fDZDLhyZMnMJlM2LJlC+x2Oy5fvozdu3e7DIRmMTc3R6y0jts3JiYGERERREmZnJxMgutZTE5Oorm5GQBjnfrFL34BgUDwUjLIYDDgM5/5DK5cuYJz5845Vf9ZrVZcvHgRv/nNbwhxtfHYl0qlxG6lUChw6NAh1NXVIT4+HlqtFnfu3MGePXuc2rEARinz+PFjbNmyBSdOnMCdO3dQUFCAJ0+eoKOjA/v2MU/wzGYzT10okUhw7tw5XL58GQkJCVCr1ejq6kJvby+xBDsuL6u28fb2RmBgIDo6OnjNp0tLSzAYDPjwhz+Mrq4uzsMEFvfv38fNmzcRGxvLU0mx281oNJJsPJFIhCdPniAhIQFRUVG812+8UZZIJMjOzsabb74Ji8WCr33ta0hLS+MQOna7HaOjo0hJSUFJSQkn9B5gGv8cFXxqtRppaWkoLy/n5MDZ7XY0NjZiZmYGAGMB/tWvfgWdToeTJ0/y9vejR49QWFgIgUCAy5cv4+zZs7z1GRwcREQE1/rA2ggPHz5MyDmWYN34Hbt27cK1a9c4DyJWVlZ4ilqAIcYfPXoEqVSKyMhIzrYcGBhAU1MTioqKyPHnqDxm1XMAQ4r+8Ic/xO9+9zt861vfQlFREefa6qgITU1NRUpKCu7fvw8ALjOw3scfDjY4ma1HZzHZ0wqBULQpoeIKlECAqKw89Nc+5uTQAEx48+LUGBnQAYZsMSwv8tRCrwvjGtOoKvfwQuXv32Va5yZHYDEZ4RUQ4tKu4Qw+IRHQjg2QAcpqMQPryqDNwGQ0hTC2jfkZhGzh575sROiWLAzUPyHqJe1oP9ShL+75rBYzJjobIRCJEbZ1ByLSsjHYUMELAl9bmEXG0Q8BeGFvGlm3mQkEQrTdL0bolu1OM6y8gplGQLNBBw+/II4VjaIoktWztjALn1Du/ajM3QMm3SqMa8uYGejiqN2cERQAk4Ey1l6PT/yoFFO9rU7zcQBGAeLu4wd3b19M9rYhJCnDZVjyQP1TvPEP/wE3Lx94+AbBYjLCuLqM1flpaEf6CPFgMehx/8dfx6G/+iqEYolTBXNwQhoG6h4jalseFiaHSSC9fnkBk72t0CSkEeWYOiSat88AQLegJdtiaXocQ42VjCXMXwORVAaLybjeWumxTj60gBIIEByfyjlnRBIpUcAw7WbtePo//4ltxz+K6Kx9nGPSrHeuQhRLZRBJpNj94S9geW4SmiR+GZMjrGYzzn/jV9Avz/OGdpqmiUpPJJZgbXEOPiFRLskLm9WKmYFOzvXFEZRAgJDkbTCsLmOwoQICgQADdU/gH5XIG97VodHQjvRB7ukNuecLUoemaSzPTkAgEIISCjHcXAWlOoC0MgIg+V+UQIDp/k54+ge7zI57sewWLM9OYMuBE5gb6UPY1h2g7XbMDvdidrAbAKPk8fQLwsxAB3RL81jVTvMsaABDjPlFJmC8swFShRLuPv4wG/QY66iHT0gk57zx0USS6w97bqwtzBHbqDo0GpRAAMPqEmYGOl3mHAkEQgQnpmGsvR4hyZlYmhmHp9+LvGW73YbpvnaYDToo1QEIT92J2aFuxGzfC7HcDYONFQiM2eKy/EI72ge1k0ICdVgMPANCMNRYCd+waHj4BsHdS42F8UFg/Zq6tjCHmcEuxGTtfem1WSSWbNqMOtJSjYiMV896AhiyXb+8QDLcXCmYXCl47XYbZgY6YdbrIJLKEBSf+lKyKWzrTow0V73W7+rawhwn/+5VMNJSDZ/Q6FcKlneG90mp14TZbMYHP/hB3t9DQkIwPj7uNFj3/v37+I//+A80NTXx7Fqrq6sYGRlBV1cXPvShD+HnP/85J6uGoij4+/sjJCQEu3fvxo9//GOnwdMAQyCsrKzAw8MD9+/fd0oeuLu7Q6/Xk/9/9+5dJCcnOyXD/Pz8eMHbBoOBk3ml0WhQX19PVEImkwklJSUkX2b37t24fv06jh8/DoVCQdQuNE2jr68Px48fR0lJCe+7nWFtbQ13797F1q1bkZubi9zcXJSXl/NCnE0mE/Lz88ngk56ejsjISKytrRGlBTvMFBQUwN3dHXfu3EFcXByCgoJw4cIFHD58GJ6enjzrmk6nw4MHD+Du7o7r16/DYDAgMjKSQ0ixYAPH6+rq0NDQgL1798Jut2+aSwUwQ5VQKMR7772HPXv2EEUDCZikmLauoqIilJSUgKIo3L17F3v37n2pVa6/vx9tbW1IT09HZmYmbt26hcDAQAQGBoKmaVRVVZEQaJbQYcnQ1dVVuLm5cYiDxcVFVFVVgaZpRERE4MiRIygrK4PBYHB6/Ol0OvzkJz8hqjkWS0tLnIFUIpEgPz8fzc3NOH78OL72ta9xbmQkEgnnP3q9Hn5+fpsq3bRaLbZt2wZfX1/cv38fHh4evDDp/v5+ktXk6emJpaUlQhQ4NoK1tLTg8OHDuHLlClZWVuDn58d9muegSKyoqIDZbOao9hwhEolw/PhxtLe349q1axAIBPDx8UFZWRnzJD4wkKiXSktL8eEPfxh9fX2orq7eVPFFURQkEglOnDiBS5cu8TKfWELq9OnT6Ovrg7u7O0wmE65evYr9+/eT9U5NTUVzczNRZjY2NkIgEODzn/88UlNTIZVK8eTJExiNRiQkJBAi22azoby8HHK5nJAfi4uL5HP37NkDrVZLiL2VlRWnOUcGgwHR0dFITU3FP/7jP+KDH/wgj5RnMTk5SYomUlJScOvWLWg0Gs6xdf/+fZw6dQoURWFhYYGTbUfTNIqLi7Fz504EBgbizp07TkkpkUiER48eITc3FxEREYiLiyNNl6WlpQAYYn/j+tA0jerqami1Wvj7++Of//mfodfrERUVxVMYjY2NISQkBIGBgcjLy8PFixdx9uxZDpGykbDWaDTECpuSkoKysjIIBAJyvgMMIV1QUACFQoH33nuP2CMB5oGCVCol17O8vDyngePt7e08BSdFUTh79ixpEFQoFHjy5An27OEPBBRFIS4uDj09PYiLi+ORXBuxd+9e3Llzh6gJ2QcK/v7+nHZFx8/fiKSkJLS3t+Mf/uEfyEOVzcASvysrK7h27ZrTXMf38XoY62iAWCoDRQmgVAfAwzcQQfFbMdJaA7vNiv66xwiITv6Db2gBZhiKXg+hjsrcTW7WGWsENx9ttK2Wk9HyqrBZzJgd6oHFZGAe/nmooEnKgEAgXM8mWR/m5mcx3tlA7gtEEinUoTGb2jw8fIMw1PgMPppIUBSFic5GaJKctyZthMpfg7vvfgWaxIyXPoUH1pVe0cmY7GlFUFwKdIta+IbFwGa1YqKLUaBrkjI55INXYCgWJ0dcBgtTFAVvTQS8NRGg7Xb01TxE1YX/giogBCtzk7xzU+buuZ4bY+OoU1gExCRjuIlR27NkmMVogH55gVFqTAyj6dYFHP9f/8l7r1Akgs1iJkQLY5uqIEo6pvHL4nSg0472E/WD1M0dS9PjTmvlR1prEBS7BXIPLwzWP4VSHQixVAaxVMZRClhMBoy0VDNZV1uysDwzQZRANE1D5a+Bh18QKIpCSFImY3+j7fALj8NEdzMoiuJZH5Vqf2ibuKTU7FA3RymjCtBAFaDBwvgQhhqfwSsoHL1V5fAJicZwcxVEEilCkre9NItHJJbA3ccPB//iSyRvSSh6MUybDTrI3PmqUrYaXuWvgad/MMba61wGJ6/MTcLdxw+qAA3sVgtmBrs5mVgURUEslWF5dgLbTnwccqUKQ02VUIdGO1VibFQ8uYJc6YmozN3ofnYXj3/5HWJjU3h4wdNfA7FMDg/fQAw1VmJtUYuwlO2YHeqGYWUJAEPU+IbFIGzrDtJOONZeB1AUghPS4Bsei9nhXkgVbqAEAp69zBnYHCGhSAyLkbE+UQIBZ3ssTo1ipKUao621ePa7HyDv429hZrALYpkCYqkMEpkCIqkcQpEI7l5qmA06DDdVIiA6GVazEZHpOTxSxsM3kNmmDqoid29fuHv7gqZpaEf7sTQ9hlvfewdFf/Nv0I70wc3bDzJ3D965LVeqIPf0wsL4EFYXZhGWsn2dzOoCRVEIiEnmEDKG1WWifIveloeJ7masLcxx1tnZazdCLJUhKnM3Zod7sDhVg1AH4lk7NgDT2orLjMKN8ItMwMxgF1FZOmKqrw3+UQl/kMpW4emNqMw9GGuvg1yp4pyzADAz2AXf8FjOZ7M5UZRAAP+oxNey4wlFIsayPdTtcrttxPLsOAJjX/47AjDXsOGmKvhHJULhQNq+Lt4npV4Tq6urTp9uJCQk4P79+zxS6s6dO0hOToZGo4FOp0N3dzfH5qNUKpGcnIyVlRUMDw+jsbGRM8zb7XbMzMygv78fCwsL+NznPodbt26RJ+iOZBJLYLAWI1eZRomJiejo6MD09DRiY2Od2rYAJoPqxo0bnAHw1q1bvIGQrY7Py8vD5cuXOaoMiqJ4eVgsmpubcffuXSQkJODatWuIjo52md1TXV2NxcVFnDhxAgKBgAzR27Ztw+PHj8nTcABEHSGTyXD69GnU1NSgv78fAQEB8PLyQmlpKQIDAznDDLs/lUolzp8/j1u3biEiIgLu7u4ICAiA0WjEvXv3IJPJUFRUBKFQiDt37uDo0aO4c+cOoqKiEBsbi7m5OZ7dZdu2bcjMzMT9+/dx+PBhfPvb3yZh1o7HkSOhVVdXhx/96Ef4xCc+wQugZlFTU0OUTVarFY8fP4Zer0dubi5RFbGYm5tDRUUFoqOjXdokKYpCdnY2sacuLCwgNzcX27dvR01NDWZnZ3H8+HGYzWY8e/YMer0eXl5eKCgoIPt7aGiIWJJckSaf+MQnEB8fz2tYc9wWIyMjaGhoQGpqKm7fvg2lUgl/f3+nyj2bzYahoSF85zvfwdOnT7F798t/bA4cOIDi4mJ4eHgQe05jYyNHobRr1y7cvXuXWAIdMTw8jGvXriE/Px/j4+OEOBSJRMjMzERQUBDJuMnOzuY0crpCcnIyTCYT8vLyUFNTg8OHD3O2icViAUVREIlESEhIQE1NDcfW5AiTyUTOf7lcjiNHjuDy5cs4c+YMKIriEFJSqRRJSUm4desWioqKEBsbi4cPH8Jut5PWxMXFRQDMOWuz2bBt2zbo9XrU1tYiLy+PZMN1dnbixo0b+OQnP4kf//jHyM/P56gT+/r6OCSPWq3G2bNn8eTJE3z/+9/HZz/7WVJewMLNzQ3x8fEoLS2FWCyGfYN1YuN+cczoKiwsxMWLF0mDYnV1NbZvfyFv3rNnD548eYK9e/cSQu7o0aNE6ePsSTtN07h69Sr27NkDX19fBAUFEetvQkICEhISQNM0Ojo6UFZWBoA5n61WK2iaxo4dOwjBx+bKFRcXQ61Wc0jl/v5+ouLy8vLCsWPHcOHCBZw+fRoSicTpsg0ODqKrqwvf/OY38etf/5pH2ANMhhtLULHqpuPHj8PNzQ0PHz7kPDjx8/NDR0cHpyBjI4HsCIqicO7cObz33ns4deqU09w9FomJiSgpKUFcXJzTBsSNKCgowLVr19DT04PV1VUUFha+tE3QETdu3MDRo0fh5uaGCxcucEjajZZZR2i1WlAU9dIct/fxcoQkZUAid4PdbsOqdmbdLmTDcFMlup7eQuHnvw6zbhU2pedr2Qw2QiAUMuHn6yogZwP3zGAXfCNcV9E7gqZpLE2NYmXddiQUieEXEedUGaIKCMHS9Bi8AkOhVPvziAntSD8nX0MVEAKlOoBzrQ+IYWxT7PDgbFtYLWYsTAzBuLpM/kYJhIjZvh+qoFDMDffCtm6dA15kDollCnj4BjKtbhQFNy81lmbGsTI3BaFIjLGOBtitFgQnpjtXNgWFYbChgpBSdpuNlzsEMAPU8rqtpehv/o0EQm/crsa1ZfQ+v4etHiqMd9STv7PLDADlP/oatp/+BMba65h1kMqh8PSGOjQadpsVkRm5GG6uglypgn9UInmfX0QCZga7ERTH3FeOtFRDk5BGVA9M4xc/QF6/vMixSPmFx2GosRJuXmpOXtlkTwu8AkNJRlJgXAqmelt5hKDVYsZwUxWis/ZisrcVVrOJkEXs+i7PTpD1A5i8ppXZSZgNOgTHp/JymMj+2EAS6ha1TodOb00EvILC0PmkFBW//T7yPv53iMs+5FK1JNygEDGuLWN5ehxhW3fAj6YZm2xaNvl3RunmUCBjt2Ow8RkCY7aQIVUid4PM3cNpbhpN05xWR29NBGaHujE/PggfTSTntbqFOUKasOTDaFstQpK3keWeG+mFX3gc79xxUzGZXBuJb4vJAKnCHYc++1VokjJAUQIYVpagHX1xvtptVtx7919Q+NffgG9Y7CakiBxhW3fAZrVisrsZNqsFK3NT8AoM4SnzmNy0FQ6htzA+BE9/DVl2V4HbXoGh8PANgtmgQ2jKdgTGpsBqMsBiMsBsNEC/vMg01TmQ8bXFv8COM59EYMwWp8vOfF+gy4Bv4+oSfMNiceivvgpNYgYMRBHY6/SehBIIMT82gIVxxvYqc/dE2NYdLo87RwTHp2J5ZgJDjZUIS93x2uSPX3gcLEYDBhsqmJyzzkbIlSoEJ7w8o5KFWCqDdYP9EmDym2i7/bWVRI6gKAqhW7KwNDOOwYYKYoM06dfWSwoSnOZE/aHw9AvCWPsETLpVXpmFM7A21ZeBJfuD4ra+VAH4MrxPSr0mIiIicO3aNURGRnKq1IVCIW9YunPnDpKSkghRFRcXhxs3bvCyZ0ZGRkDTNMLCwrCwsIChoSHy1FggEBAly71799DS0gKappGcnIzW1lZiBaQoigSr37t3j9PMRdM0yXhaXFzEwsICDhw4gNu3bztVJrCgKAru7u6kGr21tRWJiYk8m5iHhwcWFhbw/e9/H3/1V3/FI8N27NiBkpISQobQNI1Lly6hsLAQRqMRExMTOHnyJPr6+nDlyhXs3r0bSqUSKysrsFqtePDgAXbs2OGU4AgJCcH8/Dza2tqwZQtzkZ2dneUMptu3b8fCwgKio6PxN3/zN/jiF7/IUxQ5XkzZEOOmpib84he/QFpaGkZGRlBQUMBZN4piankLCwtRU1OD58+fAwAhCex2O1pbWzE5OUle/81vfhMxMTE8xZwjdDodbDYbhoeHUVxc7LLVbH5+Htu3M40MIpEIBw4c4BBKmZmZMBqNuHHjBlQqFYcA2gwURSE3Nxc0TaOiogKLi4vo6OiAt7c3ysrKIBaLkZOT43TY7OzsJGRKQ0MDLBYLZ5s9e/YMe/fuJRlRbP08i+XlZTx48AChoaFkoO7t7UV2djbKysqgUql4JN2DBw9w4MABuLu7o6WlBcvLy7yh2e7EG33ixAky5IvFYoyOjnKOG2fnNMCUDCQnJyMwMBDV1dXYu3cvaX+0WCyor6/H/fv38U//9E/o7u52SUg5HnNGoxFlZWWEbGIzoRzhGDAPMMf1vXv34OHhwfuO+vp6ToOYUqnEgQMHcP36dRQVFZHmOFYF6JilRFFMa+Hy8jKKi4uJ/a2trQ1Go5GchwqFgldwkJCQgIGBAXzsYx+D1WrF3Nwc5zhhQ8UdMTU1haWlJZLb5OzcYJctPz8fdXV1qKysRHY2X9as1+s538een2VlZdizZw8WFxc51xGVSoXV1VVotVrcv38fZ8+e3dQGyzZKFhUVETLT2XFCURSSk5ORnJyMp0+f4gc/+AF++ctf4ujRo07PwePHj+PChQucBj22EZSFQqHAmTNncPnyZc6DAbPZTGylEREROHr0KC5duoQtW7bg2rVrxCLruGwsJBIJ3nzzTVy5cgXbt2+HRCLhrT+boceepxUVFZsqPQUCAQ4fPgy5XI7//u//RkNDA/z8/ODr68vLY9u+fTseP35MSHrgxYOY4eFhLC8vc14vkUjw9ttvo7S01GXwPQvHh0fV1dVITk4mJNbRo0c5D1za2tp4D0S0Wi2ePn2KyMhInDhxAv39/Zt+3/t4dQgEQnj6BYG227E4OYy0og8gMiMXmqRM6Ba1mOptI9k3ABNU6+EXBA91wCtb4YQiEaIyctFfx8+tMht0MOlWN818Mq4tY274hfVKFaDhNL25ApvVtDFsGWCGVbahClgnI2bGiWIGACRyd6jDomHSrTLWl6QMmA369dr7Fyp3oVgC7+BwnvVwaXoMAqGIo3RwhNmgw4p2mhkSHc6h37/9YaQWnkPa4Tdf+gTePyqRZBLNjfRybDRmgw7jHQ3wCgoj1h7f8DjMDvVwauIB5lo0M9CF01/5b0x0Nzm10q3MTeL4O/+JtYU5p//OEDwhUAWEwLCyiOHmKkjkbgiKTYFEriCEwkRXE3xCIjmNjyKxZF0tZeUMXzMDnTyFTVjqDgzWPyWV73PDvZC6KTnkilypwpy5FxajgdgQbVYrE4C+LY/JBAqLhXakj3McUBQFlb+GKGhomsZwcxXqr/8ahZ//OmaHeqBUBzDB9Rt+P1QBIRhqqoRXUBhmBrt4RInVYsZMfwesZhMogQCRmbvh4RsIN5UaIy3VkCs94ReZwPtcT79grMxOwlsTAZvVivGORkRl5ZHljdq2h7HJZu6BUCSC1WyESCIj+2So8RnC07J5pQN+EfEYrH8Kdx8/zjk51duGoNgtvNdO9rRieXaSKKE25nkBDPlgNugxWP90ffCug0ypchpe7RUUhomuJg4pxWxvpunPajZhoqsZIUkZUHh6cVQfK3NTOPyFf4XNYoHcQ8X77I0QikQISc6EzWrFxX/8BPZ89G94r/EOjsDccC8hTlnbnqMtzlsTgeHmKh5JRNM0hhoqEJm5G+MdDes5V0qXhMPccC/Of+NXWJwcgYdfMMY6mCxNmbsH/MJfEPRso6bj963MTUI70o/gxHRIFe4wri1jqq8dQXEpmypj7DYbdItzMBv0CE5IddnkaNKtOr3uePoHQ6HywWD9UwTFpULh6bWubtycvrBZLVicGoV+aR5imRz3fvwvyPng5wDQnPPzVeF4P0Hb7ZjqbSXXgj8WKn8NlD4BGGl5Dv3yAnSLWrh5+WKktcZlTtQfCk1SJrEH/yk+k6ZpDNQ9Rkjytj9JkPr7pNRrwtPTE7t378bAwACKi4uRkZFBwmYdcffuXSQmJvKUU15eXpzBzGQyob6+nuQLpaWloaSkhGdlYBVaKSkpuHHjBrZu3cpRddjtdrS1taG1tRXvvPMOz/KlVCrh7e2N4OBghIeH4x/+4R/g7+9PGooARlGRlpbGGejz8vJw69YtHDp0CIODg4TsstlsaGpqwuzsLABGQaFWq0n7m4eHBzIzM8kQEhERgcHBQYSHh5OhTqlUQqlUkmaqmJgYREdHo6KiAt3d3Xj69CmysrI4jVLOkJqaigcPHmByctKpDbG1tRWDg4P4+te/jtjYWLS0tPBqxp3BYDDg5s2b2LJlC7KysjZt09u+fTv6+vrwgQ98AF/96lcJYZWSkkKa9MrKyvDZz34W8/PzTi0xLG7fvo2TJ09CIBCgqKgIxcXFL203Y8ESShaLBd/85jfxT//0T7h16xbS09N529DRSrURNpsN7e3t0Ol0EIvF+NKXvoSf/exnOHz48EttL+z3HDp0CHfv3uWEHDsO2iqVCidPnsTFixchlUpx69YtSCQSHD9+3Ol3HD58mKg62CGWzY5hh838/HxcvXqVZ+np7OzkZQtRFIVTp07hypUriIyM5OSisYiPj+eokQYHmRt5NjdoIykjFouxc+dOjI+P4/r16xAIBEQtEx8f7zRvqKmpCaOjo3jjjTcIIXDjxg1CdAHM+W0ymXi5TQcPHsTVq1eRn5/PCdleWVnh7Vtvb2+i/ltcXOSF0EdGRmJgYIAso6enJ06dOoX29nYUFRXhvffe2zT7bWFhAeXl5SgqKoJEIsGhQ4dQW1uLtrY2FBYW8siOgYEBdHR0ICAgAMeOHYNYLMbKygqPyASYc5glDbZt24aBgQGUlpaiqKjopT+snp6eCAsLQ3JyMn784x/jzp07nPfo9XqEh4ejtbWVt4xSqRRGoxEymQxmsxmXLl3CqVOnePtBpVJhcXGRo1BcWlpCeXk5du/ejd/97nfIzs7GhQsXcPDgQR6xyhYk3Lx502mxAQuxWIzz58/jypUraGpqgtVqhVgsxu7du3nLpNFo4OHhgYsXL+LkyZOkSXPjtqUoCmFhYUhISMDFixdx//59pKamcpYxLy8Pjx8/RnZ2NoRCIef8pGka/f396OvrI3/z8PDAz3/+cwQGBiI0NBRzc3MYHByE0Wgk72G/u6CgAL/85S9JIyarrk1ISHAaml5VVQV3d3fU19djdXUVaWlpvN/Z8PBwjIyMkP+2WCwclaW7uzu2bNmCqqoq7Nq1C9PT0+T3VK/X4/79+/Dy8nplIv99vB7WFuYwN9wDT38NGb6Wp8eYB2HrVhFH2O02rMxNYbyzkRMMLBSJoQoIgULl43Q/CcUSRGbkYqD2MWeAGG2vQ1Qm11Zqs1oxN9wDk575TZG5KRGckPYHVYy/KiiKIoQKC5NuleSFPPz5t3D4C/8KsVQOb03EK930S+Ru0C8vbPrv6pAokq8CMGHHez/x9/AOCsfsUA8hBCVyBXzDYnl5Km4qH8wOdsNut8G4tgL/SEYdOtHVxFj5NzSFydw9YNKv8pZlbrgXnv7BkMgV8PTXYGl6jLMtbFYLtKMDiMzIhZuXLy+c26RbhcRhm8g9vBCRlg2Tfg0jrdUQiiSg7TbMDHZD7unttMUxOCENkw6EGPOZ/Op0gUCIwNgUTKy3zW0MlGYRkpSJ4eYqEjg/WP8EUZm7yXEkkStgdiAXnWFmoBNuXmoU/c031/NiRFjVznCUVG6e3vAOiYRAIFxXtkxBv7QA/8gEGNeWMTvUA9puh1AsgX9UIoccommaWCwNK4sYaamGQChEUHwqUce5qXywODkMb00EhpqeISIjh7NNBAIhojJ3Y6D+CWLWzy2KomBYXcJEdzOinBQYkG20JQtjbXVE9WExGWEx6p2qwYLiUjDWXgeRWAI3LzVjP3JCJkvkCmgS09F2vwT1N36DT/74ltPvFgiFvHDxsfY6hCZvAyUQQCyTw261OLV1Lk6OIDRlOyxGPfprHyEyPeelzXAAMNpajbNf+ynM+jX01z5C6JYsorIUS2UkfJ15bS1CnZDfQpGYl2003FSFkC3bIBSJ4ebtSxoCncGkX4N+ZRFh4bEwrC4CoIlC0LC6hNH2OoCmIVOq4BceC5m7JwyrS5AqlBhtq4GbSs3JI5K5e8KkXyVZWa4wN9yDgOgkxO3KZ7bZhqw/FrNDPQhyYpFjt1F01l6MdzZAt6iEzWqBb9iLc0+/vIjFyWHYrC8KfQRCEbwCQ4kNuuhv/g0hydsYknagk6ifvDURL213VQWEYHlmgigb2UKGPxZ2uw1rC3NYmZ2E3WaFSCJFbckv4RMcgfSjH4ImMf2PUgw7A0VR0CSmY6KrkdOY+IeAttvRX/cYYSk7NrWkvw7eJ6X+QERFRSEqKgr19fVoaGjAvn37IBaLYTab8ejRI8THxzu1xbGKD9aqcP36dZ7FIj4+nmfzu3//PnmqGxYWhuHhYY7KSSAQQKlUYvv27fjJT36yaT399evX8dWvfhWPHj3iqBL0ej2am5uxvLxMlBOsAqOkpATR0dG4dYu50AuFQmzdupWoMVhFAovl5WVUVVXBZDIBYIaAjo4O1NbW4siRI4REcFRosP9/9+7dmJycxHe+8x3s3r2bd3PgzD65f/9+XLlyhWO1am5uxvDwMLZs2YLjx4/j7t27OHDgAEZGRnD58mUcOXKEDHKOnzc4OEgydL7//e8jPz8fDx8+hFQq5bVDsbBareju7sapU6d4ofEAMD09DQ8PD7i5ucHNzQ1LS0tobm4mhBWLxsZGpKamkqGPbdfbmEPlilCyWCx48OABbDYb3nrrLWRlZSEvLw/Pnz+HTqeDQCDA9u3b4e3tjebmZqIaWVlZQWNjIyFZhEIhkpKSsHXrVoyMjODKlSsIDQ1FcXExEhMTnYaEb2zTkslk8PDwINYfZ8vMNnEVFhaiq6tr0wY7lkS6dOkSUZQ8ePCAY/uhKAqpqalobGzkqJ7GxsY4TYgsJBIJEhISsHv3bpSXl8Pf359j44mOjkZpaSkSEhKg0+nQ0tLCsT9SFMXJJAKAp0+fIjc3FzMzMxCLxWS/dXd3o6ysjCgd9Xo9rly5gpSUFJ4lVqVSccjriooKl7bEkydP4ve//z3Onj3rkjhdXV3FgwcP4O/vjwsXLqC8vBzh4eGc4y8xMRFlZWU84kwkEuHixYswGAyEYEtJSUFISAhkMhkMBgN6e3sxNTVFbHIssrKyYDQaUVpaiqioKNA0jba2NgwNDSEyMpIQMF1dXYiLi0NwcDCPyASA8fFxjjI1KioKXl5eHMLFGWiaxuPHj7G6uoovfelLyM/P59m07t+/T0iT0tJSSCQS7N69GzKZDKmpqWhpaUFycjKuXbuGc+fOOd3G27dvx/3798n1tKamBsvLy8QuCbywBt+/fx/e3t4kl4+Fh4cHkpKS8Pz5c5ek+fDwMNrb26FQKPDjH/8Yn/jEJ3iW1tXVVXJ99fDwwKlTp3D16lUUFhaio6ODXLOHh4fR1tYGimLaFUtKSnDw4EFYLBa0tLSgru6FesPf3x9WqxWXLl1CQUEBnj17htXVF0NmdHQ0p7VRr9fDZDLBarVCLpc7vV4AQHl5OX70ox/B19cXkZGRTvO7HLGwsIAjR47g2rVr5AFJU1MTmpubERYWRojL6OhoPHr0CAEBAZyHPo6IjIzE7OwsBgYGADBE/L179wAwBPjrFEe8j1eDUbeKia5muHn5uAzIdQaBQMhRkrCwWcxYmh7H/Pgg5+9iqRxeQWGQuXtAJJYgPC0b/XWPIZG7McRGFHM8Ls9MYGl6DKAoCIQi+IXHvpKt4WUQSaR/0NN4gLHzBMenor/uMT783YuYGehESPK2VyZHJXI3Zp1eEUvTY7BazIjdeRCjrTUce4jZoMPMYBdsFibnVCgSQx0WA6nCHZqkdEx0MrlTSzPjWBgbRFB8qtNcIWfQLy/ApF8jxI53UBiGGis5pNRI83OErTfUuXupMT/azxnMZwa7EOKklVCqcEd46i6sLcyi7D/egUSuQO6H/9rpvaNIIoXdZiOV8ZO9rQjf6vz6K5bKMNxchdnBbmQe+zBDUHl4Qe7hBambknkYKRDA0y8Yi1OjTC5Ves5rDZZsBb0qQAOTfo0M9RutoLpFLSY6G8n986NffBtZJz+BkdYaSBVKknH2Msg9vBCeuhM2ixmTPa2wWc3wi4iHwtMbNE0zTXHxaU7XQSgSIyItGwN1TyBRuGF5dhJL02O87Ctn29HNS01IyPGOBoSluh7yQ5K3YaixEkESKUOCrp+/zPbphd3GWOOlCiXSDp+HOiwGE+vNcUFxKU5ttiy0I31w9/HnnPeaxHSMdzY6VUZSFAWJ3A1RmXswWP8UmqR0jvpuI2aHuuEdHAGRWAKRpzeituUxOUIeXrzCgIWJYXj6Bzvd1kFxWzHZ00LI0/HOBvhGxBGi2kcTidHWGpek1Fh7HaLW90tAdDKn1VKuVJF1NawsEoLqzg+/gtRDZxGyZZtTK29wfCome1pc2uEWJoYhEIrIOR21nvXnzFJtt7/cKqZJzIB2bADX/uUzOPyFfyV/l3t4wT86yekyboRILCH5UDRNY2FiCCMtTF4kS8htJNk8/YMx0lpDstmUav9XvrbTNA3j6hKWZsZJNhgLihLA3ccPgTHJhKg78Kl3ELolCxYjU0Bgt1khFEsQEJP8Suv3KpC5e0IsUzi10Tou92aw22zor3uMCCdqyD8G7991/ZHIzMxERkYGHj58iNHRUXzta1/Dn//5nztVTwEMeSQQCGC1WsnwuvHmNyEhASUlJWRAHxgYQEREBBl8t27dihs3bnBIqdHRUfT39+PAgQOwWq1ISEjA7du3ecTU3NwcvL29IZVKYbVaOf+mUCiwaxdXsjw+Po6f/vSn+OEPf4jGxkan+TrO4OnpSaxGbLj3hz70IfzmN795aRg3q5D64Q9/iOjoaLItWLXKxMSEU0vUiRMn8N5772FychJGoxFbt27l2BhZhIWFQaPRkAGcHZjW1tZw7949Ui0OMAoN1s40MTGBS5cuIT8/n0OutLW1ob+/H4WFhSToe+NQXVFRgTNnzpD/n5KSgqdPn3LIRTZE3pFMAZhcl6SkJI66qq6ujqO0Ym2OFosF+/fvJ2QbTdOQSqUkc8tms6G2tpYMd9evX4dYLIZSqURWVpbTfcM2Bd66dQunT59Ge3s7iouLSVgyi4aGBp71Kjc3lyi9qqurSVC42Wwm5BkbYry4uMizqG2ESCTC0aNHcf36daSnpzttJ4yOjsb169eRlJTEsQVthF6vR3l5OUJCQvDee+8hOjoa9+7dg91uh1gsxo4dO6BUKiEWi2GxWHD9+nWeUigjIwP19fVEZbW2tgadToeAgAAEBARwztP4+HjEx8eDpmlcuHABH/jAB3Dz5k1eBhnA1NQ7ktfLy8suVW0UxTSfXblyBefPnydNeQBDUt67dw8SiQTHjh2DQCBAfX09NBoNVldXcfnyZeTn57vMCOrr68PMzAzOnj1LlEkssdTa2orV1VWcOHEC3/3ud11aUmUyGY4fP46nT5/igx/8IOrr63lqoMHBQULeeXl5cTLoXP04ent7E8IlPz+fYwt0tLHu2bMHKpUKa2trTgsgjEYj5HI5kpKSkJSUBJPJhIqKChiNRoSFhWFgYABDQ0N48803XaoERSIRbDYbdDodysrKkJWVRay17D5i//vgwYPo7e3FtWvXeGRaVFQU5ubmCFECMPbutrY2AIwCqKioCHNzc3jw4AFmZmawsLDAUfm1t7cTKzPAqKvOnTuHGzduoK+vD8vLy7DZbAgLC+MQuv7+/pidnUVAQABPNTg9PY3bt2/jy1/+Mq5cuYKDBw8S+6IzVFRUYO/evRAKhbh586bT63BZWRlSUlJA0zQOHTqE6urqTQk5x9IJNhcxKSkJaWlpSEtLw/DwMG7cuAFPT0/k5ubCZrPh+vXrToPQWWzfvh0XL15EcXExzGYzDhw44DID63388VicHEV42q4/mfpMKJbAJyQSPiHczBmL0YCFyRHMDnWTvwmEItz+zy9hy4GT0CRlYH58CJ5+wX9SawQL/6hETPe1Q5OY/vIXO8FkTwtpngpOSMNA7WNEbtv9SiSDUCwhJNLLsDo/g7WFOZfLKZG7cQJ+rRYz5oZ7iY2w80kZdEta7PnI37y01cnN03vdlqKG3WbDZE8Lz/7i4ReI5ZkJePoHY7q/E77hcZxBNSR5G9N2tT5MO1NpvGj10kPqpsTpr/wXJntaIXNTYrStltlGIjFHPRQUn4qJriYExCRBJJGRz2TtlcuzTASDRKbAjtOfxEjzc6K6MKwsYnl2EmaOEozC3Xe/giNf/I7T1i6RWAKrxcwZMmm7HYMNFQiM3QKFJ/NbJlW4E+Ueb3t6qeG2bkGzWsyIztoHdy9fp+1rG+FKVRiSnAmapjE71IPZoR5UX/kpso5/DLolLdYWZkHbbaDtdtjtdtB2O2jaTvbBre+9g6yTf4bQLVlYmZuEWOYGiVzhkpBTh0ZjsKECAKDcYOVzBE3TsFktCIhOROOt90jQM03TkMjdeMO6YWURbiof+IbHwm63YaqnFWajHgFRiUSJxTxMtMG4ugKjbpV3/AvFEggEAlhMRnKMGFaXOYSrQChEVFYeRltrSAse+9nsNjGsLMJs0HMslSRHaJrNEWJ+72xWC5PB5oKsF4olsK3PbDODXXDz8uVYEDe7hk10NyMobivnPkTh6QXd0jyv3U7u4UUIqoXJEVACCtN9bQiKS+URSRK5GywmAyF0HbGqnYFhdYlz/RAIhYjKyMVAHaNcdTzPNgOTN9YLw/IihGIx8j7+FixGAyIz+aKF1wFFUfDRRJLMMsPKImNptNshEIkREJX4gnyiaVhMBqxopxCeyg/PNxv0WJ6dgGFlkfdvcg8v+GiiXktNJJbJyblsMRkx3dcGm8XCLFd0oksb5KvCPzIBA/VP4e7t51QNrF9egMJF86HNasFA/VNew+2fAu+TUn8CsE+ExWIxvvGNbyA7Oxvd3d2c19A0DU9PT2g0GmRnZ+NnP/sZMjIyeOHfLNjGK/a/Nz7pdbQBTkxMoL29HYcPHyb2DNbOsJGYevbsGRkQYmNjSfuRM5jNZlRWVuJLX/oSioqKsLy8jDt37iA/P/+lFi6AIVkePXoEu92O3bt34/bt28jJycHFixedWlgARimkUqkQGRmJ3t5e+Pv748SJE+js7ERxcTGys7PR19dHBher1Yq2tjZMTzMBpB0dHXj48CEePXq0KfklFApx7NgxtLW14de//jX6+vpA0zSOHTvmMvA2ODgYZ86cQXl5OTw9PaHT6XD16lUkJSW5DA8HmAwiZ3lYu3fvJnlPKpUKt2/fdtkqFh4eDoPBQMLDbTYbxGIxrFYrHj58CLPZzCGjNltvtmL9O9/5DqxWKyIjI52qiAA4tUQmJycjISEBd+7cgUqlItk+NE3zjgs266y1tRU2mw1msxkPHz4ERVHYt28fJ2Nm586dmJ2dxcWLF1FQUABPT0+nP1ZKpRIBAQHYsmULZ3h3xOHDh1FWVobjx4/zPoOmaTx9+hQ6nQ5Hjx6FUCjE7OwsBgcHCbFiNptRXV2N1dVV6HQ65OTkoLy8nLd+fn5+HEVJeXk5ZwB3zGQDXhC0KSkpuHPnDg4cOICqqiqSg7Vr1y5ijxIKhbBYLGhububkQzmDVCpFQUEBbt68CU9PT2RmZuLRo0fQ6XQ4cOAAZzunp6fj7t27KCwsJEScWCxGXl4eoqOj0dfXh5iYGAwMDGB8fJyQn3K5HHq9HgqFAikpKUhJScHw8DB6eno4jZ7O0N3dDYPBgAsXLvBUhAD3hio7OxtXr14l17yN+ViOYAmXW7duERK/uroa09PTpATAcV/Y7XayDsALhdbGbXngwAEYjUb86le/wqc//WlcvXqVqGhc4e2330ZoaCh++ctfOiUaHZ/Sm81mmEwmfPnLX4ZAIODdWH3mM5+BSqUi5NFGm2J3dzcyMjLg5uaG7u5uznXeGYHZ0tICgUCAt99+GxcvXkReXh4vuFuj0WB4eJjTtgqAFHB89KMfJequsbExnh3WEY423aCgIIyPj5OmS5qmce3aNezcuRMBAQHo7OwkAfD9/f24efMmjhw5wtsmjjlisbGxuHbtGmcZwsPDER4ejqWlJRQXF+PMmTP4n//5H9y/f9/lcgIMiVdbW4sPf/jDGB8fd/l7+D7+eATGJP3/xQ4plsl5jU0rc1Pwj06Cp38wBEIRp7L9Tw2RWMKxkrwO1hbmQAkEZFiUKtwRnp6N/trHiMzIfenT8lfdvobVJSyMD3GUUV5BYViYGIZ3cLjT94jEEgTGMPcKNqsFK7OTWJ2fgX55gRA+qsBQKH38ecvhExKF0fY6uHmpMdxUifA0fiagjyYSQ42VEEllsFnNvEwggVAIpdofyzMToARMgyOLpZlxLE2NgRIIEBCdxLE60nYb3L39iIrEajZhZrDrhYUnOAJ2G5ObpElKx2RPC1E1qAJCeIoZv8h40gyn9PHn2X+WZsZx4p0fQCiRYKixEp5+QfDWvIjk8A2PxdxwDwmbtlrMTCtg2q4/aNgcba3BzrN/Ad2iFmMdDQh5xbZGZ6AoCv6R8ZjoboZvWAzUYTGEpKEEAlACISiK+d8CgQCgBLDbLNjzsS9CIlNA4ekDs1GHtfkZmI162NfPg42OCIDZnxe+9HEc/sK/YrSt9kVmz4age4FIzISkuykhc/d02d4HgBCfAKOwDE5IA03TmBnowsxgF7w1kVAFhGJhYhhLU6Muc4GCE9Ix2laL8FRm1pgb7uG1YFIUhbCtOzDV1wazQQffsBgoPH2Ygd7TGxPdzS4/XxWggVLtj5HmKhh1KxhqqiRtj67go4lEX81DePoFOc2sc2bh0y1qIRAICdHJwj8qEUONlYTg3Qjd0jw0ienwDYuBxWQg1tGguK0cciU4IQ0TXU0cMtS4toL58UGy7RwhFEsQnrYLA/VPSK7R4sQwvIPCea9dW9RCO9IHiqKgDouBX3gcaJrGWHsd/KMS/6TZSABDHrHHls1ixsxgNyHgjWsr6H1+H4GxKRhrr+dZQMUyOVT+GqhDo//kv3FiqYxY7WwWM6bX7YcCoRD+UYmbKgE3Q9jWHRyS3xFL02NOMxfZaxWbJfenxvuk1B+Brq4u9Pf3QyaTIS8vD21tbRgYGHBalw0wFqnx8XE0NTXh05/+NG7fvk1yNAQCAUJDQxEZGQmJRIKIiAiUlJRAr9c7fXKck5ODmzdvYvv27WhqaiLKHIvFQpRXLDF1584dFBQUkIwN9oSJjY1FaWmp05vwyclJVFZW4uTJk8SukpeXh9XVVZSUlCAhIYEojObn5zlZKnNzc3j+/DnkcjkOHjzIsbu4u7vj/PnzuHfvHtRqNUcV1NfXB6PRyFNrAcyT8YSEBFRWVmLfvn24efMmhEIhRCIRkpOTSR5IUFAQPvvZz+L27dvIyMjYNMgdAAnztlgshBDY+O+OoCgKhw4dwu9//3t88IMfRENDA89y5kj2GY1GzM3NuXz6f/ToUVy4cAGxsbFISkpySYgBjIKuoaEBLS0txGpiMpmwb9++l6rPHPH48WNoNBp4enoiODgY8/PzKC4uRmFhIY/UqqurI0SZY76OUChEUVERJiYmcPnyZWzZsoWntqFpGnq9HiqVCp/61KcQExMDsViM/Px8lzYzPz8/nD17Fnfu3EFAQAAiIyPJ52q1WtTW1sJut0Oj0eC9997DwMAAamuZm+GYmBiSwyQWixEREYHe3l4IhUJiSevp6UFHRwd2797NISz8/PzI5wAgFi6AUYC5u7ujoqLipSHvcXFxHOKKbcQ8cuQIpqen8fTpUxQVFcHNzQ3j4+MQCoWkYW1paQl3796FzWZDQkICyfExGAzYto0f8OoIu93OVJPL5cjLy8OFCxeQn5/Pa2EEmGuN401ffn4+5ubmcPXqVWzbtg1tbW0QiUQYGhrCgQMHyPtyc3Px6NEjjtKovb0d//RP/4T+/n5cv34dR48e5RF3VVVVEIlEOHToEKxWK+7cucNRErJZc45gFWiZmZmYnZ3ddP1pmkZ4eDj+/d//HT/+8Y/x/Plzp8ocgMngKisrI8d0f38/r/VtenoaNTU1kMlk+LM/+zOEhoZiaWkJRUVFLpV309PT+M53vgO9Xo+hoSE0NDA18DKZDFlZWZDL5VhbW0NdXR10Oh2SkpJw7tw5qFQqnnJrdXUVn/vc59Dd3Q1fX1+nhLFjoHt8fDx8fHxw4cIFzsOLtbU1PH36FDabDampqUhNTUVZWRny8/OJimz79u2EhPLx8UFDQwN5v06nw7179xASEkKUo+3t7SgoKEBzczMePHiA/fv385atv7+fYwHNyspCcXExNBoNaJrGlStXsH//fqJsY5WIEokE0dHRZF1OnjzJ2d4bQ+yTk5PR3t7O2T6dnZ0YGBiAQqHAf/zHfyAiIsJpID6LxsZGvPnmm8jOzkZhYSF6enpw8+ZNSKVS7NmzZ1Ol5fv4fwczg92w26w4/PmvY2lmAt7BYRhrr4NAKHTaCvengjO72Gaw222YHujg2Z9EYgmit+VhoP4JwlK2/8FDCAuL0YDJnlZeLbqHbyBGWqpdklIsbFYrBuqfImHPEYx31JNBjm0pZIPbaZqG0scfXoGhjCqCpjHV1w51eCyPXGOUK8sw6VZw63vvIP/T/wSTfg0SOTffSR0ajcH6pxCKJQiK24rRtlrYbTZ4+gU5HYKdQSSR8iw88+ODqC3+BfZ87IuI3pa3qT3H3dsPc8N9sNttPIUPTdNYGBskyjGVv4Y0iHn4BcJHE8koTNZJL7YVbGMYPwuljz9WtNPwUAfw/g1gKu69gsIIYUeD3pSYstttgJO2RLL8djuGGp/BLzIBez76t5jqa38pyTXaWo247HzoFrRYmBh85awa49oy9v7Z30Om9OQF9m+EYXUZ/lGJ8PQLxmRPKwkG579uCT4bQv4piiIh+9qxAaxqp3H3h1/BJ35U6vL7BEIhxFIZTPo1SBXujHrGhZorMGYLFsaHMNHVBN/wWMyPD2FupM9l7pDNasWqdgqr2hmIZXK0P7oB7UgfJDIFWV5X6qGaqz/Hno/+LS+cH+Bb+Gi7HVP97S7tlG7eapc5VNrRfnJes22CdrsNU71tsBj1UIdGw93bD2KpHHablWRwWS1mjHc18jL7HCGWytctmc8QmZGL1YVZQvxaLWZM9bTCbrNCofLhNfWxyytVuCN0y3YM1D5G1LY9r1yA8apgri/MMWbSreLhz7+FkZZqfOCb/4PgxLTXbgL8Uy4Xe+2yWa2YGeiExagHJRDAPzLhteznIrEEqsAQaEf7oQ7lxkDYLGaeytNiMmCoqcrltepPgfdJqdeE0WjE3bt3YbFYEB8fzxlo5ubmkJmZCZvNhpqaGo59A2DyPRISEtDS0oLh4WEsLi6STBebzYaxsTE8e/YMFgvzZGF2dhYnT57EnTt3iH3D8UL17rvvYmRkBJ/73OfI3zaGBDsSUyaTiafEEYlEvPc0NDRgZWWFYzdzzEU5deoUOjo6cOXKFRw6dAgtLS3YtWsXent7ySDlqmWK/az8/Hx0d3fjxo0bkEgkmJiYwNDQELF3ucLy8jK+9a1vYWVlBYWFhbyhe2lpCbGxsTh16hQqKiowPT3tVKU0OTmJ6upqpKSk4MyZMzh06BBu3LiBLVu2IDIykvd6FqOjo6irq8O+fftw584d+Pj44MaNG1AoFMjLy4NIJOKQfXfu3HHZVDU9PY3W1lbI5XJkZmbizp07GB4e3nT9AeAjH/kIxGIxqqurifrAFTbugydPniAoKAgxMTEwm814+vQpDhw4gNjYWEIEsaqUubk5+Pq+CJzdvn07ampqsGfPix8bVj0WHR2Nt956CzqdDsCLm3GFQgG5XI7R0VFkZ2cjOjp608B4dpnZAfHv//7vER8fT1SBBQUFhPSYnp7mnGO9vb0k80ytViMjIwMlJSWQy+XIyclBcXExYmJieBluLORyOa/CfnZ2FouLi3jnnXewa9cuiEQiPHv2DDqdDt7e3tixYwdiYmLQ09ODrq4unqKRJRkrKythsVg4TYMboVKpiD22q6sLDx8+xNGjR/Gf//mfJJzbGUnKKtTYsO2MjAzMz8+juprxyYtEIqSmpnL2pSPBCAC+vr44ffo0qqqqcPToUaJWcQQblL0RFEUhJiYGQUFBuHTpEg4ePAiAOQbKysoQHx9Pco9EIhEoiuJcc7q6uni24PDwcDQ3N2PLli08kmtpaQmNjY0kr04gECAhIQFFRUUk8J09DlQqFbKysghRz2aYzczMkHw3Fu3t7RgcHIS/vz+OHTvGhLYaDFAoFMjPz8fFixdx7tw5nt1ap9MRe+7t27eRlpZGVEIGgwF1dXX41re+hbCwMHz7298meU/sNtr4WaWlpfjoRz+Ku3fvwsfHB1euXMGxY8dc5max++/kyZO4evUqnj59CqvVCjc3N+Tn5/OW17Fds7a2FjU1NUhPTye/FTRN4+HDh7BarURJuBGpqamYnp7GpUuXcOLECc453d3dzTt2UlJS0NzcjK6uLhw5coQTyq9QKKDX68n6eXl54cyZMygpKUFubi4CAgKwtrbGI4JZm25ERAQqKipgtVrJb3J5eTn+4i/+Ak1NTZw2W0eMjo5idXUV6enppPkxLi6OPEx48uQJzGYz4uLiOKUD7+P/HdA0jdHWGnj6a0hIrUm3QoYsq9lEyKmg+LQ/6ZNfr8BQLE6NwjvIeZSDM4xuEqArEAoRnbUXQ43PEBCdvGnj1WawWS0Ybnm+aXPUZuHFdpuNUTlk7oZQJILM3QOG1SXIlSpQFAWvoDB4OazzqnYGYx31AICK3/0AoVuyEJ66E0tTo5zPpSgB5EpPBCemQ7RumVqaGoXZoOOpbAxry6j4n/9E4ee/Dk1S5h+93/RL8whJyoQ6NBpuKjUmupshkkgQGJvi0n6mSUrHeEcDT7Uz1duGwLitnL95+gfD0z+YQ04BTKPZ4uTopmoPryCGQHVGSlktZqxqpzkKG/Z1rogps17nktQ0G/QYaXnOac17mRV0aWYcSnUABAKGFLNaTJjqayMqsM0wO9SDmJ37MdHZRI4hV5jqbUVEOhO2vqKdckmm0DS9KUHhHRSOpalRZL7xUUz3tRPFi9TNA+rQaM6xFBS3FcPNz6FJynBqw+R8riYCawtzmOhqwtL0GMJSd8FqNkI71s/JEmJyx4Tw8A10IDcoiGUKyNyVnEw1Z9jzkS8gMCYZE12NvMwsiqIAh+NotK0WYVtcN4b6hcdhqLHSZQ6Vs7B/lhCZG+mDdrQf7j7+JIMrNHkbhhoqEJX1cvWSVOGOwJhkJs+JojA33Av98gIEIjEC41JcKkKXpsYQnMiIECRyBcJSd6C/9tGmwfp/KGiaxmRPC2i7Dcn7jmPvn72Fie4WjkLzT/19rwOhSESIM7vdhtnBbph0qwBFwS8ibtPziYVXYChGWqrh4Ru0qb3QbNBjtLUGMQ62y/8TeJ+Uek20t7fjs5/97KYDQkxMDCoqKjAyMsLLliorK8Phw4fh6emJlpYWQkoJhUJiP2BRXFxMMl+cneBWqxWrq6tYWloidg3WRugIjUaD//mf/8GjR4/g7u6O7OxsMozm5OTg2bNn2Lt3Lxkio6OjeSG8G5GUlISEhATcvXsXH/zgB/HLX/4SsbGxLpujHMN3WcTHx0Oj0eDNN9+EWCxGcXEx598FAgFsNhuEQiEMBgOuXbuGgoICiEQi5Ofno6ysDLGxsZxwXIPBQNYtNzcXfX19uH79Oo4dOwaapmEwGEigNUtO9Pf3g6IovPHGG3j27Bm0Wi2ysrLIdwOM3YYlbVjigQ3XDQsLg06nQ3l5OWw2G7Kzs0FRFPr7+xEWFgaxWAyTyYSmpiYsLi6SC09AQAD27t2LhoYGVFRUwMPDg1dLvhE2mw0/+tGPIBAIMDo6ipaWFohEImRnZ/O2L8C9yD19+hQBAQFke0kkEkKAikQiHDlyBIODg7hy5Qry8/Px/PlzDunq7u5OSCdHlJSUoLq6GpWVlTzVBwBcvnwZpaWlGB0dxdLSEkpLS1/a4kfTNKanpyGRSGA0GrFlyxanxQGOT6Idj4W5uTmUl5fDYrHgzJkzKC4ufmmTVm5uLh4+fEgsfDabDY8ePcK5c+dgNBrx7NkzHDhwgNjZFhYWcOfOHdA0jT//8z/HT3/6U6J8dASrbvvqV7/q8rsd0d/fj8FBJrh3165dUCqV2L1790vVcK2trYiMjMQ3vvENmM1mZGdnw8PDg1gA6+vrCYkVEBCAiooK+Pr6YnJykrRFikQi/OIXvyD5Xnv37uVss+joaPT39yM6OhoDAwMcAtfNzQ3nzp3DvXv30NDQgMXFRRw8eJBnE9u3bx8ePnzIOVac7ZeCggJ85StfwZEjRwjJBDBE086dOzmqPovFgvb2dkRGRkKhUBCSa3FxkWSXCQQCZGZmIjs7GyUlJZDJZDhw4AAeP36MlZUVJCcn865fPT09iI+Ph0gkIiH758+fJ8euzWbDtWvX8OabbwIA9u7dy1GTyeVybN++HZ/61KcQHR2Nmpoap+oigFECsbll7OdHRUUhNDSUtIC6IkeWlpZQWVkJNzc3lJeX47Of/azLcHHHbc6Sug0NDWhsbMSvfvUr6HQ67Nu3z2mGmeN+CggIwPHjx3Ht2jVCHlmtVh6Jtby8jIGBAZw+fRqPHj3iEFIAQ0oZDAbO94lEImKVnp+fx8TEBMnFW15eRnNzMwwGA2pqatDZ2Ym/+7u/I797NE2TnLBdu3bh6tWrCAgI4BwvOp0O9fX15DdAIBBwCgtkMhl5QNLV1YXS0lKUlrp+qv4+/ni87g35y2C1mDHU+AyhydtcPj0WSaQMOWUxY6KLCe0OTnAe6vy68PANxEhrzSuTUvNjg/DwC940NJaiKERm5GKktQZeQWEu1TOuQNvtGKx/isjMPS5/C/0i4zE73OPUumG32xjLTEYu2UZ+EfHM8LvVOZnmGNC98+xfgLbZ4B+V6LJJ0Li2AqU6kBA5G6FbmofVbELh578OoViM0bYaTl7Q68CkW8VYRz1CkjIhXc+cYjPKLCYjJrqaYLfZoArQ8MgCsVQOSiCE2fCC5LGaTbCYDJArnWc0sus01deOW997BzvOfAqpBa4fVAGbq2ZGW6qd2iDZ42K8s4GnWjLpViFzcj6saKcxPzaA6O37uMq0sBjMDfc6bRqkaRrzY4McxZ1XYCi0o/0u38N5/7r6SJOUsaniZWF8CN7BL1wegTFb0F/3GJEqn9ciIkz6NYy21SIyPQfLs5MQiiUkC8qwukwICACQyN3hGxYNmdKTaVPcsJ2tFjN0i1roFrWwWUzk73a7HTVXfw6fkCjYzKZXyhKiaTsCohMx2lYLqcL9pceySCJF6JYsjnLJNyyW5IytLczCYjLCzUv90kBupdqfF3htXFuBVLG54sY3LAa+YTFY0U5jrKMe0/0dWJ4ZR3jqLqzOTcNiMsBiNMBqNm6qGF3RTqHy9+/iQ/9+4aXHC8BsK8d9LpbKEZGeg/5a5wHqfyjWFmYxM9CFoPitkCtVGG2rhczdE8HxqRhuqnytoo5XhW5pnlhPXxcCgZA0k9J2O2aHezE7yMQIqcNieNlhjghN2Y6B+icuFXXsdfJVyMY/Fu+TUq8JT09Pl4SU487Kzc3F1atX4efnR26G6+vrER0dTexIQUFBLkO7m5qakJycDD8/Pzx+/JgTas1CIBDg/PnzKC4uRm5uLvz8/Dj2PQCYmppCRUUFPvWpT2Hnzp3YsWMHKisrYTQaSbC5TqfD2toabt68icLCQpeBys6+XyqV4pOf/CSxarnCRpsFwAx0T58+xYc+9CGYTCaUlpZCLBYjNzcXCoUCISEhGB8fh0AgQE1NDc6ePUsGHoqicOTIEdTU1HCyRth/YxETE4OAgAD87ne/w9WrV2G321FUVOSyWSknJwfd3d24desWUlJSEBAQgNraWkxPT6OgoIDs+403CW5ubjh8+DBomkZlZSUmJibIMH379m1IpVJs3bqVN6ADDIFy9OhRlJSUIDExcdPWJ9aK2dzcjNjYWKjVapjNZlRVVUGn00EulyM7O5tjO2Etiv7+/i/NS4mMjISXlxe+8IUvYHx8/KUtVKyaQa1Ww8/Pj9fAd+/ePeTk5CAgIACtra0oKCiATqdDcXEx0tPTnarS+vr60Nraij179iA0NBRmsxnj4+MYGBjgnAd+fn6Ym5tzmt+jVqshk8mgUCjw8Y9/HCKRCLdv3wZFUQgMDERKSgqPFJNIJJzw/5s3bxKSQiaTEWUOC29vbxw+fBijo6MoKiqCQqFwGtIeHByMT37ykzAYDLh+/TqioqJ45wIbZk1RFKKiolBUVITy8nJ873vfg5eXF8rKypCXl8dROzmip6cHq6uryM7OJu11Fy5cwPnz5yEWizn2N5qmSabUnTt3eColvV6Puro6bN26FdevX0dQUBAJvk5ISEBpaSmio6PR3d3NUwHqdDpYLBb8y7/8C373u9+hoaEBOTk5HEJNLpfDZDLBbrdjamqKl1kGMKq33t5efO9730NCQgI+8pGPbPpjyF4j5XI5Uc8AjOqGJYhsNhsaGhpQW1uLnp4evPPOOygtLUVOTo7LoPfp6WnS+ieTyXD06FFcvnwZZ8+eBUVRuHr1Kk6ePMkhM0wmE+cm7Pbt2ygqKoJYLIaXlxeuXr2KEydOcLKkWNLdkZBiIRaLcfLkSTQ0NOD27duENLXb7aiursbCwgI8PT1RUFCA2dlZXL16FUaj0aW9zhlCQ0MxMjICrVYLPz+/V/4NkEgkOHPmDAldX1paQnZ2NsbHx9HS0gLgRenFlStX4O7ujqtXryInJ4dcJ1illDPk5+fjwoULePPNN1FWVgaKokhmmpubGwoKClBWVsZ5ELNRpXz8+HFcvnyZlBTQNM0rLYiKisLAwIBT0i84OBgtLS3Izs7G06dPX2m7vI//b7G2qMXsQCeitu3hDa3OriMisQShW7Jgs5gx0dUE2m5nFDt/4hBXV7AYDVhbmHVJ7GxEWMp2THQ3w2Y2cVRJm4GmaQzUP0F4WvamyiK5UkWGGc777XYM1D1h2uQctsurPjWf7u9AQHQSFJ7eGKx/iuCEVKetZVaz0eUgvTI3iaVpJgx6tK0WmsQMJph7kMkLUgWG8hoaAef7fG6kD8bVJY5KSSAUEluUWCojKqil6TEMNz+HQChEYGwKIQ41CWkMYbE+oI511DvdhzarFXPDPSS0XOHpjcLPfx1eQaEYaqyE0scP6jDXakyRRMoJ3QYYe5W3JsLlEO6KmDLpV3mNW7PDPbCZzU4zjdy91NCO9MHZncdEVxMnyJqFOjQaMwOdm+aTmfRrkCheKHxCU7Y7JTdpmsbSzDgiM3I5fw/fuhMjzc7zcJxhVTsD7Vg/E7BNUfAODsdw83NCSsmVnhxlmUm3iqm+dtisFjz4yb9y2t4Axkbl5qWGb3gMJwdsbWEOR//uO7DbbK9EsjgidEsW+useIzx1l9Nrz8a5w1G5NDvcg7mRPnj6BWFuuBcAXok4UYdGM+o9h2Nidqibl5/lCgw5TcFiNKCx4ncIik+FWCqHwtMHYn8ZRGLpptcIkVSGD/37BUz1tiJ0S5ZLsnoziCRSRGXkor/u8R+ddWS32zDWVgeZuweitvEtiDJ3DwTEJGO4ucpp4Pkfg5XZCU4o/h8KxsrHfA5N09CO9kM70geAUfRtzMCjKApBsSmY6G7mnc+G1SXG6v0nzO7aDO+TUq8JiUSC69ev48iRI5wnwna7nbfDjh8/Tp6sT01NYWVlhRPYm5mZiRs3bvBIKZ1OR0gNgMkG2Wixc8yEOXXqFG7evIm0NCbQj33dkydPQFEUzp49C5qmYTabIZfLyaCi1+vx9OlT/Ou//it+/vOf4+rVq68UYM5+/82bN5Gamgqz2YyCggKMjo7ymvJYbAzfbWpqwvDwMBkY6+vrsXv3bpjNZjx79gx6vR6enp6ora1FRkaGywal7du3Y2hoiKihNu6Djo4ODA8PY2VlBVarlWdnMZlMPJIxPj4earUaOTk5+OxnP4tjx47x2qjMZrPTvBGKopCRkYHh4WH83d/9HVF1uMLExAQZygsLC3H79m1exg2L8fFxeHl5wc3NDbt27cKNGzfwxhtvQCKREBUBu09NJhM8PT2hVCqJ+s0VIUXTNCYmJsgQqVKp8MEPfhApKSm4e/cuAEbdIpfLOUSqIyEFADt27CDLBDDqi6CgIF6Yv5ubG06fPo26ujp0dXWhsLAQNE2T9sPIyEiODW54eBi7du3C9PQ0Ll68iMOHD0OpVCI2NhbNzc0cUoqmaVRVVUGr1WLPnj0YGhrCv/zLv6C2tpZs14mJCdy9e5fY3tLT08lnhIWFYWhoCLOzs0hOTuaoK2QyGafZDlh/KlZTg5/97Gfo7e3F3bt3eWqx5eVlREREICgoCFFRUSR/qbS0lJBgoaGhnDBrrVYLsViM5ORk1NTUEGtYXFwcj8gbGhrC5OQkh7BjLZC3bt3iEUdarRZ2ux23bt1CSEgISkpKcOTIEXLdYEkClUqF48ePY3x8HCUlJYiLi0NiYiJpD3VEf38/urq64O7ujkOHDuH+/ftISUmBRCJBZWUlDAYDlEolsUDu3r0bFRUVWFtbI6QYa4OzWCyIiYkh7ZBJSUlE6ebs+sQqINn94uXlhcXFRZ61VygUIisrC3q9HouLi/jbv/1b+Pj4uCSkHLclC6VSiYMHD+LatWuQSqWECHPEzp078fz5c+zatQs9PT2IiIgg2zYoKAgFBQW4cOECyb0yGo0oKSnBuXPnOOvHZi2x783IyMDS0hL++q//Gj09PbBardi5cyeH6O7r6yMB6Ky97vjx4y4fpFgsFty9exeenp44ceIE3NzcEBQUhBs3bvAs2M6ulSz279+PyspK5OXlobS0FBqNBocPH+Zdj+Pj4xEXF4fKykpUV1fj0KFDUCgUmJ+fJ69hSwbW1tbIev/mN7+BTqfDzp07X2pZnp2d5Vi2hUIh9u/fj/LycuTn5zvNPouMjMS9e/d4pFRLSwvGx8dx7tw5jI2Nbfq97+OPw5/qhlc72g+TbtVlG9xmiiwhS05ZLS/IqYS0l1p3XEEslcNs0L9UKTHSVoOojM3b6zYiOD4VMwOdmBvp41XLO8NwcxVCkjJfqb6bIWcsRA1F0zQG6p4gPHWn023h7u2HVe0ML5ichc1qgXFthTzJj8zcjeGmSvhHJfFsiBajAWIJfxkXxodg1K3y7HIURcE/ilGFLkyOYLi5CgpPb85wJxCJYbOYIRRLYLfZMNJSDa+gMN528w6OxMLEEO/vqoAQqAJCYLNaMNXbBqvZBHcfP6hDouDuwyhNQFFw9/IlJOjaohYL44Pr9xlC+EXEcRR7oyuL8PANgodvEFa00xhqrISbt9pptpJfRDxmh7rJwGi1mLE6P/PSYGwPdQBA0xxiyqTXQeIw+I+21ULp479pppObygdri1pO25tJvwbabuc00jnCPyoRE93NWJ6dJMSPI2YGOjlkmUSugFIdgPmxQU6b5kRXE4IT0njvF0mkTB7OSN+mhB7AXBPMBh1vewnFEljNJqfHtNRNCU1iOubHB1H4+a9D4eH10u8BgIWJIYQkb8PCxBC0YwNQb8i32gib1QrKgTiPzMjFQO1jnmINYAhbkZNzAwDZf/Pjg7j77j/j0Ge/irWFObh7O3+Q6QhPvyDSegmAHLOu4Jj7JPf0IrlPaYfPY2Vu+qXr7AizQQ93LzWis/ZitLUGHi5C3IF1W7GL3wmhWIKozD2MtfgPbIVbnBzB4tQoQpIzNy0ckCtV8IuIx0hL9Ss/SHgVOMtx+mNBURRzPQuLIfl5I601AE1zWiMVnt5Ynp3A2sIchGIJZO4e0C3NY3awm5c9+H8S75NSr4mwsDBkZmaiuLgYu3btIoTS0NAQb1gUCoUkq8hkMjnNk1EoFLwcm1u3bnGG8oMHD+L+/fucFr3+/n7ODfTRo0dx9+5dCIVCeHl54dKlS8jNzSWEgLMTWS6Xw2Kx4GMf+xhSU1Nx/fp1JCYmvlRNY7PZSC24t7c3ent7YbVaERoaitDQUHR1daGkpASZmZkkp4TF7Owsnj59irS0NNJYxw6VAEP6sWqT3//+93jrrbdQX1+/6fJERERArVbjwoULkEgkmJycRGNjIyiKQmJiIoqKinDr1i1cuXIFV69eJSoHAGhra+PUpwMM0VBfX4+CggJ4eXk5VTdtJCdYzM/P4/79+3jzzTfh6+sLf39/XLt2DceOHXM6UDc2NhLyUSaTwc/PD6Ojo06tas+fPyc5XxRFwcPDg7S2sVAoFCTTZ3x8HCkpKXB3d8dPf/pTjIyM8D7zl7/8JUpLS/GpT32KM0TeunULvr6+KCoqgsViwaNHj2A0GpGbm4vq6mrU1tZyCCl2mby9vaHVarG6ugq9Xr+pDXTbtm1YW1tDcXExvvrVr+Lf//3f8cYbb3C2k1KpxOoqU7UcEBCAM2fO4NatWwgNDUVKSgoZXAEmlH1iYgK7du0iyrnJyUmkpaUhLCwMw8PDCA8PR3BwMDlvbTYbGhsbyTGmUqnw5MkTJCUl8TLhdu3ahaqqKo76xLH1LDY2FkqlEleuXOGoZzae31FRUSQ7LD093WkD55MnT3Dy5ElQFAWjkWkIKiwsxLNnz7CyskJsv5OTk+ju7uZcG1ioVCqSzcS+3mQy4eHDhzh37hxu376NxMREREVF4ebNm0hOTib2R8frhUajgUajIed1XFwcfvnLXxJiaWlpCVFRURwyNSgoCJOTk4iLiyPn88rKCu7fvw+r1YqAgAAsLi5CJBKhubkZ4+PjRGnmSHzQNA2NRgNvb29cvHgRRUVF8PDg3gRXVVVxyhFycnJQVlbmlNx1PD/VajXUarVTAmYzeHp6oqurC/fu3cNbb70FqVSK9PR0QoL5+vqiqqoKdrsd7e3tvJwxNzc3onCdn5+HVqvF+fPneba3+Ph4dHd3c65PLS0tCAsLQ0JCAtLT03nXJscw8ICAAJw4cQLXrl1DdnY2T5H2/PlzzM3N4dChQxyCPTIyEt7e3rhw4QJOnDhB7NCOLZIbv/P+/ftQKpW4ePEi9Ho9fH19N80UzMnJgcViQXl5OcxmM4RCIcbHx5mab4kE27dvJ981OzuLxMREZGRk4Pnz52hpaUFhYSE5vyIiIjA4OIjIyEj09fWR/DJH+Pr6ws/PD9/85jdx/vx53nqw9j0WNpsNpaWliImJcZkJ+D7+78NYRwMUnl5Oh9jXgVAkXienrJjsZixcjALg5YSOI/wj4zHV17Zp8PNEdzOCYlP+oJwO/6hEaMcGMNXXTlrxnGGsvR6+4XGvHIIbEJ2M6f4OBMenrhNSjxGast3loOaticBoa41LUmqsvZ7TzkVRFCLSczDcXEVsRywsZiPkHirO+2cGu0FRcBluTZYjKAzeQWFYW9RiuLkKYqkcgXEpDGm2MAuRWILZwW6Ebt3hVImi8PSCdrTP5ecLRWJoEplynlXtDIabn4OiKMyPDUAklsLNW80MfADcvNQISd72Sr8rHuoAeKgDsLYwi6HGSihUPpz2SLFUBqv5hVLblW3P6WevK2BYYopeD2e3Wa0YaqxAcELaS7Nn1GExGGl5ziGlJrqaXqrECY5PxWhbLYRiCee9wLp1b8NvnndwOEZaa+DuwwRZW0wG2G1Wl+oZr8BQjLbVkjByZ5jobobMzQNBG3K+ACAodgsme1oQkuy8SIW227E8M4HIjFwMNVVCFRj6SqQBRVHw0URivLOBNPG5wuLEEHwcmhkFAiHCtu7EcFMVTwXGEIquSw6WZsaxMjuFws9/HaEp2zE/NoD5MaahWqJwh19EvFMVkbcmAkNNlfD0D4bZoHd6ntM0jdmhHhhXlyAUO8l9oii4e/tBt6jFytwkPHz5RORmYJsM54Z7nSp2AGB5dhIefnxnEQuhSITobXmMtTM955UJHqvFjLG2Wnj6BfMUeQBgNuh46k2Fpzd8QqMx0lrDa+f8vxXscemjYbiKxckRJtMLjLWYtcUqPLwhV3pCO9L3ykrEjaDtdlhMRliMepiNeuiX51/+JrxPSv1BUCgUOHPmDCoqKjA0NIScnBwMDAxwmqpMJhNqa2uxurqKt99+G9/4xjdQVVWFnTt3cn6k8vLyUF5eTtQC1dXVyMrK4gzmbNuZ43Db399PbBwsDh06hL1798JiseDx48eb2q6mp6fx5MkTFBYWorq6GpmZmcjKykJHRwdKSkqQnp7Oy8MCGDKmuLgYp06dIsNKYGAgJicnCZGSkJCAhIQE1NXVoa6uDnl5ebDZbCgrKyNB6Y7bYOOPNqvCysnJwe3bt+Hl5YXi4mJkZWW5fEqu1WqhVCpx9OhRVFZW8irUASbcef/+/bh9+zbZ3lqtlqNe6+3tRVtbG8kTyc/Px+XLl3HgwAHOAOiMlBoZGUFLSwuH9IqMjISfn5/TgdpsNkMsFnOWc/v27bh8+TJCQkI4f3/y5Alpg2OxZ88elJaW8nJwjEYj7t+/D7lcjt/85jcIDw+HTqfjkSwAo5Tw9fXleb4d/zfbmGe32wmp99vf/pYQOUqlEt7e3vDy8kJWVhYuXLgAlUrFC9V3BpFIBKvVipSUFAiFQh5xJ5VKOeHaAoEAR44cQUdHB65fvw6xWIyWlhYMDQ0hMzPTZUtbeno6iouLeS1vQqGQ856WlhZ87nOfQ0lJCc+KyNrOWPT39yMwMJCT5RUYGIhDhw7hvffew5kzZyCRSDjbdnl5Gbdv38b+/ftx4MABXLlyhacCrKurQ2ZmptOb2ZycHLS0tKCiogKJiYmcdkRnSEpKwt27dzE3Nwe1Wo3i4mJCbAqFQthsNkilUpw8eRKNjY0k78sZEhISEBsbi5/97Gf4y7/8S/zkJz/B6dOnnTb8BQUFoaqqikNwe3h4kGvW2NgYPvOZz6Curg719fUu1YFCoRBWqxUKhQLnz58n5JnjA4D5+XkOOSoQCCASiWAymThkC5vB5nh+RkdHw8/PD++99x6OHTvmNJfNEePj46iqqsIXvvAFpKWlobCwEEajEU1NTVhaWgIAosD77ne/i3PnzqGzsxMzMzM8+6e7uzvOnDmDq1ev4sGDB8jMzCSNdABjG2tvb8eWLVswNzeHR48eETXpvn37UF5eDpPJ5DTEm4VYLMaZM2fw6NEjTE1NAWDaDpubm7Fjxw6XKk6VSkWy2Pbs2QN/f3+sra1xto/FYsG9e/cgFAqJzZdVClZUVKCnp8ep7ZyFSCSCr68vampq8PnPfx56vd4p0d/Z2UmuXTt37sTa2hpKSkqQnJxM1HtlZWWIjIxEV1cX73q4srKCyspKWK1WPHjwACkpKejs7ERYWBgSExN559nExAQqKytx5MiR12o1fR//38FmtWKo6RmCYlM2HQABQCAUOW2ucgahSISQ5G2w22yY7GmG1WxGcHzqS3NayPvFEtjWcxudYW1hFgKh6KXLvBnUIVFYmh53mh8EMMHbHr6BPFJgM4hlclhNTBbMYP1ThCRv21TttRnxolvUQubu6TSnKzx1F0Zaa2C324ilxGI0QOQwFE/2tEDm5gFvjevr3Ea4e6nh7qWG2aDDaGstaLsNY+31iNl5wKWC7nXBZmWZDTr89q0PQOqmxKl/fNepJfGVl9vbjwz2Q02VkCu94B+VQLYvk+E0sKltzxkciSlgvfGvoxERGTmvlJ9GURSEoheqooXxIaZR8RUIt9AtWRhqrIRILCbbhhnynR9PoVuymHyprDyMdzQiLHVzJUpI8jbyesfloWkaw01V8A2PcRnkLRRLYLO6Pj/HOxsJCRmWsgPDTZWbHj8bVZiaxAz01z5iLK8utrN+ZZGnwJLIFVCHRfPIGbML8o2maYx3NEDm7oGI9GyMdzaAttuhDo0mrWom3Somu5tht9sYciIkipMzpAoIweLkCNYWtRzyd1U7g/nxQUZxEx7LIUtZWExGQgD5RyVisKECCk+fl5JCdhu/vdI3PBa6pXn01z1GRFo2Z7utzE26JBBZMIUQeRiofcwJ7HeF2aFuGFaWELZ1p8tzan58CN7B/OuPu5caoO0Ya6976XL93wjHUorl2UmMtNaAAoUb3/5b7Dz7lwiISSLHEgtHl5bj/+aDgkgqg0SugFimeOVw+PdJqT8Cubm5GB8fx6VLlyAWizE8PIyuri5QFAWpVIqsrCwolUqimNJqtSgrKwNN08jKyoK/vz9EIhFsNhvsdjuWl5exsrLitC1u//79KCsr49xwOx4IS0tLKC8vx/nz53H+/HliT9q9ezchQtgDqKKiAjabDefOnSN/Z8mApKQkJCUloaGhgeTBsNYmrVaLBw8e8J7qh4SEoK2tjafu2bZtG0JDQ/GVr3wFP/zhD9HQ0ID09PRNt6ndbueQQF1dXYiIiEBERARqampQX18PmqZht9vR0NCAubk5AIyC7cCBA7hz5w4mJiY428ZqtRKCTq1WIyYmBtXV1ZztbDQacfv2bURFRXGUDQKBAGfPnsXNmzeRnp5OSLGNpFRnZyemp6edBr27u7vj/PnzKC0tRXx8PFG4PXnyhNNkxyIvLw9PnjzhBPsajUYOQcIum0wmg16vh0KhgNVqxf3790HTNA4dOgSxWIxbt24hOTkZTU1NaGxs5Gx/1nK6fft21NXVkX93Flbc1NSEsbExBAcH47e//S0hGFjb3eLiImZmZtDV1YV/+7d/wze/+U2yXK4wNjaG2tpanD59GiqVClu3bsXFixdRUFDwUktVUlISIdpaWlqIFcoR09PTnG2WmpqKpqYmpKU5f4re2NiItbU13LlzB/n5+aiuriYNjezgz7bWiUQitLa2Om3yUyqVOHv2LK5cucJRMDU1NWF6ehrnzp0jx2dGRgZnv5hMJkxPT7sk1wBg69ataGlpQWhoKK5evYqenh7ExMS4tN6yuTwymYyTERYeHo7h4WFERTFS6/T0dMTGxuLq1auwWCzQ6XSQSCRoamqCVqsFwJBEhYWF+Id/+AdERUWhoqIC4eHhvIB+qVTKI2EA5jx7+PAhaJrGl770JVitVlitVty8eRNBQUFIT0/nnLuenp5YWVmBt7c3KIrCsWPHUFVVhbm5OWzfvh3t7e1ISkrifQ8bOM6SYF1dXZicnHRKfnl4eBDCy3Ffs6QxiydPnkAoFBLFK7ucMpmMQ+7YbDa8++67+Pu//3skJiYiOTkZO3fuJCQ+i+7ubtTV1WF+fh579+5FfX09lpaWmBp1pRJZWVmkCU8gEODMmTOgKAotLS1kPzx69Agmkwnx8ZvnEOTl5aG4uBinT5/G9evXnR63G+15IpEIZ8+exd27dxESEgKbzQZvb2/Y7XY8ePAAJpMJBw4c4K0XwPw2zs3N4dKlS9i/fz98fHzI74/NZsOTJ0+wurqKbdu2ISsrC5GRkbh+/Try8/M5xBzAv9a6u7vj1KlTaG1txbVr18g5trCwQAhSm82GyspKLC8vw8PDAwcPHoRIJIJYLCbHxPDwMG7fvg2AedBkMplQUVEBmqY3bcl8H/93wbC6jInORkSkZ7+SZcPdxw+6xdnXepIvEAqhScyA3W7DZHczrGYTguK2umwx42D95n3jjbvdbsPMQJfT3JLXhSpAA5FEguHm5xw7ydxwLyQKN6eB4S+DSCpD97M7iEzPeaWcF1VgKBYmR3jB7jODXU7VByzCUrZjrL0etN0GD98gxma3PoiOttVCFaB5bdUFC7FMAambO3SLWswMdiEiI3fTZsHXxVRvG8xGPd54+z8gEksx2d0Cb03ESxvUXgY3LzUivNTQLy9guLkKMndPeAWFYW6kF/ql+dfOsrFZzBDLFKAoAW597x+Q97EvIjY7/7VCwoPit2KiqwkhSZlYmh57LXIvPG0XBuoeIyxlB8QyOWYGOhEU7/w+jKIoaJIy0PHoBvyjEl+6jBRFIXi9/S0gOhEiiYwpOWioQNjWHS89R300UU5tdmz+F/t+gVAIr+DwTS15S1OjvH0fkZ6DoaZKlyHSrqD08YdZr4N2tP8FsaRf4xFsJv0axtrqoElKJ6Sfm0oN3ZKWkx0kdVMStSJtt0M7NgDtaD8AQOamhG9EHEaaqyEQiWC3Wol92d3bD+GpriNIAIbY8Yt48QAyPG0XBuufbtrwCQDzYwPwcbIt3VQ+iEhjlJT+kQkcC+KrEKECAdNU2r9+zDkj1E26VYx3NcE3PPalOU4Wo97lNdDd2w92u93lQ4H/V+DpFwSLUY+1hbl1QlEClb8GYpniTxIebzbwS7Kc4X1S6o+El5cX5HI5jh07hlu3bjnN0WChVqtx5MgR0DSNuro61NbWQqVSYdeuXXj27Bmmp6f/f+y9d3gb92E+/mKRBEES3HtvUuKmSJGiRO29t5M4TtM0TdukaezGznDStFlN4iZOmiZundiO49qSNSiS4hCpQVLce++9BwiAJIgN3O8P6D7G8QAOWUnzfX5+n4ePLRI43PjcHT7vvYOoGNaCtuVJJBIyQaNRXl4OjUaDS5cukXyQEydOwGAw4PHjx6RZSqFQ4MMPP8SuXbsshqubIyUlBcnJyaiqqkJ1dTX6+/tJpf3a7XNyciIWK8CkGOrs7DQx6x4eRMElFosJKRcfH88isTQaDW7evIlz585ZJDPS09Oh1+vh7+8PhUKBw4cPMybv9+/fR3Z2NqRSKSoqKoiyqLGxkaGGioiIgEwmQ19fH/n7zMwMI1fHHPRkuKSkBEqlEpGRkVCr1UQ1UF9fDwAWQ67Nl3Hq1CnU1dWhsrISWVlZVi2AHh4e0Gg0xJpXWlrKsgDR2L9/P4qKiiASiaBQKHDw4EGy78xzzpKSklBXV8ewK9bX1xMFwo4dO9DU1ITGxkZwuVzEx8dDq9WirKwMarUaiYmJSEpKQk1NDY4ePYqlpSWyHY6OjnB0dCTH8+c//zmOHDmC0tJS2NjYsBrc6M9Wq9WM7fLw8MDly5dRVFQEHx8fQh6tffrU2dmJoaEhbNu2DYWFhejt7UVgYCArnLmlpYWR7xQaGorbt28jMTGRtT7379+Hj48PkpOTce/ePXA4HEI0tLW1ITc3FxEREcjMzERVVRUjC8kSBAIBrl69itzcXMzNzSE3NxfR0dEsm11ISAhaW1uRkJAAHo9nMXh8LdRqNbq6unDz5k0cOXIEIyMjKC0thdFoxOLiIn75y1+S19L7rqOjA52dnYzPDwkJQXl5OSGlgI/UO9/97nfx1ltv4ZVXXkFiYiIjU620tBTf/OY3UVdXh9OnT2NkZAT5+fmkJdASOaZUKvHw4UPw+XwcPHgQNjY2KCgowLZt26DRaJCeno6pqSnk5+fDxsYG2dnZEAqFEIvFWFpaYhAVmZmZGBgYQEFBAfR6vUWlmJ2dHbRaLSiKQlNTEwwGw7qh31wuF2fOnEF1dTXm5uawc+dODAwMIDIyEgqFAgUFBdizZ49Fq6U5hoeH0dLSgi984QuIioqCVqsl5PFadHd34/z588jLywOXy2UQW7S659y5c+jv77do5wVM5Ft1dTWxaK59UtzS0kIUUmKxGK+//jo8PDxQUFAAAIiPjycW68XFRYtW5SNHjqCxsREPHz7Etm3b0NjYiH379rFslGvh4eFBQtBFIhHUajUKCwthMBiQnZ3NeD+fz8eVK1cIMbhW0WgJ8fHxiImJQVFREaRSKa5du4Y9e/bg7t274HK52LVr17rktnnbrVwuh4uLC773ve+RhzWf4C8fsukxrCzObakVyNHVE7ND3U9FdHC5vCcWKCOm+9qg06jgExm/Lmnj4hsE2fQYK/D5WeeROLh6giewxXBjBQR2QkinRmE0GuHhz4yVoCgKWtUqVuWLUMoXYTToLS5vaX4Kc0M9sHdygYtv4Ib7S+zpi7G2WgYptTDav6kcnoDtqU+a7j56Ij/cWAGv8G1WW6MEtkLoNCrLViOjEdP97dCqVuEdvh0OLp44+MVvQeTijtHWaji4eloNod5MDphCuoC54R74RGyHvdgV0skR8AQ2CE3dA8nYAEZbaxAYn2aVUDEaDIwcIWuwF7siJGkXVCtyTHY14cGbP8axf/wBxjvqyWssOQ3W/o3LF0BgJ4S92BWBcWkQ2NljqrsFFGWEJXB5fNg7u0Hk7AYboeiJUkoAo0FvaivcoiqEw+EgLDUbA/WPEJayG0aDgaFUNOi0kE6PQbUsI7/rrSyGk4cPY1sBgMPlwcHVA45uXkSJI3QUw9ZehJn+DtjaO2C0tRphm2xic3T3wmLrMItomuppYWVQufiYguldvAMsEuDLklmWlYvHF8A3Mv6pSAu3gFBM97WRvDadWslQaUomhrAqk7Cufw6unpBMDLICrWlwM3ej2QABAABJREFUuFxGbppaYSL2p3pb0PngDk59/TX4xSRvOjBcr9UwzkMulwffqESG0swSVCtyq+chj89HWOoeTPe1YVW+aFGhtR44XC7C0/ZhqL4MAXHMop/p3lZQFIXQlN3PJMvQlN1mtGo73AzWZov9uWDQ6zDd1w6DTgv3wDC4BYQh+3MvwjMkGhNdjQjdYtbhx8UnpNRTYmpqCo2NjXBwcCAtViKRCA0NDaxQ7LXgcDjkNTKZDBUVFTh79izee+89TE5Owt/f36p1586dO0SZMD09jaqqKuzZs4coQsxvSDwej1jnfvnLX+Kll15itfNttJ67du1CSUkJXnnlFVy/fp0EX5vDzc0NJSUlJJMjMDCQkHMqlQpSqRQJCQmQSCQ4ceIEKIpCZ2cnaVNKS0vD0tISbt++jStXrqy7frW1taisrERnZydLOaRWq2FnZwdfX1+Mjo5ibGwMQUFBkEqlrKfvaWlp+N73voff//73ePz4MYO0WrsfaRw+fBiVlZVQqVTQ6/Xw8PDAw4cP4e3tvWH9Oo309HSMjo7ixIkT+Nu//VvMz8/Dzc2NpUw6fPgwbt26hdDQUMZkUyKRkKY1GpcuXUJfXx/LbtnR0cFQsKSnp6Oqqgq9vb2Ijo6GRCJhqMVSUlLQ0tKCH//4x/jMZz7DIAdoSKVSuLm5wc3NDVKpFF1dXQylikKhgEgkAo/Hw9GjRyGTyUgOkUAggEajwb179xAdHU3yi8zB4XBw/Phx9PX1IScnh6FsMSejaCJicHCQYTMyt3GZKwBp7N27l9FmaTAYkJOTQxoCLSEhIQEJCQkYGBhASUkJvvGNb+Db3/42amtroVar172pCQQCfOlLX0JOTg6Gh4cxMjKCoKAgREREkHF+5MgR3Lt3D5GRkQgKCrJIjNLQ6XS4desWrl69itLSUlNFeGgoQkNDYTAYcOPGDXz7299mkHF0M+a//du/IScnh1wv6CBtc2i1Wty9exfPP/88kpKScODAAdY+VKlUEIvFJOycVjIuLS2hsLAQHA6HKACXl5dRVlYGoVCIo0ePkm2mz6/w8HDk5eVh27ZtJOtLq9WivLwcarUanp6esLW1xcrKCgYGBjA/P0/Wo7GxET/96U9x69Yti/uKx+PhhRdewMsvv8xqO7SGzMxMDA0NITc3F7a2tvDx8UFraysuXbq0bgmE0WhEUVERvLy8GETrqVOnUFpaCpVKxRjvjY2NJG+NVnWZ27+dnJzg6+uLxsZGPH78mHFdXHttyszMRFNTEyorK8Hj8VBXVweJRAIOh4PExESiwsvNzcWXv/xlFBUVkYcj7e3taG9vJ/srIiICfX19mJiYYIXZv/LKK/jGN76BV155ZUNCigaHw8HBgwdx9+5dnDt3Dl1dXRavlbSS5PTp00RFtTbrzxJo9VZzczP+9V//lRRebAWLi4soLS1FZWUluS7m5eXBzc0NmZmZf5bGmU+wdUz3tYNva8sKvt4IPIENjOtYdjYDDpcLv5gkBvnhExFnMfTZyd3bRNaYkVKSiSE4e/k/81BbOwcneARH4v1vPI/4wxfhH5uMic4G1jXD1t4B9s5u8ImMs2orkowNICx1L+zFLpBOjWKsrRYcLhfe4dvXJWzoc9loNEAhXdh0A5lfTBKm+9ognRqFRqnYsIlLKHaBalkGgYdZ8YjBgKmeFhj0OvhGxROVy/T0GGlJC0nOwrJkFsNNj+ERFMnKwXIPDIdkfBA+kezrj9FgINXw5uG/5ko496AIiL0DMNJUCY/gCItknkK2sCk7pXmOj41QhKQTn4JHcBQrHH6zmOhswKG/+84TZU2K1WubQa+DckkK+cw4UQwBwPLCLKqv/QYnvvZjxjoClskxLo8HHt8GXL4APIEA7v6hqP7wv2EncgSXxyPv5fEFcPENZgXMWzq3DXo9VuUSzI/0MnK2AKDw9W8h6fhV7Dj7V1tSd9gIRYxcKvnsBJy9/C0q6gLj0zHWVmNR/Wdtf9qLXaFclmFxcpjk+QAmlZM1GyMN36gEjDRXwVbkQD6DMhox1l4LJ08/i3lGtP12s7BzEMNW5IjgxEy4B4ZDvbIEzeryx7IV24tdsCpbMO3Lj6Ec9I1KgHxuEsNNj7d8veRwOAhL24vhxgpQRiMU0nnMDffCNyoBQsent9lagpOHL4xPHlZYyi/bCCuLs3Dy2JzF7VlAuSTD/EgvuDwefKMSyL6VPVH7CR3FCE7aZWqDTMjYsKzjWeETUmqLGBoaglwuh6+vL+sJfVZWFvr7+3H37l1GppG1tpfZ2VnU19fDxsYG77zzDng8HpaXl1FSUsJ62hEQEIDw8HAEBQWhpqYGoaGhRNVgDXq9Hg8fPiQh60lJSbh+/fqGxI/5tra0tODAgQMoLCyEXC7HkSNHWE/jFxYWUFdXh1dffZVF/jx8+BCHDx+GQCBAa2srkpKSwOFwEBcXh7i4OBiNRvz85z/H17/+ddTU1LDIGT6fTxqoWlpa4OTkhPDwcMhkMkLgASCZOTQyMzNx8+ZNVrjv8PAwenp6AJgC5AMCAtDe3o65uTmkpaWRbZufn2e0utHIyspCc3MzHj58CH9/f+zatcuqisEa6KY0T09PUp1uNBpZx3xoaIgEew8OmmS2bm5u2L59O1EAyOVy3Lt3D/X19SxSanp6mtTZ09i1axfKyspIoLBWq0V7ezuxQQKm0H6KonDw4EHGOFlrZ0pNTUVJSQlcXV2JgqSxsZFByrq4uOD8+fPo7e3F22+/jV/96lf44x//uOGkNioqCkFBQcjJycHNmzeh0WgYZBRgIiFtbGxIA2Vubi7S0tLg4+NjtSnM1dUVCoUCWq0WKpUKRUVFOHv2rEUly1pERERgddUkQdXr9di5c+e676MoCtevX2dMlCmKwtjYGB49egSDwUB+V1VVhby8PLzxxhtWl0VRFD788ENcunSJnCfmX4ZzcnJw9uxZDA8PY2BggNhE6SY4Pp+PS5cuoaSkBP7+/ixyYHBwEG1tbTh16hRsbGzg6emJR48eMRRGzc3NRMFGq/NoxaBYLMbJkyeh1+tRUVFBwrxPnjzJInR6enrI5wcHB2NkZITY5mxsbEhY//e//32Ulpbixz/+MSIiIsj1w2g0YnV1FdeuXWNl69H7pa2tDa6uroxMss0gLCwMzs7OcHd3x2uvvYb09HQsLi7Cw4PZYuPu7o6FhQUoFAo0NTXh2LFjjEB7GocOHUJlZSXUajXi4+NBURQmJiYIEe7o6IjV1VUYjUbGfurp6cG5c+cQHh6OGzdu4OrVq1a/9Pr5+eErX/kKysrKUFdXx8qPGx0dRVBQEHg8Hng8HsnboglXiqKwb98+HD9+HJcuXUJ2djbjXK+trUVvby/GxsZQX18PgUCAvXvZ6hSBQACtVss495qamuDl5YXCwkIYjUbcuXMH8fHxrGIQGtnZ2WhubkZVVRUrg1Gv16O5uZnYSW1tbZGamoqpqSkUFBQgKioKeXl5RLW39n7C5XJhMBjI73t6ejA6OoorV66gra0Ner0eUVFRiIqKgkQiIcq99bKxPsGfF5TRiJGWKngER1pVAvy5wOFySRj4TH8HNKsr8I7Yvu6ER6tSYlW68LFUUkajAYrFOSzNz4AyGhh/s3MUY//ffBM8Hh/ugeFPPbFUKZbh+qQFzdUvGK5+wTAaDJgZ6IBeo4aNvQO8w2IZE3f3oAgsjPXDMzgKk11Nm6qV12s1WJwchmbV9KCt9sb/4Mg/fA9zQ93gcDgQewfA0c2Lda2xd3KFdGqEWP4me1oAirIYSK/XqhlKDjpYfH60D5LxAfjFJJNJl8DOpMBaC8nEEFYWZhCwfQdrckyBAsxzOG3tELYjG/MjvZDPTrICzxWLc+tahhQyCSRjA4wcn4nORqSe+gxG22qfqg1L9yQjTGArhF9sMqZ6mq0qd3h8ARzdvFjnl9FgwNlv/hJ2jmI4e63fgkq/3qDXwqDTwaDXQa/VQKtUwNnb/6kzeHh8Pjl+5pjp78D+L3wDTh4+mOppJk4BW5Ej3AMj1lX9+ERsx3hHPYISdpoayiZHrNoTeXw+nH0CWQST0WBY9wGGe0AYJjobYe/kAqGTiVSUjA9uaB0DTHa4wfpHsLGzh3JJiun+dgStUzywFVAUhbG2Wjh7B8AjOAqTT5RwM/0dWBgbQMD21HUtlArpPBxcLDf8eQRHYrS1GiJnd1YO33otqGuhVSqgkM5jurdt3X28liCl/y2wE6Lw9W/h5Es/2fK5Y8rg2pzd19nLH5TRiJmBDvhEbPxQzRwrkjn4xSRu6T1PA8n4IBTSBQidnElrojmWF2YI0ckX2CAifT9GmivhGRqzpVzCp8UnpNQWIRKJ1n0SGxkZCU9PT1L5vdaeRdtJZmZm4OnpSVqfioqKEBcXh76+PlalvNFoxMTEBB4/foylpSX8wz/8Az744AOEhoYyJqUSiQRubm4k0JUOxBWJRHj06BF27jQNwI2IKa1Wi6KiIgQEBODixYvo7u5GTEwMHB0dUVJSwlg/DoeDgYEB3L17F8XFxbh8+TL5wq/RaMDlchl16FNTU/Dz8yMTcYlEgt27d6OnpwfOzs7Iz8+Hg4MDsrOzwePx4O/vj8nJSWi1WqjVamJx2bFjB+7cuUNIqfr6epY16vTp03jnnXcgFApx9+5dACYLF92mpFAoQFEUsrKyMDs7i7t378LW1hZ79+5Ff38/aSwDTIq2jo4OKJVKUBSFl19+Gd/97ncZ6oaNoNfrkZubi5SUFLz00ksoLi622JoGmBrbZDIZfvWrX0GlUuHkyZMWSZbKykocP34cExMTrMmotYs+nW/z2muvEaueuVKMw+Fg7969uHPnDlJSUghZUFVVRVrtaNBB8CdOnIC9vT0rR4q2qs7NzeELX/gC7t+/j8rKShw5coQxYRQKhaz3cjgccLlcjI6OgqIoljJubePlmTNnUFhYCL1ej5GREYvB7vQ6f+9730NmZiYj32kjlJeXw9nZGb/4xS+QnJyM/Px8XLhwwaqCJi8vD0ePHkVjYyMhVjkcDsM2BJjG4cDAAFEaASYCjCaVXF1dIZVKUVpairNnz5JxEBAQgImJCQQGBqK0tBRZWVmws7NDbGwssRsajUYsLCww2ukOHz6MpqYmPH78GIDpGN27dw/u7u4MlY9YLIZKpSIKRMAU9E0rbzIzM/Ho0SNSCkCDz+eDz+ejvLwcU1NTFvfP6OgosSnGx8cjLy+PEdhNlx288MILSE5OZo07+jo0NzfHUusBprEzPDyM119/Hd3d3bh///6mz9WamhosLi7iF7/4BQ4cOIDg4GD09fWhqamJ8TqNRoN//Md/xC9/+UtWWP1aZGVlobGxEfX19VCpVBZLCyoqKkiOnHljIp0FdufOHdJYSmNgYAC9vb3w8vLChx9+iPz8fAwPD6OrqwsHDx4k95+2tjZC6O7fv5+RtwWYcgbfffdddHR0sILTZ2ZmoFKpsHPnTgwNDeH48eNYWFjAzZs3kZ6eziDlPTw8sLCwQOzhNIGVkpKCoqIibN++Hdu3b0dbWxvu3LlDmjHXIjk5GYODg/j1r38Nb29vcl7weDwkJycziO979+6RDLjQ0FCEhYVheXkZRUVFJFeRJvHp9fP29kZ5eTlEIhG5BtMPQGi4u7vj9OnTUKvVKCkpwfXr19c7xJ/gzwCtahVjbbUITsp8JhOyZwUOhwPfKBPhPDvYidnBZXiHxZLJp8DOHlrVKmyEIox31iMsdXM5UnqtBktzU1iVS1if5+juDd+oBIuTbdWyHEHx6ZjsboJqWQ63AMsE8HqgW9rMweXxiD1FrVgi1ira3idydoNkbABqxRJ4AhsWOaRVKbE4OQSd+iPShyewgZt/CMnDOf5PPyIKGaPRgKXZSUx0NjCW4+DqCWfvACjlixhrq32S+ZVsVfVl7R7vGRwFKjACk93NoCgj/LelsLZZo1RgsrsZbv6h1tvmjEaLE1fPkGhoVasmK2JYDMkDogPDzaHXaTHT3wGjXgd7ZzfWhNFo0IMnsIFPxHbM9HdYVHKth6meZgTGmb4T2do7gMPhQq1YtqjuswSTvYgL7/BtGGuvg53IccNQdy6PBy5PCIGtEBRFYbD+EfZ89muYH+mFWrFk9f1alXLTZQJGowGjzVXwCI6Cd7gpmNmc8FIrljDT3wbDE+WvjVAEj+BIRnMch8slD/6m+9rgG72+0sXVNwgjzZVw9g4gY25hbGBDq2rA9lQM1j1CaOoecHk8U9bXJho9ORwOvMJi8f4rn8GJr/37lvOprEGrUmKsvRZB8ems7C2fyDjoNCqMtlTD2cvfatGAdGp0XYIxKH4nhhrKWRZDk4JqfWJTMj6IFckcPIIjEX/oApw8fJ+KzJwf6cXlf/sdFieGLOb7rYfl+WmIvTZv9XZ5kq03O9gF73B23qlVUMYtZbxtBQa9HtN9bTDoNHALCCMZZZsBh8NBaMpuTHY3QatUsGzozxqfkFJbxMjICOuJ9lo4Ozvj8uXLyMnJIfYotVqNsrIyaLVapKSkMEiAlZUVODg4wN/fH3K5nBVIzeVyERQUBG9vb9y6dQvt7e1kkkgHtfJ4PMhkMtja2mJ+fh779+9nTPDVajWZoFy8eBHXrl3DlStXWFah1tZWjI2N4dixY2TyOzY2hqNHj4LD4cDT0xM9PT2IiYkh76HzOM6dO4ecnBwyQXv48CFDZZGSkoK8vDyMjY1hfn4eu3btIvXtNIFw+vRprKysoKioiOSsFBYWwsvLizWpDAsLw+DgIKkANz8mCoUCjx8/xr/+67/ipZdewmc+8xnWcbKxsSGTEG9vb5w6dQoqlQoPHz7El7/8Zfznf/4nea2LiwuSk5Ph4OAAvV6PvLw88Pl89PX1obq6esOMFdpqefr0adIIZo00Wl1dRX5+Pi5fvoySkhIcOHAAd+/eRUxMDCPQmL6J0uOjs7OTNDQaDAbWGKUoCo8ePYJKpUJeXh7s7OwQFhZmURFmZ2eHixcvoq6uDv39/Th8+DCjbt4c58+fx/Xr13H16lXyu5WVFVRUVMBoNJJmR8A0Dvfs2YO8vDwEBQWRce7v74+pqSlCxHR1dWFgYACnT5+GSCTC4cOH8eDBA+j1ehJaPDExwcoJOn78OEpKSlBSUgKhUIjFRXYNKYfDQUNDA4OoWQ8URSEvLw+JiYkICgrC7OwsPD09cezYMVy7dg0XL15kEYYPHz5EcnIynJ2d4e3tjdnZWZLdY46xsTE0Nzfj7NmzWFlZIeRKX18fyf3R6XTElme+/yMjI1FeXo7FxUX4+Pgw7IcBAQEYHx/H4OAgITrMkZKSguHhYSQnJ+MXv/gFzp49a7FF78iRIyguLsapU6cwNTXFUB5asv/R625vb4+EhATY2dmhvr5+Q0uzp6cnaTs0GAy4efMmo+zAvKxgZmYGDg4O5Ie2/5nDvFQhNjYWLi4uuHHjBs6fP89Sz9Cgg/d37tyJ0NBQeHt7Y2RkBHFxcSx7L/0Zjo6OWFhYQGFhITw8PJCSkmL13uDj44Nr167hl7/8JWpraxl/c3Z2JiHnHA4Ho6OjjPB+sViM9PR0lJSUADAp1iYnJxEeHs6wuPL5fOzbtw8UReH+/fswGo2IiYlhtJba2tpCr9cTxVBvby/s7e0RGBiIjo4Oxpc2g8GAiooKVs4SnRdVW1uLtrY2HDt2DHw+H56enpiZmYGfnx9qamogEomIhZjL5ZJ7J63Qam5uRktLC+bn5zE8PIyhoSGiIASA//qv/8KnP/1pvPrqqxb3a39/Pzw8PODi4oKoqCj09fUhOjoaTk5OOHnyJCNXMTY2Fr6+vpicnERVVRVSU1MZhJi18Uyv04ULF1jE5Cf482F5YRrSqVGEp+//i7VUcjgc+ETEgaIozA11Y3awG15hMfAKjcbMQAc4XB58IxNY669WLEM+O8EKg+UJbCB+MiHc7DZTZlmS/rEpWJwY/pOE8No5iInay9zep9dqMNnTgoDYFEz3tTEsVgI7Idz8QzcXEA9TNo15QxRguh8rpPPofVyE+jvv4PnXPthUg5w1cLhcBGxPhU6jwlhrLeydXcnnTPe1wWgwbJg9Q4EhlGLARihC2I5szA52QTYzwcjYoSgKi+ODUMgk4PEF8ImKZ5AlNJRLMtg5OgMwWcEWJ0cYdrONoFqRw9bekWFp841OxHDT400rR6bN8nIC49Iw1FC2bqvcWow0V5ryrGztnljSKq0G4MumR+HqG7zhMjWrKxjvqGe0rK39Xm3nIGaMfY1SgbnBLtK6x7exM6nRwmKJ9XMzDYqB8ekYb68jRKVasbSp3KOQ5F0Yaa5ct+BAr9NCMjYIreoj66S92BWH//5fYNBrMTfcu+WMpbVYmpuCdHoU4Tv2Wg3+F9gKEZqyG7LpMQw1ViBgW4rFc3e9c4PD5cJ/WwomOhsYdswVyaxVgkk6NYqluSm4BYQiJPmjB5JO7t5YXpjeUh6gbGYcFEXB1S8YDq4eGGur2VJRwPLCDAK2sb//rQdX3yAsTg5jbrgHXqExG78BW1OObRaqZRnmhtkWPWsw6PVWiTH/2BTMj/RunWzbIj4hpbaIpKQkEpZMkyGWwOPxcPHiRfzhD3/A5z73Ody7dw/79u1jVJTTMH8qvn37djx+/BjDw8MMFYherycWDj6fj9zcXJw5c4ZM4vV6PQ4cOICvfOUrsLOzs/jlmoatrS0uX76M69evk5Yh2jaYmJhoMTjYPDA7NzcXAQEBcHBwYIRp29nZYefOnSgrK0NmZiaxiBmNRjQ3N2N+fh7/9V//hTfffJMQApZOREdHR5w8eRI6nQ6//vWv8eKLL6KoqAiDg4MICwsjnxcXF4ecnBwYDAayH1pbWzExMQEHBwccOnQIv/vd7+Dr62uxdY22mphDKBQiOjoa3/zmNxESEmKx1Yom28rKypCVlQWj0UjIHkttVPX19VAqlSyrpbk1kYY5IUVPwgQCAc6dO4fW1lbk5+fjxIkT4HK5xJZF49ixY8jJycGFCxcYYwowTWLHx8exd+9eODs7o7i4GIcOHSITVzrsms4Fo5Geng6pVIpXX30Vw8PDcHFxgb29PUQiEezt7cn/nz59Gu+99x4hvBwdHXHkyBGLajx7e3ucO3cOw8PDuHXrFgner6mpQUhICAoKChAWFsaYlHM4HBw6dAhKpRIFBQVwd3cnk2qZTIbW1lao1SYPvVwuxxtvvIGvfvWrSE1NZd0wHz9+jGvXroHP55O2P/OQdPMxqdPpSIve2iB12j578+ZNnDhxgpCSDQ0N8Pb2JiSUv78/ent7WaRUU1MTVldXce7cOXR2djJIIdpCBADvvPMOiouLGQScp6cntm3bhuHhYQgEAlaLY3JyMm7evAlbW1vweDw0Nzdjbm6O8Roul4vU1FSoVCrU1NQAMF23EhMTiSpNIBDAyckJi4uLaGpqYrXXrbXwyeVyDAwM4OTJk2Q7qqqqGPY8tVrNug6mp6cjPz+fZKmdP3+ekOg7d+5EbW0tsrJMX/6qqqoYyiQbGxtiRwNMY3h8fJxkNgEmQujkyZO4fv06Tp8+TdYXMClDi4uLGXlQRUVFRBFKqzvXYnp6Gn/4wx8wMDCA3bt3Y35+nmTr8fl83L9/HwYzSb+fnx/+6Z/+Cdu2bcPs7Cyam5vB4XCQmpoKLy8vZGVlobKyEnw+n6XyW1lZwdDQEPr6+vCP//iPGB0dtdhkmpGRgdraWuzatQtHjx6FRqPBsWPH8NJLL6GsrAzp6ekQCoXIzs5GeXk5EhMTMTw8TFRrKSkpaGpqIiRcfn4+i/QyJwh37txJzvmIiAjExMSgo6MDlZWVcHFxYZCFYWFhGB4eJvdNo9EIjUYDPp+P1157DdnZ2di3bx9ZtkwmwxtvvIEdO3bggw8+wKVLlxjkr1qtRnd3N7lOhISEoLi4mHHNpnMVAVOw/N27d/GFL3yBPAgyx1pSSqvVoqCgAJGRkTh79iwGBgZY+/sT/HkwN9QNo9G45dax/ytwOBx4h28zZQIN92BuWYaFkT64+AWbmq/GmWPJVuQEF9+gTZMM60G2JsPFLSAUyiXpk2r63ZsOL94KaHufXqtB4evfwnRfG8688gt4BEdtSgliDh5fYGrgs9KkyOFwYGvvCKHYBZ/56f+Slq+P26hnypvaBYV0AbUf/g9aCj7A4X/4FwifkEHrgaKM1lmpJ/AO3wa1YhlDjeVYnp+G8Qn57h4YtqHCZmG0D4Fm2UH+sclbIpRmBzoRvCa0m8PhwCMoHAtjA6wsp7WgKAoGvZZMajkcDkKSd2O46cm+32Dbx9pq4R2+jYxvDocDV79gSCdHLCpwNEoFbEWO6y5TNjOO5YWZLZPUtvYO8Iv5aC6gU6swP9ILg06Lwte/hWP/+ANIp0Yh9vJf91zh8QVw8vQljZObXQeewAbe4dsw1dMCwLRvlxdmsDQ3yXiNe0AYax+olmUI2L4DCuk8hhsrTJYqV8vWufUw098BLp/PCnK3BhffIDh7B2CyuwlcvgC+UQkkN24z223n4ASRszvL8rj2vfLZCcimx+HiG8Qgo2i4+odgtLVm06SUQibBqmyBkJI2QhGcfQK3RBYBeKpri5t/KCTjg0+aCT8egbhVSCaGoFich9BRbNGiZ/V9Y/3wCLZ+LfAMiYZ8bhLjHfVbznLcLD4hpbYIOzs7Yn+5e/cujh07xnrybjQaUVVVBblcjsTERPz2t7/F8vIylEqlRVJKoVDA0fGji8/u3buRl5cHFxcXuLi4wGg04vr167h06RL5wh4ZGYn+/n4Snsvn8/Hyyy+T1r3q6mosLS1BKBSyrC+AaSJ35coV/PGPf0R9fT3J5dnM4D116hQ+/PBDXL16ldVs5+/vj7m5OfzgBz9AWloaCT5OTk5GamoqDhw4gPLycmL5MJ8AmWNhYQGPHz/G8ePHERsbi0OHDmFwcBD37t1j+Ibt7OzwzjvvYPfu3ejv70dCQgKDjAFM9qDKykoMDQ0xmsYsbatCoUBzczP++q//Gvn5+SxSymAwQKPRwN7enjFBO3DgAHQ6He7fv0/CfekQ7bi4OItKkR07djAUO5YIKfN1TExMREREBG7duoWdO3eS0HEatBWvtbUVc3NzRA3T1taGpKQki5PYgwcP4uHDh6AoCuHh4Zifn2fY5JRKJSorKxEeHo7PfOYz8Pf3x+rqKpRKJcn1UiqVUKvVeOGFF/DpT38ab775psVWwbWgA7orKyshk8kwODgImUyG48ePM4g9T09Psl729vY4c+YMZmZmEBAQQM6T9PR0ogy8c+cOlpaWkJOTwyKCKIpitIxduXIFRUVFCAwMZIVhy+VyFBUV4eLFi1bDx+mWvZycHGRkZGBpaQlGo5GR1yQWiyGXyxnvo3OdaOJELpezbFOAKcsnIyMDr732GsM2Ozc3h/v37+Nv//ZvUVxcbLGA4NKlS3jttdfg7OyMyMhIksdE49GjR7h+/TpqamoIKaHT6dDe3o7m5mbyutDQUGLvW3vOZGZmoqysDIcPHyZh3+aKOcCUY5abmws3Nzc4OTlZzDzicDjo7OzEnTt38D//8z8MMpNu4ANMhNRahRtNsNA2wgcPHlhs2hMKhaQRkb7m1NbWYmFhAUePHmUQHrQCMTU1FXl5eSxSih5D3t7ehFz09PQkljilUokf/vCH+NKXvsS45tDbmpycjOTkZGLnbmxsBIfDweTkJJycnMDj8dDW1kbWxdHREYmJicjIyEBQUBBaW1sxPz/PaB8FTIpO87FGURS+8Y1v4PDhw1AoFKipqYFarSaZW7Ozs3juuefI6+ntAUz5cLGxsQzF7fbt29HZ2cm4xgqFQpIbd+fOHeTm5uLb3/4269oZGhpKQt/HxsbA5XKRlpaGjIwMJCQkQCaTMY57eXk5zpw5Aw6Hg8uXL+PGjRs4deoUuVfevXuXRVxbA0VRmJychJeXF/Ly8kiu3q5du0gOokAggEplshXRpQrWGlk/wZ8HJO/EJ2BTGTabhbmd7k8J2najWV1B2VuvYc8LX1s3XPxZYEUyy5ow2ItdTdX0zY/hF51IbIXPEvMjvVAuSZF2/vNwcPPCwkgvFItzDJXTZiCwE0KrVkFohZSiKArj7XXEDkSH8a6n+NgstColFkb7kHb+81ArlrEw2g/KaATf1g7eYbFWiTJsYAmiKAqyqVGsSOchsBWiKe+PuPCd31i1RFmC+fI5HA48g6M2NeFdmjcpSyytn5OHL0aaq+DqF7IuATM3xJ7E8/h8BG7fYbLTJmZYeScw2d0MF79gVraZs3cAhhsr4OIXvGXl43RfG/i2dhZDvrcKgZ0QftGJmB/pxaEvfQduAaGgjBRm+tsIcQiYWv+cvf3h4OpJ1tfNPxTDjRVwcPGwPjbwUeOlYnEeyiUpAApdj/Kge/Ig1cnTl5U7th4cXD3h4OqJuaFuSMYHELB9x6auKeZWx7UB/xvBpCjcAdXK0pOSgAioVpbgHrS5IgO3gFCMtdfBwcWDRbYtL0xjcWIEYm9/i2SUObg8HowGw4ZB9lrVKhZGelmWW2cvf8wMdGBZMsvKJXvWcA80kb6bIX4/LhgWPf8wuCeGbfymNVCvrsBrA5Wgs5c/bIUiDDaUITRl9zO3HH5CSj0lUlJSoFQqkZOTQ8KkpVIpqqurAZgmYrTyYWZmBkeOHMGDBw/A5/ORnZ294cXn1KlTuHbtGi5cuIDbt2/j3LlzDEIrJiYGd+7cIaTUzMwMse/weDzs3m2SxS4sLODixYtwdnZm2B9oi0ZHRwdu3ryJz33ucxbXaXV1lUUwcLlc7N+/H6WlpdBqtUhLS4Ner0djYyOkUikA4Be/+AXeeust7N27lxEQbGtrC43mIzn33Nwcg5TS6XS4d+8exGIxzp07R6wsXC4XkZGRjAYro9GI27dv49///d9x9epVVqi3ObKyslBYWAgnJydWYLH5PsnLyyOTajs7O6hUKsb2l5WVkSfvNKlE51wJBAIcO3YMSqUS77//Pl544QVUV1dbrTd3cXGBTCYj+3ktIWUJIpEIly5dwksvvYT+/n4yiRMKhfD390dgYCCKi4shlUqRk5ODkJAQVg4NwPyCs3//fpSVlcFgMEAulyMiIgIGgwH3798HRVE4fvw4uru7IRaL4ejoyCBQAVO2zs2bN9HZ2Qkul4uSkhKEh4ezLFXWkJWVherqapw+fRpNTU0spVlUVBQJS6ZRU1ODlpYWGI1GxnGfnJyEr68veDwe0tPTUV1dzSAxaJLHfD8cP34cHR0dKCoqIjbV0dFRtLe3rxsubb6M8+fP46WXXsLo6Cgre2ZtUPOtW7ewd+9exvasrq4yJv8A0NvbCw6Hg6ioKIyOjjL+5unpiZWVFZSWliIzM5P13o6ODrS3t6Ovrw+7du1ijSmJRAKKouDm5sZQGtH5PzQoikJXVxc+/elPIycnB8XFxUhJSSHnkLkFlg50t7S/Tp8+jQ8++ABXrlxhKKuWl5dRVVUFg8GAAwcOwNXVlRBsnp6eDDvcysoKlpeXWeUFQqGQqOSUSiX0er1VKy2Xy0V2djZ+8pOf4Kc//SkmJiYYDZQAO9B/rRoMMI0/Opvu6NGjyMvLY5xn/f39uHbtGoaGhrC0tMQghNcWGtDXv9HRUXzqU59CTEwM7t69a5HIXl1dhaurK7KysjAxMYGcnBwkJyczbGh2dnYkn628vJxcrxwcHLB//36i7MzNzcXJkydRVFQEPp+P1NRUuLq6gsvlYm5uDjKZjPXAwNfXF21tbSziHzBZEI1GI9577z1cunQJY2NjrNecPXuWhN+bIyAggNEWOjk5CT8/PzKWBAIBnnvuOdy6dQu7d+/G0NAQ0tLSLCox12ZGDAwMoK2tDYcOHcLs7CxsbGwQEhLCeHgUEBAAb29vrK6u4vbt24iOjraoGP4Efz7otRqT5Sc+/ZkoiMzh5OGDZcksqwb+TwGtSomJ7iZ87le3Sb35n3IyxOFwLF6DeXwBwtP2YaKzESJnty0RIutBuSTDzEAHPIOjTDXinQ0QObvBITkLixPDGG2tRmB8+qYnLwI7e+jUSqth8fTyyLXB1g7BCRkWc2sAk50RWP8eThmNmOxuAjhcBCdmgsPlMtQAOo0KMwMdMOh04PJ48AyNYYxJ0zWd+Rl6rQZzwz3EvujqG4yg+HRolAqc+vprMOh1m7LC0G1Ya+Ho7gXp1Ah0GvW6ajTp5LD1LCwAgXE7MNHZsC6xpFbI4R3Obk21FTnC1S8IMwOd8IlgN9zODHRC5OJudbz7xSZjsrsZAZsIxAdMYeIjLVXwWkchZOcohmpFvimFGw3lkgxalRJhO7Ix2lqD4MQMFmlj0OuxNMfON7Oxd0DFH3+B5BOfxkx/BwnJ53A4jHu9rcgRDq6ecPUL/ijDymiER3DUppvg1jpLvMJiYdDrMNHZADsHZ8YxWku8qxVLmOxqRnBS5sdq/RQ6mpon50d6Ufj6N3Hgb74JgZ0QQicX2Du5QGBnb/U7c2BcGgbrH8EnYjtEzu5QSOexMDYAR3fvDckoGt7h2zEz0EGspJZg0Osx1l6H8DTLBSU+EXEYbnoMoaPzlpWcW4VHUATmR3ohGR+0muWkU6ueOiNRtSLH3FAPuDwefCLj/+TbAwBCJxcEJ2RgsL4MIc843/ETUupjwN7eHhcvXsTNmzdJq9Xx48ctkgq0eoYOiM3IyCA5H5ZOYI1GAy8vL4hEIlRUVLAmnQAQHR1N8p1aWloYwbV6vR6lpaXg8XjIzc1FaWkpK0C9pqYGf//3f4+jR48iICAAt27dQkpKCoNEsWR7A0wTxqWlJTz//PO4ffs2eDweUlJSiALlxo0bOHLkCKqrq1FVVYWdO3cS0oxe7/DwcMakorq6GouLizh8+LBFRdlaNDc3Izg4GMXFxeDxeAxrmyUcP34cH374IU6dOmVRyZOXl4dTp06R92dnZ+PRo0dkv9GNXzQps1aVQEMqlcLZ2Rm5ubkIDAzEgwcPiC1OIBAgMTGRNAVyOJx1Cam1NyGZTIaSkhJ87WtfQ1dXF1k3pVKJyclJVFdXo76+Hj/60Y8gk8lYljNr2Lt3L8rLy9HS0gKdTofFxUUcPHiQZBitDSGnsbKyQtZ9eXkZw8PDOHPmDDo6Osik11xJ6OjoiOXlZQZp0NLSAltbWxQUFMDZ2Rm3bt3C/v37CakrEomgVCrJ6+/du4fMzEx4e3sjNzeXQUrV19fj/PnzAEwT3cHBQUaT4tzcHIOUohEXFwd/f39cv34dnZ2dsLOz23S1vEwmw8OHD7Fr1y587nOfw/3796HX6+Hj44Pk5GRyfkulUty7dw/nz5+3OL7NrwNzc3MYHx9nhYjTKCkpwaFDhyASiVBZWcnIW1tZWcHY2BhOnjyJ0NBQFBUVEQKFxqNHj4gFbs+ePXj8+LHFIHC6ya+goADHjx+HwWBAU1MTGhpMX8y8vLwgFApRWlqKxMREi5lj9LadPXsWd+7cgY2NDSoqKrC8vAxHR0eSEUbvIzp4em5uDsXFxSZ5+/Iy/vmf/xm//e1vLS4/MDAQY2NjaG1tZRAeRqMRfX19GBkZIevh7OyM7OxsnDx5EhMTE4y8JcBEXJoTVXv37kVxcTHZh3ReG328eDwewsPD0dfXRyyXMzMzSExMhI+PDzo6OvDo0SOrDW4rKyu4f/8+AgICcP36dSQlJeHRo0cWlavmofMBAQEICAhAU1MTmpubcfjwYYhEImRlZRHlmFarJWPNYDDg4cOHUKlU2Lt3L+7evYuxsTGkpqZCp9OhqakJUqkUEokE3t7e0D8Jhl2Ltdck2v7o6uqKy5cvw8HBAXK5nNW6SFEUcnJyEBgYSGy75jlo5mhsbGSooADTsTt37hw+//nPQy6X480332S9LywsDENDQwgPD4dGo0FhYSGCg4PJWG9qaiLKYS6XSx7ejI+P46tf/SpKSkowNzdnsVTiE/z5oJBJMD/UjbC0vX+S8FehkwsWJ4aAPzEppddqMNZeSyxOftGJGG2tgcBW+MwryTeLgO2pkIwPYqqnhWFj2iqMRgMmOhpMmUlmNjJzUtgtIBRiLz+MNFfBIyh8U7YbgZ09NIpli3+bHeyCm38Iq55cYCdEYHw6hhrKELaDSUwpl6TrNhBKxgawsjjHaOBjrZOtkFiADHo95od7SP6XR3CkSSnF5UIhXcDi5DAAU3OVZ2g0a8ImGRuAV/g28AU2m7LCLM9PW21qDIjbgdGWaqvZTAtjA3DbINSYJ7CB0MkFK5I5i+oZ+ewExOuoFJ08fKFZVRAbG/ns0X4IbO3g4mO9ndrW3gF4oiKiyRNr2TqEVEneZTF3i4arbzDmhnvWJS3MQRmNmO5tRXi66f7M4wssBtHz+HxiUzWHVqVExR9/idnBTkSkH9h0QDtFUaYxW19Ggs+fBjy+AMGJmVDIJBhurIBHSBQc3bzg4OoJhXQBrn4iSCdHoJAtWCRtnwaSsQEopAvY89mvITAuDTq1CsplGRYnR6DXqNbNR7K1d8DtH3wZWZ/+ChzdvDZtIaRhI7SHXqO2+neKojDcVLFhDlxwUiaGGsrXtZ+qFUuwFW2uCGA9eIZEY26om2VfpLE0PwWxFzsiYj0sTgxjZXFuyxY9a9CqVmFjZ/n6Zwl8G1tEpO3DSHMlvMK3QeTstvGbNrPcZ7KU/59ienoadXV1CA8PR35+PrGvHDp0yOqXWjogtqamBu3t7UhKSoKnpye0Wi0aGxshl8tNnvknVdd3796Ft7c3aY9LSEgglqTo6Gjk5uYiJiaG2E0oikJFRQWWlpZw6NAhqzaq7u5u8Pl8REREYHh4GH5+frhw4QIaGxvR0tKCI0eOwN7eHisrK6S5iFZN0E/Ao6Oj8dJLLyEwMNCiKobD4WDXrl2gKAp1dXWoq6tDamoqIiIikJ+fj9nZWWRlZWFwcBDt7e3IzMzcdPh0TU0NCVO+d+8etm/fjqCgINy4cQP79u2zGN4NABcuXCDtg+ZkSVVVFeLi4hgqIBsbG0bmVEVFBSu7Z+3Ft7e3F5OTkzh9+jRaW1thMBgYZKBWq0VraysaGhrA4XCQn5+P73//+6ioqFhXIQWYmvZUKhUuX75M7E407O3tERERgd7eXly9ehWHDx9GdXU1fHx8LJKKlhAWFoa9e/eipKSEpRJYqxgDTCq88vJyPPfcc+BwOHBycsLysunLZFxcHMLCwnD79m3s2LGDEJ3R0dHo6+sjtqPW1lbo9Xrs2LEDjx8/hru7O86fP49Hjx6Boijs38/MC6iqqkJYWBiZzIaEhJD8tZ6eHpZlaN++ffjwww9x6dIlNDY2suxOFEVhbGwMvb29Jom9TIYf/vCHyMjIQHFxMXbs2MGwSNLvAUyT/NLSUggEApw/fx4NDQ3w8/NDXJypFWdmZoaElb///vvQ6/WbUl4plUpUVFSwMshotLe3w9fXl6yXufIQAAoLC8l7RSIRfHx8GIUA1dXVyMjIYGTB0Uojc5SVlUEoFOLcuXNEvcTj8RgKntnZWfzmN7/BW2+9haKiIvT396+7bbdu3cIHH3yA5uZmVgMdwCTmvLy8cPz4ccjlcuTl5aGqqgqlpaXk7+Yh/7GxsXj77bcRFhaGqqoqrK6ukuVFR0fj2LFjjGXn5+dj9+7d6O3tZTXzrbVT83g8U6bGkwyzyspKQmbQiIuLw82bNxEZGck6vnFxcRgfH8edO3cY5xU9frhcLs6cOQMul4vi4mJ4enri4MGDJPPP/LpgTkrRSElJQWJiIu7fvw8+n4/9+/dDq9WS88G8jXXfvn1E8UVn/QEmsnznzp1Qq9W4desW3n77bZSWlsJgMEAoFCIzM5P1uYBpLEkkEhw5coSQXzweD2fOnCH5djRou3FsbCxiY2NRVVWF+vp6HDx4EPb29nBzc4NEIsHi4iIh9+jj3NzcjNnZWXC5XHz3u9/F/Pw8xsfH0djYSD4zISEBERERRCk6OzvLst/pdDoWIdza2oqRkRFcvXoVP/nJT1BUVAQPDw/GOfL/CiiKwr/8y7/gzTffhFwux65du/Db3/6WZC5aQkVFBX72s5+RVuCcnBwWIfg0y7WE6f4O+IRvWzcvRjI2AI1q1Wol+7PAn+O4GvQ6U6DxmolgUMJODDWUIShh5zNvEFQuyTalEHEPDMeqTIKhhnKEJGdteUIsmRjCysIM/Lelbvhknm9ja1JWjPZBNlOHwO071rXZ2dgJsSKZZf1+aX4aAMcqsWUjtDcFcDeWIyz1IzfCyuI8XHzZxIhCJsHCSC/cAsIQsgVrDY/PJ813pnywQVRf+y0Ctu9AcPIuBMalrTu+DHodIVVoK8xQQzlCUrJYBCy1JuNzLbhcHlz9grE4McxqWKQoCorFuU3ZhrxCozHUUA4HN0/WustnJzbMcvMIjsREVxPsRI6wF7tCOjUKo0EPr2C2umot/GOTMdJSRYi1VfkiRM7M6nnp1CgU0vlNkSp8G1sYdNp1X2OO0bYaBCV+RPr5Ridgqqdl05k5NkJ7ZH3qH+Dg5gXJxCB8IjbXikgrGoOTd2GkpWpT+WDrbbuDizscUvdgbtikyvGPTYFsZhyr8kUIHcXPJANoVSbB3FA33ALDEZqym6jGBHZCiO2EEHuuTzpTFAXN6jJ4AhsTkbUkxexgNzxDo7b08MFe7AqFTAIHF3fW30ZbqhEYl7ahnZHL5SFw+w6Mt9dZJX2lU6PwCI6y+LetwissFjMDnSzyFjAR526beEBi0Osx098GvVYLV/+QddWNW8X8SO+mxy4NDpeL0NQ9mOhshFa1ui4BvVl8Qko9BaRSKcrLy+Hj40MsG7Ozszhy5Ag0Gg2ZqB44cMBq09POnTvR1NQEX19f/OxnP4NUKkVycjLJtzBHSEgIQkJCQFEU2tvb0dbWBh6Ph4yMDMTGxhLLU0tLC0ZHR7F7926ixLGEqakpTE9PW1RGpKamIikpCSUlJbC1tYXBYEBdXR0kEgk4HA62bdtGFANKpZJklZg3BpqHnwOmCymtPGhoaEBjYyMkEgnm5+chk8kQFhZG1C2bQUVFBdzd3Rm5PYBJhXPlyhU8fPgQDg4OSEpKYtk7eDwesZDQE/eBgQHw+XxGsDyNbdu2obOzE9u2bcPS0hIh6Gj4+Phgenoavr6+aGpqgk6nI/s1MTER+fn5jMp0GxsbMqmnKApSqRSJiYl4+PAhCUW2sbFBYmIi3NzcwOFwIJPJUFpaSgLBLUGpVCI3N5fUtfv5+SE8PBy9vb3IycnB6dOnrY5FiqJQWloKkUiEoqIiuLu7s2xvGo2GQbSOj4+jra2NETi9NijY3t6eNHT19/fj0KFDcHNzIyqb9vZ2Yv8ETHbIqqoqHDhwAPv374dMJiOlAoCp1l4kEjEKBuLj45Gbm0tIKUvj6PDhwygpKYFarUZCQgLq6+uxuLhI5NXBwcE4fPgwOBwObty4gbt37+LEiRPQ6/VoaGiAVCo1fXkIDiatk/S5dujQITLJX1lZYZAZPj4+2LFjB6qrqzEwMAC9Xo/h4WFWxpA5jEYj7ty5w2o7o7GwsIDZ2VmGgsrcfvfgwQPs27ePQWQkJyfj1q1bCAkJgVKpxNLSEksdFBgYiNHRUQQHB0Oj0SA3NxdZWVksq5w5urq60NfXhxMnTuBHP/oRHj58iAsXLlgl5Jubm/HP//zP+PSnPw0+n4+8vDz4+PhYDKOnUVFRAbVajeeffx5eXl4stader8f4+DgePXqEL33pS3jzzTdx9epVVoi1OcwJuujoaIhEImI9BCw/qaVzq/bv3886zjTo4oBDhw6x/hYYGAgnJyd88MEHcHBwQF1dHWZmZojajQa9H5ydnYnl8fLly4RYsURKAabr2pEjR7C0tIQ7d+5gYWEBU1NTCAwMRF9fHw4cOGDRhm2+rQqFAnl5ebhy5Qru37/PyMeqqqqCWq0Gj8cDj8dDU1MTRkdHkZGRwbhO0MsTiUTIzMxESUkJGauDg4MM+/WuXbug1+tx//59Ekj+4MEDqNVqnD17Fv39/SRcPCkpidhKdTodRkdHGblhBoMB7e3tKCsrw3PPPYff//73uHr1KisPynx7e3t70dPTg8TERJw7dw7FxcUIDg5GcHAw5ubmcOfOHUZD6P8L+OlPf4pf/epX+MMf/oCQkBB85zvfwZEjR9Dd3W1x3AAmS2hCQgI+//nPW70PP81yLcEzOAqymQlmq5STC1yfPD2mrWWbVTn8pcJoMGCosQJhqdmsyRaHw0FYajYG6h8hfMfep1ZIWMLixBB8N7nvRC7uCE7MwHBjBfxikxnKLVOAMZs40qyuYKqnBa4BoetawizBMzgKWpUSw02P4RUWa9V+JbAVQv/EAkVDq1JCOjWyoarCRihCwLZUDDdWIDR1DzgcDnTqVYbVTq/VYLK7CUInly1vw1pwuFzYOYix8/IXoV5ZgtjTcnbTehA6uZiIyvoyRoscAMwN98Jzg0BmZ+8AjLRUwdkngDERn+5rg09k/KbXwzcqHjP9HfCN+ug9qmUZ7BycN/X+gG0pGGqsgItPIFQr8k2fwxwuF2JPP8hnJ+Hs7Q/5zDgh/QBgqqcFtvYOf5Jg5YWxAbj4BDLIYR5fAKPBwLKBW4NBpwWXx4erbxCk02NWrYzmMA8I5wts4BUajem+NvhGWY8g2Sy8QqNh0Osx0VmP4v/8Lq58//dbznVbC4NOi4muRtg5iBkPC2yEoi21QHI4HEz3tuHqD9/BRGcDghJ2PlHANW0uu+0J3IMiMN5exyKlJrub4REcuen1sRU5wsnTF/OjffC0QD7ptZpnaofzidiOmf4OyNeUUQDrE45/DoueQa/fcL9bQ8D2VMwN92w5QN4SPiGltojKykoYjUacPXuW7V2nKNja2uLEiRNQKBS4e/cuQ2Wk0WhQW1tLwlSjoqJQUFAAb29vTE9PW7Rarc0foau0DQYDampqIJfLcerUKfzmN7/BkSNHLOYHmWNlZQV1dXXrkkA8Hg/Hjh1DZWUlDhw4gIGBAVYwMQCSs5KcnIzW1lZie5HJZBbr5QETiUATKG+//TaKi4stBjxb2wcPHjxAYGAg4wmtk5MTgzDav38/hoeH8a1vfQsZGRmsiZy9vT2ys7NRWFiIlZUV9PX1sTJOaISGhiI/Px9SqZSljgBMxFNxcTEGBwfh4uLCyOMBPmr4szRRLy4uxtGjR1FbW8uYbGs0GrS2tqK+vh4vvPACTpw4gddee42l2KExMTGBhoYGXL58mQQk0+sRHR2NoKAg3Lp1CxkZGQgICIBOpyNk3fT0NCorK3Ho0CG4uLiguLgYSUlJ6O/vR2lpKWOCTY/3vr4+TE5OsprYrGHnzp1YXFzEhx9+SCaSHR0dUCqVDJuUnZ0dQ/Xj4uKCCxcuoKWlBadPn8aPfvQjXLhwAaurq4yJvIeHBwoLCwm5ZTAYMDs7i/HxcaI8/MpXvoLs7GyIRCIkJiZazOuhG9dmZ2cJcWFu9RsZGSHqj/feew/PPfccg/zR6/VkEiyXy1FWVgZPT0+cPn0aQqEQR48eRVtbG3JycpCamsoKYQeAnJwcnDlzhkUg0kqdhw8fsgirXbt2obq6GkFBQXB0dLSoEjx+/DgKCwuh1WotXiPi4+ORn59PVCnnz5+3mNcDmEj5R48eYdu2bTh//jwKCwvh5eWFixcv4tatWzh8+DCLXG9tbYXRaERqaioKCgoQFxeHuLg4zMzM4O7duxAKhdi7dy+EQiGUSiWWl5dRWVmJrKwsqxYvwFTwEBwcjNraWhJ6PzIyQtRqltDT08MYuwEBAbC3t8eHH36I7du3E+LRHI6OjlAoFOjv77eqDhGLxeDxeJibm2ORIaurq+jo6IBIJMKZM2dQWVnJUqMAzGsdTepev34dFy9eJIo2a3lZ9Hr6+/tjcHAQL7/8MilF2Kh4QCqV4v79+7h69SrDmkivB33e6vV6/N3f/R1u3bpFiF1zmF/rfHx8sLS0hPr6eqSlpVm8L/D5fBw9ehQrKysoKCjAc889h5///OcoKChAREQEy3YKsMlvwHTP0uv1EIvFKCgowL59+1BXV0dsv9u3bycPB0ZHR9HS0oLo6Gir90svLy+cO3cOo6OjyMnJsdjC+pcGiqLw+uuv49VXXyWKvHfffRdeXl64c+cOq4CAxrFjx4hl9lku1xL4NjasbJpV+SKmelvx8Pc/xf4vfOOZZR39X4EyGk02shTrTXccLhdhKbsx1Li+fWSrMBoNW2rX4wlsEJa2FxOdDXBw8yJP8DWKZdiZkVQURWGyqwlcHg8hG9hi1oON0B5hO7IxM9AJ+ew4/GKSWcvirCHLKaMRY201CE/fv6nPoNvVRpoeI8TM1kZR1JMgYC0C49KfCRmo06ixMNaP0JTdoIxGU+D6OsdTp1FbnPjxbWwRnrYPw82V8ImIg73YdJ3UrC5D6Lix2igwLg3jHfWEtDPo9dCpVbBz2Lz1SOjkgoWxAWhVSmJjnBvuQVDCxmoMjVKBhdF+8AU2yH/tn7Hv8y9jvKP+SeZUyIaTaLeAUAw1VkDs5QejQU+IoZHmSniHb4PIgiLm40K1sgT1ypJFJZlnSBTmR/rgFbrxdX9hbJAsw9U3CNKp0Q2zwuSzkxCbkRIOrp5QLssskhVPAy6PB71Oi4Nf/Da0qlWMtdcBAGztHeERHLnpawRFUZgd6IRWtWoxTN3R3Rsri3ObJoEWRvvhFhAGHp9vUktp1LBzEDOy26b7O2DU68Dl8eEVFmvRUkufX5TRSFSX8yO9piy7LbYRuvgEYqq3FQrpwlM1GW4VPpFxmOptBTicDcs7aIuencOzsej9KeEVGgP57AQmOhsRsJ1dXrZZfEJKbREZGRkkONYcXl5emJubIxMoBwcHnDlzBlKpFCdPnkRdXR12796N9PR0xoS6t7cXycnJiIqKwu3bt5GSkrIhSQOY2p/oRqrPfvazWFpaQl9fH/r6+mBjY4OUlBQWyaXX65GXl4dPfepTGy6/vb0dXC4XRUVF6O7uNj3dW6PwMCcHEhMT0dPTg/Lycnh4eDBCnCcnJ0mTlK2tLdLT0yGRSHDhwgXs27cPtbW1WFlZAYfDQUpKCuO95iguLkZMTAwj1BcAgoKCMDY2RkJyARMp4OzsDLVajdraWov2pMHBQXz1q19FUVERsSfx+XzY29vD3t4eIpEI9vb20Ol0aG5uRkhICGZmZrC8vIyVlRXyxen5559HcXGxxYnwnj17UF5ezlJPtLa2IjAwEK6urhAIBIxKe3of1dfX43//93/h6OiIgYEB1NWZbizmip2mpiYoFAoGyahUKhljTCgU4vLly6isrMTw8DAiIiLg4eGB+/fvw9bWFpcvXyavpS96kZGREIlExHJE/761tRVKpdJiu9l6cHNzw+XLl1FaWoqrV6/i7t27yMra+Cnl0tISRkZG8Nvf/hYZGRnQarVobm4m9izAZC08f/48ioqKSNi6j48PYmNjIRaLsbKygtdffx0ajQa7d++2mOc0MTEBZ2dniMViODk5oaioiKHIAkzqD71ej7t372Lnzp24d+8ejEYjaf8DTPv+/v375PzncDhoaWkhai+aVG5sbERjYyMyMjLINeP+/fvIyMiwmsuUm5trMXzZ3t4eS0tLaGlpwfnz5yGXyzE7O4u5uTlCgAPAK6+8goyMDKsqotOnT+M73/kOTp8+Da1WyyKlDAYDUVCeP3/+SSXwR6pIgUCAK1euoKCgALGxsUR5uFYR5+3tjdnZWXh7e8PHxwenTp3C6uoqSkpKsLCwgD/+8Y944YUXGCo8wHrWxK1bt3D69GlUVVUhKysLdXV1DOWmOdRqtcXj7+bmhkOHDsHd3R1FRUVEocPj8eDk5ASxWAw/Pz/86le/wk9+8hMolUoivzf/2bNnD771rW/h2LFjKCwsJMsXiURISkoiY4vP5+Pu3btWMwhp2NjY4OrVqyQLT6PRsJQpOp0ONTU15BqanJxM7KexsbGYm5tDS4upftrd3R2pqakM0nNmZgZ1dXW4dOnSR1/2LOxrnU6H27dv46/+6q/whS98ATdv3sTFixcZX5TW2nyjo6NRV1eH3t5e1vIoikJfXx+Gh4fJMtRqNXx8fABs3mKlVqtx9+5dJCUlYceOHejo6IBEIiH3aYqi0NnZiYKCAly4cAFVVVUbPryhQSunHj58iPfee29T7/m/wsjICGZnZxkKaLFYjPT0dNTU1GyJPPq4y9VoNIwHDLSt2xJEzm6m8OeXfgoOl/sk3HznlsiVvxRQFIWhxnIEJ+3a8KkzT2CDwLg0jLZUfWzFDo2nmbRwOBwExqVhYWwAU72t8ItOhHJZRhr6ZNNjkM2Mwz82+Zm1FfpEbIdasYThxgr4RsWv2wZoCp7O3NK22Tk4wTc6AaMt1eDb2EA6PYal2Qn4RMZviahZTy1DURTGWmsQusOkHOFwuQjYloKJzgarqh7J2AA8rLSVcbhchKXuwXhHPZw8fOHg5gnuJlsaeXwBnNx9iNposrtp0+Hh5gjYloqR5kqEpu6BXqsBj29jcfsNOi3mR/ugVZlIfxuhPXwitoMnsMH+v34FAdtNMQlqxRIWRvuh1370/ZvL48HZOwAiFw/Gsn2j4jHdZ5onqJZlmOppRUjyxueRJdCEhzUyjA62txaEbS92xfxI36Y+S6tSMOzIrn7BWJwcxuxgt8VweABQLM6RfUTDMzgKY221EDq5rEvybEbBNdZWA/+YZCxODMEtMJzYRTWrK5jua4PRYMqLdPYOsGq5k89NQjo5Au/w7YQkXQuhozMWJ4aBTfBoGqUCqhW5KYMNgG9UAia7mxgNigJbIRm3Br0Oc0M90KmVAIcDz+BIxnXCKywWs0Pd8InYDtnMOCiKempFmF90IoYaymHnmLFuXtmzgl90Iia7m8Hlcll2ZKPBgOm+Nui1Grj6BT9Ti541KKQLz4T4dfYOgI1QhKHGCoQmZz1VG+r/e3f9/2NUVVUhICCANWGNiopCQ0MD66l+c3Mz/vu//xt9fX3IyspiKGbMiQiRSISLFy+ivr4evb29OHr0KIxGI2PColKp8PjxY2i1Wnh4eJAady6XCxsbGyQlJcHNzQ0ajQbNzc2k2Y0mPf7whz/g05/+tEWFlzlaWlqg1WqRmZmJe/fu4fTp0yQ7xFwxtbq6yiC+YmJiYGNjg9/+9rc4deoUurq6AAB+fn44fvw4+dza2lqkp6ejp6cHAEi2jNFoJPXoABAbG0sIuvz8fCQnJ1u0r3l7e6Ozs5OosAoLC5GYmIivf/3rqKystEgiUhSFpaUl/Md//Af0ej1OnDhhknrrdFAqleRHIpFArVbjBz/4AQ4fPgyxWIyAgAA4ODiQY/Pee+9BqVTizp07yMzMZChV7O3tGcQAYApwXlhYIETVzp07UVdXx8jYqaqqglgsRlpaGoqKihhPskdHR1FcXIzLly+jqqqKlXNlDVlZWZiensbZs2exa9cuvPrqq1bVV4DpuIlEIly/fh1OTk6oqamBnZ3dpnO/KIrC+Pg4yWuifxcZGYne3l5C7EVGRiIsLAwcDgeurq5YXFyEs7MzSktLwefzce7cORiNRty/fx9Hjhxh5M0YDAZcu3YNubm5OHLkiMWbNZ2xZDAYkJeXx8i5odeppqaGkHNrW1MAU5va0NAQLl++jOLiYri5uZFjIpVKUVpaiueffx5vv/02jh8/ziB0ZmdnWbleqampSElJQW1tLWpra5Gfn48rV65gYWEBvb29JMuMXperV6/ixRdftEpYnTt3Dr/73e9QUlICsVgMLy8v7Nixg4TTLyws4Je//CXUajXLAgeYzsl3330Xhw8fBpfLRUNDAxm3FEXhn//5n8k5YL4Oa8kfDoeDkydPorKyEjKZDLa2tixFXFJSEu7du8cY0yKRCMePH0dpaSlCQkIsEke0iso8cD8/Px979+5lEG3p6eloaWlBTU0NK9TeUi6cWq0meUz0OKKh1+uxvLyMpaUl9Pf3E2slRVEWfxYXF/Gzn/0MkZGR+Ou//murXx7T09OxurqKnJwcxMfHr5vNw+fzcfXqVdy4cQMikQgRERFYXV1FTU0NNBoNyYMyV1A1NTXhxIkTuHXrFi5cuEDG38LCAkpLS2E0GokNj1b+rofFxUWUlpbi3LlzaG1tRVRUFKKjo0k+H72dlrLn0tPTUVJSgsnJSTQ2NmJ+fh4ASLMknfd1+/ZtSCQSdHd3Y/fu3ejr6yNZiikpKYSsMkdXVxcGBwdx9uxZcs5t27YNJSUlRInI4XAQFxeHqakpDA4OoqKiApGRkSwLpiUiTqPRkJyvz3zmM3j55ZfX3U//l5idNeXwrH2o4+XlRf7251ruj3/8Y/zrv/7rppZvNBggnxknmTJOHj4Ya62GW0DYlsNftwYO40n7xwVFURhurEDA9h2btlfY2js8aaz7eE+XAZPV5GntF4CpJUohXcBQYwVshCKInN0x3PQYzt4BVoO012KzlicAsHMQI2xHNqZ6W8GZmWDYxmjMDHTCLSB00+HRNNSKZchnJ6FTK3Hvv/4FF77zmy0Tf7YiJ2hWl2FnpSJ9vKMeAdtTGfZMOwcxRC7ukEwMWWx21GlUVsPUaQTGpWF2sBvdZflIOfWZTe9Tt4BQU6OYkzNRomwVHC4Xzr5BkE6OYEU6T8LdKaMRixNDUC6b5hRcHn9TNik7BzHruBr0eizNTkA6Ncr4vdDJBZrVFUinRsHhcEjw+NPAzT8E0qlRq0qnsfY6BMWvrzwRubg/tXrGzT8Ui5PDmBvqhleYZWLK0mcHxqdj8Imt19J1icsXECWZNUx0NcE9MAJ2Dk7wDI3B3FA3sVLaihwJ6UNRFJbmpjDeUW9aNo8HDzOLrdjTb8Pz3rSO1kPNmevViLDUj7578fh8gKJgNBos5knx+AIydiijEfOj/YQodPELhpO7N7RKBRQyCVZlC2SsPi1CkrMw3FhBcssMet0ztVavhX9sMia6msDhmD5DtbKEuaFucLhc+EbFP/O8wfUgnRpBwLaPd/+hYS92JS2LIclZW256/ISU2iL27NlDJhMHDx4kX2zt7e0ZDWEGgwG3b99GVlYWfHx8EB0dzZoQW3qan5aWhuXlZdy4cQPh4eFwcXFBVVUVZDIZhEIhsrOzGRO2jo4ObN++HQEBAbhx4wYuX74MW1tbxmRMq9XixRdfhKOjI6amptbNtGlsbASHw2HZ9TIzM9Hf309auOjWOHOSiKIoTE5OYmRkBLa2thbJEq1Wi/n5eezcuRNisZgoyAATuUYHUVMUhZ6eHty+fRsXLlzAu+++i76+PigUCmK3ocHlcgmhNT09jXPnzhElwFqbB42CggIcPHiQWEtoi4xAIIBYLGZkR7m7u+Pdd9+FRCJh5VgBIAoJiqJQW1uL6upq7Nixg+ybmJgY9Pb2ktDhsrIyhgWLtgbRKCsrg7e3t1XLSHBwMLq7u9HS0oKWlhaGQmwjjI6O4vjx49i7dy/q6upAURRiYmIs5mkBpnHs6uqKI0eO4Gc/+xni4uKIqswSXnnlFca/AwMDcfDgQXI8SkpK8PDhQ5SUlODYsWOgKAoDAwMoKioCYDrub731Fo4fP87I2+HxeDAYDKzPu3XrFs6fP4+VlRXU19ezxu3jx4+xa9cucLlccLlcJCcns9rVzHNvaNBWKTs7O7KfrFlcXF1d4ejoiIcPH6Kvr8+q7W0tOBwOIiIiMDs7i7feegtf+9rX4ObmhujoaMY5Tjd2qlQqi4RSd3c3Ojo60NPTY/HvRqMRDx48wNWrV1FYWAi9Xs9Yx7q6OohEIlLAsG/fPsa529/fj+985zvw8fFhkWLz8/NITWXfzLKysvCDH/wAhYWFqKqqYvyNPl/XYmxsDA4ODvj2t7+NkZER3LhxAydOnCDnOt2sRisS79+/j4SEBHh4sL80JiUloaurCxUVFQyy1/xBgEajwYMHD8DlcnH48GHY2NgQ9RtNOPP5fLi6uoLP58PJyQm///3vLdp4AVNToUqlQkFBAcLDw4lyyxpEIhGxp+bm5uLAgQMsFRRtRZ2YmIBYLMaxY8fw/e9/H1lZWVZVf+bkSnp6OmO8e3h4kKwovV6PH/7whxbz8sy/MNOELE0+yeVyiMVicDgcnDhxAteuXcOVK1fA5XItklIajQZqtRr//u//jqqqKovjpbm5GXFxcXBzcyOqmqioKERFRRFLaVNTE7hcLjIzM2EwGJCbm4uwsDCWetDS+Ors7ISvry/8/f3x3HPPITc3F4mJiaSAwXxc0Pvw8ePHWF5exvHjxyEQCFBZWcla7/9L/O///i/+9m//lvybLlX4S8A3v/lNvPjii+Tfy8vLFu3KADDeUYdAs6flPIENQp8EY4+1120YHP20EDm7YXVJajEs92kw2loNv5jETVtZyHq4uEOnUW8qi2Y9LIwNWK0c3ywcXD1g5+CE3/3dCWR9+ivYtvfUlkg7tWIJdpsIWjeHX3QiVuWLGGwoQ8C2VLL/5HOT4HC4cPJgk9GAicxcXpjBimQWFMU8321FTnDxDYL3k1B9tWIJY+118I9N2bQCz9HNC4rFeYuk1MJoP5w8fCwG9rv5h2K8ox4qZ/enalhUSOehWpFBNjOOxckRGHQa1mvWEuj0+cHhcPD2V87i+D/9COMd9eBweeDy6B8+uFzTfzkWfsflccHl8eHk7o2R5kqsyhcZy3X1D4X7FgLhrYHH58PVP4Rl01UuyTBY/whtxR/i2Fd/yGjk2yrsHMRWlU6S8UE4efpuSA56BEVgtLVmXVKKWpOfaw43/1BIJoa2lLPD4XAQnJiJ0dZqiyQql8eHQaezSkrNDHTC0d2LrLPA1g56LXv80J/l7O0PZ2+Thcyg12G6txWP3voZXnj9xjMlRab72uATEcfaVz6RcZjp79gwf4zD5RKCkaIoyKbHMNZWi4HaB2jMfRcHvvhN6DSqj7XOXB4PfrHJROkon5mAs8/Hy+KyBOpJ26RSvgguj4eyt1+DQa/Fzktf/D+16D2rhzOAadyFpe3FSHMVfCPj1lXCrsUnpNRTICEhAXFxcXjw4AEoisLBgwcZORxLS0soLCzE2bNnyRd0gUCA9PR0kpMCmCxmlrKXnJycsGPHDuzfvx9hYWH48MMPLQagA6bAaTp3Izs7G2VlZSxlkEAgwKFDh3DmzBm0trbi9u3b2LdvH/lser3r6upga2tLrEYA8+YXGRkJd3d3XLt2DefPn4dCoSCTVLrBaM+ePbh16xZ5wr0WdI4SYCJjrMn6ORwOlEol+Hw+fv3rXyMsLAwpKSmYmppiqDhoXL58GU1NTaxMJ0tPvysqKhAbGws3NzfY2NjAwcEB586dw4cffoiTJ0+yMls0Gg3CwsIglUpJ05u1dabJQDrQnW6Eys/PR3R0NO7cuWM1S4aiKDx8+BDBwcEM4nDtRcpcNSYSifDgwYMN7XRqtRr5+flIS0vDgQMHkJycTI5dT08PCgoKYDAY8MMf/pCxz1xdXeHn54eqqioMDw/jwIEDVkmXubk5vPjiiwzl2dr9qNPp4ODggB07dqCxsRGpqamIjIwkAcg6nQ5vvfUWeDzehuQOnR0jFAohFApRX1/P+Pv8/Dx0Oh0j1Jtu65ufn4enpycmJyfh4ODAsrqmp6ejrq4OKpUKwcHBDILQwcGBEXbd0NAAJycnxMXFwcnJiXGOrw39p6FQKPDgwQO4uroiICAAdXV10Ol0LDUIPSYuX76MgoICFqFkMBjQ09ODCxcuQCwWW1QH5efnkwylPXv24PHjx9i3z/QUsr6+HnZ2doToWdvkNzMzg9HRUVy9ehX37t2zGPa/FhMTE6SVNCcnB9evX8fBgwcZ5Qu09Y8mf/R6Perq6ohaLSQkBIGBgSgoKEBwcDDi4+Ph6+uLrq4uxMXFobq6GgEBAYwSAXp/0ft727Zt6O/vJ+dHV1cXYmNjodVqcf/+fXA4HBw8eJChXnV3d8fi4iKD6KIoCoWFhbhy5YpVQra5uRlKpRInT55EUVERIiMjoVar0dDQwGp8XIukpCTExsbi05/+NIKCghjHgMvlEoLaxsYGv//972EwGEhWmiV0dXVh+3bT5Nbf3x/Nzc0Wc+2Ghobw5ptvIjIyEo8ePSLFFTY2NuQaUFVVBYFAwCJk6c92dHTEmTNnCDGlUqnI9ZOiKJSVlUGpVOLYsWPYtm0b5ufnWYobhUKB6elpkutHXwvNJ0T0dd1gMOCDDz7A888/j3v37ll8SGC+foDpfjw2NkbukxwOB2fPnsXjx4+xuLiIlJQUDAwMELVaf38/Ojo6sHv3bqstrn8JOH36NIOEp8fN3Nwc4zoyNzfHuKdvFbT6eyvLtbW1tUiYroV8bhIOLh4WLROmYOxVDDWWwyd8+zPPlXF094ZkfPCZkFJjbbXwCo2xqqrZCM7e/tBrVFYVNpuBVrW6ZUJsLVQrckz3tmHf51+GR3Akxtpr4eThC1e/4E29XyFdeKr9KXJ2Q1hqNia7m2FjJ4RWrYRsegwhSbuI6sk8HB8wTSId3X3gF5tktbnL1OTmBvegCOi1Gkx0NkBgJ4RvVMKGkz+hoxiLE4PsbZRJoFUriQ3JEgK278Bg/SOE7fgo6N6g14OzTsPY0twUZDNjELl4ICRpF+zFbhB7+mxpTM0N9yLrU1+Gb3Qi+AIbUEYjjAY9jAYDjEbDR/9P/1evg16vWvM3Aya7m6FZXca2vae2rFJ7Gug0akz3tiLx6GX4RSfCPzYFs4Od0KlVsBU5wSss5plM1tWKZSiXpJsOTefxBdDrtFYtXdKpUbj4Blt9v3tAGCTjg5gb7iWkykYKHIGtHdwCwy2S1DyBAEaD5QftC2MDENgJWTlFpu9altVIjGU/2dbP/zoXIy1VjGyzj4NV+SIADkTObFeGjVAEnVrFftM64HA4cPULhpOHD7RqJSFVJWOD0GksL4vL40Pk7AaRi8e6ZKTQUQwHFw9IxgehXJJuKd/QaDBAtSyDclkG9coSiyg3h629A4RiV3iFxSL+8AUI7OxJBMSfGxs1fD4tuFwewlL3YKKzAY7uPpseS5+QUk8JLpeLQ4cOYXl5mbR/URSF4eFhdHV1Wax+9/f3x8TEBGm5WgudTofy8nIyEf7Vr36FnTt3orS0FEeOHLEYhL62Qr23txdzc3OML/5VVVXYtcsUgJiYmIiEhAQ8evQIKpWKKESqq6vh6Oi4bkAwYCIpLl26hNu3b0OlUmF6ehotLS1ISEhg5HTY2dmxnppPTk7Cy8uLNTlaK0+WSqV4+PAhUlJSEB0djZaWFiiVSigUCoSGhrJIoeHhYdy9exeNjY0ICgqy2v4FmBrcHB0dyTLi4uLQ0dGB1NRUPPfcc7hz5w4rhJqe0GVkZODWrVvw9fXdsHGInoi2trYiNzcXs7OzKCwsxM6dO1lf1o1GI4KCgvCDH/wAn/3sZ1mZWeYT+Dt37mDnzp1kouDj44P5+Xl0dHRYPXZ0y9S5c+fA5/MxOjrKyJSJiYmBv78/8vLy8PWvf52QhoBpTNIKv5SUFFy/fp0V8E2jpqYGn/3sZyGXywlxab6t5s1kAQEBaG5uRlJSEmNdBgYG8B//8R/w9fVFSUkJHB0dsWePqUVHLBYTUqSiogIxMTEM8sDW1paomyiKwqNHjyy22B04cADXrl3D5cuXUVNTQ1oYARN5Nzg4iKmpKZw+fRr19fUsxVpAQAAmJiYQGxuL1tZW8Hg8su+DgoIwOTmJsbExBAUFob29nXFctFotSktLYWNjg5MnT4LH4+Hu3bs4efIk8vLyWDY/ep9xOBxkZ2ejoqIC+/d/FPh67949crwCAgLQ1tbGsLg1NTUhKiqKEJAODg5EldfQ0AAbGxskJFhufFlZWUFNTQ3JKzt8+DBu3rxJ9tfExASD8NPr9SguLoa7uzsuXryIoqIieHl54cqVK3jw4AEcHR3JJDopKQktLS2EbLh79y4rOJ/H4+H06dPo6elBTk4OIS1aWlpgb2/PsHECHwVgm5//kZGRsLGxQVFREbke0W10libNfn5+mJqaYoyre/fuWbWGAqbyBS8vLyQnJzMI3fj4eDQ0NKC9vX1DNWNzczNefvllzMzMWFS7AcCNGzfwwgsvoLS0FAcOHEBRURH8/PxYRPz4+DixdgPA0aNHUVxcTNoFafT395N9vn//fmg0GpSUlEAkEoGiKOTm5iIuLs4qCU/D3t4e58+fx7Vr1xAWFgYvLy+0tbVhaGgIe/fuJQ9UwsLCyDLNUVRUxFAQ08rStYHz9DkdHh6Ohw8fIjw8HEVFRTAajUhJSWE0Rbq5uWFhYQHu7u4oLCy0mHu0e/dudHd3o6SkBEajEf7+/rh9+zbCw8NZFt+/RDg6OjIsiBRFwdvbGw8ePCBk0fLyMurq6vB3f/d3T/05ISEhf5LlmixBw+tWodsIRQjfsRfTfe2Qz00+01Y+gZ3Q6iRmK5jobIRbQCjsxZYfHG4W7kERmOnvwNLc1J/YtsgGHQIO4EnFdwNc/YLh6heMpbkpjLZWw8HFY0OljHpF/tSkGofDgatvEMbaa1Hx7utE7WMrcoSLb+BTEW6y6VHSQMe3sUVwYgbUimWMtlRB5OphsXGLrM+awHXAlKU0N9S97piltyU4MROjLdXEAiUZH7SoZJNOjmBpYRpiTz8EJ34UjeAeEIrZwS74xSSx3mMJK4tzMOi0iMk+gameFpPCkMsFj2sD3uaiqQh0GhUCt+/AaGsN3AJCWLk3zxLLC9NYnBhG6I494HJ54HA44PJ4pIlOtSLHeHsdKMoI98CIpw6jpsP6w9L2bvo9dM7V2vwnGqtyCdwC1r8/ugeGQzI2gPmRXniGRGNxchhu/uu/x8ndG6olKetawOMJYLDg/pDNjMOg01nMsPIIjsLCaP+Gai3Vihx2IidweTxGthmtpHoaUBSFmYEOhO/Ya/U17kERWBjtX5fkXQuDXo/h5kqEp+3FREcDHN28rCoqTa/XQSmXYnFy2JRRZQEcLg8isStErh5YGO2HcklminTRqKCUS6Fclq5LoHF5PAgdXeDg4g73gLAtKY98o+Ihn5vEaGs1ghIy/qzklHRqFK5+f7pykYDtOzA31I1V+cKmXv/s9Fr/P4WTkxPOnTsHW1tbHD9+HG+//TY8PDwwNzdnUaWTkZGB5uZmqFQqMvCGhoaQn5+PBw8eICMjA6dOnSIV4h4eHrh8+TJqa2vR1NTEWBb9pdsctFrKPMNn7es4HA7279+PAwcOIC8vD0ePHsXS0hK2bWO3Raw9OfR6PTo7O+Ho6IjPfe5zeP/993HixAnWxGXPnj2oqKhg/K6uro5lr4qPj0d7eztZ1wcPHqClpQUXLlxASEgIIS4OHDiA+/fvW9ynHR0d2LNnDy5evEhySSyt/+joKORyOWPi7+npiYWFBfLac+fOob+/H52dneQ15taOM2fOIDc3l7UO1pCYmIiMjAxMT0/jxIkT6OzsRHFxMe7du0d+7t+/j5mZGVRXV6OrqwtFRUWor6+HXm8KIwwNDcXQ0BBu3bplsY0sISGBBFubbzOt8FCpVISQAsDKKhsfH8f9+/fxqU99ihWCnZeXRyautra2OHfuHK5fv846DpOTk/Dz8wOHw4GLiwsuXbqE3Nxcsk4rKyuwtbVlEAaHDh1CaWkpYzk0mUOTNtu2bcPt27fR1dWFlJQUNDU1oaWlBWKxmDXmdu/ejcePHwMASktLWZY8c2RlZZHGrqKiIhQVFaG4uBg1NTVwdnbG4cOHcefOHeh0OuTn5+Phw4fECurr64vp6Wl0d3dDpVKxLLi7du1CQ0MDtFotZmZm4OfnRzKxSktLcfDgQRw6dAg8Ho/RhBgQEIDx8XHGvnBwcCCT+rU2z6mpKTg7OzMsdceOHUNxcTEAQCKRYHFxkUWqBQYG4tatW+DxeFaVDjqdDnfv3mUQzRwOBzt37kRNTQ0AMIjQ9vZ25Ofn48CBAwxrJP2+gwcPwtPTE7du3YJGo4GPjw8ZG+3t7YiMjLTaEBcTE4MTJ04gPz8f//M//4O+PpMs/9GjR4zz6L333sP777+Pe/fuobi4mJxnfX19ePz4MS5cuABfX18cP37cqorDw8ODZB7R2+jn52dR0UpRFG7fvo2oqCiiTJqdnWWQIzt27MDy8jJZZ0soLCyEu7s70tLSrKpHa2pqkJaWBh6PB4qiIBAIcPr0abi4uODmzZskP5BeL3PY2NjAy8sLk5OT5HdKpZK1v21tbXHy5ElwuVwcP34cKpUKY2NjkMvljNdZ+sJkZ2eHQ4cOISMjA2+88QZEIhHOnz/PUvjGxsaSrEHAlGWWlpbGuB6FhYVheHiY8T65XI4PP/wQiYmJ2LlzJ/bs2YOOjg6cOHECJ0+eJC2OFRUVMBgMhPQsKipi5BmaQ6FQwGg0YmFhAceOHUN+fj7OnTu3JTv0XxI4HA7+6Z/+CT/4wQ+Ql5eHjo4OfPazn4Wvry9DnXvgwAH8+te/Jv9WKBRobW1Fa2srAFOweWtrK7kWbXa5W8V4Rz0C49ZXEdLwjYqHi08gBusfQaNUbPyGTeLjfvmf6m2F2MsXDq7PRlHnExmHpfmpJ+qCzWM9G9FGUC7JMNxYAVe/YPhFJz5Z1kfno9jLRJbYOjhhtLUac0PdVksngK3ZQFTLMkx0NmC8o95keVMswcUnCBe/+1vw+AIExqXBKzTmqRVgRoOBZXWyc3BCSHIWhI7OGGmuhHx2YtPLG2muIg13G0Fgawf3wDDMDpqud6YmvY9UTwuj/RhtrQZPYIOQpF0sNRpPYAOD3rIqZi30Oi3mR/rgGxUPHl9gUkgZ2XEHWwGHy0VI8i4ol2SYHez+WMuyhpn+DiiX5AhJzrKq5BE6OiMoYSeCEjKgXpFjtLUGE11NMOi06y6bw+Ey9sF4ex0C47dmBaaPwXrjfTNwD4oAh8vD/Ggf1CtLm7IzeYXFQjo9SsLkAYDL58PwJKScxsriHFZlEquh6kJHMdQK60UTNGYHOuFtpswKjEuDWrGM+RF2SclmMd5Rj0ArhB4NBxd3rMol677GHEajAUON5QhLNZGY3hHbMTPQue57eHwBHN294BOxHYFxaRZ//KITYWPvAPnMOFQrcpS9/TOMtddBMjYIChTcA8KtvjcwLg3+sSlwCwiF0Mll09fAxclhuDw57529/OEblYDBuodbVo99HKzKJX/y1kGvsFgIbDanuPxEKfUxMTU1haamJggEArzxxhuIjo5GdHQ0xsbG0N7eziCHANOXIHd3d7zwwgs4dOgQ8vPzERoaylIJVFZWEgUEh8PB0aNHMTAwgNu3b+PUqVMQCARoampitboBpsn+gwcPcPDgQdTU1LCCqRcWFtDY2AiKoiAWi/HFL34RgGkiv/bie/PmTUYTF4/Hw/bt25GYmIiioiLs3bsX9+/fh8FgwL59+wipYWNjQ8KagY/CzdciICAA7e3tcHJyQlNTE/bv38+YyKyurpJlHjhwgGwXjbm5OWKxoNu/CgsLERkZiYiICLI9MpkM7e3tLLWAJRw4cADNzc1EYWZOSvH5fGRnZxNL0OrqKiPfyhw9PT0YGBiAh4cHrl69ipMnT2J6etpig1pPTw/eeOMNopKSSCR4+PAh9Ho99Ho9zpw5g87OTqs2zkOHDuH69es4d+4cKIrC/Pw8Hj58iGPHjrHsVuakVFtbG6RSqcU2qoaGBiQkJDCIJHt7e5w8eRI3btxgtHU1NjYyJih8Ph+XL1/GvXv3SEX92jFub28PW1tbVlW8+ZcGd3d3XLhwAb29vSgoKEBrayuOHDliMavHzs4OGo0GIyMjEIvFZJkymQxtbW0My6eTkxO+//3vk5weS+BwOCT/hrbb6XQ6REZGkpZL87wic5w5cwZ37tyBSCRCZWUlFhcXsX//fla4srnVLykpCXl5eQgMDITRaER9fT1DxQV8NKnftm0bqqurWX/n8XiIjIxEd3c32tvbceXKFUilUnR1dTEaC1955RX853/+Jx49eoT09HQyhrlcLvR6PQnIXvsFLiAgAN3d3YSoUCgUuHfvHrZv384YQ5ZIj5CQEPj7++Pu3buExFEoFBgbG2ONDYVCge7ubkilUvI7e3t7FBYW4tixY/Dx8UFMTAyDXPL394eTkxMru2ZkZAQCgQC7d++GnZ0d8vLy4OzsjKysLJbij8fjkTwiuVyOyclJxvgwb4mjr8Xmx7Snp4eoUmlkZWXhwYMHsLW1RXBwMFmGXq/H7du3sX//fvLQIDs7G4WFhYz9IZVKsbKywlJQAibCOiQkhGRjxcTEWAwET09Px61bt4iyraKigmH5pfPw5ufnERcXh6KiIhw9ehQqlQotLS2k6RUAIaXX3ivEYjFeffVVeHh4oL+/H/39/fDz80N8fDzZ5oiICOTm5mLbtm2QyWRYXl5mkZhr0dTUBIlEgsuXL5Pl0BlztMqWVostLS3h3r17MBgM+OMf/4hz586RTDjzezBgyvQKDg7GhQsXMDo6CicnJ+Tn58Pd3R0ZGX/ep5XPCi+//DJWV1fxxS9+EXK5HFlZWSguLmYoe4eGhhgPbhobG4mdFwDJgnrhhRfwzjvvbHq5W8GyZBZ2js5bygCxF7sibMdeTHQ2mEJ8Qzaua98IH2eyOTPQAZGz+zNXkQTGpWG4sQL+21I2nakjmxmHyxbzTyiKwnRvq6n1bcdHGYKymTGLLVaObl5wdPOCckmKsbYa2Agd4BPJzolZD5rVFcyP9oN6QhbYOYrhF5NM7EwGnRYTXU3wiYzDwtjAk+0KXG+RTw16e6RToxhproRnSPS6FtGJzgaTVXAL4cdOHr5YlS9iWWIqBKAoCrODXVArluARFLEldYg1UBSF0eYqhJqpt3wi4zHT175plZU5luamGI1s3uHbsDQ/jZHmKgQnZjyT7BmDXo+x1mp4hETB0Y1p57Z2TnI4HLgHRRAr5nRfGwx6PRzdvSwqj8Refliam4KLTyAWJ4fh6Ob1VBlVJqVRH+t6Y+keuO5yniiCOh7cQcC21E3tx+DETFPwedo+cDgc8PgCGPUfkVKqlSUsTgxv3NC2xhK/FiuSOTi4erL+7h0eC+n0GCa7m6wGifNt7aBTq1g2T/ncJOydXDa1z508fLE0P221CfCjzaAw3FCBkKRdhGy2tXeAVrW67vs2Ay6PBwdXDwgdxViRzOGvf5OPqZ5W+ESu7x76OFAsziMo4aPvPzZCEcLT9v1ZFIo0Pi7hulk4+2yiohGfkFJPBbqta3FxEb6+vjh16hQmJyfh7e1NquUtWe1ozM/PIycnB9nZ2eByudDpdIwLBkVRpB3JHBEREQgKCkJ+fj4SEhJgMBhYrwFMFjuhUIjJyUnMzc0hIyMDnZ2d5Mmnu7s7Dh8+DB6Ph6mpKXzpS1/C4OAgq94bME2yFAoFnnvuOYvbYmdnh+PHj8NgMODRo0dYXV3Frl274O7ujri4OLS3tyMqKoqEm5tjdXUVjY2N+MIXvoD//d//ZVXAr4W7uztEIhHGx8dJlkxtbS2DaKLDd2tqasiEVqvVori4eEuV2MnJyRgaGkJBQQHEYjFj8uvt7Y3JyUn09/dDIBAwckcoikJVVRWkUimio6PJuhUXF+Pw4cPw9/dHQUEByTehMTExwZgk0sdofHwctbW1+O///m/o9XqLxCFgsqvs3r0b77zzDlZXV0mVvCXQpFRZWRmcnZ0ZExIai4uLkMlkFvNwHB0dcejQIeTk5OD8+fMYGRmxaEeVSCSwsbHBe++9h7KyMuzYsYOhIgGAvXv34s6dOxtWtNva2oLP5+MXv/gFmRBZQl1dHb7+9a/j5z//OQlPd3FxQVpaGos8XFlZQVJSEglLNx/7er2ecW45ODgQkvitt97Cl7/8ZaKusgQOh4Ph4WF84xvfQFdXl9XAa3PSFfgoZ628vJxhwaIRHh6O/Px8LC4uMggxo9GI6elpDA4OQq1W49ixY/jd736He/fuwcXFBUlJSeRztFot/vu//xsHDhyAUqlEfX09VCoVKIqCTqfDT3/6U/zDP/yDVRvs4cOH8e6772JsbAw8Hg/nz59nkTuW8t0AE3F87tw5NDU1obq6GkNDQ8jIyEBRURGj9dDBwQGxsbFIS2NmP+Tk5CAqKgp1dXUsIsvJyYmlMpqYmMDAwAAOHz6MoqIiEp4tk8lQUFAALpeLvXv3sgLcKYpCcXExy/7J5/MxPT2NyspKXL58mZV7ptVqLaqwDhw4gMLCQtja2pLmz8LCQpbFlc5So4lwiqJQWlpKsrYAk1JvamqKFCnQSrTFxUX4+fnh9u3bRHFoDvPQc71eD4FAAKPRiLKyMigUCqSnp5M8sunpaSgUCjg4ODAeagwNDUGv1+PQoUOsY15eXo6vfOUraGhoIGN3cnISxcXFoCgKQqEQO3fuRFRUFHp7e9He3s4iVWm4urpidnYW1dXViIuLsziWaOWkeXA6rS7lcrm4ceMG/uqv/opkPlpDSUkJXnzxRdy/fx+nTp3CwsIC7t69Cw6Hg927d2+YofaXBA6Hg3/7t3/Dv/3bv1l9zejoKOPfe/fu3fCL6WaWu1lQFIWFkT4GEbJZcDgcBMalYXlhGkMN5QhK/PNUeK/F3HAPbO0dP5a1ZT2EpOzGYN1DhKbuWbdpi4ZCOm/VYmQJq/JFzA50wjc6kRXGvSqTrGvnsBe7IjgxE2rFMsbaaiCwFcInKt6i0kWrWsXCaD9R/NjaOxA1jyWMdzYgMM708NIjKAJjbbUQObs9deD1ZkDbFOeGuk1qo+gEljJLMjEEkbM7hFsMcQcAn4g49FYWY6a/A0aDHl5hsRA6bj7QfqP2vcmuRhZZZiO0h1at3FIbIg357ASjeAAAxJ6+EDo6Y7D+EYISdn6s47EqX8TMQAdCEjOfui2Sb2NLxvuyZBZjbbUAQILtAVNm3ERnA+zFrlBIFxAUz34ovhmInN2wMNrP+v2KZBZO7t4W3mEZywvTWJHMws0vBKNtNeDyTO1zzt4BcPL0tXicOBwOguJ3YqytBsGJmeDyBcRyrFOrMN3buqnrqItvIOQz4xbJZgCQjA9Ybad09Q2CjVCE4abHCEnOYq2no5s3VhbnGEo/g14P6cQwgyhdD65+wRhtrd6QlBppeoyAOHa7qaObF5a3eDwsgaIoDDdXIiw1m5BUfypi3KDTmsbAGtAKxdnBLiiXZPAOZzuYnhX0Ou2mix/+XPiLWRudTodXX30VhYWFGB4ehlgsxsGDB/Hv//7vrInsWvzXf/0Xfvazn2F2dhYJCQn4z//8T8ZkRq1W46WXXsK1a9eg0Whw5MgR/OY3v2EFrm4G1dXV5OmuuSWutbUVJ0+ehKen57rhtmq1GqWlpVhZWcHjx49x6NAhTExMoLCwEIAp00Sr1WLHjh2gKArLy8tYWFiARCIh6gR7e3v88pe/xB/+8Ad8+OGHAMB6CgyYVA1vvvkmioqKEBsba3GS297ejqNHjyIoKIilQqIoCuHh4YiNjbUYoGwOHo+HgwcPgqIoVFdXo7q6GomJiRgbG8Po6CiOHj2K5eVlNDY2kkBWe3t7pKam4s0334RcLsfMzAzjKb81++ONGzfg7+8PhUIBR0dHixfzjIwM9PX1ITc3F5OTk3jhhRes3pwt5V8BJhuJWCzGvn37cPPmTYSHhxOiIjU1Fbm5uXByckJCQgLUajUePXoEvV6PzMxMuLmxQ/24XC58fHwQHx9PcmrMt9WcBKGtjPb29rh8+TKKi4uRkJBgMf+HoijIZDJ0dXWRjI+CggIGYcLj8eDr64uAgADSXJWSksIKiqYtZffv32dMhNfCxcUFu3fvRl5eHoxGI7KysvDo0SNGSLO7uzsyMzPh6OiIF198ERMTE2huboatrS1RrdC18L29vXBzc2OcUzT5K5FIEBISgjNnzuDmzZtWM3coikJnZyciIyORnZ1tVcEGfEQ6eXl54fDhw/jggw9w6dIlCASmL8uzs7Msxcnc3BweP36MY8eOESWJNaysrGBlZQUFBQVYWlpCXl4efHx8kJqayihEWBuqv2fPHvz85z/H3r17odPpMDMzA6VSCaVSCZVKBaVSiffeew+Tk5P4zne+Q97H4XDg6+tLyLfCwkJotVrExMSwyAnzbbO3tyfFCAqFAr/97W/xu9/9ziIJYI4vfOELeOGFF5CWloaSkhIAJltgREQEBAIBOTcpioJEIsHw8DCkUinjHKQtf9XV1Th69OiGX55XV1chFAoREhICFxcXXLt2DRcuXCDkmZOTE6ampsjrZ2Zm0NHRYfG65+LiglOnTkGv16O8vByrq6tITEwk54N5yygAqFQqdHd34/3338fy8jKuX7++LtFhCcePH0dOTg76+vqg0Wgs5g4CpnwnWuX48OFD7N+/n/G67du34/79+6zm0/LycpSVlcHe3h4KhYKQsoApWys0NBTNzc2or69HTEwMioqKoNfrkZ2dzRqH4eHhGBgYYFidV1dX0dHRgf/4j/9AY2Mj4x4rl8uh0Wjg6cl82urv70/UWUqlEjU1NVCr1Thx4gTeeecdMnbWQqPRIDMzE3l5eRgaGsLQ0BCEQiHc3d3h7u4ONzc3+Pr6EhVVfX09KIqCm5sbGUuFhYVwcXFBZ2enVUue0WiEWq2GUCgkdl4PDw+cOnUKBoMBlZWVWF5etki6f4Knw2RXI/y3fbz6bicPXzi4emGsvRZiT79NB3GvxdOo4RbGBsDj8Z/6MzcDDoeD0NRsDDeWm1QSm7jWbGZbKIrCVE8zeHybdSezm1mWnYMTghMzoVUpMdHRAC6PD41qFdN9baTxS2AnhFf4tk0RhyuLc7AXuzEmSYHx6QylyFagUSpgI9y87c8rLBaU0UjW3z/WZMtXLkmhXpFbVYrotRqsyiRQyBZgtGC3oygKRr0eBr0OfBs72ImcLCzFMpw8fbE0P8UKr6YhmRiCvbObRbLMKzQG8yO9m25+I7ASuGwjtEd4+n6MtdXAxSfoqXLP5kf7oFOr1s0YAjYm4szh5O4NJ3dvUEYjZoe6oVUqYCMUkcn8REfDlnKkLEHk7AaFTMII8ZfPTmyKCNaqVjHZ3Qwnd2+Epu5BUGImJrsaERSfbnpANTeJ8Q5TSQ+Hw4F7YAQjFNpGaA8XXxNp6uTpR8bSaGs1wtPYD5QtwcnDF2PtdRZJKdnMOJy911exOLi4wyY2xUSUp+xmkIn2zq6QzYwzrodjbTUI2ki9tQa2IieoVpasNlaOttbAJzLOopXXLSAUo63VH5uUGm2pRlB8OiF43QPDMdJcCScPn009HNgKpvs71lVh/SkUimuxMMJWAP5f4y+GlFIqlWhubsZ3vvMdJCQkQCaT4atf/SpOnz6NxsZGq++7fv06XnzxRbzxxhtIT0/H66+/jiNHjqCvr48oWL72ta+hoKAAN27cgFgsxpe//GWcP3+eVVW+GezcuZPVbkdPcDkcDvz8/Kyur0ajwc2bN3H16lXw+XySURMQEEAsJ5OTk9i2bRu+//3vIyoqiuRKRUdHkxpug8GApaUlHDp0aN0J+rvvvgtnZ2eLkzLz13E4HLi6uoLH42FhYYGE/DY3N5MA2enpaYZCaT2JLW1faWlpwenTp3H+/HkIBAI4OjoiIyODQf7Qoe/bt2/HvXv3sLq6ivBwUxhkf38/aWUzx/Hjx0nALb1tFEVhenoa/f39DGIkLy8PISEhZAIXERGBsLAwxg0vPj4eHR0djEkWHeAOAF/96lcxPDyMsbExRtW4QCDA/v37kZOTA3t7exw4cGDdkHUaAQEB0Ov1jNY88/0plUpRUlKCAwcOWKy7XwsOh4OxsTEsLS2hvLwcDg4OkMvljHFKExwdHR34xje+gW9961vo7u5Gd3e36WlMUBDCwsIQFBSEN998E8899xw4HA7UajXm5uYwPz/PsFLR69za2op/+Zd/wYMHD5CZmWnRziGRSJCamgoPDw8kJydDrVajsrKSZAslJSXh9u3bEIvFyM7OhlKpRHl5OfR6PXbu3MlQalgjEAGTiubKlSvYuXMncnJycOnSJavHY2xsjEw0HR0dcfHiRdy4cQNnz56Fvb09JicnSRYTrVaxs7Mjar62tjarx0Oj0eDu3bu4evUqioqKGOqT/Px88Hg8ZGdno7q6GocOHcLCwgLa2trI9eDll19GSUkJent7YW9vD6FQCFdXV/L/KysrWF5exuHDh9clRs6cOYPy8nLI5XIGmTk1NcVqLWttbcXk5CReeuklxMXFWb2uAKZgaroFkybmKIrC+Pg4ysvLodPpcOXKFVy/fh0cDgceHh6IjIxkWDTr6+vxk5/8BH//938POzs75Obm4ujRo+vagcxb5ZydnXHx4kXcunWLNPvRrYiAyaLc0NDAUFGKxWLI5XKGipXP55NzsLW1FW1tbfibv/kbvPLKKwwVlJ2dHWJjY3Hx4kXs2LEDRUVFoCgKKSkpFu1y5tBoNGhuboZcLodAIMA3v/lNFBUVkSY/Pp+P0NBQBAUFgcfjwdbWFjqdDuPj47Czs2NdA8wthoDp/nPjxg0cP34cYrGYKDHpjECKotDf308US+np6bh58yZOnDhhdX97eXmRjCF6GXl5ebhy5Qq4XC4aGhoYry8tLSXnBp3Ltba5zt7eHvv378fY2BjefvttpKSkkOO5Fo8ePUJ5eTk8PDxI4LlKpYJEIsH09DQ6OjqgUqnw3HPP4Q9/+APOnTvHOBfo+0pMTAyqq6vR2dlp8bMqKyuxe7cpiHj37t2orKwk1036PAVMKrA//vGPFtf1E2weCvki+LbCj90SB5jsFiFJu7A4OYyRlioEJezcsGGKtQy+AHqtBnybjZsCAVMGCGU0wOPP8EWex+cjODHzyZP7zSkO1oNCJsHck+BsO4fNEyMbwUZob7IcNleiKe+POP/qr5+qmn1hpI+lrDApRdIx3l7HsLlsBosTw/DYIJh9LThcLvxikmDQ6zDZ1YSx9loSdE0TB2vBt7GFyMUDXmGxVsm3ueFehKbuAZfHw2hrDYROLlYzgMwh9vTDRGeDRVJKtSyDakmGgO2pFt5pUrRtNQ/IRORZf5hHB7jPDXVDuSyFT8TmrE2U0Yix9lo4eweuGy4PALYiR2iVCqJ42iw4XC5pq9OsrmC8swFFv/w2Tr70E4CigI9hx3Z/otpb2yy5HnFmNBow2dUEDtd0naJJBR6fD76tHTSrK7AVOcLZO4CQQkajAYvjQ1gY6yev9QyJhtjTF8olKZTyReh1Wgw1ViAsNfuZEBXymXGrKilz2AjtEbZjL4abKuAfm0xaIblcHmDWNCcZG4CLb9CWSRzv8G0Ya6u1aEWc6GyEe2DYullcXB4fBp32qdV3Uz0t8AiOZKkAA+PTMdZWSwoLnhWMet2G9x2xpy/snVww2FCGoPj0Z64Y1WlUf1IV6tPgL4aUEovFrNDjX//610hLS2OQIWvx85//HH/zN3+Dv/qrvwIAvPHGGygoKMBbb72Fb3zjG1haWsLvf/97vP/++6S16u2330ZMTAyxMmwFZWVlSE9PZ0yKHz9+TL7YAkB0dDR6enoY7UFarZZBSAGWL2izs7Nob2/H7OwsKIqyuH65ubk4c+YMBgYGrDb5lZWV4dSpU5idnUVLSwur1YteJ/OJ1969exntWjMzM0QxsXv3bty8eROenp6ws7ODRCJhhazTUKvVKCsrg06nw1tvvQVbW1scOXLE4gS6q6uLEEtHjhxBZWUlVldXkZCQgOHhYatqlO7ubnz/+9/H9evXAXykFMnIyCATLYqiSK7VsWPHQFEUBgYGGAoib29vxMfHY3FxEbOzsyRMng5EppvvLAVnq1QqpKamkir4tVae9RASEkJUGvTEBzDZEVdWVnDlypVNPSlSq9UoKChAXFwcTp48iXv37mHXrl3o7u5mBMsLBAIEBgYiMDAQP/rRjxhEpdFoxNjYGMrKyvDBBx/g7bffRmhoKDgcDmxtbeHl5YWwsDCkpKSwjqGNjQ0hkWpra5Gdnb3hetvZ2RFF3vT0NAoLC6FQKPC9730PP/rRjyAUCnHw4EGiWjJHeHg4hoaGWBPMoqIiZGZmwt7eHjweD5cvX8aHH36Iq1evWrS4joyMMPY7bXe8desW9u/fD7lcDrFYjJGRETQ1NeHgwYPrWnJpGAwG3Lx5kxw/T09P0obp6+uL06dPQ6/Xo6KiAp/61Kfw/vvvw8PDA3v27IGNjQ0ePnyIiYkJ9PX1WTz39Xo9uFwuzp49i9zcXIu2R51OR/ZddnY22traGOPMXKFFB7nHxsaSdrv1jl9ZWRliYmJYhANNbAYFBaG6uhq5ubnw9vZmNagBpjZIiqIQExODsbExJCUlIS4uDsXFxXBzc7OqyJRKpQzimM6QKyoqQkREBCIiImAwGCCTyVBRUcFqUNu+fTs6OjpYmU80EhMTYTAYEBAQgF27drGsgzTc3d1x4sQJUBSFpqYmNDU1wdHREWlpaRAIBJDJZGhubibXHltbWyQlJcHFxQWPHj1CXV0dXFxcEBFhmjDpdDqMjIzg4cOHMBhMWSsqlQpBQUEsq9VarK6uIjc3FxcuXCA2QDrrgj6OtBoxKioKFRUV+M1vfgNnZ2eUlpYiLi7O4v3D3EoJmOzHR48eJee/SCQi9r6GhgaGAjA5ORklJSUWs9q0Wi0aGhrwuc99Dnfu3LFKSikUCpw6dQoFBQXw8fGBs7MzhEIheYAjkUhw//59yGQy5Ofns65LfX19JG8xMzMTVVVV6O7uZpGxcrmckKVriwRoVFZWgsfj4fnnn8fLL79scX0/weYwP9yD6F3WCe+ngZt/KMSefhhproJHcOSWnpY7uftgRTJr1dZiDtnMOHRq1Z/UTrEWAjshfCPjMNZeZ9V+pFySrjtZo1vH+LZ2G1p99FrNlid1K5I5zI/0IjAuDTZ2QouWlI0wO9gFzzDLJI2NUAQnT18sjA1siWTSa9WsnJvNgscXwNk7AC2FH8DVLwReoTGbJi4tQbO6DFtRFDgcDkKSd2FVvmhSYHj6rtvEZu1ebDQYMNXbuqFSxtkn8Em7VvCm1nN+uBe+m2i49AqLxbJk1mTpMiNcLIEmiIITMjZ1PETObliVL26ZlDKHrcgRfIEN9v/NNyFydsdEVyO5J3oER1lV41iDKc9p86TH/GgfVqUS+McmW9xm36gEjLZUscggLpfHyBnT67RYGOmD9klj3GD9I6xKF3Dgb765ZduVSOyKVZmEkZu2MDYA98DNn1NcHg9hO/ZivL0OLr6BrMwjnVqFVfnilglkgN7H7IcE031tcPLw2bBMwjc6EdN97VZJ2vWwMNoPoZOLxcBvHl8AV79gSMYGNmwf3SxWFucg2mS4uMBOiPC0fR9LoWgNf648qa3gL7p9b2lpCRwOx+pkUKvVkgkjDS6XSwK+AVO2iU6nY7wmOjoagYGB5DVbQXZ2NoqLizEwMEB+R1tVaERFRaG//yMPsk6nw40bN1gZJLRdgAZFUZiYmEBQUBDS09Ph5uaGgoICxsCpqqpCSkoK7OzsEBcXh46ODov7ZXV1Fc7OzoiOjib2v7Wor69nhI9zOBxkZGSgurqaUStP4+zZs7hz5w4Ak4qJnlTRmJqaQl5eHioq/j/23ju8rfM8/7+xwQlucIJ7T5EUh/ae1rY8kmavurIbx0maftusJvnVTprEbhrHmW2axols2VrUphapwU1xbxIEwQWQBAkSxAbO7w8IRzjEIMAhyc75XBcuicCLs973HJz3Ps9zP5XYunUrDhw4gIiICBw6dAhlZWVOj6ntD++GDRtgNpvJKDYGgwGFQoHr16+TVdIaGhqQnJyMd955B7t378bevXuxZ88e5OTkUJ78V1dXo7S0FCkpKejp6QGDwUBKSgr27t1LvoRCIcrLy7Fv3z5cv34d+/btw/79+7FmzRpyu5gOSgMTBIGzZ8/ipz/9KXbv3o3333+fYiRti0ajcRiRkJycjLCwMNy7dw9arRanTp2CUCjEzp073RKk2tracPXqVRw6dIgSUcZgMJCZmQkWi2U3Pkwmk90EjslkQqVSYW5uDv/yL/+CiooKTE9Po7S0FFu2bEF6ejqCgoIcioo6nQ5eXl7Ys2cP0tPT8cEHH0Aqda+aDUEQZAW24OBgtLW1wWAwICYmxqEgBVjSW21TtABLFENaWhqlKiGHw8GxY8fw/vvvU6JKrFg9dRYeh2effRZVVVUQi8W4cOECpqam8Oyzz9pdg2wjHW3354MPPqBUOszLy6NEnFi/SxAE/vjHP6KkpASFhYXgcrnQ6XTQaDSIjo52OpZu3bpFeiDl5OQ4vIZ1d3cjNfXR08jc3FzExcXh3LlzlDTfnp4elJWV4ZlnnqFU6HP2Q1VbW4uwsDBSxLBGUC48BnK5HFu3bkVnZ6fdMqwRlwuLHrDZbDzzzDNkZUDbSnGutovBYGDfvn1kCtfc3BzKy8tx9OhRu7b+/v5kJJUjKioqwOVy8cMf/hAGg8GuAtxCY1OrEf4zzzyDjIwMiEQi/O53v0NXVxc2bNhAXmO2bdtGCh9zc3MoKiqiHBsOh4OUlBTs3LkTe/bswZ49exAUFIT//d//JdPwLl++jEuXLqGzsxMEQYDL5WJkZASXLl3CCy+8QPGlslaeW0h/fz84HA4SExOxZcsWHDhwAEqlEmVlZaiqqnLa701NTRCJRJRIN2tUkUajwfj4OOLjH3nQLIzkssX6QAUA+VuzkIGBAbKypm1UrJWenh7U1tbi+eefB4fDIcVGWxZWGF2/fj2mpqbQ1fUocqC+vt4uTVUkEkEikQCw/I6eOnUKIpHIqSccjWdEpq5OZUM2l4fEwk1kNTd3b7Z9gkKgml688pNSNgK1UvFYBSkrXv6BCIyIwWh3i8PPp6TOS8yrFBMYaLiDsIQ0MorEFZND/QgRJbm1XQRBQNpWh/mZKSSu3QwO3wvhydkY67G/J3WFyWiAVqW0i0KxJTBCBL1aBbVS4bTNSkGYzZA0V0OvmUf+M5/E2iOfw3BH47KXa3tP5xMQjPj8DWBxuBA33sPsxJhHyxI33nWrCmCAMBpK+cii7ayYTUa3xQ7/kHDEZBW6rIipGBZDNtCJpKKtbguEXv5By+7n0e5m+ASFIqloC+amZBBlFyE2pxjRGQWYnRiFpKUGkpYayMVdblcpjEzNxWi3JUJeMzfjMNpwblKGgYY78PINQHz+eqf7zGAw4BssxNykzOU62RwuIlKyEZtTjNicYmTvOAKz2YTR7mZI2xtIfyl3CBYlYVLaT/5NEARUUzL4hXhmY8NgMBCbWwKVYhITkl7KZ5LWGoiyHT/Mc4fItDyMdDWRf8v6O8D3FbglxLA9qFZpi1I2ApPR4FK4DQiPwfzMlEfH2xWKYTFCYhLdbm+NUNSqlBjr9ez66gytahb8ZQi/q8VTK0pptVp861vfwosvvmjnd2FlcnISJpPJzhtKKBRifNxS7WJ8fBxcLtduUmnbxhE6nQ6zs7OUF2C54T5y5AhmZmZw48YNDA4OOqyKFB0dDalUCqPRiPfff5/iV2Nloahk9Q+xkpycjJKSErz33nvk03Qmk0lZn3Uya0t5eTmlKp+1Gt/CicLs7KydiWt0dDRmZmZw+fJluxtxNpuNrVu3kp5YAoEABEGgvr4eZWVlGB8fx4EDB7Br1y7KJMnHxwcZGRmoraWGP/f29pKperasWbMG09PT5ISkt7cXmzZtIid5mzZtAovFwsGDB+2i62yxpiKmpaVRJiO2REZGkn2Un5+PM2fOkEKJK8rKyrB//36EhIRAo9HghRdewKVLlzAxMWHX1tETeivp6eloaWnBkSNHEB8f73AsLcRgMODMmTNgMBg4dOiQ0witwsJCTE9Po6+vj3zPmpJpZXp6Gh9++CG4XC6OHj0Ko9GImJgYvPDCC6isrKSIq4shFApx/PhxjIyMoKysDEaj0W5yoNFocPPmTVy8eBGXL19GWFgY9u/fj8TERDx48AACgQBmsxnnzp1zOLFeGMFRW1uLkJAQyqTYCp/Px4EDB/DBBx+4PUlhMBgQCoX4h3/4BxgMBoceXoAlBXOhcHLu3Dns2rWLIuay2Wy7825ubg4mkwkHDx7EnTt3yPdtz9v8/Hwyas8KQRBQq9WkKXdiYiJMJhM5ibYyPDxM+vhYiY2NxebNm0lfvYsXL2J+fh5Hjx51K+W0tbUVLBaLMo4dCW62UaPr1q2jiA4qlQpVVVV2EYe2REVF4dixY5BKpSgrK7MT/pwRExODqqoqPPfcczhw4IDH/iOXLl2CSCRCdnY2mYLc1tZGqTo3ODhoN84IgsDNmzdRW1uL3//+93jxxReRn5/v0Oy8tbUV2dnZ5H46Et4AS0QYk8kkI7psRXQvLy9cvXoVzc3NiI6OdmgyHxUVhbEx6iRHo9GgubkZpaWlSE9PJ6+Hubm5OHDgAJKSknDhwgVcvnwZarXlqSyDwYBcLsfExASZCmiFzWbDaDTi8uXLDiOirNXxbKmsrERpaSn5OygUCsnfcFs6OjrI9TEYDDJiCrA8aFAoFBS/r5SUFPT19S16jm/cuBFyuRzd3d0ALAKprS8X8CiVWyKR4Pz58zh8+LDTKG0az/HET2cpCBPSERafhv6629DMTi/anslkkZXgnDE3JcPc1Dii3IggWS38QyPB8/F1aLhMEGa7inAEQWCotRYqxQQSCze5nS6p16jcajs/M4X+utsIi0+jpKFxeHyYDHoX37RH2lbnljdPVPoajHY3w2xyT0RYCiqFHAMNdxCRkkNGrHj5CRAiSsRwR8Mi3/acAGE04vPXQ69WYaDhDjRzM3ZtrGlJVka6miBMzHA7os0vKAxzU4vf05pNJo/TwTg8LyQVb8N4bxtmxh89jLQKlmbCDFF2kUe/xyw2e9Fz0hVjvW3w8gtAgDD64fn96P6LyWJBmJBOijx+wcKHaZo1GGqtdXnNYD0UPQiCwORQP4JjHs1dDFoNxI13oZmbRkLBRreEntDYZEwO9S7azhajXofNn/4aYnNLEJGSDbm4G5Lmagy11joVBq0wGAxLGuNDxvvaEO6GUO2MyIfFDawi0lhvK8ITM5eVUmjpezMIsxmTkl4wH0YpuUtQVBymhgcWb/gQzdwMlPIRtx42iLKLMNTiOIXXEwgnD+zcQZiYAZ+AEIgb7y5rOcDDKLnY5Vf/XGmeWPreu+++i6985Svk35cvXyYnMwaDAc899xwIgsA777zzRLbv9ddfx7/92785/Xzt2rUYHx9HXFwczp49i7GxMXC5XISHh0MoFCI/Px+nT5+GRqNx6m0TERFBTuq0Wi20Wq2dSBQcHIyjR4/i+9//PtRqNd58803K55s3b0ZlZSU5mZ2dnQWPx6NMihgMBp555hlcvHjRrmKVI0JDQ7Fr1y6cPHmSfI/JZCI4OBhhYWHw8/PDzZs3wWAwoNfrUVBQQKmAZMVgMJCCSXJyMm7duoXR0VHSuL6np8euCl1HRwd6enqg0Wjwu9/9Dps2bbKrjNXc3Izc3Fz4+fmBx+NRfLCstLS0kBNAwGJsrFAoEBQURGnX19eHiIgIBAUFQaPR4MiRI7h37x6qq6uxa9cuMk2TyWSS1Q7v3r2L7Oxs+Pv7IyAgANPT04iOjsbx48dx8eJFZGZmUlJiJiYmHBpHt7S0YGBgAIcPHyZ9r65du0Y+5c/JySGPlbe3N9RqNYaGhtDR0YH9+/c7nPgunJht2rQJV69ehbe3NyIjIzExMYG1a9eSKYkcDodSeW5mZgZpaWnkmKmrq8Pt27ftfNRcUVJSAo1Gg/Pnz8PLy4s0HQYsQlFJSYldFF5/fz+eeeYZnD9/HqmpqWRq17lz50jD9IU3Nm1tbWRUmDN8fX2xc+dOtyr8icViPHjwgPQM2rJlC65cuQIvLy9s27aNMvkXiUSora0lRYqrV6+iqKiIEk1iZWGflJeX4/Dhw2AwGKQptV6vh6+vL3mdiI6OthMQa2pq7FL6NmzYgNOnTyMsLIySUuzoJjAgIABxcXFYt24drly5gry8PIfHwSo4WM/d/v5+zMzMUFKUreuw3Tez2Yzp6WnS5D88PBw1NTUwmUykJ9HCipDBwcEOU4FLS0vJ1NSYmBjk5+dTjmd3dzcGBgbI/YyKisIrr7yChIQE3L59m6xIt1hKrdlsxgcffIAtW7bYpSQeOHAAJ0+exPHjx8Fms9HV1UVJJ25qaoJYLMaWLVsQGBiIS5cuYefOnbhw4YLDsTY4OEhefwsKCnD+/Hk78RCwPJw4duwYGAwGysrKKAJNXFwc4uLioNFo8Je//IWs6Ldt2za7fbWNFjp37hyZlh0dHY2rV69SzhurubfBYEBFRQU0Gg2GhoYwPT2NnTt3oqOjA3K5HFqtlvzO+fPnodPpsHfvXrt1r127FnV1deR4FYvF4HA4dvu7bds23LhxgxQqdTqd3W+lr68vkpOTUVRUhP/7v/+jRAFa2bBhA+7cuYNNmzY59ZwDLNfD27dvo6enB6mpqdBoNJDJZJDJZJiengaDwcA3v/lN/OAHP3BaGZDm6Ybn44ekoq0Y6XwA5vjwskp6z09PYnpUsqyn/ytFcHQCxvs6Fq0GNTclg1zcjeiM/BXx7lrISFcTGAyG09Qxrrcv6ZezGCrFBLz8Atz2n4lfsx6DD+4tWtXLoNN6lIZIEASGOxrBcZLi6BsUBqNej7HeNrcizjwlJDYZwaIkjPe1YbyvHdHpj9K+gmMSMSkdgDAhDTPjUnB4fIdpRq6WLX5wD37BroUS+RJNj62RM3JxF0a7W2DU69BfexvRmY98hzxlqWlFsoFO8Lx8KOm4fF9/aOZmHJrBe/kHkue22WzCpKQX8ofCL9/XH6FxKRSfutDYFExIekCYTaSAMtzRCIIwIzav1GNPu6CoeEukY4zzFE5bNMppBD+sjMnmcEmh3GwyQTbQAb16HmAwEBqbQjFLt8L18rH4hvG9oZufW1I1SVuCYxIwOzGKs6+/isJDn4ZPQDBmJ8fBYDDAYFp8lhkMJhhMBvl/2L5n24bBABgMRKRko/12GUJjkyF0ktLrDP/QCAw23XeZEmvFaNBbUmAXMd23wmAyEZaQhvG+Drf84Jwx3t8BYaKHxQds8A+NgJd/APrqbkOUXbTka7x1DD9tPLEtOnjwICWFw/rE0ipISSQS3Lx502mUFGDx9mCxWHaRLTKZjEzlCQ8Ph16vtzO4tW3jiP/3//4fXnvtNfLv2dlZ0owcsDz1v3XrFv785z+TExWrKXRfXx8mJyfx7LPP4oMPPsC9e/ecmkBbKS8vt/NPmp6eRlVVFcxmM9auXYupqSmcO3cOa9asIZ/e8vl8SqTUzZs3Kea+Vnx8fJCSkoLGxkbk5+djaGiIsj8EQeDu3btQKBQoKCjAX//6V4rZsclkgkKhgFwuR0tLC/71X/8V5eXlLkWu9vZ2ysRn69ateP/993HkyBG7qLG2tjb09/cjLS0Nhw8fxoULF/Dcc8/hwoULZLqHlaGhITKCZfPmzfjwww9Jk10rg4ODlOOwfv16O1HOZDKhqamJ/O6lS5eQkZGBDRs2wGg04tq1a+Byudi2bRtSU1PR3d0NBoMBPp9PihEBAQEQi8XkMvfv30+WWHfml9Lb20tWhDp8+DAAi9AWERFBmiabzWa0tLSQhto9PT24ePEiPvGJTzhMTXLF7t27cfbsWWzevBkEQaC1tRW9vb3YuXMnJe0UsIxz23Nu7dq1GB4exgcffIDDhw9TJp9yudypETuXy0VgYCD+7u/+DseOHcNbb73l1JTb9gbEKrJu2bKF9CiamJjA+fPn4ePjg61bLTfC1mpumzYtbgAbGBiIdevW4cKFC6Rvki1KpRI3b95EXFwceWzb29vJSCtr9bzQ0FBSHPPy8oJGYwnlraysRGJiotMqoeHh4aQY29XVhZSUFPJYbN26FZcvX4bBYCDHghWrp5BV4JTL5Q59pg4dOoRTp06Rgo+jVNOamhqMj4+jsLAQV65cwZo1a3D+/Hn4+vpiy5YtFN8tkUgEqVSK+Ph4jI2Noa+vz6nxuZ+fH+bm5uDn5+dQvNy5cyfKy8uhVCpx7NgxuzGQlpaG5uZmh+lRfD4fhw8fxsDAAA4dOkQZa6mpqdi7dy9FfDMajeDz+di5cyfUajUuXboEX19fbN1Krdxk9Zaw+vwdPHgQvr72P+wMBgNHjhwhTfOt70kkEjQ0NCAvL48Un6wpuhwOB6mpqZSoKMDye7NQ9HIkyDU2NlJSh62it63YKZFIIBKJMDMzg5KSEjAYDFy5coUsvMDhcFBYWEhWyCsvL8f27dvJPnb11JrD4WDHjh0YGRnBwYMH8bnPfQ5JSUkQCoWIj4+niD2BgYGIj49HZWUltFotNm/eTP7GBgcHo6amBsAjo/eFHl+ARXAymUykkLTQY0+v1+PmzZswGo347Gc/i76+PvT19UEkEiErK4vcl9DQUFRVVcFgMDj1UCQIAh0dHVCr1Th48CD+67/+C9nZ2RAKhUhJSUFAQAAYDAbefPNNcLlc8uEHzUeTqPQ1UCkm0Fd7C6LsYqcGzs7OB83cDCYkPYjLW+fw8ydBeFIGhjsawOF5wTcoFAadlvRfIcxmSNvrwfPxWxFj9IVoVUoMdzQiMjXP4YSX3MbEDAy11Tn1wLJFPtDpdtl4wBKtEhqfirFFKlcpRsQIjraPnnaEZnYaI93NiE7Pd2kAHxAeDaNe67G3lbswGAxEJGfDbDZhpOMBzGYTojMK4OUnwMRgN3RqFWbGhx0aQS8Gz9vPkq7jYv90864/X4yw+DQM1Ffi2js/wBffubgsD66lIB/stvj/LOj3sPg0DLXWLupzxGSyKKKcZk6JkY5GmM3mh1XxkuATGIIJSS+YLBYmJL2YmxxHdEb+ks2iBcIoiBvvIig63s3qmWaHkUhMFos0nSfMZkxIejAxaIkIDoqKJyO3whLSMdrVBAaTgcjUPDfWR0CrmoVKIYd2bsaxhcLD42bU6y1ZAYTJ8q/Z/NDywOZfMwFY/zabH332sK3VML39VhmKj30esxNj8A91XUhmIRy+N/SaeZd9QpjNEDfc8bgqo1+wEDPjw9CqlEsWXPVq1ZK/a4XDs/hMDbXUQCCMRkC44+qcrnga/aSAJyhK+fn52U2IrYJUb28vbt26RT5xdwaXy0VBQQFu3LhBTujMZjNu3LiBl19+GYDliTSHw8GNGzfIm+Lu7m4MDQ05NdQFYBdtZMvg4CCam5vx/PPP48aNG2QEDZ/PR2xsLKKjo3Hy5ElUVlYiPT0d3t7epG8Qj8cjDZmtTE5OQiAQgMPhQK1W4+7du9Dr9QgMDMTu3bvBYrHQ29sLJpOJxMRENDY24sGDB8jKykJiYiJprO7v74+IiAink//U1FRcv34dcrkcbW1t2Lt3L4xGI27fvg21Wo3169eTx7ytrY3yXRaLhdDQUEgkEmRnZ+Py5cvIyMjA+++/j507dzqMEBkfH7eLxjh06BDOnTuHjIwMMnVtYGAAmZmZpPikVqvB5/PBYrEQEhJCGkUDlqgj23Fh9XWpq6vD2rWWEPD+/n7Sk8QKk8kEi8WimEBfvnzZaWVCNpuNffv2QalU4ty5cxCJRGhvb4dQKKRM0K2RLrZs2bIFdXV1FKNxAGTFssTExEWjdphMJvLy8pCXl0d6qExOTmJyctKjcrlWDh06hC996UuYnJzEj3/8Y6fCFkEQduMnOjoaBw4cwIcffoitW7eSk+vW1lY7MWF6ehr37t0Dg8HApk2b8N///d8oKSnByZMnceTIEYcRDC0tLeTkTyAQQKlUUvYxNDQUhw4dwtzcHC5duoSvf/3r+I//+A87sdIVQqEQeXl5uHbtGjZu3Ag+nw+j0Yjy8nJwuVwycskRAoEAhw8fxvj4OM6cOYOEhARyXNfV1SEwMNBhGqqV3NxclJeXIyIiAu3t7XaT85/97Gf4xCc+4fB758+fR1xcHClmOYLFYmH79u24du0aJTWOIAjcv38fExMTKCkpIQWt9vZ2hIWFUY4pm83Gtm3bwOPxSLPywMBA1NTU2IlltpSUlOD27dvYvn07VCoVJdLTaDSisbERX/7yl/Hzn//coU+YM3NpK5OTk2hpacGzzz4Lk8kELy8vp1F7U1NTpMDj7e2NgwcPYmZmBufOnSMFxdjYWEgkEgQFBeHixYsO06pt4fP52LRpEymsnTlzBjExMXbnj60/X0ZGBs6ePYvU1FQy6qe2ttZOEF23bh3KyspI8dxacc/2eK9fvx6XLl2ifLexsRFHjhyBwWDA9evXsXfvXjzzzDPQaDS4du0amEwmtm/fjrq6OnR0dCAkJMStKp6AZcxcv34dXl5euHz5MgoLC3Hjxg3k5+fbFQyYmZlBSEgIdu/eDbPZjMrKSlIos33gc+7cOZdC+s6dO3Hp0iUcPHgQOp0OPB4PWq0WN27cAIPBwLZt28Dn83H16lXy2iuRSMiUvoyMDCQkJGDXrl0oLy8Hg8EgxyFBEGhpaSFTJTMzM8m0cB6Ph+joaCQm2ns7bNu2Da2trbh+/TrFj5Lmo4VvUCgSCzdjqLUW3gHBDsUERzfnOrUKY90tHgkmj4vojAKIH9wDh8eHYmQQIaJkzE6OY2KwBzGZhS6rp7lCq5p1Gt001tsGo16HxLVbFr33YDCZlDQhZ8gGOhGW4Hlkjl+wEOqZKSjloxCEOX4QpJufc2viN9rdAoIwux0tESJKskSrjUrcMse34sn9GpPJQkxWIYwGPaRtdeDw+CDMZgy11CCpeNviC3BAREo2JM1VqyawTo9KMDMuRVhiBvb+448gbatHQHi0R8doOUwOWSwqHPmhLTWdzMtPQKaVEmYzJof6MCHpRc/9axhqq8Nz//ZbhK5ARbbw5CyM97W5XclwMRhMJimuEQQBxYgYkuZqAIB/WCSMeh2YLBa4Xt4waDVQKeSYn5l0mhbL9xPANzAMITGJDo8lQRAwGw0IjBRhfmZqRfajlCAgyi7C1PAABpuqwPPxQ3hSplvnUURKNqStdS5FSHHjXcStWedxZBsARGfko7/u9qJFBhxhqW65MtXurBGKsoGuRUX6hcxOjHos9j0unprYLYPBgGeffRaNjY24cOECTCYT6fkUFBRE3txv374dR44cIUWn1157DZ/5zGdQWFiIoqIivPXWW5ifnyer8QkEAnzhC1/Aa6+9hqCgIPj7++OVV15BaWmpx5X3AEvlKCaTSU6IrVEF1mgGk8mE9957D8eOHYNGoyGraFnLjmu1Wty/fx8ajQYcDgd8Ph/vv/8+0tPTcfHiRXh5eWHz5s12gphOpyOfQufn5yM/Px+tra04d+4c6alhNBoXFTt27NiB9957DywWizSQ3bp1q12KnCNu3rwJoVBIRltERETg+PHjKC8vh4+Pj9OqVrbweDwUFxejtLQUv/zlLynRQlbu3LlDRsSsW7eOknpVXV1tN7mLi4tDc3Mz9Ho9uFwu2tvbHUaLbdmyBbdv38bOnTvR29uLyMhIijjI4XDIZVgRCAQ4cuQILl26hM985jN2xs7OLpJr165FZ2cnbt68CYVCgbNnzyIyMtLpBN/RcoxGIy5evAiRSIQTJ05gcHAQSUlJOHPmDEQikcOUSUfLmZ+fx40bN7Bnzx50dXWhq6sLERERLqMQF8Lj8fD888+jvLwcYWFhyM3NhV6vJ8dpV1cXenp6EBgYiH379lGELYFAgOeffx6nT5/G+vXr7SKKpFIpJSLBaqK8MF3Mz88P4eHhePbZZzE/P4/z58+jsLDQaYTSQqKjo6HX6/Hf//3fEAqFZLqVI6HM0XEMDw/H0aNHMTAwgNOnT+P3v/89vvOd71AiYhzBYrFI76Ft27bBaDSiuroaSqUSLBYL//RP/4SoqCgyxTE+Pp70bvL394dSqURPT4/DMW0lNDQU4eHhuH//Pvz8/FBZWYnp6WmsW7fO5Xnp5+eHAwcOQKfTkREpmzdvhlKpxJUrV/D888+73DculwuDwUDum8lkQnV1NWZmZsBisVBSUoLf/va3KC0txYULFxAQEICNGzcuenOhUqlw48YNBAUF4dChQ+jr6wOTyYSvry/ef/99h+l2crnc7r2AgABSUDx79iyio6NRV1cHX19fvPDCC27d5ISFheFPf/oT7t69i56eHoci1vz8POUaun//fjKNz5qStnBdDAYDPj4+ZKTZlStX7PyZrOeR9cFHa2srGYHJ4XAohTK8vLywf/9+aLVaXL9+HT/+8Y/xpS99CZ/+9Kftttcq/NhG746NjeHOnTvYsWMHgoKCcOXKFYSEhODQoUN47733cOjQIco+2grYTCYTW7ZsAUEQqK2tRU1NDQwGA9577z1s3LjRZRolm82GQCBAZWUlYmNjUVZWBi6Xi127djkVDK1RlIAl5dsqUE1PT4PNZqO+vp6MoM7NzXUY8bR161bcvHkTACjClLWfsrOzERoailOnTi36u0rz9MJgMhGbW4KZ8WEM1FciNq/ULl3M9iGIQauBtL0eiYWuK9U9SeLy1qG/9jaYLBbGelvB9xUsOzpqanjALl1Gr1FjqK0W4YkZi1a/ssUvNOLhxMfxb7PJaIBaqYAwYWlpLMLEDIgb78JbEAQOz3kGgjN0ahWk7fWISM6GT4Djh996zTw4fHuBLzwpAyOdD8Dm8j02ifYENoeLuLxSqKYn8edvvIA9r/zAEinD8HwibalsxrWrbGZFKRuBvxOBzxUqxQQmBrsRECEiK8lNj4gRm1uCKekABpvuQ5RTvKTJv7sohsUwGfQuU728/AOgVk67jPBzBYPJRGhcCqbHhpC6YQ+EiZmYkorB4vCcjh938fILgKy/A2aTyc4bbrkwGAwERyeQ6WzTY0O4+vb3sOVz38RQa+3DiMswRKTkLjmVa3pkEIGRsfAPjYBePY+pYeeFFzzFuu1alRJDLTUAg4HIlByXpvlMJsuuArEt0vYGCJMyweEtrTIng8FAVPoajHQ+QFS6fUS2K8b72pdUHdAVwoQ0i8F+fSXi8te7da7NjA+75eP3JHhqRClr5TYAdtE11opTgCUKxraS3PPPP4+JiQl897vfJSNzrly5QjE/f/PNN8FkMnHs2DHodDrs3r0bv/rVr5a0nd7e3pTokLi4ONy/fx9xcXEwmUw4efIkjh07Bj6fDz6fj5mZGcr3+Xw+aWYulUrx0ksv4eLFi7h06RL27NnjsHw9APIJsi3Z2dnIzs5GR0cHDh48iG9+85t2Xj2OmJ6exksvvYTr16/bpe44giAInDt3DoWFhaQnSGhoKCYmJhAWFoZdu3ZheHgY77//Pnbt2uW0WuLY2Bhp3rx7926YTCaHgoLBYCCFIQaDgaSkJPT29iI+Ph4sFsvhhWbv3r24fPkyiouL7YzvrXh7e0Oj0cBkMqGlpcUuYmXt2rWor6/HunWPnibJ5XLcvXsXmZmZuHLlCgYGBtDU1ITdu3eTEzJnE1uj0YhTp07h17/+Na5du+Y0nQ+wf1rb3d2NtrY27Nu3D15eXlAoFDCZTAgICMDRo0chkUjw4YcfIi8vz+GTfsByHMvLy8FisbB//36wWCxcuXIFu3btwq1btzA/P49t27ZRUpcWC+ncuXMnWltbcfXqVTI6QqlUIiUlxaVowmKxcPz4cdy4cQNTU1OkkONofUFBQVAoFJQfFZPJhPPnzyMnJwf/+q//ioaGBmzcuBH19fVoaGhAdHS0w5Qd63FobW0lJ6kvv/wyvvWtb2Hr1q0wGAwORSlnx2F6ehrd3d3gcrm4fPkyTpw4gStXrjjdbw6Hg7CwMDQ3N0OlUkGr1ZJijfU8efDgAYRCIXJyLJWpxGIxOcmOj4/HqVOnKGPHbDZDqVRienoa09PTmJmZIcWJPXv24MiRI/jNb37jdnQMYBEp9u7dC5PJhDfffBPf/OY3cfHiRVy7ds2u4hyfz4e3tzd8fHzg4+OD4eFhdHZ2QqfTgclkoqSkxM67TSAQ4ODBg1AoFDh//jyCg4Oxfv16u3NHp9OhvLwcPB4PBw4cIM8xDocDrVYLoVCI5557DhUVFWhtbcW2bdvIZcjlcod+Q4AlUi4xMRG3bt3Cq6++ivLycoqoamVhdcqenh60tbXhO9/5DhQKBS5fvozQ0FCXUbbW7U1NTUVbWxuGh4dJkX0hW7ZsweXLl5GTk4OwsDCH0bkbN27EnTt3sHnzZvT19VEEkpSUFLtqi3w+n0xZ1ev1uHDhAkJDQ1FU9MhwNjc3F83NzSguLiYFUw6Hg+eee85u/Xw+Hy+88ALOnDmD9evXu0x7ZzAYKC4uxsDAAH73u9/hjTfewJUrV8iCHrbVH20hCAJ79+7FX//6Vxw/ftzhb5KzczIjIwMZGRkYGBjA22+/jZ///Oc4e/YsDh486PDabHtd2bZtm0Nhykp4eDgOHjyIDz74gGJ6T/PRIyA8Gn4hQkiaqxEYGUv6Mnn5BUCrmoWXnwBGgx6DzVVIciMiaDUhCAJ6zTx087PQzs9BN68i016scPheuPyLb2Pn338HBjYb8zNTy5ogmwx6sG18mOSD3dDMziCxYJPH0SZBkbGQNFc7FaWkbfUQLXNSFJe3Dv11FUgs8qyvZAOd0KtVSCzc7PJ7sxNjTiOxotLXQNJcDTaXCy9/10KHyaAHk7W0qdZ4Xwd06jns/9rrCEtIh7S1DoAlGsTTiIvItDwMdzQ4TKucGZdC5Ea6pRWdWoXRriZ4B4SQYtRCgmMS4B8WCXHjPYTGpcA/xPnvxlKZHpVAp1EtGp0TGpeKoZaaRVP4XDHW2wYmi43YnGIwGAyIsosg6++AfKATkWl5y/Jvi0rPx3BHw6p616mV05iS9uOLv74EaWvdiq1rbkpGHteQ2GSMdDVhbkq2qIeZMxz9zvN9BYjNLYHZZMJYTwsMOi0CI2Odnp/ChDTIBzrthErZQBd8g0JXREhksthQTU+6rBq6EMJsXhWB1i9ECL6fAP21D32m3PDze1y/b5o5Jaak/Ysa8Vt5akSpuLg4t3IcBwcH7d57+eWXycgpR/D5fLz99tt4++23l7OJACzCiq3vDo/Hg16vJwWpo0ePuvSOAix+OK2trRAKhfjKV76Cl156Cfn5+aTJ9UKjbAB2ETyApUrT/fv3wWAw8Oc//xl8Pt+p94stp0+fRllZGQoLC3Ht2jWYTCZkZWXZrdO63g8//BD79++nRNbEx8ejt7eXjEywGn1fu3YN/v7+yMnJIUWgO3fuQK/XIyIiAvv37weDwQCHw8H27dtx+fJlxMTEkEJkX1+f3eQgOzsbZ8+exfDwsFMPIS6Xi6ioKLz33nv4x3/8R5jNZoevpKQkvPbaa3jjjTfslhEQEECKiDqdDteuXUNgYCCOHDkCBoOBwcFBrF+/HvPz8zh79izS09ORnk590jc5OYnq6moQBIHs7Gzs2bMHe/fuxcaNG1FVVQW1Wg0Oh4PS0lK79FXAImRZK4HZimYLy6xbIwWamppw+vRpbN68GcHBweQTgps3b0KtVmPnzp1249Ga3mMymXDz5k1otVps377dpaBJEARGRkbQ3d0Ng8GAkZERfPGLX8TJkyexd+9et6Outm/fjqamJty6dQtbt25FfX29w4iv0tJSVFdXo7S0lIzgOHDgACkgqdVqMBgMMmXTWq1Nq9ViZGSEnEASBEGWjc/Pz4dGo8GlS5dgNBqxbds2VFVVYW5uDiwWC6WlpXaFBqzrunfvHvR6PQQCAXbt2oXGxkYMDg6io6PDzgvOFr1ej4mJCfzgBz/A17/+dSQlJdkJJzwej+ILFx8fT3qWnT9/Hl/60pdw8uRJcp+s6UmBgYEQiUTIyckhI0ree+89GI1G1NXVwWw2Iy0tzWVqoRWrYMxgMFBQUIDf//73KCoqsjMgJwgCWq0W8/PzmJ+fh1qtxvnz56HVavHFL37RpfAKgIx8mpiYwLlz50iBw2Qy4caNGzAajdi1a5fdtY7D4WBubo78e/PmzZicnMQHH3xARt/ZitnWbW1sbCQjbrOzs5GVlYWrV68iJSUFFRUV0Ov1iIyMJH2crBVJtVotLl++jISEBBw9ehQzMzOYnp7GwYMHMTo6itOnTyM3NxeJiYkYHx93KIRnZGTgzJkzpMBqFe0sxp4MMqWYzWajsrISf/d3f+fwmAkEAszOzqKqqooimAOWlOyysjJyTCmVSly9ehUlJSX4zne+g6amJmzYsAFyuZwUOq3X+unpachkMlRUVGDbtm12fW2L9aHOtWvXoFQqHYp/Wq0WlZWV0Ov1iI+Px+bNm7F9+3asWbNm0VT8trY2vPnmm4iMjCSvf+74OdmuMy4uDps2bcLWrVuRl5eHsrIy+Pv7Y9OmTRShcaGfpNVsncFgIDo6mhKdZTab0dzcTHqm0Xy0YbE5SCjYiMmhPgw2VVkqcIWEQykfBdfLGwMNd5BUtGVZFaRsIcxm6DXzD4WlWejmVSAe+qZYJwULRf+H/wPXyxs8H3/4BYcjRORrN5mRNFdj10vfRULhJpiMRkyPDmLKpuQ7g8FEQEQMfIPCPJqAGPU6SFpqEBKTiLA4xyK/uziKVpifngTfV+CREbkjGEwmojLyMdxeT3nqbzIawXAw8TPotBhqqUFofKpbEVpqpQLBLsq2x+aWoL++ctGUSUuETpDTzx2hmZvBSFcTwhMzEZ6UAcXIIAxatWVibjZhrKcVBq0aQdEJbos9LDYbIAiYzSaHE2N3xojJoMdwRyPYPD7i1tg/VLLef1rh8PhILNwE2UAnlOPDiM4scGs91iIqrtrOyIahnp12qyrmcibgBEFA0lyFwMg4OxFEmJgBwmzGSFcTjHodojMLKMKuu3B4fDAYTBh0miVH8LhiUtIL7fwsmXLmExjssaDiCEdz9qi0PIgb74Hr5bMkoc6g1TiMUAQs3lnW6CTFyODD1D5fhCdlUfrYyz8QsoFOynct1SEJl0UiPCEiJRt9dbcXFbetTA0PeFRJ0FM4PD6SirdhqLUW/qERTvfTbDatmiCl16gxJe2HQach3+P5+CM8OQtmo3uVtJ8aUeqjQkFBAZqamjA3Nwcul4v169eTKXtHjx51WvUHsNx4DwwMID4+HocOHSLNtHfu3ImrV6+SaWmtra24cOECeDwe6X9jGynV1tYGsVhMpkoRBIGrV68iMTHRzmB3Ie3t7cjIyACDwYBMJiPTRWzXab2JVygUuHbtGp599lm7NIrAwEBMT1PLpzIYDOzevRuDg4Pw9fXFH/7wB+j1ert0ROuFjM1m48CBA+jp6cEHH3yA/fv3o7Ozk2JGThAEpqamQBAEtm3bhsuXL1PWZ7u8sbExvPrqq0hLSwOTyXT4Gh4exm9/+1s7k2QOh4OkpCSYzWbcvn0b8/Pz2LNnj8P0ER8fHxw9ehTt7e04c+YM6culUqkQHBxMpq9ZBTZvb2/09vaS0RJ6vR5VVVVQqVSkGAJYoqPa29uxb98+OyHJUYl1wBJVmJubS0YsXb58GVqtFlu2bHEYsWb7I8JisbBz504YjUbcuHEDBoMBRqMRMpkMnZ2dlEpbgEV43LhxI7hcLi5duoS7d++SFSRnZ2fBYrGwbt06h8LOwm0eHh7Ghx9+CA6HQwpLtoSFhaG6uho1NTVQq9UOIzhsiYmJQUxMDN577z0MDAzgq1/9qsML740bN7B7925UVFTAYDCQIufClDq5XE72qbe3NzZt2kQZw+Pj41i7di1aW1spleoWwuVy0dvbi76+PjQ1NcFoNOL06dPYtGkTKQIsLFYAPDL+T09PR1lZGdRq9aKCc1VVFTZs2ICGhgbs2bMHTCYTnZ2dKCsrA5vNxoYNGyhCqE6nw507d6DVaimC8fnz5/H5z38e586ds0s3tZq8e3l5ISQkBHV1dXjrrbfQ19cHNptN+o4tjJRaSGhoKA4fPoyGhgbs3bsXW7duxTvvvOM00onD4cBgoP6ohYSE4Pjx47h79y7a29sBWESE2tpaKBQKAMCaNWsoFQybmppw4MABnD9/nkzBHh4eJgWb4OBg9Pf3Qy6X48CBA2S/8vl88nyIjIzE0aNHSUHYYDBg7969aGxshEwmo4y769evo7a2FomJieQNu5k0ALW8Ll68iPLycoeRbdbztaenB5///OdRX19vN97YbDYMBgPq6uowNzeH48ePk9swPz8PwHI+2f6+WL2szpw54/DccvaAaNeuXaiurkZdXR35XmtrKwYHB8Hn8ynXerFYjN27d+PMmTMuPaXMZjN6enrwpS99CXV1dThw4AAkEgnKysrIZS5Mf2xpacHQ0BBlnTKZDLOzs8jKysKDBw9IT7GLFy+Cx+Nh69at4HA46Ovrs4vG3r59O27cuIGenh6kpKSgqakJIyMjpGdhUVEROjo6cO/ePaf7QfPRIUSUBEFYFPobKhGemAHt3AwG6iuRWLjZ4YTdbDZBr56Hdn4Wuvk5S5UrWM4RR6KSbUQg19sXfB9/+IdGghvrsyJPymdkw/AOCIZ2bgbmh1WUFvrpmE0mzIwNQdpWR3nfEjEWYVf8AQCmpAOYnRxDvJtpIK4IjUvBxKB9RTdZf8eKeXV5+QngLQimpAzNjNtXJ5yU9mNeMYH4gg0e7ddik7eEgo3oq72FhPwNTkW2+ZkpBEa6NxEmCAIjnY1gMFmUya5fiBCTkj74BoWByWSRQsyktB+DTVXwDghCaGzKotsbmZqLse4WStqROz43hNmM4c4HMBsNiM4scFot0WwyOvxMmJAO3fwc+usrEJmSu2gaHc/X/6HxuuN7ydmJMaim5IjOyHf4uSN8AjwXYowGPcQNdyDKKXYqsDCYTERn5MNkNGK4o8HSPxlrPD5/ojIs0XfxaxzbLVjEBM/EcoIgMNRaC79gIaIzHt0HhcWnQdx4b9mi1JS036FwG7dmneW8KNjkcVqgVuW4UuJCgqLiEBQVB61q1pLaByAiJYcUiL38g8joUbVSgblJ2Yqnzomy1lpM9N2IMlRNyZcVqecODAYDsTnFkA92Y6SryaFgOznU59B7zVOMBr0lAmr+0cNiDt8LIaIkh+mVelqUWh3YbDY5kbVO6vbv34/Tp0+joqICgEWwiYqKIp+e19TUQCaTITMzk5LidPfuXWzYsAEcDgdeXl5QKpUQCARkWp5Wq8WdO3eg0+nQ3NwMo9EIjUaDzMxMinBz7949lJaWIjAwEB9++CEyMjKcpj90dXWREThlZWWkebJ1nRqNBhUVFfjRj34EPp+PP/zhDw4n3At//KyTwampKTCZTPzhD38gS5UvNM5WKBSUJ+cpKSlITEzEX//6V/z7v/87uFwu5aYuKCgIer0ev/71r7Fz506n6YYffvghJBIJZDKZQ6EDsESJDQ4Oore3l5KGqdPp0N/fj2984xv46U9/6rBK20IyMzPh7++P7OxsDA8P21XwsqZVApZjbRULuVwuWWHKKobs3bsX3//+90nPoYU4EqWs1aQGBwfBYDBQVVWFP/zhDzh48CCqqqoQEBCAgoICSvSIoydQMzOWqhomk4n0z9qyZYtTgdVoNMJsNmP9+vU4ffo0OeE0GAyorq7G7OwsmEwmJcXJYDBgcHAQg4OD5H5YfeQuXrzosE8//PBDCAQC/Od//qeTHqAyMjKC6Oho7N2712FqlkajAZvNBofDwebNm0mTaACkaGPdv9jYWNy4cQNpafZGrFKplExjtab/2BqM2zI0NAQ2m43IyEg0NTUhMzMTGRkZuHv3LmZmZrBr1y7weDxSRLEa/2dlZeHQoUNkBTAej0dGlznCbDZjfHwcpaWl4PP5uH//PjZs2EBG8xmNRty9excqlQo/+9nPYDAYwOPxsGHDBko/W6vEMRgMCIVCjI+PO03XsooAa9euRV9fH9LS0pCamoqKigpotVqH56rJZEJDQwMmJiYAWKqunjp1CiaTCTqdjvTVYrPZKCgoIK8TXC4Xer3ebhusUUhTU1N48cUXce7cOaxbt85h1I9tZbvQ0FDSgyo6OhrR0dEgCAJf+tKXEBcXh29/+9uU71o9mGzJy8tDQkICQkNDUV5ejtTUVErlPJ1OB6PRiE984hNITEx0eBxNJhO0Wi1efPFFxMfHk9U3F2I2m/HDH/4QarUat2/fhtFoJM9ltVqNhIQE3L9/n1JR1RnZ2dlQq9V488034evrS55/timlCoXCqbCYmZmJDz/8EJ/73OdQVlZm93sEWASpuLg4MBgMhymGtly9ehW7du2Cj48PKaJZI0E1Gg1u3boFvV6P7u5uGI1GMgp14TW6qqoKhw4dIiPeAEv064EDB6DRaFBeXg6z2QydTgcfHx8oFAqMjo5ifHycvObu3bsXP//5z3H8+HE74Yrm4wWH74XEgk1ov3Ued//yS+x++d8w2vUAgAOhicEEz9sHPB9/BAijwfXyWbFoKk8xm0yYkg4gsXATlPJRzMpHERBuf94zWSwERcdTqpERZjOU8hE7oUqvVWNmTIqEQqHTSbGneAuCMDHYQ3lPLu5C6DKjrxYSHJOAodZa+AQEg+8rwPz0JIKiLPtsMhow1FKDwMjYVZkQMhgMJBZuRn/dbSQWbXEoROg17pkbW83qo9PX2KXfcHheMOq1dt8JiUlESEwi5qcnIWmuAovDQ2Sqc38gDt8Leq2acg9oST9z7o0j6++AWjmNqPS8RffDqNeBxXFcIIrn44ektVsw0tUEpWzYpTGztyAY8zNTDkUplUIOpcxzT5xgURKGWmrcFmLUymmM9jQjce0WO68nDs/rYUTPo3snFtuS2mfQaiBprgb/YYSIu1EpTCYLXn7Ova/Uyml4B7gfcWfQaTHYdB8xmYUOqyoKhFGYGR9eUuU2K/PTk47N5RkMJORvICvceRKZo5mdcXg9cwbf139BBKEGgREihMWnQtJcDW56HsZ721alaAXXywde/gFQykYgEEY5bWdJ4V09X7WFhMWlQqWQo7++0u4Bg3ZO6XEErDUSV61UkO+x2BwExyQsu5LgQmhRahmw2WzI5XJUVFQgJSUF4eHhIAgCMzMzGBkZQVdXF1588UVKhSVb5ubmyLSnrVu34vz585TIBGt5cwD43e9+h9zcXLubfwCUkuF79uzB1atXHVaVq6yspJTbZjKZpIGuFS8vL2zcuBGvvPIKjEYjlEolGYVghcfjIT09HWazGdXV1VAoFGQqVUlJCfR6PW7fvo1169bh9OnTePbZZynfHxoagki04EnW5CS8vb3xk5/8xC4iRCaTQaVS4cCBA073zZoGJhKJ0NjYiIKCAjsxrLGxEfn5+RAKhaitraVU4uPxeEhLS8N//Md/IDIy0q1y4FNTU2hsbERlZSUmJycpolRvby8lDTEsLIxSRdAKm80Gn89HS0sLxGIx8vLy8ODBA0pFssjISCQlJcFoNKKlpQUjIyPkTUV6ejr2799Ptv+Hf/gHDA8Po7S0FAqFApWVlTAYDCAIAkFBQYiKioJYLCZTdwBLdMjOnTshFovR0dGB7u5uzM/POxWlrKbWgMV0v6GhgaxyaTUnt4ogzzzzDM6dO0dWptyyZQt5zMvLyzE1NYVr167h+eefdyh0rl27Fu+//z6effZZO4HD9sbKWmnu+PHjpGn3QtNoq9k78Mgk2lGIeHl5Obq6unD58mWkpqbafW6NwgAsPmVarRZms9luvFkFR2skire3N2mIvXHjRuj1epSXl0OtVmN2dpYUo2yvAcPDw+Q47O3thVQqdSg83Lp1i+wTqyeXLWw2G1u2bIFUKsXu3bsRHx+PzMxMu+XU1NSQ15iSkhKH0VKApW9u3bqFF154AYBFiLcKGVu2bCGN6IODg2E2m3Ht2jUYDAYwmUwUFBSgqMjiZ2AdS1qtFgMDA+S5bTAY0NjYiJqaGvJv22uNlaCgIKxZswYxMTGorq6GWCx2mio2PDyM/HzLk9XS0lJKtBRguZE6dOgQ0tPTUVFRQblWWgUgW/R6PS5evIjR0VF0dnbandvXrl3D7t27weVyKeKtLeXl5di5cye8vb3x4Ycf2vncAZaKoz4+PvjkJz+Je/fu2Y3r1tZW/OY3v8Hg4KBbolR7ezsYDAZeeuklVFZWYv/+/TAajaipqYFSqQSTyQSbzUZKSorD6C9fX1/Ex8fjww8/REREBJlqunAdVtEoKysLp0+fdihKyeVyeHl5kddOPz8/Snq8l5cXdu/eDYVCge9///s4e/asw320RiBbtzM6Oppyrnh5eWHfvn0wGAwQCoVQKBTIyclBVFQUUlNTyWvS+fPn4e3tbRe5SPPxYX5mClPSfvLaH/fQE4fn7YvI1MVTRp80kpZqUmDxDwmHtL3e7Ukcg8lEQHgMpT1hNuPSf/4LwuLToZqSQTVluS9gcbgIioxd1DPJFUwWGyajASw2ByajEfPTU3aRUytBTNZa9NfeRuJayzWbwWBgemwIM2NSiHJKlmzi7A5MFgvx+RsskXZOvMhcTcrNJhOkbXXg+wUs2azeJzAEPoEhMOi0GO5oAAgC4clZDqN7hAkZkPV3Ijwpg1y/o+OjGBZDKR9BWEK6SxNxWyy+ZM6r2QKW9K756Un01d6CKLvIodDl7R+I6VEJghfoJfPTk5iSDixJYPREGFGMDGJ+etJpVcagqDgoRsQOjwuH74X4NeuhmZvB4IN78AsWIsRB1U9HhCdlQtx416FPl2pK7nbE3ezEKKakYos3nhPxPCgqDuLGu0sWpRaz22FxuIjOLPDYy0unVoG7hLQ/2whCxagEkuZqjHQ9gFqpQPrGva6/vAzC4lLRX18Jv5Bwp8LTaE8rIlJyVm0bHOEbFAa+XwD66yoQk1lAikeL9Zv1wcXsxBj5HoPJQlBk7IpEWC3Gk3nU8zHAaDSSHlJWw2XAcuELDAxEVlYW9Ho9+vv7MTExQT4BtrJwcslkMiEUCjE2NoaFXL9+Hb///e8hFArR3d1N+UytVlPEAx8fH/j6+pKCgxWdTofZ2VlKBMG6detQVVVFaUcQBM6ePYujR4+iqKgIer0ee/bsobxKSkrQ3t6OF198EXw+H/v27cPevXvJZVsjwHx9fbFx40ZKyh1gmYjYpqoMDQ2hvr4eR48etUvTIQgCt2/fxtatW+Ht7Q1vb2+K0b21L4aHh8lqTLbmtVbMZjMkEgnpm7Vr1y5cvXqV0ubOnTvYuHEj8vPzMTc3h97eXjhjdnYWN2/exMGDB5GTk0Ma+Vrp6OigTPqLiopQW1trt5zBwUFoNBpkZ2cjJCQEKpUKGzduxN69e8lXaGgofvKTn+ArX/kKgoKCsHfvXvKYW/fnypUr2LNnD2JiYqBUKqFUKhEUFIQdO3aQ7ZOTk3H+/Hns2LEDUVFR2LdvH/bt24fi4mKwWCx0dXUhPT0dhw8fRkVFhV16pvU4arVa0n8qLi4OQ0NDFL8rwCKCKBQKTE5OYm5uDlu3bkViYiIlHVKr1ZL7c+bMGYfHOSQkBAcPHsTJkyehVqvJ9yMiIijnim3pdh6PB5PJRIksm5+fB4fDoUT9OeoTiUSCoKAg+Pn5YceOHXbjaOH5BgCbNm1CZWWl3bYvFKNLSkpIkQWwRP/s378f09PTuHz5Mg4ePEgRMs1mM+VGav369aiqqrI71gaDAWq1mpI2mZycbDd+rcLOP//zP0MsFlM8mmz3zbpOBoOBqKgoDA8PO9w3W4G8oKCALGIAWK5DR44cQVlZGf74xz9i69at2L9/P/bu3Uv60Gk0GnIMREZGQqVSkREuHA4HxcXF5BidnZ2FWq3G9u3bKedGcXExfH190djYiOLiYuzcudPuegNYBClrdJt138LCwiCXy8n3rNfkpKQkhISEoLq62m45VsxmMz744AMcP34cwcHBdiKgXC5HQEAAGaWYlZVld41QqVRgMpnkuVRQUED+jthSWVmJTZs2wd/fH0FBQZBIJJTPJRIJ9u3bh4iICJSXlzvdZsByrR0fH0dRURHFy4zNZmP9+vXYt28fduzYgX/8x3/En/70JzLycOH1X6FQ4OjRo1CpVBgaGqKsw5HQW1paivv37zvcN1vxb926dXYpcmazGVevXkV9fT2qqqocRpIufIiwZs0aNDc327W7cuUKJBIJAgMDkZOTQ/GQmpiYQGhoKLZv3w6JRIK+vj6Xx5Lmo4HRoMdodzMkzdWQtNRArVQgJrMQsTnFEGUXwcvXH4GRsfAWBGO0u+VJb65LFKMS+IdGkL41KxGtpVJMYO2RzyEsPhWi7CLyJUxIh0oxgaHWWspLPtgNg84+ascR4clZGO9tAwCL91P26lR8YjAYiM0rwWBTFQizGYNN92E2GhGfv35VBSkrbC4PMVlrMfjA/hrnCsXIICTNVYhKXwNhwvLFOg6PT45ra/U7pZxaMdpbEAjNnOXezmwy2Y2huSkZxI13wWSzEZ+/wSNTaKNBD5aD6n4L8QkMQeLaLRjva4d8sNvucyaLBcJMzQzQzE5DPti9rIg33+AwzE3KXLYZ7W6B0aBzmerF8/Fb1LjZyy8A8fkbwPX2hbjxLmbG7e+jHCEIi3LY1qCdd8ujaay3DWrlNOLz1y96fQgWJWFS4nye44qJwW6ExqW4bMP39UdgpAhjPa0u2y1kuZ5HQZGxCAiPBoPBxHhfG4ba6iBpqcFIVxP0GvXiC/CQ2NwSSJqd3y+aDHqHVS9XGzaHi6SirZCLu6EYlcCg01C2gyAIzE3KIG2rI6/v0vZ6MJgsxGStJX8LYjIL4LPMVE93oUWpJWA0GvHee++RVfasT9FtFcj6+nokJiaSxr5lZWWUz5uamuzSA6zmzrZ0d3cjMDAQoaGhWLt2Lbq7u8mJG/BIALJl06ZNuHPnDuU961N7WwIDA+2qA168eJGsApiYmAipVGr31NhoNEKhUJARYQsFMLVaTU60hEIhkpOTcffuXUob60Wnp6cHPT092L9/PwDLxNt2UrIwZWnz5s1kmqSVq1evUsym/f39odfrKek2N27cIEULwCJc+Pn5YWpqinxPqVSS6SsbNmyAWCzGyMgIFqLRaHDx4kU8++yz5H5YfV2s+5ScTH0ywmAwwOVyKcdybm4OTU1NZHSRI5EQsKSlHT16FPfu3UNTU5Pd583NzcjOziYjdXbv3o1r167ZtZPL5di+fTvq6upw7949ynhcqJ4fPXoU169fp4w1AHYRJACwY8cOXL9+nfJebW0tcnNzIRAIsGPHDtKzx3abrdXmBAIB1q9fb9fGipeXF1544QWUlZWRaV+pqamkQDs6OgovLy8yWhCwVDW7desW+ffNmzexfft2ynKFQiFFlLCWsy8utuSHBwUFgcPhUMb37du3yUqgVgICAqBUKinHsKGhAZmZmRRvMFtfIiu3bt3Crl278Ic//MFOmKurqyMjiqzs37/f7jhZfelsSU9PR2cn1ejx/PnzpEi2b98+XLp0ibLNjvbNWpHSloaGBqSlpcHH59ETTmvkmS3Xr1/Hyy+/jJ/+9KcOTaKvXbtGSXt0Nm5v3ryJLVu24Gc/+xk+/PBDu/XU19eTvlHBwcFISkqiiH/AoyhJW0pKSijnW3NzM3lNzszMBJfLxYMHD+y2hyAIfPDBBzh8+DApcsbHx2NgYIBss/C6nJKSgp6eHsrxthVSAYvAOzw8TNm/pqYm5ObmkteZ4uJi1NbWksuxrRaYlJSEtLQ0XLhwwW6bAUtEbWNjI+U8iIiIwOjoo0kLQRA4c+YMampqcOjQIYeFRS5fvkxGa23evBl1dXUUwbimpsZu3EZERGBiYoKyb9Z+s70BZbPZdmnK1nFrjWSzVum10tLS4tBHkclk2q0vJSUFfn5+OHLkCM6ePUvpj5qaGvLc37ZtG6RSqcsHEzRPJwRBWCb7LTWQtNRgvLcNIaJkxOaWIDanGKGxyZTJ2tyUHH4hQgSER8NbEOjxBOpxYTIaMDM2tGLl1q1MSHrIdA7b84HN5SE0LoUiVImyi+AXLMTEYDdFqJK21WFmfBjmBUICh8eHUa+DWqkA19tnSSbQthgNeqiV05iRDVt8UzofkBOqsZ5WzE6O4fIvvo3ojAIExyz9OFnEGs/SbXjevghLSLNLjXSEUa/DQMMdgMFAfP6GFZ+wMphMRKbmIC5vHUwGPQab7kM20En2b1BUPBTDYsjF3QiLt/S9VjULceNdaOZmEJ+/waMUKismvQ5sJ+l7dtv4sIIdz9sPA/WVMBrs0/OtaFWzGOttW3ZqaVBUPBQjYoefEQQBceNd+AaHLdvg3xb/0AjE52+A2WiAuPEu5qcnXbYPio7H9Oigx+sxm00YaLgDn8AQhCfZR8E73LaQcMxNydwqMrYQzeyMWwb+/qGR4PD4mBoeWLQtsHxBymjQQ9x4FyajAeue/3skrt2C2JxixOYUIyw+FVPSfvK3Yai1FrOT40vaf1vYHC4EwiiH+6hSyOEb5H4l7JXGep6Z9Dpce+eHMGjVlOu2QadBVEY+5RovCIt8YtVnaVHKQ6yC1LPPPkuZcBYWFpKRAkNDQ1Cr1WS6ApPJxM6dO8kJl9FodOqLlJiYSD6hnZ+fR1dXF8Wo98CBA7hw4QJ5EjnyzrFuj9WMdmJiAgKBwK6iFWBJxbBGTNTU1CAlJYUyud+3bx+l5P1CQWb//v24d+8eGVUzMTFh5+eSlJQEHx8fO0GlpaUFcrmcMjHz9fUlo8qsaSPWyArAcoLl5uaSy5LJZPD397czBt+5cycZNaBSqWA2m+2q3dlGuHR3d5P+WlZ27dqFuro6TE9Pk8fbYDDg9OnTeO655ygnra0Q2NnZiYwM+7DeLVu2kJNzs9mMsrIySvoQYPF7aWl59LT2wYMHYDKZyM3NhVAoRF5eHiXCS6/XQywWU1JjrGXZbQVOiUSCsbExlJSUIDg4GNu2bcOHH35I7ldtbS1lIslgMPDss8/i0qVLZGogQRBkdTJbrMfVOo6s6ZbWqJ/g4GBkZWVRhAmJREJGtgEWgSg7O5sUtxZGJLFYLDz//POoqanBwMAAaQ5OEATu3btnJ8z6+vpCrbZ4J8zPz4PH4zn0RouKioJUKgVgETcXCre2Y4QgCBiNRofm97aC4vT0NCYmJuzGkxXrMb9//z4iIiIQFxcHgUCADRs2UASnyclJu3PJx8cHcXFxZEqtSqUCh8NxWPHT39+frNhXVVWF/Px88lphrcBoPd4mkwlms9nhvsXGxpLixOTkJKamppz6A1n3rbKykvQFEolEiI+Pp4jJUqkUERERlD5hMBhYs2YNJeKqvr4eYWFhiImJAZvNxrFjx/D++++T0WJmsxlSqZQyllJSUmA2m9Hfb6lENT8/77CypPXaIpPJHF6T8/PzodPp0NHRQXm/rKyMTLmzkp2djbY2S0SAbTEJW7Zu3UqeAyMjI4iIiLBL+dy9ezd5fptMJojFYrvqibt37yavyTU1NRTvtpiYGBQXF+ODDz4g+8JaMfHKlSt215v8/Hw0NjaSf587dw7btm2Dn58fsrOzwWazKddtsViMiIgIynhbKPBMTk46NG23FR0NBgOGh4cdpv7ZRudVVVUhJyeHFEB5PB7WrFlDubb19/c7rDC5ceNG8mHI+Pg4ZmdnyXHLYrGwZ88e0sPM+lDJts+2bt2K0dFRu+hkmqcPzZwSQ6215ESD/TBiJDanGNEZ+S6ro6kUMvgGWVJvA8JjwPcTPJXClKS5esV9kWQDXaQoERgVh+mRwUW/4+UXgMjUXMokJjqjAAwmEyMdDyhi1UhXE0xGAwYf3EdQVDzmpmRQDIsx1ttGiknStjqHL9uJk/X/sv4OqGcmwWAw4RccjvDkLMoT/cAIEQ7981uYnRxf1nFRKeTwCw5bvOECfAKCIRBGuYy4kw10YaTzAeLWrENQZKzTdgtZ6sQ5KCoOcXnr4BccDklzFaRtdfANCoVyYhS6+VmweV4YbLqPqeEBxK1ZvyxBxmTQe1xVURAWibg16yFtq4PCwfjTqVUY7mx0mNLmKc4m2ka9Dn01NxGVvsbtaoaeEhQdj/j8DVAp5BA33nUZaRUal+IwgswZWpXSkqaVtdbj7Q9PysR4X/viDW0gzGbAA9EiJDYZWtUs5qZcR6kBSx/ngOXcGm5vQGxuqUPxnsPzQkRKNvnbEJNZCKNeB+nDSCpJSw1kA10wuWnKbUtQVBxmJ8Zg1FODOKakAy6reK4kZpMJsxNjpFhv+9KqlDAbDGBz+ZRrd1BU3IoU31gpaFHKQ27evInjx4/bCUEREREYHx+HWq1GfX09aYZuJTg4GBEREWhvbyfTxBxhmwq2MEUGACkEXbhwwaEAZCUuLg6jo6PQ6/Uu17dhwwbcvXsXAwMDMBqNdhNpDoeDuLg49PT0wGAw4MyZM5TqToBlUnLt2jWoVCo7ccPKmjVrMDc3R04U6+rqoNPp7MQEwCIozM7Okml7C0lKSoJYLIbJZMLdu3cd7huHw4FAIMDk5KRdRIIVWxPe7u5uh6bWhw4dwrVr1zAzMwMOh4NTp07h+PHjdhNYq0mvI3HLCo/Hg16vJ1Mkraa8tiQnJ6Ovrw8EQaC1tRUGg4EiSkZHRyM5OZlMK7t8+bJDjy2RSISZmRnMzs5iYmICra2tpOcQYImS27FjBzl5nZiYoIh/1uPz3HPPkdXf7t+/b1eS3oo1WspavdB2XYBlPAYHB5Mm1458f0QiEUQiEe7eveswkhAAnnnmGQwPD5MT5YURcLZYx/aNGzfsoqSs5Ofno6mpCUNDQwgICCC9bGzZtGkTbt++7XL/Q0NDMTExQVbCdFYpLzs7G62trWhsbISPjw9lzIWFhZHCnMFgcFrRLzs7G319fdBoNC73bePGjbhz5w5GRkag1+vtBICQkBAEBQWhp6eHTBFzxJo1a9DU1ASz2Yzr16/bRWVZSUxMRH9/P6qrqxESEkKJFkxKSkJoaCgp3DmKArMuY2RkBFqtFn19fdBqtcjKyiI/5/F4OHToEE6dOgWCIJye26Wlpejo6MD09DQqKirsIsCslJSUoLq62uk1sqSkBBMTE+R1q7y8HAUFBRTh3orVM8zZtSQoKAgajQYajYYSkWeLl5cX/Pz8IJPJ7CLJrPj7+yMwMBASiYTiJ2glNDQUu3btwnvvvQd/f38oFAoy1XDh9cY2yvfSpUsoLi6mnJv5+fnQaDTo7LQ8ZW9oaEBhITWtgclkYv/+/eR1wpkXHZ/PB5/PJ9NVF3pjWcnLy0NTUxMkEglMJhMSEqg3l/Hx8dDpdBgZGUFVVRVKShxP1P38/KBSqWA0GlFZWWl3TQoMDERSUhJqa2spUXK2bN68GTKZDF1dXQ7XQfNkMBkNGOttI1PyZidGEZ1RQE42PJmYEWYzxQskMEIEvq8/xh6mnT0NTEkHEBghcljZjOfjB61K6fEyzSYT1Mop+AZZfvetURNLgcFkQhAWiZisQmoKYGIGdGoVqk79FtOjQzDotOB6+yI4OgHRmZa2MVlrHb7I1BGb/0el5SEkNhmCsEh4+Qkox4Mwm2E2mRCRnAX1zBRUCrmLLXbN3JQMfsHCxRs6wD80Enxff8jFlmuG9ZqrVc2iv64C3v6BiM0t8XgiyGJzYHIRTbQY3oJAxOWtQ0RqLkY6H2BS0otrv/o3jHQ+QEyW5diuRJQK28HD78VgsliIX7MeBPEw9fJhxJ1Bq4G0tY5SiXC5+IdGUFIaLSbx1Ugs2uKWIb0tSxFQhIkZiFuzHpOSXgw2VTmMEPMNCsO8YsJlNoOVqeEByMXdSCraCg7P/uHkYnj5B0KrUlqEJjeRi7s89oaLSsvDpKRv0bTHpWAV5bz9AxGXV0q5nrO5PBh0GoffYzCZCIqMhSi76NFvR2g4RrtbSJFK2t4AzZx719fYnBJIWh5F6VuP6UpGHZkMekyPDUHa3mCXWj3S1QSzyYjwpEy766l3QDA2feZr4Pv4uR219iRgEMuNW/sbwZra9frrr2PNGseVKurr6zE2Nob9+/fbPQG3YjXrdSQkWBkdHcWtW7ewb98+h5MfwBKNdf36dXz2s591ui6DwYCTJ09i48aNpPeQI65du0YanDvj5s2bMBgM2L59u8PJstlsxs2bN8FkMu1u/m2prq5GRUUFjh8/bjfZsGIymfCb3/wGL774otP912g0eP/997Fz505ERkY6bEMQBN5//33k5OQgPT3d6TZdvHgRkZGRTvvVZDLh7NmzGBoawksvveQwKgWwmO3W1dXh+eefd7qu6elplJWVYc+ePXYikJW5uTlcu3YNKSkpDtNSAEv/t7S0IDU11S5V0Iq13Lyvr6/TSblKpcKdO3cQFBTkcJIMWPb/5s2bYDAYTgUgwJK22NTUhGeeecZhZAoAtLW1obm5GZ/4xCecXqgHBgZw+/ZtfP7zn3e6rt7eXrz//vs4cOAAmQboiCtXriA4ONhpNUbAEm0yPT1NSQFdSENDA8bGxlxWZZTL5bh8+TKOHDniUNyy8u6772LNmjUOo+kASxTRjRs3cPz4cUqKnC3WMZmUlOTSkL+iogIGg8Flv925c4eslueMgYEBMqXLWd8SBIE//vGP2LBhg9Mx2dfXh9bWVpSWljqt6mcymVBWVgahUEiJArLFnXFrFa1sq106or29HX19fXZRRLbU1dXh6tWr+OxnP0vxprLFaDTiN7/5DT71qU857X+TyYQ///nP2Lp1q12xB9vtPnv2LOLi4pxek4DFx7ZOp8PZs2cxMTGBL3zhC07FIrlcjvLycmzfvt1pnzQ1NUEsFmPnzp12VUatjIyM4MqVK/jUpz7lMCrXum/vv/8+srOznY5/wCI2s1gsp9ctwJL+yGKxnFakBCzjraGhAUeOHHG6Tc3Nzejt7bUryLGwzc2bN3H16lXMzMzYRYvSuMYaYfv5X57zeOIHWMaNUj4C5fgwwGCAyWIjLD7VLY+VxZC21Tms5KUYGYReM+92KsxqYdTrMNzRgLg8xw9EDDotJga7PTZpl7TUICotj5I6thrRWOLGexAIoyx+qx5EBnnKSFcTQkRJ5JgQN95DZFruksbIUGstRNn2D008QS7uApvDg2p6AiwOF4TZhKj0/CVPUJXyURBm87KqpQGWCfx4XwempP0YaLiDoqOW+ywmi43Q2GSHldrcZbijEREp2Q7FU3cx6nWQtNRApZDD2z8QSUVbV7zSpXWcT0kHoJmbRnRGweJfWoBiZBAcvteSxUvAUtVsuKMBTCYTURn5FKFSp1ZhUtKLqHTLPYCjMSltq4eXIBAhy4zE0WvUkA10IibTveOw1OsEQRDoq7mJhMLNTr3ePDn3CILASGcjGAwmIp2IqgadFnJxF2mC7ikmowGTQ/0U4d8/JBwB4TEOx6VSbolADItPw3hfOwLCoz2uUGfQaqCcGIVGqaBUogcAJpsDv5Bw+AaFeiRsixvvIT7fkv460vkAAmH0Y00r1Gvm8d8vH4JSqXQ5P6JFKTcZHh52q7IRDQ0NDQ0NzccTqVTqVJikccxSRCmdWgW5uBtmk8UXTCCMgiAsasW9LlxNghTDYui1GrJS2ZOgv74S8WvWuywp7qmIolUpMTUstpuoKeWjMBsNKyYeycVd8BYEwzcoFOLGu4jNK12VVBGCIDDYdJ/iOUQQBPpqbyGhYKPHIslKiFIA0HbzHO6++1/41E9PLtso2GQ0YqyneUkCCmAZy7OTY+D5+CM8KROS5mpEpGRDPtCJmKy1MBmNmJT0QDs/BwaDARabg9C4FI9E5KHWWsRkrV3SOWrQaTE51AeD1uJPeOmtf8G6F15CYITzhzeAgygUBhMcHh8cnhc4fMu/bJ4X2Fwe2VbSXA02jw+el4/blfEWYjIaMdrd7LaQ4wqDVoPhzkbwffwRnpxF2c7ojHywOFyKeG406DHYeA9R6XnLqo5pi+26XGE2mTDc0bDk88NkNEDccBeJRY4rVbp77s1OjGFC0ovo9DXg+fi5bCtpqUFsjuOHl55iMQcfx8y4lByDXL43QmKTyUg1SUsNwpMyMdbTirg8+werBEFANz8LpXwMuvlZu885fC/4h0bCWxC0Ir93k0N94Hr5wD80gnxvoOEOYjILweE7fli50rgrSq1+WYqPCZGRkZBKpfDz83tiBmArxezsLGJiYiCVSl0ODprHD903Tyd0vzy90H3zdPJx6xeCIDA3N+c0MpdmeZhNJkxIeskn0lwvH0Sm5iwr6mK5BEXHY2p4ALL+Dofl31ebicEeBMckuBSklsJod4tDjx5BWCQkzdUrIkoRBIH56UkyzScmay2krXUrHokF4KFhNzWdiMFgIKFgEwbqK5BUvO2x3rcTBIHhjkYEhMdg7z/+CIqRQUwO9YHF4SA8KWtJxuYsNhvmBUUgFsNsMmG0uxlGvZb0lgIsley8/ATgefuC6+2L2clx+IeEU8a40aDHhLgbBp0GBEGAw+MjNC510RQxd46z2WzC9KgEKsUE+R6byyMj3SYlvXjx9T9hZmwIYQnpHkW7mc0mGHVaGLQaGHRazE9PwqDTwqh/VGSm7dZ5hMWlInvHYbeXuxAWm21XIXCpcPheiF+zHpq5GQw+uAffYCFCY5MRnVmA4fYGRKWvIcWiuSkZ5OJuJBRuWtHrgnVdi52fsoHlXQtZbA6iMwsgaa52KNgsNn5MRiOGWmssFRwLHVtOrCYMBgP+oREUgUevmYdc3EX6STEYDDRdfg/B0QkY62m1Sx9kMBjg+fhBEBYJvu/yq24uxtykjIySshK/Zj36am8hsWjLU+UpRYtSbsJkMj92T0f9/f0/FpOFjyN03zyd0P3y9EL3zdPJx6lf6LS9lWVuUgbFw0pTTCYTIbHJECas/k26FXcSBYKjEzAlHYBsoBPCBOc2ACuNQauBWqlA7CJl1z1FMSpBYIRo1UWa8b52Suojm8uDlyCQFEBWEs2swuG4YbHZiM0thbjxLhIKnNtTrCTzM1MY722zGOx7+2K4vQExWRYfPqNeh/G+dpgMejBZbAgTM1ya8C8VzZwSsv52MJgsRKbk2EVDyAa6SPFBmJCO/roKu3QgNoeLiJRH9hEGrYYy8eZ5+yI0LmVR0ZggCKim5Jgek5DvMRhMBEbGIigq3m4cms0mzE3JEJ+/Af6hEZaJ89rNbk+cmUwWuF4+LiO8CIJATNZajPW0Qq9RISp9DTi8xxMx4govvwDE52/A7MQYBhruICgqHmweH4oRMXyDQiEb6ITZaFwVMYbF5oDF4UCvUbsck3r1/LLTpvm+/giKisNYTytljC2sYr+QSWk/5ibGIcpe65GhPs/bD7r5uUUjqpYK18uHEnVqMhpR9f5vwPcVIDa35LFFIzliQtKLkFj7QjAMJhPx+Rsgbrz3RMQ9Z9CiFA0NDQ0NDQ0Nzapi0GoxMdhDmvv6BQshyi56YtHnWpXSrfSX4JgETEr7l2Twu1SGWmvdFlKYLBZMRoNbAsHM2JDL5QqE0ZgZH16WdxFBENDOKeGVnEV5PywuFf31lfALFq5Yn0+PShAQ7jjFCwC4Xt4QJqRD2lZPikOuWKqjicXf5gFYbA4S19p6GD5aHpvLQ3RGPgBLGpOsvwMGrQYMJhPChPRlT5qnhgcwNzn+cDJc6vAYm4xGMFksymeinGIMtdQ6jFyxwuF7USbeOrUKYz0tMBmNDyM//EGYzdCqZjEl7adUMPMNFiI6s8AtYWm4vQHRD1PiGAwG4vLWYfDB/RUVFa2VViNTc2A2mzDS8QBmswnRGQVOvY4eJ9ZIHMWwGLr5ObTfPIfEtVsQIkqCQBi1auuNSluDweYqShqsLdaxsxL4h0ZAr1Y9rE5n8Rc26rQOxUG9Rg1pez2CoxPsIn7cITQuGaPdLSuSarkYBEFgoKESx77zK4z1tJCm/U8KlUKOUCcpqmwuDxHJWW5fGx8HT/7so6GhoaGhoaGh+VgzKe2zM9d+ksxOjCEg3D2v0JCYREwO9T0WYUrW34HQ+FS3DZ4DImIxMyYlJ3fOGO1uXtQQPSA8GpLm6mWJUqPdzYhMc7ye6Ix8DHc0rtgEUSkfcWoCb8UnMAQGncatNExLRIVnkZ1qpQJjPa2ISs9z29SYxeaQfWE2mSAb6IT+YWWysPhUt72CLCl6TTDqdQiKil/0WIz1tFCiUwCAw+PDNygU02NDTj2cFsLz9qX4W2nmZtBw/k/g+/pDmJixpHNcM6cEi8OlCBOWtMEUjHa3IDLVeVEbd1koOjKZLMRkFcJo0GO4vR4sDtdSidCNc4/F4VoqDnoQteP2dprNMBp0YLE5GGi4g8i0PMzIhmHQaRAcnbDi5u+AJXqG7yuAWjkNb4H9+JP1t0OYuHKFH0JikzHS1YS5SRn8QoTQzM2A70c9f8Z6WmHUa5GQv2HJ+8xic0hvwtWEIAgM1FciNqfEIkBnFmKgvnKBSP34kIu7EBqX6rKNtyAI2vk5yAe7EbZI28fByo9qmqceHo+H733ve+Dxno4bQ5pH0H3zdEL3y9ML3TdPJ3S/0CwkInlpfjqrhV6t8igVJUSUBAaTBflg96ptk06tgk6t8ijFzScgGPMzky7bGPU6GPW6ZVVXcwez2QSDVu30uPK8fcHmcKFWTi97XSrFBHwC3DMQDwiPAYPFgmJk0GW72YlRil+MK6zeUTPjw0hcu9njKltWmCwWIpKzEJtbAlF2EWYnZZA0V0PSXA3VtON+1cwpMdh0H9L2eggTMxCXt86t7TbqdQ6jUUJESZgZG6JEOHmCl18AsnccWbIgBQBjTkRTv2Ah2DwepseGlrRcW+anJ+AXZF/5ms3hIja3BKFxKRhsqoKsv2PRZQVGxGJmVLJoO3cxaDWQtjdA0lyNobY6+AYJEZ6chWe+/hP4BQsRm1MMvq8A0vZ6SFpqIGmpsVRlXMF6ZeFJmU733aDVrHi6aVRaHiaH+qBTq6CZU8LLLwAAoJqeRH99JQTCaIt5/jJFuMcRjTv44D6i0teQx4jBYCA0LgWyga5VX7cj5mem4OtGgYWgyFiYjUYo5aOPYatcQ1ffo6GhoaGhoaGhWRWWUn3vcWBb0coTJgZ7AAChK+z3BAB9dbeRWLjZ40nUYlWrxA/uITanxK30m+lRCZhsDgRhnpv6S9sbEJ6UsahHT3995bK9TAab7i8aGbSQkc4H8A+LhF+w0OHn7laQ08xOW6J30nLJibQjljrGAIvoNSXtx/xDYUo3Pwe/0Ajo5mfB9xVAmJjh0ThRDIvB5vHgH+q4X01GA4Zaahya4LvDcvZ1cqgPHJ6Xy/Q0SXM1hIkZyxJWpW11iMrIXzSVcH5mCvKBTviHRrqMQFxupcbZyXFMPxRKOXwvCBPSKX5J4gf3EJdbSq7HVpwhCAJK2TBmJ8bIlMQQURK8BUFL3h7AcbU2k0GP0Z7WVUmBs1bK5PK9LQUR2uvB8/aleNItlwlJL7wFQfAJCF6xZdoiaa5GaFyKw2Mvaa5GZFreokUCVhLZQCd8g8I82t+VOL+c4W71PTpSioaGhoaGhoaG5m+KpT6TDY1LAQECk5LeFd2esd5WhCdlrfhTfZVCDm9BsNt+MIGRsZhZQlSKyWiA2WhwyzQ6IjkLY72tHq/Dim5+Dlwvzw2Xo9LXWCIz5uectlns+I90NUExKkHi2s0uBanlYhUZYnNLEJtbgvG+doz3tiIubx3CkzI9Hiezk+NOBSnAkuYUGBmLyaG+JW/zUs4ps9mEucnxRf2SRDnFkLbXL8unhyAIt7ytfAKCEZ+/AWwuD+LGuysWRWI2myDr7yAj4YxaDUQ5xYjNLUFkai5FkNJr5sHheYHBZCI8OQvjfe2UZTEYDASEx0CUXYTYnGJEZxZgfnqSjKIa7miA7mFKqCeEiJIwJR2gvLewcMFKwmAwEJ2+Bpd/8W2IG+8iMjVnxdcVHJOAKWn/ii7TirS9AUHR8U7FwJjstZC21q7Kuh1BEATUSoXHApwopxjD7Q1LjpZcCWhPKRoaGhoaGhoaGho3CYtLhVzchcmhPoSI7KsbeYpWpYTJoHcr3cIZ1miJhcjF3Y+l+txwRyOiHhp5L4a3IAhT0gHoPEyhtDLW24bYnGKPvwcAcXnr0F97G/H56z2q4qWZm8FIVxOiUnPd9nxaKSYlvcjafhhzU7IlfV+rmgXPZ/HjHBAeg8GmKgiEUR5XpGM+9O5ZzHB/Ibbm5q5gMBiIX7P+sVYMEwijIBBGYVLaD3HjXQgTMzyORNJr5iHr74TZZASDyURoXOqi3maARfyMy7WYz/O8fRcVmJhMFiV602TQQz7YDb1GDQDg8r0RGp/qlgdWYFQsFMNiBEXHA7CmfS4/0seo12F6bAiaWWr6Ls/bF1s+9w0wmEyopuQIjIxd9rpscbd6o6eMdjfDPyTcaeSldd2BUXGYlPYjJCZxVbbDFll/J4QJi4+vhTAYDMQXbMRAQyWSirY+kQIktChFQ0NDQ0NDQ0PzN8Vyb7rD4tMgG+hakcnGcOcDJBYu3RDXOyAY6pkp+CwQteSD3QiN9TzN0Dc4jDQgdgejXgcGg+GR6XN0ZgHEDXeQ4KHAYDTowWKzl+wzw2AwkFC4Cf11ty2TLzeWM9rdDIIglpRauVzUymloVLOIySxYsigl6+9wO80sNqcYAw13PDZoZnO4MOp1HolSWpW9ubnLdXB5ECakW8RBm2qA7mAyGsFYojgREpOI4OgEyPo7IOvveOgd5DwVWSkfJaMNuV4+iEzL9ei46DVqcHh8ytj09JxkcbiISH5kaq/XzGO8t42MhPHyD0CIKMmhYBMgjIa48S6CouMtfeqhmbvZZIJSPoK5yXG7bQqKjHVYEU6nVkGUXYSp4QGIG+9ClF3k8XpdsdJuReN9HeD7BbhVETEwQgRx4z0ERog8Fm09gSAIaOamEZ7kuSgFACw2G6KstRhqqUFsbskKb93i0KIUDQ0NDQ0NDQ3N3wwmgx7MFZgcCBPSIBvopJQ295SRriZEpuQuS+wIjBBhrKeVIkqZzSbMKyaXVFUpKCoeQy01bk+AhzsaPfYTYjAYCIlNwsRgj0f+XKNdTYhKX+PRuhbCZLEQl7cO4sa7LkUxrUqJ4c4HiEzJWbZXz1Iwm0wY7WpCUvFWAIB/SPhDM3b3/b6s6W7uingMJhNh8WkY7+vwaHLL5vJh1Os8inwb7WpGvIdRfL5BodDMzUAxKkGQBxE1iuEBBEcv7RwFLOM1PCkThNmMka4mmAx68H39oVZOg+/rD7m4i0wL9Q+LhCineMnn9Gh3E0QLIgFDYhIhaa52+5xcCNfLB9E2kYxq5TSG2xssYg1BwD80AgERInKbLaJ7JwxaNcKTsx0ukyAIqBRyKGXDMJsepVUymCwIhFGIySz0WDwOjk5AQLiIvP6sRCQqYD13xtwuZOCKicEesHk8j8afKKcIQy21iM9fv+z1O8OSZpm1rGXwfPwQGCnCWG8rRdR8HNCeUh9D/v7v/x4MBgNvvfXWom3ffvttxMXFgc/no7i4GLW11LxXrVaLEydOIDg4GL6+vjh27BhksqU9qflbxGAw4Fvf+hays7Ph4+ODyMhIfPrTn8bo6OL56XTfrC6LHd+FnDp1CmlpaeDz+cjOzsalS5conxMEge9+97uIiIiAl5cXduzYgd7elfUc+Tjz+uuvY+3atfDz80NYWBgOHz6M7u7Fq1zR/fL4eeONN8BgMPDqq6+6bEf3Dc3TytyU3GXKhScIE9Jh0GkxNTyweOMFqJUKMBgMhyXYPcFR2XNLWpR76XQL8WQyrdeoweZywWJ7/pzbPzQS8zNTMBr0brU3m00gzOYViTbg8L0QnpwFaVsdAIsnFpP1aB/GeloxOdSPxMLNT0SQAh4aXdtMYgMiRJgek3q0jLGeVkSkeDa59AsRwqCdd+m9tRA2lwejXud2+ynpAIKiE5Yk3ITGJkM1JYNWpXT7O5q5mWWfZ4BFtIvOyEd0ZgEGm+7j8n/+K0Y6GxEQHkP6fwXaiDueYtBqwObyHEYwMVksmNw8VxbDWxBI+lHF5paAxeFA2laHodZaDLXWWryJZhQwGQxgc7jQzCkx2t1Cfj7UWgtpWx0MOi0iUnIhyi4iXzGZBfAPCV9yNCOLzUZ8/nqwuTz011fCoNMse38t587yKzhOSQdAEGaPo2NZbA78QyNWZBscQRAEtColvPyWVgXUFv/QSLA5vEWrla40tCj1MePMmTOorq5GZOTiT1Hee+89vPbaa/je976HxsZG5ObmYvfu3ZDL5WSbr33taygrK8OpU6dQUVGB0dFRHD16dDV34WOFWq1GY2MjvvOd76CxsRGnT59Gd3c3Dh486PJ7dN+sLu4cX1vu37+PF198EV/4whfw4MEDHD58GIcPH0ZbWxvZ5ic/+Ql+8Ytf4Ne//jVqamrg4+OD3bt3Q6vVPq7d+khTUVGBEydOoLq6GuXl5TAYDNi1axfm5+edfoful8dPXV0dfvOb3yAnJ8dlO7pvaJ5mVAoZfB2Uhl8q4UkZMGg1UAyL3f4OQRAY7W5GZGruim2HFd38HJgstse+QLb4BIZApXD8m2jLSNcDRKUtPXJJlF3kthHwWHcLIlJcX3s8wVsQBL+QCIz3tT9MjQqHVjWLvrrb8A+LRHRG/hPxVgGA0e4WhC3wAFrKthi0miVVvYzOLIS0vd7t9hZRyr1rN2E2QykfQUB4tMfbZSUmay2G2xspETqPA4IgMN7XjqHWWmRuO4yCg59CTNbaFataNtL1AJFOUhMjUnMx2rP0AgGu8A+NtBGVCqGbn4NqWo7Lv/g2hlprMTc5htC4ZIr4JMouQlBk7JIEaVvMJpPD1MqA8BjE56/HaFczZANdy1rHSpzH02ND0GvVCItPW9L3g2MSMD0yuCyzfmeM9axsZFNoXArUyimy+ufjgEGsdJIlzRNjZGQExcXFuHr1Kvbv349XX33V5ZPs4uJirF27Fr/85S8BAGazGTExMXjllVfwz//8z1AqlQgNDcVf/vIXPPvsswCArq4upKeno6qqCiUljz/f9ONAXV0dioqKIJFIIBKJHLah+2Z1Wez4LuT555/H/Pw8Lly4QL5XUlKCvLw8/PrXvwZBEIiMjMTXv/51fOMb3wAAKJVKCIVC/PGPf8QLL7zweHbsY8TExATCwsJQUVGBTZscp1fQ/fJ4UalUyM/Px69+9Sv86Ec/Ql5entOIXLpvaKzMzs5CIBDg8788t6TJ8Wqw3FLuzhjrbQPPx8+ttA5pewNCY5NXbDJru08DDXcQn79hWRMxgiAW9RbRqmahGBEvW1hTjAwCDIbL40YQBAab7iN+zcqnv0wM9mCstxXBMYkwm0wrJkZJ2+o8TmsEAKVsBFqV0qEh9mh3C0JESeB6eS+6nJlxS1RVQHiMx9sAWFK8psckbvk36dQqzIxLIUxIX7TtUGstIpKzweEvXTQFLP5ikuZqt4zPl3vOEwSBsZ4W6NQqhCdmkGb3Y71tCIyIAd93+REqBq0G4/0diHFh/C5prn5sfj/iB/fA4fERIkpakf1zxtykDEa91qXB+ezkOCbE3YjOLFhScQTAMgZistYu6dyenRjF3JTcYy+zhRh0Wox0PkBcXumylmPLal4b++srIcouWpbRvV4zj/9++RCUSiX8/Z3/3tGRUh8TzGYzPvWpT+Gb3/wmMjMXL6Wp1+vR0NCAHTt2kO8xmUzs2LEDVVVVAICGhgYYDAZKm7S0NIhEIrINjecolUpLKdeAAIef032zurhzfBdSVVVFaQ8Au3fvJtuLxWKMj49T2ggEAhQXF9P9sUSUSktYflCQ87QJul8eLydOnMD+/fvtjrkj6L6h+VskIjkLuvlZTI9KXLZTKSbA5vJWTJACLCbCRr0OM+NSBAijly2quPN9S2rY8iOXgqLioByXuox6kYu7llRVajGUshGolQrcP/kOjHodYjILnlh0FAAYdBooRsROK7QJE9IgF3e6tayZ8eElC1KAJcWLwWC6FS1hNTpfDK1qFiw2Z9mClHWd4YkZGOl8sMg6leD5+C1pHYTZjOGORkiaqxAUFY/4Nesp1RfDEzMg63evPxZjpKsJUel5LtsERooeS1qVWjkNL78ARKXnY3iR47tc5qbG4btIOrV/SDgSCjdBPtCFsSVGiwVGxC56bXaESjEBpWxk2YIUAHB4fHgLAjE7sbiNi7usVsQtACTkb8Dgg3sgzOZVWb4ttCj1MeHHP/4x2Gw2/vEf/9Gt9pOTkzCZTBAKqRcBoVCI8XFLtYTx8XFwuVw78cS2DY1naLVafOtb38KLL77oVC2m+2Z1cef4LmR8fHzR/rC+5+4yaZxjNpvx6quvYv369cjKcm7aSPfL4+PkyZNobGzE66+/7lZ7um9onmZWU3SISM6GVjXr1DuEIAiM97cjInl5hrQLCYqKh2JEDMXIIFnKfbl4BwQ7FSTUSgW8/ANX7FjGZK0l/Z0coZmdXhFPIL1GjeGORop3jiinGHu/+v/BNzAU0jb3U9ZWGoIgMPjgPuLy1jltw+JwYTIanX5uRa+ZXxHhJzI1B2O9rYtWL2OyOW75HY12NTlNT1sKPoEh4Hn7uhRqpqQDHnsAmU0mSNvqIWmpQVh8KuLy1jkUkRlMJgiCWHZ1N4NOAxaH69BLyhb/0EjMTowta13uIOvvgDAxAwwGA8KEdIz3dazauox6nVuROAwGAzFZhfAPi0Rf3W1o5mY8Wo9fiNDjCpaa2WlMSfuXFPHojLD4NEwM9q5IRUDCbIZBq15y9NhiMJhMxK2xFIVYbWhR6iPIu+++C19fX/JVUVGB//zP/8Qf//jHJ/p0h8a+b+7cuUN+ZjAY8Nxzz4EgCLzzzjtPcCtpaJ5uTpw4gba2Npw8efJJbwoNAKlUiq9+9at49913wecvPYSbhuZvhYiUbGhmZ8j0KVukbXUQreAEx4qXnwDixrsem1q7IkSUhMmhPoefyfo7IUxcPFXLXdhcHrwEgQ4n3IqRQQRGuF/pyhbCbMakpBeSlhpIWmowJe1HRHIW6YkTEB4NvWYeXC9vBMckIDgmEX21t9wSflYaa4rZYgbRDAZj0ciFpRicO2MxwdC6TYvNQaaGBxAUHb/ic5WQ2GSoFHKnIoXJaADLxpvLFSajgTTxDk/OQlxe6aJpx6GxyZiULK9Ix0jng0WjpKxw+F7Qa9TLWp8rVNOT8A4IJvvJL1gI3fwsDNrlG46vBD4BwUgs3AzFyCCGOxo9Enc8GXu6+TmM9batSrpkTFbhoueUO6xmlJQVDs8LwsQMDHc0rOp6aFHqI8jBgwfR1NREvu7fvw+5XA6RSAQ2mw02mw2JRIKvf/3riIuLc7iMkJAQsFgsu2ptMpkM4eHhAIDw8HDo9XrMzMw4bUNDZWHfFBYWAngkSEkkEpSXl7vMqaX7ZnVx5/guJDw8fNH+sL7n7jJpHPPyyy/jwoULuHXrFqKjXZug0v3yeGhoaIBcLkd+fj75G1NRUYFf/OIXYLPZMDlIuaH7huZp5XFZqUam5kCtVGBmfJh8b3ZiDDwf/yV7a5nNJszPTEEu7qJUwbK++uvvQC7uxlhPK0xGw7L3wdkEbm5KBt/gsBUXF8LiUjEhsY8gmJ0YhUAY5fZyNLPTGGqthaSlBtL2enj5B1qqjOUUIyIl206gkA90ISzeIrB5CwIRn78B4oY70MxOL3+n3GRS0gu/YKFbaWYhomRMDDkXQayC1WJRN+7C8/YFz8d/WRE6hNkMpWxkWemErhBlF2Gk48GSxUSjXgdJczWGOxoRmZaH2NwSt310fAJDoFYqlrRe4GGUFHvxKCkrESnZGOtdHcNzAJgQd0OYQDXzFmUXrYiIslIwGAxEpeUhRJSIgfpKqBQTbn/PHaNxg1YDaXs94vM3LHdTHcL18gGH7wXVMozEzWYTDDrtY/Fq9AkMgbcgGBPLFF9dQYtSH0H8/PyQlJREvr785S+jpaWFIoZERkbim9/8Jq5evepwGVwuFwUFBbhx4wb5ntlsxo0bN1BaajFfKygoAIfDobTp7u7G0NAQ2YaGysK+8fLyIgWp3t5eXL9+HcHBwS6XQffN6uLO8V1IaWkppT0AlJeXk+3j4+MRHh5OaTM7O4uamhq6P9yEIAi8/PLLOHPmDG7evIn4+MXTT+h+eTxs374dra2tdoL7Jz/5STQ1NYHFsr+RpvuG5mlFq1KC7xfwWNYVmZqL+ZlJzMiGQZjNmBjssZvsWTGbTFAp5Bjv63AoOA211mKk4wE0czPwD41ATNZaahn2rLXY8IkTiM0pRnBMAka7W8joIE9TVmzh+wVAraSKM5OSPoTGJi95ma6IzsjHcPujJ/JzUzL4Boa6/I7JaMBYb9uj/VXIEZ1ZgNicYoiyi+ATGOLy+2aziVJBjMXmIKl4KyaH+jyqqLhU1MppaFSzCIqKc6u9tyAQmtkZp5+P97c79aRaKsKENEwM9iy5cthwRwOiM5wbeK8E8fnrIX5ATTNaLKLMoNVgsKkKYz0tiM4sRGxOMaXiobuwefwlRxKNdjUjKt39CpZMJguE2bwqArtVcF4Ig8lEUHSC08jJJwXfV4DEtZuhUsgt6biL9HdwTBKmhvpdtjEa9Bhsuo/Ews2rnuo93te25H4c7WpaEZ8rdwmKioNRr1219NHl1XCkeSoIDg62Ezo4HA7Cw8ORmppKvrd9+3YcOXIEL7/8MgDgtddew2c+8xkUFhaiqKgIb731Fubn5/G5z30OgMV09gtf+AJee+01BAUFwd/fH6+88gpKS0vp6m5uYjAY8Oyzz6KxsREXLlyAyWQi/VKCgoLA5Vp++Oi+ebwsdnw//elPIyoqivTP+epXv4rNmzfjZz/7Gfbv34+TJ0+ivr4ev/3tbwFYnry8+uqr+NGPfoTk5GTEx8fjO9/5DiIjI3H48OEntZsfKU6cOIG//OUvOHfuHPz8/MjzRCAQwMvL4otB98uTwc/Pz87by8fHB8HBweT7dN/QfFSYlY8iIMJx5dvVICotDyOdD9B0+T0kFGykRBvYTkaYLBa8BcEIjBSB6+Xj8WRINSUnzYK5Xj5kBS+CIKAYEUPSUgPgYSpGQprb6UxhcSkYaq0lU1hmZMMQhEV6tG2ewPP2BZvLg1pp8ZCakvY79FhSykcxMzYEMBhgstgIi09dkq+K2WxyeqxjstZiUtL7MLXKfdHAo/WbTBjtakJS8dYVW6ZuXrWiJvpWRDnFGGqpcel55QitahYMJsutioHLgcXhIiI5G8MdjYjOyAdgGa+OorN0ahXGelrA5vIgyiladlSZZb0NHlf4M+i0YLLYYDp4uOOKsPg0yB1ENC2XyaE+p1XcAsKjIW68h8DIWLDYnBVd73IJT8qEXjOPgYY7CI1Lhn+o42uUtyAQky6iDE1GIwYa7iBp7ZZF02hXgqi0NRZxycPri9lkglGvXxHfOE+ISM7GYNP9h9GT7hUPcFXAwhZalPobor+/H5OTj8IEn3/+eUxMTOC73/0uxsfHkZeXhytXrlCMZ998800wmUwcO3YMOp0Ou3fvxq9+9asnsfkfSUZGRnD+/HkAQF5eHuWzW7duYcuWLQDovnncLHZ8h4aGwLT5MVq3bh3+8pe/4Nvf/jb+5V/+BcnJyTh79ixlov5P//RPmJ+fx5e//GXMzMxgw4YNuHLlCu3B4yZWnzXrOWHlf/7nf/DZz34WAN0vTzN039AsxpPw6HGETq1aNVNYRxBmM/QaNYw6LSJSssHhrc4kQikfRkSKvbcIg8FAcHQCgqMTAFiMvsd6Wy39QRAIjIqDf4jzlNmFE7PpkcFVS2mxEpGSjf66CkSl54HnbZn4GL6osOYAABZ0SURBVLQayAY6LWmJBAH/sEiIcoqXHckwMdiD0LhUp5+HxCZDNT2J/roKxOdv8Fg8WAzxg3uIy/e8lLtPQDBU05PwXRAFNjsx6rI/lwOHx4dfcDgUoxIERbrv8TXa1YT4go2rsk0L8QkIhmZuBlPDAwiOTsDc5DjFpFozp8R4Xxu4Xj6IzSlZMeGByWK5Pfm2ZbSraUkm2t6CQMjFXR5/zxVK+Sj8QyJcthHlFGGopRbxSxizjjAZjSt2TnG9fJC4djPkg91QjFRBlF3k0bIJsxkD9RVILNy04ue5M7z8BAAs49L6f3cYWYKQtVLE5pair/YWEgo2USJMnSEbcK86JYN4XMn1NDQ0NDQ0NDQ0qwJBEPje976H3/3ud5iZmcH69evxzjvvIDnZeZrV66+/jtOnT6OrqwteXl5Yt24dfvzjH1OirLVaLb7+9a/j5MmTlAcgCysnOmN2dhYCgQBbPv9NxGQULJpKtdpI2+pWtJKSK7SqWQy3NyA2rwQ69TzUM5MIi1/ZyAYrVpNsTyAIAtOjEjK9j8PjQ5iQbhdFJRvohH9oBDSzM2Cy2AgId+33t1yMeh2mx4Zw9e3vY+MnX7FsG98LYQnpS0qtcoWkpQaxOcWLb5NBD3HjXcRkFrodhbTYWBvtboFfiBB+we6dS7YQBGGJYFuw7YNNVYjLW90UaHHjXYiyi+zGiaP9nRoeAIvNWTUvKWdI2+oRHJOIyaFeiLKLoFYqIOvvBN/PH+FJWauSlqWUjcBkNLidhmnQaTHe24aYrMIlrU820Am/4PAVqUoJAOLGe26JTZPSfrA53BXp09mJUZhN5hW/phj1Ogy11iIwQoTABQLqcEcDIlJyKNFeBEGgv/Y2YvNK3fYSWykIgsBAfSUS1252q72lMmTdqhiwu4vJaIC48S4S125Z9Fzqq72N67/5EZRKpUtPZdpTioaGhoaGhobmI85PfvIT/OIXv8Cvf/1r1NTUwMfHB7t374ZWq3X6nYqKCpw4cQLV1dUoLy+HwWDArl27MD8/T7b52te+hrKyMpw6dQoVFRUYHR3F0aNHPd6+hPwNmJENr/jT/aeVqeEByMVdSCzaAg7PC76BIZifmXrSm0WBwWAgKCqONAEPESVjrLcVkuZqSJqrMTsxCsBiQC4Xdz80qnZv8mg2maCZU2JmfBiygU5I2+pJbyxpWx35cuSdJRd3gclkISwuBX7BQsTmliAyNXfFBSlPYHO4SCraCtlAJ6bHhpa9PKV8FCw2e0mCFODYhN6g04DN5S130xZFlFMCSXP1ou1W29zcFTFZhRjtbsLsxBjED+5hbnIccWvWISI5e9V8ggTCKI/8dpaStmWLJYVvZa6nM+PDbhcTCIlJxNSweMn+YrbMTckdelgtFzaXh4SCjTCbTRA33oXJoCc/C41LxcRgD/m3VRQS5RQ9dkEKsJzLwqRMt83rRzobn1iUlBUWm4PojHwMPUwLd4ZBpwHbzWNKp+/R0NDQ0NDQ0HyEIQgCb731Fr797W/j0KFDAIA//elPEAqFOHv2LF544QWH37ty5Qrl7z/+8Y8ICwtDQ0MDNm3aBKVSiT/84Q/4y1/+gm3btgGwpNSmp6ejurraYw/DqLQ8zIwPY7Dp/oqmzjxNEAQBaVsdfAJD7CKXgqPjMSUdQHBMwhPaOtdwvbxJM2qCIDA9NmQRHxgM3Pz9Gyg9/mXSE8tZooV1ws9gMsH19gXfxw8BwmiLT5aH/Z22cS90mnlMjw0hcBV8wGYnxz0ShRgMBmJziiEf7MZodwsiU3OWtF6DTgPF8MCy0yDZHC6Meh0pRI31tCIqPX9Zy3QHFpuNoOgETEh6XRreW7ydVtfc3BajXoepYTF087Pke/dPvoPdJ74P32DhqppWW2Gx2TAZ9It6thn1OjBZrGWliTEYDDCYTJjNpmV7Yk2PSjxKyRNlr4W0dfnROiaDflXF5uDoBASEizDUWgO/YCFCREngeftCr3n04GWw6T6i0vMeSxU7Z/gGhkAxPAC9Zt7ldpiMRphNpsciPi8G31eAgPAYjPe1Izwp02Gb8d42t33PaFGKhoaGhoaGhuYjjFgsxvj4OHbs2EG+JxAIUFxcjKqqKqei1EKUSiUASyEOAGhoaIDBYKAsNy0tDSKRCFVVVUsqrBEQHg1vQRD66m5DlF30WP2dVhuDTgNJUzWiMwscpnj5h0ZC/ODeiotShNm84hNuBoOBoMhYBEXGYn5mChmbn0FYfBqCohevjLoS6ObnwPP2hTAxA6PdzWAyWW5HcrjL9KjE45RHwBI5Njclw0DDHcSvWe+R2EYQBAYf3EdS0fKNzcMS0iEb6ERUWh4IgoDZZHLL42UlCAiPhqS5GgZhtEOzZd38HBhMxqqZm+s185gaHqBUvGNxuAiKiofXw0mwXNyFT/3sJPi+AkxKejEp6QWTxUJ4UtaqGURHpOZitKeVLDTgjJHOByuSRhyRnGURI5dRhU0xKkFgpGeiL4fnBb6vP+amZEuO9ntcsNhsxK9Zj5nxYQzUVyIm+9Fxl7TUICwuFXxf9/2cVouYrLWLpvGNdDYiKmP1hWd3EQijoFPPYXpUYpcmCeDhNck9U3xalKKhoaGhoaGh+QhjrVa50OdJKBSSny2G2WzGq6++ivXr15OG9OPj4+ByuQgICHB7uTqdDjqdjvzbKnTpNWpKO1F2EaTtDfALFiIw4vGk95gMBphMJspT8pViVj6G6XEJRFlFYDCZTtfhIwjGxGDPigosc5My8Hz8V2W/9Bo1RrubsWbfC5A0V69Kqo0jJob64B8aDr1mHiGiJIx0NcFo0K3oBNig08KgVS/e0AEWwSwTXfeuIjqjADxv++gGg04LnVpFEQyH2uohTMqEQaexa78UNHNK6DXzkIu7EBgpWpUx4IzwpEz0N1Qi4WHEl0GnJdcvaa5GbF7pimyPRjWL6VEJJQWLw/dCUGScQ9HLus65KTkCwmNg0KohEEZBIIyCyWjESHczjDotOHxvCBPSVtzUWjc/63K/jQYDjAY9jHrnqdWeoJmdXtZxnhrqQ2xuicfLCIyMhbjxHuLWrFuyKG47ZlYbb0Eg+H55kDTXYEYmhU49h+CoBHD4Xo/1vHFFQHgMRroeIDQ2xe4zk8EAg04Ls9EAvdHwBLbOMQHhMRjueAAGiwVv/0f+Zpq5GbC4PPK3fzEbc1qUoqGhoaGhoaH5CPHuu+/iK1/5Cvn3xYsXl73MEydOoK2tDXfv3l3Wcl5//XX827/9m937f/7mi8taLg0NzdPJ7f/+jye9CTQ0NE85c3NzEAicR6TRohQNDQ0NDQ0NzUeIgwcPorj4UdUta2SSTCZDRMSjkt4ymQx5eXmLLu/ll1/GhQsXUFlZiejoR0bW4eHh0Ov1mJmZoURLyWQyhIc7Ljv///7f/8Nrr71G/m02m6FQKBAcHPxYPF1Wm9nZWcTExEAqlbqsJETzeKH75emF7punE7pfnl4+Tn1DEATm5uYQGRnpsh0tStHQ0NDQ0NDQfITw8/ODn58f+TdBEAgPD8eNGzdIEWp2dhY1NTV46aWXnC6HIAi88sorOHPmDG7fvo34eKpfUEFBATgcDm7cuIFjx44BALq7uzE0NITSUsdl53k8Hng8qgnrwvS/jwP+/v4f+cnCxxG6X55e6L55OqH75enl49I3riKkrNCiFA0NDQ0NDQ3NRxgGg4FXX30VP/rRj5CcnIz4+Hh85zvfQWRkJA4fPky22759O44cOYKXX34ZgCVl7y9/+QvOnTsHPz8/0idKIBDAy8sLAoEAX/jCF/Daa68hKCgI/v7+eOWVV1BaWrokk3MaGhoaGhoamoXQohQNDQ0NDQ0NzUecf/qnf8L8/Dy+/OUvY2ZmBhs2bMCVK1fA5/PJNv39/ZicnCT/fueddwAAW7ZsoSzrf/7nf/DZz34WAPDmm2+CyWTi2LFj0Ol02L17N371q1+t+v7Q0NDQ0NDQ/G1Ai1I0NDQ0NDQ0NB9xGAwGfvCDH+AHP/iB0zaDg4OUvxerhgMAfD4fb7/9Nt5+++3lbuLHAh6Ph+9973t2KYo0Txa6X55e6L55OqH75enlb7FvGIQ7dyQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQrCPNJbwANDQ3N08jExATCw8Px7//+7+R79+/fB5fLxY0bN57gltHQ0NDQ0NDQ0NDQ0Hw8oCOlaGhoaJxw6dIlHD58GPfv30dqairy8vJw6NAh/PznP3/Sm0ZDQ0NDQ0NDQ0NDQ/ORhxalaGhoaFxw4sQJXL9+HYWFhWhtbUVdXd3fVI43DQ0NDQ0NDQ0NDQ3NakGLUjQ0NDQu0Gg0yMrKglQqRUNDA7Kzs5/0JtHQ0NDQ0NDQ0NDQ0HwsoD2laGhoaFzQ39+P0dFRmM1mu8pVNDQ0NDQffQiCwHe/+11ERETAy8sLO3bsQG9vr9vff+ONN8BgMPDqq69S3tdqtThx4gSCg4Ph6+uLY8eOQSaTrfDWf3xZSr+8/vrrWLt2Lfz8/BAWFobDhw+ju7ub0obul+Xx9ttvIy4uDnw+H8XFxaitrXXZ/tSpU0hLSwOfz0d2djYuXbpE+Xy55x/NIzzpm9/97nfYuHEjAgMDERgYiB07dti1p/tmZfD0nLFy8uRJMBgMHD58mPL+x7FfaFGKhoaGxgl6vR5/93d/h+effx4//OEP8cUvfhFyufxJbxYNDQ0NzQryk5/8BL/4xS/w61//GjU1NfDx8cHu3buh1WoX/W5dXR1+85vfICcnx+6zr33taygrK8OpU6dQUVGB0dFRHD16dDV24WPJUvqloqICJ06cQHV1NcrLy2EwGLBr1y7Mz8+Tbeh+WTrvvfceXnvtNXzve99DY2MjcnNzsXv3bqf3Rvfv38eLL76IL3zhC3jw4AEOHz6Mw4cPo62tjWyznPOP5hGe9s3t27fx4osv4tatW6iqqkJMTAx27dqFkZERsg3dN8vH036xMjg4iG984xvYuHGj3Wcfy34haGhoaGgc8o1vfIOIi4sjlEolYTKZiA0bNhD79+9/0ptFQ0NDQ7NCmM1mIjw8nPiP//gP8r2ZmRmCx+MRf/3rX11+d25ujkhOTibKy8uJzZs3E1/96lcpy+BwOMSpU6fI9zo7OwkARFVV1Yrvx8eN5fSLLXK5nABAVFRUkMug+2XpFBUVESdOnCD/NplMRGRkJPH66687bP/cc8/Z3TcVFxcTX/nKVwiCWLl+pvG8bxZiNBoJPz8/4n//938JgqD7ZqVYSr8YjUZi3bp1xO9//3viM5/5DHHo0CHys49rv9CRUjQ0NDQOuH37Nt566y383//9H/z9/cFkMvF///d/uHPnDt55550nvXk0NDQ0NCuAWCzG+Pg4duzYQb4nEAhQXFyMqqoql989ceIE9u/fT/mulYaGBhgMBspnaWlpEIlEiy6XZnn9YotSqQQABAUFAaD7ZTno9Xo0NDRQjh2TycSOHTucHruqqiq782P37t1k+5Xq5791ltI3C1Gr1TAYDOS5QvfN8llqv/zgBz9AWFgYvvCFL9h99nHtF/aT3gAaGhqap5EtW7bAYDBQ3ouLiyNvcGloaGhoPvqMj48DAIRCIeV9oVBIfuaIkydPorGxEXV1dU6Xy+VyERAQ4NFyaSwstV9sMZvNePXVV7F+/XpkZWWRy6X7ZWlMTk7CZDI57JOuri6H3xkfH3fZhyvRzzRL65uFfOtb30JkZCQpdtB9s3yW0i93797FH/7wBzQ1NTn8/OPaL3SkFA0NDQ0NDQ0Nzd8E7777Lnx9fcnXwocP7iCVSvHVr34V7777Lvh8/ips5d8eK9EvCzlx4gTa2tpw8uTJFdhCGpqPL2+88QZOnjyJM2fO0Ne0J8jc3Bw+9alP4Xe/+x1CQkKe9OY8VuhIKRoaGhoaGhoamr8JDh48iOLiYvJvnU4HAJDJZIiIiCDfl8lkyMvLc7iMhoYGyOVy5Ofnk++ZTCZUVlbil7/8JXQ6HcLDw6HX6zEzM0OJypHJZAgPD1/ZnfoYsBL9YsvLL7+MCxcuoLKyEtHR0eT7dL8snZCQELBYLLtKha6OXXh4uMv21n+X2s80FpbSN1Z++tOf4o033sD169cpBRvovlk+nvZLf38/BgcHceDAAfI9s9kMAGCz2eju7v7Y9gsdKUVDQ0NDQ0NDQ/M3gZ+fH5KSkshXRkYGwsPDcePGDbLN7OwsampqUFpa6nAZ27dvR2trK5qamshXYWEhPvnJT6KpqQksFgsFBQXgcDiU5XZ3d2NoaMjpcv+WWYl+ASyl0l9++WWcOXMGN2/eRHx8POVzul+WDpfLRUFBAeXYmc1m3Lhxw+mxKy0tpbQHgPLycrJ9fHz8kvqZhspS+gawVHH74Q9/iCtXrqCwsJDyGd03y8fTfklLS7P7bTl48CC2bt2KpqYmxMTEfHz75Uk7rdPQ0NDQ0NDQ0NA8Kd544w0iICCAOHfuHNHS0kIcOnSIiI+PJzQaDdlm27ZtxH/91385XcbC6nsEQRB///d/T4hEIuLmzZtEfX09UVpaSpSWlq7WbnzsWEq/vPTSS4RAICBu375NjI2NkS+1Wk22oftl6Zw8eZLg8XjEH//4R6Kjo4P48pe/TAQEBBDj4+MEQRDEpz71KeKf//mfyfb37t0j2Gw28dOf/pTo7Owkvve97xEcDodobW0l27jTzzSL42nfvPHGGwSXyyU++OADyrkyNzdHaUP3zfLwtF8WsrD6HkH8/+3doUurbRjA4fssaBFt4j8gKwoLYhBBm1FBwWqymDWIqMmoSy4aBiaDQWRBQRBWxCDLA1EQYQaLiAvupOOH6dPve3ne4bmuuPByw91+PM+zn7kX1/cAAPhrra2txcvLSywvL8fz83NMTk5GrVb79LZKs9mMp6enb313b28vCoVCzM/Px9vbW8zMzMT+/n7W4/9Y/2Uvf/4dd3p6+tO3Dg4OYmlpKSLs5f9YXFyMVqsVm5ub8fj4GKVSKWq12sejy3d3d1Eo/HMRZ2JiIg4PD2NjYyPW19djeHg4jo+PPx6ej/janvl3391NpVKJdrsdCwsLn76ztbUV29vbEWE3WfjuXr7iJ+7lV6fT6eQ9BAAAAAB/F29KAQAAAJCcKAUAAABAcqIUAAAAAMmJUgAAAAAkJ0oBAAAAkJwoBQAAAEByohQAAAAAyYlSAAAAACQnSgEAAACQnCgFAAAAQHKiFAAAAJlotVoxNDQUOzs7H7/V6/Xo6emJ8/PzHCcDutGvTqfTyXsIAAAAfobT09OYm5uLer0exWIxSqVSzM7Oxu7ubt6jAV1GlAIAACBTKysrcXZ2FmNjY9FoNOLq6ip6e3vzHgvoMqIUAAAAmXp9fY2RkZG4v7+P6+vrGB0dzXskoAt5UwoAAIBMNZvNeHh4iPf397i9vc17HKBLOSkFAABAZtrtdoyPj0epVIpisRjlcjkajUYMDg7mPRrQZUQpAAAAMrO6uhpHR0dxc3MTfX19MTU1FQMDA3FycpL3aECXcX0PAACATFxcXES5XI5qtRr9/f1RKBSiWq3G5eVlVCqVvMcDuoyTUgAAAAAk56QUAAAAAMmJUgAAAAAkJ0oBAAAAkJwoBQAAAEByohQAAAAAyYlSAAAAACQnSgEAAACQnCgFAAAAQHKiFAAAAADJiVIAAAAAJCdKAQAAAJCcKAUAAABAcr8BED4WkmMhHRYAAAAASUVORK5CYII=",
"text/plain": [
"19:32:26 CEST Created task 'charge_junction' with task_id \n", - " 'hec-1e8a65d2-f9cb-4de0-b15f-6850c13226c2' and task_type \n", - " 'HEAT_CHARGE'. \n", - "\n" - ], - "text/plain": [ - "\u001b[2;36m19:32:26 CEST\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'charge_junction'\u001b[0m with task_id \n", - "\u001b[2;36m \u001b[0m\u001b[32m'hec-1e8a65d2-f9cb-4de0-b15f-6850c13226c2'\u001b[0m and task_type \n", - "\u001b[2;36m \u001b[0m\u001b[32m'HEAT_CHARGE'\u001b[0m. \n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
Tidy3D's HeatCharge solver is currently in the beta stage. Cost of\n", - " HeatCharge simulations is subject to change in the future. \n", - "\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mTidy3D's HeatCharge solver is currently in the beta stage. Cost of\n", - "\u001b[2;36m \u001b[0mHeatCharge simulations is subject to change in the future. \n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "5e9ddba869994bcab7f983cab5fb6175", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n" - ], - "text/plain": [] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
19:32:28 CEST Maximum FlexCredit cost: 0.025. Minimum cost depends on task \n", - " execution details. Use 'web.real_cost(task_id)' to get the billed \n", - " FlexCredit cost after a simulation run. \n", - "\n" - ], - "text/plain": [ - "\u001b[2;36m19:32:28 CEST\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Minimum cost depends on task \n", - "\u001b[2;36m \u001b[0mexecution details. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed \n", - "\u001b[2;36m \u001b[0mFlexCredit cost after a simulation run. \n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
19:32:29 CEST status = queued \n",
- "\n"
- ],
- "text/plain": [
- "\u001b[2;36m19:32:29 CEST\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "To cancel the simulation, use 'web.abort(task_id)' or \n", - " 'web.delete(task_id)' or abort/delete the task in the web UI. \n", - " Terminating the Python script will not stop the job running on the\n", - " cloud. \n", - "\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mTo cancel the simulation, use \u001b[32m'web.abort\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m or \n", - "\u001b[2;36m \u001b[0m\u001b[32m'web.delete\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m or abort/delete the task in the web UI. \n", - "\u001b[2;36m \u001b[0mTerminating the Python script will not stop the job running on the\n", - "\u001b[2;36m \u001b[0mcloud. \n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "fe3e4c31295d4f3790f6d750e058430b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
19:44:48 CEST status = preprocess \n",
- "\n"
- ],
- "text/plain": [
- "\u001b[2;36m19:44:48 CEST\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n"
- ],
- "text/plain": []
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "19:44:55 CEST starting up solver \n",
- "\n"
- ],
- "text/plain": [
- "\u001b[2;36m19:44:55 CEST\u001b[0m\u001b[2;36m \u001b[0mstarting up solver \n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- " running solver \n",
- "\n"
- ],
- "text/plain": [
- "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "19:49:30 CEST status = success \n",
- "\n"
- ],
- "text/plain": [
- "\u001b[2;36m19:49:30 CEST\u001b[0m\u001b[2;36m \u001b[0mstatus = success \n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n"
- ],
- "text/plain": []
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0431f5ea54ac4b098e4f1b523899b523",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Output()"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n"
- ],
- "text/plain": []
- },
- "metadata": {},
- "output_type": "display_data"
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Warning : Logger already started - ignoring\n"
+ ]
},
{
- "data": {
- "text/html": [
- "19:49:34 CEST loading simulation from charge_junction.hdf5 \n",
- "\n"
- ],
- "text/plain": [
- "\u001b[2;36m19:49:34 CEST\u001b[0m\u001b[2;36m \u001b[0mloading simulation from charge_junction.hdf5 \n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Info : Meshing 1D...nts - Making faces \n",
+ "Info : [ 0%] Meshing curve 2 (Line)\n",
+ "Info : [ 10%] Meshing curve 6 (Line)\n",
+ "Info : [ 10%] Meshing curve 8 (Line)\n",
+ "Info : [ 10%] Meshing curve 9 (Line)\n",
+ "Info : [ 10%] Meshing curve 10 (Line)\n",
+ "Info : [ 10%] Meshing curve 11 (Line)\n",
+ "Info : [ 10%] Meshing curve 12 (Line)\n",
+ "Info : [ 10%] Meshing curve 13 (Line)\n",
+ "Info : [ 10%] Meshing curve 14 (Line)\n",
+ "Info : [ 10%] Meshing curve 15 (Line)\n",
+ "Info : [ 10%] Meshing curve 16 (Line)\n",
+ "Info : [ 10%] Meshing curve 17 (Line)\n",
+ "Info : [ 10%] Meshing curve 18 (Line)\n",
+ "Info : [ 10%] Meshing curve 19 (Line)\n",
+ "Info : [ 20%] Meshing curve 20 (Line)\n",
+ "Info : [ 20%] Meshing curve 21 (Line)\n",
+ "Info : [ 20%] Meshing curve 22 (Line)\n",
+ "Info : [ 20%] Meshing curve 23 (Line)\n",
+ "Info : [ 20%] Meshing curve 24 (Line)\n",
+ "Info : [ 20%] Meshing curve 25 (Line)\n",
+ "Info : [ 20%] Meshing curve 36 (Line)\n",
+ "Info : [ 20%] Meshing curve 37 (Line)\n",
+ "Info : [ 20%] Meshing curve 39 (Line)\n",
+ "Info : [ 20%] Meshing curve 40 (Line)\n",
+ "Info : [ 20%] Meshing curve 42 (Line)\n",
+ "Info : [ 20%] Meshing curve 43 (Line)\n",
+ "Info : [ 20%] Meshing curve 44 (Line)\n",
+ "Info : [ 20%] Meshing curve 45 (Line)\n",
+ "Info : [ 30%] Meshing curve 46 (Line)\n",
+ "Info : [ 30%] Meshing curve 47 (Line)\n",
+ "Info : [ 30%] Meshing curve 67 (Line)\n",
+ "Info : [ 30%] Meshing curve 68 (Line)\n",
+ "Info : [ 30%] Meshing curve 69 (Line)\n",
+ "Info : [ 30%] Meshing curve 72 (Line)\n",
+ "Info : [ 30%] Meshing curve 73 (Line)\n",
+ "Info : [ 30%] Meshing curve 74 (Line)\n",
+ "Info : [ 30%] Meshing curve 75 (Line)\n",
+ "Info : [ 30%] Meshing curve 76 (Line)\n",
+ "Info : [ 30%] Meshing curve 77 (Line)\n",
+ "Info : [ 30%] Meshing curve 78 (Line)\n",
+ "Info : [ 30%] Meshing curve 79 (Line)\n",
+ "Info : [ 40%] Meshing curve 96 (Line)\n",
+ "Info : [ 40%] Meshing curve 97 (Line)\n",
+ "Info : [ 40%] Meshing curve 98 (Line)\n",
+ "Info : [ 40%] Meshing curve 99 (Line)\n",
+ "Info : [ 40%] Meshing curve 100 (Line)\n",
+ "Info : [ 40%] Meshing curve 101 (Line)\n",
+ "Info : [ 40%] Meshing curve 102 (Line)\n",
+ "Info : [ 40%] Meshing curve 105 (Line)\n",
+ "Info : [ 40%] Meshing curve 106 (Line)\n",
+ "Info : [ 40%] Meshing curve 107 (Line)\n",
+ "Info : [ 40%] Meshing curve 108 (Line)\n",
+ "Info : [ 40%] Meshing curve 109 (Line)\n",
+ "Info : [ 40%] Meshing curve 110 (Line)\n",
+ "Info : [ 40%] Meshing curve 111 (Line)\n",
+ "Info : [ 50%] Meshing curve 112 (Line)\n",
+ "Info : [ 50%] Meshing curve 114 (Line)\n",
+ "Info : [ 50%] Meshing curve 115 (Line)\n",
+ "Info : [ 50%] Meshing curve 119 (Line)\n",
+ "Info : [ 50%] Meshing curve 120 (Line)\n",
+ "Info : [ 50%] Meshing curve 121 (Line)\n",
+ "Info : [ 50%] Meshing curve 124 (Line)\n",
+ "Info : [ 50%] Meshing curve 125 (Line)\n",
+ "Info : [ 50%] Meshing curve 126 (Line)\n",
+ "Info : [ 50%] Meshing curve 127 (Line)\n",
+ "Info : [ 50%] Meshing curve 128 (Line)\n",
+ "Info : [ 50%] Meshing curve 134 (Line)\n",
+ "Info : [ 50%] Meshing curve 136 (Line)\n",
+ "Info : [ 60%] Meshing curve 137 (Line)\n",
+ "Info : [ 60%] Meshing curve 148 (Line)\n",
+ "Info : [ 60%] Meshing curve 149 (Line)\n",
+ "Info : [ 60%] Meshing curve 150 (Line)\n",
+ "Info : [ 60%] Meshing curve 151 (Line)\n",
+ "Info : [ 60%] Meshing curve 152 (Line)\n",
+ "Info : [ 60%] Meshing curve 155 (Line)\n",
+ "Info : [ 60%] Meshing curve 156 (Line)\n",
+ "Info : [ 60%] Meshing curve 157 (Line)\n",
+ "Info : [ 60%] Meshing curve 158 (Line)\n",
+ "Info : [ 60%] Meshing curve 159 (Line)\n",
+ "Info : Meshing 1D...nts - Making faces \n",
+ "Info : [ 0%] Meshing curve 2 (Line)\n",
+ "Info : [ 10%] Meshing curve 6 (Line)\n",
+ "Info : [ 10%] Meshing curve 8 (Line)\n",
+ "Info : [ 10%] Meshing curve 9 (Line)\n",
+ "Info : [ 10%] Meshing curve 10 (Line)\n",
+ "Info : [ 10%] Meshing curve 11 (Line)\n",
+ "Info : [ 10%] Meshing curve 12 (Line)\n",
+ "Info : [ 10%] Meshing curve 13 (Line)\n",
+ "Info : [ 10%] Meshing curve 14 (Line)\n",
+ "Info : [ 10%] Meshing curve 15 (Line)\n",
+ "Info : [ 10%] Meshing curve 16 (Line)\n",
+ "Info : [ 10%] Meshing curve 17 (Line)\n",
+ "Info : [ 10%] Meshing curve 18 (Line)\n",
+ "Info : [ 10%] Meshing curve 19 (Line)\n",
+ "Info : [ 20%] Meshing curve 20 (Line)\n",
+ "Info : [ 20%] Meshing curve 21 (Line)\n",
+ "Info : [ 20%] Meshing curve 22 (Line)\n",
+ "Info : [ 20%] Meshing curve 23 (Line)\n",
+ "Info : [ 20%] Meshing curve 24 (Line)\n",
+ "Info : [ 20%] Meshing curve 25 (Line)\n",
+ "Info : [ 20%] Meshing curve 36 (Line)\n",
+ "Info : [ 20%] Meshing curve 37 (Line)\n",
+ "Info : [ 20%] Meshing curve 39 (Line)\n",
+ "Info : [ 20%] Meshing curve 40 (Line)\n",
+ "Info : [ 20%] Meshing curve 42 (Line)\n",
+ "Info : [ 20%] Meshing curve 43 (Line)\n",
+ "Info : [ 20%] Meshing curve 44 (Line)\n",
+ "Info : [ 20%] Meshing curve 45 (Line)\n",
+ "Info : [ 30%] Meshing curve 46 (Line)\n",
+ "Info : [ 30%] Meshing curve 47 (Line)\n",
+ "Info : [ 30%] Meshing curve 67 (Line)\n",
+ "Info : [ 30%] Meshing curve 68 (Line)\n",
+ "Info : [ 30%] Meshing curve 69 (Line)\n",
+ "Info : [ 30%] Meshing curve 72 (Line)\n",
+ "Info : [ 30%] Meshing curve 73 (Line)\n",
+ "Info : [ 30%] Meshing curve 74 (Line)\n",
+ "Info : [ 30%] Meshing curve 75 (Line)\n",
+ "Info : [ 30%] Meshing curve 76 (Line)\n",
+ "Info : [ 30%] Meshing curve 77 (Line)\n",
+ "Info : [ 30%] Meshing curve 78 (Line)\n",
+ "Info : [ 30%] Meshing curve 79 (Line)\n",
+ "Info : [ 40%] Meshing curve 96 (Line)\n",
+ "Info : [ 40%] Meshing curve 97 (Line)\n",
+ "Info : [ 40%] Meshing curve 98 (Line)\n",
+ "Info : [ 40%] Meshing curve 99 (Line)\n",
+ "Info : [ 40%] Meshing curve 100 (Line)\n",
+ "Info : [ 40%] Meshing curve 101 (Line)\n",
+ "Info : [ 40%] Meshing curve 102 (Line)\n",
+ "Info : [ 40%] Meshing curve 105 (Line)\n",
+ "Info : [ 40%] Meshing curve 106 (Line)\n",
+ "Info : [ 40%] Meshing curve 107 (Line)\n",
+ "Info : [ 40%] Meshing curve 108 (Line)\n",
+ "Info : [ 40%] Meshing curve 109 (Line)\n",
+ "Info : [ 40%] Meshing curve 110 (Line)\n",
+ "Info : [ 40%] Meshing curve 111 (Line)\n",
+ "Info : [ 50%] Meshing curve 112 (Line)\n",
+ "Info : [ 50%] Meshing curve 114 (Line)\n",
+ "Info : [ 50%] Meshing curve 115 (Line)\n",
+ "Info : [ 50%] Meshing curve 119 (Line)\n",
+ "Info : [ 50%] Meshing curve 120 (Line)\n",
+ "Info : [ 50%] Meshing curve 121 (Line)\n",
+ "Info : [ 50%] Meshing curve 124 (Line)\n",
+ "Info : [ 50%] Meshing curve 125 (Line)\n",
+ "Info : [ 50%] Meshing curve 126 (Line)\n",
+ "Info : [ 50%] Meshing curve 127 (Line)\n",
+ "Info : [ 50%] Meshing curve 128 (Line)\n",
+ "Info : [ 50%] Meshing curve 134 (Line)\n",
+ "Info : [ 50%] Meshing curve 136 (Line)\n",
+ "Info : [ 60%] Meshing curve 137 (Line)\n",
+ "Info : [ 60%] Meshing curve 148 (Line)\n",
+ "Info : [ 60%] Meshing curve 149 (Line)\n",
+ "Info : [ 60%] Meshing curve 150 (Line)\n",
+ "Info : [ 60%] Meshing curve 151 (Line)\n",
+ "Info : [ 60%] Meshing curve 152 (Line)\n",
+ "Info : [ 60%] Meshing curve 155 (Line)\n",
+ "Info : [ 60%] Meshing curve 156 (Line)\n",
+ "Info : [ 60%] Meshing curve 157 (Line)\n",
+ "Info : [ 60%] Meshing curve 158 (Line)\n",
+ "Info : [ 60%] Meshing curve 159 (Line)\n",
+ "Info : [ 60%] Meshing curve 160 (Line)\n",
+ "Info : [ 60%] Meshing curve 161 (Line)\n",
+ "Info : [ 60%] Meshing curve 162 (Line)\n",
+ "Info : [ 70%] Meshing curve 163 (Line)\n",
+ "Info : [ 70%] Meshing curve 164 (Line)\n",
+ "Info : [ 70%] Meshing curve 166 (Line)\n",
+ "Info : [ 70%] Meshing curve 167 (Line)\n",
+ "Info : [ 70%] Meshing curve 174 (Line)\n",
+ "Info : [ 70%] Meshing curve 175 (Line)\n",
+ "Info : [ 70%] Meshing curve 182 (Line)\n",
+ "Info : [ 70%] Meshing curve 183 (Line)\n",
+ "Info : [ 70%] Meshing curve 186 (Line)\n",
+ "Info : [ 70%] Meshing curve 187 (Line)\n",
+ "Info : [ 70%] Meshing curve 188 (Line)\n",
+ "Info : [ 70%] Meshing curve 189 (Line)\n",
+ "Info : [ 70%] Meshing curve 190 (Line)\n",
+ "Info : [ 70%] Meshing curve 191 (Line)\n",
+ "Info : [ 80%] Meshing curve 192 (Line)\n",
+ "Info : [ 80%] Meshing curve 196 (Line)\n",
+ "Info : [ 80%] Meshing curve 197 (Line)\n",
+ "Info : [ 80%] Meshing curve 198 (Line)\n",
+ "Info : [ 80%] Meshing curve 199 (Line)\n",
+ "Info : [ 80%] Meshing curve 200 (Line)\n",
+ "Info : [ 80%] Meshing curve 201 (Line)\n",
+ "Info : [ 80%] Meshing curve 202 (Line)\n",
+ "Info : [ 80%] Meshing curve 203 (Line)\n",
+ "Info : [ 80%] Meshing curve 217 (Line)\n",
+ "Info : [ 80%] Meshing curve 218 (Line)\n",
+ "Info : [ 80%] Meshing curve 219 (Line)\n",
+ "Info : [ 80%] Meshing curve 220 (Line)\n",
+ "Info : [ 90%] Meshing curve 221 (Line)\n",
+ "Info : [ 90%] Meshing curve 222 (Line)\n",
+ "Info : [ 90%] Meshing curve 223 (Line)\n",
+ "Info : [ 90%] Meshing curve 224 (Line)\n",
+ "Info : [ 90%] Meshing curve 225 (Line)\n",
+ "Info : [ 90%] Meshing curve 226 (Line)\n",
+ "Info : [ 90%] Meshing curve 227 (Line)\n",
+ "Info : [ 90%] Meshing curve 228 (Line)\n",
+ "Info : [ 90%] Meshing curve 229 (Line)\n",
+ "Info : [ 90%] Meshing curve 230 (Line)\n",
+ "Info : [ 90%] Meshing curve 231 (Line)\n",
+ "Info : [ 90%] Meshing curve 232 (Line)\n",
+ "Info : [ 90%] Meshing curve 233 (Line)\n",
+ "Info : [ 90%] Meshing curve 234 (Line)\n",
+ "Info : [100%] Meshing curve 235 (Line)\n",
+ "Info : [100%] Meshing curve 236 (Line)\n",
+ "Info : [100%] Meshing curve 237 (Line)\n",
+ "Info : [100%] Meshing curve 238 (Line)\n",
+ "Info : [100%] Meshing curve 239 (Line)\n",
+ "Info : [100%] Meshing curve 240 (Line)\n",
+ "Info : [100%] Meshing curve 241 (Line)\n",
+ "Info : [100%] Meshing curve 242 (Line)\n",
+ "Info : [100%] Meshing curve 243 (Line)\n",
+ "Info : [100%] Meshing curve 244 (Line)\n",
+ "Info : [100%] Meshing curve 245 (Line)\n",
+ "Info : [100%] Meshing curve 246 (Line)\n",
+ "Info : [100%] Meshing curve 256 (Line)\n",
+ "Info : Done meshing 1D (Wall 0.128136s, CPU 0.131782s)\n",
+ "Info : Meshing 2D...\n",
+ "Info : [ 0%] Meshing surface 3 (Plane, Delaunay)\n",
+ "Info : [ 60%] Meshing curve 160 (Line)\n",
+ "Info : [ 60%] Meshing curve 161 (Line)\n",
+ "Info : [ 60%] Meshing curve 162 (Line)\n",
+ "Info : [ 70%] Meshing curve 163 (Line)\n",
+ "Info : [ 70%] Meshing curve 164 (Line)\n",
+ "Info : [ 70%] Meshing curve 166 (Line)\n",
+ "Info : [ 70%] Meshing curve 167 (Line)\n",
+ "Info : [ 70%] Meshing curve 174 (Line)\n",
+ "Info : [ 70%] Meshing curve 175 (Line)\n",
+ "Info : [ 70%] Meshing curve 182 (Line)\n",
+ "Info : [ 70%] Meshing curve 183 (Line)\n",
+ "Info : [ 70%] Meshing curve 186 (Line)\n",
+ "Info : [ 70%] Meshing curve 187 (Line)\n",
+ "Info : [ 70%] Meshing curve 188 (Line)\n",
+ "Info : [ 70%] Meshing curve 189 (Line)\n",
+ "Info : [ 70%] Meshing curve 190 (Line)\n",
+ "Info : [ 70%] Meshing curve 191 (Line)\n",
+ "Info : [ 80%] Meshing curve 192 (Line)\n",
+ "Info : [ 80%] Meshing curve 196 (Line)\n",
+ "Info : [ 80%] Meshing curve 197 (Line)\n",
+ "Info : [ 80%] Meshing curve 198 (Line)\n",
+ "Info : [ 80%] Meshing curve 199 (Line)\n",
+ "Info : [ 80%] Meshing curve 200 (Line)\n",
+ "Info : [ 80%] Meshing curve 201 (Line)\n",
+ "Info : [ 80%] Meshing curve 202 (Line)\n",
+ "Info : [ 80%] Meshing curve 203 (Line)\n",
+ "Info : [ 80%] Meshing curve 217 (Line)\n",
+ "Info : [ 80%] Meshing curve 218 (Line)\n",
+ "Info : [ 80%] Meshing curve 219 (Line)\n",
+ "Info : [ 80%] Meshing curve 220 (Line)\n",
+ "Info : [ 90%] Meshing curve 221 (Line)\n",
+ "Info : [ 90%] Meshing curve 222 (Line)\n",
+ "Info : [ 90%] Meshing curve 223 (Line)\n",
+ "Info : [ 90%] Meshing curve 224 (Line)\n",
+ "Info : [ 90%] Meshing curve 225 (Line)\n",
+ "Info : [ 90%] Meshing curve 226 (Line)\n",
+ "Info : [ 90%] Meshing curve 227 (Line)\n",
+ "Info : [ 90%] Meshing curve 228 (Line)\n",
+ "Info : [ 90%] Meshing curve 229 (Line)\n",
+ "Info : [ 90%] Meshing curve 230 (Line)\n",
+ "Info : [ 90%] Meshing curve 231 (Line)\n",
+ "Info : [ 90%] Meshing curve 232 (Line)\n",
+ "Info : [ 90%] Meshing curve 233 (Line)\n",
+ "Info : [ 90%] Meshing curve 234 (Line)\n",
+ "Info : [100%] Meshing curve 235 (Line)\n",
+ "Info : [100%] Meshing curve 236 (Line)\n",
+ "Info : [100%] Meshing curve 237 (Line)\n",
+ "Info : [100%] Meshing curve 238 (Line)\n",
+ "Info : [100%] Meshing curve 239 (Line)\n",
+ "Info : [100%] Meshing curve 240 (Line)\n",
+ "Info : [100%] Meshing curve 241 (Line)\n",
+ "Info : [100%] Meshing curve 242 (Line)\n",
+ "Info : [100%] Meshing curve 243 (Line)\n",
+ "Info : [100%] Meshing curve 244 (Line)\n",
+ "Info : [100%] Meshing curve 245 (Line)\n",
+ "Info : [100%] Meshing curve 246 (Line)\n",
+ "Info : [100%] Meshing curve 256 (Line)\n",
+ "Info : Done meshing 1D (Wall 0.128136s, CPU 0.131782s)\n",
+ "Info : Meshing 2D...\n",
+ "Info : [ 0%] Meshing surface 3 (Plane, Delaunay)\n",
+ "Info : [ 10%] Meshing surface 8 (Plane, Delaunay)\n",
+ "Info : [ 10%] Meshing surface 11 (Plane, Delaunay)\n",
+ "Info : [ 10%] Meshing surface 12 (Plane, Delaunay)\n",
+ "Info : [ 10%] Meshing surface 13 (Plane, Delaunay)\n",
+ "Info : [ 20%] Meshing surface 14 (Plane, Delaunay)\n",
+ "Info : [ 20%] Meshing surface 28 (Plane, Delaunay)\n",
+ "Info : [ 20%] Meshing surface 29 (Plane, Delaunay)\n",
+ "Info : [ 20%] Meshing surface 30 (Plane, Delaunay)\n",
+ "Info : [ 10%] Meshing surface 8 (Plane, Delaunay)\n",
+ "Info : [ 10%] Meshing surface 11 (Plane, Delaunay)\n",
+ "Info : [ 10%] Meshing surface 12 (Plane, Delaunay)\n",
+ "Info : [ 10%] Meshing surface 13 (Plane, Delaunay)\n",
+ "Info : [ 20%] Meshing surface 14 (Plane, Delaunay)\n",
+ "Info : [ 20%] Meshing surface 28 (Plane, Delaunay)\n",
+ "Info : [ 20%] Meshing surface 29 (Plane, Delaunay)\n",
+ "Info : [ 20%] Meshing surface 30 (Plane, Delaunay)\n",
+ "Info : [ 30%] Meshing surface 42 (Plane, Delaunay)\n",
+ "Info : [ 30%] Meshing surface 42 (Plane, Delaunay)\n",
+ "Info : [ 30%] Meshing surface 43 (Plane, Delaunay)\n",
+ "Info : [ 30%] Meshing surface 45 (Plane, Delaunay)\n",
+ "Info : [ 30%] Meshing surface 46 (Plane, Delaunay)\n",
+ "Info : [ 30%] Meshing surface 47 (Plane, Delaunay)\n",
+ "Info : [ 40%] Meshing surface 50 (Plane, Delaunay)\n",
+ "Info : [ 40%] Meshing surface 51 (Plane, Delaunay)\n",
+ "Info : [ 40%] Meshing surface 55 (Plane, Delaunay)\n",
+ "Info : [ 40%] Meshing surface 57 (Plane, Delaunay)\n",
+ "Info : [ 50%] Meshing surface 61 (Plane, Delaunay)\n",
+ "Info : [ 30%] Meshing surface 43 (Plane, Delaunay)\n",
+ "Info : [ 30%] Meshing surface 45 (Plane, Delaunay)\n",
+ "Info : [ 30%] Meshing surface 46 (Plane, Delaunay)\n",
+ "Info : [ 30%] Meshing surface 47 (Plane, Delaunay)\n",
+ "Info : [ 40%] Meshing surface 50 (Plane, Delaunay)\n",
+ "Info : [ 40%] Meshing surface 51 (Plane, Delaunay)\n",
+ "Info : [ 40%] Meshing surface 55 (Plane, Delaunay)\n",
+ "Info : [ 40%] Meshing surface 57 (Plane, Delaunay)\n",
+ "Info : [ 50%] Meshing surface 61 (Plane, Delaunay)\n",
+ "Info : [ 50%] Meshing surface 70 (Plane, Delaunay)\n",
+ "Info : [ 50%] Meshing surface 71 (Plane, Delaunay)\n",
+ "Info : [ 50%] Meshing surface 73 (Plane, Delaunay)\n",
+ "Info : [ 60%] Meshing surface 74 (Plane, Delaunay)\n",
+ "Info : [ 60%] Meshing surface 75 (Plane, Delaunay)\n",
+ "Info : [ 50%] Meshing surface 70 (Plane, Delaunay)\n",
+ "Info : [ 50%] Meshing surface 71 (Plane, Delaunay)\n",
+ "Info : [ 50%] Meshing surface 73 (Plane, Delaunay)\n",
+ "Info : [ 60%] Meshing surface 74 (Plane, Delaunay)\n",
+ "Info : [ 60%] Meshing surface 75 (Plane, Delaunay)\n",
+ "Info : [ 60%] Meshing surface 78 (Plane, Delaunay)\n",
+ "Info : [ 60%] Meshing surface 79 (Plane, Delaunay)\n",
+ "Info : [ 60%] Meshing surface 92 (Plane, Delaunay)\n",
+ "Info : [ 70%] Meshing surface 93 (Plane, Delaunay)\n",
+ "Info : [ 70%] Meshing surface 94 (Plane, Delaunay)\n",
+ "Info : [ 70%] Meshing surface 98 (Plane, Delaunay)\n",
+ "Info : [ 70%] Meshing surface 99 (Plane, Delaunay)\n",
+ "Info : [ 80%] Meshing surface 100 (Plane, Delaunay)\n",
+ "Info : [ 80%] Meshing surface 112 (Plane, Delaunay)\n",
+ "Info : [ 60%] Meshing surface 78 (Plane, Delaunay)\n",
+ "Info : [ 60%] Meshing surface 79 (Plane, Delaunay)\n",
+ "Info : [ 60%] Meshing surface 92 (Plane, Delaunay)\n",
+ "Info : [ 70%] Meshing surface 93 (Plane, Delaunay)\n",
+ "Info : [ 70%] Meshing surface 94 (Plane, Delaunay)\n",
+ "Info : [ 70%] Meshing surface 98 (Plane, Delaunay)\n",
+ "Info : [ 70%] Meshing surface 99 (Plane, Delaunay)\n",
+ "Info : [ 80%] Meshing surface 100 (Plane, Delaunay)\n",
+ "Info : [ 80%] Meshing surface 112 (Plane, Delaunay)\n",
+ "Info : [ 80%] Meshing surface 113 (Plane, Delaunay)\n",
+ "Info : [ 80%] Meshing surface 114 (Plane, Delaunay)\n",
+ "Info : [ 80%] Meshing surface 115 (Plane, Delaunay)\n",
+ "Info : [ 90%] Meshing surface 116 (Plane, Delaunay)\n",
+ "Info : [ 90%] Meshing surface 117 (Plane, Delaunay)\n",
+ "Info : [ 90%] Meshing surface 123 (Plane, Delaunay)\n",
+ "Info : [ 90%] Meshing surface 124 (Plane, Delaunay)\n",
+ "Info : [100%] Meshing surface 125 (Plane, Delaunay)\n",
+ "Info : [100%] Meshing surface 126 (Plane, Delaunay)\n",
+ "Info : [100%] Meshing surface 127 (Plane, Delaunay)\n",
+ "Info : [100%] Meshing surface 128 (Plane, Delaunay)\n",
+ "Info : Done meshing 2D (Wall 2.31421s, CPU 2.32096s)\n",
+ "Info : 80569 nodes 174628 elements\n",
+ "Info : Removing duplicate mesh elements...\n",
+ "Info : [ 80%] Meshing surface 113 (Plane, Delaunay)\n",
+ "Info : [ 80%] Meshing surface 114 (Plane, Delaunay)\n",
+ "Info : [ 80%] Meshing surface 115 (Plane, Delaunay)\n",
+ "Info : [ 90%] Meshing surface 116 (Plane, Delaunay)\n",
+ "Info : [ 90%] Meshing surface 117 (Plane, Delaunay)\n",
+ "Info : [ 90%] Meshing surface 123 (Plane, Delaunay)\n",
+ "Info : [ 90%] Meshing surface 124 (Plane, Delaunay)\n",
+ "Info : [100%] Meshing surface 125 (Plane, Delaunay)\n",
+ "Info : [100%] Meshing surface 126 (Plane, Delaunay)\n",
+ "Info : [100%] Meshing surface 127 (Plane, Delaunay)\n",
+ "Info : [100%] Meshing surface 128 (Plane, Delaunay)\n",
+ "Info : Done meshing 2D (Wall 2.31421s, CPU 2.32096s)\n",
+ "Info : 80569 nodes 174628 elements\n",
+ "Info : Removing duplicate mesh elements...\n",
+ "Info : Done removing duplicate mesh elements\n",
+ "Info : Removing duplicate mesh nodes...\n",
+ "Info : Found 0 duplicate nodes \n",
+ "Info : No duplicate nodes found\n",
+ "Info : Writing './output/gmsh.msh'...\n",
+ "Info : Done removing duplicate mesh elements\n",
+ "Info : Removing duplicate mesh nodes...\n",
+ "Info : Found 0 duplicate nodes \n",
+ "Info : No duplicate nodes found\n",
+ "Info : Writing './output/gmsh.msh'...\n",
+ "Info : Done writing './output/gmsh.msh'\n",
+ "Info : Writing './output/gmsh.vtk'...\n",
+ "Info : Done writing './output/gmsh.vtk'\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:11:54\u001b[0m.\u001b[1;36m678\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mMesh heat-charge simulation time (s): 3.7582\u001b[0m \n",
+ "Info : Done writing './output/gmsh.msh'\n",
+ "Info : Writing './output/gmsh.vtk'...\n",
+ "Info : Done writing './output/gmsh.vtk'\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:11:54\u001b[0m.\u001b[1;36m678\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mMesh heat-charge simulation time (s): 3.7582\u001b[0m \n",
+ "Resetting DEVSIM\n",
+ "Resetting DEVSIM\n",
+ "Physical group name bc_0 has 0 Tetrahedra.\n",
+ "Physical group name bc_0 has 0 Triangles.\n",
+ "Physical group name bc_0 has 19 Lines.\n",
+ "Physical group name bc_0 has 21 Points.\n",
+ "Physical group name bc_1 has 0 Tetrahedra.\n",
+ "Physical group name bc_1 has 0 Triangles.\n",
+ "Physical group name bc_1 has 168 Lines.\n",
+ "Physical group name bc_1 has 170 Points.\n",
+ "Physical group name bc_2 has 0 Tetrahedra.\n",
+ "Physical group name bc_2 has 0 Triangles.\n",
+ "Physical group name bc_2 has 11858 Lines.\n",
+ "Physical group name bc_2 has 11860 Points.\n",
+ "Physical group name bc_3 has 0 Tetrahedra.\n",
+ "Physical group name bc_3 has 0 Triangles.\n",
+ "Physical group name bc_3 has 20 Lines.\n",
+ "Physical group name bc_3 has 21 Points.\n",
+ "Physical group name bc_4 has 0 Tetrahedra.\n",
+ "Physical group name bc_4 has 0 Triangles.\n",
+ "Physical group name bc_4 has 21 Lines.\n",
+ "Physical group name bc_4 has 22 Points.\n",
+ "Physical group name bc_5 has 0 Tetrahedra.\n",
+ "Physical group name bc_5 has 0 Triangles.\n",
+ "Physical group name bc_5 has 23 Lines.\n",
+ "Physical group name bc_5 has 24 Points.\n",
+ "Physical group name bc_6 has 0 Tetrahedra.\n",
+ "Physical group name bc_6 has 0 Triangles.\n",
+ "Physical group name bc_6 has 26 Lines.\n",
+ "Physical group name bc_6 has 27 Points.\n",
+ "Physical group name bc_0 has 0 Tetrahedra.\n",
+ "Physical group name bc_0 has 0 Triangles.\n",
+ "Physical group name bc_0 has 19 Lines.\n",
+ "Physical group name bc_0 has 21 Points.\n",
+ "Physical group name bc_1 has 0 Tetrahedra.\n",
+ "Physical group name bc_1 has 0 Triangles.\n",
+ "Physical group name bc_1 has 168 Lines.\n",
+ "Physical group name bc_1 has 170 Points.\n",
+ "Physical group name bc_2 has 0 Tetrahedra.\n",
+ "Physical group name bc_2 has 0 Triangles.\n",
+ "Physical group name bc_2 has 11858 Lines.\n",
+ "Physical group name bc_2 has 11860 Points.\n",
+ "Physical group name bc_3 has 0 Tetrahedra.\n",
+ "Physical group name bc_3 has 0 Triangles.\n",
+ "Physical group name bc_3 has 20 Lines.\n",
+ "Physical group name bc_3 has 21 Points.\n",
+ "Physical group name bc_4 has 0 Tetrahedra.\n",
+ "Physical group name bc_4 has 0 Triangles.\n",
+ "Physical group name bc_4 has 21 Lines.\n",
+ "Physical group name bc_4 has 22 Points.\n",
+ "Physical group name bc_5 has 0 Tetrahedra.\n",
+ "Physical group name bc_5 has 0 Triangles.\n",
+ "Physical group name bc_5 has 23 Lines.\n",
+ "Physical group name bc_5 has 24 Points.\n",
+ "Physical group name bc_6 has 0 Tetrahedra.\n",
+ "Physical group name bc_6 has 0 Triangles.\n",
+ "Physical group name bc_6 has 26 Lines.\n",
+ "Physical group name bc_6 has 27 Points.\n",
+ "Physical group name zone_1 has 0 Tetrahedra.\n",
+ "Physical group name zone_1 has 76473 Triangles.\n",
+ "Physical group name zone_1 has 120743 Lines.\n",
+ "Physical group name zone_1 has 44272 Points.\n",
+ "Physical group name zone_2 has 0 Tetrahedra.\n",
+ "Physical group name zone_2 has 84386 Triangles.\n",
+ "Physical group name zone_2 has 132542 Lines.\n",
+ "Physical group name zone_2 has 48157 Points.\n",
+ "Device device has 80569 coordinates with max index 80569\n",
+ "Region zone_1 has 44272 nodes.\n",
+ "Physical group name zone_1 has 0 Tetrahedra.\n",
+ "Physical group name zone_1 has 76473 Triangles.\n",
+ "Physical group name zone_1 has 120743 Lines.\n",
+ "Physical group name zone_1 has 44272 Points.\n",
+ "Physical group name zone_2 has 0 Tetrahedra.\n",
+ "Physical group name zone_2 has 84386 Triangles.\n",
+ "Physical group name zone_2 has 132542 Lines.\n",
+ "Physical group name zone_2 has 48157 Points.\n",
+ "Device device has 80569 coordinates with max index 80569\n",
+ "Region zone_1 has 44272 nodes.\n",
+ "Region zone_2 has 48157 nodes.\n",
+ "Contact zone_1_bc_1 in region zone_1 with 170 nodes\n",
+ "Warning, contact \"zone_1_bc_1\" shares a node with contact \"zone_1_bc_3\"\n",
+ "Contact zone_1_bc_3 in region zone_1 with 21 nodes\n",
+ "Warning, contact \"zone_1_bc_1\" shares a node with contact \"zone_1_bc_4\"\n",
+ "Contact zone_1_bc_4 in region zone_1 with 22 nodes\n",
+ "Warning, contact \"zone_1_bc_1\" shares a node with contact \"zone_2_bc_0\" (repeated 1 times)\n",
+ "Contact zone_2_bc_0 in region zone_2 with 21 nodes\n",
+ "Warning, contact \"zone_1_bc_3\" shares a node with contact \"zone_2_bc_5\"\n",
+ "Warning, contact \"zone_2_bc_0\" shares a node with contact \"zone_2_bc_5\"\n",
+ "Contact zone_2_bc_5 in region zone_2 with 24 nodes\n",
+ "Warning, contact \"zone_1_bc_4\" shares a node with contact \"zone_2_bc_6\"\n",
+ "Warning, contact \"zone_2_bc_0\" shares a node with contact \"zone_2_bc_6\"\n",
+ "Contact zone_2_bc_6 in region zone_2 with 27 nodes\n",
+ "Warning, contact \"zone_1_bc_3\" shares a node with interface \"zone_1_bc_2\"\n",
+ "Warning, contact \"zone_1_bc_4\" shares a node with interface \"zone_1_bc_2\"\n",
+ "Warning, contact \"zone_2_bc_0\" shares a node with interface \"zone_1_bc_2\" (repeated 1 times)\n",
+ "Adding interface zone_1_bc_2 with 11860, 11860 nodes\n",
+ "Region zone_2 has 48157 nodes.\n",
+ "Contact zone_1_bc_1 in region zone_1 with 170 nodes\n",
+ "Warning, contact \"zone_1_bc_1\" shares a node with contact \"zone_1_bc_3\"\n",
+ "Contact zone_1_bc_3 in region zone_1 with 21 nodes\n",
+ "Warning, contact \"zone_1_bc_1\" shares a node with contact \"zone_1_bc_4\"\n",
+ "Contact zone_1_bc_4 in region zone_1 with 22 nodes\n",
+ "Warning, contact \"zone_1_bc_1\" shares a node with contact \"zone_2_bc_0\" (repeated 1 times)\n",
+ "Contact zone_2_bc_0 in region zone_2 with 21 nodes\n",
+ "Warning, contact \"zone_1_bc_3\" shares a node with contact \"zone_2_bc_5\"\n",
+ "Warning, contact \"zone_2_bc_0\" shares a node with contact \"zone_2_bc_5\"\n",
+ "Contact zone_2_bc_5 in region zone_2 with 24 nodes\n",
+ "Warning, contact \"zone_1_bc_4\" shares a node with contact \"zone_2_bc_6\"\n",
+ "Warning, contact \"zone_2_bc_0\" shares a node with contact \"zone_2_bc_6\"\n",
+ "Contact zone_2_bc_6 in region zone_2 with 27 nodes\n",
+ "Warning, contact \"zone_1_bc_3\" shares a node with interface \"zone_1_bc_2\"\n",
+ "Warning, contact \"zone_1_bc_4\" shares a node with interface \"zone_1_bc_2\"\n",
+ "Warning, contact \"zone_2_bc_0\" shares a node with interface \"zone_1_bc_2\" (repeated 1 times)\n",
+ "Adding interface zone_1_bc_2 with 11860, 11860 nodes\n",
+ "Warning: Replacing equation with equation of the same name.\n",
+ "Region: zone_1, Equation: PotentialEquation, Variable: Potential\n",
+ "Replacing Node Model Holes in region zone_1 of material Si\n",
+ "Replacing Node Model Electrons in region zone_1 of material Si\n",
+ "Warning: Replacing equation with equation of the same name.\n",
+ "Region: zone_1, Equation: PotentialEquation, Variable: Potential\n",
+ "Replacing Node Model Holes in region zone_1 of material Si\n",
+ "Replacing Node Model Electrons in region zone_1 of material Si\n",
+ "Warning: Replacing equation with equation of the same name.\n",
+ "Region: zone_2, Equation: PotentialEquation, Variable: Potential\n",
+ "Warning: Replacing equation with equation of the same name.\n",
+ "Region: zone_2, Equation: PotentialEquation, Variable: Potential\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:12:09\u001b[0m.\u001b[1;36m965\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mRamping up doping. Scaling by 1.0\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:12:09\u001b[0m.\u001b[1;36m965\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mRamping up doping. Scaling by 1.0\u001b[0m \n",
+ "Replacing Node Model NetDoping in region zone_1 of material Si\n",
+ "Replacing Node Model n_i in region zone_1 of material Si\n",
+ "Replacing Edge Model n_i@n0 in region zone_1 of material Si\n",
+ "Replacing Edge Model n_i@n1 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i@en0 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i@en1 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i@en2 in region zone_1 of material Si\n",
+ "Replacing Node Model n_i:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model n_i:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model n_i:T in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Electrons@en0 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Electrons@en1 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Electrons@en2 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Holes@en0 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Holes@en1 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Holes@en2 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:T@en0 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:T@en1 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:T@en2 in region zone_1 of material Si\n",
+ "Replacing Node Model NetDoping in region zone_1 of material Si\n",
+ "Replacing Node Model n_i in region zone_1 of material Si\n",
+ "Replacing Edge Model n_i@n0 in region zone_1 of material Si\n",
+ "Replacing Edge Model n_i@n1 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i@en0 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i@en1 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i@en2 in region zone_1 of material Si\n",
+ "Replacing Node Model n_i:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model n_i:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model n_i:T in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Electrons@en0 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Electrons@en1 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Electrons@en2 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Holes@en0 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Holes@en1 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Holes@en2 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:T@en0 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:T@en1 in region zone_1 of material Si\n",
+ "Replacing Triangle Edge Model n_i:T@en2 in region zone_1 of material Si\n",
+ "Replacing Node Model NetDoping in region zone_2 of material Si\n",
+ "Replacing Node Model n_i in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n0 in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n1 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i@en0 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i@en1 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i@en2 in region zone_2 of material Si\n",
+ "Replacing Node Model n_i:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model n_i:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model n_i:T in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n0:Electrons@n0 in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n0:Holes@n0 in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n0:T@n0 in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n1:Electrons@n1 in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n1:Holes@n1 in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n1:T@n1 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Electrons@en0 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Electrons@en1 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Electrons@en2 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Holes@en0 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Holes@en1 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Holes@en2 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:T@en0 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:T@en1 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:T@en2 in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model NetDoping in region zone_2 of material Si\n",
+ "Replacing Node Model n_i in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n0 in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n1 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i@en0 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i@en1 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i@en2 in region zone_2 of material Si\n",
+ "Replacing Node Model n_i:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model n_i:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model n_i:T in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n0:Electrons@n0 in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n0:Holes@n0 in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n0:T@n0 in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n1:Electrons@n1 in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n1:Holes@n1 in region zone_2 of material Si\n",
+ "Replacing Edge Model n_i@n1:T@n1 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Electrons@en0 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Electrons@en1 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Electrons@en2 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Holes@en0 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Holes@en1 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:Holes@en2 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:T@en0 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:T@en1 in region zone_2 of material Si\n",
+ "Replacing Triangle Edge Model n_i:T@en2 in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 4.34040e+12\tAbsError: 2.50062e+19\n",
+ " Region: \"zone_1\"\tRelError: 1.00000e+00\tAbsError: 8.92418e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.00000e+00\tAbsError: 8.92418e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.34040e+12\tAbsError: 2.50062e+19\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.19573e+08\tAbsError: 1.60953e+19\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.34018e+12\tAbsError: 8.91089e+18\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.00000e+00\tAbsError: 8.92419e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 4.34040e+12\tAbsError: 2.50062e+19\n",
+ " Region: \"zone_1\"\tRelError: 1.00000e+00\tAbsError: 8.92418e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.00000e+00\tAbsError: 8.92418e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.34040e+12\tAbsError: 2.50062e+19\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.19573e+08\tAbsError: 1.60953e+19\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.34018e+12\tAbsError: 8.91089e+18\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.00000e+00\tAbsError: 8.92419e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 1.07471e+02\tAbsError: 1.74686e+19\n",
+ " Region: \"zone_1\"\tRelError: 6.62285e+00\tAbsError: 9.35648e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.62285e+00\tAbsError: 9.35648e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00849e+02\tAbsError: 1.74686e+19\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.24497e+00\tAbsError: 1.39168e+19\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 3.55175e+18\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.03593e-01\tAbsError: 9.35686e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 1.07471e+02\tAbsError: 1.74686e+19\n",
+ " Region: \"zone_1\"\tRelError: 6.62285e+00\tAbsError: 9.35648e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.62285e+00\tAbsError: 9.35648e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00849e+02\tAbsError: 1.74686e+19\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.24497e+00\tAbsError: 1.39168e+19\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 3.55175e+18\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.03593e-01\tAbsError: 9.35686e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 8.76544e+03\tAbsError: 1.98954e+18\n",
+ " Region: \"zone_1\"\tRelError: 1.77967e+00\tAbsError: 9.08926e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.77967e+00\tAbsError: 9.08926e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.76366e+03\tAbsError: 1.98954e+18\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.96914e+03\tAbsError: 7.54543e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.79375e+03\tAbsError: 1.23500e+18\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.71733e-01\tAbsError: 9.09343e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 8.76544e+03\tAbsError: 1.98954e+18\n",
+ " Region: \"zone_1\"\tRelError: 1.77967e+00\tAbsError: 9.08926e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.77967e+00\tAbsError: 9.08926e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.76366e+03\tAbsError: 1.98954e+18\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.96914e+03\tAbsError: 7.54543e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.79375e+03\tAbsError: 1.23500e+18\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.71733e-01\tAbsError: 9.09343e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 2.29514e+02\tAbsError: 2.21516e+18\n",
+ " Region: \"zone_1\"\tRelError: 8.60959e-01\tAbsError: 9.26275e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.60959e-01\tAbsError: 9.26275e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.28653e+02\tAbsError: 2.21516e+18\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.27875e+02\tAbsError: 1.10242e+18\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.11274e+18\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.77764e+00\tAbsError: 9.38624e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 2.29514e+02\tAbsError: 2.21516e+18\n",
+ " Region: \"zone_1\"\tRelError: 8.60959e-01\tAbsError: 9.26275e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.60959e-01\tAbsError: 9.26275e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.28653e+02\tAbsError: 2.21516e+18\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.27875e+02\tAbsError: 1.10242e+18\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.11274e+18\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.77764e+00\tAbsError: 9.38624e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 1.05241e+03\tAbsError: 1.02700e+18\n",
+ " Region: \"zone_1\"\tRelError: 4.70150e-01\tAbsError: 8.87254e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.70150e-01\tAbsError: 8.87254e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.05194e+03\tAbsError: 1.02700e+18\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.11502e+02\tAbsError: 7.46874e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.40067e+02\tAbsError: 2.80123e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.70131e-01\tAbsError: 8.90025e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 1.05241e+03\tAbsError: 1.02700e+18\n",
+ " Region: \"zone_1\"\tRelError: 4.70150e-01\tAbsError: 8.87254e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.70150e-01\tAbsError: 8.87254e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.05194e+03\tAbsError: 1.02700e+18\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.11502e+02\tAbsError: 7.46874e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.40067e+02\tAbsError: 2.80123e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.70131e-01\tAbsError: 8.90025e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 2.43553e+02\tAbsError: 8.59774e+17\n",
+ " Region: \"zone_1\"\tRelError: 5.89844e-01\tAbsError: 8.56342e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.89844e-01\tAbsError: 8.56342e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.42964e+02\tAbsError: 8.59774e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.43346e+02\tAbsError: 7.57205e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.02570e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.17777e-01\tAbsError: 8.67506e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 2.43553e+02\tAbsError: 8.59774e+17\n",
+ " Region: \"zone_1\"\tRelError: 5.89844e-01\tAbsError: 8.56342e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.89844e-01\tAbsError: 8.56342e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.42964e+02\tAbsError: 8.59774e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.43346e+02\tAbsError: 7.57205e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.02570e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.17777e-01\tAbsError: 8.67506e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 4.12495e+03\tAbsError: 3.06654e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.97592e-01\tAbsError: 8.18524e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.97592e-01\tAbsError: 8.18524e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.12476e+03\tAbsError: 3.06654e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.71549e+02\tAbsError: 2.14764e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.15289e+03\tAbsError: 9.18897e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.15706e-01\tAbsError: 8.29901e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 4.12495e+03\tAbsError: 3.06654e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.97592e-01\tAbsError: 8.18524e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.97592e-01\tAbsError: 8.18524e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.12476e+03\tAbsError: 3.06654e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.71549e+02\tAbsError: 2.14764e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.15289e+03\tAbsError: 9.18897e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.15706e-01\tAbsError: 8.29901e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 1.00313e+02\tAbsError: 2.19427e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.55891e-01\tAbsError: 7.80332e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.55891e-01\tAbsError: 7.80332e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00157e+02\tAbsError: 2.19427e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99978e-01\tAbsError: 1.86793e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.00748e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.57500e-01\tAbsError: 7.89787e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 1.00313e+02\tAbsError: 2.19427e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.55891e-01\tAbsError: 7.80332e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.55891e-01\tAbsError: 7.80332e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00157e+02\tAbsError: 2.19427e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99978e-01\tAbsError: 1.86793e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.00748e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.57500e-01\tAbsError: 7.89787e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 2.41747e+03\tAbsError: 1.68950e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.27353e-01\tAbsError: 7.39020e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.27353e-01\tAbsError: 7.39020e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.41734e+03\tAbsError: 1.68950e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.25267e+02\tAbsError: 3.96146e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.09194e+03\tAbsError: 1.64989e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.28464e-01\tAbsError: 7.49869e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 2.41747e+03\tAbsError: 1.68950e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.27353e-01\tAbsError: 7.39020e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.27353e-01\tAbsError: 7.39020e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.41734e+03\tAbsError: 1.68950e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.25267e+02\tAbsError: 3.96146e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.09194e+03\tAbsError: 1.64989e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.28464e-01\tAbsError: 7.49869e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 1.30206e+03\tAbsError: 1.51803e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.05798e-01\tAbsError: 6.92498e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.05798e-01\tAbsError: 6.92498e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.30195e+03\tAbsError: 1.51803e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.13548e+03\tAbsError: 1.02097e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.66365e+02\tAbsError: 1.50782e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.06787e-01\tAbsError: 7.05469e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 1.30206e+03\tAbsError: 1.51803e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.05798e-01\tAbsError: 6.92498e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.05798e-01\tAbsError: 6.92498e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.30195e+03\tAbsError: 1.51803e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.13548e+03\tAbsError: 1.02097e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.66365e+02\tAbsError: 1.50782e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.06787e-01\tAbsError: 7.05469e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 6.25364e+02\tAbsError: 1.32189e+17\n",
+ " Region: \"zone_1\"\tRelError: 8.80256e-02\tAbsError: 6.39419e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.80256e-02\tAbsError: 6.39419e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.25276e+02\tAbsError: 1.32189e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.10191e+02\tAbsError: 9.22280e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.14996e+02\tAbsError: 1.31266e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.96545e-02\tAbsError: 6.53696e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 6.25364e+02\tAbsError: 1.32189e+17\n",
+ " Region: \"zone_1\"\tRelError: 8.80256e-02\tAbsError: 6.39419e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.80256e-02\tAbsError: 6.39419e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.25276e+02\tAbsError: 1.32189e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.10191e+02\tAbsError: 9.22280e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.14996e+02\tAbsError: 1.31266e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.96545e-02\tAbsError: 6.53696e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 1.00148e+02\tAbsError: 1.08884e+17\n",
+ " Region: \"zone_1\"\tRelError: 7.29590e-02\tAbsError: 5.78489e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.29590e-02\tAbsError: 5.78489e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00075e+02\tAbsError: 1.08884e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99931e-01\tAbsError: 6.95973e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.08188e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.54075e-02\tAbsError: 5.94939e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 1.00148e+02\tAbsError: 1.08884e+17\n",
+ " Region: \"zone_1\"\tRelError: 7.29590e-02\tAbsError: 5.78489e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.29590e-02\tAbsError: 5.78489e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00075e+02\tAbsError: 1.08884e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99931e-01\tAbsError: 6.95973e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.08188e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.54075e-02\tAbsError: 5.94939e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 6.45767e+04\tAbsError: 8.36210e+16\n",
+ " Region: \"zone_1\"\tRelError: 5.99564e-02\tAbsError: 5.07492e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.99564e-02\tAbsError: 5.07492e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.45766e+04\tAbsError: 8.36210e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.38959e+04\tAbsError: 9.84336e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.80638e+02\tAbsError: 8.35225e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.25990e-02\tAbsError: 5.27015e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 6.45767e+04\tAbsError: 8.36210e+16\n",
+ " Region: \"zone_1\"\tRelError: 5.99564e-02\tAbsError: 5.07492e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.99564e-02\tAbsError: 5.07492e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.45766e+04\tAbsError: 8.36210e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.38959e+04\tAbsError: 9.84336e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.80638e+02\tAbsError: 8.35225e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.25990e-02\tAbsError: 5.27015e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 1.41793e+03\tAbsError: 5.90561e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.75712e-02\tAbsError: 4.23561e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.75712e-02\tAbsError: 4.23561e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.41788e+03\tAbsError: 5.90561e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.28561e+02\tAbsError: 7.11405e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.89272e+02\tAbsError: 5.89850e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.03698e-02\tAbsError: 4.46615e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 1.41793e+03\tAbsError: 5.90561e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.75712e-02\tAbsError: 4.23561e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.75712e-02\tAbsError: 4.23561e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.41788e+03\tAbsError: 5.90561e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.28561e+02\tAbsError: 7.11405e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.89272e+02\tAbsError: 5.89850e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.03698e-02\tAbsError: 4.46615e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 2.02936e+03\tAbsError: 3.58207e+16\n",
+ " Region: \"zone_1\"\tRelError: 3.50656e-02\tAbsError: 3.23958e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.50656e-02\tAbsError: 3.23958e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.02933e+03\tAbsError: 3.58207e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.02587e+03\tAbsError: 9.81885e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.42527e+00\tAbsError: 3.57225e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.81040e-02\tAbsError: 3.51303e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 2.02936e+03\tAbsError: 3.58207e+16\n",
+ " Region: \"zone_1\"\tRelError: 3.50656e-02\tAbsError: 3.23958e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.50656e-02\tAbsError: 3.23958e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.02933e+03\tAbsError: 3.58207e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.02587e+03\tAbsError: 9.81885e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.42527e+00\tAbsError: 3.57225e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.81040e-02\tAbsError: 3.51303e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 5.29761e+00\tAbsError: 2.40617e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.82112e-02\tAbsError: 2.58121e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.82112e-02\tAbsError: 2.58121e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.26940e+00\tAbsError: 2.40617e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.16917e+00\tAbsError: 6.38671e+12\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.07148e+00\tAbsError: 2.40554e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.87512e-02\tAbsError: 2.58997e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 5.29761e+00\tAbsError: 2.40617e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.82112e-02\tAbsError: 2.58121e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.82112e-02\tAbsError: 2.58121e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.26940e+00\tAbsError: 2.40617e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.16917e+00\tAbsError: 6.38671e+12\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.07148e+00\tAbsError: 2.40554e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.87512e-02\tAbsError: 2.58997e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 3.75017e+06\tAbsError: 3.22342e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.17084e-02\tAbsError: 1.12062e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.17084e-02\tAbsError: 1.12062e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.75017e+06\tAbsError: 3.22342e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.75017e+06\tAbsError: 2.78471e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.99560e-02\tAbsError: 3.22063e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.60863e-02\tAbsError: 1.54675e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 3.75017e+06\tAbsError: 3.22342e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.17084e-02\tAbsError: 1.12062e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.17084e-02\tAbsError: 1.12062e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.75017e+06\tAbsError: 3.22342e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.75017e+06\tAbsError: 2.78471e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.99560e-02\tAbsError: 3.22063e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.60863e-02\tAbsError: 1.54675e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 3.50323e+02\tAbsError: 3.98548e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.53240e-05\tAbsError: 5.48892e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.53240e-05\tAbsError: 5.48892e-05\n",
+ " Region: \"zone_2\"\tRelError: 3.50323e+02\tAbsError: 3.98548e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.50315e+02\tAbsError: 3.00340e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.98201e-03\tAbsError: 3.68514e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.60082e-05\tAbsError: 5.61515e-05\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 3.50323e+02\tAbsError: 3.98548e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.53240e-05\tAbsError: 5.48892e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.53240e-05\tAbsError: 5.48892e-05\n",
+ " Region: \"zone_2\"\tRelError: 3.50323e+02\tAbsError: 3.98548e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.50315e+02\tAbsError: 3.00340e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.98201e-03\tAbsError: 3.68514e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.60082e-05\tAbsError: 5.61515e-05\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 8.98646e-04\tAbsError: 6.11279e+10\n",
+ " Region: \"zone_1\"\tRelError: 5.07285e-09\tAbsError: 4.28323e-09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.07285e-09\tAbsError: 4.28323e-09\n",
+ " Region: \"zone_2\"\tRelError: 8.98641e-04\tAbsError: 6.11279e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.86302e-04\tAbsError: 1.86119e+09\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.23338e-05\tAbsError: 5.92667e+10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.16418e-09\tAbsError: 4.39955e-09\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 8.98646e-04\tAbsError: 6.11279e+10\n",
+ " Region: \"zone_1\"\tRelError: 5.07285e-09\tAbsError: 4.28323e-09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.07285e-09\tAbsError: 4.28323e-09\n",
+ " Region: \"zone_2\"\tRelError: 8.98641e-04\tAbsError: 6.11279e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.86302e-04\tAbsError: 1.86119e+09\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.23338e-05\tAbsError: 5.92667e+10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.16418e-09\tAbsError: 4.39955e-09\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 4.23496e-11\tAbsError: 5.06698e+03\n",
+ " Region: \"zone_1\"\tRelError: 4.97337e-16\tAbsError: 1.41999e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.97337e-16\tAbsError: 1.41999e-16\n",
+ " Region: \"zone_2\"\tRelError: 4.23491e-11\tAbsError: 5.06698e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.18222e-11\tAbsError: 2.61659e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.26357e-13\tAbsError: 2.45038e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.97337e-16\tAbsError: 1.45323e-16\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 4.23496e-11\tAbsError: 5.06698e+03\n",
+ " Region: \"zone_1\"\tRelError: 4.97337e-16\tAbsError: 1.41999e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.97337e-16\tAbsError: 1.41999e-16\n",
+ " Region: \"zone_2\"\tRelError: 4.23491e-11\tAbsError: 5.06698e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.18222e-11\tAbsError: 2.61659e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.26357e-13\tAbsError: 2.45038e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.97337e-16\tAbsError: 1.45323e-16\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:12:57\u001b[0m.\u001b[1;36m542\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mBuilt-in potential: 0.0\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:12:57\u001b[0m.\u001b[1;36m542\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mBuilt-in potential: 0.0\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:12:57\u001b[0m.\u001b[1;36m820\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 0.75 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:12:57\u001b[0m.\u001b[1;36m827\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for -0.5 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:12:57\u001b[0m.\u001b[1;36m827\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 0.25 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:12:57\u001b[0m.\u001b[1;36m828\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 0.5 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:12:57\u001b[0m.\u001b[1;36m829\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for -0.25 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:12:57\u001b[0m.\u001b[1;36m820\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 0.75 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:12:57\u001b[0m.\u001b[1;36m827\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for -0.5 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:12:57\u001b[0m.\u001b[1;36m827\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 0.25 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:12:57\u001b[0m.\u001b[1;36m828\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 0.5 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:12:57\u001b[0m.\u001b[1;36m829\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for -0.25 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:13:09\u001b[0m.\u001b[1;36m012\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias -0.25 V. Current applied bias: -0.25\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:13:09\u001b[0m.\u001b[1;36m012\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias -0.25 V. Current applied bias: -0.25\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:13:09\u001b[0m.\u001b[1;36m262\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 0.25 V. Current applied bias: 0.25\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:13:09\u001b[0m.\u001b[1;36m262\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 0.25 V. Current applied bias: 0.25\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:13:09\u001b[0m.\u001b[1;36m601\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias -0.5 V. Current applied bias: -0.5\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:13:09\u001b[0m.\u001b[1;36m601\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias -0.5 V. Current applied bias: -0.5\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:13:09\u001b[0m.\u001b[1;36m892\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 0.75 V. Current applied bias: 0.75\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:13:09\u001b[0m.\u001b[1;36m892\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 0.75 V. Current applied bias: 0.75\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:13:10\u001b[0m.\u001b[1;36m162\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 0.5 V. Current applied bias: 0.5\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:13:10\u001b[0m.\u001b[1;36m162\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 0.5 V. Current applied bias: 0.5\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 3.52862e+00\tAbsError: 2.45716e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.00000e+00\tAbsError: 6.12741e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.00000e+00\tAbsError: 6.12741e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.52862e+00\tAbsError: 2.45716e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.06277e-01\tAbsError: 1.29198e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.06280e-01\tAbsError: 1.16518e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.16060e-01\tAbsError: 6.12741e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 3.52862e+00\tAbsError: 2.45716e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.00000e+00\tAbsError: 6.12741e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.00000e+00\tAbsError: 6.12741e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.52862e+00\tAbsError: 2.45716e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.06277e-01\tAbsError: 1.29198e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.06280e-01\tAbsError: 1.16518e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.16060e-01\tAbsError: 6.12741e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 8.40940e+04\tAbsError: 6.51853e+17\n",
+ " Region: \"zone_1\"\tRelError: 3.24429e+04\tAbsError: 8.80543e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.24429e+04\tAbsError: 8.80543e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.16511e+04\tAbsError: 6.51853e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.46819e+02\tAbsError: 3.59083e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.92249e+03\tAbsError: 2.92770e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.37818e+04\tAbsError: 8.80543e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 8.40940e+04\tAbsError: 6.51853e+17\n",
+ " Region: \"zone_1\"\tRelError: 3.24429e+04\tAbsError: 8.80543e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.24429e+04\tAbsError: 8.80543e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.16511e+04\tAbsError: 6.51853e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.46819e+02\tAbsError: 3.59083e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.92249e+03\tAbsError: 2.92770e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.37818e+04\tAbsError: 8.80543e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 5.30827e+03\tAbsError: 2.45716e+17\n",
+ " Region: \"zone_1\"\tRelError: 4.91817e+02\tAbsError: 6.12741e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.91817e+02\tAbsError: 6.12741e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.81645e+03\tAbsError: 2.45716e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.38511e+03\tAbsError: 1.29198e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.19296e+03\tAbsError: 1.16518e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.38380e+02\tAbsError: 6.12741e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 5.30827e+03\tAbsError: 2.45716e+17\n",
+ " Region: \"zone_1\"\tRelError: 4.91817e+02\tAbsError: 6.12741e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.91817e+02\tAbsError: 6.12741e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.81645e+03\tAbsError: 2.45716e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.38511e+03\tAbsError: 1.29198e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.19296e+03\tAbsError: 1.16518e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.38380e+02\tAbsError: 6.12741e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 3.53938e+04\tAbsError: 4.84027e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.53761e+04\tAbsError: 7.79815e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.53761e+04\tAbsError: 7.79815e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00178e+04\tAbsError: 4.84027e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.14507e+03\tAbsError: 2.58396e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.85216e+03\tAbsError: 2.25632e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.02052e+03\tAbsError: 7.79815e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 3.53938e+04\tAbsError: 4.84027e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.53761e+04\tAbsError: 7.79815e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.53761e+04\tAbsError: 7.79815e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00178e+04\tAbsError: 4.84027e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.14507e+03\tAbsError: 2.58396e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.85216e+03\tAbsError: 2.25632e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.02052e+03\tAbsError: 7.79815e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 3.66411e+00\tAbsError: 4.91431e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.00000e+00\tAbsError: 7.79815e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.00000e+00\tAbsError: 7.79815e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.66411e+00\tAbsError: 4.91431e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.50834e-01\tAbsError: 2.58396e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.50836e-01\tAbsError: 2.33036e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.62442e-01\tAbsError: 7.79815e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 3.66411e+00\tAbsError: 4.91431e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.00000e+00\tAbsError: 7.79815e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.00000e+00\tAbsError: 7.79815e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.66411e+00\tAbsError: 4.91431e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.50834e-01\tAbsError: 2.58396e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.50836e-01\tAbsError: 2.33036e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.62442e-01\tAbsError: 7.79815e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 1.12526e+04\tAbsError: 2.58982e+17\n",
+ " Region: \"zone_1\"\tRelError: 9.86807e+02\tAbsError: 8.49344e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.86807e+02\tAbsError: 8.49344e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.02658e+04\tAbsError: 2.58982e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.91724e+03\tAbsError: 1.27095e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.22438e+02\tAbsError: 1.31887e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.82614e+03\tAbsError: 8.49344e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 1.12526e+04\tAbsError: 2.58982e+17\n",
+ " Region: \"zone_1\"\tRelError: 9.86807e+02\tAbsError: 8.49344e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.86807e+02\tAbsError: 8.49344e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.02658e+04\tAbsError: 2.58982e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.91724e+03\tAbsError: 1.27095e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.22438e+02\tAbsError: 1.31887e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.82614e+03\tAbsError: 8.49344e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 2.69128e+00\tAbsError: 4.42836e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.71974e-01\tAbsError: 5.47695e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.71974e-01\tAbsError: 5.47695e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.21931e+00\tAbsError: 4.42836e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.49930e-01\tAbsError: 2.17539e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.79114e-01\tAbsError: 2.25297e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.90261e-01\tAbsError: 5.47695e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 2.69128e+00\tAbsError: 4.42836e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.71974e-01\tAbsError: 5.47695e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.71974e-01\tAbsError: 5.47695e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.21931e+00\tAbsError: 4.42836e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.49930e-01\tAbsError: 2.17539e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.79114e-01\tAbsError: 2.25297e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.90261e-01\tAbsError: 5.47695e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 5.11040e+03\tAbsError: 1.31038e+17\n",
+ " Region: \"zone_1\"\tRelError: 7.19728e+02\tAbsError: 7.38245e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.19728e+02\tAbsError: 7.38245e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.39067e+03\tAbsError: 1.31038e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.15381e+03\tAbsError: 6.53311e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.91227e+02\tAbsError: 6.57066e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.44564e+03\tAbsError: 7.38245e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 5.11040e+03\tAbsError: 1.31038e+17\n",
+ " Region: \"zone_1\"\tRelError: 7.19728e+02\tAbsError: 7.38245e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.19728e+02\tAbsError: 7.38245e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.39067e+03\tAbsError: 1.31038e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.15381e+03\tAbsError: 6.53311e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.91227e+02\tAbsError: 6.57066e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.44564e+03\tAbsError: 7.38245e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 3.54679e+04\tAbsError: 5.38841e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.67700e+03\tAbsError: 5.47695e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.67700e+03\tAbsError: 5.47695e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.37909e+04\tAbsError: 5.38841e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99661e-01\tAbsError: 2.67911e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99070e-01\tAbsError: 2.70930e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.37889e+04\tAbsError: 5.47695e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 3.54679e+04\tAbsError: 5.38841e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.67700e+03\tAbsError: 5.47695e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.67700e+03\tAbsError: 5.47695e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.37909e+04\tAbsError: 5.38841e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99661e-01\tAbsError: 2.67911e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99070e-01\tAbsError: 2.70930e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.37889e+04\tAbsError: 5.47695e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 2.83391e+00\tAbsError: 1.66464e+17\n",
+ " Region: \"zone_1\"\tRelError: 4.86308e-01\tAbsError: 7.38245e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.86308e-01\tAbsError: 7.38245e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.34761e+00\tAbsError: 1.66464e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.86103e-01\tAbsError: 7.90095e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.42291e-01\tAbsError: 8.74541e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.19212e-01\tAbsError: 7.38245e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 2.83391e+00\tAbsError: 1.66464e+17\n",
+ " Region: \"zone_1\"\tRelError: 4.86308e-01\tAbsError: 7.38245e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.86308e-01\tAbsError: 7.38245e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.34761e+00\tAbsError: 1.66464e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.86103e-01\tAbsError: 7.90095e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.42291e-01\tAbsError: 8.74541e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.19212e-01\tAbsError: 7.38245e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 1.28447e+04\tAbsError: 2.99720e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.63196e+02\tAbsError: 6.91598e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.63196e+02\tAbsError: 6.91598e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.23815e+04\tAbsError: 2.99720e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.34071e+03\tAbsError: 2.03730e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.06392e+03\tAbsError: 9.59900e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.97684e+03\tAbsError: 6.91605e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 1.28447e+04\tAbsError: 2.99720e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.63196e+02\tAbsError: 6.91598e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.63196e+02\tAbsError: 6.91598e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.23815e+04\tAbsError: 2.99720e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.34071e+03\tAbsError: 2.03730e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.06392e+03\tAbsError: 9.59900e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.97684e+03\tAbsError: 6.91605e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 1.82324e+04\tAbsError: 7.70578e+16\n",
+ " Region: \"zone_1\"\tRelError: 3.16495e+03\tAbsError: 8.15210e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.16495e+03\tAbsError: 8.15210e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.50675e+04\tAbsError: 7.70578e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.72067e+03\tAbsError: 4.29846e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.04768e+02\tAbsError: 3.40732e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.94204e+03\tAbsError: 8.15231e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 1.82324e+04\tAbsError: 7.70578e+16\n",
+ " Region: \"zone_1\"\tRelError: 3.16495e+03\tAbsError: 8.15210e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.16495e+03\tAbsError: 8.15210e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.50675e+04\tAbsError: 7.70578e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.72067e+03\tAbsError: 4.29846e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.04768e+02\tAbsError: 3.40732e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.94204e+03\tAbsError: 8.15231e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 2.28587e+00\tAbsError: 9.05238e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.88872e-01\tAbsError: 4.71388e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.88872e-01\tAbsError: 4.71388e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.99700e+00\tAbsError: 9.05238e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.08670e-01\tAbsError: 4.29693e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.36891e-01\tAbsError: 4.75545e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.51435e-01\tAbsError: 4.71388e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 2.28587e+00\tAbsError: 9.05238e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.88872e-01\tAbsError: 4.71388e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.88872e-01\tAbsError: 4.71388e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.99700e+00\tAbsError: 9.05238e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.08670e-01\tAbsError: 4.29693e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.36891e-01\tAbsError: 4.75545e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.51435e-01\tAbsError: 4.71388e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 2.04609e+04\tAbsError: 1.04742e+16\n",
+ " Region: \"zone_1\"\tRelError: 7.01910e+03\tAbsError: 4.71388e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.01910e+03\tAbsError: 4.71388e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.34418e+04\tAbsError: 1.04742e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.31125e+03\tAbsError: 4.62644e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.11149e+03\tAbsError: 5.84781e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.01910e+03\tAbsError: 4.71389e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 2.04609e+04\tAbsError: 1.04742e+16\n",
+ " Region: \"zone_1\"\tRelError: 7.01910e+03\tAbsError: 4.71388e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.01910e+03\tAbsError: 4.71388e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.34418e+04\tAbsError: 1.04742e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.31125e+03\tAbsError: 4.62644e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.11149e+03\tAbsError: 5.84781e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.01910e+03\tAbsError: 4.71389e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 2.50861e+00\tAbsError: 5.72219e+16\n",
+ " Region: \"zone_1\"\tRelError: 3.12989e-01\tAbsError: 6.91598e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.12989e-01\tAbsError: 6.91598e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.19562e+00\tAbsError: 5.72219e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.82859e-01\tAbsError: 2.87910e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.30775e-01\tAbsError: 2.84309e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.81982e-01\tAbsError: 6.91598e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 2.50861e+00\tAbsError: 5.72219e+16\n",
+ " Region: \"zone_1\"\tRelError: 3.12989e-01\tAbsError: 6.91598e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.12989e-01\tAbsError: 6.91598e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.19562e+00\tAbsError: 5.72219e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.82859e-01\tAbsError: 2.87910e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.30775e-01\tAbsError: 2.84309e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.81982e-01\tAbsError: 6.91598e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 2.38749e+03\tAbsError: 7.19804e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.52322e+02\tAbsError: 6.38656e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.52322e+02\tAbsError: 6.38656e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.23517e+03\tAbsError: 7.19804e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 5.77656e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.42148e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.03717e+03\tAbsError: 6.38656e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 2.38749e+03\tAbsError: 7.19804e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.52322e+02\tAbsError: 6.38656e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.52322e+02\tAbsError: 6.38656e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.23517e+03\tAbsError: 7.19804e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 5.77656e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.42148e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.03717e+03\tAbsError: 6.38656e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 5.43386e+05\tAbsError: 3.19814e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.23826e+03\tAbsError: 7.77584e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.23826e+03\tAbsError: 7.77584e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.42148e+05\tAbsError: 3.19814e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.09839e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.41608e+05\tAbsError: 1.09975e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.41242e+02\tAbsError: 7.77584e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 1.88151e+00\tAbsError: 1.38676e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.89244e-01\tAbsError: 3.80896e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.89244e-01\tAbsError: 3.80896e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.69226e+00\tAbsError: 1.38676e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.55155e-01\tAbsError: 8.03271e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.68250e-01\tAbsError: 5.83492e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.68860e-01\tAbsError: 3.80896e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 5.43386e+05\tAbsError: 3.19814e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.23826e+03\tAbsError: 7.77584e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.23826e+03\tAbsError: 7.77584e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.42148e+05\tAbsError: 3.19814e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.09839e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.41608e+05\tAbsError: 1.09975e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.41242e+02\tAbsError: 7.77584e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 1.88151e+00\tAbsError: 1.38676e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.89244e-01\tAbsError: 3.80896e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.89244e-01\tAbsError: 3.80896e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.69226e+00\tAbsError: 1.38676e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.55155e-01\tAbsError: 8.03271e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.68250e-01\tAbsError: 5.83492e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.68860e-01\tAbsError: 3.80896e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 2.30552e+00\tAbsError: 2.26962e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.24222e-01\tAbsError: 6.38656e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.24222e-01\tAbsError: 6.38656e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.08130e+00\tAbsError: 2.26962e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.59843e-01\tAbsError: 1.09641e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.14861e-01\tAbsError: 1.17320e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.06599e-01\tAbsError: 6.38656e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 2.30552e+00\tAbsError: 2.26962e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.24222e-01\tAbsError: 6.38656e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.24222e-01\tAbsError: 6.38656e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.08130e+00\tAbsError: 2.26962e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.59843e-01\tAbsError: 1.09641e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.14861e-01\tAbsError: 1.17320e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.06599e-01\tAbsError: 6.38656e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 1.36074e+03\tAbsError: 9.81517e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.92663e+02\tAbsError: 3.80896e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.92663e+02\tAbsError: 3.80896e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.68075e+02\tAbsError: 9.81517e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99458e-01\tAbsError: 6.90869e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99531e-01\tAbsError: 2.90649e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.66076e+02\tAbsError: 3.80896e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 1.36074e+03\tAbsError: 9.81517e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.92663e+02\tAbsError: 3.80896e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.92663e+02\tAbsError: 3.80896e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.68075e+02\tAbsError: 9.81517e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99458e-01\tAbsError: 6.90869e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99531e-01\tAbsError: 2.90649e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.66076e+02\tAbsError: 3.80896e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 5.92781e+03\tAbsError: 1.31322e+16\n",
+ " Region: \"zone_1\"\tRelError: 9.04350e+02\tAbsError: 7.35755e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.04350e+02\tAbsError: 7.35755e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.02346e+03\tAbsError: 1.31322e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.35299e+02\tAbsError: 1.06067e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.50040e+03\tAbsError: 2.52545e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.87753e+02\tAbsError: 7.35756e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 5.92781e+03\tAbsError: 1.31322e+16\n",
+ " Region: \"zone_1\"\tRelError: 9.04350e+02\tAbsError: 7.35755e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.04350e+02\tAbsError: 7.35755e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.02346e+03\tAbsError: 1.31322e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.35299e+02\tAbsError: 1.06067e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.50040e+03\tAbsError: 2.52545e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.87753e+02\tAbsError: 7.35756e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 4.58127e+03\tAbsError: 2.06459e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.38354e+02\tAbsError: 5.77787e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.38354e+02\tAbsError: 5.77787e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.34292e+03\tAbsError: 2.06459e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.09659e+03\tAbsError: 1.83724e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.30930e+03\tAbsError: 2.27350e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.37020e+02\tAbsError: 5.77787e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 4.58127e+03\tAbsError: 2.06459e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.38354e+02\tAbsError: 5.77787e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.38354e+02\tAbsError: 5.77787e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.34292e+03\tAbsError: 2.06459e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.09659e+03\tAbsError: 1.83724e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.30930e+03\tAbsError: 2.27350e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.37020e+02\tAbsError: 5.77787e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 1.32848e+00\tAbsError: 1.98527e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.19858e-01\tAbsError: 2.74092e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.19858e-01\tAbsError: 2.74092e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.20862e+00\tAbsError: 1.98527e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.49657e-01\tAbsError: 1.75797e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.50616e-01\tAbsError: 2.27305e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.08346e-01\tAbsError: 2.74092e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 1.32848e+00\tAbsError: 1.98527e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.19858e-01\tAbsError: 2.74092e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.19858e-01\tAbsError: 2.74092e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.20862e+00\tAbsError: 1.98527e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.49657e-01\tAbsError: 1.75797e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.50616e-01\tAbsError: 2.27305e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.08346e-01\tAbsError: 2.74092e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 2.12940e+00\tAbsError: 7.08723e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.68643e-01\tAbsError: 5.77787e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.68643e-01\tAbsError: 5.77787e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.96076e+00\tAbsError: 7.08723e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.11137e-01\tAbsError: 4.22329e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.92146e-01\tAbsError: 2.86394e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.57475e-01\tAbsError: 5.77788e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 2.12940e+00\tAbsError: 7.08723e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.68643e-01\tAbsError: 5.77787e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.68643e-01\tAbsError: 5.77787e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.96076e+00\tAbsError: 7.08723e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.11137e-01\tAbsError: 4.22329e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.92146e-01\tAbsError: 2.86394e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.57475e-01\tAbsError: 5.77788e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 2.00863e+04\tAbsError: 1.77580e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.78790e+02\tAbsError: 2.74092e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.78790e+02\tAbsError: 2.74092e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.94076e+04\tAbsError: 1.77580e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.11830e+03\tAbsError: 1.76955e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.45018e+04\tAbsError: 6.24558e+11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.78750e+03\tAbsError: 2.74092e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 2.00863e+04\tAbsError: 1.77580e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.78790e+02\tAbsError: 2.74092e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.78790e+02\tAbsError: 2.74092e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.94076e+04\tAbsError: 1.77580e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.11830e+03\tAbsError: 1.76955e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.45018e+04\tAbsError: 6.24558e+11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.78750e+03\tAbsError: 2.74092e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.90179e+03\tAbsError: 4.87617e+15\n",
+ " Region: \"zone_1\"\tRelError: 7.53942e+02\tAbsError: 6.88788e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.53942e+02\tAbsError: 6.88788e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.14785e+03\tAbsError: 4.87617e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.13333e+02\tAbsError: 4.75716e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.90236e+02\tAbsError: 1.19013e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.44280e+02\tAbsError: 6.88788e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.90179e+03\tAbsError: 4.87617e+15\n",
+ " Region: \"zone_1\"\tRelError: 7.53942e+02\tAbsError: 6.88788e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.53942e+02\tAbsError: 6.88788e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.14785e+03\tAbsError: 4.87617e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.13333e+02\tAbsError: 4.75716e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.90236e+02\tAbsError: 1.19013e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.44280e+02\tAbsError: 6.88788e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 3.32954e+03\tAbsError: 4.34393e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.32534e+03\tAbsError: 5.06818e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.32534e+03\tAbsError: 5.06818e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00421e+03\tAbsError: 4.34393e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99994e-01\tAbsError: 4.25079e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.45975e+02\tAbsError: 9.31389e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.57232e+02\tAbsError: 5.06818e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 3.32954e+03\tAbsError: 4.34393e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.32534e+03\tAbsError: 5.06818e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.32534e+03\tAbsError: 5.06818e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00421e+03\tAbsError: 4.34393e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99994e-01\tAbsError: 4.25079e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.45975e+02\tAbsError: 9.31389e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.57232e+02\tAbsError: 5.06818e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 7.12602e-01\tAbsError: 9.66177e+13\n",
+ " Region: \"zone_1\"\tRelError: 8.52747e-02\tAbsError: 2.13187e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.52747e-02\tAbsError: 2.13187e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.27327e-01\tAbsError: 9.66177e+13\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.95591e-02\tAbsError: 9.01168e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.50047e-01\tAbsError: 6.50087e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.77211e-02\tAbsError: 2.13187e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 7.12602e-01\tAbsError: 9.66177e+13\n",
+ " Region: \"zone_1\"\tRelError: 8.52747e-02\tAbsError: 2.13187e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.52747e-02\tAbsError: 2.13187e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.27327e-01\tAbsError: 9.66177e+13\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.95591e-02\tAbsError: 9.01168e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.50047e-01\tAbsError: 6.50087e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.77211e-02\tAbsError: 2.13187e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.93552e+02\tAbsError: 6.31292e+13\n",
+ " Region: \"zone_1\"\tRelError: 8.89277e+01\tAbsError: 2.13187e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.89277e+01\tAbsError: 2.13187e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.04624e+02\tAbsError: 6.31292e+13\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.95976e-01\tAbsError: 5.92722e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99773e-01\tAbsError: 3.85698e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.02629e+02\tAbsError: 2.13187e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.93552e+02\tAbsError: 6.31292e+13\n",
+ " Region: \"zone_1\"\tRelError: 8.89277e+01\tAbsError: 2.13187e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.89277e+01\tAbsError: 2.13187e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.04624e+02\tAbsError: 6.31292e+13\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.95976e-01\tAbsError: 5.92722e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99773e-01\tAbsError: 3.85698e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.02629e+02\tAbsError: 2.13187e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.91952e+00\tAbsError: 2.35541e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.28866e-01\tAbsError: 5.06818e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.28866e-01\tAbsError: 5.06818e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.79065e+00\tAbsError: 2.35541e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.11122e-01\tAbsError: 1.66185e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.58161e-01\tAbsError: 6.93556e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.21368e-01\tAbsError: 5.06822e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.91952e+00\tAbsError: 2.35541e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.28866e-01\tAbsError: 5.06818e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.28866e-01\tAbsError: 5.06818e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.79065e+00\tAbsError: 2.35541e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.11122e-01\tAbsError: 1.66185e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.58161e-01\tAbsError: 6.93556e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.21368e-01\tAbsError: 5.06822e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 8.87065e+02\tAbsError: 1.55408e+15\n",
+ " Region: \"zone_1\"\tRelError: 8.47076e+01\tAbsError: 6.35445e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.47076e+01\tAbsError: 6.35445e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.02357e+02\tAbsError: 1.55408e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.24801e+02\tAbsError: 1.54954e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.70165e+02\tAbsError: 4.53744e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.07391e+02\tAbsError: 6.35445e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 8.87065e+02\tAbsError: 1.55408e+15\n",
+ " Region: \"zone_1\"\tRelError: 8.47076e+01\tAbsError: 6.35445e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.47076e+01\tAbsError: 6.35445e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.02357e+02\tAbsError: 1.55408e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.24801e+02\tAbsError: 1.54954e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.70165e+02\tAbsError: 4.53744e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.07391e+02\tAbsError: 6.35445e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 8.88463e+03\tAbsError: 1.73403e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.60491e+02\tAbsError: 4.22987e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.60491e+02\tAbsError: 4.22987e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.72414e+03\tAbsError: 1.73403e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.23556e+03\tAbsError: 1.62271e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.14457e+03\tAbsError: 1.11324e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.34400e+03\tAbsError: 4.22987e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 8.88463e+03\tAbsError: 1.73403e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.60491e+02\tAbsError: 4.22987e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.60491e+02\tAbsError: 4.22987e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.72414e+03\tAbsError: 1.73403e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.23556e+03\tAbsError: 1.62271e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.14457e+03\tAbsError: 1.11324e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.34400e+03\tAbsError: 4.22987e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 2.47178e-01\tAbsError: 1.39722e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.43468e-05\tAbsError: 7.41506e-06\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.43468e-05\tAbsError: 7.41506e-06\n",
+ " Region: \"zone_2\"\tRelError: 2.47164e-01\tAbsError: 1.39722e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.30929e-02\tAbsError: 1.32321e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.34033e-01\tAbsError: 7.40123e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.75308e-05\tAbsError: 1.60963e-05\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 2.47178e-01\tAbsError: 1.39722e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.43468e-05\tAbsError: 7.41506e-06\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.43468e-05\tAbsError: 7.41506e-06\n",
+ " Region: \"zone_2\"\tRelError: 2.47164e-01\tAbsError: 1.39722e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.30929e-02\tAbsError: 1.32321e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.34033e-01\tAbsError: 7.40123e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.75308e-05\tAbsError: 1.60963e-05\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 1.59888e+00\tAbsError: 7.62617e+14\n",
+ " Region: \"zone_1\"\tRelError: 9.71066e-02\tAbsError: 4.22987e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.71066e-02\tAbsError: 4.22987e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.50178e+00\tAbsError: 7.62617e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.05517e-01\tAbsError: 6.21425e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.04283e-01\tAbsError: 1.41191e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.19762e-02\tAbsError: 4.22992e-02\n",
+ "Iteration: 6\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 1.59888e+00\tAbsError: 7.62617e+14\n",
+ " Region: \"zone_1\"\tRelError: 9.71066e-02\tAbsError: 4.22987e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.71066e-02\tAbsError: 4.22987e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.50178e+00\tAbsError: 7.62617e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.05517e-01\tAbsError: 6.21425e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.04283e-01\tAbsError: 1.41191e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.19762e-02\tAbsError: 4.22992e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 1.20229e+00\tAbsError: 3.99857e+13\n",
+ " Region: \"zone_1\"\tRelError: 1.02379e-02\tAbsError: 2.54234e-06\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.02379e-02\tAbsError: 2.54234e-06\n",
+ " Region: \"zone_2\"\tRelError: 1.19205e+00\tAbsError: 3.99857e+13\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.29202e-02\tAbsError: 3.75469e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.15673e+00\tAbsError: 2.43881e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.23999e-02\tAbsError: 5.97746e-06\n",
+ " Device: \"device\"\tRelError: 1.20229e+00\tAbsError: 3.99857e+13\n",
+ " Region: \"zone_1\"\tRelError: 1.02379e-02\tAbsError: 2.54234e-06\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.02379e-02\tAbsError: 2.54234e-06\n",
+ " Region: \"zone_2\"\tRelError: 1.19205e+00\tAbsError: 3.99857e+13\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.29202e-02\tAbsError: 3.75469e+13\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.15673e+00\tAbsError: 2.43881e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.23999e-02\tAbsError: 5.97746e-06\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 2.44208e+03\tAbsError: 7.32452e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.12362e+02\tAbsError: 5.74070e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.12362e+02\tAbsError: 5.74070e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.02971e+03\tAbsError: 7.32452e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.05225e+02\tAbsError: 7.06724e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.69883e+03\tAbsError: 2.57283e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.25660e+02\tAbsError: 5.74070e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 2.44208e+03\tAbsError: 7.32452e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.12362e+02\tAbsError: 5.74070e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.12362e+02\tAbsError: 5.74070e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.02971e+03\tAbsError: 7.32452e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.05225e+02\tAbsError: 7.06724e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.69883e+03\tAbsError: 2.57283e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.25660e+02\tAbsError: 5.74070e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 9.29598e+03\tAbsError: 2.24794e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.56080e+01\tAbsError: 3.23490e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.56080e+01\tAbsError: 3.23490e-02\n",
+ " Region: \"zone_2\"\tRelError: 9.28037e+03\tAbsError: 2.24794e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99510e-01\tAbsError: 2.15628e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.23521e+03\tAbsError: 9.16657e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.41633e+01\tAbsError: 3.23490e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 9.29598e+03\tAbsError: 2.24794e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.56080e+01\tAbsError: 3.23490e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.56080e+01\tAbsError: 3.23490e-02\n",
+ " Region: \"zone_2\"\tRelError: 9.28037e+03\tAbsError: 2.24794e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99510e-01\tAbsError: 2.15628e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.23521e+03\tAbsError: 9.16657e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.41633e+01\tAbsError: 3.23490e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 8.68563e-05\tAbsError: 6.24791e+09\n",
+ " Region: \"zone_1\"\tRelError: 9.68641e-11\tAbsError: 4.66409e-11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.68641e-11\tAbsError: 4.66409e-11\n",
+ " Region: \"zone_2\"\tRelError: 8.68562e-05\tAbsError: 6.24791e+09\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.10026e-06\tAbsError: 6.08285e+09\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.17550e-05\tAbsError: 1.65057e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.37898e-10\tAbsError: 4.02249e-10\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 8.68563e-05\tAbsError: 6.24791e+09\n",
+ " Region: \"zone_1\"\tRelError: 9.68641e-11\tAbsError: 4.66409e-11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.68641e-11\tAbsError: 4.66409e-11\n",
+ " Region: \"zone_2\"\tRelError: 8.68562e-05\tAbsError: 6.24791e+09\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.10026e-06\tAbsError: 6.08285e+09\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.17550e-05\tAbsError: 1.65057e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.37898e-10\tAbsError: 4.02249e-10\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 1.73939e-04\tAbsError: 1.13303e+09\n",
+ " Region: \"zone_1\"\tRelError: 3.27920e-09\tAbsError: 6.00002e-12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.27920e-09\tAbsError: 6.00002e-12\n",
+ " Region: \"zone_2\"\tRelError: 1.73936e-04\tAbsError: 1.13303e+09\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.94288e-06\tAbsError: 1.11978e+09\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.70968e-04\tAbsError: 1.32537e+07\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.49932e-08\tAbsError: 3.44884e-11\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 1.73939e-04\tAbsError: 1.13303e+09\n",
+ " Region: \"zone_1\"\tRelError: 3.27920e-09\tAbsError: 6.00002e-12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.27920e-09\tAbsError: 6.00002e-12\n",
+ " Region: \"zone_2\"\tRelError: 1.73936e-04\tAbsError: 1.13303e+09\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.94288e-06\tAbsError: 1.11978e+09\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.70968e-04\tAbsError: 1.32537e+07\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.49932e-08\tAbsError: 3.44884e-11\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 1.12313e+00\tAbsError: 4.27454e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.91308e-02\tAbsError: 3.23490e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.91308e-02\tAbsError: 3.23490e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.05400e+00\tAbsError: 4.27454e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.75215e-01\tAbsError: 3.37419e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.13066e-01\tAbsError: 9.00351e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.57185e-02\tAbsError: 3.23494e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 1.12313e+00\tAbsError: 4.27454e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.91308e-02\tAbsError: 3.23490e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.91308e-02\tAbsError: 3.23490e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.05400e+00\tAbsError: 4.27454e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.75215e-01\tAbsError: 3.37419e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.13066e-01\tAbsError: 9.00351e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.57185e-02\tAbsError: 3.23494e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 4.02438e+02\tAbsError: 4.64471e+14\n",
+ " Region: \"zone_1\"\tRelError: 5.45306e+01\tAbsError: 5.02452e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.45306e+01\tAbsError: 5.02452e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.47908e+02\tAbsError: 4.64471e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 4.54947e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.02547e+02\tAbsError: 9.52371e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.46361e+02\tAbsError: 5.02452e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 4.02438e+02\tAbsError: 4.64471e+14\n",
+ " Region: \"zone_1\"\tRelError: 5.45306e+01\tAbsError: 5.02452e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.45306e+01\tAbsError: 5.02452e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.47908e+02\tAbsError: 4.64471e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 4.54947e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.02547e+02\tAbsError: 9.52371e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.46361e+02\tAbsError: 5.02452e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 3.32470e+00\tAbsError: 1.71004e+14\n",
+ " Region: \"zone_1\"\tRelError: 8.39417e-02\tAbsError: 2.58816e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.39417e-02\tAbsError: 2.58816e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.24076e+00\tAbsError: 1.71004e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.34564e+00\tAbsError: 1.63345e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.80865e+00\tAbsError: 7.65926e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.64769e-02\tAbsError: 2.58944e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 3.32470e+00\tAbsError: 1.71004e+14\n",
+ " Region: \"zone_1\"\tRelError: 8.39417e-02\tAbsError: 2.58816e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.39417e-02\tAbsError: 2.58816e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.24076e+00\tAbsError: 1.71004e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.34564e+00\tAbsError: 1.63345e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.80865e+00\tAbsError: 7.65926e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.64769e-02\tAbsError: 2.58944e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 4.05944e-13\tAbsError: 4.39046e+03\n",
+ " Region: \"zone_1\"\tRelError: 1.58383e-16\tAbsError: 1.13148e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.58383e-16\tAbsError: 1.13148e-16\n",
+ " Region: \"zone_2\"\tRelError: 4.05786e-13\tAbsError: 4.39046e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.40617e-14\tAbsError: 2.28969e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.81560e-13\tAbsError: 2.10077e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.63902e-16\tAbsError: 1.13148e-16\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 4.05944e-13\tAbsError: 4.39046e+03\n",
+ " Region: \"zone_1\"\tRelError: 1.58383e-16\tAbsError: 1.13148e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.58383e-16\tAbsError: 1.13148e-16\n",
+ " Region: \"zone_2\"\tRelError: 4.05786e-13\tAbsError: 4.39046e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.40617e-14\tAbsError: 2.28969e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.81560e-13\tAbsError: 2.10077e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.63902e-16\tAbsError: 1.13148e-16\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 3.07865e-13\tAbsError: 4.25076e+03\n",
+ " Region: \"zone_1\"\tRelError: 2.91585e-14\tAbsError: 1.13430e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.91585e-14\tAbsError: 1.13430e-16\n",
+ " Region: \"zone_2\"\tRelError: 2.78707e-13\tAbsError: 4.25076e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.24409e-14\tAbsError: 2.37546e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.67322e-13\tAbsError: 1.87530e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.89442e-14\tAbsError: 1.12950e-16\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 3.07865e-13\tAbsError: 4.25076e+03\n",
+ " Region: \"zone_1\"\tRelError: 2.91585e-14\tAbsError: 1.13430e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.91585e-14\tAbsError: 1.13430e-16\n",
+ " Region: \"zone_2\"\tRelError: 2.78707e-13\tAbsError: 4.25076e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.24409e-14\tAbsError: 2.37546e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.67322e-13\tAbsError: 1.87530e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.89442e-14\tAbsError: 1.12950e-16\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 6.92614e-01\tAbsError: 3.01079e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.93668e-02\tAbsError: 2.58969e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.93668e-02\tAbsError: 2.58969e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.43247e-01\tAbsError: 3.01079e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.56495e-02\tAbsError: 2.67761e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.53703e-01\tAbsError: 3.33188e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.38939e-02\tAbsError: 2.58882e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 6.92614e-01\tAbsError: 3.01079e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.93668e-02\tAbsError: 2.58969e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.93668e-02\tAbsError: 2.58969e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.43247e-01\tAbsError: 3.01079e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.56495e-02\tAbsError: 2.67761e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.53703e-01\tAbsError: 3.33188e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.38939e-02\tAbsError: 2.58882e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 1.34106e+03\tAbsError: 2.60097e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.30468e-01\tAbsError: 4.17804e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.30468e-01\tAbsError: 4.17804e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.34093e+03\tAbsError: 2.60097e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.08990e+03\tAbsError: 2.46727e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.50879e+02\tAbsError: 1.33698e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.48504e-01\tAbsError: 4.17804e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 1.34106e+03\tAbsError: 2.60097e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.30468e-01\tAbsError: 4.17804e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.30468e-01\tAbsError: 4.17804e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.34093e+03\tAbsError: 2.60097e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.08990e+03\tAbsError: 2.46727e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.50879e+02\tAbsError: 1.33698e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.48504e-01\tAbsError: 4.17804e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 1.56952e+00\tAbsError: 7.50620e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.85994e-02\tAbsError: 1.11974e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.85994e-02\tAbsError: 1.11974e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.54092e+00\tAbsError: 7.50620e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.27946e-02\tAbsError: 7.38433e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.45300e+00\tAbsError: 1.21875e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.51276e-02\tAbsError: 1.11974e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 1.56952e+00\tAbsError: 7.50620e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.85994e-02\tAbsError: 1.11974e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.85994e-02\tAbsError: 1.11974e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.54092e+00\tAbsError: 7.50620e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.27946e-02\tAbsError: 7.38433e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.45300e+00\tAbsError: 1.21875e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.51276e-02\tAbsError: 1.11974e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 4.90856e+02\tAbsError: 2.78474e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.50972e-02\tAbsError: 3.17371e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.50972e-02\tAbsError: 3.17371e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.90791e+02\tAbsError: 2.78474e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.13190e+00\tAbsError: 2.66492e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.85504e+02\tAbsError: 1.19816e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.55448e-01\tAbsError: 3.17371e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 4.90856e+02\tAbsError: 2.78474e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.50972e-02\tAbsError: 3.17371e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.50972e-02\tAbsError: 3.17371e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.90791e+02\tAbsError: 2.78474e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.13190e+00\tAbsError: 2.66492e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.85504e+02\tAbsError: 1.19816e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.55448e-01\tAbsError: 3.17371e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 3.56785e-01\tAbsError: 5.39890e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.23949e-02\tAbsError: 1.11974e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.23949e-02\tAbsError: 1.11974e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.34390e-01\tAbsError: 5.39890e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.01377e-02\tAbsError: 5.25170e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.02895e-01\tAbsError: 1.47194e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.13571e-02\tAbsError: 1.11981e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 3.56785e-01\tAbsError: 5.39890e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.23949e-02\tAbsError: 1.11974e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.23949e-02\tAbsError: 1.11974e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.34390e-01\tAbsError: 5.39890e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.01377e-02\tAbsError: 5.25170e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.02895e-01\tAbsError: 1.47194e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.13571e-02\tAbsError: 1.11981e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 4.27291e-01\tAbsError: 7.82861e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.91529e-02\tAbsError: 2.24909e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.91529e-02\tAbsError: 2.24909e-05\n",
+ " Region: \"zone_2\"\tRelError: 3.98138e-01\tAbsError: 7.82861e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.66510e-03\tAbsError: 7.64726e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.85665e-01\tAbsError: 1.81343e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.04808e-01\tAbsError: 5.16740e-05\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 4.27291e-01\tAbsError: 7.82861e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.91529e-02\tAbsError: 2.24909e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.91529e-02\tAbsError: 2.24909e-05\n",
+ " Region: \"zone_2\"\tRelError: 3.98138e-01\tAbsError: 7.82861e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.66510e-03\tAbsError: 7.64726e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.85665e-01\tAbsError: 1.81343e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.04808e-01\tAbsError: 5.16740e-05\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 3.71095e+00\tAbsError: 2.30359e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.53141e-02\tAbsError: 2.58924e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.53141e-02\tAbsError: 2.58924e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.66563e+00\tAbsError: 2.30359e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.53984e-01\tAbsError: 2.21226e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.17692e+00\tAbsError: 9.13332e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.34731e-01\tAbsError: 2.58976e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 3.71095e+00\tAbsError: 2.30359e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.53141e-02\tAbsError: 2.58924e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.53141e-02\tAbsError: 2.58924e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.66563e+00\tAbsError: 2.30359e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.53984e-01\tAbsError: 2.21226e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.17692e+00\tAbsError: 9.13332e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.34731e-01\tAbsError: 2.58976e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 1.12441e-01\tAbsError: 3.78904e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.36504e-05\tAbsError: 2.30207e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.36504e-05\tAbsError: 2.30207e-05\n",
+ " Region: \"zone_2\"\tRelError: 1.12407e-01\tAbsError: 3.78904e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.94779e-03\tAbsError: 3.65587e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.10410e-01\tAbsError: 1.33167e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.92889e-05\tAbsError: 3.10057e-05\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 1.12441e-01\tAbsError: 3.78904e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.36504e-05\tAbsError: 2.30207e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.36504e-05\tAbsError: 2.30207e-05\n",
+ " Region: \"zone_2\"\tRelError: 1.12407e-01\tAbsError: 3.78904e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.94779e-03\tAbsError: 3.65587e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.10410e-01\tAbsError: 1.33167e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.92889e-05\tAbsError: 3.10057e-05\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 1.47364e-04\tAbsError: 1.87749e+11\n",
+ " Region: \"zone_1\"\tRelError: 2.05636e-06\tAbsError: 1.58748e-09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.05636e-06\tAbsError: 1.58748e-09\n",
+ " Region: \"zone_2\"\tRelError: 1.45308e-04\tAbsError: 1.87749e+11\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.61141e-06\tAbsError: 1.85985e+11\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.33015e-04\tAbsError: 1.76363e+09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.68107e-06\tAbsError: 6.33064e-09\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 1.47364e-04\tAbsError: 1.87749e+11\n",
+ " Region: \"zone_1\"\tRelError: 2.05636e-06\tAbsError: 1.58748e-09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.05636e-06\tAbsError: 1.58748e-09\n",
+ " Region: \"zone_2\"\tRelError: 1.45308e-04\tAbsError: 1.87749e+11\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.61141e-06\tAbsError: 1.85985e+11\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.33015e-04\tAbsError: 1.76363e+09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.68107e-06\tAbsError: 6.33064e-09\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 9.28542e-01\tAbsError: 6.34400e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.71060e-02\tAbsError: 1.03782e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.71060e-02\tAbsError: 1.03782e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.91436e-01\tAbsError: 6.34400e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.44841e-02\tAbsError: 6.24545e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.20093e-01\tAbsError: 9.85457e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.46859e-01\tAbsError: 1.03782e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 9.28542e-01\tAbsError: 6.34400e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.71060e-02\tAbsError: 1.03782e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.71060e-02\tAbsError: 1.03782e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.91436e-01\tAbsError: 6.34400e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.44841e-02\tAbsError: 6.24545e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.20093e-01\tAbsError: 9.85457e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.46859e-01\tAbsError: 1.03782e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 8.63603e-05\tAbsError: 7.43141e+10\n",
+ " Region: \"zone_1\"\tRelError: 2.94750e-09\tAbsError: 2.02507e-09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.94750e-09\tAbsError: 2.02507e-09\n",
+ " Region: \"zone_2\"\tRelError: 8.63573e-05\tAbsError: 7.43141e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.13341e-06\tAbsError: 7.30960e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.52196e-05\tAbsError: 1.21802e+09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.35958e-09\tAbsError: 2.85362e-09\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 8.63603e-05\tAbsError: 7.43141e+10\n",
+ " Region: \"zone_1\"\tRelError: 2.94750e-09\tAbsError: 2.02507e-09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.94750e-09\tAbsError: 2.02507e-09\n",
+ " Region: \"zone_2\"\tRelError: 8.63573e-05\tAbsError: 7.43141e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.13341e-06\tAbsError: 7.30960e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.52196e-05\tAbsError: 1.21802e+09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.35958e-09\tAbsError: 2.85362e-09\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 9.10247e-12\tAbsError: 6.18430e+03\n",
+ " Region: \"zone_1\"\tRelError: 2.35239e-14\tAbsError: 1.17881e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.35239e-14\tAbsError: 1.17881e-16\n",
+ " Region: \"zone_2\"\tRelError: 9.07894e-12\tAbsError: 6.18430e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.24290e-13\tAbsError: 3.70169e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.76460e-12\tAbsError: 2.48261e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.00511e-14\tAbsError: 1.76794e-16\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 9.10247e-12\tAbsError: 6.18430e+03\n",
+ " Region: \"zone_1\"\tRelError: 2.35239e-14\tAbsError: 1.17881e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.35239e-14\tAbsError: 1.17881e-16\n",
+ " Region: \"zone_2\"\tRelError: 9.07894e-12\tAbsError: 6.18430e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.24290e-13\tAbsError: 3.70169e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.76460e-12\tAbsError: 2.48261e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.00511e-14\tAbsError: 1.76794e-16\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 5.24814e-01\tAbsError: 6.33910e+14\n",
+ " Region: \"zone_1\"\tRelError: 5.81278e-02\tAbsError: 2.64926e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.81278e-02\tAbsError: 2.64926e-05\n",
+ " Region: \"zone_2\"\tRelError: 4.66686e-01\tAbsError: 6.33910e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.15909e-03\tAbsError: 6.17110e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.53159e-01\tAbsError: 1.67995e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.08368e-01\tAbsError: 4.26278e-05\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 5.24814e-01\tAbsError: 6.33910e+14\n",
+ " Region: \"zone_1\"\tRelError: 5.81278e-02\tAbsError: 2.64926e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.81278e-02\tAbsError: 2.64926e-05\n",
+ " Region: \"zone_2\"\tRelError: 4.66686e-01\tAbsError: 6.33910e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.15909e-03\tAbsError: 6.17110e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.53159e-01\tAbsError: 1.67995e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.08368e-01\tAbsError: 4.26278e-05\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 5.12560e-12\tAbsError: 5.06837e+03\n",
+ " Region: \"zone_1\"\tRelError: 1.24118e-16\tAbsError: 1.14343e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.24118e-16\tAbsError: 1.14343e-16\n",
+ " Region: \"zone_2\"\tRelError: 5.12548e-12\tAbsError: 5.06837e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.57528e-14\tAbsError: 2.44200e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.07960e-12\tAbsError: 2.62637e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.25632e-16\tAbsError: 1.16268e-16\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 5.12560e-12\tAbsError: 5.06837e+03\n",
+ " Region: \"zone_1\"\tRelError: 1.24118e-16\tAbsError: 1.14343e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.24118e-16\tAbsError: 1.14343e-16\n",
+ " Region: \"zone_2\"\tRelError: 5.12548e-12\tAbsError: 5.06837e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.57528e-14\tAbsError: 2.44200e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.07960e-12\tAbsError: 2.62637e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.25632e-16\tAbsError: 1.16268e-16\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 8.28696e-05\tAbsError: 1.36707e+11\n",
+ " Region: \"zone_1\"\tRelError: 4.82691e-06\tAbsError: 2.36244e-09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.82691e-06\tAbsError: 2.36244e-09\n",
+ " Region: \"zone_2\"\tRelError: 7.80427e-05\tAbsError: 1.36707e+11\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.03079e-06\tAbsError: 1.35322e+11\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.05807e-05\tAbsError: 1.38475e+09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.54313e-05\tAbsError: 4.30479e-09\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 8.28696e-05\tAbsError: 1.36707e+11\n",
+ " Region: \"zone_1\"\tRelError: 4.82691e-06\tAbsError: 2.36244e-09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.82691e-06\tAbsError: 2.36244e-09\n",
+ " Region: \"zone_2\"\tRelError: 7.80427e-05\tAbsError: 1.36707e+11\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.03079e-06\tAbsError: 1.35322e+11\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.05807e-05\tAbsError: 1.38475e+09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.54313e-05\tAbsError: 4.30479e-09\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 3.82350e-12\tAbsError: 5.31761e+03\n",
+ " Region: \"zone_1\"\tRelError: 2.96208e-13\tAbsError: 1.13993e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.96208e-13\tAbsError: 1.13993e-16\n",
+ " Region: \"zone_2\"\tRelError: 3.52730e-12\tAbsError: 5.31761e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.69389e-14\tAbsError: 2.80453e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.52402e-12\tAbsError: 2.51309e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.36336e-13\tAbsError: 1.29977e-16\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 3.82350e-12\tAbsError: 5.31761e+03\n",
+ " Region: \"zone_1\"\tRelError: 2.96208e-13\tAbsError: 1.13993e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.96208e-13\tAbsError: 1.13993e-16\n",
+ " Region: \"zone_2\"\tRelError: 3.52730e-12\tAbsError: 5.31761e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.69389e-14\tAbsError: 2.80453e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.52402e-12\tAbsError: 2.51309e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.36336e-13\tAbsError: 1.29977e-16\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:13:59\u001b[0m.\u001b[1;36m132\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 1.0 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:13:59\u001b[0m.\u001b[1;36m132\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 1.0 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:13:59\u001b[0m.\u001b[1;36m682\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 1.25 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:13:59\u001b[0m.\u001b[1;36m682\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 1.25 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:06\u001b[0m.\u001b[1;36m682\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 1.5 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:06\u001b[0m.\u001b[1;36m682\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 1.5 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:07\u001b[0m.\u001b[1;36m019\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 1.75 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:07\u001b[0m.\u001b[1;36m019\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 1.75 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:10\u001b[0m.\u001b[1;36m103\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 1.0 V. Current applied bias: 1.0\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:10\u001b[0m.\u001b[1;36m103\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 1.0 V. Current applied bias: 1.0\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:10\u001b[0m.\u001b[1;36m518\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 1.25 V. Current applied bias: 1.25\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:10\u001b[0m.\u001b[1;36m518\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 1.25 V. Current applied bias: 1.25\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:10\u001b[0m.\u001b[1;36m572\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 2.0 bias\u001b[0m \n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:10\u001b[0m.\u001b[1;36m572\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 2.0 bias\u001b[0m \n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 5.50075e+03\tAbsError: 8.22620e+17\n",
+ " Region: \"zone_1\"\tRelError: 6.77138e-01\tAbsError: 1.00937e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.77138e-01\tAbsError: 1.00937e-01\n",
+ " Region: \"zone_2\"\tRelError: 5.50007e+03\tAbsError: 8.22620e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.21766e+03\tAbsError: 4.60561e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.81832e+02\tAbsError: 3.62059e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.82235e-01\tAbsError: 1.00937e-01\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 5.50075e+03\tAbsError: 8.22620e+17\n",
+ " Region: \"zone_1\"\tRelError: 6.77138e-01\tAbsError: 1.00937e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.77138e-01\tAbsError: 1.00937e-01\n",
+ " Region: \"zone_2\"\tRelError: 5.50007e+03\tAbsError: 8.22620e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.21766e+03\tAbsError: 4.60561e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.81832e+02\tAbsError: 3.62059e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.82235e-01\tAbsError: 1.00937e-01\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 8.99431e+04\tAbsError: 7.60909e+17\n",
+ " Region: \"zone_1\"\tRelError: 3.42643e+02\tAbsError: 9.52882e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.42643e+02\tAbsError: 9.52882e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.96005e+04\tAbsError: 7.60909e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.82122e+04\tAbsError: 4.30370e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.08387e+04\tAbsError: 3.30539e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.49578e+02\tAbsError: 9.52882e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 8.99431e+04\tAbsError: 7.60909e+17\n",
+ " Region: \"zone_1\"\tRelError: 3.42643e+02\tAbsError: 9.52882e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.42643e+02\tAbsError: 9.52882e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.96005e+04\tAbsError: 7.60909e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.82122e+04\tAbsError: 4.30370e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.08387e+04\tAbsError: 3.30539e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.49578e+02\tAbsError: 9.52882e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 4.09618e+02\tAbsError: 5.46902e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.96576e+00\tAbsError: 9.88020e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.96576e+00\tAbsError: 9.88020e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.07653e+02\tAbsError: 5.46902e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.07328e+02\tAbsError: 2.76906e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.69995e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.32516e+00\tAbsError: 9.88020e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 4.09618e+02\tAbsError: 5.46902e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.96576e+00\tAbsError: 9.88020e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.96576e+00\tAbsError: 9.88020e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.07653e+02\tAbsError: 5.46902e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.07328e+02\tAbsError: 2.76906e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.69995e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.32516e+00\tAbsError: 9.88020e-02\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:17\u001b[0m.\u001b[1;36m945\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 1.75 V. Current applied bias: 1.75\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:17\u001b[0m.\u001b[1;36m945\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 1.75 V. Current applied bias: 1.75\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:18\u001b[0m.\u001b[1;36m622\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 1.5 V. Current applied bias: 1.5\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:18\u001b[0m.\u001b[1;36m622\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 1.5 V. Current applied bias: 1.5\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 1.52716e+03\tAbsError: 3.79114e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.60773e+02\tAbsError: 9.27634e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.60773e+02\tAbsError: 9.27634e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.26639e+03\tAbsError: 3.79114e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.89039e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.06613e+02\tAbsError: 1.90076e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.60773e+02\tAbsError: 9.27634e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 1.52716e+03\tAbsError: 3.79114e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.60773e+02\tAbsError: 9.27634e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.60773e+02\tAbsError: 9.27634e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.26639e+03\tAbsError: 3.79114e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.89039e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.06613e+02\tAbsError: 1.90076e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.60773e+02\tAbsError: 9.27634e-02\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 1.70220e+04\tAbsError: 2.08184e+17\n",
+ " Region: \"zone_1\"\tRelError: 3.09327e+03\tAbsError: 9.65270e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.09327e+03\tAbsError: 9.65270e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.39287e+04\tAbsError: 2.08184e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.16110e+04\tAbsError: 1.15101e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.34600e+03\tAbsError: 9.30828e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.71690e+02\tAbsError: 9.65336e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 1.70220e+04\tAbsError: 2.08184e+17\n",
+ " Region: \"zone_1\"\tRelError: 3.09327e+03\tAbsError: 9.65270e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.09327e+03\tAbsError: 9.65270e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.39287e+04\tAbsError: 2.08184e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.16110e+04\tAbsError: 1.15101e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.34600e+03\tAbsError: 9.30828e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.71690e+02\tAbsError: 9.65336e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 3.92054e+03\tAbsError: 1.08091e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.77479e+03\tAbsError: 9.00438e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.77479e+03\tAbsError: 9.00438e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.14575e+03\tAbsError: 1.08091e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.70913e+02\tAbsError: 5.92397e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.59663e+02\tAbsError: 4.88510e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.81518e+03\tAbsError: 9.00456e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 3.92054e+03\tAbsError: 1.08091e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.77479e+03\tAbsError: 9.00438e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.77479e+03\tAbsError: 9.00438e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.14575e+03\tAbsError: 1.08091e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.70913e+02\tAbsError: 5.92397e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.59663e+02\tAbsError: 4.88510e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.81518e+03\tAbsError: 9.00456e-02\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:22\u001b[0m.\u001b[1;36m779\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 2.0 V. Current applied bias: 2.0\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:14:22\u001b[0m.\u001b[1;36m779\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 2.0 V. Current applied bias: 2.0\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 1.79449e+03\tAbsError: 9.12978e+17\n",
+ " Region: \"zone_1\"\tRelError: 6.47925e-01\tAbsError: 1.15925e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.47925e-01\tAbsError: 1.15925e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.79384e+03\tAbsError: 9.12978e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.24201e+03\tAbsError: 5.00217e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.51543e+02\tAbsError: 4.12761e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.83873e-01\tAbsError: 1.15925e-01\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 1.79449e+03\tAbsError: 9.12978e+17\n",
+ " Region: \"zone_1\"\tRelError: 6.47925e-01\tAbsError: 1.15925e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.47925e-01\tAbsError: 1.15925e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.79384e+03\tAbsError: 9.12978e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.24201e+03\tAbsError: 5.00217e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.51543e+02\tAbsError: 4.12761e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.83873e-01\tAbsError: 1.15925e-01\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 2.48321e+04\tAbsError: 7.46886e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.42841e+02\tAbsError: 9.52882e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.42841e+02\tAbsError: 9.52882e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.46893e+04\tAbsError: 7.46886e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.80273e+04\tAbsError: 4.25295e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.23071e+03\tAbsError: 3.21591e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.31307e+02\tAbsError: 9.52882e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 2.48321e+04\tAbsError: 7.46886e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.42841e+02\tAbsError: 9.52882e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.42841e+02\tAbsError: 9.52882e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.46893e+04\tAbsError: 7.46886e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.80273e+04\tAbsError: 4.25295e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.23071e+03\tAbsError: 3.21591e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.31307e+02\tAbsError: 9.52882e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 1.33297e+04\tAbsError: 6.41726e+16\n",
+ " Region: \"zone_1\"\tRelError: 9.29931e+03\tAbsError: 9.40931e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.29931e+03\tAbsError: 9.40931e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.03041e+03\tAbsError: 6.41726e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.28999e+03\tAbsError: 5.05258e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.36468e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.64142e+03\tAbsError: 9.40931e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 1.33297e+04\tAbsError: 6.41726e+16\n",
+ " Region: \"zone_1\"\tRelError: 9.29931e+03\tAbsError: 9.40931e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.29931e+03\tAbsError: 9.40931e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.03041e+03\tAbsError: 6.41726e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.28999e+03\tAbsError: 5.05258e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.36468e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.64142e+03\tAbsError: 9.40931e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 8.61227e+02\tAbsError: 5.77739e+16\n",
+ " Region: \"zone_1\"\tRelError: 5.94340e+01\tAbsError: 8.70991e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.94340e+01\tAbsError: 8.70991e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.01793e+02\tAbsError: 5.77739e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.54893e+02\tAbsError: 4.04005e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.60997e+02\tAbsError: 1.73734e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.85903e+02\tAbsError: 8.70991e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 8.61227e+02\tAbsError: 5.77739e+16\n",
+ " Region: \"zone_1\"\tRelError: 5.94340e+01\tAbsError: 8.70991e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.94340e+01\tAbsError: 8.70991e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.01793e+02\tAbsError: 5.77739e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.54893e+02\tAbsError: 4.04005e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.60997e+02\tAbsError: 1.73734e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.85903e+02\tAbsError: 8.70991e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 3.22327e+03\tAbsError: 8.24279e+17\n",
+ " Region: \"zone_1\"\tRelError: 4.25121e-01\tAbsError: 1.14571e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.25121e-01\tAbsError: 1.14571e-01\n",
+ " Region: \"zone_2\"\tRelError: 3.22285e+03\tAbsError: 8.24279e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.85977e+03\tAbsError: 4.49575e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.36269e+03\tAbsError: 3.74704e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.89964e-01\tAbsError: 1.14572e-01\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 3.22327e+03\tAbsError: 8.24279e+17\n",
+ " Region: \"zone_1\"\tRelError: 4.25121e-01\tAbsError: 1.14571e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.25121e-01\tAbsError: 1.14571e-01\n",
+ " Region: \"zone_2\"\tRelError: 3.22285e+03\tAbsError: 8.24279e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.85977e+03\tAbsError: 4.49575e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.36269e+03\tAbsError: 3.74704e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.89964e-01\tAbsError: 1.14572e-01\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 1.06781e+04\tAbsError: 8.10790e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.01208e+02\tAbsError: 1.00937e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.01208e+02\tAbsError: 1.00937e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.04769e+04\tAbsError: 8.10790e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.97172e+03\tAbsError: 4.64547e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.23816e+03\tAbsError: 3.46243e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.67064e+02\tAbsError: 1.00937e-01\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 1.06781e+04\tAbsError: 8.10790e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.01208e+02\tAbsError: 1.00937e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.01208e+02\tAbsError: 1.00937e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.04769e+04\tAbsError: 8.10790e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.97172e+03\tAbsError: 4.64547e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.23816e+03\tAbsError: 3.46243e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.67064e+02\tAbsError: 1.00937e-01\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 1.32495e+03\tAbsError: 3.62874e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.35365e+02\tAbsError: 9.27634e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.35365e+02\tAbsError: 9.27634e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.18959e+03\tAbsError: 3.62874e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.18305e+02\tAbsError: 1.79456e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.79094e+02\tAbsError: 1.83418e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.92190e+02\tAbsError: 9.27634e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 1.32495e+03\tAbsError: 3.62874e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.35365e+02\tAbsError: 9.27634e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.35365e+02\tAbsError: 9.27634e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.18959e+03\tAbsError: 3.62874e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.18305e+02\tAbsError: 1.79456e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.79094e+02\tAbsError: 1.83418e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.92190e+02\tAbsError: 9.27634e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 1.04479e+04\tAbsError: 3.65970e+16\n",
+ " Region: \"zone_1\"\tRelError: 7.97968e+02\tAbsError: 9.14777e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.97968e+02\tAbsError: 9.14777e-02\n",
+ " Region: \"zone_2\"\tRelError: 9.64989e+03\tAbsError: 3.65970e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.74794e+02\tAbsError: 3.36805e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.23871e+03\tAbsError: 2.91648e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.03639e+03\tAbsError: 9.14777e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 1.04479e+04\tAbsError: 3.65970e+16\n",
+ " Region: \"zone_1\"\tRelError: 7.97968e+02\tAbsError: 9.14777e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.97968e+02\tAbsError: 9.14777e-02\n",
+ " Region: \"zone_2\"\tRelError: 9.64989e+03\tAbsError: 3.65970e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.74794e+02\tAbsError: 3.36805e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.23871e+03\tAbsError: 2.91648e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.03639e+03\tAbsError: 9.14777e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 7.47903e+03\tAbsError: 2.96279e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.46968e+02\tAbsError: 8.38918e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.46968e+02\tAbsError: 8.38918e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.33206e+03\tAbsError: 2.96279e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.44286e+03\tAbsError: 2.53774e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.74736e+03\tAbsError: 4.25048e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.41847e+02\tAbsError: 8.38919e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 7.47903e+03\tAbsError: 2.96279e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.46968e+02\tAbsError: 8.38918e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.46968e+02\tAbsError: 8.38918e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.33206e+03\tAbsError: 2.96279e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.44286e+03\tAbsError: 2.53774e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.74736e+03\tAbsError: 4.25048e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.41847e+02\tAbsError: 8.38919e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 7.08083e+02\tAbsError: 6.00475e+17\n",
+ " Region: \"zone_1\"\tRelError: 7.23792e-01\tAbsError: 1.13160e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.23792e-01\tAbsError: 1.13160e-01\n",
+ " Region: \"zone_2\"\tRelError: 7.07359e+02\tAbsError: 6.00475e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.07733e+02\tAbsError: 3.05573e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.94902e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.26438e-01\tAbsError: 1.13160e-01\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 7.08083e+02\tAbsError: 6.00475e+17\n",
+ " Region: \"zone_1\"\tRelError: 7.23792e-01\tAbsError: 1.13160e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.23792e-01\tAbsError: 1.13160e-01\n",
+ " Region: \"zone_2\"\tRelError: 7.07359e+02\tAbsError: 6.00475e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.07733e+02\tAbsError: 3.05573e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.94902e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.26438e-01\tAbsError: 1.13160e-01\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 3.49396e+03\tAbsError: 4.70111e+17\n",
+ " Region: \"zone_1\"\tRelError: 9.12521e+01\tAbsError: 9.88020e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.12521e+01\tAbsError: 9.88020e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.40271e+03\tAbsError: 4.70111e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.49200e+03\tAbsError: 2.36634e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.45449e+03\tAbsError: 2.33477e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.56212e+02\tAbsError: 9.88020e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 3.49396e+03\tAbsError: 4.70111e+17\n",
+ " Region: \"zone_1\"\tRelError: 9.12521e+01\tAbsError: 9.88020e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.12521e+01\tAbsError: 9.88020e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.40271e+03\tAbsError: 4.70111e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.49200e+03\tAbsError: 2.36634e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.45449e+03\tAbsError: 2.33477e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.56212e+02\tAbsError: 9.88020e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 1.67746e+04\tAbsError: 1.16383e+17\n",
+ " Region: \"zone_1\"\tRelError: 6.86480e+02\tAbsError: 9.00438e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.86480e+02\tAbsError: 9.00438e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.60881e+04\tAbsError: 1.16383e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.37241e+04\tAbsError: 6.24275e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.82599e+02\tAbsError: 5.39551e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.38140e+03\tAbsError: 9.00446e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 1.67746e+04\tAbsError: 1.16383e+17\n",
+ " Region: \"zone_1\"\tRelError: 6.86480e+02\tAbsError: 9.00438e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.86480e+02\tAbsError: 9.00438e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.60881e+04\tAbsError: 1.16383e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.37241e+04\tAbsError: 6.24275e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.82599e+02\tAbsError: 5.39551e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.38140e+03\tAbsError: 9.00446e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 5.62856e+03\tAbsError: 2.36487e+16\n",
+ " Region: \"zone_1\"\tRelError: 5.61125e+02\tAbsError: 8.86536e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.61125e+02\tAbsError: 8.86536e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.06744e+03\tAbsError: 2.36487e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.66569e+03\tAbsError: 2.26896e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.91025e+02\tAbsError: 9.59143e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.01072e+03\tAbsError: 8.86546e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 5.62856e+03\tAbsError: 2.36487e+16\n",
+ " Region: \"zone_1\"\tRelError: 5.61125e+02\tAbsError: 8.86536e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.61125e+02\tAbsError: 8.86536e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.06744e+03\tAbsError: 2.36487e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.66569e+03\tAbsError: 2.26896e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.91025e+02\tAbsError: 9.59143e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.01072e+03\tAbsError: 8.86546e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 5.18631e+03\tAbsError: 1.49856e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.68733e+03\tAbsError: 8.03749e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.68733e+03\tAbsError: 8.03749e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.49898e+03\tAbsError: 1.49856e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.69134e+03\tAbsError: 1.43878e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.60943e+02\tAbsError: 5.97744e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.46702e+02\tAbsError: 8.03749e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 5.18631e+03\tAbsError: 1.49856e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.68733e+03\tAbsError: 8.03749e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.68733e+03\tAbsError: 8.03749e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.49898e+03\tAbsError: 1.49856e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.69134e+03\tAbsError: 1.43878e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.60943e+02\tAbsError: 5.97744e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.46702e+02\tAbsError: 8.03749e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 1.11754e+03\tAbsError: 2.90240e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.50095e+00\tAbsError: 1.11686e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.50095e+00\tAbsError: 1.11686e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.11504e+03\tAbsError: 2.90240e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.21446e+02\tAbsError: 1.75194e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.91978e+02\tAbsError: 1.15046e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.61970e+00\tAbsError: 1.11705e-01\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 1.11754e+03\tAbsError: 2.90240e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.50095e+00\tAbsError: 1.11686e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.50095e+00\tAbsError: 1.11686e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.11504e+03\tAbsError: 2.90240e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.21446e+02\tAbsError: 1.75194e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.91978e+02\tAbsError: 1.15046e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.61970e+00\tAbsError: 1.11705e-01\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 3.38158e+03\tAbsError: 1.48619e+17\n",
+ " Region: \"zone_1\"\tRelError: 6.18223e+02\tAbsError: 9.65270e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.18223e+02\tAbsError: 9.65270e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.76335e+03\tAbsError: 1.48619e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.24960e+02\tAbsError: 8.75529e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.03997e+03\tAbsError: 6.10665e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.98421e+02\tAbsError: 9.65277e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 3.38158e+03\tAbsError: 1.48619e+17\n",
+ " Region: \"zone_1\"\tRelError: 6.18223e+02\tAbsError: 9.65270e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.18223e+02\tAbsError: 9.65270e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.76335e+03\tAbsError: 1.48619e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.24960e+02\tAbsError: 8.75529e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.03997e+03\tAbsError: 6.10665e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.98421e+02\tAbsError: 9.65277e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 1.61386e+03\tAbsError: 5.89281e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.24160e+02\tAbsError: 8.70991e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.24160e+02\tAbsError: 8.70991e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.18970e+03\tAbsError: 5.89281e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.13148e+02\tAbsError: 4.01954e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.74939e+02\tAbsError: 1.87327e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.01610e+02\tAbsError: 8.70991e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 1.61386e+03\tAbsError: 5.89281e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.24160e+02\tAbsError: 8.70991e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.24160e+02\tAbsError: 8.70991e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.18970e+03\tAbsError: 5.89281e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.13148e+02\tAbsError: 4.01954e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.74939e+02\tAbsError: 1.87327e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.01610e+02\tAbsError: 8.70991e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 5.96952e+03\tAbsError: 1.40485e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.41472e+03\tAbsError: 8.55875e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.41472e+03\tAbsError: 8.55875e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.55480e+03\tAbsError: 1.40485e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.73609e+02\tAbsError: 1.37844e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.64102e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.68219e+03\tAbsError: 8.55875e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 5.96952e+03\tAbsError: 1.40485e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.41472e+03\tAbsError: 8.55875e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.41472e+03\tAbsError: 8.55875e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.55480e+03\tAbsError: 1.40485e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.73609e+02\tAbsError: 1.37844e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.64102e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.68219e+03\tAbsError: 8.55875e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 1.58511e+03\tAbsError: 8.06146e+15\n",
+ " Region: \"zone_1\"\tRelError: 3.94206e+01\tAbsError: 7.64883e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.94206e+01\tAbsError: 7.64883e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.54569e+03\tAbsError: 8.06146e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.38578e+03\tAbsError: 7.81865e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.42811e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.09103e+01\tAbsError: 7.64883e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 1.58511e+03\tAbsError: 8.06146e+15\n",
+ " Region: \"zone_1\"\tRelError: 3.94206e+01\tAbsError: 7.64883e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.94206e+01\tAbsError: 7.64883e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.54569e+03\tAbsError: 8.06146e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.38578e+03\tAbsError: 7.81865e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.42811e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.09103e+01\tAbsError: 7.64883e-02\n",
+ "Iteration: 3\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 1.37038e+04\tAbsError: 6.31428e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.85703e+02\tAbsError: 9.40931e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.85703e+02\tAbsError: 9.40931e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.34181e+04\tAbsError: 6.31428e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.14916e+02\tAbsError: 4.69675e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.07824e+04\tAbsError: 1.61754e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.02079e+03\tAbsError: 9.40931e-02\n",
+ " Device: \"device\"\tRelError: 6.52283e+04\tAbsError: 1.21448e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.11301e+04\tAbsError: 1.10144e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.11301e+04\tAbsError: 1.10144e-01\n",
+ " Region: \"zone_2\"\tRelError: 4.40983e+04\tAbsError: 1.21448e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.30992e+04\tAbsError: 8.67236e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.02655e+02\tAbsError: 3.47245e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.96440e+02\tAbsError: 1.10144e-01\n",
+ "Iteration: 3\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 1.37038e+04\tAbsError: 6.31428e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.85703e+02\tAbsError: 9.40931e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.85703e+02\tAbsError: 9.40931e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.34181e+04\tAbsError: 6.31428e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.14916e+02\tAbsError: 4.69675e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.07824e+04\tAbsError: 1.61754e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.02079e+03\tAbsError: 9.40931e-02\n",
+ " Device: \"device\"\tRelError: 6.52283e+04\tAbsError: 1.21448e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.11301e+04\tAbsError: 1.10144e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.11301e+04\tAbsError: 1.10144e-01\n",
+ " Region: \"zone_2\"\tRelError: 4.40983e+04\tAbsError: 1.21448e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.30992e+04\tAbsError: 8.67236e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.02655e+02\tAbsError: 3.47245e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.96440e+02\tAbsError: 1.10144e-01\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 6.18646e+02\tAbsError: 2.94123e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.11461e+02\tAbsError: 8.38918e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.11461e+02\tAbsError: 8.38918e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.07185e+02\tAbsError: 2.94123e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.66472e+02\tAbsError: 2.50439e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.72302e+02\tAbsError: 4.36839e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.84110e+01\tAbsError: 8.38918e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 6.18646e+02\tAbsError: 2.94123e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.11461e+02\tAbsError: 8.38918e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.11461e+02\tAbsError: 8.38918e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.07185e+02\tAbsError: 2.94123e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.66472e+02\tAbsError: 2.50439e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.72302e+02\tAbsError: 4.36839e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.84110e+01\tAbsError: 8.38918e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 5.46880e+03\tAbsError: 9.64515e+15\n",
+ " Region: \"zone_1\"\tRelError: 3.28563e+02\tAbsError: 8.22374e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.28563e+02\tAbsError: 8.22374e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.14024e+03\tAbsError: 9.64515e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.27029e+02\tAbsError: 9.38384e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.42023e+03\tAbsError: 2.61311e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.92977e+02\tAbsError: 8.22375e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 5.46880e+03\tAbsError: 9.64515e+15\n",
+ " Region: \"zone_1\"\tRelError: 3.28563e+02\tAbsError: 8.22374e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.28563e+02\tAbsError: 8.22374e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.14024e+03\tAbsError: 9.64515e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.27029e+02\tAbsError: 9.38384e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.42023e+03\tAbsError: 2.61311e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.92977e+02\tAbsError: 8.22375e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 1.19706e+03\tAbsError: 4.36994e+15\n",
+ " Region: \"zone_1\"\tRelError: 8.80441e+01\tAbsError: 7.21547e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.80441e+01\tAbsError: 7.21547e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.10902e+03\tAbsError: 4.36994e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.13782e+02\tAbsError: 4.29921e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.07192e+02\tAbsError: 7.07276e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.80441e+01\tAbsError: 7.21547e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 1.19706e+03\tAbsError: 4.36994e+15\n",
+ " Region: \"zone_1\"\tRelError: 8.80441e+01\tAbsError: 7.21547e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.80441e+01\tAbsError: 7.21547e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.10902e+03\tAbsError: 4.36994e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.13782e+02\tAbsError: 4.29921e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.07192e+02\tAbsError: 7.07276e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.80441e+01\tAbsError: 7.21547e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 2.94465e+04\tAbsError: 3.65750e+16\n",
+ " Region: \"zone_1\"\tRelError: 3.90907e+02\tAbsError: 9.14777e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.90907e+02\tAbsError: 9.14777e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.90556e+04\tAbsError: 3.65750e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.84409e+04\tAbsError: 3.23941e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.95167e+02\tAbsError: 4.18087e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.19545e+02\tAbsError: 9.14777e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 2.94465e+04\tAbsError: 3.65750e+16\n",
+ " Region: \"zone_1\"\tRelError: 3.90907e+02\tAbsError: 9.14777e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.90907e+02\tAbsError: 9.14777e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.90556e+04\tAbsError: 3.65750e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.84409e+04\tAbsError: 3.23941e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.95167e+02\tAbsError: 4.18087e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.19545e+02\tAbsError: 9.14777e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 7.53000e+03\tAbsError: 7.94634e+16\n",
+ " Region: \"zone_1\"\tRelError: 8.23936e+02\tAbsError: 1.08527e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.23936e+02\tAbsError: 1.08527e-01\n",
+ " Region: \"zone_2\"\tRelError: 6.70606e+03\tAbsError: 7.94634e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.73166e+03\tAbsError: 7.16633e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.11475e+03\tAbsError: 7.80007e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.59650e+02\tAbsError: 1.08527e-01\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 7.53000e+03\tAbsError: 7.94634e+16\n",
+ " Region: \"zone_1\"\tRelError: 8.23936e+02\tAbsError: 1.08527e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.23936e+02\tAbsError: 1.08527e-01\n",
+ " Region: \"zone_2\"\tRelError: 6.70606e+03\tAbsError: 7.94634e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.73166e+03\tAbsError: 7.16633e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.11475e+03\tAbsError: 7.80007e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.59650e+02\tAbsError: 1.08527e-01\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 3.63496e+03\tAbsError: 1.39452e+16\n",
+ " Region: \"zone_1\"\tRelError: 9.30016e+02\tAbsError: 8.03749e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.30016e+02\tAbsError: 8.03749e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.70495e+03\tAbsError: 1.39452e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.03957e+03\tAbsError: 1.34206e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.93918e+02\tAbsError: 5.24577e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.71463e+02\tAbsError: 8.03749e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 3.63496e+03\tAbsError: 1.39452e+16\n",
+ " Region: \"zone_1\"\tRelError: 9.30016e+02\tAbsError: 8.03749e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.30016e+02\tAbsError: 8.03749e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.70495e+03\tAbsError: 1.39452e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.03957e+03\tAbsError: 1.34206e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.93918e+02\tAbsError: 5.24577e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.71463e+02\tAbsError: 8.03749e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 9.19982e+02\tAbsError: 6.96116e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.79803e+02\tAbsError: 7.85507e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.79803e+02\tAbsError: 7.85507e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.40179e+02\tAbsError: 6.96116e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.61375e+02\tAbsError: 6.81522e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.45934e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.79803e+02\tAbsError: 7.85507e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 9.19982e+02\tAbsError: 6.96116e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.79803e+02\tAbsError: 7.85507e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.79803e+02\tAbsError: 7.85507e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.40179e+02\tAbsError: 6.96116e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.61375e+02\tAbsError: 6.81522e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.45934e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.79803e+02\tAbsError: 7.85507e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 5.69314e+02\tAbsError: 2.47690e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.05603e+01\tAbsError: 6.72720e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.05603e+01\tAbsError: 6.72720e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.48753e+02\tAbsError: 2.47690e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.98903e+02\tAbsError: 2.42145e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 5.54489e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.08508e+01\tAbsError: 6.72720e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 5.69314e+02\tAbsError: 2.47690e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.05603e+01\tAbsError: 6.72720e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.05603e+01\tAbsError: 6.72720e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.48753e+02\tAbsError: 2.47690e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.98903e+02\tAbsError: 2.42145e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 5.54489e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.08508e+01\tAbsError: 6.72720e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.90561e+03\tAbsError: 1.55312e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.41605e+02\tAbsError: 8.86536e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.41605e+02\tAbsError: 8.86536e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.76401e+03\tAbsError: 1.55312e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.34576e+03\tAbsError: 1.46796e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.45537e+02\tAbsError: 8.51599e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.72704e+02\tAbsError: 8.86536e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.90561e+03\tAbsError: 1.55312e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.41605e+02\tAbsError: 8.86536e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.41605e+02\tAbsError: 8.86536e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.76401e+03\tAbsError: 1.55312e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.34576e+03\tAbsError: 1.46796e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.45537e+02\tAbsError: 8.51599e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.72704e+02\tAbsError: 8.86536e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 1.32021e+03\tAbsError: 5.63996e+16\n",
+ " Region: \"zone_1\"\tRelError: 6.51844e+02\tAbsError: 1.06830e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.51844e+02\tAbsError: 1.06830e-01\n",
+ " Region: \"zone_2\"\tRelError: 6.68370e+02\tAbsError: 5.63996e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.42446e+02\tAbsError: 5.37555e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.03846e+02\tAbsError: 2.64410e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.22078e+02\tAbsError: 1.06836e-01\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 1.32021e+03\tAbsError: 5.63996e+16\n",
+ " Region: \"zone_1\"\tRelError: 6.51844e+02\tAbsError: 1.06830e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.51844e+02\tAbsError: 1.06830e-01\n",
+ " Region: \"zone_2\"\tRelError: 6.68370e+02\tAbsError: 5.63996e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.42446e+02\tAbsError: 5.37555e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.03846e+02\tAbsError: 2.64410e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.22078e+02\tAbsError: 1.06836e-01\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 3.60223e+03\tAbsError: 7.55653e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.03010e+02\tAbsError: 7.64883e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.03010e+02\tAbsError: 7.64883e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.49922e+03\tAbsError: 7.55653e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.53434e+02\tAbsError: 7.35630e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.54959e+03\tAbsError: 2.00227e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.96188e+02\tAbsError: 7.64883e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 3.60223e+03\tAbsError: 7.55653e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.03010e+02\tAbsError: 7.64883e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.03010e+02\tAbsError: 7.64883e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.49922e+03\tAbsError: 7.55653e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.53434e+02\tAbsError: 7.35630e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.54959e+03\tAbsError: 2.00227e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.96188e+02\tAbsError: 7.64883e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 1.36995e+03\tAbsError: 4.14152e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.09293e+02\tAbsError: 7.44595e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.09293e+02\tAbsError: 7.44595e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.26065e+03\tAbsError: 4.14152e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.75535e+02\tAbsError: 4.03144e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.14329e+02\tAbsError: 1.10082e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.07875e+01\tAbsError: 7.44595e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 1.36995e+03\tAbsError: 4.14152e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.09293e+02\tAbsError: 7.44595e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.09293e+02\tAbsError: 7.44595e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.26065e+03\tAbsError: 4.14152e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.75535e+02\tAbsError: 4.03144e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.14329e+02\tAbsError: 1.10082e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.07875e+01\tAbsError: 7.44595e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 2.32916e+03\tAbsError: 8.85569e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.18424e-01\tAbsError: 6.17046e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.18424e-01\tAbsError: 6.17046e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.32894e+03\tAbsError: 8.85569e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.22925e+03\tAbsError: 8.74981e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.05878e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.90925e-01\tAbsError: 6.17046e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 2.32916e+03\tAbsError: 8.85569e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.18424e-01\tAbsError: 6.17046e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.18424e-01\tAbsError: 6.17046e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.32894e+03\tAbsError: 8.85569e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.22925e+03\tAbsError: 8.74981e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.05878e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.90925e-01\tAbsError: 6.17046e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 1.35522e+03\tAbsError: 2.35734e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.93280e+02\tAbsError: 6.98755e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.93280e+02\tAbsError: 6.98755e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.06194e+03\tAbsError: 2.35734e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.88128e+02\tAbsError: 2.30290e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 5.44469e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.74809e+02\tAbsError: 6.98755e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 1.35522e+03\tAbsError: 2.35734e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.93280e+02\tAbsError: 6.98755e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.93280e+02\tAbsError: 6.98755e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.06194e+03\tAbsError: 2.35734e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.88128e+02\tAbsError: 2.30290e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 5.44469e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.74809e+02\tAbsError: 6.98755e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 6.39535e+02\tAbsError: 1.11562e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.04271e+02\tAbsError: 8.55875e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.04271e+02\tAbsError: 8.55875e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.35264e+02\tAbsError: 1.11562e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.17349e+02\tAbsError: 1.09353e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.27661e+02\tAbsError: 2.20848e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.02544e+01\tAbsError: 8.55875e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 6.39535e+02\tAbsError: 1.11562e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.04271e+02\tAbsError: 8.55875e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.04271e+02\tAbsError: 8.55875e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.35264e+02\tAbsError: 1.11562e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.17349e+02\tAbsError: 1.09353e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.27661e+02\tAbsError: 2.20848e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.02544e+01\tAbsError: 8.55875e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 3.97745e+03\tAbsError: 5.81072e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.71425e+02\tAbsError: 1.05042e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.71425e+02\tAbsError: 1.05042e-01\n",
+ " Region: \"zone_2\"\tRelError: 3.70603e+03\tAbsError: 5.81072e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.21199e+03\tAbsError: 5.49323e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.53459e+02\tAbsError: 3.17494e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.34058e+03\tAbsError: 1.05042e-01\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 3.97745e+03\tAbsError: 5.81072e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.71425e+02\tAbsError: 1.05042e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.71425e+02\tAbsError: 1.05042e-01\n",
+ " Region: \"zone_2\"\tRelError: 3.70603e+03\tAbsError: 5.81072e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.21199e+03\tAbsError: 5.49323e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.53459e+02\tAbsError: 3.17494e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.34058e+03\tAbsError: 1.05042e-01\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 1.92595e+04\tAbsError: 3.90272e+15\n",
+ " Region: \"zone_1\"\tRelError: 4.34967e+02\tAbsError: 7.21547e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.34967e+02\tAbsError: 7.21547e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.88246e+04\tAbsError: 3.90272e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.00000e+00\tAbsError: 3.84235e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.86005e+04\tAbsError: 6.03699e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.23030e+02\tAbsError: 7.21547e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 1.92595e+04\tAbsError: 3.90272e+15\n",
+ " Region: \"zone_1\"\tRelError: 4.34967e+02\tAbsError: 7.21547e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.34967e+02\tAbsError: 7.21547e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.88246e+04\tAbsError: 3.90272e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.00000e+00\tAbsError: 3.84235e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.86005e+04\tAbsError: 6.03699e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.23030e+02\tAbsError: 7.21547e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 5.27166e+02\tAbsError: 4.35044e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.48494e-02\tAbsError: 5.52707e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.48494e-02\tAbsError: 5.52707e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.27101e+02\tAbsError: 4.35044e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.26429e+02\tAbsError: 4.13773e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.00606e+02\tAbsError: 2.12710e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.56880e-02\tAbsError: 5.52707e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 5.27166e+02\tAbsError: 4.35044e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.48494e-02\tAbsError: 5.52707e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.48494e-02\tAbsError: 5.52707e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.27101e+02\tAbsError: 4.35044e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.26429e+02\tAbsError: 4.13773e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.00606e+02\tAbsError: 2.12710e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.56880e-02\tAbsError: 5.52707e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 2.62939e+02\tAbsError: 1.05009e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.00575e+01\tAbsError: 6.46820e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.00575e+01\tAbsError: 6.46820e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.42882e+02\tAbsError: 1.05009e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.00525e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 4.48353e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.48817e+01\tAbsError: 6.46820e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 2.62939e+02\tAbsError: 1.05009e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.00575e+01\tAbsError: 6.46820e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.00575e+01\tAbsError: 6.46820e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.42882e+02\tAbsError: 1.05009e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.00525e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 4.48353e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.48817e+01\tAbsError: 6.46820e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 2.32103e+03\tAbsError: 4.22081e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.65611e-02\tAbsError: 4.77303e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.65611e-02\tAbsError: 4.77303e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.32098e+03\tAbsError: 4.22081e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.22193e+03\tAbsError: 4.11138e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.09434e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.66537e-02\tAbsError: 4.77303e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 2.32103e+03\tAbsError: 4.22081e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.65611e-02\tAbsError: 4.77303e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.65611e-02\tAbsError: 4.77303e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.32098e+03\tAbsError: 4.22081e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.22193e+03\tAbsError: 4.11138e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.09434e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.66537e-02\tAbsError: 4.77303e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 8.58684e+02\tAbsError: 9.26119e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.02158e-01\tAbsError: 5.87228e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.02158e-01\tAbsError: 5.87228e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.58582e+02\tAbsError: 9.26119e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.22004e+02\tAbsError: 9.08647e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.35843e+02\tAbsError: 1.74717e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.34790e-01\tAbsError: 5.87228e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 8.58684e+02\tAbsError: 9.26119e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.02158e-01\tAbsError: 5.87228e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.02158e-01\tAbsError: 5.87228e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.58582e+02\tAbsError: 9.26119e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.22004e+02\tAbsError: 9.08647e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.35843e+02\tAbsError: 1.74717e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.34790e-01\tAbsError: 5.87228e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 1.88215e+03\tAbsError: 7.42890e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.08804e+02\tAbsError: 8.22374e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.08804e+02\tAbsError: 8.22374e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.67335e+03\tAbsError: 7.42890e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.74759e+02\tAbsError: 7.41659e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.24993e+03\tAbsError: 1.23100e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.48658e+02\tAbsError: 8.22374e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 1.88215e+03\tAbsError: 7.42890e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.08804e+02\tAbsError: 8.22374e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.08804e+02\tAbsError: 8.22374e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.67335e+03\tAbsError: 7.42890e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.74759e+02\tAbsError: 7.41659e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.24993e+03\tAbsError: 1.23100e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.48658e+02\tAbsError: 8.22374e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 2.29437e+04\tAbsError: 3.90038e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.46953e+03\tAbsError: 1.03155e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.46953e+03\tAbsError: 1.03155e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.84742e+04\tAbsError: 3.90038e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 3.61059e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.70116e+04\tAbsError: 2.89791e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.36362e+03\tAbsError: 1.03155e-01\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 2.29437e+04\tAbsError: 3.90038e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.46953e+03\tAbsError: 1.03155e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.46953e+03\tAbsError: 1.03155e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.84742e+04\tAbsError: 3.90038e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 3.61059e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.70116e+04\tAbsError: 2.89791e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.36362e+03\tAbsError: 1.03155e-01\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 6.11373e+03\tAbsError: 2.73264e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.57340e-02\tAbsError: 3.87925e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.57340e-02\tAbsError: 3.87925e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.11369e+03\tAbsError: 2.73264e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99754e-01\tAbsError: 2.60795e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.11265e+03\tAbsError: 1.24685e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.83030e-02\tAbsError: 3.87925e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 6.54291e+02\tAbsError: 2.23806e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.87118e+01\tAbsError: 6.72720e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.87118e+01\tAbsError: 6.72720e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.35579e+02\tAbsError: 2.23806e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.49952e+02\tAbsError: 2.19854e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.84352e+02\tAbsError: 3.95220e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.01276e+02\tAbsError: 6.72720e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 6.11373e+03\tAbsError: 2.73264e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.57340e-02\tAbsError: 3.87925e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.57340e-02\tAbsError: 3.87925e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.11369e+03\tAbsError: 2.73264e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99754e-01\tAbsError: 2.60795e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.11265e+03\tAbsError: 1.24685e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.83030e-02\tAbsError: 3.87925e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 6.54291e+02\tAbsError: 2.23806e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.87118e+01\tAbsError: 6.72720e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.87118e+01\tAbsError: 6.72720e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.35579e+02\tAbsError: 2.23806e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.49952e+02\tAbsError: 2.19854e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.84352e+02\tAbsError: 3.95220e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.01276e+02\tAbsError: 6.72720e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 1.15736e+03\tAbsError: 3.92964e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.95898e-02\tAbsError: 5.17889e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.95898e-02\tAbsError: 5.17889e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.15729e+03\tAbsError: 3.92964e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.68938e+02\tAbsError: 3.80343e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.87976e+02\tAbsError: 1.26212e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.73221e-01\tAbsError: 5.17889e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 1.15736e+03\tAbsError: 3.92964e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.95898e-02\tAbsError: 5.17889e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.95898e-02\tAbsError: 5.17889e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.15729e+03\tAbsError: 3.92964e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.68938e+02\tAbsError: 3.80343e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.87976e+02\tAbsError: 1.26212e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.73221e-01\tAbsError: 5.17889e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 3.09308e+00\tAbsError: 2.65345e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.73404e-02\tAbsError: 2.82284e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.73404e-02\tAbsError: 2.82284e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.06574e+00\tAbsError: 2.65345e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.03078e+00\tAbsError: 2.54268e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99791e-01\tAbsError: 1.10771e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.51719e-02\tAbsError: 2.82284e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 3.09308e+00\tAbsError: 2.65345e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.73404e-02\tAbsError: 2.82284e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.73404e-02\tAbsError: 2.82284e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.06574e+00\tAbsError: 2.65345e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.03078e+00\tAbsError: 2.54268e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99791e-01\tAbsError: 1.10771e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.51719e-02\tAbsError: 2.82284e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 5.02547e+03\tAbsError: 3.47762e+14\n",
+ " Region: \"zone_1\"\tRelError: 5.44852e-02\tAbsError: 4.36121e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.44852e-02\tAbsError: 4.36121e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.02542e+03\tAbsError: 3.47762e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.84932e+02\tAbsError: 3.30096e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.74016e+03\tAbsError: 1.76661e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.22221e-01\tAbsError: 4.36121e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 5.02547e+03\tAbsError: 3.47762e+14\n",
+ " Region: \"zone_1\"\tRelError: 5.44852e-02\tAbsError: 4.36121e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.44852e-02\tAbsError: 4.36121e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.02542e+03\tAbsError: 3.47762e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.84932e+02\tAbsError: 3.30096e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.74016e+03\tAbsError: 1.76661e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.22221e-01\tAbsError: 4.36121e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 2.34607e+02\tAbsError: 5.10610e+15\n",
+ " Region: \"zone_1\"\tRelError: 9.30141e+00\tAbsError: 7.85507e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.30141e+00\tAbsError: 7.85507e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.25306e+02\tAbsError: 5.10610e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 4.96945e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.36652e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.73057e+01\tAbsError: 7.85507e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 2.34607e+02\tAbsError: 5.10610e+15\n",
+ " Region: \"zone_1\"\tRelError: 9.30141e+00\tAbsError: 7.85507e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.30141e+00\tAbsError: 7.85507e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.25306e+02\tAbsError: 5.10610e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 4.96945e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.36652e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.73057e+01\tAbsError: 7.85507e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 3.74094e+00\tAbsError: 2.34149e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.97732e-02\tAbsError: 2.28975e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.97732e-02\tAbsError: 2.28975e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.72116e+00\tAbsError: 2.34149e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.15579e-02\tAbsError: 2.28793e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.63964e+00\tAbsError: 5.35575e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.99713e-02\tAbsError: 2.28975e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 3.74094e+00\tAbsError: 2.34149e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.97732e-02\tAbsError: 2.28975e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.97732e-02\tAbsError: 2.28975e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.72116e+00\tAbsError: 2.34149e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.15579e-02\tAbsError: 2.28793e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.63964e+00\tAbsError: 5.35575e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.99713e-02\tAbsError: 2.28975e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 1.50165e+03\tAbsError: 4.07058e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.67269e+02\tAbsError: 1.01158e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.67269e+02\tAbsError: 1.01158e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.23438e+03\tAbsError: 4.07058e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.69201e+02\tAbsError: 3.78105e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.81077e+02\tAbsError: 2.89537e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.84105e+02\tAbsError: 1.01160e-01\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 1.50165e+03\tAbsError: 4.07058e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.67269e+02\tAbsError: 1.01158e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.67269e+02\tAbsError: 1.01158e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.23438e+03\tAbsError: 4.07058e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.69201e+02\tAbsError: 3.78105e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.81077e+02\tAbsError: 2.89537e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.84105e+02\tAbsError: 1.01160e-01\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 6.77217e+02\tAbsError: 6.98930e+14\n",
+ " Region: \"zone_1\"\tRelError: 7.42829e-02\tAbsError: 6.17046e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.42829e-02\tAbsError: 6.17046e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.77143e+02\tAbsError: 6.98930e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 6.94616e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.78068e+02\tAbsError: 4.31409e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.43481e-02\tAbsError: 6.17046e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 6.77217e+02\tAbsError: 6.98930e+14\n",
+ " Region: \"zone_1\"\tRelError: 7.42829e-02\tAbsError: 6.17046e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.42829e-02\tAbsError: 6.17046e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.77143e+02\tAbsError: 6.98930e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 6.94616e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.78068e+02\tAbsError: 4.31409e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.43481e-02\tAbsError: 6.17046e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 1.05274e+02\tAbsError: 3.51492e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.96029e-02\tAbsError: 3.39030e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.96029e-02\tAbsError: 3.39030e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.05235e+02\tAbsError: 3.51492e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.96887e+00\tAbsError: 3.37480e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.40119e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.65907e-01\tAbsError: 3.39030e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 1.05274e+02\tAbsError: 3.51492e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.96029e-02\tAbsError: 3.39030e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.96029e-02\tAbsError: 3.39030e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.05235e+02\tAbsError: 3.51492e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.96887e+00\tAbsError: 3.37480e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.40119e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.65907e-01\tAbsError: 3.39030e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 5.65255e-01\tAbsError: 3.15313e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.95707e-03\tAbsError: 8.97701e-06\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.95707e-03\tAbsError: 8.97701e-06\n",
+ " Region: \"zone_2\"\tRelError: 5.60298e-01\tAbsError: 3.15313e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.78633e-02\tAbsError: 3.08602e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.10398e-01\tAbsError: 6.71056e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.20365e-02\tAbsError: 2.41705e-05\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 5.65255e-01\tAbsError: 3.15313e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.95707e-03\tAbsError: 8.97701e-06\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.95707e-03\tAbsError: 8.97701e-06\n",
+ " Region: \"zone_2\"\tRelError: 5.60298e-01\tAbsError: 3.15313e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.78633e-02\tAbsError: 3.08602e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.10398e-01\tAbsError: 6.71056e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.20365e-02\tAbsError: 2.41705e-05\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 7.74351e+02\tAbsError: 3.16963e+16\n",
+ " Region: \"zone_1\"\tRelError: 9.29872e+01\tAbsError: 9.90376e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.29872e+01\tAbsError: 9.90376e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.81364e+02\tAbsError: 3.16963e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.84577e+02\tAbsError: 3.14895e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.59819e+02\tAbsError: 2.06836e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.36969e+02\tAbsError: 9.90376e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 7.74351e+02\tAbsError: 3.16963e+16\n",
+ " Region: \"zone_1\"\tRelError: 9.29872e+01\tAbsError: 9.90376e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.29872e+01\tAbsError: 9.90376e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.81364e+02\tAbsError: 3.16963e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.84577e+02\tAbsError: 3.14895e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.59819e+02\tAbsError: 2.06836e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.36969e+02\tAbsError: 9.90376e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 9.86047e+03\tAbsError: 3.76664e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.57012e-02\tAbsError: 5.52707e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.57012e-02\tAbsError: 5.52707e-02\n",
+ " Region: \"zone_2\"\tRelError: 9.86042e+03\tAbsError: 3.76664e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.57279e+03\tAbsError: 3.59768e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.87454e+02\tAbsError: 1.68967e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.77230e-01\tAbsError: 5.52707e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 9.86047e+03\tAbsError: 3.76664e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.57012e-02\tAbsError: 5.52707e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.57012e-02\tAbsError: 5.52707e-02\n",
+ " Region: \"zone_2\"\tRelError: 9.86042e+03\tAbsError: 3.76664e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.57279e+03\tAbsError: 3.59768e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.87454e+02\tAbsError: 1.68967e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.77230e-01\tAbsError: 5.52707e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 1.26856e+03\tAbsError: 2.71497e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.23136e-02\tAbsError: 2.58879e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.23136e-02\tAbsError: 2.58879e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.26852e+03\tAbsError: 2.71497e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.36774e-01\tAbsError: 2.59977e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.26781e+03\tAbsError: 1.15196e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.79030e-01\tAbsError: 2.58266e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 1.26856e+03\tAbsError: 2.71497e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.23136e-02\tAbsError: 2.58879e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.23136e-02\tAbsError: 2.58879e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.26852e+03\tAbsError: 2.71497e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.36774e-01\tAbsError: 2.59977e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.26781e+03\tAbsError: 1.15196e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.79030e-01\tAbsError: 2.58266e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 5.79067e-04\tAbsError: 2.23116e+10\n",
+ " Region: \"zone_1\"\tRelError: 6.85121e-08\tAbsError: 9.92339e-11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.85121e-08\tAbsError: 9.92339e-11\n",
+ " Region: \"zone_2\"\tRelError: 5.78999e-04\tAbsError: 2.23116e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.84041e-06\tAbsError: 2.21793e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.69818e-04\tAbsError: 1.32318e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.40110e-07\tAbsError: 6.76628e-10\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 5.79067e-04\tAbsError: 2.23116e+10\n",
+ " Region: \"zone_1\"\tRelError: 6.85121e-08\tAbsError: 9.92339e-11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.85121e-08\tAbsError: 9.92339e-11\n",
+ " Region: \"zone_2\"\tRelError: 5.78999e-04\tAbsError: 2.23116e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.84041e-06\tAbsError: 2.21793e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.69818e-04\tAbsError: 1.32318e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.40110e-07\tAbsError: 6.76628e-10\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 2.23848e+03\tAbsError: 2.76112e+16\n",
+ " Region: \"zone_1\"\tRelError: 7.11177e+01\tAbsError: 9.67786e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.11177e+01\tAbsError: 9.67786e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.16736e+03\tAbsError: 2.76112e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.80611e+02\tAbsError: 2.59767e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.14260e+03\tAbsError: 1.63448e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.44150e+02\tAbsError: 9.67786e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 2.23848e+03\tAbsError: 2.76112e+16\n",
+ " Region: \"zone_1\"\tRelError: 7.11177e+01\tAbsError: 9.67786e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.11177e+01\tAbsError: 9.67786e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.16736e+03\tAbsError: 2.76112e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.80611e+02\tAbsError: 2.59767e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.14260e+03\tAbsError: 1.63448e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.44150e+02\tAbsError: 9.67786e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 2.35030e+03\tAbsError: 2.81755e+15\n",
+ " Region: \"zone_1\"\tRelError: 9.72387e-02\tAbsError: 7.44595e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.72387e-02\tAbsError: 7.44595e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.35020e+03\tAbsError: 2.81755e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.75749e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.24618e+03\tAbsError: 6.00540e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.01981e+00\tAbsError: 7.44595e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 2.35030e+03\tAbsError: 2.81755e+15\n",
+ " Region: \"zone_1\"\tRelError: 9.72387e-02\tAbsError: 7.44595e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.72387e-02\tAbsError: 7.44595e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.35020e+03\tAbsError: 2.81755e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.75749e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.24618e+03\tAbsError: 6.00540e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.01981e+00\tAbsError: 7.44595e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 6.88785e+02\tAbsError: 3.34571e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.71722e-02\tAbsError: 4.77303e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.71722e-02\tAbsError: 4.77303e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.88747e+02\tAbsError: 3.34571e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.92462e+02\tAbsError: 3.24546e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.96167e+02\tAbsError: 1.00244e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.18615e-01\tAbsError: 4.77303e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 6.88785e+02\tAbsError: 3.34571e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.71722e-02\tAbsError: 4.77303e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.71722e-02\tAbsError: 4.77303e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.88747e+02\tAbsError: 3.34571e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.92462e+02\tAbsError: 3.24546e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.96167e+02\tAbsError: 1.00244e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.18615e-01\tAbsError: 4.77303e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 1.18620e+00\tAbsError: 7.43554e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.48482e-02\tAbsError: 1.34867e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.48482e-02\tAbsError: 1.34867e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.17135e+00\tAbsError: 7.43554e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.69422e-02\tAbsError: 7.37106e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.98218e-01\tAbsError: 6.44830e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.46188e-01\tAbsError: 1.34867e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 1.18620e+00\tAbsError: 7.43554e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.48482e-02\tAbsError: 1.34867e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.48482e-02\tAbsError: 1.34867e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.17135e+00\tAbsError: 7.43554e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.69422e-02\tAbsError: 7.37106e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.98218e-01\tAbsError: 6.44830e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.46188e-01\tAbsError: 1.34867e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 1.23643e-11\tAbsError: 4.67180e+03\n",
+ " Region: \"zone_1\"\tRelError: 4.84425e-14\tAbsError: 1.32035e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.84425e-14\tAbsError: 1.32035e-16\n",
+ " Region: \"zone_2\"\tRelError: 1.23159e-11\tAbsError: 4.67180e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.86080e-14\tAbsError: 2.22096e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.22268e-11\tAbsError: 2.45084e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.04822e-14\tAbsError: 1.17473e-16\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 1.23643e-11\tAbsError: 4.67180e+03\n",
+ " Region: \"zone_1\"\tRelError: 4.84425e-14\tAbsError: 1.32035e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.84425e-14\tAbsError: 1.32035e-16\n",
+ " Region: \"zone_2\"\tRelError: 1.23159e-11\tAbsError: 4.67180e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.86080e-14\tAbsError: 2.22096e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.22268e-11\tAbsError: 2.45084e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.04822e-14\tAbsError: 1.17473e-16\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 1.19644e+04\tAbsError: 1.72233e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.76689e+02\tAbsError: 9.43627e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.76689e+02\tAbsError: 9.43627e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.16878e+04\tAbsError: 1.72233e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.14667e+04\tAbsError: 1.67568e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 4.66510e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.22049e+02\tAbsError: 9.43632e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 1.19644e+04\tAbsError: 1.72233e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.76689e+02\tAbsError: 9.43627e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.76689e+02\tAbsError: 9.43627e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.16878e+04\tAbsError: 1.72233e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.14667e+04\tAbsError: 1.67568e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 4.66510e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.22049e+02\tAbsError: 9.43632e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 4.40070e+02\tAbsError: 1.41771e+15\n",
+ " Region: \"zone_1\"\tRelError: 5.29925e-02\tAbsError: 6.98755e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.29925e-02\tAbsError: 6.98755e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.40017e+02\tAbsError: 1.41771e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.00000e+00\tAbsError: 1.39331e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.38962e+02\tAbsError: 2.44032e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.51022e-02\tAbsError: 6.98755e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 4.40070e+02\tAbsError: 1.41771e+15\n",
+ " Region: \"zone_1\"\tRelError: 5.29925e-02\tAbsError: 6.98755e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.29925e-02\tAbsError: 6.98755e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.40017e+02\tAbsError: 1.41771e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.00000e+00\tAbsError: 1.39331e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.38962e+02\tAbsError: 2.44032e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.51022e-02\tAbsError: 6.98755e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 1.93713e+03\tAbsError: 2.12221e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.88517e-02\tAbsError: 3.87925e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.88517e-02\tAbsError: 3.87925e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.93710e+03\tAbsError: 2.12221e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99983e-01\tAbsError: 2.01167e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.93595e+03\tAbsError: 1.10534e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.49522e-01\tAbsError: 3.87925e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 1.93713e+03\tAbsError: 2.12221e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.88517e-02\tAbsError: 3.87925e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.88517e-02\tAbsError: 3.87925e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.93710e+03\tAbsError: 2.12221e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99983e-01\tAbsError: 2.01167e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.93595e+03\tAbsError: 1.10534e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.49522e-01\tAbsError: 3.87925e-02\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 9.25954e-01\tAbsError: 8.51842e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.48115e-02\tAbsError: 2.32379e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.48115e-02\tAbsError: 2.32379e-05\n",
+ " Region: \"zone_2\"\tRelError: 8.91142e-01\tAbsError: 8.51842e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.03233e-02\tAbsError: 8.35986e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.61363e-01\tAbsError: 1.58560e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.19456e-01\tAbsError: 4.95813e-05\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 9.25954e-01\tAbsError: 8.51842e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.48115e-02\tAbsError: 2.32379e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.48115e-02\tAbsError: 2.32379e-05\n",
+ " Region: \"zone_2\"\tRelError: 8.91142e-01\tAbsError: 8.51842e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.03233e-02\tAbsError: 8.35986e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.61363e-01\tAbsError: 1.58560e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.19456e-01\tAbsError: 4.95813e-05\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 2.58275e+02\tAbsError: 2.03568e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.37479e+01\tAbsError: 9.17680e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.37479e+01\tAbsError: 9.17680e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.44527e+02\tAbsError: 2.03568e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.93966e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 9.60230e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.65274e+01\tAbsError: 9.17680e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 2.58275e+02\tAbsError: 2.03568e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.37479e+01\tAbsError: 9.17680e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.37479e+01\tAbsError: 9.17680e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.44527e+02\tAbsError: 2.03568e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.93966e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 9.60230e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.65274e+01\tAbsError: 9.17680e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 1.24734e+02\tAbsError: 9.79631e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.95760e-02\tAbsError: 6.46820e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.95760e-02\tAbsError: 6.46820e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.24695e+02\tAbsError: 9.79631e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.23655e+02\tAbsError: 9.57791e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99966e-01\tAbsError: 2.18399e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.95769e-02\tAbsError: 6.46820e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 1.24734e+02\tAbsError: 9.79631e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.95760e-02\tAbsError: 6.46820e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.95760e-02\tAbsError: 6.46820e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.24695e+02\tAbsError: 9.79631e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.23655e+02\tAbsError: 9.57791e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99966e-01\tAbsError: 2.18399e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.95769e-02\tAbsError: 6.46820e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 2.85201e+00\tAbsError: 2.09078e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.19005e-02\tAbsError: 2.82284e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.19005e-02\tAbsError: 2.82284e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.83010e+00\tAbsError: 2.09078e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.67717e+00\tAbsError: 1.99261e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99480e-01\tAbsError: 9.81640e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.53456e-01\tAbsError: 2.82284e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 2.85201e+00\tAbsError: 2.09078e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.19005e-02\tAbsError: 2.82284e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.19005e-02\tAbsError: 2.82284e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.83010e+00\tAbsError: 2.09078e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.67717e+00\tAbsError: 1.99261e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99480e-01\tAbsError: 9.81640e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.53456e-01\tAbsError: 2.82284e-02\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.65973e-04\tAbsError: 1.63598e+11\n",
+ " Region: \"zone_1\"\tRelError: 2.12393e-06\tAbsError: 1.57573e-09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.12393e-06\tAbsError: 1.57573e-09\n",
+ " Region: \"zone_2\"\tRelError: 1.63849e-04\tAbsError: 1.63598e+11\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.39668e-06\tAbsError: 1.62369e+11\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.21734e-04\tAbsError: 1.22875e+09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.67179e-05\tAbsError: 4.51929e-09\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.65973e-04\tAbsError: 1.63598e+11\n",
+ " Region: \"zone_1\"\tRelError: 2.12393e-06\tAbsError: 1.57573e-09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.12393e-06\tAbsError: 1.57573e-09\n",
+ " Region: \"zone_2\"\tRelError: 1.63849e-04\tAbsError: 1.63598e+11\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.39668e-06\tAbsError: 1.62369e+11\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.21734e-04\tAbsError: 1.22875e+09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.67179e-05\tAbsError: 4.51929e-09\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 5.09946e+03\tAbsError: 1.87509e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.21116e+00\tAbsError: 8.89678e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.21116e+00\tAbsError: 8.89678e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.09825e+03\tAbsError: 1.87509e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.90036e+02\tAbsError: 1.83814e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.89849e+03\tAbsError: 3.69571e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.72162e+00\tAbsError: 8.89679e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 5.09946e+03\tAbsError: 1.87509e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.21116e+00\tAbsError: 8.89678e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.21116e+00\tAbsError: 8.89678e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.09825e+03\tAbsError: 1.87509e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.90036e+02\tAbsError: 1.83814e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.89849e+03\tAbsError: 3.69571e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.72162e+00\tAbsError: 8.89679e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 4.69633e+03\tAbsError: 4.22804e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.43995e-02\tAbsError: 5.87228e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.43995e-02\tAbsError: 5.87228e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.69629e+03\tAbsError: 4.22804e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 4.18844e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.59726e+03\tAbsError: 3.95995e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.44583e-02\tAbsError: 5.87228e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 4.69633e+03\tAbsError: 4.22804e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.43995e-02\tAbsError: 5.87228e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.43995e-02\tAbsError: 5.87228e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.69629e+03\tAbsError: 4.22804e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 4.18844e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.59726e+03\tAbsError: 3.95995e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.44583e-02\tAbsError: 5.87228e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 2.79295e+00\tAbsError: 2.03640e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.62554e-02\tAbsError: 2.28975e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.62554e-02\tAbsError: 2.28975e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.77669e+00\tAbsError: 2.03640e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.67325e-02\tAbsError: 1.98651e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.64637e+00\tAbsError: 4.98871e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.35933e-02\tAbsError: 2.28975e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 2.79295e+00\tAbsError: 2.03640e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.62554e-02\tAbsError: 2.28975e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.62554e-02\tAbsError: 2.28975e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.77669e+00\tAbsError: 2.03640e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.67325e-02\tAbsError: 1.98651e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.64637e+00\tAbsError: 4.98871e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.35933e-02\tAbsError: 2.28975e-02\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 6.01354e-12\tAbsError: 7.12116e+03\n",
+ " Region: \"zone_1\"\tRelError: 7.12389e-14\tAbsError: 1.14002e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.12389e-14\tAbsError: 1.14002e-16\n",
+ " Region: \"zone_2\"\tRelError: 5.94230e-12\tAbsError: 7.12116e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.65331e-13\tAbsError: 4.60510e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.71148e-12\tAbsError: 2.51606e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.06549e-12\tAbsError: 1.33673e-16\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 6.01354e-12\tAbsError: 7.12116e+03\n",
+ " Region: \"zone_1\"\tRelError: 7.12389e-14\tAbsError: 1.14002e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.12389e-14\tAbsError: 1.14002e-16\n",
+ " Region: \"zone_2\"\tRelError: 5.94230e-12\tAbsError: 7.12116e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.65331e-13\tAbsError: 4.60510e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.71148e-12\tAbsError: 2.51606e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.06549e-12\tAbsError: 1.33673e-16\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 1.29769e+03\tAbsError: 1.11519e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.33646e+00\tAbsError: 8.59295e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.33646e+00\tAbsError: 8.59295e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.29535e+03\tAbsError: 1.11519e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.19401e+03\tAbsError: 1.06506e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 5.01347e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.33646e+00\tAbsError: 8.59295e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 1.29769e+03\tAbsError: 1.11519e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.33646e+00\tAbsError: 8.59295e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.33646e+00\tAbsError: 8.59295e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.29535e+03\tAbsError: 1.11519e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.19401e+03\tAbsError: 1.06506e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 5.01347e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.33646e+00\tAbsError: 8.59295e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 8.82103e+02\tAbsError: 2.13937e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.91262e-02\tAbsError: 5.17889e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.91262e-02\tAbsError: 5.17889e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.82074e+02\tAbsError: 2.13937e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.82982e+02\tAbsError: 2.01185e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.99063e+02\tAbsError: 1.27525e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.93401e-02\tAbsError: 5.17889e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 8.82103e+02\tAbsError: 2.13937e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.91262e-02\tAbsError: 5.17889e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.91262e-02\tAbsError: 5.17889e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.82074e+02\tAbsError: 2.13937e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.82982e+02\tAbsError: 2.01185e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.99063e+02\tAbsError: 1.27525e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.93401e-02\tAbsError: 5.17889e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 5.69229e-01\tAbsError: 3.06941e+14\n",
+ " Region: \"zone_1\"\tRelError: 9.50249e-03\tAbsError: 8.65628e-06\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.50249e-03\tAbsError: 8.65628e-06\n",
+ " Region: \"zone_2\"\tRelError: 5.59727e-01\tAbsError: 3.06941e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.63028e-02\tAbsError: 3.01084e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.22086e-01\tAbsError: 5.85707e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.11338e-01\tAbsError: 2.34411e-05\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 5.69229e-01\tAbsError: 3.06941e+14\n",
+ " Region: \"zone_1\"\tRelError: 9.50249e-03\tAbsError: 8.65628e-06\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.50249e-03\tAbsError: 8.65628e-06\n",
+ " Region: \"zone_2\"\tRelError: 5.59727e-01\tAbsError: 3.06941e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.63028e-02\tAbsError: 3.01084e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.22086e-01\tAbsError: 5.85707e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.11338e-01\tAbsError: 2.34411e-05\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 6.70654e+03\tAbsError: 9.17385e+15\n",
+ " Region: \"zone_1\"\tRelError: 5.74967e+00\tAbsError: 8.26122e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.74967e+00\tAbsError: 8.26122e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.70079e+03\tAbsError: 9.17385e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.33513e+02\tAbsError: 8.91490e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.56152e+03\tAbsError: 2.58945e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.74967e+00\tAbsError: 8.26122e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 6.70654e+03\tAbsError: 9.17385e+15\n",
+ " Region: \"zone_1\"\tRelError: 5.74967e+00\tAbsError: 8.26122e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.74967e+00\tAbsError: 8.26122e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.70079e+03\tAbsError: 9.17385e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.33513e+02\tAbsError: 8.91490e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.56152e+03\tAbsError: 2.58945e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.74967e+00\tAbsError: 8.26122e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 1.03715e+04\tAbsError: 2.72252e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.37476e-02\tAbsError: 4.36121e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.37476e-02\tAbsError: 4.36121e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.03715e+04\tAbsError: 2.72252e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.62213e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.02724e+04\tAbsError: 1.00384e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.40143e-02\tAbsError: 4.36121e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 1.03715e+04\tAbsError: 2.72252e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.37476e-02\tAbsError: 4.36121e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.37476e-02\tAbsError: 4.36121e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.03715e+04\tAbsError: 2.72252e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.62213e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.02724e+04\tAbsError: 1.00384e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.40143e-02\tAbsError: 4.36121e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 4.45562e-04\tAbsError: 2.34372e+10\n",
+ " Region: \"zone_1\"\tRelError: 1.28492e-07\tAbsError: 9.91199e-11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.28492e-07\tAbsError: 9.91199e-11\n",
+ " Region: \"zone_2\"\tRelError: 4.45433e-04\tAbsError: 2.34372e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.31436e-06\tAbsError: 2.33343e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.36547e-04\tAbsError: 1.02954e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.57211e-06\tAbsError: 6.69727e-10\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 4.45562e-04\tAbsError: 2.34372e+10\n",
+ " Region: \"zone_1\"\tRelError: 1.28492e-07\tAbsError: 9.91199e-11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.28492e-07\tAbsError: 9.91199e-11\n",
+ " Region: \"zone_2\"\tRelError: 4.45433e-04\tAbsError: 2.34372e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.31436e-06\tAbsError: 2.33343e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.36547e-04\tAbsError: 1.02954e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.57211e-06\tAbsError: 6.69727e-10\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 8.81899e+02\tAbsError: 6.83885e+15\n",
+ " Region: \"zone_1\"\tRelError: 4.79607e+00\tAbsError: 7.89646e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.79607e+00\tAbsError: 7.89646e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.77103e+02\tAbsError: 6.83885e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.11145e+02\tAbsError: 6.78297e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.61162e+02\tAbsError: 5.58731e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.79607e+00\tAbsError: 7.89646e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 8.81899e+02\tAbsError: 6.83885e+15\n",
+ " Region: \"zone_1\"\tRelError: 4.79607e+00\tAbsError: 7.89646e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.79607e+00\tAbsError: 7.89646e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.77103e+02\tAbsError: 6.83885e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.11145e+02\tAbsError: 6.78297e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.61162e+02\tAbsError: 5.58731e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.79607e+00\tAbsError: 7.89646e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 1.28451e+02\tAbsError: 2.37678e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.81204e-02\tAbsError: 3.39030e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.81204e-02\tAbsError: 3.39030e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.28432e+02\tAbsError: 2.37678e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.29610e+00\tAbsError: 2.27836e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.23118e+02\tAbsError: 9.84171e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.82539e-02\tAbsError: 3.39030e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 1.28451e+02\tAbsError: 2.37678e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.81204e-02\tAbsError: 3.39030e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.81204e-02\tAbsError: 3.39030e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.28432e+02\tAbsError: 2.37678e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.29610e+00\tAbsError: 2.27836e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.23118e+02\tAbsError: 9.84171e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.82539e-02\tAbsError: 3.39030e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 9.80125e-12\tAbsError: 4.76793e+03\n",
+ " Region: \"zone_1\"\tRelError: 8.80504e-14\tAbsError: 1.23818e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.80504e-14\tAbsError: 1.23818e-16\n",
+ " Region: \"zone_2\"\tRelError: 9.71320e-12\tAbsError: 4.76793e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.18152e-14\tAbsError: 2.36366e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.07080e-12\tAbsError: 2.40427e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.10582e-13\tAbsError: 1.27392e-16\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 9.80125e-12\tAbsError: 4.76793e+03\n",
+ " Region: \"zone_1\"\tRelError: 8.80504e-14\tAbsError: 1.23818e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.80504e-14\tAbsError: 1.23818e-16\n",
+ " Region: \"zone_2\"\tRelError: 9.71320e-12\tAbsError: 4.76793e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.18152e-14\tAbsError: 2.36366e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.07080e-12\tAbsError: 2.40427e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.10582e-13\tAbsError: 1.27392e-16\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 2.11536e+02\tAbsError: 4.74212e+15\n",
+ " Region: \"zone_1\"\tRelError: 9.40812e-01\tAbsError: 7.49206e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.40812e-01\tAbsError: 7.49206e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.10595e+02\tAbsError: 4.74212e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.10654e+02\tAbsError: 4.54905e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.93065e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.40812e-01\tAbsError: 7.49206e-02\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 2.11536e+02\tAbsError: 4.74212e+15\n",
+ " Region: \"zone_1\"\tRelError: 9.40812e-01\tAbsError: 7.49206e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.40812e-01\tAbsError: 7.49206e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.10595e+02\tAbsError: 4.74212e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.10654e+02\tAbsError: 4.54905e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.93065e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.40812e-01\tAbsError: 7.49206e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 3.06732e+00\tAbsError: 2.04228e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.45362e-02\tAbsError: 2.58863e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.45362e-02\tAbsError: 2.58863e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.05278e+00\tAbsError: 2.04228e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.83455e-01\tAbsError: 1.96265e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.65479e+00\tAbsError: 7.96257e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.45379e-02\tAbsError: 2.58908e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 3.06732e+00\tAbsError: 2.04228e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.45362e-02\tAbsError: 2.58863e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.45362e-02\tAbsError: 2.58863e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.05278e+00\tAbsError: 2.04228e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.83455e-01\tAbsError: 1.96265e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.65479e+00\tAbsError: 7.96257e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.45379e-02\tAbsError: 2.58908e-02\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.99557e+02\tAbsError: 2.88964e+15\n",
+ " Region: \"zone_1\"\tRelError: 7.78706e-01\tAbsError: 7.03946e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.78706e-01\tAbsError: 7.03946e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.98779e+02\tAbsError: 2.88964e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.80044e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 8.92017e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.78706e-01\tAbsError: 7.03946e-02\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.99557e+02\tAbsError: 2.88964e+15\n",
+ " Region: \"zone_1\"\tRelError: 7.78706e-01\tAbsError: 7.03946e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.78706e-01\tAbsError: 7.03946e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.98779e+02\tAbsError: 2.88964e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.80044e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 8.92017e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.78706e-01\tAbsError: 7.03946e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 1.05688e+00\tAbsError: 5.13657e+14\n",
+ " Region: \"zone_1\"\tRelError: 7.05348e-03\tAbsError: 1.34867e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.05348e-03\tAbsError: 1.34867e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.04983e+00\tAbsError: 5.13657e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.98492e-02\tAbsError: 5.08654e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.01290e+00\tAbsError: 5.00243e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.07607e-03\tAbsError: 1.34867e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 1.05688e+00\tAbsError: 5.13657e+14\n",
+ " Region: \"zone_1\"\tRelError: 7.05348e-03\tAbsError: 1.34867e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.05348e-03\tAbsError: 1.34867e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.04983e+00\tAbsError: 5.13657e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.98492e-02\tAbsError: 5.08654e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.01290e+00\tAbsError: 5.00243e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.07607e-03\tAbsError: 1.34867e-02\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 4.54275e+02\tAbsError: 1.66043e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.65619e-01\tAbsError: 6.52732e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.65619e-01\tAbsError: 6.52732e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.54009e+02\tAbsError: 1.66043e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.42297e+02\tAbsError: 1.61997e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.11446e+02\tAbsError: 4.04564e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.65619e-01\tAbsError: 6.52732e-02\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 4.54275e+02\tAbsError: 1.66043e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.65619e-01\tAbsError: 6.52732e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.65619e-01\tAbsError: 6.52732e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.54009e+02\tAbsError: 1.66043e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.42297e+02\tAbsError: 1.61997e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.11446e+02\tAbsError: 4.04564e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.65619e-01\tAbsError: 6.52732e-02\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 2.09353e-01\tAbsError: 6.24036e+14\n",
+ " Region: \"zone_1\"\tRelError: 5.68738e-03\tAbsError: 2.17145e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.68738e-03\tAbsError: 2.17145e-05\n",
+ " Region: \"zone_2\"\tRelError: 2.03665e-01\tAbsError: 6.24036e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.23685e-02\tAbsError: 6.12363e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.84991e-01\tAbsError: 1.16733e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.30615e-03\tAbsError: 4.33866e-05\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 2.09353e-01\tAbsError: 6.24036e+14\n",
+ " Region: \"zone_1\"\tRelError: 5.68738e-03\tAbsError: 2.17145e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.68738e-03\tAbsError: 2.17145e-05\n",
+ " Region: \"zone_2\"\tRelError: 2.03665e-01\tAbsError: 6.24036e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.23685e-02\tAbsError: 6.12363e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.84991e-01\tAbsError: 1.16733e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.30615e-03\tAbsError: 4.33866e-05\n",
+ "Iteration: 21\n",
+ " Device: \"device\"\tRelError: 6.30073e+02\tAbsError: 1.13764e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.97488e-01\tAbsError: 5.94051e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.97488e-01\tAbsError: 5.94051e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.29875e+02\tAbsError: 1.13764e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.09896e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.30678e+02\tAbsError: 3.86785e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.97945e-01\tAbsError: 5.94051e-02\n",
+ "Iteration: 21\n",
+ " Device: \"device\"\tRelError: 6.30073e+02\tAbsError: 1.13764e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.97488e-01\tAbsError: 5.94051e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.97488e-01\tAbsError: 5.94051e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.29875e+02\tAbsError: 1.13764e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.09896e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.30678e+02\tAbsError: 3.86785e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.97945e-01\tAbsError: 5.94051e-02\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:14\u001b[0m.\u001b[1;36m013\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 2.25 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:14\u001b[0m.\u001b[1;36m013\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 2.25 bias\u001b[0m \n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.15526e-04\tAbsError: 8.31177e+10\n",
+ " Region: \"zone_1\"\tRelError: 3.25313e-07\tAbsError: 1.20738e-09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.25313e-07\tAbsError: 1.20738e-09\n",
+ " Region: \"zone_2\"\tRelError: 1.15201e-04\tAbsError: 8.31177e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.72801e-06\tAbsError: 8.24076e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.11118e-04\tAbsError: 7.10155e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.55077e-07\tAbsError: 2.98732e-09\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.15526e-04\tAbsError: 8.31177e+10\n",
+ " Region: \"zone_1\"\tRelError: 3.25313e-07\tAbsError: 1.20738e-09\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.25313e-07\tAbsError: 1.20738e-09\n",
+ " Region: \"zone_2\"\tRelError: 1.15201e-04\tAbsError: 8.31177e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.72801e-06\tAbsError: 8.24076e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.11118e-04\tAbsError: 7.10155e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.55077e-07\tAbsError: 2.98732e-09\n",
+ "Iteration: 22\n",
+ " Device: \"device\"\tRelError: 4.44833e+02\tAbsError: 4.94413e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.43039e-02\tAbsError: 5.25878e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.43039e-02\tAbsError: 5.25878e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.44798e+02\tAbsError: 4.94413e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.01349e+02\tAbsError: 4.94057e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.43415e+02\tAbsError: 3.56126e+11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.48294e-02\tAbsError: 5.25878e-02\n",
+ "Iteration: 22\n",
+ " Device: \"device\"\tRelError: 4.44833e+02\tAbsError: 4.94413e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.43039e-02\tAbsError: 5.25878e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.43039e-02\tAbsError: 5.25878e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.44798e+02\tAbsError: 4.94413e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.01349e+02\tAbsError: 4.94057e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.43415e+02\tAbsError: 3.56126e+11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.48294e-02\tAbsError: 5.25878e-02\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 2.66622e-12\tAbsError: 4.53552e+03\n",
+ " Region: \"zone_1\"\tRelError: 3.37316e-14\tAbsError: 1.53078e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.37316e-14\tAbsError: 1.53078e-16\n",
+ " Region: \"zone_2\"\tRelError: 2.63248e-12\tAbsError: 4.53552e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.51916e-14\tAbsError: 2.21552e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.52881e-12\tAbsError: 2.32000e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.84783e-14\tAbsError: 2.08820e-16\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 2.66622e-12\tAbsError: 4.53552e+03\n",
+ " Region: \"zone_1\"\tRelError: 3.37316e-14\tAbsError: 1.53078e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.37316e-14\tAbsError: 1.53078e-16\n",
+ " Region: \"zone_2\"\tRelError: 2.63248e-12\tAbsError: 4.53552e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.51916e-14\tAbsError: 2.21552e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.52881e-12\tAbsError: 2.32000e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.84783e-14\tAbsError: 2.08820e-16\n",
+ "Iteration: 23\n",
+ " Device: \"device\"\tRelError: 2.14629e+03\tAbsError: 2.34964e+14\n",
+ " Region: \"zone_1\"\tRelError: 8.37048e-02\tAbsError: 4.45587e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.37048e-02\tAbsError: 4.45587e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.14621e+03\tAbsError: 2.34964e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.72834e+03\tAbsError: 2.17498e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.17775e+02\tAbsError: 1.74656e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.78129e-02\tAbsError: 4.45587e-02\n",
+ "Iteration: 23\n",
+ " Device: \"device\"\tRelError: 2.14629e+03\tAbsError: 2.34964e+14\n",
+ " Region: \"zone_1\"\tRelError: 8.37048e-02\tAbsError: 4.45587e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.37048e-02\tAbsError: 4.45587e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.14621e+03\tAbsError: 2.34964e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.72834e+03\tAbsError: 2.17498e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.17775e+02\tAbsError: 1.74656e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.78129e-02\tAbsError: 4.45587e-02\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:18\u001b[0m.\u001b[1;36m564\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 2.5 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:18\u001b[0m.\u001b[1;36m564\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 2.5 bias\u001b[0m \n",
+ "Iteration: 24\n",
+ " Device: \"device\"\tRelError: 1.43428e+03\tAbsError: 3.00902e+14\n",
+ " Region: \"zone_1\"\tRelError: 5.18518e-02\tAbsError: 3.50254e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.18518e-02\tAbsError: 3.50254e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.43423e+03\tAbsError: 3.00902e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.77850e+01\tAbsError: 2.89663e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.38637e+03\tAbsError: 1.12395e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.97311e-02\tAbsError: 3.50254e-02\n",
+ "Iteration: 24\n",
+ " Device: \"device\"\tRelError: 1.43428e+03\tAbsError: 3.00902e+14\n",
+ " Region: \"zone_1\"\tRelError: 5.18518e-02\tAbsError: 3.50254e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.18518e-02\tAbsError: 3.50254e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.43423e+03\tAbsError: 3.00902e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.77850e+01\tAbsError: 2.89663e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.38637e+03\tAbsError: 1.12395e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.97311e-02\tAbsError: 3.50254e-02\n",
+ "Iteration: 25\n",
+ " Device: \"device\"\tRelError: 1.31544e+03\tAbsError: 2.21927e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.32386e-02\tAbsError: 2.58882e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.32386e-02\tAbsError: 2.58882e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.31540e+03\tAbsError: 2.21927e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.17879e-01\tAbsError: 2.12136e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.31441e+03\tAbsError: 9.79103e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.42498e-02\tAbsError: 2.58882e-02\n",
+ "Iteration: 25\n",
+ " Device: \"device\"\tRelError: 1.31544e+03\tAbsError: 2.21927e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.32386e-02\tAbsError: 2.58882e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.32386e-02\tAbsError: 2.58882e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.31540e+03\tAbsError: 2.21927e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.17879e-01\tAbsError: 2.12136e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.31441e+03\tAbsError: 9.79103e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.42498e-02\tAbsError: 2.58882e-02\n",
+ "Iteration: 26\n",
+ " Device: \"device\"\tRelError: 1.06303e+00\tAbsError: 4.55642e+14\n",
+ " Region: \"zone_1\"\tRelError: 9.22238e-03\tAbsError: 1.53375e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.22238e-03\tAbsError: 1.53375e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.05381e+00\tAbsError: 4.55642e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.21907e-02\tAbsError: 4.53913e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99971e-01\tAbsError: 1.72884e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.16468e-02\tAbsError: 1.53375e-02\n",
+ "Iteration: 26\n",
+ " Device: \"device\"\tRelError: 1.06303e+00\tAbsError: 4.55642e+14\n",
+ " Region: \"zone_1\"\tRelError: 9.22238e-03\tAbsError: 1.53375e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.22238e-03\tAbsError: 1.53375e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.05381e+00\tAbsError: 4.55642e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.21907e-02\tAbsError: 4.53913e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99971e-01\tAbsError: 1.72884e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.16468e-02\tAbsError: 1.53375e-02\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:23\u001b[0m.\u001b[1;36m895\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 2.75 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:23\u001b[0m.\u001b[1;36m895\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 2.75 bias\u001b[0m \n",
+ "Iteration: 27\n",
+ " Device: \"device\"\tRelError: 5.06026e-01\tAbsError: 6.17273e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.42780e-02\tAbsError: 1.77176e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.42780e-02\tAbsError: 1.77176e-05\n",
+ " Region: \"zone_2\"\tRelError: 4.61748e-01\tAbsError: 6.17273e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.31015e-02\tAbsError: 6.06908e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.75483e-01\tAbsError: 1.03650e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.31635e-02\tAbsError: 3.49141e-05\n",
+ "Iteration: 27\n",
+ " Device: \"device\"\tRelError: 5.06026e-01\tAbsError: 6.17273e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.42780e-02\tAbsError: 1.77176e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.42780e-02\tAbsError: 1.77176e-05\n",
+ " Region: \"zone_2\"\tRelError: 4.61748e-01\tAbsError: 6.17273e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.31015e-02\tAbsError: 6.06908e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.75483e-01\tAbsError: 1.03650e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.31635e-02\tAbsError: 3.49141e-05\n",
+ "Iteration: 28\n",
+ " Device: \"device\"\tRelError: 1.93425e-04\tAbsError: 5.92688e+10\n",
+ " Region: \"zone_1\"\tRelError: 2.13748e-06\tAbsError: 8.15537e-10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.13748e-06\tAbsError: 8.15537e-10\n",
+ " Region: \"zone_2\"\tRelError: 1.91287e-04\tAbsError: 5.92688e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.37895e-06\tAbsError: 5.87148e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.83268e-04\tAbsError: 5.53977e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.63999e-06\tAbsError: 2.09792e-09\n",
+ "Iteration: 28\n",
+ " Device: \"device\"\tRelError: 1.93425e-04\tAbsError: 5.92688e+10\n",
+ " Region: \"zone_1\"\tRelError: 2.13748e-06\tAbsError: 8.15537e-10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.13748e-06\tAbsError: 8.15537e-10\n",
+ " Region: \"zone_2\"\tRelError: 1.91287e-04\tAbsError: 5.92688e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.37895e-06\tAbsError: 5.87148e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.83268e-04\tAbsError: 5.53977e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.63999e-06\tAbsError: 2.09792e-09\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:26\u001b[0m.\u001b[1;36m805\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 2.25 V. Current applied bias: 2.25\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:26\u001b[0m.\u001b[1;36m805\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 2.25 V. Current applied bias: 2.25\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Iteration: 29\n",
+ " Device: \"device\"\tRelError: 1.13181e-11\tAbsError: 4.99603e+03\n",
+ " Region: \"zone_1\"\tRelError: 8.12358e-14\tAbsError: 1.47502e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.12358e-14\tAbsError: 1.47502e-16\n",
+ " Region: \"zone_2\"\tRelError: 1.12369e-11\tAbsError: 4.99603e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.00738e-12\tAbsError: 2.84883e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.14161e-12\tAbsError: 2.14720e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.78683e-14\tAbsError: 1.36700e-16\n",
+ "Iteration: 29\n",
+ " Device: \"device\"\tRelError: 1.13181e-11\tAbsError: 4.99603e+03\n",
+ " Region: \"zone_1\"\tRelError: 8.12358e-14\tAbsError: 1.47502e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.12358e-14\tAbsError: 1.47502e-16\n",
+ " Region: \"zone_2\"\tRelError: 1.12369e-11\tAbsError: 4.99603e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.00738e-12\tAbsError: 2.84883e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.14161e-12\tAbsError: 2.14720e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.78683e-14\tAbsError: 1.36700e-16\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:31\u001b[0m.\u001b[1;36m109\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 2.5 V. Current applied bias: 2.5\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:31\u001b[0m.\u001b[1;36m109\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 2.5 V. Current applied bias: 2.5\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 1.06940e+04\tAbsError: 6.96129e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.71597e+02\tAbsError: 9.52882e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.71597e+02\tAbsError: 9.52882e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.04224e+04\tAbsError: 6.96129e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.94428e+03\tAbsError: 3.93082e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.31017e+02\tAbsError: 3.03046e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.47106e+02\tAbsError: 9.52882e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 1.06940e+04\tAbsError: 6.96129e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.71597e+02\tAbsError: 9.52882e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.71597e+02\tAbsError: 9.52882e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.04224e+04\tAbsError: 6.96129e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.94428e+03\tAbsError: 3.93082e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.31017e+02\tAbsError: 3.03046e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.47106e+02\tAbsError: 9.52882e-02\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:31\u001b[0m.\u001b[1;36m750\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 3.0 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:31\u001b[0m.\u001b[1;36m750\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 3.0 bias\u001b[0m \n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 2.97128e+03\tAbsError: 3.16027e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.32166e+02\tAbsError: 9.27634e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.32166e+02\tAbsError: 9.27634e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.83912e+03\tAbsError: 3.16027e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.77725e+02\tAbsError: 1.58850e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.88269e+02\tAbsError: 1.57178e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.67312e+03\tAbsError: 9.27634e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 2.97128e+03\tAbsError: 3.16027e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.32166e+02\tAbsError: 9.27634e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.32166e+02\tAbsError: 9.27634e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.83912e+03\tAbsError: 3.16027e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.77725e+02\tAbsError: 1.58850e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.88269e+02\tAbsError: 1.57178e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.67312e+03\tAbsError: 9.27634e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 1.48830e+04\tAbsError: 8.48684e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.35067e+02\tAbsError: 1.05571e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.35067e+02\tAbsError: 1.05571e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.47479e+04\tAbsError: 8.48684e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.39983e+04\tAbsError: 4.91372e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.33257e+02\tAbsError: 3.57312e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.16342e+02\tAbsError: 1.05571e-01\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 1.48830e+04\tAbsError: 8.48684e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.35067e+02\tAbsError: 1.05571e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.35067e+02\tAbsError: 1.05571e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.47479e+04\tAbsError: 8.48684e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.39983e+04\tAbsError: 4.91372e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.33257e+02\tAbsError: 3.57312e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.16342e+02\tAbsError: 1.05571e-01\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:37\u001b[0m.\u001b[1;36m698\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 2.75 V. Current applied bias: 2.75\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:37\u001b[0m.\u001b[1;36m698\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 2.75 V. Current applied bias: 2.75\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 4.33387e+03\tAbsError: 1.04743e+17\n",
+ " Region: \"zone_1\"\tRelError: 4.12389e+01\tAbsError: 9.00438e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.12389e+01\tAbsError: 9.00438e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.29263e+03\tAbsError: 1.04743e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.16237e+02\tAbsError: 5.91095e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.70305e+03\tAbsError: 4.56340e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.77334e+03\tAbsError: 9.00438e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 4.33387e+03\tAbsError: 1.04743e+17\n",
+ " Region: \"zone_1\"\tRelError: 4.12389e+01\tAbsError: 9.00438e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.12389e+01\tAbsError: 9.00438e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.29263e+03\tAbsError: 1.04743e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.16237e+02\tAbsError: 5.91095e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.70305e+03\tAbsError: 4.56340e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.77334e+03\tAbsError: 9.00438e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 2.63163e+03\tAbsError: 5.60602e+17\n",
+ " Region: \"zone_1\"\tRelError: 6.55817e+02\tAbsError: 1.03714e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.55817e+02\tAbsError: 1.03714e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.97582e+03\tAbsError: 5.60602e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.90464e+02\tAbsError: 2.89999e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.19247e+02\tAbsError: 2.70602e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.66106e+02\tAbsError: 1.03714e-01\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 2.63163e+03\tAbsError: 5.60602e+17\n",
+ " Region: \"zone_1\"\tRelError: 6.55817e+02\tAbsError: 1.03714e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.55817e+02\tAbsError: 1.03714e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.97582e+03\tAbsError: 5.60602e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.90464e+02\tAbsError: 2.89999e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.19247e+02\tAbsError: 2.70602e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.66106e+02\tAbsError: 1.03714e-01\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 3.88681e+03\tAbsError: 5.25961e+16\n",
+ " Region: \"zone_1\"\tRelError: 7.84525e+01\tAbsError: 8.70991e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.84525e+01\tAbsError: 8.70991e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.80836e+03\tAbsError: 5.25961e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.96103e+03\tAbsError: 3.50990e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.21548e+02\tAbsError: 1.74972e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.25779e+02\tAbsError: 8.70991e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 3.88681e+03\tAbsError: 5.25961e+16\n",
+ " Region: \"zone_1\"\tRelError: 7.84525e+01\tAbsError: 8.70991e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.84525e+01\tAbsError: 8.70991e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.80836e+03\tAbsError: 5.25961e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.96103e+03\tAbsError: 3.50990e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.21548e+02\tAbsError: 1.74972e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.25779e+02\tAbsError: 8.70991e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 2.27529e+03\tAbsError: 7.90782e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.05705e+02\tAbsError: 1.00937e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.05705e+02\tAbsError: 1.00937e-01\n",
+ " Region: \"zone_2\"\tRelError: 2.06959e+03\tAbsError: 7.90782e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.30681e+02\tAbsError: 4.52352e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.53320e+03\tAbsError: 3.38430e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.05705e+02\tAbsError: 1.00937e-01\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 2.27529e+03\tAbsError: 7.90782e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.05705e+02\tAbsError: 1.00937e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.05705e+02\tAbsError: 1.00937e-01\n",
+ " Region: \"zone_2\"\tRelError: 2.06959e+03\tAbsError: 7.90782e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.30681e+02\tAbsError: 4.52352e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.53320e+03\tAbsError: 3.38430e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.05705e+02\tAbsError: 1.00937e-01\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 5.32105e+03\tAbsError: 2.07829e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.84211e+02\tAbsError: 1.01750e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.84211e+02\tAbsError: 1.01750e-01\n",
+ " Region: \"zone_2\"\tRelError: 5.13683e+03\tAbsError: 2.07829e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.47013e+03\tAbsError: 1.19646e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.06980e+02\tAbsError: 8.81836e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.59725e+02\tAbsError: 1.01751e-01\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 5.32105e+03\tAbsError: 2.07829e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.84211e+02\tAbsError: 1.01750e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.84211e+02\tAbsError: 1.01750e-01\n",
+ " Region: \"zone_2\"\tRelError: 5.13683e+03\tAbsError: 2.07829e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.47013e+03\tAbsError: 1.19646e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.06980e+02\tAbsError: 8.81836e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.59725e+02\tAbsError: 1.01751e-01\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:44\u001b[0m.\u001b[1;36m692\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 3.0 V. Current applied bias: 3.0\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:44\u001b[0m.\u001b[1;36m692\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 3.0 V. Current applied bias: 3.0\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:45\u001b[0m.\u001b[1;36m195\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 3.25 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:45\u001b[0m.\u001b[1;36m195\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 3.25 bias\u001b[0m \n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 6.58684e+04\tAbsError: 4.25918e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.44494e+02\tAbsError: 9.88020e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.44494e+02\tAbsError: 9.88020e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.56239e+04\tAbsError: 4.25918e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.19294e+04\tAbsError: 2.15840e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.33992e+04\tAbsError: 2.10077e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.95315e+02\tAbsError: 9.88020e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 6.58684e+04\tAbsError: 4.25918e+17\n",
+ " Region: \"zone_1\"\tRelError: 2.44494e+02\tAbsError: 9.88020e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.44494e+02\tAbsError: 9.88020e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.56239e+04\tAbsError: 4.25918e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.19294e+04\tAbsError: 2.15840e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.33992e+04\tAbsError: 2.10077e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.95315e+02\tAbsError: 9.88020e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 4.22243e+03\tAbsError: 6.49439e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.13523e+02\tAbsError: 9.96670e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.13523e+02\tAbsError: 9.96670e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.00891e+03\tAbsError: 6.49439e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.97931e+03\tAbsError: 5.12030e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.09855e+02\tAbsError: 1.37409e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.31974e+03\tAbsError: 9.96670e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 4.22243e+03\tAbsError: 6.49439e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.13523e+02\tAbsError: 9.96670e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.13523e+02\tAbsError: 9.96670e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.00891e+03\tAbsError: 6.49439e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.97931e+03\tAbsError: 5.12030e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.09855e+02\tAbsError: 1.37409e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.31974e+03\tAbsError: 9.96670e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 6.64772e+03\tAbsError: 2.31417e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.33395e+02\tAbsError: 8.38918e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.33395e+02\tAbsError: 8.38918e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.51432e+03\tAbsError: 2.31417e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.03564e+03\tAbsError: 1.91438e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.38599e+03\tAbsError: 3.99791e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.26875e+01\tAbsError: 8.38918e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 6.64772e+03\tAbsError: 2.31417e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.33395e+02\tAbsError: 8.38918e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.33395e+02\tAbsError: 8.38918e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.51432e+03\tAbsError: 2.31417e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.03564e+03\tAbsError: 1.91438e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.38599e+03\tAbsError: 3.99791e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.26875e+01\tAbsError: 8.38918e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 1.81445e+03\tAbsError: 6.77051e+17\n",
+ " Region: \"zone_1\"\tRelError: 5.07294e+01\tAbsError: 9.52882e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.07294e+01\tAbsError: 9.52882e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.76372e+03\tAbsError: 6.77051e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.42516e+02\tAbsError: 3.89474e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.32389e+02\tAbsError: 2.87577e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.88819e+02\tAbsError: 9.52882e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 1.81445e+03\tAbsError: 6.77051e+17\n",
+ " Region: \"zone_1\"\tRelError: 5.07294e+01\tAbsError: 9.52882e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.07294e+01\tAbsError: 9.52882e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.76372e+03\tAbsError: 6.77051e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.42516e+02\tAbsError: 3.89474e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.32389e+02\tAbsError: 2.87577e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.88819e+02\tAbsError: 9.52882e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 4.91775e+03\tAbsError: 1.19279e+17\n",
+ " Region: \"zone_1\"\tRelError: 3.19522e+02\tAbsError: 9.65270e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.19522e+02\tAbsError: 9.65270e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.59823e+03\tAbsError: 1.19279e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.06867e+03\tAbsError: 6.99753e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.22970e+03\tAbsError: 4.93033e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.29986e+03\tAbsError: 9.65271e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 4.91775e+03\tAbsError: 1.19279e+17\n",
+ " Region: \"zone_1\"\tRelError: 3.19522e+02\tAbsError: 9.65270e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.19522e+02\tAbsError: 9.65270e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.59823e+03\tAbsError: 1.19279e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.06867e+03\tAbsError: 6.99753e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.22970e+03\tAbsError: 4.93033e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.29986e+03\tAbsError: 9.65271e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 5.80143e+03\tAbsError: 3.49001e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.87816e+02\tAbsError: 9.74499e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.87816e+02\tAbsError: 9.74499e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.61362e+03\tAbsError: 3.49001e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.28147e+02\tAbsError: 3.16848e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.32873e+03\tAbsError: 3.21528e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.67374e+01\tAbsError: 9.74499e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 5.80143e+03\tAbsError: 3.49001e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.87816e+02\tAbsError: 9.74499e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.87816e+02\tAbsError: 9.74499e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.61362e+03\tAbsError: 3.49001e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.28147e+02\tAbsError: 3.16848e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.32873e+03\tAbsError: 3.21528e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.67374e+01\tAbsError: 9.74499e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.20112e+03\tAbsError: 1.02916e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.79022e+02\tAbsError: 8.03749e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.79022e+02\tAbsError: 8.03749e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.22094e+02\tAbsError: 1.02916e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.44072e+02\tAbsError: 9.91511e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 3.76457e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.79022e+02\tAbsError: 8.03749e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.20112e+03\tAbsError: 1.02916e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.79022e+02\tAbsError: 8.03749e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.79022e+02\tAbsError: 8.03749e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.22094e+02\tAbsError: 1.02916e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.44072e+02\tAbsError: 9.91511e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 3.76457e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.79022e+02\tAbsError: 8.03749e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.35189e+03\tAbsError: 2.20157e+16\n",
+ " Region: \"zone_1\"\tRelError: 6.16895e+01\tAbsError: 9.50816e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.16895e+01\tAbsError: 9.50816e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.29020e+03\tAbsError: 2.20157e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.00759e+03\tAbsError: 2.14365e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.63604e+02\tAbsError: 5.79239e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.19008e+02\tAbsError: 9.50816e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.35189e+03\tAbsError: 2.20157e+16\n",
+ " Region: \"zone_1\"\tRelError: 6.16895e+01\tAbsError: 9.50816e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.16895e+01\tAbsError: 9.50816e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.29020e+03\tAbsError: 2.20157e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.00759e+03\tAbsError: 2.14365e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.63604e+02\tAbsError: 5.79239e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.19008e+02\tAbsError: 9.50816e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 6.24391e+03\tAbsError: 6.16628e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.68801e+03\tAbsError: 9.40931e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.68801e+03\tAbsError: 9.40931e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.55590e+03\tAbsError: 6.16628e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.19121e+03\tAbsError: 4.37745e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.58100e+02\tAbsError: 1.78883e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.06586e+02\tAbsError: 9.40931e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 6.24391e+03\tAbsError: 6.16628e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.68801e+03\tAbsError: 9.40931e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.68801e+03\tAbsError: 9.40931e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.55590e+03\tAbsError: 6.16628e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.19121e+03\tAbsError: 4.37745e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.58100e+02\tAbsError: 1.78883e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.06586e+02\tAbsError: 9.40931e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 4.53432e+03\tAbsError: 2.79749e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.15778e+02\tAbsError: 9.27634e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.15778e+02\tAbsError: 9.27634e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.41854e+03\tAbsError: 2.79749e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.17678e+03\tAbsError: 1.39173e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.11050e+03\tAbsError: 1.40577e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.31265e+02\tAbsError: 9.27634e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 4.53432e+03\tAbsError: 2.79749e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.15778e+02\tAbsError: 9.27634e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.15778e+02\tAbsError: 9.27634e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.41854e+03\tAbsError: 2.79749e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.17678e+03\tAbsError: 1.39173e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.11050e+03\tAbsError: 1.40577e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.31265e+02\tAbsError: 9.27634e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 1.00640e+04\tAbsError: 5.30059e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.07533e+01\tAbsError: 7.64883e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.07533e+01\tAbsError: 7.64883e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00533e+04\tAbsError: 5.30059e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.84022e+03\tAbsError: 5.20567e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.24893e+03\tAbsError: 9.49274e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.64130e+02\tAbsError: 7.64883e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 1.00640e+04\tAbsError: 5.30059e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.07533e+01\tAbsError: 7.64883e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.07533e+01\tAbsError: 7.64883e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00533e+04\tAbsError: 5.30059e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.84022e+03\tAbsError: 5.20567e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.24893e+03\tAbsError: 9.49274e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.64130e+02\tAbsError: 7.64883e-02\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:57\u001b[0m.\u001b[1;36m558\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 3.25 V. Current applied bias: 3.25\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:15:57\u001b[0m.\u001b[1;36m558\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 3.25 V. Current applied bias: 3.25\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 4.95200e+03\tAbsError: 1.32695e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.90012e+02\tAbsError: 9.25413e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.90012e+02\tAbsError: 9.25413e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.76199e+03\tAbsError: 1.32695e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.51457e+03\tAbsError: 1.30097e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.03585e+03\tAbsError: 2.59757e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.11563e+02\tAbsError: 9.25413e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 4.95200e+03\tAbsError: 1.32695e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.90012e+02\tAbsError: 9.25413e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.90012e+02\tAbsError: 9.25413e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.76199e+03\tAbsError: 1.32695e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.51457e+03\tAbsError: 1.30097e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.03585e+03\tAbsError: 2.59757e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.11563e+02\tAbsError: 9.25413e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 1.40969e+04\tAbsError: 3.22441e+16\n",
+ " Region: \"zone_1\"\tRelError: 3.65957e+02\tAbsError: 9.14777e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.65957e+02\tAbsError: 9.14777e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.37309e+04\tAbsError: 3.22441e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.79243e+02\tAbsError: 2.78338e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.31642e+04\tAbsError: 4.41032e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.87536e+02\tAbsError: 9.14777e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 1.40969e+04\tAbsError: 3.22441e+16\n",
+ " Region: \"zone_1\"\tRelError: 3.65957e+02\tAbsError: 9.14777e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.65957e+02\tAbsError: 9.14777e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.37309e+04\tAbsError: 3.22441e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.79243e+02\tAbsError: 2.78338e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.31642e+04\tAbsError: 4.41032e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.87536e+02\tAbsError: 9.14777e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 5.12171e+03\tAbsError: 8.89117e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.00870e+02\tAbsError: 9.00438e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.00870e+02\tAbsError: 9.00438e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.92084e+03\tAbsError: 8.89117e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.65838e+02\tAbsError: 5.38639e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.54574e+03\tAbsError: 3.50478e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.09267e+02\tAbsError: 9.00438e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 5.12171e+03\tAbsError: 8.89117e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.00870e+02\tAbsError: 9.00438e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.00870e+02\tAbsError: 9.00438e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.92084e+03\tAbsError: 8.89117e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.65838e+02\tAbsError: 5.38639e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.54574e+03\tAbsError: 3.50478e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.09267e+02\tAbsError: 9.00438e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 3.55587e+02\tAbsError: 2.12711e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.30302e+02\tAbsError: 7.21547e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.30302e+02\tAbsError: 7.21547e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.25284e+02\tAbsError: 2.12711e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.00000e+00\tAbsError: 2.08776e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.10216e+02\tAbsError: 3.93501e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.40686e+01\tAbsError: 7.21547e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 3.55587e+02\tAbsError: 2.12711e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.30302e+02\tAbsError: 7.21547e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.30302e+02\tAbsError: 7.21547e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.25284e+02\tAbsError: 2.12711e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.00000e+00\tAbsError: 2.08776e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.10216e+02\tAbsError: 3.93501e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.40686e+01\tAbsError: 7.21547e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 8.34384e+03\tAbsError: 9.42792e+15\n",
+ " Region: \"zone_1\"\tRelError: 3.35184e+02\tAbsError: 8.98039e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.35184e+02\tAbsError: 8.98039e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.00865e+03\tAbsError: 9.42792e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.07007e+02\tAbsError: 9.15217e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.34021e+03\tAbsError: 2.75754e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.61442e+02\tAbsError: 8.98039e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 8.34384e+03\tAbsError: 9.42792e+15\n",
+ " Region: \"zone_1\"\tRelError: 3.35184e+02\tAbsError: 8.98039e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.35184e+02\tAbsError: 8.98039e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.00865e+03\tAbsError: 9.42792e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.07007e+02\tAbsError: 9.15217e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.34021e+03\tAbsError: 2.75754e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.61442e+02\tAbsError: 8.98039e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.53331e+04\tAbsError: 1.64332e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.14293e+01\tAbsError: 8.86536e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.14293e+01\tAbsError: 8.86536e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.52917e+04\tAbsError: 1.64332e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.45737e+04\tAbsError: 1.57368e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.59329e+02\tAbsError: 6.96346e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.58660e+02\tAbsError: 8.86536e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.53331e+04\tAbsError: 1.64332e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.14293e+01\tAbsError: 8.86536e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.14293e+01\tAbsError: 8.86536e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.52917e+04\tAbsError: 1.64332e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.45737e+04\tAbsError: 1.57368e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.59329e+02\tAbsError: 6.96346e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.58660e+02\tAbsError: 8.86536e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 2.49508e+03\tAbsError: 8.15576e+17\n",
+ " Region: \"zone_1\"\tRelError: 3.05482e+02\tAbsError: 1.05571e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.05482e+02\tAbsError: 1.05571e-01\n",
+ " Region: \"zone_2\"\tRelError: 2.18960e+03\tAbsError: 8.15576e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.19571e+03\tAbsError: 4.62041e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.32409e+02\tAbsError: 3.53535e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.61486e+02\tAbsError: 1.05571e-01\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 2.49508e+03\tAbsError: 8.15576e+17\n",
+ " Region: \"zone_1\"\tRelError: 3.05482e+02\tAbsError: 1.05571e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.05482e+02\tAbsError: 1.05571e-01\n",
+ " Region: \"zone_2\"\tRelError: 2.18960e+03\tAbsError: 8.15576e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.19571e+03\tAbsError: 4.62041e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.32409e+02\tAbsError: 3.53535e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.61486e+02\tAbsError: 1.05571e-01\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 2.13753e+04\tAbsError: 4.51003e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.85250e+02\tAbsError: 8.70991e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.85250e+02\tAbsError: 8.70991e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.11900e+04\tAbsError: 4.51003e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.00946e+04\tAbsError: 3.10924e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.28286e+02\tAbsError: 1.40079e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.67145e+02\tAbsError: 8.70991e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 2.13753e+04\tAbsError: 4.51003e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.85250e+02\tAbsError: 8.70991e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.85250e+02\tAbsError: 8.70991e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.11900e+04\tAbsError: 4.51003e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.00946e+04\tAbsError: 3.10924e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.28286e+02\tAbsError: 1.40079e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.67145e+02\tAbsError: 8.70991e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 7.42404e+02\tAbsError: 1.27381e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.71349e-01\tAbsError: 6.72720e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.71349e-01\tAbsError: 6.72720e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.42233e+02\tAbsError: 1.27381e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.18200e+02\tAbsError: 1.26334e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.23840e+02\tAbsError: 1.04674e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.92467e-01\tAbsError: 6.72720e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 7.42404e+02\tAbsError: 1.27381e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.71349e-01\tAbsError: 6.72720e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.71349e-01\tAbsError: 6.72720e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.42233e+02\tAbsError: 1.27381e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.18200e+02\tAbsError: 1.26334e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.23840e+02\tAbsError: 1.04674e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.92467e-01\tAbsError: 6.72720e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 5.45317e+02\tAbsError: 7.36655e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.45513e+01\tAbsError: 8.68386e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.45513e+01\tAbsError: 8.68386e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.30766e+02\tAbsError: 7.36655e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 7.28031e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 8.62482e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.32766e+02\tAbsError: 8.68386e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 5.45317e+02\tAbsError: 7.36655e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.45513e+01\tAbsError: 8.68386e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.45513e+01\tAbsError: 8.68386e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.30766e+02\tAbsError: 7.36655e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 7.28031e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 8.62482e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.32766e+02\tAbsError: 8.68386e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 2.53597e+03\tAbsError: 5.07498e+17\n",
+ " Region: \"zone_1\"\tRelError: 8.54096e+02\tAbsError: 1.03714e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.54096e+02\tAbsError: 1.03714e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.68188e+03\tAbsError: 5.07498e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.66095e+02\tAbsError: 2.56958e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.39013e+02\tAbsError: 2.50539e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.17677e+03\tAbsError: 1.03714e-01\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 2.53597e+03\tAbsError: 5.07498e+17\n",
+ " Region: \"zone_1\"\tRelError: 8.54096e+02\tAbsError: 1.03714e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.54096e+02\tAbsError: 1.03714e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.68188e+03\tAbsError: 5.07498e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.66095e+02\tAbsError: 2.56958e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.39013e+02\tAbsError: 2.50539e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.17677e+03\tAbsError: 1.03714e-01\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 2.80643e+03\tAbsError: 9.93474e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.18532e+01\tAbsError: 8.55875e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.18532e+01\tAbsError: 8.55875e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.78458e+03\tAbsError: 9.93474e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.32633e+03\tAbsError: 9.70327e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.20544e+03\tAbsError: 2.31476e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.52814e+02\tAbsError: 8.55875e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 2.80643e+03\tAbsError: 9.93474e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.18532e+01\tAbsError: 8.55875e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.18532e+01\tAbsError: 8.55875e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.78458e+03\tAbsError: 9.93474e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.32633e+03\tAbsError: 9.70327e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.20544e+03\tAbsError: 2.31476e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.52814e+02\tAbsError: 8.55875e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 2.27970e+03\tAbsError: 3.78469e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.91759e-02\tAbsError: 6.17046e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.91759e-02\tAbsError: 6.17046e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.27963e+03\tAbsError: 3.78469e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.95473e-01\tAbsError: 3.74034e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.27861e+03\tAbsError: 4.43464e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.42049e-02\tAbsError: 6.17046e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 2.47166e+03\tAbsError: 1.80332e+16\n",
+ " Region: \"zone_1\"\tRelError: 8.67688e+01\tAbsError: 8.38918e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.67688e+01\tAbsError: 8.38918e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.38489e+03\tAbsError: 1.80332e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.75165e+02\tAbsError: 1.54443e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.58037e+03\tAbsError: 2.58885e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.29362e+02\tAbsError: 8.38918e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 2.27970e+03\tAbsError: 3.78469e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.91759e-02\tAbsError: 6.17046e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.91759e-02\tAbsError: 6.17046e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.27963e+03\tAbsError: 3.78469e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.95473e-01\tAbsError: 3.74034e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.27861e+03\tAbsError: 4.43464e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.42049e-02\tAbsError: 6.17046e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 2.47166e+03\tAbsError: 1.80332e+16\n",
+ " Region: \"zone_1\"\tRelError: 8.67688e+01\tAbsError: 8.38918e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.67688e+01\tAbsError: 8.38918e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.38489e+03\tAbsError: 1.80332e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.75165e+02\tAbsError: 1.54443e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.58037e+03\tAbsError: 2.58885e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.29362e+02\tAbsError: 8.38918e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 7.14858e+03\tAbsError: 5.42113e+15\n",
+ " Region: \"zone_1\"\tRelError: 3.38744e-01\tAbsError: 8.36071e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.38744e-01\tAbsError: 8.36071e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.14824e+03\tAbsError: 5.42113e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.91699e+03\tAbsError: 5.29615e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.24981e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.32249e+02\tAbsError: 8.36071e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 7.14858e+03\tAbsError: 5.42113e+15\n",
+ " Region: \"zone_1\"\tRelError: 3.38744e-01\tAbsError: 8.36071e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.38744e-01\tAbsError: 8.36071e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.14824e+03\tAbsError: 5.42113e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.91699e+03\tAbsError: 5.29615e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.24981e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.32249e+02\tAbsError: 8.36071e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 1.79642e+02\tAbsError: 2.59507e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.31586e-01\tAbsError: 5.52707e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.31586e-01\tAbsError: 5.52707e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.79511e+02\tAbsError: 2.59507e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.78483e+02\tAbsError: 2.49040e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99921e-01\tAbsError: 1.04670e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.78262e-02\tAbsError: 5.52707e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 1.79642e+02\tAbsError: 2.59507e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.31586e-01\tAbsError: 5.52707e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.31586e-01\tAbsError: 5.52707e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.79511e+02\tAbsError: 2.59507e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.78483e+02\tAbsError: 2.49040e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99921e-01\tAbsError: 1.04670e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.78262e-02\tAbsError: 5.52707e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 2.78035e+03\tAbsError: 6.70697e+15\n",
+ " Region: \"zone_1\"\tRelError: 9.03861e+01\tAbsError: 8.22374e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.03861e+01\tAbsError: 8.22374e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.68996e+03\tAbsError: 6.70697e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.36961e+02\tAbsError: 6.66449e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.19858e+03\tAbsError: 4.24861e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.54419e+02\tAbsError: 8.22374e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 2.78035e+03\tAbsError: 6.70697e+15\n",
+ " Region: \"zone_1\"\tRelError: 9.03861e+01\tAbsError: 8.22374e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.03861e+01\tAbsError: 8.22374e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.68996e+03\tAbsError: 6.70697e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.36961e+02\tAbsError: 6.66449e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.19858e+03\tAbsError: 4.24861e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.54419e+02\tAbsError: 8.22374e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 5.00555e+03\tAbsError: 1.67221e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.43385e+03\tAbsError: 1.01750e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.43385e+03\tAbsError: 1.01750e-01\n",
+ " Region: \"zone_2\"\tRelError: 3.57171e+03\tAbsError: 1.67221e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.44649e+03\tAbsError: 9.76217e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.91371e+02\tAbsError: 6.95991e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.43385e+03\tAbsError: 1.01750e-01\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 5.00555e+03\tAbsError: 1.67221e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.43385e+03\tAbsError: 1.01750e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.43385e+03\tAbsError: 1.01750e-01\n",
+ " Region: \"zone_2\"\tRelError: 3.57171e+03\tAbsError: 1.67221e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.44649e+03\tAbsError: 9.76217e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.91371e+02\tAbsError: 6.95991e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.43385e+03\tAbsError: 1.01750e-01\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 9.27921e+02\tAbsError: 7.92635e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.85996e+02\tAbsError: 8.03749e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.85996e+02\tAbsError: 8.03749e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.41926e+02\tAbsError: 7.92635e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 7.73533e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.16248e+02\tAbsError: 1.91018e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.26677e+02\tAbsError: 8.03749e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 9.27921e+02\tAbsError: 7.92635e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.85996e+02\tAbsError: 8.03749e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.85996e+02\tAbsError: 8.03749e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.41926e+02\tAbsError: 7.92635e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 7.73533e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.16248e+02\tAbsError: 1.91018e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.26677e+02\tAbsError: 8.03749e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 1.12234e+03\tAbsError: 2.41518e+14\n",
+ " Region: \"zone_1\"\tRelError: 9.40220e-02\tAbsError: 4.77303e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.40220e-02\tAbsError: 4.77303e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.12225e+03\tAbsError: 2.41518e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.87599e-01\tAbsError: 2.33534e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.12124e+03\tAbsError: 7.98385e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.33561e-02\tAbsError: 4.77303e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 1.12234e+03\tAbsError: 2.41518e+14\n",
+ " Region: \"zone_1\"\tRelError: 9.40220e-02\tAbsError: 4.77303e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.40220e-02\tAbsError: 4.77303e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.12225e+03\tAbsError: 2.41518e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.87599e-01\tAbsError: 2.33534e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.12124e+03\tAbsError: 7.98385e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.33561e-02\tAbsError: 4.77303e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 7.53251e+02\tAbsError: 3.73114e+15\n",
+ " Region: \"zone_1\"\tRelError: 6.12937e-02\tAbsError: 8.00614e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.12937e-02\tAbsError: 8.00614e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.53190e+02\tAbsError: 3.73114e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 3.64628e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.52726e+02\tAbsError: 8.48617e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.46411e+00\tAbsError: 8.00614e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 7.53251e+02\tAbsError: 3.73114e+15\n",
+ " Region: \"zone_1\"\tRelError: 6.12937e-02\tAbsError: 8.00614e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.12937e-02\tAbsError: 8.00614e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.53190e+02\tAbsError: 3.73114e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 3.64628e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.52726e+02\tAbsError: 8.48617e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.46411e+00\tAbsError: 8.00614e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 1.98723e+04\tAbsError: 1.99710e+14\n",
+ " Region: \"zone_1\"\tRelError: 8.92631e-02\tAbsError: 3.87925e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.92631e-02\tAbsError: 3.87925e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.98722e+04\tAbsError: 1.99710e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.98712e+04\tAbsError: 1.91308e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.98510e-01\tAbsError: 8.40217e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.85612e-02\tAbsError: 3.87925e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 1.98723e+04\tAbsError: 1.99710e+14\n",
+ " Region: \"zone_1\"\tRelError: 8.92631e-02\tAbsError: 3.87925e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.92631e-02\tAbsError: 3.87925e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.98722e+04\tAbsError: 1.99710e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.98712e+04\tAbsError: 1.91308e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.98510e-01\tAbsError: 8.40217e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.85612e-02\tAbsError: 3.87925e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 8.56320e+02\tAbsError: 2.14032e+15\n",
+ " Region: \"zone_1\"\tRelError: 4.07424e-02\tAbsError: 7.61404e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.07424e-02\tAbsError: 7.61404e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.56279e+02\tAbsError: 2.14032e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.68156e+02\tAbsError: 2.10790e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.86835e+02\tAbsError: 3.24154e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.28732e+00\tAbsError: 7.61404e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 8.56320e+02\tAbsError: 2.14032e+15\n",
+ " Region: \"zone_1\"\tRelError: 4.07424e-02\tAbsError: 7.61404e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.07424e-02\tAbsError: 7.61404e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.56279e+02\tAbsError: 2.14032e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.68156e+02\tAbsError: 2.10790e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.86835e+02\tAbsError: 3.24154e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.28732e+00\tAbsError: 7.61404e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 1.13055e+03\tAbsError: 4.19501e+15\n",
+ " Region: \"zone_1\"\tRelError: 5.25858e-01\tAbsError: 7.85507e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.25858e-01\tAbsError: 7.85507e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.13002e+03\tAbsError: 4.19501e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.76761e+02\tAbsError: 4.10123e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 9.37824e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.54261e+02\tAbsError: 7.85507e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 1.13055e+03\tAbsError: 4.19501e+15\n",
+ " Region: \"zone_1\"\tRelError: 5.25858e-01\tAbsError: 7.85507e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.25858e-01\tAbsError: 7.85507e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.13002e+03\tAbsError: 4.19501e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.76761e+02\tAbsError: 4.10123e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 9.37824e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.54261e+02\tAbsError: 7.85507e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 9.26146e+02\tAbsError: 5.76478e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.61300e+02\tAbsError: 9.96670e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.61300e+02\tAbsError: 9.96670e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.64846e+02\tAbsError: 5.76478e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.76250e+02\tAbsError: 4.55732e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.85876e+02\tAbsError: 1.20747e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.02720e+02\tAbsError: 9.96670e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 9.26146e+02\tAbsError: 5.76478e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.61300e+02\tAbsError: 9.96670e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.61300e+02\tAbsError: 9.96670e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.64846e+02\tAbsError: 5.76478e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.76250e+02\tAbsError: 4.55732e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.85876e+02\tAbsError: 1.20747e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.02720e+02\tAbsError: 9.96670e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 1.65197e+03\tAbsError: 3.87032e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.32709e+01\tAbsError: 7.64883e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.32709e+01\tAbsError: 7.64883e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.63870e+03\tAbsError: 3.87032e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.61680e+03\tAbsError: 3.82331e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.59224e+00\tAbsError: 4.70137e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.83074e+01\tAbsError: 7.64883e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 1.65197e+03\tAbsError: 3.87032e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.32709e+01\tAbsError: 7.64883e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.32709e+01\tAbsError: 7.64883e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.63870e+03\tAbsError: 3.87032e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.61680e+03\tAbsError: 3.82331e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.59224e+00\tAbsError: 4.70137e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.83074e+01\tAbsError: 7.64883e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 1.00085e+02\tAbsError: 1.86695e+14\n",
+ " Region: \"zone_1\"\tRelError: 7.41566e-02\tAbsError: 2.82284e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.41566e-02\tAbsError: 2.82284e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00011e+02\tAbsError: 1.86695e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99834e-01\tAbsError: 1.79193e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.89975e+01\tAbsError: 7.50244e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.37189e-02\tAbsError: 2.82284e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 1.00085e+02\tAbsError: 1.86695e+14\n",
+ " Region: \"zone_1\"\tRelError: 7.41566e-02\tAbsError: 2.82284e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.41566e-02\tAbsError: 2.82284e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00011e+02\tAbsError: 1.86695e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99834e-01\tAbsError: 1.79193e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.89975e+01\tAbsError: 7.50244e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.37189e-02\tAbsError: 2.82284e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 1.68536e+03\tAbsError: 1.62329e+15\n",
+ " Region: \"zone_1\"\tRelError: 3.51684e-02\tAbsError: 7.17646e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.51684e-02\tAbsError: 7.17646e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.68533e+03\tAbsError: 1.62329e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.59043e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.58276e+03\tAbsError: 3.28536e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.56952e+00\tAbsError: 7.17646e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 1.68536e+03\tAbsError: 1.62329e+15\n",
+ " Region: \"zone_1\"\tRelError: 3.51684e-02\tAbsError: 7.17646e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.51684e-02\tAbsError: 7.17646e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.68533e+03\tAbsError: 1.62329e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.59043e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.58276e+03\tAbsError: 3.28536e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.56952e+00\tAbsError: 7.17646e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 1.08415e+00\tAbsError: 1.40391e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.41256e-02\tAbsError: 2.28975e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.41256e-02\tAbsError: 2.28975e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.04002e+00\tAbsError: 1.40391e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.19975e-02\tAbsError: 1.35850e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.77398e-01\tAbsError: 4.54097e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.06242e-02\tAbsError: 2.28975e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 1.08415e+00\tAbsError: 1.40391e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.41256e-02\tAbsError: 2.28975e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.41256e-02\tAbsError: 2.28975e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.04002e+00\tAbsError: 1.40391e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.19975e-02\tAbsError: 1.35850e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.77398e-01\tAbsError: 4.54097e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.06242e-02\tAbsError: 2.28975e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 7.87245e+02\tAbsError: 8.10434e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.14755e-02\tAbsError: 6.68298e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.14755e-02\tAbsError: 6.68298e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.87214e+02\tAbsError: 8.10434e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.66482e+02\tAbsError: 8.04326e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.19575e+02\tAbsError: 6.10796e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.15707e+00\tAbsError: 6.68298e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 7.87245e+02\tAbsError: 8.10434e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.14755e-02\tAbsError: 6.68298e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.14755e-02\tAbsError: 6.68298e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.87214e+02\tAbsError: 8.10434e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.66482e+02\tAbsError: 8.04326e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.19575e+02\tAbsError: 6.10796e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.15707e+00\tAbsError: 6.68298e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 8.37984e+02\tAbsError: 2.56997e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.82901e-01\tAbsError: 7.44595e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.82901e-01\tAbsError: 7.44595e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.37801e+02\tAbsError: 2.56997e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.52762e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.38273e+02\tAbsError: 4.23490e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.28170e-01\tAbsError: 7.44595e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 8.37984e+02\tAbsError: 2.56997e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.82901e-01\tAbsError: 7.44595e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.82901e-01\tAbsError: 7.44595e-02\n",
+ " Region: \"zone_2\"\tRelError: 8.37801e+02\tAbsError: 2.56997e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.52762e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.38273e+02\tAbsError: 4.23490e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.28170e-01\tAbsError: 7.44595e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 2.82702e+05\tAbsError: 3.54224e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.07290e+02\tAbsError: 9.74499e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.07290e+02\tAbsError: 9.74499e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.82294e+05\tAbsError: 3.54224e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.17798e+02\tAbsError: 3.15621e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.81704e+05\tAbsError: 3.86023e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.72426e+02\tAbsError: 9.74499e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 2.82702e+05\tAbsError: 3.54224e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.07290e+02\tAbsError: 9.74499e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.07290e+02\tAbsError: 9.74499e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.82294e+05\tAbsError: 3.54224e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.17798e+02\tAbsError: 3.15621e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.81704e+05\tAbsError: 3.86023e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.72426e+02\tAbsError: 9.74499e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 1.55658e+03\tAbsError: 1.85668e+15\n",
+ " Region: \"zone_1\"\tRelError: 5.55630e-02\tAbsError: 7.21547e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.55630e-02\tAbsError: 7.21547e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.55653e+03\tAbsError: 1.85668e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.00000e+00\tAbsError: 1.82972e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.49267e+03\tAbsError: 2.69570e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.28582e+01\tAbsError: 7.21547e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 1.55658e+03\tAbsError: 1.85668e+15\n",
+ " Region: \"zone_1\"\tRelError: 5.55630e-02\tAbsError: 7.21547e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.55630e-02\tAbsError: 7.21547e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.55653e+03\tAbsError: 1.85668e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.00000e+00\tAbsError: 1.82972e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.49267e+03\tAbsError: 2.69570e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.28582e+01\tAbsError: 7.21547e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 3.04678e-01\tAbsError: 1.49680e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.64126e-02\tAbsError: 7.19880e-06\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.64126e-02\tAbsError: 7.19880e-06\n",
+ " Region: \"zone_2\"\tRelError: 2.68266e-01\tAbsError: 1.49680e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.62000e-02\tAbsError: 1.45652e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.38932e-01\tAbsError: 4.02782e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.13370e-03\tAbsError: 1.64393e-05\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 3.04678e-01\tAbsError: 1.49680e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.64126e-02\tAbsError: 7.19880e-06\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.64126e-02\tAbsError: 7.19880e-06\n",
+ " Region: \"zone_2\"\tRelError: 2.68266e-01\tAbsError: 1.49680e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.62000e-02\tAbsError: 1.45652e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.38932e-01\tAbsError: 4.02782e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.13370e-03\tAbsError: 1.64393e-05\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 3.65425e+02\tAbsError: 4.54617e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.77892e-02\tAbsError: 6.11969e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.77892e-02\tAbsError: 6.11969e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.65397e+02\tAbsError: 4.54617e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 4.38495e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.65605e+02\tAbsError: 1.61221e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.91931e-01\tAbsError: 6.11969e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 3.65425e+02\tAbsError: 4.54617e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.77892e-02\tAbsError: 6.11969e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.77892e-02\tAbsError: 6.11969e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.65397e+02\tAbsError: 4.54617e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 4.38495e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.65605e+02\tAbsError: 1.61221e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.91931e-01\tAbsError: 6.11969e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 3.96603e+03\tAbsError: 1.16628e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.08236e-01\tAbsError: 6.98755e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.08236e-01\tAbsError: 6.98755e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.96592e+03\tAbsError: 1.16628e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.06641e+02\tAbsError: 1.14446e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.85891e+03\tAbsError: 2.18260e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.69679e-01\tAbsError: 6.98755e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 3.96603e+03\tAbsError: 1.16628e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.08236e-01\tAbsError: 6.98755e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.08236e-01\tAbsError: 6.98755e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.96592e+03\tAbsError: 1.16628e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.06641e+02\tAbsError: 1.14446e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.85891e+03\tAbsError: 2.18260e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.69679e-01\tAbsError: 6.98755e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 5.18165e-04\tAbsError: 4.80685e+09\n",
+ " Region: \"zone_1\"\tRelError: 2.61658e-07\tAbsError: 5.01992e-11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.61658e-07\tAbsError: 5.01992e-11\n",
+ " Region: \"zone_2\"\tRelError: 5.17903e-04\tAbsError: 4.80685e+09\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.57485e-06\tAbsError: 4.76312e+09\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.14303e-04\tAbsError: 4.37258e+07\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.50797e-08\tAbsError: 1.82883e-10\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 5.18165e-04\tAbsError: 4.80685e+09\n",
+ " Region: \"zone_1\"\tRelError: 2.61658e-07\tAbsError: 5.01992e-11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.61658e-07\tAbsError: 5.01992e-11\n",
+ " Region: \"zone_2\"\tRelError: 5.17903e-04\tAbsError: 4.80685e+09\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.57485e-06\tAbsError: 4.76312e+09\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.14303e-04\tAbsError: 4.37258e+07\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.50797e-08\tAbsError: 1.82883e-10\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 6.50447e+02\tAbsError: 3.50655e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.40762e-02\tAbsError: 5.46796e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.40762e-02\tAbsError: 5.46796e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.50423e+02\tAbsError: 3.50655e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.33527e+02\tAbsError: 3.41746e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.16577e+02\tAbsError: 8.90915e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.18745e-01\tAbsError: 5.46796e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 6.50447e+02\tAbsError: 3.50655e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.40762e-02\tAbsError: 5.46796e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.40762e-02\tAbsError: 5.46796e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.50423e+02\tAbsError: 3.50655e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.33527e+02\tAbsError: 3.41746e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.16577e+02\tAbsError: 8.90915e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.18745e-01\tAbsError: 5.46796e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 4.42282e+03\tAbsError: 7.77785e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.93421e-02\tAbsError: 6.46820e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.93421e-02\tAbsError: 6.46820e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.42275e+03\tAbsError: 7.77785e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.62556e+02\tAbsError: 7.65946e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.25995e+03\tAbsError: 1.18384e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.41674e-01\tAbsError: 6.46820e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 4.42282e+03\tAbsError: 7.77785e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.93421e-02\tAbsError: 6.46820e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.93421e-02\tAbsError: 6.46820e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.42275e+03\tAbsError: 7.77785e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.62556e+02\tAbsError: 7.65946e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.25995e+03\tAbsError: 1.18384e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.41674e-01\tAbsError: 6.46820e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 2.10913e+03\tAbsError: 1.64446e+16\n",
+ " Region: \"zone_1\"\tRelError: 9.58805e+01\tAbsError: 9.50816e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.58805e+01\tAbsError: 9.50816e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.01325e+03\tAbsError: 1.64446e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.52895e+02\tAbsError: 1.58206e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.85705e+02\tAbsError: 6.24029e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.74648e+02\tAbsError: 9.50816e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 2.10913e+03\tAbsError: 1.64446e+16\n",
+ " Region: \"zone_1\"\tRelError: 9.58805e+01\tAbsError: 9.50816e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.58805e+01\tAbsError: 9.50816e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.01325e+03\tAbsError: 1.64446e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.52895e+02\tAbsError: 1.58206e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.85705e+02\tAbsError: 6.24029e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.74648e+02\tAbsError: 9.50816e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 2.75840e-12\tAbsError: 4.29256e+03\n",
+ " Region: \"zone_1\"\tRelError: 3.32256e-13\tAbsError: 2.35481e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.32256e-13\tAbsError: 2.35481e-16\n",
+ " Region: \"zone_2\"\tRelError: 2.42614e-12\tAbsError: 4.29256e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.65714e-14\tAbsError: 2.20711e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.34019e-12\tAbsError: 2.08545e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.93773e-14\tAbsError: 2.32618e-16\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 2.75840e-12\tAbsError: 4.29256e+03\n",
+ " Region: \"zone_1\"\tRelError: 3.32256e-13\tAbsError: 2.35481e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.32256e-13\tAbsError: 2.35481e-16\n",
+ " Region: \"zone_2\"\tRelError: 2.42614e-12\tAbsError: 4.29256e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.65714e-14\tAbsError: 2.20711e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.34019e-12\tAbsError: 2.08545e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.93773e-14\tAbsError: 2.32618e-16\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 2.39875e+03\tAbsError: 2.42825e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.02685e-02\tAbsError: 4.70327e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.02685e-02\tAbsError: 4.70327e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.39873e+03\tAbsError: 2.42825e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.00000e+00\tAbsError: 2.32793e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.39747e+03\tAbsError: 1.00313e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.59971e-01\tAbsError: 4.70327e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 1.13063e+03\tAbsError: 8.06341e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.17645e-02\tAbsError: 6.72720e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.17645e-02\tAbsError: 6.72720e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.13060e+03\tAbsError: 8.06341e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.89898e+02\tAbsError: 8.03630e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.40665e+02\tAbsError: 2.71096e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.87343e-02\tAbsError: 6.72720e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 2.39875e+03\tAbsError: 2.42825e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.02685e-02\tAbsError: 4.70327e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.02685e-02\tAbsError: 4.70327e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.39873e+03\tAbsError: 2.42825e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.00000e+00\tAbsError: 2.32793e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.39747e+03\tAbsError: 1.00313e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.59971e-01\tAbsError: 4.70327e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 1.13063e+03\tAbsError: 8.06341e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.17645e-02\tAbsError: 6.72720e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.17645e-02\tAbsError: 6.72720e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.13060e+03\tAbsError: 8.06341e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.89898e+02\tAbsError: 8.03630e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.40665e+02\tAbsError: 2.71096e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.87343e-02\tAbsError: 6.72720e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 2.68118e+03\tAbsError: 3.00655e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.68962e-02\tAbsError: 5.87228e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.68962e-02\tAbsError: 5.87228e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.68115e+03\tAbsError: 3.00655e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.94800e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.58201e+03\tAbsError: 5.85445e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.34220e-01\tAbsError: 5.87228e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 2.68118e+03\tAbsError: 3.00655e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.68962e-02\tAbsError: 5.87228e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.68962e-02\tAbsError: 5.87228e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.68115e+03\tAbsError: 3.00655e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 2.94800e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.58201e+03\tAbsError: 5.85445e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.34220e-01\tAbsError: 5.87228e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 4.73103e+03\tAbsError: 2.31548e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.60920e-02\tAbsError: 3.79635e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.60920e-02\tAbsError: 3.79635e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.73101e+03\tAbsError: 2.31548e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.67980e+03\tAbsError: 2.21564e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.10064e+01\tAbsError: 9.98400e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.05953e-01\tAbsError: 3.79635e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 4.73103e+03\tAbsError: 2.31548e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.60920e-02\tAbsError: 3.79635e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.60920e-02\tAbsError: 3.79635e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.73101e+03\tAbsError: 2.31548e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.67980e+03\tAbsError: 2.21564e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.10064e+01\tAbsError: 9.98400e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.05953e-01\tAbsError: 3.79635e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 2.73068e+02\tAbsError: 2.15651e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.37886e-02\tAbsError: 5.17889e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.37886e-02\tAbsError: 5.17889e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.73004e+02\tAbsError: 2.15651e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.64719e+02\tAbsError: 2.05688e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.98409e+00\tAbsError: 9.96252e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.01260e-01\tAbsError: 5.17889e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 2.73068e+02\tAbsError: 2.15651e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.37886e-02\tAbsError: 5.17889e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.37886e-02\tAbsError: 5.17889e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.73004e+02\tAbsError: 2.15651e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.64719e+02\tAbsError: 2.05688e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.98409e+00\tAbsError: 9.96252e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.01260e-01\tAbsError: 5.17889e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 4.95366e+03\tAbsError: 1.06033e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.58778e+01\tAbsError: 9.25413e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.58778e+01\tAbsError: 9.25413e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.92779e+03\tAbsError: 1.06033e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.30649e+03\tAbsError: 1.04932e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.14882e+02\tAbsError: 1.10084e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.70642e+03\tAbsError: 9.25413e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 4.95366e+03\tAbsError: 1.06033e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.58778e+01\tAbsError: 9.25413e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.58778e+01\tAbsError: 9.25413e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.92779e+03\tAbsError: 1.06033e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.30649e+03\tAbsError: 1.04932e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.14882e+02\tAbsError: 1.10084e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.70642e+03\tAbsError: 9.25413e-02\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 5.07539e+02\tAbsError: 2.17160e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.17232e-02\tAbsError: 2.72626e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.17232e-02\tAbsError: 2.72626e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.07528e+02\tAbsError: 2.17160e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.98766e-01\tAbsError: 2.08595e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.06378e+02\tAbsError: 8.56483e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.50756e-01\tAbsError: 2.72626e-02\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 5.07539e+02\tAbsError: 2.17160e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.17232e-02\tAbsError: 2.72626e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.17232e-02\tAbsError: 2.72626e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.07528e+02\tAbsError: 2.17160e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.98766e-01\tAbsError: 2.08595e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.06378e+02\tAbsError: 8.56483e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.50756e-01\tAbsError: 2.72626e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 3.28098e+04\tAbsError: 2.02955e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.30377e-02\tAbsError: 6.17046e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.30377e-02\tAbsError: 6.17046e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.28098e+04\tAbsError: 2.02955e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.97743e-01\tAbsError: 1.96865e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.28088e+04\tAbsError: 6.08988e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.33229e-02\tAbsError: 6.17046e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 3.28098e+04\tAbsError: 2.02955e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.30377e-02\tAbsError: 6.17046e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.30377e-02\tAbsError: 6.17046e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.28098e+04\tAbsError: 2.02955e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.97743e-01\tAbsError: 1.96865e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.28088e+04\tAbsError: 6.08988e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.33229e-02\tAbsError: 6.17046e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 1.87772e+03\tAbsError: 2.65133e+14\n",
+ " Region: \"zone_1\"\tRelError: 5.84140e-02\tAbsError: 4.36121e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.84140e-02\tAbsError: 4.36121e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.87766e+03\tAbsError: 2.65133e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.15953e+02\tAbsError: 2.56683e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.46136e+03\tAbsError: 8.45007e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.40479e-01\tAbsError: 4.36121e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 1.87772e+03\tAbsError: 2.65133e+14\n",
+ " Region: \"zone_1\"\tRelError: 5.84140e-02\tAbsError: 4.36121e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.84140e-02\tAbsError: 4.36121e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.87766e+03\tAbsError: 2.65133e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.15953e+02\tAbsError: 2.56683e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.46136e+03\tAbsError: 8.45007e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.40479e-01\tAbsError: 4.36121e-02\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.10001e+00\tAbsError: 2.15918e+14\n",
+ " Region: \"zone_1\"\tRelError: 8.71841e-03\tAbsError: 2.10439e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.71841e-03\tAbsError: 2.10439e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.09129e+00\tAbsError: 2.15918e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.01211e-02\tAbsError: 2.12097e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.95358e-01\tAbsError: 3.82115e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.58142e-02\tAbsError: 2.10439e-02\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.10001e+00\tAbsError: 2.15918e+14\n",
+ " Region: \"zone_1\"\tRelError: 8.71841e-03\tAbsError: 2.10439e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.71841e-03\tAbsError: 2.10439e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.09129e+00\tAbsError: 2.15918e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.01211e-02\tAbsError: 2.12097e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.95358e-01\tAbsError: 3.82115e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.58142e-02\tAbsError: 2.10439e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 1.48515e+03\tAbsError: 2.41640e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.00314e-02\tAbsError: 5.52707e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.00314e-02\tAbsError: 5.52707e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.48513e+03\tAbsError: 2.41640e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.48409e+03\tAbsError: 2.34025e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99959e-01\tAbsError: 7.61503e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.32815e-02\tAbsError: 5.52707e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 1.48515e+03\tAbsError: 2.41640e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.00314e-02\tAbsError: 5.52707e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.00314e-02\tAbsError: 5.52707e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.48513e+03\tAbsError: 2.41640e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.48409e+03\tAbsError: 2.34025e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99959e-01\tAbsError: 7.61503e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.32815e-02\tAbsError: 5.52707e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 3.91712e+00\tAbsError: 2.39832e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.04984e-02\tAbsError: 3.39030e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.04984e-02\tAbsError: 3.39030e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.85662e+00\tAbsError: 2.39832e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.35637e+00\tAbsError: 2.31552e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.98731e-01\tAbsError: 8.28028e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.01517e-01\tAbsError: 3.39030e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 3.91712e+00\tAbsError: 2.39832e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.04984e-02\tAbsError: 3.39030e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.04984e-02\tAbsError: 3.39030e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.85662e+00\tAbsError: 2.39832e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.35637e+00\tAbsError: 2.31552e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.98731e-01\tAbsError: 8.28028e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.01517e-01\tAbsError: 3.39030e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 7.28721e+02\tAbsError: 8.03277e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.69803e+01\tAbsError: 8.98039e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.69803e+01\tAbsError: 8.98039e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.11741e+02\tAbsError: 8.03277e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.23645e+02\tAbsError: 7.96269e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.75315e+02\tAbsError: 7.00828e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.27797e+01\tAbsError: 8.98039e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 7.28721e+02\tAbsError: 8.03277e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.69803e+01\tAbsError: 8.98039e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.69803e+01\tAbsError: 8.98039e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.11741e+02\tAbsError: 8.03277e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.23645e+02\tAbsError: 7.96269e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.75315e+02\tAbsError: 7.00828e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.27797e+01\tAbsError: 8.98039e-02\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 4.79400e-01\tAbsError: 2.99874e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.58670e-03\tAbsError: 9.84796e-06\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.58670e-03\tAbsError: 9.84796e-06\n",
+ " Region: \"zone_2\"\tRelError: 4.75813e-01\tAbsError: 2.99874e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.89280e-02\tAbsError: 2.94552e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.77824e-01\tAbsError: 5.32195e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.90605e-02\tAbsError: 2.34927e-05\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 4.79400e-01\tAbsError: 2.99874e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.58670e-03\tAbsError: 9.84796e-06\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.58670e-03\tAbsError: 9.84796e-06\n",
+ " Region: \"zone_2\"\tRelError: 4.75813e-01\tAbsError: 2.99874e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.89280e-02\tAbsError: 2.94552e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.77824e-01\tAbsError: 5.32195e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.90605e-02\tAbsError: 2.34927e-05\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 1.84579e+03\tAbsError: 2.05020e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.69460e-02\tAbsError: 4.77303e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.69460e-02\tAbsError: 4.77303e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.84578e+03\tAbsError: 2.05020e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.98494e-01\tAbsError: 1.98369e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.84474e+03\tAbsError: 6.65078e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.91407e-02\tAbsError: 4.77303e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 1.84579e+03\tAbsError: 2.05020e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.69460e-02\tAbsError: 4.77303e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.69460e-02\tAbsError: 4.77303e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.84578e+03\tAbsError: 2.05020e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.98494e-01\tAbsError: 1.98369e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.84474e+03\tAbsError: 6.65078e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.91407e-02\tAbsError: 4.77303e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 3.08210e+00\tAbsError: 2.04557e+14\n",
+ " Region: \"zone_1\"\tRelError: 5.24330e-02\tAbsError: 2.58889e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.24330e-02\tAbsError: 2.58889e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.02967e+00\tAbsError: 2.04557e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.92672e-01\tAbsError: 1.97780e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.14300e+00\tAbsError: 6.77641e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.94002e-01\tAbsError: 2.58996e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 3.08210e+00\tAbsError: 2.04557e+14\n",
+ " Region: \"zone_1\"\tRelError: 5.24330e-02\tAbsError: 2.58889e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.24330e-02\tAbsError: 2.58889e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.02967e+00\tAbsError: 2.04557e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.92672e-01\tAbsError: 1.97780e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.14300e+00\tAbsError: 6.77641e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.94002e-01\tAbsError: 2.58996e-02\n",
+ "Iteration: 21\n",
+ " Device: \"device\"\tRelError: 2.93596e-04\tAbsError: 1.98540e+10\n",
+ " Region: \"zone_1\"\tRelError: 4.43085e-08\tAbsError: 1.24609e-10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.43085e-08\tAbsError: 1.24609e-10\n",
+ " Region: \"zone_2\"\tRelError: 2.93552e-04\tAbsError: 1.98540e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.94309e-06\tAbsError: 1.97590e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.87533e-04\tAbsError: 9.50326e+07\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.07597e-06\tAbsError: 5.39545e-10\n",
+ "Iteration: 21\n",
+ " Device: \"device\"\tRelError: 2.93596e-04\tAbsError: 1.98540e+10\n",
+ " Region: \"zone_1\"\tRelError: 4.43085e-08\tAbsError: 1.24609e-10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.43085e-08\tAbsError: 1.24609e-10\n",
+ " Region: \"zone_2\"\tRelError: 2.93552e-04\tAbsError: 1.98540e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.94309e-06\tAbsError: 1.97590e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.87533e-04\tAbsError: 9.50326e+07\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.07597e-06\tAbsError: 5.39545e-10\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 4.45096e+02\tAbsError: 1.81770e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.35825e-02\tAbsError: 3.87925e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.35825e-02\tAbsError: 3.87925e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.45082e+02\tAbsError: 1.81770e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.44041e+02\tAbsError: 1.74936e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99050e-01\tAbsError: 6.83430e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.19566e-02\tAbsError: 3.87925e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 4.45096e+02\tAbsError: 1.81770e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.35825e-02\tAbsError: 3.87925e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.35825e-02\tAbsError: 3.87925e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.45082e+02\tAbsError: 1.81770e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.44041e+02\tAbsError: 1.74936e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99050e-01\tAbsError: 6.83430e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.19566e-02\tAbsError: 3.87925e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 7.20362e-01\tAbsError: 5.81621e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.59237e-02\tAbsError: 1.34867e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.59237e-02\tAbsError: 1.34867e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.94438e-01\tAbsError: 5.81621e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.49256e-02\tAbsError: 5.78214e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.11717e-01\tAbsError: 3.40686e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.57796e-01\tAbsError: 1.34867e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 7.20362e-01\tAbsError: 5.81621e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.59237e-02\tAbsError: 1.34867e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.59237e-02\tAbsError: 1.34867e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.94438e-01\tAbsError: 5.81621e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.49256e-02\tAbsError: 5.78214e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.11717e-01\tAbsError: 3.40686e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.57796e-01\tAbsError: 1.34867e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 1.01127e+03\tAbsError: 4.85127e+15\n",
+ " Region: \"zone_1\"\tRelError: 6.06460e+00\tAbsError: 8.68386e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.06460e+00\tAbsError: 8.68386e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00521e+03\tAbsError: 4.85127e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.01247e+02\tAbsError: 4.74029e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.10977e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.04962e+02\tAbsError: 8.68386e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 1.01127e+03\tAbsError: 4.85127e+15\n",
+ " Region: \"zone_1\"\tRelError: 6.06460e+00\tAbsError: 8.68386e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.06460e+00\tAbsError: 8.68386e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.00521e+03\tAbsError: 4.85127e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 8.01247e+02\tAbsError: 4.74029e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.10977e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.04962e+02\tAbsError: 8.68386e-02\n",
+ "Iteration: 22\n",
+ " Device: \"device\"\tRelError: 5.58482e-12\tAbsError: 4.37210e+03\n",
+ " Region: \"zone_1\"\tRelError: 1.37189e-13\tAbsError: 2.53154e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.37189e-13\tAbsError: 2.53154e-16\n",
+ " Region: \"zone_2\"\tRelError: 5.44763e-12\tAbsError: 4.37210e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.57172e-14\tAbsError: 2.13292e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.91754e-12\tAbsError: 2.23918e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.04375e-13\tAbsError: 2.79987e-16\n",
+ "Iteration: 22\n",
+ " Device: \"device\"\tRelError: 5.58482e-12\tAbsError: 4.37210e+03\n",
+ " Region: \"zone_1\"\tRelError: 1.37189e-13\tAbsError: 2.53154e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.37189e-13\tAbsError: 2.53154e-16\n",
+ " Region: \"zone_2\"\tRelError: 5.44763e-12\tAbsError: 4.37210e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.57172e-14\tAbsError: 2.13292e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.91754e-12\tAbsError: 2.23918e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.04375e-13\tAbsError: 2.79987e-16\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 3.19824e+01\tAbsError: 1.71192e+14\n",
+ " Region: \"zone_1\"\tRelError: 9.99510e-03\tAbsError: 2.82284e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.99510e-03\tAbsError: 2.82284e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.19724e+01\tAbsError: 1.71192e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.93602e-01\tAbsError: 1.65068e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.09397e+01\tAbsError: 6.12467e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.90219e-02\tAbsError: 2.82284e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 3.19824e+01\tAbsError: 1.71192e+14\n",
+ " Region: \"zone_1\"\tRelError: 9.99510e-03\tAbsError: 2.82284e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.99510e-03\tAbsError: 2.82284e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.19724e+01\tAbsError: 1.71192e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.93602e-01\tAbsError: 1.65068e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.09397e+01\tAbsError: 6.12467e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.90219e-02\tAbsError: 2.82284e-02\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 2.42663e+00\tAbsError: 6.77816e+14\n",
+ " Region: \"zone_1\"\tRelError: 7.46180e-02\tAbsError: 1.76459e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.46180e-02\tAbsError: 1.76459e-05\n",
+ " Region: \"zone_2\"\tRelError: 2.35201e+00\tAbsError: 6.77816e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.34244e-02\tAbsError: 6.68692e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.00066e-01\tAbsError: 9.12459e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.23852e+00\tAbsError: 4.20530e-05\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 2.42663e+00\tAbsError: 6.77816e+14\n",
+ " Region: \"zone_1\"\tRelError: 7.46180e-02\tAbsError: 1.76459e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.46180e-02\tAbsError: 1.76459e-05\n",
+ " Region: \"zone_2\"\tRelError: 2.35201e+00\tAbsError: 6.77816e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.34244e-02\tAbsError: 6.68692e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.00066e-01\tAbsError: 9.12459e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.23852e+00\tAbsError: 4.20530e-05\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 1.05175e+00\tAbsError: 1.66026e+14\n",
+ " Region: \"zone_1\"\tRelError: 7.85970e-03\tAbsError: 2.28975e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.85970e-03\tAbsError: 2.28975e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.04389e+00\tAbsError: 1.66026e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.16143e-02\tAbsError: 1.62629e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.30383e-01\tAbsError: 3.39735e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.18900e-02\tAbsError: 2.28975e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 1.05175e+00\tAbsError: 1.66026e+14\n",
+ " Region: \"zone_1\"\tRelError: 7.85970e-03\tAbsError: 2.28975e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.85970e-03\tAbsError: 2.28975e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.04389e+00\tAbsError: 1.66026e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.16143e-02\tAbsError: 1.62629e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.30383e-01\tAbsError: 3.39735e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.18900e-02\tAbsError: 2.28975e-02\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 2.52344e-04\tAbsError: 9.53983e+10\n",
+ " Region: \"zone_1\"\tRelError: 3.71209e-06\tAbsError: 8.25184e-10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.71209e-06\tAbsError: 8.25184e-10\n",
+ " Region: \"zone_2\"\tRelError: 2.48632e-04\tAbsError: 9.53983e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.55044e-06\tAbsError: 9.49024e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.27058e-04\tAbsError: 4.95948e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.18024e-04\tAbsError: 2.98750e-09\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 2.52344e-04\tAbsError: 9.53983e+10\n",
+ " Region: \"zone_1\"\tRelError: 3.71209e-06\tAbsError: 8.25184e-10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.71209e-06\tAbsError: 8.25184e-10\n",
+ " Region: \"zone_2\"\tRelError: 2.48632e-04\tAbsError: 9.53983e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.55044e-06\tAbsError: 9.49024e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.27058e-04\tAbsError: 4.95948e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.18024e-04\tAbsError: 2.98750e-09\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 1.17516e+03\tAbsError: 3.28394e+15\n",
+ " Region: \"zone_1\"\tRelError: 5.96779e-02\tAbsError: 8.36071e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.96779e-02\tAbsError: 8.36071e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.17510e+03\tAbsError: 3.28394e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.13041e+02\tAbsError: 3.26073e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.58022e+02\tAbsError: 2.32136e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.03492e+00\tAbsError: 8.36071e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 1.17516e+03\tAbsError: 3.28394e+15\n",
+ " Region: \"zone_1\"\tRelError: 5.96779e-02\tAbsError: 8.36071e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.96779e-02\tAbsError: 8.36071e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.17510e+03\tAbsError: 3.28394e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.13041e+02\tAbsError: 3.26073e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.58022e+02\tAbsError: 2.32136e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.03492e+00\tAbsError: 8.36071e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 2.74082e-01\tAbsError: 1.71673e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.84195e-03\tAbsError: 7.34637e-06\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.84195e-03\tAbsError: 7.34637e-06\n",
+ " Region: \"zone_2\"\tRelError: 2.71240e-01\tAbsError: 1.71673e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.44989e-02\tAbsError: 1.67978e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.21986e-01\tAbsError: 3.69556e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.47551e-02\tAbsError: 1.83127e-05\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 2.74082e-01\tAbsError: 1.71673e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.84195e-03\tAbsError: 7.34637e-06\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.84195e-03\tAbsError: 7.34637e-06\n",
+ " Region: \"zone_2\"\tRelError: 2.71240e-01\tAbsError: 1.71673e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.44989e-02\tAbsError: 1.67978e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.21986e-01\tAbsError: 3.69556e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.47551e-02\tAbsError: 1.83127e-05\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 5.62530e-12\tAbsError: 4.56148e+03\n",
+ " Region: \"zone_1\"\tRelError: 8.06095e-14\tAbsError: 2.48766e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.06095e-14\tAbsError: 2.48766e-16\n",
+ " Region: \"zone_2\"\tRelError: 5.54469e-12\tAbsError: 4.56148e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.04105e-14\tAbsError: 2.26962e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.86626e-12\tAbsError: 2.29186e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.60801e-12\tAbsError: 2.82349e-16\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 5.62530e-12\tAbsError: 4.56148e+03\n",
+ " Region: \"zone_1\"\tRelError: 8.06095e-14\tAbsError: 2.48766e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.06095e-14\tAbsError: 2.48766e-16\n",
+ " Region: \"zone_2\"\tRelError: 5.54469e-12\tAbsError: 4.56148e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.04105e-14\tAbsError: 2.26962e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.86626e-12\tAbsError: 2.29186e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.60801e-12\tAbsError: 2.82349e-16\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 7.27598e+02\tAbsError: 1.98816e+15\n",
+ " Region: \"zone_1\"\tRelError: 3.68332e-02\tAbsError: 8.00614e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.68332e-02\tAbsError: 8.00614e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.27562e+02\tAbsError: 1.98816e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.79109e+02\tAbsError: 1.98788e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.48394e+02\tAbsError: 2.77307e+11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.83574e-02\tAbsError: 8.00614e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 7.27598e+02\tAbsError: 1.98816e+15\n",
+ " Region: \"zone_1\"\tRelError: 3.68332e-02\tAbsError: 8.00614e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.68332e-02\tAbsError: 8.00614e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.27562e+02\tAbsError: 1.98816e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.79109e+02\tAbsError: 1.98788e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.48394e+02\tAbsError: 2.77307e+11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.83574e-02\tAbsError: 8.00614e-02\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:16:34\u001b[0m.\u001b[1;36m112\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 3.5 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:16:34\u001b[0m.\u001b[1;36m112\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 3.5 bias\u001b[0m \n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 4.34377e-04\tAbsError: 6.60114e+09\n",
+ " Region: \"zone_1\"\tRelError: 2.52846e-08\tAbsError: 5.52689e-11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.52846e-08\tAbsError: 5.52689e-11\n",
+ " Region: \"zone_2\"\tRelError: 4.34352e-04\tAbsError: 6.60114e+09\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.59469e-06\tAbsError: 6.55986e+09\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.29530e-04\tAbsError: 4.12740e+07\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.26928e-07\tAbsError: 2.84333e-10\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 4.34377e-04\tAbsError: 6.60114e+09\n",
+ " Region: \"zone_1\"\tRelError: 2.52846e-08\tAbsError: 5.52689e-11\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.52846e-08\tAbsError: 5.52689e-11\n",
+ " Region: \"zone_2\"\tRelError: 4.34352e-04\tAbsError: 6.60114e+09\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.59469e-06\tAbsError: 6.55986e+09\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.29530e-04\tAbsError: 4.12740e+07\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.26928e-07\tAbsError: 2.84333e-10\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 1.34616e+03\tAbsError: 1.57973e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.89830e-02\tAbsError: 7.61404e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.89830e-02\tAbsError: 7.61404e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.34613e+03\tAbsError: 1.57973e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.22294e+02\tAbsError: 1.54648e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.23683e+02\tAbsError: 3.32504e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.56994e-01\tAbsError: 7.61404e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 1.34616e+03\tAbsError: 1.57973e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.89830e-02\tAbsError: 7.61404e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.89830e-02\tAbsError: 7.61404e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.34613e+03\tAbsError: 1.57973e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.22294e+02\tAbsError: 1.54648e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.23683e+02\tAbsError: 3.32504e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.56994e-01\tAbsError: 7.61404e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 4.72752e-12\tAbsError: 4.64464e+03\n",
+ " Region: \"zone_1\"\tRelError: 3.42756e-14\tAbsError: 2.65644e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.42756e-14\tAbsError: 2.65644e-16\n",
+ " Region: \"zone_2\"\tRelError: 4.69324e-12\tAbsError: 4.64464e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.96790e-14\tAbsError: 2.51413e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.54324e-12\tAbsError: 2.13051e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.20323e-13\tAbsError: 2.58160e-16\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 4.72752e-12\tAbsError: 4.64464e+03\n",
+ " Region: \"zone_1\"\tRelError: 3.42756e-14\tAbsError: 2.65644e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.42756e-14\tAbsError: 2.65644e-16\n",
+ " Region: \"zone_2\"\tRelError: 4.69324e-12\tAbsError: 4.64464e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.96790e-14\tAbsError: 2.51413e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.54324e-12\tAbsError: 2.13051e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.20323e-13\tAbsError: 2.58160e-16\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 1.84004e+03\tAbsError: 8.98456e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.55951e-02\tAbsError: 7.17646e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.55951e-02\tAbsError: 7.17646e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.84001e+03\tAbsError: 8.98456e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.25406e+03\tAbsError: 8.90643e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.85913e+02\tAbsError: 7.81332e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.94398e-02\tAbsError: 7.17646e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 1.84004e+03\tAbsError: 8.98456e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.55951e-02\tAbsError: 7.17646e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.55951e-02\tAbsError: 7.17646e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.84001e+03\tAbsError: 8.98456e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.25406e+03\tAbsError: 8.90643e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.85913e+02\tAbsError: 7.81332e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.94398e-02\tAbsError: 7.17646e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 2.58095e+03\tAbsError: 4.11092e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.31154e-02\tAbsError: 6.68298e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.31154e-02\tAbsError: 6.68298e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.58092e+03\tAbsError: 4.11092e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.28317e+02\tAbsError: 3.99606e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.25255e+03\tAbsError: 1.14858e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.31435e-02\tAbsError: 6.68298e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 2.58095e+03\tAbsError: 4.11092e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.31154e-02\tAbsError: 6.68298e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.31154e-02\tAbsError: 6.68298e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.58092e+03\tAbsError: 4.11092e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.28317e+02\tAbsError: 3.99606e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.25255e+03\tAbsError: 1.14858e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.31435e-02\tAbsError: 6.68298e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 4.71081e+03\tAbsError: 3.42097e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.06192e-02\tAbsError: 6.11969e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.06192e-02\tAbsError: 6.11969e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.71079e+03\tAbsError: 3.42097e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 3.32632e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.61175e+03\tAbsError: 9.46442e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.15918e-02\tAbsError: 6.11969e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 4.71081e+03\tAbsError: 3.42097e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.06192e-02\tAbsError: 6.11969e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.06192e-02\tAbsError: 6.11969e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.71079e+03\tAbsError: 3.42097e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 3.32632e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.61175e+03\tAbsError: 9.46442e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.15918e-02\tAbsError: 6.11969e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 3.49153e+02\tAbsError: 2.56181e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.80857e-02\tAbsError: 5.46796e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.80857e-02\tAbsError: 5.46796e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.49135e+02\tAbsError: 2.56181e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.47983e+02\tAbsError: 2.48898e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.01121e+02\tAbsError: 7.28330e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.09060e-02\tAbsError: 5.46796e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 3.49153e+02\tAbsError: 2.56181e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.80857e-02\tAbsError: 5.46796e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.80857e-02\tAbsError: 5.46796e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.49135e+02\tAbsError: 2.56181e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.47983e+02\tAbsError: 2.48898e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.01121e+02\tAbsError: 7.28330e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.09060e-02\tAbsError: 5.46796e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 4.46303e+03\tAbsError: 2.11579e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.53152e-02\tAbsError: 4.70327e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.53152e-02\tAbsError: 4.70327e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.46301e+03\tAbsError: 2.11579e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.64550e+02\tAbsError: 2.02827e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.29843e+03\tAbsError: 8.75246e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.59085e-02\tAbsError: 4.70327e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 4.46303e+03\tAbsError: 2.11579e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.53152e-02\tAbsError: 4.70327e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.53152e-02\tAbsError: 4.70327e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.46301e+03\tAbsError: 2.11579e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.64550e+02\tAbsError: 2.02827e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.29843e+03\tAbsError: 8.75246e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.59085e-02\tAbsError: 4.70327e-02\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:16:45\u001b[0m.\u001b[1;36m119\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 3.75 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:16:45\u001b[0m.\u001b[1;36m119\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 3.75 bias\u001b[0m \n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 1.49096e+02\tAbsError: 2.27093e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.22069e-02\tAbsError: 3.79635e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.22069e-02\tAbsError: 3.79635e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.49084e+02\tAbsError: 2.27093e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.59819e+00\tAbsError: 2.19062e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.42454e+02\tAbsError: 8.03131e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.18494e-02\tAbsError: 3.79635e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 1.49096e+02\tAbsError: 2.27093e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.22069e-02\tAbsError: 3.79635e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.22069e-02\tAbsError: 3.79635e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.49084e+02\tAbsError: 2.27093e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.59819e+00\tAbsError: 2.19062e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.42454e+02\tAbsError: 8.03131e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.18494e-02\tAbsError: 3.79635e-02\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:16:46\u001b[0m.\u001b[1;36m549\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 3.5 V. Current applied bias: 3.5\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:16:46\u001b[0m.\u001b[1;36m549\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 3.5 V. Current applied bias: 3.5\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 1.73345e+00\tAbsError: 1.96827e+14\n",
+ " Region: \"zone_1\"\tRelError: 8.84667e-03\tAbsError: 2.72626e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.84667e-03\tAbsError: 2.72626e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.72460e+00\tAbsError: 1.96827e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.10760e-01\tAbsError: 1.89675e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.86279e-01\tAbsError: 7.15140e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.75662e-02\tAbsError: 2.72626e-02\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 1.73345e+00\tAbsError: 1.96827e+14\n",
+ " Region: \"zone_1\"\tRelError: 8.84667e-03\tAbsError: 2.72626e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.84667e-03\tAbsError: 2.72626e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.72460e+00\tAbsError: 1.96827e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.10760e-01\tAbsError: 1.89675e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.86279e-01\tAbsError: 7.15140e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.75662e-02\tAbsError: 2.72626e-02\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:16:48\u001b[0m.\u001b[1;36m786\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 4.0 bias\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:16:48\u001b[0m.\u001b[1;36m786\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mSolving for 4.0 bias\u001b[0m \n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.32307e+00\tAbsError: 1.97897e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.64382e-03\tAbsError: 2.10439e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.64382e-03\tAbsError: 2.10439e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.31643e+00\tAbsError: 1.97897e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.22579e-02\tAbsError: 1.95320e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.28450e+00\tAbsError: 2.57642e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.67685e-03\tAbsError: 2.10439e-02\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.32307e+00\tAbsError: 1.97897e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.64382e-03\tAbsError: 2.10439e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.64382e-03\tAbsError: 2.10439e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.31643e+00\tAbsError: 1.97897e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.22579e-02\tAbsError: 1.95320e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.28450e+00\tAbsError: 2.57642e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.67685e-03\tAbsError: 2.10439e-02\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 2.80699e-01\tAbsError: 3.56428e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.05751e-03\tAbsError: 1.05346e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.05751e-03\tAbsError: 1.05346e-05\n",
+ " Region: \"zone_2\"\tRelError: 2.77642e-01\tAbsError: 3.56428e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.49865e-02\tAbsError: 3.51351e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.33562e-01\tAbsError: 5.07613e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.90937e-02\tAbsError: 2.72827e-05\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 2.80699e-01\tAbsError: 3.56428e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.05751e-03\tAbsError: 1.05346e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.05751e-03\tAbsError: 1.05346e-05\n",
+ " Region: \"zone_2\"\tRelError: 2.77642e-01\tAbsError: 3.56428e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.49865e-02\tAbsError: 3.51351e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.33562e-01\tAbsError: 5.07613e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.90937e-02\tAbsError: 2.72827e-05\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 2.10672e+03\tAbsError: 7.37988e+17\n",
+ " Region: \"zone_1\"\tRelError: 7.54790e+01\tAbsError: 1.00937e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.54790e+01\tAbsError: 1.00937e-01\n",
+ " Region: \"zone_2\"\tRelError: 2.03124e+03\tAbsError: 7.37988e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.49244e+02\tAbsError: 4.19946e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.36883e+03\tAbsError: 3.18042e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.13168e+02\tAbsError: 1.00937e-01\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 2.10672e+03\tAbsError: 7.37988e+17\n",
+ " Region: \"zone_1\"\tRelError: 7.54790e+01\tAbsError: 1.00937e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.54790e+01\tAbsError: 1.00937e-01\n",
+ " Region: \"zone_2\"\tRelError: 2.03124e+03\tAbsError: 7.37988e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.49244e+02\tAbsError: 4.19946e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.36883e+03\tAbsError: 3.18042e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.13168e+02\tAbsError: 1.00937e-01\n",
+ "Iteration: 21\n",
+ " Device: \"device\"\tRelError: 4.65664e-04\tAbsError: 3.43763e+10\n",
+ " Region: \"zone_1\"\tRelError: 5.41706e-08\tAbsError: 1.61517e-10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.41706e-08\tAbsError: 1.61517e-10\n",
+ " Region: \"zone_2\"\tRelError: 4.65610e-04\tAbsError: 3.43763e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.86470e-06\tAbsError: 3.42743e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.59399e-04\tAbsError: 1.01944e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.45954e-07\tAbsError: 9.43160e-10\n",
+ "Iteration: 21\n",
+ " Device: \"device\"\tRelError: 4.65664e-04\tAbsError: 3.43763e+10\n",
+ " Region: \"zone_1\"\tRelError: 5.41706e-08\tAbsError: 1.61517e-10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.41706e-08\tAbsError: 1.61517e-10\n",
+ " Region: \"zone_2\"\tRelError: 4.65610e-04\tAbsError: 3.43763e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.86470e-06\tAbsError: 3.42743e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.59399e-04\tAbsError: 1.01944e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.45954e-07\tAbsError: 9.43160e-10\n",
+ "Iteration: 22\n",
+ " Device: \"device\"\tRelError: 7.45191e-12\tAbsError: 4.76333e+03\n",
+ " Region: \"zone_1\"\tRelError: 2.95746e-14\tAbsError: 2.62662e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.95746e-14\tAbsError: 2.62662e-16\n",
+ " Region: \"zone_2\"\tRelError: 7.42234e-12\tAbsError: 4.76333e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.05315e-14\tAbsError: 2.38616e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.31913e-12\tAbsError: 2.37717e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.26726e-14\tAbsError: 2.76435e-16\n",
+ "Iteration: 22\n",
+ " Device: \"device\"\tRelError: 7.45191e-12\tAbsError: 4.76333e+03\n",
+ " Region: \"zone_1\"\tRelError: 2.95746e-14\tAbsError: 2.62662e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.95746e-14\tAbsError: 2.62662e-16\n",
+ " Region: \"zone_2\"\tRelError: 7.42234e-12\tAbsError: 4.76333e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.05315e-14\tAbsError: 2.38616e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.31913e-12\tAbsError: 2.37717e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.26726e-14\tAbsError: 2.76435e-16\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 2.36619e+03\tAbsError: 3.71154e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.13636e+03\tAbsError: 9.88020e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.13636e+03\tAbsError: 9.88020e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.22984e+03\tAbsError: 3.71154e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.51574e+02\tAbsError: 1.84987e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.87952e+02\tAbsError: 1.86167e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.90309e+02\tAbsError: 9.88020e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 2.36619e+03\tAbsError: 3.71154e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.13636e+03\tAbsError: 9.88020e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.13636e+03\tAbsError: 9.88020e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.22984e+03\tAbsError: 3.71154e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.51574e+02\tAbsError: 1.84987e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.87952e+02\tAbsError: 1.86167e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.90309e+02\tAbsError: 9.88020e-02\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:16:56\u001b[0m.\u001b[1;36m338\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 3.75 V. Current applied bias: 3.75\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:16:56\u001b[0m.\u001b[1;36m338\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 3.75 V. Current applied bias: 3.75\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 1.68033e+03\tAbsError: 1.09344e+17\n",
+ " Region: \"zone_1\"\tRelError: 6.01419e+01\tAbsError: 9.65270e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.01419e+01\tAbsError: 9.65270e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.62019e+03\tAbsError: 1.09344e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.30238e+02\tAbsError: 6.26701e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.09746e+02\tAbsError: 4.66742e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.80203e+02\tAbsError: 9.65270e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 1.68033e+03\tAbsError: 1.09344e+17\n",
+ " Region: \"zone_1\"\tRelError: 6.01419e+01\tAbsError: 9.65270e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.01419e+01\tAbsError: 9.65270e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.62019e+03\tAbsError: 1.09344e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.30238e+02\tAbsError: 6.26701e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 7.09746e+02\tAbsError: 4.66742e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.80203e+02\tAbsError: 9.65270e-02\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:16:59\u001b[0m.\u001b[1;36m500\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 4.0 V. Current applied bias: 4.0\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:16:59\u001b[0m.\u001b[1;36m500\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mIterating for bias 4.0 V. Current applied bias: 4.0\u001b[0m \n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Replacing Node Model zone_2_bc_6nodeelectrons:T in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodeholes:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: ElectronContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: HoleContinuityEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_3nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:zone_1_bc_3_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_3nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_3, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_1_bc_4nodemodel in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Potential in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:zone_1_bc_4_bias in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Electrons in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:Holes in region zone_1 of material Si\n",
+ "Replacing Node Model zone_1_bc_4nodemodel:T in region zone_1 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_1_bc_4, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:zone_2_bc_5_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_5nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_5, Equation: PotentialEquation\n",
+ "Replacing Node Model zone_2_bc_6nodemodel in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Potential in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:zone_2_bc_6_bias in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Electrons in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:Holes in region zone_2 of material Si\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Replacing Node Model zone_2_bc_6nodemodel:T in region zone_2 of material Si\n",
+ "Warning: Replacing Contact Equation with Contact Equation of the same name.\n",
+ "Contact: zone_2_bc_6, Equation: PotentialEquation\n",
+ "number of equations 188743\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 1.70239e+04\tAbsError: 5.74082e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.44737e+02\tAbsError: 9.40931e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.44737e+02\tAbsError: 9.40931e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.67792e+04\tAbsError: 5.74082e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.61030e+04\tAbsError: 3.83622e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.29095e+02\tAbsError: 1.90460e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.47071e+02\tAbsError: 9.40931e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 1.70239e+04\tAbsError: 5.74082e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.44737e+02\tAbsError: 9.40931e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.44737e+02\tAbsError: 9.40931e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.67792e+04\tAbsError: 5.74082e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.61030e+04\tAbsError: 3.83622e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.29095e+02\tAbsError: 1.90460e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.47071e+02\tAbsError: 9.40931e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 1.81123e+03\tAbsError: 7.55705e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.34080e+02\tAbsError: 1.00937e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.34080e+02\tAbsError: 1.00937e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.67715e+03\tAbsError: 7.55705e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.28332e+02\tAbsError: 4.33977e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.97358e+02\tAbsError: 3.21728e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.51461e+02\tAbsError: 1.00937e-01\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 1.81123e+03\tAbsError: 7.55705e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.34080e+02\tAbsError: 1.00937e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.34080e+02\tAbsError: 1.00937e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.67715e+03\tAbsError: 7.55705e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.28332e+02\tAbsError: 4.33977e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.97358e+02\tAbsError: 3.21728e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.51461e+02\tAbsError: 1.00937e-01\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 1.39782e+03\tAbsError: 3.03554e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.98391e+01\tAbsError: 9.14777e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.98391e+01\tAbsError: 9.14777e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.36798e+03\tAbsError: 3.03554e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.97026e+02\tAbsError: 2.53476e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.75451e+02\tAbsError: 5.00782e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.95500e+02\tAbsError: 9.14777e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 1.39782e+03\tAbsError: 3.03554e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.98391e+01\tAbsError: 9.14777e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.98391e+01\tAbsError: 9.14777e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.36798e+03\tAbsError: 3.03554e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.97026e+02\tAbsError: 2.53476e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 8.75451e+02\tAbsError: 5.00782e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.95500e+02\tAbsError: 9.14777e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 1.57879e+03\tAbsError: 7.27612e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.31244e+02\tAbsError: 1.00937e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.31244e+02\tAbsError: 1.00937e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.44755e+03\tAbsError: 7.27612e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.17649e+02\tAbsError: 4.12863e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.14224e+02\tAbsError: 3.14749e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.15678e+02\tAbsError: 1.00937e-01\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 5.09793e+03\tAbsError: 3.65708e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.99854e+02\tAbsError: 9.88020e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.99854e+02\tAbsError: 9.88020e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.89808e+03\tAbsError: 3.65708e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.56969e+02\tAbsError: 1.85961e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.26715e+03\tAbsError: 1.79748e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.73964e+02\tAbsError: 9.88020e-02\n",
+ "Iteration: 0\n",
+ " Device: \"device\"\tRelError: 1.57879e+03\tAbsError: 7.27612e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.31244e+02\tAbsError: 1.00937e-01\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.31244e+02\tAbsError: 1.00937e-01\n",
+ " Region: \"zone_2\"\tRelError: 1.44755e+03\tAbsError: 7.27612e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.17649e+02\tAbsError: 4.12863e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.14224e+02\tAbsError: 3.14749e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.15678e+02\tAbsError: 1.00937e-01\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 5.09793e+03\tAbsError: 3.65708e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.99854e+02\tAbsError: 9.88020e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.99854e+02\tAbsError: 9.88020e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.89808e+03\tAbsError: 3.65708e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.56969e+02\tAbsError: 1.85961e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.26715e+03\tAbsError: 1.79748e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.73964e+02\tAbsError: 9.88020e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 7.42182e+03\tAbsError: 3.53375e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.34177e+02\tAbsError: 9.88020e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.34177e+02\tAbsError: 9.88020e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.28764e+03\tAbsError: 3.53375e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.17203e+03\tAbsError: 1.81130e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.79396e+03\tAbsError: 1.72244e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.21653e+02\tAbsError: 9.88020e-02\n",
+ "Iteration: 1\n",
+ " Device: \"device\"\tRelError: 7.42182e+03\tAbsError: 3.53375e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.34177e+02\tAbsError: 9.88020e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.34177e+02\tAbsError: 9.88020e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.28764e+03\tAbsError: 3.53375e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.17203e+03\tAbsError: 1.81130e+17\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.79396e+03\tAbsError: 1.72244e+17\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.21653e+02\tAbsError: 9.88020e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 1.47030e+03\tAbsError: 1.03822e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.12291e+02\tAbsError: 9.65270e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.12291e+02\tAbsError: 9.65270e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.35801e+03\tAbsError: 1.03822e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.38857e+02\tAbsError: 6.04928e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.82946e+02\tAbsError: 4.33290e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.36204e+02\tAbsError: 9.65270e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 1.47030e+03\tAbsError: 1.03822e+17\n",
+ " Region: \"zone_1\"\tRelError: 1.12291e+02\tAbsError: 9.65270e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.12291e+02\tAbsError: 9.65270e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.35801e+03\tAbsError: 1.03822e+17\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.38857e+02\tAbsError: 6.04928e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.82946e+02\tAbsError: 4.33290e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.36204e+02\tAbsError: 9.65270e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 5.94643e+05\tAbsError: 1.55627e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.92684e+01\tAbsError: 8.86536e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.92684e+01\tAbsError: 8.86536e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.94614e+05\tAbsError: 1.55627e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.48704e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.94398e+05\tAbsError: 6.92293e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.16308e+02\tAbsError: 8.86536e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 5.94643e+05\tAbsError: 1.55627e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.92684e+01\tAbsError: 8.86536e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.92684e+01\tAbsError: 8.86536e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.94614e+05\tAbsError: 1.55627e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.48704e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.94398e+05\tAbsError: 6.92293e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.16308e+02\tAbsError: 8.86536e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 1.17860e+04\tAbsError: 9.68693e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.33251e+02\tAbsError: 9.65270e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.33251e+02\tAbsError: 9.65270e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.16527e+04\tAbsError: 9.68693e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.12447e+04\tAbsError: 5.64627e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.24174e+02\tAbsError: 4.04066e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.83817e+02\tAbsError: 9.65270e-02\n",
+ "Iteration: 2\n",
+ " Device: \"device\"\tRelError: 1.17860e+04\tAbsError: 9.68693e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.33251e+02\tAbsError: 9.65270e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.33251e+02\tAbsError: 9.65270e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.16527e+04\tAbsError: 9.68693e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.12447e+04\tAbsError: 5.64627e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.24174e+02\tAbsError: 4.04066e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.83817e+02\tAbsError: 9.65270e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 5.22638e+03\tAbsError: 8.94782e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.96636e+02\tAbsError: 8.55875e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.96636e+02\tAbsError: 8.55875e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.02974e+03\tAbsError: 8.94782e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.53691e+03\tAbsError: 8.76437e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.13888e+02\tAbsError: 1.83448e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.89457e+01\tAbsError: 8.55875e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 5.22638e+03\tAbsError: 8.94782e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.96636e+02\tAbsError: 8.55875e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.96636e+02\tAbsError: 8.55875e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.02974e+03\tAbsError: 8.94782e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.53691e+03\tAbsError: 8.76437e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.13888e+02\tAbsError: 1.83448e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.89457e+01\tAbsError: 8.55875e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 3.62337e+03\tAbsError: 5.67847e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.23696e+03\tAbsError: 9.40931e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.23696e+03\tAbsError: 9.40931e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.38641e+03\tAbsError: 5.67847e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.86818e+03\tAbsError: 3.76495e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.36888e+02\tAbsError: 1.91352e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.13453e+01\tAbsError: 9.40931e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 3.62337e+03\tAbsError: 5.67847e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.23696e+03\tAbsError: 9.40931e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.23696e+03\tAbsError: 9.40931e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.38641e+03\tAbsError: 5.67847e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.86818e+03\tAbsError: 3.76495e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.36888e+02\tAbsError: 1.91352e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.13453e+01\tAbsError: 9.40931e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 9.37180e+04\tAbsError: 5.58173e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.79334e+01\tAbsError: 9.40931e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.79334e+01\tAbsError: 9.40931e-02\n",
+ " Region: \"zone_2\"\tRelError: 9.36701e+04\tAbsError: 5.58173e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.20597e+04\tAbsError: 3.78402e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.79771e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.51136e+03\tAbsError: 9.40931e-02\n",
+ "Iteration: 3\n",
+ " Device: \"device\"\tRelError: 9.37180e+04\tAbsError: 5.58173e+16\n",
+ " Region: \"zone_1\"\tRelError: 4.79334e+01\tAbsError: 9.40931e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.79334e+01\tAbsError: 9.40931e-02\n",
+ " Region: \"zone_2\"\tRelError: 9.36701e+04\tAbsError: 5.58173e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.20597e+04\tAbsError: 3.78402e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.79771e+16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.51136e+03\tAbsError: 9.40931e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 6.21538e+03\tAbsError: 2.98272e+16\n",
+ " Region: \"zone_1\"\tRelError: 6.75905e+02\tAbsError: 9.14777e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.75905e+02\tAbsError: 9.14777e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.53947e+03\tAbsError: 2.98272e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.83785e+03\tAbsError: 2.51745e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.56427e+03\tAbsError: 4.65268e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.37355e+02\tAbsError: 9.14777e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 6.21538e+03\tAbsError: 2.98272e+16\n",
+ " Region: \"zone_1\"\tRelError: 6.75905e+02\tAbsError: 9.14777e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.75905e+02\tAbsError: 9.14777e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.53947e+03\tAbsError: 2.98272e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.83785e+03\tAbsError: 2.51745e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.56427e+03\tAbsError: 4.65268e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.37355e+02\tAbsError: 9.14777e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 2.41761e+03\tAbsError: 5.38583e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.08671e+00\tAbsError: 8.22374e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.08671e+00\tAbsError: 8.22374e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.41552e+03\tAbsError: 5.38583e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99759e-01\tAbsError: 5.34078e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.33670e+03\tAbsError: 4.50571e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.78213e+01\tAbsError: 8.22374e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 2.41761e+03\tAbsError: 5.38583e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.08671e+00\tAbsError: 8.22374e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.08671e+00\tAbsError: 8.22374e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.41552e+03\tAbsError: 5.38583e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99759e-01\tAbsError: 5.34078e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.33670e+03\tAbsError: 4.50571e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.78213e+01\tAbsError: 8.22374e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 4.78891e+03\tAbsError: 2.87709e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.09181e+02\tAbsError: 9.14777e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.09181e+02\tAbsError: 9.14777e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.67973e+03\tAbsError: 2.87709e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.17120e+03\tAbsError: 2.44749e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.49296e+03\tAbsError: 4.29595e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.01558e+03\tAbsError: 9.14777e-02\n",
+ "Iteration: 4\n",
+ " Device: \"device\"\tRelError: 4.78891e+03\tAbsError: 2.87709e+16\n",
+ " Region: \"zone_1\"\tRelError: 1.09181e+02\tAbsError: 9.14777e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.09181e+02\tAbsError: 9.14777e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.67973e+03\tAbsError: 2.87709e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.17120e+03\tAbsError: 2.44749e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.49296e+03\tAbsError: 4.29595e+15\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.01558e+03\tAbsError: 9.14777e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 4.88148e+03\tAbsError: 3.26867e+15\n",
+ " Region: \"zone_1\"\tRelError: 7.35948e-01\tAbsError: 7.85507e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.35948e-01\tAbsError: 7.85507e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.88075e+03\tAbsError: 3.26867e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.80963e+03\tAbsError: 3.21415e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99995e-01\tAbsError: 5.45225e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.01217e+01\tAbsError: 7.85507e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 4.88148e+03\tAbsError: 3.26867e+15\n",
+ " Region: \"zone_1\"\tRelError: 7.35948e-01\tAbsError: 7.85507e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.35948e-01\tAbsError: 7.85507e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.88075e+03\tAbsError: 3.26867e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.80963e+03\tAbsError: 3.21415e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99995e-01\tAbsError: 5.45225e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 7.01217e+01\tAbsError: 7.85507e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.13899e+03\tAbsError: 1.59356e+16\n",
+ " Region: \"zone_1\"\tRelError: 5.95942e+01\tAbsError: 8.86536e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.95942e+01\tAbsError: 8.86536e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.07939e+03\tAbsError: 1.59356e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.52758e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.44715e+02\tAbsError: 6.59720e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.56785e+01\tAbsError: 8.86536e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.13899e+03\tAbsError: 1.59356e+16\n",
+ " Region: \"zone_1\"\tRelError: 5.95942e+01\tAbsError: 8.86536e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.95942e+01\tAbsError: 8.86536e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.07939e+03\tAbsError: 1.59356e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.52758e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.44715e+02\tAbsError: 6.59720e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.56785e+01\tAbsError: 8.86536e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.63828e+03\tAbsError: 1.52363e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.59202e+02\tAbsError: 8.86536e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.59202e+02\tAbsError: 8.86536e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.37908e+03\tAbsError: 1.52363e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.00000e+00\tAbsError: 1.46985e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.21916e+03\tAbsError: 5.37729e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.58919e+02\tAbsError: 8.86536e-02\n",
+ "Iteration: 5\n",
+ " Device: \"device\"\tRelError: 1.63828e+03\tAbsError: 1.52363e+16\n",
+ " Region: \"zone_1\"\tRelError: 2.59202e+02\tAbsError: 8.86536e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.59202e+02\tAbsError: 8.86536e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.37908e+03\tAbsError: 1.52363e+16\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.00000e+00\tAbsError: 1.46985e+16\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.21916e+03\tAbsError: 5.37729e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.58919e+02\tAbsError: 8.86536e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 2.57517e+03\tAbsError: 1.84131e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.24219e-01\tAbsError: 7.44595e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.24219e-01\tAbsError: 7.44595e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.57494e+03\tAbsError: 1.84131e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.81873e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.47579e+03\tAbsError: 2.25783e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.49748e-01\tAbsError: 7.44595e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 2.57517e+03\tAbsError: 1.84131e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.24219e-01\tAbsError: 7.44595e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.24219e-01\tAbsError: 7.44595e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.57494e+03\tAbsError: 1.84131e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.81873e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.47579e+03\tAbsError: 2.25783e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.49748e-01\tAbsError: 7.44595e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 1.80614e+03\tAbsError: 8.42082e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.21512e+02\tAbsError: 8.55875e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.21512e+02\tAbsError: 8.55875e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.58463e+03\tAbsError: 8.42082e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.38283e+03\tAbsError: 8.24897e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.56866e+02\tAbsError: 1.71852e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.49303e+01\tAbsError: 8.55875e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 1.80614e+03\tAbsError: 8.42082e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.21512e+02\tAbsError: 8.55875e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.21512e+02\tAbsError: 8.55875e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.58463e+03\tAbsError: 8.42082e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.38283e+03\tAbsError: 8.24897e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.56866e+02\tAbsError: 1.71852e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.49303e+01\tAbsError: 8.55875e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 1.37763e+03\tAbsError: 9.68595e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.05265e-01\tAbsError: 6.98755e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.05265e-01\tAbsError: 6.98755e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.37742e+03\tAbsError: 9.68595e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.83523e+02\tAbsError: 9.52181e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.09378e+03\tAbsError: 1.64142e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.20597e-01\tAbsError: 6.98755e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 1.37763e+03\tAbsError: 9.68595e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.05265e-01\tAbsError: 6.98755e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.05265e-01\tAbsError: 6.98755e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.37742e+03\tAbsError: 9.68595e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.83523e+02\tAbsError: 9.52181e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.09378e+03\tAbsError: 1.64142e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.20597e-01\tAbsError: 6.98755e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 6.83121e+02\tAbsError: 9.18012e+15\n",
+ " Region: \"zone_1\"\tRelError: 5.92853e+01\tAbsError: 8.55875e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.92853e+01\tAbsError: 8.55875e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.23836e+02\tAbsError: 9.18012e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.07432e+02\tAbsError: 9.01615e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.63971e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.74045e+01\tAbsError: 8.55875e-02\n",
+ "Iteration: 6\n",
+ " Device: \"device\"\tRelError: 6.83121e+02\tAbsError: 9.18012e+15\n",
+ " Region: \"zone_1\"\tRelError: 5.92853e+01\tAbsError: 8.55875e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.92853e+01\tAbsError: 8.55875e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.23836e+02\tAbsError: 9.18012e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.07432e+02\tAbsError: 9.01615e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.63971e+14\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.74045e+01\tAbsError: 8.55875e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 9.24473e+02\tAbsError: 5.51551e+14\n",
+ " Region: \"zone_1\"\tRelError: 8.82327e-02\tAbsError: 6.46820e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.82327e-02\tAbsError: 6.46820e-02\n",
+ " Region: \"zone_2\"\tRelError: 9.24384e+02\tAbsError: 5.51551e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.13897e+02\tAbsError: 5.45686e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.10444e+02\tAbsError: 5.86535e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.34918e-02\tAbsError: 6.46820e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 9.24473e+02\tAbsError: 5.51551e+14\n",
+ " Region: \"zone_1\"\tRelError: 8.82327e-02\tAbsError: 6.46820e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.82327e-02\tAbsError: 6.46820e-02\n",
+ " Region: \"zone_2\"\tRelError: 9.24384e+02\tAbsError: 5.51551e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.13897e+02\tAbsError: 5.45686e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.10444e+02\tAbsError: 5.86535e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.34918e-02\tAbsError: 6.46820e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 2.29835e+03\tAbsError: 5.21114e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.42974e-01\tAbsError: 8.22374e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.42974e-01\tAbsError: 8.22374e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.29811e+03\tAbsError: 5.21114e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99204e-01\tAbsError: 5.16837e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.20571e+03\tAbsError: 4.27663e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.13943e+01\tAbsError: 8.22374e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 2.29835e+03\tAbsError: 5.21114e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.42974e-01\tAbsError: 8.22374e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.42974e-01\tAbsError: 8.22374e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.29811e+03\tAbsError: 5.21114e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.99204e-01\tAbsError: 5.16837e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.20571e+03\tAbsError: 4.27663e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.13943e+01\tAbsError: 8.22374e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 4.45257e+02\tAbsError: 1.97876e+14\n",
+ " Region: \"zone_1\"\tRelError: 9.69478e-02\tAbsError: 5.87228e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.69478e-02\tAbsError: 5.87228e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.45160e+02\tAbsError: 1.97876e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.48417e+02\tAbsError: 1.91821e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.96696e+02\tAbsError: 6.05456e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.75894e-02\tAbsError: 5.87228e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 4.45257e+02\tAbsError: 1.97876e+14\n",
+ " Region: \"zone_1\"\tRelError: 9.69478e-02\tAbsError: 5.87228e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.69478e-02\tAbsError: 5.87228e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.45160e+02\tAbsError: 1.97876e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.48417e+02\tAbsError: 1.91821e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.96696e+02\tAbsError: 6.05456e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.75894e-02\tAbsError: 5.87228e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 2.69901e+03\tAbsError: 1.97583e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.35237e-01\tAbsError: 5.17889e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.35237e-01\tAbsError: 5.17889e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.69888e+03\tAbsError: 1.97583e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.21491e+03\tAbsError: 1.90097e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.83904e+02\tAbsError: 7.48552e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.26049e-02\tAbsError: 5.17889e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 2.69901e+03\tAbsError: 1.97583e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.35237e-01\tAbsError: 5.17889e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.35237e-01\tAbsError: 5.17889e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.69888e+03\tAbsError: 1.97583e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.21491e+03\tAbsError: 1.90097e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.83904e+02\tAbsError: 7.48552e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.26049e-02\tAbsError: 5.17889e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 3.81715e+03\tAbsError: 4.61802e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.13728e-01\tAbsError: 8.22374e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.13728e-01\tAbsError: 8.22374e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.81703e+03\tAbsError: 4.61802e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.97259e-01\tAbsError: 4.57669e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.79547e+03\tAbsError: 4.13265e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.05697e+01\tAbsError: 8.22374e-02\n",
+ "Iteration: 7\n",
+ " Device: \"device\"\tRelError: 3.81715e+03\tAbsError: 4.61802e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.13728e-01\tAbsError: 8.22374e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.13728e-01\tAbsError: 8.22374e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.81703e+03\tAbsError: 4.61802e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.97259e-01\tAbsError: 4.57669e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 3.79547e+03\tAbsError: 4.13265e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.05697e+01\tAbsError: 8.22374e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 9.16908e+02\tAbsError: 3.08394e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.25387e-01\tAbsError: 7.85507e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.25387e-01\tAbsError: 7.85507e-02\n",
+ " Region: \"zone_2\"\tRelError: 9.16683e+02\tAbsError: 3.08394e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.06878e+02\tAbsError: 3.03583e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99994e-01\tAbsError: 4.81103e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.80477e+00\tAbsError: 7.85507e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 9.16908e+02\tAbsError: 3.08394e+15\n",
+ " Region: \"zone_1\"\tRelError: 2.25387e-01\tAbsError: 7.85507e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.25387e-01\tAbsError: 7.85507e-02\n",
+ " Region: \"zone_2\"\tRelError: 9.16683e+02\tAbsError: 3.08394e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.06878e+02\tAbsError: 3.03583e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99994e-01\tAbsError: 4.81103e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.80477e+00\tAbsError: 7.85507e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 6.96412e+03\tAbsError: 2.05732e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.40753e-01\tAbsError: 4.36121e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.40753e-01\tAbsError: 4.36121e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.96398e+03\tAbsError: 2.05732e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.17908e+02\tAbsError: 1.98961e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.84602e+03\tAbsError: 6.77033e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.98517e-02\tAbsError: 4.36121e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 6.96412e+03\tAbsError: 2.05732e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.40753e-01\tAbsError: 4.36121e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.40753e-01\tAbsError: 4.36121e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.96398e+03\tAbsError: 2.05732e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.17908e+02\tAbsError: 1.98961e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.84602e+03\tAbsError: 6.77033e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.98517e-02\tAbsError: 4.36121e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 3.54550e+00\tAbsError: 1.89503e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.58808e-01\tAbsError: 3.39030e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.58808e-01\tAbsError: 3.39030e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.38670e+00\tAbsError: 1.89503e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.32488e+00\tAbsError: 1.82904e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99846e-01\tAbsError: 6.59830e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.19683e-02\tAbsError: 3.39030e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 3.54550e+00\tAbsError: 1.89503e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.58808e-01\tAbsError: 3.39030e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.58808e-01\tAbsError: 3.39030e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.38670e+00\tAbsError: 1.89503e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.32488e+00\tAbsError: 1.82904e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99846e-01\tAbsError: 6.59830e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.19683e-02\tAbsError: 3.39030e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 1.10522e+03\tAbsError: 3.01499e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.41504e-01\tAbsError: 7.85507e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.41504e-01\tAbsError: 7.85507e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.10508e+03\tAbsError: 3.01499e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.10192e+03\tAbsError: 2.97252e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99996e-01\tAbsError: 4.24716e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.15954e+00\tAbsError: 7.85507e-02\n",
+ "Iteration: 8\n",
+ " Device: \"device\"\tRelError: 1.10522e+03\tAbsError: 3.01499e+15\n",
+ " Region: \"zone_1\"\tRelError: 1.41504e-01\tAbsError: 7.85507e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.41504e-01\tAbsError: 7.85507e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.10508e+03\tAbsError: 3.01499e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.10192e+03\tAbsError: 2.97252e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.99996e-01\tAbsError: 4.24716e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.15954e+00\tAbsError: 7.85507e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 2.72862e+03\tAbsError: 1.67961e+15\n",
+ " Region: \"zone_1\"\tRelError: 9.00997e-02\tAbsError: 7.44595e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.00997e-02\tAbsError: 7.44595e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.72853e+03\tAbsError: 1.67961e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.66101e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.62941e+03\tAbsError: 1.86014e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.20579e-01\tAbsError: 7.44595e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 2.72862e+03\tAbsError: 1.67961e+15\n",
+ " Region: \"zone_1\"\tRelError: 9.00997e-02\tAbsError: 7.44595e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 9.00997e-02\tAbsError: 7.44595e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.72853e+03\tAbsError: 1.67961e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.66101e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.62941e+03\tAbsError: 1.86014e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.20579e-01\tAbsError: 7.44595e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 5.54644e+00\tAbsError: 1.62235e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.50990e-01\tAbsError: 2.58874e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.50990e-01\tAbsError: 2.58874e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.39545e+00\tAbsError: 1.62235e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.32533e-01\tAbsError: 1.56811e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.90933e+00\tAbsError: 5.42371e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.35859e-02\tAbsError: 2.58758e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 5.54644e+00\tAbsError: 1.62235e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.50990e-01\tAbsError: 2.58874e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.50990e-01\tAbsError: 2.58874e-02\n",
+ " Region: \"zone_2\"\tRelError: 5.39545e+00\tAbsError: 1.62235e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.32533e-01\tAbsError: 1.56811e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.90933e+00\tAbsError: 5.42371e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.35859e-02\tAbsError: 2.58758e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 7.81799e+02\tAbsError: 8.34708e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.91057e-02\tAbsError: 6.98755e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.91057e-02\tAbsError: 6.98755e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.81730e+02\tAbsError: 8.34708e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.95175e+02\tAbsError: 8.20067e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.86466e+02\tAbsError: 1.46416e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.85767e-02\tAbsError: 6.98755e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 7.81799e+02\tAbsError: 8.34708e+14\n",
+ " Region: \"zone_1\"\tRelError: 6.91057e-02\tAbsError: 6.98755e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.91057e-02\tAbsError: 6.98755e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.81730e+02\tAbsError: 8.34708e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.95175e+02\tAbsError: 8.20067e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 5.86466e+02\tAbsError: 1.46416e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.85767e-02\tAbsError: 6.98755e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 8.06999e-01\tAbsError: 5.77352e+14\n",
+ " Region: \"zone_1\"\tRelError: 8.44855e-02\tAbsError: 1.34867e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.44855e-02\tAbsError: 1.34867e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.22514e-01\tAbsError: 5.77352e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.00758e-02\tAbsError: 5.73910e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.59242e-01\tAbsError: 3.44191e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.31959e-02\tAbsError: 1.34867e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 8.06999e-01\tAbsError: 5.77352e+14\n",
+ " Region: \"zone_1\"\tRelError: 8.44855e-02\tAbsError: 1.34867e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.44855e-02\tAbsError: 1.34867e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.22514e-01\tAbsError: 5.77352e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.00758e-02\tAbsError: 5.73910e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.59242e-01\tAbsError: 3.44191e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.31959e-02\tAbsError: 1.34867e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 1.14500e+03\tAbsError: 1.57166e+15\n",
+ " Region: \"zone_1\"\tRelError: 4.64541e-02\tAbsError: 7.44595e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.64541e-02\tAbsError: 7.44595e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.14496e+03\tAbsError: 1.57166e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.55624e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.04592e+03\tAbsError: 1.54257e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.15396e-02\tAbsError: 7.44595e-02\n",
+ "Iteration: 9\n",
+ " Device: \"device\"\tRelError: 1.14500e+03\tAbsError: 1.57166e+15\n",
+ " Region: \"zone_1\"\tRelError: 4.64541e-02\tAbsError: 7.44595e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.64541e-02\tAbsError: 7.44595e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.14496e+03\tAbsError: 1.57166e+15\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 9.90000e+01\tAbsError: 1.55624e+15\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.04592e+03\tAbsError: 1.54257e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.15396e-02\tAbsError: 7.44595e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 2.44664e+03\tAbsError: 4.76024e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.68341e-02\tAbsError: 6.46820e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.68341e-02\tAbsError: 6.46820e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.44662e+03\tAbsError: 4.76024e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.67663e+02\tAbsError: 4.70687e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.07892e+03\tAbsError: 5.33735e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.27387e-02\tAbsError: 6.46820e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 2.44664e+03\tAbsError: 4.76024e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.68341e-02\tAbsError: 6.46820e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.68341e-02\tAbsError: 6.46820e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.44662e+03\tAbsError: 4.76024e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.67663e+02\tAbsError: 4.70687e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.07892e+03\tAbsError: 5.33735e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.27387e-02\tAbsError: 6.46820e-02\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 5.23236e-01\tAbsError: 6.66521e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.55286e-01\tAbsError: 1.82572e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.55286e-01\tAbsError: 1.82572e-05\n",
+ " Region: \"zone_2\"\tRelError: 2.67951e-01\tAbsError: 6.66521e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.49528e-02\tAbsError: 6.58451e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.69218e-01\tAbsError: 8.06994e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.37794e-02\tAbsError: 4.20575e-05\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 5.23236e-01\tAbsError: 6.66521e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.55286e-01\tAbsError: 1.82572e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.55286e-01\tAbsError: 1.82572e-05\n",
+ " Region: \"zone_2\"\tRelError: 2.67951e-01\tAbsError: 6.66521e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.49528e-02\tAbsError: 6.58451e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.69218e-01\tAbsError: 8.06994e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.37794e-02\tAbsError: 4.20575e-05\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 1.35143e+03\tAbsError: 7.37440e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.33447e-02\tAbsError: 6.98755e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.33447e-02\tAbsError: 6.98755e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.35139e+03\tAbsError: 7.37440e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.67912e+02\tAbsError: 7.24273e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.08346e+03\tAbsError: 1.31666e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.96012e-02\tAbsError: 6.98755e-02\n",
+ "Iteration: 10\n",
+ " Device: \"device\"\tRelError: 1.35143e+03\tAbsError: 7.37440e+14\n",
+ " Region: \"zone_1\"\tRelError: 4.33447e-02\tAbsError: 6.98755e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.33447e-02\tAbsError: 6.98755e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.35139e+03\tAbsError: 7.37440e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.67912e+02\tAbsError: 7.24273e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.08346e+03\tAbsError: 1.31666e+13\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.96012e-02\tAbsError: 6.98755e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 4.67091e+02\tAbsError: 1.70006e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.82491e-02\tAbsError: 5.87228e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.82491e-02\tAbsError: 5.87228e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.67063e+02\tAbsError: 1.70006e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.06908e+02\tAbsError: 1.64043e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.60120e+02\tAbsError: 5.96240e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.47466e-02\tAbsError: 5.87228e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 4.67091e+02\tAbsError: 1.70006e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.82491e-02\tAbsError: 5.87228e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.82491e-02\tAbsError: 5.87228e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.67063e+02\tAbsError: 1.70006e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.06908e+02\tAbsError: 1.64043e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.60120e+02\tAbsError: 5.96240e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.47466e-02\tAbsError: 5.87228e-02\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.82731e-04\tAbsError: 7.73516e+10\n",
+ " Region: \"zone_1\"\tRelError: 1.16029e-05\tAbsError: 8.31992e-10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.16029e-05\tAbsError: 8.31992e-10\n",
+ " Region: \"zone_2\"\tRelError: 1.71128e-04\tAbsError: 7.73516e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.50773e-06\tAbsError: 7.69480e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.63556e-04\tAbsError: 4.03584e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.06480e-06\tAbsError: 2.71185e-09\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.82731e-04\tAbsError: 7.73516e+10\n",
+ " Region: \"zone_1\"\tRelError: 1.16029e-05\tAbsError: 8.31992e-10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.16029e-05\tAbsError: 8.31992e-10\n",
+ " Region: \"zone_2\"\tRelError: 1.71128e-04\tAbsError: 7.73516e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.50773e-06\tAbsError: 7.69480e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.63556e-04\tAbsError: 4.03584e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.06480e-06\tAbsError: 2.71185e-09\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 1.99081e+03\tAbsError: 4.28855e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.78481e-02\tAbsError: 6.46820e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.78481e-02\tAbsError: 6.46820e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.99079e+03\tAbsError: 4.28855e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.56971e+02\tAbsError: 4.23969e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.53380e+03\tAbsError: 4.88571e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.76470e-02\tAbsError: 6.46820e-02\n",
+ "Iteration: 11\n",
+ " Device: \"device\"\tRelError: 1.99081e+03\tAbsError: 4.28855e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.78481e-02\tAbsError: 6.46820e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.78481e-02\tAbsError: 6.46820e-02\n",
+ " Region: \"zone_2\"\tRelError: 1.99079e+03\tAbsError: 4.28855e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.56971e+02\tAbsError: 4.23969e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.53380e+03\tAbsError: 4.88571e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.76470e-02\tAbsError: 6.46820e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 7.25758e+02\tAbsError: 1.78428e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.19464e-02\tAbsError: 5.17889e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.19464e-02\tAbsError: 5.17889e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.25726e+02\tAbsError: 1.78428e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.60706e+02\tAbsError: 1.71443e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.64981e+02\tAbsError: 6.98524e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.90498e-02\tAbsError: 5.17889e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 7.25758e+02\tAbsError: 1.78428e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.19464e-02\tAbsError: 5.17889e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.19464e-02\tAbsError: 5.17889e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.25726e+02\tAbsError: 1.78428e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 5.60706e+02\tAbsError: 1.71443e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.64981e+02\tAbsError: 6.98524e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.90498e-02\tAbsError: 5.17889e-02\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 4.22778e-12\tAbsError: 4.78009e+03\n",
+ " Region: \"zone_1\"\tRelError: 1.04262e-12\tAbsError: 3.20921e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.04262e-12\tAbsError: 3.20921e-16\n",
+ " Region: \"zone_2\"\tRelError: 3.18516e-12\tAbsError: 4.78009e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.44537e-14\tAbsError: 2.46903e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.78947e-12\tAbsError: 2.31106e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.31232e-13\tAbsError: 2.90429e-16\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 4.22778e-12\tAbsError: 4.78009e+03\n",
+ " Region: \"zone_1\"\tRelError: 1.04262e-12\tAbsError: 3.20921e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.04262e-12\tAbsError: 3.20921e-16\n",
+ " Region: \"zone_2\"\tRelError: 3.18516e-12\tAbsError: 4.78009e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.44537e-14\tAbsError: 2.46903e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.78947e-12\tAbsError: 2.31106e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.31232e-13\tAbsError: 2.90429e-16\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 7.38540e+03\tAbsError: 1.59560e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.08591e-02\tAbsError: 5.87228e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.08591e-02\tAbsError: 5.87228e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.38538e+03\tAbsError: 1.59560e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.92906e+02\tAbsError: 1.53775e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.59245e+03\tAbsError: 5.78557e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.57427e-02\tAbsError: 5.87228e-02\n",
+ "Iteration: 12\n",
+ " Device: \"device\"\tRelError: 7.38540e+03\tAbsError: 1.59560e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.08591e-02\tAbsError: 5.87228e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.08591e-02\tAbsError: 5.87228e-02\n",
+ " Region: \"zone_2\"\tRelError: 7.38538e+03\tAbsError: 1.59560e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.92906e+02\tAbsError: 1.53775e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.59245e+03\tAbsError: 5.78557e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.57427e-02\tAbsError: 5.87228e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 9.75988e+02\tAbsError: 1.93169e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.88959e-02\tAbsError: 4.36121e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.88959e-02\tAbsError: 4.36121e-02\n",
+ " Region: \"zone_2\"\tRelError: 9.75959e+02\tAbsError: 1.93169e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.83094e+02\tAbsError: 1.86704e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.92830e+02\tAbsError: 6.46450e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.49940e-02\tAbsError: 4.36121e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 9.75988e+02\tAbsError: 1.93169e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.88959e-02\tAbsError: 4.36121e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.88959e-02\tAbsError: 4.36121e-02\n",
+ " Region: \"zone_2\"\tRelError: 9.75959e+02\tAbsError: 1.93169e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.83094e+02\tAbsError: 1.86704e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.92830e+02\tAbsError: 6.46450e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.49940e-02\tAbsError: 4.36121e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 4.59495e+02\tAbsError: 1.62436e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.42377e-02\tAbsError: 5.17889e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.42377e-02\tAbsError: 5.17889e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.59471e+02\tAbsError: 1.62436e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.58845e+02\tAbsError: 1.55869e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.00612e+02\tAbsError: 6.56669e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.36769e-02\tAbsError: 5.17889e-02\n",
+ "Iteration: 13\n",
+ " Device: \"device\"\tRelError: 4.59495e+02\tAbsError: 1.62436e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.42377e-02\tAbsError: 5.17889e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.42377e-02\tAbsError: 5.17889e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.59471e+02\tAbsError: 1.62436e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.58845e+02\tAbsError: 1.55869e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.00612e+02\tAbsError: 6.56669e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.36769e-02\tAbsError: 5.17889e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 3.67150e+00\tAbsError: 1.77768e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.72792e-02\tAbsError: 3.39030e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.72792e-02\tAbsError: 3.39030e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.64422e+00\tAbsError: 1.77768e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.61923e+00\tAbsError: 1.71491e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.92141e-01\tAbsError: 6.27707e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.28536e-02\tAbsError: 3.39030e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 3.67150e+00\tAbsError: 1.77768e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.72792e-02\tAbsError: 3.39030e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.72792e-02\tAbsError: 3.39030e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.64422e+00\tAbsError: 1.77768e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.61923e+00\tAbsError: 1.71491e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.92141e-01\tAbsError: 6.27707e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.28536e-02\tAbsError: 3.39030e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 2.44598e+02\tAbsError: 1.71596e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.34251e-02\tAbsError: 4.36121e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.34251e-02\tAbsError: 4.36121e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.44575e+02\tAbsError: 1.71596e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.23736e+01\tAbsError: 1.65425e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.32190e+02\tAbsError: 6.17084e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.13773e-02\tAbsError: 4.36121e-02\n",
+ "Iteration: 14\n",
+ " Device: \"device\"\tRelError: 2.44598e+02\tAbsError: 1.71596e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.34251e-02\tAbsError: 4.36121e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.34251e-02\tAbsError: 4.36121e-02\n",
+ " Region: \"zone_2\"\tRelError: 2.44575e+02\tAbsError: 1.71596e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.23736e+01\tAbsError: 1.65425e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.32190e+02\tAbsError: 6.17084e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.13773e-02\tAbsError: 4.36121e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 4.99086e+00\tAbsError: 1.50173e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.21308e-02\tAbsError: 2.58906e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.21308e-02\tAbsError: 2.58906e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.96873e+00\tAbsError: 1.50173e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.73098e-01\tAbsError: 1.44986e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.46915e+00\tAbsError: 5.18685e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.64830e-02\tAbsError: 2.58976e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 4.99086e+00\tAbsError: 1.50173e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.21308e-02\tAbsError: 2.58906e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.21308e-02\tAbsError: 2.58906e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.96873e+00\tAbsError: 1.50173e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.73098e-01\tAbsError: 1.44986e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.46915e+00\tAbsError: 5.18685e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.64830e-02\tAbsError: 2.58976e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 3.79665e+00\tAbsError: 1.55859e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.32068e-02\tAbsError: 3.39030e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.32068e-02\tAbsError: 3.39030e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.77344e+00\tAbsError: 1.55859e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.77075e+00\tAbsError: 1.49883e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.93924e-01\tAbsError: 5.97606e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.76128e-03\tAbsError: 3.39030e-02\n",
+ "Iteration: 15\n",
+ " Device: \"device\"\tRelError: 3.79665e+00\tAbsError: 1.55859e+14\n",
+ " Region: \"zone_1\"\tRelError: 2.32068e-02\tAbsError: 3.39030e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.32068e-02\tAbsError: 3.39030e-02\n",
+ " Region: \"zone_2\"\tRelError: 3.77344e+00\tAbsError: 1.55859e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.77075e+00\tAbsError: 1.49883e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 9.93924e-01\tAbsError: 5.97606e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 8.76128e-03\tAbsError: 3.39030e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 6.83626e-01\tAbsError: 5.85428e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.49507e-02\tAbsError: 1.34867e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.49507e-02\tAbsError: 1.34867e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.68675e-01\tAbsError: 5.85428e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.68518e-02\tAbsError: 5.81877e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.23620e-01\tAbsError: 3.55142e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.82034e-02\tAbsError: 1.34867e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 6.83626e-01\tAbsError: 5.85428e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.49507e-02\tAbsError: 1.34867e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.49507e-02\tAbsError: 1.34867e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.68675e-01\tAbsError: 5.85428e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 2.68518e-02\tAbsError: 5.81877e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.23620e-01\tAbsError: 3.55142e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.82034e-02\tAbsError: 1.34867e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 4.74099e+00\tAbsError: 1.34406e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.96333e-02\tAbsError: 2.58938e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.96333e-02\tAbsError: 2.58938e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.72135e+00\tAbsError: 1.34406e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.33260e-01\tAbsError: 1.29465e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.28120e+00\tAbsError: 4.94034e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.89227e-03\tAbsError: 2.58898e-02\n",
+ "Iteration: 16\n",
+ " Device: \"device\"\tRelError: 4.74099e+00\tAbsError: 1.34406e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.96333e-02\tAbsError: 2.58938e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.96333e-02\tAbsError: 2.58938e-02\n",
+ " Region: \"zone_2\"\tRelError: 4.72135e+00\tAbsError: 1.34406e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 4.33260e-01\tAbsError: 1.29465e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 4.28120e+00\tAbsError: 4.94034e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 6.89227e-03\tAbsError: 2.58898e-02\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 2.47117e-01\tAbsError: 6.79825e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.32087e-02\tAbsError: 1.83111e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.32087e-02\tAbsError: 1.83111e-05\n",
+ " Region: \"zone_2\"\tRelError: 2.13909e-01\tAbsError: 6.79825e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.50688e-02\tAbsError: 6.71826e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.59076e-01\tAbsError: 7.99893e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.97639e-02\tAbsError: 4.38518e-05\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 2.47117e-01\tAbsError: 6.79825e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.32087e-02\tAbsError: 1.83111e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.32087e-02\tAbsError: 1.83111e-05\n",
+ " Region: \"zone_2\"\tRelError: 2.13909e-01\tAbsError: 6.79825e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.50688e-02\tAbsError: 6.71826e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.59076e-01\tAbsError: 7.99893e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.97639e-02\tAbsError: 4.38518e-05\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 6.60776e-01\tAbsError: 5.05728e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.23722e-02\tAbsError: 1.34867e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.23722e-02\tAbsError: 1.34867e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.48404e-01\tAbsError: 5.05728e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.56000e-02\tAbsError: 5.02458e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.09360e-01\tAbsError: 3.27020e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.44429e-03\tAbsError: 1.34867e-02\n",
+ "Iteration: 17\n",
+ " Device: \"device\"\tRelError: 6.60776e-01\tAbsError: 5.05728e+14\n",
+ " Region: \"zone_1\"\tRelError: 1.23722e-02\tAbsError: 1.34867e-02\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.23722e-02\tAbsError: 1.34867e-02\n",
+ " Region: \"zone_2\"\tRelError: 6.48404e-01\tAbsError: 5.05728e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.56000e-02\tAbsError: 5.02458e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 6.09360e-01\tAbsError: 3.27020e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.44429e-03\tAbsError: 1.34867e-02\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.77722e-04\tAbsError: 7.64527e+10\n",
+ " Region: \"zone_1\"\tRelError: 1.44734e-06\tAbsError: 7.68300e-10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.44734e-06\tAbsError: 7.68300e-10\n",
+ " Region: \"zone_2\"\tRelError: 1.76274e-04\tAbsError: 7.64527e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.65516e-06\tAbsError: 7.60731e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.70844e-04\tAbsError: 3.79597e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.77476e-06\tAbsError: 2.67222e-09\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.77722e-04\tAbsError: 7.64527e+10\n",
+ " Region: \"zone_1\"\tRelError: 1.44734e-06\tAbsError: 7.68300e-10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.44734e-06\tAbsError: 7.68300e-10\n",
+ " Region: \"zone_2\"\tRelError: 1.76274e-04\tAbsError: 7.64527e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.65516e-06\tAbsError: 7.60731e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.70844e-04\tAbsError: 3.79597e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.77476e-06\tAbsError: 2.67222e-09\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 2.04805e-01\tAbsError: 6.09543e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.02141e-02\tAbsError: 1.82846e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.02141e-02\tAbsError: 1.82846e-05\n",
+ " Region: \"zone_2\"\tRelError: 1.74591e-01\tAbsError: 6.09543e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.54755e-02\tAbsError: 6.01977e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.54282e-01\tAbsError: 7.56598e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.83361e-03\tAbsError: 4.18552e-05\n",
+ "Iteration: 18\n",
+ " Device: \"device\"\tRelError: 2.04805e-01\tAbsError: 6.09543e+14\n",
+ " Region: \"zone_1\"\tRelError: 3.02141e-02\tAbsError: 1.82846e-05\n",
+ " Equation: \"PotentialEquation\"\tRelError: 3.02141e-02\tAbsError: 1.82846e-05\n",
+ " Region: \"zone_2\"\tRelError: 1.74591e-01\tAbsError: 6.09543e+14\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 1.54755e-02\tAbsError: 6.01977e+14\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.54282e-01\tAbsError: 7.56598e+12\n",
+ " Equation: \"PotentialEquation\"\tRelError: 4.83361e-03\tAbsError: 4.18552e-05\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 3.51311e-12\tAbsError: 4.91259e+03\n",
+ " Region: \"zone_1\"\tRelError: 1.99818e-13\tAbsError: 2.73963e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.99818e-13\tAbsError: 2.73963e-16\n",
+ " Region: \"zone_2\"\tRelError: 3.31329e-12\tAbsError: 4.91259e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.07459e-14\tAbsError: 2.57751e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.97614e-12\tAbsError: 2.33508e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.66404e-13\tAbsError: 2.93154e-16\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 3.51311e-12\tAbsError: 4.91259e+03\n",
+ " Region: \"zone_1\"\tRelError: 1.99818e-13\tAbsError: 2.73963e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.99818e-13\tAbsError: 2.73963e-16\n",
+ " Region: \"zone_2\"\tRelError: 3.31329e-12\tAbsError: 4.91259e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 7.07459e-14\tAbsError: 2.57751e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.97614e-12\tAbsError: 2.33508e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.66404e-13\tAbsError: 2.93154e-16\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.89075e-04\tAbsError: 7.14548e+10\n",
+ " Region: \"zone_1\"\tRelError: 1.32354e-06\tAbsError: 7.72087e-10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.32354e-06\tAbsError: 7.72087e-10\n",
+ " Region: \"zone_2\"\tRelError: 1.87751e-04\tAbsError: 7.14548e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.64167e-06\tAbsError: 7.10947e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.83894e-04\tAbsError: 3.60117e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.15877e-07\tAbsError: 2.25692e-09\n",
+ "Iteration: 19\n",
+ " Device: \"device\"\tRelError: 1.89075e-04\tAbsError: 7.14548e+10\n",
+ " Region: \"zone_1\"\tRelError: 1.32354e-06\tAbsError: 7.72087e-10\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.32354e-06\tAbsError: 7.72087e-10\n",
+ " Region: \"zone_2\"\tRelError: 1.87751e-04\tAbsError: 7.14548e+10\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 3.64167e-06\tAbsError: 7.10947e+10\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 1.83894e-04\tAbsError: 3.60117e+08\n",
+ " Equation: \"PotentialEquation\"\tRelError: 2.15877e-07\tAbsError: 2.25692e-09\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 2.82622e-12\tAbsError: 4.69041e+03\n",
+ " Region: \"zone_1\"\tRelError: 5.25774e-14\tAbsError: 3.00309e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.25774e-14\tAbsError: 3.00309e-16\n",
+ " Region: \"zone_2\"\tRelError: 2.77364e-12\tAbsError: 4.69041e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.64463e-14\tAbsError: 2.38947e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.68880e-12\tAbsError: 2.30093e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.83908e-14\tAbsError: 2.67175e-16\n",
+ "Iteration: 20\n",
+ " Device: \"device\"\tRelError: 2.82622e-12\tAbsError: 4.69041e+03\n",
+ " Region: \"zone_1\"\tRelError: 5.25774e-14\tAbsError: 3.00309e-16\n",
+ " Equation: \"PotentialEquation\"\tRelError: 5.25774e-14\tAbsError: 3.00309e-16\n",
+ " Region: \"zone_2\"\tRelError: 2.77364e-12\tAbsError: 4.69041e+03\n",
+ " Equation: \"ElectronContinuityEquation\"\tRelError: 6.64463e-14\tAbsError: 2.38947e+03\n",
+ " Equation: \"HoleContinuityEquation\"\tRelError: 2.68880e-12\tAbsError: 2.30093e+03\n",
+ " Equation: \"PotentialEquation\"\tRelError: 1.83908e-14\tAbsError: 2.67175e-16\n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:18:08\u001b[0m.\u001b[1;36m781\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mProcessing data for monitor capacitance_global_mnt\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:18:08\u001b[0m.\u001b[1;36m781\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mProcessing data for monitor capacitance_global_mnt\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:18:20\u001b[0m.\u001b[1;36m751\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mProcessing data for monitor charge_3D_mnt\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:18:20\u001b[0m.\u001b[1;36m751\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mProcessing data for monitor charge_3D_mnt\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:18:28\u001b[0m.\u001b[1;36m018\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mProcessing data for monitor voltage_z0\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:18:28\u001b[0m.\u001b[1;36m018\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mProcessing data for monitor voltage_z0\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:18:32\u001b[0m.\u001b[1;36m788\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mProcessing data for monitor charge_z0_big\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:18:32\u001b[0m.\u001b[1;36m788\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mProcessing data for monitor charge_z0_big\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:18:45\u001b[0m.\u001b[1;36m061\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mPostprocess time (s): 48.0381\u001b[0m \n",
+ "\u001b[1m[\u001b[0m\u001b[1;36m25\u001b[0m-\u001b[1;36m12\u001b[0m-\u001b[1;36m15\u001b[0m \u001b[1;92m15:18:45\u001b[0m.\u001b[1;36m061\u001b[0m\u001b[1m]\u001b[0m\u001b[1m[\u001b[0mUSER \u001b[1m]\u001b[0m: \u001b[39mPostprocess time (s): 48.0381\u001b[0m \n"
+ ]
}
],
"source": [
- "charge_data = web.run(\n",
- " charge_sim,\n",
- " task_name=\"charge_junction\",\n",
- " path=\"charge_junction.hdf5\",\n",
- " parent_tasks=[job.task_id],\n",
- ")"
+ "from tidy3d_backend.run_heat import run_heat_sim\n",
+ "charge_data = run_heat_sim(charge_sim_refined)\n",
+ "\n",
+ "# charge_data = web.run(\n",
+ "# charge_sim,\n",
+ "# task_name=\"charge_junction\",\n",
+ "# path=\"charge_junction.hdf5\",\n",
+ "# parent_tasks=[job.task_id],\n",
+ "# )"
]
},
{
@@ -1638,13 +10623,13 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 56,
"id": "375f138a-5ee9-46e1-ae5b-f3f68eb8f02b",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAd+NJREFUeJzt3XdUFFcbx/Hv7lJFsGFBwV6jiD2WxK6osScmlthCrNiNGlKsSSwxGjX2btRo7MaOir2jGNSoiCKiYBdEFHB33j9WVnlBBQVmgedzzh7d2ZnZZ/ZSfszcuVejKIqCEEIIIUQGoVW7ACGEEEKIlCThRgghhBAZioQbIYQQQmQoEm6EEEIIkaFIuBFCCCFEhiLhRgghhBAZioQbIYQQQmQoFmoXkNYMBgO3bt3C3t4ejUajdjlCCCGESAJFUXj8+DH58+dHq33zuZlMF25u3bqFi4uL2mUIIYQQ4h3cuHEDZ2fnN66T6cKNvb09vPhwHBwc1C7HLMXGxrJr1y4aN26MpaWl2uVketIe5kXaw/xIm5iX1GqPiIgIXFxcTL/H3yTThZu4S1EODg4Sbl4jNjaWLFmy4ODgID8ozIC0h3mR9jA/0ibmJbXbIyldSqRDsRBCCCEyFAk3QgghhMhQJNwIIYQQIkPJdH1uhBAio9Lr9cTGxqpdRpqLjY3FwsKCZ8+eodfr1S4n03uf9rCysnrrbd5JIeFGCCHSOUVRCAsL49GjR2qXogpFUciXLx83btyQ8cvMwPu0h1arpUiRIlhZWb1XDRJuhBAinYsLNnny5CFLliyZ7he8wWAgMjKSrFmzpshf/eL9vGt7xA2yGxoaSsGCBd/r61jCjRBCpGN6vd4UbHLlyqV2OaowGAzExMRgY2Mj4cYMvE975M6dm1u3bvH8+fP3uo1cvgqEECIdi+tjkyVLFrVLEeK9xV2Oet++UxJuhBAiA8hsl6JExpRSX8cSboQQQgiRoUi4EUIIIUSGIuFGCCGEWdJoNGzcuDHV36dw4cL8/vvvZrMf8f4k3KghPByOH1e7CiGEUM3du3fp06cPBQsWxNramnz58uHu7s7hw4dN64SGhtK0aVNV60zMkiVLyJ49e4LlJ0+epGfPnqn63vv27UOj0aDRaNBqtWTLlo2KFSsyfPhwQkNDk72/tAqQaU3VcDN+/HiqVq2Kvb09efLkoXXr1ly6dOmt2z169AhPT0+cnJywtramZMmSbNu2LU1qfm+nTkH+/NC6NWTCkUSFEOYrJCQEHx8fQkJCUv29Pv30U86cOcPSpUu5fPkymzdvpm7duty/f9+0Tr58+bC2tk71WlJK7ty50+yutUuXLnHr1i1OnjzJiBEj2L17N+XKlcPf3z9N3t/cqRpu9u/fj6enJ8eOHcPb25vY2FgaN27MkydPXrtNTEwMjRo1IigoiLVr13Lp0iXmz59PgQIF0rT2d1a+PNjbQ1gYZMC0LIRQl6IoPHnyJNmPWbNmUahQIerXr0+hQoWYNWtWsvehKEqSanz06BEHDx5k4sSJ1KtXj0KFClGtWjW8vLxo2bKlab1XzyoEBQWh0Wj4+++/+fjjj7G1taVq1apcvnyZkydPUq9ePRwcHGjatCl379417aNu3boMGjQo3vu3bt2abt26vba+KVOm4Orqip2dHS4uLvTt25fIyEh4ceake/fuhIeHm86gjB49GhK5LBUcHEyrVq3ImjUrDg4OfP7559y+fdv0+ujRo6lQoQJ//vknhQsXJlu2bLRv357Hjx+/9TPMkycP+fLlo2TJkrRv357Dhw+TO3du+vTpY1rn5MmTNGrUCEdHR7Jly0adOnU4ffq06fXChQsD0KZNGzQajel5YGAgrVq1Im/evGTNmpWqVauye/fut9ZkTlQNNzt27KBbt26ULVsWNzc3lixZQnBwML6+vq/dZtGiRTx48ICNGzdSq1YtChcuTJ06dXBzc0vT2t+ZlRXEnbacNUvtaoQQGUxUVBRZs2ZN9sPT0xODwQAvBmHz9PRM9j6ioqKSVGPc+hs3biQ6OjpZxzdq1Ch++OEHTp8+jYWFBR07duTbb79l/Pjx7N+/nytXrjBy5Mh3+uziaLVapk+fzvnz51m6dCl79+5l+PDhANSsWZPff/8dBwcHQkNDCQ0N5ZtvvkmwD4PBQKtWrXjw4AH79+/H29ubq1ev8sUXX8RbLzAwkI0bN7Jlyxa2bNnC/v37mTBhQrJrtrW1pXfv3hw+fJg7d+4A8PjxY7p27cqhQ4c4duwYJUqUoFmzZqbwdPLkSQAWL15MaGio6XlkZCTNmjVjz549nDlzhiZNmtCiRQuCg4Pf4dNUh1mNUBweHg5Azpw5X7vO5s2bqVGjBp6enmzatIncuXPTsWNHRowYgU6nS7B+dHR0vG+eiIgIeDHwlWoTzHXvjsUvv6DZt4/Ys2fhgw/UqeM14j6XzDgBnzmS9jAv5tYesbGxKIqCwWAwPdSS1PfXarUsWrSIXr16MWfOHCpVqkTt2rX54osvKF++fKL7jNvvkCFDaNSoEQD9+/enU6dO7Nq1y9TF4auvvmLp0qXx6oj7fF59ntiyuOcDBgwwLS9YsCBjx46lb9++/PHHH1hYWGBvb49GoyFPnjzx6nx1P97e3vj7+xMYGIiLiwu86Kvj6urK8ePHqVq1qmndRYsWYW9vD8CXX37Jnj17GDdu3Gs/49d91iVLlgTg6tWrODo6Urdu3Xivz5kzh5w5c+Lj40Pz5s1NI1o7ODiYjsVgMODq6oqrq6tpuzFjxrBhwwY2bdqEp6fnG1r25WeZ2OeeFAaDAUVRiI2NTfA7PTnfc2YTbgwGA4MGDaJWrVqUK1futetdvXqVvXv30qlTJ7Zt28aVK1fo27cvsbGxjBo1KsH648ePZ8yYMQmW79q1S9URPatWrUr+Y8e48d13+KdyB7R35e3trXYJ4hXSHubFXNrDwsKCfPnyERkZSUxMDIqiJLvPzK1bt6hevXq8X0Q6nY6jR4+SP3/+JO/n+fPnpj8g36ZRo0ZcuHCBo0ePcurUKby9vfn111+ZPn06HTt2NK339OlTIiIiTJeFihUrZnqPuEBQpEgReHGmwsHBgdu3b5vWef78OTExMfHqev78ObGxsaZlBoOBZ8+emZ7v27ePqVOnEhAQwOPHj3n+/DnPnj0jLCyMLFmy8OzZMxRFSXCsr+7Hz8+PAgUKkC1bNtN6zs7OZMuWjTNnzlCqVCmio6MpWLBgvH3lyJGDsLCw136OcWfHHj9+nGBqg7guHVFRUURERHDnzh1+/vlnDh06xN27dzEYDERFRXH58uV4+4/7jONERkYyceJEdu3aRVhYGHq9nqdPnxIQEJDk9o2rMbliYmJ4+vQpBw4c4Pnz54kee1KYTbjx9PTk3LlzHDp06I3rGQwG8uTJw7x589DpdFSuXJmbN2/y66+/JhpuvLy8GDJkiOl5REQELi4uNG7cGAcHh1Q5lqTQWFtD06YUOXgQl+XLIWtW1Wr5f7GxsXh7e9OoUaP3mttDpAxpD/Nibu3x7Nkzbty4QdasWbGxsQEgW7ZsydqHk5MTc+bMoU+fPuj1enQ6HbNnz6Zy5cqpVLWRg4MDrVq1olWrVowbN44ePXowceJEevfubVrH1tYWBwcHsr74GZk9e3bTz247Ozt4EQh4EXZsbW1RFMW0jpWVFZaWlvF+3iuKEm+ZVqvFxsYGBwcHgoKCaN++Pb1792b8+PHkzJmTQ4cO0aNHD9M6NjY2aDSaBL9DXt1P3LxK/7+ORqMxrWNtbY21tXW8dWxtbU2fTWLi/ii3t7dPsE7cZaOyZcvi4ODAF198wYMHD5g2bRqFChXC2tqaWrVqodPpErznq8/jOihPmjSJ4sWLY2try+eff57oMSdGURQeP35sOsOVHM+ePcPW1pbatWubvp7jJCdYmUW46devH1u2bOHAgQM4Ozu/cV0nJycsLS3jna4qU6YMYWFhxMTEJJgmPe6L5/9ZWlqq+4OpcWMoWRLN5ctY/v039OqlXi2vofpnJOKR9jAv5tIeer3edFvw+0wa2aNHD5o2bcqVK1coXrz4W38Wp4ayZcuyadOmeMcRd1xxy/7//7wyZH/c5/Dqa7lz5yYsLMz0XK/Xc/78eerVqxfvfeK2PXPmDAaDgSlTppheX7t2bbz3trGxQa/XJ/p5x+3ngw8+4MaNG9y8edN0WerChQs8evSIcuXKodVqTXX/fx3/v+xViX0OvDj7Mn/+fGrXrk3evHkBOHLkCLNmzaJ58+YA3Lhxg3v37sX7nCwtLVEUJd6+jhw5Qrdu3fj000/hxZmcoKAg6tatm6SvsbgzgK++T1LFfS6JfX8l5/tN1Q7FiqLQr18/NmzYwN69e02nFt+kVq1aXLlyJd7p08uXL+Pk5JQg2Jg1rRbierXPnAlJvMtACCFSi7OzM3Xr1k31YHP//n3q16/P8uXL+ffff7l27Rpr1qxh0qRJtGrVKkXfq379+mzdupWtW7dy8eJF+vTpw6NHj167fvHixYmNjWXGjBlcvXqVP//8kzlz5sRbp3DhwkRGRrJnzx7u3buX6OWShg0b4urqSqdOnTh9+jQnTpygS5cu1KlThypVqrz3cd25c4ewsDACAgJYtWoVtWrV4t69e8yePdu0TokSJfjzzz/577//OH78OJ06dTKdGXr1WPbs2UNYWBgPHz40bbd+/Xr8/Pw4e/YsHTt2VLUv17tQNdx4enqyfPlyVq5cib29PWFhYYSFhfH06VPTOl26dMHLy8v0vE+fPjx48ICBAwdy+fJltm7dyi+//JKkTk6pLdljRHTtCra24O8PrwxcJYQQGVnWrFn58MMPmTp1KrVr16ZcuXL8+OOP9OjRgz/++CNF3+urr76ia9eupmBRtGhR6tWr99r13dzcmDJlChMnTqRcuXKsWLGC8ePHx1unZs2a9O7dmy+++ILcuXMzadKkBPvRaDRs2rSJHDlyULt2bRo2bEjRokVZvXp1ihxXqVKlyJ8/P5UrV2bChAk0bNiQc+fO8cErN6gsXLiQhw8fUqlSJTp37syAAQPidYIG+O233/D29sbFxYWKFSvCi1vhc+TIQc2aNWnRogXu7u5UqlQpRepOM4qKgEQfixcvNq1Tp04dpWvXrvG2O3LkiPLhhx8q1tbWStGiRZWff/5Zef78eZLeMzw8XAGU8PDwFD2WBQsWKBqNRgEUrVarLFiwIGkbengoCihKhw4pWs/7iImJUTZu3KjExMSoXYqQ9jA75tYeT58+VS5cuKA8ffpU7VJUo9frlYcPHyp6vV7tUsR7tsebvp6T8/tb1T43SRnwad++fQmW1ahRg2PHjqVSVckXEhJCz549TcdjMBjo1asX7u7ubz+927cvLFwIa9fC1Knw4lqpEEIIId6NzC2VAgICAhJcj9Tr9Vy5cuXtG1eqBNWrG6diWLgw9YoUQgghMgkJNymgRIkSCXqEa7VaihcvnrQd9O1r/HfOHNDrU6FCIYQQIvOQcJMCnJ2dTePuxMmSJUuCe/Rfq107yJULbtyArVtTr1AhhBAiE5Bwk0I8PDwICgpi165dlCpVisjIyHiDB76RjQ14eBj/L/NNCSGEEO9Fwk0KcnZ2plGjRixduhSNRsOff/7Jzp07k7Zxr16g0cDOnZCUvjpCCCGESJSEm1Tw4YcfMnDgQAB69eplmhPljYoWhaZNjf//vwGjhBBCCJF0Em5Sybhx4yhUqBDXr19n5MiRSdsormPxokXwykCGQgghhEg6CTepJGvWrKYhu6dNm8aJEyfevlGTJlC4MDx8CCk0iqUQQojk69atG61bt1a7jPdSuHBhfv/9d7XLUIWEm1TUpEkTvvzySwwGA19//TUxMTFv3kCng7jZcGfOTJMahRBCDd26dUOj0SR4NGnSRO3S4MUfpUuWLFG7DHgxlcPGjRtTfL+jR482fe4WFhY4OjpSu3Ztfv/9d6Kjo5O1r3379qHRaN44b1daknCTyqZOnYqjoyP+/v78+uuvb9/AwwOsreHUKTh5Mi1KFEIIVTRp0oTQ0NB4j7/++kvVmvR6PQaDgWzZspE9e3ZVa0kLZcuWJTQ0lODgYHx8fGjXrh3jx4+nZs2aPH78WO3y3pmEm1Tm6OhoOi04duxYLl68+LYN4PPPjf+X28KFEBmYtbU1+fLli/fIkSMHvDgTYGVlxcGDB03rT5o0iTx58nD79m0A6tatS79+/ejfvz8FCxYkT548/Pjjj/Gm9omOjuabb76hQIEC2NnZ8eGHH8ab1mfJkiVkz56dzZs388EHH2BtbU1wcHCCy1J169alf//+DBo0iBw5cpA3b17mz5/PkydP6N69O/b29hQvXpzt27fHO8Zz587RtGlTsmbNSt68eencuTP37t2Lt98BAwYwfPhwcubMSb58+Rg9erTp9cKFCwPQpk0bNBqN6XlgYCCtWrUib968ZM2alapVq7J79+5kt4GFhQX58uUjf/78uLq60r9/f/bv38+5c+eYOHGiab0///yTKlWqYG9vT758+ejYsSN37twBICgoyDQZaY4cOdDpdPR90Yd0x44dfPTRR2TPnp1cuXLRvHlzAgMDk11nckm4SQMdO3akSZMmxMTE0LNnz7dPHR/XsXjVKrh/P01qFEJkEIoCT56o80jCfIFJVbduXQYNGkTnzp0JDw/nzJkz/PjjjyxYsIC8r8zBt3TpUiwsLNizZw9Tp05lypQpLFiwwPR6v379OHr0KKtWreLff/+lXbt2NGnShICAANM6UVFRTJw4kQULFnD+/PkEM2e/+l6Ojo6cOHGC/v3706dPH9q1a0fNmjU5ffo0jRs3pnPnzkRFRQHw6NEj6tevT8WKFTl16hQ7duzg9u3bfB73B+wr+7Wzs+P48eNMmjSJsWPH4u3tDcDJF2fwFy9eTGhoqOl5ZGQkzZo1Y8+ePZw5c4YmTZrQokULgoOD3/uzL126NE2bNmX9+vWmZbGxsYwbN46zZ8+yceNGgoKC6NatGwAuLi6sW7cOgEuXLnHz5k3TTOpPnjxhyJAhnDp1ij179qDVamnTps3bfw++r2RP2ZnOpdas4G8TFBSk2NnZKYAyZ86cN69sMChKxYrG2cInT06rEk3MbdbjzE7aw7yYW3skmEU5MtL4s0ONR2Rkkuvu2rWrotPpFDs7u3iPn3/+2bROdHS0UqFCBeXzzz9XPvjgA6VHjx7x9lGnTh2lTJkyyvPnz02zUI8YMUIpU6aMoiiKcv36dUWn0yk3b96Mt12DBg0ULy8vRVEUZfHixQqg+Pn5JaivVatW8d7ro48+Mj1//vy5Ymdnp3Tu3Nm0LDQ0VAGUo0ePKoqiKOPGjVMaN24cb783btxQAOXSpUuJ7ldRFKVq1arKiBEjTM8BZcOGDW/9TMuWLavMmDHD9LxQoULK1KlTX7v+qFGjFDc3t0RfGzFihGJra/vabU+ePKkAyuPHjxVFURQfHx8FMLXD62YFv3v3rgIo/v7+ie43pWYFlzM3aaRQoUL88ssvAAwfPpybN2++fmWN5uXZm9mzIbUTrhBCqKBevXr4+fnFe/SOu6kCsLKyYsWKFaxbt45nz54xderUBPuoXr06Go3G9LxGjRoEBASg1+vx9/dHr9dTsmRJsmbNanrs378/3qURKysrypcv/9Z6X11Hp9ORK1cuXF1dTcvizijFXa45e/YsPj4+8d67dOnS8OKyUmL7BXBycjLt43UiIyP55ptvKFOmDNmzZydr1qz8999/KXLmBuOJj3ifq6+vLy1atKBgwYLY29tTp04dgLe+X0BAAB06dKBo0aI4ODiYLqulVJ2vY5GqexfxeHp6snLlSo4fP46npycbNmyI98UTT4cO8M03EBgI3t7g7p7W5Qoh0qMsWSApA4em1nsng52d3VsnGD5y5AgADx484MGDB9jZ2SV5/5GRkeh0Onx9fePN/ceL4Tri2Nravv5n8SssLS3jPddoNPGWxe0j7pJLZGQkLVq0iNd3JY6Tk9Mb9/u2yzbffPMN3t7eTJ48meLFi2Nra8tnn3329rtyk+i///6jSJEi8OLSkru7O+7u7qxYsYLcuXMTHByMu7v7W9+vRYsWFCpUiPnz55M/f34MBgPlypVLsTpfR8JNGtLpdCxYsICKFSuyadMm1q1bx2effZb4ynZ20K0bTJtm7Fgs4UYIkRQajfHnRwYQGBjI4MGDmT9/PqtXr6Zr167s3r0brfblRYfjx4/H2+bYsWOUKFECnU5HxYoV0ev13Llzh48//jjN669UqRLr1q2jcOHCWFi8+69bS0tL9Hp9vGWHDx+mW7dutGnTBl4EqaCgoPeuGeDixYvs2LEDLy8v0/P79+8zYcIEXFxcADh16lS8baysrODF3WZx7t+/z6VLl5g/f77p8z906FCK1Pg2clkqjZUrV870BdOvXz8ePnz4+pX79DH+u2ULXL+eRhUKIUTaiI6OJiwsLN4j7k4ivV7Pl19+ibu7O927d2fx4sX8+++//Pbbb/H2ERwczNChQwkICOCvv/5ixowZpulvSpYsSadOnejSpQvr16/n2rVrnDhxgvHjx7N169ZUPz5PT08ePHhAhw4dOHnyJIGBgezcuZPu3bsnCCtvUrhwYfbs2UNYWJjpd0aJEiVYv349fn5+nD17lo4dO75TJ93nz58TFhbGrVu38Pf3Z8aMGdSpU4cKFSowbNgwAAoWLIiVlRUzZszg6tWrbN68mXHjxsXbT6FChdBoNGzZsoW7d+8SGRlJjhw5yJUrF/PmzePKlSvs3bs36RNKvycJNyr4/vvvKV26NLdv3zZ98SSqVClo0MDY52bevLQsUQghUt2OHTtwcnKK9/joo48A+Pnnn7l+/Tpz586FF5dx5s2bxw8//MDZs2dN++jSpQtPnz6lQYMG9O/fn4EDB9KzZ0/T64sXL6ZLly4MHTqUUqVK0bp1a06ePEnBggVT/fjy58/P4cOH0ev1NG7cGFdXVwYNGkT27NnjnX16m99++w1vb29cXFyoWLEiAFOmTCFHjhzUrFmTFi1a4O7uTqVKlZJd4/nz53FycqJgwYLUrVuXv//+Gy8vLw4ePGi6dJc7d26WLFnCmjVr+OCDD5gwYQKTJ0+Ot58CBQowZswYvv32W5ycnBg+fDharZZVq1bh6+tLuXLlGDx4cNLGe0sBGuXVAQEygYiICLJly0Z4eDgODg6q1XHo0CHTabo9e/ZQv379xFfcsAHatoU8eSA42DjAXyqLjY1l27ZtNGvWLMG1YJH2pD3Mi7m1x7Nnz7h27RpFihTBxsZG7XLSVN26dalQoQJTpkwhIiICBweHZIUGkToMBsM7t8ebvp6T8/tbvgpU8tFHH9HnxWWnnj178vR1E2W2aAEFCsCdO/DKmANCCCGESJyEGxVNmDCBAgUKEBgYyJgxYxJfycICevUy/l/mmxJCCCHeSsKNihwcHJj1YoqFyZMnc+bMmcRX/PprY8g5fBheudYshBCZ2b59+zLtrNfizSTcqKxly5Z8/vnn6PV6vv76a54/f55wJScnY78bXgzqJ4QQQojXknBjBqZPn06OHDk4ffr06/8KiRuxePlyCA9P0/qEEOYvk90bIjKolPo6lnBjBvLmzWsau2HkyJGJz5hauzZ88IFxcro//0z7IoUQZinujq24yRqFSM/iRi7+/xGlk0tGKDYT3bp1Y/ny5ezdu5eePXuye/fu+MOBx8031a+fccRiT0/jMiFEpqbT6ciePbtpLqIsWbIkaSqBjMRgMBATE8OzZ8/kVnAz8K7tYTAYuHv3LlmyZHmvEZ2RcGM+NBoN8+bNo1y5cuzdu5clS5bQvXv3+Ct17gzDh8N//8HJk1CtmlrlCiHMSL58+eCVCRszG0VRePr0aZLniBKp633aQ6vVUrBgwfduRwk3ZqRYsWKMHTuW4cOHM3ToUJo2bWr6oQWAgwO0aQMrVhj73ki4EUK8+OPIycmJPHnyEBsbq3Y5aS42NpYDBw5Qu3ZtsxhYMbN7n/awsrJKkbNvEm7MzODBg1m1ahWnT59m4MCBrF69Ov4KX35pDDerVsFvv4F8IwshXtDpdO/dVyE90ul0PH/+HBsbGwk3ZsAc2kMuTpoZCwsLFixYgE6n4++//2bz5s3xV2jY0DgVw9274O2tVplCCCGE2ZJwY4YqVqzIN998A0Dfvn2JiIh4+aKFBXToYPz/8uUqVSiEEEKYLwk3ZmrUqFEUK1aMmzdv4uXlFf/FL780/rtxIzx+rEp9QgghhLmScGOmbG1tmT9/PgCzZs3i0KFDL1+sXBlKlYKnT42zhgshhBDCRMKNGatXrx4eHh4A9OjRg2fPnhlf0Ghenr2RS1NCCCFEPBJuzNyvv/5K3rx5uXjxIr/88svLFzp2NP67Zw/cuqVafUIIIYS5kXBj5nLkyMEff/wBwPjx4/H39ze+ULQo1KoFBoPxtnAhhBBCgISb9OHTTz+lVatWPH/+nC5durB7925CQkLk0pQQQgiRCAk36YBGo2HmzJnY2Njg5+dHo0aNKFSoEMujo42D+J05A+fPq12mEEIIYRYk3KQTiqIQHR1tem4wGOg2dChP69UzLlixQr3ihBBCCDMi4SadCAgIQFGUeMv0ej1Xa9Y0Plmxwtj/RgghhMjkJNykEyVKlEgwmZhOpyNbp07GCTWDg+HVsXCEEEKITErCTTrh7OzMvHnz4k2KN2DAAJyLF4d27YwLpGOxEEIIIeEmPfHw8CAoKIg2bdoAcPXqVeMLcXdN/f03xA30J4QQQmRSEm7SGWdnZ37++WcA/vnnH4KDg6F2bXB2hvBw2LZN7RKFEEIIVUm4SYfKlClD/fr1MRgMzJ07F7TalyMWy6UpIYQQmZyq4Wb8+PFUrVoVe3t78uTJQ+vWrbl06VKSt1+1ahUajYbWrVunap3myNPTE4D58+cbbxGPuzS1dSs8eKBucUIIIYSKVA03+/fvx9PTk2PHjuHt7U1sbCyNGzfmyZMnb902KCiIb775ho8//jhNajU3LVu2pECBAty9e5e1a9eCqyuULw8xMbB2rdrlCSGEEKpRNdzs2LGDbt26UbZsWdzc3FiyZAnBwcH4+vq+cTu9Xk+nTp0YM2YMRYsWTbN6zYmFhQW9evUCYObMmcaFMh2DEEIIgYXaBbwqPDwcgJw5c75xvbFjx5InTx48PDw4ePDgG9eNjo6ON7JvREQEALGxscTGxqZI3Wrp1q0bY8eO5ejRo5w4cYKKn32GxYgRaA4eJPbKFShU6J32G/e5pPfPJ6OQ9jAv0h7mR9rEvKRWeyRnfxrl/4e9VYnBYKBly5Y8evSIQ28YjO7QoUO0b98ePz8/HB0d6datG48ePWLjxo2Jrj969GjGjBmTYPnKlSvJkiVLih6DGiZPnsyhQ4do1KgRnp6e1PzxR3L7+3Phyy8J+OwztcsTQgghUkRUVBQdO3YkPDwcBweHN65rNuGmT58+bN++nUOHDuHs7JzoOo8fP6Z8+fLMmjWLpk2bwouzF28KN4mduXFxceHevXtv/XDSg0OHDlG/fn1sbW0JCgoi5+bNWPTogVK6NM/PngWNJtn7jI2Nxdvbm0aNGmFpaZkqdYukk/YwL9Ie5kfaxLykVntERETg6OiYpHBjFpel+vXrx5YtWzhw4MBrgw1AYGAgQUFBtGjRwrTM8GI+JQsLCy5dukSxYsXibWNtbY21tXWCfVlaWmaIb4K6devi6uqKv78/K1euZFD37tC/P5qLF7E8fx4qVnznfWeUzyijkPYwL9Ie5kfaxLykdHskZ1+qdihWFIV+/fqxYcMG9u7dS5EiRd64funSpfH398fPz8/0aNmyJfXq1cPPzw8XF5c0q91caDQa023hs2bNwmBvDy1bGl+UjsVCCCEyIVXDjaenJ8uXL2flypXY29sTFhZGWFgYT58+Na3TpUsXvLy8ALCxsaFcuXLxHtmzZ8fe3p5y5cphZWWl4tGop1OnTjg4OBAQEMDu3btf3jW1ciXo9WqXJ4QQQqQpVcPN7NmzCQ8Pp27dujg5OZkeq1evNq0THBxMaGiommWavaxZs9K1a1d4cfYGd3fIlQvCwmDvXrXLE0IIIdKUqn1uktKXed++fW98fcmSJSlYUfrVt29fZsyYYZxvKiyMgl98AbNmGS9NNWqkdnlCCCFEmpG5pTKI0qVLm+abmjNnzstLU+vXQxJGfBZCCCEyCgk3GUhcx+IFCxYQXbEiFC0KkZGwebPapQkhhBBpRsJNBhJvvql162Q6BiGEEJmShJsMJMF8U506GV/YuRPu3FG3OCGEECKNSLjJYHr06IGlpSVHjx7lzJMnUK2a8XbwV+5AE0IIITIyCTcZTL58+fj0008h7rZwuTQlhBAik5FwkwH17dsXgBUrVvDI3R10OjhxAi5fVrs0IYQQItVJuMmAPvroI1xdXXn69CmLt241DuoHsGKF2qUJIYQQqU7CTQb06nxTs2fPxtChg/GF5cvBPCaBF0IIIVKNhJsM6tX5pnwcHMDODq5ehWPH1C5NCCGESFUSbjKoV+ebmr5wIbRta3xBOhYLIYTI4CTcZGBxHYu3bNnC7bj5pVavhpgYdQsTQgghUpGEmwzs1fmmZpw/D/nywf37xkH9hBBCiAxKwk0GF9exeN6iRTz//HPjQrk0JYQQIgOTcJPBvTrf1K7cuY0LN2+G8HC1SxNCCCFShYSbDO7V+aZ+2roVypSBZ89g/Xq1SxNCCCFShYSbTMA039SxY9yqX9+4UC5NCSGEyKAk3GQCr843Ne3uXeNCHx+4eVPdwoQQQohUIOEmk4jrWDzjn3+IrVHDOFLxX3+pXZYQQgiR4iTcZBK1atUyzTe139nZuFAuTQkhhMiAJNxkEq/ONzXi1CkUKys4exb8/dUuTQghhEhREm4ykbj5pk5fu8adKlWMC2WmcCGEEBmMhJtM5NX5phbFTcGwYgUYDOoWJoQQQqQgCTeZTNx8U+N8fdE7OEBICBw4oHZZQgghRIqRcJPJlC5dmgYNGvBUUfAtUsS4UDoWCyGEyEAk3GRCcWdvfgoKMi5Ys8Y4arEQQgiRAUi4yYRatmyJs7MzW8LDicyVCyIiYMsWtcsSQgghUoSEm0wobr4pBVhnbW1cKJemhBBCZBASbjKpr7/+GktLSybdumVcsG0b3L+vdllCCCHEe5Nwk0nFzTd1AQjOmRNiY419b4QQQoh0TsJNJhY3YvGsiAjjArk0JYQQIgOQcJOJxc03tez5cxSNBg4fhqtX1S5LCCGEeC8SbjKxuPmmQoEjNjbGhStXql2WEEII8V4k3GRycfNNzXv61Lhg+XJQFLXLEkIIId6ZhJtMLm6+qQ1AtFYLly6hOX1a7bKEEEKIdybhRtC3b18eA+tfTKCpkUtTQggh0jEJN8I031TcvVLa1avR6PUqVyWEEEK8Gwk3Al6cvdkF3NNo0Ny5Q+6zZ9UuSQghhHgnEm4EvJhvKp+zM3+96EzsvH+/2iUJIYQQ70TCjYBX5puKuzTldOwY3LunclVCCCFE8km4ESZff/01ZywsOANYREfzdMgQtUsSQgghkk3CjTDJly8fFSpWZMCL51lXrWLTDz+oXJUQQgiRPBJuhElISAi+vr4cApa9+OLI//PPhFy/rnZpQgghRJJJuBEmAQEBGF6MdTMcCAeqAk+mT1e7NCGEECLJJNwIkxIlSqDVGr8kbgOjXiwvvmgR3L+vam1CCCFEUqkabsaPH0/VqlWxt7cnT548tG7dmkuXLr1xm/nz5/Pxxx+TI0cOcuTIQcOGDTlx4kSa1ZyROTs7M2/ePHQ6HQB/AP8CukeP4Pvv1S5PCCGESBJVw83+/fvx9PTk2LFjeHt7ExsbS+PGjXny5Mlrt9m3bx8dOnTAx8eHo0eP4uLiQuPGjbl582aa1p5ReXh4EBAQwLhx46hTvz79XixX5s2DU6dUrk4IIYR4Ows133zHjh3xni9ZsoQ8efLg6+tL7dq1E91mxYoV8Z4vWLCAdevWsWfPHrp06ZJg/ejoaKKjo03PIyIiAIiNjSU2NjaFjiRjyZs3L66urnTq1Ilq1aqx/N49vlQUDH37oj94ELRyNTMtxX2dytereZD2MD/SJuYltdojOftTNdz8v/DwcABy5syZ5G2ioqKIjY197Tbjx49nzJgxCZbv2rWLLFmyvEe1Gd+///7L119/zbAJE2gJOJw8ydmhQwlu1Ejt0jIlb29vtUsQr5D2MD/SJuYlpdsjKioqyetqFOXFePsqMxgMtGzZkkePHnHo0KEkb9e3b1927tzJ+fPnsbGxSfB6YmduXFxcuHfvHg4ODilWf0YSGxuLt7c3jRo1wtLSkh49epBj6VKmAoacOdFfuADJCKDi/fx/ewh1SXuYH2kT85Ja7REREYGjoyPh4eFv/f1tNmduPD09OXfuXLKCzYQJE1i1ahX79u1LNNgAWFtbY21tnWC5paWlfBO8RdxnNH36dCrv24fH9euUe/AA7ZgxMGuW2uVlOvI1a16kPcyPtIl5Sen2SM6+zKLzRL9+/diyZQs+Pj44OzsnaZvJkyczYcIEdu3aRfny5VO9xszMwcGBhcuWvexcPGcO+PqqXJUQQgiROFXDjaIo9OvXjw0bNrB3716KFCmSpO0mTZrEuHHj2LFjB1WqVEn1OgXUrl2basOGsdJ4LZOYnj3hxYB/QgghhDlRNdx4enqyfPlyVq5cib29PWFhYYSFhfH06VPTOl26dMHLy8v0fOLEifz4448sWrSIwoULm7aJjIxU6Sgyj3HjxrGwdGkeA1anT6MsXqx2SUIIIUQCqoab2bNnEx4eTt26dXFycjI9Vq9ebVonODiY0NDQeNvExMTw2Wefxdtm8uTJKh1F5mFtbc3U1av56cUgf88GDYKHD9UuSwghhIhH1Q7FSblRa9++ffGeBwUFpWJF4m3Kly+P908/cd7Li7KRkYQPHEi2ZcvULksIIYQwMYsOxSJ9GTRsGPNcXQHI+uef6GXkYiGEEGZEwo1INp1Ox+DNm1lrYYEOCP30U+lcLIQQwmxIuBHvpHDhwugnTuQx4BwcTPBPP6ldkhBCCAESbsT7+HzwYNaXLQuA3dixPAsLU7skIYQQQsKNeHcajYZmO3dyWacjl17PqaZN1S5JCCGEkHAj3k/uAgW4P3o0ADX8/Di1YIHaJQkhhMjkJNyI91bjhx84WbQoOkDp14/wR4/ULkkIIUQmJuFGpIgPtm3jiUZD1ehoVjdvrnY5QgghMjEJNyJF2JUqxd1evQBodfgwm2VgPyGEECqRcCNSTOFp07ibMyd5gdBeveJNmyGEEEKkFQk3IuVYWZH9zz8B+PrZM8a1a5ekKTaEEEKIlCThRqQoy2bNCG/cGB3Q4fBh5s2dq3ZJQgghMhkJNyLFZVuwgFgrKz4GTgwcSEBAgNolCSGEyEQk3IiU5+KCbtQoAH6OiaFPx448f/5c7aqEEEJkEhJuRKrQDh1KbNGi5AM+OXWKCRMmqF2SEEKITELCjUgd1tZYzp4NQH9g3ejR+Pr6ql2VEEKITEDCjUg9jRujtG2LBfC7Xs+XnTrx9OlTtasSQgiRwUm4EalKM3Uqiq0tdYBKly7h5eWldklCCCEyOAk3InUVLIjmhx8AmAwsmjaN3bt3q12VEEKIDEzCjUh9Q4dCiRI4AaOA7t278/DhQ7WrEkIIkUFJuBGpz9oapk8HYCDgEBLCV199hY+PDyEhIWpXJ4QQIoORcCPSRpMm0Lo1FsAfwMaNG6lfvz6FChVi4cKFalcnhBAiA5FwI9LO1KkYbGyoB7R/schgMNCrVy85gyOEECLFSLgRaadwYYI6dIAXnYuzvlis1+u5cuWKqqUJIYTIOCTciDRl9d13XAEKACNfWZ4zZ04VqxJCCJGRSLgRacq5eHECBwwAYBDQ8MXyHj16EBkZqWptQgghMgYJNyLNuU+bxpO2bbEEttvaUi9bNk6cOEHbtm2Jjo5WuzwhhBDpnIQboQq7lSuhfn0snj5lp1ZLWVtbvL296dy5M3q9Xu3yhBBCpGMSboQ6rK1hwwZwc8Py4UNO5MhBfgsL1qxZg6enJ4qiqF2hEEKIdMriXTe8desWhw4d4s6dOxgMhnivDXjRp0KIN3JwgO3boWZNsgQF4V+sGIUCA5k7dy6Ojo789NNPalcohBAiHXqncLNkyRJ69eqFlZUVuXLlQqPRmF7TaDQSbkTSOTnBzp1QsyY5AwM5X7Ysxc6f5+eff8bR0ZFBgwapXaEQQoh05p0uS/3444+MHDmS8PBwgoKCuHbtmulx9erVlK9SZGwlS8LWrZAlCwXPn8e3QgUABg8ezJ9//ql2dUIIIdKZdwo3UVFRtG/fHq1WuuyIFPLhh/D336DTUd7PD+8qVeDFJJv//POP2tUJIYRIR94pnXh4eLBmzZqUr0Zkbp98AvPnA9Dw1CmWVamCXq/n888/5+DBg2pXJ4QQIp14pz4348ePp3nz5uzYsQNXV1csLS3jvT5lypSUqk9kNt27Q2gofP89X/r6cqtSJb49fZrmzZtz4MAB3Nzc1K5QCCGEmXvncLNz505KlSoFLzoRx3n1/0K8Ey8vuHULzcyZDD93jpuurszw98fd3Z3Dhw9TrFgxtSsUQghhxt4p3Pz2228sWrSIbt26pXxFQmg0MG0ahIWhWbeOaUFBhJYsydrLl2nUqBGHDx/GyclJ7SqFEEKYqXfqc2NtbU2tWrVSvhoh4uh0sHw51K6N5vFjVoWH83HBgly7dg13d3cePnyodoVCCCHM1DuFm4EDBzJjxoyUr0aIV9nYwKZNUK4cutu32W1hQZk8efD396d58+ZERUWpXaEQQggz9E6XpU6cOMHevXvZsmULZcuWTdCheP369SlVn8jssmc3jWJsdfUqJ8uXp0R0NEeOHOGzzz5j06ZNCb7+hBBCZG7vdOYme/bstG3bljp16uDo6Ei2bNniPYRIUc7OsGMH5MiB3b//cq5sWbLa2LB9+3a6d++eYPoPIYQQmds7nblZvHhxylcixJt88AH88w80bEjOI0e40LgxRffsYcWKFeTMmZNp06bJnXpCCCHgXc/cXLt2jYCAgATLAwICCAoKSom6hEioVi1YtQq0Wlx27eJ0ixYAzJgxQybZFEIIYfJO4aZbt24cOXIkwfLjx4/L7eEidbVqBbNnA+C6cSN72rUDYOTIkcx+sVwIIUTm9k7h5syZM4neCl69enX8/PySvJ/x48dTtWpV7O3tyZMnD61bt+bSpUtv3W7NmjWULl0aGxsbXF1d2bZtW7KPQaRjPXvC6NEA1F+3jpWffw6Ap6cnq1evVrk4IYQQanuncKPRaHj8+HGC5eHh4ej1+iTvZ//+/Xh6enLs2DG8vb2JjY2lcePGPHny5LXbHDlyhA4dOuDh4cGZM2do3bo1rVu35ty5c+9yKCK9GjkSevQAg4H2mzbxW5s2KIpC586d2blzp9rVCSGEUNE7hZvatWszfvz4eEFGr9czfvx4PvrooyTvZ8eOHXTr1o2yZcvi5ubGkiVLCA4OxtfX97XbTJs2jSZNmjBs2DDKlCnDuHHjqFSpEn/88ce7HIpIrzQamDULWrZEEx3NYB8fhjZpQmxsLG3btuXYsWNqVyiEEEIl73S31MSJE6lduzalSpXi448/BuDgwYNERESwd+/edy4mPDwcgJw5c752naNHjzJkyJB4y9zd3dm4cWOi60dHRxMdHW16HhERAUBsbCyxsbHvXGtGFve5pIvPZ9kydE2boj16lEn+/oR+/DErDx6kWbNm/PXXX2i1WooXL46zs7Palb6zdNUemYC0h/mRNjEvqdUeydmfRlEU5V3e5NatW/zxxx+cPXsWW1tbypcvT79+/d4YTN7EYDDQsmVLHj16xKFDh167npWVFUuXLqVDhw6mZbNmzWLMmDHcvn07wfqjR49mzJgxCZavXLmSLFmyvFOtwrxYPn7Mx15e2IeEEO7sTCMbG05euWJ6XaPR0LdvXxo1aqRqnUIIId5dVFQUHTt2JDw8HAcHhzeum6xws2jRIlq2bImjo2NK1BlPnz592L59O4cOHXrjX9nJDTeJnblxcXHh3r17b/1wMqvY2Fi8vb1p1KhR+hn9NzgYi9q10dy6RWSFCuT28+PZKy/rdDoCAgLS5RmcdNkeGZi0h/mRNjEvqdUeERERODo6JincJOuy1PLly+nbty+VKlWiVatWtGrVitKlS79vvfTr148tW7Zw4MCBt/7yyZcvX4IQc/v2bfLly5fo+tbW1lhbWydYbmlpKd8Eb5GuPqNixYyjGH/8MVn9/FgBtAPixi7W6/Vcv36dIkWKqFzou0tX7ZEJSHuYH2kT85LS7ZGcfSWrQ/HevXsJDQ2lb9+++Pr6Uq1aNUqUKMHQoUM5cOBAsofBVxSFfv36sWHDBvbu3ZukXzw1atRgz5498ZZ5e3tTo0aNZL23yIBcXWHTJhRra9oC/9/F/O7duyoVJoQQIi0l+26pHDly8OWXX/L3339z7949ZsyYwdOnT+nUqRN58uShS5curF279o23c8fx9PRk+fLlrFy5Ent7e8LCwggLC+Pp06emdbp06YKXl5fp+cCBA9mxYwe//fYbFy9eZPTo0Zw6dYp+/fol91BERlSnDpoVK1A0GvoAP7zyUtzXrRBCiIztnW4Fj2NlZUWTJk2YNWsWN27cYMeOHRQuXJhx48YxZcqUt24/e/ZswsPDqVu3Lk5OTqbHqwOxBQcHExoaanpes2ZNVq5cybx583Bzc2Pt2rVs3LiRcuXKvc+hiIzk00/RzJgBwDjgvqcnn7ZtS0xMDO3bt2fatGlqVyiEECIVJavPjcFgQKt9fR6qUqUKVapUYezYsUm6ZSspfZn37duXYFm7du1o92LYfSES5ekJDx/Cjz+Sc+ZM/u7WjUG9ezNjzhwGDRpESEgIEydOfOPXsxBCiPQpWT/ZLS0tuXPnjun5sGHDePDgwWvXFUJVP/wA8+aBVot2yRKmXb/Oby+GBZg8eTKdO3cmJiZG7SqFEEKksGSFm/8/0zJ37lwePXqU0jUJkXJ69IBNm8DWFs327Qz55x/+/uMPLCwsWLlyJc2aNTMN7CiEECJjeK9z8u84/p8Qaat5c/DxgVy54NQp2k2dyt5587Czs2PPnj3UqVMnXr8uIYQQ6Zt0OBCZw4cfwpEjUKQIBAby8YgRnJw5kzx58uDn50fNmjWTNCO9EEII85fsuaVGjhxpmrYgJiaGn3/+mWzZssVbJyl3SgmR5kqWhKNHoVkzOH2aMn374jd9OrUnTODKlSvUrFmTLVu2yJhJQgiRziUr3NSuXTveX7c1a9bk6tWr8dbRaDQpV50QKS1vXti3D9q1g507cerVi9O//UaDFSs4efIkDRo0YNWqVbRs2VLtSoUQQryjZIWbxG7Ljut3I6FGpBv29vDPP/D117BsGfaDBnHo++9p4+jItu3badOmDbNnz6Znz55qVyqEEOIdvHOfm4ULF1KuXDlsbGywsbGhXLlyLFiwIGWrEyK1WFrCkiXw3XcAWP38M/8UKMDX3bphMBjo1asXo0aNkk7zQgiRDr1TuBk5ciQDBw6kRYsWrFmzhjVr1tCiRQsGDx7MyJEjU75KIVKDRgM//wwzZ4JGg3bBAubdv8/Yb78FYOzYsfTo0YPnz5+rXakQQohkSHaHYl5MmzB//nw6dOhgWtayZUvKly9P//79GTt2bErWKETq6tsXnJygY0c0//zDj3fuUHDyZL4aPpyFCxcSFhbG6tWrsbOzU7tSIYQQSfBOZ25iY2OpUqVKguWVK1eWv3JF+tSmDezeDTlywPHjdJ07lx2zZ2NjY8PWrVupX7++zCouhBDpxDuFm86dOzN79uwEy+fNm0enTp1Soi4h0l6tWnD4MBQsCAEBNBo5kmOzZpEzZ05OnDhBrVq1EtwdKIQQwvy802UpXnQo3rVrF9WrVwfg+PHjBAcH06VLF4YMGWJaT8a8EelKmTIvx8I5exa3AQM48/vv1B43joCAAGrWrMm2bduoVKmS2pUKIYR4jXcKN+fOnTP9cA8MDATA0dERR0dHzp07Z1pPbg8X6VL+/LB/P3z6KezZQ8HevTkzeTL1Fi/m7Nmz1KlTh3Xr1tG4cWO1KxVCCJGIdwo3Pj4+KV+JEOYkWzbYtg26d4eVK8kxaBDHRo3ik5w52evjwyeffMKiRYvo3Lmz2pUKIYT4PzK3lBCvY2UFf/4Jw4YBYDNmDLtKlaLjF1/w/PlzunTpwnfffcfevXsJCQlRu1ohhBAvSLgR4k20Wpg0CX7/HTQadHPmsDw6mhEDBgAwfvx4GjRoQKFChVi4cKHa1QohhJBwI0QSDRwIq1eDlRWajRsZc/QoOV95OW5UYzmDI4QQ6pNwI0RStWsHu3ZBtmxYnzzJQaDgKy/r9XrWr1+vYoFCCCGQcCNEMtWpA4cO8dzJiQ+Ao0D5V14ePHgwkydPljmphBBCRRJuhEiucuWwOHGCBwUKkB84CHhoNHxYrRoGg4Fhw4bRtm1bwsPD1a5UCCEyJQk3QrwLZ2dynjvHs5o1cQAWKApHc+Vi6c8/Y2VlxcaNG6lcuTJ+fn5qVyqEEJmOhBsh3lX27NgcOAATJ4K1NZrt2+kyaRIXR4ygUMGCBAYGUqNGDRYtWqR2pUIIkalIuBHifeh0MHw4nDkD1apBeDhFxo3jcsmSfFmvHs+ePcPDwwMPDw+ePn2qdrVCCJEpSLgRIiWUKWOcdHPCBLCywmr3bpadPs2mtm3RajQsWrSIGjVqcOXKFbUrFUKIDE/CjRApxcICRowwnsWpWhVNeDgt16/ndrVquObMydmzZ6lcuTIbN25Uu1IhhMjQJNwIkdI++ACOHIHx48HKCsfjx/HT6xlXvDgRERG0adOGYcOG8fz5c7UrFUKIDEnCjRCpwcICvv0WTp+GKlXQhofzw5UrnCtaFCdg8uTJ1K9fn9DQULUrFUKIDEfCjRCpqWxZOHoUfvkFrKwoe/UqQXZ29LCx4eDBg1SsWJF9+/apXaUQQmQoEm6ESG0WFuDlBb6+ULkyVk+eMO/ZM3zs7dHcvk2DBg2YMGECBoNB7UqFECJDkHAjRFopVw6OHYOffwZLS+o+fswVKys6Ggx4eXnRunVrHj58qHaVQgiR7km4ESItWVjAd98Z++JUroxdTAx/Apu1Wk7+8w+VK1fm9OnTalcphBDpmoQbIdRQrpyxL864cWBpSQuDgf+0Wmpcu0bNGjWYN2+eTL4phBDvSMKNEGqxtIQffoBTp6BiRbIbDKwAVsXEMLJXL7p160ZUVJTaVQohRLoj4UYItZUvD8ePw9ixKJaWtAbOA7HLlvFhtWocOHAAf39/QkJC1K5UCCHSBQk3QpgDS0v48Uc0L87i5AJWAmPPn6dTw4b8+OOPFC9enIULF6pdqRBCmD0JN0KYk7izOGPGoOh0tHlxFqcDYDAY6NWrl5zBEUKIt5BwI4S5sbSEkSM5OWcOZ8B0Fuck0ESv56+VK9WuUAghzJqEGyHMVP4mTaiu0fAjEAlUAbYA9UaM4I8mTXgcEaF2iUIIYZYk3AhhppydnZk1fz7jdTqKAL9qNDzVaqkC9Nu5k6u5c3P2l19AbhkXQoh4JNwIYcY8PDwICAhg4LhxfBYYiG1YGMHt2xOl0eAWE4Pb999zPV8+nq1bJyFHCCFekHAjhJlzdnbG1dUVZ2dnyJ2bgn/9heHKFXa5ufEEKHTnDjaffcbjDz6Abdsk5AghMj0JN0KkQ1mLFqWxnx8nV69mjr09UYD9xYvwyScYqlWD7dsl5AghMi0JN0KkY3U//5wON27wQ8eO/ApEAdpTp6BZM6heXUKOECJTknAjRDqXLVs2pqxYQblt26iRNy+TX4QcTpwwhpwaNWDHDgk5QohMQ9Vwc+DAAVq0aEH+/PnRaDRs3LjxrdusWLECNzc3smTJgpOTE1999RX3799Pk3qFMGdNmzZl33//4d+lC0WAycBTjcY4KGDTphJyhBCZhqrh5smTJ7i5uTFz5swkrX/48GG6dOmCh4cH58+fZ82aNZw4cYIePXqkeq1CpAc5cuRg6dKlzNu4kcl581JEUZiq0RBjYfEy5NSsCTt3SsgRQmRYqoabpk2b8tNPP9GmTZskrX/06FEKFy7MgAEDKFKkCB999BG9evXixIkTqV6rEOlJq1atOH/+PPXat2eIolDw+XOW5cqFwdoajh2DJk2gVi3YtUtCjhAiw7FQu4DkqFGjBt999x3btm2jadOm3Llzh7Vr19KsWbPXbhMdHU10dLTpecSLUV1jY2OJjY1Nk7rTm7jPRT4f8/Cu7eHg4MCyZcto1aoV/fv3p+u9e3yn0/H3hx9S4+xZNEePgrs7hurVMfz4I0rDhqDRpNJRZBzy/WF+pE3MS2q1R3L2p1EU8/izTaPRsGHDBlq3bv3G9dasWcNXX33Fs2fPeP78OS1atGDdunVYWlomuv7o0aMZM2ZMguUrV64kS5YsKVa/EObs0aNHzJ07l6NHjwLwYcGCzC5ShPJHj6KLiQHgfunSXGrfnrtubhJyhBBmJyoqio4dOxIeHo6Dg8Mb101X4ebChQs0bNiQwYMH4+7uTmhoKMOGDaNq1aosXLgw0W0SO3Pj4uLCvXv33vrhZFaxsbF4e3vTqFGj14ZGkXZSqj0UReHvv/9m4MCBPHjwAEtLSyYNHky/qCh0CxagefYMAEONGsYzOQ0aSMhJhHx/mB9pE/OSWu0RERGBo6NjksJNurosNX78eGrVqsWwYcMAKF++PHZ2dnz88cf89NNPODk5JdjG2toaa2vrBMstLS3lm+At5DMyLynRHl9++SUNGzakV69ebN68mcGTJrGyalWm/vknBf/6C+etW9EePYq2WTNjn5zRo0FCTqLk+8P8SJuYl5Ruj+TsK12NcxMVFYVWG79knU4HL/4qFUK8Xb58+di4cSPLli0jW7ZsnDx5ko/ataPg+vW4xMRwvkEDsLaGw4ehUSOoXRv27JGOx0KIdEPVcBMZGYmfnx9+fn4AXLt2DT8/P4KDgwHw8vKiS5cupvVbtGjB+vXrmT17NlevXuXw4cMMGDCAatWqkT9/ftWOQ4j0RqPR0LlzZ7y9veMtv6kolPfx4dahQzBggDHkHDoEDRtKyBFCpBuqhptTp05RsWJFKlasCMCQIUOoWLEiI0eOBCA0NNQUdAC6devGlClT+OOPPyhXrhzt2rWjVKlSrF+/XrVjECI9i4yMTLDMYDDQ1cuL0G+/hcBA6N8/fsipUwf27pWQI4QwW6qGm7p166IoSoLHkiVLAFiyZAn79u2Lt03//v05f/48UVFR3Lp1i+XLl1OgQAGVjkCI9K1EiRIJLvUC7N69m1KlSjFl9Wpif/stfsg5eNDYD0dCjhDCTKWrPjdCiJTl7OzMvHnzTH3XdDodP/zwAx9++CGPHz9m6NChVKhQAZ/Ll2H6dGPI6dcPrKxehpy6dcHHR+1DEUIIEwk3QmRyHh4eBAUF4ePjQ1BQEOPGjePIkSMsXLgQR0dHLly4QP369fniiy8IURSYMcMYcjw9jSHnwAGoX98Ycv7vTKsQQqhBwo0QAmdnZ+rWrYuzszMAWq2Wr776isuXL9OvXz+0Wi1///03pUqVYsKECcTkyQN//BE/5OzfD/XqScgRQqhOwo0Q4rVy5MjBjBkz8PX1pVatWkRFReHl5YWrqyu7du0CZ2djyLlyBfr2jR9y6tUz/l8IIdKYhBshxFtVqFCBgwcPsmzZMvLmzcvly5dxd3enbdu2XL9+HVxcYObM+CFn3z7jWRwJOUKINCbhRgiRJHFj41y6dIlBgwah0+nYsGEDZcqUYdy4cTx79ix+yOnTBywtX4ac+vWNIUfurhJCpDIJN0KIZMmWLRtTp07Fz8+POnXq8PTpU0aOHEm5cuXYunWrcSUXF5g1yxhyevc2hhwfH2PIcXODadPg/n21D0UIkUFJuBFCvJNy5crh4+PDX3/9Rf78+QkMDKR58+a0aNGCwMBA40oFC8Ls2caQ06sX2NiAvz8MGgT580OHDsZRjw0GtQ9HCJGBSLgRQrwzjUZD+/btuXjxIsOHD8fCwoItW7ZQtmxZRo4cSVRUlHHFggVhzhy4dcvYAdnNDWJiYNUq46jHxYvDzz/DzZtqH5IQIgOQcCOEeG/29vZMnDgRf39/GjZsSHR0NOPGjeODDz5g48aNLye2zZHDeOv4mTNw6pTxkpWDA1y7Bj/8YAxBzZvDxo0QG6v2YQkh0ikJN0KIFFO6dGl27drF2rVrcXFx4fr167Rp04amTZty4MABfHx8CAkJAY0GKlc2XrIKDYWlS+Hjj42Xp7ZuhTZtjP12RoyAy5fVPiwhRDoj4UYIkaI0Gg2ffvop//33H99//z1WVlbs3LmTOnXqUL9+fQoVKsTChQtfbpAlC3TpYhzp+OJFGDYM8uSB27dh0iQoVco4j9Wff0LcZS4hhHgDCTdCiFRhZ2fHTz/9xO7du+MtNxgM9OjR42Wn41eVKmUMNCEhsH49NGsGWq0x+HTpYuyE7OkJp0+n3YEIIdIdCTdCiFT1/PnzBMsURaFmzZosXboUvV6fcCNLS+Olqa1b4fp1GDcOCheG8HDjLeaVK0OlSsb/P3qUNgcihEg3JNwIIVJViRIl0GoT/qi5c+cO3bp1w83Njc2bN7/sdPz/nJ2NnY0DA8HbG774wjgC8pkzxrM4Tk7GszoyQKAQ4gUJN0KIVOXs7My8efPQ6XQA6HQ6Zs2axcSJE8mePTvnz5+nVatWfPTRRxw8ePD1O9JqjbeNr1plvKX899+hbFl49szYH6duXeNlrYkTISws7Q5QCGF2JNwIIVKdh4cHQUFB+Pj4EBQURJ8+fRg+fDhXr17Fy8sLW1tbjhw5Qu3atWnevDn//vvvm3eYKxcMHGgcEPDYMfj6a8iaFQIC4NtvjWd7WreGLVsgkctiQoiMTcKNECJNODs7U7duXZydnU3LcuTIwS+//MKVK1fo3bs3Op2OrVu3UqFCBTp37sy1a9fevFONBj78EObPN95SvnAh1KgBej1s2gQtWkChQsbLWlevpv5BCiHMgoQbIYTq8ufPz+zZs/nvv//44osvUBSF5cuXU6pUKQYMGMDt27ffvpOsWeGrr+DIETh3DgYPNp7huXXLOPpxsWLGy1p//WW8lCWEyLAk3AghzEaJEiVYtWoVp06donHjxsTGxjJjxgyKFSvGyJEjiYiISNqOypaFKVOM0zn8/Tc0bmw8y7NnD3TsaLylfOBAeNvlLyFEuiThRghhdipXrszOnTvZs2cPVatW5cmTJ4wbN46iRYsydepUniX1zIu1NbRrBzt3Gi9LjRxpHPn44UOYPt04x1W1ajBvHiQ1OAkhzJ6EGyGE2apfvz7Hjx9n7dq1lCpVivv37zNkyBBKlSrFkiVLEh8j53UKF4YxY4zzWG3fDp9+ChYWcPKkccZyJ6eXl7XklnIh0jUJN0IIsxY3ncO5c+eYP38+BQoUIDg4mO7du1O+fHk2bdr0+jFyEqPTQZMmsHat8bLV5MlQurRxaofFi6FWLfjgA/jtN7h7NzUPTQiRSiTcCCHSBQsLC77++msCAgKYNGkSOXLk4MKFC7Ru3ZpatWpx4MABQkJCXk7OmRR58sDQoXDhAhw6BN26Gee6ungRvvkGChR4eVkrOWeJhBCqknAjhEhXbG1tGTZsWLwxco4ePUqdOnVwcXFJfHLOt9FojGdsFi823lI+dy5UrQqxscYzPE2aQNGiMHq0cToIIYRZk3AjhEiXsmfPzi+//EJgYCCdO3eO95rBYKBnz55JP4PzKgcH6NkTTpwAPz/o3x9y5IDgYBgzBouSJakxejSaRYuMM5cLIcyOhBshRLrm5ORE9+7dEyw3GAx89tlnHDly5N137uZmvKvq1i1YuRLq10ejKOTx88Oid29jJ+QaNWDCBOOlLemILIRZkHAjhEj3Xjc55/Hjx6lVqxb169dnz549yet4/CobG+jQAfbsIfa///ivQwcMlSsbw8yxY+DlZRxbp2RJYx+e/ftl2gchVCThRgiR7iU2Oecvv/zC119/jaWlJT4+PjRs2JCaNWuyZcuWdw85AMWKcfmLL9AfPQohITB7NjRtapyp/MoV4+CBdetC3rzG2crXrYPHj1PuYIUQbyXhRgiRIfz/5JxeXl7Mnz+fwMBA+vfvj42NDceOHaNFixZUrFiRNWvWJG+cnMQUKAC9e8O2bXDvnrHzcZcukDMnPHhgnK38s8/A0dEYgObMMd5+LoRIVRJuhBAZRmKTc7q4uDB9+nSCgoIYPnw4WbNm5ezZs3z++eeULVuWZcuWERsb+/5vbm9vHBhw6VJjR+P9+2HIEOOcVjExsGMH9OljnLG8alUYNw7OnpV+OkKkAgk3QohMIW/evEycOJHr168zatQosmfPzqVLl+jatSulSpVi7ty5REdHp8ybWVhA7drGgQADAoydjcePN3Y+1mjg1CnjVBAVKkCRIjBggHHeq5QIWUIICTdCiMwlZ86cjB49muvXrzNhwgTy5MnDtWvX6N27N0WLFuX333/nyZMnKfeGGg2UKQPffmuc2iE0FBYsgJYtwdbWOG7OjBnGGctz5zZ2XF61Ch49SrkahMhkJNwIITIlBwcHRowYwbVr15g2bRoFChTg1q1bDB48mMKFCzN+/HjCw8NT/o3z5gUPD9i0ydhPZ9Mm4/M8eSA83BhsOnQwBp1GjYzBRwYOFCJZJNwIITK1LFmyMGDAAAIDA5k3bx5Fixbl3r17fPfddxQqVIiRI0dy//791Hpz4xmcBQuMY+kcOQIjRhjP9Dx/Drt3Gy9ZFS5svIQ1ciT4+ko/HSHeQsKNEEIA1tbW9OjRg0uXLvHnn39SpkwZwsPDGTduHIUKFWLYsGGEhYUREhKCv7//u41+/CY6XfwBAS9fNk7qWbs2aLXGzsfjxkGVKuDiAn37Gjspp1Q/ISEyEAk3QgjxCgsLC7788kvOnTvH2rVrqVixIk+ePGHy5Mm4uLhQrFgxfvzxR4oXL568+auSq0SJlwMC3r5tvAvr00/Bzs54O3nc+DqOjsbJPf/803j7uRBCwo0QQiRGq9Xy6aef4uvry9atW6lUqRLPnz83DQD4XvNXJZejo3H8nLVrjf10tm2DXr2M0z9ERr4cXydPHuMAglOmQGBg6tclhJmScCOEEG+g0Who1qwZv/76a4LXDAYDzZo1Y/369e8/IGBS2di8HBAwJAROnoQffoDy5UGvN57pGToUihc3Tgnh5WWcIsJgSJv6hDADEm6EECIJSpYsmej8Vf7+/nz66aeUKFGC33//nYiIiLQrSqs19sGJGxDw6lWYNg3q1zf24blwwdiHp0YNyJ8fevSAf/6Bp0/TrkYhVCDhRgghkiCx+at+/fVXvvvuO3LmzMm1a9cYPHgwzs7ODBkyhKCgoLQv8tUBAe/eNc5k/sUX4OBg7LcTN75OrlzQujUsWgR37qR9nUKkMgk3QgiRRB4eHgQEBDBu3DgCAgL45ptv+Pnnn7lx4wZz5syhdOnSPH78mKlTp1KsWDE+++wzDh069H4Tdb6rHDleDgh49y7s2gX9+kHBgsYzN3Hj6+TLB7VqwaRJcPFi2tcpRCqQcCOEEMng7OyMq6trvPmrsmTJQq9evTh//jzbtm2jcePGGAwG1q1bx8cff0y1atVYuXJlysxh9S6srF4OCBgUBGfOwJgxUKmSccycV8fXKVUKhg2DgweNfXiESIck3AghRArRarU0bdqUnTt3cu7cOb7++musra05deoUnTp1okiRIkyYMIEHat6yrdHEHxDwxg2YNQvc3cHSMv74OnnzQrdusH698a4sIdIJCTdCCJEKypYty/z587lx4wZjx44lb9683Lx5Ey8vL5ydnenTpw+XLl1Su0zjLOV9+hgHBLx3D/7+G7780nhZ6/79l+PrODrCJ5/AvHnG0ZSFMGOqhpsDBw7QokUL8ufPj0ajYePGjW/dJjo6mu+//55ChQphbW1N4cKFWbRoUZrUK4QQyZU7d25+/PFHrl+/ztKlS6lQoQJPnz419dH55JNP2L17tzr9cv6fg8PLAQHv3AEfHxg8GIoWNY6EHDe+ToECUK0a/Pwz+PvLdBDC7Kgabp48eYKbmxszZ85M8jaff/45e/bsYeHChVy6dIm//vqLUqVKpWqdQgjxvqytrenSpQunT5/Gx8eHli1botFo2LZtG40aNaJ8+fIsXLiQZ8+eARASEoKPj0/aDBKYGAuLlwMCXrkC587BL7/Ahx8aX391fJ1ixWDQINi7F9TqVyTEKyzUfPOmTZvStGnTJK+/Y8cO9u/fz9WrV8mZMycAhQsXTsUKhRAiZWk0GurWrUvdunUJCAhg+vTpLF682NRHx8vLi+rVq7N161YMBgNarZZ58+bh4eGhZtHGAQHjBgUMC4MtW4x3XO3eDdeuGcfXmTYNsmeHZs2gVSto0sR4NkiINKZquEmuzZs3U6VKFSZNmsSff/6JnZ0dLVu2ZNy4cdja2ia6TXR0NNGvTCwXN8BWbGysencumLm4z0U+H/Mg7WFeUrI9ChcuzJQpUxg5ciSLFi1i1qxZBAcH888//5jWMRgM9OrVi/r168e7Q0tVuXJB167Gx5MnaHbvRrtlC5pt29DEja+zciWKpSVKnTooLVpg+OQT423oqUC+R8xLarVHcvanUcziQq/xr5kNGzbQunXr167TpEkT9u3bR8OGDRk5ciT37t2jb9++1KtXj8WLFye6zejRoxkzZkyC5StXriRLliwpegxCCPE+9Ho9q1ev5u+//07wWrNmzejYsSNZs2ZVpbYk0evJefky+U6cIN+JE9jfvBnv5UdFixJWtSphH35IeJEixjNCQiRRVFQUHTt2JDw8HIe3nBFMV+GmcePGHDx4kLCwMLJlywbA+vXr+eyzz3jy5EmiZ28SO3Pj4uLCvXv33vrhZFaxsbF4e3vTqFEjLC0t1S4n05P2MC+p3R4hISEUL14cQyJzQdna2vL555/To0cPqlatisbcw8GlS2i3bkXzzz9ojh5F88oxKc7OGJo3R2nRAqVOHeNYPO9IvkfMS2q1R0REBI6OjkkKN+nqspSTkxMFChQwBRuAMmXKoCgKISEhlChRIsE21tbWWFtbJ1huaWkp3wRvIZ+ReZH2MC+p1R5FihRh3rx59OrVC71ej06n44svvuDff//l3LlzLF261HTXVe/evenYsSP29vYpXkeKKFfO+BgxwjhK8tatsHkz7NyJJiQE3Zw5xglA7e2Nk4G2bGnsr5Mjxzu9nXyPmJeUbo/k7CtdjXNTq1Ytbt26ReQrg0ldvnwZrVZrPteihRDiPXl4eBAUFISPjw9BQUGsWLGCf//9l8OHD9O5c2esra3x8/Ojd+/e5M+fn969e+Pn56d22W+WO/fLAQHv3TN2SO7Z0zj9w+PHL8fXyZ3bOPHn778bJwIV4h2oGm4iIyPx8/MzfVNeu3YNPz8/goODAfDy8qJLly6m9Tt27EiuXLno3r07Fy5c4MCBAwwbNoyvvvrqtR2KhRAiPXJ2dqZu3bqmP9w0Gg01a9Zk2bJl3Lx5kylTplCyZEkiIyOZO3cuFStWpHr16ixevJioqCi1y38zW1vjgIBz58LNm3D8OHz3nfEsj17/cnydYsXA1RW+/x5OnIBELtUJkRhVw82pU6eoWLEiFStWBGDIkCFUrFiRkSNHAhAaGmoKOgBZs2bF29ubR48eUaVKFTp16kSLFi2YPn26ascghBBpLVeuXAwePJiLFy+yd+9ePv/8cywtLTl+/DhfffUV+fPnZ+DAgVy4cEHtUt9Oq40/IGBgIEydCvXqgU4Xf3wdZ2fjIIJbtxon/xTiNcymQ3FaiYiIIFu2bEnqkJRZxcbGsm3bNpo1aybXr82AtId5Mdf2uH37NosXL2bu3LkEBQWZln/88cf06tWLTz/9FBsbG1VrTLYHD2D7dmM/ne3bjZev4mTJYpwPq2VLYhs3ZtvJk2bXJplVan2PJOf3d7rqcyOEECJxefPm5dtvvyUwMJAdO3bQunVrdDodBw8e5Msvv8TZ2Zlhw4YREBBg2kb1UZDfJmdO6NQJVq82dkjeuRP69jWewYmKgg0boHt3LFxcqDdgALru3Y19dQ4cgBdjmonMScKNEEJkIFqtFnd3dzZs2MD169cZM2YMzs7O3L9/n8mTJ1OyZEkaNmxInz59KFSoEPXr16dQoUIsXLhQ7dLfzNoaGjeGmTMhOBhOn4ZRo6BiRTQGAw7BwWhXrDD21alTB7Jlg5IloX17mDgRvL2NE4GKTEEuS4kEzPW0e2Yl7WFe0mN7PH/+nG3btjFnzhx27NiR6CSdOp2OoKCgdHnnaWxwML7z5lFVp0P377/G4PNKf814ChaESpXiP5yc0rrkDM0cLkulq3FuhBBCJJ+FhQUtW7akZcuWBAUF8f3337Ny5cp46+j1en799VdGjRplmrsv3XBy4nbVqhiaNUMX98v03j04c8YYdOIeV64YQ09wMGzc+HL7fPmMIadixZeBp1AhGUE5HZNwI4QQmUjhwoWZOHEiq1atSjAK8vTp05kzZw4tWrSgW7duuLu7p5uzUwk4OkKjRsZHnPBw8POLH3r++884Eei2bcZHnBw5Ep7hKV7ceHeXMHsSboQQIpNxdnZOMAryZ599xsWLFzl79izr1q1j3bp15MmThy+//JKuXbtSvnx5tct+f9myGfvj1KnzcllUFMRdyop7nDsHDx/Cnj3GR5ysWaFChfiBp0wZsJBfpeZGWkQIITIhDw8P3N3duXLlCsWLFzf1tfHz82Pp0qWsWLGCO3fuMGXKFKZMmULFihXp1q0bHTp0IHfu3GqXn3KyZIHq1Y2PODExcP58/MBz9ixERsKhQ8ZHHBsbKF8+fuApV87YAVqoRsKNEEJkUs7Ozgk6EFeoUIEKFSowadIktm/fztKlS/nnn384c+YMZ86cYejQoTRv3pyuXbvSrFkzrN5jwkuzZWVl7H9TsSJ4eBiXPX8Oly7FDzxnzhjH3jlxwviIY2EBZcvGDzxubmBnp9ohZTYSboQQQiRgaWlp6oR87949Vq1axZIlS/D19WXjxo1s3LgRR0dHOnbsSLdu3ahQoYL5z1L+PuICS9my0LmzcZnBYJz/6tXAc/q08Zbzs2eNj8WLjetqNFC6dPzAU6ECZM+u6mFlVBJuhBBCvJGjoyP9+vWjX79+ppnJly9fTlhYGNOnT2f69Om4urrSrVs3OnXqRN68edUuOW1otcZOxsWLw+efG5cpCty4kfAMz61bxs7L//0HK1a83EfRogk7Lmeky34qkXAjhBAiycqVK8evv/7K+PHj2bVrF0uWLGHTpk34+/szdOhQhg8fTtOmTenWrRvNmzfn7t27BAQEUKJEiXQ5hk6yaTTGsXQKFoTWrV8uDwtLeGt6UJDxzM/Vq7B27ct1nZ1fBp2429MLFJBb05NBwo0QQohks7CwoFmzZjRr1owHDx6wevVqli5dyvHjx9myZQtbtmzBzs6OqKgoFEVBq9Uyb948POL6sGQ2+fJB06bGR5wHD14Gnrh/L1+GkBDjY/Pml+vmzp3wDE+RIhJ4XkPCjRBCiPeSM2dO+vTpQ58+fbh48SJLly5lyZIlhIWFmdYxGAz06NEDZ2dnGjdunLH75yRVzpzQoIHxEefxY2NfnVfP8Fy48HJurZ07X66bLVvCMzwlSxpnU8/kJNwIIYRIMaVLl2b8+PE0aNCARq8OoAcoikKTJk0oXbo07du3p3379pQqVUq1Ws2SvT189JHxEefpU/D3j39Z699/jYMS+vgYH3GyZEk4Fs8HH0B6HYzxHUm4EUIIkeJKly6NVquNNwqyRqPB0tKSixcvMnr0aEaPHk2FChVo3749X3zxBYULF1a1ZrNlawvVqhkfcWJjjWd0Xj3D4+dnHJTwyBHjI46V1cuxeOLO8Li6GvebQUm4EUIIkeISGwV57ty5tGvXjk2bNrFq1Sp27dqFn58ffn5+fPvtt9SoUYP27dvTrl07nGQyyzeztDSOnePmBt27G5fp9RAQkPDW9PBwOHXK+Iij0xnP6Pz/WDz29qodUkqScCOEECJVvG4U5M6dO9O5c2fu37/PunXrWLVqFfv27ePo0aMcPXqUQYMGUbduXTp06EDbtm3JlSuX2oeSPuh0xrF0SpeGjh2NyxQFrl1LGHju3jVe6vL3h6VLjetqNMY+O69OIFqxorFvUDoj4UYIIUSqSWwU5Di5cuWiZ8+e9OzZk9DQUNasWcNff/3FsWPH8PHxwcfHh759+9K4cWPat29Pq1atcHBwSPNjSNc0GuNYOkWLwmefGZcpinHcnf8PPCEhxlGYL12CVate7qNw4YR3apn5WEYSboQQQqjOycmJAQMGMGDAAK5du8bff//NqlWr8PPzY9u2bWzbtg0bGxs++eQT2rdvzyeffILtiz4jISEh+Pv7U758eYoUKaL2oZg/jcY4bk6BAtCixcvld+4kvDU9MNA4Hk9QEKxf/3Ld/Pnjn+GpVAlcXMzm1nSNoiiK2kWkpYiICLJly0Z4eLj8BfAasbGxbNu2jWbNmmGZyXrYmyNpD/Mi7ZG2/vvvP1avXs1ff/3F5cuXTcuzZs1Kq1atyJUrF3/88QcGg0HG0kkNjx4ZOyq/eobn4kXj2Z//lysXVKqE3s2N00CFsWOxTMFOy8n5/S3hRiQgP7zNi7SHeZH2UIeiKPj5+bFq1SpWrVpFcHBwouvpdDqCgoIyx2jIannyxDgWz6u3pp87Z5xc9IUYOzs0Dx5gmYITqybn97c2xd5VCCGESCUajYaKFSsyceJEgoKCOHLkCG3atEmwnl6vp3PnzqxevZrHjx+rUmuGZ2cHNWuCpycsXGgMOZGRxrux5s1D37MnIXXqqHqJSsKNEEKIdEWj0VCjRg2mT5+OVpvw19i+ffto3749uXPnpkWLFixevJh79+6pUmumYW0NlStDjx4Y/vgD/549VS1Hwo0QQoh0KW4sHd2L6QZ0Oh3ff/89I0aMoHjx4kRHR7Nlyxa++uor8uXLR4MGDZg5cyY3b95Uu3SRyiTcCCGESLc8PDwICAhg3LhxBAQE8NNPPzFhwgQuX76Mv78/Y8aMoUKFCuj1evbu3Uu/fv1wdnamevXqTJo0iStXrqh9CCIVSLgRQgiRrjk7O+Pq6hqvE7FGo6FcuXKMHDmSM2fOEBgYyOTJk6lZsyYAx48fZ8SIEZQoUYLy5cszevRo/v33XzLZPTYZloQbIYQQGV7RokUZOnQohw8f5tatW8yePZtGjRphYWFhOsPj5uZGiRIlGDZsGEePHo03L1ZISAg+Pj6EhISoehwiaSTcCCGEyFScnJzo3bs3u3bt4vbt2yxdupRWrVphY2MT7wyPs7Mznp6efPPNNxQqVIj69etTqFAhFi5cqPYhiLeQcCOEECLTypkzJ126dGHjxo3cu3ePtWvX0rFjRxwcHAgNDWXWrFn89ttvprM4BoOBXr16yRkcMyfhRgghhADs7Oz49NNPWbFiBXfu3GHbtm188sknCdbT6/W0aNGCKVOmxBs1WZgPCTdCCCHE/7G2tqZp06bMmTMn0bF0/Pz8GDp0KKVKlaJkyZIMGTKEvXv3EhMTo0q9Ij4JN0IIIcRrJDaWzi+//MK0adNo1KgRlpaWBAQEMHXqVBo0aEDu3Ln5/PPPWbZsGXfv3lW7/ExLZgUXQggh3sDDwwN3d3euXLlC8eLFTbecDxgwgMePH+Pt7c2WLVvYunUrd+7cYc2aNaxZswaNRkP16tVp3rw5zZs3x9XVFY2ZzJqd0Um4EUIIId7C2dk50ck47e3tadu2LW3btsVgMHDq1Cm2bNnCli1bOHPmDEePHuXo0aN8//33uLi4mIJOvXr1sE3BGbNFfHJZSgghhEgBWq2WatWqMXbsWE6fPs2NGzeYO3cuLVq0wNbWlhs3bjB79mw++eQTcuXKRcuWLZk3b55pOggZSyflyJkbIYQQIhU4OzvTs2dPevbsydOnT/Hx8eGff/5hy5YthISE8M8///DPP/8AULBgQW7cuIGiKGi1WubNm4eHh4fah5BuyZkbIYQQIpXZ2trSrFkzZs+eTXBwMH5+fvz0009Ur14dgODgYNPUDwaDgR49ejBp0iRu3LihcuXpk4QbIYQQIg1pNBrc3Nz4/vvvOXr0KOvWrUuwjqIojBgxgoIFC1KmTBkGDRrE9u3biYqKUqXm9EbCjRBCCKGiatWqJRhLR6PRUKlSJbRaLRcvXmTatGk0a9aMHDly0LBhQ3799VeZ6PMNJNwIIYQQKkpsLJ358+fj6+vLvXv3WLNmDT169KBgwYLExMSwZ88ehg8fjpubG/nz56dr166sXLlSxtV5hXQoFkIIIVT2urF0cuTIwWeffcZnn32GoihcunSJnTt3snPnTvbt20dYWBjLli1j2bJlprM9jRs3xt3dnRo1amBlZaX2oalCwo0QQghhBl43lk4cjUZD6dKlKV26NAMHDiQ6OppDhw6Zws6///6Lr68vvr6+jB8/nqxZs1K/fn3c3d1p3LgxxYsXJyQkhICAAEqUKPHG90rvJNwIIYQQ6ZC1tTUNGjSgQYMGTJo0idDQULy9vdm5cyfe3t7cvXuXzZs3s3nzZgAcHR25f/++6XbzCRMmMHTo0ETnzkrvJNwIIYQQGYCTkxNdunShS5cuGAwG/Pz8TGd1Dh06xL1790zrGgwGhg8fzvfff0/RokVf+8iaNauqx/SuJNwIIYQQGYxWq6VSpUpUqlQJLy8vtm7dSvPmzROsFxsby6VLl7h06VKi+8mTJ89rg0+BAgUSPesTEhKCv78/5cuXp0iRIqlyfG+jarg5cOAAv/76K76+voSGhrJhwwZat26dpG0PHz5MnTp1KFeuHH5+fqleqxBCCJFeubm5odVqMRgMpmU6nY5Dhw4RFRXF1atXEzzu37/PnTt3uHPnDseOHUuwTysrK4oUKRIv8Fy9epXZs2djMBgYNWqUaiMtqxpunjx5gpubG1999RVt27ZN8naPHj2iS5cuNGjQgNu3b6dqjUIIIUR6F3e7ea9evdDr9eh0OubOnWsaIbl+/foJtnn06BHXrl1LEHoCAwO5fv06MTExbzzrYzAY6NWrF+7u7mneeVnVcNO0aVOaNm2a7O169+5Nx44d0el0bNy48Y3rRkdHEx0dbXoeEREBL07FxcbGvkPVGV/c5yKfj3mQ9jAv0h7mR9okabp06UL9+vUJDAykWLFiODs7v/Ezs7Ozo1y5cpQrVy7Ba8+fPyckJIRr166ZAtDx48fZv39/vPX0ej0XL14kb968711/cto33fW5Wbx4MVevXmX58uX89NNPb11//PjxjBkzJsHyXbt2kSVLllSqMmPw9vZWuwTxCmkP8yLtYX6kTZLu33//5d9//02RfeXLl498+fJRsmRJDhw4EG/UZK1Wy/Xr19m2bdt7v09ypp5IV+EmICCAb7/9loMHD2JhkbTSvby8GDJkiOl5REQELi4uNG7cGAcHh1SsNv2KjY3F29ubRo0aYWlpqXY5mZ60h3mR9jA/0ibmQ6/X07dvX9Olr1mzZtGlS5cU2XfclZekSDfhRq/X07FjR8aMGUPJkiWTvJ21tTXW1tYJlltaWso3wVvIZ2RepD3Mi7SH+ZE2UV/Pnj1p1KgRK1asoFOnTil6t1Ry2jbdhJvHjx9z6tQpzpw5Q79+/eBFZyVFUbCwsGDXrl2JdogSQgghRNpxdnbG1dVV1RGQ0024cXBwwN/fP96yWbNmsXfvXtauXavavfRCCCGEMC+qhpvIyEiuXLlien7t2jX8/PzImTMnBQsWxMvLi5s3b7Js2TK0Wm2CHtt58uTBxsYm0Z7cQgghhMicVA03p06dol69eqbncR1/u3btypIlSwgNDSU4OFjFCoUQQgiR3qgaburWrRvvlrH/t2TJkjduP3r0aEaPHp0KlQkhhBAivcp4U4EKIYQQIlOTcCOEEEKIDEXCjRBCCCEyFAk3QgghhMhQJNwIIYQQIkORcCOEEEKIDEXCjRBCCCEylHQz/UJKiRtXJzmzi2Y2sbGxREVFERERIZPQmQFpD/Mi7WF+pE3MS2q1R9zv7TeNjxcn04Wbx48fA+Di4qJ2KUIIIYRIpsePH5MtW7Y3rqNRkhKBMhCDwcCtW7ewt7dHo9GoXY5ZioiIwMXFhRs3buDg4KB2OZmetId5kfYwP9Im5iW12kNRFB4/fkz+/PnRat/cqybTnbnRarWqTsOenjg4OMgPCjMi7WFepD3Mj7SJeUmN9njbGZs40qFYCCGEEBmKhBshhBBCZCgSbkQC1tbWjBo1Cmtra7VLEdIeZkfaw/xIm5gXc2iPTNehWAghhBAZm5y5EUIIIUSGIuFGCCGEEBmKhBshhBBCZCgSboQQQgiRoUi4EQnMnDmTwoULY2Njw4cffsiJEyfULilTOnDgAC1atCB//vxoNBo2btyodkmZ2vjx46latSr29vbkyZOH1q1bc+nSJbXLyrRmz55N+fLlTQPF1ahRg+3bt6tdlnhhwoQJaDQaBg0apMr7S7gR8axevZohQ4YwatQoTp8+jZubG+7u7ty5c0ft0jKdJ0+e4ObmxsyZM9UuRQD79+/H09OTY8eO4e3tTWxsLI0bN+bJkydql5YpOTs7M2HCBHx9fTl16hT169enVatWnD9/Xu3SMr2TJ08yd+5cypcvr1oNciu4iOfDDz+katWq/PHHH/BiLi4XFxf69+/Pt99+q3Z5mZZGo2HDhg20bt1a7VLEC3fv3iVPnjzs37+f2rVrq12OAHLmzMmvv/6Kh4eH2qVkWpGRkVSqVIlZs2bx008/UaFCBX7//fc0r0PO3AiTmJgYfH19adiwoWmZVqulYcOGHD16VNXahDA34eHh8OIXqlCXXq9n1apVPHnyhBo1aqhdTqbm6enJJ598Eu/3iBoy3cSZ4vXu3buHXq8nb9688ZbnzZuXixcvqlaXEObGYDAwaNAgatWqRbly5dQuJ9Py9/enRo0aPHv2jKxZs7JhwwY++OADtcvKtFatWsXp06c5efKk2qVIuBFCiOTy9PTk3LlzHDp0SO1SMrVSpUrh5+dHeHg4a9eupWvXruzfv18Cjgpu3LjBwIED8fb2xsbGRu1yJNyIlxwdHdHpdNy+fTve8tu3b5MvXz7V6hLCnPTr148tW7Zw4MABnJ2d1S4nU7OysqJ48eIAVK5cmZMnTzJt2jTmzp2rdmmZjq+vL3fu3KFSpUqmZXq9ngMHDvDHH38QHR2NTqdLs3qkz40wsbKyonLlyuzZs8e0zGAwsGfPHrmOLTI9RVHo168fGzZsYO/evRQpUkTtksT/MRgMREdHq11GptSgQQP8/f3x8/MzPapUqUKnTp3w8/NL02CDnLkR/2/IkCF07dqVKlWqUK1aNX7//XeePHlC9+7d1S4t04mMjOTKlSum59euXcPPz4+cOXNSsGBBVWvLjDw9PVm5ciWbNm3C3t6esLAwALJly4atra3a5WU6Xl5eNG3alIIFC/L48WNWrlzJvn372Llzp9qlZUr29vYJ+p/Z2dmRK1cuVfqlSbgR8XzxxRfcvXuXkSNHEhYWRoUKFdixY0eCTsYi9Z06dYp69eqZng8ZMgSArl27smTJEhUry5xmz54NQN26deMtX7x4Md26dVOpqszrzp07dOnShdDQULJly0b58uXZuXMnjRo1Urs0YQZknBshhBBCZCjS50YIIYQQGYqEGyGEEEJkKBJuhBBCCJGhSLgRQgghRIYi4UYIIYQQGYqEGyGEEEJkKBJuhBBCCJGhSLgRQgghRIYi4UYIkeHVrVuXQYMGvXGdwoUL8/vvv6dqHZcuXSJfvnw8fvw4WdtVr16ddevWpVpdQmQ0Em6EyIS6deuGRqNBo9FgaWlJkSJFGD58OM+ePVO7NNWcPHmSnj17pup7eHl50b9/f+zt7Vm3bh06nY6bN28mum6JEiVMU2788MMPfPvttxgMhlStT4iMQsKNEJlUkyZNCA0N5erVq0ydOpW5c+cyatQoVWuKiYlR7b1z585NlixZUm3/wcHBbNmyxTQPVcuWLcmVKxdLly5NsO6BAwe4cuUKHh4eADRt2pTHjx+zffv2VKtPiIxEwo0QmZS1tTX58uXDxcWF1q1b07BhQ7y9vU2vGwwGxo8fT5EiRbC1tcXNzY21a9eaXnN2djZNJhnnzJkzaLVarl+/DsCjR4/4+uuvyZ07Nw4ODtSvX5+zZ8+a1h89ejQVKlRgwYIFFClSBBsbGwDWrl2Lq6srtra25MqVi4YNG/LkyRPTdgsWLKBMmTLY2NhQunRpZs2a9dbjff78Of369SNbtmw4Ojry448/8urUev9/WWrKlCm4urpiZ2eHi4sLffv2JTIy0vT69evXadGiBTly5MDOzo6yZcuybdu2177/33//jZubGwUKFADA0tKSzp07JzoJ6qJFi/jwww8pW7YsADqdjmbNmrFq1aq3HqcQQsKNEAI4d+4cR44cwcrKyrRs/PjxLFu2jDlz5nD+/HkGDx7Ml19+yf79+9FqtXTo0IGVK1fG28+KFSuoVasWhQoVAqBdu3bcuXOH7du34+vrS6VKlWjQoAEPHjwwbXPlyhXWrVvH+vXr8fPzIzQ0lA4dOvDVV1/x33//sW/fPtq2bWsKIitWrGDkyJH8/PPP/Pfff/zyyy/8+OOPiZ4BedXSpUuxsLDgxIkTTJs2jSlTprBgwYLXrq/Vapk+fTrnz59n6dKl7N27l+HDh5te9/T0JDo6mgMHDuDv78/EiRPJmjXra/d38OBBqlSpEm+Zh4cHAQEBHDhwwLQsMjKStWvXms7axKlWrRoHDx584zEKIV5QhBCZTteuXRWdTqfY2dkp1tbWCqBotVpl7dq1iqIoyrNnz5QsWbIoR44cibedh4eH0qFDB0VRFOXMmTOKRqNRrl+/riiKouj1eqVAgQLK7NmzFUVRlIMHDyoODg7Ks2fP4u2jWLFiyty5cxVFUZRRo0YplpaWyp07d0yv+/r6KoASFBSUaO3FihVTVq5cGW/ZuHHjlBo1arz2eOvUqaOUKVNGMRgMpmUjRoxQypQpY3peqFAhZerUqa/dx5o1a5RcuXKZnru6uiqjR49+7fr/z83NTRk7dmyC5dWrV1e6du1qer5w4UIlS5YsSkRERLz1Nm3apGi1WkWv1yf5PYXIrOTMjRCZVL169fDz8+P48eN07dqV7t278+mnn8KLsylRUVE0atSIrFmzmh7Lli0jMDAQgAoVKlCmTBnT2Zv9+/dz584d2rVrB8DZs2eJjIwkV65c8fZx7do10z4AChUqRO7cuU3P3dzcaNCgAa6urrRr14758+fz8OFDAJ48eUJgYCAeHh7x9vnTTz/F22diqlevjkajMT2vUaMGAQEB6PX6RNffvXs3DRo0oECBAtjb29O5c2fu379PVFQUAAMGDOCnn36iVq1ajBo1in///feN7//06VPTZbdXffXVV6xdu9Z0B9WiRYto164d9vb28daztbXFYDAQHR39xvcRQshlKSEyLTs7O4oXL46bmxuLFi3i+PHjLFy4EF5cGgHYunUrfn5+pseFCxdM/W4AOnXqZAo3K1eupEmTJuTKlcu0Dycnp3jb+/n5cenSJYYNGxavjlfpdDq8vb3Zvn07H3zwATNmzKBUqVJcu3bNVNf8+fPj7fPcuXMcO3YsxT6boKAgmjdvTvny5Vm3bh2+vr7MnDkTXun0/PXXX3P16lU6d+6Mv78/VapUYcaMGa/dp6Ojoymkvap9+/bwok9OQEAAhw8fTnBJCuDBgwfY2dlha2ubYscpREYl4UYIgVar5bvvvuOHH37g6dOnfPDBB1hbWxMcHEzx4sXjPVxcXEzbdezYkXPnzuHr68vatWvp1KmT6bVKlSoRFhaGhYVFgn04Ojq+sR6NRkOtWrUYM2YMZ86cwcrKig0bNpA3b17y58/P1atXE+yzSJEib9zn8ePH4z0/duwYJUqUQKfTJVjX19cXg8HAb7/9RvXq1SlZsiS3bt1KsJ6Liwu9e/dm/fr1DB06lPnz57/2/StWrMiFCxcSLLe3t6ddu3YsWrSIxYsXU7JkST7++OME6507d46KFSu+8RiFEEYWahcghDAP7dq1Y9iwYcycOZNvvvmGb775hsGDB2MwGPjoo48IDw/n8OHDODg40LVrV3hxh1HNmjXx8PBAr9fTsmVL0/4aNmxIjRo1aN26NZMmTTIFhK1bt9KmTZsEnWvjHD9+nD179tC4cWPy5MnD8ePHuXv3LmXKlAFgzJgxDBgwgGzZstGkSROio6M5deoUDx8+NI0Lk5jg4GCGDBlCr169OH36NDNmzOC3335LdN3ixYsTGxvLjBkzaNGiBYcPH2bOnDnx1hk0aBBNmzalZMmSPHz4EB8fH1ONiXF3d+frr79Gr9cnCFQeHh58/PHH/Pfff4wYMSLR7Q8ePEjjxo1fu38hxCvU7vQjhEh7Xbt2VVq1apVg+fjx45XcuXMrkZGRisFgUH7//XelVKlSiqWlpZI7d27F3d1d2b9/f7xtZs2apQBKly5dEuwvIiJC6d+/v5I/f37F0tJScXFxUTp16qQEBwcryosOxW5ubvG2uXDhguLu7q7kzp1bsba2VkqWLKnMmDEj3jorVqxQKlSooFhZWSk5cuRQateuraxfv/61x1unTh2lb9++Su/evRUHBwclR44cynfffRevg/H/dyieMmWK4uTkpNja2iru7u7KsmXLFEB5+PChoiiK0q9fP6VYsWKKtbW1kjt3bqVz587KvXv3XltDbGyskj9/fmXHjh2Jvl6qVClFp9Mpt27dSvBaSEiIYmlpqdy4ceO1+xdCvKRRXh3oQQghRKqZOXMmmzdvZufOncnabsSIETx8+JB58+alWm1CZCRyWUoIIdJIr169ePToEY8fP05wN9Sb5MmT542X3IQQ8cmZGyGEEEJkKHK3lBBCCCEyFAk3QgghhMhQJNwIIYQQIkORcCOEEEKIDEXCjRBCCCEyFAk3QgghhMhQJNwIIYQQIkORcCOEEEKIDEXCjRBCCCEylP8BoZZ8rYd7KPYAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACSIUlEQVR4nOzdd1hURxfA4d/uUpRmR1AQVBC7scXYsWJvUexoNIq9JBpjEnsh1s9oYi/YW+xdROy9oGLvimJXEFDa3u+PFZRgQ4Fd4LzPcx/duzN3zzAgx7lzZ1SKoigIIYQQQqQRan0HIIQQQgiRlCS5EUIIIUSaIsmNEEIIIdIUSW6EEEIIkaZIciOEEEKINEWSGyGEEEKkKZLcCCGEECJNMdJ3AClNq9Vy//59LC0tUalU+g5HCCGEEJ9BURRevnxJrly5UKs/PjaT7pKb+/fvY29vr+8whBBCCPEF7t69i52d3UfLpLvkxtLSEtB9caysrPQcjWGKiopi586d1K5dG2NjY32Hk+5JfxgW6Q/DI31iWJKrP0JCQrC3t4/7Pf4x6S65ib0VZWVlJcnNB0RFRWFmZoaVlZX8Q2EApD8Mi/SH4ZE+MSzJ3R+fM6VEJhQLIYQQIk2R5EYIIYQQaYokN0IIIYRIU9LdnBshhEirYmJiiIqK0ncYKS4qKgojIyNev35NTEyMvsNJ976mP0xMTD75mPfnkORGCCFSOUVRePDgAS9evNB3KHqhKAo2NjbcvXtX1i8zAF/TH2q1mrx582JiYvJVMUhyI4QQqVxsYmNtbY2ZmVm6+wWv1WoJDQ3FwsIiSf7XL77Ol/ZH7CK7QUFB5MmT56u+jyW5EUKIVCwmJiYuscmWLZu+w9ELrVZLZGQkGTJkkOTGAHxNf+TIkYP79+8THR39VY+Ry3eBEEKkYrFzbMzMzPQciRBfL/Z21NfOnZLkRggh0oD0ditKpE1J9X0syY0QQggh0hRJboQQQgiRpkhyk4QCAwPx8/MjMDBQ36EIIUSqp1KpWL9+fbJ/jqOjI1OmTDGY64ivJ8lNEpk3bx4ODg5Ur14dBwcH5s2bp++QhBDCYD1+/Jju3buTJ08eTE1NsbGxwc3NjYMHD8aVCQoKom7dunqM8v28vb3JnDlzgvPHjx+na9euyfrZe/bsQaVSoVKpUKvVZMqUiZIlS/LLL78QFBSU6OulVAKZ0iS5SQKBgYF07doVrVYL6B6D8/T0lBEcIUSqkpKjz99//z2nT59m4cKFXLlyhY0bN+Lq6srTp0/jytjY2GBqaprssSSVHDlypNhTa5cvX+b+/fscP36cQYMGsWvXLooWLcq5c+dS5PMNnSQ3SeDq1atxiU2smJgYrl27pqeIhBDplaIohIWFJfqYPn16vNHn6dOnJ/oaiqJ8VowvXrxg//79jBs3jmrVquHg4MC3337L4MGDadSoUVy5d0cVbt26hUqlYtWqVVSuXJmMGTNStmxZrly5wvHjx6lWrRpWVlbUrVuXx48fx13D1dWVfv36xfv8Jk2a0LFjxw/GN3nyZIoVK4a5uTn29vb06NGD0NBQQDdy8sMPPxAcHBw3gjJ8+HAg4W2pO3fu0LhxYywsLLCyssLd3Z2HDx/GvT98+HC++eYbFi9ejKOjI5kyZaJVq1a8fPnyk19Da2trbGxsKFCgAK1ateLgwYPkyJGD7t27x5U5fvw4tWrVInv27GTKlImqVaty6tSpuPcdHR0BaNq0KSqVKu719evXady4MTlz5sTCwoKyZcuya9euT8ZkSCS5SQLOzs4JFipSq9U4OTnpKSIhRHoVHh6OhYVFoo+ePXvGG33u2bNnoq8RHh7+WTHGll+/fj0RERGJat+wYcP4448/OHXqFEZGRrRp04Zff/0VLy8v9u7dy7Vr1xg6dGiiv27vUqvVTJ06lfPnz7Nw4UJ2797NL7/8AkCFChWYMmUKVlZWBAUFERQUxIABAxJcQ6vV0rhxY549e8bevXvx8fHhxo0btGzZMl6569evs379ejZv3szmzZvZu3cvf/75Z6JjzpgxI926dePgwYM8evQIgJcvX9KhQwcOHDjAkSNHcHZ2pl69enHJ0/HjxwFYsGABQUFBca9DQ0OpV68evr6+nD59mjp16tCwYUPu3LmT6Lj0RVYoTgJ2dnbMnj0bT0/PuIWH7OzssLGx0XNkQghheIyMjPD29qZLly7MnDmTUqVKUbVqVVq1akXx4sU/WnfAgAG4ubkB0LdvX1q3bo2Pjw9lypTBysqKzp074+3t/VXxvTvS4+joyOjRo+nWrRvTp0/HxMSETJkyoVKpPvpvvK+vL+fOnePmzZvY29sDsGjRIooUKcLx48cpW7YsoEuCvL29sbS0BKB9+/b4+voyZsyYRMddsGBBQDfKZW1tTfXq1eO9P3v2bDJnzszevXtp0KABOXLkACBz5szx2lKiRAlKlCgR93rUqFGsW7eOjRs30qtXr0THpQ8ycpNEOnfuzK1bt1izZg1WVlbcuXOHv/76S99hCSHSGTMzM0JDQxN1XL58OcHos0aj4fLly4m6TmLmm3z//ffcv3+fjRs3UqdOHfbs2UOpUqU+mZi8m/zkzJkTgGLFisU7Fzty8aV27dpFjRo1yJ07N5aWlrRv356nT59+9sgUwMWLF7G3t49LbAAKFy5M5syZuXjxYtw5R0fHuMQGwNbW9ovjj70tGLsQ3sOHD+nSpQvOzs5kypQJKysrQkNDPzkCExoayoABAyhUqBCZM2fGwsKCixcvpqqRG0lukpCdnR3NmjVj8uTJAAwdOpSbN2/qOSohRHqiUqkwNzdP1FGgQAFmz56NRqMBdInNrFmzKFCgQKKuk9jVZTNkyECtWrUYMmQIhw4domPHjgwbNuyjdd7dbyj28/577t05kGq1OsFcoNgtK97n1q1bNGjQgOLFi7NmzRpOnjzJP//8A0BkZOTnN+4z/Xf/pP/GnxixSVPs3JkOHTrg7+/PX3/9xaFDh/D39ydbtmyfbMeAAQNYt24dY8eOZf/+/fj7+1OsWLFkaX9ykeQmGXTq1AlXV1fCw8Pp0aPHZ0+yE0IIfYkdffbz8+PWrVt07tw5xWMoXLgwYWFhSXrNHDlyxHtEOiYmhoCAgA+WP3nyJFqtlkmTJvHdd99RoEAB7t+/H6+MiYnJJ/c+KlSoEHfv3uXu3btx5y5cuMCLFy8oXLjwF7bmw169esXs2bOpUqVK3O2mgwcP0qdPH+rVq0eRIkUwNTXlyZMn8eoZGxsnaMvBgwfp2LEjTZs2pVixYtjY2HDr1q0kjzk5SXKTDFQqFbNmzcLU1JTt27ezYsWKhIUk4RFCGBg7OztcXV2xs7NL1s95+vQp1atXZ8mSJZw9e5abN2+yevVqxo8fT+PGjZP0s6pXr86WLVvYsmULly5donv37rx48eKD5Z2cnIiKimLatGncuHGDxYsXM3PmzHhlHB0dCQ0NxdfXlydPnrz3dlXNmjUpVqwYbdu25dSpUxw7dgwPDw+qVq1KmTJlvrpdjx494sGDB1y9epUVK1ZQsWJFnjx5wowZM+LKODs7s3jxYi5evMjRo0dp27YtGTNmTNAWX19fHjx4wPPnz+PqrV27Fn9/f86cOUObNm2+eDRJX/Sa3Hh5eVG2bFksLS2xtramSZMmXL58+ZP1Xrx4Qc+ePbG1tcXU1JQCBQqwdevWFIj48xUoUIA//vgD0E16i1u74e5d6NIF6tfXY3RCCKE/FhYWlCtXjv/9739UqVKFokWLMmTIELp06cLff/+dpJ/VqVMnOnToEJdY5MuXj2rVqn2wfIkSJZg8eTLjxo2jaNGiLF26FC8vr3hlKlSoQLdu3WjZsiU5cuRg/PjxCa6jUqnYsGEDWbJkoUqVKtSsWZN8+fKxcuXKJGmXi4sLuXLlonTp0vz555/UrFmTgICAeKNC8+bN4/nz55QqVYr27dvTp08frK2t411n0qRJ+Pj4YG9vT8mSJQHdo/BZsmShQoUKNGzYEDc3N0qVKpUkcacUlaLHeyZ16tShVatWlC1blujoaH777TcCAgK4cOEC5ubm760TGRlJxYoVsba25rfffiN37tzcvn2bzJkzx5vd/SEhISFkypSJ4OBgrKyskrpJCWItVaoU58+f54cffmD+/PkQGAiOjhATA+fOQdGiyRrDl4iKimLr1q3Uq1cvwf1gkfKkPwyLofXH69evuXnzJnnz5iVDhgz6DkcvtFotISEhWFlZJZgYLVLe1/THx76fE/P7W6+Pgm/fvj3ea29vb6ytrTl58iRVqlR5b5358+fz7NkzDh06FPcPS+zkKUNjYmLCnDlzqFixIgsWLKBdu3a6R/MaN4a1a2H6dN0hhBBCiCRjUOvcBAcHA5A1a9YPltm4cSPly5enZ8+ebNiwgRw5ctCmTRsGDRoUN9P/XREREfEWiQoJCQF0//v62Iz5pFKmTBk8PT2ZOXMmnp6enDx5ErOuXTFauxZl8WKiR42CZB5BSqzYr0tKfH3Ep0l/GBZD64+oqCgURUGr1aa6eRFJJfYGROzXQejX1/SHVqtFURSioqIS/E5PzM+cXm9LvUur1dKoUSNevHjBgQMHPliuYMGC3Lp1i7Zt29KjRw+uXbtGjx496NOnz3sfIRw+fDgjRoxIcH7ZsmUptgdIWFgYvXv35tmzZzRv3px2bdtSvXdvLAMDOdu1Kzfr1UuROIQQaY+RkRE2NjbY29tjYmKi73CE+CqRkZHcvXuXBw8eEB0dHe+98PBw2rRp81m3pQwmuenevTvbtm3jwIEDH52pX6BAgbh7crFZ3eTJk5kwYcJ7d0R938iNvb09T548SfY5N+/asGEDLVq0wMjIiKNHj1Ji3z40/fujFCpEtL8/JHJ9iOQUFRWFj48PtWrVMog5Bemd9IdhMbT+eP36NXfv3sXR0THdzrlRFIWXL19iaWmZ6LV2RNL7mv54/fo1t27dwt7e/r1zbrJnz274c25i9erVi82bN7Nv375PPoJoa2uLsbFxvOGqQoUK8eDBAyIjIxP8z8XU1PS9u8oaGxun6D9MzZs3p2nTpqxbt45uPbvx69TeNLA0w+TiRYwPHQJX1xSL5XOl9NdIfJz0h2ExlP6IiYlBpVKhVqvT7WTa2FsfsV8HoV9f0x9qtRqVSvXen6/E/Lzp9btAURR69erFunXr2L17N3nz5v1knYoVK3Lt2rV49/GuXLmCra2twQ/JTps2DUsrS46XPM73Wz3Y9kNl3RtvVr8UQgghxNfTa3LTs2dPlixZwrJly7C0tOTBgwc8ePCAV69exZXx8PBg8ODBca+7d+/Os2fP6Nu3L1euXGHLli2MHTuWnj176qMJiZI7d27G/TkOrutez3IK1f1l3Tr4zwqYQgghhPgyek1uZsyYQXBwMK6urtja2sYd7y5ydOfOnXhzaezt7dmxYwfHjx+nePHi9OnTh759+/Lrr7/qowmJ5unpSQl06/Fsf3KIJ9XK6da8mT1bz5EJIYQQaYNe59x8zlzmPXv2JDhXvnx5jhw5kgwRJT+1Ws3SyUsp+ndRFBuFcWXNmOCHLrn5/XcwgHv4QgiR3nXs2JEXL16wfv16fYfyxRwdHenXrx/9+vXTdygpTmZe6UGRIkWolaMWAFNDD6C1toagIEjFP0RCCJEYHTt2RKVSJTjq1Kmj79AA+Ouvv/D29tZ3GIBuYm5yJFnDhw+P+7obGRmRPXt2qlSpwpQpU+I9Zfw59uzZg0ql+ui+XSlJkhs9mdt3Lmgh0jqK2QWz6U7KxGIhRDpSp04dgoKC4h3Lly/Xa0wxMTFotVoyZcpE5syZ9RpLSihSpAhBQUHcuXMHPz8/WrRogZeXFxUqVODly5f6Du+LSXKjJ3my5aFCjgoADDS+iKLRwN69cP68niMTQoiUYWpqio2NTbwjS5YsgG4kwMTEhP3798eVHz9+PNbW1jx8+BAAV1dXevXqRe/evcmTJw/W1tYMGTIk3pSHiIgIBgwYQO7cuTE3N6dcuXLxpjt4e3uTOXNmNm7cSOHChTE1NeXOnTt07NiRJk2axJVzdXWld+/e9OvXjyxZspAzZ07mzJlDWFgYP/zwA5aWljg5ObFt27Z4bQwICKBu3bpYWFiQM2dO2rdvz5MnT+Jdt0+fPvzyyy9kzZoVGxsbhg8fHvd+7PZCTZs2RaVSxb2+fv06jRs3JmfOnFhYWFC2bFl27dqV6D6IXQQyV65cFCtWjN69e7N3714CAgIYN25cXLnFixdTpkwZLC0tsbGxoU2bNjx69AiAW7duxW1GmiVLFjQaDT169AB02yxVqlSJzJkzky1bNho0aMD169cTHWdiSXKjRz9V/wmA0BKww/zNNvSy15QQ4msoCoSF6edIwjVhXV1d6devH+3btyc4OJjTp08zZMgQ5s6dS86cOePKLVy4ECMjI3x9ffnf//7H5MmTmTt3btz7vXr14vDhw6xYsYKzZ8/SokUL6tSpw9WrV+PKhIeHM27cOObOncv58+cT7Jz97mdlz56dY8eO0bt3b7p3706LFi2oUKECp06donbt2rRv357w8HAAXrx4QfXq1SlZsiQnTpxg+/btPHz4EHd39wTXNTc35+jRo4wfP56RI0fi4+MDwPHjxwFYsGABQUFBca9DQ0OpV68evr6+nD59mjp16tCwYUPu3Lnz1V/7ggULUrduXdauXRt3LioqilGjRnHmzBnWr1/PrVu36NixI6B70GfNmjUAXL58mXv37sXtpB4WFsZPP/3EiRMn8PX1Ra1W07Rp0+TfJkNJZ4KDgxVACQ4O1ncoyuuo10pmr8wKw1G+yYeigKJYWChKSIhe44qMjFTWr1+vREZG6jUOoSP9YVgMrT9evXqlXLhwQXn16pXuRGio7t8SfRyhoZ8dd4cOHRSNRqOYm5vHO8aMGRNXJiIiQvnmm28Ud3d3pXDhwkqXLl3iXaNq1apKoUKFlOjoaOX58+dKTEyMMmjQIKVQoUKKoijK7du3FY1Go9y7dy9evRo1aiiDBw9WFEVRFixYoACKv79/gvgaN24c77MqVaoU9zo6OloxNzdX2rdvH3cuKChIAZTDhw8riqIoo0aNUmrXrh3vunfv3lUA5fLly++9rqIoStmyZZVBgwbFvQaUdevWffiL+UaRIkWUadOmxb12cHBQ/ve//32w/LBhw5QSJUq8971BgwYpGTNm/GDd48ePK4Dy8uVLRVEUxc/PTwHi+iH2z/96/PixAijnzp1773UTfD+/IzG/v2XkRo9MjUxpXaw1AP4l4DJAaCgsXqzXuIQQIiVUq1YNf3//eEe3bt3i3jcxMWHp0qWsWbOG169f87///S/BNb777rt4S/yXL1+eq1evEhMTw7lz54iJiaFAgQJYWFjEHXv37o13a8TExITixYt/Mt53y2g0GrJly0axYsXizsWOKMXerjlz5gx+fn7xPrtgwYIA8T7/v59ta2sbd40PCQ0NZcCAARQqVIjMmTNjYWHBxYsXk2TkBnRPM7/7dT158iQNGzYkT548WFpaUrVqVYBPft7Vq1dp3bo1+fLlw8rKKu62WlLF+SEGsf1CetahRAdmnJiBpqiG/22JYWYkKP/8g6p7d4Pab0oIkUqYmen+k6Svz04Ec3NznJycPlrm0KFDADx79oxnz55hbm7+2dcPDQ1Fo9Fw8uTJBDtMW1hYxP09Y8aMn7UH0n+X/4/dJuDd1/B2+4HQ0FAaNmwYb+5KLFtb249e91O3bQYMGICPjw8TJ07EycmJjBkz0rx5cyIjIz/Zjs9x8eLFuF0DwsLCcHNzw83NjaVLl5IjRw7u3LmDm5vbJz+vYcOGODg4MGfOHHLlyoVWq6Vo0aJJFueHSHKjZ9/m/haXbC5cfnqZFd+YMOlYJOYXLsC+ffAmMxZCiM+mUkEiEgBDdv36dfr378+cOXNYuXIlHTp0YNeuXfH2Kzp69Gi8OkeOHMHZ2RmNRkPJkiWJiYnh0aNHVK5cOaXDp1SpUqxZswZHR0eMjL78162xsTExMTHxzh08eJCOHTvStGlTQJdI3bp162vCjXPp0iW2b98etzvApUuXePr0KX/++Sf29vYAnDhxIl6d2O2P3o3z6dOnXL58mTlz5sR9/Q8cOJAkMX6K3JbSM5VKxe+Vf2dqnakMaDmEJW/Ov5o0Sa9xCSFEcouIiIjbdif2iH2SKCYmhnbt2uHm5sYPP/zAggULOHv2LJP+82/jnTt3+Pnnn7l69SrLly9n2rRp9O3bF4ACBQrQtm1bPDw8WLt2LTdv3uTYsWN4eXmxZcuWZG9fz549efbsGa1bt+b48eNcv36dHTt28MMPPyRIVj7G0dERX19fHjx4wPPnzwFwdnZm7dq1+Pv7c+bMGdq0afNFk3Sjo6N58OAB9+/f59y5c0ybNo2qVavyzTffMHDgQADy5MmDiYkJ06ZN48aNG2zcuJFRo0bFu46DgwMqlYrNmzfz+PFjQkNDyZIlC9myZWP27Nlcu3aN3bt389NPPyU6xi8hyY0BaF+iPb3L9WZw38HsKVwYAOPNm2W/KSFEmrZ9+/Z4W+/Y2tpSqVIlAMaMGcPt27eZNWsWoLuNM3v2bP744w/OnDkTdw0PDw9evXpFjRo16N27N3379qVr165x7y9YsAAPDw9+/vlnXFxcaNKkCcePHydPnjzJ3r5cuXJx8OBBYmJiqF27NsWKFaNfv35kzpw5UbtlT5o0CR8fH+zt7SlZsiQAkydPJkuWLFSoUIGGDRvi5uZGqVKlEh3j+fPnsbW1JU+ePLi6urJq1SoGDx7M/v37427d5ciRA29vb1avXk3hwoX5888/mThxYrzr5M6dmxEjRvDrr79ia2vLL7/8glqtZsWKFZw8eZKiRYvSv39/JkyYkOgYv4RKUZLw2b1UICQkhEyZMhEcHIyVlZW+w0nA39+f0JIlqQRcbtMGl6VLUzyGqKgotm7dSr169RK1xbxIHtIfhsXQ+uP169fcvHmTvHnzkiFDBn2Hk6JcXV355ptvmDx5MiEhIVhZWSUqaRDJQ6vVfnF/fOz7OTG/v+W7wEC8inrFnJNzGHd9HLcb1Acg84oVvHz2TM+RCSGEEKmLJDcGIkaJof+O/qwIWIHNuF48UavJqdXyb/v2+g5NCCGESFXkaSkDYWFiwcAKAzEzNqOYQylCWrYk+/LlOG7dyrFjx/j222/1HaIQQhiU2G0Ukn21W5HqSHJjQIa5Dov7u/W4cWhXrKCaotC0fXtWBQQYxP19IYQQwtDJbSlDZW9PVN26ANS4coXJkyfrOSAhhBAidZDkxsCER4Wz+Mxi/tj9B6b9+wPgAUwcNixFdlIVQgghUjtJbgxMYEggHus98DrgRdC3hVFcXLACmkdE4OnpSTp7cl8IIYRINEluDEyBbAUob1ceraJlacAyVD16ANBLpcLX15e//voLPz8/AgMD9RypEEIIYZgkuTFAHiU8AFh4ZiFK+/ZgZkYRRaEy0L9/f6pXr46DgwPz5s3Tb6BCCCGEAZLkxgC1LNISU40pAY8COP36JrRrB0DPd8potVo8PT1lBEcIkS55e3uTOXNmfYchDJQkNwYoS8YsNHJpBMCiM4vgza2pZoDNO+ViYmK4du1aygcohBBJ4O7du3Tq1IlcuXJhYmKCg4MDffv25enTp/HKOTo6MmXKFL3EuGfPHlQq1UeP2PV21qxZg6urK5kyZcLCwoLixYszcuRInv1npflXr16RNWtWsmfPTkRERILPdHR0jLt2xowZcXR0xN3dnd27d6dEk9MESW4MVIcSHQBYdm4ZUUULE1G2LMZAl3fKaDQanJyc9BKfEEJ8jRs3blCmTJm43byvXbvGzJkz8fX1pXz58gkSgpQSFRUV73WFChUICgqKO9zd3alTp068cxUqVOD333+nZcuWlC1blm3bthEQEMCkSZM4c+YMixcvjnfNNWvWUKRIEQoWLMj69evfG8fIkSMJCgri8uXLLFq0iMyZM1OzZk3GjBmTXE1PW5R0Jjg4WAGU4OBgfYfyUVExUYr1BGuF4SgbLm1QlGXLFAWUQFCMQAGU6dOnJ8tnR0ZGKuvXr1ciIyOT5foicaQ/DIuh9cerV6+UCxcuKK9evdJ3KIlSp04dxc7OTgkPD493PigoSDEzM1O6deumKIqiVK1aVeHNv3mxh6IoyoIFC5RMmTIp27dvVwoWLKiYm5srtWvXVu7fvx/venPmzFEKFiyomJqaKi4uLso///wT997NmzcVQFmxYoVSpUoVxdTUVFmwYMFH4+7QoYPSuHHjeOeOHj2qAMqUKVPeW+f58+fxXru6uiozZ85UZsyYodSqVStBeQcHB+V///tfgvNDhw5V1Gq1cunSpY/GqG8xMTHK8+fPlZiYmETX/dj3c2J+f8vIjYEyUhvRtlhbQDexmGbNwNqa3ECHN/eZTU1N9RegEMKghUWGJfqI1kbH1Y/WRhMWGcarqFefdd3EePbsGTt27KBHjx5kzJgx3ns2Nja0bduWlStXoigKa9euxc7OLm4kIygoKK5seHg4EydOZOHChWzZsoW7d+8yYMCAuPeXLl3K0KFDGTNmDBcvXmTs2LEMGTKEhQsXxvvMX3/9lb59+3Lx4kXc3NwS1ZbYz7GwsKDHmykE//Xu3KDr169z+PBh3N3dcXd3Z//+/dy+ffuzPqdv374oisKGDRsSHWN6I9svGLAOJTrwvyP/Y9PlTTzThpG1SxcYM4Yh2bIx78ULpk+fTqdOnfQdphDCAFl4WSS6zqrmq2hRpAUA6y6uw/1fd6o6VGVPxz1xZRz/cuRJ+JMEdZVhn78G19WrV1EUhUKFCr33/UKFCvH8+XMeP36MtbU1Go0GS0tLbGxs4pWLiopi5syZ5M2bl5CQEHr27MmoUaPi3h82bBiTJk2iWbNmAOTNm5cLFy4wa9YsOnToEFeuX79+cWW+xNWrV8mXL99nbZEzf/586tatS5YsWQBwc3NjwYIFDB8+/JN1s2bNirW1Nbdu3friWNMLGbkxYCVsSlAiZwmitFGsCFgBnp6gVuNw/TqFTEw4efIkx48f13eYQgjxRZSvXJTUzMyM/Pnzx722sbHh0aNHAISFhXH9+nU6d+6MhYVF3DF69OgEq72XKVPmq+L43HbExMSwcOFC2r15AhagXbt2eHt7f/bmn4qioFKpvijO9ERGbgxchxId+GnnTyw8s5AeZXtAzZqwcyejChak+dmzzJgxg7Jly+o7TCGEgQkdHJroOqZGb291Ny3UlNDBoahV8f8PfKvvra8NDScnJ1QqFRcvXqRp06YJ3r948SJZsmQhR44cH73Of0dKVCpVXKIRGqpr/5w5cyhXrly8chqNJt5rc3PzRLfhXQUKFODAgQNERUV9dPRmx44d3Lt3j5YtW8Y7HxMTg6+vL7Vq1fro5zx9+pTHjx+TN2/er4o3PZCRGwPXplgbNCoNAY8CeBj6ENq3B6DemycJli9frrenCoQQhsvcxDzRh5H67f93jdRGmJuYk9E442ddNzGyZctGrVq1mD59Oq9exZ/T8+DBA5YuXUrLli3jRihMTEyIiYlJ1GfkzJmTXLlycePGDZycnOIdSZ0ctGnThtDQUKZPn/7e91+8eAHAvHnzaNWqFf7+/vGOVq1afdairH/99RdqtZomTZokYfRpk4zcGLicFjnZ2nYr5e3KY2lqCU2agJkZGQMDaevkxNJr11i4cCH932yyKYQQqcHff/9NhQoVcHNzY/To0eTNm5fz588zcOBAcufOHe+RZ0dHR/bt20erVq0wNTUle/bsn/UZI0aMoE+fPmTKlIk6deoQERHBiRMneP78OT/99FOStaVcuXL88ssv/Pzzz9y7d4+mTZuSK1euuMfbK1WqRJs2bdi0aRMbN26kaNGi8ep7eHjQtGlTnj17RtasWQF4+fIlDx48ICoqips3b7JkyRLmzp2Ll5eXLAHyGWTkJhWonb+2LrEBsLCAN8O4g+3sAJgxY8Zn368VQghD4OzszIkTJ8iXLx/u7u7kz5+frl27Uq1aNQ4fPhz3Sx50a77cunWL/Pnzf/JW1bt+/PFH5s6dy4IFCyhWrBhVq1bF29s7WW7rjBs3jmXLlnH06FHc3NwoUqQIP/30E8WLF6dDhw4sWrQIc3NzatSokaBujRo1yJgxI0uWLIk7N3ToUGxtbXFycqJ9+/YEBwfj6+vLoEGDkjz2tEilfO2MrlQmJCSETJkyERwcjJWVlb7DSbTX0a/J4LsX6tRByZqVbJGRPA8NxcfHh5o1aybJZ0RFRbF161bq1av3WbP/RfKS/jAshtYfr1+/5ubNm+TNm5cMGTLoOxy90Gq1hISEYGVlhVot/2fXt6/pj499Pyfm97d8F6QSu2/upuSsknTd1BVq1ICcOVE9e8bYqlUB3eiNEEIIISS5STXMjM3wf+DP5iubiVRpoU0bAFpH6xbd2rBhA/fu3dNniEIIIYRBkOQmlSiXuxwLGi/gau+rmGhM4nYKz7R3L3UrVCAmJoY5c+boOUohhBBC/yS5SSVUKhUdv+lINrNsuhMlS0KhQvD6NcPezLyfPXt2gk3fhBBCiPRGkptUSosSt+ZN2StXsLa2JigoiI0bN+o5MiGEPqSzZ0NEGpVU38eS3KQyW65socK8Cnjt94qbd6Peu5ef3d0BmVgsRHoT+8RWeHi4niMR4utFRkYCCVeRTixZxC+VeRL+hMOBh3kS/oTfKv+GqmpV2LuXLubmDFar8fX15fLly7i4uOg7VCFECtBoNGTOnDluTyUzM7N0t/eQVqslMjKS169fy6PgBuBL+0Or1fL48WPMzMwwMvq69ESSm1Tm+8Lf03NrT64+u8qRwCOUb9cO9u4ly+bN1K9Xj02bNzNz5kz+97//6TtUIUQKid0tOzbBSW8UReHVq1dkzJgx3SV2huhr+kOtVpMnT56v7kdJblIZCxMLvi/8PYvOLGLhmYWUb/4n9OoF58/zS7dubNq8GW9vb8aMGYOZmZm+wxVCpACVSoWtrS3W1tbp8qGCqKgo9u3bR5UqVQxiYcX07mv6w8TEJElG3yS5SYU6lOjAojOLWHl+JVPqTCFDw4bw779UfLOq482bN1mxYgWdOnXSd6hCiBSk0Wi+eq5CaqTRaIiOjiZDhgyS3BgAQ+gPuTmZCrk6umJvZc+L1y/YeHlj3Jo3quXL6d61KyATi4UQQqRfktykQmqVmvbFdY+BLzqzCOrWhaxZISiIrk5OmJqacuLECY4fP67nSIUQQoiUJ8lNKuVRwgOA7de28zDyObRsCUCmTZto0aIFIKM3Qggh0ie9JjdeXl6ULVsWS0tLrK2tadKkCZcvX/7s+itWrEClUtGkSZPkC9JAuWR34Tu774hRYlh6bmncrSnWrKFnx44ALF++nGfPnukvSCGEEEIP9Jrc7N27l549e3LkyBF8fHyIioqidu3ahIWFfbLurVu3GDBgAJUrV06BSA1ThxIdAFh4ZiGULw/58kFYGOUePKBEiRK8fv2ahQsX6jlKIYQQImXpNbnZvn07HTt2pEiRIpQoUQJvb2/u3LnDyZMnP1ovJiaGtm3bMmLECPLly5dC0Roe9yLumGhMOPvwLP4Pz7ydWLxkCd27dwd0t6a0Wq0+wxRCCCFSlEE9Ch4cHAxA1qxZP1pu5MiRWFtb07lzZ/bv3//RshEREURERMS9DgkJAXTP4af29SAsjSxp4NyAtZfW4n3amwktu2I8ciTKzp20nDKFgZaWXL16lZ07d1KjRo3Pvm7s1yW1f33SCukPwyL9YXikTwxLcvVHYq5nMMmNVqulX79+VKxYkaJvdrl+nwMHDjBv3jz8/f0/67peXl6MGDEiwfmdO3emiUXuCkUUwkxtxr3b99gaeZXKBQqQ9coV7k6YQOXKldm6dSsjRoyIl+B9Lh8fn2SIWHwp6Q/DIv1heKRPDEtS90di9k9TKQaylWz37t3Ztm0bBw4cwM7O7r1lXr58SfHixZk+fTp169YFoGPHjrx48YL169e/t877Rm7s7e158uQJVlZWSd6OlBatjSZaG00GowwAqKdPR9OvH9pSpTg7bx4lS5ZEo9Fw7do1cufO/VnXjIqKwsfHh1q1asmCWAZA+sOwSH8YHukTw5Jc/RESEkL27NkJDg7+5O9vgxi56dWrF5s3b2bfvn0fTGwArl+/zq1bt2jYsGHcudj5JEZGRly+fJn8+fPHq2NqaoqpqWmCaxkbG6eJHwJj/tOGNm1gwADUp07xjakpVapUYd++fXh7ezN8+PDEXTuNfI3SCukPwyL9YXikTwxLUvdHYq6l1wnFiqLQq1cv1q1bx+7du8mbN+9HyxcsWJBz587h7+8fdzRq1Ihq1arh7++Pvb19CkVueBRF4dDdQ7ywNIY6dXQn35lYPGfOHLkfLYQQIl3Qa3LTs2dPlixZwrJly7C0tOTBgwc8ePCAV69exZXx8PBg8ODBAGTIkIGiRYvGOzJnzoylpSVFixbFxMREX03Ru6Yrm1JxfkVWBKyA9rrVi1m6lGZNmmBtbc39+/fZuHGjfoMUQgghUoBek5sZM2YQHByMq6srtra2ccfKlSvjyty5c4egoCA9Rpk6VM5TGTNjM569egYNG4KlJdy+jcnx4/z444+ArFgshBAifdDrnJvPmcu8Z8+ej77v7e2dNMGkcl1Ld6Vr6a5YmlrqTjRvDgsWwOLFdP39d7y8vPD19eXy5cu4uLjoN1ghhBAiGcneUmmEpanl28QG3t6aWrUKh5w5adCgAQAzZ87UQ3RCCCFEypHkJg06+/As2iqVwc4OgoNhy5a4icXe3t6JWitACCGESG0kuUlDFEXB1duVEjNLsOfOPmjbVvfGkiW4ubmRN29eXrx4wYoVK/QbqBBCCJGMJLlJQ1QqFQWzFwTebKYZu1P4li2oX7ygW7dugEwsFkIIkbZJcpPGxO4UvubCGkILOEKJEhAVBatW8cMPP2BiYsKJEyc4fvy4fgMVQgghkokkN2nMd3bf4ZzVmbCoMNZcWPN2YvGSJeTIkYMWLVoAMnojhBAi7ZLkJo1RqVR4lPAAYNHZRdC6NajVcPAg3LhBjx49AFi+fDnPnz/XZ6hCCCFEspDkJg1qX1w3WuN304875tFQo4bujaVLKV++PMWLF+f169eyRpAQQog0SZKbNMghswPVHKuhoLD4zOK3E4sXL0YFcaM3M2bMiNt4VAghhEgrJLlJo2JvTS08sxClSRPImBGuXoXjx2nbti2WlpZcvXqV3bt36zdQIYQQIolJcpNGfV/oe8yMzbj67CpHQy5A06a6N5YswcLCgvZvJhrLxGIhhBBpjSQ3aZSlqSXfF/oegIX+76x5s2IFREXFrVi8YcMG7t27p68whRBCiCQnyU0aFrvmzYrzK3hdrTJYW8Pjx7BzJ0WLFqVy5crExMQwZ84cPUcqhBBCJB1JbtIwV0dX7KzsePH6BZuub9M9Fg6weDFA3OjNnDlziIqK0leYQgghRJKS5CYN06g19C3Xl/7f9aeETYm3t6Y2bICQEJo1a4a1tTX3799n48aN+g1WCCGESCKS3KRxAyoMYLLbZApkKwClS0PBgvD6Naxdi6mpKZ07dwZkYrEQQoi0Q5Kb9ESlirfmDYCnpycqlQpfX18uX76sx+CEEEKIpCHJTToQo41h141d/Ob7G7Rtqzvp5weBgTg4OFC/fn0AZs6cqccohRBCiKQhyU06EBwRTP1l9fE64MWZDMFQuTIoCixbBrydWOzt7U14eLg+QxVCCCG+miQ36UDWjFnxKO5B9zLdsTCxeHtraskSANzc3MibNy8vXrxgxYoVeoxUCCGE+HqS3KQTcxrNYXr96eTPmh9atAATEzh3Ds6eRaPR4OnpCcjEYiGEEKmfJDfpUZYs0KCB7u9vJhZ36tQJExMTTpw4wYkTJ/QYnBBCCPF1JLlJRxRF4eCdg8w6MQve7C3FsmUQE0OOHDlo0aIFALNmzdJjlEIIIcTXkeQmHTn78CyVFlSiz/Y+PK/2nW4E5/593ZNTvJ1YvGLFCo4dO0ZgYKA+wxVCCCG+iCQ36UjxnMUpal2UyJhIVl5dD+7uujfeTCyuUKECdnZ2REREMHbsWJycnJg3b57+AhZCCCG+gCQ36YhKpYrbTHPhmYVvb02tWQPh4dy7dy/eDuFarRZPT08ZwRFCCJGqSHKTzrQt1ha1Ss2RwCNccckOefNCaChs2MDVq1dRFCVe+ZiYGK5du6anaIUQQojEk+QmnbG1tKV2/toALDq7ON6aN87OzqjV8b8l1Go1Tk5OKR2mEEII8cUkuUmHYm9NLT67GG2b1rqTO3ZgZ2zM7Nmz0Wg0cWXt7e3JmTOnPsIUQgghvogkN+lQY5fGZDLNxJ3gO+wxDYKyZSEmBlaupHPnzly9epVffvmFTJkycfv2bcaOHavvkIUQQojPJslNOpTROCPuRXRPSi06s+jtxOI3C/rZ2dlRoUIFpk6dCsDo0aM5efKkXmIVQgghEkuSm3Qq9tbUvxf+JbRZA9Bo4MQJuHQprkyrVq1o3rw50dHRdOjQgdevX+srXCGEEOKzSXKTTlWwr0D+LPkJiwpj7ZP9UKeO7o2lS+PKqFQqpk+fjrW1NefPn2fYsGF6ilYIIYT4fJLcpFMqlQqPEh7AmzVv3t0pXKuNK5cjRw5mz54NwIQJEzh48GCKxyqEEEIkhiQ36VhscuN3048H1b8FS0u4dQvV4cPxyjVu3JgOHTqgKAodOnQgLCxMH+EKIYQQn0WSm3TMMbMjcxrO4UrvK9hY54PvvwdA9c6tqVhTpkzBzs6O69evM2jQoJQOVQghhPhsktykcz+W+hGnrG8W6Xtza0r977+oo6LilcucOXPcPlP//PMPu3btStE4hRBCiM8lyY2Io1StCrlzo3rxgpzvefS7du3acTuHd+rUieDg4JQOUQghhPgkSW4EJ+6foNnKZvy0ayC0aQOA3Z497y07fvx48ufPz927d+nXr1/KBSmEEEJ8JkluBC9ev2DdpXUsPLOQyDYtAbA5cQLu3ElQ1sLCAm9vb1QqFd7e3mzcuDGlwxVCCCE+SpIbQTXHagytMpS9Hfdi8k1ptJUro46ORjNw4HvLV6pUiZ9//hmArl278uTJk5QMVwghhPgoSW4EGrWGEdVGUCxnMQBi/vc/tGo16nXrYMeO99YZNWoUhQsX5uHDh/To0QNFUVIyZCGEEOKDJLkRCRUvzs369XV/790bIiISFMmQIQOLFi1Co9GwevVqVq5cmcJBCiGEEO8nyY2IcyTwCG3XtmX2qdlcatUKxcYGrl6FSZPeW7506dL88ccfAPTo0YOgoKCUDFcIIYR4L0luRJyT90+y7Nwy5p6eS7S5OTF//ql7Y/RouH37vXV+//13SpUqxfPnz+nSpYvcnhJCCKF3ek1uvLy8KFu2LJaWllhbW9OkSRMuX7780Tpz5syhcuXKZMmShSxZslCzZk2OHTuWQhGnba2KtsJYbYz/Q39uvbqF0ro1VKkCr15B//7vrWNsbMyiRYswMTFhy5YtzJ8/P4WjFkIIIeLTa3Kzd+9eevbsyZEjR/Dx8SEqKoratWt/dO+iPXv20Lp1a/z8/Dh8+DD29vbUrl2be/fupWDkaVM2s2w0dGkIgN8zP1Cp4J9/QKOBdetg27b31itSpAijR48GoF+/fty6dSulQhZCCCESMNLnh2/fvj3ea29vb6ytrTl58iRVqlR5b52l/9n3aO7cuaxZswZfX188PDwSlI+IiCDinQmxISEhAERFRRH1ny0GBLQt0pa1F9ey9/leHr98TA4XF9S9e6OZMgWld2+iT5+GDBkS1Ovduzfr16/n0KFD/PDDD2zfvh21Wu56JoXY71P5fjUM0h+GR/rEsCRXfyTmenpNbv4rdjn/rFmzfnad8PBwoqKiPljHy8uLESNGJDi/c+dOzMzMvizQNExRFLIbZ+dJ1BOqz6vO8PzDsfz2W2pkyUKG69e51q0bV9zd31u3ffv2nDx5kj179tCrVy8aNGiQwtGnbT4+PvoOQbxD+sPwSJ8YlqTuj/Dw8M8uq1IMZAaoVqulUaNGvHjxggMHDnx2vR49erBjxw7Onz9PhveMKLxv5Mbe3p4nT55gZWWVJLGnNSfvnaTWklqExoRS2b4ym1ptwvzfDRh16ICSIQPRZ8+Co+N7686cOZM+ffqQIUMGjh8/jouLS8oGnwZFRUXh4+NDrVq1MDY21nc46Z70h+GRPjEsydUfISEhZM+eneDg4E/+/jaYkZuePXsSEBCQqMTmzz//ZMWKFezZs+e9iQ2AqakppqamCc4bGxvLD8EHlM5dmuH5hzPy9kj2391PizUt2Nh6A0bz56PauxfjgQNh/fr31u3ZsycbN25k165ddOnShf3792NkZDDfZqmafM8aFukPwyN9YliSuj8Scy2DmBTRq1cvNm/ejJ+fH3Z2dp9VZ+LEifz555/s3LmT4sWLJ3OE6Y+TmRObWm7C3Ngcnxs+uP/bkshpU3STizdsgC1b3ltPrVYzf/58rKysOHLkCBMnTkzZwIUQQqR7ek1uFEWhV69erFu3jt27d5M3b97Pqjd+/HhGjRrF9u3bKVOmTDJHmX6VtyvPptabyGCUgU1XNtHu0lii+/XRvdmnD7x+/d569vb2TJ06FYChQ4dy9uzZlApZCCGE0G9y07NnT5YsWcKyZcuwtLTkwYMHPHjwgFevXsWV8fDwYPDgwXGvx40bx5AhQ5g/fz6Ojo5xdUJDQ/XRhDSvWt5qrGu5DhONCasvrGZ7++8gVy64cQMmTPhgPQ8PDxo1akRUVBQeHh5ERkamYNRCCCHSM70mNzNmzCA4OBhXV1dsbW3jjnf3Kbpz5068Zf1nzJhBZGQkzZs3j1dHbn8knzpOdVjVfBVT60ylQQn3t9sxjB0LN2++t45KpWLWrFlky5aNM2fOMGrUqBSMWAghRHqm15men/Og1p49e+K9lgXi9KNxwcZvX7Rsyau5M8jguw9Vv366OTjvYWNjw4wZM3B3d8fLy4uGDRvy7bffpkzAQggh0i2DmFAsUpdnr5/j2vg5g2upUDZuhM2bP1i2RYsWtG7dmpiYGDp06BDvlqMQQgiRHCS5EYm28/pOjj07x9wKGXhggW5y8UeSlr///hsbGxsuXbrE77//nnKBCiGESJckuRGJ1qpoK2bUn8GeDn7YZsqtm3czfvwHy2fNmpV58+YBMGXKFPbu3ZtSoQohhEiHJLkRX6RbmW4UzVsOJk8G4PGUsbonqD6gXr16/PjjjyiKwg8//MDLly9TKlQhhBDpjCQ34uu0aMGeZqXI3z2S+SObfrTopEmTcHBw4ObNm3Tr1g0/Pz8CAwNTKFAhhBDphSQ34uuoVGx3L8VLU/jR8SzLFg74YFErKysWLFgAwLJly6hevToODg5xt6yEEEKIpCDJjfhqXu6z6Rb9DYoKPG5MYu2Z5R8s6+zsjEqlinut1Wrx9PSUERwhhBBJRpIb8dVUKhX//LKXDlfMiFFDq3Xt2Hp163vLXr16NcH6RjExMVy7di0lQhVCCJEOSHIjkoTa0op5TebTMgCiVFqarWiK7w3fBOWcnZ1RqxN+29nb26dEmEIIIdIBSW5EktE0d2dxSA0aX4IIbSSNVjTiwJ0D8crY2dkxe/ZsNBpNvPO//fYbWq02JcMVQgiRRklyI5KOSoXx1H9Yud6IOlchPCqcekvrcezesXjFOnfuzK1bt/Dz82PZsmUYGxuzatUq+vfv/1lbcgghhBAfI8mNSFouLpj2H8jalVAtyJSXkS9xW+KG/wP/eMXs7OxwdXWldevWLFy4EICpU6cy4SM7jQshhBCfQ5IbkfR+/52MtvZsXBBBecWOF69fUGtxLS48vvDe4q1bt2bym8UABw0axKJFi1IyWiGEEGmMJDci6Zmbw5QpWETCtskPKZ21KE/CnzD9+PQPVunfvz8DBujWyOncuTPbt29PqWiFEEKkMZLciOTRtCm4uZHpZRQ7duRgaJUhTKkz5aNVxo0bR9u2bYmOjqZ58+YcP348ZWIVQgiRpkhyI5KHSgXTpoGJCdm2+DHiRUmM1EYAaBUtT8OfJqiiVquZP38+tWrVIiwsjPr163P16tWUjlwIIUQqJ8mNSD7OzjBwoO7v/fpBWBgx2hg6b+xMxfkVeRj6MEEVExMT1qxZQ6lSpXj8+DFubm48ePAgZeMWQgiRqklyI5LXb79Bnjxw5w6MHcvj8Mf43vDl2rNrHL139L1VLC0t2bp1K/ny5ePmzZvUq1dPdhEXQgjx2SS5EcnLzAz++kv39wkTsLkfwu4Ou1njvoZGLo0+WC1nzpzs2LGDHDlycPr0aZo1a0ZkZGQKBS2EECI1k+RGJL/GjaFuXYiKgt69ccqSn8YFG8e9HfQyiNDI0ATVnJyc2Lp1K+bm5uzatYtOnTrJKsZCCCE+SZIbkfxUKpg6FUxMYOdOWLs27q3bL25TeUFlGi5vyKuoVwmqlilThjVr1mBkZMTSpUsZNGhQSkYuhBAiFTL60or379/nwIEDPHr0KMH/pvv06fPVgYk0xskJBg2CUaN0k4vr1AFzcx6FPeJR2COuP79O05VN2dBqA6ZGpvGqurm5MX/+fDw8PJg4cSK2trb89NNP+mmHEEIIg/dFyY23tzeenp6YmJiQLVs2VCpV3HsqlUqSG/F+v/4KixfDrVswejR4eVE2d1m2tt2K2xI3dlzfQct/W7K6xWqMNcbxqrZv356goCAGDRrEzz//jK2tLa1bt9ZPO4QQQhi0L7otNWTIEIYOHUpwcDC3bt3i5s2bcceNGzeSOkaRVrw7uXjSJLh0CYBKeSrpRmw0pmy4vIH269oTo41JUH3gwIH07dsXgA4dOrBr164UC10IIUTq8UXJTXh4OK1atUKtlik7IpEaNoT69XWTi3v1gje7gNfMV5M17mswVhuz8vxKftz0I1ol/u1OlUrF5MmTcXd3JyoqiqZNm3L69Gl9tEIIIYQB+6LspHPnzqxevTqpYxHpgUqlG70xNQVfXxg8OO6t+gXqs/z75WhUGrz9vem1tRfKm+QnllqtZtGiRVSrVo3Q0FDq1q0ro4VCCCHi+aI5N15eXjRo0IDt27dTrFgxjI3jz4+I3eFZiPfKnx9mzoQffoBx48DWFt7cbvq+8PcsarqIdmvbMePEDDIYZWBS7Unx5nWZmpqybt06qlatypkzZ3Bzc+PgwYNYW1vrq0VCCCEMyBcnNzt27MDFxQUgwYRiIT6pY0cICtKtYNyvH+TMCa1aAdCmWBteR7+m88bO/O/I/zA3NmdU9VHxqmfKlIlt27ZRvnx5rl27RoMGDdi9ezcWFhYp3xYhhBAG5YuSm0mTJjF//nw6duyYxOGIdOXXX3UJzrRp4OEB2bNDzZoAdCrZiVdRr+i1rRej948mo3FGfqv8W7zqtra27Nixg4oVK3L8+HFatGjBxo0bE4wkCiGESF++aM6NqakpFStWTOpYRHqjUsGUKeDurptg3LQpnDoV93bPb3syodYEAFaeX/neRf5cXFzYsmULZmZmbN++nR9//DHBPB0hhBDpyxclN3379mXatGlJHYtIj9RqWLQIqleH0FDdNg3Xr8e9PaDCAOY0nINfBz8yGmd87yXKlSvHqlWr0Gg0LFq0iN9+++295YQQQqQPX3Rb6tixY+zevZvNmzdTpEiRBLcB1r6zvL4Qn2RqCuvWQZUqcOaMbvXigwfhzQThH0v9GK/49WfXyZ81f7xz9evXZ86cOXTq1Ik///wTW1tbWUxSCCHSqS9KbjJnzkyzZs2SOhaRnllZwbZtUKECXLsG9eqBnx9YWsYr9s+xf+i7vS9Lmy2lZdGW8d774YcfCAoK4vfff6dfv34YGxtTsGBBnJ2dsbOzS8nWCCGE0KMvSm4WLFiQ1HEIoXskfMcOqFgRTp6E77+HzZt1G24CiqJw9uFZYpQYLjy+8N5LDB48mPv37/PPP//Qo0cPQLc2zuzZs+ncuXOKNUUIIYT+fNGcm5s3b3L16tUE569evcqtW7e+NiaRnhUoAFu3grk5+Pjo1sJ5szGrSqViRoMZLGyykOGuw99bXaVSMXDgwHjntFotnp6eBAYGJnf0QgghDMAXJTcdO3bk0KFDCc4fPXpUHg8XX69sWVizBoyMYNkyeCdZUavUeJTwiFtPKTwqnClHpsTbi+p9KxbHxMRw7dq15I9dCCGE3n1RcnP69On3Pgr+3Xff4e/v/7UxCQFubhB7+3PyZJg4MUERRVFos6YN/Xf0p/Wa1kRERwDg7Oz83n3PTp48mawhCyGEMAxflNyoVCpevnyZ4HxwcDAxMQl3cxbii7RrBxN069wwcCAsXhzvbZVKRauirTBWG7P6wmrqLK1D8Otg7OzsmD17NhqNJq4cwIABAxg/fnyKNkEIIUTK+6LkpkqVKnh5ecVLZGJiYvDy8qJSpUpJFpwQDBgAP/2k+3unTrB9e7y3WxVtxba227A0sWTPrT1U8a7C/Zf36dy5M7du3cLPz4/bt2/zyy+/ADBo0CAGDhyIVqv97ycJIYRII77oaalx48ZRpUoVXFxcqFy5MgD79+8nJCSE3bt3J2mAQjBhAjx8CEuXQvPmukfEy5aNe7tGvhrs7biXukvrcvbhWSrMq8COdjtwsXOJewR83Lhx5MiRg4EDBzJx4kQeP37MnDlzZKsGIYRIg75o5KZw4cKcPXsWd3d3Hj16xMuXL/Hw8ODSpUsULVo0qWMU6Z1aDfPnQ+3aEBamWwPnypV4RUraluRQ50M4ZXXidvBtKs6vyNHAo/HKDBgwAG9vbzQaDQsXLqRZs2aEh4enZEuEEEKkgEQlN/Pnz+fJkycA5MqVi7Fjx7Jlyxb+/fdfhg4dStasWZMlSCEwMYF//4XSpeHJE92E46CgeEXyZcnHwU4HKZOrDE9fPaX6oupsvbo1XpkOHTqwfv16MmTIwObNm6lduzbPnz9PyZYIIYRIZolKbpYsWYKdnR0VKlRg3LhxXLp0KbniEiIhS0vdGjhOTnDrlm4fquDgeEWsza3x6+CHW343wqPCabS8Ed7+3vHKNGjQAB8fHzJnzszBgwepUqUK9+/fT7l2CCGESFaJSm52795NUFAQPXr04OTJk3z77bc4Ozvz888/s2/fPpmkKZKftbVuFeOcOXX7UDVpAhER8YpYmFiwsfVG2hVvR4wSww8bfuDPA3/G2y28UqVK7Nu3D1tbWwICAqhQoQJX/nOrSwghROqU6Dk3WbJkoV27dqxatYonT54wbdo0Xr16Rdu2bbG2tsbDw4N///2XsLCwT17Ly8uLsmXLYmlpibW1NU2aNOHy5cufrLd69WoKFixIhgwZKFasGFu3bv1kHZGG5Mun24fK0hL27IH27eE/SxCYaExY2GQhA8oPAOCvo3/x9NXTeGWKFSvGoUOHcHZ25vbt21SqVEnWwhFCiDTgiyYUxzIxMaFOnTpMnz6du3fvsn37dhwdHRk1ahSTJ0/+ZP29e/fSs2dPjhw5go+PD1FRUdSuXfujidGhQ4do3bo1nTt35vTp0zRp0oQmTZoQEBDwNU0RqU3JkrB+PRgbw+rV0K8fvDMyA7rVjCfUnsBfdf5iW9ttZDfLnuAyjo6OHDhwgFKlSvH48WNcXV3liT8hhEjtlESIiYn57LKRkZGJubSiKIry6NEjBVD27t37wTLu7u5K/fr1450rV66c4unp+VmfERwcrABKcHBwouNLLyIjI5X169d/UR+muBUrFEWlUhRQlDFjPqvK3lt7lRevXsQ7FxwcrFSvXl0BFBMTE2X16tXJEe0XSVX9kQ5Ifxge6RPDklz9kZjf34la58bY2JigoCCsra0BGDhwIIMHD37vU1Jfsn5I8JvJoR976urw4cP8FLuo2xtubm6sX7/+veUjIiKIeGdORkhICABRUVFERUUlOsb0IPbrkiq+Ps2aoZ40Cc1PP8HvvxOdIwfKR/Y3Oxx4GLdlbhTIWoDtbbbHjeZkzJiRDRs20KFDB9auXYu7uzvTpk2ja9euKdSQD0tV/ZEOSH8YHukTw5Jc/ZGY6yUquVH+M+w/a9YsunfvniSPgGu1Wvr160fFihU/ulbOgwcPyJkzZ7xzOXPm5MGDB+8t7+XlxYgRIxKc37lzJ2ZmZl8XdBrn4+Oj7xA+T758FPr+ewqsWYO6WzeO3b7Nw3cW+XvX9fDrmGKKyWsTDvsdRqPSxHu/bdu2hIWFsWPHDnr16sXBgwdxd3eP28JBn1JNf6QT0h+GR/rEsCR1fyRmXbIvWqE41n+Tna/Rs2dPAgICOHDgQJJdE2Dw4MHxRnpCQkKwt7endu3aWFlZJelnpRVRUVH4+PhQq1at1LOCb926aLt0Qb1oEeUmTyZmxw6U7757b9EGLxpgbWaNuYn5+99v0ICRI0cyZswYli9fTpYsWZg8efJ7N+NMCamyP9Iw6Q/DI31iWJKrP2LvvHyOr0pukkqvXr3YvHkz+/bti1su/0NsbGx4+PBhvHMPHz7ExsbmveVNTU0xNTVNcN7Y2Fh+CD4h1X2N5s6FJ09Qbd2KUZMmcOAAFCqUoFiBHAXi/q4oCj/t+Ina+WtT17lu3PnRo0djY2NDnz59mD59Os+ePWPhwoWYmJikREveK9X1Rxon/WF4pE8MS1L3R2KulejkZujQoXG3cyIjIxkzZgyZMmWKV+ZznpQC3S+W3r17s27dOvbs2UPevHk/Wad8+fL4+vrSr1+/uHM+Pj6UL1/+8xsh0iZjY1i1CmrUgKNHdasYHzoEH0mYl5xdwpSjU/j7+N/MazQPjxIece/16tWL7Nmz4+HhwYoVK3j27Blr1qzBwsIiJVojhBDiCyUqualSpUq8dWgqVKjAjRs34pVJzNyEnj17smzZMjZs2IClpWXcvJlMmTKRMWNGADw8PMidOzdeXl4A9O3bl6pVqzJp0iTq16/PihUrOHHiBLNnz05MU0RaZW4OmzdDpUpw+TLUqQO7dsEHRvZaFm3Jjus7WHpuKR3WdyDoZRC/VPwl7vu4VatWZM2alWbNmrFz505q1KjBli1byJ494WPlQgghDEOikps9e/YkOBc77+ZLJlzOmDEDAFdX13jnFyxYQMc3T7zcuXMn3lyHChUqsGzZMv744w9+++03nJ2dWb9+vWzYKd7Knl23inGFCnD+PJQvD9u3g4tLgqImGhMWNV2EjYUNkw5P4lffXwkKDWKy22TUKt33Xe3atfH19aV+/focO3aMSpUqsXPnTvLkyZPSLRNCCPEZvniG5Lx58yhatCgZMmQgQ4YMFC1alLlz5ybqGoqivPfo+M6jvHv27MHb2ztevRYtWnD58mUiIiIICAigXr16X9oMkVY5OMC+fW/3oapQQXeL6j3UKjUTa09kYq2JgG414zZr2hAR/XYJgXLlyrF//37s7e25fPkyFStW5MKFCynREiGEEIn0RcnN0KFD6du3Lw0bNmT16tWsXr2ahg0b0r9/f4YOHZrUMQrxZfLn1yU05crBs2e6uTgfWA8J4OcKP7Ok6RKM1casPL+SesvqERLxdnZ+oUKFOHjwIIUKFSIwMJDKlSuzceNG/Pz8CAwMTIEGCSGE+BxflNzMmDGDOXPm4OXlRaNGjWjUqBFeXl7Mnj2b6dOnJ3WMQny5HDlg925o2BBev4bvv4ePfI+2Ld6WLW22YGFiwe6bu6nqXZUHoW/XULK3t2f//v2UK1eOZ8+e0bhxY6pXr46DgwPz5s1LiRYJIYT4hC9KbqKioihTpkyC86VLlyY6OvqrgxIiSZmZwdq14OkJWi307Am//qr7+3vUyl+LPR32kMMsB/4P/KkwrwJXn16Nez9btmwsWrQoXh2tVounp6eM4AghhAH4ouSmffv2cZOB3zV79mzatm371UEJkeSMjGDGDBg9Wvd63Djw8IDIyPcWL52rNIc6HyJflnzcfHGTCvMrcPze8bj37927l6BOTEwM586dS5bwhRBCfL4vXsRv3rx57Ny5k+/erAJ79OhR7ty5g4eHR7wVgT93zRshkp1KBb//rlv35scfYelSePAA1qyB/6zVBOCU1YlDnQ5Rb1k9zj08R3BEcNx7zs7OqNVqtP8Z/enXrx/58+enQIEC/72cEEKIFPJFyU1AQAClSpUC4Pr16wBkz56d7NmzExAQEFfOEPbjESKBDh3A1lY3/8bXF6pUgW3bIFeuBEVzWuRkT4c9HL13lJr5asadt7OzY/bs2Xh6ehITE4NarcbS0pIrV65QpkwZFi5cSNOmTVOyVUIIId74ouTGz88vqeMQImXVrg1790L9+nD2LHz3nW4tnMKFExS1NLWMl9hcenKJndd30rtTb9zc3Lh27RpOTk4YGRnRsmVL9u3bR7NmzRg0aBCjR4/GyMggdjkRQoh0Qz87AQphCEqVgsOHdYv73b0LFSvq1sb5iJCIEOosqUPf7X2ZdmwadnZ2uLq6Ymdnh42NDbt27Yq7LTtu3Dhq167No0ePUqI1Qggh3pDkRqRvjo5w8KBukb8XL6BWLVi9+oPFrUyt6P1tb1yyudC6aOsE7xsbGzNp0iRWrlyJubk5fn5+lCpViiNHjiRfG4QQQsQjyY0Q2bLp9p9q2lT39FTLljBlygeL/1zhZ057niaHeY64c1ExUfHKuLu7c+zYMVxcXLh37x5VqlRhxowZcduVCCGESD6S3AgBkDGjbsSmVy9QFOjfH37++YNr4WQ0zhj39zkn5/DdvO/iLfYHULhwYY4dO8b3339PVFQUPXr0oEOHDoSHhydrU4QQIr2T5EaIWBoNTJ2qWwMHYPJkaNMGIiI+WCU0MpRhe4ZxKuhUgsX+AKysrFi9ejUTJ05Eo9GwePFiypcvH/eUoRBCiKQnyY0Q71Kp4JdfdGvgGBvDypXg5gbPn7+3uIWJBft+2Be32F/F+RU5cf/Efy6p4ueff2bXrl1YW1tz9uxZSpcuzaZNm1KiRUIIke5IciPE+7Rpo1v7xspK98h45cq6J6reI3axv1K2pXgc/hhXb1d2Xt+ZoJyrqyunTp2ifPnyBAcH06hRI4YMGUJMTExyt0YIIdIVSW6E+JAaNWD/ft3ifufP69bCOXv2vUVjF/urma8mYVFh1Ftaj0E+gwiLDItXLnfu3OzZs4fevXsDMHr0aOrVq8eTJ0+SvTlCCJFeSHIjxMcUL65bC6dwYbh/XzeCs3v3e4tamlqypc0WPEp4EKPEMP7QeIpML8LWq1vjlTMxMWHq1KksWbIEMzMzdu7cSenSpTlx4sR7ryuEECJxJLkR4lPy5IEDB3TbNISEQJ06sGzZe4uaaExY2GQhm1pvIk+mPNwOvk39ZfVxX+3O/Zf345Vt27YtR44cwcnJiTt37lCxYkXmzp2bEi0SQog0TZIbIT5HliywYwe4u0NUFLRtC+PH6x4bf48GBRpwoccFBpQfgEalYfWF1RT6pxD/Xvg3XrlixYpx4sQJGjduTGRkJF26dKFz5868evUqJVolhBBpkiQ3QnyuDBlg+XLdGjgAgwZB377wgQnB5ibmTKg9gZNdT1IudzlCI0PJmzlvgnKZMmVi7dq1jB07FrVazfz586lUqRI3b95MztYIIUSaJcmNEImhVuvWv5k8WffY+LRp0KIFBAd/sEoJmxIc7HSQvR33UjpX6bjz269tJzQy9M1l1QwePJgdO3aQPXt2Tp06RenSpdm2bRuBgYGcO3eOwMDAZG+eEEKkBZLcCPEl+veHFSvAxATWrYOiRXWPjn+ARq2hUp5Kca8vPr5Io+WNKPxPYR6GPow7X7NmTU6ePEnZsmV5/vw59erVI3/+/AwZMgQnJyfmzZuXrM0SQoi0QJIbIb6Uuzvs2QNOThAYCPXqQadOug04P+H56+fktsrNNzbfYG1uHe+9PHnysH//ftq2bQsQtx+VVqvF09NTRnCEEOITJLkR4muULw9nzuhGclQqWLBAN4qzdetHq1Wwr8D5HueZ22guKpUKgCfhT/jn2D/EaGMwNTWlc+fOCerFxMRw7dq1ZGmKEEKkFZLcCPG1zMx0c3D27wdnZ7h3D+rXhx9++OgojpmxWbxRm4E+A+m1rRfl5pbj5P2TODs7o1Yn/BGdOnUqzz+wHYQQQghJboRIOhUrgr8//PSTbhTH2xuKFIEtWz6renm78mTOkJmTQSf5du63TAyYyNSZU9FoNIBujyqVSsW6desoVqwYO3bsSL62CCFEKibJjRBJycwMJk3SLfpXoIBuVeMGDaBjxw9uvhmra+muXOx5kdZFW6NVtPx19C+8Xnrxt+/fjBw5kuvXr3Pw4EGcnZ25d+8ederUoVu3boSGhqZM24QQIpWQ5EaI5FChgm4UZ8AA3SjOwoW6UZzNmz9azcbChmXfL2NHux3ky5KPey/v0X1PdzZbbEZrqaV8+fL4+/vTp08fAGbNmkXx4sXZv39/CjRKCCFSB0luhEguGTPChAlw8CC4uEBQEDRsCB4enxzFqZ2/NgHdA/i98u8Yq405FnKMErNLMPnwZEwymPDXX3/h6+tLnjx5uHnzJlWrVmXAgAG8fv06hRonhBCGS5IbIZJb+fJw+jQMHKhbBHDxYt0ozqZNH62W0Tgjo6uP5ljnYxQyL0RYVBg/7/yZsnPKcuzeMapXr865c+fo3LkziqIwadIkSpUqJRtwCiHSPUluhEgJGTPq9qI6eBAKFtSN4jRqBO3bw7NnH61aJEcRxjiNYVa9WWTJkAX/B/58N/c7Ttw/gZWVFXPnzmXTpk3Y2Nhw8eJFvvvuO4YNG0ZkZGQKNU4IIQyLJDdCpKTvvtON4vzyi24UZ8kS3SjOxo0fraZWqfnhmx+41OsS7Yu3p2a+mpS2fbuVQ4MGDQgICKBVq1bExMQwcuRIvvvuOwICApK7RUIIYXAkuREipWXIAOPGwaFDUKgQPHgAjRtDu3bw9OlHq1qbW7Oo6SI2td4Ut/jf81fP8VjnwUvNS5YvX87KlSvJli0bp0+fpnTp0owfP56YD2zuKYQQaZEkN0LoS7lycOoU/PqrbhRn6VLdKM769Z+sampkGvf333f/zuKzi2m+qjmKouDu7k5AQAANGjQgMjKSQYMGUblyZa5evZqMjRFCCMMhyY0Q+pQhA3h5weHDULgwPHwITZtCmzafHMWJ1adcH6o5VmOy2+S40RwbGxs2btzIggULsLKy4vDhw5QoUYK///4brVabnC0SQgi9k+RGCEPw7bdw8iQMHqwbxVm+XJfsrFv3yaoFsxfE18OXKg5V4s5NOjSJHlt60KRVE86dO0f16tV59eoVvXv3pnbt2ty5cyc5WyOEEHolyY0QhiJDBhg7Fo4c0d2eevQImjVD064dJiEhH60aO2ID8OzVM4buGcrMkzMp+HdBDoccZufOnfz9999kzJgRX19fihUrxoIFC+J2HBdCiLREkhshDE3ZsrpRnN9+A40G9apVVO/VC/WUKRAe/snqWTNmZUubLbhkc+Fh2ENarWlF/eX1qdumLmfOnKF8+fKEhITQqVMnGjduzIMHDwgMDMTPz4/AwMDkb58QQiQzSW6EMESmpjBmDBw5glKkCKYhIWh++QXy5tXtQP6JJMfV0ZUz3c4wwnUEphpTdlzfQZHpRVjzcA279+xm3LhxmJiYsGnTJpycnMiTJw/Vq1fHwcGBefPmpVAjhRAieUhyI4QhK1OG6GPHON2zJ4qjo+5W1c8/65KcSZMgLOyDVU2NTBladShnu5+let7qvI5+zWDfwZSZW4aKrSpy8uRJihQpQlhYWNztKa1Wi6enp4zgCCFSNUluhDB0xsbcqVWL6PPnYd48XWLz6JFuU858+WDixI8mOQWyFWBX+10sarKI7GbZOf/4PJUWVGLqzakMHzc8QfmYmBguX76cjA0SQojkJcmNEKmFsTF06gSXL+uSnHz5dEnOwIG6hOcjSY5KpaJ9ifZc7nWZziU7AzDn1By6BXRDVVyVoHzfvn05cuRIsjZHCCGSiyQ3QqQ2sUnOpUswf74uyXn8+G2SM2HCB5OcrBmzMrfRXPZ13Eeh7IV4+vop2VtkR22i+6dArVaTMWNGzp8/T/ny5enSpQtPnjxJydYJIcRXk+RGiNTK2Bh++EGX5CxY8DbJiZ14PH48hIa+t2plh8r4d/NnTPUxLG29lNvXb+Pn58eNmze4fP0yHTt2BGDu3Lm4uLgwe/ZsWfxPCJFqSHIjRGpnbAwdO75NcvLn1yU5gwZ9NMkx0ZjwW+XfqJW/FnZ2dri6urIhaANua93oPKIz+/fvp3jx4jx79gxPT0/Kly/PyZMnU759QgiRSJLcCJFWvJvkeHvrkpwnT94mOePGfXAkByBaG83fx/7m4pOLBDwKoFKlSpw8eZIpU6ZgaWnJsWPHKFu2LD169OD58+cp1iwhhEgsvSY3+/bto2HDhuTKlQuVSsX6z9gwcOnSpZQoUQIzMzNsbW3p1KkTTz9zDx4h0gUjI+jQQZfkLFwITk66JOfXX8HREf78E16+TFhNbcTRH4/iVcOLrqW7vrmUEc1/aM6lS5do06YNiqIwY8YMChQowIIFC+RWlRDCIOk1uQkLC6NEiRL8888/n1X+4MGDeHh40LlzZ86fP8/q1as5duwYXbp0SeZIhUiFjIzAwwMuXtQlOc7Ous04Bw/WjeS8J8nJkjELv1b6FbVK909DWGQYFedXpJ1PO4b+NRQ/Pz8KFy7MkydP6NSpE5UrV+bMmTP6aJ0QQnyQkT4/vG7dutStW/ezyx8+fBhHR0f69OkDQN68efH09GTcuHEfrBMREUFERETc65A3e/RERUURFRX1hZGnbbFfF/n6GIYk6Y/WraFFC1QrVqAZOxbVtWsweDDKhAlo+/dH26MHWFomqHbo9iEehT3idvBtis8szqAKgzhw+ACzps9i9OjRHDp0iFKlStGzZ0+GDh1KpkyZvjzGVEJ+PgyP9IlhSa7+SMz1VIqB7JynUqlYt24dTZo0+WCZgwcPUq1aNdavX0/dunV59OgR7u7ucU9zvM/w4cMZMWJEgvPLli3DzMwsqcIXItVQxcSQe/9+XFatwuL+fQAiLS251qgRN+vXJ/o/PxcPIh4wO3A2p16eAiCXaS6623XHNsKW+fPnc+jQIQCyZMlCx44dqVKlSryNPIUQIimEh4fTpk0bgoODsbKy+mjZVJXcAKxevZpOnTrx+vVroqOjadiwIWvWrMHY2Pi95d83cmNvb8+TJ08++cVJr6KiovDx8aFWrVof/LqKlJNs/REdjWrlSt1IztWrAChZs6Lt1083kvPOz4eiKPx78V9+9vmZB2EPAGhfrD3jaozj9MHT9OvXj6tvrlGlShX++usvihQpknSxGhD5+TA80ieGJbn6IyQkhOzZs39WcoNiIABl3bp1Hy1z/vx5xdbWVhk/frxy5swZZfv27UqxYsWUTp06ffbnBAcHK4ASHBz8lRGnXZGRkcr69euVyMhIfYcilBToj+hoRVmyRFEKFFAU0B1ZsijK6NGK8p+fk+evnis9NvdQVMNVCsNRso7Lqsw/NV959eqVMmbMGCVjxowKoBgZGSkDBgxQQkJCkidmPZKfD8MjfWJYkqs/EvP7O1U9Cu7l5UXFihUZOHAgxYsXx83NjenTpzN//nyCgoL0HZ4QqZNGA23bwoULsHQpuLjA8+fwxx+6p6tGj4Y3c9UyZ8jMP/X/4XDnwxTPWZxnr57RaWMn3Fa40bRLUy5cuECTJk2Ijo5m4sSJFCpUiFWrVsVtzCmEECkhVSU34eHhqNXxQ9ZoNADyj6cQX0ujgTZt4Px5WLYMChbUJTlDhrxNcoKDAShnV44TXU4wodYEzIzN2Hd7HyVmlmBF4ArWrVvH5s2byZcvH/fu3aNly5bUrl2bvXv34ufnJzuOCyGSnV6Tm9DQUPz9/fH39wfg5s2b+Pv7c+fOHQAGDx6Mh4dHXPmGDRuydu1aZsyYwY0bNzh48CB9+vTh22+/JVeuXPpoghBpj0aje7oqIOD9Sc6oURAcjLHGmAEVBnChxwXqO9cnShtFRqOMANSvX5+AgACGDRuGqakpu3btwtXVlerVq+Pg4MC8efP020YhRJqm1+TmxIkTlCxZkpIlSwLw008/UbJkSYYOHQpAUFBQXKID0LFjRyZPnszff/9N0aJFadGiBS4uLqxdu1Yv8QuRpr2b5CxfDoUKwYsXMHSoLskZORKCg3HI7MCm1pvY1nYbPb/tGVf9cvBlegzswa5du+JdVqvV0rVrV27evJmy7RFCpBt6TW5cXV1RFCXB4e3tDYC3tzd79uyJV6d3796cP3+e8PBw7t+/z5IlS8idO3fKBy9EeqHRQKtWcO4crFjxNskZNkyX5IwYgSo4mDpOdTBS65bOeh39mharW+Dytwunn5xOcEmtVkvlypX5999/5ZayECLJpao5N0IIPdJooGXLt0lO4cK6JGf48LgkhxcvAHgY+hBLE0vMjM2oWbxmgrlyAPfu3aNFixZUqFCB/fv3p2RLhBBpnCQ3QojEeTfJWblSl+QEB79NcoYPx4FMHOtyDL8OfhTKV4jZs2ej1qihNKhN1UybNo0hQ4ZgZmbGkSNHqFKlCo0aNeLChQv6bp0QIg2Q5EYI8WXUanB31yU5q1ZBkSK6JGfECHB0xGjEKAqocwDQuXNnJvpMhIZgN9YO5zrOjBw5kmvXruHp6YlGo2HTpk0UK1aMH3/8kXv37um5cUKI1EySGyHE11GroUULOHs2fpIzcqRuJGfYMHj+HBc7F+ys7Ljz8g51ltah9ZrWqCxVzJw5k/Pnz9O0aVO0Wi3z5s3D2dmZ3377jeA3j54LIURiSHIjhEga7yY5q1dD0aK6xf/eJDn1Fh/hQpuD9P+uP2qVmhUBKyj4d0FmnpiJcwFn1q5dy8GDB6lYsSKvXr3Cy8uL/PnzM2XKlHhbqAghxKdIciOESFpqNTRvDmfOwL//QrFiuiRn1CgsnYsyeV04xysupEyuMgRHBNN9S3cqzq/IuYfn4iYXr1+/noIFC/L06VP69+9PoUKFWLZsGVqtVt+tE0KkApLcCCGSh1oN338P/v5vk5yXL2HWLErVbM+RvyOYavY9lsYWHAk8QslZJRnkM4jwqHAaN27MuXPnmDVrFjY2Nty8eZO2bdtStmxZfH199d0yIYSBk+RGCJG83k1yfH11WzyYmqI5e47ev6zh4uRIvg+xI0aJYfyh8RSZXoQtV7ZgZGRE165duXbtGqNGjcLS0pJTp05Rs2ZN6tSpw5kzZ/TdMiGEgZLkRgiRMtRqqF5dtznn/fswbRqUKEHup5H8OzmQTcsgT6iG28G3abC8AfNO6bZoMDc3548//uD69ev07t0bIyMjduzYQcmSJfHw8OD27dt6bpgQwtBIciOESHlZs0KvXnD6NJw4Ad270+BhJi78FcOAg5A9DJoNWwFr1kBkJE/Cn5A9e3amTp3KpUuXaNmyJYqisHjxYlxcXBgwYADPnj0jMDBQNucUQkhyI4TQI5UKSpeG6dPh/n3M5y1iQmRVbk+BLJt3QfPmKHa5afhncUpOLYT/A3/y58/PihUrOHbsGK6urkRERDBp0iTs7OzIkyePbM4phJDkRghhIMzMoH172LMHswtXYfBgsLXlVtQTAqKDuPTkMjatfoR58yA0lLJly7J79262bNmCi4sLr169itunSqvV4unpKSM4QqRTktwIIQyPkxOMHQt37pB30UZuXa7LmtVqbPaehB9/BFtbPAcWZN6/v1Gzdg3+/vvvBJeIiYlh4sSJskaOEOmQJDdCCMNlZAQNG5JtzVbq+wXCn3+CszPHMoUy2+IyXS78idNvFpzeP4kcxgmr//XXX+TPn59p06bx+vXrlI9fCKEXktwIIVIHW1sYNAguX6bI4u1MeloGm1C4ax7NL+rtaPqAR3moYQLGajVt2rQhd+7c3Lt3jz59+pAvXz6mTJlCeHi4vlsihEhmktwIIVIXlQrzam78NPU4N399wD9WrcgTbsIDS1jkBv79YEhdc6bnz811X1+mT5+Ovb09QUFB9O/fn3z58jFp0iTCwsL03RIhRDKR5EYIkWplyJaTHv2Xc3XsS+aVHE7+mEw8NYOhZV/iEDWBMd0L4r5xBTfGjmXu33/j4ODAw4cPGTBgAHnz5mX8+PGEhobquxlCiCQmyY0QItUz0ZjQqdEwLg1/wtKGCyhskpvgDDCqKjiU2sdvi9rT0OsPrjdsyNrhw8mXLx+PHz9m0KBBODo64uXlRUhIiL6bIYRIIpLcCCHSDCO1EW1KdeTcr3dY476GklmLEGYCEyrCvZgXaP7+m6bDh3M1SxYOdejAN3nz8vTpU3777TccHR0ZNWoUwcHB+m6GEOIrSXIjhEhz1Co1zQo142Svc2xuvZlfK/xCyflbdXtcGRuzPPIkOTcu5NSDB1yrVIk29vY8f/6coUOH4uDgwPDhw3n+/Lm+myGE+EKS3Agh0iyVSkX9AvXxqjUO6taFf/8l8NIxOn2voUBvuGr2ivwHDrD07l2CbW2ZmCMHGYKDGTFiBI6OjgwZMoSnT5/quxlCiESS5EYIka6EZzKjulMtKjpWocCmQ9CpE5ib8zokiJ8fP+a+Wo2vpSVVQkLwGj0aR0dHfvvtN548eaLv0IUQn0mSGyFEulIgWwG2td3GtnbboHx5mDePJzcCyP+LKY17ZOGErZbqL1+yCbhvZMTg0FBWeXnh6OjIL7/8gr+/P+fOnZOtHYQwYJLcCCHSJTNjs7i/+z46SpgSyUbr55TrAm5/OLC/WCaso6P5DbgGbA4L4/6ECVT59luGDBmCk5OTbM4phIGS5EYIke61LNqSiz0v0qFEBzQqDTuNblPl+2Cqji/ELvcyaFXgCiwBgoB/gCpaLd1//BEfHx+9xi6ESEiSGyGEAFyyu+DdxJurva/iWdoTE40J+8IvUqvwCSr8XZK53WtwE8gM9AD8gIfAo9q1GVO8OLvXrYvblVwIoV+S3AghxDvyZsnLzAYzud7nOn3L9SWDUQaOPj5Nl5y+5OsGxQrDPBU8BrIAbYHfz52jcrNmHLGy4mi7dkReuaLnVgiRvklyI4QQ72FnZceUOlO41fcWgyoOwsLEAmwgwB1+7AG5LFVsGjSIF1278iBLFoyB8qGhlFu6FBMXFx7Z2vJ64EA4fhy0Wn03R4h0RZIbIYT4iJwWOfmz5p/c7neboVWGYmViRaYcmbjkf5WGf/5J5lmzuHJ6Pdf372B3vXocNjEhBrB+8IAMEyfCt98SbWsLnp6wZQu8eqXvJgmR5klyI4QQnyFrxqyMqDaC672uM9h5MHns8wAQFRNFs5XNcNldj0xzRlIqJITVf//N4Ny5WQ28BIwePYLZs6FBA8ieHZo2hQUL4NEjvbZJiLTKSN8BCCFEapIpQyYKmheMe33/5X0cMztyN+QuJWxKYKQ2olXPnkRUtMD/whXmeR9C8dlDI6ARYB8eDuvX6w6VSrfWTqNGuqNgQd05IcRXkeRGCCG+gkNmB050PcGzV88wUuv+SdUqWn7f/Tv3Xt7DopoFVVrWY83xV/Sdv5diUVoaAe6mphSJiIBDh3THr7+Ck9PbRKdiRTCSf6KF+BJyW0oIIZJA1oxZ4/7+KuoV7Yu3xzGzI6GRoWwN3IqfrR+WI63Q/lGciUXMKBoZgT3wi4UF15ycUExM4No1mDwZXF3B2hrat4fVqyEkRG/tEiI1kuRGCCGSmLmJOV41vbjR5waHOh2iz7d9yGmekxcRLzhrdJbwFuFYDbciuIUlEzKF4nztGtYqFbNr1ya4SRPImhWeP4clS8DdXTdPx80N/vkH7tzRd/OEMHgy5imEEMlEpVJR3r485e3LM9ltMntu7WFFwArWXFzD89fPoQhQBEzCTHhyKgLPXTvppqgoVbw45s+f00BRaAwUiIqCnTt1R69e8M03ultXjRtDyZIyT0eI/5CRGyGESAEatYYa+Wowp9EcHgx4wMZWG2lTrA3mxuZEmkfi6OZIg3oNUBSFk2fOsC+jwi+AC1BYrebF779DpUqgVoO/P4wcCaVLg7099OgB27dDRISeWymEYZDkRgghUpiJxoSGLg1Z2mwpDwc8ZGXzlUyoP4FNmzaxYMECMAb6AV0Ac7io1dLl8mWuzp8PDx6Atzc0awbm5nDvHsyYAXXr6m5fNW8OixbBkyd6baMQ+iTJjRBC6JG5iTnuRdxpXrg5ADVr1kRlr9JNGjADwnTl/v33XwrUKkC1ju5syJyZmFWrdAnM1q3QrRvkygWhobBmDXToADlzQpUqMHEiyHYQIp2R5EYIIQyInZ0dc36bg/p/algDGo2GPn36ULdBXWgFe8rsocnqJljXtmbopLE8Kl1aN3ITGAgnTsDQobo5OVot7N8PAweCi4tuDZ1ffoEDByAmRt/NFCJZSXIjhBAGpnPnzty+cBu/xX7cunWLv/76i38W/UOR3EV0/2o7w7Mqzxj1ehQ2fW2o7FkZvwN7UEqVghEj4PRpuHUL/v4batcGY2O4fBkmTIDKlXWjOh07wtq1utEeIdIYSW6EEMIA2dnZ4erqip2dHaDbrTygdwCXe11mSKUh2BrbghEoBRUO5DpA9W3VyfZjNnpP7c2LkBfg4AA9e8KOHbrbV6tWQbt2kCULPH0KCxfC999DtmxQrx7MnKmbvyNEGiDJjRBCpCIFshVgZI2R3Bt8j9Oep+mQvwMW0RZgCs/zPOfv53+TdWxWSg4uyY4TO3SVrKygRQtYvFi3n5WfH/TvD/nzQ2QkbNsG3buDnR2UKaN7EsvfHxRFr20V4ktJciOEEKmQSqXiG5tv8G7nTcjIELY130Yl40poXmlQMir4Z/Cnztw61KxZk3Xr1hEdHa2raGSkWwF58mS4ehXOnwcvL90eVyoVnDwJw4bp1s9xcNCtq7NzpzxmLlIVSW6EECKVU6lU1ClSh/2/7Sd8dDgjXUZi/cIajoOvry/NmjXDoYADtUfWJuBmQFy9wHv38Hv4kMB27XT7WwUFwbx5usUBM2aEu3d1qyK7uUGOHLrVkpcsgWfP9NhaIT5Nr8nNvn37aNiwIbly5UKlUrF+/fpP1omIiOD333/HwcEBU1NTHB0dmT9/fvIHK4QQqYCJkQlDWg3h4f8ecnPNTQYPHkyOHDm4n/0+PooPxSYUo3Xr1gwaNAgHBweqV6+Og4MD8+bN00007tRJt2P506ewaRN06QI2NvDypW6fq/btdftexY7+XLum7yYLkYBek5uwsDBKlCjBP//889l13N3d8fX1Zd68eVy+fJnly5fj4uKSjFEKIUTq5OjoyNixY7l79y4///gzFi8s4CSsWLGC8ePHo9VooRRoNVo8PT0JDAx8WzljRmjQAGbP1k00PnoUfv8dihXTPUq+dy/8/DM4O0PhwrpdzQ8dksfMhUHQ695SdevWpW7dup9dfvv27ezdu5cbN26QNatuB15HR8dkik4IIdIGU1NTJnadyEQmcvLUSYYNHcaWLVt0e1s1AmpDjH8Mfy39iz8H/IlGo4l/AbUavv1Wd4weDTdv6kZ1Nm7UJTkXL+qOceN0t68aNNDtfVWrlm4VZSFSWKraOHPjxo2UKVOG8ePHs3jxYszNzWnUqBGjRo0iY8aM760TERFBxDsT4UJCQgCIiooiKioqReJObWK/LvL1MQzSH4YltfdH8WLFmTZtGtu2bUMbpYWnQDbgO5j4eiLTekyjgXUDRrYdiXN+5/dfxM5O93RV9+7w4gWqHTtQb96Mavt2VI8fw4IFsGABiqkpSo0aaBs0QKlXT7eKcjJI7X2S1iRXfyTmeipFMYxn/VQqFevWraNJkyYfLFOnTh327NlDzZo1GTp0KE+ePKFHjx5Uq1ZNtx/LewwfPpwRI0YkOL9s2TLMzMySKnwhhEhVfHx8mDFjBlpFC/nAsoYlL21evp2sEALWd61pbN+YmuVqYmpq+slrqqKjyXbhAjbHjmFz7Bjmjx7Fe/+5szMPypblwbffEuLgILuZi0QJDw+nTZs2BAcHY2Vl9dGyqSq5qV27Nvv37+fBgwdkypQJgLVr19K8eXPCwsLeO3rzvpEbe3t7njx58skvTnoVFRWFj48PtWrVwtjYWN/hpHvSH4YlLfVHYGAg169fJ3/+/NjZ2XHl0RUG/zuY7Y+2E2Xy5n/JMWB8zZg62eswuPVgSpcujepzkhJFgfPndSM6mzejPnYs/tsODroRnQYNUCpXBhOTL25HWuqTtCC5+iMkJITs2bN/VnKTqm5L2drakjt37rjEBqBQoUIoikJgYCDOzgmHUE1NTd/7Pw5jY2P5IfgE+RoZFukPw5IW+iNv3rzkzZs37nWR3EXY2HcjEdERzNo/i4n7JnJXc5colyg2sYlNizfhPMCZHi160K5dO7Jnz/7xDyhZUncMGaJ7zHzLFt08HR8fVLdvo/nnH92j5lZWul3NGzeGOnV0qyh/gbTQJ2lJUvdHYq6Vqta5qVixIvfv3yf0nb1Qrly5glqtjluiXAghxNcxNTKlT7U+3Bl2h5NdTlLfpj4arQYywdUTV+nfvz+5cuWiacumbNu2jZjPeULK1hZ+/FGX3Dx9Chs2QOfOusfKQ0Jg5Upo00b3ukYN+OsvuHEj+Rsr0iS9JjehoaH4+/vj7+8PwM2bN/H39+fOnTsADB48GA8Pj7jybdq0IVu2bPzwww9cuHCBffv2MXDgQDp16vTBCcVCCCG+XKlcpdjsuZkng5+wqc0mpk+ZTpkyZYiKimJ9tvXUW1WPXMVz8ccff3Dtc9e8MTPTPU01d65uROfwYRg8GIoUgeho2L0b+vXTbQ9RrJjuEfSjR3U7nQvxGfSa3Jw4cYKSJUtSsmRJAH766SdKlizJ0KFDAQgKCopLdAAsLCzw8fHhxYsXlClThrZt29KwYUOmTp2ql/iFECK9yJwhMw2KNaB79+4cP36cNfvWoLJWQW54dOMRY8aMwdnZmarVqrJo0SLCwsIA3bwePz+/+GvovEuthu++g7FjISBAtyjg//4H1aqBRqM7N3asrkyuXLpFBTdtgvDwFGy9SG30OufG1dWVj81n9vb2TnCuYMGC+Pj4JGNUQgghPqVZ5WbcKXGHI7ePwDcwf/58duzYwb78+9i3ZR/dxnWjTPYyHDxwEK1Wi1qtZvbs2XTu3PnjF86fXzdq068fPH+u29Rz40bdnw8f6kZ75s7VLTJYq5ZuBMjNLQVaLFKTVDWhWAghhOGws7KjebHmUAyaN2+OX4Af1ddUB+BV4Vfsf7wfXgNnQBuhpWvXrri5uX3+HMksWXTzcNq00e1evm+fLtHZuBFu3477u5FKRfVcudBUrKjb1bxUKd1E5jeLvYr0J1VNKBZCCGG4qhWtxtluZ+lWuhummEIOoB7wM9AAtNm11KpVi6lTp/Lw4cPEXdzEBGrWhKlTdSsknzkDo0ZB2bKoFAXLe/dQr1oFv/yiK5ctGzg6QrNmunJbtujm94h0QUZuhBBCJJliOYsxo8EM+hTuQ5HWRVDKKGANlNEdl25fou+cvvQb0I9a1WrRtm1bmjRpkrh1x1QqKF5cd/zxB1H373N89mzKGRmhOXMGTp3SPWl1+7buWLfubd2cOXUjO7GjO6VK6ZIgWVAwTZHkRgghRJIrlK8Qc7rOoatnV7T2WlTfqlAVVqF10IIDKK8Vdl7cyc4hO8ngmYFGjRrRtm1b6tSpg0liF/TLkYPHJUuirVcPTexaKC9egL+/LtE5fVr356VLunk727bpjliZM79NdGKTngIFdBOaRaokyY0QQohk0blzZ9zc3Lh27RpOTk6oM6mZe2ouc07NIZBAKAlZMmTh+crnrFq1ilWrV5E5c2bcW7jTtm1bKlWqhFr9hbMnMmcGV1fdESs8HM6ejZ/wnDunS4T8/HRHLDMzKFEifsJTpMhXraQsUo4kN0IIIZKNnZ1dvAnEQ6sO5Y8qf3DwzkGWByynS9cuaAdqWbZsGd77vXlW6RmzT8xmdtXZ2Nvb07p1a9q2bUvx4sW/PhgzM90j5d999/ZcZCRcuKBLdGKTHn9/XSJ0+LDuiGVsrFt3591RnuLFddcVBkWSGyGEEClKrVJT2aEylR0q607YQunSpQnZGMLc03Mp+G1B7p+5z927dxk/YTzj54+nqE1R2rRpQ5s2bXBwcEi6YExM4JtvdEenTrpzMTFw5crb0Z3YpOfFi7ev58170xg1FCwYfw7PN9/oRo6E3khyI4QQwiBMqzeNes71cM7mjNNoJ7Zs2cJf6/9iv9N+Ah4E8NuW3/ht/G9UKlqJtm3b0qJFC7Jly0ZgYCDnzp2jePHi8fbK+mIaDRQqpDvatNGdUxS4dSt+wnPqlG4Oz4ULumPJkrfXyJcv4cRla+uvj018FkluhBBCGIQMRhloWqhp3Ovvv/+eR3kecXj7YaJtosEGqAUH7h7gwIID9Pq1F0UcinDu3DkURWHYsGGft1Dgl1CpIG9e3dGs2dvzQUHx5/CcOqV7QuvGDd3x779vy+bKlTDhsbeXJ7WSgSQ3QgghDFb3st1pWbQlay6sYXnAcvbc2oNir4A9xNSJ4eyts6ABLoL2tW6hwIoVK1KwYMGUCdDWFurX1x2xnj17m+zE/nnlCty/rzs2b35bNlu2hE9qOTnpbneJLybJjRBCCIOWNWNWupTuQpfSXQh6GcSq86tYHrCco/eOQj50RwPgGmgDtBQrXYz6terTvHlzGjZsSKZMmVI44Ky6nc1r1Hh7LjRUt/Dgu3N4zp/X7ZC+a5fuiGVhoUty3k16ChbUTWgWn0WSGyGEEKmGraUtfb/rS9/v+nLo4iEqeVZCKapATsBFd0TvjmbDhg1s2LABExMTateuTfPmzWnUqBFZsmTRT+AWFlCxou6I9fq1bmPQd29pnT2rS4T279cdsUxNdU9mvZvwFCsGGTKkfFtSAUluhBBCpEoVClVgToc5eHp6EpM1BlVxFTlcczDXay7Htx9n9erVXNJeYrNmM5uHbsboRyNq1qxJ8+bNadKkCdmyZdNvAzJk0O2FVabM23PR0brFBt+9pXX6NLx8CceP645YGg0ULpzwSS1LyxRviqFRKR/bljsNCgkJIVOmTAQHByduue90JCoqiq1bt1KvXj2MZRhU76Q/DIv0h+G5efMmS5cupW3btjg6OqJ6Z4Jurbm12HVvFzku5+Dx8se6kypQq9XUqF4jLtGxNuQnmbRa3eTk/05cfvLk/eWdnePP4SlZErJnT7Fwk+tnJDG/v2XkRgghRKpmZ2dHsWLFsLOzi5fYAAyrPQyns0706NYDk2Em/Pvvv8zfP58bhW7gc94Hn2E+dOveDdeqrjRv3pxmzZphY2Ojp5Z8gFqtm2Ts5ATu7rpzigL37sWfw3PqFAQGwtWrumPlyrfXyJPn7ehO7J+5cqXZJ7UkuRFCCJFmVcpTiUp5Kule5ITff/+dGxtucMP/BlQEKoLyRMEvwA+/oX706tWLypUrxyU6uXPnBiAwMJCrV6/i7Owcb8VlvVGpwM5OdzRq9Pb848cJFx+8dg3u3NEdGza8LWttnfBJrXz50kTCI8mNEEKIdOXven9Tv0B9lgcsZ/OVzbzO/hpcAVdQghT2Bexj34h99OnTh4oVK2JnZ8fq1avRarWo1erkW0snKeTIAbVr645YwcG6LSXencNz4QI8egQ7duiOWJkyJXxSy8Ul1W0iKsmNEEKIdCWjcUaaFWpGs0LNCIkIYePljSwPWM7O6zuJto0GW6AW8BwOXj8IZwBjIAK0Wt1aOrVr18be3l6/DflcmTJB1aq6I1Z4uG7T0HdHec6d0yVCe/bojlgZM77dRDQ26SlSRPcEl4GS5EYIIUS6ZWVqRbvi7WhXvB1Pwp+w9uJaVp1fxf47+4nMEgll0B0bgVO6Olq1ljLflqGVeysaN25M5cqVU9/kcjMzKFdOd8SKjISLF+PP4fH3h7AwOHJEd8QyNtYlOO8mPCVKgLl5ijflfSS5EUIIIYDsZtnpWrorXUt3JSwyjD239rDmzBoW7FsA198pWAoeuT5i6uGpTJ06lcyZM1OvXj0aNWpEnTp1Un7RwKRiYqJLUEqUgB9+0J2LidHN2fnvxOXnz3WJj7//2/oqFbi4oPnmG/JnyAC1ault4UFJboQQQoj/MDcxp36B+tQvUJ+KIRXxnOFJDDFoNBqKNy3O6YjTlClVhtuXbvP48WOWbVjGsifL0AzVUNWxKs0aNaNhw4bkyZNH3035OhqNbs6Niwu0bq07pyi6/bP+O3E5KAguXUJ96RLOmTLBrFl6C1uSGyGEEOIjOnfujJubG9euXcPJyYmctjk5eu8ojpkdsZ1ky9GjR/Ha4sVmk83EVIhhd9Rudh/eTa8lvShkXIgW1VvQpHETvvnmmwSPqqdKKhU4OuqOpm83OiUoCE6fJubECW5cuoSTHtsqyY0QQgjxCXZ2dvEeAY97vByoUKECv+f5nRwnc7Dl8hYe8QicAWe4yEVGBo9k5LCRZH2elSYlmtCyUUtcXV0xMTHRQ0uSka0t2NqirVWLK1u34qTHUCS5EUIIIb7Sd3bf8Z3ddyiKwvnH59lxbQebLm7iYOBBojNFQ2l4xjPma+czf9V8TCaZUMWmCh1rd6RevXpkyZLF8NbSScUkuRFCCCGSiEqloqh1UYpaF+XnCj8THhXOvtv72HJ5CxsCNnD39V2wh0j7SHad3cWudrvQaDTkd8rPlaArEILhr6WTCkhyI4QQQiQTM2Mz6jjVoY5THabVn8bd4Ltsu7aNlSdWkikqE1eKXOH8+fNceX4FfgLug3a2li5dupAhQwa+//57MsjO34mm1ncAQgghRHphn8merqW74uvpy9rRawkICGDx4sVgA2iBMF05RVFo164dFm0sKPxjYf6Y9gc3b97UZ+ipiiQ3QgghhB65urqiDlDDeGCb7pxKpSJ7vuzElIjhov1FxjwbQ76/85G5Y2bqD6rP2u1riYiI0GvchkySGyGEEEKP7OzsmD17NpooDTwDjUbDnDlzuHj2IgOKDqCAqgDqGDVYQXDeYLaabeX7I99j1tcMl+4uDPx7IDdu39B3MwyKJDdCCCGEnnXu3Jlbt27h5+fHrVu36Ny5M9nNszPh+wlcHnqZsKFhrGu6jobZGpIlMguoQGur5YrNFSY+nUj+mfmx6mpF7d9qs2v3LqKiovTdJL2SCcVCCCGEAfjvWjrvymCUgSbFm9CkeBMAAoMDmbtnLmvPrOVixEWiM0TzMvdLfF764FPDB0tLS2rVqkXRmkVpW7ctBRwL6Oqlk8fNZeRGCCGESGXsMtkxvPFwzg49y+tRr/Fx96FF9haUjCxJjhw5ePnyJWvXrWXkzZG4zHfBpYoL9erVw8HBgerVq+Pg4MC8efP03YxkIyM3QgghRCqmUWuoWagmNQvVBEA7RcvJkydZsXUF/4T/Q0R0BFcOXuGK9oqugitos2j58a8f2bJnC+WKlsPJyQknJyfy58+PhYWF/hqTRCS5EUIIIdIQtVpN2bJlKVu2LBOViZy/c57lquWMHTtWV6AYkA0oAetYx7ob68AH3c7ndyFn9pxxic67SY+TkxNZs2b95OcHBgZy7tw5ihcvTt68eZOxpR8myY0QQgiRRqlUKoo6FKV79+78+eefaLVa2AQ4AfkBWyDXm6MyEAEPbz3k4bWHHNx8EJ7Fv16WLFnem/Q4OTmRM2dO5s+fT9euXdFqtQwbNkxvKy1LciOEEEKkcbGPm3t6ehJzKwbNXQ2zWs2ifsv6+Fz3Ycf1Hey8vpPHPAYXdAdgGWWJxUMLYvbH8OjyI54/f86JEyc4ceJEgs/ImDEjr169inut1Wrx9PTEzc0txScvS3IjhBBCpAOdO3fGzc2Na9eu4eTkFJdwtC/RnvYl2qNVtPg/8GfHtR3suL6Dg3cP8tL4JS/tXnLpwCXszey5ceMGPud8uH3nNq9vveb6tetcu3aNO3fuxEtsYsXExHDt2jVJboQQQgiRPD72uLlapaaUbSlK2ZZicOXBvIx4id8tP44EHqFAtgK6W1xFizLi4gj+ff0vY9qMYWblmQBERkZy5MgRXF1dURQl7poajQYnJ6cUaVu8tqT4JwohhBDC4FmaWtLIpRFja4xFpVLFnbcwscDSxJJqjtXizm2+vpneF3pTe0Jt1PnVoNYlNrNmzdLLejoyciOEEEKIz7ag8QJmN5iNRq2JO7f92nbOPjzLWc5i9oMZA7UD6dCugzwtJYQQQojUwVhjHO/1mOpjcHV0Zcf1HWjQUFJVUq8rIEtyI4QQQoivksM8B23+3969B8d0vnEA/+5uriLJkAsiQQZJg9i4S1OKhEhbl7aTaVEWMWUkNFK3GCRav0bbcWskpO6ZymibCB0EKZWkVEhYTVAThKhbqJAbke6+vz/UqW0kmBFn7X4/M/vHec/7vuc5+wx55pz37PEdjdG+o1FbW4vdu3fLGg/X3BAREZFJYXFDREREJoXFDREREZkUWYub7OxsDBs2DG5ublAoFNi+ffszjz106BAsLCzg5+fXaPERERHRq0fW4qaqqgpqtRoJCQnPNe7OnTsYN24cAgMDGykyIiIielXJ+rRUSEgIQkJCnnvclClTMHr0aKhUqqde7ampqUFNTY20XV5eDgCora1FbW3tcx/bHDz6Xvj9GAfmw7gwH8aHOTEujZWP55nvlXsUfOPGjbhw4QK+++47LF68+Kn94+LisGjRojrt+/btQ5MmTRojRJORmZkpdwj0GObDuDAfxoc5MS4vOh/V1dXP3PeVKm6Kioowd+5c5OTkwMLi2UKPjo5GVFSUtF1eXg4PDw8MGTIEDg4OjRXqK622thaZmZkYPHgwLC0tnz6AGhXzYVyYD+PDnBiXxsrHozsvz+KVKW50Oh1Gjx6NRYsWwcvL65nHWVtbw9rauk67paUl/xE8Bb8j48J8GBfmw/gwJ8blRefjeeZ6ZYqbiooK5OXl4cSJE4iIiAAA6PV6CCFgYWGBffv2YdCgQTJHSURERHJ7ZYobBwcHFBQUGLQlJibiwIEDSE1Nle3lXERERGRcZC1uKisrce7cOWm7uLgYWq0WzZs3R5s2bRAdHY0rV64gOTkZSqUSXbp0MRjv6uoKGxubOu1ERERkvmQtbvLy8jBw4EBp+9HCX41Gg02bNuHatWsoKSmRKzwiIiJ6Bcla3AwYMABCiHr3b9q0qcHxsbGxiI2NfbFBERER0SvtlVlz86I8Kqae55Eyc1NbW4vq6mqUl5fzyQMjwHwYF+bD+DAnxqWx8vHo73ZDF0UeMbvipqKiAgDg4eEhcyRERET0vCoqKuDo6NhgH4V4lhLIhOj1ely9ehX29vZQKBRyh2OUHv3Q4eXLl/lDh0aA+TAuzIfxYU6MS2PlQwiBiooKuLm5Qals+NWYZnflRqlUwt3dXe4wXgkODg78j8KIMB/GhfkwPsyJcWmMfDztis0jsr4VnIiIiOhFY3FDREREJoXFDdVhbW2NmJiYJ76Ti14+5sO4MB/GhzkxLsaQD7NbUExERESmjVduiIiIyKSwuCEiIiKTwuKGiIiITAqLGyIiIjIpLG6ojoSEBLRr1w42Njbo06cPjh49KndIZik7OxvDhg2Dm5sbFAoFtm/fLndIZi0uLg69evWCvb09XF1dMXLkSJw9e1busMzW6tWr0bVrV+mH4vz9/ZGRkSF3WPSPJUuWQKFQIDIyUpbjs7ghA99//z2ioqIQExOD48ePQ61WIzg4GKWlpXKHZnaqqqqgVquRkJAgdygEICsrC+Hh4Thy5AgyMzNRW1uLIUOGoKqqSu7QzJK7uzuWLFmC/Px85OXlYdCgQRgxYgROnTold2hm79ixY0hKSkLXrl1li4GPgpOBPn36oFevXli1ahWAh+/i8vDwwLRp0zB37lyZozNfCoUC6enpGDlypNyh0D9u3rwJV1dXZGVloX///nKHQwCaN2+Or7/+GmFhYXKHYrYqKyvRvXt3JCYmYvHixfDz88OKFSteehy8ckOSBw8eID8/H0FBQVKbUqlEUFAQfvvtNxkjIzI+d+/eBfDwDyrJS6fTYevWraiqqoK/v7/c4Zi18PBwvP322wZ/R+Rgdi/OpPrdunULOp0OLVq0MGhv0aIF/vjjD5miIjI+er0ekZGRCAgIQJcuXeQOx2wVFBTA398f9+/fR9OmTZGeno5OnTrJHZbZ2rp1K44fP45jx47JHQqLGyKi5xUeHo7CwkL8+uuvcodi1ry9vaHVanH37l2kpqZCo9EgKyuLBY4MLl++jE8++QSZmZmwsbGROxwWN/QvZ2dnqFQq3Lhxw6D9xo0baNmypUxRERmXiIgI7Ny5E9nZ2XB3d5c7HLNmZWWFDh06AAB69OiBY8eOYeXKlUhKSpI5MvOTn5+P0tJSdO/eXWrT6XTIzs7GqlWrUFNTA5VK9dLi4ZobklhZWaFHjx7Yv3+/1KbX67F//37exyazJ4RAREQE0tPTceDAAXh6esodEv2HXq9HTU2N3GGYpcDAQBQUFECr1Uqfnj17YsyYMdBqtS+1sAF45Yb+IyoqChqNBj179kTv3r2xYsUKVFVVYcKECXKHZnYqKytx7tw5abu4uBharRbNmzdHmzZtZIzMPIWHhyMlJQU7duyAvb09rl+/DgBwdHSEra2tzNGZn+joaISEhKBNmzaoqKhASkoKDh48iL1798odmlmyt7evs/7Mzs4OTk5OsqxLY3FDBj744APcvHkTCxcuxPXr1+Hn54c9e/bUWWRMjS8vLw8DBw6UtqOiogAAGo0GmzZtkikq87V69WoAwIABAwzaN27ciPHjx7/8gMxcaWkpxo0bh2vXrsHR0RFdu3bF3r17MXjwYLlDIyPA37khIiIik8I1N0RERGRSWNwQERGRSWFxQ0RERCaFxQ0RERGZFBY3REREZFJY3BAREZFJYXFDREREJoXFDREREZkUFjdEZPIGDBiAyMjIBvu0a9cOK1asaNQ4zp49i5YtW6KiouK5xvXt2xdpaWmNFBWR6WFxQ2SGxo8fD4VCAYVCAUtLS3h6emL27Nm4f/++3KHJ5tixY/j4448b9RjR0dGYNm0a7O3tkZaWBpVKhStXrjyxb8eOHaVXbsyfPx9z586FXq9v1PiITAWLGyIzNXToUFy7dg0XLlzA8uXLkZSUhJiYGFljevDggWzHdnFxQZMmTRpt/pKSEuzcuVN6D9Xw4cPh5OSEzZs31+mbnZ2Nc+fOISwsDAAQEhKCiooKZGRkNFp8RKaExQ2RmbK2tkbLli3h4eGBkSNHIigoCJmZmdJ+vV6PuLg4eHp6wtbWFmq1GqmpqdI+d3d36WWSj5w4cQJKpRKXLl0CANy5cweTJk2Ci4sLHBwcMGjQIJw8eVLqHxsbCz8/P6xbtw6enp6wsbEBAKSmpsLX1xe2trZwcnJCUFAQqqqqpHHr1q2Dj48PbGxs8NprryExMfGp5/v3338jIiICjo6OcHZ2xoIFC/D4q/X+e1tq2bJl8PX1hZ2dHTw8PDB16lRUVlZK+y9duoRhw4ahWbNmsLOzQ+fOnbF79+56j//DDz9ArVajdevWAABLS0uMHTv2iS9B3bBhA/r06YPOnTsDAFQqFd566y1s3br1qedJRCxuiAhAYWEhDh8+DCsrK6ktLi4OycnJWLNmDU6dOoUZM2bgo48+QlZWFpRKJUaNGoWUlBSDebZs2YKAgAC0bdsWABAaGorS0lJkZGQgPz8f3bt3R2BgIG7fvi2NOXfuHNLS0rBt2zZotVpcu3YNo0aNwsSJE3HmzBkcPHgQ7733nlSIbNmyBQsXLsT//vc/nDlzBl988QUWLFjwxCsgj9u8eTMsLCxw9OhRrFy5EsuWLcO6devq7a9UKvHNN9/g1KlT2Lx5Mw4cOIDZs2dL+8PDw1FTU4Ps7GwUFBTgyy+/RNOmTeudLycnBz179jRoCwsLQ1FREbKzs6W2yspKpKamSldtHunduzdycnIaPEci+ocgIrOj0WiESqUSdnZ2wtraWgAQSqVSpKamCiGEuH//vmjSpIk4fPiwwbiwsDAxatQoIYQQJ06cEAqFQly6dEkIIYROpxOtW7cWq1evFkIIkZOTIxwcHMT9+/cN5mjfvr1ISkoSQggRExMjLC0tRWlpqbQ/Pz9fABAXL158Yuzt27cXKSkpBm2ff/658Pf3r/d833zzTeHj4yP0er3UNmfOHOHj4yNtt23bVixfvrzeOX788Ufh5OQkbfv6+orY2Nh6+/+XWq0Wn332WZ32vn37Co1GI22vX79eNGnSRJSXlxv027Fjh1AqlUKn0z3zMYnMFa/cEJmpgQMHQqvVIjc3FxqNBhMmTMD7778P4OHVlOrqagwePBhNmzaVPsnJyTh//jwAwM/PDz4+PtLVm6ysLJSWliI0NBQAcPLkSVRWVsLJyclgjuLiYmkOAGjbti1cXFykbbVajcDAQPj6+iI0NBRr165FWVkZAKCqqgrnz59HWFiYwZyLFy82mPNJ+vbtC4VCIW37+/ujqKgIOp3uif1//vlnBAYGonXr1rC3t8fYsWPx119/obq6GgAwffp0LF68GAEBAYiJicHvv//e4PHv3bsn3XZ73MSJE5Gamio9QbVhwwaEhobC3t7eoJ+trS30ej1qamoaPA4R8bYUkdmys7NDhw4doFarsWHDBuTm5mL9+vUAIK0t2bVrF7RarfQ5ffq0tO4GAMaMGSMVNykpKRg6dCicnJykOVq1amUwXqvV4uzZs5g1a5ZBHI9TqVTIzMxERkYGOnXqhPj4eHh7e6O4uFiKa+3atQZzFhYW4siRIy/su7l48SLeeecddO3aFWlpacjPz0dCQgKAfxc9T5o0CRcuXMDYsWNRUFCAnj17Ij4+vt45nZ2dpSLtcR9++CGAh2tyioqKcOjQoTq3pADg9u3bsLOzg62t7Ys4RSKTxuKGiKBUKjFv3jzMnz8f9+7dQ6dOnWBtbY2SkhJ06NDB4OPh4SGNGz16NAoLC5Gfn4/U1FSMGTNG2te9e3dcv34dFhYWdeZwdnZuMB6FQoGAgAAsWrQIJ06cgJWVFdLT09GiRQu4ubnhwoULdeb09PRscM7c3FyD7SNHjqBjx45QqVR1+ubn50Ov12Pp0qXo27cvvLy8cPXq1Tr9PDw8MGXKFGzbtg2ffvop1q5dW+/xu3XrhtOnT9dpt7e3R2hoKDZs2ICNGzfCy8sL/fr1q9OvsLAQ3bp1a/AcieghC7kDICLjEBoailmzZiEhIQEzZ87EzJkzMWPGDOj1erzxxhu4e/cuDh06BAcHB2g0GgAPnzB6/fXXERYWBp1Oh+HDh0vzBQUFwd/fHyNHjsRXX30lFQi7du3Cu+++W2dx7SO5ubnYv38/hgwZAldXV+Tm5uLmzZvw8fEBACxatAjTp0+Ho6Mjhg4dipqaGuTl5aGsrEz6XZgnKSkpQVRUFCZPnozjx48jPj4eS5cufWLfDh06oLa2FvHx8Rg2bBgOHTqENWvWGPSJjIxESEgIvLy8UFZWhl9++UWK8UmCg4MxadIk6HS6OgVVWFgY+vXrhzNnzmDOnDlPHJ+Tk4MhQ4bUOz8RPUbuRT9E9PJpNBoxYsSIOu1xcXHCxcVFVFZWCr1eL1asWCG8vb2FpaWlcHFxEcHBwSIrK8tgTGJiogAgxo0bV2e+8vJyMW3aNOHm5iYsLS2Fh4eHGDNmjCgpKRFCPFxQrFarDcacPn1aBAcHCxcXF2FtbS28vLxEfHy8QZ8tW7YIPz8/YWVlJZo1ayb69+8vtm3bVu/5vvnmm2Lq1KliypQpwsHBQTRr1kzMmzfPYIHxfxcUL1u2TLRq1UrY2tqK4OBgkZycLACIsrIyIYQQERERon379sLa2lq4uLiIsWPHilu3btUbQ21trXBzcxN79ux54n5vb2+hUqnE1atX6+z7888/haWlpbh8+XK98xPRvxRCPPZDD0RE1GgSEhLw008/Ye/evc81bs6cOSgrK8O3337bSJERmRbeliIiekkmT56MO3fuoKKios7TUA1xdXVt8JYbERnilRsiIiIyKXxaioiIiEwKixsiIiIyKSxuiIiIyKSwuCEiIiKTwuKGiIiITAqLGyIiIjIpLG6IiIjIpLC4ISIiIpPC4oaIiIhMyv8BkBs4eOUFwk8AAAAASUVORK5CYII=",
"text/plain": [
"