Skip to content
This repository was archived by the owner on Apr 12, 2024. It is now read-only.

Commit 6177c63

Browse files
committed
Small cleanup and deal with aliasing.
1 parent 14d0bd1 commit 6177c63

File tree

4 files changed

+62
-29
lines changed

4 files changed

+62
-29
lines changed

nf_elem.h

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -934,6 +934,8 @@ FLINT_DLL void nf_elem_rep_mat(fmpq_mat_t res, const nf_elem_t a, const nf_t nf)
934934

935935
FLINT_DLL void nf_elem_rep_mat_fmpz_mat_den(fmpz_mat_t res, fmpz_t den, const nf_elem_t a, const nf_t nf);
936936

937+
FLINT_DLL int _nf_elem_sqrt(nf_elem_t a, const nf_elem_t b, const nf_t nf);
938+
937939
FLINT_DLL int nf_elem_sqrt(nf_elem_t a, const nf_elem_t b, const nf_t nf);
938940

939941
/******************************************************************************

nf_elem/sqrt.c

Lines changed: 51 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -21,14 +21,13 @@
2121
/*
2222
TODO:
2323
24-
* Handle aliasing
2524
* try to reuse information from previous failed attempt
2625
* improve bounds
2726
* add LM bound termination for nonsquare case
2827
* add linear and quadratic cases
2928
* Tune the number of primes used in trial factoring
3029
* Use ECM and larger recombination for very large square roots
31-
* Prove isomorphism to Z/pZ in all cases or exclude primes
30+
* Prove homomorphism to Z/pZ in all cases or exclude primes
3231
* Deal with lousy starting bounds (they are too optimistic if f is not monic)
3332
* Deal with number fields of degree 1 and 2
3433
* Deal with primes dividing denominator of norm
@@ -121,7 +120,7 @@ slong _fmpz_poly_get_n_adic(fmpz * sqrt, slong len, fmpz_t z, fmpz_t n)
121120
return slen;
122121
}
123122

124-
int nf_elem_sqrt(nf_elem_t a, const nf_elem_t b, const nf_t nf)
123+
int _nf_elem_sqrt(nf_elem_t a, const nf_elem_t b, const nf_t nf)
125124
{
126125
if (nf->flag & NF_LINEAR)
127126
{
@@ -154,12 +153,6 @@ int nf_elem_sqrt(nf_elem_t a, const nf_elem_t b, const nf_t nf)
154153
fmpz * r, * mr, * bz;
155154
int res = 0, factored, iters;
156155

157-
if (!fmpz_is_one(fmpq_poly_denref(nf->pol)))
158-
{
159-
flint_printf("Non-monic defining polynomial not supported in sqrt yet.\n");
160-
flint_abort();
161-
}
162-
163156
if (lenb == 0)
164157
{
165158
nf_elem_zero(a, nf);
@@ -215,7 +208,7 @@ int nf_elem_sqrt(nf_elem_t a, const nf_elem_t b, const nf_t nf)
215208
#endif
216209

217210
bbits = FLINT_ABS(_fmpz_vec_max_bits(bz, lenb));
218-
nbits = (bbits + 1)/(2*lenf) + 2;
211+
nbits = (bbits + 1)/(20) + 2;
219212

220213
/*
221214
Step 3: find a nbits bit prime such that z = f(n) is a product
@@ -225,29 +218,41 @@ int nf_elem_sqrt(nf_elem_t a, const nf_elem_t b, const nf_t nf)
225218
field K defined by f. Then O_K/P_i is isomorphic to Z/pZ via
226219
the map s(x) mod P_i -> s(n) mod p.
227220
*/
228-
#if DEBUG
229-
flint_printf("Step 3\n");
230-
#endif
231221

232222
fmpz_factor_init(fac);
233223
fmpz_init(z);
234224
fmpz_init(n);
235225

226+
fmpz_init(disc);
227+
flint_randinit(state);
228+
229+
_fmpz_poly_discriminant(disc, fmpq_poly_numref(nf->pol), lenf);
230+
236231
do /* continue increasing nbits until square root found */
237232
{
238-
fmpz_init(disc);
239-
flint_randinit(state);
240-
241-
_fmpz_poly_discriminant(disc, fmpq_poly_numref(nf->pol), lenf);
233+
fmpz_t fac1;
234+
235+
fmpz_init(fac1);
242236

243237
factored = 0;
244238
iters = 0;
245239

246-
while (!factored || fac->num > 6) /* no bound known for finding such a factorisation */
240+
#if DEBUG
241+
flint_printf("Step 3\n");
242+
#endif
243+
244+
while (!factored || fac->num > 14) /* no bound known for finding such a factorisation */
247245
{
248246
fmpz_factor_clear(fac);
249247
fmpz_factor_init(fac);
250248

249+
/* ensure we don't exhaust all primes of the given size */
250+
if (nbits < 20 && iters >= (1<<(nbits-1)))
251+
{
252+
iters = 0;
253+
nbits++;
254+
}
255+
251256
fmpz_randprime(n, state, nbits, 0);
252257
if (fmpz_sgn(n) < 0)
253258
fmpz_neg(n, n);
@@ -257,19 +262,17 @@ int nf_elem_sqrt(nf_elem_t a, const nf_elem_t b, const nf_t nf)
257262
factored = fmpz_factor_trial(fac, z, 3512);
258263

259264
if (!factored)
260-
factored = fmpz_is_probabprime(fac->p + fac->num - 1);
261-
262-
if (nbits < 20 && iters >= (1<<(nbits-1)))
263265
{
264-
iters = 0;
265-
nbits++;
266+
fmpz_set(fac1, fac->p + fac->num - 1);
267+
fac->num--;
268+
269+
factored = fmpz_factor_smooth(fac, fac1, FLINT_MIN(20, nbits/5 + 1), 0);
266270
}
267271

268272
iters++;
269273
}
270274

271-
flint_randclear(state);
272-
fmpz_clear(disc);
275+
fmpz_clear(fac1);
273276

274277
/*
275278
Step 4: compute the square roots r_i of z = b(n) mod p_i for each
@@ -379,6 +382,9 @@ int nf_elem_sqrt(nf_elem_t a, const nf_elem_t b, const nf_t nf)
379382
} while (res != 1);
380383

381384
cleanup:
385+
flint_randclear(state);
386+
fmpz_clear(disc);
387+
382388
fmpz_clear(n);
383389
fmpz_clear(temp);
384390
fmpz_clear(z);
@@ -394,3 +400,23 @@ int nf_elem_sqrt(nf_elem_t a, const nf_elem_t b, const nf_t nf)
394400
}
395401
}
396402

403+
int nf_elem_sqrt(nf_elem_t a, const nf_elem_t b, const nf_t nf)
404+
{
405+
nf_elem_t t;
406+
407+
if (a == b)
408+
{
409+
int ret;
410+
411+
nf_elem_init(t, nf);
412+
413+
ret = _nf_elem_sqrt(t, b, nf);
414+
nf_elem_swap(t, a, nf);
415+
416+
nf_elem_clear(t, nf);
417+
418+
return ret;
419+
}
420+
else
421+
return _nf_elem_sqrt(a, b, nf);
422+
}

nf_elem/test/t-mul_div_fmpq.c

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@
2121
int
2222
main(void)
2323
{
24-
int i, result;
24+
int i;
2525
flint_rand_t state;
2626

2727
flint_randinit(state);

nf_elem/test/t-sqrt.c

Lines changed: 8 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -35,10 +35,15 @@ main(void)
3535
nf_t nf;
3636
nf_elem_t a, b, c, d;
3737
int is_square, num_facs;
38+
slong flen, fbits, abits;
3839
fmpz_poly_factor_t fac;
3940
fmpz_poly_t pol; /* do not clear */
4041

41-
nf_init_randtest(nf, state, 30, 30);
42+
flen = n_randint(state, 30) + 2;
43+
fbits = n_randint(state, 30) + 1;
44+
abits = n_randint(state, 30) + 1;
45+
46+
nf_init_randtest(nf, state, flen, fbits);
4247

4348
fmpz_poly_factor_init(fac);
4449

@@ -60,8 +65,8 @@ main(void)
6065
nf_elem_init(b, nf);
6166
nf_elem_init(c, nf);
6267
nf_elem_init(d, nf);
63-
64-
nf_elem_randtest(a, state, 30, nf);
68+
69+
nf_elem_randtest(a, state, abits, nf);
6570

6671
nf_elem_mul(b, a, a, nf);
6772

0 commit comments

Comments
 (0)