|
| 1 | +# Copyright 2024 DeepMind Technologies Limited |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +"""Tests for the simple_redistribution module.""" |
| 16 | + |
| 17 | +from absl.testing import absltest |
| 18 | +from absl.testing import parameterized |
| 19 | +import jax |
| 20 | +from jax import numpy as jnp |
| 21 | +import numpy as np |
| 22 | +from torax._src.config import build_runtime_params |
| 23 | +from torax._src.core_profiles import initialization |
| 24 | +from torax._src.mhd.sawtooth import simple_redistribution |
| 25 | +from torax._src.physics import psi_calculations |
| 26 | +from torax._src.torax_pydantic import model_config |
| 27 | + |
| 28 | +# Set jax_enable_x64 to True to ensure high precision for tests. |
| 29 | +jax.config.update('jax_enable_x64', True) |
| 30 | + |
| 31 | + |
| 32 | +class SimpleRedistributionTest(parameterized.TestCase): |
| 33 | + |
| 34 | + @parameterized.product( |
| 35 | + evolve_ion_heat=[True, False], |
| 36 | + evolve_electron_heat=[True, False], |
| 37 | + evolve_density=[True, False], |
| 38 | + ) |
| 39 | + def test_simple_redistribution_with_evolving_profiles( |
| 40 | + self, evolve_ion_heat, evolve_electron_heat, evolve_density |
| 41 | + ): |
| 42 | + """Tests that SimpleRedistribution works with all evolving profiles.""" |
| 43 | + config_dict = { |
| 44 | + 'numerics': { |
| 45 | + 'evolve_ion_heat': evolve_ion_heat, |
| 46 | + 'evolve_electron_heat': evolve_electron_heat, |
| 47 | + 'evolve_density': evolve_density, |
| 48 | + 'evolve_current': True, |
| 49 | + }, |
| 50 | + 'profile_conditions': { # Set up to ensure q[0] < 1 |
| 51 | + 'Ip': 15e6, |
| 52 | + 'initial_j_is_total_current': True, |
| 53 | + 'initial_psi_from_j': True, |
| 54 | + 'current_profile_nu': 3, |
| 55 | + }, |
| 56 | + 'plasma_composition': {}, |
| 57 | + 'geometry': {'geometry_type': 'circular', 'n_rho': 10}, |
| 58 | + 'pedestal': {}, |
| 59 | + 'sources': {}, |
| 60 | + 'solver': {}, |
| 61 | + 'transport': {}, |
| 62 | + 'mhd': { |
| 63 | + 'sawtooth': { |
| 64 | + 'trigger_model': {'model_name': 'simple'}, |
| 65 | + 'redistribution_model': { |
| 66 | + 'model_name': 'simple', |
| 67 | + 'flattening_factor': 1.01, |
| 68 | + 'mixing_radius_multiplier': 1.5, |
| 69 | + }, |
| 70 | + } |
| 71 | + }, |
| 72 | + } |
| 73 | + |
| 74 | + torax_config = model_config.ToraxConfig.from_dict(config_dict) |
| 75 | + |
| 76 | + assert torax_config.mhd is not None |
| 77 | + assert torax_config.mhd.sawtooth is not None |
| 78 | + |
| 79 | + redistribution_model = ( |
| 80 | + torax_config.mhd.sawtooth.redistribution_model.build_redistribution_model() |
| 81 | + ) |
| 82 | + self.assertIsInstance( |
| 83 | + redistribution_model, simple_redistribution.SimpleRedistribution |
| 84 | + ) |
| 85 | + runtime_params_provider = ( |
| 86 | + build_runtime_params.RuntimeParamsProvider.from_config(torax_config) |
| 87 | + ) |
| 88 | + geo_provider = torax_config.geometry.build_provider |
| 89 | + |
| 90 | + runtime_params_t = runtime_params_provider(t=0.0) |
| 91 | + geo_t = geo_provider(t=0.0) |
| 92 | + |
| 93 | + core_profiles_t = initialization.initial_core_profiles( |
| 94 | + runtime_params=runtime_params_t, |
| 95 | + geo=geo_t, |
| 96 | + source_models=torax_config.sources.build_models(), |
| 97 | + neoclassical_models=torax_config.neoclassical.build_models(), |
| 98 | + ) |
| 99 | + |
| 100 | + # Find the q=1 surface radius to pass to the model |
| 101 | + q_face_before = core_profiles_t.q_face |
| 102 | + self.assertLess( |
| 103 | + q_face_before[0], |
| 104 | + 1.0, |
| 105 | + 'Initial q-profile must be below 1 for this test.', |
| 106 | + ) |
| 107 | + rho_norm_q1 = np.interp( |
| 108 | + 1.0, |
| 109 | + q_face_before, |
| 110 | + geo_t.rho_face_norm, |
| 111 | + ) |
| 112 | + |
| 113 | + # Call the redistribution model |
| 114 | + redistributed_core_profiles = redistribution_model( |
| 115 | + jnp.asarray(rho_norm_q1), |
| 116 | + runtime_params_t, |
| 117 | + geo_t, |
| 118 | + core_profiles_t, |
| 119 | + ) |
| 120 | + |
| 121 | + # Main check: Ensure no errors were raised. |
| 122 | + # Also, perform a basic check to ensure redistribution occurred. |
| 123 | + q_face_after = psi_calculations.calc_q_face( |
| 124 | + geo_t, redistributed_core_profiles.psi |
| 125 | + ) |
| 126 | + self.assertGreater( |
| 127 | + q_face_after[0], |
| 128 | + q_face_before[0], |
| 129 | + 'On-axis q should increase after redistribution.', |
| 130 | + ) |
| 131 | + self.assertGreaterEqual( |
| 132 | + q_face_after[0], |
| 133 | + 1.0, |
| 134 | + 'On-axis q should be at least 1.0 after redistribution.', |
| 135 | + ) |
| 136 | + |
| 137 | + |
| 138 | +if __name__ == '__main__': |
| 139 | + absltest.main() |
0 commit comments