@@ -142,7 +142,9 @@ def merge_and_load(self, output_dict: dict):
142142 n_pending = len (pending_data ["TS" ])
143143
144144 if scale_label == background_label and background_label in output_dict :
145- logger .info (f"Appending f{ n_pending } background data to { len (output_dict [background_label ]['TS' ])} existing trials ({ scale_label = } )" )
145+ logger .info (
146+ f"Appending f{ n_pending } background data to { len (output_dict [background_label ]['TS' ])} existing trials ({ scale_label = } )"
147+ )
146148 self .merge_datadict (output_dict [background_label ], pending_data )
147149 else :
148150 output_dict [scale_label ] = pending_data
@@ -180,11 +182,19 @@ def __init__(
180182 self .results = dict ()
181183
182184 self .pickle_output_dir = name_pickle_output_dir (self .name )
183- self .pickle_output_dir_bg = name_pickle_output_dir (self .background_source ) if self .background_source else None
185+ self .pickle_output_dir_bg = (
186+ name_pickle_output_dir (self .background_source )
187+ if self .background_source
188+ else None
189+ )
184190
185191 self .pickle_cache = PickleCache (Path (self .pickle_output_dir ))
186192
187- self .pickle_cache_bg = PickleCache (Path (self .pickle_output_dir_bg ), background_only = True ) if self .background_source else None
193+ self .pickle_cache_bg = (
194+ PickleCache (Path (self .pickle_output_dir_bg ), background_only = True )
195+ if self .background_source
196+ else None
197+ )
188198
189199 self .plot_path = Path (plot_output_dir (self .name ))
190200
@@ -251,7 +261,9 @@ def __init__(
251261 )
252262 sys .exit ()
253263 if not scale_shortener (0.0 ) in self .results :
254- logger .error (f"No key equal to '0' in results! Keys are { self .results .keys ()} " )
264+ logger .error (
265+ f"No key equal to '0' in results! Keys are { self .results .keys ()} "
266+ )
255267
256268 sys .exit ()
257269
@@ -1030,7 +1042,6 @@ def plot_bias(self):
10301042 for scale in raw_x :
10311043 vals = self .results [scale ]["Parameters" ][param ]
10321044
1033-
10341045 if self .bias_error == "std" :
10351046 med = np .median (vals )
10361047 meds .append (med )
0 commit comments