From 8c28c1a7eeb316510e9688e813cf4ec5b1031826 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E9=83=91=E4=BC=9F=E9=91=AB?= <3482525266@qq.com> Date: Wed, 7 Jun 2023 16:58:45 +0800 Subject: [PATCH] fix the bug running in Python3 --- main.py | 8 ++++---- models/LSTNet.py | 2 +- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/main.py b/main.py index 05bfa0a..996a068 100755 --- a/main.py +++ b/main.py @@ -29,8 +29,8 @@ def evaluate(data, X, Y, model, evaluateL2, evaluateL1, batch_size): test = torch.cat((test, Y)); scale = data.scale.expand(output.size(0), data.m) - total_loss += evaluateL2(output * scale, Y * scale).data[0] - total_loss_l1 += evaluateL1(output * scale, Y * scale).data[0] + total_loss += evaluateL2(output * scale, Y * scale).item() + total_loss_l1 += evaluateL1(output * scale, Y * scale).item() n_samples += (output.size(0) * data.m); rse = math.sqrt(total_loss / n_samples)/data.rse rae = (total_loss_l1/n_samples)/data.rae @@ -42,7 +42,7 @@ def evaluate(data, X, Y, model, evaluateL2, evaluateL1, batch_size): mean_p = predict.mean(axis = 0) mean_g = Ytest.mean(axis = 0) index = (sigma_g!=0); - correlation = ((predict - mean_p) * (Ytest - mean_g)).mean(axis = 0)/(sigma_p * sigma_g); + correlation = ((predict - mean_p) * (Ytest - mean_g)).mean(axis = 0)/(sigma_p * sigma_g + 1e-15); correlation = (correlation[index]).mean(); return rse, rae, correlation; @@ -57,7 +57,7 @@ def train(data, X, Y, model, criterion, optim, batch_size): loss = criterion(output * scale, Y * scale); loss.backward(); grad_norm = optim.step(); - total_loss += loss.data[0]; + total_loss += loss.item(); n_samples += (output.size(0) * data.m); return total_loss / n_samples diff --git a/models/LSTNet.py b/models/LSTNet.py index 61d667e..5588f92 100644 --- a/models/LSTNet.py +++ b/models/LSTNet.py @@ -13,7 +13,7 @@ def __init__(self, args, data): self.hidS = args.hidSkip; self.Ck = args.CNN_kernel; self.skip = args.skip; - self.pt = (self.P - self.Ck)/self.skip + self.pt = (self.P - self.Ck)//self.skip self.hw = args.highway_window self.conv1 = nn.Conv2d(1, self.hidC, kernel_size = (self.Ck, self.m)); self.GRU1 = nn.GRU(self.hidC, self.hidR);