Skip to content

Commit 910c5fb

Browse files
committed
Rename BHIVE to HYPERSCALE
1 parent a45f8e0 commit 910c5fb

File tree

1 file changed

+10
-10
lines changed

1 file changed

+10
-10
lines changed

src/oss/javascript/integrations/vectorstores/couchbase_query.mdx

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -77,14 +77,14 @@ const vectorStore = await CouchbaseQueryVectorStore.initialize(embeddings, {
7777

7878
The Query vector store supports creating vector indexes to improve search performance. There are two types of indexes available:
7979

80-
### BHIVE Index
80+
### HYPERSCALE Index
8181
A specialized vector index optimized for vector operations using Couchbase's vector indexing capabilities:
8282

8383
```typescript
8484
import { IndexType } from "@langchain/community/vectorstores/couchbase_query";
8585

8686
await vectorStore.createIndex({
87-
indexType: IndexType.BHIVE,
87+
indexType: IndexType.HYPERSCALE,
8888
indexDescription: "IVF,SQ8",
8989
indexName: "my_vector_index", // optional
9090
vectorDimension: 1536, // optional, auto-detected from embeddings
@@ -129,7 +129,7 @@ WITH {'dimension': 1536, 'similarity': 'dot', 'description': 'IVF1024,SQ8', 'sca
129129

130130
### Key Differences
131131

132-
| Aspect | BHIVE Index | COMPOSITE Index |
132+
| Aspect | HYPERSCALE Index | COMPOSITE Index |
133133
|--------|-------------|-----------------|
134134
| **SQL++ Syntax** | `CREATE VECTOR INDEX` | `CREATE INDEX` |
135135
| **Vector Field** | `(field VECTOR)` with `INCLUDE` clause | `(field1, field2, vector_field VECTOR)` |
@@ -265,7 +265,7 @@ const results = await vectorStore.similaritySearch(
265265

266266
### Index Types
267267

268-
- `IndexType.BHIVE` - Specialized vector index for optimal vector search performance
268+
- `IndexType.HYPERSCALE` - Specialized vector index for optimal vector search performance
269269
- `IndexType.COMPOSITE` - General-purpose index that can include vector and scalar fields
270270

271271
## Advanced Usage
@@ -321,20 +321,20 @@ await vectorStore.delete({ ids: documentIds });
321321

322322
1. **Create Indexes**: Use `createIndex()` to create appropriate vector indexes for better performance
323323
2. **Choose Index Type**:
324-
- Use **BHIVE indexes** for pure vector search workloads where you primarily perform similarity searches
324+
- Use **HYPERSCALE indexes** for pure vector search workloads where you primarily perform similarity searches
325325
- Use **COMPOSITE indexes** for mixed queries that combine vector similarity with scalar field filtering
326326
3. **Tune Parameters**: Adjust `indexScanNprobes` and `indexTrainlist` based on your data size and performance requirements
327327
4. **Filter Early**: Use WHERE clauses to reduce the search space before vector calculations
328328
5. **Index Strategy**:
329-
- **BHIVE**: Better for high-performance vector similarity search with minimal scalar filtering
329+
- **HYPERSCALE**: Better for high-performance vector similarity search with minimal scalar filtering
330330
- **COMPOSITE**: Better when you frequently filter by both vector similarity and scalar fields in the same query
331331

332332
## Error Handling
333333

334334
```typescript
335335
try {
336336
await vectorStore.createIndex({
337-
indexType: IndexType.BHIVE,
337+
indexType: IndexType.HYPERSCALE,
338338
indexDescription: "IVF,SQ8",
339339
});
340340
} catch (error) {
@@ -369,11 +369,11 @@ If you see errors related to insufficient training data, you may need to:
369369

370370
## Question: Do I need to create an index before using CouchbaseQueryVectorStore?
371371

372-
No, unlike the Search-based CouchbaseVectorStore, the Query-based implementation can work without pre-created indexes. However, creating appropriate vector indexes (BHIVE or COMPOSITE) will significantly improve query performance.
372+
No, unlike the Search-based CouchbaseVectorStore, the Query-based implementation can work without pre-created indexes. However, creating appropriate vector indexes (HYPERSCALE or COMPOSITE) will significantly improve query performance.
373373

374-
## Question: When should I use BHIVE vs COMPOSITE indexes?
374+
## Question: When should I use HYPERSCALE vs COMPOSITE indexes?
375375

376-
- Use **BHIVE indexes** when you primarily perform vector similarity searches with minimal filtering on other fields
376+
- Use **HYPERSCALE indexes** when you primarily perform vector similarity searches with minimal filtering on other fields
377377
- Use **COMPOSITE indexes** when you frequently combine vector similarity with filtering on scalar fields in the same query
378378

379379
## Question: Can I use both CouchbaseVectorStore and CouchbaseQueryVectorStore on the same data?

0 commit comments

Comments
 (0)