diff --git a/Archive/Wiedijk100Theorems/SolutionOfCubicQuartic.lean b/Archive/Wiedijk100Theorems/SolutionOfCubicQuartic.lean index b524ea708540c1..cee897a3533003 100644 --- a/Archive/Wiedijk100Theorems/SolutionOfCubicQuartic.lean +++ b/Archive/Wiedijk100Theorems/SolutionOfCubicQuartic.lean @@ -23,14 +23,14 @@ terms of a quantity that is a root of a particular cubic equation. ## Main statements - `cubic_eq_zero_iff`: gives the roots of the cubic equation -where the discriminant `p = 3 * a * c - b^2` is nonzero. + where the discriminant `p = 3 * a * c - b^2` is nonzero. - `cubic_eq_zero_iff_of_p_eq_zero`: gives the roots of the cubic equation -where the discriminant equals zero. + where the discriminant equals zero. - `quartic_eq_zero_iff`: gives the roots of the quartic equation -where the quantity `b^3 - 4 * a * b * c + 8 * a^2 * d` is nonzero, in terms of a root `u` -to a cubic resolvent. + where the quantity `b^3 - 4 * a * b * c + 8 * a^2 * d` is nonzero, in terms of a root `u` + to a cubic resolvent. - `quartic_eq_zero_iff_of_q_eq_zero`: gives the roots of the quartic equation -where the quantity `b^3 - 4 * a * b * c + 8 * a^2 * d` equals zero. + where the quantity `b^3 - 4 * a * b * c + 8 * a^2 * d` equals zero. ## Proof outline diff --git a/Counterexamples/NowhereDifferentiable.lean b/Counterexamples/NowhereDifferentiable.lean index 3fb26d476ce42b..2497df7520bf8f 100644 --- a/Counterexamples/NowhereDifferentiable.lean +++ b/Counterexamples/NowhereDifferentiable.lean @@ -24,7 +24,7 @@ which is the original bound given by Karl Weierstrass. There is a better bound $ ## References * [Weierstrass, Karl, *Über continuirliche Functionen eines reellen Arguments, die für keinen Werth -des letzeren einen bestimmten Differentialquotienten besitzen*][weierstrass1895] + des letzeren einen bestimmten Differentialquotienten besitzen*][weierstrass1895] * [G. H. Hardy, *Weierstrass's Non-Differentiable Function*][hardyweierstrass] -/ @@ -77,8 +77,8 @@ theorem uniformContinuous_weierstrass {a : ℝ} (ha : a ∈ Set.Ioo 0 1) (b : To show that Weierstrass function $f(x)$ is not differentiable at any $x$, we choose a sequence $\{x_m\}$ such that, as $m\to\infty$ - $\{x_m\}$ converges to $x$ - - The slope $(f(x_m) - f(x)) / (x_m - x)$ grows unbounded -which means the derivative $f'(x)$ cannot exist. + - The slope $(f(x_m) - f(x)) / (x_m - x)$ grows unbounded, + which means the derivative $f'(x)$ cannot exist. -/ /-- The approximating sequence `seq` is defined as $x_m = \lfloor b^m x + 3/2 \rfloor / b^m$ -/ diff --git a/Mathlib/Combinatorics/HalesJewett.lean b/Mathlib/Combinatorics/HalesJewett.lean index 86999d1284ddc4..8681f5c59bf922 100644 --- a/Mathlib/Combinatorics/HalesJewett.lean +++ b/Mathlib/Combinatorics/HalesJewett.lean @@ -51,10 +51,10 @@ allows us to work directly with `α`, `Option α`, `(ι → α) → κ`, and `ι ## TODO - Prove a finitary version of Van der Waerden's theorem (either by compactness or by modifying the -current proof). + current proof). - One could reformulate the proof of Hales-Jewett to give explicit upper bounds on the number of -coordinates needed. + coordinates needed. ## Tags diff --git a/Mathlib/Combinatorics/Quiver/Arborescence.lean b/Mathlib/Combinatorics/Quiver/Arborescence.lean index 38eee9d31ef5dd..fdc13f4cd2c6f6 100644 --- a/Mathlib/Combinatorics/Quiver/Arborescence.lean +++ b/Mathlib/Combinatorics/Quiver/Arborescence.lean @@ -20,12 +20,12 @@ that for every `b : V` there is a unique path from `root` to `b`. - `Quiver.Arborescence V`: a typeclass asserting that `V` is an arborescence - `arborescenceMk`: a convenient way of proving that a quiver is an arborescence - `RootedConnected r`: a typeclass asserting that there is at least one path from `r` to `b` for -every `b`. + every `b`. - `geodesicSubtree r`: given `[RootedConnected r]`, this is a subquiver of `V` which contains -just enough edges to include a shortest path from `r` to `b` for every `b`. + just enough edges to include a shortest path from `r` to `b` for every `b`. - `geodesicArborescence : Arborescence (geodesicSubtree r)`: an instance saying that the geodesic -subtree is an arborescence. This proves the directed analogue of 'every connected graph has a -spanning tree'. This proof avoids the use of Zorn's lemma. + subtree is an arborescence. This proves the directed analogue of 'every connected graph has a + spanning tree'. This proof avoids the use of Zorn's lemma. -/ @[expose] public section diff --git a/Mathlib/Combinatorics/Quiver/ConnectedComponent.lean b/Mathlib/Combinatorics/Quiver/ConnectedComponent.lean index d8e203b752144a..a8b3c60b207bbb 100644 --- a/Mathlib/Combinatorics/Quiver/ConnectedComponent.lean +++ b/Mathlib/Combinatorics/Quiver/ConnectedComponent.lean @@ -20,7 +20,7 @@ We define: * `Quiver.IsStronglyConnected V`: every pair of vertices is connected by a (possibly empty) path. * `Quiver.IsSStronglyConnected V`: every pair of vertices is connected by a path of positive length. * `Quiver.StronglyConnectedComponent V`: the quotient by the equivalence relation “paths in both -directions”. + directions”. These concepts relate strong and weak connectivity and let us reason about strongly connected components in directed graphs. diff --git a/Mathlib/GroupTheory/GroupAction/Iwasawa.lean b/Mathlib/GroupTheory/GroupAction/Iwasawa.lean index cf7c00bdad58cf..b0ef5b661a56d0 100644 --- a/Mathlib/GroupTheory/GroupAction/Iwasawa.lean +++ b/Mathlib/GroupTheory/GroupAction/Iwasawa.lean @@ -11,9 +11,9 @@ public import Mathlib.GroupTheory.Subgroup.Simple /-! # Iwasawa criterion for simplicity -- `IwasawaStructure` : the structure underlying the Iwasawa criterion -For a group `G`, this consists of an action of `G` on a type `α` and, -for every `a : α`, of a subgroup `T a`, such that the following properties hold: +- `IwasawaStructure` : the structure underlying the Iwasawa criterion. + For a group `G`, this consists of an action of `G` on a type `α` and, + for every `a : α`, of a subgroup `T a`, such that the following properties hold: - for all `a`, `T a` is commutative - for all `g : G` and `a : α`, `T (g • a) = MulAut.conj g • T a` - the subgroups `T a` generate `G` @@ -22,12 +22,12 @@ We then prove two versions of the Iwasawa criterion when there is an Iwasawa structure. - `IwasawaStructure.commutator_le` asserts that if the action of `G` on `α` -is quasiprimitive, then every normal subgroup that acts nontrivially -contains `commutator G` + is quasiprimitive, then every normal subgroup that acts nontrivially + contains `commutator G`. -- `IwasawaStructure.isSimpleGroup` : the Iwasawa criterion for simplicity -If the action of `G` on `α` is quasiprimitive and faithful, -and `G` is nontrivial and perfect, then `G` is simple. +- `IwasawaStructure.isSimpleGroup` : the Iwasawa criterion for simplicity. + If the action of `G` on `α` is quasiprimitive and faithful, + and `G` is nontrivial and perfect, then `G` is simple. ## TODO diff --git a/Mathlib/GroupTheory/GroupAction/MultiplePrimitivity.lean b/Mathlib/GroupTheory/GroupAction/MultiplePrimitivity.lean index ec5774b3342c83..2875e6627f672f 100644 --- a/Mathlib/GroupTheory/GroupAction/MultiplePrimitivity.lean +++ b/Mathlib/GroupTheory/GroupAction/MultiplePrimitivity.lean @@ -13,9 +13,9 @@ public import Mathlib.GroupTheory.GroupAction.SubMulAction.OfFixingSubgroup Let `G` be a group acting on a type `α`. * `MulAction.IsMultiplyPreprimitive` : -The action is said to be `n`-primitive if, for every subset `s : -Set α` with `n` elements, the actions f `stabilizer G s` on the -complement of `s` is primitive. + The action is said to be `n`-primitive if, for every subset `s : + Set α` with `n` elements, the actions f `stabilizer G s` on the + complement of `s` is primitive. * `MulAction.is_zero_preprimitive` : any action is 0-primitive @@ -30,9 +30,9 @@ complement of `s` is primitive. ofFixingSubgroup.isMultiplyPreprimitive * `MulAction.ofFixingSubgroup.isMultiplyPreprimitive`: -If an action is `s.ncard + m`-primitive, then -the action of `FixingSubgroup G s` on the complement of `s` -is `m`-primitive. + If an action is `s.ncard + m`-primitive, then + the action of `FixingSubgroup G s` on the complement of `s` + is `m`-primitive. -/ diff --git a/Mathlib/GroupTheory/GroupAction/SubMulAction/OfFixingSubgroup.lean b/Mathlib/GroupTheory/GroupAction/SubMulAction/OfFixingSubgroup.lean index ae7e6af13cd367..e8ac492a9c042d 100644 --- a/Mathlib/GroupTheory/GroupAction/SubMulAction/OfFixingSubgroup.lean +++ b/Mathlib/GroupTheory/GroupAction/SubMulAction/OfFixingSubgroup.lean @@ -17,51 +17,51 @@ public import Mathlib.Tactic.Group Given a `MulAction` of `G` on `α` and `s : Set α`, -* `SubMulAction.ofFixingSubgroup` is the action +- `SubMulAction.ofFixingSubgroup` is the action of `FixingSubgroup G s` on the complement `sᶜ` of `s`. - We define equivariant maps that relate various of these `SubMulAction`s -and permit to manipulate them in a relatively smooth way: + and permit to manipulate them in a relatively smooth way: * `SubMulAction.ofFixingSubgroup_equivariantMap`: - the identity map from `sᶜ` to `α`, as an equivariant map - relative to the injection of `FixingSubgroup G s` into `G`. + the identity map from `sᶜ` to `α`, as an equivariant map + relative to the injection of `FixingSubgroup G s` into `G`. - * `SubMulAction.fixingSubgroupInsertEquiv M a s` : the - multiplicative equivalence between `fixingSubgroup M (insert a s)` - and `fixingSubgroup (stabilizer M a) s` + * `SubMulAction.fixingSubgroupInsertEquiv M a s`: the + multiplicative equivalence between `fixingSubgroup M (insert a s)` + and `fixingSubgroup (stabilizer M a) s` - * `SubMulAction.ofFixingSubgroup_insert_map` : the equivariant - map between `SubMulAction.ofFixingSubgroup M (Set.insert a s)` - and `SubMulAction.ofFixingSubgroup (MulAction.stabilizer M a) s`. + * `SubMulAction.ofFixingSubgroup_insert_map`: the equivariant + map between `SubMulAction.ofFixingSubgroup M (Set.insert a s)` + and `SubMulAction.ofFixingSubgroup (MulAction.stabilizer M a) s`. * `SubMulAction.fixingSubgroupEquivFixingSubgroup`: - the multiplicative equivalence between `SubMulAction.ofFixingSubgroup M s` - and `SubMulAction.ofFixingSubgroup M t` induced by `g : M` - such that `g • t = s`. + the multiplicative equivalence between `SubMulAction.ofFixingSubgroup M s` + and `SubMulAction.ofFixingSubgroup M t` induced by `g : M` + such that `g • t = s`. * `SubMulAction.conjMap_ofFixingSubgroup`: - the equivariant map between `SubMulAction.ofFixingSubgroup M t` - and `SubMulAction.ofFixingSubgroup M s` - induced by `g : M` such that `g • t = s`. + the equivariant map between `SubMulAction.ofFixingSubgroup M t` + and `SubMulAction.ofFixingSubgroup M s` + induced by `g : M` such that `g • t = s`. * `SubMulAction.ofFixingSubgroup_of_inclusion`: - the identity from `SubMulAction.ofFixingSubgroup M s` - to `SubMulAction.ofFixingSubgroup M t`, when `t ⊆ s`, - as an equivariant map. + the identity from `SubMulAction.ofFixingSubgroup M s` + to `SubMulAction.ofFixingSubgroup M t`, when `t ⊆ s`, + as an equivariant map. * `SubMulAction.ofFixingSubgroup_of_singleton`: - the identity map from `SubMulAction.ofStabilizer M a` - to `SubMulAction.ofFixingSubgroup M {a}`. + the identity map from `SubMulAction.ofStabilizer M a` + to `SubMulAction.ofFixingSubgroup M {a}`. * `SubMulAction.ofFixingSubgroup_of_eq`: - the identity from `SubMulAction.ofFixingSubgroup M s` - to `SubMulAction.ofFixingSubgroup M t`, when `s = t`, - as an equivariant map. + the identity from `SubMulAction.ofFixingSubgroup M s` + to `SubMulAction.ofFixingSubgroup M t`, when `s = t`, + as an equivariant map. * `SubMulAction.ofFixingSubgroup.append`: appends - an enumeration of `ofFixingSubgroup M s` at the end - of an enumeration of `s`, as an equivariant map. + an enumeration of `ofFixingSubgroup M s` at the end + of an enumeration of `s`, as an equivariant map. -/ diff --git a/Mathlib/GroupTheory/PushoutI.lean b/Mathlib/GroupTheory/PushoutI.lean index 84e5d03e441026..11f64625da9763 100644 --- a/Mathlib/GroupTheory/PushoutI.lean +++ b/Mathlib/GroupTheory/PushoutI.lean @@ -26,10 +26,10 @@ in the diagram are injective). - `Monoid.PushoutI.NormalWord`: a normal form for words in the pushout - `Monoid.PushoutI.of_injective`: if all the maps in the diagram are injective in a pushout of -groups then so is `of` + groups then so is `of` - `Monoid.PushoutI.Reduced.eq_empty_of_mem_range`: For any word `w` in the coproduct, -if `w` is reduced (i.e none its letters are in the image of the base monoid), and nonempty, then -`w` itself is not in the image of the base monoid. + if `w` is reduced (i.e none its letters are in the image of the base monoid), and nonempty, then + `w` itself is not in the image of the base monoid. ## References diff --git a/Mathlib/LinearAlgebra/AffineSpace/Simplex/Centroid.lean b/Mathlib/LinearAlgebra/AffineSpace/Simplex/Centroid.lean index 0fdcee0c22b67b..e673fec5c210a9 100644 --- a/Mathlib/LinearAlgebra/AffineSpace/Simplex/Centroid.lean +++ b/Mathlib/LinearAlgebra/AffineSpace/Simplex/Centroid.lean @@ -28,7 +28,7 @@ of the simplex. * `centroid` is the centroid of a simplex, defined via `Finset.univ.centroid` on its vertices. * `faceOppositeCentroid` is the centroid of the facet obtained by removing one vertex from the -simplex. + simplex. * `median` is the line connecting a vertex to the corresponding faceOppositeCentroid. diff --git a/Mathlib/LinearAlgebra/Dual/BaseChange.lean b/Mathlib/LinearAlgebra/Dual/BaseChange.lean index 2e337a03fa2aed..5ef30558e89e42 100644 --- a/Mathlib/LinearAlgebra/Dual/BaseChange.lean +++ b/Mathlib/LinearAlgebra/Dual/BaseChange.lean @@ -17,10 +17,10 @@ public import Mathlib.RingTheory.TensorProduct.IsBaseChangeHom If `f : Module.Dual R V` and `Algebra R A`, then * `Module.Dual.baseChange A f` is the element -of `Module.Dual A (A ⊗[R] V)` deduced by base change. + of `Module.Dual A (A ⊗[R] V)` deduced by base change. * `Module.Dual.baseChangeHom` is the `R`-linear map -given by `Module.Dual.baseChange`. + given by `Module.Dual.baseChange`. * `IsBaseChange.dual` : for finite free modules, taking dual commutes with base change. diff --git a/Mathlib/LinearAlgebra/Finsupp/Pi.lean b/Mathlib/LinearAlgebra/Finsupp/Pi.lean index 224d8fae177bd4..01eaaa07fe3363 100644 --- a/Mathlib/LinearAlgebra/Finsupp/Pi.lean +++ b/Mathlib/LinearAlgebra/Finsupp/Pi.lean @@ -14,9 +14,9 @@ public import Mathlib.Algebra.Order.Group.Nat * `Finsupp.linearEquivFunOnFinite`: `α →₀ β` and `a → β` are equivalent if `α` is finite * `FunOnFinite.map`: the map `(X → M) → (Y → M)` induced by a map `f : X ⟶ Y` when -`X` and `Y` are finite. + `X` and `Y` are finite. * `FunOnFinite.linearMmap`: the linear map `(X → M) →ₗ[R] (Y → M)` induced -by a map `f : X ⟶ Y` when `X` and `Y` are finite. + by a map `f : X ⟶ Y` when `X` and `Y` are finite. ## Tags diff --git a/Mathlib/LinearAlgebra/Transvection.lean b/Mathlib/LinearAlgebra/Transvection.lean index 954ac74803add6..2a79c7b5ae2bab 100644 --- a/Mathlib/LinearAlgebra/Transvection.lean +++ b/Mathlib/LinearAlgebra/Transvection.lean @@ -26,7 +26,7 @@ public import Mathlib.LinearAlgebra.Dual.BaseChange * `LinearMap.transvections R V`: the set of transvections. * `LinearEquiv.dilatransvections R V`: the set of linear equivalences -whose associated linear map is of the form `LinearMap.transvection f v`. + whose associated linear map is of the form `LinearMap.transvection f v`. * `LinearEquiv.transvection.det` shows that it has determinant `1`. diff --git a/Mathlib/RepresentationTheory/FinGroupCharZero.lean b/Mathlib/RepresentationTheory/FinGroupCharZero.lean index 7c25181515167b..f63a4db79e728c 100644 --- a/Mathlib/RepresentationTheory/FinGroupCharZero.lean +++ b/Mathlib/RepresentationTheory/FinGroupCharZero.lean @@ -24,9 +24,9 @@ then every object of `Rep k G` (resp. `FDRep k G`) is injective and projective. We also give two simpleness criteria for an object `V` of `FDRep k G`, when `k` is an algebraically closed field in which the order of `G` is invertible: * `FDRep.simple_iff_end_is_rank_one`: `V` is simple if and only `V ⟶ V` is a `k`-vector -space of dimension `1`. + space of dimension `1`. * `FDRep.simple_iff_char_is_norm_one`: when `k` is characteristic zero, `V` is simple -if and only if `∑ g : G, V.character g * V.character g⁻¹ = Fintype.card G`. + if and only if `∑ g : G, V.character g * V.character g⁻¹ = Fintype.card G`. -/