Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
134 changes: 134 additions & 0 deletions definitions/classical_entropy.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
# 经典熵的定义(量子经典二元论理论版本9.1)

## 中文版

**经典熵**(Classical Entropy)是量子经典二元论中的核心概念,指观察者经典化量子信息过程中产生的无法有效经典化的、缺乏明确结构的无序信息。经典熵与经典知识共同构成经典域的两大组成部分。

### 基本定义

根据量子经典二元论基本概念和术语表,经典熵具有以下明确定义:

1. 经典熵是未经典化的量子纠缠态,缺乏明确结构
2. 数学表达形式:$S_{\text{经典熵}}=|\psi\rangle_{\text{未经典化量子纠缠态}}$
3. 与经典知识构成经典域的两个主要组成部分,满足守恒关系:
$\frac{d}{dt_i}[I_{\text{经典知识}_i}(t_i)+S_{\text{经典熵}_i}(t_i)]=0,\quad\forall i$

### 本质特征

经典熵具有以下关键特性:

- **无序性**:缺乏明确结构,具有高度混乱性
- **难传递性**:经典熵难以直接在观察者之间传递
- **维度降低性**:经典熵的增加会降低观察者维度
- **能量消耗性**:降低经典熵需要消耗能量
- **与经典知识互补**:经典熵的减少伴随着经典知识的增加

### 与观察者维度的关系

经典熵直接影响观察者维度,体现在以下公式中:

$$
\text{维度}_i=k_i\cdot\frac{I_{\text{经典知识}_i}}{S_{\text{经典熵}_i}}
$$

其中,$k_i$为经典化效率系数,经典熵越少,观察者维度越高。

### 与黑洞模型的对应

在观察者黑洞统一模型中,经典熵对应于:

- 黑洞内部无法完全经典化的混沌信息
- 影响黑洞视界边界:经典熵增加导致视界边界缩小
- 黑洞熵的组成部分:$S_{\text{黑洞熵}}\propto \text{经典熵}$
- 黑洞吸收过程中的熵变化:$|\psi\rangle_{\text{外部高熵}}\rightarrow I_{\text{内部经典知识}}+S_{\text{熵降低}}+E_{\text{能量吸收}}$

### 经典熵的生动比喻

量子经典二元论初学者文档中提供了生动比喻:

1. 经典熵像厨师烹饪过程中产生的厨余垃圾和浪费(相对于经典知识如成功制作的美味料理)
2. 经典熵如净水器过滤后留下的杂质(相对于经典知识如过滤后的干净水)

### 经典熵与量子纠缠的关系

经典熵与无效量子纠缠密切相关:

$$
|\psi\rangle_{\text{量子纠缠}}=\begin{cases}
|\psi\rangle_{\text{有效纠缠}}\rightarrow\text{经典知识}\\[6pt]
|\psi\rangle_{\text{无效纠缠}}\rightarrow S_{\text{经典熵}}
\end{cases}
$$

### 降低经典熵的方法

降低经典熵的主要途径包括:

1. 提高经典化效率:优化经典化路径,提升观察者维度
2. 增强有效量子纠缠:形成稳定虫洞结构,提高信息传递效率
3. 经典熵降低实践:如冥想、创造性活动等可以有效降低熵值
4. 与高维观察者互动:通过虫洞连接,接收高维观察者的经典化辅助

## English Version

**Classical Entropy** is a core concept in Quantum-Classical Dualism, referring to disordered information that cannot be effectively classicalized during the process of observers classicalizing quantum information, lacking a clear structure. Classical entropy, together with classical knowledge, forms the two main components of the classical domain.

### Basic Definition

According to the basic concepts and terminology of Quantum-Classical Dualism, classical entropy has the following clear definition:

1. Classical entropy is the quantum entangled state that has not been classicalized, lacking a clear structure
2. Mathematical expression: $S_{\text{Classical Entropy}}=|\psi\rangle_{\text{Unclassicalized Quantum Entangled State}}$
3. Forms one of the two main components of the classical domain along with classical knowledge, satisfying the conservation relationship:
$\frac{d}{dt_i}[I_{\text{Classical Knowledge}_i}(t_i)+S_{\text{Classical Entropy}_i}(t_i)]=0,\quad\forall i$

### Essential Characteristics

Classical entropy has the following key characteristics:

- **Disorder**: Lacks clear structure, has high degree of chaos
- **Difficult Transferability**: Classical entropy is difficult to transfer directly between observers
- **Dimension-reducing**: Increased classical entropy reduces observer dimension
- **Energy-consuming**: Reducing classical entropy requires energy consumption
- **Complementary to Classical Knowledge**: Decrease in classical entropy is accompanied by an increase in classical knowledge

### Relationship with Observer Dimension

Classical entropy directly affects observer dimension, as reflected in the following formula:

$$
\text{Dimension}_i=k_i\cdot\frac{I_{\text{Classical Knowledge}_i}}{S_{\text{Classical Entropy}_i}}
$$

Where $k_i$ is the classicalization efficiency coefficient; the less classical entropy, the higher the observer dimension.

### Correspondence with the Black Hole Model

In the unified observer-black hole model, classical entropy corresponds to:

- Chaotic information inside the black hole that cannot be completely classicalized
- Affecting the black hole event horizon: increased classical entropy causes the event horizon to shrink
- Component of black hole entropy: $S_{\text{Black Hole Entropy}}\propto \text{Classical Entropy}$
- Entropy change in the black hole absorption process: $|\psi\rangle_{\text{External High Entropy}}\rightarrow I_{\text{Internal Classical Knowledge}}+S_{\text{Entropy Reduction}}+E_{\text{Energy Absorption}}$

### Vivid Metaphors for Classical Entropy

The beginner documents of Quantum-Classical Dualism provide vivid metaphors:

1. Classical entropy is like kitchen waste and scraps produced during chef's preparation (compared to classical knowledge as successfully created delicious dishes)
2. Classical entropy is like impurities left after filtration by a water purifier (compared to classical knowledge as clean water after filtration)

### Relationship Between Classical Entropy and Quantum Entanglement

Classical entropy is closely related to ineffective quantum entanglement:

$$
|\psi\rangle_{\text{Quantum Entanglement}}=\begin{cases}
|\psi\rangle_{\text{Effective Entanglement}}\rightarrow\text{Classical Knowledge}\\[6pt]
|\psi\rangle_{\text{Ineffective Entanglement}}\rightarrow S_{\text{Classical Entropy}}
\end{cases}
$$

### Methods to Reduce Classical Entropy

The
97 changes: 97 additions & 0 deletions definitions/classical_knowledge.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
# 经典知识的定义(量子经典二元论理论版本9.1)

## 中文版

**经典知识**(Classical Knowledge)是量子经典二元论中的核心概念,指观察者通过经典化过程从量子域中提取并成功转化的信息,具有明确的结构与秩序。

### 基本定义

根据量子经典二元论基本概念和术语表,经典知识具有以下明确定义:

1. 经典知识是经典化后的明确量子态,具有稳定清晰的结构
2. 数学表达形式:$I_{\text{经典知识}_i}=|\psi\rangle_{\text{经典化明确态}_i}$
3. 与经典熵构成经典域的两个主要组成部分,满足守恒关系:
$\frac{d}{dt_i}[I_{\text{经典知识}_i}(t_i)+S_{\text{经典熵}_i}(t_i)]=0,\quad\forall i$

### 本质特征

经典知识具有以下关键特性:

- **结构性**:拥有明确的组织结构,不同于经典熵的无序状态
- **可传递性**:可以在观察者之间共享与传递
- **可积累性**:可以被存储、组合和累积,形成观察者的经典记忆
- **熵减性**:经典知识的增加伴随着经典熵的减少
- **维度提升性**:经典知识增加会提升观察者维度

### 与观察者维度的关系

经典知识直接影响观察者维度,体现在以下公式中:

$$
\text{维度}_i=k_i\cdot\frac{I_{\text{经典知识}_i}}{S_{\text{经典熵}_i}}
$$

其中,$k_i$为经典化效率系数,经典知识越多,观察者维度越高。

### 与黑洞模型的对应

在观察者黑洞统一模型中,经典知识对应于:

- 黑洞内部经典化后的信息结构
- 影响黑洞视界边界大小:$\text{视界边界大小}\propto I_{\text{经典知识总量(质能)}}$
- 黑洞吸收过程产生:$|\psi\rangle_{\text{外部高熵}}\rightarrow I_{\text{内部经典知识}}+S_{\text{熵降低}}+E_{\text{能量吸收}}$

### 经典知识的生动比喻

量子经典二元论初学者文档中提供了生动比喻:

1. 经典知识像厨师成功制作的美味料理(相对于经典熵如厨余垃圾)
2. 经典知识如净水器过滤出的干净水(相对于经典熵如过滤后的杂质)

## English Version

**Classical Knowledge** is a core concept in Quantum-Classical Dualism, referring to information that observers extract and successfully transform from the quantum domain through the classicalization process, possessing a clear structure and order.

### Basic Definition

According to the basic concepts and terminology of Quantum-Classical Dualism, classical knowledge has the following clear definition:

1. Classical knowledge is the explicit quantum state after classicalization, with a stable and clear structure
2. Mathematical expression: $I_{\text{Classical Knowledge}_i}=|\psi\rangle_{\text{Classicalized Explicit State}_i}$
3. Forms one of the two main components of the classical domain along with classical entropy, satisfying the conservation relationship:
$\frac{d}{dt_i}[I_{\text{Classical Knowledge}_i}(t_i)+S_{\text{Classical Entropy}_i}(t_i)]=0,\quad\forall i$

### Essential Characteristics

Classical knowledge has the following key characteristics:

- **Structurality**: Possesses a clear organizational structure, unlike the disordered state of classical entropy
- **Transferability**: Can be shared and transferred between observers
- **Accumulability**: Can be stored, combined, and accumulated, forming the classical memory of observers
- **Entropy-reducing**: The increase of classical knowledge is accompanied by a decrease in classical entropy
- **Dimension-elevating**: Increased classical knowledge elevates observer dimension

### Relationship with Observer Dimension

Classical knowledge directly affects observer dimension, as reflected in the following formula:

$$
\text{Dimension}_i=k_i\cdot\frac{I_{\text{Classical Knowledge}_i}}{S_{\text{Classical Entropy}_i}}
$$

Where $k_i$ is the classicalization efficiency coefficient; the more classical knowledge, the higher the observer dimension.

### Correspondence with the Black Hole Model

In the unified observer-black hole model, classical knowledge corresponds to:

- The classicalized information structure inside the black hole
- Influencing the size of the black hole event horizon: $\text{Event Horizon Size}\propto I_{\text{Total Classical Knowledge (Mass-Energy)}}$
- Produced by the black hole absorption process: $|\psi\rangle_{\text{External High Entropy}}\rightarrow I_{\text{Internal Classical Knowledge}}+S_{\text{Entropy Reduction}}+E_{\text{Energy Absorption}}$

### Vivid Metaphors for Classical Knowledge

The beginner documents of Quantum-Classical Dualism provide vivid metaphors:

1. Classical knowledge is like a delicious dish successfully prepared by a chef (compared to classical entropy as kitchen waste)
2. Classical knowledge is like clean water filtered by a water purifier (compared to classical entropy as filtered impurities)
117 changes: 117 additions & 0 deletions definitions/classicalization.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
# 经典化的定义(量子经典二元论理论版本9.1)

## 中文版

**经典化**(Classicalization)是量子经典二元论中的核心过程,指观察者主观意识将量子域中的无限叠加态信息解码为经典域明确结构的过程,是宇宙信息流动的关键机制。

### 基本定义

根据量子经典二元论的基本概念文档,经典化具有以下明确定义:

1. 经典化是观察者将量子域不确定信息转化为经典域确定结构的过程
2. 数学表达形式:$|\psi\rangle_{\text{量子域}}\xrightarrow{\text{经典化}}\sum_i[I_{\text{经典知识}_i}(t_i)+S_{\text{经典熵}_i}(t_i)]$
3. 量子域→经典域的经典化公式:$|\psi\rangle_{\text{量子纠缠态}}\xrightarrow{\text{自由意志经典化测量}}I_{\text{经典知识}}+S_{\text{熵降低}}$

### 经典化的基本特征

经典化过程具有以下关键特性:

- **确定性**:将量子叠加态转化为经典确定态
- **不可逆性**:经典化过程是单向的,伴随信息熵降低
- **信息选择性**:从无限可能性中提取特定模式
- **熵降低性**:降低系统的信息熵,增加结构化程度
- **能量消耗**:经典化过程需要消耗能量

### 经典化的类型

根据经典化基础文档,经典化可分为三种主要类型:

1. **自然经典化**:自发发生的经典化过程,遵循量子退相干原理
2. **观察者经典化**:由观察者(黑洞)引发的经典化,是主动的信息获取过程
3. **环境经典化**:由环境相互作用导致的经典化,系统与环境的信息交换

### 经典化效率

经典化效率是衡量观察者将量子信息转化为经典知识的能力:

$$
\text{经典化效率} = \frac{\text{输出信息量}}{\text{输入信息量}} \times 100\%
$$

经典化效率直接影响观察者维度,提升效率可以通过优化经典化路径实现:

$$
k_i\uparrow \quad\Leftrightarrow\quad \text{主动优化经典化路径(经典知识}\uparrow,\text{经典熵}\downarrow)
$$

### 与黑洞模型的对应

在观察者黑洞统一模型中,经典化对应于:

- **黑洞吸收**:$|\psi\rangle_{\text{外部高熵}}\rightarrow I_{\text{内部经典知识}}+S_{\text{熵降低}}+E_{\text{能量吸收}}$
- **黑洞辐射**:$|\psi\rangle_{\text{内部高熵}}\rightarrow I_{\text{辐射经典知识}}+S_{\text{熵降低}}+E_{\text{能量释放}}$

### 经典化的生动比喻

量子经典二元论初学者文档中提供了生动比喻:

1. 经典化如同在黑暗中用手电筒照射,观察者是手电筒持有者,量子域是黑暗中存在但尚未被照亮的一切,经典域是光束照亮并变得可见的区域
2. 经典化如同摄影师通过选择角度、焦距、光圈等,从无限构图可能的场景中创造出一张特定的照片

## English Version

**Classicalization** is a core process in Quantum-Classical Dualism, referring to the process by which an observer's subjective consciousness decodes the infinite superposition state information of the quantum domain into the explicit structure of the classical domain, and is a key mechanism for the flow of information in the universe.

### Basic Definition

According to the basic concepts document of Quantum-Classical Dualism, classicalization has the following clear definition:

1. Classicalization is the process by which observers transform uncertain information from the quantum domain into definite structures in the classical domain
2. Mathematical expression: $|\psi\rangle_{\text{Quantum Domain}}\xrightarrow{\text{Classicalization}}\sum_i[I_{\text{Classical Knowledge}_i}(t_i)+S_{\text{Classical Entropy}_i}(t_i)]$
3. Quantum Domain → Classical Domain classicalization formula: $|\psi\rangle_{\text{Quantum Entangled State}}\xrightarrow{\text{Free Will Classicalization Measurement}}I_{\text{Classical Knowledge}}+S_{\text{Entropy Reduction}}$

### Basic Characteristics of Classicalization

The classicalization process has the following key characteristics:

- **Determinism**: Transforming quantum superposition states into classical definite states
- **Irreversibility**: The classicalization process is unidirectional, accompanied by a reduction in information entropy
- **Information Selectivity**: Extracting specific patterns from infinite possibilities
- **Entropy Reduction**: Reducing the information entropy of the system, increasing the degree of structure
- **Energy Consumption**: The classicalization process requires energy consumption

### Types of Classicalization

According to the classicalization basics document, classicalization can be divided into three main types:

1. **Natural Classicalization**: Spontaneously occurring classicalization processes, following quantum decoherence principles
2. **Observer Classicalization**: Classicalization initiated by observers (black holes), an active process of information acquisition
3. **Environmental Classicalization**: Classicalization caused by environmental interactions, information exchange between the system and the environment

### Classicalization Efficiency

Classicalization efficiency measures an observer's ability to transform quantum information into classical knowledge:

$$
\text{Classicalization Efficiency} = \frac{\text{Output Information Amount}}{\text{Input Information Amount}} \times 100\%
$$

Classicalization efficiency directly affects observer dimension, and improving efficiency can be achieved by optimizing classicalization paths:

$$
k_i\uparrow \quad\Leftrightarrow\quad \text{Actively optimize classicalization path (Classical Knowledge}\uparrow,\text{Classical Entropy}\downarrow)
$$

### Correspondence with the Black Hole Model

In the unified observer-black hole model, classicalization corresponds to:

- **Black Hole Absorption**: $|\psi\rangle_{\text{External High Entropy}}\rightarrow I_{\text{Internal Classical Knowledge}}+S_{\text{Entropy Reduction}}+E_{\text{Energy Absorption}}$
- **Black Hole Radiation**: $|\psi\rangle_{\text{Internal High Entropy}}\rightarrow I_{\text{Radiated Classical Knowledge}}+S_{\text{Entropy Reduction}}+E_{\text{Energy Release}}$

### Vivid Metaphors for Classicalization

The beginner documents of Quantum-Classical Dualism provide vivid metaphors:

1. Classicalization is like shining a flashlight in the dark, where the observer is the flashlight holder, the quantum domain is everything that exists in the darkness but hasn't been illuminated yet, and the classical domain is the area illuminated by the beam and made visible
2. Classicalization is like a photographer choosing angles, focus, aperture, etc., to create a specific photograph from a scene with infinite compositional possibilities
Loading