@@ -138,32 +138,6 @@ def loss_func(self, lambduh=3.0):
138138 loss = (loss .mean () + lambduh / self .mean_C * regularization_term ).mean ()
139139 return loss
140140
141- # def train_fn(self, training_data, training_labels, updates='adadelta'):
142- # self.training_labels_shared.set_value(training_labels.reshape(training_labels.shape[0], training_labels.shape[1], 1), borrow=True)
143- # self.training_data_shared.set_value(np.asarray(training_data, dtype=dtype), borrow=True)
144- # self.normlayer.set_normalisation(training_data)
145-
146- # loss = self.loss_func()
147-
148- # indx = theano.shared(0)
149- # update_args = {
150- # 'adadelta': (lasagne.updates.adadelta, {'learning_rate': 0.01, 'rho': 0.4, 'epsilon': 1e-6,}),
151- # 'adam': (lasagne.updates.adam, {},),
152- # }[updates]
153- # update_func, update_params = update_args[0], update_args[1]
154-
155- # params = lasagne.layers.get_all_params(self.network, trainable=True)
156- # updates = update_func(loss, params, **update_params)
157- # updates[indx] = indx + 1
158- # train_fn = theano.function([], loss, updates=updates,
159- # givens={
160- # self.input_var: self.training_data_shared[indx, :, :, :, :],
161- # self.soft_output_var: self.training_labels_shared[indx, :, :],
162- # },
163- # allow_input_downcast=True,
164- # )
165- # return indx, train_fn
166-
167141 def normalize_batches (self , training_data ):
168142 self .normlayer .set_normalisation (training_data )
169143
0 commit comments