diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index f2aaecf5..dfca52a2 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -19,10 +19,10 @@ jobs: - name: Checkout uses: actions/checkout@v3 - - name: Set up Python 3.10 + - name: Set up Python 3.11 uses: actions/setup-python@v3 with: - python-version: "3.10" + python-version: "3.11" - name: Install packages run: | diff --git a/EventStream/baseline/FT_task_baseline.py b/EventStream/baseline/FT_task_baseline.py index b75ffd10..ddf4fdb1 100644 --- a/EventStream/baseline/FT_task_baseline.py +++ b/EventStream/baseline/FT_task_baseline.py @@ -16,6 +16,7 @@ import polars.selectors as cs import wandb from hydra.core.config_store import ConfigStore +from loguru import logger from omegaconf import OmegaConf from sklearn.decomposition import NMF, PCA from sklearn.ensemble import RandomForestClassifier @@ -35,7 +36,7 @@ from ..tasks.profile import add_tasks_from from ..utils import task_wrapper -pl.enable_string_cache(True) +pl.enable_string_cache() def load_flat_rep( @@ -187,6 +188,7 @@ def load_flat_rep( if do_cache_filtered_task: cached_fp.parent.mkdir(exist_ok=True, parents=True) df.collect().write_parquet(cached_fp, use_pyarrow=True) + df = pl.scan_parquet(cached_fp).select("subject_id", "timestamp", *window_features) df = df.select("subject_id", "timestamp", *window_features) if subjects_included.get(sp, None) is not None: @@ -649,7 +651,7 @@ def eval_binary_classification(Y: np.ndarray, probs: np.ndarray) -> dict[str, fl def train_sklearn_pipeline(cfg: SklearnConfig): - print(f"Saving config to {cfg.save_dir / 'config.yaml'}") + logger.info(f"Saving config to {cfg.save_dir / 'config.yaml'}") cfg.save_dir.mkdir(exist_ok=True, parents=True) OmegaConf.save(cfg, cfg.save_dir / "config.yaml") @@ -674,7 +676,7 @@ def train_sklearn_pipeline(cfg: SklearnConfig): # TODO(mmd): Window sizes may violate start_time constraints in task dfs! - print(f"Loading representations for {', '.join(cfg.feature_selector.window_sizes)}") + logger.info(f"Loading representations for {', '.join(cfg.feature_selector.window_sizes)}") subjects_included = {} if cfg.train_subset_size not in (None, "FULL"): @@ -706,24 +708,26 @@ def train_sklearn_pipeline(cfg: SklearnConfig): Xs_and_Ys = {} for split in ("train", "tuning", "held_out"): st = datetime.now() - print(f"Loading dataset for {split}") + logger.info(f"Loading dataset for {split}") df = flat_reps[split].with_columns(normalized_label.alias(cfg.finetuning_task_label)).collect() X = df.drop(["subject_id", "timestamp", cfg.finetuning_task_label]) Y = df[cfg.finetuning_task_label].to_numpy() - print(f"Done with {split} dataset with X of shape {X.shape} " f"(elapsed: {datetime.now() - st})") + logger.info( + f"Done with {split} dataset with X of shape {X.shape} " f"(elapsed: {datetime.now() - st})" + ) Xs_and_Ys[split] = (X, Y) - print("Initializing model!") + logger.info("Initializing model!") model = cfg.get_model(dataset=ESD) - print("Fitting model!") + logger.info("Fitting model!") model.fit(*Xs_and_Ys["train"]) - print(f"Saving model to {cfg.save_dir}") + logger.info(f"Saving model to {cfg.save_dir}") with open(cfg.save_dir / "model.pkl", mode="wb") as f: pickle.dump(model, f) - print("Evaluating model!") + logger.info("Evaluating model!") all_metrics = {} for split in ("tuning", "held_out"): X, Y = Xs_and_Ys[split] diff --git a/EventStream/data/README.md b/EventStream/data/README.md index d43a4621..4e742301 100644 --- a/EventStream/data/README.md +++ b/EventStream/data/README.md @@ -76,8 +76,8 @@ the following data: indices of the measures that correspond to the measurement observations in `dynamic_indices`. 8. `dynamic_values`, which is of the same (ragged) shape as `dynamic_indices` and contains any unique numerical values associated with those measurements. Items may be missing (reflected with `None` or - `np.NaN`, depending on the data library format) or may have been filtered out as outliers (reflected with - `np.NaN`). + `float('nan')`, depending on the data library format) or may have been filtered out as outliers (reflected with + `float('nan')`). ### Measurements @@ -390,7 +390,7 @@ Let us define the following variables: } ``` -`static_data_values` and `data_values` in the above dictionary may contain `np.NaN` entries where values were +`static_data_values` and `data_values` in the above dictionary may contain `float('nan')` entries where values were not observed with a given data element. All other data elements are fully observed. The elements correspond to the following kinds of features: diff --git a/EventStream/data/config.py b/EventStream/data/config.py index 017eb56f..248d9223 100644 --- a/EventStream/data/config.py +++ b/EventStream/data/config.py @@ -4,6 +4,8 @@ import dataclasses import enum +import hashlib +import json import random from collections import OrderedDict, defaultdict from collections.abc import Hashable, Sequence @@ -14,6 +16,7 @@ import omegaconf import pandas as pd +from loguru import logger from ..utils import ( COUNT_OR_PROPORTION, @@ -803,6 +806,10 @@ class PytorchDatasetConfig(JSONableMixin): training subset. If `None` or "FULL", then the full training data is used. train_subset_seed: If the training data should be subsampled randomly, this specifies the seed for that random subsampling. + tuning_subset_size: If the tuning data should be subsampled randomly, this specifies the size of the + tuning subset. If `None` or "FULL", then the full tuning data is used. + tuning_subset_seed: If the tuning data should be subsampled randomly, this specifies the seed for + that random subsampling. task_df_name: If the raw dataset should be limited to a task dataframe view, this specifies the name of the task dataframe, and indirectly the path on disk from where that task dataframe will be read (save_dir / "task_dfs" / f"{task_df_name}.parquet"). @@ -849,6 +856,10 @@ class PytorchDatasetConfig(JSONableMixin): Traceback (most recent call last): ... TypeError: train_subset_size is of unrecognized type . + >>> import sys + >>> from loguru import logger + >>> logger.remove() + >>> _ = logger.add(sys.stdout, format="{message}") >>> config = PytorchDatasetConfig( ... save_dir='./dataset', ... max_seq_len=256, @@ -860,7 +871,7 @@ class PytorchDatasetConfig(JSONableMixin): ... task_df_name=None, ... do_include_start_time_min=False ... ) - WARNING! train_subset_size is set, but train_subset_seed is not. Setting to... + train_subset_size is set, but train_subset_seed is not. Setting to... >>> assert config.train_subset_seed is not None """ @@ -873,6 +884,8 @@ class PytorchDatasetConfig(JSONableMixin): train_subset_size: int | float | str = "FULL" train_subset_seed: int | None = None + tuning_subset_size: int | float | str = "FULL" + tuning_subset_seed: int | None = None task_df_name: str | None = None @@ -880,7 +893,19 @@ class PytorchDatasetConfig(JSONableMixin): do_include_subject_id: bool = False do_include_start_time_min: bool = False + # Trades off between speed/disk/mem and support + cache_for_epochs: int = 1 + def __post_init__(self): + if self.cache_for_epochs is None: + self.cache_for_epochs = 1 + + if self.subsequence_sampling_strategy != "random" and self.cache_for_epochs > 1: + raise ValueError( + f"It does not make sense to cache for {self.cache_for_epochs} with non-random " + "subsequence sampling." + ) + if self.seq_padding_side not in SeqPaddingSide.values(): raise ValueError(f"seq_padding_side invalid; must be in {', '.join(SeqPaddingSide.values())}") if type(self.min_seq_len) is not int or self.min_seq_len < 0: @@ -901,13 +926,32 @@ def __post_init__(self): raise ValueError(f"If float, train_subset_size must be in (0, 1)! Got {frac}") case int() | float() if (self.train_subset_seed is None): seed = int(random.randint(1, int(1e6))) - print(f"WARNING! train_subset_size is set, but train_subset_seed is not. Setting to {seed}") + logger.warning(f"train_subset_size is set, but train_subset_seed is not. Setting to {seed}") self.train_subset_seed = seed + case None | "FULL" if self.train_subset_seed is not None: + logger.info(f"Removing train subset seed as train subset size is {self.train_subset_size}") + self.train_subset_seed = None case None | "FULL" | int() | float(): pass case _: raise TypeError(f"train_subset_size is of unrecognized type {type(self.train_subset_size)}.") + match self.tuning_subset_size: + case int() as n if n < 0: + raise ValueError(f"If integral, tuning_subset_size must be positive! Got {n}") + case float() as frac if frac <= 0 or frac >= 1: + raise ValueError(f"If float, tuning_subset_size must be in (0, 1)! Got {frac}") + case int() | float() if (self.tuning_subset_seed is None): + seed = int(random.randint(1, int(1e6))) + print(f"WARNING! tuning_subset_size is set, but tuning_subset_seed is not. Setting to {seed}") + self.tuning_subset_seed = seed + case None | "FULL" | int() | float(): + pass + case _: + raise TypeError( + f"tuning_subset_size is of unrecognized type {type(self.tuning_subset_size)}." + ) + def to_dict(self) -> dict: """Represents this configuration object as a plain dictionary.""" as_dict = dataclasses.asdict(self) @@ -920,6 +964,103 @@ def from_dict(cls, as_dict: dict) -> PytorchDatasetConfig: as_dict["save_dir"] = Path(as_dict["save_dir"]) return cls(**as_dict) + @property + def vocabulary_config_fp(self) -> Path: + return self.save_dir / "vocabulary_config.json" + + @property + def vocabulary_config(self) -> VocabularyConfig: + return VocabularyConfig.from_json_file(self.vocabulary_config_fp) + + @property + def measurement_config_fp(self) -> Path: + return self.save_dir / "inferred_measurement_configs.json" + + @property + def measurement_configs(self) -> dict[str, MeasurementConfig]: + with open(self.measurement_config_fp) as f: + measurement_configs = {k: MeasurementConfig.from_dict(v) for k, v in json.load(f).items()} + return {k: v for k, v in measurement_configs.items() if not v.is_dropped} + + @property + def DL_reps_dir(self) -> Path: + return self.save_dir / "DL_reps" + + @property + def cached_task_dir(self) -> Path | None: + if self.task_df_name is None: + return None + else: + return self.save_dir / "DL_reps" / "for_task" / self.task_df_name + + @property + def raw_task_df_fp(self) -> Path | None: + if self.task_df_name is None: + return None + else: + return self.save_dir / "task_dfs" / f"{self.task_df_name}.parquet" + + @property + def task_info_fp(self) -> Path | None: + if self.task_df_name is None: + return None + else: + return self.cached_task_dir / "task_info.json" + + @property + def _data_parameters_and_hash(self) -> tuple[dict[str, Any], str]: + params = sorted( + ( + "save_dir", + "max_seq_len", + "min_seq_len", + "seq_padding_side", + "subsequence_sampling_strategy", + "train_subset_size", + "train_subset_seed", + "task_df_name", + ) + ) + + params_list = [] + for p in params: + v = str(getattr(self, p)) + if (p == "train_subset_seed") and (self.train_subset_size in ("FULL", None)): + v = None + params_list.append((p, v)) + + params = tuple(params_list) + h = hashlib.blake2b(digest_size=8) + h.update(str(params).encode()) + + return {k: v for k, v in params}, h.hexdigest() + + @property + def tensorized_cached_dir(self) -> Path: + if self.task_df_name is None: + base_dir = self.DL_reps_dir / "tensorized_cached" + else: + base_dir = self.cached_task_dir + + return base_dir / self._data_parameters_and_hash[1] + + @property + def _cached_data_parameters_fp(self) -> Path: + return self.tensorized_cached_dir / "data_parameters.json" + + def _cache_data_parameters(self): + self._cached_data_parameters_fp.parent.mkdir(exist_ok=True, parents=True) + + with open(self._cached_data_parameters_fp, mode="w") as f: + logger.info(f"Saving data parameters to {self._cached_data_parameters_fp}") + json.dump(self._data_parameters_and_hash[0], f) + + def tensorized_cached_files(self, split: str) -> dict[str, Path]: + if not (self.tensorized_cached_dir / split).is_dir(): + return {} + + return {fp.stem: fp for fp in (self.tensorized_cached_dir / split).glob("*.npz")} + @dataclasses.dataclass class MeasurementConfig(JSONableMixin): @@ -1010,10 +1151,10 @@ class contains configuration options to define a measurement and dictate how it * value_type: To which kind of value (e.g., integer, categorical, float) this key corresponds. Must be an element of the enum `NumericMetadataValueType`. Optional. If not pre-specified, will be inferred from the data. - * outlier_model: The parameters (in dictionary form) for the fit outlier model. Optional. If - not pre-specified, will be inferred from the data. - * normalizer: The parameters (in dictionary form) for the fit normalizer model. Optional. If - not pre-specified, will be inferred from the data. + * thresh_large: The learned upper bound for inlier values. + * thresh_small: The learned lower bound for inlier values. + * mean: The mean to which values will be standardized. + * std: The standard deviation to which values will be standardized. modifiers: Stores a list of additional column names that modify this measurement that should be tracked with this measurement record through the dataset. @@ -1117,8 +1258,10 @@ class contains configuration options to define a measurement and dictate how it PREPROCESSING_METADATA_COLUMNS = OrderedDict( { "value_type": str, - "outlier_model": object, - "normalizer": object, + "mean": float, + "std": float, + "thresh_small": float, + "thresh_large": float, } ) @@ -1303,29 +1446,12 @@ def measurement_metadata(self) -> pd.DataFrame | pd.Series | None: f"it has shape {out.shape} (expecting out.shape[1] == 1)!" ) out = out.iloc[:, 0] - for col in ("outlier_model", "normalizer"): - if col in out and type(out[col]) is str: - try: - out[col] = eval(out[col]) - except (TypeError, ValueError) as e: - raise ValueError( - f"Failed to eval {col} for measure {self.name} with value {out[col]}" - ) from e elif self.modality != DataModality.MULTIVARIATE_REGRESSION: raise ValueError( "Only DataModality.UNIVARIATE_REGRESSION and DataModality.MULTIVARIATE_REGRESSION " f"measurements should have measurement metadata paths stored. Got {fp} on " f"{self.modality} measurement!" ) - else: - for col in ("outlier_model", "normalizer"): - if col in out: - try: - out[col] = out[col].apply(lambda x: eval(x) if type(x) is str else x) - except (TypeError, ValueError) as e: - raise ValueError( - f"Failed to eval {col} for measure {self.name} with values {list(out[col])[:5]}" - ) from e return out @measurement_metadata.setter @@ -1641,17 +1767,14 @@ class DatasetConfig(JSONableMixin): mirror scikit-learn outlier detection model APIs. If `None`, numerical outlier values are not removed. - normalizer_config: Configuration options for normalization. If not `None`, must contain the key - `'cls'`, which points to the class used normalization. All other keys and values are keyword - arguments to be passed to the specified class. The API of these objects is expected to mirror - scikit-learn normalization system APIs. If `None`, numerical values are not normalized. + center_and_scale: Whether or not to center and scale numerical values. save_dir: The output save directory for this dataset. Will be converted to a `pathlib.Path` upon creation if it is not already one. agg_by_time_scale: Aggregate events into temporal buckets at this frequency. Uses the string language described here: - https://pola-rs.github.io/polars/py-polars/html/reference/dataframe/api/polars.DataFrame.groupby_dynamic.html + https://pola-rs.github.io/polars/py-polars/html/reference/dataframe/api/polars.DataFrame.group_by_dynamic.html Raises: ValueError: If configuration parameters are invalid (e.g., proportion parameters being > 1, etc.). @@ -1690,7 +1813,7 @@ class DatasetConfig(JSONableMixin): 'min_true_float_frequency': None, 'min_unique_numerical_observations': None, 'outlier_detector_config': None, - 'normalizer_config': None, + 'center_and_scale': True, 'save_dir': '/path/to/save/dir'} >>> cfg2 = DatasetConfig.from_dict(cfg.to_dict()) >>> assert cfg == cfg2 @@ -1743,7 +1866,7 @@ class DatasetConfig(JSONableMixin): min_unique_numerical_observations: COUNT_OR_PROPORTION | None = None outlier_detector_config: dict[str, Any] | None = None - normalizer_config: dict[str, Any] | None = None + center_and_scale: bool = True save_dir: Path | None = None @@ -1794,10 +1917,10 @@ def __post_init__(self): f"{var} must be a fraction (float between 0 and 1). Got {type(val)} of {val}" ) - for var in ("outlier_detector_config", "normalizer_config"): + for var in ("outlier_detector_config",): val = getattr(self, var) - if val is not None and (type(val) is not dict or "cls" not in val): - raise ValueError(f"{var} must be either None or a dictionary with 'cls' as a key! Got {val}") + if val is not None and (type(val) is not dict): + raise ValueError(f"{var} must be either None or a dictionary! Got {val}") for k, v in self.measurement_configs.items(): try: diff --git a/EventStream/data/dataset_base.py b/EventStream/data/dataset_base.py index d324e499..109996d5 100644 --- a/EventStream/data/dataset_base.py +++ b/EventStream/data/dataset_base.py @@ -18,7 +18,10 @@ import humanize import numpy as np import pandas as pd +import polars as pl +from loguru import logger from mixins import SaveableMixin, SeedableMixin, TimeableMixin, TQDMableMixin +from nested_ragged_tensors.ragged_numpy import JointNestedRaggedTensorDict from plotly.graph_objs._figure import Figure from tqdm.auto import tqdm @@ -106,8 +109,6 @@ def _load_input_df( df: INPUT_DF_T, columns: list[tuple[str, InputDataType | tuple[InputDataType, str]]], subject_id_col: str | None = None, - subject_ids_map: dict[Any, int] | None = None, - subject_id_dtype: Any | None = None, filter_on: dict[str, bool | list[Any]] | None = None, ) -> DF_T: """Loads an input dataframe into the format expected by the processing library.""" @@ -153,12 +154,6 @@ def _split_range_events_df( """ raise NotImplementedError("Must be implemented by subclass.") - @classmethod - @abc.abstractmethod - def _inc_df_col(cls, df: DF_T, col: str, inc_by: int) -> tuple[DF_T, int]: - """Increments the values in `col` by a given amount and returns the resulting df.""" - raise NotImplementedError("Must be implemented by subclass.") - @classmethod @abc.abstractmethod def _concat_dfs(cls, dfs: list[DF_T]) -> DF_T: @@ -189,32 +184,25 @@ def build_subjects_dfs(cls, schema: InputDFSchema) -> tuple[DF_T, dict[Hashable, Both the built `subjects_df` as well as a dictionary from the raw subject ID column values to the inferred numeric subject IDs. """ - subjects_df, ID_map = cls._load_input_df( + subjects_df = cls._load_input_df( schema.input_df, - [(schema.subject_id_col, InputDataType.CATEGORICAL)] + schema.columns_to_load, + schema.columns_to_load, filter_on=schema.filter_on, - subject_id_source_col=schema.subject_id_col, + subject_id_col=schema.subject_id_col, ) - subjects_df = cls._rename_cols(subjects_df, {i: o for i, (o, _) in schema.unified_schema.items()}) - - return subjects_df, ID_map + return cls._rename_cols(subjects_df, {i: o for i, (o, _) in schema.unified_schema.items()}) @classmethod def build_event_and_measurement_dfs( cls, - subject_ids_map: dict[Any, int], subject_id_col: str, - subject_id_dtype: Any, schemas_by_df: dict[INPUT_DF_T, list[InputDFSchema]], ) -> tuple[DF_T, DF_T]: """Builds and returns events and measurements dataframes from the input schema map. Args: - subject_ids_map: A mapping from the input subject ID space to the inferred, output ID space. This - is also used to filter dynamic input dataframes down to only valid subjects. subject_id_col: The name of the column containing (input) subject IDs. - subject_id_dtype: The dtype of the output subject ID column. schemas_by_df: A mapping from input dataframe to associated event/measurement schemas. Returns: @@ -229,15 +217,17 @@ def build_event_and_measurement_dfs( all_columns.extend(itertools.chain.from_iterable(s.columns_to_load for s in schemas)) try: - df = cls._load_input_df(df, all_columns, subject_id_col, subject_ids_map, subject_id_dtype) + df = cls._load_input_df(df, all_columns, subject_id_col) except Exception as e: raise ValueError(f"Errored while loading {df}") from e for schema in schemas: if schema.filter_on: + logger.debug("Filtering") df = cls._filter_col_inclusion(schema.filter_on) match schema.type: case InputDFType.EVENT: + logger.debug("Processing Event") df = cls._resolve_ts_col(df, schema.ts_col, "timestamp") all_events_and_measurements.append( cls._process_events_and_measurements_df( @@ -248,6 +238,7 @@ def build_event_and_measurement_dfs( ) event_types.append(schema.event_type) case InputDFType.RANGE: + logger.debug("Processing Range") df = cls._resolve_ts_col(df, schema.start_ts_col, "start_time") df = cls._resolve_ts_col(df, schema.end_ts_col, "end_time") for et, unified_schema, sp_df in zip( @@ -265,83 +256,17 @@ def build_event_and_measurement_dfs( raise ValueError(f"Invalid schema type {schema.type}.") all_events, all_measurements = [], [] - running_event_id_max = 0 for event_type, (events, measurements) in zip(event_types, all_events_and_measurements): - try: - new_events = cls._inc_df_col(events, "event_id", running_event_id_max) - except Exception as e: - raise ValueError(f"Failed to increment event_id on {event_type}") from e - - if len(new_events) == 0: - print(f"Empty new events dataframe of type {event_type}!") + if events is None: + logger.warning(f"Empty new events dataframe of type {event_type}!") continue - all_events.append(new_events) + all_events.append(events) if measurements is not None: - all_measurements.append(cls._inc_df_col(measurements, "event_id", running_event_id_max)) - - running_event_id_max = all_events[-1]["event_id"].max() + 1 + all_measurements.append(measurements) return cls._concat_dfs(all_events), cls._concat_dfs(all_measurements) - @classmethod - def _get_preprocessing_model( - cls, - model_config: dict[str, Any], - for_fit: bool = False, - ) -> Any: - """Returns the appropriate model class or instance given the config for pre-processing. - - This fetches the appropriate pre-processing model class (stored in ``model_config['cls']``) and either - returns it directly (if not `for_fit`) or instantiates it with the non-``'cls'`` config parameters and - returns the instance. - - Args: - model_config: The configuration for the particular pre-processing model in question. - for_fit: Whether the retrieved model will be used for fitting (in which case it must be - instantiated with the passed configuration) or for transforming/predicting (in which case the - fit parameters will be stored with the data and so only the class is needed). - - Returns: - Either the model class (as indicated via ``model_config['cls']``) or an instance of the class as - defined by non-``'cls'`` keyword parameters in `model_config`. - - Raises: - KeyError: if ``'cls'`` is not in `model_config` or ``model_config['cls']`` is not in - `PREPROCESSORS`. - - Examples: - >>> class MockPreprocessor: - ... def __init__(self, name: str): - ... self.name = name - ... def __repr__(self) -> str: - ... return f"MockPreprocessor(name={repr(self.name)})" - >>> DatasetBase.PREPROCESSORS = {'mock': MockPreprocessor} - >>> DatasetBase._get_preprocessing_model({'cls': 'mock', 'name': 'test'}, True) - MockPreprocessor(name='test') - >>> DatasetBase._get_preprocessing_model({'cls': 'mock', 'name': 'test'}, False) - - >>> DatasetBase._get_preprocessing_model({'name': 'test'}, True) - Traceback (most recent call last): - ... - KeyError: "Missing mandatory preprocessor class configuration parameter `'cls'`." - >>> DatasetBase._get_preprocessing_model({'cls': 'invalid', 'name': 'test'}, True) - Traceback (most recent call last): - ... - KeyError: 'Invalid preprocessor model class invalid! DatasetBase options are mock' - """ - model_config = copy.deepcopy(model_config) - if "cls" not in model_config: - raise KeyError("Missing mandatory preprocessor class configuration parameter `'cls'`.") - if model_config["cls"] not in cls.PREPROCESSORS: - raise KeyError( - f"Invalid preprocessor model class {model_config['cls']}! {cls.__name__} options are " - f"{', '.join(cls.PREPROCESSORS.keys())}" - ) - - model_cls = cls.PREPROCESSORS[model_config.pop("cls")] - return model_cls(**model_config) if for_fit else model_cls - @classmethod @abc.abstractmethod def _read_df(cls, fp: Path, **kwargs) -> DF_T: @@ -364,7 +289,7 @@ def subjects_df(self) -> DF_T: """ if (not hasattr(self, "_subjects_df")) or self._subjects_df is None: subjects_fp = self.subjects_fp(self.config.save_dir) - print(f"Loading subjects from {subjects_fp}...") + logger.info(f"Loading subjects from {subjects_fp}...") self._subjects_df = self._read_df(subjects_fp) return self._subjects_df @@ -382,7 +307,7 @@ def events_df(self) -> DF_T: """ if (not hasattr(self, "_events_df")) or self._events_df is None: events_fp = self.events_fp(self.config.save_dir) - print(f"Loading events from {events_fp}...") + logger.info(f"Loading events from {events_fp}...") self._events_df = self._read_df(events_fp) return self._events_df @@ -401,7 +326,7 @@ def dynamic_measurements_df(self) -> DF_T: """ if (not hasattr(self, "_dynamic_measurements_df")) or self._dynamic_measurements_df is None: dynamic_measurements_fp = self.dynamic_measurements_fp(self.config.save_dir) - print(f"Loading dynamic_measurements from {dynamic_measurements_fp}...") + logger.info(f"Loading dynamic_measurements from {dynamic_measurements_fp}...") self._dynamic_measurements_df = self._read_df(dynamic_measurements_fp) return self._dynamic_measurements_df @@ -438,7 +363,7 @@ def load(cls, load_dir: Path) -> "DatasetBase": reloaded_config = DatasetConfig.from_json_file(load_dir / "config.json") if reloaded_config.save_dir != load_dir: - print(f"Updating config.save_dir from {reloaded_config.save_dir} to {load_dir}") + logger.info(f"Updating config.save_dir from {reloaded_config.save_dir} to {load_dir}") reloaded_config.save_dir = load_dir attrs_to_add = {"config": reloaded_config} @@ -544,15 +469,14 @@ def __init__( if dynamic_measurements_df is not None: raise ValueError("Can't set dynamic_measurements_df if input_schema is not None!") - subjects_df, ID_map = self.build_subjects_dfs(input_schema.static) - subject_id_dtype = subjects_df["subject_id"].dtype + subjects_df = self.build_subjects_dfs(input_schema.static) + logger.debug("Extracting events and measurements dataframe...") events_df, dynamic_measurements_df = self.build_event_and_measurement_dfs( - ID_map, input_schema.static.subject_id_col, - subject_id_dtype, input_schema.dynamic_by_df, ) + logger.debug("Built events and measurements dataframe") self.config = config self._is_fit = False @@ -583,15 +507,19 @@ def _validate_and_set_initial_properties(self, subjects_df, events_df, dynamic_m self.event_types = [] self.n_events_per_subject = {} + self.events_df = events_df + self.dynamic_measurements_df = dynamic_measurements_df + + if self.events_df is not None: + self._agg_by_time() + self._sort_events() + ( self.subjects_df, self.events_df, self.dynamic_measurements_df, - ) = self._validate_initial_dfs(subjects_df, events_df, dynamic_measurements_df) + ) = self._validate_initial_dfs(subjects_df, self.events_df, self.dynamic_measurements_df) - if self.events_df is not None: - self._agg_by_time() - self._sort_events() self._update_subject_event_properties() @abc.abstractmethod @@ -646,6 +574,7 @@ def split( self, split_fracs: Sequence[float], split_names: Sequence[str] | None = None, + mandatory_set_IDs: dict[str, set[int] | None] | None = None, ): """Splits the underlying dataset into random sets by `subject_id`. @@ -659,6 +588,11 @@ def split( 'tuning', 'held_out']. If more than 3, it defaults to `['split_0', 'split_1', ...]`. Split names of `train`, `tuning`, and `held_out` have special significance and are used elsewhere in the model, so if `split_names` does not reflect those other things may not work down the line. + mandatory_set_IDs: Maps split name to an optional set of subject IDs that make up that split. If a + split name is included in mandatory_set_IDs, it should _not_ be included in `split_fracs` as + the size of the split is determined by the IDs in this object. Any IDs in this object will be + excluded from _all_ other splits and split_fractions will be taken over the remaining, unused + IDs. Raises: ValueError: if `split_fracs` contains anything outside the range of (0, 1], sums to something > 1, @@ -688,6 +622,20 @@ def split( f"{len(split_fracs)}" ) + if mandatory_set_IDs is None: + mandatory_set_IDs = {} + + intersecting_split_names = set(split_names).intersection(mandatory_set_IDs.keys()) + if intersecting_split_names: + raise ValueError( + "Splits with specified sizes overlap with those with pre-set populations! " + f"{', '.join(intersecting_split_names)}" + ) + + subjects_to_split = set(self.subject_ids) - set( + itertools.chain.from_iterable(mandatory_set_IDs.values()) + ) + # As split fractions may not result in integer split sizes, we shuffle the split names and fractions # so that the splits that exceed the desired size are not always the last ones in the original passed # order. @@ -695,13 +643,14 @@ def split( split_names = [split_names[i] for i in split_names_idx] split_fracs = [split_fracs[i] for i in split_names_idx] - subjects = np.random.permutation(list(self.subject_ids)) + subjects = np.random.permutation(list(subjects_to_split)) split_lens = (np.array(split_fracs[:-1]) * len(subjects)).round().astype(int) split_lens = np.append(split_lens, len(subjects) - split_lens.sum()) subjects_per_split = np.split(subjects, split_lens.cumsum()) self.split_subjects = {k: set(v) for k, v in zip(split_names, subjects_per_split)} + self.split_subjects = {**self.split_subjects, **mandatory_set_IDs} @classmethod @abc.abstractmethod @@ -769,10 +718,15 @@ def preprocess(self): 3. Next, fit all pre-processing parameters over the observed measurements. 4. Finally, transform all data via the fit pre-processing parameters. """ + logger.info("Filtering subjects") self._filter_subjects() + logger.info("Adding time derived measurements") self._add_time_dependent_measurements() + logger.info("Fitting pre-processing parameters") self.fit_measurements() + logger.info("Transforming variables.") self.transform_measurements() + logger.info("Done with preprocessing") @TimeableMixin.TimeAs @abc.abstractmethod @@ -838,7 +792,7 @@ def fit_measurements(self): _, _, source_df = self._get_source_df(config, do_only_train=True) if measure not in source_df: - print(f"WARNING: Measure {measure} not found! Dropping...") + logger.warning(f"Measure {measure} not found! Dropping...") config.drop() continue @@ -848,7 +802,7 @@ def fit_measurements(self): source_df = self._filter_col_inclusion(source_df, {measure: True}) if total_possible == 0: - print(f"Found no possible events for {measure}!") + logger.info(f"Found no possible events for {measure}!") config.drop() continue @@ -1213,9 +1167,11 @@ def cache_flat_representation( (b) attempt to write only those files that are not yet written to disk across the historical summarization targets. - .. _link: https://pola-rs.github.io/polars/py-polars/html/reference/dataframe/api/polars.DataFrame.groupby_rolling.html # noqa: E501 + .. _link: https://pola-rs.github.io/polars/py-polars/html/reference/dataframe/api/polars.DataFrame.group_by_rolling.html # noqa: E501 """ + logger.info("Caching flat representations") + self._seed(1, "cache_flat_representation") feature_inclusion_frequency, include_only_measurements = self._resolve_flat_rep_cache_params( @@ -1251,7 +1207,7 @@ def cache_flat_representation( old_params = json.load(f) if old_params["subjects_per_output_file"] != params["subjects_per_output_file"]: - print( + logger.info( "Standardizing chunk size to existing record " f"({old_params['subjects_per_output_file']})." ) @@ -1403,27 +1359,68 @@ def cache_deep_learning_representation( do_overwrite: Whether or not to overwrite any existing file on disk. """ + logger.info("Caching DL representations") + if subjects_per_output_file is None: + logger.warning("Sharding is recommended for DL representations.") + DL_dir = self.config.save_dir / "DL_reps" - DL_dir.mkdir(exist_ok=True, parents=True) + NRT_dir = self.config.save_dir / "NRT_reps" - if subjects_per_output_file is None: - subject_chunks = [None] + shards_fp = self.config.save_dir / "DL_shards.json" + if shards_fp.exists(): + shards = json.loads(shards_fp.read_text()) else: - subjects = np.random.permutation(list(self.subject_ids)) - subject_chunks = np.array_split( - subjects, - np.arange(subjects_per_output_file, len(subjects), subjects_per_output_file), - ) - subject_chunks = [list(c) for c in subject_chunks] + shards = {} - for chunk_idx, subjects_list in self._tqdm(list(enumerate(subject_chunks))): - cached_df = self.build_DL_cached_representation(subject_ids=subjects_list) + if subjects_per_output_file is None: + subject_chunks = [self.subject_ids] + else: + subjects = np.random.permutation(list(self.subject_ids)) + subject_chunks = np.array_split( + subjects, + np.arange(subjects_per_output_file, len(subjects), subjects_per_output_file), + ) - for split, subjects in self.split_subjects.items(): - fp = DL_dir / f"{split}_{chunk_idx}.{self.DF_SAVE_FORMAT}" + subject_chunks = [[int(x) for x in c] for c in subject_chunks] - split_cached_df = self._filter_col_inclusion(cached_df, {"subject_id": subjects}) - self._write_df(split_cached_df, fp, do_overwrite=do_overwrite) + for chunk_idx, subjects_list in enumerate(subject_chunks): + for split, subjects in self.split_subjects.items(): + shard_key = f"{split}/{chunk_idx}" + included_subjects = set(subjects_list).intersection({int(x) for x in subjects}) + shards[shard_key] = list(included_subjects) + + shards_fp.write_text(json.dumps(shards)) + + for shard_key, subjects_list in self._tqdm(list(shards.items()), desc="Shards"): + DL_fp = DL_dir / f"{shard_key}.{self.DF_SAVE_FORMAT}" + DL_fp.parent.mkdir(exist_ok=True, parents=True) + + if DL_fp.exists() and not do_overwrite: + logger.info(f"Skipping {DL_fp} as it already exists.") + cached_df = self._read_df(DL_fp) + else: + logger.info(f"Caching {shard_key} to {DL_fp}") + cached_df = self.build_DL_cached_representation(subject_ids=subjects_list) + self._write_df(cached_df, DL_fp, do_overwrite=do_overwrite) + + NRT_fp = NRT_dir / f"{shard_key}.pt" + NRT_fp.parent.mkdir(exist_ok=True, parents=True) + if NRT_fp.exists() and not do_overwrite: + logger.info(f"Skipping {NRT_fp} as it already exists.") + else: + logger.info(f"Caching NRT for {shard_key} to {NRT_fp}") + # TODO(mmd): This breaks the API isolation a bit, as we assume polars here. But that's fine. + jnrt_dict = { + k: cached_df[k].to_list() + for k in ["time_delta", "dynamic_indices", "dynamic_measurement_indices"] + } + jnrt_dict["dynamic_values"] = ( + cached_df["dynamic_values"] + .list.eval(pl.element().list.eval(pl.element().fill_null(float("nan")))) + .to_list() + ) + jnrt_dict = JointNestedRaggedTensorDict(jnrt_dict) + jnrt_dict.save(NRT_fp) @property def vocabulary_config(self) -> VocabularyConfig: @@ -1483,6 +1480,16 @@ def unified_vocabulary_idxmap(self) -> dict[str, dict[str, int]]: idxmaps[m] = {m: offset} return idxmaps + @property + def unified_vocabulary_flat(self) -> list[str]: + vocab_size = max(self.unified_vocabulary_idxmap[self.unified_measurements_vocab[-1]].values()) + 1 + vocab = [None for _ in range(vocab_size)] + vocab[0] = "UNK" + for m, idxmap in self.unified_vocabulary_idxmap.items(): + for e, i in idxmap.items(): + vocab[i] = e + return vocab + @abc.abstractmethod def build_DL_cached_representation( self, subject_ids: list[int] | None = None, do_sort_outputs: bool = False diff --git a/EventStream/data/dataset_polars.py b/EventStream/data/dataset_polars.py index 9be90299..a9cf4456 100644 --- a/EventStream/data/dataset_polars.py +++ b/EventStream/data/dataset_polars.py @@ -10,20 +10,22 @@ import dataclasses import math import multiprocessing +from collections import defaultdict from collections.abc import Callable, Sequence +from datetime import timedelta from pathlib import Path from typing import Any, Union -import numpy as np import pandas as pd import polars as pl import polars.selectors as cs +import pyarrow as pa +from loguru import logger from mixins import TimeableMixin from ..utils import lt_count_or_proportion from .config import MeasurementConfig from .dataset_base import DatasetBase -from .preprocessing import Preprocessor, StandardScaler, StddevCutoffOutlierDetector from .types import ( DataModality, InputDataType, @@ -33,7 +35,24 @@ from .vocabulary import Vocabulary # We need to do this so that categorical columns can be reliably used via category names. -pl.enable_string_cache(True) +pl.enable_string_cache() + +PL_TO_PA_DTYPE_MAP = { + pl.Categorical(ordering="physical"): pa.string(), + pl.Categorical(ordering="lexical"): pa.string(), + pl.Utf8: pa.string(), + pl.Float32: pa.float32(), + pl.Float64: pa.float64(), + pl.Int8: pa.int8(), + pl.Int16: pa.int16(), + pl.Int32: pa.int32(), + pl.Int64: pa.int64(), + pl.UInt8: pa.uint8(), + pl.UInt16: pa.uint16(), + pl.UInt32: pa.uint32(), + pl.UInt64: pa.uint64(), + pl.Boolean: pa.bool_(), +} @dataclasses.dataclass(frozen=True) @@ -86,16 +105,6 @@ class Dataset(DatasetBase[DF_T, INPUT_DF_T]): from source and produce the `subjects_df`, `events_df`, `dynamic_measurements_df` input view. """ - # Dictates what models can be fit on numerical metadata columns, for both outlier detection and - # normalization. - PREPROCESSORS: dict[str, Preprocessor] = { - # Outlier Detectors - "stddev_cutoff": StddevCutoffOutlierDetector, - # Normalizers - "standard_scaler": StandardScaler, - } - """A dictionary containing the valid pre-processors that can be used by this model class.""" - METADATA_SCHEMA = { "drop_upper_bound": pl.Float64, "drop_upper_bound_inclusive": pl.Boolean, @@ -103,8 +112,10 @@ class Dataset(DatasetBase[DF_T, INPUT_DF_T]): "drop_lower_bound_inclusive": pl.Boolean, "censor_upper_bound": pl.Float64, "censor_lower_bound": pl.Float64, - "outlier_model": lambda outlier_params_schema: pl.Struct(outlier_params_schema), - "normalizer": lambda normalizer_params_schema: pl.Struct(normalizer_params_schema), + "thresh_high": pl.Float64, + "thresh_low": pl.Float64, + "mean": pl.Float64, + "std": pl.Float64, "value_type": pl.Categorical, } """The Polars schema of the numerical measurement metadata dataframes which track fit parameters.""" @@ -157,25 +168,12 @@ def _load_input_df( df: INPUT_DF_T, columns: list[tuple[str, InputDataType | tuple[InputDataType, str]]], subject_id_col: str | None = None, - subject_ids_map: dict[Any, int] | None = None, - subject_id_dtype: Any | None = None, filter_on: dict[str, bool | list[Any]] | None = None, - subject_id_source_col: str | None = None, ) -> DF_T | tuple[DF_T, str]: """Loads an input dataframe into the format expected by the processing library.""" - if subject_id_col is None: - if subject_ids_map is not None: - raise ValueError("Must not set subject_ids_map if subject_id_col is not set") - if subject_id_dtype is not None: - raise ValueError("Must not set subject_id_dtype if subject_id_col is not set") - else: - if subject_ids_map is None: - raise ValueError("Must set subject_ids_map if subject_id_col is set") - if subject_id_dtype is None: - raise ValueError("Must set subject_id_dtype if subject_id_col is set") - match df: case (str() | Path()) as fp: + logger.debug(f"Loading df from {fp}") if not isinstance(fp, Path): fp = Path(fp) @@ -192,6 +190,7 @@ def _load_input_df( case pl.LazyFrame(): pass case Query() as q: + logger.debug(f"Querying df via\n{q}") query = q.query if not isinstance(query, (list, tuple)): query = [query] @@ -220,36 +219,22 @@ def _load_input_df( else: partition_kwargs = {} - df = pl.read_database( + df = pl.read_database_uri( query=out_query, - connection_uri=q.connection_uri, + uri=q.connection_uri, protocol=q.protocol, **partition_kwargs, ).lazy() case _: raise TypeError(f"Input dataframe `df` is of invalid type {type(df)}!") - col_exprs = [] + col_exprs = [pl.col(subject_id_col).alias("subject_id")] df = df.select(pl.all().shrink_dtype()) if filter_on: df = cls._filter_col_inclusion(df, filter_on) - if subject_id_source_col is not None: - internal_subj_key = "subject_id" - while internal_subj_key in df.columns: - internal_subj_key = f"_{internal_subj_key}" - df = df.with_row_count(internal_subj_key) - col_exprs.append(internal_subj_key) - else: - assert subject_id_col is not None - df = df.with_columns(pl.col(subject_id_col).cast(pl.Utf8).cast(pl.Categorical)) - df = cls._filter_col_inclusion(df, {subject_id_col: list(subject_ids_map.keys())}) - col_exprs.append( - pl.col(subject_id_col).map_dict(subject_ids_map).cast(subject_id_dtype).alias("subject_id") - ) - for in_col, out_dt in columns: match out_dt: case InputDataType.FLOAT: @@ -265,14 +250,7 @@ def _load_input_df( case _: raise ValueError(f"Invalid out data type {out_dt}!") - if subject_id_source_col is not None: - df = df.select(col_exprs).collect(streaming=cls.STREAMING) - - ID_map = {o: n for o, n in zip(df[subject_id_source_col], df[internal_subj_key])} - df = df.with_columns(pl.col(internal_subj_key).alias("subject_id")) - return df, ID_map - else: - return df.select(col_exprs) + return df.select(col_exprs) @classmethod def _rename_cols(cls, df: DF_T, to_rename: dict[str, str]) -> DF_T: @@ -320,7 +298,7 @@ def _process_events_and_measurements_df( df: DF_T, event_type: str, columns_schema: dict[str, tuple[str, InputDataType]], - ) -> tuple[DF_T, DF_T | None]: + ) -> tuple[DF_T | None, DF_T | None]: """Performs the following pre-processing steps on an input events and measurements dataframe: @@ -331,6 +309,8 @@ def _process_events_and_measurements_df( and `timestamp`, and a `measurements` dataframe, storing `event_id` and all other data columns. """ + logger.debug(f"Processing {event_type} via {columns_schema}") + cols_select_exprs = [ "timestamp", "subject_id", @@ -348,7 +328,11 @@ def _process_events_and_measurements_df( df.filter(pl.col("timestamp").is_not_null() & pl.col("subject_id").is_not_null()) .select(cols_select_exprs) .unique() - .with_row_count("event_id") + .with_columns( + pl.struct(subject_id=pl.col("subject_id"), timestamp=pl.col("timestamp")) + .hash(1, 2, 3, 4) + .alias("event_id") + ) ) events_df = df.select("event_id", "subject_id", "timestamp", "event_type") @@ -387,12 +371,6 @@ def _split_range_events_df(cls, df: DF_T) -> tuple[DF_T, DF_T, DF_T]: ne_df.with_columns(end_col).drop(drop_cols), ) - @classmethod - def _inc_df_col(cls, df: DF_T, col: str, inc_by: int) -> DF_T: - """Increments the values in a column by a given amount and returns a dataframe with the incremented - column.""" - return df.with_columns(pl.col(col) + inc_by).collect(streaming=cls.STREAMING) - @classmethod def _concat_dfs(cls, dfs: list[DF_T]) -> DF_T: """Concatenates a list of dataframes into a single dataframe.""" @@ -421,13 +399,6 @@ def get_metadata_schema(self, config: MeasurementConfig) -> dict[str, pl.DataTyp "value_type": self.METADATA_SCHEMA["value_type"], } - if self.config.outlier_detector_config is not None: - M = self._get_preprocessing_model(self.config.outlier_detector_config, for_fit=False) - schema["outlier_model"] = self.METADATA_SCHEMA["outlier_model"](M.params_schema()) - if self.config.normalizer_config is not None: - M = self._get_preprocessing_model(self.config.normalizer_config, for_fit=False) - schema["normalizer"] = self.METADATA_SCHEMA["normalizer"](M.params_schema()) - metadata = config.measurement_metadata if metadata is None: return schema @@ -439,6 +410,10 @@ def get_metadata_schema(self, config: MeasurementConfig) -> dict[str, pl.DataTyp "censor_lower_bound", "drop_upper_bound_inclusive", "drop_lower_bound_inclusive", + "thresh_low", + "thresh_high", + "mean", + "std", ): if col in metadata: schema[col] = self.METADATA_SCHEMA[col] @@ -456,8 +431,8 @@ def drop_or_censor( censor_upper_bound: pl.Expr | None = None, **ignored_kwargs, ) -> pl.Expr: - """Appropriately either drops (returns np.NaN) or censors (returns the censor value) the value `val` - based on the bounds in `row`. + """Appropriately either drops (returns float('nan')) or censors (returns the censor value) the value + `val` based on the bounds in `row`. TODO(mmd): could move this code to an outlier model in Preprocessing and have it be one that is pre-set in metadata. @@ -465,19 +440,19 @@ def drop_or_censor( Args: val: The value to drop, censor, or return unchanged. drop_lower_bound: A lower bound such that if `val` is either below or at or below this level, - `np.NaN` will be returned. If `None` or `np.NaN`, no bound will be applied. - drop_lower_bound_inclusive: If `True`, returns `np.NaN` if ``val <= row['drop_lower_bound']``. - Else, returns `np.NaN` if ``val < row['drop_lower_bound']``. + `float('nan')` will be returned. If `None` or `float('nan')`, no bound will be applied. + drop_lower_bound_inclusive: If `True`, returns `float('nan')` if ``val <= + row['drop_lower_bound']``. Else, returns `float('nan')` if ``val < row['drop_lower_bound']``. drop_upper_bound: An upper bound such that if `val` is either above or at or above this level, - `np.NaN` will be returned. If `None` or `np.NaN`, no bound will be applied. - drop_upper_bound_inclusive: If `True`, returns `np.NaN` if ``val >= row['drop_upper_bound']``. - Else, returns `np.NaN` if ``val > row['drop_upper_bound']``. + `float('nan')` will be returned. If `None` or `float('nan')`, no bound will be applied. + drop_upper_bound_inclusive: If `True`, returns `float('nan')` if ``val >= + row['drop_upper_bound']``. Else, returns `float('nan')` if ``val > row['drop_upper_bound']``. censor_lower_bound: A lower bound such that if `val` is below this level but above - `drop_lower_bound`, `censor_lower_bound` will be returned. If `None` or `np.NaN`, no bound - will be applied. + `drop_lower_bound`, `censor_lower_bound` will be returned. If `None` or `float('nan')`, no + bound will be applied. censor_upper_bound: An upper bound such that if `val` is above this level but below - `drop_upper_bound`, `censor_upper_bound` will be returned. If `None` or `np.NaN`, no bound - will be applied. + `drop_upper_bound`, `censor_upper_bound` will be returned. If `None` or `float('nan')`, no + bound will be applied. """ conditions = [] @@ -486,7 +461,7 @@ def drop_or_censor( conditions.append( ( (col < drop_lower_bound) | ((col == drop_lower_bound) & drop_lower_bound_inclusive), - np.NaN, + float("nan"), ) ) @@ -494,7 +469,7 @@ def drop_or_censor( conditions.append( ( (col > drop_upper_bound) | ((col == drop_upper_bound) & drop_upper_bound_inclusive), - np.NaN, + float("nan"), ) ) @@ -561,12 +536,13 @@ def _validate_initial_df( if linked_id_cols: for id_col, id_col_dt in linked_id_cols.items(): + logger.debug(f"Validating {id_col}") if id_col not in source_df: raise ValueError(f"Missing mandatory linkage col {id_col}") source_df = source_df.with_columns(pl.col(id_col).cast(id_col_dt)) if id_col_name not in source_df: - source_df = source_df.with_row_count(name=id_col_name) + source_df = source_df.with_row_index(name=id_col_name) id_col, id_col_dt = self._validate_id_col(source_df.get_column(id_col_name)) source_df = source_df.with_columns(id_col) @@ -620,6 +596,7 @@ def _validate_initial_dfs( Raises: ValuesError: If any of the required columns are missing or invalid. """ + subjects_df = subjects_df.lazy().collect() subjects_df, subjects_id_type = self._validate_initial_df( subjects_df, "subject_id", TemporalityType.STATIC ) @@ -634,7 +611,7 @@ def _validate_initial_dfs( raise ValueError("Missing event_type column!") events_df = events_df.with_columns(pl.col("event_type").cast(pl.Categorical)) - if "timestamp" not in events_df or events_df["timestamp"].dtype != pl.Datetime: + if "timestamp" not in events_df or events_df.schema["timestamp"] != pl.Datetime: raise ValueError("Malformed timestamp column!") if dynamic_measurements_df is not None: @@ -654,12 +631,22 @@ def _sort_events(self): @TimeableMixin.TimeAs def _agg_by_time(self): - event_id_dt = self.events_df["event_id"].dtype + event_id_dt = self.events_df.schema["event_id"] + + if self.dynamic_measurements_df.schema["event_id"] != event_id_dt: + self.dynamic_measurements_df = self.dynamic_measurements_df.with_columns( + pl.col("event_id").cast(event_id_dt) + ) + + logger.debug("Collecting events DF. Not using streaming here as it sometimes causes segfaults.") + self.events_df = self.events_df.lazy().collect() if self.config.agg_by_time_scale is None: - grouped = self.events_df.groupby(["subject_id", "timestamp"], maintain_order=True) + logger.debug("Grouping into unique timestamps") + grouped = self.events_df.group_by(["subject_id", "timestamp"], maintain_order=True) else: - grouped = self.events_df.sort(["subject_id", "timestamp"], descending=False).groupby_dynamic( + logger.debug("Aggregating timestamps into buckets") + grouped = self.events_df.sort(["subject_id", "timestamp"], descending=False).group_by_dynamic( "timestamp", every=self.config.agg_by_time_scale, truncate=True, @@ -673,10 +660,13 @@ def _agg_by_time(self): pl.col("event_type").unique().sort(), pl.col("event_id").unique().alias("old_event_id"), ) - .sort("subject_id", "timestamp", descending=False) - .with_row_count("event_id") .with_columns( - pl.col("event_id").cast(event_id_dt), + pl.struct(subject_id=pl.col("subject_id"), timestamp=pl.col("timestamp")) + .hash(1, 2, 3, 4) + .alias("event_id") + ) + .with_columns( + "event_id", pl.col("event_type") .list.eval(pl.col("").cast(pl.Utf8)) .list.join("&") @@ -685,18 +675,23 @@ def _agg_by_time(self): ) ) - new_to_old_set = grouped[["event_id", "old_event_id"]].explode("old_event_id") + new_to_old_set = grouped.select("event_id", "old_event_id").explode("old_event_id") self.events_df = grouped.drop("old_event_id") + # Don't use streaming here as it sometimes causes segfaults + logger.debug("Re-mapping measurements df") self.dynamic_measurements_df = ( - self.dynamic_measurements_df.rename({"event_id": "old_event_id"}) + self.dynamic_measurements_df.lazy() + .collect() + .rename({"event_id": "old_event_id"}) .join(new_to_old_set, on="old_event_id", how="left") .drop("old_event_id") ) def _update_subject_event_properties(self): if self.events_df is not None: + logger.debug("Collecting event types") self.event_types = ( self.events_df.get_column("event_type") .value_counts(sort=True) @@ -705,10 +700,11 @@ def _update_subject_event_properties(self): ) n_events_pd = self.events_df.get_column("subject_id").value_counts(sort=False).to_pandas() - self.n_events_per_subject = n_events_pd.set_index("subject_id")["counts"].to_dict() + self.n_events_per_subject = n_events_pd.set_index("subject_id")["count"].to_dict() self.subject_ids = set(self.n_events_per_subject.keys()) if self.subjects_df is not None: + logger.debug("Collecting subject event counts") subjects_with_no_events = ( set(self.subjects_df.get_column("subject_id").to_list()) - self.subject_ids ) @@ -726,7 +722,25 @@ def _filter_col_inclusion(cls, df: DF_T, col_inclusion_targets: dict[str, bool | case False: filter_exprs.append(pl.col(col).is_null()) case _: - filter_exprs.append(pl.col(col).is_in(list(incl_targets))) + try: + incl_list = pl.Series(list(incl_targets), dtype=df.schema[col]) + except TypeError as e: + incl_targets_by_type = defaultdict(list) + for t in incl_targets: + incl_targets_by_type[str(type(t))].append(t) + + by_type_summ = [] + for tp, vals in incl_targets_by_type.items(): + by_type_summ.append( + f"{tp}: {len(vals)} values: {', '.join(str(x) for x in vals[:5])}..." + ) + + by_type_summ = "\n".join(by_type_summ) + + raise ValueError( + f"Failed to convert incl_targets to {df.schema[col]}:\n{by_type_summ}" + ) from e + filter_exprs.append(pl.col(col).is_in(incl_list)) return df.filter(pl.all_horizontal(filter_exprs)) @@ -852,9 +866,11 @@ def _add_inferred_val_types( .cast(pl.Boolean) .alias("is_int") ) - int_keys = for_val_type_inference.groupby(vocab_keys_col).agg(is_int_expr) + int_keys = for_val_type_inference.group_by(vocab_keys_col).agg(is_int_expr) - measurement_metadata = measurement_metadata.join(int_keys, on=vocab_keys_col, how="outer") + measurement_metadata = measurement_metadata.join( + int_keys, on=vocab_keys_col, how="outer_coalesce" + ) key_is_int = pl.col(vocab_keys_col).is_in(int_keys.filter("is_int")[vocab_keys_col]) for_val_type_inference = for_val_type_inference.with_columns( @@ -865,7 +881,7 @@ def _add_inferred_val_types( # b. Drop if only has a single observed numerical value. dropped_keys = ( - for_val_type_inference.groupby(vocab_keys_col) + for_val_type_inference.group_by(vocab_keys_col) .agg((vals_col.n_unique() == 1).cast(pl.Boolean).alias("should_drop")) .filter("should_drop") ) @@ -890,9 +906,11 @@ def _add_inferred_val_types( .alias("is_categorical") ) - categorical_keys = for_val_type_inference.groupby(vocab_keys_col).agg(is_cat_expr) + categorical_keys = for_val_type_inference.group_by(vocab_keys_col).agg(is_cat_expr) - measurement_metadata = measurement_metadata.join(categorical_keys, on=vocab_keys_col, how="outer") + measurement_metadata = measurement_metadata.join( + categorical_keys, on=vocab_keys_col, how="outer_coalesce" + ) else: measurement_metadata = measurement_metadata.with_columns(pl.lit(False).alias("is_categorical")) @@ -931,7 +949,7 @@ def _fit_measurement_metadata( ).cast(pl.Boolean) dropped_keys = ( - source_df.groupby(vocab_keys_col) + source_df.group_by(vocab_keys_col) .agg(should_drop_expr.alias("should_drop")) .filter("should_drop") .with_columns(pl.lit(NumericDataModalitySubtype.DROPPED).alias("value_type")) @@ -942,7 +960,7 @@ def _fit_measurement_metadata( measurement_metadata.join( dropped_keys, on=vocab_keys_col, - how="outer", + how="outer_coalesce", suffix="_right", ) .with_columns(pl.coalesce(["value_type", "value_type_right"]).alias("value_type")) @@ -1005,36 +1023,34 @@ def _fit_measurement_metadata( # 4. Infer outlier detector and normalizer parameters. if self.config.outlier_detector_config is not None: + stddev_cutoff = self.config.outlier_detector_config["stddev_cutoff"] with self._time_as("fit_outlier_detector"): - M = self._get_preprocessing_model(self.config.outlier_detector_config, for_fit=True) - outlier_model_params = source_df.groupby(vocab_keys_col).agg( - M.fit_from_polars(pl.col(vals_col)).alias("outlier_model") - ) - - measurement_metadata = measurement_metadata.with_columns( - pl.col("outlier_model").cast(outlier_model_params["outlier_model"].dtype) - ) - source_df = source_df.with_columns( - pl.col("outlier_model").cast(outlier_model_params["outlier_model"].dtype) + outlier_model_params = ( + source_df.groupby(vocab_keys_col) + .agg( + pl.col(vals_col).mean().alias("mean"), + pl.col(vals_col).std().alias("std"), + ) + .select( + vocab_keys_col, + (pl.col("mean") + stddev_cutoff * pl.col("std")).alias("thresh_large"), + (pl.col("mean") - stddev_cutoff * pl.col("std")).alias("thresh_small"), + ) ) measurement_metadata = measurement_metadata.update(outlier_model_params, on=vocab_keys_col) - source_df = source_df.update( - measurement_metadata.select(vocab_keys_col, "outlier_model"), on=vocab_keys_col - ) + source_df = source_df.update(outlier_model_params, on=vocab_keys_col) - is_inlier = ~M.predict_from_polars(pl.col(vals_col), pl.col("outlier_model")) + is_inlier = (pl.col(vals_col) > pl.col("thresh_small")) & ( + pl.col(vals_col) < pl.col("thresh_large") + ) source_df = source_df.filter(is_inlier) # 5. Fit a normalizer model. - if self.config.normalizer_config is not None: + if self.config.center_and_scale: with self._time_as("fit_normalizer"): - M = self._get_preprocessing_model(self.config.normalizer_config, for_fit=True) normalizer_params = source_df.groupby(vocab_keys_col).agg( - M.fit_from_polars(pl.col(vals_col)).alias("normalizer") - ) - measurement_metadata = measurement_metadata.with_columns( - pl.col("normalizer").cast(normalizer_params["normalizer"].dtype) + pl.col(vals_col).mean().alias("mean"), pl.col(vals_col).std().alias("std") ) measurement_metadata = measurement_metadata.update(normalizer_params, on=vocab_keys_col) @@ -1105,7 +1121,7 @@ def _fit_vocabulary(self, measure: str, config: MeasurementConfig, source_df: DF try: value_counts = observations.value_counts() vocab_elements = value_counts.get_column(measure).to_list() - el_counts = value_counts.get_column("counts") + el_counts = value_counts.get_column("count") return Vocabulary(vocabulary=vocab_elements, obs_frequencies=el_counts) except AssertionError as e: raise AssertionError(f"Failed to build vocabulary for {measure}") from e @@ -1162,7 +1178,7 @@ def _transform_numerical_measurement( ] ) ) - .then(np.NaN) + .then(float("nan")) .when(value_type == NumericDataModalitySubtype.INTEGER) .then(vals_col.round(0)) .otherwise(vals_col) @@ -1183,10 +1199,10 @@ def _transform_numerical_measurement( # 5. Add inlier/outlier indices and remove learned outliers. if self.config.outlier_detector_config is not None: - M = self._get_preprocessing_model(self.config.outlier_detector_config, for_fit=False) - - inliers_col = ~M.predict_from_polars(vals_col, pl.col("outlier_model")).alias(inliers_col_name) - vals_col = pl.when(inliers_col).then(vals_col).otherwise(np.NaN) + inliers_col = ((vals_col > pl.col("thresh_small")) & (vals_col < pl.col("thresh_large"))).alias( + inliers_col_name + ) + vals_col = pl.when(inliers_col).then(vals_col).otherwise(float("nan")) present_source = present_source.with_columns(inliers_col, vals_col) null_source = null_source.with_columns(pl.lit(None).cast(pl.Boolean).alias(inliers_col_name)) @@ -1199,10 +1215,8 @@ def _transform_numerical_measurement( return null_source.drop(cols_to_drop_at_end) # 6. Normalize values. - if self.config.normalizer_config is not None: - M = self._get_preprocessing_model(self.config.normalizer_config, for_fit=False) - - vals_col = M.predict_from_polars(vals_col, pl.col("normalizer")) + if self.config.center_and_scale: + vals_col = (vals_col - pl.col("mean")) / pl.col("std") present_source = present_source.with_columns(vals_col) source_df = present_source.vstack(null_source) @@ -1226,7 +1240,7 @@ def _transform_categorical_measurement( if config.modality == DataModality.MULTIVARIATE_REGRESSION: transform_expr.append( pl.when(~pl.col(measure).is_in(config.vocabulary.vocabulary)) - .then(np.NaN) + .then(float("nan")) .otherwise(pl.col(config.values_column)) .alias(config.values_column) ) @@ -1273,13 +1287,14 @@ def _melt_df(self, source_df: DF_T, id_cols: Sequence[str], measures: list[str]) if m in self.measurement_vocabs: idx_present_expr = pl.col(m).is_not_null() & pl.col(m).is_in(self.measurement_vocabs[m]) - idx_value_expr = pl.col(m).map_dict(self.unified_vocabulary_idxmap[m], return_dtype=idx_dt) + idx_value_expr = pl.col(m).replace( + self.unified_vocabulary_idxmap[m], return_dtype=idx_dt, default=None + ) else: idx_present_expr = pl.col(m).is_not_null() - idx_value_expr = pl.lit(self.unified_vocabulary_idxmap[m][m]).cast(idx_dt) + idx_value_expr = pl.lit(self.unified_vocabulary_idxmap[m][m], dtype=idx_dt) - idx_present_expr = idx_present_expr.cast(pl.Boolean).alias("present") - idx_value_expr = idx_value_expr.alias("index") + idx_present_expr = idx_present_expr.cast(pl.Boolean) if (modality == DataModality.UNIVARIATE_REGRESSION) and ( cfg.measurement_metadata.value_type @@ -1289,13 +1304,20 @@ def _melt_df(self, source_df: DF_T, id_cols: Sequence[str], measures: list[str]) elif modality == DataModality.MULTIVARIATE_REGRESSION: val_expr = pl.col(cfg.values_column) else: - val_expr = pl.lit(None).cast(pl.Float64) + val_expr = pl.lit(None, dtype=pl.Float32) struct_exprs.append( - pl.struct([idx_present_expr, idx_value_expr, val_expr.alias("value")]).alias(m) + pl.struct( + [ + idx_present_expr.alias("present"), + idx_value_expr.alias("index"), + val_expr.alias("value"), + ] + ).alias(m) ) measurements_idx_dt = self.get_smallest_valid_uint_type(len(self.unified_measurements_idxmap)) + return ( source_df.select(*id_cols, *struct_exprs) .melt( @@ -1308,7 +1330,7 @@ def _melt_df(self, source_df: DF_T, id_cols: Sequence[str], measures: list[str]) .select( *id_cols, pl.col("measurement") - .map_dict(self.unified_measurements_idxmap) + .replace(self.unified_measurements_idxmap, return_dtype=measurements_idx_dt, default=None) .cast(measurements_idx_dt) .alias("measurement_index"), pl.col("value").struct.field("index").alias("index"), @@ -1341,7 +1363,7 @@ def build_DL_cached_representation( static_data = ( self._melt_df(subjects_df, ["subject_id"], subject_measures) - .groupby("subject_id") + .group_by("subject_id") .agg( pl.col("measurement_index").alias("static_measurement_indices"), pl.col("index").alias("static_indices"), @@ -1375,7 +1397,7 @@ def build_DL_cached_representation( event_data = pl.concat([event_data, dynamic_data], how="diagonal") event_data = ( - event_data.groupby("event_id") + event_data.group_by("event_id") .agg( pl.col("timestamp").drop_nulls().first().alias("timestamp"), pl.col("subject_id").drop_nulls().first().alias("subject_id"), @@ -1384,19 +1406,24 @@ def build_DL_cached_representation( pl.col("value").alias("dynamic_values"), ) .sort("subject_id", "timestamp") - .groupby("subject_id") + .group_by("subject_id", maintain_order=True) .agg( pl.col("timestamp").first().alias("start_time"), - ((pl.col("timestamp") - pl.col("timestamp").min()).dt.nanoseconds() / (1e9 * 60)).alias( + ((pl.col("timestamp") - pl.col("timestamp").min()).dt.total_nanoseconds() / (1e9 * 60)).alias( "time" ), + (pl.col("timestamp").diff().dt.total_seconds() / 60.0) + .shift(-1) + .cast(pl.Float32) + .fill_null(float("nan")) + .alias("time_delta"), pl.col("dynamic_measurement_indices"), pl.col("dynamic_indices"), pl.col("dynamic_values"), ) ) - out = static_data.join(event_data, on="subject_id", how="outer") + out = static_data.join(event_data, on="subject_id", how="outer_coalesce") if do_sort_outputs: out = out.sort("subject_id") @@ -1583,7 +1610,7 @@ def _summarize_dynamic_measurements( df.lazy() .select("measurement_id", "event_id", m) .filter(pl.col(m).is_not_null()) - .groupby("event_id") + .group_by("event_id") .agg( pl.col(m).is_not_null().sum().cast(count_type).alias(f"{prefix}/count"), ( @@ -1600,7 +1627,13 @@ def _summarize_dynamic_measurements( ) continue elif cfg.modality == "multivariate_regression": - column_cols = [m, m] + select_cols = [ + pl.col(m).alias(f"{m}_{m}"), + pl.col(m).alias(f"{cfg.values_column}_{m}"), + m, + cfg.values_column, + ] + column_cols = [f"{m}_{m}", f"{cfg.values_column}_{m}"] values_cols = [m, cfg.values_column] key_prefix = f"{m}_{m}_" val_prefix = f"{cfg.values_column}_{m}_" @@ -1612,33 +1645,30 @@ def _summarize_dynamic_measurements( key_col.is_not_null() .sum() .cast(count_type) - .map_alias(lambda c: f"dynamic/{m}/{c.replace(key_prefix, '')}/count"), + .name.map(lambda c: f"dynamic/{m}/{c.replace(key_prefix, '')}/count"), ( (cs.starts_with(val_prefix).is_not_null() & cs.starts_with(val_prefix).is_not_nan()) .sum() - .map_alias(lambda c: f"dynamic/{m}/{c.replace(val_prefix, '')}/has_values_count") + .name.map(lambda c: f"dynamic/{m}/{c.replace(val_prefix, '')}/has_values_count") ), - val_col.sum().map_alias(lambda c: f"dynamic/{m}/{c.replace(val_prefix, '')}/sum"), + val_col.sum().name.map(lambda c: f"dynamic/{m}/{c.replace(val_prefix, '')}/sum"), (val_col**2) .sum() - .map_alias(lambda c: f"dynamic/{m}/{c.replace(val_prefix, '')}/sum_sqd"), - val_col.min().map_alias(lambda c: f"dynamic/{m}/{c.replace(val_prefix, '')}/min"), - val_col.max().map_alias(lambda c: f"dynamic/{m}/{c.replace(val_prefix, '')}/max"), + .name.map(lambda c: f"dynamic/{m}/{c.replace(val_prefix, '')}/sum_sqd"), + val_col.min().name.map(lambda c: f"dynamic/{m}/{c.replace(val_prefix, '')}/min"), + val_col.max().name.map(lambda c: f"dynamic/{m}/{c.replace(val_prefix, '')}/max"), ] else: column_cols = [m] values_cols = [m] + select_cols = [m] aggs = [ - pl.all() - .is_not_null() - .sum() - .cast(count_type) - .map_alias(lambda c: f"dynamic/{m}/{c}/count") + pl.all().is_not_null().sum().cast(count_type).name.map(lambda c: f"dynamic/{m}/{c}/count") ] ID_cols = ["measurement_id", "event_id"] out_dfs[m] = ( - df.select(*ID_cols, *set(column_cols + values_cols)) + df.select(*ID_cols, *select_cols) .filter(pl.col(m).is_in(allowed_vocab)) .pivot( index=ID_cols, @@ -1648,7 +1678,7 @@ def _summarize_dynamic_measurements( ) .lazy() .drop("measurement_id") - .groupby("event_id") + .group_by("event_id") .agg(*aggs) ) @@ -1688,14 +1718,21 @@ def _get_flat_col_dtype(self, col: str) -> pl.DataType: ) if cfg.vocabulary is None: - observation_frequency = cfg.observation_rate_per_case * cfg.observation_rate_over_cases + observation_frequency = 1 else: if feature not in cfg.vocabulary.idxmap: raise ValueError(f"Column name {col} malformed: Feature {feature} not in {meas}!") else: observation_frequency = cfg.vocabulary.obs_frequencies[cfg.vocabulary[feature]] - total_observations = int(math.ceil(observation_frequency * n_possible)) + total_observations = int( + math.ceil( + cfg.observation_rate_per_case + * cfg.observation_rate_over_cases + * observation_frequency + * n_possible + ) + ) return self.get_smallest_valid_uint_type(total_observations) case _: @@ -1798,67 +1835,360 @@ def f(c: str) -> str: cols_to_max = cs.ends_with("/max") if window_size == "FULL": - df = df.groupby("subject_id").agg( + df = df.group_by("subject_id").agg( "timestamp", # present to counts - present_indicator_cols.cumsum().map_alias(time_aggd_col_alias_fntr("count")), + present_indicator_cols.cumsum().name.map(time_aggd_col_alias_fntr("count")), # values to stats - value_cols.is_not_null().cumsum().map_alias(time_aggd_col_alias_fntr("count")), + value_cols.is_not_null().cumsum().name.map(time_aggd_col_alias_fntr("count")), ( (value_cols.is_not_null() & value_cols.is_not_nan()) .cumsum() + .name.map(time_aggd_col_alias_fntr("has_values_count")) + ), + value_cols.cumsum().name.map(time_aggd_col_alias_fntr("sum")), + (value_cols**2).cumsum().name.map(time_aggd_col_alias_fntr("sum_sqd")), + value_cols.cummin().name.map(time_aggd_col_alias_fntr("min")), + value_cols.cummax().name.map(time_aggd_col_alias_fntr("max")), + # Raw aggregations + cnt_cols.cumsum().name.map(time_aggd_col_alias_fntr()), + cols_to_sum.cumsum().name.map(time_aggd_col_alias_fntr()), + cols_to_min.cummin().name.map(time_aggd_col_alias_fntr()), + cols_to_max.cummax().name.map(time_aggd_col_alias_fntr()), + ) + df = df.explode(*[c for c in df.columns if c != "subject_id"]) + elif window_size == "-FULL": + df = df.groupby("subject_id").agg( + "timestamp", + # present to counts + present_indicator_cols.cumsum(reverse=True).map_alias(time_aggd_col_alias_fntr("count")), + # values to stats + value_cols.is_not_null().cumsum(reverse=True).map_alias(time_aggd_col_alias_fntr("count")), + ( + (value_cols.is_not_null() & value_cols.is_not_nan()) + .cumsum(reverse=True) .map_alias(time_aggd_col_alias_fntr("has_values_count")) ), - value_cols.cumsum().map_alias(time_aggd_col_alias_fntr("sum")), - (value_cols**2).cumsum().map_alias(time_aggd_col_alias_fntr("sum_sqd")), - value_cols.cummin().map_alias(time_aggd_col_alias_fntr("min")), - value_cols.cummax().map_alias(time_aggd_col_alias_fntr("max")), + value_cols.cumsum(reverse=True).map_alias(time_aggd_col_alias_fntr("sum")), + (value_cols**2).cumsum(reverse=True).map_alias(time_aggd_col_alias_fntr("sum_sqd")), + value_cols.cummin(reverse=True).map_alias(time_aggd_col_alias_fntr("min")), + value_cols.cummax(reverse=True).map_alias(time_aggd_col_alias_fntr("max")), # Raw aggregations - cnt_cols.cumsum().map_alias(time_aggd_col_alias_fntr()), - cols_to_sum.cumsum().map_alias(time_aggd_col_alias_fntr()), - cols_to_min.cummin().map_alias(time_aggd_col_alias_fntr()), - cols_to_max.cummax().map_alias(time_aggd_col_alias_fntr()), + cnt_cols.cumsum(reverse=True).map_alias(time_aggd_col_alias_fntr()), + cols_to_sum.cumsum(reverse=True).map_alias(time_aggd_col_alias_fntr()), + cols_to_min.cummin(reverse=True).map_alias(time_aggd_col_alias_fntr()), + cols_to_max.cummax(reverse=True).map_alias(time_aggd_col_alias_fntr()), ) df = df.explode(*[c for c in df.columns if c != "subject_id"]) else: - df = df.groupby_rolling( - index_column="timestamp", - by="subject_id", - period=window_size, - ).agg( + rolling_kwargs = {"index_column": "timestamp", "by": "subject_id"} + if window_size.startswith("-"): + rolling_kwargs["period"] = window_size[1:] + rolling_kwargs["offset"] = timedelta(0) + else: + rolling_kwargs["period"] = window_size + + df = df.group_by_rolling(**rolling_kwargs).agg( # present to counts - present_indicator_cols.sum().map_alias(time_aggd_col_alias_fntr("count")), + present_indicator_cols.sum().name.map(time_aggd_col_alias_fntr("count")), # values to stats - value_cols.is_not_null().sum().map_alias(time_aggd_col_alias_fntr("count")), + value_cols.is_not_null().sum().name.map(time_aggd_col_alias_fntr("count")), ( (value_cols.is_not_null() & value_cols.is_not_nan()) .sum() - .map_alias(time_aggd_col_alias_fntr("has_values_count")) + .name.map(time_aggd_col_alias_fntr("has_values_count")) ), - value_cols.sum().map_alias(time_aggd_col_alias_fntr("sum")), - (value_cols**2).sum().map_alias(time_aggd_col_alias_fntr("sum_sqd")), - value_cols.min().map_alias(time_aggd_col_alias_fntr("min")), - value_cols.max().map_alias(time_aggd_col_alias_fntr("max")), + value_cols.sum().name.map(time_aggd_col_alias_fntr("sum")), + (value_cols**2).sum().name.map(time_aggd_col_alias_fntr("sum_sqd")), + value_cols.min().name.map(time_aggd_col_alias_fntr("min")), + value_cols.max().name.map(time_aggd_col_alias_fntr("max")), # Raw aggregations - cnt_cols.sum().map_alias(time_aggd_col_alias_fntr()), - cols_to_sum.sum().map_alias(time_aggd_col_alias_fntr()), - cols_to_min.min().map_alias(time_aggd_col_alias_fntr()), - cols_to_max.max().map_alias(time_aggd_col_alias_fntr()), + cnt_cols.sum().name.map(time_aggd_col_alias_fntr()), + cols_to_sum.sum().name.map(time_aggd_col_alias_fntr()), + cols_to_min.min().name.map(time_aggd_col_alias_fntr()), + cols_to_max.max().name.map(time_aggd_col_alias_fntr()), ) return self._normalize_flat_rep_df_cols(df, set_count_0_to_null=True) def _denormalize(self, events_df: DF_T, col: str) -> DF_T: - if self.config.normalizer_config is None: + if not self.config.center_and_scale: return events_df - elif self.config.normalizer_config["cls"] != "standard_scaler": - raise ValueError(f"De-normalizing from {self.config.normalizer_config} not yet supported!") config = self.measurement_configs[col] if config.modality != DataModality.UNIVARIATE_REGRESSION: raise ValueError(f"De-normalizing {config.modality} is not currently supported.") - normalizer_params = config.measurement_metadata.normalizer - return events_df.with_columns( - ((pl.col(col) * normalizer_params["std_"]) + normalizer_params["mean_"]).alias(col) + mean = float(config.measurement_metadata.loc["mean"]) + std = float(config.measurement_metadata.loc["std"]) + + return events_df.with_columns((pl.col(col) * std + mean).alias(col)) + + def _ESDS_melt_df( + self, + source_df: pl.DataFrame, + id_cols: Sequence[str], + measures: list[str], + default_struct_fields: dict[str, pl.DataType] | None = None, + default_mod_struct_fields: dict[str, pl.DataType] | None = None, + ) -> pl.Expr: + """Re-formats `source_df` into the desired Event Stream Data Standard output format.""" + struct_fields_by_m = {} + total_vocab_size = self.vocabulary_config.total_vocab_size + self.get_smallest_valid_uint_type(total_vocab_size) + + if default_struct_fields is None: + default_struct_fields = {} + else: + default_struct_fields = {**default_struct_fields} + + if default_mod_struct_fields is None: + default_mod_struct_fields = {} + else: + default_mod_struct_fields = {**default_mod_struct_fields} + + mod_struct_field_order = sorted(list(default_mod_struct_fields.keys())) + + for m in measures: + if m == "event_type": + cfg = None + modality = DataModality.SINGLE_LABEL_CLASSIFICATION + else: + cfg = self.measurement_configs[m] + modality = cfg.modality + + if modality != DataModality.UNIVARIATE_REGRESSION: + idx_value_expr = ( + pl.when(pl.col(m).is_not_null()) + .then(f"{m}/" + pl.col(m).cast(pl.Utf8)) + .otherwise(pl.lit(None, dtype=pl.Utf8)) + ) + else: + idx_value_expr = ( + pl.when(pl.col(m).is_not_null()) + .then(pl.lit(f"{m}", dtype=pl.Utf8)) + .otherwise(pl.lit(None, dtype=pl.Utf8)) + ) + + idx_value_expr = idx_value_expr.alias("code") + + if (modality == DataModality.UNIVARIATE_REGRESSION) and ( + cfg.measurement_metadata.value_type + in (NumericDataModalitySubtype.FLOAT, NumericDataModalitySubtype.INTEGER) + ): + val_expr = pl.col(m).cast(pl.Float32) + elif modality == DataModality.MULTIVARIATE_REGRESSION: + val_expr = pl.col(cfg.values_column).cast(pl.Float32) + else: + val_expr = pl.lit(None, dtype=pl.Float32) + + struct_fields = {**default_struct_fields} + + struct_fields.update( + { + "code": idx_value_expr, + "numeric_value": val_expr.alias("numeric_value"), + } + ) + + mod_struct_fields = {**default_mod_struct_fields} + if cfg is not None and cfg.modifiers is not None: + for mod_col in cfg.modifiers: + mod_col_expr = pl.col(mod_col) + if source_df[mod_col].dtype == pl.Categorical: + mod_col_expr = mod_col_expr.cast(pl.Utf8) + + mod_struct_fields[mod_col] = mod_col_expr.alias(mod_col) + + if mod_struct_fields: + struct_fields["modifiers"] = pl.struct( + [mod_struct_fields[k] for k in mod_struct_field_order] + ).alias("modifiers") + + struct_fields_by_m[m] = struct_fields + + struct_field_order = ["code", "numeric_value", "text_value", "datetime_value"] + if default_mod_struct_fields: + struct_field_order.append("modifiers") + struct_field_order += sorted([k for k in default_struct_fields.keys() if k not in struct_field_order]) + struct_exprs = [ + pl.struct([fields[k] for k in struct_field_order]).alias(m) + for m, fields in struct_fields_by_m.items() + ] + + return ( + source_df.select(*id_cols, *struct_exprs) + .melt( + id_vars=id_cols, + value_vars=measures, + variable_name="_to_drop", + value_name="measurement", + ) + .filter(pl.col("measurement").struct.field("code").is_not_null()) + .select(*id_cols, "measurement") + ) + + def build_ESDS_representation( + self, subject_ids: list[int] | None = None, do_sort_outputs: bool = False + ) -> pl.DataFrame: + # Identify the measurements sourced from each dataframe: + subject_measures, time_derived_measures, dynamic_measures = [], ["event_type"], [] + default_struct_fields = { + "text_value": pl.lit(None, dtype=pl.Utf8).alias("text_value"), + "datetime_value": pl.lit(None, dtype=pl.Datetime).alias("datetime_value"), + } + default_mod_struct_fields = {} + for m in self.unified_measurements_vocab[1:]: + cfg = self.measurement_configs[m] + match cfg.temporality: + case TemporalityType.STATIC: + source_df = self.subjects_df + subject_measures.append(m) + case TemporalityType.FUNCTIONAL_TIME_DEPENDENT: + source_df = self.events_df + time_derived_measures.append(m) + case TemporalityType.DYNAMIC: + source_df = self.dynamic_measurements_df + dynamic_measures.append(m) + case _: + raise ValueError(f"Unknown temporality type {cfg.temporality} for {m}") + + if cfg.modifiers is None: + continue + + for mod_col in cfg.modifiers: + if mod_col not in source_df: + raise IndexError(f"mod_col {mod_col} missing!") + + out_dt = source_df[mod_col].dtype + if out_dt == pl.Categorical: + out_dt = pl.Utf8 + default_mod_struct_fields[mod_col] = pl.lit(None, dtype=out_dt).alias(mod_col) + + # 1. Process subject data into the right format. + if subject_ids: + subjects_df = self._filter_col_inclusion(self.subjects_df, {"subject_id": subject_ids}) + else: + subjects_df = self.subjects_df + + static_data = ( + self._ESDS_melt_df( + subjects_df, + ["subject_id"], + subject_measures, + default_struct_fields=default_struct_fields, + default_mod_struct_fields=default_mod_struct_fields, + ) + .group_by("subject_id") + .agg(pl.col("measurement").alias("static_measurements")) + ) + + # 2. Process event data into the right format. + if subject_ids: + events_df = self._filter_col_inclusion(self.events_df, {"subject_id": subject_ids}) + event_ids = list(events_df["event_id"]) + else: + events_df = self.events_df + event_ids = None + event_data = self._ESDS_melt_df( + events_df, + ["subject_id", "timestamp", "event_id"], + time_derived_measures, + default_struct_fields=default_struct_fields, + default_mod_struct_fields=default_mod_struct_fields, + ) + + # 3. Process measurement data into the right base format: + if event_ids: + dynamic_measurements_df = self._filter_col_inclusion( + self.dynamic_measurements_df, {"event_id": event_ids} + ) + else: + dynamic_measurements_df = self.dynamic_measurements_df + + dynamic_ids = ["event_id", "measurement_id"] if do_sort_outputs else ["event_id"] + dynamic_data = self._ESDS_melt_df( + dynamic_measurements_df, + dynamic_ids, + dynamic_measures, + default_struct_fields=default_struct_fields, + default_mod_struct_fields=default_mod_struct_fields, + ) + + if do_sort_outputs: + dynamic_data = dynamic_data.sort("event_id", "measurement_id") + + # 4. Join dynamic and event data. + + event_data = pl.concat([event_data, dynamic_data], how="diagonal") + event_data = ( + event_data.group_by("event_id") + .agg( + pl.col("subject_id").drop_nulls().first(), + pl.col("timestamp").drop_nulls().first(), + pl.col("measurement").alias("measurements"), + ) + .with_columns( + pl.struct( + [pl.col("timestamp").alias("time"), pl.col("measurements").alias("measurements")] + ).alias("event") + ) + .sort("subject_id", "timestamp") + .group_by("subject_id") + .agg(pl.col("event").alias("events")) + ) + + out = static_data.join(event_data, on="subject_id", how="outer_coalesce") + if do_sort_outputs: + out = out.sort("subject_id") + + return out.rename({"subject_id": "patient_id"}) + + @property + def ESDS_schema(self) -> pa.schema: + modifiers_struct_fields = [] + + for m in self.unified_measurements_vocab[1:]: + cfg = self.measurement_configs[m] + match cfg.temporality: + case TemporalityType.STATIC: + source_df = self.subjects_df + case TemporalityType.FUNCTIONAL_TIME_DEPENDENT: + source_df = self.events_df + case TemporalityType.DYNAMIC: + source_df = self.dynamic_measurements_df + case _: + raise ValueError(f"Unknown temporality type {cfg.temporality} for {m}") + + if cfg.modifiers is None: + continue + + for mod_col in cfg.modifiers: + if mod_col not in source_df: + raise IndexError(f"mod_col {mod_col} missing!") + + out_dt = PL_TO_PA_DTYPE_MAP[source_df[mod_col].dtype] + modifiers_struct_fields.append((mod_col, out_dt)) + + modifiers_struct_fields = sorted(modifiers_struct_fields, key=lambda x: x[0]) + + measurement_fields = [ + ("code", pa.string()), + ("numeric_value", pa.float32()), + ("text_value", pa.string()), + ("datetime_value", pa.timestamp("us")), + ] + + if modifiers_struct_fields: + measurement_fields.append(("modifiers", pa.struct(modifiers_struct_fields))) + + measurement = pa.struct(measurement_fields) + event = pa.struct([("time", pa.timestamp("us")), ("measurements", pa.list_(measurement))]) + + return pa.schema( + [ + ("patient_id", pa.int64()), + ("static_measurements", pa.list_(measurement)), + ("events", pa.list_(event)), # Require ordered by time + ] ) diff --git a/EventStream/data/preprocessing/README.md b/EventStream/data/preprocessing/README.md deleted file mode 100644 index b8ebcbba..00000000 --- a/EventStream/data/preprocessing/README.md +++ /dev/null @@ -1,14 +0,0 @@ -# Polars friendly pre-processing models. - -A collection of pre-processing (outlier detection and normalization) models that can be fit via polars -expressions, either directly on a dataframe or in a groupby context. All only work with univariate data at -present. - -## StandardScaler - -Computes the mean and standard deviation of the data. Upon predict, subtracts the mean and divides by the -standard deviation. - -## StddevCutoff - -Removes all values that occur more than a specified threshold of standard deviations away from the mean. diff --git a/EventStream/data/preprocessing/__init__.py b/EventStream/data/preprocessing/__init__.py deleted file mode 100644 index b2912486..00000000 --- a/EventStream/data/preprocessing/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -from .preprocessor import Preprocessor -from .standard_scaler import StandardScaler -from .stddev_cutoff import StddevCutoffOutlierDetector diff --git a/EventStream/data/preprocessing/preprocessor.py b/EventStream/data/preprocessing/preprocessor.py deleted file mode 100644 index 50a5a03b..00000000 --- a/EventStream/data/preprocessing/preprocessor.py +++ /dev/null @@ -1,77 +0,0 @@ -"""The base class for Polars friendly data pre-processors. - -This file contains the abstract base class for polars pre-processors. It is just used to define the interface -expected by the data preprocessing pipeline. Subclasses (defined in other files in this module) contain actual -implementations of algorithms. -""" - -from abc import ABC, abstractmethod - -import polars as pl - - -class Preprocessor(ABC): - """The base class for Polars friendly data pre-processors. - - This should be sub-classed by implementation classes for concrete implementations. Must define the schema - of the output column produced by the pre-processor, the fit method which extracts those parameters from - the raw data via a Polars expression, and the predict method which applies the pre-processing to a data - column expression using another column containing the model parameters for that data element. - """ - - @classmethod - @abstractmethod - def params_schema(cls) -> dict[str, pl.DataType]: - """The schema of the output column produced by the pre-processor. - - Must be implemented by a sub-class. - - Returns: - dict[str, pl.DataType]: - The schema of the output column produced by the pre-processor, as a mapping from field names - to polars data types. - """ - raise NotImplementedError("Subclass must implement abstract method") - - @abstractmethod - def fit_from_polars(self, column: pl.Expr) -> pl.Expr: - """Fit the pre-processing model over the data contained in `column`. - - Performs the logic necessary to fit the pre-processing model over the data in the input column. As the - input column is a polars expression, it does not contain materialized data, but rather just references - a column operation that could be run to produce materialized data. The pre-processing logic must be - consistent with that assumption. Must be implemented by a sub-class. The logic used in this method - must be applicable for use in both a select and a groupby aggregation context. - - Arguments: - column: The Polars expression for the column containing the raw data to be pre-processed. - - Returns: - pl.Expr: - The Polars expression for a column that would materialize the resulting pre-processing model - parameters. - """ - raise NotImplementedError("Subclass must implement abstract method") - - @classmethod - @abstractmethod - def predict_from_polars(cls, column: pl.Expr, model_column: pl.Expr) -> pl.Expr: - """Predicts for the data in `column` given the fit parameters in `model_column`. - - Performs the logic necessary to "predict" as defined by the implementing subclass over the data in the - input column according to the parameters in the fit model column. As both input columns are polars - expressions, they do not contain materialized data, but rather just references column operations that - could be run to produce materialized data. The pre-processing logic must be consistent with that - assumption. Must be implemented by a sub-class. The logic used in this method must be applicable for - use in both a select and a groupby aggregation context. - - Arguments: - column: The Polars expression for the column containing the raw data to be pre-processed. - model_column: The Polars expression for the column containing the pre-processing model parameters. - - Returns: - pl.Expr: - The Polars expression for a column that would materialize the pre-processed outputs for the - input data given the pre-processing model parameters. - """ - raise NotImplementedError("Subclass must implement abstract method") diff --git a/EventStream/data/preprocessing/standard_scaler.py b/EventStream/data/preprocessing/standard_scaler.py deleted file mode 100644 index 60aebc46..00000000 --- a/EventStream/data/preprocessing/standard_scaler.py +++ /dev/null @@ -1,56 +0,0 @@ -"""Pre-processor that normalizes data to have zero mean and unit variance.""" - -import polars as pl - -from .preprocessor import Preprocessor - - -class StandardScaler(Preprocessor): - """Normalizes data to have zero mean and unit variance. - - This is a concrete implementation of the Preprocessor abstract class. It is a pre-processor that - normalizes data to have zero mean and unit variance. It is implemented as a Polars friendly pre-processor, - meaning that it is implemented as a Polars expression that can be used in both a select and a groupby - aggregation context. - - Examples: - >>> import polars as pl - >>> S = StandardScaler() - >>> df = pl.DataFrame({"a": [1, 2, 3, 4, 5]}) - >>> params = S.fit_from_polars(pl.col("a")).alias("params") - >>> df.select(params)["params"].to_list() - [{'mean_': 3.0, 'std_': 1.5811388300841898}] - >>> norm = S.predict_from_polars(pl.col("a"), params).alias("a_norm") - >>> df.select(norm)["a_norm"].to_list() - [-1.2649110640673518, -0.6324555320336759, 0.0, 0.6324555320336759, 1.2649110640673518] - """ - - @classmethod - def params_schema(cls) -> dict[str, pl.DataType]: - r"""Returns {"mean\_": pl.Float64, "std\_": pl.Float64}.""" - return {"mean_": pl.Float64, "std_": pl.Float64} - - def fit_from_polars(self, column: pl.Expr) -> pl.Expr: - r"""Fit the mean and standard deviation of the data in `column`. - - Arguments: - column: The Polars expression for the column containing the raw data to be pre-processed. - - Returns: - pl.Expr: A polars expression for a struct column containing the mean and standard deviation of - the data in `column` in fields named "mean\_" and "std\_" respectively. - """ - return pl.struct([column.mean().alias("mean_"), column.std().alias("std_")]) - - @classmethod - def predict_from_polars(cls, column: pl.Expr, model_column: pl.Expr) -> pl.Expr: - r"""Returns `(column - model_column.struct.field("mean_")) / model_column.struct.field("std_")`. - - Arguments: - column: The Polars expression for the column containing the raw data to be centered and scaled. - model_column: The Polars expression for a struct column containing "mean\_" and "std\_" fields. - - Returns: - pl.Expr: `(column - model_column.struct.field("mean_")) / model_column.struct.field("std_")` - """ - return (column - model_column.struct.field("mean_")) / model_column.struct.field("std_") diff --git a/EventStream/data/preprocessing/stddev_cutoff.py b/EventStream/data/preprocessing/stddev_cutoff.py deleted file mode 100644 index 2155d0d8..00000000 --- a/EventStream/data/preprocessing/stddev_cutoff.py +++ /dev/null @@ -1,77 +0,0 @@ -"""Pre-processor that filters data to contain only values within a certain number of standard deviations from -the mean.""" - -import polars as pl - -from .preprocessor import Preprocessor - - -class StddevCutoffOutlierDetector(Preprocessor): - """Filters out data elements that are outside a specifiable number of standard deviations of the mean. - - This is a concrete implementation of the Preprocessor abstract class. It is a pre-processor that - identifies outliers, here defined to be data points more than a specifiable number of standard deviations - away from the mean. It is implemented as a Polars friendly pre-processor, meaning that it is implemented - as a Polars expression that can be used in both a select and a groupby aggregation context. - - Attributes: - stddev_cutoff: The number of standard deviations from the mean to use as the cutoff for identifying - outliers. Defaults to 5.0. - - Examples: - >>> import polars as pl - >>> S = StddevCutoffOutlierDetector(stddev_cutoff=1.0) - >>> df = pl.DataFrame({"a": [1, 2, 3, 4, 5]}) - >>> params = S.fit_from_polars(pl.col("a")).alias("params") - >>> df.select(params)["params"].to_list() - [{'thresh_large_': 4.58113883008419, 'thresh_small_': 1.4188611699158102}] - >>> outliers = S.predict_from_polars(pl.col("a"), params).alias("a_outliers") - >>> df.select(outliers)["a_outliers"].to_list() - [True, False, False, False, True] - """ - - def __init__(self, stddev_cutoff: float = 5.0): - self.stddev_cutoff = stddev_cutoff - - @classmethod - def params_schema(cls) -> dict[str, pl.DataType]: - r"""Returns {"thresh_large\_": pl.Float64, "thresh_small\_": pl.Float64}.""" - return {"thresh_large_": pl.Float64, "thresh_small_": pl.Float64} - - def fit_from_polars(self, column: pl.Expr) -> pl.Expr: - """Identify the configured large and small extreme value thresholds from the data in `column`. - - Arguments: - column: The Polars expression for the column containing the raw data to be pre-processed. - - Returns: - pl.Expr: A polars expression that will identify the mean plus or minus `self.stddev_cutoff` times - the standard deviation of the data in `column`. - """ - mean, std = column.mean(), column.std() - return pl.struct( - [ - (mean + self.stddev_cutoff * std).alias("thresh_large_"), - (mean - self.stddev_cutoff * std).alias("thresh_small_"), - ] - ) - - @classmethod - def predict_from_polars(cls, column: pl.Expr, model_column: pl.Expr) -> pl.Expr: - """Returns a column containing True if and only if the data in `column` is an outlier. - - Arguments: - column: The Polars expression for the column containing the raw data to be checked for outliers. - model_column: The Polars expression for the column containing the upper and lower thresholds for - inliers. - - Returns: - pl.Expr: A Polars expression that will return True if and only if the data in `column` is greater - than the `"thresh_large"` field in the struct in `model_column` or less than the - `"thresh_small"` field in the struct in `model_column`. - """ - - return ( - (column > model_column.struct.field("thresh_large_")) - | (column < model_column.struct.field("thresh_small_")) - ).alias("is_outlier") diff --git a/EventStream/data/pytorch_dataset.py b/EventStream/data/pytorch_dataset.py index d94cd604..9089b60a 100644 --- a/EventStream/data/pytorch_dataset.py +++ b/EventStream/data/pytorch_dataset.py @@ -5,15 +5,18 @@ import numpy as np import polars as pl import torch -from mixins import SaveableMixin, SeedableMixin, TimeableMixin - -from .config import ( - MeasurementConfig, - PytorchDatasetConfig, - SeqPaddingSide, - SubsequenceSamplingStrategy, - VocabularyConfig, +from loguru import logger +from mixins import SeedableMixin +from nested_ragged_tensors.ragged_numpy import ( + NP_FLOAT_TYPES, + NP_INT_TYPES, + NP_UINT_TYPES, + JointNestedRaggedTensorDict, ) +from tqdm.auto import tqdm + +from ..utils import count_or_proportion +from .config import PytorchDatasetConfig, SeqPaddingSide, SubsequenceSamplingStrategy from .types import PytorchBatch DATA_ITEM_T = dict[str, list[float]] @@ -33,30 +36,30 @@ def to_int_index(col: pl.Expr) -> pl.Expr: ... 'c': ['foo', 'bar', 'foo', 'bar', 'baz', None, 'bar', 'aba'], ... 'd': [1, 2, 3, 4, 5, 6, 7, 8] ... }) - >>> X.with_columns(to_int_index(pl.col('c'))) - shape: (8, 2) - ┌──────┬─────┐ - │ c ┆ d │ - │ --- ┆ --- │ - │ u32 ┆ i64 │ - ╞══════╪═════╡ - │ 4 ┆ 1 │ - │ 1 ┆ 2 │ - │ 4 ┆ 3 │ - │ 1 ┆ 4 │ - │ 2 ┆ 5 │ - │ null ┆ 6 │ - │ 1 ┆ 7 │ - │ 0 ┆ 8 │ - └──────┴─────┘ + >>> X.with_columns(to_int_index(pl.col('c')).alias("c_index")) + shape: (8, 3) + ┌──────┬─────┬─────────┐ + │ c ┆ d ┆ c_index │ + │ --- ┆ --- ┆ --- │ + │ str ┆ i64 ┆ u32 │ + ╞══════╪═════╪═════════╡ + │ foo ┆ 1 ┆ 3 │ + │ bar ┆ 2 ┆ 1 │ + │ foo ┆ 3 ┆ 3 │ + │ bar ┆ 4 ┆ 1 │ + │ baz ┆ 5 ┆ 2 │ + │ null ┆ 6 ┆ null │ + │ bar ┆ 7 ┆ 1 │ + │ aba ┆ 8 ┆ 0 │ + └──────┴─────┴─────────┘ """ - indices = col.unique(maintain_order=True).drop_nulls().search_sorted(col) + indices = col.drop_nulls().unique().sort().search_sorted(col, side="left") return pl.when(col.is_null()).then(pl.lit(None)).otherwise(indices).alias(col.meta.output_name()) -class PytorchDataset(SaveableMixin, SeedableMixin, TimeableMixin, torch.utils.data.Dataset): - """A PyTorch Dataset class built on a pre-processed `DatasetBase` instance. +class PytorchDataset(SeedableMixin, torch.utils.data.Dataset): + """A PyTorch Dataset class. This class enables accessing the deep-learning friendly representation produced by `Dataset.build_DL_cached_representation` in a PyTorch Dataset format. The `getitem` method of this class @@ -96,7 +99,7 @@ class PytorchDataset(SaveableMixin, SeedableMixin, TimeableMixin, torch.utils.da {pl.UInt8, pl.UInt16, pl.UInt32, pl.UInt64, pl.Int8, pl.Int16, pl.Int32, pl.Int64}, None, ), - ({pl.Categorical}, to_int_index), + ({pl.Categorical(ordering="physical"), pl.Categorical(ordering="lexical")}, to_int_index), ({pl.Utf8}, to_int_index), ], "binary_classification": [({pl.Boolean}, lambda Y: Y.cast(pl.Float32))], @@ -126,137 +129,246 @@ def normalize_task(cls, col: pl.Expr, dtype: pl.DataType) -> tuple[str, pl.Expr] raise TypeError(f"Can't process label of {dtype} type!") - def __init__(self, config: PytorchDatasetConfig, split: str): + def __init__(self, config: PytorchDatasetConfig, split: str, just_cache: bool = False): super().__init__() self.config = config - self.task_types = {} - self.task_vocabs = {} + self.split = split - self.vocabulary_config = VocabularyConfig.from_json_file( - self.config.save_dir / "vocabulary_config.json" - ) + logger.info("Reading vocabulary") + self.read_vocabulary() - inferred_measurement_config_fp = self.config.save_dir / "inferred_measurement_configs.json" - with open(inferred_measurement_config_fp) as f: - inferred_measurement_configs = { - k: MeasurementConfig.from_dict(v) for k, v in json.load(f).items() - } - self.measurement_configs = {k: v for k, v in inferred_measurement_configs.items() if not v.is_dropped} + logger.info("Reading splits & patient shards") + self.read_shards() - self.split = split + logger.info("Reading patient descriptors") + self.read_patient_descriptors() - if self.config.task_df_name is not None: - task_dir = self.config.save_dir / "DL_reps" / "for_task" / config.task_df_name - raw_task_df_fp = self.config.save_dir / "task_dfs" / f"{self.config.task_df_name}.parquet" - task_info_fp = task_dir / "task_info.json" + if self.config.min_seq_len is not None and self.config.min_seq_len > 1: + logger.info(f"Restricting to subjects with at least {config.min_seq_len} events") + self.filter_to_min_seq_len() + + if self.config.train_subset_size not in (None, "FULL") and self.split == "train": + logger.info(f"Filtering training subset size to {self.config.train_subset_size}") + self.filter_to_subset() + + self.set_inter_event_time_stats() + + @property + def static_dir(self) -> Path: + return self.config.save_dir / "DL_reps" + + @property + def task_dir(self) -> Path: + return self.config.save_dir / "task_dfs" + + @property + def NRTs_dir(self) -> Path: + return self.config.save_dir / "NRT_reps" + + def read_vocabulary(self): + """Reads the vocabulary either from the ESGPT or MEDS dataset.""" + self.vocabulary_config = self.config.vocabulary_config + + def read_shards(self): + """Reads the split-specific patient shards from the ESGPT or MEDS dataset.""" + shards_fp = self.config.save_dir / "DL_shards.json" + all_shards = json.loads(shards_fp.read_text()) + self.shards = {sp: subjs for sp, subjs in all_shards.items() if sp.startswith(f"{self.split}/")} + self.subj_map = {subj: sp for sp, subjs in self.shards.items() for subj in subjs} + + @property + def measurement_configs(self): + """Grabs the measurement configs from the config.""" + return self.config.measurement_configs + + def read_patient_descriptors(self): + """Reads the patient descriptors from the ESGPT or MEDS dataset.""" + self.static_dfs = {} + self.subj_indices = {} + self.subj_seq_bounds = {} + + shards = tqdm(self.shards.keys(), total=len(self.shards), desc="Reading static shards", leave=False) + for shard in shards: + static_fp = self.static_dir / f"{shard}.parquet" + df = pl.read_parquet( + static_fp, + columns=[ + "subject_id", + "start_time", + "static_indices", + "static_measurement_indices", + "time_delta", + ], + use_pyarrow=True, + ) + + self.static_dfs[shard] = df + subject_ids = df["subject_id"] + n_events = df.select(pl.col("time_delta").list.lengths().alias("n_events")).get_column("n_events") + for i, (subj, n_events) in enumerate(zip(subject_ids, n_events)): + if subj in self.subj_indices or subj in self.subj_seq_bounds: + raise ValueError(f"Duplicate subject {subj} in {shard}!") + + self.subj_indices[subj] = i + self.subj_seq_bounds[subj] = (0, n_events) + + if self.config.task_df_name is None: + self.index = [(subj, *bounds) for subj, bounds in self.subj_seq_bounds.items()] + self.labels = {} + self.tasks = None + self.task_types = None + self.task_vocabs = None + else: + task_df_fp = self.task_dir / f"{self.config.task_df_name}.parquet" + task_info_fp = self.task_dir / f"{self.config.task_df_name}_info.json" - self.has_task = True + logger.info(f"Reading task constraints for {self.config.task_df_name} from {task_df_fp}") + task_df = pl.read_parquet(task_df_fp, use_pyarrow=True) - if len(list(task_dir.glob(f"{split}*.parquet"))) > 0: - print( - f"Re-loading task data for {self.config.task_df_name} from {task_dir}:\n" - f"{', '.join([str(fp) for fp in task_dir.glob(f'{split}*.parquet')])}" + task_info = self.get_task_info(task_df) + + if task_info_fp.is_file(): + loaded_task_info = json.loads(task_info_fp.read_text()) + if loaded_task_info != task_info: + raise ValueError( + f"Task info differs from on disk!\nDisk:\n{loaded_task_info}\n" + f"Local:\n{task_info}\nSplit: {self.split}" + ) + logger.info(f"Re-built existing {task_info_fp} and it matches.") + else: + task_info_fp.parent.mkdir(exist_ok=True, parents=True) + task_info_fp.write_text(json.dumps(task_info)) + + idx_col = "_row_index" + while idx_col in task_df.columns: + idx_col = f"_{idx_col}" + + task_df_joint = ( + task_df.select("subject_id", "start_time", "end_time") + .with_row_index(idx_col) + .group_by("subject_id") + .agg("start_time", "end_time", idx_col) + .join( + pl.concat(self.static_dfs.values()).select( + "subject_id", pl.col("start_time").alias("start_time_global"), "time_delta" + ), + on="subject_id", + how="left", ) - self.cached_data = pl.scan_parquet(task_dir / f"{split}*.parquet") - with open(task_info_fp) as f: - task_info = json.load(f) - self.tasks = sorted(task_info["tasks"]) - self.task_vocabs = task_info["vocabs"] - self.task_types = task_info["types"] - - elif raw_task_df_fp.is_file(): - task_df = pl.scan_parquet(raw_task_df_fp) - - self.tasks = sorted( - [c for c in task_df.columns if c not in ["subject_id", "start_time", "end_time"]] + .with_columns( + pl.col("time_delta") + .list.eval(pl.element().fill_null(0).cum_sum()) + .alias("min_since_start") ) + ) - normalized_cols = [] - for t in self.tasks: - task_type, normalized_vals = self.normalize_task(col=pl.col(t), dtype=task_df.schema[t]) - self.task_types[t] = task_type - normalized_cols.append(normalized_vals.alias(t)) - - task_df = task_df.with_columns(normalized_cols) - - for t in self.tasks: - match self.task_types[t]: - case "binary_classification": - self.task_vocabs[t] = [False, True] - case "multi_class_classification": - self.task_vocabs[t] = list( - range(task_df.select(pl.col(t).max()).collect().item() + 1) - ) - - task_info_fp = task_dir / "task_info.json" - task_info = { - "tasks": sorted(self.tasks), - "vocabs": self.task_vocabs, - "types": self.task_types, - } - if task_info_fp.is_file(): - with open(task_info_fp) as f: - loaded_task_info = json.load(f) - if loaded_task_info != task_info and self.split != "train": - raise ValueError( - f"Task info differs from on disk!\nDisk:\n{loaded_task_info}\n" - f"Local:\n{task_info}\nSplit: {self.split}" - ) - print(f"Re-built existing {task_info_fp}! Not overwriting...") - else: - task_info_fp.parent.mkdir(exist_ok=True, parents=True) - with open(task_info_fp, mode="w") as f: - json.dump(task_info, f) + min_at_task_start = ( + (pl.col("start_time") - pl.col("start_time_global")).dt.total_seconds() / 60 + ).alias("min_at_task_start") + min_at_task_end = ( + (pl.col("end_time") - pl.col("start_time_global")).dt.total_seconds() / 60 + ).alias("min_at_task_end") - if self.split != "train": - print(f"WARNING: Constructing task-specific dataset on non-train split {self.split}!") - for cached_data_fp in Path(self.config.save_dir / "DL_reps").glob(f"{split}*.parquet"): - task_df_fp = task_dir / cached_data_fp.name - if task_df_fp.is_file(): - continue + start_idx_expr = (pl.col("min_since_start").search_sorted(pl.col("min_at_task_start"))).alias( + "start_idx" + ) + end_idx_expr = (pl.col("min_since_start").search_sorted(pl.col("min_at_task_end"))).alias( + "end_idx" + ) - print(f"Caching DL task dataframe for data file {cached_data_fp} at {task_df_fp}...") + task_df_joint = ( + task_df_joint.explode(idx_col, "start_time", "end_time") + .with_columns(min_at_task_start, min_at_task_end) + .explode("min_since_start") + .group_by("subject_id", idx_col, "min_at_task_start", "min_at_task_end", maintain_order=True) + .agg(start_idx_expr.first(), end_idx_expr.first()) + .sort(by=idx_col, descending=False) + ) - task_cached_data = self._build_task_cached_df(task_df, pl.scan_parquet(cached_data_fp)) + subject_ids = task_df_joint["subject_id"] + start_indices = task_df_joint["start_idx"] + end_indices = task_df_joint["end_idx"] - task_df_fp.parent.mkdir(exist_ok=True, parents=True) - task_cached_data.collect().write_parquet(task_df_fp) + self.labels = {t: task_df.get_column(t).to_list() for t in self.tasks} + self.index = list(zip(subject_ids, start_indices, end_indices)) - self.cached_data = pl.scan_parquet(task_dir / f"{split}*.parquet") - else: - raise FileNotFoundError( - f"Neither {task_dir}/*.parquet nor {raw_task_df_fp} exist, but config.task_df_name = " - f"{config.task_df_name}!" - ) - else: - self.cached_data = pl.scan_parquet(self.config.save_dir / "DL_reps" / f"{split}*.parquet") - self.has_task = False - self.tasks = None - self.task_vocabs = None + def get_task_info(self, task_df: pl.DataFrame): + """Gets the task information from the task dataframe.""" + self.tasks = sorted([c for c in task_df.columns if c not in ["subject_id", "start_time", "end_time"]]) - self.do_produce_static_data = "static_indices" in self.cached_data.columns - self.seq_padding_side = config.seq_padding_side - self.max_seq_len = config.max_seq_len - - length_constraint = pl.col("dynamic_indices").list.lengths() >= config.min_seq_len - self.cached_data = self.cached_data.filter(length_constraint) - - if "time_delta" not in self.cached_data.columns: - self.cached_data = self.cached_data.with_columns( - (pl.col("start_time") + pl.duration(minutes=pl.col("time").list.first())).alias("start_time"), - pl.col("time") - .list.eval( - # We fill with 1 here as it will be ignored in the code anyways as the next event's - # event mask will be null. - # TODO(mmd): validate this in a test. - (pl.col("").shift(-1) - pl.col("")).fill_null(1) - ) - .alias("time_delta"), - ).drop("time") + self.task_types = {} + self.task_vocabs = {} + + normalized_cols = [] + for t in self.tasks: + task_type, normalized_vals = self.normalize_task(col=pl.col(t), dtype=task_df.schema[t]) + self.task_types[t] = task_type + normalized_cols.append(normalized_vals.alias(t)) + + task_df = task_df.with_columns(normalized_cols) + + for t in self.tasks: + match self.task_types[t]: + case "binary_classification": + self.task_vocabs[t] = [False, True] + case "multi_class_classification": + self.task_vocabs[t] = list(range(task_df.select(pl.col(t).max()).item() + 1)) + case _: + raise NotImplementedError(f"Task type {self.task_types[t]} not implemented!") + + return {"tasks": sorted(self.tasks), "vocabs": self.task_vocabs, "types": self.task_types} + + def filter_to_min_seq_len(self): + """Filters the dataset to only include subjects with at least `config.min_seq_len` events.""" + if self.config.task_df_name is not None: + logger.warning( + f"Filtering task {self.config.task_df_name} to min_seq_len {self.config.min_seq_len}. " + "This may result in incomparable model results against runs with different constraints!" + ) + + orig_len = len(self) + orig_n_subjects = len(set(self.subject_ids)) + valid_indices = [ + i for i, (subj, start, end) in enumerate(self.index) if end - start >= self.config.min_seq_len + ] + self.index = [self.index[i] for i in valid_indices] + self.labels = {t: [t_labels[i] for i in valid_indices] for t, t_labels in self.labels.items()} + new_len = len(self) + new_n_subjects = len(set(self.subject_ids)) + logger.info( + f"Filtered data due to sequence length constraint (>= {self.config.min_seq_len}) from " + f"{orig_len} to {new_len} rows and {orig_n_subjects} to {new_n_subjects} subjects." + ) + + def filter_to_subset(self): + """Filters the dataset to only include a subset of subjects.""" + + orig_len = len(self) + orig_n_subjects = len(set(self.subject_ids)) + rng = np.random.default_rng(self.config.train_subset_seed) + subset_subjects = rng.choice( + list(set(self.subject_ids)), + size=count_or_proportion(orig_n_subjects, self.config.train_subset_size), + replace=False, + ) + valid_indices = [i for i, (subj, start, end) in enumerate(self.index) if subj in subset_subjects] + self.index = [self.index[i] for i in valid_indices] + self.labels = {t: [t_labels[i] for i in valid_indices] for t, t_labels in self.labels.items()} + new_len = len(self) + new_n_subjects = len(set(self.subject_ids)) + logger.info( + f"Filtered data to subset of {self.config.train_subset_size} subjects from " + f"{orig_len} to {new_len} rows and {orig_n_subjects} to {new_n_subjects} subjects." + ) + def set_inter_event_time_stats(self): + """Sets the inter-event time statistics for the dataset.""" + data_for_stats = pl.concat([x.lazy() for x in self.static_dfs.values()]) stats = ( - self.cached_data.select(pl.col("time_delta").explode().drop_nulls().alias("inter_event_time")) + data_for_stats.select( + pl.col("time_delta").explode().drop_nulls().drop_nans().alias("inter_event_time") + ) .select( pl.col("inter_event_time").min().alias("min"), pl.col("inter_event_time").log().mean().alias("mean_log"), @@ -266,11 +378,11 @@ def __init__(self, config: PytorchDatasetConfig, split: str): ) if stats["min"].item() <= 0: - bad_inter_event_times = self.cached_data.filter(pl.col("time_delta").list.min() <= 0).collect() - bad_subject_ids = [str(x) for x in list(bad_inter_event_times["subject_id"])] + bad_inter_event_times = data_for_stats.filter(pl.col("time_delta").list.min() <= 0).collect() + bad_subject_ids = set(bad_inter_event_times["subject_id"].to_list()) warning_strs = [ - f"WARNING: Observed inter-event times <= 0 for {len(bad_inter_event_times)} subjects!", - f"ESD Subject IDs: {', '.join(bad_subject_ids)}", + f"Observed inter-event times <= 0 for {len(bad_inter_event_times)} subjects!", + f"Bad Subject IDs: {', '.join(str(x) for x in bad_subject_ids)}", f"Global min: {stats['min'].item()}", ] if self.config.save_dir is not None: @@ -279,167 +391,37 @@ def __init__(self, config: PytorchDatasetConfig, split: str): warning_strs.append(f"Wrote malformed data records to {fp}") warning_strs.append("Removing malformed subjects") - print("\n".join(warning_strs)) + logger.warning("\n".join(warning_strs)) - self.cached_data = self.cached_data.filter(pl.col("time_delta").list.min() > 0) + self.index = [x for x in self.index if x[0] not in bad_subject_ids] self.mean_log_inter_event_time_min = stats["mean_log"].item() self.std_log_inter_event_time_min = stats["std_log"].item() - self.cached_data = self.cached_data.collect() - - if self.config.train_subset_size not in (None, "FULL") and self.split == "train": - match self.config.train_subset_size: - case int() as n if n > 0: - kwargs = {"n": n} - case float() as frac if 0 < frac < 1: - kwargs = {"fraction": frac} - case _: - raise TypeError( - f"Can't process subset size of {type(self.config.train_subset_size)}, " - f"{self.config.train_subset_size}" - ) - - self.cached_data = self.cached_data.sample(seed=self.config.train_subset_seed, **kwargs) - - with self._time_as("convert_to_rows"): - self.subject_ids = self.cached_data["subject_id"].to_list() - self.cached_data = self.cached_data.drop("subject_id") - self.columns = self.cached_data.columns - self.cached_data = self.cached_data.rows() - - @staticmethod - def _build_task_cached_df(task_df: pl.LazyFrame, cached_data: pl.LazyFrame) -> pl.LazyFrame: - """Restricts the data in a cached dataframe to only contain data for the passed task dataframe. - - Args: - task_df: A polars LazyFrame, which must have columns ``subject_id``, ``start_time`` and - ``end_time``. These three columns define the schema of the task (the inputs). The remaining - columns in the task dataframe will be interpreted as labels. - cached_data: A polars LazyFrame containing the data to be restricted to the task dataframe. Must - have the columns ``subject_id``, ``start_time``, ``time`` or ``time_delta``, - ``dynamic_indices``, ``dynamic_values``, and ``dynamic_measurement_indices``. These columns - will all be restricted to just contain those events whose time values are in the specified - task specific time range. - - Returns: - The restricted cached dataframe, which will have the same columns as the input cached dataframe - plus the task label columns, and will be limited to just those subjects and time-periods specified - in the task dataframe. - - Examples: - >>> import polars as pl - >>> from datetime import datetime - >>> cached_data = pl.DataFrame({ - ... "subject_id": [0, 1, 2, 3], - ... "start_time": [ - ... datetime(2020, 1, 1), - ... datetime(2020, 2, 1), - ... datetime(2020, 3, 1), - ... datetime(2020, 1, 2) - ... ], - ... "time": [ - ... [0.0, 60*24.0, 2*60*24., 3*60*24., 4*60*24.], - ... [0.0, 7*60*24.0, 2*7*60*24., 3*7*60*24., 4*7*60*24.], - ... [0.0, 60*12.0, 2*60*12.], - ... [0.0, 60*24.0, 2*60*24., 3*60*24., 4*60*24.], - ... ], - ... "dynamic_measurement_indices": [ - ... [[0, 1, 1], [0, 2], [0], [0, 3], [0]], - ... [[0, 1, 1], [0, 4], [0], [0, 1], [0]], - ... [[0, 1, 1], [0], [0, 4]], - ... [[0, 1, 1], [0, 4], [0], [0, 2], [0]], - ... ], - ... "dynamic_indices": [ - ... [[6, 11, 12], [1, 40], [5], [1, 55], [5]], - ... [[2, 11, 13], [1, 84], [8], [1, 19], [5]], - ... [[1, 18, 21], [1], [5, 87]], - ... [[3, 20, 21], [1, 94], [8], [1, 33], [9]], - ... ], - ... "dynamic_values": [ - ... [[None, 0.2, 1.0], [None, 0.0], [None], [None, None], [None]], - ... [[None, -0.1, 0.0], [None, None], [None], [None, -4.2], [None]], - ... [[None, 0.9, 1.2], [None], [None, None]], - ... [[None, 3.2, -1.0], [None, None], [None], [None, 0.5], [None]], - ... ], - ... }) - >>> task_df = pl.DataFrame({ - ... "subject_id": [0, 1, 2, 5], - ... "start_time": [ - ... datetime(2020, 1, 1), - ... datetime(2020, 1, 11), - ... datetime(2020, 3, 1, 13), - ... datetime(2020, 1, 2) - ... ], - ... "end_time": [ - ... datetime(2020, 1, 3), - ... datetime(2020, 1, 21), - ... datetime(2020, 3, 4), - ... datetime(2020, 1, 3) - ... ], - ... "label1": [0, 1, 0, 1], - ... "label2": [0, 1, 5, 1] - ... }) - >>> pl.Config.set_tbl_width_chars(88) - - >>> PytorchDataset._build_task_cached_df(task_df, cached_data) - shape: (3, 8) - ┌───────────┬───────────┬───────────┬──────────┬──────────┬──────────┬────────┬────────┐ - │ subject_i ┆ start_tim ┆ time ┆ dynamic_ ┆ dynamic_ ┆ dynamic_ ┆ label1 ┆ label2 │ - │ d ┆ e ┆ --- ┆ measurem ┆ indices ┆ values ┆ --- ┆ --- │ - │ --- ┆ --- ┆ list[f64] ┆ ent_indi ┆ --- ┆ --- ┆ i64 ┆ i64 │ - │ i64 ┆ datetime[ ┆ ┆ ces ┆ list[lis ┆ list[lis ┆ ┆ │ - │ ┆ μs] ┆ ┆ --- ┆ t[i64]] ┆ t[f64]] ┆ ┆ │ - │ ┆ ┆ ┆ list[lis ┆ ┆ ┆ ┆ │ - │ ┆ ┆ ┆ t[i64]] ┆ ┆ ┆ ┆ │ - ╞═══════════╪═══════════╪═══════════╪══════════╪══════════╪══════════╪════════╪════════╡ - │ 0 ┆ 2020-01-0 ┆ [0.0, ┆ [[0, 1, ┆ [[6, 11, ┆ [[null, ┆ 0 ┆ 0 │ - │ ┆ 1 ┆ 1440.0] ┆ 1], [0, ┆ 12], [1, ┆ 0.2, ┆ ┆ │ - │ ┆ 00:00:00 ┆ ┆ 2]] ┆ 40]] ┆ 1.0], ┆ ┆ │ - │ ┆ ┆ ┆ ┆ ┆ [null, ┆ ┆ │ - │ ┆ ┆ ┆ ┆ ┆ 0.0]] ┆ ┆ │ - │ 1 ┆ 2020-02-0 ┆ [] ┆ [] ┆ [] ┆ [] ┆ 1 ┆ 1 │ - │ ┆ 1 ┆ ┆ ┆ ┆ ┆ ┆ │ - │ ┆ 00:00:00 ┆ ┆ ┆ ┆ ┆ ┆ │ - │ 2 ┆ 2020-03-0 ┆ [1440.0] ┆ [[0, 4]] ┆ [[5, ┆ [[null, ┆ 0 ┆ 5 │ - │ ┆ 1 ┆ ┆ ┆ 87]] ┆ null]] ┆ ┆ │ - │ ┆ 00:00:00 ┆ ┆ ┆ ┆ ┆ ┆ │ - └───────────┴───────────┴───────────┴──────────┴──────────┴──────────┴────────┴────────┘ - """ - time_dep_cols = [c for c in ("time", "time_delta") if c in cached_data.columns] - time_dep_cols.extend(["dynamic_indices", "dynamic_values", "dynamic_measurement_indices"]) + @property + def subject_ids(self) -> list[int]: + return [x[0] for x in self.index] - if "time" in cached_data.columns: - time_col_expr = pl.col("time") - elif "time_delta" in cached_data.columns: - time_col_expr = pl.col("time_delta").cumsum().over("subject_id") + def __len__(self): + return len(self.index) - start_idx_expr = ( - time_col_expr.list.explode().search_sorted(pl.col("start_time_min")).over("subject_id") - ) - end_idx_expr = time_col_expr.list.explode().search_sorted(pl.col("end_time_min")).over("subject_id") + @property + def has_task(self) -> bool: + return self.config.task_df_name is not None - return ( - cached_data.join(task_df, on="subject_id", how="inner", suffix="_task") - .with_columns( - start_time_min=(pl.col("start_time_task") - pl.col("start_time")) / np.timedelta64(1, "m"), - end_time_min=(pl.col("end_time") - pl.col("start_time")) / np.timedelta64(1, "m"), - ) - .with_columns( - **{ - t: pl.col(t).list.slice(start_idx_expr, end_idx_expr - start_idx_expr) - for t in time_dep_cols - }, - ) - .drop("start_time_task", "end_time_min", "start_time_min", "end_time") - ) + @property + def seq_padding_side(self) -> SeqPaddingSide: + return self.config.seq_padding_side - return cached_data + @property + def max_seq_len(self) -> int: + return self.config.max_seq_len - def __len__(self): - return len(self.cached_data) + @property + def is_subset_dataset(self) -> bool: + return self.config.train_subset_size != "FULL" - def __getitem__(self, idx: int) -> dict[str, list]: + def __getitem__(self, idx: int) -> dict[str, torch.Tensor]: """Returns a Returns a dictionary corresponding to a single subject's data. The output of this will not be tensorized as that work will need to be re-done in the collate function @@ -460,7 +442,7 @@ def __getitem__(self, idx: int) -> dict[str, list]: unified vocabulary space spanning all metadata vocabularies. 3. ``dynamic_values`` captures the numerical metadata elements listed in `self.data_cols`. If no numerical elements are listed in `self.data_cols` for a given categorical column, the according - index in this output will be `np.NaN`. + index in this output will be `float('nan')`. 4. ``dynamic_measurement_indices`` captures which measurement vocabulary was used to source a given data element. 5. ``static_indices`` captures the categorical metadata elements listed in `self.static_cols` in a @@ -471,223 +453,126 @@ def __getitem__(self, idx: int) -> dict[str, list]: return self._seeded_getitem(idx) @SeedableMixin.WithSeed - @TimeableMixin.TimeAs - def _seeded_getitem(self, idx: int) -> dict[str, list]: + def _seeded_getitem(self, idx: int) -> dict[str, list[float]]: """Returns a Returns a dictionary corresponding to a single subject's data. - This function is automatically seeded for robustness. See `__getitem__` for a description of the - output format. + This function is a seedable version of `__getitem__`. """ - full_subj_data = {c: v for c, v in zip(self.columns, self.cached_data[idx])} - for k in ["static_indices", "static_measurement_indices"]: - if full_subj_data[k] is None: - full_subj_data[k] = [] - if self.config.do_include_subject_id: - full_subj_data["subject_id"] = self.subject_ids[idx] - if self.config.do_include_start_time_min: - # Note that this is using the python datetime module's `timestamp` function which differs from - # some dataframe libraries' timestamp functions (e.g., polars). - full_subj_data["start_time"] = full_subj_data["start_time"].timestamp() / 60.0 - else: - full_subj_data.pop("start_time") - - # If we need to truncate to `self.max_seq_len`, grab a random full-size span to capture that. - # TODO(mmd): This will proportionally underweight the front and back ends of the subjects data - # relative to the middle, as there are fewer full length sequences containing those elements. - seq_len = len(full_subj_data["time_delta"]) - if seq_len > self.max_seq_len: - with self._time_as("truncate_to_max_seq_len"): - match self.config.subsequence_sampling_strategy: - case SubsequenceSamplingStrategy.RANDOM: - start_idx = np.random.choice(seq_len - self.max_seq_len) - case SubsequenceSamplingStrategy.TO_END: - start_idx = seq_len - self.max_seq_len - case SubsequenceSamplingStrategy.FROM_START: - start_idx = 0 - case _: - raise ValueError( - f"Invalid sampling strategy: {self.config.subsequence_sampling_strategy}!" - ) + subject_id, st, end = self.index[idx] - if self.config.do_include_start_time_min: - full_subj_data["start_time"] += sum(full_subj_data["time_delta"][:start_idx]) - if self.config.do_include_subsequence_indices: - full_subj_data["start_idx"] = start_idx - full_subj_data["end_idx"] = start_idx + self.max_seq_len + shard = self.subj_map[subject_id] + subject_idx = self.subj_indices[subject_id] + static_row = self.static_dfs[shard][subject_idx].to_dict() - for k in ( - "time_delta", - "dynamic_indices", - "dynamic_values", - "dynamic_measurement_indices", - ): - full_subj_data[k] = full_subj_data[k][start_idx : start_idx + self.max_seq_len] - elif self.config.do_include_subsequence_indices: - full_subj_data["start_idx"] = 0 - full_subj_data["end_idx"] = seq_len - - return full_subj_data - - def __static_and_dynamic_collate(self, batch: list[DATA_ITEM_T]) -> PytorchBatch: - """An internal collate function for both static and dynamic data.""" - out_batch = self.__dynamic_only_collate(batch) + out = { + "static_indices": static_row["static_indices"].item().to_list(), + "static_measurement_indices": static_row["static_measurement_indices"].item().to_list(), + } - # Get the maximum number of static elements in the batch. - max_n_static = max(len(e["static_indices"]) for e in batch) + if self.config.do_include_subject_id: + out["subject_id"] = subject_id - # Walk through the batch and pad the associated tensors in all requisite dimensions. - self._register_start("collate_static_padding") - out = defaultdict(list) - for e in batch: - if self.do_produce_static_data: - n_static = len(e["static_indices"]) - static_delta = max_n_static - n_static - out["static_indices"].append( - torch.nn.functional.pad( - torch.Tensor(e["static_indices"]), (0, static_delta), value=np.NaN - ) - ) - out["static_measurement_indices"].append( - torch.nn.functional.pad( - torch.Tensor(e["static_measurement_indices"]), - (0, static_delta), - value=np.NaN, + seq_len = end - st + if seq_len > self.max_seq_len: + match self.config.subsequence_sampling_strategy: + case SubsequenceSamplingStrategy.RANDOM: + start_offset = np.random.choice(seq_len - self.max_seq_len) + case SubsequenceSamplingStrategy.TO_END: + start_offset = seq_len - self.max_seq_len + case SubsequenceSamplingStrategy.FROM_START: + start_offset = 0 + case _: + raise ValueError( + f"Invalid subsequence sampling strategy {self.config.subsequence_sampling_strategy}!" ) - ) - self._register_end("collate_static_padding") - - self._register_start("collate_static_post_padding") - # Unsqueeze the padded tensors into the batch dimension and combine them. - out = {k: torch.cat([T.unsqueeze(0) for T in Ts], dim=0) for k, Ts in out.items()} - - # Convert to the right types and add to the batch. - out_batch["static_indices"] = torch.nan_to_num(out["static_indices"], nan=0).long() - out_batch["static_measurement_indices"] = torch.nan_to_num( - out["static_measurement_indices"], nan=0 - ).long() - self._register_end("collate_static_post_padding") - - return out_batch - - def __dynamic_only_collate(self, batch: list[DATA_ITEM_T]) -> PytorchBatch: - """An internal collate function for dynamic data alone.""" - # Get the local max sequence length and n_data elements for padding. - max_seq_len = max(len(e["time_delta"]) for e in batch) - max_n_data = 0 - for e in batch: - for v in e["dynamic_indices"]: - max_n_data = max(max_n_data, len(v)) - if max_n_data == 0: - raise ValueError(f"Batch has no dynamic measurements! Got:\n{batch[0]}\n{batch[1]}\n...") - - # Walk through the batch and pad the associated tensors in all requisite dimensions. - self._register_start("collate_dynamic_padding") - out = defaultdict(list) - for e in batch: - seq_len = len(e["time_delta"]) - seq_delta = max_seq_len - seq_len - - if self.seq_padding_side == SeqPaddingSide.RIGHT: - out["time_delta"].append( - torch.nn.functional.pad(torch.Tensor(e["time_delta"]), (0, seq_delta), value=np.NaN) - ) - else: - out["time_delta"].append( - torch.nn.functional.pad(torch.Tensor(e["time_delta"]), (seq_delta, 0), value=np.NaN) - ) + st += start_offset + end = min(end, st + self.max_seq_len) - data_elements = defaultdict(list) - for k in ("dynamic_indices", "dynamic_values", "dynamic_measurement_indices"): - for vs in e[k]: - if vs is None: - vs = [np.NaN] * max_n_data + if self.config.do_include_subsequence_indices: + out["start_idx"] = st + out["end_idx"] = end - data_delta = max_n_data - len(vs) - vs = [v if v is not None else np.NaN for v in vs] + out["dynamic"] = JointNestedRaggedTensorDict.load_slice(self.NRTs_dir / f"{shard}.pt", subject_idx)[ + st:end + ] - # We don't worry about seq_padding_side here as this is not the sequence dimension. - data_elements[k].append( - torch.nn.functional.pad(torch.Tensor(vs), (0, data_delta), value=np.NaN) - ) + if self.config.do_include_start_time_min: + out["start_time"] = static_row["start_time"] = static_row[ + "start_time" + ].item().timestamp() / 60.0 + sum(static_row["time_delta"].item().to_list()[:st]) - if len(data_elements[k]) == 0: - raise ValueError(f"Batch element has no {k}! Got:\n{e}.") + for t, t_labels in self.labels.items(): + out[t] = t_labels[idx] - if self.seq_padding_side == SeqPaddingSide.RIGHT: - data_elements[k] = torch.nn.functional.pad( - torch.cat([T.unsqueeze(0) for T in data_elements[k]]), - (0, 0, 0, seq_delta), - value=np.NaN, - ) - else: - data_elements[k] = torch.nn.functional.pad( - torch.cat([T.unsqueeze(0) for T in data_elements[k]]), - (0, 0, seq_delta, 0), - value=np.NaN, - ) + return out - out[k].append(data_elements[k]) - self._register_end("collate_dynamic_padding") + def __dynamic_only_collate(self, batch: list[dict[str, list[float]]]) -> PytorchBatch: + """An internal collate function for only dynamic data.""" + keys = batch[0].keys() + dense_keys = {k for k in keys if k not in ("dynamic", "static_indices", "static_measurement_indices")} - self._register_start("collate_post_padding_processing") - # Unsqueeze the padded tensors into the batch dimension and combine them. - out_batch = {k: torch.cat([T.unsqueeze(0) for T in Ts], dim=0) for k, Ts in out.items()} + if dense_keys: + dense_collated = torch.utils.data.default_collate([{k: x[k] for k in dense_keys} for x in batch]) + else: + dense_collated = {} - # Add event and data masks on the basis of which elements are present, then convert the tensor - # elements to the appropriate types. - out_batch["event_mask"] = ~out_batch["time_delta"].isnan() - out_batch["dynamic_values_mask"] = ~out_batch["dynamic_values"].isnan() + dynamic = JointNestedRaggedTensorDict.vstack([x["dynamic"] for x in batch]).to_dense( + padding_side=self.seq_padding_side + ) + dynamic["event_mask"] = dynamic.pop("dim1/mask") + dynamic["dynamic_values_mask"] = dynamic.pop("dim2/mask") & ~np.isnan(dynamic["dynamic_values"]) + + dynamic_collated = {} + for k, v in dynamic.items(): + if k.endswith("mask"): + dynamic_collated[k] = torch.from_numpy(v) + elif v.dtype in NP_UINT_TYPES + NP_INT_TYPES: + dynamic_collated[k] = torch.from_numpy(v.astype(int)).long() + elif v.dtype in NP_FLOAT_TYPES: + dynamic_collated[k] = torch.from_numpy(v.astype(float)).float() + else: + raise TypeError(f"Don't know how to tensorify {k} of type {v.dtype}!") - out_batch["time_delta"] = torch.nan_to_num(out_batch["time_delta"], nan=0) + collated = {**dense_collated, **dynamic_collated} - out_batch["dynamic_indices"] = torch.nan_to_num(out_batch["dynamic_indices"], nan=0).long() - out_batch["dynamic_measurement_indices"] = torch.nan_to_num( - out_batch["dynamic_measurement_indices"], nan=0 - ).long() - out_batch["dynamic_values"] = torch.nan_to_num(out_batch["dynamic_values"], nan=0) + out_batch = {} + out_batch["event_mask"] = collated["event_mask"] + out_batch["dynamic_values_mask"] = collated["dynamic_values_mask"] + out_batch["time_delta"] = torch.nan_to_num(collated["time_delta"].float(), nan=0) + out_batch["dynamic_indices"] = collated["dynamic_indices"].long() + out_batch["dynamic_measurement_indices"] = collated["dynamic_measurement_indices"].long() + out_batch["dynamic_values"] = torch.nan_to_num(collated["dynamic_values"].float(), nan=0) if self.config.do_include_start_time_min: - out_batch["start_time"] = torch.FloatTensor([e["start_time"] for e in batch]) + out_batch["start_time"] = collated["start_time"].float() if self.config.do_include_subsequence_indices: - out_batch["start_idx"] = torch.LongTensor([e["start_idx"] for e in batch]) - out_batch["end_idx"] = torch.LongTensor([e["end_idx"] for e in batch]) + out_batch["start_idx"] = collated["start_idx"].long() + out_batch["end_idx"] = collated["end_idx"].long() if self.config.do_include_subject_id: - out_batch["subject_id"] = torch.LongTensor([e["subject_id"] for e in batch]) + out_batch["subject_id"] = collated["subject_id"].long() out_batch = PytorchBatch(**out_batch) - self._register_end("collate_post_padding_processing") if not self.has_task: return out_batch - self._register_start("collate_task_labels") out_labels = {} - for task in self.tasks: - task_type = self.task_types[task] - - out_labels[task] = [] - for e in batch: - out_labels[task].append(e[task]) - - match task_type: + match self.task_types[task]: case "multi_class_classification": - out_labels[task] = torch.LongTensor(out_labels[task]) + out_labels[task] = collated[task].long() case "binary_classification": - out_labels[task] = torch.FloatTensor(out_labels[task]) + out_labels[task] = collated[task].float() case "regression": - out_labels[task] = torch.FloatTensor(out_labels[task]) + out_labels[task] = collated[task].float() case _: - raise TypeError(f"Don't know how to tensorify task of type {task_type}!") - + raise TypeError(f"Don't know how to tensorify task of type {self.task_types[task]}!") out_batch.stream_labels = out_labels - self._register_end("collate_task_labels") return out_batch - @TimeableMixin.TimeAs def collate(self, batch: list[DATA_ITEM_T]) -> PytorchBatch: """Combines the ragged dictionaries produced by `__getitem__` into a tensorized batch. @@ -700,7 +585,25 @@ def collate(self, batch: list[DATA_ITEM_T]) -> PytorchBatch: Returns: A fully collated, tensorized, and padded batch. """ - if self.do_produce_static_data: - return self.__static_and_dynamic_collate(batch) - else: - return self.__dynamic_only_collate(batch) + + out_batch = self.__dynamic_only_collate(batch) + + max_n_static = max(len(x["static_indices"]) for x in batch) + static_padded_fields = defaultdict(list) + for e in batch: + n_static = len(e["static_indices"]) + static_delta = max_n_static - n_static + for k in ("static_indices", "static_measurement_indices"): + if static_delta > 0: + static_padded_fields[k].append( + torch.nn.functional.pad( + torch.tensor(e[k], dtype=torch.long), (0, static_delta), value=0 + ) + ) + else: + static_padded_fields[k].append(torch.tensor(e[k], dtype=torch.long)) + + for k, v in static_padded_fields.items(): + out_batch[k] = torch.cat([T.unsqueeze(0) for T in v], dim=0) + + return out_batch diff --git a/EventStream/data/time_dependent_functor.py b/EventStream/data/time_dependent_functor.py index e80cb7f2..b42fdb55 100644 --- a/EventStream/data/time_dependent_functor.py +++ b/EventStream/data/time_dependent_functor.py @@ -144,7 +144,9 @@ def __init__(self, dob_col: str): self.link_static_cols = [dob_col] def pl_expr(self) -> pl.Expression: - return (pl.col("timestamp") - pl.col(self.dob_col)).dt.nanoseconds() / 1e9 / 60 / 60 / 24 / 365.25 + return ( + (pl.col("timestamp") - pl.col(self.dob_col)).dt.total_nanoseconds() / 1e9 / 60 / 60 / 24 / 365.25 + ) def update_from_prior_timepoint( self, @@ -185,8 +187,10 @@ def update_from_prior_timepoint( >>> prior_values = (prior_ages - age_mean) / age_std >>> new_delta = torch.FloatTensor([1, 10, 2]) * (60*24*365.25) >>> measurement_metadata = pd.Series({ - ... "normalizer": {"mean_": age_mean, "std_": age_std}, - ... "outlier_model": {"thresh_large_": thresh_large, "thresh_small_": thresh_small}, + ... "mean": age_mean, + ... "std": age_std, + ... "thresh_large": thresh_large, + ... "thresh_small": thresh_small, ... }) >>> functor = AgeFunctor(dob_col="birth_date") >>> new_indices, new_ages = functor.update_from_prior_timepoint( @@ -203,11 +207,18 @@ def update_from_prior_timepoint( tensor([21., 40., 42.]) """ - mean = measurement_metadata["normalizer"]["mean_"] - std = measurement_metadata["normalizer"]["std_"] + mean = float(measurement_metadata["mean"]) if "mean" in measurement_metadata else 0 + std = float(measurement_metadata["std"]) if "std" in measurement_metadata else 1 + + if "thresh_large" in measurement_metadata: + thresh_large = float(measurement_metadata["thresh_large"]) + else: + thresh_large = float("inf") - thresh_large = measurement_metadata["outlier_model"]["thresh_large_"] - thresh_small = measurement_metadata["outlier_model"]["thresh_small_"] + if "thresh_small" in measurement_metadata: + thresh_small = float(measurement_metadata["thresh_small"]) + else: + thresh_small = float("-inf") prior_age = (prior_values * std) + mean diff --git a/EventStream/data/types.py b/EventStream/data/types.py index 93099c7f..02d5ef44 100644 --- a/EventStream/data/types.py +++ b/EventStream/data/types.py @@ -750,7 +750,7 @@ def convert_to_DL_DF(self) -> pl.DataFrame: │ 2.0, 3.0] ┆ ┆ ┆ [1.0, ┆ [1.0, ┆ [1.0, ┆ │ │ ┆ ┆ ┆ 2.0], ┆ 2.0], ┆ 2.0], ┆ │ │ ┆ ┆ ┆ [2.0, ┆ [2.0, ┆ [null, ┆ │ - │ ┆ ┆ ┆ 3.0]] ┆ 3.0]] ┆ null]… ┆ │ + │ ┆ ┆ ┆ 3.0]… ┆ 3.0]… ┆ nul… ┆ │ │ [1.0, ┆ [1.0, ┆ [1.0, ┆ [[1.0], ┆ [[1.0], ┆ [[1.0], ┆ 10.0 │ │ 5.0] ┆ 2.0] ┆ 1.0] ┆ [1.0, ┆ [1.0, ┆ [1.0, ┆ │ │ ┆ ┆ ┆ 5.0]] ┆ 2.0]] ┆ null]] ┆ │ diff --git a/EventStream/data/visualize.py b/EventStream/data/visualize.py index b279d438..c6af6f4c 100644 --- a/EventStream/data/visualize.py +++ b/EventStream/data/visualize.py @@ -62,8 +62,6 @@ class Visualizer(JSONableMixin): dataframe. n_age_buckets: If `plot_by_age` is `True`, this controls how many buckets ages are discretized into to limit plot granularity. - min_sub_to_plot_age_dist: If set, do not plot sub-population distributions over age if the total - number of patients in the sub-population is below this value. Useful for limiting variance. Raises: ValueError: If @@ -110,8 +108,6 @@ class Visualizer(JSONableMixin): dob_col: str | None = None n_age_buckets: int | None = 200 - min_sub_to_plot_age_dist: int | None = 50 - def __post_init__(self): if self.subset_size is not None and self.subset_random_seed is None: raise ValueError("subset_size is specified, but subset_random_seed is not!") @@ -165,7 +161,7 @@ def plot_counts_over_time(self, in_events_df: pl.DataFrame) -> list[Figure]: .otherwise(0) .alias("cumulative_subj_increment"), ) - .groupby_dynamic( + .group_by_dynamic( index_column="timestamp", every=self.time_unit, by=self.static_covariates, @@ -183,7 +179,7 @@ def plot_counts_over_time(self, in_events_df: pl.DataFrame) -> list[Figure]: plt_kwargs = {"x": "timestamp", "color": static_covariate} events_df = ( - in_events_df.groupby("timestamp", static_covariate) + in_events_df.group_by("timestamp", static_covariate) .agg( pl.col("n_subjects").sum(), pl.col("n_events").sum(), @@ -251,86 +247,13 @@ def plot_counts_over_time(self, in_events_df: pl.DataFrame) -> list[Figure]: return figures - def plot_age_distribution_over_time( - self, subjects_df: pl.DataFrame, subj_ranges: pl.DataFrame - ) -> list[Figure]: - figures = [] - if not self.plot_by_time: - return figures - if self.dob_col is None: - return figures - - start_time = subj_ranges["start_time"].min() - end_time = subj_ranges["end_time"].max() - - subj_ranges = subj_ranges.join( - subjects_df.select("subject_id", self.dob_col, *self.static_covariates), - on="subject_id", - ) - - time_points = pl.select(pl.date_range(start_time, end_time, interval=self.time_unit)).select( - pl.col("date").list.explode().alias("timestamp") - ) - n_time_bins = len(time_points) + 1 - - cross_df_all = ( - subj_ranges.join(time_points, how="cross") - .filter( - (pl.col("start_time") <= pl.col("timestamp")) & (pl.col("timestamp") <= pl.col("end_time")) - ) - .select( - "timestamp", - "subject_id", - *self.static_covariates, - ( - (pl.col("timestamp") - pl.col(self.dob_col)).dt.nanoseconds() - / (1e9 * 60 * 60 * 24 * 365.25) - ).alias(self.age_col), - pl.col("subject_id").n_unique().over("timestamp").alias("num_subjects"), - ) - .filter(pl.col("num_subjects") > 20) - ) - - for static_covariate in self.static_covariates: - cross_df = ( - cross_df_all.with_columns( - pl.col("subject_id").n_unique().over("timestamp", static_covariate).alias("num_subjects") - ) - .filter(pl.col("num_subjects") > 20) - .with_columns((1 / pl.col("num_subjects")).alias("% Subjects @ time")) - ) - - if self.min_sub_to_plot_age_dist is not None: - val_counts = subjects_df[static_covariate].value_counts() - valid_categories = val_counts.filter(pl.col("counts") > self.min_sub_to_plot_age_dist)[ - static_covariate - ].to_list() - - cross_df = cross_df.filter(pl.col(static_covariate).is_in(valid_categories)) - - figures.append( - px.density_heatmap( - self._normalize_to_pandas(cross_df, static_covariate), - x="timestamp", - y=self.age_col, - z="% Subjects @ time", - facet_col=static_covariate, - nbinsy=self.n_age_buckets, - nbinsx=n_time_bins, - histnorm=None, - histfunc="sum", - ) - ) - - return figures - def plot_static_variables_breakdown(self, static_variables: pl.DataFrame) -> list[Figure]: figures = [] if not self.static_covariates: return for static_covariate in self.static_covariates: - df = static_variables.groupby(static_covariate).agg( + df = static_variables.group_by(static_covariate).agg( pl.col("subject_id").n_unique().alias("# Subjects") ) figures.append( @@ -357,7 +280,7 @@ def plot_counts_over_age(self, events_df: pl.DataFrame) -> list[Figure]: pl.col("subject_id").n_unique().over(*self.static_covariates).alias("total_n_subjects"), ) .drop_nulls("age_bucket") - .groupby("age_bucket", *self.static_covariates) + .group_by("age_bucket", *self.static_covariates) .agg( pl.col(self.age_col).mean(), pl.col("event_id").n_unique().alias("n_events"), @@ -374,7 +297,7 @@ def plot_counts_over_age(self, events_df: pl.DataFrame) -> list[Figure]: plt_kwargs = {"x": self.age_col, "color": static_covariate} counts_at_age = self._normalize_to_pandas( - events_df.groupby("age_bucket", static_covariate) + events_df.group_by("age_bucket", static_covariate) .agg( ( (pl.col(self.age_col) * pl.col("n_subjects_at_age")).sum() @@ -415,7 +338,7 @@ def plot_counts_over_age(self, events_df: pl.DataFrame) -> list[Figure]: return figures def plot_events_per_patient(self, events_df: pl.DataFrame) -> list[Figure]: - events_per_patient = events_df.groupby("subject_id", *self.static_covariates).agg( + events_per_patient = events_df.group_by("subject_id", *self.static_covariates).agg( pl.col("event_id").n_unique().alias("# of Events") ) @@ -430,7 +353,7 @@ def plot( events_df: pl.DataFrame, dynamic_measurements_df: pl.DataFrame, ) -> list[Figure]: - subj_ranges = events_df.groupby("subject_id").agg( + subj_ranges = events_df.group_by("subject_id").agg( pl.col("timestamp").min().alias("start_time"), pl.col("timestamp").max().alias("end_time"), ) @@ -444,7 +367,6 @@ def plot( figs = [] figs.extend(self.plot_static_variables_breakdown(static_variables)) figs.extend(self.plot_counts_over_time(events_df)) - figs.extend(self.plot_age_distribution_over_time(subjects_df, subj_ranges)) figs.extend(self.plot_counts_over_age(events_df)) figs.extend(self.plot_events_per_patient(events_df)) diff --git a/EventStream/evaluation/MCF_evaluation.py b/EventStream/evaluation/MCF_evaluation.py deleted file mode 100644 index 99957767..00000000 --- a/EventStream/evaluation/MCF_evaluation.py +++ /dev/null @@ -1,595 +0,0 @@ -"""This file contains code to aid in longitudinal, MCF-based evaluation over measurement predicates.""" - -import numpy as np -import polars as pl - -RANGE_T = tuple[None | tuple[float, bool] | float, None | tuple[float, bool]] - - -def crps(samples: np.ndarray, true: np.ndarray) -> np.ndarray: - """Computes the Continuous Ranked Probability Score (CRPS) [1]. - - Given an empirical distribution and a true observation, this computes the CRPS between the two. For a - single sample, this reduces to absolute error. The empirical distribution should be arranged such that - independent samples of the distribution are on the first axis, and all other axes should be equal. - - Initial Source: https://docs.pyro.ai/en/stable/_modules/pyro/ops/stats.html#crps_empirical - - [1] Tilmann Gneiting, Adrian E. Raftery (2007) - `Strictly Proper Scoring Rules, Prediction, and Estimation` - https://www.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf - - Args: - samples: A numpy array of shape (n_samples, ...) containing the drawn empirical samples for the - distribution in question. May contain NaNs, which represents missing or censored samples. - true: A numpy array of shape (...) containing true observations. May contain NaNs, which represent - missing or censored true observations. - - Returns: - A numpy array of shape (...) containing the CRPS score results for the true observations and empirical - distributions corresponding to each position. Will be NaN if either the true observation was NaN - at that position or if all sampled observations were NaN at that position. - - Raises: - ValueError: If the shape of ``true`` does not match the shape of ``samples`` absent the first - dimension. - - Examples: - >>> import numpy as np - >>> true = np.array([0]) - >>> samples = np.array([[-2]]) - >>> crps(samples, true) - array([2]) - >>> true = np.array([0]) - >>> samples = np.array([[-2], [np.NaN], [np.NaN], [1], [2]]) - >>> crps(samples, true) - array([0.77777778]) - >>> true = np.array([0]) - >>> samples = np.array([[-2], [-1], [0], [1], [2]]) - >>> crps(samples, true) - array([0.4]) - >>> true = np.array([-2, 0, -2, np.NaN]) - >>> samples = np.array([ - ... [-1, 1, -1, -1], - ... [1, -2, 1, 1], - ... [2, -20, np.NaN, 2], - ... [0, 10, 0, 0], - ... [3, 1, 3, 3], - ... [1, 1, 1, 1] - ... ]) - >>> crps(samples, true) - array([2.27777778, 1.41666667, 2.08 , nan]) - >>> crps(np.array([-2, -1, 0, 1, 2]), true) - Traceback (most recent call last): - ... - ValueError: The shape of true (4,) must match that of samples (5,) after the 1st dimension. - """ - - if true.shape != samples.shape[1:]: - raise ValueError( - f"The shape of true {true.shape} must match that of samples {samples.shape} after " - "the 1st dimension." - ) - - if samples.shape[0] == 1: - return np.abs(samples[0] - true) - - n_samples = (~np.isnan(samples)).sum(0) - - samples = np.sort(samples, axis=0) - diff = samples[1:] - samples[:-1] - - counting_up = np.ones_like(samples).cumsum(0)[:-1] - lhs = counting_up - (np.isnan(samples).sum(0)) - lhs = np.where(lhs > 0, lhs, np.NaN) - - rhs = np.where(~np.isnan(lhs), np.flip(counting_up, 0), np.NaN) - weight = np.flip(lhs * rhs, 0) - - abs_error = np.nanmean(np.abs(true - samples), 0) - return abs_error - (np.nansum(diff * weight, axis=0) / n_samples**2) - - -def get_MCF( - aligned_Ts: list[float], MCF_cols: list[str], *dfs: list[pl.DataFrame] -) -> tuple[np.ndarray, np.ndarray]: - """Returns the population censor mask and the cumulative predicate incidence delta function for dfs. - - Args: - aligned_Ts: The timestamps for which the final MCF and censoring mask should be computed. - MCF_cols: A list of `pl.List[pl.Boolean]` columns in the dataframes to compute the MCF over. - dfs: A list of dataframes to include in the final MCF. Each must be in the same order and have columns - ``time``, and ``MCF_cols[i]`` for all ``i``. - - Returns: - 1. A boolean numpy array of shape ``(len(dfs), dfs[0].shape[0], len(aligned_Ts))`` which contains a 1 - at index ``[n, i, j]`` if subject ``i`` has any data at or after time ``aligned_Ts[j]`` in - ``dfs[n]``. - 2. A uint numpy array of shape ``(len(dfs), dfs[0].shape[0], len(aligned_Ts), len(MCF_cols))`` such - that the value at index ``[n, i, j, k]`` is the count of new instances where ``MCF_cols[k]`` is - True for subject ``i`` between time ``aligned_Ts[j-1]`` (or negative infinity if ``j == 0``) and - ``aligned_Ts[j]`` in ``dfs[n]``. - - Examples: - >>> df_1 = pl.DataFrame({ - ... "subject_id": [1, 2], - ... "time": [ - ... [-3.2, -2, 0, 10.2], - ... [0., 1.], - ... ], - ... "pred_1": [ - ... [False, True, True, False], - ... [True, True], - ... ], - ... "pred_2": [ - ... [True, False, False, True], - ... [False, False], - ... ], - ... }) - >>> df_2 = pl.DataFrame({ - ... "subject_id": [1, 2], - ... "time": [ - ... [-1.9, 0., 0.2], - ... [-10., 0., 2.3], - ... ], - ... "pred_1": [ - ... [False, True, False], - ... [True, True, False], - ... ], - ... "pred_2": [ - ... [True, False, True], - ... [True, False, False], - ... ], - ... }) - >>> aligned_Ts = [-3, 3, 6, 10] - >>> out = get_MCF(aligned_Ts, ["pred_1", "pred_2"], df_1, df_2) - >>> print(f"Got a {type(out)} of len {len(out)}") - Got a of len 2 - >>> out[0] - array([[[ True, True, True, True, True], - [ True, True, False, False, False]], - - [[ True, True, False, False, False], - [ True, True, False, False, False]]]) - >>> out[1] - array([[[[ 0., 1.], - [ 2., 0.], - [ 0., 0.], - [ 0., 0.], - [ 0., 1.]], - - [[nan, nan], - [ 2., 0.], - [ 0., 0.], - [ 0., 0.], - [nan, nan]]], - - - [[[nan, nan], - [ 1., 2.], - [ 0., 0.], - [ 0., 0.], - [ 0., 0.]], - - [[ 1., 1.], - [ 1., 0.], - [ 0., 0.], - [ 0., 0.], - [ 0., 0.]]]]) - """ - - time_outputs = aligned_Ts + [float("inf")] - output_col_names = [str(i) for i in range(len(time_outputs))] - - censor_slices, MCF_slices = [], [] - for df in dfs: - censor_slices.append( - df.with_columns(max_time=pl.col("time").list.max()) - .sort(by=["subject_id"]) - .select( - pl.lit(True), *[(pl.col("max_time") >= t).alias(str(i)) for i, t in enumerate(aligned_Ts)] - ) - .to_numpy() - ) - - MCF_idx_slices = [] - - exploded_MCF_df = ( - df.select("subject_id", "time", *MCF_cols) - .explode("time", *MCF_cols) - .with_columns( - pl.lit(output_col_names) - .take(pl.lit(aligned_Ts).search_sorted(pl.col("time"))) - .alias("aligned_time_bucket") - ) - ) - - for MCF_col in MCF_cols: - MCF_df = exploded_MCF_df.pivot( - index="subject_id", - columns="aligned_time_bucket", - values=MCF_col, - aggregate_function="sum", - ).sort(by="subject_id") - - MCF_idx_slices.append( - MCF_df.with_columns( - pl.lit(False).alias(c) for c in output_col_names if c not in MCF_df.columns - ) - .select(output_col_names) - .to_numpy() - ) - - MCF_slices.append(np.stack(MCF_idx_slices, axis=-1)) - - return np.stack(censor_slices, axis=0), np.stack(MCF_slices, axis=0) - - -def get_aligned_timestamps( - control_T: pl.Series, *sample_Ts: list[pl.Series], n_timestamps: int | None = None -) -> list[float]: - """Gets the aligned timestamps given the input raw timestamps. - - Args: - control_T: the timestamps from the control population, as a series of lists. - sample_Ts: any sample timestamps to also be included. - n_timestamps: If specified, downsample the provided timestamps to no more than this many. - - Returns: - A sorted list of time values. - - Examples: - >>> control_T = pl.Series([ - ... [-10., 0, 1, 2], [-105, 1, 4], - ... ]) - >>> sample_T_1 = pl.Series([ - ... [8, 21.1], [46, 132, 188, 200.], - ... ]) - >>> sample_T_2 = pl.Series([ - ... [1.1], None - ... ]) - >>> get_aligned_timestamps(control_T, sample_T_1, sample_T_2) - [-105.0, -10.0, 0.0, 1.0, 1.1, 2.0, 4.0, 8.0, 21.1, 46.0, 132.0, 188.0, 200.0] - >>> get_aligned_timestamps(control_T, sample_T_1, sample_T_2, n_timestamps=40) - [-105.0, -10.0, 0.0, 1.0, 1.1, 2.0, 4.0, 8.0, 21.1, 46.0, 132.0, 188.0, 200.0] - >>> import numpy as np - >>> np.random.seed(1) - >>> get_aligned_timestamps(control_T, sample_T_1, sample_T_2, n_timestamps=4) - [1.1, 2.0, 4.0, 46.0] - """ - - def get_Ts(S: pl.Series) -> list: - return S.explode().drop_nulls().to_list() - - all_Ts = list(set(get_Ts(control_T)).union(*[get_Ts(T) for T in sample_Ts])) - if n_timestamps is not None and len(all_Ts) > n_timestamps: - all_Ts = list(np.random.choice(all_Ts, size=n_timestamps, replace=False)) - - return sorted(all_Ts) - - -def eval_range( - rng: RANGE_T, - val: pl.Expr, -) -> pl.Expr: - """Returns true if val satisfies the range rng. - - Args: - rng: The range in question. If it is a boolean, it is returned directly, otherwise True is returned if - val is in the described range. - val: The value to evaluate. - Returns: - True if and only if value satisfies the range. - - Examples: - >>> pl.select(eval_range(True, pl.lit(0.1))).item() - True - >>> pl.select(eval_range(False, pl.lit(0.1))).item() - False - >>> pl.select(eval_range((1, 2), pl.lit(0.1))).item() - False - >>> pl.select(eval_range((None, 2), pl.lit(0.1))).item() - True - >>> pl.select(eval_range((1, 2), pl.lit(1))).item() - False - >>> pl.select(eval_range(((1, False), 2), pl.lit(1))).item() - False - >>> pl.select(eval_range(((1, True), 2), pl.lit(1))).item() - True - >>> pl.select(eval_range((1, 2), pl.lit(3))).item() - False - >>> pl.select(eval_range((1, None), pl.lit(3))).item() - True - """ - - if type(rng) is bool: - return pl.lit(rng) - - lower_bound, upper_bound = rng - - if lower_bound is None and upper_bound is None: - return pl.lit(True) - - expr = [] - - match lower_bound: - case None: - pass - case float() | int() as bound, bool() as incl: - if incl: - expr.append(val >= bound) - else: - expr.append(val > bound) - case float() | int() as bound: - expr.append(val > bound) - case _: - raise ValueError(f"{lower_bound} must be either None, a number, or a (number, bool)!") - - match upper_bound: - case None: - pass - case float() | int() as bound, bool() as incl: - if incl: - expr.append(val <= bound) - else: - expr.append(val < bound) - case float() | int() as bound: - expr.append(val < bound) - case _: - raise ValueError(f"{upper_bound} must be either None, a number, or a (number, bool)!") - - return pl.all_horizontal(*expr) - - -def align_time_and_eval_predicates( - df: pl.DataFrame, - measurement_predicates: dict[int, bool | RANGE_T], -) -> pl.DataFrame: - """Adjusts the input DataFrame's time column and evaluates the measurement predicates. - - Args: - df: The dataframe to be adjusted. Must have the columns ``subject_id``, ``time``, ``dynamic_indices``, - ``dynamic_values``, and ``align_time``. - measurement_predicates: A dictionary from dynamic measurement index to either the boolean True, in - which case the presence of the measurement is used alone, or a range dictating - bounds for the measurement's value to satisfy the predicate. The range is in the format - ``(LOWER_BOUND, UPPER_BOUND)``, where ``*_BOUND`` can be either `None` (in which case there is no - bound on that side), a floating point value (in which case the bound is considered to be - exclusive), or a tuple of a floating point value and a boolean value where the boolean value - indicates an inclusive or exclusive bound. - - Returns: - A modified dataframe such that the elements of the (nested) time column are normalized such that ``0`` - indicates a time value of ``align_time`` and such that the dynamic indices and values columns are - replaced by a set of boolean list columns detailing whether or not the event at that index satisfies - the given predicate. - - Examples: - >>> df = pl.DataFrame({ - ... 'subject_id': [1, 2, 3], - ... 'time': [ - ... [0., 10, 20], - ... [0., 100], - ... [0., 1, 2, 3], - ... ], - ... 'dynamic_indices': [ - ... [[1, 2], [3, 3, 2], [4]], - ... [[1], [3]], - ... [[2, 3], [1], [8], [3, 1, 1]], - ... ], - ... 'dynamic_values': [ - ... [[None, 0], [-1, 4, 0.2], [None]], - ... [[None], [3]], - ... [[-0.1, 10], [None], [None], [6, None, None]], - ... ], - ... 'align_time': [10, 100, 1.5], - ... }) - >>> measurement_predicates = { - ... 3: (3.5, None), - ... 1: True, - ... } - >>> out = align_time_and_eval_predicates(df, measurement_predicates) - >>> pl.Config.set_tbl_width_chars(80) - - >>> out - shape: (3, 4) - ┌────────────┬─────────────────────┬─────────────────┬─────────────────────────┐ - │ subject_id ┆ time ┆ pred_3 ┆ pred_1 │ - │ --- ┆ --- ┆ --- ┆ --- │ - │ i64 ┆ list[f64] ┆ list[bool] ┆ list[bool] │ - ╞════════════╪═════════════════════╪═════════════════╪═════════════════════════╡ - │ 1 ┆ [-10.0, 0.0, 10.0] ┆ [false, true, ┆ [true, false, false] │ - │ ┆ ┆ false] ┆ │ - │ 2 ┆ [-100.0, 0.0] ┆ [false, false] ┆ [true, false] │ - │ 3 ┆ [-1.5, -0.5, … 1.5] ┆ [true, false, … ┆ [false, true, … true] │ - │ ┆ ┆ true] ┆ │ - └────────────┴─────────────────────┴─────────────────┴─────────────────────────┘ - >>> out[2]['time'].item().to_list() - [-1.5, -0.5, 0.5, 1.5] - >>> out[2]['pred_3'].item().to_list() - [True, False, False, True] - >>> out[2]['pred_1'].item().to_list() - [False, True, False, True] - """ - - return ( - df.explode("time", "dynamic_indices", "dynamic_values") - .with_columns((pl.col("time") - pl.col("align_time")).alias("time")) - .drop("align_time") - .explode("dynamic_indices", "dynamic_values") - .with_columns( - **{ - f"pred_{idx}": ( - pl.when(pl.col("dynamic_indices") == idx) - .then(eval_range(rng, pl.col("dynamic_values"))) - .otherwise(False) - ) - for idx, rng in measurement_predicates.items() - } - ) - .groupby(["subject_id", "time"]) - .agg(*[pl.col(f"pred_{idx}").any() for idx in measurement_predicates.keys()]) - .sort(by=["subject_id", "time"]) - .groupby("subject_id", maintain_order=True) - .agg(pl.all()) - ) - - -def get_MCF_coordinates( - control_df: pl.DataFrame, - sample_dfs: list[pl.DataFrame], - measurement_predicates: dict[int, bool | RANGE_T | list[RANGE_T]], - n_timestamps: int | None = None, -) -> tuple[list[int], list[float], list[int], np.ndarray, np.ndarray, np.ndarray, np.ndarray]: - """Returns aligned MCF coordinates per subject comparing the control and sample dataframes. - - Args: - control_df: A dataframe in the "deep-learning friendly format" containing the control data for - comparison. Must have columns ``subject_id``, ``time``, ``dynamic_indices``, and - ``dynamic_values``. - sample_dfs: A list of dataframes in the "deep-learning friendly format" containing the comparison - population. Must have the same columns as the control_df, plus additional column - ``control_align_idx``, which states what event index within the control dataframe is the temporal - alignment point. Each entry of the list is interpreted to be an independent sample for comparison, - and list order is presumed to be meaningless. - measurement_predicates: A dictionary from dynamic measurement index to either the boolean True, in - which case the presence of the measurement is used alone, or a range dictating - bounds for the measurement's value to satisfy the predicate. The range is in the format - ``(LOWER_BOUND, UPPER_BOUND)``, where ``*_BOUND`` can be either `None` (in which case there is no - bound on that side), a floating point value (in which case the bound is considered to be - exclusive), or a tuple of a floating point value and a boolean value where the boolean value - indicates an inclusive or exclusive bound. - n_timestamps: Downsample (without replacement) the set of possible aligned timepoints to this number - if specified. - - Returns: - 1. The subject IDs in order of the rows of the returned coordinates. - 2. The aligned MCF time-values (aligned so that 0 is the alignment point between control and sample - dataframes per subject). - 3. The output index of dynamic measurement indices. - 4. A boolean numpy array indicating whether or not a given subject (row) in the control population has - data at or after a timepoint (column) - 5. A boolean numpy array containing incidence markers for measurement predicates (dimension 0) by - subject (dimension 1) and time (dimension 3). - 4. A boolean numpy array indicating whether or not a given subject (dimension 0) in the sample - population has data at or after a timepoint (dimension 1) across all sample populations (dimension 2) - 6. A boolean np array containing incidence markers for measurement predicates (dimension 0) by subject - (dimension 1) and time (dimension 2) across all sample populations (dimension 3). - - Examples: - >>> control_df = pl.DataFrame({ - ... 'subject_id': [1, 2, 3], - ... 'control_align_idx': [1, 1, 0], - ... 'time': [ - ... [0., 10, 20], - ... [0., 100], - ... [0., 1, 2, 3], - ... ], - ... 'dynamic_indices': [ - ... [[1, 2], [3, 3, 2], [4]], - ... [[1], [3]], - ... [[2, 3], [1], [8], [3, 1, 1]], - ... ], - ... 'dynamic_values': [ - ... [[None, 0], [-1, 4, 0.2], [None]], - ... [[None], [3]], - ... [[-0.1, 10], [None], [None], [6, None, None]], - ... ], - ... }) - >>> sample_df_1 = pl.DataFrame({ - ... 'subject_id': [2, 1, 3], - ... 'time': [ - ... [200, 300, 400], - ... [18, 24, 33], - ... [2.1, 3, 4.1], - ... ], - ... 'dynamic_indices': [ - ... [[1], [3], [1, 2]], - ... [[3], [2], [1]], - ... [[2, 3], [], [3, 3]], - ... ], - ... 'dynamic_values': [ - ... [[None], [3.1], [None, 0.03]], - ... [[0], [0.21], [None]], - ... [[-0.1, 10], [], [6, -1]], - ... ], - ... }) - >>> sample_df_2 = pl.DataFrame({ - ... 'subject_id': [3, 1, 2], - ... 'time': [ - ... [5.1, 6, 7.1], - ... [11, 14, 23], - ... [110, 202, 250], - ... ], - ... 'dynamic_indices': [ - ... [[], [1, 2], [1]], - ... [[1, 2], [1], [1]], - ... [[1], [3], [3, 3]], - ... ], - ... 'dynamic_values': [ - ... [[], [None, 0.1], [None]], - ... [[None, -0.04], [None], [None]], - ... [[None], [13.1], [0.5, 0.3]], - ... ], - ... }) - >>> measurement_predicates = { - ... 3: (3.5, None), - ... 1: True, - ... } - >>> out = get_MCF_coordinates(control_df, [sample_df_1, sample_df_2], measurement_predicates) - >>> subject_ids, Ts, dynamic_indices, control_censor_mask, control_MCF, sample_mask, sample_MCF = out - >>> subject_ids - [1, 2, 3] - >>> len(Ts) - 20 - >>> Ts[:10] - [-100.0, -10.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.1, 6.0, 7.1] - >>> Ts[10:] - [8.0, 10.0, 13.0, 14.0, 23.0, 100.0, 102.0, 150.0, 200.0, 300.0] - >>> dynamic_indices - [3, 1] - >>> control_censor_mask.shape - (1, 3, 21) - >>> control_MCF.shape - (1, 3, 21, 2) - >>> sample_mask.shape - (2, 3, 21) - >>> sample_MCF.shape - (2, 3, 21, 2) - """ - - align_time_expr = pl.col("time").list.get(pl.col("control_align_idx")).alias("align_time") - - with_align_time = control_df.with_columns(align_time_expr) - aligned_sample_dfs = [] - for df in sample_dfs: - aligned_sample_dfs.append( - align_time_and_eval_predicates( - df.join(with_align_time.select("subject_id", "align_time"), on=["subject_id"], how="inner"), - measurement_predicates, - ) - ) - - control_df = align_time_and_eval_predicates(with_align_time, measurement_predicates) - - subject_ids = control_df["subject_id"].to_list() - - aligned_timestamps = get_aligned_timestamps( - control_df["time"], *[df["time"] for df in aligned_sample_dfs], n_timestamps=n_timestamps - ) - - dynamic_indices = list(measurement_predicates.keys()) - - MCF_cols = [f"pred_{i}" for i in dynamic_indices] - control_censor_mask, control_MCF = get_MCF(aligned_timestamps, MCF_cols, control_df) - sample_censor_mask, sample_MCF = get_MCF(aligned_timestamps, MCF_cols, *aligned_sample_dfs) - - return ( - subject_ids, - aligned_timestamps, - dynamic_indices, - control_censor_mask, - control_MCF, - sample_censor_mask, - sample_MCF, - ) diff --git a/EventStream/evaluation/__init__.py b/EventStream/evaluation/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/EventStream/evaluation/general_generative_evaluation.py b/EventStream/evaluation/general_generative_evaluation.py deleted file mode 100644 index bea5a565..00000000 --- a/EventStream/evaluation/general_generative_evaluation.py +++ /dev/null @@ -1,291 +0,0 @@ -import dataclasses -import os -from datetime import datetime -from multiprocessing import Pool -from pathlib import Path -from typing import Any - -import lightning as L -import omegaconf -import polars as pl -import torch -import torch.multiprocessing - -from ..data.config import PytorchDatasetConfig, SeqPaddingSide -from ..data.pytorch_dataset import PytorchDataset -from ..data.types import PytorchBatch -from ..transformer.conditionally_independent_model import ( - CIPPTForGenerativeSequenceModeling, -) -from ..transformer.config import ( - OptimizationConfig, - StructuredEventProcessingMode, - StructuredTransformerConfig, -) -from ..transformer.nested_attention_model import NAPPTForGenerativeSequenceModeling -from ..utils import hydra_dataclass, task_wrapper - - -class ESTForTrajectoryGeneration(L.LightningModule): - """A PyTorch Lightning Module for a zero-shot classification via generation for an EST model.""" - - def __init__( - self, - config: StructuredTransformerConfig | dict[str, Any], - pretrained_weights_fp: Path, - ): - """Initializes the Lightning Module. - - Args: - config (`Union[StructuredTransformerConfig, Dict[str, Any]]`): - The configuration for the underlying - model. Should be in the dedicated `StructuredTransformerConfig` class or be a dictionary - parseable as such. - """ - super().__init__() - - # If the configurations are dictionaries, convert them to class objects. They may be passed as - # dictionaries when the lightning module is loaded from a checkpoint, so we need to support - # this functionality. - if type(config) is dict: - config = StructuredTransformerConfig(**config) - - self.config = config - self.num_samples = config.task_specific_params["num_samples"] - self.max_new_events = config.task_specific_params["max_new_events"] - - self.save_hyperparameters({"config": config.to_dict()}) - - if pretrained_weights_fp is None: - raise ValueError("pretrained_weights_fp must be specified") - elif self.config.structured_event_processing_mode == StructuredEventProcessingMode.NESTED_ATTENTION: - self.model = NAPPTForGenerativeSequenceModeling.from_pretrained( - pretrained_weights_fp, config=config - ) - else: - self.model = CIPPTForGenerativeSequenceModeling.from_pretrained( - pretrained_weights_fp, config=config - ) - - def predict_step(self, batch: PytorchBatch, batch_idx: int) -> list[PytorchBatch]: - """Prediction step. - - Generates new samples and writes them out. - """ - - generated_expanded_batch = self.model.generate( - batch, - max_new_events=self.max_new_events, - do_sample=True, - return_dict_in_generate=False, - output_scores=False, - num_return_sequences=self.num_samples, - output_attentions=False, - output_hidden_states=False, - use_cache=True, - ) - return generated_expanded_batch.split_repeated_batch(self.num_samples) - - -@hydra_dataclass -class GenerateConfig: - load_from_model_dir: str | Path = omegaconf.MISSING - seed: int = 1 - - pretrained_weights_fp: Path | None = None - save_dir: str | None = None - - do_overwrite: bool = False - - optimization_config: OptimizationConfig = dataclasses.field(default_factory=lambda: OptimizationConfig()) - - task_df_name: str | None = None - - data_config_overrides: dict[str, Any] | None = dataclasses.field( - default_factory=lambda: { - "seq_padding_side": SeqPaddingSide.LEFT, - "do_include_start_time_min": True, - "do_include_subsequence_indices": True, - "do_include_subject_id": True, - } - ) - - trainer_config: dict[str, Any] = dataclasses.field( - default_factory=lambda: { - "accelerator": "auto", - "devices": "auto", - "detect_anomaly": False, - "default_root_dir": None, - } - ) - - task_specific_params: dict[str, Any] = dataclasses.field( - default_factory=lambda: { - "num_samples": omegaconf.MISSING, - "max_new_events": omegaconf.MISSING, - } - ) - - config_overrides: dict[str, Any] = dataclasses.field(default_factory=lambda: {}) - - parallelize_conversion: int | None = None - - def __post_init__(self): - if isinstance(self.save_dir, str): - self.save_dir = Path(self.save_dir) - - if self.load_from_model_dir in (None, omegaconf.MISSING): - raise ValueError("Must load from a model!") - - if type(self.load_from_model_dir) is str: - self.load_from_model_dir = Path(self.load_from_model_dir) - - if self.pretrained_weights_fp is None: - self.pretrained_weights_fp = self.load_from_model_dir / "pretrained_weights" - if self.save_dir is None: - if self.task_df_name is not None: - self.save_dir = self.load_from_model_dir / "finetuning" / self.task_df_name - else: - self.save_dir = self.load_from_model_dir - - if self.trainer_config.get("default_root_dir", None) is None: - self.trainer_config["default_root_dir"] = self.save_dir / "model_checkpoints" - - data_config_fp = self.load_from_model_dir / "data_config.json" - print(f"Loading data_config from {data_config_fp}") - self.data_config = PytorchDatasetConfig.from_json_file(data_config_fp) - - if self.task_df_name is not None: - self.data_config.task_df_name = self.task_df_name - - for param, val in self.data_config_overrides.items(): - if param == "task_df_name": - print( - f"WARNING: task_df_name is set in data_config_overrides to {val}! " - f"Original is {self.task_df_name}. Ignoring data_config_overrides..." - ) - continue - print(f"Overwriting {param} in data_config from {getattr(self.data_config, param)} to {val}") - setattr(self.data_config, param, val) - - config_fp = self.load_from_model_dir / "config.json" - print(f"Loading config from {config_fp}") - self.config = StructuredTransformerConfig.from_json_file(config_fp) - - for param, val in self.config_overrides.items(): - print(f"Overwriting {param} in config from {getattr(self.config, param)} to {val}") - setattr(self.config, param, val) - - if self.task_specific_params is None: - raise ValueError("Must specify num samples to generate") - - if ( - self.data_config_overrides.get("max_seq_len", None) is None - and self.task_specific_params.get("max_new_events", None) is not None - ): - self.data_config.max_seq_len = ( - self.config.max_seq_len - self.task_specific_params["max_new_events"] - ) - - implied_max_new_events = self.config.max_seq_len - self.data_config.max_seq_len - if implied_max_new_events <= 0: - raise ValueError("Implied to not be generating any new events!") - - if self.config.task_specific_params is None: - self.config.task_specific_params = {} - self.config.task_specific_params.update(self.task_specific_params) - - if self.task_specific_params.get("max_new_events", None) in (omegaconf.MISSING, None): - self.config.task_specific_params["max_new_events"] = implied_max_new_events - - assert self.config.task_specific_params["max_new_events"] == implied_max_new_events - - -@task_wrapper -def generate_trajectories(cfg: GenerateConfig): - L.seed_everything(cfg.seed) - torch.multiprocessing.set_sharing_strategy("file_system") - - tuning_pyd = PytorchDataset(cfg.data_config, split="tuning") - held_out_pyd = PytorchDataset(cfg.data_config, split="held_out") - - config = cfg.config - cfg.data_config - batch_size = cfg.optimization_config.validation_batch_size - num_dataloader_workers = cfg.optimization_config.num_dataloader_workers - - orig_max_seq_len = config.max_seq_len - orig_mean_log_inter_event_time = config.mean_log_inter_event_time_min - orig_std_log_inter_event_time = config.std_log_inter_event_time_min - config.set_to_dataset(tuning_pyd) - config.max_seq_len = orig_max_seq_len - config.mean_log_inter_event_time_min = orig_mean_log_inter_event_time - config.std_log_inter_event_time_min = orig_std_log_inter_event_time - - output_dir = cfg.save_dir / "generated_trajectories" - - # Model - LM = ESTForTrajectoryGeneration( - config=config, - pretrained_weights_fp=cfg.pretrained_weights_fp, - ) - - # Setting up torch dataloader - tuning_dataloader = torch.utils.data.DataLoader( - tuning_pyd, - batch_size=batch_size, - num_workers=num_dataloader_workers, - collate_fn=tuning_pyd.collate, - shuffle=False, - ) - held_out_dataloader = torch.utils.data.DataLoader( - held_out_pyd, - batch_size=batch_size, - num_workers=num_dataloader_workers, - collate_fn=held_out_pyd.collate, - shuffle=False, - ) - - trainer = L.Trainer(**cfg.trainer_config) - tuning_trajectories = trainer.predict(model=LM, dataloaders=tuning_dataloader) - - local_rank = os.environ.get("LOCAL_RANK", "0") - - for samp_idx, gen_batches in enumerate(zip(*tuning_trajectories)): - out_fp = output_dir / "tuning" / f"sample_{samp_idx}_local_rank_{local_rank}.parquet" - out_fp.parent.mkdir(exist_ok=True, parents=True) - - st_convert = datetime.now() - print(f"Converting to DFs for sample {samp_idx}...") - if cfg.parallelize_conversion is not None and cfg.parallelize_conversion > 1: - with Pool(cfg.parallelize_conversion) as p: - dfs = p.map(PytorchBatch.convert_to_DL_DF, gen_batches) - else: - dfs = [B.convert_to_DL_DF() for B in gen_batches] - print(f"Conversion done in {datetime.now() - st_convert}") - - st_write = datetime.now() - print(f"Writing DF to {out_fp}...") - pl.concat(dfs).write_parquet(out_fp) - print(f"Writing done in {datetime.now() - st_write}") - - held_out_trajectories = trainer.predict(model=LM, dataloaders=held_out_dataloader) - - for samp_idx, gen_batches in enumerate(zip(*held_out_trajectories)): - out_fp = output_dir / "held_out" / f"sample_{samp_idx}_local_rank_{local_rank}.parquet" - out_fp.parent.mkdir(exist_ok=True, parents=True) - - st_convert = datetime.now() - print(f"Converting to DFs for sample {samp_idx}...") - if cfg.parallelize_conversion is not None and cfg.parallelize_conversion > 1: - with Pool(cfg.parallelize_conversion) as p: - dfs = p.map(PytorchBatch.convert_to_DL_DF, gen_batches) - else: - dfs = [B.convert_to_DL_DF() for B in gen_batches] - print(f"Conversion done in {datetime.now() - st_convert}") - print(f"Conversion done in {datetime.now() - st_convert}") - - st_write = datetime.now() - print(f"Writing DF to {out_fp}...") - pl.concat(dfs).write_parquet(out_fp) - print(f"Writing done in {datetime.now() - st_write}") diff --git a/EventStream/logger.py b/EventStream/logger.py new file mode 100644 index 00000000..897c9545 --- /dev/null +++ b/EventStream/logger.py @@ -0,0 +1,10 @@ +import os + +import hydra +from loguru import logger as log + + +def hydra_loguru_init() -> None: + """Must be called from a hydra main!""" + hydra_path = hydra.core.hydra_config.HydraConfig.get().runtime.output_dir + log.add(os.path.join(hydra_path, "main.log")) diff --git a/EventStream/tasks/profile.py b/EventStream/tasks/profile.py index 37a173c3..a9da3531 100644 --- a/EventStream/tasks/profile.py +++ b/EventStream/tasks/profile.py @@ -4,7 +4,7 @@ import polars as pl -pl.enable_string_cache(True) +pl.enable_string_cache() def add_tasks_from( @@ -82,7 +82,7 @@ def add_tasks_from( ┌────────────┬────────────┬─────────────────────┬─────┐ │ subject_id ┆ start_time ┆ end_time ┆ foo │ │ --- ┆ --- ┆ --- ┆ --- │ - │ i64 ┆ f32 ┆ datetime[μs] ┆ i64 │ + │ i64 ┆ null ┆ datetime[μs] ┆ i64 │ ╞════════════╪════════════╪═════════════════════╪═════╡ │ 1 ┆ null ┆ 2023-01-04 00:00:00 ┆ 0 │ │ 2 ┆ null ┆ 1984-01-02 00:00:00 ┆ 5 │ @@ -95,7 +95,7 @@ def add_tasks_from( ┌────────────┬────────────┬─────────────────────┬──────┐ │ subject_id ┆ start_time ┆ end_time ┆ bar │ │ --- ┆ --- ┆ --- ┆ --- │ - │ i64 ┆ f32 ┆ datetime[μs] ┆ f64 │ + │ i64 ┆ null ┆ datetime[μs] ┆ f64 │ ╞════════════╪════════════╪═════════════════════╪══════╡ │ 1 ┆ null ┆ 2010-01-04 00:00:00 ┆ 3.12 │ │ 3 ┆ null ┆ 1985-01-02 00:00:00 ┆ 8.1 │ @@ -151,9 +151,9 @@ def summarize_binary_task(task_df: pl.LazyFrame): """ label_cols = [c for c in task_df.columns if c not in KEY_COLS] return ( - task_df.groupby("subject_id") + task_df.group_by("subject_id") .agg( - pl.count().alias("samples_per_subject"), + pl.len().alias("samples_per_subject"), *[pl.col(c).mean() for c in label_cols], ) .select( diff --git a/EventStream/transformer/config.py b/EventStream/transformer/config.py index ebf773c3..ee8fd86c 100644 --- a/EventStream/transformer/config.py +++ b/EventStream/transformer/config.py @@ -11,6 +11,7 @@ from collections.abc import Hashable from typing import Any, Union +from loguru import logger from transformers import PretrainedConfig from ..data.config import MeasurementConfig @@ -571,14 +572,14 @@ def __init__( ) else: if categorical_embedding_dim is not None: - print( - f"WARNING: categorical_embedding_dim is set to {categorical_embedding_dim} but " + logger.warning( + f"categorical_embedding_dim is set to {categorical_embedding_dim} but " f"do_split_embeddings={do_split_embeddings}. Setting categorical_embedding_dim to None." ) categorical_embedding_dim = None if numerical_embedding_dim is not None: - print( - f"WARNING: numerical_embedding_dim is set to {numerical_embedding_dim} but " + logger.warning( + f"numerical_embedding_dim is set to {numerical_embedding_dim} but " f"do_split_embeddings={do_split_embeddings}. Setting numerical_embedding_dim to None." ) numerical_embedding_dim = None @@ -595,8 +596,7 @@ def __init__( missing_param_err_tmpl = f"For a {structured_event_processing_mode} model, {{}} should not be None" extra_param_err_tmpl = ( - f"WARNING: For a {structured_event_processing_mode} model, {{}} is not used; got {{}}. Setting " - "to None." + f"For a {structured_event_processing_mode} model, {{}} is not used; got {{}}. Setting " "to None." ) match structured_event_processing_mode: case StructuredEventProcessingMode.NESTED_ATTENTION: @@ -626,21 +626,21 @@ def __init__( case StructuredEventProcessingMode.CONDITIONALLY_INDEPENDENT: if measurements_per_dep_graph_level is not None: - print( + logger.warning( extra_param_err_tmpl.format( "measurements_per_dep_graph_level", measurements_per_dep_graph_level ) ) measurements_per_dep_graph_level = None if do_full_block_in_seq_attention is not None: - print( + logger.warning( extra_param_err_tmpl.format( "do_full_block_in_seq_attention", do_full_block_in_seq_attention ) ) do_full_block_in_seq_attention = None if do_full_block_in_dep_graph_attention is not None: - print( + logger.warning( extra_param_err_tmpl.format( "do_full_block_in_dep_graph_attention", do_full_block_in_dep_graph_attention, @@ -648,10 +648,14 @@ def __init__( ) do_full_block_in_dep_graph_attention = None if dep_graph_attention_types is not None: - print(extra_param_err_tmpl.format("dep_graph_attention_types", dep_graph_attention_types)) + logger.warning( + extra_param_err_tmpl.format("dep_graph_attention_types", dep_graph_attention_types) + ) dep_graph_attention_types = None if dep_graph_window_size is not None: - print(extra_param_err_tmpl.format("dep_graph_window_size", dep_graph_window_size)) + logger.warning( + extra_param_err_tmpl.format("dep_graph_window_size", dep_graph_window_size) + ) dep_graph_window_size = None case _: @@ -752,7 +756,7 @@ def __init__( case TimeToEventGenerationHeadType.EXPONENTIAL: if TTE_lognormal_generation_num_components is not None: - print( + logger.warning( extra_param_err_tmpl.format( "TTE_lognormal_generation_num_components", TTE_lognormal_generation_num_components, @@ -760,14 +764,14 @@ def __init__( ) TTE_lognormal_generation_num_components = None if mean_log_inter_event_time_min is not None: - print( + logger.warning( extra_param_err_tmpl.format( "mean_log_inter_event_time_min", mean_log_inter_event_time_min ) ) mean_log_inter_event_time_min = None if std_log_inter_event_time_min is not None: - print( + logger.warning( extra_param_err_tmpl.format( "std_log_inter_event_time_min", std_log_inter_event_time_min ) diff --git a/EventStream/transformer/lightning_modules/embedding.py b/EventStream/transformer/lightning_modules/embedding.py index 6353fdb6..18aa9d23 100644 --- a/EventStream/transformer/lightning_modules/embedding.py +++ b/EventStream/transformer/lightning_modules/embedding.py @@ -6,6 +6,7 @@ import lightning as L import torch +from loguru import logger from ...data.pytorch_dataset import PytorchDataset from ..config import StructuredEventProcessingMode, StructuredTransformerConfig @@ -153,8 +154,10 @@ def get_embeddings(cfg: FinetuneConfig): if os.environ.get("LOCAL_RANK", "0") == "0": if embeddings_fp.is_file() and not cfg.do_overwrite: - print(f"Embeddings already exist at {embeddings_fp}. To overwrite, set `do_overwrite=True`.") + logger.info( + f"Embeddings already exist at {embeddings_fp}. To overwrite, set `do_overwrite=True`." + ) else: - print(f"Saving {sp} embeddings to {embeddings_fp}.") + logger.info(f"Saving {sp} embeddings to {embeddings_fp}.") embeddings_fp.parent.mkdir(exist_ok=True, parents=True) torch.save(embeddings, embeddings_fp) diff --git a/EventStream/transformer/lightning_modules/fine_tuning.py b/EventStream/transformer/lightning_modules/fine_tuning.py index bf1cae02..8bf31e65 100644 --- a/EventStream/transformer/lightning_modules/fine_tuning.py +++ b/EventStream/transformer/lightning_modules/fine_tuning.py @@ -14,6 +14,7 @@ from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint from lightning.pytorch.callbacks.early_stopping import EarlyStopping from lightning.pytorch.loggers import WandbLogger +from loguru import logger from omegaconf import OmegaConf from torchmetrics.classification import ( BinaryAccuracy, @@ -183,7 +184,7 @@ def _log_metric_dict( metric(preds, labels.long()) self.log(f"{prefix}_{metric_name}", metric) except (ValueError, IndexError) as e: - print( + logger.error( f"Failed to compute {metric_name} " f"with preds ({str_summary(preds)}) and labels ({str_summary(labels)}): {e}." ) @@ -396,13 +397,13 @@ def __post_init__(self): and self.data_config.get("train_subset_seed", None) is None ): self.data_config["train_subset_seed"] = int(random.randint(1, int(1e6))) - print( - f"WARNING: train_subset_size={self.data_config.train_subset_size} but " + logger.warning( + f"train_subset_size={self.data_config.train_subset_size} but " f"seed is unset. Setting to {self.data_config['train_subset_seed']}" ) data_config_fp = self.load_from_model_dir / "data_config.json" - print(f"Loading data_config from {data_config_fp}") + logger.info(f"Loading data_config from {data_config_fp}") reloaded_data_config = PytorchDatasetConfig.from_json_file(data_config_fp) reloaded_data_config.task_df_name = self.task_df_name @@ -411,31 +412,33 @@ def __post_init__(self): continue if param == "task_df_name": if val != self.task_df_name: - print( - f"WARNING: task_df_name is set in data_config_overrides to {val}! " + logger.warning( + f"task_df_name is set in data_config_overrides to {val}! " f"Original is {self.task_df_name}. Ignoring data_config..." ) continue - print(f"Overwriting {param} in data_config from {getattr(reloaded_data_config, param)} to {val}") + logger.info( + f"Overwriting {param} in data_config from {getattr(reloaded_data_config, param)} to {val}" + ) setattr(reloaded_data_config, param, val) self.data_config = reloaded_data_config config_fp = self.load_from_model_dir / "config.json" - print(f"Loading config from {config_fp}") + logger.info(f"Loading config from {config_fp}") reloaded_config = StructuredTransformerConfig.from_json_file(config_fp) for param, val in self.config.items(): if val is None: continue - print(f"Overwriting {param} in config from {getattr(reloaded_config, param)} to {val}") + logger.info(f"Overwriting {param} in config from {getattr(reloaded_config, param)} to {val}") setattr(reloaded_config, param, val) self.config = reloaded_config reloaded_pretrain_config = OmegaConf.load(self.load_from_model_dir / "pretrain_config.yaml") if self.wandb_logger_kwargs.get("project", None) is None: - print(f"Setting wandb project to {reloaded_pretrain_config.wandb_logger_kwargs.project}") + logger.info(f"Setting wandb project to {reloaded_pretrain_config.wandb_logger_kwargs.project}") self.wandb_logger_kwargs["project"] = reloaded_pretrain_config.wandb_logger_kwargs.project @@ -464,12 +467,12 @@ def train(cfg: FinetuneConfig): if os.environ.get("LOCAL_RANK", "0") == "0": cfg.save_dir.mkdir(parents=True, exist_ok=True) - print("Saving config files...") + logger.info("Saving config files...") config_fp = cfg.save_dir / "config.json" if config_fp.exists() and not cfg.do_overwrite: raise FileExistsError(f"{config_fp} already exists!") else: - print(f"Writing to {config_fp}") + logger.info(f"Writing to {config_fp}") config.to_json_file(config_fp) data_config.to_json_file(cfg.save_dir / "data_config.json", do_overwrite=cfg.do_overwrite) @@ -486,7 +489,7 @@ def train(cfg: FinetuneConfig): # TODO(mmd): Get this working! # if cfg.compile: - # print("Compiling model!") + # logger.info("Compiling model!") # LM = torch.compile(LM) # Setting up torch dataloader @@ -573,7 +576,7 @@ def train(cfg: FinetuneConfig): held_out_metrics = trainer.test(model=LM, dataloaders=held_out_dataloader, ckpt_path="best") if os.environ.get("LOCAL_RANK", "0") == "0": - print("Saving final metrics...") + logger.info("Saving final metrics...") with open(cfg.save_dir / "tuning_metrics.json", mode="w") as f: json.dump(tuning_metrics, f) diff --git a/EventStream/transformer/lightning_modules/generative_modeling.py b/EventStream/transformer/lightning_modules/generative_modeling.py index 4c82a8e7..180fb573 100644 --- a/EventStream/transformer/lightning_modules/generative_modeling.py +++ b/EventStream/transformer/lightning_modules/generative_modeling.py @@ -12,6 +12,7 @@ from lightning.pytorch.callbacks import LearningRateMonitor from lightning.pytorch.callbacks.early_stopping import EarlyStopping from lightning.pytorch.loggers import WandbLogger +from loguru import logger from torchmetrics.classification import ( MulticlassAccuracy, MulticlassAUROC, @@ -279,7 +280,7 @@ def _log_metric_dict( sync_dist=True, ) except (ValueError, IndexError) as e: - print( + logger.error( f"Failed to compute {metric_name} for {measurement} " f"with preds ({str_summary(preds)}) and labels ({str_summary(labels)}): {e}." ) @@ -519,7 +520,12 @@ class PretrainConfig: ) ) final_validation_metrics_config: MetricsConfig = dataclasses.field( - default_factory=lambda: MetricsConfig(do_skip_all_metrics=False) + default_factory=lambda: MetricsConfig( + include_metrics={ + Split.TUNING: {MetricCategories.LOSS_PARTS: True}, + Split.HELD_OUT: {MetricCategories.LOSS_PARTS: True}, + }, + ) ) trainer_config: dict[str, Any] = dataclasses.field( @@ -590,12 +596,12 @@ def train(cfg: PretrainConfig): if os.environ.get("LOCAL_RANK", "0") == "0": cfg.save_dir.mkdir(parents=True, exist_ok=True) - print("Saving config files...") + logger.info("Saving config files...") config_fp = cfg.save_dir / "config.json" if config_fp.exists() and not cfg.do_overwrite: raise FileExistsError(f"{config_fp} already exists!") else: - print(f"Writing to {config_fp}") + logger.info(f"Writing to {config_fp}") config.to_json_file(config_fp) data_config.to_json_file(cfg.save_dir / "data_config.json", do_overwrite=cfg.do_overwrite) @@ -618,7 +624,7 @@ def train(cfg: PretrainConfig): # TODO(mmd): Get this working! # if cfg.compile: - # print("Compiling model!") + # logger.info("Compiling model!") # LM = torch.compile(LM) # Setting up torch dataloader @@ -680,7 +686,6 @@ def train(cfg: PretrainConfig): # Fitting model trainer = L.Trainer(**trainer_kwargs) trainer.fit(model=LM, train_dataloaders=train_dataloader, val_dataloaders=tuning_dataloader) - LM.save_pretrained(cfg.save_dir) if cfg.do_final_validation_on_metrics: @@ -700,7 +705,7 @@ def train(cfg: PretrainConfig): held_out_metrics = trainer.test(model=LM, dataloaders=held_out_dataloader) if os.environ.get("LOCAL_RANK", "0") == "0": - print("Saving final metrics...") + logger.info("Saving final metrics...") with open(cfg.save_dir / "tuning_metrics.json", mode="w") as f: json.dump(tuning_metrics, f) diff --git a/EventStream/transformer/lightning_modules/zero_shot_evaluator.py b/EventStream/transformer/lightning_modules/zero_shot_evaluator.py index 8489ce4d..a51f4c4a 100644 --- a/EventStream/transformer/lightning_modules/zero_shot_evaluator.py +++ b/EventStream/transformer/lightning_modules/zero_shot_evaluator.py @@ -10,6 +10,7 @@ import torch.multiprocessing import torchmetrics from lightning.pytorch.loggers import WandbLogger +from loguru import logger from torchmetrics.classification import ( BinaryAccuracy, BinaryAUROC, @@ -168,7 +169,7 @@ def _log_metric_dict( metric(preds, labels) self.log(f"{prefix}_{metric_name}", metric) except (ValueError, IndexError) as e: - print( + logger.error( f"Failed to compute {metric_name} " f"with preds ({str_summary(preds)}) and labels ({str_summary(labels)}): {e}." ) @@ -380,7 +381,7 @@ def zero_shot_evaluation(cfg: FinetuneConfig): held_out_metrics = trainer.test(model=LM, dataloaders=held_out_dataloader) if os.environ.get("LOCAL_RANK", "0") == "0": - print("Saving final metrics...") + logger.info("Saving final metrics...") cfg.save_dir.mkdir(parents=True, exist_ok=True) with open(cfg.save_dir / "zero_shot_tuning_metrics.json", mode="w") as f: diff --git a/EventStream/transformer/model_output.py b/EventStream/transformer/model_output.py index 41c68def..07c9645c 100644 --- a/EventStream/transformer/model_output.py +++ b/EventStream/transformer/model_output.py @@ -9,6 +9,7 @@ from typing import Any import torch +from loguru import logger from transformers.utils import ModelOutput from ..data.data_embedding_layer import MeasIndexGroupOptions @@ -430,8 +431,8 @@ def add_single_label_classification(measurement: str): vocab_size = config.vocab_sizes_by_measurement[measurement] if measurement not in self.classification: - print( - f"WARNING: Attempting to generate improper measurement {measurement}! " + logger.warning( + f"Attempting to generate improper measurement {measurement}! " f"Acceptable targets: {', '.join(self.classification.keys())}" ) return @@ -457,7 +458,7 @@ def add_multi_label_classification(measurement: str): vocab_size = config.vocab_sizes_by_measurement[measurement] if measurement not in self.classification: - print(f"WARNING: Attempting to generate improper measurement {measurement}!") + logger.warning(f"Attempting to generate improper measurement {measurement}!") return preds = self.classification[measurement] @@ -525,11 +526,12 @@ def add_multivariate_regression(measurement: str, indices: torch.LongTensor): values = regressed_values.gather(-1, idx_gather_T) values_mask = regressed_values_mask.gather(-1, idx_gather_T) - except RuntimeError: - print(f"Failed on {measurement} with {indices.shape} indices") - print(f"Vocab offset: {vocab_offset}") - print(f"Indices:\n{indices}") - raise + except RuntimeError as e: + raise ValueError( + f"Failed on {measurement} with {indices.shape} indices\n" + f"Vocab offset: {vocab_offset}\n" + f"Indices:\n{indices}" + ) from e values = torch.where(mask, values, 0) values_mask = torch.where(mask, values_mask, False) @@ -1022,9 +1024,11 @@ def update_last_event_data( try: new_dynamic_indices = torch.cat((prev_dynamic_indices, new_dynamic_indices), 1) - except BaseException: - print(prev_dynamic_indices.shape) - print(new_dynamic_indices.shape) + except BaseException as e: + raise ValueError( + f"Failed to construct new indices given shapes {prev_dynamic_indices.shape} and " + f"{new_dynamic_indices.shape}." + ) from e new_dynamic_measurement_indices = torch.cat( (prev_dynamic_measurement_indices, new_dynamic_measurement_indices), 1 ) @@ -1354,8 +1358,7 @@ def get_TTE_outputs( try: TTE_LL = TTE_dist.log_prob(TTE_true_exp) except ValueError as e: - print(f"Failed to compute TTE log prob on input {str_summary(TTE_true_exp)}: {e}") - raise + raise ValueError(f"Failed to compute TTE log prob on input {str_summary(TTE_true_exp)}") from e if TTE_obs_mask_exp.isnan().any(): raise ValueError(f"NaNs in TTE_obs_mask_exp: {batch}") @@ -1490,16 +1493,15 @@ def get_classification_outputs( try: loss_per_event = self.classification_criteria[measurement](scores.transpose(1, 2), labels) except IndexError as e: - print(f"Failed to get loss for {measurement}: {e}!") - print(f"vocab_start: {vocab_start}, vocab_end: {vocab_end}") - print(f"max(labels): {labels.max()}, min(labels): {labels.min()}") - print( + raise ValueError( + f"Failed to get loss for {measurement}:\n" + f"vocab_start: {vocab_start}, vocab_end: {vocab_end}\n" + f"max(labels): {labels.max()}, min(labels): {labels.min()}\n" f"max(dynamic_indices*tensor_idx): {((dynamic_indices*tensor_idx).max())}, " - f"min(dynamic_indices*tensor_idx): {((dynamic_indices*tensor_idx).min())}" - ) - print(f"max(tensor_idx.sum(-1)): {tensor_idx.sum(-1).max()}") - print(f"scores.shape: {scores.shape}") - raise + f"min(dynamic_indices*tensor_idx): {((dynamic_indices*tensor_idx).min())}\n" + f"max(tensor_idx.sum(-1)): {tensor_idx.sum(-1).max()}\n" + f"scores.shape: {scores.shape}" + ) from e event_mask = event_mask & events_with_label diff --git a/EventStream/transformer/transformer.py b/EventStream/transformer/transformer.py index 6022a6fe..394fb629 100644 --- a/EventStream/transformer/transformer.py +++ b/EventStream/transformer/transformer.py @@ -119,7 +119,7 @@ def __init__( self.register_buffer("bias", bias) self.register_buffer("masked_bias", torch.tensor(-1e9)) - self.attn_dropout = nn.Dropout(float(config.attention_dropout)) + self.attn_dropout_p = config.attention_dropout self.resid_dropout = nn.Dropout(float(config.resid_dropout)) self.embed_dim = config.hidden_size @@ -176,45 +176,70 @@ def _attn(self, query, key, value, attention_mask=None, head_mask=None): key: The key tensor. value: The value tensor. attention_mask: A mask to be applied on the attention weights. - head_mask: A mask to be applied on the attention heads. + head_mask: A mask to be applied on the attention heads. Not supported for now. Returns: A tuple containing the output of the attention operation and the attention weights. """ - # Keep the attention weights computation in fp32 to avoid overflow issues - query = query.to(torch.float32) - key = key.to(torch.float32) + if head_mask is not None: + raise ValueError("layer_head_mask different than None is unsupported for now") + + batch_size = query.shape[0] + mask_value = torch.finfo(value.dtype).min + mask_value = torch.full([], mask_value, dtype=value.dtype) + + # in gpt-neo-x and gpt-j the query and keys are always in fp32 + # thus we need to cast them to the value dtype + query = query.to(value.dtype) + key = key.to(value.dtype) # query, key, and value are all of shape (batch, head, seq_length, head_features) - attn_weights = torch.matmul(query, key.transpose(-1, -2)) - # attn_weights is of shape batch, head, query_seq_length, key_seq_length + if batch_size == 1 and attention_mask is not None and attention_mask[0, 0, 0, -1] < -1: + raise ValueError( + "BetterTransformer does not support padding='max_length' with a batch size of 1." + ) - query_length, key_length = query.size(-2), key.size(-2) - causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].to(torch.bool) - mask_value = torch.finfo(attn_weights.dtype).min - # Need to be a tensor, otherwise we get error: - # `RuntimeError: expected scalar type float but found double`. - # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` - mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) - attn_weights = torch.where(causal_mask, attn_weights, mask_value) + dropout_p = self.attn_dropout_p if self.training else 0.0 + if batch_size == 1 or self.training: + # if attention_mask is not None: + # raise ValueError(f"This code path ignores attention mask yet it is not None!") - if attention_mask is not None: - # Apply the attention mask - attn_weights = attn_weights + attention_mask + if query.shape[2] > 1: + sdpa_result = torch.nn.functional.scaled_dot_product_attention( + query, key, value, attn_mask=None, dropout_p=dropout_p, is_causal=True + ) + else: + sdpa_result = torch.nn.functional.scaled_dot_product_attention( + query, key, value, attn_mask=None, dropout_p=dropout_p, is_causal=False + ) + else: + query_length, key_length = query.size(-2), key.size(-2) - attn_weights = nn.functional.softmax(attn_weights, dim=-1) - attn_weights = attn_weights.to(value.dtype) - attn_weights = self.attn_dropout(attn_weights) + # causal_mask is always [True, ..., True] otherwise, so executing this + # is unnecessary + if query_length > 1: + causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].to( + torch.bool + ) - # Mask heads if we want to - if head_mask is not None: - attn_weights = attn_weights * head_mask + causal_mask = torch.where(causal_mask, 0, mask_value) + + # torch.Tensor.expand does no memory copy + causal_mask = causal_mask.expand(batch_size, -1, -1, -1) + if attention_mask is not None: + attention_mask = causal_mask + attention_mask + + sdpa_result = torch.nn.functional.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=dropout_p, is_causal=False + ) - attn_output = torch.matmul(attn_weights, value) + # in gpt-neo-x and gpt-j the query and keys are always in fp32 + # thus we need to cast them to the value dtype + sdpa_result = sdpa_result.to(value.dtype) - return attn_output, attn_weights + return sdpa_result, None def forward( self, @@ -585,20 +610,24 @@ def __init__( # div_term = torch.exp(torch.arange(0, embedding_dim, 2) * (-math.log(max_timepoint) / embedding_dim)) size = math.ceil(embedding_dim / 2) - div_term = torch.empty( + sin_div_term = torch.empty( size, ) - torch.nn.init.normal_(div_term) + cos_div_term = torch.empty( + size, + ) + torch.nn.init.normal_(sin_div_term) + torch.nn.init.normal_(cos_div_term) # We still want this to work for odd embedding dimensions, so we'll lop off the end of the cos # embedding. This is not a principled decision, but enabling odd embedding dimensions helps avoid edge # cases during hyperparameter tuning when searching over possible embedding spaces. if self.embedding_dim % 2 == 0: - self.sin_div_term = torch.nn.Parameter(div_term, requires_grad=True) - self.cos_div_term = torch.nn.Parameter(div_term, requires_grad=True) + self.sin_div_term = torch.nn.Parameter(sin_div_term, requires_grad=True) + self.cos_div_term = torch.nn.Parameter(cos_div_term, requires_grad=True) else: - self.sin_div_term = torch.nn.Parameter(div_term, requires_grad=True) - self.cos_div_term = torch.nn.Parameter(div_term[:-1], requires_grad=True) + self.sin_div_term = torch.nn.Parameter(sin_div_term, requires_grad=True) + self.cos_div_term = torch.nn.Parameter(cos_div_term[:-1], requires_grad=True) def forward(self, batch: PytorchBatch) -> torch.Tensor: """Forward pass. @@ -646,17 +675,22 @@ def __init__( ): super().__init__() self.embedding_dim = embedding_dim - div_term = torch.exp(torch.arange(0, embedding_dim, 2) * (-math.log(max_timepoint) / embedding_dim)) + sin_div_term = torch.exp( + torch.arange(0, embedding_dim, 2) * (-math.log(max_timepoint) / embedding_dim) + ) + cos_div_term = torch.exp( + torch.arange(0, embedding_dim, 2) * (-math.log(max_timepoint) / embedding_dim) + ) # We still want this to work for odd embedding dimensions, so we'll lop off the end of the cos # embedding. This is not a principled decision, but enabling odd embedding dimensions helps avoid edge # cases during hyperparameter tuning when searching over possible embedding spaces. if self.embedding_dim % 2 == 0: - self.sin_div_term = torch.nn.Parameter(div_term, requires_grad=False) - self.cos_div_term = torch.nn.Parameter(div_term, requires_grad=False) + self.sin_div_term = torch.nn.Parameter(sin_div_term, requires_grad=False) + self.cos_div_term = torch.nn.Parameter(cos_div_term, requires_grad=False) else: - self.sin_div_term = torch.nn.Parameter(div_term, requires_grad=False) - self.cos_div_term = torch.nn.Parameter(div_term[:-1], requires_grad=False) + self.sin_div_term = torch.nn.Parameter(sin_div_term, requires_grad=False) + self.cos_div_term = torch.nn.Parameter(cos_div_term[:-1], requires_grad=False) def forward(self, batch: PytorchBatch) -> torch.Tensor: """Forward pass. diff --git a/EventStream/utils.py b/EventStream/utils.py index 65906278..85e36550 100644 --- a/EventStream/utils.py +++ b/EventStream/utils.py @@ -8,7 +8,6 @@ import functools import json import re -import sys import traceback from collections.abc import Callable from importlib.util import find_spec @@ -17,6 +16,7 @@ import hydra import polars as pl +from loguru import logger PROPORTION = float COUNT_OR_PROPORTION = Union[int, PROPORTION] @@ -380,8 +380,7 @@ def wrap(*args, **kwargs): # some hyperparameter combinations might be invalid or cause out-of-memory errors # so when using hparam search plugins like Optuna, you might want to disable # raising the below exception to avoid multirun failure - print(f"EXCEPTION: {ex}") - print(traceback.print_exc(), file=sys.stderr) + logger.error(f"EXCEPTION: {ex}\nTRACEBACK:\n{traceback.print_exc()}") raise ex finally: # always close wandb run (even if exception occurs so multirun won't fail) diff --git a/README.md b/README.md index 3e76a5e8..456914dc 100644 --- a/README.md +++ b/README.md @@ -34,6 +34,10 @@ GitHub issue. Installation of the required dependencies can be done via pip with `pip install -e .` in the root directory of the repository. To be able to run tests, use `pip install -e .[tests]`. To be able to build docs, use `pip install -e .[docs]`. +Note that ESGPT currently only supports polars >= 0.19 (as a number of function names were changed at that +version). If you try to use it with an old environment and see errors on function names like `groupby` vs. +`group_by`, that is likely the cause. + ## Overview This codebase contains utilities for working with event stream datasets, meaning datasets where any given sample consists of a sequence of continuous-time events. Each event can consist of various categorical or continuous measurements of various structures. diff --git a/configs/README.md b/configs/README.md index bf6c2bd7..b3d1d50c 100644 --- a/configs/README.md +++ b/configs/README.md @@ -13,7 +13,6 @@ more information. ```yaml defaults: - outlier_detector_config: stddev_cutoff - - normalizer_config: standard_scaler - _self_ cohort_name: ??? diff --git a/configs/dataset_base.yaml b/configs/dataset_base.yaml index 01e365f9..6d58bf37 100644 --- a/configs/dataset_base.yaml +++ b/configs/dataset_base.yaml @@ -1,6 +1,5 @@ defaults: - outlier_detector_config: stddev_cutoff - - normalizer_config: standard_scaler - _self_ cohort_name: ??? @@ -16,6 +15,7 @@ min_true_float_frequency: 0.1 min_unique_numerical_observations: 25 min_events_per_subject: 20 agg_by_time_scale: null +center_and_scale: True hydra: job: diff --git a/configs/normalizer_config/standard_scaler.yaml b/configs/normalizer_config/standard_scaler.yaml deleted file mode 100644 index 2359fdc1..00000000 --- a/configs/normalizer_config/standard_scaler.yaml +++ /dev/null @@ -1 +0,0 @@ -cls: standard_scaler diff --git a/configs/outlier_detector_config/stddev_cutoff.yaml b/configs/outlier_detector_config/stddev_cutoff.yaml index 9c9ba8be..b2b4207f 100644 --- a/configs/outlier_detector_config/stddev_cutoff.yaml +++ b/configs/outlier_detector_config/stddev_cutoff.yaml @@ -1,2 +1 @@ -cls: stddev_cutoff stddev_cutoff: 5.0 diff --git a/docs/MIMIC_IV_tutorial/data_extraction_processing.md b/docs/MIMIC_IV_tutorial/data_extraction_processing.md index 554566ab..8f053853 100644 --- a/docs/MIMIC_IV_tutorial/data_extraction_processing.md +++ b/docs/MIMIC_IV_tutorial/data_extraction_processing.md @@ -21,15 +21,15 @@ language: yaml --- ``` -With this configuration file saved to path `.../configs/dataset.yml`, and with `EFGPT_PATH` defined to point -to the root of the EFGPT repo, then the dataset pipeline can be built with the command +With this configuration file saved to path `.../configs/dataset.yml`, and with `ESGPT_PATH` defined to point +to the root of the ESGPT repo, then the dataset pipeline can be built with the command ```bash -PYTHONPATH="$EFGPT_PATH:$PYTHONPATH" python \ - $EFGPT_PATH/scripts/build_dataset.py \ +PYTHONPATH="$ESGPT_PATH:$PYTHONPATH" python \ + $ESGPT_PATH/scripts/build_dataset.py \ --config-path=$(pwd)/configs \ --config-name=dataset \ - "hydra.searchpath=[$EFGPT_PATH/configs]" [configuration args...] + "hydra.searchpath=[$ESGPT_PATH/configs]" [configuration args...] ``` The only mandatory command line configuration argument with this setup is the `cohort_name` argument. As can @@ -43,8 +43,8 @@ command: #### Hydra-specific parameters The `defaults:` block at the top is a Hydra specific inclusion, and ensures the script knows to merge this -configuration file. Similarly, the `hydra.searchpath=[$EFGPT_PATH/confgis]` command line argument also ensures -Hydra knows to look for the base config in the EFGPT repository's configs path. +configuration file. Similarly, the `hydra.searchpath=[$ESGPT_PATH/configs]` command line argument also ensures +Hydra knows to look for the base config in the ESGPT repository's configs path. #### Inputs diff --git a/pyproject.toml b/pyproject.toml index 27ad66aa..165a5fdf 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -18,9 +18,8 @@ packages = [ [tool.poetry.dependencies] python = ">=3.10,<3.13" +polars = "^0.20.31" numpy = "^1.26.4" -safetensors = "^0.3.3" -polars = "^0.18.15" plotly = "^5.16.1" ml-mixins = "^0.0.5" humanize = "^4.8.0" @@ -36,16 +35,18 @@ torchmetrics = "^1.0.3" dill = "^0.3.7" kaleido = "0.2.1" datasets = "^2.14.4" -transformers = "^4.31.0" +transformers = "^4.40.0" wandb = "^0.15.8" scipy = "^1.11.2" scikit-learn = "^1.3.0" rootutils = "^1.0.7" +loguru = "^0.7.2" +nested-ragged-tensors = "^0.0.6" # Test dependencies pexpect = { version="^4.8.0", optional=true } pytest = { version="^7.4.0", optional=true } -pytest-cov = {extras = ["toml"], version = "^4.1.0", optional=true} +pytest-cov = { version = "^4.1.0", optional=true} nbmake = { version="^1.4.3", optional=true } pre-commit = { version="^3.3.3", optional=true} pytest-subtests = { version="^0.11.0", optional=true} diff --git a/sample_data/build_sample_task_DF.py b/sample_data/build_sample_task_DF.py index a617fbbd..dfd2b007 100755 --- a/sample_data/build_sample_task_DF.py +++ b/sample_data/build_sample_task_DF.py @@ -26,7 +26,7 @@ def main(cfg: DictConfig): ( ESD.events_df - .groupby('subject_id') + .group_by('subject_id') .agg(pl.col('timestamp').sample().first().alias('end_time')) .with_columns( pl.lit(label_fn(len(ESD.subject_ids))).cast(pl_dtype).alias('label'), diff --git a/sample_data/dataset.yaml b/sample_data/dataset.yaml index bc399535..800d8544 100644 --- a/sample_data/dataset.yaml +++ b/sample_data/dataset.yaml @@ -29,6 +29,11 @@ inputs: input_df: "${raw_data_dir}/labs.csv" ts_col: "timestamp" ts_format: "%H:%M:%S-%Y-%m-%d" + medications: + input_df: "${raw_data_dir}/medications.csv" + ts_col: "timestamp" + ts_format: "%H:%M:%S-%Y-%m-%d" + columns: {"name": "medication"} measurements: static: @@ -42,6 +47,13 @@ measurements: dynamic: multi_label_classification: admissions: ["department"] + medications: + - name: medication + modifiers: + - [dose, "float"] + - [frequency, "categorical"] + - [duration, "categorical"] + - [generic_name, "categorical"] univariate_regression: vitals: ["HR", "temp"] multivariate_regression: diff --git a/sample_data/examine_synthetic_data.ipynb b/sample_data/examine_synthetic_data.ipynb index b4f08773..a698595a 100644 --- a/sample_data/examine_synthetic_data.ipynb +++ b/sample_data/examine_synthetic_data.ipynb @@ -12,7 +12,7 @@ "machine, and some jupyter notebooks. We will walk through the entire pipeline with these local examples and\n", "discuss limitations of the pipeline, details of classes, scripts, etc.\n", "\n", - "We'll use rootutils to ensure that our notebook is running from the root of the ESGPT repository, to make imports easier." + "We'll use rootutils to ensure that our notebook is running from the root of the ESGPT repository, to make imports easier. **We also delete any previously processed data from this tutorial, to keep things isolated to this run. Do not re-run this cell unless you want to re-run the full tutorial.**" ] }, { @@ -24,8 +24,10 @@ "source": [ "import os\n", "import rootutils\n", + "import shutil\n", "\n", - "root = rootutils.setup_root(os.path.abspath(''), dotenv=True, pythonpath=True, cwd=True)" + "root = rootutils.setup_root(os.path.abspath(''), dotenv=True, pythonpath=True, cwd=True)\n", + "shutil.rmtree('sample_data/processed', ignore_errors=True)" ] }, { @@ -80,9 +82,10 @@ "data": { "text/html": [ "
\n", "shape: (4, 4)
MRNdobeye_colorheight
i64strstrf64
310243"07/28/1981""GREEN"178.767932
384198"04/15/1985""BROWN"168.319295
520533"04/15/1979""BROWN"165.836447
850710"08/08/1970""HAZEL"159.721833
" @@ -132,9 +135,10 @@ "data": { "text/html": [ "
\n", "shape: (4, 7)
MRNadmit_datedisch_datedepartmentvitals_dateHRtemp
i64strstrstrstrf64f64
1549363"01/04/2010, 06…"01/14/2010, 11…"ORTHOPEDIC""01/11/2010, 14…77.196.3
415881"02/11/2010, 04…"02/14/2010, 07…"ORTHOPEDIC""02/11/2010, 10…148.595.6
42335"03/06/2010, 05…"03/16/2010, 05…"CARDIAC""03/13/2010, 10…46.7101.0
1516810"02/11/2010, 23…"02/22/2010, 23…"CARDIAC""02/12/2010, 16…94.295.2
" @@ -185,9 +189,10 @@ "data": { "text/html": [ "
\n", "shape: (4, 4)
MRNtimestamplab_namelab_value
i64strstrf64
1006798"10:26:00-2010-…"SpO2"53.0
739156"20:45:44-2010-…"SpO2"51.0
426870"00:25:02-2010-…"SpO2"50.0
338121"17:19:16-2010-…"GCS"1.0
" @@ -317,6 +322,11 @@ " input_df: \"${raw_data_dir}/labs.csv\"\n", " ts_col: \"timestamp\"\n", " ts_format: \"%H:%M:%S-%Y-%m-%d\"\n", + " medications:\n", + " input_df: \"${raw_data_dir}/medications.csv\"\n", + " ts_col: \"timestamp\"\n", + " ts_format: \"%H:%M:%S-%Y-%m-%d\"\n", + " columns: {\"name\": \"medication\"}\n", "\n", "measurements:\n", " static:\n", @@ -330,6 +340,13 @@ " dynamic:\n", " multi_label_classification:\n", " admissions: [\"department\"]\n", + " medications:\n", + " - name: medication\n", + " modifiers: \n", + " - [dose, \"float\"]\n", + " - [frequency, \"categorical\"]\n", + " - [duration, \"categorical\"]\n", + " - [generic_name, \"categorical\"]\n", " univariate_regression:\n", " vitals: [\"HR\", \"temp\"]\n", " multivariate_regression:\n", @@ -370,7 +387,7 @@ " \n", "Note that the terms `static`, `functional_time_dependent`, & `dynamic` and `single_label_classification`, `multi_label_classification`, `univariate_regression`, and `multivariate_regression`, are defined enumerations in the `EventStream.data.config` sub-module, and dictate where measurements are stored and how they are pre-processed.\n", " \n", - "Finally, we have the remaining set of parameters, which define our inclusion-exclusion criteria (by specifying `min_events_per_subject`), our outlier and normalizer model configuration parameters (`normalization` being omitted here as what we want is the default value), our filtering thresholds for vocabulary elements, and the aggregation time-scale for events.\n", + "Finally, we have the remaining set of parameters, which define our inclusion-exclusion criteria (by specifying `min_events_per_subject`), our outlier detection parameters, our filtering thresholds for vocabulary elements, and the aggregation time-scale for events.\n", "\n", "#### What else _could_ we have specified?\n", "To better understand the structure of this input specification, let's explore this input configuration file in a bit more detail. To start with, let's look at what the default, base config contains (the config we inherit from in the defaults list):" @@ -388,7 +405,6 @@ "text": [ "defaults:\n", " - outlier_detector_config: stddev_cutoff\n", - " - normalizer_config: standard_scaler\n", " - _self_\n", "\n", "cohort_name: ???\n", @@ -404,6 +420,7 @@ "min_unique_numerical_observations: 25\n", "min_events_per_subject: 20\n", "agg_by_time_scale: null\n", + "center_and_scale: True\n", "\n", "hydra:\n", " job:\n", @@ -424,7 +441,7 @@ "id": "750eb1cd", "metadata": {}, "source": [ - "We can see there are some parameters we're familiar with and some we're not. Firstly, we can see that this default base config marks `cohort_name` and `subject_id_col` with `???`. This is the OmegaConf provided value to represent a value that _needs to be overwritten_ in downstream usage. This is why those two parameters are mandatory. This config also has variables for the seed, split size, and some hydra-internal parameters. Further, it points to two further default configs for the outlier detector and normalizer:" + "We can see there are some parameters we're familiar with and some we're not. Firstly, we can see that this default base config marks `cohort_name` and `subject_id_col` with `???`. This is the OmegaConf provided value to represent a value that _needs to be overwritten_ in downstream usage. This is why those two parameters are mandatory. This config also has variables for the seed, split size, and some hydra-internal parameters. There is also a nested config for the standard deviation cutoff for outlier detection." ] }, { @@ -437,7 +454,6 @@ "name": "stdout", "output_type": "stream", "text": [ - "cls: stddev_cutoff\n", "stddev_cutoff: 5.0\n" ] } @@ -446,24 +462,6 @@ "!cat configs/outlier_detector_config/stddev_cutoff.yaml" ] }, - { - "cell_type": "code", - "execution_count": 9, - "id": "723c10ea", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "cls: standard_scaler\n" - ] - } - ], - "source": [ - "!cat configs/normalizer_config/standard_scaler.yaml" - ] - }, { "cell_type": "markdown", "id": "3e0888ce", @@ -590,7 +588,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "id": "83261030", "metadata": {}, "outputs": [ @@ -598,8 +596,43 @@ "name": "stdout", "output_type": "stream", "text": [ - "Empty new events dataframe of type OUTPATIENT_VISIT!\n", "\n", + "2024-05-16 13:22:36.817 | DEBUG | EventStream.data.dataset_polars:_load_input_df:177 - Loading df from ./sample_data/raw//subjects.csv\n", + "2024-05-16 13:22:36.819 | DEBUG | EventStream.data.dataset_base:__init__:475 - Extracting events and measurements dataframe...\n", + "2024-05-16 13:22:36.819 | DEBUG | EventStream.data.dataset_polars:_load_input_df:177 - Loading df from ./sample_data/raw//admit_vitals.csv\n", + "2024-05-16 13:22:36.819 | DEBUG | EventStream.data.dataset_base:build_event_and_measurement_dfs:242 - Processing Range\n", + "2024-05-16 13:22:36.819 | DEBUG | EventStream.data.dataset_polars:_process_events_and_measurements_df:313 - Processing OUTPATIENT_VISIT via {'department': ('department', )}\n", + "2024-05-16 13:22:36.820 | DEBUG | EventStream.data.dataset_polars:_process_events_and_measurements_df:313 - Processing ADMISSION via {'department': ('department', )}\n", + "2024-05-16 13:22:36.821 | DEBUG | EventStream.data.dataset_polars:_process_events_and_measurements_df:313 - Processing DISCHARGE via {'department': ('department', )}\n", + "2024-05-16 13:22:36.821 | DEBUG | EventStream.data.dataset_base:build_event_and_measurement_dfs:231 - Processing Event\n", + "2024-05-16 13:22:36.821 | DEBUG | EventStream.data.dataset_polars:_process_events_and_measurements_df:313 - Processing VITAL via {'HR': ('HR', ), 'temp': ('temp', )}\n", + "2024-05-16 13:22:36.822 | DEBUG | EventStream.data.dataset_polars:_load_input_df:177 - Loading df from ./sample_data/raw//labs.csv\n", + "2024-05-16 13:22:36.822 | DEBUG | EventStream.data.dataset_base:build_event_and_measurement_dfs:231 - Processing Event\n", + "2024-05-16 13:22:36.822 | DEBUG | EventStream.data.dataset_polars:_process_events_and_measurements_df:313 - Processing LAB via {'lab_name': ('lab_name', ), 'lab_value': ('lab_value', )}\n", + "2024-05-16 13:22:36.823 | DEBUG | EventStream.data.dataset_polars:_load_input_df:177 - Loading df from ./sample_data/raw//medications.csv\n", + "2024-05-16 13:22:36.823 | DEBUG | EventStream.data.dataset_base:build_event_and_measurement_dfs:231 - Processing Event\n", + "2024-05-16 13:22:36.823 | DEBUG | EventStream.data.dataset_polars:_process_events_and_measurements_df:313 - Processing MEDICATION via {'name': ('medication', ), 'dose': ('dose', 'float'), 'frequency': ('frequency', 'categorical'), 'duration': ('duration', 'categorical'), 'generic_name': ('generic_name', 'categorical')}\n", + "2024-05-16 13:22:36.825 | DEBUG | EventStream.data.dataset_base:__init__:480 - Built events and measurements dataframe\n", + "2024-05-16 13:22:36.827 | DEBUG | EventStream.data.dataset_polars:_agg_by_time:642 - Collecting events DF. Not using streaming here as it sometimes causes segfaults.\n", + "2024-05-16 13:22:36.859 | DEBUG | EventStream.data.dataset_polars:_agg_by_time:649 - Aggregating timestamps into buckets\n", + "2024-05-16 13:22:36.915 | DEBUG | EventStream.data.dataset_polars:_agg_by_time:684 - Re-mapping measurements df\n", + "2024-05-16 13:22:36.947 | DEBUG | EventStream.data.dataset_polars:_validate_initial_df:540 - Validating subject_id\n", + "2024-05-16 13:22:36.949 | DEBUG | EventStream.data.dataset_polars:_validate_initial_df:540 - Validating event_id\n", + "2024-05-16 13:22:36.959 | DEBUG | EventStream.data.dataset_polars:_update_subject_event_properties:695 - Collecting event types\n", + "2024-05-16 13:22:36.962 | DEBUG | EventStream.data.dataset_polars:_update_subject_event_properties:708 - Collecting subject event counts\n", + "2024-05-16 13:22:36.963 | INFO | EventStream.data.dataset_base:preprocess:722 - Filtering subjects\n", + "2024-05-16 13:22:36.969 | INFO | EventStream.data.dataset_base:preprocess:724 - Adding time derived measurements\n", + "2024-05-16 13:22:36.970 | INFO | EventStream.data.dataset_base:preprocess:726 - Fitting pre-processing parameters\n", + "2024-05-16 13:22:37.080 | INFO | EventStream.data.dataset_base:preprocess:728 - Transforming variables.\n", + "2024-05-16 13:22:37.202 | INFO | EventStream.data.dataset_base:preprocess:730 - Done with preprocessing\n", + "2024-05-16 13:22:37.235 | INFO | EventStream.data.dataset_base:cache_deep_learning_representation:1363 - Caching DL representations\n", + "2024-05-16 13:22:37.236 | WARNING | EventStream.data.dataset_base:cache_deep_learning_representation:1365 - Sharding is recommended for DL representations.\n", + "2024-05-16 13:22:37.236 | INFO | EventStream.data.dataset_base:cache_deep_learning_representation:1403 - Caching train/0 to sample_data/processed/sample/DL_reps/train/0.parquet\n", + "2024-05-16 13:22:37.316 | INFO | EventStream.data.dataset_base:cache_deep_learning_representation:1412 - Caching NRT for train/0 to sample_data/processed/sample/NRT_reps/train/0.pt\n", + "2024-05-16 13:22:37.684 | INFO | EventStream.data.dataset_base:cache_deep_learning_representation:1403 - Caching held_out/0 to sample_data/processed/sample/DL_reps/held_out/0.parquet\n", + "2024-05-16 13:22:37.704 | INFO | EventStream.data.dataset_base:cache_deep_learning_representation:1412 - Caching NRT for held_out/0 to sample_data/processed/sample/NRT_reps/held_out/0.pt\n", + "2024-05-16 13:22:37.742 | INFO | EventStream.data.dataset_base:cache_deep_learning_representation:1403 - Caching tuning/0 to sample_data/processed/sample/DL_reps/tuning/0.parquet\n", + "2024-05-16 13:22:37.758 | INFO | EventStream.data.dataset_base:cache_deep_learning_representation:1412 - Caching NRT for tuning/0 to sample_data/processed/sample/NRT_reps/tuning/0.pt\n", "\n" ] } @@ -627,16 +660,14 @@ "id": "cd02d747", "metadata": {}, "source": [ - "You should see as output the printed line `Empty new events dataframe of type OUTPATIENT_VISIT!`, but\n", - "otherwise nothing. Before we proceed further, let's break down what this process has done, and how it could do\n", - "things differently. \n", + "You should see the output logs and the command complete successfully. Before we proceed further, let's break down what this process has done, and how it could do things differently. \n", "\n", "Firstly, let's take a look at what is produced in the output folder itself." ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "id": "c283b5bc", "metadata": {}, "outputs": [ @@ -644,7 +675,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "2.3M\tsample_data/processed/sample/\n" + "4.5M\tsample_data/processed/sample/\n" ] } ], @@ -654,7 +685,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "id": "4f239514", "metadata": {}, "outputs": [ @@ -665,16 +696,38 @@ "sample_data/processed/sample:\n", "config.json inferred_measurement_configs.json\n", "\u001b[0m\u001b[01;34mDL_reps\u001b[0m \u001b[01;34minferred_measurement_metadata\u001b[0m\n", - "dynamic_measurements_df.parquet input_schema.json\n", + "DL_shards.json input_schema.json\n", + "dynamic_measurements_df.parquet \u001b[01;34mNRT_reps\u001b[0m\n", "E.pkl subjects_df.parquet\n", "events_df.parquet vocabulary_config.json\n", "hydra_config.yaml\n", "\n", "sample_data/processed/sample/DL_reps:\n", - "held_out_0.parquet train_0.parquet tuning_0.parquet\n", + "\u001b[01;34mheld_out\u001b[0m \u001b[01;34mtrain\u001b[0m \u001b[01;34mtuning\u001b[0m\n", + "\n", + "sample_data/processed/sample/DL_reps/held_out:\n", + "0.parquet\n", + "\n", + "sample_data/processed/sample/DL_reps/train:\n", + "0.parquet\n", + "\n", + "sample_data/processed/sample/DL_reps/tuning:\n", + "0.parquet\n", "\n", "sample_data/processed/sample/inferred_measurement_metadata:\n", - "age.csv HR.csv lab_name.csv temp.csv\n" + "age.csv HR.csv lab_name.csv temp.csv\n", + "\n", + "sample_data/processed/sample/NRT_reps:\n", + "\u001b[01;34mheld_out\u001b[0m \u001b[01;34mtrain\u001b[0m \u001b[01;34mtuning\u001b[0m\n", + "\n", + "sample_data/processed/sample/NRT_reps/held_out:\n", + "0.pt\n", + "\n", + "sample_data/processed/sample/NRT_reps/train:\n", + "0.pt\n", + "\n", + "sample_data/processed/sample/NRT_reps/tuning:\n", + "0.pt\n" ] } ], @@ -699,7 +752,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "id": "6db36770", "metadata": {}, "outputs": [ @@ -809,6 +862,33 @@ " \"start_data_schema\": null,\n", " \"end_data_schema\": null,\n", " \"must_have\": []\n", + " },\n", + " {\n", + " \"input_df\": \"./sample_data/raw//medications.csv\",\n", + " \"type\": \"event\",\n", + " \"event_type\": \"MEDICATION\",\n", + " \"subject_id_col\": \"MRN\",\n", + " \"ts_col\": \"timestamp\",\n", + " \"start_ts_col\": null,\n", + " \"end_ts_col\": null,\n", + " \"ts_format\": \"%H:%M:%S-%Y-%m-%d\",\n", + " \"start_ts_format\": null,\n", + " \"end_ts_format\": null,\n", + " \"data_schema\": [\n", + " {\n", + " \"name\": [\n", + " \"medication\",\n", + " \"categorical\"\n", + " ],\n", + " \"dose\": \"float\",\n", + " \"frequency\": \"categorical\",\n", + " \"duration\": \"categorical\",\n", + " \"generic_name\": \"categorical\"\n", + " }\n", + " ],\n", + " \"start_data_schema\": null,\n", + " \"end_data_schema\": null,\n", + " \"must_have\": []\n", " }\n", " ]\n", "}\n" @@ -831,7 +911,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "id": "167273b1", "metadata": {}, "outputs": [ @@ -865,6 +945,23 @@ " \"_measurement_metadata\": null,\n", " \"modifiers\": null\n", " },\n", + " \"medication\": {\n", + " \"name\": \"medication\",\n", + " \"temporality\": \"dynamic\",\n", + " \"modality\": \"multi_label_classification\",\n", + " \"observation_rate_over_cases\": null,\n", + " \"observation_rate_per_case\": null,\n", + " \"functor\": null,\n", + " \"vocabulary\": null,\n", + " \"values_column\": null,\n", + " \"_measurement_metadata\": null,\n", + " \"modifiers\": [\n", + " \"dose\",\n", + " \"frequency\",\n", + " \"duration\",\n", + " \"generic_name\"\n", + " ]\n", + " },\n", " \"HR\": {\n", " \"name\": \"HR\",\n", " \"temporality\": \"dynamic\",\n", @@ -926,12 +1023,9 @@ " \"min_true_float_frequency\": 0.1,\n", " \"min_unique_numerical_observations\": 20,\n", " \"outlier_detector_config\": {\n", - " \"cls\": \"stddev_cutoff\",\n", " \"stddev_cutoff\": 1.5\n", " },\n", - " \"normalizer_config\": {\n", - " \"cls\": \"standard_scaler\"\n", - " },\n", + " \"center_and_scale\": true,\n", " \"save_dir\": \"/home/mmd/Projects/EventStreamGPT/sample_data/processed/sample\"\n", "}\n" ] @@ -973,7 +1067,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "id": "0863ba35", "metadata": {}, "outputs": [ @@ -993,7 +1087,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "id": "bbdd6b73", "metadata": {}, "outputs": [ @@ -1001,25 +1095,26 @@ "data": { "text/html": [ "
\n", - "shape: (4, 4)
subject_idMRNeye_colordob
u8catcatdatetime[μs]
0"310243""GREEN"1981-07-28 00:00:00
1"384198""BROWN"1985-04-15 00:00:00
2"520533""BROWN"1979-04-15 00:00:00
3"850710""HAZEL"1970-08-08 00:00:00
" + "shape: (4, 3)
subject_ideye_colordob
u32catdatetime[μs]
310243"GREEN"1981-07-28 00:00:00
384198"BROWN"1985-04-15 00:00:00
520533"BROWN"1979-04-15 00:00:00
850710"HAZEL"1970-08-08 00:00:00
" ], "text/plain": [ - "shape: (4, 4)\n", - "┌────────────┬────────┬───────────┬─────────────────────┐\n", - "│ subject_id ┆ MRN ┆ eye_color ┆ dob │\n", - "│ --- ┆ --- ┆ --- ┆ --- │\n", - "│ u8 ┆ cat ┆ cat ┆ datetime[μs] │\n", - "╞════════════╪════════╪═══════════╪═════════════════════╡\n", - "│ 0 ┆ 310243 ┆ GREEN ┆ 1981-07-28 00:00:00 │\n", - "│ 1 ┆ 384198 ┆ BROWN ┆ 1985-04-15 00:00:00 │\n", - "│ 2 ┆ 520533 ┆ BROWN ┆ 1979-04-15 00:00:00 │\n", - "│ 3 ┆ 850710 ┆ HAZEL ┆ 1970-08-08 00:00:00 │\n", - "└────────────┴────────┴───────────┴─────────────────────┘" + "shape: (4, 3)\n", + "┌────────────┬───────────┬─────────────────────┐\n", + "│ subject_id ┆ eye_color ┆ dob │\n", + "│ --- ┆ --- ┆ --- │\n", + "│ u32 ┆ cat ┆ datetime[μs] │\n", + "╞════════════╪═══════════╪═════════════════════╡\n", + "│ 310243 ┆ GREEN ┆ 1981-07-28 00:00:00 │\n", + "│ 384198 ┆ BROWN ┆ 1985-04-15 00:00:00 │\n", + "│ 520533 ┆ BROWN ┆ 1979-04-15 00:00:00 │\n", + "│ 850710 ┆ HAZEL ┆ 1970-08-08 00:00:00 │\n", + "└────────────┴───────────┴─────────────────────┘" ] }, "metadata": {}, @@ -1044,7 +1139,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "id": "9abe57f7", "metadata": {}, "outputs": [ @@ -1052,25 +1147,30 @@ "data": { "text/html": [ "
\n", - "shape: (4, 6)
event_idsubject_idtimestampevent_typeageage_is_inlier
u32u8datetime[μs]catf64bool
002010-06-24 13:23:00"ADMISSION&VITA…-0.463849true
102010-06-24 14:23:00"VITAL&LAB"-0.463823true
202010-06-24 15:23:00"VITAL&LAB"-0.463796true
302010-06-24 16:23:00"VITAL&LAB"-0.46377true
" + "shape: (4, 6)
subject_idtimestampevent_typeevent_idageage_is_inlier
u32datetime[μs]catu64f64bool
152672010-04-23 04:16:29"ADMISSION&VITA…91591888708943377960.440505true
152672010-04-23 05:16:29"LAB"95677027541580370420.440531true
152672010-04-23 06:16:29"LAB"170651180708417746640.440557true
152672010-04-23 07:16:29"VITAL&LAB"78401650132390409790.440583true
" ], "text/plain": [ "shape: (4, 6)\n", - "┌──────────┬────────────┬─────────────────────┬─────────────────────┬───────────┬───────────────┐\n", - "│ event_id ┆ subject_id ┆ timestamp ┆ event_type ┆ age ┆ age_is_inlier │\n", - "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", - "│ u32 ┆ u8 ┆ datetime[μs] ┆ cat ┆ f64 ┆ bool │\n", - "╞══════════╪════════════╪═════════════════════╪═════════════════════╪═══════════╪═══════════════╡\n", - "│ 0 ┆ 0 ┆ 2010-06-24 13:23:00 ┆ ADMISSION&VITAL&LAB ┆ -0.463849 ┆ true │\n", - "│ 1 ┆ 0 ┆ 2010-06-24 14:23:00 ┆ VITAL&LAB ┆ -0.463823 ┆ true │\n", - "│ 2 ┆ 0 ┆ 2010-06-24 15:23:00 ┆ VITAL&LAB ┆ -0.463796 ┆ true │\n", - "│ 3 ┆ 0 ┆ 2010-06-24 16:23:00 ┆ VITAL&LAB ┆ -0.46377 ┆ true │\n", - "└──────────┴────────────┴─────────────────────┴─────────────────────┴───────────┴───────────────┘" + "┌────────────┬──────────────┬─────────────────────┬─────────────────────┬──────────┬───────────────┐\n", + "│ subject_id ┆ timestamp ┆ event_type ┆ event_id ┆ age ┆ age_is_inlier │\n", + "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", + "│ u32 ┆ datetime[μs] ┆ cat ┆ u64 ┆ f64 ┆ bool │\n", + "╞════════════╪══════════════╪═════════════════════╪═════════════════════╪══════════╪═══════════════╡\n", + "│ 15267 ┆ 2010-04-23 ┆ ADMISSION&VITAL&LAB ┆ 9159188870894337796 ┆ 0.440505 ┆ true │\n", + "│ ┆ 04:16:29 ┆ ┆ ┆ ┆ │\n", + "│ 15267 ┆ 2010-04-23 ┆ LAB ┆ 9567702754158037042 ┆ 0.440531 ┆ true │\n", + "│ ┆ 05:16:29 ┆ ┆ ┆ ┆ │\n", + "│ 15267 ┆ 2010-04-23 ┆ LAB ┆ 1706511807084177466 ┆ 0.440557 ┆ true │\n", + "│ ┆ 06:16:29 ┆ ┆ 4 ┆ ┆ │\n", + "│ 15267 ┆ 2010-04-23 ┆ VITAL&LAB ┆ 7840165013239040979 ┆ 0.440583 ┆ true │\n", + "│ ┆ 07:16:29 ┆ ┆ ┆ ┆ │\n", + "└────────────┴──────────────┴─────────────────────┴─────────────────────┴──────────┴───────────────┘" ] }, "metadata": {}, @@ -1094,7 +1194,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 17, "id": "d2afdd62", "metadata": {}, "outputs": [ @@ -1109,6 +1209,11 @@ " * temp\n", " * lab_name\n", " * lab_value\n", + " * medication\n", + " * dose\n", + " * frequency\n", + " * duration\n", + " * generic_name\n", " * event_id\n", " * HR_is_inlier\n", " * temp_is_inlier\n", @@ -1119,23 +1224,24 @@ "data": { "text/html": [ "
\n", - "shape: (4, 10)
measurement_iddepartmentHRHR_is_inliertemp_is_inlierlab_name_is_inlier
u32catf64boolboolbool
0"CARDIAC"nullnullnullnull
1"PULMONARY"nullnullnullnull
2"CARDIAC"nullnullnullnull
3"PULMONARY"nullnullnullnull
" + "shape: (4, 15)
measurement_iddepartmentHRHR_is_inliertemp_is_inlierlab_name_is_inlier
u32catf64boolboolbool
0"ORTHOPEDIC"nullnullnullnull
1"CARDIAC"nullnullnullnull
2"CARDIAC"nullnullnullnull
3"PULMONARY"nullnullnullnull
" ], "text/plain": [ - "shape: (4, 10)\n", + "shape: (4, 15)\n", "┌────────────────┬────────────┬──────┬──────┬───┬──────────────┬────────────────┬──────────────────┐\n", "│ measurement_id ┆ department ┆ HR ┆ temp ┆ … ┆ HR_is_inlier ┆ temp_is_inlier ┆ lab_name_is_inli │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ er │\n", "│ u32 ┆ cat ┆ f64 ┆ f64 ┆ ┆ bool ┆ bool ┆ --- │\n", "│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ bool │\n", "╞════════════════╪════════════╪══════╪══════╪═══╪══════════════╪════════════════╪══════════════════╡\n", - "│ 0 ┆ CARDIAC ┆ null ┆ null ┆ … ┆ null ┆ null ┆ null │\n", - "│ 1 ┆ PULMONARY ┆ null ┆ null ┆ … ┆ null ┆ null ┆ null │\n", + "│ 0 ┆ ORTHOPEDIC ┆ null ┆ null ┆ … ┆ null ┆ null ┆ null │\n", + "│ 1 ┆ CARDIAC ┆ null ┆ null ┆ … ┆ null ┆ null ┆ null │\n", "│ 2 ┆ CARDIAC ┆ null ┆ null ┆ … ┆ null ┆ null ┆ null │\n", "│ 3 ┆ PULMONARY ┆ null ┆ null ┆ … ┆ null ┆ null ┆ null │\n", "└────────────────┴────────────┴──────┴──────┴───┴──────────────┴────────────────┴──────────────────┘" @@ -1164,7 +1270,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 18, "id": "5513a026", "metadata": {}, "outputs": [ @@ -1190,10 +1296,10 @@ " ],\n", " \"obs_frequencies\": [\n", " 0.0,\n", - " 0.5125,\n", - " 0.2125,\n", - " 0.175,\n", - " 0.1\n", + " 0.5,\n", + " 0.2625,\n", + " 0.1625,\n", + " 0.075\n", " ]\n", " },\n", " \"values_column\": null,\n", @@ -1204,7 +1310,7 @@ " \"name\": \"department\",\n", " \"temporality\": \"dynamic\",\n", " \"modality\": \"multi_label_classification\",\n", - " \"observation_rate_over_cases\": 0.012158770003137746,\n", + " \"observation_rate_over_cases\": 0.01233404038023411,\n", " \"observation_rate_per_case\": 1.0,\n", " \"functor\": null,\n", " \"vocabulary\": {\n", @@ -1216,21 +1322,55 @@ " ],\n", " \"obs_frequencies\": [\n", " 0.0,\n", - " 0.3870967741935484,\n", - " 0.36451612903225805,\n", - " 0.24838709677419354\n", + " 0.42038216560509556,\n", + " 0.3503184713375796,\n", + " 0.22929936305732485\n", " ]\n", " },\n", " \"values_column\": null,\n", " \"_measurement_metadata\": null,\n", " \"modifiers\": null\n", " },\n", + " \"medication\": {\n", + " \"name\": \"medication\",\n", + " \"temporality\": \"dynamic\",\n", + " \"modality\": \"multi_label_classification\",\n", + " \"observation_rate_over_cases\": 0.002396103385969047,\n", + " \"observation_rate_per_case\": 1.0,\n", + " \"functor\": null,\n", + " \"vocabulary\": {\n", + " \"vocabulary\": [\n", + " \"UNK\",\n", + " \"Motrin\",\n", + " \"Benadryl\",\n", + " \"Tylenol\",\n", + " \"Advil\",\n", + " \"motrin\"\n", + " ],\n", + " \"obs_frequencies\": [\n", + " 0.0,\n", + " 0.22950819672131148,\n", + " 0.22950819672131148,\n", + " 0.21311475409836064,\n", + " 0.21311475409836064,\n", + " 0.11475409836065574\n", + " ]\n", + " },\n", + " \"values_column\": null,\n", + " \"_measurement_metadata\": null,\n", + " \"modifiers\": [\n", + " \"dose\",\n", + " \"frequency\",\n", + " \"duration\",\n", + " \"generic_name\"\n", + " ]\n", + " },\n", " \"HR\": {\n", " \"name\": \"HR\",\n", " \"temporality\": \"dynamic\",\n", " \"modality\": \"univariate_regression\",\n", - " \"observation_rate_over_cases\": 0.7112880451835583,\n", - " \"observation_rate_per_case\": 1.7473945409429281,\n", + " \"observation_rate_over_cases\": 0.7070861811611281,\n", + " \"observation_rate_per_case\": 1.7435698016776846,\n", " \"functor\": null,\n", " \"vocabulary\": null,\n", " \"values_column\": null,\n", @@ -1244,8 +1384,8 @@ " \"name\": \"temp\",\n", " \"temporality\": \"dynamic\",\n", " \"modality\": \"univariate_regression\",\n", - " \"observation_rate_over_cases\": 0.7112880451835583,\n", - " \"observation_rate_per_case\": 1.7473945409429281,\n", + " \"observation_rate_over_cases\": 0.7070861811611281,\n", + " \"observation_rate_per_case\": 1.7435698016776846,\n", " \"functor\": null,\n", " \"vocabulary\": null,\n", " \"values_column\": null,\n", @@ -1259,8 +1399,8 @@ " \"name\": \"lab_name\",\n", " \"temporality\": \"dynamic\",\n", " \"modality\": \"multivariate_regression\",\n", - " \"observation_rate_over_cases\": 0.9564637590210229,\n", - " \"observation_rate_per_case\": 1.8052161076027229,\n", + " \"observation_rate_over_cases\": 0.959462644355409,\n", + " \"observation_rate_per_case\": 1.8555228035699665,\n", " \"functor\": null,\n", " \"vocabulary\": {\n", " \"vocabulary\": [\n", @@ -1274,15 +1414,15 @@ " \"SOFA__EQ_3\",\n", " \"GCS__EQ_4\",\n", " \"GCS__EQ_3\",\n", - " \"GCS__EQ_2\",\n", " \"SOFA__EQ_4\",\n", + " \"GCS__EQ_2\",\n", " \"GCS__EQ_5\",\n", " \"GCS__EQ_6\",\n", " \"GCS__EQ_8\",\n", " \"GCS__EQ_7\",\n", " \"GCS__EQ_11\",\n", - " \"GCS__EQ_9\",\n", " \"GCS__EQ_10\",\n", + " \"GCS__EQ_9\",\n", " \"GCS__EQ_12\",\n", " \"GCS__EQ_15\",\n", " \"GCS__EQ_14\",\n", @@ -1290,28 +1430,28 @@ " ],\n", " \"obs_frequencies\": [\n", " 0.0,\n", - " 0.8298577983735405,\n", - " 0.04302394257416746,\n", - " 0.03820816864295125,\n", - " 0.02959883694516378,\n", - " 0.012743628185907047,\n", - " 0.010403888964608605,\n", - " 0.005315524056153742,\n", - " 0.003679978192721821,\n", - " 0.0033165235564036164,\n", - " 0.003043932579164963,\n", - " 0.002930353005315524,\n", - " 0.002748625687156422,\n", - " 0.002203443732679115,\n", - " 0.0021352959883694515,\n", - " 0.0020898641588296763,\n", - " 0.001680977692971696,\n", - " 0.0016582617782018082,\n", - " 0.0016582617782018082,\n", - " 0.0010676479941847258,\n", - " 0.0009086365907955114,\n", - " 0.0008632047612557358,\n", - " 0.0008632047612557358\n", + " 0.83765417117137,\n", + " 0.040376850605652756,\n", + " 0.03490501511373916,\n", + " 0.028771264038126337,\n", + " 0.012024799770535931,\n", + " 0.010061116872228229,\n", + " 0.005449771639123624,\n", + " 0.003728791121505637,\n", + " 0.0033978333296560245,\n", + " 0.0031551309489663087,\n", + " 0.0030448116850164374,\n", + " 0.0025152792180570573,\n", + " 0.0022505129845773668,\n", + " 0.002007810603887651,\n", + " 0.0019857467510976767,\n", + " 0.001676852812038038,\n", + " 0.001676852812038038,\n", + " 0.001654788959248064,\n", + " 0.001081128786708735,\n", + " 0.0009708095227588642,\n", + " 0.0008604902588089932,\n", + " 0.0007501709948591223\n", " ]\n", " },\n", " \"values_column\": \"lab_value\",\n", @@ -1359,7 +1499,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 19, "id": "f3952f3a", "metadata": {}, "outputs": [ @@ -1367,29 +1507,26 @@ "data": { "text/html": [ "
\n", - "shape: (4, 4)
lab_namevalue_typeoutlier_modelnormalizer
strstrstrstr
"SOFA""categorical_in…"{'thresh_large…"{'mean_': None…
"potassium""float""{'thresh_large…"{'mean_': 4.41…
"creatinine""float""{'thresh_large…"{'mean_': 0.93…
"GCS""categorical_in…"{'thresh_large…"{'mean_': None…
" + "shape: (4, 6)
lab_namevalue_typemeanstdthresh_smallthresh_large
strstrf64f64f64f64
"potassium""float"4.3614160.839229-34513.38363835614.997879
"SOFA""categorical_in…nullnullnullnull
"SpO2""integer"55.77407810.527999-17024.78273817399.716704
"GCS""categorical_in…nullnullnullnull
" ], "text/plain": [ - "shape: (4, 4)\n", - "┌────────────┬─────────────────────┬─────────────────────────┬─────────────────────────────────────┐\n", - "│ lab_name ┆ value_type ┆ outlier_model ┆ normalizer │\n", - "│ --- ┆ --- ┆ --- ┆ --- │\n", - "│ str ┆ str ┆ str ┆ str │\n", - "╞════════════╪═════════════════════╪═════════════════════════╪═════════════════════════════════════╡\n", - "│ SOFA ┆ categorical_integer ┆ {'thresh_large_': None, ┆ {'mean_': None, 'std_': None} │\n", - "│ ┆ ┆ 'thresh_… ┆ │\n", - "│ potassium ┆ float ┆ {'thresh_large_': ┆ {'mean_': 4.414532494809473, 'st… │\n", - "│ ┆ ┆ 34999.06758805… ┆ │\n", - "│ creatinine ┆ float ┆ {'thresh_large_': ┆ {'mean_': 0.9325633984342514, 's… │\n", - "│ ┆ ┆ 1.461996994555… ┆ │\n", - "│ GCS ┆ categorical_integer ┆ {'thresh_large_': None, ┆ {'mean_': None, 'std_': None} │\n", - "│ ┆ ┆ 'thresh_… ┆ │\n", - "└────────────┴─────────────────────┴─────────────────────────┴─────────────────────────────────────┘" + "shape: (4, 6)\n", + "┌───────────┬─────────────────────┬───────────┬───────────┬───────────────┬──────────────┐\n", + "│ lab_name ┆ value_type ┆ mean ┆ std ┆ thresh_small ┆ thresh_large │\n", + "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", + "│ str ┆ str ┆ f64 ┆ f64 ┆ f64 ┆ f64 │\n", + "╞═══════════╪═════════════════════╪═══════════╪═══════════╪═══════════════╪══════════════╡\n", + "│ potassium ┆ float ┆ 4.361416 ┆ 0.839229 ┆ -34513.383638 ┆ 35614.997879 │\n", + "│ SOFA ┆ categorical_integer ┆ null ┆ null ┆ null ┆ null │\n", + "│ SpO2 ┆ integer ┆ 55.774078 ┆ 10.527999 ┆ -17024.782738 ┆ 17399.716704 │\n", + "│ GCS ┆ categorical_integer ┆ null ┆ null ┆ null ┆ null │\n", + "└───────────┴─────────────────────┴───────────┴───────────┴───────────────┴──────────────┘" ] }, "metadata": {}, @@ -1410,7 +1547,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 20, "id": "0cc683a0", "metadata": {}, "outputs": [ @@ -1418,24 +1555,26 @@ "data": { "text/html": [ "
\n", - "shape: (3, 2)
age
strstr
"value_type""float"
"outlier_model""{'thresh_large…
"normalizer""{'mean_': 30.9…
" + "shape: (4, 2)
age
strstr
"value_type""float"
"mean""29.83478538470…
"std""4.394326348123…
"thresh_small""22.12968667461…
" ], "text/plain": [ - "shape: (3, 2)\n", - "┌───────────────┬───────────────────────────────────┐\n", - "│ ┆ age │\n", - "│ --- ┆ --- │\n", - "│ str ┆ str │\n", - "╞═══════════════╪═══════════════════════════════════╡\n", - "│ value_type ┆ float │\n", - "│ outlier_model ┆ {'thresh_large_': 38.87057342509… │\n", - "│ normalizer ┆ {'mean_': 30.925514996619157, 's… │\n", - "└───────────────┴───────────────────────────────────┘" + "shape: (4, 2)\n", + "┌──────────────┬────────────────────┐\n", + "│ ┆ age │\n", + "│ --- ┆ --- │\n", + "│ str ┆ str │\n", + "╞══════════════╪════════════════════╡\n", + "│ value_type ┆ float │\n", + "│ mean ┆ 29.834785384700055 │\n", + "│ std ┆ 4.394326348123329 │\n", + "│ thresh_small ┆ 22.12968667461664 │\n", + "└──────────────┴────────────────────┘" ] }, "metadata": {}, @@ -1459,7 +1598,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 21, "id": "cd4c4571", "metadata": {}, "outputs": [], @@ -1472,7 +1611,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 22, "id": "050eb52f", "metadata": {}, "outputs": [], @@ -1490,15 +1629,15 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 23, "id": "942e8049", "metadata": {}, "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "Updating config.save_dir from /home/mmd/Projects/EventStreamGPT/sample_data/processed/sample to sample_data/processed/sample\n" + "\u001b[32m2024-05-16 13:22:41.022\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.dataset_base\u001b[0m:\u001b[36mload\u001b[0m:\u001b[36m367\u001b[0m - \u001b[1mUpdating config.save_dir from /home/mmd/Projects/EventStreamGPT/sample_data/processed/sample to sample_data/processed/sample\u001b[0m\n" ] } ], @@ -1508,106 +1647,112 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 24, "id": "bb8fea37", "metadata": {}, "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "Loading subjects from sample_data/processed/sample/subjects_df.parquet...\n" + "\u001b[32m2024-05-16 13:22:41.062\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.dataset_base\u001b[0m:\u001b[36msubjects_df\u001b[0m:\u001b[36m293\u001b[0m - \u001b[1mLoading subjects from sample_data/processed/sample/subjects_df.parquet...\u001b[0m\n" ] }, { "data": { "text/html": [ "
\n", - "shape: (3, 4)
subject_idMRNeye_colordob
u8catcatdatetime[μs]
0"310243""GREEN"1981-07-28 00:00:00
1"384198""BROWN"1985-04-15 00:00:00
2"520533""BROWN"1979-04-15 00:00:00
" + "shape: (3, 3)
subject_ideye_colordob
u32catdatetime[μs]
310243"GREEN"1981-07-28 00:00:00
384198"BROWN"1985-04-15 00:00:00
520533"BROWN"1979-04-15 00:00:00
" ], "text/plain": [ - "shape: (3, 4)\n", - "┌────────────┬────────┬───────────┬─────────────────────┐\n", - "│ subject_id ┆ MRN ┆ eye_color ┆ dob │\n", - "│ --- ┆ --- ┆ --- ┆ --- │\n", - "│ u8 ┆ cat ┆ cat ┆ datetime[μs] │\n", - "╞════════════╪════════╪═══════════╪═════════════════════╡\n", - "│ 0 ┆ 310243 ┆ GREEN ┆ 1981-07-28 00:00:00 │\n", - "│ 1 ┆ 384198 ┆ BROWN ┆ 1985-04-15 00:00:00 │\n", - "│ 2 ┆ 520533 ┆ BROWN ┆ 1979-04-15 00:00:00 │\n", - "└────────────┴────────┴───────────┴─────────────────────┘" + "shape: (3, 3)\n", + "┌────────────┬───────────┬─────────────────────┐\n", + "│ subject_id ┆ eye_color ┆ dob │\n", + "│ --- ┆ --- ┆ --- │\n", + "│ u32 ┆ cat ┆ datetime[μs] │\n", + "╞════════════╪═══════════╪═════════════════════╡\n", + "│ 310243 ┆ GREEN ┆ 1981-07-28 00:00:00 │\n", + "│ 384198 ┆ BROWN ┆ 1985-04-15 00:00:00 │\n", + "│ 520533 ┆ BROWN ┆ 1979-04-15 00:00:00 │\n", + "└────────────┴───────────┴─────────────────────┘" ] }, "metadata": {}, "output_type": "display_data" }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "Loading events from sample_data/processed/sample/events_df.parquet...\n" + "\u001b[32m2024-05-16 13:22:41.067\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.dataset_base\u001b[0m:\u001b[36mevents_df\u001b[0m:\u001b[36m311\u001b[0m - \u001b[1mLoading events from sample_data/processed/sample/events_df.parquet...\u001b[0m\n" ] }, { "data": { "text/html": [ "
\n", - "shape: (3, 6)
event_idsubject_idtimestampevent_typeageage_is_inlier
u32u8datetime[μs]catf64bool
002010-06-24 13:23:00"ADMISSION&VITA…-0.463849true
102010-06-24 14:23:00"VITAL&LAB"-0.463823true
202010-06-24 15:23:00"VITAL&LAB"-0.463796true
" + "shape: (3, 6)
subject_idtimestampevent_typeevent_idageage_is_inlier
u32datetime[μs]catu64f64bool
152672010-04-23 04:16:29"ADMISSION&VITA…91591888708943377960.440505true
152672010-04-23 05:16:29"LAB"95677027541580370420.440531true
152672010-04-23 06:16:29"LAB"170651180708417746640.440557true
" ], "text/plain": [ "shape: (3, 6)\n", - "┌──────────┬────────────┬─────────────────────┬─────────────────────┬───────────┬───────────────┐\n", - "│ event_id ┆ subject_id ┆ timestamp ┆ event_type ┆ age ┆ age_is_inlier │\n", - "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", - "│ u32 ┆ u8 ┆ datetime[μs] ┆ cat ┆ f64 ┆ bool │\n", - "╞══════════╪════════════╪═════════════════════╪═════════════════════╪═══════════╪═══════════════╡\n", - "│ 0 ┆ 0 ┆ 2010-06-24 13:23:00 ┆ ADMISSION&VITAL&LAB ┆ -0.463849 ┆ true │\n", - "│ 1 ┆ 0 ┆ 2010-06-24 14:23:00 ┆ VITAL&LAB ┆ -0.463823 ┆ true │\n", - "│ 2 ┆ 0 ┆ 2010-06-24 15:23:00 ┆ VITAL&LAB ┆ -0.463796 ┆ true │\n", - "└──────────┴────────────┴─────────────────────┴─────────────────────┴───────────┴───────────────┘" + "┌────────────┬──────────────┬─────────────────────┬─────────────────────┬──────────┬───────────────┐\n", + "│ subject_id ┆ timestamp ┆ event_type ┆ event_id ┆ age ┆ age_is_inlier │\n", + "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", + "│ u32 ┆ datetime[μs] ┆ cat ┆ u64 ┆ f64 ┆ bool │\n", + "╞════════════╪══════════════╪═════════════════════╪═════════════════════╪══════════╪═══════════════╡\n", + "│ 15267 ┆ 2010-04-23 ┆ ADMISSION&VITAL&LAB ┆ 9159188870894337796 ┆ 0.440505 ┆ true │\n", + "│ ┆ 04:16:29 ┆ ┆ ┆ ┆ │\n", + "│ 15267 ┆ 2010-04-23 ┆ LAB ┆ 9567702754158037042 ┆ 0.440531 ┆ true │\n", + "│ ┆ 05:16:29 ┆ ┆ ┆ ┆ │\n", + "│ 15267 ┆ 2010-04-23 ┆ LAB ┆ 1706511807084177466 ┆ 0.440557 ┆ true │\n", + "│ ┆ 06:16:29 ┆ ┆ 4 ┆ ┆ │\n", + "└────────────┴──────────────┴─────────────────────┴─────────────────────┴──────────┴───────────────┘" ] }, "metadata": {}, "output_type": "display_data" }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "Loading dynamic_measurements from sample_data/processed/sample/dynamic_measurements_df.parquet...\n" + "\u001b[32m2024-05-16 13:22:41.073\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.dataset_base\u001b[0m:\u001b[36mdynamic_measurements_df\u001b[0m:\u001b[36m330\u001b[0m - \u001b[1mLoading dynamic_measurements from sample_data/processed/sample/dynamic_measurements_df.parquet...\u001b[0m\n" ] }, { "data": { "text/html": [ "
\n", - "shape: (3, 10)
measurement_iddepartmentHRHR_is_inliertemp_is_inlierlab_name_is_inlier
u32catf64boolboolbool
0"CARDIAC"nullnullnullnull
1"PULMONARY"nullnullnullnull
2"CARDIAC"nullnullnullnull
" + "shape: (3, 15)
measurement_iddepartmentHRHR_is_inliertemp_is_inlierlab_name_is_inlier
u32catf64boolboolbool
0"ORTHOPEDIC"nullnullnullnull
1"CARDIAC"nullnullnullnull
2"CARDIAC"nullnullnullnull
" ], "text/plain": [ - "shape: (3, 10)\n", + "shape: (3, 15)\n", "┌────────────────┬────────────┬──────┬──────┬───┬──────────────┬────────────────┬──────────────────┐\n", "│ measurement_id ┆ department ┆ HR ┆ temp ┆ … ┆ HR_is_inlier ┆ temp_is_inlier ┆ lab_name_is_inli │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ er │\n", "│ u32 ┆ cat ┆ f64 ┆ f64 ┆ ┆ bool ┆ bool ┆ --- │\n", "│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ bool │\n", "╞════════════════╪════════════╪══════╪══════╪═══╪══════════════╪════════════════╪══════════════════╡\n", - "│ 0 ┆ CARDIAC ┆ null ┆ null ┆ … ┆ null ┆ null ┆ null │\n", - "│ 1 ┆ PULMONARY ┆ null ┆ null ┆ … ┆ null ┆ null ┆ null │\n", + "│ 0 ┆ ORTHOPEDIC ┆ null ┆ null ┆ … ┆ null ┆ null ┆ null │\n", + "│ 1 ┆ CARDIAC ┆ null ┆ null ┆ … ┆ null ┆ null ┆ null │\n", "│ 2 ┆ CARDIAC ┆ null ┆ null ┆ … ┆ null ┆ null ┆ null │\n", "└────────────────┴────────────┴──────┴──────┴───┴──────────────┴────────────────┴──────────────────┘" ] @@ -1632,7 +1777,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 25, "id": "3e2e3a03", "metadata": { "scrolled": true @@ -1641,10 +1786,19 @@ { "data": { "text/plain": [ - "{1, 5, 9, 12, 16, 64, 72, 75, 76, 79}" + "{142258,\n", + " 234683,\n", + " 428046,\n", + " 452247,\n", + " 681894,\n", + " 705311,\n", + " 928262,\n", + " 1230099,\n", + " 1268909,\n", + " 1520408}" ] }, - "execution_count": 26, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -1663,7 +1817,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 26, "id": "4ad686ad", "metadata": {}, "outputs": [ @@ -1678,38 +1832,49 @@ " 'DISCHARGE': 6,\n", " 'DISCHARGE&LAB': 7,\n", " 'DISCHARGE&VITAL&LAB': 8,\n", - " 'DISCHARGE&VITAL': 9},\n", - " 'HR': {'HR': 10},\n", - " 'age': {'age': 11},\n", - " 'department': {'UNK': 12, 'PULMONARY': 13, 'CARDIAC': 14, 'ORTHOPEDIC': 15},\n", - " 'eye_color': {'UNK': 16, 'BROWN': 17, 'BLUE': 18, 'HAZEL': 19, 'GREEN': 20},\n", - " 'lab_name': {'UNK': 21,\n", - " 'SpO2': 22,\n", - " 'potassium': 23,\n", - " 'creatinine': 24,\n", - " 'SOFA__EQ_1': 25,\n", - " 'SOFA__EQ_2': 26,\n", - " 'GCS__EQ_1': 27,\n", - " 'SOFA__EQ_3': 28,\n", - " 'GCS__EQ_4': 29,\n", - " 'GCS__EQ_3': 30,\n", - " 'GCS__EQ_2': 31,\n", - " 'SOFA__EQ_4': 32,\n", - " 'GCS__EQ_5': 33,\n", - " 'GCS__EQ_6': 34,\n", - " 'GCS__EQ_8': 35,\n", - " 'GCS__EQ_7': 36,\n", - " 'GCS__EQ_11': 37,\n", - " 'GCS__EQ_9': 38,\n", - " 'GCS__EQ_10': 39,\n", - " 'GCS__EQ_12': 40,\n", - " 'GCS__EQ_15': 41,\n", - " 'GCS__EQ_14': 42,\n", - " 'GCS__EQ_13': 43},\n", - " 'temp': {'temp': 44}}" + " 'VITAL&LAB&MEDICATION': 9,\n", + " 'DISCHARGE&VITAL': 10,\n", + " 'LAB&MEDICATION': 11,\n", + " 'MEDICATION': 12,\n", + " 'VITAL&MEDICATION': 13,\n", + " 'DISCHARGE&MEDICATION': 14},\n", + " 'HR': {'HR': 15},\n", + " 'age': {'age': 16},\n", + " 'department': {'UNK': 17, 'PULMONARY': 18, 'CARDIAC': 19, 'ORTHOPEDIC': 20},\n", + " 'eye_color': {'UNK': 21, 'BROWN': 22, 'BLUE': 23, 'HAZEL': 24, 'GREEN': 25},\n", + " 'lab_name': {'UNK': 26,\n", + " 'SpO2': 27,\n", + " 'potassium': 28,\n", + " 'creatinine': 29,\n", + " 'SOFA__EQ_1': 30,\n", + " 'SOFA__EQ_2': 31,\n", + " 'GCS__EQ_1': 32,\n", + " 'SOFA__EQ_3': 33,\n", + " 'GCS__EQ_4': 34,\n", + " 'GCS__EQ_3': 35,\n", + " 'SOFA__EQ_4': 36,\n", + " 'GCS__EQ_2': 37,\n", + " 'GCS__EQ_5': 38,\n", + " 'GCS__EQ_6': 39,\n", + " 'GCS__EQ_8': 40,\n", + " 'GCS__EQ_7': 41,\n", + " 'GCS__EQ_11': 42,\n", + " 'GCS__EQ_10': 43,\n", + " 'GCS__EQ_9': 44,\n", + " 'GCS__EQ_12': 45,\n", + " 'GCS__EQ_15': 46,\n", + " 'GCS__EQ_14': 47,\n", + " 'GCS__EQ_13': 48},\n", + " 'medication': {'UNK': 49,\n", + " 'Motrin': 50,\n", + " 'Benadryl': 51,\n", + " 'Tylenol': 52,\n", + " 'Advil': 53,\n", + " 'motrin': 54},\n", + " 'temp': {'temp': 55}}" ] }, - "execution_count": 27, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -1728,20 +1893,22 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 27, "id": "29b6592b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "value_type float\n", - "outlier_model {'thresh_large_': 38.87057342509695, 'thresh_s...\n", - "normalizer {'mean_': 30.925514996619157, 'std_': 4.350037...\n", + "value_type float\n", + "mean 29.834785384700055\n", + "std 4.394326348123329\n", + "thresh_small 22.12968667461664\n", + "thresh_large 38.112496685358565\n", "Name: age, dtype: object" ] }, - "execution_count": 28, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -1769,7 +1936,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 28, "id": "1451fd37", "metadata": {}, "outputs": [], @@ -1779,15 +1946,22 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 29, "id": "fd981b5b", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[32m2024-05-16 13:22:41.248\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.dataset_base\u001b[0m:\u001b[36mload\u001b[0m:\u001b[36m367\u001b[0m - \u001b[1mUpdating config.save_dir from /home/mmd/Projects/EventStreamGPT/sample_data/processed/sample to sample_data/processed/sample_2\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:41.268\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.dataset_base\u001b[0m:\u001b[36msubjects_df\u001b[0m:\u001b[36m293\u001b[0m - \u001b[1mLoading subjects from sample_data/processed/sample_2/subjects_df.parquet...\u001b[0m\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "Updating config.save_dir from /home/mmd/Projects/EventStreamGPT/sample_data/processed/sample to sample_data/processed/sample_2\n", "ESD_2 has stored save_dir sample_data/processed/sample_2, with dataframes stored at\n", " * sample_data/processed/sample_2/subjects_df.parquet\n", " * sample_data/processed/sample_2/events_df.parquet\n", @@ -1796,31 +1970,31 @@ "Measurement metadata relative filepaths are now similarly updated:\n", " * (age): [PosixPath('sample_data/processed/sample_2'), 'inferred_measurement_metadata/age.csv']\n", "...\n", - "Displaying data:\n", - "Loading subjects from sample_data/processed/sample_2/subjects_df.parquet...\n" + "Displaying data:\n" ] }, { "data": { "text/html": [ "
\n", - "shape: (2, 4)
subject_idMRNeye_colordob
u8catcatdatetime[μs]
0"310243""GREEN"1981-07-28 00:00:00
1"384198""BROWN"1985-04-15 00:00:00
" + "shape: (2, 3)
subject_ideye_colordob
u32catdatetime[μs]
310243"GREEN"1981-07-28 00:00:00
384198"BROWN"1985-04-15 00:00:00
" ], "text/plain": [ - "shape: (2, 4)\n", - "┌────────────┬────────┬───────────┬─────────────────────┐\n", - "│ subject_id ┆ MRN ┆ eye_color ┆ dob │\n", - "│ --- ┆ --- ┆ --- ┆ --- │\n", - "│ u8 ┆ cat ┆ cat ┆ datetime[μs] │\n", - "╞════════════╪════════╪═══════════╪═════════════════════╡\n", - "│ 0 ┆ 310243 ┆ GREEN ┆ 1981-07-28 00:00:00 │\n", - "│ 1 ┆ 384198 ┆ BROWN ┆ 1985-04-15 00:00:00 │\n", - "└────────────┴────────┴───────────┴─────────────────────┘" + "shape: (2, 3)\n", + "┌────────────┬───────────┬─────────────────────┐\n", + "│ subject_id ┆ eye_color ┆ dob │\n", + "│ --- ┆ --- ┆ --- │\n", + "│ u32 ┆ cat ┆ datetime[μs] │\n", + "╞════════════╪═══════════╪═════════════════════╡\n", + "│ 310243 ┆ GREEN ┆ 1981-07-28 00:00:00 │\n", + "│ 384198 ┆ BROWN ┆ 1985-04-15 00:00:00 │\n", + "└────────────┴───────────┴─────────────────────┘" ] }, "metadata": {}, @@ -1829,9 +2003,11 @@ { "data": { "text/plain": [ - "value_type float\n", - "outlier_model {'thresh_large_': 38.87057342509695, 'thresh_s...\n", - "normalizer {'mean_': 30.925514996619157, 'std_': 4.350037...\n", + "value_type float\n", + "mean 29.834785384700055\n", + "std 4.394326348123329\n", + "thresh_small 22.12968667461664\n", + "thresh_large 38.112496685358565\n", "Name: age, dtype: object" ] }, @@ -1868,7 +2044,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 30, "id": "76cc159a", "metadata": {}, "outputs": [ @@ -1876,7 +2052,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "held_out_0.parquet train_0.parquet tuning_0.parquet\n" + "\u001b[0m\u001b[01;34mheld_out\u001b[0m \u001b[01;34mtrain\u001b[0m \u001b[01;34mtuning\u001b[0m\n" ] } ], @@ -1894,7 +2070,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 31, "id": "7d744d42", "metadata": {}, "outputs": [ @@ -1908,6 +2084,7 @@ " * static_indices\n", " * start_time\n", " * time\n", + " * time_delta\n", " * dynamic_measurement_indices\n", " * dynamic_indices\n", " * dynamic_values\n" @@ -1917,40 +2094,43 @@ "data": { "text/html": [ "
\n", - "shape: (4, 8)
subject_idstatic_measurement_indicesstatic_indicesdynamic_measurement_indicesdynamic_indicesdynamic_values
u8list[u8]list[u8]list[list[u8]]list[list[u8]]list[list[f64]]
1[5][17][[1, 3, … 7], [1, 3, 6], … [1, 3, … 7]][[4, 11, … 44], [2, 11, 22], … [9, 11, … 44]][[null, -1.400823, … -0.782612], [null, -1.400797, -0.380972], … [null, -1.399014, … 1.001601]]
5[5][17][[1, 3, … 7], [1, 3, … 6], … [1, 3, … 7]][[4, 11, … 44], [2, 11, … 22], … [8, 11, … 44]][[null, 1.772835, … NaN], [null, 1.772861, … -0.472924], … [null, 1.77551, … 1.15903]]
9[5][17][[1, 3, … 7], [1, 3, 6], … [1, 3, 4]][[4, 11, … 44], [2, 11, 24], … [6, 11, 13]][[null, 0.470517, … -0.257844], [null, 0.470569, 0.560816], … [null, 0.570589, null]]
12[5][19][[1, 3, … 7], [1, 3, … 7], … [1, 3, 4]][[4, 11, … 44], [1, 11, … 44], … [6, 11, 14]][[null, -1.441905, … 0.109493], [null, -1.441879, … 1.578846], … [null, -1.360295, null]]
" + "shape: (4, 9)
subject_idstatic_measurement_indicesstatic_indicesdynamic_measurement_indicesdynamic_indicesdynamic_values
u32list[u8]list[u8]list[list[u8]]list[list[u8]]list[list[f64]]
142258[5][24][[1, 3, … 8], [1, 3, … 8], … [1, 3, … 6]][[4, 16, … 55], [1, 16, … 55], … [7, 16, … 27]][[null, -1.153556, … -0.422736], [null, -1.15353, … -0.526648], … [null, -1.150025, … -0.54845]]
234683[5][22][[1, 3, … 8], [1, 3, 6], … [1, 3, 4]][[4, 16, … 55], [2, 16, 27], … [6, 16, 19]][[null, 1.639285, … -1.46188], [null, 1.639311, 3.535897], … [null, 1.850859, null]]
428046[5][22][[1, 3, … 8], [1, 3, … 8], … [1, 3, … 8]][[5, 16, … 55], [1, 16, … 55], … [8, 16, … 55]][[null, -0.039543, … 0.668365], [null, -0.039517, … 0.824238], … [null, 0.074941, … -0.630565]]
452247[5][23][[1, 3, … 8], [1, 3, … 8], … [1, 3, … 8]][[5, 16, … 55], [1, 16, … 55], … [8, 16, … 55]][[null, 1.744859, … 1.187937], [null, 1.744885, … 1.13598], … [null, 1.786628, … NaN]]
" ], "text/plain": [ - "shape: (4, 8)\n", + "shape: (4, 9)\n", "┌────────────┬─────────────┬─────────────┬─────────────┬───┬─────────────┬────────────┬────────────┐\n", "│ subject_id ┆ static_meas ┆ static_indi ┆ start_time ┆ … ┆ dynamic_mea ┆ dynamic_in ┆ dynamic_va │\n", "│ --- ┆ urement_ind ┆ ces ┆ --- ┆ ┆ surement_in ┆ dices ┆ lues │\n", - "│ u8 ┆ ices ┆ --- ┆ datetime[μs ┆ ┆ dices ┆ --- ┆ --- │\n", + "│ u32 ┆ ices ┆ --- ┆ datetime[μs ┆ ┆ dices ┆ --- ┆ --- │\n", "│ ┆ --- ┆ list[u8] ┆ ] ┆ ┆ --- ┆ list[list[ ┆ list[list[ │\n", "│ ┆ list[u8] ┆ ┆ ┆ ┆ list[list[u ┆ u8]] ┆ f64]] │\n", "│ ┆ ┆ ┆ ┆ ┆ 8]] ┆ ┆ │\n", "╞════════════╪═════════════╪═════════════╪═════════════╪═══╪═════════════╪════════════╪════════════╡\n", - "│ 1 ┆ [5] ┆ [17] ┆ 2010-02-12 ┆ … ┆ [[1, 3, … ┆ [[4, 11, … ┆ [[null, │\n", - "│ ┆ ┆ ┆ 20:16:13 ┆ ┆ 7], [1, 3, ┆ 44], [2, ┆ -1.400823, │\n", - "│ ┆ ┆ ┆ ┆ ┆ 6], … [1, ┆ 11, 22], … ┆ … -0.78261 │\n", - "│ ┆ ┆ ┆ ┆ ┆ 3… ┆ [… ┆ 2],… │\n", - "│ 5 ┆ [5] ┆ [17] ┆ 2010-01-16 ┆ … ┆ [[1, 3, … ┆ [[4, 11, … ┆ [[null, │\n", - "│ ┆ ┆ ┆ 07:34:43 ┆ ┆ 7], [1, 3, ┆ 44], [2, ┆ 1.772835, │\n", - "│ ┆ ┆ ┆ ┆ ┆ … 6], … ┆ 11, … 22], ┆ … NaN], │\n", - "│ ┆ ┆ ┆ ┆ ┆ [1,… ┆ …… ┆ [null,… │\n", - "│ 9 ┆ [5] ┆ [17] ┆ 2010-05-25 ┆ … ┆ [[1, 3, … ┆ [[4, 11, … ┆ [[null, │\n", - "│ ┆ ┆ ┆ 03:00:54 ┆ ┆ 7], [1, 3, ┆ 44], [2, ┆ 0.470517, │\n", - "│ ┆ ┆ ┆ ┆ ┆ 6], … [1, ┆ 11, 24], … ┆ … -0.25784 │\n", - "│ ┆ ┆ ┆ ┆ ┆ 3… ┆ [… ┆ 4], … │\n", - "│ 12 ┆ [5] ┆ [19] ┆ 2010-02-06 ┆ … ┆ [[1, 3, … ┆ [[4, 11, … ┆ [[null, │\n", - "│ ┆ ┆ ┆ 13:42:56 ┆ ┆ 7], [1, 3, ┆ 44], [1, ┆ -1.441905, │\n", - "│ ┆ ┆ ┆ ┆ ┆ … 7], … ┆ 11, … 44], ┆ … │\n", - "│ ┆ ┆ ┆ ┆ ┆ [1,… ┆ …… ┆ 0.109493], │\n", + "│ 142258 ┆ [5] ┆ [24] ┆ 2010-01-26 ┆ … ┆ [[1, 3, … ┆ [[4, 16, … ┆ [[null, │\n", + "│ ┆ ┆ ┆ 15:59:04 ┆ ┆ 8], [1, 3, ┆ 55], [1, ┆ -1.153556, │\n", + "│ ┆ ┆ ┆ ┆ ┆ … 8], … ┆ 16, … 55], ┆ … -0.42273 │\n", + "│ ┆ ┆ ┆ ┆ ┆ [1,… ┆ …… ┆ 6],… │\n", + "│ 234683 ┆ [5] ┆ [22] ┆ 2010-04-10 ┆ … ┆ [[1, 3, … ┆ [[4, 16, … ┆ [[null, │\n", + "│ ┆ ┆ ┆ 06:03:48 ┆ ┆ 8], [1, 3, ┆ 55], [2, ┆ 1.639285, │\n", + "│ ┆ ┆ ┆ ┆ ┆ 6], … [1, ┆ 16, 27], … ┆ … │\n", + "│ ┆ ┆ ┆ ┆ ┆ 3… ┆ [… ┆ -1.46188], │\n", + "│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ [… │\n", + "│ 428046 ┆ [5] ┆ [22] ┆ 2010-06-05 ┆ … ┆ [[1, 3, … ┆ [[5, 16, … ┆ [[null, │\n", + "│ ┆ ┆ ┆ 16:30:00 ┆ ┆ 8], [1, 3, ┆ 55], [1, ┆ -0.039543, │\n", + "│ ┆ ┆ ┆ ┆ ┆ … 8], … ┆ 16, … 55], ┆ … │\n", + "│ ┆ ┆ ┆ ┆ ┆ [1,… ┆ …… ┆ 0.668365], │\n", "│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ … │\n", + "│ 452247 ┆ [5] ┆ [23] ┆ 2010-02-06 ┆ … ┆ [[1, 3, … ┆ [[5, 16, … ┆ [[null, │\n", + "│ ┆ ┆ ┆ 16:50:43 ┆ ┆ 8], [1, 3, ┆ 55], [1, ┆ 1.744859, │\n", + "│ ┆ ┆ ┆ ┆ ┆ … 8], … ┆ 16, … 55], ┆ … │\n", + "│ ┆ ┆ ┆ ┆ ┆ [1,… ┆ …… ┆ 1.187937], │\n", + "│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ [… │\n", "└────────────┴─────────────┴─────────────┴─────────────┴───┴─────────────┴────────────┴────────────┘" ] }, @@ -1959,7 +2139,7 @@ } ], "source": [ - "df = pl.scan_parquet('sample_data/processed/sample/DL_reps/tuning_*.parquet')\n", + "df = pl.scan_parquet('sample_data/processed/sample/DL_reps/tuning/*.parquet')\n", "print(\"DL Dataframe Columns:\\n * \" + '\\n * '.join(df.columns))\n", "display(df.head(4).collect())" ] @@ -1974,7 +2154,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 32, "id": "bb4e80a8", "metadata": {}, "outputs": [ @@ -1984,19 +2164,21 @@ "text": [ "{\n", " \"vocab_sizes_by_measurement\": {\n", - " \"event_type\": 9,\n", + " \"event_type\": 14,\n", " \"eye_color\": 5,\n", " \"department\": 4,\n", + " \"medication\": 6,\n", " \"lab_name\": 23\n", " },\n", " \"vocab_offsets_by_measurement\": {\n", " \"event_type\": 1,\n", - " \"HR\": 10,\n", - " \"age\": 11,\n", - " \"department\": 12,\n", - " \"eye_color\": 16,\n", - " \"lab_name\": 21,\n", - " \"temp\": 44\n", + " \"HR\": 15,\n", + " \"age\": 16,\n", + " \"department\": 17,\n", + " \"eye_color\": 21,\n", + " \"lab_name\": 26,\n", + " \"medication\": 49,\n", + " \"temp\": 55\n", " },\n", " \"measurements_idxmap\": {\n", " \"event_type\": 1,\n", @@ -2005,7 +2187,8 @@ " \"department\": 4,\n", " \"eye_color\": 5,\n", " \"lab_name\": 6,\n", - " \"temp\": 7\n", + " \"medication\": 7,\n", + " \"temp\": 8\n", " },\n", " \"measurements_per_generative_mode\": {\n", " \"single_label_classification\": [\n", @@ -2013,6 +2196,7 @@ " ],\n", " \"multi_label_classification\": [\n", " \"department\",\n", + " \"medication\",\n", " \"lab_name\"\n", " ],\n", " \"univariate_regression\": [\n", @@ -2032,7 +2216,12 @@ " \"DISCHARGE\": 6,\n", " \"DISCHARGE&LAB\": 7,\n", " \"DISCHARGE&VITAL&LAB\": 8,\n", - " \"DISCHARGE&VITAL\": 9\n", + " \"VITAL&LAB&MEDICATION\": 9,\n", + " \"DISCHARGE&VITAL\": 10,\n", + " \"LAB&MEDICATION\": 11,\n", + " \"MEDICATION\": 12,\n", + " \"VITAL&MEDICATION\": 13,\n", + " \"DISCHARGE&MEDICATION\": 14\n", " }\n", "}\n" ] @@ -2044,363 +2233,257 @@ }, { "cell_type": "markdown", - "id": "b1c40e6f", + "id": "5aed539d-f39c-44fd-9184-98ec80cb4756", "metadata": {}, "source": [ - "### Interacting with DL DataFrames: The Pytorch Dataset\n", - "How can we best interact with these DL dataframe representations? We can do so through the provided `EventStream.data.pytorch_dataset.PytorchDataset` class. To create this class, we need to specify a pytorch dataset config object, which contains both (1) a pointer to the directory in which the overall dataset is saved (here `processed/sample`) and (2) other, pytorch dataset specific parameters such as the max sequence length.\n", - "\n", - "For now, let's build a pytorch dataset with a maximum sequence length of 8, to keep things nice and easily inspectable. We'll keep other parameters at their defaults. When you construct a pytorch dataset, you pass in both the config object and a split (`'train'`, `'tuning'`, or `'held_out'`). We'll pull up the train split for now." + "In addition, we also produce [nested ragged tensor](https://pypi.org/project/nested-ragged-tensors/) views of the data, for efficient use in deep learning processes with pytorch:" ] }, { "cell_type": "code", - "execution_count": 36, - "id": "81bba112", + "execution_count": 33, + "id": "437e961d-5943-49ba-b85b-ad870211eef9", "metadata": {}, "outputs": [], "source": [ - "from EventStream.data.config import PytorchDatasetConfig\n", - "from EventStream.data.types import PytorchBatch\n", - "from EventStream.data.pytorch_dataset import PytorchDataset" + "from nested_ragged_tensors.ragged_numpy import JointNestedRaggedTensorDict" ] }, { "cell_type": "code", - "execution_count": 37, - "id": "9b675ed6", + "execution_count": 34, + "id": "9ac55093-dc50-4d6f-a935-d33fde9b9c54", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 211 ms, sys: 6.8 ms, total: 218 ms\n", - "Wall time: 181 ms\n" + "{'time_delta': array([60., 60., 60.], dtype=float32), 'dim1/mask': array([[ True, True, True, True, True, True, True, True, True,\n", + " True, True, False, False],\n", + " [ True, True, True, True, True, True, True, False, False,\n", + " False, False, False, False],\n", + " [ True, True, True, True, True, True, True, True, True,\n", + " True, True, True, True]]), 'dynamic_measurement_indices': array([[1, 3, 2, 6, 6, 6, 6, 6, 6, 6, 8, 0, 0],\n", + " [1, 3, 2, 2, 6, 8, 8, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 2, 2, 2, 6, 6, 6, 8, 8, 8, 8]], dtype=uint8), 'dynamic_values': array([[ nan, -1.1535041 , -0.02961701, 3.5358973 , 3.7258668 ,\n", + " 3.630882 , 3.8208516 , 3.4409125 , 3.630882 , 3.9158366 ,\n", + " -0.31882283, 0. , 0. ],\n", + " [ nan, -1.1534781 , 0.16873288, 0.13854901, 3.7258668 ,\n", + " -0.26686248, -0.37077925, 0. , 0. , 0. ,\n", + " 0. , 0. , 0. ],\n", + " [ nan, -1.1534522 , 0.18598042, 0.16010877, 0.01134657,\n", + " 0.08033773, 3.8208516 , 3.630882 , 3.630882 , -0.5786088 ,\n", + " -0.21490607, -0.31882283, -0.42273566]], dtype=float32), 'dynamic_indices': array([[ 1, 16, 15, 27, 27, 27, 27, 27, 27, 27, 55, 0, 0],\n", + " [ 1, 16, 15, 15, 27, 55, 55, 0, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 15, 15, 15, 27, 27, 27, 55, 55, 55, 55]], dtype=uint8)}\n", + "CPU times: user 32.2 ms, sys: 133 µs, total: 32.4 ms\n", + "Wall time: 31.6 ms\n" ] } ], "source": [ "%%time\n", - "pyd_config = PytorchDatasetConfig(\n", - " save_dir=ESD.config.save_dir,\n", - " max_seq_len=8,\n", - ")\n", - "pyd = PytorchDataset(config=pyd_config, split='train')" + "J = JointNestedRaggedTensorDict.load('sample_data/processed/sample/NRT_reps/tuning/0.pt')\n", + "print(J[0][2:5].to_dense())" ] }, { "cell_type": "markdown", - "id": "fc2c5a7d", + "id": "4b07d843-75ce-449b-b53d-18f9dbd16133", "metadata": {}, "source": [ - "Note that it takes some time to load this data, even in our small, synthetic case. This is because the model is loading the data from the raw, columnar format of the parquet files and converting it to a plain-old-data type of a list of tuples such that accessing a single subject's data can be done in $O(1)$ time very efficiently. Once we've loaded the data, we can inspect what the pytorch dataset's internal data structure looks like by accessing the `cached_data` member:" + "These [`JointNestedRaggedTensorDict`](https://github.com/mmcdermott/nested_ragged_tensors/blob/main/src/nested_ragged_tensors/ragged_numpy.py#L56) objects can also be loaded efficiently in slices:" ] }, { "cell_type": "code", - "execution_count": 38, - "id": "c008b5d0", + "execution_count": 35, + "id": "5d2329a1-5728-44b9-b873-5e9f0363313d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "`pyd.cached_data` is a of len 80\n", - "Each element is a object of len 7 following schema defined in `pyd.columns = `['static_measurement_indices', 'static_indices', 'start_time', 'dynamic_measurement_indices', 'dynamic_indices', 'dynamic_values', 'time_delta']\n" + "{'time_delta': array([60., 60., 60.], dtype=float32), 'dim1/mask': array([[ True, True, True, True, True, True, True, True, True,\n", + " True, True, False, False],\n", + " [ True, True, True, True, True, True, True, False, False,\n", + " False, False, False, False],\n", + " [ True, True, True, True, True, True, True, True, True,\n", + " True, True, True, True]]), 'dynamic_measurement_indices': array([[1, 3, 2, 6, 6, 6, 6, 6, 6, 6, 8, 0, 0],\n", + " [1, 3, 2, 2, 6, 8, 8, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 2, 2, 2, 6, 6, 6, 8, 8, 8, 8]], dtype=uint8), 'dynamic_values': array([[ nan, -1.1535041 , -0.02961701, 3.5358973 , 3.7258668 ,\n", + " 3.630882 , 3.8208516 , 3.4409125 , 3.630882 , 3.9158366 ,\n", + " -0.31882283, 0. , 0. ],\n", + " [ nan, -1.1534781 , 0.16873288, 0.13854901, 3.7258668 ,\n", + " -0.26686248, -0.37077925, 0. , 0. , 0. ,\n", + " 0. , 0. , 0. ],\n", + " [ nan, -1.1534522 , 0.18598042, 0.16010877, 0.01134657,\n", + " 0.08033773, 3.8208516 , 3.630882 , 3.630882 , -0.5786088 ,\n", + " -0.21490607, -0.31882283, -0.42273566]], dtype=float32), 'dynamic_indices': array([[ 1, 16, 15, 27, 27, 27, 27, 27, 27, 27, 55, 0, 0],\n", + " [ 1, 16, 15, 15, 27, 55, 55, 0, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 15, 15, 15, 27, 27, 27, 55, 55, 55, 55]], dtype=uint8)}\n", + "CPU times: user 4.04 ms, sys: 16 µs, total: 4.05 ms\n", + "Wall time: 4.03 ms\n" ] } ], "source": [ - "print(f\"`pyd.cached_data` is a {type(pyd.cached_data)} of len {len(pyd.cached_data)}\")\n", - "print(\n", - " f\"Each element is a {type(pyd.cached_data[0])} object of len {len(pyd.cached_data[0])} \"\n", - " f\"following schema defined in `pyd.columns = `{pyd.columns}\"\n", - ")" + "%%time\n", + "J = JointNestedRaggedTensorDict.load_slice('sample_data/processed/sample/NRT_reps/tuning/0.pt', 0)\n", + "print(J[2:5].to_dense())" ] }, { "cell_type": "markdown", - "id": "d44ec0d8", + "id": "b1c40e6f", "metadata": {}, "source": [ - "We don't print out any of its data here as it looks very large. But what we can print out is what happens when you call the pytorch built-in `__getitem__` function for a given index:" + "### Interacting with DL DataFrames: The Pytorch Dataset\n", + "How can we best interact with these DL dataframe representations? We can do so through the provided `EventStream.data.pytorch_dataset.PytorchDataset` class. To create this class, we need to specify a pytorch dataset config object, which contains both (1) a pointer to the directory in which the overall dataset is saved (here `processed/sample`) and (2) other, pytorch dataset specific parameters such as the max sequence length.\n", + "\n", + "For now, let's build a pytorch dataset with a maximum sequence length of 8, to keep things nice and easily inspectable. We'll keep other parameters at their defaults. When you construct a pytorch dataset, you pass in both the config object and a split (`'train'`, `'tuning'`, or `'held_out'`). We'll pull up the train split for now." ] }, { "cell_type": "code", - "execution_count": 39, - "id": "80288724", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'static_measurement_indices': [5],\n", - " 'static_indices': [20],\n", - " 'dynamic_measurement_indices': [[1, 3, 6, 6],\n", - " [1, 3, 6, 6, 6],\n", - " [1, 3, 2, 6, 6, 6, 7],\n", - " [1, 3, 6, 6],\n", - " [1, 3, 6],\n", - " [1, 3, 2, 6, 7],\n", - " [1, 3, 6],\n", - " [1, 3, 6, 6, 6]],\n", - " 'dynamic_indices': [[2, 11, 22, 22],\n", - " [2, 11, 23, 22, 22],\n", - " [1, 11, 10, 22, 22, 22, 44],\n", - " [2, 11, 25, 22],\n", - " [2, 11, 22],\n", - " [1, 11, 10, 22, 44],\n", - " [2, 11, 25],\n", - " [2, 11, 22, 22, 22]],\n", - " 'dynamic_values': [[None,\n", - " -0.39936295554408535,\n", - " -0.3809716609513625,\n", - " 0.35464983609205974],\n", - " [None,\n", - " -0.39933673114866824,\n", - " 0.5026700682939423,\n", - " -0.3809716609513625,\n", - " -0.5648770352122181],\n", - " [None,\n", - " -0.3993105067532528,\n", - " nan,\n", - " -0.4729243480817903,\n", - " -0.4729243480817903,\n", - " -0.5648770352122181,\n", - " 0.8441693427412793],\n", - " [None, -0.39928428235783653, nan, 2.377608952961471],\n", - " [None, -0.3992580579624195, -0.4729243480817903],\n", - " [None, -0.39923183356700404, nan, -0.01316091242965139, 1.1590296243690292],\n", - " [None, -0.39920560917158776, nan],\n", - " [None,\n", - " -0.39917938477617065,\n", - " 0.35464983609205974,\n", - " -0.5648770352122181,\n", - " -0.01316091242965139]],\n", - " 'time_delta': [60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0]}" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pyd[0]" - ] - }, - { - "cell_type": "markdown", - "id": "33ca08af", + "execution_count": 36, + "id": "81bba112", "metadata": {}, + "outputs": [], "source": [ - "We can see this returns a dictionary linking names not to tensors, but to lists or lists of lists. This is non-standard for pytorch datasets, as it means the default collate function for dataloaders won't work for us. Luckily, we provide a built-in custom collate function that can be used via `pyd.collate`:" + "from EventStream.data.config import PytorchDatasetConfig\n", + "from EventStream.data.types import PytorchBatch\n", + "from EventStream.data.pytorch_dataset import PytorchDataset" ] }, { "cell_type": "code", - "execution_count": 40, - "id": "0d5cffcc", + "execution_count": 37, + "id": "9b675ed6", "metadata": {}, "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "`pyd.collate` docstring:\n", - "Combines the ragged dictionaries produced by `__getitem__` into a tensorized batch.\n", - "\n", - " This function handles conversion of arrays to tensors and padding of elements within the batch across\n", - " static data elements, sequence events, and dynamic data elements.\n", - "\n", - " Args:\n", - " batch: A list of `__getitem__` format output dictionaries.\n", - "\n", - " Returns:\n", - " A fully collated, tensorized, and padded batch.\n", - " \n" + "\u001b[32m2024-05-16 13:22:41.922\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m141\u001b[0m - \u001b[1mReading vocabulary\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:41.924\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m144\u001b[0m - \u001b[1mReading splits & patient shards\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:41.925\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m147\u001b[0m - \u001b[1mSetting measurement configs\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:41.938\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m150\u001b[0m - \u001b[1mReading patient descriptors\u001b[0m\n" ] - } - ], - "source": [ - "print(f\"`pyd.collate` docstring:\\n{pyd.collate.__doc__}\")" - ] - }, - { - "cell_type": "markdown", - "id": "f9ea555d", - "metadata": {}, - "source": [ - "Before we see that function in action, though, let's show one important aspect of this dataset object -- namely, that because the dataset is sampling a sub-sequence from the patient's data with each call to `__getitem__` (in order to isolate a sub-sequence of length no more than `max_seq_len`), it is, by default, _not deterministic_ in each call to `__getitem__`. E.g., if we call `pyd[0]` again, we'll see a slightly different batch:" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "id": "101efac6", - "metadata": {}, - "outputs": [ + }, { "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "{'static_measurement_indices': [5],\n", - " 'static_indices': [20],\n", - " 'dynamic_measurement_indices': [[1, 3, 6],\n", - " [1, 3, 2, 6, 7],\n", - " [1, 3, 6, 6],\n", - " [1, 3, 6, 6, 6, 6],\n", - " [1, 3, 2, 6, 7],\n", - " [1, 3, 6],\n", - " [1, 3, 2, 6, 6, 6, 6, 7],\n", - " [1, 3, 6]],\n", - " 'dynamic_indices': [[2, 11, 30],\n", - " [1, 11, 10, 22, 44],\n", - " [2, 11, 26, 22],\n", - " [2, 11, 22, 30, 22, 22],\n", - " [1, 11, 10, 22, 44],\n", - " [2, 11, 22],\n", - " [1, 11, 10, 22, 22, 22, 22, 44],\n", - " [2, 11, 24]],\n", - " 'dynamic_values': [[None, -0.3937509349249951, nan],\n", - " [None, -0.39372471052957964, nan, -0.5648770352122181, -0.9925203043639118],\n", - " [None, -0.3936984861341634, nan, -0.3809716609513625],\n", - " [None,\n", - " -0.3936722617387463,\n", - " 1.6419874559180485,\n", - " nan,\n", - " 2.0097982044397598,\n", - " -0.19706628669050694],\n", - " [None,\n", - " -0.39364603734333004,\n", - " -0.9262275373564612,\n", - " -0.5648770352122181,\n", - " 0.21444877948577937],\n", - " [None, -0.3936198129479146, -0.4729243480817903],\n", - " [None,\n", - " -0.39359358855249754,\n", - " 1.1027341197081728,\n", - " -0.2890189738209347,\n", - " -0.5648770352122181,\n", - " -0.2890189738209347,\n", - " -0.3809716609513625,\n", - " 0.004540590512046147],\n", - " [None, -0.39356736415708127, -1.1490264067186877]],\n", - " 'time_delta': [60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0]}" + "Reading static shards: 0%| | 0/1 [00:00= 2) from 80 to 80 rows and 80 to 80 subjects.\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 54.2 ms, sys: 7.34 ms, total: 61.5 ms\n", + "Wall time: 57.7 ms\n" + ] } ], "source": [ - "pyd[0]" + "%%time\n", + "pyd_config = PytorchDatasetConfig(\n", + " save_dir=ESD.config.save_dir,\n", + " max_seq_len=8,\n", + ")\n", + "pyd = PytorchDataset(config=pyd_config, split='train')" ] }, { "cell_type": "markdown", - "id": "5160aa17", + "id": "d44ec0d8", "metadata": {}, "source": [ - "Of course, this kind of stochasticity is dangerous to reproducibility. To that end, while the `__getitem__` API doesn't accept a seed itself, the underlying calls actually are seeded, and they can be accessed by looking at the `_past_seeds` member variable:" + "We don't print out any of its data here as it looks very large. But what we can print out is what happens when you call the pytorch built-in `__getitem__` function for a given index:" ] }, { "cell_type": "code", - "execution_count": 42, - "id": "194fe02b", - "metadata": {}, + "execution_count": 38, + "id": "80288724", + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { "text/plain": [ - "[(38738418, '_seeded_getitem', '2023-12-13 21:18:36.170963'),\n", - " (2613942, '_seeded_getitem', '2023-12-13 21:18:36.206068')]" + "{'static_indices': [22],\n", + " 'static_measurement_indices': [5],\n", + " 'dynamic': JointNestedRaggedTensorDict({'dim0/time_delta': array([60., 60., 60., 60., 60., 60., 60., 60.], dtype=float32), 'dim1/lengths': array([3, 4, 3, 6, 3, 3, 5, 3]), 'dim1/dynamic_measurement_indices': [array([1, 3, 6], dtype=uint8), array([1, 3, 6, 6], dtype=uint8), array([1, 3, 6], dtype=uint8), array([1, 3, 2, 6, 6, 8], dtype=uint8), array([1, 3, 6], dtype=uint8), array([1, 3, 6], dtype=uint8), array([1, 3, 2, 6, 8], dtype=uint8), array([1, 3, 6], dtype=uint8)], 'dim1/dynamic_values': [array([ nan, 0.58424604, 1.5711842 ], dtype=float32), array([ nan, 0.584272 , -0.5484497, -0.4534649], dtype=float32), array([ nan, 0.58429796, -0.5484497 ], dtype=float32), array([ nan, 0.58432394, -0.07273653, nan, -0.5484497 ,\n", + " -1.1501372 ], dtype=float32), array([ nan, 0.5843499, -0.4534649], dtype=float32), array([ nan, 0.58437586, -0.5484497 ], dtype=float32), array([ nan, 0.5844018 , -0.04255283, -0.5484497 , -1.2020936 ],\n", + " dtype=float32), array([ nan, 0.5844278, -0.5484497], dtype=float32)], 'dim1/dynamic_indices': [array([ 2, 16, 28], dtype=uint8), array([ 2, 16, 27, 27], dtype=uint8), array([ 2, 16, 27], dtype=uint8), array([ 1, 16, 15, 37, 27, 55], dtype=uint8), array([ 2, 16, 27], dtype=uint8), array([ 2, 16, 27], dtype=uint8), array([ 1, 16, 15, 27, 55], dtype=uint8), array([ 2, 16, 27], dtype=uint8)], 'dim1/bounds': array([ 3, 7, 10, 16, 19, 22, 27, 30])}, schema={'dim1/time_delta': dtype('float32'), 'dim2/dynamic_indices': dtype('uint8'), 'dim2/dynamic_measurement_indices': dtype('uint8'), 'dim2/dynamic_values': dtype('float32')}, pre_raggedified=True)}" ] }, - "execution_count": 42, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "pyd._past_seeds" + "pyd[0]" ] }, { "cell_type": "markdown", - "id": "193d8ad7", + "id": "33ca08af", "metadata": {}, "source": [ - "If we re-call the seeded version of the `__getitem__` function (`EventStream.data.pytorch_dataset.PytorchDataset._seeded_getitem`) with one of these seeds, we'll get the same output over again:" + "We can see this returns a dictionary linking names not to tensors, but to lists or lists of lists. This is non-standard for pytorch datasets, as it means the default collate function for dataloaders won't work for us. Luckily, we provide a built-in custom collate function that can be used via `pyd.collate`:" ] }, { "cell_type": "code", - "execution_count": 43, - "id": "7d9eac7c", + "execution_count": 39, + "id": "0d5cffcc", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "{'static_measurement_indices': [5],\n", - " 'static_indices': [20],\n", - " 'dynamic_measurement_indices': [[1, 3, 6],\n", - " [1, 3, 2, 6, 7],\n", - " [1, 3, 6, 6],\n", - " [1, 3, 6, 6, 6, 6],\n", - " [1, 3, 2, 6, 7],\n", - " [1, 3, 6],\n", - " [1, 3, 2, 6, 6, 6, 6, 7],\n", - " [1, 3, 6]],\n", - " 'dynamic_indices': [[2, 11, 30],\n", - " [1, 11, 10, 22, 44],\n", - " [2, 11, 26, 22],\n", - " [2, 11, 22, 30, 22, 22],\n", - " [1, 11, 10, 22, 44],\n", - " [2, 11, 22],\n", - " [1, 11, 10, 22, 22, 22, 22, 44],\n", - " [2, 11, 24]],\n", - " 'dynamic_values': [[None, -0.3937509349249951, nan],\n", - " [None, -0.39372471052957964, nan, -0.5648770352122181, -0.9925203043639118],\n", - " [None, -0.3936984861341634, nan, -0.3809716609513625],\n", - " [None,\n", - " -0.3936722617387463,\n", - " 1.6419874559180485,\n", - " nan,\n", - " 2.0097982044397598,\n", - " -0.19706628669050694],\n", - " [None,\n", - " -0.39364603734333004,\n", - " -0.9262275373564612,\n", - " -0.5648770352122181,\n", - " 0.21444877948577937],\n", - " [None, -0.3936198129479146, -0.4729243480817903],\n", - " [None,\n", - " -0.39359358855249754,\n", - " 1.1027341197081728,\n", - " -0.2890189738209347,\n", - " -0.5648770352122181,\n", - " -0.2890189738209347,\n", - " -0.3809716609513625,\n", - " 0.004540590512046147],\n", - " [None, -0.39356736415708127, -1.1490264067186877]],\n", - " 'time_delta': [60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0]}" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "`pyd.collate` docstring:\n", + "Combines the ragged dictionaries produced by `__getitem__` into a tensorized batch.\n", + "\n", + " This function handles conversion of arrays to tensors and padding of elements within the batch across\n", + " static data elements, sequence events, and dynamic data elements.\n", + "\n", + " Args:\n", + " batch: A list of `__getitem__` format output dictionaries.\n", + "\n", + " Returns:\n", + " A fully collated, tensorized, and padded batch.\n", + " \n" + ] } ], "source": [ - "pyd._seeded_getitem(idx=0, seed=pyd._past_seeds[-1][0])" + "print(f\"`pyd.collate` docstring:\\n{pyd.collate.__doc__}\")" ] }, { @@ -2415,7 +2498,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 40, "id": "935380de", "metadata": {}, "outputs": [ @@ -2423,20 +2506,19 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 4.69 ms, sys: 4.19 ms, total: 8.88 ms\n", - "Wall time: 26.2 ms\n" + "CPU times: user 13.5 ms, sys: 535 µs, total: 14 ms\n", + "Wall time: 34.6 ms\n" ] } ], "source": [ "%%time\n", - "pyd._seed(1)\n", "batch = pyd.collate([pyd[i] for i in range(4)])" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 41, "id": "b0ba8b07", "metadata": {}, "outputs": [ @@ -2446,219 +2528,219 @@ "PytorchBatch(event_mask=tensor([[True, True, True, True, True, True, True, True],\n", " [True, True, True, True, True, True, True, True],\n", " [True, True, True, True, True, True, True, True],\n", - " [True, True, True, True, True, True, True, True]]), time_delta=tensor([[60., 60., 60., 60., 60., 60., 60., 60.],\n", - " [60., 60., 60., 60., 60., 60., 60., 60.],\n", - " [60., 60., 60., 60., 60., 60., 60., 60.],\n", - " [60., 60., 60., 60., 60., 60., 60., 60.]]), time=None, static_indices=tensor([[20],\n", - " [17],\n", - " [19],\n", - " [18]]), static_measurement_indices=tensor([[5],\n", + " [True, True, True, True, True, True, True, True]]), time_delta=tensor([[ 60., 60., 60., 60., 60., 60., 60., 60.],\n", + " [ 60., 60., 60., 60., 60., 60., 60., 60.],\n", + " [ 60., 60., 60., 60., 60., 60., 60., 60.],\n", + " [ 60., 60., 60., 60., 120., 60., 120., 60.]]), time=None, static_indices=tensor([[22],\n", + " [22],\n", + " [22],\n", + " [23]]), static_measurement_indices=tensor([[5],\n", " [5],\n", " [5],\n", - " [5]]), dynamic_indices=tensor([[[ 2, 11, 22, 22, 22, 24, 22, 0, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 22, 44, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [ 2, 11, 22, 33, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [ 2, 11, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 22, 22, 22, 22, 44, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 22, 22, 44, 0, 0, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 10, 10, 22, 36, 22, 22, 44, 44, 44, 0],\n", - " [ 1, 11, 10, 10, 22, 22, 27, 22, 22, 44, 44, 0, 0]],\n", + " [5]]), dynamic_indices=tensor([[[ 1, 16, 15, 15, 15, 27, 27, 32, 27, 55, 55, 55, 0],\n", + " [ 1, 16, 15, 27, 55, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 15, 15, 29, 33, 27, 55, 55, 55, 0, 0],\n", + " [ 1, 16, 15, 15, 15, 15, 27, 27, 27, 55, 55, 55, 55],\n", + " [ 1, 16, 15, 27, 27, 27, 27, 55, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 15, 28, 27, 55, 55, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 27, 27, 55, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 15, 15, 27, 27, 27, 55, 55, 55, 0, 0]],\n", "\n", - " [[ 1, 11, 10, 22, 38, 44, 0, 0, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 10, 10, 22, 22, 44, 44, 44, 0, 0, 0],\n", - " [ 1, 11, 10, 23, 44, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 22, 44, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 10, 10, 23, 22, 22, 44, 44, 44, 0, 0],\n", - " [ 1, 11, 10, 10, 10, 10, 22, 22, 22, 44, 44, 44, 44],\n", - " [ 1, 11, 10, 23, 44, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 10, 22, 22, 44, 44, 0, 0, 0, 0, 0]],\n", + " [[ 1, 16, 15, 15, 27, 55, 55, 0, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 15, 15, 28, 27, 27, 27, 55, 55, 55, 0],\n", + " [ 2, 16, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 2, 16, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 27, 27, 55, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 2, 16, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 2, 16, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 27, 55, 0, 0, 0, 0, 0, 0, 0, 0]],\n", "\n", - " [[ 1, 11, 10, 10, 22, 22, 44, 44, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 10, 22, 44, 44, 0, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 10, 28, 22, 22, 22, 44, 44, 0, 0, 0],\n", - " [ 1, 11, 10, 10, 10, 22, 22, 25, 44, 44, 44, 0, 0],\n", - " [ 1, 11, 10, 23, 22, 22, 44, 0, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 10, 22, 44, 44, 0, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 10, 22, 22, 44, 44, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 22, 22, 44, 0, 0, 0, 0, 0, 0, 0]],\n", + " [[ 2, 16, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 2, 16, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 32, 27, 55, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 2, 16, 29, 27, 27, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 2, 16, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 2, 16, 27, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 15, 15, 27, 27, 55, 55, 55, 0, 0, 0],\n", + " [ 1, 16, 15, 27, 55, 0, 0, 0, 0, 0, 0, 0, 0]],\n", "\n", - " [[ 1, 11, 10, 10, 22, 22, 22, 44, 44, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 10, 22, 22, 44, 44, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 22, 44, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 10, 10, 22, 22, 22, 44, 44, 44, 0, 0],\n", - " [ 3, 11, 10, 44, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 10, 10, 22, 22, 44, 44, 44, 0, 0, 0],\n", - " [ 1, 11, 10, 22, 27, 44, 0, 0, 0, 0, 0, 0, 0],\n", - " [ 1, 11, 10, 10, 10, 22, 22, 44, 44, 44, 0, 0, 0]]]), dynamic_measurement_indices=tensor([[[1, 3, 6, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [1, 3, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [[ 1, 16, 15, 27, 55, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 15, 27, 55, 55, 0, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 27, 27, 55, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 27, 55, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 27, 55, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 2, 16, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 1, 16, 15, 27, 55, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [ 2, 16, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]]), dynamic_measurement_indices=tensor([[[1, 3, 2, 2, 2, 6, 6, 6, 6, 8, 8, 8, 0],\n", + " [1, 3, 2, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 2, 2, 6, 6, 6, 8, 8, 8, 0, 0],\n", + " [1, 3, 2, 2, 2, 2, 6, 6, 6, 8, 8, 8, 8],\n", + " [1, 3, 2, 6, 6, 6, 6, 8, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 2, 6, 6, 8, 8, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 6, 6, 8, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 2, 2, 6, 6, 6, 8, 8, 8, 0, 0]],\n", + "\n", + " [[1, 3, 2, 2, 6, 8, 8, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 2, 2, 6, 6, 6, 6, 8, 8, 8, 0],\n", + " [1, 3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 6, 6, 8, 0, 0, 0, 0, 0, 0, 0],\n", " [1, 3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 6, 6, 6, 6, 7, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 6, 6, 7, 0, 0, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 2, 2, 6, 6, 6, 6, 7, 7, 7, 0],\n", - " [1, 3, 2, 2, 6, 6, 6, 6, 6, 7, 7, 0, 0]],\n", + " [1, 3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0]],\n", "\n", - " [[1, 3, 2, 6, 6, 7, 0, 0, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 2, 2, 6, 6, 7, 7, 7, 0, 0, 0],\n", - " [1, 3, 2, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 2, 2, 6, 6, 6, 7, 7, 7, 0, 0],\n", - " [1, 3, 2, 2, 2, 2, 6, 6, 6, 7, 7, 7, 7],\n", - " [1, 3, 2, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 2, 6, 6, 7, 7, 0, 0, 0, 0, 0]],\n", + " [[1, 3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 6, 6, 8, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 2, 2, 6, 6, 8, 8, 8, 0, 0, 0],\n", + " [1, 3, 2, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0]],\n", "\n", - " [[1, 3, 2, 2, 6, 6, 7, 7, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 2, 6, 7, 7, 0, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 2, 6, 6, 6, 6, 7, 7, 0, 0, 0],\n", - " [1, 3, 2, 2, 2, 6, 6, 6, 7, 7, 7, 0, 0],\n", - " [1, 3, 2, 6, 6, 6, 7, 0, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 2, 6, 7, 7, 0, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 2, 6, 6, 7, 7, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 6, 6, 7, 0, 0, 0, 0, 0, 0, 0]],\n", + " [[1, 3, 2, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 2, 6, 8, 8, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 6, 6, 8, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 2, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0],\n", + " [1, 3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]]), dynamic_values=tensor([[[ 0.0000, 0.5809, -0.0555, 0.1472, -0.0339, -0.5484, -0.5484,\n", + " 0.0000, -0.5484, -0.8904, -0.7864, -0.8384, 0.0000],\n", + " [ 0.0000, 0.5809, 0.1644, -0.5484, -0.9423, 0.0000, 0.0000,\n", + " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", + " [ 0.0000, 0.5810, 0.2011, 0.3649, 0.2981, -1.1520, 0.0000,\n", + " -0.5484, -0.7345, -0.9423, -0.7864, 0.0000, 0.0000],\n", + " [ 0.0000, 0.5810, 0.2959, 0.2377, 0.4145, 0.1342, -0.4535,\n", + " -0.5484, -0.5484, -0.8384, -0.8904, -0.9423, -0.7345],\n", + " [ 0.0000, 0.5810, 0.4900, -0.3585, -0.4535, -0.5484, -0.3585,\n", + " -1.0462, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", + " [ 0.0000, 0.5811, 0.4555, 0.3347, 1.5831, -0.2635, -1.0982,\n", + " -0.9423, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", + " [ 0.0000, 0.5811, 0.5374, -0.1685, -0.1685, -0.9423, 0.0000,\n", + " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", + " [ 0.0000, 0.5811, 0.4835, 0.3606, 0.6064, -0.5484, -0.2635,\n", + " -0.3585, -0.5786, -0.3708, -0.7345, 0.0000, 0.0000]],\n", "\n", - " [[1, 3, 2, 2, 6, 6, 6, 7, 7, 0, 0, 0, 0],\n", - " [1, 3, 2, 2, 6, 6, 7, 7, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 2, 2, 6, 6, 6, 7, 7, 7, 0, 0],\n", - " [1, 3, 2, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 2, 2, 6, 6, 7, 7, 7, 0, 0, 0],\n", - " [1, 3, 2, 6, 6, 7, 0, 0, 0, 0, 0, 0, 0],\n", - " [1, 3, 2, 2, 2, 6, 6, 7, 7, 7, 0, 0, 0]]]), dynamic_values=tensor([[[ 0.0000, -0.3967, -0.4729, -0.5649, -0.5649, -1.7190, -0.5649,\n", + " [[ 0.0000, 1.0901, 0.0000, 0.0000, -0.5484, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, -0.3967, -0.0462, -0.5649, 0.0000, 0.0000, 0.0000,\n", + " [ 0.0000, 1.0901, -1.8018, -1.7889, 0.0000, -0.6690, -0.4535,\n", + " -0.5484, -0.5484, 0.0000, 0.0000, 0.0000, 0.0000],\n", + " [ 0.0000, 1.0902, -0.5484, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, -0.3967, -0.5649, 0.0000, 0.0000, 0.0000, 0.0000,\n", + " [ 0.0000, 1.0902, -0.5484, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, -0.3967, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", + " [ 0.0000, 1.0902, 0.0000, -0.5484, -0.5484, 2.0193, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, -0.3966, -0.4773, -0.5649, -0.5649, 0.7225, 0.7225,\n", - " 1.0541, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, -0.3966, 0.4872, 0.9064, -0.5649, -0.9400, 0.0000,\n", + " [ 0.0000, 1.0902, -0.5484, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, -0.3966, 0.0000, -0.0129, 0.2494, -0.4729, 0.0000,\n", - " -0.5649, -0.2890, -1.1500, 0.4244, 1.8412, 0.0000],\n", - " [ 0.0000, -0.3966, 0.4116, -0.7240, -0.3810, 0.6305, 0.0000,\n", - " -0.5649, -0.5649, -0.8876, -1.2024, 0.0000, 0.0000]],\n", - "\n", - " [[ 0.0000, -0.0296, 1.8650, -0.3810, 0.0000, -1.0450, 0.0000,\n", + " [ 0.0000, 1.0903, -0.5484, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, -0.0296, -0.3907, -0.1040, 1.7516, -0.5649, 0.2627,\n", - " -0.3103, 1.3689, -0.1529, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, -0.0296, -1.0218, -1.3364, 0.0000, 0.0000, 0.0000,\n", + " [ 0.0000, 1.0903, 0.0000, -0.5484, 0.0000, 0.0000, 0.0000,\n", + " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]],\n", + "\n", + " [[ 0.0000, 0.0000, 1.3512, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, -0.0296, 0.0000, -0.4729, 0.5293, 0.0000, 0.0000,\n", + " [ 0.0000, 0.0000, 1.4462, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, -0.0295, 0.8849, -0.4729, -0.4751, 0.9624, 1.7339,\n", - " -0.4729, 1.5788, 0.4244, 0.2669, 0.0000, 0.0000],\n", - " [ 0.0000, -0.0295, -0.6129, -1.8307, -0.2551, -1.2085, -0.5649,\n", - " 3.6649, -0.5649, -0.6777, -0.0479, -0.7301, -0.7826],\n", - " [ 0.0000, -0.0295, 0.0000, 1.7852, 0.2144, 0.0000, 0.0000,\n", + " [ 0.0000, 0.0000, -0.4500, 0.0000, 1.4462, -0.9943, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, -0.0294, -1.0240, 1.4961, -0.5649, 2.9293, 0.0000,\n", - " 0.7917, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]],\n", - "\n", - " [[ 0.0000, 0.0000, 1.0583, 0.2605, -0.1971, 0.0788, 1.0541,\n", - " 0.5293, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, 0.0000, -1.0818, -0.2551, -0.5649, -1.0975, -0.9925,\n", + " [ 0.0000, 0.0000, -1.4394, 1.5412, 1.4462, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, 0.0000, -1.2774, 1.3427, 0.0000, 1.7339, -0.5649,\n", - " 1.2742, -0.9925, 0.0045, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, 0.0000, -1.0840, 0.3783, 1.1783, -0.4729, -0.5649,\n", - " 0.0000, 1.2640, 0.3194, 0.5293, 0.0000, 0.0000],\n", - " [ 0.0000, 0.0000, 0.8116, 0.8656, 0.7225, -0.5649, 1.3689,\n", + " [ 0.0000, 0.0000, 1.3512, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, 0.0000, -0.4418, -0.1418, 1.7339, 1.2640, -0.1529,\n", + " [ 0.0000, 0.0000, 0.9713, 1.1613, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, 0.0000, -0.7951, 1.0738, 1.7339, 0.9983, 1.1066,\n", - " 0.4768, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, 0.0000, 0.8205, -0.0132, 0.5386, 1.2640, 0.0000,\n", + " [ 0.0000, 0.0000, -0.5406, -0.7368, -0.5578, 0.8763, 0.9713,\n", + " -0.8904, -0.7864, -1.0462, 0.0000, 0.0000, 0.0000],\n", + " [ 0.0000, 0.0000, -0.8252, 0.6864, -0.8384, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]],\n", "\n", - " [[ 0.0000, 0.0000, 0.1538, -0.1262, -0.5649, -0.4729, -0.5649,\n", - " 1.0016, -0.6777, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, 0.0000, -0.9507, 1.4405, -0.4729, -0.4729, -0.8876,\n", - " 1.1066, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, 0.0000, -1.4485, -0.5649, 1.9987, 0.0000, 0.0000,\n", + " [[ 0.0000, -0.0588, 0.0000, -0.5484, 0.4605, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, 0.0000, 0.2249, -0.8107, -1.2151, 3.1132, -0.5649,\n", - " -0.5649, 0.4244, 0.6867, 0.5293, 0.0000, 0.0000],\n", - " [ 0.0000, 0.0000, 1.2605, -0.6252, 0.0000, 0.0000, 0.0000,\n", + " [ 0.0000, -0.0588, 0.0000, 0.0000, -0.5484, 0.4086, 0.4605,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, 0.0000, 0.4605, -0.2729, 1.0072, -0.3810, -0.5649,\n", - " -0.9400, 0.4768, 1.7888, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, 0.0000, -1.1040, 0.2627, 0.0000, 1.0016, 0.0000,\n", + " [ 0.0000, -0.0588, 0.0000, -0.4535, -0.4535, 0.3566, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 0.0000, 0.0000, -0.5707, 0.0000, 0.0000, -0.5649, 1.5500,\n", - " 0.1095, -0.1004, 0.0000, 0.0000, 0.0000, 0.0000]]]), dynamic_values_mask=tensor([[[False, True, True, True, True, True, True, False, False, False,\n", - " False, False, False],\n", - " [False, True, True, True, False, False, False, False, False, False,\n", - " False, False, False],\n", - " [False, True, True, False, False, False, False, False, False, False,\n", + " [ 0.0000, -0.0588, 0.0000, -0.3585, 0.5125, 0.0000, 0.0000,\n", + " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", + " [ 0.0000, -0.0587, 0.0000, -0.5484, 0.4605, 0.0000, 0.0000,\n", + " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", + " [ 0.0000, -0.0587, -0.4535, 0.0000, 0.0000, 0.0000, 0.0000,\n", + " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", + " [ 0.0000, -0.0587, 0.0000, -0.5484, 0.6164, 0.0000, 0.0000,\n", + " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", + " [ 0.0000, -0.0586, -0.4535, 0.0000, 0.0000, 0.0000, 0.0000,\n", + " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]), dynamic_values_mask=tensor([[[False, True, True, True, True, True, True, False, True, True,\n", + " True, True, False],\n", + " [False, True, True, True, True, False, False, False, False, False,\n", " False, False, False],\n", - " [False, True, False, False, False, False, False, False, False, False,\n", + " [False, True, True, True, True, True, False, True, True, True,\n", + " True, False, False],\n", + " [False, True, True, True, True, True, True, True, True, True,\n", + " True, True, True],\n", + " [False, True, True, True, True, True, True, True, False, False,\n", " False, False, False],\n", " [False, True, True, True, True, True, True, True, False, False,\n", " False, False, False],\n", " [False, True, True, True, True, True, False, False, False, False,\n", " False, False, False],\n", - " [False, True, False, True, True, True, False, True, True, True,\n", - " True, True, False],\n", - " [False, True, True, True, True, True, False, True, True, True,\n", + " [False, True, True, True, True, True, True, True, True, True,\n", " True, False, False]],\n", "\n", - " [[False, True, True, True, False, True, False, False, False, False,\n", + " [[False, True, False, False, True, False, False, False, False, False,\n", " False, False, False],\n", - " [False, True, True, True, True, True, True, True, True, True,\n", + " [False, True, True, True, False, True, True, True, True, False,\n", " False, False, False],\n", - " [False, True, True, True, False, False, False, False, False, False,\n", + " [False, True, True, False, False, False, False, False, False, False,\n", " False, False, False],\n", - " [False, True, False, True, True, False, False, False, False, False,\n", + " [False, True, True, False, False, False, False, False, False, False,\n", " False, False, False],\n", - " [False, True, True, True, True, True, True, True, True, True,\n", - " True, False, False],\n", - " [False, True, True, True, True, True, True, True, True, True,\n", - " True, True, True],\n", - " [False, True, False, True, True, False, False, False, False, False,\n", + " [False, True, False, True, True, True, False, False, False, False,\n", + " False, False, False],\n", + " [False, True, True, False, False, False, False, False, False, False,\n", + " False, False, False],\n", + " [False, True, True, False, False, False, False, False, False, False,\n", " False, False, False],\n", - " [False, True, True, True, True, True, False, True, False, False,\n", + " [False, True, False, True, False, False, False, False, False, False,\n", " False, False, False]],\n", "\n", - " [[False, False, True, True, True, True, True, True, False, False,\n", + " [[False, False, True, False, False, False, False, False, False, False,\n", " False, False, False],\n", - " [False, False, True, True, True, True, True, False, False, False,\n", + " [False, False, True, False, False, False, False, False, False, False,\n", " False, False, False],\n", - " [False, False, True, True, False, True, True, True, True, True,\n", + " [False, False, True, False, True, True, False, False, False, False,\n", " False, False, False],\n", - " [False, False, True, True, True, True, True, False, True, True,\n", - " True, False, False],\n", - " [False, False, True, True, True, True, True, False, False, False,\n", + " [False, False, True, True, True, False, False, False, False, False,\n", " False, False, False],\n", - " [False, False, True, True, True, True, True, False, False, False,\n", + " [False, False, True, False, False, False, False, False, False, False,\n", + " False, False, False],\n", + " [False, False, True, True, False, False, False, False, False, False,\n", " False, False, False],\n", - " [False, False, True, True, True, True, True, True, False, False,\n", + " [False, False, True, True, True, True, True, True, True, True,\n", " False, False, False],\n", - " [False, False, True, True, True, True, False, False, False, False,\n", + " [False, False, True, True, True, False, False, False, False, False,\n", " False, False, False]],\n", "\n", - " [[False, False, True, True, True, True, True, True, True, False,\n", + " [[False, True, False, True, True, False, False, False, False, False,\n", " False, False, False],\n", - " [False, False, True, True, True, True, True, True, False, False,\n", + " [False, True, False, False, True, True, True, False, False, False,\n", " False, False, False],\n", - " [False, False, True, True, True, False, False, False, False, False,\n", + " [False, True, False, True, True, True, False, False, False, False,\n", " False, False, False],\n", - " [False, False, True, True, True, True, True, True, True, True,\n", - " True, False, False],\n", - " [False, False, True, True, False, False, False, False, False, False,\n", + " [False, True, False, True, True, False, False, False, False, False,\n", " False, False, False],\n", - " [False, False, True, True, True, True, True, True, True, True,\n", + " [False, True, False, True, True, False, False, False, False, False,\n", + " False, False, False],\n", + " [False, True, True, False, False, False, False, False, False, False,\n", " False, False, False],\n", - " [False, False, True, True, False, True, False, False, False, False,\n", + " [False, True, False, True, True, False, False, False, False, False,\n", " False, False, False],\n", - " [False, False, True, False, False, True, True, True, True, False,\n", + " [False, True, True, False, False, False, False, False, False, False,\n", " False, False, False]]]), start_time=None, start_idx=None, end_idx=None, subject_id=None, stream_labels=None)" ] }, - "execution_count": 45, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -2684,7 +2766,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 42, "id": "2a418454", "metadata": {}, "outputs": [ @@ -2717,7 +2799,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 43, "id": "8ccb91fc", "metadata": {}, "outputs": [ @@ -2745,7 +2827,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 44, "id": "41357d8f", "metadata": {}, "outputs": [ @@ -2753,12 +2835,13 @@ "data": { "text/html": [ "
\n", - "shape: (4, 6)
time_deltastatic_indicesstatic_measurement_indicesdynamic_indicesdynamic_measurement_indicesdynamic_values
list[f64]list[f64]list[f64]list[list[f64]]list[list[f64]]list[list[f64]]
[60.0, 60.0, … 60.0][20.0][5.0][[2.0, 11.0, … 22.0], [1.0, 11.0, … 44.0], … [1.0, 11.0, … 44.0]][[1.0, 3.0, … 6.0], [1.0, 3.0, … 7.0], … [1.0, 3.0, … 7.0]][[null, -0.396741, … -0.564877], [null, -0.396714, … null], … [null, -0.396557, … -1.202428]]
[60.0, 60.0, … 60.0][17.0][5.0][[1.0, 11.0, … 44.0], [1.0, 11.0, … 44.0], … [1.0, 11.0, … 44.0]][[1.0, 3.0, … 7.0], [1.0, 3.0, … 7.0], … [1.0, 3.0, … 7.0]][[null, -0.029632, … -1.044996], [null, -0.029606, … -0.152892], … [null, -0.029449, … 0.791693]]
[60.0, 60.0, … 60.0][19.0][5.0][[1.0, 11.0, … 44.0], [1.0, 11.0, … 44.0], … [1.0, 11.0, … 44.0]][[1.0, 3.0, … 7.0], [1.0, 3.0, … 7.0], … [1.0, 3.0, … 7.0]][[null, null, … 0.529309], [null, null, … -0.99252], … [null, null, … 1.263986]]
[60.0, 60.0, … 60.0][18.0][5.0][[1.0, 11.0, … 44.0], [1.0, 11.0, … 44.0], … [1.0, 11.0, … 44.0]][[1.0, 3.0, … 7.0], [1.0, 3.0, … 7.0], … [1.0, 3.0, … 7.0]][[null, null, … -0.67766], [null, null, … 1.106554], … [null, null, … null]]
" + "shape: (4, 6)
time_deltastatic_indicesstatic_measurement_indicesdynamic_indicesdynamic_measurement_indicesdynamic_values
list[f64]list[f64]list[f64]list[list[f64]]list[list[f64]]list[list[f64]]
[60.0, 60.0, … 60.0][22.0][5.0][[1.0, 16.0, … 55.0], [1.0, 16.0, … 55.0], … [1.0, 16.0, … 55.0]][[1.0, 3.0, … 8.0], [1.0, 3.0, … 8.0], … [1.0, 3.0, … 8.0]][[null, 0.580923, … -0.838395], [null, 0.580949, … -0.942308], … [null, 0.581105, … -0.734478]]
[60.0, 60.0, … 60.0][22.0][5.0][[1.0, 16.0, … 55.0], [1.0, 16.0, … 55.0], … [1.0, 16.0, … 55.0]][[1.0, 3.0, … 8.0], [1.0, 3.0, … 8.0], … [1.0, 3.0, … 8.0]][[null, 1.090112, … null], [null, 1.090138, … null], … [null, 1.090293, … null]]
[60.0, 60.0, … 60.0][22.0][5.0][[2.0, 16.0, 27.0], [2.0, 16.0, 27.0], … [1.0, 16.0, … 55.0]][[1.0, 3.0, 6.0], [1.0, 3.0, 6.0], … [1.0, 3.0, … 8.0]][[null, null, 1.351247], [null, null, 1.446231], … [null, null, … -0.838395]]
[60.0, 60.0, … 60.0][23.0][5.0][[1.0, 16.0, … 55.0], [1.0, 16.0, … 55.0], … [2.0, 16.0, 27.0]][[1.0, 3.0, … 8.0], [1.0, 3.0, … 8.0], … [1.0, 3.0, 6.0]][[null, -0.058842, … 0.460535], [null, -0.058816, … 0.460535], … [null, -0.058608, -0.453465]]
" ], "text/plain": [ "shape: (4, 6)\n", @@ -2770,22 +2853,22 @@ "│ ┆ ┆ ┆ ]] ┆ list[list[f64 ┆ ]] │\n", "│ ┆ ┆ ┆ ┆ ]] ┆ │\n", "╞════════════════╪════════════════╪════════════════╪═══════════════╪═══════════════╪═══════════════╡\n", - "│ [60.0, 60.0, … ┆ [20.0] ┆ [5.0] ┆ [[2.0, 11.0, ┆ [[1.0, 3.0, … ┆ [[null, │\n", - "│ 60.0] ┆ ┆ ┆ … 22.0], ┆ 6.0], [1.0, ┆ -0.396741, … │\n", - "│ ┆ ┆ ┆ [1.0, 11.0… ┆ 3.0, …… ┆ -0.564877],… │\n", - "│ [60.0, 60.0, … ┆ [17.0] ┆ [5.0] ┆ [[1.0, 11.0, ┆ [[1.0, 3.0, … ┆ [[null, │\n", - "│ 60.0] ┆ ┆ ┆ … 44.0], ┆ 7.0], [1.0, ┆ -0.029632, … │\n", - "│ ┆ ┆ ┆ [1.0, 11.0… ┆ 3.0, …… ┆ -1.044996],… │\n", - "│ [60.0, 60.0, … ┆ [19.0] ┆ [5.0] ┆ [[1.0, 11.0, ┆ [[1.0, 3.0, … ┆ [[null, null, │\n", - "│ 60.0] ┆ ┆ ┆ … 44.0], ┆ 7.0], [1.0, ┆ … 0.529309], │\n", - "│ ┆ ┆ ┆ [1.0, 11.0… ┆ 3.0, …… ┆ [null… │\n", - "│ [60.0, 60.0, … ┆ [18.0] ┆ [5.0] ┆ [[1.0, 11.0, ┆ [[1.0, 3.0, … ┆ [[null, null, │\n", - "│ 60.0] ┆ ┆ ┆ … 44.0], ┆ 7.0], [1.0, ┆ … -0.67766], │\n", - "│ ┆ ┆ ┆ [1.0, 11.0… ┆ 3.0, …… ┆ [null… │\n", + "│ [60.0, 60.0, … ┆ [22.0] ┆ [5.0] ┆ [[1.0, 16.0, ┆ [[1.0, 3.0, … ┆ [[null, │\n", + "│ 60.0] ┆ ┆ ┆ … 55.0], ┆ 8.0], [1.0, ┆ 0.580923, … │\n", + "│ ┆ ┆ ┆ [1.0, 16.0… ┆ 3.0, …… ┆ -0.838395], … │\n", + "│ [60.0, 60.0, … ┆ [22.0] ┆ [5.0] ┆ [[1.0, 16.0, ┆ [[1.0, 3.0, … ┆ [[null, │\n", + "│ 60.0] ┆ ┆ ┆ … 55.0], ┆ 8.0], [1.0, ┆ 1.090112, … │\n", + "│ ┆ ┆ ┆ [1.0, 16.0… ┆ 3.0, …… ┆ null], [null… │\n", + "│ [60.0, 60.0, … ┆ [22.0] ┆ [5.0] ┆ [[2.0, 16.0, ┆ [[1.0, 3.0, ┆ [[null, null, │\n", + "│ 60.0] ┆ ┆ ┆ 27.0], [2.0, ┆ 6.0], [1.0, ┆ 1.351247], │\n", + "│ ┆ ┆ ┆ 16.0, … ┆ 3.0, 6.0… ┆ [null, … │\n", + "│ [60.0, 60.0, … ┆ [23.0] ┆ [5.0] ┆ [[1.0, 16.0, ┆ [[1.0, 3.0, … ┆ [[null, │\n", + "│ 60.0] ┆ ┆ ┆ … 55.0], ┆ 8.0], [1.0, ┆ -0.058842, … │\n", + "│ ┆ ┆ ┆ [1.0, 16.0… ┆ 3.0, …… ┆ 0.460535], … │\n", "└────────────────┴────────────────┴────────────────┴───────────────┴───────────────┴───────────────┘" ] }, - "execution_count": 48, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -2807,10 +2890,43 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 45, "id": "efcfef9f", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[32m2024-05-16 13:22:42.091\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m141\u001b[0m - \u001b[1mReading vocabulary\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:42.093\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m144\u001b[0m - \u001b[1mReading splits & patient shards\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:42.093\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m147\u001b[0m - \u001b[1mSetting measurement configs\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:42.106\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m150\u001b[0m - \u001b[1mReading patient descriptors\u001b[0m\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Reading static shards: 0%| | 0/1 [00:00= 2) from 10 to 10 rows and 10 to 10 subjects.\u001b[0m\n" + ] + } + ], "source": [ "pyd_with_st_time = PytorchDataset(\n", " config=PytorchDatasetConfig(save_dir=ESD.config.save_dir, do_include_start_time_min=True),\n", @@ -2829,7 +2945,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 46, "id": "ce7ff370", "metadata": {}, "outputs": [ @@ -2839,7 +2955,7 @@ "True" ] }, - "execution_count": 50, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -2858,10 +2974,43 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 47, "id": "a37c10d7", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[32m2024-05-16 13:22:42.143\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m141\u001b[0m - \u001b[1mReading vocabulary\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:42.144\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m144\u001b[0m - \u001b[1mReading splits & patient shards\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:42.145\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m147\u001b[0m - \u001b[1mSetting measurement configs\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:42.157\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m150\u001b[0m - \u001b[1mReading patient descriptors\u001b[0m\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Reading static shards: 0%| | 0/1 [00:00= 2) from 10 to 10 rows and 10 to 10 subjects.\u001b[0m\n" + ] + } + ], "source": [ "pyd_right_pad = PytorchDataset(\n", " config=PytorchDatasetConfig(\n", @@ -2870,7 +3019,6 @@ " ),\n", " split='tuning'\n", ")\n", - "pyd_right_pad._seed(1)\n", "batch_right_pad = pyd_right_pad.collate([pyd_right_pad[i] for i in range(3)])" ] }, @@ -2884,17 +3032,17 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 48, "id": "e96eb074", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "torch.Size([3, 135])" + "torch.Size([3, 624])" ] }, - "execution_count": 52, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -2905,7 +3053,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 49, "id": "ec4f5d2e", "metadata": {}, "outputs": [ @@ -2917,7 +3065,7 @@ " [True, True, True, True]])" ] }, - "execution_count": 53, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -2928,21 +3076,19 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 50, "id": "af1de169", - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[False, False, False, False],\n", - " [False, False, False, False],\n", - " [ True, True, True, True]])" + " [ True, True, True, True],\n", + " [False, False, False, False]])" ] }, - "execution_count": 54, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -2963,10 +3109,43 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 51, "id": "3d64b7e8", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[32m2024-05-16 13:22:42.207\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m141\u001b[0m - \u001b[1mReading vocabulary\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:42.209\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m144\u001b[0m - \u001b[1mReading splits & patient shards\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:42.210\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m147\u001b[0m - \u001b[1mSetting measurement configs\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:42.226\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m150\u001b[0m - \u001b[1mReading patient descriptors\u001b[0m\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Reading static shards: 0%| | 0/1 [00:00= 2) from 10 to 10 rows and 10 to 10 subjects.\u001b[0m\n" + ] + } + ], "source": [ "from EventStream.data.config import SeqPaddingSide\n", "pyd_left_pad = PytorchDataset(\n", @@ -2976,23 +3155,22 @@ " ),\n", " split='tuning'\n", ")\n", - "pyd_left_pad._seed(1)\n", "batch_left_pad = pyd_left_pad.collate([pyd_left_pad[i] for i in range(3)])" ] }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 52, "id": "e7020263", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "torch.Size([3, 135])" + "torch.Size([3, 624])" ] }, - "execution_count": 56, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -3003,7 +3181,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 53, "id": "ce861816", "metadata": {}, "outputs": [ @@ -3011,11 +3189,11 @@ "data": { "text/plain": [ "tensor([[False, False, False, False],\n", - " [False, False, False, False],\n", - " [ True, True, True, True]])" + " [ True, True, True, True],\n", + " [False, False, False, False]])" ] }, - "execution_count": 57, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -3026,7 +3204,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 54, "id": "4a806d18", "metadata": {}, "outputs": [ @@ -3038,7 +3216,7 @@ " [True, True, True, True]])" ] }, - "execution_count": 58, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -3063,7 +3241,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 55, "id": "acdedb9a", "metadata": {}, "outputs": [], @@ -3077,7 +3255,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 56, "id": "d5aceea0", "metadata": {}, "outputs": [ @@ -3086,19 +3264,24 @@ "output_type": "stream", "text": [ "For event 1\n", - "event_type: LAB\n", - "age: age with value 29.2\n", - "lab_name: SpO2 with value 51.0\n", + "event_type: VITAL&LAB\n", + "age: age with value 32.4\n", + "HR: HR with value 120.2\n", + "HR: HR with value 129.6\n", + "HR: HR with value 121.2\n", "lab_name: SpO2 with value 50.0\n", "lab_name: SpO2 with value 50.0\n", - "lab_name: creatinine with value 0.4\n", + "lab_name: GCS__EQ_1\n", "lab_name: SpO2 with value 50.0\n", + "temp: temp with value 96.1\n", + "temp: temp with value 96.3\n", + "temp: temp with value 96.2\n", "For event 2\n", "event_type: VITAL&LAB\n", - "age: age with value 29.2\n", - "HR: HR with value 121.9\n", + "age: age with value 32.4\n", + "HR: HR with value 130.4\n", "lab_name: SpO2 with value 50.0\n", - "temp: temp\n" + "temp: temp with value 96.0\n" ] } ], @@ -3124,13 +3307,15 @@ " raw_val = val.item()\n", " \n", " if meas_config.modality == 'univariate_regression':\n", - " norm_params = meas_config.measurement_metadata['normalizer']\n", + " mean = float(meas_config.measurement_metadata['mean'])\n", + " std = float(meas_config.measurement_metadata['std'])\n", " elif meas_config.modality == 'multivariate_regression':\n", - " norm_params = meas_config.measurement_metadata.loc[vocab_el]['normalizer']\n", + " mean = meas_config.measurement_metadata.loc[vocab_el]['mean'].item()\n", + " std = meas_config.measurement_metadata.loc[vocab_el]['std'].item()\n", " else:\n", " raise ValueError(f\"meas_config.modality = {meas_config.modality} is invalid!\")\n", " \n", - " desc_str += f\" with value {(raw_val * norm_params['std_'] + norm_params['mean_']):.1f}\"\n", + " desc_str += f\" with value {(raw_val * std + mean):.1f}\"\n", " print(desc_str)" ] }, @@ -3146,7 +3331,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 57, "id": "b21a4cc6", "metadata": {}, "outputs": [ @@ -3154,12 +3339,13 @@ "data": { "text/html": [ "
\n", - "shape: (4, 6)
time_deltastatic_indicesstatic_measurement_indicesdynamic_indicesdynamic_measurement_indicesdynamic_values
list[f64]list[f64]list[f64]list[list[f64]]list[list[f64]]list[list[f64]]
[60.0, 60.0, … 60.0][20.0][5.0][[2.0, 11.0, … 22.0], [1.0, 11.0, … 44.0], … [1.0, 11.0, … 44.0]][[1.0, 3.0, … 6.0], [1.0, 3.0, … 7.0], … [1.0, 3.0, … 7.0]][[null, -0.396741, … -0.564877], [null, -0.396714, … null], … [null, -0.396557, … -1.202428]]
[60.0, 60.0, … 60.0][17.0][5.0][[1.0, 11.0, … 44.0], [1.0, 11.0, … 44.0], … [1.0, 11.0, … 44.0]][[1.0, 3.0, … 7.0], [1.0, 3.0, … 7.0], … [1.0, 3.0, … 7.0]][[null, -0.029632, … -1.044996], [null, -0.029606, … -0.152892], … [null, -0.029449, … 0.791693]]
[60.0, 60.0, … 60.0][19.0][5.0][[1.0, 11.0, … 44.0], [1.0, 11.0, … 44.0], … [1.0, 11.0, … 44.0]][[1.0, 3.0, … 7.0], [1.0, 3.0, … 7.0], … [1.0, 3.0, … 7.0]][[null, null, … 0.529309], [null, null, … -0.99252], … [null, null, … 1.263986]]
[60.0, 60.0, … 60.0][18.0][5.0][[1.0, 11.0, … 44.0], [1.0, 11.0, … 44.0], … [1.0, 11.0, … 44.0]][[1.0, 3.0, … 7.0], [1.0, 3.0, … 7.0], … [1.0, 3.0, … 7.0]][[null, null, … -0.67766], [null, null, … 1.106554], … [null, null, … null]]
" + "shape: (4, 6)
time_deltastatic_indicesstatic_measurement_indicesdynamic_indicesdynamic_measurement_indicesdynamic_values
list[f64]list[f64]list[f64]list[list[f64]]list[list[f64]]list[list[f64]]
[60.0, 60.0, … 60.0][22.0][5.0][[1.0, 16.0, … 55.0], [1.0, 16.0, … 55.0], … [1.0, 16.0, … 55.0]][[1.0, 3.0, … 8.0], [1.0, 3.0, … 8.0], … [1.0, 3.0, … 8.0]][[null, 0.580923, … -0.838395], [null, 0.580949, … -0.942308], … [null, 0.581105, … -0.734478]]
[60.0, 60.0, … 60.0][22.0][5.0][[1.0, 16.0, … 55.0], [1.0, 16.0, … 55.0], … [1.0, 16.0, … 55.0]][[1.0, 3.0, … 8.0], [1.0, 3.0, … 8.0], … [1.0, 3.0, … 8.0]][[null, 1.090112, … null], [null, 1.090138, … null], … [null, 1.090293, … null]]
[60.0, 60.0, … 60.0][22.0][5.0][[2.0, 16.0, 27.0], [2.0, 16.0, 27.0], … [1.0, 16.0, … 55.0]][[1.0, 3.0, 6.0], [1.0, 3.0, 6.0], … [1.0, 3.0, … 8.0]][[null, null, 1.351247], [null, null, 1.446231], … [null, null, … -0.838395]]
[60.0, 60.0, … 60.0][23.0][5.0][[1.0, 16.0, … 55.0], [1.0, 16.0, … 55.0], … [2.0, 16.0, 27.0]][[1.0, 3.0, … 8.0], [1.0, 3.0, … 8.0], … [1.0, 3.0, 6.0]][[null, -0.058842, … 0.460535], [null, -0.058816, … 0.460535], … [null, -0.058608, -0.453465]]
" ], "text/plain": [ "shape: (4, 6)\n", @@ -3171,22 +3357,22 @@ "│ ┆ ┆ ┆ ]] ┆ list[list[f64 ┆ ]] │\n", "│ ┆ ┆ ┆ ┆ ]] ┆ │\n", "╞════════════════╪════════════════╪════════════════╪═══════════════╪═══════════════╪═══════════════╡\n", - "│ [60.0, 60.0, … ┆ [20.0] ┆ [5.0] ┆ [[2.0, 11.0, ┆ [[1.0, 3.0, … ┆ [[null, │\n", - "│ 60.0] ┆ ┆ ┆ … 22.0], ┆ 6.0], [1.0, ┆ -0.396741, … │\n", - "│ ┆ ┆ ┆ [1.0, 11.0… ┆ 3.0, …… ┆ -0.564877],… │\n", - "│ [60.0, 60.0, … ┆ [17.0] ┆ [5.0] ┆ [[1.0, 11.0, ┆ [[1.0, 3.0, … ┆ [[null, │\n", - "│ 60.0] ┆ ┆ ┆ … 44.0], ┆ 7.0], [1.0, ┆ -0.029632, … │\n", - "│ ┆ ┆ ┆ [1.0, 11.0… ┆ 3.0, …… ┆ -1.044996],… │\n", - "│ [60.0, 60.0, … ┆ [19.0] ┆ [5.0] ┆ [[1.0, 11.0, ┆ [[1.0, 3.0, … ┆ [[null, null, │\n", - "│ 60.0] ┆ ┆ ┆ … 44.0], ┆ 7.0], [1.0, ┆ … 0.529309], │\n", - "│ ┆ ┆ ┆ [1.0, 11.0… ┆ 3.0, …… ┆ [null… │\n", - "│ [60.0, 60.0, … ┆ [18.0] ┆ [5.0] ┆ [[1.0, 11.0, ┆ [[1.0, 3.0, … ┆ [[null, null, │\n", - "│ 60.0] ┆ ┆ ┆ … 44.0], ┆ 7.0], [1.0, ┆ … -0.67766], │\n", - "│ ┆ ┆ ┆ [1.0, 11.0… ┆ 3.0, …… ┆ [null… │\n", + "│ [60.0, 60.0, … ┆ [22.0] ┆ [5.0] ┆ [[1.0, 16.0, ┆ [[1.0, 3.0, … ┆ [[null, │\n", + "│ 60.0] ┆ ┆ ┆ … 55.0], ┆ 8.0], [1.0, ┆ 0.580923, … │\n", + "│ ┆ ┆ ┆ [1.0, 16.0… ┆ 3.0, …… ┆ -0.838395], … │\n", + "│ [60.0, 60.0, … ┆ [22.0] ┆ [5.0] ┆ [[1.0, 16.0, ┆ [[1.0, 3.0, … ┆ [[null, │\n", + "│ 60.0] ┆ ┆ ┆ … 55.0], ┆ 8.0], [1.0, ┆ 1.090112, … │\n", + "│ ┆ ┆ ┆ [1.0, 16.0… ┆ 3.0, …… ┆ null], [null… │\n", + "│ [60.0, 60.0, … ┆ [22.0] ┆ [5.0] ┆ [[2.0, 16.0, ┆ [[1.0, 3.0, ┆ [[null, null, │\n", + "│ 60.0] ┆ ┆ ┆ 27.0], [2.0, ┆ 6.0], [1.0, ┆ 1.351247], │\n", + "│ ┆ ┆ ┆ 16.0, … ┆ 3.0, 6.0… ┆ [null, … │\n", + "│ [60.0, 60.0, … ┆ [23.0] ┆ [5.0] ┆ [[1.0, 16.0, ┆ [[1.0, 3.0, … ┆ [[null, │\n", + "│ 60.0] ┆ ┆ ┆ … 55.0], ┆ 8.0], [1.0, ┆ -0.058842, … │\n", + "│ ┆ ┆ ┆ [1.0, 16.0… ┆ 3.0, …… ┆ 0.460535], … │\n", "└────────────────┴────────────────┴────────────────┴───────────────┴───────────────┴───────────────┘" ] }, - "execution_count": 61, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -3205,20 +3391,53 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 58, "id": "57f82868", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[32m2024-05-16 13:22:42.366\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m141\u001b[0m - \u001b[1mReading vocabulary\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:42.368\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m144\u001b[0m - \u001b[1mReading splits & patient shards\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:42.369\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m147\u001b[0m - \u001b[1mSetting measurement configs\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:42.388\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m150\u001b[0m - \u001b[1mReading patient descriptors\u001b[0m\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Reading static shards: 0%| | 0/1 [00:00= 2) from 80 to 80 rows and 80 to 80 subjects.\u001b[0m\n" + ] + }, { "data": { "text/html": [ "
\n", - "shape: (4, 10)
time_deltastatic_indicesstatic_measurement_indicesstart_idxend_idxsubject_id
list[f64]list[f64]list[f64]f64f64f64
[60.0, 60.0, … 60.0][20.0][5.0]126.0134.00.0
[60.0, 60.0, … 60.0][17.0][5.0]242.0250.02.0
[60.0, 60.0, … 60.0][19.0][5.0]454.0462.03.0
[60.0, 60.0, … 60.0][18.0][5.0]3.011.04.0
" + "shape: (4, 10)
time_deltastatic_indicesstatic_measurement_indicesstart_idxend_idxsubject_id
list[f64]list[f64]list[f64]f64f64f64
[60.0, 60.0, … 60.0][22.0][5.0]296.0304.015267.0
[60.0, 60.0, … 60.0][22.0][5.0]28.036.042335.0
[60.0, 60.0, … 60.0][22.0][5.0]86.094.072293.0
[120.0, 60.0, … 120.0][23.0][5.0]385.0393.087570.0
" ], "text/plain": [ "shape: (4, 10)\n", @@ -3229,22 +3448,22 @@ "│ ┆ list[f64] ┆ --- ┆ list[list[f6 ┆ ┆ ┆ ┆ │\n", "│ ┆ ┆ list[f64] ┆ 4]] ┆ ┆ ┆ ┆ │\n", "╞══════════════╪══════════════╪══════════════╪══════════════╪═══╪═══════════╪═════════╪════════════╡\n", - "│ [60.0, 60.0, ┆ [20.0] ┆ [5.0] ┆ [[2.0, 11.0, ┆ … ┆ 126.0 ┆ 134.0 ┆ 0.0 │\n", - "│ … 60.0] ┆ ┆ ┆ … 22.0], ┆ ┆ ┆ ┆ │\n", - "│ ┆ ┆ ┆ [1.0, 11.0… ┆ ┆ ┆ ┆ │\n", - "│ [60.0, 60.0, ┆ [17.0] ┆ [5.0] ┆ [[1.0, 11.0, ┆ … ┆ 242.0 ┆ 250.0 ┆ 2.0 │\n", - "│ … 60.0] ┆ ┆ ┆ … 44.0], ┆ ┆ ┆ ┆ │\n", - "│ ┆ ┆ ┆ [1.0, 11.0… ┆ ┆ ┆ ┆ │\n", - "│ [60.0, 60.0, ┆ [19.0] ┆ [5.0] ┆ [[1.0, 11.0, ┆ … ┆ 454.0 ┆ 462.0 ┆ 3.0 │\n", - "│ … 60.0] ┆ ┆ ┆ … 44.0], ┆ ┆ ┆ ┆ │\n", - "│ ┆ ┆ ┆ [1.0, 11.0… ┆ ┆ ┆ ┆ │\n", - "│ [60.0, 60.0, ┆ [18.0] ┆ [5.0] ┆ [[1.0, 11.0, ┆ … ┆ 3.0 ┆ 11.0 ┆ 4.0 │\n", - "│ … 60.0] ┆ ┆ ┆ … 44.0], ┆ ┆ ┆ ┆ │\n", - "│ ┆ ┆ ┆ [1.0, 11.0… ┆ ┆ ┆ ┆ │\n", + "│ [60.0, 60.0, ┆ [22.0] ┆ [5.0] ┆ [[2.0, 16.0, ┆ … ┆ 296.0 ┆ 304.0 ┆ 15267.0 │\n", + "│ … 60.0] ┆ ┆ ┆ 27.0], [1.0, ┆ ┆ ┆ ┆ │\n", + "│ ┆ ┆ ┆ 16.0, … ┆ ┆ ┆ ┆ │\n", + "│ [60.0, 60.0, ┆ [22.0] ┆ [5.0] ┆ [[1.0, 16.0, ┆ … ┆ 28.0 ┆ 36.0 ┆ 42335.0 │\n", + "│ … 60.0] ┆ ┆ ┆ … 55.0], ┆ ┆ ┆ ┆ │\n", + "│ ┆ ┆ ┆ [1.0, 16.0… ┆ ┆ ┆ ┆ │\n", + "│ [60.0, 60.0, ┆ [22.0] ┆ [5.0] ┆ [[2.0, 16.0, ┆ … ┆ 86.0 ┆ 94.0 ┆ 72293.0 │\n", + "│ … 60.0] ┆ ┆ ┆ 27.0], [2.0, ┆ ┆ ┆ ┆ │\n", + "│ ┆ ┆ ┆ 16.0, … ┆ ┆ ┆ ┆ │\n", + "│ [120.0, ┆ [23.0] ┆ [5.0] ┆ [[2.0, 16.0, ┆ … ┆ 385.0 ┆ 393.0 ┆ 87570.0 │\n", + "│ 60.0, … ┆ ┆ ┆ 27.0], [2.0, ┆ ┆ ┆ ┆ │\n", + "│ 120.0] ┆ ┆ ┆ 16.0, … ┆ ┆ ┆ ┆ │\n", "└──────────────┴──────────────┴──────────────┴──────────────┴───┴───────────┴─────────┴────────────┘" ] }, - "execution_count": 62, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -3259,7 +3478,6 @@ ")\n", "pyd_with_metadata = PytorchDataset(config=pyd_config_with_metadata, split='train')\n", "\n", - "pyd_with_metadata._seed(1)\n", "batch_with_metadata = pyd_with_metadata.collate([pyd_with_metadata[i] for i in range(4)])\n", "\n", "batch_with_metadata.convert_to_DL_DF()" @@ -3276,14 +3494,21 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 59, "id": "caff4e6c-62d1-4601-a1dd-b4b23e895693", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[32m2024-05-16 13:22:42.437\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.dataset_base\u001b[0m:\u001b[36mcache_flat_representation\u001b[0m:\u001b[36m1174\u001b[0m - \u001b[1mCaching flat representations\u001b[0m\n" + ] + }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b4fd333c0b0e40d49708b89481652742", + "model_id": "333fcec914e94cf394f584b42e32daf5", "version_major": 2, "version_minor": 0 }, @@ -3339,7 +3564,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f64cfaf9f7cb4e9da2357c9d9b163208", + "model_id": "a0fa27acbe304503a73bc068d7546d68", "version_major": 2, "version_minor": 0 }, @@ -3395,7 +3620,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "63121efa56c443ea8ccfb8157bdd3491", + "model_id": "aaa969fca32149fcbd4b919f98e07645", "version_major": 2, "version_minor": 0 }, @@ -3539,7 +3764,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 60, "id": "791ef2ad-25a6-4b4a-aa53-56526a288ab9", "metadata": { "scrolled": true @@ -3551,159 +3776,159 @@ "text": [ "sample_data/processed/sample/flat_reps:\n", "total 16K\n", - "drwxrwxr-x 5 mmd mmd 4.0K Dec 13 21:18 \u001b[0m\u001b[01;34mat_ts\u001b[0m\n", - "drwxrwxr-x 5 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mover_history\u001b[0m\n", - "-rw-rw-r-- 1 mmd mmd 655 Dec 13 21:18 params.json\n", - "drwxrwxr-x 5 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mstatic\u001b[0m\n", + "drwxrwxr-x 5 mmd mmd 4.0K May 16 13:22 \u001b[0m\u001b[01;34mat_ts\u001b[0m\n", + "drwxrwxr-x 5 mmd mmd 4.0K May 16 13:22 \u001b[01;34mover_history\u001b[0m\n", + "-rw-rw-r-- 1 mmd mmd 1.1K May 16 13:22 params.json\n", + "drwxrwxr-x 5 mmd mmd 4.0K May 16 13:22 \u001b[01;34mstatic\u001b[0m\n", "\n", "sample_data/processed/sample/flat_reps/at_ts:\n", "total 12K\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mheld_out\u001b[0m\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mtrain\u001b[0m\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mtuning\u001b[0m\n", + "drwxrwxr-x 2 mmd mmd 4.0K May 16 13:22 \u001b[01;34mheld_out\u001b[0m\n", + "drwxrwxr-x 2 mmd mmd 4.0K May 16 13:22 \u001b[01;34mtrain\u001b[0m\n", + "drwxrwxr-x 2 mmd mmd 4.0K May 16 13:22 \u001b[01;34mtuning\u001b[0m\n", "\n", "sample_data/processed/sample/flat_reps/at_ts/held_out:\n", - "total 280K\n", - "-rw-rw-r-- 1 mmd mmd 136K Dec 13 21:18 0.parquet\n", - "-rw-rw-r-- 1 mmd mmd 143K Dec 13 21:18 1.parquet\n", + "total 252K\n", + "-rw-rw-r-- 1 mmd mmd 124K May 16 13:22 0.parquet\n", + "-rw-rw-r-- 1 mmd mmd 126K May 16 13:22 1.parquet\n", "\n", "sample_data/processed/sample/flat_reps/at_ts/train:\n", - "total 2.3M\n", - "-rw-rw-r-- 1 mmd mmd 171K Dec 13 21:18 0.parquet\n", - "-rw-rw-r-- 1 mmd mmd 150K Dec 13 21:18 10.parquet\n", - "-rw-rw-r-- 1 mmd mmd 124K Dec 13 21:18 11.parquet\n", - "-rw-rw-r-- 1 mmd mmd 119K Dec 13 21:18 12.parquet\n", - "-rw-rw-r-- 1 mmd mmd 154K Dec 13 21:18 13.parquet\n", - "-rw-rw-r-- 1 mmd mmd 145K Dec 13 21:18 14.parquet\n", - "-rw-rw-r-- 1 mmd mmd 146K Dec 13 21:18 15.parquet\n", - "-rw-rw-r-- 1 mmd mmd 115K Dec 13 21:18 1.parquet\n", - "-rw-rw-r-- 1 mmd mmd 131K Dec 13 21:18 2.parquet\n", - "-rw-rw-r-- 1 mmd mmd 140K Dec 13 21:18 3.parquet\n", - "-rw-rw-r-- 1 mmd mmd 153K Dec 13 21:18 4.parquet\n", - "-rw-rw-r-- 1 mmd mmd 126K Dec 13 21:18 5.parquet\n", - "-rw-rw-r-- 1 mmd mmd 155K Dec 13 21:18 6.parquet\n", - "-rw-rw-r-- 1 mmd mmd 164K Dec 13 21:18 7.parquet\n", - "-rw-rw-r-- 1 mmd mmd 152K Dec 13 21:18 8.parquet\n", - "-rw-rw-r-- 1 mmd mmd 130K Dec 13 21:18 9.parquet\n", + "total 2.1M\n", + "-rw-rw-r-- 1 mmd mmd 124K May 16 13:22 0.parquet\n", + "-rw-rw-r-- 1 mmd mmd 120K May 16 13:22 10.parquet\n", + "-rw-rw-r-- 1 mmd mmd 141K May 16 13:22 11.parquet\n", + "-rw-rw-r-- 1 mmd mmd 109K May 16 13:22 12.parquet\n", + "-rw-rw-r-- 1 mmd mmd 116K May 16 13:22 13.parquet\n", + "-rw-rw-r-- 1 mmd mmd 100K May 16 13:22 14.parquet\n", + "-rw-rw-r-- 1 mmd mmd 124K May 16 13:22 15.parquet\n", + "-rw-rw-r-- 1 mmd mmd 149K May 16 13:22 1.parquet\n", + "-rw-rw-r-- 1 mmd mmd 136K May 16 13:22 2.parquet\n", + "-rw-rw-r-- 1 mmd mmd 142K May 16 13:22 3.parquet\n", + "-rw-rw-r-- 1 mmd mmd 126K May 16 13:22 4.parquet\n", + "-rw-rw-r-- 1 mmd mmd 134K May 16 13:22 5.parquet\n", + "-rw-rw-r-- 1 mmd mmd 130K May 16 13:22 6.parquet\n", + "-rw-rw-r-- 1 mmd mmd 163K May 16 13:22 7.parquet\n", + "-rw-rw-r-- 1 mmd mmd 133K May 16 13:22 8.parquet\n", + "-rw-rw-r-- 1 mmd mmd 129K May 16 13:22 9.parquet\n", "\n", "sample_data/processed/sample/flat_reps/at_ts/tuning:\n", - "total 248K\n", - "-rw-rw-r-- 1 mmd mmd 121K Dec 13 21:18 0.parquet\n", - "-rw-rw-r-- 1 mmd mmd 121K Dec 13 21:18 1.parquet\n", + "total 240K\n", + "-rw-rw-r-- 1 mmd mmd 93K May 16 13:22 0.parquet\n", + "-rw-rw-r-- 1 mmd mmd 144K May 16 13:22 1.parquet\n", "\n", "sample_data/processed/sample/flat_reps/over_history:\n", "total 12K\n", - "drwxrwxr-x 4 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mheld_out\u001b[0m\n", - "drwxrwxr-x 4 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mtrain\u001b[0m\n", - "drwxrwxr-x 4 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mtuning\u001b[0m\n", + "drwxrwxr-x 4 mmd mmd 4.0K May 16 13:22 \u001b[01;34mheld_out\u001b[0m\n", + "drwxrwxr-x 4 mmd mmd 4.0K May 16 13:22 \u001b[01;34mtrain\u001b[0m\n", + "drwxrwxr-x 4 mmd mmd 4.0K May 16 13:22 \u001b[01;34mtuning\u001b[0m\n", "\n", "sample_data/processed/sample/flat_reps/over_history/held_out:\n", "total 8.0K\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34m7d\u001b[0m\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mFULL\u001b[0m\n", + "drwxrwxr-x 2 mmd mmd 4.0K May 16 13:22 \u001b[01;34m7d\u001b[0m\n", + "drwxrwxr-x 2 mmd mmd 4.0K May 16 13:22 \u001b[01;34mFULL\u001b[0m\n", "\n", "sample_data/processed/sample/flat_reps/over_history/held_out/7d:\n", - "total 292K\n", - "-rw-rw-r-- 1 mmd mmd 139K Dec 13 21:18 0.parquet\n", - "-rw-rw-r-- 1 mmd mmd 151K Dec 13 21:18 1.parquet\n", + "total 276K\n", + "-rw-rw-r-- 1 mmd mmd 133K May 16 13:22 0.parquet\n", + "-rw-rw-r-- 1 mmd mmd 139K May 16 13:22 1.parquet\n", "\n", "sample_data/processed/sample/flat_reps/over_history/held_out/FULL:\n", - "total 292K\n", - "-rw-rw-r-- 1 mmd mmd 140K Dec 13 21:18 0.parquet\n", - "-rw-rw-r-- 1 mmd mmd 152K Dec 13 21:18 1.parquet\n", + "total 288K\n", + "-rw-rw-r-- 1 mmd mmd 138K May 16 13:22 0.parquet\n", + "-rw-rw-r-- 1 mmd mmd 146K May 16 13:22 1.parquet\n", "\n", "sample_data/processed/sample/flat_reps/over_history/train:\n", "total 8.0K\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34m7d\u001b[0m\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mFULL\u001b[0m\n", + "drwxrwxr-x 2 mmd mmd 4.0K May 16 13:22 \u001b[01;34m7d\u001b[0m\n", + "drwxrwxr-x 2 mmd mmd 4.0K May 16 13:22 \u001b[01;34mFULL\u001b[0m\n", "\n", "sample_data/processed/sample/flat_reps/over_history/train/7d:\n", - "total 2.4M\n", - "-rw-rw-r-- 1 mmd mmd 185K Dec 13 21:18 0.parquet\n", - "-rw-rw-r-- 1 mmd mmd 159K Dec 13 21:18 10.parquet\n", - "-rw-rw-r-- 1 mmd mmd 129K Dec 13 21:18 11.parquet\n", - "-rw-rw-r-- 1 mmd mmd 124K Dec 13 21:18 12.parquet\n", - "-rw-rw-r-- 1 mmd mmd 166K Dec 13 21:18 13.parquet\n", - "-rw-rw-r-- 1 mmd mmd 153K Dec 13 21:18 14.parquet\n", - "-rw-rw-r-- 1 mmd mmd 149K Dec 13 21:18 15.parquet\n", - "-rw-rw-r-- 1 mmd mmd 115K Dec 13 21:18 1.parquet\n", - "-rw-rw-r-- 1 mmd mmd 139K Dec 13 21:18 2.parquet\n", - "-rw-rw-r-- 1 mmd mmd 144K Dec 13 21:18 3.parquet\n", - "-rw-rw-r-- 1 mmd mmd 163K Dec 13 21:18 4.parquet\n", - "-rw-rw-r-- 1 mmd mmd 132K Dec 13 21:18 5.parquet\n", - "-rw-rw-r-- 1 mmd mmd 165K Dec 13 21:18 6.parquet\n", - "-rw-rw-r-- 1 mmd mmd 169K Dec 13 21:18 7.parquet\n", - "-rw-rw-r-- 1 mmd mmd 158K Dec 13 21:18 8.parquet\n", - "-rw-rw-r-- 1 mmd mmd 131K Dec 13 21:18 9.parquet\n", + "total 2.3M\n", + "-rw-rw-r-- 1 mmd mmd 133K May 16 13:22 0.parquet\n", + "-rw-rw-r-- 1 mmd mmd 134K May 16 13:22 10.parquet\n", + "-rw-rw-r-- 1 mmd mmd 163K May 16 13:22 11.parquet\n", + "-rw-rw-r-- 1 mmd mmd 119K May 16 13:22 12.parquet\n", + "-rw-rw-r-- 1 mmd mmd 127K May 16 13:22 13.parquet\n", + "-rw-rw-r-- 1 mmd mmd 108K May 16 13:22 14.parquet\n", + "-rw-rw-r-- 1 mmd mmd 136K May 16 13:22 15.parquet\n", + "-rw-rw-r-- 1 mmd mmd 165K May 16 13:22 1.parquet\n", + "-rw-rw-r-- 1 mmd mmd 154K May 16 13:22 2.parquet\n", + "-rw-rw-r-- 1 mmd mmd 163K May 16 13:22 3.parquet\n", + "-rw-rw-r-- 1 mmd mmd 139K May 16 13:22 4.parquet\n", + "-rw-rw-r-- 1 mmd mmd 153K May 16 13:22 5.parquet\n", + "-rw-rw-r-- 1 mmd mmd 146K May 16 13:22 6.parquet\n", + "-rw-rw-r-- 1 mmd mmd 185K May 16 13:22 7.parquet\n", + "-rw-rw-r-- 1 mmd mmd 151K May 16 13:22 8.parquet\n", + "-rw-rw-r-- 1 mmd mmd 146K May 16 13:22 9.parquet\n", "\n", "sample_data/processed/sample/flat_reps/over_history/train/FULL:\n", "total 2.4M\n", - "-rw-rw-r-- 1 mmd mmd 184K Dec 13 21:18 0.parquet\n", - "-rw-rw-r-- 1 mmd mmd 160K Dec 13 21:18 10.parquet\n", - "-rw-rw-r-- 1 mmd mmd 129K Dec 13 21:18 11.parquet\n", - "-rw-rw-r-- 1 mmd mmd 124K Dec 13 21:18 12.parquet\n", - "-rw-rw-r-- 1 mmd mmd 165K Dec 13 21:18 13.parquet\n", - "-rw-rw-r-- 1 mmd mmd 154K Dec 13 21:18 14.parquet\n", - "-rw-rw-r-- 1 mmd mmd 152K Dec 13 21:18 15.parquet\n", - "-rw-rw-r-- 1 mmd mmd 117K Dec 13 21:18 1.parquet\n", - "-rw-rw-r-- 1 mmd mmd 140K Dec 13 21:18 2.parquet\n", - "-rw-rw-r-- 1 mmd mmd 146K Dec 13 21:18 3.parquet\n", - "-rw-rw-r-- 1 mmd mmd 163K Dec 13 21:18 4.parquet\n", - "-rw-rw-r-- 1 mmd mmd 133K Dec 13 21:18 5.parquet\n", - "-rw-rw-r-- 1 mmd mmd 167K Dec 13 21:18 6.parquet\n", - "-rw-rw-r-- 1 mmd mmd 170K Dec 13 21:18 7.parquet\n", - "-rw-rw-r-- 1 mmd mmd 160K Dec 13 21:18 8.parquet\n", - "-rw-rw-r-- 1 mmd mmd 131K Dec 13 21:18 9.parquet\n", + "-rw-rw-r-- 1 mmd mmd 135K May 16 13:22 0.parquet\n", + "-rw-rw-r-- 1 mmd mmd 139K May 16 13:22 10.parquet\n", + "-rw-rw-r-- 1 mmd mmd 168K May 16 13:22 11.parquet\n", + "-rw-rw-r-- 1 mmd mmd 123K May 16 13:22 12.parquet\n", + "-rw-rw-r-- 1 mmd mmd 130K May 16 13:22 13.parquet\n", + "-rw-rw-r-- 1 mmd mmd 110K May 16 13:22 14.parquet\n", + "-rw-rw-r-- 1 mmd mmd 138K May 16 13:22 15.parquet\n", + "-rw-rw-r-- 1 mmd mmd 173K May 16 13:22 1.parquet\n", + "-rw-rw-r-- 1 mmd mmd 158K May 16 13:22 2.parquet\n", + "-rw-rw-r-- 1 mmd mmd 168K May 16 13:22 3.parquet\n", + "-rw-rw-r-- 1 mmd mmd 143K May 16 13:22 4.parquet\n", + "-rw-rw-r-- 1 mmd mmd 157K May 16 13:22 5.parquet\n", + "-rw-rw-r-- 1 mmd mmd 150K May 16 13:22 6.parquet\n", + "-rw-rw-r-- 1 mmd mmd 192K May 16 13:22 7.parquet\n", + "-rw-rw-r-- 1 mmd mmd 157K May 16 13:22 8.parquet\n", + "-rw-rw-r-- 1 mmd mmd 149K May 16 13:22 9.parquet\n", "\n", "sample_data/processed/sample/flat_reps/over_history/tuning:\n", "total 8.0K\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34m7d\u001b[0m\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mFULL\u001b[0m\n", + "drwxrwxr-x 2 mmd mmd 4.0K May 16 13:22 \u001b[01;34m7d\u001b[0m\n", + "drwxrwxr-x 2 mmd mmd 4.0K May 16 13:22 \u001b[01;34mFULL\u001b[0m\n", "\n", "sample_data/processed/sample/flat_reps/over_history/tuning/7d:\n", - "total 256K\n", - "-rw-rw-r-- 1 mmd mmd 127K Dec 13 21:18 0.parquet\n", - "-rw-rw-r-- 1 mmd mmd 125K Dec 13 21:18 1.parquet\n", + "total 264K\n", + "-rw-rw-r-- 1 mmd mmd 100K May 16 13:22 0.parquet\n", + "-rw-rw-r-- 1 mmd mmd 164K May 16 13:22 1.parquet\n", "\n", "sample_data/processed/sample/flat_reps/over_history/tuning/FULL:\n", - "total 260K\n", - "-rw-rw-r-- 1 mmd mmd 129K Dec 13 21:18 0.parquet\n", - "-rw-rw-r-- 1 mmd mmd 126K Dec 13 21:18 1.parquet\n", + "total 272K\n", + "-rw-rw-r-- 1 mmd mmd 100K May 16 13:22 0.parquet\n", + "-rw-rw-r-- 1 mmd mmd 170K May 16 13:22 1.parquet\n", "\n", "sample_data/processed/sample/flat_reps/static:\n", "total 12K\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mheld_out\u001b[0m\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mtrain\u001b[0m\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mtuning\u001b[0m\n", + "drwxrwxr-x 2 mmd mmd 4.0K May 16 13:22 \u001b[01;34mheld_out\u001b[0m\n", + "drwxrwxr-x 2 mmd mmd 4.0K May 16 13:22 \u001b[01;34mtrain\u001b[0m\n", + "drwxrwxr-x 2 mmd mmd 4.0K May 16 13:22 \u001b[01;34mtuning\u001b[0m\n", "\n", "sample_data/processed/sample/flat_reps/static/held_out:\n", "total 8.0K\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 0.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 1.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 0.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 1.parquet\n", "\n", "sample_data/processed/sample/flat_reps/static/train:\n", "total 64K\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 0.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 10.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 11.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 12.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 13.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 14.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 15.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 1.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 2.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 3.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 4.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 5.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 6.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 7.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 8.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 9.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 0.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 10.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 11.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 12.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 13.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 14.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 15.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 1.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 2.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 3.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 4.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 5.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 6.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 7.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 8.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 9.parquet\n", "\n", "sample_data/processed/sample/flat_reps/static/tuning:\n", "total 8.0K\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 0.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.0K Dec 13 21:18 1.parquet\n" + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 0.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.3K May 16 13:22 1.parquet\n" ] } ], @@ -3713,7 +3938,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 61, "id": "41c9054d-b08e-4439-91c3-064c9ed14a09", "metadata": {}, "outputs": [ @@ -3721,7 +3946,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "8.7M\tsample_data/processed/sample/flat_reps\n" + "8.5M\tsample_data/processed/sample/flat_reps\n" ] } ], @@ -3731,7 +3956,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 62, "id": "3a15f0be-f1cb-4bf9-9b93-587c002e0178", "metadata": {}, "outputs": [ @@ -3739,8 +3964,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "2.8M\tsample_data/processed/sample/flat_reps/at_ts\n", - "5.9M\tsample_data/processed/sample/flat_reps/over_history\n", + "2.6M\tsample_data/processed/sample/flat_reps/at_ts\n", + "5.8M\tsample_data/processed/sample/flat_reps/over_history\n", "4.0K\tsample_data/processed/sample/flat_reps/params.json\n", "96K\tsample_data/processed/sample/flat_reps/static\n" ] @@ -3760,7 +3985,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 63, "id": "8700fade-75bd-4501-ae89-9ac5dd128a34", "metadata": {}, "outputs": [], @@ -3770,7 +3995,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 64, "id": "c9e83bdf-9107-4e1d-acf2-68589bd35b9e", "metadata": {}, "outputs": [ @@ -3778,39 +4003,47 @@ "name": "stdout", "output_type": "stream", "text": [ - "Dataset has 25496 rows and 167 columns\n" + "Dataset has 25458 rows and 173 columns\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":2: DeprecationWarning: `pl.count()` is deprecated. Please use `pl.len()` instead.\n" ] }, { "data": { "text/html": [ "
\n", - "shape: (5, 167)
subject_idtimestamp7d/HR/HR/countstatic/eye_color/GREEN/presentstatic/eye_color/HAZEL/presentstatic/eye_color/UNK/present
u8datetime[μs]u16boolboolbool
152010-02-17 09:01:593nullnullnull
152010-02-17 10:01:595nullnullnull
152010-02-17 11:01:597nullnullnull
152010-02-17 12:01:599nullnullnull
152010-02-17 13:01:5911nullnullnull
" + "shape: (5, 173)
subject_idtimestamp7d/HR/HR/countstatic/eye_color/GREEN/presentstatic/eye_color/HAZEL/presentstatic/eye_color/UNK/present
u32datetime[μs]u16boolboolbool
423352010-03-06 05:33:181nullnullnull
423352010-03-06 06:33:181nullnullnull
423352010-03-06 07:33:183nullnullnull
423352010-03-06 08:33:187nullnullnull
423352010-03-06 09:33:188nullnullnull
" ], "text/plain": [ - "shape: (5, 167)\n", + "shape: (5, 173)\n", "┌────────────┬─────────────┬─────────────┬─────────────┬───┬─────────────┬────────────┬────────────┐\n", "│ subject_id ┆ timestamp ┆ 7d/HR/HR/co ┆ 7d/HR/HR/ha ┆ … ┆ static/eye_ ┆ static/eye ┆ static/eye │\n", "│ --- ┆ --- ┆ unt ┆ s_values_co ┆ ┆ color/GREEN ┆ _color/HAZ ┆ _color/UNK │\n", - "│ u8 ┆ datetime[μs ┆ --- ┆ unt ┆ ┆ /present ┆ EL/present ┆ /present │\n", + "│ u32 ┆ datetime[μs ┆ --- ┆ unt ┆ ┆ /present ┆ EL/present ┆ /present │\n", "│ ┆ ] ┆ u16 ┆ --- ┆ ┆ --- ┆ --- ┆ --- │\n", "│ ┆ ┆ ┆ u16 ┆ ┆ bool ┆ bool ┆ bool │\n", "╞════════════╪═════════════╪═════════════╪═════════════╪═══╪═════════════╪════════════╪════════════╡\n", - "│ 15 ┆ 2010-02-17 ┆ 3 ┆ 3 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 09:01:59 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 15 ┆ 2010-02-17 ┆ 5 ┆ 5 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 10:01:59 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 15 ┆ 2010-02-17 ┆ 7 ┆ 7 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 11:01:59 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 15 ┆ 2010-02-17 ┆ 9 ┆ 9 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 12:01:59 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 15 ┆ 2010-02-17 ┆ 11 ┆ 11 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 13:01:59 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 42335 ┆ 2010-03-06 ┆ 1 ┆ 1 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 05:33:18 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 42335 ┆ 2010-03-06 ┆ 1 ┆ 1 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 06:33:18 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 42335 ┆ 2010-03-06 ┆ 3 ┆ 3 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 07:33:18 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 42335 ┆ 2010-03-06 ┆ 7 ┆ 7 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 08:33:18 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 42335 ┆ 2010-03-06 ┆ 8 ┆ 7 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 09:33:18 ┆ ┆ ┆ ┆ ┆ ┆ │\n", "└────────────┴─────────────┴─────────────┴─────────────┴───┴─────────────┴────────────┴────────────┘" ] }, @@ -3821,8 +4054,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 124 ms, sys: 13.7 ms, total: 137 ms\n", - "Wall time: 50.7 ms\n" + "CPU times: user 122 ms, sys: 15.3 ms, total: 137 ms\n", + "Wall time: 59.9 ms\n" ] } ], @@ -3843,7 +4076,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 65, "id": "ae786116-cf15-4c2f-b1c9-48e43363d78f", "metadata": {}, "outputs": [ @@ -3851,39 +4084,47 @@ "name": "stdout", "output_type": "stream", "text": [ - "Dataset has 25496 rows and 149 columns\n" + "Dataset has 25458 rows and 155 columns\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":2: DeprecationWarning: `pl.count()` is deprecated. Please use `pl.len()` instead.\n" ] }, { "data": { "text/html": [ "
\n", - "shape: (5, 149)
subject_idtimestampFULL/HR/HR/countstatic/eye_color/GREEN/presentstatic/eye_color/HAZEL/presentstatic/eye_color/UNK/present
u8datetime[μs]u16boolboolbool
572010-04-09 22:50:021nullnullnull
572010-04-10 00:50:022nullnullnull
572010-04-10 02:50:022nullnullnull
572010-04-10 03:50:023nullnullnull
572010-04-10 05:50:023nullnullnull
" + "shape: (5, 155)
subject_idtimestampFULL/HR/HR/countstatic/eye_color/GREEN/presentstatic/eye_color/HAZEL/presentstatic/eye_color/UNK/present
u32datetime[μs]u16boolboolbool
14997702010-04-27 07:38:431nullnullnull
14997702010-04-27 08:38:431nullnullnull
14997702010-04-27 09:38:432nullnullnull
14997702010-04-27 10:38:434nullnullnull
14997702010-04-27 11:38:436nullnullnull
" ], "text/plain": [ - "shape: (5, 149)\n", + "shape: (5, 155)\n", "┌────────────┬─────────────┬─────────────┬─────────────┬───┬─────────────┬────────────┬────────────┐\n", "│ subject_id ┆ timestamp ┆ FULL/HR/HR/ ┆ FULL/HR/HR/ ┆ … ┆ static/eye_ ┆ static/eye ┆ static/eye │\n", "│ --- ┆ --- ┆ count ┆ has_values_ ┆ ┆ color/GREEN ┆ _color/HAZ ┆ _color/UNK │\n", - "│ u8 ┆ datetime[μs ┆ --- ┆ count ┆ ┆ /present ┆ EL/present ┆ /present │\n", + "│ u32 ┆ datetime[μs ┆ --- ┆ count ┆ ┆ /present ┆ EL/present ┆ /present │\n", "│ ┆ ] ┆ u16 ┆ --- ┆ ┆ --- ┆ --- ┆ --- │\n", "│ ┆ ┆ ┆ u16 ┆ ┆ bool ┆ bool ┆ bool │\n", "╞════════════╪═════════════╪═════════════╪═════════════╪═══╪═════════════╪════════════╪════════════╡\n", - "│ 57 ┆ 2010-04-09 ┆ 1 ┆ 1 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 22:50:02 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 57 ┆ 2010-04-10 ┆ 2 ┆ 1 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 00:50:02 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 57 ┆ 2010-04-10 ┆ 2 ┆ 1 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 02:50:02 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 57 ┆ 2010-04-10 ┆ 3 ┆ 2 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 03:50:02 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 57 ┆ 2010-04-10 ┆ 3 ┆ 2 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 05:50:02 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 1499770 ┆ 2010-04-27 ┆ 1 ┆ 1 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 07:38:43 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 1499770 ┆ 2010-04-27 ┆ 1 ┆ 1 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 08:38:43 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 1499770 ┆ 2010-04-27 ┆ 2 ┆ 2 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 09:38:43 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 1499770 ┆ 2010-04-27 ┆ 4 ┆ 4 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 10:38:43 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 1499770 ┆ 2010-04-27 ┆ 6 ┆ 6 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 11:38:43 ┆ ┆ ┆ ┆ ┆ ┆ │\n", "└────────────┴─────────────┴─────────────┴─────────────┴───┴─────────────┴────────────┴────────────┘" ] }, @@ -3894,8 +4135,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 126 ms, sys: 11 ms, total: 137 ms\n", - "Wall time: 54.9 ms\n" + "CPU times: user 132 ms, sys: 12 ms, total: 144 ms\n", + "Wall time: 62.8 ms\n" ] } ], @@ -3916,21 +4157,22 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 66, "id": "43925017-0e04-467a-9f94-0fba0e34ec48", "metadata": {}, "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "Standardizing chunk size to existing record (5).\n" + "\u001b[32m2024-05-16 13:22:46.322\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.dataset_base\u001b[0m:\u001b[36mcache_flat_representation\u001b[0m:\u001b[36m1174\u001b[0m - \u001b[1mCaching flat representations\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:46.324\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.dataset_base\u001b[0m:\u001b[36mcache_flat_representation\u001b[0m:\u001b[36m1211\u001b[0m - \u001b[1mStandardizing chunk size to existing record (5).\u001b[0m\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eae8f182bd7e463a9edb5038d7e92ee4", + "model_id": "480f207c4a82412db86d21d60f50e231", "version_major": 2, "version_minor": 0 }, @@ -3986,7 +4228,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2f3fe3dc4f9f4258b7907345908cd858", + "model_id": "5dd9e76de2554e51b90ab13caa8d65da", "version_major": 2, "version_minor": 0 }, @@ -4042,7 +4284,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8bfa7f1e464c465eaac77bbf33794970", + "model_id": "d604fb9c4ad54e84b0f186b9092eb94f", "version_major": 2, "version_minor": 0 }, @@ -4225,39 +4467,47 @@ "name": "stdout", "output_type": "stream", "text": [ - "Dataset has 25496 rows and 487 columns\n" + "Dataset has 25458 rows and 505 columns\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":2: DeprecationWarning: `pl.count()` is deprecated. Please use `pl.len()` instead.\n" ] }, { "data": { "text/html": [ "
\n", - "shape: (5, 487)
subject_idtimestamp1d/HR/HR/countstatic/eye_color/GREEN/presentstatic/eye_color/HAZEL/presentstatic/eye_color/UNK/present
u8datetime[μs]u16boolboolbool
572010-04-09 22:50:021nullnullnull
572010-04-10 00:50:022nullnullnull
572010-04-10 02:50:022nullnullnull
572010-04-10 03:50:023nullnullnull
572010-04-10 05:50:023nullnullnull
" + "shape: (5, 505)
subject_idtimestamp1d/HR/HR/countstatic/eye_color/GREEN/presentstatic/eye_color/HAZEL/presentstatic/eye_color/UNK/present
u32datetime[μs]u16boolboolbool
14997702010-04-27 07:38:431nullnullnull
14997702010-04-27 08:38:431nullnullnull
14997702010-04-27 09:38:432nullnullnull
14997702010-04-27 10:38:434nullnullnull
14997702010-04-27 11:38:436nullnullnull
" ], "text/plain": [ - "shape: (5, 487)\n", + "shape: (5, 505)\n", "┌────────────┬─────────────┬─────────────┬─────────────┬───┬─────────────┬────────────┬────────────┐\n", "│ subject_id ┆ timestamp ┆ 1d/HR/HR/co ┆ 1d/HR/HR/ha ┆ … ┆ static/eye_ ┆ static/eye ┆ static/eye │\n", "│ --- ┆ --- ┆ unt ┆ s_values_co ┆ ┆ color/GREEN ┆ _color/HAZ ┆ _color/UNK │\n", - "│ u8 ┆ datetime[μs ┆ --- ┆ unt ┆ ┆ /present ┆ EL/present ┆ /present │\n", + "│ u32 ┆ datetime[μs ┆ --- ┆ unt ┆ ┆ /present ┆ EL/present ┆ /present │\n", "│ ┆ ] ┆ u16 ┆ --- ┆ ┆ --- ┆ --- ┆ --- │\n", "│ ┆ ┆ ┆ u16 ┆ ┆ bool ┆ bool ┆ bool │\n", "╞════════════╪═════════════╪═════════════╪═════════════╪═══╪═════════════╪════════════╪════════════╡\n", - "│ 57 ┆ 2010-04-09 ┆ 1 ┆ 1 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 22:50:02 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 57 ┆ 2010-04-10 ┆ 2 ┆ 1 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 00:50:02 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 57 ┆ 2010-04-10 ┆ 2 ┆ 1 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 02:50:02 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 57 ┆ 2010-04-10 ┆ 3 ┆ 2 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 03:50:02 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 57 ┆ 2010-04-10 ┆ 3 ┆ 2 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 05:50:02 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 1499770 ┆ 2010-04-27 ┆ 1 ┆ 1 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 07:38:43 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 1499770 ┆ 2010-04-27 ┆ 1 ┆ 1 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 08:38:43 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 1499770 ┆ 2010-04-27 ┆ 2 ┆ 2 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 09:38:43 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 1499770 ┆ 2010-04-27 ┆ 4 ┆ 4 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 10:38:43 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 1499770 ┆ 2010-04-27 ┆ 6 ┆ 6 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 11:38:43 ┆ ┆ ┆ ┆ ┆ ┆ │\n", "└────────────┴─────────────┴─────────────┴─────────────┴───┴─────────────┴────────────┴────────────┘" ] }, @@ -4268,8 +4518,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1.45 s, sys: 336 ms, total: 1.79 s\n", - "Wall time: 1.01 s\n" + "CPU times: user 1.39 s, sys: 460 ms, total: 1.85 s\n", + "Wall time: 1.07 s\n" ] } ], @@ -4290,7 +4540,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 67, "id": "563d3f38-0b4c-47ed-b37a-786ca43bbb1b", "metadata": { "custom": { @@ -4333,7 +4583,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 68, "id": "19fc51bd-25d9-49ca-a1cc-f5904a627ecd", "metadata": {}, "outputs": [ @@ -4341,39 +4591,47 @@ "name": "stdout", "output_type": "stream", "text": [ - "Dataset has 542 rows and 487 columns\n" + "Dataset has 789 rows and 505 columns\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":5: DeprecationWarning: `pl.count()` is deprecated. Please use `pl.len()` instead.\n" ] }, { "data": { "text/html": [ "
\n", - "shape: (5, 487)
subject_idtimestamp1d/HR/HR/countstatic/eye_color/GREEN/presentstatic/eye_color/HAZEL/presentstatic/eye_color/UNK/present
u8datetime[μs]u16boolboolbool
22010-01-18 23:07:071nullnullnull
22010-01-19 01:07:072nullnullnull
22010-01-19 03:07:072nullnullnull
22010-01-19 04:07:073nullnullnull
22010-01-19 05:07:073nullnullnull
" + "shape: (5, 505)
subject_idtimestamp1d/HR/HR/countstatic/eye_color/GREEN/presentstatic/eye_color/HAZEL/presentstatic/eye_color/UNK/present
u32datetime[μs]u16boolboolbool
423352010-03-06 05:33:181nullnullnull
423352010-03-06 06:33:181nullnullnull
423352010-03-06 07:33:183nullnullnull
423352010-03-06 08:33:187nullnullnull
423352010-03-06 09:33:188nullnullnull
" ], "text/plain": [ - "shape: (5, 487)\n", + "shape: (5, 505)\n", "┌────────────┬─────────────┬─────────────┬─────────────┬───┬─────────────┬────────────┬────────────┐\n", "│ subject_id ┆ timestamp ┆ 1d/HR/HR/co ┆ 1d/HR/HR/ha ┆ … ┆ static/eye_ ┆ static/eye ┆ static/eye │\n", "│ --- ┆ --- ┆ unt ┆ s_values_co ┆ ┆ color/GREEN ┆ _color/HAZ ┆ _color/UNK │\n", - "│ u8 ┆ datetime[μs ┆ --- ┆ unt ┆ ┆ /present ┆ EL/present ┆ /present │\n", + "│ u32 ┆ datetime[μs ┆ --- ┆ unt ┆ ┆ /present ┆ EL/present ┆ /present │\n", "│ ┆ ] ┆ u16 ┆ --- ┆ ┆ --- ┆ --- ┆ --- │\n", "│ ┆ ┆ ┆ u16 ┆ ┆ bool ┆ bool ┆ bool │\n", "╞════════════╪═════════════╪═════════════╪═════════════╪═══╪═════════════╪════════════╪════════════╡\n", - "│ 2 ┆ 2010-01-18 ┆ 1 ┆ 1 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 23:07:07 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 2 ┆ 2010-01-19 ┆ 2 ┆ 2 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 01:07:07 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 2 ┆ 2010-01-19 ┆ 2 ┆ 2 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 03:07:07 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 2 ┆ 2010-01-19 ┆ 3 ┆ 3 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 04:07:07 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 2 ┆ 2010-01-19 ┆ 3 ┆ 3 ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 05:07:07 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 42335 ┆ 2010-03-06 ┆ 1 ┆ 1 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 05:33:18 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 42335 ┆ 2010-03-06 ┆ 1 ┆ 1 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 06:33:18 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 42335 ┆ 2010-03-06 ┆ 3 ┆ 3 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 07:33:18 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 42335 ┆ 2010-03-06 ┆ 7 ┆ 7 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 08:33:18 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 42335 ┆ 2010-03-06 ┆ 8 ┆ 7 ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 09:33:18 ┆ ┆ ┆ ┆ ┆ ┆ │\n", "└────────────┴─────────────┴─────────────┴─────────────┴───┴─────────────┴────────────┴────────────┘" ] }, @@ -4384,14 +4642,17 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 405 ms, sys: 5.36 ms, total: 411 ms\n", - "Wall time: 152 ms\n" + "CPU times: user 280 ms, sys: 20.6 ms, total: 300 ms\n", + "Wall time: 161 ms\n" ] } ], "source": [ "%%time\n", - "flat_reps = load_flat_rep(ESD, window_sizes=['1d', '7d', 'FULL'], subjects_included={'train': {0, 1, 2}})\n", + "flat_reps = load_flat_rep(\n", + " ESD, window_sizes=['1d', '7d', 'FULL'],\n", + " subjects_included={'train': set(sorted(list(ESD.split_subjects['train']))[:3])}\n", + ")\n", "print(f\"Dataset has {flat_reps['train'].select(pl.count()).collect().item()} rows and {len(flat_reps['train'].columns)} columns\")\n", "display(flat_reps['train'].head().collect())" ] @@ -4413,7 +4674,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 69, "id": "a9497420-2514-4194-9d5e-8058bdbb6ca2", "metadata": {}, "outputs": [ @@ -4421,9 +4682,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Updating config.save_dir from /home/mmd/Projects/EventStreamGPT/sample_data/processed/sample to sample_data/processed/sample\n", - "Loading events from sample_data/processed/sample/events_df.parquet...\n", "\n", + "2024-05-16 13:22:49.470 | INFO | EventStream.data.dataset_base:load:367 - Updating config.save_dir from /home/mmd/Projects/EventStreamGPT/sample_data/processed/sample to sample_data/processed/sample\n", + "2024-05-16 13:22:49.478 | INFO | EventStream.data.dataset_base:events_df:311 - Loading events from sample_data/processed/sample/events_df.parquet...\n", "\n" ] } @@ -4452,7 +4713,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 70, "id": "3da2dde7-8635-4ec8-a03b-9a107c623265", "metadata": {}, "outputs": [ @@ -4461,9 +4722,9 @@ "output_type": "stream", "text": [ "total 12K\n", - "-rw-rw-r-- 1 mmd mmd 2.2K Dec 13 21:18 multi_class_classification.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.1K Dec 13 21:18 single_label_binary_classification.parquet\n", - "-rw-rw-r-- 1 mmd mmd 2.5K Dec 13 21:18 univariate_regression.parquet\n" + "-rw-rw-r-- 1 mmd mmd 2.7K May 16 13:22 multi_class_classification.parquet\n", + "-rw-rw-r-- 1 mmd mmd 2.6K May 16 13:22 single_label_binary_classification.parquet\n", + "-rw-rw-r-- 1 mmd mmd 3.0K May 16 13:22 univariate_regression.parquet\n" ] } ], @@ -4473,7 +4734,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 71, "id": "119437c4-7c9d-4c7e-b121-97cd46798ee7", "metadata": {}, "outputs": [ @@ -4481,29 +4742,30 @@ "data": { "text/html": [ "
\n", - "shape: (5, 4)
subject_idend_timelabelstart_time
u8datetime[μs]u32datetime[μs]
322010-04-30 06:08:511null
242010-07-29 02:41:471null
642010-06-05 11:52:502null
962010-02-07 02:13:242null
02010-10-13 03:23:000null
" + "shape: (5, 4)
subject_idend_timelabelstart_time
u32datetime[μs]u32datetime[μs]
1422582010-01-30 08:59:041null
15699562010-02-11 20:14:051null
13561692010-01-19 08:07:212null
6150362010-04-19 11:40:562null
3841982010-02-14 04:16:130null
" ], "text/plain": [ "shape: (5, 4)\n", "┌────────────┬─────────────────────┬───────┬──────────────┐\n", "│ subject_id ┆ end_time ┆ label ┆ start_time │\n", "│ --- ┆ --- ┆ --- ┆ --- │\n", - "│ u8 ┆ datetime[μs] ┆ u32 ┆ datetime[μs] │\n", + "│ u32 ┆ datetime[μs] ┆ u32 ┆ datetime[μs] │\n", "╞════════════╪═════════════════════╪═══════╪══════════════╡\n", - "│ 32 ┆ 2010-04-30 06:08:51 ┆ 1 ┆ null │\n", - "│ 24 ┆ 2010-07-29 02:41:47 ┆ 1 ┆ null │\n", - "│ 64 ┆ 2010-06-05 11:52:50 ┆ 2 ┆ null │\n", - "│ 96 ┆ 2010-02-07 02:13:24 ┆ 2 ┆ null │\n", - "│ 0 ┆ 2010-10-13 03:23:00 ┆ 0 ┆ null │\n", + "│ 142258 ┆ 2010-01-30 08:59:04 ┆ 1 ┆ null │\n", + "│ 1569956 ┆ 2010-02-11 20:14:05 ┆ 1 ┆ null │\n", + "│ 1356169 ┆ 2010-01-19 08:07:21 ┆ 2 ┆ null │\n", + "│ 615036 ┆ 2010-04-19 11:40:56 ┆ 2 ┆ null │\n", + "│ 384198 ┆ 2010-02-14 04:16:13 ┆ 0 ┆ null │\n", "└────────────┴─────────────────────┴───────┴──────────────┘" ] }, - "execution_count": 75, + "execution_count": 71, "metadata": {}, "output_type": "execute_result" } @@ -4523,7 +4785,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 72, "id": "35c8c429-7a37-4447-9aec-ffeac012cf74", "metadata": {}, "outputs": [], @@ -4533,7 +4795,7 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 73, "id": "b8658e40-a6bb-4803-90dd-18d7e7d12102", "metadata": {}, "outputs": [ @@ -4548,22 +4810,23 @@ "data": { "text/html": [ "
\n", - "shape: (2, 4)
subject_idend_timelabelstart_time
u8datetime[μs]booldatetime[μs]
402010-01-20 16:07:21truenull
82010-03-09 16:33:18falsenull
" + "shape: (2, 4)
subject_idend_timelabelstart_time
u32datetime[μs]booldatetime[μs]
8674952010-03-16 23:53:27truenull
4522472010-04-03 17:50:43falsenull
" ], "text/plain": [ "shape: (2, 4)\n", "┌────────────┬─────────────────────┬───────┬──────────────┐\n", "│ subject_id ┆ end_time ┆ label ┆ start_time │\n", "│ --- ┆ --- ┆ --- ┆ --- │\n", - "│ u8 ┆ datetime[μs] ┆ bool ┆ datetime[μs] │\n", + "│ u32 ┆ datetime[μs] ┆ bool ┆ datetime[μs] │\n", "╞════════════╪═════════════════════╪═══════╪══════════════╡\n", - "│ 40 ┆ 2010-01-20 16:07:21 ┆ true ┆ null │\n", - "│ 8 ┆ 2010-03-09 16:33:18 ┆ false ┆ null │\n", + "│ 867495 ┆ 2010-03-16 23:53:27 ┆ true ┆ null │\n", + "│ 452247 ┆ 2010-04-03 17:50:43 ┆ false ┆ null │\n", "└────────────┴─────────────────────┴───────┴──────────────┘" ] }, @@ -4581,22 +4844,23 @@ "data": { "text/html": [ "
\n", - "shape: (2, 4)
subject_idend_timelabelstart_time
u8datetime[μs]u32datetime[μs]
322010-04-30 06:08:511null
242010-07-29 02:41:471null
" + "shape: (2, 4)
subject_idend_timelabelstart_time
u32datetime[μs]u32datetime[μs]
1422582010-01-30 08:59:041null
15699562010-02-11 20:14:051null
" ], "text/plain": [ "shape: (2, 4)\n", "┌────────────┬─────────────────────┬───────┬──────────────┐\n", "│ subject_id ┆ end_time ┆ label ┆ start_time │\n", "│ --- ┆ --- ┆ --- ┆ --- │\n", - "│ u8 ┆ datetime[μs] ┆ u32 ┆ datetime[μs] │\n", + "│ u32 ┆ datetime[μs] ┆ u32 ┆ datetime[μs] │\n", "╞════════════╪═════════════════════╪═══════╪══════════════╡\n", - "│ 32 ┆ 2010-04-30 06:08:51 ┆ 1 ┆ null │\n", - "│ 24 ┆ 2010-07-29 02:41:47 ┆ 1 ┆ null │\n", + "│ 142258 ┆ 2010-01-30 08:59:04 ┆ 1 ┆ null │\n", + "│ 1569956 ┆ 2010-02-11 20:14:05 ┆ 1 ┆ null │\n", "└────────────┴─────────────────────┴───────┴──────────────┘" ] }, @@ -4614,22 +4878,23 @@ "data": { "text/html": [ "
\n", - "shape: (2, 4)
subject_idend_timelabelstart_time
u8datetime[μs]f32datetime[μs]
402010-03-03 05:07:210.332814null
562010-01-14 02:30:25-0.651281null
" + "shape: (2, 4)
subject_idend_timelabelstart_time
u32datetime[μs]f32datetime[μs]
5054842010-10-17 20:25:270.332814null
12300992010-06-27 23:56:09-0.651281null
" ], "text/plain": [ "shape: (2, 4)\n", "┌────────────┬─────────────────────┬───────────┬──────────────┐\n", "│ subject_id ┆ end_time ┆ label ┆ start_time │\n", "│ --- ┆ --- ┆ --- ┆ --- │\n", - "│ u8 ┆ datetime[μs] ┆ f32 ┆ datetime[μs] │\n", + "│ u32 ┆ datetime[μs] ┆ f32 ┆ datetime[μs] │\n", "╞════════════╪═════════════════════╪═══════════╪══════════════╡\n", - "│ 40 ┆ 2010-03-03 05:07:21 ┆ 0.332814 ┆ null │\n", - "│ 56 ┆ 2010-01-14 02:30:25 ┆ -0.651281 ┆ null │\n", + "│ 505484 ┆ 2010-10-17 20:25:27 ┆ 0.332814 ┆ null │\n", + "│ 1230099 ┆ 2010-06-27 23:56:09 ┆ -0.651281 ┆ null │\n", "└────────────┴─────────────────────┴───────────┴──────────────┘" ] }, @@ -4656,7 +4921,7 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 74, "id": "105be8a4-7da1-4468-8e0a-cb0f397ddd81", "metadata": {}, "outputs": [ @@ -4664,39 +4929,40 @@ "name": "stdout", "output_type": "stream", "text": [ - "Dataset has 80 rows and 169 columns\n" + "Dataset has 80 rows and 175 columns\n" ] }, { "data": { "text/html": [ "
\n", - "shape: (5, 169)
subject_idtimestamplabelstatic/eye_color/GREEN/presentstatic/eye_color/HAZEL/presentstatic/eye_color/UNK/present
u8datetime[μs]boolboolboolbool
402010-01-20 16:07:21truenulltruenull
82010-03-09 16:33:18falsenullnullnull
562010-02-19 14:30:25falsenullnullnull
242010-08-01 07:41:47falsenullnullnull
482011-03-12 11:55:01falsenullnullnull
" + "shape: (5, 175)
subject_idtimestamplabelstatic/eye_color/GREEN/presentstatic/eye_color/HAZEL/presentstatic/eye_color/UNK/present
u32datetime[μs]boolboolboolbool
13561692010-03-11 09:07:21falsenulltruenull
15699562010-02-04 17:14:05truenulltruenull
7596522010-08-29 23:21:25falsenullnullnull
8832212010-08-14 06:28:40truenullnullnull
5054842011-01-03 06:25:27truenulltruenull
" ], "text/plain": [ - "shape: (5, 169)\n", + "shape: (5, 175)\n", "┌────────────┬──────────────┬───────┬──────────────┬───┬──────────────┬──────────────┬─────────────┐\n", "│ subject_id ┆ timestamp ┆ label ┆ start_time ┆ … ┆ static/eye_c ┆ static/eye_c ┆ static/eye_ │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ olor/GREEN/p ┆ olor/HAZEL/p ┆ color/UNK/p │\n", - "│ u8 ┆ datetime[μs] ┆ bool ┆ datetime[μs] ┆ ┆ resent ┆ resent ┆ resent │\n", + "│ u32 ┆ datetime[μs] ┆ bool ┆ datetime[μs] ┆ ┆ resent ┆ resent ┆ resent │\n", "│ ┆ ┆ ┆ ┆ ┆ --- ┆ --- ┆ --- │\n", "│ ┆ ┆ ┆ ┆ ┆ bool ┆ bool ┆ bool │\n", "╞════════════╪══════════════╪═══════╪══════════════╪═══╪══════════════╪══════════════╪═════════════╡\n", - "│ 40 ┆ 2010-01-20 ┆ true ┆ null ┆ … ┆ null ┆ true ┆ null │\n", - "│ ┆ 16:07:21 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 8 ┆ 2010-03-09 ┆ false ┆ null ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 16:33:18 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 56 ┆ 2010-02-19 ┆ false ┆ null ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 14:30:25 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 24 ┆ 2010-08-01 ┆ false ┆ null ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 07:41:47 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 48 ┆ 2011-03-12 ┆ false ┆ null ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 11:55:01 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 1356169 ┆ 2010-03-11 ┆ false ┆ null ┆ … ┆ null ┆ true ┆ null │\n", + "│ ┆ 09:07:21 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 1569956 ┆ 2010-02-04 ┆ true ┆ null ┆ … ┆ null ┆ true ┆ null │\n", + "│ ┆ 17:14:05 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 759652 ┆ 2010-08-29 ┆ false ┆ null ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 23:21:25 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 883221 ┆ 2010-08-14 ┆ true ┆ null ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 06:28:40 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 505484 ┆ 2011-01-03 ┆ true ┆ null ┆ … ┆ null ┆ true ┆ null │\n", + "│ ┆ 06:25:27 ┆ ┆ ┆ ┆ ┆ ┆ │\n", "└────────────┴──────────────┴───────┴──────────────┴───┴──────────────┴──────────────┴─────────────┘" ] }, @@ -4707,15 +4973,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 409 ms, sys: 49.2 ms, total: 458 ms\n", - "Wall time: 275 ms\n" + "CPU times: user 367 ms, sys: 64 ms, total: 431 ms\n", + "Wall time: 300 ms\n" ] } ], "source": [ "%%time\n", "flat_reps = load_flat_rep(ESD, window_sizes=['7d'], task_df_name='single_label_binary_classification')\n", - "print(f\"Dataset has {flat_reps['train'].select(pl.count()).collect().item()} rows and {len(flat_reps['train'].columns)} columns\")\n", + "print(f\"Dataset has {flat_reps['train'].select(pl.len()).collect().item()} rows and {len(flat_reps['train'].columns)} columns\")\n", "display(flat_reps['train'].head().collect())" ] }, @@ -4729,7 +4995,7 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 75, "id": "8a99f435-947f-412a-8098-543a46621121", "metadata": { "scrolled": true @@ -4741,54 +5007,54 @@ "text": [ "sample_data/processed/sample/flat_reps/task_histories/:\n", "total 4.0K\n", - "drwxrwxr-x 5 mmd mmd 4.0K Dec 13 21:18 \u001b[0m\u001b[01;34msingle_label_binary_classification\u001b[0m\n", + "drwxrwxr-x 5 mmd mmd 4.0K May 16 13:22 \u001b[0m\u001b[01;34msingle_label_binary_classification\u001b[0m\n", "\n", "sample_data/processed/sample/flat_reps/task_histories/single_label_binary_classification:\n", "total 12K\n", - "drwxrwxr-x 3 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mheld_out\u001b[0m\n", - "drwxrwxr-x 3 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mtrain\u001b[0m\n", - "drwxrwxr-x 3 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34mtuning\u001b[0m\n", + "drwxrwxr-x 3 mmd mmd 4.0K May 16 13:22 \u001b[01;34mheld_out\u001b[0m\n", + "drwxrwxr-x 3 mmd mmd 4.0K May 16 13:22 \u001b[01;34mtrain\u001b[0m\n", + "drwxrwxr-x 3 mmd mmd 4.0K May 16 13:22 \u001b[01;34mtuning\u001b[0m\n", "\n", "sample_data/processed/sample/flat_reps/task_histories/single_label_binary_classification/held_out:\n", "total 4.0K\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34m7d\u001b[0m\n", + "drwxrwxr-x 2 mmd mmd 4.0K May 16 13:22 \u001b[01;34m7d\u001b[0m\n", "\n", "sample_data/processed/sample/flat_reps/task_histories/single_label_binary_classification/held_out/7d:\n", - "total 112K\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 0.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 1.parquet\n", + "total 128K\n", + "-rw-rw-r-- 1 mmd mmd 63K May 16 13:22 0.parquet\n", + "-rw-rw-r-- 1 mmd mmd 64K May 16 13:22 1.parquet\n", "\n", "sample_data/processed/sample/flat_reps/task_histories/single_label_binary_classification/train:\n", "total 4.0K\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34m7d\u001b[0m\n", + "drwxrwxr-x 2 mmd mmd 4.0K May 16 13:22 \u001b[01;34m7d\u001b[0m\n", "\n", "sample_data/processed/sample/flat_reps/task_histories/single_label_binary_classification/train/7d:\n", - "total 896K\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 0.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 10.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 11.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 12.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 13.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 14.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 15.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 1.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 2.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 3.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 4.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 5.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 6.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 7.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 8.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 9.parquet\n", + "total 1.0M\n", + "-rw-rw-r-- 1 mmd mmd 63K May 16 13:22 0.parquet\n", + "-rw-rw-r-- 1 mmd mmd 64K May 16 13:22 10.parquet\n", + "-rw-rw-r-- 1 mmd mmd 64K May 16 13:22 11.parquet\n", + "-rw-rw-r-- 1 mmd mmd 63K May 16 13:22 12.parquet\n", + "-rw-rw-r-- 1 mmd mmd 64K May 16 13:22 13.parquet\n", + "-rw-rw-r-- 1 mmd mmd 63K May 16 13:22 14.parquet\n", + "-rw-rw-r-- 1 mmd mmd 63K May 16 13:22 15.parquet\n", + "-rw-rw-r-- 1 mmd mmd 64K May 16 13:22 1.parquet\n", + "-rw-rw-r-- 1 mmd mmd 64K May 16 13:22 2.parquet\n", + "-rw-rw-r-- 1 mmd mmd 64K May 16 13:22 3.parquet\n", + "-rw-rw-r-- 1 mmd mmd 64K May 16 13:22 4.parquet\n", + "-rw-rw-r-- 1 mmd mmd 64K May 16 13:22 5.parquet\n", + "-rw-rw-r-- 1 mmd mmd 64K May 16 13:22 6.parquet\n", + "-rw-rw-r-- 1 mmd mmd 64K May 16 13:22 7.parquet\n", + "-rw-rw-r-- 1 mmd mmd 64K May 16 13:22 8.parquet\n", + "-rw-rw-r-- 1 mmd mmd 64K May 16 13:22 9.parquet\n", "\n", "sample_data/processed/sample/flat_reps/task_histories/single_label_binary_classification/tuning:\n", "total 4.0K\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34m7d\u001b[0m\n", + "drwxrwxr-x 2 mmd mmd 4.0K May 16 13:22 \u001b[01;34m7d\u001b[0m\n", "\n", "sample_data/processed/sample/flat_reps/task_histories/single_label_binary_classification/tuning/7d:\n", - "total 112K\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 0.parquet\n", - "-rw-rw-r-- 1 mmd mmd 56K Dec 13 21:18 1.parquet\n" + "total 128K\n", + "-rw-rw-r-- 1 mmd mmd 64K May 16 13:22 0.parquet\n", + "-rw-rw-r-- 1 mmd mmd 64K May 16 13:22 1.parquet\n" ] } ], @@ -4806,7 +5072,7 @@ }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 76, "id": "30d9d760-7243-4e48-ae44-953e8d2c6956", "metadata": {}, "outputs": [ @@ -4814,39 +5080,40 @@ "name": "stdout", "output_type": "stream", "text": [ - "Dataset has 80 rows and 329 columns\n" + "Dataset has 80 rows and 341 columns\n" ] }, { "data": { "text/html": [ "
\n", - "shape: (5, 329)
subject_idtimestamplabelstatic/eye_color/GREEN/presentstatic/eye_color/HAZEL/presentstatic/eye_color/UNK/present
u8datetime[μs]u32boolboolbool
322010-04-30 06:08:511nulltruenull
242010-07-29 02:41:471nullnullnull
962010-02-07 02:13:242nullnullnull
02010-10-13 03:23:000truenullnull
882010-06-23 20:32:562nullnullnull
" + "shape: (5, 341)
subject_idtimestamplabelstatic/eye_color/GREEN/presentstatic/eye_color/HAZEL/presentstatic/eye_color/UNK/present
u32datetime[μs]u32boolboolbool
15699562010-02-11 20:14:051nulltruenull
13561692010-01-19 08:07:212nulltruenull
3841982010-02-14 04:16:130nullnullnull
7596522010-02-27 01:21:250nullnullnull
8832212010-08-14 19:28:400nullnullnull
" ], "text/plain": [ - "shape: (5, 329)\n", + "shape: (5, 341)\n", "┌────────────┬──────────────┬───────┬──────────────┬───┬──────────────┬──────────────┬─────────────┐\n", "│ subject_id ┆ timestamp ┆ label ┆ start_time ┆ … ┆ static/eye_c ┆ static/eye_c ┆ static/eye_ │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ olor/GREEN/p ┆ olor/HAZEL/p ┆ color/UNK/p │\n", - "│ u8 ┆ datetime[μs] ┆ u32 ┆ datetime[μs] ┆ ┆ resent ┆ resent ┆ resent │\n", + "│ u32 ┆ datetime[μs] ┆ u32 ┆ datetime[μs] ┆ ┆ resent ┆ resent ┆ resent │\n", "│ ┆ ┆ ┆ ┆ ┆ --- ┆ --- ┆ --- │\n", "│ ┆ ┆ ┆ ┆ ┆ bool ┆ bool ┆ bool │\n", "╞════════════╪══════════════╪═══════╪══════════════╪═══╪══════════════╪══════════════╪═════════════╡\n", - "│ 32 ┆ 2010-04-30 ┆ 1 ┆ null ┆ … ┆ null ┆ true ┆ null │\n", - "│ ┆ 06:08:51 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 24 ┆ 2010-07-29 ┆ 1 ┆ null ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 02:41:47 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 96 ┆ 2010-02-07 ┆ 2 ┆ null ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 02:13:24 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 0 ┆ 2010-10-13 ┆ 0 ┆ null ┆ … ┆ true ┆ null ┆ null │\n", - "│ ┆ 03:23:00 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 88 ┆ 2010-06-23 ┆ 2 ┆ null ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 20:32:56 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 1569956 ┆ 2010-02-11 ┆ 1 ┆ null ┆ … ┆ null ┆ true ┆ null │\n", + "│ ┆ 20:14:05 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 1356169 ┆ 2010-01-19 ┆ 2 ┆ null ┆ … ┆ null ┆ true ┆ null │\n", + "│ ┆ 08:07:21 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 384198 ┆ 2010-02-14 ┆ 0 ┆ null ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 04:16:13 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 759652 ┆ 2010-02-27 ┆ 0 ┆ null ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 01:21:25 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 883221 ┆ 2010-08-14 ┆ 0 ┆ null ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 19:28:40 ┆ ┆ ┆ ┆ ┆ ┆ │\n", "└────────────┴──────────────┴───────┴──────────────┴───┴──────────────┴──────────────┴─────────────┘" ] }, @@ -4857,8 +5124,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 295 ms, sys: 51.1 ms, total: 346 ms\n", - "Wall time: 196 ms\n" + "CPU times: user 269 ms, sys: 72.9 ms, total: 342 ms\n", + "Wall time: 172 ms\n" ] } ], @@ -4867,13 +5134,13 @@ "flat_reps = load_flat_rep(\n", " ESD, window_sizes=['FULL', '1d'], task_df_name='multi_class_classification', do_cache_filtered_task=False\n", ")\n", - "print(f\"Dataset has {flat_reps['train'].select(pl.count()).collect().item()} rows and {len(flat_reps['train'].columns)} columns\")\n", + "print(f\"Dataset has {flat_reps['train'].select(pl.len()).collect().item()} rows and {len(flat_reps['train'].columns)} columns\")\n", "display(flat_reps['train'].head().collect())" ] }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 77, "id": "d78bf8c8-f4ae-4052-af8a-f6799c8db16c", "metadata": {}, "outputs": [ @@ -4882,7 +5149,7 @@ "output_type": "stream", "text": [ "total 4.0K\n", - "drwxrwxr-x 5 mmd mmd 4.0K Dec 13 21:18 \u001b[0m\u001b[01;34msingle_label_binary_classification\u001b[0m\n" + "drwxrwxr-x 5 mmd mmd 4.0K May 16 13:22 \u001b[0m\u001b[01;34msingle_label_binary_classification\u001b[0m\n" ] } ], @@ -4900,7 +5167,7 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 78, "id": "fdcbfe5b-43fa-4b94-813a-8b75b7f11386", "metadata": {}, "outputs": [ @@ -4908,33 +5175,36 @@ "name": "stdout", "output_type": "stream", "text": [ - "Dataset has 2 rows and 329 columns\n" + "Dataset has 3 rows and 341 columns\n" ] }, { "data": { "text/html": [ "
\n", - "shape: (2, 329)
subject_idtimestamplabelstatic/eye_color/GREEN/presentstatic/eye_color/HAZEL/presentstatic/eye_color/UNK/present
u8datetime[μs]boolboolboolbool
02010-10-11 18:23:00truetruenullnull
22010-01-28 12:07:07falsenullnullnull
" + "shape: (3, 341)
subject_idtimestamplabelstatic/eye_color/GREEN/presentstatic/eye_color/HAZEL/presentstatic/eye_color/UNK/present
u32datetime[μs]boolboolboolbool
423352010-03-09 11:33:18truenullnullnull
722932010-01-18 15:34:43truenullnullnull
152672010-10-13 10:16:29truenullnullnull
" ], "text/plain": [ - "shape: (2, 329)\n", + "shape: (3, 341)\n", "┌────────────┬──────────────┬───────┬──────────────┬───┬──────────────┬──────────────┬─────────────┐\n", "│ subject_id ┆ timestamp ┆ label ┆ start_time ┆ … ┆ static/eye_c ┆ static/eye_c ┆ static/eye_ │\n", "│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ olor/GREEN/p ┆ olor/HAZEL/p ┆ color/UNK/p │\n", - "│ u8 ┆ datetime[μs] ┆ bool ┆ datetime[μs] ┆ ┆ resent ┆ resent ┆ resent │\n", + "│ u32 ┆ datetime[μs] ┆ bool ┆ datetime[μs] ┆ ┆ resent ┆ resent ┆ resent │\n", "│ ┆ ┆ ┆ ┆ ┆ --- ┆ --- ┆ --- │\n", "│ ┆ ┆ ┆ ┆ ┆ bool ┆ bool ┆ bool │\n", "╞════════════╪══════════════╪═══════╪══════════════╪═══╪══════════════╪══════════════╪═════════════╡\n", - "│ 0 ┆ 2010-10-11 ┆ true ┆ null ┆ … ┆ true ┆ null ┆ null │\n", - "│ ┆ 18:23:00 ┆ ┆ ┆ ┆ ┆ ┆ │\n", - "│ 2 ┆ 2010-01-28 ┆ false ┆ null ┆ … ┆ null ┆ null ┆ null │\n", - "│ ┆ 12:07:07 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 42335 ┆ 2010-03-09 ┆ true ┆ null ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 11:33:18 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 72293 ┆ 2010-01-18 ┆ true ┆ null ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 15:34:43 ┆ ┆ ┆ ┆ ┆ ┆ │\n", + "│ 15267 ┆ 2010-10-13 ┆ true ┆ null ┆ … ┆ null ┆ null ┆ null │\n", + "│ ┆ 10:16:29 ┆ ┆ ┆ ┆ ┆ ┆ │\n", "└────────────┴──────────────┴───────┴──────────────┴───┴──────────────┴──────────────┴─────────────┘" ] }, @@ -4945,17 +5215,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 698 ms, sys: 146 ms, total: 844 ms\n", - "Wall time: 524 ms\n" + "CPU times: user 656 ms, sys: 113 ms, total: 768 ms\n", + "Wall time: 564 ms\n" ] } ], "source": [ "%%time\n", "flat_reps = load_flat_rep(\n", - " ESD, window_sizes=['FULL', '1d'], task_df_name='single_label_binary_classification', subjects_included={'train': {0, 1, 2}}\n", + " ESD, window_sizes=['FULL', '1d'], task_df_name='single_label_binary_classification',\n", + " subjects_included={'train': set(sorted(list(ESD.split_subjects['train']))[:3])}\n", ")\n", - "print(f\"Dataset has {flat_reps['train'].select(pl.count()).collect().item()} rows and {len(flat_reps['train'].columns)} columns\")\n", + "print(f\"Dataset has {flat_reps['train'].select(pl.len()).collect().item()} rows and {len(flat_reps['train'].columns)} columns\")\n", "display(flat_reps['train'].head().collect())" ] }, @@ -4970,20 +5241,86 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 79, "id": "71e9a88b-0b91-4f3a-96cb-157cec8308ed", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[32m2024-05-16 13:22:51.469\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m141\u001b[0m - \u001b[1mReading vocabulary\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:51.471\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m144\u001b[0m - \u001b[1mReading splits & patient shards\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:51.471\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m147\u001b[0m - \u001b[1mSetting measurement configs\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:51.483\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m150\u001b[0m - \u001b[1mReading patient descriptors\u001b[0m\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Reading static shards: 0%| | 0/1 [00:00= 2) from 100 to 79 rows and 100 to 79 subjects.\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:51.532\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m141\u001b[0m - \u001b[1mReading vocabulary\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:51.533\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m144\u001b[0m - \u001b[1mReading splits & patient shards\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:51.534\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m147\u001b[0m - \u001b[1mSetting measurement configs\u001b[0m\n", + "\u001b[32m2024-05-16 13:22:51.550\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mEventStream.data.pytorch_dataset\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m150\u001b[0m - \u001b[1mReading patient descriptors\u001b[0m\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "Caching DL task dataframe for data file sample_data/processed/sample/DL_reps/train_0.parquet at sample_data/processed/sample/DL_reps/for_task/single_label_binary_classification/train_0.parquet...\n", - "79\n", - "Caching DL task dataframe for data file sample_data/processed/sample/DL_reps/train_0.parquet at sample_data/processed/sample/DL_reps/for_task/multi_class_classification/train_0.parquet...\n", - "79\n", - "CPU times: user 433 ms, sys: 42.3 ms, total: 475 ms\n", - "Wall time: 350 ms\n" + "79\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Reading static shards: 0%| | 0/1 [00:00= 2) from 100 to 80 rows and 100 to 80 subjects.\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "80\n", + "CPU times: user 116 ms, sys: 58.2 ms, total: 174 ms\n", + "Wall time: 145 ms\n" ] } ], @@ -5006,45 +5343,6 @@ "print(len(pyd_multi_class))" ] }, - { - "cell_type": "markdown", - "id": "e0c60367-50a6-4a85-a6e7-340df5e0d212", - "metadata": {}, - "source": [ - "Conditioning the pytorch dataset on a task dataframe writes the resulting cached dataset out to disk so future usage of the data are faster:" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "id": "ca3b9e79-5e17-4b93-84f4-1db6ee23da68", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "sample_data/processed/sample/DL_reps/for_task:\n", - "total 8.0K\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[0m\u001b[01;34mmulti_class_classification\u001b[0m\n", - "drwxrwxr-x 2 mmd mmd 4.0K Dec 13 21:18 \u001b[01;34msingle_label_binary_classification\u001b[0m\n", - "\n", - "sample_data/processed/sample/DL_reps/for_task/multi_class_classification:\n", - "total 408K\n", - "-rw-rw-r-- 1 mmd mmd 102 Dec 13 21:18 task_info.json\n", - "-rw-rw-r-- 1 mmd mmd 402K Dec 13 21:18 train_0.parquet\n", - "\n", - "sample_data/processed/sample/DL_reps/for_task/single_label_binary_classification:\n", - "total 376K\n", - "-rw-rw-r-- 1 mmd mmd 101 Dec 13 21:18 task_info.json\n", - "-rw-rw-r-- 1 mmd mmd 370K Dec 13 21:18 train_0.parquet\n" - ] - } - ], - "source": [ - "!ls -lhR --color sample_data/processed/sample/DL_reps/for_task" - ] - }, { "cell_type": "markdown", "id": "56bf8660-ed07-4839-9547-f12334d7d801", @@ -5055,7 +5353,7 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 80, "id": "81c4976f-13dc-44c6-bc82-91dc4dca4672", "metadata": {}, "outputs": [ @@ -5081,12 +5379,12 @@ } ], "source": [ - "!cat sample_data/processed/sample/DL_reps/for_task/single_label_binary_classification/task_info.json | python -m json.tool" + "!cat sample_data/processed/sample/task_dfs/single_label_binary_classification_info.json | python -m json.tool" ] }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 81, "id": "3a78ec2f-4ec5-4807-8436-fd229f51ab30", "metadata": {}, "outputs": [ @@ -5113,7 +5411,40 @@ } ], "source": [ - "!cat sample_data/processed/sample/DL_reps/for_task/multi_class_classification/task_info.json | python -m json.tool" + "!cat sample_data/processed/sample/task_dfs/multi_class_classification_info.json | python -m json.tool" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "2dcff32e-4997-4440-960b-d045ac1de9d5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'static_indices': [24],\n", + " 'static_measurement_indices': [5],\n", + " 'dynamic': JointNestedRaggedTensorDict({'dim0/time_delta': array([60., 60., 60., 60., 60., 60., 60., 60.], dtype=float32), 'dim1/lengths': array([ 8, 8, 8, 9, 7, 10, 8, 9]), 'dim1/dynamic_measurement_indices': [array([1, 3, 2, 6, 6, 6, 6, 8], dtype=uint8), array([1, 3, 2, 2, 2, 8, 8, 8], dtype=uint8), array([1, 3, 2, 2, 6, 6, 8, 8], dtype=uint8), array([1, 3, 2, 2, 2, 6, 8, 8, 8], dtype=uint8), array([1, 3, 2, 2, 6, 8, 8], dtype=uint8), array([1, 3, 2, 2, 2, 6, 6, 8, 8, 8], dtype=uint8), array([1, 3, 2, 2, 6, 6, 8, 8], dtype=uint8), array([1, 3, 2, 2, 6, 6, 6, 8, 8], dtype=uint8)], 'dim1/dynamic_values': [array([ nan, -0.57425296, 1.9150734 , -1.6698846 , -0.07352565,\n", + " -0.16851047, nan, 0.6683647 ], dtype=float32), array([ nan, -0.57422704, 1.9366332 , 1.9862204 , 1.7706227 ,\n", + " 0.4605351 , 0.6164083 , 0.5644519 ], dtype=float32), array([ nan, -0.57420105, 2.0703037 , 1.9797528 , -0.26349527,\n", + " -0.3584801 , 0.4605351 , 0.3046659 ], dtype=float32), array([ nan, -0.5741751 , 1.8309902 , 1.8956695 , 1.9064493 ,\n", + " -0.16851047, 0.20074913, 0.4605351 , 0.4085787 ], dtype=float32), array([ nan, -0.57414913, 1.9258534 , 1.9711286 , -0.3584801 ,\n", + " 0.4605351 , 0.4605351 ], dtype=float32), array([ nan, -0.57412314, 1.9280092 , nan, 1.7663109 ,\n", + " -0.4534649 , -0.5484497 , 0.4605351 , 0.4085787 , 0.4605351 ],\n", + " dtype=float32), array([ nan, -0.5740972, nan, nan, -0.5484497,\n", + " -0.5484497, 0.4605351, 0.5644519], dtype=float32), array([ nan, -0.5740712, nan, nan, -0.5484497,\n", + " 1.7221808, -0.4534649, 0.4085787, 0.4605351], dtype=float32)], 'dim1/dynamic_indices': [array([ 1, 16, 15, 28, 27, 27, 30, 55], dtype=uint8), array([ 3, 16, 15, 15, 15, 55, 55, 55], dtype=uint8), array([ 1, 16, 15, 15, 27, 27, 55, 55], dtype=uint8), array([ 1, 16, 15, 15, 15, 27, 55, 55, 55], dtype=uint8), array([ 1, 16, 15, 15, 27, 55, 55], dtype=uint8), array([ 1, 16, 15, 15, 15, 27, 27, 55, 55, 55], dtype=uint8), array([ 1, 16, 15, 15, 27, 27, 55, 55], dtype=uint8), array([ 1, 16, 15, 15, 27, 29, 27, 55, 55], dtype=uint8)], 'dim1/bounds': array([ 8, 16, 24, 33, 40, 50, 58, 67])}, schema={'dim1/time_delta': dtype('float32'), 'dim2/dynamic_indices': dtype('uint8'), 'dim2/dynamic_measurement_indices': dtype('uint8'), 'dim2/dynamic_values': dtype('float32')}, pre_raggedified=True),\n", + " 'label': False}" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pyd_single_label_binary[0]" ] }, { @@ -5130,7 +5461,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 83, "id": "09ed0c50", "metadata": {}, "outputs": [], @@ -5141,7 +5472,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 84, "id": "81a6d3a8", "metadata": {}, "outputs": [ @@ -5149,45 +5480,56 @@ "name": "stdout", "output_type": "stream", "text": [ - "Dataset has 100 subjects, with 30.9 thousand events and 92.9 thousand measurements.\n", - "Dataset has 6 measurements:\n", + "Dataset has 100 subjects, with 30.9 thousand events and 93.0 thousand measurements.\n", + "Dataset has 7 measurements:\n", "eye_color: static, single_label_classification [...]\n", "Vocabulary:\n", " 5 elements, 0.0% UNKs\n", - " Frequencies: █▃▂▁\n", + " Frequencies: █▄▂▁\n", " Elements:\n", - " (51.3%) BROWN\n", - " (21.3%) BLUE\n", - " (17.5%) HAZEL\n", - " (10.0%) GREEN\n", + " (50.0%) BROWN\n", + " (26.3%) BLUE\n", + " (16.3%) HAZEL\n", + " (7.5%) GREEN\n", "\n", "department: dynamic, multi_label_classification [...]\n", "Vocabulary:\n", " 4 elements, 0.0% UNKs\n", - " Frequencies: █▇▁\n", + " Frequencies: █▅▁\n", + " Elements:\n", + " (42.0%) PULMONARY\n", + " (35.0%) CARDIAC\n", + " (22.9%) ORTHOPEDIC\n", + "\n", + "medication: dynamic, multi_label_classification [...]\n", + "Vocabulary:\n", + " 6 elements, 0.0% UNKs\n", + " Frequencies: ██▇▇▁\n", " Elements:\n", - " (38.7%) PULMONARY\n", - " (36.5%) CARDIAC\n", - " (24.8%) ORTHOPEDIC\n", + " (23.0%) Motrin\n", + " (23.0%) Benadryl\n", + " (21.3%) Tylenol\n", + " (21.3%) Advil\n", + " (11.5%) motrin\n", "\n", - "HR: dynamic, univariate_regression observed 71.1%, [...]\n", + "HR: dynamic, univariate_regression observed 70.7%, [...]\n", "Value is a float\n", "\n", - "temp: dynamic, univariate_regression observed 71.1%, [...]\n", + "temp: dynamic, univariate_regression observed 70.7%, [...]\n", "Value is a float\n", "\n", "lab_name: dynamic, multivariate_regression observed [...]\n", "Value Types:\n", - " 2 categorical_integer\n", " 2 float\n", + " 2 categorical_integer\n", " 1 integer\n", "Vocabulary:\n", " 23 elements, 0.0% UNKs\n", " Frequencies: █▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁\n", " Examples:\n", - " (83.0%) SpO2\n", - " (4.3%) potassium\n", - " (3.8%) creatinine\n", + " (83.8%) SpO2\n", + " (4.0%) potassium\n", + " (3.5%) creatinine\n", " ...\n", " (0.1%) GCS__EQ_14\n", " (0.1%) GCS__EQ_13\n", @@ -5197,65 +5539,9 @@ "\n" ] }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/mmd/mambaforge/envs/ESGPT_pl_0.18/lib/python3.10/site-packages/plotly/express/_core.py:2044: FutureWarning:\n", - "\n", - "The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", - "\n", - "/home/mmd/mambaforge/envs/ESGPT_pl_0.18/lib/python3.10/site-packages/plotly/express/_core.py:2044: FutureWarning:\n", - "\n", - "The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", - "\n", - "/home/mmd/mambaforge/envs/ESGPT_pl_0.18/lib/python3.10/site-packages/plotly/express/_core.py:2044: FutureWarning:\n", - "\n", - "The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", - "\n", - "/home/mmd/mambaforge/envs/ESGPT_pl_0.18/lib/python3.10/site-packages/plotly/express/_core.py:2044: FutureWarning:\n", - "\n", - "The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", - "\n", - "/home/mmd/mambaforge/envs/ESGPT_pl_0.18/lib/python3.10/site-packages/plotly/express/_core.py:2044: FutureWarning:\n", - "\n", - "The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", - "\n", - "/home/mmd/mambaforge/envs/ESGPT_pl_0.18/lib/python3.10/site-packages/plotly/express/_core.py:2044: FutureWarning:\n", - "\n", - "The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", - "\n", - "/home/mmd/mambaforge/envs/ESGPT_pl_0.18/lib/python3.10/site-packages/plotly/express/_core.py:2044: FutureWarning:\n", - "\n", - "The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", - "\n", - "/home/mmd/mambaforge/envs/ESGPT_pl_0.18/lib/python3.10/site-packages/plotly/express/_core.py:2044: FutureWarning:\n", - "\n", - "The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", - "\n", - "/home/mmd/mambaforge/envs/ESGPT_pl_0.18/lib/python3.10/site-packages/plotly/express/_core.py:2044: FutureWarning:\n", - "\n", - "The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", - "\n", - "/home/mmd/mambaforge/envs/ESGPT_pl_0.18/lib/python3.10/site-packages/plotly/express/_core.py:2044: FutureWarning:\n", - "\n", - "The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdB5RdZbk/4DedRCy0SABDR6T8JaigAoo0AREFBFFAqRJEWgSkg9IEAogQQaoCoUizIJGmICoiClJEESJIR7oJSUhI8l/neAkzZMKcTM43e397P2ct1r2Xs/e33+9537mz148z+/SZOXPmzPAiQIAAAQIECBAgQIAAAQIECBAgUFKBPgKsknZGWQQIECBAgAABAgQIECBAgAABAk0BAZZBIECAAAECBAgQIECAAAECBAgQKLWAAKvU7VEcAQIECBAgQIAAAQIECBAgQICAAMsMECBAgAABAgQIECBAgAABAgQIlFpAgFXq9iiOAAECBAgQIECAAAECBAgQIEBAgGUGCBAgQIAAAQIECBAgQIAAAQIESi0gwCp1exRHgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAECpRYQYJW6PYojQIAAAQIECBAgQIAAAQIECBAQYJkBAgQIECBAgAABAgQIECBAgACBUgsIsErdHsURIECAAAECBAgQIECAAAECBAgIsMwAAQIECBAgQIAAAQIECBAgQIBAqQUEWKVuj+IIECBAgAABAgQIECBAgAABAgQEWGaAAAECBAgQIECAAAECBAgQIECg1AICrFK3R3EECBAgQIAAAQIECBAgQIAAAQICLDNAgAABAgQIECBAgAABAgQIECBQagEBVqnbozgCBAgQIECAAAECBAgQIECAAAEBlhkgQIAAAQIECBAgQIAAAQIECBAotYAAq9TtURwBAgQIECBAgAABAgQIECBAgIAAywwQIECAAAECBAgQIECAAAECBAiUWkCAVer2KI4AAQIECBAgQIAAAQIECBAgQECAZQYIECBAgAABAgQIECBAgAABAgRKLSDAKnV7FEeAAAECBAgQIECAAAECBAgQICDAMgMECBAgQIAAAQIECBAgQIAAAQKlFhBglbo9iiNAgAABAgQIECBAgAABAgQIEBBgmQECBAgQIECAAAECBAgQIECAAIFSCwiwSt0exREgQIAAAQIECBAgQIAAAQIECAiwzAABAgQIECBAgAABAgQIECBAgECpBQRYpW6P4ggQIECAAAECBAgQIECAAAECBARYZoAAAQIECBAgQIAAAQIECBAgQKDUAgKsUrdHcQQIECBAgAABAgQIECBAgAABAgIsM0CAAAECBAgQIECAAAECBAgQIFBqAQFWqdujOAIECBAgQIAAAQIECBAgQIAAAQGWGSBAgAABAgQIECBAgAABAgQIECi1gACr1O1RHAECBAgQIECAAAECBAgQIECAgADLDBAgQIAAAQIECBAgQIAAAQIECJRaQIBV6vYojgABAgQIECBAgAABAgQIECBAQIBlBggQIECAAAECBAgQIECAAAECBEotIMAqdXsUR4AAAQIECBAgQIAAAQIECBAgIMAyAwQIECBAgAABAgQIECBAgAABAqUWEGCVuj2KI0CAAAECBAgQIECAAAECBAgQEGCZAQIECBAgQIAAAQIECBAgQIAAgVILCLBK3R7FESBAgAABAgQIECBAgAABAgQICLDMAAECBAgQIECAAAECBAgQIECAQKkFBFilbo/iCBAgQIAAAQIECBAgQIAAAQIEBFhmgAABAgQIECBAgAABAgQIECBAoNQCAqxSt0dxBAgQIECAAAECBAgQIECAAAECAiwzQIAAAQIECBAgQIAAAQIECBAgUGoBAVap26M4AgQIECBAgAABAgQIECBAgAABAZYZIECAAAECBAgQIECAAAECBAgQKLWAAKvU7VEcAQIECBAgQIAAAQIECBAgQICAAMsMECBAgAABAgQIECBAgAABAgQIlFpAgFXq9iiOAAECBAgQIECAAAECBAgQIEBAgGUGCBAgQIAAAQIECBAgQIAAAQIESi0gwCp1exRHgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAECpRYQYJW6PYojQIAAAQIECBAgQIAAAQIECBAQYJkBAgQIECBAgAABAgQIECBAgACBUgsIsErdHsURIECAAAECBAgQIECAAAECBAgIsMwAAQIECBAgQIAAAQIECBAgQIBAqQUEWKVuj+IIECBAgAABAgQIECBAgAABAgQEWGaAAAECBAgQIECAAAECBAgQIECg1AICrFK3R3EECBAgQIAAAQIECBAgQIAAAQICLDNAgAABAgQIECBAgAABAgQIECBQagEBVqnbozgCBAgQIECAAAECBAgQIECAAAEBlhkgQIAAAQIECBAgQIAAAQIECBAotYAAq9TtURwBAgQIECBAgAABAgQIECBAgIAAywwQIECAAAECBAgQIECAAAECBAiUWkCAVer2KI4AAQIECBAgQIAAAQIECBAgQECAZQYIECBAgAABAgQIECBAgAABAgRKLSDAKnV7FEeAAAECBAgQIECAAAECBAgQICDAMgMECBAgQIAAAQIECBAgQIAAAQKlFhBglbo9iiNAgAABAgQIECBAgAABAgQIEBBgmQECBAgQIECAAAECBAgQIECAAIFSCwiwSt0exREgQIAAAQIECBAgQIAAAQIECAiwzAABAgQIECBAgAABAgQIECBAgECpBQRYpW6P4ggQIECAAAECBAgQIECAAAECBARYZoAAAQIECBAgQIAAAQIECBAgQKDUAgKsUrdHcQQIECBAgAABAgQIECBAgAABAgIsM0CAAAECBAgQIECAAAECBAgQIFBqAQFWqdujOAIECBAgQIAAAQIECBAgQIAAAQGWGSBAgAABAgQIECBAgAABAgQIECi1gACr1O1RHAECBAgQIECAAAECBAgQIECAgADLDBAgQIAAAQIECBAgQIAAAQIECJRaQIBV6vYojgABAgQIECBAgAABAgQIECBAQIBlBggQIECAAAECBAgQIECAAAECBEotIMAqdXsUR4AAAQIECBAgQIAAAQIECBAgIMAyAwQIECBAgAABAgQIECBAgAABAqUWEGCVuj2KI0CAAAECBAgQIECAAAECBAgQEGCZAQIECBAgQIAAAQIECBAgQIAAgVILCLBK3R7FESBAgAABAgQIECBAgAABAgQICLDMAAECBAgQIECAAAECBAgQIECAQKkFBFilbo/iCBAgQIAAAQIECBAgQIAAAQIEBFhmgAABAgQIECBAgAABAgQIECBAoNQCAqxSt0dxBAgQIECAAAECBAgQIECAAAECAiwzQIAAAQIECBAgQIAAAQIECBAgUGoBAVap26M4AgQIECBAgAABAgQIECBAgAABAZYZIECAAAECBAgQIECAAAECBAgQKLWAAKvU7VEcAQIECBAgQIAAAQIECBAgQICAAMsMECBAgAABAgQIECBAgAABAgQIlFpAgFXq9iiOAAECBAgQIECAAAECBAgQIEBAgGUGCBAgQIAAAQIECBAgQIAAAQIESi0gwCp1exRHgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAECpRYQYJW6PYojQIAAAQIECBAgQIAAAQIECBAQYJkBAgQIECBAgAABAgQIECBAgACBUgsIsErdHsURIECAAAECBAgQIECAAAECBAgIsMwAAQIECBAgQIAAAQIECBAgQIBAqQUEWKVuj+IIECBAgAABAgQIECBAgAABAgQEWGaAAAECBAgQIECAAAECBAgQIECg1AICrFK3R3EECBAgQIAAAQIECBAgQIAAAQICLDNAgAABAgQIECBAgAABAgQIECBQagEBVqnbozgCBAgQIECAAAECBAgQIECAAAEBlhkgQIAAAQIECBAgQIAAAQIECBAotYAAq9TtURwBAgQIECBAgAABAgQIECBAgIAAywwQIECAAAECBAgQIECAAAECBAiUWkCAVer2KI4AAQIECBAgQIAAAQIECBAgQECAZQYIECBAgAABAgQIECBAgAABAgRKLSDAKnV7FEeAAAECBAgQIECAAAECBAgQICDAMgOFCjz1wuRCr+/iBAgQIECAAAECBAgQINCawGILDW7tQEcRSCAgwEqAasnWBQRYrVs5kgABAgQIECBAgAABAkUKCLCK1HdtAZYZKFRAgFUov4sTIECAAAECBAgQIECgZQEBVstUDkwgIMBKgGrJ1gUEWK1bOZIAAQIECBAgQIAAAQJFCgiwitR3bQGWGShUQIBVKL+LEyBAgAABAgQIECBAoGUBAVbLVA5MICDASoBqydYFBFitWzmSAAECBAgQIECAAAECRQoIsIrUd20BlhkoVECAVSi/ixMgQIAAAQIECBAgQKBlAQFWy1QOTCAgwEqAasnWBQRYrVs5kgABAgQIECBAgAABAkUKCLCK1HdtAZYZKFRAgFUov4sTIECAAAECBAgQIECgZQEBVstUDkwgIMBKgGrJ1gUEWK1bOZIAAQIECBAgQIAAAQJFCgiwitR3bQGWGShUQIBVKL+LEyBAgAABAgQIECBAoGUBAVbLVA5MICDASoBqydYFBFitWzmSAAECBAgQIECAAAECRQoIsIrUd20BlhkoVECAVSi/ixMgQIAAAQIECBAgQKBlAQFWy1QOTCAgwEqAasnWBQRYrVs5kgABAgQIECBAgAABAkUKCLCK1HdtAZYZKFRAgFUov4sTIECAAAECBAgQIECgZQEBVstUDkwgIMBKgGrJ1gUEWK1bOZIAAQIECBAgQIAAAQJFCgiwitR3bQGWGShUQIBVKL+LEyBAgAABAgQIECBAoGUBAVbLVA5MICDASoBqydYFBFitWzmSAAECBAgQIECAAAECRQoIsIrUd20BlhkoVECAVSi/ixMgQIAAAQIECBAgQKBlAQFWy1QOTCAgwEqAasnWBQRYrVs5kgABAgQIECBAgAABAkUKCLCK1HdtAZYZKFRAgFUov4sTIECAAAECBAjMSaBPHzYE8hWYOTNJ7QKsJKwWbVFAgNUilMPSCAiw0rhalQABAgQIECBAYN4EHnk04tF/C7HmTdHZRQgstVTE0ksKsIqwd820AgKstL5W70ZAgGVECBAgQIAAAQIEyijwm1v7RuMfLwK5Caz7yRmx3idnJCnbJ7CSsFq0RQEBVotQDksjIMBK42pVAgQIECBAgACBeRMQYM2bn7OLExBgFWfvymkFBFhpfa3ejYAAy4gQIECAAAECBAiUUUCAVcauqKkVAQFWK0qOyVFAgJVj1ypUswCrQs20FQIECBAgQIBAhQQEWBVqZs22IsCqWcNrtF0BVo2aXcatCrDK2BU1ESBAgAABAgQICLDMQK4CAqxcO6fu7gQEWN0JeT+pgAArKa/FCRAgQIAAAQIEeiggwOohnNMKFxBgFd4CBSQSEGAlgs152Y9u9vWYMHHSHLew2QYfixMO273L968Zd1tcee2t8fCjT8b06dNjySUWjc9vvHZ8eYsNol+/2b/FRYCV86SonQABAgQIECBQXQEBVnV7W/WdCbCq3uH67k+AVd/ed7nzaa9Pj9U22CWGDB4Uyy61eJfHrLPGqrHnTlvM9t7Bx50TP7/h9zGgf78YseryMaB//7jngfEx8dXJsfYaq8aY4/eN/v36dTpPgGUACRAgQIAAAQIEyiggwCpjV9TUioAAqxUlx+QoIMDKsWsJa37uhZdj3a32jXXWXDXOOuGbLV+pEVw1Aqxlhg+Ls0cfEMOGLtg8d9LkKbHvEWfE7++8P/baecsY+ZXNBVgtqzqQAAECBAgQIECgKAEBVlHyrjuvAgKseRV0flkFBFhl7UxBdf3j4cdiq12PaP7Z37EH7dpyFZ/f6bB46JEnYuyYw2K1lZfrdN5Lr0yI9bceFQMG9I9brz4t5hs0cNb7PoHVMrEDCRAgQIAAAQIEelFAgNWL2C7VVgEBVls5LVYiAQFWiZpRhlJu//PfYtf9T4pdvrRpjNp9m5ZKeuqZ52PDbfeP4YsPjXFjT+zynFFHjYnrb7kzTj92n1hvrRECrJZkHUSAAAECBAgQIFCUgACrKHnXnVcBAda8Cjq/rAICrLJ2pqC6fnnzH+PAo8+KA/f8Unx160+3VMXNt90Vex/+/dhsw4/FCYd2/XD3H19xfZw45tLYbbvNYt/dviDAaknWQQQIECBAgAABAkUJCLCKknfdeRUQYM2roPPLKiDAKmtnCqrroitviO+ecUkzjFpkoffEK/99Nfr0iRi60ALx4dXeH2uO+ED0afyLDq8fXf6rOOnMy2L3HT4be++yVZeV33TbX2Kfw0+PT6/7kTjlqD0FWAX112UJECBAgAABAgRaExBgtebkqPIJCLDK1xMVtUdAgNUex8qs8sYnpea0oRWXGx4nH/n1WOp9i8465Izzr4kzL/xZ7D/yi7HTtpt0eeodd/89dt7vhPjoh1aK804+cNYxr02bURk7GyFAgAABAgQIEKiGwKTXpsd1N8yIRojlRSA3gUaAtdlGfWLwoP5tL33QAD8TbUe1YMsCAqyWqepz4J1//Ue8c/4hsdiiC8eQwYNiwsRJcd/f/xUXXD4u/nT3P5qfzPrp+cfEe949fxPl5LN+Eudfdl0cvNd2sf1WG3YJdff9D8X23zg2RqyyfFx8xqH1wbRTAgQIECBAgACB7AQmTH49fj5uugAru84puCHQCLA+t3HfeOeQAUAIVEpAgFWpdqbdzPTpM2K3/U+KxqepRn5l89hr5y2bF5yrT2CtvlKcd8qbn8B64b9T0xZtdQIECBAgQIAAAQJzKfD6jJlx069DgDWXbg4vh0AjwNroUzOjX7/2f1pqoXe9+Y3y5ditKuokIMCqU7fbsNff/OHu+MYhp8Xqq64QF51+SHPFC6+4Pk4Yc2lLz8DaYJ0PxWlH7zWrkqdemNyGqixBgAABAgQIECBAoL0CnoHVXk+r9Z6AZ2D1nrUr9a6AAKt3vbO/2j//9URssfNhscIyS8Q15x/T3M+tt98TXz/41Ja+hXDnbTeNb47cRoCV/STYAAECBAgQIECg2gICrGr3t8q7E2BVubv13psAq979n+vd3/7nv8Wu+58UH//wKnHO6P2b5z//4ivxyS33ieGLD41xY0/scs1RR42J62+5M0YfsUdsst6aAqy5lncCAQIECBAgQIBAbwoIsHpT27XaKSDAaqemtcokIMAqUzcyqOXQ754bP/3V72K/r20du375M7MqbjygvfGg9rFjDovVVl6u005eemVCrL/1qJgxc2b89prvx7vmHyLAyqDXSiRAgAABAgQI1FlAgFXn7ue9dwFW3v1T/ZwFBFimo5PA9865Mj670cdj2SUX6/Tv/ztxUpx98S/igsvGxcILvjuuvfD45jcVvvG67Y57Y+S3Tollhg+Ls0cfEMOGLth8a9LkKbHfkWPid3+6L7bbcoM4ZO/tO63rGVgGkAABAgQIECBAoIwCAqwydkVNrQgIsFpRckyOAgKsHLuWsOY1P7NHTHx1cgxd+D2xzPDFYvB8g+LZ51+KRx57KiZPmRrvXWSB+MHx+8WKyw2frYrRZ13eDLgGDOgfI1ZZLgYOGBD3PDA+JkycFCutsFT8+LSDY8jgQQKshP2zNAECBAgQIECAQHsEBFjtcbRK7wsIsHrf3BV7R0CA1TvO2Vzltjvui5/f8Lu4/x+PxLPPvRTTXn895h8yOJZZcrFYb+3VY5vPrtvpk1dv3VjjOVcXX3VjPDj+sZg+fUYsPmyR2HS9NWOnbTeJQQMHzObgE1jZjIZCCRAgQIAAAQK1EhBg1ardldqsAKtS7bSZDgICLONQqIAAq1B+FydAgAABAgQIEJiDgADLaOQqIMDKtXPq7k5AgNWdkPeTCgiwkvJanAABAgQIECBAoIcCAqwewjmtcAEBVuEtUEAiAQFWIljLtiYgwGrNyVEECBAgQIAAAQK9KyDA6l1vV2ufgACrfZZWKpeAAKtc/ahdNQKs2rXchgkQIECAAAECWQgIsLJokyK7EBBgGYuqCgiwqtrZTPYlwMqkUcokQIAAAQIECNRMQIBVs4ZXaLsCrAo101Y6CQiwDEShAgKsQvldnAABAgQIECBAYA4CAiyjkauAACvXzqm7OwEBVndC3k8qIMBKymtxAgQIECBAgACBHgoIsHoI57TCBQRYhbdAAYkEBFiJYC3bmoAAqzUnRxEgQIAAAQIECPSugACrd71drX0CAqz2WVqpXAICrHL1o3bVCLBq13IbJkCAAAECBAhkISDAyqJNiuxCQIBlLKoqIMCqamcz2ZcAK5NGKZMAAQIECBAgUDMBAVbNGl6h7QqwKtRMW+kkIMAyEIUKCLAK5XdxAgQIECBAgACBOQgIsIxGrgICrFw7p+7uBARY3Ql5P6mAACspr8UJECBAgAABAgR6KCDA6iGc0woXEGAV3gIFJBIQYCWCtWxrAgKs1pwcRYAAAQIECBAg0LsCAqze9Xa19gkIsNpnaaVyCQiwytWP2lUjwKpdy22YAAECBAgQIJCFgAArizYpsgsBAZaxqKqAAKuqnc1kXwKsTBqlTAIECBAgQIBAzQQEWDVreIW2K8CqUDNtpZOAAMtAFCogwCqU38UJECBAgAABAgTmICDAMhq5Cgiwcu2cursTEGB1J+T9pAICrKS8FidAgAABAgQIEOihgACrh3BOK1xAgFV4CxSQSECAlQjWsq0JCLBac3IUAQIECBAgQIBA7woIsHrX29XaJyDAap+llcolIMAqVz9qV40Aq3Ytt2ECBAgQIECAQBYCAqws2qTILgQEWMaiqgICrKp2NpN9CbAyaZQyCRAgQIAAAQI1ExBg1azhFdquAKtCzbSVTgICLANRqIAAq1B+FydAgAABAgQIEJiDgADLaOQqIMDKtXPq7k5AgNWdkPeTCgiwkvJanAABAgQIECBAoIcCAqwewjmtcAEBVuEtUEAiAQFWIljLtiYgwGrNyVEECBAgQIAAAQK9KyDA6l1vV2ufgACrfZZWKpeAAKtc/ahdNQKs2rXchgkQIECAAAECWQgIsLJokyK7EBBgGYuqCgiwqtrZTPYlwMqkUcokQIAAAQIECNRMQIBVs4ZXaLsCrAo101Y6CQiwDEShAgKsQvldnAABAgQIECBAYA4CAiyjkauAACvXzqm7OwEBVndC3k8qIMBKymtxAgQIECBAgACBHgoIsHoI57TCBQRYhbdAAYkEBFiJYC3bmoAAqzUnRxEgQIAAAQIECPSugACrd71drX0CAqz2WVqpXAICrHL1o3bVCLBq13IbJkCAAAECBAhkISDAyqJNiuxCQIBlLKoqIMCqamcz2ZcAK5NGKZMAAQIECBAgUDMBAVbNGl6h7QqwKtRMW+kkIMAyEIUKCLAK5XdxAgQIECBAgACBOQgIsIxGrgICrFw7p+7uBARY3Ql5P6mAACspr8UJECBAgAABAgR6KCDA6iGc0woXEGAV3gIFJBIQYCWCtWxrAgKs1pwcRYAAAQIECBAg0LsCAqze9Xa19gkIsNpnaaVyCQiwytWP2lUjwKpdy22YAAECBAgQIJCFgAArizYpsgsBAZaxqKqAAKuqnc1kXwKsTBqlTAIECBAgQIBAzQQEWDVreIW2K8CqUDNtpZOAAMtAFCogwCqU38UJECBAgAABAgTmICDAMhq5Cgiwcu2cursTEGB1J+T9pAICrKS8FidAgAABAgQIEOihgACrh3BOK1xAgFV4CxSQSECAlQjWsq0JCLBac3IUAQIECBAgQIBA7woIsHrX29XaJyDAap+llcolIMAqVz9qV40Aq3Ytt2ECBAgQIECAQBYCAqws2qTILgQEWMaiqgICrKp2NpN9CbAyaZQyCRAgQIAAAQI1ExBg1azhFdquAKtCzbSVTgICLANRqIAAq1B+FydAgAABAgQIEJiDgADLaOQqIMDKtXPq7k5AgNWdkPeTCgiwkvJanAABAgQIECBAoIcCAqwewjmtcAEBVuEtUEAiAQFWIljLtiYgwGrNyVEECBAgQIAAAQK9KyDA6l1vV2ufgACrfZZWKpeAAKtc/ahdNQKs2rXchgkQIECAAAECWQgIsLJokyK7EBBgGYuqCgiwqtrZTPYlwMqkUcokQIAAAQIECNRMQIBVs4ZXaLsCrAo101Y6CQiwDEShAgKsQvldnAABAgQIECBAYA4CAiyjkauAACvXzqm7OwEBVndC3k8qIMBKymtxAgQIECBAgACBHgoIsHoI57TCBQRYhbdAAYkEBFiJYC3bmoAAqzUnRxEgQIAAAQIECPSugACrd71drX0CAqz2WVqpXAICrHL1o3bVCLBq13IbJkCAAAECBAhkISDAyqJNiuxCQIBlLKoqIMCqamcz2ZcAK5NGKZMAAQIECBAgUDMBAVbNGl6h7QqwKtRMW+kkIMAyEIUKCLAK5XdxAgQIECBAgACBOQgIsIxGrgICrFw7p+7uBARY3Ql5P6mAACspr8UJECBAgAABAgR6KCDA6iGc0woXEGAV3gIFJBIQYCWCtWxrAgKs1pwcRYAAAQIECBAg0LsCAqze9Xa19gkIsNpnaaVyCQiwytWP2lUjwKpdy22YAAECBAgQIJCFgAArizYpsgsBAZaxqKqAAKuqnc1kXwKsTBqlTAIECBAgQIBAzQQEWDVreIW2K8CqUDNtpZOAAMtAFCogwCqU38UJECBAgAABAgTmICDAMhq5Cgiwcu2cursTEGB1J+T9pAICrKS8FidAgAABAgQIEOihgACrh3BOK1xAgFV4CxSQSECAlQjWsq0JCLBac3IUAQIECBAgQIBA7woIsHrX29XaJyDAap+llcolIMAqVz9qV40Aq3Ytt2ECBAgQIECAQBYCAqws2qTILgQEWMaiqgICrKp2ts37uuu+h+Kr+xwXM2bMjMt/eGSs8v6lu7zCNeNuiyuvvTUefvTJmD59eiy5xKLx+Y3Xji9vsUH069d3tnMEWG1ulOUIECBAgAABAgTaIiDAagujRQoQEGAVgO6SvSIgwOoV5rwvMkQlKLQAACAASURBVGHipNhil8Pj6WdfaG5kTgHWwcedEz+/4fcxoH+/GLHq8jGgf/+454HxMfHVybH2GqvGmOP3jf79+nXCEGDlPRuqJ0CAAAECBAhUVUCAVdXOVn9fAqzq97iuOxRg1bXzc7Hvb377B/Hr398d66y5atx8211dBliN4KoRYC0zfFicPfqAGDZ0weYVJk2eEvsecUb8/s77Y6+dt4yRX9lcgDUX9g4lQIAAAQIECBAoRkCAVYy7q867gABr3g2tUE4BAVY5+1Kaqq6+7rdx+Innx547bdH8BFbj/+7qE1if3+mweOiRJ2LsmMNitZWX61T/S69MiPW3HhUDBvSPW68+LeYbNHDW+z6BVZpWK4QAAQIECBAgQKCDgADLOOQqIMDKtXPq7k5AgNWdUI3ff/TxZ+ILux0Ryy21eFw85rA49Phz49qbbp8twHrqmedjw233j+GLD41xY0/sUmzUUWPi+lvujNOP3SfWW2uEAKvGc2XrBAgQIECAAIEcBARYOXRJjV0JCLDMRVUFBFhV7ew87mva69Pjy18/Ohoh1lXnfqcZTu3/nTNj3K/vmC3AavxZ4d6Hfz822/BjccKhu3d55R9fcX2cOObS2G27zWLf3b4gwJrH/jidAAECBAgQIEAgrYAAK62v1dMJCLDS2Vq5WAEBVrH+pb36SWdeFj+6/Fdx/CG7xeYbrdWss/EsrF/95k+zBViN4xrH777DZ2PvXbbqck833faX2Ofw0+PT634kTjlqTwFWaTuvMAIECBAgQIAAgYaAAMsc5CogwMq1c+ruTkCA1Z1QDd//w5/vj932Hx2bbfCxOOGwNz9RNacA64zzr4kzL/xZ7D/yi7HTtpt0KXbH3X+Pnfc7IT76oZXivJMPFGDVcK5smQABAgQIECCQk4AAK6duqbWjgADLPFRVQIBV1c72cF8vvjwhttj5sBg0cEBcfd7RMf87Bs9aaU4B1sln/STOv+y6OHiv7WL7rTbs8sp33/9QbP+NY2PEKsvHxWcc2sPqnEaAAAECBAgQIEAgvcCEya/Hz8dNb34Ky4tAbgKNAOtzG/eNdw4ZkFvp6iXwtgICLAPSSWCPg06N3995X1x0+qHxwZWW7fReWz6BtfpKcd4pb34CCz8BAgQIECBAgACBsgkIsMrWEfXMjYAAa260HJuTgAArp24lrnXs1TfGcd8f23yOVeN5Vm99zSnAuvCK6+OEMZe29AysDdb5UJx29F6zln7qhcmJd2V5AgQIECBAgAABAnMv4E8I597MGeUQ8CeE5eiDKtovIMBqv2m2K47YaLeYOnVa85NXffvO/nHpRx5/Ol5+ZWK8f9n3xZDB88UHlh8eh+6zQ9x6+z3x9YNPbelbCHfedtP45shtBFjZTonCCRAgQIAAAQL1EBBg1aPPVdylAKuKXbWnhoAAyxzMElh53R3nSuPDH3x//Pi0g+P5F1+JT265TwxffGiMG3til2uMOmpMXH/LnTH6iD1ik/XWFGDNlbSDCRAgQIAAAQIEeltAgNXb4q7XLgEBVrskrVM2AQFW2TpS4nrm9CeEjZIbD2hvPKh97JjDYrWVl+u0i5demRDrbz0qZsycGb+95vvxrvmHCLBK3GelESBAgAABAgQIRPMB7h7ibhJyFBBg5dg1NbciIMBqRckxTYG3C7Buu+PeGPmtU2KZ4cPi7NEHxLChCzbPmTR5Sux35Jj43Z/ui+223CAO2Xv7TpqegWW4CBAgQIAAAQIEyiggwCpjV9TUioAAqxUlx+QoIMDKsWsF1fx2AVajpNFnXR4XXDYuBgzoHyNWWS4GDhgQ9zwwPiZMnBQrrbBU888NhwweJMAqqH8uS4AAAQIECBAg0LqAAKt1K0eWS0CAVa5+qKZ9AgKs9llWfqXuAqwGQOM5VxdfdWM8OP6xmD59Riw+bJHYdL01Y6dtN4lBAwfMZuQTWJUfGxskQIAAAQIECGQpIMDKsm2KjggBljGoqoAAq6qdzWRfAqxMGqVMAgQIECBAgEDNBARYNWt4hbYrwKpQM22lk4AAy0AUKiDAKpTfxQkQIECAAAECBOYgIMAyGrkKCLBy7Zy6uxMQYHUn5P2kAgKspLwWJ0CAAAECBAgQ6KGAAKuHcE4rXECAVXgLFJBIQICVCNayrQkIsFpzchQBAgQIECBAgEDvCgiwetfb1donIMBqn6WVyiUgwCpXP2pXjQCrdi23YQIECBAgQIBAFgICrCzapMguBARYxqKqAgKsqnY2k30JsDJplDIJECBAgAABAjUTEGDVrOEV2q4Aq0LNtJVOAgIsA1GogACrUH4XJ0CAAAECBAgQmIOAAMto5CogwMq1c+ruTkCA1Z2Q95MKCLCS8lqcAAECBAgQIECghwICrB7COa1wAQFW4S1QQCIBAVYiWMu2JiDAas3JUQQIECBAgAABAr0rIMDqXW9Xa5+AAKt9llYql4AAq1z9qF01AqzatdyGCRAgQIAAAQJZCAiwsmiTIrsQEGAZi6oKCLCq2tlM9iXAyqRRyiRAgAABAgQI1ExAgFWzhldouwKsCjXTVjoJCLAMRKECAqxC+V2cAAECBAgQIEBgDgICLKORq4AAK9fOqbs7AQFWd0LeTyogwErKa3ECBAgQIECAAIEeCgiwegjntMIFBFiFt0ABiQQEWIlgLduagACrNSdHESBAgAABAgQI9K6AAKt3vV2tfQICrPZZWqlcAgKscvWjdtUIsGrXchsmQIAAAQIECGQhIMDKok2K7EJAgGUsqiogwKpqZzPZlwArk0YpkwABAgQIECBQMwEBVs0aXqHtCrAq1Exb6SQgwDIQhQoIsArld3ECBAgQIECAAIE5CAiwjEauAgKsXDun7u4EBFjdCXk/qYAAKymvxQkQIECAAAECBHooIMDqIZzTChcQYBXeAgUkEhBgJYK1bGsCAqzWnBxFgAABAgQIECDQuwICrN71drX2CQiw2mdppXIJCLDK1Y/aVSPAql3LbZgAAQIECBAgkIWAACuLNimyCwEBlrGoqoAAq6qdzWRfAqxMGqVMAgQIECBAgEDNBARYNWt4hbYrwKpQM22lk4AAy0AUKiDAKpTfxQkQIECAAAECBOYgIMAyGrkKCLBy7Zy6uxMQYHUn5P2kAgKspLwWJ0CAAAECBAgQ6KGAAKuHcE4rXECAVXgLFJBIQIDVAXbiq5PjngfGx1ofWaVL7gkTJ8UPL/5F/PX+h6N//36x/tqrx5e2WD/69+uXqD3VX1aAVf0e2yEBAgQIECBAIEcBAVaOXVNzQ0CAZQ6qKiDA6tDZX978xzjw6LNim80/FUeO+mqnnr86aUpss/tR8ejjz3T69+uvs3p8/+i9qzofyfclwEpO7AIECBAgQIAAAQI9EBBg9QDNKaUQEGCVog2KSCAgwOqAuv93zoxxv74jvr3/TvGFzT7Zift751wZ54y9NoYMni922+4zMW3a63HB5eNi8pSpcfoxe8d6a6+eoD3VX1KAVf0e2yEBAgQIECBAIEcBAVaOXVNzQ0CAZQ6qKiDA6tDZzXc8NMY/+mTcfMUpsegiC856Z9LkKbHuVvtG41NY544+ID724ZWb7/3ihj/EQcedHRus86E47ei9qjojSfclwErKa3ECBAgQIECAAIEeCgiwegjntMIFBFiFt0ABiQQEWB1gP7bZ12Pya1Pj7hvOiT59+sx65+rrfhuHn3h+fHT1leK8Uw6c9e9fmzot1thkZCyy8HvipstPTtSiai8rwKp2f+2OAAECBAgQIJCrgAAr186pW4BlBqoqIMDq0Nn/t/7OscC73xm3Xn1ap35/Ze/j4i/3/rP5KavGp606vhqfzHplwqvN0Mtr7gUEWHNv5gwCBAgQIECAAIH0AgKs9MaukEZAgJXG1arFCwiwOvRg7c/tFa9OnhJ3XX/2rE9gNR7a/pkdDmoGW7+56nsxoH/nbxzccNv949nnXox7bz6/+G5mWIEAK8OmKZkAAQIECBAgUAMBAVYNmlzRLQqwKtpY2woBVoch2GXUifHHux6IC049KNYYsWLznW8d+8O49sbbY8cvbhwH7LFtp5GZMWNmfHjjr8WggQPi9mt/YJx6ICDA6gGaUwgQIECAAAECBJILCLCSE7tAIgEBViJYyxYuIMDq0IKf/OKW+PbJP2o+wH2nbTdpPtC98e8GDOgf48aeGMOGvvlg98ZpD45/PLbc5fD4wPJLxpXnfLvwZuZYgAArx66pmQABAgQIECBQfQEBVvV7XNUdCrCq2ln7EmB1mIFpr0+PHb5xTNz3j0c6TcbBe20X22+14WzT8r1zroxzxl4b2225YRyy93amqQcCAqweoDmFAAECBAgQIEAguYAAKzmxCyQSEGAlgrVs4QICrLe0YNLkKXHO2F/Gn+95MN4xZL7YctNPxEaf/HCXjWr8eeGTTz8fh+27Q6y43PDCm5ljAQKsHLumZgIECBAgQIBA9QUEWNXvcVV3KMCqamftS4BlBgoVEGAVyu/iBAgQIECAAAECcxAQYBmNXAUEWLl2Tt3dCQiwOgj94+HHYsjg+WL44kO7c2u+P23a6/H7O++P9y6yQPM5WF5zLyDAmnszZxAgQIAAAQIECKQXEGClN3aFNAICrDSuVi1eQIDVoQcrr7tjfHT1leK8Uw5sqTMzZza+hXD3WGKxReJnFxzb0jkO6iwgwDIRBAgQIECAAAECZRQQYJWxK2pqRUCA1YqSY3IUEGDNQ4DVOHXDbfePl1+ZEHeO+2GO/S+8ZgFW4S1QAAECBAgQIECAQBcCAixjkauAACvXzqm7OwEB1jwEWFOnTos1N/t6ND6J9dcbz+3O2vtdCAiwjAUBAgQIECBAgEAZBQRYZeyKmloREGC1ouSYHAUEWD0MsF6dNCWOPe2i+Nn1v49ll1wsfv7j43Lsf+E1C7AKb4ECCBAgQIAAAQIEuhAQYBmLXAUEWLl2Tt3dCdQ6wBp79U1xyTU3zTJ69PFnYr5BA2PRoQu+rdvrr0+PZ/7zYrw+fXrzuG+O3CZ23nbT7qy934WAAMtYECBAgAABAgQIlFFAgFXGrqipFQEBVitKjslRoNYB1h/+fH+MueCncc8D45t/BtiT11af+UQcOWrH6Nevb09Or/05AqzajwAAAgQIECBAgEApBQRYpWyLoloQEGC1gOSQLAVqHWC90bGXX5kYP73+d3HSDy6Lpd63aHx5iw3etpl9+/aJ97xr/vjgSsvGYosunGXjy1K0AKssnVAHAQIECBAgQIBARwEBlnnIVUCAlWvn1N2dgACrg9AWOx8WC77nXXHeKQd25+b9NgkIsNoEaRkCBAgQIECAAIG2Cgiw2sppsV4UEGD1IrZL9aqAAKsDd+NPCh957JnYbsu3/wRWr3ao4hcTYFW8wbZHgAABAgQIEMhUQICVaeOUHQIsQ1BVAQFWh85OnTotBgzoH3369Klqv0u3LwFW6VqiIAIECBAgQIAAgYgQYBmDXAUEWLl2Tt3dCQiwOgj98KJfxBXX3hKjvrZNbLr+mt3ZxeizLo8rfnFLHLrP9rH5Rmt1e7wDZhcQYJkKAgQIECBAgACBMgoIsMrYFTW1IiDAakXJMTkKCLA6dO2r+xwff77nwTj2oF3j8xuv3W0/b7vj3hj5rVNinTX/X5x1wqhuj3eAAMsMECBAgAABAgQI5CEgwMqjT6qcXUCAZSqqKiDA6tDZDbYZFU//58UYN/bEGL740G57/uLLE2Kdz+/V/CbCGy8b3e3xDhBgmQECBAgQIECAAIE8BARYefRJlQIsM1AfAQFWh16vtuGuMW3a6/HXG89tPguru9fMmTNjxIa7Rt++feOuG87p7nDvdyHgTwiNBQECBAgQIECAQBkFBFhl7IqaWhHwCaxWlByTo4AAq0PX1th0ZLw6aUrcOe6HMWTwoG772QiwPrjBLjFo4MC4c9xZ3R7vgNkFBFimggABAgQIECBAoIwCAqwydkVNrQgIsFpRckyOAgKsDl3bcpfD48Hxj8d5Jx8YH/3QSt32828PPhrb7H5ULLvkYvHzHx/X7fEOEGCZAQIECBAgQIAAgTwEBFh59EmVswsIsExFVQUEWB06e/JZP4nzL7suVl91hTj/1G/FgP795tj3GTNmxtcPPjUaD3LfbssN4pC9t6/qjCTdl09gJeW1OAECBAgQIECAQA8FBFg9hHNa4QICrMJboIBEAgKsDrDPPvdSbLLdgfHa1GmxxogV41t7fjlWXG74bPQPP/JkjD7r8mZ41a9f37j2wu+29ND3RD3MelkBVtbtUzwBAgQIECBAoLICAqzKtrbyGxNgVb7Ftd2gAOstrb/+lj/FN799ZjSeb9V4LbrIgrHU8EVjyOD54rXXpsajjz8TTz7z/KyzjvzmjrHNZ9et7QDN68YFWPMq6HwCBAgQIECAAIEUAgKsFKrW7A0BAVZvKLtGEQICrC7U7/zrP+LoUy+M8f9+ao49WWzRheOQvbeLT318RBF9q8w1BViVaaWNECBAgAABAgQqJSDAqlQ7a7UZAVat2l2rzQqw3qbdd933UPzl3gfjyaefj4mTJsd8gwbGsKELxohVl481R6zU/PNBr3kTEGDNm5+zCRAgQIAAAQIE0ggIsNK4WjW9gAArvbErFCMgwCrG3VX/T0CAZRQIECBAgAABAgTKKCDAKmNX1NSKgACrFSXH5CggwMqxaxWqWYBVoWbaCgECBAgQIECgQgICrAo1s2ZbEWDVrOE12q4A622a3fg2wn8/8Wz8d8KrMd98A2OV9y9do9Hona0KsHrH2VUIECBAgAABAgTmTkCANXdeji6PgACrPL1QSXsFBFhdeP7zX0/E6edfHbf98Z6Y9vr05hHvX/Z9cfV5R3c6+ozzr4lnn38p9tl1q1h4wXe3tzMFrvbHux6IX9zwh2g8A+w/z78U06dPj0UWXiA+9P9WiK9u/en4wPJLzrG6a8bdFldee2s8/OiTzfOWXGLR+PzGa8eXt9igy2eGCbAKbLRLEyBAgAABAgQIzFFAgGU4chUQYOXaOXV3JyDAeovQjb/9cxxw9Fkxbdrrnd7pKsA65nsXxaU/vTkO2GPb2PGLG3dnXfr3X35lYux75BnR+BbGPn36xLJLLRZLDFskpk+fEQ/964l45rkXo2/fPnH8IV+LzTb42Gz7Ofi4c+LnN/w+BvTv13zQ/YD+/eOeB8bHxFcnx9prrBpjjt83+vfr1+k8AVbpx0KBBAgQIECAAIFaCgiwatn2SmxagFWJNtpEFwICrA4ojz35bHxup8Ni6tRpsfzSS8SXt1g/hi/x3thl1IldfgLr93feH187YHR87MMrx7mjD8h+wGbOnBmHn3h+DF34PfHFzdeL9y6ywKw9NUKsH1/xqzj5rJ/EkMGD4tarT4shg+eb9X4juGoEWMsMHxZnjz6g+W2NjdekyVNi3yPOiIbVXjtvGSO/srkAK/tJsQECBAgQIECAQPUFBFjV73FVdyjAqmpn7UuA1WEGvn3yj+Inv7glNtvwY3H8wV9rftqo8Vp53R27DLCe/s+LscE2o5qBz2+u/F4tpmmzrxwcjzz2dFxw6kGxxogVZ+358zsdFg898kSMHXNYrLbycp0sXnplQqy/9agYMKB/M/iab9DAWe/7BFYtxsYmCRAgQIAAAQLZCQiwsmuZgv9PQIBlFKoqIMDq0NlPf+mAeOLp55phVCOUeuM1pwDr9enTY7UNdo3+/fvFX288t6oz0mlf2+7xnbjv7/+Kn/zwqFj5/Us133vqmedjw233j+GLD41xY0/s0mHUUWPi+lvujNOP3SfWW2uEAKsW02KTBAgQIECAAIF8BQRY+fau7pULsOo+AdXdvwCrQ29X23DXePc739H8lFDH15wCrMYxIzbaLWZMnxH33Hxedafk/3Z2/4OPxJf2+E7zgfW/uuSkGDRwQPOdm2+7K/Y+/PvNT66dcOjuXTr8+Irr48Qxl8Zu220W++72BQFW5afFBgkQIECAAAECeQsIsPLuX52rF2DVufvV3rsAq0N/19h0ZPMh43/4xZiWAqznX3wlPrnlPs1A562hV1XGZsLESfHUsy/EuF/fEZdcc1Pz02anfvsbseaID8za4o8u/1WcdOZlsfsOn429d9mqy63fdNtfYp/DT49Pr/uROOWoPQVYVRkQ+yBAgAABAgQIVFRAgFXRxtZgWwKsGjS5plsUYHVo/Da7HxV/e/DR+OkFxzQf4v7Ga06fwLrkmpvj2NMuik9+7IPxg+P3q9QIvfGngm9sqvFpq+223DC+us2nm4Fdx9cZ518TZ174s9h/5Bdjp2036dLhjrv/Hjvvd0J89EMrxXknHzjrmBf+O7VSbjZDgAABAgQIECCQv8DrM2bGTb+OaIRYXgRyE2gEWBt9amb069f++V3oXW8+zzg3F/XmLyDA6tDDc8ZeG98758rmp4vOPGHUrD+R6yrA+tdjT8f2ex4Tr0x4NY47eLf43KfXyn8aOuyg4fDo48/E1GnT4oUX/xv/fOSJ5rczfnClZeOQfbaPVd6/9KyjG99MeP5l18XBe20X22+1YZcOd9//UGz/jWNjxCrLx8VnHFopK5shQIAAAQIECBColsCEya/Hz8dNF2BVq6212U0jwPrcxn3jnUP+98gXLwJVERBgdejkpMmvxeY7HhJPP/tCDF/8vbHnTp+PNVb7QHzqC/s2v4XwqnO/E/9+4tnmw8jPu/SX8eqkKc1//5Ozj2r+6WGVX5OnTI3LfnpznHrOFTFo4MC49sLj472LLNDc8lx9Amv1leK8U978BNZr02ZUmc3eCBAgQIAAAQIEMhSY9Nr0uO6GGQKsDHun5IhGgLXZRn1i8KD+becYNKD9n+pqe5EWrKyAAOstrX3ksadj12+eFM8892Knd/r27RN9+/SNxjcPvvFaYtgicf6p34rFF124sgPy1o2devYVce4lv2z+OeEhe2/XfPvCK66PE8Zc2tIzsDZY50Nx2tF7zVr2qRcm18bORgkQIECAAAECBPIR8AysfHql0s4CnoFlIqoqIMDqorP/nTgpzvrxz+Kq634bE1+dPWCZb9DA2Oozn2x+QqvxrYV1ev3l3n/GV/Y+Lj6y2orxo+8d1Nz6rbffE18/+NSWvoVw5203jW+O3EaAVaehsVcCBAgQIECAQIYCAqwMm6bkpoAAyyBUVUCA9TadbXza6u8PPRaPPflsvPrq5Bg836BYbNGFY9UVl46BA+v598R/+PP9sdv+o+PDH3x//Pi0g5t6b3wb4/DFh8a4sSd2KTrqqDHNP70cfcQescl6awqwqvr/UeyLAAECBAgQIFARAQFWRRpZw20IsGrY9JpsWYBVk0a3a5vHff/iGHv1TbHDFzaKg77x5VnLNh7Q3nhQ+9gxh8VqKy/X6XIvvTIh1t96VMyYOTN+e833413zDxFgtash1iFAgAABAgQIEEgiIMBKwmrRXhAQYPUCsksUIiDAKoS9nBf93Z/uiwfHPx6f2eCjsegiC3YqsvFptMt/9uv47hmXRL9+/eJnFxwbSy7x3lnH3HbHvTHyW6fEMsOHxdmjD4hhQ/93/qTJU2K/I8dEY+3tttwgDtl7+07regZWOWdBVQQIECBAgACBugsIsOo+AfnuX4CVb+9U/vYCAiwTMkvgymtvjSNHX9D8v5cePqwZUDX+bPK/E16N+x98JF7576sxZPB8ceLhu8enPj5iNrnRZ10eF1w2LgYM6B8jVlkuBg4YEPc8MD4mTJwUK62wVPNPDocMHiTAMnMECBAgQIAAAQKlFxBglb5FCpyDgADLaFRVoLYB1m/+cHfc8oe/xkaf/Eis9ZFVmv1t/GncvL769evbfLD7qh9YJhrfUpjTqxE0/ez638dv/3hPPP7Uf+LFlyfE5CmvxfxDBseS71s01vrwKrHN5p+KoQu/Z47bajzn6uKrbowHxz8W06fPiMWHLRKbrrdm7LTtJjGoi+eG+QRWThOiVgIECBAgQIBAfQQEWPXpddV2KsCqWkft5w2B2gZYa2w6Ml6dNCUWWuBdzecyNV4rr7tjWydj0/XXjOMO2q35iSSvrgUEWCaDAAECBAgQIECgjAICrDJ2RU2tCAiwWlFyTI4CtQ2w9jvyjLjxt3+Jz2+8dhzzrV2avfvMDgfNcw9nzpwZL7z035j46uTmWrttt1nsu9sX5nndqi4gwKpqZ+2LAAECBAgQIJC3gAAr7/7VuXoBVp27X+291zbAarS1ETb16dOn7R1urNv4c8TjTx8biy+6cNxw2ei2X6MqCwqwqtJJ+yBAgAABAgQIVEtAgFWtftZpNwKsOnW7XnutdYCVutVrfmaPmDJlatxz83mpL5Xt+gKsbFuncAIECBAgQIBApQUEWJVub6U3J8CqdHtrvTkBVsL2f3zzPWPGjJnxx2t/kPAqeS8twMq7f6onQIAAAQIECFRVQIBV1c5Wf18CrOr3uK47FGC9Tecb36L3r8eeimf+81Lz2/iGDB4Uw4YuGEsPXyz69n37Pz1sPCB+5LdOjuWWXiKOHPXVus5Xt/sWYHVL5AACBAgQIECAAIECBARYBaC7ZFsEBFhtYbRICQUEWF005elnX4izLvp5XHfzHTFp8pTZjpj/HYPjMxt8LEbusHkMXfg9JWxrPiUJsPLplUoJECBAgAABAnUSEGDVqdvV2qsAq1r9tJs3BQRYb5mGP/z5/tjn8DO6DK7eOjjvnH9InH7M3vGR1VY0Uz0UEGD1EM5pBAgQIECAAAECSQUEWEl5LZ5QQICVENfShQoIsDrwP/2fF+OzXzkoJk+ZGu9bbGjs8IWNYo0RKza/SXDQwIHNUOuJp5+L3995f1x81Y3x3AsvxzuGzBfXXvhdn8Tq4RgLsHoI5zQCBAgQIECAAIGkAgKspLwWTyggwEqIa+lCBQRYHfiPPe2iuOSam2P1VVeIc0bvH/MNGjjH5kyYOCl2O2B03Pf3f8X2l5tWJAAAIABJREFUW20YB++1XaGNzPXiAqxcO6duAgQIECBAgEC1BQRY1e5vlXcnwKpyd+u9NwFWh/5vst2B8diT/4mrzv1OrLjc8G4n4x8PPxZb7XpELLnEe+O6i0/o9ngHzC4gwDIVBAgQIECAAAECZRQQYJWxK2pqRUCA1YqSY3IUEGB16NqIjXaLgQP6xx2/PLPlXn588z1jypSpcdcN57R8jgPfFBBgmQYCBAgQIECAAIEyCgiwytgVNbUiIMBqRckxOQoIsDp07SObjGw+0+qWq77Xci/X23q/eHXSlLkKvVpevAYHCrBq0GRbJECAAAECBAhkKCDAyrBpSm4KCLAMQlUFBFgdOrv1146Kf45/PO647sy3ff7VG6c0Hvb+0c/sER9YfnhcdtaRVZ2RpPsSYCXltTgBAgQIECBAgEAPBQRYPYRzWuECAqzCW6CARAICrA6w5192XZx81k/iu4d8LT670ce7Jb9m3G1x2AnnxQF7bBs7fnHjbo93wOwCAixTQYAAAQIECBAgUEYBAVYZu6KmVgQEWK0oOSZHAQFWh65NnTotvvC1o+K551+K047eO9YYseIce/q7P90Xo44aE4susmBcec63Y+DAATn2v/CaBViFt0ABBAgQIECAAAECXQgIsIxFrgICrFw7p+7uBGoZYI29+qbZXPr27RP9+/drPpD9e+dcGVNem9r8JsLVV10+Fh26UAwaOKD5755+9oX4y73/jIceeaL573582sGx6geW6c7Z+3MQEGAZDQIECBAgQIAAgTIKCLDK2BU1tSIgwGpFyTE5CtQywFp53R3b2quhC78nfnNl6w9+b+vFM19MgJV5A5VPgAABAgQIEKiogACroo2twbYEWDVock23WMsA6zM7HNT2dv/you+2fc06LCjAqkOX7ZEAAQIECBAgkJ+AACu/nqn4fwICLJNQVYFaBlhVbWaO+xJg5dg1NRMgQIAAAQIEqi8gwKp+j6u6QwFWVTtrXwIsM1CogACrUH4XJ0CAAAECBAgQmIOAAMto5CogwMq1c+ruTkCA1Z2Q95MKCLCS8lqcAAECBAgQIECghwICrB7COa1wAQFW4S1QQCIBAVYiWMu2JiDAas3JUQQIECBAgAABAr0rIMDqXW9Xa5+AAKt9llYql4AAq0M/brvjvh53Z501V+3xuXU+UYBV5+7bOwECBAgQIECgvAICrPL2RmVvLyDAMiFVFRBgdejsyuvu2OM+/+2WH/X43DqfKMCqc/ftnQABAgQIECBQXgEBVnl7ozIBlhmop4AAq0PfV11vp7edghkzZnZ6v3+/frHMksNiqfctGqd++xv1nKB53LUAax4BnU6AAAECBAgQIJBEQICVhNWivSDgE1i9gOwShQgIsOaCfdq01+PZ51+Kv9z7z/jR5ePi3088GycePjI2WOdDc7GKQzsKCLDMAwECBAgQIECAQBkFBFhl7IqaWhEQYLWi5JgcBQRYPexaI8za7YDRcc8D4+On5x8TSy7x3h6uVO/TBFj17r/dEyBAgAABAgTKKiDAKmtn1NWdgACrOyHv5yogwJqHzv3twUdjm92Pim02/1QcOeqr87BSfU8VYNW393ZOgAABAgQIECizgACrzN1R29sJCLDMR1UFBFjz0NmZM2fGGpvuEQst8K741SUnzsNK9T1VgFXf3ts5AQIECBAgQKDMAgKsMndHbQIsM1BHAQHWPHZ9/a1HxYuvTIi7bzhnHleq5+kCrHr23a4JECBAgAABAmUXEGCVvUPqm5OAT2CZjaoKCLDmobOvT58eq2+0Wwwc0D/+/Kuz52Gl+p4qwKpv7+2cAAECBAgQIFBmAQFWmbujtrcTEGCZj6oKCLDmobO/uOEPcdBxZ8dySy8eP7vg2HlYqb6nCrDq23s7J0CAAAECBAiUWUCAVebuqE2AZQbqKCDA6tD1SZOndDsD06fPiGefeylu/eM9cdaFP4/GOTttu0nsP/KL3Z7rgNkFBFimggABAgQIECBAoIwCAqwydkVNrQj4BFYrSo7JUUCA1aFrK6+741z3sPEA96vPOzoWXvDdc32uEyIEWKaAAAECBAgQIECgjAICrDJ2RU2tCAiwWlFyTI4CAqweBlh9+/aJtT6yShyy9w4xfPGhOfa+FDULsErRBkUQIECAAAECBAi8RUCAZSRyFRBg5do5dXcnIMDqIPSnu//RnVf06RPxjiHzxZJLLNr8n17zJiDAmjc/ZxMgQIAAAQIECKQREGClcbVqegEBVnpjVyhGQIBVjLur/p+AAMsoECBAgAABAgQIlFFAgFXGrqipFQEBVitKjslRQICVY9cqVLMAq0LNtBUCBAgQIECAQIUEBFgVambNtiLAqlnDa7RdAdZcNHv8v5+K5154ORZ49ztj+aWXiMZzsLzmTUCANW9+ziZAgAABAgQIEEgjIMBK42rV9AICrPTGrlCMQG0DrImvTo6TzrwsNtvgY/GR1VZ8W/2/3PvPOOKk8+PRx5+ZdVzjWwe/OXKb2HyjtYrpXEWuKsCqSCNtgwABAgQIECBQMQEBVsUaWqPtCLBq1OyabbW2AdY1426Lw044L9632ND41SUnzrHtf3vw0dhhr2PjtanTujzmiP2+El/83Ho1G5v2bVeA1T5LKxEgQIAAAQIECLRPQIDVPksr9a6AAKt3vV2t9wRqG2B965gfxrU33R67fGnTGLX7Nl2Kz5gxM76w2xHx4PjHY6EF3hWH7L19fHDl5eKV/06M8y79ZVx38x0x36CB8cuLvxuLLrJg73WtQlcSYFWombZCgAABAgQIEKiQgACrQs2s2VYEWDVreI22W9sA63M7HRoPP/JknPnd/eITH/1gly2//pY7Y9RRY6J/v35x6ZmHx0orLDXruJkzZ8bXDjg5/vDn+2PPnbaIr3/1czUam/ZtVYDVPksrESBAgAABAgQItE9AgNU+Syv1roAAq3e9Xa33BGobYK2x6ch4ddKUuP7Sk2KJYYt0Kb7jvt+NO//6j/jCZp+Mb++/02zH3Hr7PfH1g0+N1VddIS46/ZDe61qFriTAqlAzbYUAAQIECBAgUCEBAVaFmlmzrQiwatbwGm23tgHWquvtFI0/Ebz92h/Eu+YfMlvLH3/qP7Hxlw9s/vufXnBM81sH3/p64aX/xie22Lv5rYS/+9npNRqb9m1VgNU+SysRIECAAAECBAi0T0CA1T5LK/WugACrd71drfcEahtgfXjjr8XkKVPn+Ams08+/Os668OfNPxu84uyjuuzI69OnxwfX36X5J4b33Hxe73WtQlcSYFWombZCgAABAgQIEKiQgACrQs2s2VYEWDVreI22W9sAa/MdD43xjz4Zpx+7T6y31ohOLW8EWxtt+8148eUJceg+O8SXt1i/y5FoHNcIwgb07xd/vUmA1ZOfGwFWT9ScQ4AAAQIECBAgkFpAgJVa2PqpBARYqWStW7RAbQOsY753UVz605vjQ/9vhfjR9w6Ovn37zOrF8aePjYuvujHeOf+QuPGy0c3/2dXryWeej4223b/5J4iNP0X0mnsBAdbcmzmDAAECBAgQIEAgvYAAK72xK6QREGClcbVq8QK1DbAeeuSJ2HKXw5vPwfroh1aKz316rZg5M+LXv7srbrrtL83OHLjnl+KrW396jl267Y57Y+S3Tonlll48fnbBscV3M8MKBFgZNk3JBAgQIECAAIEaCAiwatDkim5RgFXRxtpW1DbAavT+7It/Eaede1WXY7DhJz4cpxy1Z6dPZr31wO+ecUlcdOUNscl6a8boI/YwTj0QEGD1AM0pBAgQIECAAAECyQUEWMmJXSCRgAArEaxlCxeodYDV0P/FDX+I8y69Lh5+9MmYOXNmLLvU4vHFzdeNL31+g7cNrxrnbrLdgfHYk/+Jow/cObbc9BOFNzPHAgRYOXZNzQQIECBAgACB6gsIsKrf46ruUIBV1c7aV+0DrDdGYPr0Gc3/tV+/vi1NReP4xp8QNl5rjPhADBk8qKXzHNRZQIBlIggQIECAAAECBMooIMAqY1fU1IqAAKsVJcfkKCDAyrFrFao5VYD1wosRE19988H8FSKzlYoLvPMdM2OBBSNMb8UbbXsECBAgUHoBAVbpW6TAOQgIsIxGVQUEWFXtbCb7ShVgueHIZACUOZtAyhsO3AQIECBAgEDrAu4nW7dyZLkEUt5PLrbQ4HJtVjW1EhBg1ard5dusAKt8PVFRsQIpbziK3ZmrEyBAgACBvAQEWHn1S7VvCqS8nxRgmbQiBQRYReq7dgiwDAGBzgIpbzhYEyBAgAABAq0LCLBat3JkuQRS3k8KsMrV67pVI8CqW8dLtl8BVskaopzCBVLecBS+OQUQIECAAIGMBARYGTVLqZ0EUt5PCrAMW5ECAqwi9V3bJ7DMAIG3CKS84YBNgAABAgQItC4gwGrdypHlEkh5PynAKlev61aNAKtuHS/Zfn0Cq2QNUU7hAilvOArfnAIIECBAgEBGAgKsjJql1E4CKe8nBViGrUgBAVaR+iW99tP/eTEuveam+N2f7ovHn3ouXp8+PYYNXTA+8dEPxq5f/kwsvOC751j5NeNuiyuvvTUefvTJmD59eiy5xKLx+Y3Xji9vsUH069d3tvMEWCUdAmUVJpDyhqOwTbkwAQIECBDIUECAlWHTlNwUSHk/KcAyZEUKCLDeov/yKxNjytSpsegiCxbZl0KuPWPGzDjv0l/GmAuuiWmv/y+0Wn6Z9zWDqL8/9O948eUJseB73hk//v4hsczwYbPVePBx58TPb/h9DOjfL0asunwM6N8/7nlgfEx8dXKsvcaqMeb4faN/v36dzhNgFdJqFy2xQMobjhJvW2kECBAgQKB0AgKs0rVEQS0KpLyfFGC12ASHJREQYL2FdY+DTo3f/vGe+NstP+r0zvMvvhKvTZ0Wiy+6cJJGlGXRfY84Ix55/Ok4+BvbxUc/tNKssiZPmRpHnXxBXHvj7bH6qsvHRacf2qnkRnDVCLAawdbZow9ohl+N16TJU6Kx5u/vvD/22nnLGPmVzQVYZWm2OkopkPKGo5QbVhQBAgQIECipgACrpI1RVrcCKe8nBVjd8jsgoYAAq8UAa5dRJ8Yf73pgtmArYW8KWboRVPXr2ycGDhww2/Ub7639uW/ElNemxq1Xn9bpTwk/v9Nh8dAjT8TYMYfFaisv1+ncl16ZEOtvPSoGDOjfPG++QQNnve8TWIW02UVLLJDyhqPE21YaAQIECBAonYAAq3QtUVCLAinvJwVYLTbBYUkEahtgHX/62FhxueHNf5ZdcrFZgc2cPoFVlwCruynbYufD4p//eiJ+esExsfzSSzQPf+qZ52PDbfeP4YsPjXFjT+xyiVFHjYnrb7kzTj92n1hvrRECrO6gvV9bgZQ3HLVFtXECBAgQINADAQFWD9CcUgqBlPeTAqxStLi2RdQ2wFp53R1nNb3xcPGlhw+LFZcdHvf+fXw89uR/4o5fnhnzv2PwrGMEWP+jWG/r/eLZ516KP113VrxjyHzNf3fzbXfF3od/Pzbb8GNxwqG7d/nD9OMrro8Tx1wau223Wey72xcEWLX9fzk23p1AyhuO7q7tfQIECBAgQOBNAQGWachVIOX9pAAr16moRt21DbBu//Pf4sHxj8c/xj8WDz78WPzr3083v22v46sRaq2y4tKx6orLxNXX/Tb+8fBjlf8Twrcb6789+Ghss/tR8cGVlo1LfnD4rEN/dPmv4qQzL4vdd/hs7L3LVl0ucdNtf4l9Dj89Pr3uR+KUo/YUYFXj/3/YRQKBlDccCcq1JAECBAgQqKyAAKuyra38xlLeTwqwKj8+pd5gbQOst3al8a174x99Mo446fxoBDWNPy1sPNNp+vQZs4VaKy2/ZHyg8c8KS8YHllsy3v2ud5S6ye0obubMmdH4FNodd/89Tjt6r9hgnQ/NWvaM86+JMy/8Wew/8oux07abdHm5xnk773dC88Hw55184KxjJkya1o7yOq3x2usz4vqbIho3HV4EchNo3HBssn7EwAHmN7feqZcAAQIEqiPgfrI6vazjTlLeT75zyOzPSq6jsT0XIyDAeot7x2dgNR5W/sA/H417H/hXXHjl9c0/nevTp080wpyOr2HvXShuuvzkYjrYS1d9I6RqBFeNAKvj6+SzfhLnX3ZdHLzXdrH9Vht2WdHd9z8U23/j2BixyvJx8Rmdv8Gw3VuYMPn1+Pm46QKsdsNar1cEGjccn9u4b7g56BVuFyFAgAABAl0KuJ80GDkLuJ/MuXtqfzsBAdbbBFgd33rjGVh3jvthPDj+sXjgn/+Ovz/0v38an9z6603nVXbSLrnm5jj2tItihWWWiIvPOGzWs6/e2PBcfQJr9ZXivFN8Aquyw2Jj8yyQ8r+YzXNxFiBAgAABAjUR8AmsmjS6ottMeT/pP7JWdGgy2VZtA6zGp4bev+z7YoVl39d8gPuA/v2aLevJtxBOm/Z6DBjQP5OWz12ZV1x7Sxw1+kcxfPH3xoXfPzgWWeg9sy1w4RXXxwljLm3pGVhv/QTXUy9MnruCWjzaMwtahHJY6QRSPrOgdJtVEAECBAgQKLGA+8kSN0dpbyuQ8n7SM7AMX5ECtQ2wOn4LYf9+/ZohViPQeuNbCO8cd1YMGfy/b9lrvOr4LYSX/ezXcfSpF8ZS71s0Ljj1oBi68OzhVcPm1tvvia8ffGpL30K487abxjdHbjPLVYBV5I+/a5dRIOUNRxn3qyYCBAgQIFBWAQFWWTujru4EUt5PCrC60/d+SoHaBlg//dXv4qF/PRH/bP7zeDz/4iudnBvPulp2qcWa30C46opLx09+cUutvoXwoitviO+ecUnzzwbPPfnAWGiBd81xDht2n9xynxi++NAYN/bELo8bddSYuP6WO2P0EXvEJuutKcBK+VNt7awFUt5wZA2jeAIECBAg0MsCAqxeBne5tgmkvJ8UYLWtTRbqgUBtA6y3Wr38ysRmmHXCmEuaQVXj01iNbyGcMaPzA9uXW3rx5jcUNr59sPE/G/+8593z94C+vKdccNm4GH3W5bHK+5eOs0/av6VvWWw8oL3xoPaxYw6L1VZertPmXnplQqy/9aiYMXNm/Paa78e75h8iwCpv+1VWsEDKG46Ct+byBAgQIEAgKwEBVlbtUmwHgZT3kwIso1akgADrLfodn4E1afJrzW8hvOeB8XHxVTfEf55/uctevXeRBeLXV5xaZB/bdu2zL/5FnHbuVbH6qivEWSeMmu2B7XO60G133Bsjv3VKLDN8WJw9+oAYNnTB5qGTJk+J/Y4cE7/7032x3ZYbxCF7b99pCX9C2LbWWagiAilvOCpCZBsECBAgQKBXBARYvcLsIgkEUt5PCrASNMySLQsIsN4mwOr41hvPwLr92h/EP8c/3vwmwn88/Hjzf298UuuuG85pGb2sB/7hz/fHbvuPbpY37L0LxaCBA+ZY6vxDBsflPzyy0/uNT201Pr3VeKD9iFWWi4EDBjTDvwkTJ8VKKywVPz7t4BgyeJAAq6wDoK5SCKS84SjFBhVBgAABAgQyERBgZdIoZc4mkPJ+UoBl4IoUEGDNZYD1t1t+NFu/Gn9m2LdvnyL72JZrN55R1XhWVSuv+d8xOO745ZmzHdpY4+KrbmwGfNOnz4jFhy0Sm663Zuy07SZdBmI+gdWKtmPqJJDyhqNOjvZKgAABAgTmVUCANa+Czi9KIOX9pACrqK66bkNAgPWWORj36zvi3088GyO/snmnd+r4LYS98SMiwOoNZdfISSDlDUdODmolQIAAAQJFCwiwiu6A6/dUIOX9pACrp11xXjsEBFgtKja+hfDfjz8TB3x92xbPcFgrAgKsVpQcUyeBlDccdXK0VwIECBAgMK8CAqx5FXR+UQIp7ycFWEV11XUbAgIsc1CogACrUH4XL6FAyhuOEm5XSQQIECBAoLQCAqzStkZh3QikvJ8UYBm/IgUEWEXqu3YIsAwBgc4CKW84WBMgQIAAAQKtCwiwWrdyZLkEUt5PCrDK1eu6VSPAqlvHS7ZfAVbJGqKcwgVS3nAUvjkFECBAgACBjAQEWBk1S6mdBFLeTwqwDFuRAgKsIvVd2yewzACBtwikvOGATYAAAQIECLQuIMBq3cqR5RJIeT8pwCpXr+tWjQCrbh0v2X59AqtkDVFO4QIpbzgK35wCCBAgQIBARgICrIyapdROAinvJwVYhq1IAQFWkfqu7RNYZoDAWwRS3nDAJkCAAAECBFoXEGC1buXIcgmkvJ8UYJWr13WrRoBVt46XbL8+gVWyhiincIGUNxyFb04BBAgQIEAgIwEBVkbNUmongZT3kwIsw1akgACrSH3X9gksM0DgLQIpbzhgEyBAgAABAq0LCLBat3JkuQRS3k8KsMrV67pVI8CqW8dLtl+fwCpZQ5RTuEDKG47CN6cAAgQIECCQkYAAK6NmKbWTQMr7SQGWYStSQIBVpL5r+wSWGSDwFoGUNxywCRAgQIAAgdYFBFitWzmyXAIp7ycFWOXqdd2qEWDVreMl269PYJWsIcopXCDlDUfhm1MAAQIECBDISECAlVGzlNpJIOX9pADLsBUpIMAqUt+1fQLLDBB4i0DKGw7YBAgQIECAQOsCAqzWrRxZLoGU95MCrHL1um7VCLDq1vGS7dcnsErWEOUULpDyhiPV5qZPj4iZqVa3LoGEAn0i+vVLuL6lCRDIWkCAlXX7al18yvtJAVatR6vwzQuwCm9BvQsQYNW7/3Y/u0DKG45U3r/9Xd9o/ONFIDeBddaeEZ9ce0ZuZauXAIFeEhBg9RK0y7RdIOX9pACr7e2y4FwICLDmAsuh7RcQYLXf1Ip5C6S84Ugl4wY/lax1Uwvk+POW2sT6BAi8KeD3m2nIVSDl7zcBVq5TUY26BVjV6GO2uxBgZds6hScSSHnDkajkcIOfSta6qQVy/HlLbWJ9AgQEWGYgf4GUv98EWPnPR847EGDl3L0K1C7AqkATbaGtAilvONpaaIfFBFipZK2bWiDHn7fUJtYnQECAZQbyF0j5+02Alf985LwDAVbO3atA7QKsCjTRFtoqkPKGo62FCrBScVq3FwVy/HnrRR6XIlB7Af+BpvYjkC1Ayt9vAqxsx6IShQuwKtHGfDchwMq3dypPI5DyhiNNxeFPCFPBWje5QI4/b8lRXIAAgVkCAizDkKtAyt9vAqxcp6IadQuwqtHHbHchwMq2dQpPJJDyhiNRyQKsVLDWTS6Q489bchQXIEBAgGUGshdI+ftNgJX9eGS9AQFW1u3Lv3gBVv49tIP2CqS84WhvpW+u5r9Qp5K1bmqBHH/eUptYnwABv9/MQP4CKX+/CbDyn4+cdyDAyrl7FahdgFWBJtpCWwVS3nC0tdAOiwmwUslaN7VAjj9vqU2sT4CAAMsM5C+Q8vebACv/+ch5BwKsnLtXgdoFWBVooi20VSDlDUdbCxVgpeK0bi8K5Pjz1os8LkWg9gL+A03tRyBbgJS/3wRY2Y5FJQoXYFWijfluQoCVb+9UnkYg5Q1Hmoo9xD2Vq3XTC+T485ZexRUIEHhDQIBlFnIVSPn7TYCV61RUo24BVjX6mO0uBFjZtk7hiQRS3nAkKtlD3FPBWje5QI4/b8lRXIAAgVkCAizDkKtAyt9vAqxcp6IadQuwqtHHbHchwMq2dQpPJJDyhiNRyQKsVLDWTS6Q489bchQXIEBAgGUGshdI+ftNgJX9eGS9AQFW1u3Lv3gBVv49tIP2CqS84WhvpW+u5r9Qp5K1bmqBHH/eUptYnwABv9/MQP4CKX+/CbDyn4+cdyDAyrl7FahdgFWBJtpCWwVS3nC0tdAOiwmwUslaN7VAjj9vqU2sT4CAAMsM5C+Q8vebACv/+ch5BwKsnLtXgdoFWBVooi20VSDlDUdbCxVgpeK0bi8K5Pjz1os8LkWg9gL+A03tRyBbgJS/3wRY2Y5FJQoXYFWijfluQoCVb+9UnkYg5Q1Hmop9C2EqV+umF8jx5y29iisQIPCGgADLLOQqkPL3mwAr16moRt0CrGr0MdtdCLCybZ3CEwmkvOFIVLKHuKeCtW5ygRx/3pKjuAABArMEBFiGIVeBlL/fBFi5TkU16hZgVaOP2e5CgJVt6xSeSCDlDUeikgVYqWCtm1wgx5+35CguQICAAMsMZC+Q8vebACv78ch6AwKsrNuXf/ECrPx7aAftFUh5w9HeSt9czX+hTiVr3dQCOf68pTaxPgECfr+ZgfwFUv5+E2DlPx8570CAlXP3KlC7AKsCTbSFtgqkvOFoa6EdFhNgpZK1bmqBHH/eUptYnwABAZYZyF8g5e83AVb+85HzDgRYOXevArULsCrQRFtoq0DKG462FirASsVp3V4UyPHnrRd5XIpA7QX8B5raj0C2ACl/vwmwsh2LShQuwKpEG/PdhAAr396pPI1AyhuONBX7FsJUrtZNL5Djz1t6FVcgQOANAQGWWchVIOXvNwFWrlNRjboFWNXoY7a7EGBl2zqFJxJIecORqGQPcU8Fa93kAjn+vCVHcQECBGYJCLAMQ64CKX+/CbBynYpq1C3AqkYfs92FACvb1ik8kUDKG45EJQuwUsFaN7lAjj9vyVFcgAABAZYZyF4g5e83AVb245H1BgRYWbcv/+IFWPn30A7aK5DyhqO9lb65mv9CnUrWuqkFcvx5S21ifQIE/H4zA/kLpPz9JsDKfz5y3oEAK+fuVaB2AVYFmmgLbRVIecPR1kI7LCbASiVr3dQCOf68pTaxPgECAiwzkL9Ayt9vAqz85yPnHQiwcu5eBWoXYFWgibbQVoGUNxxtLVSAlYrTur0okOPPWy/yuBSB2gv4DzS1H4FsAVL+fhNgZTsWlShcgFWJNua7CQFWvr1TeRqBlDccaSr2LYSpXK2bXiDHn7f0Kq5AgMAbAgIss5CrQMrfbwKsXKeiGnULsKrRx2x3IcDKtnUKTySQ8oZG23mWAAAgAElEQVQjUcke4p4K1rrJBXL8eUuO4gIECMwSEGAZhlwFUv5+E2DlOhXVqFuAVY0+ZrsLAVa2rVN4IoGUNxyJShZgpYK1bnKBHH/ekqO4AAECAiwzkL1Ayt9vAqzsxyPrDQiwsm5f/sULsPLvoR20VyDlDUd7K31zNf+FOpWsdVML5PjzltrE+gQI+P1mBvIXSPn7TYCV/3zkvAMBVs7dq0DtAqwKNNEW2iqQ8oajrYV2WEyAlUrWuqkFcvx5S21ifQIEBFhmIH+BlL/fBFj5z0fOOxBg5dy9CtQuwKpAE22hrQIpbzjaWqgAKxWndXtRIMeft17kcSkCtRfwH2hqPwLZAqT8/SbAynYsKlG4AKsSbcx3EwKsfHun8jQCKW84/n97dwJnU/3/cfwjBsnaoqSU0maplBKVZCcSwmTLkuz7FlnGWjR2k6IICalESgopbdpU2stP+yKylX3M//E9/c9078ydOeeO+cw553qdx+P/+P/i3O/y/H6/zrnvexadFvMWQi1XytUXCOJ601ehBgQQsAUIsJgLQRXQPL4RYAV1VsRGuwmwYmMcA9sLAqzADh0NVxLQPOFQajIPcdeCpVx1gSCuN3UUKkAAgVQBAiwmQ1AFNI9vBFhBnRWx0W4CrNgYx8D2ggArsENHw5UENE84lJpMgKUFS7nqAkFcb+ooVIAAAgRYzIHAC2ge3wiwAj89At0BAqxAD1/wG0+AFfwxpAfZK6B5wpG9Lf2vNH6h1pKlXG2BIK43bRPKRwABjm/MgeALaB7fCLCCPz+C3AMCrCCPXgy0nQArBgaRLmSrgOYJR7Y2NKQwAiwtWcrVFgjietM2oXwEECDAYg4EX0Dz+EaAFfz5EeQeEGAFefRioO0EWDEwiHQhWwU0TziytaEEWFqclJuDAkFcbznIQ1UInPQC/EBz0k+BwAJoHt8IsAI7LWKi4QRYMTGMwe0EAVZwx46W6whonnDotJi3EGq5Uq6+QBDXm74KNSCAgC1AgMVcCKqA5vGNACuosyI22k2AFRvjGNheEGAFduhouJKA5gmHUpN5iLsWLOWqCwRxvamjUAECCKQKEGAxGYIqoHl8I8AK6qyIjXYTYMXGOAa2FwRYgR06Gq4koHnCodRkAiwtWMpVFwjielNHoQIEECDAYg4EXkDz+EaAFfjpEegOEGAFeviC33gCrOCPIT3IXgHNE47sbel/pfELtZYs5WoLBHG9aZtQPgIIcHxjDgRfQPP4RoAV/PkR5B4QYAV59GKg7QRYMTCIdCFbBTRPOLK1oSGFEWBpyVKutkAQ15u2CeUjgAABFnMg+AKaxzcCrODPjyD3gAAryKOXA21f9Mwrkjh7mZx1ZlFZt2yyY40r1mySZ1a/Lt99/4skJyfLBeedI3fUu0laNakluXOfku7zBFiOpOxwkglonnBoURJgaclSrrZAENebtgnlI4AAARZzIPgCmsc3Aqzgz48g94AAK8ijp9j2fw4ckhGTHpe1G9+3ailx9hmOAdbQCXNl1StvSVye3FKxwiUSlyePfPLFNvn7n4Ny0/UVJOmBvpInd+6wVhNgKQ4iRQdSQPOEQwuEAEtLlnK1BYK43rRNKB8BBAiwmAPBF9A8vhFgBX9+BLkHBFhBHj2ltn+3/RfpM3KmfP/T79IxvoEsW7VBChc6LdMAywRXJsC6qFQJmZM4SEoUP91q3YGDh6TvyFny1vufSa+OTaVru9sJsJTGjWJjQ0DzhENLiABLS5ZytQWCuN60TSgfAQQIsJgDwRfQPL4RYAV/fgS5BwRYQR49hbbv/Guv1G89WI4eS5bRAztI47o3ytW1OsmZZ2R+C+EdHYbLt9t/lsVJw+XqcmXCWrZ7736p2by/xMXlkdefmy758+VN/XuuwFIYRIoMtIDmCYcWDAGWlizlagsEcb1pm1A+AggQYDEHgi+geXwjwAr+/AhyDwiwgjx6Sm03z70yIVSFKy6SlJQUKX9rh0xvIfz1951SO36glCpZXNYsnhSxVf0TkqzbEWeO7yM1bqxIgKU0dhQbfAHNEw4tHQIsLVnK1RYI4nrTNqF8BBAgwGIOBF9A8/hGgBX8+RHkHhBgBXn0cqDtx5KT5aqanTINsNZv+kh6j5ghDWtXkYn3d4nYqgXL18qkpCXSuXVD6dv5TgKsHBg7qgimgOYJh5YIAZaWLOVqCwRxvWmbUD4CCBBgMQeCL6B5fCPACv78CHIPCLCCPHo50HY3AdYTy16Wh2YvlS5tG0nvTs0itmrdpg+lz4iZUrf6dTIloQcBVg6MHVUEU0DzhENLhABLS5ZytQWCuN60TSgfAQQIsJgDwRfQPL4RYAV/fgS5BwRYQR69HGi7mwBr1rwVMnvhShnYtaV0iK8fsVWbt3wpHftNlBuuLSuPTx6cus/ho8ezvRcHDifLS68cF/Olmg2BoAmYE46GdXLJqfnyBKLprLdADBONzEAgaOuNgUQAgZwT4PiWc9bUlP0Cmse3fHF8x8r+EaNEtwIEWG6lTtL93ARYkx95WuYtfUmG9motbZrVjii15bNvpU3P8VKx/CXy5Kz7VTX3Hzwmq9YkE2CpKlO4loA54Whc7xQpVCBOq4psLZf1lq2cFJbDAkFbbznMQ3UInNQCHN9O6uEPfOc5vgV+COlABgIEWEyNTAXcBFhRXYF1TVl5fMp/V2Dt2nck20fg2PEUWbdBCLCyXZYCc0LAnHDUuTVFcucOxq9brLecmBXUoSUQtPWm5UC5CCCQXoDjG7MiyAKax7czCv/3RvkgG9H2YAoQYAVz3HKs1W4CrIXL18rEpCWunoFV6+ZrZfrYXqnt/3XXQZW+8EweFVYKzQEBzWcWaDWf9aYlS7naAkFcb9omlI8AAv8JcHxjNgRVQPP4xjOwgjorYqPdBFixMY5qvXATYL3+zifSfehUV28h7BjfQAZ0bUGApTZiFBx0Ac0TDi0bTvC1ZClXWyCI603bhPIRQIAAizkQfAHN4xsBVvDnR5B7QIAV5NHLgba7CbB2/rVXbmnaR0qVLC5rFk+K2Kr+CUmyduP7kjiym9SvUZkAKwfGjiqCKaB5wqElQoClJUu52gJBXG/aJpSPAAIEWMyB4AtoHt8IsII/P4LcAwKsII9eDrTdTYBlmmEe0G4e1L44abhcXa5MWMt2790vNZv3l+MpKfLGihlSuGABAqwcGDuqCKaA5gmHlggBlpYs5WoLBHG9aZtQPgIIEGAxB4IvoHl8I8AK/vwIcg8IsII8ejnQdrcB1qbNn0rXIVPkolIlZE7iIClR/HSrdQcOHpJ+o5Lkzfe2SuumtWRY7zZhreYZWDkwiFQRKAHNEw4tCAIsLVnK1RYI4nrTNqF8BBAgwGIOBF9A8/hGgBX8+RHkHhBgBXn0cqDtbgMs05TER5bJ/KVrJC4uj1QsX0byxsXJJ19sk/1/H5Cyl14oC6YPlQKn5iPAyoFxo4rgCmiecGipEGBpyVKutkAQ11tKirYK5SOgJ5Arl17ZGiVzfNNQpcycENA8vhFg5cQIUkdGAgRYzI1MBaIJsExB5jlXTz77qny97UdJTj4uJUucJQ1qVJYO8fUlX964dHVxBRYTEIFwAc0TDi1rTvC1ZClXWyCI6+27bafId9sClgJoDyTlB0KgzMUpUubi44Foq91Ijm+BGi4aGyKgeXwjwGKqeSlAgOWlPnULARaTAAECLOYAAl4JaJ7ga/WJL9RaspSrLcB60xamfAT+E9BcbwRYzDQvBQiwvNSnbgIs5gACaQQ0Tzi0sPlCrSVLudoCrDdtYcpHIGe+UGs5c3zTkqVcbQHN4xsBlvboUX5mAgRYzA9PBbgCy1N+KvehgOYJh1Z3OcHXkqVcbQHWm7Yw5SNAgMUcQMALAc3jGwGWFyNKnbYAARZzwVMBAixP+anchwKaJxxa3SXA0pKlXG0B1pu2MOUjQIDFHEDACwHN4xsBlhcjSp0EWMwBXwgQYPliGGiEjwQ0Tzi0ukmApSVLudoCrDdtYcpHgACLOYCAFwKaxzcCLC9GlDoJsJgDvhAgwPLFMNAIHwlonnBodZMAS0uWcrUFWG/awpSPAAEWcwABLwQ0j28EWF6MKHUSYDEHfCFAgOWLYaARPhLQPOHQ6iYBlpYs5WoLsN60hSkfAQIs5gACXghoHt8IsLwYUeokwGIO+EKAAMsXw0AjfCSgecKh1U0CLC1ZytUWYL1pC1M+AgRYzAEEvBDQPL4RYHkxotRJgMUc8IUAAZYvhoFG+EhA84RDq5sEWFqylKstwHrTFqZ8BAiwmAMIeCGgeXwjwPJiRKmTAIs54AsBAixfDAON8JGA5gmHVjcJsLRkKVdbgPWmLUz5CBBgMQcQ8EJA8/hGgOXFiFInARZzwBcCBFi+GAYa4SMBzRMOrW4SYGnJUq62AOtNW5jyESDAYg4g4IWA5vGNAMuLEaVOAizmgC8ECLB8MQw0wkcCmiccWt0kwNKSpVxtAdabtjDlI0CAxRxAwAsBzeMbAZYXI0qdBFjMAV8IEGD5YhhohI8ENE84tLpJgKUlS7naAqw3bWHKR4AAizmAgBcCmsc3AiwvRpQ6CbCYA74QIMDyxTDQCB8JaJ5waHWTAEtLlnK1BVhv2sKUjwABFnMAAS8ENI9vBFhejCh1EmAxB3whQIDli2GgET4S0Dzh0OomAZaWLOVqC7DetIUpHwECLOYAAl4IaB7fCLC8GFHqJMBiDvhCgADLF8NAI3wkoHnCodVNAiwtWcrVFmC9aQtTPgIEWMwBBLwQ0Dy+EWB5MaLUSYDFHPCFAAGWL4aBRvhIQPOEQ6ubBFhaspSrLcB60xamfAQIsJgDCHghoHl8I8DyYkSpkwCLOeALAQIsXwwDjfCRgOYJh1Y3CbC0ZClXW4D1pi1M+QgQYDEHEPBCQPP4RoDlxYhSJwEWc8AXAgRYvhgGGuEjAc0TDq1uEmBpyVKutgDrTVuY8hEgwGIOIOCFgObxjQDLixGlTgIs5oAvBAiwfDEMNMJHAponHFrdJMDSkqVcbQHWm7Yw5SNAgMUcQMALAc3jGwGWFyNKnQRYzAFfCBBg+WIYaISPBDRPOLS6SYClJUu52gKsN21hykeAAIs5gIAXAprHNwIsL0aUOgmwmAO+ECDA8sUw0AgfCWiecGh1kwBLS5ZytQVYb9rClI8AARZzAAEvBDSPbwRYXowodRJgMQd8IUCA5YthoBE+EtA84dDqJgGWlizlaguw3rSFKR8BAizmAAJeCGge3wiwvBhR6iTAYg74QoAAyxfDQCN8JKB5wqHVTQIsLVnK1RZgvWkLUz4CBFjMAQS8ENA8vhFgeTGi1EmAxRzwhQABli+GgUb4SEDzhEOrmwRYWrKUqy3AetMWpnwECLCYAwh4IaB5fCPA8mJEqZMAizngCwECLF8MA43wkYDmCYdWNwmwtGQpV1uA9aYtTPkIEGAxBxDwQkDz+EaA5cWIUicBFnPAFwIEWL4YBhrhIwHNEw6tbhJgaclSrrYA601bmPIRIMBiDiDghYDm8Y0Ay4sRpU4CLOaALwQIsHwxDDTCRwKaJxxa3STA0pKlXG0B1pu2MOUjQIDFHEDACwHN4xsBlhcjSp0EWMwBXwgQYPliGGiEjwQ0Tzi0ukmApSVLudoCrDdtYcpHgACLOYCAFwKaxzcCLC9GlDoJsJgDvhAgwPLFMNAIHwlonnBodZMAS0uWcrUFWG/awpSPAAEWcwABLwQ0j28EWF6MKHUSYDEHfCFAgOWLYaARPhLQPOHQ6iYBlpYs5WoLsN60hSkfAQIs5gACXghoHt8IsLwYUeokwGIO+EKAAMsXw0AjfCSgecKh1U0CLC1ZytUWYL1pC1M+AgRYzAEEvBDQPL4RYHkxotRJgMUc8IUAAZYvhoFG+EhA84RDq5sEWFqylKstwHrTFqZ8BAiwmAMIeCGgeXwjwPJiRKmTAIs54AsBAixfDAON8JGA5gmHVjcJsLRkKVdbgPWmLUz5CBBgMQcQ8EJA8/hGgOXFiFInARZzwBcCBFi+GAYa4SMBzRMOrW4SYGnJUq62AOtNW5jyESDAYg4g4IWA5vGNAMuLEaVOAizmgC8ECLB8MQw0wkcCmiccWt0kwNKSpVxtAdabtjDlI0CAxRxAwAsBzeMbAZYXI0qdBFjMAV8IEGD5YhhohI8ENE84tLpJgKUlS7naAqw3bWHKR4AAizmAgBcCmsc3AiwvRpQ6CbCYA74QIMDyxTDQCB8JaJ5waHWTAEtLlnK1BVhv2sKUjwABFnMAAS8ENI9vBFhejCh1EmAxB3whQIDli2GgET4S0Dzh0OomAZaWLOVqC7DetIUpHwECLOYAAl4IaB7fCLC8GFHqJMBiDvhCgADLF8NAI3wkoHnCodVNAiwtWcrVFmC9aQtTPgIEWMwBBLwQ0Dy+EWB5MaLUSYDFHPCFAAGWL4aBRvhIQPOEQ6ubBFhaspSrLcB60xamfAQIsJgDCHghoHl8I8DyYkSpkwCLOeALAQIsXwwDjfCRgOYJh1Y3CbC0ZClXW4D1pi1M+QgQYDEHEPBCQPP4RoDlxYhSJwEWc8AXAgRYvhgGGuEjAc0TDq1uEmBpyVKutgDrTVuY8hEgwGIOIOCFgObxjQDLixGlTgIs5oAvBAiwfDEMNMJHAponHFrdJMDSkqVcbQHWm7Yw5SNAgMUcQMALAc3jGwGWFyNKnQRYzAFfCBBg+WIYaISPBDRPOLS6SYClJUu52gKsN21hykeAAIs5gIAXAprHNwIsL0aUOgmwmAO+ECDA8sUw0AgfCWiecGh1kwBLS5ZytQVYb9rClI8AARZzAAEvBDSPbwRYXowodRJgMQd8IUCA5YthoBE+EtA84dDqJgGWlizlaguw3rSFKR8BAizmAAJeCGge3wiwvBhR6iTAYg74QoAAyxfDQCN8JKB5wqHVTQIsLVnK1RZgvWkLUz4CBFjMAQS8ENA8vhFgeTGi1EmAxRzwhQABli+GgUb4SEDzhEOrmwRYWrKUqy3AetMWpnwECLCYAwh4IaB5fCPA8mJEqZMAizngCwECLF8MA43wkYDmCYdWNwmwtGQpV1uA9aYtTPkIEGAxBxDwQkDz+EaA5cWIUicBFnPAFwIEWL4YBhrhIwHNEw6tbhJgaclSrrYA601bmPIRIMBiDiDghYDm8Y0Ay4sRpU4CLOaALwQIsHwxDDTCRwKaJxxa3STA0pKlXG0B1pu2MOUjQIDFHEDACwHN4xsBlhcjSp0EWMwBXwgQYPliGGiEjwQ0Tzi0ukmApSVLudoCrDdtYcpHgACLOYCAFwKaxzcCLC9GlDoJsJgDvhAgwPLFMNAIHwlonnBodZMAS0uWcrUFWG/awpSPAAEWcwABLwQ0j28EWF6MKHUSYDEHfCFAgOWLYaARPhLQPOHQ6iYBlpYs5WoLsN60hSkfAQIs5gACXghoHt8IsLwYUeokwGIO+EKAAMsXw0AjfCSgecKh1U0CLC1ZytUWYL1pC1M+AgRYzAEEvBDQPL4RYHkxotRJgMUc8IUAAZYvhoFG+EhA84RDq5sEWFqylKstwHrTFqZ8BAiwmAMIeCGgeXwjwPJiRKmTAIs54AsBAixfDAON8JGA5gmHVjcJsLRkKVdbgPWmLUz5CBBgMQcQ8EJA8/hGgOXFiFInARZzwBcCBFi+GAYa4SMBzRMOrW4SYGnJUq62AOtNW5jyESDAYg4g4IWA5vGNAMuLEaVOAizmgIrAijWb5JnVr8t33/8iycnJcsF558gd9W6SVk1qSe7cp6SrkwBLZRgoNMACmiccWiwEWFqylKstwHrTFqZ8BAiwmAMIeCGgeXwjwPJiRKmTAIs5kO0CQyfMlVWvvCVxeXJLxQqXSFyePPLJF9vk738Oyk3XV5CkB/pKnty5w+olwMr2YaDAgAtonnBo0RBgaclSrrYA601bmPIRIMBiDiDghYDm8Y0Ay4sRpU4CLOZAtgqY4MoEWBeVKiFzEgdJieKnW+UfOHhI+o6cJW+9/5n06thUura7nQArW+UpLNYENE84tKwIsLRkKVdbgPWmLUz5CBBgMQcQ8EJA8/hGgOXFiFInARZzIFsF7ugwXL7d/rMsThouV5crE1b27r37pWbz/hIXl0def2665M+XN/XvuQIrW4eBwmJAQPOEQ4uHAEtLlnK1BVhv2sKUjwABFnMAAS8ENI9vBFhejCh1EmAxB7JN4Nffd0rt+IFSqmRxWbN4UsRy+yckydqN78vM8X2kxo0VCbCyTZ+CYk1A84RDy4oAS0uWcrUFWG/awpSPAAEWcwABLwQ0j28EWF6MKHUSYDEHsk1g/aaPpPeIGdKwdhWZeH+XiOUuWL5WJiUtkc6tG0rfzncSYGWbPgXFmoDmCYeWFQGWlizlaguw3rSFKR8BAizmAAJeCGge3wiwvBhR6iTAYg5km8ATy16Wh2YvlS5tG0nvTs0ilrtu04fSZ8RMqVv9OpmS0IMAK9v0KSjWBDRPOLSsCLC0ZClXW4D1pi1M+QgQYDEHEPBCQPP4RoDlxYhSJwEWcyDbBGbNWyGzF66UgV1bSof4+hHL3bzlS+nYb6LccG1ZeXzy4GyrO1JB+w8ek1VrksV8qWZDIGgC5oSjcb1TpFCBuEA0nfUWiGGikRkIsN6YGgjknADrLeesqQmBoK03RgwBtwK5UlJSUtzuzH4IRBKY/MjTMm/pSzK0V2tp06x2RKQtn30rbXqOl4rlL5EnZ92vCmm+UG/9Mlm2f59LtR4KR0BD4MILU+TKy4MVYLHeNGYCZeaEAOstJ5SpA4F/BVhvzAQEck4gaOst52SoKegCBFhBH0EftD+qK7CuKSuPT9G9AssHJDQBAQQQQAABBBBAAAEEEEAAAQSyUYAAKxsxT9aiFi5fKxOTlrh6Blatm6+V6WN7naxU9BsBBBBAAAEEEEAAAQQQQAABBLIgQICVBTQ+Ei7w+jufSPehU129hbBjfAMZ0LUFhAgggAACCCCAAAIIIIAAAggggIBrAQIs11TsmJHAzr/2yi1N+0ipksVlzeJJEXfrn5Akaze+L4kju0n9GpXBRAABBBBAAAEEEEAAAQQQQAABBFwLEGC5pmLHzATMA9rNg9oXJw2Xq8uVCdt19979UrN5fzmekiJvrJghhQsWABMBBBBAAAEEEEAAAQQQQAABBBBwLUCA5ZqKHTMT2LT5U+k6ZIpcVKqEzEkcJCWKn27tfuDgIek3KknefG+rtG5aS4b1bgMkAggggAACCCCAAAIIIIAAAgggEJUAAVZUXOycmUDiI8tk/tI1EheXRyqWLyN54+Lkky+2yf6/D0jZSy+UBdOHSoFT84GIAAIIIIAAAggggAACCCCAAAIIRCVAgBUVFzs7CZjnXD357Kvy9bYfJTn5uJQscZY0qFFZOsTXl3x545w+zt8jgAACCCCAAAIIIIAAAggggAAC6QQIsJgUCCCAAAIIIIAAAggggAACCCCAAAK+FiDA8vXw0DgE3An8+MsfUr/1kHQ7580bZz00/8Lzz5GqlcpLi9urS7EihdLt98zq12VU4nxp0ai6jBrQ3rHS9Zs+kt4jZkjtapVk2pieme7/2dfbpWWX0dZtpMvnJITtO2Tco7J63TuZfv6MYoWth/+zIZDTArfe2Vd27Nwjrz83Xc48vUim1ddqOUB++2OXrF8+Rc45699nAEbajiUnWy+1MG9vXb3wASldqkSG+5ar7rwW7Q8vmjlMrqlwqfWfGf17kLaikf3aScvGNVL/OJr+5vRYUN/JIfDjLztk1dq3ZPOWL2T7j7/Lvr//kVPz55Ozzigq5559htx4fQW5tWpF663HoVukY0lcntxSuNBpcvGF50qNG6+R5o2qS/58edNB2vM+M+F6t14vk0d1T90lK8eu0HV5X89W0vbOOpkO6rAH5srKtW9J6No+OWYBvTxRAfucLm05p+bPK6cXLSyXXHSetSZur1PVeuxH2i3SmjB3UZxerLCUvfQCaVirqtS5pZJjMze+/bG8vPE9+fiz72TX7r1yLPm4nF6kkJS97EKpdfO10rBWFcmd+5Swcvbu/0duavzveeXbq5KkUAYvfuo1fIZsePMjqVKpnDyWOCjDtjRoM0R++PkPmTd1iFSueEXY8ZF16DiE7ICALwUIsHw5LDQKgegE7BNjc3Jif4k1JRw+clR27Nwt5kuB2YoUOk3mJg6ScpddGFaB1wGWCdgiBWumkUULF5RZE/pEB8LeCGSDQDSBjtsA69U3PpC+I2dZrWvfsp4M6hafYUvju43JtBf//HNQ/vfjb9Y+K+ePlzKlS1r/2/73wHzhMMFxRlvH+PpS46ZrUv86mv5mAy9FIJAqcPToMZk1f4U8vuQlSUlJsf7cvAymSOGC8vc/B2XHrj1y5MhR68/NjzFzEweG6dmBklkDZxb7N2w+cvSo/P7nbvn1953Wf19w3tkyf+p9cvZZxcI+a8/7CpeXljx50n+ZNztXubas9OjQJPVzdn3RHLtCAywTpD0/f5ycf254EBfaMAIsFkhWBexzOvNjiglwzWaW1cFDh+WnX3dYP6CY7fIypaxgx5wbhm72mjDnk3n/P+A6cOiwdWzZs/dva1dz7JiS0ENMUJx2M+WbFzh9tPUb669OK5BfSp5zprW+zDmpXb958dOMcb3T/ZAT33W0bP1qu8wc1zvsGGXXY/69qHp7Dzlw8LDkyZ1b3lw5M2LQ9cefu6VG835WcP3OC0liftRlHWZ1VvE5BPwjQIDln7GgJQhkWcA+IJuT6RcXPZiuHHMCPzJxvrzzwedyxSUXyDNzR4ft43WA9dCIbtKgZuUs958PIqAhEE2g4zbAundQonVSX/zMYrJv/wF57ZmpEX8Bd9OffqNmySuvfyDNG1aXhIH/Xa3l9O9BRmVH01837WMfBNwImGCqQ7+J8vHn31k/ZNzbpqHcVquKmKtvQ7cvv/1BXntri9xwbZN05OkAACAASURBVNmwH2rMPnagFOlYsu37X2TA6Nny7fafpXrVqyVpQt+IX9bdXGlpfzCz+jLqc+gPTQcPHZHrK14u86YMkVy5ckX8CAGWm9nDPpEEnM7pzFobOGa2ddXw3c3ryuAed7laEyZcfvO9z6R/QpL1lvFB3eOlfYt6YZ81L25q0SXB+uH04gtLyqBuLa2rpEzQZG9fb/tJZjz+rJgrtEx4tuzRUWFh7vTHnpU5T74grZvWlmG9W6fronmzeZfBk+X0ooXkrz37JaNzyBdeeVvumzBHbrq+gjw6aYBVDuuQNYNA8AUIsII/hvQAgdQDckYBliEyB/lqTXpbv26bX6tCr3hyOtlJS5zdtxASYDGJ/SgQTaDjJsAyQXKduwbJrVWvtk7s5y5ebd2WZG5PinYzL8wwXyLMVSorn5hg/cJtbwRY0Wqyv5cCCYlPyPLVG8VcjTF38qBMb8HNqJ1OgdK2H36V2+8eJqeckkveWpVk3Vpvb9Gsc/szTvVFaqe9Llvcfqu8++EX1nE77W28oZ8jwPJyVga7bjfndObHD/MjiLlq0VzBG7o5rYmlKzfI2KkLI/4gOnzi47JizSbr6t8npt0XdmwKrcOci46YNM/a96qyF8tTD49I/ev3tnwlHfo9GLFtZqfx0xfJUyvWS/e7G8vDC1ZK/RqVJXFkt3SDZrclNGhjHQZ7btN6BIwAARbzAIEYEHD7hfX6Bl3lnwOHZMPyqWG3Ubg52QllIsCKgUlDFxwFnE7iQwtwE2DZvyqPHthByl9eWprdM1JuuKasPD5lsGNbQnfYvXe/NGo3TMz/N7dSmVuqQje3/x6krTSa/kbVYHZGIAMB+xmJ5jakFfPGZfpMuMwQ3QRKNzbuad3+9OxjY6xbp+wtK/PeTX1p22uvyyb1bxbzf+16T5ACp+aXVQsmWEF02o0Ai2WTVQE353TmisY7O4+ynie3ZvGksKqc1sR323+Rxh3ut27be3f1w6mf/f3Pv6RO/EDrLeSht7Vn1A9zJWK9VoOsWwrNcdAcD81mbhGs0qi7mL83z0BNezWmqcPcHvjG8zOk7l2D/v+H2VnpbmesHT/QuoXY/Nty6UXnWWWzDrM6q/gcAv4RIMDyz1jQEgSyLODmC6v9LABzufZbq2aF3bbg5mQntHEEWFkeKj4YIAGnk/jQrjgFWObh7bVaDBDzgFpzq5K5AuSODsOt25pefmpSps/CSUtmrrwyV2ClvXXQ3s/NvweRhiGa/gZoGGmqjwVGT1kgT696zQp0xg3plOWWugmUbmjYXcztTa8sTbSex2NvWZn3bupL2xl7Xdatfr1MSegu46YtkiXPrw+7vSn0MwRYWZ4OJ/0H3ZzTrX71HRky/lHrGVPmWVOhm9Oa+Oq7H60fYEqcfYasWzY59aPLVm6QMVMXSqWrLpMF04e6GofER5bJ/KVrxFyZOKr/3amf6TpksmzavDXd7YF2eHbtlZfKwhnDZNDY2fLS+s3pfsz5+bc/rXDLvIDFHHPTHh9Zh66Gh50Q8KUAAZYvh4VGIRCdgNMXVvMQXPO8g02bP7WeJ2CeKxC6uTnZCd2fACu68WHvYAo4ncSH9sopwLLXTOitDk88/bI89PBS6dy6ofTtfKcrJPu2j0i3DqY9Qc/sluJIlUXTX1eNZScEHAQatRtqvYhgxtjeUvPm/14oEC2cU6D0+dffW8/lMc/M2fjs9LA3n2Vl3jvVF6n99nHaDgzMM4QadxhuXSFiwjsT4oVuBFjRzgL2twWczunM86k69p8oO3ftkcVJI9K92MdpTTyx7GV5aPbSdG+ivv/Bx+T5l9+Uru1ul14dm7oaEPMmQfNGQXNVpLk60t7s4+OdDW8Rc9WyvZlb76fNfUb63dtc7ml1mxVemRDrrjtqyvC+bVP3e/bFN2TkQ/OkYe0qMvH+Lql/zjp0NSzshICvBQiwfD08NA4BdwL2AdncjnDjdf/dTpR8/Lj8tXufmEvFzRuY2resL43r3piuUKeTnbQfyO4Ayzz7xLyeOdIW37iG9XwDNgRyWsDN28nsNplbocxtD+uXT4n4DB/71+Q5Dw1MXaO7du8TU4d5Hp35XOhDbiP11dwyaJ7jY55nF+nWQfszoW8hrHDFRRHZzFuZ7Ifa2js4fWnJaX/qi32Bq2t1kqPHkq2Xj5jANatbZoGSCch6D58h23/8TYb1biOtm9YKq8ae9+Y5PHH//8a1tO1IGNA+7PZGu75ojl32urylylXy8AP9rCrMi1XuGfiQdUWmuZXwrDOKplZNgJXV2cDn7HO680qcZT2nyt6OHjtmPbj9fz/8ar0IwfxwcmXZi9OBZXYsMD+EmjfpJicnW8+tCn3TrXmwunnA+tjBHaVpg2quBsK+msuEy5uen5n6mW/+97M06TjcujrZXKVsb216jpctn32beouiuarypsa9rCutzHHU3uw1OmFo57DzXtahq2FhJwR8LUCA5evhoXEIuBMIfS1wpE+Yk/I61SpZD4s2v/6m3bwOsDLr5cCuLaVDfH13EOyFQDYK2Cfx0RQZKcAyXxjMsziKn1lU1i2bYj1I2t56Dpsur729RaaP7SW1br4206oGjH5YXn7tPUn7i3TaDzn9e2D2PzV/Xvng5TlhHyXAimak2fdEBcxttVfV/Pe2wYzeAGge8vzcS2+kq8p8cTaBU9ovq+YqDvOGT7MdO5Ysv+/YZV3hZY6BPdrfYV3tmHZzs87NW9LKX1Y6XX3RHLvsdVnthqtk9oP/Blhms/uY9lYuAqwTnWEn7+ftc7qMBMwzpcz54B31bgoLoOz97TVh3viZNy7O+uPDh4/I9p9+kx0791hXMj4w7F7r9tfQzQ6XzAPV3f7waK+LvHnjZMsrc8PKu6VpH+v5WK8uTZRzzzlT9u77R266o6eUKH6GdSuwvXXsN1E2b/lSls9JSO1P9WZ95c9de+S1Z6ZZx157Yx2evOuCnseOAAFW7IwlPTmJBTK6hdA8SNM8c2frl/+Tx55aLR9t/Tbi21q8DrB4C+FJPHl93PVoAp3MbiE0rwt/dNELcm+bRtLnnmZhPbavZgx9zXckklff+MD61dvcOvj8/PFS8LRTM5RzuqU4ow9G018fDxtNC5BAxTqd5ciRo7Jm8UQpVfLsdC1/7KkXZePbH6f++dfbfhJz611GAVakrmf2oHSzf1bm/YncQpg2wDJXkNzefpgVDIQeCwmwAjSRfdbUjM7pzNWO5rbBdz78XB5+4nnZsWuPDOnRKsOrEiN1y1yxNX/qEDFX8abdsvMKLFO2eUaXeVaXfYvtC6+8LfdNmGO111xNaW+LnnlFHpz1lHRr11h6dmxihdbm9mTztt9VT4S/YTGjAIt16LNJTHMQyESAAIvpgUAMCLj5wmp+7W7ZZbSYy7UnDu8iDWtVSe15tAGW/cyC2tUqybQxPTMVtN8yVe6yC+XpRxPC9s3Kl4AYGC66EBCBaL7YZhRgmRC5Vsv+1pfTzLZcuXJZvzKbh+Km3cyb08wXXHPLYegtiBmV5+bfg0ifjaa/ARlCmulzgXqtBstPv+6QRyYOkJsrh1/NEanp8d3GWD/IZBRghQZAKSkp0qrHOPn0i20ypMdd0q553YgaWZn3WTl2ZfTF2TTKhHQ9hk2TokUKygsLHrCucBk+8XFZsWaTLJo5zLrdiw0BtwJuzul+2/GXNGx7n3Ur4OpFD4q53dDeIq0JcyVUgzZD5MDBw7LskVHpnptlPmvPWTtIctNecwWyuRI57TOwzGfN87TMc7Ua1akqDw67N/WB7WmPg/YD2+0y7IfJt72zjtzXs1VYM1iHbkaFfRDwtwABlr/Hh9Yh4ErA7RdW++GXad/45OZkJ7Qh7374hXQaMMn6wmG+eGS2vf/xV9K+74NSueIVMm/qkLBds/IlwBUIOyGQDQLRfLHNKMCyw15zy4a5BSLSZn4RN18mMjrpNy9gWLNhszS7rZqMGdTRsWdu/z1IW1A0/XVsBDsg4ELAvsLi7uZ1ZXCPuxw/EU2AZQozD29v2XW0nJo/n/WcrdBbiTL7su7UkKwcuzL74mzqs8s0t3ZNHtVd7Dc0EmA5jQZ/n1bA7TndvYMS5a33P5O0z4nK6FiwYPlamZS0xLqddsnskWG3w5s2mDeKmnl7fcXLZf7U+1wNzJRHn5bHl7wkLRvXkJH92oV9xvzwY9pi3hq6dslDUq1Jbzl0+Ii8vSop3fPqbm9/v2z7/hfrdmRzNZY5Zppbdc0Vj6Eb69DVsLATAr4WIMDy9fDQOATcCbj9wmq/1SX0IbKmBrcnO3ZrzDN9zBd282Vgw/KpYq4eyWizL+1u0ai6jBrQPmy3rHwJcCfCXgicuEA0gU5GAVbXIVOst39OSegu5rXdkbatX22X+K6j5eyzismrSyeHvSFt3aYPpc+ImdaD4Vc+kfmtg3bZbv89SNuWaPp74rqUgMB/Vx4VKlhAXl48yboCKbMt2gDLlJWQ+IQsX71R6la/TqYk9EhXfFbmfVaOXU5fnEOvtDRvZfxo6zdijtkEWKyUaAXcntOZq/7M1X+DusVL+5b1UqvJaE2YK/mbdhppBUXmjX/mzX+hmwmcarccIGa/1QsfCHvxQaQ+HD5yVOq1GmRdoWwCLxN8pd3Mi0u2/fCrPJY4yHrhgXlbqVkfaTfzZkLzI615/pZ5Q+Kuv/bJO6sflgKn5gvblXUY7WxifwT8J0CA5b8xoUUIRC3g9gtr96FT5fV3PrFupTC3VNib25Od0IY17TRCzPNIzOuJzWuKI20HDx2RZveMkB9+/iPiLSJZ+RIQNQ4fQCCLAtF8sY0UYJmrqszJvLkdaP3yqRKXJ3eGLbmz8yjrbaFJE/pK9apXW/tFe+ugXbjbfw/SNiaa/maRlI8hECZgbvNrfm+CNffNA6NnjuuT7gtn6AeyEmCZdWRufTLPgzRv3kz74OmszPusHLucvjibfq7d+L70T0iy3qhmAu/Fz71KgMWaiVrAzTmdCY9qNu8v5u22M8f3kRo3VkytJ7M18d6Wr6RDvwfFhM4mpDJzNXSzbyM0z8qaN2WI9cKQjLbx0xfJUyvWyzUVLpFFM++PuNuEGYutdWAee7F63TsZvuHwky+2SavuY60H05tbDytddZksmD40XZmsw6inEx9AwHcCBFi+GxIahED0Ak5fWM1Dcucve1nMw6TNG9CefWysXHrReakVuTnZSduqN979RLrdN9V6kKcJw8xtiaGvIDcP0UxInC8ffvqNVK1UXuYmDkzXsax8CYheh08gkDWBaL7YRgqwZs1bIbMXrrTefGZeV57ZZq4QMVeKmPDKhFhmGzR2try03v2tg3b5Tv8eZNSOaPqbNVE+hUB6ATNf47uOsQKmi0qVsB7CXL1qRcmX99+3n9mbeQD1Xd3GWGGXm2dghX526coNMnbqQilVsrj1EoTQsrMy77Ny7HLzxdm02byswby0wbTRhAxcgcWqiVbA6Zzurz37ZcyUBdY8My8GefHJiVGtif4JD8vaje9ZP16aHzFDN/Mw9BZdEuTHX3bIFZdcIIO73yXXXX1Z2JX65kfN6Y89a5Vhrro0z0c1twlG2uznw5kgzPwomtEbS48fT5HqzfpYL3kw+/Xu1Ey6tG2UrkjWYbSzif0R8J8AAZb/xoQWIRC1gH1ANpdK33BN2dTPH09JkX37/5Gvvvv3zU25c58iw/u2E3M7X+hmn+wUK1Io4kOk7X2nj+kZ9hyfJc+vlwdmLhbzoGpT98UXnCv58uWVHTt3WycvZjO/qk8b3dP6tS7tZn8JuPD8c8TUHWkrWrigzJrQJ2oTPoDAiQpE88U2bYBl1kTt+AHWrRHm2R0ZnZzbbTQPxjUn3wcPHZZ1y6ZYa8hcbWI286U+f/7w2yDS9u2uO2pI0wbVrD+2/z0wX4DLXnphhgwd4+tLjZuuSf17u7+XXXy+5M4d+WqxG68r7xjGnag7nz/5BMwX2n6jZllX9ZrNXK144fklpHChAnLsWLIVbv3865/WrUlmizbAMl9um987ynqJSfe7G0uPDk3SzfsKl5eWPHnyRMSvcm3ZsM9k5djl9ouzeVi2eWnD3n3/WG0hwDr51sOJ9tg+pzPPXbz84vNTizuWfFzM/Ppm20/WWjLhkXmOqZn7oZvTse/3P/99ALwJisyzTc0zTkM3U4cJYrd89q31x+b87rxzz7LW9e9/7pZff99p/bk5Z5wxrreYc8CMNnPuWqVhD6u95tlbyx4dleG+9tVfZoels0dKhSsuSrcv6/BEZxefR8B7AQIs78eAFiBwwgL2ATlSQeZL7DnFT5frrr5cWjetHXbllb2/fbLj1JAXFj5gfZkO3cyzEBavWC/vbflSzLOxzBttihUtZJ1oNKxdVcybCs1VX5E2+0tAZvWah1+/sWKGU9P4ewSyXcDpJD60wrQBlv1mJXO7krltyc02btoiMaGwuQKl/GUXSdchk918zNqnV8em0rXd7db/zuzfg9ACzQNzzYNz7c3ub2aV2g+Ydt0wdkTApYC5ndA88+3V1z8QczvQX3v2WV+QzTGsSOHTrLekXVW2jFx75aVSpVK5sCtG3FwR9fHn30nrHuOsK4VXzh8vF5x3ttWyrMz7rBy73H5xNm164ZW35b4Jc6z2EWC5nEDsliqQ2TldgVPzW3O/2g1XSptmdaxb3NNubo599kuBSpcqISseH5vuoeqmTHMcfHnDe1aQZdZz8vEUKVakoJS7rLTUrnat3FazStgzHzMawra9JljPhDPBswmgM9rsl6aYH0zfWjkrYtmsQxYKAsEXIMAK/hjSAwQQQAABBBBAAAEEEEAAAQQQQCCmBQiwYnp46RwCCCCAAAIIIIAAAggggAACCCAQfAECrOCPIT1AAAEEEEAAAQQQQAABBBBAAAEEYlqAACumh5fOIYAAAggggAACCCCAAAIIIIAAAsEXIMAK/hjSAwQQQAABBBBAAAEEEEAAAQQQQCCmBQiwYnp46RwCCCCAAAIIIIAAAggggAACCCAQfAECrOCPIT1AAAEEEEAAAQQQQAABBBBAAAEEYlqAACumh5fOIYAAAggggAACCCCAAAIIIIAAAsEXIMAK/hjSAwQQQAABBBBAAAEEEEAAAQQQQCCmBQiwYnp46RwCCCCAAAIIIIAAAggggAACCCAQfAECrOCPIT1AAAEEEEAAAQQQQAABBBBAAAEEYlqAACumh5fOIYAAAggggAACCCCAAAIIIIAAAsEXIMAK/hjSAwQQQAABBBBAAAEEEEAAAQQQQCCmBQiwYnp46RwCCCCAAAIIIIAAAggggAACCCAQfAECrOCPIT1AAAEEEEAAAQQQQAABBBBAAAEEYlqAACumh5fOIYAAAggggAACCCCAAAIIIIAAAsEXIMAK/hjSAwQQQAABBBBAAAEEEEAAAQQQQCCmBQiwYnp46RwCCCCAAAIIIIAAAggggAACCCAQfAECrOCPIT1AAAEEEEAAAQQQQAABBBBAAAEEYlqAACumh5fOIYAAAggggAACCCCAAAIIIIAAAsEXIMAK/hjSAwQQQAABBBBAAAEEEEAAAQQQQCCmBQiwYnp46RwCCCCAAAIIIIAAAggggAACCCAQfAECrOCPIT1AAAEEEEAAAQQQQAABBBBAAAEEYlqAACumh5fOIYAAAggggAACCCCAAAIIIIAAAsEXIMAK/hjSAwQQQAABBBBAAAEEEEAAAQQQQCCmBQiwYnp46RwCCCCAAAIIIIAAAggggAACCCAQfAECrOCPIT1AAAEEEEAAAQQQQAABBBBAAAEEYlqAACumh5fOIYAAAggggAACCCCAAAIIIIAAAsEXIMAK/hjSAwQQQAABBBBAAAEEEEAAAQQQQCCmBQiwYnp46RwCCCCAAAIIIIAAAggggAACCCAQfAECrOCPIT1AAAEEEEAAAQQQQAABBBBAAAEEYlqAACumh5fOIYAAAggggAACCCCAAAIIIIAAAsEXIMAK/hjSAwQQQAABBBBAAAEEEEAAAQQQQCCmBQiwYnp46RwCCCCAAAIIIIAAAggggAACCCAQfAECrOCPIT1AAAEEEEAAAQQQQAABBBBAAAEEYlqAACumh5fOIYAAAggggAACCCCAAAIIIIAAAsEXIMAK/hjSAwQQQAABBBA4yQV2/rVXbmnax1J4fv44uaT0eSe5CN1HAAEEEEAAgVgTIMCKtRGlPwgggAACCCBw0gkQYJ10Q06HEUAAAQQQOOkECLBOuiGnwwgggAACCCAQawIEWLE2ovQHAQQQQAABBNIKEGAxJxBAAAEEEEAAgYALEGAFfABpPgIIIIAAAgg4ChBgORKxAwIIIIAAAggg4G8BAix/jw+tQwABBBBAAIETFyDAOnFDSkAAAQQQQAABBDwVIMDylJ/KEUAAAQQQQCAHBAiwcgCZKhBAAAEEEEDgX4GUlBR5cd278vzaN+Wrb3+U/X8fkKJFCkrF8pdIqya15PqKl6dSmb+r3qyvHDp8REb1v1ta3H5rpoytuo+VT77YJg1rV5GJ93cJ2/fAwcOy+LlX5dU3PpAffv5Djhw9JuecVUxuuLacdGhZX0qVLJ6tQ2T6+eobH8rqdW/L1i//J7v3/i0FTs0n55x1ulxeppQ0b1Td6nPa7YtvvpenVqyXDz/9Wnbs3CO5comcU/wMqXJtWWl7Z90M2+k2wDrR8s3bDc1bDk3/nn/5TVny/HrZ9v2v1hgN6NpCOsY3yFZHCkMAAQQQQAABBGwBAizmAgIIIIAAAgjkiMCBg4ek1/AZ8u6HX1j15c+XVwoVLCC79+yXY8nJ1p+ZAMQEIfY27IG5snLtW1Lhiotk6eyRGbbzp193SL1Wg62/fyxxkFSpVC513+0//iadByXKb3/ssv6scMECEheXR3bt3mf9d968cTJpeBepXa1StjiY4K3vqFmp/YxU6LghnaRJ/ZtT/8oEQtPmPiOPPfVi6p+dViC/HD9+XA4eOmL9WZ7cuWV4v7bSvGH1dEU6BVjZVf7pRQvJ68/NkKET5sjqde+EtWPamJ7ZZpgtA0EhCCCAAAIIIBBTAgRYMTWcdAYBBBBAAAH/CvQcNl1ee3uLnHvOmTKy391StVI5yZ37FDFXR5kreabNXS7Hj6dIwsD2qSHNR1u/lba9xludWvXEeLn4wpIROzh74UqZNW+FnH1WMVm3bIqcckouaz8TJjXpOFx+2/GXVK54hdzXq7VcetF51t+ZK5wmP7LMCmJMiLXskVGpf5dVRRMU3Ttosrz9wWeSL2+cdG13u9SvUVnOPftM2ff3P2LCtE2bt8o9rW4TE1DZ29zFq60Ay2ydWzeUu+6oafXFbN//9LuYvzdXPJltSkIPqVv9urAmOgVY2VV+rly5pPvdjSXpieelYa0q0rZ5Hbmg5NlWGHjWGUXD+pRVQz6HAAIIIIAAAghEEiDAYl4ggAACCCCAgLqACa5MgBWXJ7c8+9iYiEHU2KkLZenKDXJGscKybtlkK1QyW6N2Q+V/P/4mHeLry8CuLSO2tWG7oVY4ZMKfvp3vTN1nUtISWbB8rZQqebZ165sJlUI3E5g17TRCvt3+s9S46RqZOa73CVms3fie9E942CpjbuJAqVqpvGN5f/y5W+rED7SuQhvULV7at6wX8TNjpi6UZSs3SJHCp8n6p6fKqfnzpu6XWYCV3eWbSnt0aGIFWWwIIIAAAggggEBOCRBg5ZQ09SCAAAIIIHASC3QdMkU2bf5U7mx4i4we2CGihAmgTBBltnlTh1hXTJnNBFAmiDrz9CKyfvkU61a60O3zr7+XFl0SrD9avfABKV2qhPW/TSB04+095e9/DsrE4V2sK4YibU+vek1GT1lg3Va4+cXZ6UKuaIat04BJ1q2DNW6sKDPH93H10UcWrpKZ856zrmBa//QU66q0SNs+80ywpn3k8JGjkvYWxMwCrOwuv8LlpWXJ7JFirsZiQwABBBBAAAEEckqAACunpKkHAQQQQACBk1TAXOVU+bZuYp6BlVmQdPRYslxT5x7rNsJhvVtL66a1LbE9e/+W6nf2laNHj0nShL5SverVYZL2VVZXlr1Yljw8IvXvtn61XeK7jrb++7VnpknxM4tGHIHNW76Ujv0mWn+3Yt64LN9GmJx8XCrf1tV6ZtXYwR2laYNqrkb8noEPyTsffC531LtJxt93T6afsfdN+6D6zAKs7C4/9BZPVx1kJwQQQAABBBBAIBsECLCyAZEiEEAAAQQQQCBjgT937bHeJhjNlvYWtYFjZsuaDZul1s3XyvSxvVKLMmFXjeb9xNQxsl87adm4Rurfvbj+XRk89pFoqpUF04dKpasui+oz9s6h/Vw08365pkL6twxGKrh+68Hy4y87pM89zeTeNo0yrXv89EXWWwqvLldGFicNT903swAru8s3IaEJC9kQQAABBBBAAIGcFCDAyklt6kIAAQQQQOAkFAi9NfDC889xdYtey9tvDQuj3v3oC+nUf5J1++DG56ZJsSKFLEn7z83tf68/N12KFDotVdi+NdA80P2S0v8+uN1pGzO4o5S/rLTTbhH/PrSf5jlfl5cp5aqcW5r2ERNA3dezlbS9s06mn5ny6NPy+JKXpEzpkrJy/r8PtzdbZgGWdvmuOslOCCCAAAIIIIDACQoQYJ0gIB9HAAEEEEAAgcwFfv/zL6nZvL+1UzRXJoWWat7u16DNEOtKpaG9WkubZv/eXjhi0jx57qU3pG7162VKQvewhrzwytty34Q5Vuj18brH1J/ZZN50WKvFv/186uERcpXLq5Qad7hfvtv+S1RXYJmyTR32llmApV0+8x8BBBBAAAEEEMgJAQKsnFCmDgQQQAABBE5iAfNsq+sbdJUjR47KiTw/ae7i1TJt7jPWFVLLHh1lPRPr5ia9Zf/fB2T2g/2k2g1XhSl/+Ok30q73BOvPXnpyolxw3tmqo2D6Z/pp+jthaGdpXPdGV/XZKiox/wAADP1JREFUD7h38wyszgMT5e0PPpPbat4gk0Z0dRVgaZfvqpPshAACCCCAAAIInKAAAdYJAvJxBBBAAAEEEHAWMLf/mdv9qlQqJ48lDnL+QIQ9zFVG5kou83bBtUsekm3f/yrdh0613k64YfnUdG/vM4FSlUY95NDhI66ubspSo9J8qHWPcfLx599J3erXyZSEHq6KNM+0Ms+2yqgfdiHmbYrVmvS23kI4akB7adGouqsAS7t8V51kJwQQQAABBBBA4AQFCLBOEJCPI4AAAggggICzwKtvfCB9R86ydkwc2U3q16js/KEIe/QZMVPWbfpQBnWPt267W7Fmk7RvWU8GdYuPWN6EGU/K4ufWScHTTpVlj4wS8wwuze3ZF9+QkQ/Ns25XXDRzmFQs7/wg97/27Je6dw2y3tI4sGtL6RBfP2ITH5i5WJ589lU5rUB+K7AzfbK3zG4h1C5f05OyEUAAAQQQQAABW4AAi7mAAAIIIIAAAjkiYIdP5qHq7VvUlzsb3mLd1meeb7V779/yy29/yqbNn8rX234Ke9NgaOM2bd4qXYdMtq7k+urbH2X33v3y/PxxGT6kfe/+f6TFvQny829/SpHCp0nvTs2kzi3XyelFC1lXcpngx1zJtfHtLVK0cEExbz88kc3cPti213jZ+uX/rIBpQJcWUq9GZSlcsIB15dQvv++Ut97bagVpN1e+MrWq0OCrS9tG0rZZHSlapKD19zt27pE5T74gS55fb/33uCGdpEn9m8OamVmAZXbULv9EzPgsAggggAACCCDgRoAAy40S+yCAAAIIIIDACQuYW/mGT3xc1mzYnFqWecC62UyYZG/nn1tcXn5qUsT6jh9PkTrxA8Q8MN1sV1xygTwzd3SmbTOhUa/7p1vBmL3lyxsnR44es8Ize2vaoJqMHdzxhPtpwqQeQ6fJZ19vTy0rf7681q2M9jakx13SrnndsLoWPfOKPDR7qSQnH7eu4DK3FB4/flx27d5n7WeCvwFdWlpXnKXdnAIss792+ScMRwEIIIAAAggggEAmAgRYTA8EEEAAAQQQyFGBzVu+tN4cuGXrt9YVUCa8MlcrlSp5tlx/9eXSsHZVufSi8zJs08MLVkrS/BXW34e+kTCzTpg6Vr/6jqzd+L588c33smfv35Irl0jRIoWkTOmScmOl8tKwdhU564yi2WJhQqhVr7wlL7/2nlXfvv0H5LTT8kvxM4pJ1Url5K4mNcUEdWm3bT/8KstWbpB3P/xCftuxywrYzil+hlSueIX15sXSpUpEbJ+bAMt8ULv8bMGjEAQQQAABBBBAIIIAARbTAgEEEEAAAQQCJWDfRmiu3tr43DQpVqRQoNpPYxFAAAEEEEAAAQSiFyDAit6MTyCAAAIIIICAhwJDxj9qXU1V46ZrZOa43h62hKoRQAABBBBAAAEEckqAACunpKkHAQQQQAABBE5YwDy0vWbz/tYD0WdN6CO3Vq14wmWmLeDDT7+RqXOWR1Vut7sby43XlY/qM+yMAAIIIIAAAggg4F6AAMu9FXsigAACCCCAgMcCE5OWyMLla6VUyeLy4qKJ1oPNs3tbv+kj6T1iRlTFPjjsXmlUp2pUn2FnBBBAAAEEEEAAAfcCBFjurdgTAQQQQAABBDwSOHr0mMxftkamP/as1YKpo3tKnVsqedQaqkUAAQQQQAABBBDIaQECrJwWpz4EEEAAAQQQcCVgbhOs3KCrnF6ssPy1e58cPZZsfa5101oyrHcbV2WwEwIIIIAAAggggEBsCBBgxcY40gsEEEAAAQRiTsBcddWs8yj5fccuOXYsWS69+Hxp3aQWt+rF3EjTIQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAQwECLA/xqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBDwUIMDyEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBf4Pw0iEugKwzCwAAAAASUVORK5CYII=", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdCbhV8/7H8c/e+5zTPGqQUkSGZEpEKqRcQ6SopEFzCZEiEnLNpBTRHCWlicg1liiSS6aES4ZEVJrn0977//yW/z7n7M4+5+y9zx7W2vu9nuc+z7211m94fX91nY/f+i2X3+/3iwsBBBBAAAEEEEAAAQQQQAABBBBAAAGbCrgIsGxaGYaFAAIIIIAAAggggAACCCCAAAIIIGAJEGCxEBBAAAEEEEAAAQQQQAABBBBAAAEEbC1AgGXr8jA4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggICtBQiwbF0eBocAAggggAACCCCAAAIIIIAAAgggQIDFGkAAAQQQQAABBBBAAAEEEEAAAQQQsLUAAZaty8PgEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEWawABBBBAAAEEEEAAAQQQQAABBBBAwNYCBFi2Lg+DQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAgjYWoAAy9blYXAIIIAAAggggAACCCCAAAIIIIAAAgRYrAEEEEAAAQQQQAABBBBAAAEEEEAAAVsLEGDZujwMDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgawECLFuXh8EhgAACCCCAAAIIIIAAAggggAACCBBgsQYQQAABBBBAAAEEEEAAAQQQQAABBGwtQIBl6/IwOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICArQUIsGxdHgaHAAIIIIAAAggggAACCCCAAAIIIECAxRpAAAEEEEAAAQQQQAABBBBAAAEEELC1AAGWrcvD4BBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACthYgwLJ1eRgcAggggAACCCCAAAIIIIAAAggggAABFmsAAQQQQAABBBBAAAEEEEAAAQQQQMDWAgRYti4Pg0MAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAII2FqAAMvW5WFwCCCAAAIIIIAAAggggAACCCCAAAIEWKwBBBBAAAEEEEAAAQQQQAABBBBAAAFbCxBg2bo8DA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbl4fBIYAAAggggAACCCCAAAIIIIAAAggQYLEGEEAAAQQQQAABBBBAAAEEEEAAAQRsLUCAZevyMDgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgK0FCLBsXR4GhwACCCCAAAIIIIAAAggggAACCCBAgMUaQAABBBBAAAEEEEAAAQQQQAABBBCwtQABlq3Lw+AQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXkYHAIIIIAAAggggAACCCCAAAIIIIAAARZrAAEEEEAAAQQQQAABBBBAAAEEEEDA1gIEWLYuD4NDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCNhagADL1uVhcAgggAACCCCAAAIIIIAAAggggAACBFisAQQQQAABBBBAAAEEEEAAAQQQQAABWwsQYNm6PAwOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIGBrAQIsW5eHwSGAAAIIIIAAAggggAACCCCAAAIIEGCxBhBAAAEEEEAAAQQQQAABBBBAAAEEbC1AgGXr8jA4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggICtBQiwbF0eBocAAggggAACCCCAAAIIIIAAAgggQIDFGkAAAQQQQAABBBBAAAEEEEAAAQQQsLUAAZaty8PgEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEWawABBBBAAAEEEEAAAQQQQAABBBBAwNYCBFi2Lg+DQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAgjYWoAAy9blYXAIIIAAAggggAACCCCAAAIIIIAAAgRYrAEEEEAAAQQQQAABBBBAAAEEEEAAAVsLEGDZujwMDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgawECLFuXh8EhgAACCCCAAAIIIIAAAggggAACCBBgsQYQQAABBBBAAAEEEEAAAQQQQAABBGwtQIBl6/IwOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICArQUIsGxdHgaHAAIIIIAAAggggAACCCCAAAIIIECAxRpAAAEEEEAAAQQQQAABBBBAAAEEELC1AAGWrcvD4BBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACthYgwLJ1eRgcAggggAACCCCAAAIIIIAAAggggAABFmsAAQQQQAABBBBAAAEEEEAAAQQQQMDWAgRYti4Pg0MAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAII2FqAAMvW5WFwCCCAAAIIIIAAAggggAACCCCAAAIEWKwBBBBAAAEEEEAAAQQQQAABBBBAAAFbCxBg2bo8DA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbl4fBIYAAAggggAACCCCAAAIIIIAAAggQYLEGEEAAAQQQQAABBBBAAAEEEEAAAQRsLUCAZevyMDgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgK0FCLBsXR4GhwACCCCAAAIIIIAAAggggAACCCBAgMUaQAABBBBAAAEEEEAAAQQQQAABBBCwtQABlq3Lw+AQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXkYHAIIIIAAAggggAACCCCAAAIIIIAAARZrAAEEEEAAAQQQQAABBBBAAAEEEEDA1gIEWLYuD4NDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCNhagADL1uVhcAgggAACCCCAAAIIIIAAAggggAACBFisAQQQQAABBBBAAAEEEEAAAQQQQAABWwsQYNm6PAwOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIGBrAQIsW5eHwSGAAAIIIIAAAggggAACCCCAAAIIEGCxBhBAAAEEEEAAAQQQQAABBBBAAAEEbC1AgGXr8jA4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggICtBQiwbF0eBocAAggggAACCCCAAAIIIIAAAgggQIDFGkAAAQQQQAABBBBAAAEEEEAAAQQQsLUAAZaty8PgEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEWawABBBBAAAEEEEAAAQQQQAABBBBAwNYCBFi2Lg+DQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAgjYWoAAy9blYXAIIIAAAggggAACCCCAAAIIIIAAAgRYrAEEEEAAAQQQQAABBBBAAAEEEEAAAVsLEGDZujwMDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgawECLFuXh8EhgAACCCCAAAIIIIAAAggggAACCBBgsQYQQAABBBBAAAEEEEAAAQQQQAABBGwtQIBl6/IwOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICArQUIsGxdHgaHAAIIIIAAAggggAACCCCAAAIIIECAxRpAAAEEEEAAAQQQQAABBBBAAAEEELC1AAGWrcvD4BBAAAEEEEAAAQQQQAABBBBAAAEECLBYA0kV+OPvvSH7r1wuSyWzPNqy84D2HfAmdYx0joARqFG5lFwuacOWvfL7MUHAHgKlS3hUsWyW9uz3atuuA/YYFKNAII/AEYeVsv5XQf9/DxYCyRSoWCZTpUtmWH9/mr9HuRCIRiDw91w0z/IMAghEJkCAFZkXd8dYgAArxqA0FzcBAqy40dJwMQQIsIqBx6MJESDASggznUQpQIAVJRyPBQkQYLEgEEicAAFW4qzpKYQAARbLwikCBFhOqVR6jZMAK73q7cTZEmA5sWrpM2YCrPSpdTxnSoAVT13aRiBYgACLFZFUAQKspPLTeQQCBFgRYHFrwgQIsBJGTUdRChBgRQnHYwkRIMBKCHPKd0KAlfIlZoI2EiDAslEx0nEoBFjpWHVnzpkAy5l1S/VRE2CleoWdPz8CLOfXMJVnQICVytVN3NwIsBJnTU8IEGCxBpIqQICVVH46j0CAACsCLG5NmAABVsKo6ShKAQKsKOF4LCECBFgJYU75TgiwUr7ETNBGAgRYNipGOg6FACsdq+7MORNgObNuqT5qAqxUr7Dz50eA5fwapvIMCLBSubqJmxsBVuKs6QkBAizWQFIFCLCSyk/nEQgQYEWAxa0JEyDAShg1HUUpQIAVJRyPJUSAACshzCnfCQFWypeYCdpIgADLRsVIx6EQYKVj1Z05ZwIsZ9Yt1UdNgJXqFXb+/AiwnF/DVJ4BAVYqVzdxcyPASpw1PSFAgMUaSKoAAVZS+ek8AgECrAiwuDVhAgRYCaOmoygFCLCihOOxhAgQYCWEOeU7IcBK+RIzQRsJEGDZqBjpOBQCrHSsujPnTIDlzLql+qgJsFK9ws6fHwGW82uYyjMgwErl6iZubgRYibOmJwQIsFgDSRUgwEoqP51HIECAFQEWtyZMgAArYdR0FKUAAVaUcDyWEAECrIQwp3wnBFgpX2ImaCMBAiwbFSMdh0KAlY5Vd+acCbCcWbdUHzUBVqpX2PnzI8Byfg1TeQYEWKlc3cTNjQArcdb0hAABFmsgqQIEWEnlp/MIBAiwIsDi1oQJEGAljJqOohQgwIoSjscSIkCAlRDmlO+EACvlS8wEbSRAgGWjYqTjUAiw0rHqzpwzAZYz65bqoybASvUKO39+BFjOr2Eqz4AAK5Wrm7i5EWAlzpqeECDAYg0kVYAAK6n8dB6BAAFWBFjcmjABAqyEUdNRlAIEWFHC8VhCBAiwEsKc8p0QYDm3xJd1vUO//Panhg3sos7tWjp3Imk0cgKsNCq2HadKgGXHqjCmUAIEWKwLOwoQYNmxKowprwABFuvBzgIEWHaujnPGRoDlnFodOlICLOfVjgDLeTVLqRETYKVUOVN6MgRYKV1ex06OAMuxpUubgRNgpU2pHTlRAixHls12gybAsl1Jwh4QAVbYVLa5kQDLNqVIz4EQYKVn3Z04awIsJ1YtMWPes9elOfNc6nC1X6VL+RPT6f/3QoCVUG46i0KAACsKNB5JmAABVsKoU7ojAiznlpcAy3m1I8ByXs1SasQEWClVzpSeDAFWSpc36sllH5QmT/Vow58u1Tjcr949vcrMiLq5iB8kwIqYjAcSLECAlWBwuotIgAArIi5uLkCAAMu5S4MAy3m1I8ByXs1SasQEWClVzpSeDAFWSpc3qsn5/dILs9z64Ud3zvP1jvWpSyefXK6omoz4IQKsiMl4IMECBFgJBqe7iAQIsCLi4mYCrJRbAwRYzispAZbzapZSIybASqlypvRkCLBSurxRTW7hIrc+W5UbXgUaOaOhT21a+6JqM9KHCLAiFeP+RAsQYCVanP4iESDAikSLewsSSMQOrM9X/6AXX35Xn331P23ZukOlS5XU8cceqSsuOtf6j8eT+88j1w64X1+uWatLWjTWyHuuL7RwT06ap0kzF+nwqpX1zktPyO3O/Tdwfr9fr7/7sV55a7m++2Gddu7ao4oVyur0BvV0bduWOuv0E2K+KL75/hfNXrhEn375vTb9vVUul0vVq1bW0bVr6KLmjXT5RU3y9bnp722aMe9tffjf1Vq/YZP2H8jWYRXLq+Ep9dS+9QWFjjOcACsW7X/06jhVKF/Gqt/EF17T19/+pO07d6tZ41M0/tFbY+6Yyg0SYKVydR0wNwIsBxSJIVoCBFgshLwCy5Z79M6SgrdZXdTSr6ZNvHFHI8CKOzEdFFOAAKuYgDweVwECrLjypk3j8Q6wRk+cq8kvvm55Zng8qlSxnBUm7dt/wPq1sxvW19gHBqpM6ZLW/375jWUa/ugUZWVl6v0FY1S+bOmQtTABVatrhmjDX3+rb5fLdXPvq3Lu27N3n24aPlYff7bG+rWSJbJUrmxpbd22Uwe9//zzTc9rLtXg/h1iUmczlicmzNG02W8U2J4J6h4e1ifo99/54FPd8eDEHIsSWZnKzMzQrt17c+676rLmuufW6yy7Q6+iAqxYtf/q8w/pv198pweenCEz18DVuV1LDRvYJSaG6dIIAVa6VNqm8yTAsmlhGFY+AQIsFkVA4KvVLs1bkP8fgg4V6ni1VyfVj++h7gRYrEu7CxBg2b1C6T0+Aqz0rn+sZh/PAOu5OW/q8WdmywQztw24Rlde3EylSmbJ6/Xp/RVf6O7Hp2rb9l267MKz9djd/a0p7d13QOe1G6jde/bp7kHddE2bFiGnanYDdRv4kPV7r894REcdeXjOfTcOG6P3PvpcRxxeRfcMuk5NGp1k7fLas3e/Zr2yWE9Omiufz68RQ7qrfevzi005YcZrGjtlvtVO20uayQQ7x9Q5Qge9Pv32x0at+PQbNTrteDU4/uicvlZ9/T9dd/PD1jguaHK6burVTscfc6T1+1u27dSC/3ygp6cuUPZBrzpdeaGG39I1ogArlu3f0P1KPfP8QjU4/ijd2LOdTj6hrkxImJHhUdXDKhbbL50aIMBKp2rbcK4EWDYsCkMKKUCAxcIwAr+uc2nKc8HhVdkyfnW+xqeZs93atTt4V1av7l7VqR2/EIsAi3VpdwECLLtXKL3HR4CV3vWP1ezjFWD9vXWHWnYcrAMHsvXv23rK7CQ69Hpr6Se6dcQz1i/Pn/xvnXBsbeu//3v0dL20cIkV+Lw04d6QU73viec057WlOrX+MXrxmbtz7jHBlQmwMjM8VpvHHFUz3/P3j55uvep3WKXyevelJ6zdXtFeGzdvU6uOg62dXf26Xq6BvXJ3ghXW5hXd79LaX363wqunHhxovW5YmM/sZ+/RySfWDbqlsB1YsWzfdHrumQ007qFbrB1iXNELEGBFb8eTMRAgwIoBIk0kRIAAKyHMtu5k02a3Jk52af+B3H9AysyU+vbyqno1v/7a6NLEKR5lZ+dOo0SWX317+1W1SnzOxCLAsvWSYXCSCLBYBnYWIMCyc3WcM7Z4BVhTZ/9HT4yfozq1qus/LzxaIMh57W7W5i3bdX23NrqxZ1vrvm9/+FVX9/knuFo47UEde3RwCGV2JZ3XdqB1DtO9g7urw+W5u6j6Dx2lZSu/0tWtz9N9Q3qE7PfndRvUutud1u9NHT1UjU8/MeqCBXZfVapQTu/NGx1WwGN2R3W96Z/dY+b1PLNbq6Cr04D79dWatdZZYYe+glhQgBXr9s2uubdnP6HKFctF7cSD/wgQYLESkipAgJVUfjqPQIAAKwKsFLx1x06XJkx2a+fO3PDK/Iu+bp19OqZubji19ie3Zrzoli9PXlWunF/X9/XJ7NSK9UWAFWtR2ou1AAFWrEVpL5YCBFix1EzftuIVYIUTJBl18xqgeR2wZbMzNOb+m3IK0b7vCK353y/q3uFi6/XDvFdgl9Wh52SZ1/EaX3a99Xrbo8P7qXXLc0IW1gRgDS/qbb2+N2xgZ3Vu1yrqBdD3tpHWAezmgPZHhvUNqx1zEPqYyfOtVxzfmT2y0GcC91avWklL5o4OuregACvW7ed9xTOsCXJTgQIEWCyOfAIbNm7RrJff1fJPvtZvf2yytnPWqFZZzc8+Vb2vvUxVKlfI98x3P67TVb3vKVTTJPgmyc97EWCxAJ0iQIDllErFfpz79rusnVeb/w7+4mC7Nj6ddmr+nVWrv3Fpzvzg1wyrVTU7sbwqxg77kBMjwIp9vWkxtgIEWLH1pLXYChBgxdYzXVuLV4B1aZeh+nX9X2Gzmq8CTht9R879c159T/eNet56zW/JvNFBh5gPvu8ZvfneJ7r4grP0xL0Dcp4xX9w7/6pbwu7T3HhDj7YacF2biJ7Je3NgnubVQfMKYTjXPY9P1fzXP9A5jU7S5JG3FfrI2+9/qkH3Pm3d88W7U6xXIwNXQQFWrNsf1Le99XM0V/EFCLCKb5gyLZgEfcqs1zVu2svWYXcmtKpX90h5vV5rG6o5DM9se3x+7DDVrV0jaN7mYL3eQx63DqE7vFrlkCbm6xYtzj096PcIsFJm+aT8RAiwUr7EISfo80rTZniss6/yXi3O9+n85gW/Frh0mVtL3gsOvOoe7bN2bLmDf7lYsARYxeLj4QQIEGAlAJkuohYgwIqajgfzCMQrwAq8GlitSkWZ1+uKuk46/mjdf3vPnNvMIe7mMHdzqPtTD96c83OY2V3V7MqB1pf7xj96q5o1PiXnmbyvBppD3c3h8UVdHa+4QB0LOCi+qGfN7wfmeceN16rr1ReF84iG/PtZvbFkpVo0bainHhhY6DPLVn6t/kOfsO75cOHTqlihbM79BQVY8W4/rElyU0gBAiwWRpDALfc8rZ9/26A7b+yss8+on/N75i++EU9M06J3VqjhyfU046m7gp57ffHHuv3+8bq1Xwf16nRp2KoEWGFTcWOSBQiwklyAJHU/Z55Hq9cEh1dm15XZfVXUtWChW198GZxWhftsUW0Hfp8AK1wp7kuWAAFWsuTpNxwBAqxwlLinKIF4BVgXX3u79QW+SHYmHTrW4Y9O0ctvLNOFzRpq7P3/BD2vvf2R7nhoovVWjXmlznxdMHD9uWmLLmx/q/U/zc975ue+eF//6nSb1m/YpFv6XK0+nVuH1d2DY2boxZcXR74D653JQWdsFRRgxbv9sCbJTSEFCLBYGEECJqjyuF0hvyRhfq9pmxuttP79BWOCXiWcMe9tPfL0i3rwjt668uKmYasSYIVNxY1JFiDASnIBktD9O4vdWvZh9LuozDlY5suEP/wY3IbZuWV2cMXiIsCKhSJtxFOAACueurRdXAECrOIK8rwRiFeA1XPQo1r5+bcqzvlJX65Zq2sH3G+9NvfBK0+pfNnSCpyt1eOaSzSkf8egIpq3cM66tL/15cMRQ7qrfevcw93jVe3rbn5Yn375vdpe0kwPDO0VVjeBA+7DOQNr0sxFenLSPOtNoaXznwxqv6AAK97thzVJbiLAYg0UX6Btz+H630/r9cq0B1Tv6Fo5DZpD9Mxhd+MfHaxmjU8OuyMCrLCpuDHJAgRYSS5Agrv/dJVbry4KDp6iOccq+6A0eapHG/4M3sVV0PlZkU6TACtSMe5PtAABVqLF6S8SAQKsSLS4tyCBeAVY46e/qqemLrBCp8VzR6t0qRJRFeHKHsP1w8/rrXDIvHLX/MqB1hnHob5OaDrodetj+njVmrB2N0U1oEMeMuGSCZlC7QgrqP21v/yuK7r/80ZQQfMIPNv5hgf0xTc/6tILG+vxu68PK8CKd/uxcEvXNtiBla6Vj3LeLdoP0l+btuqT/4xXmdIlc1oZMfI5zV20VPMm3acT69UJu3UCrLCpuDHJAgRYSS5AArs3O6ZemOWWP89HAytWMIewR/clwT17XRo/0a1t2wv/gmE0UyTAikaNZxIpQICVSG36ilSAACtSMe4PJRCvAMscqN7qmiHKzj5onTF1z6BuURVg5oJ39NDYmTq/yWm66LwzNezhSTrp+KM0Z8KIkO2988GnMsfKmGvkPdfrkhaNo+o33IfMQfXmIHdzRXLYeacB9+urNWuteT394M1ymc9DH3ItWb5KNw0fa/3qc0/eoTNPOyHojoJ2YJmb4t1+uD7cFyxAgMWKCFvgm+9/UYd+I3Rq/WP04jN3Bz1n/mIwf0H073aFdu7aq9179lqvIdY+opp1MOCxR9cM2Q8BVtj83JhkAQKsJBcgQd3/scGlydM8Ongwt8OSJf3q39unypXzJFoRjmfLFpcmTnHLhFmBKzNT6tvLq+rVom+XACvCQnB7wgUIsBJOTocRCBBgRYDFrQUKxCvAMh0Gjmkx/93snupz7WUyh7Wbc6t27d6rPzdusV4zXPLhKj0yrK/1mtyh1/adu60vC2Z43Drr9BO19KMvNGxgF3Vu17LAOd1891N6d9lncrtd6t7hEutL8nVqVZff79fW7bv0+4ZNWrbyK32/9jeNuf+mYq+OR8fN0vS5b1ntdO94sbq0a6Ua1Q+T1+vTxr+36bMvv9eOXXt0bdsLc/r68effdXXfe62Ar2WzM6zwyxw8by5zUP0rb36okc/O1v4D2brionP18LA++cZZWIAV7/aLjZamDRBgpWnhI522+cvKbCc1f0Gav6TMXxJ5rxuHjdF7H31eYLPmE63mqxilS+Xu2jI379yTHfKZUiU81l+ye/d7ddAbm7NiIp0z9yOQV6BsqeDQyMwAACAASURBVEyZf7Gzc2+2FH3eAKqNBTZvcenJcX7t3hM8yIH9paPD31ha4AzXrZeemqCgcKxsGb8GDXBHHY5lZrhVMsuj7IM+7TvgtbEuQ0tXgXKl//mCVUH/f5+uLszbHgLm70/z96j5+9P8PcqFQDQCgb/nonk2nGfMeUyjJ86V+WK8ucxOo8zMDOucqrzX4rmjdHjV0F+DH/rgBOtjXOYy52EtnT8m6Gt8h47DnHlsDoA3X/oLXBkej/VfzeuHgevII6rpzRcfC2cahd5j2jRv9JgD5wOX2Qxhwinzc6i5zNfszdcU816ffP6dbh0xTlu377R+2Xxh0Hw58e8tO3LGaXaQmXOaQ31RsbAAy7QX7/aLDZeGDRBgpWHRo5ny01Nf1rPTF1rBVaiU3fwFuvLz73TkEVVlPvWamZmpzVu2a+WqNXr2+YXWlyXOPbOBJj4+JJrueQYBBBCIq8Cu3dJDo7K1cXNwNwN6ZajhKfm3pEc7mK/X+DV2ovmHsdwWqlWR7hqcqTKlo22V5xBAAAEEEEAglQXW/f6XZi541zqb6o8//9a+/ftVskQJHXH4YTrtpGPVqnkj62etUK/RGRdzSLo5LN1ceb9IWJSZ2byw4D8f6POvf7B+tjNBU9kypVS7ZnWdddoJat2qiY6rm3suclHtFfX7JjCau+i9f/rbukOZGRnW2Vin1K+rDpdfoDNOOS5fEya8mrfofZlXH9f/sUl79u3XYRXL67QGx+qqy5qrSaMGBXZbVIBlHox3+0WZ8PvBAgRYrIgiBcwnSs2nRM1fTi88PTzo7KsiH5b099YdatP9LusP/5RRt+vshvVzHmMHVjiC3GMHAXZg2aEK8RmD+ReYZmfU+t+D27+ytUvnnRv77XYrVkpzXgnuq86R0g19JPNaYSQXO7Ai0eLeZAiwAysZ6vQZrgA7sMKV4r7CBOK9AysW+uaVusaXXW/t4jK7mMxuJi4EnChAgOXEqiVwzOZgdrOd06Ts08feGfK96nCG89i4WXp+7lvWGVk39WyX8whnYIWjxz12EOAMLDtUIfZjMDuhzIHt5uD2vFfjM3267JL4vU7y7hK3Plge3OcJJ/jUqb3PelU13IszsMKV4r5kCXAGVrLk6TccAc7ACkeJe4oSiOcZWEX1He7vz3/9A93z+FRVqlBO781/0nqNkAsBJwoQYDmxagka8+yFS3T/6OnWYXjTRt9hvRoY7RX4+kXndq00bGBnAqxoIXkuaQIEWEmjj2vHCxe59dmq4gdJ0QxyzjyPVq8JTqvOaOhTm9bhB2cEWNHI80wiBQiwEqlNX5EKEGBFKsb9oQScEGB17HefVn//s65r/y/dfkOnmBfS7PDqe9sTEbVrvh7Y+9rLInqGmxEgwGINhBQIfPHCvDY4+YnbdVil8sWSGjN5via+8Jpu6XO1+nRuTYBVLE0eToYAAVYy1OPbp9kBZXZC5b1q1fSrV3ev/v+c0rgOwOeVps3w6Nd1wSHWv1r6dG6T8EIsAqy4lojGYyBAgBUDRJqImwABVtxo06phuwdYSz78XDfdNcb6cuGi6Y+ods1qMa+P+ULgOa0HRNRuu0ubWx/54kIgEgECrEi00uTeabPf0MjxL6nB8Udbh65XKF+mWDPPPuhVm+7D9Ov6vzTrmbt1Sv1jCLCKJcrDyRAgwEqGevz6XP2NS3PmB2+fr1zJr369fSpVKvbnXhU0k337XZo42aXNfwcHaZ06+HTiCUWHWARY8VsjtBwbAQKs2DjSSnwECLDi45purdotwDJf7Qsc5r5k+Srd+fAk7dq9V9e2vVB33dw13crDfFNMgAArxQpa3OmYXVJmt1TDk4/T+EdvDevA9nW/b9TiZZ/p8ouaWF+JyHuZL2Y8NPYFLVv5tZo1PlnjHx0c9PucgVXcivF8ogQIsBIlHf9+zI6nadM98uXJh0qX8qt/H58qVkxceBWY6Y6dLk2Y7NbOnbk7sdweqUdXr+rULnw8BFjxXy/0UDwBAqzi+fF0fAUIsOLrmy6t2y3A6nLjg/rtj43as3e/zKt95jr5xLrWkTClSmalS1mYZ4oKEGClaGGjmdZHn65WnyEjrUdrVD9MJbIK/hxW2dKl9NKEe617v/txna7qfY+V9NepVV21alS1/vsff27Wz79tsL520fDkehr38CCVLxv8nXgCrGgqxTPJECDASoZ67PvctNlt7XjafyA3LDJf/jOvDR5RI/HhVWCGocZVIsuvvr39qlql4J1YBFixXyO0GFsBAqzYetJabAUIsGLrma6t2S3AuuOhiVq+8mvt2r1HRxxeRa1bNVGvTpcW+rNdutaOeTtPgADLeTWL24jfWvpf3TpiXFjtly1TSitff9a6Nzv7oF5+c7mWLP9M36/9TVu37ZT5slfFCmV1Yr3aat2yiS5p0dh67/rQiwArLG5usoEAAZYNilDMIYTa6WS++Nets0/H1C36db1idl/k46F2hpUr59f1fX0qWyZ0uEaAVSQrNyRZgAAryQWg+0IFCLBYILEQsFuAFYs50QYCdhUgwLJrZdJkXARYaVLoFJgmAZazi1jQWVPt2vh02qnJD68CuqHO5qpW1ezE8irUplgCLGevy3QYPQFWOlTZuXMkwHJu7ew0cgIsO1WDsaS6AAFWqlfY5vMjwLJ5gRhejgABlnMXQ0Ff+zuvuU8Xnm+f8CogHOrriHWP9qnbtT6Zs7HyXgRYzl2X6TJyAqx0qbQz50mA5cy62W3UBFh2qwjjSWUBAqxUrq4D5kaA5YAiMURLgADLuQthzjyPVq/JPfPKzKRBfb86XO217aQWLnLrs1XBr12HGjMBlm1LyMD+X4AAi6VgZwECLDtXxzljI8ByTq0YqfMFCLCcX0NHz4AAy9HlS6vBE2A5s9zvLnHL7GjKexW0m8lOMzTnCL4wy60ffgwee/NmPrW8IHfXGAGWnarGWEIJEGCxLuwsQIBl5+o4Z2wEWM6pFSN1vgABlvNr6OgZEGA5unxpNXgCrOSWe/lHHr39bvAuqmhGVL2aX316epXlgK9IZ2dLU57z6I8NwfO+8nKfGp7+T4hFgBXNKuCZRAoQYCVSm74iFSDAilSM+wsL6tFBAIH4CxBgxd+YHgoRIMBieThFgAAreZXy+qTRYzwyXxEszlXUF/2K03a8nt2z16XxE93atj137ubLiV06+VTvWB8BVrzgaTdmAgRYMaOkoTgIEGDFATUNm2QHVhoWnSknTYAAK2n0dGwECLBYB04RIMBKXqW+Xu3S3AWHnF4e4XBKZJkv+flVtYr9Dm0vaipbtrg0frJb+/blhlgZGVLvHl4de5RbFctmac9+r7btOlBUU/w+AgkXIMBKODkdRiBAgBUBFrcWKECAxeJAIHECBFiJs6anEAIEWCwLpwgQYCWvUuPGe/TXxuh3X5kv9/Xo6lWd2v7kTaKYPa9f79LU6R4dPJjbUOlSfg260aWja2USYBXTl8fjJ0CAFT9bWi6+AAFW8Q1pQSLAYhUgkDgBAqzEWdMTARZrwMECBFjJKd6631yaPC1491WfHl4deaRzw6hoJc2B7uZgd3PAe+CqUtmvu2/LksvDDqxoXXkuvgIEWPH1pfXiCRBgFc+Pp/8RIMBiJSCQOAECrMRZ0xMBFmvAwQIEWMkp3ktz3frm29wv8ZlD2G/o703OYGzQ66er3Hp10SFfVazj0oC+Lu3ZzyuENigRQzhEgACLJWFnAQIsO1fHOWMjwHJOrRip8wUIsJxfQ0fPgFcIHV2+tBo8AVbiy71jh0tPjPEE7Thq386rkxuk3+6rvPpvvePWhyuCQ6z6J0gd2x+UOeCdCwE7CRBg2akajOVQAQIs1kQsBAiwYqFIGwiEJ0CAFZ4Td8VJgAArTrA0G3MBAqyYkxbZ4Jtvu/XRx7lBTflyfg2+xZv2IY15hXDufI9WrwlOq85o6FOb1s47pL7IhcANjhYgwHJ0+VJ+8ARYKV/ihEyQACshzHSCgCVAgMVCSKoAAVZS+ek8AgECrAiwYnBrdrb06BMeHTiQG9Jc1NKnpk0IaAyvzytNm+HRr+uCQyyMYrD4aCKmAgRYMeWksRgLEGDFGDRNmyPAStPCM+2kCBBgJYWdTgMCBFisBacIEGAltlIrVrr1xlu5u68yM6Tbh3hVIiu9Xx/MW4V9+12aNMWtTZuDQ6wOV3nV4CScErti6a0gAQIs1oadBQiw7Fwd54yNAMs5tWKkzhcgwHJ+DR09AwIsR5cvrQZPgJW4cptX5EY/5dG2bbnBzFmNfGp9KbuvDq1C9v4MjXlG2rEz93fcbqlHN6/q1CbEStyqpScCLNaAEwUIsJxYNfuNmQDLHjVZ9/tfuqTz0HyDycrKVPmypXXUkYerSaMG6nDF+apUoVy++4Y+MEGL3l0R9OuZGR6VL1dGxxx1hFqc21DtLz9fJUtkFTrhpR99oTeXfqIvVv+ov7du10GvT5UrlFP9449Sy2ZnqHXLc+TxBJ9lun3nbjVtc6PV7kevjlO5sqVD9nHT8LFasnyVzml0kiaPvK3AcVzaZah+Xf+Xpo4eqsann2jdd8HVt2jj5m1q0bShnnpgYKFzePmNZRr+6BTd1LOd+ne7wh4F/v9REGDZqhzpNxgCrPSruVNnTICVuMp9+51bs+YE/x/7oIFeVapIIHNoFUqX8GjXjkw9NPqgDuT5CKHZqda3t19VqxD6JW7l0lMoAXZgsS7sLECAZefqOGdsBFj2qFUgwCpVMksNTz4uZ1D7D2Rr4+atWvf7RuvXKpQro0kjb9NJxx8VNPBAgHXs0TVVpVIF6/cOZGfrz01b9cefm63/XadWdU0bfYeqV62Ub9Kbt2zXoHvHadXX/7N+r0zpkqp5eBVlZGRY/ZvfN1fd2jU09oGBOrp2jaA2rul/n77+7mcrXDIh06FXdvZBNbniBu3Zu18ZHo+WL3wqZND116atatF+kBW0rXhtnEyAZ65AgGX+++N3X69LL2xcYOEIsOyxphmFDQUIsGxYFIYUUoAAK3ELY+rzHv3ya+7uq+Pq+dSlE0FMqAqYAKti2Sx9vtqrZ6f45MvDVK6cX/16+2QOv+dCIFkCBFjJkqffcAQIsMJR4p6iBAiwihJKzO8HAiyz0+r1GY/k69SEUPeMnKYVn36jE+vV0bxJ9wXdEwiwQoU7a3/5XYPve1Y//Lxe5zc5TeMeuiXo2Z279qhDvxFWSHbMUTV12/UdrV1SJmgKXN+v/U1jp8yX2aFlQrSXJtyrI4+olvP7YybP18QXXlPndq00bGDnfONf/snX6nf7E6pcsZy2bNtZYAj12tsf6Y6HJqrpWSdrwmODc9oxAZYZ5959B1SxQlm99vzDVluhLgKsxKxZenGgAAGWA4uWpkMmwEpM4f/8y6VnJuT+n73p9bquXh1zNCFMYQHWnv1eLV+ZrTnzg+2qHOazdmKVLIFfYlYwvRwqQIDFmrCzAAGWnavjnLERYNmjVkUFWGaUJvhp3nag/H6/tYMp76uEhQVY5tm1v/6hK64bJrfbpQ9fHWe9lhi4zOt2JvSpf9xReu7JO6zdV6Eu0+/dj0217j21/jF68Zm7c2775PPv1GPQIzI7wBZOezDf4w+OmaEXX16sAde10TPPL9QlLRpr5D3X57svMJbbBlyj7h0uDgqwKlcsr2OPqmm9KnnxBWfpiXsHEGDZY/kyCqcIEGA5pVKMkwArMWtg/itufflV7uuDVav5dVN/b2I6d2AvgR1YJsDatuuA3l/m0eL3gg91P7KWX8fUjWwHW8mSLjU5O7JnHMjHkBMgQICVAGS6iFqAACtqOh7MI0CAZY/lEE6AZUZ61qX9tXvPPi2ZOzroVcCiAizz7LltbtS27bs0f/K/dcKxta2J/7lpiy66Zoi8Xp8VPJkAqrDL7IC6+NrbrFcKp4y6XWc3rG/dbl4RPOfyAdYOqQ9eHqvDKpUPasb0YV4P/OCVsfpXp9v+P4R7WuacrrxXq2uGWK88vjz1AR1Xt1ZQgJWVmamXxt+rK7oP099bd2js/QN1YbP8ryuyA8sea5pR2FCAAMuGRWFIIQUIsOK/MHbtcumxUcH/J9yujU+nnUqQUpD+oQGWue+VV91a9UXwGWLRVO/cJl79qyU7t6Kx45lcAQIsVoOdBQiw7Fwd54wtUQHWl6v9+uW39PlnotMauFXnyOB/KVfYqggnwAqcD2Ve4fvw1aflcuW2H06AdXbrAdZreG/PHmmdb2WulxYu0b9HT1ejU4/X82PuDGvhjhz/kqbNfkMdrrhA9956Xc4z/Yc+oWUrv873euCPP/+uNj3u0hmnHKfpY4fptvuf1X8Wr9SkkUOsg+kD1/oNm6xwq0rlCnp/wZigsZhXCA8e9GrZK0/praX/1a0jxln3vfr8Q9YrjXkvAqywyshN6ShAgJWOVXfmnAmw4l+3xUtcen95boBVupRfd9zG7qvC5EMFWOb+GS+69cOPxQ+xzJcfzRcguRCIVoAAK1o5nkuEAAFWIpRTv49EBVjTX/Lqg4/S5/+Tu3b06Lwm4f+zTFEB1q7dezXk389q2cqvrDOmzFlTea+iAqxvvv/FOufKnBu1dP6YnC8J3vXIZL3y5nLra33mq33hXOZLguaLgmYXl9nNFbiem/OmHn9mtq5ufZ7uG9Ij59cnzVykJyfN06C+7dX72sus8MqEWJ2uvFDDb+mac9/81z/QPY9PVetW5+jRu/rlC7DM7q6PFz1j/fot9zytdz74VG3+da4eurMPAVY4heMeBAiwWANOESDAim+lvF5Zu6/27s39N2EXnOeT+Q9XwQIFBVgHsqUp0zza8Gf4/+YyVC/mX0yaA/TrHUsdWIfRCRBgRefGU4kRIMBKjHOq90KAFZ8KRxtglS5VUueembsryevzacvWHfr2h1+trwh273iJFdocehUWYP20boMGDh+rn9dt0LCBXdS5Xcucx83B6uaA9ftv76l2lzYPC+O7H9fpqt73WGGY2REVuP7303q17TncOtz9zRcfy/n1Ljc+qM9X/5DziqLZBda0zU3WDqrFc0fl3BeYgwmkDp2j2YFlQrz/vjHBut+8wmheJdy+Y7fGPzpYzRqfnNMOO7DCKiM3paMAAVY6Vt2ZcybAim/dVn3u1iuvBf9btqFDvCpTmlfYCpMvKMAyz+zZ69LHKyOrW3a29OGK4Nc4zQd0evfwquYR1CIyTe42AgRYrAM7CxBg2bk6zhkbAVZ8ahVtgFXQaDIzM3RR80bW4eUtmuY/9ykQ/phdUdWqVLKaMa/c/bnxb5kAyzx/Q/cr1adz66AuAuGSOVDdHKwezhXYLZaVlanP354U9Mh57W62wqV3Zo/UEYdXsQKmplfeqBrVDrNeXQxcPQc9qpWff6u5E0dYh8eb6/yrbtGmv7fpvXlPqlqVikHtBr5C+OmbE3N+PfDFwsOrVrZeJQwcPk+AFU4VuSctBQiw0rLsjpw0AVZ8yzZ2nFub/84NsBqe5teVV/D6YFHqhQVYRT1b0O9/usqtVxcFh4nmdc7+fXyqWJEQK1rXdH2OACtdK++MeRNgOaNOdh9logIszsAqfCUU9AqhOVx9+87d+vrbnzT5xUVa9fUPIb/gFwiwQvVidnWZgKdGtcr5fjuWO7BM40MfnKBF76zQA0N7qe0lzRQImcyuL7P7K3DNmPe2Hnn6RV3frY1u7NnWCtku73anjjmqpl59Lv9XDEMFWKatAXeO1vsrvlSHy8/XvYO7W80TYNn9bx3GlzQBAqyk0dNxhAIEWBGCRXD7Dz+6NOPF4F0/Nw3wqWoVXlsrijEeAZbp88233fro4+AQq3Ilv/r19qlUKUKsourC7+cKEGCxGuwsQIBl5+o4Z2yJCrCcI5KckRZ1BpYZ1UGvVx373SfzCt+jw/updctzcgYb6hVCv9+va294QF+tWauhN3RSt/b/yje54Y9OsQKfQJAUzuzf++hz3ThsTL4zsMyz5jwtc67W5Rc10SPD+uYc2D7x8SFBr0YGDmwPnKMVOEy+69UX6Y4br803jIICLHOwvXmV0LxeOHX0UDU+/UQtfOtDDXt4knWmlznby06Xy2+qwoVAkgQIsJIET7cRCxBgRUwW9gPTZ3r049rcs5rqHu1X967svgoHMF4Blvkng1lz3fruu+AQq1ZNv3p198q8VsiFQDgCBFjhKHFPsgQIsJIln1r9EmDZo57hBFhmpIED0c3uJrPLKXAVdAaWOby9Y//7VKpkCb0+45F8r+bNefU93TfqeZ11+gmaNvqOsDBGTZijKbP+o45tWuieQd2Cntm4eZtM2GS+cvjWrMfVvO1A7dt/QB+9Os56jTHvdUX3u7T2l9+tLw6a3VhvLFmpZx8ZpOZnnxp2gGVunLfofd07cppq1aiqV6Y9qKUffW4deE+AFVY5uSmdBAiw0qnazp4rAVZ86rdps1tPPRMcknS+xqvjj+PfrYQjHq8Ay/RtDtaf8pxH638PPgj+hBN86tTepzxfng5nqNyTpgIEWGlaeIdMmwDLIYWy+TAJsOxRoHADrMCX/s4751Q98/CgIgMsc8OIkc9p7qKl+tf5Z2rUiBvyBU6tOg62dnctmv6wjq5do1CQ/QeydfG1t8kEVSbwMsHXodcV1w3T2l//0OSRt6n3kMd1YbOGGnv/wHz3mS8TmkDOnL/1+LOz9feWHVqx6BmVLlUiogDL3Nxr8GP6+LM16nJVK51zxkm6YdiTBFj2WNqMwk4CBFh2qgZjKUyAACs+68OctWTOXApc5oylQTd5CUfC5I5ngGWGYL4KOWGyW1u2BodYjc/06bJLeMUzzDKl9W0EWGldfttPngDL9iVyxAAJsOxRpnADrMCZT+Z1QPNaYOAq7CuE27bv0qVdhlpnaU14bLCanpX7xT7zfOA1wlPqH6Opo4aqVMmsAlEeHDNDL768WA1PrqcZT90V8r6Hxs7UzAXvWK84Lnp3RYFfOPxyzVpdO+B+XXlxU+vVw0anHq/nx9wZss2CXiEM3Pz7n5t1ZY+7tHffAQ3s1U5jJs8nwLLH0mYUdhIgwLJTNRgLAVZi14AJRx57wiNvnhyk9aU+ndWIYCTcSsQ7wDLj2LbNpfGT3NZXDfNeF1/kU5OzqVW4tUrX+wiw0rXyzpg3AZYz6mT3URJg2aNCRQVYBw5ka9pLb2rslPlyu12aP/l+HVe3VlgBlrlp9sIlun/0dNWuWc16za5EVmbOszt37VGHfiO07veNOrFeHd0+oJPOPO14ufJsV/91/V9WKPTW0k9UsUJZzZkwwnpNMNS19KMvrB1QJggzgZJ5RbBK5Qr5bvX5/Dr/qpu1Z+++/w+erlK/rpdHFWCZh2YueFcPjX3BmpvZKcYrhPZY24zCRgIEWDYqBkMpVIAdWLFfIEuXubXkvdzdV1lZfg0d7FVm7j8PxL7TFGsxEQGWIftjg8t6nTA7OxiwUwefTjyBECvFllVMp0OAFVNOGouxAAFWjEHTtDkCLHsUPhBgmdfnzm5YP2dQPr9fO3bu1nc//mYFPR6PW8Nv6WZ9dS/vVdgOLHOfCYva973XOgB+wHVtdEOPtkHPb96yXbfc87Q+X/2D9euVKpRTrSOqKjPDoz83bdUff262fv2YOkdo7AMDddSRhxcIZ8Z5TusbrNcSGxx/tF6acG+B9wZ2f5kbZj97j04+sW7Ie4vagWUeMsejdxv4sFZ9/T+rDQIse6xtRmEjAQIsGxWDoRQqQIAV2wVidl2NHOXR7j25u3qaNvHpopaEIZFIJyrAMmNa+5Nb02e6lffTL26P1Ps6r2rV4syySOqWTvcSYKVTtZ03VwIs59XMjiMmwLJHVQIBVqjRmB1Fh1errDNPO0Gd27UK2nkVuL+oAMvc98U3P6rzDQ9Yh6kvnPag6tSqnq8784XBN5d8YgVZW7btkNfnV6UKZXXS8UerVfMzdNmF51ghWlFX15sesoIkE5SZwKyga8nyVbpp+FiVK1taHy58usC2wwmwTB9mp1jbnsPZgVVUgfj99BQgwErPujtx1gRYsa3aF1+5tOCV3E/Zud3SkEFelS1DEBKJdCIDLOsf3L50a8HC4H/oKlnSr/69fapcmdpFUrt0uZcAK10q7cx5EmA5s252GzUBlt0qwnhSWcDlN/vEuBBIkgABVpLg6TZiAQKsiMkKfWDceI/+2pi7++rkk/xqf5U3tp2kQWuJDrAM6btL3PpgeXCIVbGCX/37+lS6FP9IkQbLLqIpEmBFxMXNCRYgwEoweIp2R4CVooVlWrYUIMCyZVnSZ1AEWOlTa6fPlACr4Aq+9rpbGzcFH/BdWL19Pum39cH39+vtVc0jCD8i/XOSjADLjHHuAre+Xp0/xKqQ/3zRQqd0/HFS0yYEl5HW3Un3E2A5qVrpN1YCrPSreTxmTIAVD1XaRCC0AAEWKyOpAgRYSeWn8wgECLBCY73+hlsr/1v0e/yFUdc50q9ePQgxIliOObcmK8AyA5g63a1ffile7U07bdv4dPqpnH0WTf2d8AwBlhOqlL5jJMBK39rHcuYEWLHUpC0EChcgwGKFJFWAACup/HQegQABVn6sFR+79cbbxQ8wrmnvU/0TCTAiWI62CLD273Np4jS3NkWw+66gOV7Xxadj6rIGolkDdn+GAMvuFUrv8RFgpXf9YzV7AqxYSdIOAkULEGAVbcQdcRQgwIojLk3HVIAAK5jzm2/demlu8cOrChX8Gnwzu6+iXazJ3IFlxrx9u0vjJ7mDviYZzVwyM6Q+vbw6vDqvkUbjZ+dnCLDsXB3GRoDFGoiFAAFWLBRpA4HwBAiwwnPirjgJEGDFCZZmYy5AgJVL+utvLk2ZlvsFQfM7pUr5dXVbv0wQEclVtpxU5TB23kRilvfeZAdYgRBr69bwz0CzntkhzX8lOAAtW9avfr18MqEmV+oIEGClTi1TcSYEWKlY1cTPiQAr8eb0mL4CBFjpW3tbzJwAyxZlmAoMOgAAIABJREFUYBBhCBBg/YO0abNbk6a6tG9fbmCRkSH17uHVETUIHsJYSjG9xQ4BVrQTWv2NS3PmBwehJszs29uvkiVYS9G62u05Aiy7VYTx5BUgwGI9xEKAACsWirSBQHgCBFjhOXFXnAQIsOIES7MxFyDAknbtdunZiW7t3JkbXrlcUpdOPtU7ll1UMV90YTTo5ADLTG/pB24tWRq8E6tObb96dPXKHZxthaHBLXYUIMCyY1UYU0CAAIu1EAsBAqxYKNIGAuEJEGCF58RdcRIgwIoTLM3GXCDdA6wD2dLEyR5tPOTA7ita+9SoIeFVzBdcmA06PcAy01yw0K0vvgwOsRrU96vD1ZyNFuYysPVtBFi2Lk/aD44AK+2XQEwACLBiwkgjCIQlQIAVFhM3xUuAACtesrQba4F0DrB8Pmn6TLd++jk4ZGjezKeWFxBexXqtRdJeKgRYBa6vpj61bMH6imQ92PFeAiw7VoUxBQQIsFgLsRAgwIqFIm0gEJ4AAVZ4TtwVJwECrDjB0mzMBdI5wGKHTMyXU8waTIUAy2AUtMOvXRufTjuVECtmCyYJDRFgJQGdLsMWIMAKm4obCxEgwGJ5IJA4AQKsxFnTUwgBAiyWhVME0jXAeu99t8x/8l51j/ap27U+ziiyweJNlQDLUHLGmg0WVByGQIAVB1SajJkAAVbMKNO6IQKstC4/k0+wAAFWgsHpLliAAIsV4RSBdAywzLlEZvdV3qtaVb/69vYqK9MplUvtcaZSgGUqZb5yOXGyS/sP8JXLVFm5BFipUsnUnAcBVmrWNdGzIsBKtDj9pbMAAVY6V98GcyfAskERGEJYAukWYK39yW2de+X35/KUK+fX9X19Klsmzy+GpcdN8RJItQDLOP26zqVp0z0yZ2MFrtKl/Orfx6eKFVl78VpL8WqXACtesrQbCwECrFgo0gYBFmsAgcQJEGAlzpqeQggQYLEsnCKQTgHWXxtdmjjFo+zs3OqUyDI7r/yqWoXziOy0ZlMxwDK+q79xac58TxB15Up+9evtU6lShFh2WoNFjYUAqyghfj+ZAgRYydRPnb4JsFKnlszE/gIEWPavUUqPkAArpcubUpNLlwBrxw6Xnp3k1u7dua9wmUL26u5VndoEB3Zb1KkaYBnn5R959Pa7weuwVi2/LmoR/3WYmeVXzSPi34/d1lM8xkOAFQ9V2oyVAAFWrCTTux0CrPSuP7NPrAABVmK96e0QAQIsloRTBNIhwNq716XJ01zWOUR5r45Xe3VSfX6Yt+NaTeUAy3i/usitT1cFr8dE1aFtG59O5wuIxeYmwCo2IQ3EUYAAK464adQ0AVYaFZupJl2AACvpJUjvARBgpXf9nTT7dAiwJk/zaN1vwTteLrnIp3PO5rVBu67VVA+wjPvMWW59/0NyQqzruvh0TF3Wf3HWPwFWcfR4Nt4CBFjxFk6P9gmw0qPOzNIeAgRY9qhD2o6CACttS++4iadygGUOap81163vvgsOCc5o6FOb1vzwbufFmg4BVvZBafJUjzb8GRyuJqIumZlS315eVa/GDsRovQmwopXjuUQIEGAlQjn1+yDASv0aM0P7CBBg2acWaTkSAqy0LLsjJ53KAdZb77j04YrgA7NPPNGnTu0Jr+y+WNMhwDI12L3Hpfkvu5SdHf8Qy3wFMe9Vtqxf/Xv7VL48IVY0fx4IsKJR45lECRBgJUo6tfshwErt+jI7ewkQYNmrHmk3GgKstCu5YyecqgGWOV/InDOU96pV028d2u4JzrQcW7tUHni6BFiJrGGoLyBWOcxnfYWzZAlCrEhrQYAVqRj3J1KAACuR2qnbFwGWPWq77ve/dEnnofkGk5WVqfJlS+uoIw9Xk0YN1OGK81WpQrl89w19YIIWvbtCj999vS69sHGRk1q8bJUG3j1WrZo30pP/vrHQ+1d//7M69rtP9Y87SnMnjgi6N9BvYQ0cVqm8Pnh5bJFjSocbCLDSoco2niMBlo2Lw9CCBFIxwPr2O7dmz3XLvEIYuCpX8qtfb59KleIHdSf8ESDAik+V3l/m1uL3goNd8xXOHl29chPsRoROgBURFzcnWIAAK8HgKdodAZY9ChsIsEqVzFLDk4/LGdT+A9nauHmr1v2+0fq1CuXKaNLI23TS8UeFDJKSFWCZgC1UsGYGWbF8WT390M32gE7yKAiwklyAdO+eACvdV4Bz5p9qAdb69S5Nft4jnze3BmXL+NW3l08VKxJeOWVlEmDFr1ILF7n12SFfQGxQ368OV+f5QxO/7lOmZQKslCllSk6EACsly5rwSRFgJZw8ZIeBAMsEQa/PeCTfPX/8uVn3jJymFZ9+oxPr1dG8SffZKsAKNzizh3byRkGAlTx7epZEgMUycIpAKgVYW7a4NH6yW/v25Z71w2HVTlmJweMkwIpf3czOxBdmufXDj8E7sZo39allC86HC1eeACtcKe5LhgABVjLUU69PAix71LSoAMuMcsu2nWredqD8fr+WL3wqaMdTsl8hJMAKbx0RYIXnlFZ3bdi4RbNeflfLP/lav/2xSQe9XtWoVlnNzz5Vva+9TFUqVyjQ4+U3lmneovf14y+/y+v1qk6tw3XlxU11bduW8njyfwadACutlpajJ5sqAdaevS6Nn+jWtu254ZXLJXXr7NMxdfmh3GmLlAArvhUr6AuIV7T2qVFD/ryEo0+AFY4S9yRLgAArWfKp1S8Blj3qGU6AZUZ61qX9tXvPPi2ZO1rVq1bKGTwBlj3qWNQoCLCKEkqj3/f5/Joy63WNm/aysg/+E1rVq3ukFUR9+8OvVmJduWI5PT92mOrWrpFP5s6HJunVtz9UZoZHp59cT5kZGfpyzVrt2r1XTc86WeMevkUZh5wKTYCVRgvM4VNNhQCroB/G27Xx6bRT+WHciUuUACv+VSso9O3Syad6x/LnpqgKEGAVJcTvJ1OAACuZ+qnTd6ICrOxPl8v70/epA1fETDIbnStP3RPCnm84AdZfm7aqRftB1jlYH776tFzm3+L+/0WAFTZ1Um8kwEoqv/06v+Wep/Xzbxt0542ddfYZ9XMGuHffAY14YpoWvbNCDU+upxlP3RU0eBNcmQDLBFsTR95mhV/m2rN3n0ybH/53tW7q2U79u10R9BwBlv3WACMKLeD0AMvnk2bOzv861AXn+WT+w+VMAQKsxNTNvHY7cYpbJswKXBkZUu8eXh1RgzPjCqsCAVZi1ii9RCdAgBWdG08FCyQqwNoz8TEdePfVtOEv3fc2ZbVsE/Z8iwqwzKaKIf9+VstWfqVhAzurc7tWQW0TYIVNndQbCbCSym+/zk1Q5XG7ZD43euhlfq9pmxu1b/8Bvb9gTNCrhFf2GK4ffl6vmeOG67STjg16dOv2nbqw/a3KzMywnitZIivn9wmw7LcGGFFqBlgLFrr1xZfBr/GaXVdm9xWXcwUIsBJXuz82uDR5mkcHD+b2WbqUX/378OEDAqzErUN6iq0AAVZsPdO1NQKs+FQ+2gCrdKmSOvfMBjmD8vp82rJ1h/VGUZ1a1dW94yVq869z8w062QGW2QhSuVL5kJjXtGmhS1o0jg+0w1olwHJYwZI93LY9h+t/P63XK9MeUL2ja1nDMV90aHXNENWuWU1vzHws5BBvHTFOby39r5568Ga1OPd0AqxkF5L+IxZw8g6spcvcWvJecHhV92ifde6VO//RdBHb8EDyBAiwEmtvDnQ3B7ubA94DV+VKfvXr7VOpUuzEClUNdmAldo3SW2QCBFiReXF3aAECrPisjGgDrIJGYzZTXNS8kS6+4Cy1aNrQdgFWYYpD+ndUj2suiQ+0w1olwHJYwZI9XPPOsHl3+JP/jFeZ0iWt4SxetkoD7x6r1q3O0aN39Qs5xOfnvqXHxs1Sn86tdUufqwmwkl1I+o9YwKkB1upvXJoz3xM03xqH+9Wrh1chNlpG7MIDyRUgwEq8/6er3Hp1UXDyW6umX726e3XIMY+JH5wNeyTAsmFRGFKOAAEWiyEWAokKsDgDq/BqFfQKodfr0/adu/X1tz9p8ouLtOrrH6zdTCPvuT6owWTvwOIrhOH9aSTACs+JuyR98/0v6tBvhE6tf4xefObuHJPnXnpTjz87W/26Xq6Bva4KafXuss90891P6V/nn6lRI24gwGJFOU7AiQHWr+tcmjbdI3P+VeCqWMGv/n19Mq8+cTlfgAArOTV8+123ln8UHGKdcIJPndr7lOc82OQMzma9EmDZrCAMJ0iAAIsFEQuBRAVYsRhrKrdR1BlYZu4HvV517HefvvtxnR4d3k+tW56TQxJpgLVk+SrdNHysWjVvpCf/fWOhtKu//9nq96Tjj9KcCSOKFZylcg3DmRsBVjhK3CO/369etz6mlZ9/qzH336SWzc7IUXl66st6dvpCFba10TzXc9Cj1sHwU564PefZ/dmhz9/J9LjkdruU7fUF/fBNKRBIlkCJzH9+WD2Q7ZMTop/fN0ijnvZq3/5csVKlpKE3e1S1SrIU6TfWAh63lOFxy+vz66DXCSsz1gLJac+8Qjj1BZ9WfRlsfv65LrVvy3u5easS+LuzoP+/T04F6RWBfwQyPC7r7NeDXp+8HAnJsohSIPD3XJSP81iMBMIJsExXk2Yu0pOT5qntJc30wNBeOb1HGmB9/Nka9Rr8mJo1PlnjHx1c6Cz++8V36n7LI2p8+omaOnpo0L2R9hsjLsc2Q4Dl2NIlduCBkMoEVybAyns9MX6Ops7+j+68qbO6XBX8NYfAfZ+v/kFdbnxQpzeopxeeDv6CYWJnQm8IpL7A1u3S/Y9na8fO3LmaV5uGDsxQ3aNyv6KW+hLMEIH4CXi90hPjDup/a4NDrA5XenTRBYRY8ZOnZQQQQAABBPILhBtgPTfnTT3+zGydd86peubhQVEHWBv++lstOw5WtSoVtWTuaLkK2YI9Y97beuTpF9Xh8vN17+DuBFjFWMAEWMXAS5dHX3x5sR4cM0PH1a2lF54ennP2VWD+Ee3AalhfU0bl7sD6e8eBkIzlSmcoK8OtnXsPWjteuBBItsBh5f/5euaWnQeCDnBO9rgO7d/suHpmgkt/bQr+na6dpAb12aFjt3oVdzzm3/qWLZUhs7tl1948n8crbsM8H5aA9edtokt/bQy+vcs10skn8efNqAT+7izo/+/DguYmBOIkULakRyWyPNbfn+wSjBNyGjQb+HsuDaZq6ymGG2ANuHO03l/xpbq1/5eG3tAp6gDLPNiu1936fu1v1jnQ5jzoUNfefQd0Ve+79ev6v6ydWmbHVt6LHViRLSsCrMi80u7uuYuWasTI51S7ZnVNH3unqh5WMZ/B9Llv6dFxs8I6A+vQHVx//L03pGnlclkqmeWxwoJ9B7xp586E7SfghDOwfF5p2gyPzNlXea8rWvvUqCFBsP1WVfFHxBlYxTcsbgs7dro0fqJbu3bn/rlze6Te13lVqxYhFmdgFXeF8Xw8BTgDK5666dM2Z2DZo9ZFBVgHDmRr2ktvauyU+dZRNfMn329t0Ahc0QRJH3z8pa6/Y7RKlsiywjDzWqL52mHg+mndBo0YOU2fffU/NWnUQJNGDsmHFU2/9hBPzigIsJLj7oheZy9covtHT9dRRx6uaaPvsLZHhrpMgm2S7HC+Qtjzmks1uH+HnGYIsByxFBikJLsHWOZMnrnzPVq9Jji8anK2TxdfRHiVqouYAMself1ro0uTp7q1/0Dun7+SJf3q09OvqlXS+88fAZY91iijCC1AgMXKiIUAAVYsFIvfRiDAKl2qhM5uWD+nQZ/frx07d+u7H3/Tnr375PG4NfyWbtbrfHmvQJBUq0ZVlS9XJuSAKlUoq4mPB4dQs15ZrIefminztUPT9zF1jlCJElnauHmr1v3+zxZtcw70k/fdqHJlSxcYYJmfuStVKBey34rly+rph24uPlIKtECAlQJFjMcUAu/pmlR68hO367BK5QvsZvOW7Tqv3c2qXbOa3pj5WMj7bh0xTm8t/a/1uVLz2dLARYAVj+rRZjwE7B5g8VW0eFTd/m0SYNmnRqG++lmunF/X9/WpbJn03YlFgGWfNcpI8gsQYLEqYiFAgBULxeK3EQiwQrVUIitTh1errDNPO0Gd27UK2nkVuD8QYBU2EvMz8Qcvj813y9pfftfMlxfrk8+/lTkby+v1qlLFcmpw/NFq3aqJ9aVCs+sr1FWcfouv5rwWCLCcV7O4j3ja7Dc0cvxL1h84kzBXKB86gc47EHNAuzmofea44TrtpGODxrh1+05d2P5WmfTb/IEvnyd5JsCKeznpIEYCdg6wPl3l1quLgg+NrlPbr+5dvTKHt3OlrgABlr1qu/obl+bMD/5DV62qX317e5WVaa+xJmo0BFiJkqafaAQIsKJR45lDBQiwWBMIJE6AACuP9a7de/XlmrU698wGISuwc9ceTXjhNX2x+kdlZHh0YdOG6tT2QmWk0E+IE194TWMmz1fDk4/T+EdvzXdge0FLc9nKr9R/6CjVrV1DE0fephrVKlu3mm2ag+4dp+WffK3O7Vpq2MAuQU0QYCXuDzs9FU/ArgHWDz+69cIsd9DB8lUO86lvb79KlkjfXR/Fq7ZznibAsl+t3v/ArcVLgwPlukf71O1an8zZWOl2EWClW8WdNV8CLGfVy66jJcCya2UYVyoKEGDlqerriz/W7fePV4crLtC9t14XVO/de/apQ78R+uW3P4N+/cJmDTX2/oEpsTY++nS1+gwZac2lRvXDZLZaFnSVLV1KL024N+i3za4ts3vLHFx3eoNjlZWZaQWCJvirf9xRen7MndZ7wXkvAqyUWDppMQk7Bljr17s0dbpHB/N8fM68qtS/r0/lyxFepcPCJMCyZ5UXLHTriy+DQyzzFdAOV6ffR0kIsOy5RhnVPwIEWKyEWAgQYMVCkTYQCE+AACuP05B/P6s3lqzUfUN66OrW5wUJPjlpnibNXKTSpUqqT+fLlJ19UNNeekPms5hPPTBQLZo2DE/cxneZM6rMWVXhXGXLlNLK15/Nd6tp44X57+j7teusg+xq1qiqS1s0Vo9rLgkZiBFghaPNPXYQsFuAtWWLS+Mnu7VvX+779CWy/Ord06fq1Qiv7LBmEjEGAqxEKEfeh88nTZ/p1k8/B4dY5zXz6cIL0utQdwKsyNcPTyROgAArcdap3BMBVipXl7nZTYAAK09Fruh+l8wBbIvnjtLhVf95Bc5c5jW486+6RWYX1uSRt+mcRidZv/7a2x/pjocmqmWzMzTm/pvsVltHjIcAyxFlYpA2+wrhnr0ujZ/o1rbtueGV2y316OaVOfuKK30ECLDsW+sD2dKUaR5t+DP40NZ2bXw67dT0CbEIsOy7RhkZO7BYA7ERIMCKjSOtIBCOAAFWHqVzWg/Q3v0H9Pnbk+Ry5f4D54L/fKC7H5tqfY5zyqjbc57YfyBbZ13SX1WrVNS7Lz0Rjjf3HCJAgMWScIqAXXZgZR+UJk/N/0Nxh6u8anAS4ZVT1lOsxkmAFSvJ+LQTKmw2/3jRpZNP9Y5NjxCLACs+a4tWYyPADqzYOKZ7KwRY6b4CmH8iBQiw8mifcmFPVapQTu8vGBNUg24DH9JnX/3P2mVldlvlvczOrO07d1uhF1fkAgRYkZvxRHIE7BBgmdeSZs52yxzcnvdq2cKn5k3T44fh5FTfvr0SYNm3NoGRhXrdNyND6t3DqyNqpH7oTIBl/zWaziMkwErn6sdu7gRYsbOkJQSKEiDAyiPUtM1N2r13n1a9NTFnB5Y5tP2yrndYwdZ7859UZkbwJ4RaXTNEf23aoq8WTy3Kmt8PIUCAxbJwioAdAqxQB0Of0dCnNq0Jr5yyjmI9TgKsWIvGpz3zwYXJz3vky3OGe+lSfvXv41PFiqkdYhFgxWdN0WpsBAiwYuOY7q0QYKX7CmD+iRQgwMqj3evWx/TxqjWaNvoOnXX6CdbvDH1wgha9s0LdO16s266/Jqg2Pp9fjS7uax1OvmLRM4msW8r0RYCVMqVM+YkkO8Battyjd5YEn6VzwvE+XduR8CrlF18hEyTAck71v/nWrZfmBu+erFzJr369fSpVKnVDLAIs56zRdBwpAVY6Vj32cybAir0pLSJQkAABVh6ZOa8t1X1PPGcd4G6+mmcOdDe/lpmZoTdmPqYa1XIPdjePfb/2N7XrdbdOrFdH8ybdxyqLQoAAKwo0HkmKQEEB1uo1Ln37rVtbt0lbt0rnN/er8VmxDZX27HHpkZHBuz9rHuFXz+5eZWYkhYNObSJAgGWTQoQ5jBUfu/XG28EhVs2afvW8LnX/LBNghbk4uC0pAgRYSWFPuU4JsFKupEzIxgIEWHmKk33Qq643PqCvv/s5qGR33tRZXa5qla+MT06ap0kzF6lzu1YaNrCzjcts36ERYNm3NowsWKCgAGvqdLd++SX3B9JKFf0aNDDPe0IxgPxguUfv5tl9VamCX/37pvaujRiwpUUTBFjOK/Prb7i18r/BIdaJx/vUKUV3UxJgOW+NptOICbDSqdrxmysBVvxsaRmBQwUIsA4R2bN3nybNfF2ffvm9ypQuqXaXNtdF5zUKuXLM64W/b9is4bd01QnH1mZ1RSFAgBUFGo8kRaCgAOvxUR7t3BX8ap/5QdT8QBqLy+uTRo7yaPee3D7atPbqjIap+8pRLNzSpQ0CLOdV2u+XZs1167vvgkOsVD3PjgDLeWs0nUZMgJVO1Y7fXAmw4mdLywgQYLEGbCVAgGWrcjCYQgRCBVher3Tfg/nf4Tuqzj+vBMXi+vxLl15emPv6oDkr5/ZbvfIEv1EYi65ow4ECBFgOLJok83fHlOc8Wv97cPh9UUufmjaJTfhtFxkCLLtUgnGEEiDAYl3EQoAAKxaKtIFAeALswArPKeRdfr9fe/ftV4bHo6yszGK0lL6PEmClb+2dNvNQAdaGP6VnJ4Y+hGpAP68Or178XVLjxnv018bcH3LPa+bThRek1g+4TlsLdhovAZadqhHZWPbudWnCZLe2bA0OsTpc5VWDk4r/d0dko4nf3QRY8bOl5eILEGAV35AWJAIsVgECiRMgwMpj3fiy63XWaSfoqQdvDqsC2dkH1ejifjqlfl3NeOqusJ7hpmABAixWhFMEQgVYq79xac780FuhTjvFr3ZXFm8X1s+/uDRtem77brc0ZJBXZcukzg+3Tqm/XcdJgGXXyoQ3rm3bXBo/ya09e3NDLPPnvEc3r+rUTo0/5wRY4a0F7kqOAAFWctxTrVcCrFSrKPOxswABVp7qnHR+d53dsL6mjLo97Jpd2P5WaxfWR6+NC/sZbswVIMBiNThFIFSAtXSZW0veCz7HJjCfWIRNM2e59f0Pue3HIhRzijfjDE+AACs8Jzvf9ccGlyZP8+jgwdxRlsjyq29vv6pWcf5uSwIsO68+xkaAxRqIhQABViwUaQOB8AQIsIoZYJ3TeoD27N2vLxdPCU+cu4IECLBYEE4RCBVgLVjo1hdfhg6wzLzOa+bVhRdEt4tiyxaXnnw6eHfX9X29qnF4dO05xZlxRiZAgBWZl13v/t8Pbr0wK/jvkvLl/erXy6dy5Zz9Z54Ay66rjnEZAQIs1kEsBAiwYqFIGwiEJ0CAVYwAa86r7+m+Uc+rRrXKenfOqPDEuYsAizXgSIFQAdbEqR6tX5/76s8pJ/v01de5P4SaA9fvvC261wgXveHWJ//Nbcu8TtSre3RtORKcQYclQIAVFpMjbvp0lVuvLgoOsaoc5rN2YpUs4dwQiwDLEcsvbQdJgJW2pY/pxAmwYspJYwgUKpDWAdbSj77Q+yu+yAGa89pSVatSUeefc1qhaNkHvVr76x/6as1a675r2rTQ3YO6sdSiEGAHVhRoPJIUgVAB1iOPe4LOrhk00GudZ2MOZw5cbVr7dEbDyF4D2n/ApcdGepSd55Wiazr4VP+EyNpJChSdJlSAACuh3HHv7J3Fbi37MDjEMuF1j65euR365VECrLgvGzoohgABVjHweDRHgACLxYBA4gTSOsCau2ipHhzzgsxh7NFexx5dU88/eacqVigbbRNp/RwBVlqX31GTPzTAMiHTg48E/0T573sO6t333PpgWe4PoGYHxcAbIguezA+w5gfZwFW+nF+Db/HKFfyxMkf5Mdj4CBBgxcc1ma3OmefR6jXBf9gb1Perw9XO3IFJgJXM1UTfRQkQYBUlxO+HI0CAFY4S9yAQG4G0DrAM4Z69+/TRp99o0Tsr9M4Hn6pyxXI645TjC9V1u12qUL6sTm9wrC4+/yxlZWXGphpp2AoBVhoW3aFTPjTA+m29S5Om5gZY1atLN/Q7qF27XRo52iNfnsyq67Ve1Ts2vFeAvD5p5CiPdu/J/QH24lY+NTknshDMocwMO0IBAqwIwRxwu88rTZvh0a/rgkOsZuf61OpC5/09QIDlgEWXxkMkwErj4sdw6gRYMcSkKQSKEEj7ACvgY3Zhtew4WMceVTOirxCywoonQIBVPD+eTpzAoQHWF1+5tOCV3ADrpPo+dbz6nx8u5y3w6KvVuT98HlPXr+u6hLd7wjxnng9cmRnS7UO8Ml8l40LgUAECrNRcE/v2uzRxskub/w5+nfCK1j41ivCV5GQLEWAluwL0X5gAARbrIxYCBFixUIx9G+t+36hX3/pQKz9fo5/X/akdu3arVMkSqnpYRR1R/TCde9b/sXce0FFVWxj+504KnRB6VRCUKsWCiAhSBVEEBUEQKaEJSi8iVRCk9xY6iAgiTRQB6Qg2EBQEBelIlQ4hZe68dYaXzNxkkrkzmXLv3P+s9dZ6Zk7Z+9+bKd89Z59yeOn5iihSMI9i8Zfe7IEr124q/hYeForIHNlQ+vFH0LD286hb/WmnBjsbm7zjyy89iwlD30v6c/+Rc7Dh+31pCpAzRzbsWjM1qc/ZC5dRv2V/238P6PY23nmzbprjB46ei3WbfsDSaQNRqdzj3hfbjzNwXNPMAAAgAElEQVQSYDmIvXTVZhw/dR4f923nxxAYeykCLGPHX0/eJwdYW7dL2OlwVPDFF2TUrvkQYF28bMKsOcrjhe+/JyN3Lte7J2bMNuPyFTv8qlJZRv16rsfpSUva6j0FCLC8p6XWZrp9x4TZ0ZJtV2diE8eIW7WQUaK4ft4TCLC0llm0x1EBAizmgzcUIMDyhorem0NsTJm+cA3mL/8WVuvDB8Di0jVxguruvRhc+e8m4uLibX9//umymDu+j2LxRAglQE+YeJIsTm09iIWARjdv3bX9d80XKmHisK4IDVF+308cW65kUYSEPBybvFV5qjS6tm2c9OdEgPVo4XzIkT2r0zER2bJg+qjuSa85AqwM4WFYu3AkChdQgjjHiQiwvJdfnMngChBgGTwBdOR+coC18iszDh+x/7Bs0siCCuXtu6TmLTTj7Dn7609VsqJRw7R3YZ0+Y8KCxcoPQlEYPkcEd1/pKFX8aioBll/l9vtiAmZHzzcj/uH3bFsT34ej2lpQIL8+3hcIsPyeNlzQDQUIsNwQi11TVYAASzvJIcBU255jcPDICRsM6tiqIV6pXQViB5NjO3r8DLb/8Buee6p0ih1JiRBq5+opyBWZPWmYgGF7fj6MXsNm2MoQ9X2vOdo0e1kxb2pj01IoEWCNG9wFDWpVViVmIsDKmCEMMQ/i8GzFklgwsT9MqRTMJcBSJav+On29ea+tHlbLN2qj7BNFXTqwbPX3+HH/EbR5qz6eelLfW/FcOuujDgRYPhKW03pdgeQAa1Z0CC5esi8jflAWKWz/QXn4TwkrV9mP/5gloF9vCzJmTP1H5/KVEo4es48p+YSMt9/Sz04Lr4vOCV0qQIDlUiLdd/jnpISln0uKunqZMlrRsb2MyEjtQywCLN2nYFA7QIAV1OH1m3MEWH6T2uVCw8YvgriorViR/Jg7oS/y5Y50OSZ5B1cQ6ot12zBi0hKUKvEIVs0dHlCA1ey1l/Dj/j9tu8OG9GyNtxrVdOovAZbbaaCPAe99OAk79x1ySlOdeSCA14BR0Xi17vP4dGBHfTipMSsJsDQWEJqTqgLJAdbwkSEQBdcT24A+CciUyf7fYsfyhMlmiGNAia1WDRnVX3QOpG7cNGHyNDP+v9PZNqRtawuKPqr9H6hMm8ApQIAVOO39ubLY7Sl2fTq2iOxWdO4oQ8AsLTcCLC1Hh7YRYDEHvKEAAZY3VEz/HIf/OoW3Og23Hetbs2AkihbJ79GkrgDWiVMX0KjtR8iaJRN+3DBTsYarsc4MSs8OrMb1q0H8r/UHo5ApYwasXzzKdlwyeSPA8igVtD+ofst+EMXeVs8fgSceK+zS4ItXrqN2s154pFBefPvZGJf92SGlAgRYzAq9KOAIsG7fBsZNsp9rDwuzYtCAlMcDf9gnYdMW+46qzJms6NPLArEbK3n79jsJP/5sfyFvHiu6dlZX+F0vGtJO7ytAgOV9TbU6446dErbtVL555M9nRVQ7C/5fokOTphNgaTIsNOr/ChBgMRW8oYC/ANbXt05j/72r3jBZF3O8GvEonsqUW7Wtwycuxsr1221AZ2T/9qrHJe/oCkIdO3EWb0QNQf68OfH9igkBBVj1ajyLicPew8jJS7F87Va88Gw5zBnbmwDL4+jrbODTL3e0nSH9ZeMcZMoY7tL6BIsFFWpH2fr+/O1sl/3ZgQCLOaBfBRwB1slTJixcYt8NUaiAFR2jUsKm2DgTxo43Iz7B7nfjRhZUdKiVJV5x1i95TS39KkfLfakAAZYv1dXe3KvXSTh4SAmxREH3ls1lSE7AuBY8IMDSQhRoQ2oKEGAxN7yhgL8AVqczOxF97U9vmKyLOeY8Uh0dc5VWbeurrT/EybMXMXXEB6hVrZLqce4CrEUrvsO4WV+gzotPY/LH3QIKsEQx+WkjP7DV5GrUdhD+vXTNBu8ExHNs3IHlcTpoe2Cluh0QGxePg1vmIVTl48wKdaJsxdJ+2zxX285p1DruwNJoYGhWCgUcAdYvv5qw/hs7wCpfzoo3GjvfLbVho4Sff0l7Z5U7O7UYGirgqAABlrHyQZaBJcsknDylpFUVysto0kib9fIIsIyVo3rzlgBLbxHTpr0EWL6Ji7sAq0Lt9ohPsOCbpZ9C3OjnaUtrB9bun35HjyHTYbFY8PnMwSj9+KNOAVb50o+lyhOG9W6jON6YeIRQ1O2KTFZsPnHy5o1qon5Ne4H3xCLu1auUx8zRPW3d9v16BFF9xiFblky2o4S5c0Yk2UaA5Wk2aHzcy2/3w7l/r+CreR+jZPEiLq29cOka6jbv43T7oMvB7GBTgACLiaAXBRwB1nebJQjolNhqVpdRo3rqta0mTVXWrnGsbeWsVlZa8+lFL9rpHwUIsPyjs5ZWETd/R88z48pVe309YV/Nl2TUqKY9iEWApaXsoS3JFSDAYk54QwECLG+omHIOdwCWOBlVvtbDY4PJbw9MnHnw2AVY/e2uFAsJECWAU2JLBFjihsKw0FDbn2Nj43Dq3EVcuXYTkRFZMXpgR9txveQtcWxaiqyYM1RxYVwiwEprTJ/Ob6Ft8/pJXRIB1ovPlcesTx8CLNESfUzcmZX4dwIs3+RowGcdNGY+1mzcjSYNXsSIfu1c2iO2DoothK/Ueg5jB3d22Z8dUipAgMWs0IsCjgBr2RcSjv1lB1hNm1hQrmzqhZSXLjfj+HH7j80nHn945Ee05MWZ1dxWqBfNaKfvFSDA8r3GWlzh7j0TZkVLuONwSYSws9kbFpQto62i7gRYWswg2pSoAAEWc8EbCvgLYLEGVtrRqli3A+Li4rFx2RgUKZg3Red5n3+DHXsPJv39r3/O2Y7epQawnK32ZOnHsHBSf2QID3NqjKv6Wc4GpaeIe3KAdefufbzWZqANtI0b3AUNaj3ctUWA5Y1/6RqcI/HmAmFap3deRZd3X7fdYpC8CcK78IuNmDx3le2lhZMG4NmKJTXokfZNIsDSfoxo4UMFHAHW1BlmXL1mB1KdoxJQoEDqSv1z0oTFnynfS3p+YEGOCCvmzDfjwgX7XBUrWNH4NRZvZ96pU4AAS51Owdjr6jUJcxeY8OCB/f1D1MF6520ZjxXTzk4sAqxgzL7g8YkAK3hiGUhP/AWwAumjHtZOPE01e0xvVKuccndUch+ad/kYfxw9mSrActzJde36LTRo1R/3Y2KxYvZQlHlCeXQwce5AAyxhh4B0XQdORkT2LPh68WjbjrHEjTpLpw1EpXKP6yGcqdposlodL23XtS9eMT5xV5WYLEf2rHihcjkULZzfVqj9QWwczpy/DHH2VSSxaGp3a3nFuCCchAArCIMapC45AqwhH4fA8Z3zowEWhIelveth2kwJ4gdnYqv8jIwny1oxd6ESbL3/nozcubTz4zNIwxk0bhFgBU0oPXLk/HkT5i02Q3Zg3uK0Q8f2FoibTLXQCLC0EAXakJoCBFjMDW8oQIDlDRXTP0f/T+Zgw5Z9eLdpPfTr2sLlhO4ALDHZ4i83YeyM5bbjf8tnDYEkKY/yiz5aAFjCjsRdXS+/9CwmDH0PiTc0EmC5TAv9dRA8b87SrzFr8TqInVZpNfGPo1fnZggxp9ylpT/PA2MxAVZgdOeq7iuQCLCOnnyACVPs/+azZLGiXy/XO6YOHJSwdr0dYIl7IooUkfHPSfvfxK6Jd1sRXrkfHeOOIMAybuwTPT/ypwkrVim/h4j3pY7tZURkDzzEIsBijmpZAQIsLUdHP7YRYGkjVok7j7JmyYTvlo217UBKq7kLsAQbaNJ+CP45fQGDeryDFq/XSjG9VgDWzVt3bUcJ/7tx23Yr44E//saild+BAEsbueoTKy5fvYG13+3B/t//wvmLV3Hv/gPbWdd8eSJRsWwJ29WUjxRKebbWJ8YE8aQEWEEc3CBzLRFg7f7lgeI44CNFrGjfxjXAEjx87EQzYmJSPq1JlErUxRL1sdiogFoFCLDUKhXc/ZLfZCq8zZVTRscoKzKEBxZiEWAFd+7p3TsCLL1HUBv2E2BpIw5iI0rTjsNw9PgZiALs00Z2t52iSq25C7DEPD//dgxte34KAck2LBmNXJHZFdNrBWAJozbt+AW9hs2w2VivxrNYtnoLAZY2UpVW6FkBAiw9R89YticCrDXfxeKbjfZdU5UqWvH6q64BllDr++0Sdu22j3VUMCLCip7vW2BKnW8ZS3B6q0oBAixVMhmi07oNEvYfUL6/CMDe5h0LArlRnADLEOmnWycJsHQbOk0ZToClnXCI2/mad/4Yt+7cQ7Ei+dGtXWPUeL4iwsMe3iaY2OITLGjR5WMb7EqtiHtqtxn2GjYTm3b8jIZ1qmDMR500C7CEYT2GTMeWXb/a/I+NiyfA0k6q0hK9KkCApdfIGc/uRIA1d1ksfvrZ/iOxTi0Z1aqq2zUlbg4bP8kM2Un3V16WUflZdfMYT316nJoCBFjMjUQFRF2+z5ZLOH5CCbFKlpTRoqkcMDhOgMUc1bICBFhajo5+bCPA0lasRM3qnkOnQ9wyKJq4lO3RwvmRLWsmJCRYbHDr/L9Xk8oFuQuwLl29jobvDEDMgzgsmNQflSuWShIgcQdWuZJFERIS4lSYKk+VRte2jZNeS6xX9WjhfLYa3M5aRLYsmD6qe9JLAtTVb9kfyW8hTD5W1O0WRwlv3b5ne4lHCLWVq7RGhwoQYOkwaAY1ORFgjZkWh+Mn7NukmjeTUbqkevC0arUZvx9WbrMKC7Oif28LRPFlNirgjgIEWO6oFfx94xOAeQvMuHhJ+R7z/HMyXq6r/n3Km0oRYHlTTc7lbQUIsLytqDHnI8DSXtzFccLvd+/Hlp2/4tCf/+D6zds24CR2ImXPlhmF8udG+dLF8dSTj6PK02UUO7TUHAOcu2wDJs9dhaJF8mPN/BEIFcVtHYq4p6VIYmH1xD6JACutMTlzZMOuNVPdBlhiwNeb92LAqGgCLO2lqfcsEsm9asMO23a7E6cu2CjtE48Vxur5IxSLbNtzwFYbq/aLTyNjhjDvGWCgmQiwDBRsnbuaCLD6DYvD9Rv2H4fduliQJ7f6GjP/XjRh9lxlweWqVSyoV0f9HDqXkuZ7UQECLC+KGSRT3Y8xIXq+hOvXlRDrlfoyxO2n/m4EWP5WnOu5owABljtqsW9qChBgMTeogP8UMFkFnmRLUuCfM/+i28ApENvyHJszgNV7+Ex8t/1njPqwAxrVq0oVPVCAAMsD0TgkIAokAqyo7vGK9T8ekuC2PWvXSfjPAYK90Vgbt4W57QgHBFwBAqyAh0CTBty4acKcuRIEzHJs4ihhqVL+hVgEWJpMERr1fwUIsJgK3lCAAMsbKnIOKqBOAQIsB53u3L2Pxu0G4eKV6wgLC0WtFyrZbhqcvWS90x1Y32z9Ef1GzEbd6k9j0vBu6hRnL4UCBFhMCL0oIADWpSvA4FF2gCWuqO/VXV0Bd734STv1pQABlr7i5U9rxW7PeQvNSHBg7JIZiHrXgkKF/PfskgDLn1HnWu4qQIDlrmLs70wBAizmBRXwnwIEWA5az1y0FjMWrUXpxx/F1JEfIH+eSNurZWq0cQqwzv17BS+/3Q+FC+TBd5+P9V/UgmglAqwgCmaQuyIA1qHDVkyfZ/81WKzowxu+2KhAoBQgwAqU8vpYVxR0F4XdHffaZ8hgRecoGZGR/oFYBFj6yBWjWkmAZdTIe9dvAizv6snZqEBaChBgOajTpP1g220Fq+YOR6kSjyS9khrAehAbh6fqdUSG8DDs3/SwMBqbewoQYLmnF3sHTgEBsDZvl/HlOjuwevZpGQ0b+Pc4TuAU4MpaVIAAS4tR0ZZNvx6QsH6D8mZCsXu0Y5SMLJl9D7EIsLSVD7RGqQABFjPCGwoQYHlDRc5BBdQpQIDloNPTL3dEaEgI9m2YqVAvNYAlOlWq2wHxCQn4Y9tCdYqzl0IBAiwmhF4UEABr6UoLdu21Aytxq5e43YuNCgRKAQKsQCmvr3U3fy9hz14lxBKXT3SMsiDMx7efEmDpK1eMZi0BltEi7ht/CbB8oytnpQLOFCDAclBFwKisWTJh5+opqgDW/ZhYPFO/EyKyZ8EP66YzwzxQgADLA9E4JCAKCIA1fnoC/jph37HQqoUFj5fw/Q6GgDjMRXWhAAGWLsIUcCPFEcLlX0o4dkwJsYoVldG6pQxJ+Wev2kuA5VU5OZmXFSDA8rKgBp2OAMuggafbAVGAAMtB9gat+uPM+cs2gJUrMnvSK6ntwNq6+wA+GDwVFcuWwGfTPwpIAPW+KAGW3iNoHPsFwOo7NB43b9l9/qCrBblyEmAZJwu05ykBlvZiolWLLBZg0VIzzpxV3kxYobyMJo18t5OUAEurGUG7hAIEWMwDbyhAgOUNFTkHFVCnAAGWg06jpn6GZau/R8smtTHwg1ZpAiyx+6p5l4/xz+kL6NHhTXRo2VCd4uylUIAAiwmhFwVyZ8uILn3sNxCaTMDQjxJ8unNBL9rQzsApQIAVOO31uPKDWBOi55lw7T/llquXqssQ//NFI8Dyhaqc01sKEGB5S0ljz0OAZez403v/KkCA5aD3xcv/4ZV3BiA2Lh4N61RB705vIU+uiBS3EB744zg+mbIUx06cRfZsmfHd5+OQLUsm/0YuSFYjwAqSQBrAjfiYDBgxzn4DYc5IK7p34w2EBgi9pl0kwNJ0eDRp3O07JsyOlnD3nnInltiFJXZjebsRYHlbUc7nTQUIsLyppnHnIsAybuzpuf8VIMBKpvn3u/ej17AZsFgefol7pFBe27HCLJkzomzJojhx6gKuXX94hig0NASzP+2F554q7f/IBcmKBFhBEkgDuHHhTDjmLLYDqxIlrHinBQGWAUKvaRcJsDQdHs0ad/mKCdHzzYi3byqF2FUq6mE9Vsy7EIsAS7NpQMN4hJA54CUFCLC8JCSnoQIqFCDAciLSH0dPYvjExTh6/EyqEj7xWGEM79sO5UoWVSEzu6SmAAEWc0MvCuz/NRzrvrUDqyrPyahf17s/9PSiBe3UjgIEWNqJhd4s+eekhCXLJIgC74ktNBTo2N6CvHm8V9uPAEtvmWEse7kDy1jx9pW3BFi+UpbzUoGUChBgpZEVfxw7hV8OHsXZ81dw934MMmYIR4F8OVG5YilUKvc488kLChBgeUFETuEXBTZuDMO+X+zAqmEDGc8+TYDlF/G5SKoKEGAxOdKjwMFDElavU9bDypLZio7tZUREeAdiEWClJ0Ic62sFCLB8rbAx5ifAMkac6aU2FCDA0kYcDGsFAZZhQ687xxctCcXJ0/YfdG3esaBYUe/8wNOdGDRYMwoQYGkmFLo1ZNtOCTt2KiFWZA4rOkXJyJgx/e9xBFi6TQ1DGE6AZYgw+9xJAiyfS8wFqECSAgRYTIaAKkCAFVD5ubgbCowZH4J79+0DenW3ICJ7+n/cuWECu1KBFAoQYDEpvKGA2IUldmM5tkIFrWjfxgKzOX0rEGClTz+O9q0CBFi+1dcosxNgGSXS9FMLChBgaSEKBraBAMvAwdeR67FxJnzyqf1XnFkChg6y30ioI1doapApQIAVZAENkDuyDFs9rJOnlBCrZEkZLZrKtgLvnjYCLE+V4zh/KECA5Q+Vg38NAqzgjzE91I4ChgVY2/f+hh17D6Ju9WdQ9ZmytogsW/19uiNjNkvInjUzypUqhkL5c6d7vmCfgAAr2CMcHP6du2DC3Pl2gJU3D9C1MwFWcERX314QYOk7flqyPi4eiJ5nxpWrSlpV+RkZr9T3vN4fAZaWokxbkitAgMWc8IYCBFjeUJFzUAF1ChgWYD3boDPu3X+AnDmyYdeaqTa1ytRoo041lb0a1KqMUQM6IDQ0ROUI43UjwDJezPXo8cHfTVi91g6wSpeU0byZ5z/o9KgBbdamAgRY2oyLXq26e8+EWdES7txRQqx6tWVUfd6z9zwCLL1mgzHsJsAyRpx97SUBlq8V5vxUwK6AYQFWz6HTsWXXfrz+8gsY2b+9TZFX3hmQ7tywWq3478Zt3L0XY5urQ8uG6NHhzXTPG6wTEGAFa2SDy6+tOyTs3GU/WlOtqow6tTz7MRdcytCbQCtAgBXoCATf+levSYieZ4I4Ou3YWjSTUaqk++97BFjBlyPB5BEBVjBFM3C+EGAFTnuubDwFDAuwRKgFbDKlp7BDKvki5hXHEUdPW4aC+XJh8xfjjZdZKj0mwFIpFLsFVIGVX5lx+Ij9x9zrr1pQqSILuAc0KFzcpgABFhPBFwqcOWvCwiVmiNpYiU0yA23fseCRIu699xFg+SJCnNNbChBgeUtJY89DgGXs+NN7/ypgaIDla6krv9IFDx7E4dDW+b5eSrfzE2DpNnSGMnxWdAguXrK7LG7mcvdHnKEEo7N+U4AAy29SG24hAe0FvHds4WFWdIyyIncu9TuxCLAMlzq6cpgAS1fh0qyxBFiaDQ0NC0IFCLB8GNTnX+sKWbbixw0zfbiKb6deumozxs9agdy5IvD9igmpLnbsxFm8ETUkTWOG92mLNxtWV/QhwPJt/Di7dxQYPjIEFoffa/16JSBLFu/MzVmoQHoUIMBKj3oc60qBPXslbP5eeTNh1qxWdOkoI0tmdTuxCLBcqczXA6kAAVYg1Q+etQmwtBHLsxcuo37L/ni0cD58s/TTNI26cOka6jbvg8IF8uC7z8em2VecrBo19TOI+tbjBndJte+MhWswc/E6VWI8V6k05k/sl9S3/8g52PD9vjTHOtbuFh1XbdiJoeMXotmrNTC0t3dreatyIkCdCLBUCB8bF4+YmFhkyhiOsLBQFSNgKxDfuf8EFC9aCEN7vatqjJY6CfsHj52PTTt+sZmVP2/ONAHWvl+PIKrPOOTOGYF8eSKdutKx1auoWbWi4jUCLC1FnbY4U+DOHWDcJPtFDGFhVgwaYKFYVEATChBgaSIMQW3Eug0S9h9QQqw8ucVOLAvUfCUiwArq9NC9cwRYug+hJhwgwNJEGOArgNW43SD8ffK87WK2HasmIyK786fYAiit+mZnmmL8c/pf3I95gHo1nsHEYV1TACwB33Jkz+p0johsWTB9VPek1wiwtJF3mrAiwWLBd9t/xoYte/H70ZO4dftekl0ioZ4sXQyv1a2KutWfgSQpi5xqwoF0GnHi1AV0HzINp89dQrvmDbBi/TZky5o5TYD1zdYf0W/EbPTq1AztWzRQbQEBlmqp2DFACpw6/bAWTGIrUMCKzlEEWAEKB5dNpgABFlPC1wpYrcBnyyUcP6GEWMWKymj9tgxRGyutRoDl6whx/vQoQICVHvU4Num7Yc6MFEMDCvgCYB368x+8/d4IlCrxCI4eP4N+XVvg3ab1PPJWnFh6q9NwhISYsWbBSBQpmCcFwBI7vMROLzWNAEuNSgboc/Hyf/hg8DT8+fdpl94+WfoxTPn4feTJFeGyr146XLt+C/Vb9kN8ggXiyF+jelVRoXZ75MqZ9hFCcdTw0+mf45MBUbabHdU2Aiy1SrFfoBTYf8CEdRvsv9DKlbWiaRMCrEDFg+sqFSDAYkb4Q4H4BGDeAjMuXlI+tCtb2opmb6b9fkiA5Y8IcQ1PFSDA8lQ5jnNUgDuwtJEPvgBYg8bMx5qNu7Fk6kC07z0WhfPnxtdLRrvtsPht3bzzcAiI9eH7LdHqjTqKORKPEBJguZaWRwgdNIp5EIcm7Qfbth+GmM14qWpFPFOhpO0mwQzhYbbtfucuXsXeXw5jz89/2EYWK5IfX84dbns9WJqAURXKFEe5UsVsNzWWfamtyyOEU+Z9hejPvsbsMb1RrXI51VIQYKmWih0DpMCmLRJ+2GffefBSdRnif2xUQAsKEGBpIQrGsOF+jAmzoyXcvKWEWC9Wk1H7pdTfEwmwjJEfevWSAEuvkdOW3QRY2oiHtwHW3XsxqPFGd2TNkgnbV03G+4OmYtueA1g6bSAqlXvcLadnLlqLGYvW2sYtmfohTCblZykBlno5CbActJq7bAMmz12FfLkjMWdsbxQvWjBVJf84ehLdPpoCsWPJ3WNz6sMT+J7iOGX5Wu1dAqxh4xfhyw07sGrucNsWS7WNAEutUuwXKAU+XyHh2F92gPVmYwueLKeueHGgbOa6xlGAAMs4sdaCp9evmzB7noQHD5RfvJs0klGhvHOIRYClhcjRhtQUIMBibnhDAX8BrIuHrLhx2jgPUfNXkJDjEfXlerwNsJav3YqRk5fayuOI3/tbdv2KHkOm20oJjR7YQXXq/PXPOTTrOOz/RwdHoEjBvCnGEmCplhMEWA5avdlhqO1s68zRPVG9SnmXKm7f+xu6DZyCMk88ipVzhrnsr8cOagFWIpHu3Po13Lkbg3v3Y2wF74sUyINqlZ9MFQYSYOkxK4xl87SZZly9Zv/w7BRlQcECBFjGygLtekuApd3YBKtl58+bsGCJGQkJdg/Fg+RWLWSUKJ7yhxUBVrBmQnD4RYAVHHEMtBf+Alj7l1hwapdxAFald8woVl1ZfzGtWHsbYL0RNcR25E8cGRSnrsQxQLEjS1zutmP1FGTLksll6onf0qLulZhnQLe38c6bdZ2OIcByKWVSBwIsB62eqd8ZFosFv2ycA7PZ9T8Wi0VG5Vc6Q5Ik/PztbPWq66inWoAlQJ4Aeqm1l196FiP6tUOmjBkUXQiwdJQMBjV1yMf2GwiFBIP6WxAWToBl0HTQnNsEWJoLiSEMErtSxe7UQLQypWS81dQ4P+ACobGR1iTAMlK0fecrAZZvtPUUYIWHhaL044+maVRcfDyO/HUahQvkwXefj03RV5y2at7lY5Qv/Rg+nzk46fVRU5dh2eotGPhBK7RsUtul4zMXr8OMhWtsRwcXT/kw1QvgEgGWAGWRObI5nbd5o5qoX9Ne4J1F3F3KH/wdKtbtgIhsmW1nXNW22s164frNOziwea7aIbrqpxZgxcXF46ffjqFwgdy2ovahoaG245U/HfgTsxavw/mLV1H1mUVsLTMAACAASURBVLKIHtdHV/7TWGMrcO06MGB4fJIIWTIDk0eFGlsUek8FqAAVALBzr4ylKwJzoUW9mhKaNnJx/SGjRAWoABUIMgW4AyvtgCbuwHIn7KkBrMFjF2D1t7swrE8bNG1YI2lKcVpLnNp6vFgh202CaTU1RwcTxycCrLTm69P5LbRtXj+pCwGWO5EO0r71W/bHlWs3bDuwJMn1eVuxA+vZBp1t9aE2eHAbgR5kVAuw0vLlvxu30ajNR7hx6w7mT+yH5yqV1oPrtJEK4MgxKybNsp+TKV7UhAE9lDuyKBMVoAJUwKgKfLnOgk3bArMb6p23zKj+fGB2gRk13vSbClCBwCrAGljqANajhfPhm6Wfptn5wqVrqNu8j9MdWInF22XZil1rpiJL5oyKucSlbwJOLZ85GE+WfszpOuI3dPPOH9vKE6V1dDA5wOIthK7/jfEIoYNGo6ctw2dfbcGiyQNstw+6aj/u/9N2nea7TeuhX9cWrrrr8nVvACzh+NgZy7H4y00QNbLeb9ckSQseIdRlWhjG6J9/kbBho/0HUtXKEl5+OQ5WniA0TA5o3VEeIdR6hILfvhWrzDjyp+uHfr5QosVbMko9ERiA5gt/OKf/FeARQv9rHowr+usIYTBq502fvFUD64t12zBi0hKXpjVp8KKtRI6zNmvJOkxfII4OlsDiKQNdbo5hDSyXcid1IMBy0OrqfzfRsPWHKJA3JxZM6o8c2bOmqqQ4Hte2x6e4fO2GjfDmzhmhXnUd9fQWwBJnhcWZ4ZZN6mDgBy0JsHSUA0Y29dvvJPz4sx1gNWloRsWnYgmwjJwUGvOdAEtjAaE5KRTwVhF3ZzcghoQA7VpbUKgQnyow9TxTgADLM904SqkAAZY2MsJbACuxeLuoo5VaXezDx04hQ3godq6eisyZlDWe/z55Hs06DrXVyV67cKTTWweTK0aApT6HDAmwjp86n0IhyWRCSEgI/j55DgM+iUZ4eCga1XsBFcuWQP48kbYb9WJj43Dxyn/Y//vfWL95L0Tdp3kT+tqKsgVr8xbAmjLvK0R/9jV6dHgTHVo2JMAK1oQJMr+Wfm7G8RP2nQWd24agYJEHBFhBFmc9u0OApefoGcN2bwEsoZa4AXHeYjNkh9JbGTJY0TlKRmQkIZYxMsq7XhJgeVdPo85GgKWNyHsDYP1x7BSadx6Oxx4tiPWLPknVsc79J2L3T79jaK930ey1l5L6OR4d7N+1BVo3radKHAIsVTLZOhkSYJWp0Ua9Qi56FsyXywa5xgzq5LU5tTSRNwCWuHK0UZuBOHP+coqzwjxCqKVo05bkCkyaZsaNG3aANax/CMwZCLCYKdpRgABLO7GgJc4V8CbAEiscPSZh+Upl7auI7FZ07igjU0ZCLOahewoQYLmnF3un/T5HfQKrgDcA1pBxC/DVN7tsJ4bEyaHU2va9v6HbwCm22w6/jB6W1G32kvWYtmC1jQ8smer66GDiQAIs9blDgKVeqzR7HtmxyEszaWsaNQDr7IUr2Lp7P16t+zxyRWZXOCDeSEZN/Qy7f/oD1SqXw+wxvRWvE2BpK960xq6ALAPDPwlR7LaaPSEUV2/HcAcWE0UzChBgaSYUNCQVBbwNsMQy4mi3OOLt2PLnsyKqnQWhvGeDueiGAgRYbojFrqkqwB1Y2kiO9AKse/cfoMYb3SEuatuxegqyZcmUqmOiwHvd5r1x8cp1G8ASIEuc8mra4eHRQXFD4SOF8qoWhgBLtVTG3IEl6ld5uyUHN96eP1DzqQFYx06chTgrbDKZbP9QC+XPbfv//166hlPnLkL8AxcF7GaM7pnijYAAK1CR5bquFLh6zYRpM+3XtOfIDoz7OBQXrxNgudKOr/tPAQIs/2nNlTxTwBcAS1iycbOEfT8qIVaJ4jJatZBhCkxNec8E4qiAKkCAFVD5g2ZxAixthDK9AGvl+u0YPnExGtevhpH927t0KrFQuzhCKI4Sdu4/wbZpQ9xaWKRg2vBK1Nb6YtaQpDUSAZa4QTG1OtwR2bJg+qjuSWNWbdiJoeMX2vrnz5szVXunfNwNBfLlcumPXjoYcgeWXoKjBTvVAKz4+ASs+W4Ptu3Zb7tS9MbNO7YdKhHZs6BUiSJoWPt51K9Z2WkRPAIsLUSZNjhT4NhfEj5fYf9xVLKECX26hRBgMV00pQABlqbCQWOcKOArgCW+Zyz/UsKxY0qI9VQlGY0a8mZCJqM6BQiw1OnEXmkrQICljQxJL8B6s8NQHD1+JkXJm9S8ExfA1WrWCxnCw7Djqylo12sM/jh6UpUYkmTCH9sWpgBYaQ3OmSMbdq2ZmgJguVrw6yWjUaxIflfddPM6AZZuQhWchhJgBWdcg8GrH/ZK2PS9/YdR9eclvPOWmQArGIIbRD4QYAVRMIPUFV8BLCGXxQLMX2TG+QvKLVe1a8p48QVCrCBNKa+6RYDlVTkNOxkBlmFDT8cDoAABVgBE55J2BQiwmA1aVWD9Bgm/HrADrKaNzKhXUyLA0mrADGoXAZZBA68jt30JsIQMMTEmzJkn4brDhRvi783esKBsGRZ111GqBMRUAqyAyB50ixJgBV1I6ZCGFSDAcghObFy8x6EKDwv1eKyRBxJgGTn62vZ94RIzTp22P9XvFhWCCuVMBFjaDpvhrCPAMlzIdeewrwGWEOTmTROi50u4e8/+ni1JQNvWFjxShBBLd0njR4MJsPwodhAvRYAVxMGla5pTgADLISRlarTxOEDBeguhx4KoHEiApVIodvO7AuMnmXH7jv3H0IiBocifFwRYfo8EF0xLAQIs5ofWFfAHwBIaXL4iIJYZ8Q7PIsPDrOgYZUXuXDxOqPU8CZR9BFiBUj641iXACq540httK0CA5QWAJYqV/7BuurYjrVHrCLA0GhiDmyXqqgz/xH4Xu7jRavaEUJjNBFgGTw3NuU+ApbmQ0KBkCvgLYIll/zkpYckyyXaRTGLLmtWKLh1lZMnMnVhMzpQKEGAxK7yhAAGWN1TkHFRAnQIEWA46Hfjj7zRVi3kQhyvXbmD/739j47afbLfqzZ/YH+VKFlWnNnulUIAAi0mhRQUuXgJmRdsBVmQOK8YMDbNdzX7xeozix5EW7adNxlGAAMs4sdarp/4EWEKjg4ckrF6nvJkwT24rotrJyBBOiKXXPPKV3QRYvlLWWPMSYBkr3vQ2sAoQYHmo/7l/r6BtzzGwWCz4evFoZMmc0cOZjD2MAMvY8deq94ePmLDyK3OSeSWKW9GvGwGWVuNlZLsIsIwcfX347m+AJVTZtkPCjl1KiCVqYbV9xwLJ/tauDwFppU8VIMDyqbyGmZwAyzChpqMaUIAAKx1B2L73N3QbOAVd27yO99q8no6ZjDuUAMu4sdey5zt2S9i23f7j57lnZbR/O5w7sLQcNIPaRoBl0MDryO1AACwhj9iFJXZjObaypa1o9qZFR+rRVF8rQIDla4WNMT8BljHiTC+1oQABVjriEB+fgGcadEaxIvmxev6IdMxk3KEEWMaNvZY9X73OjIOH7AXcX6kv4/V6BFhajplRbSPAMmrk9eN3oACWLMNWD+vkKSXEerGajNovsai7fjLIt5YSYPlWX6PMToBllEjTTy0oQICVzijUatoLt+/exy8bZ6dzJmMOJ8AyZty17nX0AjPOn7cDrNYtLaj2TAbuwNJ64AxoHwGWAYOuM5cDBbCETHHxQPQ8M65ctb+fi783aSSjQnlCLJ2lkk/MJcDyiayGm5QAy3Ahp8MBVIAAKx3iW61WPP1yJ1hkGQe3zEvHTMYdSoBl3Nhr2fPR40IQE2O3sOcHFpQuRoCl5ZgZ1TYCLKNGXj9+BxJgCZXu3jNhVrSEO3fsEEtcyNGqhYwSxQmx9JNJvrGUAMs3uhptVgIso0Wc/gZSAQKsdKh/8MgJtOw6EgXy5cKWL8anYybjDiXAMm7step5bJwJn3xqr/IrfugMH5yA/JEZuQNLq0EzsF0EWAYOvk5cDzTAEjJdvSYhep4J4v09sYWEAFFtLSiQnzcT6iSVfGImAZZPZDXcpARYhgs5HQ6gAgRYHor/x9GTGDAqGqfPXcJrdati9MAOHs5k7GEEWMaOvxa9P3fBhLnz7QArdy4r3n/PQoClxWDRJhBgMQm0roAWAJbQ6MxZExYuNUN2qOGeKaMVnTvIiIggxNJ6HvnKPgIsXylrrHkJsIwVb3obWAUIsBz0b9pxmMtoyLKMS1ev4+atu7a+IWYzVswZipLFi7gcyw4pFSDAYlZoTYGDv5uweq0dYJV6QkaLt2QCLK0FivbYFCDAYiJoXQGtACyh09FjEpavVBZ1j8xhRacoGRkzEmJpPZd8YR8Bli9UNd6cBFjGizk9DpwCBFgO2pep0catSERkz4LhfdqidrWn3BrHznYFCLCYDVpTYOsOCTt32X/gVK0io14dAiytxYn2PFSAAIuZoHUFtASwhFY/7JOwaYsSYhUqaEX7NhaY7c8utC4r7fOSAgRYXhLS4NMQYBk8Aei+XxUgwHKQe8bCNS7FN5lMyJQpA4oWzo/KlUohQ3iYyzHskLoCBFjMDq0psPIrMw4fsddJadTQgqcqWbkDS2uBoj0EWMwBXSigNYAlRFu3QcL+A0qIVbKkjBZNZVutQzbjKECAZZxY+9JTAixfqsu5qYBSAQIsZkRAFSDACqj8XNyJArPmhuDiRfsLbVtbUPRRAiwmizYV4A4sbcaFVtkV0CLAslqBz5ZLOH5CCbEqPyPjlfq8mdBI+UuAZaRo+85XAizfacuZqUByBQiwmBMBVYAAK6Dyc3EnCgwfGQKLw++Xvj0TkDUruAOL2aJJBQiwNBkWGuWggBYBljAvPgFYuNiM8xeUW65eriPj+SqEWEZJYgIso0Tat34SYPlWX85OBRwVIMByMx9k2QpJ4v5yN2VLtTsBlreU5DzeUODOHWDcpJCkqcwSMHRQgu2/80dmtB0tuXg9BuLpPRsV0IICBFhaiAJtSEsBrQIsYXNMjAlz5km4fkP5va5FMxmlShJiGSGzCbCMEGXf+0iA5XuNuQIVSFTAsAArwWLBd9t/Rs2qlZApY3iaGXH95h1MnfcVtu7ZD/H/s2XJhCpPl8X77RqjaJH8zKZ0KECAlQ7xONTrCohr1ucvslfxzZ/Xii6dHt65ToDldbk5oRcUIMDygoicwqcKaBlgCcdv3DRhzlwJ92MC83CyS0cL8ufjUxGfJmEakxNgBUr54FqXACu44klvtK2AYQHWzn2H8N6Hk5A/TyS2rJgAUZzdWfvvxm206PIxLly6luJlUcB97vi+qFSuhLajrGHrCLA0HBwDmiaK+orivomtbGkrmr1JgGXAVNCNywRYugmVYQ3VOsASgbnwrwkLFpltxwr93WrWsKLGiw8/Z9j8rwABlv81D8YVCbCCMar0SasKGBZgjZi0BF+s24Y3XnkRH/dtl2p8ug+ehu9377cdG2z66kuoUOYx3Lx1FyvWb8fpc5eQL3ckvl4y2uUuLq0mQKDtIsAKdAS4vqMCyW8gdPxhwR1YzBUtKkCApcWo0CZHBfQAsIS9fx+XbIXd/d0KFrCiUxQBlr91T1yPACtQygfXugRYwRVPeqNtBQwLsJp3Ho4/jp3C+CFdUL9mZadREq+LfqKN+rADGtWrmtTv7r0YNOs0DGfOX8bQ3m3Q7NUa2o60Rq0jwNJoYAxoliwDo8eZERtr343ZoZ0FhQs9PNpBgGXApNCBywRYOgiSwU3UC8ASYfr1gIT1Drtw/RW6AX0tyJSRxwj9pbfjOgRYgVA9+NYkwAq+mNIj7SpgWID1/Gtdcev2PaxfPAqPPVLAaYT6jpiFb7f+hOefLou54/uk6LP2uz346NN5qFb5Scwe00u7UdawZQRYGg6OwUw7fcaEBYvt9a/Cw60Y2M9iK9xOgGWwZNCRuwRYOgqWQU3VE8DyV4jmLjTj3Dn7w5LGr1lQsQIBlr/0J8AKhNLBvSYBVnDHl95pSwHDAqzytdpDFHLfu34GsmfLnCIqt+7cQ403eiAuLt4GrwTESt5EXay6zfsgb+4c2PblJG1FVifWEGDpJFAGMHPz9xL27LUfH6nwpBVNXrcf6+AOLAMkgQ5dJMDSYdAMZjIBVsqA79wtYet2++dN6VIymjflrYeB+KfBHViBUD341iTACr6Y0iPtKmBYgFWhThTi4xOwfdVk5MkVkSJCy9duxcjJS9Ms8i7Gi3nCwkLx2+a52o2yhi0jwNJwcAxm2vRZIbhy1e50syYWlC1rfyJOgGWwhNCJuwRYOgmUgc0kwEoZ/EuXgZlzQpJeCA0BPhqQAMn/JbgMnJkPXSfAMnwKeEUAAiyvyMhJqIAqBQwLsOo074N/L13DkqkD8dSTjyvEslqteL3dIJw4dQEdW72K7lFvOBUzEWCZzRJ+37pAleDspFSAAIsZoQUFbt8xYfwk+/FBcWxwYF8LwjMQYGkhPrQhdQUIsJgdWleAAMt5hMZNMuPOHfsxwnffseCxojxG6O98JsDyt+LBuR4BVnDGlV5pUwHDAqzew2fiu+0/2wqziwLtjm3Nxt0YNGY+BJjauGwsCubL5TR6167fQvUm3ZEpYwb8snG2NiOscasIsDQeIIOY99MvEr7ZaH/0/egjVrR7V3krFHdgGSQZdOYmAZbOAmZAcwmwnAf96w0Sfjlg/9ypUkVG/To8RujvfyIEWP5WPDjXI8AKzrjSK20qYFiAtfunP9C5/wRbVLq1a4zXX64GWK3Y9sMBjJ+90lb7StwsKG4YTK3t//1vtP5gFIoUzIuNy8ZoM8Iat4oAS+MBMoh5Sz834/gJ+5PwurVlvPC88ocEAZZBkkFnbhJg6SxgBjSXAMt50P/6W8KyL+wAK2ekFd27KR+cGDBd/O4yAZbfJQ/KBQmwgjKsdEqjChgWYIl4fDB4KrbuPuA0NEWL5MfymYORNUumVEM3e8l6TFuwmrcQpiO5CbDSIR6HekWB+Hjgk7EhkB1+N3TrkoA8uZXTE2B5RW5O4mUFCLC8LCin87oCBFjOJbVYgBGfKj97en5gQY4IHiP0ehKmMSEBlj/VDt61CLCCN7b0THsKGBpgPYiNwydTPsPa73ZDlu1fGGpXewqDe7ZGrsjsaUaseZeP8cfRk+jZsSmi3n5Fe9HVgUUEWDoIUpCbmPwpeNasVvTtmfIpOAFWkCeCTt0jwNJp4AxkNgFW6sFOvvu3fj0ZVSrzGKE//3kQYPlT7eBdiwAreGNLz7SngKEBVmI4/rtxGydOX7D9Z4mihRAZkdVlpCwWGZPmfgmrbEXrpvWQN3cOl2PYIaUCBFjMikArsH6DhF8d6pA8+4yMhvVT/oAgwAp0pLi+MwUIsJgXWleAACv1CCWvv1isqBVt3uExQn/mNAGWP9UO3rUIsII3tvRMewoQYGkvJoayiADLUOHWpLPJb4Jq1cKCx0ukPMJBgKXJ8BneKAIsw6eA5gUgwEo9RM5uwB00IAGhoZoPa9AYSIAVNKEMqCMEWAGVn4sbTAECLIMFXGvuEmBpLSLGsufiJWBWdEiS05IZGDwgAWZzSh0IsIyVG3rxlgBLL5Eyrp0EWGnHfvqsEFy5au/TvJmM0iV5jNBf/2IIsPyldHCvQ4AV3PGld9pSgABLW/EwnDUEWIYLuaYc3rFbwrbt9lugHi8ho1UL5z8cCLA0FToa838FCLCYClpXgAAr7Qht/l7Cnr32z6FKFa14/VUeI/RXXhNg+Uvp4F6HACu440vvtKUAAZa24mE4awiwDBdyTTkcvcCM8+dNSTa9+oqMZ54iwNJUkGhMmgoQYDFBtK4AAVbaETp9xoQFi+3bfjNltGJAXwIsf+U1AZa/lA7udQiwgju+9E5bChBgaSsehrOGAMtwIdeMw/djTPh0nPKsYJ+eFmTL6vwKc+7A0kzoaIiDAgRYTAetK0CAlXaEZBkYPc6M2Fj7w5TOUQkoUEDrkQ0O+wiwgiOOgfaCACvQEeD6RlKAAMtI0dagrwRYGgyKQUw6+LsJq9faAVa+vMB7nRJS9Z4AyyCJoTM3CbB0FjADmkuA5TroK1ebcfiwHWDVrC6jRnXWwXKtXPp7EGClX0POABBgMQuogP8UIMDyn9ZcyYkCBFhMi0ApsOIrM44csf9gePEFGbVrpv6DgQArUJHiumkpQIDF/NC6AgRYriOU/IFKwQJWdIriMULXyqW/BwFW+jXkDARYzAEq4E8FCLD8qTbXSqEAARaTIhAKODuyEdXGgiJFnB8fFDYSYAUiUlzTlQIEWK4U4uuBVoAAy3UEYh+Y8MlY5ZF2UQdL1MNi860CBFi+1dcos3MHllEiTT+1oAABlhaiYGAbCLAMHPwAun7qtAkLl9h/LISHWzGwnwUm+4asFNYRYAUwYFw6VQUIsJgcWleAAEtdhOYuNOPcOfuHUOPXLKhYgQBLnXqe9yLA8lw7jrQrQIDFbKAC/lOAACsNrWPj4nHm/GXcvnMPGTKEoewTRf0XGYOsRIBlkEBrzM1NWyT8sM9+bfmTZa14s0naxzUIsDQWRJpjU4AAi4mgdQUIsNRFaOduCVu32z+XypSS8VZT1sFSp57nvQiwPNeOIwmwmANUIBAKEGA5Uf3vk+cxbcFq7P7xEOITHv6ofeKxwlg9f4Si9/QFa3D52g10j3oDuSKzByJ+ul+TAEv3IdSlA9NmmnH1mv1J95uNLXiyXNpPugmwdBnqoDeaACvoQ6x7Bwmw1IXw4iVgVnRIUufQEOCjAQmQ7ExL3UTs5ZYCBFhuycXOqSjAHVhMDSrgPwUIsJJpvWXXr+g7Yjbi45W3kTkDWCMnL8XytVvRt0tztHnrZf9FLYhWIsAKomDqxJXbd0wYP0lZa+SjfhaEZyDA0kkIaaaDAgRYTAetK0CApT5C4yaZceeO/eHKu+9Y8FhRHiNUr6D7PQmw3NeMI1IqQIDFrKAC/lOAAMtB67MXLqNR20GIi4tHiaKF8HbjWihSKC/a9xrrdAfWD78cRse+41Hl6TKYN76v/6IWRCsRYAVRMHXiyo8/S/j2O/sjbVG4XRRwd9W4A8uVQnw9EAoQYAVCda7pjgIEWOrV+nqDhF8O2D+fqlSRUb8OjxGqV9D9ngRY7mvGEQRYzAEqEEgFCLAc1B8+YRFWfr0DDetUwegPO0KSHj4FK1OjjVOAdfHKddRu1gt5ckVg+6rJgYyjbtcmwNJt6HRr+JJlZpz4x/6Eu3ZNGS++4PoHAgGWbkMe1IYTYAV1eIPCOQIs9WH8628Jy76wA6yckVZ07+b6AYv6FdgzuQIEWMwJbyjAHVjeUJFzUAF1ChBgOehUr0VfnL941QajBJRKbKkBrASLBRVqRyEkxIyDW+apU5y9FAoQYDEh/KlAfDzwydgQyA6/B97rlIB8eV1bQYDlWiP28L8CBFj+15wruqcAAZZ6vSwWYMSnys+onh9YkCOCxwjVq+heTwIs9/Rib+cKEGAxM6iA/xQgwHLQukKdKGTPmhk7V09RRCA1gCU6VazbAbJFxqGt8/0XtSBaiQAriIKpA1eO/iVh+Qr70+2sWa3o21Pd020CLB0E2IAmEmAZMOg6c5kAy72ALf3cjOMn7LuE69eTUaWy613C7q3C3okKEGAxF7yhAAGWN1TkHFRAnQIEWA46PdugM0LMZuz9eoYqgHXt+i1Ub9LddgNhcuilTn72IsAyZg6cOWvCwiVmyB58JzeZgFYtZJQo7v7gdRvM2H/A/sPgmadkvPqKunkIsIyZq1r3mgBL6xGifQRY7uXAT79I+Gaj/UHLY8WseLeVugct7q3E3kIBAizmgTcUIMDyhoqcgwqoU4AAy0GnZp2G4chfp7F24UhbEffEltoOrM/XbMUnU5aiepXymDm6pzrF2UuhAAGW8RLi6jUJ0fNMiI2zgyR3VQgJAaLaWlAgv3vHKj4dZ8b9GPu6LZtb8MTj6uYgwHI3SuzvDwUIsPyhMtdIjwIEWO6pl/ymXPHQZtCABISGujcPe6tTgABLnU7slbYCBFjMECrgPwUIsBy0nrtsAybPXYXKFUth1pheCA97+G3BGcA6efYiWnUdiVt37mHUhx3QqF5V/0UtiFYiwAqiYKpw5e49E2ZFS4prwlUMc9olU0YrOneQEaGyNsjFi8CsuSFJc0lmYPCABJjN6iwgwFKnE3v5VwECLP/qzdXcV4AAy33Nps004+o1+8OW5s1klC6pbrew+6sZewQBlrHj7y3vCbC8pSTnoQKuFSDActDofkwsXmszEBcv/4ciBfOia9vX8WyFUnjpzR62Wwi/mvcxzpy/jE07fsH85d/g3v0Htr+vjB5mO3rI5r4CBFjua6bXEXHxwNz5Zly+4vnOq+S+ixuaOraXkTGj611UO3absW27fW1xBPGdt9X/ICDA0mvmBbfdBFjBHd9g8I4Ay/0obv7ehD177d8rK1WU8fqr6j+v3F/RuCMIsIwbe296ToDlTTU5FxVIWwECrGT6nDp7EVG9x+HS1euKVyTJBMkkQdw8mNgK5c+NBZP6o2C+XMwzDxUgwPJQOJ0NE7WuliyTcPKUva6HcKH4Y7KtnpWk/LNT76xWYPmXEo4dU3YuVNCK9m0sLndSRc834/wFO8BqWF/Gs8+o/0FAgKWzpDOIuQRYBgm0jt0kwHI/eKfPmLBgsR1giR3HA/qyDpb7SroeQYDlWiP2cK0AAZZrjdiDCnhLAQIsJ0revnsfsxevw1ff7sLdezEpemQID8Mbr1S37dAStxayea4AAZbn2ulp5Op1Eg4eUoKn/Hmt6NDeAlHPSm0T/Hj+IiWIEmNLlpTRoqkMUSvEWRN1r0T9K8fWp6cF2bK63rmVOIYAS22U2M+fChBg+VNtruWJAgRY7qsmHvqMHmdGbKz9Q61zVAIKFHB/Lo5IWwECLGaINxQgwPKGipyDCqhTgAArDZ3Ebqujx8/i7IXLuHcvBhkzhKNAvlwoJmQZcQAAIABJREFUV7Iowv5fH0udzOyVmgIEWMGfG9t3ShD/c2w5IqzoFCUjUyb1AClxfEyMCXPmSbh+Q0mrqlSRUb+O8x1VBw+ZsHqdHWDlyQN065zglvgEWG7Jxc5+UoAAy09CcxmPFSDA8ky6lV+ZcfiI/XOuZnUZNaqr3zXs2arGG0WAZbyY+8JjAixfqMo5qYBzBQiwmBkBVYAAK6Dy+3xxsetK7L5ybKJeVZeOMiKyuw+vEue5edOE6PkSRFF4x/ZaQxlPV0r5BX/FKglH/rTb8cLzMurWdu+HAAGWz9OFC3igAAGWB6JxiF8VIMDyTO6Dv5uweq39wUuhAlZ0jOIxQs/UTH0UAZa3FTXmfARYxow7vQ6MAgRYDrq/2vpDNG5QDa/VrYpckdkDExGNrbp01WaMn7UCuXNF4PsVE1xat2bjbqzasBMnTl+AxWLBI4Xy4fWXX8DbjWvDbE5Z6IgAy6Wkuu3wz0nJVvdK1K5KbOIa8Ki2FuTP5zm8SpxLFIMXda3i4+3ziyOEzZvKKOVwW5M4ivHJpyGId9hw1e5dCx59xD0bCLB0m4pBbTgBVlCHNyicI8DyLIyxD0z4ZKzy6LuogyXqYbF5TwECLO9paeSZCLCMHH367m8FCLAcFC9To43tv0TB9mqVn0Tj+tVQo0oFhIa6UaTH3xH00XrihsXBY+fbblwULX/enC4B1oej5mL95h8QGmJGxXIlEBoSgkN//mOrI/bCs+UwY3SPFLc1EmD5KIABntYZXBKF2lu3lFGsqHs7n9JyxRkkk8xA1LsWFCr08Ev+ydMmLFpi/xEQHm7Fh30tqgrHO65NgBXgpOLyThUgwGJiaF0BAizPIxS9wIzz5+07jRu/ZkHFCgRYniuaciQBljfVNO5cBFjGjT09978CBFgOmg+fuBibtv+MW3fuJf01InsWNKxdxQazShYv4v8IBWDFE6cuoPuQaTh97hLaNW+AFeu3IVvWzGkCLAGuBMAqViQ/osf3Rf48kTbL78c8QI8h0/HDL4fxfrsm6Nz6NYVHBFgBCLCPl7x9x4TZ0SmP9731pgVlSnv/i7ezY4oZMljROUpGZKQVG7dI2LfPvvuvbFkrmjVx/xgGAZaPE4fTe6QAAZZHsnGQHxUgwPJc7B27JWzbbv/8KlNKxltNvfcQyHPLgmckAVbwxDKQnhBgBVJ9rm00BQiwkkU8Pj4BO388ZNtJtGvfIcQn2H/oCoDVpEE1vFKrCgTYCsZ27fot1G/Zz+b38D5t0aheVVSo3R65cqZ9hPD1toNw/NR5LJsxCBXKFFdIc+PWHdRq2su2k23n6ikQtzgmNgKs4MqiB7EmRM8z4dp/yuOitWvKePEF333p3rHbjG3blfWwRI2tzh1lzF0g4b//7K81ed2CCk+6D9IIsIIrV4PFGwKsYIlk8PpBgOV5bC9eAmZF208BiAMBHw1IcHsHsecWBP9IAqzgj7E/PCTA8ofKXIMKPFSAACuNTBA7sb7b9hM2fL8PB/44ntRTHJF7qWpF266sqs+Uc1rbSc8JJupeCQhVrlQxWK1WlH2pbZpHCP+9dA11mvdBkYJ5sHHZWKeu9xo2w3Yccdon3VGzakUCLD0nSBq2L1gi4fRpJbx69hkZDev7Dl4lmrN2vYQDB5VrR+awpritUBwfFIXk3W0EWO4qxv7+UIAAyx8qc430KECAlR71gPGTzBA7mxNbu9YyHn3U95+p6bNaP6MJsPQTKy1bSoCl5ejQtmBTgABLZUTPX7yKDVv24este21H6xJb7pwReK3u8+jVqZnKmfTVLcFiQfla7dMEWFt3H8AHg6eiYZ0qGPNRJ6cOLv5yE8bOWI4OLRuiR4c3CbD0lQaqrF25yozDfyp3QT3xuIy335Ihiqv7uoli7aJo/MlTKS8LSFy7cGErOrR1//igGE+A5esIcn5PFCDA8kQ1jvGnAgRY6VN7/QYJvx6wf65VqSKjfh0CrPSpah9NgOUtJY09DwGWseNP7/2rAAGWB3ofPX7Gtpto+97fIOpFiXZkxyIPZtL+EDUAa9GK7zBu1hfo9M6r+KD9G06d+n73fnQfPA31ajyDicO6EmBpOPR79poRF+fel2NxZPDwESWlKlLIiqh2nsEiT+WJiwfmLzTj4iXnxKxOTSuqveCZTQRYnkbFO+NM8bEI2bIKsDhcJ+mdqb02i1ykBCzln/fafGomIsBSoxL7BFIBAqz0qf/X3xKWfWEHWDlzyuje1b3P6PRZENyjCbCCO77+8o4Ay19Kcx0qwCOEHuXAkb9OY/NOAbAO4p/TBFjTF6zBrCXr0KfzW2jbvL5TTX/67Sja9RyD554qjfkT+iX1uXM/3mn/jOFmhJglxMRakGDhFzWPEtWDQf+cBqbP8WBgsiH58gDduwAZMqR/LndnuHsPmDQj5dFBMU/f7kCBfO7O+LB/loyhtp1kd2LiAfdPIHq2KEfZFLDKMuTJA4Hff9K2IiYJUo9PYCr/nN/sDA2RkCHMjPgEGQ/iPIOzfjOWCxlSgayZQm1+p/Z5b0hR3HA6Pg7oN1Q5ID2fZW4sbYiu4v1TvI+K90/xPspGBTxRIPF9zpOxHEMFqIB7CnAHlkq9xLFBcXzw260/4uyFK0mj8ufNidfrvYBu7RqrnElf3dTswJoweyUWfPEtPny/JVq9Ucepg78dPo5W3T5BxbIl8Nn0j/QlgoGsnTE/Ab/9nj46kz0bMKh3KHJEBE64y1eAkRPjERNjtyFHdmDcxw9/SLHpS4H70eMQ9/06fRgdGoasI2bCXKykPuyllVSACmhegcmzE3D4qP2zOWcO4KPeociWVfOm00AqQAWoABWgAl5VgAArDTmv37yDjdt+wtebf8Afx04l9QwPC0WdF5+2FXGvXKkUTP4o8OPVsKufTA3AcmsHVqXSmD+RO7DUR8B/Pa9fN2HEuPTBqwzhD3de5cvrP7tTW+n0GWDeEqBgASseKQKUftyERx/x3C7uwPJcu/SMtH7zOeQv56ZnCv+PzZIN0rA5MOXycLufGxZzB5YbYrFrQBTgDqz0y37wd2DxcuU8+fMBPboAYfaLndO/kAFn4A4sAwbdBy5zB5YPROWUVCAVBQiwkgnzIDYO23/4zbbbas/Pf8DicHztydKP2aBVg5qVkSVzRkMklRqAteTLTRgzY7mqGli1qz2FKSPeT9Lu3/8ctsg4KBqZNcx2LOb6nTgei/FTpm3cJGHfT/Y6G9myWVGpgnvb6R8vDhQqlD4I5id33V6GNbDclizdA0IO7ETY3JGKeazhGZFQq4m4RDfd83trAtPF0wj5bY9iOjlPIcT2mwZr5izeWsbpPKyB5VN5ObkXFGANLC+ICGDT9yb8sNesmOyxYjLebeXe57R3rAmeWVgDK3hiGUhPWAMrkOpzbaMpQIDlEPFBY+bbalvdu/8g6a+5IrPjtbpV0bhBNRQrkt9o+QE1AGvnvkN478NJqm4hbNe8AXp3tt/YSICljZSKjwfGTBDF2+1Q4OW6Mp5/jl+MEyNEgOXfXJVOHkX4xF4wORRtt0pmxPYYC7nEk/41xtVqVivC5gxHyKEfFD0tRUsittdEIMR3R1cJsFwFh68HWgECLO9EwGoFvvwq5W2/ZUtb0exN1r/zVGUCLE+V4zhHBQiwmA9UwH8KEGA5aF2mRhvbf4WGmFHj+Yq23VYvPFsOZrN9V4r/QqONldQArGvXb6F6k+4oUjAPNi4b69TwXsNm2G5uHD+kC+rXrJzUhwBLG3EWO6/EDqzEFhZmRf/eFoT67ne3Nhx3wwoCLDfESmdX05ULyDCmG0z37ypmim3/ESxP10jn7D4anhBvA27mU8cUCySUr4q4TkNhuwHAB40AyweickqvKkCA5T05ZQuwcKkZZ84q30+qV5NR6yU+cPJEaQIsT1TjmOQKEGAxJ6iA/xQgwHLQ+o2oITZo1bB2FURk9+2xD/+FOH0rqQFYYgVRoF0Ual82YxAqlCmuWPTGrTuo1bQXZKsVu9ZMRbYsmQiw0hcWr44WT3UnTTPj5k37F+IqVWTUr8Mvw45CE2B5Ne1Sn+zuLWQY/R6k6/bLMkTnuEbtkPByCz8Z4eEy9+7YwJt09V/FBPG1miD+zS4eTpr2MAIsn8jKSb2oAAGWF8UE8CDWhOh5Jlz7T/lwtUkjGRXK83PbXbUJsNxVjP2dKUCAxbygAv5TgADLf1rrciW1AGv3T7+jc/+JtmOW0eP7In+eSJu/92MeoOfQGbZ6Yi2b1MbAD1opdOAOrMCnxdG/JCxfYf8iLDaK9O5ugaiBxWZXgADLD9kQF4sM43tAOndCsVjCCw0Q17KnHwxI/xKm/y7bAJzp3m3FZLFv94Cl2ivpXyDZDARYXpeUE3pZAQIsLwsK4PYdE2ZHS7h7z/7gSXx2t24pQ9TFYlOvAAGWeq3YM3UFCLCYHVTAfwoQYPlPa12upBZgCefGz16BhV9sRGhoCCqWLY6w0FAc+vMf3Ll7H6UffxSLp3yITBnDCbA0lgkLF5tx6oz9S3CZ0jLeepNfgJOHiQDLx4krywifORjmIz8rFrKUeRax740AJP0c5TadPW4Dcab4uCRfrCYT4joOgaXCC14VkgDLq3JyMh8oQIDlA1EBXL5iQvR8M0QNy8Qmjv23b2NBgfx8AKVWdQIstUqxX1oKEGAxP6iA/xQwLMCaPHeVrSbT6y+/YLs9T7QeQ6Z7rPzkj7t5PFbLA90BWMIPoelnX23BX/+ctd3gWDB/btutjW2b10d4WMqCStyBFdjoX70mYdpMJRjo2N6CQgX55ZcAy7+5GbZsEkL2fKtYVC5cHA/6TAbClODbv5Z5tpp0+CcbkDOJM7r/b1ZziK2ou1yslGeTOhlFgOU1KTmRjxQgwPKRsAD+OSlhyTIJDm8zyJTRis4dZERE8HNcjfIEWGpUYh9XChBguVKIr1MB7ylgWID1VL2OeBAbh+zZMmPv+hk2RROLuHsi75EdizwZZvgxBFiBTYHV68w4eMi++6pQISs6tuNtRs6iwh1YvsvV0C0rEbp6rhJeRebBgw9nAlmy+25hH89s3v0Nwj+frFjFmikLHvSfDmuegl5ZnQDLKzJyEh8qQIDlQ3EBHDwkYfU65YOoyBxWdIqSkTEjIZYr9QmwXCnE19UoQIClRiX2oQLeUcCwAGvJl5uw7Yff8Ert59C04cNbrYZP8BxCDe398AZDNvcUIMByTy9v9o6JMWHsBDMsDqcFm71hQdky/MJLgOXNTEt7LvPBPQibMxyOd2p5G/L4z5uUK4WumYfQzSsUL8hehHMEWIGMLtdWowABlhqV0tdn6w4JO3cpIZbYSS2OE5rN6Zs72EcTYAV7hP3jHwGWf3TmKlRAKGBYgMXwa0MBAiz34nDlqgl5cnsHMO3YZca2HXZskD271Va8nc25AtyB5f3MkE4eRfjEXjBZEpImt4aGIbbHeK8es/O+5e7NGDZvJEL271RCLC8djyTAci8W7O1/BQiw/KP5qjUSfv9DCbFKPiHj7bdY0zKtCBBg+Sc/g30VAqxgjzD905ICBFhaioYBbSHAUh/0GzdNmD7TjPZt01+gVey6mjDJrLjB6OU6Mp6vwi+6qUWEAEt9rqrpabpyARnGdIPp/l07vDKZbAXb5bKV1Uyhnz6WBIRP7gfziT8UNnujQD0Bln7SwKiWEmD5J/KyBVi41IwzZx33swJPVZLRqCE/21OLAgGWf/Iz2FchwAr2CNM/LSlAgOUQjWMnziJTxgwoUjCPqhjFxyfgh18OI2/uHChV4hFVY9hJqQABlvqM+OY7CT/9LHmlQKuoeyXqXyW2sDAr+vaSER7mnd1d6r3ST08CLO/FynT3FjJ82hWm/y4rJo17qxsSajTy3kIamskUcw/hY9+HdOmcwiq5YDGII5OeNrMEhJglWGQrEiz6+/crl3sO8XWaeuo+x+lAAQIs/wXpQawJ8xZIELu1HVu9OjKq8gGV00AQYPkvP4N5JQKsYI4ufdOaAgRYDhERRdyfq1Qa8yf2UxUnq9WKp1/uhEIFcmPdwk9UjWEnAixPciA2zoSx482I//9Jq/QWaBU3D4obCBNbledk1K/LJ7RpxYYAy5PMdTImLhYZxveAdO6E4sX4Os0Q36SDlxbR5jSmm9eQYVQXmO7c1KaBAbIqtnVfWKrUDdDqXNbXChBg+Vph5fx375kwK1rCnTtKiNWimYxSJfk5nzwaBFj+zc9gXY0AK1gjS7+0qAABVjoAlhhap3kf3Lx1B79snKPF+GreJu7AUheiH/ZJ2LRFWduicCErOnhwY+DpMyYsWKys6ipqX4kaWGypK0CA5Z3sCJ81BObf9ykmS3iqOuKiBnlnAY3PIl04ifAxH8AUH6txS/1rXuwHY2ApVcm/i3I1vyhAgOUXmRWLXL1iwpwFEuLilBBLFHV/pAg/6x3FIsDyf34G44oEWMEYVfqkVQUIsNIBsOLi4lG54XsQO7EObpmn1Rhr2i4CLHXhGT/ZjNu3lV9ExUjxNFU8VXWnfb5CwrG/7DCsTCkZbzV1bw531guWvgRY6Y9k6PIpCN21QTGRpXg5xPaemP7JdTSD+c/9CJ82QEcW+95Ua2g4YvtNhVyomO8X4wp+VYAAy69yJy126rSEhUuUD75EuYCO7WWvXQYTGM+8uyoBlnf1NOpsBFhGjTz9DoQCBFgeAqx79x/gkylLsW7TD3jskQJYv3hUIOKn+zUJsFyH8PARE1Z+lfo92O4c/xOF4CdNVc7Voa0FhQvziayrSBBguVIo7ddDt36F0FWzFZ3k/EUQ23cqrBkzp29yHY6W/j0F093b6bY8PFRClowhiI2XcTfGfptjuif28QSmG9cQtuhTZT5ki0Rc/2mQI9XVofSxiZzeSwoQYHlJSA+mcfb9IWtWK7p0lJElMz/3haQEWB4kFoekUIAAi0lBBfyngKEB1rLV3+PzNd8nqX363CVkCA9DvjyRaUYgIcGCS1euI8FisfXr3bkZ2jVv4L+oBdFKBFiugzlnvhkXLqTcfeU48pX6Mio/43oX1cZNEvb9ZH8iW7CgFZ3aP8xjtrQVIMDyPEPMB/cgbM5wOGaxNWsEHgycBWtELs8n5kjo+RZC8687ED5fWT9SzlsYD/pPAwwINYM1nQmwAhvZnXvM2LpN+R0ib56HJQjCwgJrmxZWJ8DSQhT0bwMBlv5jSA/0o4ChAdbeXw9jxsK1OPTnP7ZjgJ60N155EUN7tYFZXAXF5rYCBFhpS3b+vAnRC5Q7ptq9a8HqtRJu3lJ+IX3nbRkliqcOsZIXghcrN3vDgrJlPMt9t4Ot8wEEWJ4FUDp5FOETe8Fkse8OsoZlwIN+U2EtWNSzSTkqSQE9AyzhRMjGzxG2fqEiorZjpT3GAuYQRjoIFCDACnwQV6+TcPCQ8ntqsaIyWr8tQ0p9g3fgDfeDBQRYfhDZAEsQYBkgyHRRMwoYGmAlRuHmrbtYu2kPxs38Ao8Wzoe3G9dOM0CSZEJEtiwoX/oxFMjH3QPpyWYCrLTVW7FKwpE/7V86SxS34p23Lbh+3YTZ8yQ8eGCHWCEhQFRbCwrkdw6k9v4o4bvN9rmyZbWidw8LTGlv7kpPeINqLAGW++E0XbmADGO6wXT/btJgq0lC7PujIbNgt/uCOhmhd4AlXApbNgkhe75VeGekwv5eSQQNT0KAFfjgyDKwZJmEk6eUEKtsaSuavWnsXdgEWIHPz2CwgAArGKJIH/SiAAGWQ6QatxuEyIhsmD+xn17ip3s7CbBSD6Eo2j5hihmOmwNbt7Sg+GMPAZXYnbVgiRkJDmVvMmW0onMHGRERSogl5pggCsE7XKtdr7aMqs+7Pnao+yTzkgMEWG4KefcWMox+D9L1K4qBsa37wlKlrpuTsXtqCgQDwIIsI3zmYJiP/KyEWPVaIO71dgy+zhUgwNJGAOPigeh5Zly5qnxqVb2ajFovGfe7AAGWNvJT71YQYOk9grRfTwoQYDlESxwpPHX2Elo2SXsHlp4CrHVbCbBSj5DYLSV2TSW2XDllfNBV+SXz+AkJny2XFJArMocVnaJkZMxoh1h/HpPwxUr7XKEhQL8+FoSH8fig2n8jBFhqlQIQF4sM43tAOndCMSi+4buIf6WVGxOxqysFggJgCSdTyRkCT1cZoP3XCbC0E6O790yYFS3hjsPDLGFdk0YyKpQ3JsQiwNJOfurZEgIsPUePtutNAQIsh4jFxcUjNDQEJp6p8lseE2A5lzo+HhgzwYy4OPuT0kYNLXiqUkrg9OsBCes3KI8FFCpoRfs2Fpj/X9tiwWIzTp+xz1Wlsoz69Yz5ZdXT5CbAUqlcartpnquDuHe5u1Wliqq7BQ3AEh472bVnO3L63seQy1ZWrQk7aksBAixtxePqNQlzF5gUJQjE195WLdKuo6ktL7xnDQGW97Q08kwEWEaOPn33twIEWA6Kz1n6Nb7csAO9OjZDg1quvyyPn70CX369Ax91b4XX6lb1d+yCYj0CLOdhFDcFihsDE5vYTdWvlx1IJR+1ZauE3T8oIVbJkjJaNJVx6YoJs+bYq7SKL6q9u1uQLRt3X7nzj4gAS51azuoZWUpWtNW9Mny1YHUSutUrqAAWAFvdtLEfwHTvdpIO1tAwPOgzGdYiJdzShp21oQABljbi4GiFKEEwb7EZskP5K1d1NLXnhXcsIsDyjo5Gn4UAy+gZQP/9qQABloPa73YfjV8P/YVPBkTh9ZdfcBmH3T/9js79J6Ja5Scxe0wvl/3ZIaUCBFgpNRH1qiZNM+PmTfuOqRovyqhZI+0dUytXmXH4T2Vti6pVLLh7T8Kh3+1/L11KRvOm3H3l7r9HAizXioVsXY2wVbMUHeUCj9puHER4RtcTsIfbCgQbwBICmM4etx1BNcXH2SFW5mx48OFMWHPmdVsjDgisAgRYgdU/tdWPHpOw3KG0gOiXWh1NbXrgHasIsLyjo9FnIcAyegbQf38qQIDloHbtZr1w8cp1bFw2FkUK5nEZh+s376Da6+/bbiLc8sV4l/3ZgQBLTQ4c/UvC8hXK3VT9+1iQOZPrHVOLlqa8ZSj5mlHtLChSKPW5bhyTYImzIteTrtdT40+w9HEFsEwx92HNmClY3HXbj5Df9iAserhinIAND/pPhzVrhNvzcYA6BYIRYAnPzb/vQ/isIQoR5NwFESvyKXMWdeKwlyYUIMDSRBicGvHDPjM2bVE++IqMtKJTe2UdTe16kH7LCLDSryFnAAiwmAVUwH8KEGA5aF2hThTi4xNwcMs8Wy0sV81qtaJinShIkoQDm+e66s7XnSjAHVgpRZm/yIwzZ+1fKCtWsKLxa+quuU7tlqHEVfLmsaJr57TnOjLXjNsngVLtZESUIMRK1C4tgGU+/BPClozHg/7TYM2ZT/f/1s3Hf4fiZgAXHpnu3EDoonEwJTjsmMmUBbH9p0HOU0j3emjZgWAFWELzkF1fI2z5VIX8lmKlENtX+Tctx4e22X/YpfZ5T40Cq8C6DRL2H0i7jmZgLfTt6gRYvtXXKLMTYBkl0vRTCwoQYDlE4dkGnXHv/gP8snEOMmUMdxkfAbDK126P8LAw/LJxtsv+7JBSAQIspSYXL4kbguz1qsSr73e2IHce9SBJ3DI0Z56EW7eUT1XFXM3esKBsmdTnun8FODjhIbyVQq0o19WCzPmZuUKB1ACWdPZvhI/raYM3AtbE9pumyx0i5pN/QvppC0J+2gpTbEy6gx7bZxIsj5VN9zycIG0Fghlg2SDWmrkI27xSIUJCxWqI66jcncU80a4C3IGl3dgkWrZsuYS/jishVrmyMpo2Cf5yAwRY2s9PPVhIgKWHKNHGYFGAAMshkk3aD8Zf/5zD/9i7DvAoqq79zszWdEghoYTeQ5eOClhABVFR7L2gCCjVrp8dUAQRRGy/WJGiohQBAUGk995LKAkkkJ6tM/M/d2N2dpJNtm9md+99Hp/vI3vvuee85+7sve+ce85XUyeiR5c2Ln184MhpDBv+PzRtWBe/z33PZX/agRJYrtbAot9IvippE9m0iYCHH/B8A+msylB8vGhL3l5dO76QxaVt0vzqWBEdRgnQxLtPoLmyMVQ/d0ZgMZezoZs0Ekxxgd0svklbmJ+fApJ4WumNzc8Ft3kVuE0rwV465zd1zU+9AWsn13kE/TZhBAsKdwKLuFbz9ftQbVsj87Kl3+2wDBsRwZ4PHdMpgaV8X1mswNffcDh/Qf7i6/mRPMiVwnBulMAKZ+8GzzZKYAUPazoTRYASWA5rYOpn8/H1vGXo3K4Fvp72AtQqeSSM43IRBBEjXpoGksj9/juux8ujH6CryQsEaASWBFpxMYMpH8nX3IP3eV/WOvMsg//7lgP/H2c18EYBvXpUTYZZSxlsfbPymtfXEdF+hABOF96bWFfLtxKBVVIE3eSRYHMuVBpq7dAb5uFvAKTko8IaSYzN7t4A1aYV4A7v8uiqoDummO98Btbr7nCnK+3jBwQigcACb4V2+kRwx/fJEDMPfRrW64f6AUUqIpAIUAIrkOj6T3apgcGcL1jkORSQ6d5VwC03ef4SzX9aBV4SJbACj3EkzEAJrEjwMrVRKQhQAsvBExdz8nDT/RNhMlvQrVMrvPDsfWjVLL2Sr46fOo8PP/vZRl5xHIsl305yK+m7UpyuJD0ogSV54681LNZvkKKfEhJEjBnF+8SBkCpD8xawIFzsxPE8tJqqSaizf7E4u0p+haBcu7jGIto8yYOtmtNV0rIKiC6OBBbMZmimTQB36mCVc1muGwrLnU8HRBdvhLIn9oPbuhqqzX+BMRurFcGnNQRi4j2eRmjeDpbBj3g8jg7wHoGIILBIZUJDKTQfjgZ34YycxHrydVg7X+09gHRkwBGgBFbAIfbbBDt2Mli8RPqhJ+lgXe0d/DZ5DQmiBFYNAR9m01ICK8wcSs1RNAKUwKrgnhV/b8W4N2eD5LciLTW5Nhp+Km4SAAAgAElEQVSlpyJKr4PJZMbps9k4n51rH/XGuEcwbHBfRTtZycpRAqvMOxYL8OF0DgaDFLEz6BYB3br4/uZz+04WFy+i2reoIg9se5eDtaTqiKHE9gJa3u+7Pkpej9Xp5khgqee8BdWuf2Tdxeg4MCWF8sP13c/C2ve2GjOZvXIJ3Jb/rgg6iRRzVEyMigHf9TpYr74ZQr0mNaYzndgzBCKFwCKokCuvmimjweblyECi+dY8WzPB7k0JrGAj7v18JGKbRII77kVuvF5An17h+9tPCSzv1wsdKSFACSy6GigCwUOAElhOsN62+zDenvYtTpypfDWovHvd1CS8PPp+9OvVKXjeCsOZKIFV5tTtO1j8vlSKftLrRYwfw8ONYphurQpCkKnVVXfN2cHi2Hxpfk4rQpcMlJyTE1r1+vFoODAyrxKWE1i5M96DasMyGZjWjr1heWActE6uFJKrhNaOwcsHRa4Icjv/AbfpT3BH91R/RZDlwLftCr7nAPDtekBUua6+6taCo52ChkAkEVgEVCY7E7rJo8AYS+0YE/LVOOFjiKmVI6aD5gg6UZUIUAIrtBbH2vUc1v4t/fa7kz8ztCyUa0sJrFD2nnJ0pwSWcnxBNQl/BCiBVY2Pd+47hh17j+B8Vi6KSw3QaTVIS6mNTu2ao3unNrbrg7T5hgAlsMr4hWmfcMh3yDtxTR8B1/cP3hvP3dM4lGZLG9a0PgIaXCdg70wOxstyEqvZMB4pXSKPxCIElnnpPBi+nSlb9HyzdjA9NxlQqcFcvmjLi8UU5UuHa04F09iPIDRp7duXxcVo9vg+qDauALdzvcsqguSKoNBzAKw9boAYmxBQvajwwCIQaQQWQZM9tteWE4sRpKIUQnwijC/PBuJqBRZwKt1jBCiB5TFkNTqAVDKeOo0D77AFcVXBuEYV9nFySmD5CCAdbkOAElh0IVAEgocAJbCChzWdyQkClMACjhxl8MM8KecEy8IWfRUTHRySqOAEgwOfOyS3YkR0eYmHNh4w5gF7Z3AgCd7tjRHR+hEBtVoFRz+lfHGSjm9F6dRXZOoIdRrA+MIngD5aguf8KeimjJblmbJFiLwwE2JKPb+aY7siuHllWRXB3KxqZRMdrFf1hdBzIPhGLf2qBxVWcwhEIoFF0Oa2/w3tV+/Kv491G8E4cQag1decQ+jMlRCgBFboLYpff+ewa7f0u9+ggYgnH62+inHoWVmmMSWwQtVzytKbEljK8gfVJrwRoASWj/49e+ESFi1dj+efvNNHSZE5nBJYwDffcTh5StoodmgnYujtwdsoHvqGRd4hKZowsZ2Alg9Ir16LzwP7Z3MQLJKOrEpExggeMf7lYxT7JWBPHoLuo7Eg1dDKG4lcIhEfYkJSJb3ZQzuh/eQlMKKEo1A7BcaXPvUqObrjBIzFBG7HenCkiiC5IlhdYxjwrTqD7z0QfIfeEFXV3CNVLPpUseoQiFQCi2CiXjEP6t++ksHDt+oE06j3EdEVJxT2laEElsIc4oY6ObksPvlUfstgxHAeqXXC78UVJbDcWBC0i0sEKIHlEiLagSLgNwQogeUFlBaLFX/9swMLl6zD5p1lVcgO/P2NF5LokEgnsGp6k2i8DOycQqKvJHKq3TM8YhvJN6n5xxgc/IoFRKmfKkpE+9E8dGF+Y4e5dL7sWmBpsURe6aJgHD8dYr3GVX6JSVSU9tsPZJ8LDZrZxkGj9ezLL4rgju8tI612bnB5RVBIqV+W16rH9RCcEGyeTU57KxmBSCawiF80P0yrnJOuxw0wPzxRyW6LKN0ogRWa7q74cq1dWxF3DQ3ey7VgoUYJrGAhHd7zUAIrvP1LrVMWApTA8sAfJ06fx8Kl67F4xQYUFJbYR5JKhasXfOSBJNq1HIFIJ7Aqhuk3aijisYeDt0E8uZhF9kbpLWtUmoiOzzuf/9IOBsfnO1w1BKBLFNF+JA9VVJiu6cI8G3lFruqVN5HlYHp+CoTm7V0arV76HdRLvpX149t2g2nEW25FiNiuCP67HKotf4G5nF3tfKJOD2vnayGQaKsmbV3qRjuEBwKRTmBBEKD99DVwB7bKHGq55UFYBj0UHk4OcSsogRWaDqzp9AbBQo0SWMFCOrznoQRWePuXWqcsBCiB5cIfBqMZf67dYou22n3guKx3z6va4t4h16Fvr440obuX6zqSCSxniVLvvVtA65bBSd7Om4Btb8uvBra4j0dSh6qvCGSuZHFutfxaQUwDERlP82DDrYCdyWDLZcVeOC1b3eYnXoG1S1+3V7xm7hSoNq+S9SfJ06uKEGFMBlsido4kZD++z+U8fMsO4HveBL5zH4hqDyO7XEqnHZSOQMQTWMRBZhO008eDO3VY5i7TQxPA97xR6S4Me/0ogRWaLlZCgZlgIEcJrGCgHP5zUAIr/H1MLVQOApTAqsIXB4+exoIl67D0r00oKTXae8XFROG2m67Gvbf1R3q9OsrxZIhqEskE1pp1LP5eJ5FBCQkixoziwciL/gXMsxfWczi9VJpMEy/iqpddR38dnccid5ecxKqdIaDVg8Eh3gIGiKNggbflsOIO75JNp7t3OPKuvdNWOdLtVoUs85DHYB14b5kYckXw6B5wm/4Et+tfWQJ4Z/MIiWnge90IvseNILm1aPM/AoZLLPQpyl/TlMD6z/clRWXRkjkX7ItBZFhbPiyhdWf/LxAq0W0EKIHlNlSK67h1B4slS6Xfe71exMSxPDh5MLbi9PZEIUpgeYIW7VsVApTAomuDIhA8BCiB5YB1UXEplq7ejAV//I3DxzPtn7AsA0EoO7HuWPE5dFpN8DwU5jNFKoHF88CUjzgYDBKBdPNAAT26BefATHKL73ifg7lQmr/RLQLqXuN6flK5/tDXLAqOy0mstKsFNB7kenwoLGnNd1Oh2vinTFXNDbcj6slxyLpi8IzAIhnGTAZoPxoPNvOoTKbl1kcAiwXcllWya4rOMBLVGvBdrgXfayB4N64vhgLOStXxyA8sRB5o9ZDy1zMlsKRVRCpxaiePAlNcIJFYGh1ME6ZDqN9Uqcst7PWiBFbouthiAT6cLt+rDL5FQNcuyn82uos6JbDcRYr2qw4BSmDR9UERCB4ClMACsHPfMSxc8jdW/L0NRpPZjn6bFo1w6429bFcEB95XlhCWJmv37+KMVAJr5y4Gv/0hvcLUaES8MI6HOkhF4i7vZXDkB2l+RgV0e40Hp3MvtIg3A/tmcSjNloeLNR4iIK1XaG9s1ct+gPoPeVEGvl0P1H71Q1t0nDcEFvnWkEO1btJIl7msKn7D+KYZ4HsNAN/lGojawCcbO7+Ow5VD/v2eVyWNYUSkdgOSOilnzZxdyeDs6rLvRpcXeGhru/edCA5ilWehBJYcE0ISaz8YA8Yq/ZYLcbVgmjgDYmJqTbkpouelBFZou/+vNSzWb5BeWCUlChj9rHKe2b6iSwksXxGk4wkClMCi64AiEDwEIpbAyisowuIV/2LRknU4mZllRzytTiIGXd8Tg2/shaYN69r+XmowoutNT1MCKwDrMlIJrNmfc8hyIH969+Qx4IbgHZT3zuJQnCmRT4R0IuSTJ81cBOydIY/iAiOi5QMCEjOCZ4snOrvqyx3bC+1H42Td+EYtYR47Fal1EnwisIhQNuc8tKSiYYlU0dCZTkKtZPDdrwff+yYISWmu1Pbb584S9ftNeDWCSB61xrfyiE0PxmxVz1HR/rQ+AhoP9ux7EWwLKIFVGXHV/q3QzHpF9oGQ3gLGl2YF2z10PoeDXVW/9xQkZSNQXMzYIsYd24P3C2jeVNnPRndRpQSWu0jRftUhQAksuj4oAsFDIGIJrI7XPw6LtSzfT0pSAvr17oyb+3dHl/YtwFRIQkQJrMAtyEgksAoKGEz9WL4ZHD+GR1xscEif4rMM9s6Uz9/5RR66Wp7PT/IE7f2EAW+WyDCGAzKG84ht6Lm8wK009yTbqpnt22zvLCTXg2nixxBj4pFWW+8zgUUEcycPQjN9AhiLFCFSPqG1az/wPQeCr4GcPflHWRz8Sn4t1D3U/NeLFBAgV1lJPrZgt/xjLA5+Kbef1QBdX3E/MjHYOpP5KIHlHHVyBZhcBXZsprFT6fXbGlikNAKrBkD385QLf2Wxd5/0fGzWVMBD91MCy88wU3EhjAAlsELYeVT1kEMgYgmstn0fsTmL5LO6qX93XNOjA/p0a4cofeUqXpTACty6jkQCa+t2FkuWSRvBRg1FPPaw6+Tp/vICuTpIrhCWt1ptBbT2IddP4UkG++fICTFyFbHDKAG6pOATEd7ixF46B90bj8qGG1/7HELdxra/+YvAspFYezdBO/t1m1y+USsIvQfaKhuK+mhv1fdpXMkFBvs+JRUpfRLjt8H1+/Oo308EIZCC0chVWELqOrOfRGCRSCylNkpgVe0ZzbcfQrVphb0DuQpsGvG2Ul0ZtnpRAiv0XZt9kcGnFX7nR40QkJyk3Geju6jTCCx3kaL9qkOAElh0fVAEgodAxBJY6zbtseW9Wrd5D3i+7AeYkFnX9emMWwf0Rs8ubcFxZSQDJbACtyAjkcD67icOx45JBNKN1wvoE6S8UeYCBtvfk5NNGU/ziGvsG9GUu5vB0Z/kcknuIEJiqaJ8kx241SeXrPl5JlR/L5YOu607wzR6sv3f/iSwiFAS6SUm14OQ2iBYJjqdx5THYM9MFtZieT6zFncL0CQETjVSDCBrE5B3wHnUlypGRMOBIup0DewBiXwn9nzCwlLkvPynJkHEVS8Fj2D2FHFKYFWNGJt1Brq3npB1ML75fxBS6nsKM+3vAwKUwPIBPAUN/Xouh9NnpOdk184CBodB4RZKYClokYWwKpTACmHnUdVDDoGIJbDKPZVzOR+/Lv8Hi5aux7msHLsDkxMTMOiGnhgyoDfqpSbRHFgBWtqRRmCR6oNvT1KBHN7L28inrUhJCRDAFcSeWcaAJOkub9H1RHQY7Z/D+YX1HE4vlZMA0Q1EtBvOgw1ScnqvUTSWQj9xGBiLyS7C9Oy74DO6BYzA8lpXPw7kjQz2zmJAroI6thb3CEFLrF54ksXJ3xmUZjknkKLSRDS5VURcE/8TWTb7P2VhuOh87nJMWj0ooHaG/+f3hyspgVU9itoZL4I7tMPeyXrNYJjvHe0P6KkMNxGgBJabQCm826HDLH6aL/1WkHe8E8fx0OtD4yVVVfBSAkvhCy9E1KMEVog4iqoZFghEPIFV7kVRFLFpxwEsXLIOazbstOfHIp83b1wfx06ds3WlVQj9u+4jjcA6eozB9w6RSrGxIiaM8Q+B5MozpHLgtrc5CA75qprfwyO5k/82nycWsbi4VU6GJLQU0PoRAUzNpleqFh71inlQ//aVvY+QlArjW9/ClvTqv+bvCCxX/gr054REPfgFh8JTcvImfYCA+v2DTNaIwKUdLM78yVQZCVW7jYBGt4h+vZa67zMORRXsr3stD95A1rGES2wjEe2eCc731FO/UwKresS4/VuhdUjoLqq1MEyZD+gCX9HTU1+Ga39KYIWHZ0URmPYJh/x86dl4fX8B1yj4irU7yFMCyx2UaB9XCFACyxVC9HOKgP8QoASWEyyv5Bdh8Z8bsHDpOpw+my3rMfSWa3DPkP5o06KR/7wQwZIijcAiua9IDqzy1u0qAYNuDg5ZkL2RxcnF0tyqaNGWoJokXfdXEwXg0Dcs8o/I2ao63QQ0HRocOz22heehf/EeMMX59qHme5+D9ZpBMlHhRGCRg8jRH1lc3iv3U3JnAc3vrjk/CWbg3FoG59dzEK1OPMkBaT0FpN8gguRZ86Ud+aGy/YntBbS4T4AhB9g9VSUT3+E5K6LLCtMqqlECy4U7RBG61x8Cmyv9lltuexyWAfcoyo/hrAwlsMLHu5u2sFi+QvrdiI4SMX4sj/8yboSkoZTACkm3KU5pSmApziVUoTBGgBJYLpy7bfdhW1TWyvXbYTZLGY7btWqMu4f0tyWAJ7mzaPMOgUgjsD6YxqHIIdfOA/fyaNHct4O4O8gTwmLnFA6mK9Kb0/SBAur38z9ZwVuA/Z9yIInBHVvDmwXUu9b/87ljf3V9VFvXQPN/79u7iFGxMLz/I6DRhS2BdWYZi/Pr5ORVfDMBbR5XRqQcyUt1ehmD3N1V5MeKEtHgBhGp3QWvCNjMVSzO/SWXTfLAtXmSB/sfoXvwSw75DrnqkjqKaHGv8qKwKIHl+gmg+mcJND9+LH3HYxJgmDQP4PzI3rtWI2J7UAIrfFxvsQCTp3IwO0Ry33k7j/btAr+PCRSKlMAKFLKRJZcSWJHlb2ptzSJACSw38S8oKsEfKzdiwZK/cfzUefuouJgoDBnYBy+OvM9NSbSbIwKRRGBdvATM+kyK6iAH5ddetAblDJV3iLVFRpU3Vi2i62s8uMpFN/2yQC0lwL5ZHIyXHUks0RbdktRBWRtd3TvDwZ4/abebRGaQCI2KLVwisLK3MDj5i/zgHl1XRMYzPDiFcfHF54BTv3Mockgc7OgXfbKARoOAWq3cJ0Yv7WBwfL7cfn2yiHYjeagcOMu8wwwO/Z9DP7YsYlEd45eviN+EUALLDSgt5rIoy9Iie2fTYy+C73qdG4NpF18RoASWrwgqa/yKVSz+3STtJ+qkiHj2aeWR++6iRgksd5Gi/apDgBJYdH1QBIKHACWwvMB694HjtqisP9dugcFotkmgubG8ABJAJBFY//zLYtVqadPXvLmIB4MU0bH/cw6FJyQyKbWngCa3uX/o98a7xjxg7wwO1lJpXoYti3KJb+KNRP+PYY/vh27qGLtgkWXLIjNia4UlgWUjZQiRKUo+0SaIaD+ahzra//j6S+LlfQxOL2VBKiY6a/FNBTS+VUBUavUzkoiqg1/J7VfHlNmvjZePJVGLu6dyMORIc5KIRRK5qKRGCSz3vKH57WuoVvxk7yzUawLjq3PcG0x7+YQAJbB8gk9xgwsLGUz9mAN5Rpa3Jx7lkd5AWS+n3AWOEljuIkX7VYcAJbDo+qAIBA8BSmD5gHVxiQFL/9qEBUvWYeEXb/ogKXKHRhKB9dU3HM5kSofhQTcJ6NY18Ifh0ksV8/mI6DyRhy4x8Ouu+HzZdULBKtnNacuiXaKCVHmxOiu1c94Et3uDvYv1qn4wP/6y0yGhHoHl1Bd6Ee1H8tAnBX4t+DqDyAMXNnA4txrgTU6ILAZI6Sqg0U0iVFGVD1IlWWVRgYJFGksiEds9yyM6zbl22VtYnPzFIW+cXsRVr/Jg5emxfDXNp/GUwHITvqK8sigsQXrmGsdNg9Asw00BtJu3CFACy1vklDvu50UcDhyQnqVt2wi4+87A72cCgQglsAKBauTJpARW5PmcWlxzCFACq+awpzNHUASWycjg3Snya0vjx/CIiw38G8tj8znk7JA2muS6VetHg7fRdBb1o4kri3rRxNbc14DJy4HulfvBOLxGNrzyGcT6TcOOwHIaDceJyHiaR2x6zfnAm5lJRB+pVmirdunk60MI0gb9gbSrpQIFpoKyaEBLsTwasPVjAhKqyUEnWIHt73CwGqRxTe4QbLm3lNIogeW+J7RfTwK3bbV9AN+xD0zD33BfAO3pFQKUwPIKNkUPOneewedfSXsaUrB33HM84uICv6fxNzCUwPI3opEpjxJYkel3anXNIEAJrJrBnc76HwKREoG1bz+DBQ55h1KSgZHPOCuz5t+lYSkGtr/HQeQd3pQ+xSO+afWbTMZQClHvvzLzzvIuRaWWRb/UVN4l9YLZUK/5RTrMNs2Aafy0Kh0QqhFY1lJg78zK+chaPiggMSP0DhvlDjJcIlU1gYLjzhO9a2uJaHSzgIQWxH4Ghhx5vxb380hq79r+zD9ZnFsrjdXWLotgJAc2JTRKYLnvBfbscejee0Y2wPDOtxATqwjBc1807VkNApTACs/l8fnXHM6dkx6EvXsKGHCDcsh9d1GnBJa7SNF+1SFACSy6PigCwUOAEljBw5rO5ASBQBNY2RcZGB2iJzxxgkYrom6a6wOuOzIX/cZiz17pENy7F48B1/tHdnXzn/2Lw9lV0gaTkEYdx1SfbJXNPArtJy/DNOo9COkt3DHPrT4kaub8WnkUWkJzAfX7uzXc1okcQMl/1l4D3R8EgNOJIInKyxsh6HQv3QPGZLD/zfzk67B2vrpKuf4msEiCe1JtL9Dt9HIGxQ5XV8l8jQcLSOsTegcNZ1jlH2Vx6g+AEFpOm1YATPLPmOuKgGsKXULfU1cHliIG296Rr1tSrTGhhTLwowSWSzfKOug+HAP2xH773yz97oBlmJzU8kwi7e0KAUpguUIoND8/cIjFzwscyH2tiIljeajVoWUPJbBCy19K1ZYSWEr1DNUrHBGgBFY4ejWEbAokgWUyM5jyIQeLl4FOLAuQa34x0b4RTeSG2ntTOJgc8vY89jCPRg19k+uOm7e+KU+i3nyYgOQuVR+8mcsXoXt/BJiSQojRcTC+9CnExDruTOVWn6M/scjdXQXR4JYE7zu1elBA7Ywy21V/LYJm0Wd2YUJCEozv/gAQp1fR/EVgWUoYZK5gcHFLzeAQjAT+3nvJ+5FZG1kbWetYNMCZtNWtjuCzfv+4NdHXKf0xICodR39mkbtT8ld8CwFtH6cEllsgKqwTyXlHct+VN1GthWHKfEDnv4hThZlc4+pQAqvGXRAQBcjeZup0DoVF0ouYW24S0D0IuT39aRAlsPyJZuTKogRW5PqeWh58BCiBFXzM6YwOCASSwNq4mcWfK30jCa69msd1/XwjmkiIPQm1L29anYhXJga+5DSpNpd3SLJfHSui66tVz8uUFEE7eSTYnAsSsZNcD6YXPoEY7b9kVfvnsCg86ZtfvPkSMRyQMZxHbEMR+lcfACHryptl6FOwXH9XtWL9QWCRCLSzaxgIZcVLg95qtxXQ6iFlEC+BMH5pXibOrAQ67nRe5nJneibev2Wl21P31KViYepAlFxgsOdjeRRWx7E8our49mxwW5FqOtIILM9R1L36ENjLWdL3/87hsFx3p+eC6Ai3EKAEllswhWSnqvZZ8fEiOrYX0LkTUCuh5p+T1YFLCayQXHqKU5oSWIpzCVUojBGgBFYYOzcUTAskgfUheTNY6NsVLb1exEsTfCObVq1m8M+/0uE3o62IYUN9k+nKtyd+ZXFxs5wkajhQRL1+VcxrtUD70Vhwpw5XEs03bgXT2I8AlX/uBfBGBntnMVVf+XJlnA+fc1EiOvXbioSfXrRLcTcCwxcC6/I+FqeXMjDl+bYefTAdMeki2g3nwSiogp4v9pSP3WO+jAVFx7Cw5ASKBIvtzylFsXjw327ocaqxfYrTta/gtTv+gFFd1sfdtrLerWirro39czgUnpT8RyoeNlNA1S1KYLnrSamfas0v0CyYbf+DOxGYns9CR5QjQAms8F0LpEDN5I84WKuJdG+YLqJTRxEZbQRoNMrDghJYyvNJKGpECaxQ9BrVOVQRoARWqHouTPQOFIG1/yCD+Qsl0kilAuo55ECqDr6sbMBslg6qQwYL6NLJ+6iVWZ9xuHhJkjf0NgEd2nsvz5XrSZQPyTfl2FxdedLM+R9Uu/+tUrS1Ux+Yn/JftS6S++nYfAaCQ3L58smZ4gKwuRcAixtEA8tCaNAMokZXpe5Fp+RY6NhcdCt4Ehox3zbGeu0QmO8Z6QpWeENgFZ9jcGoxi6IKOajKJyOJxjUJLqf2uQOnEdHyHhGEwAuHdlkwYlHxCcwrOoYjljI/OmutslLxyL89UNukx7z7/kWpznXo2xlrIbL4Uru4odFNMCP5Glw5wOLwt3JSuNvrPFQ+XjH21R+UwPIcQcZshO6FYWCM7ufA83wWOqIcAUpghfdaOHmKxcbNwNFj1UdWk31Y2zYCruosgpBaSmmUwFKKJ0JbD0pghbb/qPahhQAlsELLX2GnbaAILFLemZR5Lm89ugm4eaB7pNHqtSzW/SNtxJISBYx+1r2xFR1EckN8OE1+9YhcHyTXCAPRcnazOPaTfBNJkpe3e4YHW8WbT828mVCtWyxTh1wZJFcKHZul722w3P1sINS2yWTPnYB6/mxwx/Y4nUNIrge+Yy+oVy2QfS7USob5hU8gxCc6HUci0UhEmmOLsx7BVaXPgYUJxre+AZHtqnlCYBGC7vSfjCxvkqN8Tisi/UYxbBKpu8LOH5/zELHGcM5GWv1lOAerWP13MpWLwtCYJrgvtgXqGeOhjnHvO7fecAH3XpSuGXJgsLPBMCRxeuyYzMF0RXqupA8QUb9/YKMpXWFHCSxXCDn/XL1oDtR/LbR/yDduA9PEj70TRkdViwAlsCJjgRSXMNi9h8WOXSIuX66ezKpFrhh2Ajq1F5BQw1cMKYEVGesz0FZSAivQCFP5FAEJAUpg0dVQowgEgsAixBUhsBzbmNG823kYyCaMkE6Cw/n4wft4NG/m3gHYcd5tOxj8sVTSpX49EU89HpgDb8FJ4OAXHERBOmBr4kS0H81DU0UKK/XqhVAvnCPDim/cGubnJkHz8YvgTh2SfWa56xlY+t/h1zXDFlyG6revodqyCiBZYSs0MToG1lseguWaWwGOA7f9b2i/elfWS6jbCMbx0wF9tFPdTi9lcWG9fEOdaNmMdk1/h/nZt9yyxx0Ci9xgO7eGwfn1HERnVyo4ILW7gPQbRKjCJBrKLfB86HTCUoifio5gYfEJ5AjGaiVpweGm6HTcFdsc1+jSwMK7K5vXnP8VJywF9rlGx7fHC7U6I2sDqXgorSMSfdX1FR4kv1pNNUpgeYc8k5cD3Sv3g3F45hgnzoDQuLV3AumoKhGgBFbkLY7Mcwx27mRAouEdI9qdIdGokYDOHcqis2qigiElsCJvfQbCYkpgBQJVKpMi4BwBSmDRlVGjCASCwJq/iMP+A9LBtVVLAffd7VkE1aJfOezZJ8lo1lTEQ/d7Tjz98BOLIw5h9df1FXDtNZ7p4o6DSrKA/WRANXsAACAASURBVLM58A6VDkmUT7uRPKJSnEsg1bg0c96UHfGF5LowvjATIEnbS4qgq5DUndBL5uFvgO/Yxx21qu3DWMxQrZoP1YqfQa70VCKuOA7Wa4bAOvghiBWIKfWSb6Fe+p1sCN+sHUzPTwG4ykmeyBn12DcW5B7Wy8bUaZmDpo/VcsuWagksEbi0k8WZ5QwsDhWZHAXXai2g8SARuiTPiVC3FAyjTsWiFYtLTtqirXaaclxa1kWbjLtjm2NIdBPE+CHJ149FRzHh8kb7vAmsBjsb3A2VhcO2tzkIDleMm93NI6VzzfmUElgul0eVHbRfvAVup1SR0nrVtTA//qr3AulIpwhQAityFwbJBLD/IGsjs86crf6FgkYjIqM1icwS0SiIVwwpgRW569OfllMCy59oUlkUgeoRoAQWXSE1ioC/CSyStH3qx5wskOfRh3g0buTZATPrIoPZc+RhFaNGCEhOcp984nngvckqWBwicZ550oq0NP9CbioA9s7gYCmWNocMK6LNkzzinRdjA3vykC1pO8NLyonRcTC+9CnExDp2BUmlPt37I8CUFNr/JnIqW1J3oYmXkQqiCNXW1VD99hXY/FynYPAdesFyx5MQUupXCZZm7hSoNq+SfW7tci3MTzg/gHILv8K+TT2Qr+ogG9PwZgH1rnXt16oIrMLTwMnfOJRmOd+c6+uIaHJb1b7w72oIXWnkG7rRmI15RUexrOQMjKieMK7LRYPkp7ovvgXSOf9VySQImkQenc/+jHyHcpGTE3vigdiWOLWERZbDFeOoNBEdn/ec3PaXpyiB5T2S3PH90E4dIz3bGAbGd3+AWCvZe6F0ZCUEKIFFFwVBIC+fwfYdwO69LIqqeNFTjhSpXEgqGJJKhqSiYSAbJbACiW7kyKYEVuT4mlpa8whQAqvmfRAWGhw+nomhT7xerS1vjn8Udw66VtbH3wTWyr9YbNgoXfGpkyLi2ae9O1x++Q2HTIfk2106ixgyyH1Zx44z+O5HiQSL0ot40ceKhhUBthqBfTM5GHLk5EmL+3gkdXC+6WOyM6H74DkwpcXSwU2tsV3BE9ObV/Ihk3kMuqljZVFSYlSMLVJLTHGdO8pRIHtiPzTzPwWbeczpWhHqNYF52AgILeQkk/POPLSfvATu8C45iTXwXpiHPCYfYjZCP3GYLUJta/RslHLpDp+LaHGfUCVe5R0rElgkF9LJJQzyDjjP9aGKEUEqP9a5SoCXN9nC4tngyogL1hLMKzmO+UXHcNYqrUln43T/XREcFtMCffSpXl8RdKUT+XxK/i58nC/lY2uqjsf6ereDEMY73ucAUfrOZQznEdcksIesqnSmBJY73qy6j+6d4WDPn7R3sFx/FyxDn/JNKB0tQ4ASWHRBOCJA0jOcOMlix07g8DEWgottVZPGAjp1ANqQK4YBqKJLCSy6Pv2BACWw/IEilUERcA8BSmC5hxPt5QKBTdsP4InxHyA5MQGpKbWd9n7qgcHo37uT7DN/ElgkVH3yVE6Wb+H2ITw6VUHkuHLqgUMsfl4gkRMcC0wcx0Ovd++gunQ5iy3bpPGeEmCu9CObPpLzqrBClb30gQLq96sioqgwD7r3ngHJO1XeRIaFacRbEDK6Vzkle2injSxiHBJnC7VTyq4bxrm+gsfmZkH1yxdQ7ZKu68g2tPGJsA55FNYeNwKMB3mLTAbopowGe+G0THfTfc+Dv/oW+99Ufy+G5ueZtn8bmSRsjfkCZkYq/8dwIto8UX2UVDmBde6CEZmrGFwgRKmTjTe5wVb3ah4N+otVJs535dtw/9wMHktLztiirf41ZsPVN6qbNgXDYpvj1uhGiGbUQYEnlzeg89n5IMnjy9sPdW5AX309HPmexeV90ne7dlsBrR5yHcUXCMUpgeUbqqqta6D5v/el56FWD8OU+UA1lU19mzHyRlMCK/J87q7FBgNjS9ewYycjq9bsbLxWI6JtWxGdO4pIb+DqV8NdDQBKYLmPFe1ZNQKUwKKrgyIQPAQogRU8rMN6pqWrN2Pi259h7PBhePzem9221Z8E1tZtLJYslw6V0VEixo/lQYgnbxrJmzR1OgdSSbC89e8noO/V7h1UP5jGycLk7x0moHUr98a60pfodvRHFpf3yo1L7iygeVX5vqoiex6aAL7nja6mBLdpJbTffiDrZ0uePnEGoJXnlirvRMrUq5Z9B9XaX8FYK2c1F9VaWG+4E9YB90D09sDolJRjYBrxdhkpJ4rQvf4Q2Nxsu+55fUdj177bIFgk37rKGZaaoMepdQL2LbbCWuKcZEvqKKDRzSI0Ab7y4NJZCu2wy5Rjy2u1uPQUikjG+2paPVU07oxuaqsiWF8VUyMWPZfzDxaWnLDPTcgrQmIVnWawb7bDFWNGROcJPHTOC2EGVHdKYPkIL89D9+oDsuvM5mHPwtrvNh8F0+HlCFACi64FdxC4kMVg5y4Ge/czMBqrf5FVuzYhsoCOHQTExfpGZlECyx3v0D6uEKAEliuE6OcUAf8hQAks/2EZ0ZK+W7gSk2b+iHdffAK3DXQ/wbe/CCxC6Ez7hEN+vgPZ1FdAXx8Tpm/cxOLPVZ6TYjm5DD75VDrgkqCiV1+0+q3CzpllLM6vk5NX8c0EtHlcAOOMsBM8uG5XzUpWL5kL9dLvZT34Vp1gGvU+wDoc6AUeqn+WQv3HXFn+LMeB1u7XwTrkcQh+yDfDZp+FdvKzIIRZeRPVGpjGTweTnwvtbOl6q6hSwzBpHvIvxOPgV6zsKlhVVRvzj7A4u5xFUZZzcGIalOW5iqk6ZVfEPh9yBaOtguDPRUdx1KGynzNA9IwKN0el4+7YFuilS63xm5cHzFdw44XfZaquq3c7mqnjsXu6PO9ZWh8BjQf7h6D2ZLFQAssTtJz3Va+YB/VvX9k/FJJSYXzrW8+iQX1XI2wlUAIrbF0bEMNI/tADhxjs2s3g5CnWWXFi+7xkb2W7YthRRNvWIilU7HGjBJbHkNEBThCgBBZdFhSB4CFACazgYR3WM3385SJ8/v0f+GzyOFzdvZ3btvqLwDpylMEP86Sdi6fX/apS2GRmMOVDTpaI/Y7beHRsX/0bv383sVjhQHw1bSLi4Qfcz59VHYDZWxic/EW+S4tKFdHuWR6cxvlIzdwPoNq8Uvahtfv1MD/ygtu+Ku+o+XYKVJsqJE/vNRDmB8fZuqj2b4Vq0WcgpJKzJjTNgHnYMxDSW3g8d3UDuCO7oZ0+QdZFjImHmJAE9pwURUOuKZofLut3aQeD4/OrxrL0EnDqNxYFJ5yH8WlriWh0s4BEF+vBr4aGgDCrKOAvwzn8XHQMawznYK3mkiChnLtp69ivCEb5oYqgPyG6M/tPbDJK0Xv3x7bAlMReyN3N4OhP0tph1SK6vsaD0/pzdteyKIHlGiNXPZiSYuheuhukMmp5Mz3zFvj2PV0NpZ+7gQAlsNwAiXZxikBBAYNde1js3A3ZC0pnnbVaERnkimEHEQ08uGJICSy6+PyBACWw/IEilUERcA8BSmC5hxPt5QKB/334DRYs+RsLv3gTrZs3dBsvfxFY33zH4aRDLqjOnUTcNtg/hNHSP1ls2epZYviv53I4fUaKBrtpgICe3X2PzrhykMXhuXIyhZAo7Z8VoK4ijJ5EQamXOYmaem6K236q2FE740Vwh3bI/mzpdwfY7DOV/l7eSUhMg3XoE7B2usbreV0NVG1ZDc03k6rtZnx1Dkiy+PJ2bg2HzBXy6woJLQVoE4CLW5wTV+S6YYP+QN2+/lljruwKlc9JhNVPRUfxS/EJkMir6loDVYztiuA9sc1r7IqgO7j+WZqJxy+tsXfVgMXOBnejFqfF9vc4mAuktdPkVgGpvX3/nrujV3kfSmB5glbVfTXzZkK1brG9A9+iA0xjPvSP8AiXQgmsCF8AfjCfRNmfOs1ixy7g0GEWTjISyGZJTBTQuQODDm5cMaQElh8cREWAElh0EVAEgocAJbCCh3VYzzTq1RlYs2Ennn7oVhQVG1BSaoBGo0Z63RRc3b09mjV2Xq3OHwTWpUsMZn4mj6IZ+QyPlGTf8iKUO+zKFQbTZ8rlP/4Ij4bpzuWbzcA7k+Slcp4fxaN2Lam/ev0SsNvXerQmCi0NsfPKKIiQklhzMOKqxGmIUkkRIjKhggDuxH7Zn/i6DWEePwOiPsqj+R07M6ZSaD8YI6veVZUwUauHdfBDsFx3p9fzeTJQvfwHqH//xukQ23VHJ8Td8QUsLm13L1laancBDQaIUEf7Z315YpunfVeUZuLzgoOeDvOqf6FgwkFLXrVjteBwR0xj3B7TDL11qV7NUxODep1bhDPWIvvUL9TqjNHx7XF+HYczyxzyqOlFRLlp1jFLPiyigCMtsrCng7wIgSc2kmhTFceCF0RYeeWvSU9sC2ZfxmICe/qIbEpRHx1MFdyeS4yvDTHWdfEMtwUGuKNWXfZsNVkqk7sdtIl4vXbXAGtAxYcTAiYjg30HGGzfxeDCBddFX5o1EdCjO9CiufOXC5TACqfVUXO2UAKr5rCnM0ceApTAijyfB8TikS9/jLUbd1Upe2C/bnh74mOI0utkfZxtaEkHNceAZRlYeAGk5HJ17bufBWzeJh3cWrVgMOop98gId8H47GsB+w5Kc7TPYDD8Eedz7Ngj4uvvJKVTkoE3XpATYMZXn4B46qi706OUrY+tUbNhZeXJrLuUPI9a/B635aB2CvRvzQb8kHcKBVdgfG04xMsXq5xfdf1tUA99DIiTKv65r6z3Pc1z3ge/fnklAZoJk8F1dH4taPMnPHKq4XrqtGHQ4R4OumTRZdU87zX338gtJRcx4OQfMIo1GyVGjhdXx6ThoVqtcHt8E0SzAaiD7j/YnEqalbsf4y78a/8smdPhVJsHAQOLlS/x4KWbZ15p8uHA1djS+JRXY+kgikCoI/BKnS54rc5VoW4G1b8GEMi6KOLfzSK27hRRUlK1AiwLvPc6h1gn9UBUHAOOZWDlBfDBDaCtAcTolIFCoJyoD5R8KpciQBGQEKAEFl0NfkHAbLZgy67DaFA3GSlJCVCr1ci9UoAtOw9i9tzFOJeVg95dM/D5B+P9Ml+5kKJiYMwr8mpmzw1XoV0b12/lPFHk0FERU2fJq+hNel2NJCdVx77+gcfGrdIu6IZ+LO6+TSKwxLxcFAx3v8KVhYnH1uhZMLDyKLZ2pW+jjlW62uTSHn0U4t6dA7Z+Y5dd3e0gnDuNwleHA6XynaOqUw9EPTgSbP1G7orye7/id8fCumerXS6bWh9xM+ZVOQ9vAtZOtiI/Ux7FElMH6HC3Cmnt/bum/G6wg8DjpgJ0P7QIV4hRNdTSNTF4PKk1HkpsiUaa2BrSwj/TFgsW1NszF4UOlRPnNupvs23XjzxOrPHt1GNmebw1ZBmOpFZNBvvHEiqFIqBMBL5q2A+PJbVSpnJUq5BAYOceEes38dh/yHkk6qABLG672Yss7yFhPVWSIkARoAhEDgKUwIocX9eYpZfzCjHkkVeQV1CErz6aiB6d29h1uVzoPHQhNkoFjYpFkcEKs5NrB+UCVq9lsNKBwyHXBseNDoyp02YyyHY4X/bsIeK2WyrP9dYkoKREIjueegxo2ljaULEbloP55gO3lBSgxfaoj1Goainr39z4BRqaf3RLRnknYcJHEFt29GiMO52Z4/vBTioDXazbEOI9IyG26eLO0ID2YUwGMO+PBvNfAnfhvtEQ+1dPHFqKGGyfLsKYx0AdJaLRQAb1+5T5LjGuLEP+lSJztVWRAmqUG8IJaXXj2cU4bZGuvLkxzC9dSBXBO2Ib4+74siqC4dRez9mCT/Ol67gZmtr4u+HtMOQy2Pye75aWaEx46c7fkRVf4LswKoEiEIIIzK83AP2jaCnXEHSdolQuIr/ju4DtO0XkXpb2YlF64OWJItQVgoBjdBy0Gg7FBqvTa66KMo4qo1gEyveIilWQKkYRCCMEKIEVRs5UsilTZv2EuQtW2HJkjXrsDruqvubAmvwhh5JSaYNy6y0CruriWzREVTju3sPil8XStUG1Gpg4hodWJ5FT588zmPOV9IZPoxHx6ovyK1yaOf+Dard0HcnS9zYInfo4nfbAyqa4clZ+/S6t9SU06+W8wl+VayA6Hny9wEVDqXauA1NaDEsfJ4xeDS5MtuAyNJNHgTGWwjhpHkSN/AqrM9WMuQyytwANrgM4B9+m1daDlOzOumJQLIFlFK0YmvUndptzZaa9VKsLumhTAuoJhhHRUZMEncKqCPrL6AvWEnQ9t0AmblHaQPTQpqI4k4FgrT5Cb7MxGx/m77aPT8uPw/B1Fb73CVYwT+UC0e5f+yTXFmL0KtvBixzAaPMNAabgMpii6nO5+TaD96PZnAvg/pYSzRNJQmIqrHePBMk1qNRWfrBzfGFVIJgwMmc9DKK0ZkkF0kVpN6G9xklos1KNo3opGoEpH3EoLnbYIw4ScFVn+R6R5sBStAtDRjmaAytkXEUVDQMEKIEVBk4MBRN++GUV3pvxA+6/4wa8PPp+vxBYu3Yz+PV3OVn0wjgehFgKRON5gGyGDAZpMzTgBgG9e0qbodVrWaz7RyK52rQScM8w+WZJ//ytINFB5c302pcgidUrtmM/s8jZKc+zRarjtX5EAOPfFF+BgEsxMrkLZ8Du2QDLTdK680Y5pRNYgiji4Ut/YY3hvMy8J+Pa4H+1u3ljMh1TAYGnLq3F0tIz9r/eqG+A/6tznUucdphyMDRrOSyQngXxrAYLzg1FwWJ5ovDouiIyRvDg3HyO0SqELuEPqw7OilQovWJiVVUI/zFcwH0XV0FwyCpYi9Xiz7qDFV2ZNKwWVJgbs34Di7/WSBumpEQBo0YItpdR5Y0SWGG+CIJkHiWwggQ0nYYiAIASWHQZBAWBj79chM+//wPPP3knnrx/kF8IrBmzWOReljYmV/cWcMN1gYm+Kld4zd8s/l4vzRkXK2Lc87x9MzT7cxWyHAoC3jaYR+dOUoQWd3A7tJ+8ZLdfiE+0RQZVbOdWs8hcKWepPD3YBsWxETSJ0gmsibkb8UOxvDDAwKh0fJncD4zjbj2CfOZvU7cZL+G27GUysRvrDUVDddU5vk5ZCnFL1hIUCNJ1aTVYW6RJF20yTi9hccGB9CbCPSGqKYHlby8rX55m7hSoNq+SKWrtci3MT7yqSOWrIrCIsguKj+P53A0yvRupYrE0bRASOK0i7aFKhQ4C5IXjlKmcLDn7A/fyaNFc2pdRAit0/KlkTSmBpWTvUN3CDQFKYIWbRxVoj8XKY8gjL+PMuYv46dPX0L5NU58JrBOnGMz9Toq+IhVmxo/hERMd2DLyxSUMPpzGySojDhvKI6OtiFIDg0kfyBOEvjiBR5Re0kkzfxZUa3+z22+5ZhAs9z4n81ruHgZHf5TL0SaIaD+ah1qZVd0VuOr8r5KSCaxZBfvwXt4OmdGdtclYlDoQGoYmrfXnarjh/GIctEhXzB6NbYV3Ens4nSKHN+CWC0twnpeKHJAX/18k98NN0WVRl6IIHPmOxZUDcsK6TjcBTYe6JuQpgeVP74aILIG3vQjhDssr/1oH3AvzbY8pzojqCCyi7Pt5OzCzYF+l59f8OgOgD8GqpYpzQIQr9McSFtscotmbNhHx8APSNW1KYEX4AvGT+ZTA8hOQVAxFwA0EKIHlBki0S/UIZJ6/hNX/7MDgG3shqXa8rHPm+Yt4b8b3+GfLPlzdvR0+mzxO9rm3ObB++InFkWPSga9dWxF3DXU/b4wvPl30G4c9e6X48/r1RTz1GI8dOxksXiKRBXXTRDz9pFwn3WsPgs2VQrSMI96G0E46/OYfY3DoaxaiIMnn9CLaj+ShT/JFazrWVwSUSmD9XnIKz+Ssk5lHIxh89XbV438tOWnL3VPedAyHPQ3uQQwrv/NXKlhwe/Zy7DdfkQmbnNgTD8TKizIIVmD/ZxyKz8rzaDW8SUC9vtWTWJTACpyvFS3ZZIBuymiwF07L1DQ9NAF8zxsVpborAksURTyRsxZ/lmbK9O6vr4e5KdeDpRGkivJnqCmTl89g2gz5ixxyjTA5qezZSgmsUPOoMvWlBJYy/UK1Ck8EKIEVnn4NqlWHj2di6BOv264pNaxfB/XTkm3//0J2Lk6dzYIgiOjcrjlmvT8GcTFRPhNYzjYjI4bzSK0T2OircsWzLjKYPUe+GXrqcR7/bGBw6IhEqvW9RkB/h8Mnm50J3ZuP2+0XORUM038HVGUH35IsYN8sDoJFOsQynIiMp3nEpgfVpXQyJwgokcAiicHvzl4BK80hE7Q1axUFdD47H5cFo33O12pfhafjMuz/5kXBlttngzFLpld1+cispcDemRyMDlWzABEt7hOQ1KHqZxslsILmeuVNVJgH3XvPgBSrKG8iw8I04i0IGd0Vo68rAosoahZ5DM3+EztNOTK9749pgSlJvRRjC1UkNBH47kcOx45LeyuS2oGkeKAEVmj6U4laUwJLiV6hOoUrApTAClfPBtEui8WKX//cgDUbduDIibPIyy+yXYtJiI9B6+bpGHR9L9zUvzs4rnLmcW8isJYuZ7FlmySrYQMRjz8anOircli//pbF6dPyZO3HT7AwWyTghz/Bo15d6eCpXrUA6l8+lw65Gd1gevZd279NBcDeGRwsDtVyyOG15YMCEjOCQ8wFccmE5FRKI7COWwps19OKRWnR6RkVfk29Ce20tIpXIBfZJwV7MSlvp32KNC4KW+vfZY8UeS7nHywsOSFTwZ18ZMa8sueA1aGyKsOKaPMkj/gmzi2iBFYgPa182Qx5MfJfpVU7iaXWwDh+OsT05oowwB0Ciyiaz5ts+eJOW4tker9SqwtGxLdThC1UidBE4MRJFnO/l+9BXxzPIypKpBFYoelSxWlNCSzFuYQqFMYIUAIrjJ0bCqZ5SmCZzAymfMjB4lAtftidAjLauM4V4088Dh1m8dP8qksBkrxXL4yXkruTuXUfjQd7bI9dDfPdI2HtOwRWI7BvJgdDToXrQzcLqHdtcO3yJ0bhJktJBBbJrTTwwh/I5kvtMLNg8GOdG3C1vm64Qa84e/J4Ezqf/Rlmh6qCnyVfi8HRjfFx/h5MyZfnJvIkH1nxeWD/pxwEq8M1Yq2IdiN5RKVUhoISWIpbHkFXiD22F9qPXwDDSz+MYnQcjC99CjGxTtD1qTihuwQWGXfOWmx7tuUJJpmY2cnX4tboxjVuC1UgdBGoWPin/7UC+l4rUAIrdF2qKM0pgaUod1BlwhwBSmCFuYOVbp6nBNaGjSxW/lV1FcBg2UsizKZO51BYJCedyufv2EHEHUMcosLMRuifHwJGlAgpw/s/gY9JwsEvORSekstxN4FzsOyl8wBKIbBIbqXBWUtx2JIvc8v0pD64K6YZdVWQEHjx8iZ8V3TEPlsnbRKeim+LZy5Vzke2rO5gxLMatzXLO8zg0DcsIErPBU1cWSEHTYWCh5TAchvWsO7I7d4AzZw34fhLIiTXhfGFmUB01VUygwGKJwQW0Wef6bLtGWdxIIhVYPBz6gD00KUGQ2U6RxgiUDFPaXSUiPFjeSTGqhGlUyG/2IxSU3Cj+cMQ5og1iRJYEet6angNIEAJrBoAnU4pIeAJgeWMNBpwvYDevWomSmnjZhZ/rnQehVVembDcUm7HOmi/fMduuJDWEIbXvnRafSyhpYDWjwhgqg7wokuoBhBQCoF138UVWGeQ51Z6Lr49JtbqXAOoRO6Up6yF6HPul2oBqMVqQMirdJXnBMKlHQyOz5fn2otKFdHuWR6cAxdGCazIXYMVLVev/BnqX7+U/Zlv3AqmsR/Zcy3WBFqeElhEx+WlZ/DEpbUydWMZFRanDUJLTUJNmEHnDHEEeB6Y8hEHg0GiecmLxr69VJTACnHfKkF9SmApwQtUh0hBgBJYkeJphdrpCYG1/wCD+YukA51aBUwcz0OrqZkcUc6uMxKYScGklyfw0OokvTRzp0C1eZXdC5Yb7sIx7XBcWC8/oEbXE9HuGR4VCpop1HuRpZa/CayjlgJc5qVE4O6g+VPRESwqOSnrOjS6CWYkX+POcNrHzwg8kL0Ka43nnUrVgcMvdW9GB433+cjOLGdw/m/5MyKhhYD6/aQptWoWMXoVTBYBxQaHu9V+tjW0xYmIa1IzvxPBxk3z0wyo1v8hm9ba6RrwfW8Ntir2+RLjyhjXy4XmSjoIiXUgJjqPqvqi8AD+d2WbbEwqF4WldQeB/C9tFAFPEVi9lsW6f6S3g0mJAl6fyFECy1Mgaf9KCFACiy4KikDwEKAEVvCwpjM5QcATAuvzrzicOy+9OeveTcAtA2sm+qrclOUrWGzaIg+VatRQxGMPy8PQ9eOHgikptCNw5ua5OLZBXlpQW0tEh9ECVFGRcdAKtS+EPwmsjwv2YopDEnBvseilq4MFqTd5O5yO8xGB9YYs3HtxhVMpX6f0x4Ao38uHHv2JRe5uGo7po6uQ2ltAk1tr9vfCVxvcHa+d9Sq4/Vvc7V6j/cToWJhe+ARCcj2nelS8qks6tVQn2EgsUrSCNoqAJwgUlzD4cBoHweFRMPIpBh3b0iuEnuBI+1ZGgBJYdFVQBIKHACWwgoc1nckHAuv8BQZzvpRHIowZzaNWQs2SPXn5DKbNkOs14AYRvXtKBBZ3+gi0k0farbfqa+Gf2EXgjQ5JmvUiOowUoEuqWXvoIq0aAX8QWFcEE0ZdWoe/jRd8hrqVOgG/pd2CWBqu5zOWvgjof/43HKmQj+zdxB54JLaVL2JlY/fPYVF4kpJYvgLaeLCAtD7hT2IxZiM0H40Dd+aor5AFZbyQlGYjscSYeKfzPXLxL6wynJN99kVyP9wc3TAo+tFJwguBRb+x2LNXep5mtBLx/DMamgMrvNwcdGsogRV0yOmEEYwAJbAi2PlKMN3dCCxydZBcISxvrVsKuPduZRxElq9kkZcPRGkBnR7o0V1EQrxERKn/VDz/EgAAIABJREFUmAv1su/tumc2HY+jObfI4G83gkdsQ0peKWFNVqWDrwTWDtMlPHlpLS7yBp/NrMtF2yIQUji9z7KoAN8QmFd8HONyN9iFDI9ri9drd/VNaIXRhOzeO4uB4RIlsXwFttWDAmpnKOO3w1dbqh1fXADd+yPAXrkU0Gn8JVxo0AzG8dMBjbaSSINoxe1Zy7DPfMX+2T3RzTA1uY+/pqdyIgiB7IsMPp0jf/H43mtqaHQ0iXsELQO/m0oJLL9DSgVSBKpEgBJYdHHUKALuEFiXcgVM/ZgDSeJe3h59iEfjRqFB+Ojeewbs2eN23f9NWwJDSbT93yQigEQG0KZsBHwhsD4rPIC3K+RyKbe2h9azqlokx9p7iT3QQk0TGSthxZjA46rM+SDRdbdENcTnKQ4JqvyooLmAwbH5DAReXrGUYwEVx4IXRFj50Hgm+hEWl6KKKlR4ZTig3dM8YtLDHys25zzU30+D7MfTJWL+70DytJFG8rSVNyYvB2yuvBgF374nTM+85VSBVYazeOTiavtnyawOu9Pv8b+yVGJEIPD1XA6nz0jP0n5Xs7hlIE+rEEaE9wNjJCWwAoMrlUoRcIYAJbDouqhRBNwhsH5fJmLDRinyoE6KiGefDpFSx8UFiJpwpx3jS6re2BslVSMEI6LLSzy0zm9O1Khv6ORyBLwhsAoFM0bkrMNaQ+VE3w1UMfgyuR8ytN4n+aY+UgYCU/J34R/DBSxKHQgNYUiC2GgVwurBdlbNkdOLaD+Shz4piI6K4KmcViE0lkI36VmwF+VXA619bob5/jGV0DIIVrTO/BEWSCQYiULtqKFOjOCl5bXphw6z+Gm+tK/UqIE3XhbBiyGyt/TacjowUAhQAitQyFK5FIHKCFACi66KGkXAFYF18YoZb74PmM3ysscdO4TG23PVhmXQ/DDNjvGO2p8hz9rS/u/EDAEtH6TRVzW6CN2c3FMCa48513Zl8Ly1pNIMA6PSMT3papq/yk3sld4thzdAzXBIYMuqrQWzUQLLNdpnVrA4v0Z+/VKbIKL9aB5qKRjWtSDawysEnBJYpGJv/mVoJ40AWyBdDSQTWO54EpYbhlWa6/7slbL8geNqdcLY+A5e6UQHRTYCJKJ/2icc8vOlveUtA4Du3Wkl18heGd5bTwks77GjIykCniJACSxPEaP9/YqAKwLrj1VmLF4ibTCio0SMH8uDXJsJhab97A1wezbaVC1im2JLzJcytTOe5hHXODTIuFDAO5A6ekJgfV10CG9d2QaLKCcnVQyLV2t1wZNxbQOpKpUdQQhQAss9Zx/5gcVlh8TNZFR0XREZI3hwavdk0F7eIVAVgUWkMdlnbZFYjEnKDUh+Ec3D3wDfUZ7j6uvCQ3jtilRdsaMmEUvrDvZOKToq4hEgFaRJJenyFh8nYuxzPMg1fdooAp4iQAksTxGj/SkC3iNACSzvsaMj/YBAdQSWVs1h4ptm5OVJu4n+fQX0vSZEIpasFujH3g7GYrIhtV//ErLVN9pRi0oT0fF5Gq7uh2UUFBHuEFjFggUjc9aD5Gup2FK5KHyZ0g+dtMlB0ZdOEhkIUALLPT8LPHDoaxYFx+VvPxJaCmj9iAAmRF6KuGetsnpVR2ARTdnj+6GdPgEML0W/iJwKprEfQWjS2m7MGUsRep1fJDNuX4N7UJvTKctgqk1IIGCxAJOncrII/7vu4NEug75UDAkHKkxJSmApzCFUnbBGgBJYYe1e5RtXHYF15BiLTz6XNrQk6mriOB56fWhsLriD26H95CWbE8xMAv6JWQjRIT9O83t5JHcMDVuUv5ICr6ErAuuQOQ+PXlqNs9biSsr009fDJ0nXoBZXucJW4DWnM4QzApTAct+7vBnYN4tDabY8xKJONwFNh4bIixH3zVVMT1cEFlGU27MJms9eh6NnxKgYGCd8DDE13W7Lted/xXFLgf3f05J6Y1hMc8XYShUJLQSWr2KxaVOI5lgNLajDXltKYIW9i6mBCkKAElgKckYkqlIdgTXzcxGHj0kET+dOIm4bHDoRS5r5s6Ba+5vNrce1j+G09kG7i1XRIrq+wiPI+Z4jcYn5zebqCKzvi47g9ctbQSrSOTYODF6o1RnPxrfzmx5UEEXAEQFKYHm2HsxFwN4ZHMyFchIrfaCA+v0oieUZmu71dofAIpJUfy+G5ueZMqFCfCKML88G4mrZ/k6uZs8pPGDvMyi6IeYkB6byp3vW0V6hjEBhIVOpyvUTj/JIb0BfLoayX2tCd0pg1QTqdM5IRYASWJHqeYXYXRWBZTZo8c4HcjJg1AgByUmhc8DQvfYg2NxsCFBjfexCWJk4O+r0sKSQBeiBGs4IrFLBgudzN2Bp6ZlKkpI5va3K4FW6FA9moV0pAp4hQAksz/AivUsvAftmcuBNchKrxX08kkKkQIjnVtfcCHcJLKKhetHnUP+1QE5i1W0E48QZgFaPf41ZGJa9wv65juFwNP1+cPQOaM05OMRnXvSrCnv2SUa0bS3g7rtCZ68Z4vCHjfqUwAobV1JDQgABSmCFgJPCWcWqCKxly9XYvE16A9aksYhHHgyd6Cs2OxO6Nx+3ue6cejAO68fa3ciqRXR5mYc6Kpw9G362VSSwjpnzbVcGT1mLKhnbQ1sHn6f0QyLNzRJ+C0FhFlECyzuHFJwEDn7JQeQlEothRbR5kkd8E+9k0lHOEfCEwIIoQvPlO1DtXC8TxrfqBNOo98EzDFpk/gCjKO0HFqQORC9dKoWfIuAVAldy1Jg+W9pvkiTu457jERdHo7C8AjRCB1ECK0IdT82uEQQogVUjsNNJyxFwRmAZDAw++IiD1YGveuBeHi2ah85mQr1qAdS/fA6i8abouSjlpBwedboLaHoHfbsXat8CRwLrl6KTGH/5X9khithDMmmMqdUJz8e3ByvL5hJq1lJ9QwUBSmB576nL+xkc+Y58ayUSi9OKaDeSRxQNnPQe2AojPSKwyFieh3baOHAnpKuC5M/WHjfA/PBEDM9ZiyUlUtTr03EZeK32VX7TlwqKLAQSotWY8jFw7oK0x+zZU8BNN9B9WmStBN+spQSWb/jR0RQBTxCgBJYnaNG+fkfAGYG1dh0L8l95S0gQMWZUaJU21k2bAPbobuRy3bE7epIDbiI6T+ShS/Q7lFRggBEgBJZRtOLRY2vxc/HxSrPVZrW2qKueNBIgwJ6g4h0RoASWb+vhwnoWp5fKSxBq4kS0H81DE+ubbDq6DAGPCSwyyFgK3ZTnwGadlsFoGfQwfri2O8bk/mv/e3N1PP6udzuFmyLgFQKEwNp3gMUX30pvTTUaES+M46FWeyWSDopABCiBFYFOpybXGAKUwKox6OnEBAFnBNakDziUGqQ34oNvEdC1S+i8CWMMpdCPHWJz8M6oD3BFJb0ZrtVKROtHQ+cqJF2lEgLFUSYMObkch435lWDpok3Glyn9kcLpKWQUgaAiQAks3+E+uZhF9kY5iRWVKqLdszw4je/yI12CVwQWiYsrzIN28kiwVy7JIMx6dALapFyQ/W17/buQpoqOdKip/V4gQAisKJ0KY141o6hI2nvePFBAj26hs/f0wnQ6xI8IUALLj2BSURQBFwhQAosukRpFoCKBtWsPi18XSwcJvQ4YP8YaUm/BuB3roP3yHZSwDbAp5lsZvm2f4BEfQlcha3RxKGjyJSWnMebyBpQKVplWZKtLKgxOrNUZpOIgbRSBYCNACSzfERdF2K4SXjkgJ7HiGpflxGI53+eIZAneElgEMyb7LHRTRoExlMggvP7hm7EjtawyIWnvJvbAI7GtIhlmaruXCJQTWL8stWDZyspCklNENGogokF9oEEDEYm1QyedhZeQ0GFeIEAJLC9Ao0MoAl4iQAksL4Gjw/yDQEUCa+ZsDpdyJCKg79Ui+vcLrYglzbdToNq0Cgd1E3BBc7MdKH2yiE7jQ8sW/3g5dKVYRAGvX9mCb4uOVDIigdXgs+S+uFpfN3QNpJqHPAKUwPKPCwk3vf8zDsVn5UR0YnsBLe+nURi+oOwLgUXm5U4ehPaD52QqTOmdgff7dLD/7bpSFb5rOARiNL336YuvInFsOYF1IceMtyYxsMrfU1WCRK8XkV5fRMOGDOrXF9AonRJakbhuKtpMCSy6CigCwUOAEljBw5rO5AQBRwLrxCkGc7+TXnWzLPDSeECrc7GbUBKyogj9hDthKWWxPvZXmWbN7hKQchU9CCnJXdXpkmkpwhM5a3HAfKVSt46aJHyZ0o9eWQkVZ4axnpTA8p9z+VIGe2axMObKSax6/Xg0HEgPqd4i7SuBZSOx9myCZs4bYEi4HIDdqbXR7+Gb7CqpeR5nP14Erm038D0HgM/oBho6563HImtcOYGVX2zGvF9EbN8hj8R0hQbZq6allZFa6elAwwYiYmLo88IVbuH2OSWwws2j1B4lI0AJLCV7JwJ0cySwvv+JxdFj0saha2cWd93Bw2gOnagl9tQh6KaMxknNwzipe8TuQZVexFWv8mBVEeDUMDBxZWkmRuasR4lYmTx9Kr4tXknoAhXj2SY3DGChJigQAUpg+dcppgJg7wwOlmI5idXkDh6p3emh1Bu0/UFgkXnZ3Cxw/y4Ht3kV2PxcNB01FFeidHaV5i1ciwEnynJjibEJsHa7HnzvgRDSGnqjNh0TIQg4EljFBh7ZFxlknmOQeYZB5lmg0CEvlruQJMT/d+UwvYzYSq0jghBdtIUvApTACl/fUsuUhwAlsJTnk4jSqJzAystnMG2GPNHIGxNViI6zhBSBpf5jLrhlP2N97EJYmTi7L+tfLyCdlmRW/Nq2igLevrIdXxYdrKRrHKvBd42vQ1ehDv4LAlC8PVTB8EeAElj+93FJFrBvFgfB4kBiMSJaPyKAFOKgzTME/EVg2WcVBKgO78CYK1vwY/0Y+58f23UUU1duq6SckN4C1l4DwHftDzFK6u+ZFbR3uCLgSGCVmiq/MM0vKCOyMs8yOJvJIPsS4/EegFQzrFeXkFoCGqYzaFBfBLmKSFv4IEAJrPDxJbVE+QhQAkv5PgprDcsJrCXLWWzdJr2eatyIwStjVLhSZA4pAkv3/ghkZzXDQf1EyW+siK6v8FDTfbOi1/J5azGeuvQ3dptzK+nZVlMbS1vcjIbaWGRdMXi8eVW04VS5kEaAEliBcV/+MQYHv2IBUSKxWJWIjBE8YuoFZs5wlep3Aus/oJaVnsGTl9baYUsrKsXBT+VX9x0xFTk1+A69IPQeAGurzvSKYbguOA/tckVgVRRnNgNnz7FlUVqZIs6eY2A2e17EJSlRQDpJDJ8OpDcAkpNoigkPXaeo7pTAUpQ7qDJhjgAlsMLcwUo3jxBYJjODKR9ysDjc1nrsAQa9uoYYgVVcgKgJd2Jj9FyUcul26JO7iGg+LHSuQSp9zQRCvzWl5zAiZx2KREsl8Q/HtsSbtbsjPTEaDANKYAXCAVSm1whQAstr6FwOvLSDwfH58shgVZSI9qN56KQCeC7lRHqHQBFYBsGKFpk/QIAUybJ+byky1q8CU1JcLexCfCKsPa6H0PsmCMmUkYzkNeopgVURKxKRTaKySHRWeaQWidrytOl0JEKL5NFibNcO69cTQqoCt6f2hlt/SmCFm0epPUpGgBJYSvZOBOhGCKwNG1ms/EuKvoqLFfHuaxz0Wi6kIrBUG5aheN567Iz+UOa5juOsiEqJAGeGoIk8REzK24HZBfsdjkBlhugZFaYn9cGg6Ea2f6fV1lMCKwR9HO4qUwIrsB7OXMni3Gp58hpdooh2z/JQ/z979wHlRLWHAfxLstlO7713UGkiKhZQkapSFEUUBCnSkfJAmqIgHSmCIKgoUhQVBakiKqAUQQQrAtJ7376b5J3/YHY3u9nNpE+Sb855573HTrn3d+/OTr7ceyfGu9cOlrN7K8ASn6fObcT2pLPpVK8UqI++MdVhOLDj1npZf+6HoyGzpoo1YG7cHGkNmsISGRUs7KyHSgF3Ayx7l4mL0+HfE8Dx4zplhJasq2V2coCVfGEma2eVLWNBmTJAmTIWFMjHaYcqm9XnuzHA8jk5LxjCAgywQrjxtVD105cSMX2WwWaRzOYPm9HmkTBEhgdWgBWxYBwO/t0Wl4yN0mnzVbSgVi+OvtJCX8tahgumRPS4sBU/J1/MVrzqxvxYVLQpKhoz1jFjgKXFVmSZGGB5vw/8tUyPy7/ahlgxJW9NJzQYvX/9QL+CNwOshdd/w6tXM9a9uiuyGFYXz3g7oSz2bti5UfmP/nJG0GXP1GIMh+mOe2+9xbB6XSjfWHALegFvBFhZ0WSGwSmZdnhSh+P/TTtMTna+f8nbDSXIKlcGyigtefuhwXaQaNC3l1YryABLqy3DcgWjAAOsYGzVAKrTpu+TsGp1xl9fYxgwfKgJJQoZAyvASksFXu6DnRHv2Tz0Kov+1nDya7cAar9ALeoPiWeUKYNXzMnZqvB0bGVMLNwY4bB9KmSAFaitHdzlZoDl/fY1m4DfFxlw45jtB8781czKwu58IWnubeDNAOto6nU0OZ2x7pUeOvxW9mnISzdsNosFhsO/wrBzPQz7tkOXmv3en3l/c8GiMFnfYli4hPc7Ga/gNwFfBFhZKyfTDi9clCmHt6YdHj+hw7VrzgdaEl6VKiGhlhlly+hQtqwFMdEcpeWPzsQAyx/qvGaoCjDACtWW10i9x09JwanTGX+0G91pRqtHzSiYJzygAizD73txbNEFnApvmy4bUdCCesNN/BJXI31NiiFrpcy4+gveun4AWWPFSJ0B0wrdgydiK9otMQMsDTUki5IuwADLN50hLQk4ONeAxIu2HzKL3WlGpfb8kiK3VvBmgCXXbXzqU5xIy1jzan6R+9E2pkKORdIlJSJs71bod2yA4d8/HXYgU+U6MMlbDOs1gSUi2uH+3CGwBPwRYNkTiouXReFlhNatNx6ePef8tEM5b4H8so6WTD2UxeEtKFrEwudQH3RJBlg+QOYlKPCfAAMsdgW/CvQYaLto9uABJuWPb6AFWLqP38XOX16ARZfxrW+Fx8wocTc/2Pi1g2W6+GVTEnpe+BY/JZ/PVqQKYXnwXtFmqBKeP8fiMsDSSkuyHJkFGGD5rj8kX78VYqXcsA2xyrU0o9T9vNfn1BLeDrDGXdmFd2/8kX75DrGV8FbhJqo6hv78KRh+WIewXZuhi7ue6zGW8EglxFLCrMq3cYqhKmHt76SVACurVFoacPqMhFp6/HvConzZm5jo/Cit8PBbi8Mr/ymjU/47MoKjtDzdMxlgeVqU56NAzgIMsNg7/CqQOcCqVtWMzp1ufQgItADr/MjVOGJ+Kt3SEJaGBuMAQ5ZZDH7FDuGL7026gB4Xv8VFU2I2hcdjKmBqobsRrc99MRsGWCHcgTRcdQZYvm2chAu3QiyTzfo1FlR9xozCt/NDob3W8HaAJVPCO53flH7pAvoIHCzTCTpn1rAymWA4tAthOzfAcGg3IPNGc9nMhUrAdPcjMN31CGS6IbfAFdBqgGVPVKYdnpR1tE7eGqV15YrzgZb8WhQuYlHW0JK1tGRNrUIFee9ytwczwHJXkMdTQL0AAyz1VtzTCwKZA6yuz5lQsfytP6KeCrBknYvw+WOR0nkILIWKeaEGgO7MCeyeWQCp+oz3qpe8OxnlH+PKml4Bd+Kk0pvm3jiIqVf2Qd44mHmLgAGvF26EZ2KrqjojAyxVTNzJxwIMsHwMDuD60VtrYlnMGR8edXoLar5oQj77M5B9X0gNXdHbAZbJYkbVE8uQZMkInb4q0Qr1Ioq4pKC7eQ1hP21W1svSnzvp8BymarfD1LgFTPXuhcUY4XB/7qAtgUAKsLLKJSTIlENZR8uC4yf1OHNW5yh7tYsfHWVdHF6H0mXMKFOKi8M720sZYDkrxv0p4LoAAyzX7XikBwSsAVbhQmYM6JsxBcNTAVbE/LEw/PojzEVKInn4bFhi86kq9dEv9Ti3w/atU6oO/G+nBqNMCM/ldcffJJ7Cc+e3OHNKm31Xl3gUd0UUd/l4fx74b9oNLL95GJ/E/YPzdkZE+aJsZcJisaRYM9Q0ZoSOjq7LAMuREH/uDwEGWP5QBy7t0+Pvla7/jfBPqXnVUBUo9aAJ5R7lKBt77R/IAVbW+phM/007PKm/9bbDkzokuDDtMNh+T6pUvjXDQ+/FWzYDrGDrNayPlgUYYGm5dUKgbNYAq91jZtxxu2cDrPDlsxH2/Vfpiqby1ZAyZLqqb0jdCbCKFP0XVV4unWPrHUy+jMfPfW3zbbGzTR2rM2JdydaobFQXyDl7fk/vf9Ocii/ij2Jl3GHsT77k6dM7db5W0eUwo/C9iHUwZTDrSRlgOcXMnX0kwADLR9B2LnNqqwEnNjo/hcd/JeaVQ1mgUgczijXkWm1Z+0AwBVj2+rcy7fCU/Ac4eRK4eMmLKY6Gf8Hq1TXj8Tbe6/8MsDTc+Cxa0AkwwAq6Jg2sCu09lIR9v+jQuoXtHxV3R2AZN66A8YvF2TBMte5E8ksT4OhrmGNf6XF2u2t/5G/rcByxDUvZbYhTaXF49MxXuGrO/RXealqxuCEaG0q2QRFDlJrdfb6PvPHvu8QzWHnzMDYmnEBKtvf++bZIRp0e4wo0RLe8NVy6MAMsl9h4kJcFGGB5GdjB6Q+v1OPiPtf+Vvi35Lx6yAnoLKjR1YwC1TkSK3PbB3uAlbWfy0Lwsn7W8ZMWnDyhx/GToRPCN3vQgvub5L6+nav3BQZYrsrxOAo4L8AAy3kzHuFBgTOXsy+qLad3J8AK27MV4Usm5VjK1CatkfrMwFxr4eoIrDxRp1FnvP21tq6ZU9DqzFf4N+2mxwRlCtyakq0QrQvz2DndPdHh1OtYcfNvfBZ/FBf8NEUwax1kyuDCog/itvBCLlePAZbLdDzQiwIMsLyIq/LUvy/W49rfDLFUcnE3PwrIwOPafUyILcUQy9oMoRZg2et+J07detvhSVlL60RwTzts/7gZt9/m+ZFYDLD8eGPjpUNOgAFWyDW5tirs6QDLcPgAImYMdVjJ1HY9kfpwR4f75bRD+NxRCPttj82P02rfiZS+b9g9JMViQvtzG7Av+aLNz0cXbIA+eWurLsfkq/sw+/qvNvvfG1kCHxd7GAad/z5AyRTB1fFHsOrmYRxIuZxrfSRsaxVTDp3yVEGjiOIIlO/+GGCp7qbc0YcCDLB8iM1LuSTg7UXcrYWaem0/Zl07kF7GltFlsahoU5fK7O2DdMmJyrOK/sTfNpdKfXogUu9r7bHL23vhQFi0BbcNMCFS/RKQHiuPFk/EAEuLreKZMt24qcOChXrExWc8aco6WF2eMaNSRc+GWAywPNNmPAsF1AgwwFKjxH28JuDJAEveFhQxuS90SRmjuizhkUgZMAnGD6dDf/6UTT1SeryCtPoPOF238GUzEbb9a5vjzGUqI2noLCA8+xuILBYLelz8FhsSTtgc0zm2KqYUvtvp6/e+sA1fJfxrc1yHmEp4q0gTp8/lzgHyVr9vE08rUwQ3J55EqiX3h4FGEcXwVN4qaB1dDjE6ozuX9suxDLD8ws6LOhBggMUuonUBXwVY8gVRm7Pr0jkidQb8XbazX7/cybVt4q4jctJL0F+5kL6bRadTljkw127ksWa9dECHvz+WL7gyPsRHFrLgtn4mhEV77DIBeyIGWAHbdKoKfv6CDgsXG5CamrG70Qj07G5CsaKeG4nIAEtVc3AnCnhEgAGWRxh5ElcFPBZg3biKyIl9oL+eMfrHojcgud9EmGvUg+7aJeXn8nps66b8fNAUmKvcprr4xs2rYPxskW14VbAokka+DeTwhsMxl3dhyc0/bI5pGlUKHxR9CHqd8+OPJCh69vxmbE86a3PO4fnrYmD+21XXxdUdZYrgcpkiGHcEF81JuZ6mpCEGHWMrKaOtyoblcfWSmjiOAZYmmoGFyCLAAItdQusCvgqw5MuiOidX2KwxubJ4c8goZa1uugunETm5H3QJcRnPJsZw5QsxS9kqHiv26e/0OP617Sjt2DIW1O5tgl47KxB4rL7OnIgBljNagbnvkaN6fPixHuZM37PGxljQu6cZefN4JsRigBWYfYOlDkwBBliB2W5BU2qPBFjJiYicMgD6M7ajkpK7vwJTg4wRVrrTx5T9dCkZoYslMhpJI+bAUrysQ1PDL9sR/s6rNlPeLDF5kTR8NixF7S/avujG7xh/ZbfNuWuHF8QXxVsiyo2nxgRzqvJN85+pGYGcXGR+kfvRNqaCw7o4u8N1c0r6FMGDKVdyPTwSBrSIKYsnY6uiSVSJgJki6MiEAZYjIf7cHwIMsPyhzms6I+CrAEvKNPDSD/g07kh68Xrmq6W8vEPLm/7oH4iYMQQ6U1pGiCXPFiPfhqWQ/TU1XanPkdV6nN9tG2IVrGVGtS5muPBdmitF0OQxDLA02SweL9Sh33RYtdpgc97Chcx48QULoqLcD7EYYHm8yXhCCuQowACLncOvAm4HWKY0RMwdBcOf+23qkdK2K9JadM5WN/0f+xAxZyR0maa7mfMVQtKo+UDenBeEsPuA6eBb0vXxx5Wpg5m3UoYY5c2BBQ2RbrtfNCUqbzQ8Z0pIP1cYdJBvnO+KLO72+dMsZmyVKYJxh7El8RTk/+e21YsogqdiK+OxmIrIIyvFBtnGACvIGjRIqsMAK0gaMoir4csA66v4Y+h98bt0zUph+fB96Sc0r2vvCzJzkZJIGjEXiPHM6GX5E/7H+3pc+8s2xCrRxIwKrT27HpDmwTMVkAFWILWWe2X97ns9vtlm2//LlbWgaxcTDLbZltMXYoDlNBkPoIDLAgywXKbjgZ4QcDfACn/3dYT9nPGwKmVKu+thpDw/PMfiGX7chIilU21+bi5ZXhlJhYiobMfZHeLvYJ2Kn5Mvov3Z9UhFxkNhPn041pVojQrGvJ6gU87xT+p1tDqzFnGWjMn9sToj1pVsjcrGfC7cMJvmAAAgAElEQVRdR6YIfnTjL3wefwSXzcm5nqOoIQodZIpgbFVU8mC9XCq4lw9igOVlYJ7eJQEGWC6x8SAfCvgywLphTkGtE8thRsaIip2l2qOc0TMhkDfZjFs+hXH1OzaXMFWojuRB0+yur+lKWUypwKG3DYg/Y7t8QcV2JhRv5P4oFFfK5O9jGGD5uwV8e/3P1ujxywHbEKt6dTOe7ujeSEQGWL5tR14ttAUYYIV2+/u99u4EWMYv34dx/TLbh71adyL5pdcAfe5fpRjXLoVx3Ye2x1avi+T+k2yPjb+JyIm9bRZZlYOSnxkEU5NWdv2Opd5Aq7NrIdPurJssJruq+KOoH1HE4+Y/JZ1Dp3ObbMKy4oZorC3RCiXCYlRd75o5BZ/G/4OVNw7j99SruR5j1OnRPKosnspTGfdHlYIhaCYJ5k7FAEtVV+JOPhZggOVjcF7OaQFfBlhSuI7nNmBn0rn0ck4o2Agv5K3hdLn9cYC9l8SYlOeaCYC8Ps0DW2o88OtsA5KvZQqxdBZUe9aMQrVDL8RigOWBThVAp5B1sJat0OPwP7a/T40bm9HiYddHIjLACqBOwKIGvAADrIBvwsCugKsBlt1RVLm8CdCeUvgHUxD202abH9mM3kpLVdalMBz702af1BbPILVtN7vwV0xJyrS+06b49J/LI6Is2N4surTXGsvedMVKxnxYV6IV8ujD7V5XpgTK1MBVcYfxTeJph1MEbwsvhCdjK6N9bCXkzeGcXqugBk7MAEsDjcAiZBNggMVOoXUBXwdYC24cwoQre9NZHogqhWXFHtY6063ymc2IeHsMDL/Zrp2Zdm9LpHQe7LE6JF4Cfp1rgCkxI8TSGW4t6p7H8ZKgHiuHFk7EAEsLreDbMqSmAe8uMeDsOduRiC0fNeOuO10LsRhg+bYNebXQFmCAFdrt7/fauxJg2V3HysGbAHOqaMRbw7Otn5Xa8lmktn5OWbA97MCOnAOuLCdNNKfh8XNf41CWRc4nF2qMZ/NU87r1wuu/4dWre2yu0yiimLImloyasm4HUy5j1c1/8EX8UVxxMEWwsD4ST8RURKe8VVDdmPMaYV6vnAYuwABLA43AIjDAYh8IOAFfB1iHU6/hgdNfpDsZoccfZZ9x68UpPkVPSUbErKHZvzxr3wupD3XwWFFungAOLTDAYsr4EG+IsuC2fiZEFfbYZTR/IgZYmm8irxQwIVGHBQv1uHY9U4irAzp1NKNGdedDLAZYXmkmnpQCdgUYYLFj+FXA2QBLf+oIIqYOsn2TYEweJI+YA3MR+28CzK2CuuREREwbDDlv5s1UoQYMx/6w/bca9ZE84E27pzNbLHj+whZl0fPMW6+8tTC2oO/egDTm8i4suWlb7rbRFfBG4bvwadw/WHnzcLY3F9qrUPPoMngqtgqaR4fYV7G5dBYGWH69VfDiOQhwBBa7htYFfB1giUf9k6tsXnDyfrFmeDiqjNap0suni7+JiMn9ob9o+0yR8uJYpNVr4rF6XD6kw18f6QFLxof4iPwW3DbABKO6FQg8VhZ/nYgBlr/k/X/dK1d0WPCuHklJGf1fViDp8bwJpUs7N52WAZb/25MlCB0BBlih09aarKkzAZbu8jlETnoJ8mBn3Sxh4Uh5eTpM5au7XD/djauInNwPuisX0s/xTcUS2FMi4ytIS94CSLv7UcAQZvc6sm7UhoQTNj9rE10eC4o+4HK5XD2w54VvsS7huNOHVzPmV9a16hBbGYX07r8l0ekCaPwABlgab6AQLR4DrBBt+ACqtj8CrKxf5nTJUw1vFmocQGqA/tJZRLzZ1+aZRyqQ2rxTjs8irlTwzNkaOHzkbptDY2MuoVBB22caV86tlWMKFzqB2NjLdosTGW6AMUyPpBQTUtOcH3mjlTqyHDkLmKvdAVPV2+3ucOqUDkuWGpCWlvHjyEgLevcwo2BB9SEWAyz2QAr4ToABlu+seSU7As4EWGH7vkP4otdtzpLc5zWYbnP/oVR/7iQipvSHLvHW2lUjm9XHggauh2INw4vii5It/dLmyTDhqTMbsSclI5DLqSDyZsR2MRXxZJ4qkDWuuOUswACLvUOLAgywtNgqLFNmAX8EWNuSzqDzuU3ZGqKqMR8aRBRF/chiyn9X1vjbcw3//oXw6UOgS8t4KYw3etffEX1wIuJJb5xaE+c0mq+hUfxLiLSc1UR5WAjfCliMEUgeOgPmslXtXlgWdP9ouR6WTHlV/nwW9OxhRmyMuhCLAZZv25RXC20BBlih3f5+r70zAZYU1nD4AMLnj1OCptRnBiK1SWuP1cFw5JAyndDdAKtSWF58VbI1JBzy1yZvQGxzZi2OpN2wW4QHI0sp61q1ji7vryIG3HUZYAVck4VEgRlghUQzB3Ql/RFgCVjl4x8h0ZJpWIUdxbx6oxJkNYosjnoRRVAvojAidfZHWvurEQyHdiFi3mivX/5A1DhcNPp+1LjXK/bfBaJMJ9Aovh/CkDGK31fX5nX8L2CJzYek/82FpVBxu4XZu0+PL9favpmwRHELunczIdzouPwMsBwbcQ8KeEqAAZanJHkelwScDbDkIvqLZ2D49UekNmvv0jVzO8g6ymtks3pY0MD5127LoufrSrZG6bBYj5fN2ROeSotDqzNrccmcpBxaxZgXT8ZWRcfYSihiiHL2dCG/PwOskO8CmgRggKXJZmGhMgn4K8Dqen4LNieecqotwqBDzfCCSqjVILKo8t+lwvy/GJTx+7UwLn/Lqbq4svPu6Lm4EVbLlUMD4pi8ab/hzoR+AVFWFtLzAuZipZE8bA4sMfaf0Tdt0WP7TtsQq2IFM57rbIbe9p+zFY4Blufbi2ekQE4CDLDYN/wq4EqA5e0CG79Zje/3rcGPrTvAUty5RV9bxpZHDQ29re+31Cv44Pqf6JSnivLtMjfXBRhguW7HI70nwADLe7Y8s2cE/BVgHU27jq/jT2BP0nnsTb6Aa2bXpuEVNUShfkQR3BlZDHdGFMMdEf55RV/YT5ugu+jdKXBpqRE4daamZxpeA2eJiy+Iy1dsR5oXLnQMtWpsTS8d18DSQEN5qQiytq383mTeTBVrIXnYLLtXlCmEn6w24NDvGYu6y4533G5Gu8dyXx+NAZaXGpGnpYAdAQZY7BZ+FdBigCUghqO/Qf7IcaOAVYABFvuCFgUYYGmxVVimzAL+CrCytsKxtBvYm3QxPdA6nHoNrizZHQkDbo8ojPqRRdAwohgaRhRFAUMEG12DAhYz8Mf7elz7y3b4TMkmZpRvfav1+RZCDTacB4sUvnw2wr7/yuaMaXXvQ0rPMXavYjYB731owPETtiHWg/ebIf/JaWOA5cFG46ko4ECAARa7iF8FtBpg+RWFF9ekAAMsTTZLyBeKAVbIdwHNA2glwMoKddOcip9TLmJv4q0RWvuTLyLOwZpZOWFXCMuLBhJoyeLw4UVRNTw/bD/+ar6ZgraAplTgt3cMiDtp2yIV25lQvJGFAVbQtvx/FTObEfH2GBh+221T09RmHZDaoZfd2icl67DwXR0uXbYNPmUUlozGsrcxwAr2jsT6aUmAAZaWWiMEy8IAKwQbPUCrzAArQBsuyIvNACvIGzgIqqfVACsrrRkW/Jl6DT8nXfhvlNZFHE9zbcHvPHoj6ocXQYOoW4FW3cgiiNXY4vBB0LVUVyEtAfh1rgFJlzOFWDoLanQ1o0L9MERHhuFaXAoSkk2qz8kdA0ggJRkRs4bCcOxPm0InPzMIpiat7Fbkxk0dFizUIy4+o8/odFDWw6pUMXuIxQArgPoDixrwAgywAr4JtVWBz9f/gE/Xfod//j0Nk8mEcqWL4/FH78UzTzwEgyH7CogMsLTVfixNzgIMsNg7tCjAAEuLrcIyZRYIlADLXqtdNidhT9IF7JV1tJIu4teUy0iG8yGHPP1UMxZQFoaXaYcyWqtcWB52FB8KJF0Ffp1tQFpCRiChD7Og8cs6lKhiZIDlw7bwy6XibyJycj/lRVDWzaLTIfmlCTDXbmS3SOcv6PDuEj2SUzL6jNEI9OxuQrGiFptjGGD5pVV50RAVYIAVog3vjWqPnLgIX27aAWOYAXXrVIExLAwHfj+CuPhE3HtnHcybNAhhBoPNpRlgeaMleE5vCDDA8oYqz+muAAMsdwV5vLcFAjnAymqTajHjYMplZcqhBFs/J1/AeVOiS4RF9JGoL286lGmHEUVwe0QhhMP2GcmlE/OgHAXiTgOH3jbAnJYpkIgBmr0ShrToVI7ACvK+o7t8HpGTXoIu/kZGiGUMR9LQWbCUrWK39rIW1ntLDTBnGnQVG2NBz+5m5M+fEWIxwAryzsPqaUqAAZammiNwCyPBlQRYFcuWwMJpw1CiaEGlMgmJSRg0di527DmE/i+0Q+/n2jLACtxmDumSM8AK6ebXbOUZYGm2aViw/wSCKcCy16in0uKUQGuvjNRKvoDfU67CBNvRGWo6g1GnR53wQmgQIaO0iqJhZFEUMUSpOZT7OCFw9U+dsrA7LBkhVnRBoMEQC9KMzo+uc+LS3FUDAroThxE5bRB0qRlvJbXE5EXSyLdhKVTMbgkP/abDqtW24XLhQma8+IIFUVG3ftcZYGmgcVmEkBFggBUyTe3dij7ebTQOHzuFZfNG445alW0udvX6TTTrOARGYxi+++wtREaEp/+cI7C82y48u+cEGGB5zpJn8pwAAyzPWfJM3hEI9gArq1qiJQ37ky/9N0rrPPYlX8Q1c8aHZWeUy4TFKqOzbo3SKooa4QVg4PLwzhDa3ffcLh2OfmYbSOQpbUHN3iYYjG6fnifQuID+0C5lYXedJSNoNhcpiaThs4HYfHZL//12PbZstV0KpXQpC7p3NUEmlzDA0nijs3hBJcAAK6ia0z+VOXPuEh7uNBRlSxXF+mVT7BZiyPh52LhtD+a8MRBN76nLAMs/TcWruiHAAMsNPB7qNQEGWF6j5Yk9JBBqAZY9tsOp15VA62dZSyv5Av5JveHCGC0gWheGuhGFb43S+i/UkgXjuTkvcGKDHqe+tQ0k8lczKwu767Iv2er8BXiEpgUMP6xDxMezbMpoLlNZmU6I8Ai7ZV+zVo+f99l2jurVzXi6oxmlCnO0pKYbnIULKgEGWEHVnP6pzDc/7MOAMbPR+uHGmPyK/VfSfvDJRkyZtxwvdm6NQS92YIDln6biVd0QYIDlBh4P9ZoAAyyv0fLEHhJggJUd8ro5RVk/a0/ieexNuYBfki8jwZLmtLhMgqtizIf6yiit4kqwVdmY1+nzhOoBfy3T4/KvtoFEsTvNqNQ++1vmQtUomOsdvmYJwjYst6miqdadysLu0GdPMWXA1kfL9Tj8j+3PGjcyo/sz9kOvYPZj3SjgLwEGWP6SD6Lrvr9yA6bOX4FeXdpgQPf2dmu25YefMXDMHDR/oCFmjO/LACuI2j9UqsIAK1RaOrDqyQArsNorFEvLAMtxq8uaWb+nXElfR0tGaZ1Ki3d8oJ098uvDUV9GaEUVQ4PwoqgbUQiRujCXzhXsB5lNwF+Lw3D1iG1Ny7c0o+T9DLGCvf2lfuHvvo6wn7+zqWravS2R0nmw3eqnpgHvLjHg7LmMNdRkx3ff4kjIUOgvrKM2BBhgaaMdAroUc5d8jvlL12Bo76fQrVMLu3XZtf8PvDB4Mu6qXxOLpw8P6Pqy8BSgAAUoQAEKUMCbAudSE7Aj7hx2xp/Dzrhz2JdwESkW50OVMSXq47WSd3qzqAF97rRE4NvJabh+ynbh/SZDwlCspm1IEdAVZeFzFIibMAhpB/fa/Dy6z0iEP9jK7jFx8cDEGam4cCnjxwyw2MEo4DsBBli+sw7aK01fsApLVnyNkf0749n2D9ut5/5Dh/FsvzdQt3YVfDT3laC1YMUoQAEKUIACFKCApwWSLSbsjb+YHmj9GHcO5yV9cbB9XbkVWuQr62i3kP550nULtkxIQ9K1WwxlGunQsJsB+jAGWKHQMSwJ8bg5pg/MJ48q1Q2r0wAxL78BXXRMjtW/fAWYMC0VEmbJxgArFHoK66gVAQZYWmmJAC6HUyOw6tXE4hkcgRXAzc2iU4ACFKAABSigAYEjyTeU0Vk//jdK62DiZWQdo3Xjju7IY8h4+7MGiq3JItw8C2ydmIrqLQ2o1oKruGuykbxYKMu1K7jxvxcQ3rgporr0s7sGVtbLHz9pwZTZaej4uAEP3MM+48Xm4akpYCPAAIsdwm2BpZ9sxOR5y1WtgfVQk/p4a0J/t6/JE1CAAhSgAAUoQAEKZAjEmVPxU9x57FACrbO4lpaCXTXsr01Kt+wCqfGAMedBNyQLcgFL/E3oYvI4VcuERCCaLyB0yow7U8BdAQZY7gryeHz34wG8NHKmqrcQvtCpJV7u/WS62pnL9oe/F8wTjshwA67cTEFSionKFPC7ABdx93sTsAB2BLiIO7uF1gW4iLvWWyi0y5c/xojoyDBci0tBQjKfN0O7N7hee+t9zvUz8EgKUECtAAMstVLcL0eBS1eu4/52A1G2VFGsXzbF7n5Dxs/Dxm17MG1sH7Ro2ogBFvtTwAkwwAq4JguJAjPAColmDuhKMsAK6OYL+sIzwAr6JvZJBRlg+YSZF6GAIsAAix3BIwKyQLss1L5s3mjcUauyzTmvXr+JZh2HwGyx4PvPZyNvbDQDLI+o8yS+FGCA5UttXkutAAMstVLcz18CDLD8Jc/rqhFggKVGifs4EmCA5UiIP6eA5wQYYHnOMqTP9MOuX9F7xAxULFsCC6cNQ4miBRWPhMQkDB43D9t3H0Tndg9h1IBnbZw4hTCku01AVZ4BVkA1V8gUlgFWyDR1wFaUAVbANl1IFJwBVkg0s9cryQDL68S8AAXSBRhgsTN4TGDagpV4b8V6GI1hqFu7MsKNRhz4/QhuxiWgZtXy+OCtkYiOimCA5TFxnsiXAgywfKnNa6kVYIClVor7+UuAAZa/5HldNQIMsNQocR9HAgywHAnx5xTwnAADLM9Z8kyAss7VR6s3468jJ2AymVGqRBG0bNoI3Tq1QES4MZsRR2Cx2wSKAAOsQGmp0ConA6zQau9ArC0DrEBstdApMwOs0Glrb9aUAZY3dXluCtgKMMBij/CrAAMsv/Lz4k4IMMByAou7+kyAAZbPqHkhFwUYYLkIx8N8IsAAyyfMQX8RBlhB38SsoIYEGGBpqDFCsSgMsEKx1QOzzgywArPdgr3UDLCCvYUDv34MsAK/DYO5Bgywgrl1fVc3Bli+s+aVKMAAi33ArwIMsPzKz4s7IcAAywks7uozAQZYPqPmhVwUYIDlIhwP84kAAyyfMAf9RRhgBX0Ts4IaEmCApaHGCMWiMMAKxVYPzDozwArMdgv2UjPACvYWDvz6McAK/DYM5howwArm1vVd3Rhg+c6aV6IAAyz2Ab8KMMDyKz8v7oQAAywnsLirzwQYYPmMmhdyUYABlotwPMwnAgywfMIc9BdhgBX0TcwKakiAAZaGGiMUi8IAKxRbPTDrzAArMNst2EvNACvYWzjw68cAK/DbMJhrwAArmFvXd3VjgOU7a16JAgyw2Af8KsAAy6/8vLgTAgywnMDirj4TYIDlM2peyEUBBlguwvEwnwgwwPIJc9BfhAFW0DcxK6ghAQZYGmqMUCwKA6xQbPXArDMDrMBst2AvNQOsYG/hwK8fA6zAb8NgrgEDrGBuXd/VjQGW76x5JQowwGIf8KsAAyy/8vPiTggwwHICi7v6TIABls+oeSEXBRhguQjHw3wiwADLJ8xBfxEGWEHfxKyghgQYYGmoMUKxKAywQrHVA7PODLACs92CvdQMsIK9hQO/fgywAr8Ng7kGDLCCuXV9VzcGWL6z5pUowACLfcCvAgyw/MrPizshwADLCSzu6jMBBlg+o+aFXBRggOUiHA/ziQADLJ8wB/1FGGAFfROzghoSYIClocYIxaIwwArFVg/MOjPACsx2C/ZSM8AK9hYO/PoxwAr8NgzmGjDACubW9V3dGGD5zppXogADLPYBvwowwPIrPy/uhAADLCewuKvPBBhg+YyaF3JRgAGWi3A8zCcCDLB8whz0F2GAFfRNzApqSIABloYag0WhAAUoQAEKUIACFKAABShAAQpQgAIUyC7AAIu9ggIUoAAFKEABClCAAhSgAAUoQAEKUEDTAgywNN08LBwFKEABClCAAhSgAAUoQAEKUIACFKAAAyz2AQpQgAIUoAAFKEABClCAAhSgAAUoQAFNCzDA0nTzsHAUoAAFKEABClCAAhSgAAUoQAEKUIACDLDYByhAAQpQgAIUoAAFKEABClCAAhSgAAU0LcAAS9PNw8JRgAIUoAAFKEABClCAAhSgAAUoQAEKMMBiH6AABShAAQpQgAIUoAAFKEABClCAAhTQtAADLE03DwtHAQpQgALBJLD0k42YPG85ej7bBgN7tA+mqrEuFKAABShAAQpQgAIU8KoAAyyv8mrj5D/u/Q09hk7FPQ1rY+HUodoolJ1SHPzjKFZ++S32/PInzl+6CmOYARXKlkDLpnehc7uHYDSG2S17YlIKFn+8Dpu+24NTZy8iItyImlXLo0uHR/DA3Xc4rO+u/X9g2GvzcfnqDWxaMQ2lihfO9Zi9B/7C+ys34Jff/kFcQiKKFS6AZvfWQ6/n2iJfnhiH1+MOGQKDxs7F5u/3YtzLXfFkmwc0S3P2whUs/3wLtu8+iJNnLiLNZEKJogVx3123o8czrVC4YL4cy/75+h/w6drv8M+/p2EymVCudHE8/ui9eOaJh2Aw6HOt85lzlzBo3Fz89te/eH1EdzzRoonD/Rd8+CV27jmES1euI1/eWNxZtzp6PdsWlSuU0qyvVgvmjXunKwGW2WxRfk/WbvkRv/5+BNeuxyEmOhI1qpZDp8ea4uH7GuRI6M79Kik5Ba/N+ABrNu7AY83vwcSRL+baVO7ei7XaD7RWLvlbJX8rf9x7CP+ePIcbNxOU/lCiWCHcVa8mnmz7IMqVLub3YrvTb+Xe58697MNPN2Ha/JUoUjg/tqyc7tDCnfu0w5OH0A7euGd6gy9QnjetdXe2P3vDjOekAAUooBUBBlhaaQkvlkPrDxQ34xIwYeZSrPvmJ0WhSoXSKFOyCK7diMfvf/8L+RB1e81KeHf6cERHRdhIybHP9n8D/xw7jXx5Y3BbjYqIT0jGgd//gclkRv8X2qH3c23t6losFrz78TrMXrwa8qAtm6MAS4KIcdPeU/atVa08ChXIh8NHT0ICDgk0Pn57LIoWzu/F1gyeU0vA0qzjECUMEstV74zXXOWkXyxevg7z3vscqWm3QqsqFcsoQdQfh4/jyrWbKJg/Dz6YPQoVy5bIVv6RExfhy007lDC2bp0qMIaF4cDvRxAXn4h776yDeZMGIcxgsFvvH3b9ihGvv4PrN+OVnzsKsKQ8zw+chPiEJJQpWRQVy5XAuQtX8NeRkwgPN+LtiYPQuEEtzRlruUDeuHc6G2AdPXFW6QdyL5R+VKtaBRQskFdpW/k32Tq3exijBnTORunO/er4qfMYNHYO/j56SjmvowDLnXuxlvuA1sombTppzjLl76Js8oWL3IPk9/7kmQvKfUqC8Z6d26Bvt8eh0+ncrsIjnYai+9Mt8dRjTVWfy51+6869TBzGTFmMjdv2KGWVUM9RgOXOfVo1SIjs6I17pifpAul5U+rtSn/2pBfPRQEKUECLAgywtNgqHi6T1h8obsQl4Mme41GlYmkM6dlRGXVl3c5dvII+I2YoH6J6dWmDAd1tp9yMnrwY8s3pI/c3wKRRPREZEa4ceuL0ebwwZArOnr+MpbNHof5tVW1UJRQYOXEhvvvxgPKNtdlixu79f+YaYMmHg9ZdRiIszIAFk4eg4R3VlXNKEDb3vc+xYOmXyrkWzxju4RYMztMtWrYWsxZ9ihpVyilh0KeLXlX+t9Y2GSV27ORZjOzXGXfVr5lePBltMn76e1i7+UfUq1MFH855xaboElzJByMJthZOG6aEX7IlJCZBzrljzyG7AauEZvPev9Wf5MPXvQ3r4JO123INsCSsbfP8SEjoMKxPJ3R96tH0snz/0wH0f2U2YmIisfHjqcgTG601Ys2Wxxv3TmcDrIN/HkO3QZOUEXvdn26lBPXWbf+hw+g5bBoSEpOxePpwm/7pzv1KRnu98ua7SEszKX3pnQ+/chhguXov1mzja7Bgy7/4Bq/P+lAJpaRdnu/YHEUKZXxhIvcWuR/NXPgJ5O/qs+0fxsj+2YNNZ6p2+NgpPN5tNMYOfs6pAMvVfuvOvUy+yBo4do4yKu2FTi2x8sutyJsnJtcAy9X7tDOGobSvN+6ZnvQLlOdNqbMr/dmTVjwXBShAAa0KMMDSast4sFxaf6CQql6/EW/zwSxz9SVY6jb4TSUI+GrppPQfyTSKBzsMQmx0FLasmo7oqEgbNfng3ud/M3F3g9pYNM126mSn3q9CHrBlauLwvk+jz4iZ2Ln3UK4B1sTZH2HZZ1sw6MUOeLFza5trSYj1dJ/XlHMumzcad9Sq7MEWDL5TiVeLziNw42Y8Jo/uhd4jZigfjuRDktY2CaoMep0yiinrJj+797F+ymiI7z57y2YqoXzokw9/9vrD1es3ldFnMi1WjrMGr3L+aQtW4r0V65XQddZr/bF63XdK0JfbCCwJHCQUkxFW704blq2c1nPa67ta89ZSebxx73Q2wHJ0f5TRgW9/sCbb74+r9yvrfbNYkQKY8/pApKaloXPf13MNsNy5F2upvbVcFgmnH+v2ClJT05R7ZuuHGudYXPng+/RLE5Sw/J0pLyujPV3dJAyTkcrOBliu9ltX72UyordF5+HKCLRXh3ZT+usdD3VH4UK5TyF09T7tqmewH+eNe6anzQLhedPV/uxpK56PAhSggBYFGGBpsVU8XKbcHigkSNi17w98vuEH7D94GBcuXYVer0fZUsXQslkjdHuqRba1p/q/8ha27zmEvevfwem6js4AACAASURBVO79f+DD1ZtuTYuKS0T+fLHKB29ZoLh65bIeqYmMlrq7TV8l4Nr55bz0c36xYbsySqB9q/vw2rAXsl1L6nZ/u4G4diMOP3w+xyYg++nn33H2wuX0NYVk6pWsFZPbFMKHOw2FrMux9ZOZkA93WTfrt+PPdWyOEX2f9kjdg/Uk1j4pH8LeGNlDaSf5YPbdZ7MRFXlrFF3m7c9/TqB9j7FKePhkmwex6OO1+OaHfUobSvhTs0o5ZbRB03vrZTvWGhismD9WmX619NONWPXltzhz/jIqly+ljPxyZ3vihdHKCMEv3ntdmf4qm/QT6S9lSxXF+mVT7J5+yPh5yjSXOW8MRNN76qbvc/HyNSUo7dvtCWXKmDWgyC3Akt8D+X2Y/EovtH44+wfbI/+eRtuuryi/k6vffc2d6obUsTndO6XdpP2k/0qYYG+b8c4qLF7+NUYNeFYJyq2bKwFWbuhbfvgZA8fMUdbBmvVav/RdXb1fyQiYmYs+QdcnH1UCWesXCLlNIXTnXhxSHcqNyr464wPlvtX8gYaYMb6vwzO9v2oDpr69AvXqVMWHc0Zl219C9A9WbcS2nb/g9LmLys+LFSmIWlXLo3/3dsrfTbmvSBhmb3M03d5RAXPqt+7cy2SdIPnyqE6NisrI6NoPdst1CqE792lH9QvVn/N50zPPm9J/nO3PodrnWG8KUCD0BBhghUCb5/ZAIUFO95enpC98XqJYQcTFJ2HvgT+VaSkyNW/mqxkfioRLAqytO/YrwdFnX/+AB++pi7q1K8NigbLAsDyYymgVeWiuXa2C28IyHVBG68j0ssxhg6wD8tHqzUp4JWWxt/Ub9Ra+3blfGYElI7Fy2p7t9wZkOk5OD+Uy7Lxx65eU4EoCLHubTIPr8OI45QFaRt1wy1nAGt4smPwymjSqA+tokZxCGmuAJVM0T5+7pEzjlA/shQvmVRZVlw/QsrZFn+ceQ78XnrC5sDUwmDdxkLIelYQPMp0vf748KFm8EGZPGOBWUzXtOBjnL17F7q8XKAspyybh2oAxs5UwSUIle9sHn2zElHnLldF8EszltL317mos/OirXEdgtes+RlnrSsIyCc3sbY1a9VHW09i3caHd0WRuIQTpwYEQYFnXuZLpZDKaVDZP3q+sBrkFWJ68FwdpV3K7WhLyy6iM92b+T3kxg6NN+kCTx/orawxmHR0q99New6cr55ORy9Ury7p+Zhw/fV65j3776Sycv3gF3+7Yr0x1li+o5IUVtauVT79sl47NkdeN6cj2+q2c3FP3Mqn37c265xpgefI+7ag9QuXnfN50/3nTXl9R059DpY+xnhSgAAUYYIVAH3D0jZg8pN5Vv5bNAumyKHn77mOUBaTXLp1ksy6VNcCSdTjmvzlECSAybzLdQKYdyAPv/DcHuy0sb/ybOn9Ftg/6L42cqaxhlXXtl8wXnDh7GZZ9thmjB3XB0483y7EsjgIseQvck73G213ryHpS60ixAvnyYPuaOW7XO1hPIAufN+0wCAXy58GWlTOUBYdlMeqOPccri/V//PaYbFW3BljyA3mz5FsT+tssfi5vn3zmpQnKmyQlOJVRB9bNGmDJQvEyDUcCJTVvp1Tjb+0XWctt7bP21m2zntc6AsHRiAo1AVbDFr2UwPmXLYuVUVv2NutIsS/ffwOVyvONhGraNxACLOt9UN4wK2+alc2T9ys1AZYn78Vq2iXU9rGOFJIXPuxev0D5wknNJqNW5d455/UB6aNTZbrzY11fUd7YK2/qlfDcOoVZRi0dO3nO5oUUMopLRnO5MoUwtzLa67eyv6fuZWo+8HvyPq2mPUJhHz5vuv+8aa+fqOnPodC/WEcKUIACIsAAKwT6gatrEsjb9uRb0iljeqNVs7vSpawBVtYpK9YdZF2gBo/2VL7Z3bN+gVvCMs2hzXOjlLU8ZHRJ5ql7zw2YiJ9//Rsr3xmX40ivuUs+x/yla5TF3yVMyGlzFGDt2v8HXhg8OddQzjplQQKZX79Z4la9g/lgmVYl06uyjjyyNxXP6pA5wFq/bLIyxTXrtnLNVrw2c2m2UYPWAEv2t4748oSvtHf3IVMgfUMCtYea1E8/rbXfDe39FLp1amH3ctY+JQvDSwib0+YowJJF3+s07aZMvdy7YWGO57H+vshi87LoPDfHAloPsKzT+6pWLI3Pl7yeXiFP3q/UBFievBc7bpXQ20NGNsuaVsWLFMQ3n8xQDWD9Wz1m8HPo9N8bBK0jn2QUl4zmcrR5I8DKqd968l6m5gO/J+/TjhxD5ed83nT/edNeX1HTn0Olj7GeFKAABRhghUAfcOaBQtYhkm9oLQAWfbQWS1Z8jXFDnseTbR9Ml7I+FOf2jWyTx/tDRtrs37TI5elKshhr7xHTIdMc5U1KssZR5s26EPtniyegWqUydltSpl5JACBrcg3sYfsGw8wHOAqwftj1q7LQeLMm9XKdciZTFuRB48A3i21GCIVAN1NVRQl9Wj77P+Utkes+fBPlyxRPP846pa5zu4cxaoDtm7OsAVZuUzhl9NV9TwzItlaaNcCS6awSdnpqs374keBKAqzM2/QFq5TfHXv91rqfTFmVfle3dhV8NNf2DYaZz+UowJLf1/rNeyrTeX5c+3aO1esxdCrkXiCLvMti79wcC2g5wJI3tMqLI65eu4mP5o22CfE9eb9SE2B58l7suFVCbw9rG8gbemVEtNptxOvvYO2WHzG4Z0f0eKaVcphMbZapczmtl5f13J4OsHLrt568l6n5wO/J+7TaNgn2/fi86f7zpr0+oqY/B3vfYv0oQAEKWAUYYIVAX8jtgUKmHX2ydhu2fP8z/j56EnHxidlEsgZV1gDr7UmDcX/j2+0KytsBL1y6pozAyvp2QDXk8k3ssAnzseHb3cpC67I2UtbNmW/9+7/QDr2fa5vjpR0FWJ4c0aCm/sG6j3XNNXuhjQSeD7YfpExl3fbZWzbTZKwBVp3qFbBiQc4hlKzzJH1Yghzr+izWAMteMOaq88eff4M33voQMvLlo7mj09e+sp7PqW/269XE4hmuj8CyjvxTPwLLdoqlqwahcJxWAywZmfr8gEk4cvyM3bXRPHm/UhNgefJeHAr9ytk6ujwCa/RsbN2+D5lHYLV5biSOnjhr89KJ3MrjyQDLUb/15L1MzQd+T96nnW3TYN2fz5tr4O7zJgOsYP3tYL0oQAFPCTDA8pSkhs+T0wOFBAbywePYibPKwuOPPNBQWQBaAicddFixZis2btudbe0La4CV20gOdwIsCa9GvbkIX23aqazbMfPVvnZHM1nLoWYNLBnRIwFGTpujAMsaoMjUK5mCZW9Lf1tinhjs/CrjbYka7ho+L9qQ8W8rfcrR9uaonmjzyN3pu1n9HS2QLyOwZCSWTLOR6TayefqtbxL4jp/2vjKNcenskShSKH+26livqWYNLHsjuDKf0NEILNnXGtypWQNLpppJ8MbNsYAWA6xr1+PQbfCbypsvc5qi6sn7lZoAy5P3YsetEnp7nD1/GQ899bLyd1C+FJKXpKjZ5KUi8nKRzGtgWV86sXnFNJQsXtjhaTwVYKnpt568l6kJsDx5n3YIGSI78HlzszKC3J3nTXtdRU1/DpEuxmpSgAIU4BpYodAHcnqgkPWCZN2gto/cg0mjXsxGMXnecuXDf04jsLwRYMmbkEZNWqRMe5AP9tPGvZTjotSysLsswqrmLYQLJsti87fl2NyOAixZg6thi96q3kLoaJRQKPQ5e3W0Lt6u1+tRNYcpn4lJycpr2+vfVhVLZ2e8+t36gbxKhdLKyAF7m3x7X695T6SkpNodgeVoGqmadpFQd8LMpcrUR1k/pmjh7OGVnEdeLiCLFKt5C+ELnVri5d5P5nh5NQGWvGBAFu529BZCGZ22Z/07Ni9sUFPvUN3HnQDL+ma+UQOeRed2D6UTuhOoyu9Q9yGTlfBqWJ9O6PrUo3abxpP3KzUBlifvxaHa1xzV2/oWwg/eGokGt1dztLsyEvXex/pBpuJ///lsFCqQVzmm5bMjlJdZrHnvDVSu4PhlDp4IsNT2Wymfp+5laj7we/I+7bBBQmQHPm/uh7vPmwywQuSXhdWkAAVcFuAILJfpAufAnB4oWj83Uhl9tWL+WNSpUTFbhayjZXwVYMkD5/AJ7ygjdFo/1BhvjOyR6zpSsp+UsX2r+5QQK+smgYY89MuInG2rZ9kdKWM9xlGAJfu1fX6UMmVn6yczbRaTt55j+Rff4PVZHyrrhcm6YdxsBWRNKFlzRBYTlikt9rbklFRlGqGMZvtq6aT0t2FZAyyZJrdr3QLlzYVZtyP/nkbbrq8gf75Y7Fgz1yOBQeZrfPjpJrw592Nl9NK704enfyC0Vw95Pb30PRnRKKGSvW3I+HnYuG0Ppo3tgxZNG+XYXdQEWBKqSbiW07o2Vhtn19AJ9T6c071T1hCStYQeffBOTB/3kl2mQWPnYvP3e+GpAEv6lLxIQu5BmaeE5dRGnrpfqQmwPHkvDvU+l1P9rb/j8kIVebGKo03evitv4ZWwS0Iv69bnfzPx/U8HMHVMH7RslvN9x7q/uwGWs/3WU/cyNQGWJ+/TjtojVH7O503PPG9m7S9q+nOo9DHWkwIUoAADrBDoAzk9ULToPEJZTFvWFJJRQ5k3+fZWpizcjEvwyQgs+Zb45VfnKYvLdmh9P8YN6Qq9Xpdr60gZZcqYvAJ8y6rp2dbakod0eVhXMyJKTYBlDRLktePyBr2sm3UhY0ffvoVAl7NbRes3/7ktui8HTpm3HLKge9cnH8Wwlzop58r8FsKFU4finoa1s13D+kEra6jgzogX60XeW7Ee0xasVBbKluvnyxvjsBmtfWrZvNHKFN3Mm6wF06zjEJgtFmV0hHW9LnsnVRNgWX/H725QG4umDc12Gim71MHRaC+HlQqxHXK6d+47+De69J+I22pWwvK3x2RTkfuZBLHSzp4IsM5fvKpMGzx55gImDO+Oxx+912FLeOp+pSbA8uS92GHFQnQHGTX1WLdXIC9amflqP+Vtqzlt8nf9yV6vKn+/s46UtgZbcg+Ve5mjTd7iK2tF5fR3L7fjXem3nrqXqf3A76n7tCPHUPk5nzdzX6dT+oGa582s/UVtfw6VfsZ6UoACoS3AACsE2j+nBwrrCJCsI4ZuxCVg2GvzsWPPIcgoJm+PwJIpX4PGzVWmXXXp8Aj+1+8Z1a1ifYuQPMy/+Uqv9IW/5QG++8tTcebcJcx6rR8evi/nh321DxQykuvRZ4bDbDYrQ8Qb3lFdKacYzX3vcyxY+qUyOkcCGp0u9/BNdQWDZEfrotK316yEj+184M9cTfmgJmGXjKTa9uksGI1hNgGWrD0lIU3pEkXSD9u6Yz8Gj52rvAFSzi/XsW7uBljWN1nWq1NVafeY6EhVrWJ9E1zFsiWwcNowlCh6a00umd41eNw8bN99UJlaJgFHbpuaAEuO79TnNRz842i2qWUS5A4YPRs6vR4blk2xO3pQVYVCcKec7p2JSSlo8ng/JCWnYuWCcahVrbyNzqxFn2LRsrXKv7kbYMn6R90GT4b895QxvdD8gTtVtYSn7ldqAiwpkKfuxaoqF6I7WV8eISNQe3Zuo/y9zBymy9/SDdt2Q8J8mbaX+UsAK5mEjTL6+uLla+jz3GPo/Xxbm5HO/548p4wuzRMbrRyy7pufMHzCAiW8l7ddGsMMqvRd7beeupep/cDvqfu0KpQQ2InPm5553szaVdT25xDoYqwiBShAAa6BFQp9IKcHClkzp3PfCcoaGdUrl1X+c+NmPCRskIWpn+/YHK/O+MDrAVbmD3uytlBuW+P6tTB6UJf0XeSBXYIqGREhD/K31agI+XD5y6F/lDDjyTYPYNzLXR02s9pvxGSEmAR/cm750Fq4YD5lPRp5WM+XJwYfzhmFSuUdryvisEBBtsPQ1+Zj/dZdmDjyRTzW/B6HtZOpUtIPrdPrrCOwZITR5avXcfT4GdStUwVFCubHqbMXceD3I8o5B/ZoD1nrKvPmToC1c+8hvDh0mnK6EsUK2bwZMWslYqOjsPId2zckWkc+SQhXt3ZlhBuNSlllZETNquWVqT3y1sXcNrUBlozO6dz3dWXKbJmSRVGxXAnICAixk0BVFsaXNbm4qRfI7Y1aElDJvUumtbZreR/KlymB+IREJYj//e9/lTe0bvrO/SmE0qa//PaPcp1i/72YIKcaSN/P/PvlifuV2gDLU/di9a0Tmnuu+mobJs/9GEnJKcoo5QplSyJ/3hjIG4VlSQD5dwm4endpi5e6Pm4XSfpTnxEzIF9WSVglf/tTUtNw+twl5Uuf1e++pvybbHK+1l3+h7MXrihTumXU4fUb8RjQo32uL4Nwp9964l7mzAd+T9ynQ7M3Zq81nzc997yZWdeZ/sy+SAEKUCDYBTgCK9hbGEBuH8Lkw7RMD5AH2tS0NOXNbc3urYc+zz+mrEP0SKehXg+wZN0oWT9Kzdb0nrqY88ZAm10lgPtg1QZ8tXknTp6+oIzYkZFQT7VtqvoDu9oASy4sH07f+fAr/Pzr34iLT0DhQvmVBeLlA0OxIgXUVCOk9pFpVA92GIyoiHB8u3qWMuXT0SZrQ0lQ2KhuDSyZOSJ9BJY4zxjfF4uXr1PWj5LwKiLcqIwOeK5jcyU0yLq5E2BZy+GovPLz2Jgo7Fo3P9uuco6PVm/GX0dOQF5SUKpEEbRs2gjdOrXINRCznkhtgCX7S3g1/4M12PbjL7h0+RpiY6KVoK/HM61sRqWpqQ/3yf3eKT4yOmXFF1uVtk1OTkWhgnnRqG5N9OjcCucvXlHCT3dHYMm6brKGmZptRN+nld+DzJu79yu1AZZc0xP3YjX1DPV9ZO0meQGLjJI+fvq8EojHREUqbxW8q35N5W+frL+X2ybhtqxLKCOQJJwKM+iVL67kS4L+L7SzGdklgdK0+SuV5wR5LihRtBDmvzlYeZlFTpu7/dbde5mzH/jdvU+Hep+01p/Pm457gjPPm9azOdufHZeCe1CAAhQIXAEGWIHbdqpL/u3O/eg36i3YC39Un4Q7UsCPAtYRWDKNT0a5caOALwR47/SFMq9BAQoEiwDvmcHSkqwHBShAAe0KMMDSbtt4rGRvf7AG89773On1pTxWAJ6IAm4KWAOsurWr4KO5r7h5Nh5OAXUCvHeqc+JeFKAABUSA90z2AwpQgAIU8LYAAyxvC/vh/DJlSxYXljWZdu//A/+buFCZYiAjV2QECzcKBJoAA6xAa7HALC/vnYHZbiw1BSjgHwHeM/3jzqtSgAIUCGUBBlhB2Pqfr/8BoycvtqlZ53YPY9SAzkFYW1YpFAQYYIVCK/u/jrx3+r8NWAIKUCBwBHjPDJy2YkkpQAEKBIsAA6xgaclM9fjj8HHMX7pGGXVVtHABNL+/IZreWy8Ia8oqhYoAA6xQaWn/1pP3Tv/68+oUoEBgCfCeGVjtxdJSgAIUCAYBBljB0IqsAwWCXIABVpA3MKtHAQpQgAIUoAAFKEABClDAgQADLHYRClCAAhSgAAUoQAEKUIACFKAABShAAU0LMMDSdPOwcBSgAAUoQAEKUIACFKAABShAAQpQgAIMsNgHKEABClCAAhSgAAUoQAEKUIACFKAABTQtwABL083DwlGAAhSgAAUoQAEKUIACFKAABShAAQowwGIfoAAFKEABClCAAhSgAAUoQAEKUIACFNC0AAMsTTcPC0cBClCAAhSgAAUoQAEKUIACFKAABSjAAIt9gAIUoAAFKEABClCAAhSgAAUoQAEKUEDTAgywNN08LBwFKEABClCAAhSgAAUoQAEKUIACFKAAAyz2AQpQgAIUoAAFKEABClCAAhSgAAUoQAFNCzDA0nTzsHAUoAAFKEABClCAAhSgAAUoQAEKUIACDLDYByhAAQpQgAIUoAAFKEABClCAAhSgAAU0LcAAS9PNw8JRgAIUoAAFKEABClCAAhSgAAUoQAEKMMBiH6AABShAAQpQgAIUoAAFKEABClCAAhTQtAADLE03DwtHAQpQgAIUoAAFKEABClCAAhSgAAUowACLfYACFKAABShAAQpQgAIUoAAFKEABClBA0wIMsDTdPCwcBShAAQpQgAIUoAAFKEABClCAAhSgAAMs9gEKUIACFKAABShAAQpQgAIUoAAFKEABTQswwNJ087BwFKAABShAAQpQgAIUoAAFKEABClCAAgyw2AcoQAEKUIACFKAABShAAQpQgAIUoAAFNC3AAEvTzcPCUYACFKAABShAAQpQgAIUoAAFKEABCjDAYh+gAAUoQAEKUIACFKAABShAAQpQgAIU0LQAAyxNNw8LRwEKUIACFKAABShAAQpQgAIUoAAFKMAAi32AAhSgAAUoQAEKUIACFKAABShAAQpQQNMCDLA03TwsHAUoQAEKUIACFKAABShAAQpQgAIUoAADLPYBClCAAhSgAAUoQAEKUIACFKAABShAAU0LMMDSdPOwcBSgAAUoQAEKUIACFKAABShAAQpQgAIMsNgHKEABClCAAhSgAAUoQAEKUIACFKAABTQtwABL083DwlGAAhSgAAUoQAEKUIACFKAABShAAQowwGIfoAAFKEABClCAAhSgAAUoQAEKUIACFNC0AAMsTTcPC0cBClCAAhSgAAUoQAEKUIACFKAABSjAAIt9gAIUoAAFKEABClCAAhSgAAUoQAEKUEDTAgywNN08LBwFKEABClDA8wI34hLQ+aUJSExKxtLZo1CyeGHPX4RnpAAFKEABClCAAhSggAcFGGB5EJOnogAFKEABCmhB4JO121CkYH48cPcddouz98BfeH7gJOVnk0f3QuuHGmuh2D4rgyMfnxWEF6IABShAAQpQgAIUUC3AAEs1FXekAAUoQAEKaF8gITEZd7ftiycevRfjXu5qt8DxCUnoOuhNJCQmYcmMEShWpID2K+ahEqrx8dCleBoKUIACFKAABShAAQ8KMMDyICZPRQEKUIACFPC3wJYffsbAMXPwZJsHcgyw/F1Gf16fPv7U57UpQAEKUIACFKCA6wIMsFy345EUoAAFKEABTQmkpqZh2IQF2Pz9XgZYdlqGPprqriwMBShAAQpQgAIUcEqAAZZTXNyZAhSgAAUooE2BDz/dhHc/XodLV67bLWBsTBR2rZuv/Ez2ub/dQOV/f/He66hSoXT6MdafVSpfCl++/4ay7+LlX+PbHftx7uIVxEZHoUrFUujQ+gG0anaXcpzFYsGajTvwxYbtOHzsFOLjE1G4UH7cVa8mXuzcGuVKF8sV7ez5y3hv5QZs3/0rzl24AoPBgLKliqJZk/ro0v5h5ImNtnv80RNnsWz1Zuz55U+cPncJJrMZhQvmQ4miBZVry/HVK5dVjnXGx3qxPw4fx/qtuyBrhv178hziEhIRFRmBiuVKosWDd+LpJx6CMcyQrWxff7MLwybMx9OPN8PoQV3w+9//4r2V67Hnl79w7UYcCubPgztqVcHzTzbH7TUrKcfHxSdi2WdbsHHbbpw8cxEmkwmlSxZF03vqovvTLe0aWK/Tud3DGDWgM/46chLvr9yA3fv/wOWr1xETE6XU/4lHm6DVQ3dBp9Nps/OyVBSgAAUoQAEKUECFAAMsFUjchQIUoAAFKKB1gbFTl+D02Uv4++hJXLl2E0UL50fFsiXTix0dFYE5b9wKrdQEWBLMrFgwDj1enoqr12/CaAyDMSxMWTfLuj3fsTkGvtgBL42ciZ9+/l35ZwnK5O2GJpNZ+f/RUZFYOnskalQpZ5dQpvQNn7AAySmpys8LFcgLGSklb0qUrUSxQlg4dSgqli1hc7yENyMnLkSayaT8e97YaOj0Oly/EZ++n4RDH789Rvn/zvjI/hu+3Y2XX307/Vz588Uq4dWFS1fT63Zn3epYNG0Ywgy2IZY1WJKft295P155812lnNIGaSYzUv6rqxw3bVwfVK1YBi8OnaqEcBIyieHN/+ovBZC6L58/Vvn3zJv1OvfddTtaNL0TYyYvUa4THm5ERLjR5hwShM0Y31dpR24UoAAFKEABClAgEAUYYAViq7HMFKAABShAgRwEBo2d63AKoZoAS06fL28MypQoiv/1fwa316wMvV6HsxeuYNKcj/DND/uUEtSrUxX7Dx1G7y5t8fQTzW4FUGkm/LDrV4yZshjXrsehbu0q+GjuK9lKfPCPo+jc73UlEHrmiWbo1aWtMoJKNhn9NHbqe8ropbKliuGzxRMQFRmu/EzCnQc7DEJiUgo6t3tIOU6uK1tScopyjJSvcYNauPfOOjbXVeMjB8iIKFlLrEXTRri/8e0oUii/ch6p2/sr12PWok+V/z9p1Ito+8g9NtewBktSXpPZgkfua4C+3Z5QRpWZzRb89ve/Sqh15N/TKJAvDwrki8Xlqzcwsn9nPHRfA6WeEhSuXPMtpr+zShnh1vPZNhjYo73d68RERyr1lrdO9uvWDlUr3hpRJ+0sI79kVJZsz3VsjhF9n+bvDgUoQAEKUIACFAhIAQZYAdlsLDQFKEABClDAvoCagEZtgCVh0roP38w28kfCkuZPD0ufrtj/hXbo/VzbbAX6dO13GDftPeXfd6yZCxnFlHnr8OI4Jahq/XBjTH6lV7bjJSxr+ewIZcTS//o9gy4dHlH2+Wnf7+g+ZAry5YnBji/nOjU1To2Pmr7Vc9g07NhzSAm4po3tYzdYkn+U0VHz3xyc7ZRSb6m/dVs6exTq31Y1234jXn8Ha7f8iMoVSmHNe2/keB0J6xZNHWrXYvqCVViy4mslgNy8cjqKFymoporchwIUoAAFKEABCmhKgAGWppqDhaEABShAAQq4J6AmoFEbYMn6VYNe7GC3QEPGz8PGbXuUNaC2r5mbLeSSg2Rtq4eeelk5ftm80bijVuX0cx388xg69X5V+f/ffjpLmfJobxv62nxlHSoJdyTkkc16rFx7/cdTlTWvFBos7QAAELlJREFU1G5qfNSca/7SNZi75HO7o8usI7DkPIumDcXdDWrbPeW9j/VXpmfWqVERK+aPtbuPrC02atIixfmXLYtt9sl8nXemvJxttJl154TEZNzfbgDkv4f2fgrdOrVQU0XuQwEKUIACFKAABTQlwABLU83BwlCAAhSgAAXcE1AT0KgNsOZOHIgH765rt0CT5y3H0k82olqlMsr0PnubTJer07Sb8iNZx+qehhlBjowIkpFBMj1w/bLJOVZaQiIJi2S01c6v5in7yXmf6D4a/xw7jWJFCmBIzyfR/IGGqtZ3UuOjpgVWrtmK12YuRc2q5fHJwvE5BkuycH7WtausO7fvMRZ//nMCz7Z/WJk+aG+zjjaTn/2y+V2bOmYOsHZ/vQAylTCnTdYp++7HA3jk/gaY+Wo/NVXkPhSgAAUoQAEKUEBTAgywNNUcLAwFKEABClDAPQE1AY3aAGvlO+NQu1oFuwWa+vYKvL9qA+6qXxOLpw/PsdC1Huiq/GzB5JfRpFHGelTjp72PT9Zuc6qyv217P31/mV44eOwcZTSWbLKWVMtmd6Fdyybpbx60d3I1Ptbjfth1EJu/34Pf/z6OM+cuKetSyRpYmbfcAixZy2rvhoU51rFjz/HKel0DurdHry5t7O63e/+f6Db4TeVn+zYtUhZnt27WAEsWh9+z/p1cLa2BY26jvZxqDO5MAQpQgAIUoAAFfCzAAMvH4LwcBShAAQpQwJsCagIatQHWF++9jioVbi0InnWzBlgyqkpGV+W05RRgWacGyuikUsULqyLJOtJLRmLJWww//nwL9vzyZ/o5ZNH4wT072l1TSo2PLDw/cOwc7D3wl3LOSuVKKqFYwQJ5Ef7fW/wO/H5E+XluAZYsgr/zy1ujxuxt1gBLpmnKdE17m5oAK/PotJyuNXvxarzz4Vd219JShc+dKEABClCAAhSggJ8FGGD5uQF4eQpQgAIUoIAnBdQENFoIsMZMWYLPvv7e4QgutTanzl6ELBq/6stvcf1mvHLY+KFd0bH1AzanUOPTf/RsbN2+DwXz58Gs1/rbDcIWLVurvIlQCwFWeLgR+zctypVq0pxl+Gj1ZtxWsxKWvz1GLSv3owAFKEABClCAApoRYIClmaZgQShAAQpQgALuC6gJaLQQYFkXQS9SKD+2rZ7lfsX/O8PNuASMnboEm77bi8iIcHyzaobN2w8d+cii6k0eHwCLxYLXhr2A9q3us1s2Ca8kxNJCgCUF3L5mjjKNMqet1/Dp2L77INfA8lhP44koQAEKUIACFPC1AAMsX4vzehSgAAUoQAEvCljfDvhEiyZ4fUR3u1fSQoC17+Df6NJ/olK+j+a+orzNz1NbamoaGrd5CYlJKXh32jA0blAr/dSOfGRNKpnaJ9uqd8ajVrXydosl61LJ9D6tBFizJwxAsyb17JY1Lj4R9z0xAMkpqRjWpxO6PvWop6h5HgpQgAIUoAAFKOAzAQZYPqPmhShAAQpQgALeF3h1xgfKNLrcpoppIcASiSdeGI2/j55SQqCls0dBFj33xCZBzV2tX0JKSiren/U/NLyjevppHfnIVMTmTw9T9p8+7iU8+uCd2Yr0497f0GPoVOXftRJg1atTFR+8NRJ6vS5bea3rlcnPtqycoby5kRsFKEABClCAAhQINAEGWIHWYiwvBShAAQpQIBeBLzftwMiJt9ZDenVoN3Rofb/yv+XteWEGPXQ6HbQSYB384yi6DJgIGTFVtWJp9O/eHo3r11KCLAmhLly6ioN/HMPWHfvQsmkjNL331ggjWTz9/ZUb0Prhxri7YW3kjY1OFzl24iymL1iFb3fuR6ECebFl5XTIGlHWTY1Pi84jcOL0eZQtVRRvTRiglE02eQvh5+u3Y+bCVcifLw/Onr+siQDLaAxTDMVHFq+vWLaEUl6ZTrl4+dfKVEfZnu/YHMP7Ps3fHwpQgAIUoAAFKBCQAgywArLZWGgKUIACFKCAfQEZddSx13j8c+y0soO8oS46OlIJrXZ+ORfRUbf+9/3tBio/z/qmwdx+lvmK7r6F0HouGc308mtv4/qNWwuvyyZrVyUlp9hU8M1RPdHmkbuVf8s8Akr+vwRVUq9rN+KU0EY2+f9zJw5Eo7o1bM6jxmfHnkN46X8zkWYyKcfK+eXtg+cvXYW8+bDpPXXR74V2aNd9jCYCrBpVyilh3rT5K5W1u6TNoyIjlHa21kGmF04f+xIk7OJGAQpQgAIUoAAFAlGAAVYgthrLTAEKUIACFMhF4Nr1OMxZ8hm27fwFF69cQ2x0FCqWK4klM4Yro5G0FGBJNW7EJWDlmq1KeWUE1c34BIQbjShcMB9qVi2HB+6ui0fub5g+xVDCrTUbtmPbjwdw+NipW0FNmgkx0ZEoV7oY7m5QG53bPQRZIN7e5shHjvntr3+VkUs///qX8lZDMaxcoRQef/ReyPpiFgvQsEUvxfWThbfWzLJuX3+zC8MmzEe+vDHY+eW8HFtK1tqSNbcGvdgBL3ZubXc/WWdL1tuSbd+mRYjINJrMep0yJYtiw8dTcOivY/jwk03Yc+BPXLl6QwnxalQth3Yt71NGsMnoO24UoAAFKEABClAgUAUYYAVqy7HcFKAABShAAQqEtIA1wJK3D8pbCLlRgAIUoAAFKECBYBZggBXMrcu6UYACFKAABSgQtAJqR3oFLQArRgEKUIACFKBASAkwwAqp5mZlKUABClCAAhQIFgEGWMHSkqwHBShAAQpQgAJqBBhgqVHiPhSgAAUoQAEKUEBjAgywNNYgLA4FKEABClCAAl4VYIDlVV6enAIUoAAFKEABCnhHgAGWd1x5VgpQgAIUoAAFtCnAAEub7cJSUYACFKAABShAgVwFGGCxg1CAAhSgAAUoEEoCDLBCqbVZVwpQgAIUoAAFgkaAAVbQNCUrQgEKUIACFKCACgEGWCqQuAsFKEABClCAAhSgAAUoQAEKUIACFKCA/wQYYPnPnlemAAUoQAEKUIACFKAABShAAQpQgAIUUCHAAEsFEnehAAUoQAEKUIACFKAABShAAQpQgAIU8J8AAyz/2fPKFKAABShAAQpQgAIUoAAFKEABClCAAioEGGCpQOIuFKAABShAAQpQgAIUoAAFKEABClCAAv4TYIDlP3temQIUoAAFKEABClCAAhSgAAUoQAEKUECFAAMsFUjchQIUoAAFKEABClCAAhSgAAUoQAEKUMB/Agyw/GfPK1OAAhSgAAUoQAEKUIACFKAABShAAQqoEGCApQKJu1CAAhSgAAUoQAEKUIACFKAABShAAQr4T4ABlv/seWUKUIACFKAABShAAQpQgAIUoAAFKEABFQIMsFQgcRcKUIACFKAABShAAQpQgAIUoAAFKEAB/wkwwPKfPa9MAQpQgAIUoAAFKEABClCAAhSgAAUooEKAAZYKJO5CAQpQgAIUoAAFKEABClCAAhSgAAUo4D8BBlj+s+eVKUABClCAAhSgAAUoQAEKUIACFKAABVQIMMBSgcRdKEABClCAAhSgAAUoQAEKUIACFKAABfwnwADLf/a8MgUoQAEKUIACFKAABShAAQpQgAIUoIAKAQZYKpC4CwUoQAEKUIACFKAABShAAQpQgAIUoID/BBhg+c+eV6YABShAAQpQgAIUoAAFKEABClCAAhRQIcAASwUSd6EABShAAQpQgAIUoAAFKEABClCAAhTwnwADLP/Z88oUoAAFKEABClCAAhSgAAUoQAEKUIACKgQYYKlA4i4UoAAFKEABClCAAhSgAAUoQAEKUIAC/hNggOU/e16ZAhSgAAUoQAEKUIACFKAABShAAQpQQIUAAywVSNyFAhSgAAUoQAEKUIACFKAABShAAQpQwH8CDLD8Z88rU4ACFKAABShAAQpQgAIUoAAFKEABCqgQYIClAom7UIACFKAABShAAQpQgAIUoAAFKEABCvhPgAGW/+x5ZQpQgAIUoAAFKEABClCAAhSgAAUoQAEVAgywVCBxFwpQgAIUoAAFKEABClCAAhSgAAUoQAH/CTDA8p89r0wBClCAAhSgAAUoQAEKUIACFKAABSigQoABlgok7kIBClCAAhSgAAUoQAEKUIACFKAABSjgPwEGWP6z55UpQAEKUIACFKAABShAAQpQgAIUoAAFVAgwwFKBxF0oQAEKUIACFKAABShAAQpQgAIUoAAF/CfAAMt/9rwyBShAAQpQgAIUoAAFKEABClCAAhSggAoBBlgqkLgLBShAAQpQgAIUoAAFKEABClCAAhSggP8EGGD5z55XpgAFKEABClCAAhSgAAUoQAEKUIACFFAhwABLBRJ3oQAFKEABClCAAhSgAAUoQAEKUIACFPCfAAMs/9nzyhSgAAUoQAEKUIACFKAABShAAQpQgAIqBBhgqUDiLhSgAAUoQAEKUIACFKAABShAAQpQgAL+E2CA5T97XpkCFKAABShAAQpQgAIUoAAFKEABClBAhQADLBVI3IUCFKAABShAAQpQgAIUoAAFKEABClDAfwIMsPxnzytTgAIUoAAFKEABClCAAhSgAAUoQAEKqBBggKUCibtQgAIUoAAFKEABClCAAhSgAAUoQAEK+E+AAZb/7HllClCAAhSgAAUoQAEKUIACFKAABShAARUCDLBUIHEXClCAAhSgAAUoQAEKUIACFKAABShAAf8JMMDynz2vTAEKUIACFKAABShAAQpQgAIUoAAFKKBCgAGWCiTuQgEKUIACFKAABShAAQpQgAIUoAAFKOA/AQZY/rPnlSlAAQpQgAIUoAAFKEABClCAAhSgAAVUCDDAUoHEXShAAQpQgAIUoAAFKEABClCAAhSgAAX8J8AAy3/2vDIFKEABClCAAhSgAAUoQAEKUIACFKCACgEGWCqQuAsFKEABClCAAhSgAAUoQAEKUIACFKCA/wQYYPnPnlemAAUoQAEKUIACFKAABShAAQpQgAIUUCHAAEsFEnehAAUoQAEKUIACFKAABShAAQpQgAIU8J8AAyz/2fPKFKAABShAAQpQgAIUoAAFKEABClCAAioEGGCpQOIuFKAABShAAQpQgAIUoAAFKEABClCAAv4TYIDlP3temQIUoAAFKEABClCAAhSgAAUoQAEKUECFAAMsFUjchQIUoAAFKEABClCAAhSgAAUoQAEKUMB/Agyw/GfPK1OAAhSgAAUoQAEKUIACFKAABShAAQqoEGCApQKJu1CAAhSgAAUoQAEKUIACFKAABShAAQr4T4ABlv/seWUKUIACFKAABShAAQpQgAIUoAAFKEABFQIMsFQgcRcKUIACFKAABShAAQpQgAIUoAAFKEAB/wkwwPKfPa9MAQpQgAIUoAAFKEABClCAAhSgAAUooEKAAZYKJO5CAQpQgAL/b8eOTQAAABCG/f+1L7h1yS4IGUuAAAECBAgQIECAAAECnYCA1dl7JkCAAAECBAgQIECAAAECBAgQOAQErAPJhAABAgQIECBAgAABAgQIECBAoBMQsDp7zwQIECBAgAABAgQIECBAgAABAoeAgHUgmRAgQIAAAQIECBAgQIAAAQIECHQCAlZn75kAAQIECBAgQIAAAQIECBAgQOAQELAOJBMCBAgQIECAAAECBAgQIECAAIFOQMDq7D0TIECAAAECBAgQIECAAAECBAgcAgLWgWRCgAABAgQIECBAgAABAgQIECDQCQhYnb1nAgQIECBAgAABAgQIECBAgACBQ2CkiQK0xmXtWAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdCbymY/0/8O/sZtImJoPGLll+GRUtKtlCUogUypKMZJuQnbKFQWIiQpaxZEvJZCtSSSpZUtJEdmVtxsyYMTP/1/P0dzpjzjjPeZZz3dd9v8/r5VU/576v6/q+v9+71zmf33OeZ8DcuXPnhi8CBAgQIECAAAECBAgQIECAAAECBRUYIMAqaGcciwABAgQIECBAgAABAgQIECBAoC4gwDIIBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDBAgQIECAAAECBAgQIECAAAEChRYQYBW6PQ5HgAABAgQIECBAgAABAgQIECAgwDIDSQWeeHZ60v1tToAAAQIECBAgQIAAAQKNCSzxtuGNXegqAh0QEGB1ANWSjQsIsBq3ciUBAgQIECBAgAABAgRSCgiwUurbW4BlBpIKCLCS8tucAAECBAgQIECAAAECDQsIsBqmcmEHBARYHUC1ZOMCAqzGrVxJgAABAgQIECBAgACBlAICrJT69hZgmYGkAgKspPw2J0CAAAECBAgQIECAQMMCAqyGqVzYAQEBVgdQLdm4gACrcStXEiBAgAABAgQIECBAIKWAACulvr0FWGYgqYAAKym/zQkQIECAAAECBAgQINCwgACrYSoXdkBAgNUBVEs2LiDAatzKlQQIECBAgAABAgQIEEgpIMBKqW9vAZYZSCogwErKb3MCBAgQIECAAAECBAg0LCDAapjKhR0QEGB1ANWSjQsIsBq3ciUBAgQIECBAgAABAgRSCgiwUurbW4BlBpIKCLCS8tucAAECBAgQIECAAAECDQsIsBqmcmEHBARYHUC1ZOMCAqzGrVxJgAABAgQIECBAgACBlAICrJT69hZgmYGkAgKspPw2J0CAAAECBAgQIECAQMMCAqyGqVzYAQEBVgdQLdm4gACrcStXEiBAgAABAgQIECBAIKWAACulvr0FWGYgqYAAKym/zQkQIECAAAECBAgQINCwgACrYSoXdkBAgNUBVEs2LiDAatzKlQQIECBAgAABAgQIEEgpIMBKqW9vAZYZSCogwErKb3MCBAgQIECAAAECBAg0LCDAapjKhR0QEGB1ANWSjQsIsBq3ciUBAgQIECBAgAABAgRSCgiwUurbW4BlBpIKCLCS8tucAAECBAgQIECAAAECDQsIsBqmcmEHBARYHUC1ZOMCAqzGrVxJgAABAgQIECBAgACBlAICrJT69hZgmYGkAgKspPw2J9AegQED2rOOVQikEJg7N8Wu9iRAgAABAlkKCLCybFtpDi3AKk0r8yxEgJVn35yaQHeBhx6OePifQixTkZ/AMstELLu0ACu/zjkxAQIECKQSEGClkrdvTUCAZQ6SCgiwkvLbnEBbBH5x68Co/eOLQG4C6350Tqz30Tm5Hdt5CRAgQIBAMgEBVjJ6GwuwzEBqAQFW6g7Yn0DrAgKs1g2tkEZAgJXG3a4ECBAgkK+AACvf3pXh5F6BVYYuZlyDACvj5jk6gf8vIMAyCrkKCLBy7ZxzEyBAgEAqAQFWKnn71gQEWOYgqYAAKym/zQm0RUCA1RZGiyQQEGAlQLclAQIECGQtIMDKun3ZH16AlX0L8y5AgJV3/5yeQE1AgGUOchUQYOXaOecmQIAAgVQCAqxU8vatCQiwzEFSAQFWUn6bE2iLgACrLYwWSSAgwEqAbksCBAgQyFpAgJV1+7I/vAAr+xa2v4D3b/aVmDJ12gIX3myDD8Txh+7W4/evnnRbXHHtrfH3hx+P2bNnx9JLLR6f3nid+PwWG8SgQfN/SpkAq/39syKB/hYQYPW3uP3aJSDAapekdQgQIECgKgICrKp0uph1CrCK2Zdkp5r1yuxYY4NdYsTwYbH8Mkv2eI4Pr7V67LHTFvN976Bjz44f3/DrGDJ4UIxZfcUYMnhw3H3/5Jj60vRYZ63VY8Jx+8TgQYPmuU+AlazVNibQNgEBVtsoLdTPAgKsfga3HQECBAhkLyDAyr6FWRcgwMq6fe0//L+ffSHW3Wqf+PDaq8eZx3+t4Q1qwVUtwFpu9Kg4a/z+MWrkIvV7p02fEfscfnr8+s77Ys+dt4yxX9hcgNWwqgsJ5CEgwMqjT045v4AAy1QQIECAAIG+CQiw+ubl6vYKCLDa65n9an/9+yOx1ZcOr//Z3zEHfqnhej6906Hx4EOPxcQJh8Yaq64wz33Pvzgl1t96XAwZMjhuverUWGjY0K7vewVWw8QuJFBYAQFWYVvjYL0ICLCMCAECBAgQ6JuAAKtvXq5ur4AAq72e2a92++//HF/a78TY5XObxrjdtmmonieeeiY23Ha/GL3kyJg08YQe7xl35IS4/pY747Rj9o71PjRGgNWQrIsI5CEgwMqjT045v4AAy1QQIECAAIG+CQiw+ubl6vYKCLDa65n9aj+9+bdxwFFnxgF7fC6+uPXHG6rn5tv+GHsd9p3YbMMPxPGH9Pzm7udffn2cMOGS2HW7zWKfXT8jwGpI1kUE8hAQYOXRJ6cUYJkBAgQIECDQqoAAq1VB97ciIMBqRa+E9154xQ3xrdMvrodRi73tLfHif16KAQMiRr7trfHeNd4Za495Vwyo/YtuXz+47Gdx4hmXxm47fDL22mWrHlVuuu0Psfdhp8XH131fnHzkHgKsEs6OkqorIMCqbu9zr9wrsHLvoPMTIECAQH8LCLD6W9x+3QUEWOZhHoFXXym1IJaVVxgdJx3xlVjmHYt3XXL6uVfHGRdcE/uN/WzstO0mPd56x11/iZ33PT7e/55V4pyTDui65uVZc3SAAIGMBaa9PDuuu2FO1EIsXwRyE6gFWJttNCCGDxuc29GdlwABAgQIJBEYNsTPfEngbVoXEGAZhPkE7vzTX+ONC4+IJRZfNEYMHxZTpk6Le//yjzjvsknxu7v+Wn9l1o/OPTre8uaF6/eedOYP49xLr4uD9twutt9qwx5F77rvwdj+q8fEmNVWjItOP4Q6AQIlEZgy/ZX48aTZAqyS9LNqZdQCrE9tPDDeOGJI1UpXLwECBAgQIEAgOwEBVnYtS3fg2bPnxK77nRi1V1ON/cLmsefOW9YP06dXYK25Spxz8v9egfXsf2amK8jOBAi0LPDKnLlx089DgNWypAVSCNQCrI0+NjcGDfL/TU7hb08CBAgQyE/gbW/63yfK53d6J85dQICVewf7+fy/+M1d8dWDT401V18pLjzt4PruF1x+fRw/4ZKG3gNrgw+/J049as+uUz/x7PR+rsB2BAi0W8B7YLVb1Hr9JeA9sPpL2j4ECBAgUBYB74FVlk7mWYcAK8++JTv13/7xWGyx86Gx0nJLxdXnHl0/x6233x1fOeiUhj6FcOdtN42vjd1GgJWsgzYm0H4BAVb7Ta3YPwICrP5xtgsBAgQIlEdAgFWeXuZYiQArx64lPPPtv/9zfGm/E+OD710tzh6/X/0kzzz3Ynx0y71j9JIjY9LEE3o83bgjJ8T1t9wZ4w/fPTZZb20BVsIe2ppAuwUEWO0WtV5/CQiw+kvaPgQIECBQFgEBVlk6mWcdAqw8+5bs1Id86/vxo5/9Kvb98tbxpc9/ousctTdor71R+8QJh8Yaq64wz/mef3FKrL/1uJgzd2788urvxJsWHiHAStZBGxNov4AAq/2mVuwfAQFW/zjbhQABAgTKIyDAKk8vc6xEgJVj1zp45m+ffUV8cqMPxvJLLzHPLv+ZOi3Ouugncd6lk2LRRd4c115wXP2TCl/9uu2Oe2Ls10+O5UaPirPG7x+jRi5S/9a06TNi3yMmxK9+d29st+UGcfBe28+zrvfA6mAzLU2gnwQEWP0EbZu2Cwiw2k5qQQIECBAouYAAq+QNLnh5AqyCN6i/j7f2J3aPqS9Nj5GLviWWG71EDF9oWDz9zPPx0CNPxPQZM+Pti701vnvcvrHyCqPnO9r4My+rB1xDhgyOMautEEOHDIm7758cU6ZOi1VWWibOP/WgGDF8mACrv5tqPwIdFhBgdRjY8h0TEGB1jNbCBAgQIFBSAQFWSRubSVkCrEwa1V/HvO2Oe+PHN/wq7vvrQ/H0v5+PWa+8EguPGB7LLb1ErLfOmrHNJ9ed55VXrz1X7X2uLrryxnhg8iMxe/acWHLUYrHpemvHTttuEsOGDpmvDK/A6q/O2odA5wQEWJ2ztXJnBQRYnfW1OgECBAiUT0CAVb6e5lSRACunbpXwrAKsEjZVSZUTEGBVruWlKViAVZpWKoQAAQIE+klAgNVP0LbpUUCAZTCSCgiwkvLbnEBbBARYbWG0SAIBAVYCdFsSIECAQNYCAqys25f94QVY2bcw7wIEWHn3z+kJ1AQEWOYgVwEBVq6dc24CBAgQSCUgwEolb9+agADLHCQVEGAl5bc5gbYICLDawmiRBAICrATotiRAgACBrAUEWFm3L/vDC7Cyb2HeBQiw8u6f0xOoCQiwzEGuAgKsXDvn3AQIECCQSkCAlUrevjUBAZY5SCogwErKb3MCbREQYLWF0SIJBARYCdBtSYAAAQJZCwiwsm5f9ocXYGXfwrwLEGDl3T+nJ1ATEGCZg1wFBFi5ds65CRAgQCCVgAArlbx9awICLHOQVECAlZTf5gTaIiDAagujRRIICLASoNuSAAECBLIWEGBl3b7sDy/Ayr6FeRcgwMq7f05PoCYgwDIHuQoIsHLtnHMTIECAQCoBAVYqefvWBARY5iCpgAArKb/NCbRFQIDVFkaLJBAQYCVAtyUBAgQIZC0gwMq6fdkfXoCVfQvzLkCAlXf/nJ5ATUCAZQ5yFRBg5do55yZAgACBVAICrFTy9q0JCLDMQVIBAVZSfpsTaIuAAKstjBZJICDASoBuSwIECBDIWkCAlXX7sj+8ACv7FuZdgAAr7/45PYGagADLHOQqIMDKtXPOTYAAAQKpBARYqeTtWxMQYJmDpAICrKT8NifQFgEBVlsYLZJAQICVAN2WBAgQIJC1gAAr6/Zlf3gBVvYtzLsAAVbe/XN6AjUBAZY5yFVAgJVr55ybAAECBFIJCLBSydu3JiDAMgdJBQRYSfltTqAtAgKstjBaJIGAACsBui0JECBAIGsBAVbW7cv+8AKs7FuYdwECrLz75/QEagICLHOQq4AAK9fOOTcBAgQIpBIQYKWSt29NQIBlDpIKCLCS8tucQFsEBFhtYbRIAgEBVgJ0WxIgQIBA1gICrKzbl/3hBVjZtzDvAgRYeffP6QnUBARY5iBXAQFWrp1zbgIECBBIJSDASiVv35qAAMscJBUQYCXltzmBtggIsNrCaJEEAgKsBOi2JECAAIGsBQRYWbcv+8MLsLJvYd4FCLDy7p/TE6gJCLDMQa4CAqxcO+fcBAgQIJBKQICVSt6+NQEBljlIKiDASspvcwJtERBgtYXRIgkEBFgJ0G1JgAABAlkLCLCybl/2hxdgZd/CvAsQYOXdP6cnUBMQYJmDXAUEWLl2zrkJECBAIJWAACuVvH1rAgIsc5BUQICVlN/mBNoiIMBqC6NFEggIsBKg25IAAQIEshYQYGXdvuwPL8DKvoV5FyDAyrt/Tk+gJiDAMge5Cgiwcu2ccxMgQIBAKgEBVip5+9YEBFjmIKmAACspv80JtEVAgNUWRoskEBBgJUC3JQECBAhkLSDAyrp92R9egJV9C/MuQICVd/+cnkBNQIBlDnIVEGDl2jnnJkCAAIFUAgKsVPL2rQkIsMxBUgEBVlJ+mxNoi4AAqy2MFkkgIMBKgG5LAgQIEMhaQICVdfuyP7wAK/sW5l2AACvv/jk9gZqAAMsc5CogwMq1c85NgAABAqkEBFip5O1bExBgmYOkAgKspPw2J9AWAQFWWxgtkkBAgJUA3ZYECBAgkLWAACvr9mV/eAFW9i3MuwABVt79c3oCNQEBljnIVUCAlWvnnJsAAQIEUgkIsFLJ27cmIMAyB0kFBFhJ+W1OoC0CAqy2MFokgYAAKwG6LQkQIEAgawEBVtbty/7wAqzsW5h3AQKsvPvn9ARqAgIsc5CrgAAr1845NwECBAikEhBgpZK3b01AgGUOkgoIsJLy25xAWwQEWG1htEgCAQFWAnRbEiBAgEDWAgKsrNuX/eEFWNm3MO8CBFh598/pCdQEBFjmIFcBAVaunXNuAgQIEEglIMBKJW/fmoAAyxwkFRBgJeW3OYG2CAiw2sJokQQCAqwE6LYkQIAAgawFBFhZty/7wwuwsm9h3gUIsPLun9MTqAkIsMxBrgICrFw759wECBAgkEpAgJVK3r41AQGWOUgqIMBKym9zAm0REGC1hdEiCQQEWAnQbUmAAAECWQsIsLJuX/aHF2Bl38K8CxBg5d0/pydQExBgmYNcBQRYuXbOuQkQIEAglYAAK5W8fWsCAixzkFRAgJWU3+YE2iIgwGoLo0USCAiwEqDbkgABAgSyFhBgZd2+7A8vwMq+hXkXIMDKu39OT6AmIMAyB7kKCLBy7ZxzEyBAgEAqAQFWKnn71gQEWOYgqYAAKym/zQm0RUCA1RZGiyQQEGAlQLclAQIECGQtIMDKun3ZH16AlX0L8y5AgJV3/5yeQE1AgGUOchUQYOXaOecmQIAAgVQCAqxU8vatCQiwzEFSAQFWUn6bE2iLgACrLYwWSSAgwEqAbksCBAgQyFpAgJV1+7I/vAAr+xbmXYAAK+/+OT2BmoAAyxzkKiDAyrVzzk2AAAECqQQEWKnk7VsTEGCZg6QCAqyk/DYn0BYBAVZbGC2SQECAlQDdlgQIECCQtYAAK+v2ZX94AVb2Lcy7AAFW3v1zegI1AQGWOchVQICVa+ecmwABAgRSCQiwUsnbtyYgwDIHSQUEWEn5bU6gLQICrLYwWiSBgAArAbotCRAgQCBrAQFW1u3L/vACrOxbmHcBAqy8++f0BGoCAixzkKuAACvXzjk3AQIECKQSEGClkrdvTUCAZQ6SCgiwkvLbnEBbBARYbWG0SAIBAVYCdFsSIECAQNYCAqys25f94QVY2bcw7wIEWHn3z+kJ1AQEWOYgVwEBVq6dc24CBAgQSCUgwEolb9+agADLHCQVEGAl5bc5gbYICLDawmiRBAICrATotiRAgACBrAUEWFm3L/vDC7Cyb2HeBQiw8u6f0xOoCQiwzEGuAgKsXDvn3AQIECCQSkCAlUrevjUBAZY5SCogwErKb3MCbREQYLWF0SIJBARYCdBtSYAAAQJZCwiwsm5f9ocXYGXfwrwLEGDl3T+nJ1ATEGCZg1wFBFi5ds65CRAgQCCVgAArlbx9awICLHOQVECAlZTf5gTaIiDAagujRbrurJ8AACAASURBVBIICLASoNuSAAECBLIWEGBl3b7sDy/Ayr6FeRcgwMq7f05PoCYgwDIHuQoIsHLtnHMTIECAQCoBAVYqefvWBARY5iCpgAArKb/NCbRFQIDVFkaLJBAQYCVAtyUBAgQIZC0gwMq6fdkfXoCVfQvzLkCAlXf/nJ5ATUCAZQ5yFRBg5do55yZAgACBVAICrFTy9q0JCLDMQUMCf7z3wfji3sfGnDlz47LvHRGrvXPZHu+7etJtccW1t8bfH348Zs+eHUsvtXh8euN14vNbbBCDBg2c7x4BVkP8LiJQaAEBVqHb43CvIyDAMh4ECBAgQKBvAgKsvnm5ur0CAqz2epZytSlTp8UWuxwWTz79bL2+BQVYBx17dvz4hl/HkMGDYszqK8aQwYPj7vsnx9SXpsc6a60eE47bJwYPGjSPkQCrlCOjqIoJCLAq1vASlSvAKlEzlUKAAAEC/SIgwOoXZpssQECAZTR6FfjaN74bP//1XfHhtVePm2/7Y48BVi24qgVYy40eFWeN3z9GjVykvu606TNin8NPj1/feV/sufOWMfYLmwuwehV3AYG8BARYefXLaf8nIMAyDQQIECBAoG8CAqy+ebm6vQICrPZ6lm61q677ZRx2wrmxx05b1F+BVfu/e3oF1qd3OjQefOixmDjh0Fhj1RXmcXj+xSmx/tbjYsiQwXHrVafGQsOGdn3fK7BKNzIKqqCAAKuCTS9JyQKskjRSGQQIECDQbwICrH6jtlEPAgIsY7FAgYcffSo+s+vhscIyS8ZFEw6NQ477flx70+3zBVhPPPVMbLjtfjF6yZExaeIJPa437sgJcf0td8Zpx+wd631ojADL3BEokYAAq0TNrFgpAqyKNVy5BAgQINCygACrZUILtCAgwGoBr8y3znpldnz+K0dFLcS68vvfrIdT+33zjJj08zvmC7Bqf1a412Hfic02/EAcf8huPbKcf/n1ccKES2LX7TaLfXb9jACrzMOjtsoJCLAq1/LSFCzAKk0rFUKAAAEC/SQgwOonaNv0KCDAMhg9Cpx4xqXxg8t+FscdvGtsvtGH6tfU3gvrZ7/43XwBVu262vW77fDJ2GuXrXpc76bb/hB7H3ZafHzd98XJR+4hwDJ3BEokIMAqUTMrVooAq2INVy4BAgQItCwgwGqZ0AItCAiwWsAr662/+f19set+42OzDT4Qxx/6v1dULSjAOv3cq+OMC66J/cZ+NnbadpMeWe646y+x877Hx/vfs0qcc9IBAqyyDo+6KikgwKpk20tRtACrFG1UBAECBAj0o4AAqx+xbTWfgADLUMwj8NwLU2KLnQ+NYUOHxFXnHBULv2F41/cXFGCddOYP49xLr4uD9twutt9qwx5F77rvwdj+q8fEmNVWjItOP4Q6AQIlEZgy/ZX48aTZUQuxfBHITaAWYH1q44HxxhFDcju68xIgQIAAAQIEKicgwKpcy1+/4N0PPCV+fee9ceFph8S7V1l+novb8gqsNVeJc07+3yuw8BMgkLeAACvv/lX99AKsqk+A+gkQIECAAIGcBARYOXWrw2edeNWNcex3Jtbfx6r2flav/VpQgHXB5dfH8RMuaeg9sDb48Hvi1KP27Fr6iWend7gqyxMg0GkBf0LYaWHrd0rAnxB2Sta6BAgQIFBWAX9CWNbO5lGXACuPPvXLKcdstGvMnDmr/sqrgQPn/3Oghx59Ml54cWq8c/l3xIjhC8W7Vhwdh+y9Q9x6+93xlYNOaehTCHfedtP42thtBFj90lGbEOgfAQFW/zjbpf0CAqz2m1qRAAECBMotIMAqd3+LXp0Aq+gd6sfzrbrujn3a7b3vfmecf+pB8cxzL8ZHt9w7Ri85MiZNPKHHNcYdOSGuv+XOGH/47rHJemsLsPok7WICxRYQYBW7P063YAEBlukgQIAAAQJ9ExBg9c3L1e0VEGC117PUqy3oTwhrRdfeoL32Ru0TJxwaa6y6wjwOz784JdbfelzMmTs3fnn1d+JNC48QYJV6UhRXNQEBVtU6Xp56BVjl6aVKCBAgQKB/BARY/eNsl54FBFgmo2GB1wuwbrvjnhj79ZNjudGj4qzx+8eokYvU1502fUbse8SE+NXv7o3tttwgDt5r+3n28x5YDfO7kEBhBQRYhW2Ng/UiIMAyIgQIECBAoG8CAqy+ebm6vQICrPZ6lnq11wuwaoWPP/OyOO/SSTFkyOAYs9oKMXTIkLj7/skxZeq0WGWlZep/bjhi+DABVqmnRHFVFBBgVbHr5ahZgFWOPqqCAAECBPpPQIDVf9Z2ml9AgGUqGhboLcCqLVR7n6uLrrwxHpj8SMyePSeWHLVYbLre2rHTtpvEsKFD5tvLK7Aa5nchgcIKCLAK2xoH60VAgGVECBAgQIBA3wQEWH3zcnV7BQRY7fW0Wh8FBFh9BHM5gQIKCLAK2BRHakhAgNUQk4sIECBAgECXgADLMKQUEGCl1Ld3CLAMAYH8BQRY+fewqhUIsKraeXUTIECAQLMCAqxm5dzXDgEBVjsUrdG0gACraTo3EiiMgACrMK1wkD4KCLD6COZyAgQIEKi8gACr8iOQFECAlZTf5gIsM0AgfwEBVv49rGoFAqyqdl7dBAgQINCsgACrWTn3tUNAgNUORWs0LSDAaprOjQQKIyDAKkwrHKSPAgKsPoK5nAABAgQqLyDAqvwIJAUQYCXlt7kAywwQyF9AgJV/D6tagQCrqp1XNwECBAg0KyDAalbOfe0QEGC1Q9EaTQsIsJqmcyOBwggIsArTCgfpo4AAq49gLidAgACBygsIsCo/AkkBBFhJ+W0uwDIDBPIXEGDl38OqViDAqmrn1U2AAAECzQoIsJqVc187BARY7VC0RtMCAqym6dxIoDACAqzCtMJB+iggwOojmMsJECBAoPICAqzKj0BSAAFWUn6bC7DMAIH8BQRY+fewqhUIsKraeXUTIECAQLMCAqxm5dzXDgEBVjsUrdG0gACraTo3EiiMgACrMK1wkD4KCLD6COZyAgQIEKi8gACr8iOQFECAlZTf5gIsM0AgfwEBVv49rGoFAqyqdl7dBAgQINCsgACrWTn3tUNAgNUORWs0LSDAaprOjQQKIyDAKkwrHKSPAgKsPoK5nAABAgQqLyDAqvwIJAUQYCXlt7kAywwQyF9AgJV/D6tagQCrqp1XNwECBAg0KyDAalbOfe0QEGC1Q9EaTQsIsJqmcyOBwggIsArTCgfpo4AAq49gLidAgACBygsIsCo/AkkBBFhJ+W0uwDIDBPIXEGDl38OqViDAqmrn1U2AAAECzQoIsJqVc187BARY7VC0RtMCAqym6dxIoDACAqzCtMJB+iggwOojmMsJECBAoPICAqzKj0BSAAFWUn6bC7DMAIH8BQRY+fewqhUIsKraeXUTIECAQLMCAqxm5dzXDgEBVjsUrdG0gACraTo3EiiMgACrMK1wkD4KCLD6COZyAgQIEKi8gACr8iOQFECAlZTf5gIsM0AgfwEBVv49rGoFAqyqdl7dBAgQINCsgACrWTn3tUNAgNUORWs0LSDAaprOjQQKIyDAKkwrHKSPAgKsPoK5nAABAgQqLyDAqvwIJAUQYCXlt7kAywwQyF9AgJV/D6tagQCrqp1XNwECBAg0KyDAalbOfe0QEGC1Q9EaTQsIsJqmcyOBwggIsArTCgfpo4AAq49gLidAgACBygsIsCo/AkkBBFjd+Ke+ND3uvn9yfOh9q/XYlClTp8X3LvpJ/Om+v8fgwYNi/XXWjM9tsX4MHjQoaRNz3lyAlXP3nJ3AfwUEWCYhVwEBVq6dc24CBAgQSCUgwEolb9+agACr2xz89ObfxgFHnRnbbP6xOGLcF+eZkJemzYhtdjsyHn70qXn+/fofXjO+c9RepqlJAQFWk3BuI1AgAQFWgZrhKH0SEGD1icvFBAgQIEAgBFiGIKWAAKub/n7fPCMm/fyO+MZ+O8VnNvvoPH359tlXxNkTr40RwxeKXbf7RMya9Uqcd9mkmD5jZpx29F6x3jprpuxjtnsLsLJtnYMT6BIQYBmGXAUEWLl2zrkJECBAIJWAACuVvH1rAgKsbnOw+Y6HxOSHH4+bLz85Fl9ska7vTJs+I9bdap+ovQrr++P3jw+8d9X6935yw2/iwGPPig0+/J449ag9TVQTAgKsJtDcQqBgAgKsgjXEcRoWEGA1TOVCAgQIECBQFxBgGYSUAgKsbvof2OwrMf3lmXHXDWfHgAEDur5z1XW/jMNOODfev+Yqcc7JB3T9+5dnzoq1Nhkbiy36lrjpspNS9jHbvQVY2bbOwQl0CQiwDEOuAgKsXDvn3AQIECCQSkCAlUrevjUBAVa3Ofi/9XeOt775jXHrVafOMx1f2OvY+MM9f6u/yqr2aqvuX7VXZr045aV66OWr7wICrL6buYNA0QQEWEXriPM0KiDAalTKdQQIECBA4L8CAiyTkFJAgNVNf51P7RkvTZ8Rf7z+rK5XYNXetP0TOxxYD7Z+ceW3Y8jgeT9xcMNt94un//1c3HPzuSn7mO3eAqxsW+fgBLoEBFiGIVcBAVaunXNuAgQIEEglIMBKJW/fmoAAq9sc7DLuhPjtH++P8045MNYas3L9O18/5ntx7Y23x46f3Tj2333beaZmzpy58d6NvxzDhg6J26/9rolqQkCA1QSaWwgUTECAVbCGOE7DAgKshqlcSIAAAQIE6gICLIOQUkCA1U3/hz+5Jb5x0g/qb+C+07ab1N/QvfbvhgwZHJMmnhCjRv7vjd1rtz0w+dHYcpfD4l0rLh1XnP2NlH3Mdm8BVratc3ACXQICLMOQq4AAK9fOOTcBAgQIpBIQYKWSt29NQIDVbQ5mvTI7dvjq0XHvXx+aZzoO2nO72H6rDeebmG+ffUWcPfHa2G7LDePgvbYzUU0ICLCaQHMLgYIJCLAK1hDHaVhAgNUwlQsJECBAgEBdQIBlEFIKCLBeoz9t+ow4e+JP4/d3PxBvGLFQbLnpR2Kjj763xx7V/rzw8SefiUP32SFWXmF0yj5mu7cAK9vWOTiBLgEBlmHIVUCAlWvnnJsAAQIEUgkIsFLJ27cmIMAyB0kFBFhJ+W1OoC0CAqy2MFokgYAAKwG6LQkQIEAgawEBVtbty/7wAqxuLfzr3x+JEcMXitFLjmyosbNmvRK/vvO+ePtib62/D5avvgsIsPpu5g4CRRMQYBWtI87TqIAAq1Ep1xEgQIAAgf8KCLBMQkoBAVY3/VXX3THev+Yqcc7JBzTUk7lza59CuFsstcRicc15xzR0j4vmFRBgmQgC+QsIsPLvYVUrEGBVtfPqJkCAAIFmBQRYzcq5rx0CAqwWAqzarRtuu1+88OKUuHPS99rRj8qtIcCqXMsVXEIBAVYJm1qRkgRYFWm0MgkQIECgbQICrLZRWqgJAQFWCwHWzJmzYu3NvhK1V2L96cbvN8HvFgGWGSCQv4AAK/8eVrUCAVZVO69uAgQIEGhWQIDVrJz72iEgwGoywHpp2ow45tQL45rrfx3LL71E/Pj8Y9vRj8qtIcCqXMsVXEIBAVYJm1qRkgRYFWm0MgkQIECgbQICrLZRWqgJgUoHWBOvuikuvvqmLraHH30qFho2NBYfucjrUr7yyux46l/PxSuzZ9ev+9rYbWLnbTdtgt8tAiwzQCB/AQFW/j2sagUCrKp2Xt0ECBAg0KyAAKtZOfe1Q6DSAdZvfn9fTDjvR3H3/ZPrfwbYzNdWn/hIHDFuxxg0aGAzt1f+HgFW5UcAQAkEBFglaGJFSxBgVbTxyiZAgACBpgUEWE3TubENApUOsF71e+HFqfGj638VJ3730ljmHYvH57fY4HVpBw4cEG9508Lx7lWWjyUWX7QNbajuEgKs6vZe5eUREGCVp5dVq0SAVbWOq5cAAQIEWhUQYLUq6P5WBARY3fS22PnQWOQtb4pzTj6gFVP39kFAgNUHLJcSKKiAAKugjXGsXgUEWL0SuYAAAQIECMwjIMAyECkFBFjd9Gt/UvjQI0/Fdlu+/iuwUjasbHsLsMrWUfVUUUCAVcWul6NmAVY5+qgKAgQIEOg/AQFW/1nbaX4BAVY3k5kzZ8WQIYNjwIABZqWfBARY/QRtGwIdFBBgdRDX0h0VEGB1lNfiBAgQIFBCAQFWCZuaUUkCrG7N+t6FP4nLr70lxn15m9h0/bV7beP4My+Ly39ySxyy9/ax+UYf6vV6F8wvIMAyFQTyFxBg5d/DqlYgwKpq59VNgAABAs0KCLCalXNfOwQEWN0Uv7j3cfH7ux+IYw78Unx643V69b3tjnti7NdPjg+v/X9x5vHjer3eBQIsM0CgjAICrDJ2tRo1CbCq0WdVEiBAgED7BARY7bO0Ut8FBFjdzDbYZlw8+a/nYtLEE2L0kiN71XzuhSnx4U/vWf8kwhsvHd/r9S4QYJkBAmUUEGCVsavVqEmAVY0+q5IAAQIE2icgwGqfpZX6LiDA6ma2xoZfilmzXok/3fj9+nth9fY1d+7cGLPhl2LgwIHxxxvO7u1y3+9BwJ8QGgsC+QsIsPLvYVUrEGBVtfPqJkCAAIFmBQRYzcq5rx0CAqxuimttOjZemjYj7pz0vRgxfFivvrUA690b7BLDhg6NOyed2ev1LphfQIBlKgjkLyDAyr+HVa1AgFXVzqubAAECBJoVEGA1K+e+dggIsLopbrnLYfHA5EfjnJMOiPe/Z5Veff/8wMOxzW5HxvJLLxE/Pv/YXq93gQDLDBAoo4AAq4xdrUZNAqxq9FmVBAgQINA+AQFW+yyt1HcBAVY3s5PO/GGce+l1sebqK8W5p3w9hgwetEDROXPmxlcOOiVqb+S+3ZYbxMF7bd93fXeEV2AZAgL5Cwiw8u9hVSsQYFW18+omQIAAgWYFBFjNyrmvHQICrG6KT//7+dhkuwPi5ZmzYq0xK8fX9/h8rLzC6Pmc//7Q4zH+zMvq4dWgQQPj2gu+1dCbvrejYWVbQ4BVto6qp4oCAqwqdr0cNQuwytFHVRAgQIBA/wkIsPrP2k7zCwiwXmNy/S2/i69944yovb9V7WvxxRaJZUYvHiOGLxQvvzwzHn70qXj8qWe67jriazvGNp9c12w1KSDAahLObQQKJCDAKlAzHKVPAgKsPnG5mAABAgQIhADLEKQUEGD1oH/nn/4aR51yQUz+5xML7M0Siy8aB++1XXzsg2NS9i/7vQVY2bdQAQRCgGUIchUQYOXaOecmQIAAgVQCAqxU8vatCQiwXmcO/njvg/GHex6Ix598JqZOmx4LDRsao0YuEmNWXzHWHrNK/c8HfbUmIMBqzc/dBIogIMAqQhecoRkBAVYzau4hQIAAgSoLCLCq3P30tQuw0veg0icQYFW6/YoviYAAqySNrGAZAqwKNl3JBAgQINCSgACrJT43tyggwGoR0O2tCQiwWvNzN4EiCAiwitAFZ2hGQIDVjJp7CBAgQKDKAgKsKnc/fe0CrNfpQe3TCP/52NPxnykvxUILDY3V3rls+o6V7AQCrJI1VDmVFBBgVbLtpShagFWKNiqCAAECBPpRQIDVj9i2mk9AgNXDUPztH4/FaedeFbf99u6Y9crs+hXvXP4dcdU5R81z9ennXh1PP/N87P2lrWLRRd5cmvH67R/vj5/c8JuovQfYv555PmbPnh2LLfrWeM//rRRf3Prj8a4Vl15grVdPui2uuPbW+PvDj9fvW3qpxePTG68Tn99igx7fM0yAVZqxUUiFBQRYFW5+5qULsDJvoOMTIECAQL8LCLD6ndyG3QQEWK8Zhxt/+fvY/6gzY9asV+b5Tk8B1tHfvjAu+dHNsf/u28aOn904+8F64cWpsc8Rp0ftUxgHDBgQyy+zRCw1arGYPXtOPPiPx+Kpfz8XAwcOiOMO/nJstsEH5qv3oGPPjh/f8OsYMnhQ/Y3uhwweHHffPzmmvjQ91llr9Zhw3D4xeNCgee4TYGU/Ngog4FMIzUC2AgKsbFvn4AQIECCQSECAlQjetnUBAVa3QXjk8afjUzsdGjNnzooVl10qPr/F+jF6qbfHLuNO6PEVWL++87748v7j4wPvXTW+P37/7Edq7ty5cdgJ58bIRd8Sn918vXj7Ym/tqqkWYp1/+c/ipDN/GCOGD4tbrzo1RgxfqOv7teCqFmAtN3pUnDV+//qnNda+pk2fEfscfnrUrPbcecsY+4XNBVjZT4oCCMwr4BVYJiJXAQFWrp1zbgIECBBIJSDASiVvXwHWa2bgGyf9IH74k1tisw0/EMcd9OX6q41qX6uuu2OPAdaT/3ouNthmXD3w+cUV367ERG32hYPioUeejPNOOTDWGrNyV82f3unQePChx2LihENjjVVXmMfi+RenxPpbj4shQwbXg6+Fhg3t+r5XYFVibBRZcgEBVskbXOLyBFglbq7SCBAgQKAjAgKsjrBatEEBr8DqBvXxz+0fjz3573oYVQulXv1aUID1yuzZscYGX4rBgwfFn278foPkeV+27e7fjHv/8o/44feOjFXfuUy9mCeeeiY23Ha/GL3kyJg08YQeCxx35IS4/pY747Rj9o71PjRGgJX3GDg9gXkEBFgGIlcBAVaunXNuAgQIEEglIMBKJW/fmoAAq9scrLHhl+LNb3xD/VVC3b8WFGDVrhmz0a4xZ/acuPvmc0o/Ufc98FB8bvdv1t+w/mcXnxjDhg6p13zzbX+MvQ77Tv2Va8cfsluPDudffn2cMOGS2HW7zWKfXT8jwCr9tCiwSgICrCp1u1y1CrDK1U/VECBAgEDnBQRYnTe2w4IFBFjdbNbadGz9TcZ/85MJDQVYzzz3Ynx0y73rgc5rQ6+yDN2UqdPiiaefjUk/vyMuvvqm+qvNTvnGV2PtMe/qKvEHl/0sTjzj0thth0/GXrts1WPpN932h9j7sNPi4+u+L04+cg8BVlkGRB0EIryJuynIVkCAlW3rHJwAAQIEEgkIsBLB27YuIMDqNgjb7HZk/PmBh+NH5x1dfxP3V78W9Aqsi6++OY459cL46AfeHd89bt9SjdSrfyr4alG1V1ttt+WG8cVtPl4P7Lp/nX7u1XHGBdfEfmM/Gzttu0mPDnfc9ZfYed/j4/3vWSXOOemArmue/c/MUrkphkDVBF6ZMzdu+vl/QyxfBHITqAVYG31sbgwaZH5z653zEiBAgEAagbe96X/vZ5zmBHatsoAAq1v3z554bXz77Cvqry464/hxXX8i11OA9Y9Hnozt9zg6XpzyUhx70K7xqY9/qFRzVHN4+NGnYuasWfHsc/+Jvz30WP3TGd+9yvJx8N7bx2rvXLar3tonE5576XVx0J7bxfZbbdijw133PRjbf/WYGLPainHR6YeUykoxBKosMGX6K/HjSbMFWFUegoxrrwVYn9p4YLxxxH//JN4XAQIECBAgQIBAcQUEWN16M236y7H5jgfHk08/G6OXfHvssdOnY6013hUf+8w+9U8hvPL734x/PvZ0/c3Iz7nkp/HStBn1f//Ds46s/+lhmb+mz5gZl/7o5jjl7Mtj2NChce0Fx8XbF3trveQ+vQJrzVXinJP/9wqsl2fNKTOb2giUXmDay7PjuhvmCLBK3+lyFlgLsDbbaEAMHza4nAWqigABAgQItFlg2BCvWm4zqeX6ICDAeg3WQ488GV/62onx1L+fm+c7AwcOiIEDBkbtkwdf/Vpq1GJx7ilfjyUXX7QP5HlfespZl8f3L/5p/c8JD95ru3oxF1x+fRw/4ZKG3gNrgw+/J049as8uhCeenZ43iNMTIOA9sMxAtgLeAyvb1jk4AQIECCQS8B5YieBtWxcQYPUwCP+ZOi3OPP+auPK6X8bUl+YPWBYaNjS2+sRH66/Qqn1qYZW+/nDP3+ILex0b71tj5fjBtw+sl37r7XfHVw46paFPIdx5203ja2O3EWBVaWjUWnoBn0JY+haXtkABVmlbqzACBAgQ6JCAAKtDsJZtSECA9TpMtVdb/eXBR+KRx5+Ol16aHsMXGhZLLL5orL7ysjF0aDXfL+M3v78vdt1vfLz33e+M8089qK736qcxjl5yZEyaeEKPouOOnFD/08vxh+8em6y3tgCrocfTRQTyEBBg5dEnp5xfQIBlKggQIECAQN8EBFh983J1ewUEWO31LP1qx37noph41U2xw2c2igO/+vmuemtv0F57o/aJEw6NNVZdYR6H51+cEutvPS7mzJ0bv7z6O/GmhUcIsEo/KQqskoAAq0rdLletAqxy9VM1BAgQINB5AQFW543tsGABAZbp6BL41e/ujQcmPxqf2OD9sfhii8wjU3s12mXX/Dy+dfrFMWjQoLjmvGNi6aXe3nXNbXfcE2O/fnIsN3pUnDV+/xg18r/3T5s+I/Y9YkLU1t5uyw3i4L22n2dd74FlAAnkLyDAyr+HVa1AgFXVzqubAAECBJoVEGA1K+e+dggIsNqhWJI1rrj21jhi/Hn1apYdPaoeUNX+bPI/U16K+x54KF78z0sxYvhCccJhu8XHPjhmvqrHn3lZnHfppBgyZHCMWW2FGDpkSNx9/+SYMnVarLLSMvU/ORwxfJgAqyTzogwCrwoIsMxCrgICrFw759wECBAgkEpAgJVK3r41gcoGWL/4zV1xy2/+FBt99H3xofetVp+G2p/Gtfo1aNDA+hu7r/6u5aL2KYU5fdWCpmuu/3X88rd3x6NP/Cuee2FKTJ/xciw8Yngs/Y7F40PvXS222fxjMXLRtyywrNr7XF105Y3xwORHYvbsObHkqMVi0/XWjp223SSG9fC+YV6BldOEOCuBngUEWCYjVwEBVq6dc24CBAgQSCUgwEolb99KB1hrbTo2Xpo2I9721jfV35ep9rXquju2dSo2XX/tOPbAXeuvSPLVs4AAy2QQyF9AgJV/D6tagQCrqp1XNwECBAg0KyDAalbOfe0QqOwrsPY94vS48Zd/iE9vvE4c/fVd6paf2OHAlk3nR47vSAAAIABJREFUzp0bzz7/n5j60vT6Wrtut1nss+tnWl63rAsIsMraWXVVSUCAVaVul6tWAVa5+qkaAgQIEOi8gACr88Z2WLBAZQOsGkktbBowYEDb56O2bu3PEY87bWIsufiiccOl49u+R1kWFGCVpZPqqLKAAKvK3c+7dgFW3v1zegIECBDofwEBVv+b2/F/ApUOsDo9CGt/YveYMWNm3H3zOZ3eKtv1BVjZts7BCXQJCLAMQ64CAqxcO+fcBAgQIJBKQICVSt6+NQEBVgfn4IOb7xFz5syN31773Q7ukvfSAqy8++f0BGoCAixzkKuAACvXzjk3AQIECKQSEGClkrevAKuXGah9it4/HnkinvrX8/VP4xsxfFiMGrlILDt6iRg48PX/9LD2BvFjv35SrLDsUnHEuC+atgUICLCMBoH8BQRY+fewqhUIsKraeXUTIECAQLMCAqxm5dzXDgGvwOpB8cmnn40zL/xxXHfzHTFt+oz5rlj4DcPjExt8IMbusHmMXPQt7ehDZdcQYFW29QovkYAAq0TNrFgpAqyKNVy5BAgQINCygACrZUILtCAgwHoN3m9+f1/sfdjpPQZXr3V+48Ij4rSj94r3rbFyCy2o9q0CrGr3X/XlEBBglaOPVaxCgFXFrquZAAECBFoREGC1oufeVgUEWN0En/zXc/HJLxwY02fMjHcsMTJ2+MxGsdaYleufJDhs6NB6qPXYk/+OX995X1x05Y3x72dfiDeMWCiuveBbXonV5CQKsJqEcxuBAgkIsArUDEfpk4AAq09cLiZAgAABAiHAMgQpBQRY3fSPOfXCuPjqm2PN1VeKs8fvFwsNG7rA3kyZOi123X983PuXf8T2W20YB+25Xco+Zru3ACvb1jk4gS4BAZZhyFVAgJVr55ybAAECBFIJCLBSydu3JiDA6jYHm2x3QDzy+L/iyu9/M1ZeYXSvE/LXvz8SW33p8Fh6qbfHdRcd3+v1LphfQIBlKgjkLyDAyr+HVa1AgFXVzqubAAECBJoVEGA1K+e+dggIsLopjtlo1xg6ZHDc8dMzGrb94OZ7xIwZM+OPN5zd8D0u/J+AAMs0EMhfQICVfw+rWoEAq6qdVzcBAgQINCsgwGpWzn3tEBBgdVN83yZj6+9pdcuV327Ydr2t942Xps3oU+jV8OIVuFCAVYEmK7H0AgKs0re4tAUKsErbWoURIECAQIcEBFgdgrVsQwICrG5MW3/5yPjb5EfjjuvOeN33v3r1ltqbvb//E7vHu1YcHZeeeURD4C6aV0CAZSII5C8gwMq/h1WtQIBV1c6rmwABAgSaFRBgNSvnvnYICLC6KZ576XVx0pk/jG8d/OX45EYf7NX36km3xaHHnxP7775t7PjZjXu93gXzCwiwTAWB/AUEWPn3sKoVCLCq2nl1EyBAgECzAgKsZuXc1w4BAVY3xZkzZ8Vnvnxk/PuZ5+PUo/aKtcasvEDjX/3u3hh35IRYfLFF4oqzvxFDhw5pRz8qt4YAq3ItV3AJBQRYJWxqRUoSYFWk0cokQIAAgbYJCLDaRmmhJgQqGWBNvOqm+agGDhwQgwcPqr8h+7fPviJmvDyz/kmEa66+Yiw+8m0xbOiQ+r978uln4w/3/C0efOix+r87/9SDYvV3LdcEvVtqAgIsc0AgfwEBVv49rGoFAqyqdl7dBAgQINCsgACrWTn3tUOgkgHWquvu2A67rjVGLvqW+MUVjb/xe1s3z3wxAVbmDXR8AhEhwDIGuQoIsHLtnHMTIECAQCoBAVYqefvWBCoZYH1ihwPb3v2fXvittq9ZhQUFWFXoshrLLiDAKnuHy1ufAKu8vVUZAQIECHRGQIDVGVerNiZQyQCrMRpX9YeAAKs/lO1BoLMCAqzO+lq9cwICrM7ZWpkAAQIEyikgwCpnX3OpSoCVS6dKek4BVkkbq6xKCQiwKtXuUhUrwCpVOxVDgAABAv0gIMDqB2RbLFBAgGU4kgoIsJLy25xAWwQEWG1htEgCAQFWAnRbEiBAgEDWAgKsrNuX/eEFWNm3MO8CBFh598/pCdQEBFjmIFcBAVaunXNuAgQIEEglIMBKJW/fmoAAq9sc3HbHvU1PxYfXXr3pe6t8owCryt1Xe1kEBFhl6WT16hBgVa/nKiZAgACB1gQEWK35ubs1AQFWN79V192xac0/3/KDpu+t8o0CrCp3X+1lERBglaWT1atDgFW9nquYAAECBFoTEGC15ufu1gQEWN38Vl9vp9fVnDNn7jzfHzxoUCy39KhY5h2Lxynf+Gprnajo3QKsijZe2aUSEGCVqp2VKkaAVal2K5YAAQIE2iAgwGoDoiWaFhBg9YFu1qxX4ulnno8/3PO3+MFlk+Kfjz0dJxw2Njb48Hv6sIpLuwsIsMwDgfwFBFj597CqFQiwqtp5dRMgQIBAswICrGbl3NcOAQFWk4q1MGvX/cfH3fdPjh+de3QsvdTbm1yp2rcJsKrdf9WXQ0CAVY4+VrEKAVYVu65mAgQIEGhFQIDVip57WxUQYLUg+OcHHo5tdjsyttn8Y3HEuC+2sFJ1bxVgVbf3Ki+PgACrPL2sWiUCrKp1XL0ECBAg0KqAAKtVQfe3IiDAakFv7ty5sdamu8fb3vqm+NnFJ7SwUnVvFWBVt/cqL4+AAKs8vaxaJQKsqnVcvQQIECDQqoAAq1VB97ciIMBqRS8i1t96XDz34pS464azW1ypmrcLsKrZd1WXS0CAVa5+VqkaAVaVuq1WAgQIEGiHgACrHYrWaFZAgNWsXES8Mnt2rLnRrjF0yOD4/c/OamGl6t4qwKpu71VeHgEBVnl6WbVKBFhV67h6CRAgQKBVAQFWq4Lub0VAgNWC3k9u+E0ceOxZscKyS8Y15x3TwkrVvVWAVd3eq7w8AgKs8vSyapUIsKrWcfUSIECAQKsCAqxWBd3fioAAq5vetOkzerWcPXtOPP3v5+PW394dZ17w46jds9O2m8R+Yz/b670umF9AgGUqCOQvIMDKv4dVrUCAVdXOq5sAAQIEmhUQYDUr5752CAiwuimuuu6OfTatvYH7VeccFYsu8uY+3+uGCAGWKSCQv4AAK/8eVrUCAVZVO69uAgQIEGhWQIDVrJz72iEgwGoywBo4cEB86H2rxcF77RCjlxzZjl5Ucg0BViXbruiSCQiwStbQCpUjwKpQs5VKgAABAm0REGC1hdEiTQoIsLrB/e6uv/bKOGBAxBtGLBRLL7V4/T99tSYgwGrNz90EiiAgwCpCF5yhGQEBVjNq7iFAgACBKgsIsKrc/fS1C7DS96DSJxBgVbr9ii+JgACrJI2sYBkCrAo2XckECBAg0JKAAKslPje3KCDAahHQ7a0JCLBa83M3gSIICLCK0AVnaEZAgNWMmnsIECBAoMoCAqwqdz997QKsPvRg8j+fiH8/+0K89c1vjBWXXSpq74PlqzUBAVZrfu4mUAQBAVYRuuAMzQgIsJpRcw8BAgQIVFlAgFXl7qevvbIB1tSXpseJZ1wam23wgXjfGiu/bif+cM/f4vATz42HH32q67rapw5+bew2sflGH0rfxYxPIMDKuHmOTuD/CwiwjEKuAgKsXDvn3AQIECCQSkCAlUrevjWBygZYV0+6LQ49/px4xxIj42cXn7DAafjzAw/HDnseEy/PnNXjNYfv+4X47KfWM01NCgiwmoRzG4ECCQiwCtQMR+mTgACrT1wuJkCAAAECIcAyBCkFKhtgff3o78W1N90eu3xu0xi32zY99mDOnLnxmV0PjwcmPxpve+ub4uC9to93r7pCvPifqXHOJT+N626+IxYaNjR+etG3YvHFFknZx2z3FmBl2zoHJ9AlIMAyDLkKCLBy7ZxzEyBAgEAqAQFWKnn71gQqG2B9aqdD4u8PPR5nfGvf+Mj7393jNFx/y50x7sgJMXjQoLjkjMNilZWW6bpu7ty58eX9T4rf/P6+2GOnLeIrX/yUiWpCQIDVBJpbCBRMQIBVsIY4TsMCAqyGqVxIgAABAgTqAgIsg5BSoLIB1lqbjo2Xps2I6y85MZYatViPPdhxn2/FnX/6a3xms4/GN/bbab5rbr397vjKQafEmquvFBeednDKPma7twAr29Y5OIEuAQGWYchVQICVa+ecmwABAgRSCQiwUsnbtyZQ2QBr9fV2itqfCN5+7XfjTQuPmG8aHn3iX7Hx5w+o//sfnXd0/VMHX/v17PP/iY9ssVf9Uwl/dc1pJqoJAQFWE2huIVAwAQFWwRriOA0LCLAapnIhAQIECBCoCwiwDEJKgcoGWO/d+MsxfcbMBb4C67Rzr4ozL/hx/c8GLz/ryB579Mrs2fHu9Xep/4nh3Tefk7KP2e4twMq2dQ5OoEtAgGUYchUQYOXaOecmQIAAgVQCAqxU8vatCVQ2wNp8x0Ni8sOPx2nH7B3rfWjMPNNQC7Y22vZr8dwLU+KQvXeIz2+xfo/TUruuFoQNGTwo/nSTAKuZR0qA1YyaewgUS0CAVax+OE3jAgKsxq1cSYAAAQIEagICLHOQUqCyAdbR374wLvnRzfGe/1spfvDtg2LgwAFdfTjutIlx0ZU3xhsXHhE3Xjq+/p89fT3+1DOx0bb71f8EsfaniL76LiDA6ruZOwgUTUCAVbSOOE+jAgKsRqVcR4AAAQIE/isgwDIJKQUqG2A9+NBjseUuh9XfB+v971klPvXxD8XcuRE//9Uf46bb/lDvyQF7fC6+uPXHF9if2+64J8Z+/eRYYdkl45rzjknZx2z3FmBl2zoHJ9AlIMAyDLkKCLBy7ZxzEyBAgEAqAQFWKnn71gQqG2DVij/rop/Eqd+/ssdJ2PAj742Tj9xjnldmvfbCb51+cVx4xQ2xyXprx/jDdzdRTQgIsJpAcwuBggkIsArWEMdpWECA1TCVCwkQIECAQF1AgGUQUgpUOsCqwf/kht/EOZdcF39/+PGYO3duLL/MkvHZzdeNz316g9cNr2r3brLdAfHI4/+Kow7YObbc9CMp+5jt3gKsbFvn4AS6BARYhiFXAQFWrp1zbgIECBBIJSDASiVv35pA5QOsV8dg9uw59f86aNDAhiajdn3tTwhrX2uNeVeMGD6softcNK+AAMtEEMhfQICVfw+rWoEAq6qdVzcBAgQINCsgwGpWzn3tEBBgtUPRGk0LdCrAeva5iKkv/e+N+Zs+oBsJ9LPAG98wN966SERO0yvA6uchsV3bBARYbaO0EAECBAhURECAVZFGF7RMAVZBG1OVY3UqwPILdVUmqHx15vgLteetfHNYlYpyfN6q0ht1EiBAgEAxBQRYxexLVU4lwKpKpwtapwCroI1xrGQCOf5CLcBKNi42blEgx+etxZLdToAAAQIEWhIQYLXE5+YWBQRYLQK6vTUBAVZrfu4un0COv1ALsMo3h1WpKMfnrSq9UScBAgQIFFNAgFXMvlTlVAKsqnS6oHUKsAraGMdKJpDjL9QCrGTjYuMWBXJ83los2e0ECBAgQKAlAQFWS3xublFAgNUioNtbExBgtebn7vIJ5PgLtQCrfHNYlYpyfN6q0ht1EiBAgEAxBQRYxexLVU4lwKpKpwtapwCroI1xrGQCOf5CLcBKNi42blEgx+etxZLdToAAAQIEWhIQYLXE5+YWBQRYLQKW8fYn//VcXHL1TfGr390bjz7x73hl9uwYNXKR+Mj73x1f+vwnYtFF3rzAsq+edFtcce2t8feHH4/Zs2fH0kstHp/eeJ34/BYbxKBBA+e7T4BVxglSUysCOf5CLcBqpePuTSmQ4/OW0sveBAgQIEBAgGUGUgoIsF6j/8KLU2PGzJmx+GKLpOxLkr3nzJkb51zy05hw3tUx65X/hlYrLveOehD1lwf/Gc+9MCUWecsb4/zvHBzLjR413xkPOvbs+PENv44hgwfFmNVXjCGDB8fd90+OqS9Nj3XWWj0mHLdPDB40aJ77BFhJWm3TAgvk+Au1AKvAA+VoryuQ4/OmpQQIECBAIKWAACulvr0FWK+Zgd0PPCV++du748+3/GCe7zzz3Ivx8sxZseTii5Z6avY5/PR46NEn46Cvbhfvf88qXbVOnzEzjjzpvLj2xttjzdVXjAtPO2Qeh1pwVQuwasHWWeP3r4dfta9p02dEbc1f33lf7LnzljH2C5sLsEo9QYprVSDHX6gFWK123f2pBHJ83lJZ2ZcAAQIECNQEBFjmIKWAAKvBAGuXcSfEb/94/3zBVsrmdWLvWlA1aOCAGDp0yHzL1763zqe+GjNenhm3XnXqPH9K+OmdDo0HH3osJk44NNZYdYV57n3+xSmx/tbjYsiQwfX7Fho2tOv7XoHViS5aM2eBHH+hFmDlPHHVPnuOz1u1O6Z6AgQIEEgtIMBK3YFq71/ZAOu40ybGyiuMrv+z/NJLdAU2C3oFVlUCrN4ehy12PjT+9o/H4kfnHR0rLrtU/fInnnomNtx2vxi95MiYNPGEHpcYd+SEuP6WO+O0Y/aO9T40RoDVG7TvV1Ygx1+oBViVHdfsC8/xecseXQEECBAgkLWAACvr9mV/+MoGWKuuu2NX82pvLr7s6FGx8vKj456/TI5HHv9X3PHTM2LhNwzvukaA9V+K9bbeN57+9/Pxu+vOjDeMWKj+726+7Y+x12Hfic02/EAcf8huPT4U519+fZww4ZLYdbvNYp9dPyPAyv5/OhTQKYEcf6EWYHVqGqzbaYEcn7dOm1ifAAECBAi8noAAy3ykFKhsgHX77/8cD0x+NP46+ZF44O+PxD/++WT90/a6f9VCrdVWXjZWX3m5uOq6X8Zf//5I6f+E8PWG8c8PPBzb7HZkvHuV5ePi7x7WdekPLvtZnHjGpbHbDp+MvXbZqsclbrrtD7H3YafFx9d9X5x85B4CrJRPvb0LLZDjL9QCrEKPlMO9jkCOz5uGEiBAgACBlAICrJT69q5sgPXa1tc+dW/yw4/H4SeeG7WgpvanhbX3dJo9e858odYqKy4d76r9s9LS8a4Vlo43v+kNpZ+kuXPnRu1VaHfc9Zc49ag9Y4MPv6er5tPPvTrOuOCa2G/sZ2OnbTfp0aJ23877Hl9/Y/hzTjqg65op02a13e7lV+bE9TdF1H6p9kUgN4HaL9SbrB8xdEge8+t5y23CnLe7QG7Pm+4RIECAAIHUAm8cMf97Jac+k/2rIyDAek2vu78HVu3Nyu//28Nxz/3/iAuuuL7+p3MDBgyIWpjT/WvU298WN112Uqmn5tWQqhZc1QKs7l8nnfnDOPfS6+KgPbeL7bfasEeHu+57MLb/6jExZrUV46LT5/0Ew3bDTZn+Svx40mwBVrthrdcvArVfqD+18cDI5YcDz1u/jIVNOiSQ2/PWIQbLEiBAgAABAgSyEBBgvU6A1f1br74H1p2TvhcPTH4k7v/bP+MvD/73n9ort/500zlZNLyZQ1589c1xzKkXxkrLLRUXnX5o13tfvbpWn16BteYqcc7JXoHVTB/cUw2B3F4R4hVY1ZjLslaZ2/NW1j6oiwABAgTyEcjl/8maj6iT9kWgsgFW7VVD71z+HbHS8u+ov4H7kMGD6m7NfArhrFmvxJAhg/vins21l197Sxw5/gcxesm3xwXfOSgWe9tb5jv7BZdfH8dPuKSh98B67Su4nnh2ekcsvCdPR1gt2g8COb4nj+etHwbDFh0RyPF56wiERQkQIECAQIMC3gOrQSiXdUSgsgFW908hHDxoUD3EqgVar34K4Z2TzowRw//7KXu1ryp+CuGl1/w8jjrlgljmHYvHeaccGCMXnT+8qtncevvd8ZWDTmnoUwh33nbT+NrYbbpcBVgdea4tmrFAjr9QC7AyHriKHz3H563iLVM+AQIECCQWEGAlbkDFt69sgPWjn/0qHvzHY/G3+j+PxjPPvTjPKNTe62r5ZZaofwLh6isvGz/8yS2V+hTCC6+4Ib51+sX1Pxv8/kkHxNve+qYFPio1u49uuXeMXnJkTJp4Qo/XjTtyQlx/y50x/vDdY5P11hZgVfx/eJS/YIEcf6EWYJnoXAVyfN5ytXZuAgQIECiHgACrHH3MtYrKBlivbdgLL06th1nHT7i4HlTVXo1V+xTCOXPmfcP2FZZdsv4JhbVPH6z9Z+2ft7x54Vz73+O5z7t0Uow/87JY7Z3Lxlkn7tfQpyzW3qC99kbtEyccGmususI86z7/4pRYf+txMWfu3Pjl1d+JNy08QoBVqolRTDsFcvyFWoDVzgmwVn8K5Pi89aePvQgQIECAwGsFBFhmIqWAAOs1+t3fA2va9Jfrn0J49/2T46Irb4h/PfNCj716+2JvjZ9ffkrKPrZt77Mu+kmc+v0rY83VV4ozjx833xu2L2ij2+64J8Z+/eRYbvSoOGv8/jFq5CL1S6dNnxH7HjEhfvW7e2O7LTeIg/fafp4l/Alh21pnoZII5PgLtQCrJMNXwTJyfN4q2CYlEyBAgECBBARYBWpGBY8iwHqdAKv7t159D6zbr/1u/G3yo/VPIvzr3x+t//faK7X+eMPZ2Y/Pb35/X+y63/h6HaPe/rYYNnTIAmtaeMTwuOx7R8zz/dqrtmqv3qq9of2Y1VaIoUOG1MO/KVOnxSorLRPnn3pQjBg+TICV/aQooJMCOf5CLcDq5ERYu5MCOT5vnfSwNgECBAgQ6E1AgNWbkO93UkCA1ccA68+3/GC+ftT+zHDgwAGd7FO/rF17j6rae1U18rXwG4bHHT89Y75La2tcdOWN9YBv9uw5seSoxWLT9daOnbbdpMdAzCuwGtF2TZUEcvyFWoBVpQktV605Pm/l6oBqCBAgQCA3AQFWbh0r13kFWK/p56Sf3xH/fOzpGPuFzef5ThU/hbA/Rl2A1R/K9shJIMdfqAVYOU2Ys3YXyPF500ECBAgQIJBSQICVUt/eAqwGZ6D2KYT/fPSp2P8r2zZ4h8saERBgNaLkmioJ5PgLtQCrShNarlpzfN7K1QHVECBAgEBuAgKs3DpWrvMKsMrVz+yqEWBl1zIH7rBAjr9QC7A6PBSW75hAjs9bxzAsTIAAAQIEGhAQYDWA5JKOCQiwOkZr4UYEBFiNKLmmSgI5/kItwKrShJar1hyft3J1QDUECBAgkJuAACu3jpXrvAKscvUzu2oEWNm1zIE7LJDjL9QCrA4PheU7JpDj89YxDAsTIECAAIEGBARYDSC5pGMCAqyO0Vq4EQEBViNKrqmSQI6/UAuwqjSh5ao1x+etXB1QDQECBAjkJiDAyq1j5TqvAKtc/cyuGgFWdi1z4A4L5PgLtQCrw0Nh+Y4J5Pi8dQzDwgQIECBAoAEBAVYDSC7pmIAAq2O0Fm5EQIDViJJrqiSQ4y/UAqwqTWi5as3xeStXB1RDgAABArkJCLBy61i5zivAKlc/s6tGgJVdyxy4wwI5/kItwOrwUFi+YwI5Pm8dw7AwAQIECBBoQECA1QCSSzomIMDqGK2FGxEQYDWi5JoqCeT4C7UAq0oTWq5ac3zeytUB1RAgQIBAbgICrNw6Vq7zCrDK1c/sqhFgZdcyB+6wQI6/UAuwOjwUlu+YQI7PW8cwLEyAAAECBBoQEGA1gOSSjgkIsDpGa+FGBARYjSi5pkoCOf5CLcCq0oSWq9Ycn7dydUA1BAgQIJCbgAArt46V67wCrHL1M7tqBFjZtcyBOyyQ4y/UAqwOD4XlOyaQ4/PWMQwLEyBAgACBBgQEWA0guaRjAgKsjtFauBEBAVYjSq6pkkCOv1ALsKo0oeWqNcfnrVwdUA0BAgQI5CYgwMqtY+U6rwCrXP3MrhoBVnYtc+AOC+T4C7UAq8NDYfmOCeT4vM2eHRFzO0ZiYQKdExgQMWhQ55a3MgEC/SMgwOofZ7v0LCDAMhlJBQRYSfltXkCBHH+hFmAVcJAcqSGBHJ+3X/5qYNT+8UUgN4EPrzMnPrrOnNyO7bwECLxGQIBlJFIKCLBS6ts7BFiGgMC8Ajn+Qi3AMsW5Cnjecu2cc+cokOPzlqOzMxPotIAAq9PC1n89AQGW+UgqIMBKym/zAgrk+AO+AKuAg+RIDQl43hpichGBtgjk+Ly1pXCLECiZgACrZA3NrBwBVmYNK9txBVhl66h6WhXI8Qd8AVarXXd/KgHPWyp5+1ZRIMfnrYp9UjOB3gQEWL0J+X4nBQRYndS1dq8CAqxeiVxQMYEcf8AXYFVsSEtUruetRM1USuEFcnzeCo/qgAQSCAiwEqDbsktAgGUYkgoIsJLy27yAAjn+gC/AKuAgOVJDAp63hphcRKAtAjk+b20p3CIESiYgwCpZQzMrR4CVWcPKdlwBVtk6qp5WBXL8AV+A1WrX3Z9KwPOWSt6+VRTI8XmrYp/UTKA3AQFWb0K+30kBAVYnda3dq4AAq1ciF1RMIMcf8AVYFRvSEpXreStRM5VSeIEcn7fCozoggQQCAqwE6LbsEhBgGYakAgKspPw2L6BAjj/gC7AKOEiO1JCA560hJhcRaItAjs9bWwq3CIGSCQiwStbQzMoRYGXWsLIdV4BVto6qp1WBHH/AF2C12nX3pxLwvKWSt28VBXJ83qrYJzUT6E1AgNWbkO93UkCA1Ulda/cqIMDqlcgFFRPI8Qd8AVbFhrRE5XreStRMpRReIMfnrfCoDkgggYAAKwG6LbsEBFiGIamAACspv80LKJDjD/gCrAIOkiM1JOB5a4jJRQTaIpDj89aWwi1CoGQCAqySNTSzcgRYmTWsbMcVYJWto+ppVSDHH/AFWK123f2pBDxvqeTtW0WBHJ+3KvZJzQR6ExBg9Sbk+50UEGB1UtfavQoIsHolckHFBHL8AV+AVbEhLVG5nrcSNVMphRfI8XkrPKoDEkggIMBKgG7LLgEBlmFIKiDASspv8wIK5PgDvgCrgIPkSA0JeN4aYnIRgbYI5Pi8taVwixAomYAAq2QNzawcAVZmDSvbcQVYZeuoeloVyPEHfAFWq113fyoBz1sqeftWUSDH562KfVIzgd5EiQ2WAAAgAElEQVQEBFi9Cfl+JwUEWJ3UtXavAgKsXolcUDGBHH/AF2BVbEhLVK7nrUTNVErhBXJ83gqP6oAEEggIsBKg27JLQIBlGJIKCLCS8tu8gAI5/oAvwCrgIDlSQwKet4aYXESgLQI5Pm9tKdwiBEomIMAqWUMzK0eAlVnDynZcAVbZOqqeVgVy/AFfgNVq192fSsDzlkrevlUUyPF5q2Kf1EygNwEBVm9Cvt9JAQFWJ3Wt3auAAKtXIhdUTCDHH/AFWBUb0hKV63krUTOVUniBHJ+3wqM6IIEEAgKsBOi27BIQYBmGpAICrKT8Ni+gQI4/4AuwCjhIjtSQgOetISYXEWiLQI7PW1sKtwiBkgkIsErW0MzKEWBl1rCyHVeAVbaOqqdVgRx/wBdgtdp196cS8LylkrdvFQVyfN6q2Cc1E+hNQIDVm5Dvd1JAgNVJXWv3KiDA6pXIBRUTyPEHfAFWxYa0ROV63krUTKUUXiDH563wqA5IIIGAACsBui27BARYhiGpgAArKb/NCyiQ4w/4AqwCDpIjNSTgeWuIyUUE2iKQ4/PWlsItQqBkAgKskjU0s3IEWJk1rGzHFWCVraPqaVUgxx/wBVitdt39qQQ8b6nk7VtFgRyftyr2Sc0EehMQYPUm5PudFBBgdVLX2r0KCLB6JXJBxQRy/AFfgFWxIS1RuZ63EjVTKYUXyPF5KzyqAxJIICDASoBuyy4BAZZhSCogwErKb/MCCuT4A74Aq4CD5EgNCXjeGmJyEYG2COT4vLWlcIsQKJmAAKtkDc2sHAFWZg0r23EFWGXrqHpaFcjxB3wBVqtdd38qAc9bKnn7VlEgx+etin1SM4HeBARYvQn5ficFBFid1LV2rwICrF6JXFAxgRx/wBdgVWxIS1Su561EzVRK4QVyfN4Kj+qABBIICLASoNuyS0CAZRiSCgiwkvLbvIACOf6AL8Aq4CA5UkMCnreGmP5fe/cBHkXV73H8jxBApKsootiwUVQURVAR6SCI9EiTItJ7E6SEqiAdIgoKAiIgKoIoooAoNmyo2JUXe0GQpvSQ+5zhTtzdbDKzyZ6cmd3vPM997msye8rnnMPM/jKFnRCIioAf11tUOk4hCMSYAAFWjA2oz7pDgOWzAYu15hJgxdqI0p/sCvjxBJ8AK7ujzudNCbDeTMlTbzwK+HG9xeM40WcEnAQIsJyE+L1OAQIsnbqU7ShAgOVIxA5xJuDHE3wCrDibpDHUXdZbDA0mXfG8gB/Xm+dRaSACBgQIsAygU2WaAAEWk8GoAAGWUX4q96CAH0/wCbA8OJFokisB1psrJnZCICoCflxvUek4hSAQYwIEWDE2oD7rDgGWzwYs1ppLgBVrI0p/sivgxxN8AqzsjjqfNyXAejMlT73xKODH9RaP40SfEXASIMByEuL3OgUIsHTqUrajAAGWIxE7xJmAH0/wCbDibJLGUHdZbzE0mHTF8wJ+XG+eR6WBCBgQIMAygE6VaQIEWEwGowIEWEb5qdyDAn48wSfA8uBEokmuBFhvrpjYCYGoCPhxvUWl4xSCQIwJEGDF2ID6rDsEWD4bsFhrLgFWrI0o/cmugB9P8AmwsjvqfN6UAOvNlDz1xqOAH9dbPI4TfUbASYAAy0mI3+sUIMDSqUvZjgIEWI5E7BBnAn48wSfAirNJGkPdZb3F0GDSFc8L+HG9eR6VBiJgQIAAywA6VaYJEGAxGYwKEGAZ5adyDwr48QSfAMuDE4kmuRJgvbliYicEoiLgx/UWlY5TCAIxJkCAFWMD6rPuEGD5bMBirbkEWLE2ovQnuwJ+PMEnwMruqPN5UwKsN1Py1BuPAn5cb/E4TvQZAScBAiwnIX6vU4AAS6cuZTsKEGA5ErFDnAn48QSfACvOJmkMdZf1FkODSVc8L+DH9eZ5VBqIgAEBAiwD6FSZJkCAxWQwKkCAZZSfyj0o4McTfAIsD04kmuRKgPXmiomdEIiKgB/XW1Q6TiEIxJgAAVaMDajPukOA5bMBi7XmEmDF2ojSn+wK+PEEnwAru6PO500JsN5MyVNvPAr4cb3F4zjRZwScBAiwnIT4vU4BAiydupTtKECA5UjEDnEm4McTfAKsOJukMdRd1lsMDSZd8byAH9eb51FpIAIGBAiwDKBTZZoAARaTwagAAZZRfir3oIAfT/AJsDw4kWiSKwHWmysmdkIgKgJ+XG9R6TiFIBBjAgRYMTagPusOAZbPBiynm7vk2VdlytwVcvZZRWXDiqmO1a9at0WeXfuGfP/Dr5KSkiIXnn+u3FXvFmndpJbkzn1aus8TYDmSskOcCfjxBJ8AK84maQx1l/UWQ4NJVzwv4Mf15nlUGoiAAQECLAPoVJkmQIDFZAgr8O+hIzJy8hOyfvMH1u9LnnOmY4A1bOJ8WfPq25KQJ7dUrHCZJOTJI59+uUP++few3HJjBUl+sJ/kyZ07qD4CLCYgAsECfjzBJ8BiFvtVgPXm15Gj3X4U8ON686MzbUZAtwABlm5hys9MgACL+ZFO4Pudv0rfUbPlh5//kE6JDWTFmk1SuNAZmQZYKrhSAdYlpUvKvCmDpWSJ4la5hw4fkX6j5sjbH3wuvTs1lW7t7yTAYs4hkImAH0/wCbCY0n4VYL35deRotx8F/Lje/OhMmxHQLUCApVuY8gmwmAOuBXb/vV/qtxkix0+kyJhBHaVx3Zvl2lqd5awzM7+F8K6OI+S7nb/I0uQRcm25MkH17d1/UGq2GCAJCXnkjednSv58edN+zxVYroeGHeNEwI8n+ARYcTI5Y7CbrLcYHFS65FkBP643z2LSMAQMChBgGcSnauEKLCZBOgH13CsVQlW46hJJTU2V8rd3zPQWwt/+2C21EwdJ6VIlZN3SyWFFByQlW7cjzp7QV2rcXJEAi3mHQAYCfjzBJ8BiOvtVgPXm15Gj3X4U8ON686MzbUZAtwABlm5hys9MgACL+ZGpwImUFLmmZudMA6yNWz6WPiNnScPaVWTSA13Dlrdo5XqZnLxMurRpKP26NCfAYt4hQIDFHEDAuIAfv1ATGBufNjQgiwJ+XG9Z7CofQyCmBQiwYnp4Pd85AizPD5HZBroJsJ5c8Yo8PHe5dG3XSPp0bha2wRu2fCR9R86WutVvkGlJPQmwzA4rtXtYwI8n+Hyh9vCEommZCrDemCAI5JyAH9dbzulQEwL+ESDA8s9YxWJLCbBicVSj2Cc3AdacBatk7uLVMqhbK+mYWD9s7Vu3fSWd+k+Sm64vK09MHZK2z9HjJ6PY2lNFHTqaIi+/elLUl2o2BPwmoE7wG9bJJafny+OLprPefDFMNDIDAdYbUwOBnBPw23rLORlqQsBfAvkS+I7lrxGLrdYSYMXWeEa9N24CrKmPPiMLlr8sw3q3kbbNaodtw7bPv5O2vSZIxfKXyVNzHoh6OwMLPHj4hKxZl0KApVWZwnUJqBP8xvVOk0IFEnRVEdVyWW9R5aSwHBZgveUwONXFtYDf1ltcDxadRwABBDwqQIDl0YHxSrPcBFgRXYF1XVl5Ytp/V2DtOXAs6l09cTJVNmwSAqyoy1JgTgioE/w6t6dK7tz++OsW6y0nZgV16BJgvemSpVwE0gv4bb0xhgggEF7gzML/vVEeIwRyWoAAK6fFfVafmwBr8cr1Mil5matnYNW69XqZOa53msJvew5rEeGZPFpYKTQHBPz4jBDWWw5MDKrQIsB608JKoQiEFfDjemMoEUAgvQDPwGJWmBQgwDKp74O63QRYb7z7qfQYNt3VWwg7JTaQgd1aEmD5YOxpohkBP57gE2CZmSvUmn0B1lv2DSkBAbcCflxvbvvGfgjEkwABVjyNtvf6SoDlvTHxVIvcBFi7/94vtzXtK6VLlZB1SyeHbf+ApGRZv/kDmTKqu9SvUZkAy1OjTGO8JODHE3wCLC/NINoSiQDrLRIt9kUgewJ+XG/Z6zGfRiA2BQiwYnNc/dIrAiy/jJShdroJsFTT1APa1YPalyaPkGvLlQlq7d79B6VmiwFyMjVV3lw1SwoXLECAZWg8qdb7An48wSfA8v68ooXhBVhvzAwEck7Aj+st53SoCQH/CBBg+WesYrGlBFixOKpR7JPbAGvL1s+k29BpcknpkjJvymApWaK41YpDh49I/9HJ8tb726VN01oyvE/boNbxDKwoDhZFxYSAH0/wCbBiYurFZSdYb3E57HTakIAf15shKqpFwNMCBFieHp6YbxwBVswPcfY66DbAUrVMeXSFLFy+ThIS8kjF8mUkb0KCfPrlDjn4zyEpe/lFsmjmMClwej4CrOwNCZ+OcQE/nuATYMX4pIzh7rHeYnhw6ZrnBPy43lJTPcdIgxBwLZArl+tdI9qRACsiLnaOsgABVpRBY624SAIs1Xf1nKunnntNvtnxk6SknJRSJc+WBjUqS8fE+pIvb0I6Hq7AirUZQ3+yK+DHE3wCrOyOOp83JcB6MyVPvfEo4Mf19v2O0+T7HZpSgHicBPQ5xwTKXJoqZS49qaU+AiwtrBTqUoAAyyUUu+kRIMDS40qp/hXw4wk+AZZ/51u8t5z1Fu8zgP7npADrLSe1qSveBXSuNwKseJ9dZvtPgGXWP+5rJ8CK+ykAQIiAzhMOXdgEWLpkKVe3AOtNtzDlI/CfAOuN2YBAzgnoXG8EWDk3jtSUXoAAi1lhVIAAyyg/lXtQQOcJh67uEmDpkqVc3QKsN93ClI8AARZzAAETAjqPbwRYJkaUOm0BAizmglEBAiyj/FTuQQGdJxy6ukuApUuWcnULsN50C1M+AgRYzAEETAjoPL4RYJkYUeokwGIOeEKAAMsTw0AjPCSg84RDVzcJsHTJUq5uAdabbmHKR4AAizmAgAkBncc3AiwTI0qdBFjMAU8IEGB5YhhohIcEdJ5w6OomAZYuWcrVLcB60y1M+QgQYDEHEDAhoPP4RoBlYkSpkwCLOeAJAQIsTwwDjfCQgM4TDl3dJMDSJUu5ugVYb7qFKR8BAizmAAImBHQe3wiwTIwodRJgMQc8IUCA5YlhoBEeEtB5wqGrmwRYumQpV7cA6023MOUjQIDFHEDAhIDO4xsBlokRpU4CLOaAJwQIsDwxDDTCQwI6Tzh0dZMAS5cs5eoWYL3pFqZ8BAiwmAMImBDQeXwjwDIxotRJgMUc8IQAAZYnhoFGeEhA5wmHrm4SYOmSpVzdAqw33cKUjwABFnMAARMCOo9vBFgmRpQ6CbCYA54QIMDyxDDQCA8J6Dzh0NVNAixdspSrW4D1pluY8hEgwGIOIGBCQOfxjQDLxIhSJwEWc8ATAgRYnhgGGuEhAZ0nHLq6SYClS5ZydQuw3nQLUz4CBFjMAQRMCOg8vhFgmRhR6iTAYg54QoAAyxPDQCM8JKDzhENXNwmwdMlSrm4B1ptuYcpHgACLOYCACQGdxzcCLBMjSp0EWMwBTwgQYHliGGiEhwR0nnDo6iYBli5ZytUtwHrTLUz5CBBgMQcQMCGg8/hGgGViRKmTAIs54AkBAixPDAON8JCAzhMOXd0kwNIlS7m6BVhvuoUpHwECLOYAAiYEdB7fCLBMjCh1EmAxBzwhQIDliWGgER4S0HnCoaubBFi6ZClXtwDrTbcw5SNAgMUcQMCEgM7jGwGWiRGlTgIs5oAnBAiwPDEMNMJDAjpPOHR1kwBLlyzl6hZgvekWpnwECLCYAwiYENB5fCPAMjGi1EmAxRzwhAABlieGgUZ4SEDnCYeubhJg6ZKlXN0CrDfdwpSPAAEWcwABEwI6j28EWCZGlDoJsJgDnhAgwPLEMNAIDwnoPOHQ1U0CLF2ylKtbgPWmW5jyESDAYg4gYEJA5/GNAMvEiFInARZzwBMCBFieGAYa4SEBnSccurpJgKVLlnJ1C7DedAtTPgIEWMwBBEwI6Dy+EWCZGFHqJMBiDnhCgADLE8NAIzwkoPOEQ1c3CbB0yVKubgHWm25hykeAAIs5gIAJAZ3HNwIsEyNKnQRYzAFPCBBgeWIYaISHBHSecOjqJgGWLlnK1S3AetMtTPkIEGAxBxAwIaDz+EaAZWJEqZMAizngCQECLE8MA43wkIDOEw5d3STA0iVLuboFWG+6hSkfAQIs5gACJgR0Ht8IsEyMKHUSYDEHPCFAgOWJYaARHhLQecKhq5sEWLpkKVe3AOtNtzDlI0CAxRxAwISAzuMbAZaJEaVOAizmgCcECLA8MQw0wkMCOk84dHWTAEuXLOXqFmC96RamfAQIsJgDCJgQ0Hl8I8AyMaLUSYDFHPCEAAGWJ4aBRnhIQOcJh65uEmDpkqVc3QKsN93ClI8AARZzAAETAjqPbwRYJkaUOgmwmAOeECDA8sQw0AgPCeg84dDVTQIsXbKUq1uA9aZbmPIRIMBiDiBgQkDn8Y0Ay8SIUicBFnPAEwIEWJ4YBhrhIQGdJxy6ukmApUuWcnULsN50C1M+AgRYzAEETAjoPL4RYJkYUeokwGIOeEKAAMsTw0AjPCSg84RDVzcJsHTJUq5uAdabbmHKR4AAizmAgAkBncc3AiwTI0qdBFjMAU8IEGB5YhhohIcEdJ5w6OomAZYuWcrVLcB60y1M+QgQYDEHEDAhoPP4RoBlYkSpkwCLOeAJAQIsTwwDjfCQgM4TDl3dJMDSJUu5ugVYb7qFKR8BAizmAAImBHQe3wiwTIwodRJgMQc8IUCA5YlhoBEeEtB5wqGrmwRYumQpV7cA6023MOUjQIDFHEDAhIDO4xsBlokRpU4CLOaAJwQIsDwxDDTCQwI6Tzh0dZMAS5cs5eoWYL3pFqZ8BAiwmAMImBDQeXwjwDIxotRJgMUc8IQAAZYnhoFGeEhA5wmHrm4SYOmSpVzdAqw33cKUjwABFnMAARMCOo9vBFgmRpQ6CbCYA54QIMDyxDDQCA8J6Dzh0NVNAixdspSrW4D1pluY8hEgwGIOIGBCQOfxjQDLxIhSJwEWc8ATAgRYnhgGGuEhAZ0nHLq6SYClS5ZydQuw3nQLUz4CBFjMAQRMCOg8vhFgmRhR6iTAYg54QoAAyxPDQCM8JKDzhENXNwmwdMlSrm4B1ptuYcpHgACLOYCACQGdxzcCLBMjSp0EWMwBTwgQYHliGGiEhwR0nnDo6iYBli5ZytUtwHrTLUz5CBBgMQcQMCGg8/hGgGViRKmTAIs54AkBAixPDAON8JCAzhMOXd0kwNIlS7m6BVhvuoUpHwECLOYAAiYEdB7fCLBMjCh1EmAxBzwhQIDliWGgER4S0HnCoaubBFi6ZClXtwDrTbcw5SNAgMUcQMCEgM7jGwGWiRGlTgIs5oAnBAiwPDEMNMJDAjpPOHR1kwBLlyzl6hZgvekWpnwECLCYAwiYENB5fCPAMjGi1EmAxRzwhAABlieGgUZ4SEDnCYeubhJg6ZKlXN0CrDfdwpSPAAEWcwABEwI6j28EWCZGlDoJsJgDnhAgwPLEMNAIDwnoPOHQ1U0CLF2ylKtbgPWmW5jyESDAYg4gYEJA5/GNAMvEiFInARZzwBMCBFieGAYa4SEBnSccurpJgKVLlnJ1C7DedAtTPgIEWMwBBEwI6Dy+EWCZGFHqJMBiDnhCgADLE8NAIzwkoPOEQ1c3CbB0yVKubgHWm25hykeAAIs5gIAJAZ3HNwIsEyNKnQRYzAFPCBBgeWIYaISHBHSecOjqJgGWLlnK1S3AetMtTPkIEGAxBxAwIaDz+EaAZWJEqZMAizngCQECLE8MA43wkIDOEw5d3STA0iVLuboFWG+6hSkfAQIs5gACJgR0Ht8IsEyMKHUSYDEHPCFAgOWJYaARHhLQecKhq5sEWLpkKVe3AOtNtzDlI0CAxRxAwISAzuMbAZaJEaVOAizmgCcECLA8MQw0wkMCOk84dHWTAEuXLOXqFmC96RamfAQIsJgDCJgQ0Hl8I8AyMaLUSYDFHPCEAAGWJ4aBRnhIQOcJh65uEmDpkqVc3QKsN93ClI8AARZzAAETAjqPbwRYJkaUOgmwmAOeECDA8sQw0AgPCeg84dDVTQIsXbKUq1uA9aZbmPIRIMBiDiBgQkDn8Y0Ay8SIUicBFnPAEwIEWJ4YBhrhIQGdJxy6ukmApUuWcnULsN50C1M+AgRYzAEETAjoPL4RYJkYUeokwGIOeEKAAMsTw0AjPCSg84RDVzcJsHTJUq5uAdabbmHKR4AAizmAgAkBncc3AiwTI0qdBFjMAU8IEGB5YhhohIcEdJ5w6OomAZYuWcrVLcB60y1M+QgQYDEHEDAhoPP4RoBlYkSpkwCLOeAJAQIsTwwDjfCQgM4TDl3dJMDSJUu5ugVYb7qFKR8BAizmAAImBHQe3wiwTIwodRJgMQc8IUCA5YlhoBEeEtB5wqGrmwRYumQpV7cA6023MOUjQIDFHEDAhIDO4xsBlokRpU4CLOaAJwQIsDwxDDTCQwI6Tzh0dZMAS5cs5eoWYL3pFqZ8BAiwmAMImBDQeXwjwDIxotRJgMUc8IQAAZYnhoFGeEhA5wmHrm4SYOmSpVzdAqw33cKUjwABFnMAARMCOo9vBFgmRpQ6CbCYA54QIMDyxDDQCA8J6Dzh0NVNAixdspSrW4D1pluY8hEgwGIOIGBCQOfxjQDLxIhSJwEWc0CLwKp1W+TZtW/I9z/8KikpKXLh+efKXfVukdZNaknu3Kelq5MAS8swUKiPBXSecOhiIcDSJUu5ugVYb7qFKR8BAizmAAImBHQe3wiwTIwodRJgMQeiLjBs4nxZ8+rbkpAnt1SscJkk5Mkjn365Q/7597DccmMFSX6wn+TJnTuoXgKsqA8DBfpcQOcJhy4aAixdspSrW4D1pluY8hEgwGIOIGBCQOfxjQDLxIhSJwEWcyCqAiq4UgHWJaVLyrwpg6VkieJW+YcOH5F+o+bI2x98Lr07NZVu7e8kwIqqPIXFmoDOEw5dVgRYumQpV7cA6023MOUjQIDFHEDAhIDO4xsBlokRpU4CLOZAVAXu6jhCvtv5iyxNHiHXlisTVPbe/QelZosBkpCQR954fqbkz5c37fdcgRXVYaCwGBDQecKhi4cAS5cs5eoWYL3pFqZ8BAiwmAMImBDQeXwjwDIxotRJgMUciJrAb3/sltqJg6R0qRKybunksOUOSEqW9Zs/kNkT+kqNmysSYEVNn4JiTUDnCYcuKwIsXbKUq1uA9aZbmPIRIMBiDiBgQkDn8Y0Ay8SIUicBFnMgagIbt3wsfUbOkoa1q8ikB7qGLXfRyvUyOXmZdGnTUPp1aU6AFTV9Coo1AZ0nHLqsCLB0yVKubgHWm25hykeAAIs5gIAJAZ3HNwIsEyNKnQRYzIGoCTy54hV5eO5y6dqukfTp3CxsuRu2fCR9R86WutVvkGlJPQmwoqZPQbEmoPOEQ5cVAZYuWcrVLcB60y1M+QgQYDEHEDAhoPP4RoBlYkSpkwCLORA1gTkLVsncxatlULdW0jGxfthyt277Sjr1nyQ3XV9Wnpg6JGp1hyvo4OETsmZdiqgv1WwI+E1AnXA0rneaFCqQ4Iums958MUw0MgMB1htTA4GcE2C95Zw1NSHgt/XGiCHgViBXampqqtud2Q+BcAJTH31GFix/WYb1biNtm9UOi7Tt8++kba8JUrH8ZfLUnAe0Qqov1Nu/SpGdP+TSWg+FI6BD4KKLUuXqK/0VYLHedMwEyswJAdZbTihTBwKnBFhvzAQEck7Ab+st52Soye8CBFh+H0EPtD+iK7CuKytPTNN7BZYHSGgCAggggAACCCCAAAIIIIAAAghEUYAAK4qY8VrU4pXrZVLyMlfPwKp16/Uyc1zveKWi3wgggAACCCCAAAIIIIAAAgggkAUBAqwsoPGRYIE33v1Uegyb7uothJ0SG8jAbi0hRAABBBBAAAEEEEAAAQQQQAABBFwLEGC5pmLHjAR2/71fbmvaV0qXKiHrlk4Ou9uApGRZv/kDmTKqu9SvURlMBBBAAAEEEEAAAQQQQAABBBBAwLUAAZZrKnbMTEA9oF09qH1p8gi5tlyZoF337j8oNVsMkJOpqfLmqllSuGABMBFAAAEEEEAAAQQQQAABBBBAAAHXAgRYrqnYMTOBLVs/k25Dp8klpUvKvCmDpWSJ4tbuhw4fkf6jk+Wt97dLm6a1ZHiftkAigAACCCCAAAIIIIAAAggggAACEQkQYEXExc6ZCUx5dIUsXL5OEhLySMXyZSRvQoJ8+uUOOfjPISl7+UWyaOYwKXB6PhARQAABBBBAAAEEEEAAAQQQQACBiAQIsCLiYmcnAfWcq6eee02+2fGTpKSclFIlz5YGNSpLx8T6ki9vgtPH+T0CCCCAAAIIIIAAAggggAACCCCQToAAi0mBAAIIIIAAAggggAACCCCAAAIIIOBpAQIsTw8PjUPAncBPv/4p9dsMTbdz3rwJ1kPzL7rgXKlaqby0vLO6FCtSKN1+z659Q0ZPWSgtG1WX0QM7OFa6ccvH0mfkLKldrZLMGNsr0/0//2antOo6xrqNdOW8pKB9h45/TNZueDfTz59ZrLD18H82BKIpYM/50DJPz59XihctLJddcr7UuPk6ubNOVeu26NDt9ub9ZNfufUE/VleZFi9WWMpefqE0rFVV6txWybHJm9/5RF7Z/L588vn3smfvfjmRclKKFykkZa+4SGrder00rFVFcuc+Laic/Qf/lVsan1p376xJlkIZvBij94hZsumtj6VKpXLy+JTBGbalQduh8uMvf8qC6UOlcsWrJPDfk/t7tZZ2zetk2o/hD86X1evfliWzh8t1FS537DM7IBBOwF5Tbzw/U84qXiRTpFqtBsrvf+6RjSunyblnn3rmZrjtREqK9RIZ9bbktYsflItLl8xw33LVnY999ocD53pGx9/Qikb1by+tGtdI+3Ek/WXGIKBD4Kdfd8ma9W/L1m1fys6f/pAD//wrp+fPJ2efWVTOO+dMufnGCnJ71YrWW8YDt3Dnbgl5ckvhQmfIpRedZ97yV6YAACAASURBVB07WzSqLvnz5XV17Azdqd7tN8rU0T3SfpyVc0WOYzpmDGUi4A0BAixvjAOtQCBbAvaBWn35DvwCefTYcdm1e6+okxS1FSl0hsyfMljKXXFRUH2mAywVsIUL1lQjixYuKHMm9s2WDx9GIFTAnvPqy6864VZbaqrI4SNH5effdllfeNV2ZZnSVrCj1k7gZn/5VOst7/8HXIeOHLXCn337/7F2rXHLdTItqaeoE/vQTZWvXnDx8fZvrV+dUSC/lDr3LMmTJ4+1Zu361YsxZo3vk+6Ld2K3MbL9650ye3wfq57Q7fjxE1L1zp5y6PBRyZM7t7y1enbYoOvPv/ZKjRb9rS8a776YLCr0DjzxVz9/YeF4ueC84C8wgfURYLG+oiEQSaDjNsB67c0Ppd+oOVbzOrSqJ4O7J2bY1MTuYzPtxr//Hpb//fS7tc/qhROkzMWlrP9trxcVYKs/1GS0dUqsH7RWI+lvNHwpAwFbQB0f5ixcJU8se1lS1YFPxHr5UpHCBeWffw/Lrj375Nix49bP1R8/508ZFIRnB0pqDZxV7FTYfOz4cfnjr73y2x+7rf++8PxzZOH0++Wcs4sFfdae9xWuvNg63oXbqlxfVnp2bJL2K7u+SM4VOY4x3xGIXQECrNgdW3oWRwL2gVod3F9a8lC6nqsTilFTFsq7H34hV112oTw7f0zQPqYDrIdHdpcGNSvH0YjRVdMCTnP+ky++l0Fj51pXedzToq4M6Xl32JPw0KtF1JeBt97/XAYkJVtvYR3cI1E6tKwX9Fn1YouWXZOsYPnSi0rJ4O6trKukVNBkb9/s+FlmPfGcqCu0VHi24rHRQSHSzMefk3lPvShtmtaW4X3apONUb37tOmSqFC9aSP7ed1AyWmMvvvqO3D9xntxyYwV5bPJAq5zAQPzwkWNyY8UrZcG0oZIrV66ww0aAZXo2x0b9kQQ6bgOs+wZPsULiEmcVkwMHD8nrz04Pe0WlG8H+o+fIq298KC0aVpekQf9dreV0/M2o7Ej666Z97IOAGwEVTHXsP0nUMU794fC+tg3ljlpVRF3tHrh99d2P8vrb2+Sm68umu7LWDpTCHVd2/PCrDBwzV77b+YtUr3qtJE/s5+rYmVnbM6svo89xHHMzG9gHAX8KEGD5c9xoNQJBAm5OoNWX2GpN+lh/bVNXYwRe8eT0ZT6UO9q3EBJgMaFzWsDNnFdfVtWXVvVXZnXFReDm9OVz+epNMm764rCB8YhJT8iqdVusqzWenHG/dfVVuE2t1ZGTF1j7XlP2Unn6kZFpu72/7Wvp2P+hsG1TO02YuUSeXrVRetzTWB5ZtFrq16gsU0Z1T1eN3ZbAoM3+96TlnbfLex99aQVaobc/BRZEgJXTszc263NaU4G9dhNgqT/c1Ll7sNxe9VorKJ6/dK11W5K6PSnSTb2gRoXS6iqV1U9ODFqzbo6/4eqLpL+Rtpf9EchIIGnKk7Jy7WZRV/fOnzo401twMyrDKVDa8eNvcuc9w+W003LJ22uSrUdZ2FtW5r1TfeHayXGMNYBA7AoQYMXu2NKzOBJwewJ9Y4Nu8u+hI7Jp5fSgy7rdfJkP5CTAiqPJFaNddTPn1V+gm3cZbT3/Y93SyREFWN/v/FUad3zAum3vvbWPpH32j7/+ljqJg6y3tAbehpQRs7oCql7rwdYthU9MGyI3XVfW2lXdAlKlUQ9Rv1fPiAv967mqQ90e+OYLs6Tu3YP/P7iek+52xtqJg6xbPlYtGC+XX3K+Vbb970mT+reK+r/2fSZKgdPzy5pFE60v8KEbAVaMLpIc7lYkX2zdBFj2VYpjBnWU8ldeLM3uHWWtH7WOItn27j8ojdoPF/X/1a1U6paqwM3t8Te0zkj6G0l72ReBjATsZ5Kq29rVv/mZPRMuM0U3gdLNjXtZt9M/9/hY61Z8e8vKvHdTX2h7OY6xDhCIXQECrNgdW3oWRwJuTqDtZ92o25HeXjMn6HYgN1/mAzkJsOJocsVoV93M+bWvvStDJzxmPbdGPWsqcHM6Cf/6+5+sL8wlzzlTNqyYmvbRFas3ydjpi6XSNVfIopnDXOlOeXSFLFy+TtQVUaMH3JP2mW5Dp8qWrdvT3R5oh2fXX325LJ41XAaPmysvb9ya7sv3L7//ZYVb6oHZ6lZIe7P/Palb/UaZltRDxs9YIste2Bh0m2FgwwmwXA0jOzkIOK2pwI87BVjq4e21Wg4U9cIDNbfVFSB3dRxh3db0ytOTM32mW2gz1ZVX6gqs0FsHQ9dLRrfwZ9TtSPrL5EEgGgJjpi2SZ9a8bv1hYvzQzlku0k2gdFPDHqJul391+RTr+Y6mAiyOY1keZj6IgGcFCLA8OzQ0DAH3Ak4Blnoop3qez5atn1nPy1HPzQnc3HyZD9yfAMv92LCnNwWc5rx6PlWnAZNk9559sjR5ZLoXHzh9+XxyxSvy8Nzl6d7U+cBDj8sLr7wl3drfKb07NXWFo94kqN4oqP6Krf6abW9PPvOKPPzIcmne8DZRV5nYm7pVasb8Z6X/fS3k3tZ3WOGVCrHuvqumjOjXLm2/5156U0Y9vEAa1q4ikx7omvZz+98TO7hTz/Jq3HGEdaWW+tKjvvwEbgRYroaRnRwEnNZU4MedAiz7GBV466y9Xrq0aSj9ujR3NR72bcThbh20C3A6/mZUUST9ddVYdkLAQaBR+2HWiwhmjesjNW9N//IPt4BOAdYX3/xgPedRPYNx83Mzg96km5V571RfuHZzHHM7muyHgP8ECLD8N2a0GIF0AvaBWt3mc/MN/93ekHLypPy994CoW6HUG2E6tKovjevenO7zTl/mQz8Q7QBLPYuheMgDRO06ExvXsJ7fw4ZANAXsOX9+ybOt51TZ2/ETJ6wHt//vx9+sB9eqL7pXl700XdWZnYSroFi9+SwlJcV6blXgm8nUg9XVA9bHDekkTRtUc9Ul+2ou9WVgywuz0z7z7f9+kSadRlhXk6irSuytba8Jsu3z79JuUVR/Bb+lcW/rSquNK6el7Wd/KZg4rEvQvwv2vye3VblGHnmwv7W/egHEvYMetq5kUbcSqtes2xsBlqthZCcHATdvJ7OLULdCqdto1XxWbxIN3eyrE+c9PCjtmLhn7wFRdajnP6rPBb40IVzT1C2D6jk+6vmR4W4dtD8T+BbCClddEraX6m2e9ksS7B2y8kWeSYRAdgSurdVZjp9IsV72o64YzOqWWaCkArI+I2bJzp9+l+F92kqbprWCqrHnvXquY8L/v8E3tB1JAzsE3d5o1xfJuSLHsayOLp9DwPsCBFjeHyNaiICjQODrgsPtrE4S6lSrZD28Vl1VEbqZDrAy6+Cgbq2kY2J9RwN2QCASAXvOZ/QZ9UwptV7uqndLUAAV+uVTvaEpb0KC9eOjR4/Jzp9/l12791l/eX5w+H3WbXeBmx0uqQequw1m7fWdN2+CbHt1flB5tzXtaz0f67XlU+S8c8+S/Qf+lVvu6iUlS5xp3bphb536T5Kt276SlfOS0vpTvVk/+WvPPnn92RlS4qz/Aim7vmo3XSNzHzoVYKlNPVD++ZffTHdLJQFWJDOPfTMSsL/YRiIULsBSAbR6tpua0xtWTLMeJG1vvYbPlNff2SYzx/WWWrden2lVA8c8Iq+8/n66KxxDP+R0/FX7n54/r3z4yrygjxJgRTLS7JtdAXVb7TU1T902GPr23NB/40PrUn+IUYGTvdmBkroqWL3hU20nTqTIH7v2WFd4qXPOnh3uEnW1Y+jmZp2rt+6Wv+LidPVlZhB6rshxLLszhs8j4F0BAizvjg0tQ8C1QEa3MKgHRatngGz/6n/y+NNr5ePt34V9G5npAIu3ELoeanaMkkBGc179dVrdNvjuR1/II0++ILv27JOhPVtn+FfkcM1RV2wtnD5U1FUXoVs0r8BSZatndKlnddm39r346jty/8R5VnvVX7/tbcmzr8pDc56W7u0bS69OTawvGep2EvV2tjVPBr9hMaMTf3Ul150dhlsBXeCaJcCK0qSM82IiCXQyu4Vw1hPPyWNLXpT72jaSvvc2C1K1rx5WwXLoFVGBO7725ofWVZTq1sEXFk6QgmecnuHocAthnE9cH3W/Yp0ucuzYcVm3dJKULnVOupY//vRLsvmdT9J+/s2On0XdQp5RgBWu65m98EPtH8k6t8vPzi2EoX+I4TjmowlLUxHIQIAAi6mBQAwIuDmBVn99a9V1jKjbkSaN6CoNa1VJ63mkAZb9TJ7a1SrJjLG9MhW033pT7oqL5JnHkoL2zcpJSQwMF13wgICbOf/7rr+lYbv7rVsB1y55SNTthvYW7iRcXQnVoO1QOXT4qKx4dHS652apz46Y9ISsWrclLUhyQ6GuGFFXjoQ+A0t9Vj1PSz1Xq1GdqvLQ8PvSHtgeeOuU2s9+YLtdhv0w+XbN68j9vVoHNSOjAEvtpL7c9Bw+Q4oWKSgvLnrQutLM7tOS2cOt2y7ZEMiKQCRfbDMKsNQfbWq1GmCFrJltuXLlsq5aVC9ZCN3Um9NUUKtuOQxdR+HKdHP8Dfe5SPqbFU8+g0CoQL3WQ+Tn33bJo5MGyq2Vg68ODqeV2H2s9QfQjAKswD9kpKamSuue4+WzL3fI0J53S/sWdcMOQFbmfVbOFTmOMf8RiF0BAqzYHVt6FkcCbk+g7Yc7h76Bxs2X+UDO9z76UjoPnGydAKkTocy2Dz75Wjr0e0gqV7xKFkwfGrRrVk5K4mhY6apGAbdz/r7BU+TtDz6X0OdEZXQSvmjlepmcvMy6/WHZ3FFBty+p7qg3QKk3Qd1Y8UpZOP1+Vz2c9tgz8sSyl6VV4xoyqn/7oM+oL+qqLeotT+uXPSzVmvSRI0ePyTtrktM9X+TODg/Ijh9+tW4fUVdjrdu01bpFUP2FOnDL7MRf7WevW3WL5dTRPaz+qH4RYLkaTnbKQCCSL7YZBVj2H1fULcDqltpwm7rCUoXT9tWIofuoF56otdHsjmoydnAnx/Fye/wNLSiS/jo2gh0QcCFgX7F7T4u6MqTn3Y6fiCTAUoWph7e36jZGTs+fz3rOVuCt6XZlWZn3WTlX5DjmOLzsgIBvBQiwfDt0NByB/wTcnkDbb2EKfDizKsXtl3m7RvWMEfUFQp2cbFo5XdRfszPa7FuXWjaqLqMHdgjaLSsnJYw7AtEQcDvn1dVG6qqjwd0TpUOremlVZ3QSrq50bNp5lBUUqTf+qTf/BW4qcKrdaqCo/dYufjDoQbXh+nX02HGp13qwdUWJCrxU8BW6qQdN7/jxN3l8ymDrQevq7VLqLVOhm3ozoQqx1fO31BsS9/x9QN5d+4gUOD1f0K5OJ/6BV6ioej7e/q2of1sIsKIxM+O3jEi+2GYUYHUbOs162+60pB5St/qNYTG3f71TEruNkXPOLiavLZ8a9Ia0DVs+kr4jZ1sPhl/9ZOa3DtqFuz3+hjYmkv7G76yg59EUsK+gLVSwgLyydLJ1JW1mW6QBlioracqTsnLtZqlb/QaZltQzXfFZmfdZOVfkOBbNmUNZCHhLgADLW+NBaxDIkoDbE+gew6bLG+9+al3arS7xtje3X+YDG9e080hRz0eY9EBXaVj7v9sRA/c5fOSYNLt3pPz4y59hL1nPyklJloD4EAIhAm7mvAqParYYIOptZLMn9JUaN1dMKyWzk/D3t30tHfs/JOpLggqp1Nv/Ajf7ljv1rKwF04ZaD3jOaJswc4k8vWqjXFfhMlky+4Gwu02ctVSWPv+adVvw2g3vZviGw0+/3CGte4yzHkyvbj2sdM0VsmjmsHRlOp34qw+s3/yBDEhKtvqmggJVPwEWyyw7ApF8sQ0XYKmrqlQ4rG5r3bhyuiTkyZ1hc5p3GW29nTd5Yj+pXvVaa79Ibx20C3d7/A1tTCT9zY4rn0XAFlC3+bW4L8ma++oFJLPH9033B4xArawEWGodqVvp1fNX1XPmQl9kkpV5n5VzRY5jzHsEYleAACt2x5aexZGA0wm0emjnwhWviHq4rXoj03OPj5PLLzk/TcjNl/lQzjff+1S63z/delC1CsPUbYmBr0RWD4lOmrJQPvrsW6laqbz1GvLQLSsnJXE0rHRVo4DTnP9730EZO22RqIc5qwc5v/TUJMmX99TbBtXmdBI+IOkRWb/5fSvcVSFv4KYeItuya5L89OsuueqyC2VIj7vlhmuvCLqSUYW+Mx9/zipD/ZVcPT9O3SYYbrP/qq6CMBUaZ/SGqZMnU6V6s77WQ3nVfn06N5Ou7RqlK9LNib/6kHrItfJRLirsI8DSOGHjoGinNRVIEC7AmrNglcxdvNp681m/Ls0zFVNXiKgrRVR4pUIstQ0eN1de3uj+1kG7Aqfjb0YNiaS/cTD8dDGHBNR8Tew21gqYLild0nqpR/WqFYOOb6op6oUmd3cfa4Vdbp6BFdj85as3ybjpi6V0qRLWSxAiOXaGY8jKuSLHsRyaUFSDgAEBAiwD6FSJQLQF7AO1uhXopuvKphV/MjVVDhz8V77+/tSbZHLnPk1G9Gsv6na+wM3+Ml+sSKGwD7W19505tlfQc0WWvbBRHpy9VNSDc1Xdl154nuTLl1d27d5rfTlXm/or34wxvayrUUI3+6TkogvOFVV3uK1o4YIyZ2LfaJNRXpwL2HNePSfnyksvSNM4kXJS1MPYv93xs3WbnwqP1HPeKlz53yu91c5OXz7/+OvUA+BVUKSe/aaeARe4qTpUALTt8++sH6v5f/55Z1tXjfzx11757Y/d1s/Vmpo1vo+oNZLRptZ2lYY9rfaqZ2+pV5BntNlXf6nfL587SipcdUm6Xd2e+Ks+qIdd7z/wr1UGAVacL6psdt9pTQUWHxpgqWNQ7cSB1q226llwGYW9dhnqRQsqzD185KhsWDHNOmapq03Upr7U588ffFttaNfuvquGNG1QzfqxvV7Ul/Syl1+UoUKnxPpS45br0n5v9/eKSy+Q3LnDXy128w3lHcO4bLLz8TgUUH8g6T96jnUVvdrUceeiC0pK4UIF5MSJFCvc+uW3v6xjitoiDbDUH0ta3DfaemlQj3saS8+OTdLNe3VMzZMnT1j9KteXDfpMVs4VOY7F4cSmy3EjQIAVN0NNR2NZwD5Qh+ujOqk+t0RxueHaK6VN09pBV17Z+9tf5p2MXlz8oHVyH7ipZ/0sXbVR3t/2lahnY6k3thUrWsj6It2wdlVRbypUV32F2+yTkszqVQ/jfXPVLKem8XsEIhLIbM6r14BfeP45Uu2mq6VtszrWLUmhm5sv2/ZLEy4uXVJWPTEu3UPVVZnqDYOvbHrfCrL+3ndAUk6mSrEiBaXcFRdL7WrXyx01qwQ9oyejTrbrPdF6FpX6oqC+MGS02Q+5VoHy26vnhC3b7Ym/quPFV9+R+yfOs6ojwIpoCrJziICbNWV/JDTAst/UqW5XUrctudnGz1gi6o8w6gqU8ldcIt2GTnXzMWuf3p2aSrf2d1r/O7Pjb2CB6gUM6kUM9mb3N7NK7RcluG4YOyLgUkDdTqie+fbaGx+Kur1cHX/UH1zUOWORwmdYb929pmwZuf7qy6VKpXJBV1G5uSLqky++lzY9x1vHvdULJ1jHVLVlZd5n5VyR45jLicBuCPhQgADLh4NGkxFAAAEEEEAAAQQQQAABBBBAAIF4EiDAiqfRpq8IIIAAAggggAACCCCAAAIIIICADwUIsHw4aDQZAQQQQAABBBBAAAEEEEAAAQQQiCcBAqx4Gm36igACCCCAAAIIIIAAAggggAACCPhQgADLh4NGkxFAAAEEEEAAAQQQQAABBBBAAIF4EiDAiqfRpq8IIIAAAggggAACCCCAAAIIIICADwUIsHw4aDQZAQQQQAABBBBAAAEEEEAAAQQQiCcBAqx4Gm36igACCCCAAAIIIIAAAggggAACCPhQgADLh4NGkxFAAAEEEEAAAQQQQAABBBBAAIF4EiDAiqfRpq8IIIAAAggggAACCCCAAAIIIICADwUIsHw4aDQZAQQQQAABBBBAAAEEEEAAAQQQiCcBAqx4Gm36igACCCCAAAIIIIAAAggggAACCPhQgADLh4NGkxFAAAEEEEAAAQQQQAABBBBAAIF4EiDAiqfRpq8IIIAAAggggAACCCCAAAIIIICADwUIsHw4aDQZAQQQQAABBBBAAAEEEEAAAQQQiCcBAqx4Gm36igACCCCAAAIIIIAAAggggAACCPhQgADLh4NGkxFAAAEEEEAAAQQQQAABBBBAAIF4EiDAiqfRpq8IIIAAAggggAACCCCAAAIIIICADwUIsHw4aDQZAQQQQAABBBBAAAEEEEAAAQQQiCcBAqx4Gm36igACCCCAAAIIIIAAAggggAACCPhQgADLh4NGkxFAAAEEEEAAAQQQQAABBBBAAIF4EiDAiqfRpq8IIIAAAggggAACCCCAAAIIIICADwUIsHw4aDQZAQQQQAABBBBAAAEEEEAAAQQQiCcBAqx4Gm36igACCCCAAAIIIIAAAggggAACCPhQgADLh4NGkxFAAAEEEEAAAQQQQAABBBBAAIF4EiDAiqfRpq8IIIAAAggggAACCCCAAAIIIICADwUIsHw4aDQZAQQQQAABBBBAAAEEEEAAAQQQiCcBAqx4Gm36igACCCCAAAIIIIAAAggggAACCPhQgADLh4NGkxFAAAEEEEAAAQQQQAABBBBAAIF4EiDAiqfRpq8IIIAAAggggAACCCCAAAIIIICADwUIsHw4aDQZAQQQQAABBBBAAAEEEEAAAQQQiCcBAqx4Gm36igACCCCAAAIIIIAAAggggAACCPhQgADLh4NGkxFAAAEEEEAAAQQQQAABBBBAAIF4EiDAiqfRpq8IIIAAAggggAACCCCAAAIIIICADwUIsHw4aDQZAQQQQAABBBBAAAEEEEAAAQQQiCcBAqx4Gm36igACCCCAAAIIIIAAAggggAACCPhQgADLh4NGkxFAAAEEEEAAgUCB3X/vl9ua9rV+9MLC8XLZxecDhAACCCCAAAIIxJQAAVZMDSedQQABBBBAAIF4FCDAisdRp88IIIAAAgjElwABVnyNN71FAAEEEEAAgRgUIMCKwUGlSwgggAACCCAQJECAxYRAAAEEEEAAAQR8LkCA5fMBpPkIIIAAAggg4ChAgOVIxA4IIIAAAggggIC3BQiwvD0+tA4BBBBAAAEEsi9AgJV9Q0pAAAEEEEAAAQSMChBgGeWncgQQQAABBBDIAQECrBxApgoEEEAAAQQQOCWQmpoqL214T15Y/5Z8/d1PcvCfQ1K0SEGpWP4yad2kltxY8co0KvW76s36yZGjx2T0gHuk5Z23Z8rYusc4+fTLHdKwdhWZ9EDXoH0PHT4qS59/TV5780P58Zc/5djxE3Lu2cXkpuvLScdW9aV0qRJRHSLVz9fe/EjWbnhHtn/1P9m7/x8pcHo+Offs4nJlmdLSolF1q8+h25ff/iBPr9ooH332jezavU9y5RI5t8SZUuX6stKued0M2+k2wMpu+erthuoth6p/L7zylix7YaPs+OE3a4wGdmspnRIbRNWRwhBAAAEEEEAAAVuAAIu5gAACCCCAAAI5InDo8BHpPWKWvPfRl1Z9+fPllUIFC8jefQflREqK9TMVgKggxN6GPzhfVq9/WypcdYksnzsqw3b+/Nsuqdd6iPX7x6cMliqVyqXtu/On36XL4Cny+597rJ8VLlhAEhLyyJ69B6z/zps3QSaP6Cq1q1WKioMK3vqNnpPWz3CFjh/aWZrUvzXtVyoQmjH/WXn86ZfSfnZGgfxy8uRJOXzkmPWzPLlzy4j+7aRFw+rpinQKsKJVfvGiheSN52fJsInzZO2Gd4PaMWNsr6gZRmUgKAQBBBBAAAEEYkqAACumhpPOIIAAAggg4F2BXsNnyuvvbJPzzj1LRvW/R6pWKie5c58m6uoodSXPjPkr5eTJVEka1CEtpPl4+3fSrvcEq1Nrnpwgl15UKmwH5y5eLXMWrJJzzi4mG1ZMk9NOy2Xtp8KkJp1GyO+7/pbKFa+S+3u3kcsvOd/6nbrCaeqjK6wgRoVYKx4dnfa7rCqqoOi+wVPlnQ8/l3x5E6Rb+zulfo3Kct45Z8mBf/4VFaZt2bpd7m19h6iAyt7mL11rBVhq69Kmodx9V02rL2r74ec/RP1eXfGktmlJPaVu9RuCmugUYEWr/Fy5ckmPexpL8pMvSMNaVaRdizpyYalzrDDw7DOLBvUpq4Z8DgEEEEAAAQQQCCdAgMW8QAABBBBAAAHtAiq4UgFWQp7c8tzjY8MGUeOmL5blqzfJmcUKy4YVU61QSW2N2g+T//30u3RMrC+DurUK29aG7YdZ4ZAKf/p1aZ62z+TkZbJo5XopXeoc69Y3FSoFbiowa9p5pHy38xepcct1Mnt8n2xZrN/8vgxIesQqY/6UQVK1UnnH8v78a6/USRxkXYU2uHuidGhVL+xnxk5fLCtWb5Iihc+Qjc9Ml9Pz503bL7MAK9rlq0p7dmxiBVlsCCCAAAIIIIBATgkQYOWUNPUggAACCCAQxwLdhk6TLVs/k+YNb5MxgzqGlVABlAqi1LZg+lDriim1qQBKBVFnFS8iG1dOs26lC9y++OYHadk1yfrR2sUPysWlS1r/WwVCN9/ZS/7597BMGtHVumIo3PbMmtdlzLRF1m2FW1+amy7kimTYOg+cbN06WOPmijJ7Ql9XH3108RqZveB56wqmjc9Ms65KC7cdUM8Ea9pXjh47LqG3IGYWYEW7/ApXXizL5o4SdTUWGwIIIIAAAgggkFMCBFg5JU09CCCAAAIIxKmAusqp8h3dRT0DK7Mg6fiJFLmuzr3WbYTD+7SRNk1rW2L79v8j1Zv3k+PHT0jyxH5Sveq1QZL2VVZXl71Ulj0yMu1327/eKYndxlj//fqzM6TEWUXDjsDWbV9Jp/6TrN+tWjA+y7cRpqSclMp3dLOe2bMd2QAAD1dJREFUWTVuSCdp2qCaqxG/d9DD8u6HX8hd9W6RCfffm+ln7H1DH1SfWYAV7fIDb/F01UF2QgABBBBAAAEEoiBAgBUFRIpAAAEEEEAAgYwF/tqzz3qbYCRb6C1qg8bOlXWbtkqtW6+XmeN6pxWlwq4aLfqLqmNU//bSqnGNtN+9tPE9GTLu0UiqlUUzh0mla66I6DP2zoH9XDL7AbmuQvq3DIYruH6bIfLTr7uk773N5L62jTKte8LMJdZbCq8tV0aWJo9I2zezACva5auQUIWFbAgggAACCCCAQE4KEGDlpDZ1IYAAAgggEIcCgbcGXnTBua5u0Wt15+1BYdR7H38pnQdMtm4f3Pz8DClWpJAlaf9c3f73xvMzpUihM9KE7VsD1QPdL7v41IPbnbaxQzpJ+Ssudtot7O8D+6me83VlmdKuyrmtaV9RAdT9vVpLu+Z1Mv3MtMeekSeWvSxlLi4lqxeeeri92jILsHSX76qT7IQAAggggAACCGRTgAArm4B8HAEEEEAAAQQyF/jjr7+lZosB1k6RXJkUWKp6u1+DtkOtK5WG9W4jbZudur1w5OQF8vzLb0rd6jfKtKQeQQ158dV35P6J86zQ65MNj2t/ZpN602Gtlqf6+fQjI+Ual1cpNe74gHy/89eIrsBSZas67C2zAEt3+cx/BBBAAAEEEEAgJwQIsHJCmToQQAABBBCIYwH1bKsbG3STY8eOS3aenzR/6VqZMf9Z6wqpFY+Ntp6JdWuTPnLwn0My96H+Uu2ma4KUP/rsW2nfZ6L1s5efmiQXnn+O1lFQ/VP9VP2dOKyLNK57s6v67Afcu3kGVpdBU+SdDz+XO2reJJNHdnMVYOku31Un2QkBBBBAAAEEEMimAAFWNgH5OAIIIIAAAgg4C6jb/9TtflUqlZPHpwx2/kCYPdRVRupKLvV2wfXLHpYdP/wmPYZNt95OuGnl9HRv71OBUpVGPeXI0WOurm7KUqNCPtSm53j55IvvpW71G2RaUk9XRapnWqlnW2XUD7sQ9TbFak36WG8hHD2wg7RsVN1VgKW7fFedZCcEEEAAAQQQQCCbAgRY2QTk4wgggAACCCDgLPDamx9Kv1FzrB2njOou9WtUdv5QmD36jpwtG7Z8JIN7JFq33a1at0U6tKong7snhi1v4qynZOnzG6TgGafLikdHi3oGl87tuZfelFEPL7BuV1wye7hULO/8IPe/9x2UuncPtt7SOKhbK+mYWD9sEx+cvVSeeu41OaNAfiuwU32yt8xuIdRdvk5PykYAAQQQQAABBGwBAizmAgIIIIAAAgjkiIAdPqmHqndoWV+aN7zNuq1PPd9q7/5/5Nff/5ItWz+Tb3b8HPSmwcDGbdm6XboNnWpdyfX1dz/J3v0H5YWF4zN8SPv+g/9Ky/uS5Jff/5Iihc+QPp2bSZ3bbpDiRQtZV3Kp4EddybX5nW1StHBBUW8/zM6mbh9s13uCbP/qf1bANLBrS6lXo7IULljAunLq1z92y9vvb7eCtFsrX51WVWDw1bVdI2nXrI4ULVLQ+v2u3ftk3lMvyrIXNlr/PX5oZ2lS/9agZmYWYKkddZefHTM+iwACCCCAAAIIuBEgwHKjxD4IIIAAAgggkG0BdSvfiElPyLpNW9PKUg9YV5sKk+ztgvNKyCtPTw5b38mTqVIncaCoB6ar7arLLpRn54/JtG0qNOr9wEwrGLO3fHkT5NjxE1Z4Zm9NG1STcUM6ZbufKkzqOWyGfP7NzrSy8ufLa93KaG9De94t7VvUDaprybOvysNzl0tKyknrCi51S+HJkydlz94D1n4q+BvYtZV1xVno5hRgqf11l59tOApAAAEEEEAAAQQyESDAYnoggAACCCCAQI4KbN32lfXmwG3bv7OugFLhlbpaqXSpc+TGa6+UhrWryuWXnJ9hmx5ZtFqSF66yfh/4RsLMOqHqWPvau7J+8wfy5bc/yL79/0iuXCJFixSSMheXkpsrlZeGtavI2WcWjYqFCqHWvPq2vPL6+1Z9Bw4ekjPOyC8lziwmVSuVk7ub1BQV1IVuO378TVas3iTvffSl/L5rjxWwnVviTKlc8SrrzYsXly4Ztn1uAiz1Qd3lRwWPQhBAAAEEEEAAgTACBFhMCwQQQAABBBDwlYB9G6G6emvz8zOkWJFCvmo/jUUAAQQQQAABBBCIXIAAK3IzPoEAAggggAACBgWGTnjMupqqxi3XyezxfQy2hKoRQAABBBBAAAEEckqAACunpKkHAQQQQAABBLItoB7aXrPFAOuB6HMm9pXbq1bMdpmhBXz02bcyfd7KiMrtfk9jufmG8hF9hp0RQAABBBBAAAEE3AsQYLm3Yk8EEEAAAQQQMCwwKXmZLF65XkqXKiEvLZlkPdg82tvGLR9Ln5GzIir2oeH3SaM6VSP6DDsjgAACCCCAAAIIuBcgwHJvxZ4IIIAAAgggYEjg+PETsnDFOpn5+HNWC6aP6SV1bqtkqDVUiwACCCCAAAIIIJDTAgRYOS1OfQgggAACCCDgSkDdJli5QTcpXqyw/L33gBw/kWJ9rk3TWjK8T1tXZbATAggggAACCCCAQGwIEGDFxjjSCwQQQAABBGJOQF111azLaPlj1x45cSJFLr/0AmnTpBa36sXcSNMhBBBAAAEEEEDAWYAAy9mIPRBAAAEEEEAAAQQQQAABBBBAAAEEDAoQYBnEp2oEEEAAAQQQQAABBBBAAAEEEEAAAWcBAixnI/ZAAAEEEEAAAQQQQAABBBBAAAEEEDAoQIBlEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAoAABlkF8qkYAAQQQQAABBBBAAAEEEEAAAQQQcBYgwHI2Yg8EEEAAAQQQQAABBBBAAAEEEEAAAYMCBFgG8akaAQQQQAABBBBAAAEEEEAAAQQQQMBZgADL2Yg9EEAAAQQQQAABBBBAAAEEEEAAAQQMChBgGcSnagQQQAABBBBAAAEEEEAAAQQQQAABZwECLGcj9kAAAQQQQAABBBBAAAEEEEAAAQQQMChAgGUQn6oRQAABBBBAAAEEEEAAAQQQQAABBJwFCLCcjdgDAQQQQAABBBBAAAEEEEAAAQQQQMCgAAGWQXyqRgABBBBAAAEEEEAAAQQQQAABBBBwFiDAcjZiDwQQQAABBBBAAAEEEEAAAQQQQAABgwIEWAbxqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBAwKEGAZxKdqBBBAAAEEEEAAAQQQQAABBBBAAAFnAQIsZyP2QAABBBBAAAEEEEAAAQQQQAABBBAwKECAZRCfqhFAAAEEEEAAAQQQQAABBBBAAAEEnAUIsJyN2AMBBBBAAAEEEEAAAQQQQAABBBBAwKAAAZZBfKpGAAEEEEAAAQQQQAABBBBAAAEEEHAWIMByNmIPBBBAAAEEEEAAAQQQQAABBBBAAAGDAgRYBvGpGgEEEEAAAQQQQAABBBBAAAEEEEDAWYAAy9mIPRBAAAEEEEAAAQQQQAABBBBAAAEEDAoQYBnEp2oEEEAAAQQQQAABBBBAAAEEEEAAAWcBAixnI/ZAAAEEEEAAAQQQQAABBBBAAAEEEDAoQIBlEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAoAABlkF8qkYAAQQQQAABBBBAAAEEEEAAAQQQcBYgwHI2Yg8EEEAAAQQQQAABBBBAAAEEEEAAAYMCBFgG8akaAQQQQAABBBBAAAEEEEAAAQQQQMBZgADL2Yg9EEAAAQQQQAABBBBAAAEEEEAAAQQMChBgGcSnagQQQAABBBBAAAEEEEAAAQQQQAABZwECLGcj9kAAAQQQQAABBBBAAAEEEEAAAQQQMChAgGUQn6oRQAABBBBAAAEEEEAAAQQQQAABBJwFCLCcjdgDAQQQQAABBBBAAAEEEEAAAQQQQMCgAAGWQXyqRgABBBBAAAEEEEAAAQQQQAABBBBwFiDAcjZiDwQQQAABBBBAAAEEEEAAAQQQQAABgwIEWAbxqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBAwKEGAZxKdqBBBAAAEEEEAAAQQQQAABBBBAAAFnAQIsZyP2QAABBBBAAAEEEEAAAQQQQAABBBAwKECAZRCfqhFAAAEEEEAAAQQQQAABBBBAAAEEnAUIsJyN2AMBBBBAAAEEEEAAAQQQQAABBBBAwKAAAZZBfKpGAAEEEEAAAQQQQAABBBBAAAEEEHAWIMByNmIPBBBAAAEEEEAAAQQQQAABBBBAAAGDAgRYBvGpGgEEEEAAAQQQQAABBBBAAAEEEEDAWYAAy9mIPRBAAAEEEEAAAQQQQAABBBBAAAEEDAoQYBnEp2oEEEAAAQQQQAABBBBAAAEEEEAAAWcBAixnI/ZAAAEEEEAAAQQQQAABBBBAAAEEEDAoQIBlEJ+qEUAAAQQQQAABBBBAAAEEEEAAAQScBQiwnI3YAwEEEEAAAQQQQAABBBBAAAEEEEDAoAABlkF8qkYAAQQQQAABBBBAAAEEEEAAAQQQcBYgwHI2Yg8EEEAAAQQQQAABBBBAAAEEEEAAAYMCBFgG8akaAQQQQAABBBBAAAEEEEAAAQQQQMBZgADL2Yg9EEAAAQQQQAABBBBAAAEEEEAAAQQMChBgGcSnagQQQAABBBBAAAEEEEAAAQQQQAABZwECLGcj9kAAAQQQQAABBBBAAAEEEEAAAQQQMChAgGUQn6oRQAABBBBAAAEEEEAAAQQQQAABBJwFCLCcjdgDAQQQQAABBBBAAAEEEEAAAQQQQMCgAAGWQXyqRgABBBBAAAEEEEAAAQQQQAABBBBwFiDAcjZiDwQQQAABBBBAAAEEEEAAAQQQQAABgwIEWAbxqRoBBBBAAAEEEEAAAQQQQAABBBBAwFmAAMvZiD0QQAABBBBAAAEEEEAAAQQQQAABBAwKEGAZxKdqBBBAAAEEEEAAAQQQQAABBBBAAAFnAQIsZyP2QAABBBBAAAEEEEAAAQQQQAABBBAwKECAZRCfqhFAAAEEEEAAAQQQQAABBBBAAAEEnAUIsJyN2AMBBBBAAAEEEEAAAQQQQAABBBBAwKAAAZZBfKpGAAEEEEAAAQQQQAABBBBAAAEEEHAW+D+FKYS6ZzrJvwAAAABJRU5ErkJggg==", "text/plain": [ "" ] @@ -5265,7 +5551,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdCbhN5d//8c/ex5x5KimkgUQhESGZQiQqlJKhIhUpUpIISSkRlbmUElGkIiU0aFbR9Csp0SCZZ/bez3WvnnOc7exzzj7D3nsN73Vd/+v/dM4avvfre+dXn+51L18oFAqJAwEEEEAAAQQQQAABBBBAAAEEEEAAAZsK+AiwbNoZykIAAQQQQAABBBBAAAEEEEAAAQQQsAQIsJgICCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOZBQgT/+PRDx+SWL5FOBfEnavuewDh4OJLRGHo6AEShXsqB8PunP7QcUCmGCgD0ECuVPUvHC+bT/UEA79x62R1FUgUAqgZNLFbT+Kr3/vQcLgUQKFD8hrwoVyGP9+Wn+HOVAIDsCyX/OZedarkEAgawJEGBlzYuzc1mAACuXQbldzAQIsGJGy41zIECAlQM8Lo2LAAFWXJh5SDYFCLCyCcdlYQIEWEwIBOInQIAVP2ueFEGAAItp4RQBAiyndMpbdRJgeavfThwtAZYTu+admgmwvNPrWI6UACuWutwbgXABAixmREIFCLASys/DsyBAgJUFLE6NmwABVtyoeVA2BQiwsgnHZXERIMCKC7PrH0KA5foWM0AbCRBg2agZXiyFAMuLXXfmmAmwnNk3t1dNgOX2Djt/fARYzu+hm0dAgOXm7sZvbARY8bPmSQgQYDEHEipAgJVQfh6eBQECrCxgcWrcBAiw4kbNg7IpQICVTTgui4sAAVZcmF3/EAIs17eYAdpIgADLRs3wYikEWF7sujPHTIDlzL65vWoCLLd32PnjI8Byfg/dPAICLDd3N35jI8CKnzVPQoAAizmQUAECrITy8/AsCBBgZQGLU+MmQIAVN2oelE0BAqxswnFZXAQIsOLC7PqHEGC5vsUM0EYCBFg2aoYXSyHA8mLXnTlmAixn9s3tVRNgub3Dzh8fAZbze+jmERBgubm78RsbAVb8rHkSAgRYzIGEChBgJZSfh2dBgAArC1icGjcBAqy4UfOgbAoQYGUTjsviIkCAFRdm1z+EAMv1LWaANhIgwLJRM7xYCgGWF7vuzDETYDmzb26vmgDL7R12/vgIsJzfQzePgADLzd2N39gIsOJnzZMQIMBiDiRUgAArofw8PAsCBFhZwOLUuAkQYMWNmgdlU4AAK5twXBYXAQKsuDC7/iEEWK5vMQO0kQABlo2a4cVSCLC82HVnjpkAy5l9c3vVBFhu77Dzx0eA5fweunkEBFhu7m78xkaAFT9rnoQAARZzIKECBFgJ5efhWRAgwMoCFqfGTYAAK27UPCibAgRY2YTjsrgIEGDFhdn1DyHAcn2LGaCNBAiwbNQML5ZCgOXFrjtzzARYzuyb26smwHJ7h50/PgIs5/fQzSMgwHJzd+M3NgKs+FnzJAQIsJgDCRUgwEooPw/PggABVhawODVuAgRYcaPmQdkUIMDKJhyXxUWAACsuzK5/CAGWc1t82fX36Nff/9KQftepa8fmzh2IhyonwPJQs+04VAIsO3aFmiIJEGAxL+woQIBlx65QU2oBAizmg50FCLDs3B3n1EaA5ZxeHV8pAZbzekeA5byeuapiAixXtdPVgyHAcnV7HTs4AizHts4zhRNgeabVjhwoAZYj22a7ogmwbNeSqAsiwIqayjYnEmDZphXeLIQAy5t9d+KoCbCc2DX310yA5f4eO32EBFhO76C76yfAcnd/4zU6Aqx4Sef+cwiwct801nckwIq1MPfPUIAAiwniFAECLKd0yn11hkLSV9/49fY7Pu3b53PfABkRAggggAACDhaYPiGvg6v3dukEWM7rPwGW83rmqooJsFzVTlcPhgDL1e217eA2b/Fp0et+/b2V4Mq2TaIwBBBAAAFPCxBgObf9BFjO6x0BlvN65qqKCbBc1U5XD4YAy9Xttd3gdu/2aelyv9Z/S3Blu+ZQEAIIIIAAAqkE4hFgrV3/k1589R198c3/tH3HbhUqWEBVzjhVl7e8yPp/SUn+lIqu7TtSX3+3Qa2b1tO4Ybdk2Ksnpr2iaXOW6KQyJbX85cfk9x/7545QKKQ33vlYry37QD/8tEl79u5X8WKFVav6mbq2Q3PVrVU11+fBtz/+qrmLVujzr3/UP//ukM/n04llSuq0CuXUsnEdtWvZIM0z//l3p55/5W19+Nl6bf7zHx06fESlihdV7XPP1NVtL8mwzmgCrNy4/0eLJ6tY0ROs/k194XWt+/4X7dqzT43qnatnxt6Z645uviEBlpu764CxEWA5oEmUaAkQYDER4iFw5Ij0/oc+rVydFI/H8QwEEEAAAQQQyKFArAOs8VPna/qLb1hV5klKUoniRaww6eChw9bPLqxdTRNH9dMJhQpYf/3qW+9r6NgZypcvr1YtnKCihQtFHKEJqFp0Gag///5XN1/XTv1vvDLlvP0HDur2oRP18RffWT8rkD+fihQupB079+hoIGD9rGeXNrqrT6cc6v13uanlsSnzNGvuW+nezwR1Y4bcFPb75as/1z2jp6ZY5M+XV3nz5tHefQdSzrvyssYaducNlt3xR2YBVm7df/FzD+mzr37QqCeet8aafHTt2FxD+l2XK4ZeuQkBllc6bdNxEmDZtDGUlUaAAItJEWuBb9b79fZyn3bvibzqqmrVoNq0DKl48WP/4MMm7rHuCvfPqQCbuOdUkOtjKcAm7rHU9c69Y7mJ+7PzlurRp+bKBDOD+nbRFa0aqWCBfAoEglq15ivd/+hM7dy1V5c1u1CP3N/HQj9w8LAu7thP+/Yf1P0DuqlL+6YRm2FWA3Xr95D1uzeef1iVTj0p5bzbhkzQex+t1cknldawATeoQZ1zrFVe+w8c0kuvvasnps1XMBjS8IHddXXbJjlu9pTnX9fEGQus+3Ro3Ugm2Dm94sk6Ggjq9z+2as3n36pOzSqqXuW0lGd9ue5/uqH/GKuOSxrU0u29OqrK6adav9++c48Wvrlak2Yu1JGjAV1zRTMNveP6NHVmFGDl5v1v7X6FnnpukapXqaTbenZUjaqVZULCPHmSVKZU8Rz7eekGBFhe6rYNx0qAZcOmUFJEAQIsJkasBP7406fX3/Rry5bIwVWZMiG1axNUpYrHgqvkWgiwYtUV7ptbAgRYuSXJfWIhQIAVC1Xv3TNWAda/O3areee7dPjwET04qKfMSqLjj2UrP9Wdw5+yfrxg+oOqekYF6/9+cPxsvbxohRX4vDzlgYhNGfHYs5r3+kqdV+10vfjU/SnnmODKBFh58yRZ9zy9Uvk0148cP9t61a9UiaJ65+XHrNVe2T22btupFp3vslZ29b6+nfr1OrYSLKN7Xt79Pm34dYsVXj05up/1umFGPnOfHqYaZ1cOOyWjACs3728eetEF1TX5oTusFWIc2RcgwMq+HVfmggABVi4gcou4CBBgxYXZUw/Zu9enZe/49PU3x/atSA1QqGBIzZqGVKd2UBH+mcw6lQDLU1PGkYMlwHJk2zxTNAGWZ1od04HGKsCaOfdNPfbMPFU85US9+cLYdMdwccf+2rZ9l27p1l639exgnff9T7/pqpv+C64WzRqtM04LD6HMqqSLO/Sz9mF64K7u6tTu2CqqPoMf1/uffKOr2l6sEQN7RHzuxk1/qm23e63fzRw/WPVqnZ1t4+TVVyWKFdF7r4yPKuAxq6Ouv/2/1WPm9TyzWiu945q+I/XNdxusvcKOfwUxvQArt+9vVs29PfcxlSxeJNtOXPifAAEWMyGhAgRYCeXn4VkQIMDKAhanZihgto74cE2SVr/v0+EjaU/1+6W6dYJq1iSk/AXSrrpKfQUBFpPN7gIEWHbvkLfrI8Dydv9za/SxCrCiCZLMGMxrgOZ1wOaNzteEkbenDOvqm4fru//9qu6dWlmvH6Y+kldZHb9Plnkdr95lt1ivt40d2lttm9ePyGQCsNotb7Re3xvSr6u6dmyRbc6bB42zNmA3G7Q/POTmqO5jNkKfMH2B9Yrj8rnjMrwm+dwTy5TQivnjw85NL8DK7funfsUzqgFyUroCBFhMjjQCF7bta20MmN5h/iAzf6BFOsymga8sWaWff92iQCCgiqecpCtaNbS+VJH66xjJ1xJgMQGdIkCA5ZRO2bvOb7/3a9lyn3bujPy6YOXTgmp3WUilSmYcXCWPkgDL3v2mOokAi1lgZwECLDt3xzm1xSrAanPdYP22+e+oIcxXAWeNvyfl/HmL39OIx5+zXvNb8cr4sE3M7xrxlJa+96laXVJXjz3QN+Ua88W9JlfeEfUzzYm39uigvje0z9I1qU9OHqd5ddC8QhjNMezRmVrwxmrVr3OOpo8blOElb6/6XAMemGSd89U7M6xXI5OP9AKs3L7/gJuv1o3XXhbN0DgnEwECLKZImIBJ02s276VCBfNHfN/ZnNyobg3rD6rjj3sfmqbFb39o/aFQq8aZypsnj/UJV/MViIZ1a2jymDvSfP2BAIsJ6BQBAiyndMqedf71t09L3vBr0+bIwVWpUkG1uVQ684xglgZAgJUlLk5OgAABVgLQeWTUAgRYUVNxYgYCsQqwkl8NLFu6uMzrdZkd51Q5TSPv7plymtnE3WzmbjZ1f3J0fzW9qJb1O7O6qtEV/awv9z0z9k41qnduyjWpXw00m7qbzeMzOzpffok6p7NRfGbXmt8nj/Oe267V9Ve1jOYSDXzwab214hM1bVhbT47ql+E173+yTn0GP2ad8+GiSSperHDK+ekFWLG+f1SD5KSIAgRYTIwwgeTUvVG9Gnpm7F1R65jgygRYlSuU09Rxg1SubMmUPyDvGDbJWhZ6e8+O6tPt8rB7EmBFTcyJCRYgwEpwAxz6+P0HfHr7HZ/WfuVXqq8mp4zGvCLY9OKQ6l4QVFLkrbAyHDkBlkMnhofKJsDyULMdOFQCLAc2zYYlxyrAanXt3dYX+LKyMul4nqFjZ8i8IdOsUW1NHPlf0PP62x/pnoemqnTJYtYrdanfkvnrn+1qdvWd1nnPP3mfatc4M+bil14zSJv//Ed33HSVburaNqrnjZ7wvF589d2sr8BaPj1sj630AqxY3z+qQXISARZzIHOBH37epCtvHGa99jf6nhszv+D/z7iix1D9tHGz5kweqprnnBF23Y5de6w/CM0XF1YtnKAC+fOl/J4AK2piTkywAAFWghvgsMcHA9KaT5O0cpV06HDaVVdmU/bzawfVomlIBQtG97pgJAICLIdNDA+WS4DlwaY7aMgEWA5qlo1LjVWA1XPAWH2y9nvlZP8k8zbMtX1HWm/IrH7tSRUtXEjJe2v16NJaA/t0DpM1b+PUbdPH+vLh8IHddXXbY5u7x6oFN/Qfo8+//lEdWjfSqMG9onpM8gb30eyBNW3OEj0x7RWVKVVcKxc8EXb/9AKsWN8/qkFyEgEWcyBzgTWff6sbBz6qXte00Z29O2V+gaQ//tqmFl0GqkL5snprziMRr7lz+GQtW/lZ2PJVcyIBVlTEnGQDAQIsGzTBISX88KNfS9/2afuOyK8LVqwQ0uVtgipTNvvBVTIFAZZDJoWHyyTA8nDzHTB0AiwHNMkBJcYqwHpm9mI9OXOhFTq9O3+8tcVLdo7khQYmHDKv3DW+op+OBgIRv05o7t/rzkf08ZffRbW6KTv1HH+NCZdMyBRpRVh699/w6xZd3v0+69eRvrKY+rqut47SV9/+rDbN6unR+2+JKsCK9f1zw82r9+AVQq92Pp1xv/Hux7p75DO6+9ZrdMPVl0al8+77X6rf/RPVtkV9jb0v8ubuz81fpkcmv2QtCzXLQ5MPAqyoiDnJBgIEWDZogs1L+GebX4uX+PTbpsjBVfHiIbVuGdLZVbO2z1VGwybAsvmkoDw2cWcO2FqAAMvW7XFMcbEKsMzWLmaRwJEjR609poYN6JYtkzkLl+uhiXPUpEFNtbz4Ag0ZM03nVKmkeVOGR7zf8tWfy2wBY45xw25R66b1svXcaC8yG9WbjdzNkZXNzq/pO1LffLfBGtek0f3lM8vbjztWfPClbh860frps0/cowtqVg07I70VWOakWN8/Wh/OCxcgwGJGhAk8/8rbenjSi1YYZZZZ7tq9T+bPgrKlSqhOzSqqV+vsNH84PPvyUj369FzrqxHmHe1Ixzvvf6H+9z+pS5tcoMeH35pyCgEWE9ApAgRYTulU/Os8cMCnd1f69Nnnkfe5ypcvpIsbSg3qB5R07MM3uVIoAVauMHKTGAqwAiuGuNw6xwIEWDkm5AY69rXVWGAk/7uZubdZPXXTtZfJbNZu9q0yH8r6a+t26zXDFR9+qYeH3Gz9+9vxx649+6wvC+ZJ8qturbO18qOvNKTfderasXm6JZt/bzP//ub3+9S9U2td1fZiVTzlRIVCIe3YtVdb/vxH73/yjX7c8LsmjLw9x0MfO/klzZ6/zLpP986tdF3HFip3YikFAkFt/Xenvvj6R+3eu1/XdmiW8qyfN27RVTc/YAV8zRudb4VfZuN5c5iN6l9b+qHGPT1Xhw4f0eUtL9KYITelqTOjACvW988xmkdvQIDl0canN+zklVLp/b7qGRWsT60m/+Fgzps081U9PXuR9Q61eZc60mH+YDXvcV94fjXNeOzulFP+3X044vlFCuVRvjx+7TlwVIeP5N5qBdqNQHYFShX9b++27XsOR9yMO7v35TrnCphN2T/+zGzSbv5BKfI4zq8VUpuWPhUunPPXBSM9IX9evwoXzKNDR4Lae+CoczGp3LUCyX92pve/964dOANzhEDhAknKny/J+vPT/DnKgUB2BJL/nMvOtdFcY/ZjGj91voLB//5Zwqw0MnsLm32qUh/vzn9cJ5X570Naxx+DR0/RkuVrrB+b/bBWLrc7bAQAACAASURBVJgQ9jW+4883Xyg0G8CbL/0lH3n+/7/CmdcPk49TTy6rpS9G3kImmrEln2PuOXzcs9aG88lHvnx5rXDKhGbmMF9RNF9TTH18uvYHma1qzJ7L5jBfGDRfTvx3+27rNUlzmBVkZm/nSF9UzCjAMtfG+v5ZMeLc/wQIsJgJaQQ+++oHFSlcSGZTPPOu9Z69+7Xu+1806+W3rL+JTbL/2sxRKX/oPfbMPJk/WO+9vauuu7JFRNG163/SdbeNVq3qZ+qFSf+9r8yBAAIIOFXgl99CevbFgP74K3IwdVpFn7p1TtKp5SO/TujUcVM3AggggAACCMRfYNOWvzVn4TvW3lR//PWvDh46pAL58+vkk0pZH9Bq0biOLrqgesTX6Ey1ZpN0s1m6OVJ/kTCzkZhFCAvfXK21637Stu27rFCo8AkFVaH8iapbs6ratmigsyqfktltov69+XfN+Uve++95O3Yrb5481t5Y51arrE7tLtH5556V5l4mvHplySqZVx83//GP9h88pFLFi6pm9TN05WWN1aBO9XSfn1mAZS6M9f2jxuFES4AAi4kQtYBZwnnTwEetZap9ul2u23t2tK7N0gqs2tU04/FjK7DS+69deZN81pLVI4GggvwHsah7xImxEzArXcxhVgTGZi1N7GrnzrknsGevtGBxUJ99GXkWFC8mdWzn1/k14xNcJfllvRIQCIZ0NMDMzL1Oc6fcEkj+s5PVLbklyn1yUyBPkk9Jfp+OBoIK8M+buUnrqXsl/zln50GbV+rqXXaLtYrLrGIyq5k4EHCiAAGWE7uWwJrf+2itbhsyQbVrnKXnnxxiVWLeVzbvLUezB5Z5Pzn1e9LsgZXAZvLoLAmwB1aWuFx58gcfJem9lT4dSedNvSaNA2rcMKQ8eeI3fPbAip81T8qeAHtgZc+Nq+IjwB5Y8XF2+1NitYl7broteGO1hj06UyWKFdF7C56wXiPkQMCJAgRYTuxaAmv+3y+b1aHnUGup6KszR1mVrFrztfreOz6qrxD27NJGd/XplDICAqwENpNHZ0mAACtLXK46+ZeNfi1+w6ft2yOvqqpWNag2rUIqWjT+K6AIsFw11Vw5GAIsV7bVNYMiwHJNKxM6ECcEWJ17j9D6HzdaX5k3X5vP7cOs8Lp50GNZuq35euCN116WpWs4GQECLOZAlgTWfP6tbhz4qPUu8bRxA61rzfvQF3fsrwrly+qtOZE38TOb6y1b+VmaT7ESYGWJn5MTKECAlUD8BD16506f3lzm0w8//vf66PFH6VJBXXF5SBVOjX9wlVwLAVaCJgePjVqAACtqKk5MgAABVgLQXfhIuwdYKz5cq9vvm2B9uXDJ7Ietf2fL7cN8IbB+275Zum3HNo018u6eWbqGkxEgwGIOZEngvoen67WlH1ifKU2dmJsN2s1G7XMmD7U2Ekx9mI3vml19p4KhkFa/OlFFCxdK+TUBVpb4OTmBAgRYCcSP86OPHpVWv+/T+x8lKdWHdlKqKFAgpGZNQrqgTlD+yNlW3ComwIobNQ/KpgABVjbhuCwuAgRYcWF2/UPsFmCZr/aZLxWaY8UHX+reMdO0d98BXduhme7rf73r+8EA3S1AgOXu/mZ5dE9Me0XtWjbQ6RVPDrvWpOpTX3hds+a+ZX0JYsnsMdaXCpOP9z/5Rn0GP67KFcpp6rhBKlf2v0+4muWkAx6YrA8+XaeuHZtrSL/rwu5LgJXlFnFBggQIsBIEH+fH/vSzX4uW+LR7d+TXBWvXCqpls5AKFUrcqqvUJARYcZ4gPC7LAgRYWSbjgjgKEGDFEdvFj7JbgGUWFvz+x1btP3DI+ncxc9Q4u7Jmjb9HBQvkc3EnGJoXBAiwvNDlLIzRfJ3CJPRlSxdX5Qonq2CB/Pp72w5t3PSHDhw8rBPLlNBTYwao6hkV0tx13DMvWwFX3rx5VKv6GcqXN6++/m6D9uzdr2pnVdJzE+5VoYL5CbCy0A9OtY8AAZZ9ehGrSjb84tfsOX6FImRTFU4JqX3boMqUtUdwlWxAgBWr2cB9c0uAACu3JLlPLAQIsGKh6r172i3Auuehqfrgk3Xau2+/Tj6ptNq2aKBe17RR/nx5vdccRuw6AQIs17U0ZwN6/5N1Wvz2B1r/w0b9/c8OHTl6VIULFVTliieracPa6tSuSdjKq+OfZva5emHBcv24YZMCgaDKlyujNk3rqUeX1hH/0GQFVs76xdXxEyDAip91Ip70198+TZ+ZpMNHwp9+wgkhtWkVVI1z7BVcEWAlYpbwzOwIEGBlR41r4iVAgBUvaXc/x24Blru1GZ3XBQiwvD4DEjx+AqwEN4DHRy1AgBU1leNONK8LPjPdr717w18bvLhhQI0bhZTXxv/BkhVYjptuniuYAMtzLXfUgAmwHNUu2xZLgGXb1lCYCwUIsFzYVCcNiQDLSd3ydq0EWO7sv1lxNXV6krb+Ex5eXdMpqLOrBm0/aAIs27fI8wUSYHl+CtgagADL1u1xTHEEWI5pFYW6QIAAywVNdPIQCLCc3D1v1U6A5b5+B4Oy9rz6ZWP4pwQvbRHURfXtH16ZjhBguW9eum1EBFhu66i7xkOA5a5+Jmo0BFiJkue5XhQgwPJi1200ZgIsGzWDUjIUIMBy3wRZuMivr74OD6/Orx20Nmt3ykGA5ZROebdOAizv9t4JIyfAckKX7F8jAZb9e0SF7hEgwHJPLx05EgIsR7bNk0UTYLmr7as/8OudFeHhVeXTgrrhuqB84W8T2nrgBFi2bg/FSSLAYhrYWYAAy87dcU5tBFjO6RWVOl+AAMv5PXT0CAiwHN0+TxVPgOWedn//g18vzQsPr8qWCenmGwNy2hemCbDcMy/dOhICLLd21h3jIsByRx8TPQoCrER3gOd7SYAAy0vdtuFYCbBs2BRKiihAgOWOibF5s0/Tn0tSMHBsPEWKhHTLzUEVPiHkuEESYDmuZZ4rmADLcy131IAJsBzVLtsWS4Bl29ZQmAsFCLBc2FQnDYkAy0nd8natBFjO7//27T49M92vgwePvSOYP59ZeRVSmdLO2fcqdScIsJw/L90+AgIst3fY2eMjwHJ2/+xSPQGWXTpBHV4QIMDyQpdtPEYCLBs3h9LCBAiwnD0h9h/w6Zmpfu3cdSy88vulHt0CqljBeSuvkrtBgOXseemF6gmwvNBl546RAMu5vbNT5QRYduoGtbhdgADL7R22+fgIsGzeIMpLESDAcu5kCASkqTOS9Odf4buzd7oyoOrnODe8Mh0hwHLuvPRK5QRYXum0M8dJgOXMvtmtagIsu3WEetwsQIDl5u46YGwEWA5oEiVaAgRYzpwIoZD00ny/fvghfNP2Jo2DatrEma8Npu4EAZYz56WXqibA8lK3nTdWAizn9cyOFRNg2bEr1ORWAQIst3bWIeMiwHJIoyiTAMuhc2Dp23599HF4eFW9Wkidrkq1i7tDx2bKJsBycPM8UjoBlkca7dBhEmA5tHE2K5sAy2YNoRxXCxBgubq99h8cAZb9e0SF/wmwAst5M+HTz/1a8mZ4eFWpUlA9uzl/5VVyNwiwnDcvvVYxAZbXOu6s8RJgOatfdq2WAMuunaEuNwoQYLmxqw4aEwGWg5rl8VIJsJw1ATb84tfsOX6ZVwiTj9KlgtYXBwvkd/a+V6k7QYDlrHnpxWoJsLzYdeeMmQDLOb2yc6UEWHbuDrW5TYAAy20dddh4CLAc1jAPl0uA5Zzm/73VZ23afuTIsZoLFQypb5+gihZxT3hlRkeA5Zx56dVKCbC82nlnjJsAyxl9snuVBFj26NCmLX+rddfBaYrJly+vihYupEqnnqQGdaqr0+VNVKJYkTTnDR41RUveWRP287x5klS0yAk6vdLJanpRbV3drokK5M+X4YBXfvSVlq78VF+t/1n/7tilo4GgShYrompVKql5o/PVtnl9JSWFvyGwa88+NWx/m3XfjxZPVpHChSI+4/ahE7Xigy9Vv845mj5uULp1tLlusH7b/Ldmjh+serXOts675Ko7tHXbTjVtWFtPjuqX4Rhefet9DR07Q7f37Kg+3S63R4P/vwoCLFu1w3vFEGB5r+dOHTEBljM6t3u3T89M92vv3mNfHExKkm7sEVD5k90VXhFgOWNOer1KAiyvzwB7j58Ay979cUp1BFj26FRygFWwQD7VrnFWSlGHDh/R1m07tGnLVutnxYqcoGnjBumcKpXCCk8OsM44rbxKlyhm/e7wkSP6658d+uOvbdZfVzzlRM0af49OLFMizaC3bd+lAQ9M1pfr/mf97oRCBVT+pNLKkyeP9Xzze3NUrlBOE0f102kVyoXdo0ufEVr3w0YrXDIh0/HHkSNH1eDyW7X/wCHlSUrSB4uejBh0/f3PDjW9eoAVtK15fbJMgGeO5ADL/N+P3n+L2jSrl27jCLDsMaepwoYCBFg2bAolRRQgwLL/xDh8RJoyza9/toX/V62u1wRV5Uz37HuVuhOswLL/vPR6hQRYXp8B9h4/AZa9++OU6giw7NGp5ADLrLR64/mH0xRlQqhh42Zpzeff6uwzK+qVaSPCzkkOsCKFOxt+3aK7RjytnzZuVpMGNTX5oTvCrt2zd7869R5uhWSnVyqvQbd0tlZJmaAp+fhxw++aOGOBzAotE6K9POUBnXpy2ZTfT5i+QFNfeF1dO7bQkH5d09T/wafr1Pvux1SyeBFt37kn3RDq9bc/0j0PTVXDujU05ZG7Uu5jAixT54GDh1W8WGG9/twY616RDgIse8xpqrChAAGWDZtCSQRYDpwDwaD0/It+mb2vUh8tmgXV6CJ3hldmnARYDpysHiuZAMtjDXfYcAmwHNYwm5ZLgGWPxmQWYJkqTfDTuEM/hUIhawVT6lcJMwqwzLUbfvtDl98wRH6/Tx8unmy9lph8mNftTOhT7axKevaJe6zVV5EO89z7H5lpnXtetdP14lP3p5z26dof1GPAwzIrwBbNGp3m8tETnteLr76rvje011PPLVLrpvU0btgtac5LrmVQ3y7q3qlVWIBVsnhRnVGpvPWqZKtL6uqxB/oSYNlj+lKFUwQIsJzSKepkBZa958Cri/xa+3V4eFXrvKA6tHdveEWAZe85SXX/CRBgMRPsLECAZefuOKc2Aix79CqaAMtUWrdNH+3bf1Ar5o8PexUwswDLXHtR+9u0c9deLZj+oKqeUcEa+F//bFfLLgMVCASt4MkEUBkdZgVUq2sHWa8Uznj8bl1Yu5p1unlFsH67vtYKqdWvTlSpEkXDbmOeYV4PXP3aRF16zaD/D+EmyezTlfpo0WWg9crjqzNH6azKp4QFWPny5tXLzzygy7sP0b87dmviyH5q1ijt64qswLLHnKYKGwoQYNmwKZQUUYAAy74T44OP/Hr7nfDwqmKFkHp0C8gf/mP7DiKblbECK5twXBY3AQKsuFHzoGwIEGBlA41L0gjEK8D6en1Iv/7u7v8wlxq3ZnW/Kp56bE/TzKZeNAFW8v5Q5hW+DxdPks937P7RBFgXtu1rvYb39txx1v5W5nh50Qo9OH626pxXRc9NuDezMq3fj3vmZc2a+5Y6XX6JHrjzhpRr+gx+TO9/si7N64E/b9yi9j3u0/nnnqXZE4do0Min9ea7n2jauIHWxvTJx+Y//7HCrdIli2nVwglhtZhXCI8eDej9157UspWf6c7hk63zFj/3kPVKY+qDACuqNnKSFwUIsLzYdWeOmQDLnn377nu/5s4PT6lKlgypz01BFcjvvk3bj+8CAZY95yVVHRMgwGI22FmAAMvO3XFObfEKsGa/HNDqj7wTYF3fOUkXN4j+v0RmFmDt3XdAAx98Wu9/8o21x5TZayr1kVmA9e2Pv1r7XJl9o1YumJDyJcH7Hp6u15Z+YH2tz3y1L5rDfEnQfFHQrOIyq7mSj2fnLdWjT83VVW0v1oiBPVJ+Pm3OEj0x7RUNuPlq3XjtZVZ4ZUKsa65opqF3XJ9y3oI3VmvYozPVtkV9jb2vd5oAy6zu+njJU9bP7xg2SctXf672l16kh+69iQArmsZxDgIEWMwBpwgQYNmvU1v+8Gn6zCQFUv2zXKGCIfW+OagSxdwfXpmOEGDZb15SUbgAARYzws4CBFh27o5zaiPAik2vshtgFSpYQBddcGxVUiAY1PYdu/X9T79ZXxHs3rm1Fdocf2QUYP2y6U/1GzpRGzf9qSH9rlPXjs1TLjcbq5sN1kfe3VMd2zSOCuOHnzfpyhuHWWGYWRGVfPzvl83q0HOotbn70hcfSfn5dbeN1tr1P6W8omhWgTVsf7u1gurd+Y+nnJc8BhNIHT9GswLLhHifvTXFOt+8wmheJdy1e5+eGXuXGtWrkXIfVmBF1UZO8qIAAZYXu+7MMRNg2atvO3b5NGWqX/sPHFv6neSXbuwZUPmTvRFeEWDZa05STWQBAixmhp0FCLDs3B3n1EaAFZteZTfASq+avHnzqGXjOtbm5U0bpt33KTn8MauiypYuYd3GvHL319Z/ZQIsc/2t3a/QTV3bhj0iOVwyG6qbjdWjOZJXi+XLl1dr354WdsnFHftb4dLyueN08kmlrYCp4RW3qVzZUtari8lHzwFj9cna7zV/6nBr83hzNLnyDv3z706998oTKlu6eNh9k79C+PnSqSk/T/5i4UllSlqvEiZvPk+AFU0XOceTAgRYnmy7IwdNgGWfth044NOUGX5t3x6+L0KXq4OqdrZ3ltYTYNlnTlJJ+gIEWMwOOwsQYNm5O86pLV4BFntgZTwn0nuF0GyuvmvPPq37/hdNf3GJvlz3U8Qv+CUHWJGeYlZ1mYCnXNmSaX6dmyuwzM0Hj56iJcvXaNTgXurQupGSQyaz6sus/ko+nn/lbT086UXd0q29buvZwQrZ2nW7V6dXKq/Fz6b9imGkAMvcq++947Vqzdfq1K6JHriru3V7Aizn/PlDpXEWIMCKMziPy7YAAVa26XL1wmBAmv5ckjZvDg+vml0S1MWNvBVeEWDl6tTiZjESIMCKESy3zRUBAqxcYfT8TeIVYHkeOhOAzPbAMpcfDQTUufcImVf4xg7trbbN66fcNdIrhKFQSNfeOkrffLdBg2+9Rt2uvjRNFUPHzrACn+QgKZo+vffRWt02ZEKaPbDMtWY/LbOvVruWDfTwkJtTNmyf+ujAsFcjkzdsT95HK3kz+euvaql7brs2TRnpBVhmY3vzKqF5vXDm+MGqV+tsLVr2oYaMmWbt6WX29rLT4QuZrnAgkCABAqwEwfPYLAsQYGWZLCYXvLLQr2/Wh2/oeW71oK7q6L3wigArJlOMm+ayAAFWLoNyu1wVIMDKVU7P3owAyx6tjybAMpUmb4huVjeZVU7JR3p7YJnN2zv3GaGCBfLrjecfTvNq3rzF72nE48+pbq2qmjX+nqgwHp8yTzNeelOd2zfVsAHdwq7Zum2nTNhkvnK47KVH1bhDPx08dFgfLZ5svcaY+ri8+33a8OsW64uDZjXWWys+0dMPD1DjC8+LOsAyJ76yZJUeGDdLp5Qro9dmjdbKj9ZaG94TYEXVTk7ykgABlpe67eyxEmAlvn8rVvq1cnV4eFWxQkg9rg/In5T4+hJRAZu4J0KdZ2ZFgAArK1qcG28BAqx4i7vzeQRY9uhrtAFW8pf+Lq5/np4aMyDTAMucMHzcs5q/ZKUubXKBHh9+a5rAqUXnu6zVXUtmj9FpFcplCHLo8BG1unaQTFBlAi8TfB1/XH7DEG347Q9NHzdINw58VM0a1dbEkf3SnGe+TGgCObP/1qNPz9W/23drzZKnVKhg/iwFWObkXnc9oo+/+E7XXdlC9c8/R7cOeYIAyx5TmyrsJECAZaduUEtGAgRYiZ0fZtWVWX2V+ihZMqTevYIqWNC7C4kJsBI7L3l65gIEWJkbcUbiBAiwEmfvpicTYNmjm9EGWMl7PpnXAc1rgclHRl8h3Llrr9pcN9jaS2vKI3epYd1jX+wz1ye/RnhutdM18/HBKlggX7oooyc8rxdffVe1a5yp55+8L+J5D02cozkLl1uvOC55Z026Xzj8+rsNurbvSF3RqqH16mGd86rouQn3Rrxneq8QJp+85a9tuqLHfTpw8LD69eqoCdMXEGDZY2pThZ0ECLDs1A1qIcCy5xwwm7Y/NsGvw4eP7XtVoEBIt/QOqkQx74ZXplsEWPacs1R1TIAAi9lgZwECLDt3xzm1EWDZo1eZBViHDx/RrJeXauKMBfL7fVowfaTOqnxKVAGWOWnuohUaOX62KpQva71mlz9f3pRr9+zdr069h2vTlq06+8yKurvvNbqgZhX5fMf+2fW3zX9bodCylZ+qeLHCmjdluPWaYKRj5UdfWSugTBBmAiXzimDpksXSnBoMhtTkyv7af+Dg/wdPV6r39e2yFWCZi+YsfEcPTXzBGptZKcYrhPaY21RhIwECLBs1g1IyFGAFVuImyOI3/Pr8i2Orr5L8Us8bAjr1VG+HVwRYiZuTPDl6AQKs6K04M/4CBFjxN3fjEwmw7NHV5ADLvD53Ye1qKUUFQyHt3rNPP/z8uxX0JCX5NfSObtZX91IfGa3AMueZsOjqmx+wNoDve0N73dqjQ9j127bv0h3DJmnt+p+sn5coVkSnnFxGefMk6a9/duiPv7ZZPz+94smaOKqfKp16Urpwps76bW+1XkusXuU0vTzlgXTPTV79ZU6Y+/Qw1Ti7crYDLLM9erd+Y/Tluv9Z9yDAssfcpgobCRBg2agZlEKAZcM58PdWnyY/E77B1SVNQrqkccCG1ca/JFZgxd+cJ2ZNgAAra16cHV8BAqz4erv1aQRY9uhscoAVqRqzouiksiV1Qc2q6tqxRdjKq+TzMwuwzHlfffuzut46ytpMfdGs0ap4yolpHme+MLh0xadWkLV9524FgiGVKFZY51Q5TS0an6/LmtW3QrTMjutvf8gKkkxQZgKz9I4VH3yp24dOVJHChfThoknp3juzVwiT729WinXoOZQVWJk1iN97U4AAy5t9d+KoWYGVmK7NeDZJv206tvy6cOGQ7uofUJJHN20/vgsEWImZlzw1egECrOitODP+AgRY8Td34xMJsNzYVcZkVwFfyKwT40AgQQIEWAmC57FZFiDAyjJZji9Y/61P8xaEJ1WdOgZUvTr/s5WMS4CV42nGDWIsQIAVY2BunyMBAqwc8XHx/wsQYDEVEIifAAFW/Kx5UgQBAiymhVMECLDi26lAQHpiUpJ27Tq2+qpihZB6defVwdSdIMCK77zkaVkXIMDKuhlXxE+AACt+1m5+EgGWm7vL2OwmQIBlt454rB4CLI813MHDJcCKb/NWrvJrxarw/QFuuyWgsmVYfUWAFd+5yNNyJkCAlTM/ro6tAAFWbH29cncCLK90mnHaQYAAK1UXzC7/+/YfVLEiJ6Tbm9Uff62163+2viZwyUW1rM9kcmRfgAAr+3ZcGV8BAqz4ee/d69NjTyQpEDz2zAtqB9WubaofxK8cWz+JFVi2bg/FSSLAYhrYWYAAy87dcU5tBFjO6RWVOl+AACtVDz/6fL36DZ2o23p2VPdOrcK6a7YKGzTyGb214pOwn9/Vp5N6dmnj/JmQoBEQYCUInsdmWYAAK8tk2b5g3sIkrV9/7NXBfPnMxu1BFSzI6qvjUQmwsj3NuDBOAgRYcYLmMdkSIMDKFhsXHSdAgMWUQCB+AgRYqaxHjp+tuYtWaMDNV+vGay8L68IrS1bpgXGzrJ/Vr3OOjhw5qs+//tH66/lTh6vaWZXi1zUXPYkAy0XNdPlQCLDi0+DNW3yaOiN84/bWlwZVvx6rryJ1gAArPvOSp2RfgAAr+3ZcGXsBAqzYG3vhCQRYXugyY7SLAAFWqk5cffNwffe/X7X42dE6vVL5lN8EAkG16nq3/vhrmwbd0kXdO/+3OmvC9AWa+sLruqrtxRoxsIddeuqoOgiwHNUuTxdLgBX79ptv4j49NUl//X1s9VWZ0kHd2icof/h2WLEvxiFPIMBySKM8XCYBloeb74ChE2A5oEkOKJEAywFNokTXCBBgpWrlxR37a/vO3Vq7fLryJB1bAWD2vbrlnvGqdOpJev25MfL7//uXq+0796hxh346zfx89hjXTIp4DoQAK57aPCsnAgRYOdGL7tovvvRp0ZLw1Vfmq4Pm64MckQUIsJgZdhcgwLJ7h7xdHwGWt/ufW6MnwMotSe6DQOYCBFipjM5t1lMlihXRqoUTwuTuHP6Ulq38VEPvuF7XXNEs7HcN29+ug4cO6fOlUzPX5ow0AgRYTAqnCBBgxbZThw77NH6CX/sPHFt9VbVKUNd25tXBjOQJsGI7L7l7zgUIsHJuyB1iJ0CAFTtbL92ZAMtL3WasiRYgwErVgbpt+si8wvLZW8+k/HTnrr1qctUd8vl8VrBVtHChsJ5des0g/fH3Nq1b8d/+WBxZEyDAypoXZydOgAArtvZvLfdrzZpj7wmaVwbvuD2g4sVYfUWAFdu5x91jK0CAFVtf7p4zAQKsnPlx9X8CBFjMBATiJ0CAlcq6U+/h+vbHX7Vk9hidVqGc9Zunnn1Nk599TW2b19fYob3TdObCtn0VCAT02VtT4tc1Fz2JAMtFzXT5UAiwYtfg7dt9mjA5yfoPCMlHo4uCatGM1VeZqbMCKzMhfp9oAQKsRHeA52ckQIDF/MgNAQKs3FDkHghEJ0CAlcpp0sxX9fTsRbqwdjXdfes12vDrH7pv7HQdPnxEc58ephpnVw5T/XPrdjXvdKcqVyjHHljRzbc0ZxFgZROOy+IuQIAVO/LnXvBrwy/HVl8VLhzSgNsDyps3ds90y50JsNzSSfeOgwDLvb11w8gIsNzQxcSPgQAr8T2gAu8IEGCl6vWOXXt0+Q1DrM3ZUx9XtGqo0ffcmGZWvLBgucY8OUdtW9TX2PvSrs7yzjTK/kgJsLJvx5XxFSDAio33j//zac7c8I3bO14RUM1zU+mCNQAAIABJREFUeXUwGnECrGiUOCeRAgRYidTn2ZkJEGBlJsTvoxEgwIpGiXMQyB0BAqzjHH/auFkjHntOa9f/pIIF8qlD60YadEsX5cuXdilAlz4jtO6HjZr0UH9d0qBW7nTEY3chwPJYwx08XAKs3G9eMCBNfCpJ23cc27i9fPmQevcK5P7DXHpHAiyXNtZFwyLAclEzXTgUAiwXNjUBQyLASgA6j/SsAAFWOq0/GggoT1L4qoDjTw0EggoplOl5np1dUQycACsKJE6xhQABVu634cM1fi1bfuzVQfOEW3oHVO5EVl9Fq02AFa0U5yVKgAArUfI8NxoBAqxolDgnMwECrMyE+D0CuSdAgJUDy1AopAMHD1kBVqQVWjm4tWcuJcDyTKsdP1ACrNxt4b79Po2f6Nfhw8dWX9U8L6SO7Vl9lRVpAqysaHFuIgQIsBKhzjOjFSDAilaK8zISIMBifiAQPwECrFTW9S67RXVrVtWTo/tH1YEjR46qTqveOrdaZT3/5H1RXcNJ4QIEWMwIpwgQYOVup15bnKQvvzoWXuXLF9KAfkGdUIjVV1mRJsDKihbnJkKAACsR6jwzWgECrGilOI8AizmAgD0ECLBS9eGcJt2tLxDOePzuqLvT7Oo7rVVYH70+OeprOPGYAAEWs8EpAgRYudepP/706Zlp4a9oX9oipIvqs/oqq8oEWFkV4/x4CxBgxVuc52VFgAArK1qcm54AK7CYGwjET4AAK4cBVv22fbX/wCF9/e6M+HXNRU8iwHJRM10+FAKsnDf46FHpg4+S9P4HPh05eux+JUuE1K9vQP6Mtx3MeQEuvAMBlgub6rIhEWC5rKEuGw4BlssamqDhEGAlCJ7HelKAACsHAda8xe9pxOPPqVzZknpn3uOenEA5HTQBVk4FuT5eAgRYOZP+Zr1fb7/j0+7dx14bTL5j1y4BVTmLVwezI0yAlR01romnAAFWPLV5VlYFCLCyKsb5kQQIsJgXCMRPwNMB1sqPvtKqNV+laM97faXKli6uJvVrZtiBI0cD2vDbH/rmuw3WeV3aN9X9A7rFr2suehIBloua6fKhEGBlr8HmdcElb/m1eXPa4Mrcse4FQbVtHczezblKBFhMArsLEGDZvUPero8Ay9v9z63RE2DllmTO7rNpy99q3XVwmpuYj60VLVxIlU49SQ3qVFeny5uoRLEiac4bPGqKlryzRo/ef4vaNKuXaTHvvv+l+t0/US0a19ETD96W4fnrf9yozr1HqNpZlTR/6vCwc5Ofm9ENSpUoqtWvTsy0Ji+c4OkAa/6SlRo94QWZzdize5xxWnk998S9Kl6scHZv4enrCLA83X5HDZ4AK2vt2rvXp6XLffpmnT/ihSeXC+nytkGZ/58j+wIEWNm348r4CBBgxceZp2RPgAAre25cFS5AgGWPGZEcYBUskE+1a5yVUtShw0e0ddsObdqy1fpZsSInaNq4QTqnSqWIQVKiAiwTsEUK1kyRxYsW1qSHovvQnD26EbsqPB1gGdb9Bw7qo8+/1ZLla7R89ecqWbyIzj+3Sobifr9PxYoWVq3qZ6hVk7oyqS5H9gQIsLLnxlXxFyDAis48vX2ukq8ufEJILZqHVPPcoHyRF2VF9yDOsgQIsJgIdhcgwLJ7h7xdHwGWt/ufW6MnwMotyZzdJznAMkHQG88/nOZmf/y1TcPGzdKaz7/V2WdW1CvTRtgqwIo2OMuZkvOv9nyAldxCswqreee7dEal8ln6CqHzp0BiR0CAlVh/nh69AAFW5lYZ7XPl90v16wV0SZOQyPwzt4z2DAKsaKU4L1ECBFiJkue50QgQYEWjxDmZCRBgZSYUn99nFmCZKrbv3KPGHfopFArpg0VPhq14SvQrhARY0c0TAqxUTs+/8rZ+2rhZDw7qGZ0eZ+VYgAArx4TcIE4CBFjpQ5t9rl5/068tWyIvqap8WlDt24VUojivC+b2dCXAym1R7pfbAgRYuS3K/XJTgAArNzW9ey8CLHv0PpoAy1Rat00f7dt/UCvmj9eJZUqkFE+AZY8+ZlYFAVZmQvzeEvhy3U+6of9DCgZDennKA6pe5bSIMq++9b5eWbJKP/+6RYFAQBVPOUlXtGqoazs0V1JS2r1wCLCYYE4RIMCK3KmffvbrhZf8CkXIpkqWDOmyViGdeQabtMdqnhNgxUqW++aWAAFWbklyn1gIEGDFQtV794xXgHXk8w8U+OVHzwDnrXORkipXjXq80QRYf/+zQ02vHmDtg/Xh4knypdrPggArauqEnkiAlYp/7fqf9Ovvf6nlxRfohEIFMm3M+598o42b/tQlF9XSqSeXzfR8p56wZ+9+deh1v/78+19rCOkFWPc+NE2L3/5QefMkqVaNM5U3Tx59/d0G7d13QA3r1tDkMXcoT1JSGAMBllNnhffqJsBK23Oz8mrazCQFAuG/y5tH1quCDRsc9wvvTZuYj5gAK+bEPCCHAgRYOQTk8pgKEGDFlNczN49XgLV/6iM6/M5iz7gWunmQ8jVvH/V4MwuwzL+TDnzwaZl/hx/Sr6u6dmwRdm8CrKipE3oiAVYq/sGjp1ibud98XTv1v/HKTBsze/4yjZ38krp3aqVBfbtker5TT7hrxFNa8eFaNapXQ+ZzoZECLBNcmQCrcoVymjpukMqVLWkN12ySf8ewSfrws/W6vWdH9el2OQGWUyeCx+smwAqfADt3+TR1ul9794W/NljzvKBaNg/JbNbOEXsBAqzYG/OEnAkQYOXMj6tjK0CAFVtfr9ydACs2nc5ugFWoYAFddEH1lKICwaC279it73/6TRVPOVHdO7dW+0svSlN0ogMs8+/RJUsUjYjZpX1TtW5aLzbQDrsrAVaqhrXvcZ9+3rhFzz95n2rXODPTVm747Q9dfsMQnVX5FL06c1Sm5zvxhIVvrtb9j8zUrT06WCuwzF9HCrCu6DHU2j9szuShqnnOGWFD3bFrj5pdfafy5s2jVQsnqED+fCm/ZwWWE2eFN2smwDrW94OHfJo2w6d/toW/Fty1S1BVzuJ1wXj+HUKAFU9tnpUdAQKs7KhxTbwECLDiJe3u5xBgxaa/2Q2w0qvG/Ltoy8Z11OqSumrasLbtAqyMFAf26aweXVrHBtphdyXAStWw+m37avfe/fpw0SQVL1Y401YeOnxEtVveZJ1rrnHbYV6nvOqmYdaXGV+YPFT3jZmuJe+sSRNgmU+StugyUBXKl9Vbcx6JyHDn8MlatvIzPTm6v5peVIsAy22TxQPjIcD6r8nBgDTr+ST9til85dWlLYK6qD7hVbz/ViDAirc4z8uqAAFWVsU4P54CBFjx1Hbvs+IVYLEHVsZzKL1XCAOBoHbt2ad13/+i6S8usfZ2NquZxg27JeyGiV6BxVcIo/szggArlVPN5r105GhA37w7M+KG45FITYBl/qb4+t0Z0Yk75CzjcG3fkdaeYAumP2iFU+ad4bdWfJImwDKvFfa7f6Latqivsff1jjjC5+Yv0yOTX9JNXdvqjpuuIsByyDygzGMCBFj/Wcx7JUnrvwsPr2qdF1SH9oRXifj7hQArEeo8MysCBFhZ0eLceAsQYMVb3J3Pi1eA5U693BtVZntgmScdDQTUufcI/fDzJo0d2lttm9dPKSCrAdaKD77U7UMnqkXjOnriwdsyHMj6Hzdazz2nSiXNmzI8R8FZ7ok5804EWKn61uTKO/TPvzv19txxKn9S6Uw7apLcBu1uVakSRbX61YmZnu+kEx59eq6efXmpxgy5SZe3/O8dYbMX1tL3Pk0TYJnzzPm9r2+nfr0i7x32zvtfqP/9T+rSJhfo8eG3EmA5aTJQqyVAgCW9u9KvVavDXxusWCGkHt0C8qf9yCgzJw4CBFhxQOYRORIgwMoRHxfHWIAAK8bAHrk9AZY9Gh1NgGUqnTZniZ6Y9oo6tG6kUYN7ZTvA+viL79TrrkesfaKfGXtXhgifffWDut/xsOrVOlszxw8mwMrBlCHASoVnElSTpJoVQmalUGbHy4tW6MHxs6OatJndy06//+jz9bpp4DgrkTbJdPKRXoA1aearenr2ImX0bu4na79XzwFjdeH51TTjsbsJsOzUcGqJSsDrAdZXX/u1cFF4SlWmdFA39QqpQH42bI9qEsXgJAKsGKByy1wVIMDKVU5ulssCBFi5DOrR2xFg2aPx0QZYz85bqkefmquL65+np8YMyHaAZfaHbt75LpUtXVwr5o+Xzxf+hkJqledfeVsPT3pRndo10QN3dSfAysGUIcBKhWf2aDJ7NZlNxieN7q/6dc5Jl9a8O3vLPY/LfI5z9D036opWDXPQBvtcun3nHnXoOVT58+XVwhkjVfiEgpkGWI89M08z576pe2/vquuuDP8cafLFa9f/pOtuG61a1c/UC5Pus8+AqQQBBDIV+N+GkB598qhCqXKqwidID9ydVyWKZ3o5JyCAAAIIIIAAAgggEFOBaAOsvveO16o1X6vb1Zdq8K3XZDvAMhd27HW/ftzwu7WNjtlOJ9Jx4OBhXXnj/fpt89/WSi2zYiv1kdVXF2OK6ICbE2ClalIoFNKNdz2qj7/8zvqp2Wz8kotqqdKp5VSoYH6ZTdvNnlCr1nylt1d9LnN+jaqnac7k+6PeM8vuc+KWe8brw8/WWV9iPK/a6WHl5soKrNrVNOPxYyuw7O5BfQh4XeDPv6XRjx3RwUPHJPIkSffckUeVKqT/X5q87sb4EUAAAQQQQAABBOInkFmAdfjwEc16eakmzlggv9+nBdNH6qzKp+QowFr98dcy//5sFsCYMMy8lmi+dph8/LLpTw0fN0tffPM/NahTXdPGDUwDQoCVtTlCgHWcl/kKoVmFtebzbzOVrHF2ZWulVumSxTI91wknzFm4XA9NnGPtY2X2szr+SC/Amj1/mcZOfimqPbCaNzpfE0bennLrP/49EJGmZJF8KpAvSdv3HNbBwwEn8FGjywW8+Arh3n0+PT3Vrz17woOqLlcHVe1sNm23w5TnFUI7dIEaMhLgFULmh50FeIXQzt1xTm28QmiPXiUHWGbhyYW1q6UUFQyFtHvPPv3w8+/af+CgtfBk6B3drNf5Uh/JQdIp5cqoaJETIg6qRLHCmvpoeAj10mvvasyTc6wPu5lnn17xZOXPn09bt+3Qpi1brfuYbXSeGHGbihQulG6AVenUk1SiWJGIzy1etLAmPdTfHtAJroIAK0IDzMqqt1d9pnmvr9TX3/4ss+wv+cibJ0nnVDlNHds0VvtWFylPUlKCW5h7j6/V8iaZZNqsvPJH2JF54+9/aueuvapy+qkqVLCAzj6zgu7rf721BNMsxYzmK4Q9u7TRXX06EWDlXtu4U5wEvBZgHT4iTZ2epK3/hIdXzZsG1bgh4VWcpl2mjyHAypSIExIsQICV4Abw+AwFCLCYILkhQICVG4o5v0dygBXpTmZ7nJPKltQFNauqa8cWYSuvks9PDrAyqiS9j7dt+HWL5rz6rj5d+73M3liBQEAlihdR9SqnqW2LBtaXCs2qr0hHTp6bczXn3YEAK5OemSR1+87d1l5XBQrkV+kSRcOWBTqv5elXfE6T8A3lMhtbnfOq6LkJ92rb9l26uGN/VShfVm/NeSTiZWZVm9ljbNywW9S6aT0CrMxw+b3tBLwUYAWD0uw5fv2yMXzT9lrnBdWhPeGVnSYnAZadukEtkQQIsJgXdhYgwLJzd5xTGwGWc3pFpc4XIMByfg/jNoL0XiE0BZgN2s1G7XMmD1XNc84Iq2nHrj1qdvWdMss3V786UUVTLZ3kFcK4tY8H5VDASwGW+dqg+epg6qNihZB6dAsowuLMHMpyeU4ECLByose18RAgwIqHMs/IrgABVnbluC61AAEW8wGB+AkQYMXP2vFPyijAev+Tb9Rn8OOqXKGcpo4bpHJlS1rjNe8ZD3hgsj74dJ26dmyuIf2uC3MgwHL8tPDMALwSYL3/oV/L3w0Pr0qWDKnPTUEVyJ/qM4Se6by9B0qAZe/+UJ1EgMUssLMAAZadu+Oc2giwnNMrKnW+AAFWOj384edNemf1F/pp42bt3rtPp5Qrq5F39ww7+59/dyoQDOrE0iXk87n/a1wZBVgGZtwzL2vW3LesVyxrVT9D+fLm1dffbdCevftV7axK1uuGZmO71AcBlvP/EPHKCLwQYH3/g18vzQsPrwoVDKn3zUGVKEZ4Zce5ToBlx65QU6SVCen97z1aCCRSgAArkfrueTYBlnt6yUjsL0CAdVyP9u0/qBGPPas33v047Ddm4/KFM0aG/azXnY/o4y+/s75EcNEF1e3f7RxWmFmAZW5v9rl6YcFy/bhhk/UlhvLlyqhN03rq0aW1zOZ5xx8EWDlsCpfHTcDtAdbmzT5Nfy5JwVQf/UzySzf2DKj8yYRXcZtoWXwQAVYWwTg97gKswIo7OQ/MggABVhawODVdAQIsJgcC8RMgwEplbQKXmwY+qk/Wfm/9tHTJYqpQ/kR9ue5/1pf3jg+w5ixcrocmztFVbS/WiIE94tc1Fz2JAMtFzXT5UNwcYG3f7tOUGX4dOBC+krTTlQFVP4fwys5TmwDLzt2hNiNAgMU8sLMAAZadu+Oc2giwnNMrKnW+AAFWqh4ufHO17n9kpooXK6xhA7rp0iZ1rd+ar/NFCrB+3rhF7XvcpzNPO0WvzRrl/NmQgBEQYCUAnUdmS8CtAZYJrZ6e6tfOXeHhVdNLgmrSiC8OZmuyxPEiAqw4YvOobAkQYGWLjYviJECAFSdolz+GAMvlDWZ4thIgwErVjhv6j9HnX/+oJ0f1U9OGtVN+k16AZfZ2urBtX51QqIA+ffMZWzXWKcUQYDmlU9TpxgArEJBmPJukzVvCw6ua5wXVsT3hlRNmPQGWE7rk7RoJsLzdf7uPngDL7h1yRn0EWM7oE1W6Q4AAK1Uf67ftq8NHjlphVJLZ/OX/j/QCLPPrWi1v0tGjR7VuxSx3zIg4j4IAK87gPC7bAm4LsEIh6aX5fv3wQ/im7ZVPC6pb16D84T/OthsXxlaAACu2vtw95wIEWDk35A6xEyDAip2tl+5MgOWlbjPWRAsQYKXqQM3mvVS8WBGtXPBEWF/SC7COBgKq2fxGawXWJ288neheOvL5BFiObJsni3ZbgLVsuV8frglPqUqXCqrPzUFF+N6CJ3vuhEETYDmhS96ukQDL2/23++gJsOzeIWfUR4DljD5RpTsECLBS9fGSq+7Q9h179PEbT6tggXwpv0kvwPrq25/V9dZR7IGVg78XCLBygMelcRVwU4D11dd+LVwUHl4VPiFkhVdFi7Bpe1wnVg4fRoCVQ0Auj7kAAVbMiXlADgQIsHKAx6UpAgRYTAYE4idAgJXKeuCDT+utFZ/o/gHd1KV900wDrFuHPKGVH32l669qqXtuuzZ+XXPRkwiwXNRMlw/FLQHWhl/8mj3HL/MKYfKRN690c6+ATixLeOW0aUyA5bSOea9eAizv9dxJIybAclK37FsrAZZ9e0Nl7hMgwErV07Xrf9J1t41W/nx5dV//63XlZY2t3x6/Amv/gYN6ZPJczV+y0tora8nsMapQ/kT3zY44jIgAKw7IPCJXBNwQYP291aepM5J05MgxEp9P1p5Xp1dm0/ZcmShxvgkBVpzBeVyWBQiwskzGBXEUIMCKI7aLH0WA5eLmMjTbCRBgHdeSx6fM04yX3rR+WvGUE1W35tlWUFW2dHF1ad9MP/+6We9/sk7mC4TmGNins3p0aW27xjqlIAIsp3SKOp0eYO3e49MzU/3auy/8i4Pma4Pmq4MczhQgwHJm37xUNQGWl7rtvLESYDmvZ3asmADLjl2hJrcKEGBF6Oyz85ZqwvQFOnw41TKF487LmzePFV5dd2ULt86NuIyLACsuzDwkFwScHGAdPOTT1Ok+bfs3fN+rhg2Catmc8CoXpkfCbkGAlTB6HhylAAFWlFCclhABAqyEsLvuoQRYrmspA7KxAAFWOs35d8duLVr2gT5d+4M2bflb+/YfVMEC+XXyiaVUt9bZ1uuFZUoVt3FrnVEaAZYz+kSVklMDrGBQmjU7Sb9tCl95VbVqUNdcHZR5hZDDuQIEWM7tnVcqJ8DySqedOU4CLGf2zW5VE2DZrSPU42YBAiw3d9cBYyPAckCTKNEScGqAZb42aL46mPo4pXxIvboHlJREc50uQIDl9A66v34CLPf32MkjJMBycvfsUzsBln16QSXuFyDAcn+PbT1CAixbt4fiUgk4McD65FO/3lgaHl6VLBlS715BFSzIFwfdMMEJsNzQRXePgQDL3f11+ugIsJzeQXvUT4Bljz5QhTcECLC80WfbjpIAy7atobDjBJwUYP31t09L3vBr0+bw9wMLFQypz01BFS9OeOWWCU6A5ZZOunccBFju7a0bRkaA5YYuJn4MBFiJ7wEVeEfAswHWH39t05frf9IF51XViWVKWB3/aePmHHfe7/erWJETVLpksRzfyws3IMDyQpfdMUYnBFh79/q07B2fvv4mfNVVcgdu7hWQeX2Qwz0CBFju6aVbR0KA5dbOumNcBFju6GOiR0GAlegO8HwvCXg2wGre6U79uXW7TqtQTktmj7F6fk6T7rnW+3InltLN17VTp3ZNcu2ebrwRAZYbu+rOMdk5wDpyRPpgTZLe/8Cno0cj+1/TKaizq/LFQbfNTgIst3XUfeMhwHJfT900IgIsN3UzcWMhwEqcPU/2noBnA6zLrr9Hv/7+l6qdVUnzpw7P9QAreSqNvudGXdGqofdmVpQjJsCKEorTEi5gxwArFJK12mr5Cp/27In8OcFqVYNq1TLEa4MJn0GxKYAAKzau3DX3BAiwcs+SO+W+AAFW7pt68Y4EWPbs+qYtW7V42Yf6ZO132rjpL+3eu08FC+RXmVLFdfKJpXRR3Rq6pEEtVShfNmwAl1x1h7Zu2xn2s/z58qpkiaKqdlZFtW3eQC0vrhNx0JGuPf7EVpfU1WMP9E358eBRU7TknTUZIpYqUVSrX52Ycs6mLX+rddfB1l/fc9u1uv6qlhleP2TMNC1a9qGef3KIatc4y54Ni7IqzwZYu/bs0/82/G4FWCcUKmBxbdu+K0q29E8LhULWfaa/+IaWvvepqp5RQQumP5jj+7r1BgRYbu2s+8ZltwBr0+8+vbnUrz/+jBxcnVg2pHaXBVXhVF4ZdN9sPDYiAiw3d9cdYyPAckcf3ToKAiy3dja+4yLAiq93Zk87cuSoJs16VTNeelPm383NUa5sSRUrWlh79x3Q1n936vDhI9bPG9SprmnjBobdMjmEMkFPvrx5rN/tP3hIJjTauWuv9ddNG9bW48NvVd484Z/0Tr62RtXTlCfPf9cef9Q/v5pu7dEh5cfJAValU09SiWJFIl5TvGhhTXqof8rvUgdYBfLn02uzRunUk8ODuNQ3IsDKbNbwe5m/cS5o00c+n09r356GSDoCBFhMDacI2CXA2rHTp6XLffr++8j7XJ1wQkgtmoVU67ygfJGzLaeQU2cUAgRYUSBxSkIFCLASys/DMxEgwGKK5IYAAVZuKObOPUww1WPAWH317c9WGHTzdW11WfP6MiuYUh/f//Sb3vtwrS48v1qaFUnJIdSqhRPC9rU2YdgHn67XncMna/+BgxrUt4u6d2oVdt/0rs1odMkB1qP336I2zepFBZEcYBUskE8HDh5W3VpVNfPxwVb2EOkgwIqKlZMu7tjfSnm/WDYVDAIs5oDDBRIdYB067NPKVdKaT5MUDKTFTPJLDRoEdHGjkPLldTg25UctQIAVNRUnJkiAACtB8Dw2KgECrKiYOCkTAQIs+0yR4eOe1fwlK1W5QjlNe2yQTipTMsvFZRZCzV20QiPHz9bZZ1bUK9NGJDTA6nT5Jfr4i++s1WHDBnRT5/ZNCbCy3HEusAT27T+oepfdoiqnn8orhBnMCVZg8TeMUwQSHWDNeDZJv21inyunzJd41UmAFS9pnpNdAQKs7MpxXTwECLDioez+ZxBg2aPH63/cqM69R1iv9b06c5T1sbbsHJkFWD9v3KL2Pe5TkcKF9PGSpxIaYHVo3Ujm/3Xr95AKFSygxc89ZL0uefzBCqzszASHXWO+UPjmux9r3fe/6K9/tuvAwUPWpDAT4tyzT1ebZheqbOniGY7qaCAgv88vv5/3eNKDIsBy2N8YHi43kQHWd9/7NXd+2lcGzT5XbdsEVbEC+1x5dWoSYHm1884ZNwGWc3rlxUoJsLzY9dwfc7wCrNd3/aov9v2T+wOw6R3bFa+k8wuVibq6EY8/p3mL37MCnVGDe0V93fEnZhZg/fDzJl154zCVO7GU3nn5sYQGWJc2qavHh/fVqCee10uvvauGdWtoyiN3EWBlu/sOvNC8N/vYlHmas/CdlE3fIg0jKcmvbldfqv43XpVm8zYHDjthJRNgJYyeB2dRIJEB1uMTkrRz17EgvPAJITVvFlLtmsEsjoLT3SZAgOW2jrpvPARY7uupm0ZEgOWmbiZuLPEKsHr/tkpTt32XuIHG+clTKl6sm0tXi/qp7brdq182/amJI/upWaPaUV+X1QDr2ZeX6tGn56pF4zp64sHbEhpgmc3knxzVz9qTq32Pofrj/9g7Ezibyv+Pf85dZswYjLFnX7NvLVLEz5IlJYpIi0hERSpKSXspkS0ie6SESEmWBkUrWUJJ9p2xz3rvOf/Xuf4z915zZ+527rln+ZzXq1e/3Gf5ft/fZ6bfffc8zzlxxiXvZInn+XAHVsjLQdsd5YvZnnppAn7YtNUVqHzZm/z2gbKliyM21o7UtAwcOXYav23b47rbSn7kV2iOe8174Wo7S21FR4GlrXowmrwJREtgbfzRitXrvHdxPjVQRInilFdcrwAFFleB1glQYGm9QuaOjwLL3PVXKnsKLKVIeo8TrMBq2KYvshxOfDPvXchv9Av1yW8H1sZftmPIK5PgdDqx4KORqF2jkk+B1aAavtT9AAAgAElEQVR2Vdj//w2G18bx6rO9vY43Zl/iLt/blXTNZfPZfXt0boUOrdwXvGdf4t6iaQN89M4zrmabf/8Ljz33PgonxLuOEpYo5j4tRoEV6mrQeL8Vqzdj+Fsfu3ZUjRj8EO7teDvknVbXPvIuLXmH1rjpi+B0ihjzyhNeC0rjaWoqPAosTZWDweRDIBoC60qqgLEfWpHlcAd2800iOnWgvOJivUqAAosrQesEKLC0XiFzx0eBZe76K5U9BZZSJEMXWPLVPQ1aXz02eO3bA7NHHfneTCz5dkOuYGURJQun7CdbYMlvKIyxX30zUkZGJvYfPo5TZ84jKbEQ3hnxuOu43rVPdt/8iHz+8SjUvb5yTpNsgZVfn+cG3I9He3TIaZItsG6/pQGmvHtVYMlPdo7ZO7Oy/5wCKzJrNOqj9h36Hn7esgsjnn4Qvbq28RvP3EWrMHryZ7j1xrqYPuY5v+3ZIDcBCiyuCr0QiIbAWvyVFdu2u3dfxcRIeHawiLg43nmll3UT6TgpsCJNmOOHS4ACK1yC7B9JAhRYkaRrnrHVEli8Ayv/NdXojn6QN5qsnD8aFcqWytX4kwXfIHnTnzl//ve+w66jd3kJLF+z1a9dFbPGDUeB2Bifwfi7P8tXp2yB9f7IJ9CxtXuXVX7Z5iWwLl1Oxd29R7hEm+d4FFgG/X10612DcDk1zfU2AfnCdn+PfKTw1rsGomDBOPy0bJK/5vzcBwEKLC4LvRBQW2AdPylgysdWLzwd2olo2oS7r/SyZtSIkwJLDcqcIxwCFFjh0GPfSBOgwIo0YXOMr5bAMgfN0LNs/8AwHD52ClNHP4vmTXLvjrp25B5PvO56YVteAstzJ9eZlAvo+OBw15VCn08dhTrXex8dzB472gJLjkOWdINGfIjEIgn4es47rh1jL4+egaUrN2LexBGuK5L0/AiSfPETHxcBeduhXGh5sQb6tO42FGfPXcCfa2YE2oXtPAhQYHE56IWA2gLr4xlWHD3q3n2VVFTC04OcsOQ+1awXhIwzAgQosCIAlUMqSoACS1GcHExhAhRYCgM16XAUWNoovHwVkHwl0CPd2mHYoJ5+gwpGYMmDzVm0Cu9N/sx1/O+zKa/AYvG+o1ZuowWBJceRvaur/f9uxgejBiL7DY0UWH6Xhb4ayAsuLT3TtQMr0Kdpp4Gu3VprF40NtAvbUWBxDeiQgJoCa9sOAYuXeu++euRBEVWrcPeVDpdOREOmwIooXg6uAAEKLAUgcoiIEaDAihhaUw1MgaWNcmfvPCqUEI/v5r/n2piS3xOswJLv2era9xXsO3AULw95CD3vaZ1reK0IrPMXLruOEp49d9H1VsYtO/7B7C++4w4sbSxV5aJ4/o0p+HbtL1gx9x2vNwPkNcO+g8dw9yMj0KltU4x+qb9ygZhoJO7AMlGxdZ6qWgIrKwsYN9GKy5fd/1WnRnUJD/Z06pwgw48EAQqsSFDlmEoSoMBSkibHUpoABZbSRM05HgWWNuouHyzr9vir2L33IOQL2Ce+ORjxcbF5BheswJIH+nXrHjz6zLuQJZnsDIonFfEaXysCSw5qVfJvGPrqZFeM7VrejPlLVlNgaWOpKhfFjj370fOJ19Gm+Q0Y99ogCELubYHZs4mihKdeHo/1m7dh4dRXvN4koFxExh+JAsv4NTZKhmoJrLXJFqzf4D4nKP8aGjzIiaQknvY2ylpSMg8KLCVpcqxIEKDAigRVjqkUAQospUiaexwKLO3UX77cvMeA13Hh0hVUqVAGT/bpgpa3NkJszNW3CWY/WQ6n63u/LLsCuQPLs+/QVz/CquRffW5i0ZLAkmMe8sokrN7wuyv/jMwsCiztLFXlIpm/ZA3envApbm5UEw/d1w6N61b32n6Ycv4S/tj+N+Z8sQpbd+7F8EE98XC3dsoFYLKRKLBMVnAdp6uGwJJ3XX3woRVOj5OC8qXt8uXtfEjAFwEKLK4LrROgwNJ6hcwdHwWWueuvVPYUWEqRVGacg0dO4plRkyC/ZVB+7DYrKpUvg8KF4uFwOF1y68ix05CPBMpPsALrxOkUdHroBdfVQzPHDUeTRrVyAs8WWPVqVobNZvOZUNMbamPQo11yPsu+r6pS+dIoWqSQzz6JhRMw6e3BOZ/l9RbCazvLl8/LRwkvXLzi+oh3YCmzxlQf5da7B+Wa0yJYYLNZXdsMj59Kcb2CM/uRjaX8V3pmVq4/79j6FjSsUw33dWqheh5GmJACywhVNEcOagisLxZbsfMv987PAgUkPDtERGwMd1+ZY5UFnyUFVvDM2ENdAhRY6vLmbMERoMAKjhdb+yZAgaW9lSEfJ1yz8Q+sXv87tu3ah5TzF13CSf5OX6RwQZQrUwINalfDDfVroOmNdbx2aAWyi2r6/BX4cPqXrmuHls54A3b7VVmV3Tc/ItkXq2e3yRZY+fUpVrQwNiydELTAkjt8/f0mvPD2NAos7S3TwCOq07J34I0DbPlX8uwAW7KZJwEKLK4HvRCItMA6clTAtBneF7d36iji5hu5+0ovayQacVJgRYM65wyGAAVWMLTYVm0CFFhqEzfmfBRYxqwrs9ImAUGS9aTJHvmidqWfjq2bKD2kKcajwDJFmQ2RZCQFlvxbeMo0K06cdO++KlFcxKABIizu67AMwZFJKEuAAktZnhxNeQIUWMoz5YjKEaDAUo6lmUeiwDJz9Zm72gRMKbDUhsz58iZAgcXVoRcCkRRYW7YK+Opr791XfXs7UbGC6f77gl6Wg2bipMDSTCkYSB4EKLC4NLRMgAJLy9XRT2wUWPqpFSPVPwEKLP3XUNcZUGDpunymCj5SAisrC66L21PT3Luval4v4oH7eXTQVAssxGQpsEIEx26qEaDAUg01JwqBAAVWCNDYJRcBCiwuChJQjwAFlnqsOZMPAhRYXBZ6IRApgfX9Ggt+3OQ+JygfGRzylBOJRbj7Si9rI5pxUmBFkz7nDoQABVYglNgmWgQosKJF3ljzUmAZq57MRtsEKLA86pPh8ebBYMsmv9GAT/AEKLCCZ8Ye0SEQCYF1/oKADydaIXpstrqtqYh2bbn7KjpV1t+sFFj6q5nZIqbAMlvF9ZUvBZa+6qXVaCmwtFoZxmVEAhRYHlUN5+2EfAthaD8eFFihcWMv9QlEQmAt+NyCPX+7d1/Fx0l4ZrCI2BjuvlK/wvqckQJLn3UzU9QUWGaqtv5ypcDSX820GDEFlharwpiMSoACSwGBlVgkAT8tm2TUNRLRvCiwIoqXgytIQGmBdfCQgBmzvS9u79zJiRsaU14pWDbDD0WBZfgS6z5BCizdl9DQCVBgGbq8qiVHgaUaak5EAqDA8lgEW3b8k++SSEvPxKkz5/DH9n+wct0vsFotmDF2OOrVrMylFCIBCqwQwbGb6gSUFFjykcHJUy04fca9+6pEcRFPPiFCcN/lrnqOnFB/BCiw9Fczs0VMgWW2iusrXwosfdVLq9FSYGm1MozLiAQosEKs6uFjp/DoM6PhdDrx9Zx3kFAwLsSRzN2NAsvc9ddT9koKrJ27BHzxpffuqz69nahUgbuv9LQmtBArBZYWqsAY8iNAgcX1oWUCFFharo5+YqPA0k+tGKn+CVBghVHDHzZtxZMjxmNQ73swsPc9YYxk3q4UWOatvd4yV0pgHT4sYOZcK5xON4E6tUTc340Xt+ttTWghXgosLVSBMVBgcQ3olQAFll4rp624KbC0VQ9GY2wCFFhh1Dcry4GbOg5AlQplsGTGG2GMZN6uFFjmrb3eMldCYJ27IODjaRakprnPCVotwOCnnEgswt1XelsTWoiXAksLVWAMFFhcA3olQIGl18ppK24KLG3Vg9EYmwAFVpj1bd1tKC5eTsVvK6eGOZI5u1NgmbPuesw6XIGVniFg6nQLUlK8L7m6p7OIxg24+0qPa0ILMVNgaaEKjIECi2tArwQosPRaOW3FTYGlrXowGmMToMAKo76SJOHG9v3hFEX8ufqTMEYyb1cKLPPWXm+ZhyOwRCcwa54V8psHPZ/bm4lo04rySm9rQUvxUmBpqRqMxRcB3oHFdaFlAhRYWq6OfmKjwNJPrRip/glQYIVRwz//+he9Br2J60oXx+qFY8IYybxdKbDMW3u9ZR6OwPpyiQXbd7rfOCjnXquWiJ6890pvy0Bz8VJgaa4kDOgaAhRYXBJaJkCBpeXq6Cc2Ciz91IqR6p8ABVaINdyx+z+88PY0HDh8AnffcRveGdEvxJHM3Y0Cy9z111P2oQqs9RssWJvsLa/KlZPQ9xEnrN4vItQTDsaqEQIUWBopBMPIkwAFFheHlglQYGm5OvqJjQJLP7VipPonQIHlUcNuj7/qt6KiKOLE6RScv3DZ1dZmteLzj0ehZrUKfvuyQW4CFFhcFXohEIrA2rXbgoWLvOVVYqKEJ/qJiIvjpe16qb2W46TA0nJ1GJtMgAKL60DLBCiwtFwd/cRGgaWfWjFS/ROgwPKoYZ2WvYOqaGKRBLz23KNo0/yGoPqxsZsABRZXg14IBCuwDh8WMHOOFU6PK64KFJDQ/zERxZIor/RSd63HSYGl9QoxPgosrgEtE6DA0nJ19BMbBZZ+asVI9U+AAsujhpNnLfVbUUEQEB9fAJXLl0GTxrVQIDbGbx82yJsABRZXh14IBCOwzl0QMOVjC9LT3Ze2Wy1An0ecKF+e8kovNddDnBRYeqiSuWOkwDJ3/bWePQWW1iukj/gosPRRJ0ZpDAIUWMaoo26zoMDSbelMF3igAistTcDHMyxISfF+42CPbiJq1+IbB023cCKcMAVWhAFz+LAJUGCFjZADRJAABVYE4ZpoaAosExWbqUadAAVW1Etg7gAosMxdfz1lH4jAEp3AJ3OsOHLEW161bimixe2UV3qqt15ipcDSS6XMGycFlnlrr4fMKbD0UCXtx0iBpf0aMULjEKDAMk4tdZkJBZYuy2bKoAMRWF8usWD7Tu9L2+vXFXFfV8orUy4aFZKmwFIBMqcIiwAFVlj42DnCBCiwIgzYJMNTYGmj0IeOnkSHXsNRqXxpfDPv3XyDOnriDO7o8RzKX1cS3y14L9+285eswdsTPkXH1k3w/sgn8mwrX0f00ZxlAcG4pXFtzBg7LKft8Dc/xoo1m/PtW6xoYWxYOiGnzZcr1mPUmFnofldLjHo2uLu8AwpSo41MLbDktwmWLpHktzSiKGHlD79g7cYtOH32PIomJuDWG+uia4fmiImx++3PBnkToMDi6tALAX8C64f1Fsh/eT4VK0h49CEnLFa9ZMk49UaAAktvFTNfvBRY5qu5njKmwNJTtbQbKwWWNmoTKYHVpc/L+Oe/I7DbbUj+8kPIL3Lz9chC6ctv1ucLY9+BY0hNS0e7ljdh7KuDcgksWb4VLVLI5xiJhRMw6e3BFFiSJJnyRuEde/ajx4DXXCJq2vvPQr6c3dfjcDoxeOREJG/6M9fHVSte5zKnJYolauOnVodRUGDpsGgmDTk/gSXvupJ3X3k+JYqL6NdXQoFYU/6KNekqUT9tCiz1mXPG4AhQYAXHi63VJUCBpS5vo85GgaWNykZCYG3btQ8PDHwDtapXxO69BzFsUE880q1dSAnv+fcQ7u//Gmw2K5bOfBMVypbMJbDkHV7yTq9AHu7ACoSSgdqM/2Qxpn36NVo1a4yJbz6dZ2YfTv8S0+evcH0uC6v6taviwsXL2PjrDmRlOdCwTjV8OumlPAWYHpH9vGUXvv5+E7bs2ItTZ87B6XSiRPGiuKF+DdcPrPwDnNezdOVGyD9M/x446upXsVxp3NO+GR7o0gZW+TVs1zwUWHpcIeaMOS+BdfSYgI8/8d5iFR8nYUA/EYmJlFfmXC3qZU2BpR5rzhQaAQqs0LixlzoEKLDU4Wz0WSiwtFHhSAisl0fPgPz9du6EEej77HsoX6YEvp77TtAJZzmcrs0zssR68aleePDetl5jZB8hpMDyj9a0Rwh7D3kXv/25B6OGPoLud//PJyn5iGH7ns/DteA6t8LLQx7KEVV/7zuMRwa/g0uXUzHxrcFodVsj/7Q13uL8hcsYMmqSi4u8I61qpetQrkwJOJ0i9v53BDIPi0XAOyMeR6c2TXNl8+Lb07H8+59gt1nRqF512G02yNb68pU0NLu5Hia/MwQ2q/cXfQosjS8KhpdDIC+BtfgrC7Ztd8tZmw147FEnritDecXlE3kCFFiRZ8wZwiNAgRUeP/aOLAEKrMjyNcvoFFjaqLTSAkv+Dtvy3sEolBCPH778EE+9PAHrftyCeRNHoHG9GkEl/dHsrzB59leufnMnvJhr8wsFVuA4TSuwWt47xHWf1Rcfv4o611fySez9jxZi9hffoXKFMq5tfrKY8XzknVnyDq07W9+C90YOCJy6RlvKp0lHvjcTJYsn4v67W6FUiaI5kcoSa86i7/DB1C8QHxeL9UvGIz6uQM7nsriSBVaVCmUwbczzKFPy6t1i8hnfIa9Mwk+/7cRTfbpiwMN3e2VPgaXRxcCwchHIS2C9874VaWnuI8j33+dEndqUV1xC6hCgwFKHM2cJnQAFVujs2DPyBCiwIs/YDDOoJbCOb5Nw7oB5XgxUpqEFRSv6vubH17pSWmB99tVavPnhPPTt2RFD+3fH6g2/u77X3n3HbXhnRL+Al7a88aX746/+/9HBN1ChbKlcfSmwAsYJ0wqshm0fcx0BlG/yl2/0v/aRd139794hOHfhEt4c3hddOjTP1ebf/UfR+dGXXItw5fzRgVPXcctOD7+I/YeOY9a4F3Bzo5o5mdzz6MvYu/8I5k9+2XWs0vORGbbuNtR18Z0svgrExuR8TIGl48VgstB9CazDRwVMn+EW27GxEkYMcyKPK/VMRozpqkGAAksNypwjHAIUWOHQY99IE6DAijRhc4yvlsD6Y64T+zeYR2A1fsiKKi1yX0GT16pSWmDd+9grriN/8pFBeZOG7AfkHVlpaRlIXjIehRPi/S5w+T5t+d4reZwXnnwAD913h88+FFh+UeY0MK3Aqt+6j+to3I/LJvq86T/bsBaML+CSXJ7SJZteWnombmz/uGtH0m8rPw6cuo5b9njidezY/Z/XzrVjJ86gbY/nXBfRrZzv+zWkQ1+djFXJv+U6bkmBpePFYLLQfQmsdckWJG9w/4u1Xh0J3e51mowM040mAQqsaNLn3IEQoMAKhBLbRIsABVa0yBtrXgqsyNQzVIEVG2NH7Rq+T1hlR5qZlYW//j6A8teVxHcLcn9/lb/vyt97G9SuigUfjcxJ8O0J8zF/yWqMePpB9Oraxm/iH81ZhsmzlrqODs4Z/6LrOh5fT7bAkkVZko/NNXIf+UqjDq3cF7zzEne/+I3V4PYuT+PsuYtY/MnrqFmtQq7k+g/7AD/+usO180regeXrkY1qg9Z9XQtxx7pZxgLkI5udf+9HzydeR/GkIvhuwfuQfznIz9qNW/D0yAno1LYpRr/U3yeHOYtW4b3Jn6Ffr04Y0u++nDYUWIZfNoZJ0JfAmjrdimPH3f8i6nqPEw3r8/igYYqug0QosHRQJJOHSIFl8gWg8fQpsDReIJ2ER4EVmUKFKrCCiSYvgSVfq7Pk2w149bne6NapZc6Q8psI7+s3CjWqlHNdMZTfE8jRwez+2QIrv/GeG3A/Hu3RIacJBVYwlTZA237PjcGm33e67mSS72byfP7861/0GnR1QcrGVTavvp4LF6/g1rsHuXZn/bFqmgGo5E5BvqT+2MmzWLnuFyxYusZ1dnfca0+iSaNaOY1nf/4d3p+yEP0fugtP973XJ4c1G//A4JET0a7lTRj76iAKLEOuFmMnda3AupIqYPQY73vxXhrmRGwBCixjrwRtZUeBpa16MJrcBCiwuCq0TIACS8vV0U9sagks3oGV/5pQ6ghh9uXtoii5TmIlFIzzmrhr35GQ5dRnH41E/Tw8gbzRpceA1yELr/yODl4rsPgWQv8/96Y9QrhoRTJeHTPbdRH51NFDcUP9q28SkBfjoBEf4vjJs7ilcW3MGDssT4ryjiT5TGvpEklYu2isf9o6apF9VDA7ZHm3Va+ubfFI93auHViez6SZSzFl7jJca4U92/yydTf6PDMat9xQGzM+cDPlDiwdLQqTh3qtwNr6p4Cly90Cq1xZCY/35fFBky8T1dOnwFIdOScMkgAFVpDA2FxVAhRYquI27GRqCSzDAlQoMaUE1sJl6/DGuLl+o+ra8Xa8MayPz3byd2P5O3LjetUxZ/yIPI8OUmD5xZyrgWkFlnyBu3wx276Dx1xQypUpAfktfEdPnHH9syy2Fk17FZXKl86TavbivrHB9a4zrUZ65LcrHjh8AvL54LMpF/HP/iPIzMxy7UYbMfhB1L2+ck668psJZy78Fi8+1QsP3tvWJ4atO/fiwSffQqO61fHppJeMhIq5mJTA1FkO/P6ne7dV5w5W3NU+8IsmTYqNaZMACZAACZAACZAACZCA4gSUEljZl7fL92hZrb7/v/3OPftRINaO9UsmQL4z2/P5578j6P74KFgsFnw1602fbx28Nnle4h74cjCtwJIRHTl+Gk8MH4v/Dh33IlaiWCLGvjrQddlafs+A4WOx8Zft6NOjI54d0D1w6jpsKV9Yv/CrtRg3fRFiY2KwYu47KFWiqCuToHZg+dnVpkM0DNmEBEQRGPxiFtLS3cm//KwNlSoE/qpfE2JjyiRAAiRAAiRAAiRAAiQQEQJKCKwde/ajx4DXULVSWSyf/VaecWZ7gFFDH0H3u/+X087z6ODwQT3xcLd2AeVKgRUQJlcjUwssGYC8Eyt585/4+9/DLiDVq5RDy1sb5lxQnhdK+Q2GvYe8g/SMLLz+/KOoVb1i4NR13HLctEX4ZME3ruOEI57u5cpk7qJVGD35s4DuwGrT/AaMf+OpHAI8QqjjxWCy0D2PEO4/IGDmHPfxwfg4CS88z+ODJlsSmkiXRwg1UQYGkQ8BHiHk8tAyAR4h1HJ19BMbjxBqo1ZKCKxX3p+Jxd9scH3Plb/v5vX8sGkrnhwx3vW2Q/nUVvYzde5yTJy5xHXqaO4E/0cHs/tRYAW+hkwvsAJHxZYygT+2/4OHn34bNzWsidkfvuCCsn7zNgx8cVxAbyG8drcaBRbXlV4IeAqsVast+HGTe0txwwYSunamwNJLLY0UJwWWkappzFwosIxZV6NkRYFllEpGNw8KrOjyz549XIF1JTUdLe8dDHmjSvKS8SicEJ9nYvIF73f0eBbHT6W4BJYssvbuP4Ju/a4eHZTfUFixXKmAwVBgBYyKO7ACR8WWMgH5zY3yGxw97/06k3IBLboORoWyJbFy/ns+QQ19dTJWJf+GMa88gQ6tmuS0ocDiutILAU+BNWmKDSdPuSPvfq8Tdevw7YN6qaWR4qTAMlI1jZkLBZYx62qUrCiwjFLJ6OZBgRVd/koJrC+W/4DXxs5Blw7N8ebwvn6Tyr6oXT5CKB8lHDD8A2z8ZYfrrYUVyuYvr+S7tRZOeSVnjmyBJd+/XbRIIZ9zJxZOwKS3B+d89uWK9Rg1ZparfZlSxfKMd/zrT+K60sX95qOXBtyBpZdKaSTOtyd8ivlL1uCh++5wvRI0+5EvaJcvap8/+WU0rFPNK9pzFy6hdbehEKWrryL1tNkUWBopLMPwSyBbYP19MB3vj3UfHxQEYMTzTsQWoMDyC5ENFCdAgaU4Ug6oMAEKLIWBcjhFCVBgKYrTtINRYGmj9OHuwLqv3yjs3nsQn300EvVrV/Wb1Omz59G6+1AUiI1B8uLx6DN0NHbs/s9vP7mBxSJgx7pZuQRWfp2LFS3s+i6d/WQLLH8Tfj33HVSpUMZfM918ToGlm1JFPtAff92Bv/cdxp1tbkHpEkleE8oX0n2+bB3enbQAVqsVy2a95bUtUr7MXr7MTv7hmDbmeZQpebV/alo6nhk1GfLYvbq2wYinH/QalwIr8nXlDMoQyBZYy1enY/kKt8CqWEFC3948PqgMZY4SLAEKrGCJsb3aBCiw1CbO+YIhQIEVDC22zYsABRbXBgmoR4ACSz3Wmp/J0+JWrlDGJajiCsTi4qUr2Pn3fly4eAXxcQXw3sj++N+tjXLlM2bq55i1cCXsdhsa1a2GGLsd23btw6XLqa5zwXPGv4j4uFgKLM2vBAboi0C2wBozJQN79rjvv2rTSsTtzURCI4GoEKDAigp2ThoEAQqsIGCxqeoEKLBUR27ICSmwDFlWJqVRAhRYGi1MNMKSRdOyVT9hw8/bcPjYKaScv4S09AwkxMehYvnSuO3Guq7XhJYsnphnePI9V58uXo2/9x1yXYBXtkwJdGzVBI/26ODzzY7cgRWNSnPOUAjIAsspAk8Ny0KWwz3CwP4OlA78jsZQpmYfEsiTAAUWF4fWCVBgab1C5o6PAsvc9VcqewospUhyHBLwT4ACyz8jtoggAQqsCMLl0IoSkAXW7n8kjP3Iba8KFZLw/DM8PqgoaA4WFAEKrKBwsXEUCFBgRQE6pwyYAAVWwKjYMB8CFFhcHiSgHgEKLPVYcyYfBCiwuCz0QkAWWJ8vdWLNevdxwRsaS+jciQJLLzU0YpwUWEasqrFyosAyVj2Nlg0FltEqGp18KLCiw52zmpMABZY5666ZrCmwNFMKBuKHgCywXn4rCydPuxv27C6iVk3ef8XFEz0CFFjRY8+ZAyNAgRUYJ7aKDgEKrOhwN9qsFFhGqyjz0TIBCiwtV8cEsVFgmaDIBknRJsVhxBtZOdkIAvDyCw7Y7QZJkGnokgAFli7LZqqgKbBMVW7dJUuBpbuSaTJgCixNloVBGZQABZaPwqalZ+LLFclYveF3/Lv/KC5cuoLrq5bHkhlveLVe9+MWXElNR5vbb0RcgRiDLpHIpkWBFVm+HF05Art2xmLhEvdxwSqVJfR+iMcHlSPMkUIhQIEVCjX2UZMABZaatDlXsAQosIIlxva+CFBgcV2QgHoEKLCuYb3v4JoKh+cAACAASURBVDE8OWI8Dh096fWJL4H17Gsf4bsffsXbL/ZD53a3qVc1A81EgWWgYho8lS8W2bFzt5STZfu2Im5tyuODBi+75tOjwNJ8iUwfIAWW6ZeApgFQYGm6PLoJjgJLN6VioAYgQIHlUcRLl1PRpc/LOH4qBTExdrRu1hgVy5XC1LnLfe7A+mbtzxj2xlTc0eJGjHvtSQMsB/VToMBSnzlnDJ6A0wm8+a4N8t+zn6cGOlGiuFtoBT8qe5BA+AQosMJnyBEiS4ACK7J8OXp4BCiwwuPH3lcJUGBxJZCAegQosDxYfzT7K0ye/RVq16iECW8+jTIlk1yf1mnZ26fAOnzsFNo/MAzlryuJ7xa8p17VDDQTBZaBimngVP7+R8D8hdacDAsVkvD8Mzw+aOCS6yY1CizdlMq0gVJgmbb0ukicAksXZdJ8kBRYmi8RAzQQAQosj2J27TsSf+87jC+nv4Za1SvmfJKXwErPyMQN7R5HgdgY/LFqmoGWhXqpUGCpx5ozhU5gxbcW/Pq7JWeAm28U0akjjw+GTpQ9lSJAgaUUSY4TKQIUWJEiy3GVIECBpQRFjkGBxTVAAuoRoMDyYH1j+8dht9mwecVHXhXIS2DJjRrf0Q9ZDgd2rJulXtUMNBMFloGKaeBU3h9nxaVLQk6GvXo4cX0NHh80cMl1kxoFlm5KZdpAKbBMW3pdJE6BpYsyaT5ICizNl4gBGogABZZHMWUZVSghHuuXjA9IYKWmZeCmDv2RWCQBPy2bZKBloV4qFFjqseZMoRE4dRqYNMWW09liBUa+4IDVfaIwtIHZiwQUIECBpQBEDhFRAhRYEcXLwcMkQIEVJkB2dxGgwOJCIAH1CFBgebDu+OBwHDxy0iWwiicVyfkkrx1YazduwdMjJ6BR3er4dNJL6lXNQDNRYBmomAZN5afNFqxa7T4+WL2ahIce4P1XBi237tKiwNJdyUwXMAWW6Uquq4QpsHRVLs0GS4Gl2dIwMAMSoMDyKOrbEz7F/CVr0KtrG4x4+sF8BZa8+6rHE69j34GjGNLvPvTr1cmAyyPyKVFgRZ4xZwiPwKy5Vuw/4D4+eGcHEU1u4v1X4VFlb6UIUGApRZLjRIoABVakyHJcJQhQYClBkWNQYHENkIB6BCiwPFgfP3kWdz70AjIys9CpbVM82/9+lCyemOsthFt27MVb4+dhz7+HUKRwQXy34H0UTohXr2oGmokCy0DFNGAqWVnAm+/aIHlcd/XMYCeKFuH9VwYsty5TosDSZdlMFTQFlqnKrbtkKbB0VzJNBkyBpcmyMCiDEqDAuqawazb+gaGvTobTeXWHRcVypVzHChMKxqFuzcr4d/9RnEm54PrMbrdh6rtDccsNtQ26PCKfFgVW5BlzhtAJ7NptwcJF7uODpUoATw50eAmt0EdnTxIInwAFVvgMOUJkCVBgRZYvRw+PAAVWePzY+yoBCiyuBBJQjwAFlg/WO3b/h9fGzsHuvQfzrMT1Vcvjtef7oF7NyupVy4AzUWAZsKgGSumrr63YstV9fLBNCwtatMykwDJQjfWeCgWW3ito/PgpsIxfYz1nSIGl5+ppJ3YKLO3UgpEYnwAFVj413rFnP377czcOHTmFy6lpiCsQi+tKF0OTRrXQuF4N468OFTKkwFIBMqcImcC771uRmuYWWEMH2lC0RDoFVshE2VFpAhRYShPleEoToMBSmijHU5IABZaSNM07FgWWeWvPzNUnQIGlPnPO6EGAAovLQasEjp8Apkyz5YQXYwcmjLbj9IU0CiytFs2EcVFgmbDoOkuZAktnBTNZuBRYJit4hNKlwIoQWA5LAj4IUGB5QJGPDXbteDuPBar4o0KBpSJsThUUgfUbLVj7g/v+qwZ1BTzVz4bjKRRYQYFk44gSoMCKKF4OrgABCiwFIHKIiBGgwIoYWlMNTIFlqnIz2SgToMDyKECdlr1d/1S1Ull07dDc9SbC4klFolwiY09PgWXs+uo5u+mzrDh82H188MFuVrRsZqHA0nNRDRg7BZYBi2qwlCiwDFZQg6VDgWWwgkYpHQqsKIHntKYkQIHlUfa7Hn4R/x06nvMnVqsFtzdpgC4dmuP2pg1gt1lNuUgimTQFViTpcuxQCWSkC3jrPe+f9/desyMpERRYoUJlv4gQoMCKCFYOqiABCiwFYXIoxQlQYCmO1JQDUmCZsuxMOkoEKLCuAb/z7/1YvmoTVq77GSnnL+V8WrRIIdx1x60umVWjSrkolct401JgGa+mRsho+w4BXy51C6ySJYG3RtghCBRYRqivkXKgwDJSNY2ZCwWWMetqlKwosIxSyejmQYEVXf6c3VwEKLDyqLfD6cRPv+7E8u9/wg8/bUVGZlZOy9o1KrlE1p1tbkGRQgXNtWIUzpYCS2GgHE4RAouXWrFth/v4YLNbRTzSPZYCSxG6HERJAhRYStLkWJEgQIEVCaocUykCFFhKkTT3OBRY5q4/s1eXAAVWALyvpKbj+/W/YcXqzfhl625IkuTqZbfb0Oq2xi6Z1bxJvQBGYpNrCVBgcU1ojYD84/32e1ZkZLgF1qMPO3Fr4wIUWForFuMBBRYXgdYJUGBpvULmjo8Cy9z1Vyp7CiylSHIcEvBPgALLPyOvFqfOnMfKH37Bqh9+xbZd+3I++yt5dpAjsblMgAKL60BrBA4fFTB9hvv4oN0GvPSCA2WLx1Fgaa1YjIcCi2tA8wQosDRfIlMHSIFl6vIrljwFlmIoORAJ+CVAgeUXUe4GWQ4nftmyC0u+3YBVyb+5GlBghQCSAis0aOwVUQLrki1I3mDJmaNOLRH3dxNRJokCK6LgOXhIBLgDKyRs7KQiAQosFWFzqqAJUGAFjYwdfBCgwOKyIAH1CFBgBchaFCX8+udufLPmZ6zZ8DsuXk7N6XlD/RqYO2FEgCOxmScB7sDietAaganTrTh23H188J67nWjcUKLA0lqhGI+LAAUWF4LWCVBgab1C5o6PAsvc9VcqewospUhyHBLwT4ACyw+jvfuPuN5K+M3azTh5+lxO6zIlk3B3u9twT/vmqFC2pH/SbOGTAAUWF4aWCFxJFTB6jPv4oBzb8OecKBhPgaWlOjEWNwEKLK4GrROgwNJ6hcwdHwWWueuvVPYUWEqR5Dgk4J8ABZYPRvI9V9+u/dn1BsK/9x3OaRETY0eb5lcvbb+lcR1YLO5dGv5Rs4UvAhRYXBdaIvDHFguWrXAfH7yujIQB/ZyuEHmEUEuVYizZBCiwuBa0ToACS+sVMnd8FFjmrr9S2VNgKUWS45CAfwIUWB6Mlq36CV+v3oSf/9iV86ZB+eN6NSu7pFXH1regUEK8f6psETABCqyAUbGhCgQmT7Xi5Cm3mG7Z3IlW/7v61lEKLBUKwCmCJkCBFTQydlCZAAWWysA5XVAEKLCCwsXGeRCgwOLSIAH1CFBgebCu07J3zj8VTyqCTm2bomuH5qhaqax6FTHZTBRYJiu4htPdf0DArLnu44OCADw72InChSmwNFw204dGgWX6JaB5ABRYmi+RqQOkwDJ1+RVLngJLMZQciAT8EqDA8kDUoHVftLi1gWu3VfMm9WGzet+F45cmGwRNgAIraGTsECECC7+wYNce9/HBmteLeOB+MWc27sCKEHgOGxYBCqyw8LGzCgQosFSAzClCJkCBFTI6dvQgQIHF5UAC6hGgwPJgnXL+EpISC6lHnzOBAouLQAsELl4U8MF4K6Srm61czyMPOVG1svsPKLC0UCnGcC0BCiyuCa0ToMDSeoXMHR8Flrnrr1T2FFhKkeQ4JOCfAAWWf0ZsEUECFFgRhMuhAybw/RoLftzk3n1VoriIpwa6d1/JA1FgBYyTDVUkQIGlImxOFRIBCqyQsLGTSgQosFQCbfBpKLAMXmCmpykCphVYP2zaiuRNf+KOFjfhtpvquooyf8makIvTq2ubkPuauSMFlpmrr43cnU7g3fetyMh0X95+951O3HiDx3YsCixtFItR5CJAgcVFoXUCFFhar5C546PAMnf9lcqeAkspkhyHBPwTMK3AurnjAFxJTUexooWxYekEFynPS9z9o/Nu8Vfy7GC7sD3AI4RcBVEn8NsfAr7+xn3fXVychGFDnbj2CjzuwIp6qRiADwIUWFwWWidAgaX1Cpk7Pgosc9dfqewpsJQiyXFIwD8B0wqsZ0ZNwuoNf+Ce9s3w5vC+LlJ3PvSCf2J5tPhm3rsh9zVzR+7AMnP1tZH7xI8sOH3GfXyw2a0i7mjjfXxQjpQCSxv1YhTeBCiwuCK0ToACS+sVMnd8FFjmrr9S2VNgKUWS45CAfwKmFVgyGkmSIAjuY0P+cbGF0gQosJQmyvGCIbBvv4A589y7r+RfB88OdqJwYe/jgxRYwVBlWzUJUGCpSZtzhUKAAisUauyjFgEKLLVIG3seCixj15fZaYuAqQWWtkphzmgosMxZd61kPX+hBX//4959VaeWiPu75d59RYGllYoxjmsJUGBxTWidAAWW1itk7vgosMxdf6Wyp8BSiiTHIQH/BCiw/DPKs4W8gystPQM2qxUxMfYwRjJvVwos89Y+2plfvChgzIfu3VdyPH0ecaJSxdy7ryiwol0tzp8XAQosrg2tE6DA0nqFzB0fBZa5669U9hRYSpHkOCTgnwAFlgejJnc+gZsb1sTEtwb7JwcgK8uBG9v3R/3aVTBv4ksB9WEjbwIUWFwR0SKwcrUFmze7d1+VLiVhYH9nnuHwDqxoVYrz5keAAovrQ+sEKLC0XiFzx0eBZe76K5U9BZZSJDkOCfgnQIHlwUh+C+EtjWtjxthh/sn9f4vW3Ya6dmFt+npywH3Y0E2AAourIRoEsrKA9z6wIiPTfQdel7udaNTQ9+4rOUYKrGhUinP6I0CB5Y8QP482AQqsaFeA8+dHgAKL60MJAhRYSlDkGCQQGAEKrDAFVtNOA5GaloFta2cERpytvAhQYHFBRIPAr79ZsGKle/dVXJyEYUOdsHqfKPQKjQIrGpXinP4IUGD5I8TPo02AAivaFeD8FFhcA5EmQIEVacIcnwTcBCiwwhBYXyz/Aa+NnYMyJZOw5ouxXFchEKDACgEau4RNYOwEK86fd+++atFcROv/+b68PXsyCqywsXOACBCgwIoAVA6pKAEKLEVxcjCFCXAHlsJATTocBZZJC8+0o0LA1AIredOfWL/5zxzwX3ydjJLFE9GyacN8i5HlcGLfwWPYvmufq12Pzq0w8pmHo1JAvU9KgaX3Cuov/n/3CZg7373VymIBnnvGiYSCeR8flLOkwNJfrc0QMQWWGaqs7xwpsPRdP6NHT4Fl9Aqrkx8FljqcOQsJyARMLbAWrUjGW+M/dV3GHupTrXJZzPnwRSQWSQh1CFP3o8Aydfmjkvy8z6zYu9e9+6peHQnd7s378vbsICmwolIuTuqHAAUWl4jWCVBgab1C5o6PAsvc9VcqewospUhyHBLwT8DUAkvGk5qWjk2//4UVqzdj9YbfkZRYCDfUvz5fchaLgCKFE9CobjW0b3kzYmLs/kmzhU8CFFhcGGoSOHdewLgJ3hdd9evrRPmy+e++kmOkwFKzUpwrUAIUWIGSYrtoEaDAihZ5zhsIAQqsQCixjT8CFFj+CPFzElCOgOkFVjZKeRdWm/ufRbVKZYN6C6FypTDnSBRY5qx7tLL+9jsLfv7VfXl76VISBvb3v/uKAitaFeO8/ghQYPkjxM+jTYACK9oV4Pz5EaDA4vpQggAFlhIUOQYJBEaAAsuD07wvv8fe/Ufw+vN9AqPHVmEToMAKGyEHCJBAVhbw7vs2eJ4YvreLEw3q+d99RYEVIGQ2U50ABZbqyDlhkAQosIIExuaqEqDAUhW3YSejwDJsaZmYBglQYGmwKGYKiQLLTNWObq7yzit5B1b2I1/a/uwzTljdf5RvgDxCGN36mX12y5njsH01E8LFFC8U8vq1WS1wihIczsBkrNlZMn91CcTar/6SzcjK/02v6kbF2UjgKgGbVYDVIsDhFOHkEuWyAJD18HMQi5cJigUFVlC42JgEwiJAgRUWPnYOlwAFVrgE2T8QApIEjJtoxfnz7svbW7UQ0bJF4P9vlQIrENJsozQBISMN1m8/hX3dEgiO0F84onRcHI8ESIAESIAEjEgg7aWpkMpVDSo1CqygcLExCYRFgALLB74jx09j0287cfxUCjIzswIC/PzAHgG1YyNvAhRYXBFqEPhnr4BPP3Nf3m6xAMOfdSIuLvAdKxRYalSKc3gSsG1eDdtX02G5eI5gSIAESIAESIAEVCCQPnIaxOsqBzUTBVZQuNiYBMIiQIF1Db4JMxZj+vwVEMXAv9jKQ/yVPDusQpi1MwWWWSuvbt5z51vx7z737qsG9SXce09gl7dnR0qBpW7NzDybcGQfYud9AMuhvWbGwNxJgARIgARIQHUC3IGlOnJOSAJBEaDA8sC1ZuMfGDxyoutPEosk4Poq5VE0sRC+++FXlC1dHJXKl8blK2n457/DSEvPRJmSSXisVyfUrFYBDetUCwo8G18lQIHFlRBpAufOCxg3wb37Sp7vif5OlCkVnKSmwIp0pTi+cPkC7Eumw7Z5lU8YYuGicHTuA8njbg75fqGEOJvrfqHLaTxiyFWkPQLFCse4gjp7MVN7wTEi0xNIKGBFbIzV9fuT97SZfjm4AIgVa0CKjQsKBndgBYWLjUkgLAIUWB74+g/7AD/+ugMdWjVxvYkwPi7W9Wmdlr3Rt2dHDO3f3fXPsrz6eN5y104t+c/kz/iERoACKzRu7BU4gRXfWvDr7+6b2iuUl/DYo8HtvpJno8AKnDlbBknA6YQ9+StYv5kLS1pqrs6S1Y6sNl3h7PggpJgCXp/zLYRBsmZz1QnwLYSqI+eEQRDgWwiDgMWmeRKgwOLiIAH1CFBgebBu1vkpnLtwCZuWT0aRwgVzPrlWYGV/8Ma4uVi4bB3mTRyBxvVqqFc1A81EgWWgYmowlfQMAe9/YEWWx8aU7vc6UbdOcLuvKLA0WFyDhGTZsxUxC8bDcvqoz4yc9W5BVveBeb4RiQLLIAvBwGlQYBm4uAZIjQLLAEXUQAoUWBooAkMwDQEKLI9S12/dB8WKFsYPX37otQDqtXoUD9/XDtde1C5f8t6m+1Dc0eJGjHvtSdMsGiUTpcBSkqbxxzpwwL2TKpBs/94r4afN7uODCQkShg0NfvcVBVYgtI3Txrp3GxC84wwOgNMJm7zravtmn/3EEmWR1fNpOGs1zndcCqzgsLO1+gQosNRnzhkDJ0CBFTgrtsybAAUWVwcJqEeAAsuD9Y3tH0fhQgWxbtE4rwrc1GEA2rW8CW8O75urMi26DoYgCEhe7C291CuhvmeiwNJ3/dSM/osvrdi5y30Reyhzt2kl4vZmYihdeYQwJGr66iTLJPuXH+e5G0qNbKQCcXDc+RCy/tcVsHrf3eZrfgosNarCOcIhQIEVDj32jTQBCqxIEzbH+BRY5qgzs9QGAQosjzrc/cgI7Dt4DL9+OxUF4933jNz50AsoUqggFnw0MlfVWncbirPnLuDPNTO0UVEFopB3ln22dI3rPrDDx07D4XS6Lqy//ZYGeOyBO1E8qUiesyxduRFfrliPfw8chdPpRMVypXFP+2Z4oEsbWK25d89QYClQMBMMsX6jFWt/CE9eyS5A3n0VFxfa1hregWXchWY5fgj2RZNh3b0lqkk6brkDWV0eg1S4aMBxUGAFjIoNo0SAAitK4DltQAQosALCxEZ+CFBgcYmQgHoEKLA8WL/y/kws/mYDJr75NFo1cx/bGPLKJKz7aQtWLXgfZUoVy+mRcv4Sbu/ytEt2/fLNFPWqFqGZRFHCjM++weRZS5HluCqtqlcp7xJRu/cehJxvUmIhzJkwAlUqlMkVxYtvT8fy73+C3WZFo3rVYbfZsG3XPtebG5vdXA+T3xkC2zU7CiiwIlRMAw278y8BXyz2vxPFX8qNG0m4567Qjg/KY1Ng+SOsv8+FtCuwfT0H9vXLATH0tRFu5mKF6sh4YAikisHfpUiBFS599o80AQqsSBPm+OEQoMAKhx77ZhOgwOJaIAH1CFBgebDesmMvHnrqrVx3Wi35dgNGvjcT9WtXxeiX+qNC2ZI4k3IBo8bMQvKmP3Fzo5qYNe4F9aoWwZlkWbf/8HG8+GQv3HJD7ZyZ5DcvvvrBLKxYvRmN61XHvIkveUUhiytZYMlia9qY513yS35S09Ihj/nTbzvxVJ+uGPDw3V79KLAiWEwDDH3goICZc7zllbyDqmSJ4JO7u6OIEiVD231FgRU8b633sG9cAdtXMyCkXvYZqrNqXcAS3J1rwecswNm0HRxN2wbf9f97UGCFjI4dVSJAgaUSaE4TEgEKrJCwsdM1BCiwuCRIQD0CFFjXsH5r/Dzc0eIm3NSwZs4nGZlZ6NhrOE6cTnH9WXxcLFLTMnI+H//GU2jT/Ab1qhbBmWRRZbUIiImx55pF/qxZ5yeRnpGJ9UvGex0lvOfRl7F3/xHMn/wyGtap5tVXfrOjfNTSbre5+hWIjcn5nAIrgsXU+dApKQKmTLMgI9N9dNBmA/r2dqLsdaGLqFCxcAdWqOS01c+ybydi5n8Iy/GDvsVVlTrI7PkUpHJVtRV4HtFQYOmiTKYOkgLL1OXXfPIUWJovkS4CpMDSRZkYpEEIUGAFWMhd/xzAoBEf4tSZ8zk95DudnnikM554uHOAo+i/WZc+L+Of/47gq1lvonrlcq6Ejp04g7Y9nnPtTFs5/z2fSQ59dTJWJf+GiW8NRqvbGlFg6X8pRDSD1DQBU6dZcP6C971XvXqKuL56aJewhxswBVa4BKPbXzh7EvbFU2Hb+qPPQMSkknB07QfHDS2jG2iQs1NgBQmMzVUnQIGlOnJOGAQBCqwgYLFpngQosLg4SEA9AhRYQbCWdyBt/GU7jp0847rU/ZbGtb3uxApiKN02bdXtGZw8fc7rovu1G7fg6ZET0KltU9cRS1/PnEWr8N7kz9CvVycM6XcfBZZuV0DkA89yAJ/MtOL4CW951a6tiNuaRkdeyVlTYEW+9pGYQchMh23lZ7Ct+RKCIzPXFJI9Bo52PeC4437I/1tvDwWW3ipmvngpsMxXcz1lTIGlp2ppN1YKLO3WhpEZjwAFlvFqGrGM/vr7ALr3fxUNalf1eiPj7M+/w/tTFqL/Q3fh6b73+px/zcY/MHjkRLRreRPGvjqIAitiVdL3wJIEfPqZBXv/9b57qFEDEV06R09eUWDpc13Zfl0H29JpsJw/6zMBxw0t4Li3P8SiIVyqphEkFFgaKQTDyJMABRYXh5YJUGBpuTr6iY0CSz+1YqT6J0CBpf8aqpKBJEnoO/Q9/LJ1N66982vSzKWYMncZnhtwPx7t0cFnPHK/Ps+Mdl0MP+ODYTltMrJ8Swm7VYDFIiDLKUKMrrdQhS8nuUpg8dci1q33vt+qWhVg8ABr5O/T9lOEWPtVqZaZJUL9G7i4QoIhIO7/G5mzxkLat9tnN6FCVdh7D4X1+nrBDKvJtlYLYLNa4BQlOJxcmZosksmDyv7dmde/702Oh+lHmYDNKrjufnU4RTj5/zejXA39Tp/9e06/GTByEtAPAQos/dQqqpFmSyr5snpZYHk+H0z9AjMXfosXn+qFB+/1/TatrTv34sEn30KjutXx6STvNxhGNTFOrhkC6zeJmPe50yueMqWAEUPtiCugmTAZiIYJSBfOIW3+R8hMXulbXBVORFyPxxHT+i5A8D6iquG0GBoJkAAJkAAJkAAJkAAJkAAAUwqsW+92H2FTahVsWj5ZqaE0N86CpWshv52xRpVy+HTSyygY720TgtqB1bg2Zox178A6ezH3nTQygELxNsTYLLiU5nDteOFjbAJ79wmYMQeQjxBmP/HxEoYMElCksDZ2lRQrfPV+pJRLmV5xGrsyOsnO4YBl9SJgxXwIGam5g7ZaIbbqAnTuDalAvE6SCixM+b/6JsTZIO9uuZzmCKwTW5GAigSyf3fm9e97FUPhVCSQi0BCAStiY6yu35/cJcgFEiqB7N9zofZnPxIggcAJmFJg1WnZO3BCAbb8K3l2gC311WzRimS8OmY2KpQthbkTXkSJYom5Epi7aBVGT/4soDuwrt3Bdexsmk8gSYViUCDG6pIF6Zneu3L0RZDR+iNw8pSAaTOsyMpyt5SPRT3Wx4my12lDXsmR8RJ3f5WMzufW7ZthXzQFljPHfQbgvL4hMh8YDKnk1bemGu3hHVhGq6jx8uEdWMarqZEy4h1YRqpm9HLhHVjRY8+ZzUfAlALr27W/KF7pjq2bKD5mtAdcuGwd3hg3F5XKl8ascS+gZPHc8kqOcf3mbRj44riA3kLYp0dHPDuge05qFFjRrnJ05794ScDUaRZcvuJ9nKtHNxG1a2lr5x0FVnTXyrWzCycOIWbBeFj3bvcZmFiyHBzdnoCj7s3aClzhaCiwFAbK4RQnQIGlOFIOqCABCiwFYZp4KAosExefqatOwJQCS3XKOpxw3pff491JC1zHBj/5YBiKFS2cZxZnUi6gRdfBqFC2JFbOf89nu6GvTsaq5N8w5pUn0KGVW/ZRYOlwcSgUcnqGgGmfCDhz1vuNg21aibi9mbbklZwyBZZChQ9zGCHtCuzLZsG2cQUg5t6dKcbFw3nnQ8hq2QWwWsOcTfvdKbC0XyOzR0iBZfYVoO38KbC0XR+9REeBpZdKMU4jEKDAMkIVFc5h1sKVGDP1c9S9vjKmvf8cihQu6HcG+YJ2+aL2+ZNfRsM61bzan7twCa27DYUoSdiwdAIKJ7jvoKHA8ovWkA3kN0vOmmvFwUPeO68aNRDRpbP25BUFlgaWoSi6pJX969kQrlzKHZAgIKtpOzi6PAYpoYgGAlYnBAosdThzltAJUGCFzo49I0+AAivyjM0wAwWWGarMHLVCgAJLK5XQSBzTPv0a4z9ZjMb1amDq6KG5lfgHFAAAIABJREFULmzPK8yNv2zHgOFjUaVCGUwb8zzKlExyNU1NS8czoybjx193oFfXNhjx9INeQ1BgaaTwKoexdJkFW7d577yqUllE74e0Ka8osFReINdMZ/lnG2IWToTl+EGfgTgr1URmryGQylWNbqBRmJ0CKwrQOWVQBCiwgsLFxioToMBSGbhBp6PAMmhhmZYmCVBgabIs0Qlq0+870e+5Ma7Jy5QqhtgYe56BJMTH4fOPR3l9Lu/akndv2e02NKpbDTF2O7bt2odLl1NRu0YlzBn/IuLjYimwolNezcy6fqMFa3/wlldJSRIG9BNRIFY7l7ZfC4xHCNVfQsLZk7B/OQW2P3/yOblYtAQcXfvBceP/1A9OIzNSYGmkEAwjTwIUWFwcWiZAgaXl6ugnNgos/dSKkeqfAAWWRw17PPF6yBVdOOWVkPtqpaN8R5V8V1UgT0LBOPzyzZRcTeUxPl28Gn/vOwSnU0TZMiXQsVUTPNqjg08hxh1YgdA2Tpudfwn4YrH3vUTxcRL6Py6iaBHtyiuX1E2KgyAAx1PSIGk7VN0vGCEzHbZv58O2ZjEEp8frKf8/M8keA0fb7nC07wn5f5v5ocAyc/X1kTsFlj7qZNYoKbDMWnll86bAUpYnRyOB/AhQYHnQqdOyd8ir5a/k2SH3NXNHCizzVP/IEQGfzLZCvv8q+7FYgccecaJcOe0bIQosFdaqJMH261rYln4Cy4WzPid0NG4Bx339Ie++4gNQYHEVaJ0ABZbWK2Tu+CiwzF1/pbKnwFKKJMchAf8EKLA8GE2duzxfYukZmTh5+hy27PgHR46fdt0PNerZ3ri+SnlUq1zWP222yEWAAssciyIlRcDUTyxIT/e+tL1ndxG1amr33ivP6lBgRXatCgf/QeyCD2E5tNfnRGLZKsjs+RTEqnUjG4jORqfA0lnBTBguBZYJi66jlCmwdFQsDYdKgaXh4jA0wxGgwAqxpCvX/YIR736C+rWqYNa4F2CxeH8xD3FY03WjwDJ+yVPTBEydZsH5C94/I3e0EdHsVn3IK7lKFFiRWavCpfOwL/4Ytl/W+JxAfqOgo3MfZN3WAa4znHy8CFBgcUFonQAFltYrZO74KLDMXX+lsqfAUookxyEB/wQosPwzyrPF/CWr8faE+Xj9+T64987bwxjJvF0psIxd+ywH8MlMK46f8BYPDRuI6NpZP/KKAkv5dSo4MmFbswS27xZAyEjLNYFktcLRojMcd/WGVCBO+QAMMiIFlkEKaeA0KLAMXFwDpEaBZYAiaiAFCiwNFIEhmIYABVYYpZbfrnfr3YPQuF4N1xv2+ARPgAIreGZ66SFfdP7pZxbs/df7jYNVKot4uJcIi/cfaz4t7sBSrkS2rT+6dl0JZ0/4HNRR+0Y4ug+EWKq8cpMadCQKLIMW1kBpUWAZqJgGTIUCy4BFjUJKFFhRgM4pTUuAAivM0rfoOhgOpxM/LZsU5kjm7E6BZdy6r1xlweZfvC1VyRISHn/MiRi7/vKmwAq/ZsKxA4hZOBHWvdt9DiaWLIesbgPgrNsk/MlMMgIFlkkKreM0KbB0XDwThE6BZYIiq5AiBZYKkDkFCfw/AQqsMJfCrXcNwpXUdGxbOyPMkczZnQLLmHX/fYsFy1d4y6tChSQ88biIhILaf+Ogr6pQYIW+VoXLF2D7agbsm74D5K151zzyEUHHnQ8h639dAas19IlM2JMCy4RF11nKFFg6K5jJwqXAMlnBI5QuBVaEwHJYEvBBgAIrjGVx7MQZtO3xHIoVLYwNSyeEMZJ5u1JgGa/28pFB+eigp6eIjZF3XkkoUVxf9155VocCK7S1al/7JWwr5kJIz33PlTyio2lbZHXtD/mydj7BE6DACp4Ze6hLgAJLXd6cLTgCFFjB8WJr3wQosLgySEA9AhRYIbJOTUvHs69NwYaft6F5k/qYOnpoiCOZuxsFlrHqf+y4gE9mWeFwuPOSXxzX5xEnKlbQ586r7EwosIJbq7Y/f4Rt8TRYzhz32dFZqSYyew2BVK5qcAOztRcBCiwuCK0ToMDSeoXMHR8Flrnrr1T2FFhKkeQ4JOCfAAWWB6P3P1rol5hTFHHydAp+3/Y3Us5fcrWf+NZgtLqtkd++bJCbAAWWcVbF+fMCpk63IDXN+42D8tsG5bcO6v2hwAqsgn7vuSqcBEfXfnA0aRPYgGyVLwEKLC4QrROgwNJ6hcwdHwWWueuvVPYUWEqR5Dgk4J8ABZYHozote/sndk2L3t3b4/mBPYLuxw5XCVBgGWMlpGcImDrNgpRz3vKqxe0iWrfUv7ySq0SBlf9a9XvPlc2GrFZd4ez4IKTYOGMsfA1kQYGlgSIwhHwJUGBxgWiZAAWWlqujn9gosPRTK0aqfwIUWB41fGTwO34rKggCCsYXQKXypdG+5c2oV6uK3z5skDcBCixjrI6Zcy04cMD70vZ6dUV062oMeUWBlf86ta9dDNuKOXnfc1XnJjjufxJiieuMseAVyOLsDgGpvk9XBjW63WZBgRgrshwi0jOdQfVlYxJQg0Ch+Kuvnb2UmqXGdJyDBIIiIP/+lH+Pyr8/5d+j8lP+Dn1feRAUADZWhAAFliIYOQgJBESAAisgTGwUKQIUWJEiq964ThFYsNAC+fL27Ee+7+rRh5ywGOiFctyB5XtN2VfMhf2beT4/FIuXRmavoRBr8oh1NqDLR4D/vrLi8mHv3Yrq/cRyJhIgARIggfwI3PyaA7YCZEQCgROgwAqcFVuSQLgEKLDCJcj+YRGgwAoLX9Q6X74sYNUaAdu2e++6kgMqXkxE/74SYgsY679gUmDlXm6239YhZmbunauSPRaOux5BVttuUVujWps484KAA98KOPNn7p8ZrcXKeEiABEjAzASavOaE1WD/H8bM9VQjdwosNShzDhK4SoACiyshqgQosKKKP+jJ5bcL/rjJio0/CsjyeNNg9kDxcRIG9BORmGgseSXnR4HlvVys//2F2PeH5FpDjlvaIqtLP0iFiwa9vozYQcwEDq8TcGyjFZKPnxkj5sycSIAESEDPBLgDS8/Vi07sFFjR4c5ZzUmAAsucdddM1hRYmimF30C27xTw/RoLLl70ffSpQX0R7dpISEgwnryiwPJeHpbTxxA7ehCEK5e9Psh44nU46zf1u5bM0uDkbxYc/E6A47Lvn5miNUUklA3v54V3YJllNek3T96Bpd/amSFy3oFlhipHPkcKrMgz5gwkkE2AAsvHWtj8+19Y99MWHDh8EldS0yBK/r9gLJzyCldVCAQosEKApnKXY8cFfP2tBUeP+v4SXrashLs6iriujP+fE5VDV3Q67sD6f5xXLqHA6KdgOX3UW149MATO5ncqylyvg134D9i/3IrU475/ZuJKSah8t4jEauH/zPAthHpdJeaJm28hNE+t9Zgp30Kox6ppL2YKLO3VhBEZlwAFlkdtRVHCsDenYuW6X4Ku+F/Js4Puww4ABZZ2V0F+91zJURcpIqFtaxH164b/JVy7FNyRUWABcDoQ+8FQWPfv9ipZVpt7kXXvAD2UMaIxpp8RsH+FgHO7fd9zZS8ooUI7CaVuFgGF7nCnwIpoSTm4AgQosBSAyCEiRoACK2JoTTUwBZapys1ko0yAAsujAAuXrcMb4+a6/qRs6eK4uVEtlCpRFBbB/zeNQY92iXIp9Tk9BZb26ua652rz/99z5eOt53Y70LyZhGZNnbDZtBd/pCKiwAJiZr4N228/eCF2NLgNmf1HAQH8noxUbZQe9+J/8u98/7/3Pec9ux04vjnvC9rLtnCiXCsofjEwBZbS1ed4ShOgwFKaKMdTkgAFlpI0zTsWBZZ5a8/M1SdAgeXBvOfAN7B91z7c2foWvPViP9htVvUrYrIZKbC0VfALFwTMmGPB+fN533N1R2sJhQqZY9eVZ3XMLrDs334K+9dzvBasWL4a0odNAGx2bS3kEKM5/6+AfYstyEgJTl7lN12xeiIq3SkhtmhkfmYosEIsNrupRoACSzXUnCgEAhRYIUBjl1wEKLC4KEhAPQIUWB6sb+owAKlp6Uhe/CFKFEtUrwomnokCSzvFT88QMH2GgNNncu8ike+56tRBRNnrIvMlXDsU8o7EzALLunUjYqe97i2vkkoi/cWPgIQieihfvjGmnxWwf7mAc3vy3kEVbJLy5eyVO4soVDGyPzMUWMFWhu3VJkCBpTZxzhcMAQqsYGixbV4EKLC4NkhAPQIUWB6sG7Z9DDF2G379dqp6FTD5TBRY2lgAogjMmmvFwUPeO0/Mds9VftUwq8CyHPwHsWOGQHC4z5NK8QlIHz4JUsmy2ljAIUYhZgKH1wg4+qMVcIY4yDXdYopIqNRBQvGGyt1zlV9kFFjK1I2jRI4ABVbk2HLk8AlQYIXPkCMAFFhcBSSgHgEKLA/W7Xo+j5NnzmHLqumwWJQ7QqJeOfU3EwWWNmq2dJkFW7d57z6pUE5C74fNdc8VBZY3AeHsCRR4ZxCEKxdzPpCsNmQMHQuxSi1tLN4Qozj9h8V14boj1ffvetfOqSA3ZCVWB8q1cEJQ8W44CqwQFwC7qUaAAks11JwoBAIUWCFAY5dcBCiwuChIQD0CFFgerF8bOwdfLP8Bc8a/iBsbXK9eFUw8EwVW9IufvMGCdcne39STikro/5iIuLjIHn+KfvaBR2C6HVhpV1zyynL6qFteAa4L250NmwUOTmMtLx8B9i2x4srRvMVV1a5OxJfWWOB5hEOBpY86mTlKCiwzV1/7uVNgab9GeoiQAksPVWKMRiFAgeVRyQOHT+Dex15BpfKlMXPccBQpVNAoddZsHhRY0S3Nzr8EfLHY+2UF8XESBvQTkZhIeeVZHVMJLKcDseOHw7p3u9cCzeraD1ltu0d30YY4u7zT6sAKAaf+8L2tSr5kvdKdIorV09e6p8AKcUGwm2oEKLBUQ82JQiBAgRUCNHbJRYACi4uCBNQjQIF1Deu1G7dg+FtTER9XAF06NEf9WlVRNLEQrNb8z5I0qF1VvaoZaCYKrOgVU77vSr73Sr7/KvuxWIHH+zhxXRl9fYlXg6KZBFbMzLdh++0HL6yOZh2R2esZNVArOofkBI7/ZHHddeXMyL3rymIHyrWSUFY++qfDF89SYCm6XDhYBAhQYEUAKodUjAAFlmIoTT0QBZapy8/kVSZAgXUN8ENHT+LZ16Zg1z8HgirFX8mzg2rPxlcJUGBFZyXIbxqc9omAjEzvL/Q9u4uoVdPDaEUnPE3OamSBJWRlwnJ4H4TDe2E5sAe2n1d71cBZtwkyBr2pybrkFdTlQwIu7LPg5O9A+hnfxwVLNBZRqaMEeyH9ClsKLF0tS1MGS4FlyrLrJmkKLN2UStOBUmBpujwMzmAEKLA8CnridAq69RuFlPOXgi4zBVbQyCiwQkMWdq/UNAGTp1pw6ZL3l/r2bUXc2pTyKi/ARhFYQkYqhMP7YD28F8LBvS5pZT1xGF5b8TwgiNdVQvqwCUBsXNhrL5IDONMFnP8HSNkt4NyevC9nl2MoWFaCfM9VQrlIRqTO2BRY6nDmLKEToMAKnR17Rp4ABVbkGZthBgosM1SZOWqFAAWWRyXeGj8PC5auRaGEeAx8pDNuu6kuSpVICuiNhPKRQz7BE+AOrOCZhdMjywF8MtOK4ye85dUNjUV07kR5lR9bPQos4cplWA79A8uRfRD273H93fNSdn9rSUoqiYzhEyEWTvLXNCqfp50UkLLHgnO7gIsH/L851pYgofKdEuSdV0Z5KLCMUknj5kGBZdzaGiEzCiwjVDH6OVBgRb8GjMA8BCiwPGrd/oFhOHzsFMa+OgjtWt5knlUQxUwpsNSDL0nAp59ZsPdf7/vcqlcT8WBPEYL/7//qBavBmbQusIRL52E9dHVHlbyzyrXD6uzJkElKBeKRPnwipNIVQh5D6Y7yfVYX/rUgZTdcu6wyzgW2aOW7ra673YnyrSXId14Z6aHAMlI1jZkLBZYx62qUrCiwjFLJ6OZBgRVd/pzdXAQosDzq3fiOfshyOLBl1XTY7TZzrYQoZUuBpR74ZSss+GOLt7wqU1rCY32c4HL3XwctCSwh5RQsh/a6/nLdW3XoX1gupvhPIq8WFgucpStAqlAdYsUakMpXg1i+GqSY6O8szbwgIGWX4JJW8p1WkiOwNK3xEorWkJBUW0LR6wFrAf3ec5VfxhRYga0HtooeAQqs6LHnzP4JUGD5Z8QW/glQYPlnxBYkoBQBCiwPkk07DXT90+YVHynFl+P4IUCBpc4S2bTZgu9We8urQoUkDBogIj7OmF/slSYbFYElSbCcOeYSVDj0D6yH/70qra4Ef09fNg/JaoVUpiLECjUgVqh+VVqVqwrJHqM0spDGk0Tg0sGrwurcHgvkY4KBPnGlJBStKSKpNlC4ogQE3jXQKTTXjgJLcyVhQNcQoMDiktAyAQosLVdHP7FRYOmnVoxU/wQosDxq2Hfoe/h5yy5sWj4ZRQoX1H91dZABBVbki7R7jwWffeEtr2JjJDz+mIQSxY1zF1CkSUZcYIkiLCcPu2SVIN9bJcsq+RhgelrIqUlWO6SyleGsUB2oWB3O8tVd/yzZtHWOzpEq4PweWVoJOLcXcKYFZp7ko4FFqogoWhsoVltCTKL5ZCwFVsg/HuyoEgEKLJVAc5qQCFBghYSNnfIQ9QRDAiQQeQIUWB6Mv1//O54ZNQlD+t2Hfr06RZ4+ZwAFVmQXwbHjAqbNtEJ0uuexWIBHH3aiYgXzfdkPh3Z+Aks+vifIb/IL8hHOHIfl4D8Qjsg7q/ZBcGQGOYJ3c2eVWld3U1W83vV3eYdVsI98RO/SIW/hGewYgbR37bQ6JODc7qt/D/SxF5SQWFNCsTpAYg3RcHdaBcohux0FVrDE2F5tAhRYahPnfMEQoMAKhhbb5kWAO7C4NkhAPQIUWNewfn3cXHy5Itklse6/uxUKxkf/Dhj1loP6M1FgRY75X7sErF5rQco1F13f19WJ+nUpr4Il70tgycLJtmYxbN99BiEj9J1SwcYi302VLaikCjVcxwCdZcoDFmuwQ7nbS8CZPy04sFKAfO+Ulp6EspJrl1XRWiLk/83HTYACi6tB6wQosLReIXPHR4Fl7vorlT0FllIkOQ4J+CdAgeXBaFXyb9h38Bg+Xfw9Lly84rrIvVqlsihRLBGxMfkfufnw9Sf902aLXAQosJRfFMdPCvh2pQUHfexqaf0/CS2ae2zHUn56w454rcCybf0R9sVTw3rTXyCwpNg414XqYsXrXZery385r6sYSNeA28h3Tu1fZsHlo9oQV4INSKwuIqkOkFRLgj2B0iqvYlJgBbzM2TBKBCiwogSe0wZEgAIrIExs5IcABRaXCAmoR4ACy4N1nZa9Qyb/V/LskPuauSMFlnLVT00T8P0aAVv/tEDy8X2/YQMRXTvzzqtQiWcLrBM7d8P+2URY924Pdag8+0nxCVdllXy5esUaV/93ibKAEBmxlHFOwIFvLTi7PTLjBwMotqiEorUkJNW6eq+VLLH4+CdAgeWfEVtElwAFVnT5c/b8CVBgcYUoQYACSwmKHIMEAiNAgeXB6bUPQpdQo54NXX4FVipjtqLAUqauP26yYv0GICPTt4i4vZkTbVpxF0s4tEvbM5G+cBoy1yzzOYxrV1TBIkFNIb/5TyxfFahY0/V3sXiZoPqH2ljMBA6vE3D0B99HDmOKSIhNCnX0wPtZbBISqwquo4Hxpbk+AyfnbkmBFQo19lGTAAWWmrQ5V7AEKLCCJcb2vghQYHFdkIB6BCiw1GPNmXwQoMAKb1nIbxj87nsB5877Fld1aolo11ZCognfzhYeWY/eTifsG5YhZsU8SKmXcw0rJhaHo2s/OG5qpdiUERtIAk79ZsHBVQKyLudeMxY7UO5/Esq2dEJ+wx8f7ROgwNJ+jcweIQWW2VeAtvOnwNJ2ffQSHQWWXirFOI1AgALLCFXUcQ4UWKEV7/QpAcu/9X3PlTxiqZIS7rpTRIXy3NUSGuGrvSx7tiJmwXhYTh/NNYxktcPR9j44OjwA+VJ1rT/n/xWwf7kFaSd9y85i9SRUvkuEvPuKj34IUGDpp1ZmjZQCy6yV10feFFj6qJPWo6TA0nqFGJ+RCFBgGamaOsyFAiu4osn3XK1eK2DLVt/3XBUsKKFtawmNGoiRujYpuIB12tpy6ghsi6bAtvNXnxk4G9yKzG4DIRUrpfkM088I2P+1gHN7LD5jjSsloWpXJwpX0nwqDNAHAQosLgutE6DA0nqFzB0fBZa5669U9hRYSpHkOCTgnwAFln9GbBFBAhRYgcPdvsOC5SssyMzy3afZbU60vF2CnxdmBj6hSVvaF02Bfd0Sn9lbylZE+n0D4ajZWPN0nBmC66jgiZ98iytrrISKHSSUbsqL/TVfzHwCpMDSc/XMETsFljnqrNcsKbD0WjltxU2Bpa16MBpjE6DA8qjv2I+/CLnaQ/t3D7mvmTtSYAVW/X3/WTB3vu9dV7VqiuhwB++5Coxk/q1sv69HzIw3czUS4+JRsPtjiG1/L45fyPT5lkcl5ldkjP+/5+rASgGOVB/HBQWgVBMRFdtJsMXzuKAizKM4CAVWFOFz6oAIUGAFhImNokSAAitK4A02LQWWwQrKdDRNgALLozx1Wob+JsG/kkN/g6GmV0iEg6PA8g/45CkB02ZYkXXNzqsSJSR07sR7rvwTDLxFgTHPwLJvp1cHR9N2yOraD6UrlHYdyzyekqZZgXXpELBviRWpx33fc1Wo4tXjgvGlA2fCltomQIGl7fowOoACi6tAywQosLRcHf3ERoGln1oxUv0ToMDyqGHfoe/lW9G09AycOnMOx0+luNoVjC+Ae9o3R6XypfFAl9b6Xw1RyIACK3/oFy8KmPqJBZc93hhnswEd24u4sTGPfim5ZC2H9qLAOwO9hkx/8SOIFaq7/qxMUpxmBVbWJQH/Lbfg7Hbf4speWELlTiKKN+COKyXXjBbGosDSQhUYQ34EKLC4PrRMgAJLy9XRT2wUWPqpFSPVPwEKrBBqeOzEGUxf8A2+WP4D+vToiGcH8PhgCBhdXSiw8iYn33U1fYYV8g4sz6dXTxHXV6e8CnXN5dUvdvZoWH9Zk/Ox86bWyOjzQs4/a1JgOYGjG6w4vE6AmJk7M8EKXNfcifJtJFjsShPjeFogQIGlhSowBgosrgG9EqDA0mvltBU3BZa26sFojE2AAiuM+r4+bi4+X7YOMz4YhltuqB3GSObtSoHlu/aiCMxbYIF895Xn07a1iOa3UV4p/hNz8RziXuwBQQb//0/aiCmQylfTrMA6t9uC/5YLyEjxvesqqY6IyndJiC3KXVeKrxcNDUiBpaFiMBSfBLgDiwtDywQosLRcHf3ERoGln1oxUv0ToMAKo4byUcI23Yei7e034sPXnwxjJPN2pcDyXfulyyzYus1bXjVqIKJLZ8qrSPy02FfMhf2beTlDi5VqIn34RK+ptLIDK+0M8N8SCy7s8/12wbgSEqp0daJIlUiQ4phaI0CBpbWKMJ5rCVBgcU1omQAFlparo5/YKLD0UytGqn8CFFhh1vC2zk/CbrMhefGHYY5kzu4UWLnr/uMmC75f4y0nKlaQ8OjDTlh8OwtzLh6lsnY6r+6+unQ+Z0T56KB8hNDzUVJgZV0WcG6PvHsquN1RmVcEnPzZ9yKwFpBQoa2EMs0oOZVaGnoYhwJLD1Uyd4wUWOauv9azp8DSeoX0ER8Flj7qxCiNQYACK8w6tug6GOcvXMa2tTPCHMmc3SmwvOu+a7cFCxd5C4qkJAkD+okoEBuc7DDnigo+a/neK/n+q+xHKpSItHcWAlarcgJLAi4dEpCyGzj/twVXjvk+9hd89AAEoORNIip1kGCL5xoJiaGOO1Fg6bh4JgmdAsskhdZpmhRYOi2cxsKmwNJYQRiOoQlQYIVR3tS0dNzUYQAKJcTj5xUfhTGSebtSYLlrf/SYgE9mWuH02EATHyeh/+MiihahmIjUT0mB/2PvPMCjqNYw/G1LIQFCQgu9SxUBFQs2iggqKoKCWEBAQKQqIh1FRYogTRAEFUXAhiIKKCpWLqAiXXrvkADpyZb7nMFNsmSTnd2d3Z3Z+eZ57nNVZs75//c/GXbfnPJaXxiPH8htPue+J5Fz7xMFuvN2BpY13YDk3VdmWiXvBWyZCkqr/6IrXtWBGg/aEVOB4yNQ40Pt7VJgqb1CjI8Ci2NAzQQosNRcHe3ERoGlnVoxUu0ToMDyo4ZvLfgMC5aswnUNamHJnNF+tKTfRymwrtQ++ZIB78w3Ij0jT3KYjECvp22oSDkRsB8Q08FdiJwyKLd9h9GIjMmfAjElvBdYDiD1pAEX/zUi6V8g9ZgBCJBXiijpQLX2dpS+LkAdBIw4G1aaAAWW0kTZntIEKLCUJsr2lCRAgaUkTf22RYGl39oz8+AToMDKx3z9H/94rIDdbsfpc8n45X//4NeN26X7X3ruMTzR6W6Pz/KGggQosICMDAPeWWhE0lWnyXXpbEf9etzPKJA/NxELX4X5z59zu7A2b4Ps7i+67dLdDCwxq+riPkizrJJ2GSBmXcm9xOmA8XW9X/ZnLmZAueZ2GC1ye+J94UyAAiucqxseuVFghUcdwzULCqxwrWxw86LACi5v9qZvAhRY+erf4M7uXo+GJg1r473pw2GxmL1+lg8AehdYdhvw7gcmHD/uKj5a3WXHHbdRXgX0Z+Ry8pXN2+15nDNGzoWjcq0iBdaB3ZlI2m2U9rNKPWKAQ2aZDCagZA07StUDSl3jQFRpzp4KaH110jgFlk4KreE0KbA0XDwdhE6BpYMiByFFCqwgQGYXJPAfAQosHwRWsegoVK9SHm3vvBGPP9wGkRGcCuHrT5TeBdZnXxixbYfrpu3XNrSjU0eZVsRX8HwOEV8tgnnN0lwSthr1kTVsRgEy9hzg0n4jMg+acXqHHRntt9SpAAAgAElEQVRJ8uFFxDkkWVWqLhBXm7Om5JPjnXIJUGDJJcX7QkWAAitU5NmvHAIUWHIo8R5PBCiwPBHin5OAcgQosJRjyZZ8IKBngfXjeiPW/+Iqr6pWcaDHEzYYXQ/A84EsHymSQE42ol/qAkN6Su5t2T1HwXr9ndK/ZyYbcHHXlVMDLx00wmGTx9NgBGKrOhBfD4i/xo7o8pxlJY8c7/KVAAWWr+T4XLAIUGAFizT78YUABZYv1PjM1QQosDgmSCB4BCiwgseaPbkhoFeBJWZdidlX+a/4eAf69LQjOprS4+qh4rACJ3424fhPBogZUWq6zLEOxItZVvXELCsHTFGsn5rqE+6xUGCFe4W1nx8FlvZrGM4ZUGCFc3WDlxsFVvBYsycSoMDiGCiSwIeffYepc5ejTOk4rFv+pkdaK1b/is9W/Yz9h0/AZrOhaqXyePCeFnjsodYwiWP1rrr0KLDEpu1vzjAiOztv36uoKAf69bGjVEnKD5ch4gDObzHi8BoDsi/J3yDd40D15wYDEFtZbMAOxNW1I1acEqmS0PxJi89qkwAFljbrpqeoKbD0VG3t5UqBpb2aqTFiCiw1VoUxhSsB3QqstPRMTJy1BL273Yeqlcr5VN/MrGyIUwmjIiNhNIbXN1jBZ8zkhVi7frPEJrFcgkeBNeL1BVj53e+wmE1o0qg2LGYztu46gNS0DLS4sRHmTBwMs8l1bZweBdbKb4z48688mSe83tNP2VC5MuVV/h/Ey4eBQytNSDsR+p8tczEHyjc0ocK1BhgqZcPEWXI+vTP5kPIEKLCUZ8oWlSVAgaUsT7amLAEKLGV56rU1Ciy9Vp55h4KAbgXWF9/+gjGTF6F0fEn89NlbPgmoYRPm4tsfNuL1Eb3xQNtbQ1G/gPS5/9AJDBo7C4ePncbTXdpj+cofUaJ4TJECS4grIbBqVEnE/KnDkFg2XootPSMTg8fOxu+bd2DA0x3R98kOLjHrTWCdOWvAnHmuEu+uOx2463aZmywFpOLqajQr2YDD3xhxYXtoxVWxRLGXlV3agL14VQcS46NhMACnkjLgoGtU16DRcTQUWDouvkZSp8DSSKF0GiYFlk4Lr3DaFFgKA2VzJFAEAd0KrOdffhtrftqEbh3bYOTAbj4Nko8+/16axfVQu9vw6vCePrWhtofOJ11Cu24vIsdqw8sv9JDE3HWte6J0QtFLCB/sMRr7Dh3HkjmjcV2DWi5pJV9KQavOQ2GxmPHzFzMQFRmR++d6E1gL3zfhyNE8MRMb68Dzg2y4amKa2oZFUOKxZRlwbB1w8ncT4MbnRZR0oNp9dpS+1nd7ZEg+h6hR3WDIZ6AyRs6Fo7LrmHWXMAVWUIYBO/GSAAWWl8B4e9AJUGAFHTk79IIABZYXsHhroQQosDg4SCB4BHQrsO5/cgQOHj2FOa8Pxp23XOcT8S079uHx517DNTUr44uFE3xqQ40PiX2vhIRqVK8GHA4HGt7Vo8glhCdPn0ebLi+gSsWyWL1kstuUho6fIy1HnPXaILS8tYkuBdaOnQZ88rnr7KtHHrahYQPfhYwax4+3MTnswJmNRhz9zgBresFZVwYzUPEOGyq3dED8sz+X5fP5sKz7NLcJW62GyHp+uqwmKbBkYeJNQSZAgRVk4OzOawIUWF4j4wNBJECBFUTYYdwVBVYYF5epqY6AbgXWDe36Ssvb1i6dgkqJZXwqzLGTZ3HPYy+ibOk4aRliOF5Wmw2NW/UsUmD98OvfGDhmJu5rczMmjerjFsMHn67F5DlLpT3HBvfupDuBZbMBb8024VK+jcirVHagVw99Lx28uMeIQ6uAjLMFN/gXgyS+oR01OjggZl/5fWVnInr4ozBkpuc2ldVrNGzN7pDVNAWWLEy8KcgEKLCCDJzdeU2AAstrZHwgiAQosIIIO4y7osAK4+IyNdUR0K3AatSyB+x2BzasehslYov5VBixOXnze/tJS+L+WjvfpzbU/pAcgfX+8jWYMncZ+jxxPwb2fNhtSut+/QuDxsxC2ztvwLTx/XUnsNb/bMSPP7tKmgHP2lGmtF11Q+DgSiPSTgZ+/yl7FgrtJ6q0HbUeBkrUUI6P+ZdViFg6I5e3o3gcMt5YDhjdy7OrC0OBpbqhyoAAUGBxGKidAAWW2iuk7/gosPRdf6Wyp8BSiiTbIQHPBHQrsJq1fQbiFMF1n0zL3XDcMy7XO85duIg7Hx6MiAgLtny3wNvHNXG/HIE1e9EKzF38FV7o+yh6dGnnNq+NW3bj6SGTcFOz+lj45ou592TluBcUFpNB2lg/x2aHXTmHERLml1OAMa/aYM032arFzQZ0fVieOAlm0HtX2bHnGwVmO/kYtDkGqHe/EVVvM8CgMJ7MYU/AcfJIbmTmR56B5YHHZUcaabkSUHaOHaEjJDtc3qgTAuIUU7PJCJvdAauNI1MnZddUms53Z2F/32sqGQYbdgTMJgNMRgOsNjtsGv+8GXbF0VBCzvechkJmqCSgWQK6FVhio/KjJ85i0fThaN6knk8F/GfnfnTr/yrKlSmFHz+Vt4+OTx2F8CE5AuvNeZ9g0bJvMWJANzz+cBu30Tr3C2vSsDY+mj0qhBkFv+t3PrBh8995n4qKRQMTx1oQ49vEv4AlcHSDHZsWhm5JY827jGjwoAkRMcqnaN22GamvDslr2GxBiflfwRhbQvnO2CIJkAAJkAAJkAAJkAAJkAAJkIDiBHQrsIaOfxtr12/Ck53bYnj/rj6Bffv9LzHn/S8lASZEWDhecgSWVzOwmtbHwml5M7AuXM52i614MTMizEakZFilGS9avY4eN2DOO67Rd7jXgVtvUldGFw8YsGVOaGIqWcOBazoDMeUC179x5kgYtv0vtwNHi3awdx/mVYcJJa6cnpmUko18hxh61QZvJgGlCYjf+sZGmyFmt6RmWJVunu2RgN8EnO/Owv6+97sDNkACfhCIjTIhMsIkvT85S9APkDp/1Pme0zkGpk8CQSGgW4H19Xd/4KXX5yM6KkI6Oa9MQpxXwMUG8G27DkPSxRRpU3KxOXk4XnIE1uJP12LSnKWy9sBqfVszzJgwIBfVyQsZbrHFF49AVIRJkgWZ2aGbFeRPTYXkmDvfhNNn8vaTEnte9e9rl7vtkj/dy35WbKC+dY4B9sy8OA0m4JqudoglfYG8jGYHYqsEdtmT4dwpRI19Evl39coYuxCOxCpepcY9sLzCxZuDRIB7YAUJNLvxmQD3wPIZHR8MAgHugRUEyDrogntg6aDITFE1BHQrsLKzc3B312EQ+1hdW7+mtC9TsehIWYURm78PHjcL4vQ9i8WMNR9PRvky8bKe1dpNcgTWzxu24tkR02WdQvh0l/Z4vu8juhBYf/1twFerTC4l79nDhqqVAytsvBljOWnAtpkmZF3Mp3cMDtR9yo74euqJ05ucrr434pM5MP/0Ze5/tte5FplD3vS6SQosr5HxgSAQoMAKAmR24RcBCiy/8PHhABOgwAowYJ00T4Glk0IzTVUQ0K3AEvS//+VPDB47WypEjSqJePWlXmhcv2aRhTly/AzGTlmEP7fuke7r9di9GPJMZ1UUMxBByBFY55Mu4Y6Og1ClYllpNpu7a+j4OVi7fjOmju2Hdi2bh73Ayso2YPoMI9Iz8sRQvbp2dH1EPcshbTnAjrdNBU4CrHavHRVuV0+cfo3r7ExEv9AJhpys3GaynhkHW5MWXjdLgeU1Mj4QBAIUWEGAzC78IkCB5Rc+PhxgAhRYAQask+YpsHRSaKapCgK6FliiAuL0PLGHk/MSAqtF82tRt2ZlxJWMBWDA5ZQ07D98Ahv/3o0Nf+2E478NcG5rfi3mvD4YJnEMVJhecgSWSP3x516D2Kh9yZzRuK5BLRcayZdS0KrzUNgdDvyyYiZKxObtXh6uSwhXf2/Ehg1540IMkUEDbIgrqY5ZTQ47sPt9Iy7ucR27ZZrZUVtFku3qHyvj0X0wZKbL/mkz7NyEiO8+yb3fHpeAzInLZD+f/0YKLJ+w8aFCCJy2peNQTorffLgHlt8I2UCACXAPrAAD9tB848gEFDOYQxuEinunwFJxcTQUGgWWhorFUDVPQPcCS1TwyzW/4Y3ZHyMlVf4X4+6P3oPBvTvDYnZdIqb5EXFVAnIF1q8bt6Hv8GnSTLb5U4chseyVJZVir7Ah4+bgt03b0a1ja4wc+LhLD+EosJKSDJgxx+Sy0fcdt9nR6i71zGo6/LURJ39zlVcla9lRv6cdBhX5WENGGky7/oRxx0aYdm6GIeWiXz9iOQ/1Qs7dj/rUBgWWT9j40FUEsmDD7ORtePvSDmRCm/v7sagkQALaIfB9hQ6oHxGe21woUQUKLCUosg0KLI4BEggeAQqs/1hfvJSK5St/wrc//g/7D51wW4FKiWVw+03XolvHNqhWuXzwqhTCnuQKLBHi1HnL8d6y1dK+YE0a1kKExYKtuw5IYrB+nWr4YMaIAvuMhaPA+uAjIw4czLNAsbEODBlgg8USwkLm6/r0RgMOfuEqXqPLOHDtQBtMVw7aC+llPH4Aph2bYdqxEcYDOxSLxWGJQObE5XDEiJmV3l8UWN4z4xOuBL5JP4zxFzbjpC2NaEiABEggKAR+qPgA6lpKBaUvLXZCgaXFqqkvZgos9dWEEYUvAQosN7W9nJoOsdeVWDpoMhpRPLYYypeNR0KpEuE7EgrJzBuBJZoQ+1x99Pn32HPgKGw2OyomlkH7ls3Ro0s7REYUNDjhJrD27DVgyTJXOdTpIRuubaSOpYPJ/xqkpYNw5O3NZS7mQOPBNkSWDM3wNmRlwPjvltxZVsbkcwEJxNqiPbK7DfG5bQosn9Hp/sE92cl48cIG/Jl1VvcsCIAESCC4BDgDq2jeFFjBHY/h2hsFVrhWlnmpkQAFlhqroqOYwklg2W3AzLdNSErOk0MVKzjQp5c6lgmlnQK2zzbBbs2Lz2h2oGE/G2IrBXfQGc8cvzLDSiwN/HeL7M7tlWrCER0j+/78N1q7DIStQlWfnhUPUWD5jE63D160Z2NK8t94P+VftwxKG6NQyxLnFx+xv57ZZITN7oDVpg5R7ldCfDjsCIh92sSVlaOeZfRhB7mIhKaXuRVVzMX1lLJXuVJgeYWLNxdCgAKLQ4MEgkeAAit4rNmTGwLhJLB+32DE2u9dN5B6to8N5cuF/ktl1iVg20wTclLz5BXgQN3udsTXC3x8Bms2THu3wrhtI4w7N8F4/pSsnwdHsVjY6jWDvWFz2BreCEdsiKaJUWDJqhdvukLABgcWX/4XUy5uwSV7dgEskTChd8n6GBTX2O/NlXkKIUed2gnwFEK1V0jf8VFg6bv+SmVPgaUUSbZDAp4JUGB5ZsQ7AkggXARWWroB02cakZ2dJ4iaNXXggftCP/vKmnll5lXGufzyCqja3o6KdwTuN+LGpLNXZlht3wjjnn9gyMmSNZLsFWtIssrWqDns1esBRnUclMAZWLLKp/ubNmSexvALG3Ag55JbFg8Uq46R8c1QyezbXmxXN0qBpfshp3oAFFiqL5GuA6TA0nX5FUueAksxlGyIBDwSoMDyiIg3BJJAuAisL1ea8Pc/eYIoIsKBIQPtiCkW+NlNRdVHLGvctcCEy4dc5VWZZnbUfkRZeWWwWmE8uBPG7f+DScyyOnVU1tBxREbDVq8pHP/NsrKXTJD1XLBvosAKNnFt9XfcmoqXkzbj2/QjbgNvElEaryQ0R9PIMoomRoGlKE42FgACFFgBgMomFSNAgaUYSl03RIGl6/Iz+SAToMAKMnB250pAbQLr3FkDvvjaiBMnXIWPt3W75247brlJWUHkbQzi/kNfG3HqN9dljSVr29Ggl/vYjKePwbJ8llf7UvkSl71cJdga3gR7gxskeaWFiwJLC1UCtmdfwI7sJOzMuoBt2RewKzsZGQ5ryIKvaI7BiFLN8FBMjYDEQIEVEKxsVEECFFgKwmRTihOgwFIcqS4bpMDSZdmZdIgIUGCFCDy7vUJALQIrK9OA7380YPNfRjj8nDRVKs6BQc/ZYHT1RkEtecohA/avMCLjjKuIiy5rx7X9HTBFuSZpyMyAeeV7sPy8EhDTthS+HJYI2Oo0vrKXVaOb4Egop3APgW+OAivwjL3pId1hxc7sJOzIuiD9T4irPdZLsDpCL45FHrEGMwbENcYzJesjAoFbBkuB5c2o4b2hIECBFQrq7FMuAQosuaR4X1EEKLA4PkggeAQosILHmj25IRBqgSVk1Z9/G7HuRwMyMvybdeVM76nH7ahZIzRforOSDTi0yoCkHQXtmbmYA40H2xCZfx90hwOW31fD/NUiGFLd79nj68B1JJSX9rKSpFXd6+AwR/jalCqeo8AKXRnEaX7b/5NUkrDKvoBD1ssIzU9Z0RzET16X2NoYHt8M4pTBQF8UWIEmzPb9JUCB5S9BPh9IAhRYgaSrn7YpsPRTa2YaegIUWKGvga4jCKXAOn7cgJXfGHH6qllK/hSk7jV2PPZo8L9Wi4POjv1gwIn17md6GKMcaNjbjthKeTOvTAd3w7L0LRiPH/QnZZdnbXWbXFkW2KA57IlVFGtXDQ1RYAWnCietadISwB05SdieeV7655O2tOB07mcvt0YlYkL8jbgmopSfLcl/nAJLPiveGRoCFFih4c5e5RGgwJLHiXcVTYACiyOEBIJHgAIreKzZkxsCoRBYqWkGrPnOgG3b3a/xiy/lQLt7HLimdvBFlNeDxAGc+9uIw6sNyElxM4PMAJS9wY5q7RwQM7DEZbx0AebP34F5809uu3PEl0VOpz6wNrnd63DC+QEKLGWrK0bjIeslbM8SywDPS8JqR1YSkuzyTqssLJo4YwQaRSSgUUQ8GkWVlv65mrkElJlfqSwDJVqjwFKCItsIJAEKrEDSZdv+EqDA8pcgnxcEKLA4DkggeAQosILHmj2FWGCJrZ3+2GjC+l+A7OyCX2cjLMCdtztwy002GAO3ZY1i4yDlKHDwSxPSCtlwvnhVB2p2tKFY+StdGqzZMK/7HObVH8OQnVkgDrFPlbVtF1jvfhTin3m5EqDA8n1EiH2p9lgvSrOppFlVWUnYlZOEND83Vy9jjEKjSCGrEnBtZGk0jIhHJXOs74Fq8EkKLA0WTWchU2DprOAaS5cCS2MFU2m4FFgqLQzDCksCFFhhWVbtJBWsGVgHDxmx8hsDkpLcz8O4tpEd99ztQGyMnzu4BwF99iUDDn9jxPmt7nOJLOVAtfZ2JFybb7ng1j9g+XQejBdOuY1QzLaydu4Le6kyQchAm11QYMmrmzjxb+d/s6nEzCoxw0rIqxw/N1evZI5BQzGz6j9hJaRVWVO0vKDC+C4KrDAubpikRoEVJoUM0zQosMK0sEFOiwIryMDZna4JUGDpuvyhTz7QAuviRQO+WWPAnr3ulwuWK+vAA/fbUami+sUVLqbgxMdHcfRYAzjs5gLFMxqtqFJ5O6pU3AqDMe8kQePBnTD9u8VtsW0VqsLaZQBstRuHfjCoPAIKrMIL9EXaQaxLOyZtrn7AetnvSlYzF883q0rMrkqAWBrIqyABCiyOCrUToMBSe4X0HR8Flr7rr1T2FFhKkWQ7JOCZAAWWZ0a8I4AEAimwzp03Yv67BmS5WS5YLNqBu1s70OQ6Owxq3xzHbkPysn9w8J8ayDK4nyFVLudHXJP1NiLsF2RVyxETi5z7e8B6232A0b3ck9WQjm6iwCpY7D3ZyXj+/O/Ykn3ep5FgggE1LSWuyCppv6p4aZZVjMHiU3t6fIgCS49V11bOFFjaqpfeoqXA0lvFA5MvBVZguLJVEnBHgAKL4yKkBAIlsNIzDJg334iLlwraqZtutKNVSwciI9Q/6yr9tz04+E0ULttruq1TrG0/6mVOQ0nbbtl1tN7RATn3d4cjprjsZ3gjQIGVNwou2rMxMelPfJS616uh0dASj0aR4n9X9qtqGJmASGhgwzmvsgzuzRRYweXN3rwnQIHlPTM+ETwCFFjBYx3OPVFghXN1mZvaCFBgqa0iOosnEAIrxwosfM+Ek6dc5VWN6nbc2w4oU1r9pwtaj57H0Q9O4nRKE7ibImZxJKFO5rtIzFkDQJ6Is9VogOxug+GoUE1no0yZdCmwADscWJKyF28k/wUhsQq7omBCfSGqxEmAkVdOAqxriYPZwNl+yozGvFYosJQmyvaUJkCBpTRRtqckAQosJWnqty0KLP3WnpkHnwAFVvCZs8d8BAIhsJYsMxbY8+quOx246/a8faFUW4SMTJxatAtHjjSC3VBwg2qDw4qKidtQrfoOmEw5stNwVKwBa9PbZN/PGwsS0LvA2px1FqPOb8DOnGS3w0PIql4lGqBhZDzqWkpxCAWJAAVWkECzG58JUGD5jI4PBoEABVYQIOugCwosHRSZKaqGAAWWakqhz0CUFlirvzNiw/9cZ3lc29COTh3VP+vq4opdOPi/cshEObeDISFmL6o/lYCIqiX1OVhCnLVeBdZ5eyZeubAJn6cddFuBMsYojEi4Ho/E1ILat5ML8RAKSPcUWAHBykYVJECBpSBMNqU4AQosxZHqskEKLF2WnUmHiAAFVojAs9srBJQUWJv+NGLVt67yqlIlB3o9ZYNRxdvsZGw9hgOf2HHZ6n6fq2jDGdS8Nw0lbqvCYRNCAnoTWFaHHe+m7Mb05C1IdVgLkBfLAXsWr4ehpZog1lDwVMwQlkpXXVNg6arcmkyWAkuTZdNN0BRYuil1QBOlwAooXjZOAi4EKLA4IEJKQCmBdeCgEYuXGOHItx1UXJwD/XrbER0tb4+oYIOwnUvB0XeP4tTFRgAK7g1kdqShWqNDKNP1GhjMnNsS7Ppc3Z+eBNaGzNMYdv53HLKmuMV+a1Qi3ki4GTUsJUJdFt33T4Gl+yGgegAUWKovka4DpMDSdfkVS54CSzGUbIgEPBKgwPKIiDcEkoASAuvMWQPmLzQhJ9+WUFFRDvTpZUdCvDrl1cVVe/DvLzXc7nMleCeW3oEqvarBVCoqkPjZthcEtCaw0h1WTEnegvmXd3qRZdG3VjHF4pXSzdEmurJibbIh/whQYPnHj08HngAFVuAZswffCVBg+c6OT+YRoMDiaCCB4BGgwAoea/bkhoC/AuvyZQPmLjAiLS1vhpLRCPR8yobKldUpr2yX0vHXa0ZYDbEFiJSwHETNrhZEN0jkeFEZAa0ILDHqP0nbj4kX/sQ5e6YiFMUSwUFx1+GZEvV5kqAiRJVrhAJLOZZsKTAEKLACw5WtKkOAAksZjnpvhQJL7yOA+QeTAAVWMGmzrwIE/BFY2TnAOwuMOHfedfmd2LBdbNyu1uvotO04fqaJS3hRhnOoccs5xHWoo9awdR+XFgTWtqzzePHCBmzPvqBIvYQW7hRbE6Pjb0BpI2cDKgJV4UYosBQGyuYUJ0CBpThSNqggAQosBWHquCkKLB0Xn6kHnQAFVtCRs8P8BHwVWHY78OHHRoi9r/Jfd9xmR6u71CuvsvecwZ+LKrrEXD5+K2oMb8CBoXICahZY52wZeCVpM74o5KRAX9A2jkjAxNK3QPw/L/USoMBSb20Y2RUCFFgcCWomQIGl5upoJzYKLO3UipFqnwAFlvZrqOkMfBVYK74yYstWV3lVr54dXTurV16JQv07bh+SMuvl1iwCyWg6PhLG6AhN11EPwatRYImTAudf3oUZF/9xe1JgMYMZz8Y1Qt8SDRDNkwLDcphSYIVlWcMqKQqssCpn2CVDgRV2JQ1JQhRYIcHOTnVKgAJLp4VXS9q+CKzf/jDiu3Wu8qpCogO9n7bBZFJLZgXjuPTDPuz8Lk9eiTuuuWEbEjrVV2/QjCyXgNoE1rqM4xh3YSMOuzkpUPx0iKV/I0pdj7KmaFYxjAlQYIVxccMkNQqsMClkmKZBgRWmhQ1yWhRYQQbO7nRNgAJL1+UPffLeCqxdu41Y9qmrvIqLc6BvbzuKRatz03ZB2WG14Z9RychA+VzoxU2H0Oh1nuYW+lEoLwK1CKyDOZfx0oUN+D3zlNvAb4osh1cSmqNBRLy8xHiXpglQYGm6fLoIngJLF2XWbJIUWJotnaoCp8BSVTkYTJgToMAK8wKrPT1vBNaJkwa8u8gEW75VgpERDvR9xo6EePXKK1GDM4t24MCe61zK0fjRQ4hpSoGl9jHqjE9JgbUx6zQ+urwXJ63pXqXvgAMbs864faaquTjGxd+AtsWqeNUmb9Y2AQosbddPD9FTYOmhytrNkQJLu7VTU+QUWGqqBmMJdwIUWOFeYZXnJ1dgZWUb8NYsI9LSxLloeVePJ+2oXk3d+15Zz6fi78lmWA2xuYGXL7EdNUa5LidUeal0H56/Auu8PRPLU/Zhaco+HLJeVoxnSWMEhsQ1Ro/i9WA2uM5OVKwTNqRaAhRYqi0NA/uPAAUWh4KaCVBgqbk62omNAks7tWKk2idAgaX9Gmo6A7kCa+33Bvy+wXWDqwcfsKNpY3XLK1GcI1N24MT5vNlXRkcmmg5KQUTFUpqund6C91VgfZt2BMtT90HsWaX01b14XQwr1RRxRh4CoDRbrbRHgaWVSuk3Tgos/dZeC5lTYGmhSuqPkQJL/TVihOFDgAIrfGqpyUzkCKwTp+2YMdtVXt3WwoY2LdW9bFAUJGPHSWxZXBEw5MVfrdoWVOjXSJP10nPQ3gisw9bLWHJ5Dz5NPYBz9kzFsbWOroTxCTeiurmE4m2zQW0RoMDSVr30GC0Flh6rrp2cKbC0Uys1R0qBpebqMLZwI0CBFW4V1Vg+cgTWux8Ae/flLR0sU9qO5/rZYXBdTajKzHeOPoxLObVyY4vEeTQZXwzGaM6YUWXBigjKk8DKcFjxVdphLLu8F5uzz3pMr3FEAh4rXgc1LXEe781/Q0lTBOpbOHvPK2hhfDMFVhgXN0xSo8AKk0KGaRoUWGFa2CCnRYEVZODsTtcEKLB0Xf7QJ+9JYG38JwcL3nONswItuiQAACAASURBVGd3G6pWUf/sq0vf7sXOn+u7BF/35h2If7Bu6MEzAq8JFCawtmSdw8cpe7Ey7RBSHdYi2y1ljEDHmJp4vERd1LGU9DoGPkACVxOgwOKYUDsBCiy1V0jf8VFg6bv+SmVPgaUUSbZDAp4JUGB5ZsQ7AkigKIFlMZkw8tVsXEjKm2pVv64dXR5R/75X9mwrto65iAyUz6VX3HQIjV7nqYMBHE4BbTq/wEq2ZeOztP34+PJe7Mm5WGS/Ylv126IT0bV4HbSLrsqN1gNaJf01ToGlv5prLWMKLK1VTF/xUmDpq96BypYCK1Bk2S4JFCRAgcVREVICRQmsn38z4NOvbLnxmYzAoAE2xJVU/+yr0+9ux8F9TfLYOhxo3OUwYppSYIV0wPnRebn4KKxLOY7ZJ3dgbfpR5DiKFqmVzDF4tHgddImphQrmGD965qMkUDgBCiyODrUToMBSe4X0HR8Flr7rr1T2FFhKkWQ7JOCZAAWWZ0a8I4AEChNYEcYIjJtoR1ZWXue3t7CjdUv1z77KOX0Jf0+Lhs1QLDf4xFLbUP0l1+WEAcTKphUkcNKaJi0R/Cz9AI7lpBbZcgSMuKdYVWm2lZh1pYFt2hQkxaZCQYACKxTU2ac3BCiwvKHFe4NNgAIr2MTDsz8KrPCsK7NSJwEKLHXWRTdRFSawVq+2YMPmvJlWxaIdeH6wDRaL+tEcemMnTiU3zg3U5EhH06EZsJTnnkfqr96VCMXsqm/Tj2Bpyl78lnkKnub81bOUwmMl6qBTTE2UMHKDfq3UORzipMAKhyqGdw4UWOFdX61nR4Gl9QqqI34KLHXUgVHogwAFlj7qrNos3QmsU2cMmPuOySXmhx6woUljTxoh9Glm7DiJLYsrI/8RiTVqbUH53o1CHxwj8Ejg35xkLLm8F1+kHcBFe3aR9xc3WvBgTA1ptpU4UZAXCYSCAAVWKKizT28IUGB5Q4v3BpsABVawiYdnfxRY4VlXZqVOAhRY6qyLbqJyJ7DeWWjCiRN5i6/Kl3Pg2T55e2GpGc7O0YdxKadWboiROI8mE2JhjDCrOWxdxyZODvwi9YA022pb9gWPLG6OLC9Jq3tjqiDKwLp6BMYbAkqAAiugeNm4AgQosBSAyCYCRoACK2BoddUwBZauys1kQ0yAAivEBdB791cLrK3bDfh8hevsq2d62lCpovpnXyV9+S/+3dDQpaT179iFuPZ19F5mVeb/v6zT0myrb9OOIBNFC9Kypmg8Xboeepeph+g0CxzqH46qZM6glCdAgaU8U7aoLAEKLGV5sjVlCVBgKctTr61RYOm18sw7FAQosEJBnX3mEsgvsHJygOmzTEhNzZt91eRa4KEHraonZs/Ixpbx6chC6dxYS1r2o8Gr1VQfu54CPGfLwPLU/dJsq8PWlCJTN8OA1sUqS7Ot7oquiErxxaSVoaeSMiiw9DRoVJ4rBZbKC8TwQIHFQaBmAhRYaq6OdmKjwNJOrRip9glQYGm/hprOIL/AWvejEb/8ZszNJ8ICDB8KWCLVL7BOztuOw4ea5NXCYUOTJ08gumEFTdcnHIK3OuxYl3FcklY/ZZyAzcOW7DXNJdC1xDXoHFsTpY1RuQgS46MpsMJhQIRZDhRYYVbQMEyHAisMixpGKVFghVExQ5gKBVYI4bNr3RGgwNJdydWVsFNgXbxkwIxZJtjsefE92N6EW26xIjNb3ftfWU9cxOYZxeEwROYGX6H0P6g2zHU5obrIhyaaU7Y07MxOxq7sJGzLOo9kW9EbpSsR5YGcizhnzyyyqSiY8EBMdXQpURs3RpZzey8FlhLVYBtKE6DAUpoo21OaAAWW0kTZnpIEKLCUpKnftiiw9Ft7Zh58AhRYwWfOHvMRcAqspZ8YsfvfvNlXpeKAiWMsuJyRrVqB5UjLwsn39uDIsaYuNTU7UtHsBStMZWN1W2sxy+lAziXszE7CjqwL0v+L/yXZs1TFpElkaTxWvI4kr2IMliJjo8BSVekYzH8EKLA4FNROgAJL7RXSd3wUWPquv1LZU2ApRZLtkIBnAhRYnhnxjgASEALryFEDFr7vunH7048bcMsNZiSlqFNgJX2yCwf/qoxslCpAp1a9f1C2u35mX6U5crArOzlXVonZVVtlnOYXwGFVZNMljRF4NLa2tLdVHUtJ2WFQYMlGxRuDSIACK4iw2ZVPBCiwfMLGh4JEgAIrSKDDvBsKrDAvMNNTFQEKLFWVQ3/BHD+XgTnzjDh3Pm/2VcWKDowYbEJUhEl1Aiv198M4+E0EUm1V3BYrxngUjSeG775XZ2zpV2ZT5SRjR+aVmVWHrZc97CoV+nEtRtftURXwWIk6aBtdBWZD3niTGx0FllxSvC+YBCiwgkmbfflCgALLF2p8JlgEKLCCRTq8+6HACu/6Mjt1EaDAUlc9dBfNF6uz8O0aV5nQr48NDWpZVCWwsvefx6ElF3AhvYHbGollg9Xq7UeZbvVgiHCdTabVou7NuXhFVmVdwA4FlwDWt5RCg8h4NIiIxzWWeFh8kEneMq1miUWiKcbbx1zup8DyCx8fDhABCqwAgWWzihGgwFIMJRsKAAEKrABA1WGTFFg6LDpTDhkBCqyQoWfHgsCAl7KRkWHIhdG0iR0P3m9HfPEIVQgs+8V0HF90ACdON4TDzR5JBlhRocwOVOpeHabS/gmSUI2IdIcVu8VeVfn2q9qTfRGZ8G/z/BJGC+pbEtAgohQaRiWgYUQC6phL+jT7KVRs8vdLgaWGKjCGqwlQYHFMqJ0ABZbaK6Tv+Ciw9F1/pbKnwFKKJNshAc8EKLA8M+IdASTQa1BObusREQ4MGWhHTDFHyAWWw2rD+SW7cXhXDeSghFsCCdG7Ub1rCURc4/7UugBi87nps7aM3A3VnZuriyWA+Q5/9KntSuYYaUZVA0s8GkQmSDOsKpvCaxN7CiyfhgYfCjABCqwAA2bzfhOgwPIbIRsIIAEKrADC1VHTFFg6KjZTDTkBCqyQl0DfAeQXWG1b23HrLVdUilIzsEwnj8D413qvIKemlMbubdcj3VHR7XMxxuOo2TYdsXfW8Krdq29elLIbydZMv9qQ87CYYbUrRywFTMIFBU4BrCctASyFRpGlUd8Sj0YRCShuLPoEPzlxqv0eCiy1V0if8VFg6bPuWsqaAktL1dJfrBRY+qt5IDKmwAoEVbZJAu4JUGBxZISUgFNglYoTs6/ylqz5K7AMGWmwrHwP5l++BuzezS9KN1TAH7GLAYPrXlYWRzKqNzmG0o/WA4x5yx69Bbgm/SjGJ23CMWuqt48G9f6rlwCKGVZ1zHFB2bMqqInK7IwCSyYo3hZUAhRYQcXNznwgQIHlAzQ+EjQCFFhBQx3WHVFghXV5mZzKCFBgqawgegtn3KRsnDhpwONd7ahTO080+SOwLL+sgnnlIhjSUnzGuSeqP45FdJKeNziyUKnyLlTqXhuG4lE+t7k/5zJGXfgDv2We9rmNQD1YUSwBFMv/IuLRMDIB9SNLoYqpeKC602S7FFiaLFvYB02BFfYl1nyCFFiaL2FYJ0CBFdblDVpyFFhBQ82OSAAUWBwEISVw8kIG9u03onYt11lSvggs44EdiFjyFoynjvidkw0x+LX4x0gocQRVnywHc5V4n9tMsedgcvLfWJzyL6xw+NyOEg+aDUbUNpdEw8groqqBJQH1I0qhpDFCiebDug0KrLAur2aTo8DSbOl0EzgFlm5KrclEKbA0WTbVBU2BpbqSMKAwJkCBFcbF1UJqQmC5u7wRWMZLF2D+dB7Mhex1ZY8vC1vzNoDBu2V/WXVbwFi7pl8YP0zZI8mrpEL2nuoaWwuJpsCfXljRUlw6DVDsV8XLNwIUWL5x41OBJUCBFVi+bN1/AhRY/jNkC4EjQIEVOLZ6apkCS0/VZq6hJkCBFeoK6Lx/fwSWwZoN8/efwrx6KQw5WQVIOiyRsN7TFda7O8NhDu4Mo7+zzmH4+T+wKyfZbYWvjyyLN0vfilqWkjofAdpJnwJLO7XSU6QUWHqqtjZzpcDSZt30EjUFll4qHdg8KbACy5etk0B+AhRYHA8hJeCrwDL/8xssn70DwwX3+0lZm94Ba6c+sJcqE9T8ztoy8ErSJqxIO+S230rmGIyNvwH3FqsW1LjYmf8EKLD8Z8gWlCdAgaU8U7aoLAEKLGV5sjVlCVBgKctTr61RYOm18sw7FAQosEJBnX3mEvBWYBlOH0XExzNg2rfNLUV7YlVkdxsMe82GQaWcDRveubwLM5O3It1hLdB3FEzoX+pa9C/ZEJFwPd0wqIGyM58JUGD5jI4PBpAABVYA4bJpRQhQYCmCkY0EiAAFVoDA6qxZCiydFZzphpQABVZI8bNzbwSWIScbUcM6wZBVcN8sR1Q0ch7sBesdHRSBOvbCRixM2a1IW/cXqybNuqpgDvxeV4oEzEbcEqDA4sBQIwEKLDVWhTHlJ0CBxfGgZgIUWGqujnZio8DSTq0YqfYJUGBpv4aqymDF6l/x2aqfsf/wCdhsNlStVB4P3tMCjz3UGiaTsUCs3ggs8bB57VJEfLkorx2jETkt2sPa4Wk4YoorxmJc0ka8e9k/gVXTUhJvJtyCG6LKKRYXGwodAQqs0LFnz4UToMDi6FA7AQostVdI3/FRYOm7/kplT4GlFEm2QwKeCVBgeWbEO2QSGPH6Aqz87ndYzCY0aVQbFrMZW3cdQGpaBlrc2AhzJg6G2eS6fM5bgQWbFVFjn4Ix6SxsNRpIywUdFZTfT8ofgRVnjMCwUk3xRPFrYIJ3Jx/KRM3bQkCAAisE0NmlRwIUWB4R8YYQE6DACnEB2H2RBCiwOECUIECBpQRFtkEC8ghQYMnjxLs8EBDiSgisGlUSMX/qMCSWjZeeSM/IxOCxs/H75h0Y8HRH9H3SdYmf1wILgGnHRhgy02G9/q6A1cUXgSVkVbfidTC8VDMIicUrvAhQYIVXPcMlGwqscKlk+OZBgRW+tQ2HzCiwwqGKoc+BAiv0NWAE+iFAgaWfWgc00wd7jMa+Q8exZM5oXNeglktfyZdS0KrzUFgsZvz8xQxERebJHV8EVkATYeMkUAgBCiwODTUSoMBSY1UYU34CFFgcD2omQIGl5upoJzYKLO3UipFqnwAFlvZrGPIMTp4+jzZdXkCVimWxeslkt/EMHT8Ha9dvxqzXBqHlrU1y76HACnn5GIBMAhRYMkHxtqASoMAKKm525gMBCiwfoPGRoBGgwAoa6rDuiAIrrMvL5FRGgAJLZQXRYjg//Po3Bo6Zifva3IxJo/q4TeGDT9di8pyl6N3tPgzu3YkCS4uF1nnMFFg6HwAqTZ8CS6WFYVi5BCiwOBjUTIACS83V0U5sFFjaqRUj1T4BCizt1zDkGby/fA2mzF2GPk/cj4E9H3Ybz7pf/8KgMbPQ9s4bMG18/9x7UtJz3N4fHWmC2WRERpYNVps95DkyABKIjbbAYABSMnIAB3mQgDoIWMxGREWYkGO1IzPbpo6gGAUJ5CNQvJhF+rfC/r4nLBIIJQHx/hTvUfH+FO9RXiTgCwHne86XZ/kMCZCAdwQosLzjxbvdEJi9aAXmLv4KL/R9FD26tHPLaOOW3Xh6yCTc1Kw+Fr75IjmSAAmQAAmQAAmQAAmQAAmQAAmQAAmQgGwCFFiyUfHGwgi8Oe8TLFr2LUYM6IbHH27j9rYtO/bh8edeQ5OGtfHR7FGESQIkQAIkQAIkQAIkQAIkQAIkQAIkQAKyCVBgyUbFGwsj4NUMrKb1sXAaZ2BxNJEACZAACZAACZAACZAACZAACZAACcgnQIElnxXvLITA4k/XYtKcpbL2wGp9WzPMmDAgtyXugcVhpRUC3ANLK5XSV5zcA0tf9dZittwDS4tV00/M3ANLP7UOZKbcAyuQdNk2CbgSoMDiiPCbwM8btuLZEdNlnUL4dJf2eL7vI7l9nryQ4bb/+OIR0sbESSnZ3JjY7wqxASUI8BRCJSiyDaUJ8BRCpYmyPaUJ8BRCpYmyPSUJ8BRCJWnqty2eQqjf2jPz4BOgwAo+87Dr8XzSJdzRcRCqVCyL1Usmu81v6Pg5WLt+M6aO7Yd2LZtTYIXdKAj/hCiwwr/GWsyQAkuLVdNXzBRY+qq31rKlwNJaxdQZLwWWOuvCqMKTAAVWeNY16FmJDdrFRu1L5ozGdQ1qufSffCkFrToPhd3hwC8rZqJEbDEKrKBXiB36S4ACy1+CfD4QBCiwAkGVbSpJgAJLSZpsS2kCFFhKE9VnexRY+qw7sw4NAQqs0HAPu15/3bgNfYdPQ40qiZg/dRgSy8ZLOaZnZGLIuDn4bdN2dOvYGiMHPu6SO5cQht1QCNuEKLDCtrSaTowCS9Pl00XwFFi6KLNmk6TA0mzpVBU4BZaqysFgwpwABVaYFziY6U2dtxzvLVsNi8WMJg1rIcJiwdZdB5CSmo76darhgxkjUCw6kgIrmEVhX4oRoMBSDCUbUpAABZaCMNlUQAhQYAUEKxtViAAFlkIgdd4MBZbOBwDTDyoBCqyg4g7/zsQ+Vx99/j32HDgKm82Oioll0L5lc/To0g6REZYCADgDK/zHRLhkSIEVLpUMrzwosMKrnuGYDQVWOFY1fHKiwAqfWoYyEwqsUNJn33ojQIGlt4qrLF8KLJUVhOEUSoACi4NDjQQosNRYFcaUnwAFFseDmglQYKm5OtqJjQJLO7VipNonQIGl/RpqOgMKLE2XT1fBU2DpqtyaSZYCSzOl0m2gFFi6Lb0mEqfA0kSZVB8kBZbqS8QAw4gABVYYFVOLqVBgabFq+oyZAkufdVd71hRYaq8Q46PA4hhQMwEKLDVXRzuxUWBpp1aMVPsEKLC0X0NNZ0CBpeny6Sp4CixdlVszyVJgaaZUug2UAku3pddE4hRYmiiT6oOkwFJ9iRhgGBGgwAqjYmoxFQosLVZNnzFTYOmz7mrPmgJL7RVifBRYHANqJkCBpebqaCc2Cizt1IqRap8ABZb2a8gMSIAESIAESIAESIAESIAESIAESIAESCCsCVBghXV5mRwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJaJ8ABZb2a8gMSIAESIAESIAESIAESIAESIAESIAESCCsCVBghXV5mRwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJaJ8ABZb2a8gMSIAESIAESIAESIAESIAESIAESIAESCCsCVBghXV5mRwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJaJ8ABZb2a8gMSIAESIAESIAESIAESIAESIAESIAESCCsCVBghXV5mRwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJaJ8ABZb2a8gMSIAESIAENEJg8adrMWnOUjzz+P0Y1OthjUTNMEmABEiABEiABEiABEgg9AQosEJfg4BHsOHPnej1whTcekNDzJ/yQsD787WD7bsPYvnKn7D5n39x5nwyLGYTqldJRPuWN6Fbx9awWMxum87IzMbCj7/Bdz9vxvFT5xAZYUH9OtXwRKe7cect13kMZ+OW3Rj2ylxcSL6M75ZNRcXypYt85s+te/D+8jX4Z+d+pKZnoFzpUmjVoin6PNkBJYvHeOyPN+QRGDx2Nr7/5U+Me747Hrn/TtWiOXU2CUtXrMNvm7bj2MlzsNpsSCwbj9tvaoxej92L0vElC419xepf8dmqn7H/8AnYbDZUrVQeD97TAo891Bomk7HInE+ePo/B42Zj557DeHV4TzzU7jaP98/7cCX+2LwD55MuoWSJWNzYpC76PN4BtapXVC1ftQYWiHenLwLLbndIPyer1m3Atl0HcPFSKmKKRaFenaro8kBLtLn9+kIR+vO+yszKxivTPsBXa3/HA21vxesjehdZKn/fxWodB2qLS/xdJf6u3PDnDhw+dhqXU9Kl8ZBYLgE3Na2PRzrchaqVyoU8bH/GrXj3+fMu+/Cz7zB17nKUKR2Hdcvf9MjCn/e0x8Z1dEMg3pmBwKeVz5vO3L0dz4FgxjZJgARIQC0EKLDUUokAxqH2DxQpqemYMH0xvvnhfxKF2tUroXKFMrh4OQ279h6G+BLVuH5NvPvmiygWHelCSjz7+IDXsP/QCZQsEYNr69VAWnoWtu7aD5vNjgFPd0TfJzu4petwOPDux99g5sLPIT5oi8uTwBIiYtzU96R7G1xTDQmlSmLfwWMQgkMIjY/fHouypeMCWM3waVoIlladh0oySLD85J3xqktOjIuFS7/BnPdWIMd6RVrVrlFZElG79x1B0sUUxMcVxwczR6JGlcQC8Y94fQFWfve7JGObNKoNi9mMrbsOIDUtAy1ubIQ5EwfDbDK5zfvXjdsw/NV3cCklTfpzTwJLxPPUoIlIS89E5QplUaNqIk6fTcKeA8cQEWHB268Pxs3XN1AdYzUHFIh3p7cC6+DRU9I4EO9CMY4aXFMd8aVKSLUV/01c3Tq2wciB3Qqg9Od9deT4GQweOwt7Dx6X2vUksPx5F6t5DKgtNlHTibOWSH8vikv8wkW8g8TP/bGTZ6X3lBDjz3S7H/17PAiDweB3Cnd3eQE9u7bHow+0lN2WP+PWn3eZ4DBm8kKsXb9ZilVIPU8Cy5/3tGwgOrkxEO9MJdFp6fOmyNuX8awkL7ZFAiRAAmokQIGlxqooHJPaP1BcTk3HI8+MR+0alTD0mc7SrCvndfpcEvoNnyZ9ierzxP0Y2NN1yc3oSQshfnN69x3XY+LIZxAVGSE9evTEGTw9dDJOnbmAxTNHotm1dVyoCikw4vX5+HnDVuk31naHHZu2/FukwBJfDu57YgTMZhPmTRqKG66rK7UpRNjs91Zg3uKVUlsLp72ocAXDs7kFS1bhrQWfoV7tqpIM+mzBy9I/q+0Ss8QOHTuFEc91w03N6ueGJ2abjH/zPaz6fgOaNqqND2eNcgldiCvxxUiIrflTh0nyS1zpGZkQbf6+eYdbwSqk2Zz3r4wn8eWrxQ2N8Omq9UUKLCFr739qBIR0GNavC7o/ek9uLL/8bysGjJqJmJgorP14CorHFlMbYtXGE4h3p7cCa/u/h9Bj8ERpxl7PrvdKot55bdmxD88Mm4r0jCwsfPNFl/Hpz/tKzPYa9ca7sFpt0lh658OvPQosX9/Fqi2+CgNb+uUPePWtDyUpJeryVOe2KJOQ9wsT8W4R76Pp8z+F+Hv18YfbYMSAgmLTm9T2HTqOB3uMxtghT3olsHwdt/68y8QvsgaNnSXNSnu6S3ssX/kjShSPKVJg+fqe9oahnu4NxDtTSX5a+bwpcvZlPCvJim2RAAmQgFoJUGCptTIKxqX2DxQi1UuX01y+mOVPX4ilHkPekETA14sn5v6RWEZxV6fBiC0WjXWfvIli0VEu1MQX934vTcct1zfEgqmuSye79H0Z4gO2WJr4Yv+u6Dd8Ov74c0eRAuv1mR9hyRfrMLh3J/Tudp9LX0Jide33itTmkjmjcV2DWgpWMPyaErzadRuOyylpmDS6D/oOnyZ9ORJfktR2CVFlMhqkWUxXX+LPWjzwnDQb4ucvZrgsJRRf+sSXP3fjIflSijT7TCyLFc85xatof+q85Xhv2WpJur71ygB8/s3PkugragaWEA5CiokZVu9OHVYgTmeb7sau2nirKZ5AvDu9FVie3o9iduDbH3xV4OfH1/eV871ZrkwpzHp1EHKsVnTr/2qRAsufd7Ga6q3mWIScfqDHKOTkWKV35n2tby40XPHFt+uzEyRZ/s7k56XZnr5eQoaJmcreCixfx62v7zIxo7ddtxelGWgvv9BDGq/Xte6J0glFLyH09T3tK89wfy4Q70ylmWnh86av41lpVmyPBEiABNRIgAJLjVVROKaiPlAIkbDx791YseZXbNm+D2fPJ8NoNKJKxXJo36o5ejzarsDeUwNGzcBvm3fgz9XvYNOW3fjw8++uLItKzUBcyVjpi7fYoLhurSqKZCJmS91yf39JcP2xck5um1+u+U2aJfDwvbfjlWFPF+hL5HZHx0G4eDkVv66Y5SLI/vfXLpw6eyF3TyGx9ErsFVPUEsI2XV6A2Jfjx0+nQ3y5u/py/nb8yc5tMbx/V0VyD9dGnGNSfAl7bUQvqU7ii9nPX8xEdNSVWXT5r3/3H8XDvcZK8vCR++/Cgo9X4Ydf/5ZqKORP/dpVpdkGLVs0LfCsUxgsmztWWn61+LO1+GTlTzh55gJqVasozfzy53ro6dHSDMEv33tVWv4qLjFOxHipUrEsVi+Z7Lb5oePnSMtcZr02CC1vbZJ7z7kLFyVR2r/HQ9KSMaegKEpgiZ8D8fMwaVQf3Nem4BfbA4dPoEP3UdLP5OfvvuJPurp6trB3p6ibqJ8Yv0ImuLumvfMJFi79FiMHPi6Jcufli8AqCvq6X//CoDGzpH2w3nrludxbfX1fiRkw0xd8iu6P3CMJWecvEIpaQujPu1hXA8qPZF+e9oH03mp75w2YNr6/x5be/2QNpry9DE0b1cGHs0YWuF9I9A8+WYv1f/yDE6fPSX9erkw8GtSphgE9O0p/b4r3ipBh7i5Py+09BVjYuPXnXSb2CRK/PGpUr4Y0M7rhXT2KXELoz3vaU356/XN+3lTm86YYP96OZ72OOeZNAiSgPwIUWDqoeVEfKITI6fn85NyNzxPLxSM1LRN/bv1XWpYiluZNfznvS5HAJQTWj79vkcTRF9/+irtubYImDWvB4YC0wbD4YCpmq4gPzQ2vqe43YbEcUMzWEcvL8ssGsQ/IR59/L8krEYu767mRM/DTH1ukGVhiJlZh1+PPvQaxHKewD+Vi2vnN9z0riSshsNxdYhlcp97jpA/QYtYNr8IJOOXNvEnP47bmjeCcLVKYpHEKLLFE88Tp89IyTvGFvXR8CWlTdfEFWuxt0e/JB/Dc0w+5dOwUBnNeHyztRyXkg1jOF1eyOCqUT8DMCQP9KlXLzkNw5lwyNn07T9pIWVxCrg0cM1OSSUIqubs++HQtJs9ZNckAXAAAIABJREFUKs3mE2KusGvGu59j/kdfFzkDq2PPMdJeV0KWCWnm7mp+bz9pP42/1853O5vMLwhh+rAWBJZznyuxnEzMJhWXku8rJ4OiBJaS7+IwHUp+pyUkv5iV8d70l6SDGTxdYgzc9sAAaY/Bq2eHivdpnxfflNoTM5fr1hL7+tlx5MQZ6T3602dv4cy5JPz0+xZpqbP4BZU4sKLhNdVyu32ic1uU8GM5srtxKxpX6l0m8m7cqmeRAkvJ97Sneujlz/l50//Pm+7GipzxrJcxxjxJgARIgAJLB2PA02/ExIfUm5o1cNkgXWxK/nDPMdIG0qsWT3TZl8opsMQ+HHPfGCoJiPyXWG4glh2ID7xz3xjiN2Fx4t+UucsKfNF/dsR0aQ+rq/d+yd/h6zOXYMkX32P04CfQ9cFWhcbiSWCJU+Ae6TPe7V5HzkadM8VKlSyO376a5Xfe4dqA2Pi8ZafBKBVXHOuWT5M2HBabUXd+Zry0Wf/Hb48pkLpTYIk/ECdLzpgwwGXzc3H65GPPTpBOkhTiVMw6cF5OgSU2ihfLcIRQknM6pRz+znFxddzOMetu3zZnu84ZCJ5mVMgRWDe06yMJ53/WLZRmbbm7nDPFVr7/GmpW44mEcuqrBYHlfA+KE2bFSbPiUvJ9JUdgKfkullMXvd3jnCkkDnzYtHqe9AsnOZeYtSrenbNeHZg7O1Usd36g+yjpxF5xUq+Q584lzGLW0qFjp10OpBCzuMRsLl+WEBYVo7txK+5X6l0m5wu/ku9pOfXQwz38vOn/501340TOeNbD+GKOJEACJCAIUGDpYBz4uieBOG1P/JZ08pi+uLfVTbmknALr6iUrzhvEvkDX3/OM9Jvdzavn+UVYLHO4/8mR0l4eYnZJ/qV7Tw58HX9t24vl74wrdKbX7EUrMHfxV9Lm70ImFHZ5Elgbt+zG00MmFSnlnEsWhJDZ9sMiv/IO54fFsiqxvOrqmUfuluI5OeQXWKuXTJKWuF59Lf/qR7wyfXGBWYNOgSXud874UoKvqHfPoZMhxoYQaq1va5bbrHPcvdD3UfTo0s5td84xJTaGFxK2sMuTwBKbvjdq2UNaevnnmvmFtuP8eRGbzYtN53l5JqB2geVc3lenRiWsWPRqbkJKvq/kCCwl38Weq6K/O8TMZrGnVfky8fjh02myATj/rh4z5El0+e8EQefMJzGLS8zm8nQFQmAVNm6VfJfJ+cKv5HvaE0e9/Dk/b/r/edPdWJEznvUyxpgnCZAACVBg6WAMePOBQuxDJH5D6wCw4KNVWLTsW4wb+hQe6XBXLinnh+KifiN724MDIGbabPlugc/LlcRmrH2HvwmxzFGcpCT2OMp/OTdi/2LhBFxTs7LbSoqlV0IAiD25BvVyPcEw/wOeBNavG7dJG423uq1pkUvOxJIF8UFj6w8LXWYI6WCYyUpRSJ/2j78knRL5zYdvoFrl8rnPOZfUdevYBiMHup6c5RRYRS3hFLOvbn9oYIG90pwCSyxnFbJTqcv55UeIKyGw8l9vzvtE+tlxN26d94klq2LcNWlYGx/Ndj3BMH9bngSW+Hlt1vYZaTnPhlVvF5perxemQLwLxCbvYrN3Xp4JqFlgiRNaxcERyRdT8NGc0S4SX8n3lRyBpeS72HNV9HeHswbihF4xI1ruNfzVd7Bq3QYMeaYzej12r/SYWNosls4Vtl/e1W0rLbCKGrdKvsvkfOFX8j0ttybhfh8/b/r/edPdGJEznsN9bDE/EiABEnASoMDSwVgo6gOFWHb06ar1WPfLX9h78BhS0zIKELlaVDkF1tsTh+COmxu7JShOBzx7/qI0A+vq0wHlIBe/iR02YS7W/LRJ2mhd7I109eXNb/0HPN0RfZ/sUGjXngSWkjMa5OQfrvc491xzJ22E8Lzr4cHSUtb1X8xwWSbjFFiN6lbHsnmFSyixz5MYw0LkOPdncQosd2LMV84fr/gBr834EGLmy0ezR+fufeVsz6vf7Detj4XTfJ+B5Zz5J38GlusSS18Z6OE5tQosMTP1qYETceDISbd7oyn5vpIjsJR8F+thXHmbo88zsEbPxI+//Y38M7Duf3IEDh495XLoRFHxKCmwPI1bJd9lcr7wK/me9ram4Xo/P29+BX8/b1JghetPB/MiARJQigAFllIkVdxOYR8ohDAQXzwOHT0lbTx+9503SBtAC+FkgAHLvvoRa9dvKrD3hVNgFTWTwx+BJeTVyDcW4Ovv/pD27Zj+cn+3s5mcccjZA0vM6BECo7DLk8ByChSx9EoswXJ35Z6WWDwGf3ydd1qiiodG0EMbOv5taUx5ut4Y+Qzuv/uW3Nuc/D1tkC9mYImZWGKZjVhuIy6lT30Twnf81PelZYyLZ45AmYS4Auk4+5SzB5a7GVz5G/Q0A0vc6xR3cvbAEkvNhHjj5ZmAGgXWxUup6DHkDenky8KWqCr5vpIjsJR8F3uuiv7uOHXmAlo/+rz096D4pZA4JEXOJQ4VEYeL5N8Dy3noxPfLpqJC+dIem1FKYMkZt0q+y+QILCXf0x5B6uQGft78XppB7s/nTXdDRc541skQY5okQAIkwD2w9DAGCvtAIfYLEvsGdbj7Vkwc2bsAiklzlkpf/gubgRUIgSVOQho5cYG07EF8sZ867tlCN6UWG7uLTVjlnEI4b5LYbP7aQsvtSWCJPbhuaNdX1imEnmYJ6WHMucvRuXm70WhEnUKWfGZkZknHtje7tg4Wz8w7+t35hbx29UrSzAF3l/jtfdO2zyA7O8ftDCxPy0jl1EVI3QnTF0tLH8X+MWVLF5RXoh1xuIDYpFjOKYRPd2mP5/s+Umj3cgSWOGBAbNzt6RRCMTtt8+p3XA5skJO3Xu/xR2A5T+YbOfBxdOvYOhehP0JV/Az1HDpJklfD+nVB90fvcVsaJd9XcgSWku9ivY41T3k7TyH8YMYIXN/4Gk+3SzNRWzzwHMRS/F9WzERCqRLSM+0fHy4dZvHVe6+hVnXPhzkoIbDkjlsRn1LvMjlf+JV8T3ssiE5u4OfNLfD38yYFlk5+WJgmCZCAzwQ4A8tndNp5sLAPFPc9OUKafbVs7lg0qlejQELO2TLBEljiA+eLE96RZujc1/pmvDaiV5H7SIn7RIwP33u7JLGuvoTQEB/6xYyc9Z+/5XamjPMZTwJL3NfhqZHSkp0fP53uspm8s42lX/6AV9/6UNovTOwbxsuVgNgTSuw5IjYTFkta3F1Z2TnSMkIxm+3rxRNzT8NyCiyxTG7jN/Okkwuvvg4cPoEO3UchrmQsfv9qtiLCIH8fH372Hd6Y/bE0e+ndN1/M/ULoLg9xPL0Ye2JGo5BK7q6h4+dg7frNmDq2H9q1bF7ocJEjsIRUE3KtsH1tnGy83UNH72O4sHen2ENI7CV0z1034s1xz7rFNHjsbHz/y59QSmCJMSUOkhDvoPxLwgqrkVLvKzkCS8l3sd7HXGH5O3/GxYEq4mAVT5c4fVecwitkl5BezqvfS9Pxy/+2YsqYfmjfqvD3jvN+fwWWt+NWqXeZHIGl5HvaUz308uf8vKnM582rx4uc8ayXMcY8SYAESIACSwdjoLAPFO26DZc20xZ7ColZQ/kv8dtbsWQhJTU9KDOwxG+Jn395jrS5bKf77sC4od1hNBqKrI6IUSwZE0eAr/vkzQJ7bYkP6eLDupwZUXIEllMkiGPHxQl6V1/OjYw9/fZNB0PObYrO3/wXtem+eHDynKUQG7p3f+QeDHu2i9RW/lMI5095Abfe0LBAH84vWldLBX9mvDg7eW/Zakydt1zaKFv0X7JEjMcyOsfUkjmjpSW6+S+xF0yrzkNhdzik2RHO/brcNSpHYDl/xm+5viEWTH2hQDMidpGDp9leHpPS2Q2FvTv/3r4XTwx4HdfWr4mlb48pQEW8z4SIFXVWQmCdOZcsLRs8dvIsJrzYEw/e08JjJZR6X8kRWEq+iz0mptMbxKypB3qMgjhoZfrLz0mnrRZ2ib/XH+nzsvT399UzpZ1iS7xDxbvM0yVO8RV7RRX2915Rz/sybpV6l8n9wq/Ue9oTR738OT9vFr1PpxgHcj5vXj1e5I5nvYwz5kkCJKBvAhRYOqh/YR8onDNArp4xdDk1HcNemYvfN++AmMUU6BlYYsnX4HGzpWVXT3S6Gy8995jsqjhPERIf5t8Y1Sd342/xAb7n81Nw8vR5vPXKc2hze+Ef9uV+oBAzue557EXY7XZpivgN19WV4hSMZr+3AvMWr5Rm5whBYzAULd9kJxgmNzo3lW5cvyY+dvOFP3+a4ouakF1iJtX6z96CxWJ2EVhi7ykhaSollsl97Mfft2DI2NnSCZCifdGP8/JXYDlPsmzaqI5U95hiUbKq4jwJrkaVRMyfOgyJZa/sySWWdw0ZNwe/bdouLS0TgqOoS47AEs936fcKtu8+WGBpmRC5A0fPhMFoxJolk93OHpSVkA5vKuzdmZGZjdsefA6ZWTlYPm8cGlxTzYXOWws+w4Ilq6T/5q/AEvsf9RgyCeL/J4/pg7Z33iirEkq9r+QILBGQUu9iWcnp9Cbn4RFiBuoz3e6X/r7ML9PF36Vr1m+CkPli2V7+XwI4kQnZKGZfn7twEf2efAB9n+rgMtP58LHT0uzS4rHFpEe++eF/eHHCPEnei9MuLWaTLPq+jlul3mVyv/Ar9Z6WBUUHN/HzpjKfN68eKnLHsw6GGFMkARIgAe6BpYcxUNgHCrFnTrf+E6Q9MurWqiL973JKGoRsEBtTP9W5LV6e9kHABVb+L3tib6GirpubNcDowU/k3iI+sAtRJWZEiA/y19arAfHl8p8d+yWZ8cj9d2Lc8909llnub8TEDDEh/kTb4ktr6fiS0n404sN6yeIx+HDWSNSs5nlfEY8BhdkNL7wyF6t/3IjXR/TGA21v9ZidWColxqFzeZ1zBpaYYXQh+RIOHjmJJo1qo0x8HI6fOoetuw5IbQ7q9TDEXlf5L38E1h9/7kDvF6ZKzSWWS3A5GfHqJGKLRWP5O64nJDpnPgkJ16RhLURYLFKsYmZE/TrVpKU94tTFoi65AkvMzunW/1VpyWzlCmVRo2oixAwIwU4IVbExvtiTi5d8AkWdqCUElXh3iWWtHdvfjmqVE5GWniGJ+F17D0sntH73s/9LCEVN/9m5X+qn3H8HExSWgRj7+X++lHhfyRVYSr2L5VdHn3d+8vV6TJr9MTKzsqVZytWrVEBciRiIE4XFlgDivwvB1feJDni2+4NuIYnx1G/4NIhfVglZJf7uz86x4sTp89IvfT5/9xXpv4lLtHffEy/h1NkkaUm3mHV46XIaBvZ6uMjDIPwZt0q8y7z5wq/Ee1qfo7Fg1vy8qdznzfx0vRnPHIskQAIkEO4EOAMr3CsMoKgvYeLLtFgeID7Q5lit0sltrVo0Rb+nHpD2Ibq7ywsBF1hi3yixf5Scq+WtTTDrtUEutwoB98Ena/D193/g2Imz0owdMRPq0Q4tZX9hlyuwRMfiy+k7H36Nv7btRWpaOkonxEkbxIsvDOXKlJKThq7uEcuo7uo0BNGREfjp87ekJZ+eLrE3lBCFzZvUw6Lpw3NnYAnO08b3x8Kl30j7Rwl5FRlhkWYHPNm5rSQNrr78EVjOODzFK/48NiYaG7+ZW+BW0cZHn3+PPQeOQhxSUDGxDNq3bI4eXdoVKcScDckVWOJ+Ia/mfvAV1m/4B+cvXERsTDFJ9PV67F6XWWly8uE9Rb87BR8xO2XZlz9Ktc3KykFCfAk0b1IfvbrdizPnkiT56e8MLLGvm9jDTM41vH9X6ecg/+Xv+0quwBJ9KvEulpOn3u8RezeJA1jELOkjJ85IQjwmOko6VfCmZvWlv/vE/ntFXUJui30JxQwkIafMJqP0iyvxS4IBT3d0mdklhNLUuculzwnic0Fi2QTMfWOIdJhFYZe/49bfd5m3X/j9fU/rfUw68+fnTc8jwZvPm87WvB3PnqPgHSRAAiSgXQIUWNqtnezIf/pjC54bOQPu5I/sRngjCYSQgHMGlljGJ2a58SKBYBDguzMYlNkHCZBAuBDgOzNcKsk8SIAESEC9BCiw1FsbxSJ7+4OvMOe9FV7vL6VYAGyIBPwk4BRYTRrWxkezR/nZGh8nAXkE+O6Ux4l3kQAJkIAgwHcmxwEJkAAJkECgCVBgBZpwCNoXS7bE5sJiT6ZNW3bjpdfnS0sMxMwVMYOFFwlojQAFltYqps14+e7UZt0YNQmQQGgI8J0ZGu7slQRIgAT0TIACKwyrv2L1rxg9aaFLZt06tsHIgd3CMFumpAcCFFh6qHLoc+S7M/Q1YAQkQALaIcB3pnZqxUhJgARIIFwIUGCFSyXz5bF73xHMXfyVNOuqbOlSaHvHDWjZomkYZsqU9EKAAksvlQ5tnnx3hpY/eycBEtAWAb4ztVUvRksCJEAC4UCAAiscqsgcSCDMCVBghXmBmR4JkAAJkAAJkAAJkAAJkAAJeCBAgcUhQgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkoGoCFFiqLg+DIwESIAESIAESIAESIAESIAESIAESIAESoMDiGCABEiABEiABEiABEiABEiABEiABEiABElA1AQosVZeHwZEACZAACZAACZAACZAACZAACZAACZAACVBgcQyQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmomgAFlqrLw+BIgARIgARIgARIgARIgARIgARIgARIgAQosDgGSIAESIAESIAESIAESIAESIAESIAESIAEVE2AAkvV5WFwJEACJEACJEACJEACJEACJEACJEACJEACFFgcAyRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAqomQIGl6vIwOBIgARIgARIgARIgARIgARIgARIgARIgAQosjgESIAESIAESIAESIAESIAESIAESIAESIAFVE6DAUnV5GBwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAFFscACZAACZAACZAACZAACZAACZAACZAACZCAqglQYKm6PAyOBEiABEiABEiABEiABEiABEiABEiABEiAAotjgARIgARIgARIgARIgARIgARIgARIgARIQNUEKLBUXR4GRwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQIHFMUACJEACJEACJEACJEACJEACJEACJEACJKBqAhRYqi4PgyMBEiABEiABEiABEiABEiABEiABEiABEqDA4hggARIgARIgARIgARIgARIgARIgARIgARJQNQEKLFWXh8GRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAlQYHEMkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJqJoABZaqy8PgSIAESIAESIAESIAESIAESIAESIAESIAEKLA4BkiABEiABEiABEiABEiABEiABEiABEiABFRNgAJL1eVhcCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAhRYHAMkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAKqJkCBperyMDgSIAESIAESIAESIAESIAESIAESIAESIAEKLI4BEiABEiABEiABEiABEiABEiABEiABEiABVROgwFJ1eRgcCZAACZAACZAACZAACZAACZAACZAACZAABRbHAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgKoJUGCpujwMjgRIgARIgARIgARIgARIgARIgARIgARIgAKLY4AESIAESIAESIAESIAESIAESIAESIAESEDVBCiwVF0eBkcCJEACJEACyhO4nJqObs9OQEZmFhbPHIkK5Usr3wlbJAESIAESIAESIAESIAEFCVBgKQiTTZEACZAACZCAGgh8umo9ysTH4c5brnMbzp9b9+CpQROlP5s0ug/ua32zGsIOWgye+AQtEHZEAiRAAiRAAiRAAiQgmwAFlmxUvJEESIAESIAE1E8gPSMLt3Toj4fuaYFxz3d3G3Baeia6D34D6RmZWDRtOMqVKaX+xBSKUA4fhbpiMyRAAiRAAiRAAiRAAgoSoMBSECabIgESIAESIIFQE1j3618YNGYWHrn/zkIFVqhjDGX/5BNK+uybBEiABEiABEiABHwnQIHlOzs+SQIkQAIkQAKqIpCTY8WwCfPw/S9/UmC5qQz5qGq4MhgSIAESIAESIAES8IoABZZXuHgzCZAACZAACaiTwIeffYd3P/4G55MuuQ0wNiYaG7+ZK/2ZuOeOjoOkf/7yvVdRu3ql3Gecf1azWkWsfP816d6FS7/FT79vwelzSYgtFo3aNSqi03134t5WN0nPORwOfLX2d3y55jfsO3QcaWkZKJ0Qh5ua1kfvbvehaqVyRUI7deYC3lu+Br9t2obTZ5NgMplQpWJZtLqtGZ54uA2KxxZz+/zBo6ew5PPvsfmff3Hi9HnY7HaUji+JxLLxUt/i+bq1qkjPesPH2dnufUew+seNEHuGHT52GqnpGYiOikSNqhXQ7q4b0fWh1rCYTQVi+/aHjRg2YS66PtgKowc/gV17D+O95aux+Z89uHg5FfFxxXFdg9p46pG2aFy/pvR8aloGlnyxDmvXb8Kxk+dgs9lQqUJZtLy1CXp2be+WgbOfbh3bYOTAbthz4BjeX74Gm7bsxoXkS4iJiZbyf+ie23Bv65tgMBjUOXgZFQmQAAmQAAmQAAnIIECBJQMSbyEBEiABEiABtRMYO2URTpw6j70HjyHpYgrKlo5DjSoVcsMuFh2JWa9dkVZyBJYQM8vmjUOv56cg+VIKLBYzLGaztG+W83qqc1sM6t0Jz46Yjv/9tUv6z0KUidMNbTa79O/FoqOweOYI1Ktd1S1CsaTvxQnzkJWdI/15QqkSEDOlxEmJ4kosl4D5U15AjSqJLs8LeTPi9fmw2mzSfy8RWwwGowGXLqfl3ifk0Mdvj5H+3Rs+4v41P23C8y+/ndtWXMlYSV6dPZ+cm9uNTepiwdRhMJtcJZZTLIk/f7j9HRj1xrtSnKIGVpsd2f/lKp6bOq4f6tSojN4vTJEknJBMgmHKf/mLAETuS+eOlf57/svZz+03NUa7ljdizKRFUj8RERZERlhc2hAibNr4/lIdeZEACZAACZAACZCAFglQYGmxaoyZBEiABEiABAohMHjsbI9LCOUILNF8yRIxqJxYFi8NeAyN69eC0WjAqbNJmDjrI/zw699SBE0b1cGWHfvQ94kO6PpQqysCymrDrxu3Yczkhbh4KRVNGtbGR7NHFYh4++6D6Pbcq5IQeuyhVujzRAdpBpW4xOynsVPek2YvValYDl8snIDoqAjpz4TcuavTYGRkZqNbx9bSc6JfcWVmZUvPiPhuvr4BWtzYyKVfOXzEA2JGlNhLrF3L5rjj5sYokxAntSNye3/5ary14DPp3yeO7I0Od9/q0odTLIl4bXYH7r79evTv8ZA0q8xud/y/vfuP/3K89wD+5qwkP5LNtsO2JpZD7DFTh5pkhujknOnHwcGORFlTDSWMJNZQYf2QNGmZH9XMqTlpaWSnciYnOmFxbDkeHMeZDQkTHp3HdbdPK32+3y6Pftyfbz2vf+r7/bw/9/u6n3f983pc13XH08+9UIRav33h5WjebLdo3mzX+MPrK+LSfqfHsUe1Ke4zBYVTZzwcoyZMK1a49T7jpBhwTreqfXZp2qS47/TWyfN7do1WLdesqEvPOa38Squy0vhWj04x+Dun+b9DgAABAgQIEGiQAgKsBvnYTJoAAQIECFQXyAlocgOsFCb96x3XbrDyJ4UlnU4btHa7Yr+zu8Z53/r7DSb00/sfiStH3l78fsGMsZFWMa07up97ZRFUdTmuXVz3vT4bfD+FZZ3PGFysWLrk/H+KM7sfX9T8++JnoteF10ez3XaJBTPHfqytcTk+Of+2eg8aGQsWPVUEXCOHfLtqsJR+mVZHjb/2gg0ume473X9lTBl9WRz25VYb1A2+ZkLcP/fR2H/ffWLG7d+vs08K6yaOGFjVYtQt02LSPbOKAPLBqaPis3vtmXOLaggQIECAAAECNSUgwKqpx2EyBAgQIEBg0wRyAprcACudX/Xdc7tXndCFQ8fFL+YtKs6Amj9j7AYhV/pSOtvq2FMuKr5/57jL4yut9197raXLlsep511V/PzwT28qtjxWGwOHjS/OoUrhTgp50qh8N/V+4K4RxZlXuSPHJ+da46fMiLGT7qu6uqyyAitdZ+LIgdG+zcFVL3nkP/QrtmcecmDLuGf8kKo16Wyxy34wsXB+cu5t69Ws22fC9RdtsNqsUvzOu+9Fx679I/058LxTouepJ+bcohoCBAgQIECAQE0JCLBq6nGYDAECBAgQ2DSBnIAmN8AaO3xAfL39oVUndN24u2PK9F/EAft9vtjeV22k7XKHHNOz+CidY/W1tn8JctKKoLQyKG0PfODO6+q86RQSpbAorbZa+PNxRV267sm9Lo/nl78cn9mreVzY+x+j09Fts853yvHJeQJTZzwUw26cEge1+mJMv3VoncFSOjj/o2dXVYq7nTMklj3/YpzR7bhi+2C1UVltlj578sEfrXeP6wZYj826JdJWwrpGOqfskUeXxPEd28SNV52fc4tqCBAgQIAAAQI1JSDAqqnHYTIECBAgQGDTBHICmtwAa+qEK+PgA/atOqERN98Tk6fNjiMOOyhuG3VxnZNuffRZxWe3XHdRdDj8L+dRDR05OabfP+9j3ezT8yavrU/bCy8YMqZYjZVGOkuq8zeOiK6dO6x982C1i+f4VL73b79eGg/+alE889x/x//872vFuVTpDKx1R30BVjrL6vHZt9Z5jz16Dy3O6+rfq1v0OfOkqnWPPbEsel5wbfHZ4jkTi8PZK6MSYKXD4Rc9MKFey0rgWN9qr4/1MBQTIECAAAECBLaygABrK4NrR4AAAQIEtqRATkCTG2D9y+3XxJf2XXMg+EdHJcBKq6rS6qq6Rl0BVmVrYFqdtM9nP5VF8tGVXmmUuSmuAAANRklEQVQlVnqL4V33zY1FTy5be410aPwFvXtUPVMqxycdPD9gyJh4fMmzxTX3a7F3EYrt2Xz3aPznt/gteea3xef1BVjpEPyFM9esGqs2KgFW2qaZtmtWGzkB1rqr0+rqNfq2e2PCHT+vepZWFr4iAgQIECBAgEDJAgKskh+A9gQIECBAYHMK5AQ0tRBgXXH9pPjZrF9tdAVXrs1Lr/w+0qHx02Y+HG++9XbxtaEDz4oeXY5e7xI5Pv0uHx0PzV8ce+6xW9w0rF/VIGzinfcXbyKshQCrceNG8cScifVS/WDMnfGTex+MLx+0X9x98xW5rOoIECBAgAABAjUjIMCqmUdhIgQIECBAYNMFcgKaWgiwKoeg7/XJPWLevTdt+o3/+QpvrXwnhoyYFHMeeTya7NQ4fjnthvXefrgxn3Soeodv9o/Vq1fHsEFnR7e/O6rq3FJ4lUKsWgiw0gTnzxhTbKOsa/S5eFTMf2ypM7A22780FyJAgAABAgS2toAAa2uL60eAAAECBLagQOXtgCef2CGuGdyraqdaCLAWL30uzuw3vJjfT8Z+r3ib3+Ya77//QbQ7qW+8+6dV8aORg6Jdm9ZrL70xn3QmVdral8a0CUOj9QFfrDqtdC5V2t5XKwHW6Kv7xzc6fLXqXFe+/W4cdXL/eG/V+zHo26fGWaecsLmoXYcAAQIECBAgsNUEBFhbjVojAgQIECCw5QWuuuHHxTa6+raK1UKAlSROPvvyeO53LxUh0JTRl0U69HxzjBTUHNGlb6xa9X5MvumSaPuVv1l72Y35pK2InU4bVNSPurJvnPD1v91gSo8+/nScM3BE8ftaCbC+ekir+PEPL40dd9xhg/lWzitLn82dekPx5kaDAAECBAgQINDQBARYDe2JmS8BAgQIEKhHYOacBXHp8DXnIV01sGd079Kx+Ht6e94n/mrH2GGHHaJWAqylv/ldnNl/eKQVU61afi769eoW7Q5rXQRZKYT6v9dej6W/WR4PLVgcnY85PI45cs0Ko3R4+uSps6PLce2ifduDY/ddm64VWf7iKzHqlmnx8MIn4pPNd4+5U0dFOiOqMnJ8Tjx9cLz48qvxhX0+HT+8un8xtzTSWwjve2B+3HjrtNij2W7xyqt/qIkAq1GjTxSGyScdXt/yC39dzDdtp7zt7lnFVsc0/rlHp7j4O6f5/0OAAAECBAgQaJACAqwG+dhMmgABAgQIVBdIq4569Bkazy9/uShIb6hr2rRJEVotnDk2mu685u8duw4oPv/omwbr+2zdjpv6FsLKtdJqpouG3Rxvrlhz8Hoa6eyqP723ar0bvPay3nHS8e2L3627Air9nIKqdF9vrFhZhDZppJ/HDh8Qhx964HrXyfFZsOip6HvJjfHBhx8W303XT28ffPW11yO9+fCYrx0a55/dNbr2uqImAqwDv9SiCPNGjp9anN2VnvnOTXYqnnPlHtL2wlFD+kYKuwwCBAgQIECAQEMUEGA1xKdmzgQIECBAoB6BN95cGWMm/SzmLXwyfv/HN2LXpjtHyxZ7x6QbLi5WI9VSgJVuY8XKd2LqjIeK+aYVVG+9/U40btQoPrVnszioVYs4uv2hcXzHtmu3GKZwa8bs+THv0SXxX8tfWhPUfPBh7NK0SbT43GeifZuD4/Sux0Y6IL7a2JhP+s7Tz75QrFz6j/98tnirYTLcf9994psnHBnpfLHVqyPantincJ1+65ozsypj1i9/HYOuHh/Ndt8lFs4cV+eTSmdtpTO3vntu9zj39C5V69I5W+m8rTQWz5kYO62zmqzS5/N7fzpm33V9PPXs8rhj+pxYtGRZ/PH1FUWId2CrFtG181HFCra0+s4gQIAAAQIECDRUAQFWQ31y5k2AAAECBAhs1wKVACu9fTC9hdAgQIAAAQIECGzLAgKsbfnpujcCBAgQIEBgmxXIXem1zQK4MQIECBAgQGC7EhBgbVeP280SIECAAAEC24qAAGtbeZLugwABAgQIEMgREGDlKKkhQIAAAQIECNSYgACrxh6I6RAgQIAAAQJbVECAtUV5XZwAAQIECBAgsGUEBFhbxtVVCRAgQIAAgdoUEGDV5nMxKwIECBAgQIBAvQICLP9ACBAgQIAAge1JQIC1PT1t90qAAAECBAhsMwICrG3mUboRAgQIECBAIENAgJWBpIQAAQIECBAgQIAAAQIECBAgQKA8AQFWefY6EyBAgAABAgQIECBAgAABAgQIZAgIsDKQlBAgQIAAAQIECBAgQIAAAQIECJQnIMAqz15nAgQIECBAgAABAgQIECBAgACBDAEBVgaSEgIECBAgQIAAAQIECBAgQIAAgfIEBFjl2etMgAABAgQIECBAgAABAgQIECCQISDAykBSQoAAAQIECBAgQIAAAQIECBAgUJ6AAKs8e50JECBAgAABAgQIECBAgAABAgQyBARYGUhKCBAgQIAAAQIECBAgQIAAAQIEyhMQYJVnrzMBAgQIECBAgAABAgQIECBAgECGgAArA0kJAQIECBAgQIAAAQIECBAgQIBAeQICrPLsdSZAgAABAgQIECBAgAABAgQIEMgQEGBlICkhQIAAAQIECBAgQIAAAQIECBAoT0CAVZ69zgQIECBAgAABAgQIECBAgAABAhkCAqwMJCUECBAgQIAAAQIECBAgQIAAAQLlCQiwyrPXmQABAgQIECBAgAABAgQIECBAIENAgJWBpIQAAQIECBAgQIAAAQIECBAgQKA8AQFWefY6EyBAgAABAgQIECBAgAABAgQIZAgIsDKQlBAgQIAAAQIECBAgQIAAAQIECJQnIMAqz15nAgQIECBAgAABAgQIECBAgACBDAEBVgaSEgIECBAgQIAAAQIECBAgQIAAgfIEBFjl2etMgAABAgQIECBAgAABAgQIECCQISDAykBSQoAAAQIECBAgQIAAAQIECBAgUJ6AAKs8e50JECBAgAABAgQIECBAgAABAgQyBARYGUhKCBAgQIAAAQIECBAgQIAAAQIEyhMQYJVnrzMBAgQIECBAgAABAgQIECBAgECGgAArA0kJAQIECBAgQIAAAQIECBAgQIBAeQICrPLsdSZAgAABAgQIECBAgAABAgQIEMgQEGBlICkhQIAAAQIECBAgQIAAAQIECBAoT0CAVZ69zgQIECBAgAABAgQIECBAgAABAhkCAqwMJCUECBAgQIAAAQIECBAgQIAAAQLlCQiwyrPXmQABAgQIECBAgAABAgQIECBAIENAgJWBpIQAAQIECBAgQIAAAQIECBAgQKA8AQFWefY6EyBAgAABAgQIECBAgAABAgQIZAgIsDKQlBAgQIAAAQIECBAgQIAAAQIECJQnIMAqz15nAgQIECBAgAABAgQIECBAgACBDAEBVgaSEgIECBAgQIAAAQIECBAgQIAAgfIEBFjl2etMgAABAgQIECBAgAABAgQIECCQISDAykBSQoAAAQIECBAgQIAAAQIECBAgUJ6AAKs8e50JECBAgAABAgQIECBAgAABAgQyBARYGUhKCBAgQIAAAQIECBAgQIAAAQIEyhMQYJVnrzMBAgQIECBAgAABAgQIECBAgECGgAArA0kJAQIECBAgQIAAAQIECBAgQIBAeQICrPLsdSZAgAABAgQIECBAgAABAgQIEMgQEGBlICkhQIAAAQIECBAgQIAAAQIECBAoT0CAVZ69zgQIECBAgAABAgQIECBAgAABAhkCAqwMJCUECBAgQIAAAQIECBAgQIAAAQLlCQiwyrPXmQABAgQIECBAgAABAgQIECBAIENAgJWBpIQAAQIECBAgQIAAAQIECBAgQKA8AQFWefY6EyBAgAABAgQIECBAgAABAgQIZAgIsDKQlBAgQIAAAQIECBAgQIAAAQIECJQnIMAqz15nAgQIECBAgAABAgQIECBAgACBDAEBVgaSEgIECBAgQIAAAQIECBAgQIAAgfIEBFjl2etMgAABAgQIECBAgAABAgQIECCQISDAykBSQoAAAQIECBAgQIAAAQIECBAgUJ6AAKs8e50JECBAgAABAgQIECBAgAABAgQyBARYGUhKCBAgQIAAAQIECBAgQIAAAQIEyhMQYJVnrzMBAgQIECBAgAABAgQIECBAgECGgAArA0kJAQIECBAgQIAAAQIECBAgQIBAeQICrPLsdSZAgAABAgQIECBAgAABAgQIEMgQEGBlICkhQIAAAQIECBAgQIAAAQIECBAoT0CAVZ69zgQIECBAgAABAgQIECBAgAABAhkCAqwMJCUECBAgQIAAAQIECBAgQIAAAQLlCQiwyrPXmQABAgQIECBAgAABAgQIECBAIENAgJWBpIQAAQIECBAgQIAAAQIECBAgQKA8AQFWefY6EyBAgAABAgQIECBAgAABAgQIZAgIsDKQlBAgQIAAAQIECBAgQIAAAQIECJQnIMAqz15nAgQIECBAgAABAgQIECBAgACBDAEBVgaSEgIECBAgQIAAAQIECBAgQIAAgfIEBFjl2etMgAABAgQIECBAgAABAgQIECCQIfD/Q7v+PfqoD5MAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdCbhV8/7H8c/e+5zTPKpIKSJDMiUiFRpcQ6SopEFzCRERCbmZpRTRHCWlicg1liiSS6ZMlwwpUWmeT3vv//Nb/vucszv7nLP3PntYa+/3ep77PPfWWr/h9f3VdT5+67dcfr/fLy4EEEAAAQQQQAABBBBAAAEEEEAAAQRsKuAiwLJpZRgWAggggAACCCCAAAIIIIAAAggggIAlQIDFQkAAAQQQQAABBBBAAAEEEEAAAQQQsLUAAZaty8PgEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEWawABBBBAAAEEEEAAAQQQQAABBBBAwNYCBFi2Lg+DQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAgjYWoAAy9blYXAIIIAAAggggAACCCCAAAIIIIAAAgRYrAEEEEAAAQQQQAABBBBAAAEEEEAAAVsLEGDZujwMDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgawECLFuXh8EhgAACCCCAAAIIIIAAAggggAACCBBgsQYQQAABBBBAAAEEEEAAAQQQQAABBGwtQIBl6/IwOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICArQUIsGxdHgaHAAIIIIAAAggggAACCCCAAAIIIECAxRpAAAEEEEAAAQQQQAABBBBAAAEEELC1AAGWrcvD4BBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACthYgwLJ1eRgcAggggAACCCCAAAIIIIAAAggggAABFmsAAQQQQAABBBBAAAEEEEAAAQQQQMDWAgRYti4Pg0MAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAII2FqAAMvW5WFwCCCAAAIIIIAAAggggAACCCCAAAIEWKwBBBBAAAEEEEAAAQQQQAABBBBAAAFbCxBg2bo8DA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbl4fBIYAAAggggAACCCCAAAIIIIAAAggQYLEGEEAAAQQQQAABBBBAAAEEEEAAAQRsLUCAZevyMDgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgK0FCLBsXR4GhwACCCCAAAIIIIAAAggggAACCCBAgMUaQAABBBBAAAEEEEAAAQQQQAABBBCwtQABlq3Lw+AQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXkYHAIIIIAAAggggAACCCCAAAIIIIAAARZrAAEEEEAAAQQQQAABBBBAAAEEEEDA1gIEWLYuD4NDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCNhagADL1uVhcAgggAACCCCAAAIIIIAAAggggAACBFisAQQQQAABBBBAAAEEEEAAAQQQQAABWwsQYNm6PAwOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIGBrAQIsW5eHwSGAAAIIIIAAAggggAACCCCAAAIIEGCxBhBAAAEEEEAAAQQQQAABBBBAAAEEbC1AgGXr8jA4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggICtBQiwbF0eBocAAggggAACCCCAAAIIIIAAAgggQIDFGkAAAQQQQAABBBBAAAEEEEAAAQQQsLUAAZaty8PgEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEWawABBBBAAAEEEEAAAQQQQAABBBBAwNYCBFi2Lg+DQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAgjYWoAAy9blYXAIIIAAAggggAACCCCAAAIIIIAAAgRYrAEEEEAAAQQQQAABBBBAAAEEEEAAAVsLEGDZujwMDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgawECLFuXh8EhgAACCCCAAAIIIIAAAggggAACCBBgsQYQQAABBBBAAAEEEEAAAQQQQAABBGwtQIBl6/IwOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICArQUIsGxdHgaHAAIIIIAAAggggAACCCCAAAIIIECAxRpAAAEEEEAAAQQQQAABBBBAAAEEELC1AAGWrcvD4BBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACthYgwLJ1eRgcAggggAACCCCAAAIIIIAAAggggAABFmsAAQQQQAABBBBAAAEEEEAAAQQQQMDWAgRYti4Pg0MAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAII2FqAAMvW5WFwCCCAAAIIIIAAAggggAACCCCAAAIEWKwBBBBAAAEEEEAAAQQQQAABBBBAAAFbCxBg2bo8DA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbl4fBIYAAAggggAACCCCAAAIIIIAAAggQYLEGEEAAAQQQQAABBBBAAAEEEEAAAQRsLUCAZevyMDgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgK0FCLBsXR4GhwACCCCAAAIIIIAAAggggAACCCBAgMUaQAABBBBAAAEEEEAAAQQQQAABBBCwtQABlq3Lw+AQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXkYHAIIIIAAAggggAACCCCAAAIIIIAAARZrAAEEEEAAAQQQQAABBBBAAAEEEEDA1gIEWLYuD4NDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCNhagADL1uVhcAgggAACCCCAAAIIIIAAAggggAACBFisAQQQQAABBBBAAAEEEEAAAQQQQAABWwsQYNm6PAwOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIGBrAQIsW5eHwSGAAAIIIIAAAggggAACCCCAAAIIEGCxBhBAAAEEEEAAAQQQQAABBBBAAAEEbC1AgGXr8jA4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggICtBQiwbF0eBocAAggggAACCCCAAAIIIIAAAgggQIDFGkAAAQQQQAABBBBAAAEEEEAAAQQQsLUAAZaty8PgEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEWawABBBBAAAEEEEAAAQQQQAABBBBAwNYCBFi2Lg+DQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAgjYWoAAy9blYXAIIIAAAggggAACCCCAAAIIIIAAAgRYrAEEEEAAAQQQQAABBBBAAAEEEEAAAVsLEGDZujwMDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgawECLFuXh8EhgAACCCCAAAIIIIAAAggggAACCBBgsQYQQAABBBBAAAEEEEAAAQQQQAABBGwtQIBl6/IwOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICArQUIsGxdHgaHAAIIIIAAAggggAACCCCAAAIIIECAxRpAAAEEEEAAAQQQQAABBBBAAAEEELC1AAGWrcvD4BBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACthYgwLJ1eRgcAggggAACCCCAAAIIIIAAAggggAABFmsAAQQQQAABBBBAAAEEEEAAAQQQQMDWAgRYti4Pg0MAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSRV4I+/94bsv3K5LJXM8mjLzgPad8Cb1DHSOQJGoHrlUnK5pA1b9srvxwQBewiULuFRxbJZ2rPfq227DthjUIwCgTwCRx5WyvpfBf3/PVgIJFOgYplMlS6ZYf39af4e5UIgGoHA33PRPMszCCAQmQABVmRe3B1jAQKsGIPSXNwECLDiRkvDxRAgwCoGHo8mRIAAKyHMdBKlAAFWlHA8FiRAgMWCQCBxAgRYibOmpxACBFgsC6cIEGA5pVLpNU4CrPSqtxNnS4DlxKqlz5gJsNKn1vGcKQFWPHVpG4FgAQIsVkRSBQiwkspP5xEIEGBFgMWtCRMgwEoYNR1FKUCAFSUcjyVEgAArIcwp3wkBVsqXmAnaSIAAy0bFSMehEGClY9WdOWcCLGfWLdVHTYCV6hV2/vwIsJxfw1SeAQFWKlc3cXMjwEqcNT0hQIDFGkiqAAFWUvnpPAIBAqwIsLg1YQIEWAmjpqMoBQiwooTjsYQIEGAlhDnlOyHASvkSM0EbCRBg2agY6TgUAqx0rLoz50yA5cy6pfqoCbBSvcLOnx8BlvNrmMozIMBK5eombm4EWImzpicECLBYA0kVIMBKKj+dRyBAgBUBFrcmTIAAK2HUdBSlAAFWlHA8lhABAqyEMKd8JwRYKV9iJmgjAQIsGxUjHYdCgJWOVXfmnAmwnFm3VB81AVaqV9j58yPAcn4NU3kGBFipXN3EzY0AK3HW9IQAARZrIKkCBFhJ5afzCAQIsCLA4taECRBgJYyajqIUIMCKEo7HEiJAgJUQ5pTvhAAr5UvMBG0kQIBlo2Kk41AIsNKx6s6cMwGWM+uW6qMmwEr1Cjt/fgRYzq9hKs+AACuVq5u4uRFgJc6anhAgwGINJFWAACup/HQegQABVgRY3JowAQKshFHTUZQCBFhRwvFYQgQIsBLCnPKdEGClfImZoI0ECLBsVIx0HAoBVjpW3ZlzJsByZt1SfdQEWKleYefPjwDL+TVM5RkQYKVydRM3NwKsxFnTEwIEWKyBpAoQYCWVn84jECDAigCLWxMmQICVMGo6ilKAACtKOB5LiAABVkKYU74TAqyULzETtJEAAZaNipGOQyHASseqO3POBFjOrFuqj5oAK9Ur7Pz5EWA5v4apPAMCrFSubuLmRoCVOGt6QoAAizWQVAECrKTy03kEAgRYEWBxa8IECLASRk1HUQoQYEUJx2MJESDASghzyndCgOXcEl/W9U79+vufGjqwizq3a+nciaTRyAmw0qjYdpwqAZYdq8KYQgkQYLEu7ChAgGXHqjCmvAIEWKwHOwsQYNm5Os4ZGwGWc2p16EgJsJxXOwIs59UspUZMgJVS5UzpyRBgpXR5HTs5AizHli5tBk6AlTalduRECbAcWTbbDZoAy3YlCXtABFhhU9nmRgIs25QiPQdCgJWedXfirAmwnFi1xIx5z16X5sxzqcPVfpUu5U9Mp//fCwFWQrnpLAoBAqwo0HgkYQIEWAmjTumOCLCcW14CLOfVjgDLeTVLqRETYKVUOVN6MgRYKV3eqCeXfVCaPNWjDX+6VP0Iv3r39CozI+rmIn6QACtiMh5IsAABVoLB6S4iAQKsiLi4uQABAiznLg0CLOfVjgDLeTVLqRETYKVUOVN6MgRYKV3eqCbn90svzHLrx5/cOc/XPc6nLp18crmiajLihwiwIibjgQQLEGAlGJzuIhIgwIqIi5sJsFJuDRBgOa+kBFjOq1lKjZgAK6XKmdKTIcBK6fJGNbmFi9z6bFVueBVo5MwGPrVp7YuqzUgfIsCKVIz7Ey1AgJVocfqLRIAAKxIt7i1IIBE7sD5f/aNefPldffbV/7Rl6w6VLlVSJxx3lK646DzrPx5P7j+PXDtghL78do0uad5II++9vtDCPTlpnibNXKQjqlbWOy89Ibc799/A+f1+vf7ux3rlreX6/se12rlrjypWKKsz6tfVtW1b6uwzToz5ovjmh181e+ESffrlD9r091a5XC4dXrWyjqlVXRc1a6jLL2qcr89Nf2/TjHlv68P/rta6DZu0/0C2DqtYXg1Orav2rS8sdJzhBFixaP+jV8epQvkyVv0mvvCavv7uZ23fuVtNG52q8Y/eGnPHVG6QACuVq+uAuRFgOaBIDNESIMBiIeQVWLbco3eWFLzN6qKWfjVp7I07GgFW3InpoJgCBFjFBOTxuAoQYMWVN20aj3eANXriXE1+8XXLM8PjUaWK5awwad/+A9avndOgnsY+MFBlSpe0/vfLbyzTsEenKCsrU+8vGKPyZUuHrIUJqFpdM1gb/vpbfbtcrpt7X5Vz3569+3TTsLH6+LNvrV8rWSJL5cqW1tZtO3XQ+88/3/S85lLd1r9DTOpsxvLEhDmaNvuNAtszQd3DQ/sE/f47H3yqOx+cmGNRIitTmZkZ2rV7b859V13WTPfeep1ld+hVVIAVq/Zfff4h/feL7/XAkzNk5hq4OrdrqaEDu8TEMF0aIcBKl0rbdJ4EWDYtDMPKJ0CAxaIICHy12qV5C/L/Q9ChQh2v9urkevE91J0Ai3VpdwECLLtXKL3HR4CV3vWP1ezjGWA9N+dNPf7MbJlg5vYB1+jKi5uqVMkseb0+vb/iC93z+FRt275Ll7U4R4/d09+a0t59B3R+u4HavWef7hnUTde0aR5yqmY3ULeBD1m/9/qMR3T0UUfk3Hfj0DF676PPdeQRVXTvoOvUuOHJ1i6vPXv3a9Yri/XkpLny+fwaPri72re+oNiUE2a8prFT5lvttL2kqUywc2ztI3XQ69Pvf2zUik+/UcPTT1D9E47J6WvV1//TdTc/bI3jwsZn6KZe7XTCsUdZv79l204t+M8HenrqAmUf9KrTlS007JauEQVYsWz/hu5X6pnnF6r+CUfrxp7tdMqJdWRCwowMj6oeVrHYfunUAAFWOlXbhnMlwLJhURhSSAECLBaGEfhtrUtTngsOr8qW8avzNT7NnO3Wrt3Bu7J6dfeqdq34hVgEWKxLuwsQYNm9Quk9PgKs9K5/rGYfrwDr76071LLjbTpwIFv/vr2nzE6iQ6+3ln6iW4c/Y/3y/Mn/1onH1bL++79HT9dLC5dYgc9LE+4LOdX7n3hOc15bqtPqHasXn7kn5x4TXJkAKzPDY7V57NE18j0/YvR061W/wyqV17svPWHt9or22rh5m1p1vM3a2dWv6+Ua2Ct3J1hhbV7R/W6t+XW9FV499eBA63XDwnxmP3uvTjmpTtAthe3AimX7ptPzzqqvcQ/dYu0Q44pegAArejuejIEAAVYMEGkiIQIEWAlhtnUnmza7NXGyS/sP5P4DUmam1LeXV4dX8+uvjS5NnOJRdnbuNEpk+dW3t19Vq8TnTCwCLFsvGQYniQCLZWBnAQIsO1fHOWOLV4A1dfZ/9MT4Oapd83D954VHCwQ5v93N2rxlu67v1kY39mxr3ffdj7/p6j7/BFcLpz2o444JDqHMrqTz2w60zmG677bu6nB57i6q/kNGadnKr3R16/N1/+AeIfv9Ze0Gte52l/V7U0cPUaMzToq6YIHdV5UqlNN780aHFfCY3VFdb/pn95h5Pc/s1iro6jRghL76do11VtihryAWFGDFun2za+7t2U+ocsVyUTvx4D8CBFishKQKEGAllZ/OIxAgwIoAKwVv3bHTpQmT3dq5Mze8Mv+ir1tnn46tkxtOrfnZrRkvuuXLk1eVK+fX9X19Mju1Yn0RYMValPZiLUCAFWtR2oulAAFWLDXTt614BVjhBElG3bwGaF4HbNn0TI0ZcVNOIdr3Ha5v//erune42Hr9MO8V2GV16DlZ5nW8Rpddb73e9uiwfmrd8tyQhTUBWIOLeluv7w0d2Fmd27WKegH0vX2kdQC7OaD9kaF9w2rHHIQ+ZvJ86xXHd2aPLPSZwL2HV62kJXNHB91bUIAV6/bzvuIZ1gS5qUABAiwWRz6BDRu3aNbL72r5J1/r9z82Wds5q1errGbnnKbe116mKpUr5Hvm+5/W6qre9xaqaRJ8k+TnvQiwWIBOESDAckqlYj/Offtd1s6rzX8Hf3GwXRufTj8t/86q1d+4NGd+8GuG1aqanVheFWOHfciJEWDFvt60GFsBAqzYetJabAUIsGLrma6txSvAurTLEP227q+wWc1XAaeNvjPn/jmvvqf7Rz1vvea3ZN7ooEPMb7v/Gb353ie6+MKz9cR9A3KeMV/cu+CqW8Lu09x4Q4+2GnBdm4ieyXtzYJ7m1UHzCmE4172PT9X81z/QuQ1P1uSRtxf6yNvvf6pB9z1t3fPFu1OsVyMDV0EBVqzbH9S3vfVzNFfxBQiwim+YMi2YBH3KrNc1btrL1mF3JrSqW+coeb1eaxuqOQzPbHt8fuxQ1alVPWje5mC93oMftw6hO6Ja5ZAm5usWzc87I+j3CLBSZvmk/EQIsFK+xCEn6PNK02Z4rLOv8l7NL/DpgmYFvxa4dJlbS94LDrzqHOOzdmy5g3+5WLAEWMXi4+EECBBgJQCZLqIWIMCKmo4H8wjEK8AKvBpYrUpFmdfrirpOPuEYjbijZ85t5hB3c5i7OdT9qQdvzvk5zOyuanrlQOvLfeMfvVVNG52a80zeVwPNoe7m8Piiro5XXKiOBRwUX9Sz5vcD87zzxmvV9eqLwnlEg//9rN5YslLNmzTQUw8MLPSZZSu/Vv8hT1j3fLjwaVWsUDbn/oICrHi3H9YkuSmkAAEWCyNI4JZ7n9Yvv2/QXTd21jln1sv5PfMX3/AnpmnROyvU4JS6mvHU3UHPvb74Y90xYrxu7ddBvTpdGrYqAVbYVNyYZAECrCQXIEndz5nn0epvg8Mrs+vK7L4q6lqw0K0vvgxOq8J9tqi2A79PgBWuFPclS4AAK1ny9BuOAAFWOErcU5RAvAKsi6+9w/oCXyQ7kw4d67BHp+jlN5apRdMGGjvin6Dntbc/0p0PTbTeqjGv1JmvCwauPzdtUYv2t1r/0/y8Z37ui/f1r063a92GTbqlz9Xq07l1WN09OGaGXnx5ceQ7sN6ZHHTGVkEBVrzbD2uS3BRSgACLhREkYIIqj9sV8ksS5veatLnRSuvfXzAm6FXCGfPe1iNPv6gH7+ytKy9uErYqAVbYVNyYZAECrCQXIAndv7PYrWUfRr+LypyDZb5M+ONPwW2YnVtmB1csLgKsWCjSRjwFCLDiqUvbxRUgwCquIM8bgXgFWD0HPaqVn3+n4pyf9OW3a3TtgBHWa3MfvPKUypctrcDZWj2uuUSD+3cMKqJ5C+fsS/tbXz4cPri72rfOPdw9XtW+7uaH9emXP6jtJU31wJBeYXUTOOA+nDOwJs1cpCcnzbPeFFo6/8mg9gsKsOLdfliT5CYCLNZA8QXa9hym//28Tq9Me0B1j6mZ06A5RM8cdjf+0dvUtNEpYXdEgBU2FTcmWYAAK8kFSHD3n65y69VFwcFTNOdYZR+UJk/1aMOfwbu4Cjo/K9JpEmBFKsb9iRYgwEq0OP1FIkCAFYkW9xYkEK8Aa/z0V/XU1AVW6LR47miVLlUiqiJc2WOYfvxlnRUOmVfuml050DrjONTXCU0HvW59TB+v+jas3U1RDeiQh0y4ZEKmUDvCCmp/za/rdUX3f94IKmgegWc73/CAvvjmJ13aopEev+f6sAKseLcfC7d0bYMdWOla+Sjn3bz9IP21aas++c94lSldMqeV4SOf09xFSzVv0v06qW7tsFsnwAqbihuTLECAleQCJLB7s2PqhVlu+fN8NLBiBXMIe3RfEtyz16XxE93atr3wLxhGM0UCrGjUeCaRAgRYidSmr0gFCLAiFeP+UALxCrDMgeqtrhms7OyD1hlT9w7qFlUBZi54Rw+NnakLGp+ui84/S0MfnqSTTzhacyYMD9neOx98KnOsjLlG3nu9LmneKKp+w33IHFRvDnI3VySHnXcaMEJffbvGmtfTD94sl/k89CHXkuWrdNOwsdavPvfknTrr9BOD7ihoB5a5Kd7th+vDfcECBFisiLAFvvnhV3XoN1yn1TtWLz5zT9Bz5i8G8xdE/25XaOeuvdq9Z6/1GmKtI6tZBwMed0yNkP0QYIXNz41JFiDASnIBEtT9HxtcmjzNo4MHczssWdKv/r19qlw5T6IV4Xi2bHFp4hS3TJgVuDIzpb69vDq8WvTtEmBFWAhuT7gAAVbCyekwAgECrAiwuLVAgXgFWKbDwDEt5r+b3VN9rr1M5rB2c27Vrt179efGLdZrhks+XKVHhva1XpM79Nq+c7f1ZcEMj1tnn3GSln70hYYO7KLO7VoWOKeb73lK7y77TG63S907XGJ9Sb52zcPl9/u1dfsurd+wSctWfqUf1vyuMSNuKvbqeHTcLE2f+5bVTveOF6tLu1aqfvhh8np92vj3Nn325Q/asWuPrm3bIqevn35Zr6v73mcFfC2bnmmFX+bgeXOZg+pfefNDjXx2tvYfyNYVF52nh4f2yTfOwgKseLdfbLQ0bYAAK00LH+m0zV9WZjup+QvS/CVl/pLIe904dIze++jzAps1n2g1X8UoXSp315a5eeee7JDPlCrhsf6S3bvfq4Pe2JwVE+mcuR+BvAJlSxgUm6cAACAASURBVGXK/IudnXuzpejzBlBtLLB5i0tPjvNr957gQQ7sLx0T/sbSAme4dp301AQFhWNly/g1aIA76nAsM8OtklkeZR/0ad8Br411GVq6CpQr/c8XrAr6//t0dWHe9hAwf3+av0fN35/m71EuBKIRCPw9F82z4TxjzmMaPXGuzBfjzWV2GmVmZljnVOW9Fs8dpSOqhv4a/JAHJ1gf4zKXOQ9r6fwxQV/jO3Qc5sxjcwC8+dJf4MrweKz/al4/DFxHHVlNb774WDjTKPQe06Z5o8ccOB+4zGYIE06Zn0PNZb5mb76mmPf65PPvdevwcdq6faf1y+YLg+bLiX9v2ZEzTrODzJzTHOqLioUFWKa9eLdfbLg0bIAAKw2LHs2Un576sp6dvtAKrkKl7OYv0JWff6+jjqwq86nXzMxMbd6yXStXfatnn19ofVnivLPqa+Ljg6PpnmcQQACBuArs2i09NCpbGzcHdzOgV4YanJp/S3q0g/n6W7/GTjT/MJbbQrUq0t23ZapM6Whb5TkEEEAAAQQQSGWBtev/0swF71pnU/3x59/at3+/SpYooSOPOEynn3ycWjVraP2sFeo1OuNiDkk3h6WbK+8XCYsyM5sXFvznA33+9Y/Wz3YmaCpbppRq1ThcZ59+olq3aqzj6+Sei1xUe0X9vgmM5i5675/+tu5QZkaGdTbWqfXqqMPlF+rMU4/P14QJr+Ytel/m1cd1f2zSnn37dVjF8jq9/nG66rJmatywfoHdFhVgmQfj3X5RJvx+sAABFiuiSAHziVLzKVHzl9MLTw8LOvuqyIcl/b11h9p0v9v6wz9l1B06p0G9nMfYgRWOIPfYQYAdWHaoQnzGYP4FptkZtW59cPtXtnbp/PNiv91uxUppzivBfdU+Srqhj2ReK4zkYgdWJFrcmwwBdmAlQ50+wxVgB1a4UtxXmEC8d2DFQt+8UtfosuutXVxmF5PZzcSFgBMFCLCcWLUEjtkczG62c5qUffrYu0K+Vx3OcB4bN0vPz33LOiPrpp7tch7hDKxw9LjHDgKcgWWHKsR+DGYnlDmw3RzcnvdqdJZPl10Sv9dJ3l3i1gfLg/s88USfOrX3Wa+qhntxBla4UtyXLAHOwEqWPP2GI8AZWOEocU9RAvE8A6uovsP9/fmvf6B7H5+qShXK6b35T1qvEXIh4EQBAiwnVi1BY569cIlGjJ5uHYY3bfSd1quB0V6Br190btdKQwd2JsCKFpLnkiZAgJU0+rh2vHCRW5+tKn6QFM0g58zzaPW3wWnVmQ18atM6/OCMACsaeZ5JpAABViK16StSAQKsSMW4P5SAEwKsjv3u1+offtF17f+lO27oFPNCmh1efW9/IqJ2zdcDe197WUTPcDMCBFisgZACgS9emNcGJz9xhw6rVL5YUmMmz9fEF17TLX2uVp/OrQmwiqXJw8kQIMBKhnp8+zQ7oMxOqLxXzRp+9eru1f+fUxrXAfi80rQZHv22NjjE+ldLn85rHF6IRYAV1xLReAwECLBigEgTcRMgwIobbVo1bPcAa8mHn+umu8dYXy5cNP0R1apRLeb1MV8IPLf1gIjabXdpM+sjX1wIRCJAgBWJVprcO232Gxo5/iXVP+EY69D1CuXLFGvm2Qe9atN9qH5b95dmPXOPTq13LAFWsUR5OBkCBFjJUI9fn6u/cWnO/ODt85Ur+dWvt0+lSsX+3KuCZrJvv0sTJ7u0+e/gIK1TB59OOrHoEIsAK35rhJZjI0CAFRtHWomPAAFWfFzTrVW7BVjmq32Bw9yXLF+lux6epF279+rati10981d0608zDfFBAiwUqygxZ2O2SVldks1OOV4jX/01rAObF+7fqMWL/tMl1/U2PpKRN7LfDHjobEvaNnKr9W00Ska/+htQb/PGVjFrRjPJ0qAACtR0vHvx+x4mjbdI1+efKh0Kb/69/GpYsXEhVeBme7Y6dKEyW7t3Jm7E8vtkXp09ap2rcLHQ4AV//VCD8UTIMAqnh9Px1eAACu+vunSut0CrC43Pqjf/9ioPXv3y7zaZ65TTqpjHQlTqmRWupSFeaaoAAFWihY2mml99Olq9Rk80nq0+uGHqURWwZ/DKlu6lF6acJ917/c/rdVVve+1kv7aNQ9XzepVrf/+x5+b9cvvG6yvXTQ4pa7GPTxI5csGfyeeACuaSvFMMgQIsJKhHvs+N212Wzue9h/IDYvMl//Ma4NHVk98eBWYYahxlcjyq29vv6pWKXgnFgFW7NcILcZWgAArtp60FlsBAqzYeqZra3YLsO58aKKWr/xau3bv0ZFHVFHrVo3Vq9Olhf5sl661Y97OEyDAcl7N4jbit5b+V7cOHxdW+2XLlNLK15+17s3OPqiX31yuJcs/0w9rftfWbTtlvuxVsUJZnVS3llq3bKxLmjey3rs+9CLACoubm2wgQIBlgyIUcwihdjqZL/516+zTsXWKfl2vmN0X+XionWHlyvl1fV+fypYJHa4RYBXJyg1JFiDASnIB6L5QAQIsFkgsBOwWYMViTrSBgF0FCLDsWpk0GRcBVpoUOgWmSYDl7CIWdNZUuzY+nX5a8sOrgG6os7mqVTU7sbwKtSmWAMvZ6zIdRk+AlQ5Vdu4cCbCcWzs7jZwAy07VYCypLkCAleoVtvn8CLBsXiCGlyNAgOXcxVDQ1/7Ob+ZTiwvsE14FhEN9HbHOMT51u9YnczZW3osAy7nrMl1GToCVLpV25jwJsJxZN7uNmgDLbhVhPKksQICVytV1wNwIsBxQJIZoCRBgOXchzJnn0epvc8+8MjOpX8+vDld7bTuphYvc+mxV8GvXocZMgGXbEjKw/xcgwGIp2FmAAMvO1XHO2AiwnFMrRup8AQIs59fQ0TMgwHJ0+dJq8ARYziz3u0vcMjua8l4F7Way0wzNOYIvzHLrx5+Cx96sqU8tL8zdNUaAZaeqMZZQAgRYrAs7CxBg2bk6zhkbAZZzasVInS9AgOX8Gjp6BgRYji5fWg2eACu55V7+kUdvvxu8iyqaER1eza8+Pb3KcsBXpLOzpSnPefTHhuB5X3m5Tw3O+CfEIsCKZhXwTCIFCLASqU1fkQoQYEUqxv2FBfXoIIBA/AUIsOJvTA+FCBBgsTycIkCAlbxKeX3S6DEema8IFucq6ot+xWk7Xs/u2evS+IlubdueO3fz5cQunXyqe5yPACte8LQbMwECrJhR0lAcBAiw4oCahk2yAysNi86UkyZAgJU0ejo2AgRYrAOnCBBgJa9SX692ae6CQ04vj3A4JbLMl/z8qlrFfoe2FzWVLVtcGj/ZrX37ckOsjAypdw+vjjvarYpls7Rnv1fbdh0oqil+H4GECxBgJZycDiMQIMCKAItbCxQgwGJxIJA4AQKsxFnTUwgBAiyWhVMECLCSV6lx4z36a2P0u6/Ml/t6dPWqdi1/8iZRzJ7XrXNp6nSPDh7Mbah0Kb8G3ejSMTUzCbCK6cvj8RMgwIqfLS0XX4AAq/iGtCARYLEKEEicAAFW4qzpiQCLNeBgAQKs5BRv7e8uTZ4WvPuqTw+vjjrKuWFUtJLmQHdzsLs54D1wVans1z23Z8nlYQdWtK48F18BAqz4+tJ68QQIsIrnx9P/CBBgsRIQSJwAAVbirOmJAIs14GABAqzkFO+luW59813ul/jMIew39PcmZzA26PXTVW69uuiQryrWdmlAX5f27OcVQhuUiCEcIkCAxZKwswABlp2r45yxEWA5p1aM1PkCBFjOr6GjZ8ArhI4uX1oNngAr8eXescOlJ8Z4gnYctW/n1Sn102/3VV79t95x68MVwSFWvROlju0PyhzwzoWAnQQIsOxUDcZyqAABFmsiFgIEWLFQpA0EwhMgwArPibviJECAFSdYmo25AAFWzEmLbPDNt9366OPcoKZ8Ob9uu8Wb9iGNeYVw7nyPVn8bnFad2cCnNq2dd0h9kQuBGxwtQIDl6PKl/OAJsFK+xAmZIAFWQpjpBAFLgACLhZBUAQKspPLTeQQCBFgRYMXg1uxs6dEnPDpwIDekuailT00aE9AYXp9XmjbDo9/WBodYGMVg8dFETAUIsGLKSWMxFiDAijFomjZHgJWmhWfaSREgwEoKO50GBAiwWAtOESDASmylVqx06423cndfZWZIdwz2qkRWer8+mLcK+/a7NGmKW5s2B4dYHa7yqv7JOCV2xdJbQQIEWKwNOwsQYNm5Os4ZGwGWc2rFSJ0vQIDl/Bo6egYEWI4uX1oNngArceU2r8iNfsqjbdtyg5mzG/rU+lJ2Xx1ahez9GRrzjLRjZ+7vuN1Sj25e1a5FiJW4VUtPBFisAScKEGA5sWr2GzMBlj1qsnb9X7qk85B8g8nKylT5sqV19FFHqHHD+upwxQWqVKFcvvuGPDBBi95dEfTrmRkelS9XRscefaSan9dA7S+/QCVLZBU64aUffaE3l36iL1b/pL+3btdBr0+VK5RTvROOVsumZ6p1y3Pl8QSfZbp95241aXOj1e5Hr45TubKlQ/Zx07CxWrJ8lc5teLImj7y9wHFc2mWIflv3l6aOHqJGZ5xk3Xfh1bdo4+Ztat6kgZ56YGChc3j5jWUa9ugU3dSznfp3u8IeBf7/URBg2aoc6TcYAqz0q7lTZ0yAlbjKffe9W7PmBP8f+6CBXlWqSCBzaBVKl/Bo145MPTT6oA7k+Qih2anWt7dfVasQ+iVu5dJTKAF2YLEu7CxAgGXn6jhnbARY9qhVIMAqVTJLDU45PmdQ+w9ka+PmrVq7fqP1axXKldGkkbfr5BOODhp4IMA67pgaqlKpgvV7B7Kz9eemrfrjz83W/65d83BNG32nDq9aKd+kN2/ZrkH3jdOqr/9n/V6Z0iVV44gqysjIsPo3v2+uOrWqa+wDA3VMrepBbVzT/359/f0vVrhkQqZDr+zsg2p8xQ3as3e/MjweLV/4VMig669NW9W8/SAraFvx2jiZAM9cgQDL/PfH77lel7ZoVGDhCLDssaYZhQ0FCLBsWBSGFFKAACtxC2Pq8x79+lvu7qvj6/rUpRNBTKgKmACrYtksfb7aq2en+OTLw1SunF/9evtkDr/nQiBZAgRYyZKn33AECLDCUeKeogQIsIoSSszvBwIss9Pq9RmP5OvUhFD3jpymFZ9+o5Pq1ta8SfcH3RMIsEKFO2t+Xa/b7n9WP/6yThc0Pl3jHrol6Nmdu/aoQ7/hVkh27NE1dPv1Ha1dUiZoClw/rPldY6fMl9mhZUK0lybcp6OOrJbz+2Mmz9fEF15T53atNHRg53zjX/7J1+p3xxOqXLGctmzbWWAI9drbH+nOhyaqydmnaMJjt+W0YwIsM869+w6oYoWyeu35h622Ql0EWIlZs/TiQAECLAcWLU2HTICVmML/+ZdLz0zI/T970+t1Xb069hhCmMICrD37vVq+Mltz5gfbVTnMZ+3EKlkCv8SsYHo5VIAAizVhZwECLDtXxzljI8CyR62KCrDMKE3w06ztQPn9fmsHU95XCQsLsMyza377Q1dcN1Rut0sfvjrOei0xcJnX7UzoU+/4o/Xck3dau69CXabfex6bat17Wr1j9eIz9+Tc9snn36vHoEdkdoAtnPZgvscfHDNDL768WAOua6Nnnl+oS5o30sh7r893X2Astw+4Rt07XBwUYFWuWF7HHV3DelXy4gvP1hP3DSDAssfyZRROESDAckqlGCcBVmLWwPxX3Pryq9zXB6tW8+um/t7EdO7AXgI7sEyAtW3XAb2/zKPF7wUf6n5UTb+OrRPZDraSJV1qfE5kzziQjyEnQIAAKwHIdBG1AAFW1HQ8mEeAAMseyyGcAMuM9OxL+2v3nn1aMnd00KuARQVY5tnz2tyobdt3af7kf+vE42pZE/9z0xZddM1geb0+K3gyAVRhl9kBdfG1t1uvFE4ZdYfOaVDPut28Inju5QOsHVIfvDxWh1UqH9SM6cO8HvjBK2P1r063/38I97TMOV15r1bXDLZeeXx56gM6vk7NoAArKzNTL42/T1d0H6q/t+7Q2BED1aJp/tcV2YFljzXNKGwoQIBlw6IwpJACBFjxXxi7drn02Kjg/xNu18an008jSClI/9AAy9z3yqturfoi+AyxaKp3XmOv/tWSnVvR2PFMrgABFqvBzgIEWHaujnPGlqgA68vVfv36e/r8M9Hp9d2qfVTwv5QrbFWEE2AFzocyr/B9+OrTcrly2w8nwDqn9QDrNby3Z4+0zrcy10sLl+jfo6er4Wkn6Pkxd4W1cEeOf0nTZr+hDldcqPtuvS7nmf5DntCylV/nez3wp1/Wq02Pu3Xmqcdr+tihun3Es/rP4pWaNHKwdTB94Fq3YZMVblWpXEHvLxgTNBbzCuHBg14te+UpvbX0v7p1+Djrvleff8h6pTHvRYAVVhm5KR0FCLDSserOnDMBVvzrtniJS+8vzw2wSpfy687b2X1VmHyoAMvcP+NFt378qfghlvnyo/kCJBcC0QoQYEUrx3OJECDASoRy6veRqABr+kteffBR+vx/cteOHp3fOPx/likqwNq1e68G//tZLVv5lXXGlDlrKu9VVID1zQ+/WudcmXOjls4fk/MlwbsfmaxX3lxufa3PfLUvnMt8SdB8UdDs4jK7uQLXc3Pe1OPPzNbVrc/X/YN75Pz6pJmL9OSkeRrUt716X3uZFV6ZEKvTlS007JauOffNf/0D3fv4VLVuda4evbtfvgDL7O76eNEz1q/fcu/TeueDT9XmX+fpobv6EGCFUzjuQYAAizXgFAECrPhWyuuVtftq797cfxN24fk+mf9wFSxQUIB1IFuaMs2jDX+G/28uQ/Vi/sWkOUC/7nHUgXUYnQABVnRuPJUYAQKsxDinei8EWPGpcLQBVulSJXXeWbm7krw+n7Zs3aHvfvzN+opg946XWKHNoVdhAdbPazdo4LCx+mXtBg0d2EWd27XMedwcrG4OWB9xR0+1u7RZWBjf/7RWV/W+1wrDzI6owPW/n9epbc9h1uHub774WM6vd7nxQX2++secVxTNLrAmbW6ydlAtnjsq577AHEwgdegczQ4sE+L9940J1v3mFUbzKuH2Hbs1/tHb1LTRKTntsAMrrDJyUzoKEGClY9WdOWcCrPjWbdXnbr3yWvC/ZRsy2KsypXmFrTD5ggIs88yevS59vDKyumVnSx+uCH6N03xAp3cPr2ocSS0i0+RuI0CAxTqwswABlp2r45yxEWDFp1bRBlgFjSYzM0MXNWtoHV7evEn+c58C4Y/ZFVWtSiWrGfPK3Z8b/5YJsMzzN3S/Un06tw7qIhAumQPVzcHq4VyB3WJZWZn6/O1JQY+c3+5mK1x6Z/ZIHXlEFStganLljape7TDr1cXA1XPQo1r5+XeaO3G4dXi8uS646hZt+nub3pv3pKpVqRjUbuArhJ++OTHn1wNfLDyiamXrVcLA4fMEWOFUkXvSUoAAKy3L7shJE2DFt2xjx7m1+e/cAKvB6X5deQWvDxalXliAVdSzBf3+p6vcenVRcJhoXufs38enihUJsaJ1TdfnCLDStfLOmDcBljPqZPdRJirA4gyswldCQa8QmsPVt+/cra+/+1mTX1ykVV//GPILfoEAK1QvZleXCXiqV6uc77djuQPLND7kwQla9M4KPTCkl9pe0lSBkMns+jK7vwLXjHlv65GnX9T13droxp5trZDt8m536dija+jV5/J/xTBUgGXaGnDXaL2/4kt1uPwC3Xdbd6t5Aiy7/63D+JImQICVNHo6jlCAACtCsAhu//Enl2a8GLzr56YBPlWtwmtrRTHGI8Ayfb75tlsffRwcYlWu5Fe/3j6VKkWIVVRd+P1cAQIsVoOdBQiw7Fwd54wtUQGWc0SSM9KizsAyozro9apjv/tlXuF7dFg/tW55bs5gQ71C6Pf7de0ND+irb9doyA2d1K39v/JNbtijU6zAJxAkhTP79z76XDcOHZPvDCzzrDlPy5yrdflFjfXI0L45B7ZPfHxw0KuRgQPbA+doBQ6T73r1RbrzxmvzDaOgAMscbG9eJTSvF04dPUSNzjhJC9/6UEMfnmSd6WXO9rLT5fKbqnAhkCQBAqwkwdNtxAIEWBGThf3A9Jke/bQm96ymOsf41b0ru6/CAYxXgGX+yWDWXLe+/z44xKpZw69e3b0yrxVyIRCOAAFWOErckywBAqxkyadWvwRY9qhnOAGWGWngQHSzu8nscgpcBZ2BZQ5v79j/fpUqWUKvz3gk36t5c159T/ePel5nn3Gipo2+MyyMURPmaMqs/6hjm+a6d1C3oGc2bt4mEzaZrxy+NetxNWs7UPv2H9BHr46zXmPMe13R/W6t+XW99cVBsxvrjSUr9ewjg9TsnNPCDrDMjfMWva/7Rk5TzepV9cq0B7X0o8+tA+8JsMIqJzelkwABVjpV29lzJcCKT/02bXbrqWeCQ5LO13h1wvH8u5VwxOMVYJm+zcH6U57zaN364IPgTzzRp07tfcrz5elwhso9aSpAgJWmhXfItAmwHFIomw+TAMseBQo3wAp86e/8c0/TMw8PKjLAMjcMH/mc5i5aqn9dcJZGDb8hX+DUquNt1u6uRdMf1jG1qhcKsv9Ati6+9naZoMoEXib4OvS64rqhWvPbH5o88nb1Hvy4WjRtoLEjBua7z3yZ0ARy5vytx5+drb+37NCKRc+odKkSEQVY5uZetz2mjz/7Vl2uaqVzzzxZNwx9kgDLHkubUdhJgADLTtVgLIUJEGDFZ32Ys5bMmUuBy5yxNOgmL+FImNzxDLDMEMxXISdMdmvL1uAQq9FZPl12Ca94hlmmtL6NACuty2/7yRNg2b5EjhggAZY9yhRugBU488m8DmheCwxchX2FcNv2Xbq0yxDrLK0Jj92mJmfnfrHPPB94jfDUesdq6qghKlUyq0CUB8fM0IsvL1aDU+pqxlN3h7zvobEzNXPBO9YrjoveXVHgFw6//HaNrh0wQlde3MR69bDhaSfo+TF3hWyzoFcIAzev/3Ozruxxt/buO6CBvdppzOT5BFj2WNqMwk4CBFh2qgZjIcBK7Bow4chjT3jkzZODtL7Up7MbEoyEW4l4B1hmHNu2uTR+ktv6qmHe6+KLfGp8DrUKt1bpeh8BVrpW3hnzJsByRp3sPkoCLHtUqKgA68CBbE176U2NnTJfbrdL8yeP0PF1aoYVYJmbZi9cohGjp6tWjWrWa3YlsjJznt25a4869Buutes36qS6tXXHgE466/QT5MqzXf23dX9ZodBbSz9RxQplNWfCcOs1wVDX0o++sHZAmSDMBErmFcEqlSvku9Xn8+uCq27Wnr37/j94ukr9ul4eVYBlHpq54F09NPYFa25mpxivENpjbTMKGwkQYNmoGAylUAF2YMV+gSxd5taS93J3X2Vl+TXkNq8yc/95IPadpliLiQiwDNkfG1zW64TZ2cGAnTr4dNKJhFgptqxiOh0CrJhy0liMBQiwYgyaps0RYNmj8IEAy7w+d06DejmD8vn92rFzt77/6Xcr6PF43Bp2Szfrq3t5r8J2YJn7TFjUvu991gHwA65roxt6tA16fvOW7brl3qf1+eofrV+vVKGcah5ZVZkZHv25aav++HOz9evH1j5SYx8YqKOPOqJAODPOc1vfYL2WWP+EY/TShPsKvDew+8vcMPvZe3XKSXVC3lvUDizzkDkevdvAh7Xq6/9ZbRBg2WNtMwobCRBg2agYDKVQAQKs2C4Qs+tq5CiPdu/J3dXTpLFPF7UkDIlEOlEBlhnTmp/dmj7TrbyffnF7pN7XeVWzJmeWRVK3dLqXACudqu28uRJgOa9mdhwxAZY9qhIIsEKNxuwoOqJaZZ11+onq3K5V0M6rwP1FBVjmvi+++Umdb3jAOkx94bQHVbvm4fm6M18YfHPJJ1aQtWXbDnl9flWqUFYnn3CMWjU7U5e1ONcK0Yq6ut70kBUkmaDMBGYFXUuWr9JNw8aqXNnS+nDh0wW2HU6AZfowO8Xa9hzGDqyiCsTvp6cAAVZ61t2JsybAim3VvvjKpQWv5H7Kzu2WBg/yqmwZgpBIpBMZYFn/4PalWwsWBv9DV8mSfvXv7VPlytQuktqly70EWOlSaWfOkwDLmXWz26gJsOxWEcaTygIuv9knxoVAkgQIsJIET7cRCxBgRUxW6APjxnv018bc3VennOxX+6u8se0kDVpLdIBlSN9d4tYHy4NDrIoV/Orf16fSpfhHijRYdhFNkQArIi5uTrAAAVaCwVO0OwKsFC0s07KlAAGWLcuSPoMiwEqfWjt9pgRYBVfwtdfd2rgp+IDvwurt80m/rwu+v19vr2ocSfgR6Z+TZARYZoxzF7j19er8IVaF/OeLFjqlE46XmjQmuIy07k66nwDLSdVKv7ESYKVfzeMxYwKseKjSJgKhBQiwWBlJFSDASio/nUcgQIAVGuv1N9xa+d+i3+MvjLr2UX716kGIEcFyzLk1WQGWGcDU6W79+mvxam/aadvGpzNO4+yzaOrvhGcIsJxQpfQdIwFW+tY+ljMnwIqlJm0hULgAARYrJKkCBFhJ5afzCAQIsPJjrfjYrTfeLn6AcU17n+qdRIARwXK0RYC1f59LE6e5tSmC3XcFzfG6Lj4dW4c1EM0asPszBFh2r1B6j48AK73rH6vZE2DFSpJ2EChagACraCPuiKMAAVYccWk6pgIEWMGc33zn1ktzix9eVajg1203s/sq2sWazB1YZszbt7s0fpI76GuS0cwlM0Pq08urIw7nNdJo/Oz8DAGWnavD2AiwWAOxECDAioUibSAQngABVnhO3BUnAQKsOMHSbMwFCLBySX/73aUp03K/IGh+p1Qpv65u65cJIiK5ypaTqhzGzptIzPLem+wAKxBibd0a/hlo1jM7pPmvBAegZcv61a+XTybU5EodAQKs1KllKs6EACsVq5r4ORFgJd6cHtNXgAArfWtvi5kTYNmi5WSBjgAAIABJREFUDAwiDAECrH+QNm12a9JUl/btyw0sMjKk3j28OrI6wUMYSymmt9ghwIp2Qqu/cWnO/OAg1ISZfXv7VbIEaylaV7s9R4Blt4ownrwCBFish1gIEGDFQpE2EAhPgAArPCfuipMAAVacYGk25gIEWNKu3S49O9GtnTtzwyuXS+rSyae6x7GLKuaLLowGnRxgmekt/cCtJUuDd2LVruVXj65euYOzrTA0uMWOAgRYdqwKYwoIEGCxFmIhQIAVC0XaQCA8AQKs8Jy4K04CBFhxgqXZmAuke4B1IFuaONmjjYcc2H1Fa58aNiC8ivmCC7NBpwdYZpoLFrr1xZfBIVb9en51uJqz0cJcBra+jQDL1uVJ+8ERYKX9EogJAAFWTBhpBIGwBAiwwmLipngJEGDFS5Z2Yy2QzgGWzydNn+nWz78EhwzNmvrU8kLCq1ivtUjaS4UAq8D11cSnls1ZX5GsBzveS4Blx6owpoAAARZrIRYCBFixUKQNBMITIMAKz4m74iRAgBUnWJqNuUA6B1jskIn5copZg6kQYBmMgnb4tWvj0+mnEWLFbMEkoSECrCSg02XYAgRYYVNxYyECBFgsDwQSJ0CAlThregohQIDFsnCKQLoGWO+975b5T96rzjE+dbvWxxlFNli8qRJgGUrOWLPBgorDEAiw4oBKkzETIMCKGWVaN0SAldblZ/IJFiDASjA43QULEGCxIpwikI4BljmXyOy+yntVq+pX395eZWU6pXKpPc5UCrBMpcxXLidOdmn/Ab5ymSorlwArVSqZmvMgwErNuiZ6VgRYiRanv3QWIMBK5+rbYO4EWDYoAkMISyDdAqw1P7utc6/8/lyecuX8ur6vT2XL5PnFsPS4KV4CqRZgGaff1ro0bbpH5myswFW6lF/9+/hUsSJrL15rKV7tEmDFS5Z2YyFAgBULRdogwGINIJA4AQKsxFnTUwgBAiyWhVME0inA+mujSxOneJSdnVudEllm55VfVatwHpGd1mwqBljGd/U3Ls2Z7wmirlzJr369fSpVihDLTmuwqLEQYBUlxO8nU4AAK5n6qdM3AVbq1JKZ2F+AAMv+NUrpERJgpXR5U2py6RJg7djh0rOT3Nq9O/cVLlPIXt29ql2L4MBuizpVAyzjvPwjj95+N3gd1qzp10XN478OM7P8qnFk/Pux23qKx3gIsOKhSpuxEiDAipVkerdDgJXe9Wf2iRUgwEqsN70dIkCAxZJwikA6BFh797o0eZrLOoco79Xxaq9OrscP83Zcq6kcYBnvVxe59emq4PWYqDq0bePTGXwBsdjcBFjFJqSBOAoQYMURN42aJsBKo2Iz1aQLEGAlvQTpPQACrPSuv5Nmnw4B1uRpHq39PXjHyyUX+XTuObw2aNe1muoBlnGfOcutH35MToh1XRefjq3D+i/O+ifAKo4ez8ZbgAAr3sLp0T4BVnrUmVnaQ4AAyx51SNtREGClbekdN/FUDrDMQe2z5rr1/ffBIcGZDXxq05of3u28WNMhwMo+KE2e6tGGP4PD1UTUJTNT6tvLq8OrsQMxWm8CrGjleC4RAgRYiVBO/T4IsFK/xszQPgIEWPapRVqOhAArLcvuyEmncoD11jsufbgi+MDsk07yqVN7wiu7L9Z0CLBMDXbvcWn+yy5lZ8c/xDJfQcx7lS3rV//ePpUvT4gVzZ8HAqxo1HgmUQIEWImSTu1+CLBSu77Mzl4CBFj2qkfajYYAK+1K7tgJp2qAZc4XMucM5b1q1vBbh7Z7gjMtx9YulQeeLgFWImsY6guIVQ7zWV/hLFmCECvSWhBgRSrG/YkUIMBKpHbq9kWAZY/arl3/ly7pPCTfYLKyMlW+bGkdfdQRatywvjpccYEqVSiX774hD0zQondX6PF7rtelLRoVOanFy1Zp4D1j1apZQz357xsLvX/1D7+oY7/7Ve/4ozV34vCgewP9FtbAYZXK64OXxxY5pnS4gQArHaps4zkSYNm4OAwtSCAVA6zvvndr9ly3zCuEgatyJb/69fapVCl+UHfCHwECrPhU6f1lbi1+LzjYNV/h7NHVKzfBbkToBFgRcXFzggUIsBIMnqLdEWDZo7CBAKtUySw1OOX4nEHtP5CtjZu3au36jdavVShXRpNG3q6TTzg6ZJCUrADLBGyhgjUzyIrly+rph262B3SSR0GAleQCpHv3BFjpvgKcM/9UC7DWrXNp8vMe+by5NShbxq++vXyqWJHwyikrkwArfpVauMitzw75AmL9en51uDrPH5r4dZ8yLRNgpUwpU3IiBFgpWdaET4oAK+HkITsMBFgmCHp9xiP57vnjz826d+Q0rfj0G51Ut7bmTbrfVgFWuMGZPbSTNwoCrOTZ07MkAiyWgVMEUinA2rLFpfGT3dq3L/esHw6rdspKDB4nAVb86mZ2Jr4wy60ffwreidWsiU8tm3M+XLjyBFjhSnFfMgQIsJKhnnp9EmDZo6ZFBVhmlFu27VSztgPl9/u1fOFTQTuekv0KIQFWeOuIACs8p7S6a8PGLZr18rta/snX+v2PTTro9ap6tcpqds5p6n3tZapSuUKBHi+/sUzzFr2vn35dL6/Xq9o1j9CVFzfRtW1byuPJ/xl0Aqy0WlqOnmyqBFh79ro0fqJb27bnhlcul9Sts0/H1uGHcqctUgKs+FasoC8gXtHap4YN+PMSjj4BVjhK3JMsAQKsZMmnVr8EWPaoZzgBlhnp2Zf21+49+7Rk7mgdXrVSzuAJsOxRx6JGQYBVlFAa/b7P59eUWa9r3LSXlX3wn9Cqbp2jrCDqux9/sxLryhXL6fmxQ1WnVvV8Mnc9NEmvvv2hMjM8OuOUusrMyNCX367Rrt171eTsUzTu4VuUccip0ARYabTAHD7VVAiwCvphvF0bn04/jR/GnbhECbDiX7WCQt8unXyqexx/boqqAAFWUUL8fjIFCLCSqZ86fScqwMr+dLm8P/+QOnBFzCSz4Xny1Dkx7PmGE2D9tWmrmrcfZJ2D9eGrT8tl/i3u/18EWGFTJ/VGAqyk8tuv81vufVq//L5Bd93YWeecWS9ngHv3HdDwJ6Zp0Tsr1OCUuprx1N1BgzfBlQmwTLA1ceTtVvhlrj1798m0+eF/V+umnu3Uv9sVQc8RYNlvDTCi0AJOD7B8Pmnm7PyvQ114vk/mP1zOFCDASkzdzGu3E6e4ZcKswJWRIfXu4dWR1TkzrrAqEGAlZo3SS3QCBFjRufFUsECiAqw9Ex/TgXdfTRv+0n1vV1bLNmHPt6gAy2yqGPzvZ7Vs5VcaOrCzOrdrFdQ2AVbY1Em9kQArqfz269wEVR63S+Zzo4de5veatLlR+/Yf0PsLxgS9Snhlj2H68Zd1mjlumE4/+bigR7du36kW7W9VZmaG9VzJElk5v0+AZb81wIhSM8BasNCtL74Mfo3X7Loyu6+4nCtAgJW42v2xwaXJ0zw6eDC3z9Kl/Orfhw8fEGAlbh3SU2wFCLBi65murRFgxafy0QZYpUuV1Hln1c8ZlNfn05atO6w3imrXPFzdO16iNv86L9+gkx1gmY0glSuVD4l5TZvmuqR5o/hAO6xVAiyHFSzZw23bc5j+9/M6vTLtAdU9pqY1HPNFh1bXDFatGtX0xszHQg7x1uHj9NbS/+qpB29W8/POIMBKdiHpP2IBJ+/AWrrMrSXvBYdXdY7xWedeufMfTRexDQ8kT4AAK7H25kB3c7C7OeA9cFWu5Fe/3j6VKsVOrFDVYAdWYtcovUUmQIAVmRd3hxYgwIrPyog2wCpoNGYzxUXNGuriC89W8yYNbBdgFaY4uH9H9bjmkvhAO6xVAiyHFSzZwzXvDJt3hz/5z3iVKV3SGs7iZas08J6xat3qXD16d7+QQ3x+7lt6bNws9encWrf0uZoAK9mFpP+IBZwaYK3+xqU58z1B861+hF+9engVYqNlxC48kFwBAqzE+3+6yq1XFwUnvzVr+NWru1eHHPOY+MHZsEcCLBsWhSHlCBBgsRhiIZCoAIszsAqvVkGvEHq9Pm3fuVtff/ezJr+4SKu+/tHazTTy3uuDGkz2Diy+Qhjen0YCrPCcuEvSNz/8qg79huu0esfqxWfuyTF57qU39fizs9Wv6+Ua2OuqkFbvLvtMN9/zlP51wVkaNfwGAixWlOMEnBhg/bbWpWnTPTLnXwWuihX86t/XJ/PqE5fzBQiwklPDt991a/lHwSHWiSf61Km9T3nOg03O4GzWKwGWzQrCcIIECLBYELEQSFSAFYuxpnIbRZ2BZeZ+0OtVx3736/uf1urRYf3UuuW5OSSRBlhLlq/STcPGqlWzhnry3zcWSrv6h1+sfk8+4WjNmTC8WMFZKtcwnLkRYIWjxD3y+/3qdetjWvn5dxoz4ia1bHpmjsrTU1/Ws9MXqrCtjea5noMetQ6Gn/LEHTnP7s8Off5Opsclt9ulbK8v6IdvSoFAsgRKZP7zw+qBbJ+cEP2s3yCNetqrfftzxUqVkobc7FHVKslSpN9YC3jcUobHLa/Pr4NeJ6zMWAskpz3zCuHUF3xa9WWw+QXnudS+Le/l5q1K4O/Ogv7/PjkVpFcE/hHI8Liss18Pen3yciQkyyJKgcDfc1E+zmMxEggnwDJdTZq5SE9Omqe2lzTVA0N65fQeaYD18Wffqtdtj6lpo1M0/tHbCp3Ff7/4Xt1veUSNzjhJU0cPCbo30n5jxOXYZgiwHFu6xA48EFKZ4MoEWHmvJ8bP0dTZ/9FdN3VWl6uCv+YQuO/z1T+qy40P6oz6dfXC08FfMEzsTOgNgdQX2LpdGvF4tnbszJ2rebVpyMAM1Tk69ytqqS/BDBGIn4DXKz0x7qD+tyY4xOpwpUcXXUiIFT95WkYAAQQQQCC/QLgB1nNz3tTjz8zW+eeepmceHhR1gLXhr7/VsuNtqlalopbMHS1XIVuwZ8x7W488/aI6XH6B7rutOwFWMRYwAVYx8NLl0RdfXqwHx8zQ8XVq6oWnh+WcfRWYf0Q7sBrU05RRuTuw/t5xICRjudIZyspwa+feg9aOFy4Eki1wWPl/vp65ZeeBoAOckz2uQ/s3O66emeDSX5uCf6drJ6l+PXbo2K1exR2P+be+ZUtlyOxu2bU3z+fxitswz4clYP15m+jSXxuDb+9yjXTKyfx5MyqBvzsL+v/7sKC5CYE4CZQt6VGJLI/19ye7BOOEnAbNBv6eS4Op2nqK4QZYA+4arfdXfKlu7f+lITd0ijrAMg+263WPfljzu3UOtDkPOtS1d98BXdX7Hv227i9rp5bZsZX3YgdWZMuKACsyr7S7e+6ipRo+8jnVqnG4po+9S1UPq5jPYPrct/TouFlhnYF16A6uP/7eG9K0crkslczyWGHBvgPetHNnwvYTcMIZWD6vNG2GR+bsq7zXFa19atiAINh+q6r4I+IMrOIbFreFHTtdGj/RrV27c//cuT1S7+u8qlmTEIszsIq7wng+ngKcgRVP3fRpmzOw7FHrogKsAweyNe2lNzV2ynzrqJr5k0dYGzQCVzRB0gcff6nr7xytkiWyrDDMvJZovnYYuH5eu0HDR07TZ1/9T40b1tekkYPzYUXTrz3EkzMKAqzkuDui19kLl2jE6Ok6+qgjNG30ndb2yFCXSbBNkh3OVwh7XnOpbuvfIacZAixHLAUGKcnuAZY5k2fufI9WfxscXjU+x6eLLyK8StVFTIBlj8r+tdGlyVPd2n8g989fyZJ+9enpV9Uq6f3njwDLHmuUUYQWIMBiZcRCgAArForFbyMQYJUuVULnNKiX06DP79eOnbv1/U+/a8/effJ43Bp2Szfrdb68VyBIqlm9qsqXKxNyQJUqlNXEx4NDqFmvLNbDT82U+dqh6fvY2keqRIksbdy8VWvX/7NF25wD/eT9N6pc2dIFBljmZ+5KFcqF7Ldi+bJ6+qGbi4+UAi0QYKVAEeMxhcB7uiaVnvzEHTqsUvkCu9m8ZbvOb3ezatWopjdmPhbyvluHj9NbS/9rfa7UfLY0cBFgxaN6tBkPAbsHWHwVLR5Vt3+bBFj2qVGor36WK+fX9X19KlsmfXdiEWDZZ40ykvwCBFisilgIEGDFQrH4bQQCrFAtlcjK1BHVKuus009U53atgnZeBe4PBFiFjcT8TPzBy2Pz3bLm1/Wa+fJiffL5dzJnY3m9XlWqWE71TzhGrVs1tr5UaHZ9hbqK02/x1ZzXAgGW82oW9xFPm/2GRo5/yfoDZxLmCuVDJ9B5B2IOaDcHtc8cN0ynn3xc0Bi3bt+pFu1vlUm/zR/48nmSZwKsuJeTDmIkYOcA69NVbr26KPjQ6Nq1/Ore1StzeDtX6goQYNmrtqu/cWnO/OA/dNWq+tW3t1dZmfYaa6JGQ4CVKGn6iUaAACsaNZ45VIAAizWBQOIECLDyWO/avVdffrtG551VP2QFdu7aowkvvKYvVv+kjAyPWjRpoE5tWygjhX5CnPjCaxozeb4anHK8xj96a74D2wtamstWfqX+Q0apTq3qmjjydlWvVtm61WzTHHTfOC3/5Gt1btdSQwd2CWqCACtxf9jpqXgCdg2wfvzJrRdmuYMOlq9ymE99e/tVskT67vooXrWd8zQBlv1q9f4Hbi1eGhwo1znGp27X+mTOxkq3iwAr3SrurPkSYDmrXnYdLQGWXSvDuFJRgAArT1VfX/yx7hgxXh2uuFD33XpdUL1379mnDv2G69ff/wz69RZNG2jsiIEpsTY++nS1+gweac2l+uGHyWy1LOgqW7qUXppwX9Bvm11bZveWObjujPrHKSsz0woETfBX7/ij9fyYu6z3gvNeBFgpsXTSYhJ2DLDWrXNp6nSPDub5+Jx5Val/X5/KlyO8SoeFSYBlzyovWOjWF18Gh1jmK6Adrk6/j5IQYNlzjTKqfwQIsFgJsRAgwIqFIm0gEJ4AAVYep8H/flZvLFmp+wf30NWtzw8SfHLSPE2auUilS5VUn86XKTv7oKa99IbMZzGfemCgmjdpEJ64je8yZ1SZs6rCucqWKaWVrz+b71bTxgvz39EPa9ZaB9nVqF5VlzZvpB7XXBIyECPACkebe+wgYLcAa8sWl8ZPdmvfvtz36Utk+dW7p0+HVyO8ssOaScQYCLASoRx5Hz6fNH2mWz//Ehxind/UpxYXpteh7gRYka8fnkicAAFW4qxTuScCrFSuLnOzmwABVp6KXNH9bpkD2BbPHaUjqv7zCpy5zGtwF1x1i8wurMkjb9e5DU+2fv21tz/SnQ9NVMumZ2rMiJvsVltHjIcAyxFlYpA2+wrhnr0ujZ/o1rbtueGV2y316OaVOfuKK30ECLDsW+sD2dKUaR5t+DP40NZ2bXw6/bT0CbEIsOy7RhkZO7BYA7ERIMCKjSOtIBCOAAFWHqVzWw/Q3v0H9Pnbk+Ry5f4D54L/fKB7HptqfY5zyqg7cp7YfyBbZ1/SX1WrVNS7Lz0Rjjf3HCJAgMWScIqAXXZgZR+UJk/N/0Nxh6u8qn8y4ZVT1lOsxkmAFSvJ+LQTKmw2/3jRpZNPdY9LjxCLACs+a4tWYyPADqzYOKZ7KwRY6b4CmH8iBQiw8mif2qKnKlUop/cXjAmqQbeBD+mzr/5n7bIyu63yXmZn1vadu63QiytyAQKsyM14IjkCdgiwzGtJM2e7ZQ5uz3u1bO5Tsybp8cNwcqpv314JsOxbm8DIQr3um5Eh9e7h1ZHVUz90JsCy/xpN5xESYKVz9WM3dwKs2FnSEgJFCRBg5RFq0uYm7d67T6vempizA8sc2n5Z1zutYOu9+U8qMyP4E0KtrhmsvzZt0VeLpxZlze+HECDAYlk4RcAOAVaog6HPbOBTm9aEV05ZR7EeJwFWrEXj05754MLk5z3y5TnDvXQpv/r38alixdQOsQiw4rOmaDU2AgRYsXFM91YIsNJ9BTD/RAoQYOXR7nXrY/p41beaNvpOnX3GidbvDHlwgha9s0LdO16s26+/Jqg2Pp9fDS/uax1OvmLRM4msW8r0RYCVMqVM+YkkO8Battyjd5YEn6Vz4gk+XduR8CrlF18hEyTAck71v/nOrZfmBu+erFzJr369fSpVKnVDLAIs56zRdBwpAVY6Vj32cybAir0pLSJQkAABVh6ZOa8t1f1PPGcd4G6+mmcOdDe/lpmZoTdmPqbq1XIPdjeP/bDmd7XrdY9Oqltb8ybdzyqLQoAAKwo0HkmKQEEB1upvXfruO7e2bpO2bpUuaOZXo7NjGyrt2ePSIyODd3/WONKvnt29ysxICged2kSAAMsmhQhzGCs+duuNt4NDrBo1/Op5Xer+WSbACnNxcFtSBAiwksKecp0SYKVcSZmQjQUIsPIUJ/ugV11vfEBff/9LUMnuuqmzulzVKl8Zn5w0T5NmLlLndq00dGBnG5fZvkMjwLJvbRhZsEBBAdbU6W79+mvuD6SVKvo1aGCe94RiAPnBco/ezbP7qlIFv/r3Te1dGzFgS4smCLCcV+bX33Br5X+DQ6yTTvCpU4rupiTAct4aTacRE2ClU7XjN1cCrPjZ0jIChwoQYB0ismfvPk2a+bo+/fIHlSldUu0ubaaLzm8YcuWY1wvXb9isYbd01YnH1WJ1RSFAgBUFGo8kRaCgAOvxUR7t3BX8ap/5QdT8QBqLy+uTRo7yaPee3D7atPbqzAap+8pRLNzSpQ0CLOdV2u+XZs116/vvg0OsVD3PjgDLeWs0nUZMgJVO1Y7fXAmw4mdLywgQYLEGbCVAgGWrcjCYQgRCBVher3T/g/nf4Tu69j+vBMXi+vxLl15emPv6oDkr545bvfIEv1EYi65ow4ECBFgOLJok83fHlOc8Wrc+OPy+qKVPTRrHJvy2iwwBll0qwThCCRBgsS5iIUCAFQtF2kAgPAF2YIXnFPIuv9+vvfv2K8PjUVZWZjFaSt9HCbDSt/ZOm3moAGvDn9KzE0MfQjWgn1dHHF78XVLjxnv018bcH3LPb+pTiwtT6wdcp60FO42XAMtO1YhsLHv3ujRhsltbtgaHWB2u8qr+ycX/uyOy0cTvbgKs+NnScvEFCLCKb0gLEgEWqwCBxAkQYOWxbnTZ9Tr79BP11IM3h1WB7OyDanhxP51ar45mPHV3WM9wU7AAARYrwikCoQKs1d+4NGd+6K1Qp5/qV7sri7cL65dfXZo2Pbd9t1saPMirsmVS54dbp9TfruMkwLJrZcIb17ZtLo2f5Naevbkhlvlz3qObV7VrpcafcwKs8NYCdyVHgAArOe6p1isBVqpVlPnYWYAAK091Tr6gu85pUE9TRt0Rds1atL/V2oX10Wvjwn6GG3MFCLBYDU4RCBVgLV3m1pL3gs+xCcwnFmHTzFlu/fBjbvuxCMWc4s04wxMgwArPyc53/bHBpcnTPDp4MHeUJbL86tvbr6pVnL/bkgDLzquPsRFgsQZiIUCAFQtF2kAgPAECrGIGWOe2HqA9e/fry8VTwhPnriABAiwWhFMEQgVYCxa69cWXoQMsM6/zm3rV4sLodlFs2eLSk08H7+66vq9X1Y+Irj2nODPOyAQIsCLzsuvd//vRrRdmBf9dUr68X/16+VSunLP/zBNg2XXVMS4jQIDFOoiFAAFWLBRpA4HwBAiwihFgzXn1Pd0/6nlVr1ZZ784ZFZ44dxFgsQYcKRAqwJo41aN163Jf/Tn1FJ+++jr3h1Bz4Ppdt0f3GuGiN9z65L+5bZnXiXp1j64tR4Iz6LAECLDCYnLETZ+ucuvVRcEhVpXDfNZOrJIlnBtiEWA5Yvml7SAJsNK29DGdOAFWTDlpDIFCBdI6wFr60Rd6f8UXOUBzXluqalUq6oJzTy8ULfugV2t++0NffbvGuu+aNs11z6BuLLUoBNiBFQUajyRFIFSA9cjjnqCzawYN9Frn2ZjDmQNXm9Y+ndkgsteA9h9w6bGRHmXneaXomg4+1TsxsnaSAkWnCRUgwEood9w7e2exW8s+DA6xTHjdo6tXbod+eZQAK+7Lhg6KIUCAVQw8Hs0RIMBiMSCQOIG0DrDmLlqqB8e8IHMYe7TXccfU0PNP3qWKFcpG20RaP0eAldbld9TkDw2wTMj04CPBP1H++96Devc9tz5YlvsDqNlBMfCGyIIn8wOs+UE2cJUv59dtt3jlCv5YmaP8GGx8BAiw4uOazFbnzPNo9bfBf9jr1/Orw9XO3IFJgJXM1UTfRQkQYBUlxO+HI0CAFY4S9yAQG4G0DrAM4Z69+/TRp99o0Tsr9M4Hn6pyxXI689QTCtV1u12qUL6szqh/nC6+4GxlZWXGphpp2AoBVhoW3aFTPjTA+n2dS5Om5gZYhx8u3dDvoHbtdmnkaI98eTKrrtd6Vfe48F4B8vqkkaM82r0n9wfYi1v51PjcyEIwhzIz7AgFCLAiBHPA7T6vNG2GR7+tDQ6xmp7nU6sWzvt7gADLAYsujYdIgJXGxY/h1AmwYohJUwgUIZD2AVbAx+zCatnxNh13dI2IvkLICiueAAFW8fx4OnEChwZYX3zl0oJXcgOsk+v51PHqf364nLfAo69W5/7weWwdv67rEt7uCfOceT5wZWZIdwz2ynyVjAuBQwUIsFJzTezb79LEyS5t/jv4dcIrWvvUMMJXkpMtRICV7ArQf2ECBFisj1gIEGDFQrH4baxd/5cu6TxERx91hF6f8UihDa7/c7Muumawjjqymt588bFC75254P/YOw8op6otDP+5mcJQh6FXpSlVAQsiIkgVRBEUBEGkDE1RehFBQBCkSW9DBxFBpIkiIB1BVBAUBKQ3qdIGGKbk5q0TXibJTGZS5ia5N/c/a721nuSUvf+9J8n9cs4+P2Hk5C/RsHYVjB3cNc2+0+avwvSFa9xy5LnKZR2YQ/8Rs7Dupz3pjs2VMzt2rJqc3GfFuu0YMm4+mr9aE0N6t3Vr3WDoRIBlF8XFKzbi+OkL+LRv+2CIrSZ8IMDSRJhoJICUAGvzVgnb7Y51NQRCAAAgAElEQVQKvviCjDq1HgKsS1cMmDHL8XjhB+/JyJPb9e6JaTONuHLVBr+qVpHRoL7rcQySPhUgwAreuN+JNWBmjGTZ1Wlt4hhx65YySpXUznsCAVbw5mgweEaAFQxRDLwPBFiBj4GwwFcAq0n7Qfjn1AWEhoZg24qJaZYOEkBpxffb0xXj5Jl/LSfA6td8Bl8MfT+5rxVgCfiWM0c2p3NEZs+KqSO7E2CZzWb+rK+OvzldWkGApcuwa9LplABr+bdGHDpse7Bs2tiEik/a3k7nzDfi3Hnb609VNqNxo/R3YZ05a8C8hY7gSxSGzxnJt2lNJo0fjCbA8oPIAVxCwOyYuUYkJtqMCAkBotuZULCANt4XCLACmEBc2qUCBFguJWIHNxQgwHJDJD908QXAOvj3Sbz93nCUKfUIjhw/i37vt8S7zep75c3RE+fwVudhCAkxYtW8EShaKG8qgCV2eImdXu407sByR6Ug7/Pdxt2Welit3qiD8o8Xc+mt2E74y77DaPtWAzz1xGMu+7NDagUIsJgVWlEgJcCaEROCS5dt1osHyqJFbA+Uh/6WsHyF7fiPUQL69TYhIiLth86lyyUcOWobU/pxGW+/pZ2dFlqJZTDZSYAVTNF07svJUxIWfyU51NXLHGFGpw4yoqLUD7EIsII/R7XsIQGWlqOnHtsJsNQRC18ArEGj52LV+p1YNHkgOvQegyIF8uC7RaM8djgxyYQWXYZBQKyPPmiF1m/UdZjDugOLAMu1tDxCaKfRex9NwPY9B9H3vRZo2/xll+oJ4DVgZAxerfc8Ph/YyWV/diDAYg5oV4GUAGvYiBCIguvWNqBPEjJntv232Ns6fqIR4hiQtdWuKaPGi86B1M1bBkycYoT9nth2bUwo9qj6H1C1G1XtW06Apf0YuuOB2O0pdn3at8gcZnTpJEPALDU3Aiw1R4e2EWAxB5RQgABLCRUzPofSAOvuvTjUfKM7smXNjK0rJuKDQZOxZdd+LJ4yEJUreLZ5ZfqC1Zi2YLVl3KLJH8GQ4mpxAiz340+AZadVg1b9cO7iVaycOxyPlyjiUsVLV2+gTvNeeKRwPvzw5WiX/dmBAIs5oF0F7AHWnTvA2Akhyc6EhZkxaEDq44E/75GwYZNtR1WWzGb06WWC2I2Vsv3wo4RffrW9kC+vGe93ca/wu3ZVpeUZVYAAK6MKamf8tu0Stmx3fPMokN+M6PYmiMse1NoIsNQaGdolFCDAYh4ooYC/ANZ3t89g371rSpisiTlejXwUT2XO47atSgOspas3Y8TExejQsiF6dW6OTTt+R49PpuK1etUwamBHt+06dvI8mnca+v+jg8NRtFC+VGMJsNyWEwRYdlo9/XInxD1IwG/rZyFzRLhLFZNMJlSsE23p++sPM132ZwcCLOaAdhWwB1inThswf5FtN0ThgmZ0ik4Nm+ITDBgzzojEJJvfTRqbUMmuVpZ4xVm/lDW1tKscLfelAgRYvlRXfXOvXCPhwEFHiCUKurdqIUNyAsbV4AEBlhqiQBvSUoAAi7mhhAL+Alidz25HzPW/lTBZE3PMeqQGOuUu67atSgOsN6I/sRz5E0cGixctAHEMUOzIiouLx7aVk5A9q93RizSsFLxA1L0S8wzo9jbeebOe054EWG6HmQDLXqrK9ToiPiERBzbNsdwy4E6rWDfasgXwj42z3enOPikUYA0spoRWFLAHWL/9bsDa720A68kKZrzRxPluqXXrJfz6W/o7qzzZqaUVvWinfxQgwPKPzmpZRZaBRUsknDrtSKsqPimjaWN11ssjwFJL9tAOZwoQYDEvlFCAAEsJFVPP4S3ACg8LRdnHHk3XqITERBw+dgZFCubFj1+NSdX3ryOn0KLrp3iybAl8NX1w8usjJy/BkpWbMPDD1mjVtI5Lx6cvXINp81dZjg4unPQRJMlWWsR+sBVgCVAWlTO703lbNK6FBrVsBd5ZxN2l/MHf4eW3++H8v1fx7ZxPUbpkUZcOX7x8HfVa9EGBfLnw07LxLvuzQ2oFCLCYFVpRwB5g/bhRgoBO1larhoyaNdKubTVhsmPtGvvaVs5qZaU3n1b0op3+UYAAyz86q2mVhEQgZo4RV685fgmu9ZKMmtXVB7EIsNSUPbQlpQIEWMwJJRQgwFJCReUAlifWpAWwBo+Zh5U/7MDQPm3RrFHN5CnFTYRvdhyCx4oXttwkmF5z5+igdbwVYKU3X58ub6FdiwbJXQiwPIl0kPa13jLQtOGLGN6vvUsvx874GguW/YhXaj+HMYO7uOzPDgRYzAHtKmAPsJZ8LeHoMRvAatbUhArl0y6kvHipEceP2x42H3/s4ZEf0VIWZ3bntkLtqkjLlVaAAEtpRbUx3917BsyIkRBrd0mEsLz5GyaUL6euou4EWNrIKb1aSYCl18gr67e/ABZrYKUfN6WOEFqLt8uyGTtWTUbWLBEOCzftMBgCTi2dPhhPlC3h1ChxdLBFl08hgFd6RwdTAizeQuj6b5M1sOw0OnTstOWMqmid33kVXd99HaEhjjsnxGsiIed/vR4TZ6+w9J0/YQCerVTatdrskUoB7sBiUmhFAXuANXmaEdeu24BUl+gkFCyYticnTxmw8EvH95KeH5qQM9KMWXONuHjRNlelimY0eY3F27WSF4G2kwAr0BEI3PrXrkuYPc+ABw9s7x+iDtY7b8soUVw9O7EIsAKXI1zZtQIEWK41Yg/XCvgLYLm2RN89lAJYX6/ZguETFrkUM71NLzMWrcHUeeLoYCksnDQwzaODBFguZU7VgQArhSTWXVXin3PmyIYXqlRAsSIFLIXaH8Qn4OyFK9i5909cv3HbMtLd3Vqeh0YfIwiw9BHnYPDSHmB98mkIxNE/a/t4gAnhYenvepgyXYJ44LS2Ks/IeKK8GbPnO4KtD96TkSe3eh4+gyF2wewDAVYwR9e1bxcuGDBnoRGyHfMODQU6dTBB3GSqhkaApYYo0Ia0FCDAYm4ooQABlhIqZnwOpQCWtXi7qKNldHZ1uDhBcfQ0MoWHYvvKyciSOZOD8f+cuoDmnYZAkiSsnj/C6a2DKb1lEXf340+AlUIrs9mMWYu/w4yFayw7rdJr7zarj15dmiPEmHqXlvsh0HdPAix9x19L3lsB1pFTDzB+ku1vPmtWM/r1cr1jav8BCavX2gCWuCeiaFEZJ0/Z/k3smni3NeGVlvIi0LYSYAU6AoFf//DfBixb4fg9RLwvdeogIzJH4CEWAVbgc4QWpK0AARazQwkFCLCUUDHjcygBsP46ehotugxDiUcLYe2Cz9I0qkv/LyybWob0ehfNX3spuZ/90cH+77dEm2b13XKMAMstmSydCLDS0OrKtZtY/eMu7PvzGC5cuoZ79x8gU3gY8ueNQqXypdCkQXU8Ujif+0qzp1MFCLCYGFpRwAqwdv72wOE44CNFzejQ1jXAEjx8zBdGxMU5v31E6CDqYon6WGxUwF0FCLDcVSq4+6W8yVR4mzuXjE7RZmQKDyzEIsAK7tzTuncEWFqPoDrsJ8BSRxyUAFifjJ2Hb7/fgYEftkKrpnXTdGzr7j/QbeAky22H38QMTe43c9FaTJm30sILFk12fXTQOpAAy/0cIsByXyv29IECBFg+EJVT+kQBK8Ba9WM8vl9v2zVVuZIZr7/qGmAJo37aKmHHTttYe0MjI83o+YEJhrT5lk/84qTaVoAAS9vxU9L6Nesk7Nvv+P4iAHvbd0wI5EZxAiwlo8y5lFaAAEtpRfU5HwGWOuKeUYAlNqzUfKM7TCYZ21ZOQvasmdN0TBR4r9eiNy5dvWEBWAJkHT99Ac06Pjw6KG4o9GSzCwGW+zlEgOW+VuzpAwUIsHwgKqf0iQJWgDV7STz2/mp7SKxbW0b1au7tmhI3h42bYITspPsrL8uo8qx78/jEQU6qSQUIsDQZNp8YLeryfblUwvETjhCrdGkZLZvJAYPjBFg+CTcnVUgBAiyFhNT5NARY6kiAjAKs5Wu3YtgXCy0nrUb07+DSKWuhdnGEUBwl7NJ/PHbu/ctya2HRQumf1BK1tb6e8UnyGlaA9WiR/JY63M5aZPasmDqye/JLK9Ztx5Bx8y39C+TLlaa9kz7thoL5c7v0RysdCLC0EqkgtZMAK0gDG4RuWQHW6CkJOH7Ctk2qRXMZZUu7D55WrDTiz0OO26zCwszo39sEUXyZjQp4ogABlidqBX/fxCRgzjwjLl12fI95/jkZL9dz/31KSaUIsJRUk3MprQABltKK6nM+Aix1xD2jAOvNjkNw5PhZLJ0+GE+ULeHSqWv/3ULt5r0sZYa2fTsJ7XuNxl9HTrkcJzpIkgF/bZmfCmClNzhXzuzYsWpyKoDlasHvFo1C8aIFXHXTzOsEWE5CFfcgASvWbcOmHb/jxOmLuB17D4+XKIKVc4c79N6ya7+lNladF59GRKYwzQRdTYYSYKkpGrQlPQWsAKvf0ATcuGl7OOzW1YS8edyvMfPvJQNmznYsuFytqgn167o/ByNFBawKEGAxF1IqcD/OgJi5Em7ccIRYrzSQIW4/9XcjwPK34lzPEwUIsDxRi33TUoAAi7lBBfynAAFWCq1Pnv3XUpBNEFz75gxg9R42HT9u/RUjP+qIxvWr+S9qQbQSAVYQBTPIXbECrOjuiQ6efvpJkseer14j4T87CPZGE3XcFuaxIxwQcAUIsAIeAlUacPOWAbNmSxAwy76Jo4RlyvgXYhFgqTJFaNT/FSDAYioooQABlhIqcg4q4J4CBFh2OsXevY8m7QdZirGFhYWi9guVLcXXxG0CzgDW95t/Qb/hM1GvxtOYMKybe4qzl4MCBFhMCK0oIADW5avA4JE2gCWuqO/V3b0C7lrxk3ZqSwECLG3Fy5/Wit2ec+YbkWTH2CUjEP2uCYUL+2/HJwGWP6POtTxVgADLU8XY35kCBFjMCyrgPwUIsOy0nr5gNaYtWG25RWDyiA9RIG+U5dVyNds6BVjn/72Kl9/uhyIF8+LHr8b4L2pBtBIBVhAFM8hdEQDr4CEzps6xPQ0WL/bwhi82KhAoBQiwAqW8NtYVBd1FYXdR4N3aMmUyo0u0jKgo/0AsAixt5IperSTA0mvklfWbAEtZPTkbFUhPAQIsO3WadhiMYyfPY8XsYShT6pHkV9ICWA/iE/BU/U6Wwm37NsQw07xQgADLC9E4JCAKCIC1cauMb9bYgNWzT8to1NC/x3EC4jwXVa0CBFiqDY1qDPt9v4S16xxvJhS7RztFy8iaxfcQiwBLNalAQ5woQIDFtFBCAQIsJVTkHFTAPQUIsOx0evrlTggNCcGeddMd1EsLYIlOlet1RGJSksMtAu5Jz15CAQIs5oFWFBAAa/FyE3bstgErcauXuN2LjQoESgECrEApr611N/4kYdduR4glLp/oFG1CmI9vPyXA0lau6M1aAiy9Rdw3/hJg+UZXzkoFnClAgGWnioBR2bJmxvaVk9wCWPfj4vFMg86IzJEVP6+ZygzzQgECLC9E45CAKCAA1ripSTh2wrZjoXVLEx4r5fsdDAFxmItqQgECLE2EKeBGiiOES7+RcPSoI8QqXkxGm1YyJMd/VtReAixF5eRkCitAgKWwoDqdjgBLp4Gn2wFRgADLTvaGrfvj7IUrFoCVOypH8itp7cDavHM/Phw8GZXKl8KXUz8OSAC1vigBltYjqB/7BcDqOyQRt27bfP7wfRNy5yLA0k8WqM9TAiz1xUStFplMwILFRpw953gzYcUnZTRt7LudpARYas0I2iUUIMBiHiihAAGWEipyDirgngIEWHY6jZz8JZas/AmtmtbBwA9bpwuwxO6rFl0/xckzF9Gj45vo2KqRe4qzl4MCBFhMCK0okCd7BLr2sd1AaDAAQz5O8unOBa1oQzsDpwABVuC01+LKD+INiJljwPX/HLdcvVRDhvifLxoBli9U5ZxKKUCApZSS+p6HAEvf8af3/lWAAMtO70tX/sMr7wxAfEIiGtWtit6d30Le3JGpbiHc/9dxfDZpMY6eOIcc2bPgx6/GInvWzP6NXJCsRoAVJIHUgRuJcZkwfKztBsJcUWZ078YbCHUQelW7SICl6vCo0rg7sQbMjJFw957jTiyxC0vsxlK6EWAprSjnU1IBAiwl1dTvXARY+o09Pfe/AgRYKTT/aec+9Bo6DSbTwy9xjxTOZzlWmDVLBMqXLoYTpy/i+o2HZ4hCQ0Mw8/NeeO6psv6PXJCsSIAVJIHUgRsXz4Zj1kIbsCpVyox3WhJg6SD0qnaRAEvV4VGtcVeuGhAz14hE26ZSiF2loh5WieLKQiwCLNWmAQ3jEULmgEIKEGApJCSnoQJuKECA5USkv46cwrAvFuLI8bNpSvh4iSIY1rc9KpQu5obM7JKWAgRYzA2tKLDv93Cs+cEGrKo+J6NBPWUf9LSiBe1UjwIEWOqJhdYsOXlKwqIlEkSBd2sLDQU6dTAhX17lavsRYGktM/RlL3dg6SvevvKWAMtXynJeKpBaAQKsdLLir6On8duBIzh34Sru3o9DRKZwFMyfC1UqlUHlCo8xnxRQgABLARE5hV8UWL8+DHt+swGrRg1lPPs0AZZfxOciaSpAgMXkyIgCBw5KWLnGsR5W1ixmdOogIzJSGYhFgJWRCHGsrxUgwPK1wvqYnwBLH3Gml+pQgABLHXHQrRUEWLoNveYcX7AoFKfO2B7o2r5jQvFiyjzgaU4MGqwaBQiwVBMKzRqyZbuEbdsdIVZUTjM6R8uIiMj4exwBlmZTQxeGE2DpIsw+d5IAy+cScwEqkKwAARaTIaAKEGAFVH4u7oECo8eF4N5924Be3U2IzJHxhzsPTGBXKpBKAQIsJoUSCohdWGI3ln0rXMiMDm1NMBoztgIBVsb042jfKkCA5Vt99TI7AZZeIk0/1aAAAZYaoqBjGwiwdBx8Dbken2DAZ5/bnuKMEjBkkO1GQg25QlODTAECrCALaIDckWVY6mGdOu0IsUqXltGymWwp8O5tI8DyVjmO84cCBFj+UDn41yDACv4Y00P1KKBbgLV19x/YtvsA6tV4BtWeKW+JyJKVP2U4MkajhBzZsqBCmeIoXCBPhucL9gkIsII9wsHh3/mLBsyeawNY+fIC73chwAqO6GrbCwIsbcdPTdYnJAIxc4y4es2RVlV5RsYrDbyv90eApaYo05aUChBgMSeUUIAASwkVOQcVcE8B3QKsZxt2wb37D5ArZ3bsWDXZola5mm3dU83NXg1rV8HIAR0RGhri5gj9dSPA0l/MtejxgT8NWLnaBrDKlpbRorn3D3Ra1IA2q1MBAix1xkWrVt29Z8CMGAmxsY4Qq34dGdWe9+49jwBLq9mgD7sJsPQRZ197SYDla4U5PxWwKaBbgNVzyFRs2rEPr7/8Akb072BR5JV3BmQ4N8xmM/67eQd378VZ5urYqhF6dHwzw/MG6wQEWMEa2eDya/M2Cdt32I7WVK8mo25t7x7mgksZehNoBQiwAh2B4Fv/2nUJMXMMEEen7VvL5jLKlPb8fY8AK/hyJJg8IsAKpmgGzhcCrMBpz5X1p4BuAZYItYBNhowUdkgjX8S84jjiqClLUCh/bmz8epz+MstNjwmw3BSK3QKqwPJvjTh02PYw9/qrJlSuxALuAQ0KF7coQIDFRPCFAmfPGTB/kRGiNpa1SUag3TsmPFLUs/c+AixfRIhzKqUAAZZSSup7HgIsfcef3vtXAV0DLF9LXeWVrnjwIAEHN8/19VKanZ8AS7Oh05XhM2JCcOmyzWVxM5enD3G6EozO+k0BAiy/Sa27hQS0F/DevoWHmdEp2ow8ud3fiUWApbvU0ZTDBFiaCpdqjSXAUm1oaFgQKkCA5cOgPv/a+5BlM35ZN92Hq/h26sUrNmLcjGXIkzsSPy0bn+ZiR0+cwxvRn6RrzLA+7fBmoxoOfQiwfBs/zq6MAsNGhMBk97zWr1cSsmZVZm7OQgUyogABVkbU41hXCuzaLWHjT443E2bLZkbXTjKyZnFvJxYBliuV+XogFSDACqT6wbM2AZY6Y3nu4lWs3fAz9v7xN06fu4w7d+8hIlM48uSKRMF8uVDt2Qp46flKKFoor4MDL73ZA1ev30rxA04oonJmR9nHHkGjOs+jXo2nnTrtbGzKji+/9CzGD3kv+Z/7j5iFdT/tSVdE+7rdouO5i1fQoFV/y5gB3d7GO2/WS3f8wFGzsWbDz1g8ZSAqV3hMnQFz0yoCLDeEik9IRFxcPDJHhCMsLNSNEbAUiO/SfzxKFiuMIb3edWuMmjoJ+wePmYsN236zmFUgX650Adae3w8jus9YyxtC/rxRTl3p1PpV1KpWyeE1Aiw1RZ22OFMgNhYYO8F2EUNYmBmDBpgoFhVQhQIEWKoIQ1AbsWadhH37HSFW3jxiJ5YJ7nwlIsAK6vTQvHMEWJoPoSocIMBSRRiSjUhMTMLU+aswd+kPlpJBlmfZvFHIkT2rpU711f9uIUFcvQvg+afLY/a4Pg4OWCGUAD1h/7+M7f6DeAs0unX7rqVvrRcq44uh7yM0xHGnsnVshdLFEBLi/CK3qk+VxfvtmiSvaQVYjxbJj5w5sjkVMzJ7Vkwd2T35NXuAlSk8DKvnj0CRgo4gzn4iAix15aji1iSZTPhx669Yt2k3/jxyCrfv3EteQyTVE2WL47V61VCvxjOQJMcip4obE4AJT5y+iO6fTMGZ85fRvkVDLFu7BdmzZUkXYH2/+Rf0Gz4TvTo3R4eWDd22mgDLbanYMUAKnD7zsBaMtRUsaEaXaAKsAIWDy6ZQgACLKeFrBcR3/y+XSjh+whFiFS8mo83bMkRtrPQaAZavI8T5M6IAAVZG1OPY5O+GuSIohkoUEGCqXc/ROHD4hAUGdWrdCK/UqQqxg8m+HTl+Flt//gPPPVU21Y4kK4TavnISckflSB4mYNiuXw+h19BpuB/3AH3fa4G2zV92mDetsenJYwVYYwd3RcPaVdxS0gqwIjKFIe5BAp6tVBrzvuifZn1vAiy3ZNVmp0tX/sOHg6fg73/OuHTgibIlMOnTD5A3d6TLvlrpcP3GbTRo1Q+JSSaII3+N61dDxTodkDtX+kcIxVHDz6d+hc8GRFtudnS3EWC5qxT7BUqBffsNWLPO9oRWobwZzZoSYAUqHlzXUQECLGaEPxRITALmzDPi0mXHH+3KlzWj+Zvpvx8SYPkjQlzDWwUIsLxVjuPsFeAOLPXkw9BxC/DNum0oXrQAZo/vi/x5nJ8MSs9iVxDq6zVbMHzCIpQp9QhWzB4WUIDV/LWX8Mu+vy27wz7p2QZvNa7l1DUCLPXkqKKWCHrZtMNgSwKEGI14qVolPFOxtOUmQbE1T5DW85euYfdvh7Dr178sa4s/jm9mD7O8HixNwKiK5UqiQpnilm2X5V9q5/II4aQ53yLmy+8wc3RvVK9SwW0pCLDcloodA6TAhk0Sft5j23nwUg0Z4n9sVEANChBgqSEK+rDhfpwBM2Mk3LrtCLFerC6jzktpvycSYOkjP7TqJQGWViOnLrsJsNQRj0PHTuOtzsMsx/pWzRuBYkULeGWYK4AlTis1bvcxsmXNnKrWtauxzgzKyA6sJg2qQ/yvzYcjkTkiE9YuHGk5LpmyEWB5lQrqHzR7yTpMnL3CQmpnjemNksUKpWn0X0dOodvHkyB2LHl6bE79StgsFMcpn6zdwSXAstJuQaEFjXa3EWC5qxT7BUqBr5ZJOHrMBrDebGLCExXcK14cKJu5rn4UIMDST6zV4OmNGwbMnCPhwQNHiNW0sYyKTzqHWARYaogcbUhLAQIs5oYSCvgLYF06aMbNM/r5EbVARQk5H3G/XM+wLxZi+dqtFqAzon8Hr0PrCkJZLy9zViPa1VilAVb9ms/ii6HvYcTExVi6ejNeeLaChWMQYHkdfm0NfLPjEIjzsNNH9USNqk+6NH7r7j/QbeAklHv8USyfNdRlfy12cBdgfTBoMrbs2o8ubV5D7N043LsfZyl4X7RgXlSv8kSaMJAAS4tZoS+bp0w34tp124dn52gTChUkwNJXFqjXWwIs9cYmWC27cMGAeYuMSEqyeWgwAK1byihVMvWDFQFWsGZCcPhFgBUccQy0F/4CWPsWmXB6h34AVuV3jChew7H+YnqxfrXNRzh17hImD/8QtatX9jotXEGoBct+xNgZX6Pui09j4qfdHNZxNVZpgCWKyU8Z8aHlpFjjdoPw7+XrFngnIJ594w4sr9NB3QOfadAFJpMJv62fBaPR9R+LySSjyitdIEkSfv1hprqd89I6dwGWAHkC6KXVxHWhw/u1t2xttG8EWF4GhsP8psAnnzreIDKovwlh4QRYfgsAF0pXAQIsJkggFBC7UsXu1EC0cmVkvNVMPw9wgdBYT2sSYOkp2r7zlQDLN9p6CrBE3WZRx/n7xZ9D3OjnbUsPQu3c+yd6fDLVwgy+mj4YZR971CnAerJsCYT+/wbDlHYM7d3W4Xij9QihKE0UlaLYvHVsi8a10KCWrcC7tYi72HQjNt+Ituf3w4juMxbZs2a2HCXMk8tWp5sAy9tsUPm4SvU6IjJ7FmxdMdFtS+s074Ubt2Kxf+Nst8doqaO7AEvc+LD3j6MoUjCPpah9aGio5Xjl3v1/Y8bCNbhw6RqqPVMeMWMdrynVkha0VX8KXL8BDBj28Jpd0bJmASaODNWfEPSYClABKpBCge27ZSxeFpgLLerXktCssYvrDxkxKkAFqECQKcAdWGkH1PrMKnqkvD3QOmrwmHlY+cOOVJMIECWAk7VZAZa4oTAs9OH3/vj4BJw+fwlXr99CVGQ2jBrYyXJcL2Wzjk0v9ZbNGoLyjxdL7mIFWOmN6dPlLbRr0SC5ixVgvfjck5jx+UOAJZrVR+vOLOu/E2AF2ZuB1Z0Grfrj6vWblh1YkuT6vK3YgfVswy6W+lDrFo0KSlXcBVjpOf/fzTto3PZj3Lwdi7lf9JGm9dkAACAASURBVMNzlcsGpVZ0KvgUOHzUjAkzbOdkShYzYEAPxx1Zwec1PaICVIAKuKfAN2tM2LAlMLuh3nnLiBrPB2YXmHvqsBcVoAJUQFkFWAMrfT3FZhSxqWL9ktEoWihfqs5zvvoe23YfSP73YyfPW47epQWwnK32RNkSmD+hf5oXuPn7CGFKgBV79z5eazvQAtrGDu6KhrUf7toiwFL2b1E1s42asgRffrsJCyYOsNw+6KqJKys79B6Dd5vVR7/3W7rqrsnXlQBYwvEx05Zi4TcbLDWyPmjfNFkLHiHUZFroxuhff5Owbr3tAalaFQkvv5wAM08Q6iYH1O4ojxCqPULBb9+yFUYc/tv1j36+UKLlWzLKPB4YgOYLfzin/xXgEUL/ax6MK/rrCGEwaqekTy+/3Q/n/72KmaN7o3qV1LujUq7VouunEBezpQWw7HdyiZNFDVv3x/24eCybOcRSA9tZCzTAEjYJSPf+wImIzJEV3y0cZdkxNmj0XKxavxOLpwxE5QqPKSm73+cymM18FLOqfu2/W2jU5iMUzJcL8yb0R84c2dIMiEjidj0+x5XrNy3nbO3PmPo9ij5cUCmAtWTlJoycvAStmtbFwA9bEWD5MGacWjkFfvhRwi+/2gBW00ZGVHoqngBLOYk5UwYVIMDKoIAc7nMFlCri7uwGxJAQoH0bEwoX5q8KPg9kkC5AgBWkgfWzWwRYfhY8jeX6fzYL6zbtcXtziScASywpNmOITRni+N/SGZ84PbGlBoAlbLUeSxR1qMcPeQ/WGxoJsNSRqx5bcfz0hVRjJIMBISEh+OfUeQz4LAbh4aFoXP8FVCpfCgXyRllu1BNnXy9d/Q/7/vwHazfutmxRnDO+r+YpZnoCKgWwJs35FjFffoceHd9Ex1aNCLA8zloOCIQCi78y4vgJ286CLu1CUKjoAwKsQASDazpVgACLiaF2BZQCWMJPcQPinIVGyHaltzJlMqNLtIyoKEIsteeCGu0jwFJjVLRnEwGWOmJm3XmULWtm/LhkjGUHUnrNU4AlnoubdvgEJ89cxKAe76Dl67VTTa8WgHXr9l3LUUJRykfcyrj/r3+wYPmP3IGljlT13IpyNdt6PiiNEYXy57ZArtGDOis2p5omUgJgidsgGrcdiLMXrmDp9MEQZ4etjUcI1RRt2pJSgQlTjLh50wawhvYPgTETARYzRT0KEGCpJxa0xLkCSgIsscKRoxKWLnesfRWZw4wunWRkjiDEYh56pgABlmd6sXf673PUJ7AKiINlzToNxZHjZyEKsE8Z0R2ZI8LTNMpTgCUm+vWPo2jX83MISCZqYOeOyuEwv1oAljBqw7bf0GvoNIuN9Ws+C3EiijuwApujXq+uJMCyGnF42wKv7VHzQHcA1rmLV7F55z68Wu/5VH/E4oaEkZO/xM69f1nOIoszyfaNAEvN0de3bbIMDPssxGG31czxobh2J447sPSdGqryngBLVeGgMU4UUBpgiSXE0W5xxNu+FchvRnR7E9K4tZyxoQJOFSDAYmIooQB3YCmhojJziGfPFl0+xe3YeyhetAC6tW+Cms9XQniY4y3iYoNFy66fWmCXOzWw7K3rNXQ6Nmz7FY3qVsXojx03sagJYAmbe3wyFZt2/G7xPz4hkQBLmTTz/yyifpXSLSV9VXr+QM3nDsA6euIc3oj+BAaDAY8UzofCBfJY/v+/l69brhuVZTMqVyiFaaN6InvWzARYgQom1/VIgWvXDZgy3XZNe84cwNhPQ3HpBgGWR0Kys08VIMDyqbycXAEFfAGwhFnrN0rY84sjxCpVUkbrljIMgakpr4BanMLfChBg+Vvx4FyPAEtdcRWnfnoOmQpxy6BooSFGPFqkALJny4ykJJMFbl349xrEc65ongKsy9duoNE7AxD3IMFSN7tKpTLJAlgBVoXSxSzliZy1qk+VxfvtmiS/ZK1X9WiR/GnW4I7MnhVTR3ZPHiNAXYNW/ZHyFsKU6wnuIY4S3r5zz/ISd2CpK1dpjQ8UcAdgJSYmYdWPu7Bl1z7LG8XNW7GWHSri3HGZUkXRqM7zaFCrCozG1NddcweWD4LGKRVR4OgxCV8ts+Vs6VIG9OkWQoCliLqcRCkFCLCUUpLz+EoBXwEs8T1j6TcSjh51/G7xVGUZjRvxZkJfxTPY5iXACraIBsYfAqzA6J7equI44U8792HT9t9x8O+TuHHrjgU4iZ1IObJnsWy4eLJsSTz1xGOo+nQ5hx1a7uyimr1kHSbOXoFiRQtg1dzhCP3/9l/r2PRssxZWt/axAqz0xuTKmR07Vk32GGCJAd9t3I0BI2MIsNSXprRIiwoQYGkxavqw+efdEjb8ZHswqvG8hHfeMhJg6SP8mvGSAEszodKtob4CWEJQ8eP53AVGXLjouOWqTi0ZL75AiKXbpPPAcQIsD8Ri1zQVIMBiclAB/ylgMAs8yUYFAqQAAVaAhOeyLhVYu07C7/ttAKtZYyPq15IIsFwqxw7+VIAAy59qcy1vFPAlwBL2xMUZMGuOhBt2F26If2/+hgnly/Errjcx09MYAiw9Rdt3vhJg+U5bzkwFUipAgGWniChs5m1LWRjO23n0No4AS28R146/8xcZcfqM7Vf9btEhqFjBQIClnRDqwlICLF2EWdNO+hpgCXFu3TIgZq6Eu/ds79mSBLRrY8IjRQmxNJ1APjaeAMvHAutkegIsnQSabqpCAQIsuzBk5HbCYL2F0NdZSoDla4U5v7cKjJtgxJ1Y28PQ8IGhKJAPBFjeCspxPlGAAMsnsnJSBRXwB8AS5l65KiCWEYl2v0WGh5nRKdqMPLl5nFDBkAbVVARYQRXOgDlDgBUw6bmwDhUgwFIAYIli5T+vmarD9Mm4ywRYGdeQMyivgKirMuwz280h4karmeNDYTQSYCmvNmfMiAIEWBlRj2P9oYC/AJbw5eQpCYuWSJaLZKwtWzYzunaSkTULd2L5I95aW4MAS2sRU6e9BFjqjAutCk4FCLDs4rr/r3/SjbK4ueDq9ZvY9+c/WL9lr+VWvblf9Ie4JpPNOwUIsLzTjaN8q8Cly8CMGBvAisppxughYZar2S/diHN4OPKtJZydCqSvAAEWM0TtCvgTYAktDhyUsHKN482EefOYEd1eRqZwQiy154u/7SPA8rfiwbkeAVZwxpVeqVMBAiwv43L+36to13M0TCYTvls4ClmzRHg5k76HEWDpO/5q9f7QYQOWf2tMNq9USTP6dSPAUmu89GwXAZaeo68N3/0NsIQqW7ZJ2LbDEWKJWljt3jFBsr21a0NAWulTBQiwfCqvbiYnwNJNqOmoChQgwMpAELbu/gPdBk7C+21fx3ttX8/ATPodSoCl39ir2fNtOyVs2Wp7+HnuWRkd3g7nDiw1B02nthFg6TTwGnI7EABLyCN2YYndWPatfFkzmr9p0pB6NNXXChBg+VphfcxPgKWPONNLdShAgJWBOCQmJuGZhl1QvGgBrJw7PAMz6XcoAZZ+Y69mz1euMeLAQVsB91cayHi9PgGWmmOmV9sIsPQaee34HSiAJcuw1MM6ddoRYr1YXUadl1jUXTsZ5FtLCbB8q69eZifA0kuk6acaFCDAymAUajfrhTt37+O39TMzOJM+hxNg6TPuavc6Zp4RFy7YAFabViZUfyYTd2CpPXA6tI8AS4dB15jLgQJYQqaERCBmjhFXr9nez8W/N20so+KThFgaSyWfmEuA5RNZdTcpAZbuQk6HA6gAAVYGxDebzXj65c4wyTIObJqTgZn0O5QAS7+xV7Pno8aGIC7OZmHPD00oW5wAS80x06ttBFh6jbx2/A4kwBIq3b1nwIwYCbGxNoglLuRo3VJGqZKEWNrJJN9YSoDlG131NisBlt4iTn8DqQABVgbUP3D4BFq9PwIF8+fGpq/HZWAm/Q4lwNJv7NXqeXyCAZ99bqvyKx50hg1OQoGoCO7AUmvQdGwXAZaOg68R1wMNsIRM165LiJljgHh/t7aQECC6nQkFC/BmQo2kkk/MJMDyiay6m5QAS3chp8MBVIAAy0vx/zpyCgNGxuDM+ct4rV41jBrY0cuZ9D2MAEvf8Vej9+cvGjB7rg1g5cltxgfvmQiw1Bgs2gQCLCaB2hVQA8ASGp09Z8D8xUbIdjXcM0eY0aWjjMhIQiy155Gv7CPA8pWy+pqXAEtf8aa3gVWAAMtO/2adhrqMhizLuHztBm7dvmvpG2I0YtmsIShdsqjLseyQWgECLGaF2hQ48KcBK1fbAFaZx2W0fEsmwFJboGiPRQECLCaC2hVQC8ASOh05KmHpcsei7lE5zegcLSMighBL7bnkC/sIsHyhqv7mJMDSX8zpceAUIMCy075czbYeRSIyR1YM69MOdao/5dE4drYpQIDFbFCbApu3Sdi+w/aAU62qjPp1CbDUFifa81ABAixmgtoVUBPAElr9vEfChk2OEKtwITM6tDXBaPvtQu2y0j6FFCDAUkhInU9DgKXzBKD7flWAAMtO7mnzV7kU32AwIHPmTChWpACqVC6DTOFhLsewQ9oKEGAxO9SmwPJvjTh02FYnpXEjE56qbOYOLLUFivYQYDEHNKGA2gCWEG3NOgn79jtCrNKlZbRsJltqHbLpRwECLP3E2peeEmD5Ul3OTQUcFSDAYkYEVAECrIDKz8WdKDBjdgguXbK90K6NCcUeJcBisqhTAe7AUmdcaJVNATUCLLMZ+HKphOMnHCFWlWdkvNKANxPqKX8JsPQUbd/5SoDlO205MxVIqQABFnMioAoQYAVUfi7uRIFhI0Jgsnt+6dszCdmygTuwmC2qVIAAS5VhoVF2CqgRYAnzEpOA+QuNuHDRccvVy3VlPF+VEEsvSUyApZdI+9ZPAizf6svZqYC9AgRYHuaDLJshSdxf7qFsaXYnwFJKSc6jhAKxscDYCSHJUxklYMigJMt/F4iKsBwtuXQjDuLXezYqoAYFCLDUEAXakJ4CagVYwua4OANmzZFw46bj97qWzWWUKU2IpYfMJsDSQ5R97yMBlu815gpUwKqAbgFWksmEH7f+ilrVKiNzRHi6GXHjViwmz/kWm3ftg/j/2bNmRtWny+OD9k1QrGgBZlMGFCDAyoB4HKq4AuKa9bkLbFV8C+Qzo2vnh3euE2ApLjcnVEABAiwFROQUPlVAzQBLOH7zlgGzZku4HxeYHye7djKhQH7+KuLTJExncgKsQCkfXOsSYAVXPOmNuhXQLcDavucg3vtoAgrkjcKmZeMhirM7a//dvIOWXT/FxcvXU70sCrjPHtcXlSuUUneUVWwdAZaKg6ND00RRX1Hc19rKlzWj+ZsEWDpMBc24TIClmVDp1lC1AywRmIv/GjBvgdFyrNDfrVZNM2q++PBzhs3/ChBg+V/zYFyRACsYo0qf1KqAbgHW8AmL8PWaLXjjlRfxad/2acan++Ap+GnnPsuxwWavvoSK5Urg1u27WLZ2K86cv4z8eaLw3aJRLndxqTUBAm0XAVagI8D17RVIeQOh/YMFd2AxV9SoAAGWGqNCm+wV0ALAEvb+c1yyFHb3dytU0IzO0QRY/tbduh4BVqCUD651CbCCK570Rt0K6BZgtegyDH8dPY1xn3RFg1pVnEZJvC76iTbyo45oXL9acr+79+LQvPNQnL1wBUN6t0XzV2uqO9IqtY4AS6WB0aFZsgyMGmtEfLxtN2bH9iYUKfzwaAcBlg6TQgMuE2BpIEg6N1ErAEuE6ff9Etba7cL1V+gG9DUhcwSPEfpLb/t1CLACoXrwrUmAFXwxpUfqVUC3AOv5197H7Tv3sHbhSJR4pKDTCPUdPgM/bN6L558uj9nj+qTqs/rHXfj48zmoXuUJzBzdS71RVrFlBFgqDo7OTDtz1oB5C231r8LDzRjYz2Qp3E6ApbNk0JC7BFgaCpZOTdUSwPJXiGbPN+L8eduPJU1eM6FSRQIsf+lPgBUIpYN7TQKs4I4vvVOXAroFWE/W7gBRyH332mnIkT1Lqqjcjr2Hmm/0QEJCogVeCYiVsom6WPVa9EG+PDmx5ZsJ6oqsRqwhwNJIoHRg5safJOzabTs+UvEJM5q+bjvWwR1YOkgCDbpIgKXBoOnMZAKs1AHfvlPC5q22z5uyZWS0aMZbDwPxp8EdWIFQPfjWJMAKvpjSI/UqoFuAVbFuNBITk7B1xUTkzR2ZKkJLV2/GiImL0y3yLsaLecLCQvHHxtnqjbKKLSPAUnFwdGba1BkhuHrN5nTzpiaUL2/7RZwAS2cJoRF3CbA0Eigdm0mAlTr4l68A02eFJL8QGgJ8PCAJkv9LcOk4Mx+6ToCl+xRQRAACLEVk5CRUwC0FdAuw6rbog38vX8eiyQPx1BOPOYhlNpvxevtBOHH6Ijq1fhXdo99wKqYVYBmNEv7cPM8twdnJUQECLGaEGhS4E2vAuAm244Pi2ODAviaEZyLAUkN8aEPaChBgMTvUrgABlvMIjZ1gRGys7Rjhu++YUKIYjxH6O58JsPyteHCuR4AVnHGlV+pUQLcAq/ew6fhx66+WwuyiQLt9W7V+JwaNngsBptYvGYNC+XM7jd71G7dRo2l3ZI7IhN/Wz1RnhFVuFQGWygOkE/P2/ibh+/W2n74ffcSM9u863grFHVg6SQaNuUmApbGA6dBcAiznQf9unYTf9ts+d6pWldGgLo8R+vtPhADL34oH53oEWMEZV3qlTgV0C7B27v0LXfqPt0SlW/smeP3l6oDZjC0/78e4mcstta/EzYLihsG02r4//0GbD0eiaKF8WL9ktDojrHKrCLBUHiCdmLf4KyOOn7D9El6vjowXnnd8kCDA0kkyaMxNAiyNBUyH5hJgOQ/6sX8kLPnaBrByRZnRvZvjDyc6TBe/u0yA5XfJg3JBAqygDCudUqkCugVYIh4fDp6MzTv3Ow1NsaIFsHT6YGTLmjnN0M1ctBZT5q3kLYQZSG4CrAyIx6GKKJCYCHw2JgSy3XNDt65JyJvHcXoCLEXk5iQKK0CApbCgnE5xBQiwnEtqMgHDP3f87On5oQk5I3mMUPEkTGdCAix/qh28axFgBW9s6Zn6FNA1wHoQn4DPJn2J1T/uhCzbvjDUqf4UBvdsg9xROdKNWIuun+KvI6fQs1MzRL/9ivqiqwGLCLA0EKQgNzHlr+DZspnRt2fqX8EJsII8ETTqHgGWRgOnI7MJsNIOdsrdvw3qy6hahccI/fnnQYDlT7WDdy0CrOCNLT1TnwK6BljWcPx38w5OnLlo+c9SxQojKjKby0iZTDImzP4GZtmMNs3qI1+enC7HsENqBQiwmBWBVmDtOgm/29UhefYZGY0apH6AIMAKdKS4vjMFCLCYF2pXgAAr7QilrL9YvJgZbd/hMUJ/5jQBlj/VDt61CLCCN7b0TH0KEGCpLya6sogAS1fhVqWzKW+Cat3ShMdKpT7CQYClyvDp3igCLN2ngOoFIMBKO0TObsAdNCAJoaGqD2vQGEiAFTShDKgjBFgBlZ+L60wBAiydBVxt7hJgqS0i+rLn0mVgRkxIstOSERg8IAlGY2odCLD0lRta8ZYASyuR0q+dBFjpx37qjBBcvWbr06K5jLKleYzQX38xBFj+Ujq41yHACu740jt1KUCApa546M4aAizdhVxVDm/bKWHLVtstUI+VktG6pfMHBwIsVYWOxvxfAQIspoLaFSDASj9CG3+SsGu37XOociUzXn+Vxwj9ldcEWP5SOrjXIcAK7vjSO3UpQIClrnjozhoCLN2FXFUOx8wz4sIFQ7JNr74i45mnCLBUFSQak64CBFhMELUrQICVfoTOnDVg3kLbtt/MEWYM6EuA5a+8JsDyl9LBvQ4BVnDHl96pSwECLHXFQ3fWEGDpLuSqcfh+nAGfj3U8K9inpwnZszm/wpw7sFQTOhpipwABFtNB7QoQYKUfIVkGRo01Ij7e9mNKl+gkFCyo9sgGh30EWMERx0B7QYAV6AhwfT0pQIClp2ir0FcCLBUGRScmHfjTgJWrbQArfz7gvc5JaXpPgKWTxNCYmwRYGguYDs0lwHId9OUrjTh0yAawatWQUbMG62C5Vi7jPQiwMq4hZwAIsJgFVMB/ChBg+U9rruREAQIspkWgFFj2rRGHD9seGF58QUadWmk/MBBgBSpSXDc9BQiwmB9qV4AAy3WEUv6gUqigGZ2jeYzQtXIZ70GAlXENOQMBFnOACvhTAQIsf6rNtVIpQIDFpAiEAs6ObES3NaFoUefHB4WNBFiBiBTXdKUAAZYrhfh6oBUgwHIdgfgHBnw2xvFIu6iDJephsflWAQIs3+qrl9m5A0svkaafalCAAEsNUdCxDQRYOg5+AF0/fcaA+YtsDwvh4WYM7GeCwbYhK5V1BFgBDBiXTlMBAiwmh9oVIMByL0Kz5xtx/rztQ6jJayZUqkiA5Z563vciwPJeO460KUCAxWygAv5TgAArHa3jExJx9sIV3Im9h0yZwlD+8WL+i4xOViLA0kmgVebmhk0Sft5ju7b8ifJmvNk0/eMaBFgqCyLNsShAgMVEULsCBFjuRWj7Tgmbt9o+l8qVkfFWM9bBck8973sRYHmvHUcSYDEHqEAgFCDAcqL6P6cuYMq8ldj5y0EkJj18qH28RBGsnDvcoffUeatw5fpNdI9+A7mjcgQifppfkwBL8yHUpANTphtx7brtl+43m5jwRIX0f+kmwNJkqIPeaAKsoA+x5h0kwHIvhJcuAzNiQpI7h4YAHw9IgmRjWu5NxF4eKUCA5ZFc7JyGAtyBxdSgAv5TgAArhdabdvyOvsNnIjHR8TYyZwBrxMTFWLp6M/p2bYG2b73sv6gF0UoEWEEUTI24cifWgHETHGuNfNzPhPBMBFgaCSHNtFOAAIvpoHYFCLDcj9DYCUbExtp+XHn3HRNKFOMxQvcV9LwnAZbnmnFEagUIsJgVVMB/ChBg2Wl97uIVNG43CAkJiShVrDDeblIbRQvnQ4deY5zuwPr5t0Po1Hccqj5dDnPG9fVf1IJoJQKsIAqmRlz55VcJP/xo+0lbFG4XBdxdNe7AcqUQXw+EAgRYgVCda3qiAAGW+2p9t07Cb/ttn09Vq8poUJfHCN1X0POeBFiea8YRBFjMASoQSAUIsOzUHzZ+AZZ/tw2N6lbFqI86QZIe/gpWrmZbpwDr0tUbqNO8F/LmjsTWFRMDGUfNrk2ApdnQadbwRUuMOHHS9gt3nVoyXnzB9QMCAZZmQx7UhhNgBXV4g8I5Aiz3w3jsHwlLvrYBrFxRZnTv5voHFvdXYM+UChBgMSeUUIA7sJRQkXNQAfcUIMCy06l+y764cOmaBUYJKGVtaQGsJJMJFetEIyTEiAOb5rinOHs5KECAxYTwpwKJicBnY0Ig2z0PvNc5CfnzubaCAMu1RuzhfwUIsPyvOVf0TAECLPf1MpmA4Z87fkb1/NCEnJE8Rui+ip71JMDyTC/2dq4AARYzgwr4TwECLDutK9aNRo5sWbB95SSHCKQFsESnSvU6QjbJOLh5rv+iFkQrEWAFUTA14MqRYxKWLrP9up0tmxl9e7r36zYBlgYCrEMTCbB0GHSNuUyA5VnAFn9lxPETtl3CDerLqFrF9S5hz1Zhb6sCBFjMBSUUIMBSQkXOQQXcU4AAy06nZxt2QYjRiN3fTXMLYF2/cRs1mna33ECYEnq5Jz97EWDpMwfOnjNg/iIjZC++kxsMQOuWMkqV9HzwmnVG7NtvezB45ikZr77i3jwEWPrMVbV7TYCl9gjRPgIsz3Jg728Svl9v+6GlRHEz3m3t3g8tnq3E3kIBAizmgRIKEGApoSLnoALuKUCAZadT885DcfjYGayeP8JSxN3a0tqB9dWqzfhs0mLUqPokpo/q6Z7i7OWgAAGW/hLi2nUJMXMMiE+wgSRPVQgJAaLbmVCwgGfHKj4fa8T9ONu6rVqY8Phj7s1BgOVplNjfHwoQYPlDZa6REQUIsDxTL+VNueJHm0EDkhAa6tk87O2eAgRY7unEXukrQIDFDKEC/lOAAMtO69lL1mHi7BWoUqkMZozuhfCwh98WnAGsU+cuofX7I3A79h5GftQRjetX81/UgmglAqwgCqYbrty9Z8CMGMnhmnA3hjntkjnCjC4dZUS6WRvk0iVgxuyQ5LkkIzB4QBKMRvcsIMByTyf28q8CBFj+1Zurea4AAZbnmk2ZbsS167YfW1o0l1G2tHu7hT1fTd8jCLD0HX+lvCfAUkpJzkMFXCtAgGWn0f24eLzWdiAuXfkPRQvlw/vtXsezFcvgpTd7WG4h/HbOpzh74Qo2bPsNc5d+j3v3H1j+fXnMUMvRQzbPFSDA8lwzrY5ISARmzzXiylXvd16l9F3c0NSpg4yICNe7qLbtNGLLVtva4gjiO2+7/0BAgKXVzAtuuwmwgju+weAdAZbnUdz4kwG7dtu+V1auJOP1V93/vPJ8Rf2OIMDSb+yV9JwAS0k1ORcVSF8BAqwU+pw+dwnRvcfi8rUbDq9IkgGSQYK4edDaChfIg3kT+qNQ/tzMMy8VIMDyUjiNDRO1rhYtkXDqtK2uh3ChZAnZUs9Kcvxnp96ZzcDSbyQcPerYuXAhMzq0NbncSRUz14gLF20Aq1EDGc8+4/4DAQGWxpJOJ+YSYOkk0Bp2kwDL8+CdOWvAvIU2gCV2HA/oyzpYnivpegQBlmuN2MO1AgRYrjViDyqglAIEWE6UvHP3PmYuXINvf9iBu/fiUvXIFB6GN16pYdmhJW4tZPNeAQIs77XT0siVayQcOOgIngrkM6NjBxNEPSt3m+DHcxc4gigxtnRpGS2byRC1Qpw1UfdK1L+yb316mpA9m+udW9YxBFjuRon9/KkAAZY/1eZa3ihAgOW5auJHn1FjjYiPt32odYlOQsGCns/FEekrQIDFDFFCAQIsJVTkHFTAPQUIsNLRSey2OnL8HM5dvIJ79+IQkSkcBfPnRoXSxRD2//pY7snMkbc0lgAAIABJREFUXmkpQIAV/LmxdbsE8T/7ljPSjM7RMjJndh8gWcfHxRkwa46EGzcdaVXVqjIa1HW+o+rAQQNWrrEBrLx5gW5dkjwSnwDLI7nY2U8KEGD5SWgu47UCBFjeSbf8WyMOHbZ9ztWqIaNmDfd3DXu3qv5GEWDpL+a+8JgAyxeqck4q4FwBAixmRkAVIMAKqPw+X1zsuhK7r+ybqFfVtZOMyByewyvrPLduGRAzV4IoCm/fXmsk4+nKqb/gL1sh4fDfNjteeF5GvTqePQgQYPk8XbiAFwoQYHkhGof4VQECLO/kPvCnAStX2354KVzQjE7RPEbonZppjyLAUlpRfc5HgKXPuNPrwChAgGWn+6ttPkKThtXxWr1qyB2VIzARUdmqi1dsxLgZy5AndyR+WjbepXWr1u/EinXbceLMRZhMJjxSOD9ef/kFvN2kDozG1IWOCLBcSqrZDidPSZa6V6J2lbWJa8Cj25lQIL/38Mo6lygGL+paJSba5hdHCFs0k1HG7rYmcRTjs89DkGi34ar9uyY8+ohnNhBgaTYVg9pwAqygDm9QOEeA5V0Y4x8Y8NkYx6Pvog6WqIfFppwCBFjKaannmQiw9Bx9+u5vBQiw7BQvV7Ot5b9EwfbqVZ5AkwbVUbNqRYSGelCkx98R9NF64obFwWPmWm5cFK1AvlwuAdZHI2dj7cafERpiRKUKpRAaEoKDf5+01BF74dkKmDaqR6rbGgmwfBTAAE/rDC6JQu1tWskoXsyznU/pueIMkklGIPpdEwoXfvgl/9QZAxYssj0EhIeb8VFfk1uF4+3XJsAKcFJxeacKEGAxMdSuAAGW9xGKmWfEhQu2ncZNXjOhUkUCLO8VTT2SAEtJNfU7FwGWfmNPz/2vAAGWnebDvliIDVt/xe3Ye8n/GpkjKxrVqWqBWaVLFvV/hAKw4onTF9H9kyk4c/4y2rdoiGVrtyB7tizpAiwBrgTAKl60AGLG9UWBvFEWy+/HPUCPT6bi598O4YP2TdGlzWsOHhFgBSDAPl7yTqwBM2NSH+97600TypVV/ou3s2OKmTKZ0SVaRlSUGes3Sdizx7b7r3x5M5o39fwYBgGWjxOH03ulAAGWV7JxkB8VIMDyXuxtOyVs2Wr7/CpXRsZbzZT7Ech7y4JnJAFW8MQykJ4QYAVSfa6tNwUIsFJEPDExCdt/OWjZSbRjz0EkJtkedAXAatqwOl6pXRUCbAVju37jNhq06mfxe1ifdmhcvxoq1umA3LnSP0L4ertBOH76ApZMG4SK5Uo6SHPzdixqN+tl2cm2feUkiFscrY0AK7iy6EG8ATFzDLj+n+Nx0Tq1ZLz4gu++dG/bacSWrY71sESNrS6dZMyeJ+G//2yvNX3dhIpPeA7SCLCCK1eDxRsCrGCJZPD6QYDlfWwvXQZmxNhOAYgDAR8PSPJ4B7H3FgT/SAKs4I+xPzwkwPKHylyDCjxUgAArnUwQO7F+3LIX637ag/1/HU/uKY7IvVStkmVXVrVnKjit7aTlBBN1rwSEqlCmOMxmM8q/1C7dI4T/Xr6Oui36oGihvFi/ZIxT13sNnWY5jjjls+6oVa0SAZaWEyQd2+ctknDmjCO8evYZGY0a+A5eWc1ZvVbC/gOOa0flNKe6rVAcHxSF5D1tBFieKsb+/lCAAMsfKnONjChAgJUR9YBxE4wQO5utrX0bGY8+6vvP1IxZrZ3RBFjaiZWaLSXAUnN0aFuwKUCA5WZEL1y6hnWb9uC7TbstR+usLU+uSLxW73n06tzczZm01S3JZMKTtTukC7A279yPDwdPRqO6VTH6485OHVz4zQaMmbYUHVs1Qo+ObxJgaSsN3LJ2+QojDv3tuAvq8cdkvP2WDFFc3ddNFGsXReNPnU59WYB17SJFzOjYzvPjg2I8AZavI8j5vVGAAMsb1TjGnwoQYGVM7bXrJPy+3/a5VrWqjAZ1CbAypqptNAGWUkrqex4CLH3Hn977VwECLC/0PnL8rGU30dbdf0DUixLt8LYFXsyk/iHuAKwFy37E2Blfo/M7r+LDDm84deqnnfvQffAU1K/5DL4Y+j4BlopDv2u3EQkJnn05FkcGDx12pFRFC5sR3d47WOStPAmJwNz5Rly67JyY1a1lRvUXvLOJAMvbqCgzzpAYj5BNKwCT3XWSykyt2Cxy0VIwPfm8YvO5MxEBljsqsU8gFSDAypj6x/6RsORrG8DKlUtG9/c9+4zOmAXBPZoAK7jj6y/vCLD8pTTXoQI8QuhVDhw+dgYbtwuAdQAnzxBgTZ23CjMWrUGfLm+hXYsGTjXd+8cRtO85Gs89VRZzx/dL7hN7P9Fp/4hwI0KMEuLiTUgy8YuaV4nqxaCTZ4Cps7wYmGJI/rxA965ApkwZn8vTGe7eAyZMS310UMzTtztQML+nMz7snzUi1LKTLDYuEfD8BKJ3i3KURQGzLEOeOBD4c6+6FTFIkHp8BsOTz/nNztAQCZnCjEhMkvEgwTs46zdjuZAuFciWOdTid1qf97oUxQOnExOAfkMcB2Tks8yDpXXRVbx/ivdR8f4p3kfZqIA3Cljf57wZyzFUgAp4pgB3YLmplzg2KI4P/rD5F5y7eDV5VIF8ufB6/RfQrX0TN2fSVjd3dmCNn7kc877+AR990Aqt36jr1ME/Dh1H626foVL5Uvhy6sfaEkFH1k6bm4Q//swYncmRHRjUOxQ5IwMn3JWrwIgvEhEXZ7MhZw5g7KcPH6TYtKXA/ZixSPhpjTaMDg1DtuHTYSxeWhv20koqQAVUr8DEmUk4dMT22ZwrJ/Bx71Bkz6Z602kgFaACVIAKUAFFFSDASkfOG7disX7LXny38Wf8dfR0cs/wsFDUffFpSxH3KpXLwOCPAj+Kht39ydwBWB7twKpcFnO/4A4s9yPgv543bhgwfGzG4FWm8Ic7r/Ln85/daa105iwwZxFQqKAZjxQFyj5mwKOPeG8Xd2B5r11GRpq//wryN7MzMoX/x2bNDmnoLBhye7ndzwOLuQPLA7HYNSAKcAdWxmU/8CewcKnjPAXyAz26AmG2i50zvpAOZ+AOLB0G3QcucweWD0TllFQgDQUIsFII8yA+AVt//sOy22rXr3/BZHd87YmyJSzQqmGtKsiaJUIXSeUOwFr0zQaMnrbUrRpYdao/hUnDP0jW7t//7LbI2CkalS3McizmRmwCj8X4KdPWb5CwZ6+tzkb27GZUrujZdvrHSgKFC2cMgvnJXY+XYQ0sjyXL8ICQ/dsRNnuEwzzm8Agk1W4qLtHN8PxKTWC4dAYhf+xymE7OWxjx/abAnCWrUss4nYc1sHwqLydXQAHWwFJARAAbfjLg591Gh8lKFJfxbmvPPqeVsSZ4ZmENrOCJZSA9YQ2sQKrPtfWmAAGWXcQHjZ5rqW117/6D5H/NHZUDr9WrhiYNq6N40QJ6yw+4A7C27zmI9z6a4NYthO1bNETvLrYbGwmw1JFSiYnA6PGieLsNCrxcT8bzz/GLsTVCBFj+zVXp1BGEf9ELBrui7WbJiPgeYyCXesK/xrhazWxG2KxhCDn4s0NPU7HSiO/1BRDiu6OrBFiugsPXA60AAZYyETCbgW++TX3bb/myZjR/k/XvvFWZAMtb5TjOXgECLOYDFfCfAgRYdlqXq9nW8l+hIUbUfL6SZbfVC89WgNFo25Xiv9CoYyV3ANb1G7dRo2l3FC2UF+uXjHFqeK+h0yw3N477pCsa1KqS3IcASx1xFjuvxA4sawsLM6N/bxNCfffcrQ7HPbCCAMsDsTLY1XD1IjKN7gbD/bsOM8V3+Bimp2tmcHYfDU9KtAA34+mjDgskPVkNCZ2HwHIDgA8aAZYPROWUiipAgKWcnLIJmL/YiLPnHN9PalSXUfsl/uDkjdIEWN6oxjEpFSDAYk5QAf8pQIBlp/Ub0Z9YoFWjOlURmcO3xz78F+KMreQOwBIriALtolD7kmmDULFcSYdFb96ORe1mvSCbzdixajKyZ81MgJWxsCg6WvyqO2GKEbdu2b4QV60qo0Fdfhm2F5oAS9G0S3uyu7eRadR7kG7YLssQnRMat0fSyy39ZISXy9yLtYA36dq/DhMk1m6KxDe7ejlp+sMIsHwiKydVUAECLAXFBPAg3oCYOQZc/8/xx9WmjWVUfJKf256qTYDlqWLs70wBAizmBRXwnwIEWP7TWpMruQuwdu79E136f2E5Zhkzri8K5I2y+Hs/7gF6DplmqSfWqmkdDPywtYMO3IEV+LQ4ckzC0mW2L8Jio0jv7iaIGlhsNgUIsPyQDQnxyDSuB6TzJxwWS3qhIRJa9fSDARlfwvDfFQuAM9y74zBZ/Ns9YKr+SsYXSDEDAZbiknJChRUgwFJYUAB3Yg2YGSPh7j3bD0/is7tNKxmiLhab+woQYLmvFXumrQABFrODCvhPAQIs/2mtyZXcBVjCuXEzl2H+1+sRGhqCSuVLIiw0FAf/PonYu/dR9rFHsXDSR8gcEU6ApbJMmL/QiNNnbV+Cy5WV8dab/AKcMkwEWD5OXFlG+PTBMB7+1WEhU7lnEf/ecEDSzlFuw7njFhBnSExI9sVsMCCh0ycwVXxBUSEJsBSVk5P5QAECLB+ICuDKVQNi5hohalhamzj236GtCQUL8Acod1UnwHJXKfZLTwECLOYHFfCfAroFWBNnr7DUZHr95Rcst+eJ1uOTqV4rP/HTbl6PVfNATwCW8ENo+uW3m3Ds5DnLDY6FCuSx3NrYrkUDhIelLqjEHViBjf616xKmTHcEA506mFC4EL/8EmD5NzfDlkxAyK4fHBaVi5TEgz4TgTBH8O1fy7xbTTq01wLkDOKM7v+b2RhiKeouFy/j3aRORhFgKSYlJ/KRAgRYPhIWwMlTEhYtkWD3NoPMEWZ06SgjMpKf4+4oT4Dljkrs40oBAixXCvF1KqCcAroFWE/V74QH8QnIkT0Ldq+dZlHUWsTdG3kPb1vgzTDdjyHACmwKrFxjxIGDtt1XhQub0ak9bzNyFhXuwPJdroZuWo7QlbMd4VVUXjz4aDqQNYfvFvbxzMad3yP8q4kOq5gzZ8WD/lNhzltIkdUJsBSRkZP4UAECLB+KC+DAQQkr1zj+EBWV04zO0TIiIgixXKlPgOVKIb7ujgIEWO6oxD5UQBkFdAuwFn2zAVt+/gOv1HkOzRo9vNVq2HjvIdSQ3g9vMGTzTAECLM/0UrJ3XJwBY8YbYbI7Ldj8DRPKl+MXXgIsJTMt/bmMB3YhbNYw2N+ppTTk8Z83qVcKXTUHoRuXObwgKwjnCLACGV2u7Y4CBFjuqJSxPpu3Sdi+wxFiiZ3U4jih0ZixuYN9NAFWsEfYP/4RYPlHZ65CBYQCugVYDL86FCDA8iwOV68ZkDePMoBp2w4jtmyzYYMcOcyW4u1szhXgDizlM0M6dQThX/SCwZSUPLk5NAzxPcYpesxOecs9mzFszgiE7NvuCLEUOh5JgOVZLNjb/woQYPlH8xWrJPz5lyPEKv24jLffYk3L9CJAgOWf/Az2VQiwgj3C9E9NChBgqSkaOrSFAMv9oN+8ZcDU6UZ0aJfxAq1i19X4CUaHG4xerivj+ar8optWRAiw3M9Vd3oarl5EptHdYLh/1wavDAZLwXa5fBV3ptBOH1MSwif2g/HEXw42K1GgngBLO2mgV0sJsPwTedkEzF9sxNlz9vtZgacqy2jciJ/taUWBAMs/+RnsqxBgBXuE6Z+aFCDAsovG0RPnkDkiE4oWyutWjBITk/Dzb4eQL09OlCn1iFtj2MlRAQIs9zPi+x8l7P1VUqRAq6h7JepfWVtYmBl9e8kID1Nmd5f7XmmnJwGWcrEy3L2NTJ+/D8N/VxwmTXirG5JqNlZuIRXNZIi7h/AxH0C6fN7BKrlQcYgjk942owSEGCWYZDOSTNr7+5UrPIfEus28dZ/jNKAAAZb/gvQg3oA58ySI3dr2rX5dGdX4A5XTQBBg+S8/g3klAqxgji59U5sCBFh2ERFF3J+rXBZzv+jnVpzMZjOefrkzChfMgzXzP3NrDDsRYHmTA/EJBowZZ0Ti/09aZbRAq7h5UNxAaG1Vn5PRoB5/oU0vNgRY3mSukzEJ8cg0rgek8yccXkys2xyJTTsqtIg6pzHcuo5MI7vCEHtLnQYGyKr4Nn1hqlovQKtzWV8rQIDla4Ud5797z4AZMRJiYx0hVsvmMsqU5ud8ymgQYPk3P4N1NQKsYI0s/VKjAgRYGQBYYmjdFn1w63Ysfls/S43xVb1N3IHlXoh+3iNhwybH2hZFCpvR0YsbA8+cNWDeQseqrqL2laiBxZa2AgRYymRH+IxPYPxzj8NkSU/VQEL0IGUWUPks0sVTCB/9IQyJ8Sq31L/mxX84GqYylf27KFfziwIEWH6R2WGRa1cNmDVPQkKCI8QSRd0fKcrPenuxCLD8n5/BuCIBVjBGlT6pVQECrAwArISERFRp9B7ETqwDm+aoNcaqtosAy73wjJtoxJ07jl9ExUjxa6r4VdWT9tUyCUeP2WBYuTIy3mrm2RyerBcsfQmwMh7J0KWTELpjncNEppIVEN/7i4xPrqEZjH/vQ/iUARqy2PemmkPDEd9vMuTCxX2/GFfwqwIEWH6VO3mx02ckzF/k+MOXKBfQqYOs2GUwgfFM2VUJsJTVU6+zEWDpNfL0OxAKEGB5CbDu3X+AzyYtxpoNP6PEIwWxduHIQMRP82sSYLkO4aHDBiz/Nu17sD05/icKwU+Y7DhXx3YmFCnCX2RdRYIAy5VC6b8euvlbhK6Y6dBJLlAU8X0nwxyRJWOTa3C09O9pGO7eybDl4aESskaEID5Rxt04222OGZ7YxxMYbl5H2ILPHfMhexQS+k+BHOVeHUofm8jpFVKAAEshIb2Yxtn3h2zZzOjaSUbWLPzcF5ISYHmRWBySSgECLCYFFfCfAroGWEtW/oSvVv2UrPaZ85eRKTwM+fNGpRuBpCQTLl+9gSSTydKvd5fmaN+iof+iFkQrEWC5DuasuUZcvJh695X9yFcayKjyjOtdVOs3SNiz1/aLbKFCZnTu8DCP2dJXgADL+wwxHtiFsFnDYJ/F5myReDBwBsyRub2fmCOh5VsIjb9vQ/hcx/qRcr4ieNB/CqBDqBms6UyAFdjIbt9lxOYtjt8h8uV9WIIgLCywtqlhdQIsNURB+zYQYGk/hvRAOwroGmDt/v0Qps1fjYN/n7QcA/SmvfHKixjSqy2M4iooNo8VIMBKX7ILFwyImee4Y6r9uyasXC3h1m3HL6TvvC2jVMm0IVbKQvBi5eZvmFC+nHe573GwNT6AAMu7AEqnjiD8i14wmGy7g8xhmfCg32SYCxXzblKOSlZAywBLOBGy/iuErZ3vEFHLsdIeYwBjCCMdBAoQYAU+iCvXSDhw0PF7avFiMtq8LUNKe4N34A33gwUEWH4QWQdLEGDpIMh0UTUK6BpgWaNw6/ZdrN6wC2Onf41Hi+TH203qpBsgSTIgMntWPFm2BArm5+6BjGQzAVb66i1bIeHw37YvnaVKmvHO2ybcuGHAzDkSHjywQayQECC6nQkFCzgHUrt/kfDjRttc2bOZ0buHCYb0N3dlJLxBNZYAy/NwGq5eRKbR3WC4fzd5sNkgIf6DUZBZsNtzQZ2M0DrAEi6FLZmAkF0/OHinp8L+iiSCiichwAp8cGQZWLREwqnTjhCrfFkzmr+p713YBFiBz89gsIAAKxiiSB+0ogABll2kmrQfhKjI7Jj7RT+txE/zdhJgpR1CUbR9/CQj7DcHtmllQskSDwGV2J01b5ERSXZlbzJHmNGlo4zISEeIJeYYLwrB212rXb+OjGrPuz52qPkkU8gBAiwPhbx7G5lGvQfpxlWHgfFt+sJUtZ6Hk7F7WgoEA8CCLCN8+mAYD//qCLHqt0TC6+0ZfI0rQICljgAmJAIxc4y4es3xV6sa1WXUfkm/3wUIsNSRn1q3ggBL6xGk/VpSgADLLlriSOHpc5fRqmn6O7C0FGC120qAlXaExG4psWvK2nLnkvHh+45fMo+fkPDlUskBckXlNKNztIyICBvE+vuohK+X2+YKDQH69TEhPIzHB939GyHAclcpAAnxyDSuB6TzJxwGJTZ6F4mvtPZgInZ1pUBQACzhZBo5Q+DpKgPU/zoBlnpidPeeATNiJMTa/ZglrGvaWEbFJ/UJsQiw1JOfWraEAEvL0aPtWlOAAMsuYgkJiQgNDYGBZ6r8lscEWM6lTkwERo83IiHB9ktp40YmPFU5NXD6fb+EtescjwUULmRGh7YmGP9f22LeQiPOnLXNVbWKjAb19fll1dvkJsByU7m0dtM8VxcJ73J3q5squt0taACW8NjJrj3LkdP3PoVcvorbmrCjuhQgwFJXPK5dlzB7nsGhBIH42tu6Zfp1NNXlhXLWEGApp6WeZyLA0nP06bu/FSDAslN81uLv8M26bejVqTka1nb9ZXnczGX45rtt+Lh7a7xWr5q/YxcU6xFgOQ+juClQ3BhobWI3Vb9eNiCVctSmzRJ2/uwIsUqXltGymYzLVw2YMctWpVV8Ue3d3YTs2bn7ypM/IgIs99RyVs/IVLqSpe6V7qsFuyehR72CCmABsNRNG/MhDPfuJOtgDg3Dgz4TYS5ayiNt2FkdChBgqSMO9laIEgRzFhoh25W/clVHU31eKGMRAZYyOup9FgIsvWcA/fenAgRYdmq/230Ufj94DJ8NiMbrL7/gMg479/6JLv2/QPUqT2Dm6F4u+7NDagUIsFJrIupVTZhixK1bth1TNV+UUatm+jumlq8w4tDfjrUtqlU14e49CQf/tP172TIyWjTj7itP/x4JsFwrFrJ5JcJWzHDoKBd81HLjIMIjXE/AHh4rEGwASwhgOHfccgTVkJhgg1hZsuPBR9NhzpXPY404ILAKEGAFVv+0Vj9yVMJSu9ICol9adTTV6YEyVhFgKaOj3mchwNJ7BtB/fypAgGWndp3mvXDp6g2sXzIGRQvldRmHG7diUf31Dyw3EW76epzL/uxAgOVODhw5JmHpMsfdVP37mJAls+sdUwsWp75lKOWa0e1NKFo47bk2x13APXMiXstczB1zddPHFcAyxN2HOSKzbvRI6WjIH7sQFjPM4Z8FbHjQfyrM2SJ1q4uvHQ9GgCU0M/65B+EzPnGQT85TCPEin7Jk9bWsnF9BBQiwFBRT4al+3mPEhk2OP3xFRZnRuYNjHU2Fl1XVdARYqgqHZo0hwNJs6Gi4BhUgwLILWsW60UhMTMKBTXMstbBcNbPZjEp1oyFJEvZvnO2qO193ogB3YKUWZe4CI86es32hrFTRjCavuXfNdVq3DFlXyZfXjPe7pD9Xi8sbsefBJXyZry6qRxRk3v5fgfQAlvHQXoQtGocH/afAnCu/5jUzHv8TDjcDuPDIEHsToQvGwpBkt2Mmc1bE958COW9hzeuhZgeCFWAJzUN2fIewpZMd5DcVL4P4vo7/pub40DaAAEvdWbBmnYR9+9Ovo6luDzJmHQFWxvTj6IcKEGAxE6iA/xQgwLLT+tmGXXDv/gP8tn4WMkeEu4yCAFhP1umA8LAw/LZ+psv+7JBaAQIsR00uXRY3BNnqVYlXP+hiQp68rndfWWcStwzNmiPh9m3HX1XF683fMKF8ubTnOpF4GzUurrJMFWEIwXcFXkGZsJxMXQBpASzp3D8IH9vTAm8ErInvN0WTO0SMp/6GtHcTQvZuhiE+LsMxj+8zAaYS5TM8DydIX4FgBlgWiLVqNsI2LncQIalSdSR0ctydxTxRrwIEWOqNjdWyJUslHDvuCLEqlJfRrGnwlxsgwFJ/fmrBQgIsLUSJNgaLAgRYdpFs2mEwjp08j/+xdx3QUVRt+5mZbekhjSQQeu+EXgUE6YKC2LGhKAJKt/vZAaUpCth+sYKIghBpojSlhy69GCCF9L5tZv4zG7Ozk2yyvd97znfOZ/be977v895d7jzzli8WzUXPLm0s+vjM+WuYMPl/aNowEb+uftfifDKBEFiWzsD6DUK9KvES2bQJh0cesv0Caa7LUEQEbyjeXtuYnfMXfii5aJwSxwRhS+JoxDOBmxpXCYY5AovKzYRq/lRQJYVGzNgmbaF9fiGEwtPePuiCHDAHdoDZvx30rRtOU1f71OvQd7ZcR9BpGwawIH8nsATXKr58D7LDf0i8rBt4F3QTpgSw533HdEJgeb+vdHrgy68Y3EyXvvh6fioLIaXQnwchsPzZu+6zjRBY7sOa7EQQIASWyRlYtPJHfLnmNyS3b4Evl8yDXCaNhDE9LhzHY8qLSyAUcn/w7sF4afpD5DTZgQCJwBJBKymhsHCx9Mw9/ID9ba3TrlP4v68ZsP9xVsPu4NC7Z81kWB6nQfu0H6p5sYU8Ar8mjEIYLbfDw/6zpBqBVVoM1YKpoLPTqxmp79gH2smvA0LLRy8bQmFs+vg+yPZvA3PumE2pgtaYoh3/DPS3323NVDLHCQgEAoEFVg/l0rlgLp2SIKYd9zT0g8c5AUUiwpUIEALLleg6T3ZZOYVVn9HIN2kg06Mbh5HDbX+J5jytXC+JEFiuxzgQdiAEViB4mdjoLQgQAsvEE1nZ+Rj+4FxotDp079wK8559AK2aNajmq0tXb+KDlWsN5BXD0Nj89Xyrir57i9O9SQ9CYIne+P0PGnv2idFXkZE8ZkxjHeJAhC5Da9bRELjYubNZKBU1v0ldUnAcHxQcN3s8eijrYm38UMgpaYqBN50lV+tiSmBBq4ViyRwwV/+pcVvd7eOgG/+0q9WyWj59+TSYQzshO/A7KK261nVsQkMgNMJq2ZUTuebtoRv9qM3ryAL7EQgIAkvoTFheBsUH08Gk/yslsZ58DfrkfvYDSFa6HAFCYLkcYqdtcDSVwsbN4os0oRyspbuD0zb3kCBCYHkIeD/blhBYfuZQYo5XI0AIrCru2bbrEGa9sQJCfSthxMdGoVGDeAQHqaA56OGJAAAgAElEQVTRaHHteiZuZuYYV70+61FMGD3Aq53szcoRAqvCOzod8MFSBuXlYsTOqJEcundx/M3nkVQaWVmo9S2qnueQfP1H5HI1ExujgxthZVzgnnVTAku+6k3Iju2VfLX4kHBQpUXSh+t7n4V+wFiPfQXpvFtgDv6XImgmUsxUMT44FGy326HvNwJcvSYe05lsbBsCgUJgCagIKa+KhdNB52dLQCL11mw7M+6eTQgsdyNu/35CxLYQCW56F7ljMIe+vR2/i9ivlWtXEgLLtfgGinRCYAWKp4md3oAAIbDMeOHw8XN4a8nXuPxv9dSgyumJ8TF4afqDGNi7szf40Wd1IARWheuOHKXxa4oY3RQUxGP2DBZWNMO0yvcCQSavJQPwp5LLeC5HJGTCKBmayCNwQpsrkT89vD3mRXWxak9/m1RJYOV8+C5k+36TmKfv1Ae6h2ZBaSalUEgl1HdyXz0oIUWQSd0LZv9WMBdO1J4iSDNg23YD22so2PY9wcssd1/1N7/6uj2BRGAJvqIy06BaMA2UuszoOoF8Vc9ZBj6+esS0r/vXH/QnBJZvefHPPQz+3CW+TLOmfqZvWSjVlhBYvuw979GdEFje4wuiif8jQAisWnyceuoijp48j5sZOSgpK4dKqUBCXBQ6t2+OHp3bGNIHyXAMAUJgVfALSz5iUGBSd6J/Xw6DB7nvjeeQmxvxjy7f6MynwtviuYgOGJmxGdf0xRInL43pi3tCmznmeB9cLRBY2pQ1KP96uUR7tll7aJ5bAMjkoHKzDHWxqOIC8eGakUEzczG4Jq1dajV96RRkf28Dk7rHYhdBIUWQ6zUU+p5DwIdFulQvIty1CAQagSWgSV88aaiJRXFiUwouIhrql1YA4aRrqmtPnO3SCYFlO2aeXCF0Ml60hAFrcgWx1MHYk/o6ujchsBxFkKwXECAEFjkHBAH3IUAILPdhTXYygwAhsIDzFyh8t0asOUHTMERfhYa4p/PPX+oMTMjcZvSO8N71UP17kCgLwQ19CYalb0I+pzF+ToPCV3G34/bg+gF1pmMuHULZopclNnN1k6Ce9xEQFCLid/MqVAunS+pMGSJE5i0HH1fPqZgZUgQPbK/oIpiTUatsQQd91wHgeg0D26ilU/UgwjyHQCASWALazJFdUH7xjvT7mNgI6rkfAsogzzmE7FwNAUJg+d6h+OVXBseOi1FYSUk8nnys9i7GvmdlhcaEwPJVz3mX3oTA8i5/EG38GwFCYDno3+vpt7A+ZQ+ef3K8g5ICczkhsICvvmFw5ap4UezYnse4u9x3UXwsaye2l183HsBRIQ2xKnag8b9PaXJxV+YWlPN6499UFIMN8SPQXhkdEAeXvnIWqsUzIXRDqxxC5JIQ8cFHxlTDgD6bCuVHL4LixVfYXFQc1C9+YldxdNMNKJ0GzNE9YIQugkKKYG2DosC2SgbbZxjYjn3AywK7k6Q/HtZAJbAEX8q3rYF8wxcSt7KtOkMz7T2ArrmLsD+eA2+2iRBY3uwd87pl59D46BNplsGUySzi67rnxZo7ESMEljvR9t+9CIHlv74llnkfAoTAssMnOp0ev+89ip8278aB1IouZGd2fWWHJLIk0AksT18S/9UVo/fN9ZKDuDFhBLoq4yR/21uejgeydoCDeHmtQyuxNXE06stC/fogU7duVqQFlpWI5JUqGOrZS8HXa1yj7UJUlPLr9yWfc0nNDOugUNqGGc+DuXSygrRK3WcxRZCLq19R16rnYHBmCDbbNiezvRmBQCawBL8ovltSvSZdzyHQPjLXm90WULoRAss33V315Vr7tjzuGee+l2vuQo0QWO5C2r/3IQSWf/uXWOddCBACywZ/XL52Ez+l7MHGbftQWFRqXCl0Kty5brENksjUSgQCncCqGqbfqCGPxx9x3wXxldwD+L/ic8YD2UZeBzvqjTF7QNeVXMLzOfsknzWShSElYRQiGRsJGV/5ChTlG8grIVWvcvA0A83zC8E172DRCnnKN5Bv/loyj23bHZopb1oVIWJIEfxrC2QHfweVm1nrfrwqCPrk28AJ0VZN2lrUjUzwDwQCncACx0H5yatgzhySOFQ38mHoRk30Dyf7uBWEwPJNB3q6vIG7UCMElruQ9u99CIHl3/4l1nkXAoTAsuCPcrUWW/88aIi2On7mkmR2r65tcf+Y2zGgdydS0N3Ocx3IBJa5Qqn338uhdUv3FG8v4XToeH0N1LxImK2IvQ13htQcVbSw4BiWFUjT1pKVsVgfPwwKys9SdjTlhlpWdPo1yenWTnoZ+i4DrD7xitULITuwQzJfKJ5eU4QIpSk3FGJnhILsl05Z3Idt2RFsr+Fgk/uCl/spkWgRhcCdEPAEluB6rQbKpbPBXBXJeOHPmolzwPa6I3APh5dYTggsL3GEjWp4Q4MZG1W2azohsOyCjSyqggAhsMiRIAi4DwFCYNWA9T8XrmHd5t1I+X0/SsvUxlnhocEYO7wf7h87CA3q1XWfp/x0p0AmsP7YTWPXbrHGRGQkjxnTWFBiOSyXen1l0Rm8lXfYuEciE4LDSfdY3HNa9h78XHpFMm9EcEN8FifWzbIoxNsncKyhhhVz7phEU9X9k5F/23hD50irRw2ytGMeh37Y/RVihBTBCyfA7N8K5thfkgLw5vbhohPA9r4DbM87INTWIsP5CFzSFaGZPNz5gp0skRBY/wFaWlwRLZmdbkSYp2hDPSyudbKTUSfibEGAEFi2oOVdcw8dpbE5RbynBAXxmDuTBeNH76sIgeVdZ85XtSEElq96jujtiwgQAsvEa8UlZUjZeQDrNu3CuUtpxk9omgLHVTyxHt32KVRKhS/62it1DlQCi2WBhYsZlJeLbNWIYRx6dndP9BXH8+h+Yx0y2DLjuXg1qiueDm9n8ZzoeA4PZe3APrW0691TEW3xep1uFtf7wgTFN4sg+3urRFXFkLsQ/OQsZOSV20ZgAYaaVcrFs0GnXZDI1N35KKDTgTm4Q5KmaA4jXq4A2+U2sL2HgbUifdEXcPZWHZ++tQs6cPgibpC3qmjUixBYoouETpzKBdNAlRSKJJZCBc2cpeDqN/V6X/qrgoTA8l3P6nTAB0uld5XRIzl06+Keu4o7kCMEljtQ9v89CIHl/z4mFnoPAoTAApB66iJ+2rwL23YdhlqjNXqnTYtGuPOO3oYUwWEPVBSEJcXanXt4A5XASj1GYcMm8RWmQsFj3iwWcjc1idtUdhVP39ptdKYKDI43uA9htHUKlPI6jEn/DWd1+ZID8XZUDzwW3tq5h8TN0uS/fQf5JmlTBrZ9T0S98oEhOs4eAkswQXioVs2farGWVVVz2abtwPYeCrZLf/DKYJejsaLoDH4vFbtSunJDmuLxQFhL3BXSxJXb2CR7Uf4xLC6sSJPdX38cGsjCbFrv7smEwJIiLpDEyvdngNKL/5Zz4XWgmfsh+Oh4d7uH7AeAEFi+fQx+/4PGnn1iFFZMNIfpzxICy7e9SrR3NgKEwHI2okQeQaBmBAKWwMovLMbGbX9h/ebduJImRpIk1I3GqMG9MPqO3mjaMNGAXFm5Gt2GP00ILBd8kwKVwFrxKYOMTDH6qk8vFkOH2JKX5pgzRmekIFWTbRTyeHhrvBXVwyah2Ww5hqVvQqZJFJdg0WexAzE8pKFNsrxlMnPxJJSLZ0nUYRu1hHbmIsTXjXSIwBKE0tk3oRQ6GpaKHQ3N2c7ViQXbYzDYPsPBxSS4DR5zhfrdsXlnRQzejO4BoZ6aJ0dV+yeFt8YbNn4v3K0/IbCqIy47fQiKj1+WfMA1aAH1ix+72z1kP0Jg+fwZKCmhDBHjpuPhBzk0b+ofJBaJwPL5I+oVBhACyyvcQJQIEAQClsDqNPgJ6PQVxavjYiIxsE8yRgzqgS4dWoCqUoSIEFiu+zYEIoFVWEhh0TLpZXD2DBbhYe4hsI5rcjAyY7PEqfuTxqEBY3ukyUVdIUalb0IJrzfKU4LBuoSh6KL0vdpMhm5mpw4YbeFi60Ezdxn40AgkRAU5TGAJgpkr/0CxdA4onRghUrmhvttAsL2GgfVAzZ7d5el4IGu7677sVkgeG9IYr0R1RQITYsVs507ZU56B+7O2SYSGUDIcTbrX6shE52pknTRCYJnHSUgBFlKBTYdm5iKSfmvdsXLqLBKB5VQ4PSLsp19onDwlRmE1a8ph4oOEwPKIM8imXokAIbC80i1EKT9FIGAJrLYDHjW4VKhnNXxQD/Tv2RF9u7dHcFD1Ll6EwHLd6Q9EAuvQERqbfxMvgo0a8nj8EbEToOvQrpD8zK3d+LXsqnGbYcENHKr1c0CTiXEZ0npR4bQcvyWORmOZ9xfBrgSCvnUDqtcfk8CvfvVTcIkVXRmdRWAJspiT+6Fc8ZpBLtuoFbg+wwydDfkg9xM3gg5ndHmGlNByEyLS1eewNvnPRXTA1MgOCKZkblFDSIUdnZ5i1v7/RXXDk+Ft3aKHPZsQAqtm1BRffwDZfpGUFFKBNVPesgdmssYBBAiB5QB4XrI0M4vCJ6ukL96mTeEQG+P7JBaJwPKSQ+bjahACy8cdSNT3KQQClsDavf+Eoe7V7gMnwLIV/wALZNbtfZNx59A+6NWlLRimgmQgBJbrznQgEljf/MDg4kUxffCOwRz69nbPJTCDLUXX6+skDv05YTh6KB3rqLmh9Aqezd4jkdtQFobNiaMQRVcnhV13ouyXrFi7HLJdG40ChCgozfQFxv92JoFlILFOHQAfWw9cfJL9Sjth5U19KUamb0I2J3ZbFcR+FNvfpZFQQjOA1cVnsbVMbJhhak4srcK8qC64P7S5E6ysWYTwnRiRvhm32HKzk+rJQnCovuXunC5VshbhhMCqGRw641+o3pwkmaB+4//AxdX3lLsCcl9CYPmH279czeDav+LdpVsyh9Gj3HN3cSWChMByJbqBI5sQWIHja2Kp5xEIWAKrEvrs3AL8smUv1qfswY0MsSZQbHQkRg3phTFD+6BefAypgeWisxpoBJbQffCt+TJwJgFXU5/WI85N2Xbv5B3GJ0VnjN7soIjGlsTRTvHuyqIzeCvvsERWJ0UMfkoYhiA3RdLYbYi6DEFzJ4DSaYwiNM++A7Zdd5cRWHbr6sSFxZwOd2ZsxgWd2LVNEL88tr/bCqvvV2fh9dwDOFOlIUClmW3ldfBGdE/0UjlGspqDTbB/TEYKzusKakX187iBGB7snXXdCIFV+xdC+eELYM4eNU7S9x8N7f3TnfgtIqIsIUAILEsI+cbnZ8/R+OFHMXpceMc7dxaLoCD3lD9wFUqEwHIVsoEllxBYgeVvYq1nEQh4AqsSfp7nsf/oGfy0eTf+2JdqrI8lfN68cX1cvHrDMJV0IXTugQ00AuvCRQrf/iCG4YeF8Zgzwz3pg+WcHh2vr0GpSZrYR7H9cHeI89rLz835G9+VXJAckkFB9bA6bjDoKrXlnHuSHJMm37YG8g1fGIVwMfFQv/k1DEWv/hvOjsByTGPHVwsRUPdmbsNBTZZE2Lw6yZge0cHxDWyQIDz+rC25hAX5R2uMhBoanIRXo7o5NS317owt1eyfEtEOBZwW3xeL57ibMg4bEkbYYJH7phICq3asmdOHoDQp6M7LlShf+COgcn1HT/edAu/eiRBY3u0fa7XjeWDJRwwKCsR/FwcP4tC/r29HYRECy9oTQObVhgAhsMj5IAi4DwFCYJnBOq+gGBu37sNPKbtx7XqmZMa4kf1x35hBaNOikfu85Mc7BRqBJdS+EmpgVY7uXTmMGuGey99Xxefwcq5YoDyaViE1aQJklKiPo0eN43k8cut3/FF+UyLqwdAWWBjT21HxrlnPsgh64T5QJWIUjvb+56DvP0qynz8RWAJh/0z2bmwquyaxcXxIUyyL7ecanK2QWsbrsbzgJFYVnoEa1Yld4aw+FtoKs+p0driw+tO3dlWzf3RwI6yIvQ2X9UW47eYvEo23J96JtoooK6xw7xRCYFnAm+ehem0i6Bzx33Ld2CegG3qfex0VwLsRAst/nL//II0t28Q7Q0gwj9kzWfxXccMnDSUElk+6zeuUJgSW17mEKOTHCBACy4JzDx8/Z4jK2r7nCLRanXF2+1aNce+YQYYC8ELtLDLsQyDQCKz3lzAoLhbfXj50P4sWzV0ffi8QFr1vrkeavsToqBfrJGOqCyJthEivsZm/4bQ2T3IoXq7TBVMi2tt3UFy4SnboDyj+7z3jDnxwGMrf+x5QqPyWwHon7wg+KTotsa+vKgHf1x0CxomEpr1uE+pSCTpuKL0Kc9+OOrQCM+t0xsTQlnYRsB8UHMeSguMS9YQ6cGvjh0L+n/1CR0ahM2PluCukiSG10tsGIbAse0S2dzMU3y8Tv+OhkSifvwZgpEWpLUsiM+xBgBBY9qDmnWt0OmDBIgZarXiPGX8Xiw7tXX+PcRUihMByFbKBJZcQWIHlb2KtZxEgBJaV+BcWl2LT9r+xbvMuXLoqRpeEhwZjzLC+eGHqA1ZKItNMEQgkAivrFvDxSrGrGs0Ar76gd8sz1I7y63g0a6cRehXF4ETSfQil5S45kHmsGqMzUnBNXyyRL0S33BlS0dXPW4bq7cmgb14xqiNEZggRGlWHv0RgfVt8HvNy90vMa6eIwi/xwxHsovNgr69PanLwat4hHNHcMiuimTwcr0V1x+1B1hflXldyCc/n7JPIayqPQErCSITR4suIP8pu4OFbvxvnMaAMEYsxTJC95rhkHSGwrIBVp62IsiwTf480j78AttvtViwmUxxFgBBYjiLoXeu37aDx134xCqtuHI9nn3ZPKQRXIEEILFegGngyCYEVeD4nFnsOAUJg2YH98TOXDFFZW/88iHK11iCB1MayA0gAgURg7f2Lxo6d4qWveXMeD9/vnkvfhMxt+EudYXTSI2Et8W50L/ucZuWqG/oSDEvfhHxOLIwuA2WIcumpirdSimun0ZdOQ7VohnETnqYrIjPC6vglgbWz7IYhxdP0XXk9JgRbE0cjipFGnLkWedukby67hndyjyCNFSMITSX0USXgrajuaKmo7jfTeXvL0/FA1g5wJgjE0CqD/QmyEIlSQtTibekbcNmkwP20iA54oU6ybcq7eDYhsKwDWLHhS8i2/WCczNVrAvUrq6xbTGY5hAAhsByCz+sWFxVRWLSMgVATq3JMeoxFgyTfjMIiBJbXHTGfVIgQWD7pNqK0jyJACCwHHFdSWo6U3/dj3ebd+OmzNxyQFLhLA4nA+uIrBv+miWH3o4Zz6N7N9fWvLukKq9Xz+bveODSUh7n84J3S5BrSCdW8SNSFUnKkJI5CM3mEy/e3tIFy1RtgjovROPquA6F94iWzy3w9AsucLyJoBVISRqGxPNwSVB7/XAsWnxeexYcFx1Fs0oigUjEhQuq+0OZ4IaoLomhlNX3PavMNUYHlJmuF7pibEkaidQ3E1zfF5/GCSbRaJK1AatK9UFLek3pGCCwrj2ZxfkUUFif+5qpnLQHXrJ2VAsg0exEgBJa9yHnvurXrGZw5I95n2rbhcO94199nXIEIIbBcgWrgySQEVuD5nFjsOQQIgeU57MnOARSBpVFTeGeh9KF39gwW4WGuf2M5I2cffiy5ZDxvg4PqY3XdwW47f+aifuKZYEPUS6wH07Go/GyoXn4QlMlr5PKXV4Kvb74roy8TWOai4eSgsT5hOLooY912FpyxUR6nwcL8VEOXQNZMhawwSobpkZ0wKaI1FKj4zmXoSw3RgDmc2qiCEA34bd0h6BeUWKNaGp5F8vW1hq6ElWN+dC88HNbSGaY4RQYhsKyHUfnlfDCHxVRqtlNfaCa/br0AMtMuBAiBZRdsXr3oxk0Kn34h3mmEhr2znmMRHu76O42zgSEElrMRDUx5hMAKTL8Tqz2DACGwPIM72fU/BAIlAuvUaQrrfhYve3GxwNRn9C4/BzlsObpdXwctxDejP8YPhZByVdugysvABzmvzby5ukut5JGG6BdP1V2Sr1sB+R8/G2Fgm7aDZvaSGmHxVQKrgNVgZMbmavXIPo8diOEhDV1+Bl21wSVdEV7O/Rv71NJOsZX7JclC8XJUFwxQ1ceojE0Q5puOFXG34c5gy/XYFuSn4sPCk8alDWShECIYKeGJzQsGIbCsdwJ9/RJU7z4jWVD+9tfgo2v/PbR+BzLTHAKEwPLPc/Hplwxu3BB/B/v04jB0iO9FYRECyz/Pp7utIgSWuxEn+wUyAoTACmTve4HtriawMrMoqMvte9BUKHkkJjjnbeL6DTROnBTrX/XpzWLoYOfIrs2NiwtPYFH+MeOUNvI62FFvTK2ep9MuQPnRS9BMexdcgxZOOyXv5R/F8sJTEnkDVImYGtnR6j2EB1Dhf/rew6xeI0wMo+UQCpVXDoGgU714HyhNufFv2idfgz65X41ynU1gXdMXIUMv7m+TQTZMfjf/CFI12ZIV/4vqhifD29ogxXun7lKn443cg7hgUqvKVNsOOQlgTTpmCZ/dH9Yc40LMR9qZrg1vwuEWW47O19dKAPgu/g4IZ9cbBiGwbPOC6oMZoC+LHTh1A++GboKU1LJNIpltCQFCYFlCyDc/P3OWxtp14r1GqeQxdyYLuWt6w7gMJEJguQzagBJMCKyAcjcx1sMIEALLww4I9O1dSWBptBQWfsBAZ2egE00DQppfaIhjRJOQofbuQgYajUikPf4Ii0YNHZNrzdnpkPYDck2KqC+L6YfxoTU/uFO5WVC9NwVUaRH4kHCoX/wEfHRda7ayas7U7N34pfSqVXOdPenzuIEYHlwRcST7fT0U61cat+AiY6B+5ztAcHoNw1kEVi6nxsK8VHxbcsHZJlolzx0F/K1SxMmT/q/oLBYXHIeQYhhVEoKB51tgwLnmiC+yv75Xq4kcotpymJ69B+tLxU6VAnklkFjeMAiBZZsXhJp3Qu27ysHLlShf+COgcl7EqW0a+f9sQmD5p4+Fu82ipQyKisW7zcjhHHq4obanMxElBJYz0QxcWYTAClzfE8vdjwAhsNyPOdnRBAFXElh/H6CxdXvNhIQ1jritH4vbBzpGNAkh9kKofeVQqni8PNf13QcfzfodO8pvGPeNY4JwLOneGs2mSouhXDAVdHa6SOzE1oNm3kfgQ5xX8P2ezC34W51lDfxOnaMEg3UJQ9FFGYegVx6CQNZVDt24p6AbfE+t+zmDwPq48BSWFZxAqZki5E41tgZhw4Ib4Iu4Qe7YyiN73DjB4djfZYi+FumU/cOb8Gg3mcVpbR6Gpv8qkflnvbvQwgsaERACy3ZXq16ZCDpX7MqqGz8ZutvH2y6IrLAKAUJgWQWTT06q6Z4VEcGjUwcOyZ2BOpGO3aFcDQwhsFyNcGDIJwRWYPiZWOkdCBACyzv8ELBauJLA+kB4M1hkX/pgpUOCgni8OMcxsmnHTgp7/xIJrHZteUwY55hMSwfmxdz9+Lr4vGTaS3W64NmI9uaX6nVQLp4J5uq5ap+zjVtBM3MxIHNOXkAxp8OdGZtrTPmyZJsjnwtd5Lbkx6PVyveMYqyNwHCEwEopu4Y38w7jhr7UEfUdWpusjMVPCcMgEHn+NEpuULh1lMKtVAqc2rHvuzlcOj7HIiSRx/jMrdhvUm/rgdDmeD+mj8ehJASW7S6Q/fEzFOtWGBdaE4Fp+y5kRSUChMDy37MgNKhZsJiBvpZI94YNeHTuxKNdGw4KhfdhQQgs7/OJL2pECCxf9BrR2VcRIASWr3rOT/R2FYF1+h8KP/4kPqjLZEC9ROveAmZkAlqTmjljRnPo0tn+wqQfr2SQdUt8sB43lkPHDvbLs+R6Icrn3fyjkmmWUp4Uq/4H2fG/ahSt79wX2qec160rgy3FjOx90Jl0AKzcnCopBJ2TDuh0lkw1pPxxSc3AK1Q1zj2gkRb5bliixe//9ytiyjSGNfrbxkB731SLe9lDYJ3Q5uK1nIM4or1lVr5QaLweE2pxb0cnhNAyfBTbHxG0Fz492GGcrpRCdiqFrMMUyrMsk1Y3YvLRPCwcMliOyNTkAdpCUWZMMocW93LYVpaGx2/9IdH2dNL9qMMo7bDAeUsIgWU7lpRWDdW8CaDU1tfAs30XsoIQWIFxBq5cpfH3AeDCxdp/X4V7WNs2HLom8xBILW8ZhMDyFk/4th6EwPJt/xHtfQsBQmD5lr/8TltXEVhCe2ehzXPl6Nmdw4hh1pFGO/+ksXuveBGLieYw/Vnr1lZ1kFAb4oMl0ogXIX1QSCN0xRDqSwl1pkxHO3kUfkkcgWBKZnZLxZrlkO3eKPlMSBkUUgpNh27AWOjufdYVahtk0jcuQ/7jCjAXT5jdg4utB7ZTb8h3rJN8ztWJhXbeR+Aios2u+6b4PF7I3S/5rHNGLn77fgdUehbqN7+CINvSsIXAEgi69/KOSuommcoPo2SYHZWMSWFtLG1LPv8PAZ4DCs7TyDwM5J+jAQtBjPJwHrHJHOK7AyV1yhFD10xymoJccJHCP5+bfGdpHt1eZiEPBXrfWI9/9eL3Yl6dZEyP6OBRHxECyz745etXQf77T8bFbOM20MxdZp8wsqpWBEgEVmAckJJSCsdP0Dh6jEdubu1kVh0hxbAz0LkDh0gPpxgSAiswzqerrSQElqsRJvIJAiIChMAip8GjCLiCwBKIK4HAMh0zprNW12EQLmEC6cSZcFYPP8CieTPbSafDRylsShF1qV+Px1NPuCZ98IA6E/dmboMeop7xTDC2Jo5GLBNk1s/ynT9B/tMqyWds49bQPjcfimUvgLl6VvKZ7p5noBt0t1PPDF2YC9mGLyE7uAMwE5HFh4RCP3IidP3vBBgGzJFdUH7xjpTESmwE9eylQFCIWd3ezjuCFUVi5zFh0pDLN/HdeTV0U96yyh5rCKxyXo/lBSexsvAM1GYYFhlFY2JoS8yq0xlCOiMZlhEoz6aRdYjHrVQa+pLao60oBohuxyOuK4/I5hxgOX5TSDAAACAASURBVDjLrALHPmBQni0urjeIQ8OhHL4oOovX8g4a10TTKqQmTYDgV08NQmDZhzyVnw3Vyw+CMvnNUc/9EFzj1vYJJKtqRIAQWIF3ONJuUEhNpSBEw5tGtJtDolEjDskdK6KzPNHBkBBYgXc+XWExIbBcgSqRSRAwjwAhsMjJ8CgCriCwflzP4PQZ8eGzVUsOD9xrWwTV+l8YnDglymjWlMfEB20nnr77gcZ5k7D62wdwuK2/bbpY46Cz2nyMzfgNJbyYdhdKyZGSOArNaig0LXTjUqx6Q/KMz8UmQj1vOSAUbS8thqpKUXeBGtNOfh1sp77WqFXrHEqnhWzHj5BtWwshpafq4BkG+v5joB89EXwVYkq++WvIU76RLGGbtYfm+YUAUz3SjOd5TEnfjl91YuFmYfFDbDQWNB1tlS21EVgCLutKLxmirm6xYlqSqeAhQfXxenR3NJbZ3xXPKkX9YBKroZBznELWEQolaZZZqNAGPOp25RHTiQejtJ1orgpZ1iEKl9ebpCAH8ej6CgsNrUfH62skRfgtdfZ0tTsIgWU/wsrP3gSTutcoQN/1NmifeMV+gWSlWQQIgRW4B0OoBHD6H9pAZv17vfbfcoWCR7vWQmQWj0ZuTDEkBFbgnk9nWk4ILGeiSWQRBGpHgBBY5IR4FAFnE1hC0fZFyxhJIM9jE1k0bmTbQ21GFoUVq6RRXNOmcIiNsZ58Ylng3QUy6EyKmz7zpB4JCc6FPENfimHpm5DDiSSQDBTWxg9FT1W82c3oK2cNRdspVlSODwmH+sVPwEfXNa4ROvWp3psCqrTI+DeekRmKunNN7IxU4HnIDu2EbMMXoAtyzOrHduwN3d1PgourXyNYitULITuwQ/K5vstt0E6q4QH0588wPjYP+5NE+4TFL9fpgik1Fbc3kV4TgXVYnYWXcg/gH12+WV1byCPxbnRP9KrBF849DT4sjQcKL9PIOgLknqJhqVGjIoJHbGcOdXsCqjq2fb8tocTpgSNvM9CXiw9cTe5iEd+Txxv5h/Fp4RmjiDbyOthRb4wlkS77nBBY9kPLXDoN5aIZ4m8bRUH9znfg68TaL5SsrIYAIbDIoRAQyC+gcOQocPwkjeLi2sksoXOh0MFQ6GQodDR05SAElivRDRzZhMAKHF8TSz2PACGwPO8Dv9Dg3KU0jJv0Wq22vDH7MYwfdZtkjrMJrO2/09j3t5jOUzeOx7NP2x45JSj5+VcM0kyiP7ok8xgzynpZFy9R+OZ7kQQLDuLxgoMdDasCXMxpMTIjBZd1hZKPVsTehjtDGpv1B5WZBtX7z4EqKxEf3OQKQwoe36B5tTVU2kWoFs2UREnxwaGGSC0+znLtKFOB9OXTUPz4Cei0i2Z14+o1gXbCFHAtOlr+XnAslB+9CObcMclc/bD7oR3zuHS9Vo2guRNQzOsweOIwXIyOsBqvyolVCaw0fTHeyDuMrWVpZnWNpVWYF9UF94Y2A21vLptlFHx+hrZAiLSicesIoMm3kCIoE1IEOcR1BSKb2Z8iaA1oadtp3Ngp/pYExfLoPJtFur4U3W+sM0nUBdbHD6uRLLZmL0fmEALLEfQA1duTQd+8YhSiG3wPdOOeckwoWS1BgBBY5ECYIiCUZ7h8hcbRVODcRRqchWtVk8YcOncE2ggphuZLeToEMCGwHIKPLP4PAUJgkaNAEHAfAoTAch/Wfr3T/iNnMGn2+4iNjkR8XJRZW596aDQG9eks+cyZBJYQqr5gESOpt3DXGBadO9r39u7MWRpr14kPsAwNzJ3FIijIOnkpW2gcPCyut5UAs3RgdDxnqHl1UJMlmfpCnWRMq6mwdFE+VO8+A6HuVOXgKRqaKW+Ca9ejxi3ps6kGsogSKmn/N7iouIp0w/A6llQFnZMB2c+fQXZMTNeRXGgjoqEf8xj0Pe8AKMspY8a1mnKoFk4HnX5NooPmgefB9htp/Jts10Yo1i43/Hd6aBAGPDYS2cFi9zg5aKyJv6NWEqKSwLqQU4TF+cfxZfFZCD6oOlRg8FR4G0yr07HGwvkWAfPzCTwL5J6siLYqvGS5flRYQx51u/GI7siBcVPpMF0JcPgdBuDE89jmcRaRLXlMzv4Tm0v/NXppWHADfBE3yCNeIwSWY7DLDv0Bxf+9J/4eKoNQvvBHoJbOpo7tGHirCYEVeD631uLycspQruGo0FXWpFuzufVKBY+2bXkkd+LRIMm6e5g1ehACyxqUyBxLCBACyxJC5HOCgPMQIASW87AMaEkpOw9g7lsrMXPyBDxx/wirsXAmgXXoMI3NW8SH4ZBgHrNnshCIJ3uGUNt30VIGQifByjFoIIcB/axLI3x/CSMJk79/AofWraxba0lfoabTM9m7salMStyMD2mKZbH9zC+vieyZOAdsrzssbQlm/3Yov35fMo8TiqfP/RBQmi8SL7Spl/32DWR//gJKb5JL+Z8UXq6Efsh46IfeB97eB0azpBwFzZS3Kkg5nofqtYmgczKNup+4+yEMb8FAKLpeOSzVDIuLUmFVzhm8dvMQ8lhNNbyEUzI2pDFejuqKBMZ8MXmLIPv5BKGelVDXKvsEBU5toR5KJI+4ZA51uwNKJ6cIWgvzxbUMslNFPSNb8GjzBIsjmlsYk/GbUYww469649BQHmataKfNIwSWg1CyLFSvPCRJZ9ZOeBb6gWMdFEyWVyJACCxyFqxBID2DQuoxCidPU1Bb+PchKkogsoBOHTmEhzlGZhECyxrvkDmWECAEliWEyOcEAechQAgs52EZ0JK++Wk75i//Hu+8MAljh1lf4NtZBJZANi35iEFBgQnZNIDDAAcLpv+9n8bWHbaTYtk5FD76REwfFIKKXnlB77QOO+/kHcEnVbrq9VUl4Pu6Q8CY64hmS7pdLSdZvnk15CnfSmawrTpDM+09gDapGcaxkO1NgXzTakn9LNOF+h63Qz/mCXBOqDdDZ16HcsGzEAizysHLFdDMXgqqIAfKFWJ6Ky+To3z+GuylS/BA1g5wVnRt/LP8Jt4pPIyz6gKz6HRWxBjqXHVQxgT074A543UlFLJTaWQd5lF+q3Y2mZYDUe051O0CRDR1bYqgNY4qTQdOLJPmrHSapUdwHDDk5kZJ3bNJ4a3xRlTNUYzW7GfPHEJg2YOadI182xrIN3xh/CMXEw/1m1/bFg3quBp+K4EQWH7rWpcYJtQPPXOWwrHjFK5cpc01JzbuK9ytDCmGnXi0bc0LjYptHoTAshkyssAMAoTAIseCIOA+BAiB5T6s/XqnZZ+vx6ffbsLKBbPQr0d7q211FoF1/gKF79aINxdb0/1qUlijpbDwA0ZSiP3usSw6daj9jd9f+2lsMyG+mjbh8chD1tfPqg3Ab4vPY17ufsmUVvJIbEoYiWCBATAzFKvfh+zAdskn+h6DoX10ntW+qpyo+HohZPurFE/vPQzah2cZpshOH4Js/UoIpJK5wTVtB+2EZ8A1aGHz3rUtYM4fh3LpHMkUPjQCfGQM6BuXjX8X0hS1j1TMW1dyCc/n7KsRy0u6QkOB9r/U0u6FlQuSZKF4OaoLRgebrzfmVAN9SJiQIph/TiCtgILzNMxkWkqsCWv8XxfBDhxoN6UIWgvn6VUMiq6IxHjd7jyajmOxseQqpuTsNopRUQxOJN2H0Bq+g9buZ+s8QmDZilj1+VRpCVQv3guhM2rl0DzzJtgOvRwXTiSAEFjkENiLQGEhhWMnaKQeh+QFpTl5SiWPdkKKYUceSTakGBICy17vkHWmCBACi5wHgoD7ECAElvuw9uud/vfBV1i3eRd++uwNtG7e0GpbnUVgffUNgytXxYfM5M48xo52DmGUspXGwUO2FYb/cjWDa/+K+gwfyqFXD8fTB7eXXcdjt3ZK8K0vC8HmhFGIZcyn8QlRUPLfzERNPbfQaj9Vnaj88AUwZ49K/qwbeDfozH+r/b1yEhedAP24SdB37m/3vpYWyg7uhOKr+bVOU7+yCkKx+MqxrPAkFuanStYMCqqHRCYE35ZcMCsrjJJhemQnTIloZ0mlgPq8LItC1iEKOcco6EprTxEU0gJjhRTBbp5LEbTGOXlnaJz7Wvz+UwyPrq+wkAcDXa//iAy2zCjmregeeDzMzu6c1ihjZg4hsOwErsoyxZrlkO3eaPwr26IjNDM+cI7wAJdCCKwAPwBOMF+Isr96jcbRY8DZczTMVCSQ7BIdzSG5I4WOVqQYEgLLCQ4iIoxEPYGCIEAQcD0ChMByPcYBscO0Vz7EH/tS8fTEO1FcUo7SsnIoFHI0SIxDvx4d0Kyx+W51ziCwbt2isHylNG586jMs4mIdq4tQ6bi8PApLl0vlP/Eoi4YNzMvXaoG350vTjp6fxiLKpI6PfM9m0Ef+tOlsHI0Kwpi+TaCWiQ/ToToW23ddRovi6jWZDMI5Dszl05J92MSG0M7+EHxQsE37m06mNGVQvj9D0r2rJmG8Mgj60ROhu3283fvZslC+5TvIf/3K7BJDuqMZ4m5W9j6sKb1k1TYPh7bAnKhkRNMqq+Z7cpJAvtzca0NRfAeUZcuBskwLXQQZILYzh9jOQITQRdBHxtEFDDR5om0NhvKoP4jFJ4Wn8U7+EaMVEbQCreXmm1hUNXXkb8kIKVUimlGhLmP/d1GINpUxNFiOh551zm+ej7jFqWpSOg3oa+clMvkg76xlx0dEgQ+z3DzDqQA5IEwpr/g3S6Or/p0Pq8+j0Sjf+S1wAAay1EkIaNQUTp2hcOQYhfR0y/++NWvCoWcPoEVz8+eMEFhOckyAiyERWAF+AIj5bkWAEFhuhdt/N5v60jL8+fexGg0cNrA73pr7OIKDpA/95i60ghA5Q4GmKehYTuBgah3frOVw4LD44NaqBYVpT9lZub2GnVZ+yeHUP+IeHdpRmPyo+T2OnuDx5Tei0nGxwOvzpASY+pVJ4K+aj+4xp8KVOmEYNHEYClXS/KrNP+xAn7Rb1h+sqDgEvbkCcELdKRTmQf3qZPC50i6IpsrIBo+FfNzjQHik9To6YaZ21Xtg92ypJkkxZwGYTubTgu68koLtJTdq3P2O8PpYnNQHzZlIk6pZTlDWRSLyr/D4eykHTueiDWwQG90CaNCLRkJnCozY/NEGCZ6devUPHqfXid9pRSgwZD6NYmjR+Oy3KOOqNyioSWOKB2ZtG4weVxt51iiyO0HASxBoMZJCy1HO/TfbS0wjargYgYwsHn8d4HEolUdpac2b0TTw7msMwkKrz5ExFBiagp7lwBIu1cUe81/xlUS9/1pILCMIeA8ChMDyHl/4tCZarQ4Hj51DUmIs4mIiIZfLkZNXiIOp/2DF6o24kZGNPt3a4dP3ZzvVzuISYMbL0if05ybL0L6N5bdytihy9gKPRR9LH1LnvyZHTHR1KV9+x+LvQ+ItaMhAGveOFQksPj8HhZOt73CVG6TEkIlDcTVS2uHs81/3YdzZf603IygY4e+sAl3fefWauBvXUPTKZKBMenOUde6J4Iengq7vuYf0kndmQn/ikBEfOr4+wj9cUyNepZwe/c79gmPlOZI5LZWRWJTUGyMjrE+Ntd4prplZcgvY+Y4Oulou9K7ZWZQaFAU07segUS8awT5e216vATbP0kGvFu3r9jiDhr1pTEvbi+XZ0ijH2rCdtKc3hp5p42r4iXyCgE8h0PVRBo36EhLLp5zmZcqmnuCxZz+L02fNR6KOGkpj7Ag7qrx7mZ1EHYIAQYAgEOgIEAIr0E+AG+zPzS/CmEdfRn5hMb5YPBc9k8WHt9wisWiuqSphwTIoZDSKy/XQmkk7qJy7808K2/8QVwppg7Omu8aoJcspZJoEG/XqyWPsyOp7vTkfKDWp//PU40DTxuKFit63BdRX71ulpFrGYMQDQ3AsQcqU/W/XcTx38IxVMioncXMWg2/ZyaY11kymLp0GPb8CdD6xIfj7poJv08WapS6dQ2nKQb03HdR/Bdy5B6aDH1Q7cZjNqjE0bSPS9CWIohWYG90FkyIrzmt0eEX0W16xttauSC41ygrh+lIKh5fyUOc6l8S1YmsI9cvjOvNI6EYhsql/pbNd2ghc3y1iGpIIdJ/N46quCN2urbMGHow62R6P/OX+ToVWKUcmEQQ8jEDHp4CoVv71u+FhSANy++JiIb0QOJLKI8fk38HgIOCluTzk0goPCFUxUCoYlJTrzaa5BiSIxGibEai8I9q8kCwgCBAEbEaAEFg2Q0YW2IPAwo9/wOp12ww1sqY9frdRhKM1sBZ8wKC0THyovHMkh65dXBMDfvwEjZ83im+I5XJg7gwWSpV44b55k8KqL8Q3fAoFj1dekBaTV6z6H2TH/zJioBswFlznvmZhfVh2GTvoIslnj7LRmM82sM0NIRFg67kuGkqWuhtUWQl0fc0werZp6tTZdGEuFAumgVKXQT1/DXiF5bpVV/SF+L7oAp6L7IQwk45yCVFBEFp2Z+SVey2BJaQLnlrFoPS6lLxqOIxHWENXPxjyCE3iDSSWPw5tAYUj70nf3rebzCK8CY9jmmyoLbVa/CcY/Fpp3aLM8CJ8OuAvcEJeIYC6dBDei+2FcMr6VoxC2kJokMzw4CU8gJHhGAJUYS6o4nzHhLhoNZ2dDmaXWGhe2IaLjof+3qkQag1666h8sDN9YaUvAy6soSUpzsJvR7tnWITWc/VvlbciRfRyNgILFzMoKTG5I47i0DVZekckNbCcjXpgyiM1sALT78RqzyBACCzP4B5wu3738w68++F3ePDuIXhp+oNOIbCOHafwy69SsmjeLBYCseSKwbKAcBkqLxcvQ0OHcOjTS7wM7fyTxu69IsnVphWH+yZIL0tBz98JITqocmhe/RxCYfWq47nsvfip9LLkz0J3vNVxg0ELTAoZViHApP8L+sQ+6IaL586qhVUmeTuBJfAnZ7+iUXBemoaT0I9DY1Ik2R6XV1tz/hsauadFfOu05tD6UcuEeXEacHolA54Vv7dMEI+rj13CLH63ZJ92iihsiB+BILpKmEANFpAuhE5xrc8IMdekwts7JtbUhbDgIoV/vqABXvxeyIJ5dJjOQuU7Nep95uwEoqJ79tH4/Q/xNzsmmsO0KZzhZVTlIARWIJ4M59tMCCznY0okEgRqQoAQWORsuAWBZZ+vx6ffbsLzT47Hkw+OMu7pSATWhx/TyMkVLyb9+nAYcrvlh0lHDP5jF41de8Q9w8N4zHqeNV6GVnwqQ0amuMPY0SySO4tvk5l/jkD50YvGCVxEtCEyqOpYVnACCwukRfFtfbB1xE6ytjoC3k5gXV5PI+uQlLyKasuh5cPSyzrxrf0IFF+jcGqFaRQWj+S5LFRmauFV7iKUVDu5nAFrQnxTDI92T7MIawC8mXcYq4qk6cC2ENWEwLLfn766UrF6IWQHdkjU13e5DdpJr3ilSTURWIKyt45SuPSjNLJRFc2jw1QWMvubc3olDkQp9yMgvHBcuIiRFGd/6H4WLZqL9zJCYLnfL/64IyGw/NGrxCZvRYAQWN7qGT/SS6dnMebRl/DvjSz88Mmr6NCmqcME1uWrFFZ/I156hQ4zs2ewCA1xbepBSSmFD5Ywks6IE8axaNeWR1k5hfnvSy/iL8xhERwk6qT48WPI/txgtF/XfxR09z8n8favpVfxTLY0KqMeE4KtiaMRxVhOgfOjo+NVpngzgXVzF41/t0jJKyGdTyBJrAzk8SqsvVmZ40sZlGWIr+/je3NoMsY8ca4tBk4tZ6ApMHndT/Fo+RCH6HYVvws8z2NS9p/YWpYmMfvB0BZYGNPbIhSEwLIIkf9N4FjDixDmnPQlh37o/dCOfdzr7K2NwBKUFX67hN8w0yH8frWdzIJxUUS114FEFHIZAps20zicKp6vpk14PPKQWNqBEFgugz6gBBMCK6DcTYz1MAKEwPKwA/xh+7Sbt7Bz71GMvqM3YqIiJCal3czCux9+i70HT6Ffj/ZYuWCW5HN7I7C++4HG+YvihaR9Wx73jJPWmnIVtus3MDhxUnwgrV+fx1OPsziaSmHjZpHASkzg8fSTUp1Urz4MOkcM0VJPeQtc+55GVfeWp+OhrB3QQyS9ImgFUhJGobE83FUmEblWIOCtBFbOCQoXvhe+C+KZJBEMVjjUzinZxylc/MGEPJfz6PYqC0YpFchqgdMrGJSmS9N9m9zNIr6HlGjX8izGZW5FqiZbIuSlOl3wbET7WjUlBJadjvT1ZZpyqBZOB51+TWKJZuIcsL3u8CrrLBFYPA8I6bl5Z6QkVmTLihRdijQn9Cp/+poy+QUUlnwofbkopBHGxlS8eCAElq951Dv1JQSWd/qFaOWfCBACyz/96larzl1Kw7hJr4GiKDSsXxf1E2IN/z89MwdXr2eA43gkt2+Oj9+bgfBQaU6APQSWucvIlMks4uu6NvqqEtSMLAorVkkvQ089wWLvPgpnTeoPDejPYdAAMTKDzkyD6o0njL7hGRnKl/4KyCpeMZ/V5mN0RgrKebEQsxw01icMRxdlrFt9SjarjoA3EliFV4B/PmPAc6SGjLvOLM8Ch99hIHR7rByNRnJI7C9+14V6ZEJtn8JL0ifvxL4cGo02H61VwGowMmMzrumLJaasiL0Nd4Y0rtE8QmC5y/NeuE9RPlTvPgOhWUXl4CkamilvgmvnPd0uLRFYgu6cvqJOXEmVBhR1u3NoOs61pQG80LNEJScj8M33DC5eEn+zhdIOQokHQmA5GegAFkcIrAB2PjHd7QgQAsvtkPvfhjqdHr9s3Yc/9h3F+cvXkV9QbOjSFhkRitbNG2DU4N4YPqgHGKb6a1R7CKyULTQOHhZlNUzi8cRj7om+qvTel1/TuHZNWqz90mUaWp3o38mTWNRLFEk1+Y51kP/8qXEC2647NM++Y/jvDH0phqVvQg6nlhyQz2MHYnhI9QLv/neKvN8ibyOwym5VpKexGvFSTsv5/7p4eT+evqzhjT9ppG0Vv/+KcB5dXmSNkSIX19LINklZEWy1ph7ZDX2J4Xcgn9MY4ZGBwtr4oeipijcLGSGwfPkkOa47JbwY+a/TqpHEkiugnr0UfIPmjm/gBAnWEFjCNkJnQqFenDq3ShfVERzq3UZILCe4ImBFXL5CY/W30jvoC7NZBAfzJAIrYE+Fcw0nBJZz8STSCAK1IUAILHI+PIqArQSWRkth4QcMdCbd4ieM59CujXsvt2fP0fjhx5rzGoS6V/Nmi8XdBZBVi2eDvnjCiLf23qnQDxiDYk6LkRkpuKwrlPji5TpdMMVC+pBHnRdgm3sTgSXUVjr5IQNtkbS2UpsnOESaFKcNMBe5zVxdGXDkbWlXwZYPsIjuyOPGThpp2+2vR3ZKk4uxmb9BLYR6/TdCKTlSEkehmVyaoi18TAgst7ndazeiL56Ectk8UKz4DyMfEg71i5+Aj67rcb2tJbAERdX5Fb9t+jJTEotHiwc4xHR0T5S1xwEjCrgEgaqNfwbdxmHAbRwhsFyCduAJJQRW4PmcWOw5BAiB5Tnsyc4AbCWw9v1NY/vvNXcBdBeoQoTZoqUMioqlb4or9+/UkcfdY0yiwrRqBD0/BpSQW/TfKH/vB2gi6uC+zO04qMmSqG5tAWd32Uv2AbyFwBJqK536mEFZpvTsNZvAIq4LecBz11m9/DONrIPib5FQdFpII7zwnTS9WBnNo9NUDkyw9b7ZWXYDj97aCc6kFl48E2xo5BDLBElMJASWuzzu3fswx/dBseoNk0p4ABebCPW85UBImEeVt4XAEhQtuVnxG8ez4m8cRfNo8ySLiCYeNYVs7sMIVK1TGhLMY/ZMFtFhcgSrZCgo0aJM495ofh+Gk6heBQFCYJEjQRBwHwKEwHIf1mQnMwjYQmCZI42GDubQp7d7o68qzfj7AI2tVSItKj+r7ExY+d/M0d1Qfv62EQEuoSHKX/3MbPexQUH1sDpuMGjKPDlGDpJnEPAWAuufz2kUmDQwENCoP4hFg6HWEySeQdC/dlXnUEit0nW0qoWyYB4dp3FQRtnum3Ull/B8zj6JyFbySGxKGIlgWmzNRggs/zpXjlgj374W8l8+l4hgG7eCZuZiY61FR+Tbu9ZWAkvYJ+80jXPfSCMZGSWPDlM4BMXb/n2yV3eyzn8QYFlg4WIG5eXi3Up40Tigt4wQWP7jZo9ZQggsj0FPNg5ABAiBFYBO9yaTbSGwTp+h8ON6MbpBLgPmzmahVHjmMmsunVHAVuCdXprDQqkS9VKsXgjZgR1G6HVD7sFrAzpjZdEZiTs6KKLxc8JwBFEyb3IT0QXOj8Aqy6IkhcCtATnzMJBTpbZSTDKHFvd6hsS1Rmd/niMUai+4YD6VWPgKt3+GRWh9+3+f5ucdxUdFpyQQDlTVw7ORHYx/U8pphAbJoNFxKCk3ya32Z+BttI2iePRUmq8hZqMor5+u+OFDyPZskuip79wf7IA7PaZ7dLjCsHdukbaaDlx0XfDR5n2TsY/G1U3S75c8nEfHqRwUEfZ/rzwGBNnY4wjs/JPG7r3imYqJ5vDaXIYQWB73jO8rQAgs3/chscB3ECAElu/4yi81tYXA+vQLBjduim/OenTnMHKYZx/ct2yjsd8kjUhwUqOGPB5/RBqGHjR7HKjSIqMPv5jzImbTaRKfNmBCkVJvNKJopV/62teNcmYE1o0/GKRtczzCLrwJh3aTPfsd8HW/OqK/EAknRMSZG60mcobC7Y6Oqdm78UvpVUfFBPz6J8Ja481o7+nM50qHKD9+Bczpg67cwmmy+ZAwaOZ9BC62nlmZVVN1hUlBdYXIRhYmgYhO04cI8m8ESkopfLCEAWfy0zz1KQqd2pIUQv/2vOutIwSW6zEmOxAEKhEgBBY5Cx5FwFoC62Y6hVWfS2vLzJjOok6kZ9/C5hdQWPKhVK+hQ3j06SUSWMy181AumGrEuTQsDG2mjkMRJ7YsjKAV2Jw4Ek1k1Ys0e9RBZHMjAs4gsITCxBe+p6qlANoDobuMWAAAIABJREFUs/AQJ6TTMCaRfvbIIWscQ+CYkJKSJSUjm4zhEO/E1OZ7Mrfgb7W0Tp5jWgfm6jeiu2NSWBu/N57SqqFYPAvMvxd8wlYuJsFAYvGh5v/9O/sVjfyzUqK41UMcoto7ThD7BEBESacisH4DjRMnxfPUrhWP559RkBpYTkU58IQRAivwfE4s9hwChMDyHPZkZxuKuAupg0IKYeVo3ZLD/V6SNrVlO438AqEbGKAKAnr24BFpkt4g37Qa8t++Ner+2ZgRmNuqjsT/GxJGoJsyjpwJL0bAUQKr+F/KUNNFV0Phf1tMF9JnhNpK8jDPEri26Oyvc28doXFpnfgwlNiPQ6NRzn2wLuZ0uDNjMy5U6VTqr5i60q7P4wZieHBDV27hHbJLCqF6bwrovFveoY8FLbikZlDPXgooqkcgC+96Tn3CoDRdvAPEdeXQ7B7nfs98AiiipMMIZGZR+GSV9MXju6/KoVCRIu4OgxvAAgiBFcDOJ6a7HQFCYLkdcrKhKQLWRGDdyuGwaBkDoYh75XhsIovGjXzj4V317jOgr18y6t5l1iO4IhNr1TwZ1gb/i+5ODoaXI+AIgZW+h8G1FPMpg2GNbTvHQo21pmM5QxoNGZ5HgNcDh99hIETXRbXj0Oph1zxUZ7JleD57L3SmP4QAGBqQMTRYjoeeJWei6ok4oMmU/EkJBj8lDEOyMtbzh8fFGtDZNyH/dgkk/3i6eE9z4oU6bcIQ6rRVDio/G3ROhmQ626EXNM+8aVZDIQJLiMSqHLJQHt1fJR3jPOBOv9jyy9UMrv0r/ps8sB+NkcNY0oXQL7zrGSMIgeUZ3MmugYkAIbAC0+9eY7U1BNavv/HY97d4ca0bx+PZp33k4lpSiOA54414/9asPh4cd5t4iQdwqP49SJSFeI1PiCLmEbCHwNKXAxd+oFFwvnqdJGUdHi0fZhFqvvQLcYMPIZC2XSjmTqHd0yxoN/dfIF0Iaz8o5ro5CinbKQmj0Fge7kOnzHdVNduFUF0G1fxnQWfdkBim7zsC2gdnVDOW1QKH/seAZ0XSocNUFqFJhLT13ZPhOc3PnqPxw4/iv8sKOfD6SzxY3kfulp6DjuxcAwKEwCJHgyDgPgQIgeU+rMlOZhCwRGBl5WnxxnuAVitte9ypo29cWmX7foPiuyVGy0c/Nhr74sSHppHBDfFp3EByNnwAAVsJrNLrFM5+S0NbUD3ySiju3XwCT+pX+YDfrVFRSAulGEAW7P7fJUJgWfbQgvxUfFh4UjKxHhOCrYmjEcWoLAsgMxxCwCyBJXTsLciFcv4U0IV5Evm6u5+EbsiEanue+YJGoUnXz6QhPJIGE8LBIecE6GIhkHXJRwwKTP59HjkU6NGDdHIN0CPhsNmEwHIYQiKAIGA1AoTAshoqMtEVCFgisDbt0GLjZpEACAnmMXsma0ib8YWhXPk6mBN/G1Q9HRuJfo+PlKj9S/xwdFfV9QVTAl5HWwiszL9oXEmhgarPVgzQeASHhL6uSTMLeCcFIACEwLLO6U/f2oVNZdckk9sporAhfgSC3B02Z53KfjOrJgJLMJDKvG6IxKI05UZ7BRpYO/l1sJ36SjDI+IvG1V/Ff/xD6/PoMI0QWH5zUNxsiNBBWugkXTkiwnnMfI6FkKZPBkHAVgQIgWUrYmQ+QcB+BAiBZT92ZKUTEKiNwFLKGcx9Q4v8fPE2MWgAhwH9feThX69D0My7QOk0BqSeHtkLa9s1MaLWRl4HO+qNcQKKRIQ7ELCGwGI1FSmDVTtmCfopwnm0nMgiLMkd2pI9AgUBQmBZ52kdz+GhrB3Yp5bWXRoUVA+r4waDJk+t1gFpx6zaCCxBHH3pNJRL54BixegXnpFBM3MxuCatjTuqc4HUhdIc3W6v6SEnGfh2eIUs0emABYsYSYT/PXezaN/O/ZG0xBu+jwAhsHzfh8QC30GAEFi+4yu/1LQ2Auv8RRoffSpeaIWoq7mzWAQF+cblgvnnCJQfvWjwW3awEq2fvRssLb7tWx7bH3eFiISWXzrYj4yyRGCVZgDnVjPQmBCuleZHtuTQ/D4O8mA/AoSY4hUIEALLejeUcTqMzkjBOV2BZNGDoS2wMKa39YLITJsQsERgCcKYE/uhWPkaTINf+OBQqOcsAx/fwLjfsQ8YlGeLs5rdwyKuq2/cCWwCjUx2CwJbdtDYv99Ha6y6BSGyibUIEALLWqTIPIKA4wgQAstxDIkEBxCojcBa/imPcxfFi2lyZx5jR/tOuoDix48h+3ODAZ23+3XAot7tjUhF0yqkJk2AjPKRXEgHfOwvS2sjsLIO0riykUa1+q8U0HAoj3oDfefc+ou/AsUOQmDZ5ulsthzD0jdB6OpoOl6sk4ypER1sE0ZmW4WANQSWIEi2ayMUa5dLZHIR0VC/tAIIr2P4+7XNNNL3iv9uRrfn0PIhH4nKtgotMsmdCBQVUdW6XE96jEUD0hzAnW7wi70IgeUXbiRG+AgChMDyEUf5q5o1EVjaciXefl/60D9tCofYGN+5qKpefRh0TiY0DI1Wz96NgiCl0Y3kYcn3TrQ5AkvojHVpLY3c09WJSHloRZfB8Ea+ZyvR2HcQIASW7b66pCvEyPTNKOF1ksUrYm/DnSGNbRdIVtSKgLUEliBEvv5TyH9fJyWxEhtBPfdDQBmEwssUznzKGD+n5Tx6vMmCvAsih9BeBNb/IsOJU+Lqtq053HuP79w17bWbrHMuAoTAci6eRBpBoDYECIFFzodHEaiJwPptixwHDovRV00a83j0Yd+JYqEz06B64wkDtv/XsRlmDuthxFlFMThSfwLqMCKh5VEnkM2tQqAqgVV2Czj3FQN1bvWKr+GNebR8iIU81CrRZBJBwG4ECIFlH3QH1Jm4L3M7dBAfVGWgsDZ+KHqq4u0TSlaZRcAWAgs8D8Xnb0OWukcii23VGZpp74EHg4OvMeB04u9u28ksIpqQNEJy/OxDIC9bjqUrxPMjlMOb9RyL8HBypuxDNDBXEQIrMP1OrPYMAoTA8gzuZNf/EDBHYJWXU3h/MQO9CV/10P0sWjT3ncuEfMc6yH/+FILGPSaNwsXoCKPPHw5rifnRvcgZ8DEETAmsW6kULv9Eg9NXIa8oIGkwj6TbWUiKufiYrURd30GAEFj2+2pL6b+YlP2nREAoJUdK4ig0k4u/2fbvQFYKCNhEYAkLWBbKJbPAXD4jAVDfcwi0j8zF+W9p5J4So14T+3NoNJJEzJDTZh8CkSFyLFwG3EgX75i9enEYPoScKfsQDcxVhMAKTL8Tqz2DACGwPIM72bUWAuvP3TSE/1WOyEgeM6b5Vmtj1ZI5oC8cx47GiZgwYaDE33/XG4eG8jByBnwMAYHA4nTAX19qcOtI9ZRBWUhF1FUEqcvvY571bXUJgeWY/z4tPIM38g9LhMQzwdiaOBqxTJBjwslqAwI2E1jCInUZVAufA51xTYKibtQjuFn3YVxaJ6YRBsXx6DzLdyK0ybHwLgQEAuvUGRqffS2eIYWCx7xZLORy79KVaOO9CBACy3t9QzTzPwQIgeV/PvUpi8xFYM1/n0FZuRjZMnokh25dfOdNGFVehqCZYwx+uPveQfizUYLRJ7cH18fXcYN9ykdE2QoEwnQq/L1cj+LM6oiENayod6UgvCQ5Lm5GgBBYjgP+au5BfFl8ViKolTwSmxJGIpgmT7COImwXgQWAKsqHcsFU0Hm3JCqU3v8q9qcIL4bEe0KXl/RQkqA5R10VkOsFAitYJcOMV7QoLhbP1IhhHHp29527Z0A6z4uMJgSWFzmDqOL3CBACy+9d7N0GViWwjp2g8ctGMbolSAXMnqH3qbdgzNHdUH7+Ni5EhaPHk6MlDlhT9w70C0r0bqcQ7aohkHOKwuUfGQhF26sOocNggzt4UkSYnBuPIEAILMdh53nekEq4tSxNIqyHsq6hJpacVAh3CGR7CSxhUyrzOlQLp4EqL5XocChsFYqoFsa/NRnDIb43IRscclSALq4ksH5O0eG37dVBiI3j0SiJR1J9ICmJR3SU75SzCFCXesRsQmB5BHayaYAiQAisAHW8t5hdlcBavoLBrWzxDdiAfjwGDfSt1ADF1wsh278D04b1wLcdmxmhbiqPwJ56d3kL9EQPKxDg9cCVTTSyDphJGQzi0eJBDpE+VJvNCpPJFB9DgBBYznGYlmcxLnMrUjXZEoGjgxthZdwA52wSoFIcIbAEyJgr/0D5/nMS9K4oJ+KK8jHj36JiMtB6igp8CAmDDdBjZrfZlQRWerYWb86noNfXLiooiEeD+jwaNqRQvz6HRg0IoWU3+H60kBBYfuRMYorXI0AILK93kX8raEpgXb5KYfU3Ju2xaeDF2YBSZeE24U0Q8TyC5oxHLq9B82njJZotiumL+0JFQsub1Ca6VEdAnQec/4ZBaXr1LoOh9Xm0nMiSlBVycDyOACGwnOeCQk6LUembcUVfJBE6Pbw95kV1cd5GASbJUQLLQGKd2A/FqtdB8RVkQRHTAodCVhmRpHgdBpSNBt++K9heQ8G26w7Q4n0iwCAn5tqAQCWBVVCixZqfeRw5Wv2FVW3iaBpISKggtRo0ABom8QgNJaSWDS7wi6mEwPILNxIjfAQBQmD5iKP8VU1TAuvbH2hcuCheHLol07jnbhZqre9EYNFXz0K1cDoW9GmP+X07GN0WSSuQmnQvlBS5UPvCWc77h8KFH2hw2urkVUI/Do2GcyCu9AVP+r+OhMByro8z9KUYlr4JOZxaInhBdC88FNbSuZsFiDRnEFgCVHROBpi/toA5sAN0QQ52h26AjhYLX3UsexGx+gMGVPmwSOi7DwbbZxi4hIYBgjQx0x4ETAmsknIWmVkU0m5QSPuXQtp1oMikLpa18iMj/ks5bFBBbMXX5SEQXWT4LwKEwPJf3xLLvA8BQmB5n08CSqNKAiu/gMKSD6XkzutzZQgJ1/kUgSXftBrctu/R6tm7URCkNPpyRmQnzI7sFFC+9UVjeRa4lkIj4y9zKYNA9ycYUA00+C8IwBdNJDr7GQKEwHK+Q89q8zE6IwXlQg7xf0OgslfHDYbQiIMM2xBwFoFl3JXjIDt3FBd+ViKzONn453rajWitXlpNOa5BC+h7DwXbbRD44FDblCez/R4BUwKrTFP9hWlBYQWRlXadwvU0Cpm3KJvvAEI3w3qJAqnFoWEDCkn1eQipiGT4DwKEwPIfXxJLvB8BQmB5v4/8WsNKAmvzFhqHDoukQeNGFF6eIUNesdanCCzVe1PwfQSHaSN6Gv3GgEJq0gTEkJbsXn2WNfnA+W8ZlNyoHnUVksij/3Q5QmIoZOSV23x59WrDiXI+jQAhsFzjvr3l6Xggawc4iA+ZKorBhvgRaK+Mds2mfirV6QTWfzjlnqZx/hvx3qDkstGvZEKNKPKMHGzH3uD6DIW+VTJJMfTT82arWZYIrKrytFrg+g26Ikorjcf1GxS0ZqK1LekRE82hgVAYvgHQIAmIjSFNCCxh5s2fEwLLm71DdPM3BAiB5W8e9TF7BAJLo6Ww8AMGOpNSV48/RKF3Nx8jsEoKETxnPLpPGoWL0WJawz2hzbA0pq+PeSaw1M0/V5EyyKqrk1fxvTg0HsUhMS4IFAVCYAXW0fB6awmB5ToXrSu5hOdz9kk2qEMrsTVxNOrLSCSPtci7isASusIefI35f/buAzqKag8D+Le76YHQe6/SFQQUBQuoFAERRFFEQaR3pAjSFBVBmvSOgoig6ENRqoqKKEUQRREV6b2TXnb3nf/ETbLJJjtbkp3Z/eYcz3uaKff+7s1k9tt77wDW9Pt2o5qrEXV4PQyxMTkWz1KgCFLufgiWe1vDUqyM2qpwPz8UcDXAykwgI7JlVJaMzrKN1JJRW65uYWEyQkvW0TIo0w7LlrHo6g3crtbX3/ZngOVvLcr6aFmAAZaWWycAyiYB1q7dRmzbkf4talR+K94Yb0J4qElXI7CCdn2J3bvW4vEuLexa7tsyj6NqcHqgFQDNqpsqWi3AyS0GnPs269pkxmArqj5lQdG6qSMwShVmgKWbhg2ggjLAyt3GnnbjIN65ccjuIhWD8uPzUo+isCksdy/uJ2fPrQBLeH5fasLNf9LDggptLCh7byJMh35IXS/rz4NwNmTWXLkmLE1aIqVhc1jDwv1EndVQK+BpgOXoOjExBpw4BZw8aVBGaMm6WhYXB1jJF2aydlb5claUKweUK2dFoQKcdqi2XfN6PwZYeS3O6wWyAAOsQG59DdT97JV4zJhtslsks+XDFrR7JAhhIfoKsEIXTcTT1UKxvUrpNNl7w0pifclWGpBmETILJEWnvmUw+mTWb0ojSlpxWzczwoumH8UAi31IiwIMsHK/Vfpe2onP407YXahOSGFlOmG4MSj3C6DzK+RmgHXueyNObMrwBVhlK+r0SV/HSBZ7N+3eqvxjvHo+R0lrcAjMdzRNfYthjfpQhtxy83uB3AiwMqPJDIMzMu3wtAEn/5t2mJjoev+StxtKkFWhHJRRWvL2QxPfDaSJPsoASxPNwEIEiAADrABpaK1Wc9t3CVi/If2vb3AQMGqEGaWKBOsrwEpJxsVXn0WDF1rZPfS+W6IFHg4vp1X+gC3Xjb9TpwymxGZ9gCze0IIqHbO+ZZABVsB2F01XnAFW7jdPstWCpy5sxZ7Ei3YXax5eRlnY3cigI8dGyM0AK+GyAQemZ/gEb7Ci8UQzgjIPpLJaYfr7V5h2b4bpwC4YkhNzLLOlcHGYbW8xLFoq9zsZr+AzgbwIsDJXTqYdXrosUw5Tpx2ePGXAjRuuB1oSXpUpJaGWBeXLGVC+vBWRERyl5YvOxADLF+q8ZqAKMMAK1JbXSL0nTUvCmbPpf7TvamzBo60sKJw/RFcBlumP/Rhz9BOsrF89TbZ8UD7sLtMJBn640Uhvk3erA6e2G3Dma1k3xb5YxiArqjxhQbH6jh/+GGBppxlZknQBBlh50xuiLUl49PwXOJZ80+6CXfNVx7Si9+RNIXR6ldwMsITk56kmJF5Lf46o/owZRW/P/kO8ISEeQfu/hvGHLTCd+NOpqrlqXZjlLYYNmsEaGuF0f+6gLwFfBFiOhGJiZVF4GaGV+sbD8xdcn3Yo5y1UUNbRkqmHsji8FcWLWTmYMA+6JAOsPEDmJSjwnwADLHYFnwq8OCTZ7vrDBpuVP756C7BiN8xHndvDkBSU/k3w64XvQo+omj715cXTBZJjUt8yeOt41m85w4pYUaO7GRHFsxdjgMXepEUBBlh51yrnU2LR9vwXuGCOs7voK4XuRP8CdfOuIDq7Um4HWMc/N+L8rvRphMUaWFHtqfRphDlxGS+egen7LxC0ZzsMMfbhZObjrCFhSoilhFlV63GKoc76YXbF1UqAlbl8KSnA2XMSahlx4pRV+bI3Pt71UVohIamLwyv/lDMo/xsWylFa3u6+DLC8LcrzUSB7AQZY7B0+FcgYYN1W3YKuXVJXudRbgLXw4/F4vWGVNMtIiwGHKnbl+ig+7V3pF791InW9q+SYrA9/Re+woEonC0whOReWAZZGGpPFsBNggJW3HeKf5Jt49NwmxFjtv3xZWOx+tI+slLeF0cnVcjvAuvm3Ab8vS//yKCjCikYTzK6NOjGbYTq8B0G7t8B0eC9gyTkAsxQpBfM9j8B89yOQ6Ybc9Cug1QDLkahMOzwt62idTh2ldS3DyEO1LSCTAooWsypraMlaWrKmVpHCDLTU+mW3HwMsTwV5PAXUCzDAUm/FPXNBIGOA1f05MypXTP0j6q0AS9a5CFk4AUldh8NapEQu1ACwnD+B+te24Epk+hup+kXchnHFm+TK9XhSFwSswNmdJpzcasgyZdBgAqp0sKB4Y3WvBmKA5YI7d80zAQZYeUaddqGfEi4oa2KlZJiHHAQD1pVsibvDSuZ9gTR+xdwOsORtsnsmmGBJTv+Cou4AM/KXd+9DuSH6BoJ+2q6sl2W8cNqprvm222Fu0hrmBk1hDQ51uj930JaAngKszHJxcTLlUNbRsuLkaSPOnTc4y14d4keE2xaHN6BsOQvKleHi8K72UgZYropxfwq4L8AAy307HukFAVuAVbSIBYMHpAcJ3gqwQhdOgOnXH2EpVhqJo+bAmq+AqlJPuLoHy6OPqNrX0U77y3VGKVNktsdf/9OIIyvTpzy4eiF5y1JUZfcezl29lrf3T7hqwMV9wKX9RiRHuz4c3hvlCS1kRc3nLYgopd6QAZY35HkObwswwPK2qLrzfRL7LwZd/k7dztwr1wVGbGmBu46nj4D76M4DWN/4QK5fVy8XGBxVF6ML36mX4uZpOfUcYGWGMpv/m3Z42pj6tsPTBsS5Me0wTxsgDy5WrWrqDA+j+4/dTkvJAMspEXeggNcEGGB5jZInckfAFmB1fMyCO273boAVsnYOgr77PK1Y5oq3IWn4DFXfkHoSYD1+y4h59Z7LliPmLHB4gQmWFPfDG1OoFXUH5rxmkzvtkVvHmBMMuPKLARf3GxBz2v16e6N8RepYUPVJC0wuflHOAMsb+jyHtwUYYHlbVP353rn5K6ZdZ0iiXiz39mx+pDr67bwv7QLHil3By0/8L/cuqMMzTy96L57OV02HJc/dIvtTgOVISpl2eEb+AU6fBi5fycUUJ3ebyqOzN6hvQYd26kbcu3MhBljuqPEYCrgnwADLPTce5SWB/YcTcOAXA9q2tv+j4ukIrOCtHyL4f8uzlNJcuzES+0+Gs69hJl7bg2W33BuBtcl4O+qXr+9QKOE68OscE1LiPA9xQqKsqDfYjJD8XmoMb5/GCtz4y4iL+wy49ocBVnVr6nq7FOnnMwGV2lpQ6h73HmAYYOVe0/DM7gswwHLfzhtHDrn8PT6OPeaNU/EcHgjkjw/Fine72Z3hhe6rER2e6MFZ/etQIwx4t3gLtIgo618V87A2/h5gZeaRheBl/ayTp604fcqIkz7+UtHD5nPp8BYPWnF/s9x5GGWA5VJTcGcKeCTAAMsjPh7sqcC5q/EOT+FJgBW072uErJiSbdGSm7VF8jNDciy6uyOwGt5KxsZ6vRyeW0KrQ/OMSLzqeXhlu0BESSvqDTDD6GQBck/byZXj4y9JaGXF5YO+myKYubwyZfC2bhbkK6N+ymDmczDAcqUXcN+8EmCAlVfS2V/n2Qvb8U3CWd8XJMBL8NbHHVDlctE0hQUPfodvavwV4Cr21Q83BOGTUq1RL6QIXf4TCLQAy1HDnzqT+rbD07KW1in/nnbYqYMFt9dz74vMnH5pGGDxlkKBvBNggJV31rySAwFvB1imvw8hdOYIp9bJHXsj+eHOTvfLboeQeWMR9Ps+ux+n1GmMpAFvODzEkgIcXmTKMn2uQhsLytyv/g/pqS1GnPnGfvh3gaoW1OppgcGHo8JliuDlAwZckimCZ3MO6IzBQJF6FpRoaEVUJSvgvTzP7fZUcyADLDVK3CevBRhg5bU4r+eqQG4v4m4rz6ltRpz5Kv0PoUwXly8utLgZEuOVZxXjKfuALfnpIUi+r63XiuzohQOFjKHYUrodygbl89p19HwiBlh6br2cy34r2oBFS4yIiU1/0JR1sLo9Y0GVyt69NzDA8t9+xJppT4ABlvbaJKBK5M0AS94WFDp1AAwJ6aO6rCFhSBo8BcGrZ8B48YydbdKLryDlzgdc9g5ZMwtBu760O85SrioSRswGQrIurGS1AkdXG3Htd/uEqURjC6p0cv0P6NE1Rlz91f5cxRpYUO0p18/lcuUzHCBvfrpx1IiL+4FrR4yAk1HZURWtKN7IqoRXJg2NGFNrwABLrRT3y0sBBlh5qc1ruSOQVwFW9CkDfptvSiuiMdiKu14z+/TLnRy9Ym4ibEp/GK9dStvNajAoyxxY6tzlDrXDYz6LPY5+l7+1+1nFoPz4olRbFHR1MUivlUo7J2KApZ22yI2SXLxkwJLlJiQnp589OBjo3dOMEsXdH5WfuawMsHKj9XhOCjgWYIDFnuFTAa8FWLeuI+zNfjDevJr+IGg0IXHgm7DUbADDjSvKz+X12LbNKj8fOg2WavVUGwRvX4/gT5bah1eFiyNhzAIgmzcc/rvRiAu77QOngrdZULO7e6OmLGbgyAojbv5jf87yj1hQtkXuh1jKFMG9wOWDBiTH5Dx8KqSAFcXvtKBEIyC0sPceFFQ3mBd3ZIDlRUyeymsCDLC8RskT5ZJAXgVY8mXRvtfs15is1cuMglW1+7fHcOkswqYOhCEuJv3ZJDhE+ULMWt57C64vuPkb3rj+s10LNwgthg0lWyHEkB765VIX0PRpGWBpunm8Urhj/xqx+gMjLBkekfNFWtG3twVR+b1zf2CA5ZWm4kkooEqAAZYqJu6UWwJeCbAS4xE2bTCM507YFTOx5yswN0wfYWU4e1zZz5CUkP6gGBaBhNFzYS1Z3mkVTb/sQsjiV+1mvFkjo5Awag6sxcs4PP7c90ac2GQfNEWWtqJOfzNMwU4vme0O5iQo3zTHXbAPkKo/Y0bR273zxzjjxc1xBlz6xYBL+wyIPZdzaGUIAmTqRvGGQMGqFt1MEXTWGgywnAnx574QYIDlC3Ve0xWBvAqwpEx/rzMp09ltW6lmFuXlHVrejP8eQejM4TCYU9KfTeTZYswCWIuU8FrRR13ZjTUx9lMWW0WUx7JiD8Jg0Mlcfq9ppJ+IAVYuoGrwlId/N2D9BvuwtmgRC3q9YEV4uOfPzQywNNjoLJLfCjDA8tum1UfFPA6wzCkInTcWpj8P2lU4qX13pLTumgXBeOQAQueOgUHmv/23WQoUQcLYhUBUoWzRHD5gOvmW9OphgzJ1MGOCE1ow9c2BwZGet09SdOobDZNupT94GoxWyDfOBSp7fn55a+D1/6YIXv/T+RTBfOWtyrpWEqCZwjx/GPC8Bt49AwMs73rybN4RYIDlHUeeJfcE8jLAunrIgKMfpH9IDStqRYORufPWMW/YI+kXAAAgAElEQVSKOfqCzFKsNBJGzwMivfOqYYvViucv7cDX8fYvHOhdoDYmFmrkzero6lwMsHTVXB4V9tvvjPhqp/2XyhXKW9G9mxkmDwciMsDyqGl4MAVcEmCA5RIXd/a2gKcBVsiy1xH0s/3aDil3P4yk50dlW1TTj9sQuuptu59bSldURlIhNDzLcQ6H+DtZpyL6VOqi7VZzerhkCrei3kAzwtNfkuQxZ9wl4Ld5JpgTM1wn1Iq6A82IKO7e6WWK4IWfUqcIypsTc9qC81sh62+VaGRAeDFtf8vtnkb6UQywPBXk8bkhwAArN1R5Tm8K5GWAlRIP7H3VBFjT/3Y1GJWCMB28dC94x8cI3rDYjt5cqQYSh053uL6mO20Ub0lBhwtf4nDSNbvDpxZpgmfz3+bOKXV/DAMs3TehSxX4ZKMRvxyyD7Fq1LDg6c4WeDIQkQGWS83AnSngkQADLI/4eLCnAp4EWMGfvYvgzWvsH/ZqN0Zi/9cAY85fpQRvWoXgL1bbH1ujPhIHTbE/NjYaYW/2tVtkVQ5KfGYozM0edVj9+CvArxIqxWd460mQFbX7mJHf+UxFl0lv/gv8scw+LAuJSg2xQguoO50EVTLt4uI+Q5ZpiVnOYAKK1Epd16pANffW8VJXKm3txQBLW+3B0qQKMMBiT9C6QF4GWGLx+2ITbv6b/ve3UnsLSt2rjy9YHL0kxqw810wG5PVpXtiumRPQ6tznOGuOTTubaC0t9iBaR1bwwhX0dQoGWPpqL09LK+tgrfnQiL8zrSPbpIkFrR92/z7BAMvTluHxFFAvwABLvRX3zAUBdwMsh6OocngToKOih7w3DUE/bbf7kd3orZRkZV0K0/E/7fZJbv0Mktv3cKiRHJs6rS/xRoaRSwarsmB7oRq5N63O0XTF8GKpIVZQWDYNZ059e+Cln4FrR51PEYwsY0XxhlYUr2+FjCYLtI0BVqC1uD7qywBLH+0UyKXM6wDr3HdGnPgiPewpWN2KWj21P41Q6SMWC0IXjIfp9732zyZN2yCp6zCvdaPjybfw6PlNuGlJSjtnMIzYUKo17gwt5rXr6OFEDLD00EreLWNyCrBshQnnM60j26aVBXc3di/EYoDl3Tbi2SiQkwADLPYPnwq4E2A5XMfKyZsAs6tk6DujsqyfldzmWSS3fU5ZsD3o0A/ZB1yZTmpOBg4vMGVZ5LxyRzNK3pX7gU/mh3YpXlSl1DWxMg5Iiz1rwMX9Blz5RcUUwUgrita3okQjKyJK5n4dfNoZnVycAZaWWydwy8YAK3DbXi81z+sAK/6SAQdnpI/CNpisaDzJDFOITsSSEhE6e0TWL8869UHyQ094rRI/J15Gp/ObkYz0D+wFjCH4olRbVAqO8tp1tH4iBlhab6HcKV9cvAGLlhhx42aGdWQNQJfOFtSs4XqIxQArd9qJZ6WAIwEGWOwXPhVwNcAynjmG0LeH2r9JMDI/EkfPhaWY4zcB5pjgJsYjdPowyHkzbuZKNWE6fsT+v9W8E4mD33J4OlkT/si7RtyQkUwZttLNLKiYh29A+nejERd225ehSD0rqjxuwaWfU6cIxl90/rahwrVS3yJYuLbrf8R92qFy8eIMsHIRl6d2W4ABltt0PDCPBPI6wJJq7X/D/gUnyijomvr5e2aIjUbo1EEwXrZfcD2p1wSkNGjmtZbbHHsSvS5/g4xfT5UxRWJL6XYobMpu+LbXLq+JEzHA0kQz+KQQ164ZsGiZEQkJGZb8MAEvPm9G2bKufWnLAMsnTciLBqgAA6wAbXitVNuVAMtw9QLCpvSHPNjZNmtQCJJemgFzxRpuV8lw6zrCpg6E4dqltHNcDWqMm8aa6deJKoSUe1oBpiCH14m5YMD13zMFR3WtuO3ZvJ+28OdqI64ddn2tjPASqW8RLHanFcGRrv3hdhtfRwcywNJRYwVQURlgBVBj67Sqvgiwjv/PiPM/pv8dLHGXBVU66ifAkqY2XjmP0LcG2D3zyH9Pbtkl22cRd7rIyiJWjC5tf2S9eCseyfCGY3fOq6Vj2kQbUCfecYnCQkwIDjIiIcmM5BR99REtGWu5LJbb7oC5+u0Oi3jmjAErVpmQkpL+47AwK/q+aEHhwuqfhRlgabkHsGz+JsAAy99aVGf1cSXACjrwLUKWvm5Xw8R+r8Fcr4nHtTZeOI3QaYNgiE9d1PRo2ECcDunk9nnzV7Cibv+8D6+kwNYU4PASE6JPOh9pJWtZFaufurZVvjLq/1C7DaPjAxlg6bjx/LjoDLD8uHH9pGq+CLBu/GXEH8uzfpETXtyC/BWAqIpQXqoi/67lzXTiKEJmDIchJX2tqtwo77gHG2B+4/Qv7XLjGr48Z9G4BHy1aivK34zxZTF4bR8JWINDkThiJizlqzssgSzo/v5aI6wZHoMLFrCi94sW5FP5hS4DLB81Li8bkAIMsAKy2bVTaVcCLCm16e9DCFk4UQmakp8ZguRmbb1WGdOxw8p0Qk8DrLCiFtw+wApThO8CIXOcAYfmG5BwxfFIrILVLSjR2IoidX1XRq81XB6diAFWHkHzMi4JMMByiYs7+0DAFwGWVPOncUGwJOdcYVOYFfKFU4FKBuQvb0W+8hYYg32AlMMlTYf3IHT+uFwv1PMdmuKz2/z3LYRVr97C9ve3omBC7oaBud5QvIBbAtZ8BZDw8jxYi5R0ePz+A0Z8tsn+mblUSSt69jAjRMU9gQGWW83CgyjglgADLLfYeJC3BFwNsOS6xsvnYPr1RyS3cH+EVHblt43yOho2AKdDXF8sNThf6pv/wgp5S8j98yRcB36bZ0JyTOpILPmmuXhDA4o3sCA4P4MrV2UZYLkqxv3zQoABVl4o8xqeCPgqwJJ1Ka8fcW06vcEIRJSyIqq8FfkrWZVRWqGFfP/3Mvi7TQhe+44nzaDq2EeefQT7yvjvWwgbnb2Mbe9vU2XBnfxPwFKiLBJHzoU1Mp/Dym3bYcSuTOvIVq5kwXNdLTA6uZUwwPK//sIaaVeAAZZ22yYgSuZOgJXbMMFfbcCt/x3A1Ub9YC1ZzqXLFakHTb2tL/acAed/NKBkI/lm2fcP4S5hamxnBlgaaxAWRxFggMWOoHUBXwVYCVcMuPqbEbdOWHHrlAEyMtmdTb7wkVFaMu0wqqIV+cr55m9p0E/bYLh83p0qqD7mhglYUsQ39VNdSBd2/CMM+LKA/QHtbgLLT6X3Ba6B5QKoznaVtW3l9ybjZq5cG4kjZzusiUwh/GiDCYf/sL9X3HG7BR0fy3m6MQMsnXUOFlfXAgywdN18+i+8FgMsUTX9+zvkjxw3CtgEGGCxL2hRgAGWFluFZcoo4KsAK3MrSKAla0PePAHlf+MvGWD3+j2VzWYIAvKXtSJfBQuiKhoQVcGKIJXr5Ki8BHfzkoDFasXzl3bg63j7tzn2iaqNCYUbKVfhWwi9hK3R04SsnYOg7z63K11K/fuQ1Hu8wxJbzMDK1SaczBByyo4P3m9R/sluY4Cl0Q7AYvmlAAMsv2xW/VRKqwGWfgRZ0rwSYICVV9K8jisCDLBc0eK+vhDQSoCVue7mBAOiTxmUEVoSaMXIKK0k90ZphRWxIn9FK6JkgfgKVshbfeHeqXzRRH59zXhLCp68uBUHEi/b1XNqkSZ4Nv9tDLD8uvUBWCwIXTAept/32tU0ucUTSH6ij8PaJyQasGSZAVeu2s8blFFYMhrL0cYAy987EuunJQEGWFpqjQAsCwOsAGx0nVaZAZZOG87Pi80Ay88b2A+qp9UAKwutFYi78N8orZNA9AkDEq+5l0IZw6yIKifraBmU9bRkCr8p1H+m5umtW94wJ+LR85twIiU6rejSsu8VfwidilVCRFgQbsQkIS7RN2+P1pun7sqblIjQ2SNgOv6nXdETnxkKc7NHHVbnVrQBi5YYERObfg8wGKCsh1WlctYQiwGW7noFC6xjAQZYOm48LRb9083f4+NN3+KfE2dhNptRoWxJdGjVFM88/hBMpqwrIDLA0mIrskyOBBhgsV9oUYABlhZbhWXKKKCbAMtBsyXHGpQgK3WUlhExZwywupNxGICIEhnW0qpgRagfrTWlhx5/JiUGrc59juuWxLTihhlM+KpSe9xTqCQDLD00oidljI1G2NSByougbJvVYEBi/8mw1LnL4ZkvXjJg2QojEjOMzAwOBnr3NKNEcftAmgGWJ43DYyngmgADLNe8uHcOAmPeXIrPtv2A4CAT6tethuCgIBz64xhiYuPRtHFdzJ8yFEEmk90ZGGCxS+lFgAGWXloqsMrJACuw2luPtdVzgJXZ25oCyMtRbp2UUCt1La3kaPdGaclbi2Vx+PwVDIiqaEG+slYY7B+R9Njcmi7zb4lX0eHCl0jIkEIWMYXipxqdUDQlnCOwNN16nhfOcPUiwqb0hyH2VnqIFRyChBGzYS1fzeEFZC2slatMMhMxbcsXaUXvnhYULJgeYjHA8rx9eAYKqBVggKVWivvlKCDBlQRYlcuXwpLpI1GqeGFl/7j4BAydMA8/7DuMQS90RN/n2jPAYl/SpQADLF02m98XmgGW3zex7ivoTwGWo8ZIvC7TDqGEWjJaK/a8e4vDwwTkK2NF/vJWFKgIZU0teQMiN+8KfBV3RlnYPaNs+ZB8+LrcYwg3B3v3Yjyb5gQMp/5G2PShMCQnpYdYkVFIGLMA1iIlHJb38O8GrN9gny4XLWJBrxesCA9P7UkMsDTX1CyQHwswwPLjxs3LqnXoMQ5/Hz+DNfPH4Y7aVe0uff1mNFp0Ho7g4CB8+8k7CAsNSfs5R2DlZSvxWp4IMMDyRI/H5pYAA6zckuV5vSXg7wFWZidLMhBzyvjfKC0rok8bYI5zb5RWaKH/ph1WSA20IkpaYci6GoO3mipgzvN+9FGMvvqjXX3rhRbBJyVaI9wYFDAOgVpR4+E9ysLuBmt6jGkpVhoJo+YA+Qo4ZPlulxE7vrb/5Stbxoqe3c2QySUMsAK1N7HevhBggOULdT+75rkLV/BwlxEoX6Y4Nq+Z5rB2wyfNx9ad+zD3jSFofm99Blh+1gcCoToMsAKhlfVXRwZY+muzQCtxoAVYjto3/pIEWrIwPBB9CpB/d2czBgP5yluUNx1GVTQoUxBNYRyl5Y7l1OsHMOfmr3aHNg8voyzsbpTVurn5tYDp+y8Q+sFsuzpaylVVphMiJNRh3TduMuLnA/a/uzVqWPB0ZwvKFA33ay9WjgJaEmCApaXW0GlZvvr+AAaPn4O2DzfB1Fccv5L2vY+2Ytr8tejVtS2G9nqCAZZO2zqQi80AK5BbX7t1Z4Cl3bZhyVIFGGBl7QkyIktGZt08LovDGxBz2ggZueXOFl7cgvzlgahKUP5X/p2bOoG+l3bi87gTdjt3zVcd04reo+4E3EvXAiEbVyBoy1q7OphrN1YWdocxa8gsA7beX2vE3//Y/6zJXRb0fMZx6KVrIBaeAhoVYICl0YbRU7HeXbcFby/8EH26tcPgnp0cFn3H9z9jyPi5aPlAI8ycNIABlp4amGVVBBhgsSNoUYABlhZbhWXKKMAAy3l/sFqAuPOpi8PLOloySkvW1nJnM0VYkb+cFQUqpY7QylfOAhm5xS2rQLLVgq6Xt+GHuAt2P5xQqCH6FKhDsgAQCFn2OoJ+/taupilN2yCp6zCHtU9OAZatMOH8Bfvfz2Xv8JcsALoLq6gRAQZYGmkIPRdj3opPsXDVRozo+xR6dGntsCp7Dh7BC8Om4u47a2H5jFF6ri7LTgEKUIACFKAABXJVIOEmcPUfK678Y8HVY1ZcP2lFhpfnqb52zbZG1O7A1xtmB3bLnIRmR/+HX+Ov2u2yrVo7PBxVVrUzd9SvQMzkoUj5bb9dBSL6jUHIg486rFRMLPDmzGRcupL+YwZY+m1/llx/Agyw9NdmmivxjEXrseLDLzFmUFc82+lhh+U7ePhvPDvwDdSvUw3vz3tFc3VggShAAQpQgAIUoIBWBSwpwPUTEmhZcfVYaqiVeMt5aZsOCULJuu6N5nJ+dv/Y42JyHBoc+RjnkmOVCj1TuBpWVngQIUYGf/7RwjnXwhoXi+jx/WA5/a+yY1Ddhoh86Q0YIiKzPfDqNWDy9GRImCUbA6xA6Cmso1YEGGBppSV0XA6XRmA1qIXlMzkCS8fNzaJTgAIUoAAFKKABgdhLwJX/wiwZrXXzrBXItKb7Y/OCEBzGAMtZc/2ZcANN/tyAl0s2wOiS6S8bcnYcf+4fAtYb13Dr5RcQ0qQ5wrsNdLgGVuaanjxtxbQ5KejcwYQH7nXvxQz+ocdaUCBvBRhg5a23X15t1UdbMXX+WlVrYD3U7E68M3mQXzqwUhSgAAUoQAEKUMBXAimJwLVj/43S+seCpHigxStBviqO7q573ZyIQiYuxq27hvNSga2x0TBE5nfpbHHxQARfQOiSGXemgKcCDLA8FeTx+PbHQ+g/ZpaqtxC+0KUNXur7ZJrauavxDgUL5w9BWIgJ16KTkJBkpjIFfC7ARdx93gQsgAMBLuLObqF1AS7irvUWCuzyFYwMRkRYEG7EJCEukc+bgd0b3K+97T7n/hl4JAUooFaAAZZaKe6XrcCVazdxf8chKF+mODavmeZwv+GT5mPrzn2YPqEfWje/iwEW+5PuBBhg6a7JAqLADLACopl1XUkGWLpuPr8vPAMsv2/iPKkgA6w8YeZFKKAIMMBiR/CKgCzQLgu1r5k/DnfUrmp3zus3o9Gi83BYrFZ89+kcROWLYIDlFXWeJC8FGGDlpTavpVaAAZZaKe7nKwEGWL6S53XVCDDAUqPEfZwJMMByJsSfU8B7AgywvGcZ0Gf6fs+v6Dt6JiqXL4Ul00eiVPHCikdcfAKGTZyPXXt/Q9eOD2Hs4GftnDiFMKC7ja4qzwBLV80VMIVlgBUwTa3bijLA0m3TBUTBGWAFRDPneiUZYOU6MS9AgTQBBljsDF4TmL5oHVZ+uBnBwUGoX6cqQoKDceiPY4iOiUOt6hXx3jtjEBFuvzgmAyyv8fNEuSzAACuXgXl6twQYYLnFxoPyUIABVh5i81IuCzDAcpmMBzgQYIDFbkGBvBNggJV31gFxJVnn6v0N23H02CmYzRaUKVUMbZrfhR5dWiM0JDiLAQOsgOgWflFJBlh+0Yx+VwkGWH7XpH5XIQZYftekflUhBlh+1Zw+qwwDLJ/R88IBKMAAKwAbXUtVZoClpdZgWXISYIDF/qFFAQZYWmwVlimjAAMs9gctCzDA0nLr6KdsDLD001Ysqf4FGGDpvw11XQMGWLpuvoAqPAOsgGpu3VSWAZZumipgC8oAK2CbXhcVZ4Cli2bSfCEZYGm+iVhAPxJggOVHjanHqjDA0mOrBWaZGWAFZrtrvdYMsLTeQiwfAyz2AS0LMMDScuvop2wMsPTTViyp/gUYYOm/DXVdAwZYum6+gCo8A6yAam7dVJYBlm6aKmALygArYJteFxVngKWLZtJ8IRlgab6JWEA/EmCA5UeNqceqMMDSY6sFZpkZYAVmu2u91gywtN5CLB8DLPYBLQswwNJy6+inbAyw9NNWLKn+BRhg6b8NdV0DBli6br6AKjwDrIBqbt1UlgGWbpoqYAvKACtgm14XFWeApYtm0nwhGWBpvolYQD8SYIDlR42px6owwNJjqwVmmRlgBWa7a73WDLC03kIsHwMs9gEtCzDA0nLr6KdsDLD001Ysqf4FGGDpvw11XQMGWLpuvoAqPAOsgGpu3VSWAZZumipgC8oAK2CbXhcVZ4Cli2bSfCEZYGm+iVhAPxJggOVHjanHqjDA0mOrBWaZGWAFZrtrvdYMsLTeQiwfAyz2AS0LMMDScuvop2wMsPTTViyp/gUYYOm/DXVdAwZYum6+gCo8A6yAam7dVJYBlm6aKmALygArYJteFxVngKWLZtJ8IRlgab6JWEA/EmCA5UeNqceqMMDSY6sFZpkZYAVmu2u91gywtN5CLB8DLPYBLQswwNJy6+inbAyw9NNWLKn+BRhg6b8NdV0DBli6br6AKjwDrIBqbt1UlgGWbpoqYAvKACtgm14XFWeApYtm0nwhGWBpvolYQD8SYIDlR42px6owwNJjqwVmmRlgBWa7a73WDLC03kIsHwMs9gEtCzDA0nLr6KdsDLD001Ysqf4FGGDpvw1ZAwpQgAIUoAAFKEABClCAAhSgAAUo4NcCDLD8unlZOQpQgAIUoAAFKEABClCAAhSgAAUooH8BBlj6b0PWgAIUoAAFKEABClCAAhSgAAUoQAEK+LUAAyy/bl5WjgIUoAAFKEABClCAAhSgAAUoQAEK6F+AAZb+25A1oAAFKEABClCAAhSgAAUoQAEKUIACfi3AAMuvm5eVowAFKEABClCAAhSgAAUoQAEKUIAC+hdggKX/NmQNKEABClCAAhSgAAUoQAEKUIACFKCAXwswwPLr5mXlKEABClCAAhSgAAUoQAEKUIACFKCA/gUYYOm/DVkDClCAAhTQicCqj7Zi6vy16P1sOwx5sZNOSs1iUoACFKAABShAAQpQwPcCDLB83wa5XoIf9/+OF0e8jXsb1cGSt0fk+vXcvcBvR/7Fus++wb5f/sTFK9cRHGRCpfKl0Kb53eja8SEEBwc5PHV8QhKWf/AFtn27D2fOX0ZoSDBqVa+Ibk88ggfuucNpcfYcPIKRry3E1eu3sO3D6ShTsmiOx+w/dBTvrtuCX37/BzFx8ShRtBBaNG2APs+1R4H8kU6vxx3SBYZOmIft3+3HxJe648l2D2iW5vyla1j76Q7s2vsbTp+7jBSzGaWKF8Z9d9+OF595FEULF8i27J9u/h4fb/oW/5w4C7PZjAplS6JDq6Z45vGHYDIZc6zzuQtXMHTiPPx+9AReH90Tj7du5nT/Ras/w+59h3Hl2k0UiMqHxvVroM+z7VG1UhnN+mq1YLlx73QnwLJYrMrvyaYdP+LXP47hxs0YREaEoWb1CujyWHM8fF/DbAk9uV8lJCbhtZnvYePWH/BYy3vx5pheOTaVp/dirfYDrZVL/lbJ38of9x/GidMXcCs6TukPpUoUwd0NauHJ9g+iQtkSPi+2J/1W7n2e3MtWf7wN0xeuQ7GiBbFj3QynFp7cp52ePIB2yI17Zm7w6eV501Z3V/tzbpjxnBSgAAW0IsAASystkYvl0PoDRXRMHCbPWoUvvvpJUahWqSzKlS6GG7di8cdfJyAfom6vVQXLZoxCRHionZQc++ygN/DP8bMoEBWJejUrIzYuEYf++AdmswWDXuiIvs+1d6hrtVqx7IMvMGf5BsiDtmzOAiwJIiZOX6nsW/u2iihSqAD+/vc0JOCQQOODBRNQvGjBXGxN/zm1BCwtOg9XwiCxXL94kuYqJ/1i+dovMH/lp0hOSQ2tqlUupwRRR/4+iWs3olG4YH68N2csKpcvlaX8Y95cis+2/aCEsfXrVkNwUBAO/XEMMbHxaNq4LuZPGYogk8lhvb/f8ytGv74YN6NjlZ87C7CkPM8PmYLYuASUK10clSuUwoVL13D02GmEhARjwZtD0aRhbc0Za7lAuXHvdDXA+vfUeaUfyL1Q+lHt2yqhcKEopW3lv8nWtePDGDu4axZKT+5XJ89cxNAJc/HXv2eU8zoLsDy5F2u5D2itbNKmU+auUf4uyiZfuMg9SH7vT5+7pNynJBjv3bUdBvToAIPB4HEVHukyAj2fboOnHmuu+lye9FtP7mXiMH7acmzduU8pq4R6zgIsT+7TqkECZMfcuGd6k05Pz5tSb3f6sze9eC4KUIACWhRggKXFVvFymbT+QHErJg5P9p6EapXLYnjvzsqoK9t24fI19Bs9U/kQ1adbOwzuaT/lZtzU5ZBvTh+5vyGmjO2NsNAQ5dBTZy/iheHTcP7iVayaMxZ31qtupyqhwJg3l+DbHw8p31hbrBbsPfhnjgGWfDho220MgoJMWDR1OBrdUUM5pwRh81Z+ikWrPlPOtXzmKC+3oH+ebumaTZi99GPUrFZBCYM+Xvqq8v+1tskoseOnz2PMwK64+85aacWT0SaTZqzEpu0/okHdalg99xW7oktwJR+MJNhaMn2kEn7JFhefADnnD/sOOwxYJTSb/25qf5IPX00b1cVHm3bmGGBJWNvu+TGQ0GFkvy7o/lSrtLJ899MhDHplDiIjw7D1g7eRP1+E1og1W57cuHe6GmD99udx9Bg6RRmx1/PpR5Wg3rYdPPw3eo+cjrj4RCyfMcquf3pyv5LRXq+8tQwpKWalLy1e/bnTAMvde7FmG1+DBVv7v6/w+uzVSigl7fJ855YoViT9CxO5t8j9aNaSjyB/V5/t9DDGDMoabLpStb+Pn0GHHuMwYdhzLgVY7vZbT+5l8kXWkAlzlVFpL3Rpg3WffY2o/JE5Blju3qddMQykfXPjnulNP708b0qd3enP3rTiuShAAQpoVYABllZbxovl0voDhVT15q1Yuw9mGasvwVKPYW8pQcDnq6ak/UimUTz4xFDkiwjHjvUzEBEeZqcmH9z7vTwL9zSsg6XT7adOdun7KuQBW6YmjhrwNPqNnoXd+w/nGGC9Oed9rPlkB4b2egK9ura1u5aEWE/3e00555r543BH7apebEH/O5V4te46GreiYzF1XB/0HT1T+XAkH5K0tklQZTIalFFMmTf5WdPHBiqjIb795B27qYTyoU8+/DnqD9dvRiujz2RarBxnC17l/NMXrcPKDzcroevs1wZhwxffKkFfTiOwJHCQUExGWC2bPjJLOW3ndNR3teatpfLkxr3T1QDL2f1RRgcueG9jlt8fd+9XtvtmiWKFMPf1IUhOSUHXAa/nGGB5ci/WUntruSwSTj/W4xUkJ6co98y2DzXJtrjywffp/pOVsHzxtJeU0Z7ubhKGyUhlVwMsd/utu/cyGdHbuusoZQTaqyN6KP31jod6omiRnKcQunufdtfT34/LjXumt8308Lzpbn/2thXPR+zChawAACAASURBVAEKUECLAgywtNgqXi5TTg8UEiTsOXAEn275Hgd/+xuXrlyH0WhE+TIl0KbFXejxVOssa08NeuUd7Np3GPs3L8beg0ewesO21GlRMfEoWCCf8sFbFiiuUbW8V2oio6XuaTdACbh2fzY/7Zz/27JLGSXQ6dH78NrIF7JcS+p2f8chuHErBt9/OtcuIPvp5z9w/tLVtDWFZOqVrBWT0xTCh7uMgKzL8fVHsyAf7jJvtm/Hn+vcEqMHPO2VuvvrSWx9Uj6EvTHmRaWd5IPZt5/MQXhY6ii6jNuf/5xCpxcnKOHhk+0exNIPNuGr7w8obSjhT61qFZTRBs2bNshyrC0w+HDhBGX61aqPt2L9Z9/g3MWrqFqxjDLyy5Pt8RfGKSME/7fydWX6q2zST6S/lC9THJvXTHN4+uGT5ivTXOa+MQTN762fts/lqzeUoHRAj8eVKWO2gCKnAEt+D+T3YeorfdD24awfbI+dOIv23V9Rfic3LHvNk+oG1LHZ3Tul3aT9pP9KmOBom7l4PZav/RJjBz+rBOW2zZ0AKyf0Hd//jCHj5yrrYM1+bWDaru7er2QEzKylH6H7k62UQNb2BUJOUwg9uRcHVIfyoLKvznxPuW+1fKARZk4a4PRM767fgrcXfIgGdatj9dyxWfaXEP299Vuxc/cvOHvhsvLzEsUKo3b1ihjUs6Pyd1PuKxKGOdqcTbd3VsDs+q0n9zJZJ0i+PKpbs7IyMrrOgz1ynELoyX3aWf0C9ed83vTO86b0H1f7c6D2OdabAhQIPAEGWAHQ5jk9UEiQ0/OlaWkLn5cqURgxsQnYf+hPZVqKTM2b9Wr6hyLhkgDr6x8OKsHRJ19+jwfvrY/6darCaoWywLA8mMpoFXlornNbJY+FZTqgjNaR6WUZwwZZB+T9DduV8ErK4mgbOPYdfLP7oDICS0ZiZbc9O/ANyHSc7B7KZdh5k7b9leBKAixHm0yDe6LXROUBWkbdcMtewBbeLJr6EprdVRe20SLZhTS2AEumaJ69cEWZxikf2IsWjlIWVZcP0LK2Rb/nHsPAFx63u7AtMJj/5lBlPSoJH2Q6X8EC+VG6ZBHMmTzYo6Zq3nkYLl6+jr1fLlIWUpZNwrXB4+coYZKESo629z7aimnz1yqj+SSYy257Z9kGLHn/8xxHYHXsOV5Z60rCMgnNHG13PdpPWU/jwNYlDkeTeYTgpwfrIcCyrXMl08lkNKls3rxf2QxyCrC8eS/2067kcbUk5JdRGStnvay8mMHZJn2g2WODlDUGM48Olftpn1EzlPPJyOUaVWVdPwtOnr2o3Ee/+Xg2Ll6+hm9+OKhMdZYvqOSFFXVuq5h22W6dWyLKg+nIjvqtnNxb9zKp9+0teuYYYHnzPu2sPQLl53ze9Px501FfUdOfA6WPsZ4UoAAFGGAFQB9w9o2YPKTefWdtuwXSZVHyTj3HKwtIb1o1xW5dKluAJetwLHxruBJAZNxkuoFMO5AH3oVvDfNYWN749/bCD7N80O8/ZpayhlXmtV8yXvDNOWuw5pPtGDe0G57u0CLbsjgLsOQtcE/2meRwrSPbSW0jxQoVyI9dG+d6XG9/PYEsfN78iaEoVDA/dqybqSw4LItRd+49SVms/4MF47NU3RZgyQ/kzZLvTB5kt/i5vH3ymf6TlTdJSnAqow5smy3AkoXiZRqOBEpq3k6pxt/WLzKX29ZnHa3bZjuvbQSCsxEVagKsRq37KIHzLzuWK6O2HG22kWKfvfsGqlTkGwnVtK8eAizbfVDeMCtvmpXNm/crNQGWN+/Fatol0PaxjRSSFz7s3bxI+cJJzSajVuXeOff1wWmjU2W682PdX1He2Ctv6pXw3DaFWUYtHT99we6FFDKKS0ZzuTOFMKcyOuq3sr+37mVqPvB78z6tpj0CYR8+b3r+vOmon6jpz4HQv1hHClCAAiLAACsA+oG7axLI2/bkW9Jp4/vi0RZ3p0nZAqzMU1ZsO8i6QA1b9Va+2d23eZFHwjLNod1zY5W1PGR0Scape88NfhM///oX1i2emO1Ir3krPsXCVRuVxd8lTMhucxZg7Tl4BC8Mm5pjKGebsiCBzK9frfCo3v58sEyrkulVmUceOZqKZ3PIGGBtXjNVmeKaeVu38Wu8NmtVllGDtgBL9reN+PKGr7R3z+HTIH1DArWHmt2ZdlpbvxvR9yn06NLa4eVsfUoWhpcQNrvNWYAli77Xbd5DmXq5f8uSbM9j+32RxeZl0XluzgW0HmDZpvdVr1wWn654Pa1C3rxfqQmwvHkvdt4qgbeHjGyWNa1KFiuMrz6aqRrA9rd6/LDn0OW/NwjaRj7JKC4ZzeVsy40AK7t+6817mZoP/N68TztzDJSf83nT8+dNR31FTX8OlD7GelKAAhRggBUAfcCVBwpZh0i+obUCWPr+Jqz48EtMHP48nmz/YJqU7aE4p29km3UYBBlpc3DbUrenK8lirH1Hz4BMc5Q3KckaRxk320LsnyyfjNuqlHPYkjL1SgIAWZNryIv2bzDMeICzAOv7Pb8qC423aNYgxylnMmVBHjQOfbXcboRQAHQzVVWU0KfNsy8rb4n8YvVbqFiuZNpxtil1XTs+jLGD7d+cZQuwcprCKaOv7nt8cJa10mwBlkxnlbDTW5vtw48EVxJgZdxmLFqv/O446re2/WTKqvS7+nWq4f159m8wzHguZwGW/L7e2bK3Mp3nx00Lsq3eiyPehtwLZJF3Weydm3MBLQdY8oZWeXHE9RvReH/+OLsQ35v3KzUBljfvxc5bJfD2sLWBvKFXRkSr3Ua/vhibdvyIYb0748VnHlUOk6nNMnUuu/XyMp/b2wFWTv3Wm/cyNR/4vXmfVtsm/r4fnzc9f9501EfU9Gd/71usHwUoQAGbAAOsAOgLOT1QyLSjjzbtxI7vfsZf/55GTGx8FpHMQZUtwFowZRjub3K7Q0F5O+ClKzeUEViZ3w6ohly+iR05eSG2fLNXWWhd1kbKvLnyrf+gFzqi73Pts720swDLmyMa1NTfX/exrbnmKLSRwPPBTkOVqaw7P3nHbpqMLcCqW6MSPlyUfQgl6zxJH5Ygx7Y+iy3AchSMuev8wadf4Y13VkNGvrw/b1za2le287n0zX6DWlg+0/0RWLaRf+pHYNlPsXTXIBCO02qAJSNTnx88BcdOnnO4Npo371dqAixv3osDoV+5Wke3R2CNm4Ovdx1AxhFY7Z4bg39Pnbd76URO5fFmgOWs33rzXqbmA78379Outqm/7s/nzY3w9HmTAZa//nawXhSggLcEGGB5S1LD58nugUICA/ngcfzUeWXh8UceaKQsAC2BkwEGfLjxa2zduTfL2he2ACunkRyeBFgSXo19ayk+37ZbWbdj1qsDHI5mspVDzRpYMqJHAozsNmcBli1AkalXMgXL0Zb2tsT8kdj9efrbEjXcNfK8aMMnLVD6lLPtrbG90e6Re9J2s/k7WyBfRmDJSCyZZiPTbWTz9lvfJPCdNP1dZRrjqjljUKxIwSzVsV1TzRpYjkZwZTyhsxFYsq8tuFOzBpZMNZPgjZtzAS0GWDduxqDHsLeUN19mN0XVm/crNQGWN+/Fzlsl8PY4f/EqHnrqJeXvoHwpJC9JUbPJS0Xk5SIZ18CyvXRi+4fTUbpkUaen8VaApabfevNepibA8uZ92ilkgOzA583tyghyT543HXUVNf05QLoYq0kBClCAa2AFQh/I7oFC1guSdYPaP3IvpoztlYVi6vy1yof/7EZg5UaAJW9CGjtlqTLtQT7YT5/YP9tFqWVhd1mEVc1bCBdNlcXm62Xb3M4CLFmDq1HrvqreQuhslFAg9DlHdbQt3m40GlE9mymf8QmJymvb76xXHavmpL/63faBvFqlssrIAUebfHvfoGVvJCUlOxyB5WwaqZp2kVB38qxVytRHWT+meNGs4ZWcR14uIIsUq3kL4Qtd2uClvk9me3k1AZa8YEAW7nb2FkIZnbZv82K7FzaoqXeg7uNJgGV7M9/Ywc+ia8eH0gg9CVTld6jn8KlKeDWyXxd0f6qVw6bx5v1KTYDlzXtxoPY1Z/W2vYXwvXfGoOHttznbXRmJ2vSxgZCp+N99OgdFCkUpx7R5drTyMouNK99A1UrOX+bgjQBLbb+V8nnrXqbmA78379NOGyRAduDz5kF4+rzJACtAfllYTQpQwG0BjsBym04/B2b3QNH2uTHK6KsPF05A3ZqVs1TINlomrwIseeAcNXmxMkKn7UNN8MaYF3NcR0r2kzJ2evQ+JcTKvEmgIQ/9MiJn54bZDkfK2I5xFmDJfu2fH6tM2fn6o1l2i8nbzrH2f1/h9dmrlfXCZN0wbvYCsiaUrDkiiwnLlBZHW2JSsjKNUEazfb5qStrbsGwBlkyT2/PFIuXNhZm3YyfOon33V1CwQD78sHGeVwKDjNdY/fE2vDXvA2X00rIZo9I+EDqqh7yeXvqejGiUUMnRNnzSfGzduQ/TJ/RD6+Z3Zdtd1ARYEqpJuJbdujY2G1fX0An0PpzdvVPWEJK1hFo92BgzJvZ3yDR0wjxs/24/vBVgSZ+SF0nIPSjjlLDs2shb9ys1AZY378WB3ueyq7/td1xeqCIvVnG2ydt35S28EnZJ6GXb+r08C9/9dAhvj++HNi2yv+/Y9vc0wHK133rrXqYmwPLmfdpZewTKz/m86Z3nzcz9RU1/DpQ+xnpSgAIUYIAVAH0guweK1l1HK4tpy5pCMmoo4ybf3sqUheiYuDwZgSXfEr/06nxlcdkn2t6PicO7w2g05Ng6UkaZMiavAN+xfkaWtbbkIV0e1tWMiFITYNmCBHntuLxBL/NmW8jY2bdvAdDlHFbR9s1/Tovuy4HT5q+FLOje/clWGNm/i3KujG8hXPL2CNzbqE6Wa9g+aGUOFTwZ8WK7yMoPN2P6onXKQtly/QJRkU6b0dan1swfp0zRzbjJWjAtOg+HxWpVRkfY1utydFI1AZbtd/yehnWwdPqILKeRsksdnI32clqpANshu3vngd/+QrdBb6JerSpYu2B8FhW5n0kQK+3sjQDr4uXryrTB0+cuYfKonujQqqnTlvDW/UpNgOXNe7HTigXoDjJq6rEer0BetDLr1YHK21az2+Tv+pN9XlX+fmceKW0LtuQeKvcyZ5u8xVfWisru715Ox7vTb711L1P7gd9b92lnjoHycz5v5rxOp/QDNc+bmfuL2v4cKP2M9aQABQJbgAFWALR/dg8UthEgmUcM3YqJw8jXFuKHfYcho5hyewSWTPkaOnGeMu2q2xOP4OWBz6huFdtbhORh/q1X+qQt/C0P8D1fehvnLlzB7NcG4uH7sn/YV/tAISO5Wj0zChaLRRki3uiOGko5xWjeyk+xaNVnyugcCWgMhpzDN9UV9JMdbYtK316rCj5w8IE/YzXlg5qEXTKSaufHsxEcHGQXYMnaUxLSlC1VLO2wr384iGET5ilvgJTzy3Vsm6cBlu1Nlg3qVlfaPTIiTFWr2N4EV7l8KSyZPhKliqeuySXTu4ZNnI9de39TppZJwJHTpibAkuO79HsNvx35N8vUMglyB4+bA4PRiC1rpjkcPaiqQgG4U3b3zviEJDTrMBAJiclYt2giat9W0U5n9tKPsXTNJuW/eRpgyfpHPYZNhfzvtPF90PKBxqpawlv3KzUBlhTIW/diVZUL0J1sL4+QEai9u7ZT/l5mDNPlb+mWnXshYb5M28v4JYCNTMJGGX19+eoN9HvuMfR9vr3dSOcTpy8oo0vz54tQDvniq58wavIiJbyXt10GB5lU6bvbb711L1P7gd9b92lVKAGwE583vfO8mbmrqO3PAdDFWEUKUIACXAMrEPpAdg8UsmZO1wGTlTUyalQtr/xzKzoWEjbIwtTPd26JV2e+l+sBVsYPe7K2UE5bkztrY9zQbmm7yAO7BFUyIkIe5OvVrAz5cPnL4X+UMOPJdg9g4kvdnTaz2m/EZISYBH9ybvnQWrRwAWU9GnlYL5A/EqvnjkWVis7XFXFaID/bYcRrC7H56z14c0wvPNbyXqe1k6lS0g9t0+tsI7BkhNHV6zfx78lzqF+3GooVLogz5y/j0B/HlHMOebETZK2rjJsnAdbu/YfRa8R05XSlShSxezNi5krkiwjHusX2b0i0jXySEK5+naoICQ5WyiojI2pVr6hM7ZG3Lua0qQ2wZHRO1wGvK1Nmy5UujsoVSkFGQIidBKqyML6sycVNvUBOb9SSgEruXTKttWOb+1CxXCnExsUrQfwff51Q3tC67VvPpxBKm/7y+z/KdUr892KC7GogfT/j75c37ldqAyxv3YvVt05g7rn+852YOu8DJCQmKaOUK5UvjYJRkZA3CsuSAPLfJeDq2609+nfv4BBJ+lO/0TMhX1ZJWCV/+5OSU3D2whXlS58Ny15T/ptscr623V7G+UvXlCndMurw5q1YDH6xU44vg/Ck33rjXubKB35v3KcDszdmrTWfN733vJlR15X+zL5IAQpQwN8FOALL31sYQE4fwuTDtEwPkAfa5JQU5c1tLZo2QL/nH1PWIXqky4hcD7Bk3ShZP0rN1vze+pj7xhC7XSWAe2/9Fny+fTdOn72kjNiRkVBPtW+u+gO72gBLLiwfThev/hw///oXYmLjULRIQWWBePnAUKJYITXVCKh9ZBrVg08MQ3hoCL7ZMFuZ8ulsk7WhJCi8q35NrJg1Om0EljjPnDQAy9d+oawfJeFVaEiwMjrguc4tldAg8+ZJgGUrh7Pyys/zRYZjzxcLs+wq53h/w3YcPXYK8pKCMqWKoU3zu9CjS+scAzHbidQGWLK/hFcL39uInT/+gitXbyBfZIQS9L34zKN2o9LU1If75HzvFB8ZnfLh/75W2jYxMRlFCkfhrvq18GLXR3Hx8jUl/PR0BJas6yZrmKnZRg94Wvk9yLh5er9SG2DJNb1xL1ZTz0DfR9ZukhewyCjpk2cvKoF4ZHiY8lbBu++spfztk/X3ctok3JZ1CWUEkoRTQSaj8sWVfEkw6IWOdiO7JFCavnCd8pwgzwWlihfBwreGKS+zyG7ztN96ei9z9QO/p/fpQO+TtvrzedN5T3DledN2Nlf7s/NScA8KUIAC+hVggKXftlNd8m92H8TAse/AUfij+iTckQI+FLCNwJJpfDLKjRsF8kKA9868UOY1KEABfxHgPdNfWpL1oAAFKKBdAQZY2m0br5VswXsbMX/lpy6vL+W1AvBEFPBQwBZg1a9TDe/Pe8XDs/FwCqgT4L1TnRP3ogAFKCACvGeyH1CAAhSgQG4LMMDKbWEfnF+mbMniwrIm096DR/Dym0uUKQYyckVGsHCjgN4EGGDprcX0WV7eO/XZbiw1BSjgGwHeM33jzqtSgAIUCGQBBlh+2Pqfbv4e46Yut6tZ144PY+zgrn5YW1YpEAQYYAVCK/u+jrx3+r4NWAIKUEA/Arxn6qetWFIKUIAC/iLAAMtfWjJDPY78fRILV21URl0VL1oILe9vhOZNG/hhTVmlQBFggBUoLe3bevLe6Vt/Xp0CFNCXAO+Z+movlpYCFKCAPwgwwPKHVmQdKODnAgyw/LyBWT0KUIACFKAABShAAQpQgAJOBBhgsYtQgAIUoAAFKEABClCAAhSgAAUoQAEKaFqAAZamm4eFowAFKEABClCAAhSgAAUoQAEKUIACFGCAxT5AAQpQgAIUoAAFKEABClCAAhSgAAUooGkBBliabh4WjgIUoAAFKEABClCAAhSgAAUoQAEKUIABFvsABShAAQpQgAIUoAAFKEABClCAAhSggKYFGGBpunlYOApQgAIUoAAFKEABClCAAhSgAAUoQAEGWOwDFKAABShAAQpQgAIUoAAFKEABClCAApoWYICl6eZh4ShAAQpQgAIUoAAFKEABClCAAhSgAAUYYLEPUIACFKAABShAAQpQgAIUoAAFKEABCmhagAGWppuHhaMABShAAQpQgAIUoAAFKEABClCAAhRggMU+QAEKUIACFKAABShAAQpQgAIUoAAFKKBpAQZYmm4eFo4CFKAABShAAQpQgAIUoAAFKEABClCAARb7AAUoQAEKUIACFKAABShAAQpQgAIUoICmBRhgabp5WDgKUIACFKAABShAAQpQgAIUoAAFKEABBljsAxSgAAUoQAEKUIACFKAABShAAQpQgAKaFmCApenmYeEoQAEKUIACFKAABShAAQpQgAIUoAAFGGCxD1CAAhSgAAUoQAEKUIACFKAABShAAQpoWoABlqabh4WjAAUoQAEKUIACFKAABShAAQpQgAIUYIDFPkABClCAAhSgAAUoQAEKUIACFKAABSigaQEGWJpuHhaOAhSgAAUoQAEKUIACFKAABShAAQpQgAEW+wAFKEABClCAAhSgAAUoQAEKUIACFKCApgUYYGm6eVg4ClCAAhSgAAUoQAEKUIACFKAABShAAQZY7AMUoAAFKEABClCAAhSgAAUoQAEKUIACmhZggKXp5mHhKEABClCAAhSgAAUoQAEKUIACFKAABRhgsQ9QgAIUoAAFKEABClCAAhSgAAUoQAEKaFqAAZamm4eFowAFKEABClCAAhSgAAUoQAEKUIACFGCAxT5AAQpQgAIUoAAFKEABClCAAhSgAAUooGkBBliabh4WjgIUoAAFKEABClCAAhSgAAUoQAEKUIABFvsABShAAQpQgAIUoAAFKEABClCAAhSggKYFGGBpunlYOApQgAIUoAAFKEABClCAAhSgAAUoQAEGWOwDFKAABShAAQpQgAIUoAAFKEABClCAApoWYICl6eZh4ShAAQpQgALeF7gVE4eu/ScjPiERq+aMRemSRb1/EZ6RAhSgAAUoQAEKUIACXhRggOVFTJ6KAhSgAAUooAWBjzbtRLHCBfHAPXc4LM7+Q0fx/JApys+mjuuDtg810UKx86wMznzyrCC8EAUoQAEKUIACFKCAagEGWKqpuCMFKEABClBA+wJx8Ym4p/0APN6qKSa+1N1hgWPjEtB96FuIi0/AipmjUaJYIe1XzEslVOPjpUvxNBSgAAUoQAEKUIACXhRggOVFTJ6KAhSgAAUo4GuBHd//jCHj5+LJdg9kG2D5uoy+vD59fKnPa1OAAhSgAAUoQAH3BRhguW/HIylAAQpQgAKaEkhOTsHIyYuw/bv9DLActAx9NNVdWRgKUIACFKAABSjgkgADLJe4uDMFKEABClBAmwKrP96GZR98gSvXbjosYL7IcOz5YqHyM9nn/o5DlP//v5Wvo1qlsmnH2H5WpWIZfPbuG8q+y9d+iW9+OIgLl68hX0Q4qlUugyfaPoBHW9ytHGe1WrFx6w/435Zd+Pv4GcTGxqNokYK4u0Et9OraFhXKlsgR7fzFq1i5bgt27f0VFy5dg8lkQvkyxdGi2Z3o1ulh5M8X4fD4f0+dx5oN27Hvlz9x9sIVmC0WFC1cAKWKF1auLcfXqFpeOdYVH9vFjvx9Epu/3gNZM+zE6QuIiYtHeFgoKlcojdYPNsbTjz+E4CBTlrJ9+dUejJy8EE93aIFxQ7vhj79OYOW6zdj3y1HcuBWDwgXz447a1fD8ky1xe60qyvExsfFY88kObN25F6fPXYbZbEbZ0sXR/N766Pl0G4cGtut07fgwxg7uiqPHTuPddVuw9+ARXL1+E5GR4Ur9H2/VDI8+dDcMBoM2Oy9LRQEKUIACFKAABVQIMMBSgcRdKEABClCAAloXmPD2Cpw9fwV//Xsa125Eo3jRgqhcvnRasSPCQzH3jdTQSk2AJcHMh4sm4sWX3sb1m9EIDg5CcFCQsm6WbXu+c0sM6fUE+o+ZhZ9+/kP5zxKUydsNzWaL8u8R4WFYNWcMalar4JBQpvSNmrwIiUnJys+LFIqCjJSSNyXKVqpEESx5ewQqly9ld7yEN2PeXIIUs1n571H5ImAwGnDzVmzafhIOfbBgvPLvrvjI/lu+2YuXXl2Qdq6CBfIp4dWlK9fT6ta4fg0snT4SQSb7EMsWLMnPO7W5H6+8tUwpp7RBitmCpP/qKsdNn9gP1SuXQ68RbyshnIRMYhj9X/2lAFL3tQsnKP8942a7zn13347WzRtj/NQVynVCQoIRGhJsdw4JwmZOGqC0IzcKUIACFKAABSigRwEGWHpsNZaZAhSgAAUokI3A0AnznE4hVBNgyekLREWiXKnieHnQM7i9VlUYjQacv3QNU+a+j6++P6CUoEHd6jh4+G/07dYeTz/eIjWASjHj+z2/Yvy05bhxMwb161TD+/NeyVLi3478i64DX1cCoWceb4E+3dorI6hkk9FPE95eqYxeKl+mBD5ZPhnhYSHKzyTcefCJoYhPSELXjg8px8l1ZUtITFKOkfI1aVgbTRvXtbuuGh85QEZEyVpirZvfhfub3I5iRQoq55G6vbtuM2Yv/Vj59ylje6H9I/faXcMWLEl5zRYrHrmvIQb0eFwZVWaxWPH7XyeUUOvYibMoVCA/ChXIh6vXb2HMoK546L6GSj0lKFy38RvMWLxeGeHW+9l2GPJiJ4fXiYwIU+otb50c2KMjqldOHVEn7Swjv2RUlmzPdW6J0QOe5u8OBShAAQpQgAIU0KUAAyxdNhsLTQEKUIACFHAsoCagURtgSZj0xeq3soz8kbCk5dMj06YrDnqhI/o+1z5LgT7e9C0mTl+p/PcfNs6DjGLKuD3Ra6ISVLV9uAmmvtIny/ESlrV5drQyYunlgc+g2xOPKPv8dOAP9Bw+DQXyR+KHz+a5NDVOjY+avtV75HT8sO+wEnBNn9DPYbAk/1FGRy18a1iWU0q9pf62bdWcsbizXvUs+41+fTE27fgRVSuVwcaVb2R7HQnrlr49wqHFjEXrseLDL5UAcvu6GShZrLCaKnIfClCAAhSgAAUooCkBBliaag4WhgIUoAAFKOCZgJqARm2AJetXDe31hMMCDZ80H1t37lPWgNq16MxlNwAAEPlJREFUcV6WkEsOkrWtHnrqJeX4NfPH4Y7aVdPO9dufx9Gl76vKv3/z8WxlyqOjbcRrC5V1qCTckZBHNtuxcu3NH7ytrHmldlPjo+ZcC1dtxLwVnzocXWYbgSXnWTp9BO5pWMfhKZs+NkiZnlm3ZmV8uHCCw31kbbGxU5Yqzr/sWG63T8brLJ72UpbRZrad4+ITcX/HwZD/HdH3KfTo0lpNFbkPBShAAQpQgAIU0JQAAyxNNQcLQwEKUIACFPBMQE1AozbAmvfmEDx4T32HBZo6fy1WfbQVt1Upp0zvc7TJdLm6zXsoP5J1rO5tlB7kyIggGRkk0wM3r5mabaUlJJKwSEZb7f58vrKfnPfxnuPwz/GzKFGsEIb3fhItH2ikan0nNT5qWmDdxq/x2qxVqFW9Ij5aMinbYEkWzs+8dpVt504vTsCf/5zCs50eVqYPOtpso83kZ79sX2ZXx4wB1t4vF0GmEma3yTpl3/54CI/c3xCzXh2oporchwIUoAAFKEABCmhKgAGWppqDhaEABShAAQp4JqAmoFEbYK1bPBF1bqvksEBvL/gQ767fgrvvrIXlM0ZlW+jaD3RXfrZo6ktodlf6elSTpr+LjzbtdKmyv+98N21/mV44bMJcZTSWbLKWVJsWd6Njm2Zpbx50dHI1Prbjvt/zG7Z/tw9//HUS5y5cUdalkjWwMm45BViyltX+LUuyrWPn3pOU9boG9+yEPt3aOdxv78E/0WPYW8rPDmxbqizObttsAZYsDr9v8+IcLW2BY06jvVxqDO5MAQpQgAIUoAAF8liAAVYeg/NyFKAABShAgdwUUBPQqA2w/rfydVSrlLogeObNFmDJqCoZXZXdll2AZZsaKKOTypQsqook80gvGYklbzH84NMd2PfLn2nnkEXjh/Xu7HBNKTU+svD8kAlzsf/QUeWcVSqUVkKxwoWiEPLfW/wO/XFM+XlOAZYsgr/7s9RRY442W4Al0zRluqajTU2AlXF0WnbXmrN8Axav/tzhWlqq8LkTBShAAQpQgAIU8LEAAywfNwAvTwEKUIACFPCmgJqARgsB1vhpK/DJl985HcGl1ubM+cuQRePXf/YNbkbHKodNGtEdnds+YHcKNT6Dxs3B17sOoHDB/Jj92iCHQdjSNZuUNxFqIcAKCQnGwW1Lc6SaMncN3t+wHfVqVcHaBePVsnI/ClCAAhSgAAUooBkBBliaaQoWhAIUoAAFKOC5gJqARgsBlm0R9GJFCmLnhtmeV/y/M0THxGHC2yuw7dv9CAsNwVfrZ9q9/dCZjyyq3qzDYFitVrw28gV0evQ+h2WT8EpCLC0EWFLAXRvnKtMos9v6jJqBXXt/4xpYXutpPBEFKEABClCAAnktwAArr8V5PQpQgAIUoEAuCtjeDvh462Z4fXRPh1fSQoB14Le/0G3Qm0r53p/3ivI2P29tyckpaNKuP+ITkrBs+kg0aVg77dTOfGRNKpnaJ9v6xZNQ+7aKDosl61LJ9D6tBFhzJg9Gi2YNHJY1JjYe9z0+GIlJyRjZrwu6P9XKW9Q8DwUoQAEKUIACFMgzAQZYeUbNC1GAAhSgAAVyX+DVme8p0+hymiqmhQBLJB5/YRz++veMEgKtmjMWsui5NzYJau5u2x9JScl4d/bLaHRHjbTTOvORqYgtnx6p7D9jYn+0erBxliL9uP93vDjibeW/ayXAalC3Ot57ZwyMRkOW8trWK5Of7Vg3U3lzIzcKUIACFKAABSigNwEGWHprMZaXAhSgAAUokIPAZ9t+wJg3U9dDenVEDzzR9n7l/8vb84JMRhgMBmglwPrtyL/oNvhNyIip6pXLYlDPTmhyZ20lyJIQ6tKV6/jtyHF8/cMBtGl+F5o3TR1hJIunv7tuC9o+3AT3NKqDqHwRaSLHT53HjEXr8c3ugyhSKAo71s2ArBFl29T4tO46GqfOXkT5MsXxzuTBStlkk7cQfrp5F2YtWY+CBfLj/MWrmgiwgoODFEPxkcXrK5cvpZRXplMuX/ulMtVRtuc7t8SoAU/z94cCFKAABShAAQroUoABli6bjYWmAAUoQAEKOBaQUUed+0zCP8fPKjvIG+oiIsKU0Gr3Z/MQEZ76/+/vOET5eeY3Deb0s4xX9PQthLZzyWiml15bgJu3Uhdel03WrkpITLKr4Ftje6PdI/co/y3jCCj5dwmqpF43bsUooY1s8u/z3hyCu+rXtDuPGp8f9h1G/5dnIcVsVo6V88vbBy9euQ5582Hze+tj4Asd0bHneE0EWDWrVVDCvOkL1ylrd0mbh4eFKu1sq4NML5wxoT8k7OJGAQpQgAIUoAAF9CjAAEuPrcYyU4ACFKAABXIQuHEzBnNXfIKdu3/B5Ws3kC8iHJUrlMaKmaOU0UhaCrCkGrdi4rBu49dKeWUEVXRsHEKCg1G0cAHUql4BD9xTH4/c3yhtiqGEWxu37MLOHw/h7+NnUoOaFDMiI8JQoWwJ3NOwDrp2fAiyQLyjzZmPHPP70RPKyKWffz2qvNVQDKtWKoMOrZpC1hezWoFGrfsorh8tSV0zy7Z9+dUejJy8EAWiIrH7s/nZtpSstSVrbg3t9QR6dW3rcD9ZZ0vW25LtwLalCM0wmsx2nXKli2PLB9Nw+OhxrP5oG/Yd+hPXrt9SQrya1SugY5v7lBFsMvqOGwUoQAEKUIACFNCrAAMsvbYcy00BClCAAhSgQEAL2AIsefugvIWQGwUoQAEKUIACFPBnAQZY/ty6rBsFKEABClCAAn4roHakl98CsGIUoAAFKEABCgSUAAOsgGpuVpYCFKAABShAAX8RYIDlLy3JelCAAhSgAAUooEaAAZYaJe5DAQpQgAIUoAAFNCbAAEtjDcLiUIACFKAABSiQqwIMsHKVlyenAAUoQAEKUIACuSPAACt3XHlWClCAAhSgAAW0KcAAS5vtwlJRgAIUoAAFKECBHAUYYLGDUIACFKAABSgQSAIMsAKptVlXClCAAhSgAAX8RoABlt80JStCAQpQgAIUoIAKAQZYKpC4CwUoQAEKUIACFKAABShAAQpQgAIUoIDvBBhg+c6eV6YABShAAQpQgAIUoAAFKEABClCAAhRQIcAASwUSd6EABShAAQpQgAIUoAAFKEABClCAAhTwnQADLN/Z88oUoAAFKEABClCAAhSgAAUoQAEKUIACKgQYYKlA4i4UoAAFKEABClCAAhSgAAUoQAEKUIACvhNggOU7e16ZAhSgAAUoQAEKUIACFKAABShAAQpQQIUAAywVSNyFAhSgAAUoQAEKUIACFKAABShAAQpQwHcCDLB8Z88rU4ACFKAABShAAQpQgAIUoAAFKEABCqgQYIClAom7UIACFKAABShAAQpQgAIUoAAFKEABCvhOgAGW7+x5ZQpQgAIUoAAFKEABClCAAhSgAAUoQAEVAgywVCBxFwpQgAIUoAAFKEABClCAAhSgAAUoQAHfCTDA8p09r0wBClCAAhSgAAUoQAEKUIACFKAABSigQoABlgok7kIBClCAAhSgAAUoQAEKUIACFKAABSjgOwEGWL6z55UpQAEKUIACFKAABShAAQpQgAIUoAAFVAgwwFKBxF0oQAEKUIACFKAABShAAQpQgAIUoAAFfCfAAMt39rwyBShAAQpQgAIUoAAFKEABClCAAhSggAoBBlgqkLgLBShAAQpQgAIUoAAFKEABClCAAhSggO8EGGD5zp5XpgAFKEABClCAAhSgAAUoQAEKUIACFFAhwABLBRJ3oQAFKEABClCAAhSgAAUoQAEKUIACFPCdAAMs39nzyhSgAAUoQAEKUIACFKAABShAAQpQgAIqBBhgqUDiLhSgAAUoQAEKUIACFKAABShAAQpQgAK+E2CA5Tt7XpkCFKAABShAAQpQgAIUoAAFKEABClBAhQADLBVI3IUCFKAABShAAQpQgAIUoAAFKEABClDAdwIMsHxnzytTgAIUoAAFKEABClCAAhSgAAUoQAEKqBBggKUCibtQgAIUoAAFKEABClCAAhSgAAUoQAEK+E6AAZbv7HllClCAAhSgAAUoQAEKUIACFKAABShAARUCDLBUIHEXClCAAhSgAAUoQAEKUIACFKAABShAAd8JMMDynT2vTAEKUIACFKAABShAAQpQgAIUoAAFKKBCgAGWCiTuQgEKUIACFKAABShAAQpQgAIUoAAFKOA7AQZYvrPnlSlAAQpQgAIUoAAFKEABClCAAhSgAAVUCDDAUoHEXShAAQpQgAIUoAAFKEABClCAAhSgAAV8J8AAy3f2vDIFKEABClCAAhSgAAUoQAEKUIACFKCACgEGWCqQuAsFKEABClCAAhSgAAUoQAEKUIACFKCA7wQYYPnOnlemAAUoQAEKUIACFKAABShAAQpQgAIUUCHAAEsFEnehAAUoQAEKUIACFKAABShAAQpQgAIU8J0AAyzf2fPKFKAABShAAQpQgAIUoAAFKEABClCAAioEGGCpQOIuFKAABShAAQpQgAIUoAAFKEABClCAAr4TYIDlO3temQIUoAAFKEABClCAAhSgAAUoQAEKUECFAAMsFUjchQIUoAAFKEABClCAAhSgAAUoQAEKUMB3AgywfGfPK1OAAhSgAAUoQAEKUIACFKAABShAAQqoEGCApQKJu1CAAhSgAAUoQAEKUIACFKAABShAAQr4ToABlu/seWUKUIACFKAABShAAQpQgAIUoAAFKEABFQIMsFQgcRcKUIACFKAABShAAQpQgAIUoAAFKEAB3wkwwPKdPa9MAQpQgAIUoAAFKEABClCAAhSgAAUooEKAAZYKJO5CAQpQgAIUoAAFKEABClCAAhSgAAUo4DsBBli+s+eVKUABClCAAhSgAAUoQAEKUIACFKAABVQIMMBSgcRdKEABClCAAhSgAAUoQAEKUIACFKAABXwnwADLd/a8MgUoQAEKUIACFKAABShAAQpQgAIUoIAKAQZYKpC4CwUoQAEKUIACFKAABShAAQpQgAIUoIDvBBhg+c6eV6YABShAAQpQgAIUoAAFKEABClCAAhRQIcAASwUSd6EABShAAQpQgAIUoAAFKEABClCAAhTwnQADLN/Z88oUoAAFKEABClCAAhSgAAUoQAEKUIACKgQYYKlA4i4UoAAFKEABClCAAhSgAAUoQAEKUIACvhNggOU7e16ZAhSgAAUoQAEKUIACFKAABShAAQpQQIUAAywVSNyFAhSgAAUoQAEKUIACFKAABShAAQpQwHcCDLB8Z88rU4ACFKAABShAAQpQgAIUoAAFKEABCqgQYIClAom7UIACFKAABShAAQpQgAIUoAAFKEABCvhOgAGW7+x5ZQpQgAIUoAAFKEABClCAAhSgAAUoQAEVAgywVCBxFwpQgAIUoAAFKEABClCAAhSgAAUoQAHfCTDA8p09r0wBClCAAhSgAAUoQAEKUIACFKAABSigQoABlgqk/7djxyYAAAAIw/7/2hfcumQXhIw1IUCAAAECBAgQIECAAAECBAgQ6AQErM7eMwECBAgQIECAAAECBAgQIECAwCEgYB1IJgQIECBAgAABAgQIECBAgAABAp2AgNXZeyZAgAABAgQIECBAgAABAgQIEDgEBKwDyYQAAQIECBAgQIAAAQIECBAgQKATELA6e88ECBAgQIAAAQIECBAgQIAAAQKHgIB1IJkQIECAAAECBAgQIECAAAECBAh0AgJWZ++ZAAECBAgQIECAAAECBAgQIEDgEBCwDiQTAgQIECBAgAABAgQIECBAgACBTkDA6uw9EyBAgAABAgQIECBAgAABAgQIHAIDPo/IpSpJt1kAAAAASUVORK5CYII=", "text/plain": [ "" ] @@ -5275,7 +5561,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdB3QV1drG8eecFCD0XqSJBcRCEVFsoIAVRbB37IqKlYvXriA2lGIXu59eG2LB3nsHsTekK1JCqAFCznxrT0xIyEly6pwp/1nrLpDM7PJ79/V6H/fsCVmWZYkLAQQQQAABBBBAAAEEEEAAAQQQQAABlwqECLBcWhmGhQACCCCAAAIIIIAAAggggAACCCBgCxBgsRAQQAABBBBAAAEEEEAAAQQQQAABBFwtQIDl6vIwOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICAqwUIsFxdHgaHAAIIIIAAAggggAACCCCAAAIIIECAxRpAAAEEEEAAAQQQQAABBBBAAAEEEHC1AAGWq8vD4BBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACrhYgwHJ1eRgcAggggAACCCCAAAIIIIAAAggggAABFmsAAQQQQAABBBBAAAEEEEAAAQQQQMDVAgRYri4Pg0MAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIuFqAAMvV5WFwCCCAAAIIIIAAAggggAACCCCAAAIEWKwBBBBAAAEEEEAAAQQQQAABBBBAAAFXCxBgubo8DA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAggg4GoBAixXl4fBIYAAAggggAACCCCAAAIIIIAAAggQYLEGEEAAAQQQQAABBBBAAAEEEEAAAQRcLUCA5eryMDgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgKsFCLBcXR4GhwACCCCAAAIIIIAAAggggAACCCBAgMUaQAABBBBAAAEEEEAAAQQQQAABBBBwtQABlqvLw+AQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAAq4WIMBydXkYHAIIIIAAAggggAACCCCAAAIIIIAAARZrAAEEEEAAAQQQQAABBBBAAAEEEEDA1QIEWK4uD4NDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCLhagADL1eVhcAgggAACCCCAAAIIIIAAAggggAACBFisAQQQQAABBBBAAAEEEEAAAQQQQAABVwsQYLm6PAwOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIOBqAQIsV5eHwSGAAAIIIIAAAggggAACCCCAAAIIEGCxBhBAAAEEEEAAAQQQQAABBBBAAAEEXC1AgOXq8jA4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggICrBQiwXF0eBocAAggggAACCCCAAAIIIIAAAgggQIDFGkAAAQQQQAABBBBAAAEEEEAAAQQQcLUAAZary8PgEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAKuFiDAcnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEWawABBBBAAAEEEEAAAQQQQAABBBBAwNUCBFiuLg+DQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAgi4WoAAy9XlYXAIIIAAAggggAACCCCAAAIIIIAAAgRYrAEEEEAAAQQQQAABBBBAAAEEEEAAAVcLEGC5ujwMDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCDgagECLFeXh8EhgAACCCCAAAIIIIAAAggggAACCBBgsQYQQAABBBBAAAEEEEAAAQQQQAABBFwtQIDl6vIwOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICAqwUIsFxdHgaHAAIIIIAAAggggAACCCCAAAIIIECAxRpAAAEEEEAAAQQQQAABBBBAAAEEEHC1AAGWq8vD4BBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACrhYgwHJ1eRgcAggggAACCCCAAAIIIIAAAggggAABFmsAAQQQQAABBBBAAAEEEEAAAQQQQMDVAgRYri4Pg0MAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIuFqAAMvV5WFwCCCAAAIIIIAAAggggAACCCCAAAIEWKwBBBBAAAEEEEAAAQQQQAABBBBAAAFXCxBgubo8DA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAggg4GoBAixXl4fBIYAAAggggAACCCCAAAIIIIAAAggQYLEGEEAAAQQQQAABBBBAAAEEEEAAAQRcLUCA5eryMDgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgKsFCLBcXR4GhwACCCCAAAIIIIAAAggggAACCCBAgMUaQAABBBBAAAEEEEAAAQQQQAABBBBwtQABlqvLw+AQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAAq4WIMBydXkYHAIIIIAAAggggAACCCCAAAIIIIAAARZrAAEEEEAAAQQQQAABBBBAAAEEEEDA1QIEWK4uD4NDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCLhagADL1eVhcAgggAACCCCAAAIIIIAAAggggAACBFisAQQQQAABBBBAAAEEEEAAAQQQQAABVwsQYLm6PAwOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIOBqAQIsV5eHwSGAAAIIIIAAAggggAACCCCAAAIIEGCxBhBAAAEEEEAAAQQQQAABBBBAAAEEXC1AgOXq8jA4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggICrBQiwXF0eBocAAggggAACCCCAAAIIIIAAAgggQIDFGkAAAQQQQAABBBBAAAEEEEAAAQQQcLUAAZary8PgEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAKuFiDAcnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEWawABBBBAAAEEEEAAAQQQQAABBBBAwNUCBFiuLg+DQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAgi4WoAAy9XlYXAIIIAAAggggAACCCCAAAIIIIAAAgRYrAEEEEAAAQQQQAABBBBAAAEEEEAAAVcLEGC5ujwMDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCDgagECLFeXh8EhgAACCCCAAAIIIIAAAggggAACCBBgsQYQQAABBBBAAAEEEEAAAQQQQAABBFwtQIDl6vIwOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICAqwUIsFxdHgaHAAIIIIAAAggggAACCCCAAAIIIECAxRpAAAEEEEAAAQQQQAABBBBAAAEEEHC1AAGWq8vD4BBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACrhYgwHJ1eRgcAggggAACCCCAAAIIIIAAAggggAABFmsAAQQQQAABBBBAAAEEEEAAAQQQQMDVAgRYri4Pg0MAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIuFqAAMvV5WFwCCCAAAIIIIAAAggggAACCCCAAAIEWKwBBBBAAAEEEEAAAQQQQAABBBBAAAFXCxBgubo8DA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAggg4GoBAixXl4fBIYAAAggggAACCCCAAAIIIIAAAggQYLEGEEAAAQQQQAABBBBAAAEEEEAAAQRcLUCA5eryMDgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgKsFCLBcXR4GhwACCCCAAAIIIIAAAggggAACCCBAgMUaQAABBBBAAAEEEEAAAQQQQAABBBBwtQABlqvLw+AQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMZFfhrWWHU/pvUz1Xt3Czlr9qgdRuKMzpGOkfACLRuUkehkPR3fqEsCxME3CGQVytLjerlau36YhWs3uCOQTEKBMoJtGlax/6rqv73HiwEMinQqG6O8mpn23//NH8f5UIgEYHSv88l8izPIIBAfAIEWPF5cXeKBQiwUgxKc2kTIMBKGy0NJyFAgJUEHo86IkCA5QgznSQoQICVIByPVRAgwGJBIOCcAAGWc9b0FEWAAItl4RUBAiyvVCpY4yTACla9vThbAiwvVi04YybACk6t0zlTAqx06tI2AhUFCLBYERkVIMDKKD+dxyFAgBUHFrc6JkCA5Rg1HSUoQICVIByPOSJAgOUIs+87IcDyfYmZoIsECLBcVIwgDoUAK4hV9+acCbC8WTe/j5oAy+8V9v78CLC8X0M/z4AAy8/VdW5uBFjOWdMTAgRYrIGMChBgZZSfzuMQIMCKA4tbHRMgwHKMmo4SFCDAShCOxxwRIMByhNn3nRBg+b7ETNBFAgRYLipGEIdCgBXEqntzzgRY3qyb30dNgOX3Cnt/fgRY3q+hn2dAgOXn6jo3NwIs56zpCQECLNZARgUIsDLKT+dxCBBgxYHFrY4JEGA5Rk1HCQoQYCUIx2OOCBBgOcLs+04IsHxfYiboIgECLBcVI4hDIcAKYtW9OWcCLG/Wze+jJsDye4W9Pz8CLO/X0M8zIMDyc3WdmxsBlnPW9IQAARZrIKMCBFgZ5afzOAQIsOLA4lbHBAiwHKOmowQFCLAShOMxRwQIsBxh9n0nBFi+LzETdJEAAZaLihHEoRBgBbHq3pwzAZY36+b3URNg+b3C3p8fAZb3a+jnGRBg+bm6zs2NAMs5a3pCgACLNZBRAQKsjPLTeRwCBFhxYHGrYwIEWI5R01GCAgRYCcLxmCMCBFiOMPu+EwIs35eYCbpIgADLRcUI4lAIsIJYdW/OmQDLm3Xz+6gJsPxeYe/PjwDL+zX08wwIsPxcXefmRoDlnDU9IUCAxRrIqAABVkb56TwOAQKsOLC41TEBAizHqOkoQQECrATheMwRAQIsR5h93wkBlu9LzARdJECA5aJiBHEoBFhBrLo350yA5c26+X3UBFh+r7D350eA5f0a+nkGBFh+rq5zcyPAcs6anhAgwGINZFSAACuj/HQehwABVhxY3OqYAAGWY9R0lKAAAVaCcDzmiAABliPMvu+EAMu7JT74xMs0Z/4iXT7iBB0/dIB3JxKgkRNgBajYbpwqAZYbq8KYogkQYLEu3ChAgOXGqjCm8gIEWKwHNwsQYLm5Ot4ZGwGWd2q1+UgJsLxXOwIs79XMVyMmwPJVOX09GQIsX5fXs5MjwPJs6QIzcAKswJTakxMlwPJk2Vw3aAIs15Uk5gERYMVM5ZobCbBcU4pgDoQAK5h19+KsCbC8WDX/j5kAy/819voMCbC8XkF/j58Ay9/1dWp2BFhOSae+HwKs1Jumu0UCrHQL0361AgRYLBCvCBBgeaVSwRonAVaw6u3F2RJgebFqwRkzAVZwal3TTNevC+n7n0Jalm9pY1FIRRuljUXSBvPrBqno3z8rKrJUtDGkon//LCvb0h035dbUPD93qQABlksLU82wCLC8VzNfjZgAy1fl9PVkCLB8XV7PTo4Ay7OlC8zACbACU2pPTpQAy5NlS9mgI8XSr3+E9e130m+/hlUcib/prLB03/ic+B/kCVcIEGC5ogxxDYIAKy4ubk61AAFWqkVpL10CBFjpkqXdZAQIsJLR41knBAiwnFCmj0QFCLASlfP2c/MWhPT99yF9+31IZudVstcDE9MfYM344Xc9OfVtffPdb8pfvlJ5dWqr89btdOh+e9j/yTJJ2r/XccNHa+ZPs3Tgvrtq3NXnVDu9CZOf0+QnpqlV8yZ66+nbFA5v8rAsS6+8/bleeONj/fL7PK1avVaNGtZTjx220XFDBqh3jy7J0lV6/sdf5+ipF9/V1zN/1ZJlyxUKhdSyeRNt2b619tu7lw7Zb/dKzyxZVqDHn3tTn3z1gxb8vUTrNxSpaaMG6rnTNjpy0D7VjjOWACsV7X/60l1q2KCuXb/7/+9lff/zn1qxao322nUn3XvzxSl39HODBFh+rq4H5kaA5YEiMURbgACLheBGAQIsN1aFMZUXIMBiPbhZgADLzdVJ7dgKCkKa8V1YM2dK+cuTD63Kjy7dAdb4+5/VA0++YneZnZWlxo3q22HSuvUb7D/brWdXTRozQnXzatt/PfW1j3TlzQ8qNzdHHzw/UQ3q5UXFNAHVwGMu1d//LNOZJxyiC04/vOy+tYXrdP6Vk/T5Nz/Zf1a7Vq7q18vT8oJV2lhcbP/ZqcccpEvOPiolhTJjue2+Z/TwU69V2Z4J6m68/IwKP3/rw6912Q33l1nUys1RTk62Vq8pLLvv8IP31tUXn2zbbX7VFGClqv2XHh2rr779RWMmPC4z19Lr+KEDdPmIE1JiGJRGCLCCUmmXzpMAy6WFYViVBAiwWBRuFCDAcmNVGFN5AQIs1oObBQiw3Fyd5MdWWBjSd9+HNPOHkBYsqDm0ysmWdtw+ouYtQsrJtpSTK+XkWMrJCSk3R5v+LNv8ecl/ate2lM5D3B955nXdevdTMsHMyOHH6LAD9lKd2rkqLo7og8++1VW3PqSCFat1cP/ddMtVZ9tohes2qO/QEVqzdp2uuugkHTN436iYZjfQSSPG2j975fGb1LFdq7L7zrt8ot77dIbatGqmqy86Wbv32t7e5bW2cL3+98I7mjD5WUUilq69dJiOHNQv6WLd9/jLmvTgFLudIQfuJRPsbNWhjTYWRzT/r8X67Osf1at7Z+3QecuyvqZ//5tOvuBGexz77N5D5582VJ23amf/PL9glZ5/9UPd+dDzKtpYrGMP668rLzwxrgArle2fO+ww3f3oi9qhc0edd+pQ7dilk0xImJ2dpeZNGyXtF6QGCLCCVG0XzpUAy4VFYUhRBQiwWBhuFCDAcmNVGBMBFmvAKwIEWF6pVMVxrl4Tkgmn1hVaKlxnfm9CG2ndupAikZKDrNauDenLrze9VlfdTLfqFFH3naSuXSMyIVa8V7oCrGXLV2rA0Zdow4YiXT/yVJmdRJtfb7z/pS6+9m77j6c8cL26bN3e/v314x/T0y++awc+T993TdQpXXfbI3rm5ffVretWevLuq8ruMcGVCbBysrPsNrfquEWl50ePf8x+1a9p4wZ6++nb7N1eiV6LlxZo4NGX2Du7zjrxEI04bdNOsOraPHTYFZo1Z6EdXt1xwwj7dcPqfJ6652rtuF2nCrdUtwMrle2bTvfYZQfdNfZCe4cYV+ICBFiJ2/FkCgQIsFKASBOOCBBgOcJMJ3EKEGDFCcbtjguwA8txcjqMQ4AAKw6sFN5q3qDasD6ktetUEj6ZMGqdZf9q/2ddRGvtX0t+vq7c7zdsqHknVSxDbdnCUvdulrrtZKle3U2vdMXy7Ob3pCvAeuipV3Xbvc+oQ9uWevX/bq5yaH2HXqCl+St0zkmDdd6pQ+z7fv59ro44oyS4evHhG7T1lhVDKLMrqe+QEfY5TNdcMkxHHbJpF9XZo27XR198pyMG9dV1l54Std/Z8/7WoJP+a//sofGjtGuP7RKhs58p3X3VuGF9vffc+JgCHrM76sTzS3aPmdfzzG6tqq5jh4/Wdz/Nss8K2/wVxKoCrFS3b3bNvfnUbWrSqH7CTjxYIkCAxUrIqAABVkb56TwOAQKsOLC41TEBAizHqOkoQQECrATheMwRAQKs5JiLiszOp5IdUOvWlex6KlwvFa41oZP1bwhlfv7vTinz5+bnhakJoeIdvQmquneLqMdOUvMWyYVW5ftOV4AVS5BkxmFeAzSvAw7Ya2dNHH1+2dCOPPNa/fTbHA076gD79cPyV+kuq83PyTKv4+168Dn26203X3mWBg3oE5XZBGA99zvdfn3v8hHH6/ihA+MtR9n9Z44cZx/Abg5ov+nyM2NqxxyEPvGBKfYrjm89Na7aZ0rvbdm8sd59dnyFe6sKsFLdfvlXPGOaIDdVKUCAxeLIqAABVkb56TwOAQKsOLC41TEBAizHqOkoQQECrATheMwRAQKsysy//xG2AymzO8rsfFq71oRP/+6EssOqkmBqzZrMhFDxLgzztlaXLhH17C6ZVwXTcaUrwDrohFGau+CfmIdsvgr48PjLyu5/5qX3dN3tj9qv+b373PgKh5hfct3dev29L3XAPr112zXDy54xX9zrd/iFMfdpbjz3lCEafvLguJ4pf3PpPM2rg+YVwliuq299SFNe+VB9em2vB8aNrPaRNz/4Whddc6d9z7dvP2i/Gll6VRVgpbr9i848Uqcfd3AsU+OeGgQIsFgiGRUgwMooP53HIUCAFQcWtzomQIDlGDUdJShAgJUgHI85IpDuAMvsUNq4MSTz0baNG1Xya/nfV/iZVfHeiFS8MaSijRH7GfP70nZK/rqkrZJfQ+V+v/nPNo3BEVQHOjHHLdWuY6lObalOnZLf59WS6uRZqlMnrDr2zyzl5YXUrl1i51rFM410BVilrwa2aNZI5vW6mq7tO2+p0f85tew2c4i7OczdHOp+xw0XaN89etg/M7ur9jpshP3lvntvvlh77bpT2TPlXw00h7qbw+Nruo4+dB8dXcVB8TU9a35eOs/LzjtOJx6xXyyP6NLr79Fr736hfffsqTvGjKj2mY+++F5nj7rNvueTF+9Uo4b1yu6vKsBKd/sxTZKbogoQYLEwMipAgJVRfjqPQ4AAKw4sbnVMgADLMWo6SlCAACtBOB5zRKB8gDV3fkSz5oS0avVmQVJZeGSp6N8QyoRJ5YMoEyyV/5n5PVfNAnXrWsozYVOdkB041a4jO5TKqxuyv+5Xp5aUlyfVrmV+FrKDqWTPq6p5VPHfka4A64Dj/mN/gS+enUmbj/7Kmx/U1Nc+Uv+9emrS6JKg5+U3P9VlY+9XsyYN7VfqzNcFS69FS/LV/8iL7b98/I4r1HPHbeIHifOJ/Y8dqQV/L9GFZxyhM44fFNPTN0x8XE9OfSf+HVhvPVDhjK2qAqx0tx/TJLkpqgABFgsjowIEWBnlp/M4BAiw4sDiVscECLAco6ajBAUIsBKE47G0C6xZG9Kihdn6fVZIP/5SrBUrvfFKXNph4uggHC4Jl8wuKHsnlNn1VP73eSaYMn9esjvK7JKyQ6o6lrJ99CG2dAVYp150s76Y8bOSOT9p5k+zdNzw0fZrcx++cIca1MtT6dlapxxzoC49++gKFTdnW/U+6Gz7y4fXXjpMRw7adLh7HEsjrltPvuBGfT3zVw05cC+NGXVaTM+WHnAfyxlYk5+YpgmTn1Pzpo30/pQJFdqvKsBKd/sxTZKbCLBYA+4TIMByX00YUXQBAixWhhsFCLDcWBXGVF6AAIv14BYBsytqztyw/vzT0h+zwvpncTADKxMcZWVbyskyv0pZ//6aHS7569ycklfzTNCUZ17Jqx22d0eVBFQl4VPpz014xSWlK8C697GXdMdDz9uh0zvPjlee2ZKWwHXYKVfq99kL7HDIvHK392EjtLG4OOrXCU3zp118iz6f/lNMu5sSGE6lR0y4ZEKmaDvCqmp/1pyFOnTYFfaPo31lsfxzx587Rt/++IcO6r+rbr3qnJgCrHS3nwq3oLbBDqygVt4l8ybAckkhGEaNAgRYNRJxQwYECLAygE6XcQkQYMXFxc0pFLAs6a+/Q/rzz7D++NPSvHlhFafnDO8qR23ezMrOtuyQyA6O7F8tZWeFysKjkr/eFCRVDJZKgqbsnLCyskruK99OVlZos78u+Xlpe6X3msDKDqo2vSmWQmmaSleAZQ5UH3jMpSoq2mifMXX1RSclhP3E829p7KQn1G/37tqv7y66/MbJ2r5zRz1z37VR23vrw6914dUlh56Pu/ocHbjvrgn1G+tD5qB6c5C7ueI57PzY4aP13U+z7HndecMFCoUqh9Lvfjxd5185yW77kQmXaZfuXWIKsMxN6W4/Vh/uqyhAgMWKyKgAAVZG+ek8DgECrDiwuNUxAQIsx6jpKEEBAqwE4XgsZoElS8MqKJDyl0sFBZaWLQ+pcG1IG9ZLf/8T+y6rli0sbdXJUu3aoZIAqFzwVPLX5YOhf0OnslDq35/9+9fsTIq5fL64MV0BlsF5/Lk3ddOdT9pOZvfUGccdLHNYuzm3avWaQi1anG+/ZvjuJ9N10+Vn2q/JbX6tWLXG/rJgdlZYvXtsp/c//VaXjzhBxw8dUKX/BVfdobc/+kbhcEjDjjpQRwzqqw5tW8qyLC1fsVoL/16ij774Tr/Omq+Jo89Puo433/U/PfbsG3Y7w44+QCcMHajWLZuquDiixcsK9M3MX7Vy9VodN6R/WV9/zF6oI868xg74Buy1sx1+mYPnzWUOqn/h9U807p6ntH5DkQ7dbw/dePkZlcZZ1SuE5sZ0t580WkAbIMAKaOHdMm0CLLdUgnHUJECAVZMQP8+EAAFWJtTpMx4BAqx4tLg3mkBBQUgFK0xAFdLy5Zb964qCkPILpNWrYw+oNm/bHAbetUtI3XfI0hZtixXK4uR1VmBiAukMsMyIzHlM4+9/VpFIySubZqDAubAAACAASURBVKdRTk62fU5V+eudZ29Xq+ZNok5i1A33adpbn9k/M+dhvT9lYoWv8W3+kPlCoTkA3nzpr/TKNtv4ZL56WVz2Z+3atNDrT96SGFy5p0yb1457xD5wvvTKzc2xwykTmpnLfEXRfE2x/PXljF908bV3afmKVfYfmy8Mmi8nLstfWTZOs4PshstOj/pFxeoCLNNeuttPGi6ADRBgBbDobpoyAZabqsFYqhMgwGJ9uFGAAMuNVWFM5QUIsFgPNQmYw9QLlkvLC6Tly8PKL7C03Py1CapWhhRJ0Wt/uTlShw4RbbO1tFUnqXmziMp/hXDt+k3/p7ymMfNzBKL9fS6dKvMW/qMnnn/bPpvqr0XLtG79etWuVUttWjVV9+231sC9e2mPXXaI+hqdGZc5JN0clm6u8l8krGnMZnfX869+qBnf/66l+SvsUKhe3Tpqv0VL9e7eRYMG7q5tO7WtqZmYf24Co2envVfS3/KVysnOts/G2qlrJx11yD7aeadtK7Vlwqvnpn0g8+rjgr+WaO269WraqIG677C1Dj94b+3ea4cq+68pwDIPprv9mHG40RYgwGIhZFSAACuj/HQehwABVhxY3OqYAAGWY9R0lKAAAVaCcD56rKioZPeU2UllQqply8yrflL+ChNchWR+no6rbp6lZk2l9u1LQquOHSofOE6AlQ754LWZ7h1YqRA1r9TtevA59i4us4vJ7GbiQsCLAgRYXqyaj8ZMgOWjYvp8KgRYPi+wR6dHgOXRwgVo2ARY/i+2ORh95cqQ8vNNSKV/d1CFS3ZU5ZuzaBJ/za86vXDYvC5kqXFjS00aS02a6N9fLTVpYiknu2Z7AqyajbijZgEvBFhTXvlQV9/6kBo3rK/3pkywXyPkQsCLAgRYXqyaj8ZMgOWjYvp8KgRYPi+wR6dHgOXRwgVo2ARY/iu2OXdq7vyQ5s2T5i0I6e9FIUXS9PZdbm5JONW4iaUmjSw1bRJSYzusstSwgSUTYiVzEWAlo8ezpQJeCLCOPus6/fDrbJ185P76z7nHprx4ZofXmSNvi6td8/XA0487OK5nuBkBAizWQEYFCLAyyk/ncQgQYMWBxa2OCRBgOUZNRwkKEGAlCOeSx8z5U4v+CdlB1bx5Ic1fIK1YkdodVfXqle6gMjunQnZQ1aSxpcZNJPMaYDovAqx06ganbbcHWO9+MkPnXzHR/nLhtMduUvstWqS8OOYLgX0GDY+r3aEH7a3R/zk1rme4GQECLNZARgUIsDLKT+dxCBBgxYHFrY4JEGA5Rk1HCQoQYCUIl6HHCgv/DavmW5o/P6yFC0MqSvLjfParfv+GUuY1v6ZmR5XZRWWHVLG96pcuDgKsdMkGq123BVjmq33mS4Xmevfj6frvjZO1ek2hjhvSX1dccGKwisNsfSdAgOW7knprQgRY3qpXkEdLgBXk6rt37gRY7q0NIysRIMDyzkp4852QPv4ksXNxzBf+mja11Kixec3P7KAKlbz6Z0KqRundRZWMMAFWMno8WyrgtgDrhPNu0Py/Fmtt4XqZV/vMteN2nfTw+MtUp3YuhUPA0wIEWJ4un7sG/9izb+jmu/6n808dqrNPOjSmwRFgxcTETS4QIMByQREYQiUBAiwWhdsFCLDcXiFpyeKQnpoS1pIlsb0aaHZUtWxuaYu2ltq1lbZoY6l5M7Pjw/1z3XyEBFjeq5kbR+y2AOuysffr4y++1+o1a9WmVTMNGri7Tjv2INUySTMXAh4XIMDyeAHjGf5fi5bqwmvu1I+/ztGYUadpyIF7Vfn4+VdOsrecVnW1aNZI7z03ocKPCbDiqQb3ek2AAMtrFQvGeAmwglFnL8+SAMu91bMs2Tuu3vmg+kPYGza01LaNpbZtpbZtLW3R2lJ2DF/4c+/MN42MAMsLVXL/GN0WYLlfjBEikLgAAVbidp568qMvvtOoMfdpxao19rhrCrDM1tMZP/yuHbtsqWj/Sq1p4wa6a+yFBFieWgUMNhkBAqxk9Hg2XQIEWOmSpd1UCRBgpUoyte3k54f03AthLVhQedtU44aWdtghovbtQ2q3haW8NB+kntqZxdcaAVZ8XtwdXYAAi5WBgHMCBFjOWWekp0jE0l2PTNW9j72k1i2bas9ddtSz096vMcA66IRRWrQ4X9PfnBzzuNmBFTMVN3pQgADLg0ULwJAJsAJQZI9PkQDLfQX84quw3nwrHPVw9p17RnTg/hEF5U0jAiz3rU8vjogAy4tVY8xeFSDA8mrlYhz3uHuf1sNPvaadd9pWE64/X1Ne+UATJj9XY4C126Dhql8vT289NS7GniQCrJipuNGDAgRYHixaAIZMgBWAInt8igRY7ingqlUhPft8WHPmVt51Va+epcMPs7RVp4h7BuzASAiwHEAOQBcEWAEoMlN0jQABlmtKkZ6BLFlWoCeef1vnnjJEOdlZuuvhqbr70RerDbCKNhar+4DT7K9VPHXP1TEPrLoA652PpuvCa+5Q86aN9H93XGEfKGguDnGPmZcbMyxAgJXhAtB9VAECLBaG2wUIsNxRoZnfhTXt9ZDWr6scXnXbKaJBB1mqleverwWmS5EAK12ywWqXACtY9Wa2mRUgwMqsv+O9T3xgiu7/v5erDbBM6NXv8Au1z+49dOfYC2IeY1UB1uff/KSzL7tddfNq6/E7rlCn9q3L2iTAipmXGzMsQICV4QLQPQEWa8CTAgRYmS1bYaHZdRXSH7PClQaSV8fS4UMsbbN1sHZdlYcgwMrs+vRL7wRYfqkk8/CCAAGWF6qUwjHGEmD98sc8HX761erWdSv16bW9luWv1MbiYjVqWE87dN5S++zRI+pnWKMFWN/9NEunXXKLQqGQHplwmbpu27HCbAiwUlhcmkqrAAFWWnlpPEEBdmAlCMdjjgkQYDlDvXpNSCasKiy0FCku2WW1YqX02hshrS2svOtqu+0iOmyQpTp1grfrigDLmTUZpF4IsIJUbeaaaQECrExXwOH+Ywmwfvh1to45+3pZ5vvKUa4mjeprzKjT1bdPtwo/3TzA+u3PBTp5xFit31CkyeNG2udwbX6tL4r+b/1yskIKh0MqKo4oEtx/Mejw6qC76gRq5ZT82+sNRREF+x/3WSduEsgKS9lZYRVHLG0sZmW6qTaMpUSg9O+dVf3vPU6xCcyYaWnWbEtrCqU1ayytXiutWS37rwsLY2vD3FWntnTM4WH16lE51Iq9Ff/cmZ0VUlY4pI3FERXzz5v+KazDMyn9+5zD3dIdAoEUIMAKWNljCbAMya+z5mtt4Tq136KlGjaoq/Xri/THnIV6/tUP9dy0D5SVFdbD4y+rEEqVBlgXnH64Dh7QR8cNH62CFavt1xD32nWngEkzXQQQQAABBBBAIDmBufMt/W9Ksf6YnXxAvWPXkIYdm62GDZIbE08jgAACCCCQKQECrEzJZ6jfWAOs6oZ350NTdc9jL6rnjtvq8TsuL7u1/A6s1977Qn/MXqhzhx2m4cMOq7K5ZSs3RP1Z/bxs5WaHtapwo73jhQuBTAs0bZBrDyF/1QZVsTkx00Ok/wAKmH/rW69OtszultWFGwMowJTdLlD6986q/vfe7ePP1PjMFwNffcPS9JnJ75TKzZEOPVjaZefkQ7BMeaSr33q1s1QrN8v++ye7BNOl7P92S/8+5/+ZMkMEMi9AgJX5Gjg6glQEWKtWr1WfQ861xz3jrQfsrxuaqzTAali/rlavLVRxcUTNmjTU8w+OVtPG0f91H2dgOVp+OktCgDOwksDj0bQJcAZW2mhpOEUCnIEVH2RRkfTRJyF9/GmWNsaZSdetaykvT8qrI9XJs+xf69W1tOsuUv36hFfRKsEh7vGtT+6OLsAZWKwMBJwTIMByztoVPaUiwDIT2f2Qc7Vi1Rp9+vJdMoFV+QDLfG1wwvXn6b1PZujJqe/YB8Hff8ul9plWm18EWK5YFgwiBgECrBiQuMVxAQIsx8npME4BAqzYwb6dGdab74S0enX0XVdbdoxouy6yQ6q6eVLt2iWBVZ06Uu1aBFSxS2+6kwArETWe2VyAAIs1gYBzAgRYzlm7oqdUBFjmUPZdDjxL4XBYM96cbH9hsHyAde4pQzT85MHasKFIxw4fLfNVwxGnHa6zTjyEAMsVq4BBJCJAgJWIGs+kW4AAK93CtJ+sAAFWzYLz5of06uth/fV39OCqUSNLB+5nabsuHKlQs2Z8dxBgxefF3dEFCLBYGQg4J0CA5Zy1K3pKRYD1wusf64qbHtCevXfUfbdcUjavzb9CaH4wZ/4iHXnmNVq3foN96Huvbp0rOLADyxXLgkHEIECAFQMStzguQIDlODkdxilAgFU1WEFBSG+8FdKPP5d85Xbzq1aupb57S7vvWqxwyWkNXCkWIMBKMWhAmyPACmjhmXZGBAiwMsKeuU5jCbCeeP4tbdupnXbeqXOF1/7MmVYmvLrpzifsQOqxSZerxw7blE0mWoBlfvjym5/qsrH3q0WzRvZ5WI0b1i97hgArc2uBnuMTIMCKz4u7nREgwHLGmV4SFyDAqmy3oUh6/8OQPv6k6lSqZ4+IBva3VDePVwMTX301P0mAVbMRd9QsQIBVsxF3IJAqAQKsVEl6pJ1YAqzzr5iodz+ZoXp162ibLduqUYN6Kli52t5NtXzFKtXKzdF1l56iQ/bbvcKsqwqwzE1mx5YJv8yurXtvvrjstUMCLI8sHIYpAiwWgRsFCLDcWBXGVF4gqAGW+VptwYqQFi8OacmSkP5ZYtm/mv8UVXM4e4f2lg49KKLmLQiunPhvEgGWE8r+74MAyx01nrfwHx14/KhKg8nNzVGDennq2K6Vdu+1g446tF+FDRWlD4wac5+mvf1ZhefNx8oa1K+rrTq20b579NSRh/RT7VolXyav6nr/02/1+vtf6tsf/tCy5Su0sTiiJg3rq2vnjhqw184aNKCPsrIq7rw1Z0vvOfg8u8lPX7pL9evlRW3+/Csn6d2Pp9tnTD8wbmSVYzjohFGau+AfPTR+lHbtsZ193z5HXKjFSwu07549dceYEdXOYeprH+nKmx/U+acO1dknHeqOAv87CgIsV5Uj/YOJJcCaNWeh/vfCu/rmu1+1cNFSFa5bb/8XtU2rZuqz8/Y6bsgAtd+iRaXBVhdgrS1cr6POulaz5/2tC884QmccP8h+ngAr/TWnh9QIEGClxpFWUitAgJVaT1pLvUAQAqxl+SXBlPnPosWWli4N6e9F0c+zqkqYc65Sv/ZiaZEAKxYl7qlJgACrJiFnfl4aYNWpnaueO25b1qk5v3nx0uWat3Cx/WfmA2STx43U9p07VhhYaYC19ZZbqFnjhvbPNhQVadGS5fpr0VL7rzu0bWkfi9OyeeNKk1qav0IXXXOXpn//m/0z82GzLVo1U3Z2tt2/+bm5OrVvrUljRmjL9q0rtHHM2dfp+19m2+GSCZk2v4qKNmr3Q8+V+f/V2VlZ+vjFO6IGXf8sWa59j7zI/v/vn718l0yAZ67SAMv8/tarztFB/XetsjAEWM6sWXrxoAABlgeLFtAhE2AFtPAunzYBlssLxPDklwDL7KjKzw9psQmqlpqdVVbZ74uLEy+0OeeqX1+pT2/OuUpcMfEnCbASt+PJTQIEWO5YDaUBltlp9crjN1UalAmhrh73sD77+kdtt00HPTf5ugr3lAZY0cIds8Hjkuvu0e+zF6jf7t1119gLKzy7avVae7OGCcm26riFRp5ztL1LygRNpdevs+Zr0oNTZHZomRDt6fuuUbs2mzaFlG40OX7oQF0+4vhK4//4y+911n9uU5NG9ZVfsKrKEKr0+J7Nz6s2AZYZZ+G6DWrUsJ5efvRGu61oFwGWO9Y0o3ChAAGWC4vCkKIKEGCxMNwoQIDlxqowpvICXgywliwNa+lS6Z8lIS3+R1pifr84vh1VNa2CRg0tbb2Vpf77cs5VTVbp/DkBVjp1g9M2AZY7al1TgGVGaYKfvYeMkGVZ9g6m8mczVxdgmWdnzf1Lh558uX1G9Ccv3WW/llh6mdftTOjTdduOemTCZfbuq2iX6feqWx6y7+3WdSs9efdVZbd9OeMXnXLRTTI7wF58+IZKj98w8XE9OfUdDT95sO5+9EUduO+uGnf1OZXuKx3LyOHHaNhRB5T93ARYTRo10NYdt7BflTxgn9667ZrhBFjuWL6MwisCBFheqRTjJMBiDbhRgADLjVVhTF4KsAoLQ5o3P6S58y3Nnx/Wwr9C2ljNGVXxVDcUkho3ttSiuaXmzS21aBayfzX/ycmOpyXuTZcAAVa6ZIPVLgGWO+odS4BlRtr7oLO1Zu06vfvs+AqvAtYUYJln9xh8ngpWrNaUB65Xl63b2xNftCRf+x1zqcwHz0zwZAKo6i6zA+qA40barxQ+ePt/tFvPrvbt5hXBPocMt3dIfTh1kpo2blChGdOHeT3wwxcmaf9jR/4bwt0pc05X+WvgMZfarzxOfWiMtu3UtkKAlZuTo6fvvUaHDrtcy5av1KTRI9R/r8qvK7IDyx1rmlG4UIAAy4VFYUhRBQiwWBhuFCDAcmNVGJNbAyzzGqB5/W/BgpDmzpPmLZCWLat4kG4i1QuHpaZNImreTHZY1aKF1Ly51KyppXJvjyTSNM+kWYAAK83AAWneqQBr5g+W5syPBERV6r5DWB3axb77NZYAq/R8KPMK3ycv3Vn2YTGDGkuAtdug4fZreG8+Nc4+38pcT7/4rq4f/5h6deusRyf+N6b6jLv3aT381Gs66tB9dM3FJ5c9c/ao2/TRF99Xej3wj9kLNfiUK7TzTtvqsUmXa+Toe/TqO19o8rhL7YPpS68Ffy+xw61mTRrqg+cnVhiL2YG1cWOxPnrhDr3x/le6+Nq77PteenSs/Upj+YsAK6YyclMQBQiwglh1b86ZAMubdfP7qAmw/F5h788vk68Qmq/9LVgQ1rwFIc2bZ2n+gpDWrYv9/wxtrm/CKBNKtWguNW8htWhmdlNJTZpEtNkHpbxfuIDMgAArIIVO8zSdCrAee7pYH34anADrxKOz1Hf32P8lQ00B1uo1hbr0+nv00Rff2WdMmbOmyl81BVg//jrHPufKnBv1/pSJZV8SvOKmB/TC6x/bX+szX+2L5TJfEjRfFDS7uMxurtLrkWde1613P6UjBvXVdZeeUvbnk5+YpgmTn9NFZx6p04872A6vTIh17GH9deWFJ5bdN+WVD3X1rQ9p0MA+uvmKsyoFWGZ31+fT7rb//MKr79RbH36twfvvobH/PYMAK5bCcQ8CBFisAa8IEGB5pVLBGicBVrDq7cXZZirA+uDjLH3wYWKvA2Znl+ykatbMUsvmIbVoUfL7pk0sL5aAMVcjQIDF8kiFAAFWKhQrt5FogJVXp7b22GXTrqTiSET5y1fq59/n2l8RHHb0gXZos/lVXYD157y/NeLKSZo9729dPuIEHT90QNnj5mB1c8D66P+cqqEH7R0Txi9/zNPhp19th2FmR1Tp9dufCzTk1Cvtw91ff/KWsj8/4bwbNOOH38teUTS7wPYcfL69g+qdZ28vu690DiaQ2nyOZgeWCfG+eu0++37zCqN5lXDFyjW69+ZLtNeuO5a1ww6smMrITUEUIMAKYtW9OWcCLG/Wze+jJsDye4W9Pz+nA6w/ZoX10ishFRTEvtOqZQtLW7S21LadtEUbS61bEVR5f+XFNgMCrNicuKt6AQKs9KyQRAOsqkaTk5Ot/fbuZR9evu+elc99Kg1/zK6oFs0a282YV+4WLV4mE2CZ588ddpjOOH5QhS5KwyVzoLo5WD2Wq3S3WG5ujma8ObnCI32HXmCHS289NU5tWjWzA6Y9DztPrVs0tV9dLL1OvehmfTHjZz17/7X24fHm6nf4hVqyrEDvPTdBLZo1qtBu6VcIv379/rI/L/1iYavmTexXCUsPnyfAiqWK3BNIAQKsQJbdk5MmwPJk2Xw/aAIs35fY8xN0KsAygdW010L67ffqXzepV89S27aW2rUJ2b+23SKinBzPMzOBBAUIsBKE47EKAk4FWJyBVf3Cq+oVQnO4+opVa/T9z3/qgSenafr3v0f9gl9pgBWtF7OrywQ8rVs0qfTjVO7AMo2PuuE+TXvrM40ZdZqGHLiXSkMms+vL7P4qvR5/7k3ddOeTOuekwTrv1CF2yHbISf/VVh230EuPVP6KYbQAy7Q1/L/j9cFnM3XUIf10zSXD7OYJsPibHAJVCBBgsTS8IkCA5ZVKBWucBFjBqrcXZ5vuAKuoSPrwo5DMK4PRriaNLW3XJaL27UJq09pSw4bsrvLiOkrXmAmw0iUbrHadCrCCpRr/bGs6A8u0uLG4WEefdZ3MK3w3X3mWBg3oU9ZRtFcILcvSceeO0Xc/zdKoc4/VSUfuX2lgV978oB34lAZJsYz8vU9n6LzLJ1Y6A8s8a87TMudqHbLf7rrp8jPLDmy//9ZLK7waWXpge+k5WqWHyZ94xH667LzjKg2jqgDLHGxvXiU0rxc+NH6Udu2xnV584xNdfuNk+0wvc7aXm66QZarChUCGBAiwMgRPt3ELEGDFTcYDDggQYDmATBdJCaQzwPrxp5BeezOslSsrvy6Yky313dvSHn2K+RJgUhX098MEWP6ur1OzI8BySrr6fmIJsEwLpQeim91NZpdT6VXVGVjm8Pajz75OdWrX0iuP31Tp1bxnXnpP193+qHr36KKHx18WE8bt9z2jB//3qo4evK+uvuikCs8sXlogEzaZrxy+8b9btfeQEVq3foM+feku+zXG8tehw67QrDkL7S8Omt1Yr737he656SLtvVu3mAMsc+Nz0z7QNeMeVtvWzfXCwzfo/U9n2AfeE2DFVE5uCpIAAVaQqu3tuRJgebt+fh09AZZfK+ufeaUjwFqyNKwXXwrZXxeMdpkdVwftz24r/6yi9M2EACt9tkFqmQDLHdWONcAq/dJf3z7ddPeNF9UYYJkbrh33iJ6d9r7277eLbr/23EqB08CjL7F3d0177EZt2b51tSDrNxTpgONGygRVJvAywdfm16EnX65Zc//SA+NG6vRLb1X/vXpq0ugRle4zXyY0gZw5f+vWe57SsvyV+mza3cqrUyuuAMvcfNolt+jzb37SCYcPVJ+dt9e5l08gwHLH0mYUbhIgwHJTNRhLdQIEWKwPNwoQYLmxKoypvEAqA6z1G0J6972QvvgqrEiUL8k3bmRp8CGWOm0ZnM/Ms9qSEyDASs6Pp0sECLDcsRJiDbBKz3wyrwOa1wJLr+q+QliwYrUOOmGUfZbWfbdcoj17b/pin3m+9DXCnbpupYduH6U6tXOrRLlh4uN6cuo76rnjNnr8jiui3jd20hN64vm37Fccp739WZVfOJz50ywdN3y0DjtgT/vVw17dOuvRif+N2mZVrxCW3rxw0VIddsoVKly3QSNOG6qJD0whwHLH0mYUbhIgwHJTNRgLARZrwGsCBFheq1jwxpuKAGv1mpC++iasz7+QCgsr77rKzpb67W1p7z2LgwfMjJMSIMBKio+H/xUgwHLHUqgpwNqwoUgPP/26Jj04ReFwSFMeGK1tO7WNKcAyNz314rsaPf4xtd+ihf2aXa3cTV8AWbV6rY4661rNW7hY223TQf8Zfqx26d5ZodCm/82au+AfOxR64/0v1ahhPT1z37X2a4LRrvc//dbeAWWCMBMomVcEmzVpWOnWSMRSv8Mv0NrCdf8GT4frrBMPSSjAMg898fzbGjvp/+y5mZ1ivELojrXNKFwkQIDlomIwlGoF2IHFAnGjAAGWG6vCmMoLJBpgFUek334La/oM6fdZ0XdcmX623y6igw6wVL8+R7qy8uIXIMCK34wnKgsQYLljVZQGWOb1ud16di0bVMSytHLVGv3yx3w76MnKCuvKC0+yv7pX/qpuB5a5z4RFR555jX0A/PCTB+vcU4ZUeH5p/gpdePWdmvHD7/afN25YX23bNFdOdpYWLVmuvxYttf98qw5tNGnMCHVs16pKODPOPoPOtV9L3KHzlnr6vmuqvLd095e54al7rtaO23VKOMAyx6OfNOJGTf/+N7sNAix3rG1G4SIBAiwXFYOhVCtAgMUCcaMAAZYbq8KYygvEG2AtXhLSNzNCmjkzpLVRdluVtt20iaVDDuZ1QVZbcgIEWMn58XSJAAGWO1ZCaYAVbTRmR1GrFk20S/cuOn7owAo7r0rvrynAMvd9++MfOv7cMfZh6i8+fIM6tG1ZqTvzhcHX3/3SDrLyC1aqOGKpccN62r7zlhq49846uH8fO0Sr6Trx/LF2kGSCMhOYVXW9+/F0nX/lJNWvl6dPXryzyrZreoWwtH2zU2zIqVeyA6umAvHzYAoQYAWz7l6cNQGWF6vm/zETYPm/xl6fYSwB1vp1Ic38PqTp34b019/RD2YvdTBvbPTra6nPbsWK4Z//vc7H+NMsQICVZuCANE+AFZBCM01XCIQss0+MC4EMCRBgZQiebuMWIMCKm4wHHBAgwHIAmS6SEqguwDKvBn77bUjf/1h9aGUG0KC+pR7dI+rdS7wumFRFeLi8AAEW6yEVAgRYqVCkDQRiEyDAis2Ju9IkQICVJliaTbkAAVbKSWkwBQIEWClApIm0CmweYC0vCGn6dGnGd2GtXFl9cJWTI3XdLqKe3aWOHSIqdxZuWsdM48ERIMAKTq3TOVMCrHTq0jYCFQUIsFgRGRUgwMooP53HIUCAFQcWtzomQIDlGDUdJShg/o/dhg3S2x+vt8+2mjuv5t1WHdpb6tHD0g5dIyr3kacER8BjCFQtQIDF6kiFAAFWKhRpA4HYBAiwYnPirjQJEGClCZZmUy5AgJVyUhpMgQABVgoQaSJtAvPmh/TLzzn6akZE69dX302jRpa67xTRzj2khg053SJtRaHhCgIEWCyIVAgQYKVCkTYQiE2AACs2J+5KkwABVppgaTblAgRYKSelwRQIEGClAJEmUiqwWgg4xwAAIABJREFUenVIM74Na/q30rL8mg9k79o1op7dpA68IpjSOtBYbAIEWLE5cVf1AgRYrBAEnBMgwHLOmp6iCBBgsSy8IkCA5ZVKBWucBFjBqrdbZxspln7+LazpM6Q/ZoVV0+eBOnaw1LO7pe23jygn262zYlxBECDACkKV0z9HAqz0G9MDAqUCBFishYwKEGBllJ/O4xAgwIoDi1sdEyDAcow60B2tXRvSipXSihUhrVghrVhlqWC5OYRdWr5CWrWq5nOtzFcEe+0sdesWUWNeEQz0enLT5Amw3FQN746FAMu7tWPk3hMgwPJezXw1YgIsX5XT15MhwPJ1eT07OQIsz5bOdQP/6++Q8pdL+flh5S+3tHKFVGDCqhVhFW1MbLhmd1XvncPaY9ew6jVal1gjPIVAGgUIsNKIG6CmCbACVGymmnEBAqyMlyDYAyDACnb9vTR7AiwvVSs4YyXACk6tk52pea2vYGVIS5eGtCxfWrpUWrZMWrrM7KqqeQdVPP137FhyrpV5RbBDyzr2o1X973087XIvAqkWIMBKtWgw2yPACmbdmXVmBAiwMuNOr/8KEGCxFLwiQIDllUoFa5wEWMGqdzyzXbc+pM+/COvvRZYdUi1ZktqQavOxmC8Hmi8I9ugWqfAVwdL/Y0eAFU/1uNcpAQIsp6T93Q8Blr/ry+zcJUCA5a56BG40BFiBK7lnJ0yA5dnS+XrgBFi+Lm/Ck/vuh5BefyOs1WuSD63q1LFUr75Uv66l+vWlenUtNagfUt16lhrUM79KDepZqlXbijpeAqyEy8iDDggQYDmAHIAuCLACUGSm6BoBAizXlCKYAyHACmbdvThrAiwvVs3/YybA8n+N45nh8hUhvfRySLP+DMfzmOrWtdSqZcl/WrQIqUUzyw6mGqXgsHUCrLhKwc0OCxBgOQzu0+4IsHxaWKblSgECLFeWJTiDIsAKTq29PlMCLK9X0J/jJ8DyZ13jnVVxRPr00yy992FIG6s5cD031wRUUssWllq2lFo1l1q1slS7it1T8Y4j2v0EWKlQpI10CRBgpUs2WO0SYAWr3sw2swIEWJn1D3zvBFiBXwKeASDA8kypAjVQAqxAlTvqZOctCOnFl0JasjT6rque3SPabjupRXNLjRtFf80vnYoEWOnUpe1kBQiwkhXkeSNAgMU6QMA5AQIs56zpKYoAARbLwisCBFheqVSwxkmAFax6l5+tOaT9jbdC+mZ69OCqadOIhgy21L6t86FV+XESYAV3jXph5gRYXqiS+8dIgOX+GjFC/wj4NsBavaZQM3+apT122SFqtVatXqv7/u9lffvDH8rOzlL/PXvq2CH9lZ2V5Z/qemAmBFgeKBJDtAUIsFgIbhQgwHJjVdI/puoOac/JlvrtbWn33YuVFd9RWGkZOAFWWlhpNEUCBFgpggx4MwRYAV8ATN9RAd8GWK+887n+M/peHXXoPrrm4pMroK5Zu05HnXWt5sxfVOHP++/VU5NGj3C0AEHvjAAr6CvAO/MnwPJOrYI0UgKsIFVbMoe0v/BiSLPnRE+mtu4U0eBDLDVMweHrqZIlwEqVJO2kQ4AAKx2qwWuTACt4NWfGmRPwbYB16fX36LV3v9B1l56iIwb1rSA8YfJzmvzENOXVqa0zjj9YRUUb9fDTr6lw3QbdMWaE9t2zZ+YqErCeCbACVnAPT5cAy8PF8/HQCbB8XNxyUzOHtH/yaZber+KQ9gYNLB18gKXtukRcB0KA5bqSMKByAgRYLIdUCBBgpUKRNhCITcC3Adahw67QrDkL9c6zt6tV8yZlGmsL16nf4RfK7MJ6YNxI9em1vf2zl9/8VJeNvV8D9tpZE0efH5sedyUtQICVNCENOCRAgOUQNN3EJUCAFReXJ29euDCk514IadmyyruuwmGpz67F2refpZwcd06PAMuddWFUJQIEWKyEVAgQYKVCkTYQiE3AtwFWn0HDVbh+g2a8OVmhUKhM4/lXP9RVtzyk3Xp21YO3/6fsz9dvKFLvA89W82aN9PbTt8Wmx11JCxBgJU1IAw4JEGA5BE03cQkQYMXF5ambzSHtr78Z0vQZ0V8X3KKNpSGDI/bXBd18EWC5uTqMjQCLNZAKAQKsVCjSBgKxCfg2wNqp/6lq3LC+Pnh+YgWJk0aM1Tff/WbvsjK7rcpfZmfWilVr7NCLyxkBAixnnOkleQECrOQNaSH1AgRYqTd1Q4vf/RDWa6+HtGbtpn8BVzquOnUs7TfAUs/uEZX793NuGHbUMRBgubY0DIwdWKyBFAkQYKUIMslm5i38RwceP6pSK7m5OWpQL08d27XS7r120FGH9rNzgs2vUWPu07S3P9OtV52jg/rvWuNo3vloukZcNUkD9+6lCdefV+39P/w6W0efdZ26bttRz95/bYV7S/utroGmjRvow6mTahxTEG7wbYC15+DztaZwnaa/cX/ZDixzaPvBJ15mL9j3pkxQTnbFLw4OPOZS/bMkX9+981AQau+KORJguaIMDCIGAQKsGJC4xXEBAizHydPaoTmk/fmpYc2dVzm4Mh336BbR/gMt5eW5e9dVeSQCrLQuGRpPUoAdWEkC8rgtQIDljoVQGmDVqZ2rnjtuWzYo86bV4qXLNW/hYvvPGtavq8njRmr7zh2jBkmZCrBMwBYtWDODbNSgnu4ce4E7oDM8Ct8GWKddfIs+n/6THh5/mXr36GIzj7rhPk176zMNO/oAjTznmAr0kYilXgecqVq5Ofps2t0ZLktwuifACk6tvT5TAiyvV9Cf4yfA8kddSw9pf++DkIqLK8+padOIhgy21L6td4Kr0lkQYPljjfp1FgRYfq2ss/MiwHLWu6reSgMsEwS98vhNlW77a9FSXT3uYX329Y/abpsOem7yda4KsGINztyhnblR+DbAeubl93XdbY/YB7ifcsyB9oHu5s9ycrL12hO3qHWLTQe7G/5fZ83X0NOuirqYM1ce//dMgOX/GvtlhgRYfqmkv+ZBgOX9elZ3SLs5mH2fvpb67FasrOhHYbkegADL9SUK9AAJsAJd/pRNngArZZRJNVRTgGUazy9Ypb2HjJBlWfr4xTsq7HjK9CuEBFixld+3AVbRxmKdeN4Yff/L7AoS/z3/eJ1w+MBKOhMmP6fJT0zT8UMH6vIRx8emx11JCxBgJU1IAw4JEGA5BE03cQkQYMXF5aqb160L6fW3qj6kvUvniA45yFL9+t7bdVUemgDLVcuOwWwmQIDFkkiFAAFWKhSTbyOWAMv00vugs7Vm7Tq9++x4tWzeuKxjAqzka+BEC74NsAze2sJ1mvzEK/p65q+qm1dbQw/aW/v17RXV1bxeuPDvpbrywhPVZev2TtjThyQCLJaBVwQIsLxSqWCNkwDLm/X+/seQXn0tHPWQ9oYNLR16sKVtto54c3KbjZoAyxdl9O0kCLB8W1pHJ+ZUgFX09ccq/vNXR+eWyc5yeu2hrE4lRwHFcsUSYP2zZLn2PfIi+xysT166s+ysbNM+AVYsypm/x9cBVuZ5GUFNAgRYNQnxc7cIEGC5pRKMo7wAAZa31oPZdTX1pZB+/qXy+4DhsOxXBfv3s5Sd7a15VTdaAiz/1NKPMyHA8mNVnZ+TUwHW2vtv0Ya3X3J+ghnqMe/MkcodMDjm3msKsFavKdSl19+jj774zn7jyrx5Vf4iwIqZOqM3+jbA+uWPecqrU1vtt2gRE3BR0UZ98tUP9jZCc6gblzMCBFjOONNL8gIEWMkb0kLqBQiwUm+arhZn/RnWlKkhrV5T+QuDHdpZGnyopWZN/bHrqrwhAVa6VhTtpkKAACsVirRBgJWeNZBogGUygD122aFsUMWRiPKXr9TPv89Vh7YtNezoAzV4/z0qDTrTAVan9q3VpHGDqJjHDN5XB+67a3qgPdaqbwOs7fsN0249u+rB2/8TU0nMQW69DjhLbds014sP3xDTM9yUvAABVvKGtOCMAAGWM870Ep8AAVZ8Xpm4e+NG6c23w/r8y8q7rurUsXTAfpZ6dPNfcFVqTYCViVVHn7EKEGDFKsV91QkQYKVnfSQaYFU1GvMxt/327qUD9umtfffs6boAqzrFS88+2v4wHZdEgFVuFQw85lIVrFilr167j7XhkAABlkPQdJO0AAFW0oQ0kAYBAqw0oKawyX8Wh/S/Z8LKz6+866pdW0tHHxlRA48f0l4TFwFWTUL8PJMCBFiZ1PdP304FWJyBVf2aqeoVwuLiiFasWqPvf/5TDzw5TdO//93ezTTu6nMqNJjpHVh8hTC2vycQYP3rtGFDkXYdNNz+pOa3bz0Qmx53JS1AgJU0IQ04JECA5RA03cQlQIAVF5djN1uW9PEnWXrn/ZAim22uMmddmXOu9tyjWKHKuZZjY3SqIwIsp6TpJxEBAqxE1HhmcwGnAizkEwuwyj+1sbhYR591ncxxQzdfeZYGDehT9uN4A6x3P56u86+cpIF799KE68+rdnA//Drb7nf7zh31zH3XJhWcBX0dEGBJ9mc0b5j4uF584xNt1aGNXnp0bNDXhWPzJ8ByjJqOkhQgwEoSkMfTIkCAlRbWpBotKAjp2efDmr+gcjrVpImlY4+KqGULK6k+vPQwAZaXqhW8sRJgBa/m6ZgxAVY6VONvs6ZD3EtbnPzENE2Y/JyGHLiXxow6LeEA6/NvftJpl9yivXbdUffefEm1A/7q21807MKbtGuP7fTQ+FEEWPGXt+wJ3wRYTzz/tp6c+nbZxObMX6TatXLVqkWTank2bizWosX5MmmsuS45+yidesxBSZDyaDwCBFjxaHFvJgUIsDKpT99VCRBguWttfDszrFdeC2n9hsrhVe9eER2wX8RXXxiMRZ8AKxYl7smUAAFWpuT91S8BljvqGWuA9cgzr+vWu59S3z7ddPeNFyUcYP39zzINOPoStWjWSO8+O16harZVP/7cm7rpzid11CH9dM0lwwiwklgyvgmwPv36B9318Aua+dMs+zXARK7DD95b11w8TFlZlQ9aTaQ9nqlZgACrZiPucIcAAZY76sAoKgoQYLljRaxbF7K/MPjr75X/+aFunqXDh1jaeiv/HtReXRUIsNyxRhlFdAECLFZGKgQIsFKhmHwbsQZYw/87Xh98NlMnHbm/Rp17bMIBlnlw6GlX6ddZ83XzFWdp0MBNryOWn03hug06/PSrNHfBP/ZOLbNjq/wV76uLyUt5uwXfBFilZShYsVovvPGxnap2bNdKxw0ZUG2FwuGQGjWop25dt1KbVs28XU0Pjp4Ay4NFC+iQCbACWniXT5sAK7MFWr0mpNlzpNdeD8v8fvNr220iGjrYUl5eYv9iLbOzS03vBFipcaSV9AgQYKXHNWitEmC5o+I1BVjmzOuHn35dkx6cIpMBTHlgtLbt1DapAOvDz2fqnMvG229+mTDMvJZovnZYev05729dO+5hffPdb9q91w6aPO7SSlgEWPGtH98FWKXTH3LqlWrSqIEevP0/8Ylwt6MCBFiOctNZEgIEWEng8WjaBAiw0kYbteHlBSHNnRvSnDnS7Lkhmb+Odpl/dj1w/4h67RzMXVflTQiwnF2j9BafAAFWfF7cHV2AAMsdK6M0wMqrU0u79exaNqiIZWnlqjX65Y/5Wlu4zn7b6soLT7Jf5yt/lQZJbVs3V4P6daNOqnHDerr/1ooh1P9eeEc33vGEzNcOTd/mTO1atXK1eOlyzVu42G5nt527asJ156l+vbwqAyyz+aZxw/pR+zUbbu4ce4E7oDM8Ct8GWOaVwtnzFun4odXvwMqwf+C7J8AK/BLwDAABlmdKFaiBEmClt9yLl4Q0d15If/4p+9dou6w2H0Gb1paOOjwic2A7l0SAxSpwswABlpur452xEWC5o1alAVa00dTKzbHPxt6lexcdP3RghZ1XpfeXBljVzaZp4wb6cOqkSrfMmrNQT0x9R1/O+FnmbKzi4mI1blRfO3TeUoMG7m5/qdDs+op2JdOvO+SdHYVvAyxnGektUQECrETleM5pAQIsp8XpLxYBAqxYlGK7xxyfuWhxyQ4r81qg+XVtYfR/2IzWojm7da89irVPP0scpblJiAArtvXHXZkRIMDKjLvfeiXA8ltFmY+bBQiw3FydAIyNACsARfbJFAmwfFJIn02DACu5gs6fH9Lc+WH9OdvSvHlhbSiKr73cHKldu4g6dgipS+eIWrZg19XmggRY8a0p7nZWgADLWW+/9kaA5dfKMi83Cvg+wDJbCd/84Gv9OfcvrV5bKCtS8z9c3nED75c6tVgJsJySpp9kBQiwkhXk+XQIEGDFrlpcLM2fH9aceSHNmWvZvy/aGPvz5s68OpY6tLfUsYPUoYOl1q0sVfPV7Pga9+ndBFg+LaxPpkWA5ZNCZngaBFgZLgDdB0rA1wHW5CemaeIDU2SZ9wLiuH58/5E47ubWZAQIsJLR41knBQiwnNSmr1gFCLCql/pzdlizzO6quWHNnR/764ClrdarZ2nLDlLHjpbat7PYYRXrwix3HwFWAmg84pgAAZZj1L7uiADL1+Vlci4T8G2AZQ5xP+PScTZ33bza6tZ1a7Vu2URZ4XCNJbjmkmE13sMNqREgwEqNI62kX4AAK/3G9BC/AAFWZTNz0PrX08P6Zrq0YkV8oVXTJpa9s6pje6lDR0uNG8b3L8Dir6D/nyDA8n+NvTxDAiwvV889YyfAck8tGIn/BXwbYJ1/xUS9+8kM7bzTtpo4+vwqP0np/xK7e4YEWO6uD6PbJECAxWpwowAB1qaqzPozrC++kn75teZ/UVX6VOuWltq3t9SpY8krgXl5BFapXucEWKkWpb1UChBgpVIzuG0RYAW39szceQHfBlh9h16gpfkrNPWhMVE/k+k8NT1GEyDAYl14RYAAyyuVCtY4gx5gFRaG9M30sL78RiooqH63VThL2qK1Cawi6tQxZAdXtXIJrNL93xgCrHQL034yAgRYyejxbKkAARZrAQHnBHwbYHXrf5pC4ZCmvzFZ4XB8rxA4x09PBFisAa8IEGB5pVLBGmdQA6zZc8L66puQfvix+v99z86WevaIaPvtpC07RoK1OFwyWwIslxSCYUQVIMBiYaRCgAArFYq0gUBsAr4NsHY/5FwVRyL64pV7YpPgrowIEGBlhJ1OExAgwEoAjUfSLhCkAGv9upCmzwzpq6+lpcuqf02wZQtLu/Sy1H2niHJz014GOqhGgACL5eFmAQIsN1fHO2MjwPJOrRip9wV8G2CdeP5YTf/+N3384h2cf+XidUqA5eLiMLQKAgRYLAg3Cvg5wCoqkubND2v+gpDmzbe0eElIK1dWv+OqR7eIdtnZUtu2vBrolvVKgOWWSjCOaAIEWKyLVAgQYKVCkTYQiE3AtwHWMy+9p+tuf1SXnXecTjxiv9g0uMtxAQIsx8npMEEBAqwE4XgsrQJ+CrDMGVYL/pLmzjWBVUh/L4rt9f9mTSPq3VvqsaOlWrUJrtK64BJonAArATQecUyAAMsxal93RIDl6/IyOZcJ+DbAKi6OaNiFN+qn3+bq9mvPVd8+3VxGz3CMAAEW68ArAgRYXqlUsMbp1QArEpEdUJndVXPnmcBKWrUqtsDKVNgcyL59F/OaYEQdOxBauXnVE2C5uTqMjQCLNZAKAQKsVCjSBgKxCfg2wFq+YpV++GWORt1wr1asXKPOW7VTr25d1KpFY9Wq4UCM44cOiE2Pu5IWIMBKmpAGHBIgwHIImm7iEvBigPXzL2G98lpIK+MIrEpRzNlW3XaSenSPqG4ewVVciyVDNxNgZQiebmMSIMCKiYmbahAgwGKJIOCcgG8DrO37DUtY8cf3H0n4WR6MT4AAKz4v7s6cAAFW5uzpuWoBLwVYy1eE9PLLIf3xZ/UHsJefbfMWljp1sLRlR9k7rfIIrTz3XwcCLM+VLFADJsAKVLnTNlkCrLTR0jAClQR8G2AdfOJlCZf7lcdvSvhZHoxPgAArPi/uzpwAAVbm7OnZ2wFWcbH00adZ+uDDkMzvq7uaNzdhVUlgtSWBlS+WPgGWL8ro20kQYPm2tI5OjADLUW46C7iAbwOsgNfVM9MnwPJMqQI/UAKswC8BVwK4fQfWrD/DevnVkPLzo59v1bxZpCSs6mipY0fxWqArV1lygyLASs6Pp9MrQICVXt+gtE6AFZRKM083CBBguaEKAR4DAVaAi++xqRNgeaxgARmuWwOs1atDeuX1sH78KXpw1aSJpUMPttRpy0hAKhXcaRJgBbf2Xpg5AZYXquT+MRJgub9GjNA/AgRY/qmlJ2dCgOXJsgVy0ARYgSy76yfttgDLfF3wiy/Deuf9kDZsqBxe1cq11K+vtNuuxcqK/Sgs19eBAVYtQIDF6nCzAAGWm6vjnbERYHmnVozU+wKBCbDWbyjS3AX/aOWqNapdO1c7dN7S+9XzwQwIsHxQxIBMgQArIIX22DTdFGAtXBjS8y+GtGRp9GSqe7eI9htgqV5dvh7osWWW1HAJsJLi4+E0CxBgpRk4IM0TYAWk0EzTFQK+D7B++3OB7njoeX30+UwVbSw5PbbzVu30/IOjKxTgzoem6p+ly3XB6YerWZOGrihOEAZBgBWEKvtjjgRY/qij32bhhgBr7dqQ3nwrpOkzowdXLVtYGjI4ojatCa78tv5imQ8BVixK3JMpAQKsTMn7q18CLH/Vk9m4W8DXAdZbH36tkaPvVVHRxgpViBZgjZnwuP73wjsaec4xGnb0Ae6umo9GR4Dlo2L6fCoEWD4vsEenl+kAy4RWb7wZUmFh5dcF6+ZZGtDfUs/uEYWiH4XlUXWGHY8AAVY8WtzrtAABltPi/uyPAMufdWVW7hTwbYA1b+E/GnzKldqwoUjbbNlWxw3pr/ZtW+q0i2+JugPrk69+0Jkjx6lPr+31wLiR7qyWD0dFgOXDovp0SgRYPi2sx6eVqQArf3lIU6aGNX9B5WQqHJZ694qo/76WzJlXXMEWIMAKdv3dPnsCLLdXyBvjI8ByZ53mLVysl974RF/M+Emz5y3SytVrVKd2LTVv2khtWjbVHr131D6791D7LVpUmMA+R1yoxUsLKvxZrdwcNWncQF237aBBA3bXfn17RZ10tGc3v/GAfXrrtmuGl/3xqDH3adrbn1WL2LRxA304dVLZPSbrOPD4UfZfX3becTrxiP2qff7yGyfrxTc+0eN3XK6eO27rzoLFOCrfBljX3faInnn5fQ0a2Ec3/vdMhcMl/5C9fb9hUQOsvxfna8BRF6tFs0Z677kJMfJxW7ICBFjJCvK8UwIEWE5J0088Ak4HWMXF0vsfhvTRp1mKlLyVX+Hq0N7SoYMsNW/G1wXjqaOf7yXA8nN1vT83Aizv19ANMyDAckMVNo3BvH1158NT9eD/XpVllfyLtNYtmqhhg3pavaZQi5cV2JtczLV7rx00edylFSZQGkKZoCc3J9v+2dp162VCo4IVq+2/3nfPnrr92nOVk50V9dkdu2yp7OySZze/+uzcVeeeMqTsj0sDrI7tWqlxw/pRn2nUoJ7uHHtB2c/KB1i1a+XqhYfHqF2bikFc+YYIsNy1RqOOZv9jR2rB30vsMMqEUqVXVQHWxuJidR9wurKzs/TtWw94YIb+GCIBlj/qGIRZEGAFocrem6OTAdafs8N6aVpIZvfV5pc5mH3QQZa6bkdw5b1VlN4RE2Cl15fWkxMgwErOj6dLBAiw3LMSTDB1ykU369sf/7DDoDNPGKSDB/SR2cFU/vr597l675MZ2m3nrpV2JJUGWB88P7HC2dgmDPv4yx908bV3aW3hOo0cfoyGHVXx6KGqnq1OqDTAuvWqc3RQ/11jwiwNsOrUzlXhug3q3aOLHrp9lEJVnNlAgBUTa2Zv6j7wdDWsX1dm4ZW/qgqwzD099jtDkeKIZr7zYGYHH6DeCbACVGyPT5UAy+MF9OnwnQiwzCHtr74R0nffVz6k3fxzknldcGD/iHJzfYrMtJISIMBKio+H0yxAgJVm4IA0T4DlnkJfO+4RPTvtfXVq31qTbxupVs2bxD24mkKop158V6PHP6bttumg5yZfV6H9mp6NNphkAqyjDt1Hn3/zk7077OqLTtLRg/eNOl8CrLiXgfMP9D7obGVnZenTl++KKcBamr9CfYdeYKesm4dezo8+OD0SYAWn1l6fKQGW1yvoz/GnM8Ayu+5nfBvWG29HP6Sdrwv6c02lelYEWKkWpb1UChBgpVIzuG0RYLmj9j/8OltHn3Wd/Vrf1IfGaMv2rRMaWE0h1B+zF2rwKVeofr08fT7t7owGWEMO3EvmPyeNGKu8OrX10qNj7dclN78IsBJaCs4+dNRZ1+rHX+fY74OaQ9xLr6p2YD059R3dMPFx9e3TTXffeJGzgw1wbwRYAS6+x6ZOgOWxggVkuOkKsJYuC2vK1JAW/lX5dcGcHKn/PpH/Z+88oKOq1jb8njOTQkiD0EGkSG+CAqKiSBFBRAFFbFcUFaz4o/fqtbdrv17sBQui2AVREBTpRYqASJfeewiQnsw5/9pnMkkmmSRTz5zynrWykszs9j3fJsCTXdCjO28XtMk0CylMCqyQ8LFyhAlQYEUYsE2a10tg/XRyF1ZlHbUJVeCK1CY4J6G23/E+/dqn+ObHeZrQee6hUX7XK1uwKoG1edseDLvtCdSvm4bfvv5vVAVW/17d8NpTd+G58Z/hyx/m4MJuHfD+yw9QYAWd/ShWnDB5OsZP+A7dO7fBuy+Ng7g5QDy+BNaOPQdx493P4eTpLDz/79txZf8Lojhye3VNgWWvfJs5WgosM2fPumMPt8ASh7TPnS9hye8OKD6OszqrmYIhV6pISuLtgtadVeGNjAIrvDzZWngJUGCFl6ddW9NLYI3evQAfHNtoG8zvn3kx7qjV1u94r/jHvyH+X//Gs/ehT88uftcLVGBN/HoWXnn3K/S76FyMf+aeqAoscZj8m8/dp53JdeUtj+HAoWPNC+KxAAAgAElEQVSavBMSr/TDFVhBTwf9Kmbn5GHwyEdw8PBxNG5YF3ffchW6nd0Gwqi2an4Gvv/wGezedxi/zF+Jj76cgazsXO31bz54Stt6yEcfAhRY+nBmL6EToMAKnSFbCD+BcAoscUj7Dz9JyMgov+pKCKtBA1S0ac1D2sOfRWu3SIFl7fyaPToKLLNn0Bjjp8CKTB4CFVhn9x2FgkIXZnz2IsSNfsE+la3AWrT8L9z/xFtwuVz44p3H0bZlE58Cq1Pb5ogpusGw7DieemCk1/ZGzxlY4tyummUOm/fUHXFlbwzoXXLAu+cQ99K7x37/YwNue/AVJCcmaFsJa6eVXGRHgRXsbNC53s49B3HbA6/g0NF0r55lWYIsyRA3D3qeRvVr4+P/PYSG9WrpPEp7d0eBZe/8myl6CiwzZcs+Yw2HwMoSh7TPlLFuQ3lxxUPa7TOXIhUpBVakyLLdcBCgwAoHRbZBgRWZORCIwBL/r+/Ux71tsOztgZ7RPf7yx5jy88JygxUiSggnz+MRWOKGwlhxbgKAvLx87Nx7EEeOZaBmahJeeOQObbte2cdTtzIiX7//JNq3alpcxCOwKqvz4JhrccuIAcVFPALrovM64d0XS44/8sToWZnlqUCBFZk5GpFWT2Vm471Pp+H7nxciMyunXB/xcbEYdvnF2gotcWshH30JUGDpy5u9BU+AAit4dqwZOQKhCCxxSPuq1TJ+mSMhL7e8vBKHtF89VIH4zIcEgiVAgRUsOdbTgwAFlh6Urd+HXgKLZ2BVPpc6X3o78vMLMHPyS9oOrLLPh1/MwPylfxa/vGX7Xm3rXUUCy1dvHds2xyf/ewjCIfh6qjo/y1edUG4hLCuwTmdma7vQhGh75fE7MbCPe9UWBZYJfw4JK7tp6x7tismsrBxUi49Dg3q10KF1U8QWnY9lwrBMP2QKLNOn0DYBUGDZJtWmCjRYgXXkqISp02Sfh7SLvxL79FZwXjce0m6qyWDQwVJgGTQxHJZGgAKLEyEcBPQSWOEYq5XbuOz6f2HvgSN476UH0LN7+dVRZWMfceczWLdpR4UCq/RKrmPpJzHwxocgjin6+r0n0a6V99ZBT9vRFlhiHELS3f3IeKSmJOKnT1/QVow99tJHmDpzET578xF06dDS1NNAUlXxO1g+JBAdAhRY0eHOXgMnQIEVODPWiDyBQAVWYSEwZ76E35f5PqS9dSsFVwzkIe2Rz5x9eqDAsk+uzRgpBZYZs2a8MVNgGSMnD/3nfUyf/TtuvqY//nX3dVUOKhCBJRr79Ntf8PLbX2rb/7589wmIY4nKPkYQWGJMnlVdl13SDf998i54bmikwKpyWkSvgLiFYMjAnhh86QWoVTMlegNhz5USoMDiBDELAQoss2TKXuMMRGCJQ9qnTJNw6lT5f3AlJqra7YItmvOQdnvNoMhHS4EVecbsIXgCFFjBs2PNEgIUWMaYDZ6VR0mJCZg1+WVtBVJlT6ACS+zoGjrqCWzftR+P3X8Trruqj2EFVsbJTG0r4fETp7RbGVev+xsTv5nFFVjGmKq+R9Gu10jtDWFGe3bvqF0l2avH2RXeBmDkWKw8NgosK2fXWrFRYFkrn1aJxh+BlZkpYcZMCRs2yeXCFoe0d++qoF8fBUXnlFoFDeMwCAEKLIMkgsPwSYACixMjHAQosMJBMfQ2xMaya+54Cpu27oY4gP3N58YioVpchQ0HKrBEQyvWbMYt//cihCSbPumFcgtljLICS4z1l/krMe6pt7Ux9u/VDZOnzKbACn2aRa4FsUzul3krcPJ0VnEnwsIO6ttDk1mtz2ocuc7Zst8EKLD8RsWCUSZAgRXlBLB7nwQqE1jigICVf8iYPVdCXh4PaecUig4BCqzocGev/hGgwPKPE0tVToACyzgzRJx3PWLMM5oDaNa4Pu65dQh6nd8ZcWXOvC4odOG6O5/RZFdFh7hXdJvhuKfewS/zV2BQvx546dHRXsEbSWCJgd3/xFuYvfAPLf68/AIKLONMVd8jKSgoxIJla/Hjr0uw8Pe1EBPV8wiBNXRgT1zep0eVywuNHqeZx0eBZebs2WvsFFj2yrdZoq1IYIlD2r+fKuPgofLiKjZWRd/eqrbySqzA4kMCkSRAgRVJumw7VAIUWKESZH1BgALLWPNg977D+L8n34K4ZVA8MU4HmpxRH8lJCSgsdGlya9+BoxBbAsUTqMA6dDQdg256GDm5+fj4fw+he+c2xQA8AktcFOd0On2C6XFOW9x9y5Di9zznVTU5ox5qpCT5rJOanIi3nh9b/J4QdQNueAhlbyEsW1kcPi+2Ep485V7UwzOwjDVXKx2NmKiz5i7H9N9+x+p1W4vLigl9yQWdtVVZF3TtAIej/BYLE4VpuqFSYJkuZbYdMAWWbVNv6MDLCqyCAmDOPBnLVshQfBxn1bq1gsEDVYgzr/iQgB4EKLD0oMw+giVAgRUsOdYrTYACy3jzQWwn/G3RKsxe8AfWbtyO9IxTmnASK5FSkqujUf3a6NT2LJzTsSV6nNvOa4WWP6uoJkyejvETvkPTxvUx9aNni48p8tStjIjnYHVPGY/AqqxOWo1kLJz6RsACS1T46delePj5DyiwjDdN/R/RvoNHtRsKfpq9FLv2HiquWDstFYMvPR/jRg/3vzGWDIkABVZI+FhZRwIUWDrCZld+EygtsFauLcTUaRLEmVdlHx7S7jdSFgwzAQqsMANlc2ElQIEVVpy2bYwCy7apZ+BRICCpQk/a+BH7XsUBZ/OWrsG2nfs1EhvmT7QxEX1Dp8DSlzd7C54ABVbw7FgzcgSEwJKUWHz6VQH+2lC+H7FF8LzuCvpewkPaI5cFtlwZAQoszg8jE6DAMnJ2zDM2Cizz5IojNT8B2wusDVt24dcFQmD9qV2JSYGl76SmwNKXN3sLngAFVvDsWDMyBMSvn1avcWLWbCAvr3wf9eupGHqVgrp1bP17qsjAZ6t+E6DA8hsVC0aBAAVWFKBbsEsKLAsmlSEZloAtBZbYNii2D/48Zxn27D9SnJz6ddNwVf8LtdsK+OhDgAJLH87sJXQCFFihM2QL4SNw+IiE76bIEJ/LPnFFh7R34yHt4QPOloImQIEVNDpW1IEABZYOkG3QBQWWDZLMEA1DwDYCKz3jNGbOXY6ffl2CdZt3FidAHOTW76JztUPcu3dpA4lXMuk6OSmwdMXNzkIgQIEVAjxWDRsBcUj77Dkylq+U4esAgDZtFFwxgIe0hw04GwqZAAVWyAjZQAQJUGBFEK6NmqbAslGyGWrUCVhaYOXm5WPekjXaaqvFK9bB5Sq5kqlj2+aatBrYuzsSq1eLeiLsOgAKLLtm3nxxU2CZL2dWG/GmzTJmzJRw6nT5VVfJScCVgxW0aO7j6kGrgWA8piJAgWWqdNlusBRYtkt5RAKmwIoIVjZKAj4JWFZgPfbSR9rZVlnZucWB16qZgsGXXoAhA3uiWeP6nBIGIECBZYAkcAh+EaDA8gsTC0WAgFh1NWWaAxs2lhdXsgz06yWjX28gOz8/Ar2zSRIIjQAFVmj8WDuyBCiwIsvXLq1TYNkl04zTCAQsK7Da9Rqp8Y1xOtDr/M7aaqsLu3WAwyEbgbslxzDp21/w0ttf4t5bh2LMPwb7FSMFll+YWMgABCiwDJAEGw7hyBEJX3wjIz29vLxqUF/F9dcArZvHIjvPhYxMCiwbThHDh0yBZfgU2XqAFFi2Tn/YgqfAChtKNkQCVRKwrMAadtsTmrQa1LcHUlMSqwRhhwIHDh3D/U++BXHz4nMPjdL4VPaI8u999iOWrlyPY+knkZKciG6dW2P0jYNxVtOG5apSYNlhFtk3Rgos++Y+WpGvWClj5i8ySu1+14aiHdLeR0W3cxVUj3cgNZECK1o5Yr9VE6DAqpoRS0SPAAVW9NhbqWcKLCtlk7EYnYBlBZbRwes9vkXL/8JDz72Pk6eztK6rElibtu7GzWNf0LZgntGgDpqdWR+HjqRjy/a9iI2NwTvP348e57bzCoMCS++ssj89CVBg6Unb3n3l5UqY8qMEceZV2adeXRXXj1CQmqJqbyXEUWDZe7YYP3oKLOPnyM4jpMCyc/bDFzsFVvhYsiUSqIqAJQTWd9MXaHGKFUXBbhEsdLnww8zFWjtXD7q4Km6meV9RVLw9cSrem/Qj6tdNw4VdO+Db6fMrFVjisPsrbv43du87jH/eOQIjr72sON6Fy9bi3kffQPXq8fjli1eQlJhQ/B4FlmmmBQcaBAEKrCCgsUrABA4clPDF1zJOnSq/ZbB7VwUDLlUgO0qapcAKGDEr6EyAAktn4OwuIAIUWAHhYuEKCFBgcWqQgH4ELCGwPOddrf51AuJiY8rRE0Lm8pse1l6f9cXLPulm5+Si64Ax2nsb5k/ULwMR7unV977GJ1/NxDkdW2L8M/fi+xkLMH7Cd5UKrNkL/8D9T7ylrbD68NV/lhuhp837b78at98wiAIrwjlk88YgQIFljDxYdRSqCiz53YHf5kpQylwkGBen4pqhKlq2KH/DIAWWVWeEdeKiwLJOLq0YCQWWFbOqf0wUWPozZ4/2JWALgSVWV3XqM6pSOWVVgXX0eAYmT/kNd98yRDvQ/u1PpuKdT6dVKrAeffFD/DBrMV56dDQG9etR7k/H9l37MXjko2h9VmN8/+EzfgmsOYtW4/4n30TttFR8/uajaFCvllaPh7jb94eP2SKnwDJbxswz3uwcCd9+L2H7jvJbBhs1VHHt1QpSirYMlo2KAss8ebbrSCmw7Jp5c8RNgWWOPBl9lBRYRs8Qx2clAhRYRdm0qsAqO1lf//B7fPD5T5UKrKGjHtfOupo5+WU0bljH53zvfvmd2vlYq3/5QDsTSzwVbSFctmojxjz8GqonxOOzNx9Fs8b1i9ukwLLSjxNrx0KBZe38Riu63XslfP2NjMws7y2DkgRceL4LfS5RIVdyeS4FVrQyx379JUCB5S8plosGAQqsaFC3Xp8UWNbLKSMyLgEKLAqscrOz64DRyM7Jw5+/faSt2vL1DLn1Mfy9Yx9+nPgfNG/ivpHQl8D6a+N2jHrgZUiShInjH0bblk28mqPAMu4PB47MmwAFFmdEOAmILYPz5ktYsNgB8XXpJ7G6imuGqWjapPyWwbJjoMAKZ1bYViQIUGBFgirbDBcBCqxwkbR3OxRY9s4/o9eXAAUWBZbXjBOHvnfofQuqxcfij1kfVDgb/3Hf81j119/aiqouHVr4FFhCcN183/PIyy/AhFf/qZ3DVfbJK/D9H7QYhwRZllDgUsqdB6PvHxH2RgJuAnEx7mUw+QUKyvgGIiKBgAhs3AJ8P82FQ0fKV2t1FnDrjQ4kJvrXpEMGnA4ZLkVFoYsz0z9qLKUnAc/Pzor+vtdzLOyLBMoScDokOGQJhS4Frqp/Z0CAJOCTgOfnHPGQAAlEngAFVhFjbiF0g8jNy8c5/e9AcmICfp/+ToUz8LYHX8Hvf2zQDnkXh72Lx7MCa+xtw3B53x64/q5nkXEyE289PxY9u3eM/GxmDyRAAiRgYAIHDwNfTy3E+k2+RdOwKxwY0LeS/YIGjo1DIwESIAESIAESIAESIIFIE6DAosDymmOqqqL9JYGswHoEXTq4V1aV3kI4c95ybNu5H3ePvAp3jbyqwnl8/FS+z/eSEpyIdco4nVOorXjhQwLRJpCWHKsNIf10frktX9EeG/s3NoHsbAm/zlGxbKXkc+6kJKu4cYSExmcEvoJK/NY3sZoTYnVLZk6hsUFwdLYk4PnZWdHf97aEwqANQyAx3oG4WIf285OrBA2TFtMNxPNzznQD54BJwIQEKLAosMpNW3FAe2ZWjl9nYE39+Dm0bNbIS2ClJFVHZnYOXC4FtWqmYMpHzyKtRrLPPx48A8uEPzVsOmSegWXTxIcY9tJlMuYtkJCX531Iu6fZ1q0VDB2sIj4+cHkl2uAZWCEmiNUjToBnYEUcMTsIgQDPwAoBHqsWE+AZWJwMJKAfAUsJrOGDL4HDx3VNYlXRV9PmalSvu6qPT7qFhS58O32+9t6G+RP1y4DOPflzC+Hw0U9hw5ZdVd5CKCTXypnvI6FanJfAErcNjn/mHsxbsgZfTJ2jbTH84OUHtTOtyj4UWDpPAHYXNAEKrKDR2bLipk0yZs2WcCLDt7iqXUfFlZcrQa26Kg2UAsuW08tUQVNgmSpdthssBZbtUh6RgCmwIoKVjZKATwKWEljhyrHdBdaz/5ukCb+XHh2NQf16lMO6fdd+DB75KJo2ro/pk14oft+zhfDuW4bgrpuvRH5+Aa6761ls3rYH940ahtE3XUGBFa5JynZ0J0CBpTtyU3Z46LCE6TNk7NnnW1wlJqro21tF504KJN9FAoqbAisgXCwcBQIUWFGAzi79JkCB5TcqFqyEAAUWpwcJ6EfAEgLr5rElEiUc6D59/d/haMaQbfizAksczi4OaT//3PaY8OqD5eJ49b2v8clXM3HriIF4YMzwcgLr3luHYsw/Bmuv79p7CNfc8aR2OPwn/3sY53Zq5dUeV2AZcppwUD4IUGBxWlRGIDNTnHMl4c+1vg9hj3EC5/dw4aKeKsTX4XoosMJFku1EigAFVqTIst1wEKDACgdFtkGBZYw5sGf/YQy44SE0OaMeZnz2YqWD2n/oGC4d8SDOaFAHs754udKyk6f8huff+BwD+3THK4/fWWHZtz+Zinc+neYXjPO6tMVHr/2ruOxDz72P6b/9XmldcSTPwqlvFJf5bvoCPPnqJxh+RS88+cBIv/q1QiFLCCwrJEKvGPwRWGIsI+58Bus27cA/7xyBkddeVjy8hcvW4r7H3oAky5g1+WXUrV2j+L3Sh7h7BJZ486dfl+Lh5z9AnVqp2nlYNVKSiutQYOmVefYTKgEKrFAJWrN+YSGweKkDi5ZIKCjwHWOnjgou7aMiKSm4c64qI0eBZc15ZaWoKLCslE3rxUKBZb2cRiMiCqxoUC/fZ6QE1pBbH8PfO/YhJsaJ+d+NR2pKos+AhVD6bsaCSmFs33UA2Tm56N+rK1576u5yAkvIt9L/Vy7dWGpyIt56fiwFlioOiOJjGwL+Cqy9B47ghrufw/ETpzQz3ezM+jh89IS2HVCSJLz4yB3lthdWJLAE3Edf/BA/zFqMC7t1wHsvjdPaEA8Flm2mnukDpcAyfQrDGoD4m/OvdTJmz5Fw6rTvvYANG6oYPEhB/bqR+2uWAiusaWVjESBAgRUBqGwybAQosMKG0tYNUWAZI/2REFhrN27H9Xc9izYtzsSmrbvxr7uvw83X9A8qYPH/6GtHPw2n0wFxEVrjhnXKCSyxwkus9PLn4QosfyixjOkJ+CuwRKBCXr376TTM//1PHDuegcTqCejcoQVuu/5ydGrbvByLygRWdk4exOHwO/ccxP23X43bbxhEgWX62WSvACiw7JXvyqLds1fCz7NkHDjoW1zVrKGifz8VbVorEYdGgRVxxOwgRAIUWCECZPWIEqDAiihe2zROgWWMVEdCYD320keYOnMRJr3xCEY98DLOqF8bP5U6A9rfyAsKXRgx5mltMci/770BNw7r51XVs4WQAqtqotxCWDUjloggAa7AiiBcNh1WAhRYYcVpysYyMiT8MlvChk2+z7mKj1dxyUUqundVIDv0CZECSx/O7CV4AhRYwbNjzcgToMCKPGM79ECBZYwsh1tgZWbloNewsUhKTMC878bj3sfewNzFq/HZm4+gS4eWAQX9zsQf8PbEH7R6k974d/FuJE8jFFj+46TA8p8VS0aAAAVWBKCyyYgQoMCKCFZTNJqXL2HBQuD3ZQ64fCyqkmWg6zkKevdSUa1a5LYL+oJFgWWKKWTrQVJg2Tr9hg+eAsvwKTLFAPUSWAfXqjixK/Kru40Cvf7ZMmqc6f+VzeEWWF/+MAfPjf8Mo64biHGjh2P2wj9w/xNvYfClF+CFR273G9OW7Xsx/I6nirYOPovGDeuWq0uB5TdOUGD5z4olI0CAAisCUNlkRAhQYEUEq6EbFedcrVotY848CVnZvv8B1aqlggH9VYhtg9F4KLCiQZ19BkKAAisQWiyrNwEKLL2JW7M/vQTWqkku7FxoH4HV5SYHml3se9W7r5kUboE17LYntC1/Ystgs8b1IbYBihVZOTl5mD/ldSQnJlQ5oQtdLu3cK9HOw/dcj5uuvtRnHQqsKlEWF6DA8p8VS0aAAAVWBKCyyYgQoMCKCFbDNrpjp4wZsyQcPepbXNWuo+LKyxU0PiM64soDjgLLsFOIAysiQIHFqWBkAhRYRs6OecZGgRWZXAUrsOJiY9C2ZZNKB5VfUIANW3Zpl5XN+uLlcmXXbdqBEXc+o537/MU7jxe///wbkzF5ymw8ct+NuGFo3yoDf+fTaXj7k6na1sFPX/83ZNn3vys9AkuIspo1kn22O+LK3hjQu+SAdx7iXiV+FiCB8BOgwAo/U7YYGQIUWJHharRWs3MkfD9VwtZtvn/jl5io4tI+Ks7uZIzfgFJgGW0GcTxlCVBgcU4YmQAFlpGzY56xUWBFJlfBCqxARlORwHr85Y8x5eeFeOrBkbhmUK/iJsVNhFff/iRaNmuk3SRY2ePP1kFPfY/Aqqy9B8dci1tGDCguQoEVSKZZlgTCRIACK0wg2UzECVBgRRxxVDvIzJQwd4GE1WtkKD7cVIwTuOB8F3peqEJ8bZSHAssomeA4KiJAgcW5YWQCFFhGzo55xqaXwOIZWJXPiXBtIfQc3q4oKhZOfQOJ1at5dTx01OMQcurLdx5Hx7bNfQ5KbB0cMeYZCOFV2dbBsgKLtxBW/eeeWwirZsQSESRAgRVBuGw6rAQosMKK0zCNiRVX8xdIWLai4jMWxGqrfr1VJCVFd7ugL2gUWIaZShxIBQQosDg1jEyAAsvI2THP2PQSWOYhEp2RhktgfTVtLp7936Qqgxg68CI8+69bfZZ7d9I0vPWx2DrYAp++/kiFWwcpsKrEXK4ABVbgzFgjjAQosMIIk01FlAAFVkTx6t54bq6EhUuA5SscKCjw3X3jRioGD1JQp47xxJVnxBRYuk8ddhggAQqsAIGxuK4EKLB0xW3ZziiwjJHacAksz+Ht4hwth8P3LzjXb96J+LgYLJjyBqonxHsB+HvHPgy/40nIsowfPnnO562DZYnxEHf/55AtBJY49f+3hauwdec+nMrMQqP6dcrZ0qPHM+BSFNStVQOS5P91nf6jZklfBCiwOC/MQoACyyyZqnycuXkSliwFfl8uIz+/4gPa+16iok0rY5xzVVlEFFjWmJdWjoICy8rZNX9sFFjmz6ERIqDAMkIWgHAIrHWbd2LEmKfRvElD/DjxPxUGNuah17Bo+V94ctzNGD74kuJypbcOPnT3dfjHNf39gkOB5RcmrZClBVZWdi6e/u9EzJizzItIq+ZnYMpHz3q9Nmrcy1i2eiM+eOVBXNC1vf8EWTIkAhRYIeFjZR0JUGDpCDsCXYlVVsuWO7D4dyAnx7e4qlNbRZ9eKlq3VmCW32NQYEVgsrDJsBKgwAorTjYWZgIUWGEGatPmKLCMkfhwCKwnXvkY389YiEfuuwE3DO1XYWDzlq7BPY+8rt12+O0HTxWXe2/Sj3jz4yno3L4FJr1R9dZBT0UKLP/nkGUFlsul4PYHX8HyNZs0GrVqpmjL91av+xu+BJa4DlNci3n1oIvx9IO3+E+QJUMiQIEVEj5W1pEABZaOsMPYlcsFrPhDxsJFErKyK1hxVVtF74sVtG2jmkZceRBRYIVxsrCpiBCgwIoIVjYaJgIUWGECafNmKLCMMQFCFVhi8UuvYWMhPML8Ka8jOTGhwsDEAe+XjngAB4+kawJLiCyx2+ua291bB8UNhWc2qus3GAosv1FZdwWWuPZSXH+ZmpKIJ/7vH+jfq5tGpV2vkT4F1rad+3HlLY+iRdNG2l5VPvoQoMDShzN7CZ0ABVboDPVuYfMWGdOmS8jK8i2u0mqquORiFR07GH+rYEXsKLD0nlXsL1ACFFiBEmN5PQlQYOlJ27p9UWAZI7ehCqxvfpyHp1/7FEMG9MRzD42qMijPQe1iC6HYSjjmof9i0fJ12q2FYuFMZY84W+urd58oLuIRWE3OqIcaKUk+q6YmJ+Kt58cWv/fd9AV48tVPtPL166ZV2N3rz9yDBvVqVRmPWQpYdgXWzWNfwB9rt+DN5+5D7wu7FOejIoF1OjMb5w26SzuEbcXP75klf6YfJwWW6VNomwAosMyV6q3bZEz+Sobiw01p4qqXig7tzLNVkALLXPOPoy0hQIHF2WBkAhRYRs6OecZGgWWMXIUqsK6+/Uls2robX77zODq2bV5lUOIM7T7DxyE+Lhbzv38dt457Ces27aiyniggyxLWzf2knMCqrHJajWQsnPpGOYFVVYc/TXoBzRrXr6qYad63rMDqMegu5BcUajKq9O0BFQkskbHOl96OwsJCr8lkmkyadKAUWCZNnA2HTYFlnqRv3yHjsy9lKC7vMdes4V5x1aG9Atn3pTLmCbJopFyBZbqU2W7AFFi2S7mpAqbAMlW6DDtYCizDpoYDsyABywqss/uOQmpKEuZ/P94rbRUJLHFjwNl9b9NWYC2f8a4FU23MkCiwjJkXjqo8AQosc8yKXbtkfDpZhjj7qvQzaICCbl3Nu1WwIvoUWOaYl3YeJQWWnbNv/NgpsIyfIzOMkALLDFniGK1CwLIC65Kr70f6idNYNuNdVIuPLc5XRQLrzw3bcMPdz/EMLJ1nNgWWzsDZXdAEKLCCRqdbxX37JHwyyYGCwpIuxW2C1wx1oX07Vbdx6NkRBZaetNlXMAQosIKhxjp6EaDA0ou0tfuhwLJ2fhmdsQhYVmA9+My7mDl3OR7/v39gxJW9qxRYdz8yHvOX/ombrr4UD99zvbGyZOHRUGBZOLkWC40Cy9gJPXBQwscTHcgv8B7nsKsUdOpovZVXnigpsIw9LzoQ8moAACAASURBVDk6gAKLs8DIBCiwjJwd84yNAss8ueJIzU/AsgJrzfqtuPGe/yAuNgaPjr0Jwy6/SMtW2RVY2Tm5ePntr/Dt9PnaWVnTJ71Q5a0B5k+7cSKgwDJOLjiSyglQYBl3hhw+IuHDT2Tk5XnfNnjlIAXndLGuvBIZocAy7rzkyNwEKLA4E4xMgALLyNkxz9gosMyTK47U/AQsK7BEal57/xt89OXPWpbObFQX3c5uo4mqOrVSMeLKPti2a5921aW4gVA8D465FreMGGD+rJooAgosEyXL5kOlwDLmBDh6TMaHn0jIyfGWV5dfpqB7N2vLKwosY85JjsqbAAUWZ4SRCVBgGTk75hkbBZZ5csWRmp+ApQWWSM/Eb2bh9Q+/R37ZfSWlchcT49Tk1Y3D+pk/oyaLgALLZAmz8XApsIyX/BMZEt6fICO7jLzq30/FBT3KnOJuvOGHZURcgRUWjGwkggQosCIIl02HTIACK2SEbKDUSlPCIAESiDwBywssgfD4iVOY9stirFizGXv2H0ZWdi6qxcehQd00dOvcRtteWDstNfK02UM5AhRYnBRmIUCBZaxMnTwpYcInMk6d8l55dXFPBX0usf7KK082KLCMNS85mvIEKLA4K4xMgALLyNkxz9i4Ass8ueJIzU/AFgLL/GmybgQUWNbNrdUio8AyTkYzMyVM+EjGiZPe8qp7VwWXD7CPvBIZocAyzrzkSHwToMDizDAyAQosI2fHPGOjwDJPrjhS8xOwrMASNxD2ubALYmNjzJ8lC0dAgWXh5FosNAosYyQ0K1vChI9lpKd7y6sunRVcdYW95BUFljHmJEdROQEKLM4QIxOgwDJydswzNgos8+SKIzU/AcsKLHHbYHJiAi7v2wNDBvREu1ZNzJ8tC0ZAgWXBpFo0JAqs6CdWHNQuDmwXB7eXfjp1VDD0SgWSt9OK/oB1GAFXYOkAmV2ERIACKyR8rBxhAhRYEQZsk+YpsGySaIZpCAKWFVgdet8CRVGLIbdo2ghDBvbEFf3OR83UJEPA5yAACizOArMQoMCKbqbyciV8OFHG4SPelqp9WxXXDHPZUl6JjFBgRXdesveqCVBgVc2IJaJHgAIreuyt1DMFlpWyyViMTsCyAuvIsQzM+O13/PjrEvy9Y19xHpwOBy7q0UlblXXReR0hvucTPQIUWNFjz54DI0CBFRivcJf+7AsZW7d5r7xq11bFtVfb47bBinhSYIV7prG9cBOgwAo3UbYXTgIUWOGkad+2KLDsm3tGrj8Bywqs0ii3bN+riawZvy3D0eMZxW+l1UjWVmQJmXVW04b602ePXIHFOWAaAhRY0UvVvn0SPvjY+5cNrVoquGGE/c68KpsFCqzozUv27B8BCiz/OLFUdAhQYEWHu9V6pcCyWkYZj5EJ2EJgeRIgthSuWLNJk1mzF65Cdk5ucW7at2qqbTEc2Oc87ewsPvoQ4AosfTizl9AJUGCFzjDYFiZ9LmPbjpLVV03OVHHrzfZeeeVhSYEV7KxiPb0IUGDpRZr9BEOAAisYaqxTlgAFFucECehHwFYCqzTW3Lx8zF28Bj/PWYbFK9ehoKBQe1vcWrjm1wn6ZcDmPVFg2XwCmCh8CqzoJGvffgkffOS9+urO0S7Ur1tyxmF0RmaMXimwjJEHjqJiAhRYnB1GJkCBZeTsmGdsFFjmyRVHan4CthVYpVN36Gg6XnnnK8yat0J7ecP8iebPrEkioMAySaI4TFBgRWcSfPq5A9t3lBzc3rKFihuv4+orTzYosKIzL9mr/wQosPxnxZL6E6DA0p+5FXukwLJiVhmTUQnYVmCJ7YNzFq3GzHnLsXTlehQUuv9DVC0+Fn/M+sCo+bLcuCiwLJdSywZEgaV/arn6qmrmFFhVM2KJ6BKgwIouf/ZeOQEKLM6QcBCgwAoHRbZBAv4RsJXAKnS58PsfG/DTr0sxZ/FqiG2EnqdLhxbaYe6XXdINCdXi/aPHUiEToMAKGSEb0IkABZZOoEt1M/EzB3bsLFl91aKFipu4+sorERRY+s9L9hgYAQqswHixtL4EKLD05W3V3iiwrJpZxmVEArYQWBu27NIObp85dzmOnzhVnIe6tWtg8KUXYOjAnmjcsK4R82P5MVFgWT7FlgmQAkvfVHL1lX+8KbD848RS0SNAgRU99uy5agIUWFUzYomqCVBgVc2IJUggXAQsK7AOHDqG6b/9jh9/XYqdew4W84qJcaLPhV201Vbnn9seslzy2/1wQWU7/hOgwPKfFUtGlwAFlr78P5nkwM5dJT+fW7VQcMN1ir6DMEFvFFgmSJLNh0iBZfMJYPDwKbAMniCTDI8CyySJ4jAtQcCyAqtdr5FeCWrXqokmrQb2OQ8pSdUtkTwrBEGBZYUs2iMGCiz98szVV/6zpsDynxVLRocABVZ0uLNX/whQYPnHiaUqJ0CBxRlCAvoRsLTAqpmahCv6nY8hA3uiRdNG+lFlT34ToMDyGxULRpkABZZ+CSi7+qp1KwXXX8vVV74yQIGl37xkT8ERoMAKjhtr6UOAAksfzlbvhQLL6hlmfEYiYFmBNXfxalzUoxOcDoeReHMsZQhQYHFKmIUABZY+mfK1+ureuxTUrkWBRYGlzxxkL+ElQIEVXp5sLbwEKLDCy9OurVFg2TXzjDsaBCwrsKIBk30GToACK3BmrBEdAhRY+nD/5FMHdu4uOfuqTWsF1w2nvKqIPldg6TMv2UvwBCiwgmfHmpEnQIEVecZ26IECyw5ZZoxGIWAJgSUObF+9fiu6dmoNcbOgeLbu3Bc0Y243DBpdwBUpsAJGxgpRIkCBFXnwu3ZL+PhT71WzXH1VOXcKrMjPS/YQGgEKrND4sXZkCVBgRZavXVqnwLJLphmnEQhYQmD1HT4OB4+ko2nj+pg+6QWNa9lD3AOBvWH+xECKs2wIBCiwQoDHqroSoMCKPO73P3Jg//6S1Vdt2ygYcQ1XX1VGngIr8vOSPYRGgAIrNH6sHVkCFFiR5WuX1imw7JJpxmkEApYQWJff9DB27T2Eti2b4NsPnqLAMsLM8nMMFFh+gmKxqBOgwIpsCnbskjBxEldfBUqZAitQYiyvNwEKLL2Js79ACFBgBUKLZSsiQIHFuUEC+hGwhMA6eToLf2/fqwms6gnxGr1j6SeDplirZkrQdVkxMAIUWIHxYunoEaDAiiz7squv2rVVcO3VXH1VFXUKrKoI8f1oE6DAinYG2H9lBCiwOD/CQYACKxwU2QYJ+EfAEgLLv1BZyogEKLCMmBWOyRcBCqzIzYvtOyV8+hlXXwVDmAIrGGqsoycBCiw9abOvQAlQYAVKjOV9EaDA4rwgAf0IUGDpx5o9+SBAgcVpYRYCFFiRy1S51VftVFw7zBW5Di3UMgWWhZJp0VAosCyaWIuERYFlkURGOQwKrCgngN3bioBlBda9j76OVs0b455bh/iV0Pz8Atx07/Po0KYZHrv/Jr/qsFDoBCiwQmfIFvQhQIEVGc47dkqYWGr1lSQB99ypoHYtbh/0hzgFlj+UWCaaBCiwokmffVdFgAKrKkJ83x8CFFj+UGIZEggPAcsKLHEL4Xld2uKj1/7lN6mLhtwHSZKwYMrrftdhwdAIUGCFxo+19SNAgRUZ1mVXX7Vvr2L4UK6+8pc2BZa/pFguWgQosKJFnv36Q4ACyx9KLFMVAQqsqgjxfRIIHwEKrFIsew27HycyTmPtnI/CR5gtVUqAAosTxCwEKLDCn6ntOyR8+nnJ2Vdi9dXYe1yoWUMNf2cWbZECy6KJtVBYFFgWSqYFQ6HAsmBSoxASBVYUoLNL2xKgwCpK/V8bt+O6u55Fakoilkx7y7YTQu/AKbD0Js7+giVAgRUsuYrrlV191bG9iqu5+iog0BRYAeFi4SgQoMCKAnR26TcBCiy/UbFgJQQosDg9SEA/ApYRWFt37sPWHfuLyf3z2XdxVtOGGH3j4EppFroKsX3XAXw1bS4ys3LQp2cXvPHsffplwOY9UWDZfAKYKHwKrPAma9t2CZMmc/VVqFQpsEIlyPqRJkCBFWnCbD8UAhRYodBjXQ8BCizOBRLQj4BlBNY7E3/A2xN/CIlcQrU4TH77cbRs1iikdljZfwIUWP6zYsnoEqDACi//squvOnVQMWwIz74KlDIFVqDEWF5vAhRYehNnf4EQoMAKhBbLVkSAAotzgwT0I2AZgVVQUIiVazdj/tK1mL90DfYfOganw4Hq1eMrpSlLsrZt8Ox2Z2HUdQPRtHF9/eizJ1BgcRKYhQAFVngylZsnYeFiYPGSktVXouX77+XZV8EQpsAKhhrr6EmAAktP2uwrUAIUWIESY3lfBCiwOC9IQD8ClhFYpZGdOHkafa4Zh87tWwR0C6F+2NmThwAFFueCWQhQYIWWKZcCrPxDxrwFEnJyJK/GOnVUMewqrr4KhjAFVjDUWEdPAhRYetJmX4ESoMAKlBjLU2BxDpBAdAlYUmAJpE+++gn2HThKgRXd+VVl7xRYVSJiAYMQoMAKPhGbNsv45TcJ6ene4kq0yJsHg+cqalJghcaPtSNPgAIr8ozZQ/AEKLCCZ8eaJQS4AouzgQT0I2BZgZWfX4D8gkIkVq+mH032FDABCqyAkbFClAhQYAUO/uBhCT/PlLF7T3lxJVqrnqBiwGUqOrZXAm+cNTQCFFicCEYnQIFl9AzZe3wUWPbOf7iip8AKF0m2QwJVE7CswKo6dJYwAgEKLCNkgWPwhwAFlj+U3GVOn5Ywa7aEdetln5Xi4lRcdAFw3nkuxDj9b5clyxOgwOKsMDoBCiyjZ8je46PAsnf+wxU9BVa4SLIdEqiagOUFlqqq2LX3EA4dSUdefkHVRAD0Ov9sv8qxUOgEKLBCZ8gW9CFAgVU157x89wHtS393wOXjSCvZAXQ7R0Gvi1QkJKhVN8gSVRKgwKoSEQtEmQAFVpQTwO4rJUCBxQkSDgIUWOGgyDZIwD8ClhZYi5avw39e/wx7Dxzxj0ZRqQ3zJwZUnoWDJ0CBFTw71tSXAAVWxbwVBVi1RsbceRKysn1vF+zQXkHfPipqpFBchXPmUmCFkybbigQBCqxIUGWb4SJAgRUukvZuhwLL3vln9PoSsKzA2rxtD64d/TQKi5YBOB0OpCRXx/ETpyDLEhwOBwoKCotpi/fO69IObVo0xu03DNI3CzbujQLLxsk3WegUWL4Tduy4jK++kXDkqG9xdVZzBf36qqhfl+IqElOeAisSVNlmOAlQYIWTJtsKNwEKrHATtWd7FFj2zDujjg4Bywqsh557H9N/+x2tmp+Bpx4Yifatm2niql2vkRh13UCMGz1cE1hrN27HGx99j01bd+Ot5+9H985topMJm/ZKgWXTxJswbAqs8knb8reMb6dIyM8vL6/q1VXRv5+K5s14QHskpzsFViTpsu1wEKDACgdFthEpAhRYkSJrr3YpsOyVb0YbXQKWFVh9h4/DwSPp+PHT59H8zAbFlEsLLM+LYpXW7Q++gvWbd+LHic+jft206GbFRr1TYNko2SYPlQKrJIGqCvw2V8KiJY5yWRVbBPv0UdGhnQLJ96Isk88EYw2fAstY+eBoyhOgwOKsMDIBCiwjZ8c8Y6PAMk+uOFLzE7CswDq77ygkJMRj6Y9ve2VJCKxbRgzAg2Ou9Xp9w5ZdGD76KQwffAmeHHez+TNrkggosEySKA4TFFjuSZCbK+Hr7yRs31H+hsGu5yi44nKuuNLzjwsFlp602VcwBCiwgqHGOnoRoMDSi7S1+6HAsnZ+GZ2xCFhXYPW7DXXSUvHrV696ET+n/x0Y3P8Cn5LqvEF3ITU5EbO+eNlYWbLwaCiwLJxci4VGgQUcOizhi69kZJz0XlolVlpd2lfFBT18XD1osXlgtHAosIyWEY6nLAEKLM4JIxOgwDJydswzNgos8+SKIzU/AcsKrH4jHsTRYyewctYHiHGWbHMRWwubNm6ACa8+WC57os7x9JNY/esE82fWJBFQYJkkURym7Vdgrd8g4fupDrjKLLCKi1dx3TUqmjXlyqto/DGhwIoGdfYZCAEKrEBosazeBCiw9CZuzf4osKyZV0ZlTAKWFVhjH38Tvy1ahc/efBRdOrQopn/7g6/izw1bsWDK60ioFl/8ujjQvevAMZAliQJLx7lKgaUjbHYVEgG7rsASwmrWLzKWryy/ZbB2bRU3XacgNZU3DIY0uUKoTIEVAjxW1YUABZYumNlJkAQosIIEx2peBCiwOCFIQD8ClhVYv8xfiXFPvY0bhvbFI/fdWEz0wy9m4H8ffItrBvXC4//3Dzgc7v+UvfXxVLw7aZp2a+GUj57VLwM274kCy+YTwETh21FgZWVLmPyljH37y5/G3qa1gquHKohxmiiJFhwqBZYFk2qxkCiwLJZQi4VDgWWxhEYpHAqsKIFnt7YkYFmBJVZUXX3HkxhyWU+MvPay4uQeSz+JS0c8iLz8Au22wZbNGmHv/iPYseegVkYc7i4OeeejDwEKLH04s5fQCdhNYO3bJ+GLb2RkZvo670rBBT24ZTD0WRV6CxRYoTNkC5ElQIEVWb5sPTQCFFih8WNtNwEKLM4EEtCPgGUFVmUIf/x1CR598UMoive2lx7ntsO7L47zOjNLv1TYsycKLHvm3YxR20lgrVgp4+dfZChlHFW1aiquvZrnXRlp/lJgGSkbHIsvAhRYnBdGJkCBZeTsmGdsFFjmyRVHan4CthRYIm0b/96FqTMX4cDh40hOrI4LurXHgEu6F28pNH9qzREBBZY58sRRwjaHuE+ZJuPPteXPu6pXV8WN1ylITuZ5V0b680CBZaRscCwUWJwDZiNAgWW2jBlzvBRYxswLR2VNArYVWNZMp/miosAyX87sOmKrr8DKy5Xw2Zcy9uwtf95V+7Yqhg1xwVFyoatdp4Hh4qbAMlxKOKAyBLgCi1PCyAQosIycHfOMjQLLPLniSM1PgALL/Dk0dQQUWKZOn60Gb2WBdSJDwqTJEo4fL7/yauBlCs7rxvOujDrZKbCMmhmOy0OAAotzwcgEKLCMnB3zjI0Cyzy54kjNT4ACy/w5NHUEFFimTp+tBm9VgbV3r4TPv5KRk+O98iouTsUN16po0oTyysgTnQLLyNnh2AQBCizOAyMToMAycnbMMzYKLPPkiiM1PwHTC6zJU34LexZuGNo37G2yQd8EKLA4M8xCwIoCa9MmGV9PkaG4vLOQmqri5hsUpKXxvCujz08KLKNniOOjwOIcMDIBCiwjZ8c8Y6PAMk+uOFLzEzC9wGrXa2TYs7Bh/sSwt8kGKbA4B8xNwGoCa8EiB+bMK3/eVcOGKv5xvQJx4yAf4xOgwDJ+juw+Qgosu88AY8dPgWXs/OgxOqkgD/KRg8CxA5BOHEVhrysD7pYCK2BkrEACQRMwvcC6/KaHgw6+ooozPnsx7G2yQQoszgFzE7CKwBKrrb77wYH1G3wc1t5OxbCreFi7mWYqBZaZsmXPsVJg2TPvZomaAsssmQptnFLmKchCUB09AOnYQUhH9xdJq4OQTx73ajz7jRlATGxAHVJgBYSLhUkgJAKmF1ghRc/KUSfALYRRTwEH4CcBKwisym4a7HOJiot7ltlL6CcbFoseAQqs6LFnz/4RoMDyjxNLRYcABVbF3KX8XEBRAZcLUF2QXIWAokBVXJDEb8NcCqSi76EUQtLKKe7yivuzpCpQXYXu8tqHeF3R2hNfizZVrVyp9zxlRTshPvKWPyHv2w4pL8fvlvIemwBXwyZ+lxcFKbACwsXCJBASAQqskPCxcqgEKLBCJcj6ehEwu8DSbhr8XMbxdO+VVw4HMHyogjZteFi7XnMpnP1QYIWTJtuKBAEKrEhQZZvhIqAJrFgJGadykZOT75YrQqCobrkiJIwq5E2ReBGSRnwvymjCxiNlPMJGcZUIHk3yiDJqkQByf68JINGGEDcuBaqQPqJsoRBEpUWPWxSpQvSUljqiL49EEgLJI4BKiSO3cHJLoRLh5BFKpcZfLJyKXhNtq/Y+QiBvzNNwdTo/oClGgRUQLhYmgZAIUGCFhI+VQyVAgRUqQdbXi4CZBda+/RImTZaRm+strxKrq7jxegUN6tv7H6t6zaFI9EOBFQmqbDOcBCiwwkkzfG2Jc380WVIkbNyCpEiGFEuZIpkiBInnfU3cFAkU1aXJE03EaOKjqD3Pih0hX0rV9azKcffrljWaXNHaUzSp425PrNgp255b4pSs5nHXcQuiov6VwqL23NLILX9KVvq4x1f0nlhdxIcEiggoyTWg1moAtXZ9uC4eDFfTNgGxocAKCBcLk0BIBCiwQsLHyqESoMAKlSDr60XArAKropsGa9dScPNNKpKTKK/0mkOR6IcCKxJU2WY4CVBgBUZTzjgOnDoO6dQJyCfTgVPpkLTX0iFlnXav0glidY1UkB/YQFiaBCxGQKnTCEqtekDtBlBr1YP4Hmn1odSpDzUmLqRoKbBCwsfKJBAQAcsKrNfe/yYgEKULjxs9POi6rBgYAQqswHixdPQImFFgLVzswG9zyx/WflYzBSOGK4gN7IzS6MFnzxUSoMDi5DA6AQos7wxJxw/CsXMzpH07IAlRlZGuySrp5HFImSeNnk6Oz2YE1Nh4QJYAcd6A5IDqcAKyDEl2QJUdgEOGWvQ9ZCdUrZzsLi/LgFZOhuRwustrH+J92d2e9rUTksMBVXK/pzrc7Wtltf7EZ097oj+Hu7x4XdQR73m1V/S+aD8mBmqNOlDT6kY0cxRYEcXLxknAi4BlBVa7XiODTvWG+RODrsuKgRGgwAqMF0tHj4CZBJbYMTH1Jxlr/5LLATuvm4IB/RVI5b1W9OCy56AJUGAFjY4VdSJgZ4El5WTDsXMDpN1/Q9q+AY6dmyBlZ+pEnt0ESkB1xnqJF7dMcZTImiJh45EmbvnigKSJGI/McZf31HULm1Iyp6g9IXk02aOJmSLp43SWas/dtiZryrXnFkOaHCoeX9FrQuQUiR1P++7xuaWRWzAVxeTpWxNNMtS4aoEiY/kiAhRYnAokoB8BywqsUeNerpRiTm4ejhw7gYNH0rVy1RPicdVlPdHkjHq4fkgf/TJg854osGw+AUwUvlkEVkU3DQphNfhyBed04WHtJpp2VQ6VAqtKRCwQZQJ2EliOHZsg79yoCSt512bIRw9EmX7l3WvbpookjHuljFu0FK9uEVLDI1CKV7zIgBAtYlWOqCNkiHivSIwUr64pXlFTarWM1r67nraypmg1j/v7otU6UlH/nve0FTZFK3qE9NFW33hW87jFi0cCaZJGdrqFkyZnJB/jL1mxI+LnLYSGnqKmGRwFlmlSxYFagIBlBZa/uTlw6BgmfDED3/w4D7eOGIgHxnD7oL/swlGOAiscFNmGHgTMILAyTkr49LPyNw3Gxam4/loVTZtQXukxV/TsgwJLT9rsKxgCRhJY2jlQBfkQB5irhfmQ8guAgjxIheL1QqAgF1J+PlBY4C6jlRXfi4/CCsOX92yFY/3yYPCUq6NUSwCSa0JNTYOa5P6sfZ+SBlUcNB0TA0ls0fJIGs+WraKtWG7h5BY9JVuvhDRyQo3hvvGywCmwwjJtbd8IBZbtpwAB6EjA9gLLw/qZ/03C19Pm4qP//gvnndNWxxTYuysKLHvn30zRG11giZsGP/9CRnaO997AlBQVI29UkJbGw9rNNN/8HSsFlr+kWC5aBEIRWOJMKCn9CKQTRyGdOALpVAaQ7xFObhnl/ih5zS2g3OLJI6CknKxohV+uX1eDJlDOag8kpkJNSgFSPHKq6DMlk665osDSFbdlO6PAsmxqGZgBCVBgFSVFbCXsO3wc+l10LsY/c48BU2XNIVFgWTOvVozKyAKropsGGzZUcdP1ChKqUV5ZcU6KmCiwrJpZ68RVkcASK5ykY4c1MSWfOApookp8fwzS8SJpJVY+mfgRZyopTVppwkpt3h6u5u2gVqtu4oisN3QKLOvlNBoRUWBFgzr7tCsBCqxSmb/gynsQ43Ri/vfj7TofdI+bAkt35OwwSAJGFViLFjsw28dNg+3bqRh2lUs7GoSPdQlQYFk3t1aJzPMfu4MHT0De8ifkzWvg2LgS8qG9VgmxOA41KRWu5u2hntUeSrO2cDVtY7kYrRYQBZbVMhqdeCiwosOdvdqTAAVWqbxfPHQsMk5mYu2cj+w5G6IQNQVWFKCzy6AIGE1gKQow9UffNw32uUTFxT1dQcXJSuYiQIFlrnzZbbTi1r2UXX+hcN1KFG5aa4jwtZvWYmLd50E5xecYIDZO+xri65g493uijPZaHNTYGEix8aXKFL0XW6pMzdpQ6p5hiBg5CP8JUGD5z4olKyZAgcXZQQL6EaDAKmKdnZOLrgPGICkxAcumv6NfBmzeEwWWzSeAicI3ksASNw1O/kbCrl2yF0Gx2mr4UAVt2vCwdhNNrZCGSoEVEj5WDjMB+eh+ODatgSxWWG1ZAyk3J+QelNoNoNasDbVGHe1DiqumCSW3fIrzllGxsZDE67FuAeUu4xZTalxCyGNhA9YjQIFlvZxGIyIKrGhQZ592JUCBVZT58RO+w4TJ03F2u7Mw+e3H7DofdI+bAkt35OwwSAJGEVgV3TSYWF3FjdcraFCf510FmWJTVqPAMmXaTD9oWZxXdSpdO1BdPPL65XCuXgTp+KGAYlMTU6DUqg81tRbUWvUA8VmIqpp1oNSso926x4cEIkmAAiuSdO3TNgWWfXLNSKNPwLICa/7SP6ukqygKDh09gYXL/sSi5eu08g/fcz1uuvrSKuuyQHgIUGCFhyNbiTwBIwisAwclTPq8/E2DtWspuPkmFclJlFeRnwnG6oECy1j5MPNotEPVT6ZDOnncLafE1xni6+OQMsTr6drr4mbAYB+lWgKUVp2htDkHSpsuUGo3DLYp1iOBsBCgwAoLRts3QoFl+ylAADoSsKzAatdrZMAYO7dvgU/+9xBif5tIUAAAIABJREFUYpwB12WF4AhQYAXHjbX0JxBtgfXLbxKWLC1/InuLsxRce7UCsWOGj/0IUGDZL+eBRixlZbollCan3BIKQlIVfy++Ph6W7X6+xuZo3RExHbvh5Jkd4GrWNtDhszwJRJQABVZE8dqmcQos26SagRqAgO0FVkK1eDRtXA/9e3XDjcP6IU6cq8BHNwIUWLqhZkchEoiWwEo/IeHb72XsPyCVi6BHdwUD+vO8qxBTa+rqFFimTp9fg5cyT0He9AccG1cFvEUPBflw7NrsVz/hKqTUbQRXm3OhtusKV4sOqN+gptZ0RX/fh6tftkMCwRCgwAqGGuuUJUCBxTlBAvoRsKzA0g8hewqFAAVWKPRYV08C0RBYf6yWMfMXGQUF3pFKEjD4cgXndKG80nMOGLEvCiwjZiW0MYmtfPLWdZA3r4Zjwx+QD+wMrcEI1Fbjq0FNSYOaLD5qQE2pCTRoAleH7lCS3cLK83j+Y0eBFYFEsMmQCVBghYyQDQCgwOI0IAH9CFBg6ceaPfkgQIHFaWEWAnoKrMwsCVOnSdi6zfuWQcGqWjUVw4epaN6M8soscyeS46TAiiRd/doWq6TkzeL2vlVwbF2rX8dlelKTUjUZpUmo5JpQU9M0UYUUIamErKrp/ixu9vPzocDyExSLRYUABVZUsFuuUwosy6WUARmYAAWWgZNjh6FRYNkhy9aIUS+BtW27jG+nSMjJKb9l8KzmCoZepULcOMiHBAQBCizjzwMpJxtS1kn34efZmZBOZ7i/zsuFtG8bHFv+hJSdGdFA1LS6UFJqagLKI6bE59KvKalpERkDBVZEsLLRMBGgwAoTSJs3Q4Fl8wnA8HUlQIGlK252VpYABRbnhFkIRFpgiW2CP/8iY9Xq8quuYmKgnXV1LrcMmmW66DZOCizdUGsdlcioU5CyTgGZJ92fT58s+lp8fxrIFJLqFORTJ8IyQKVBU7hadoLaqpO2ZQ+yE6rDAUl8djoBhwOQHYDTCVUW3zsBpwNqTFxY+g+lEQqsUOixbqQJUGBFmrA92qfAskeeGaUxCFheYJ3KzMayVRuxe98hZGXnQlGq3nYzbvRwY2THBqOgwLJBki0SYiQFljig/evvZGRklF911aCBqt0yWCOVq64sMpXCGgYFVlhxQj52EI4Vc4GMY9oqKbekEjLqNGRxe59OT2lh5WrRCWr1JJ16Dn83FFjhZ8oWw0eAAit8LO3cEgWWnbPP2PUmYGmB9fW0uXjl3a+Qk5sfENcN8ycGVJ6FgydAgRU8O9bUl0AkBJbw6QsWO7BgoYSybl2WgV4Xq7joAhfE13xIwBcBCqwwzAtFgWP9cjjn/wDHptVhaDDwJpSGzbQVVor4aNHR1MKqbPQUWIHPB9bQjwAFln6srdwTBZaVs8vYjEbAsgJrycr1uOOfr2q8JUlCg7ppqFu7JmS5/AqHskn59PV/Gy1Plh0PBZZlU2u5wMItsE5kuFddHThQ/mdSzZruVVf163HVleUmUpgDosAKHqjY6udcPAOO+dMgZxwLviE/aqqJKVCTUqBWT4GamAy1ejKQVAPqmS1g9hVWVYVPgVUVIb4fTQIUWNGkb52+KbCsk0tGYnwClhVYYx76LxYtX4c2Lc7EK4+PQdPG9Y2fDZOPcNK3v+Clt7/EvbcOxZh/DPYrGgosvzCxkAEIhFNgbd0u48uvZRQWlg+se1cF/fsp4igbPiRQJQEKrCoRlSsg79sO55zv4fhjAaTCwFZoi+WQakKSJqFQJKOU6smanJKEpKqeCjUpGUgQrwlRlQI1ITHwQVqoBgWWhZJpwVAosCyY1CiERIEVBejs0rYELCuwLrjyHmSczMT3Hz6D1mc1tm2Cgw383sfewNzFFW+lqFMrFfO+G+/VPAVWsLRZzwwEwiWwXC7g9bccyDjpvfKqenUV1wxV0axp1ef0mYEXx6gPAQos/zk7f58Nx8If4di1udJK4rypwgsvh1qnIcTKKWgrpoScSnaLKz4BEaDACggXC+tMgAJLZ+AW7Y4Cy6KJZViGJGBZgdWpzyg4HDJW/fKBtoWQT2AEbrznP1izfis6tG4q9mCWq5xWIxlvP38/BVZgWFnaxATCJbAWLpbx21zvQ61atVAwbIiK+HhuGTTxFInK0CmwKscupx+BvPBHxCyZpR3KXtnjatERrosGwXX2hVCdMVHJpxU7pcCyYlatExMFlnVyGc1IKLCiSZ99242AZQXWxUPHIjsnFytnvm+3nIYl3oE3PoRDR9Kx+tcJfrfHFVh+o2JBExIIh8DKzJIw/g0H8gtKAHTsoODqIVx1ZcIpYYghU2CVT4OUlQnnmgWQ1i6FY+cmiLOuKnrUuGoo7NEfrosHQ6l3hiFyarVBUGBZLaPWiocCy1r5jFY0FFjRIs9+7UjAsgJr7ONv4rdFqzB90gs8/yqImX3eoLuQlJiA2V+5D8L356HA8ocSy5iVQDgE1rTpDqxaXbKiMcYJ3H+vC0lJXHll1nkR7XFTYLkzICSVY+0SOP6Y59dNgkrjlijsNRiuc3tBjYmLdhot3T8FlqXTa/rgKLBMn0JDBECBZYg0cBA2IWBZgbVs1UaMeuBl9O/VDa89dZdN0hmeMAsKXTi77yh0aNMMX737hN+NViaw5ixajfuffBO101Lx+ZuPokG9Wlq7PMTdb7wsGGUCoQqsI0clvPWuwyuK3r0U9LqIq6+inFpTd29ngaXdIrhmIeRVC+D4ey2gVP5nSY2NR+G5veC65CoojZqbOu9mGjwFlpmyZb+xUmDZL+eRiJgCKxJU2SYJ+CZgWYElwh0/4TtMmDwd55/bHjcP74+ObZsjOTGBc6EKAkePZ6DXsPtxyfmd8dbzY/3mVZHAEjJxzMOvoXpCPD5781E0K3UjJAWW33hZMMoEQhVYH010YPeektVXiYkqHhjrgsPbaUU5SnZvNgJ2E1jiHCvnn0sgi5VWW/70K11Kw2Yo7Hk5XN36Qq3GfwP4BS2MhSiwwgiTTYWdgEdgHU/Px5GtKpQCoEYb/mIp7KAt3iAFlsUTzPAMRcDSAqugoFBbhbXqr7+LoYuD3WXZ+wDlshn5c/aHhkqS3oPZvG0Pht32BDq1bY4e57bD8fRTKHS5kJqSiPatmuKSCzojLrb8Abe+BNZfG7drORAH6U8c/zDatmziFQ4Flt7ZZX/BEghFYG3eIuOLr71/7lw9xIWOHbh1MNh8sJ6bgB0Elnx4L+RNqyHv3Ajnirl+pV5Nq4vCrr3h6tYHSv0z/arDQpEhQIEVGa5sNXgCqgJkH5KQuUdC3kEZJ3cDpw8BUIH4Wiq6/NMVfOOsaUsCFFi2TDuDjhIBywqsvPwC3Dz2BazbtCNgtBvmTwy4jpUqrN+yEyPGPANV9f2f65qpSXjuodtwcY9OXmGXFVh/79iHm+97HiIXE179J87p2LIcptPZpU6zLvVutTgHnA4ZOXkuFLr4mzArzS+zxpJYLUa7kPN0ToH2j1x/H7Gr6YX/qjiWXrL66swzgPu5s9lfhCxXCYEYp4z4WAcKChXk5lvjP11SXi6UTWugrl0Odf0K4OhB/+ZAahqkrr0g9+gDNGvjXx2WijiBpAT3L7wq+vs+4gNgB7YnkHtcwsk9Kk7sVHFyt4RT+6CttKroueQFILa67bERQAAEPD/nAqjCoiRAAkESsKzA+uDzn/D6h99rWHpf0Bnnd22PurVrQhb/A63i6XX+2VUVsfz7W7bv1W5xbNywLlKSqyMvrwDbdu3HlJ8X4rvpCyBWsn3yv4e9pJRHYI29bRgu79sD19/1LDJOZmrbEHt272h5ZgyQBHwRmD1fwddTvcXCE/90onGjqn8WkSgJ2IWAsmcHCtYuR8GaZShcv8rvsKWERMSc3xux5/eBs/05ftdjQRIgAesSKMgB9q9ScPAvBUe2qCjICizW8+92okFn/h0dGDWWJgESIAF9CFhWYA0d9TiEhLnn1iG48x9X6kPTJr289fFUvDtpGrp0aInP3nykOOrSK7BmzluObTv34+6RV+GukVdVSIYrsGwyaSwQZjArsLJzgGdeBPLySwCc0xm4cbgFgDAEQxAw6wosKScLysbVUP5aDnXdCkjpR/3mqcbFQ+p8AeTz+kBq3xVwOv2uy4L6E+AKLP2Z27HH3AwJh/8EDv+l4MS2wOWTMw5IaaqiZnMZ9c4BEmoFsNTajsAZsxcBrsDihCAB/QhYVmB1GzgGWdm5WD7jXSRWr6YfURv0dDozGz2uuFuLdM3sDxHjdJ9C7RFYKUnVkZmdA5dLQa2aKZjy0bNIq5HskwzPwLLBhLFIiMGcgTVjlozlK0rOvnLIwLixLiQl8R/GFpkWUQ/DTGdgyXu3wbHhDzjWL4e8fX1A7JSUNLjadYXavjtc7btCjYkLqD4LR48Az8CKHnur95x1QEL6euD4RhnZBwOTVjHJKpKbAPVayqjfxgGkFSA7zxrbsK2edyPGxzOwjJgVjsmqBCwrsM697A7EOJ34ffo7Vs1dVOM6/4q7cfJ0Fpb+9DaEsCotsMRtg+OfuQfzlqzBF1PnaAfBf/Dyg5Dl8v+4oMCKahrZeQAEAhVY6ekSXn/bgdJHyfW+WEGvi3mmWwDYWbQKAkYWWFJWJhyb/4C8fgXkjX9APnXC73yqTieU5u2gtOsOpW1XuBp6XwDid0MsGHUCFFhRT4FlBiAOXz+1Q8bxDcCJTRLyTvgvrarVFcJKRUpTIKmJirga7l8keW4hzMjMp8CyzEzRPxAKLP2Zs0f7ErCswBK36G3duQ8rZ77v88Y8+6Y89MjFoexdB4zWbnNc8+sE7YbB0gLr7luG4K6br0R+fgGuu+tZiFsN7xs1DKNvuqJc5xRYoeeDLehDIFCB9dmXDmzdWvKP68REFQ+MdcHhXrDIhwTCQsBQAktR4Njzt1tWrV8Bx67N8DK4VUSsptVDYbtzobTrBqXV2VDjuHo6LJMkyo1QYEU5AX50Lw40zz0mQRx2npsuoTBHcf/RVQDFJbm/VgHVBQiJpH2tFH2tSFAUtbi89r54z1NGlQBRr1QddxsqVEUq157Wh3hblBF9i7aCWBjlTFBRo42Kmm1UpLYAHPG+Vz5TYPkxQVikSgIUWFUiYgESCBsBywqsiV/PwivvfoXXnroL/Xt1CxswNgT8MGsxHn3xQ1zYrQPef/mBYiRlbyEUb+zaewjX3PEkcvPytUPfz+3UygshBRZnlFkIBCKwdu2W8PGn3qbq6qEudGzPrYNmybdZxhltgSXlZcOxegnkjSvh2PQHpKzTfqNTnbFQWnSA0qEbXG27QanbyO+6LGgeAhRYxshVwWkhp9yiKue4qokqIazy0oGCTP9XMhkjGh+jkIDEM1TUbA2ktlKQ2FAF/AiLAsuwGTXVwCiwTJUuDtbkBCwrsAoKCnHjPf/BgcPH8M4L/4cObZqZPFX6DX/ylNlo2ewMnNOxlde2P3GmlZBXL741WRNSk954BJ3bt6hUYIk3f/p1KR5+/gPUqZWqnYdVIyWpuA4Fln55ZU+hEfBXYInfMr/1royjx0rOvmrUUMUdo4L4FXJoQ2ZtGxCIhsCSTp2A48/F2of891pILv/ntpBUmqxq3xVKy44QEouPtQlQYHnnV6x2Ul0SlEJAFR8uwFX02fO9UihBESuRCsUKKBWq+F772lNHglJQ9XZ08ffR8Q2yJqpEW1Z7tFVWrVXUaKUitSUgvg/0ocAKlBjL+yJAgcV5QQL6EbCswDpx8jTWbdqhiZOTp7Jwdruz0Kltc9ROS0VsbEylhG8Y2le/DBiwp3sffR1zl6zRDr9v0bQRUpMTkXEqU1tNJbjGxcbg6QdvwRWXnu81el8rsDwFxIotIb/Eqq33XhpXvO2QAsuAE4BD8knAX4G1cpWMn2aUyCvR2J13uFC/XuD/sGYqSKAqAnoJLMeB3ZDX/Q55zSI4dv9d1bCK31dj46G07qwdwO5q1w1qWl2/67KgNQhEQ2B5trqpBW4RpMmiYiHk+b5IIhW9XyyHiqWSpNURosgtmdzfa1KpqIxHQrnrlumrdLtiHNqWOGvkNGpRiFVWjcTWQKBmSwXVG/m3yqqy8VJgRS2bluqYAstS6WQwBidgWYHVrtfIoNFvmD8x6LpWqLh91358+cNcrPprC/YfOoac3DzEx8WiQb1a6HFOO1w/pC8aN6xTLtTKBFZ2Th6Gj34KO/ccxP23X43bbxik1afAssKMsUcM/gis3DwJr70uIze3ZN+C2DYotg/yIYFIEIiYwFJVOHZuhPznEjj+XAr56H6/h680aAqXdpZVd+0gdnEgOx/7EHDlFq0W0lYaAWnV4yBWHR0+ngexssgtgFR45JJLlCtaYaQWKnDlF4mgArco0lYsFUkjcR6TJo3Ea4oKpcB9RpJ7VZMo75ZMfAInIA41j6upIr4mEJcqQZIB7YhT8VlWIYvfy0jia0ASO+TF10Xfw6Fqv5jUvne4yxSX1b5W3fXE10Xtau3Joh/3e17li8q46xTVjdCPEQqswOcKa5QnQIHFWUEC+hGwrMC6/KaHg6Y447MXg67LioERoMAKjBdLR4+APwLr199kLF5asvrKIQPjxrqQlMTVV9HLnLV7DlZgSaczIOVkAjnZkPJyvCDJfy6Fc8Vsv8+zcjVpBaVVZ6h1GkJp1xVKSpq1oRs4OiFyNKlTJHw0OaStIiqRRFqZQtV9OHexJHJvSRNb2UokkxBFQiap8JZMRfXFe57VSEUCSjt9m48hCcixQLwQVGluSRWf5vlQEZequqWUDR8KLBsmPQIhU2BFACqbJIEKCFhWYDHj5iBAgWWOPHGUQFUCKyNDwvi3HO5tIkVPr4sV9L646nNKyJcEqiIgJJNz5VzgxDGvojFOGfGxDhQUKsjN97H0JD8Xjr//AnKyNGElZZ6sqiu/3nc1awely4Uo7HwR1JrlV+T61YjFCmnSqJTUcX8tzi8qWkkkJI8QRuJMo6Jy4j2xNc290kgprl9Sxy2f3KuOSraoFb/m6bPAYjAtHo6QSbLTLY1kp1i1JL6W4BBfe753wv29WNHkBORSn0VdrZ5T1t53iLZKlRW33Xq+d8ariKsBxPAXKT5nFQWWxf+w6RQeBZZOoNkNCWiLelXtclw+JBAVAhRYUcHOToMgUJXA+vpbGRs2lay+SkxU8cBYF8R/JPiQQLAE5GMH4Zg7Fc6ls8qtlAq2zWDruVp2gqtzTyidL7TNKishigpOScg7DYhb3PJPA/kn1eKvxe1teaeAwiwJXH0U7MyKQD2pRAy5BVGRBColgtzySC0lhiRIRWJIbG+TYooEU4ys/RwX73naKfleKhJQgBzj3mYnxYj+3G1p5YrFk1sy8TEWAQosY+XDrKOhwDJr5jhuMxKgwDJj1iw0ZgosCyXT4qFUJrD27ZPwwcfepmrYEBc6deDvByw+LSIWnmPTajjnTYVj3bKI9eFPw642XaCc0wuFZ18ItXrJDbL+1DVbmZwjMk5slJC+RUXeSUmTVEq+2aKI/njlGLfM8awaio2X4IiR4IKiSSEhlLQyDiF/VE34uF9TIXtkkaeckE/ia1FWK1eyasmzIsmzikn7Xmsj+gw4AvMQoMAyT66MPFIKLCNnh2OzGgEKLKtl1GTxUGCZLGE2Hm5lAuvd9x04eLjk4Pb6dVXcOZonCdt4ugQVulSQB8eSWXDOnQL56IGg2vC3klItAaiWCDW+GhAvPovvq0OtVh2olgC1XmNttZX2vVUfFTi1W0L6BiB9g4zc4yV/hs0asiaNSskfTfg4PfLHvYrIUbRCyFNOqyNe1+rKbvkkVicVCSO5qL77Nc/WNWjtuLexFa1kivVNLRq3EJo1fxy3/gQosPRnbsUeKbCsmFXGZFQClhVYi5avC5p5z+4dgq7LioERoMAKjBdLR49ARQJr9lwJixZ7r74afZsLDRtw9VX0smWunuX0I3DMnQLn4p8r3Sao1KwDV7c+QFw19+E4DgdiYmOQUD0O+aoD2eIcJKf7UB3V4YDkdEIVhiE2DogXcioBqkdamQtR2EYrtgRm/C3juJBWGyW4csIrrRyxRSuPhCTSxE7ROUbizCNHifzRVhx5ViKJMlo993lGQhJ5zkJyCyPJfc6RZ1WTRxwVSybAEW/cnzcUWGGbvmwoAgQosCIA1YZNUmDZMOkMOWoELCuw2vUaGTTUDfMnBl2XFQMjQIEVGC+Wjh4BXwLrm+8dWL/B+z/AHdoruGYoD26PXqbM07Njy5/aaittm2Alx1G6Wp2Nwj7D4Grfvehe+5IYg72F0DyUQh9pQZaEExskHFsPnNwma7fy+f1IgLO6irhk9yHYsUlAbLL4LCHW81qy+zW73uJWFUsKrKoI8f1oEqDAiiZ96/RNgWWdXDIS4xOwrMDq0PuWSukrivdvK50OB5qdWR9NzqiH/z19j/EzZ5ERUmBZJJE2CKO0wMrKkvD5VzLE2Veln9gY4L67XUhONu5qCBukytAhSgX5cC6fDVmcb3Vgd4VjVWNiUdi1N1yXXgulbqMKy4VDYIkb71RFfEjuz2L6at+7P7SvVc/7akkZl+d1Uaakrnc9d/nS73va1m7s1Np1t13cT2H4BHDWQQnpG0suV6hscohVTGntVNRsB8SmqohLAmL4ZznkP08UWCEjZAMRJECBFUG4NmqaAstGyWaoUSdgWYFVFdmCgkIcPnYCq/76GxO/nond+w7j5cfHoG/Pc6qqyvfDSIACK4ww2VRECXgE1vqtuZj4uYyMDG95lVhdxc03Kahbh/IqookwaePaNsH5P8C5ZCak7MwKo1BS0+C6+EoU9hyE7KwU5J0Aco4DeelAzjFoW96E+PFIJkmVIEOCS1HgKigSTsIXCbnkkU+iN+37IskUyAokk/L2d9jOBBU126uo1QFIbRk+ceZv/3YoR4FlhyybN0YKLPPmzkgjp8AyUjY4FqsTsK3AKp1YIbNu/+erWLtxO374+Dmc2aiu1fNumPgosAyTCg6kCgJCYG3bqWL8ewXIy/OWV7VrKbj5JhXJSZRXnEjeBBxb18Ix9wc4/1oKzTyVevLlNORI9bWPrLSOyKrTBTlSPeSmSyg4Fd6zmZiXEgJiK2CtjkJaqUhqyj+zkZ4bFFiRJsz2QyFAgRUKPdb1EKDA4lwgAf0IUGAVsd6wZReGj34KwwdfgifH3axfBmzeEwWWzSeAicLftzsOH33mgqvMIo0mTRTcOEJBbAU3cJkoRA41TASkwnw4VsyFc84UyAd2erVaICVjf8wg7IsdhFy5fph6ZDNVEYiroSKtg6KttEpsTGlVFa9wvk+BFU6abCvcBCiwwk3Unu1RYNkz74w6OgQosIq4q6qKbgPvRFqNZMz64uXoZMOGvVJg2TDpJgx5zjwJCxZ53zQowujUUcGQwQpk/47YMWHkHHIgBOSM45DnT0WMuE0w67RX1ZOO9tgbOxiHYvoF0qRuZcWNeZKYx7KqzWdJLAATn4s+IImvVXcZSdI+a/PeU9YhXi56v+g1ra72uviQAIf7fV9ta33KanF7kkMuU9Y9Lvc43O1qX4txij7E2IrG5T1mIKa6ioT6lFa6TaYyHVFgRYs8+/WHAAWWP5RYpioCFFhVEeL7JBA+AhRYpVj2uWYc0k+exppfJ4SPMFuqlAAFFieIkQm4XMD3P5S/aVCMuV9vFT0v5GFCRs6fXmOTt62Dc+5UONcu8domqCAOB2Iuw77YK5DpaB7QcOR4FXEpQJw4TLwGEJ8qIbaG+zY8IZmEuBFCJz5eRnL1GOS5FJzOKXRLICF0hN/xCCTxWfSufa9CjgloKCxMAiERoMAKCR8rR5gABVaEAdukeQosmySaYRqCAAVWURoKXS50ufR2xMY48cesDwyRHDsMggLLDlk2Z4w5OdL/s3ce4FGU+R//zuxuNptOCJAGhC4CSrEhoIhi7/2sZ9eze5a/7fQ8y+lZTj1PT8+GvXJ6dkFUQKUcCCq9hxB6IG2T7O7M/3lnsyFlk22zuzM73+HJs8nuO2/5/N4Mu5+8728w5U0ZFRVtcxHJNuCsUxUMHcqEz+aMrD691rYJzpuhiSt54+o2ldbLZdiQdiIq7UfBJ2d02qDNqaLbUCGoVE1QOfMBZ44KZ/fwJZMedyHUhwhrIYHgBCiwODOMTIACy8jRMU/fKLDMEyv21PwEKLCaY/jfr37A/z34PAb2K8FHLz9g/siaZAQUWCYJlMW6WbVLwstTOt5pMMMFnH+uDyXF3I5ksSnRMly5eidsM/4Du9gmWLu75XkVNmxzjEe542RU2Ud2icfVU0HRWKDnfgrkGHOnUWBZdSaaZ9wUWOaJlRV7SoFlxajrP2YKLP2ZskYS6IxAygqsendDyKj7fAq2bKvCdz8twnNTPoY456Kzj8HNV54V8lwW0IcABZY+HFmLfgQ2lEt47S0ZjQ3t7jTYHbjxKgd8NjdU+iv9gJukJtua32AT2wQXzgKUPVtHm6QClKedgArHcRB3Fez0kID8YQqKDwZyBui3eo8CyyQTyMLdpMCycPBNMHQKLBMEyQRdpMAyQZDYxZQhkLICa9jE30ccJJHA/cMX/4KC/NyIz+UJ0RGgwIqOG8/Sn4BYdfX1dBm//tZWXImWSkpU3HJ1GrIygcqdFFj60zdmjZLXA9v8b2GfMRXyhpVtOrnTvh/KHSdim31cc/bz4GNwZKnodYB/xZUjR3/zSYFlzLnDXu0hQIHF2WBkAhRYRo6OefpGgWWeWLGn5idAgSXy2soSxu0/HHdcdz76lPQ0f1RNNAIKLBMFK0W7WlsrYdoMCQsWBr+V4LChCs46Q0FRvktLnE2BlaITodWwpJpdsIttgjM/abNN0CtlodJxjCau6m2lXYLI7qOicJyKHiMULal6vA4KrHiRZb16EaDA0osk64kHAQqseFC1Xp0UWNaLOUecPAIpK7DmLlwWkqr4MJqZkY6+pYXaI4/EE6DASjwPsw3PAAAgAElEQVRztugnIJK0fzdTwpx5MsTdBoMd48b6cNRk/6oZCqzUnzmSuw72D5+HY9ZnbQZbIw9EedqpqHRMgio5OwUh2YEeIxUUT1CRUaj/aqtgDVNgpf68NPsIKbDMHsHU7j8FVmrHN1Gjo8BKFGm2QwJAygosBtccBCiwzBGnVOplUxMw6wcJs3+0weMJPrK8PFUTV2L1VeCgwEqlWdBxLPYFM2F/5x8QSdrFoSJNE1blaSehxrZXl4N35qsoGqui1/4qbK7EiKtAhyiwUntepsLoKLBSIYqpOwYKrNSNbSJHRoGVSNpsy+oEKLCsPgOSPH4KrCQHwELNi1VWc+fL+O57CfXujnmuBIqsLBUTD1ExZrQCW7sdhRRYKTpZdu+A8/XHYft1rjbARqkn1jnPxCbHUfBJWV0OOm+IguLxQN5g/ZKyR0qZAitSYiyfaAIUWIkmzvYiIUCBFQktlu2MAAUW5wYJJI5ASggscTfBT6f/iGMPPwh2WxyTjSQuLpZpiQLLMqFO2kAVBVi4SMaM7yRUVwcXV850FYccDBx0kA8Oe/CuUmAlLYRxa9j+/X/hmPoCpAY3FDiwPu1srHGe2+U2QVuGil77KSg6GHB2S+xqq2AgKLDiNj1YsU4EKLB0Aslq4kKAAisuWC1XKQWW5ULOASeRQEoIrBk/LMQ1dzyJAX2L8Z+XH9CSskd6PPrcO5izYCn+eMWZOGjM3pGezvJREqDAihIcTwtJYN06GctXqvh5kYy6+uDXBOG7Dx7rw/ixgCvE1i8KrJDITVNA2roRaa88DNtaf67Enfb9sTT9erjlkk7HkFGkoni8quW4ErmujHJQYBklEuxHZwQosDg3jEyAAsvI0TFP3yiwzBMr9tT8BFJCYP35sVfw7n+/xbGHH4i/3X1VVFF5bsrHePqlD3HhGUfh1qt/F1UdPClyAhRYkTPjGcEJ1NZJWLFKworlwOq1EhobOxfZsgyMHqVg0kQVWZnhraKhwDL/zJO8Hti/fBv2L96E5PVq2wWXua7BNvuE4IOzAQUjxGorFdl9w5sniaZEgZVo4mwvUgIUWJESY/lEEqDASiTt1G2LAit1Y8uRGY9ASgis0y+7B0tXrsfDd16B4yePjYryD/N/xWU3P4oRQ/vj7Wf/FFUdPClyAhRYkTPjGXsIlJdLWLESWLlaxqbK8FZe7jNcwaTDVORHuP2LAsvcM09es1RbdSVvq9AGssZ5IdY4f9/poArHKuh9hApHljHFVaDjFFjmnpdW6D0FlhWibN4xUmCZN3ZG6jkFlpGiwb6kOoGUEFgHn3A1dtfU4eNXH9S2EUZzrN1QieMvuB3FhQX4+u1Ho6mC50RBgAIrCmgWPsXtlrBytYTlK4BVqyWIn8M9Bg5QtDsL9uoZnZCgwAqXtLHKifxWIs+VyHcljh22/bDMdUOn2wUzS1QMONWHrFJjjaOz3lBgmSNOVu4lBZaVo2/8sVNgGT9GZughBZYZosQ+pgqBlBBY+xx+MUQi9x8+fga5OZlRxWZ3dR0OPvFqZGakY+5nz0VVB0+KnAAFVuTMrHjGmrUy5swHli5td2vAEDCKi1UM6Kdg76FASXF04irQBAWWuWaetKMSjvnfQ54xFfLuHSG3CzoyVfQ9VkXPMQoQvhdNOhQKrKSHgB0IdR3u7tJKdPb/PQGSQDIJUGAlk37qtE2BlTqx5EiMTyAlBNbIyZfC4/Hiuw+fREF+blTUd+2uxbiTrtHuYrho+otR1cGTIidAgRU5M6uc0dgkYdEiCXPmAdu2hyeu8vNV9C9TMWggtEdxd0G9DgosvUjGrx65eids87+FPHc6bOtXaA1pdxd0no01acHvLijJgNgu2OcoFTanfvMlfqNsWzMFVqJIs51oCXAFVrTkeF4iCFBgJYJy6rdBgZX6MeYIjUMgJQTWYaffgK3bd+Gdf92D4UP6RUV35dqNOPmiu9C9Ww6+n/pUVHXwpMgJUGBFzizVz9i+Q8ZPc4CfF0toaup6KYy4c6AQVQMHAAMGqMjLjZ+AoMAy5syT3HWwL/ge8rxvIDL418ulcEslcNuK4IUTm+2T4bYF31qeM0DBgJMBV0/FmIMLo1cUWGFAYpGkEqDASip+Nh6CAAUWp4geBCiw9KDIOkggPAIpIbAuv+VRzJ73K268/Axces5x4Y28Xak3p07HA0++hmFDyvDuv+6Nqg6eFDkBCqzImaXqGb8tkTBnvoR167pebSVyWO0zHOjfT0FJSfyEVXvOFFgGmHkq4KmR0LDFC88vq+FethkNOyS4UahJKo8U3grctDwV/Y9XkT/CvOIqEA0KLAPMS3ahSwIUWJwgRiZAgWXk6JinbxRY5okVe2p+AikhsF559wv87Z9vo6hnPj57/WGkpTkiioyiqDjt0ruxYs1G/P6so3HLVWdHdD4LR0+AAit6dqlwZm2thHkLZMybD4jvOztkGRgyWMFBBwD9ypIjHSiwEjfj3NtkNO4E3DuABvG1HWjYKb6XoPpiS1DV+3AfSiepkOyJG088W6LAiidd1q0HAQosPSiyjngRoMCKF1lr1UuBZa14c7TJJZASAmvnrhocceZNaGzy4IzjJ+Lemzu/NXow3M+//l88+e8PtJdi2YaY3FCas3UKLHPGLdZer98g4ae5MpYuk6B04aOyMlWMGaXggP2B7OzErbYKNj4KrFijvud8X4PkF1NCSm2X4d6hapKqcYeCxho7EIdQ5w9T0O8EFc5ucahcPzQR10SBFTEynpBgAkYWWI3wQVVV7ZLj/xL/JO05cfh/bn5NlJPaPoeWcwPlVPHUnrqay4sn9tTfXIcqtXlOe1aUk9r1Rzt3z3Mt5Vqea+5Xq3L+MwBVlbCvszsyUsXYx2HuUmDFAaoFq6TAsmDQOeSkEUgJgSXoPTvlI/zjpakayJOOGoe7bjgfGa70LsF6fT48++pHeG7Kx1q5SeNH4+n7r0taMKzYMAWWdaLe5AEWLZbx0zwJ27Z2vYqmd6mKAw9QMHyoCtlmDEYUWJHFoWmX5BdUOyW4t6to2CGjocq/msrnjm0VVVc9saWrSM8H0rurSC9Q4cqXkFGsIqs0tcRVgAEFVmTzkqUTTyAZAus3z058WLMa/6lbi82++sQP2kAtflNyEoY4uhmoR8bqCgWWseJh1t5QYJk1cuy3GQmkjMASMuqaO57EzDmLtTjk5WZpq7HGHzACQwb0RnZWhvZ8vbsBq9ZWYM7CpXjvv9+iYvN27fnexT3x1rN3o1tuthnjaNo+U2CZNnRhd1wkZZ8zF/h5kQRxZ8HODocdGDFCwdgDVYg8V0Y7KLCCR8RXL2HnCgm1GwC3WEUltv5tC++ukdHG2KlsgctRBWcPG9IH94Kzd6YmrVwFgBBYVjoosKwUbXOONVECa5O3Dh/WrcEHtauwwrPbnLDi0OvpxSdhrzQKrM7QUmDFYdJZsEoKLAsGnUNOGoGUEViCYFOTB/c9MQVTP5/ZAajN5v9A5fN13K+0794D8Ng9f0BRr+5JC4RVG6bASs3Ii22By5eL1VbA2hBJ2fO7qThwfxWjRqlIdxpXPlBg7ZmrdZskVC2TUbUUqCnX9sjoeshqA1xKJTKUCqQrm5ApbYMzz4P0HnY4y3Kh7DcBSs9SXds0a2UUWGaNnHX6HU+BVaN48HH9WnxQsxpzG7fofSlKiSBNKz4RQ9PyU2Is8RgEBVY8qFqvTgos68WcI04egZQSWAGMP/1vCV548xPMWbC0JY9BMMQD+5Xg/NOOxMnHjIfdZpB9SsmbC0lpmQIrKdjj1mhtnYT/NSdlr67pfLWVJAGDBvqTsg/or0D8bPTDygJL5KzatVJC1XKgaokET13sAXOoO+HyVSJD3YQMXwVcaiXSM+uR3sMGR1EOlKI+UHv2hlLYG2q3HjDFJEnCJKbASgJ0NhkRgXgIrC/qN+DtmhX42r0xor50VtgJG8RVTZIk/2OrL3Ht8f/c+rW2z4l695zb6jUpUJcESRP9knYp61Bfq+eaSwVvUyvnr7+lXKvnJLW57ebnRJm/9xiPPnbuLugs9hRYuvwKWb4SCizLTwECSCCBlBRYAX5Vu2uw8JeVWLdxM6pr6iHLEnKyMlHYMx/7Dhuo3bWQR3IJUGAll79erVftkvDVNBm/LelabLhcKkaPVHDAAUC3XJ2X7eg1mE7qsZrAcm+RsFOssloGVK+XAF9kgCXVA5eyBelCUCniqxIuZZP2JVZWoWcP+PY7FGovIaqKoZT0g+pwRtYIS4MCi5PA6AT0Elj/a9yK12uW49O69ahTvSGHvU9ad5yU1R8nZ/ZDoc2fRoIHCbQnQIHFOaEHAQosPSiyDhIIj0BKC6zwELBUMglQYCWTfmxt19RI+HmRjJ8Xq9i2veucR8VFIim7in2GKzDrYkezCqzaDRK8bgm+JkARXx7A5xGPElRv8FtAbv1ZRuOO8FdZ2RwedJcXo2DXt3ApFXApm5GuVnaYYEJQ+fY7BL7xx8HXf1hsE5BnawQosDgRjE4gVoG1vGkX7q+ah2/cFSGH2s+eg1My++G07AEos+eELM8CJECBxTmgBwEKLD0osg4SCI8ABVZ4nFgqTgQosOIENk7ViiTsv/0m4edfgHUhcluJLuy7j4ID91NRmgJ3gDOLwBIrp7TtfiuA6jWyJqzicWQVuJEvL0Cvig+Q614EILgME20rpQPgnXAcfAccATXdFY/uWLZOCizLht40A49WYImk7H/btQDv1q7ucqw95HSckjUAJ2f1w75pBabhwo4agwAFljHiYPZeUGCZPYLsv5kIUGCZKVop2FcKLOMHVdz3YNVqWbuL4LLlEnwhtpLl5arYfwyw3xgFYstgqhxGFVieWgm7VklabqpdKwFvffgrpyKJjbi7X15/D3rYFqLH6tfh3Pxrl6erThe8+0+Cb8KxUPoMjqQplo2AAAVWBLBYNCkEIhVYu5Um/H3XIrxSvRRNnYjxHNmB4zL64pSsgRib3gtyS1aopAyRjZqYAAWWiYNnoK5TYBkoGOxKyhOgwEr5EBt7gBRYxo1PRYWERb9I+HmxhIaG0FJkyGAFo/YF9h7a+Uoc4442dM+MIrDEiiqxskokVBfiSqy4iteRWayi2xAfCtKXIW/Fe7D98gMkb9e5Z3z9hsI3/lj49psINS09Xl1jvc0EKLA4FYxOIFyB1Qgfnq9egmd2LYa4u2Cw49iMvjgjayCOzOht9GGzfyYhQIFlkkAZvJsUWAYPELuXUgQosFIqnOYbDAWW8WL201wZP/4kQSRmD3WUlSkYOQIYNlSFMz11VlsFG3cwgSXySqleSdumJ3IK+7z+R0U8+iTtUbym+FSonuaffc3naGUjk33u7TK2Lwodl9b9lx1AVm8FNidgc0iQ01TIaYBsV2FzyhCvyw4VtubnZIeklc10boVr4Sew/fQV5KptXU4FNSML3gOOgO+Q46EU9Q01bfi6jgQosHSEyariQiCUwPJBxbu1q/Bo1UJs9tUH7cOotALc1/1AjHb2iEsfWal1CVBgWTf2eo6cAktPmqyLBLomQIHFGZJUAhRYScXfpvHaOgnvfiCFzG1VUqxinxEqRgxTkZWVOtLK1yCheq3YjgfUbfInPd8jowAIIeUBvM2yyjiR69iTnJ61yC2uRn5JLXIKayLrqs8H+5dvwrZc5LXq+lAGDId3/LHwHjQ5VFG+HicCFFhxAstqdSPQlcD6on4D/lo1Hys91UHb62/PwR35Y3BMBsW4bgFhRW0IUGBxQuhBgAJLD4qsgwTCI0CBFR4nlooTAQqsOIGNsNqVq2R8MFVCvTv46p78fFXbHjhiuIL8bqkhrYSw2r1KQvU6YPdqSZNWZj0yfBvR3TsX+b4FyPcthE0NvopBj/GpWbnwjj0SvkNOgFJQpEeVrCMGAhRYMcDjqXEnUOVrRHqujF2+Rqyrqmtpr1ppxFO7FuPnpu1B+9BdduKGbiNxcfbQuPeRDVibAAWWteOv1+gpsPQiyXpIIDQBCqzQjFgijgQosOIIN8yqP/9Sxo9z5A6lc3PFKisFw4cBxUXml1YBYbV7rcghZW5h5VB3o5t3Abp7F6DAOxdOdWuY0Y6+mG/ISG2LoHf0odFXwjN1J0CBpTtSVthMQIGK3b4mVKtNEInVq8WXrwm7VfF9o/81Zc9rIm/VbqUR1YpHe71WLGGN8HBJdlyWPRRXd9sXWZI9wrNZnAQiJ0CBFTkzntGRAAUWZwUJJI4ABVbiWLOlIAQosJI3LbbvkPHOexK2bO248mjUvgpOOE6B3eSfH3Ytl7FzOVCzNj7CSny+ErmktC/VA9nnhuyth9xUA5vSAAke2FQPJDTCpnohoQk2NEFSxaMHMryQtecDX76W54DA9+K2j96W5+3qbmQrqxIycZTc7vCNPQq+CcdBye+ZkDbZSGQEKLAi42W10tuVBk0maXLJ50G1KgSTkE4e1PoaUaUJJ7+EqlO8qFIatO9F+fooBFQsfH+XNQi3dhuNnjZXLNXwXBKIiAAFVkS4WLgTAhRYnBokkDgCFFiJY82WKLAMMwf+t1DGZ5/L8LT7A7nDDpxysg/D9zbniqumXRJ2LJFQtVRsC5ShCvcTweHIVpHbH8gdoCKjUIgpIaj8X70K0mFPA7bWNGiJ0AOHvH4FnH+/GVKDO4KW/EWVPoOgpmdAuwO8JAOS9g1U8b0sQfyD7F8dp4rH5tdbyoqfxZfsP8//6C+naq/5v5e0MjKgNtcTKNt8vigribLi0NqWoZb0h3f0hIjHxBMSS4ACK7G8E9maSG7uF0yNqPaJ1U1iNVSzjBJCytugrY5qWQXVLKj8q6U8cCdYQEXLZpKrBH/KPwCDHLnRVsHzSCBqAhRYUaPjia0IUGBxOpBA4ghQYCWONVsKQoArsBI7LRobJHz4kYSlyztuGezVU8XvzjJfjqvqNTKqlqnYuVSCe2vHcXVF2J6harIqbyCQ0x9w9ez8roDB7kIobViJ9CeEvAqdc0p1uqD0Hwpl4D4Qyc/F96ojLbETgK2lHAEKLHOGVCQvX9y4HTs1OSVWQDWiWvVvvfNvzfOgEREaeIOi6Gl3Ic+WhgzVgVybAzmSEzlyGnJlBw7L6I2D0wsN2nN2ywoEKLCsEOX4j5ECK/6M2QIJBAhQYHEuJJUABVbi8G/cKOHt92VUV3fcMnjg/gqOOVKBbEtcf6JtyVsvVlhJmrCqWgkoDeEnXxfCKqe/kFZA3gAVrl7hrzRrL7BCySux/U4TVYOG+x9L+respop27DyPBNoToMAyx5wQ2/Gmu8vxae16THdvTPj2vGgppcOGHJtfNuXITuRIaci1pWkCKlt2IE9OR454TXvOiVypuZz2swNO2NDVXQij7RfPIwG9CFBg6UXS2vVQYFk7/hx9YglQYCWWN1trR4ACK/5TQlWB72bZMONbCeL71kd6uorTT1ExeFDnK4/i38PgLTRsl9C4S0LjbqBptwTVq6C2QkLVsshWWeUMUJC/F5A3SEVGDMnoWwssaf1KOP9+CyT3nrtqiVF4D5oM3977Qe03lHfoS9bEsVi7FFjGDbjII/W5ez0+r12Pr9zlSemoSIouRFKunOZf+WRr/l5OQzfZiUyxEqpZNonXtXJilZTsRIGcrkufKbB0wchK4kSAAitOYC1WLQWWxQLO4SaVAAVWUvGzcQqs+M6B2loJb78nY0N5x1VKpSUqzjlLQVZW+KuQ9Oqt4gHcmyU0CEG1C2iogvboqZbQuBPw1IW/qqp9n9JyVeQNVpE/VEgrBbJOu/QCAmvzz4vhfLzjtkHPpFPgOeMPeiFiPSQQFgEKrLAwJayQyD/1ef0GfFK7FrMaK+FRo//jgLgKZmoCSmy5E+LJ/+jffufUVkD55ZNY+STEk39llF9W+cWUrCXYS+5BgZVc/my9awIUWJwhehCgwNKDIusggfAIUGCFx4ml4kSAAitOYAGsWCnj/akSGtptsRN5uyeM82HSRDWQHzxunWjYIcG9TULDdqB+K+DeJr4keGr0/VCVU6ai215At6GKlnw9HocQWL61y1Fz77Udcl5RXsWDOOsMhwAFVjiUui7ToHrRpCpohIImxYcm+NCkiJ/933sUFY3worHlNVV7vlH1oUn7UlDla8CvTTswq2FzWB3KkOw4zFWC/dJ7+gVU83a8LNnuF1CyE3l62fewehS/QhRY8WPLmmMnQIEVO0PWgJat0mRBAiQQfwIUWPFnzBa6IECBpf/08HqBz76UMf9/HbfaZWWqOOM0Ff3Kol8VEKzHYrtf9ToJ9dtUNGyV4N6OiBOqR0LCkSmElYpuQ1XkDQJs6fGRVq371HPXBtTedx3Qbtsg5VUkkWNZvQmYTWCJFUmaKGqRP0IEKc3SyC+MGhW/IBIySSvb/L3/Nf/PjT4vmrR6FL9Iai2dWoklv2Rqbg/NZVWftjJK1O2NYYVUpLEstmXiyIzeODKjD8alF8IeuPNnpBWZrDwFlskCZrHuUmBZLOBxGi5XYMUJLKslgSAEKLA4LZJKgAJLX/zbtkp48z0JO3Z0lFdlZQrOPkNFhks/2SO2+q3/QsLWuZHlpQo1akeWCkcW4MhRkZYNpInHHAlp2SrS84HMEv3GEKov4nWRsN3191sor8KBxTIJJRBKYNWpHm01kSZ9NMnTWg75Vxpp8kdtXlHUsgpJyB6/+PEqPrhVb8vPQv74VyAFxJC/XrFKKbCCqUVCNcukWtWbUC5GaWy4Ix9HZ/XFZFdvDE/LN0q3EtoPCqyE4mZjERKgwIoQGIsHJUCBxYlBAokjQIGVONZsKQgBCiz9psXceTI+/0qGr92d12UZOHyiivHjfBDbB/U6Nn0vo3yaBF9j5JWmFyhw9QKySiQ4NTkFCGklZJWQVkY6pIq1SH/0ho7bBiccD8851xupq+xLkgmE2orWIpKat6J5VLXVNjT/SiGxKqhR8W9pa5FKgVVE2gqkwGojv4jyiFVEkoIGxYcGn7dZUvkFk77rLJMM1yTNOyQZ45yFOCqzL47O6IOeNpdJeh6/blJgxY8ta46dAAVW7AxZA7cQcg6QQCIJUGAlkjbb6kCAAiv2SeF2S1quq5WrOq6CysnxJ2ovjuHue+17uPM3GWs/ldC4I7S4cmSryCz03/0vs1DSHjN6qZBssY87ETVo8urxP0Kqr2nTnIfyKhH4Dd/GnMbNmFFXgRnuCvzq2Wn4/rKDnRMQydLTJBlpkg1O2JAmy0gTj+JnSTz6XxOCqvXrgddETqshzm6Y5CqF+J7HHgIUWJwNRiZAgWXk6Jinb1yBZZ5YsafmJ0CBZf4YmnoEFFixhW99uYR33pMh7jbY/hg0UMGZp6pw6pQfqn6zhDUfSaheE3y7oJBVIi9VZhGQKYRVcWJyU8VGsPOzO5NX3kOOR9PvuPIqXtyNXO9mX70mq76p34iZDZtQI26nySMiAnZImggSQsgBGU7Z1iyKZL8oaiWPWl6TJe15vywSZWQ4bfYgoklIJr9o0sq3klB+ERX89YgGwMIRE6DAihgZT0ggAQqsBMJO4aYosFI4uBya4QhQYBkuJNbqEAVWdPFWFGDGtxK+n22D2m7HnU0Gjj5KwYH767OByFsvYd3nErbOk4Egu/vEaqriCT70PlxFitw0C53Jq7TJJ2P3aVd3YB5dFHmW0QmIXE9zGrdgRv1GfOPeiBWe3Ubvcpv+CdXsaBZC2qqhlpVEzbKoWQg50Sx9ml/3i549Mkmc65RbrVBqea1ZLAUkVLMwarOCSRYrmvziKJ0rk0w1f/TqLAWWXiRZTzwIUGDFg6r16qTAsl7MOeLkEaDASh57tgyAAivyabB7t4R33pexsaLjqqtueSrOO1tBj5465JHyAZtm27BhOqA0BN8uWLCPir7HKnB206G9yFHE5Yyu5FXGZTejcqebAisu5I1RaZWvEf+pW6OttJrtrkQD2iWVC9HNrraiCYHjkPasQGrZmtayVU2GS7LDLoRQYMWQkD+aIGolnVpJqRynAwWZ6fB5gEa3r1lS2ZBFWWSMCcVetNxevrP/74mIBJJJgAIrmfRTp20KrNSJJUdifAIUWMaPUUr3kAIrsvAuXSbjw48kNAZJnL7vPgpOPE6BwxFZncFKh8pzldVbRb8TfcjuE3tbRqpB3roRzqduh7Rjc5tueQ89Ed3/cKuWBJ8Cy0gR068vYrXVC9VL8NTuRWFvDcyW7DjYVYRDXSU4xFWMfvYc/ToUZk2h7kIYZjUsRgJxI8AVWHFDy4p1IECBpQNEVtEi6omCBEgg/gQosOLPmC10QYACK7zp0dAg4btZwOwfOmY/t9uBk45XIARWrEf9ZmDNf2yoXht8xVVanoqyYxQUjEydFVcBZvbvPkba2093QCjkVdPZ16Io30WBFesEM+j5H9SuwUNV81Hpqw/Zw5FpBZjoKsYhGSU40NkrZPl4F6DAijdh1h8rAQqsWAny/HgSoMCKJ13r1M0VWNaJNUeafAIUWMmPgaV7QIHVdfgbGiX8NEfG7B8RdNVVjx4qzj1bQX6MW/hC5bkSua1KD1NRcogPKbczqaYKzlcegW3J/A7BaH23QQqs1LtULWjchtt2/IglTZ3fQbC3PQuHpBdjoqsEE1zFyJZ1WOKoI0oKLB1hsqq4EKDAigtWVqoTAQosnUBavBoKLItPAA4/oQQosBKKm421J0CBFXxONDUBP861YfYPgFh9Few4YH8FxxypwNZxUVb4Ey1UnisJ6DlGQd9jVDiyUm/VlW3xj0h77TFItR2Tc3tOuBCeY89rYUmBFf60MnrJcl8t7tsxD5/Vrw/a1RJ7Jq7IHYZD00sx0JH4bYGR8KPAioQWyyaDAAVWMqizzXAJUGCFS4rluiJAgcX5QQKJI0CBlTjWbCkIAQqstlA8HmDufBu+nwW43cHFVYZLxSknqRgyOLYtg6HyXOX08+e5yixOvakrNTXA/t6zcMz6rMPglNzuaJFIhAkAACAASURBVLryz1DKhrR5jQLL/PNgt9KEx6oW4tXa5fCqHX9/RE6r6/JG4tLcoUhDLGY4cawosBLHmi1FR4ACKzpuPCsxBCiwEsM51VuhwEr1CHN8RiJAgWWkaFiwLxRY/qB7vMDceTbMnAXUdyKusjJVjDtYhVh55bBHP1lC5blK766i7DgV+cNiE2TR9zC+Z0rlq+B8/s+Qt7dN1C5a9Y4ch6YLbgFcmR06QYEV37jEs3Yhq16qWYq/71oEIbHaHzZIODtrEP4vfwzyZWc8u6J73RRYuiNlhToToMDSGSir05UABZauOC1bGQWWZUPPgSeBAAVWEqCzyT0ErC6wfD4hrmTMnC2hti74iqusLBUTxqnYf4wCkbA92iNUniubS0WfI1QUjlUgmWPxSWQoFB8cX7wFx6evA4qvzbmq0wXPWdfCO3Zyp3VSYEWG2yilP69fr20X3OCrDdqlg9N74f78sRiSlmeULkfUDwqsiHCxcBIIUGAlATqbDJsABVbYqFiwCwIUWJweJJA4AhRYiWPNloIQsKLA8nqBjRUSli6XsPgXCXWdiKvsbBXjD1Yx9sAYV0KFyHMlyUDhgQp6H6nCnpF6ea7EtJO2VSLtxfthW7+iwyxUSgeg8fJ7oPYo6vJ3lAIrOJ5qpQkzGzZhWWMVGuGDV1XhURV4obQ8ihVQHlVt9ZzP/5ooC/G4p2ygnHhOe157XUW96tX1Glpmz8Y9+QfgyIzeutab6MoosBJNnO1FSoACK1JiLJ9IAhRYiaSdum1RYKVubDky4xGgwDJeTCzVIysIrLp6CRvWS1hXDmwol1BZKUHpwknl5vpXXO03SoEc40qoUHmu8oYo6H+iivSCFBVX7nrYZ38K+yevQWp0d/jdajrqLHhPvjSs3zkKLD8mIanmNWzF9+4KzHJXYlHTjrD4GaVQrpyGP3YbiUuy9zZKl2LqBwVWTPh4cgIIUGAlADKbiJoABVbU6HhiKwIUWJwOJJA4AhRYiWPNloIQSEWBtXWrpImq9eVA+UYJO3cG3xrYHkdOjopJh6oYPSrGFVcAQuW5cvUSCdoV5A1MPXElV66H7be5kH+ZA9uKRUF/79TsPDRddhd8g/YN+/fSygLr58btmN1Qie/cFZjd0DF3WNgQk1zw0uy9cWO3kciT05LcE/2ap8DSjyVrig8BCqz4cGWt+hCgwNKHo9VrocCy+gzg+BNJgAIrkbTZVgcCZhdYYjtgxSYJGzbIWLdB1YRVQ0N4wioAo1ueikMPVTFyhAJZjm2ShMpz5chU0ecoFb0OUIDIuhlbx+J8tm3JfNh++Qm2X+ZA2tG1YPHtezCazr8FamZWRL2yksBa5anG7IZNmOnehFnuTajRefteROA7KZwOGxySBLskww5Ze3Q0P9olqeV7B2wotGfgtvxR6G/P1aNpQ9VBgWWocLAzQQhQYHFaGJkABZaRo2OevlFgmSdW7Kn5CVBgmT+Gph6B2QSW2A64fr1YYeXfDihyWUVzFBep6FemoF+ZhMGDYl9xhVB5rmxA0Xgfeh8O2JzmX3Ul79oO2+KfIP/yE+TlP0PyNIYMg+pwwnvmVfCMPy5k2WAFUllg7VAa8L17E2bWb8J3DZuw2VcfNqMecjrGu4rQz54Dh2xrlkl+sRQQSv5HCY5m2eR/FAKq+flW4sn/vKTV4389UI8ElxTDXQzCHpG5ClJgmSteVuwtBZYVo26eMVNgmSdWRu4pBZaRo8O+pRoBCqxUi6jJxmNkgaWqwPZtEtZvlLB+A7Bhg4SqXZELK5sMlJao6NtXQVlfCX37KHA49AtUqDxX3UeoKDtOgbObOcWVVLMLslhV1dQIuWI15FmfwbZpfUQAfYP3hefcG6D0LI3ovNaFU0lgiYToPzZsxvf1m7QE7Ms9u8LmkinZcVB6IQ7JKMYh6cUY7DDn3fvCHrDBC1JgGTxA7B4osDgJjEyAAsvI0TFP3yiwzBMr9tT8BCiwzB9DU4/AiAJrwUIZvy0FNmyU0BjhdkARDCGnepcq6NdPQt/eQlrFRxyFynOVWaKi/8k+ZPcx9hSRPE2Qtm+GtKPS/7htE+Ttzd/v2Bw0+XqoESmFvaEMGQ3f0NFQhoyCmu4KdUrI180ssMTd/BY0bdNWWM1qqMSCpu3aHf7COeyQMDKtBya4ijAhoxhj0npoq6J4GIMABZYx4sBedE6AAouzw8gEKLCMHB3z9I0CyzyxYk/NT4ACy/wxNPUIjCSwamslvD9Vwpq1kX04d7lU9OmtoqwvNFlVVKjGnMuqq6CGynOVlqui7GgVBSIZfOQLxuIyn+SdW7XcVNrXtk2QNEG1BdL2TZCrq2JuU8nJh7L3fvDtPQbqkJEQP+t9mE1gLfNUaTmsZror8VPDZtRFkMdqoCMHh6SXYIKrGONchciUdFwyqHdgLF4fBZbFJ4AJhk+BZYIgWbiLFFgWDr6OQ6fA0hEmqyKBEAQosDhFkkrAKAJryVIZUz+W0NgY2vhkZqoo66OirMwvrHr1jM8Kqw6BCZHnSnYApYepKDnUh0SnCpLc9doKKnlbpX8l1bZKYHultvVPE1U+j67zTM3Igm/wSCh7jYKy12govaLfGhhux4wusCp9dfi+oRIz6yswy12JbUpDuENDII/Voa5STHQVo4ct9hVrYTfOgjERoMCKCR9PTgABCqwEQGYTUROgwIoaHU9sRYACi9OBBBJHgAIrcazZUhACyRZYTU3AJ5/L+HlR56uuuuWq6FvWvMKqj4r8/AQJq1a8PPXAkn/bUBcsabwE9BitoOwYFY7s+PVN3lahySh5+yaoOzZD3loJaedmyGJFVX1tXOa3klcAdC+E0qMIao8SqN17QSnsA6Xv4Li011WlRhNY1UoTZjdU+pOvuyux1lsdNpMMLY9VLxziEnmsSjAkjXmswoZnsIIUWAYLCLvTgQAFFieFkQlQYBk5OubpGwWWeWLFnpqfAAWW+WNo6hEkU2CtL5fwwYcydu3uuOqqbx8VBx6goKwPkJUVPykUTvAaqyT89m8ZDds79jO7n4oBJynIKIq9j1Ltbr+MEtv7dmxp2eqnraKq2gYo4eVMCmdMgTKqKxNqQRGUgkLtcc9XIdT8XlDtxtm6ZgSBJfJXfeeuwGx3JRY17YgENcY4e2B8epGWfP0gZ2FE57KwcQlQYBk3NuyZnwAFFmeCkQlQYBk5OubpGwWWeWLFnpqfAAWW+WNo6hEkQ2ApPmDatxJm/2CDuNNg60O2AUccpmLcWB+k0LsJ486+bhPw279t8Na17YwzX0W/41TkDw9fKkmexuZk6WJbXyWkrWKLX2Cr35aokqWHAqDa7VC79YJa0AtKQTEgJFWPQijdi6CKr8ysUFUY5vVkCCyxDXBafbn2Ncu9CbUR5LEaYM/RVlj581gVIyvR+0oNE7nU7ggFVmrHNxVGR4GVClFM3TFQYKVubBM5MgqsRNJmW1YnQIFl9RmQ5PEnWmBt2y7jnfckbN3W0U71KFBw5ukJzGkVgv2uFTKWTZGhtEsf1XM/BQPP6FxcCVElb1wDeeNqYONqyBvX6pYsPViX1ew8KNrqqUK/lNK2+xVByRc/90ryDNOv+UQILAUqfm7crgmrb9wb8WvTToS7ti6Qx+qQjBIcml6MXrYM/QbPmgxLgALLsKFhx5oJUGBxKhiZAAWWkaNjnr5RYJknVuyp+QlQYJk/hqYeQSIF1k9zZXz5tQyfryOygw5QcNRkBTabMXBuWyhh5TsyoLYVbb0P96H3kXuUhrbtr1xIqtWQyldCLl8FeWuFrtv91LR0KAW9gIJibeUUxAqqgiKgexGUHoVQHU5jQItzL+IlsGoUD2Y0bMS0unLMcFdgp9IY1khEHqsDnb20LYFipdVejm5hncdCqUWAAiu14pmKo6HASsWops6YKLBSJ5bJHAkFVjLps22rEaDAslrEDTbeRAis2loJ70+VsGZtx0Tt4o6CZ5yqon+/8LfixRth+TQbyr9ut0JMUjHoLAVF6veQNqyAVLHGL652R5YHqbO+K/k9/fmnuhf6V08FBJVYVZVDMSK46SGwGlQv1nlrUOVrwmZfPaZUL8Xcxq1hT6l90rpjYnoxDskoxdj01FndFjYAFuxAgAKLk8LoBCiwjB4ha/ePAsva8ddr9BRYepFkPSQQmgAFVmhGLBFHAvEWWEuXy5j6kYSGho5bBvfaS8EpJ6hwucLdpBVHEABUBdqqq+0/txVtskPF3sdtRI+v74atcn1UnRC5pkQOKjW/EErPIkjizn7iZ5GbqkdJVHVa7aRwBdYOpQHrPTVY7/V/rfNUaz8LcbXV544IW7bswCHpxTg8szcmuUohtgnyIIHWBCiwOB+MToACy+gRsnb/KLCsHX+9Rk+BpRdJ1kMCoQlQYIVmxBJxJBBPgTVrtg1fTe8orpxpKo47RsXIfY2z6srXBCx7VcbuVW3llT1Txb5DP0G3bx6PKAq+AcOh9B0MdcBw+PoO0lZW8YiNQGuBpQkpTy02eIWcqsZabw3KPbVY461GfQSJ1oP1aLAjF4e7SjE5szcO5N0CYwuaBc6mwLJAkE0+RAoskwcwxbtPgZXiAU7Q8CiwEgSazZAAAAosToOkEoiXwProExn/W9Bxy2CfUhWnn6ogL88Yq64EfE+t/06D9ZVtZVt6rgej1buRsXFOlzFSepVC6TfU/1W2F5TS/oC4nSKPqAkEtvoFVlKJVVSVqMeapt1Y11QLr1gup9MhclmNSy/E4Rm9MTmjNwqZfF0nstaohgLLGnE28ygpsMwcvdTvOwVW6sc4ESOkwEoEZbZBAn4CFFicCUkloLfA8niAdz+QsXxFR3k1eZKKCeODZHBPIoGGHcBvz9vQuKutvMrJ24FRGy6CAzUdeqcU94Nvv0OhlPmllZruSuIIzNv0NqUBG8T2Pm+tttVvbdNubPDUYp23GuI1vQ8nbOjryEI/Rw7623PQ15GDgY485rLSG7TF6qPAsljATThcCiwTBs1CXabAslCw4zhUCqw4wmXVJNCOAAUWp0RSCegpsNxuCa++LmNTu5VMIlH7xecr6NHTOKuuBPTajcCSf9vgdbeVVwVpi7HP9pshw9M2NrIMz+Qz4T3+Qqh2e1LjZobGfVBRIeSURwiqai0XlchDJVZVbfDWoDbGrX7BGIjVVGX2bJQ5clDmyEZ/Ry7K7OL7LBTaMtFxQ6sZSLKPRiZAgWXk6LBvggAFFueBkQlQYBk5OubpGwWWeWLFnpqfAAWW+WNo6hHoJbB2Vkl49TUZVe1WMvXooeLCcxXk5BhHXrm3yVj/GbBzScdVYiW+/2JoXcd8V0qPYjRecifUvoNNHW+9O+9Wvc2J0kXCdCGpAo+1mrzyQv+4ZwtJJQSVEFP2bPRzCkmVra2q6mHjaji9Y8z6uiZAgcUZYnQCFFhGj5C1+0eBZe346zV6Ciy9SLIeEghNgAIrNCOWiCMBPQRWxSYJU96QIVZgtT769lFx3tkKnOn6S4xokDRWSdjwtYRtIjdXhy6pGNzwL/RpeqdD1Z6JJ8N76mVQHWnRNJsy5yxq2o7vGyqxorHKf4c/Tw22x2GrnwCWIzvQTxNUOeivrabKwZjuBRiUngtfNaAaY0qlTGw5kOgJUGBFz45nJoYABVZiOLOV6AhQYEXHjWe1JUCBxRlBAokjQIGVONZsKQiBWAXWylUy3nxHhq9daqthQxWccapiiFzmnhq/uNoyXwaCpOCSVC+Gu+9HL+93bQgp3Xqg6ZI7oAwYbsm5U6N48G3DRkyv34gZ9RW6y6p82dm8kiob/dP8W/36NW//y5M7ysLWdyGkwLLklDTkoCmwDBkWdqoVAQosTgcjE6DAMnJ0zNM3CizzxIo9NT8BCizzx9DUI4hFYM2dL+PTz+UOq2FEonaRsD3Zh7deQvl0CZWzOm4VDPTNpZRjmPtR5PkWt+mu9+Cj4TnzD1Cd1tqStsRThRn1GzGtvhxzG7fGHMICOd2/kiotG/20fFT+/FQDHLnIkiLLI0aBFXM4WEEcCFBgxQEqq9SVAAWWrjhZmc4EKLB0BmrR6iiwLBp4DjspBCiwkoKdjQYIRCuwvpwmYfYPtjYgJQk46QQFo0cqSQXsc0vY+B1QOcsGpV0e9hZxpVaif8MrKPJMA7Cnv2p2Hhovuh3K0NFJHUOiGq9XvfjevQnT68sxw12BSl99RE2LTaO9bBn+1VPaHf5yteTpQlKJnFSuCCVVV41TYEUUGhZOEAEKrASBZjNRE6DAihodT0wAAQqsBEC2QBMUWBYIModoGAIUWIYJhTU7EqnAUnzAex/K+G1p21VNDjtw9pkKBg1MnrzyNQGVM23Y+D2gNAS/35wzbTcGVL+AoqYvILXbT+gdMxGec66HmpGl22TYrTRhuacKjYoCn6TCpyrwqSoUqPBBgTfwvapqCc8V+F/3qgoUrbz4PlBenKNCVfRhXO6rxXu1qyMa675p3XG4qxTDnd3RR7vLXw6caCsyI6owgsIUWBHAYtGEEaDAShhqNhQlAQqsKMHxtIQQoMBKCOaUb4QCK+VDzAEaiAAFloGCYcWuRCKwGhskvP62jPUb2sqhDJeKCy9QUNQrOdsGxSqryh9sqPgWENsGgx2ODA/6N7yG0l1vQYK3TRE1IxtNF9wC375jo54CYiXT8qYqLPPswtLGnZq0Wt60C9vilOQ86o5GeGI3OQ0TXSWYlNFbexR5q5J1UGAlizzb7YoABRbnh9EJUGAZPULW7h8FlrXjr9foKbD0Isl6SCA0AQqs0IxYIo4EwhVY1dUSXn5Nwo4dbVdede+u4MJzVeTlJV5eqV5g81wZG7+RIBK1BxVXmSr6FvyAPr/dB1lp6lDEN2x/NF54K5CdFzblX5t2YoUQVeKxaReWeaqw0VsX9vlGLyhWWR2mSatSjHH2NEx3KbAMEwp2pBUBCixOB6MToMAyeoSs3T8KLGvHX6/RU2DpRZL1kEBoAhRYoRmxRBwJhCOwyjcqeOk1GXV1bSVRaamKC89R4ExPrLxSfcDWBTLKp0lo2hVcXNkzVJSO3IGyhf8H+5aO2+TUdBc8Z10D70FHhqS7wrMbM9zl+KZ+I+Y0boVH1WcLX8iGE1RA3PFPW2Xl6o3DMpK7yqqrIVNgJWhCsJmICFBgRYSLhZNAgAIrCdDZZNgEKLDCRsWCXRCgwOL0IIHEEaDAShxrthSEQCiBNX+xBy+9pqKpqa0o2muIgrNOV2BLTPojf89VYNsiGRu+ktC4I7i4sqWrKJmgoo/7bTi/fAmSz9dh1L5B+6Dp4jug5nUPOifEdsCZ7k1aUvNv3BtREePqqgH2HPSyu2CDDBsk2KTAo9TqOfG8BJsqQZYk2JvLyAh8D8iSDLs4X7Zp9YjvxXMiBNq5LfU3t6E216m91vx68/faeaqEHJsD+6YVmOJ3gwLLFGGyXCcpsCwXctMNmALLdCGzVIcpsCwV7rgNlgIrbmhZMQl0IECBxUmRVAJdCayfF0t4+Q0ffO0WHB18kIKjJisQdx1M1LHzVxnrv5Lg3tKJuEpTUTReQenem5Dx+l8gb1jZoWuqwwnPqZfBO/GkDq/pscqql82FoY5u2CutG4am5WuPg9NykZagJOeJikWy2qHAShZ5ttsVAQoszg+jE6DAMnqErN0/Cixrx1+v0VNg6UWS9ZBAaAIUWKEZsUQcCXQmsObOTcMnX3TcKnf8sQoO2C9xW+h2LZex/ksJdRXBxZXsAArH+lA6UYVrzoew/+dFSJ4gua7K9kLTpXdC7V6o0YxllVWGZMfejnxNTg1xdsPwtHzt5xw5LY6RYtUUWJwDRiRAgWXEqLBPrQlQYHE+GJkABZaRo2OevlFgmSdW7Kn5CVBgmT+Gph5Be4GlqsBHH8tYsKhtsnaxVfDM0xUMHZIYeVW9Flj3qQ215cHFlSQrKCpegbLiBXCkuSGvXAzbysVBY+E55TJ4jjxTS7z+jdgWWF+OuRHmshrkyMFhrt6Y5CrF2PRe2hY/HoklQIGVWN5sLTwCFFjhcWKp5BGgwEoee7YcmgAFVmhGLBGaAAVWaEYsQQJ6EaDA0osk69EITP18Jt7/5DusWlcBn8+HvqWFOPno8TjnlCNgs3WULq0FlscDvPWujFWr25ZzuVRccK6CkuL4Jmu3rVsGad0yVC9pws/rz+k0oqVN/0G/xjfhVLd1GfWa/kMw/ZyLMM3ZiG8bKiLKZSVWWY1LL8SkjN44wlWKYnsmZ1iSCVBgJTkAbD4oAQosTgyjE6DAMnqErN0/Cixrx1+v0VNg6UWS9ZBAaAIUWKEZsUSYBG5/8AV8/NVsOOw2jBoxCA67HYuWrEZtnRvjDxiBZx66AfZ2WdcDAquuXsKrr8nY3C7HVH43FRecp0A86nnI5atgW78CKF8J27oVkDesaFP9D5mvot7Wp+U5SfWh0PsVBjS8inR1S6ddWdYjF9P6FeOL/UdhTrYN3gjuGDhQrLJKL8XhGb1xUHovOLjKSs+Qx1wXBVbMCFlBHAhQYMUBKqvUlQAFlq44WZnOBCiwdAZq0eoosCwaeA47KQQosJKCPfUaFeJKCKz+fYrw/KO3oKhnvjbIencDbvjTPzB73q+49uJTceUFJ7YZvBBYO6skvDJFxq7dbbfr9e0t4aILFMi2jnfyi4SgrWIdpPIVkNetgLRhBWxrl4Y8fbv9YPyc8QAABYWe6RjQ+DJcSmWH8+rS7Pi2bxG+7l+Maf2LUZGTEbLuQAGxyurg9EJNWE1ylaDUnhX2uSyYeAIUWIlnzhZDE6DACs2IJZJLgAIrufzZetcEKLA4Q/QgQIGlB0XWQQLhEaDACo8TS4UgcPJFd2Hl2o1445m7MHLYwDalq3bX4PAzboLDYcd3Hz6JdOeeZONzfm7A62/LcLvbyqsRw4A/XORATUMTGprCF1hy5XrI5av9omrdcu0xWFL1cAK60nk5SjxfIkNZD3EHQTUrB8jMxpLinpheWoCve2Zgbo4DngjuhhhYZSW2BopcVlxlFU4kjFGGAssYcWAv2hKgwOKMMDoBCiyjR8ja/aPAsnb89Ro9BZZeJFkPCYQmQIEVmhFLhCCwafN2TD77ZvQp6YnP33gkaOmb7n0GX347D08/cD0mjRvVUuaKmzzwtfNTB+6v4Pwz7UhPs2FnTecCS95eCXn9Ckjrl2uP2veN7qjjpboyofQdDKXvEChle0EtKNKEVU1eHma6KzG9vhzfujdhk68u7DZcLbmsSnG4q5SrrMImZ7yCFFjGiwl7BFBgcRYYnQAFltEjZO3+UWBZO/56jZ4CSy+SrIcEQhOgwArNiCVCEJg+cwGuu/spHD95LB6+84qgpV9970s88sxbuOzc43HDZae3lLn0ek+b8kdNVjBurIL87LSgAsv2y0+wz5iq5ayS6mqjjo2alg6190D4+u0Ftc8gKGVDoPQoaalvmacK39RX4Bv3Rsxr3BpRLqsBdnHHwFJMyijVtghylVXUYTLUiRRYhgoHO9NMgAKLU8HoBCiwjB4ha/ePAsva8ddr9BRYepFkPSQQmgAFVmhGLBGCwCvvfIG/Pfs2rjj/BFx3yWlBS0+b+T9cf/fTOGri/nj83quDCqzfnwPsO8L/kstpg90mw93og9entJRXv/8Mykt/iywmjjSgz0BIZYMh9d8LUr8hQFFfQAq+908kXi9dPgX1qjesdlyyHYdkFOHI7D44OrM3ejuYyyoscCYrlOVyaFOmxu0B9L2ngMlIsLtGIuCwy5rs93iViLZbG2kM7EtqE8jOcGgDrKlv+wer1B41R2cWAuL6Ka6jIl2FuI7yIIFoCASuc9Gcy3NIgAQiI0CBFRkvlg5C4B8vTcWzUz7CzVeehYvOPiYoozkLl+LiGx/GQWP2xouP3dpSZt4CBVPe8eGGK+0Y0C90MinfupWoufWizuNgs8HWZwBsA/aCfcBQ7dHWpz8g2yKK3fGrPsOnu9d3es5gZy6Oye2DY3P7YmJ2CdJ4x8CI+LIwCZAACZAACZAACZAACZAACZAACURCgAIrElosG5TAY8+9i5fe/gy3X3suzjttctAyC39difOueQCjhg/C6/+4s02ZejeQ4QoPrqoo2H3uYdASZ8ky5JK+sAtJ1X8v2AcOha1sEGD3/7U3luOprb/g+vJZLVVkyHZMzC7WhNWxuX3QLy0nlup5LgmQAAmQAAmQAAmQAAmQAAmQAAmQQAQEKLAigMWiwQlEtAJr9N548fE9K7CiYdr07eeQexZp4grO9GiqCHnOsoZdOHHVZ5qsOkZbZVUMpxTZKq6QjbAACZAACZAACZAACZAACZAACZAACZBAWAQosMLCxEJdEZjy3pd4+Jm3wsqBdcSEMXjyL9e2VNdZTozOcmAxEiSQLALMgZUs8my3KwLMgcX5YXQCzIFl9AhZu3/MgWXt+Os1eubA0osk6yGB0AQosEIzYokQBL77cRH+cPsTYd2F8OKzj8UfrzyzpcZNO9xBa+/sLoQMBgkkiwDvQpgs8my3KwK8CyHnh9EJ8C6ERo+QtfvHuxBaO/56jZ53IdSLJOshgdAEKLBCM2KJEAS279yNQ0+9Hn1KeuLzNx4JWvqme5/Bl9/Ow6N/ugrHTDqQAouzynQEKLBMFzJLdJgCyxJhNvUgKbBMHb6U7zwFVsqHOCEDpMBKCGY2QgIaAQosTgRdCIgE7SJR+xvP3IWRwwa2qbNqdw0OP+MmKKqK76c+hZysDAosXaizkkQSoMBKJG22FS4BCqxwSbFcsghQYCWLPNsNhwAFVjiUWCYUAQqsUIT4OgnoR4ACSz+Wlq5p5pzFuPK2x9G/TxGef/QWFPXM13jUuxtw4z3PYNbcX3DuqUfgjuvOa8OJWwgtPW1MNXgKLFOFyzKdpcCyTKhNO1AKLNOGzhIdp8CyRJjjPkgKrLgjZgMk0EKAAouTQTcCjz73Dl5++3M4HHaMGj4QaQ4HFi1ZjZraAWQA2QAAIABJREFUeuw9uAyvPnk7MlxOCizdiLOiRBKgwEokbbYVLgEKrHBJsVyyCFBgJYs82w2HAAVWOJRYJhQBCqxQhPg6CehHgAJLP5asCdDyXL3+wddYvnoDfD4FJUU9cOykA3HR2cfAmebowIgrsDhtzEKAAssskbJWPymwrBVvM46WAsuMUbNOnymwrBPreI6UAiuedFk3CbQlQIHFGZFUAhRYScXPxiMgQIEVASwWTRgBCqyEoWZDURKgwIoSHE9LCAEKrIRgTvlGKLBSPsQcoIEIUGAZKBhW7AoFlhWjbs4xU2CZM26p3msKrFSPsPnHR4Fl/him8ggosFI5uokbGwVW4lizJRKgwOIcSCoBCqyk4mfjERCgwIoAFosmjAAFVsJQs6EoCVBgRQmOpyWEAAVWQjCnfCMUWCkfYg7QQAQosAwUDCt2hQLLilE355gpsMwZt1TvNQVWqkfY/OOjwDJ/DFN5BBRYqRzdxI2NAitxrNkSCVBgcQ4klQAFVlLxs/EICFBgRQCLRRNGgAIrYajZUJQEKLCiBMfTEkKAAishmFO+EQqslA8xB2ggAhRYBgqGFbtCgWXFqJtzzBRY5oxbqveaAivVI2z+8VFgmT+GqTwCCqxUjm7ixkaBlTjWbIkEKLA4B5JKgAIrqfjZeAQEKLAigMWiCSNAgZUw1GwoSgIUWFGC42kJIUCBlRDMKd8IBVbKh5gDNBABCiwDBcOKXaHAsmLUzTlmCixzxi3Ve02BleoRNv/4KLDMH8NUHgEFVipHN3Fjo8BKHGu2RAIUWJwDSSVAgZVU/Gw8AgIUWBHAYtGEEaDAShhqNhQlAQqsKMHxtIQQoMBKCOaUb4QCK+VDzAEaiAAFloGCYcWuUGBZMermHDMFljnjluq9psBK9Qibf3wUWOaPYSqPgAIrlaObuLFRYCWONVsiAQoszoGkEqDASip+Nh4BAQqsCGCxaMIIUGAlDDUbipIABVaU4HhaQghQYCUEc8o3QoGV8iHmAA1EgALLQMGwYlcosKwYdXOOmQLLnHFL9V5TYKV6hM0/Pgos88cwlUdAgZXK0U3c2CiwEseaLZEABRbnAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgKEJUGAZOjzsHAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAUW5wAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIChCVBgGTo87BwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAFFucACZAACZAACZAACZAACZAACZAACZAACZCAoQlQYBk6POwcCZAACZAACZAACZAACZAACZAACZAACZAABRbnAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgKEJUGAZOjzsHAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAUW5wAJkAAJkAAJJIjAlPe+xMPPvIXLzzsB1196WoJaZTMkQAIkQAIkQAIkQAIkYH4CFFjmj2HIEfw4/zdcevPfMG7/4Xj+bzeHLJ+sAr8sXYN3Pp6BeT8vw5btVXDYbejXpwjHTjoI5556BBwOe9CuuRua8OKbn+Kr7+ZhY+U2ONMc2HtwGc4//UhMPHhkyOHMWbgUt9z3LHZUVeOrtx9FSWFBl+fMX7Qcr7zzBX7+bRVq693oVdANh48fjSsuOBG52Zkh22OBPQRu+NM/8PX383HPH3+PM0+YaFg0lVt34q2p0zBr7i8o37QNXp8PRT3zcchB++LSc45DQX5up32f+vlMvP/Jd1i1rgI+nw99Swtx8tHjcc4pR8Bmk7sc86bN23HDPf/Ab8vX4f7bLsEpx0wIWf651z7GD/N+xfadu5Gbk4UDRu2FK847EQP7lRiWr1E7Fo9rZzQCS1FU7ffkk2k/YvGS1di1uxaZGekYOrgvzj5pEiYfsl+nCGO5XjU0NuG+x1/FR1/OxklHjcODt1/WZahivRYbdR4YrV/i/yrxf+WP83/FuvLNqK6p1+ZDUa/uOGj03jjzxMPQt7RX0rsdy7wV175YrmWvvf8VHn32HfQoyMO0dx4LySKW63TIyi1UIB7XzHjgM8v7zcDYI53P8WDGOkmABEjAKAQosIwSiTj2w+hvKGpq6/GXJ6bg0+k/aRQG9StF7+Ie2FVdhyUr1kF8iNp37wH492O3IsPlbENKnHvetQ9g1doK5OZkYp+h/VFX34hFS1bB51Nw7cWn4soLTgxKV1VV/PvNT/HUix9AvNEWRyiBJUTEPY++rJUdNqQM3bvlYuWacgjBIYTGm//8E3oW5MUxmqlTtRAsh59xkyaDBMt3/3Wv4QYn5sWLb32KZ16eCo/XL60G9e+tiailK9dj564a5Odl49Wn7kD/PkUd+n/7gy/g469mazJ21IhBcNjtWLRkNWrr3Bh/wAg889ANsNtsQcc9c85i3Hb/v7C7pk57PZTAEv258PqHUFffgN7FPdG/bxE2b92J5avLkZbmwD8fvAFj9xtmOMZG7lA8rp2RCqw1Gyq1eSCuhWIeDRvSD/ndcrTYiufEce6pk3HHded2QBnL9Wr9xi244U9PY8WajVq9oQRWLNdiI88Bo/VNxPShp9/Q/l8Uh/iDi7gGid/78k1bteuUEOOXn3sCrr7oZEiSFPMQjjz7Zlzyu2Nx1kmTwq4rlnkby7VMcLj7kRfx5bfztL4KqRdKYMVynQ4biEUKxuOaqSc6M73fFOOOZj7ryYt1kQAJkIARCVBgGTEqOvfJ6G8oqmvrcebl92JQ/1LcdPkZ2qqrwLF5205cddvj2oeoK84/Addd0nbLzV0Pvwjxl9MjD90PD91xOdKdadqpGyq24OKbHkHllh2Y8tQdGLPP4DZUhRS4/cHn8d2Pi7S/WCuqgrkLl3UpsMSHg+PPvx12uw3PPXwT9h+5l1anEGH/eHkqnpvysVbXi4/fqnMEU7O6F974BH9/4X0MHdRXk0Hvv/Bn7XujHWKV2NryStx+zbk4aMzeLd0Tq03ufexlfPL1jxg9YhBee/rONl0X4kp8MBJi6/lHb9Hklzjq3Q0Qdc6e92tQwSqk2TOv+OeT+PA1fv8ReO+Tb7sUWELWnnDh7RDS4Zarzsbvzzq6pS/f/7QI1975FDIz0/Hlm39DdlaG0RAbtj/xuHZGKrB+WbYWF93wkLZi75LfHaeJ+sCx8NeVuPyWR1HvbsSLj93aZn7Gcr0Sq73u/Ou/4fX6tLn0r9f+G1JgRXstNmzwDdixt/4zHff//TVNSom4XHjGUejRfc8fTMS1RVyPnnj+PYj/V887bTJuv7aj2IxkaCvXbsTJF92FP914QUQCK9p5G8u1TPwh6/o/Pa2tSrv47GPxzsffICc7s0uBFe11OhKGViobj2umnvzM8n5TjDma+awnK9ZFAiRAAkYlQIFl1Mjo2C+jv6EQQ91dXdfmg1nr4QuxdNGNf9VEwH+nPNTykthGcdjpNyArw4Vp7z6GDFd6G2rig/tV//cEDt5vOF54tO3WybOv/DPEG2yxNfHWq3+Hq257Aj/M/7VLgfXgU6/jjQ+n4YbLTsdl5x7fpi0hsX531X1anW88cxdGDhuoYwRTryrB65hzb0N1TR0evusKXHnb49qHI/EhyWiHEFU2WdJWMbU/xGvjT7pGWw3x3YdPttlKKD70iQ9/weZD1e4abfWZ2BYrzguIV1H/o8+9g5ff/lyTrn+/71p88Ol3mujragWWEA5CiokVVv9+9JYO/QzUGWzuGo23kfoTj2tnpAIr1PVRrA7856sfdfj9ifZ6Fbhu9urRDU/ffz08Xi/Ovfr+LgVWLNdiI8XbyH0Rcvqki+6Ex+PVrpnHHzG20+6KD76/+8NfNFn+r0f+qK32jPYQMkysVI5UYEU7b6O9lokVvcece6u2Au3PN1+kzdeRR1yCgu5dbyGM9jodLc9UPy8e10y9mZnh/Wa081lvVqyPBEiABIxIgALLiFHRuU9dvaEQImHOgqWY+sVMLPxlJbZur4Isy+hT0gvHHn4gLjrrmA65p66980nMmvcr5n/+L8xduBSvffCVf1tUrRt5uVnaB2+RoHivgX10GYlYLXXwCVdrguuHj59pqfM/X8zSVgmcdtwhuO+Wizu0JcZ26KnXY1d1LWZOfbqNIPvpf0tQuXVHS04hsfVK5Irpagvh5LNvhsjL8c17T0B8uGt/BP46fsEZR+G2q3+ny9hTtZLAnBQfwh64/VItTuKD2XcfPgVXun8VXetj2aoNOO3SP2ny8MwTDsMLb36C6TMXaDEU8mfvQX211QaTxo/ucG5AGLz97J+07VdT3v8S7348A5u27MDAshJt5VcsxykX36WtEPzPy/dr21/FIeaJmC99Snri8zceCVr9Tfc+o21zefqB6zFp3KiWMtt27NJE6dUXnaJtGQsIiq4Elvg9EL8PD995BY6f3PGD7ep1FTjx93dqv5Mf/Pu+WIZrqXM7u3aKuIn4ifkrZEKw4/F/vYsX3/oMd1x3nibKA0c0Aqsr6NNm/g/X3/20lgfr7/dd01I02uuVWAHzxAvv4fdnHq0J2cAfELraQhjLtdhSEyqGwf758Ve169ZRE/fH4/deHbKmV979An/759sYPWIwXnv6jg7lhUR/9d0v8e0PP6Ni8zbt9V498jFscBmuveRU7f9NcV0RMizYEWq7fagOdjZvY7mWiTxB4o9HI4b211ZGDz/soi63EMZynQ41Pqu+zveb+rzfFPMn0vls1TnHcZMACViPAAWWBWLe1RsKIXIu+eMjLYnPi3rlo7auAfMXLdO2pYiteU/8ec+HIoFLCKxvZi/UxNGHn83EYeNGYdTwgVBVaAmGxRtTsVpFvGkePqRfzITFdkCxWkdsL2stG0QekNc/+FqTV6IvwY5r7ngSM35YqK3AEiuxOjvOu+YBiO04nb0pF8vOxx7/B01cCYEV7BDb4E6/7B7tDbRYdcOjcwIBefPcw3/EhANHILBapDNJExBYYotmxebt2jZO8YG9ID9HS6ouPkCL3BZXXXASrrn4lDYNB4TBMw/eoOWjEvJBbOfLy81GcWF3PPWX62IK1aQzbsSWbVWY+9lzWiJlcQi5dt3dT2kySUilYMer732JR555S1vNJ8RcZ8eT//4Az7/+3y5XYJ16yd1arishy4Q0C3YceNxVWj6NBV8+H3Q1WUwQUvRkMwisQJ4rsZ1MrCYVh57XqwCDrgSWntfiFJ1KMQ9LSH6xKuPlJ/5PuzFDqEPMgQknXavlGGy/OlRcT6+49TGtPrFyea+BIq+fgvUVW7Tr6Iz3/44t23ZixuyF2lZn8QcqccOK4UPKWpo9/4yjkBPDduRg81ZUrte1TIx738Mv6VJg6XmdDhUPq7zO95uxv98MNlfCmc9WmWMcJwmQAAlQYFlgDoT6i5h4k3rQmGFtEqSLpOSnXXK3lkD6kykPtclLFRBYIg/Hs3+9SRMQrQ+x3UBsOxBveJ/9640xExZ3/Pvbs293+KD/h9uf0HJYtc/90rrBB596A298+DXuuuF8/O7kwzvtSyiBJe4Cd+YV9wbNdRSoNLBSrFtuNmZ99HTM407VCkTi80mn34BuedmY9s7jWsJhkYz6jMvv1ZL1v/nPuzsMPSCwxAvizpJP/uXaNsnPxd0nz/nDX7Q7SQpxKlYdBI6AwBKJ4sU2HCGUwrk7ZTj8A/Oifb8DczZY3rZAvYEVCKFWVIQjsPY/5gpNOP887UVt1VawI7BS7ONXHsCAMt6RMJz4mkFgBa6D4g6z4k6z4tDzehWOwNLzWhxOXKxWJrBSSNzwYe7nz2l/cArnEKtWxbXz6fuva1mdKrY7n/T7O7U79oo79Qp5HtjCLFYtrS3f3OaGFGIVl1jNFc0Wwq76GGzeivJ6XcvC+cCv53U6nHhYoQzfb8b+fjPYPAlnPlthfnGMJEACJCAIUGBZYB5Em5NA3G1P/JX0kbuvxHGHH9RCKiCw2m9ZCRQQeYH2O/py7S+78z5/LibCYpvDCRfcoeXyEKtLWm/du+C6B/G/xSvwzr/u6XSl1z9emopnp3ykJX8XMqGzI5TAmrNwKS6+8eEupVxgy4IQMounvxTTuFP5ZLGtSmyvar/yKNhWvACH1gLr8zce1ra4tj/e+egb3PfElA6rBgMCS5QPrPjSg6+I9yU3PQIxN4RQO2LCmJZqA/Pu5ivPwkVnHxO0ucCcEonhhYTt7AglsETS9xGTLtK2Xs7/4vlO6wn8vohk8yLpPI/QBIwusALb+wb3L8XUl+5vGZCe16twBJae1+LQUbFeCbGyWeS0KuyRj+nvPR42gMD/1XffeAHObr6DYGDlk1jFJVZzhTriIbA6m7d6XsvC+cCv53U6FEervM73m7G/3ww2V8KZz1aZYxwnCZAACVBgWWAORPKGQuQhEn+hVQG88PoneOntz3DPTRfizBMPayEVeFPc1V9kJ5x8LcRKm4VfvRD1diWRjPXK2x6D2OYo7qQkchy1PgKJ2D988S8YMqB30EiKrVdCAIicXNdf2vYOhq1PCCWwZs5ZrCUaP3zC6C63nIktC+KNxqLpL7ZZIWSBaRbWEIX0Ofa8/9PuEvnpa39FWe/ClvMCW+rOPXUy7riu7Z2zAgKrqy2cYvXVIadc1yFXWkBgie2sQnbqdQQ+/AhxJQRW6+Ox597VfneCzdtAObFlVcy7UcMH4fV/tL2DYeu6Qgks8fs65qjLte08P37yz06Hd+nNf4O4Fogk7yLZO4/QBIwssMQdWsWNI6p21eD1Z+5qI/H1vF6FI7D0vBaHjor1SgRiIO7QK1ZEh3vcdv+/8Mm0H3Hj5Wfg0nOO004TW5vF1rnO8uW1r1tvgdXVvNXzWhbOB349r9PhxiTVy/H9ZuzvN4PNkXDmc6rPLY6PBEiABAIEKLAsMBe6ekMhth2998m3mPb9/7BiTTlq69wdiLQXVQGB9c+HbsShY/cNSlDcHXDr9l3aCqz2dwcMB7n4S+wtf3kWX8yYqyVaF7mR2h+R/NX/2otPxZUXnNhp06EElp4rGsIZf6qWCeRcCyZthPA87LQbtK2s3374ZJttMgGBNWKvfnj7uc4llMjzJOawEDmB/CwBgRVMjEXL+c2p0/HAk69BrHx5/R93teS+CtQX0V/2R++NFx+PfgVWYOVf+Cuw2m6xjJaBFc4zqsASK1MvvO4hrF6/KWhuND2vV+EILD2vxVaYV5GOMeoVWHc9hW9mLUDrFVgnXHA71myobHPTia76o6fACjVv9byWhfOBX8/rdKQxTdXyfL/5EWJ9v0mBlaq/HRwXCZCAXgQosPQiaeB6OntDIYSB+OCxdkOllnj8yIn7awmghXCSIOHtj77Bl9/O7ZD7IiCwulrJEYvAEvLqjr++gP9+9YOWt+OJP18ddDVToB/h5MASK3qEwOjsCCWwAgJFbL0SW7CCHS13S8zOxA//3XO3RANPjYR37aZ7/6nNqVDHX++4HCcceXBLsQD/UAnyxQossRJLbLMR223Eofdd34TwvffRV7RtjFOeuh09uud1GE6gzXByYAVbwdW6wlArsETZgLgLJweW2GomxBuP0ASMKLB27a7FRTf+VbvzZWdbVPW8XoUjsPS8FoeOivVKVG7ZgSPO+qP2/6D4o5C4SUo4h7ipiLi5SOscWIGbTnz99qMoLiwIWY1eAiuceavntSwcgaXndTokSIsU4PvNr7UV5LG83ww2VcKZzxaZYhwmCZAACTAHlhXmQGdvKES+IJE36MQjx+GhOy7rgOLhZ97SPvx3tgIrHgJL3Anpjode0LY9iA/2j97zh06TUovE7iIJazh3IXzuYZFsfp9Owx1KYIkcXPsfc2VYdyEMtUrICnMu2BgDydtlWcbgTrZ8uhsatdu2j9lnMKY8tefW74EP5IP6lWorB4Id4q/3o4+6HE1NnqArsP6/vTuBs7n6/zj+sYx9X38oyla2SpElW8iWlK1oEkKyk33fSnZiNJYsERqlooUQKpQlSyrRQososu/r//E5+s5/xtyZezSX73fmvs7j8Xv8Mvfc7znneb6+7n3P+Z6vv9tIbeZFQ93hE+aaWx91/5gc2WKGV3ocfbiAblJs8xTC55rUke4vPBlr8zYBlj5gQDfu9vcUQl2dtnnZtGgPbLAZd7DWiU+A5TyZr1/nZyS0QfVIwvgEqvp3qNWLo0x41bNdE2nxVC2fUxPI65VNgBXIa3Gwnmv+xu08hfCNV/tKqXvv8lfdrESt8HhH0VvxP39vkmTNnMG8p84zvc3DLJbMflkK3un/YQ6BCLBsz1vtX6CuZTZf+AN5nfY7IUFSgc+b2yS+nzcJsILkLwvDRACB/yzACqz/TJdw3hjbB4q6z/Y1q6/eCh8kJYrkjzEgZ7XMrQqw9ANnr+HTzAqdutXLyct9W8e5j5TW0z42fLSSCbGuLxpo6Id+XZGzdvFEnytlnPf4C7C0Xr3m/cwtO6vfnhBtM3nnGAvf/1RemjjP7Bem+4ZRogvonlC654huJqy3tPgq5y9cNLcR6mq2D+a+Evk0LCfA0tvkNn401Ty58Pry8779Uq9Ff8mUMZ2sXxIWkMAgahvz3lkhI8MWmNVLr4/rFfmF0Nc49PH0eu7pikYNlXyVF4dMkU/Wbpaxg9pJ7aplYj1dbAIsDdU0XIttXxvH5kb30An2czi2a6fuIaR7CdV6+EEZN7i9T6aug8Jk5edbJFABlp5T+iAJvQZFvSUstjkK1PXKJsAK5LU42M+52Mbv/B3XB6rog1X8FX36rj6FV8MuDb2c0q7PBPn8qx0yZmA7qVMt9uuOUz++AdaNnreBupbZBFiBvE77m49geZ3Pm4H5vHn9+WJzPgfLOcY4EUAAAQKsIDgHYvtAUTu0t9lMW/cU0lVDUYv+9lZvWTh56swtWYGlvyXuPnSK2Vy2Ud3KMvjFFpI0aZI4Z0f7qLeM6SPAVy0aF2OvLf2Qrh/WbVZE2QRYTpCgjx3XJ+hdX5yNjP399i0ITjmfQ3R+8x/Xpvv6xtFTFopu6N7iyVrSs30Tc6yoTyGcPqaHPFS6eIw2nC9a14cK8Vnx4jQy+61lMnZqhNkoW9vPmCGt32l0zqn5UwaYW3SjFt0LplrjF+XK1atmdYSzX5evg9oEWM7f8fKlisuMsT1iHEb7rmPwt9rL76CCrEJs186tO/dIs04j5J6iBWThawNjqOj1TINYnedABFh/HTpqbhv8/c+/ZXivVvJErQp+ZyJQ1yubACuQ12K/AwvSCrpq6vGW/UUftDJhaEfztNXYiv67/mTboebf7+tXSjvBll5D9Vrmr+hTfHWvqNj+3Yvr/f/lvA3Utcz2C3+grtP+HIPldT5vxr1Pp54HNp83rz9fbM/nYDnPGCcCCAS3AAFWEMx/bB8onBUg168YOnHqjPQcFi7rN38ruorpZq/A0lu+ug4OM7ddNWtUQ/p0fNp6VpynCOmH+ZH920Zu/K0f4Ft1HyN/HjwsE4d1lEcqxf5h3/YDha7kqvV0L7ly5YpZIl76vrtNP9UobPZ7MnXuUrM6RwOaJEniDt+sB5hIKjqbSt9btIAs8PGFP+ow9Yuahl26kmrtOxMlJCR5tABL957SkOa2XNkj37Z6/TbpNijMPAFSj6/tOCW+AZbzJMv7SxQ28542TSqrWXGeBJc/by6ZPran5MpxbU8uvb2r2+Apsm7TTnNrmQYccRWbAEvf36TdMNm565cYt5ZpkNt5wCRJkjSpLJ8/2ufqQasBBWGl2K6dZ89dkIpPdJRz5y9KxNTBUuyuO6LpTJzxjsyY/6H5WXwDLN3/qGW3UaL/P3pgW6lZ5UGrmQjU9comwNIOBepabDW4IK3kPDxCV6A+H/qY+fcyapiu/5YuX7tJNMzX2/ai/hLAIdOwUVdfH/rnmLR79nF5oXm9aCud9/1+0KwuTZ8ujXnLR59+Jb2GTzXhvT7tMiR5Miv9/3reBupaZvuFP1DXaSuUIKjE583AfN68/lSxPZ+D4BRjiAgggAB7YAXDORDbBwrdMye0w3CzR8bdBfOa/504eVo0bNCNqZs3rilDx79x0wOsqF/2dG+huEq5B4rJgK7NIqvoB3YNqnRFhH6Qv6dIftEvl9u//cmEGU8+VkUGd2/hd5ptfyOmK8Q0+NNj65fWbFkymv1o9MN6xvRpZd7kflLgDv/7ivjtUCKr0GNYuCxbvVFG9G0jj9d8yO/o9FYpPQ+d2+ucFVi6wuifo8fll1//lJIlCkn2LJnkjwOHZMf3P5tjdmndUHSvq6glPgHWhi3fSpseY83hcuXMGu3JiNcPIl2a1BIxLfoTEp2VTxrClSxeUFKEhJi+6sqIooXvMLf26FMX4yq2AZauzgnt8JK5Zfb23Dkkf75coisg1E4DVd0YX/fkotgLxPVELQ2o9Nqlt7U2qFNJ7rg9l5w+c9YE8d/v2Wee0Lris/jfQqhzuv27n0w7Of99MEFsI9BzP+rfr0Bcr2wDrEBdi+1nJzhrLvpgrYwKWyDnzl8wq5TvzJtbMmVIK/pEYd0SQH+uAdcLzepJ+xZP+ETS86ld7/Giv6zSsEr/7b9w8ZLsP3jY/NJn8evDzM+06PHqNusjB/4+Ym7p1lWHx0+cls6tG8b5MIj4nLeBuJbdyBf+QFyng/NsjDlqPm8G7vNmVN0bOZ85FxFAAIHELsAKrMQ+wyIS15cw/TKttwfoB9qLly6ZJ7dVq3C/tGv+uNmHqEaTHjc9wNJ9o3T/KJtS9aGSMvnlLtGqagD3xqLl8sHKDfL7/r/Nih1dCfVUvarWX9htAyxtWL+cTpv3gXz9zR45dfqMZMuayWwQr18YcmbPbDOMoKqjt1E93KibpE6ZQtYsnmhu+fRXdG8oDQrLlCwisyb0jlyBpc7jh3SQmQs/MvtHaXiVMkWIWR3wbOOaJjS4vsQnwHL64a+/+nq6tKll40fhMarqMd5cvFJ2//yb6EMK8uTKLnWqlpGWTWrHGYg5B7JQRX8QAAAcKElEQVQNsLS+hlfhbyyRtV9ul8P/HJN0adOYoK/1049GW5VmMx7qxH3tVB9dnfLW+6vN3J4/f1GyZskgZUoWldahj8pfh46Y8DO+K7B0Xzfdw8ym9O7Q1Pw9iFrie72yDbC0zUBci23GGex1dO8mfQCLrpL+df9fJhBPmzqVeapg2QeKmn/7dP+9uIqG27ovoa5A0nAqebKk5hdX+kuCTs81iLaySwOlseER5nOCfi7IlSOrhI/sZh5mEVuJ73kb32vZjX7hj+91OtjPSWf8fN70fybcyOdN52g3ej777wU1EEAAgYQrQICVcOfOuudrNmyTjv1eFV/hj/VBqIiAiwLOCiy9jU9XuVEQuBUCXDtvhTJtIIBAYhHgmplYZpJxIIAAAt4VIMDy7twErGevvbFEpsx+74b3lwpYBzgQAvEUcAKsksULyZth/eN5NN6OgJ0A1047J2ohgAACKsA1k/MAAQQQQOBmCxBg3WxhF46vt2zp5sK6J9Ombbukz4jp5hYDXbmiK1goCCQ0AQKshDZjCbO/XDsT5rzRawQQcEeAa6Y77rSKAAIIBLMAAVYinP33ln0hA0bNjDay0AaPSL/OoYlwtAwpGAQIsIJhlt0fI9dO9+eAHiCAQMIR4JqZcOaKniKAAAKJRYAAK7HMZJRx7PrxVwmfu8SsusqRLbPUrFxaqla4PxGOlCEFiwABVrDMtLvj5Nrprj+tI4BAwhLgmpmw5oveIoAAAolBgAArMcwiY0AgkQsQYCXyCWZ4CCCAAAIIIIAAAggggIAfAQIsThEEEEAAAQQQQAABBBBAAAEEEEAAAU8LEGB5enroHAIIIIAAAggggAACCCCAAAIIIIAAARbnAAIIIIAAAggggAACCCCAAAIIIICApwUIsDw9PXQOAQQQQAABBBBAAAEEEEAAAQQQQIAAi3MAAQQQQAABBBBAAAEEEEAAAQQQQMDTAgRYnp4eOocAAggggAACCCCAAAIIIIAAAgggQIDFOYAAAggggAACCCCAAAIIIIAAAggg4GkBAixPTw+dQwABBBBAAAEEEEAAAQQQQAABBBAgwOIcQAABBBBAAAEEEEAAAQQQQAABBBDwtAABlqenh84hgAACCCCAAAIIIIAAAggggAACCBBgcQ4ggAACCCCAAAIIIIAAAggggAACCHhagADL09ND5xBAAAEEEEAAAQQQQAABBBBAAAEECLA4BxBAAAEEEEAAAQQQQAABBBBAAAEEPC1AgOXp6aFzCCCAAAIIIIAAAggggAACCCCAAAIEWJwDCCCAAAIIIIAAAggggAACCCCAAAKeFiDA8vT00DkEEEAAAQQQQAABBBBAAAEEEEAAAQIszgEEEEAAAQQQQAABBBBAAAEEEEAAAU8LEGB5enroHAIIIIAAAggggAACCCCAAAIIIIAAARbnAAIIIIAAAggggAACCCCAAAIIIICApwUIsDw9PXQOAQQQQAABBBBAAAEEEEAAAQQQQIAAi3MAAQQQQAABBBBAAAEEEEAAAQQQQMDTAgRYnp4eOocAAggggAACCCCAAAIIIIAAAgggQIDFOYAAAggggAACCCCAAAIIIIAAAggg4GkBAixPTw+dQwABBBBAAAEEEEAAAQQQQAABBBAgwOIcQAABBBBAAAEEEEAAAQQQQAABBBDwtAABlqenh84hgAACCCCAAAIIIIAAAggggAACCBBgcQ4ggAACCCCAAAIIIIAAAggggAACCHhagADL09ND5xBAAAEEEEAAAQQQQAABBBBAAAEECLA4BxBAAAEEEEAAAQQQQAABBBBAAAEEPC1AgOXp6aFzCCCAAAIIIIAAAggggAACCCCAAAIEWJwDCCCAAAIIIIAAAggggAACCCCAAAKeFiDA8vT00DkEEEAAAQQCL3Di1BkJbT9czp47L3Mn9ZPc/8sW+EY4IgIIIIAAAggggAACARQgwAogJodCAAEEEEDACwJvf7hWsmfJJFXK3+ezO1t27JbmXV4xr40a0FbqVi/nhW7fsj7487llHaEhBBBAAAEEEEAAAWsBAixrKioigAACCCDgfYEzZ89L+XodpH6tCjK4ewufHT595py06DpSzpw9J7PG95ac2TN7f2AB6qGNT4Ca4jAIIIAAAggggAACARQgwAogJodCAAEEEEDAbYFVX3wtXQZOlicfqxJrgOV2H91sHx839WkbAQQQQAABBBD47wIEWP/djncigAACCCDgKYGLFy9Jz+FTZeXnWwiwfMwMPp46XekMAggggAACCCBwQwIEWDfERWUEEEAAAQS8KTDvnRXy+oKP5PCR4z47mC5tatn4Ubh5TetUbtDF/Pf7s1+SQnfeFvke57UCd+SRpXNeNnVnLvxY1qzfJgcPHZF0aVJLofx5pFHdKvJotbLmfVevXpUln6yX95evkx/3/iGnT5+VbFkzSdn7i0qb0LqS77accaId+OsfmR2xXNZt+kYO/n1EkiVLJnnz5JBqFR+QZg0fkfTp0vh8/y+/HZD5i1fK5u0/yP6Dh+XylSuSLUtGyZUji2lb3393wbzmvTfi4zS268dfZdnqjaJ7hu37/aCcOnNWUqdKKfnz5ZbaDz8oTetXl5DkyWL07eNPN0rP4eHS9IlqMqBrM/l+zz6ZHbFMNm/fLcdOnJIsmdLLfcUKSfMna8q9RQuY9586fVbmv7tKPlm7SX7/85BcvnxZbsudQ6o+VFJaNa3j08BpJ7TBI9Kvc6js/vl3mROxXDZt2yX/HD0uadOmNuOvX6uiPFq9rCRJksSbJy+9QgABBBBAAAEELAQIsCyQqIIAAggggIDXBQaNmSX7DxyWPb/8LkeOnZQc2TJJ/ry5I7udJnVKmfzytdDKJsDSYOatqYOldfcxcvT4SQkJSS4hyZObfbOc0rxxTenSppG07ztBvvr6e/NjDcr06YaXL18xf06TOpXMndRXihTK55NQb+nrNXyqnL9w0byeNXMG0ZVS+qRELblyZpXpY3pI/ry5or1fw5u+I6bLpcuXzc8zpEsjSZImkeMnTkfW03BowWsDzZ9vxEfrL1+zSboPfS3yWJkypjPh1d+Hj0aO7cGSd8uMsT0lebLoIZYTLOnrDetUlv4jXzf91Dm4dPmKXPh3rPq+sYPbSeH8t0ubHmNMCKchkxqe/Hf82gEd+8LwQebnUYvTTqWy90rtqg/KwFGzTDspUoRIyhQh0Y6hQdj4IR3MPFIQQAABBBBAAIGEKECAlRBnjT4jgAACCCAQi0DXQWF+byG0CbD08BkzpJXbc+WQPp2elnuLFpSkSZPIgb+PyCuT35RPv9hqenB/icKy7dsf5YVm9aRp/WrXAqhLl+WLjd/IwNEz5djxU1KyeCF5M6x/jB7v3PWLhHZ8yQRCT9evJm2b1TMrqLTo6qdBY2ab1Ut58+SUd2cOl9SpUpjXNNx5uFFXOXvugoQ2qG7ep+1qOXf+gnmP9q9cqWJS4cES0dq18dE36Ioo3UusdtUyUrncvZI9ayZzHB3bnIhlMnHGO+bPr/RrI/VqPBStDSdY0v5evnJValQqJR1a1jeryq5cuSrf7dlnQq2f9+2XzBnTS+aM6eSfoyekb6dQqV6plBmnBoURS9bIuGmLzAq35595TLq0buiznbRpUplx61MnO7ZsIIXzX1tRp/OsK790VZaWZxvXlN4dmvJ3BwEEEEAAAQQQSJACBFgJctroNAIIIIAAAr4FbAIa2wBLw6SP5o2MsfJHw5KaTXtG3q7Y6bkG8sKz9WJ06J0PP5PBY2ebn69fEia6iilqadRmsAmq6j5STkb1bxvj/RqW1Xmmt1mx1Kfj09KsUQ1T56ut30urF0dLxvRpZf3SsBu6Nc7Gx+bcer7nWFm/+VsTcI0d1M5nsKQ/1NVR4SO7xTikjlvH75S5k/rJA/cUjlGv90vT5MNVX0rBO/PIktkvx9qOhnUzxvTwaTFu6iKZ9dbHJoBcGTFO/pc9i80QqYMAAggggAACCHhKgADLU9NBZxBAAAEEEIifgE1AYxtg6f5VXds08tmhF4dMkU/WbjZ7QK1bEhYj5NI36d5W1Z/qbt4/f8oAua9Ywchj7fxhrzR5Yaj585p3JppbHn2VHsPCzT5UGu5oyKPFea+2vWzBGLPnlW2x8bE5VvjcJRI26z2fq8ucFVh6nBlje0j5UsV9HrLC453M7ZkliuSXt8IH+ayje4v1e2WGcd6+ama0OlHbmTa6e4zVZk7lM2fPS+UGnUX/v8cLT0nLJrVthkgdBBBAAAEEEEDAUwIEWJ6aDjqDAAIIIIBA/ARsAhrbACtsRBd5uHxJnx0aNWWhzH37E7mrwO3m9j5fRW+XK1G1pXlJ97F6qPT/Bzm6IkhXBuntgcvmj4p10BoSaVikq602fDDF1NPj1m81QH7au19yZs8sLz7/pNSsUtpqfycbH5sZiFiyWoZNmCtFC98hb08fEmuwpBvnX793lVO5YetB8sNPv8kzDR8xtw/6Ks5qM31t+8rXo40xaoC16eOporcSxlZ0n7LPvtwhNSqXkglDO9oMkToIIIAAAggggICnBAiwPDUddAYBBBBAAIH4CdgENLYBVsS0wVL8rjt9dmjMa2/JnEXLpewDRWXmuF6xdrpYlRbmtamjukvFMv+/H9WQsXPk7Q/X3tBgv1s7J7K+3l7YbdBksxpLi+4lVadaWWlQp2Lkkwd9HdzGx3nfFxt3ysrPN8v3e36VPw8eNvtS6R5YUUtcAZbuZbVl+fRYx9j4+SFmv67OrRpK22aP+ay3adsP0rLbSPPa1hUzzObsTnECLN0cfvOyaXFaOoFjXKu9bmgyqIwAAggggAACCNxiAQKsWwxOcwgggAACCNxMAZuAxjbAen/2S1Lozmsbgl9fnABLV1Xp6qrYSmwBlnNroK5OyvO/bFYk16/00pVY+hTDBe+tks3bf4g8hm4a3+35xj73lLLx0Y3nuwyaLFt27DbHLJAvtwnFsmTOICn+fYrfju9/Nq/HFWDpJvgbll5bNearOAGW3qapt2v6KjYBVtTVabG1NWnmYpk27wOfe2lZ4VMJAQQQQAABBBBwWYAAy+UJoHkEEEAAAQQCKWAT0HghwBo4epa8+/Hnfldw2dr8ceCQ6Kbxi5aukeMnT5u3DenRQhrXrRLtEDY+nQZMktXrtkqWTOll4rBOPoOwGfM/NE8i9EKAlSJFiGxbMSNOqlcmz5c3F6+Ue4oWkIWvDbRlpR4CCCCAAAIIIOAZAQIsz0wFHUEAAQQQQCD+AjYBjRcCLGcT9OxZM8naxRPjP/B/j3Dy1BkZNGaWrPhsi6RKmUI+XTQ+2tMP/fnopuoVn+gsV69elWE9n5OGj1by2TcNrzTE8kKApR1ct2SyuY0yttK21zhZt2kne2AF7EzjQAgggAACCCBwqwUIsG61OO0hgAACCCBwEwWcpwPWr11RXurdymdLXgiwtu7cI806jTD9ezOsv3maX6DKxYuXpNxj7eXsuQvy+tieUq5UschD+/PRPan01j4ti6YNkWJ33eGzW7ovld7e55UAa9LwzlKt4v0++3rq9FmpVL+znL9wUXq2ayItnqoVKGqOgwACCCCAAAII3DIBAqxbRk1DCCCAAAII3HyBoePfMLfRxXWrmBcCLJWo/9wA2fPLHyYEmjupn+im54EoGtSUrdteLly4KHMm9pHS990deVh/PnorYs2mPU39cYPbS62HH4zRpS+3fCete4wxP/dKgHV/icLyxqt9JWnSJDH66+xXpq+tihhvntxIQQABBBBAAAEEEpoAAVZCmzH6iwACCCCAQBwCS1esl74jru2HNLRHS2lUt7L5b316XvJkSSVJkiTilQBr565fpFnnEaIrpgrnv006tWoo5R4oZoIsDaH+PnxUdu7aK6vXb5U6VctI1QrXVhjp5ulzIpZL3UfKSfnSxSVDujSRInt/OyDjpi6SNRu2SdbMGWRVxDjRPaKcYuNTO7S3/Lb/L8mbJ4e8Oryz6ZsWfQrhe8vWyYTpiyRTxvRy4K9/PBFghYQkN4bqo5vX58+by/RXb6ecufBjc6ujluaNa0qvDk35+4MAAggggAACCCRIAQKsBDltdBoBBBBAAAHfArrqqHHbIfLT3v2mgj6hLk2aVCa02rA0TNKkvvbflRt0Ma9f/6TBuF6L2mJ8n0LoHEtXM3Uf9pocP3Ft43UtunfVufMXog1wZL/n5bEa5c3Poq6A0j9rUKXjOnbilAlttOifw0Z0kTIli0Q7jo3P+s3fSvs+E+TS5cvmvXp8ffrgX4ePij75sOpDJaXjcw2kQauBngiwihTKZ8K8seERZu8unfPUqVKaeXbGoLcXjhvUXjTsoiCAAAIIIIAAAglRgAArIc4afUYAAQQQQCAOgWPHT8nkWe/K2g3b5dCRY5IuTWrJny+3zBrfy6xG8lKApcM4ceqMRCxZbfqrK6hOnj4jKUJCJFuWjFK0cD6pUr6k1KhcOvIWQw23lixfJ2u/3CE/7v3jWlBz6bKkTZNK8t2WU8qXKi6hDaqLbhDvq/jz0fd8t3ufWbn09Te7zVMN1bDgnXnkiVoVRPcXu3pVpHTttsb17enX9sxyysefbpSew8MlY4a0smHplFhnSvfa0j23urZpJG1C6/qsp/ts6X5bWraumCEpo6wmc9q5PXcOWb5gtHy7e6/Me3uFbN7xgxw5esKEeEUK55MGdSqZFWy6+o6CAAIIIIAAAggkVAECrIQ6c/QbAQQQQAABBIJawAmw9OmD+hRCCgIIIIAAAgggkJgFCLAS8+wyNgQQQAABBBBItAK2K70SLQADQwABBBBAAIGgEiDACqrpZrAIIIAAAgggkFgECLASy0wyDgQQQAABBBCwESDAslGiDgIIIIAAAggg4DEBAiyPTQjdQQABBBBAAIGbKkCAdVN5OTgCCCCAAAIIIHBzBAiwbo4rR0UAAQQQQAABbwoQYHlzXugVAggggAACCCAQpwABFicIAggggAACCASTAAFWMM02Y0UAAQQQQACBRCNAgJVoppKBIIAAAggggICFAAGWBRJVEEAAAQQQQAABBBBAAAEEEEAAAQTcEyDAcs+elhFAAAEEEEAAAQQQQAABBBBAAAEELAQIsCyQqIIAAggggAACCCCAAAIIIIAAAggg4J4AAZZ79rSMAAIIIIAAAggggAACCCCAAAIIIGAhQIBlgUQVBBBAAAEEEEAAAQQQQAABBBBAAAH3BAiw3LOnZQQQQAABBBBAAAEEEEAAAQQQQAABCwECLAskqiCAAAIIIIAAAggggAACCCCAAAIIuCdAgOWePS0jgAACCCCAAAIIIIAAAggggAACCFgIEGBZIFEFAQQQQAABBBBAAAEEEEAAAQQQQMA9AQIs9+xpGQEEEEAAAQQQQAABBBBAAAEEEEDAQoAAywKJKggggAACCCCAAAIIIIAAAggggAAC7gkQYLlnT8sIIIAAAggggAACCCCAAAIIIIAAAhYCBFgWSFRBAAEEEEAAAQQQQAABBBBAAAEEEHBPgADLPXtaRgABBBBAAAEEEEAAAQQQQAABBBCwECDAskCiCgIIIIAAAggggAACCCCAAAIIIICAewIEWO7Z0zICCCCAAAIIIIAAAggggAACCCCAgIUAAZYFElUQQAABBBBAAAEEEEAAAQQQQAABBNwTIMByz56WEUAAAQQQQAABBBBAAAEEEEAAAQQsBAiwLJCoggACCCCAAAIIIIAAAggggAACCCDgngABlnv2tIwAAggggAACCCCAAAIIIIAAAgggYCFAgGWBRBUEEEAAAQQQQAABBBBAAAEEEEAAAfcECLDcs6dlBBBAAAEEEEAAAQQQQAABBBBAAAELAQIsCySqIIAAAggggAACCCCAAAIIIIAAAgi4J0CA5Z49LSOAAAIIIIAAAggggAACCCCAAAIIWAgQYFkgUQUBBBBAAAEEEEAAAQQQQAABBBBAwD0BAiz37GkZAQQQQAABBBBAAAEEEEAAAQQQQMBCgADLAokqCCCAAAIIIIAAAggggAACCCCAAALuCRBguWdPywgggAACCCCAAAIIIIAAAggggAACFgIEWBZIVEEAAQQQQAABBBBAAAEEEEAAAQQQcE+AAMs9e1pGAAEEEEAAAQQQQAABBBBAAAEEELAQIMCyQKIKAggggAACCCCAAAIIIIAAAggggIB7AgRY7tnTMgIIIIAAAggggAACCCCAAAIIIICAhQABlgUSVRBAAAEEEEAAAQQQQAABBBBAAAEE3BMgwHLPnpYRQAABBBBAAAEEEEAAAQQQQAABBCwECLAskKiCAAIIIIAAAggggAACCCCAAAIIIOCeAAGWe/a0jAACCCCAAAIIIIAAAggggAACCCBgIUCAZYFEFQQQQAABBBBAAAEEEEAAAQQQQAAB9wQIsNyzp2UEEEAAAQQQQAABBBBAAAEEEEAAAQsBAiwLJKoggAACCCCAAAIIIIAAAggggAACCLgnQIDlnj0tI4AAAggggAACCCCAAAIIIIAAAghYCBBgWSBRBQEEEEAAAQQQQAABBBBAAAEEEEDAPQECLPfsaRkBBBBAAAEEEEAAAQQQQAABBBBAwEKAAMsCiSoIIIAAAggggAACCCCAAAIIIIAAAu4JEGC5Z0/LCCCAAAIIIIAAAggggAACCCCAAAIWAgRYFkhUQQABBBBAAAEEEEAAAQQQQAABBBBwT4AAyz17WkYAAQQQQAABBBBAAAEEEEAAAQQQsBAgwLJAogoCCCCAAAIIIIAAAggggAACCCCAgHsCBFju2dMyAggggAACCCCAAAIIIIAAAggggICFAAGWBRJVEEAAAQQQQAABBBBAAAEEEEAAAQTcEyDAcs+elhFAAAEEEEAAAQQQQAABBBBAAAEELAQIsCyQqIIAAggggAACCCCAAAIIIIAAAggg4J4AAZZ79rSMAAIIIIAAAggggAACCCCAAAIIIGAhQIBlgUQVBBBAAAEEEEAAAQQQQAABBBBAAAH3BAiw3LOnZQQQQAABBBBAAAEEEEAAAQQQQAABCwECLAskqiCAAAIIIIAAAggggAACCCCAAAIIuCdAgOWePS0jgAACCCCAAAIIIIAAAggggAACCFgIEGBZIFEFAQQQQAABBBBAAAEEEEAAAQQQQMA9AQIs9+xpGQEEEEAAAQQQQAABBBBAAAEEEEDAQoAAywKJKggggAACCCCAAAIIIIAAAggggAAC7gkQYLlnT8sIIIAAAggggAACCCCAAAIIIIAAAhYCBFgWSFRBAAEEEEAAAQQQQAABBBBAAAEEEHBPgADLPXtaRgABBBBAAAEEEEAAAQQQQAABBBCwECDAskCiCgIIIIAAAggggAACCCCAAAIIIICAewIEWO7Z0zICCCCAAAIIIIAAAggggAACCCCAgIUAAZYFElUQQAABBBBAAAEEEEAAAQQQQAABBNwTIMByz56WEUAAAQQQQAABBBBAAAEEEEAAAQQsBAiwLJCoggACCCCAAAIIIIAAAggggAACCCDgngABlnv2tIwAAggggAACCCCAAAIIIIAAAgggYCFAgGWBRBUEEEAAAQQQQAABBBBAAAEEEEAAAfcECLDcs6dlBBBAAAEEEEAAAQQQQAABBBBAAAELgf8DkYPGAIp+E5QAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdCbhVY///8c/ep1mzikQlQ0moRKJIk6SkkIhQaKCSSiQpSSJSCs1EpIkIEWkiQ4+kkCFDKlOa59p7/657+Z3T2Z19ztnnnD2s4b2u63/9f885a/jer+/99OjjXvfyhUKhkDgQQAABBBBAAAEEEEAAAQQQQAABBBCwqYCPAMumnaEsBBBAAAEEEEAAAQQQQAABBBBAAAFLgACLiYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDSRXY/O++iM8vXayAChVI0dZdB7X/YCCpNfJwBIxA+dKF5fNJf2zdp1AIEwTsIVCkYIpKFi2gvQcC2r77oD2KogoE0gmccGxh6z9l9r/3YCGQTIGSx+RXkUL5rD8/zZ+jHAjkRiD1z7ncXMs1CCCQMwECrJx5cXaMBQiwYgzK7eImQIAVN1punAcBAqw84HFpQgQIsBLCzENyKUCAlUs4LgsTIMBiQiCQOAECrMRZ86QIAgRYTAunCBBgOaVT3qqTAMtb/XbiaAmwnNg179RMgOWdXsdzpARY8dTl3giECxBgMSOSKkCAlVR+Hp4DAQKsHGBxasIECLASRs2DcilAgJVLOC5LiAABVkKYXf8QAizXt5gB2kiAAMtGzfBiKQRYXuy6M8dMgOXMvrm9agIst3fY+eMjwHJ+D908AgIsN3c3cWMjwEqcNU9CgACLOZBUAQKspPLz8BwIEGDlAItTEyZAgJUwah6USwECrFzCcVlCBAiwEsLs+ocQYLm+xQzQRgIEWDZqhhdLIcDyYtedOWYCLGf2ze1VE2C5vcPOHx8BlvN76OYREGC5ubuJGxsBVuKseRICBFjMgaQKEGAllZ+H50CAACsHWJyaMAECrIRR86BcChBg5RKOyxIiQICVEGbXP4QAy/UtZoA2EiDAslEzvFgKAZYXu+7MMRNgObNvbq+aAMvtHXb++AiwnN9DN4+AAMvN3U3c2AiwEmfNkxAgwGIOJFWAACup/Dw8BwIEWDnA4tSECRBgJYyaB+VSgAArl3BclhABAqyEMLv+IQRYrm8xA7SRAAGWjZrhxVIIsLzYdWeOmQDLmX1ze9UEWG7vsPPHR4Dl/B66eQQEWG7ubuLGRoCVOGuehAABFnMgqQIEWEnl5+E5ECDAygEWpyZMgAArYdQ8KJcCBFi5hOOyhAgQYCWE2fUPIcByfYsZoI0ECLBs1AwvlkKA5cWuO3PMBFjO7JvbqybAcnuHnT8+Aizn99DNIyDAcnN3Ezc2AqzEWfMkBAiwmANJFSDASio/D8+BAAFWDrA4NWECBFgJo+ZBuRQgwMolHJclRIAAKyHMrn8IAZbrW8wAbSRAgGWjZnixFAIsL3bdmWMmwHJm39xeNQGW2zvs/PERYDm/h24eAQGWm7ubuLERYCXOmichQIDFHEiqAAFWUvl5eA4ECLBygMWpCRMgwEoYNQ/KpQABVi7huCwhAgRYCWF2/UMIsJzb4ituuk+//v6nBvS8UR3aNnHuQDxUOQGWh5ptx6ESYNmxK9QUSYAAi3lhRwECLDt2hZrSCxBgMR/sLECAZefuOKc2Aizn9OroSgmwnNc7Aizn9cxVFRNguaqdrh4MAZar2+vYwRFgObZ1nimcAMszrXbkQAmwHNk22xVNgGW7lkRdEAFW1FS2OZEAyzat8GYhBFje7LsTR02A5cSuub9mAiz399jpIyTAcnoH3V0/AZa7+5uo0RFgJUo69s8hwIq9abzvSIAVb2Hun6UAARYTxCkCBFhO6ZT76gyFpK++9uv9D3zas8fnvgEyIgQQQAABBBwsMGl0fgdX7+3SCbCc138CLOf1zFUVE2C5qp2uHgwBlqvba9vBbdzk07y3/Prrb4Ir2zaJwhBAAAEEPC1AgOXc9hNgOa93BFjO65mrKibAclU7XT0YAixXt9d2g9u506cFC/1a+w3Ble2aQ0EIIIAAAgikE0hEgLVq7Y965fUP9L+vf9DWbTtVpHAhVT31JF3Z7CLr/6Wk+NMquqH7UK3+dr0ub1RXIwd1y7JXT0+crYnT5+v4sqW18LUn5fcf+eeOUCiktz/4VG+8t1zrftygXbv3qmSJoqpV4zTd0KaJzq9VLebz4Jvvf9WMeYu0cvX3+uffbfL5fDqubGmdXLG8ml1cR62aXZjhmf/8u10vzX5fH3+xVhv/+EcHDh7SsSWLq/bZp+nalpdmWWc0AVYs7v/Jm+NUovgxVv8mvPyW1nz3s3bs2qMGdc/W8yPuibmjm29IgOXm7jpgbARYDmgSJVoCBFhMhEQIHDokLfvYp8VLUxLxOJ6BAAIIIIAAAnkUiHeANWrCLE165W2rynwpKSpVspgVJu0/cND62QW1q2vMIz11TJFC1n9+/d1lGjhisgoUyK8lc0ereNEiEUdoAqqm7fvqj7/+1R03tlKv265OO2/vvv3qMXCMPv3ft9bPChUsoGJFi2jb9l06HAhYP+vUvoX6dG2XR73/Lje1PDl+pqbOeDfT+5mgbviA28N+v3DpSt03bEKaRcEC+ZU/fz7t3rMv7byrr7hYg+652bI7+sguwIrV/d988VF98dU6PfL0S9ZYU48ObZtoQM8bY2LolZsQYHml0zYdJwGWTRtDWRkECLCYFPEW+HqtX+8v9GnnrsirrqpVC6pFs5BKljzyDz5s4h7vrnD/vAqwiXteBbk+ngJs4h5PXe/cO56buL8wc4GeeHaGTDDTr3t7XdW8gQoXKqBAIKglK77Sg09M0fYdu3VF4wv0+INdLfR9+w/qkrY9tWfvfj3Yu6Pat24UsRlmNVDHno9av3v7pcdU+aTj0867a8BoffTJKp1wfBkN6n2zLqxzprXKa+++A3r1jQ/19MRZCgZDGtz3Fl3bsmGemz3+pbc0ZvIc6z5tLm8gE+ycUukEHQ4E9fvmv7Vi5TeqU7OqalQ9Oe1ZX675QTf3Gm7VcemFtdSjc1tVPeUk6/dbt+/S3HeWauyUuTp0OKDrr2qsgXfflKHOrAKsWN7/zluu0rMvzlONqpV1V6e2OqtaFZmQMF++FJU9tmSe/bx0AwIsL3XbhmMlwLJhUygpogABFhMjXgKb//DprXf82rQpcnBVtmxIrVoEVbnSkeAqtRYCrHh1hfvGSoAAK1aS3CceAgRY8VD13j3jFWD9u22nmlzXRwcPHtLD/TrJrCQ6+nhv8ee6Z/Cz1o/nTHpY1U6taP3fD4+aptfmLbICn9fGPxSxKUOefEEz31qsc6qfoleefTDtHBNcmQArf74U656nVK6Q4fqho6ZZr/odW6q4PnjtSWu1V26Pv7dsV9Pr+lgru7rc1Eo9Ox9ZCZbVPa+85QGt/3WTFV49M6yn9bphVj4znhuks86oEnZKVgFWLO9vHnrReTU07tG7rRViHLkXIMDKvR1XxkCAACsGiNwiIQIEWAlh9tRDdu/26b0PfFr99ZF9K9IDFCkcUuNGIdWpHVSEfyazTiXA8tSUceRgCbAc2TbPFE2A5ZlWx3Wg8Qqwpsx4R08+P1OVTjxO77w8ItMxXNK2l7Zs3aFuHVvrrk5trPO++/E3XXP7f8HVvKnDdOrJ4SGUWZV0SZue1j5MD/W5Re1aHVlF1bX/U1r22de6puUlGtL31ojP/WXDH2rZ8X7rd1NG9VfdWmfk2jh19VWpEsX00exRUQU8ZnXUTT3+Wz1mXs8zq7UyO67vPlRff7ve2ivs6FcQMwuwYn1/s2ru/RlPqnTJYrl24sL/BAiwmAlJFSDASio/D8+BAAFWDrA4NUsBs3XExytStHSZTwcPZTzV75fOrxNU44YhFSyUcdVV+isIsJhsdhcgwLJ7h7xdHwGWt/sfq9HHK8CKJkgyYzCvAZrXAZs0OFejh/ZIG9a1dwzWtz/8qlvaNbdeP0x/pK6yOnqfLPM6Xt0rulmvt40Y2EUtm9SLyGQCsNrNbrNe3xvQs4M6tG2aa847+o20NmA3G7Q/NuCOqO5jNkIfPWmO9Yrjwhkjs7wm9dzjypbSolmjws7NLMCK9f3Tv+IZ1QA5KVMBAiwmRwaBC1p2tzYGzOwwf5CZP9AiHWbTwNnzl+inXzcpEAio0onH66rm9a0vVaT/OkbqtQRYTECnCBBgOaVT9q7zm+/8em+hT9u3R35dsMrJQbW6IqRjS2cdXKWOkgDL3v2mOokAi1lgZwECLDt3xzm1xSvAanFjf/228a+oIcxXAaeOui/t/JlvfqQhT71ovea3aPaosE3M+wx5Vgs++lzNLz1fTz7UPe0a88W9hlffHfUzzYl33tpG3W9unaNr0p+cOk7z6qB5hTCaY9ATUzTn7aWqV+dMTRrZL8tL3l+yUr0fGmud89UHk61XI1OPzAKsWN+/9x3X6rYbrohmaJyTjQABFlMkTMCk6TWbdFaRwgUjvu9sTm5w/lnWH1RHH/c/OlFvvv+x9YdCrbNOU/58+axPuJqvQNQ//yyNG353hq8/EGAxAZ0iQIDllE7Zs84///Jp/tt+bdgYObg69tigWlwmnXZqMEcDIMDKERcnJ0GAACsJ6DwyagECrKipODELgXgFWKmvBpYrU1Lm9brsjjOrnqyh93ZKO81s4m42czebuj8zrJcaXVTL+p1ZXdXgqp7Wl/ueH3GPGtQ9O+2a9K8Gmk3dzebx2R3XXXmprstko/jsrjW/Tx3nfXfdoJuuaRbNJer78HN6d9FnalS/tp55pGeW1yz7bI269n/SOufjeWNVskTRtPMzC7Diff+oBslJEQUIsJgYYQKpqXuDumfp+RF9otYxwZUJsKpULK8JI/upfLnSaX9A3j1orLUstEentura8cqwexJgRU3MiUkWIMBKcgMc+vi9+3x6/wOfVn3lV7qvJqeNxrwi2OiSkM4/L6iUyFthZTlyAiyHTgwPlU2A5aFmO3CoBFgObJoNS45XgNX8hnutL/DlZGXS0TwDR0yWeUOmcYPaGjP0v6Dnrfc/0X2PTlCZ0iWsV+rSvyXz5z9b1fjae6zzXnrmAdU+67S4i192fT9t/OMf3X37Nbq9Q8uonjds9Et65fUPc74Ca+GksD22Mguw4n3/qAbJSQRYzIHsBdb9tEFX3zbIeu1v2H23ZX/B/59x1a0D9eMvGzV93EDVPPPUsOu27dhl/UFovriwZO5oFSpYIO33BFhRE3NikgUIsJLcAIc9PhiQVnyeosVLpAMHM666Mpuyn1s7qKaNQipcOLrXBSMREGA5bGJ4sFwCLA823UFDJsByULNsXGq8AqxOvUfos1XfKS/7J5m3YW7oPtR6Q2bpG8+oeNEiSt1b69b2l6tv1+vCZM3bOOe36Gp9+XBw31t0bcsjm7vHqwU39xqulau/V5vLG+iR/p2jekzqBvfR7IE1cfp8PT1xtsoeW1KL5zwddv/MAqx43z+qQXISARZzIHuBFSu/0W19n1Dn61voni7tsr9A0uY/t6hp+76qWKGc3p3+eMRr7hk8Tu8t/iJs+ao5kQArKmJOsoEAAZYNmuCQEtZ979eC933aui3y64KVKoZ0ZYugypbLfXCVSkGA5ZBJ4eEyCbA83HwHDJ0AywFNckCJ8Qqwnp/2pp6ZMtcKnT6cNcra4iU3R+pCAxMOmVfuLr6qpw4HAhG/Tmju3/mex/Xpl99GtbopN/UcfY0Jl0zIFGlFWGb3X//rJl15ywPWryN9ZTH9dR3ufERfffOTWjSuqyce7BZVgBXv+8fCzav34BVCr3Y+k3G//eGnunfo87r3zut187WXRaXz4bIv1fPBMWrZtJ5GPBB5c/cXZ72nx8e9ai0LNctDUw8CrKiIOckGAgRYNmiCzUv4Z4tfb8736bcNkYOrkiVDurxZSGdUy9k+V1kNmwDL5pOC8tjEnTlgawECLFu3xzHFxSvAMlu7mEUChw4dtvaYGtS7Y65Mps9dqEfHTFfDC2uq2SXnacDwiTqzamXNHD844v0WLl0pswWMOUYO6qbLG9XN1XOjvchsVG82cjdHTjY7v777UH397XprXGOH9ZLPLG8/6li0/Ev1GDjG+ukLT9+n82pWCzsjsxVY5qR43z9aH84LFyDAYkaECbw0+309NvYVK4wyyyx37Nwj82dBuWNLqU7Nqqpb64wMfzi88NoCPfHcDOurEeYd7UjHB8v+p14PPqPLGp6npwbfmXYKARYT0CkCBFhO6VTi69y3z6cPF/v0xcrI+1wVKBDSJfWlC+sFlHLkwzcxKZQAKyaM3CSOAqzAiiMut86zAAFWngm5gY58bTUeGKl/NzP3Nqunbr/hCpnN2s2+VeZDWX/+vdV6zXDRx1/qsQF3WH9/O/rYsWuP9WXBfCl+nV/rDC3+5CsN6HmjOrRtkmnJ5u9t5u9vfr9Pt7S7XNe0vESVTjxOoVBI23bs1qY//tGyz77W9+t/1+ihPfI89BHjXtW0We9Z97nluua6sW1TlT/uWAUCQf3973b9b/X32rl7r25o0zjtWT/9sknX3PGQFfA1aXCuFX6ZjefNYTaqf2PBxxr53AwdOHhIVza7SMMH3J6hzqwCrHjfP89oHr0BAZZHG5/ZsFNXSmX2+2qnVrQ+tZr6h4M5b+yU1/XctHnWO9TmXepIh/mD1bzHfcG51TX5yXvTTvl358GI5xcrkk8F8vm1a99hHTwUu9UKtBuB3AocW/y/vdu27joYcTPu3N6X65wrYDZl//QLs0m7+QelyOM4t1ZILZr5VLRo3l8XjPSEgvn9Klo4nw4cCmr3vsPOxaRy1wqk/tmZ2f/eu3bgDMwRAkULpahggRTrz0/z5ygHArkRSP1zLjfXRnON2Y9p1IRZCgb/+2cJs9LI7C1s9qlKf3w46ykdX/a/D2kdffQfNl7zF66wfmz2w5jsarIAACAASURBVFo8Z3TY1/iOPt98odBsAG++9Jd65Pv/fwtnXj9MPU46oZwWvBJ5C5loxpZ6jrnn4JEvWBvOpx4FCuS3wikTmpnDfEXRfE0x/fH5qnUyW9WYPZfNYb4waL6c+O/WndZrkuYwK8jM3s6RvqiYVYBlro33/XNixLn/CRBgMRMyCHzx1ToVK1pEZlM88671rt17tea7nzX1tXet/xKbZP+NKY+k/aH35PMzZf5gvb9HB914ddOIoqvW/qgb7xqmWjVO08tj/3tfmQMBBBBwqsDPv4X0wisBbf4zcjB1ciWfOl6XopMqRH6d0Knjpm4EEEAAAQQQSLzAhk1/afrcD6y9qTb/+a/2HzigQgUL6oTjj7U+oNX04jq66LwaEV+jM9WaTdLNZunmSP9FwuxGYhYhzH1nqVat+VFbtu6wQqGixxRWxQrH6fya1dSy6YU6vcqJ2d0m6t+bv2vOmv/Rf8/btlP58+Wz9sY6u3oVtWt1qc49+/QM9zLh1ez5S2Refdy4+R/t3X9Ax5Ysrpo1TtXVV1ysC+vUyPT52QVY5sJ43z9qHE60BAiwmAhRC5glnLf3fcJaptq145Xq0amtdW2OVmDVrq7JTx1ZgZXZv+3Kn+KzlqweCgQV5F+IRd0jToyfgFnpYg6zIjA+a2niVzt3jp3Art3SnDeD+uLLyLOgZAmpbSu/zq2ZmOAqxS/rlYBAMKTDAWZm7DrNnWIlkPpnJ6tbYiXKfWIpkC/FpxS/T4cDQQX4581Y0nrqXql/ztl50OaVurpXdLNWcZlVTGY1EwcCThQgwHJi15JY80efrNJdA0ar9lmn66VnBliVmPeVzXvL0eyBZd5PTv+eNHtgJbGZPDpHAuyBlSMuV568/JMUfbTYp0OZvKnX8OKALq4fUr58iRs+e2Alzpon5U6APbBy58ZViRFgD6zEOLv9KfHaxD2WbnPeXqpBT0xRqRLF9NGcp63XCDkQcKIAAZYTu5bEmn/4eaPadBpoLRV9fcojViVLVqxW9/tHRfUVwk7tW6hP13ZpIyDASmIzeXSOBAiwcsTlqpN//sWvN9/2aevWyKuqqlcLqkXzkIoXT/wKKAIsV001Vw6GAMuVbXXNoAiwXNPKpA7ECQHWdV2GaO33v1hfmTdfm4/1YVZ43dHvyRzd1nw98LYbrsjRNZyMAAEWcyBHAitWfqPb+j5hvUs8cWRf61rzPvQlbXupYoVyend65E38zOZ67y3+IsOnWAmwcsTPyUkUIMBKIn6SHr19u0/vvOfTuu//e3306KPMsUFddWVIFU9KfHCVWgsBVpImB4+NWoAAK2oqTkyCAAFWEtBd+Ei7B1iLPl6lHg+Mtr5cOH/aY9bf2WJ9mC8E1mvZPUe3bdviYg29t1OOruFkBAiwmAM5EnjgsUl6Y8Fy6zOl6RNzs0G72ah9+riB1kaC6Q+z8V3ja+9RMBTS0tfHqHjRImm/JsDKET8nJ1GAACuJ+Al+9OHD0tJlPi37JEXpPrSTVkWhQiE1bhjSeXWC8kfOthJWMQFWwqh5UC4FCLByCcdlCREgwEoIs+sfYrcAy3y1z3yp0ByLln+p+4dP1O49+3RDm8Z6oNdNru8HA3S3AAGWu/ub49E9PXG2WjW7UKdUOiHsWpOqT3j5LU2d8a71JYj504ZbXypMPZZ99rW69n9KVSqW14SR/VS+3H+fcDXLSXs/NE7LP1+jDm2baEDPG8PuS4CV4xZxQZIECLCSBJ/gx/74k1/z5vu0c2fk1wVr1wqqWeOQihRJ3qqr9CQEWAmeIDwuxwIEWDkm44IEChBgJRDbxY+yW4BlFhb8vvlv7d13wPq7mDnOOqOKpo66T4ULFXBxJxiaFwQIsLzQ5RyM0XydwiT05cqUVJWKJ6hwoYL6a8s2/bJhs/btP6jjypbSs8N7q9qpFTPcdeTzr1kBV/78+VSrxqkqkD+/Vn+7Xrt271X10yvrxdH3q0jhggRYOegHp9pHgADLPr2IVyXrf/Zr2nS/QhGyqYonhtS6ZVBly9kjuEo1IMCK12zgvrESIMCKlST3iYcAAVY8VL13T7sFWPc9OkHLP1uj3Xv26oTjy6hl0wvV+foWKlggv/eaw4hdJ0CA5bqW5m1Ayz5bozffX661637RX/9s06HDh1W0SGFVqXSCGtWvrXatGoatvDr6aWafq5fnLNT36zcoEAiqQvmyatGorm5tf3nEPzRZgZW3fnF14gQIsBJnnYwn/fmXT5OmpOjgofCnH3NMSC2aB3XWmfYKrgiwkjFLeGZuBAiwcqPGNYkSIMBKlLS7n2O3AMvd2ozO6wIEWF6fAUkePwFWkhvA46MWIMCKmspxJ5rXBZ+f5Nfu3eGvDV5SP6CLG4SU38b/wpIVWI6bbp4rmADLcy131IAJsBzVLtsWS4Bl29ZQmAsFCLBc2FQnDYkAy0nd8natBFju7L9ZcTVhUor+/ic8vLq+XVBnVAvaftAEWLZvkecLJMDy/BSwNQABlq3b45jiCLAc0yoKdYEAAZYLmujkIRBgObl73qqdAMt9/Q4GZe159fMv4Z8SvKxpUBfVs394ZTpCgOW+eem2ERFgua2j7hoPAZa7+pms0RBgJUue53pRgADLi1230ZgJsGzUDErJUoAAy30TZO48v75aHR5enVs7aG3W7pSDAMspnfJunQRY3u29E0ZOgOWELtm/RgIs+/eICt0jQIDlnl46ciQEWI5smyeLJsByV9uXLvfrg0Xh4VWVk4O6+cagfOFvE9p64ARYtm4PxUkiwGIa2FmAAMvO3XFObQRYzukVlTpfgADL+T109AgIsBzdPk8VT4DlnnZ/t86vV2eGh1flyoZ0x20BOe0L0wRY7pmXbh0JAZZbO+uOcRFguaOPyR4FAVayO8DzvSRAgOWlbttwrARYNmwKJUUUIMByx8TYuNGnSS+mKBg4Mp5ixULqdkdQRY8JOW6QBFiOa5nnCibA8lzLHTVgAixHtcu2xRJg2bY1FOZCAQIsFzbVSUMiwHJSt7xdKwGW8/u/datPz0/ya//+I+8IFixgVl6FVLaMc/a9St8JAiznz0u3j4AAy+0ddvb4CLCc3T+7VE+AZZdOUIcXBAiwvNBlG4+RAMvGzaG0MAECLGdPiL37fHp+gl/bdxwJr/x+6daOAVWq6LyVV6ndIMBy9rz0QvUEWF7osnPHSIDl3N7ZqXICLDt1g1rcLkCA5fYO23x8BFg2bxDlpQkQYDl3MgQC0oTJKfrjz/Dd2dtdHVCNM50bXpmOEGA5d156pXICLK902pnjJMByZt/sVjUBlt06Qj1uFiDAcnN3HTA2AiwHNIkSLQECLGdOhFBIenWWX+vWhW/a3vDioBo1dOZrg+k7QYDlzHnppaoJsLzUbeeNlQDLeT2zY8UEWHbsCjW5VYAAy62ddci4CLAc0ijKJMBy6BxY8L5fn3waHl7VqB5Su2vS7eLu0LGZsgmwHNw8j5ROgOWRRjt0mARYDm2czcomwLJZQyjH1QIEWK5ur/0HR4Bl/x5R4X8CrMBy3kz4fKVf898JD68qVw6qU0fnr7xK7QYBlvPmpdcqJsDyWsedNV4CLGf1y67VEmDZtTPU5UYBAiw3dtVBYyLAclCzPF4qAZazJsD6n/2aNt0v8wph6lHm2KD1xcFCBZ2971X6ThBgOWteerFaAiwvdt05YybAck6v7FwpAZadu0NtbhMgwHJbRx02HgIshzXMw+USYDmn+X/97bM2bT906EjNRQqH1L1rUMWLuSe8MqMjwHLOvPRqpQRYXu28M8ZNgOWMPtm9SgIse3Row6a/dHmH/hmKKVAgv4oXLaLKJx2vC+vUULsrG6pUiWIZzuv/yHjN/2BF2M/z50tR8WLH6JTKJ6jRRbV1bauGKlSwQJYDXvzJV1qw+HN9tfYn/btthw4HgipdopiqV62sJg3OVcsm9ZSSEv6GwI5de1S/9V3WfT95c5yKFS0S8Rk9Bo7RouVfql6dMzVpZL9M62hxY3/9tvEvTRnVX3VrnWGdd+k1d+vvLdvVqH5tPfNIzyzH8Pq7yzRwxGT16NRWXTteaY8G/38VBFi2aof3iiHA8l7PnTpiAixndG7nTp+en+TX7t1HvjiYkiLddmtAFU5wV3hFgOWMOen1KgmwvD4D7D1+Aix798cp1RFg2aNTqQFW4UIFVPus09OKOnDwkP7esk0bNv1t/axEsWM0cWQ/nVm1cljhqQHWqSdXUJlSJazfHTx0SH/+s02b/9xi/edKJx6nqaPu03FlS2UY9JatO9T7oXH6cs0P1u+OKVJIFY4vo3z58lnPN783R5WK5TXmkZ46uWL5sHu07zpEa9b9YoVLJmQ6+jh06LAuvPJO7d13QPlSUrR83jMRg66//tmmRtf2toK2FW+NkwnwzJEaYJn/+4kHu6lF47qZNo4Ayx5zmipsKECAZcOmUFJEAQIs+0+Mg4ek8RP9+mdL+L/V6nB9UFVPc8++V+k7wQos+89Lr1dIgOX1GWDv8RNg2bs/TqmOAMsenUoNsMxKq7dfeixDUSaEGjRyqlas/EZnnFZJsycOCTsnNcCKFO6s/3WT+gx5Tj/+slENL6ypcY/eHXbtrt171a7LYCskO6VyBfXrdp21SsoETanH9+t/15jJc2RWaJkQ7bXxD+mkE8ql/X70pDma8PJb6tC2qQb07JCh/uWfr1GXe59U6ZLFtHX7rkxDqLfe/0T3PTpB9c8/S+Mf75N2HxNgmTr37T+okiWK6q0Xh1v3inQQYNljTlOFDQUIsGzYFEoiwHLgHAgGpZde8cvsfZX+aNo4qAYXuTO8MuMkwHLgZPVYyQRYHmu4w4ZLgOWwhtm0XAIsezQmuwDLVGmCn4vb9FQoFLJWMKV/lTCrAMtcu/63zbry5gHy+336+M1x1muJqYd53c6EPtVPr6wXnr7PWn0V6TDPffDxKda551Q/Ra88+2DaaZ+vWqdbez8mswJs3tRhGS4fNvolvfL6h+p+c2s9++I8Xd6orkYO6pbhvNRa+nVvr1vaNQ8LsEqXLK5TK1ewXpVsfun5evKh7gRY9pi+VOEUAQIsp3SKOlmBZe858Po8v1atDg+vap0TVJvW7g2vCLDsPSep7j8BAixmgp0FCLDs3B3n1EaAZY9eRRNgmUrPb9FVe/bu16JZo8JeBcwuwDLXXtT6Lm3fsVtzJj2saqdWtAb+5z9b1ax9XwUCQSt4MgFUVodZAdX8hn7WK4WTn7pXF9Subp1uXhGs16q7tUJq6etjdGyp4mG3Mc8wrwcufWOMLru+3/+HcGNl9ulKfzRt39d65fH1KY/o9ConhgVYBfLn12vPP6Qrbxmgf7ft1JihPdW4QcbXFVmBZY85TRU2FCDAsmFTKCmiAAGWfSfG8k/8ev+D8PCqUsWQbu0YkD/8x/YdRC4rYwVWLuG4LGECBFgJo+ZBuRAgwMoFGpdkEEhUgLV6bUi//u7ufzGXHrdmDb8qnXRkT9Pspl40AVbq/lDmFb6P3xwrn+/I/aMJsC5o2d16De/9GSOt/a3M8dq8RXp41DTVOaeqXhx9f3ZlWr8f+fxrmjrjXbW78lI9dM/Nadd07f+kln22JsPrgT/9skmtb31A5559uqaNGaB+Q5/TOx9+pokj+1ob06ceG//4xwq3ypQuoSVzR4fVYl4hPHw4oGVvPKP3Fn+hewaPs85788VHrVca0x8EWFG1kZO8KECA5cWuO3PMBFj27Nu33/k1Y1Z4SlW6dEhdbw+qUEH3bdp+dBcIsOw5L6nqiAABFrPBzgIEWHbujnNqS1SANe21gJZ+4p0A66brUnTJhdH/m8jsAqzde/ap78PPadlnX1t7TJm9ptIf2QVY33z/q7XPldk3avGc0WlfEnzgsUl6Y8Fy62t95qt90RzmS4Lmi4JmFZdZzZV6vDBzgZ54doauaXmJhvS9Ne3nE6fP19MTZ6v3HdfqthuusMIrE2Jdf1VjDbz7prTz5ry9VIOemKKWTetpxANdMgRYZnXXp/OftX5+96CxWrh0pVpfdpEevf92AqxoGsc5CBBgMQecIkCAZb9Obdrs06QpKQqk+2e5IoVD6nJHUKVKuD+8Mh0hwLLfvKSicAECLGaEnQUIsOzcHefURoAVn17lNsAqUriQLjrvyKqkQDCordt26rsff7O+InjLdZdboc3RR1YB1s8b/lDPgWP0y4Y/NKDnjerQtkna5WZjdbPB+tB7O6lti4ujwlj30wZdfdsgKwwzK6JSjx9+3qg2nQZam7sveOXxtJ/feNcwrVr7Y9orimYVWP3WPawVVB/OeirtvNQxmEDq6DGaFVgmxPvi3fHW+eYVRvMq4Y6de/T8iD5qUPestPuwAiuqNnKSFwUIsLzYdWeOmQDLXn3btsOn8RP82rvvyNLvFL90W6eAKpzgjfCKAMtec5JqIgsQYDEz7CxAgGXn7jinNgKs+PQqtwFWZtXkz59PzS6uY21e3qh+xn2fUsMfsyqqXJlS1m3MK3d//v2vTIBlrr/zlqt0e4eWYY9IDZfMhupmY/VojtTVYgUK5Neq9yeGXXJJ215WuLRwxkidcHwZK2Cqf9VdKl/uWOvVxdSjU+8R+mzVd5o1YbC1ebw5Gl59t/75d7s+mv20ypUpGXbf1K8QrlwwIe3nqV8sPL5saetVwtTN5wmwouki53hSgADLk2135KAJsOzTtn37fBo/2a+tW8P3RWh/bVDVz/DO0noCLPvMSSrJXIAAi9lhZwECLDt3xzm1JSrAYg+srOdEZq8Qms3Vd+zaozXf/axJr8zXl2t+jPgFv9QAK9JTzKouE/CUL1c6w69juQLL3Lz/sPGav3CFHunfWW0ub6DUkMms+jKrv1KPl2a/r8fGvqJuHVvrrk5trJCtVcf7dUrlCnrzhYxfMYwUYJl7db9/lJasWK12rRrqoT63WLcnwHLOnz9UmmABAqwEg/O4XAsQYOWaLqYXBgPSpBdTtHFjeHjV+NKgLmngrfCKACumU4ubxUmAACtOsNw2JgIEWDFh9PxNEhVgeR46G4Ds9sAylx8OBHRdlyEyr/CNGNhFLZvUS7trpFcIQ6GQbrjzEX397Xr1v/N6dbz2sgxVDBwx2Qp8UoOkaPr00SerdNeA0Rn2wDLXmv20zL5arZpdqMcG3JG2YfuEJ/qGvRqZumF76j5aqZvJ33RNM9131w0ZysgswDIb25tXCc3rhVNG9VfdWmdo3nsfa8DwidaeXmZvLzsdvpDpCgcCSRIgwEoSPI/NsQABVo7J4nLB7Ll+fb02fEPPs2sEdU1b74VXBFhxmWLcNMYCBFgxBuV2MRUgwIopp2dvRoBlj9ZHE2CZSlM3RDerm8wqp9Qjsz2wzObt13UdosKFCurtlx7L8GrezDc/0pCnXtT5tapp6qj7osJ4avxMTX71HV3XupEG9e4Yds3fW7bLhE3mK4fvvfqELm7TU/sPHNQnb46zXmNMf1x5ywNa/+sm64uDZjXWu4s+03OP9dbFF5wTdYBlTpw9f4keGjlVJ5YvqzemDtPiT1ZZG94TYEXVTk7ykgABlpe67eyxEmAlv3+LFvu1eGl4eFWpYki33hSQPyX59SWjAjZxT4Y6z8yJAAFWTrQ4N9ECBFiJFnfn8wiw7NHXaAOs1C/9XVLvHD07vHe2AZY5YfDIFzRr/mJd1vA8PTX4zgyBU9Pr+liru+ZPG66TK5bPEuTAwUNqfkM/maDKBF4m+Dr6uPLmAVr/22ZNGtlPt/V9Qo0b1NaYoT0znGe+TGgCObP/1hPPzdC/W3dqxfxnVaRwwRwFWObkzn0e16f/+1Y3Xt1U9c49U3cOeJoAyx5TmyrsJECAZaduUEtWAgRYyZ0fZtWVWX2V/ihdOqQunYMqXNi7C4kJsJI7L3l69gIEWNkbcUbyBAiwkmfvpicTYNmjm9EGWKl7PpnXAc1rgalHVl8h3L5jt1rc2N/aS2v8431U//wjX+wz16e+Rnh29VM05an+KlyoQKYow0a/pFde/1C1zzpNLz3zQMTzHh0zXdPnLrRecZz/wYpMv3C4+tv1uqH7UF3VvL716mGdc6rqxdH3R7xnZq8Qpp686c8tuurWB7Rv/0H17NxWoyfNIcCyx9SmCjsJEGDZqRvUQoBlzzlgNm1/crRfBw8e2feqUKGQunUJqlQJ74ZXplsEWPacs1R1RIAAi9lgZwECLDt3xzm1EWDZo1fZBVgHDx7S1NcWaMzkOfL7fZozaahOr3JiVAGWOWnGvEUaOmqaKlYoZ71mV7BA/rRrd+3eq3ZdBmvDpr91xmmVdG/363Vezary+Y78s+tvG/+yQqH3Fn+ukiWKaub4wdZrgpGOxZ98Za2AMkGYCZTMK4JlSpfIcGowGFLDq3tp7779/x88Xa0uN7XKVYBlLpo+9wM9OuZla2xmpRivENpjblOFjQQIsGzUDErJUoAVWMmbIG++7dfK/x1ZfZXilzrdHNBJJ3k7vCLASt6c5MnRCxBgRW/FmYkXIMBKvLkbn0iAZY+upgZY5vW5C2pXTysqGApp5649WvfT71bQk5Li18C7O1pf3Ut/ZLUCy5xnwqJr73jI2gC++82tdeetbcKu37J1h+4eNFar1v5o/bxUiWI68YSyyp8vRX/+s02b/9xi/fyUSidozCM9Vfmk4zOFM3XWa3mn9Vpijaon67XxD2V6burqL3PCjOcG6awzquQ6wDLbo3fsOVxfrvnBugcBlj3mNlXYSIAAy0bNoBQCLBvOgb/+9mnc8+EbXF3aMKRLLw7YsNrEl8QKrMSb88ScCRBg5cyLsxMrQICVWG+3Po0Ayx6dTQ2wIlVjVhQdX660zqtZTR3aNg1beZV6fnYBljnvq29+Uoc7H7E2U583dZgqnXhchseZLwwuWPS5FWRt3b5TgWBIpUoU1ZlVT1bTi8/VFY3rWSFadsdNPR61giQTlJnALLNj0fIv1WPgGBUrWkQfzxub6b2ze4Uw9f5mpVibTgNZgZVdg/i9NwUIsLzZdyeOmhVYyena5BdS9NuGI8uvixYNqU+vgFI8umn70V0gwErOvOSp0QsQYEVvxZmJFyDASry5G59IgOXGrjImuwr4QmadGAcCSRIgwEoSPI/NsQABVo7J8nzB2m98mjknPKlq1zagGjX4n61UXAKsPE8zbhBnAQKsOANz+zwJEGDliY+L/1+AAIupgEDiBAiwEmfNkyIIEGAxLZwiQICV2E4FAtLTY1O0Y8eR1VeVKobU+RZeHUzfCQKsxM5LnpZzAQKsnJtxReIECLASZ+3mJxFgubm7jM1uAgRYduuIx+ohwPJYwx08XAKsxDZv8RK/Fi0J3x/grm4BlSvL6isCrMTORZ6WNwECrLz5cXV8BQiw4uvrlbsTYHml04zTDgIEWOm6YHb537N3v0oUOybT3iz9dLVWrf3J+prApRfVsj6TyZF7AQKs3NtxZWIFCLAS5717t09PPp2iQPDIM8+rHVSrlul+kLhybP0kVmDZuj0UJ4kAi2lgZwECLDt3xzm1EWA5p1dU6nwBAqx0Pfxk5Vr1HDhGd3Vqq1vaNQ/rrtkqrN/Q5/Xuos/Cft6nazt1at/C+TMhSSMgwEoSPI/NsQABVo7Jcn3BzLkpWrv2yKuDBQqYjduDKlyY1VdHoxJg5XqacWGCBAiwEgTNY3IlQICVKzYuOkqAAIspgUDiBAiw0lkPHTVNM+YtUu87rtVtN1wR1oXZ85fooZFTrZ/Vq3OmDh06rJWrv7f+86wJg1X99MqJ65qLnkSA5aJmunwoBFiJafDGTT5NmBy+cfvllwVVry6rryJ1gAArMfOSp+RegAAr93ZcGX8BAqz4G3vhCQRYXugyY7SLAAFWuk5ce8dgffvDr3rzhWE6pXKFtN8EAkE173CvNv+5Rf26tdct1/23Omv0pDma8PJbuqblJRrS91a79NRRdRBgOapdni6WACv+7TffxH1uQor+/OvI6quyZYK6s2tQ/vDtsOJfjEOeQIDlkEZ5uEwCLA833wFDJ8ByQJMcUCIBlgOaRImuESDAStfKS9r20tbtO7Vq4STlSzmyAsDse9XtvlGqfNLxeuvF4fL7//vL1dbtu3Rxm5462fx82nDXTIpEDoQAK5HaPCsvAgRYedGL7tr/fenTvPnhq6/MVwfN1wc5IgsQYDEz7C5AgGX3Dnm7PgIsb/c/VqMnwIqVJPdBIHsBAqx0Rmc37qRSJYppydzRYXL3DH5W7y3+XAPvvknXX9U47Hf1W/fQ/gMHtHLBhOy1OSODAAEWk8IpAgRY8e3UgYM+jRrt1959R1ZfVasa1A3X8epgVvIEWPGdl9w97wIEWHk35A7xEyDAip+tl+5MgOWlbjPWZAsQYKXrwPktusq8wvLFu8+n/XT7jt1qeM3d8vl8VrBVvGiRsJ5ddn0/bf5ri9Ys+m9/LI6cCRBg5cyLs5MnQIAVX/t3F/q1YsWR9wTNK4N39wioZAlWXxFgxXfucff4ChBgxdeXu+dNgAArb35c/Z8AARYzAYHECRBgpbNu12Wwvvn+V82fNlwnVyxv/ebZF97QuBfeUMsm9TRiYJcMnbmgZXcFAgF98e74xHXNRU8iwHJRM10+FAKs+DV461afRo9Lsf4FQurR4KKgmjZm9VV26qzAyk6I3ydbgAAr2R3g+VkJEGAxP2IhQIAVC0XugUB0AgRY6ZzGTnldz02bpwtqV9e9d16v9b9u1gMjJungwUOa8dwgnXVGlTDVP/7eqibt7lGViuXZAyu6+ZbhLAKsXMJxWcIFCLDiR/7iy36t//nI6quiRUPq3SOg/Pnj90y33JkAyy2ddO84CLDc21s3jIwAyw1dTP4YCLCS3wMq8I4AAVa6Xm/bsUtX3jzA2pw9/XFV8/oadt9tGWbFy3MWavgz09WyaT2NeCDj6izvTKPcj5QAK/d2XJlYAQKs+Hh//4NP02eEb9ze9qqARstDrQAAIABJREFUap7Nq4PRiBNgRaPEOckUIMBKpj7Pzk6AACs7IX4fjQABVjRKnINAbAQIsI5y/PGXjRry5ItatfZHFS5UQG0ub6B+3dqrQIGMSwHadx2iNet+0dhHe+nSC2vFpiMeuwsBlsca7uDhEmDFvnnBgDTm2RRt3XZk4/YKFULq0jkQ+4e59I4EWC5trIuGRYDloma6cCgEWC5sahKGRICVBHQe6VkBAqxMWn84EFC+lPBVAUefGggEFVIo2/M8O7uiGDgBVhRInGILAQKs2Lfh4xV+vbfwyKuD5gndugRU/jhWX0WrTYAVrRTnJUuAACtZ8jw3GgECrGiUOCc7AQKs7IT4PQKxEyDAyoNlKBTSvv0HrAAr0gqtPNzaM5cSYHmm1Y4fKAFWbFu4Z69Po8b4dfDgkdVXNc8JqW1rVl/lRJoAKydanJsMAQKsZKjzzGgFCLCileK8rAQIsJgfCCROgAArnXXdK7rp/JrV9MywXlF14NChw6rTvIvOrl5FLz3zQFTXcFK4AAEWM8IpAgRYse3UG2+m6MuvjoRXBQqE1LtnUMcUYfVVTqQJsHKixbnJECDASoY6z4xWgAArWinOI8BiDiBgDwECrHR9OLPhLdYXCCc/dW/U3Wl87T3WKqxP3hoX9TWceESAAIvZ4BQBAqzYdWrzHz49PzH8Fe3LmoZ0UT1WX+VUmQArp2Kcn2gBAqxEi/O8nAgQYOVEi3MzE2AFFnMDgcQJEGDlMcCq17K79u47oNUfTk5c11z0JAIsFzXT5UMhwMp7gw8flpZ/kqJly306dPjI/UqXCqln94D8WW87mPcCXHgHAiwXNtVlQyLAcllDXTYcAiyXNTRJwyHAShI8j/WkAAFWHgKsmW9+pCFPvajy5Urrg5lPeXIC5XXQBFh5FeT6RAkQYOVN+uu1fr3/gU87dx55bTD1jh3aB1T1dF4dzI0wAVZu1LgmkQIEWInU5lk5FSDAyqkY50cSIMBiXiCQOAFPB1iLP/lKS1Z8laY9863FKlempBrWq5llBw4dDmj9b5v19bfrrfPat26kB3t3TFzXXPQkAiwXNdPlQyHAyl2DzeuC89/1a+PGjMGVueP55wXV8vJg7m7OVSLAYhLYXYAAy+4d8nZ9BFje7n+sRk+AFSvJvN1nw6a/dHmH/hluYj62VrxoEVU+6XhdWKeG2l3ZUKVKFMtwXv9Hxmv+Byv0xIPd1KJx3WyL+XDZl+r54Bg1vbiOnn74rizPX/v9L7quyxBVP72yZk0YHHZu6nOzusGxpYpr6etjsq3JCyd4OsCaNX+xho1+WWYz9twep55cQS8+fb9Kliia21t4+joCLE+331GDJ8DKWbt27/ZpwUKfvl7jj3jhCeVDurJlUOb/58i9AAFW7u24MjECBFiJceYpuRMgwMqdG1eFCxBg2WNGpAZYhQsVUO2zTk8r6sDBQ/p7yzZt2PS39bMSxY7RxJH9dGbVyhGDpGQFWCZgixSsmSJLFi+qsY9G96E5e3QjflV4OsAyrHv37dcnK7/R/IUrtHDpSpUuWUznnl01S3G/36cSxYuqVo1T1bzh+TKpLkfuBAiwcufGVYkXIMCKzjyzfa5Sry56TEhNm4RU8+ygfJEXZUX3IM6yBAiwmAh2FyDAsnuHvF0fAZa3+x+r0RNgxUoyb/dJDbBMEPT2S49luNnmP7do0MipWrHyG51xWiXNnjjEVgFWtMFZ3pScf7XnA6zUFppVWE2u66NTK1fI0VcInT8FkjsCAqzk+vP06AUIsLK3ymqfK79fqlc3oEsbhkTmn71ltGcQYEUrxXnJEiDASpY8z41GgAArGiXOyU6AACs7ocT8PrsAy1SxdfsuXdymp0KhkJbPeyZsxVOyXyEkwIpunhBgpXN6afb7+vGXjXq4X6fo9DgrzwIEWHkm5AYJEiDAyhza7HP11jt+bdoUeUlVlZODat0qpFIleV0w1tOVACvWotwv1gIEWLEW5X6xFCDAiqWmd+9FgGWP3kcTYJlKz2/RVXv27teiWaN0XNlSacUTYNmjj9lVQYCVnRC/twS+XPOjbu71qILBkF4b/5BqVD05oszr7y7T7PlL9NOvmxQIBFTpxON1VfP6uqFNE6WkZNwLhwCLCeYUAQKsyJ368Se/Xn7Vr1CEbKp06ZCuaB7SaaeySXu85jkBVrxkuW+sBAiwYiXJfeIhQIAVD1Xv3TNRAdahlcsV+Pl7zwDnr3ORUqpUi3q80QRYf/2zTY2u7W3tg/Xxm2PlS7efBQFW1NRJPZEAKx3/qrU/6tff/1SzS87TMUUKZduYZZ99rV82/KFLL6qlk04ol+35Tj1h1+69atP5Qf3x17/WEDILsO5/dKLefP9j5c+Xolpnnab8+fJp9bfrtXvPPtU//yyNG3638qWkhDEQYDl1VnivbgKsjD03K68mTklRIBD+u/z5ZL0qWP/Co37hvWkT9xETYMWdmAfkUYAAK4+AXB5XAQKsuPJ65uaJCrD2TnhcBz940zOuRe7opwJNWkc93uwCLPN30r4PPyfzd/gBPTuoQ9umYfcmwIqaOqknEmCl4+8/bLy1mfsdN7ZSr9uuzrYx02a9pxHjXtUt7ZqrX/f22Z7v1BP6DHlWiz5epQZ1z5L5XGikAMsEVybAqlKxvCaM7Kfy5UpbwzWb5N89aKw+/mKtenRqq64dryTAcupE8HjdBFjhE2D7Dp8mTPJr957w1wZrnhNUsyYhmc3aOeIvQIAVf2OekDcBAqy8+XF1fAUIsOLr65W7E2DFp9O5DbCKFC6ki86rkVZUIBjU1m079d2Pv6nSicfplusuV+vLLspQdLIDLPP36NKlikfEbN+6kS5vVDc+0A67KwFWuoa1vvUB/fTLJr30zAOqfdZp2bZy/W+bdeXNA3R6lRP1+pRHsj3fiSfMfWepHnx8iu68tY21Asv850gB1lW3DrT2D5s+bqBqnnlq2FC37dilxtfeo/z582nJ3NEqVLBA2u9ZgeXEWeHNmgmwjvR9/wGfJk726Z8t4a8Fd2gfVNXTeV0wkf8NIcBKpDbPyo0AAVZu1LgmUQIEWImSdvdzCLDi09/cBliZVWP+Ltrs4jpqfun5alS/tu0CrKwU+3a9Tre2vzw+0A67KwFWuobVa9ldO3fv1cfzxqpkiaLZtvLAwUOq3ex261xzjdsO8zrlNbcPsr7M+PK4gXpg+CTN/2BFhgDLfJK0afu+qlihnN6d/nhEhnsGj9N7i7/QM8N6qdFFtQiw3DZZPDAeAqz/mhwMSFNfStFvG8JXXl3WNKiL6hFeJfq/CgRYiRbneTkVIMDKqRjnJ1KAACuR2u59VqICLPbAynoOZfYKYSAQ1I5de7Tmu5816ZX51t7OZjXTyEHdwm6Y7BVYfIUwuj8jCLDSOdVs0lmHDgf09YdTIm44HonUBFjmvxSrP5wcnbhDzjION3Qfau0JNmfSw1Y4Zd4ZfnfRZxkCLPNaYc8Hx6hl03oa8UCXiCN8cdZ7enzcq7q9Q0vdffs1BFgOmQeUeUSAAOs/i5mzU7T22/DwqtY5QbVpTXiVjP++EGAlQ51n5kSAACsnWpybaAECrESLu/N5iQqw3KkXu1FltweWedLhQEDXdRmidT9t0IiBXdSySb20AnIaYC1a/qV6DByjphfX0dMP35XlQNZ+/4v13DOrVtbM8YPzFJzFTsyZdyLASte3hlffrX/+3a73Z4xUhePLZNtRk+Re2OpOHVuquJa+Pibb8510whPPzdALry3Q8AG368pm/70jbPbCWvDR5xkCLHOeOb/LTa3Us3PkvcM+WPY/9XrwGV3W8Dw9NfhOAiwnTQZqtQQIsKQPF/u1ZGn4a4OVKoZ0a8eA/Bk/MsrMSYAAAVYCkHlEngQIsPLEx8VxFiDAijOwR25PgGWPRkcTYJlKJ06fr6cnzlabyxvokf6dcx1gffq/b9W5z+PWPtHPj+iTJcIXX63TLXc/prq1ztCUUf0JsPIwZQiw0uGZBNUkqWaFkFkplN3x2rxFenjUtKgmbXb3stPvP1m5Vrf3HWkl0iaZTj0yC7DGTnldz02bp6zezf1s1Xfq1HuELji3uiY/eS8Blp0aTi1RCXg9wPpqtV9z54WnVGXLBHV755AKFWTD9qgmURxOIsCKAyq3jKkAAVZMOblZjAUIsGIM6tHbEWDZo/HRBlgvzFygJ56doUvqnaNnh/fOdYBl9oducl0flStTUotmjZLPF/6GQnqVl2a/r8fGvqJ2rRrqoT63EGDlYcoQYKXDM3s0mb2azCbjY4f1Ur06Z2ZKa96d7XbfUzKf4xx23226qnn9PLTBPpdu3b5LbToNVMEC+TV38lAVPaZwtgHWk8/P1JQZ7+j+Hh1049XhnyNNvXjV2h91413DVKvGaXp57AP2GTCVIIBAtgI/rA/piWcOK5Qupyp6jPTQvflVqmS2l3MCAggggAACCCCAAAJxFYg2wOp+/ygtWbFaHa+9TP3vvD7XAZa5sG3nB/X9+t+tbXTMdjqRjn37D+rq2x7Ubxv/slZqmRVb6Y+cvroYV0QH3JwAK12TQqGQbuvzhD798lvrp2az8UsvqqXKJ5VXkcIFZTZtN3tCLVnxld5fslLm/LOqnazp4x6Mes8su8+JbveN0sdfrLG+xHhO9VPCyo3JCqza1TX5qSMrsOzuQX0IeF3gj7+kYU8e0v4DRyTypUj33Z1PlStm/m+avO7G+BFAAAEEEEAAAQQSJ5BdgHXw4CFNfW2BxkyeI7/fpzmThur0KifmKcBa+ulqmb8/mwUwJgwzryWarx2mHj9v+EODR07V/77+QRfWqaGJI/tmACHAytkcIcA6yst8hdCswlqx8ptsJc86o4q1UqtM6RLZnuuEE6bPXahHx0y39rEy+1kdfWQWYE2b9Z5GjHs1qj2wmjQ4V6OH9ki79eZ/90WkKV2sgAoVSNHWXQe1/2DACXzU6HIBL75CuHuPT89N8GvXrvCgqv21QVU/g03b7TDleYXQDl2ghqwEeIWQ+WFnAV4htHN3nFMbrxDao1epAZZZeHJB7eppRQVDIe3ctUfrfvpde/fttxaeDLy7o/U6X/ojNUg6sXxZFS92TMRBlSpRVBOeCA+hXn3jQw1/Zrr1YTfz7FMqnaCCBQvo7y3btGHT39Z9zDY6Tw+5S8WKFsk0wKp80vEqVaJYxOeWLF5UYx/tZQ/oJFdBgBWhAWZl1ftLvtDMtxZr9Tc/ySz7Sz3y50vRmVVPVtsWF6t184uULyUlyS2M3eNrNbtdJpk2K6/8EXZk/uX3P7R9x25VPeUkFSlcSGecVlEP9LrJWoJplmJG8xXCTu1bqE/XdgRYsWsbd0qQgNcCrIOHpAmTUvT3P+HhVZNGQV1cn/AqQdMu28cQYGVLxAlJFiDASnIDeHyWAgRYTJBYCBBgxUIx7/dIDbAi3clsj3N8udI6r2Y1dWjbNGzlVer5qQFWVpVk9vG29b9u0vTXP9Tnq76T2RsrEAioVMliqlH1ZLVseqH1pUKz6ivSkZfn5l3NeXcgwMqmZyZJ3bp9p7XXVaFCBVWmVPGwZYHOa3nmFZ/ZMHxDuezGVuecqnpx9P3asnWHLmnbSxUrlNO70x+PeJlZ1Wb2GBs5qJsub1SXACs7XH5vOwEvBVjBoDRtul8//xK+aXutc4Jq05rwyk6TkwDLTt2glkgCBFjMCzsLEGDZuTvOqY0Ayzm9olLnCxBgOb+HCRtBZq8QmgLMBu1mo/bp4waq5pmnhtW0bccuNb72Hpnlm0tfH6Pi6ZZO8gphwtrHg/Io4KUAy3xt0Hx1MP1RqWJIt3YMKMLizDzKcnleBAiw8qLHtYkQIMBKhDLPyK0AAVZu5bguvQABFvMBgcQJEGAlztrxT8oqwFr22dfq2v8pValYXhNG9lP5cqWt8Zr3jHs/NE7LP1+jDm2baEDPG8McCLAcPy08MwCvBFjLPvZr4Yfh4VXp0iF1vT2oQgXTfYbQM52390AJsOzdH6qTCLCYBXYWIMCyc3ecUxsBlnN6RaXOFyDAyqSH637aoA+W/k8//rJRO3fv0Ynly2novZ3Czv7n3+0KBIM6rkwp+Xzu/xpXVgGWgRn5/GuaOuNd6xXLWjVOVYH8+bX62/XatXuvqp9e2Xrd0Gxsl/4gwHL+HyJeGYEXAqzv1vn16szw8KpI4ZC63BFUqRKEV3ac6wRYduwKNUVamZDZ/96jhUAyBQiwkqnvnmcTYLmnl4zE/gIEWEf1aM/e/Rry5At6+8NPw35jNi6fO3lo2M863/O4Pv3yW+tLBBedV8P+3c5jhdkFWOb2Zp+rl+cs1PfrN1hfYqhQvqxaNKqrW9tfLrN53tEHAVYem8LlCRNwe4C1caNPk15MUTDdRz9T/NJtnQKqcALhVcImWg4fRICVQzBOT7gAK7ASTs4DcyBAgJUDLE7NVIAAi8mBQOIECLDSWZvA5fa+T+izVd9ZPy1TuoQqVjhOX675wfry3tEB1vS5C/XomOm6puUlGtL31sR1zUVPIsByUTNdPhQ3B1hbt/o0frJf+/aFryRtd3VANc4kvLLz1CbAsnN3qM0IEGAxD+wsQIBl5+44pzYCLOf0ikqdL0CAla6Hc99Zqgcfn6KSJYpqUO+Ouqzh+dZvzdf5IgVYP/2ySa1vfUCnnXyi3pj6iPNnQxJGQICVBHQemSsBtwZYJrR6boJf23eEh1eNLg2qYQO+OJiryZLAiwiwEojNo3IlQICVKzYuSpAAAVaCoF3+GAIslzeY4dlKgAArXTtu7jVcK1d/r2ce6alG9Wun/SazAMvs7XRBy+46pkghff7O87ZqrFOKIcBySqeo040BViAgTX4hRRs3hYdXNc8Jqm1rwisnzHoCLCd0yds1EmB5u/92Hz0Blt075Iz6CLCc0SeqdIcAAVa6PtZr2V0HDx22wqgUs/nL/x+ZBVjm17Wa3a7Dhw9rzaKp7pgRCR4FAVaCwXlcrgXcFmCFQtKrs/xaty580/YqJwfVsUNQ/vAf59qNC+MrQIAVX1/unncBAqy8G3KH+AkQYMXP1kt3JsDyUrcZa7IFCLDSdaBmk84qWaKYFs95OqwvmQVYhwMB1Wxym7UC67O3n0t2Lx35fAIsR7bNk0W7LcB6b6FfH68IT6nKHBtU1zuCivC9BU/23AmDJsByQpe8XSMBlrf7b/fRE2DZvUPOqI8Ayxl9okp3CBBgpevjpdfcra3bdunTt59T4UIF0n6TWYD11Tc/qcOdj7AHVh7+u0CAlQc8Lk2ogJsCrK9W+zV3Xnh4VfSYkBVeFS/Gpu0JnVh5fBgBVh4BuTzuAgRYcSfmAXkQIMDKAx6XpgkQYDEZEEicAAFWOuu+Dz+ndxd9pgd7d1T71o2yDbDuHPC0Fn/ylW66ppnuu+uGxHXNRU8iwHJRM10+FLcEWOt/9mvadL/MK4SpR/780h2dAzquHOGV06YxAZbTOua9egmwvNdzJ42YAMtJ3bJvrQRY9u0NlblPgAArXU9Xrf1RN941TAUL5NcDvW7S1VdcbP326BVYe/ft1+PjZmjW/MXWXlnzpw1XxQrHuW92JGBEBFgJQOYRMRFwQ4D1198+TZicokOHjpD4fLL2vDqlCpu2x2SiJPgmBFgJBudxORYgwMoxGRckUIAAK4HYLn4UAZaLm8vQbCdAgHVUS54aP1OTX33H+mmlE4/T+TXPsIKqcmVKqn3rxvrp141a9tkamS8QmqNv1+t0a/vLbddYpxREgOWUTlGn0wOsnbt8en6CX7v3hH9x0Hxt0Hx1kMOZAgRYzuybl6omwPJSt503VgIs5/XMjhUTYNmxK9TkVgECrAidfWHmAo2eNEcHD6ZbpnDUefnz57PCqxuvburWuZGQcRFgJYSZh8RAwMkB1v4DPk2Y5NOWf8P3vap/YVDNmhBexWB6JO0WBFhJo+fBUQoQYEUJxWlJESDASgq76x5KgOW6ljIgGwsQYGXSnH+37dS895br81XrtGHTX9qzd78KFyqoE447VufXOsN6vbDssSVt3FpnlEaA5Yw+UaXk1AArGJSmTkvRbxvCV15VqxbU9dcGZV4h5HCuAAGWc3vnlcoJsLzSaWeOkwDLmX2zW9UEWHbrCPW4WYAAy83ddcDYCLAc0CRKtAScGmCZrw2arw6mP06sEFLnWwJKSaG5ThcgwHJ6B91fPwGW+3vs5BESYDm5e/apnQDLPr2gEvcLEGC5v8e2HiEBlq3bQ3HpBJwYYH32uV9vLwgPr0qXDqlL56AKF+aLg26Y4ARYbuiiu8dAgOXu/jp9dARYTu+gPeonwLJHH6jCGwIEWN7os21HSYBl29ZQ2FECTgqw/vzLp/lv+7VhY/j7gUUKh9T19qBKliS8cssEJ8BySyfdOw4CLPf21g0jI8ByQxeTPwYCrOT3gAq8I+DZAGvzn1v05dofdd451XRc2VJWx3/8ZWOeO+/3+1Wi2DEqU7pEnu/lhRsQYHmhy+4YoxMCrN27fXrvA59Wfx2+6iq1A3d0Dsi8PsjhHgECLPf00q0jIcBya2fdMS4CLHf0MdmjIMBKdgd4vpcEPBtgNWl3j/74e6tOrlhe86cNt3p+ZsNbYtb78scdqztubKV2rRrG7J5uvBEBlhu76s4x2TnAOnRIWr4iRcuW+3T4cGT/69sFdUY1vjjottlJgOW2jrpvPARY7uupm0ZEgOWmbiZvLARYybPnyd4T8GyAdcVN9+nX3/9U9dMra9aEwTEPsFKn0rD7btNVzet7b2ZFOWICrCihOC3pAnYMsEIhWautFi7yadeuyJ8TrF4tqObNQrw2mPQZFJ8CCLDi48pdYydAgBU7S+4UewECrNibevGOBFj26PqGTX/p8g79Vfmk4/X2S49lWdSmP7eoWfu+OumEclrwyuNZnjt97gd6dMzLatG4rp54sFum546b+rqefXFeVBgX1K6uyU/dm3Zu/0fGa/4HK7K89thSxbX09TFp58yev0QPjZxqLZh5qE/sFuJENYAknuTZAGvHrj36Yf3vVoB1TJFCVgu2bN2R51aEQiHrPpNeeVsLPvpc1U6tqDmTHs7zfd16AwIst3bWfeOyW4C14Xef3lng1+Y/IgdXx5ULqdUVQVU8iVcG3Tcbj4yIAMvN3XXH2Aiw3NFHt46CAMutnU3suAiwEuud2dPiFWC16TRQP/y8Ufnz59Pi2U+rZImiEUswgdLst5dkibH+183au2+/Lmt4np4afGeGAMuEb6VKFIt4j5LFi2rso70IsEImceGIucChQ4d1Xouu8vl8WvX+xJjf3y03JMBySyfdPw67BFjbtvu0YKFP330XeZ+rY44JqWnjkGqdE5Qvcrbl/mZ5aIQEWB5qtkOHSoDl0MZ5pGwCLI80Os7DJMCKM3CUt49HgLX62/W6oftQnXFaJX3342+6987rdfO1l0VZUfhp637aoOu6DFG+fCl6fcojqlihXIYAy6zwMiu9ojlYgRWNEufkSOCStr20e88+/e+9CTm6zksnE2B5qdvOHmuyA6wDB31avERa8XmKgoGMlil+6cILA7qkQUgF8jvbmuqjFyDAit6KM5MjQICVHHeeGp0AAVZ0TpyVtQABlj1mSDwCrIEjJuv1d5dp2pgB6tzncZ1Uvqze+v/9s3My6kOHA2rfdYhMiHV/jw668eqmYZenvkJIgJW9qmdfIcyeJm9n7Nm7X3Wv6Kaqp5zEK4RZUBJg5W2ecXXiBJIdYE1+IUW/bWCfq8R13BlPIsByRp+8XCUBlpe7b/+xE2DZv0dOqJAAyx5dinWAZRaiNLy6l4oVLaKPZj+tHgPHaNHyL/XSMwNU+6zTczToZ194Q+NeeMO6btqY+623tNIfBFjRcxJgZWJlvlD4zoefas13P+vPf7Zq3/4DKlK4kMqXK62zzzhFLRpfoHJlSmYpfTgQkN/nl9/PezyZQRFgRf9fVs5MrkAyA6xvv/NrxqyMrwyafa5atgiqUkXeBE/u7Eje0wmwkmfPk6MTIMCKzomzkiNAgJUcd7c9NVEB1ls7ftX/9vzjNr5Mx9OqZGWdW6Rs1OONdYD16hsf6pGnX1Ln61voni7ttHDpSt09aKyubHaRhg+4Peq6vl//u9rdMfj/Xx0cqooVjstwLQFW1JwiwDrK6uDBQ3py/EyZrw1ktT1YSopfHa+9TL1uu0b586VEL86ZYQIEWEwIpwgkM8B6anSKtu84EoQXPSakJo1Dql0z6BQ+6oyTAAFWnGC5bcwECLBiRsmN4iBAgBUHVA/eMlEBVpfflmjClm89Izy+0iW6o0z1qMcb6wDr6tsGWa/8mVcGq1QsL/MaoFmRtW/fAS2eO1rFixbJtjazoMXse2Xuc99dN+ima5pFvIYAK1vKtBMIsNJZmcCqxwNj9NEnq6yfmk9VmmV+FY4vo4IF82vvvgPauPkffbF6nbW3lTmaXVJHo4bcFb04ZxJgMQccKZCsAGvZ8hQtXBS+irNH96DKliG8cuREinHRBFgxBuV2MRcgwIo5KTeMoQABVgwxPXwrAqz4ND+3AVbBAvlV/fTKWRZ18NAhffP9rzrphHJa8MrjGc41b2G17/awzql+il559sG03z86Zrqmz12oAT1vVIe2TbId+LMvztO4qa9bmcL/sXcmYDaVfxz/3m02gzGWCGOXfU8RkSVLShQpKUsiKqKIEmklkS0ieyJCpCRLliIqskSR7Dtjn/Xec//Puf4z996ZO3O3c889y/c8T0+Z+y6/3+f3ztR8et/3zJs4LMeTWRkCSxRl8QXyeRy3S/tmaNPMecE7L3H3il/7DVav246h733m2FE1fEA3PNb2fog7rbI+4i4tcYfWhJlLYbMJGPfWC26LSfukpMuQO7CkY8mRQksgHALrVpIB4z8xId3qzK3+3QLataG8Cm211TM6BZZ6aqXXSCmw9Fp5deRNgaWOOik9Sgqs0FQoUIHlTzTE6bU5AAAgAElEQVQ5CawRY2dj+fdbMOrV7ujUrmnmkOKbCB/vPRIVy5ZwvEkwt8eXo4MZ/TMEVm7jvdr3CfTo0iazCQWWP5XWaNteg8bi110HfDaq85euxZipi9CwXjXMHPeqRqmENi0KrNDy5ejSEQiHwFr2jQl79jp3X0VE2DF4gIDoaN55JV1l1T0SBZa666eH6Cmw9FBl9eZIgaXe2ikpcrkEFu/Ayr3qUh0hzLi8XRDs2LJiEmLzRLtN3LHXCIhyatGnI1CjSjmPQYlHB7v0HQ1ReOV2dDCrwOJbCL1/Z/MIoQujhg/3x82kZPy6+lPHhe3eHvFIYcOH+yFPnmj8snKKt+b83AMBCiwuC7UQkFtgnT1vwLTP3O/Xa9NKQIN7uPtKLWtGjjgpsOSgzDmCIUCBFQw99g01AQqsUBPWx/hyCSx90Aw8S6kE1uKVG/HOhPleA+nY9n68M6Snx3bT5q/ElNni0cEKmDdxuNeXuvEOLK+4MxtQYLmwqtm8F+Lyx2Lz8ok+E2zeaRAuX7mGP9fP8rkPGzoJUGBxNaiFgNwC67NZJpw+7dx9FV/Ajpf722DMfqpZLQgZZwgIUGCFACqHlJQABZakODmYxAQosCQGqtPhKLCUUXipBFbG5e3iPVqerhMSs93/91FERVqwefkk5Ilx3/hy6L9T6Pz8SBiNRnwz512Pbx3MSowCy/c1RIHlwuqBxwciOSXNsQPL16dBu36O3Voblo73tQvbuRCgwOJyUAsBOQXWnn0GLFvhvvvq2acFlCvL3VdqWS9yxUmBJRdpzhMoAQqsQMmxnxwEKLDkoKz9OSiwlFFjKQTWvr+Pokvft1GudHGsmvtejon1HToeW3fsxchBz6LzIw9ktnM9Oji0/5N4plMrn+BQYPmEydGIAsuF1WvvTMP3G3Zg9fwPUCahmFeKR46fwSPPDke7lg0w5o0+XtuzQXYCFFhcFWohIJfASk8HJkw24eZN5+6rihXsePpJm1pQMU4ZCVBgyQibUwVEgAIrIGzsJBMBCiyZQGt8GgosZRRYCoH11kezsey7LRj+cld07dgyx8R+2rYbLw6f6Hjb4dIZozLbTZ+/CpNnL0ftahUwf5L3o4MZHSmwfF9DFFgurETj+uQLo9GicV1MeLs/DAb3V9e7YhUvdXvpzYnYvH0PFk9/C9XuKuM7dbbMJECBxcWgFgJyCawNm4zYvMV5TlD8MTSgvw3x8by4XS1rRc44KbDkpM25AiFAgRUINfaRiwAFllyktT0PBZYy6huswLqVlIKmjw2AzSZg0/KJyBcbk2Niogt4sMtgnL2Q6BBYosg6fPQUOvW+fXRQfENhqRJ3+AyGAstnVNyBlRXVwuXr8f6kL1C/diV0e7wV6lSr4LgXK+NJvHoDf+z9B/OWrMXu/Yfhz9ZA38uin5YUWPqptdozlUNgibuuPv7EBJvLSUHx0nbx8nY+JOCJAAUW14XSCVBgKb1C+o6PAkvf9ZcqewosqUgGN06wAmvJqp/w9vh56NCmMd4d2strMBkXtYtHCMWjhH2HfoytO/Y53lqYUDx3eSXerbV42luZc2QIrNIli6JA/rwe547LF4sp7w/I/Ozr1ZsxctwcR/tidxTMMd6Jo1/EnUULec1HLQ10uQOr4SP9s9XHaDDCbDYhJjrSYVLT0tIz20RGWCD+lZKWnu3rbZvfi1pVy+Pxdk3UUnNFxUmBpahyMJhcCMghsJYsM2H/X86dn1FRdgweKCAygruvuDg9E6DA4spQOgEKLKVXSN/xUWDpu/5SZU+BJRXJ4MYJVmA93nskDh4+jkWfjkCNKuW8BnPx8lU07zwIUZER2LRsInoOGoN9B//z2k9sYDQasG/jnGwCK7fOBQvkw5YVk7IJLG8Tfjv/A5T14Xokb+Mo5XNdCqyqTbtLzv+vTXMlH1MPA1Jg6aHK2sgx1ALr1GkDZsxyv7i9XVsB9etx95U2VlBosqDACg1XjiodAQos6VhyJOkJUGBJz1SPI1Jg6bHqzDlcBHQpsMSL2qV+2ja/R+ohdTEeBZYuyqyJJEMpsOx2YNoME86dd+6+KlxIQP++AozO67A0wZFJSEuAAktanhxNegIUWNIz5YjSEaDAko6lnkeiwNJz9Zm73AR0KbDkhsz5ciZAgcXVoRYCoRRYu3Yb8M237ruvenW3oVQCjw6qZX2EK04KrHCR57y+EqDA8pUU24WDAAVWOKhrb04KLO3VlBkplwAFlnJro4vIKLB0UWZNJBkqgZWeDsfF7UnJzt1Xle4S8NQTPDqoiYUT4iQosEIMmMMHTYACK2iEHCCEBCiwQghXR0NTYOmo2Ew17AQosMJeAn0HQIGl7/qrKftQCawf1xvx8zbnOUHxyODAl2yIy8/dV2paH+GKlQIrXOQ5r68EKLB8JcV24SBAgRUO6tqbkwJLezVlRsolQIHlUptUlzcP+lsy8S2FfPwnQIHlPzP2CA+BUAisq9cM+GSyCYLLZqv7Ggho1ZK7r8JTZfXNSoGlvprpLWIKLL1VXF35UmCpq15KjZYCS6mVYVxaJECB5VLVYN5OyLcQBvbtQYEVGDf2kp9AKATWl18Z8fc/zt1XMdF2vDJAQGQEd1/JX2F1zkiBpc666SlqCiw9VVt9uVJgqa9mSoyYAkuJVWFMWiVAgSWBwIrLH4tfVk7R6hoJaV4UWCHFy8ElJCC1wDp+woBZc90vbm/fzoa6dSivJCyb5oeiwNJ8iVWfIAWW6kuo6QQosDRdXtmSo8CSDTUnIgFQYLksgl37DuW6JJJT0nDh0hX8sfcQ1mzcAZPJiFnjh6J6pTJcSgESoMAKEBy7yU5ASoElHhmcOt2Ii5ecu68KFxLw4gsCDM673GXPkROqjwAFlvpqpreIKbD0VnF15UuBpa56KTVaCiylVoZxaZEABVaAVT155gJ6vDIGNpsN3877ALF5ogMcSd/dKLD0XX81ZS+lwNp/wIAlX7vvvurZ3YbSCdx9paY1oYRYKbCUUAXGkBsBCiyuDyUToMBScnXUExsFlnpqxUjVT4ACK4ga/rRtN14cPhH9uz+Kft0fDWIk/XalwNJv7dWWuVQC6+RJA2bPN8FmcxKoWlnAE514cbva1oQS4qXAUkIVGAMFFteAWglQYKm1csqKmwJLWfVgNNomQIEVRH3T0624u21flE0ohuWz3gliJP12pcDSb+3VlrkUAuvKNQM+m2FEUrLznKDJCAx4yYa4/Nx9pbY1oYR4KbCUUAXGQIHFNaBWAhRYaq2csuKmwFJWPRiNtglQYAVZ3+adBuH6zST8tmZ6kCPpszsFlj7rrsasgxVYKakGTJ9pRGKi+yVXj7YXUKcmd1+pcU0oIWYKLCVUgTFQYHENqJUABZZaK6esuCmwlFUPRqNtAhRYQdTXbrejXus+sAkC/lz3eRAj6bcrBZZ+a6+2zIMRWIINmLPABPHNg67P/Y0EtGhGeaW2taCkeCmwlFQNxuKJAO/A4rpQMgEKLCVXRz2xUWCpp1aMVP0EKLCCqOGff/2Lrv3fxZ1FC2Hd4nFBjKTfrhRY+q292jIPRmB9vdyIvfudbxwUc69cWcCTvPdKbctAcfFSYCmuJAwoCwEKLC4JJROgwFJyddQTGwWWemrFSNVPgAIrwBruO/gfXn9/Bo6dPIdHHrwPHwzvHeBI+u5GgaXv+qsp+0AF1uYtRmzY5C6vSpSwo9ezNpjcX0SoJhyMVSEEKLAUUgiGkSMBCiwuDiUToMBScnXUExsFlnpqxUjVT4ACy6WGnZ4f5bWigiDg3MVEXL1209HWbDLhq89GolL5BK992SA7AQosrgq1EAhEYB04aMTipe7yKi7Ojhd6C4iO5qXtaqm9kuOkwFJydRibSIACi+tAyQQosJRcHfXERoGlnloxUvUToMByqWHVpt39qmhc/li8/WoPtGhc169+bOwkQIHF1aAWAv4KrJMnDZg9zwSbyxVXUVF29HlOQMF4yiu11F3pcVJgKb1CjI8Ci2tAyQQosJRcHfXERoGlnloxUvUToMByqeHUOSu8VtRgMCAmJgplShbDPXUqIyoywmsfNsiZAAUWV4daCPgjsK5cM2DaZ0akpDgvbTcZgZ7P2lCyJOWVWmquhjgpsNRQJX3HSIGl7/orPXsKLKVXSB3xUWCpo06MUhsEKLC0UUfVZkGBpdrS6S5wXwVWcrIBn80yIjHR/Y2DXToJqFKZbxzU3cIJccIUWCEGzOGDJkCBFTRCDhBCAhRYIYSro6EpsHRUbKYadgIUWGEvgb4DoMDSd/3VlL0vAkuwAZ/PM+HUKXd51bypgCb3U16pqd5qiZUCSy2V0m+cFFj6rb0aMqfAUkOVlB8jBZbya8QItUOAAks7tVRlJhRYqiybLoP2RWB9vdyIvfvdL22vUU3A4x0pr3S5aGRImgJLBsicIigCFFhB4WPnEBOgwAoxYJ0MT4GlzEKfOH0Bq9b+gh27D+DoiXO4fvMWoqMiUbhgHO68oyDuq18dDzSsjYTiRdwSeODxgbhw6arb1yIjLIgvkA9VKpZCuxYN8WCTeh6T9tQ3a8PWD9THxyP7ZX556LufYfX67blCLFggH7asmJTZ5sTp82jTdajjz6+/+BS6Pf5grv2HfzATK9f+ggWTh6NO9YrKLJiPUelaYIlvEyxaON4rKkGwY81PO7Bh6y5cvHwVBeJi0bBeNXRs0xgRERav/dkgZwIUWFwdaiHgTWD9tNkI8S/Xp1SCHT262WA0qSVLxqk2AhRYaquY/uKlwNJfzdWUMQWWmqql3FgpsJRVm/R0K6bMWYFZi76H3X777tliReKRP18sbt5KxoXLV5GWlu74uvg7/cxxr7olkCGhRNETYTE7PktKSYUoja5eu+n4c7NGdTB+VH9YzO7/kZ/Rt3qlMjCbb/fN+jSoWwX9e3TI/HKGwCpdsigK5M/rsU9cvlhMeX9A5meuAku8k/ubOe+i5J3uIs51IAosZa3RgKLZ9/dRdOn7tmPRzvhoMMTL2T09VpsNA0ZMxqZtf2b7uFypOzFr/BCHxeUTGAEKrMC4sZf8BHITWOKuK3H3letTuJCA3r3siIrkpe3yV0s/M1Jg6afWas2UAkutldNH3BRY+qhzqLOkwAo1Yd/HF8VUj1fG4M+//nXIoOefboeHWjSAuIPJ9Tl4+Dh++mU37q1bJduOpAwJtXn5RBSKz5/ZTZRhP+/cj0GjpiIpOQWv9euC7p1bu42bU9/cMsgQWB+NeAFtm9/jU7IZAis6KgLJKWmoX7sSZo8fmqPToMDyCauyG038fBlmfPGtw55OfvflHIP9ZObXmLlwteNzUVjVqFIO167fxNad+yDa3VpVy+OLKW/kuFiUTcFzdL/uOoBvf9yGXfsO48KlK7DZbChcqADq1qiIZzu1QuUKpXJMa8Warfh69Wb8e+y0o1+pEkXxaOtGeKpDC5jE17BleSiw1LhC9BlzTgLr9BkDPvvc/f++xETb0be3gLg4yit9rhb5sqbAko81ZwqMAAVWYNzYSx4CFFjycNb6LBRYyqnwqHFzsXT1JpRNKIaZH7/m02mrrNF7k1CLV27EOxPmO34n/nrm22EVWJ0feQC//nHAsTvsrVeewRPtm3ksBgWWctZowJF0H/ghfvvzb4wc9CzEwnt6xCOGrZ98DelWG7q0b4Y3B3bLFFX/HDmJZwd8gBs3kzD5vQFodl/tgGNRSkdxS+TAkVMcXMQdaeVK34kSxQrDZhNw+L9TEHkYjQZ8MPx5tGvRIFvYw96fiVU//uLYSlm7egVYzGbsOXDEsVWzUf3qmPrBQJhN7r/oU2AppfqMwxuBnATWsm+M2LPXKWfF3cLP9bDhzmKUV96Y8vPgCVBgBc+QI4SWAAVWaPly9OAIUGAFx4+9bxOgwFLGStj/z1E80edtx++iK2a/izIJxQIKzJvA+vfoabTv8Qbyxsbg19WfhlVgdWjTGOJfz7z8PmKio7Bq3vuO45JZHwqsgJaCsjo1fWyg4z6rJZ+NQtW7SnsM7qNPF2Pukh8ci1/8Jsh6xlXcmSXu0Hqo+b0YO6KvshIMIBpxW+SIsbNRpFAcnnikGe4oXCBzFFFizVv6Az6evgQx0ZEQt1SK3yQZjyiuRIEl2u4Z417L/MYRt1cOfGsKfvltP17q2RF9n3nELTIKrAAKxS5hIZCTwPrgIxOSk51HkJ943IaqVSivwlIkHU5KgaXDoqssZQoslRVMZ+FSYOms4CFKVy6BdXaPHVeO6efFQMVqGVGglOdrfjyV8u3x87Bk1U8OofPu0F4BV9ubwPr73xN47Lm3UOyOglj/1cdhFVitmtbH+FH98O4nC7Domw2OTSOfjR1MgRVw9RXcsVbL5xxHAMXb/LOeiRXDFnddPfDYQFy5dsPxDSB+I2R9MuxrQvE7sGbhGAVnK11o7Z4ZhqMnzmLOhNcdZ20znkd7vInDR09h4dQ3HccqXR+RYfNOg2CxmB3iS7xoLuOhwJKuNhwptAQ8CayTpw2YOcu5qzAy0o7hQ2zI4Uq90AbI0XVJgAJLl2VXVdIUWKoql+6CpcDSXclDkrBcAuuP+TYc3aIfgVWnmwllm2S/gianIj78zDD8d+IsJr3zMpo3rhNwrb0JrLlf/YCPpi1Gy/vr4ZPRL4ZVYGVchyRuGmnf402cOXfJo7vgDqyAl4NyOtZo3tNxNO7nlZM93va/bsvvjp1DeWKiHJLLVbpkZCFemFav9fOOHUm/rflMOcmFMJIuL4zGvoP/ue1cE79RWnZ51fEK0jULx3qcXbzsbu2m37Idt6TACmGxOLSkBDwJrI2bjNi0xfkv1upV7ej0mE3SeTkYCeRGgAKL60PpBCiwlF4hfcdHgaXv+kuVPQWWVCTdx/FXYNVq0cuxCeW7BR9CfKNfoE9uAmvrjr0ORyDe9fzlpyNQpaL7Sa6MvjWrlHNs3vD0jBrc3e14Y8Yl7uJJpvgsl81n9BevM2rTzHnBe8Yl7k0a1MSnH7ziaLb997/w3KsfIV9sjOMooeuL5iiwAl0NCup3f4eXcfnKdSz7fDQqlU/IFlmfIR/j5537ct2CKL6hsGbzXo57ofZtnKOg7EITiniu+MkXRjvexvDDlx8hMsLimGjD1l14ecQktGvZAGPe6ONx8nlL12Ls1EXo3bUdBvZ+PLMNBVZoasVRpSfgSWBNn2nCmbPOrc0dH7WhVg0eH5SePkfMiQAFFteG0glQYCm9QvqOjwJL3/WXKnsKLKlIBi6wMn4vF0fI+vbAjFHFq3KWf78lW7CiiBKFU8aTIaHENxRGWG7/vpuamoajJ8/iwqWriI/L67gTWjyul/XJ6Jsbka8+G4lqd5XJbJIhsHLr82rfJ9CjS5vMJhkC6/57a2Lah7cFlvhk5Jj1RXUUWKFZo7KO2vvVcdj2+37HnUzi3Uyuj/jaza7933V8KeuCdm137fotNHykv2N31h9rZ8gav1yTiZfUnzl/GWs27sCXK9bDbDZhwtsv4p7alTNDyNhG2afbw3i512MeQ1u/9Q8MGDEZrZrejfGj+me2ocCSq5KcJ1gCWQXWrSQDxoxzfynBG0NsiIyiwAqWNfv7ToACy3dWbBkeAhRY4eHOWX0jQIHlGye2yp2AXAKLd2DlXofaD/ZGWlq642of8YqfrM/nX36HTdv+zPyy+FI28ehdTgLL02w1qpTDnAlDPZ7OEtt7O37oacwMgfXRiBfQtrlzl1Vu2eYksMTf3R/pPtwh2lzHo8DSwE8x8fWa4ms2xYvIp48ZhLo1KjqyEhdy/+Gf4Oz5y7i3ThXMGj8kx2wz3nRQtHA8NiwdrwEqzhQyjgpmfEXcbdW1Y0s827mVYweW6zNl9gpMm78SWc2wa5sduw+i5ytjIJrsWR87mVJgaWrZaDqZrAJr958GrFjlFFglitvxfC8eH9T0IlBgchRYCiwKQ3IjQIHFBaFkAhRYSq6OemKTS2Cph0h4Im391BCcPHMB08cMRuN7su+OyhpVxu+7OQks151clxKvoe3TQ5GUnIqvpo/M8SVw4RZYYo6ipBN9Rlz+WHw77wPHjrE3x8zCijVbsWDycNSpftt7qPUx2MVXz+nwES9wF98ecOT4GUf2JYoVhoji9LlLjj+LYmvpjFG5np9dvHIj3pkwH/Vq3oV5E4dpiqL4dsVjJ88hLT0dlxOv49DRUw6jLW6vHD7gabdtj+KbCWcv/h7DXuqKpx9r6ZHD7v2H8fSL76F2tQr4YsobmmLFZPRJYPocK37/0/njs30bEx5u7ftFk/qkxqxJgARIgARIgARIgARIQHoCQ9/7DKvXbceznVphSP8nvU7gj8ASB8u4Ekc8/rdo2luOa4SyPkoQWGJMGbu6Wj9QHx+P7IeMNzRSYHldFspucOrsRbwwdLzjbQWuj3jhmfg6Sm92su/Q8RAvcuvZpS0G9+2s7GSDjE68sH7xNxswYeZSREZEYPX8D3BH4QKOUf3ageVlV1uQYbI7CchCQBCAAcPSkZzinO7NwWaUTvD9Vb+yBMpJSIAESIAESIAESIAESEAHBDJ2HuWNjcEPC8c6diDl9vgrsMR7tjr2egtHjp3GmwO74clHmytWYF29dtNxlFC881t8K+OufYcwd8kP3IGlhe8DcSfWpu1/4p9/TzrSqVC2BJo2rJV5QXlOOYpvMOw+8AOkpKZj9Gs9ULlCKS3g8JrDhBlLIZ4fFo8TDn+5q6P9/KVrMWbqIvhyB1aLxnUx8Z2XMufhEUKvyNlAIQRcjxAePWbA7HnO44Mx0Xa8/hqPDyqkVLoKg0cIdVVuVSbLI4SqLJtuguYRQt2UOqSJ8ghhSPH6PLh4mqrT86Nw8PBxx7U1k98dgJjoyBz7+yuwxIF27v4bPV75EKIkEzd0ZL1aRyk7sMRY1276DYNGTXXE2KppfSxcvo4Cy+fVxIaaIfDH3kN45uX3cXetSpj7yeuOvDZv34N+wyb49BbCrLvVKLA0szQ0n4irwFq7zoiftzmPC9aqaUfH9hRYml8ECkyQAkuBRWFIbgQosLgglEyAAkvJ1VFPbBRYyqmVeLl5l76jce3GLZRNKIYXe3ZA04a1s21OSbfa8OQLox2yy5c7sFwzHDTqU6zdtNPj775KElhizAPfmoJ1W3535J+alk6BpZylykjkIiC+uVF8g6PrvV/ipXZNOg5AQvEiWLNwrMdQRPsrWuBxb72ANs2cb1egwJKrcpwnWAKuAmvKNDPOX3CO2PkxG6pV1eV1gsFiZf8gCVBgBQmQ3UNOgAIr5Ig5QRAEKLCCgMeumQQosJS1GI6fOo9XRk5xvJxNfCxmE0qXLIZ8eWNgtdoccuvUmYsQjwSKj78C69zFRLTr9jrEK3ZmTxiKe2pXzgSQIbCqVyoDs9nsEUyDulXQv0eHzM8y7qsqXbIoCuTP67FPXL5YTHl/QOZnOb2FMGtn8fd08Sjhteu3HB/xDixlrVVGIwOB9yd9gYXL16Pb4w/i9RefypxRvKBdvKh94dQ3UatqebdIrly7geadBkGw27FlxSTki43J/JwCS4aicQpJCGQIrH+Op+Cj8c7jgwYDMPw1GyKjKLAkAc1B/CJAgeUXLjYOAwEKrDBA55Q+E6DA8hkVG+ZCgAJLectDPE64fusfWLf5d+w5cASJV687hJO4Eyl/vjyOF7jVrFIedWtURIN6Vd12aPmyi2rmwtUQX3pWJqEYVsx6BxbLbVmV0Tc3IhkXq2e0yRBYufUpWCCf4/fojMdXgSW2//bHbXj9/RkUWMpbpowoWAI/79znMNUPtbgXRQvHuw0nGuqvVm7Eh1O+hMlkwso576FUiTsy24iX2YuX2otbNWeMew3Fitzun5ScgldGToU4dteOLTD85afdxqXACrZq7C8XgQyBtWpdClatdgqsUgl29OrO44Ny1YHzuBOgwOKKUDoBCiylV0jf8VFg6bv+UmVPgSUVSY5DAt4JGOyinuRDAgC+Xr0ZI8fNcbAQbbIoqKKjInH9xi3s/+eoY+thTHQUxo7ogwca1s7GbNz0rzBn8RqHga5drTwiLBaH8b5xMwlVKpbGvInDsl2kR4HFpacWAhkCa9y0VPz9t/P+qxbNBNzfSFBLGoxTYwQosDRWUA2mQ4GlwaJqKCUKLA0VM4ypUGCFET6n1h0BCizdlTznhEXRtHLtL9jy6x6cPHMBiVdvIDklFbEx0ShVsijuq1cNnR95AEUKxeU4iHjP1RfL1uGfIycgvqmxeLHCaNvsHvTo0sbjmx0psLgA1UJAFFg2AXhpSDrSrc6o+/WxoqhzM6Ja0mGcGiFAgaWRQmo4DQosDRdXA6lRYGmgiApIgQJLAUVgCLohQIGlm1IrM1EKLGXWhVFlJyAKrIOH7Bj/qdNe5c1rx2uv8Pgg10v4CFBghY89Z/aNAAWWb5zYKjwEKLDCw11rs1Jgaa2izEfJBCiwlFwdHcRGgaWDImskRVFgfbXChvWbnccF69axo307CiyNlFiVaVBgqbJsugqaAktX5VZdshRYqiuZIgOmwFJkWRiURglQYGm0sGpJiwJLLZVinKLAevO9dJy/6GTxZGcBlSvx/iuujvARoMAKH3vO7BsBCizfOLFVeAhQYIWHu9ZmpcDSWkWZj5IJUGApuTo6iI0CSwdF1kiKZns0hr+TnpmNwQC8+boVFotGEmQaqiRAgaXKsukqaAosXZVbdclSYKmuZIoMmAJLkWVhUBolQIHlobDJKWn4evUmrNvyO/49ehrXbtzCXeVKYvmsd9xab/x5F24lpaDF/fUQHRWh0SUS2rQosELLl6NLR+DA/kgsXu48Lli2jB3du/H4oHSEOVIgBCiwAqHGPnISoMCSkzbn8pcABZa/xNjeEwEKLK4LEpCPAAVWFtZHjp/Bi8Mn4sTp826feBJYg9/+FD/8tBPvD+uN9q3uk69qGpqJAktDxdR4KkuWWrD/oD0zy9YtBTRswHUW5AQAACAASURBVOODGi+74tOjwFJ8iXQfIAWW7peAogFQYCm6PKoJjgJLNaVioBogQIHlUsQbN5PQoeebOHshERERFjRvVAelStyB6fNXedyB9d2GXzHknel4sEk9THj7RQ0sB/lToMCSnzln9J+AzQa8+6EZ4t8znpf62VC4kFNo+T8qe5BA8AQosIJnyBFCS4ACK7R8OXpwBCiwguPH3rcJUGBxJZCAfAQosFxYfzr3G0yd+w2qVCyNSe++jGJF4h2fVm3a3aPAOnnmAlo/NQQl7yyCH74cK1/VNDQTBZaGiqnhVP45ZMDCxabMDPPmteO1V3h8UMMlV01qFFiqKZVuA6XA0m3pVZE4BZYqyqT4ICmwFF8iBqghAhRYLsXs2GsE/jlyEl/PfBuVK5TK/CQngZWSmoa6rZ5HVGQE/lg7Q0PLQr5UKLDkY82ZAiew+nsjdv5uzBygfj0B7dry+GDgRNlTKgIUWFKR5DihIkCBFSqyHFcKAhRYUlDkGBRYXAMkIB8BCiwX1vVaPw+L2Yztqz91q0BOAktsVOfB3ki3WrFv4xz5qqahmSiwNFRMDafy0QQTbtwwZGbYtYsNd1Xk8UENl1w1qVFgqaZUug2UAku3pVdF4hRYqiiT4oOkwFJ8iRighghQYLkUU5RReWNjsHn5RJ8EVlJyKu5u0wdx+WPxy8opGloW8qVCgSUfa84UGIELF4Ep08yZnY0mYMTrVpicJwoDG5i9SEACAhRYEkDkECElQIEVUrwcPEgCFFhBAmR3BwEKLC4EEpCPAAWWC+u2Tw/F8VPnHQKrUHz+zE9y2oG1YesuvDxiEmpXq4AvprwhX9U0NBMFloaKqdFUftluxNp1zuODFcrb0e0p3n+l0XKrLi0KLNWVTHcBU2DpruSqSpgCS1XlUmywFFiKLQ0D0yABCiyXor4/6QssXL4eXTu2wPCXn85VYIm7r7q8MBpHjp3GwN6Po3fXdhpcHqFPiQIr9Iw5Q3AE5sw34egx5/HBh9oIuOdu3n8VHFX2looABZZUJDlOqAhQYIWKLMeVggAFlhQUOQYFFtcACchHgALLhfXZ85fxULfXkZqWjnYtG2BwnydQpFBctrcQ7tp3GO9NXIC//z2B/Pny4IcvP0K+2Bj5qqahmSiwNFRMDaaSng68+6EZdpfrrl4ZYEOB/Lz/SoPlVmVKFFiqLJuugqbA0lW5VZcsBZbqSqbIgCmwFFkWBqVRAhRYWQq7fusfGDRqKmy22zssSpW4w3GsMDZPNKpVKoN/j57GpcRrjs8sFjOmfzgI99atotHlEfq0KLBCz5gzBE7gwEEjFi91Hh+8ozDwYj+rm9AKfHT2JIHgCVBgBc+QI4SWAAVWaPly9OAIUGAFx4+9bxOgwOJKIAH5CFBgeWC97+B/eHv8PBw8fDzHStxVriTefq0nqlcqI1+1NDgTBZYGi6qhlL751oRdu53HB1s0MaJJ0zQKLA3VWO2pUGCpvYLaj58CS/s1VnOGFFhqrp5yYqfAUk4tGIn2CVBg5VLjfX8fxW9/HsSJUxdwMykZ0VGRuLNoQdxTuzLqVK+o/dUhQ4YUWDJA5hQBE/jwIxOSkp0Ca1A/MwoUTqHACpgoO0pNgAJLaqIcT2oCFFhSE+V4UhKgwJKSpn7HosDSb+2ZufwEKLDkZ84ZXQhQYHE5KJXA2XPAtBnmzPAiLMCkMRZcvJZMgaXUoukwLgosHRZdZSlTYKmsYDoLlwJLZwUPUboUWCECy2FJwAMBCiwXKOKxwY5t7+exQBm/VSiwZITNqfwisHmrERt+ct5/VbOaAS/1NuNsIgWWXyDZOKQEKLBCipeDS0CAAksCiBwiZAQosEKGVlcDU2DpqtxMNswEKLBcClC1aXfHn8qVLo6ObRo73kRYKD5/mEuk7ekpsLRdXzVnN3OOCSdPOo8PPt3JhKaNjBRYai6qBmOnwNJgUTWWEgWWxgqqsXQosDRW0DClQ4EVJvCcVpcEKLBcyv7wM8Pw34mzmV8xmYy4/56a6NCmMe5vUBMWs0mXiySUSVNghZIuxw6UQGqKAe+Ndf9+H/u2BfFxoMAKFCr7hYQABVZIsHJQCQlQYEkIk0NJToACS3KkuhyQAkuXZWfSYSJAgZUF/P5/jmLV2m1Ys/FXJF69kflpgfx58fCDDR0yq2LZEmEql/ampcDSXk21kNHefQZ8vcIpsIoUAd4bboHBQIGlhfpqKQcKLC1VU5u5UGBps65ayYoCSyuVDG8eFFjh5c/Z9UWAAiuHelttNvyycz9W/fgLfvplN1LT0jNbVqlY2iGyHmpxL/LnzaOvFSNxthRYEgPlcJIQWLbChD37nMcHGzUU8GznSAosSehyECkJUGBJSZNjhYIABVYoqHJMqQhQYElFUt/jUGDpu/7MXl4CFFg+8L6VlIIfN/+G1eu2Y8fug7Db7Y5eFosZze6r45BZje+p7sNIbJKVAAUW14TSCIjf3u+PNSE11SmwejxjQ8M6URRYSisW4wEFFheB0glQYCm9QvqOjwJL3/WXKnsKLKlIchwS8E6AAss7I7cWFy5dxZqfdmDtTzux58CRzM/+2jTXz5HYXCRAgcV1oDQCJ08bMHOW8/igxQy88boVxQtFU2AprViMhwKLa0DxBCiwFF8iXQdIgaXr8kuWPAWWZCg5EAl4JUCB5RVR9gbpVht27DqA5d9vwdpNvzkaUGAFAJICKzBo7BVSAhs3GbFpizFzjqqVBTzRSUCxeAqskILn4AER4A6sgLCxk4wEKLBkhM2p/CZAgeU3MnbwQIACi8uCBOQjQIHlI2tBsGPnnwfx3fpfsX7L77h+MymzZ90aFTF/0nAfR2IzVwLcgcX1oDQC02eacOas8/jgo4/YUKeWnQJLaYViPA4CFFhcCEonQIGl9ArpOz4KLH3XX6rsKbCkIslxSMA7AQosL4wOHz3leCvhdxu24/zFK5mtixWJxyOt7sOjrRsjoXgR76TZwiMBCiwuDCURuJVkwJhxzuODYmxDX7UhTwwFlpLqxFicBCiwuBqUToACS+kV0nd8FFj6rr9U2VNgSUWS45CAdwIUWB4Yifdcfb/hV8cbCP85cjKzRUSEBS0a3760/d46VWE0OndpeEfNFp4IUGBxXSiJwB+7jFi52nl88M5idvTtbXOEyCOESqoUY8kgQIHFtaB0AhRYSq+QvuOjwNJ3/aXKngJLKpIchwS8E6DAcmG0cu0v+HbdNvz6x4HMNw2KH1evVMYhrdo2vxd5Y2O8U2ULnwlQYPmMig1lIDB1ugnnLzjFdNPGNjR74PZbRymwZCgAp/CbAAWW38jYQWYCFFgyA+d0fhGgwPILFxvnQIACi0uDBOQjQIHlwrpq0+6ZfyoUnx/tWjZAxzaNUa50cfkqorOZKLB0VnAFp3v0mAFz5juPDxoMwOABNuTLR4Gl4LLpPjQKLN0vAcUDoMBSfIl0HSAFlq7LL1nyFFiSoeRAJOCVAAWWC6KazXuhScOajt1Wje+pAbPJ/S4crzTZwG8CFFh+I2OHEBFYvMSIA387jw9WukvAU08ImbNxB1aIwHPYoAhQYAWFj51lIECBJQNkThEwAQqsgNGxowsBCiwuBxKQjwAFlgvrxKs3EB+XVz76nAkUWFwESiBw/boBH080wX57s5XjebabDeXKOL9AgaWESjGGrAQosLgmlE6AAkvpFdJ3fBRY+q6/VNlTYElFkuOQgHcCFFjeGbFFCAlQYIUQLof2mcCP6434eZtz91XhQgJe6ufcfSUORIHlM042lJEABZaMsDlVQAQosALCxk4yEaDAkgm0xqehwNJ4gZmeogjoVmD9tG03Nm37Ew82uRv33V3NUZSFy9cHXJyuHVsE3FfPHSmw9Fx9ZeRuswEffmRCaprz8vZHHrKhXl2X7VgUWMooFqPIRoACi4tC6QQosJReIX3HR4Gl7/pLlT0FllQkOQ4JeCegW4FVv21f3EpKQcEC+bBlxSQHKddL3L2jc2/x16a5/nZhe4BHCLkKwk7gtz8M+PY753130dF2DBlkQ9Yr8LgDK+ylYgAeCFBgcVkonQAFltIrpO/4KLD0XX+psqfAkookxyEB7wR0K7BeGTkF67b8gUdbN8K7Q3s5SD3U7XXvxHJo8d2CDwPuq+eO3IGl5+orI/fJnxpx8ZLz+GCjhgIebOF+fFCMlAJLGfViFO4EKLC4IpROgAJL6RXSd3wUWPquv1TZU2BJRZLjkIB3AroVWCIau90Og8F5bMg7LraQmgAFltREOZ4/BI4cNWDeAufuK/HHweABNuTL5358kALLH6psKycBCiw5aXOuQAhQYAVCjX3kIkCBJRdpbc9DgaXt+jI7ZRHQtcBSVin0GQ0Flj7rrpSsFy424p9Dzt1XVSsLeKJT9t1XFFhKqRjjyEqAAotrQukEKLCUXiF9x0eBpe/6S5U9BZZUJDkOCXgnQIHlnVGOLcQdXMkpqTCbTIiIsAQxkn67UmDpt/bhzvz6dQPGfeLcfSXG0/NZG0qXyr77igIr3NXi/DkRoMDi2lA6AQospVdI3/FRYOm7/lJlT4ElFUmOQwLeCVBguTC656EXUL9WJUx+b4B3cgDS062o17oPalQpiwWT3/CpDxu5E6DA4ooIF4E164zYvt25+6roHXb062PLMRzegRWuSnHe3AhQYHF9KJ0ABZbSK6Tv+Ciw9F1/qbKnwJKKJMchAe8EKLBcGIlvIby3ThXMGj/EO7n/t2jeaZBjF9a2b6f63IcNnQQosLgawkEgPR0Y+7EJqWnOO/A6PGJD7Vqed1+JMVJghaNSnNMbAQosb4T4ebgJUGCFuwKcPzcCFFhcH1IQoMCSgiLHIAHfCFBgBSmwGrTrh6TkVOzZMMs34mzlRoACiwsiHAR2/mbE6jXO3VfR0XYMGWSDyf1EoVtoFFjhqBTn9EaAAssbIX4ebgIUWOGuAOenwOIaCDUBCqxQE+b4JOAkQIEVhMBasuonvD1+HooVicf6JeO5rgIgQIEVADR2CZrA+EkmXL3q3H3VpLGA5g94vrw9YzIKrKCxc4AQEKDACgFUDikpAQosSXFyMIkJcAeWxEB1OhwFlk4Lz7TDQkDXAmvTtj+xefufmeCXfLsJRQrFoWmDWrkWI91qw5HjZ7D3wBFHuy7tm2HEK8+EpYBqn5QCS+0VVF/8/x4xYP5C51YroxF49RUbYvPkfHxQzJICS3211kPEFFh6qLK6c6TAUnf9tB49BZbWKyxPfhRY8nDmLCQgEtC1wFq6ehPem/iF4zL2QJ/yZYpj3ifDEJc/NtAhdN2PAkvX5Q9L8gsWmXD4sHP3VfWqdnR6LOfL2zOCpMAKS7k4qRcCFFhcIkonQIGl9ArpOz4KLH3XX6rsKbCkIslxSMA7AV0LLBFPUnIKtv3+F1av2451W35HfFxe1K1xV67kjEYD8ueLRe1q5dG6aX1ERFi8k2YLjwQosLgw5CRw5aoBEya5X3TVu5cNJYvnvvtKjJECS85KcS5fCVBg+UqK7cJFgAIrXOQ5ry8EKLB8ocQ23ghQYHkjxM9JQDoCuhdYGSjFXVgtnhiM8qWL+/UWQulKoc+RKLD0WfdwZf39D0b8utN5eXvRO+zo18f77isKrHBVjPN6I0CB5Y0QPw83AQqscFeA8+dGgAKL60MKAhRYUlDkGCTgGwEKLBdOC77+EYePnsLo13r6Ro+tgiZAgRU0Qg7gI4H0dODDj8xwPTH8WAcbalb3vvuKAstHyGwmOwEKLNmRc0I/CVBg+QmMzWUlQIElK27NTkaBpdnSMjEFEqDAUmBR9BQSBZaeqh3eXMWdV+IOrIxHvLR98Cs2mJxfyjVAHiEMb/30Prvx0lmYv5kNw/VENxTi+jWbjLAJdlhtvslYvbNk/vISiLTc/iGbmp77m17ljYqzkcBtAmaTASajAVabABuXKJcFgPRnXoVQqJhfLCiw/MLFxiQQFAEKrKDwsXOwBCiwgiXI/r4QsNuBCZNNuHrVeXl7syYCmjbx/b9WKbB8Ic02UhMwpCbD9P0XsGxcDoM18BeOSB0XxyMBEiABEiABLRJIfmM67CXK+ZUaBZZfuNiYBIIiQIHlAd+psxex7bf9OHshEWlp6T4Bfq1fF5/asZE7AQosrgg5CBw6bMAXi5yXtxuNwNDBNkRH+75jhQJLjkpxDlcC5u3rYP5mJozXrxAMCZAACZAACZCADARSRsyAcGcZv2aiwPILFxuTQFAEKLCy4Js0axlmLlwNQfD9F1txiL82zQ2qEHrtTIGl18rLm/f8hSb8e8S5+6pmDTsee9S3y9szIqXAkrdmep7NcOoIIhd8DOOJw3rGwNxJgARIgARIQHYC3IElO3JOSAJ+EaDAcsG1fusfGDBisuMrcfljcVfZkigQlxc//LQTxYsWQumSRXHzVjIO/XcSySlpKFYkHs91bYdK5RNQq2p5v8Cz8W0CFFhcCaEmcOWqARMmOXdfifO90MeGYnf4J6kpsEJdKY5vuHkNluUzYd6+1iMMIV8BWNv3hN3lbg7xfqHYaLPjfqGbyTxiyFWkPAIF80U4grp8PU15wTEi3ROIjTIhMsLk+PnJe9p0vxwcAIRSFWGPjPYLBndg+YWLjUkgKAIUWC74+gz5GD/v3Ic2ze5xvIkwJjrS8WnVpt3R68m2GNSns+PPorz6bMEqx04t8WviZ3wCI0CBFRg39vKdwOrvjdj5u/Om9oSSdjzXw7/dV+JsFFi+M2dLPwnYbLBs+gam7+bDmJyUrbPdZEF6i46wtX0a9ogot8/5FkI/WbO57AT4FkLZkXNCPwjwLYR+wGLTHAlQYHFxkIB8BCiwXFg3av8Srly7gW2rpiJ/vjyZn2QVWBkfvDNhPhav3IgFk4ejTvWK8lVNQzNRYGmomApMJSXVgI8+NiHdZWNK58dsqFbVv91XFFgKLK5GQjL+vRsRX06E8eJpjxnZqt+L9M79cnwjEgWWRhaChtOgwNJwcTWQGgWWBoqogBQosBRQBIagGwIUWC6lrtG8JwoWyIefvv7EbQFUb9YDzzzeClkvahcveW/ReRAebFIPE95+UTeLRspEKbCkpKn9sY4dc+6k8iXbfw7b8ct25/HB2Fg7hgzyf/cVBZYvtLXTxnR4D+C/4/QPgM0Gs7jrau92j/2EwsWR/uTLsFWuk+u4FFj+YWdr+QlQYMnPnDP6ToACy3dWbJkzAQosrg4SkI8ABZYL63qtn0e+vHmwcekEtwrc3aYvWjW9G+8O7ZWtMk06DoDBYMCmZe7SS74SqnsmCix110/O6Jd8bcL+A86L2AOZu0UzAfc3EgLpyiOEAVFTVydRJlm+/izH3VByZGOPiob1oW5If6AjYHK/u83T/BRYclSFcwRDgAIrGHrsG2oCFFihJqyP8Smw9FFnZqkMAhRYLnV45NnhOHL8DHZ+Px15Ypz3jDzU7XXkz5sHX346IlvVmncahMtXruHP9bOUUVEJohB3li1asd5xH9jJMxdhtdkcF9bff29NPPfUQygUnz/HWVas2YqvV2/Gv8dOw2azoVSJoni0dSM81aEFTKbsu2cosCQomA6G2LzVhA0/BSevRBcg7r6Kjg5saw3vwNLuQjOePQHL0qkwHdwV1iSt9z6I9A7PwZ6vgM9xUGD5jIoNw0SAAitM4DmtTwQosHzCxEZeCFBgcYmQgHwEKLBcWL/10Wws+24LJr/7Mpo1ch7bGPjWFGz8ZRfWfvkRit1RMLNH4tUbuL/Dyw7ZteO7afJVLUQzCYIdsxZ9h6lzViDdeltaVShb0iGiDh4+DjHf+Li8mDdpOMomFMsWxbD3Z2LVj7/AYjahdvUKsJjN2HPgiOPNjY3qV8fUDwbCnGVHAQVWiIqpoWH3/2XAkmXed6J4S7lObTsefTiw44Pi2BRY3gir73ND8i2Yv50Hy+ZVgBD42gg2cyGhAlKfGgh7Kf/vUqTACpY++4eaAAVWqAlz/GAIUGAFQ499MwhQYHEtkIB8BCiwXFjv2ncY3V56L9udVsu/34IRY2ejRpVyGPNGHyQUL4JLidcwctwcbNr2J+rXroQ5E16Xr2ohnEmUdUdPnsWwF7vi3rpVMmcS37w46uM5WL1uO+pUr4AFk99wi0IUV6LAEsXWjHGvOeSX+CQlp0Ac85ff9uOlnh3R95lH3PpRYIWwmBoY+thxA2bPc5dX4g6qIoX9T+6RtgIKFwls9xUFlv+8ld7DsnU1zN/MgiHppsdQbeWqAUb/7lzzP2cDbA1awdqgpf9d/9+DAitgdOwoEwEKLJlAc5qACFBgBYSNnbIQoMDikiAB+QhQYGVh/d7EBXiwyd24u1alzE9S09LRtutQnLuY6PhaTHQkkpJTMz+f+M5LaNG4rnxVC+FMoqgyGQ2IiLBkm0X8rFH7F5GSmobNyye6HSV8tMebOHz0FBZOfRO1qpZ36yu+2VE8ammxmB39oiIjMj+nwAphMVU+dGKiAdNmGJGa5jw6aDYDvbrbUPzOwEVUoFi4AytQcsrqZzyyHxELP4Hx7HHP4qpsVaQ9+RLsJcopK/AcoqHAUkWZdB0kBZauy6/45CmwFF8iVQRIgaWKMjFIjRCgwPKxkAcOHUP/4Z/gwqWrmT3EO51eeLY9XnimvY+jqL9Zh55v4tB/p/DNnHdRoUwJR0Jnzl1Cyy6vOnamrVk41mOSg0ZNxdpNv2HyewPQ7L7aFFjqXwohzSAp2YDpM4y4es393quuTwq4q0Jgl7AHGzAFVrAEw9vfcPk8LMumw7z7Z4+BCPFFYO3YG9a6TcMbqJ+zU2D5CYzNZSdAgSU7ck7oBwEKLD9gsWmOBCiwuDhIQD4CFFh+sBZ3IG3dsRdnzl9yXOp+b50qbndi+TGUaps26/QKzl+84nbR/Yatu/DyiElo17KB44ilp2fe0rUYO3URendth4G9H6fAUu0KCH3g6Vbg89kmnD3nLq9atRRwX4PwyCsxawqs0Nc+FDMY0lJgXrMI5vVfw2BNyzaF3RIBa6susD74BMR/VttDgaW2iukvXgos/dVcTRlTYKmpWsqNlQJLubVhZNojQIGlvZqGLKO//jmGzn1GoWaVcm5vZJz71Q/4aNpi9On2MF7u9ZjH+ddv/QMDRkxGq6Z3Y/yo/hRYIauSuge224EvFhlx+F/3u4dq1xTQoX345BUFljrXlXnnRphXzIDx6mWPCVjrNoH1sT4QCgRwqZpCkFBgKaQQDCNHAhRYXBxKJkCBpeTqqCc2Ciz11IqRqp8ABZb6ayhLBna7Hb0GjcWO3QeR9c6vKbNXYNr8lXi17xPo0aWNx3jEfj1fGeO4GH7Wx0My26Sme5YSFpMBRqMB6TYBQni9hSx8OcltAsu+FbBxs/v9VuXLAgP6mkJ/n7aXIkRabku1tHQB8t/AxRXiDwHh6D9ImzMe9iMHPXYzJJSDpfsgmO6q7s+wimxrMgJmkxE2wQ6rjStTkUXSeVAZPztz+ve9zvEw/TATMJsMjrtfrTYBNv73Zpirod7pM37OqTcDRk4C6iFAgaWeWoU10gxJJV5WLwos1+fj6Uswe/H3GPZSVzz9mOe3ae3efxhPv/gealergC+muL/BMKyJcXLFENi8TcCCr2xu8RS7Axg+yILoKMWEyUAUTMB+7QqSF36KtE1rPIurfHGI7vI8Ipo/DBjcj6gqOC2GRgIkQAIkQAIkQAIkQAIkAECXAqvhI84jbFKtgm2rpko1lOLG+XLFBohvZ6xYtgS+mPIm8sS42wS/dmDVqYJZ4507sC5fz34njQggb4wZEWYjbiRbHTte+GibwOEjBsyaB4hHCDOemBg7BvY3IH8+ZewqKZjv9v1IiTfS3OLUdmVUkp3VCuO6pcDqhTCkJmUP2mSC0KwD0L477FExKknKtzDF/+sbG22GuLvlZrLVt05sRQIyEsj42ZnTv+9lDIVTkUA2ArFRJkRGmBw/P7lLkAskUAIZP+cC7c9+JEACvhPQpcCq2rS774R8bPnXprk+tlRXs6WrN2HUuLlIKH4H5k8ahsIF47IlMH/pWoyZusinO7Cy7uA6cznZI5D4vBGIijA5ZEFKmvuuHHURZLTeCJy/YMCMWSakpztbiseinutpQ/E7lSGvxMh4ibu3Sobnc9Pe7bAsnQbjpbMeA7DdVQtpTw2Avcjtt6Zq7eEdWFqrqPby4R1Y2qupljLiHVhaqmb4cuEdWOFjz5n1R0CXAuv7DTskr3Tb5vdIPma4B1y8ciPemTAfpUsWxZwJr6NIoezySoxx8/Y96Ddsgk9vIezZpS0G9+2cmRoFVrirHN75r98wYPoMI27ecj/O1aWTgCqVlbXzjgIrvGsl6+yGcycQ8eVEmA7v9RiYUKQErJ1egLVafWUFLnE0FFgSA+VwkhOgwJIcKQeUkAAFloQwdTwUBZaOi8/UZSegS4ElO2UVTrjg6x/x4ZQvHccGP/94CAoWyJdjFpcSr6FJxwFIKF4EaxaO9dhu0KipWLvpN4x76wW0aeaUfRRYKlwcEoWckmrAjM8NuHTZ/Y2DLZoJuL+RsuSVmDIFlkSFD3IYQ/ItWFbOgXnrakDIvjtTiI6B7aFuSG/aATCZgpxN+d0psJRfI71HSIGl9xWg7PwpsJRdH7VER4GllkoxTi0QoMDSQhUlzmHO4jUYN/0rVLurDGZ89Cry58vjdQbxgnbxovaFU99Erarl3dpfuXYDzTsNgmC3Y8uKScgX67yDhgLLK1pNNhDfLDlnvgnHT7jvvKpdU0CH9sqTVxRYCliGguCQVpZv58Jw60b2gAwGpDdoBWuH52CPza+AgOUJgQJLHs6cJXACFFiBs2PP0BOgwAo9Yz3MQIGlhyozR6UQoMBSSiUUEseML77FxM+XoU71ipg+ZlC2C9tzCnPrjr3oO3Q8yiYUw4xxr6FYkXhH06TkFLwycip+3rkPXTu2wPCXn3YbggJLIYWXOYwVK43Yu1POLwAAIABJREFUvcd951XZMgK6d1OmvKLAknmBZJnOeGgPIhZPhvHscY+B2EpXQlrXgbCXKBfeQMMwOwVWGKBzSr8IUGD5hYuNZSZAgSUzcI1OR4Gl0cIyLUUSoMBSZFnCE9S23/ej96vjHJMXu6MgIiMsOQYSGxONrz4b6fa5uGtL3L1lsZhRu1p5RFgs2HPgCG7cTEKViqUxb+IwxERHUmCFp7yKmXXzViM2/OQur+Lj7ejbW0BUpHIubc8KjEcI5V9ChsvnYfl6Gsx//uJxcqFAYVg79oa13gPyB6eQGSmwFFIIhpEjAQosLg4lE6DAUnJ11BMbBZZ6asVI1U+AAsulhl1eGB1wRRdPeyvgvkrpKN5RJd5V5csTmycaO76blq2pOMYXy9bhnyMnYLMJKF6sMNo2uwc9urTxKMS4A8sX2tpps/8vA5Ysc7+XKCbajj7PCyiQX7nyyiF146NhMABnE5NhV3aoql8whrQUmL9fCPP6ZTDYXF5P+f/M7JYIWFt2hrX1kxD/Wc8PBZaeq6+O3Cmw1FEnvUZJgaXXykubNwWWtDw5GgnkRoACy4VO1abdA14tf22aG3BfPXekwNJP9U+dMuDzuSaI919lPEYT8NyzNpQooXwjRIElw1q122HeuQHmFZ/DeO2yxwmtdZrA+ngfiLuv+AAUWFwFSidAgaX0Cuk7PgosfddfquwpsKQiyXFIwDsBCiwXRtPnr8qVWEpqGs5fvIJd+w7h1NmLjvuhRg7ujrvKlkT5MsW902aLbAQosPSxKBITDZj+uREpKe6Xtj/ZWUDlSsq998q1OhRYoV2rhuOHEPnlJzCeOOxxIqF4WaQ9+RKEctVCG4jKRqfAUlnBdBguBZYOi66ilCmwVFQsBYdKgaXg4jA0zRGgwAqwpGs27sDwDz9HjcplMWfC6zAa3X8xD3BY3XWjwNJ+yZOSDZg+w4ir19y/Rx5sIaBRQ3XIK7FKFFihWauGG1dhWfYZzDvWe5xAfKOgtX1PpN/XBo4znHzcCFBgcUEonQAFltIrpO/4KLD0XX+psqfAkookxyEB7wQosLwzyrHFwuXr8P6khRj9Wk889tD9QYyk364UWNqufboV+Hy2CWfPuYuHWjUFdGyvHnlFgSX9OjVY02BevxzmH76EITU52wR2kwnWJu1hfbg77FHR0gegkREpsDRSSA2nQYGl4eJqIDUKLA0UUQEpUGApoAgMQTcEKLCCKLX4dr2Gj/RHneoVHW/Y4+M/AQos/5mppYd40fkXi4w4/K/7GwfLlhHwTFcBRvcvKz4t7sCSrkTm3T87dl0ZLp/zOKi1Sj1YO/eDcEdJ6SbV6EgUWBotrIbSosDSUDE1mAoFlgaLGoaUKLDCAJ1T6pYABVaQpW/ScQCsNht+WTklyJH02Z0CS7t1X7PWiO073C1VkcJ2PP+cDREW9eVNgRV8zQxnjiFi8WSYDu/1OJhQpATSO/WFrdo9wU+mkxEosHRSaBWnSYGl4uLpIHQKLB0UWYYUKbBkgMwpSOD/BCiwglwKDR/uj1tJKdizYVaQI+mzOwWWNuv++y4jVq12l1d589rxwvMCYvMo/42DnqpCgRX4WjXcvAbzN7Ng2fYDIG7Ny/KIRwStD3VD+gMdAZMp8Il02JMCS4dFV1nKFFgqK5jOwqXA0lnBQ5QuBVaIwHJYEvBAgAIriGVx5twltOzyKgoWyIctKyYFMZJ+u1Jgaa/24pFB8eigq6eIjBB3XtlRuJC67r1yrQ4FVmBr1bLha5hXz4chJfs9V+KI1gYtkd6xD8TL2vn4T4ACy39m7CEvAQoseXlzNv8IUGD5x4utPROgwOLKIAH5CFBgBcg6KTkFg9+ehi2/7kHje2pg+phBAY6k724UWNqq/5mzBnw+xwSr1ZmX+OK4ns/aUCpBnTuvMjKhwPJvrZr//BnmZTNgvHTWY0db6UpI6zoQ9hLl/BuYrd0IUGBxQSidAAWW0iuk7/gosPRdf6myp8CSiiTHIQHvBCiwXBh99Olir8RsgoDzFxPx+55/kHj1hqP95PcGoNl9tb32ZYPsBCiwtLMqrl41YPpMI5KS3d84KL5tUHzroNofCizfKuj1nqt88bB27A3rPS18G5CtciVAgcUFonQCFFhKr5C+46PA0nf9pcqeAksqkhyHBLwToMByYVS1aXfvxLK06N65NV7r18XvfuxwmwAFljZWQkqqAdNnGJF4xV1eNblfQPOm6pdXYpUosHJfq17vuTKbkd6sI2xtn4Y9MlobC18BWVBgKaAIDCFXAhRYXCBKJkCBpeTqqCc2Ciz11IqRqp8ABZZLDZ8d8IHXihoMBuSJiULpkkXRuml9VK9c1msfNsiZAAWWNlbH7PlGHDvmfml79WoCOnXUhryiwMp9nVo2LIN59byc77mqejesT7wIofCd2ljwEmSxOukY/km9EvRIFrMRUREmpFsFpKTZgh6PA5CA1ATyxtx+7eyNpHSph+Z4JBA0AfHnp/hzVPz5Kf4cFZ/BBXiqImiwOhuAAktnBWe6YSVAgRVW/JycAkv9a8AmAF8uNkK8vD3jEe+76tHNBqOGXijHHVie16pl9XxYvlvg8UOhUFGkdR0EoRJ/GcgAtDf1EoZf/hW70y6p/5ufGZAACZCABgkcTHgK+YwRGsyMKYWKAAVWqMhyXBLIToACi6sirAQosMKKP+DJb940YO16A/bsdd91JQ5YqKCAPr3siIxS96XtWeFQYGVfLubfNiJidvadq3ZLJKwPP4v0lp0CXmNa63jWdgvvJf6OFbeOai015kMCJEACmiLwd0JX5DXe3jnIhwR8IUCB5QsltiEBaQhQYEnDkaMESIACK0BwYeomvl3w520mbP3ZgHSXNw1mhBMTbUff3gLi4rQlr8T8KLDcF53pv78Q+dHAbCvRem9LpHfoDXu+AmFapcqaNsluxeQrezDj+gGkgEf8lFUdRkMCJEAC2QlwBxZXhb8EKLD8Jcb2JBA4AQqswNmxpwQEKLAkgCjTEHv3G/DjeiOuX3e/qD1j+po1BLRqYUdsrPbkFQWW+yIzXjyDyDH9Ybh10+2D1BdGw1ajgUwrUvnTLLp5GGMS/8BFIcVjsC2iS6BGRMGgEuEdWEHhY2cZCPAOLBkgc4qACfAOrIDRsaMLAQosLgcSkI8ABZYH1tt//wsbf9mFYyfP41ZSMgS791/IF097S76qaWgmCizlF/PMWQO+/d6I06c9i6vixe14uK2AO4t5/z5RfrY5R8gdWP9nc+sGosa8BOPF0+7y6qmBsDV+SM0lliz27Snn8NblHTiQ7vmS9oqWOLwTXx+NooO/1J5vIZSsbBwoRAT4FsIQgeWwkhDgWwglwaj7QSiwdL8ECEBGAhRYLrAFwY4h707Hmo07/C7BX5vm+t2HHQAKLOWugtzuuRKjzp/fjpbNBdSopm1xlVEhCiwANisiPx4E09GDbgs3vcVjSH+sr3IXs0yRHbVex+jLv+HH5JMeZyxkjMJrBWrjqbwVYYRnIexvqBRY/hJje7kJUGDJTZzz+UOAAssfWmybEwEKLK4NEpCPAAWWC+vFKzfinQnzHV8pXrQQ6teujDsKF4DR4P0Xjf49OshXNQ3NRIGlvGI67rna/v97rjy89dxiARo3sqNRAxvMZuXFH6qIKLCAiNnvw/zbT26IrTXvQ1qfkYAPPydDVRupx/019Rzsdu8/913n/f7WMcy+4S72XD/vl68qXo6rJfnFwBRYUlef40lNgAJLaqIcT0oCFFhS0tTvWBRY+q09M5efAAWWC/Mn+72DvQeO4KHm9+K9Yb1hMZvkr4jOZqTAUlbBr10zYNY8I65ezfmeqweb25E3rz52XblWR+8Cy/L9F7B8O89twQolyyNlyCTArI23Nf2cfAavXd6GE1b3u72C+S5tF1MaI+LroYQ5NphhcuxLgRUSrBxUQgIUWBLC5FCSE6DAkhypLgekwNJl2Zl0mAhQYLmAv7tNXyQlp2DTsk9QuGBcmEqir2kpsJRT75RUA2bOMuDiJWO2oMR7rtq1EVD8Tv2JqwwYehZYpt1bETljtLu8ii+ClGGfArH5lbOIA4zkmPU6Rl7eifXJpwIcIXu3mhEFMbrQPagXUUSyMT0NRIEVUrwcXAICFFgSQOQQISNAgRUytLoamAJLV+VmsmEmQIHlUoBaLZ9DhMWMnd9PD3NZ9DM9BZYyai0IwJz5Jhw/4b7zSm/3XOVWDb0KLOPxQ4gcNxAGq/M8qT0mFilDp8BepLgyFnCAUSTZrZhwZTdm3jiIdLsQ4Cju3e405cHw+Lp4NE9ZiW65yj0sCixJysZBQkiAAiuEcDl00AQosIJGyAEAUGBxGZCAfAQosFxYt3ryNZy/dAW71s6E0ejf/SfylUxbM1FgKaOeK1YasXuP+86rhBJ2dH9GX/dcUWC5EzBcPoeoD/rDcOt65gd2kxmpg8ZDKFtZGYs3wCi+vnkEoxN34rKQ6nGE+pFFYET23Yi5Tdcophj65a+GSMh3/JwCK8AFwG6yEaDAkg01JwqAAAVWANDYJRsBCiwuChKQjwAFlgvrt8fPw5JVP2HexGGoV/Mu+aqg45kosMJf/E1bjNi4yf0X9fgCdvR5TkB0tH6PDGatjO52YCXfcsgr48XTTnkFOC5st9VqFP6FG2AEe1MvYcjl7diXdtnjCPUii2BswQa4K6JAgDPI240CS17enM1/AhRY/jNjD/kIUGDJx1rLM1Fgabm6zE1pBCiwXCpy7OQ5PPbcWyhdsihmTxiK/HnzKK1emouHAiu8Jd3/lwFLlrnvFomJtqNvbwFxcZRXrtXRlcCyWRE5cShMh/e6LdD0jr2R3rJzeBdtgLMnCql49/JvWHLrX3ha2SXNsXgzvh7ES9fV9FBgqala+oyVAkufdVdL1hRYaqmUsuOkwFJ2fRidtghQYGWp54atuzD0vemIiY5ChzaNUaNyORSIywuTKfejJDWrlNPWypApGwosmUB7mEa870q890q8/yrjMZqA53vacGcxyqusyPQksCJmvw/zbz+5IbA2aou0rq+Eb8EGOLPVLmDWjQOYcOVP3LBbs40SYzDjxbgaeCF/VUTIePQvwHSyxx9pQlxsBJJSbbh6M02qYTkOCUhGgAJLMpQcKAQEKLBCAFWHQ1Jg6bDoTDlsBCiwsqA/cfo8Br89DQcOHfOrKH9tmutXeza+TYACKzwrQXzT4IzPDUhNc7/r7cnOAipXkuYy6/BkFrpZtSywDOlpMJ48AsPJwzAe+xvmX9e5gbRVuwep/d8NHdwQjLwr9SK2p5zD4huH8Z/VeYeX61SPx5bFGwXuRhFTdAgikGdI7sCShzNnCZwABVbg7Ngz9AQosELPWA8zUGDpocrMUSkEKLBcKnHuYiI69R6JxKs3/K4PBZbfyCiwAkMWdK+kZAOmTjfixg13edW6pYCGDSivcgKsFYFlSE2C4eQRmE4ehuH4YYe0Mp07CbeteC4QhDtLI2XIJCBS2ZLnhpCOTSmnsD7pJH5KOp3j5exiatUjCjruuaoRWSjo76dwD0CBFe4KcH5vBCiwvBHi5+EkQIEVTvramZsCSzu1ZCbKJ0CB5VKj9yYuwJcrNiBvbAz6Pdse991dDXcUjvfpjYTikUM+/hPgDiz/mQXTI90KfD7bhLPn3OVV3ToC2rejvMqNrRoFluHWTRhPHILx1BEYjv7t+Lvrpeze1pI9vghSh06GkC/eW9OwfH4o/So2JJ/GulsnsCP1vNcYChujMCK+Ph6LLeu1rVoaUGCppVL6jZMCS7+1V0PmFFhqqJLyY6TAUn6NGKF2CFBgudSy9VNDcPLMBYwf1R+tmt6tnSorOBMKLPmKY7cDXywy4vC/7ve5VSgv4OknBRjcnZZ8galkJqULLMONqzCduL2jStxZ5dhhddm71MkJvz0qBilDJ8NeNEExFUqDDT8nn8WGpFPYkHwKJ603fYotEib0yVcFLxeoiWiD2ac+amlEgaWWSuk3Tgos/dZeDZlTYKmhSsqPkQJL+TVihNohQIHlUss6D/ZGutWKXWtnwmLR1i85Sl2yFFjyVWblaiP+2OUur4oVteO5njZwuXuvg5IEliHxAownDjv+ctxbdeJfGK8nek8ipxZGI2xFE2BPqAChVEXYS5aHULI87BHh31l6zpaEH5NOOo4G/pJ8Fimw+ZRnnDECD0QXR8uYBDSLLoG8RotP/dTWiAJLbRXTX7wUWPqruZoypsBSU7WUGysFlnJrw8i0R4ACy6WmDdr1c/xp++pPtVdphWZEgSVPYbZtN+KHde7yKm9eO/r3FRATzTcO+lKFsAgsux3GS2ccggonDsF08t/b0uqW//f0ZeRoN5lgL1YKQkJFCAkVbkurEuVgt0T4giHkbWyw4/fUCw5hJe60+if9qs9zVrTkR4uYkmgZUxL1IovACO1vK6TA8nl5sGGYCFBghQk8p/WJAAWWT5jYyAsBCiwuERKQjwAFlgvrXoPG4tddB7Bt1VTkz5dHviroeCYKrNAX/+DfRixa4i6vIiPseP45OwoX4r1XvlYg5AJLEGA8f9IhqwzivVWirBKPAaYk+xpitnZ2kwX24mVgS6gAlKoAW8kKjj/bzcrajXRVSMPG5FNYf+skNqWcxjUhzaecI2BEw6iiDmnVKiYBd5r193ObAsunpcJGYSRAgRVG+JzaKwEKLK+I2MAHAhRYPkBiExKQiAAFlgvIHzf/jldGTsHA3o+jd9d2EiHmMLkRoMAK7fo4c9aAGbNNEFxOXRmNQI9nbCiVwJ1X/tDPTWCJx/cM4pv8/HwMl87CePwQDKfEnVVHYLD6Jm5ymsZWtvLt3VSl7nL8Xdxh5e+TCht2pVzyt5vf7YX/77TaeOsUfk+74HP/QsYoNIspjtYxpXB/9J2au9PKZxD/b0iB5S8xtpebAAWW3MQ5nz8EKLD8ocW2ORGgwOLaIAH5CFBgZWE9esJ8fL16k0NiPfFIM+SJCf8dMPItB/lnosAKHfO/DhiwboMRiVfcj1E93tGGGtUor/wl70lgicLJvH4ZzD8sgiE18J1S/sYi3k2VIajsCRUdxwBtxUoCRpO/Q2W2F1fEN7f+w/uJf+CM7VbA40jdUVy9NSIKokWeBLSILuH4Zz5OAhRYXA1KJ0CBpfQK6Ts+Cix911+q7CmwpCLJcUjAOwEKLBdGazf9hiPHz+CLZT/i2vVbjovcy5cujsIF4xAZkfuRm09Gv+idNltkI0CBJf2iOHvegO/XGHH8RPb7f5o/YEeTxr5dgi19ZOoeMavAMu/+GZZl04N6058vROyR0Y4L1YVSdzkuVxf/st1ZypeuPrf5I/UCRlzegT1pl33uE8qGUTA5dlc9KEqrmJIobOT/SMiJNwVWKFcix5aCAAWWFBQ5RqgIUGCFiqy+xqXA0le9mW14CVBgufCv2rR7wNX4a9PcgPvquSMFlnTVT0o24Mf1Buz+0wi7hw1WtWoK6Nied14FSjxDYJ3bfxCWRZNhOrw30KFy7GePib0tq8TL1UtVvP3PhYsDhtBcRn7KehPvJf6BVUlHJc/F3wFLmmMdO6zEnVb3RRaFxeB+b5u/4+mlPQWWXiqt3jwpsNRbOz1EToGlhyqHPkcKrNAz5gwkkEGAAstlLbz9ceASauTgwOWXnpcjBZY01f95mwmbtwCpaZ5Fx/2NbGjRjMcGg6Fd1JKGlMUzkLZ+pcdhHLui8uT3awrxzX9CyXJAqUqOvwuFivnVP9DGSXYrJl7dgynX9nkcopgpBqXM+QId3ud+EUYD7ou6Ey1iSqCSpYDP/djQSYACi6tB6QQosJReIX3HR4Gl7/pLlT0FllQkOQ4JeCdAgeWdEVuEkAAFVnBwxTcM/vCjAVeuehZXVSsLaNXSjrg4yquASdtssGxZiYjVC2BPupltGCGuEKwde8N6d7OAp5Cro3hx+uKbhzE2cRcuCinZpo02mPFiXHX0y18NEQj8Pi258uE8AAUWV4HSCVBgKb1C+o6PAkvf9ZcqewosqUhyHBLwToACyzsjtgghAQqswOBevGDAqu8933MljnhHETsefkhAQkmKq8AI3+5l/Hs3Ir6cCOPF09mGsZsssLZ8HNY2T0G8VF3pz8/JZzAicScOpV/1GOrDMaUxsuDdKGbKo/RUGJ8LAQosLgelE6DAUnqF9B0fBZa+6y9V9hRYUpHkOCTgnQAFlndGbBFCAhRY/sEV77lat8GAXbs933OVJ48dLZvbUbumEKprk/wLWKWtjRdOwbx0Gsz7d3rMwFazIdI69YO94B2Kz/Co9TpGXd6J9cmnPMZa0RKHsQUb4O4o5eeieNhhCJACKwzQOaVfBCiw/MLFxjIToMCSGbhGp6PA0mhhmZYiCVBgKbIs+gmKAsv3Wu/dZ8Sq1UakpXvu0+g+G5reb4eXF2b6PqFOW1qWToNl43KP2RuLl0LK4/1grVRH8XRu2q0Ym/gHZt046DHWvAYzhsXXw7N5Kyk+FwaYMwEKLK4OpROgwFJ6hfQdHwWWvusvVfYUWFKR5Dgk4J0ABZYLo/GfLfFOLIcWg/p0DrivnjtSYPlW/SP/GTF/oeddV5UrCWjzIO+58o1k7q3Mv29GxKx3szUSomOQp/NziGz9GM5eS/P4lkcp5pdiDPHQ6KKbh/Bh4h+4LKRmG9IEA7rmrYihBeoizhghxZQcI4wEKLDCCJ9T+0SAAssnTGwUJgIUWGECr7FpKbA0VlCmo2gCFFgu5anaNPA3Cf61KfA3GCp6hYQ4OAos74DPXzBgxiwT0rPsvCpc2I727XjPlXeCvreIGvcKjEf2u3WwNmiF9I69UTShqONY5tnEZMUKrF2pFzH00jYcSL/iMel6kUUcxwXviuAb/3xfFcpuSYGl7PowOoACi6tAyQQosJRcHfXERoGlnloxUvUToMByqWGvQWNzrWhySiouXLqCsxcSHe3yxETh0daNUbpkUTzVobn6V0MYMqDAyh369esGTP/ciJs3nW8ZNJuBtq0F1KsjhKFi2p3SeOIwoj7o55ZgyrBPISRUcHytWHy0YgXWBVsyRl7eiVVJRz0WqKgpBm/F3432ecpot4A6zYwCS6eFV1HaFFgqKpYOQ6XA0mHRQ5AyBVYIoHJIEsiBAAVWAEvjzLlLmPnld1iy6if07NIWg/vy+GAAGB1dKLByJifedTVzlgniDizXp+uTAu6qQHkV6JrLqV/k3DEw7Vif+bHt7uZI7fl65p+VKLCsdgGfXf8LE6/uwS27NVtqETCiT76qGFCgJqINZqmRcTwFEKDAUkARGEKuBCiwuECUTIACS8nVUU9sFFjqqRUjVT8BCqwgajh6wnx8tXIjZn08BPfWrRLESPrtSoHlufaCACz40gjx7ivXp2VzAY3vo7yS/Dvm+hVED+sCgwj+/0/y8GmwlyyvWIG1LvmkY9fVcesNjzhaxyTg7fj6KGGOlRwXB1QOAQos5dSCkXgmQIHFlaFkAhRYSq6OemKjwFJPrRip+glQYAVRQ/EoYYvOg9Dy/nr4ZPSLQYyk364UWJ5rv2KlEbv3uMur2jUFdGhPeRWK7xbL6vmwfLcgc2ihdCWkDJ3sNpVSdmD9l34dr1/ejl9SznpEUc6SH2MKNkCDqKKhQMUxFUaAAkthBWE42QhQYHFRKJkABZaSq6Oe2Ciw1FMrRqp+AhRYQdbwvvYvwmI2Y9OyT4IcSZ/dKbCy1/3nbUb8uN5dXpVKsKPHMzYY3b+sz0UjddY22+3dVzeuZo4sHh0UjxC6PlIKrItCCjYkncLpdM+7p3JK8ZKQgvk3/vH4cT6jBYPiaqF3vqpSE+J4CiZAgaXg4jA0BwEKLC4EJROgwFJyddQTGwWWemrFSNVPgAIryBo26TgAV6/dxJ4Ns4IcSZ/dKbDc637goBGLl7pbqvh4O/r2FhAVadfnIglx1uK9V+L9VxmPPW8ckv/H3nmAR1GtYfjb3fSEFkoIoQuoFJGOioUmRUBFUBREEKQoVUUEKSoogghSIggiNgQsqIhSRRQRKYoIwrWA0mtCSS+7c58zuEmWbLKzu7O7szPfPI/P9Zoz55z//c9OZt+cMm0FYLGoJrBskPBL9jl8k3oMmzNO4PecZKiVTTFaHoypg/GxTVHaHOZjWqxeawQosLSWEfbnagIUWBwTWiZAgaXl7ARP3yiwgidX7GnwE6DA8iKH6RmZaNZpCErEROGnNW94UZNxb6XAys/9iZMmvPW2BdYCqwSjIiUMHmRDmVJq6Q7jjrWiIo94aQjMxw/l/TinS1/k3PVwoeLuzsC6aMvGxvRj+Db9OL7NPI7LthzV4TcPr4Cp5VqiXmis6nWzwuAgQIEVHHkyci8psIycfe3HToGl/RwFQw8psIIhS+yjXghQYHmRydcXf4LFy9bgxnq1sCxxghc1GfdWCqwrub9wyYQ3F5mRnpF/4qDFDAx81IqESpRXvvqEWA4fQPirI/Oql8xmZMz4GIgu6bbAElnal52EzRnH5eWBv2adg692LIu3RGFCbFPcE13TV2hYb5AQoMAKkkQZuJsUWAZOfhCEToEVBEkKgi5SYAVBkthF3RCgwCqQyi0//uoysTabDafPXcD3P/2KrTv2yeWfHfYQHu5xp8t7WaAwAQosICPDhDeXmJGcnC+vBKlePW2oe72vFAhHoyAQtmQqQnZ/lwcjt0V7ZPd7xikcZzOwUmw5+C7zBL5NO44NGceQbMtSDLZKSAzaR1Zxe9lfSUsY+pS4FpGmEMVtsaB+CVBg6Te3eomMAksvmdRnHBRY+syrv6OiwPI3cbZnZAIUWAWyX++Ofm6PhUb1a2Pp7LEIDeWXSbfhATC6wLJZgbfeteD4cUd51ba1DbffSnnlyZhSfM/lC1c2b7flc84YvwBSlVrFCqwtZ05hU9qVWVa7s84gV+FuVmEw46bIOLSNqoI2kZVRI6TwLC/FfWdBEviPAAUWh4J/UR1gAAAgAElEQVTWCVBgaT1Dxu4fBZax869W9BRYapFkPSTgmgAFlgcCKyoyAjWqVkSHO5qjz33tER4W6po0SzglYHSB9ckqM37b77hp+w31bejRnfLK1x+ZsC/eRsi65XnNWGvWRdaYOYWazZBy8UPmKWy3nsbay0dwNDtVcdcSQqLROiJBlla3RsZz1pRiciyolAAFllJSLBcoAhRYgSLPdpUQoMBSQollXBGgwHJFiD8nAfUIUGCpx5I1eUDAyAJr8xYztnzvKK+qVZXQ/2ErzI4H4HlAlrcUSyAnG5HP9oIpPSWvWPaA55Db9A75/x+1pmBT+nFsSj+K7RlnkK1wN6sQmNA0XMyyqoy2kZVxbVhpJoIEfEqAAsuneFm5CgQosFSAyCp8RoACy2doDVUxBZah0s1gA0yAAivACTB680YVWGLWlZh9VfCKjZUweIANkZHctP3qz0UWrFhwaT8SL+5DupSrqY9NeXOEvCSwbXRl3BaRgBJmzsjUVIJ03hkKLJ0nWAfhUWDpIIk6DoECS8fJ9WNoFFh+hM2mDE+AAsvwQ6B4AO9/sgEzF6xE+XKlsWnlay5pfbZ2Kz5Z8x3+/vcErFYrqlWuiHs6tsJD97aDRRyrd9VlRIElNm1/bY4Z2dn5+15FREgYOtiGMqUorwoOEUHjs7TDeDl5N05Z012OP38UEKP4xvDy8iwrIa4ahJWF4w5m/ugF2yCBKwQosDgStE6AAkvrGTJ2/yiwjJ1/taKnwFKLJOshAdcEDCuw0tIzMW3eMjzWuwuqVY5zTcpJicysbIhTCSPCw2E26+srrOAzccYSrN+yS448Pq6sS4E17uXFWL1hG0JDLGjUoDZCQ0Kw98AhpKZloFXzBkicNgohFse1cUYUWKu/MmP3z/kyT3i9Rx+xokoVyquCH7NdmWcwMXkn9mUnefT5VPOmMuYwdCxVDXeVrorGtjiUMoWpWT3rIgGPCVBgeYyON/qJAAWWn0CzGY8IUGB5hI03XUWAAotDggT8R8CwAmvV199j4oy3US62FL795HWPBNSYKQvw9Tc78PK4x3B3h1v8lzUft/T3PycwctI8/HvsNB7t1RkrV29GyRLRxQosIa6EwKpZNR6LZo5BfIVYuZfpGZkYNWk+tu3aj+GPdseQvt0cem80gXXmrAmJCx0lXus7JLS+zerjrAZP9cesqXgpaTe+TP83oJ2uF1oG7aKqoHVUZTQLr4D42EiYTMCp5AxIdI0BzQ0bzydAgcXRoHUCFFhaz5Cx+0eBZez8qxU9BZZaJFkPCbgmYFiB9dQLb2DdtzvRu3t7jB/R2zUpJyU++HSjPIvr3k63YurYAR7VobWbzidfQqfezyAn14oXnu4vi7kb2w1AubLFLyG8p/8E/PXPcSxLnIAb69VyCOvCpRS07fkkQkND8N2qOYgIz5+9YjSBteQdC44czZ+tFxMj4amRVlw1MU1rw8Iv/UmVcvH6hT14K+UgcqTCpzBWskRjYtmm6BZVw+P+mC6cQ8RzvWEqYKAyxi+AVMVxzDprgALLY+y80YcEKLB8CJdVq0KAAksVjKzERwQosHwE1mDVUmAZLOEMN6AEDCuwuvYdh8NHTyHx5VG44+YbPUrCnv1/oc+wl3DtNVWwaskUj+rQ4k1i3yshoRpcXxOSJKF+6/7FLiE8efo82vd6GlUTKmDtshlOQ3ry+UR5OeK8l0aizS2N8soYSWDt/92Ejz51nH11/31W1K9n7Ok8Vkj4IOUPzLywB8m2rELjJwIWDC1VH8PL3IBweHc8Y+inixC66eO8Nqy16iPrqdmKPoYUWIowsZCfCVBg+Rk4m3ObAAWW28h4gx8JUGD5EbaOm6LA0nFyGZrmCBhWYDXrNERe3rZ++auoHF/eo8QcO3kWHR96BhXKlZaXIerxyrVa0bDtgGIF1jdbf8GIiXPRpf1NmP7cYKcY3v14PWYkLpf3HBv1WA/DCSyrFXh9vgWXLuXPvqpaRcLA/sZeOvhtxgm8mLwTf+Zccjpu7oqqhhfKNke8Jdr7j1d2JiLHPgBTZv5m8FkDJ8Da5HZFdVNgKcLEQn4mQIHlZ+Bszm0CFFhuI+MNfiRAgeVH2DpuigJLx8llaJojYFiB1aBNf9hsEraveQMlY6I8SozYnLzFXUPlJXE/r1/kUR1av0mJwHpn5Tq8umAFBj/cFSMG3Oc0pE1bf8bIifPQ4Y5mmPX8E4YTWFu+M2Pzd46nMA5/3Iby5QovlQv0mJiUtAO/Z1/weTdSbdnYn5PstJ1rQkpierlbcFOEZwcsOKs05Ps1CFs+J+9HUonSyHhlJWAufDqms/spsHw+JNiABwQosDyAxlv8SoACy6+42ZibBCiw3ATG4k4JUGBxYJCA/wgYVmA16TAI4hTBTR/Nyttw3F3s55Iu4o77RiEsLBR7Nix29/agKK9EYM1/+zMseO8LPD3kAfTv1clpXDv2HMSjo6ejZZO6WPLaM3llsnKcC5xQi0neWD/HaoNNe47HrdxdTgEmTrUit8Bkq1Y3mfDgfcrEiVuNeVl46pndmHrmZy9r8fz2MpZwTI5vhsdi68ICdU/2zBzzMKSTR/I6F3L/IITe3UdxZ8NDr+QrO8cGYy/6VIyMBf1AQJxiGmIxw2qTkGvlyPQDcjbhJgH7s7Oo3/duVsfiJKAqgRCLCRazCblWG6xB/r6pKhhW5hYB+3POrZtYmARIwCMChhVYYqPyoyfO4u3ZY9Gi0fUewfv197/R+4mpiCtfBps/VraPjkcNBfAmJQLrtYUf4e0VX2Pc8N7oc197p7217xfWqH5tfDD/uQBG5P+m33zXil2/5L8VRUUC0yaFItqziX8+C+CD5D/x8D/f+Kx+VxU/Ub4+XkxojlhLuKuibv8897ddSJ06Ov++kFCUXPQFzDEl3a6LN5AACZAACZAACZAACZAACZAACfifgGEF1pPPv4H1W3aib88OGPvEgx6Rf+Odz5H4zueyABMiTI+XEoHl1gysxnWxZFb+DKyky9lOsZWICkFYiBkpGbnyjJdgvY4eNyHxTcfed7tLwi0ttRXRj5mn0e3YVwHp1M0RFTGj4s24LrSMz9o3zx0P028/5dUvteoEW78xbrVXtuSV0zOTU7JR4BBDt+pgYRJQm4D4q29MZAjE7JbUjFy1q2d9JOA1Afuzs6jf9143wApIwAsCMREWhIdZ5OcnZwl6AdLgt9qfcwbHwPBJwC8EDCuwvtzwI559eREiI8Lkk/PKly3tFnCxAXyHB8cg+WKKvCm52Jxcj5cSgfXex+sxPXG5oj2w2t3aBHOmDM9DpedTCIXkWLDIgtNn8pfCiT2vnhhiU7rtkl+G1F85l9D11Bqk2HLy2hOn/c0vfxvKWCJ82odwkxmNwz07REFpx0znTiFiUl+HBYkZk5ZAiq+qtAq5HPfAcgsXC/uJAPfA8hNoNuMxAe6B5TE63ugHAtwDyw+QDdAE98AyQJIZomYIGFZgZWfn4M4Hx0DsY3VD3WvkfZmiIpUtXRKbv4+aPA/i9L3Q0BCs+3AGKpaP1UxS1eyIEoH13fa9eHzcbEWnED7aqzOeGnK/IQTWz7+Y8MUai0M6BvS3oloV7exTk2zNRMeTX+KENS2vn0K3vVOhLdpFVVFzKAWsrrCPEhHy7ed57dvq3IDM0a+53R8KLLeR8QY/EKDA8gNkNuEVAQosr/DxZh8ToMDyMWCDVE+BZZBEM0xNEDCswBL0N36/G6MmzZcTUbNqPKY+OxAN615TbGKOHD+DSa++jd17/5DLDXzoLowe1FMTyfRFJ5QIrPPJl3B795GomlBBns3m7Hry+USs37ILMycNRac2LXQvsLKyTZg9x4z0jPzZV9dfZ8OD92tnOWSGLRf3nP4a+7MdTwKcXKYZBpWq54vh5P86szMR+XQPmHKy8trOGjQZ1kat3O4LBZbbyHiDHwhQYPkBMpvwigAFllf4eLOPCVBg+RiwQaqnwDJIohmmJggYWmCJDIjT88QeTvZLCKxWLW7AdddUQelSMQBMuJyShr//PYEdvxzE9p9/h/TfBji3trgBiS+PgkUcA6XTS4nAEqH3GfYSxEbtyxIn4MZ6tRxoXLiUgrY9n4RNkvD9Z3NRMiZ/93K9LiFcu9GM7dvzx4UYIiOHW1G6lDZmX4lcPHJ2EzZnnHDI1f0xtTC7nPtyx1/D33z0L5gy0xU3Z/p9J8I2fJRX3la6LDKnrVB8f8GCFFgeYeNNRRDIvmRCZpL3J21yDywOMa0T4B5Ygc1QTGUbzFe2cOTlhAAFFoeFGgQosNSgyDpIQBkBwwssgenzdT/glfkfIiVV+Rfjfg90xKjHeiI0xHGJmDLswVNKqcDauuM3DBk7S57JtmjmGMRXuLKkUuwVNnpyIn7YuQ+9u7fD+BF9HILXo8BKTjZhTqLFYaPv22+1oW1r7cy+ej55JxZfPuCQi1sj4rEsrj0sJu0IWVNGGiwHdsO8fwcsv++CKeWiVx+enHsHIufOBzyqgwLLI2y86SoCUi5wfLMJx7+zQPw7LxIgARLwJYGGo3IRHe/LFoK7bgqs4M6fVnpPgaWVTLAfRiBAgfVfli9eSsXK1d/i680/4e9/HGel2AdC5fjyuK3lDejdvT2qV6lohPEBpQJLwJi5cCWWrlgr7wvWqH4thIWGYu+BQ7IYrFunOt6dM67QPmN6FFjvfmDGocP5EigmRsLo4VaEhmpjyHyQ8gfGJm136Eyt0FJYG98FUebAd9J8/BAs+3fBsn8HzIf2qwZNCg1D5rSVkKLFzEr3Lwos95nxDkcCSfvM+OdLE8TsK14kQAIk4A8CN462IqqiNmZ/+yNed9ugwHKXGMs7I0CBxXFBAv4jQIHlhPXl1HSIva7E0kGL2YwSMVGoWCEWZcuU9F9mNNKSOwJLdFnsc/XBpxvxx6GjsFptSIgvj85tWqB/r04IDyssR/QmsP7404RlKxxn5fW414obGmjj5fGb9OPy0sGCvSljDseGSt1QKSQ6IKPOlJUB8//25M2yMl8455N+5LbqjOzeoz2umwLLY3SGvzH9NHBolQUpRyiuDD8YCIAE/EyAM7CKB06B5ecBqdPmKLB0mliGpUkCFFiaTItxOqUngWWzAnPfsCD5Qv6X1IRKEgYPtGoioQezL6DLqTXIlPL7E2GyYFXFTmgYXs6vfTSfOX5lhpVYGvi/PYrbtlW+BlKkZ6Itt9cIWCtVU9zW1QUpsDxGZ9gbc9NNOLrBhNMF9sMrCCM0WkJEBe/wiP31QixmWG0Scq3aEOXeRcS79UZA7NMmrqwc7Syj1xvj4uKpc78N4bF8NhTFiALLSJ8G38VKgeU7tqyZBK4mQIHFMRFQAnoSWNu2m7F+o+P+UY8PtqJiXOBfHE/lpqHjyS9x3pbpkO93K7RFu6gqPh8DptxsWP7cC/NvO2D+fSfM508palOKioH1+iaw1W8Ba/3mkGJKKbrPF4UosHxBVZ91Sjbg9E9mWV5ZC5xEao/WZAEq3WZFlTaS15sr8xRCfY4hPUXFUwj1lE39xUKBpb+cBiIiCqxAUGebRiVAgWXUzGskbr0IrLR0E2bPNSM7O3/2VZPGEu7uEvjZVym2bNx16iscyrnkkPUJsU0xtGR9n40Ec/LZKzOs9u2A+Y9fYcrJUtSWLaGmLKusDVrAVuN6wKyNgxIosBSlz/CFLh0GDq+yIOOc8+WC5W6QUK2zDeFl1BHbFFiGH3KaB0CBpfkUGbqDFFiGTr9qwVNgqYaSFZGASwIUWC4RsYAvCehFYH2+2oJffs3/whoWJmH0CBuio9T5kuppDnIkGx44vR47ss44VHF/TC3MLtfK02qd3mfKzYX58O8w7/sJFjHL6tRRRfVL4ZGwXt8Y0n+zrGylyiq6z9+FKLD8TTy42su6YMI/a0xI3u/8FM+YKhJqdLOiRFV146LAUpcna1OfAAWW+kxZo3oEKLDUY2nkmiiwjJx9xu5vAhRY/ibO9hwIaE1gnTtrwqovzThxwrvNljveacPNLQO/38cLybuw6PLvDsxvi4zH8rgOTkei+fQxhK6c59a+VJ4MaVtcZVjrt4StXjNZXgXDRYEVDFkC0k6YkHrShLSTQOpxE9JPmWDLCVzfw0pLqN5RQrlGvnkeUGAFLrdsWRkBCixlnFgqMAQosALDXW+tUmDpLaOMR8sEKLC0nB0D9E0rAisr04SNm03Y9bMZkpeTpsqUljBymBVm5xMx/JLVHVmnMf78T/hfzkWH9uqElsLq+C4oYXY8EdKUmYGQ1UsR+t1qQOxGr/IlhYbBWqfhlb2sGrSEVDZO5RZ8Xx0Flu8Zu9OCLRtIO2VC6gkT0k5A/t/0syZA/eHrTrfyylrCJFRuc2WvK7Hnla8uCixfkWW9ahGgwFKLJOvxBQEKLF9QNV6dFFjGyzkjDhwBCqzAsWfLAAItsISs2v2LGZs2m5DhZLNlT5L0SB8brqnpm9kWrvpzPDcVYtbV1+lHChUtYw7HhkrdUCmkwCl+koTQbWsR8sXbMKU67pHlqi1XP5fKVpT3spKl1XU3QgoJc3WLpn9OgRW49IjT/PJmVh0HUk9KyEwyA17KZp9EZAIqNLWhWkcJoTG+7yAFlk+yyEpVJECBpSJMVqU6AQos1ZEaskIKLEOmnUEHiAAFVoDAs9krBAIpsI4fN2H1V2acPuPdcsGCubzuWhseesD/8ipdysXcC3sx7/I+p0NLzLhaWbEjGobl7y9lOXwQoctfh/n4YdWGo/W6RleWBdZrAVu8ypv9qNZLzyqiwPKMm7t3ZV+0LwE0IfW4hLSTJmRfUu8z6m5/3Clf6hobanSzIaqiO3d5V5YCyzt+vNv3BCiwfM+YLXhOgALLc3a8M58ABRZHAwn4jwAFlv9YsyUnBAIhsFLTTFi3wYTf9jlf4xdbRkKnjhKure1/EeXuIBHzOz5JPYSXL+zGWWtGodtFhA/G1MGzsU0Qaw6Xf26+lISQT99EyK5vnTYnxVZATo/ByG10m7vd0XV5CiyV0ysBmUliCaDYt0rMqroyy0rMtvLmskRJiKkkISZBQnRlIKYSEFFWAryr1psu+fReCiyf4mXlKhCgwFIBIqvwGQEKLJ+hNVTFFFiGSjeDDTABCqwAJ8DozftTYImtnX7cYcGW74Hs7MLfZsNCgTtuk3BzSyvMPtyzRq2c/5J1DuOTfsK+7CSnVTYNr4AZZW/CtWFl5J+bcrMRsulThKz9EKbszEL3iH2qcjv0Qu6dD0D8Oy9HAhRYXowIK5B2RmysbhdWJnn/KrGPlTdXSMwVUXXlHxOiEySEl/H9sj1v+qz2vRRYahNlfWoToMBSmyjrU5MABZaaNI1bFwWWcXPPyP1PgALL/8zZYgEC/hJYh/8xY/VXJiQnO5+GcUMDGzreKSEmWvtffk9Z0zA1eTc+T/vH6ViqHBKNCbFN0TWqRt7PLXt/ROjHC2FOOuX0HjHbKrfnENjKlOf4LIIABZayoSFO/BOiSt6zSsyuEv8ulul6ubm6EFNRlSSU+E9UCWkVWkL7n1dl1DwvRYHlOTve6R8CFFj+4cxWPCNAgeUZN97lSIACiyOCBPxHgALLf6zZkhMCvhZYFy+a8NU6E/740/lywbgKEu7uakPlBO1/Ec5OvYjEg19iftlcZJoLi7hIGzDivAnDzgHhBVY/mg//Dsv/9jgdf9ZK1ZDbazistRtyfLogQIFVNKDzv5iRfFDsXSUh87z3x2+GlxXLAIESlYGo/2ZYhURp/zMaiA8RBVYgqLNNdwhQYLlDi2X9TYACy9/E9dkeBZY+88qotEmAAkubeTFMr3wpsM6dN2PRWyZkOVkuGBUp4c52EhrdaINJ63vj2Kz48udPMSUiCSdKRDodG/cd/Bcvbf4FcamF98FydoMUHYOcrv2Re2sXwOy9cDDCgKXAKpzl9NPA359YkHrMww+RCYisIMlL/0okQF4KKISVhStYFX+kKLAUo2LBABGgwAoQeDariAAFliJMLOSCAAUWhwgJ+I8ABZb/WLMlJwR8JbDSM0xYuMiMi05OL2vZ3Ia2bSSEh2l/Rsf+P7Zh3OWf8Uv5kk7HT72zF/D6uh1oesr5PljObsq9vRtyuvaDFF2CY9INAhRY+bDERutH1plwZod78jO6kgTxT0xlXPnfBAmmEDeSwKKFCFBgcVBonQAFltYzZOz+UWAZO/9qRU+BpRZJ1kMCrglQYLlmxBI+JOALgZWTCyxZasHJU46zQmrWsOGuTkD5cto/XTDp/DG8/MfnWFkpBpKTKWLl0zIw+bu9eGj/YZgkZSLOWrMesnuPglSpug8zqt+qKbAASJCl1b/rTbAWc1qgkFJ2QRX938yq6DgJCILDEYJtBFNgBVvGjNdfCizj5TyYIqbACqZsabevFFjazQ17pj8CFFj6y2lQReQLgbVshbnQnlet75DQ+jYvd5H2A9mc7DQs+mUl5sRakSaORbzqCrPaMPCcDU8nhyLGjXCkhJrIbXyrHyLQbxNGF1gpR0w49JkZ6VeJYXvGhbCq1OrKcsCoisqkqn5Hi/8io8DyH2u25BkBCizPuPEu/xCgwPIPZ723QoGl9wwzPi0RoMDSUjYM2Be1BdbaDWZs/8lxWdMN9W3o0V37s67W7f0KL5qO4EjJKKcj4c7zmXjxmrtQpUwVA46UwIdsVIGVk2rCP1+ZIDZqd3aFxkio1klChSY2wMOtsAKf3eDtAQVW8ObOKD2nwDJKpoMzTgqs4Myb1npNgaW1jLA/eiZAgaXn7AZBbGoKrJ27zVjzteOX7MqVJQx8xAqzhpcu/XnsN4w9/T12lo9xmrGalzPwSolGuKVGyyDIqH67aDSBJVmBU9ssOLYRsDo5CEEsB6x0sw1V2kuwhHPGVaBGPgVWoMizXaUEKLCUkmK5QBCgwAoEdf21SYGlv5wyIu0SoMDSbm4M0TO1BNahw2a8t8yMgttBlS4tYehjNkRGavPL9YWUc5i+/1MsqxgGm6nw7JZSWTl4JrMM+jS4FyFaNnCGGKmAkQTWpcPAoU8syExyPqWq1DU21OxuQ2Q5gyRfw2FSYGk4OeyaTIACiwNBywQosLScneDpGwVW8OSKPQ1+AhRYwZ/DoI5ADYF15qwJi5ZYkJOTjyIiQsLggTaUjdWmvNpwYD2GhRx1us+ViKLvmVw8e0NPlIosFdT51VPng01g2bKBI+vNOPWDeycFFpez8DISat4tocz12l+Sq6exV1wsFFhGyXTwxkmBFby5M0LPKbCMkGXfx0iB5XvGbIEE7AQosDgWAkrAW4F1+bIJCxabkZaWP1PEbAYGPGJFlSralFep6ZfQ/OhKXIoIK8S+eVIapse3Rp1KdQOaFzZemEDQCCwJOPuzGUfWmiD2r1LjsoRJqNwOSGhl5UmCagBVsQ4KLBVhsiqfEKDA8glWVqoSAQoslUAavBoKLIMPAIbvVwIUWH7FzcauJuCNwMrOAd5cbMa5844zTMSG7WLjdq1eU35ajIUVHU8YrJKagedNNdCxXketdtvw/QoGgZV6HDi0yoK0E+qIK5H08k1sqN5ZgtisnZf2CFBgaS8n7JEjAQosjggtE6DA0nJ2gqdvFFjBkyv2NPgJUGAFfw6DOgJPBZbNBrz/oRli76uC1+232tC2tXbl1ZEzf+LmjB8d+vzw6Sy80nJwUOfRCJ3XssDKSfnvpMA96i0XjEmQ5H2uYipTXGl5fFNgaTk77JsgQIHFcaBlAhRYWs5O8PSNAit4csWeBj8BCqzgz2FQR+CpwPrsCzP27HX8sn799TY82FO78kokqt/ORGysEJ2Xs7i0TGyv/QjCwyKDOo9G6LwmBZYVOPGDBcc3OT8p0BwKJLSWkHCbFeLfeemPAAWW/nKqt4gosPSWUX3FQ4Glr3wGKhoKrECRZ7tGJECBZcSsayhmTwTWDz+asWGTo7yqFC/hsUetsFg0FNxVXdn6xxb0Cv/X4b8mXo7FPTd0026n2bM8AloTWBcOmnH4SxOynJ0UaALKN7aheicJoSU4g0rPw5gCS8/Z1UdsFFj6yKNeo6DA0mtm/RsXBZZ/ebM1YxOgwDJ2/gMevbsC68BBM1Z87CivSpeWMOQxG6IitftF3WrNwe2/L8Y/JaPymDdOSsOXTZ4IeA7YAWUEtCKwMs4Dh1eZcemQ8+WCJWtIqNHNiuhKyuJiqeAmQIEV3PkzQu8psIyQ5eCNkQIreHOnpZ5TYGkpG+yL3glQYOk9wxqPzx2BdeKkCW+9bYG1wCrB8DAJQwbZUDZWu/JKpGDp7pWYUC7DIRsbzDeiXtUbNZ4hds9OQE2BlfKPCad2mJB10f3N1sW9zq7wWAk1ukiIraftZbQcUeoSoMBSlydrU58ABZb6TFmjegQosNRjaeSaKLCMnH3G7m8CFFj+Js72HAgoFVhZ2Sa8Ps+MtDTHL+/9+9pQo7q2v7BfTEnCzSc+xaWIsLzYHzidgVkth3I0BBEBbwVWTqoJZ3eZcWYXkOls2Z+HLCyREqq2kxB/kw3Q8BJaD8PjbS4IUGBxiGidAAWW1jNk7P5RYBk7/2pFT4GlFknWQwKuCVBguWbEEj4koFRgrd9owrbtjt/O77nbhsYNtS2vBLpJPy3Ckor58ioyJxfbynVCXJkEH5Jl1WoT8FRgJe8z48xu4ML/1Dsh0B5bxZtsqHqnhJAobc9AVDsXrC+fAAUWR4PWCVBgaT1Dxu4fBZax869W9BRYapFkPSTgmgAFlmtGLOFDAkoE1onTNsyZ7yivbm1lRfs22v/S/teJA2iT9RNs5nx5Me6sGcOa9/UhVVbtCwLuCCwxw+rMDuDMz2bkprq/TNBV/8tcZ0ONrhIiymn/M+AqFv7cOwIUWN7x492+J0CB5XvGbMFzAhRYnrPjnfkEKLA4GkjAfwQosPzHmi05IaBEYL31LvDnX/kSoHw5G4YNtcGkvhdQPUc9ds3H9vIxefUmpBYTpkMAACAASURBVGZga51+CA+LVL0tVuhbAq4Eli0HOL/XjDM7TUg54npwxiRIiGshIbK8e/0OiZQQFU9x5R41/ZamwNJvbvUSGQWWXjKpzzgosPSZV39HRYHlb+Jsz8gEKLCMnH0NxO5KYO34NQeLlzp2dEA/K6pV1f4X+G8ObETfqBMOnV+cUgGdG3TWAHl2wV0CRQms1KMmnN5pQtJeE6zZxYsrsdSvXCMJFVtIiIrT/hh2lxHL+58ABZb/mbNF9whQYLnHi6X9S4ACy7+89doaBZZeM8u4tEiAAkuLWTFQn4oTWKEWC8ZPzUZScr4UqHudDb3u1/6+Vzm52Wh94C38UzIqL5uNk9LwZZMnDJRdfYVaUGDlpJlw7pcr4irjjIvZViagdC0b4ppLKFtP4kbr+hoWAY+GAivgKWAHXBCgwOIQ0TIBCiwtZyd4+kaBFTy5Yk+DnwAFVvDnMKgjKE5gffeDCR9/Yc2Lz2IGRg63onQp7c9cWbR7GV4ol5OfG0nCBksj1Kt6Y1Dny8idjy8TibMHJBzYnI2k381A/tB0iiW8jIQKTYG4pjaEldb+mDVyboM5dgqsYM6eMfpOgWWMPAdrlBRYwZo5bfWbAktb+WBv9E2AAkvf+dV8dEUJrDBzGCZPsyErKz+E21rZ0K6N9mdfJV06g5vPrEZqWGhe5/uczsL0loM1nw92sDCB7ItiphWQ9IsFGReKJ2SyALH1JHm2lZh1BddbYRE5CXhFgALLK3y82Q8EKLD8AJlNeEyAAstjdLyxAAEKLA4HEvAfAQos/7FmS04IFCWw1q4NxfZd+bNWoiIlPDXKitB8J6RZns/+tBDvV4zI619Mdg5+jOuGsqXiNNtndsyRgJQLJP1ukjdkv/R3/gmSRXGKqiihYnMJ5RtLsERythXHk/8IUGD5jzVb8owABZZn3HiXfwhQYPmHs95bocDSe4YZn5YIUGBpKRsG7IszgXXqjAkL3rQ40Lj3bisaNdS+GPjrxAHckb0DBY9InHw+FIOa9jZgdoMv5PTTJpz5yYSzYkP29OKnT5kjJJRveGW2VUxl7Y/N4MsGe6yEAAWWEkosE0gCFFiBpM+2XRGgwHJFiD9XQoACSwklliEBdQhQYKnDkbV4SMCZwHpziQUnTuTLg4pxEh4f7GLDIQ/bV/u2HrvmY3v5mLxqE1IzsO26AQgNCVO7KdanEgFr1pUN2c/sMiGtwLgrqvqSNa5Iq7INbDAHwYxAlTCxGo0SoMDSaGLYrTwCFFgcDFomQIGl5ewET98osIInV+xp8BOgwAr+HAZ1BFcLrL37TPj0M8fZV4MGWFE5QfszXL7e9zUeK3HWIR/vpiegXd32QZ0jvXb+8uErpwgm7TNDLBks7gotIaFmKwtq3mbBZUsGJO0PR72mjXFdRYACi0NC6wQosLSeIWP3jwLL2PlXK3oKLLVIsh4ScE2AAss1I5bwIYGCAisnB5g9z4LU1PzZV41uAO69x4Vd8GH/lFadlZ2BW/98BydiIvNuuelcKj5pNkxpFSznBwI5KSac3W3G6V1AVlLxSwRNZqDM9TbENQNKX2tDpXKR8srQU8kUWH5IFZtQSIACSyEoFgsYAQqsgKFnwwoIUGApgMQiLglQYLlExAIkoBoBCizVULIiTwgUFFibNpvx/Q/5G2aLQ/zGPgmEhmtfYM3f9T6mlc9f5mi22bA5vCVqJ9T1BAvvUZGAZAUu/M+MMzuBC3+YARezpyLK2RDX3IQKTWwIjckvHB9LgaViWliVSgQosFQCyWp8RoACy2doWbEKBCiwVIDIKkCBxUFAAv4jQIHlP9ZsyQkBu8C6eMmEOfMssNryC93T2YKbb85FZra29786d+EkWp7/GpmhIXmdf/R0Nqa0HMScX0Ug+5IJaSdNSDtlQuoJCTlpxc+CUgNg5jkgp8CsPmd1mkKA8g1tqNBcQsnqzg0XBZYa2WAdahOgwFKbKOtTmwAFltpEWZ+aBCiw1KRp3LoosIybe0bufwIUWP5nzhYLELALrOUfmXHwf/mzr8qUBqZNDMXljGzNCqzMrDQs+PVjzIxzTGmprGz8GN8dpUuWM2yuJRuQee6KrEo9KV2RVidNyHVxsp+/gcVUkVBRbMh+ow0WF/vsU2D5OztsTwkBCiwllFgmkAQosAJJn227IkCB5YoQf66EAAWWEkosQwLqEKDAUocja/GQgBBYR46asOQdx43bH+1jws3NQpCcok2BtWrvF5gaehpnosILRf5SciT6NX7AQyLBd5s1G0g/deUEv9STQLqQVgpO8wtUpJZICRWaXDlJMCpO+W7sFFiByhjbLY4ABRbHh9YJUGBpPUPG7h8FlrHzr1b0FFhqkWQ9JOCaAAWWa0Ys4UMCx89lIHGhGefO58++SkiQMG6UBRFhFs0JrN2Hf8KEiz9jX2y0Uyr1k1OxvrF+N27PuXxl+Z88s+rElZlVmS42Q/fh8FFetQkoVduGis2BsnVtgKMvVVQPBZYiTCzkZwIUWH4GzubcJkCB5TYy3uBHAhRYfoSt46YosHScXIamOQIUWJpLibE6tGptFr5ely+vRPRDB1tRr1aopgTWsbOH8eI/a/F1nHNxVTozB0+nl8DDN9yHkJBQXSQx44xvlgBGVZQQnSAhphIQGQeYPZBJ7gKOKCshrJTy2VbO6qfAcpc6y/uDAAWWPyizDW8IUGB5Q4/3+poABZavCRujfgosY+SZUWqDAAWWNvJg2F4MfzYbGRn5G3k3bmTDPV1tiC0RpgmBlZp+Ea//9gmWlDch21LYtITabOh31orR9e9DqZjYoMyjLRsFZlVd+ff00yZIXh7+aImQEBUPRFeSEJMAxFSSEFVB8mj2kxbAUmBpIQvsw9UEKLA4JrROgAJL6xkydv8osIydf7Wip8BSiyTrIQHXBCiwXDNiCR8SGDgyJ6/2sDAJo0fYEB0lBVxgWW25+PDXVXg16iKSIpzv7t3hTBomV2+PanF1fEhI3apzUv47BVBeAihkFa4sAfRuchLCy0iIjv/vnwSTLK3Ef9PTRYGlp2zqJxYKLP3kUq+RUGDpNbP6iIsCSx95DHQUFFiBzgDbNxIBCiwjZVuDsRYUWB3a2XDLzTa5l2rNwLKcPALzz1vcivzXKAnDyqbhz9LOlwvWvZiGKdEN0bJ2K7fqvbrw6W1m5KT5XvJYc/6bYXVCnVMA5SWA/82qihYzrBIkiNlWer8osPSe4eCMjwIrOPNmpF5TYBkp28EXKwVW8OVMiz2mwNJiVtgnvRKgwNJrZoMkLrvAKlNazL6y5vXaW4FlykhD6OqlCPn+S8B2RYopvQ6XjkGzx7rCZnbcm6tCWibG5cShR8O7YTY5/kxp3aJc8n4z/lljQtaF/KWT7tzvr7JXLwEUM6zEEkBTiL96oK12KLC0lQ/25goBCiyOBK0ToMDSeoaM3T8KLGPnX63oKbDUIsl6SMA1AQos14xYwocEJk/PxomTJvR50IY6tfNFkzcCK/T7NQhZ/TZMaSke93xc28ZY2PR6+f6InFwMSbZgWMOeiIyI8bjOjLNmHP4CuPS35/LL48Zd3BhW+r/lf2JmVSUTohIkROhsCaC37CiwvCXI+31BgALLF1RZp5oEKLDUpMm61CZAgaU2UWPWR4FlzLwz6sAQoMAKDHe2+h+Bk0kZ+OtvM2rXcpwl5YnAMh/aj7Blr8N86ojXfFPCQtFwyN1oe8mK8XW6IC62qsd1WjNNOLLehDM/mSG5NxnM4zaLvNECRJXPPwUwuhIQXVGCJUr/SwC9hUmB5S1B3u8LAhRYvqDKOtUkQIGlJk3WpTYBCiy1iRqzPgosY+adUQeGAAVWYLiz1QICyxkMdwSW+VISQj5eiJAi9rqyxVaAtUV7wOTekr2kG5uhZJW6XuVKSCshr3LTnbddoakN4aV8L4/CY01XNllP8H1bXgHT8M0UWBpOjoG7RoFl4OQHSegUWEGSKIN2kwLLoIlXOWwKLJWBsjoSKIYABRaHR0AJiBlYngosU242QjZ+jJC1y2HKySpUjRQajtyODyL3zp6QQpyfJOir4FOOAodWWZB+yrm4KlFNwjU9rIiq4KsesF61CVBgqU2U9alBgAJLDYqsw5cEKLB8SZd1e0uAAstbgrxfEKDA4jggAf8RoMDyH2u25ISApwIr5NcfEPrJmzAlnXbKNbfx7cjtMRi2MuX9yj0nxSRv0H7+V+f7XIWXkVD9LgllGwR6LaFfseiiMQosXaRRd0FQYOkupboLiAJLdynVVUAUWLpKZ8CCocAKGHo2bEACFFgGTLqWQnZXYJlOH0XYh3Ng+es3p2HY4qshu/co2K6p79cwJStw8nsLjn1jgi2ncNPi5L7KrSVUvsNq2FP8/JoQHzRGgeUDqKzSawIUWF4jZAU+JkCB5WPArN4rAhRYXuHjzf8RoMDiUCAB/xGgwPIfa7bkhIA7AsuUk42IMT1gyiq87FCKiETOPQORe3s3VTgfXm3G6W3qnBZYtoGEGl1sECf98QpeAhRYwZs7PfecAkvP2dVHbBRY+sijXqOgwNJrZv0bFwWWf3mzNWMToMAydv5Vj/6ztVvxyZrv8Pe/J2C1WlGtckXc07EVHrq3HSyWwkLIHYElOhuyfjnCPn87v99mM3JadUZut0chRZdQLZ5/vjTj1A/eCazI8lf2uSpZXbVusaIAEqDACiB8Nl0kAQosDg6tE6DA0nqGjN0/Cixj51+t6Cmw1CLJekjANQEKLNeMWEIhgXEvL8bqDdsQGmJBowa1ERoSgr0HDiE1LQOtmjdA4rRRCLFYHGpzV2DBmouISY/AnHwW1pr15OWCUiX1DZE3AssSJaFaewlxLW0weefAFJJnMX8QoMDyB2W24S4BCix3ibG8vwlQYPmbONtzhwAFlju0WLYoAhRYHBsk4D8CFFj+Y63rloS4EgKrZtV4LJo5BvEVYuV40zMyMWrSfGzbtR/DH+2OIX0dl/i5LbAAWPbvgCkzHblNW/uMqUcCywTEtbChWgcJIVFcLuiz5ASoYgqsAIFns8USoMDiANE6AQosrWfI2P2jwDJ2/tWKngJLLZKshwRcE6DAcs2IJRQQuKf/BPz1z3EsS5yAG+vVcrjjwqUUtO35JEJDQ/DdqjmICA/L+7knAktBd1iEBFQnQIGlOlJWqAIBCiwVILIKnxKgwPIpXlbuJQEKLC8B8naZAAUWBwIJ+I8ABZb/WOu2pZOnz6N9r6dRNaEC1i6b4TTOJ59PxPotuzDvpZFoc0sjCizdjgb9BkaBpd/cBnNkFFjBnD1j9J0Cyxh5DtYoKbCCNXPa6jcFlrbywd7omwAFlr7z65fovtn6C0ZMnIsu7W/C9OcGO23z3Y/XY0bicjzWuwtGPdaDAssvmWEjahKgwFKTJutSiwAFllokWY+vCFBg+Yos61WDAAWWGhRZBwUWxwAJ+I8ABZb/WOu2pXdWrsOrC1Zg8MNdMWLAfU7j3LT1Z4ycOA8d7miGWc8/kVcmJT3HafnIcAtCLGZkZFmRa7Xplh0DCx4CMZGhMJmAlIwcgFucBU/idN7T0BAzIsIsyMm1ITPbqvNoGV4wEigRFSp3u6jf98EYE/usHwLi+Smeo+L5KZ6jvEjAEwL255wn9/IeEiAB9whQYLnHi6WdEJj/9mdY8N4XeHrIA+jfq5NTRjv2HMSjo6ejZZO6WPLaM+RIAiRAAiRAAiRAAiRAAiRAAiRAAiRAAooJUGApRsWCRRF4beFHeHvF1xg3vDf63NfeabE9+/9Cn2EvoVH92vhg/nOESQIkQAIkQAIkQAIkQAIkQAIkQAIkQAKKCVBgKUbFgkURcGsGVuO6WDKLM7A4mkiABEiABEiABEiABEiABEiABEiABJQToMBSzooliyDw3sfrMT1xuaI9sNrd2gRzpgzPq4l7YHFYBQsB7oEVLJkyVj+5B5ax8h2M0XIPrGDMmnH6zD2wjJNrX0bKPbB8SZd1k4AjAQosjgivCXy3fS8eHzdb0SmEj/bqjKeG3J/X5smkDKftx5YIkzcmTk7J5sbEXmeIFahBgKcQqkGRdahNgKcQqk2U9alNgKcQqk2U9alJgKcQqknTuHXxFELj5p6R+58ABZb/meuuxfPJl3B795GomlABa5fNcBrfk88nYv2WXZg5aSg6tWlBgaW7UaD/gCiw9J/jYIyQAisYs2asPlNgGSvfwRYtBVawZUyb/aXA0mZe2Ct9EqDA0mde/R6V2KBdbNS+LHECbqxXy6H9C5dS0Lbnk7BJEr7/bC5KxkRRYPk9Q2zQWwIUWN4S5P2+IECB5QuqrFNNAhRYatJkXWoToMBSm6gx66PAMmbeGXVgCFBgBYa77lrduuM3DBk7CzWrxmPRzDGIrxArx5iekYnRkxPxw8596N29HcaP6OMQO5cQ6m4o6DYgCizdpjaoA6PACur0GaLzFFiGSHPQBkmBFbSp01THKbA0lQ52RucEKLB0nmB/hjdz4UosXbEWoaEhaFS/FsJCQ7H3wCGkpKajbp3qeHfOOERFhlNg+TMpbEs1AhRYqqFkRSoSoMBSESar8gkBCiyfYGWlKhGgwFIJpMGrocAy+ABg+H4lQIHlV9z6b0zsc/XBpxvxx6GjsFptSIgvj85tWqB/r04IDwstBIAzsPQ/JvQSIQWWXjKprzgosPSVTz1GQ4Glx6zqJyYKLP3kMpCRUGAFkj7bNhoBCiyjZVxj8VJgaSwh7E6RBCiwODi0SIACS4tZYZ8KEqDA4njQMgEKLC1nJ3j6RoEVPLliT4OfAAVW8OcwqCOgwArq9Bmq8xRYhkp30ARLgRU0qTJsRymwDJv6oAicAiso0qT5TlJgaT5F7KCOCFBg6SiZwRgKBVYwZs2YfabAMmbetR41BZbWM8T+UWBxDGiZAAWWlrMTPH2jwAqeXLGnwU+AAiv4cxjUEVBgBXX6DNV5CixDpTtogqXACppUGbajFFiGTX1QBE6BFRRp0nwnKbA0nyJ2UEcEKLB0lMxgDIUCKxizZsw+U2AZM+9aj5oCS+sZYv8osDgGtEyAAkvL2QmevlFgBU+u2NPgJ0CBFfw5ZAQkQAIkQAIkQAIkQAIkQAIkQAIkQAIkoGsCFFi6Ti+DIwESIAESIAESIAESIAESIAESIAESIIHgJ0CBFfw5ZAQkQAIkQAIkQAIkQAIkQAIkQAIkQAIkoGsCFFi6Ti+DIwESIAESIAESIAESIAESIAESIAESIIHgJ0CBFfw5ZAQkQAIkQAIkQAIkQAIkQAIkQAIkQAIkoGsCFFi6Ti+DIwESIAESIAESIAESIAESIAESIAESIIHgJ0CBFfw5ZAQkQAIkQAIkQAIkQAIkQAIkQAIkQAIkoGsCFFi6Ti+DIwESIAESIAESIAESIAESIAESIAESIIHgJ0CBFfw5ZAQkQAIkQAJBQuC9j9djeuJyDOrTFSMH3hckvWY3SYAESIAESIAESIAESCDwBCiwAp8Dn/dg++7fMfDpV3FLs/pY9OrTPm/P0wb2HTyMlau/xa5f/4cz5y8gNMSCGlXj0blNS/Tu3g6hoSFOq87IzMaSD7/Chu924fipcwgPC0XdOtXxcI87ccfNN7rszo49BzHmxQVIunAZG1bMRELFcsXes3vvH3hn5Tr8+vvfSE3PQFy5MmjbqjEG9+2GUiWiXbbHAvkERk2aj43f78bkp/rh/q53aBbNqbPJWP7ZJvywcx+OnTyHXKsV8RVicVvLhhj40F0oF1uqyL5/tnYrPlnzHf7+9wSsViuqVa6Iezq2wkP3toPFYi425pOnz2PU5Pn4/Y9/MXXsANzb6VaX5Re+vxo/7tqP88mXUKpkDJo3ug6D+3RDrRoJmuWr1Y754tnpicCy2ST5c7Jm03b8duAQLl5KRXRUBK6vUw297m6D9rc1LRKhN8+rzKxsvDjrXXyxfhvu7nALXh73WLGp8vZZrNVxoLV+id9V4nfl9t378e+x07icki6Ph/i4smjZuC7u79Ya1SrHBbzb3oxb8ezz5ln2/icbMHPBSpQvVxqbVr7mkoU3z2mXlRuogC+emb7AFyzvm/bY3R3PvmDGOkmABEhAKwQosLSSCR/2Q+svFCmp6Zgy+z189c1PMoXaNSqjSqXyuHg5DQf+/BfiS1TDutfgrdeeQVRkuAMpcW+f4S/h739OoFTJaNxwfU2kpWdh74G/YbXaMPzR7hjSt5tTupIk4a0Pv8LcJZ9CvGiLy5XAEiJi8sylctl611ZH2TKl8NfhYxCCQwiND9+YhArlSvswm/qpWgiWtj2flGWQYPnRm89rLjgxLpYs/wqJSz9DTu4VaVW7ZhVZRB386wiSL6YgtnQJvDt3PGpWjS/U/3EvL8bqDdtkGduoQW2EhoRg74FDSE3LQKvmDZA4bRRCLBancW/d8RvGTn0Tl1LS5J+7EliiP4+MnIa09ExUqVQBNavF4/TZZPxx6BjCwkLxxsujcFPTeppjrOUO+eLZ6a7AOnz0lDwOxLNQjKN619ZAbJmScm7FfxNX7+7tMX5E70IovXleHTl+BqMmzcOfh4/L9boSWN48i7U8BrTWN5HTafOWyb8XxSX+4CKeQeJzf+zkWfk5JcT4oN5d8UT/e2AymbwO4c5eT2PAg53xwN1tFNflzbj15lkmOEycsQTrt+yS+yqkniuB5c1zWjEQgxT0xTNTTXTB9L4p4vZkPKvJi3WRAAmQgBYJUGBpMSsq90nrLxSXU9Nx/6DnUbtmZTw5qKc868p+nT6XjKFjZ8lfogY/3BUjBjguuZkwfQnEX07vvL0ppo0fhIjwMPnWoyfO4NEnZ+DUmSS8N3c8mtxQx4GqkALjXl6E77bvlf9ibZNs2Lnnf8UKLPHloMvD4xASYsHC6U+i2Y3XyXUKETZ/6WdY+N5qua4ls55ROYP6rG7xsjV4ffEnuL52NVkGfbL4BfnftXaJWWL/HDuFccN6o2WTunndE7NNnn9tKdZs3I7GDWrj/XnPOXRdiCvxxUiIrUUzx8jyS1zpGZkQdW7btd+pYBXSLPGdK+NJfPlq1awBPl6zpViBJWRt10fGQUiHMUN7od8DHfP68v1PezH8ubmIjo7A+g9fRYmYKK0h1mx/fPHsdFdg7fvfP+g/apo8Y2/Ag3fJot5+7dn/FwaNmYn0jCwsee0Zh/HpzfNKzPZ67pW3kJtrlcfSm+9/6VJgefos1mzyNdix5Z9/g6mvvy9LKZGXR3p2QPmy+X8wEc8W8TyavehjiN+rfe5rj3HDC4tNd0L765/juKf/BEwa3dctgeXpuPXmWSb+kDVy0jx5VtqjvTpj5erNKFkiuliB5elz2h2GRirri2emmvyC5X1TxOzJeFaTFesiARIgAa0SoMDSamZU7JfWXyhEqJcupzl8MSsYvhBL/Ue/IouAL9+blvcjsYyidY9RiImKxKaPXkNUZIQDNfHFfeizs3Fz0/pYPNNx6WSvIS9AvGCLpYnPPPEgho6djR937y9WYL089wMsW7UJox7rgcd6d3FoS0isB4e+KNe5LHECbqxXS8UM6q8qwatT77G4nJKG6RMGY8jYWfKXI/ElSWuXEFUWs0mexXT1JX7W6u5h8myI71bNcVhKKL70iS9/zsbDhUsp8uwzsSxW3GcXr6L+mQtXYumKtbJ0ff3F4fj0q+9k0VfcDCwhHIQUEzOs3po5plA/7XU6G7ta462l/vji2emuwHL1fBSzA99494tCnx9Pn1f252Zc+TKYN3UkcnJz0fuJqcUKLG+exVrKt5b7IuT03f2fQ05OrvzM7NLupiK7K774Pvj4FFmWvznjKXm2p6eXkGFiprK7AsvTcevps0zM6O3U+xl5BtoLT/eXx+uN7QagXNnilxB6+pz2lKfe7/PFM1NtZsHwvunpeFabFesjARIgAS0SoMDSYlZU7lNxLxRCJOz45SA+W7cVe/b9hbPnL8BsNqNqQhw6t22B/g90KrT31PDn5uCHXfuxe+2b2LnnIN7/dMOVZVGpGShdKkb+4i02KL6uVlVVIhGzpW7u+oQsuH5cnZhX5+frfpBnCdx31214ccyjhdoSsd3efSQuXk7F1s/mOQiyn34+gFNnk/L2FBJLr8ReMcUtIWzf62mIfTk2fzwb4svd1Zf9r+N9e3bA2CceVCV2vVZiH5PiS9hL4wbKeRJfzL5bNReREVdm0RW8/vf3Udw3cJIsD+/v2hqLP1yDb7b+IudQyJ+6tavJsw3atGpc6F67MFixYJK8/Oq9T9bjo9Xf4uSZJNSqniDP/PLmuvfRCfIMwc+XTpWXv4pLjBMxXqomVMDaZTOcVv/k84nyMpd5L41Em1sa5ZU5l3RRFqVP9L9XXjJmFxTFCSzxORCfh+nPDUaX9oW/2B769wS69XtO/kx++taL3oRrqHuLenaKvIn8ifErZIKza9abH2HJ8q8xfkQfWZTbL08EVnHQN239GSMnzpP3wXr9xWF5RT19XokZMLMXf4x+93eUhaz9DwjFLSH05llsqAHlRbAvzHpXfm51uKMZZj3/hMua3vloHV59YwUaN6iD9+eNL1ReSPR3P1qPLT/+ihOnz8k/jysfi3p1qmP4gO7y703xXBEyzNnlarm9qw4WNW69eZaJfYLEH48aXF9Tnhldv3X/YpcQevOcdhWfUX/O90113jfF+HF3PBt1zDFuEiAB4xGgwDJAzot7oRAiZ8BTM/I2Po+Pi0VqWiZ27/2fvCxFLM2b/UL+lyKBSwiszdv2yOJo1ddb0fqWRmhUvxYkCfIGw+LFVMxWES/N9a+t4TVhsRxQzNYRy8sKygaxD8gHn26U5ZXoi7Nr2Pg5+PbHPfIMLDETq6irz7CXIJbjFPVSLqad39TlcVlcCYHl7BLL4Ho8Nll+gRazbngVTcAubxZOfwq3tmgA+2yRoiSNXWCJJZonTp+Xl3GKL+zlYkvKm6qLL9Bib4uhfe/GsEfvdWjY07MujwAAIABJREFULgwSXx4l70cl5INYzle6VAlUqlgWc6eM8CpVbXqOxplzF7Dz64XyRsriEnJtxMS5skwSUsnZ9e7H6zEjcbk8m0+IuaKuOW99ikUffFnsDKzuAybKe10JWSakmbOrxV1D5f00flm/yOlsMq8g6PTmYBBY9n2uxHIyMZtUXGo+r+wMihNYaj6LdTqUvA5LSH4xK2Pp7GflgxlcXWIM3Hr3cHmPwatnh4rn6eBnXpPrEzOXr6sl9vWz4ciJM/Jz9NtPXseZc8n4dtseeamz+AOVOLCi/rXV85p9uGcHlPRiObKzcSsqV+tZJuJu2HZAsQJLzee0q3wY5ed83/T+fdPZWFEyno0yxhgnCZAACVBgGWAMuPqLmHhJbdmknsMG6WJT8vsGTJQ3kF7z3jSHfansAkvsw7HglSdlAVHwEssNxLID8cK74JXRXhMWJ/69umBFoS/6j4+bLe9hdfXeLwUbfHnuMixbtRETRj2MB+9pW2RfXAkscQrc/YOfd7rXkb1S+0yxMqVK4Icv5nkdt14rEBuft+kxCmVKl8CmlbPkDYfFZtQ9Bz0vb9b/4RsTC4VuF1jiB+JkyTlThjtsfi5On3zo8SnySZJCnIpZB/bLLrDERvFiGY4QSkpOp1TC3z4uru63fcw627fNXq99BoKrGRVKBFazToNl4fzrpiXyrC1nl32m2Op3XsI11XkioZL8BoPAsj8HxQmz4qRZcan5vFIisNR8FivJi9HK2GcKiQMfdq5dKP/BScklZq2KZ+e8qSPyZqeK5c5393tOPrFXnNQr5Ll9CbOYtfTPsdMOB1KIWVxiNpcnSwiL66OzcSvKq/UsU/KFX83ntJJ8GKEM3ze9f990Nk6UjGcjjC/GSAIkQAKCAAWWAcaBp3sSiNP2xF9JZ0wcgrvatswjZRdYVy9ZsRcQ+wI17ThI/svurrULvSIsljl07Tte3stDzC4puHSv74iX8fNvf2Llm5OLnOk1/+3PsOC9L+TN34VMKOpyJbB27DmIR0dPL1bK2ZcsCCHz2zdvexW3nm8Wy6rE8qqrZx45W4pn51BQYK1dNl1e4nr1tfKLzXhx9nuFZg3aBZYob5/xpQZfke8BT86AGBtCqLW7tUletfZx9/SQB9C/VyenzdnHlNgYXkjYoi5XAkts+t6gTX956eXudYuKrMf+eRGbzYtN53m5JqB1gWVf3lenZmV89vbUvIDUfF4pEVhqPotdZ8V4JcTMZrGnVcXysfjm41mKAdh/V08c3Re9/jtB0D7zScziErO5XF2+EFhFjVs1n2VKvvCr+Zx2xdEoP+f7pvfvm87GipLxbJQxxjhJgARIgALLAGPAnRcKsQ+R+AutBGDxB2vw9oqvMfnJR3B/t9Z5pOwvxcX9RfbWe4ZDzLTZs2Gxx8uVxGasQ8a+BrHMUZykJPY4KnjZN2JftWQKrr2mitNMiqVXQgCIPblGDnQ8wbDgDa4E1tYdv8kbjbe9tXGxS87EkgXxorH3myUOM4QMMMwUhSikT+c+z8qnRH71/iuoXqVi3n32JXW9u7fH+BGOJ2fZBVZxSzjF7Kvb7h1RaK80u8ASy1mF7FTrsn/5EeJKCKyC12sLP5I/O87Grb2cWLIqxl2j+rXxwXzHEwwL1uVKYInPa5MOg+TlPNvXvFFkeAOffhXiWSA2eRebvfNyTUDLAkuc0CoOjrhwMQUfJE5wkPhqPq+UCCw1n8Wus2K8EvYciBN6xYxopdfYqW9izabtGD2oJwY+dJd8m1jaLJbOFbVf3tV1qy2wihu3aj7LlHzhV/M5rTQnei/H903v3zedjREl41nvY4vxkQAJkICdAAWWAcZCcS8UYtnRx2u2YNP3P+PPw8eQmpZRiMjVosousN6YNhq339TQKUFxOuDZ8xflGVhXnw6oBLn4S+yYKQuw7tud8kbrYm+kqy93/uo//NHuGNK3W5FNuxJYas5oUBK/XsvY91xzJm2E8Gx93yh5KeuWVXMclsnYBVaD62pgxcKiJZTY50mMYSFy7Puz2AWWMzHmKecPP/sGL815H2LmywfzJ+TtfWWvz62/7DeuiyWzPJ+BZZ/5p3wGluMSS08ZGOE+rQosMTP1kRHTcOjISad7o6n5vFIisNR8FhthXLkbo8czsCbMxeYffkHBGVhd+47D4aOnHA6dKK4/agosV+NWzWeZki/8aj6n3c2pXsvzffMLePu+SYGl108H4yIBElCLAAWWWiQ1XE9RLxRCGIgvHv8cPSVvPH7nHc3kDaCFcDLBhBVfbMb6LTsL7X1hF1jFzeTwRmAJeTX+lcX4csOP8r4ds194wulsJns/lOyBJWb0CIFR1OVKYNkFilh6JZZgObvyTkssEY0fv8w/LVHDQ8PvXXvy+TfkMeXqemX8IHS98+a8Ynb+rjbIFzOwxEwsscxGLLcRl9qnvgnh+/zMd+RljO/NHYfyZUsXCsfeppI9sJzN4CpYoasZWKKsXdwp2QNLLDUT4o2XawJaFFgXL6Wi/+hX5JMvi1qiqubzSonAUvNZ7Dorxitx6kwS2j3wlPx7UPxRSBySouQSh4qIw0UK7oFlP3Ri44qZqFSxnMtq1BJYSsatms8yJQJLzee0S5AGKcD3zY3yDHJv3jedDRUl49kgQ4xhkgAJkAD3wDLCGCjqhULsFyT2Dep25y2YNv6xQiimJy6Xv/wXNQPLFwJLnIQ0ftpiedmD+GI/c/LjRW5KLTZ2F5uwKjmFcOF0sdn8DUWm25XAEntwNes0RNEphK5mCRlhzDmL0b55u9lsRp0ilnxmZGbJx7Y3uaEO3pubf/S7/Qt57RqV5ZkDzi7x1/vGHQYhOzvH6QwsV8tIleRFSN0ps9+Tlz6K/WMqlCssr0Q94nABsUmxklMIH+3VGU8Nub/I5pUILHHAgNi429UphGJ22q61bzoc2KAkbqOW8UZg2U/mGz+iD3p3b5eH0BuhKj5DA56cLsurMUN7od8DHZ2mRs3nlRKBpeaz2KhjzVXc9lMI350zDk0bXuuquDwTtdXdwyCW4n//2VyULVNSvqdzn7HyYRZfLH0JtWq4PsxBDYGldNyK/qn1LFPyhV/N57TLhBikAN8398Db900KLIN8WBgmCZCAxwQ4A8tjdMFzY1EvFF36jpNnX61YMAkNrq9ZKCD7bBl/CSzxwvnMlDflGTpd2t2El8YNLHYfKVFO9PG+u26TJdbVlxAa4qVfzMjZ8unrTmfK2O9xJbBEuW6PjJeX7Gz+eLbDZvL2OpZ//g2mvv6+vF+Y2DeMlyMBsSeU2HNEbCYslrQ4u7Kyc+RlhGI225fvTcs7DcsusMQyuR1fLZRPLrz6OvTvCXTr9xxKl4rBti/mqyIMCrbx/icb8Mr8D+XZS2+99kzeF0JncYjj6cXYEzMahVRydj35fCLWb9mFmZOGolObFkUOFyUCS0g1IdeK2tfGzsbdPXSMPoaLenaKPYTEXkIdWzfHa5Mfd4pp1KT52Pj9bqglsMSYEgdJiGdQwSVhReVIreeVEoGl5rPY6GOuqPjtn3FxoIo4WMXVJU7fFafwCtklpJf9GvrsbHz/0168OnEoOrct+rljL++twHJ33Kr1LFMisNR8TrvKh1F+zvdNdd43rx4vSsazUcYY4yQBEiABCiwDjIGiXig69R4rb6Yt9hQSs4YKXuKvt2LJQkpqul9mYIm/Ej/1QqK8uWyPLrdj8pP9YDabis2O6KNYMiaOAN/00WuF9toSL+niZV3JjCglAssuEsSx4+IEvasv+0bGrv76ZoAh5zRE+1/+i9t0X9w4I3E5xIbu/e7viDGP95LrKngK4aJXn8YtzeoXasP+RetqqeDNjBd7I0tXrMXMhSvljbJF+6VKRrtMo31MLUucIC/RLXiJvWDa9nwSNkmSZ0fY9+tyVqkSgWX/jN/ctD4Wz3y6UDWi7yIGV7O9XAZlsAJFPTt/2fcnHh7+Mm6oew2WvzGxEBXxPBMiVuRZDYF15twFedngsZNnMeWZAbinYyuXmVDreaVEYKn5LHYZmEELiFlTd/d/DuKgldkvDJNPWy3qEr/X7x/8gvz7++qZ0naxJZ6h4lnm6hKn+Iq9oor6vVfc/Z6MW7WeZUq/8Kv1nHbF0Sg/5/tm8ft0inGg5H3z6vGidDwbZZwxThIgAWMToMAyQP6LeqGwzwC5esbQ5dR0jHlxAbbt2g8xi8nXM7DEkq9Rk+fLy64e7nEnnh32kOKs2E8REi/zrzw3OG/jb/ECP+CpV3Hy9Hm8/uIwtL+t6Jd9pS8UYiZXx4eegc1mk6eIN7vxOrmfgtH8pZ9h4Xur5dk5QtCYTMXLN8UB6qSgfVPphnWvwYdOvvAXDFN8UROyS8yk2vLJ6wgNDXEQWGLvKSFpKseXz7tt87Y9GD1pvnwCpKhftGO/vBVY9pMsGzeoI+c9OipCUVbsJ8HVrBqPRTPHIL7ClT25xPKu0ZMT8cPOffLSMiE4iruUCCxxf6+hL2LfwcOFlpYJkTtiwlyYzGasWzbD6exBRQEZsFBRz86MzGzces8wZGblYOXCyah3bXUHOq8v/gSLl62R/5u3Akvsf9R/9HSI/50xcTA63NFcUSbUel4pEViiQ2o9ixUFZ9BC9sMjxAzUQb27yr8vC8p08bt03ZadEDJfLNsr+EcAOzIhG8Xs63NJFzG0790Y8kg3h5nO/x47Lc8uLRETJd/y1Tc/4ZkpC2V5L067DA2xKKLv6bhV61mm9Au/Ws9pRVAMUIjvm+q8b149VJSOZwMMMYZIAiRAAtwDywhjoKgXCrFnTu8npsh7ZFxXq6r8z+WUNAjZIDamfqRnB7ww612fC6yCX/bE3kLFXTc1qYcJox7OKyJe2IWoEjMixIv8DdfXhPhy+ev+v2WZcX/XOzD5qX4u06z0L2JihpgQf6Ju8aW1XGwpeT8a8bJeqkQ03p83HtdUd72viMsO6azA0y8uwNrNO/DyuMdwd4dbXEYnlkqJcWhfXmefgSVmGCVduITDR06iUYPaKB9bGsdPncPeA4fkOkcOvA9ir6uClzcC68fd+/HY0zPl6uLjyjqcjHh1EDFRkVj5puMJifaZT0LCNapfC2GhoXJfxcyIunWqy0t7xKmLxV1KBZaYndP7ianyktkqlSqgZrV4iBkQgp0QqmJjfLEnFy/lBIo7UUsIKvHsEstau3e+DdWrxCMtPUMW8Qf+/Fc+oXXDd94vIRQ5/fX3v+V24v47mKCoCMTYL/j5UuN5pVRgqfUsVp4dY5b86MstmD7/Q2RmZcuzlGtUrYTSJaMhThQWWwKI/y4E15CHu+Hxfvc4hSTG09CxsyD+WCVklfjdn52TixOnz8t/9Pn0rRfl/yYuUV+Xh5/FqbPJ8pJuMevw0uU0jBh4X7GHQXgzbtV4lrnzhV+N57QxR2PhqPm+qd77ZkG67oxnjkUSIAES0DsBzsDSe4YBFPclTHyZFssDxAttTm6ufHJb21aNMfSRu+V9iO7s9bTPBZbYN0rsH6XkanNLI8x7aaRDUSHg3v1oHb7c+COOnTgrz9gRM6Ee6NZG8Rd2pQJLNCy+nL75/pf4+bc/kZqWjnJlS8sbxIsvDHHlyygJw1BlxDKq1j1GIzI8DN9++rq85NPVJfaGEqKwRaPr8fbssXkzsATnWc8/gSXLv5L3jxLyKjwsVJ4d0LdnB1kaXH15I7Ds/XDVX/HzmOhI7PhqQaGioo4PPt2IPw4dhTikICG+PDq3aYH+vToVK8TsFSkVWKK8kFcL3v0CW7b/ivNJFxETHSWLvoEP3eUwK01JPCxT/LNT8BGzU1Z8vlnObVZWDsrGlkSLRnUxsPddOHMuWZaf3s7AEvu6iT3MlFxjn3hQ/hwUvLx9XikVWKJNNZ7FSuI0ehmxd5M4gEXMkj5y4owsxKMjI+RTBVs2qSv/7hP77xV3Cbkt9iUUM5CEnAqxmOU/XIk/Egx/tLvDzC4hlGYuWCm/J4j3gvgKZbHgldHyYRZFXd6OW2+fZe5+4ff2OW30MWmPn++brkeCO++b9trcHc+ue8ESJEACJBC8BCiwgjd3inv+7Y97MGz8HDiTP4orYUESCCAB+wwssYxPzHLjRQL+IMBnpz8osw0SIAG9EOAzUy+ZZBwkQAIkoF0CFFjazY1qPXvj3S+QuPQzt/eXUq0DrIgEvCRgF1iN6tfGB/Of87I23k4Cygjw2amME0uRAAmQgCDAZybHAQmQAAmQgK8JUGD5mnAA6hdLtsTmwmJPpp17DuLZlxfJSwzEzBUxg4UXCQQbAQqsYMtYcPaXz87gzBt7TQIkEBgCfGYGhjtbJQESIAEjE6DA0mH2P1u7FROmL3GIrHf39hg/orcOo2VIRiBAgWWELAc+Rj47A58D9oAESCB4CPCZGTy5Yk9JgARIQC8EKLD0kskCcRz86wgWvPeFPOuqQrky6HB7M7Rp1ViHkTIkoxCgwDJKpgMbJ5+dgeXP1kmABIKLAJ+ZwZUv9pYESIAE9ECAAksPWWQMJKBzAhRYOk8wwyMBEiABEiABEiABEiABEiABFwQosDhESIAESIAESIAESIAESIAESIAESIAESIAENE2AAkvT6WHnSIAESIAESIAESIAESIAESIAESIAESIAEKLA4BkiABEiABEiABEiABEiABEiABEiABEiABDRNgAJL0+lh50iABEiABEiABEiABEiABEiABEiABEiABCiwOAZIgARIgARIgARIgARIgARIgARIgARIgAQ0TYACS9PpYedIgARIgARIgARIgARIgARIgARIgARIgAQosDgGSIAESIAESIAESIAESIAESIAESIAESIAENE2AAkvT6WHnSIAESIAESIAESIAESIAESIAESIAESIAEKLA4BkiABEiABEiABEiABEiABEiABEiABEiABDRNgAJL0+lh50iABEiABEiABEiABEiABEiABEiABEiABCiwOAZIgARIgARIgARIgARIgARIgARIgARIgAQ0TYACS9PpYedIgARIgARIgARIgARIgARIgARIgARIgAQosDgGSIAESIAESIAESIAESIAESIAESIAESIAENE2AAkvT6WHnSIAESIAESIAESIAESIAESIAESIAESIAEKLA4BkiABEiABEiABEiABEiABEiABEiABEiABDRNgAJL0+lh50iABEiABEiABEiABEiABEiABEiABEiABCiwOAZIgARIgARIgARIgARIgARIgARIgARIgAQ0TYACS9PpYedIgARIgARIgARIgARIgARIgARIgARIgAQosDgGSIAESIAESIAESIAESIAESIAESIAESIAENE2AAkvT6WHnSIAESIAESIAESIAESIAESIAESIAESIAEKLA4BkiABEiABEiABEiABEiABEiABEiABEiABDRNgAJL0+lh50iABEiABEiABEiABEiABEiABEiABEiABCiwOAZIgARIgARIgARIgARIgARIgARIgARIgAQ0TYACS9PpYedIgARIgARIgARIgARIgARIgARIgARIgAQosDgGSIAESIAESIAESIAESIAESIAESIAESIAENE2AAkvT6WHnSIAESIAESIAESIAESIAESIAESIAESIAEKLA4BkiABEiABEiABEiABEiABEiABEiABEiABDRNgAJL0+lh50iABEiABEiABEiABEiABEiABEiABEiABCiwOAZIgARIgARIgARIgARIgARIgARIgARIgAQ0TYACS9PpYedIgARIgARIgARIgARIgARIgARIgARIgAQosDgGSIAESIAESIAESIAESIAESIAESIAESIAENE2AAkvT6WHnSIAESIAESEB9ApdT09H78SnIyMzCe3PHo1LFcuo3whpJgARIgARIgARIgARIQEUCFFgqwmRVJEACJEACJKAFAh+v2YLysaVxx803Ou3O7r1/4JGR0+SfTZ8wGF3a3aSFbvutD674+K0jbIgESIAESIAESIAESEAxAQosxahYkARIgARIgAS0TyA9Iws3d3sC93ZshclP9XPa4bT0TPQb9QrSMzLx9qyxiCtfRvuBqdRDJXxUaorVkAAJkAAJkAAJkAAJqEiAAktFmKyKBEiABEiABAJNYNPWnzFy4jzc3/WOIgVWoPsYyPbJJ5D02TYJkAAJkAAJkAAJeE6AAstzdryTBEiABEiABDRFICcnF2OmLMTG73dTYDnJDPloariyMyRAAiRAAiRAAiTgFgEKLLdwsTAJkAAJkAAJaJPA+59swFsffoXzyZecdjAmOhI7vlog/0yUub37SPnfP186FbVrVM67x/6za6onYPU7L8lllyz/Gt9u24PT55IRExWJ2jUT0KPLHbirbUv5PkmS8MX6bfh83Q/465/jSEvLQLmypdGycV081rsLqlWOKxbaqTNJWLpyHX7Y+RtOn02GxWJB1YQKaHtrEzx8X3uUiIlyev/ho6ew7NON2PXr/3Di9HlYbTaUiy2F+Aqxctvi/utqVZXvdYePvbGDfx3B2s07IPYM+/fYaaSmZyAyIhw1q1VCp9bN8eC97RAaYinUt6+/2YExUxbgwXvaYsKoh3Hgz3+xdOVa7Pr1D1y8nIrY0iVwY73aeOT+DmhY9xr5/tS0DCxbtQnrt+zEsZPnYLVaUblSBbS5pREGPNjZKQN7O727t8f4Eb3xx6FjeGflOuzccxBJFy4hOjpSjv/ejrfirnYtYTKZtDl42SsSIAESIAESIAESUECAAksBJBYhARIgARIgAa0TmPTq2zhx6jz+PHwMyRdTUKFcadSsWimv21GR4Zj30hVppURgCTGzYuFkDHzqVVy4lILQ0BCEhoTI+2bZr0d6dsDIx3rg8XGz8dPPB+T/LESZON3QarXJ/z8qMgLvzR2H62tXc4pQLOl7ZspCZGXnyD8vW6YkxEwpcVKiuOLjymLRq0+jZtV4h/uFvBn38iLkWq3yfy8ZEwWT2YRLl9Pyygk59OEbE+X/7w4fUX7dtzvx1Atv5NVVulSMLK/Onr+QF1vzRtdh8cwxCLE4Siy7WBI/v6/z7Xjulbfkfooc5FptyP4vVnHfzMlDUadmFTz29KuyhBOSSTBM+S9+0QER+/IFk+T/XvCyt3Nby4bo1KY5Jk5/W24nLCwU4WGhDnUIETbr+SfkPPIiARIgARIgARIggWAkQIEVjFljn0mABEiABEigCAKjJs13uYRQicAS1ZcqGY0q8RXw7PCH0LBuLZjNJpw6m4xp8z7AN1t/kXvQuEEd7Nn/F4Y83A0P3tv2ioDKtWLrjt8wccYSXLyUikb1a+OD+c8V6vG+g4fRe9hUWQg9dG9bDH64mzyDSlxi9tOkV5fKs5eqJsRh1ZIpiIwIk38m5E7rHqOQkZmN3t3byfeJdsWVmZUt3yP6d1PTemjVvIFDu0r4iBvEjCixl1inNi1w+00NUb5s6f+3d/fxX4/3HsDfnElyk2y2HbY1sRxij5k6FJUZRSc76+7gYEciFmUoYSRxclPRKEmTlrmpmFNzqqWRncqZnOiExbHleHAcZzbkbnLTeVyf9m2l7+/X5dHN51s9r3/q9/u+v5/39Xl+6p/X47quT3GddG8TJs2IkePuLX6++pIz4jsdDlujRyVYSvP96OMV0aFdyzi7Z5diVdnHH6+Ip597oQi1fvvCy9Gk8c7RpPFO8YfXl8XFfU+Ko9q1LO4zBYWTpj4cI8ZOLla49T75uDj39G5V++zYqGFx3+mtk+f07BrNm61cUZeec1r5lVZlpfG9Hh1j4Nkn+r9DgAABAgQIENgsBQRYm+VjM2kCBAgQIFBdICegyQ2wUpj0r3dcs9bKnxSWdDxxwKrtin1P6xpnfe87a03o3gceicuH3178ft7UUZFWMa0+up9xeRFUdT66dVz7wzPX+n4KyzqdPLBYsXTROf8Yp3TvUNT8+8Jnotf510XjnXeMedNGfaqtcTk+Of+2eg8YHvMWPFUEXMMHfb9qsJR+mVZHjbnmvLUume473X9lTLzxkjj4683Xqht41dh4YPajsc9ee8bU2/+5zj4prBs3rH9VixG3TI7x90wvAsgHJ42IL+6+W84tqiFAgAABAgQI1JSAAKumHofJECBAgACB9RPICWhyA6x0ftUPzuhedULnDx4dv5izoDgDau7UUWuFXOlL6Wyro46/oPj+naMvjW+02GfVtRYvWRonnHVF8fPD944stjxWG/2HjCnOoUrhTgp50qh8N/Wecdew4syr3JHjk3OtMROnxqjx91ddXVZZgZWuM254/2jT8oCqlzz87/sW2zMP3K9Z3DNmUNWadLbYJVePK5yfnH3bGjWr9xl73QVrrTarFL/73vvRvmu/SH/2P+v46HnCsTm3qIYAAQIECBAgUFMCAqyaehwmQ4AAAQIE1k8gJ6DJDbBGDT03vtXmoKoTunb03TFxyi9i372/XGzvqzbSdrkDj+xZfJTOsTqs1V+CnLQiKK0MStsDZ9x5bZ03nUKiFBal1Vbzfz66qEvX7dLr0nh+6cvxhd2bxPm9/yE6HtEq63ynHJ+cJzBp6kMx5IaJsX/zr8aUWwfXGSylg/M/eXZVpbjb6YNiyfMvxsndji62D1YbldVm6bMnH/zxGve4eoD12PRbIm0lrGukc8oeeXRRdGjfMm644pycW1RDgAABAgQIEKgpAQFWTT0OkyFAgAABAusnkBPQ5AZYk8ZeHgfsu1fVCQ27+Z6YMHlmHHrw/nHbiAvrnHSLI04tPrvl2gui7SF/OY9q8PAJMeWBOZ/qZp+eM2FVfdpeeN6gm4rVWGmks6Q6ffvQ6Nqp7ao3D1a7eI5P5Xv/9uvF8eCvFsQzz/13/M//vlacS5XOwFp91BdgpbOsHp95a5332KP34OK8rn69usWZpxxXte6xJ5ZEz/OuKT5bOGtccTh7ZVQCrHQ4/IIZY+u1rASO9a32+lQPQzEBAgQIECBAYBMLCLA2Mbh2BAjHu22hAAANfklEQVQQIEBgYwrkBDS5Ada/3H5VfG2vlQeCf3JUAqy0qiqtrqpr1BVgVbYGptVJe37xc1kkn1zplVZipbcY3nX/7Fjw5JJV10iHxp/Xu0fVM6VyfNLB8+cOuikeX/Rscc29m+5RhGK7NdklGvz5LX6Lnvlt8Xl9AVY6BH/+tJWrxqqNSoCVtmmm7ZrVRk6AtfrqtLp63XjbfTH2jp9XPUsrC18RAQIECBAgQKBkAQFWyQ9AewIECBAgsCEFcgKaWgiwLrtufPxs+q/WuYIr1+alV34f6dD4ydMejjffeqf42uD+p0aPzkescYkcn76X3hgPzV0Yu+26c4wc0rdqEDbuzgeKNxHWQoDVoMF28cSscfVSXX3TnfHT+x6Mr++/d9x982W5rOoIECBAgAABAjUjIMCqmUdhIgQIECBAYP0FcgKaWgiwKoeg7/7ZXWPOfSPX/8b/fIW33n43Bg0bH7MeeTwabt8gfjn5+jXefrgun3Soetvv9osVK1bEkAGnRbe/a1d1bim8SiFWLQRYaYJzp95UbKOsa5x54YiY+9hiZ2BtsH9pLkSAAAECBAhsagEB1qYW148AAQIECGxEgcrbAbsc2zauGtiraqdaCLAWLn4uTuk7tJjfT0f9sHib34YaH3zwYbQ+rk+896fl8ePhA6J1yxarLr0un3QmVdral8bksYOjxb5frTqtdC5V2t5XKwHWjVf2i2+3/WbVub79znvRrku/eH/5BzHg+yfEqccfs6GoXYcAAQIECBAgsMkEBFibjFojAgQIECCw8QWuuP4nxTa6+raK1UKAlSS6nHZpPPe7l4oQaOKNl0Q69HxDjBTUHNq5Tyxf/kFMGHlRtPrG36y67Lp80lbEjicOKOpHXN4njvnW3641pUcffzpO7z+s+H2tBFjfPLB5/ORHF8e2226z1nwr55Wlz2ZPur54c6NBgAABAgQIENjcBARYm9sTM18CBAgQIFCPwLRZ8+LioSvPQ7qif8/o3rl98ff09rzP/NW2sc0220StBFiLf/O7OKXf0Egrppo3+1L07dUtWh/cogiyUgj1f6+9Hot/szQemrcwOh15SBx5+MoVRunw9AmTZkbno1tHm1YHxC47NVolsvTFV2LELZPj4flPxGeb7BKzJ42IdEZUZeT4HHvSwHjx5VfjK3t+Pn50Zb9ibmmktxDeP2Nu3HDr5Ni18c7xyqt/qIkAa7vtPlMYJp90eH2zr/x1Md+0nfK2u6cXWx3T+KceHePCs0/0/4cAAQIECBAgsFkKCLA2y8dm0gQIECBAoLpAWnXU48zB8fzSl4uC9Ia6Ro0aFqHV/GmjotEOK//evuu5xeeffNNgfZ+t3nF930JYuVZazXTBkJvjzWUrD15PI51d9af3l69xg9dc0juO69Cm+N3qK6DSzymoSvf1xrK3i9AmjfTzqKHnxiEH7bfGdXJ85i14KvpcdEN8+NFHxXfT9dPbB1997fVIbz488rCD4pzTukbXXpfVRIC139eaFmHe8DGTirO70jPfoeH2xXOu3EPaXjhiUJ9IYZdBgAABAgQIENgcBQRYm+NTM2cCBAgQIFCPwBtvvh03jf9ZzJn/ZPz+j2/ETo12iGZN94jx119YrEaqpQAr3cayt9+NSVMfKuabVlC99c670WC77eJzuzWO/Zs3jSPaHBQd2rdatcUwhVtTZ86NOY8uiv9a+tLKoObDj2LHRg2j6Ze+EG1aHhAndT0q0gHx1ca6fNJ3nn72hWLl0n/857PFWw2T4T577RnfPebwSOeLrVgR0erYMwvXKbeuPDOrMqb/8tcx4Mox0XiXHWP+tNF1Pql01lY6c+sHZ3SPM07qXLUunbOVzttKY+GscbH9aqvJKn2+vMfnY+Zd18VTzy6NO6bMigWLlsQfX19WhHj7NW8aXTu1K1awpdV3BgECBAgQIEBgcxUQYG2uT868CRAgQIAAga1aoBJgpbcPprcQGgQIECBAgACBLVlAgLUlP133RoAAAQIECGyxArkrvbZYADdGgAABAgQIbFUCAqyt6nG7WQIECBAgQGBLERBgbSlP0n0QIECAAAECOQICrBwlNQQIECBAgACBGhMQYNXYAzEdAgQIECBAYKMKCLA2Kq+LEyBAgAABAgQ2joAAa+O4uioBAgQIECBQmwICrNp8LmZFgAABAgQIEKhXQIDlHwgBAgQIECCwNQkIsLamp+1eCRAgQIAAgS1GQIC1xTxKN0KAAAECBAhkCAiwMpCUECBAgAABAgQIECBAgAABAgQIlCcgwCrPXmcCBAgQIECAAAECBAgQIECAAIEMAQFWBpISAgQIECBAgAABAgQIECBAgACB8gQEWOXZ60yAAAECBAgQIECAAAECBAgQIJAhIMDKQFJCgAABAgQIECBAgAABAgQIECBQnoAAqzx7nQkQIECAAAECBAgQIECAAAECBDIEBFgZSEoIECBAgAABAgQIECBAgAABAgTKExBglWevMwECBAgQIECAAAECBAgQIECAQIaAACsDSQkBAgQIECBAgAABAgQIECBAgEB5AgKs8ux1JkCAAAECBAgQIECAAAECBAgQyBAQYGUgKSFAgAABAgQIECBAgAABAgQIEChPQIBVnr3OBAgQIECAAAECBAgQIECAAAECGQICrAwkJQQIECBAgAABAgQIECBAgAABAuUJCLDKs9eZAAECBAgQIECAAAECBAgQIEAgQ0CAlYGkhAABAgQIECBAgAABAgQIECBAoDwBAVZ59joTIECAAAECBAgQIECAAAECBAhkCAiwMpCUECBAgAABAgQIECBAgAABAgQIlCcgwCrPXmcCBAgQIECAAAECBAgQIECAAIEMAQFWBpISAgQIECBAgAABAgQIECBAgACB8gQEWOXZ60yAAAECBAgQIECAAAECBAgQIJAhIMDKQFJCgAABAgQIECBAgAABAgQIECBQnoAAqzx7nQkQIECAAAECBAgQIECAAAECBDIEBFgZSEoIECBAgAABAgQIECBAgAABAgTKExBglWevMwECBAgQIECAAAECBAgQIECAQIaAACsDSQkBAgQIECBAgAABAgQIECBAgEB5AgKs8ux1JkCAAAECBAgQIECAAAECBAgQyBAQYGUgKSFAgAABAgQIECBAgAABAgQIEChPQIBVnr3OBAgQIECAAAECBAgQIECAAAECGQICrAwkJQQIECBAgAABAgQIECBAgAABAuUJCLDKs9eZAAECBAgQIECAAAECBAgQIEAgQ0CAlYGkhAABAgQIECBAgAABAgQIECBAoDwBAVZ59joTIECAAAECBAgQIECAAAECBAhkCAiwMpCUECBAgAABAgQIECBAgAABAgQIlCcgwCrPXmcCBAgQIECAAAECBAgQIECAAIEMAQFWBpISAgQIECBAgAABAgQIECBAgACB8gQEWOXZ60yAAAECBAgQIECAAAECBAgQIJAhIMDKQFJCgAABAgQIECBAgAABAgQIECBQnoAAqzx7nQkQIECAAAECBAgQIECAAAECBDIEBFgZSEoIECBAgAABAgQIECBAgAABAgTKExBglWevMwECBAgQIECAAAECBAgQIECAQIaAACsDSQkBAgQIECBAgAABAgQIECBAgEB5AgKs8ux1JkCAAAECBAgQIECAAAECBAgQyBAQYGUgKSFAgAABAgQIECBAgAABAgQIEChPQIBVnr3OBAgQIECAAAECBAgQIECAAAECGQICrAwkJQQIECBAgAABAgQIECBAgAABAuUJCLDKs9eZAAECBAgQIECAAAECBAgQIEAgQ0CAlYGkhAABAgQIECBAgAABAgQIECBAoDwBAVZ59joTIECAAAECBAgQIECAAAECBAhkCAiwMpCUECBAgAABAgQIECBAgAABAgQIlCcgwCrPXmcCBAgQIECAAAECBAgQIECAAIEMAQFWBpISAgQIECBAgAABAgQIECBAgACB8gQEWOXZ60yAAAECBAgQIECAAAECBAgQIJAhIMDKQFJCgAABAgQIECBAgAABAgQIECBQnoAAqzx7nQkQIECAAAECBAgQIECAAAECBDIEBFgZSEoIECBAgAABAgQIECBAgAABAgTKExBglWevMwECBAgQIECAAAECBAgQIECAQIaAACsDSQkBAgQIECBAgAABAgQIECBAgEB5AgKs8ux1JkCAAAECBAgQIECAAAECBAgQyBAQYGUgKSFAgAABAgQIECBAgAABAgQIEChPQIBVnr3OBAgQIECAAAECBAgQIECAAAECGQICrAwkJQQIECBAgAABAgQIECBAgAABAuUJCLDKs9eZAAECBAgQIECAAAECBAgQIEAgQ0CAlYGkhAABAgQIECBAgAABAgQIECBAoDwBAVZ59joTIECAAAECBAgQIECAAAECBAhkCAiwMpCUECBAgAABAgQIECBAgAABAgQIlCcgwCrPXmcCBAgQIECAAAECBAgQIECAAIEMAQFWBpISAgQIECBAgAABAgQIECBAgACB8gQEWOXZ60yAAAECBAgQIECAAAECBAgQIJAhIMDKQFJCgAABAgQIECBAgAABAgQIECBQnoAAqzx7nQkQIECAAAECBAgQIECAAAECBDIE/h9KegxMSEkQXgAAAABJRU5ErkJggg==", "text/plain": [ "" ] @@ -5285,7 +5571,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdB3RURcPG8WfTQ0vovQmKShGxInYBRSmCIij2XsFeULFgQ1EUxd75VBRQKb4KCiIiiAUExArSew2kl93vzE12k5C2m+xu7u7+7zkcyO69U34z+r48zsx1uFwul7gQQAABBBBAAAEEEEAAAQQQQAABBBCwqYCDAMumI0OzEEAAAQQQQAABBBBAAAEEEEAAAQQsAQIsJgICCCCAAAIIIIAAAggggAACCCCAgK0FCLBsPTw0DgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFsPD41DAAEEEEAAAQQQQAABBBBAAAEEECDAYg4ggAACCCCAAAIIIIAAAggggAACCNhagADL1sND4xBAAAEEEEAAAQQQQAABBBBAAAEECLCYAwgggAACCCCAAAIIIIAAAggggAACthYgwLL18NA4BBBAAAEEEEAAAQQQQAABBBBAAAECLOYAAggggAACCCCAAAIIIIAAAggggICtBQiwbD08NA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbDw+NQwABBBBAAAEEEEAAAQQQQAABBBAgwGIOIIAAAggggAACCCCAAAIIIIAAAgjYWoAAy9bDQ+MQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCy9fDQOAQQQAABBBBAAAEEEEAAAQQQQAABAizmAAIIIIAAAggggAACCCCAAAIIIICArQUIsGw9PDQOAQQQQAABBBBAAAEEEEAAAQQQQIAAizmAAAIIIIAAAggggAACCCCAAAIIIGBrAQIsWw8PjUMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDiCAAAIIIIAAAggggAACCCCAAAII2FqAAMvWw0PjEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsvXw0DgEEEAAAQQQQAABBBBAAAEEEEAAAQIs5gACCCCAAAIIIIAAAggggAACCCCAgK0FCLBsPTw0DgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFsPD41DAAEEEEAAAQQQQAABBBBAAAEEECDAYg4ggAACCCCAAAIIIIAAAggggAACCNhagADL1sND4xBAAAEEEEAAAQQQQAABBBBAAAEECLCYAwgggAACCCCAAAIIIIAAAggggAACthYgwLL18NA4BBBAAAEEEEAAAQQQQAABBBBAAAECLOYAAggggAACCCCAAAIIIIAAAggggICtBQiwbD08NA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbDw+NQwABBBBAAAEEEEAAAQQQQAABBBAgwGIOIIAAAggggAACCCCAAAIIIIAAAgjYWoAAy9bDQ+MQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCy9fDQOAQQQAABBBBAAAEEEEAAAQQQQAABAizmAAIIIIAAAggggAACCCCAAAIIIICArQUIsGw9PDQOAQQQQAABBBBAAAEEEEAAAQQQQIAAizmAAAIIIIAAAggggAACCCCAAAIIIGBrAQIsWw8PjUMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDiCAAAIIIIAAAggggAACCCCAAAII2FqAAMvWw0PjEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsvXw0DgEEEAAAQQQQAABBBBAAAEEEEAAAQIs5gACCCCAAAIIIIAAAggggAACCCCAgK0FCLBsPTw0DgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFsPD41DAAEEEEAAAQQQQAABBBBAAAEEECDAYg4ggAACCCCAAAIIIIAAAggggAACCNhagADL1sND4xBAAAEEEEAAAQQQQAABBBBAAAEECLCYAwgggAACCCCAAAIIIIAAAggggAACthYgwLL18NA4BBBAAAEEEEAAAQQQQAABBBBAAAECLOYAAggggAACCCCAAAIIIIAAAggggICtBQiwbD08NA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbDw+NQwABBBBAAAEEEEAAAQQQQAABBBAgwGIOIIAAAggggAACCCCAAAIIIIAAAgjYWoAAy9bDQ+MQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCy9fDQOAQQQAABBBBAAAEEEEAAAQQQQAABAizmAAIIIIAAAggggAACCCCAAAIIIICArQUIsGw9PDQOAQQQQAABBBBAAAEEEEAAAQQQQIAAizmAAAIIIIAAAggggAACCCCAAAIIIGBrAQIsWw8PjUMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDiCAAAIIIIAAAggggAACCCCAAAII2FqAAMvWw0PjEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsvXw0DgEEEAAAQQQQAABBBBAAAEEEEAAAQIs5gACCCCAAAIIIIAAAggggAACCCCAgK0FCLBsPTw0DgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFsPD41DAAEEEEAAAQQQQAABBBBAAAEEECDAYg4ggAACCCCAAAIIIIAAAggggAACCNhagADL1sND4xBAAAEEEEAAAQQQQAABBBBAAAEECLCYAwgggAACCCCAAAIIIIAAAggggAACthYgwLL18NA4BBBAAAEEEEAAAQQQQAABBBBAAAECLOYAAggggAACCCCAAAIIIIAAAggggICtBQiwbD08NA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbDw+NQwABBBBAAAEEEEAAAQQQQAABBBAgwGIOIIAAAggggAACCCCAAAIIIIAAAgjYWoAAy9bDQ+MQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCy9fDQOAQQQAABBBBAAAEEEEAAAQQQQAABAizmAAIIIIAAAggggAACCCCAAAIIIICArQUIsGw9PDQOAQQQQAABBBBAAAEEEEAAAQQQQIAAizmAAAIIIIAAAggggAACCCCAAAIIIGBrAQIsWw8PjUMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDiCAAAIIIIAAAggggAACCCCAAAII2FqAAMvWw0PjEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsvXw0DgEEEAAAQQQQAABBBBAAAEEEEAAAQIs5gACCCCAAAIIIIAAAggggAACCCCAgK0FCLBsPTw0DgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFsPD41DAAEEEEAAAQQQQAABBBBAAAEEECDAYg4ggAACCCCAAAIIIIAAAggggAACCNhagADL1sND4xBAAAEEEEAAAQQQQAABBBBAAAEECLCYAwgggAACCCCAAAIIIIAAAggggAACthYgwLL18NA4BBBAAAEEEEAAAQQQQAABBBBAAAECLOYAAggggAACCCCAAAIIIIAAAggggICtBQiwbD08NA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbDw+NQwABBBBAAAEEEEAAAQQQQAABBBAgwGIOIIAAAggggAACCCCAAAIIIIAAAgjYWoAAy9bDQ+MQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCy9fDQOAQQQAABBBBAAAEEEEAAAQQQQAABAizmAAIIIIAAAggggAACCCCAAAIIIICArQUIsGw9PDQOAQQQQAABBBBAAAEEEEAAAQQQQIAAizmAAAIIIIAAAggggAACCCCAAAIIIGBrAQIsWw8PjUMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDiCAAAIIIIAAAggggAACCCCAAAII2FqAAMvWw0PjEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgD1SqweVdGqfXXqx2nhLho7d6frczsvGptI5UjYASa1kuUwyFt2Z0hlwsTBOwhUCM+Wsm14pSelae9qdn2aBStQKCIQLP6idZPZf3vPVgIVKdAcs1Y1UiIsf79af49yoVAZQTc/56rzLM8gwACvgkQYPnmxd1+FiDA8jMoxQVMgAArYLQUXAUBAqwq4PFoUAQIsILCTCWVFCDAqiQcjxUTIMBiQiAQPAECrOBZU1MpAgRYTItQESDACpWRiqx2EmBF1niHYm8JsEJx1CKnzQRYkTPWgewpAVYgdSkbgeICBFjMiGoVIMCqVn4q90GAAMsHLG4NmgABVtCoqaiSAgRYlYTjsaAIEGAFhTnsKyHACvshpoM2EiDAstFgRGJTCLAicdRDs88EWKE5buHeagKscB/h0O8fAVboj2E494AAK5xHN3h9I8AKnjU1IUCAxRyoVgECrGrlp3IfBAiwfMDi1qAJEGAFjZqKKilAgFVJOB4LigABVlCYw74SAqywH2I6aCMBAiwbDUYkNoUAKxJHPTT7TIAVmuMW7q0mwAr3EQ79/hFghf4YhnMPCLDCeXSD1zcCrOBZUxMCBFjMgWoVIMCqVn4q90GAAMsHLG4NmgABVtCoqaiSAgRYlYTjsaAIEGAFhTnsKyHACvshpoM2EiDAstFgRGJTCLAicdRDs88EWKE5buHeagKscB/h0O8fAVboj2E494AAK5xHN3h9I8AKnjU1IUCAxRyoVgECrGrlp3IfBAiwfMDi1qAJEGAFjZqKKilAgFVJOB4LigABVlCYw74SAqywH2I6aCMBAiwbDUYkNoUAKxJHPTT7TIAVmuMW7q0mwAr3EQ79/hFghf4YhnMPCLDCeXSD1zcCrOBZUxMCBFjMgWoVIMCqVn4q90GAAMsHLG4NmgABVtCoqaiSAgRYlYTjsaAIEGAFhTnsKyHACvshpoM2EiDAstFgRGJTCLAicdRDs88EWKE5buHeagKscB/h0O8fAVboj2E494AAK5xHN3h9I8AKnjU1IUCAxRyoVgECrGrlp3IfBAiwfMDi1qAJEGAFjZqKKilAgFVJOB4LigABVlCYw74SAqywH2I6aCMBAiwbDUYkNoUAKxJHPTT7TIAVmuMW7q0mwAr3EQ79/hFghf4YhnMPCLDCeXSD1zcCrOBZUxMCBFjMgWoVIMCqVn4q90GAAMsHLG4NmgABVtCoqaiSAgRYlYTjsaAIEGAFhTnsKyHACt0hPueSe7V2w1aNHH6xhg3qGbodiaCWE2BF0GDbsasEWHYcFdpUmgABFvPCjgIEWHYcFdpUVIAAi/lgZwECLDuPTui0jQArdMbqwJYSYIXe2BFghd6YhVWLCbDCajjDujMEWGE9vCHbOQKskB26iGk4AVbEDHVIdpQAKySHzXaNJsCy3ZB43SACLK+pbHMjAZZthiIyG0KAFZnjHoq9JsAKxVEL/zYTYIX/GId6DwmwQn0Ew7v9BFjhPb7B6h0BVrCk/V8PAZb/TQNdIgFWoIUpv1wBAiwmSKgIEGCFykhFVjsJsCJrvEOxt5EeYGUrT1lOpzKt33OV5XIqS3nKduYpS7nKdDqV5cr/s7nPfGf9bO5z5SozL1dZyv9ztitPmZ7vzD0HPuN+tvD3+S0GqXVM7VCcOkFpMwFWUJjDvhICrNAdYgKs0Bs7AqzQG7OwajEBVlgNZ1h3hgArrIc3ZDtHgBWyQxcxDa/OACu3ICxyh0FWMFQsJCoIeqwwKT8cMiFRfqDkVGZeTpEwqUjIVBA4ucOnwmdM+XkFYVWesuWs9nGe1/xcHRybXO3tsGsDCLDsOjKh1S4CrNAar6KtJcAKvbEjwAq9MQurFhNghdVwhnVnCLDCenhDtnMEWCE7dBHT8OoKsCanrtKtOxdEjHNZHZ3drJ86xtWPeIeyAAiwmBr+EAhGgLX093/14Wff6Nfl/2j3nn2qkZigDu1bqn/vHtav6OgoT1cuunG0lv2xWn1OP05jR91Qbheff2OK3vhgppo0rKevP35WUVEOz/0ul0tffPOjPp+1QH/9u177U9OVnFRLR3Y6WBcN7KljjzzUH3zFylj591pNmjZXvyz7Wzt27ZHD4VDjhvXUtlVT9T75aPXrfUKJOnfs2quJU2brh59/18YtO5SVnaP6yXXUrcvBGtz3tHLb6U2A5Y/yF06foKQ6Na3xe/3/ZmjFn/8pZX+aTjqui14dc7vfHcO5QAKscB7dEOgbAVYIDBJNtAQIsJgIdhQgwLLjqNCmogLVEWDluJzqvnGKtuSlR/xgzGh6jrrFN4x4BwIspkAgBQIdYI17fbLe/PALqwsx0dGqm1zbCpMys7Ktz47vdrjGPzZcNWskWD9/9uX3emDMW4qLi9V3n76gOrVqlNp9E1D1GnqntmzbpWsv7qcRV5/nuS89I1O3PDBeP/76h/VZQnycateqoT179ys3L8/67MqhZ+uO6y/wC61py7OvfaJ3Jn1ZZnkmqHty5DXFvv96/i+69/HXPRbxcbGKjY1RalqG577zzjlZo26/zLI78KoowPJX+dPfe0I///aXHnt+okxf3dewQT01cvjFfjGMlEIIsCJlpG3aTwIsmw4MzSohQIDFpLCjAAGWHUeFNhUVqI4A6939f+n+XT/aZiASFK34qGjFO6KV/+coxSum4LPCPyc4ohXvvrfg94SoGOuzhILn878veMaUV0ZZ5r7aUbG2MbBrQ1iBZdeRCa12BTLAeveTr/TMy5Nkgpm7bhyqc886SYkJccrLc+q7Rb/pwWfe1t6UVJ1zxvF6+sHrLbiMzGydMmi40tIz9eBtl2rogNNLBTWrgS4d/oT13RcTn1Kblk0899088gV9u3CpmjVpoFG3XaYTju5orfJKz8jSR5/P0fNvTJbT6dLDd16uwX1PrfKAvTZxhsa/NdUqZ2Cfk2SCnXatmyk3z6kNm7dr0S8rdXTXDurUoa2nriUr/tFlI5602nHaCUfqlqsGqUO7ltb3u/fu16f/m6+X3v5UObl5uvDcM/TArZeUaGd5AZY/y7/p8nP18nvT1KlDG9185SB1PvQgmZAwJiZaDeuzzduXCUSA5YsW9/pdgADL76QUGCABAqwAwVJslQQIsKrEx8NBEAh2gJXpytXxG6ZohzPT0zsCpCAMdIhWQYAVogNns2YHKsDatWefeg65Q9nZOXr0ritlVhIdeM2a95Nuf/hl6+Opbz6qQ9u3sv786Lj39fG0uVbg8/FrD5Uq9siz7+qTGfN0xOHt9OHLD3ruMcGVCbBiY6KtMtu1aV7i+dHj3re2+tWvW0fffPystdqrstf2nXvVa8gd1squ6y7pp+FXFa4EK6/M/pffr9VrN1nh1YuPD7e2G5bnM+mVUep82EHFbikvwPJn+abSHsd00oQnbrVWiHFVXoAAq/J2POkHAQIsPyBSRFAECLCCwkwlPgoQYPkIxu1BFwh2gDU+ZbnG7Fni6WdyVLx+bnG+arAaKehjHwoVEmCFwijZv42BCrDenvQ/PfvqJ2rdorH+939jyoQ4ZdAI7dydohsuHaCbrxxo3ffnv+t0/jX5wdW0dx5X+7bFQyizKumUgcOtc5geuuNyXdCvcBXV9fc8p+8XL9f5fU/RI3deUWq9a9ZvUd9L77O+e3vcPTruyMMqPVDu1Vd1k2rr2ynjvAp4zOqoS27JXz1mtueZ1VplXRfeOFrL/1htnRV24BbEsgIsf5dvVs3NnvSs6iXzVthKT5SCBwmwqirI81USIMCqEh8PB1GAACuI2FTltQABltdU3FhNAsEMsPY5s3Xshsna78rx9HZU3aN1XVKnauo91dpdgADL7iMUGu0LVIDlTZBkhMw2QLMdsOdJR+mF0bd40AZf+7D++GetLr/gLGv7YdHLvcrqwHOyzHa84865wdreNuaB69S3Z/dSB8EEYN16X21t3xs5fJiGDepV6cG69q6x1gHs5oD2p0Ze61U55iD0F96cam1x/HrS2HKfcd/buGFdzZ08rti9ZQVY/i6/6BZPrzrITWUKEGAxOapVgACrWvmp3AcBAiwfsLg1aAIEWEGjpqJKCgQzwHpyz696KWWFp6UNohK0uOVgmbOluBAoTYAAi3nhD4FABVhnX3yP1m3c5nUTzVsB3xl3r+f+T6Z/q0eee8/a5jd3yrhih5jf8cjL+urbn3TWacfq2Ydu9Dxj3rh36nm3el2nufGmKwbqxssG+PRM0Zvd/TRbB80WQm+uUc+8ralfzFf3ozvqzbF3lfvI7O9+0W0PvWTd89s3b1lbI91XWQGWv8u/7drBuvqic7zpGvdUIECAxRSpVgECrGrlp3IfBAiwfMDi1qAJEGAFjZqKKikQrABrR16Gjts4RVmu/Ldjmeup+t11Se0OlWw5j0WCAAFWJIxy4PsYqADLvTWwUYNkme11FV0dO7TV6Luv9NxmDnE3h7mbQ91ffHyETu9xpPWdWV110rnDrTf3vTrmdp10XBfPM0W3BppD3c3h8RVdQ/qfpiFlHBRf0bPme3c/7735Il1yfm9vHtGdj76iL+cu1ukndtOLjw0v95nvF6/Q9fc8a93zw7SXlJxUy3N/WQFWoMv3qpPcVKoAARYTo1oFCLCqlZ/KfRAgwPIBi1uDJkCAFTRqKqqkQLACrJG7Fum9/X97WtkqppYWNB+kaEdUJVvOY5EgQIAVCaMc+D4GKsA666K7rTfw+bIy6cDePjDmLX325fc646RuGj86P+iZMXuh7n3idTWol2RtqTNvF3RfW3fs1hmDb7d+nPji/erW+eCAA5554V3auGWHbr3mfF0zrK9X9T3+wkR9+Nkc31dgff1msTO2ygqwAl2+V53kJgIs5oD9BAiw7DcmtKh0AQIsZoYdBQiw7DgqtKmoQDACrM25adbqK6dcnqrHNzxJ59Vsx2AgUK4AARYTxB8CgQqwrrxtjBYv/VNVOT9p2R+rddGNo61tc/M/f1F1atWQ+2ytK4b20Z3XDylGYM62Ovbs6603Hz585+Ua3LfwcHd/WJVWxmUjntQvy/7WwD4n6bF7rvKqGvcB996cgfXGBzP1/BtT1LB+suZNfb5Y+WUFWIEu36tOchMBFnPAfgIEWPYbE1pEgMUcCB0BAqzQGatIbWkwAqwRO77XlLTVHuJ2sUma1+xcRZXySvVIHQf6XboAARYzwx8CgQqwXn1/ul58+1MrdJozeZxqJMZXqrnnXvGA/l2z0QqHzJa7k88drty8vFLfTmgquOr2p/Xjkj+8Wt1UqQYd8JAJl0zIVNqKsLLKX712k/pffr/1dWlvWSz63LCbHtNvK1fp7DOO0zMP3uBVgBXo8v3hFqllsIUwUkfeJv0mwLLJQNCMCgVYgVUhETdUgwABVjWgU6VPAoEOsFbnpOiUTZ8VWXslvdnodPWp0cqndnJzZAoQYEXmuPu714EKsMyB6r2G3qmcnFzrjKlRt11aqaZ/8OnXemL8Bzr1hK7qfcoxGvnkG+rYoY0+ee3hUsv7ev4vunVU/qHnY0fdoD6nH1eper19yBxUbw5yN5cvh51feONoLf9jtdWvlx4fIUcp/9Fi7oIluuWB8VbZ7z5/r47peqhXAZa5KdDle+vDfcUFCLCYEdUqQIBVrfxU7oMAAZYPWNwaNAECrKBRU1ElBQIdYF25fY5mpW/wtO6w2Lr6pnnl34ZVyW7yWIgKEGCF6MDZrNmBCrBMNydOma2nXvrQ6rFZPXXNRefIHNZuzq1KTcvQ1u27rW2Gc39YoqdGXmttkzvwStmfZr1ZMCY6SsceeZjmLfxNI4dfrGGDepYpOeLBF/XN978qKsqhyy/oo/P7nqLWLRrL5XJpT0qqNm3Zoe8XL9ffqzfohdG3VHlExkz4SO9PnmWVc/mQs3TxoF5q2ri+8vKc2r5rr35d9rf2pabrooFneOpatWaTzr/2ISvg63nSUVb4ZQ6eN5c5qP7zr37Q2FcmKSs7R/1799CTI68p0c6ythCaGwNdfpXRIrQAAqwIHXi7dJsAyy4jQTsqEiDAqkiI76tDgACrOtSp0xeBQAZYy7J26uwtM4s156PGvXVyYjNfmsi9ESxAgBXBg+/HrgcywDLNNOcxjXt9spzO/HP+zEqj2NgY65yqotecyc+pScN6pfbsnsdf08yvF1nfmfOw5k19odjb+A58yLyh0BwAb970575ioqOtP5rth+6rZbNG+urDp6usacp8eOy71oHz7isuLtYKp0xoZi7zFkXzNsWi109L/9LtD0/QnpT91sfmDYPmzYm7du/ztNOsIHv83qtLfaNieQGWKS/Q5VcZLgILIMCKwEG3U5cJsOw0GrSlPAECLOaHHQUIsOw4KrSpqEAgA6xzt/xPP2dt91R3bHwjfdb0bAYAAa8FCLC8puLGcgQCHWCZqtdv2qYPPv3GOptq89ZdyszKUkJ8vJo1qa+uHdur18lHq8cxnUrdRmeeN4ekm8PSzVX0jYQVDaxZ3fXp/+Zr6Yp/tXN3ihUK1aqZqFbNG+vYroeqb68TdMhBLSoqxuvvTWA0eea3+fXt2afYmBjrbKwuhx+kC/qdpqO6HFKiLBNeTZn5nczWx42bd/XQh3kAACAASURBVCg9M0v1k+uoa6f2Ou+ck3XC0Z3KrL+iAMs8GOjyvcbhRkuAAIuJUK0CBFjVyk/lPggQYPmAxa1BEyDACho1FVVSIFAB1vcZmzV02+xirfqiaV91jW9QyZbyWCQKEGBF4qj7v8/BCLCq2mqzpe64c26wVnGZVUxmNRMXAqEoQIAViqMWRm0mwAqjwQzzrhBghfkAh2j3CLBCdOAiqNmBCrD6bJ6h5dm7PJJn1Gip9xsVno0SQcR0tQoCBFhVwONRj0AoBFhTv5ivUc+8rbpJtfXt1OetbYRcCISiAAFWKI5aGLWZACuMBjPMu0KAFeYDHKLdI8AK0YGLoGYHIsD6X/o6XbP922KKXzfrr8PjSj/7JYK46aqPAgRYPoJxe6kCoRBgDbnuEf3+9xpdNvhM3X3ThX4fSbPC69q7nvWpXPP2wKsvOsenZ7gZAQIs5kC1ChBgVSs/lfsgQIDlAxa3Bk2AACto1FRUSQF/B1hOl0unbPpM/+Xu87SoX802erXhqZVsIY9FsgABViSPvv/6bvcAa+4PS3XL/S9Yby6c+f5TatW8kf86X1CSeUNg9743+lTuoLNP1ui7r/TpGW5GgACLOVCtAgRY1cpP5T4IEGD5gMWtQRMgwAoaNRVVUsDfAdbk1FW6decCT2sckn5ofp5ax9auZAt5LJIFCLAiefT913e7BVjmrX3mTYXmmrtgie578g2lpmXoooFn6P4Rl/iv45SEQDUIEGBVAzpVFgoQYDEbQkWAACtURiqy2kmAFVnjHYq99WeAleNyqvvGKdqSl+6hGFrrYD3boEco0tBmGwgQYNlgEMKgCXYLsC6++XFt2Lxd6RlZMlv7zNX5sIP0zrh7lZgQFwbidCGSBQiwInn0bdB3AiwbDAJN8EqAAMsrJm4KsgABVpDBqc5nAX8GWO/s+1MP7F7saUOMHFrU4nw1i6npc7t4AAEjQIDFPPCHgN0CrHufeF0LFq9Qalq6mjVpoL69TtBVF56t+LhYf3SXMhCoVgECrGrlp3ICLOZAqAgQYIXKSEVWOwmwImu8Q7G3/gqwMl15OmrDx9rrzPYwXFnnMI2ud1wostBmmwgQYNlkIEK8GXYLsEKck+YjUK4AARYTpFoFCLCqlZ/KfRAgwPIBi1uDJkCAFTRqKqqkgL8CrPEpyzVmzxJPK+Id0fq1xWDVjU6oZMt4DAFWYDEH/CNAgOUfR0pBwBsBAixvlLgnYAIEWAGjpWA/CxBg+RmU4vwiQIDlF0YKCaCAPwKsfc5sHbthsva7cjwtvSWpi+6t2y2ALafoSBBgBVYkjHLg+0iAFXhjakDALUCAxVyoVgECrGrlp3IfBAiwfMDi1qAJEGAFjZqKKingjwBr7J6lGpeyzNOC2o4YLW55gZKiOIy4ksPCYwUCBFhMBX8IEGD5Q5EyEPBOgADLOyfuCpAAAVaAYCnW7wIEWH4npUA/CBBg+QGRIgIq4I8Aq/uGqVqft9/TznvrHaVb6nQOaLspPDIECLAiY5wD3UsCrEALUz4ChQIEWMyGahUgwKpWfir3QYAAywcsbg2aAAFW0KipqJICVQ2wlmfvUp/NMzy114mK1dKWQ5TgiKlki3gMgUIBAixmgz8ECLD8oUgZCHgnQIDlnRN3BUiAACtAsBTrdwECLL+TUqAfBAiw/IBIEQEVqGqANXr3L3p13++eNg6pdbCea9AjoG2m8MgRIMCKnLEOZE8JsAKpS9kIFBcgwJLkcrmUkZmlmOhoxcXFMkeCKECAFURsqqqSAAFWlfh4OEACBFgBgqVYvwlUNcA6esMn2pKX7mnPB4176dTE5n5rHwVFtgABVmSPv796T4DlL0nKQaBigbAMsI475wYd2/VQvfj4iIoFJOXk5Oros65Tl8MP0sQX7/fqGW7yjwABln8cKSXwAgRYgTemBt8FCLB8N+OJ4ApUJcD6NWuH+m/5wtNgc2j7ipZDFe2ICm4nqC1sBQiwwnZog9oxAqygclNZhAuEZYDV8dTLdXy3w/XWc3d7PbxnDL7dWoW1cMYEr5/hxqoLEGBV3ZASgiNAgBUcZ2rxTYAAyzcv7g6+QFUCrId3/6Q39v3hafTFtQ7RmAYnBL8T1Bi2AgRYYTu0Qe0YAVZQuakswgUIsAomQPe+Nyo9I0vL5rwV4VMiuN0nwAquN7VVXoAAq/J2PBk4AQKswNlSsn8EKhtgmeMdum74WDudmZ6GfNzkTJ2Y0NQ/DaMUBCQRYDEN/CFAgOUPRcpAwDsBAixJn0z/Vo88956aNqqnbz55zjs57vKLAAGWXxgpJAgCBFhBQKYKnwUIsHwm44EgC1Q2wPopc5sGbv3S01qzfXBlywvlcDiC3AOqC2cBAqxwHt3g9Y0AK3jW1IRAWARY8xb+pu8W/eYZzU9mzFOjBsk6tXvXckc4JzdPq9dt1vI/Vlv3DR1wuh687VJmRRAFCLCCiE1VVRIgwKoSHw8HSIAAK0CwFOs3gcoGWA/s+lHv7P/L047LanfQE/W7+61dFISAESDAYh74Q4AAyx+KlIGAdwJhEWBNnjlPj7/wf9Zh7JW92rdtrveev0/JSbUqWwTPVUKAAKsSaDxSLQIEWNXCTqUVCBBgMUXsLlCZAKu07YNTm5yl4xOa2L27tC/EBAiwQmzAbNpcAiybDgzNCkuBsAiwzMikZ2Rq4S8rNfPrRfp6/i+ql1xbR3XpUO6gRUU5lFSnlo7s1F5nnXqs4uJiw3KQ7dwpAiw7jw5tKypAgMV8sKMAAZYdR4U2FRWoTID1Q+YWXbB1lqeYBlEJ+q3lELYPMrX8LkCA5XfSiCyQACsih51OV5NA2ARYbj+zCqvnkDvUvk1zn95CWE3+EV8tAVbET4GQASDACpmhiqiGEmBF1HCHZGcrE2Ddu2uRJu7/29Pfq+scpkfqHReS/afR9hYgwLL3+IRK6wiw7DFS6zdtU59h95RojFmkUqdWDbVp2UQnHN1JF/Q/VXWTape4757HXtPMbxYV+zw2Jlp1atdUuzbNdHqPbhrc71QlxMeV22FzvNFX837Sb7+v0q49KcrNc6peUm0d3qGNep50lPr27K7o6KhiZaTsT9OJA262Pls4fYJq16pRah23PDBecxcsUfejO+rNsXeV2Y6zL75H6zZu09vj7tFxRx5m3Xfa+bdq+869Ov3EbnrxseHl9uGzL7/XA2Pe0i1XDtL1l/a3xwAXtCLsAizTr4lTZuvfNRv16F1X2gqbxpQUIMBiVoSKAAFWqIxUZLWTACuyxjsUe+trgJXncqrzhklKcWZ7uju96dk6Kr5RKHafNttcgADL5gMUIs0jwLLHQLkDrMSEOHXrfIinUVnZOdq+c4/Wb9pufZZUu6beGHuXOnZoU6zh7gDLHC3UoG6S9V12To627tijzVt3Wj+3btFY74y7V40b1i3R6Z27U3TbQxO0ZMU/1nc1aySoeZMGiomJseo335vroFZNNf6x4WrbqvhbdYde/4hW/LXGCpdMyHTgZRbqnND/JqVnZCkmOloLpr1YatC1bccenT74NitoWzRjgmeXmTvAMuU+8+ANOvuMsv/DEAGWPeY0rbChAAGWDQeFJpUqQIDFxLCjAAGWHUeFNhUV8DXAmp+xWRdum+0poml0Df3S8gJQEQiIAAFWQFgjrlACLHsMuTvAMiutvpj4VIlGmRBq1Nh3tOiXlTrs4Naa8sYjpQZYpYU7q9du0h2PvGItkjn1hK6a8MStxZ7dn5quC6572ArJ2rVprrtuGGKtkjJBk/v6e/UGjX9rqswKLROiffzaQ2rZrPA/zrzw5lS9/n8zNGxQL40cPqxE+xf8tELX3f2sdVTS7r37ywyhZsxeqHufeF0nHttZrz19h6ccE2CZdmZkZlvnfs9470mrrNIuAqwgz+mlv/+rtRu2qvcpx1jJZ0XX94uXa836LTqtx5HFJlFFz/F91QUIsKpuSAnBESDACo4ztfgmQIDlmxd3B1/A1wDrzl0/6KP9/3oael2djhpV75jgN5waI0KAACsihjngnSTACjixVxVUFGCZQkzwc/LA4TIvCzErmIpuJXSvwCprddLqdZvV/7KRMudo/zB9grUt0X2Z7XYm9Dn8kDZ69/l7y8wgTL0PPv22de8Rh7fThy8/6Cnjp6V/6YrbnpJZATbtncdL9PnxFybqw8/m6MbLBujl96apz+nHaeyoG0rc527LXTcO1eUXnFUswKqXXMc6aslslTzrtGP17EM3EmB5NbsCfNM9j79mHeZ+7cX9NOLq8yqs7f3JszRmwkfWAJuB5gqeAAFW8KypqWoCBFhV8+PpwAgQYAXGlVL9J+BLgFXa9sEvmvVV17gG/msQJSFQRIAAi+ngDwECLH8oVr0MbwIsU8uxZ1+vtPRMzZ08rthWwIoCLPNsjwE3a29Kqqa++agObd/KavTWHbvVe+idystzWsGTCaDKu8wKqLMuusvaUvjWc3fr+G6HW7ebLYLd+91orZCa/9l41a9bp1gxpg6zPXD+5+N15oV3FYRwL8mc01X06jX0TmvL42dvP6ZDDmrh+cqswIqLjdXHrz6k/peP1K49+zR+9HCdcVLJ7YqswKr6fPSphAFX3K9VazZp4ov3q1vngyt81p2mmgE2A80VPAECrOBZU1PVBAiwqubH04ERIMAKjCul+k/AlwBrbvpGXbL9G0/lbB/03zhQUukCBFjMjNIEMjIcysk1gYKUa37PNmch5X+Wm+NSTo5D2Tn530sODe5b/qHe/lJe9rtLazc4/VWc7cvp2ilKrVs6vG6nNwGW+3wos4Xvh+kvFXu7rTcB1vF9b7S24c2eNNY638pcH0+bq0fHva+jj+ig9164z6v2jn31Y70z6Utd0P80PXT7ZZ5nrr/nWX2/eEWJ7YEm2zAZx1FdDtH740fqrtGv6H9zFuuNsXdaB9O7r41bdljhVoN6Sfru0xeKtcUEWLm5efr+8xc1a97Puv3hCdZ90997wtrSWPQiwPJqGP13U/e+N2pfarp+mPaStb+zossc7Nat9zXWveYZruAJEGAFz5qaqiZAgFU1P54OjAABVmBcKdV/Ar4EWLfuXKDJqas8ld+c1Fn31T3Kf42hJAQOECDAYkoYgU2bHVrxu0O/r3Ro337vAxPzbGys9MrY2KBAvv9xnuYvjJwA65Ih0TrlhOJv6ysPuqIAKzUtQ3c++orM8UHmjClz1lTRq6IAa+Xfa61zrsy5UfOmvuB5k+D9T72pz79aYL2tz7y1z5vLvEnQvFHQrOIyq7nc17uffKVnXp6k8/ueokfuvMLz+RsfzNTzb0zRbdcO1tUXnWOFVybEuvDcM/TArZd47pv6xXyNeuZt9e3VXWPuv65YU0yAZVZ3/TjzZevzW0e9pK/n/6IBZ/bQE/ddU+xeAixvRtGP93TteZVycvO0fM7bJV5RWVY1JsAyy/6WzXnLjy2hqIoECLAqEuJ7uwgQYNllJGhHUQECLOaD3QW8DbByXE51XP+h0ly5ni7NatpPneLr272LtC+EBQiwQnjwqtj0bdsd+v13aenyKO3b51todWDVb75AgFXF4Sj18coGWDUSE9TjmMJVSXlOp3bv2ac//11nvUXw8iF9rNDmwKu8AOu/9Vs0/IHx1rnZI4dfrGGDenoeNwermwPWR999pQadfbJXFH+tWq/zrh5lhWFmRZT7+ue/jRp45QPWudxfffi05/OLb35c5pxv9xZFswrsxAG3WCuo5kx+znOfuw8mkDqwjybAMiHez1++Zt1vtjCarYQp+9L06pg7dNJxnT3lEGB5NYz+u+nU827Vjl17iy3tK6/0lP1pOqHfTdY+U7PflCt4AgRYwbOmpqoJEGBVzY+nAyNAgBUYV0r1n4C3AdbXGRt0+bY5norbxNTWDy0qPsfUfy2lpEgUIMCKrFHfk+LQ8uVRWv67tGNH1UKronIEWIGZR5UNsMpqTWxsjHqffLR1ePnpJ5Y898kd/phVUY0a1LWKMVvutm7fJRNgmedvuvxcXTOsb7Eq3OGSOVDdHKzuzeVeLRYXF6uls98o9sgpg0ZY4dLXk8aqWZMGVsB04rk3q2mj+la+4b6uvG2MFi/9U5Nff9g6PN5c7hzk2ynPq1GD5GLlut9C+MtXr3s+d7+xsEnDetZWQvcL8AiwvBlFP95jluOZZXm3XnN+iQlWWjXufasmdTTpI1fwBAiwgmdNTVUTIMCqmh9PB0aAACswrpTqPwFvA6xbdszXp2n/eSoekXyE7k4+0n8NoSQEShEgwAr/aZGSYrYHRmnFSmnLVu9CK7MtMDbGpbg4s0XQpdhYh7VV0HwWYz6Lyd86GGd+xbl06eCK33rvD2nOwCpfsawthGaXlVmwsuLP//TmhzO1ZMW/pb7Bzx1glVaLWdVlAp6mjeqV+NqfK7BM4e4X0j12z1Ua2OckuUMms+rLrP5yXxOnzNZTL32oGy4doJuvHGiFbP0uvU/t2jTX9HdLvsWwtADLlHXjfeP03aJluqDfqXrojsut4gmw/PFPrA9luA8lS4iP00uPj1D3ozuW+bSZwDfc+5y1nO7xe6/WuWed6ENN3FpVAQKsqgryfLAECLCCJU09vggQYPmixb3VIeBNgFXa9sE5zQbo0Lj8/wLOhUCgBAiwAiUbvHLT0x3KzJIyM6XsrMKAKiNT+n6hQxs3ehdaNWvqUqfDpc6dnEpKcvnUAd5C6BNXwG6u6AwsU3FuXp6GXPeIzBa+MQ9cp749u3vaU9oWQpfLpYtuekzL/1ite266UJcOPrNE+x8Y85YV+LiDJG86+O3Cpbp55AslzsAyz5rztMy5Wv16n6CnRl7rObD99WfuLLY10n1gu/scLfeinEvO7617b76oRDPKCrDMwfZmK6HJQ94ed4+OO/IwTZv1g0Y++YZ1ppc528tOl8NlRiXMLtOlq+94Rj8u+cPq2ek9jtRpPY5Um5ZNVSMxXubQ9rUbtuq7Rb9p9ne/WK+g7HxoW30w4UGvz8wKM7Jq6w4BVrXRU7GPAgRYPoJxe1AECLCCwkwlVRDwJsD6Mn29rt4+11ML2werAM6jPgkQYPnE5febzd9Cs7IdysyQJ4TKyHRYYZT5lZHhUqb5Ocv82XxW8F3Bz9nZ3oVTZTW8YQOnOndyqEsnp+rVq/xfiQmw/D41KlWgNwGWKdh9ILpZ3WRWObmvss7AMoe3D7n+ESUmxOuLiU+V2Jr3yfRv9chz7+nYIw/VO+Pu9artz732id766H8aMuB0jbrt0mLPbN+5VyZsMm85nPXRMzp54HBlZmVr4fQJ1jbGolf/y+/X6rWbrDcOmtVYX85drFeeuk0nH39EiXaUFWCZG6fM/E4PjX1HLZo21OfvPK55C5daB94TYHk1nP65ybyF0LwactEvKysssPNhB1krtcwhaFzBFSDACq43tVVegACr8nY8GTgBAqzA2VKyfwS8CbBu2PGdpqet8VR4R3JX3Z7c1T8NoBQEyhEgwKr69MjOLgyWMsxKqIz8kMn6c6ZDGekmhMr/OcsEUxkO689mhVRWZtUCqMq0PjnZZa2y6txRatK48qFV0boJsCozEv5/xtsAy/2mv1O6H6GXn7zN05DyDnF/eOy7mjxzns489Rg99/BNJQKnXkPusFZ3zXz/SbVt1bTczpnFNGdddJdMUGUCLxN8HXj1v2ykVq/brDfH3qWr73xGZ5zUTeNHDy9xn3kzoQnkzPlbz7wySbt279OimS9bi3YOvMoLsMy9V93xtH789Q9dfF4vdT+qo24a+TwBlv+nafklmpVVs7/7WZ/MmKdlK1dZr410X7Ex0erYoa31poABZ/VQTHR0sJtHfZIIsJgGoSJAgBUqIxVZ7STAiqzxDsXeVhRgZThz1WnDR8p05Xm6t6D5ILWNrROK3aXNISZAgFVywP5dFaWMzIKVTyaAynDKrIqywidr5VPhCqn0jOAHUJWZYrVqme2BLnXp7FKL5v4JrQiwKjMSgX3G2wDLfeaT2Q5otgW6r/ICrL0pqTr74nuss7Ree/oOnXhs4Rv7zPPubYRdDm+nt5+7R4kJcWV29vEXJurDz+aoW+eDNfHF+0u974nxH+iDT7+2tjjO/GZRmW84XPbHal1042jrGCSz9fDoIzrovRfuK7XMigKsTVt36twr7rcyk+FXDdILb04lwArslC2/dHN42+69+6y9nQkJ8WpQt06JJXjV2b5A1G0Ocps68ztrK6XZI5uRmaWk2jXVsUMbnd/3VPU86agyq/1l2d969+Ov9NvKVUpNz1DjBnV1xonddN2l/a0yyrrM/l+zBHHV2k3Ky8tT6xZNrH+gLhrYs9TtmQRYgRh5ygyEAAFWIFQps6oCBFhVFeT5QAtUFGDNSFuj63d852nG4XH19HUze523EWgjyq8+AX8EWGYFUl6eQ3l55nwdyVnwe55TcuZKuU4pL9chp9O80Uwyn5t7Pb/cn+U6rO9yc50F3+WXaf0qKCPX6VJergrKyr/fqs8qwyVnQRlWW6z6HcrJrT7fYNQcEyMlJLiUmOBSfILD+j0xwXwmJSa61K6tQ23aOAPaFFZgBZTX68IrCrCys3P0zsdfafxbUxUV5dDUN0frkINaeBVgmZsmTZur0ePeV6vmjaxtdvHmFP+Ca39qui647mGt37Rdhx3cWnffeKGO6dpBDkdhyLtu4zYrFJo17yclJ9XSJ689bG0TLO2at/A3awWUCcJMoGS2CJa2W8zpdOnU80YoPSOzIHg6T9dd0q/UMisKsMxDH3z6jZ4Y/39W38xKMbYQej39uLGqAu5k15Rj3pbQvm1zxcbEaMPmHfp3zUar+NL23JrP3XtgzZ9N2FW/bpL+/W+DtmzfbZX14cujSuz9Nffe98Qbmj77B5nVbUd2Ptiqz6TCJjQ0KfWEJ28tsdKNAKuqI83zwRIgwAqWNPX4IkCA5YsW91aHQEUB1rXbv9UX6esK/wJRt5uGJ3WpjqZSZwQKuAOsP/7N1l+rXFqzRkpNKxIc5bmUm+ewQqJICoWCPRVq1TThkwmeHFYYlVDwuwmgEuOjCj7L/9wEVCacik+QzHN2uAiw7DAKkjvAMtvnju92uKdRTpdL+/an6a9VG6ygJzo6Sg/ceqn11r2iV3krsMx9JiwafO1D1gHwN142QDddMbDY8zt3p+jWUS9p6e//Wp/XTaqtFs0aWn833rpjjzZv3Wl93q51M41/bLjatGxSJpxpZ/e+N1nbEjt1aKuPX3uozHvdq7/MDZNeGSVzPFJplzcBltnBdunwJ7VkxT9WEQRY9pjbEdEKsyxx2R+rdMWQPtbbDYpeZm+rSXTNYXDvPn+vjulauO92w+bt6nvJfYqJidarY273fGcm80vvfKZX359u/QvhrefuLlamCa5MgHVQq6Z6fexdnleMmn/4zD/IP/z8e6n/ABBgRcR0DItOEmCFxTCGXScIsMJuSMOuQ+UFWGb74KHrP1CuCv8S+nOLwWoWU/ZK77ADokNBFzAHh2/f4dCadQ5tXO/Q6jUOpaUHvRlhU2FUtJQYnx8q5f8qDKJMKFUjIUoJieb7gs/NvYn5QZUJo8LhFBcCLHtMZ3eAVVprzIqiJo3qWX+3HTaoV7GVV+77KwqwzH1md9Kwmx6zdnJNe+dxtW7RuER15g2DX839yQqyzA4wszqyblIt6/iiXicfpXPO6O7Vi+MuueUJK0gyQZkJzMq65i5YolseGK/atWroh2kvlVm2NwGWqcOsFBt45QOswKquaW0S0m/m/2qtOtqXmqYWTRtZe0iLXjt27VWe02ltkyu6zK+62hyMes2bEswbEw5Mj82SQbN08NZrztc1w/oWa4oJsS684VGt+GuNPpjwgLp2bO/5/twrHrCMD/zc3LAnZb/OGHy79Q+6Wf6YEF+4J5gAKxijTR3+ECDA8ociZfhbgADL36KU52+B8gKsz9L+08075nuq7BJXX182K33rg7/bRXmRJbB5i0PrNzj031ppzX8O6813kXiZF5hFxbgUEyUrODLhU0y0CZEc1s/mV2ysWQ0laxuetdopMUoJ8YXb8kwYlRgnJSTmh1WxhbuoIpHU6jMBVsQOPR2vBgGHy6QSYXilpWfqkWff1RdzfizWuw7tWurTt0YX++yq25+2zol6/Zk71eOYTmGoUbJL7ld33nXDUF0+5CzPDb2G3mktb5w7eZwaN6xb4sGPPp+jx56fqKKH3pn7zXNmP/CXHzxdqp95I+SseT/rxcdH6PQeR3ruIcCKiOkWFp0kwAqLYQy7ThBghd2Qhl2Hyguwrtg2R7MzNnj6fH/do3RjUvGDccMOhA4FVMAcML43Jf/tdlnZ0pKl0tr15iDywAVW5gymaBMCmVAoRlY4ZEKi6CiHzHcmJDLfxcS4FOW5x6Fo65780Cj/V/5qpJiYqIKyCsv03BPlUlS0QzEFz0RFuzx/zq/XXZc8dcXHheVf9QI6j3wtnADLVzHuR6DyAmEZYJkD26+58xktXvqnJWMOPGvVvLG1BK+0AMuc8G9O+j+/7yl65M4rKq8ZIk/uS03XoKse1NbtuzXljUc8WwzN59373mgFVybAKu368991Ov+ah6zVV2a1lbnmfL9Ewx8cr769umvM/deV+tx7k2fp6QkfWau6zOou90WAFSKThmaKAItJYEcBAiw7jgptKipQVoCV6sxRx/Ufsn2Q6eKTQFq6Q3v3SntTzO/ml0t79prV/g6l7JWyq7CyqlULl9q2capVa4e1JS5/dVLBSqWCYMoEVCaEMquWTDjFhYARIMBiHiAQPIGwDLA+/d98Pfj029bp/qNuu1RnnnqsJdrx1MtLDbBWrdmkAVfcr4PbttDn7zwWPP0g1mTOu9q+c491FpV5u+CW7bt0x/VDdNngMz2tWPn3WuvtCeW90tO8OvSEfjdZh9ItmPai9awp75lXJllvPBh+1Xml9uqb73/ViAdf1JmnHqPnHr6JGGAcCAAAIABJREFUACuIY09V/hEgwPKPI6X4V4AAy7+elOZ/gbICrMmpq3TrzgWeCrvFN9CMpsWPLvB/ayjR7gKpqfkB1Z4UKWVvlHbvdVk/p6RIe/dG+fWNei1buHTowQ51PixGDRvlKMec1M6FQCUECLAqgcYjCFRSICwDrMtGPKlflv2tFx8brtNP7OahKSvAMq+9PL7vjapZI0E//e/VSlLa8zH3VsGirTMh0g2XDbACu6KXWbF25W1jdPLxR+iVp24rtUNmx2mn066wDodbPudt656X3v5Mr7w/TXdeP0RXDO1T6nPuso8/6nC99WzhAfCswLLnvKFVJQUIsJgVdhQgwLLjqNCmogJlBViXbv9Gc9Lz34psrofqHqNrkzqCF8YC5tCS/QUBlXsF1Z6CgMpaTZWS//a/QFxm1VSzZvkrrA5q41Crlk7r7Cb3Wwj3pmYrPStAlQeiQ5RpKwECLFsNB40Jc4GwDLDMNrjsnFwrjDJBi/sqK8Ay3x/Z+xrl5uZqxdx3wmrIZ369SGb1U15enszqKbPazPzerEkDjbj6PPXt2d3T3+8XL9f19zynM07qpvGjh5fpcMQZV1mv9Fw25y3FREfr2Vc/0duT/qf7bhmmi8/rVepz5i0MF9/8uI7sdLD+76X7w8qYziCAAAIIIICA9wL787KV/NvbchZ5++DWLpepcWwN7wvhTlsK7Nwt7drtsn7t3iPt2OXSzoKfd+4KTpPrJkn16zmsX40aSu3aROngdg4VeYdQcBpCLQgggAACfhcIywCra8+rlJxUW/OmPl8MrKwAy4QxXXteba3AWvzFK35HtlOBTqdL8xb9poeeeVu79+4vdqh6UFZgdTtcbz1XuALLTja0BQEEEEAAAQQCL/D2zr901bpvPRX1qNlECw4dGPiKqcFvAmnp0r+rXfpvnVP/rXVp+878wCoYV/16Uv26DjWob0Kq/LCqYT2H6pnf6wejBdSBAAIIIFBdAmEZYJ12/q3avWe/fvziFSUmxHlsywqwflu5SsNueiysz8A6cIIt+GmFrrv7WR1yUAt99nb+uV9/rVqv864e5dUZWEm1a2rhjAnWc+9PnqUxEz7y6gysnicdpRdG3+JpDlsIq+sffer1VYAthL6KcX8wBNhCGAxl6qiKQGlbCC/aNlvfZWz2FDu63nG6ss5hVamGZwMoYLb+7dzh0PqNDq3bIG3Y4NCu3YF5q5/ZOJGU5FJyskvJSVLdug4lJ7mUlOySWVlVp45LDj9WzRbCAE6cCCqaLYQRNNh0tdoFwjLAuvPRV/Tl3MV68LZLNXTA6RUGWDeNfF7zFv6mS87vrXtvvqjaByUYDTArsbr2ukoOOfTr7NetrYDpGZk6ps/1Xr2FsPOhbTXp1Yespn63aJluvG+cV28hvHLo2brj+gsIsIIxyNThVwECLL9yUpifBAiw/ARJMQETODDA+iFzqy7Y+lWx+n5rNVQNoxIC1gYK9k0gO1vasDFKGzY5tG6dSxs2Oqr0dr+itUdHS8nJTiuMSkqW6iU7CsIpE1JJdWq7fGtsFe92B1jbNuZoxUdONeshJXdwVrFUHo80AQKsSBtx+ludAmEZYLnPW4qPi9X9Iy7ReeecbBkfuALLBDZPT5ikyTPnWWdlzXz/SbVq3rg6xyNodWdn51jnfjkcDi375i3PWWH9Lxup1es2a+7kcVaQdeD10edz9NjzE3VB/9P00O2XWV/v3J2iUwaNUKvmjfTlB0+X2ofbH56gWfN+1thRN6jP6ccRYAVhpP/NSdGH+/9RSl6WUlzZ6hCbrLvrFr7UIAhNCKsqCLDCajjDpjMEWGEzlGHbEfMXu9n7NuidzX/pi/S12u/KLdbXExIaa3KT0l8AE7YoNu3YqtVR+mauQ5u3VH6Jk3UwurV6yqW6yebPjmKBVa2awQ2oKqJOrhGrzYuitGJKnvKypZiaLnW7O08x5KkV0fF9EQECLKYDAsETCMsAy/AVffte6xaNdWzXw6ygqlGDZA0dcIZWrd2o7xevkHkDobnKe4Ne8IYjeDV9Pf8X3TrqJR3avpWmvvmop+IX3pyq1/9vhm695nxdM6zk66yHXv+IVvy1Rq+OuV0nHdfF85w5oN0Ehx9MeEBdO7Yv1pE9Kft1xuDb5XS5NP+z8apTq/CQVrYQBm7Mn0tZpmf3LPVUEK9oLW99oWo5YgJXaRiXTIAVxoMbwl0jwArhwQvzpi/M3KrpaWs0M32t9uRlldnbMfW76+LaHcJcw97dS01z6Isvo7TyD9+Cqwb1nWrRwrzdT2rZPD+wqlHDXgFVefLp26U1k2OUsr74XQ2PdOngobyR0N6z1l6tI8Cy13jQmvAWCNsAywzbu598JRPImNVGZV2xsTFWeFXW2/NCcfi37dij9z75Sv16n6DDDm5dogs//vqHzDZLEyw9OfIa9e/dw3PPrj37dNZFd8vpdFoh1TFdD7W+c7lceumdz/Tq+9Otc7M+fWu0tXrLfbnfYHhQq6Z6fexdatqonvWVWeV220MTZM7cGjaop0YOv7hYewiwAjfDLtw2S/MzthSrYFzDE3VBzeIBY+BaEF4lE2CF13iGS28IsMJlJMOjHz9lbdMXqev0Wdpq7XKWHVq5e9szsYWeb3CS6kbHhwdAiPXCnG3165IozZrjUFZm+eGVWTnVvLlLLVs41KK5Sy2aOxVXeMxsiPVcWj/LoY1zo0ttd/3OTnW4mG2EITeo1dhgAqxqxKfqiBMI6wDLjKYJZKbNWqCflv6l9Zu2KS09U4kJ8WrWuL6OPfIwa3thw/rJYTXwpp99ht1j9clsA2zfprnq1K6pzMxs/fPfBm3autMKn667pJ9uuXJQib7P+X6JzJY/83bGjh3aqEG9JP3z30Zt2bZL5vD2iS+OVLs2zUs8N/bVj/XOpC9lQsEjO7VXXGyslv2x2lrldvghbfTeC/epRmLx/5NKgBWYqWdWu7Vf/3/KchX/L4g9EprokyZnBabSMC+VACvMBzhEu0eAFaIDF0bN/i1rp6alrdGMtDXakpe/qr2sK0YO9UhsogG12unsxNaqHRUbRhKh1ZUdO6M0bXr+weylXa1auNSypVOtWjjUpJk5QD10VlaVNxL710v/TopW5q6S/Y6t7VL785yqe1h49DW0ZmRot5YAK7THj9aHlkDYB1ihNRz+aW1enlNmi+Ds737RqjUbtXvvfu1LTZM5E6xZkwbq1vkQXdDv1FJXZ7lb8Mc/a/XaxBn6dfk/Sk1LV4P6ydaWwesv6V/q2Vju58w5V/839Wv9vXq9TDuaN22os08/TlcM7WPVf+BFgOWfMT+wlJXZu9R784xSC/+lxWA1jakZmIrDuFQCrDAe3BDuGgFWCA9eCDd9RfYuTU/9TzPS12lDbmq5PYmSdFKtZuoT31r9arZVclQIL9sJ4TFzNz0vT/r2O4cWLIyWs5RFRm3bOHXugPAJrDz9znJo7RcObVtsZmTJq1l3l1r2cSo6nvAqDKZ5pboQtWOTHNs2Kq9T4Vm93hZEgOWtFPchUHUBAqyqG1JCFQQIsKqAV86j7+7/S/fv+rHUO+6r2003JxWeXxaYFoRfqQRY4Tem4dAjAqxwGMXQ6MNfOXs0bX9+aLUmd1+Fje4W31Dn1mqr61ocrkYxiSrrf+8rLIgb/CawZm2UPpvu0N69JVcfmS2CZ53pVJdO4Rfg7PnToVVTo5Szv2S/E+tLx14VrdhmuUrP4twrv022UCjI5VL0mr/kWLZAMcsWKmrbRrlq1lHG2Kk+t54Ay2cyHkCg0gIEWJWm40F/CBBg+UOxZBk37fhOn6etKbXw9rFJ+q75wMBUHMalEmCF8eCGcNcIsEJ48EKg6ety92tq2n+anrpa/+ZUHFp1iq2nAbUO0sBabdU0On+lr/svdgRY1Tfg6RkOfTnLoWXLS199dPRRTvXu6VJCmK0+ykl1aPVnDu3+vWS/HVFS05Py1GVgjGrVitHe1GwCrOqbokGr2ZGbq+h/lsqx9AdFL1+kqH27S9Sdec9Lcrbx7cUSBFhBG0IqQkAhH2Bt3rpTS37/V8cccahna9u/azZWeWijoqKs857M+U9cgRMgwAqM7fEbp5S7rWNWs/7qFJd/0D6XdwIEWN45cVdwBQiwgusdCbWtz92vaelrNWP/f1qZs6fCLh8cW8c60+rcmm3VNqZOifsJsCokDOgNS5dF6avZDmVklFx91LCBU4MG5B/OHm7X3n+i9NcHDjlLOZw+sbFLhwx1qmYzl5JrxqpGAgFWuI1/0f44stIVvWKxon77QdErf5IjM6Pc7ub0Gaac/pf7REKA5RMXNyNQJYGQD7B6XnC7tmzfrbatmmrm+09aGB1P9e1fOuUJNm1cX9de3M86M4rL/wIEWP433ZaXrm4bPvEUHK9onVWjlaalF67Iurr24Xqk/rH+rzyMSyTACuPBDeGuEWCF8ODZqOlb8tL0edpa61yr5dm7KmxZm5ja6l+jjc6t1U4d4sp/EQ4BVoWcXt+QkyNlZTmUmWXeGujK/z1Lyswyn+d/Z94i7b7Wrndo7drSV12ZFVcnnhCeW+a2LTYrr6IkV/HQzhEtte7tUtOT82RWYJmLAMvr6RfQGx3pqXLkZsuVky2Hmei52XJkZ+f/bj7PNp9nSbk5knVPtmTuy8m0frb+bO4192TnWM8oJ0uO1BRFbfzPq7a7Emsqr+sJyjvuTOV1OMKrZ9w3EWD5xMXNCFRJIOQDrHMuuVdrN2y13nI3+fWH/R5guXUfv/dqnXvWiVXC5uGSAgRY/p8VM9LX6Prt33kKPjGhia5P6qSLt33j+axeVLx+azlE0e7/B+f/ZoRdiQRYYTekYdEhAqywGMZq6cSOvAzrP2xMS12jJVk7KmxD85ia6lejjbVFsEtc/QrvP/Avdmwh9JqsxI1//xOl2XMd2rG99DcG+lJy+4OcGtDPpaQweatgsb67pDXTorRlUcnQrnYblw6+IE8JB0xdAixJzjxPIJQf/OSHSC4rMCoeJLnDofygKf9eZWdawZLnZ6sMEy5lFQRJRcqwys0PpTxBlC8T2M/3Ohs2U16X7nIe0V157TpLUaUHvhVVS4BVkRDfI+A/gZAPsFL2p+mf1RusAKtmjQRLZufulCoLuVwuq5w3P/xCX337kw5t30pT33y0yuVSQHEBAiz/z4hRuxbrrf1/egq+NamL7qrbTUesn6SdzkzP5xMb99TpiS383wCblGhWor2eslJ787K015Wt1jG1NareMZVuHQFWpel4MIACBFgBxA3Donc7s/R52n+ambpWi7O2VdjD+lHxGliznc6p1VrHxjeu8P7SbmAFVqXYrIfWrXdo1tdR2rip6sGVOaT97D5OdTo8/LYLGqu8bOnviVEyWwcPvFqf5VLz00pfbWaXAKtw5VCWXFZo5F5RlB8GWYFPdsF3BcFRfgiUHxRZYVB2dv6z1s8FgZL1c/6qJVdulufPnntM+BRhV16bQ+U8oofyuhwnZ7O2fuk9AZZfGCkEAa8EQj7A8qqXVbgpJydXx5x9vRwOh5bOfqMKJfFoaQIEWP6fF2dvnqFlRbaAfNi4t05JbKZHd/+s1/at9FRoziuZ0PAU/zfAJiW+kLJcT+9ZUqw13zUfpPaxJc9o8abJBFjeKHFPsAUIsIItHnr1pTizNTN9rT5PXa2FmRWHVnWiYtWvRltrpVWPhCZV7jABlu+E27ab4MqhVasrtxqkaI0Oh3Ts0U71OsOpuDjf2xIKT2SlSH+8Ga2MA1eoRZlVV041PLLs0M4TYKVkKCMtvVjwUzwUKrqiKD8cyg+a8re5mXDJWo3k+Sw/gJK19a3gc3fQlFuwCqlg65sVRHEFTMAVGyfnod2U19WEVt3lquX/840JsAI2fBSMQAkBAiwvJsUpg0YoNS1Dv8563Yu7ucUXAQIsX7QqvjfTlaf26yaq6P9V+7vVMNWKitXvWbt05pYZnkLiHdFa0XKoakbFVlxwCN5x3MYp2pibWqzl59dspxcanlSp3hBgVYqNhwIsQIAVYOAQLX6/M0dfpK/TjNT/tCBzi3KL/a9CyU7VjopVnxqtrNDqpIRmilbVV/y4ayHA8n4S7d7j0Ddzo/T7yrL9ExNdSkyUataQEhJcqllTBT87VMN8V8N8l39PjUSpdu3QWXHlMKuBiqwcyj/byL3drGBFkQmKzDlIBaFR6u6aWrHkFOXkJBaDjonKUOemE5UUvbogQMq1ViYV3frmcK9IMmVyVauAKy5Bio2VCZsUE2f97oiNkysmrvBz813BZ464eLliYqXYeFnJbExs/r3mc/Os9VycXPHxcrY5VC5zXwAvAqwA4vpQ9PpN29Rn2D0lnoiLi1WdWjXUpmUTnXB0J13Q/1TVTapd4r57HntNM79ZpGcevEFnn3FchTXP+X6Jhj84Xr1OPlrPP3pzuff//vcaDbnukWLHHrkfcNdbXgH169bR/M/GV9imSLiBAKuCUU5Lz9Rx59ygDu1asoUwAP9EEGD5F9X8RWXI1lmeQg+Nras5zQd4fj5l02dalVO4xfbZ+j00tPbB/m2EDUpblLlV52/9qkRLzF/KFrY4Ty1iavncSgIsn8l4IAgCBFhBQA6RKtJcOfoqbYOmpf2n+ZmbleMqPMy7tC7UcMSod42W6l+zrc5IbKGYAJ2JSIBV8QRKTXNo7jyHliyNUpEz2Is92O4gp3r3cqlp48AFUo7cXE845LCCoiLnFBU7KLtosFS4dc2cmeTZ+pZbeJh2sdDIsxopvwz3djlHXk7FUAfcsSPmeK1IfEROR/GlZYnOTeqWdocSXRWvOPS50jB9oGhQZAVH7iDJCocKgqSCP1thkfvP5j4rfDLPxFrBkfWsCaOsECnec6/1XVysJ6DKvydeio4OeVUCLHsMoTvASkyIU7fOh3galZWdo+0792j9pu3WZ0m1a+qNsXepY4c2xRpe3QGWCdhKC9ZMI5Pr1NJLT4ywB3Q1tyLsAyzzhsL/zflRK/78T1t37FZGZpZqJCaoaaN66nJYO519xvFq1KD8N+jk5uUpyhGlqCj//RfJah5321RPgOXfoXh+7296Zu9vnkIvqXWInmpwgufnl1NW6PE9v3p+7p7QRFOanOXfRtigtFt3LtDk1FWltuSy2h30RP3uPreSAMtnMh4IggABVhCQbVxFhitXs9M3aHraGn2bvklZKv+tcuattKfXaK4Btdqqd41WMj8H+iLAKls4M9Oh7xZIi3+KlsmOSruaNXXprN5Ota29TVE7NlsHZuefh5R/LpInHPJsYys8Lyk/gCqy9c39draC54sdsm2CpRC61sVfqH/jrpHMHskiV3Lub+qafr9ilB5Cvclvqis+MX8lkXulkRUIxeeHQ8WCpPxwKD8Qyg+YzMqj/BVM+febcqzfTYBUdBVTwTOFq5sKAqeQ07JXgwmw7DEe7gDLBEFfTHyqRKM2b92pUWPf0aJfVuqwg1tryhuPFLunugMsb1d+2UO7+loRtgFWdnaOnn3tE33w6TcyB7KXdUVHR+nSwWdqxNXnKzYm8P9HrvqG2p41E2D5d1yGbfta8zI2eQp9vsGJGlyrvefnXXmZ6rJhUrFKf2kxWE1javq3IdVYWrozR502TFKWq/S/yMUqSr+2vED1o/Nf+uDtRYDlrRT3BVOAACuY2vaoK1t5+iZto6alrdGcjI0yIVZ5l1lZdUpCMw2oeZD61Gwls/IqmBcBVkntnFzpxx+jNX+hlJVZ8j+OJjr3q0viSvVo8o8ap/6hqHV/y7F/bzCHzbZ1ORWtPxLu0ta4M0u0sWn2lzo8c6wcKn/1YamdczgKtqSZQCe+IBQqWC1kBUSFK4pMUGRtXSuyxc0KkA7c+maecZdVsD3OBFJmpVLRZ617Kvn2O9sOVIQ1jADLHgNeUYBlWrl7736dPHC4lQ8smPZisRVPBFj2GMeKWhGWAZaZkLfcP17fLlxq9d/sGTXLCJs3aaD4+FilZ2Rp4+Yd+nnZX9bZVubqfcrRGvdI+XtXK8Lke98FCLB8NyvviQ7r/k+pRf4ys6jFeWoVU3yP94XbZml+xhZPMSPrHqWbkjr7tyHVWNrHaat0+44FnhY0iEqwtsZszSv8r7E3JXXSyLpH+9RKAiyfuLg5SAIEWEGCtkE1s9LXa0baGn2VvqHC0Mo098SEJhpYq73OqdFa5oyr6roiPcDasTNKO3dJu3c7tGOnS3v3SvtTHdqxIz+4indmqEXu32qV87daZP+p1rl/KTk3cre+WauQim5hM2FPQTiUG11by3dfo5Ss4tt+JJfat/1Jzdv+W7D6yL0yqWClUlyRLXGe4Ck/REpKrqEadZO1NzVb6Vnlr2Csrn+GqNf+AgRY9hgjbwIs09Jjz75e5piguZPHqXHDup7GE2DZYxwrakVYBlgzv16kex5/zVpRNXLEJTrv7JNlVlodeJlVWmaF1rg3Jisvz6mxo25Qn9MrPrCtIlS+916AAMt7q4ru/CN7t3ptnu65LTkqXitbXVjiMbO1zmyxc18tY2rpxxbnV1R8yHw/aMuXxV4Pf2NSJzWJrqlRuxd7+mBWIPzWcohPB9gTYIXMFIiohhJghe9w57qc+j5zi3Wm1Vfp62UOZi/vMnHIsfGNre2BZrVVcpQ9XjkXCQGWCad27XFo5w5p1x5p1y5p126H9u4t/eiJjpk/qHPm92qR85ea5K6z1SS2VgNZq43KWIXk2aKWf0h24Uois0qp8ABud+hU/Lyk/O1xhauQ8g/ctra+mXOUyrmy9ji08k2HMncW///zZpoferFTyR0qserKnCtTM1Y1EmIIsGw1C0OvMcEKsHJ+WaC8//4OPaBKtjj26B6KPuhQr5/2JsDatmOPTh98m3UO1g/TX5KjyDZkAiyvqav1xrAMsK66/Wn9uOQPjRx+sYYN6lkh8PuTZ2nMhI+stxK8MfbOCu/nBv8JEGD5z/L9/X/rvl2LPAWaN0q92ej0EhWkOXPU+YAtdl8066uucQ3815hqKmlDbqqO3zilWO3zmw9Us+iaOnbjZO12Fr5p6O7kIzUi+QivW0qA5TUVNwZRgAAriNhBqCpPLi3M2GqFVl+mr9NeZ8XnEpl/d59bq63OrXmQGkYXfxNbEJpcYRXhEGCZkyj27XNYodSu3bJWVOWHVNKePWUfvH4gTsfMheq9/x01zy39jMaKMJ2tDparZp3CFUrWSqWCrWtxsXLExheci+Te+uYOo/LPQsrf+uZejVT0vKQ4uczrC7248jIdMlmq9StbMmevO3PyP8vLzv/M+nPB53nZTjmzHQU/F3xn3eOQy3relf+89ef837294pJcOvxKp2o0qfzB9gRY3mpzX3kCwQqw0l9/WtnfFP7H6nAflRrX3qW4noUvo6qovxUFWGbn1Z2PvqLvFy/XyOHDNGxQr2JFEmBVJGyP78MywDqh301KTc/QjzNftg5sr+gyWwpP6HejatZM1A/TXqrodr73owABlv8wb9kxX5+m/ecp8MF6R+v6Op1KreDAe6+sc5hG1wv91Ydj9izR+JTlnj53i2+oGU3PsX42n5vv3VedqDgtaXGBEqO8Ow+GAMt/c5WS/CdAgOU/y+oqyfzVe3HWVk1LXaMv0tZqV5Ggvaw2HR5bV+fWOsgKrZrb/AzDUAqwzEHqm7eYrX4O7dzlyl9Ftcehrduq9hKfLhnzdUbqRK+DK7MqydminVytD5GzZXvrzya8CuRlgqNdv0dp53IpOzU/SHIHVC4TSGVVzcDfba/V0qXDLncqtlblwyvTJgIsf49MZJZHgBWYca9sgGX+/t/jmMK/A+U5ndq9Z5/+/H/2zgM6qqKL4//3tqX33glI7yAI0osUEURAUOy9d8Uuls/eu2JHpSkdRBBBehHpvYT0Xjdl63vfmbfJluwm295uNsnMOTkhuzN37vxnEvJ+uffO2UykJsXiltmTMG3C5VZOtzTASk+JR0R4iE0x50wbQzPF6pVpkwCrz9jbERYahH+Wf+Twd9PYWY+htLwSh/761uExtKP7ClCA5b6GDRZI5BGJQGpoq+MnY4AixuYE/9Tl4vrCTRYw51jyHEg8dI26eKts2hKpfTcgZykK9Ya6dqS9HTkEc4O7CP8mkWd9s5eg1qxG2PyIQbgzpLtD7lGA5ZBMtJOXFaAAy8uCizjdv5oirFJmYG3tRRSZ/dxqaopOshBMC+qIGYHpSG1U21BEt0Q35asAi+OAomIGubkMsnMhfCbgirwuVuvL7cQVyh8RU3u2SZOcfwD4pE4CqOJTOoNL6QQuNtkrRb3Jf4dlJxkUH2JQfpJFE3efiCWHaHYie3G4ZA4HB//+1Oy8FGCJti3t2hAFWJ7ZflcBVlPeyGRSXDFiICaOHoQxw/pbdWtpgNWcik/cMxu3zpnkGaFbmdU2CbBGz3wEdSqNEIHlaBsy5T4hWmvzsvcdHUL7iaAABVgiiAigWF8nwBnzlpt2S7PG+2YtRjGnMvb5MXYcxvknieNQC1ghhelJgXrzdiplrkXx4jfKD+DTyqPGLnGSAOFGQkcaBViOqET7eFsBCrC8rbj78xFYNSV/LXJ1NXaNkfTna4LScVVgB/SUR9jt74sdfAVgkWiq/AIgK4tBXh6DrBzxIorCwnhER/GIigSio4COpdsQu3chpHmmqGjzvSGFynUT50A/YCS46ESvb1vZCRbF/zECvLJziaXXfTOfUOLHg9w/QOpcSeo/R3QDksaIV2ydAqwW3eI2M7m3ABatgdX8kWkqhZDUuq5U1uDoyQv45te1+O/oWSGaidS/Nm8tDbDeeeFeTB7b+jNiPP2N3SYB1pOvfoH1m/di7U9voENKvF0Nz2fmYerNz2LK+CF467m77fanHcRTgAIscbRcW3MRdxdvNRq7VBGDlfGTmzX+Stl+fFV13NhnSmAavooeJY5DLWDl3uJ/sLomwzjzjMCO+Dh6uIUnpXoVBmQvhdatfPDbAAAgAElEQVTsiu13Iofi+uDOdj2mAMuuRLRDCyhAAVYLiO7mlA8Vb8fvNeebtBIvCRCAFalr1acN1CZsKYClUjPYu4/FxUweOXkM1Cr3gJVCziMqCoiK4hETxSAykgArHjExphQ2yaGdkK1bCDbH9v4K4Gr0dOjGzwIfEOTmSXJ8OM8BledYlBwCSo8zIHWsXG2MBGAVvAEomX1I5PWwScZAIuMF6MSSz0I5LhaM8f16GCUAqQY7jKGvAKoMY+C6i04tjQIsp+SinZtQwFsAi26AawDLfJROr8fsu1/GqXNZeOv5uzFl3BDj284CrL93/IcHn/8Y40cMxIevPNCsc8dOZwjz9uiShqVfzbfo6+y87f0ctEmAdfRUBq679xWMGz4AH7x8v8XtAo03nON4PPj8R/hn92Es/vJF9OzSob2fCa+unwIsceSeX7YPC6pOGI3dF9ITz0UMbNb4cU0ZrjC7tVAKBidSrnfqZj5xvHffSiWnQe+sRdDB9CCxJG4ChvlZA+znS/fge+Up46SJkkDhFkbW7BYSWx5RgOX+PlEL4itAAZb4mnrS4kF1Mabkr7OaIpr1w5WBacINgpcqYr317O7JpRpttwTA2rOPxZZ/GNTVOU9BAvx5xMfziIvlERnBIDqafAaCmqm1JICrNT+CzTP9EcVcXF4qh27kVOgmXgc+yHZ9E09shqqUQc4WBqXHGOgd0CIwmUfsAB4B8U2AJd+42FJUqSjAElXOdmuMAizf2Hp7RdwbvFzwy1p8uOA3TJ80HK/Nu91lgLXnwAnc/vjbGD64F7586/FmRdh/6BRueeRNDO7XDd99MI8CLDeOTJsEWESPX5b/hdc//hmD+nXFjTMnoH/PS4S6WA2trEKJA0dO48elf+LgsbOYd/91uGnWBDekpENdUYACLFdUsx5zZd5aHNKUGN/4IXYsxvsn2zU+NnclTmkrjP3ejboc1wV5tlCsXadc6LBQeRpPm93AmCwNEqCUrZanq8GlOcss3voyZiSuCmgeXlOA5cLG0CEeV4ACLI9LLOoEk/LW4Iim1GizgzQEb0QOwXB/+9HiojriRWPeBFjHTzD48y8WFRWOgauQYB5JsWqkRlQjMbgSMYFVCEIlUFsNpkYJvqZS+MzUVNV/VgK1SjDVVWC0plttm5KTl8igGzEFuknXgw8Oc1l1EjGlrQG01YC2xvBvXTUDTTUPba3hdV3969pq59ICFeE8ovtxiBkI+EW6VxDd5QW24EAKsFpQ/DY0NQVYvrGZjgKsH5ZuwDufL8bIIX3w+RuPGp13NhIqv7AU42Y/jpioMPy97INmg2YW/rYRb376K669ahReetyyzIuz8/qG2i3nRasGWEOn3m+lHMuwkEolCPBXIL+oDBqN1thHIZeBfKg0WqvXJ4+9DH17dMLMKSNbbjfa4cwUYLm/6Spej06ZC81ijwBSkD1cYv8Gzi+rjuHVsn+NTgz2i8XyuNZXIHBy3hocNnsofDysLx4L69ukuI+U7MCyatM15l1kYfg78epmN4MCLPfPKrUgvgIUYImvqacs/qw8jXlmoJ3Mszj2Cgz3T/DUlD5h1xsAKzePwdo/WNRklcCfq0IAr0QARz6qEMhVQcErESGpQLhMiRBWKfSRa6vAEhil1XhEJ+3wKdBPngsuLMrKvq6WAQFNuhpe+CzAKfJaFW8AVLVmrysdg3HOLIKk6kX14YRoq+AO7Q9amWtFAZYzJ4f2bUoBCrB842w4CrDue+YDIfuKBK+QIJaG5gpIuub2F3D6fLZQhoiUI7LVSG3uGXe8gMycQiFSi0RsmTdX5vUNxVvGi1YNsHqMar5ItSuSHt/6gyvD6BgXFaAAy0XhzIbtUhVgVsEG4ysdZCHYkXiNQ4ZJTaje2Yst+v6bNAvxPn4tu7nD57WVGJG7wmINB5KuRZw0oEkNLmirMDx3ucX7P8aMxbiApqPWKMBy6EjRTl5WgAIsLwvu4nTVnBaDcpaBpDs3tEkBKfgmZoyLFlvPMDEAFluSD/bsETD5mUIklBAFVaOEvqoSuvJqyDRKyOAZEGVPaR4stEwYNPUfqq4joO46ChouyAClLKKmDKDK4i9O9iYQ630JEN6ZQ8wAIKI7B1LLijaAAix6CsRQgAIsMVR034Y9gEUCW75fsgEff/s7WJbB79+8is7ppgusXAFJ2/Ycxr1PfwA/hVyAYSQtkdx22NAuZOVj/rvf48CRMxg6sCcWvPuE1UJdmdd9tVqvhVYNsEihdrEbrfwvtqLN26MAy329P6o4jLcrDhoNXRvUCR9EDXPY8HWFG7GtLs/Y/6mwfng4rI/D41u6Y+Ni9KTuFal/Za/dVbQF62ozjd16ySOxIeGqJodRgGVPUfp+SyhAAVZLqO78nC+U7cV3VSeNA+VgsSPpGiRKvVfI23mvxRnhCsCS5GWCvXAMzJnDkJw6CEZpSnUXx6vmraiZGGiYUOiYEKiZCGjZMKiZUAFSaYXPodAy4dCwYdAxvrmH0gAeskAe8lAgsieJuOJBXqPNUgEKsOiJEEMBCrDEUNF9Gw0Ai2RiXda/u9Egx/OoUtbg1Lls1NapIJGweP6Rm4R0PvPWAJKS4qMREhxo06Hw0CB8/Y4lhFq0cjPe+OQXkNsOydwdUxOgUMhRVFKOrNwiwc5lA7rjw5cfQHCQ9R/YG+ZNS45DeGiwzXnDQoLw6esPuy9SG7DQqgFWG9C/3S+BAiz3j8CNhZvwd12u0ZCzdayW11zAg8XbjONJTRbyYNVaWp+sxSjhVEZ3P4segasD0+26f0xThglmRezJgOXxEzFYEWdzLAVYdiVtlx1OaMsFABzGKhDGytFfEY0Yib/XtKAAy2tSuzzRGW0FRueutBj/RHg/PBraev5Q4PLiATgCsNjcC2DPHgVLgBWJtKqudGdKi7Ec/KBhwg3giSWRUgQ+GYCUMXJKYoBUGoRCD/vp96I556ghCSATgBQgC+IhC2AEOCUNZgyvB8HwtfC+oW+bugnAUZ1c6EcBlgui0SFWClCA5RuHogFg2fKGlBGKi4nApX27Yu414y0irxr6N4Ck5lYTGR6CbSs+tupy/mIuflmxGfsOngSpjaXX6xEeFixcEDdl/FDhpkIS9WWruTOvbyjvXS8owPKu3nS2RgpQgOX+keia+TOUvM5oaGvidFwiC3XYsBp69MxchFozG+vip6Cvwrpuh8NGvdRxY202bi3abJwtmJXhcMocKOBYbsTcgo3YqjJFn43yS8AvcVfY9J4CLC9taiubZnzuKhCI1dCmBnTAFzHeq6VIAZbvH5iZBRuwW1VgdDRJGoi9SbN833GRPLQFsJjSAkgP7QB75gjYM4fAqOqanU3DRhoioRAMHRsMHQKFyCctEyB8NnwdCK0kBLxEDrASQEI+ZKisSxFpJeKZIel7AogiwImAJwFAAfIgRnidZMAb3w8AJDRySjzxG1miAMtj0rYrwxRgtavtpottYQUowGrhDWjv01OA5d4JaPyXfRIBcjzleqeNPlyyDb9VXzCOuzW4K16LvMxpO94ecEfR3/ijNss47Q1BnfFW1FCH3dirLsA1+ab6YWTgnwlT0VMeYWWDAiyHZW03HX9QnsJzpXus1ksgahTrnSgOCrB8+7itq72Iu4q2Wjj5XcwYTAjwPajiKSUbAyzZqu8h27CovmYUScOLgAaGzyo2HBomAmqSnkeAlZCmR/4gw3rKPVHssn4NMMoApAiMkpL0PQKk6qOiyNcNEVSsTJRpqRERFKAASwQRqQljpCmVgipAFfC8Am0SYKnNbh50VkISXkib9xSgAMs9rRcqT+Nps1utxgYk4aeYcU4b3V6XhzmFG43jQlg5jiTPgYzx3YcGUoC+T/Zii1q4a+KvFFK4nGkT89bgqNkNhlcGpOLrmNEUYDkjYjvsW6ZX4bKc31BjFrnYIMMz4f3xQGhvr6hCAZZXZHZpEjWvF85Ikd4UXeRojT6XJvSBQcLtelUQbtLTVAGaakCulUJdBVRmlkGXVwk1HwwtY/1HAh9w3+hCQ/0oqQCgTJFSBEhJhEgpCPWkhKipUFpXypf2zllfKMByVjHa35YCNAKLnguqgPcUaJMAy53bCekthN47fGQmCrDc0/vhku34rfq80ci88P54yIUHZ57nhdsIyzi10db3MWNxRTO38rnnufujv648jpfL9xsNpUtDsN2F2l1/1WbjZrM0RGJwe+I1SJeFWDhJI7Dc37O2ZOGRkh1YVn3O5pISJIHYlzQTDGO71oGYOlCAJaaa4tp6t+IQPqg4ZIIiYPBP4nSkNfrZIu6s4lvT1zLQVBtu09NU89AqGWiUPLRV5HUYvq6/aQ968ed322IT9aNkpH6UWVSUNJARoqZo/Si3FW9VBijAalXb5bPOUoDls1tDHWuDClCAZbapYaFB2Lnq0za4zb67JAqw3Nuby3N+x0Wd0mikuSLk9mb6X/m/+LzymLHblIA0fBVjeTuHPRvefH9s7kqc0ppupnoh4lLcE9LDJRfG5a7CSbM6RrMDO+H9aMubHCnAcknaNjnogLoIU/PXN7u2X2OvwEj/BI+vnwIsj0vs0gQ5umqMyFkBUmOwod0X2hPPhQ90yZ7Yg/QqAqEIlCJAioApBlolDw2BUkpAV8dAUwloKj0PYR1ZmxaATspDEQKERZHUPEDqB0j9eUgULKR+PCT+huLmrIyHhLznB+E1UhKLNqpAUwpQgEXPhhgKUIAlhorUBlXAMQXaJMD67+iZZldfp9II11oeOHIGf/y9V7hK89v356FX1w6OqUZ7iaYABViuS1muV6Fn9mKjAfKYcS71RviR6rAutLOaCozKM92UJQWDIynXIZT1vd/+j6hLMCl/rcXaDyfPQSR5anGhrarOwH0l/xhHSsBgX9IsxJFKuvWNAiwXhG2jQ0bmLsc5kidV37rJwtFNHg5yo2dDmxiQgm9jxnhcAQqwPC6xSxM0rs9HbqbclTgD/qzUJXuODNJrDNFQJFLKECUFIVKKgCodiZ6qf49AKt4HIqX0PAcVy0DDMFAxPDQMoGFZqIV/M9CA3LIHdO2lR6++QHwsTdVz5BzQPs4pQAGWc3rR3rYVoACLngyqgPcUaJMAyxn5svOKcOujbwlXXa758Q0EBXrv+nNn/GyrfSnAcn1n19dm4s6iLUYDfeWRWJdwlesGAVyRtxrHNWVGG29FDsENwV3csumJwaRwNimg3dDG+yfhh1jna381jOd4XqhVk6uvMdpsXMieAixP7GTrs/lN1Qm8VLbPwnFya6cenEVUFgHK/yXPBgEXnmwUYHlSXdds71MVYnrBHxaDP4kejmsCOzptkJRYUxPwROpKCVFShmgpTRVvTN8jr5H3OBKm1MKNRD/JUQFFXS7kfDnkfBkUfAUUfCnkXAX0jAb/BE7FAb+h4JoI7lL48ejRlUef3kBaKgcvZOK2sGp0+pZUgAKsllS/7cxNAVbb2Uu6Et9XoN0DLLJFW3YdxAPPfoT7b7ka991yte/vWhvykAIs1zeT1H8idaAa2h0h3fByxGDXDQKCPfO6UoP8YrAibrJbNsUerOU5oV5XFacxmv4mZgwmuXmr16/KM3iydJfRpgwsDiRfa4zqogBL7J1sffZsFW6fGdgRH0UPFxYzOnclyM2gDe2xsL54PKyvRxdKAZZH5XXaOIkqGpO3Cue0lcaxlypisDLe7OeoHlBX1deUMouOMkRLmWpKkexwPQlLauFGgnrlITxkQYAsiIcsmBQx5yEPYYRUPhl5LxAIOLERitVfgKkxpbU3uM6Dwa6AadgQfAfq2ECrFUlYoHNnDn17GT5LXAskbmGl6PStUQEKsFrjrvmezxRg+d6eUI/argIUYAHQanW4dPI9SE+Jx/JvX227u+2DK6MAy/VNuSp/Lf5TlxgNfBk9ClcFprluEAC52a9v9hJwZnf7/Zs0C/FS6wcOtyZyY/CamgzcU2xK94tgFUKki7s3JmrqbwwrNLsx7IHQXngmfIDgLQVYbmxaGxn6YPE2izTBQEaKPUkzEVGfuvqT8jSeMbsVNFrij/+SrgXrwRASCrB843CRlDwSBbUk/wKWFmYgrNYfYXUBCKvxw9V8J8hr5YYaUyRSStXyUAoEShEIRWpJkc/BBjglDyVQyvA1uYFPHkzqSTWdusdWlILNuwDJuoWQXDhpczOyZF2xLPQJ5MssI9DIt0VqKoc+vYCePXgo5DRF0DdOc/vyggKs9rXfnlotBVieUpbapQpYK0ABVr0mY2c9hqrqWuz/40t6TryoAAVYromt4vXonPkz9Gag6UDStRY1m1yzDMwt3IStdbnG4U+E9cWjHo4iccbXGwo3YYuZf3eGdMf8iEHOmGiyb+MItABGikPJsxHIyijAEkXh1mtkv6oQVzdKC3sp/FLcFWq6OKCO06Fn9iKQ78+GJkZ0YHOqUYDVMmdKV8ug6jyDigxAmcGgJp+B2Y/jFnGKYSHcomeATyYopQhhDHAqmDG+Lg1wARbp9ZBknwObcQK6U8chvXgSsqqiJtdaxwTjj+A7sDvwKpAIrIZGaln17g306cUhKMgFP1pEXTppW1WAAqy2urPeXRcFWN7Vm87WvhWgAAsAz/MYOPFu6DkOhzZ9075PhJdXTwGWa4LvURVgRsEG4+AkaSD2Js1yzVijUStqLuCB4m3GV5OlQUKUiS+0Al0tBuYstXhO3JY4HR1loaK4RwBE/5ylFumJ88L746HQ3hRgiaJw6zRC0sJG563CebO0MHLmtiRMg4RQA7M2r2QXfq42XSRCbiIkNxJ6qlGA5SllLe1qqxhUEmB1gQAroK7Yct895gUDyAIMaXuyYLP0veD69D2z10k/M07kkks1tQxKy4CqKkBTUgXZxaMIzD+OyNITiFeabqm1Z3yf/ySsC74LNZIwoWtUBNCtmx59+zCIjuLsDafvUwW8pgAFWF6Tuk1PRAFWm95eujgfU4ACLACHjp/D3PtfQ0JcFDYtftfHtqhtu0MBlmv7+0nlEbxZ/p9x8NWBHfBZ9EjXjDUaRaJHemUtQi2pHlzfVsdPxgBFjCj23THSeN195JFY72bh+sb+fFhxCO9UHDK+TFIUyY2E6VHBQjHh/LI68DRowJ1tbHVjG0fmkQWsjJuES/1irdZyWlMu1EAyb/uSZiJRGuSRdVOA5RFZoSphUJnBoOoCUJXBQF0ubtofiYASoJQxUorUmTKk71m+7j6UsqVQYRGDklIGZaUMikp4lJfyYHMvIL72BDpojiFVcxyR+nynxS2SJGNJ2FPIlPeEnx+P3r14jB4qxyXpDJr6/97pSegAqoCIClCAJaKY7dgUBVjtePPp0r2uQLsHWEdPXsDTr3+Ni9kFmHrF5Xjj2Tu9vgnteUIKsFzb/ZuKNmNzbbZx8P8iL8MtwV1dM2Zj1CMlO7Cs+pzxnZuCu+CNyCGi2XfV0OCc35BD7oOvb69HXoabRVw3MVvJaTAwe6kFwHslYjCeT+tPAZarG9eKxxXqajE8dzlqzICuPWA8JW8tDmpM9enuC+mJ5yIGekQFCrDElTV/F4vsTQxIiqCzrUauQYV/LSoC6sAH6jEuOh6KUFZI21OEAgRakfQ+eaj3CHhWNoP8fAKrgNJSCNCqopKBP6dEmvY4UtXHkaY9hmTtKSh4lbNLFvpXM6HIknfDacVg7Am5Gl1JMfa+QJdLDJFWDQ92FGC5JC8d5GEFKMDysMDtxDwFWO1ko+kyfUKBNgmwZt013664HMehoLgMFZWGh2GpRIIlX72Erp1S7I6lHcRTgAIs17TskfUrKsxu4duUOA3dZeGuGbMxaqeqANeapSiGsDKcTJkrmn1XDB1QF2Fq/nqLoSdTrkcIK3fFXLNjXivbjy+qTDc8xkr8kd/nFgqwRFfa9w3eX/wPVtZkGB0lddF2Jc0AKdDeVFtacw6PFu8wvk2i+I6mXOeRxVKAJZ6sF9cxyNvm2PV3JHIqJB0I68Rjd3wW7uf+snBkXfwU9FVEieeck5aKS1is+wO4kMGCAY9YXaYQVZWmOYYUzXHE6LKFn2fONhUTgFxZZ+QouqAsrBsqo7oCETFCLauEeKB7dw5ymaVVCrCcVZn296YCFGB5U+22OxcFWG13b+nKfE+BNgmweoy6xSmlw0KD8PITt2LccMNtY7R5TwEKsJzX+ry2CiNyl1s8UJ9NvcF5Q3ZGXJq9DHn6GmOv72LGYEJAywHeJ0t24tfqs0Z/7EXBuCNIKadC76zFFia+TxuNWyK70hRCd4RtZWP3qAswI99Ua464/0LEpbgnxFS43daSVLxOuM1TyWmNb38ePRLTAjuIrgAFWO5LyumBs4tYlB5tuq4VE8BBl1qHktRKnEkoxLGwAmRolcjQVVk5MDuwE96PHua+Y40sSPdsAvIvglWrAa3hg9GoAfKh1YDRqMCpNVArVeBUash4Dfz4WhDoRD670irCOqE6vid0CZ3Ap3eGrEM6gkktLqnj1ijAclwr2tP7ClCA5X3N2+KMFGC1xV2la/JVBdokwPrs+xV29WYYBgEBfuiQHI/B/bvBTyF+FIddJ2iHJmtiRATL4SeXoEypgUpjutGLSgYsqj6LJ0p2GqUY4R+PRbETRJfm9fJ/8VmlqWjv5IBULIgZLfo8jhrskvkzqs3SuBbHTsBw/3hHhzvd79nS3fhRedo4rosiDKd6XtemAdYZbSW+rjyKi7pqZGirMNo/Ae9Gif8g7vRmtNCAkbnLcU5rAhSdZCH4J/Eah7x5sXQvvlWeNPa9TBGH3+MnOjTWmU4UYDmjlnVfvZrByR/JjYKW8Eqr0CEnsRSHE/OwMz4DFyPLHJooiJFiZ/JMRLF+DvV3pJPkzGHIlnwGNs8UCejIOGf7aKJSwKR1BNK6gOvQDfr07s6asNmfAixRZKRGPKQABVgeEradmaUAq51tOF1uiyrQJgFWiypKJ3dKARqB5ZRcQufHindgSY2pPtXj4f3wWGgf5w3ZGUEe3MkDvHnzVMqePeePa8twRe5qY7cYiT8OJs+2N8yt90mtLVJzy7z9lj4BQ/n4NlvE/cHibVhec8FizZ4GhW5tkgcHf1l1HK+W7beYYVncRAz1i3NoVlvfP1sTp+MSkW7MbHCCAiyHtkPopIZeALNZ2mqc01Yiv6IOgxb3RGRZsIWR0sAavDJ1PfLCKh03Xt/z1cjBuC24m9PjbA1gi3IgXfENpIdMf7AQxTC5fTk4DFxaV3Dp3cCldAbXoTt4/wCxzFvYoQDLI7JSoyIpQAGWSEK2czMUYLXzA0CX71UFKMDyqtx0ssYKUIDl/JkYnrMcF8zSVkj0FYnC8kSbmLcaRzWmyIO3IofghuAunpiqWZu/VJ/BUyW7jH0mBaTgm5gxHvfjoeJt+N0M6PT1j8T6uKvaJMAq49TC7ZONW6I0EFsSr0Yg06iwjcfVb7kJCvS1GJazHHVmEX9TAtLwVcwop5wi6YckDbGhEbBBAIeYjQIsSzXJnpGfjxe15EOJDG0lMrTVyNBVolBfZ+ycUBGKF1dPRmRNoIWB3NAKzL96nVCI3dF2iSwEadIQdJWF4+kI90sRMHU1kK75CdJtq8Do3Y9A5hX+BkiV1hl8WjdwJMIqwnu3ylKA5ehJov1aQgEKsFpC9bY3JwVYbW9P6Yp8VwEKsHx3b9qFZxRgObfN5XoVemabajORGrynUuYiiPUMXFhQdQLzy/YZnRyoiMGq+MnOOS1C78dLdmKxWf2rp8P748HQ3iJYbt7EBW2VcAOdefs5dhxG+yd5fG5vT/B55VH8r/yAzWlvDu6C133gFkpvaXJ38VasrblonM6PkWBX4gzESp2LUFlZfQH3l2wz2gliZDiSMgcKxrFC4Y6stz0CLJJKfEFbiYsCqDJAKsPnKhRz9m/S61wQg2fXTUSgxrJ0wOnYQrx+5QbUKky1y8geKCBBqiwI6bJQpEmD0UEWgg71/06QBsKFWuhNbq1s8++Q/vEzmBrTbavmnXV9hwnRUhdy/XD8vB/qOD9ooICG9YceMqgZP+hZBXr1l+OykQooAuXgZS1bIoECLEe+k2mfllKAAqyWUr5tzUsBVtvaT7oa31agTQAscptgXHSEXaU5jscfW/Zi8/b/UFxagfCwIAwd2BPXTBoOeeNrc+xaox3EUIACLOdU3FCbhduL/jYO6i6PwKaEqc4ZcaJ3qV4lFKPmYLr2fXfiDKTILFNunDDpUtexuatwSltuHLs49goM909wyZazg4jeRPeGNtgvFsvjJjlrxqf78zyPQTm/WRTtb+zwirhJGOQX69PrEMO5HXV5mF240cKUq8BUx3Pok70EFZzaaO+9yMsxJ/gSMVwVbLRVgEVuWSVRVBk6pQCqMjQEWBkgFYkWdLUNzEjBYxvHQsZZQsQDaVlYPflfpPgHoYM0GOlyAqtIZFUw4kWGVLZ8lxzdA9nvX4EtzLG5NC4+FZo5D+KcrB9Wr2NQVmYbm3W+hMOkCTwiI0w/s13VSqxxFGCJpSS14wkFKMDyhKrtzyYFWO1vz+mKW06BVg+wjp7KwJx7XhZA1NfvPA5SnN1W0+n1ePiFT7B11yGrtzumJuDb959CdGRYy+1EO52ZAiznNv61sv34ouq4cdBNwV3whocjY24s3IS/63KNc3qq5lZTStTyOlyS+bPF26dTbwApluyNdlRTiol5ayymWpUwGQPl3kvB8fQ6t6ryMLfAEtokS4OQrTNFgaRKg/F34jT4eUl3T6+5KfsjcpbjvFmKLln3rqQZLrvzv/J/8bnZZQh95VFYlzDFZXuNB7ZmgEWipRpS/S4KqX5KZOqUOK+tgNIsfVMssSYf645btg8B0yhmKmiABr1msWji1wexprdph8m7CPnSzyA5bf27CRnAB4VCN+02FHefhHV/SnD6rO2bEqMiOUyZDKR34DzqryvGKcByRTU6xlsKUIDlLaXb9jwUYLXt/aWr8y0FWj3A+oYtg74AACAASURBVOib3/H1z2swZlh/fPLaQ02q++GC37Dgl7XC+wRY9e7eEZVV1di+7yi0Wh369uiEnz99rkkA5lvb1na8oQDLub2cmr8OB9TFxkEfRw/HjMCOzhlxsveq6gzcV/KPcRQBG3uSZjppxfXue1QFmFGwwWigozQU25Kmu27QhZGzC/7EDlW+ceQY/yQsjB3ngiXfHHJb0Wb8WZttdO7aoI64Lqgzphf8YeHwnSHdMT9ikG8uQgSvGkc4EpNLYq/AMDei/XJ11UJ0m3n7O2EausjDRfDY9yOwivR1yCCpfiR6Sm2IojKk/lV5BFIFMFIhaipNSPMj6X6hwueQTdGo2K6w0jxlAo+kMe7XmXJ2MxllBaQrv4Vsl+lnW2Mb2jHXQDXhZvy9PxC7dkugt8Gm/Px4jBnNY9AADqxttuWsa6L3pwBLdEmpQREVoABLRDHbsSkKsHxz87Nyi7D6z53Ye/AEMrIKUFVdA38/hRC0khAbicsH9cLoof2Qkmj5R+nRMx9BUUmFxaIUchkiwkPQvXMqpowbiitGDrS5aFtjG3ecOHoQ3nvpPuPL8177Cmv/2t2siJHhIdi24mNjn6zcQkyaO0/4+ukHrseNM69odvyzbyzAqj93YuEnz6J/r86+uWEOetXqAdYtj7yJ/YdO4aXHbsa1U0fbXDZJMZx43ZPQ6vSYM20Mnn/kRiOoOn0+Gzc//AaU1bX45H8PY8zl/RyUjnYTQwEKsJxTMfHiDxYD9iTPRLIkyDkjTvYmN3f1yVxk8bC5On4yBii8E4H0ddVxvGx2G9yMwHR8HD3CyVW4132XqgCzzCAasbYpcRq6y8SBEO55595oUrB8QPZSCyPr4qegryIKT5fuxkLlaYv31idMQR95lHuT+ujoJ0p2YpFZrbWJASn4VoTLAkh0G4lya2hzgzrj7aihoqjgCxFYeboaA6CqB1OkdhwBVJm6aotC+KIsGIAfJLhEHopkaTA6SkOQKg9BuixYSPmLlVjWKeP0wNlFLEqPNqI7DI9LZnOI7ufZVDtGXQsm5wLYnAuGz7kXwOZdBKNuukg8qXOlm3EXDhUk4M9NLJRK68hyEi126UAOY0fx8Pf37Brc3TcKsNxVkI73pAIUYHlS3fZjmwIs39prEpzy6fcr8O2i9SBlMkiLj4lAaEgQqmvqUFRaAY3GUO+SZHEtePcJiwU0QCgCeuQyQ8ZHrUoNAo0qKg3ZCSR45v3590MmtSxJ0DC2V9cOkEptZ4sMGdAd999q+mN8A8BKS45DeKjtMi1hIUH49PWHjX6aAyw/hRwrv38NyQlNP5tRgOVDZ3TUjEeEelZLv5qPHl3SbHr2zueL8cPSDeiQEo8V371mddBIZBaJ0Lpy7GV4+4V7fGh1bd8VCrAc3+P9qiJcXbDeOCCMVeB4ynWOG3Cj52MlO7HE7MH+xqDOeFOkB3B7bt1TvBVrzApqvxoxGLeFiHNNvb25zd+/qnAt/qsrMb40JTANX0U7dyudM/N5q+/bFQfxUcVh43SdZWHCrYOk1XBajMhdAQK5GhqJbiHvy0UsRO6ttdqbp2fWIpSb1Vf6IXYsxvsn2xtm9/0/arNwh1ntOlIU/ljydfBn3U+D9QbAIjXwcvU1uKipr0dFABWpS0UglbYaBHKL3UiKMAFSpGC6UDhdESrUpuogDUGENgCcFuA0gL7+M6cjHliDnqy/gKrzlvCK3HnR5QYO4V3FTbdjC7PB5GeBzToLNvsc2LwMMGVFDkvDJaVDe+39KAjtg+VrWOTm2i6JkJrCY+oUHtFR4vrvsKNOdqQAy0nBaHevKkABllflbrOTUYDlO1tLwNStj76FQ8fPCTDorhum4MpxQ0AimMzbybOZ2LLzIC4b0N0qIqkBQv2z/CNERYQahxEYtmPfMTw2/zPU1qnw5H1zcMu1Ey3sNjW2OYUaANY7L9yLyWMdu626AWD5+8lRp9JgUL+u+O79eU1mk1GA5TtnFH3H3yGkAJKQusYHk7hJoq5Gz3gE5ZVKvDbvdkyfNNzK+3MZuZh263NISYzFH7+85UOra/uuUIDl+B43viXuyoBUfB1jO+rQcauO9dypyse1BX8aO4ewchxJngMZ4/mclSE5vyHLrBbT6vgrMUAR7ZjjLvTSqxjkbQOSr7CMatjHFmD6BVO6D3m03JZ4DdJllv8hujBliw2xVWT87cghmBvcxeiTraLm5AZIUti8LbWj6hJMzDekmZMmA4szqXNFAXUcz6N/zlIU601RN/+LvAy3BHd1W0KxAJYePHJ01UIUVYbGAKeEdD9tFbL01dDy9mGJn1YGhVYKhV4KuU4ChU4GhY78Wyp8Vmglpn/rZAjUSRDDBSJC749QvR+COTkCdXL46WVgtawAqBogFa8F9Gr37/uT+PPoeTuHwGTXo5YYVR2YnHP1UVXnweZmGKKqNPZvQLS14XxwGLRX3w5l34n4awuLf/9jUf8HY4vuEeE8Jl7Bo2sX+3vh9sES0QAFWCKKSU2JrgAFWKJL2i4NUoDlO9s+/90fsGztVqSnxGPBe086dNFbY+/tQajFq/7Gqx/8hG6XpOK3BS9bDLc31pZS7gAskoG258AJITrsxUdvwuxpY2xuBgVYvnNG0XvsbdDrOexY9YnNkLtN2/7FIy9+isAAPwFykRC7xo1Qy4ET70KAvwL7//jKh1bX9l2hAMvxPb61cDM21pnqFL0UfinuCu3huAE3epK/OAzMWWYRibMgZjQmB6S6YdX+UCWnQdesX40dpWBwLvVGj4KzY1+xqLrAIiSdQ9cbeEgDDQ+6ceF+6HJiEc6pK43+zAm6BO9FXW5/IT7ag0S2kQi3htZUZFDjCDwWDDYkXIUecvu3v/ro0q3c+qDiEN6tMBXSHhuQhJ9ixKtzRmyTORqaeaSbOxo5ArAM0UoMtBoOWao65KmqUaCqQ2GdCiV1alSo1VCq9ZAJ0EkKuZa1hk9mIEpOIJVOArneAKaC1Na1pdxZk6fGykJ49Lqbg1+U4/CK3ArI5l8Ek3lGAFUMSQF0IqqqubVwUfHQDRgB3cS52Hc0EJu3Mqirs4Z0CjmPkSOAoYP1YC0zFTwllah2KcASVU5qTGQFKMASWdB2ao4CLN/Y+GOnMzD77peFbCuSdUWyr1xp9iBUQ/BLcFAA9qz93GIKe2Nt+eMOwCLBOeTjpodeR4C/H1b/+LqQLtm4UYDlyknw0JgR0x9CaXkVfv/mFXTtlGI1y91PvYcd+44KG0sisGw1ckNhn7G3g2UZHP37ew95Ss3aUoACLMfPRc+sX1FOwhHqW0OdIsctuNfzzbID+KTqqNGIWPWBmvNqqyoXcws2Gbv0kUdifcJV7i2kmdEXVrIo2G2KKpOH8eh+K4eAOB7xEf5YVH4WczP+srDwb/IsxEsCPeZTg+Fr8v8QIngq6lPctiZNRyTr59a81xZswE5VgdHGbcHd8GqkdehyFafByNwVIAW5G1pXWRg216cauuWEjwyekr8WB9WmFNE3I4fgRrNINHfdtFVrzJnbLHW1DIoPMVBX8OA1jCF1TsuA0QMMx0Kj4qFV8dBreGg0vPF9ic7zUZLuauON8eR7uMcdHGTBzcMrUqtKumWFAVSRqCqt6Weuq35yIRHgE9PAJaQLn/n4NHCJHcDL5MjKZrBqLYviYtt1rvr14XDFeB4BPl7nqjltKMBy9eTQcd5QgAIsb6jc9ufwFsBaU3kRB2pMlzm1dWWvCkvDgADHsy5efv9HLF29pdnnfkc0swehTp3Lwow7XkR8bCT+WvKehUl7Y23N7w7AmjBqEN6ffx9e+3AhFq3cjGGDeuGrtx+3moYCLEd23kt97nziXez69xjuuWkqHrztGotZSe7r3PtfE1779fMX0Ke77dvaKqtqMHTq/UJ01oE/v/aS53QaogAFWI6dg1xdDQblLDN2JkWMz6fd6NhgkXqd01ZhZO5yC2vHU65HGGsd1SjSlPiw8jDeKT9oNHdzcBe8HjlELPMWdgr3sDi/wvphn5R66nIdhx4jFSCFk1MOL0S2WUrjHcHd8XKkZ2/mW1+TiTuLt1j4OyuoIz6Msk6JdlScC7pKDM9ZYdF9S+J0dJaZcv3N3/yrLgc3F1rCuyfC++HR0D6OTumz/Uo5FXpnLbbw70DytYhrVBDc3QU0vu3R3oUEJJ215DCDkiNA5TkKosz1Z/14SGQAKSNGfgSRD+FrGQ9S40pCXhO+BqT+DBKGc5Ao7MCrM4eh+PyFZgusN3cGeP9AcAkdwCWkgSeAKoGAqnTwAdYXbVRXM1j/J4tjx22nRaYk8ZhyJYe4WMejxdw9n54aTwGWp5SldsVQgAIsMVSkNrwFsO7O/Adfl5xoN4J/lToSd0V1d3i9V930DC5k5ePjVx/C2OGul7qwB6F+WLIB73yxGONHDMSHrzxg4Z+9sbYW4w7AIsXkP3ntIaEm17Rbn0deQYnNskkUYDl8jDzfkeS4klxXEjL35VuPYUBvw7WQ5HbB+5/9EPmFpbisf3d8+/5TTTrTEG4YFx2Bzcve97zTdAajAhRgOXYY/qnLw/WFG42d+ymisDZ+imODRew1OW8NDmtKjRbFjlJp7OpNhX9hc12O8eX3o4dhdmAnEVdkMEVSBknqYHOt65Usek6X4J2sw3iqeJexK4GJ+1OuRQTruTSq24v+xobaLCv3lsVNxFC/OJf0eKl0H75Rmn4JGqyIxfL4Sc3aeqD4H6yoybDoQwq6k3S41tx+qz6Ph0u2G5dAbpckt0yK3RpHFBL7jSEwCbIsO84i/yAP5enWly8mkfMGoETgUf1nASZJ618X/m2ATQQosTIWwph62CRAKGFcPYgysyOAKT/PAB3p3r8g/8HxGphcUkdwiWlAfAfokzuCj0sBF2H/ZlZS22rvfhZ/bWZRfwGSxTELC+VxxXgOPbt7Zp1in2lH7FGA5YhKtE9LKUABVksp37bmpQDLM/vpLMDqO+52of71uoVvgtzo52prDkJt33tEKE+k1+uFAJnunS0vkWsYSwJnZPU3GDb2Y/7jt1ikNzYALFK3K6JRsfmGsXOmjcGkMaYsiYYi7iOH9MHnbzwqdNv973Hc8cQ7CAkKEFIJoyNNv59TgOXqafDAOFLAnYTwnc80XFGeFB8tXJeZW2BIBSFga9nX85s9xA2F2Ab26YIfP3rGA15Sk00pQAGWY2fjB+UpPFe6x9j52qCO+MCN6BvHZrXu9X3VSTxfttf4BimmToqqe6r1yVqMEs5UGLm5CCFXfVCXMTj0MQu9jdozjW3G9WKQNkuHAUWLLdLpHg7tjac8VNScpO91M6sDZu4TuZ1tZ9IMp5eu4nXol70EVaQ4Un37PHokpgV2aNZWBafBqJzlKDbbE0+ndTq9OBcG3FO0FWtqLxpHPhTSC/MiBjhs6eiXEmgqAP8oHopIwD8SCIgFFOGAf4xlwe0h2b8JRdEb2lUBaZgQmArlcQkURwORfCbW4Xmd6Vgn00Ij1UEr1YOXcQJAkioYKKQs/OUsQhRyyOWMIZJJzkMiZwWIZIhqIlCJACXGENlUD6NMsMlzYMmZNbraV7ZhEWSrvrM5nItNMsCp5E6GaKr4VJDXXGnFJSyWr2Js3i5IbtoeMZzHsCF6NHHrtitT+sQYCrB8YhuoE00oQAEWPRpiKEABlhgqWttwBmA1lAQiVhrfHthg+YW3v8Py9dusJmqcqdUAocgNhXKZTOivVmuQkZ2PopIKRIQF441n7xLS9Rq3hrHNKbLkq5fQs4vpd+4GgNXcmCfumY1b55j+0NwAsEZc1gdfvGkAWKQ1rLEhMqvhdQqwPHNGXbaak1+Me+e9L4QMmjdCHUlOaP9ehqispto9894Hoam3zZmMx++51mU/6EDnFaAAyzHNni/dg++Vp4ydnwrrh4fDvJ+6VapXoW/2EnAwRQfsTpyBFFmwYwtxohe5EW1wzm/GEaTA+NmUG8CSPD6RGknROvIZg7oiy+irHndyKD/LI2+rdQQMARIHZ57BC/wOoxcBjBSHkmcjkDzpi9x+Vp7GvNLdTVp9JKwPngzr59Ssi5Vn8XjpTuOYMFaBw8mzIXXgVsm1NRdxt1nhd2LkmfD+eCC0t1M++EpnPc+hc9YvUPF6o0ur4ydjgMJ+NA0ZkL1ZguyNzZ9JRThvhFsHAvOx0O84SoKUiKsMxaALqbjsQgehGLq9djA5G2fiiqGR6aCWGj40kvp/y3QCoCKv+csliPcLQLy/H5KCA0FAZ5osBB1loQhi7M9jz4+29L7slw8g27Heakma25+FbqA4t7zq9cDWbQy275SAs3GBYO9eHCaO5xEU1HairswFpQCrLX3HtL21UIDV9va0JVbkLYBFa2A1v7v9rrgTGo0Wf/zyFlISrf8g+M2v67B1l+lCHZKxRVLvmgJYtmbr3b0jvv9gns2L4Uh/b6cQNgZYyupaTL3lWQG0vfPCvZg81hC1RQFWS/xksDMnicTauvsQTp8z3NJ2SXoSRg3tC4W8+QdKcoPhLY+8AZVai1eevFW4DpM27ylAAZZjWs8t2IitKkOUIWkLokdjcmDLnNVbCv/CJrO0vsdC++DxcOcAiiOrXld7EXcVmW7IG+IXh9/iJjoy1OE+J75hUXHWEl6lT+UQd7nhKbPsKIvTi1iYsQ3hdVJ/54Pxf2NHkimd7rnwgbgvtKfDczvacUb+BuxRmwqth7Nyi2L+xM62xGvQURbiqEk0TgV9ILQXngl3POLozqItWF+baTGfsz447KyHO+5WFWJmwR/GWYi+x1Kud2hWZSaDo597Ns3vXHQxtnc5j50dz6MywFREP4r1Q7osBOmKYPQIikSKJBjRen90koUikBEfpDokSGvqpNVA8dV8SI7vt/CaV/hDfd+r4DqL8wcCUqR9xWoGpaXWKcrBwTxmXcMhLbVtgqsGYSnAak3fGO3PVwqw2t+ee2LF3gJYnvC9LdmceP1TyM4rwpdvPY7hg62joxqvdc69r+DoyQtNAizzSK6SskpMvmEeauvUWPLlS+jRxTJ1sMF2SwMs4geBdKSUUlhoENb8+IYQMfb8W99ixR/bsfCTZ+0G9/j6mWB4km9HG1WghRSgAMsx4QfnLEOOrsbYeVPCVHSXW1+R6pg193qtqcnAPcX/GI2QQtek4LXY7dWyf/Fl1TGj2XtCeuKFiIGiTXNxHYO8bZbwIWYgh06zLEMkagsYnPiOhabSOsrml8v2Y2W/w4JPpAYW0UFOqr6L1PL1NRiYbSreT8z+kXAVbivcjHx9rXEWZ1I5j6hLMCl/rYWH+5JmIlFqXWi6qWWU69UYlvs7SEphQ+srJ3XZrgQjYoScSDI2a+bl8v34uvK4sc/MoI74yIH0XBK9d+hDFupy8SICG5woCKnCjkvO4Wi3HARFAR2kIeigCEWaNAgdpKECuCJRf6QFKCQIC5KjVq1HRbX7N+Z5Q/MWn6OmCoqPn4Yk66yFK3xIOFQPvy0UX3e3qTUMNm5isP+AjYshGGDQQA7jx3Gw8zc2d93wifEUYPnENlAnmlCAAix6NMRQgAIsMVR038a8/32FtZt24+ZZE/DU/dfZNegMwCLGflz2J97+bJGQ/rfoixfBsta/A/oCwCK+NqQlThw9CO+9dB8abmikAMvusaAdqALNK0ABlv0Toub1SM9caNHxQuqNUIgISux7YepBUq16ZS1CLa8zvrgibhIG+Ylbu2dmwQbsVpkij76MHoWrAt1/sCROFx9gcXap5YNlcCqPXveZ0sjMNdHVMMhYIkXxaWvev6vjBXw2ZpuQvvVaxGDcGtLNGTmb7ftp5RG8Uf6fsQ+BlgRebq3LxdzCTRZj34u8HHOCL7E79+MlO7G42vTgPsY/CQtjx9kd17jDipoLeKDYso7A/IhBuDPE8dtinJ7UAwNG5KzAeV2l0bKj5+zUQhZlxyzPUMwgDlIFoCoDVKUM1GWAXuMY4NIotKjoVQ7/3lokpcuQLg2BvwPpfhRgOXcomNJCKD58EmyJZckBUtdKTeBVuOPXdTc185mzLFauYUBuGmzcIiIMUVeJCe3nb4cUYDl3Rmlv7ypAAZZ39W6rs1GA5Rs72xB5FBwUgA2/vC1EIDXXnAVYpM7WNbe/iPMXc/H8IzfiuqvHWpn3FYBVUVktpBKWllcJtzL+d/QMfli6gUZg+cZRpV60ZgUowLK/e6c1FRiTt9LYMVEaiH1Js+wP9GCPJ0p2YpEZBLkhqDPeihoq6oydM39GjRkkI2sma3e3KbOBY59LwHOmh0t5KI8+D+kha+b/ubgwfxxZose5v62L2FyMLMUbk/+Efxgj6t6Myl2Os9oq45Kfj7gU94b0EL5ufDNhKCvH9qRrEMn6NSkRKQjfL2sJVDCBuh9jx2Gcv2tFqRunk5IbGclNkfaKwbu7h2KNz9IpMSTndwtzp1NvsFsnquhfFueWWcKrqN48Os+1BqAEfhKQpSonUItFXSkPdTlQVcqBqZUgoisQ3Z9H2CUcXGHSFGA5fhqY7HPw+/hpMNUmYElG6zt0g/rBNwB/936+VNcwWLeewfGT1lFXLAsMv1yPUSN4SMQL0nR88S3YkwKsFhSfTm1XAQqw7EpEOzigAAVYDojkhS4ksWzWXfNx8mwmSAH2T157GAH+Td8S7izAIkvYd/AUbn30TRBItvanNxAVEWqxMl8BWMSpP7fux2PzPxN8nDBqEH5ZvokCLC+cQzpFG1eAAiz7G/xHbSbuKNpi7DjcLx6L4ybYH+jBHnvVhbgm31Q3KISV4WTKXNFmPKOtxOjcFUZ7kawCR1LshwLbc0BdARz+WAICFRoauVGt90N64da45lp8hD9IdtzhTSqc+43UxbKMrlAqVHh74ibc07szZgV1tOeK3fdPacsxNneVRT+SokhSNkkj6YWXZy+H2gxGzQxKx0dRI5q0/Z3yJF4oNd0i6S4MLdLXYUTO71CagUYy+U3BXfBG5BC7a2zpDo31GOYXhyV26qyR6KpD70vAaU37T4q0931ML9zQ5+1GAZZjirMn/4PiixfBaNUWA3S9h0Bzx/OAzL3N++8wiw1/MlCprKOu4mJ5zJrBIzrKRgV3x9xv1b0owGrV29fmnacAq81vsVcWSAGWV2R2aBJyO9+ce15BpbIG6SnxeOC26Rg1tJ9VXWytTo/r7n1FgF1NFXFv6jbDx+Z/jj+37sOU8UPw1nN3W/jlSwCLOPbIi59i07Z/hfWrNVoKsBw6RbQTVaAZBSjAsn88Pqk8gjfN0shuDu6C11sYDpC/cAzMWYYCszpMX0WPwhSRUvyWVJ/FYyWmW/LGBiTjpxjrMF376pl66LXAkY8lqCuyfMDserMeEd3tp/M0AKz8sjqQKK6TP0igVVra0jMcVo88hLcn9nK7FtT/yv7F52Y1wC73i8PSRnDlq8pjeKX8XwsZlsVNxFC/OJvSXJ7zOy7qlMb3xLjNsvFeNRjvIY/A9zFjnKqt5cx+itH3usKN2FZnuhzhpfBLcVeoIcLNViPF/I98KkFNnmnfGQmP3g/oEZgghkfO26AAy75mkn2bIf/hbTC8JUDSDZkAzY2PQyDTTrbSUgaZOQyysoCcHAZFxbZtTBjP4fIh7RNcNUhKAZaTh4t296oCFGB5Ve42OxkFWL61tZk5hXj0pU9BbhkkTSaVIC05HiHBAdDp9ALcyskrBkkJJM1ZgFVQXIYpNz6NOpUG330wD4P7mcqHNACsXl07QCq1ffPzkAHdcf+t042iNdSrSkuOQ3io7Zvdw0KC8OnrDxvHEFA3ae48NL6FsPFOkOLzJJWwsspQS5nWwPKts0q9aYUKUIBlf9MeKdmBZdXnjB1fjhiEO3ygztBb5f/h48ojRr/G+yfhBydqKdXmM7iwmkWP2/VoXOrnmdLd+El52mj78bC+eCysr32xmuhBrqo49SOL8kapPUnjOKSMd+zh0hxgEXvaauDEdxLU5Fo/uKp7KTFyjj9Y2/9v2V0HAYSX5iyzKNRuq8aVnucwPm81TmsrjDaTpUH4J3G6VY20nap8XFvwp7GfBAwOJ89GuKTplEO7jtZ3+EF5CvPL9kHbCBAEMzIsiBmN4f4tRHeaWUAdp0PnrF/AwQQvtydOR7rMMhTc3MTFtSzytlumh3W4ikP8MMfOkKN6OtOPAqzm1ZKt/xmyNT9addJOuw3aiY5HdebmMriYZQBWmVkMauuah17kZsHp0ziEh9mH487sd2vsSwFWa9y19uMzBVjtZ689uVIKsDyprmu2ye/Sf20/gE3//IvDJ86jrKJKAE4kEik0JBBJ8dHo070TBvTujCEDe1hEaDkSRbXgl7X4cMFv6JASjxXfvgqZzPBLf8PY5rxuKKze0KcBYDU3JjI8BNtWfGzs4ijAIgPWbNyFp1//WhhLAZZr54mOogoYFaAAy/5hmJq/DgfUxcaOC2PGYUyAazWL7M/meI8srRJDck31g1gwOJZyHUgtJnut5DCDs0sMaXhxQzmkT7MEAJPy1uCIplS0NWdtZJGz2RI8hHfj0PVmzuHgi8YAizjH6YDzv7EoPmhd8yYomUe3W5qvq9WUTrtUBZhVsMH4thQMTqRcj0BWZjXE1q2Cj4T1wZNh/Sz63l28FWtrLhpfI9FyJGpOrHZMXYqbizZbROUR2+Qx/8GQXngyoj/IGfGV9kdtFu4o+tvoDgF/e5JmNulexVkGJ76xLF4U1oVD99taDl4RZynAavpESVcsgHzjUqsOmlvmQTe46YsLyA2C2dkMMjN5ZGazIPBKa7qzotkjrFDwmDiex4D+LXsufOX7jPhBAZYv7Qb1pbECFGDRMyGGAhRgiaEitUEVcEwBhid4kjaqQAspQAGWfeF7Zi1COWeq27IrcQZSZbbDS+1bE7fHlXlrcMgMNNm7hY8E6GSsZVGw0xL4dL9dj7DOhh9FJIqnU+ZC6MwiY06lXI9gB8CYrdWVHGFw5hdL8OAfY6h7JbHmm2qSvAAAIABJREFUQU0KZAtgNXQ+tF0F5boASHjLdcmCDRAryEne+GTpLvyqPGP0xR5smleyCz9Xm/qT6KotiVejY300UblehT7ZS6A303Rp3ARc7hcv6oEo16txT/FW7FBZ3vBGJrlMEYuvY0YjUoSILzGcfqJ0JxYpTbcxktsTyS2Ktpq2Bjj4rgS6WrPC/yGGuldSfzG8cd0GBVjW2rGVpZAveA3s+WMWb/JyP2jufgn67gMtXq+oYJCTB2RkMMjKZlDYKM3Ykd2RyYBLOnKYMplHUBD9tcpcMwqwHDlBtE9LKUABVksp37bmpQCrbe0nXY1vK9DqAVZZhRIRYb7xMO/bW+2b3lGA1fy+VHNadMn6xdiJRLBkp93sM5v5fdVJPF9mKgreTx6FtQlTmoQAp36SQHnROgpHGsij/xN6SAOA/9TFuCp/ndFGijQIu5uJjGlOjJo8Q80i84LrEn8efR/RQxHmnIzNASxiad6BAxizqg+C1ZYpeaRG0iWzOUT1ceyhlgC87lm/otasMPr3MWNxRUBykw5XchoMzfkdFWags78iGmvirxTGfFRxGG9XHDSOT5MGY2fSDOcEcLA3WeVHlYfxXvlBNI5BiZb4C3Wx+imiHbTmuW6NwfCSuAkY1gTQO76AReU5MzjJ8Oh1vx7BTW+J5xxvZJkCLEtB2DOHoVjwqtVNg3xQKFQPvQkuqZMAqEgaYFYWg8xsoKrK+cjAkBAeKclAajKPlBQepFC7C6W0vHZOWnIiCrBaUn06tz0FKMCypxB93xEFKMByRCXahyogjgKtHmD1GXs7RlzWG9MmDsPIIX2FIm20tR4FKMBqfq8OqIswNX+9sdMlslBsTTQV/WvpnSbghIAA8zpCuxNnIKVRhBipd3XiexaayqYfFCN6cOh6E4fGUGxqYAd8ET3S6aWSAuuHPmahbfRw2vMePUI6OAaTzCe1B7BIKt+NZ7fiqfXj0aE00srfuMs5pE+1n1a0vjYTd5rdOklSMg8nz4GMsU5TNJ/kt+rzeLhku8W8pG7WtUGd0D9nKYr1dcb3vFFHbbeqQEjRq+A0Fj6RdMjnIgbirpCmi6U7vdlODmicdunHSHAmZS4kNjQm0YKkVpt5S5nAI2mMofBnSzcKsEw7IFu3ELK1P1ltiSq6I/YMeRWnSmORncOApAg60wiYio0xgKrUFB4pSUBoqPM/Q5yZsy31pQCrLe1m21sLBVhtb09bYkUUYLWE6nTO9qpAqwdYPUbdYty7sNAgXDn2Mlw9cRi6d05rr3vaqtZNAVbz20WKt5Mi7g1tQkAyvnPzNj6xD8gthX9hU12O0exDob0xL7y/8evSo6TelQSc1v7MnWZx+F/qP/it5ryxs72b4WxZJcFLRz+XoLpRgfVOMzjEDLIPkWzZtAewyBhSt+pAdQnu+3sEhp5PtzIT2olD17k8JAFNP/zeWfQ31tdmGcfeGNwFbzp46+TMgg0g4KihhbAyvBJxGR5pBLZOpcxFsI16WvZ3yLke+boa3FG0BYc0JVYDx/sn49PoEQjygh+NJ/+g4hDerThkfLmpFM3aAgaHPrD8o0hIRw4973LtDDmnnmO9KcACUFMFxTevQXLKFGXYoN5B/7FYHPoU9Iz92nwNY+QyICmJQ0oyAVYMkpM4yB0f7tjGtaNeFGC1o81uhUulAKsVbpoPukwBlg9uCnWpzSrQ6gEWuVVg5YYd2PD3XlRV1xo3qlOHRFw9YRiuumIooiKavlWqze5sK1kYBVjNb9RbZQfwcdVRY6f7QnrguYhLfWp319dk4s7iLUafEqWB2Jc0S/j64noGef9YR0UGpfDocj2Ho19YRmURlvH29euxNyDPaG9F/CQMUsQ6tebTP7MoPWoZNRM3hEP61a6DB0cA1va6fMwpNNz0d/XBPrhu70CwvGW0hyKMR7db9QiIs16SktOiq1nKKOmxKmEyBspjHFr/eW0VRuQub7bvdUGd8G7UMIfsidXp5bL9+LrquJW5VGkwvo0dg26ycLGmcsjOlXlrLaDax1EjMCPIEjgS4HroQwlUJab9kwYY6l7JfShrvb0DLPb8ccgXvApS98q8aSHHytCHsDfAkEbbXCM1q1JTYIiuSuaREE+jq+xp5sz7FGA5oxbt620FKMDytuJtcz4KsNrmvtJV+aYCrR5gNciq0WixZddBrPhjB3buPwqOM/wCyrIMLr+0F6ZPGobRQ/tBTv60SpvPKEABVvNbcVfRFqyrzTR2ejdyKK4L7uwz+0ccsVWz6bewSQheGo+q89Zpb7GDDbcOMhJAmWWIlIIZ5LkQVYKnZ64UXiLo4GzKDfBnDVfTOtJy/maR9aflvMGpPEjqoJ0svGbNOwKwiIGJeWtwtL6wfc+ceDzz5wTINZb+szIenedyiOhm+aC8SHkGT5bsQnhtIGKUQehcHYVnmcugKuWhKmOgLgdIIfy0iTyiyS1nNjKh3qk4iA8rDje5lnUJU9BXHuWIlKL22VibhfuKt6HOrLYXmUAOFu9HDcP0RgBJ1MnNjJXpVeiVvdjC/NHkOYhoVFz+/O8sCvc1umzgTj3COvkW3GjPAEu2aRlkK78FOMt0znI2Bt9GvIECmXUUJEkHjImuTwUUgBUQRtMBPfXtJtilAMuj8lLjbipAAZabAtLhFj/nqBxUAaqA5xVoMwDLXKqSskqs3bRbiMw6m2FKbQoJCsDEMYMxfeIw9O7e0fPq0hnsKkABVvMSjctbhZOacmOn5XGTMNjPuWgku5sgQoenSnfhl/pb85LKw/DqhisRVGF9PVvHmRxiL7WMgsreyCB7s2WU1uJBB/D7gIPoJg/HXwnTHPaw7ASLUz9aQgdFOI++D3HNpu05MoGjAKtxDav4yhB8vuka6IqtIRyBeX6RjAFQlQMXi2oRXhHkiDsgUWwkoiwo0RKoqHk9RuauQLau2spOL3kkNiRc5ZB9T3S6oK3CrUWbcU5baWWeRIa9HjUEcni2juHS6rN4tGSncf4Bimisri923/Bi2XEWp36yPEcJI/VIm+xb8Ir42y4BVl0N8MX/EHB2v9U5OqUYhJ/DXoCKNX0fkfpV3bpwSCHpgMk8FHLf20dPfL/5ik0KsHxlJ6gfthSgAIueCzEUoBFYYqhIbVAFHFOgTQIs86WfPJspRGWt37wH5ZVK41sdUuIxbcLlQophXHSEY2rRXqIrQAFW85KmX1wINUzRBYdT5iCKtbzlTvRNccHgPnUhpuf/gUsz0vDg5pHw11pGOkqDeHS/hUNQsu0HxyOfSVCdZRlO9MyMVbg0PQzvRl3ukEekXhG5cdC81hZJSez9oB4Bse4/sDoKsIizI3KW47yuyuj3TfJuuGnjEJSfbL4Qu0MLbdQpZgCH1Mk8ZEGmNZqnMpp3fy9qGOYEdXJlGtHGqHidEGW2vOaClc0esnB8EzcGKRLP5eg1jmp8OmIAHgzpZfSFXDRw8H0WepXpPJJz2/sB3yja3li09gSw8gsYVB09h45rXkSItshCCg4sNgTfjr+Drhdel8mAXj04DOzPIynJ/e9/0b4B2qEhCrDa4aa3oiVTgNWKNsuHXaUAy4c3h7rW5hRo8wCrYce0Oj227zmMlX/uwLbdh0G+Jo1hGFw2oLtQ+H3c8AHwU9BKrd485RRgNa12rq4Gg3KWGTuQotuk+Lavtvm/ncIV+3tauRecwqPrzZwFYGncSVXO4NB7lvApP6QS2vvyMSfcPnDR1TI4/DELdbklBOt2K4fwrq7XvTL30xmAZetGwP+Sr4V6cyByGkWbibGfEjmP5PE8EkaY1npf0T9YVZthcX4OJc+GH+N4OqYYvjVlY6HyNJ4u3W19XlgZPooajgkBKR6Zvmvmz1CapTH+lTjNWIOLRF5lrGOgLjWdI4mCR99HOZBIPl9sbRVgkZsCs7IZZGfxyMphkJPDYmDFSkyt+hxSWN4IUc2G4qew+big6IvUZB79+/Po2Z0TIBZtLa8ABVgtvwfUg6YVoACLng4xFKAASwwVqQ2qgGMKtBuAZS5HRWU11m0mKYY7ceLMReNbgQF+2Lf+S8eUo71EUYACrKZlbBxF008RhbXxU0TRXUwjejWDs4sZkPS9xs2ZwulF/7I4t8zShvzSOgycaf8p9OiXEigzLOFV6kQeiaPFi5pxBmARHQbnLEOOrsYoyZ3B3TE/chAIJDmzmAWnaX4X1BEqxEbLhegx/0gGikhS0w8o2AeUHLIdyeUXyaPDVTzCu3Eo1tfhiZKd6CgLRYosGP0U0egjjxRz6922RWqF3Vm0xWa6oycuLNilKhBuimxoCZJA7E+eJRRqv7CSQcVZa1273sghoqc4ENRtwWwYaCsAq7yCQXYOg6wsIDOLQWGR6fvZn1NikvIbDK1dbaXARVl3/J74MtIHhGNgfyAywjdBoyf2vrXYpACrtexU+/STAqz2ue9ir5oCLLEVpfaoAk0r0C4Blrkc5zJyhaisNRt3gdTOOr71B3pevKgABVhNi/191Uk8X7bX2OGawHR8Ej3Ci7vj2FQX17LI22794P/lqB34ZEJ/hLKORTWW6lX4aUExBmd0sJjYXhQVgV4Efpm3qN6kSLp48IrYdhZg/aA8hedK9xjd8mMk+C95tqBHXQGDE6RWFw/4R/FQRajxlfQIcsLKURBahaJQJQ4mX4soiXUdMWJQmcng/AoWtfk2qrgDCOvCIX0qD78o332YJyl6qjJAH6fGfcX/YEtdrtWBI/WpvokZg5gmdHDshJp6zS/bhwVVJ4wv3CbvgdsODEb+DttA0BkA66wvYvVvrQCrpJTFmbNAZjaQeZFBbZ3tszy4dj0mK79GIGddN+1I4gzor70PXTr7LmAUa59bsx0KsFrz7rV93ynAavt77I0VUoDlDZXpHFQBgwLtHmA1HAS9nsOuf49h+ODe9Gx4UQEKsJoW+4Wyvfiu6qSxw5NhffFIWF8v7o5jU+1/VQJttenhszygFm9P2oRzMcV4JWIwbg/p5pChjbXZeDBrB95bcg0iagONY6QBPPo9bjsFMX8ni4zVlvAhMJFHr3v1IPWvxGzOAiwNr8eA7KUo49RGNx4J64Mnw/pZufVG+QF8WnnU+Poo/0T8EjvervuFe1lkbmBAUihttfhhHFLG85D4+Q7IIpF6RQeAsmOmffOP5ZEXXom/gi8gI7IMORHlyA81AIsIVoHvY8ZioF+MXT3sdRiesxwX6muTjTrdGffuHQq2xnZKZdzlHDpM5uAjGZdNLq21AazqagZ/bWbw3+Hm68FF6nIxu/JtpGuOWK1dJ/FD9Y3PQj54iL0tp+/7gAIUYPnAJlAXmlSAAix6OMRQgAIsMVSkNqgCjilAAZZjOtFeHlKAAqymhZ1buAlbzaJSvogeiamBltFJHtoWh81WnGFx4lvTgygn43D33MWo8K8VbJCUtfUO3nr3Vvl/+LjyCHrmJOClNZMtfCARRd1vs4yyaDw3GUAKmfd5iIM8VHxg4yzAIv58VnkUr5cfMK4lhJXj36RZCGxE1wZmL0W+3qAZaR9HD8eMQMduStXXMcjcyKBgl20gQDRJncTj/+ydB3QUVRfH/zOzu+k9pEIIoXcIHUGRDiIqIEVUBESwoR8ICCgKdhSkCBZQkKKgVAER6b33XkJJCCE9pG+Zme+8jdnJJpvsZrPZbHnvHI9k57X7v28j8/Pe+4JaV12UCokYSzrNIOU8o1cc3dhBiwlMxn3/DNwPyED7mv4YUisSCl/zfHtPnYWO8esRlRyIVw90RN0kw0DMt66AWv0Bt6Cq08uYLkWf2wvAUqmBgwcZHDrKgTcSHNkz61f0zDYcDS3UbgLVyxMhBFUvj0y0bxUqQAFWFYpPlzaqAAVYRiWiHUxQgAIsE0SiXagCFlKAAiwLCUmnMU8BCrBK1639/XV6tYF2hD6NJqQQkg2166tZpF6QwIlPSx592y+HhuTG/deOhg/U1mAy1l5I/Bf78x5ou4043A79Lkg3w5HPop4TENK+ACrkJQMXFnIg9bcKG8OKaPIGD68axlYy77k5ACtHUKNF3FrkFikaPt2vFd7wkWw7np+IAQ+36zblwnC4EvECSMpheVpuEnB7A4fMYrXACucI7SygVj/rQRlSUD/pNIukM9Aril4emwz1ZV1FeAQD7iEiPEKkf3PuZYOtZYk38GCbDCTyylC8mkuAiKj/6odVdI/WHG/rAEsQgDPnWOzeyyAnx3CkINHLzU1EtOcl9Iz5Ah45CSUkFD28oB7wGjQde1tTXrqWBRSgAMsCItIpKk0BCrAqTVqnmpgCLKdyNzW2ihWgAKuKHeDsy1OAZfgEKEUeUfdW6j28XfMlELhhK41E/hz/WH8/TV4T8K7XTuzIjdNt822fZnjfL9rotuvfW41sUbpdbOP6kdAk6c8fPYmH3AM4t5AtAUXqDhFQLbryAI05AIsYXRhZVigASYk7XWMwFP/58v2UI1iZfUOnT0VrnaVcYHDv75I3MpIF6r3AI7C5eRFMRh0IaKOrSJRV4ikG2bGlwwpT5ipvHxJpRqCWewgKwFZwwc+kBBupcXX9HwEKdcl0QRIMV6ObZQv+l3fvFelvywDr6jUWu/YAySmGowOjaglo3UpEde9MBO3+HrJjOw1KoWnfA+qB4yB6eldEKjq2ihSgAKuKhKfLmqQABVgmyUQ7GVGAAix6RKgC1lOAAizraU1XMqAABViGj8V1dTq6xm/WPQzl3HGqxmCbOkOJx1htIfHCRtL2Wk/jsS3nHl5L3qv7PITsvfrzYJjSgcYddSY6xW/QjfFk5Djn9hLOzilW3yqM1HMCMm/rzxX2OI/IpyoPzJCNmQuwHgkqRMetRb4o5U19HtAeI7waQC0KaB63BqRPYVsV3B1PulUsPYoEfN3fzyHuX32dSD2n5m/xcA+1rFbk9r6Hx/TrWpV2WD0jRAS3FrUgrbA2V3Y8oy1sn5MoIvchg9xEBqqMygdg1VoJiOwjQu5lWT2s+UW1RYCVkMhg2zYWsfcN+zAgQEDvnkD9ugJkx/6FfN0PYHKySsgmBIZC9coUCLUbW1NSupaFFaAAy8KC0uksqgAFWBaV02knowDLaV1PDa8CBSjAqgLR6ZKSAhRgGT4Nf+few5gkCQI95hqCP0JsK3Xm4iIOWUWibMKf5FGzt6iFMs3i1iCzCJT5M6Q3OrqGlHr0N+bcxlvJB3TPn3ALw2/BPZFwhMWdzWUXeyY1ixq9WnmRV4WbMhdgkfEfpR3H0iIF+cM5DxypPhC78+5jVNIend0BrKv29kGOKdtmU3+HpF5gcH21fhSbi19BnTBSHN8SrTjINDQngZskOi64NUy+GZEcn5wEBvcTlNh25z48kz1QI80PfnnuFd52XEgqnhrsC89wy2hQ4Q1VYAJbAlhZWQx27GJw4aLh80vSBJ98QkSb1gJkqQ+gWP4VuNvSrZCFMoicHJq+L0DTcwhEmYVvY6iA1nSoeQpQgGWebnSUdRSgAMs6Ojv6KhRgObqHqX22pAAFWLbkDSfcCwVYhp3+3aML+CL9jO7hS5718GVgR5s5IfmpDM7MLpbeN5mHa0ABECieFjfEsy7mBj5W6v4/TjuBJZnSi+x4n2aY8l/a4ZWlLEiEj6HmGiii+duCVW7ZqwjASuRzER33h54JC6s9jh25sdiac1f3ObmxkdzcaMlGbimM36vvK+/aAki6Z0Vb0ikWt/407BuSIRnYXEBQK8CnTsXWIim1E1IOYVPOHXgoXVAzzR+RyQEIy/BBvYxA1EoNBPKNR2yRGzJXdTiJlm3dMdnAbZAV1aMqxtsCwFKqGOw7ABw7brhAO8sCbVsL6NZFhKtMCdnfv0G2cy0YjaaEZHydplC9/B7EamFVISddsxIUoACrEkSlU1pMAQqwLCalU09EAZZTu58ab2UFKMCysuB0OX0FKMAyfCImJh/CmpxbuoczA9riVa9GNnN8ikMRr5oimr4hpcidViahf8Lfuv16MTKcrzkMLjBcw+u5hL9xQpmk6788uBt6uBVUY1dnMTg7l4UmVx9QkGLeLd4WTI7oqah4FQFYZO33Ug7j9+ybum1EybwRr8mBEpJu28OeRjOF5Qv1X/mFRcZ1fdAU2klArafNB0spZ1jcWFsSXnlHFURaBTQVtPWnLNmIfkTH4s2TkWG+y5PokFUDOQ+BXPJPEoPcBAbCf2XV1kefxcZW56GUabAttB9auARacmtVNldVAixRLCjQvms3g5xi389CQUiaYO9eIgL8RbA3L0CxfDbYtMQSeomePlAPeh2adt2qTEu6cOUoQAFW5ehKZ7WMAhRgWUZHZ5+FAixnPwHUfmsqQAGWNdWma5VQgAIsw4fimYS/caoI0Pk1qBu6u1fS9XpmnMtTn3NQPZKAUu0BAoLb6cOQ4rcoLg58As941iqxmiCKqBu7Sq9G1IUaQxFAil3919Kvsbi6TB+WNH5VgE9d8wFMec2uKMC6rc7E4/EbitzPqL+DCJknjlYfVN5tmdSfFFc/v5BBfrFi2nWHCajWovwaGkpN5FxENH1dsHh9reIGXlWlY2TSbr0bOgv7jPZqiBn+bSArkoJ5LvERRiTvRIpntrabH+uCizWGllmTzSRRbaRTVQGsBwkMNm5mkZhkOPKtWjURT/cVEFlTBJOdCfmfiyA7IaXLFpVP3bE3NAPHQnT3tBFV6TYsqQAFWJZUk85laQUowLK0os45HwVYzul3anXVKOCQACs7Jw/nr8TgsTZNDKqalZ2LH1dtwblLtyCTcejWKRrDnusGGWc7N7xVzXGw/qoUYBnWvGncGqTx+bqHB8MHIEpuGzdwPbrJ4PJS6bvCsCLazOAhc9O3ZU7GOczNOKf7sJt7dawI6l7C4MuqVPR8sEX3eWkF62PWc0g8UfCyHPmUgLDHyw9eKnLCKwqwyNrjkvdhS5GUwaL7meTbAu/6tqjIFsscm58KnF/AaW8KLGwMR+ph8dqb+0xtaVcYXFvBAqI0D6sQ0WQcD89wU2epWL9sQa3Vcm9efImJWigCsTToSYTKPLTPyBkkZ7GwPe9ZB/MCO1VsAzY02toAKzuHwY6dDM5fMJw66uEuontXEdEtBTAQITu6A/INP4LJKQCIRZsQXL2gSHtkAxtSlG7F0gpQgGVpRel8llSAAixLqum8c1GAZRu+j41PRJ/hUxBZIwTbVn5Z5qbiH6ag59D3UCMsCP/8NrvMvqs37MLnC1ahb7d2+PrD10vtu2jZRiz+VbqEq6xJ20c3ws9zJ+u6TPn0R2zddbTMfQT4eePAxgW6Puu27sdH3yzD4Ke74KOJr9iGE6ywC4cEWNt2H8PkT37A4P5P4qMJI/RkzMnNx+CxH+Nu3EO9z7t1jsaCT8ZbQXK6RFEFKMAqeR7Iy3n92NW6BywY3K35ksUKe1f0BN5cwyH5rAQvApoJqD+8JEyKVWehQ/x6PTvO1RiiF1lFHq7Ouo7JqdIv7L7uEVgS1LXENkkq2Nm5HEi6Yr2h1oVXZDOWAFjXVOno9sDwf9hOVn8eYf9Bl4r6qLTxGbcYkJpiReETKbDe/F0echNqo6dfZ3B1OQsIReCVXETj13h4RVTWrkuf9/vMy/gy7RQ0xeLafFkFlgZ1RQfXEDz1YAvOqVJ1k/xYrQv6eURaf7OVtKI1AdahIxz27mOgLlm6Smtdp448nngccFGIYB7GQbHyG8NF2uUKaPq+BHWP5wH6P44q6WTYzrQUYNmOL+hOSipAARY9FZZQgAIsS6hY8TkqC2A9N+oD3Lh9H3K5DPvWzYOvj+GIcQKU1m3bX6YhMXcfIDcvH726tMHcj9/U9S0EWAS++fl4GZzD19sT333+ju4ZBVgVPzM2M8N7s77H9j3HMfO9kRjU7wm9fc1bsg5LVm+Fu5srxgx/Cmq1BsvWbkdevgoLPx2Prp2ibcYOZ9gIBVglvXxOmYKnErbqHtSVe2Nf+ACbOA68ksGJWRzEIi+wjUYJ8K1vGCg9++BvnFRJta1mBbTF6GK1vCanHMHq7Bs6+6b7tcYbPoajJ3MTGbgHV83NcZYAWMTIlxN3aW8fLNraKIKwKayvVXwcv5/Dvb/10768aoloOk6qxWVoIxk3WFz5WT/qhpEBjcfw8I6sGp+QfZ5QJuK1xL1IFqSIxcL9v+LVAMuzrumZc73miyA1sxylWQNg3b7DYtMWBhkZhtMF69YR0K+vCD9fEYxGBdm2VZDt/AMMX/JM8fVaQPXyRIgB5Qj7cxRnOakdFGA5qePtxGwKsOzEUTa+TQqwbMNBlQGwSFbXC298goZ1a+LqzXuY/OYwjHi+l1kGX7sViyFjZ2ozwDb+8ikiwoNKACwS4UUivUxpFGCZopKd9On/ynTE3I3H7j/nIqSav27XhHZ2GfguSBTW0m8moUPrxtpnW/49gvc//wndO7fC/E/ethMrHWObFGCV9OP67NsYn3JA96CnWw0sC7aNwsZJJxncWielD8o8RLT5gEeRkkN6Bq3Kuo4pRaKrSIFyUqi8aOsZvxmX1em6j9aF9EEH12CbO+CWAljFC9wTQ78M6ICXvOpbzebrq1mkFksBC+skILKUou6Zd6BNGxU1RdIPZSIav8rDu2RZM6vZUbgQgVfjEvfhmFI/srb4Rh53C8Xvweb9pcPqRpm4YGUCrPQMBlv/ZnDzluF0QX9/Ef2fEhFVqwBgl1WkXfD2g2bwG9C06mKiZbSboyhAAZajeNIx7aAAyzH9am2rKMCytuKG16sMgPXBVz9j4/aDWLFgGkZPnI0aodWwZcUX5TZYreExdNxMEIg19e3heHFgD705CiOwKMAyLq1DphB26PcG8pQqnP13iV6h3g1/H8CHs39B8ZxTpUqNtn3GoVqgL3atnWNcNdrDYgpQgFVSytnpZzD/0QXdg9e9G+MD/zYW07wiE136kUPmbQlihHUWENmv9HS+R4IKjWJ/01tyf/gA1Pmvnle+qEHte6v0nttqhIzzFb/oAAAgAElEQVSlABYxdlLKYaQLSpBUN1/WBW/5Ntf+2VpN0BTUw8pL1I+oqfcCj8Dm+tFUWbHA5Z84CGr92lkk8s6nTtVFXhnS6rO0k1iceblUGQ1FAFpL88papzIAlkoN7N3P4OhxDoKBwDySItjlCRHt2wngWIDJfgT5H4sgO7m3pJkMA3Xnp6B5dgxENxPyVCtLKDpvlSlAAVaVSU8XNkEBCrBMEIl2MaoABVhGJbJKB0sDLFJXu8vAd+Dl6Y696+bh7Q8WYM+hM1i5cBqim9Yrl02Ll2/CouWbtONWLJha4jIhCrBMl9MhAVazbqO0uaP7N8zXU+Ll8Z/j9IUb2igrEm1VtJHIrEdZOVroRZv1FKAAq6TWY5P2YWvuXd2DbwIfwzDPutZzSikr5acBZ77ST71qMVEDdyn61eDIV5P2YHturO7Zmz5NMM2vtfbn4tFI9eQ+2Bv+XJXbamgDlgRYtmCgMgM4P4+DJk8fTDV9UyrGnh0PXPqBg6AqArpYEQ1fEeBX37bgVaGmu/Lu463k/cgiRdOKtSPVB6KmzHBdAVvwiTl7sDTAIsXZd+xikJ1tOF2wZXMBvXqKcHcr8L/s1F7I1ywwXKQ9JALKke9DjKj631/maEvHWEYBCrAsoyOdpXIUoACrcnR1tlmtBbASzotIv2v9OrBV5c/QFiz8ahr++4ihPVkaYP2+aTc+nbcSo4f1xYSxg7HzwCm8O+M79O/5GL6YNsZkWa7HxGHwax//lzr4CSLCS2aaUIBlspxwSIDV6Zm3kZOXjzM7ftLRTVK0/amX3teCrb3r50Eu079xsMfQ95CYnIYLu38xXT3as8IKUIBVUsIe8ZtxpUhK3frQ3mjvUvX1YuJ2sojbJaUSeYQDzceXUs25iFn/5MZidNIe3SdFbxlcmnUFH6We0D0b5BmF+YGPV/hcVcYEjgawiEYkNZBE1RUt6i73EtFiAg9lekHkVdFbC8GKaPCSAP9GtgmvCv0ey2dhzMO9uKRO0x0FEvVHov8crVkKYD1MZLB5K4v4eMN/UQwLFdG/nwDyb9KYnCzIV8+D7KyU7lxUW/WA1wqKtNPm9ApQgOX0R8CmBaAAy6bdYzebsxbAOr2Cx50DzgOwol/iEPWE4TIG1gBYA1+doU35IymDURGhIGmAJCIrL0+JfRvmw9vTeGS5hue1da/IPO+/9QJeGtTT4LmmAMv0r7tDAqzRE2bj2JkrWPbt+2jbsuB67imf/YitO4/ilSG9Men1oXoKCYKI1r1fg4tCjqNbF5uuHu1ZYQUowCopYa27K6CC9B+nM9UHI1hm/BdkhZ1hZILTX3FQpkkvt7WeERDa0fh/RNWigGZxa5ApqHQrrA3phU6uoXgzeT825dzRff6pfzuM9G5Y2aaYNb8jAiwiROJxFjEb9P9y4BEmIj8d4ItEZ5G+9V8UENDUuM/NEtjCg1TgMT3lGH7Lvqmdeax3Y8ywkVRcS5paUYCVm8fg310Mzp5jIRrgkp6eInp1F9GsqQDmv68/e+kEXH6drU0dLN74hq2genECRH8joZmWFIHOZdMKUIBl0+5x+s1RgOX0R8AiAlCAZREZS0xiLsAi7/SN6pV947RKrcbl63dRIywI//w2u8TaF6/extDXZ6F5o9r4bfGHuuefL1iN1Rt2Ytr4FzF8QHejhi/+dTMWLduoTR38df5UsKzh/1FYCLAIKPP38zY479BnuqJPV6nAOy3iblR+++nwx5Z9mDlnubaA+8ihfbQF3cln5OrL7atnIzRIKuxOrCJhfQNGf6i9XWDdkpn2Y6gD7JQCLH0nxmty0Pb+n7oPPRgZbtR8sco9TepeaSN1ChtTULxdbvgW2RL7nZp6FCuyrus+f96zDuYFdsJj8etxV52l+3xraD+0dAmscnsNbcBRARax9eZaFslnyvg/XIyIesMFBDa17cgrQ37bmH0b76UexsrgHujoWvWRjJY+3OYCLEEATpxisXsfA2V+yb9MsRzQoR2PJ58QoZAX7JrJzyuodXV0RwkzRBc3qIe+DU17/aKklraXzmd/ClCAZX8+c6YdU4DlTN6uPFspwKocbc0FWOXZTWkAi9TNJvWzP37vFTzfT7qAhtxEOGjMR6gXVV17k2BZzZTUwcLxhQCrrPneGzdEyzYKGwVY5fG0jfcl4X0vvfUpLl6TIjvIlg1V/Cefz1uyDktWb8XwAT0wbfxwG7fOsbZHAZa+Pw/lJ2DIQ+nlsLkiAH8Xu7WvvCcgO56BZ3jFwMOtP1kknZIAh38jAQ1GmB6Jc0aZjKcTtum27snIcLD6QLSMW6tnTnzkK+U1z2r9HRlgEREvfc8h867h/ytUb4iAwGjT/W01p5i40FV1OhrK/UzsbV/dzAFYd+8x+Gsrg5RUw9Cyfl0BffuI8POVfm+wN85D8cvnYB9JaZmFSvF1m0E1ahpE3wD7Eo/u1ioKUIBlFZnpImYqQAGWmcLRYXoKWAtg0RpYZR88S9XAKizeTrK0DmxcAE8PN72FSeALgVO/L/4QzRrVNrgpkjo4dNwsEOBVVupg4WCaQmj6LxWHTCEk5ufm5WPJ6m04df46PNxdMaDv4+j5REHh6OKNpBfGJ6Tgg3dfQoM6EaarR3tWWAEKsPQlXJ51DdNTj+k+fNajFhZVe8JsndOvsbi6jC2oW9TEPAAhaoATMznwRQp5mzNfh7h1iOWzdbYM9qyNP7JjdD9bAtaZLZQJAx0dYGlyGZybx0L1SB9i1XleQFBr886OCbLSLhVUoDwAKyODwd//Mrh2zTC48vcX0f8pEVG1JH8zaiXkG5ZAtm9ziZ2KcheoB4yBpsszFbSCDndkBSjAcmTv2r9tFGDZvw9twQJrASxbsNWW92ApgLVm8x588u0Ko6YSvvDJ5FEG+32/YjO++4WkDtbFr/OnlZo6WDiYAiyjcus6OCzAMl0C2rMqFaAAS1/9GanH8XPWVd2HE/1aYoJPc7NcxKuBs7M5qDIZVKT4dvJZBjfXSOmDnKuINjN4kBSj8rR5j87j6/SzpQ4Z4VUfnwd0KM+UVu3r6ACLiEluHby4iIPIF0Cs2oN4BLepWPSeVZ3khIuZArA0GmD/QQaHjnDg+ZIiubiI2lTBdm0FcEXYFnvnKhRLPwObllhiEB/ZAKpXp0MMcLy0TCc8RpVqMgVYlSovnbyCClCAVUEB6XCtAhRg2cZBsBTAKizeTupocUX/YlTEzEvX7sDVRY79GxZog2WKthu372Pwax+BZVlsWvapwVsHiytGAZbpZ4gCLACiKCIvXwkZx0FRWOzDdA1pzwooQAGWvngvJu7E3rx43YffVXscz3lEmaXw3e0MHuzTp0wNXxHg17B80TRXlrLIuCm91YZ0EBD1bPnmIAbEqrPQIX59qbZ8G/gYBnvWNctWawxyBoBFdEy5wODGag61+gsIfaz8fraGL+gakgLGANalKwz++ZdFJgHZxRopyt6yuYCePUS4u0mgktFowG1ZBsWudQApllWkiZwcmv6vQN19EMCafjMQ9ZnzKkABlvP63h4spwDLHrxk+3ukAMs2fGQJgEVKEA0dNxO1I8Px1/LPSjVs3JS5OHj8Aj6aMAKD+z+p61c0dXDKm8Pw8vO9TBKHAiyTZNJ2ckiA1e6p19G2RQMs/Owdk5RQqzVo3XssmjWKwsqF000aYw+dcvOUWLd1H3YdPI1bd+KRk5sPfz8vtG5eHyOH9CnzdgaSerl87T84d/kWsnPzEBzoh26dojH25f7w8fIo1fyN2w+CFJS7dTcePM+jZvUQPNu7E154rrtBgk0Blr6UHe6vQ6xGSrPbHtoPzcwoap6XxOLsHMMvlw1HCvBrYBqYIOlkpz7Xh2DN3ubhWd28qJxnE/7GSWWSwfOzN/xZ1JP72uxXy1kAFnFAdiwDzwjzfGyzDnTQjZUGsJKTGGzeyiL2vuG6ZuHhIp7pJyDUOwdMVlrBjYIkVEuZB/nGJWATYksoJkTU1da6EoKrO6ia1KzKUIACrMpQlc5pKQUowLKUks49DwVYtuF/SwCsGV//gvXbDmjrYpP62KW1vUfO4q1p87Xv03/+9LGu2w8r/sLCXzagZZO6WLHAeOpg4UAKsEw/Qw4JsBp3eQXtoxvh57mTTVai2/MTtFFYR7YsMnmMLXfcd+QcyBcwNT0TXp7uaFw/Em4uLoi5F4/Y+CQtTJr9wTj0frJtCTMKbzQgD8i4AD8f3Lwdh4SkNO0Njr8tnoGgwJKgYernS/DXv4chl3Fo2bQu5DIZzl+JASmE16ltUyz64l1tlFvRRgGWpAYvCoi4p59vfT1iODzZ/64AK8eBI2lgWbGGX1zJNI1GC/CtZxxixe/lcO8faR63IAEtJxofV9pWV2Vdx5TUoyUeuzIcYmq+VA4Lrd/VmQCW9dWlK5qrQHGApcwVcXBHFm6ezYAnnwFPIQ1ewiN4CKnw4jPgy6QjzCMNHnwGkJkBRqMyvjTLQd17GNR9XwSK/Q43Ppj2cHYFKMBy9hNg2/ZTgGXb/rGX3VGAZRueqijAIsEeXQa+A54XsG/DfHh7updqGCnw3nPoRO37MQFYBGTdvHMfz48pSB0kNxTWrB5ssjAUYJkslWNGYJkDsDr0ewMkYun87p9NV8+Ge67esBOLlm3ChLGD8UzvTlqoRBpJl/xt4258vmCVNl9359o5ehFVcQ+S0O+lqZDJOPzw1QS0adFAN+67ZRtBqLIhOEjAFQFYURGh+OmbSVrQRRoppv/ujO9w+OQlvD1qAMa93J8CrFLOzQ11Bp6M36R7GsS54WyNIeU+ZUknGdxaV3aBKoYT0WiUAJ86ZUfZnP6SgzJdAlg1+wgI72I+wHokqNAs9ndooL9uR9cQ/BnSu9y2WnMABVjWVNvx15If2ArkPALDyiCS388sB5GTgeFkEAkkYmUFsEj7OQdGJoPIcIBaCTYrA8h6BGSmQZaTAXluJjRpqVClpUOR/8ii4gkhNaAaORUk+oo2qoA5ClCAZY5qdIy1FKAAy1pKO/Y6FGDZhn8rCrD++GsvZs79Fc/16YxPp4w2alRhoXaSQkhSCcdNmYODxy9qby2MCC8bXpFgkjXfz9CtUQiwImuEwM/Hy+Davt6e+O5zKcOsMOiE9A8NLv0m6Pmz3kJYSKBRe+ylA43AAlB4WAl02fXHXHvxndF9PsrKKTXdb8Q7X2hvaJzz0Rt6UVgEbK3esAvvjhmEMcP76a1B4New12eB5AavXvQBWjSuo3v+7MgPtNS5+OekQ/qjLJAIN7lchv0b5sPVRaEbRyOwJIm358bi1aQ9ug86uIZgXTmhDp/H4PRsFuRGucJG0gXdqgEPDuqnFJJ34UYjBfjUNQyksuMYXPhOH4S1nsZD4VOx1LLXkvZiW+49vbP1hncTTPc3fEuo0YNupQ4UYFlJaCdYRr5jDeSbbPx/ljCMts6Vpv9IiLLyR4E6gRupiSYqQAGWiULRblWiAAVYVSK7wy1KAZZtuLSiAGvQmI9w9eY9/L74QzRrVNuoUcmpGeg2eIL23Xbf+vkYNeErXLx62+g40oFlGVzcs6wEwCprcICfNw5sXKDrUjRrqqxxW1Z8oQ0ycZTmEACLpMvtP3pO55M/tuzTprh16dCiTD+pNTxi7j3AhSsx2n5Dn+mKD//3sqP4tkw7Pl+wGiRKa9r4FzF8QHdd3x5D38ODhynY8+e3CK7mV2KO3zftxqfzVmoL0pHCdKSR/mRcRHgQtq+ebXDdCR8vwo59J7V1ybo+1lLXhwIsSa7Fjy7hs/RTug+Ge9bD7MCO5TqPJPKKRGAVNlYmIvp9Hgov4M5fLBIOF4NYMrEAYhmIxIrZwCLxuNTft66IRq8auMKsXDsEdubF4ZXE3XqjlgY9iT7uNcs5k3W7U4BlXb0ddTXZ8d1QLP/SJswTPX0gePsBPv4Qvf0h+AaA8SZ/9oMYFgU+zLa/kzYhIt2EUQUowDIqEe1QhQpQgFWF4jvQ0hRgOZAzqSk2r4BDAKw/t+7DZ/NXgRRjN7fVqRWOX+dNha+Pp7lT2NW4wjBFEob4ZMcCoJSZnQuSSknAFQFYhhqh0oROk+grEm1F2u6DZzD+wwXo16MDvpo+1uC4X//cgdmLftdGdZHorsJGAZYk13sph/B79i3dBzP8W2OsdxOTz1XWPeDiYple/8inBIQ9LkVYxWxkkXisJMRq/CoP71rSUIEHTs7iwOdLMKzuMB7VWlQs+qpwhaaxv2v/6M0q4MMq8EtwN4RwpeeZmyxCJXakAKsSxXWSqbkrp+CycGqlWqtiFMjh/MH4B8Aj1A+Mjx9E3wCAgCmfAAjevto/C76OE0peqYLSySusAAVYFZaQTlCJClCAVYniOtHUFGA5kbOpqVWugEMALKIiqbV05NRlbN15FDsPnIK/rxdaNatfpsAkdM/H2xMtm9RB7y5toVA4R5qEUqXWpvSRovV71n2rSzO8fP0uBo/9GNFN65Z6GyNJS+z49Jva3NxDmxdq9SW3FX79/RqMfelpjB890KDm5CbEdz5ciF5d2mDux29SgGVApeI39C0L6oae7jVM+iUhCsDZORzyU4oUXA8W0eJdHkyxywgNQSxWLqLRaAlipVxgcGO1lD7IKkS0ncHDjHryJu3fHjpRgGUPXrLdPbKxN+Hyzf/AqJW6TYoKVwg165Vr09lKOWIz/JEkBCKHDUAW64dMzh9ZbACyOX80iHZDz+4i3N0sA5vLtTnamSpgQAEKsOixsGUFKMCyZe/Yz94owLIfX9Gd2r8CDgOwCl1BorC6D5mIOpHh5bqF0P5daboFi5dvwqLlm7RXg5IrQgvb8bNXMep/X+Hx9s3x/Zf/MzghqYPV5MmR2lsML+z+Rdvnu182ghSxe2/cEIwc2sfguMK527dqhJ/nSLdDpmYavgHLy10GhYxFVp4GKrX5RcNNV6Xqeza4vRopfL5uI8dqDkIdhY9JG4vdwyBma9GuIlr/D/AqhX9dXQM8PKF/SyGBWM3HAr5RwIUlQOpV6XloO6DBEOd+IQ7wLqjdlpalgujcUph0JmmnIgqkJoKdNRZMTqYErxgWwv++Ahq1MipVbh5w7jyDYyeBxCTD3aMigaefEhEWYnQ62oEqYFUFCn93lvbfe6tuhi5GFSimgKcrBxcFh+w8DZRO8vdNeggsr0Dh7znLz0xnpApQBYor4HAAixi4ct2/2oLisyaNoh4vpsCRU5cwbspchFTzx/qls+BV5HrQg8cvaJ916xyNBZ+ML1W75t1GQ8Pz2hsbZRyHOT/8gV/W/I2pbw/HiwN7GBx39tJNvPjWZ2jZpC5WfTed+qWYAlm8Ct7npKLOLBiool8DVzx8yoByuWki/pmugaCWHkY9wSL6pbJvIjy1nMfdQ/pwkFMA7cfKcHihfjpulykyBNbVB17UiVQBqoBxBYSsR8ieNgZC4gO9zu5vTIeii2HgTzoqVcCZ8wKOnxZw5boIoRSO7+sDPP8Mh3atioVaGt8a7UEVoApQBagCVAGqAFWAKkAVsCsFHBJg2ZUHrLhZUqx+9MTZYBhGmyJYv7Z+eI5VIrCiG+lFxpX2f7vkHKO9nUHNC6W+uFlRukpf6kRuIh6/tUm3Tm0Xb1yuX1Ak31g7+T2PhxekXgpPoNtMDjITSkqdWykg7kjZ4UTuAUC3T8uGYcb26AjPXeQFgIBEBNIALEfwaOXbIObnQTnrLYj3buotJhs4GvIBIwxu4Pxl4NRZARcuidAYKevYpzuDPt1ZuLux4AURGp6ezMr3Kl2hvAoU/u6k0S3lVY72t4YCMo4BxzLQ8AJ45wj4t4asTrdG4e85pzOcGkwVqAIFKMCqAtGrYslL1+9g9ITZ0Gh4/Dh7Ilo3L1kf7NqtWAx8dYZJNbB8vDxwZMsirSkr/tyBrxb9blINrO6dW2H+J2/rJKBF3AukWJcdg3dSDup06eZeAyuCuhk9Kuk3GFz9WR8u1R3Ko1pL015kSe2sm2tZpJwrPXqjRncBNXrQv9XRGlhGjyPtUFQBgYfL/PfB3ZBuyCWPNe17QDVCSqMm6aj3Yhmcu8Dg6jUGeXnGIx0b1hfQp5cIX18R7i4cfD0VyFXyyMg2nJJNHUMVqEoFaA2sqlSfrm1MAVoDy5hC9LkpCtAaWKaoRPtQBSyjgEMDLJ4XcPn6HcTce4Cc3HwIpeVgFNHy5ed7WUZZG5qFRF6NmfSN1v7FX/wPbVo0MLg7Ugi/TZ9xJt1C2LRBLaz54SPtPPuPnscbU7816RbCUUP7YuK4wRRgFfPA7IyzmJ9xXvfpGO9G+Ni/bZmniKQMnvmag+qR9MLrHSWgydjyw6Yba1iknDUMsVq9z8PFzzQgZkPH3uJboQDL4pI69ISKZV9CdmK3no1847ZQvjELYDlk5zA4dJjBxcsMsrKMQytvbxFNmwiIbsGgWqD0HacAy6GPkUMYRwGWQ7jRYY2gAMthXWtVwyjAsqrcdDEnV8BhARZJh/vwq58R/zClXC6+vG95ufrbeuczF29i7OQ52qLrJPKqeaPaZW65/4hpWuC3589vtSCrePt90258Om8lBvd/Eh9NKEiBSUl7hCcGvIOI8CBsXz3b4PwTPl6EHftO4psZr6NP13YOBbB+XsbhURbg7yfCzw94vLMIP5/yAZ+xyfuwNeeuTpcvAjrgZa+yb9G8+zeDB/v1o69aTebhElC+tQsXJbcOktsHizavWiKajuNt/ZhbZX8UYFlFZodYRL7pZ8h3rNGzJbdaHezpPB/3ElwR/4CBSmUcWsnlQNPGApo1BaJqGQbTFGA5xJFxaCMowHJo99q9cRRg2b0LbcIACrBswg10E06igEMCrDuxCdpUOKWqoKq1QiFHSDU/sKzxIrfbVn7pMK4/cfYa3pg6Fy4uCiz9ZhIa1q1p1Lb5S9fjp1Vb8O6YQRgzvF+J/kPHzcTFa3fww1cT0LldM91zUqCdFGpfvegDtGhcR29c+qMsdHt+AgRRxIGNC+BdpHC8vacQXrjIYt1G/XPVu6eAju3LFwXV48FfuKJK0+m2NqQXOrmGluqvvGTg7BwOEKWX4OrdBURUINWPpBNeW8Ei/apkT51BPILamAfEjB42O+tAAZadOayKtssd3g6XVXP1fwdywfg28EfksqbdKlq3joCWzUU0qC9CJivbEAqwqsjRdFmTFaAAy2SpaMcqUIACrCoQ3QGXpADLAZ1KTbJZBRwSYM34+hes33YAoUH+mDlpFDq2bqwtXO5M7eipy3hz2jx4e3ng5zmTUDsy3CTzU9Mz0fuFydp0QwKpCtMNRVHEd8s24ocVf6FeVHVs+PkTPU0LbzCMigjFT99M0mpPGklL/N9Hi3DoxEUMH9Ad08a/qLcPewZYynwG3y5k0TyNgU8RXpUYCTz3upHqy8W8UevuCqggTXKqxmCEcqVXYb+4mEPWPelMu/iLaDXFMpFS11aySLvEgpEBbT/SgNxMSBtgaYDFXTsLcBz4uhIIpjpbXoHkFBauLiK8vCoHxCYmMYhPYHA/DvC4eghP3y5IrS5sOYw3FgR+j1RZWJnGhYeJaNlCRNPGItzcTN8rBViWPzN0RssqQAGWZfWks1lWAQqwLKuns85GAZazep7aXRUKOCTA6jVsEu4nJJeIEqoKgatizeycPHR+bjxUKjX8fLzg4+1R5jYWfvYOCHgqbLsPngFJ+dPwPBrXj0Sgvw9u3L6PhMRUkOLtKxdOMwjEvvlhLZat2Q65XIaWTepAIZfj/JUYZGXnolG9SPw6fyrc3VwcBmBt287ixAkWPXKBojFYdxTA8E9MB1gPNDloc/9PnS4KsLgT+XKpPks6yeDWOv3Uwcav8fCpbfpLb1kHQuSBq8tZyD0YkILwtBUoYEmAxR36G4rf5oERRQj+QdC07gKhbTcI4VFUbgsokJ3N4PxFFhcuAAmJBaDXxVVE9TARIcEiQkMYBAUV/Lk8LTeXwf14BvdiRTxIYBAbx0JdEOiLSNVFjEudABmk774aCnwXuBDx8noGlwkOElG/Hom2AgLMTP2lAKs8HqR9q0IBCrCqQnW6pqkKUIBlqlK0X1kKUIBFzwdVwHoKOCTAatHjVe1te2f/XaKFKc7WSMpep2ekm/6M2b9+6Sw0qBOh1+3Kjbv4ceUWnL5wA9k5uQgM8NWmDI57qb/B2liFg0mdq1Xrd+J6TCxIEf3w0Gro27UdRg7tAxeFvMRW7DUCK+Ehg+9/4rSRVx3y9M1K4US0eF1ARA3TXo4P5T/AkIf/6iZprPDHv2H9DbqNz2NwejYLTa4UfRXYQkC9YeVLWTR2Jsjz/BQGroGm2WDKfPbex1IAS7HmO8j2bzYohxAaAb5tN2jadIUYEGLvkll1/yRj/OpVFmfPA7fvGE8XL9xceLgIApJCgoGwUAK3RJDaU6Tdi2Nw/z6L2DgRCQkMMopcmFDUuGD1PbyV+ibcxBw9m3/2/wJXXdprP/PxEREaKiKiOoPq4QJIxFXhOhURigKsiqhHx1pDAQqwrKEyXcNcBSjAMlc5Oq6oAhRg0fNAFbCeAg4JsNr0GQsZx+Ho1sXWU5KuZJYC9gqwflzKaQsxR6iBRsVuricBGWI/EV06mxa9tCLrOqamHtXp97RHJH6o1sWgniTyikRgFTZWISJ6Mg+Fl1ny00HlUKCiAItR5kL+06eQXTlp0qp8rYZamMW37gLR07TaSSZN7GCdbsUUQKsrV1nwpn3ljCrg4SEiJ8e0tHN3IRPvpoyFP/9Qb979dSYiM7oPamiBlQh398qBwRRgGXUn7VDFClCAVcUOoMuXqQAFWPSAWEIBCrAsoSKdgypgmgIOCbCeHfkBYu7F4+T2H+HqQgv4mHYUqqaXPQKsU2dY/LW1IMKjaT4QbuClOSYKeGmsaWmEH6Udx9LMqzoHvOvbHJN8W5ZwSNY94OJi/YjCqGcEhHS0fPRV1ZwG2161IgCLTU+G4rvpYB/cMctIvmE0+HY9wLUcUf4AACAASURBVLfoCNGl9NpoZk1uh4MIPL5wkcGFS4zJoKkyzCTwalzquwjT6PtV3fdFqJ8uuKW1shsFWJWtMJ2/ogpQgFVRBen4ylSAAqzKVNd55qYAy3l8TS2tegUcEmAt/GWDttj4/E/eRvfOrapeZbqDUhWwN4CVm1dQuJ0UcCftsVwRXkVuAiw09IIL8OoMjdEbxEj/lxJ3YU/efZ1GC6p1xkCP2iU0O/sNi7xkKTXKo7qI5m9bKOSEnlGjCpgLsNj423CZPwVMVobeGqT2lWr8l2DycsAd2wXu9D4w2Y/K3IcoV4Bv2gF8267gm3c0umdH6qBUMdqac+cuiCCF2Y21OrUFtGkFNGxQAHjTMxg8fMjgwQNRWxeLpAFnZZkWZVV0LVI3i6Qa1gzKRuvt78IlSR9eadr3gGrEZGPbs9hzCrAsJiWdqJIUoACrkoSl01pEAQqwLCKj009CAZbTHwEqgBUVcEiAlZmdi/4jpmlrLq1YMK3Mmk1W1JouZUABewNYGzZzOHe+4KWXlFHvoV/yRmfhXZmINiMF1K1jPG3osfj1uKvO0o3dGtoPLV0C9dTKS2Rwdq5+4fYW7/JwDzU+Pz14llHAHIDFXTgKxdLPwKiVepsg6YGqNz6F6Omt97ns8kmwJ/eAO30AjKZYbmoxM0RXN2iin9AWf+frt7CMkTY6Cy8Ay37lEBtXNnDy9RXRKhpo1UKAp6fx7wYpyk5A1kMCtBJEJDwEUlJZiP8N9fMRER4OVK8uIixMLKhbJQNIOqhi3hRwd6/p+7VZByhfn2VVFSnAsqrcdDEzFKAAywzR6BCrKUABltWkduiFKMByaPdS42xMAYcEWETjm3fuY8Q7X0AQRDzT6zG0adEAwdX84epSspB4UZ/UrVXdxlzk2NuxJ4AVF8dgyTIJIvnzQNt8w/5JZwF5Nx49u5f9Es2LAiLurdCb5HrEcHiy+uc06QSLW+ulqBPf+gIajaKpg9b8dpQXYMl3/Qn5hiXQ0ZD/Nqtp8RhUo6cDstJ/FzHKPHDnj4I9vhOya2cAoWxfCz4B2lpZJDJLiDB84501tbL0Wmv+YHHlWulRV02bCGjVEoiqVfHvhFoDJCUx8PcD3NwMfH9V+XCZNwncnWLwql4LKN/+vEy/WloXMh8FWJWhKp3TkgpQgGVJNelcllaAAixLK+qc81GA5Zx+p1ZXjQIOCbD6vzIdsfcfQq0pf3rV5X3Lq8YTTrqqvQAswg8Wfs8iNVV6iW7mCoSlGnYcOXmXagOvv1Z2Hayb6gx0id+kmySQc8P5GkNKTHpzLYfkM1L0SY2eAmp0q/jLupMeO7PMNhlgCTwUv82H7PD2Euuoew2F+tnR5VqfpBXKTu4Be3wXuHs3jI4VgquDb9O1AGZVCzfa39Y7bN/J4ujRkvAqqJqI1q1EtGgmwtXVeLSVRexUq+Cy4H1wty7qTccTePXWZ4Dc+jUXKcCyiGfpJJWoAAVYlSgunbrCClCAVWEJ6QQAKMCix4AqYD0FHBJgNe7yitkKUoBltnRmDbQXgHX0OIvtO/RfogeFC8i+UXpUyGE34K0pvOEojv/U2pEbi1FJe3TatXUNwsaQviW0PDObQ36qBLAaj+XhE2Wll3azPOt4g0wCWPl5cPn+Q3A3zusJIDIsVC+/B759jwoJwybHgzu2E9yJPWBTEozOxdesV5Bi2LoLBG9/o/1trYOh7x2BVSOGCwgPt/L516jhsmg6uGtn9eFV7cZQvjO7SuAV2QgFWLZ2aul+iitAARY9E7asAAVYtuwd+9kbBVj24yu6U/tXwCEBVkpa2YWQy3JboD+9rt6ax9oeAFZ2NoO5CzhoigRTdeggIOg0A2W6BJVc/ES9ny8pgMdeENC4YemRUosfXcRn6ad1kg/1rIs5gY/puUCdzeDkJ/r1r9p/qkGxLENrus0p1zIGsJi0JLgsnAr2Yaw+vHJ1h3LcTAgWrlPF3b4K7gQp/r7faPF3MAz4es3BE5gV/QRI/Sxbb9eus/htrT4g5jjg1Vd468MrnofL9zPAXT6hD68iG0D5v68BhWuVyUkBVpVJTxc2UQEKsEwUinarEgUowKoS2R1uUQqwHM6l1CAbVsAhAZYN6023VkwBewBYa9dzuHxZAlUeHiLeGSvgTDGoFNFLROwOqV+cDHDvKODpp0oHWO+lHsbvWTd1qkz3a4U3fJrqqZR6icX1ldKLvGd1Ec3o7YNW/y6VBbCYezfgunAqmJxMvX0JftW00TlicCXW1uN5cFdPgTu+G9z5IyUKxhcXSuTk4Ju2hUBuMmzaHqLM+mlvxpx3L47BshUchCJZ4CwLvDhMALld0KqNpIT+NAuy80dKwisSeVXFMJACLKueBrqYGQpQgGWGaHSI1RSgAMtqUjv0QhRgObR7qXE2pgAFWDbmEGfbjq0DrDt3WSxboR8FMnggj+pyBld+LgKVIkTU7CXg8hIpUiqTBa5XF/HOm6XXYhvwcDuO5yfq3P5zUFf0do/QOwZ3trJIOCitFdpJQK2nrfwS72wH04C9pQEs7vZluHz9bokRfGR9qN78DKKn9aI6tcXfzxwAR24yvHrGqNdEFzfw0Z3At+4GvlEro/2t0YHcAvjDEgYqlf6Ng0MG8WjcyMppgwAUv3yhrUFWtAkRdaGc8A1EF3drSFLmGhRgVbkL6AaMKEABFj0itqwABVi27B372RsFWPbjK7pT+1eAAiz796FdW2DLAItEf8xbxCEjQ3qRjowUMOplAXG7WMTtlKBSSEcBET0FnPhYpvMHedX+1x2Y9B4PTw/DL97N49Yihc/Tjdkb/izqyX31fHrxOw5ZcdIe6g3nEdjM+i/ydn3QLLD50gCWy+IPwV08preCpmVnqEe+D7EKinoXboTNTAN3cm9BvaxY48XfRS9fbXoh3/ZJ8FGNLaBY+afIymLw/RIWJG23aHuqj4B2bawPbRUr50B25B99eBVWC8qJcyG6e5bfwEoYQQFWJYhKp7SoAhRgWVROOpmFFaAAy8KCOul0FGA5qeOp2VWigEMDrLx8FdZt3YedB07h1p14PMrKQf3aNbDh50/0xN5z6AxycvPR/fHWcHO1vXSaKjkZVlrUlgHW/gMsdu+TIBXHAuPf4uHnK+LqMhbp16RndQbzCGol4szXHPJTpJfvY67AkwN4tGxeEjhlC2rUj12tp3RszZfBMdK8gho4NoMDBGnONjM0kHtYyUF0GZ0ChgAWm5EK16lD9VRS93ge6gGv2ZRybOJ9cMf+hezkXjCpD43uTQgIBd+pD9S9hxnta6kOShWjjbwqetMnmbtTRwE9u1cBvPp9AWQHtuiZx4dFQvW/ORA9vS1ldoXnoQCrwhLSCSpZAQqwKllgOn2FFKAAq0Ly0cH/KUABFj0KVAHrKeCwACvm3gO8NW0+YuOl9CwiqyGANXHmYvyz9wQ+nzoGz/TSL6BtPVc450q2CrAePWIwbyEHvsh7c5cnBHR9ouCDE7M4aHIkqNRyIg+3IBHnfxORc16uc+YVBeDXSsTAZ0umEZ5XpaDvg626vjVlXjhSfaDeQci8zeDSj1JaIikU3+r90lMSnfMUWcdqQwBL/vcqyLf8qtsAH1oTyhlLrbMhM1dhYy5pQRZ3YjeYvJwyZyGpcqoxH0IIDDVzNdOG8Ty0Na9ii0QakpHNmgoY9Jz14ZX8z+8h37NBb/NCSA0oJ35r1ZRQU9SjAMsUlWifqlSAAqyqVJ+ubUwBCrCMKUSfm6IABVimqET7UAUso4BDAqys7Fw8N+oDJCSlQaGQo1unaNSsHowfVvxlEGBt230Mkz/5AT2faI1vZ75lGWXpLCYpYKsAa8VqFrdipEgoX9+CWlbkFjTlIwanP5egEiMTcXLyWazJuokmZ2rilcPtdbbHy4A7/iImTywJndbnxGB88kFd3yfdwrEquIeebvf3soj9R9pHtRYi6g6jAMuUw0VAjes3/4Pg7QfRwxtivRZQDTX/+20IYLlOHw42LUm3HdWQN6Hp8qwp27OJPiT1kTu+C7LT+0vdD0mD1Dz/OtSd+1XKnkUR2tsGr9/QrzVHirWTou2keLs1m3zlHMiLpw0GV4dywlyI3n7W3IpJa1GAZZJMtFMVKkABVhWKT5c2qgAFWEYloh1MUIACLBNEol2oAhZSwCEB1uLlm7Bo+SY0qheJBZ+OR2iQv1auxl1eMQiw4h4kofcLk1EjLAj//DbbQtLSaUxRwBYB1tXrLH5fq//WPPJlAbUiCyJBit8KGFs9BROf3qR9Vj8hGJ9uelpnOinlc8gdGP8mj8AA/TTCr9PPYN6jC7q+r3o1wsyAtnqyXVnGIeOaFOkV9ayAkA7Wj0gxxZe21IdRK+EyawzYlAS9beXPWg6hWrhZWy0OsGSXTkCxaLpuLnKbX/5Xa22mNlJ5jGSUueDOHgJ3bCe46+cMDuWbdYDqpfcsnj63dTuLEyf1v2/hYSJGv8JDJpWUK485ZvUlNcMUP30CAj6LNhJ9pnrvWwg+AWbNW9mDKMCqbIXp/BVVgAKsiipIx1emAhRgVaa6zjM3BVjO42tqadUr4JAAa8DoD3E9Jg7rlsxEw7o1dSqXBrDylSq06vUaXF0UOL3jp6r3ihPtwNYAlloDzP+OQ2amBI0aNxIwZJAEjUhEFImMKmwHoq9hYbtD2h85nsFvP40CC2k8KeTet6+AtsWKUL+RtB+bc+/o5vk8oD1GeDXQ8/6xDzkIRW5ja/6uBh6Vm83lEKdPvnYR5PsKoGLRpnn8aaiGjTfLxuIAq3jxdk2HHlC9PNmsuW1pEJueDPnKbwzeYkii2dSvvA++YbRFtnz4CIsdu/ThVUCAgLGjRbi6Wu+iAu76eSiWfgIm+5GeXWJAsDZtUPCrZhF7K2MSCrAqQ1U6pyUVoADLkmrSuSytAAVYllbUOeejAMs5/U6trhoFHBJgte79GuQyGY5uXaynamkAi3SK7jkGao0GF/csqxpPOOmqtgawDh9lsaPI7YIKOfDu2zw8PaWX6ctLODy6JQGqJb0P4t9a13Ue/PqPAYhMLYj6I21zzQS0DAzG0MH6kVM9H/yFy6o0Xb81wT3R2S1M93NuInBurhSCwipEtJvJo0iNdyc9NWWbXZg6aKiXNkrqyzUQPbzKrV1RgMWkp8B1qn6Bc+WkeVV2e1+5jTFhgGzfJijWLjLYU91tINSDxpkwS+ldLl1m8Md6KRWX9PT2EjFujKD3favQIiYMlv+9GvIty0v0FKqFQfnOVxADQkyYpeq6UIBVddrTlU1TgAIs03SivapGAQqwqkZ3R1uVAixH8yi1x5YVcEiARWCUl6c79m+Yr6d9aQArN0+JNn3GwtfHE4c3f2fL/nK4vdkawCLRV6lpEpzq1UPAY8VS9o5/xIHPl/q8OXwtkryzdL4Zt68zul2tr/t5VfsTuOvBY0vP1uCKRGbVursCKkhQ60T15xEuk64XTDzOIGaD9ILvW09Eo9G0/lWZXwKVEq4zR+nVpSreX9V/JDR9Xij3d6kowJJtWQH5tpW6OUhaIklPdLTGJMTCZeknYB/cLQl4SFHz1z6GGBphktk5uQxibjOIiQGu32CQmyd9h8gEbm4iXhslIKBYqq1Jk5vTKScTLks/BXftbInRmpadoRoxCXBxM2dmq46hAMuqctPFzFCAAiwzRKNDrKYABVhWk9qhF6IAy6HdS42zMQUcEmD1fXEK7t1P1AKsQH8fneSlAazdB89g/IcL0LJJXaz6TqppY2O+csjt2BLAIjegLV0mASNSf4cUX3d1kaKv8pIZnP1G6sO6iBg46mc938y83RWNdkTpPjsadRtze+1BCzYIK6p3RQDrikQ+F9Fxf+j6uIDD7ciX9Oa5+QeH5NPSS35EDwHVu9tO/SsC+tLSGCQlA6lpQGYmuTVORLMm1kv9Kv6lMJQ6SNLduKtnJNjk7a+tVVXeVhRgubw/FGxGqm4K1ZC3oOnyTHmntJv+8g0/Qb7zT4P7VQ9+HeonBxh8FnObXIYg4vZtFgmJDII0cQjUxCGIv48ATRy8+HScceuJq96PY9QIHqT2lTUad/sq5Etmgc1IKbGcaujb0DzR3xrbsMgaFGBZREY6SSUqQAFWJYpLp66wAhRgVVhCOgEACrDoMaAKWE8BhwRYny9YhdUbdmH4gO6YNv7FMgEWib4a+vosxNyNx7tjBmHM8Mq5act6LrWvlWwJYG3YzOHceQkYNW8mYuCz+hFPyecY3PxdAlhu9dTo1+1XnehBnBsOsUNwfoGU+pfslYU3XiwAJuT5z0FdkStqMOThDt24Rgp/7AzTf2k+8zWH/JQitbjG8PCpY50X/MKNZWYxSE0l/wDJqdD+m/ycnsFAKIWl+fiIaN9WRKtoUQ/+VfbJZG9dgsuc/xWJcQM0Tz4LVZ8X4Db1BTC8RrcF5YhJ4Nv3LNeWCgFW4t49cPl+hm6sKJMjb/afgJsUPVeuie2kM3vzgjZiiclML7Fjvn4LKEdPQ2KeP+5fTEf6tVjw8ffhr4pDNc197T8BfAJYGI4gVPqGg+kzEHyHnhDlLpWqiHz3esg2LgHD6++FFGlXvvkpxBp1KnV9S09OAZalFaXzWVoBCrAsrSidz5IKUIBlSTWddy4KsJzX99Ry6yvgkAArITEVT730PpQqNfr16ICJY4cgKNC3xC2EZy7exGfzV+LarVj4eHvgn9++hrenu/W94MQr2grAylcymD2Hg0ZiHBg9kkfNGvrA6O4WFg8OSUWnXbrkoH/D33UebCD3xa7QZ3FsOgdRkODT6FdWIdMtX9fvMdcQHM5/qPu5n3skfgzqovtZnQOcnFXkCjZGRPtPeLDyyj0sN26yuHELiIsjkVUMir3jl2txuRxo1VJAp44ivL0rF7xpbx2cOQZsqnTrIKldlP/RUi0QUaz4BrKjEjAUwqOQ/8GP5bKnEGClfvIeuIvHdGMdpXi7KWIwudmQr5wD2bmCSwuKNzUUkENlylQG+5DaZJrO/aB58jmI3n5mz2NoIJOXC8XyL8FdOFrisaZRa6hHTYfo4WnRNa0xGQVY1lCZrlERBSjAqoh6dGxlK0ABVmUr7BzzU4DlHH6mVtqGAg4JsIi0uw6exoSPF4HnC8JEalYP1qYVenq4oUmDWrh1Jx4paQU3TsnlMvzw5QS0b9XINrziRLuwFYB18jSDLduK1JvyFTFhfMlokYvfc8i6K4Ep8YVkDPbZrPNYW9cgbAzpiwuLOGTHSv2+eGoHzkTElerZ8T7NMMVPutkt9RKL6yslUOYRDjQfX4SuWeiMPHrEaOsRXb8J3LnL6gE8Cy0BhgEaNxTxWEeh0lLEFGu/g2yf5AeCy5RTvoMQWVCLjHkYB7eZo/RMyn93NoT6LU02kwAs8VEqHo19FowoATnlpPngoxz/dweBu/fjGcTGsXA5uQMdbi6Eq5hrsn7l6ShycvDtukHTcwiE4OrlGWqwLxN/Rxs1x6ZK0LjgYDBQPz0C6t4vaP9sj40CLHv0mnPtmQIs5/K3vVlLAZa9ecw290sBlm36he7KMRVwWIBF3HXx6m3MnPsrrt68V6r36teugZmTRqFpg1qO6WEbt8pWANaPSznEP5BeYHt0FdG5kz7AEgXg+IccBI3UL+O92xiTs0encm/3CG2K4J3NLBKOSABqT604fN9bigAq7pb5gZ0xyLO27uO7W1k8OCiND+0ooNYzlql/RUDVjZsibtxikZxs/ku7l5eIaoEiAgMAd3cRCQ8JDJP2bOjokYi2Du1FNGpoGVvIGoZuHVR3GwT1oLHaLdyMYZGVBXQ4MEmvFhbfpJ02ZczURgCW8s+fkb9OuqmUD4uE8sMlpk5hV/1I0fV79wiwAkh9OAKvijY/PhEvpH+CWurLJttFIpzEkEjwoTUBEmGlVkJ2ZAeYnMxS59A0bgO+2yCQWmbmNPnBrZD/pn+hB5lH9PCGaswM8PWbmzOtzYyhAMtmXEE3UooCFGDRo2HLClCAZcvesZ+9UYBlP76iO7V/BRwaYBW65+K1Ozh57ipi7ychOzcPbq4uCAsJQLuWDRHdtJ79e9GOLbAFgJWcxGDhD1L0FZGTFG/39NBPe8tJAM7Pk9L6FD4irr59Be+nSilJgz3r4NvATkg+w+DmWmnOJBb4o/FNHHzsAASmZDrdX6FPoZVLNZ0ni0dw1XuBR2Bz89LwCIi4cZPBtRtATAwDlap80CokWISfv4ggLaxitLfEBQeLkBfJcCzcOKmPdfgog1NnygZZfr4iOnYQEd1SMDiPqUdamzo4awzYFCl1kNwIqPzwJ2SpXLBtO4vLVwrsndD1OMJWv683df7Hv0AIrmHScgRgZb7+LMQ0qfC3vRX8NmYoSRs9fbYgKo8U6DeldctejT5ZS/W6qt18gLBIILwGEBIBISwKQmhEqWmBJL1TtvMPsAmxpS4phNXSRmQR8Ij8LLBZmUBuNpisdDDZj4DsTCD7EZgc8k8WIIpglPlgY2+UmJOPagz1ax+C1L2y90YBlr170PH3TwGW4/vYni2kAMuevWc7e6cAy3Z8QXfi+Ao4BcByfDfar4W2ALD+/ofFsRMScKlfV8DwYSUjhBJPMIhZL0Ep/8YCdj1zHl+kn9Y5YKx3Y8zwb4PitxWSqkB7PAC2aSLWt/oXaYJSz2lXIl6AD6vQfibywNEPOKBIDa3W0zVQeJffz6t/Z5F9JQbx8romDXZRiIiqLaJuFBBVS4S/v3nQLDePwfGTLE6cAAhAK625uRGQBXRsz5sFsuR/LIZ870a96ZWTF+BoSmPs3MNAqZTWJnW4pmWMhCxRishUP94P6mHvmKRNtbtnkPPVFF1fUa5A/ld/QLTz4u3KfAYXLzM4dZbBgyJRiKaIEhYqokZ1EU3driNccx2KmgRW1QKpZWVOk106AW7nH+BunDdnuElj1N0HQT2wIDrPERoFWI7gRce2gQIsx/avvVtHAZa9e9A29k8Blm34ge7CORRwSIBF0gYH9H2cpgXawRmuaoAl8MAX33B6oGPYYAENG5QEWLc3sHh4XAJdEb0FLGt+Aj9kXtIpPdm3Jd7xLUhJIoXci6Yb7nMDVDLgtcmZGJWyGxdVqdp+fqwLLkUM082ReZvBpR8lUKbwFdF6quHb28py8dlzDE6vv4HxKW9gre8UnHTrXaI7ywLVw0XUqQPUqSUgPFw0qxSQfMNP2ogXMaox+DpNIHr5atciReDPX2Bx+CiQnFJ6VJanp4juT4po0VwA2ZMpzVDq4KNOQ7Asf2yJdLfC+fp5bEOXW9/optdCqM9/h+hpnA56L/kYmjOHdWM17XtCNWKSKVu1uT6khBdJJT1zFrhyzbTaZwo5UKOGgIgIRnu5QY3qAkih/spo7P3bkP27FrKTUnpuRdcR3NyhHjEFfPOOFZ3KpsZTgGVT7qCbMaAABVj0WNiyAhRg2bJ37GdvFGDZj6/oTu1fAYcEWI27vKL1TO3IcAzo01l7E2Ggv4/9e8sBLahqgEXSy9auk2CRh7uIKe8ZhkXnF8iQEy85ofGrPGb5HcKa7Ju6D78I6ICXvQoKh1/6iUNmjBQBdNYFSJQBLw8XEBGlxvjkg9iSexetXYKwObSvbo77e1nE/iNRHJI6SFIIy9OUKgaLF6gx7u4oBPAF6XU/+X+DGy6tEBAgoE4UUFsbZSVAURD4ZXaTb18N+V/L9caL/kHgazWCWLsRhFqNwEfW19bHOnwMuHu3dEJVLVBA925Aw/pl18gydOtgtmd1fOy10qgdn6c9A4VSqrmkfmYU1L0lgGhoAjYtCa7Th+s9IpFefK2GRtezpQ7pjxicOQOcu8CCFPAvq5EU2ho1RNSKBCJqiCDRVtZubHoyuJ3rIDv8NxiVdIunqfsQXd0gevlDqBYGzbC3IQSGmjrUbvpRgGU3rnLajVKA5bSutwvDKcCyCzfZ/CYpwLJ5F9ENOpACDgmwnn55Km7HSjVxOI7F4+2a47k+nfF4h+aQy/TrHTmQP+3OlKoGWL+uYhFzWwIqnTry6Nm95Is6idQ6/gEHsUhaX9uPNRibtQf/5Ep1e76v9gT6exRcCHDvbxbx+6W578iB6wrgsQ48evUoWOOXrKu4okzFN4GddL67uoxF+jVpXNQzAkI6lq/o+fYdLEL/nY+OuX/p5tXI3ZD2xnx4WvDCAhIho/jlC6PnTpQptDcC8rUbIc2/CfYlNMGp6wVRWoYaifDp1VPQRocZaoZSBxcEfI9YRQO97gRI+vpCv0B/9gr0ypIKsQve/sj/am2ZNsi3rYR86wpdH5Iml//hT0bttoUOag1w5QqL0+fKhoeFe60TJaBVtIjGjawPrErTi8nLhezIdnC7/gSjUmoj/ETvgIJIP/Jn3wDtvwXys7cfBC8/iAHBtiB/pe+BAqxKl5guUEEFKMCqoIB0eKUqQAFWpcrrNJNTgOU0rqaG2oACDgmwiK6Xrt/BXzuOYPueY0jLyNJJ7efjhad7dtTCrHpRFb+e3QZ8aNdbqEqAlZHBYO4CfZj59hsCSBRQ8ZYVy+DiIqmva6CI6Ek8Bib8g2PKh7rua4J7obNbQZRH6kUW11dJICqVBU66AaEhIl5/TYqoyhU1cGekiujHyE2HRQqtNx+vgUe46W5OSmKwa/5pvJom1WsqHE1gjWrqIgi+gaZPWEpP9tZFuM6ZYPY8pNj6Q48GOJnZFDFsEzyQS7cwFk7asKGAXt1F+PtJMMXQurs9XsB27zF6eyEF4slYMnLRD+QmwoKIIw8+AzOTntPrqxoxGZr2PUq1xfX9oWAfFaR8kmYvxdv3HeBw6DADlbpsN5EUzlYtBbSOBnx8bAdcmX24nGggBVhO5Gw7NZUCLDt1nJNsmwIsJ3F0JZtJAVYlC0ynpwoUUcBhAVahjRqex+ETl/DXv4ex9/BZKIu8yTWqF6kFWU91bw8fLw96MKpAgaoEWHv2sdh3QAJMJF1qzEjDqXoJR1jc2Vwkjew7wQAAIABJREFUra+FiHrDeHSL34xr6nSdcttD+6GZSwEcUqYzOP2lBL3IzDv/O2ZTJ/EgBcyLt7wkBmfnSGMYmYj2n/BgTKwLReZb+VMuhp1/Bd6CtK+i6/ChNaGatACim7vZHmcT4+Dy1dtg8nLMnqP4QCXjijh5A9xRNEWsohHuyhsjj/XS1sQicKXrkyI85flwmTkGbKoUYZkoi8DX1X7VTUcKzz/bX0BkhKRvbByDn5dzpEyXtj3/6Gu0y/1bN4Zoopyhf5Ne4UPuwlG4fD9Db7t5czfZdPH2hEQG69YzZdYdI7rWry+gTTRJJxXMqn1mMefTicxWgAIss6WjA62kAAVYVhKaLmOWAhRgmSUbHVRMAQqw6JGgClhPAYcHWEWlzMnNx7/7T2LrzqM4fvYqxP/eZuVyGbo+Fq2FWZ3bNbWe+nQlVCXAmjOf06sD9NwzAlo2N5yqd3Mth+QzUs2gyH4CwjoLaBW3Fg/5PJ0nj1YfiAiZdAPbiVkcNDnSuIOuQA4HDH1eQKOGxm869KkjovEY0+tfXbrCwG3Jx2iaf6jM08XXaw7l/6Ri5uU5ikz2Iy28YlMkiETGK1+fBb5ZB5Dn7O0rYG5fBhdzBezd62A05B7G8reHspqIkzfUAq37bo3Rz2MLasds0ptoXuCPuC+vp/2sS2deC7oMtYOHOO3NhKSFaO7iveSRet2U734Nvn6LEkNdFn0A7tJx3eeax3pD9eLE8htjpRHERmJraS0wQEB0SwYtWwggKZa02bcCFGDZt/+cYfcUYDmDl+3XRgqw7Nd3trRzCrBsyRt0L46ugFMBrKLOTErJwPa9x7Fj7wmcvxKje3R5n34xakc/AFVtX1UBrFsxLFaslsKaFAoRkyfyIDetGWokKopERxW2pq/z8IoUUevuCqgggairES/Am5Wqol9ZxiHjmjTuggvwQAa0bS38n72zgK7i6OL4/+2TCJJgwd0KFLfiTnFtkRaHIsXdrRQoTnEp3n5AKQ6lOIUWLVAKgeLuGkjykmf7nX00u3lEnu2T3b17Ts9psjN35v7uwPf1d2Zm0ahBQoF1/Wc1np8V2mevbUH2Oo7df2U0AocnH0Szp9/ZpGCs2cK6U0pzYq/N701la8DQZZTTSyBgRj+ob12xHePzXuDGSeph7l2zSi3uH66v6qVw7NLpCcTrsD9le+xN1QXZs3G7rthEj3/Gj7/2RwY3/rvzrNurYfgo9gz/2vxxecT2/tZmOole3j5iPsw5be/acicHsfree6DClm0MXr1KeDm7Wg0U/fj93Vbc/WL0yIcACSz51FKumZDAkmtl5ZEXCSx51NHXWZDA8nUFaHwlEVCswOKKbDSZcercZWz59Sj2Hnn/H7IksLy7/H0lsDZuYhB+RRBYpUpwAiTxnU5mI3eBu3BHFVQsyk8yw6A2Id+9H22APcz1/guYcc/9/QzuHxDGuasBrgQAadOxGNA74XjnZqgR80IQEIW7mRGa3zHh8MeO56j6WzcEstH8+MawnDBOfH80Tjd/FDSXBWFj/TNQry24r/A5+uiWfQPN+WM2zU3VmsLQpo+jIaztxNil9ViTBwuy/oA6tVmULe3YEbjoaBUWLGYQGaVCwdi/8NWroTbzjpmwCpaMwt142p1roP1VqLE6R15EjlrCH0V0KmkPNeYuad+3n8Hpv5hE58Vdxt64oQXBiRxZ9dCUKKwXCZDA8iJsGsolAiSwXMJGnbxEgASWl0DLfBgSWDIvMKXnVwQUJ7AsFhan/76C3QdO4sDRv/A2UviP/dLFCmDtPOd3pPhVRSU2GV8IrGi9CtNnqWGJt7GpW2czciSxMyXilgrhS4UjWSkyA8UHmPDYHI0y93/miadVB+Ji9jY2FXj9rwpXVgl93zDAyaD3TbgdXylTCHLKGAWc+cZWlHH3XzFJ7AqLP9DrNyoYxg9EbsNFWyEzdhm4L+ZZpVGsHgEzB4J5IOw45H5vbDcIxkr17a4czdbl0O0T8uU6cEcGuaODYjzcLi31zXCobl2B+vZlqF4+TTbs1jLLUKl1HnAXkDvzxL8Pa8izzshkvsN3N1ZpBOMX/fmfP7y8PajbYLwqU89tgcXVa/lKBjmyscidC8iVi0VYBtbpe6ju3FNhy1YGbyIS7rriuDRrzKJAfsd28DnDkNr6DwESWP5TC5pJ4gRIYNHK8GcCJLD8uTrSmRsJLOnUimYqfQKKEVjXbz+wfpVw98ETePpcuNw6c1haNPm0EprVq4IcWcOkX1GJZeALgXX8BIPf9gu7otKlZdG/T9L3TD38ncHdX4X2YWVZ5PvMjCuGV6j9aAdPPI8mNY5lsz1GZ9IDpycIUopTCfu4u9NVQPMmZpQsIciXV+EM/l0rjBOcBSjR3+RQRf+ZuhGf3LO9hDym6Vew1Gtl2//tawRO6wPuaFzcw6oYxPadCkuhUkmOpT6+FwHrbO/MsmTPh5ghcwFdgENzdLaR6t0bMDfDwdzi/rkC3LkGtfn9XVpPKnRA6g7tnQ3Jt//9KIODRxiUi/4VrSJmCCzUGuin/QykSAX1heMIWDJeGEOjRcjKX/EkGm4LrI2b1QgPt5VO3KX+OXOwyJUTyJWTtX6tUpXQS1nnE2tQYc9eFc6dT/x2/9KlLKhXl0WAzjm55zJQ6ugzAiSwfIaeBnaQAAksB0FRM58QIIHlE+yyG5QEluxKSgn5MQFZCyzunqtfD560foHw6s37fBl0Oi1qV3l/afsnpYqAYZL4r0Q/LpxcpuYLgTV/EWPzdbZP61hQqULSu1Su/sTg5T+CKMjTwoJM5S04EfMEnz35jS9FqYAM2Jm5YYLScF8i5L5IGPccDwTeqoHixSxo2UwY985uBo/ifRUxUwUL8sR7n1TN7/5xG4V+6m7z+m3WEtCMEcRM/JeJfUGQ1QUidvBsWHLkTzCM+vJfCJg/0ub3bLqMiBmxEGzKEK8uRfP1a2DuX4OqZiO3x129jsGt2wwmPG2OlJY3fDxj084w1vsCuoWjobl0mv+9tkYjpOg1Ao9f6d0SWI8eq7BkedKXrMcNqNUCObJbkCeXCjlzWay7tbjn2nUG23aqEBmZ8O+tNKEsuI8RcAKMHmUQIIGljDpLOUsSWFKunvznTgJL/jX2RoYksLxBmcYgAu8JyFJgbd/7J3buP46TZy/zXxrkki36UW6rtGpQ6xOkSsltg6HH1wS8LbAePFBh2UpbeTB8iDnZr7F9KKCK9zUhRTZgT/Q9dHt2iEdYKzgb1obVToD06o8MXl4UBNglHfBAC+vRt2GDhJ1f/yxUI/KeICUKtDEjfcnkRYQpxgjj8O5IZ3jAj2tQB8M0eSUQki7J8nI7mgJmD4LKLOzwYlOkRszIReDkVNyjenALgTP6Q2WI4X/HBgYjZvh8sJly+Hr5uDV+VLQKC5cwqPBkHT59t4qPZUkZgtiRixA0+kub+CknL4cmfyG3BdbKNWrcueuaNE+RgkVUvK9axp9gpYpmfFqbxJVbi0KCnUlgSbBoCpsyCSyFFVxi6ZLAkljB/HS6JLD8tDA0LVkSkKXAKlJduEg7fdoQNKpTAS3qV0HeXFllWUQpJ+VtgbVtJ2Nz7KrQRxa0bZX07qsPjwCqGBblvzWDUQPr313DkJfHefwtU+TFvAxVEpTjwyOIDzTApf9O3fXrbUH6dBawZuDEGDVgEcRG6RFmBKRJXkg8mbsMea5ushnzxedjEVyzqt1loTl3DLrltvdXcReYxw6dDzZFSjARL6Gb1hfM6+c2sWIHzYQ5f3G78aXQgBNJG1e+w8RnzW2ma86SE+pHdwWplTUP0sxeaz3S584OrA+/fskNwN299vwFoNe7JrW4u7NaNLMgS2aSV1JYc2LPkQSW2EQpntgESGCJTZTiiUmABJaYNJUbiwSWcmtPmXufgCwFVvFaXVGtYnHrbqsq5YtBw31Dnh6/JOBNgWUwANNmaWA0CijatbUke8n1h5ewp8rOouh/92UtfnsJ3776iw/WNXUhfJO2fALOETdVCF8mrMG3KuD4fxsAG9W3oFxZC97eVuHSEqGNNhWLsmOSvpeLGyT6/D9It2wwd50W/9zLVgvpR49wuNbaQ1ug3bTYVt7kLgRD7ynWHVrMo9s27wzdRsNUurrD8aXQ8MgxNdJtnYny+l+TnK6hbT9kaNbKbYE1f4kaz58JFcuXx4IO7d4L1GfPVbh7T4V794F7d1V4ncjF7B9OsE5NFlUqJ79OpFADmqPrBEhguc6OenqHAAks73CmUVwjQALLNW7Uy5YACSxaEUTAewRkKbBevXmHtKGpvEeRRnKZgDcF1tlzKmzfJUii4CAW3PHBpC7K5pK6f4DB/XgXvmeqaEGepu+Fw9TXZ7EgQvjq3+DQEhgUWiIBC7MRODVGuMid2yezP/j9Zqu4HWAPjzC4uyfexfLFWRT8ImkxodJHwzyyG1LGCruj3qgzQDX5B2hDnDseq924ENoj2+zW0Ni4E4wNbI/V2e0kgQYsC2xf9gBf/N050dmy2gDETN+ETFnSuiWwzl9QYet2W5neu6cZGcMS3zkVGaXCnTsA96XBu3dVVsHFzZV7smVl0bK5BdwHCOhRNgESWMquvxSyJ4ElhSopd44ksJRbezEzJ4ElJk2KRQSSJyB5gXXv4VNrhtmzhEGVnIlIhgPLsrj/6P1X2XJkFe7/ocXjeQLeFFjLV6px/4Gw+4XbucLtYEnuubKawesrgljK18qMsNLv+wx/cRw/Rl7ju09KWx5dUhdKNNz5mWronwtjnwwE3qiBgAAWo4eb8eE4uRtbkLly0kcbY+d9hzRXDvJjcTO62Hw+8tX9yPmisSx0SydCc+HPJPuaSleDodsY52NLpAd3H9absaOQP1q4tD1u6qZK9WFoNwiZ0wa5JbBmzlXjLbf97r+n6McWfN4i6Rp/iC4mVoX791WIigJKFHe8n0RKQNN0kQAJLBfBUTevESCB5TXUNJALBEhguQCNuiQgQAKLFgUR8B4ByQusuPuuzu1bjgCdNgE5i4XF+JnvL2ieNKxLomSj9TEoW7+n9V34kdXeo08jwVsC6+VLFb5faLv7ZWB/M9KEJC+wTn+jhinepdklB5sR9N+OmR7PD2NXlHBP0vwMVdAiRd5Eq3p9oxrPzwny4ooOuPvfcu3RzYyHyxmYooX3xfqakDJb4gtEdeZ3BK381ublmYytUWRCN9dXlMloPTKovv1vghjmfEURO2A6oBZ2kbk+kP/2fH7kPHJuHJZggvphC8DmLuiWwPrzOIO9BwQRyjDAoP5mpE5FO6j8d0VIY2YksKRRJyXPkgSWkqvv/7mTwPL/GklhhiSwpFAlmqNcCMheYJnMZnB3YiUnp0hg+W45e0tg7dnP4MQJQSDkysmiS8fk7w6KjVDh7BRBejEaFp9MFvq0erIXf8Y85uGtC6uNmsGJW6fHxxnc3i6M/0gN/BP4vmvd8iyYQ4K8UnHjTDJDJTTnx2DevIRmXDdojJH87x5p8iJ27NIkj6I5Wl1VVCQCZvQF81T4oiF3mblhyDywQc4dS3R0TH9rZxrxFVJH3BHYavPi75bLUL2axWWBxe2cmjWHQaxBqHGF8hbU/5R2Uflb/aU4HxJYUqyasuZMAktZ9ZZatiSwpFYx/5wvCSz/rAvNSp4ESGBxl2HTDiyfrW5vCCyLGZg+W43oeF95a97UjJLFk9/98vISg6vrBIsUkodFkR6CwKr7aAfCDa94djszN0SpgAyJsnx3T4WL8XaAcZu6jv3nhEqGssj4UJAbqfOy+Lh74nJNM3s4dNfP8WMYocOBaktQrU12UWqoevkEgd/1gSoyApbUaRA7fAHYtGGixJZCEPW5o3j08368MqRCNJMK4QFVcDOwBDq1t6BiqQCXjhDuO8Dgj+PCOtJqgSEDzAgKot1XUlgT/j5HElj+XiGaHwksWgP+TIAElj9XRzpzI4ElnVrRTKVPgAQWCSyfrmJvCKzLVxhs2CQIBO7eqeGDzdDYORF37zcGDw4L/bJUtSBXQ2HXTLkHm/DQFMXzO5a1BfJoUyfKk5NoJ0erAVYQVQeCAZMK+DgWyGYSut3QAu+yscicmUWWzECWzCwyZ2IRdGwrdJsW2cT/NV1vfDKmOQIDxZMhzL3rCJg/ErEDZ8CSJbdP14cvBo+MVGHBYsZGeHKyadJIHUJDgMev9Pxl6vbm9+6dCjPm2B5drVWTRTX6cqA9dPTeQQIksBwERc18RoAEls/Q08AOECCB5QAkamKXAAksu4ioAREQjQAJLBJYoi0mVwJ5Q2Ct/YnBjZuCiCpTyoImjewf3wpfrkbEDUE4FfjSjPTFBFFU4O6PiGIF83QpexukUf93LjARGBfmaRD1UHhxJhB4qQaqRAMp4vmnvwKAFx/ItQA2GhOfNoeGNfABrulK4UnHGeDyEftRxejBBgaJHVYy8W7dZrA63u47buIF8qowrJ/GKYG1bTuDcxeEtZciBWu9+0or7+vEJFNnOUyUBJYcqijvHEhgybu+Us+OBJbUK+gf8yeB5R91oFkogwAJLBJYPl3pnhZYb9+pMPODHTDcpelZs9jfsXRqvBrmGEFglR5uRkDa9/24L1dmu7vGht2DnB2T/RLmrS0MnpwSZMaNQOAuA9SKFsJw0bmdWWZhWOvLwjHH0eX1aL6hXpUSawuvQvs+oT6tn5wHP3RYhSPHbHdPNa7HoFx5g0M7sJ4953Zy2fZv0tCCMqXFF45yrgPlljwBEli0QvydAAksf6+QsudHAkvZ9RcrexJYYpGkOETAPgESWCSw7K8SD7bwtMDiBAQnIuKeDBlY9O2V/OXtXFv9cxXOzxTkgzqQRfmJQr8XZj2K39/Ix03N6HAlxxfJknr2F4Mb8Y4ypv3YgsD8KjzaKswvUg38kcgmrhYRc1Exejsff3/K9sg1sKNDIs6D5ZN96JVr1Lhz19Ymdu5gQe5c9iXUTxsYXL0mCMu0aVkM6GN/7ckeKiUoKgESWKLipGAeIEACywNQKaRoBEhgiYZS0YFIYCm6/JS8lwmQwCKB5eUlZzucJwUWy8J6/xB3p1HcU6+uBRU/sS8fnv+twvX1gsAKLciicBdBPtwwRqDaw6183ByalDiR7bNkWUY/UeHveLvBdCEs0hdn8eioIDkyfmJBuhosHj9R4dFjFo8eq6z/PuBmK4RaXvDx95abiyqdi/i0dkoYPDJKhfmLGOjjfQCAuw+r79cWpIx/7vMDGPfuq/DDKtvdV60+s+DjwvbXnhK4Uo7iESCBJR5LiuQZAiSwPMOVoopDgASWOByVHoUEltJXAOXvTQKyEVjTx/aERm37H4wcSO6o1+CJ7y++nj2hd6JsDQYjRkxZZn0XfmS1N/krfixPCqzbdxisWivIIQ72yKGOff3t9k4Gj/8Q+mavZUb2usKxw79in6Hp41/5+hXTpcOeLI3t1vPkGA0sRqFZYHoWMS8EwZa/rQUZSthKDubpfQRO6MJ3MjKBeP3ddqRMZZub3cGpgUsEbt5isOZHW9Y5c7Do2inp3VRLV6jxMN6XJbkjq9zRVXqIgNgESGCJTZTiiU2ABJbYRCmemARIYIlJU7mxSGApt/aUufcJyEZgiYWOBJZYJB2L40mBtW0ng3PnBfFQpJAFrT93bAfMxcVqvLsjiKVCnSxIU0joeyD6Pjo+O8gnWTUoC9ZnrGs36Q/jftih1HAzAv+7ZyvunebQFug2LeabmktURmyP8XbHogbiEThwSIWjf9gK8qqVzahdM+Fdalf+ZbD+Z1vh1aWTGbly2L93TbwZUySlECCBpZRKSzdPEljSrZ0SZk4CSwlV9nyOJLA8z5hGIAJxBEhgfbAWSGB59w+HpwSWxQx8N0uNmHiXsHfuYEbuXPYlAmsBTo1Vw2ISBFbZsSZoUwpsNkXewIAXf/C/aJIiNxZnqGYX3p2dDB7F29kVv4MmmEW58Ql36QQsGAV1+Bm+qeGLATBVaWh3LGogHgHuOOq6H7W4cdt2/Xx4H5bFAnw/X43XEfG+XpmfRbu2tPtKvGpQpPgESGDRevB3AiSw/L1Cyp4fCSxl11+s7ElgiUWS4hAB+wQkL7Dsp0gt/JmApwTW1Wsq/LRB2DHD3Vc0dJAZqg++7pcYm6jHwIW5Gv4Vd1dVmVG2AmL528uY8Oo036ZDqoKYmq6CXdQf3q0Vv0O6ohYUbPfBDjGjAUGDmkFlEs4d6qf8D2yaDHbHogbiEkihDcK4qUZExftq5If3YZ05y2DnbmH3Fbfevu5hRsYw++JU3NlSNKUQIIGllEpLN08SWNKtnRJmTgJLCVX2fI4ksDzPmEYgAnEESGDRWvApAU8JrF+2qPHPJcFWVfjEgvp1HTs++PS0Cjc3C/IrbRELPupg23fGm/OY++YCz65fSDEMT1PKLssPv24Yv0OuRhZkqWI7jjr8NAIWjOabWTLnRMy4H+yOQw3EJ5A5bRCu3mAxc4HJJniObCy6djbDbAZmf68Gd/F73FO8GIuWzWj3lfjVoIhxBEhg0VrwdwIksPy9QsqeHwksZddfrOxJYIlFkuIQAfsESGDZZ0QtPEjAEwLLZAImT9NYhULc072bGdmyOLYL5tYWBk9OCbtoctSzIFsNW7E0+uVJrH73Lx9/fJqy6B7i2FcBT41XwxzvaGNckGJ9zEiZ3XaOuk2LoDkkfO3QWLsljC17erAiFDopApzA4nZUrd0Uk+A+rMqVzNBpVTh0RFg3DAMM6m9G6lSOrTsiTwRcIUACyxVq1MebBEhgeZM2jeUsARJYzhKj9okRIIFF64IIeI8ACSzvsaaREiHgCYEVflmFjb8IO6jShLIY2M/xXTAX5mkQ9VCYbJFuZoTkt5UQvZ//jm1Rt/lGc9JXQquU+R2qcfhyNSJu2J5lVGlYfDLJDNUHHxYMHN8ZzLMHfNzYft/BXKi0Q+NQI3EJxAmsx6/0WL5CjXsPkj+PWvETC+o5uOtP3JlSNCURIIGlpGpLM1cSWNKsm1JmTQJLKZX2bJ4ksDzLl6ITgfgESGDRevApAU8ILO4LcNyX4OKeqlUsqP3BDqqkkuYufz81Rg3WIsiJchNM0ATZ9vjy6X4c0QuWa1VYLdQNzu4Qy3u/MXhw2NZUheRhUaSHrWRTvX6OoFFf8DFZjRb62dsArc6hcaiRuATiC6yItyrMX8wgNpGddNyoAToWg/pbwN2RRQ8R8CQBEliepEuxxSBAAksMihTDUwRIYHmKrLLiksBSVr0pW98SIIHlW/6KH11sgRVrUGHyd8LuKw5w368tyJDesfuv3t1T4eJCoX9gehalhibcvdXw0U78bXjJ129rpvooF5jRoXq+vMTg6jpbgZW1pgU5P7Wdo+boTujWz+Njmj8uh9jekx0agxqJTyC+wOK+Snj9BoN1//tgy9x/w9apyaJKZcd3/Yk/W4qoFAIksJRSaenmSQJLurVTwsxJYCmhyp7PkQSW5xnTCEQgjgAJLFoLPiUgtsD6+4IKW7YLAipjGNC7p+2l28kl/OQ4g1vbBSmRvqQFBdoklF+VHm7GHeM7PtThrM1QQBvqEEtDhAp/TbGVbIW7WhBawHacgEVjob54ko9paNUbphrNHBqDGolP4EOBxY2w7wCDP47bSizui5fc3Vca4UOW4k+GIhKB/wiQwKKl4O8ESGD5e4WUPT8SWMquv1jZk8ASiyTFIQL2CZDAss+IWniQgNgCa93/1Lge736pWjUsqPbBl/3spRP1UIWoRypEPgJCcrNIVyzhMbAi99bjjSWWD3U+WyuEaYLthebf39ungjFSBZNeBbOeRcEvWajjHzezmBE0sBlUhhi+j37CKrAZszk8BjUUl0BiAstsAZavVOPRI+HIadNGZpQuRUcHxaVP0ZIiQAKL1oa/EyCB5e8VUvb8SGApu/5iZU8CSyySFIcI2CdAAss+I2rhQQJiCiy9XoXvZqrBHe+Kewb3NyMkRFyZwLIsst1dY0PlQc6OUHGfqBPpYa6eR+DcYXw0S2h6xExdL1J0CuMKgcQEFhfn7TvhPqx0aVn06222fq2QHiLgDQIksLxBmcZwhwAJLHfoUV9PEyCB5WnCyohPAksZdaYs/YMACSz/qINiZyGmwDp9lsGu3cJxrmxZWHTvJv49RK8tsfj4niCTghkNrudoJ2oNtVuWQ7v/Zz6mqWpjGNr2E3UMCuYcgaQEFhflxk0Ga39i0LaVBYU+cuy+NedGp9ZEIHECJLBoZfg7ARJY/l4hZc+PBJay6y9W9iSwxCJJcYiAfQIksOwzohYeJCCmwFqxWo2794StLw3qWfBJOfFlwm3jW1R+uIWnkkWdAmeyfy4qpcBJX4F5dIePGdvrG5iLVRB1DArmHIHkBBYX6cI/DIoXE3+9OTdLaq00AiSwlFZx6eVLAkt6NVPSjElgKanansuVBJbn2FJkIvAhAdkLLIPBiPPhN3Dj9gNEvItGutBUaN20Jq0EPyEglsCKjFJh+izbi9GHDTaDu1Bb7Od87As0eryLD1tYlxb7szQRb5h3bxA8TBBirIqBfs42ICBIvDEoktME7AkspwNSByIgAgESWCJApBAeJUACy6N4KbibBEhguQmQulsJkMCihUAEvEdA1gJr064jmL9iC16+fssTLZg3O7asmGRDuP/Y+bh68z7mfdsPBfLQJdneW36AWALr+AkGv+0Xjg/mzsmic0fxjw9ybA7rH6Dd0wM8pkqBmfBzpnqiYdP8uQe6H2fz8cwFSyB2wAzR4lMg1wiQwHKNG/XyLAESWJ7lS9HdJ0ACy32GFMFzBEhgeY6tkiKTwFJStSlXXxOQrcCauWQjVm3Yw/NlGBUsFhaJCayFq7Zi0Zrt6PZFQwzsLu5RMF8X2N/HF0tgLf1BjYfxvgTXuKEZZUuLv/uK47k16hb6PD/Ko20YnBPLwmqIhjpg2USoz//BxzO2+ArGOq1Ei0+BXCNAAss1btTLswRIYHlC4qNQAAAgAElEQVSWL0V3nwAJLPcZUgTPESCB5Tm2SopMAktJ1aZcfU1AlgLr1Pkr6DJwGjhp1apxDbRrWQfZsoShRO2uiQqsfy7fRNuvJ6FY4bxYv2isr2uiqPHFEFgRESrM+l44Psh9AW7EEDOCgpwXWNoDm6A+sR/QR0IVHQlTnc9hbNjepiar3l7BmFen+N99maoApqerKFrdggY0gSpWz8eLHbMc5qy5RItPgVwjQALLNW7Uy7MESGB5li9Fd58ACSz3GVIEzxEggeU5tkqKTAJLSdWmXH1NQJYCizsSeODYWQzu2Qpd2jTgGRep3ilRgcUdMazavB9CQ1Liz+0LfF0TRY0vhsA6cozBocPC8cEC+Vm0a+va8cGASV9BHe/ydEuaDIiZ8j+bmsx58zdmvvmb/13vkKIYlaa0KHVT37yEgJkD+ViW0HSImbpBlNgUxD0CJLDc40e9PUOABJZnuFJU8QiQwBKPJUUSnwAJLPGZKjEiCSwlVp1y9hUBWQqsai36401EJE7sWoTgoAC7AotlWZSo3c3a7sLBFb6qhSLHFUNgzV+sxvPnwtcHWzQzo0Qx53df4d1rBA9LeFQvZsAMWAqW4Osz/tUp/PD2Cv/z6DSl8XVIUVHqp9u+Eprf1vOxTBXrwdB+sCixKYh7BEhgucePenuGAAksz3ClqOIRIIElHkuKJD4BEljiM1ViRBJYSqw65ewrArIUWMVrdUWa0FQ4snmuDdekdmBxjbg+Go0aZ/cu81UtFDmuuwLr6TNg4RINz06tBkYONUGncx6n+vRBBKz6LkFHc7laiO08gv99/+fH8EvUTf7nGekq4otUBZwfMJEegVO/BnPvOv8m9quxMJeqKkpsCuIeARJY7vGj3p4hQALLM1wpqngESGCJx5IiiU+ABJb4TJUYkQSWEqtOOfuKgCwFVqWmfRAba8DpX5da78GKe5ISWHfuP0HD9iOQLXMG7F1PX3vz5mJ0V2AdOMTg6B/C8cEihSxo/bnFpRR0a2dCc2Jvgr6sRgv9zM1AQJD1XYdnB3Ew+j7fbnlYDTQIzunSmDad3r1B8DDhIwLcHjL97G1AUAr3Y1MEtwmQwHIbIQXwAAESWB6ASiFFJUACS1ScFExkAiSwRAaq0HAksBRaeErbJwRkKbC6DZmBE3+FY+n0wahcTjjalZTAmrFoA1b//Bsa162I70Z190khlDqouwJr5lw13r4VJGWbzy0oXMg1gRU09HOoIt8kWgrDFwNgqtLQ+q7J4904G/ucb7cpUz1UDMzkdgnVJ/chYI0gUM15iyB2iO0uQrcHoQAuEyCB5TI66uhBAiSwPAiXQotCgASWKBgpiIcIkMDyEFiFhSWBpbCCU7o+JSBLgbVr/wkMn7wUWTKlx5LvBiJvrqxWyIkJrF0HTmDE5GXg7sFaNWcEypX8yKcFUdrg7gisBw9VWLZC+PqgTguMGmYCI/zKYZzMk/sInNglyfbmPIUQO3Se9X3VB1tx0xTBt92fpQkK69I6PFZSDXUrpkDz12H+tbFxRxgbtHM7LgUQhwAJLHE4UhRxCZDAEpcnRROfAAks8ZlSRPEIkMASj6WSI5HAUnL1KXdvE5ClwOJkFLcL6+TZy9Bq1GharzLKlSyEYZOWIFf2TJg0rCtu3HmIvUdOW9twT4Na5TFjbC9v81f8eO4IrD37GJw4KRwfLF6MRctmrn19UHN0J3Tr3wsq7rFkzAbm6QOb+sRMWAlLxuwodn8DXppj+Hdnsn+OLGr3j/kFDWkBVdQ7Pm7MyIWw5BDnbi3FLzQRAJDAEgEihRCdAAks0ZFSQJEJkMASGSiFE5UACSxRcSo2GAksxZaeEvcBAVkKLI5jtD4GwyYtxeHj5+1irV2lNKaN6YHAABdu/rYbnRokR8BVgcWywIzZakRGCccH239hRv58Lnx9EIBu2URozv/BT9XYsjuYC8ehvnFJ+F2dVjC2+ApZ76y2SelGjnYIYoSL5F2pOHPnXwRO68t3ZQOD399/pRLycyUu9RGPAAks8VhSJPEIkMASjyVF8gwBElie4UpRxSFAAkscjkqPQgJL6SuA8vcmAdkKrDiInMDauP0wzv5zzSq14h6dTotSH+dH2+a1wAksenxDwFWBdfuOCqvWCmcFAwNZjBhiBiNsyHIqoaBBzaDSR/F9YkYvBXPvGnTrZglSKWUInk39ER892CCsIzC4nauDU2Ml1li7ay20u9fxr8xlayG2i/DlQ7cHoABuEyCB5TZCCuABAiSwPACVQopKgASWqDgpmMgESGCJDFSh4UhgKbTwlLZPCMheYMVRtVhYvHwdgcgoPYKCApAuTYj1eCE9viXgqsDasZvBX2cFW1WmtAVNGrp2eTtz5yoCp/URRFVQive7n2L1CBrWCiqDID6v9xmHcilu8m0zqoNwLntrtyEGTO8H9e0rfJzYTsNhLl/b7bgUQDwCJLDEY0mRxCNAAks8lhTJMwRIYHmGK0UVhwAJLHE4Kj0KCSylrwDK35sEFCOwvAmVxnKcgCsCy2IBvpupRkyMcLyuS0czcuV07figZu966Lat5CdtKlMNhq5jrD/r1s6E5sRe/t25qjVQq0IW/ueC2lAcytrM8YQTa6mPgnUHWLx30dM3AalC3YtLvUUlQAJLVJwUTCQCJLBEAklhPEaABJbH0FJgEQiQwBIBIoUACSxaBETAewRkKbAGjFuAAnmy4etOzouFv8Nv4MLlm9Co1ShWKA+KFsrjvWoocCRXBNb1Gyqs+5+wey5lChZDB5ldvi4qYO4wqK8Kd6UZvhgAU5WG1mowNy4hcNZAvjJHcmdG81Y1+Z/LBYZha6YGblVOc+YwdCun8DEsOfIjZuQit2JSZ/EJkMASnylFdJ8ACSz3GVIEzxIggeVZvhTdPQIksNzjR73fEyCBRSuBCHiPgCwFVpHqnZA7R2bsWjvVYZLcEcORU5Zh14ETNn2qlC+G2RO+RnBQoMOxqKHjBFwRWJu3qXHhH2G/UoUKFtSv49rxQRgN73c/mYz8pPWTfwKbNoz/OXB0OzCvnlp/3lYwBzo3q8K/qxuUHasy1nI84URa6tbMgObkPv6Nsf4XMDbp7FZM6iw+ARJY4jOliO4TIIHlPkOK4FkCJLA8y5eiu0eABJZ7/Kj3ewIksGglEAHvEZCtwAoK1GHtvFH4acsBXLp6GxazBXlzZUWrJtVRsczHCQhv3n0U42a8P0bGtQtNnQIXwm/CZDajfs3ymDmul/eqoqCRnBVYFjMwZboGBsE3oUc3M7Jmce34oPrfcwj4fjhPnE2fGfpJa20qoPltPXTb36+NVcXzYVC98vz7VinzYU76ym5VLGjoZ1BFRvAxYgbPgSVfwjXq1iDU2W0CJLDcRkgBPECABJYHoFJIUQmQwBIVJwUTmQAJLJGBKjQcCSyFFp7S9gkB2QosjqZKpQLLJhQbfbo0R68OTW2At+87GecuXkfXtg0wqEcr67vb9x6jY/+pePn6LTb/8A0+ypfDJ0WS86DOCqzLVxhs2CRc3p4mlMXAfmaXEWm3rYB2r/BVQVPlBjB8KRwZtK6jNy8ROKotVCyLOZ8UwTfVSvDjdQ8pgvFpyro8PnPvOgKnfs33Z3WB0M/ZBjD0gQGXoXqoIwksD4GlsG4RIIHlFj7q7AUCJLC8AJmGcJkACSyX0VHHeARIYNFyIALeIyBrgcVh/LR6ORQrnAc6rRb/3riLHXv/hNFkxprvR6JM8YI86bL1eyJaH4M9P01HjqzC8bGd+45jxJRlNmLLe+WR/0jOCqyNvzAIvywIrGpVLKhVw8XjgwACp/YGc+8aD5q7vJ27xP3DJ2DBaKjDT2Nc9ZKYX74w/3pYaEn0Dy3ucqHi7+7igphLVkZs9/Eux6OOniNAAstzbCmy6wRIYLnOjnp6hwAJLO9wplFcI0ACyzVu1MuWAAksWhFEwHsEZC2wuGN/3PG/+M+5i9fQvu8UfFq9LGZP6G19xd1/VbTm+zuH/t7/A7RaDd9FH2NAhcZfWy90544k0iMuAWcElskETJ6mgTnehqsBfc1Im8a144OIjkTQ4Oa2X/+btRUITpkgSfXZ3xHww7foW688fiyej38/NV0FdEgliFBn6QTOHgTm+kW+G7f7i9sFRo//ESCB5X81oRkBJLBoFfg7ARJY/l4hZc+PBJay6y9W9iSwxCJJcYiAfQKyFVh5c2bBjjXCl93io+g04DvcffAEh3+Za/01d89V8Vpdrf8efmR1AmpNO4/Gm4hI/L7le/tEqYVTBJwRWBcuqrB5q3C0LmMY0Lunyanx4jdWn/8DAcsm8r+yZM+HmFGLE49nNiFoSEu0r18Guwtk59sszlANTVLkdm0OsXoEDWwGFSvsINNP+R/YNBlci0e9PEqABJZH8VJwFwmQwHIRHHXzGgESWF5DTQO5QIAElgvQqEsCAiSwaFEQAe8RkK3AqlWlFOZN6pcoyfEzV2Hbnj9w4eAK63t7AqvLwGm4cPkmzu5d5r3KKGQkZwTWuvVqXL8ufH2wdk0LqlZ2/figdv330B7dxZM21v4cxpbdkySv27gATTNH4XiOjHyb9RnrompQFpeqlUCgZc6FmHHLXYpFnTxPgASW5xnTCM4TIIHlPDPq4V0CJLC8y5tGc44ACSzneFHrxAmQwKKVQQS8R0CWAqtcg54omDcH1s1P/Mhf39Hf49T5Kzj96xIr6ZhYA0p/+l5cJLYDq9uQGTh17jIuHlrlvcooZCRHBVZMrApTptlebD6wvxlpQlw8PsjdfzW+E5hnD3nSsX2mwFwk6QvZVQ9uofajHbgcFsr32RNSHcXS5HKpWrqf5kDzx6+CQKv1GYyf9XApFnXyPAESWJ5nTCM4T4AElvPMqId3CZDA8i5vGs05AiSwnONFrUlg0RogAr4mIEuB1abnRFy79QC71k5FlkzpbRi/evMODdoNR2SUHqvnjrBe5H799gM06zzG2u7krkVIlTLYpk+LrmPx6OlL6zt6xCXgqMC6e1+FFasEgZU5I4tePVz/+iDevUbwsPdfm+QelmGgn7sT0OqSTbD0lWV4EiS0OX1Li6w1v3QJSuDItmDevOD7xvb7DuZCpV2KRZ08T4AElucZ0wjOEyCB5Twz6uFdAiSwvMubRnOOAAks53hR68QJ0A4sWhlEwHsEZCmwVm74FbOW/Iy8ubJiZJ8vULxIPmg1avx74x4mf78OF/+9jZBUKWAwGlGvRnlc/PcWbtx+vxNnxaxh+KS08JW5iHdRqNaiP/LnzoZNyyZ4rzIKGclRgXXuvArbdgoC6+OPWbRq4brA0hz/Dbp1s3jKlgLFEDNQ+Dkp/Llvr4ZBOMWI26uPQDch4b1p9srHPLqDwElf8c1YjRb62dvsCjR7cem95wiQwPIcW4rsOgESWK6zo57eIUACyzucaRTXCJDAco0b9bIlQAKLVgQR8B4BWQos7suBrXtMwM27j3iSDKOyfm2Qe9KlSY0Ni8dhwPgFCL96x/q7bJkzIGum9OCE1dLpg5E+bYj19zMWbcDqn39Dp9b1MLRXG+9VRiEjOSqwDhxicPQPhqdSrYoFtWq4fv+VbuVUaM4c4uMZG3eEsUG7ZKnrLSbku/ej0IZl8Xr6/xA7ZC7MeYs4VTHt/k3QbhHuVDMVLQ/D1986FYMae5cACSzv8qbRHCNAAssxTtTKdwRIYPmOPY1snwAJLPuMqIV9AiSw7DOiFkRALAKyFFgcHO6o4KQ5a7D/6FmwrHBPUoUyRTBxSGerrOLuvvrt8GlE62PRoGZ560XtX4+cg8AAHQrkzY53kdG4fe+xdffWzrVTkT1LmFjcKc5/BBwVWBs3MQi/IgisFk3NKFHc9fuvgoZ+BlVkBF+H2GHzYM5dKNm6PDZHo8z9n/k26aJjcGP+Zhgr1Yex3SCHa6p6+xq674dB/ei9POUeQ+s+MFVv6nAMauh9AiSwvM+cRrRPgASWfUbUwrcESGD5lj+NnjwBEli0QsQgQAJLDIoUgwg4RkC2Aisu/Yi3UdY7rswWC3Jmy4hMGdImS2b+yi1Yum4nL720Wg0mj+iGhrU+cYwotXKKgKMCa9EyDZ48EUJ362xGjuyuCSz1o7sImNSND8YGBEE/d4fdeV8xvLJe4h735HsZgTM/7ALXP2bGL2Dt3J/F9VOfOQTu64eMPtpmvJhvVsOSIavdOVAD3xEggeU79jRy0gRIYNHq8HcCJLD8vULKnh8JLGXXX6zsSWCJRZLiEAH7BGQvsOwjSNiCuw/r3MVrUDEqVC5XDJnDkpderoxBfd4TcFRgTfxWA3O8E4PDBpmQMqVrFLWHt0D782K+s7l4RcT2nGg32ImYJ/jsyW98u7IPX2Dfj3utPxs6DYepfO0kY6ii3kHLfXXw/LEEbcxZciF27HK741MD3xIggeVb/jR64gRIYNHK8HcCJLD8vULKnh8JLGXXX6zsSWCJRZLiEAH7BEhg2WdELTxIwBGB9eKVGdNna/hZqBlg/BiTy7PSLRoDzcVTfH9Dq94w1WhmN96e6Hvo9ky4N6vuzYfY+MsRaz9L/uKIGTQz0RjMlXMIWDUVqndvErw3la0JY9v+YINsv3xpdzLUwOsESGB5HTkN6AABElgOQKImPiVAAsun+GlwOwRIYNESEYMACSwxKFIMIuAYARJYjnGiVh4i4IjAunrDghWrhS8QZs4M9PrKRYFlNiNoUDOoDDF8RjHjfoAlc067Ga5/dw1DXh7n27W6dBtLdws/679dBzZdJv69KlYPzc+LoD0u7NqKe8kGpYCh/RCYS1a2Oy418A8CJLD8ow40C1sCJLBoRfg7ARJY/l4hZc+PBJay6y9W9iSwxCJJcYiAfQKyFlgPHj/H8TOX8PjZKxgMRvs0AAz9mr406BAokRo5IrBOnLZg6w5BYBUpwqJ1S7NLM1DfuISAWQP5vmzKUOhnbHIo1uK3l/Dtq7/4tt1vPMe0zfv4n40N28HYqKP1Z+bmJehWTAHz+nmC2OaCJRDbeSQQQkdTHQLvJ41IYPlJIWgaNgRIYNGC8HcCJLD8vULKnh8JLGXXX6zsSWCJRZLiEAH7BGQrsOat2IzlP+2CxeLcRd/hR1bbpybBFqfOX8HQbxbj5eu32LdhpvUrjMk9f124itUbf8Pf4TcQGa1HxvRpUKtyKfTo0AQhqVIk2XXrnmP4ZdfvuHHnIcxmM3Jmy4Rm9Srji+a1oebO/n3wOCKwdu1lcfSY0LdqZQtq14x3IZYT9dDuWgvt7nV8D3P52ojtNNyhCFNfn8WCiIt826GRqTFqoXCXliUkHWInrYFm20poD21JEJPVBsDY4iv62qBDtP2vEQks/6sJzQgggUWrwN8JkMDy9wope34ksJRdf7GyJ4ElFkmKQwTsE5ClwDpw7Cz6j51vzT40JCUK5smONKGp8Nvh01Zxkyt7JkRG6XHt1n3oYwzWS9q7fdkIH+XLgRJF8tmnJqEWLMvih//tBif04mSePYHFCajxM1dZsyxSMBfSpQnB9Vv3rTvZOFb/WzQOYelDE1AYOWU5duz7E1qNGiWL5odWo8GFyzetrCuXK4qFUwdAoxZ2UnEBHBFYa9cDl8JV/HjNmphRqoRzYjKuc8CsQVDfECSUvcvX4yc5/MVx/Bh5jf/VtyGl8fXE0eCOCsY9bIpU4C5s//Ax5ywAY9dR9KVBCf3Z+XCqJLAkXDwZT50EloyLK5PUSGDJpJAyTYMElkwL6+W0SGB5GTgNp2gCshRYPYbNwh+nL6J+zfL4ZmgXBAcFvJcx1Tuha9sGGNSjlfVnTl4tXbfDulOL+x33Tk5PxLsojJyyDL+fuIBPShWGhbXg9Pl/k92Bdf/RMzRqPxIajRpLpg1C2RIfWZFwImzBqq1YsnaHNdaK2cNsUHHiihNYeXJkxrKZQ/kvN0brYzBg3AL8eeYS+nZpgZ4dmtj0c0RgzVmowuPHQreunczImcN5gaUyxiKoXyOb8WOmboAlNJ1DZe/x/DB2Rd3l287PUAVttmyDJpE7ruIHNDbqAGPD9g6NQY38lwAJLP+tjZJnRgJLydWXRu4ksKRRJ6XOkgSWUisvbt4ksMTlSdGIQHIEZCmwKjfti9cR73B8x0KEpBaOu30osOLATJqzFhu2H8K6+aNQqmgB2ayYNj0n4uK/t/Fli9oY1rsteg2fg+N/XUpWYE2Z9yN+2nIAA776DF99aSt7OInVttc31pg/LRxjs1utWecxuH77QYLfczC5WtT6fBC0Wg1+3/I9AgN0PGNHBNbYb4BYg7ADa+hAE1Klcr5MmvAz0C0YxXe0ZMqOmPErHQ7U6sle/BkjmLR1YbVR5/EbBMwU7tSKH8ySIQsMXUfDklM+a8phWDJsSAJLhkWVQUoksGRQRJmnQAJL5gWWeHoksCReQD+ZPgksPykETUMRBGQpsIrV6oJ0aVLj8C9zbYpYtGZndPjs0wQXtXNH42q3GoS61cpgzsQ+sin8ybOX8fjZSzSvX8WaU8f+U8HdbZXcEcI6bYbg0ZMXOLRpDjJmSJOAxfptB/Ht3HXo8PmnGN67rfU9157rlyNrGPb8ND1RfoMmLMTeI2cwf3J/1KxU0mGBde+JAd9MFeQVd43W+DGufYFQ+8sSaA9u5sc2VW8KQ2vH61330Q6EG17x/XdmbohSARkQOK4TmOcPbfI2Vm8GU4uvwGoFWSebhaXQREhgKbTwfp42CSw/LxBNDySwaBH4MwESWP5cHenMjQSWdGpFM5U+AVkKrDL1uiN1qhRWCRP/KVu/Jz6tXhbfDu+aoHLVWvSHSqXCkc220kv6JRYyaNdnMs5fup6kwHobGY0Kjb62iqsP2cVFuXL9Lj77arx19xW3C4t7Dh47h35j56FRnQqYNrpHosjWbNqL6QvXW3d1cbu74h57O7DOhRuwaJkgsDJmBHr3cE1gBX3bA6qHt/ixY3tOhLl4RYdLXO7BJjw0RfHtj2VtgTza1ND8th667e93crGp01i/MGj5SJB0Dg9ADf2aAAksvy6PYidHAkuxpZdM4iSwJFMqRU6UBJYiyy560iSwREdKAYlAkgRkKbCadByFm3cf4fSvS5AiOJBPvmH7EdYv6P1v0dgEQLgjbi9fR+DvAytku1zsCazwq3fQqscElCqaH+vmj06UA3evVsXGvZEmJBX+2P7+onzua4UzFm9Aj/aN0a9ry0T7xV2szwnE2RN6Oyyw9h014OfNgsAqUsiC1p+78AXC6EgED27Oj8vdoKWfuwMICHK43gXu/ogoVpBnl7K3QRp1IFRvXiJwVFurDDO0HwIEp3Q4JjWUDgESWNKplZJmSgJLSdWWZq4ksKRZN6XMmgSWUirt2TxJYHmWL0UnAvEJyFJgjZuxEpt3H8X8b/uhZuVSfL7cZeKH/jyHvf+bgcwZhYu7X715h6rN+1ll16ndi2W7QuwJrFPnr6DLwGmo+klxLP4u8XuduHuwPq7RGWo1g38Ovt91tGDlVixeux1DerZG5zb1E+UXF/uT0oWxYpZwAfy7aGOi7YMC1NCoGfyy04TfDggXtteqBjSq50KJTh2CefEkoWPewlCPXehwIC7vkH9t5WbER12tu/asz/WLQP6iDsejhtIjkDJIC67c7/RGwPlvCEgvYZqxJAhoNQwCdWoYTRbEGMySmDNNUlkEUgVrrQkn9b/3yqJB2fobAe7vT+7vUe7vT+7vUXqIgCsE4v6ec6Uv9SECRMA5ArIUWOcuXkf7vpMT3Gm15dejGDt9JYoVzms96sbd2fTiVQTGz1yFI8f/RrmSH2HVnBHOEZRQa3sC69ipf9Bz+GzUqlIK8yb1SzKz4rW6wmQ248LBFdCo1Zi15Ges3PArRvb9Eu1a1km0H3d0kRu/5Mf58eOCxHd3JdZx2RozTp8T/g9FxzZqVKnAOE09esl3MBzaxfcLbNEBgW26OxznqUmPTBdW8+1D1Tq8LpHwKKrDAakhESACRIAIEAEiQASIABEgAkSACBABIuAwAVkKLC77yd+vQ91qZVG2xEc8jFiDEQ2+HI4nz99fxB0cFIBofSz//vtJfVG7SmmH4UmtoT2B5ZUdWKUKY8Vsx3dgTZxhwv0HwnaXPt2BvLmdJ28e1Bp49YzvyAybDVVhx++puhr7GmVvCRfA59amxoV8rZyfCPWQLAHagSXZ0sl64rQDS9bllUVytANLFmWUbRK0A0u2pfVqYrQDy6u4aTCFE5CtwEqqrpev3UHvUXPx7MUbvgl3HK5Xx6bo1aGprJeDPYH17417aNltnEN3YHF3iR3f+f4I3tpNezFt4XqH7sDiBCEnCuMee5e49x5qRKxBKMuQgWakTuXc+S3Vs4cIGt+JD8JqtNDP3Qmo1Q7X+0zMMzR78ivfvrguHX7N0tjh/tRQ+gToDizp11COGdAdWHKsqrxyojuw5FVPuWVDd2DJraK+yYfuwPINdxpVmQQUJ7C4MutjDOCOyz16+sJ6qfsnpQrb3Ikl16VgT2BF62PAfanRka8QFv0oNzYsGW9F9fuJC/h65ByHvkLYpU0DDO4p7FxKTmCZjGoMGCXckaVmgPFjnP8CoeboLujWf8+X1VyoNGL7fedUmffr76PT04N8n2pBWfC/jHWdikGNpU2ABJa06yfX2ZPAkmtl5ZMXCSz51FKOmZDAkmNVvZ8TCSzvM6cRlUtAkQJLqeW2J7A4LnFfcDy0aY5VZH34rN92EN/OXYdWTWpg/KCO1tfcPWLVWvS33im256fpieIdNGEh9h45g5njeqF+zfJ8m+QE1qPHDKbMFoRVxjCgd0/nBVbA8m+gPneMH9PY4isY6zh3/G9T5A0MePEHH6NpitxYlKGaUpeSIvMmgaXIsvt90iSw/L5Eip8gCSzFLwG/BkACy6/LI5nJkcCSTKloojIgIEuBVfrT7sieJQzzvu1nlSr0vCfgiMD6/ofNWPbjTgz46jN89WWjBOja9JyIi//exnzMgRYAACAASURBVJJpg1ClfDH+fVzsnxaOQYki+Wz6vY54h1qfD4KFZXF06zykThnskMA6f0GFFT8KX9Uq/JEFbVo5+YUYlkXQ4OZQ6aP4MWNGLIQlZwGnlsWyiHBMfH2G79MxVUFMSVfBqRjUWNoESGBJu35ynT0JLLlWVj55kcCSTy3lmAkJLDlW1fs5kcDyPnMaUbkEZCmwilR/f9/RsW3zkTY0lXKr+0Hmjgisl6/fot4Xw2CxWKySKu4SfJZlsWDVVixZuwMF8mTDlhWToFKp+BHivmCYJ0dmLJs5FJnD0lrfcccSB45fiD9OX8SXLWpjVL92NrNKbgfW3oPAzt8EYVW5ogV1azsnsJi7VxH4XR9+TDYoBfSztgLx5u7IApnx5jzmvrnAN+0XUgzD05RypCu1kQkBElgyKaTM0iCBJbOCyjAdElgyLKqMUiKBJaNi+jAVElg+hE9DK46ALAVW9ZYD8PzlG/y+5XukTxuiuKImlbAjAovre/DYOXBH/kxmM4oUzGVleO3WAzx++tJ6Z9i6+aOQN1fWBMPMXLIRqzbsgVarQcmP80Gn1eLC5Zt4FxmNwgVyYc33I61ffoz/JCew1m0ATp0VhFWThmaUKe3cBe7afRuh3foDP6SpVFUYvhrr9JoY/fIkVr/7l+83Pk1ZdA8p4nQc6iBdAiSwpFs7Oc+cBJacqyuP3EhgyaOOcs2CBJZcK+vdvEhgeZc3jaZsArIUWGOmrcDWPcfw7fCuaF6/irIrHC97RwUW14X7WuPSdTtx9p9riIyKRvp0odYjgz3bN0n0bqy4Ybh7rn7cvB9Xb96D2WxB1swZ0KBmeXRuUx8BOm2CWiQnsGbNZ3H7niCsOncwI3cu5wRWwLwRUF85y49r+KI/TFUSHo20t0h6P/8d26Ju883mpK+EVinz2+tG72VEgASWjIopo1RIYMmomDJNhQSWTAsrk7RIYMmkkD5OgwSWjwtAwyuKgCwF1oPHz9Gq+wTodFpsWDIOmTK8P85Gj/8RSE5gDR9vQVS0MOfBA8wISe2EwDIaEDSoGVQm4UuG+olrwIZlcRrEl0/344j+Id9vVVgt1A3O7nQc6iBdAiSwpFs7Oc+cBJacqyuP3EhgyaOOcs2CBJZcK+vdvEhgeZc3jaZsArIUWFxJ/w6/gf5j50OjVmP84I6o+klxZVfaT7NPSmAFaXUYOlY4PqhmgPFjnPsCofrqBQTMHcJnzqYNg37yTy6RaPhoJ/42vOT7bs1UH+UCM7oUizpJkwAJLGnWTe6zJoEl9wpLPz8SWNKvoZwzIIEl5+p6LzcSWN5jTSMRAVkKrH2//4VXb97i+q0H2LD9kLXKYelDUSBPdgQF2t7B9OESmPuNcOE3LQ/PE0hKYL19o8XMecJuq7AMQJ9ezgks7Z6foN2xmk/CVLEeDO0Hu5RUpYebccf4ju97OGszFNCGuhSLOkmTAAksadZN7rMmgSX3Cks/PxJY0q+hnDMggSXn6novNxJY3mNNIxEBWQqsuK8QulLe8COC8HClP/VxjkBSAuvWDS1W/08QWIUKWtC2tXNfIAxYOBrqS6f5Cbl6/xUXoMi99XhjieVjnc/WCmGaYOeSpdaSJkACS9Llk+3kSWDJtrSySYwElmxKKctESGDJsqxeT4oElteR04AKJiBLgTVxlusSavzgTgpeDt5PPSmBdeqkFrv3CQKrUgULPq3jnMAKGtgUqhjhEi39qCVgs+d1OkmWZZHt7hqbfg9ydoRKpXI6FnWQLgESWNKtnZxnTgJLztWVR24ksORRR7lmQQJLrpX1bl4ksLzLm0ZTNgFZCixll1Ra2SclsHbt1uL0WUFgNW5oQdnSjgss5sl9BE7swsNgtTro5+4EGMZpQK8tsfj43nq+XzCjwfUc7ZyOQx2kTYAElrTrJ9fZk8CSa2XlkxcJLPnUUo6ZkMCSY1W9nxMJLO8zpxGVS4AElnJr7xeZJyWwVq7R4s5dQWB1bG9G3tyOf4FQfXIfAtbM4HM0FyyB2AHCz84kf9v4FpUfbuG7ZFGnwJnsnzsTgtrKgAAJLBkUUYYpkMCSYVFllhIJLJkVVGbpkMCSWUF9lA4JLB+Bp2EVSYAEliLL7j9JJyWwps/SIDJKmOeg/maEhjgusLTrv4f26C4+gKleWxiaCjuynCFwPvYFGj0WYhXWpcX+LE2cCUFtZUCABJYMiijDFEhgybCoMkuJBJbMCiqzdEhgyaygPkqHBJaPwNOwiiQge4FlMBhxPvwGbtx+gIh30UgXmgqtm9ZUZLH9MenEBFZMrApTpqn56XJXTU0c69wXCAOn9ARz/yYfI7bXNzAXq+ASgsP6B2j39ADft1JgJvycqZ5LsaiTdAmQwJJu7eQ8cxJYcq6uPHIjgSWPOso1CxJYcq2sd/MigeVd3jSasgnIWmBt2nUE81dswcvXb/kqF8ybHVtWTLKpev+x83H15n3M+7YfCuTJpuwV4eXsExNYjx4BS37Q8DPJkJ5F36/Njs/MEIugAY2hYoUdW9EzfgFShjgeI17LrVG30Of5Uf43DYNzYllYDZdiUSfpEiCBJd3ayXnmJLDkXF155EYCSx51lGsWJLDkWlnv5kUCy7u8aTRlE5CtwJq5ZCNWbdjDV5dhVLBYWCQmsBau2opFa7aj2xcNMbA73W3kzT8SiQmsi5dU2LRF2IFVsIAFX7Zx4gL3axcQOGcInwYblgX6ibZfEXQmx1Vvr2DMq1N8ly9TFcD0dBWdCUFtZUCABJYMiijDFEhgybCoMkuJBJbMCiqzdEhgyaygPkqHBJaPwNOwiiQgS4F16vwVdBk4DZy0atW4Btq1rINsWcJQonbXRAXWP5dvou3Xk1CscF6sXzRWkQvBV0knJrB+P8rg4BHha4EVKlhQv47jAkuzdz1021byKZnL1UJs5xEupzjnzd+Y+eZvvn/vkKIYlaa0y/GoozQJkMCSZt3kPmsSWHKvsPTzI4El/RrKOQMSWHKurvdyI4HlPdY0EhGQpcDijgQeOHYWg3u2Qpc2DfgqF6neKVGBxR0xrNq8H0JDUuLP7QtoVXiRQGICa8t2Nf6+oOJn0aiBBeXKOC6wAhaPg/qfE3x/Q5u+MFVz/dL18a9O4Ye3V/h4o9OUxtchRb1IiYbyBwIksPyhCjSHDwmQwKI14e8ESGD5e4WUPT8SWMquv1jZk8ASiyTFIQL2CchSYFVr0R9vIiJxYtciBAcF2BVYLMuiRO1u1nYXDq6wT41aiEYgMYH1wyo17t0XBFbHdmbkzeP4FwiDhrSEKkq49yxmxEJYchZwec79nx/DL1HChfAz0lXEF6lcj+fyRKijTwmQwPIpfho8CQIksGhp+DsBElj+XiFlz48ElrLrL1b2JLDEIklxiIB9ArIUWMVrdUWa0FQ4snmuDYGkdmBxjbg+Go0aZ/cus0+NWohGIDGBNW2WBlFRwhAD+5mRJtQxgaV68QRBY9vznVmtDvq5OwFGOJLo7OQ7PDuIg9H3+W7Lw2qgQXBOZ8NQe4kTIIEl8QLKdPoksGRaWBmlRQJLRsWUYSoksGRYVB+kRALLB9BpSMUSkKXAqtS0D2JjDTj961LrPVhxT1IC6879J2jYfgSyZc6AvetnKHYx+CLxDwWW2QxMnCx8gVClAiaONTk8Nc3pQ9Ctmsq3txQohpiBsxzun1jDJo9342zsc/7Vpkz1UDEwk1sxqbP0CJDAkl7NlDBjElhKqLK0cySBJe36yX32JLDkXmHv5EcCyzucaRQiwBGQpcDqNmQGTvwVjqXTB6NyOeGuoqQE1oxFG7D659/QuG5FfDeqO60MLxL4UGA9fgwsXi4IrAzpWfT92uzwjHQ/L4Tm8Da+vbFuaxibvz8e6upT9cFW3DRF8N33Z2mCwrq0roajfhIlQAJLooWT+bRJYMm8wDJIjwSWDIoo4xRIYMm4uF5MjQSWF2HTUIonIEuBtWv/CQyfvBRZMqXHku8GIm+urNZCJyawdh04gRGTl4G7B2vVnBEoV/IjxS8KbwL4UGBdClfh581qfgqFCrJo29pxgRU4rQ+YO1f5/rE9J8JcvKJbKRW7vwEvzTF8jDPZP0cWdQq3YlJn6REggSW9milhxiSwlFBlaedIAkva9ZP77Elgyb3C3smPBJZ3ONMoRIAjIEuBxckobhfWybOXodWo0bReZZQrWQjDJi1BruyZMGlYV9y48xB7j5y2tuGeBrXKY8bYXrQqvEzgQ4H1+zEGBw8L91VVrsCibh0HBZbZhKB+jaCyCO2jZ/wCpAxxK6usd1bb9L+Rox2CGGGXmFvBqbNkCJDAkkypFDVREliKKrckkyWBJcmyKWbSJLAUU2qPJkoCy6N4KTgRsCEgS4HFZRitj8GwSUtx+Ph5uyWvXaU0po3pgcAAnd221EBcAh8KrK071Dj/t3BvWdNGLEqXckxgqW+GI2DmAH6CbPpM0E9a59aE31kM+Oje//gYOjC4nauDWzGpszQJkMCSZt3kPmsSWHKvsPTzI4El/RrKOQMSWHKurvdyI4HlPdY0EhGQrcCKKy0nsDZuP4yz/1yzSq24R6fTotTH+dG2eS1wAose3xD4UGCtWK3G3XuCwOrWkUWOnI4JLO2BX6DdvJRPxFSmBgxdR7mV2H1TJD558AsfI6M6COeyt3YrJnWWJgESWNKsm9xnTQJL7hWWfn4ksKRfQzlnQAJLztX1Xm4ksLzHmkYiArIXWHEltlhYvHwdgcgoPYKCApAuTYj1eCE9viXwocCaPluDyEhhTsMHsUiR0jGBFbD8G6jPHeM7G1r1hqlGM7cSvBj7AvUe7+JjFNSG4lBW92K6NSHq7DMCJLB8hp4GToYACSxaHv5OgASWv1dI2fMjgaXs+ouVPQkssUhSHCJgn4AsBdazF28Qlj7UfvbUwucE4gsssxmYOFm4W0qlAqZOZGEwOSawAke2BfPmBZ9TzPAFsOQq6FaOx/SP0ObpPj5G+cCM2JKpvlsxqbM0CZDAkmbd5D5rElhyr7D08yOBJf0ayjkDElhyrq73ciOB5T3WNBIRkKXAKlqzMyqVLYrm9augZqWS0Grpwm1/XerxBdbjJ8DiZUKtwjIAQ/qziDE4ILAiIxA89DM+TZZRQz9vF6B2r/Y7o26j5/Pf+bifBmfHyrBa/oqT5uVBAiSwPAiXQrtMgASWy+ioo5cIkMDyEmgaxiUCJLBcwkadPiBAAouWBBHwHgFZCqwi1TvxBENSpUCjOhWsMqtQ/pzeI0sjOUQgvsAKv8Jg4ybhC4RFC6vQ/guLQwJLfe4oApZP4sc05y2C2CFzHZpDco3WvruKkS9P8E1ap8yP2ekruR2XAkiPAAks6dVMCTMmgaWEKks7RxJY0q6f3GdPAkvuFfZOfiSwvMOZRiECHAFZCqw9h05hx77j+PPMRZjNFr7SBfNmt4osTmilCUlFK8APCMQXWEf/YHDgkCCwalVl8Glds0MCS/vLUmgPCpetG2t/DmPL7m5nOC/iH0x7fY6P0yN1EYxLW9btuBRAegRIYEmvZkqYMQksJVRZ2jmSwJJ2/eQ+exJYcq+wd/IjgeUdzjQKEZCtwIor7cvXb/FeZv2J8Kt3+Ipr1GpUr1jCKrMqly8K7md6fEMgvsDatlONc+eFLxC2balGyZImhwRWwMwBUN8M55OI7T4e5pKV3U7qm1dnsPStEHd4mlLoF1LM7bgUQHoESGBJr2ZKmDEJLCVUWdo5ksCSdv3kPnsSWHKvsHfyI4HlHc40ChGQvcCKX+Lb9x5j5/7j2Ln/BB49ES76Tp82BI3rVrTKrLw5s9Cq8DKB+AJr5Ro17twVBNaAnhpkyWa0L7DMJgT1awSVRbgrK3rGL0DKELezGfTiT2yMvM7HmZquAjqkcu9ieLcnRQF8QoAElk+w06B2CJDAoiXi7wRIYPl7hZQ9PxJYyq6/WNmTwBKLJMUhAvYJyPIIYXJpsyyL85euY+e+49j7+xlEvI3imxctlAcbFo+zT41aiEYgvsCaOUeNt+8EgTVljBaaQINdgcXcuYrAaX34OVnShiFm8k+izLHLs4PYG32fj7UkQzU0TpFblNgURFoESGBJq15KmS0JLKVUWrp5ksCSbu2UMHMSWEqosudzJIHlecY0AhGII6A4gRW/9EaTGafPX8Hm3b9j75Ez1lfhR1bT6vAigTiBZTYDEycLXwxUqYCls7V4E2VfYGkOb4Pu54X8rE2lq8HQbYwoWbR8sgcnY57ysdZnrIuqQbRTTxS4EgtCAktiBVPIdElgKaTQEk6TBJaEi6eAqZPAUkCRvZAiCSwvQKYhiMB/BBQrsB4/e4W9h09bd2H9c/kmvyBIYHn3z0acwHryFFi0VBBY6dMB343T4tU7+wJLt3IqNGcO8RM3fNYLplotREmk1sPt+Nf4mo+1J3MjFAtIL0psCiItAiSwpFUvpcyWBJZSKi3dPElgSbd2Spg5CSwlVNnzOZLA8jxjGoEIxBFQlMB6GxmNvUdOY8fe4zh38Rq/CgIDdKhTrYz1HqzyJQvR6vAigTiBdflfBht+Fr5AWPgjYFAvxwRW0Nj2UL14ws86Zug8WPKIU8fS9zfiiVnPxz6RrSVyaOgLll5cIn4zFAksvykFTSQeARJYtBz8nQAJLH+vkLLnRwJL2fUXK3sSWGKRpDhEwD4B2Qsso9GEoyf/sV7gfuTE3+B+jntKFMlnlVb1a5ZHiuBA+7SohegE4gTWH8cZ7DsgCKxqlVRo30pjfwdWZASCh37Gz4tl1NDP2wWohd1c7kw69521MMDCh7iS4wukZnTuhKS+EiVAAkuihZP5tElgybzAMkiPBJYMiijjFEhgybi4XkyNBJYXYdNQiicgW4HFXdS+g7uo/fBpRLwTLmrPkC4UTT+tZBVXubJnUvwC8DWAOIG1fZcaZ88JF7i3bKpC/Zr2BZb6nxMIiHfxvjl3IcQOmydKWnqLCfnu/WgT62GuTqLEpiDSI0ACS3o1U8KMSWApocrSzpEElrTrJ/fZk8CSe4W9kx8JLO9wplGIAEdAlgLr07ZD8eDxc77CWq0GNSuVtEqrimU+hlot7PShZeBbAnECa9VaNW7fEQRWr64MShdT292Bpd22Atq9G/gkjLVawPhZL1GSemyORpn7P/Ox0qoDcTF7G1FiUxDpESCBJb2aKWHGJLCUUGVp50gCS9r1k/vsSWDJvcLeyY8Elnc40yhEQLYCq0j197tkCuXPaZVWjWpXQEjqFFRxPyQQJ7BmzlXj7VtBYI0bxiBHVvsCK3D2EDDXL/CZxXYbA3PpaqJkesXwCrUf7eBj5dGkxrFs4lwOL8oEKYhXCZDA8ipuGsxBAiSwHARFzXxGgASWz9DTwA4QIIHlACRqYpcACSy7iKgBERCNgCx3YH234H9WcVUwb3anQL2LjEaqlMFO9aHG7hHgBJbZDEycbHtn1bxpDIID7QgsiwVBAxpDZTTwk4iZ/BMsacPcm9R/vU/EPMFnT37jY5UKyICdmRuKEpuCSI8ACSzp1UwJMyaBpYQqSztHEljSrp/cZ08CS+4V9k5+JLC8w5lGIQIcAVkKLGdLy32R8Jddv+O3w6dxbt9yZ7tTezcIcALr2TNgwRJBYKUJZTFptBqBuuQFFnP/BgKnCMcF2RSpoZ+52Y3Z2HbdE30P3Z4d4n9ZKzgb1obVFi0+BZIWARJY0qqXUmZLAksplZZuniSwpFs7JcycBJYSquz5HElgeZ4xjUAE4ggoVmC9jniH7Xv/tIqr2/ce8ysi/MhqWh1eJMAJrCtXGazfKNxLljcPi4G97AsszdFd0K3/np+tuWRlxHYfL9rs17+7hiEvj/PxWqbIi3kZqogWnwJJiwAJLGnVSymzJYGllEpLN08SWNKtnRJmTgJLCVX2fI4ksDzPmEYgAooUWCzL4sTZcPyy6ygO/XEWRpOZXwkf5cuB1k1rolXj6rQ6vEiAE1h/Hmew94AgsMqVsaBDa43dHVi6NTOgObmPn62xRXcY63wu2uwXv72Eb1/9xcfrmroQvklbXrT4FEhaBEhgSateSpktCSylVFq6eZLAkm7tlDBzElhKqLLncySB5XnGNAIRUJTAevbiDbbuOYbNu3/Hwycv+OpzXyf8tFpZtGlWEyU/zk+rwgcEOIG1cxeDM+cEgVWvjgWN6toXWIETuoB5ep+fdezgOTDn+1i0LKa+PosFERf5eINDS2BQaAnR4lMgaREggSWteilltiSwlFJp6eZJAku6tVPCzElgKaHKns+RBJbnGdMIRED2AststuD3kxes0uroyQuwWFibqg/s/jlaNqyKNCGpaDX4kAAnsFavU+PWbeELhF+2MaNCaW3yO7D0UQge1IyfOcuooZ+3C1DbXgbvTmrDXxzHj5HX+BCT0pZHl9SF3AlJfSVMgASWhIsn46mTwJJxcWWSGgksmRRSpmmQwJJpYb2cFgksLwOn4RRNQHZ3YD14/Bybdx+17rh6/vINX1xOVNWuUhqbdh2x/o7uuvKPdc8JrNnfq/EmQhBYfb82o2Du5AWW+tJpBCwczSdhyVkAMSMWippUj+eHsSvqLh9zfoYqaJEir6hjUDDpECCBJZ1aKWmmJLCUVG1p5koCS5p1U8qsSWAppdKezZMElmf5UnQiEJ+ALASW0WjCgWNn8cvu33Hy7GU+P51OixoVS6JJ3YqoXL4oDAYjytbvSQLLj/4MPHiux4RvbXdNTRhjQvoQXbI7sLS71kC7+0c+E1ONZjC06i1qZq2e7MWfMcIF/+vCaqNmcDZRx6Bg0iFAAks6tVLSTElgKana0syVBJY066aUWZPAUkqlPZsnCSzP8qXoREBWAmvawvXYse9PvImItOalUqlQtkRBNK5TEXWrlUXKFEF8vtH6GBJYfrb+L1yNwfxFan5WoSEsBvU3I22q5AVWwLwRUF85y/czdB4JU7maomZX99EOhBte8TF3Zm6IUgEZRB2DgkmHAAks6dRKSTMlgaWkakszVxJY0qybUmZNAksplfZsniSwPMuXohMBWQmsItU7WfMJDNChU+t6aNusFtKnDUm0yiSw/G/xHz4Ri582CBe458nNolN7+wIraGBTqGKi+YT0k9aBTZ9J1ATLPdiEh6YoPuaxrC2QR5ta1DEomHQIkMCSTq2UNFMSWEqqtjRzJYElzbopZdYksJRSac/mSQLLs3wpOhGQlcBq1WMCwq/e4XPKlzsr6lQpg8Z1KyJntow21SaB5X+L/5ddsfhtvyCwypS2oElDS7I7sJjHdxD4zVd8MmyK1ND/v707gbOp/v84/hmM7PsSilJUlkqlBaVQliwhpUSJ7PuaXRTZZcmWLJEtSSlCRVI/qdC+qxBC9t3M/B+fr/+5zZg7c8/M3Dv3nHte5/H4P/6/zJnv+X6fn6/jznu+53vGLg/64Er/uUBOxl3wtfvtlU0lb8YsQb8ODbpDgADLHXXyWi8JsLxWcfeNlwDLfTXzUo8JsLxU7dCNlQArdLa0jMClAhGxB9aPv/4ly97ZIKvWfyYnTp72jfHGMtfIQzUrS61qd0junNmFAMt5fwFmzD8rW7/8L8CqWSNWKldKPsDKtHm1ZF4w3jeYmJsqydl2zwV1cHFxcXLFn/MStLm7xJPmEVUObwoQYHmz7k4fNQGW0ytE/wiwmANOFiDAcnJ13NM3Aiz31Iqeul8gIgIsqwynz5yTNR9tkTdWbZTt3/3qq050dCa5966bzZ5YvYdPM3/OWwidMXlHvnROfvv9v1Do8Udj5frrkg+wNLzSEMs6zjdsLecfeDSoAzoQc1pu3rXE12buDJnl++KPB/UaNOYuAQIsd9XLK70lwPJKpd07TgIs99bOCz0nwPJClUM/RgKs0BtzBQQsgYgKsOKX9bc/9siyVRvNBu9Hj/23j5F1zvol46RI4fzMhDAL9B5yTg4f+S/A6tT+ghQqKMk+Qphl+DOS4e//Hhs9032cxJa+Magj+eX8Ebl3z1u+NktkyimfXtE4qNegMXcJEGC5q15e6S0Bllcq7d5xEmC5t3Ze6DkBlheqHPoxEmCF3pgrIBDxAZY1wHPnzsvaj78wq7K2bv/RV3l9FKzqXTdJ0wbVpHLF8pIhA4+GheOvReuu5xNcdtjgi3tOJfkWwtMnJWvPhhIVF2fOi4uKktMT3xHJfFlQu7/1zD/y0L73fG3elDm/vFe0XlCvQWPuEiDAcle9vNJbAiyvVNq94yTAcm/tvNBzAiwvVDn0YyTACr0xV0DAMwFW/FL/uXu/CbLeWrNJ/j1y3PelopcXkEfq3SuN6twj+fPylrn0/OsRP8DKlStOenWLSTbAyvjDl3LZpGd9XYwtXkrO9Hs56F1ed3qXPLX/A1+7VbMWldcLPxD069CgewQIsNxTKy/1lADLS9V251gJsNxZN6/0mgDLK5UO7TgJsELrS+sIxBeI2EcIkyvz+Qsx8uEnX5kw67MvvxPdsFuP6EwZZfv62cyQdBSIH2BdfVWctGyRfIAV/d4CiX7nv83VL1StL+eadg56j5ed+FW6HfzE126D7FfLywWrBv06NOgeAQIs99TKSz0lwPJStd05VgIsd9bNK70mwPJKpUM7TgKs0PrSOgKeD7DiA+zZd1CWv7tRVqzeJP8cPMLm7un89yN+gHXbLbFSv26s6UFSjxBmfnmgZPpmi6+XZ5/qKzF31Ah6r2ce/U6eO7zV1+6TOa+TEfnvCvp1aNA9AgRY7qmVl3pKgOWlartzrARY7qybV3pNgOWVSod2nARYofWldQQIsPzMgZiYWNn4vx1SrXIFZkg6CsQPsB6oEStVKiUfYGXt3kCizpzy9fD0c/MkrlDRoPd49JFt8tKRHb52u+a5SfrkYW4EHdpFDRJguahYHuoqAZaHiu3SoRJgubRwHuk2AZZHCh3iYRJghRiY5hGIJ+DJRwiZAc4RiB9gPfZIrNxwfdIBVtT+3ZJ1aEtfNJL3rQAAIABJREFU5+Oy55LTY5eHZDD9D30m847/5Gt7SN6K0iZ32ZBci0bdIUCA5Y46ea2XBFheq7j7xkuA5b6aeanHBFheqnboxkqAFTpbWkbgUgECLOZEWAXiB1gd212QwoUudsffI4QZt6yTy+aO9vU3pvydcrbD8JD0v8OBjbLy5E5f2xMLVJEmOa4NybVo1B0CBFjuqJPXekmA5bWKu2+8BFjuq5mXekyA5aVqh26sBFihs6VlBAiwmAOOEogfYA0ZcEEyZkw6wIpe9JJEf7zK1/9zDZ6WC7UeC8l4Ht+/Vjae/tvX9tzC1eX+rFeG5Fo06g4BAix31MlrvSTA8lrF3TdeAiz31cxLPSbA8lK1QzdWAqzQ2dIyAgRYzAFHCVgBVq6ccdKr+8U3EOrhbwVWlhHtJcOuX33nnOk2RmKvuzkk46nz9zuy49whX9tvXV5HKmb5/+VhIbkijTpdgADL6RXyZv8IsLxZdzeNmgDLTdXyXl8JsLxX81CMmAArFKq0iYB/AR4hZGaEVcAKsK4uESctn0wmwDp3VrJ2qydRcXGmv3FRUXJ64jsimS8LSf8r7V4uf1447mt7Q7GHpFR0npBci0bdIUCA5Y46ea2XBFheq7j7xkuA5b6aeanHBFheqnboxkqAFTpbWkbgUgECLOZEWAWsAOvWW+KkQd3kV2BFHdonGXb/Lhn+/FmiTh2Xc007h6zvZf56XY7GnvO1v/3KR6Vgxqwhux4NO1+AAMv5NfJiDwmwvFh1d42ZAMtd9fJabwmwvFbx0IyXACs0rrSKgD8BAizmRVgFrADr/uqxcnfli28g1MPfI4Tp1dG4uDi54s95CS63u8STEhUVlV5d4DoOFCDAcmBR6JIQYDEJnC5AgOX0Cnm7fwRY3q5/sEZPgBUsSdpBILAAAVZgI84IoYAVYDVtEitlbnBGgHU49qyU+2uRb9TZMmSSX4o/EUIFmnaDAAGWG6rkvT4SYHmv5m4bMQGW2yrmrf4SYHmr3qEaLQFWqGRpF4HEAgRYzIqwClgBVoe2F+Tywv91JZwrsHaePyZV9rzp60zRjNll65VNwurExcMvQIAV/hrQg8QCBFjMCqcLEGA5vULe7h8BlrfrH6zRE2AFS5J2EAgsQIAV2IgzQigw4IVzcuSISJ+eMRId7YwAa9vZg1J37ypfZ8pkzifritYPoQJNu0GAAMsNVfJeHwmwvFdzt42YAMttFfNWfwmwvFXvUI2WACtUsrSLQGIBAixmRVgF/j502u/1w7kC66PTu+WJ/et9/aqc5XJZenmtsDpx8fALEGCFvwb0ILEAARazwukCBFhOr5C3+0eA5e36B2v0BFjBkqQdBAILEGAFNuKMEAo4McBacfJ36XTgY9+oH8xWQmYWui+ECjTtBgECLDdUyXt9JMDyXs3dNmICLLdVzFv9JcDyVr1DNVoCrFDJ0i4CiQUIsJgVYRVwYoA159gPMvDfLT6XZjlLy+j8lcLqxMXDL0CAFf4a0IPEAgRYzAqnCxBgOb1C3u4fAZa36x+s0RNgBUuSdhAILECAFdiIM0Io4MQAa8KR7TL2yHbfqDvmLi/9894aQgWadoMAAZYbquS9PhJgea/mbhsxAZbbKuat/hJgeaveoRotAVaoZGkXgcQCBFjMirAKODHAGvLvFnnl2A8+lwF5b5UOucuH1YmLh1+AACv8NaAHiQUIsJgVThcgwHJ6hbzdPwIsb9c/WKMnwAqWJO0gEFiAACuwEWeEUMCJAVbXA5vkjZO/+UY9Jn8leTxn6RAq0LQbBAiw3FAl7/WRAMt7NXfbiAmw3FYxb/WXAMtb9Q7VaAmwQiVLuwgkFiDAYlaEVcCJAVaLfz6QD07t8rnMKnSf1MlWIqxOXDz8AgRY4a8BPUgsQIDFrHC6AAGW0yvk7f4RYHm7/sEaPQFWsCRpB4HAAgRYgY04I4QCTgyw6u99V748e8A36mWX15JKWS4PoQJNu0GAAMsNVfJeHwmwvFdzt42YAMttFfNWfwmwvFXvUI2WACtUsrSLQGIBAixmRVgFnBhg3bN7hfx24ajPZV3R+lImc76wOnHx8AsQYIW/BvQgsQABFrPC6QIEWE6vkLf7R4Dl7foHa/QEWMGSpB0EAgsQYAU24owQCjgxwLpx12I5FHPGN+qtVzaRohmzh1CBpt0gQIDlhip5r48EWN6rudtGTIDltop5q78EWN6qd6hGS4AVKlnaRSCxAAEWsyKsAk4MsIr9MTeBya/Fn5CsGTKF1YmLh1+AACv8NaAHiQUIsJgVThcgwHJ6hbzdPwIsb9c/WKMnwAqWJO0gEFiAACuwEWeEUMBpAdbx2HNy/V+v+0acWTLIzqtahFCApt0iQIDllkp5q58EWN6qtxtHS4Dlxqp5p88EWN6pdShHSoAVSl3aRiChAAEWMyKsAk4LsHZdOCF37n7DZ1I4Y1b56spHw2rExZ0hQIDljDrQi4QCBFjMCKcLEGA5vULe7h8BlrfrH6zRE2AFS5J2EAgsQIAV2IgzQijgtADrm7MHpdbeVb4RXxedRz4s9lAIBWjaLQIEWG6plLf6SYDlrXq7cbQEWG6smnf6TIDlnVqHcqQEWKHUpW0EEgoQYDEjwirgtABr0+m/pen+tT6TO7IUljcvrx1WIy7uDAECLGfUgV4kFCDAYkY4XYAAy+kV8nb/CLC8Xf9gjZ4AK1iStINAYAECrMBGnBFCAacFWO+c3CntDmz0jbhmtivl1ULVQyhA024RIMByS6W81U8CLG/V242jJcByY9W802cCLO/UOpQjJcAKpS5tI5BQgACLGRFWAacFWPOP/yT9Dn3mM3k0RykZX6ByWI24uDMECLCcUQd6kVCAAIsZ4XQBAiynV8jb/SPA8nb9gzV6AqxgSdIOAoEFCLACG3FGCAWcFmBNOvq1jDr8lW/EbXOVlcH5KoZQgKbdIkCA5ZZKeaufBFjeqrcbR0uA5caqeafPBFjeqXUoR0qAFUpd2kYgoQABFjMirAJOC7DmHv9Rphz5WvbGnDIu/fLeKp1ylw+rERd3hgABljPqQC8SChBgMSOcLkCA5fQKebt/BFjern+wRk+AFSxJ2kEgsAABVmAjzgihgNMCrPhD/fPCcckSlVEKZ8wWQgGadosAAZZbKuWtfhJgeavebhwtAZYbq+adPhNgeafWoRwpAVYodWkbgYQCBFjMiLAKODnACisMF3ecAAGW40pCh0SEAItp4HQBAiynV8jb/SPA8nb9gzV6AqxgSdIOAoEFCLACG3FGCAUIsEKIS9NBFSDACionjQVJgAArSJA0EzIBAqyQ0dJwEAQIsIKASBNCgMUkQCD9BAiw0s+aK/kRIMBiWrhFgADLLZXyVj8JsLxVbzeOlgDLjVXzTp8JsLxT61COlAArlLq0jUBCAQIsZkRYBQiwwsrPxVMgQICVAixOTTcBAqx0o+ZCqRQgwEolHN+WLgIEWOnCHPEXIcCK+BIzQAcJEGA5qBhe7AoBlher7s4xE2C5s26R3msCrEivsPvHR4Dl/hpG8ggIsCK5uuk3NgKs9LPmSggQYDEHwipAgBVWfi6eAgECrBRgcWq6CRBgpRs1F0qlAAFWKuH4tnQRIMBKF+aIvwgBVsSXmAE6SIAAy0HF8GJXCLC8WHV3jpkAy511i/ReE2BFeoXdPz4CLPfXMJJHQIAVydVNv7ERYKWfNVdCgACLORBWAQKssPJz8RQIEGClAItT002AACvdqLlQKgUIsFIJx7eliwABVrowR/xFCLAivsQM0EECBFgOKoYXu0KA5cWqu3PMBFjurFuk95oAK9Ir7P7xEWC5v4aRPAICrEiubvqNjQAr/ay5EgIEWMyBsAoQYIWVn4unQIAAKwVYnJpuAgRY6UbNhVIpQICVSji+LV0ECLDShTniL0KAFfElZoAOEiDAclAxvNgVAiwvVt2dYybAcmfdIr3XBFiRXmH3j48Ay/01jOQREGBFcnXTb2wEWOlnzZUQIMBiDgRVYMXqTfLGqo3y6x97JCYmRkpccbk8VKuKPN6whmTMmCHRtQiwgspPYyEUIMAKIS5Np1qAACvVdHxjOgkQYKUTNJdJlQABVqrY+KZLBAiwmBIIpJ8AAVb6WUf8lfqNmCVvr90s0ZkySoXypSQ6UybZ8f1vcuLkaalye3mZOrKbZMqYMYEDAVbET4uIGSABVsSUMqIGQoAVUeWMyMEQYEVkWSNmUARYEVPKsA6EACus/FzcYwIEWB4reKiGq8GVBlglixeRmWN7S5FC+cylTp0+I90GT5HNW7+Vzk83knYt6hNghaoItBtSAQKskPLSeCoFCLBSCce3pZsAAVa6UXOhVAgQYKUCjW9JJECAxaRAIP0ECLDSzzqir/RQy4Hyy87dsnDqQLm57LUJxnr46HGp3qSHREdnko1vviRZLsvs+zorsCJ6WkTU4AiwIqqcETMYAqyIKWXEDoQAK2JLGxEDI8CKiDKGfRAEWGEvAR3wkAABloeKHaqh/r3voNzftJcUL1ZIVi8c7fcyPYZOlfc3bJXJL3SVapUrEGCFqhi0GzIBAqyQ0dJwGgQIsNKAx7emiwABVrowc5FUChBgpRKOb0sgQIDFhEAg/QQIsNLPOmKv9MGmr6TLoElS9/67ZNSAtn7HOW/Z+zJ66iJ5plld6fbMwwRYETsbIndgBFiRW1s3j4wAy83V80bfCbC8UWe3jpIAy62Vc1a/CbCcVQ96E9kCBFiRXd90Gd3cJWtkzLTF0rZ5PenSqrHfa67f9KV0HTRZat5bUcYP7eg75+z5WL/nR2eMkgwZouR8TKzE+j8lXcbGRRCwBC6LvvgWzXPnYyUOFgQcIqAvd82UMYPExMbJhRhmpkPKQjfiCVj3zqT+vQcLgXAKZMoYJRkzRMmFmFiJ4fNmOEvh6mtb9zlXD4LOI+ASAQIslxTKyd2c8uoKmTZ/pfRq96i0bFrbb1e3bPtBnu4+Su68tYzMHtfHycOhbwgggAACCCCAAAIIIIAAAggg4DABAiyHFcSN3Rk3fam8uvg96de5mTzR+H6/Q9j27S/yRKcXpEK5UrJgygA3DpM+I4AAAggggAACCCCAAAIIIIBAmAQIsMIEH0mXTdEKrFvKyOzxrMCKpPozFgQQQAABBBBAAAEEEEAAAQRCLUCAFWphD7Q/f9n7MmrqIlt7YNW4+1Z5aXhnD6gwRAQQQAABBBBAAAEEEEAAAQQQCJYAAVawJD3czsbPdkiHfhNsvYXw6aZ1pGe7RzysxdARQAABBBBAAAEEEEAAAQQQQCClAgRYKRXj/EQCB/89KlUbdZXixQrJ6oWj/Qr1GDpV3t+wVcYObi+1q92BIgIIIIAAAggggAACCCCAAAIIIGBbgADLNhUnJiegG7TrRu0Lpw6Um8tem+DUw0ePS/UmPSQ2Lk4+XjFJcuXIBiYCCCCAAAIIIIAAAggggAACCCBgW4AAyzYVJyYnsGnL19Ku73gpWbyIzBzbW4oUymdOP3X6jHQfMlU++fwbadaohvTv8gSQCCCAAAIIIIAAAggggAACCCCAQIoECLBSxMXJyQmMnb5E5ixeLdHRmaRCuWslc3S07Pj+Nzl+4pSUKX2VzHupn2TLehmICCCAAAIIIIAAAggggAACCCCAQIoECLBSxMXJgQR0n6sFy9fJT7/9JTExsVKsSEGpU+0Oadm0tlyWOTrQt/N1BBBAAAEEEEAAAQQQQAABBBBAIJEAARaTAgEEEEAAgXQSmL/sfRk1dZG0eaKedG3dOJ2uymUQQAABBBBAAAEEEHC/AAGW+2sYcASfffGdtO41RipXLCczx/QKeH64Tvjmh99lydsfydbtP8r+g4clOlNGubp4EalT7U6zf5Y+mujvOH3mnMx+/V1Zu3Gr7N57wKz00kcWmz/8gNxb6eaAw9my7QfpPWyaHDp8TNYuHivFLi+Q7Pd8seMnmbtkjWz/7lc5ceq0FC6QV6pXuUXatqgvuXNmD3g9TvhPoNvgKbLu4y9kSM+n5JF69zqWZu8//8qiFevNXm67/j4gF2JizD5v99x5k7R+/EEpkC93kn1fsXqTvLFqo/z6xx6JiYmREldcLg/VqiKPN6whGTNmSHbMf+87KN2GTJHvfvpDnu/bShrWvjvg+dNfe1s+3fqt6NtBc+fKIbdXuF7aPlFfrr26mGN9ndqxUNw7UxNgxcbGmb8nq9Z/Jl9//5scOXpCsmfLIjeULiFNG1ST+++5LUnCtNyvzpw9J8PGz5OV72+WBjUry4h+zyRbqrTei506D5zWL/23Sv+t/OyLb+WPXfvk2PFTZj4UKZxf7ryljDxS/z4pcUXhsHc7LfNW731puZe99sZaGTttiRQskEfWLxkX0CIt9+mAjXvohFDcM0PB55bPm9bYUzqfQ2FGmwgggIBTBAiwnFKJEPbD6R8odI+s4RPmy7sf/M8olLr6CrmyaEE5cuykfP/zH6I/RN1U5hp5ZVyfRHto6fc+0fkF+XXnHsmdK7vceENJOXnqrOz4/lfzCGPnpxtJuxb1/erGxcXJK6+/K5NmLxf9oK1HoABLg4ghY+eYc8ted5Xkz5tbfvl9l2jAoYHG6y8PlkIF8oSwmpHTtAYs+nZKDYPUcumMoY4bnM6L2YvelalzVsj5CxdDq1IlrzRB1A+//Cn/Hjku+fLklHmT+psXGFx69BsxS95eu9mEsRXKl5LoTJnMvnAnTp6WKreXl6kju0mmjBn9jltfjND3+Rly9PhJ8/VAAZb258muI+XkqTNyZdFCUrJEEdn3z7/y02+7JHPmaHl5RDe567ayjjN2codCce9MaYD1+197zTzQe6HOo7LXXS358uYytdU/06NZo/ulf5dmiSjTcr/6c/d+6TZ4svz8+27TbqAAKy33YifPAaf1TWs6cvJC8++iHvoLF70H6d/7XX//Y+5TGoy3aVZPOrZ8SKKiotI8hAea9pJWj9WRRxtUs91WWuZtWu5l6jBo9GzR7Qz00FAvUICVlvu0bRCPnBiKe2Yw6dz0eVPHnZr5HEwv2kIAAQScKECA5cSqBLlPTv9AcezEKXmkzVApVfIK6dGmiVl1ZR37Dvwr7fuONz9EtW1eT7q0SvjIzcBRs0V/c/pA1dtkZP82kuWyzOZb/9qzX57uMVr27j8k8yf1l1tvLJ1AVUOBfiNmysbPdpjfWMfGxcrn235MNsDSHw7qNu8nmTJllOmjekjFm683bWoQNmXOCpk+/23T1uzxfYJcwchsbtbCVTJx1htyQ6kSJgx6Y9Zz5n877dBVYjt37ZV+nZrJnbeW8XVPV5sMHTdHVq37TG4pX0pemzwgQdc1uNIfjPy9mVPb3Lz1W78Bq4ZmU+denE/6w1eViuVl2aoNyQZYGtbWe7KfaOjQu31TeerRWr6+fPy/HdJ5wCTJnj2LvP/6GMmZI5vTiB3bn1DcO1MaYH3z405p2W2kWbHX6rEHTVBvHdu+/UXa9B4rp06fldnj+iSYn2m5X+lqrwEvviIXLsSYuTTjtXcCBlipvRc7tvgO7Niitz6Q5ye+ZkIprcuTTWpKwfz//cJE3/qr96MJM5eJ/rv6ROP7pV/nxMFmSob2y87d8lDLgTK4e4sUBVipnbdpuZfpL7K6Dp5sVqU93bSOLHn7Q8mVM3uyAVZq79MpMfTSuaG4ZwbTzy2fN3XMqZnPwbSiLQQQQMCpAgRYTq1MEPvl9A8UOtSjx04m+MEs/vA1WGrZ/UUTBLwzf6TvS/oYxX0Pd5Mc2bLK+qXjJFvWLAnU9Af39s9OkEq3lZNZYxM+Otm03XOiH7D10cQ+HR+T9n0nyKdffJtsgDVi0gJZ+OZ66fbMw/JMs7oJrqUh1mPth5k2F04dKDeXvTaIFYy8ptSrdrO+cuz4SRk1sK206zve/HCkPyQ57dCgKmOGKLOK6dJDv1alQSezGmLjmy8leJRQf+jTH/78zYfDR4+b1Wf6WKx+nxW8avvW2zw1dJ04rLMsf3ejCfqSW4GlgYOGYrrC6pWxvRP102rT39x1mreT+hOKe2dKA6xA90ddHfjyvJWJ/v6k9n5l3TcLF8wrk5/vKucvXJBmHZ9PNsBKy73YSfV2cl80nG7QcoCcP3/B3DPr1rgrye7qD76PdRguGmjNGN3TrPZM7aFhmK5UTmmAldp5m9p7ma7ord2sj1mB9lyvlma+3lyjlRTIn/wjhKm9T6fWM9K/LxT3zGCbueHzZmrnc7CtaA8BBBBwogABlhOrEuQ+JfeBQoOELV/9ICvWbJJt3/wi/xw8LBkyZJDixQpLnep3SMtHayfae6rzgJfkk63fyherZ8jn236Q15avvfhY1InTkid3DrPaSTcovv7a4kEZia6WqlSvowm4Pn17qq/Nt9Z8YlYJNH7wHhnW++lE19KxVW3UVY4cOyGbVkxOEJD978vvZe8/h3x7CumjV7pXTHKPEN7ftJfovhwfLpsg+sPdpYf12/EWTWpK346PBWXskdqINSf1h7AX+rU2ddIfzDa+OUmyZrm4ii7+8eOvf0nj1oNNePhIvftk1uur5INNX5kaavhTplQJs9qgWpVbEn2vFRgsnjbYPH41/433ZenbH8nf+w/JtVcVMyu/0nI0fHqgWSH41pznzeOveug80flSvFghWb1wtN/mewydah5zmfxCV6lWuYLvnAOHjpigtGPLhuaRMSugSC7A0r8H+vdh1IC2Uvf+xD/Y/vbHHqn/1ADzd3L5K8PSMlxPfW9S906tm9ZP56+GCf6O8TOWyuxF70n/Lk+YoNw6UhNgJYe+ftOX0nXQZLMP1sRhnXynpvZ+pStgJsxaJk89UssEstYvEJJ7hDAt92JPTag0DPa58fPMfavmvRVl/NCOAVuau3SNjHl5sdxSvrS8Nrl/ovM1RJ+39H3Z8Ol22bPvgPl64YL5pGzpq6Rzq0bm3029r2gY5u8I9Lh9oA4mNW/Tci/TfYL0l0flbyhpVkaXu69lso8QpuU+HWh8Xv06nzeD83lT509K57NX5xzjRgAB7wkQYHmg5sl9oNAgp1XP0b6Nz4sUzicnTp6RL3b8aB5L0UfzJjz33w9FyqUB1oebt5ng6M33Nsl9lStIhXLXSlycmA2G9YOprlbRD83lrrs6zcL6OKCu1tHHy+KHDboPyILl60x4pX3xd3Tq/5J89Ok2swJLV2IldTzR6QXRx3GS+lCuy87vqtvBBFcaYPk79DG4h58ZYj5A66objqQFrPBm+qiecvcd5cVaLZJUSGMFWPqI5p59B81jnPoDe4F8ucym6voDtO5t0b5FA+n0dMMEF7YCg6kjupn9qDR80L2s8uTOKUUvzy+ThndJU6mqNeku+w8cls/fm242UtZDw7UugyaZMElDJX/HvGXvy+ipi8xqPg3mkjpeemW5zFzwTrIrsBq1GmT2utKwTEMzf8cdD7Y3+2l89f5Mv6vJ0oQQod/shgDL2udKHyfT1aR6BPN+ZRkkF2AF814coVMpzcPSkF9XZcyZ8Kx5MUOgQ+fA3Q06mz0GL10dqvfTtn3GmfZ05fL11+q+frHy55795j760RsTZf+Bf+WjzdvMo876Cyp9YUW5667yXbZ5k5qSKw2PI/ubt9p4sO5lOu6bqrdKNsAK5n06UD288nU+b6b986a/uWJnPntljjFOBBBAgADLA3Mg0G/E9EPqnbeWTbBBum5K3rjVILOB9Kr5IxPsS2UFWLoPx7QXe5gAIv6hjxvoYwf6gXfai93TLKxv/BszbXGiH/Q79Jtg9rC6dO+X+BccMWmhLHxznQzs1lwee6h6kn0JFGDpW+AeaTvU715HVqPWSrG8uXPKJysnp3nckdqAbnxe7eFukjdPTlm/ZLzZcFg3o27SZqjZrP/1lwclGroVYOkX9M2SLw3vnGDzc3375OMdhps3SWpwqqsOrMMKsHSjeH0MRwMlO2+ntONvzYtL+23NWX/7tlntWisQAq2osBNgVazd1gTO29fPNqu2/B3WSrG3574g11zFGwnt1NcNAZZ1H9Q3zOqbZvUI5v3KToAVzHuxnbp47RxrpZC+8OHz1dPNL5zsHLpqVe+dk5/v4ludqo87N3hqgHljr76pV8Nz6xFmXbW0c9e+BC+k0FVcuporNY8QJtdHf/NWzw/WvczOD/zBvE/bqYcXzuHzZto/b/qbJ3bmsxfmF2NEAAEEVIAAywPzILV7Eujb9vS3pKMHtZMHq9/pk7ICrEsfWbFO0H2BbqvVxvxmd+vq6WkS1scc6rXob/by0NUl8R/da9FlhHz59c+yZMaQJFd6TXl1hUybv9Js/q5hQlJHoABry7Yf5Onuo5IN5axHFjSQ+fqDV9M07kj+Zn2sSh+vunTlkb9H8SyH+AHW6oWjzCOulx5LVn4owybMT7Rq0Aqw9HxrxVcwfLXerXqMFp0bGqjVuPtWX7PWvOvV7lFp2bS238tZc0o3htcQNqkjUIClm76Xr9bSPHr5xZqZSbZj/X3RzeZ103mOwAJOD7Csx/tKl7xCVrz6vG9Awbxf2QmwgnkvDlwV752hK5t1T6vLC+aTD5aNtw1g/Vs9qHsLafr/bxC0Vj7pKi5dzRXoCEWAldS8Dea9zM4P/MG8Twdy9MrX+byZ9s+b/uaKnfnslTnGOBFAAAECLA/MgZR8oNB9iPQ3tHEiMmvBKnl18XsypMeT8kj9+3xS1ofi5H4je/dDnUVX2mxbOyvVjyvpZqzt+o4TfcxR36SkexzFP6yN2N+cPVyuu+ZKv5XUR680ANA9ubq2TvgGw/jfECjA2rTla7PRePW7b0n2kTN9ZEE/aOz4YHaCFUIemGa2hqihT50nnjVviXz3tRflqisv932f9Uhds0b3S/8uCd+cZQVYyT3Cqauv7mnYJdFeaVaApY+zatgZrMP64UeDKw2w4h/jpi81f3f8zVvrPH1kVeddhXKlZMGUhG8wjN9WoABL/77eWrNr2NvMAAAgAElEQVSNeZzns1UvJzm81r3GiN4LdJN33eydI7CAkwMsfUOrvjji8JHjsmDqwAQhfjDvV3YCrGDeiwNXxXtnWDXQN/Tqimi7R9/nZ8iq9Z9J9zZNpPXjD5pv00eb9dG5pPbLu7TtYAdYyc3bYN7L7PzAH8z7tN2aRPp5fN5M++dNf3PEznyO9LnF+BBAAAFLgADLA3MhuQ8U+tjRslUbZP3HX8rPv++SEydPJxK5NKiyAqyXR3aXqnfd5FdQ3w74z8EjZgXWpW8HtEOuv4ntPXyarPnoc7PRuu6NdOmRkt/6d366kbRrUT/JSwcKsIK5osHO+CP1HGvPNX+hjQae9zXuZh5l3fDmSwkek7ECrPLXXy2LpycdQuk+TzqHNcix9mexAix/wVhqnV9f8YG88NJroitfFkwZ6Nv7ymovRb/Zv6WMzB6f+hVY1so/+yuwEj5imVoDL3yfUwMsXZn6ZJeR8tuff/vdGy2Y9ys7AVYw78VemFcpHWOqV2ANnCQffvKVxF+BVa9FP/n9r70JXjqRXH+CGWAFmrfBvJfZ+YE/mPfplNY0Us/n8+ZKSevnTQKsSP3bwbgQQCBYAgRYwZJ0cDtJfaDQwEB/8Nj5116z8fgD91Y0G0Br4BQlUbJ45Yfy/obPE+19YQVYya3kSEuApeFV/xdnyTtrPzX7dkx4rqPf1UxWP+zsgaUrejTASOoIFGBZAYo+eqWPYPk7fG9LzJldPn3nv7clOnhqpHvXegx92cypQMeL/dtIvQcq+U6z/ANtkK8rsHQllj5mo4/b6BHst75p4Dt07FzzGOP8Sf2kYP48iYZjXdPOHlj+VnDFbzDQCiw91wru7OyBpY+aafDGEVjAiQHWkaMnpGX3F82bL5N6RDWY9ys7AVYw78WBq+K9M/buPyQ1Hu1p/h3UXwrpS1LsHPpSEX25SPw9sKyXTqxbPFaKXl4gYDPBCrDszNtg3svsBFjBvE8HhPTICXzeXGdWkKfl86a/qWJnPntkijFMBBBAgD2wvDAHkvpAofsF6b5B9R+oLCP7P5OIYtTUReaH/6RWYIUiwNI3IfUfOcs89qA/2I8d0iHJTal1Y3fdhNXOWwinj9LN5m9MstyBAizdg6ti7Xa23kIYaJWQF+acvzFam7dnyJBBSifxyOfpM2fNa9tvvbG0zJ/036vfrR/IS119hVk54O/Q397fUrONnDt33u8KrECPkdqpi4a6wyfMN48+6v4xhQokDq+0HX25gG5SbOcthE83rSM92z2S5OXtBFj6ggHduDvQWwh1ddrW1TMSvLDBzri9ek5aAizrzXz9uzwhzRrV8BGmJVDVv0Oteowy4VXv9k3lqUdr+S1NMO9XdgKsYN6LvTrXAo3begvhvJf6yW03XRfodLMStUqDTqKP4n+8YpLkz5vLfE+dJ/qal1msnPOCXHt14Jc5BCPAsjtvtX/BupfZ+YE/mPfpgAXxyAl83twmaf28SYDlkb8sDBMBBFItwAqsVNO55xuT+kBRt0U/s/pq8bTBUv6GkokGZK2WSa8ASz9w9hk+w6zQqVvjLnmhX+tk95HS87SPjR+8x4RYlx4aaOiHfl2Rs2H5RL8rZazvCRRg6Xn1n+xvHtn5cNmEBJvJW20seusDeX7ia2a/MN03jCOhgO4JpXuO6GbC+kiLv+PsufPmMUJdzfbO/JG+t2FZAZY+Jrfl3enmzYWXHr/9sUfqPzVA8uTOIZtXTglKYBD/Gq+9sVZenPK6Wb30yrg+vh8I/Y1DX0+vc09XNGqo5O/oMXSqvL9hq4wd3F5qV7sjyeliJ8DSUE3DtaT2tbFsUrqHjtfncFL3Tt1DSPcSqnXf7TJuSAe/TN0GT5F1H38hwQqwdE7piyT0HhT/kbCkahSs+5WdACuY92Kvz7mkxm/9HdcXquiLVQId+vZdfQuvhl0aellH+2cnyMf/2yFjBrWXOtWTvu9Y56c1wErpvA3WvcxOgBXM+3Sgenjl63zeDM7nzUvni5357JU5xjgRQAABAiwPzIGkPlDUbtbXbKatewrpqqH4h/72Vh9ZOH7iVLqswNLfEvd8bqrZXPbhulVlSI+nJEOGqGSro33UR8b0FeDrl45LtNeWfkjXD+t2VkTZCbCsIEFfO65v0Lv0sDYyDvTbNw9MOb9DtH7zn9ym+/qNo6cuEt3Q/alHaknvDk1NW/HfQjhzTC+pXLFcomtYP2hdGiqkZcWLdZE5i1fL2OlLzEbZev3cubIHLKM1pxZOHWge0Y1/6F4w1Zv0kNi4OLM6wtqvy1+jdgIs6+94pdvKyayxvRI1o33XMQRa7RVwUB47Ial751ff/CzNO4+QG8tcI4teHpRIRe9nGsRqnYMRYO0/cNg8Nrjr739keJ9W8lCtKgErEaz7lZ0AK5j34oAD8+gJumqqQcsBoi9amfBcJ/O21aQO/Xf9kbbPmX+/L10pbQVbeg/Ve1mgQ9/iq3tFJfXvXnLfn5p5G6x7md0f+IN1nw7k6JWv83kz+X06dR7Y+bx56XyxO5+9Ms8YJwIIeFuAAMsD9U/qA4W1AuTSFUPHTpyS3sOmyeat34quYgr1Cix95KvbkCnmsavmDz8gz3Z63HZVrLcI6Yf5Fwe09W38rR/gW/UcI3/vOygTh3WS++9J+sO+3Q8UupKr1uN9JDY21iwRr3jz9aafajRlzgqZPv9tszpHA5qoqOTDN9sDjJATrU2lbypzjbzu5wf++MPUH9Q07NKVVBvemCjR0ZkSBFi695SGNFcUKej7tg83b5Pug6eYN0Bq+3od60hrgGW9yfKW8qVN3bNny2KrKtab4EoWLyIzx/aWIoUu7smlj3d1HzJVPvn8G/NomQYcyR12Aiz9/qbth8k3P/ye6NEyDXK7DJwkURkyyJqFo/2uHrQ1IA+elNS98/SZc3L3Q53kzNnzsmT6ECl73VUJdCbOekNmLVxl/iytAZbuf9Sy+yjR/z96UFupee/ttioRrPuVnQBLOxSse7GtwXn0JOvlEboCtU2zeubfy/hhuv5bumbD56Jhvj62F/+XABaZho26+vrAoSPSvkUDafdk/QQrnf/Ytc+sLs2ZI5v5lnc/+J/0GT7dhPf6tsvoTBlt6ad23gbrXmb3B/5g3adtoXjgJD5vBufz5qVTxe589sAUY4gIIIAAe2B5YQ4k9YFC98xp1nG42SPj+muLm/87dvykaNigG1M/2aSmPDd+XsgDrPg/7OneQskdd91aVgZ2a+47RT+wa1ClKyL0g/yNN5QU/eFy+7e/mjDjkXr3ypCeTwUss93fiOkKMQ3+tG39obVAvtxmPxr9sJ47Z3Z5bXJ/ueaqwPuKBOxQhJ3Qa9g0Wf3hFhnR7xlpULNywNHpo1I6D63H66wVWLrC6NDho/L7n39LhfKlpGC+PLJ77wHZ8f1vps2urRuL7nUV/0hLgPXpF9/KM73GmuaKFM6f4M2Ilw4iR7assmRGwjckWiufNISrUO5ayRwdbfqqKyPKlL7KPNqjb11M7rAbYOnqnGYdnzePzF5ZtJCULFFEdAWE2mmgqhvj655cHPYFknujlgZUeu/Sx1ob1blHrrqyiJw8ddoE8d///Id5Q+vajWl/hFBruv27X811Cv//iwmSGoHO/fh/v4Jxv7IbYAXrXmy/Ot48c+k7G2TUlNflzNlzZpXy1cWLSp5c2UXfKKxbAuifa8DVrnl96fDUQ36RdD617zte9JdVGlbpv/3nzl+QPfsOml/6LH9lmPkzPbS9us2flb3//Gse6dZVh0ePnZQurRsn+zKItMzbYNzLUvIDfzDu096cjYlHzefN4H3ejK+bkvnMXEQAAQQiXYAVWJFeYRFJ7ocw/WFaHw/QD7TnL1wwb26rXuUWaf9kA7MP0QNNe4U8wNJ9o3T/KDtHtcoVZPILXROcqgHcvKVr5J11n8quPf+YFTu6EurR+tVs/8BuN8DSC+sPpzNee0e+/PpnOXHylBTIn8dsEK8/MBQumNfOMDx1jj5Gdd/D3SXrZZnlo+UTzSOfgQ7dG0qDwjsq3CCvTujrW4GlzuOHdpTZi941+0dpeHVZ5mizOqBFk5omNLj0SEuAZfUjUH/16zmyZ5Ut705LdKq2sWD5Ovnpt79EX1JQrEhBqVPtDmnZtHaygZjVkN0AS8/X8GravJWy4bPtcvDQEcmRPZsJ+lo//mCCVWl2xsM5yd871UdXpyx+60NT27Nnz0v+fLnkjgplpHWzB2X/gX9N+JnWFVi6r5vuYWbn6NvxMfP3IP6R1vuV3QBLrxmMe7GdcXr9HN27SV/Aoquk/9yz3wTi2bNmMW8VvPPWMubfPt1/L7lDw23dl1BXIGk4lSljBvOLK/0lQeenGyVY2aWB0thpS8znBP1cUKRQfpn2YnfzMoukjrTO27Tey1L6A39a79Nen5PW+Pm8GXgmpOTzptVaSudz4F5wBgIIIOBeAQIs99bOds8/+nSbdOr/kvgLf2w3wokIhFHAWoGlj/HpKjcOBNJDgHtneihzDQQQiBQB7pmRUknGgQACCDhXgADLubUJWs9enrdSps5ZkeL9pYLWARpCII0CVoBVoVwpWTBlQBpb49sRsCfAvdOeE2chgAACKsA9k3mAAAIIIBBqAQKsUAuHoX19ZEs3F9Y9mT7f9oM8O2KmecRAV67oChYOBNwmQIDltoq5s7/cO91ZN3qNAALhEeCeGR53rooAAgh4WYAAKwKrv2L1Jhk4anaCkTVrdL/079IsAkfLkLwgQIDlhSqHf4zcO8NfA3qAAALuEeCe6Z5a0VMEEEAgUgQIsCKlkvHG8cMvf8q0+SvNqqtCBfJKzaoVpVqVWyJwpAzJKwIEWF6pdHjHyb0zvP5cHQEE3CXAPdNd9aK3CCCAQCQIEGBFQhUZAwIRLkCAFeEFZngIIIAAAggggAACCCCAQAABAiymCAIIIIAAAggggAACCCCAAAIIIICAowUIsBxdHjqHAAIIIIAAAggggAACCCCAAAIIIECAxRxAAAEEEEAAAQQQQAABBBBAAAEEEHC0AAGWo8tD5xBAAAEEEEAAAQQQQAABBBBAAAEECLCYAwgggAACCCCAAAIIIIAAAggggAACjhYgwHJ0eegcAggggAACCCCAAAIIIIAAAggggAABFnMAAQQQQAABBBBAAAEEEEAAAQQQQMDRAgRYji4PnUMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDiCAAAIIIIAAAggggAACCCCAAAIIOFqAAMvR5aFzCCCAAAIIIIAAAggggAACCCCAAAIEWMwBBBBAAAEEEEAAAQQQQAABBBBAAAFHCxBgObo8dA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAggg4GgBAixHl4fOIYAAAggggAACCCCAAAIIIIAAAggQYDEHEEAAAQQQQAABBBBAAAEEEEAAAQQcLUCA5ejy0DkEEEAAAQQQQAABBBBAAAEEEEAAAQIs5gACCCCAAAIIIIAAAggggAACCCCAgKMFCLAcXR46hwACCCCAAAIIIIAAAggggAACCCBAgMUcQAABBBBAAAEEEEAAAQQQQAABBBBwtAABlqPLQ+cQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAAo4WIMBydHnoHAIIIIAAAggggAACCCCAAAIIIIAAARZzAAEEEEAAAQQQQAABBBBAAAEEEEDA0QIEWI4uD51DAAEEEEAAAQQQQAABBBBAAAEEECDAYg4ggAACCCCAAAIIIIAAAggggAACCDhagADL0eWhcwgggAACCCCAAAIIIIAAAggggAACBFjMAQQQQAABBBBAAAEEEEAAAQQQQAABRwsQYDm6PHQOAQQQQAABBBBAAAEEEEAAAQQQQIAAizmAAAIIIIAAAggggAACCCCAAAIIIOBoAQIsR5eHziGAAAIIIIAAAggggAACCCCAAAIIEGAxBxBAAAEEEEAAAQQQQAABBBBAAAEEHC1AgOXo8tA5BBBAAAEEgi9w7MQpadZhuJw+c1bmT+ovRS8vEPyL0CICCCCAAAIIIIAAAkEUIMAKIiZNIYAAAggg4ASBZas2SMF8eeTeSjf77c4XO36SJ7uONF8bNbCt1K1xlxO6nW59COSTbh3hQggggAACCCCAAAK2BQiwbFNxIgIIIIAAAs4XOHX6rFSq31Ea1qoiQ3o+5bfDJ0+dkae6vSinTp+RV8f3lcIF8zp/YEHqoR2fIF2KZhBAAAEEEEAAAQSCKECAFURMmkIAAQQQQCDcAus3fSldB02WR+rdm2SAFe4+hvP6+IRTn2sjgAACCCCAAAKpFyDASr0d34kAAggggICjBM6fvyC9h0+XdR9/QYDlpzL4OGq60hkEEEAAAQQQQCBFAgRYKeLiZAQQQAABBJwp8Noba+WV19+Vg/8e9dvBHNmzypZ3p5mv6TlVG3U1//utOc9Lqauv8H2P9bVrriomb899wZw7e9F78tHmbbLvwL+SI1tWKVWymDxc9155sPqd5vvi4uJk5fub5a01n8gvO3fLyZOnpUD+PHLnLWXkmWZ1pcQVhZNF27v/kMxZskY++fxr2ffPv5IxY0YpXqyQVL/7Vmne+H7JmSOb3+///a+9snD5Otm6/UfZs++gxMTGSoF8uaVIoXzm2vr9119b3HxvSnysi/3wy5+y+sMtonuG/bFrn5w4dVqyZrlMSpYoKrXvu10ea1hDojNlTNS39z7YIr2HT5PHHqouA7s1l+9//kPmLFktW7f/JEeOnZB8eXLKzWVLyZOP1JSbylxjvv/EydOy8M318v6Gz2XX3wckJiZGrihaSKpVriCtHqvj18C6TrNG90v/Ls3kp992ydwla+TzbT/IocNHJXv2rGb8DWvdLQ/WuFOioqKcOXnpFQIIIIAAAgggYEOAAMsGEqcggAACCCDgdIHBY16VPXsPys+/75J/jxyXQgXySMniRX3dzpb1Mpn8wsXQyk6ApcHM4ulDpHXPMXL46HGJjs4k0ZkymX2zrOPJJjWl6zMPS4d+E+R/X35v/liDMn27YUxMrPnvbFmzyPxJ/eSGUiX8EuojfX2GT5ez586br+fPm0t0pZS+KVGPIoXzy8wxvaRk8SIJvl/Dm34jZsqFmBjz57lyZJOoDFFy9NhJ33kaDr3+8iDz3ynx0fPXfPS59HzuZV9beXLnMOHVPwcP+8Z2e4XrZdbY3pIpY8IQywqW9OuN61SVAS++YvqpNbgQEyvn/n+s+n1jh7SX0iWvlGd6jTEhnIZManj8/8evHdCxL5o22Px5/MO6zj133iS1q90ug0a9aq6TOXO0XJY5OkEbGoSNH9rR1JEDAQQQQAABBBBwowABlhurRp8RQAABBBBIQqDb4CkBHyG0E2Bp87lzZZcrixSSZzs/LjeVuVYyZIiSvf/8KyMnL5APNn1lenBL+dKy7dtfpF3z+vJYw+oXA6gLMbJpy9cyaPRsOXL0hFQoV0oWTBmQqMff/PC7NOv0vAmEHm9YXdo2r29WUOmhq58Gj5ljVi8VL1ZY3pw9XLJmyWy+puHOfQ93k9NnzkmzRjXM9+l19Thz9pz5Hu3fXbeVlSq3l09wXTs++g26Ikr3Eqtd7Q6petdNUjB/HtOOjm3uktUycdYb5r9H9n9G6j9QOcE1rGBJ+xsTGycP3HObdGzZ0Kwqi42Nk+9+/sOEWr/9sUfy5s4peXPnkEOHj0m/zs2kxj23mXFqULhk5UcybsZSs8KtzRP1pGvrxn6vkz1bFjNufetkp5aNpHTJiyvqtM668ktXZenRoklN6dvxMf7uIIAAAggggAACrhQgwHJl2eg0AggggAAC/gXsBDR2AywNk9597cVEK380LKn5WG/f44qdn24k7VrUT9ShN1ZtlCFj55g/37xyiugqpvjHw88MMUFV3fvvklED2ib6fg3L6jzR16xYerbT49L84QfMOf/76ntp1WO05M6ZXTa/PSVFj8bZ8bEzt9r0Hiubt35rAq6xg9v7DZb0D3V11LQXuydqUset47eO+ZP6y603lk50Xt/nZ8iq9Z/JtVcXk5VzXkjyOhrWzRrTy6/FuOlL5dXF75kAct2ScXJ5wXx2hsg5CCCAAAIIIICAowQIsBxVDjqDAAIIIIBA2gTsBDR2Ayzdv6rbMw/77VCPoVPl/Q1bzR5Qn6yckijk0m/Sva1qPNrTfP/CqQPl5rLX+tr65sed0rTdc+a/P3pjonnk0d/Ra9g0sw+Vhjsa8uhhfa9ee/XrY8yeV3YPOz522po2f6VMeXWF39Vl1gosbWfW2F5S6bZyfpus0qCzeTyz/A0lZfG0wX7P0b3F+o+cZZy3r5+d4Jz415kxumei1WbWyadOn5WqjbqI/v9e7R6Vlk1r2xki5yCAAAIIIIAAAo4SIMByVDnoDAIIIIAAAmkTsBPQ2A2wpozoKvdVquC3Q6OmLpL5y96X66650jze5+/Qx+XKV2tpvqT7WFWu+F+QoyuCdGWQPh64euGoJAetIZGGRbra6tN3pprztN2GrQbKrzv3SOGCeaVHm0ek5r0Vbe3vZMfHTgWWrPxQhk2YL2VKXyXLZg5NMljSjfMv3bvKOrlx68Hy469/yRON7zePD/o7rNVm+rXt615JMMb4Adbn700XfZQwqUP3Kdv42Q55oOptMuG5TnaGyDkIIIAAAggggICjBAiwHFUOOoMAAggggEDaBOwENHYDrCUzhki5667226ExLy+WuUvXyJ23lpHZ4/ok2emy9z5lvjZ9VE+5+47/9qMaOnauLFu1IUWD/W7DXN/5+nhh98GTzWosPXQvqTrV75RGde72vXnQX+N2fKzv27TlG1n38Vb5/uc/5e99B82+VLoHVvwjuQBL97L6Ys3MJMfYpM1Qs19Xl1aNpW3zen7P+3zbj9Ky+4vma1+tnWU2Z7cOK8DSzeG3rp6RrKUVOCa32itFxeBkBBBAAAEEEEAgnQUIsNIZnMshgAACCCAQSgE7AY3dAOutOc9Lqasvbgh+6WEFWLqqSldXJXUkFWBZjwbq6qRilxewRXLpSi9diaVvMXx9xXrZuv1HXxu6aXz3Nk387illx0c3nu86eLJ8seMn0+Y1JYqaUCxf3lyS+f/f4rfj+9/M15MLsHQT/E/fvrhqzN9hBVj6mKY+runvsBNgxV+dltS1Js1eLjNee8fvXlq28DkJAQQQQAABBBAIswABVpgLwOURQAABBBAIpoCdgMYJAdag0a/Km+99HHAFl12b3XsPiG4av/Ttj+To8ZPm24b2ekqa1L03QRN2fDoPnCQffvKV5MuTUyYO6+w3CJu1cJV5E6ETAqzMmaNl29pZyVKNnLxQFixfJzeWuUYWvTzILivnIYAAAggggAACjhEgwHJMKegIAggggAACaRewE9A4IcCyNkEvmD+PbFg+Me0D//8Wjp84JYPHvCprN34hWS7LLB8sHZ/g7YeBfHRT9bsf6iJxcXEyrPfT0vjBe/z2TcMrDbGcEGBpBz9ZOdk8RpnU0bbPOPnk82/YAytoM42GEEAAAQQQQCC9BQiw0luc6yGAAAIIIBBCAevtgA1r3y3P923l90pOCLC++uZnad55hOnfgikDzNv8gnWcP39B7qrXQU6fOSevjO0td91W1td0IB/dk0of7dNj6YyhUva6q/x2S/el0sf7nBJgTRreRarffYvfvp44eVruadhFzp47L73bN5WnHq0VLGraQQABBBBAAAEE0k2AACvdqLkQAggggAACoRd4bvw88xhdco+KOSHAUomGTw+Un3/fbUKg+ZP6i256HoxDg5o763aQc+fOy9yJz0rFm6/3NRvIRx9FrPlYb3P+uCEdpNZ9tyfq0mdffCete40xf+6UAOuW8qVl3kv9JEOGqET9tfYr06+tXzLevLmRAwEEEEAAAQQQcJsAAZbbKkZ/EUAAAQQQSEbg7bWbpd+Ii/shPderpTxct6r53/r2vEwZM0hUVJQ4JcD65offpXmXEaIrpkqXvEI6t2osd91a1gRZGkL9c/CwfPPDTvlw81dSp9odUq3KxRVGunn63CVrpO79d0mliuUkV45sPpGdf+2VcdOXykefbpP8eXPJ+iXjRPeIsg47PrWb9ZW/9uyX4sUKyUvDu5i+6aFvIVyx+hOZMHOp5MmdU/buP+SIACs6OpMxVB/dvL5k8SKmv/o45exF75lHHfV4sklN6dPxMf7+IIAAAggggAACrhQgwHJl2eg0AggggAAC/gV01VGTtkPl1517zAn6hrps2bKY0OrTt6dItqwX/3fVRl3N1y9902ByX4t/xbS+hdBqS1cz9Rz2shw9dnHjdT1076ozZ88lGOCL/dtIvQcqmT+LvwJK/1uDKh3XkWMnTGijh/73lBFd5Y4KNyRox47P5q3fSodnJ8iFmBjzvdq+vn1w/8HDom8+rFa5gnR6upE0ajXIEQHWDaVKmDBv7LQlZu8urXnWLJeZOltj0McLxw3uIBp2cSCAAAIIIIAAAm4UIMByY9XoMwIIIIAAAskIHDl6Qia/+qZs+HS7HPj3iOTIllVKligqr47vY1YjOSnA0mEcO3FKlqz80PRXV1AdP3lKMkdHS4F8uaVM6RJyb6UK8kDVir5HDDXcWrnmE9nw2Q75Zefui0HNhRjJni2LlLiisFS6rZw0a1RDdIN4f0cgH/2e7376w6xc+vLrn8xbDdXw2quLyUO1qojuLxYXJ1KxdlvjumzmxT2zrOO9D7ZI7+HTJHeu7PLp21OTrJTutaV7bnV75mF5plldv+fpPlu635YeX62dJZfFW01mXefKooVkzeuj5dufdspry9bK1h0/yr+Hj5kQ74bSJaRRnXvMCjZdfceBAAIIIIAAAgi4VYAAy62Vo98IIIAAAggg4GkBK8DStw/qWwg5EEAAAQQQQACBSBYgwIrk6s8u05QAAAhxSURBVDI2BBBAAAEEEIhYAbsrvSIWgIEhgAACCCCAgKcECLA8VW4GiwACCCCAAAKRIkCAFSmVZBwIIIAAAgggYEeAAMuOEucggAACCCCAAAIOEyDAclhB6A4CCCCAAAIIhFSAACukvDSOAAIIIIAAAgiERoAAKzSutIoAAggggAACzhQgwHJmXegVAggggAACCCCQrAABFhMEAQQQQAABBLwkQIDlpWozVgQQQAABBBCIGAECrIgpJQNBAAEEEEAAARsCBFg2kDgFAQQQQAABBBBAAAEEEEAAAQQQQCB8AgRY4bPnyggggAACCCCAAAIIIIAAAggggAACNgQIsGwgcQoCCCCAAAIIIIAAAggggAACCCCAQPgECLDCZ8+VEUAAAQQQQAABBBBAAAEEEEAAAQRsCBBg2UDiFAQQQAABBBBAAAEEEEAAAQQQQACB8AkQYIXPnisjgAACCCCAAAIIIIAAAggggAACCNgQIMCygcQpCCCAAAIIIIAAAggggAACCCCAAALhEyDACp89V0YAAQQQQAABBBBAAAEEEEAAAQQQsCFAgGUDiVMQQAABBBBAAAEEEEAAAQQQQAABBMInQIAVPnuujAACCCCAAAIIIIAAAggggAACCCBgQ4AAywYSpyCAAAIIIIAAAggggAACCCCAAAIIhE+AACt89lwZAQQQQAABBBBAAAEEEEAAAQQQQMCGAAGWDSROQQABBBBAAAEEEEAAAQQQQAABBBAInwABVvjsuTICCCCAAAIIIIAAAggggAACCCCAgA0BAiwbSJyCAAIIIIAAAggggAACCCCAAAIIIBA+AQKs8NlzZQQQQAABBBBAAAEEEEAAAQQQQAABGwIEWDaQOAUBBBBAAAEEEEAAAQQQQAABBBBAIHwCBFjhs+fKCCCAAAIIIIAAAggggAACCCCAAAI2BAiwbCBxCgIIIIAAAggggAACCCCAAAIIIIBA+AQIsMJnz5URQAABBBBAAAEEEEAAAQQQQAABBGwIEGDZQOIUBBBAAAEEEEAAAQQQQAABBBBAAIHwCRBghc+eKyOAAAIIIIAAAggggAACCCCAAAII2BAgwLKBxCkIIIAAAggggAACCCCAAAIIIIAAAuETIMAKnz1XRgABBBBAAAEEEEAAAQQQQAABBBCwIUCAZQOJUxBAAAEEEEAAAQQQQAABBBBAAAEEwidAgBU+e66MAAIIIIAAAggggAACCCCAAAIIIGBDgADLBhKnIIAAAggggAACCCCAAAIIIIAAAgiET4AAK3z2XBkBBBBAAAEEEEAAAQQQQAABBBBAwIYAAZYNJE5BAAEEEEAAAQQQQAABBBBAAAEEEAifAAFW+Oy5MgIIIIAAAggggAACCCCAAAIIIICADQECLBtInIIAAggggAACCCCAAAIIIIAAAgggED4BAqzw2XNlBBBAAAEEEEAAAQQQQAABBBBAAAEbAgRYNpA4BQEEEEAAAQQQQAABBBBAAAEEEEAgfAIEWOGz58oIIIAAAggggAACCCCAAAIIIIAAAjYECLBsIHEKAggggAACCCCAAAIIIIAAAggggED4BAiwwmfPlRFAAAEEEEAAAQQQQAABBBBAAAEEbAgQYNlA4hQEEEAAAQQQQAABBBBAAAEEEEAAgfAJEGCFz54rI4AAAggggAACCCCAAAIIIIAAAgjYECDAsoHEKQgggAACCCCAAAIIIIAAAggggAAC4RMgwAqfPVdGAAEEEEAAAQQQQAABBBBAAAEEELAhQIBlA4lTEEAAAQQQQAABBBBAAAEEEEAAAQTCJ0CAFT57rowAAggggAACCCCAAAIIIIAAAgggYEOAAMsGEqcggAACCCCAAAIIIIAAAggggAACCIRPgAArfPZcGQEEEEAAAQQQQAABBBBAAAEEEEDAhgABlg0kTkEAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAVb47LkyAggggAACCCCAAAIIIIAAAggggIANAQIsG0icggACCCCAAAIIIIAAAggggAACCCAQPgECrPDZc2UEEEAAAQQQQAABBBBAAAEEEEAAARsCBFg2kDgFAQQQQAABBBBAAAEEEEAAAQQQQCB8AgRY4bPnyggggAACCCCAAAIIIIAAAggggAACNgQIsGwgcQoCCCCAAAIIIIAAAggggAACCCCAQPgECLDCZ8+VEUAAAQQQQAABBBBAAAEEEEAAAQRsCBBg2UDiFAQQQAABBBBAAAEEEEAAAQQQQACB8AkQYIXPnisjgAACCCCAAAIIIIAAAggggAACCNgQIMCygcQpCCCAAAIIIIAAAggggAACCCCAAALhEyDACp89V0YAAQQQQAABBBBAAAEEEEAAAQQQsCFAgGUDiVMQQAABBBBAAAEEEEAAAQQQQAABBMInQIAVPnuujAACCCCAAAIIIIAAAggggAACCCBgQ4AAywYSpyCAAAIIIIAAAggggAACCCCAAAIIhE+AACt89lwZAQQQQAABBBBAAAEEEEAAAQQQQMCGAAGWDSROQQABBBBAAAEEEEAAAQQQQAABBBAInwABVvjsuTICCCCAAAIIIIAAAggggAACCCCAgA0BAiwbSJyCAAIIIIAAAggggAACCCCAAAIIIBA+AQKs8NlzZQQQQAABBBBAAAEEEEAAAQQQQAABGwIEWDaQOAUBBBBAAAEEEEAAAQQQQAABBBBAIHwCBFjhs+fKCCCAAAIIIIAAAggggAACCCCAAAI2BAiwbCBxCgIIIIAAAggggAACCCCAAAIIIIBA+AQIsMJnz5URQAABBBBAAAEEEEAAAQQQQAABBGwIEGDZQOIUBBBAAAEEEEAAAQQQQAABBBBAAIHwCRBghc+eKyOAAAIIIIAAAggggAACCCCAAAII2BD4P+34XxxtpyoGAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdB3gU1f7G8Xc3BQi9o1SxIFgooogVRSyIInjtDbuiYgNRxAp2lGIXu3+9FhQLNhRsqNcGInZFqYrUhBYgZOf/nIkJCdkku5vd2SnfeR4flMyc8vmd69XXM2dClmVZ4kIAAQQQQAABBBBAAAEEEEAAAQQQQMClAiECLJdWhmEhgAACCCCAAAIIIIAAAggggAACCNgCBFgsBAQQQAABBBBAAAEEEEAAAQQQQAABVwsQYLm6PAwOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIOBqAQIsV5eHwSGAAAIIIIAAAggggAACCCCAAAIIEGCxBhBAAAEEEEAAAQQQQAABBBBAAAEEXC1AgOXq8jA4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggICrBQiwXF0eBocAAggggAACCCCAAAIIIIAAAgggQIDFGkAAAQQQQAABBBBAAAEEEEAAAQQQcLUAAZary8PgEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAKuFiDAcnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEWawABBBBAAAEEEEAAAQQQQAABBBBAwNUCBFiuLg+DQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAgi4WoAAy9XlYXAIIIAAAggggAACCCCAAAIIIIAAAgRYrAEEEEAAAQQQQAABBBBAAAEEEEAAAVcLEGC5ujwMDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCDgagECLFeXh8EhgAACCCCAAAIIIIAAAggggAACCBBgsQYQQAABBBBAAAEEEEAAAQQQQAABBFwtQIDl6vIwOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICAqwUIsFxdHgaHAAIIIIAAAggggAACCCCAAAIIIECAxRpAAAEEEEAAAQQQQAABBBBAAAEEEHC1AAGWq8vD4BBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACrhYgwHJ1eRgcAggggAACCCCAAAIIIIAAAggggAABFmsAAQQQQAABBBBAAAEEEEAAAQQQQMDVAgRYri4Pg0MAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIuFqAAMvV5WFwCCCAAAIIIIAAAggggAACCCCAAAIEWKwBBBBAAAEEEEAAAQQQQAABBBBAAAFXCxBgubo8DA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAggg4GoBAixXl4fBIYAAAggggAACCCCAAAIIIIAAAggQYLEGEEAAAQQQQAABBBBAAAEEEEAAAQRcLUCA5eryMDgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgKsFCLBcXR4GhwACCCCAAAIIIIAAAggggAACCCBAgMUaQAABBBBAAAEEEEAAAQQQQAABBBBwtQABlqvLw+AQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAAq4WIMBydXkYHAIIIIAAAggggAACCCCAAAIIIIAAARZrAAEEEEAAAQQQQAABBBBAAAEEEEDA1QIEWK4uD4NDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCLhagADL1eVhcAgggAACCCCAAAIIIIAAAggggAACBFisAQQQQAABBBBAAAEEEEAAAQQQQAABVwsQYLm6PAwOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIOBqAQIsV5eHwSGAAAIIIIAAAggggAACCCCAAAIIEGCxBhBAAAEEEEAAAQQQQAABBBBAAAEEXC1AgOXq8jA4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggICrBQiwXF0eBocAAggggAACCCCAAAIIIIAAAgggQIDFGkAAAQQQQAABBBBAAAEEEEAAAQQQcLUAAZary8PgEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAKuFiDAcnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEWawABBBBAAAEEEEAAAQQQQAABBBBAwNUCBFiuLg+DQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAgi4WoAAy9XlYXAIIIAAAggggAACCCCAAAIIIIAAAgRYrAEEEEAAAQQQQAABBBBAAAEEEEAAAVcLEGC5ujwMDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCDgagECLFeXh8EhgAACCCCAAAIIIIAAAggggAACCBBgsQYQQAABBBBAAAEEEEAAAQQQQAABBFwtQIDl6vIwOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICAqwUIsFxdHgaHAAIIIIAAAggggAACCCCAAAIIIECAxRpAAAEEEEAAAQQQQAABBBBAAAEEEHC1AAGWq8vD4BBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACrhYgwHJ1eRgcAggggAACCCCAAAIIIIAAAggggAABFmsAAQQQQAABBBBAAAEEEEAAAQQQQMDVAgRYri4Pg0MAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIuFqAAMvV5WFwCCCAAAIIIIAAAggggAACCCCAAAIEWKwBBBBAAAEEEEAAAQQQQAABBBBAAAFXCxBgubo8DA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAggg4GoBAixXl4fBIYAAAggggAACCCCAAAIIIIAAAggQYLEGEEAAAQQQQAABBBBAAAEEEEAAAQRcLUCA5eryMDgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgKsFCLBcXR4GhwACCCCAAAIIIIAAAggggAACCCBAgMUaQAABBBBAAAEEEEAAAQQQQAABBBBwtQABlqvLw+AQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAAq4WIMBydXkYHAIIIIAAAggggAACCCCAAAIIIIAAARZrAAEEEEAAAQQQQAABBBBAAAEEEEDA1QIEWK4uD4NDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCLhagADL1eVhcAgggAACCCCAAAIIIIAAAggggAACBFisAQQQQAABBBBAAAEEEEAAAQQQQAABVwsQYLm6PAwOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIOBqAQIsV5eHwSGAAAIIIIAAAggggAACCCCAAAIIEGCxBhBAAAEEEEAAAQQQQAABBBBAAAEEXC1AgOXq8jA4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggICrBQiwXF0eBocAAggggAACCCCAAAIIIIAAAgggQIDFGkAAAQQQQAABBBBAAAEEEEAAAQQQcLUAAZary8PgEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAKuFiDAcnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEWawABBBBAAAEEEEAAAQQQQAABBBBAwNUCBFiuLg+DQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAgi4WoAAy9XlYXAIIIAAAggggAACCCCAAAIIIIAAAgRYrAEEEEAAAQQQQAABBBBAAAEEEEAAAVcLEGC5ujwMDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCDgagECLFeXh8EhgAACCCCAAAIIIIAAAggggAACCBBgsQYQQAABBBBAAAEEEEAAAQQQQAABBFwtQIDl6vIwOAQQQAABBBBAAAEEEEAAAQQQQAABAizWQFoF/lqRH7X/RnWzVTM7QyvXbNKGTYVpHSOdI2AEtmlUS6GQ9PfKfFkWJgi4QyCnRoYa1MnW+o2Fyl27yR2DYhQIlBLYtnEt+68q+v97sBBIp0CD2lnKqZlp//3T/H2UC4FEBIr/PpfIszyDAALxCRBgxefF3UkWIMBKMijNpUyAACtltDRcDQECrGrg8agjAgRYjjDTSYICBFgJwvFYGQECLBYEAs4JEGA5Z01PUQQIsFgWXhEgwPJKpYI1TgKsYNXbi7MlwPJi1YIzZgKs4NQ6lTMlwEqlLm0jUFaAAIsVkVYBAqy08tN5HAIEWHFgcatjAgRYjlHTUYICBFgJwvGYIwIEWI4w+74TAizfl5gJukiAAMtFxQjiUAiwglh1b86ZAMubdfP7qAmw/F5h78+PAMv7NfTzDAiw/Fxd5+ZGgOWcNT0hQIDFGkirAAFWWvnpPA4BAqw4sLjVMQECLMeo6ShBAQKsBOF4zBEBAixHmH3fCQGW70vMBF0kQIDlomIEcSgEWEGsujfnTIDlzbr5fdQEWH6vsPfnR4Dl/Rr6eQYEWH6urnNzI8ByzpqeECDAYg2kVYAAK638dB6HAAFWHFjc6pgAAZZj1HSUoAABVoJwPOaIAAGWI8y+74QAy/clZoIuEiDAclExgjgUAqwgVt2bcybA8mbd/D5qAiy/V9j78yPA8n4N/TwDAiw/V9e5uRFgOWdNTwgQYLEG0ipAgJVWfjqPQ4AAKw4sbnVMgADLMWo6SlCAACtBOB5zRIAAyxFm33dCgOX7EjNBFwkQYLmoGEEcCgFWEKvuzTkTYHmzbn4fNQGW3yvs/fkRYHm/hn6eAQGWn6vr3NwIsJyzpicECLBYA2kVIMBKKz+dxyFAgBUHFrc6JkCA5Rg1HSUoQICVIByPOSJAgOUIs+87IcDyfYmZoIsECLBcVIwgDoUAK4hV9+acCbC8WTe/j5oAy+8V9v78CLC8X0M/z4AAy8/VdW5uBFjOWdMTAgRYrIG0ChBgpZWfzuMQIMCKA4tbHRMgwHKMmo4SFCDAShCOxxwRIMByhNn3nRBg+b7ETNBFAgRYLipGEIdCgBXEqntzzgRY3qyb30dNgOX3Cnt/fgRY3q+hn2dAgOXn6jo3NwIs56zpCQECLNZAWgUIsNLKT+dxCBBgxYHFrY4JEGA5Rk1HCQoQYCUIx2OOCBBgOcLs+04IsLxb4iNPu1rzFi7RiCGn6pSBh3h3IgEaOQFWgIrtxqkSYLmxKowpmgABFuvCjQIEWG6sCmMqLUCAxXpwswABlpur452xEWB5p1Zbj5QAy3u1I8DyXs18NWICLF+V09eTIcDydXk9OzkCLM+WLjADJ8AKTKk9OVECLE+WzXWDJsByXUliHhABVsxUrrmRAMs1pQjmQAiwgll3L86aAMuLVfP/mAmw/F9jr8+QAMvrFfT3+Amw/F1fp2ZHgOWUdPL7IcBKvmmqWyTASrUw7VcqQIDFAvGKAAGWVyoVrHESYAWr3l6cLQGWF6sWnDETYAWn1lXNdOOGkOb8GNKKlZY2F4RUsFnaXCBtMr9ukgr+/b2CAksFm0Mq+Pf3MjIt3Xt7dlXN83OXChBgubQwlQyLAMt7NfPViAmwfFVOX0+GAMvX5fXs5AiwPFu6wAycACswpfbkRAmwPFm2pA06Uij98ntY334n/fpLWIWR+JvOCEsPj82K/0GecIUAAZYryhDXIAiw4uLi5mQLEGAlW5T2UiVAgJUqWdqtjgABVnX0eNYJAQIsJ5TpI1EBAqxE5bz93IJFIc2ZE9K3c0IyO6+qez06PvUB1qzvf9Nzk9/XN9/9qpWrViunVk112KG1jj50X/uPDJOk/XudPHiUZv84V0cc3ENjrr+w0umNmzhJE5+dohZNG+m9F+5WOLzFw7Isvfn+//TquzP0828LtGbtejWoX0ddd91RJw84RHt13bm6dOWe/+GXeXr+ten6evYvWrZilUKhkJo3baTt2myjQw/orqMO3afcM8tW5OqZSVP16Vffa9Hfy7RxU4EaN6inbrvvqOP6HVTpOGMJsJLR/mev36/69Wrb9Xvk/97QnJ/+UN6addq/x+566I4rku7o5wYJsPxcXQ/MjQDLA0ViiLYAARYLwY0CBFhurApjKi1AgMV6cLMAAZabq5PcseXmhjTru7Bmz5ZWrqp+aFV6dKkOsMY+8pIefe5Nu8vMjAw1bFDXDpM2bNxk/97e3Tppwughqp1T0/7ryW9/opF3PKbs7Cx99Mp41auTExXTBFR9Thyqv/9ZofNOPUqXnnNsyX3r8zfokpET9L9vfrR/r2aNbNWtk6NVuWu0ubDQ/r2zTuyrKy84PimFMmO5++EX9cTzb1fYngnqbhtxbpmfv/fx17r6lkdKLGpkZykrK1Nr1+WX3HfskQfo+ivOsO22vqoKsJLV/utP3aqvvv1Zo8c9IzPX4uuUgYdoxJBTk2IYlEYIsIJSaZfOkwDLpYVhWOUECLBYFG4UIMByY1UYU2kBAizWg5sFCLDcXJ3qjy0/P6Tv5oQ0+/uQFi2qOrTKypR22yWips1Cysq0lJUtZWVZysoKKTtLW34v0/x+0R81a1pK5SHuT774ju564HmZYGbY4BN1zOH7q1bNbBUWRvTR59/qurseV27eWh3Ze2/ded0FNlr+hk06cOAQrVu/QdddfrpO7H9wVEyzG+j0IbfaP3vzmdvVrnWLkvsuHjFeH3w2S9u2aKLrLz9D+3Tfxd7ltT5/o/776jSNm/iSIhFLNw4dpOP69ap2sR5+5g1NeOxlu50BR+wvE+xs33ZbbS6MaOFfS/X51z+oe5cO2rXDdiV9zZzzq8649DZ7HAft01WXnD1QHbZvbf98Ze4avfLWx7rv8VdUsLlQJx3TWyMvOy2uACuZ7V806Bg98NRr2rVDO1181kDttnN7mZAwMzNDTRs3qLZfkBogwApStV04VwIsFxaFIUUVIMBiYbhRgADLjVVhTARYrAGvCBBgeaVSZce5dl1IJpzakG8pf4P5cxPaSBs2hBSJFB1ktX59SF9+veW1uspmun37iLrsLnXqFJEJseK9UhVgrVi1WoeccKU2bSrQzcPOktlJtPX17odf6oobH7B/++VHb9bOO7Sx//zmsU/rhdem24HPCw/fEHVKN939pF5840N17rS9nnvgupJ7THBlAqyszAy7ze3btSz3/KixT9uv+jVuWE/vv3C3vdsr0Wvp8lz1OeFKe2fX+acdpSFnb9kJVlmbRw+6VnPnLbbDq3tvGWK/bliZz/MPXq/dOrYvc0tlO7CS2b7pdN89d9X9t15m7xDjSlyAACtxO55MggABVhIQacIRAQIsR5jpJE4BAqw4wbjdcQF2YDlOTodxCBBgxYGVxFvNG1SbNoa0foOKwicTRm2w7F/tPzZEtN7+tejnG0r9+aZNVe+kimWozZtZ6tLZUufdLdWpveWVrlie3fqeVAVYjz//lu5+6EW1bdVcb/3fHRUO7cCBl2r5yjxdeHp/XXzWAPu+n36br/+cWxRcvfbELdphu7IhlNmVdOCAIfY5TDdcOUjHH7VlF9UFw+/RJ198p//0O1A3DT0zar9/Lvhb/U6/xv7Z42OHq0fXjonQ2c8U775qWL+uPpg0NqaAx+yOOu2Sot1j5vU8s1urouukwaP03Y9z7bPCtn4FsaIAK9ntm11zU5+/W40a1E3YiQeLBAiwWAlpFSDASis/ncchQIAVBxa3OiZAgOUYNR0lKECAlSAcjzkiQIBVPeaCArPzqWgH1IYNRbue8jdK+etN6GT9G0KZn/+7U8r8vvl5fnJCqHhHb4KqLp0j6rq71LRZ9UKr0n2nKsCKJUgy4zCvAZrXAQ/Zfw+NH3VJydCOO+9G/fjrPA06/nD79cPSV/Euq63PyTKv4/U48kL79bY7Rp6vfof0jMpsArBuh55jv743YsgpOmVgn3jLUXL/ecPG2AewmwPabx9xXkztmIPQxz/6sv2K43vPj6n0meJ7mzdtqOkvjS1zb0UBVrLbL/2KZ0wT5KYKBQiwWBxpFSDASis/ncchQIAVBxa3OiZAgOUYNR0lKECAlSAcjzkiQIBVnvm338N2IGV2R5mdT+vXm/Dp351QdlhVFEytW5eeECrehWHe1tp554i6dZHMq4KpuFIVYPU9dbjmL/on5iGbrwI+MfbqkvtffP0D3XTPU/ZrftMnjS1ziPmVNz2gdz74UocftJfuvmFwyTPmi3u9jr0s5j7NjRedOUCDz+gf1zOlby6ep3l10LxCGMt1/V2P6+U3P1bP7rvo0THDKn1k6kdf6/Ib7rPv+fb9x+xXI4uvigKsZLd/+XnH6ZyTj4xlatxThQABFkskrQIEWGnlp/M4BAiw4sDiVscECLAco6ajBAUIsBKE4zFHBFIdYJkdSps3h2Q+2rZ5s4p+Lf3nZX5mlb03IhVuDqlgc8R+xvx5cTtFf13UVtGvoVJ/vvXPtozBEVQHOjHHLdWsZalWTalWraI/z6kh1cqxVKtWWLXsn1nKyQmpdevEzrWKZxqpCrCKXw1s1qSBzOt1VV27dNhOo646q+Q2c4i7OczdHOp+7y2X6uB9u9o/M7ur9j9miP3lvofuuEL799i95JnSrwaaQ93N4fFVXSccfZBOqOCg+KqeNT8vnufVF5+s0/5zaCyPaOjND+rt6V/o4P266d7RQyp95pMv5uiC4Xfb93z62n1qUL9Oyf0VBVipbj+mSXJTVAECLBZGWgUIsNLKT+dxCBBgxYHFrY4JEGA5Rk1HCQoQYCUIx2OOCJQOsOYvjGjuvJDWrN0qSCoJjywV/BtCmTCpdBBlgqXSPzN/zlW1QO3alnJM2FQrZAdONWvJDqVyaofsr/vVqiHl5Eg1a5ifhexgqrrnVVU9qvjvSFWAdfjJV9lf4ItnZ9LWox95x2Oa/PYn6r1/N00YVRT0vDH1M1196yNq0qi+/Uqd+bpg8bVk2Ur1Pu4K+y+fufdaddttx/hB4nzisJOGadHfy3TZuf/Ruaf0i+npW8Y/o+cmT4t/B9Z7j5Y5Y6uiACvV7cc0SW6KKkCAxcJIqwABVlr56TwOAQKsOLC41TEBAizHqOkoQQECrATheCzlAuvWh7RkcaZ+mxvSDz8XKm+1N16JSzlMHB2Ew0XhktkFZe+EMrueSv95jgmmzO8X7Y4yu6TskKqWpUwffYgtVQHWWZffoS9m/aTqnJ80+8e5OnnwKPu1uY9fvVf16uSo+GytM088QkMvOKFMxc3ZVnv1vcD+8uGNQwfpuH5bDnePY2nEdesZl96mr2f/ogFH7K/Rw8+O6dniA+5jOQNr4rNTNG7iJDVt3EAfvjyuTPsVBVipbj+mSXITARZrwH0CBFjuqwkjii5AgMXKcKMAAZYbq8KYSgsQYLEe3CJgdkXNmx/WH39Y+n1uWP8sDWZgZYKjjExLWRnmVynj318zw0V/nZ1V9GqeCZpyzCt5NcP27qiigKoofCr+uQmvuKRUBVgPPf267n38FTt0mvbSWOWYLWkJXMecOVK//bnIDofMK3cHHDNEmwsLo36d0DR/9hV36n8zf4xpd1MCwyn3iAmXTMgUbUdYRe3PnbdYRw+61v5xtK8sln7ulItG69sfflff3j1013UXxhRgpbr9ZLgFtQ12YAW18i6ZNwGWSwrBMKoUIMCqkogb0iBAgJUGdLqMS4AAKy4ubk6igGVJf/0d0h9/hPX7H5YWLAirMDVneFc4avNmVmamZYdEdnBk/2opMyNUEh4V/fWWIKlssFQUNGVmhZWRUXRf6XYyMkJb/XXRz4vbK77XBFZ2ULXlTbEkStNUqgIsc6B6nxOHqqBgs33G1PWXn54Q9rOvvKdbJzyrXvt00aEH7qkRt03ULh3a6cWHb4za3nsff63Lri869HzM9RfqiIN7JNRvrA+Zg+rNQe7miuew85MGj9J3P86153XfLZcqFCofSk+fMVOXjJxgt/3kuKu1Z5edYwqwzE2pbj9WH+4rK0CAxYpIqwABVlr56TwOAQKsOLC41TEBAizHqOkoQQECrATheCxmgWXLw8rNlVauknJzLa1YFVL++pA2bZT+/if2XVbNm1navr2lmjVDRQFQqeCp6K9LB0P/hk4lodS/P/v3r9mZFHP5fHFjqgIsg/PMpKm6/b7nbCeze+rck4+UOazdnFu1dl2+lixdab9mOP3Tmbp9xHn2a3JbX3lr1tlfFszMCGuvrh314WffasSQU3XKwEMq9L/0unv1/iffKBwOadDxR+g//Q5U21bNZVmWVuWt1eK/l+mTL77TL3MXavyoS6pdxzvu/6+efuldu51BJxyuUwf20TbNG6uwMKKlK3L1zexftHrtep08oHdJX7//uVj/Oe8GO+A7ZP897PDLHDxvLnNQ/avvfKoxDz6vjZsKdPSh++q2EeeWG2dFrxCaG1PdfrXRAtoAAVZAC++WaRNguaUSjKMqAQKsqoT4eToECLDSoU6f8QgQYMWjxb3RBHJzQ8rNMwFVSKtWWfavebkhrcyV1q6NPaDaum1zGHinnUPqsmuGWrYqVCiDk9dZgYkJpDLAMiMy5zGNfeQlRQA+qHEAACAASURBVCJFr2yanUZZWZn2OVWlr2kv3aMWTRtFncTwWx7WlPc+t39mzsP68OXxZb7Gt/VD5guF5gB486W/4ivTbOOT+eplYcnvtd62md557s7E4Eo9Zdq8ccyT9oHzxVd2dpYdTpnQzFzmK4rma4qlry9n/awrbrxfq/LW2L9tvjBovpy4YuXqknGaHWS3XH1O1C8qVhZgmfZS3X614QLYAAFWAIvupikTYLmpGoylMgECLNaHGwUIsNxYFcZUWoAAi/VQlYA5TD13lbQqV1q1KqyVuZZWmb82QdXqkCJJeu0vO0tq2zaiHXeQtm8vNW0SUemvEK7fuOVfyqsaMz9HINrf51KpsmDxP3r2lffts6n+WrJCGzZuVM0aNbRti8bqsssO6nNAd+27565RX6Mz4zKHpJvD0s1V+ouEVY3Z7O565a2PNWvOb1q+Ms8OherUrqU2LZtrry47q1+ffbRT+1ZVNRPzz01g9NKUD4r6W7VaWZmZ9tlYu3dqr+OPOkh77L5TubZMeDVpykcyrz4u+muZ1m/YqMYN6qnLrjvo2CMP0D7dd62w/6oCLPNgqtuPGYcbbQECLBZCWgUIsNLKT+dxCBBgxYHFrY4JEGA5Rk1HCQoQYCUI56PHCgqKdk+ZnVQmpFqxwrzqJ63MM8FVSObnqbhq51hq0lhq06YotGrXtvyB4wRYqZAPXpup3oGVDFHzSl2PIy+0d3GZXUxmNxMXAl4UIMDyYtV8NGYCLB8V0+dTIcDyeYE9Oj0CLI8WLkDDJsDyf7HNweirV4e0cqUJqfTvDqpw0Y6qleYsmsRf86tMLxw2rwtZatjQUqOGUqNG+vdXS40aWcrKrNqeAKtqI+6oWsALAdbLb36s6+96XA3r19UHL4+zXyPkQsCLAgRYXqyaj8ZMgOWjYvp8KgRYPi+wR6dHgOXRwgVo2ARY/iu2OXdq/sKQFiyQFiwK6e8lIUVS9PZddnZRONWwkaVGDSw1bhRSQzusslS/niUTYlXnIsCqjh7PFgt4IcA64fyb9P0vf+qM4w7TVRedlPTimR1e5w27O652zdcDzzn5yLie4WYECLBYA2kVIMBKKz+dxyFAgBUHFrc6JkCA5Rg1HSUoQICVIJxLHjPnTy35J2QHVQsWhLRwkZSXl9wdVXXqFO+gMjunQnZQ1aihpYaNJPMaYCovAqxU6ganbbcHWNM/naVLrh1vf7lwytO3q03LZkkvjvlCYM9+g+Nqd2DfAzTqqrPieoabESDAYg2kVYAAK638dB6HAAFWHFjc6pgAAZZj1HSUoAABVoJwaXosP//fsGqhpYULw1q8OKSCan6cz37V799Qyrzm19jsqDK7qOyQKrZX/VLFQYCVKtlgteu2AMt8tc98qdBc02fM1DW3TdTadfk6eUBvXXvpacEqDrP1nQABlu9K6q0JEWB5q15BHi0BVpCr7965E2C5tzaMrEiAAMs7K2HqtJBmfJrYuTjmC3+NG1tq0NC85md2UIWKXv0zIVWD1O6iqo4wAVZ19Hi2WMBtAdapF9+ihX8t1fr8jTKv9plrt47t9cTYq1WrZjaFQ8DTAgRYni6fuwb/9Evv6o77/6tLzhqoC04/OqbBEWDFxMRNLhAgwHJBERhCOQECLBaF2wUIsNxeIWnZ0pCefzmsZctiezXQ7Khq3tRSy1aWWreSWm5rqWkTs+PD/XPdeoQEWN6rmRtH7LYA6+pbH9GML+Zo7br12rZFE/Xrs4/OPqmvapikmQsBjwsQYHm8gPEM/68ly3XZDffph1/mafTwszXgiP0rfPySkRPsLacVXc2aNNAHk8aV+TEBVjzV4F6vCRBgea1iwRgvAVYw6uzlWRJgubd6liV7x9W0jyo/hL1+fUuttrXUqpXUqpWllttYyozhC3/unfmWkRFgeaFK7h+j2wIs94sxQgQSFyDAStzOU09+8sV3Gj76YeWtWWePu6oAy2w9nfX9b9pt5+0U7T+pNW5YT/ffehkBlqdWAYOtjgABVnX0eDZVAgRYqZKl3WQJEGAlSzK57axcGdKkV8NatKj8tqmG9S3tumtEbdqE1LqlpZwUH6Se3JnF1xoBVnxe3B1dgACLlYGAcwIEWM5Zp6WnSMTS/U9O1kNPv65tmjfWfnvuppemfFhlgNX31OFasnSlZk6dGPO42YEVMxU3elCAAMuDRQvAkAmwAlBkj0+RAMt9Bfziq7CmvheOejj7Ht0iOuKwiILyphEBlvvWpxdHRIDlxaoxZq8KEGB5tXIxjnvMQy/oieff1h6776RxN1+il9/8SOMmTqoywNq732DVrZOj954fE2NPEgFWzFTc6EEBAiwPFi0AQybACkCRPT5FAiz3FHDNmpBeeiWsefPL77qqU8fSscdY2r59xD0DdmAkBFgOIAegCwKsABSZKbpGgADLNaVIzUCWrcjVs6+8r4vOHKCszAzd/8RkPfDUa5UGWAWbC9XlkLPtr1U8/+D1MQ+ssgBr2iczddkN96pp4wb6v3uvtQ8UNBeHuMfMy41pFiDASnMB6D6qAAEWC8PtAgRY7qjQ7O/CmvJOSBs3lA+vOu8eUb++lmpku/drgalSJMBKlWyw2iXACla9mW16BQiw0uvveO/jH31Zj/zfG5UGWCb06nXsZTpon66679ZLYx5jRQHW/775URdcfY9q59TUM/deq/ZttilpkwArZl5uTLMAAVaaC0D3BFisAU8KEGClt2z5+WbXVUi/zw2XG0hOLUvHDrC04w7B2nVVGoIAK73r0y+9E2D5pZLMwwsCBFheqFISxxhLgPXz7wt07DnXq3On7dWz+y5asXK1NhcWqkH9Otq1w3Y6aN+uUT/DGi3A+u7HuTr7yjsVCoX05Lir1WmndmVmQ4CVxOLSVEoFCLBSykvjCQqwAytBOB5zTIAAyxnqtetCMmFVfr6lSGHRLqu81dLb74a0Pr/8rquOHSM6pp+lWrWCt+uKAMuZNRmkXgiwglRt5ppuAQKsdFfA4f5jCbC+/+VPnXjBzbLM95WjXI0a1NXo4efowJ6dy/x06wDr1z8W6Ywht2rjpgJNHDPMPodr62tjQfT/6peVEVI4HFJBYUSR4P6HQYdXB91VJlAjq+i/Xm8qiCjY/7jPOnGTQEZYyswIqzBiaXMhK9NNtWEsRQLFf++s6P/vcYpNYNZsS3P/tLQuX1q3ztLa9dK6tbL/Oj8/tjbMXbVqSiceG1b3ruVDrdhb8c+dmRkhZYRD2lwYUSH/vOmfwjo8k+K/zzncLd0hEEgBAqyAlT2WAMuQ/DJ3odbnb1Cbls1Vv15tbdxYoN/nLdYrb32sSVM+UkZGWE+MvbpMKFUcYF16zrE68pCeOnnwKOXmrbVfQ9y/x+4Bk2a6CCCAAAIIIIBA9QTmL7T035cL9fuf1Q+od+sU0qCTMlW/XvXGxNMIIIAAAgikS4AAK13yaeo31gCrsuHd9/hkPfj0a+q220565t4RJbeW3oH19gdf6Pc/F+uiQcdo8KBjKmxuxepNUX9WNydT2ZlhrcnfbO944UIg3QKN62XbQ1i5ZpMq2JyY7iHSfwAFzH/1rVMrU2Z3y9r8zQEUYMpuFyj+e2dF/3/v9vGna3zmi4FvvWtp5uzq75TKzpKOPlLac4/qh2Dp8khVv3VqZqhGdob99092CaZK2f/tFv99zv8zZYYIpF+AACv9NXB0BMkIsNasXa+eR11kj3vWe4/aXzc0V3GAVb9uba1dn6/CwoiaNKqvVx4bpcYNo//nPs7AcrT8dFYNAc7AqgYej6ZMgDOwUkZLw0kS4Ays+CALCqRPPg1pxmcZ2hxnJl27tqWcHCmnllQrx7J/rVPbUo89pbp1Ca+iVYJD3ONbn9wdXYAzsFgZCDgnQIDlnLUrekpGgGUmss9RFylvzTp99sb9MoFV6QDLfG1w3M0X64NPZ+m5ydPsg+AfuXOofabV1hcBliuWBYOIQYAAKwYkbnFcgADLcXI6jFOAACt2sG9nhzV1Wkhr10bfdbVdu4g67iw7pKqdI9WsWRRY1aol1axBQBW79JY7CbASUeOZrQUIsFgTCDgnQIDlnLUrekpGgGUOZd/ziPMVDoc1a+pE+wuDpQOsi84coMFn9NemTQU6afAoma8aDjn7WJ1/2lEEWK5YBQwiEQECrETUeCbVAgRYqRam/eoKEGBVLbhgYUhvvRPWX39HD64aNLB0xKGWOu7MkQpVa8Z3BwFWfF7cHV2AAIuVgYBzAgRYzlm7oqdkBFivvjND197+qPbbazc9fOeVJfPa+iuE5gfzFi7RcefdoA0bN9mHvnfv3KGMAzuwXLEsGEQMAgRYMSBxi+MCBFiOk9NhnAIEWBWD5eaG9O57If3wU9FXbre+amRbOvAAaZ8ehQoXndbAlWQBAqwkgwa0OQKsgBaeaadFgAArLezp6zSWAOvZV97TTu1ba4/dO5R57c+caWXCq9vve9YOpJ6eMEJdd92xZDLRAizzwzemfqarb31EzZo0sM/Dali/bskzBFjpWwv0HJ8AAVZ8XtztjAABljPO9JK4AAFWebtNBdKHH4c049OKU6luXSPq09tS7RxeDUx89VX9JAFW1UbcUbUAAVbVRtyBQLIECLCSJemRdmIJsC65drymfzpLdWrX0o7btVKDenWUu3qtvZtqVd4a1cjO0k1Dz9RRh+5TZtYVBVjmJrNjy4RfZtfWQ3dcUfLaIQGWRxYOwxQBFovAjQIEWG6sCmMqLRDUAMt8rTY3L6SlS0Natiykf5ZZ9q/mj4JKDmdv28bS0X0jatqM4MqJ/yURYDmh7P8+CLDcUeMFi//REacMLzeY7Ows1auTo3atW2if7rvq+KN7ldlQUfzA8NEPa8r7n5d53nysrF7d2tq+3bY6eN9uOu6oXqpZo+jL5BVdH372rd758Et9+/3vWrEqT5sLI2pUv646dWinQ/bfQ/0O6amMjLI7b83Z0vv1v9hu8rPX71fdOjlRm79k5ARNnzHTPmP60THDKhxD31OHa/6if/T42OHq0bWjfd9B/7lMS5fn6uD9uune0UMqncPktz/RyDse0yVnDdQFpx/tjgL/OwoCLFeVI/WDiSXAmjtvsf776nR9890vWrxkufI3bLT/h7ptiybquccuOnnAIWrTslm5wVYWYK3P36jjz79Rfy74W5ed+x+de0o/+3kCrNTXnB6SI0CAlRxHWkmuAAFWcj1pLfkCQQiwVqwsCqbMH0uWWlq+PKS/l0Q/z6oiYc65Sv7ai6VFAqxYlLinKgECrKqEnPl5cYBVq2a2uu22U0mn5vzmpctXacHipfbvmQ+QTRwzTLt0aFdmYMUB1g7btVSThvXtn20qKNCSZav015Ll9l+3bdXcPhanedOG5Sa1fGWeLr/hfs2c86v9M/Nhs5YtmigzM9Pu3/zcXO3bbKMJo4douzbblGnjxAtu0pyf/7TDJRMybX0VFGzWPkdfJPPv1ZkZGZrx2r1Rg65/lq3Swcddbv/7++dv3C8T4JmrOMAyf37XdReqb+8eFRaGAMuZNUsvHhQgwPJg0QI6ZAKsgBbe5dMmwHJ5gRie/BJgmR1VK1eGtNQEVcvNziqr5M8LCxMvtDnnqteBUs+9OOcqccXEnyTAStyOJ7cIEGC5YzUUB1hmp9Wbz9xeblAmhLp+zBP6/Osf1HHHtpo08aYy9xQHWNHCHbPB48qbHtRvfy5Sr3266P5bLyvz7Jq16+3NGiYk275dSw278AR7l5QJmoqvX+Yu1ITHXpbZoWVCtBcevkGtt92yKaR4o8kpA/toxJBTyo1/xpdzdP5Vd6tRg7pambumwhCq+Pierc+rNgGWGWf+hk1qUL+O3njqNrutaBcBljvWNKNwoQABlguLwpCiChBgsTDcKECA5caqMKbSAl4MsJYtD2v5cumfZSEt/UdaZv58aXw7qqpaBQ3qW9phe0u9D+acq6qsUvlzAqxU6ganbQIsd9S6qgDLjNIEPwcMGCLLsuwdTKXPZq4swDLPzp3/l44+Y4R9RvSnr99vv5ZYfJnX7Uzo02mndnpy3NX27qtol+n3ujsft+/t3Gl7PffAdSW3fTnrZ515+e0yO8Bee+KWco/fMv4ZPTd5mgaf0V8PPPWajji4h8Zcf2G5+4rHMmzwiRp0/OElPzcBVqMG9bRDu5b2q5KHH7SX7r5hMAGWO5Yvo/CKAAGWVyrFOAmwWANuFCDAcmNVGJOXAqz8/JAWLAxp/kJLCxeGtfivkDZXckZVPNUNhaSGDS01a2qpaVNLzZqE7F/NH1mZ8bTEvakSIMBKlWyw2iXAcke9YwmwzEj36nuB1q3foOkvjS3zKmBVAZZ5dt/+Fys3b61efvRm7bxDG3viS5at1KEnDpX54JkJnkwAVdlldkAdfvIw+5XCx+65Snt362Tfbl4R7HnUYHuH1MeTJ6hxw3plmjF9mNcDP351gg47adi/Idx9Mud0lb76nDjUfuVx8uOjtVP7VmUCrOysLL3w0A06etAIrVi1WhNGDVHv/cu/rsgOLHesaUbhQgECLBcWhSFFFSDAYmG4UYAAy41VYUxuDbDMa4Dm9b9Fi0Kav0BasEhasaLsQbqJVC8clho3iqhpE9lhVbNmUtOmUpPGlkq9PZJI0zyTYgECrBQDB6R5pwKs2d9bmrcwEhBVqcuuYbVtHfvu11gCrOLzocwrfJ++fl/Jh8UMaiwB1t79Btuv4U19fox9vpW5Xnhtum4e+7S6d+6gp8ZfE1N9xjz0gp54/m0df/RBuuGKM0qeuWD43frkiznlXg/8/c/F6n/mtdpj95309IQRGjbqQb017QtNHDPUPpi++Fr09zI73GrSqL4+emV8mbGYHVibNxfqk1fv1bsffqUrbrzfvu/1p261X2ksfRFgxVRGbgqiAAFWEKvuzTkTYHmzbn4fNQGW3yvs/fml8xVC87W/RYvCWrAopAULLC1cFNKGDbH/y9DW+iaMMqFUs6ZS02ZSsyZmN5XUqFFEW31QyvuFC8gMCLACUugUT9OpAOvpFwr18WfBCbBOOyFDB+4T+39kqCrAWrsuX0NvflCffPGdfcaUOWuq9FVVgPXDL/Psc67MuVEfvjy+5EuC197+qF59Z4b9tT7z1b5YLvMlQfNFQbOLy+zmKr6efPEd3fXA8/pPvwN109AzS35/4rNTNG7iJF1+3nE65+Qj7fDKhFgnHdNbIy87reS+l9/8WNff9bj69empO649v1yAZXZ3/W/KA/bvX3b9fXrv46/V/7B9des15xJgxVI47kGAAIs14BUBAiyvVCpY4yTACla9vTjbdARY5hXAGZ9l6OMZib0OmJlZtJOqSRNLzZuG1KxZ0Z83bmR5sQSMuRIBAiyWRzIECLCSoVi+jUQDrJxaNbXvnlt2JRVGIlq5arV++m2+/RXBQSccYYc2W1+VBVh/LPhbQ0ZO0J8L/taIIafqlIGHlDxuDlY3B6yPuuosDex7QEwYP/++QMeec70dhpkdUcXXr38s0oCzRtqHu7/z3J0lv3/qxbdo1ve/lbyiaHaB7df/EnsH1bSX7im5r3gOJpDaeo5mB5YJ8b56+2H7fvMKo3mVMG/1Oj10x5Xav8duJe2wAyumMnJTEAUIsIJYdW/OmQDLm3Xz+6gJsPxeYe/Pz+kAa84PIb07NazVa2LfadW8maWW21hq1Vpqua2lbVoQVHl/5cU2AwKs2Jy4q3IBAqzUrJBEA6yKRpOVlalDD+huH15+8H7lz30qDn/MrqhmTRrazZhX7pYsXSETYJnnLxp0jM49pV+ZLorDJXOgujlYPZareLdYdnaWZk2dWOaRAwdeaodL7z0/Rtu2aGIHTPsdc7G2adbYfnWx+Drr8jv0xayf9NIjN9qHx5ur17GXadmKXH0waZyaNWlQpt3irxB+/c4jJb9f/MXCFk0b2a8SFh8+T4AVSxW5J5ACBFiBLLsnJ02A5cmy+X7QBFi+L7HnJ+hUgPXX3yG98VZYixdXHlzVqWOpVStLrbcN2b+2ahlRVpbnmZlAggIEWAnC8VgZAacCLM7AqnzhVfQKoTlcPW/NOs356Q89+twUzZzzW9Qv+BUHWNF6Mbu6TMCzTbNG5X6czB1YpvHhtzysKe99rtHDz9aAI/ZXcchkdn2Z3V/F1zOTpur2+57Thaf318VnDbBDtqNOv0bbt2up158s/xXDaAGWaWvwNWP10eezdfxRvXTDlYPs5gmw+JscAhUIEGCxNLwiQIDllUoFa5wEWMGqtxdnm+oAa+3akN59P6TZ30U/J6VRQ0sdd46oTeuQtt3GUv367K7y4jpK1ZgJsFIlG6x2nQqwgqUa/2yrOgPLtLi5sFAnnH+TzCt8d4w8X/0O6VnSUbRXCC3L0skXjdZ3P87V8ItO0unHHVZuYCPveMwOfIqDpFhG/sFns3TxiPHlzsAyz5rztMy5Wkcduo9uH3FeyYHtj9w1tMyrkcUHthefo1V8mPxp/zlUV198crlhVBRgmYPtzauE5vXCx8cOV4+uHfXau59qxG0T7TO9zNlebrpClqkKFwJpEiDAShM83cYtQIAVNxkPOCBAgOUAMl1USyBVAZY55+rTz4vOuSooKD/ErEzpwAMs7duzkC8BVquC/n6YAMvf9XVqdgRYTklX3k8sAZZpofhAdLO7yexyKr4qOgPLHN5+wgU3qVbNGnrzmdvLvZr34usf6KZ7ntJeXXfWE2Ovjgnjnodf1GP/fUsn9D9Y119+eplnli7PlQmbzFcO3/3vXTpgwBBt2LhJn71+v/0aY+nr6EHXau68xfYXB81urLenf6EHb79cB+zdOeYAy9w4acpHumHME2q1TVO9+sQt+vCzWfaB9wRYMZWTm4IkQIAVpGp7e64EWN6un19HT4Dl18r6Z16pCLC+/zGkqe+FlZsX/XVBs+Oq72HstvLPKkrdTAiwUmcbpJYJsNxR7VgDrOIv/R3Ys7MeuO3yKgMsc8ONY57US1M+1GG99tQ9N15ULnDqc8KV9u6uKU/fpu3abFMpyMZNBTr85GEyQZUJvEzwtfV19BkjNHf+X3p0zDCdM/Qu9d6/myaMGlLuPvNlQhPImfO37nrwea1YuVqfT3lAObVqxBVgmZvPvvJO/e+bH3XqsX3Uc49ddNGIcQRY7ljajMJNAgRYbqoGY6lMgACL9eFGAQIsN1aFMZUWSGaAteSfkKa8GdaCRdGDq4YNLPU/ylL77YLzmXlWW/UECLCq58fTRQIEWO5YCbEGWMVnPpnXAc1rgcVXZV8hzM1bq76nDrfP0nr4ziu1315bvthnni9+jXD3Ttvr8XuGq1bN7ApRbhn/jJ6bPE3ddttRz9x7bdT7bp3wrJ595T37Fccp739e4RcOZ/84VycPHqVjDt/PfvWwe+cOemr8NVHbrOgVwuKbFy9ZrmPOvFb5GzZpyNkDNf7Rlwmw3LG0GYWbBAiw3FQNxkKAxRrwmgABltcqFrzxJiPAWrsupE8/K3plMNqVmSn1OsDSAfsVBg+YGVdLgACrWnw8/K8AAZY7lkJVAdamTQV64oV3NOGxlxUOh/Tyo6O0U/tWMQVY5qbnX5uuUWOfVpuWzezX7Gpkb/kCyJq163X8+TdqweKl6rhjW101+CTt2aWDQqEt/8Fl/qJ/7FDo3Q+/VIP6dfTiwzfarwlGuz787Ft7B5QJwkygZF4RbNKofrlbIxFLvY69VOvzN/wbPB2r8087KqEAyzz07Cvv69YJ/2fPzewU4xVCd6xtRuEiAQIsFxWDoVQqwA4sFogbBQiw3FgVxlRaINEAqzAi/fprWDNnSb/NDStSwaaqXTpG1PdwS3XrcqQrKy9+AQKs+M14orwAAZY7VkVxgGVen9u7W6eSQUUsS6vXrNPPvy+0g56MjLBGXna6/dW90ldlO7DMfSYsOu68G+wD4Aef0V8XnTmgzPPLV+bpsuvv06zvf7N/v2H9umq1bVNlZWZoybJV+mvJcvv3t2+7rSaMHqJ2rVtUCGfG2bPfRfZribt22E4vPHxDhfcW7/4yNzz/4PXarWP7hAMsczz66UNu08w5v9ptEGC5Y20zChcJEGC5qBgMhQCLNeA5AQIsz5UscAOON8Bauiykb2aFNHt2SOvzo78qaBAbN7J01JG8Lhi4BZXkCRNgJRk0oM0RYLmj8MUBVrTRmB1FLZo10p5ddtYpA/uU2XlVfH9VAZa579sfftcpF422D1N/7Ylb1LZV83LdmS8MvjP9SzvIWpm7WoURSw3r19EuHbZTnwP20JG9e9ohWlXXaZfcagdJJigzgVlF1/QZM3XJyAmqWydHn752X4VtV/UKYXH7ZqfYgLNGsgOrqgLx82AKEGAFs+5enDU7sLxYNf+PmQDL/zX2+gxjCbA2bghp9pyQZn4b0l9/VxxaGQvzxkavAy313LtQMfzzv9f5GH+KBQiwUgwckOYJsAJSaKbpCoGQZfaJcSGQJgECrDTB023cAgRYcZPxgAMCBFgOINNFtQQqC7DMq4HffhvSnB8qD63MAOrVtdS1S0R7dRevC1arIjxcWoAAi/WQDAECrGQo0gYCsQkQYMXmxF0pEiDAShEszSZdgAAr6aQ0mAQBAqwkINJESgW2DrBW5YY0c6Y067uwVq+uPLjKypI6dYyoWxepXduISp2Fm9Ix03hwBAiwglPrVM6UACuVurSNQFkBAixWRFoFCLDSyk/ncQgQYMWBxa2OCRBgOUZNRwkKmH+x27RJen/GRvtsq/kLqt5t1baNpa5dLe3aKWK/MsiFQKoECLBSJRusdgmwglVvZpteAQKs9PoHvncCrMAvAc8AEGB5plSBGigBVqDK7bnJLlgY0s8/ZemrWRFt3Fj58Bs0sNRl94j26CrVr8/pFp4rtkcHTIDl0cK5bNgEWC4rCMPxtQABlq/L6/7JEWC5v0aMsEiAAIuV4EYBAiw3ViXYY1q7NqRZ34Y181tpxcqqF7u0qAAAIABJREFUD2Tv1Cmibp2ltrwiGOyFk6bZE2ClCd5n3RJg+aygTMfVAgRYri6P/wdHgOX/GvtlhgRYfqmkv+ZBgOWvenp1NpFC6adfw5o5S/p9blhVfR6oXVtL3bpY2mWXiLIyvTprxu0HAQIsP1Qx/XMgwEp/DRhBcAQIsIJTa1fOlADLlWVhUFEECLBYFm4UIMByY1X8N6b160PKWyPl5YaUlyflrbGUu8ocwi6typPWrKn6XCvzFcHue0idO0fUkFcE/bdIPDojAiyPFs5lwybAcllBGI6vBQiwfF1e90+OAMv9NWKERQIEWKwENwoQYLmxKt4c019/h7RylbRyZVgrV1lanSflmrAqL6yCzYnNyeyu2muPsPbtEVadBhsSa4SnEEihAAFWCnED1DQBVoCKzVTTLkCAlfYSBHsABFjBrr+XZk+A5aVqBWesBFjBqXV1Z2pe68tdHdLy5SGtWCktX170hzmnKi+v6h1U8fTfrl3RuVbmFcG2zWvZj1b0//fxtMu9CCRbgAAr2aLBbI8AK5h1Z9bpESDASo87vf4rQIDFUvCKAAGWVyoVrHESYAWr3vHMdsPGkD7/Iqy//rK0clVIy5YlN6Taeizmy4HmC4JdOkfUoNQrgsX/YkeAFU/1uNcpAQIsp6T93Q8Blr/ry+zcJUCA5a56BG40BFiBK7lnJ0yA5dnS+XrgBFi+Lm/Ck/vu+5DeeTesteuqH1rVqmWpTl2pbm1LdetKdWpbqlc3pNp1LNWrY36V6tWxVKOmFXW8BFgJl5EHHRAgwHIAOQBdEGAFoMhM0TUCBFiuKUUwB0KAFcy6e3HWBFherJr/x0yA5f8axzPDVXkhvf5GSHP/CMfzmGrXttSiedEfzZqF1KyJZQdTpXdSxdVgqZsJsBKV4zknBAiwnFD2fx8EWP6vMTN0jwABlntqEciREGAFsuyenDQBlifL5vtBE2D5vsQxTbAwIn36WYY+/DikzZUcuJ6dbQIqqXkzS82bSy2aSi1aWKpZwe6pmDqv4iYCrGQo0kaqBAiwUiUbrHYJsIJVb2abXgECrPT6B753AqzALwHPABBgeaZUgRooAVagyh11sgsWhvTaGyEtWx5911W3LhF17Cg1a2qpYYPor/mlUpEAK5W6tF1dAQKs6gryvBEgwGIdIOCcAAGWc9b0FEWAAItl4RUBAiyvVCpY4yTACla9S8/WHNL+ztSQZs6KHlw1bhzRgP6W2rRyPrQqPU4CrOCuUS/MnADLC1Vy/xgJsNxfI0boHwHfBlhr1+Vr9o9zte+eu0at1pq16/Xw/72hb7//XZmZGeq9XzedNKC3MjMy/FNdD8yEAMsDRWKItgABFgvBjQIEWG6sSurH9N33Yb39Tkjr1pc/pD0rU+p1gKV99ilURnxHYaVk4ARYKWGl0SQJEGAlCTLgzRBgBXwBMH1HBXwbYL057X+6atRDOv7og3TDFWeUQV23foOOP/9GzVu4pMzv996/myaMGuJoAYLeGQFW0FeAd+ZPgOWdWgVppARYQaq2ZA5pf2VyWPMXRP+64A7tI+p/lKX69dO766p0VQiwgrVGvTZbAiyvVcyd4yXAcmddGJU/BXwbYA29+UG9Pf0L3TT0TP2n34Flqjdu4iRNfHaKcmrV1LmnHKmCgs164oW3lb9hk+4dPUQH79fNn9V24awIsFxYFIYUVYAAi4XhRgECLDdWJfljKj6k/YOPQiosLN9+vXqWjjzcUsedI8nvvJotEmBVE5DHUypAgJVS3sA0ToAVmFIzURcI+DbAOnrQtZo7b7GmvXSPWjRtVEK9Pn+Deh17mcwurEfHDFPP7rvYP3tj6me6+tZHdMj+e2j8qEtcUJpgDIEAKxh19sMsCbD8UEX/zYEAy3813XpGixeHNOnVkFasKP8+YDgs9exRqIN7WcrKcqcFAZY768KoigQIsFgJyRAgwEqGIm0gEJuAbwOsnv0GK3/jJs2aOlGh0Jat9q+89bGuu/Nx7d2tkx6756oSpY2bCrTXEReoaZMGev+Fu2PT465qCxBgVZuQBhwSIMByCJpu4hIgwIqLy1M3b9gQ0jvvVXxIe8ttLQ3oH7G/LujmiwDLzdVhbARYrIFkCBBgJUORNhCITcC3Adbuvc9Sw/p19dEr48tInD7kVn3z3a/2Liuz26r0ZXZm5a1ZZ4deXM4IEGA540wv1RcgwKq+IS0kX4AAK/mmbmjxuzlhvf1u9EPaa9WydOghlrp1iajUf59zw7CjjoEAy7WlYWDswGINJEmAACtJkNVsZsHif3TEKcPLtZKdnaV6dXLUrnUL7dN9Vx1/dC87J9j6Gj76YU15/3Pddd2F6tu7R5WjmfbJTA25boL6HNBd426+uNL7v//lT51w/k3qtFM7vfTIjWXuLe63sgYaN6ynjydPqHJMQbjBtwHWfv0v0br8DZr57iMlO7DMoe1Hnna1vWA/eHmcsjLLfnGwz4lD9c+ylfpu2uNBqL0r5kiA5YoyMIgYBAiwYkDiFscFCLAcJ09ph1Ud0t61c0SH9bGUk+PuXVelkQiwUrpkaLyaAuzAqiYgj9sCBFjuWAjFAVatmtnqtttOJYMyb1otXb5KCxYvtX+vft3amjhmmHbp0C5qkJSuAMsEbNGCNTPIBvXq6L5bL3UHdJpH4dsA6+wr7tT/Zv6oJ8Zerb267mwzD7/lYU1573MNOuFwDbvwxDL0kYil7oefpxrZWfp8ygNpLktwuifACk6tvT5TAiyvV9Cf4yfA8kddzSHtMz7L0IcVHNLeuHFEA/pbatPKO8FVcWUIsPyxRv06CwIsv1bW2XkRYDnrXVFvxQGWCYLefOb2crf9tWS5rh/zhD7/+gd13LGtJk28yVUBVqzBmTu00zcK3wZYL77xoW66+0n7APczTzzCPtDd/F5WVqbefvZObdNsy8Huhv+XuQs18Ozroi7m9JXH/z0TYPm/xn6ZIQGWXyrpr3kQYHm/npUd0m4OZj/oQEs99y5URvkz3D0xeQIsT5QpsIMkwAps6ZM6cQKspHIm3FhVAZZpeGXuGh0wYIgsy9KM1+4ts+Mp3a8QEmDFVnrfBlgFmwt12sWjNefnP8tIXHPJKTr12D7ldMZNnKSJz07RKQP7aMSQU2LT465qCxBgVZuQBhwSIMByCJpu4hIgwIqLy1U3V3VI+84dIjqqr6W6db2366o0NAGWq5Ydg9lKgACLJZEMAQKsZChWv41YAizTy159L9C69Rs0/aWxat60YUnHBFjVr4ETLfg2wDJ46/M3aOKzb+rr2b+odk5NDex7gA49sHtUV/N64eK/l2vkZadp5x3aOGFPH5IIsFgGXhEgwPJKpYI1TgIsb9Z7zg8hvflWWOvzt3wluXgm9etbOvpISzvuEPHm5LYaNQGWL8ro20kQYPm2tI5OzKkAq+DrGSr84xdH55bOzrK676uM9kVHAcVyxRJg/bNslQ4+7nL7HKxPX7+v5Kxs0z4BVizK6b/H1wFW+nkZQVUCBFhVCfFztwgQYLmlEoyjtAABlrfWg9l1Nfn1kH76ufz7gOGw7FcFe/eylJnprXlVNloCLP/U0o8zIcDyY1Wdn5NTAdb6R+7Upvdfd36Caeox57xhyj6kf8y9VxVgrV2Xr6E3P6hPvvjOfuPKvHlV+iLAipk6rTf6NsD6+fcFyqlVU21aNosJuKBgsz796nt7G6E51I3LGQECLGec6aX6AgRY1TekheQLEGAl3zRVLc79I6yXJ4e0dl35XVdtW1vqf7SlJo39seuqtCEBVqpWFO0mQ4AAKxmKtEGAlZo1kGiAZTKAfffctWRQhZGIVq5arZ9+m6+2rZpr0AlHqP9h+5YbdLoDrPZttlGjhvWiYp7Y/2AdcXCP1EB7rFXfBli79Bqkvbt10mP3XBVTScxBbt0PP1+ttm2q1564JaZnuKn6AgRY1TekBWcECLCccaaX+AQIsOLzSsfdmzdLU98P639flt91VauWpcMPtdS1s/+Cq2JrAqx0rDr6jFWAACtWKe6rTIAAKzXrI9EAq6LRmI+5HXpAdx1+0F46eL9urguwKlMcesEJ9ofpuCQCrFKroM+JQ5Wbt0Zfvf0wa8MhAQIsh6DpptoCBFjVJqSBFAgQYKUANYlN/rM0pP++GNbKleV3XbVuZemE4yKq5/FD2qviIsCqSoifp1OAACud+v7p26kAizOwKl8zFb1CWFgYUd6adZrz0x969LkpmjnnN3s305jrLyzTYLp3YPEVwtj+nkCA9a/Tpk0F6tFvsP1JzW/fezQ2Pe6qtgABVrUJacAhAQIsh6DpJi4BAqy4uBy72bKkGZ9maNqHIUW22lxlzro65CBL++5TqFD5XMuxMTrVEQGWU9L0k4gAAVYiajyztYBTARbyiQVYpZ/aXFioE86/Sea4oTtGnq9+h/Qs+XG8Adb0GTN1ycgJ6nNAd427+eJKB/f9L3/a/e7SoZ1efPjGagVnQV8HBFiS/RnNW8Y/o9fe/VTbt91Wrz91a9DXhWPzJ8ByjJqOqilAgFVNQB5PiQABVkpYq9Vobm5IL70S1sJF5dOpRo0snXR8RM2bWdXqw0sPE2B5qVrBGysBVvBqnooZE2ClQjX+Nqs6xL24xYnPTtG4iZM04Ij9NXr42QkHWP/75kedfeWd2r/HbnrojisrHfBX3/6sQZfdrh5dO+rxscMJsOIvb8kTvgmwnn3lfT03+f2Sic1buEQ1a2SrRbNGlfJs3lyoJUtXyqSx5rryguN11ol9q0HKo/EIEGDFo8W96RQgwEqnPn1XJECA5a618e3ssN58O6SNm8qHV3vtGdHhfSK++sJgLPoEWLEocU+6BAiw0iXvr34JsNxRz1gDrCdffEd3PfC8DuzZWQ/cdnnCAdbf/6zQISdcqWZNGmj6S2MVqmRb9TOTpur2+57T8Uf10g1XDiLAqsaS8U2A9dnX3+v+J17V7B/n2q8BJnIde+QBuuGKQcrIKH/QaiLt8UzVAgRYVRtxhzsECLDcUQdGUVaAAMsdK2LDhpD9hcFffiv/zw+1cywdd6yl9tv596D2yqpAgOWONcooogsQYLEykiFAgJUMxeq3EWuANfiasfro89k6/bjDNPyikxIOsMyDA8++Tr/MXag7rj1f/fpseR2x9GzyN2zSsedcp/mL/rF3apkdW6WveF9drL6Ut1vwTYBVXIbcvLV69d0ZdqrarnULnTzgkEorFA6H1KBeHXXutL22bdHE29X04OgJsDxYtIAOmQAroIV3+bQJsNJboLXrQvpznvT2O2GZP9/66rBTRAOOtpSTk9h/WEvv7JLTOwFWchxpJTUCBFipcQ1aqwRY7qh4VQGWOfP6iRfe0YTHXpbJAF5+dJR2at+qWgHWx/+brQuvHmu/+WXCMPNaovnaYfH1x4K/deOYJ/TNd79qn+67auKYoeWwCLDiWz++C7CKpz/grJFq1KCeHrvnqvhEuNtRAQIsR7nprBoCBFjVwOPRlAkQYKWMNmrDq3JDmj8/pHnzpD/nh2T+OtqVlSX1PSyiPboFc9dVaRMCLGfXKL3FJ0CAFZ8Xd0cXIMByx8ooDrByatXQ3t06lQwqYllavWadfv59odbnb7Dfthp52en263ylr+IgqdU2TVWvbu2ok2pYv44euatsCPXfV6fptnuflfnaoenbnKldo0a2li5fpQWLl9rt7L1HJ4276WLVrZNTYYBlNt80rF83ar9mw819t17qDug0j8K3AZZ5pfDPBUt0ysDKd2Cl2T/w3RNgBX4JeAaAAMszpQrUQAmwUlvupctCmr8gpD/+kP1rtF1WW4+g5bbmlcGIGjUM7q4rAqzUrktaT54AAVbyLIPcEgGWO6pfHGBFG02N7Cz7bOw9u+ysUwb2KbPzqvj+4gCrstk0blhPH0+eUO6WufMW69nJ0/TlrJ9kzsYqLCxUwwZ1tWuH7dSvzz72lwrNrq9oV3X6dYe8s6PwbYDlLCO9JSpAgJWoHM85LUCA5bQ4/cUiQIAVi1Js95jjM5csLdphZV4LNL+uz4/+D5vRWjRntx6wX6F6HWiJozS3CLEDK7b1x13pESDASo+733olwPJbRZmPmwUIsNxcnQCMjQArAEX2yRQJsHxSSJ9NgwCregVduDCk+QvD+uNPSwsWhLWpIL72srOk1q0jatc2pI4dImrWjF1XWwsSYMW3prjbWQECLGe9/dobAZZfK8u83Cjg+wDLbCWc+tHX+mP+X1q7Pl9WpOp/uLz3Ft4vdWqxEmA5JU0/1RUgwKquIM+nQoAAK3bVwkJp4cKw5i0Iad58y/7zgs2xP2/uzKllqU1bS9u1kdq2tbRNC0uVfDU7vsZ9ejcBlk8L65NpEWD5pJBpngYBVpoLQPeBEvB1gDXx2Ska/+jLssx7AXFcP3z4ZBx3c2t1BAiwqqPHs04KEGA5qU1fsQoQYFUu9cefYc01u6vmhzV/YeyvAxa3WqeOpe3aSu3aWWrT2lJzdljFujRL7iPAipuMBxwUIMByENvHXRFg+bi4TM11Ar4NsMwh7ucOHWOD186pqc6ddtA2zRspIxyusgg3XDmoynu4ITkCBFjJcaSV1AsQYKXemB7iFyDAKm9mDlr/emZY38yU8vLiC60aN7LsnVUmtDI7rRrWj+8/gMVfQf8/QYDl/xp7eYYEWF6unnvGToDlnlowEv8L+DbAuuTa8Zr+6SztsftOGj/qkgo/Sen/Ert7hgRY7q4Po9siQIDFanCjAAHWlqrM/SOsL76Sfv6l6v9QVfyUeQXQ7Kxq367olcCcHAKrZK9zAqxki9JeMgUIsJKpGdy2CLCCW3tm7ryAbwOsAwdequUr8zT58dFRP5PpPDU9RhMgwGJdeEWAAMsrlQrWOIMeYOXnh/TNzLC+/EbKza18t1U4Q2q5jaU2bSJq3y6kNm0s1cgmsEr1/2IIsFItTPvVESDAqo4ezxYLEGCxFhBwTsC3AVbn3mcrFA5p5rsTFQ7H9wqBc/z0RIDFGvCKAAGWVyoVrHEGNcD6c15YX30T0vc/VP7/75mZUreuEe3SUdquXSRYi8MlsyXAckkhGEZUAQIsFkYyBAiwkqFIGwjEJuDbAGufoy5SYSSiL958MDYJ7kqLAAFWWtjpNAEBAqwE0Hgk5QJBCrA2bghp5uyQvvpaWr6i8tcEzWHre3a31GX3iLKzU14GOqhEgACL5eFmAQIsN1fHO2MjwPJOrRip9wV8G2CddsmtmjnnV8147V7Ov3LxOiXAcnFxGFoZAQIsFoQbBfwcYBUUSAsWhrVwUUgLFlpauiyk1asr33HVtXNEe+5hqVUrXg10y3olwHJLJRhHNAECLNZFMgQIsJKhSBsIxCbg2wDrxdc/0E33PKWrLz5Zp/3n0Ng0uMtxAQIsx8npMEEBAqwE4XgspQJ+CrBy80xQJS1cGNKCBSEtWRqSFUMO1bRJRHt2l7rubqlGzRgeSGlFaHxrAQIs1oSbBQiw3Fwd74yNAMs7tWKk3hfwbYBVWBjRoMtu04+/ztc9N16kA3t29n61fDgDAiwfFtWnUyLA8mlhPT4trwZYkYi05B8TWIU0f0FICxdKq9fEfl6lOZB9l53Na4IRtWtLaOXmZUyA5ebqMDYCLNZAMgQIsJKhSBsIxCbg2wBrVd4aff/zPA2/5SHlrV6nDtu3VvfOO6tFs4aqUcWBGKcMPCQ2Pe6qtgABVrUJacAhAQIsh6DpJi4BLwZYP/wU1lvvhLQmjsCqGMWcbdV5d6lrl4hq5xBcxbVY0nQzAVaa4Ok2JgECrJiYuKkKAQIslggCzgn4NsDapdeghBV/+PDJhJ/lwfgECLDi8+Lu9AkQYKXPnp4rFvBSgLVseVivvR7SgkWx77Rq2sxS+7aWtmsne6dVDqGV5/7nQIDluZIFasAEWIEqd8omS4CVMloaRqCcgG8DrCNPuzrhcr/5zO0JP8uD8QkQYMXnxd3pEyDASp89PXs7wNq4KaRp00P68uuwzKuDlV1Nm5qwqiiw2o7AyhdLnwDLF2X07SQIsHxbWkcnRoDlKDedBVzAtwFWwOvqmekTYHmmVIEfKAFW4JeAKwHcvgNr5uywpk4NaX1+9F1X5gB2O6xqZ6ldO/FaoCtXWfUGRYBVPT+eTq0AAVZqfYPSOgFWUCrNPN0gQIDlhioEeAwEWAEuvsemToDlsYIFZLhuDbDMAe2vvh7WX39HD64aNbJ09JGW2m9XxZasgNTRz9MkwPJzdb0/NwIs79fQDTMgwHJDFRhDUAQIsIJSaZfOkwDLpYVhWOUECLBYFG4UcFuAZXZaTX0vpJnfhqNy1ahh6eADLe21V0QZ0W9xIzNjqoYAAVY18Hg05QIEWCknDkQHBFiBKDOTdIlAYAKsjZsKNH/RP1q9Zp1q1szWrh22c0kJgj0MAqxg199LsyfA8lK1gjNWtwRY5myrL78Ja9oHIW3cEH3XVbfOER16qKWcWnw9MDgrVCLAClK1vTdXAizv1cyNIybAcmNVGJNfBXwfYP36xyLd+/gr+uR/s1WwudCuY4ftW+uVx0aVqel9j0/WP8tX6dJzjlWTRvX9Wm/XzYsAy3UlYUAVCBBgsTTcKOCGAMt8VfC1KWEtWxo9uGrZ0tJRfSPadhuCKzeuoVSPiQAr1cK0Xx0BAqzq6PFssQABFmsBAecEfB1gvffx1xo26iEVFGwuIxotwBo97hn999VpGnbhiRp0wuHOVSDgPRFgBXwBeGj6BFgeKlaAhprOACs/P6R3K3ldsE4dS4f2ttR594hC0bOtAFUquFMlwApu7b0wcwIsL1TJ/WMkwHJ/jRihfwR8G2AtWPyP+p85Ups2FWjH7Vrp5AG91aZVc519xZ1Rd2B9+tX3Om/YGPXsvoseHTPMPxV2+UwIsFxeIIZXIkCAxWJwo0C6AqzZ34X11rshmRAr2rVvz0Id1MtSdpYb1RiTkwIEWE5q01e8AgRY8YpxfzQBAix3rAvz7/9HnDJc7Vq30JvP3F7poBYvWa5DTxyq1ts20zvP3Vnpvc++8r5unfB/6tu7h+667sIK773/icl64KnXYsLYu1snPXbPVSX3Dh/9sKa8/3mlzzZuWE8fT55Qcs+kKR/phjFP6PijeumGKwfF1K8fbvJtgHXT3U/qxTc+VL8+PXXbNecpHC76h+xdeg2KGmD9vXSlDjn+CjVr0kAfTBrnh9p6Yg4EWJ4oE4OURIDFMnCjgNMBVm6ueV0wpLl/RD+BfccdIurX11LDBrwu6Mb1ko4xEWClQ50+YxUgwIpVivsqEyDAcsf6SFWANeCskTLHEmVlZerDSePUoH6dqBM2gdKkNz+qFGPuvL+0Pn+DDuu1p+658aJyAZYJ3xrWrxu1jQb16ui+Wy8lwLIsy5f/lHnYScO06O9ldhhlQqniq6IAa3Nhobocco4yMzP07XuPuuN/hQEYBQFWAIrskykSYPmkkD6bhpMB1iczMjT9o5AKi46TLHPVqW3pqH6WOnaI+EyY6VRXgACruoI8n0oBAqxU6ganbQIsd9Q6FQHW7B/n6uTBo9Rxx7b66bf5uuqik3TGcYclNOGff1+gE86/yc4bJj8+Wm1aNisXYJkdXmanVywXO7BiUfLQPV36nKP6dWvro1fGlxl1RQGWuanroecqUhjR7GmPeWim3h4qAZa36xek0RNgBana3pmrEwHW4r9CmvxaWEuXlX9d0JxttVf3iPr0jig72ztujNQ5AQIs56zpKX4BAqz4zXiivAABljtWRSoCrJF3PKbJb3+ipyeM0NlX3qnW2zTVG0/fFveEzcfkTrzgJpkQ65pLTtGpx/Yp00bxK4QEWFXT+vYVwr36XqDMjAx99sb9MQVYy1fm6cCBl9pfINw69KqakTsSFSDASlSO55wWIMByWpz+YhFIZYC1cVNI708L6cuvw4q2V7t5M0sD+vN1wVjqFOR7CLCCXH33z50Ay/018sIICbDcUaVkB1hr1+Wr17GXqm6dHPutrktGTtD0GTP1zL0j1G23neKa9ANPvqr7n3zVfu7pCdcotNXXbQiwYuf0bYB1/Pk36odf5unVJ0bbh7gXXxXtwHpu8jTdMv4ZHdizsx647fLYBbmzWgIEWNXi42EHBQiwHMSmq5gFUhVg/fRzWFPeDmnNmvK7rrKypN4HRdSzB18XjLlQAb6RACvAxffA1AmwPFAkDwzRqQDrjbx5+mbdMg+IJGeIRzVopz1ymsbcWLIDrP++Ok2jxz2js0/qqyvOP17vffy1Lrv+Ph196L66bcS5MY/rl7kLdfx5N/776uAotWnZvNyzBFgxc8q3AdbEZ6do3MRJ6tG1ox684wrV+PdTSNECrD8W/K1TLxqtvDXrdOs156r/YfvGLsid1RIgwKoWHw87KECA5SA2XcUskOwAa+3akCa/HtJvv0c/pH2H9hEN6G+pbl1fHp8Zszs3xi5AgBW7FXc6L0CA5by5H3v8f/bOA0qKKm3Db1X35ETOEiUnQQFRkayCiAKKmDFjWHXRXf11DauueV1zwoCYExhQQSQjCgiIJJWc8zCEyd1V/7nV3RN7ZjpUV1d465w5M9N9w3ef7zo4z9xglMC6cdt8vHFwnR0RBh3T6y3644Z6nUIer94Ca8x1D2hb/sSWwdbNG0NsAxQrsvLzCzFv6vPITE+tMTZxzrY490q0c8+tl+KKC88KWocCq0aUJQVsK7Dy8gsxcvy92LPvkGY5b7n6AvQ+qSMGXniHdgvhF28+jG0792HmvGV466NvkZtXoL3+6RsPaVsP+RhDgALLGM7sJXoCFFjRM2QL+hPQS2CJLYJLfpW1LYNFRZVXXQlhNWKYio4deEi7/lm0d4sUWPbOr9VHR4Fl9QyaI34KrNjkIVKBJRaudGrXstqgioqLtd1aJzRpgBkfPlWp7Or1mzHupofRvVMbfPjK/SXvP/bCB/hg6izce9vluGz0kBoH/sq7X+EzP7ztAAAgAElEQVTld6ZpWwffff7/IMuV/x9LNBIQWEKU1amdGbTdcecPwrBBpQe88xD3GvFbr8CW7Xtw3Z1PY++B7HLBi4kjSzKEEQ08zRrXx9v/uxtNG9Wz3kAtHDEFloWT57DQKbAclnCLDFcPgbVvv++Q9t17eEi7RdJuqTApsCyVLscFS4HluJTHZMAUWDHBikgFVjjRVCWw7n/qbUz9bgEeums8LhoxoKRJcRPhhdc/iHatm2k3CVb3hLJ1MFA/ILCqa++uCRfj6nHDSopQYIWTaQuVPXo8D6+9+xW++G4BxEFsFZ/kpESMObe/tkJL3FrIx1gCFFjG8mZvkROgwIqcHWvGjkA0AqvYA8yZK+HnJS4oQRZWiUPaLxytQHzmQwKREqDAipQc6xlBgALLCMr278MogcUzsKqfS3ptIQwc3q4oKhZMewHpaSnlOh597f0QcuqjV+5Ht05tggYlFsqMm/AwhPCqbutgRYHFWwhr/nlh2y2EFYcuJtH6DdshJnZubj5SkpPQpFE9dO3QCon+87FqxsUSehOgwNKbKNuLFQEKrFiRZbvREIhUYG3cJOPr6RJyjlRedSX+SRw8SMGpvXlIezS5YV0fAQoszgQzE6DAMnN2rBObUQLLOkTiE6leAuvjr+bgkf9NqXEQo4efiUf+eU3Qcq9O+QovvS22DrbFu8/fW+XWQQqsGjFXKuAYgRU+GtYwggAFlhGU2YceBCiw9KDINvQmEK7AOp4r4bsZMtasDX4GQ4f2Cs4bzkPa9c6Tk9ujwHJy9s0/dgos8+fIChFSYJkjS3oJrMDh7eIcLZcr+KU2a/7YguSkBMyf+gLSUpPLAfhr806MveFByLKML995NOitgxWJ8RD30OeQbQXWeVf+H0YN76ddc1mvTlboRFjSUAIUWIbiZmdREKDAigIeq8aMQKgCSxzSvvI3GTNmSSgoqCyv0tNV7XbBtm14SHvMkuXQhimwHJp4iwybAssiiTJ5mBRY5kiQHgJr9R9bMG7Cv9GmZVN8Pfk/VQ5swt3PYuGS3/HgxKswduTAknJltw7efcsluPKis0OCQ4EVEiatkG0FVucB47UBigPb+/XphlHD+mFA35OQkOAOnQ5LxpwABVbMEbMDnQhQYOkEks3oSiAUgXUoW8IX02Ts3BX8kPY+vRQMHawgIUHX0NgYCWgEKLA4EcxMgALLzNmxTmwUWObIlR4C64Gn38YX3y7AvbddhstGD61yYHMXr8St9z6v3Xb42RsPlZR7bcrXePHtqejRpS2mvFDz1sFARQqs0OeQbQXWv599FzPnLsWRY7klNGplpWPEkL6azOpwYvPQKbFkzAhQYMUMLRvWmQAFls5A2ZwuBKoTWOKi3fkLJCxY7IJSeuluSb88pF2XFLCRGghQYHGKmJkABZaZs2Od2CiwzJGraAVWbl4BBoy5HV6vgnlTn0dmemqVAxMHvJ817k7s2Z+tCSwhsjZs2YmLrvdtHRQ3FLZo1jBkMBRYIaOy7wosgaC42IP5v6zC1z/8hAU/r0Kxp/T/4IXAGj28H84d3BdCbPGJDwEKrPhwZ6/hE6DACp8Za8SeQFUCa+t2CV9+LSM7O8gh7YkqhgxSIVZeScGPwop94OzBMQQosByTaksOlALLkmkzXdAUWOZISbQC69Ov50IsghGLXR69+9oaBxU4qF1sIRRbCSfc/V8sXLJau7WwedPq5ZU4W+vjVx8o6SMgsFqe0Ai1szKC9l0rMx0vPXZ7yXufT5+PB595RyvfuGHdKuN9/uFbtcvr7PLYdgVWxQSJlVgz5izB9B9/xorVG0reTnC7MPD0HtpEPb1X1yoParNLws02Dgoss2WE8VRFgAKLc8OMBCoKrPx8CTN+kLByVfBDRzt0UDByuApx5hUfEjCCAAWWEZTZR6QEKLAiJcd6ZQlQYJljPkQrsC68/kGs37ANH71yP7p1alPjoA4cysHgsRORnJSIeV88j2smPonV6zfXWE8UEMccrZ7zTiWBVV3lurUzsWDaC5UEVk0dfjPlcbRu3rimYpZ53zECq2xGdu45gOmzfsY3sxZj6469JW/Vr1sLI886DRNvHGuZBFo9UAosq2fQOfFTYDkn11YaaVmBNX+xB9/PlJCXz0ParZRDu8dKgWX3DFt7fBRY1s6fWaKnwDJLJhiHEwg4UmCVTaywrDPnLYM4iG3jll3aW2vnTXZC7k0xRgosU6SBQYRAgAIrBEgsYjgBIbCKCxPx1gfF2Lipcvdii+CpfRQMGchD2g1PDjvUCFBgcSKYmQAFlpmzY53YKLCskytGan0CjhdYa//cih/mC4H1GzZtpcAyekpTYBlNnP1FSoACK1JyrBcrAooCLF3qxqy54szHyr00bqRi9AUKxGHtfEggXgQosOJFnv2GQoACKxRKLFMTAQqsmgjxfRLQj4AjBZbYNii2D343+xds37W/hKY4/OyCs8/ArdeM0o8wW6qWAAUWJ4hVCFBgWSVTzohz124J076Ssf9A5e2CSf5D2nvzkHZnTAaTj5ICy+QJcnh4FFgOnwA6DZ8CSyeQbIYEQiDgGIGVnXMM389Zgm9++Amr/9hSgiYpMQFDzzxFO8S9T8+OkHglUwjTRr8iFFj6sWRLsSVAgRVbvmw9NAKFRRJm/Shh2XIZapCFVR07KjhvGA9pD40mSxlBgALLCMrsI1ICFFiRkmO9sgQosDgfSMA4ArYWWAWFRZj700pttdWipavh9SolZMXNAkJaDR/UR7vqkk98CFBgxYc7ew2fAAVW+MxYQ18C69bLmP69hOPHK6+6yswAzh+poG2b0n/n9O2drZFAZAQosCLjxlrGEKDAMoaz3XuhwLJ7hjk+MxGwrcD615NvaWdb5eYVlPCuVycLI886HaOG97PVVZJmmlDhxkKBFS4xlo8XAQqseJFnv+J8q6lfubB2XWVxJcvA0AEyhg4C8oqKCIsETEeAAst0KWFAZQhQYHE66EGAAksPimyDBEIjYFuB1XnAeI1AgtuFAaf10FZbndG7K1wuOTQyLBU2gSmfzcSTL3+Ev10zGhOuHBlSfQqskDCxkAkIUGCZIAkODGH/fgkffiojO7uyvGrSWMWlFwEd2iQir9CLnOMUWA6cIqYfMgWW6VPk6AApsBydft0GT4GlG0o2RAI1ErCtwBpz3QOatBoxpC9qZaXXCMIJBXbvPYg7HnwJ4ubFR+++VuNT3SPKv/be11i8bA0OZh9BVmY6evfogBsvH4kTWzWtVJUCywmzyLljpMBybu7jNfKly2R8P1NGmd3vWijaIe2DVfQ+RUFasgu10imw4pUj9lszAQqsmhmxRPwIUGDFj72deqbAslM2ORazE7CtwDI7eKPjW7jkd9z96Os4cixX67omgbV+wzZcdfvj2hbME5o0QOsWjbF3fzb+3LQDiYkJeOWxO9D3lM7lhkGBZXRW2Z+RBCiwjKTt7L4KCyRM/VrC+j8qrxhu1FDFpeMU1MryneCemkSB5ezZYv7RU2CZP0dOjpACy8nZ12/sFFj6sWRLJFATAVsIrM+nz9fGKVYURbpF0OP14svvF2ntXDiif03cLPO+oqh4efI0vDblazRuWBdn9OqKz6bPq1ZgicPuz7vq/7Bt5z7846ZxGH/xOSXjXfDLKvztvheQlpaMmR8+jYz01JL3KLAsMy0YaAQEKLAigMYqYRPYvUfCh5/IOHq08pbBPr0UDDtLgewqbZYCK2zErGAwAQosg4Gzu7AIUGCFhYuFqyBAgcWpQQLGEbCFwAqcd7Xih0lISkyoRE8ImXOvuEd7fcaHTwWlm5dfgF7DJmjvrZ032bgMxLinZ177BO98/D1O7tYOzz38N3zx7Xw8N+nzagXWrAW/4o4HXtJWWL35zD8qRRho847rL8T1l42gwIpxDtm8OQhQYJkjD3aNQlWBn3524cc5EpQKFwkmJam4aLSKdm0r3zBIgWXXGWGfcVFg2SeXdhwJBZYds2r8mCiwjGfOHp1LwBECS6yu6j742mrllF0F1oFDOfhg6o+45epR2oH2L78zDa+8+1W1Auu+J97ElzMW4cn7bsSIoX0r/dexaesujBx/Hzqc2BxfvPlwSAJr9sIVuOPBF1G/bi28/+J9aNKonlaPh7g794eP1UZOgWW1jFkn3rx8CZ99IWHT5spbBps1VXHxhQqy/FsGK46KAss6eXZqpBRYTs28NcZNgWWNPJk9Sgoss2eI8dmJAAWWP5t2FVgVJ+vzb36BN97/plqBNfra+7Wzrr7/4Ck0b9og6Hzvc+5N2vlYK2a+oZ2JJZ6qthD+snwdJtzzLNJSk/Hei/ehdfPGJW1SYNnpx4m9x0KBZe/8xmt023ZI+ORTGcdzy28ZlCTgjNO8GDxQhVzN5bkUWPHKHPsNlQAFVqikWC4eBCiw4kHdfn1SYNkvpxyReQlQYFFgVZqdvYbdiLz8Qvz241vaqq1gz6hr/oW/Nu/E15P/gzYtfTcSBhNYv6/bhGvvfAqSJGHyc/egU7uW5ZqjwDLvDwdGVp4ABRZnhJ4ExJbBufMkzF/kgvi67JOepuKiMSpatay8ZbBiDBRYemaFbcWCAAVWLKiyTb0IUGDpRdLZ7VBgOTv/HL2xBCiwKLDKzThx6HvXQVcjJTkRv854o8rZeOVtj2H5739pK6p6dm0bVGAJwXXVbY+hsKgYk575h3YOV8XnWF5x0D5Sklxwu2TkF3rhqXiHvLH/jbA3EtAIpKckQKyKOZZfDFQQDkREAuEQ+OMvCV9OV7DvQOWD2tu2UXHlJRLS00JrMcEtIznRhWKPgoIib2iVWIoEDCSQkepbpV3Vv/cGhsKuSKASAfHzU/wcFT8/xc9RPiQQCYHAz7lI6rIOCZBAeAQosPy8uIXQB6KgsAgnn30DMtNT8fP0V6qcTdfd9TR+/nWtdsi7OOxdPIEVWLdfNwbnDumLS29+BDlHjuOlx25Hvz7dwpuZLE0CJEACNiOwZx/wyTQP1qyvbEDFNsELhrswbIisiVI+JEACJEACJEACJEACJEAC5QlQYFFglZsRqqqiy8BwVmDdi55dfSurym4h/H7uEmzcsgu3jL8AN4+/oMr/7rgCiz+SrEKAK7CskinzxZmbB3z/A7B4KSptFxTRigPar75UQovm4cfOFVjhM2MNYwlwBZaxvNlbeAS4Ais8XiwdnABXYHFmkIBxBCiwKLAqzTZxQPvx3PyQzsCa9vajaNe6WTmBlZWRhuN5+fB6FdSrk4Wpbz2CurUzg85qnoFl3H/s7Ck6AjwDKzp+Tq29+BcZc+dLKCwMvqyqQwcFo0eqSE6ObF8qz8By6syyzrh5BpZ1cuXESHkGlhOzrv+YeQaW/kzZIglURcBWAmvsyIFwBbmuSawq+virORqDSy4YHJSFx+PFZ9Pnae+tnTfZtjMmlFsIx974ENb+ubXGWwiF5Fr2/etITUkqJ7DEbYPPPXwr5v60Eh9Om61tMXzjqbsgy5V/gaPAsu1Us93AKLBsl9KYDmj9ehkzZkk4nBNcXNVvoOL8cxU0PyEycRUIngIrpmlk4zoQoMDSASKbiBkBCqyYoXVUwxRYjko3BxtnArYSWHqxdLrAeuR/UzTh9+R9N2LE0L6VsG7augsjx9+HVs0bY/qUx0veD2whvOXqUbj5qvNRVFSMS25+BH9s3I7brh2DG684r1JbFFh6zVq2E2sCFFixJmyP9vfukzD9WxnbdwYXV+npKoYMUtGju6LLWVcUWPaYN3YeBQWWnbNr/bFRYFk/h2YYAQWWGbLAGJxCwBYC66rbSyWKHol79/n/06MZU7YRygoscTi7OKT9tFO6YNIzd1UaxzOvfYJ3Pv4e14wbjjsnjK0ksP52zWhMuHKk9vrWHXtx0Q0PaofDv/O/e3BK9/bl2qPAMuU0YVBBCFBgcVpUR+D4cQk/zJbw2yo5aLEEN3BaXy/O7KdCfK3XQ4GlF0m2EysCFFixIst29SBAgaUHRbZBgWXOObB91358PfMnLFm5Dlu278XR47lISU5C/bq10KRhXZzeuysGntYDzZs2KDeAgRfegf0Hc8q9lpSYgDq1M9GpXQuMGHIazup/StBBB6tbseA5A3vjvw/eXPLy3Y++juk//lwtRHEcz4JpL5SU2b5rH4Zddrf2/T23XoorLjyr2vr3Pj4JX838Ce+9WHp+tTmzVnNUthBYNQ+TJQIEQhFYouy4mx7G6vWb8Y+bxmH8xeeUAFzwyyrc9q8XIMkyZnzwFBrWr13yXtlD3AMCS7z5zQ+Lcc9jb6BBvVraeVi1szJK6lBgcW5ahQAFllUyZWycHg+waLELC3+SUFwcvO/u3RScNVhFRkZ02wWDtU6BZWy+2Vv4BCiwwmfGGsYRoMAyjrWde6LAMld2i4s9eOmdaXjro+8gjhIST+MGdZCVma6d87z/UI62U0g8wRZsBCSUuKgs0f9Xx7yCQghplHPkuFZv0Bk98exDtyDB7So3+EDdrh1awe0O/hfLvid3gtixFHgCAqvlCY3K/Z5ctuFamel46bHbS14qK7CSkxLx5TuP4oQm5UVc2foUWOaao4wmDAKhCqwdu/fjslsexaHDR7X/GFq3aIx9Bw5r2wElScIT995QaXthVQJLhHffE2/iyxmLcEbvrnjtyYlaG+KhwAojeSwaVwIUWHHFb7rOxf8P/b5axqzZEo4eC75dsGlTFSNHKGjcUH9xFQBCgWW6qcGAKhCgwOKUMDMBCiwzZ8c6sVFgmSdXQkxd/fcn8dvajZoMuuHyETh3SN9KF4qt37BNO6/51JM7QYiqsk9AQs2f+rx2IVngETJs0dI1mPjQy8jLL8A/bh6H8WNLF3qIclXVrY5QQGA9ff9NGD64T0gwAwIrJTkR+QVF6N2jA95+9u6S37ErNkKBFRJWFjIjgVAFlohdyKtX3/0K837+DQcP5SA9LRU9urbFdZeei+6d2lQaXnUCKy+/EOJw+C3b9+CO6y/E9ZeNoMAy4wRhTFUSoMDi5AgQ2L5DwnczZOzeE1xc1amt4uyhKjp2UGIOjQIr5ojZQZQEKLCiBMjqMSVAgRVTvI5pnALLPKl+6JnJ2sVsrZs3xqT//gON6tcJO7iaJJQ4K1qcGd2xbQt8PunfIcmvWAkscYndL8vXaavDHvj7lbj4/EFBu6LACnsasAIJBCfAFVicGVYhQIFllUzFLs6cHAkzZ0lYuz74OVfJySoGnqmiTy8FcvkV5TELigIrZmjZsE4EKLB0AslmYkKAAismWB3XKAWWOVK+5s8tuPjGf2vb+qa9/ah24VgkT00Ca+OWXTj/6vuQkZ6KX6a/EleBNWpYP4iPK297DKkpyfj63ce07ZIVHwqsSGYC65BAEAIUWJwWViFAgWWVTOkfZ2GRhPkLgJ9/ccEbZFGVLAO9TlYwaICKlJTYbRcMNjIKLP3zzRb1JUCBpS9PtqYvAQosfXk6tTWjBNaeVSoOb4396m6z5LHxSTJqtwi+2j1YjP9+9l18+vVcTeg8eve1EQ+jJoEljtQZc90DaNywLn785L9xFVhnD+iNZx+6GY8+9x4++nK2dlzP60/dSYEVcfZZkQRqIECBxSliFQIUWFbJlH5xinOulq+QMXuuhNy84P8D1b6dgmFnqxDbBuPxUGDFgzr7DIcABVY4tFjWaAIUWEYTt2d/Rgms5VO82LLAOQKr5xUutO4ffNV7sJl03pX/h83b9+CFR27D4H49I55sNQmsyZ/MwNOvfoyhZ56C5x6+Na4CSxwm/+Kjt2lncp1/9b+we+9BTd4JiVf24QqsiKcDK5JAeQIUWJwRViFAgWWVTOkT5+YtMr6dIeHAgeDiqn4DFeefq6D5CfERV4FRUmDpk2+2EjsCFFixY8uWoydAgRU9Q7YAUGDFZhaEK7BOGnItij1efPveExA3+kX6VCewFi75HXc88BK8Xi8+fOV+dGrXMqjAEudFJ/hvMKwYx0N3ji+3vTFwiLs4t6tO7cygYY87fxCGDSo94D1wiHv/vt3xyuN/1+r8/OtaXHfX08hMT9W2EtavW6ukLQqsSGcD65FABQIUWJwSViFAgWWVTEUXZ16+hC+mSdiwMfhf/NLTVZw1WMVJ3c3xF1AKrOjyzdqxJ0CBFXvG7CFyAhRYkbNjzVICFFixmQ3hCCyP14vug33bBiveHhiI7v6n3sbU7xZUClaIqLIXlAUElrihMDEhQStfWFiELTv2YP/BHNSplYHH771B265X8QnUrY7IJ68/iC7tW5UUCQis6urcNeFiXD1uWEmRgMA689TuePUJn8AST2CMgZVZgdcpsGIzR9mqAwlQYDkw6RYdMgWWRRMXYtg5RyTMmyfht9UylCBuSvwR7fTTvOh3hooq/qAWYk/6FqPA0pcnW9OfAAWW/kzZon4EKLD0Y+nklowSWDwDq/pZ1uOs61FUVIzvP3gSzZs2rFT4zQ+/xbzFv5W8/uemHdrWu6oEVrDeunVqg3f+dzeSkxKDBlPT9sNglQIC6+n7b8LwwaWrrKobbVUC69jxPIwcf68m2sq2R4Hl5J9QHLuuBCiwdMXJxmJIgAIrhnDj2PThHAnz5ktYuarqMxbEaquhg1RkZMR3u2AwTBRYcZw87DokAhRYIWFioTgRoMCKE3ibdWuUwLIZNt2Hc86l/8SO3fvx2pN3ol+fyqujKnY47qaHsXr95ioFVtmVXAezj2D45XcjL78Qn7z2IDq3L791MNB2vAWWiENIulvufQ61stLxzbuPayvG/vXkW5j2/UK89+K96Nm1ne7sjWxQUlVxTC0fEogPAQqs+HBnr+EToMAKn5mZawhxNWeehN9Xy6jqX8HmzVSMHKGgQQPz/jNJgWXmWcbYBAEKLM4DMxOgwDJzdqwTGwWWOXJ1939ex/RZP+Oqi87GP2+5pMagwhFYorF3P5uJp17+SNv+99GrD0CWK5+TagaBJWINrOo6Z2Bv/PfBmxG4oZECq8ZpYY4C4qrLHxcsx4YtO3H0eC6aNW6AR/55TbngDhzKgVdR0LBebUhS6Nd1mmOE1o2CAsu6uXNa5BRY9sh4draE2fMkrF5T9YorcUD7kIEqOrY3xzlX1ZGnwLLHvLTzKCiw7Jxd64+NAsv6OTTDCCiwzJCF0pVHGempmPHBU9oKpOqecAWWOGdr9LUPYNPWXfjXHVfgkgsGV2reLAIr58hxbSvhocNHtVsZV6z+C5M/ncEVWOaYqlVHkZtXgH//dzK+nf1LuULt25yAqW89Uu61ayc+hV9WrMMbT9+F03t1MfvQbBMfBZZtUmn7gVBgWTvFBw/JmDtPwpp1UpUrrhrUVzF4gIoOHRRY5e8YFFjWnpdOiJ4CywlZtu4YKbCsmzszRU6BZY5siI1lF93wENZv2AZxAPuLj96O1JSkKoMLV2CJhpau/ANX//0JCEk2fcrjqFcnq1z7ZhFYIqiZ85Zh4kMvazGePaA3Ppg6iwLLHFM1eBRer4Lr73oaS1au1wqIxInD3IR9DCawREIfe+EDXDiiP/5919VmHpqtYqPAslU6bT0YCixrpleIq9lzJaxbX7W4ql9fxaD+Cjp1VC0jrgLZoMCy5rx0UtQUWE7KtvXGSoFlvZyZMWIKLPNkRRxuPm7CwzhyLBetmzfGrdeMwoDTeiAp0XebYOAp9nhxyU0Pa7KrqkPcq7rNcOJDr2DmvKUYMbQvnrzvRtMKLBHYHQ+8hFkLftXGX1hUTIFlnqlaORJxRaa4RlIsHXzg71dq1lE8nQeMDyqwNm7ZhfOvvg9tWzXDl+88auah2So2CixbpdPWg6HAsl56Z/wgY/EvVW8VrFtHxaCBCrp2Nu8ZVzVRp8CqiRDfjzcBCqx4Z4D9V0eAAovzQw8CFFh6UNSvjW079+HvD74EccugeBLcLrQ8oTEyM1Lh8Xg1ubVz9wGILYHiCVdg7T2QjRFX3IP8giK8/b+70adHx5LgAyuwunZoBbfbHXRQfU/uhFuuHlXyXuC8qpYnNELtrIygdWplpuOlx24vea+qWwgrVhaHz4uthEeO5mpv8Qws/eaZ7i1ddfvj+HXVn3jx0dsw6IyeJe1XJbDElZOnjrgZaanJWPrda7rHwwaDE6DA4sywCgEKLKtkyhfn7Lky5i8MLq+EuBo4QEXXztbZKlgVfQosa81LJ0ZLgeXErFtnzBRY1smVmSOlwDJfdsR2wh8XLses+b9i1bpNyM45qgknsRIpKzMNzRrXR/dOJ+Lkbu3Q95TO5VZohbINcNIH0/HcpM/RqnljTHvrESQk+GRVoG51RAIHqwfKBARWdXXq1s7EgmkvhC2wRIVvfliMex57gwLLfNO0fER9R9yMomKPJqNcrtJfYqoSWKJ2j7Ouh8fjweo575h9eLaJjwLLNqm0/UAosKyT4iVLZXw7o7K8qlNbxcD+Krp2USBXvTDLOgMFQIFlqXQ5MlgKLEem3TKDpsCyTKpMHSgFlqnTw+BsRkBShZ604XPSkGtRKysD8754rtzoqhJYYgnhSUOu01ZgLfn2VRsSMeeQKLDMmRdGVZkABZY1ZsWvK2R8Pb2ynRoxTEHvXua/VTBcyhRY4RJjeaMJUGAZTZz9hUOAAiscWixbFQEKLM4NEjCOgG0Flli+l334GH759lWkJCeWEK1KYP22diMuu+VRnoFl3NzTeqLAMhg4u4uYAAVWxOgMq7hmrYRPv3BV6m/MBQq6d7OfvBIDpcAybHqxowgJUGBFCI7VDCFAgWUIZtt3QoFl+xRzgCYiYFuBddfDr+L7OUtw/9+vxLjzB9UosG659znMW/wbrrjwLNxz66UmSpG9Q6HAsnd+7TQ6CixzZ3PDRhnvfySj4pri80coOLmnPeUVBZa55ySj8xGgwOJMMDMBCiwzZ8c6sVFgWSdXjNT6BGwrsFau2YDLb/2PdiDbfbdfgTHnnqllq+IKrLz8Ajz18sf4bPo87ays6VMeR4kakEoAACAASURBVPOmDa2fWYuMgALLIolimKDAMu8k2LRZxnsfyVB8l8mUPOeeo6BPb/vKKwos885JRlZKgAKLs8HMBCiwzJwd68RGgWWdXDFS6xOwrcASqXn29U/x1kffaVlq0awhep/UURNVDerVwrjzB2Pj1p1YuGQ1xA2E4rlrwsW4etww62fVQiOgwLJQshweKgWWOSfAzp0S3nrXBf9NyCVBnj1Uxel9Kxgtcw4hqqi4hTAqfKxsAAEKLAMgs4uICVBgRYyOFcsQoMDidCAB4wjYWmAJjJM/nYHn3/wCRUXFVVIV114KeXX5mKHGkWdPGgEKLE4EqxCgwDJfpvbtlzDpLRcq/ngfPEBB/zPtvfIqkA0KLPPNS0ZUngAFFmeEmQlQYJk5O9aJjQLLOrlipNYnYHuBJVJ06PBRfDVzEZau/APbd+1Dbl4BUpKT0KRhXfTu0VHbXli/bi3rZ9OCI6DAsmDSHBoyBZa5En/goIw335GQny+VC0ysuhKrr5zyUGA5JdPWHScFlnVz54TIKbCckOXYj5ECK/aM2QMJBAg4QmAx3eYlQIFl3twwsvIEKLDMMyMO50h4fZKMvAryqk8vBecOc8bKq0A2KLDMMy8ZSXACFFicGWYmQIFl5uxYJzYKLOvkipFan4BtBZa4gXDwGT2RmJhg/SzZeAQUWDZOrs2GRoFljoQePy7htTdlHD1afuVVzx4KLjjPWfJKZIQCyxzzklFUTYACi7PDzAQosMycHevERoFlnVwxUusTsK3AErcNZqan4twhfTFqWD90bt/S+tmy4QgosGyYVJsOiQIr/onNzZMw6W0Z2dnl5VX3bgpGn69AKv9y/AM2IAIKLAMgs4uoCFBgRYWPlWNMgAIrxoAd0jwFlkMSzWGagoBtBVbXQVdDUUrPQWnbqhlGDe+H84aehjq1MkwBn0HwEHfOAesQoMCKb64KCyS88bYEcfZV2adLJxUXjfE6Ul4JDhRY8Z2X7L1mAhRYNTNiifgRoMCKH3s79UyBZadscixmJ2BbgbX/YA6+/fFnfP3DT/hr886SPLhdLpzZt7u2KuvMU7tBfM8nfgS4Ait+7NlzeAQosMLjpXfp9z6UsWFjeXnVuaOCiy9y3rbBsmwpsPSeaWxPbwIUWHoTZXt6EqDA0pOmc9uiwHJu7jly4wnYVmCVRfnnph2ayPr2x19w4FBOyVt1a2dqK7KEzDqxVVPj6bNHUGBxEliFAAVW/DK1c6dYfVX+jw3t2ym4bJyz5ZXICAVW/OYlew6NAAVWaJxYKj4EKLDiw91uvVJg2S2jHI+ZCThCYAUSILYULl25XpNZsxYsR15+QUluurRvpW0xHD74VO3sLD7GEKDAMoYze4meAAVW9AwjbWHK+zI2bi5dfdWyhYprrvJG2pyt6lFg2SqdthwMBZYt02qbQVFg2SaVcR0IBVZc8bNzhxFwlMAqm9uCwiLMWbQS383+BYuWrUZxsUd7W9xauPKHSQ6bBvEbLgVW/Niz5/AIUGCFx0uv0jt3SXjjrfKrr2660YvGDUvPONSrLyu2Q4Flxaw5K2YKLGfl22qjpcCyWsbMGS8FljnzwqjsScCxAqtsOvceyMbTr3yMGXOXai+vnTfZntk24agosEyYFIYUlAAFVnwmxrvvu7Bpc+n1gu3aqrj8Eq6+CmSDAis+85K9hk6AAit0VixpPAEKLOOZ27FHCiw7ZpVjMisBxwossX1w9sIV+H7uEixetgbFHt8vRCnJifh1xhtmzZft4qLAsl1KbTsgCizjU8vVVzUzp8CqmRFLxJcABVZ8+bP36glQYHGG6EGAAksPimyDBEIj4CiB5fF68fOva/HND4sxe9EKiG2Egadn17baYe7nDOyN1JTk0OixVNQEKLCiRsgGDCJAgWUQ6DLdTH7Phc1bSldftW2r4gquviqXCAos4+clewyPAAVWeLxY2lgCFFjG8rZrbxRYds0sx2VGAo4QWGv/3Kod3P79nCU4dPhoSR4a1q+NkWedjtHD+6F504ZmzI/tY6LAsn2KbTNACixjU8nVV6HxpsAKjRNLxY8ABVb82LPnmglQYNXMiCVqJkCBVTMjliABvQjYVmDt3nsQ03/8GV//sBhbtu8p4ZWQ4MbgM3pqq61OO6ULZLn0r/t6QWU7oROgwAqdFUvGlwAFlrH835niwpatpT+f27dVcNklirFBWKA3CiwLJMnhIVJgOXwCmHz4FFgmT5BFwqPAskiiGKYtCNhWYHUeML5cgjq3b6lJq+GDT0VWRpotkmeHQVBg2SGLzhgDBZZxeebqq9BZU2CFzool40OAAis+3NlraAQosELjxFLVE6DA4gwhAeMI2Fpg1amVgfOGnoZRw/uhbatmxlFlTyEToMAKGRULxpkABZZxCai4+qpDewWXXszVV8EyQIFl3LxkT5ERoMCKjBtrGUOAAssYznbvhQLL7hnm+MxEwLYCa86iFTizb3e4XS4z8WYsFQhQYHFKWIUABZYxmQq2+upvNyuoX48CiwLLmDnIXvQlQIGlL0+2pi8BCix9eTq1NQosp2ae444HAdsKrHjAZJ/hE6DACp8Za8SHAAWWMdzfedeFLdtKz77q2EHBJWMpr6qizxVYxsxL9hI5AQqsyNmxZuwJUGDFnrETeqDAckKWOUazELCFwBIHtq9YswG9uneAuFlQPBu27IyYMbcbRowu7IoUWGEjY4U4EaDAij34rdskvP1u+VWzXH1VPXcKrNjPS/YQHQEKrOj4sXZsCVBgxZavU1qnwHJKpjlOMxCwhcAaMnYi9uzPRqvmjTF9yuMa14qHuIcDe+28yeEUZ9koCFBgRQGPVQ0lQIEVe9yvv+XCrl2lq686dVQw7iKuvqqOPAVW7Ocle4iOAAVWdPxYO7YEKLBiy9cprVNgOSXTHKcZCNhCYJ17xT3YumMvOrVric/eeIgCywwzK8QYKLBCBMVicSdAgRXbFGzeKmHyFK6+CpcyBVa4xFjeaAIUWEYTZ3/hEKDACocWy1ZFgAKLc4MEjCNgC4F15Fgu/tq0QxNYaanJGr2D2UciplivTlbEdVkxPAIUWOHxYun4EaDAii37iquvOndScPGFXH1VE3UKrJoI8f14E6DAincG2H91BCiwOD/0IECBpQdFtkECoRGwhcAKbagsZUYCFFhmzApjCkaAAit282LTFgnvvsfVV5EQpsCKhBrrGEmAAstI2uwrXAIUWOESY/lgBCiwOC9IwDgCFFjGsWZPQQhQYHFaWIUABVbsMlVp9VVnFReP8cauQxu1TIFlo2TadCgUWDZNrE2GRYFlk0TGeRgUWHFOALt3FAHbCqy/3fc82rdpjluvGRVSQouKinHF3x5D146t8a87rgipDgtFT4ACK3qGbMEYAhRYseG8eYuEyWVWX0kScOtNCurX4/bBUIhTYIVCiWXiSYACK5702XdNBCiwaiLE90MhQIEVCiWWIQF9CNhWYIlbCE/t2QlvPfvPkEmdOeo2SJKE+VOfD7kOC0ZHgAIrOn6sbRwBCqzYsK64+qpLFxVjR3P1Vai0KbBCJcVy8SJAgRUv8uw3FAIUWKFQYpmaCFBg1USI75OAfgQosMqwHDDmDhzOOYZVs9/SjzBbqpYABRYniFUIUGDpn6lNmyW8+37p2Vdi9dXtt3pRp7aqf2c2bZECy6aJtdGwKLBslEwbDoUCy4ZJjcOQKLDiAJ1dOpYABZY/9b+v24RLbn4EtbLS8dNXLzl2Qhg9cAoso4mzv0gJUGBFSq7qehVXX3XrouJCrr4KCzQFVli4WDgOBCiw4gCdXYZMgAIrZFQsWA0BCixODxIwjoBtBNaGLTuxYfOuEnL/eORVnNiqKW68fGS1ND1eDzZt3Y2Pv5qD47n5GNyvJ1545DbjMuDwniiwHD4BLDR8Cix9k7Vxk4QpH3D1VbRUKbCiJcj6sSZAgRVrwmw/GgIUWNHQY90AAQoszgUSMI6AbQTWK5O/xMuTv4yKXGpKEj54+X60a90sqnZYOXQCFFihs2LJ+BKgwNKXf8XVV927qhgzimdfhUuZAitcYixvNAEKLKOJs79wCFBghUOLZasiQIHFuUECxhGwjcAqLvZg2ao/MG/xKsxbvBK79h6E2+VCWlpytTRlSda2DZ7U+URce8lwtGre2Dj67AkUWJwEViFAgaVPpgoKJSxYBCz6qXT1lWj5jr/x7KtICFNgRUKNdYwkQIFlJG32FS4BCqxwibF8MAIUWJwXJGAcAdsIrLLIDh85hsEXTUSPLm3DuoXQOOzsKUCAAotzwSoEKLCiz9QvS2XMnS8hP18q19hJ3RWMPl+JvgMHtkCB5cCkW2zIFFgWS5jDwqXAcljCYzRcCqwYgWWzJBCEgC0Flhjng8+8g527D1BgmXzaU2CZPEEMr4QABVbkk2H9HzJm/ighO7u8uBIt8ubByLmKmhRY0fFj7dgToMCKPWP2EDkBCqzI2bFmKQEKLM4GEjCOgG0FVlFRMYqKPUhPSzGOJnsKmwAFVtjIWCFOBCiwwge/Z5+E776XsW17ZXElWktLVTHsHBXdunD1Vfh0fTUosCIlx3pGEaDAMoo0+4mEAAVWJNRYpyIBCizOCRIwjoBtBZZxCNlTNAQosKKhx7pGEqDACp32sWMSZsySsHqNHLRSUpKKM08HTj3ViwR36O2yZGUCFFicFWYnQIFl9gw5Oz4KLGfnX6/RU2DpRZLtkEDNBGwvsFRVxdYde7F3fzYKi4prJgJgwGknhVSOhaInQIEVPUO2YAwBCqyaORcW+Q5oX/yzC94gFwrKLqD3yQoGnKkiNVWtuUGWqJEABVaNiFggzgQosOKcAHZfLQEKLE4QPQhQYOlBkW2QQGgEbC2wFi5Zjf88/x527N4fGg1/qbXzJodVnoUjJ0CBFTk71jSWAAVW1bwVBVi+UsacuRJy84JvF+zaRcGQwSpqZ1Fc6TlzKbD0pMm2YkGAAisWVNmmXgQosPQi6ex2KLCcnX+O3lgCthVYf2zcjotv/Dc8/mUAbpcLWZlpOHT4KGRZgsvlQnGxp4S2eO/Unp3RsW1zXH/ZCGOz4ODeKLAcnHyLDZ0CK3jCDh6S8fGnEvYfCC6uTmyjYOgQFY0bUlzFYspTYMWCKtvUkwAFlp402ZbeBCiw9CbqzPYosJyZd446PgRsK7DufvR1TP/xZ7RvcwIeunM8unRorYmrzgPG49pLhmPijWM1gbVq3Sa88NYXWL9hG1567A706dExPplwaK8UWA5NvAWHTYFVOWl//iXjs6kSiooqy6tGDVWcPVRFm9Y8oD2W050CK5Z02bYeBCiw9KDINmJFgAIrVmSd1S4FlrPyzdHGl4BtBdaQsROxZ382vn73MbRp0aSEclmBFXhRrNK6/q6nseaPLfh68mNo3LBufLPioN4psByUbIsPlQKrNIGqCvw4R8LCn1yVsiq2CA4erKJrZwVS8EVZFp8J5gqfAstc+WA0lQlQYHFWmJkABZaZs2Od2CiwrJMrRmp9ArYVWCcNuRapqclY/PXL5bIkBNbV44bhrgkXl3t97Z9bMfbGhzB25EA8OPEq62fWIiOgwLJIohgmKLB8k6CgQMInn0vYtLnyDYNixdXpfYOc3s75EzMCFFgxQ8uGdSJAgaUTSDYTEwIUWDHB6rhGKbAcl3IOOI4E7Cuwhl6HBnVr4YePnymH9+Szb8DIs08PKqlOHXEzamWmY8aHT8UxJc7qmgLLWfm28mgpsIC9+yR8+LGMnCPll1alpKi47BIFzZvxnCuj5zgFltHE2V+4BCiwwiXG8kYSoMAykrZ9+6LAsm9uOTLzEbCtwBo67i4cOHgYy2a8gQR36TYXsbWwVfMmmPTMXZWyIeocyj6CFT9MMl+mbBoRBZZNE2vDYTldYK1ZK+GLaS54KxxpVb+BiisvUZDF2wXjMuspsOKCnZ2GQYACKwxYLGo4AQosw5HbskMKLFumlYMyKQHbCqzb738RPy5cjvdevA89u7YtwX/9Xc/gt7UbMH/q80hNSS55XRzo3mv4BMiSRIFl4GSlwDIQNruKioBTBZYQVjNmyliyrPKWwQ7tFVw0WkFCQlRoWTkKAhRYUcBjVUMIUGAZgpmdREiAAitCcKxWjgAFFicECRhHwLYCa+a8ZZj40Mu4bPQQ3Hvb5SVE3/zwW/zvjc9w0YgBuP/vV8Ll8v1S9tLb0/DqlK+0WwunvvWIcRlweE8UWA6fABYavhMFVm6ehA8+krFzV+XT2Aec6cWgAdwyGO8pTIEV7wyw/5oIUGDVRIjvx5MABVY86dunbwos++SSIzE/AdsKLLGi6sIbHsSoc/ph/MXnlGTiYPYRnDXuLhQWFWu3DbZr3Qw7du3H5u17tDLicHdxyDsfYwhQYBnDmb1ET8BpAmvnTgkffirj+PHy8irBDVw4RkHH9hX2EkaPmC1EQIACKwJorGIoAQosQ3GzszAJUGCFCYzFgxKgwOLEIAHjCNhWYFWH8OsffsJ9T7wJRSm/eqDvKZ3x6hMTy52ZZVwqnNkTBZYz827FUTtJYC1dJuO7mTKUCo4qM1PFlZcqaNCAK6/MMocpsMySCcZRFQEKLM4NMxOgwDJzdqwTGwWWdXLFSK1PwJECS6Rt3V9bMe37hdi97xAy09Nweu8uGDawT8mWQuun1hojoMCyRp4YJeAUgfXFlzJW/V75vKsWJ6i45GIFqamUV2b674ECy0zZYCzBCFBgcV6YmQAFlpmzY53YKLCskytGan0CjhVY1k+dPUZAgWWPPDphFHYXWPn5Ej74WMb2HZXPu+rRXcHI8xT4jwx0QrotM0YKLMukyrGBUmA5NvWWGDgFliXSZPogKbBMnyIGaCMCFFg2SqYVh0KBZcWsOTNmOwuswzkSprwv41B2ZXk1YriC3qfwvCuzznoKLLNmhnEFCFBgcS6YmQAFlpmzY53YKLCskytGan0CFFjWz6GlR0CBZen0OSp4uwqs7Tt9Nw2KFVhln6QkFZdfoqBFc24ZNPNEp8Ayc3YYmyBAgcV5YGYCFFhmzo51YqPAsk6uGKn1CVheYH0w9Ufds3DZ6CG6t8kGgxOgwOLMsAoBOwqs9etlfDJVhuItn4VatVRcdZmCunUpr8w+PymwzJ4hxkeBxTlgZgIUWGbOjnVio8CyTq4YqfUJWF5gdR4wXvcsrJ03Wfc22SAFFueAtQnYTWDNW+jCnLmVtww2beq7aTAlhfLKCjOWAssKWXJ2jBRYzs6/2UdPgWX2DMU+Pqm4EPL+PcDB3ZAOH4BnwPlhd0qBFTYyViCBiAlYXmCde8U9EQ++qorfvveE7m2yQQoszgFrE7CLwBKrrT7/0oU1ayvLqy6dVYy5wAuXy9q5clL0FFhOyrY1x0qBZc28OSVqCixnZFo6fhSyEFQHdkM6uAfSgV1+abUH8pFD5SDkvfAtkJAYFhgKrLBwsTAJREXA8gIrqtGzctwJcAth3FPAAEIkYAeBVVgg4b2Pgt80OHigiv79KuwlDJENi8WPAAVW/Niz59AIUGCFxoml4kOAAqtq7lJRAaCogNcLqF5IXg+gKFAVLyTx1zCvAsn/PRQPJK2c4iuv+D5LqgLV6/GV1z7E64rWnvhatKlq5cq8Fygr2onykf/8DfLOTZAK80NuqfBfk+Bt2jLk8qIgBVZYuFiYBKIiQIEVFT5WjpYABVa0BFnfKAJWF1hV3TQoVluNHa2gY0feNGjUXNKzHwosPWmyrVgQoMCKBVW2qRcBTWAlSsg5WoD8/CKfXBECRfXJFSFhVCFv/OJFSBrxvSijCZuAlAkIG8VbKng0ySPKqH4B5PteE0CiDSFuvApUIX1EWY8QRGVFj08UqUL0lJU6oq+ARBICKSCAyogjn3DySaFS4RQQSmXiLxFO/tdE26qzjxAonPBveLufFtYUo8AKCxcLk0BUBCiwosLHytESoMCKliDrG0XAygJr5y4JUz6QUVBQfttgepqKyy9V0KSxs/9n1ag5FIt+KLBiQZVt6kmAAktPmvq1Jc790WSJX9j4BIlfhpRIGb9MEYIk8L4mbvwCRfVq8kQTMZr48LcXWLEj5EuZuoFVOb5+fbJGkytae4omdXztiRU7FdvzSZzS1Ty+Oj5B5O9f8fjb80kjn/wpXenji8//nlhdxIcE/ASUzNpQ6zWBWr8xvP1HwtuqY1hsKLDCwsXCJBAVAQqsqPCxcrQEKLCiJcj6RhGwqsCq6qbB+vUUXHWFiswMyiuj5lAs+qHAigVVtqknAQqs8GjKOYeAo4cgHT0M+Ug2cDQbkvZaNqTcY75VOhGsrpGKi8ILhKVJwGYElAbNoNRrBNRvArVeI4jvUbcxlAaNoSYkRTVaCqyo8LEyCYRFwLYC69nXPw0LRNnCE28cG3FdVgyPAAVWeLxYOn4ErCiw5i9yYfacyoe1n9hawbixChLDO6M0fvDZc5UEKLA4OcxOgAKrfIakQ3vg2vIHpJ2bIQlRlZOtySrpyCFIx4+YPZ2Mz2EE1MRkQJag3e4iuaC63IAsQ5JdUGUX4JKh+r+H7IaqlZN95WUZ0MrJkFxuX3ntQ7wv+9rTvnZDcrmgSr73VJevfa2s1p/4HGhP9OfylRevizrivXLt+d8X7SckQK3dAGrdhjHNHAVWTPGycRIoR8C2AqvzgPERp3rtvMkR12XF8AhQYIXHi6XjR8BKAqu6mwZP7a1g2NkKpMpeK35w2XPEBCiwIkbHigYRcLLAkvLz4NqyFtK2vyBtWgvXlvWQ8o4bRJ7dhEtAdSeWEy8+meIqlTV+YROQJj754oKkiZiAzPGVD9T1CZsyMsffnpA8muzRxIxf+rjdZdrzta3Jmkrt+cSQJodK4vO/JkSOX+wE2vfF55NGPsHkH1Ogb000yVCTUsJFxvJ+AhRYnAokYBwB2wqsayc+VS3F/IJC7D94GHv2Z2vl0lKTccE5/dDyhEa4dNRg4zLg8J4osBw+ASw0fKsIrKpuGhTCauS5Ck7uycPaLTTtagyVAqtGRCwQZwJOEliuzeshb1mnCSt5xwbIe3fEmX713WvbpvwSxrdSxidaSla3CKkRECglK15kQIgWsSpH1BEyRLznFyMlq2tKVtSUWS2jte+rp62s8a/m8X3vX60j+fsPvKetsPGv6BHSR1t941/No/XpXx3kX+kjVgFpq4M0OSMFib90xY4YP28hNPUUtUxwFFiWSRUDtQEB2wqsUHOze+9BTPrwW3z69VxcM2447pzA7YOhstOjHAWWHhTZhhEErCCwco5IePc9GYeyyy+vSkpScenFKlq1pLwyYq4Y2QcFlpG02VckBMwksLRzoIqLIA4wVz1FkIqKgeJCSB7xugcoLoBUVAR4in1ltLLie/HhqXL48vYNcK1ZEgmekjpCpqgZWUBaJtR08ZEFNS0LyKwFNTUDEN+LD7cbktiiFZA0gS1b/q1YPuHkEz2lW6+ENHJDTeC+8YpJosCKatqysp8ABRanAgkYR8DxAiuA+uH/TcEnX83BW//9J049uZNxGXB4TxRYDp8AFhq+2QWWuGnw/Q9l5OWXl1dZWSrGX66gbl0e1m6h6RZyqBRYIaNiwTgRiEZgiTOhpOz9kA4fgHR4P6SjOUBRQDj5ZJTvo/Q1n4DyiaeAgJLyc+M0+srdepu0hHJiFygndoXaqLkmrJQ6DUwTn9MCocByWsZjM14KrNhwZaskEIwABZafithKOGTsRAw98xQ89/CtnC0GEaDAMgg0u4magJkFVlU3DTZtquKKSxWkplBeRT0BTNoABZZJE8OwSghUJbDECifp4D5NTMmHDwCaqBLfH4R0yC+txMonCz/iTCWlZXtNWKltusDbpjPUlDQLj8h+oVNg2S+n8RgRBVY8qLNPpxKgwCqT+dPPvxUJbjfmffGcU+eD4eOmwDIcOTuMkIBZBdaCRS78GOSmwS6dVYy5wKudD8vHvgQosOybW7uMLPCL3Z49hyH/+RvkP1bCtW6Z6c+HioS/mlEL3jZdoIoVVq07wduqYyTNsI6BBCiwDIRt464osGycXA7NdAQosMqkpP/o25Fz5DhWzX7LdImya0AUWHbNrP3GZTaBJW4anPaNjFW/y5VgDx6oon8/r/2SwBFVIkCBxUlhZgLi1r2srb/Ds3oZPOtXmSJU7aa1hETfeVBu8TkBSEzSvob4WpxFJd4TZbTXkqAmJkBKTC5Txv9eYpkydepDaXiCKcbIIEInQIEVOiuWrJoABRZnBwkYR4ACy886L78AvYZNQEZ6Kn6Z/opxGXB4TxRYDp8AFhq+mQRWVTcNitVWY0cr6NiRh7VbaGpFFSoFVlT4WFlnAvKBXXCtXwlZrLD6cyWkgvyoe1DqN4Fapz7U2g20DykpRRNKPvmUVF5GJSZCEq8n+gSUr4xPTKlJqVHHwgbsR4ACy345jceIKLDiQZ19OpUABZY/889N+hyTPpiOkzqfiA9e/pdT54Ph46bAMhw5O4yQgFkEVlU3Daanqbj8UgVNGvO8qwhTbMlqFFiWTJvlg5bFeVVHs7UD1cUjr1kC94qFkA7tDWts4lY9pV5jqLXqQa3XCBCfhaiq00A72FzNrB1WeyxMAuESoMAKlxjLByNAgcV5QQLGEbCtwJq3+LcaKSqKgr0HDmPBL79h4ZLVWvl7br0UV1x4Vo11WUAfAhRY+nBkK7EnYAaBtXuPhCnvV75psH49BVddoSIzg/Iq9jPBXD1QYJkrH1aORjtU/Ug2pCOHfHJKfJ0jvj4EKUe8nq29Lm4GjPRRUlKhtO8BpePJUDr2hFK/aaRNsR4J6EKAAksXjI5vhALL8VOAAAwkYFuB1XnA+LAx9ujSFu/8724kJLjDrssKkRGgwIqMG2sZTyDeAmvmjxJ+Wlz5RPa2Jyq4+EIFYscMH+cRoMByXs7DHbGUe9wnoTQ55ZNQEJKq5Hvx9SFdtvsFi83VoRsSuvXGkRZd0QPBsgAAIABJREFU4W3dKdzwWZ4EYkqAAiumeB3TOAWWY1LNgZqAgOMFVmpKMlo1b4SzB/TG5WOGIkmcq8DHMAIUWIahZkdREoiXwMo+LOGzL2Ts2i1VGkHfPgqGnc3zrqJMraWrU2BZOn0hBS8f3AP5r1WQ16/QRFNYT3ERXFv/CKtKtIWVhs3g7XgK1M694G3bFY2b1NGarOrf+2j7Y30SiIYABVY09Fg3QIACi3OBBIwjYFuBZRxC9hQNAQqsaOixrpEE4iGwfl0h4/uZMoqLy49UkoCR5yo4uSfllZFzwIx9UWCZMSvRxSTv3QHXX6sgbVoNecNqyIcPRNdgDGqrySlQs+pCzRQftaFm1QGatIS3ax8omT5hVfEXOwqsGCSCTUZNgAIraoRsAAAFFqcBCRhHgALLONbsKQgBCixOC6sQMFJgHc+VMO0rCRs2ypXwpKSoGDtGRZvWlFdWmTuxjJMCK5Z0jWlbu7nvr98hrV/uE1fHcozpOEgvakYtTUZpEiqzDtRadTVRhSwhqYSsquP7LG72C/EJ/GJHgRUiMBYzlAAFlqG4bdsZBZZtU8uBmZAABZYJk+KkkCiwnJRta4/VKIG1cZOMz6ZKyM+vvGXwxDYKRl+gQtw4yIcEBAEKLPPPAyk/D1LuEd/h5/5b+6CqcP30HeS/focc7rbACIas1m0IJauOJqACYkp8LvuaUqtuBC3XXIUCq2ZGLBE/AhRY8WNvp54psOyUTY7F7AQosMyeIZvHR4Fl8wTbaHixFlhim+B3M2UsX1F51VVCArSzrk7hlkEbzSh9hkKBpQ/HUFsplVFHIeUeBY4f8X0+dsT/tfj+GHA8B9Lxo5CPHg616WrLKU1awduuO9T23bUte5DdUF0uSOKz2w24XIDsAtxuqLL43g24XVATknTpP5pGKLCioce6sSZAgRVrws5onwLLGXnmKM1BwPYC6+jxPPyyfB227dyL3LwCKErN224m3jjWHNlxQBQUWA5Isk2GGEuBJQ5o/+RzGTk5lVddNWmiarcM1q7FVVc2mUq6DoMCS1ecEAemu5bOAXIOaiumfJJKyKhjkMXtfQY9ZYWVt213qGkZBvWsfzcUWPozZYv6EaDA0o+lk1uiwHJy9jl2ownYWmB98tUcPP3qx8gvKAqL69p5k8Mqz8KRE6DAipwdaxpLIBYCS/j0+YtcmL9AQkW3LsvAgP4qzjzdC/E1HxIIRoACS4d5oShwrVkC97wv4Vq/QocGw29CadpaW2GliI+23SwtrCqOngIr/PnAGsYRoMAyjrWde6LAsnN2OTazEbCtwPpp2Rrc8I9nNN6SJKFJw7poWL8OZLnyCoeKSXn3+f8zW55sGw8Flm1Ta7uB6S2wDuf4Vl3t3l35Z1KdOr5VV40bcdWV7SaSzgOiwIocqNjq5170LVzzvoKcczDyhkKoqaZnQc3IgpqWBTU9E2paJpBRG2qLtrD6Cquahk+BVRMhvh9PAhRY8aRvn74psOyTS47E/ARsK7Am3P1fLFyyGh3btsDT909Aq+aNzZ8Ni0c45bOZePLlj/C3a0ZjwpUjQxoNBVZImFjIBAT0FFgbNsn46BMZHk/lgfXppeDsoYo4yoYPCdRIgAKrRkSVCsg7N8E9+wu4fp0PyRPeCm2xHFJNzdAkFPwySknL1OSUJCRVWi2oGZlAqnhNiKosqKnp4QdpoxoUWDZKpg2HQoFlw6TGYUgUWHGAzi4dS8C2Auv0829FzpHj+OLNh9HhxOaOTXCkA//bv17AnEVVb6VoUK8W5n7+XLnmKbAipc16ViCgl8DyeoHnX3Ih50j5lVdpaSouGq2idauaz+mzAi/GaAwBCqzQObt/ngXXgq/h2vpHtZXEainP6cOgNmgK8TW0FVNCTmX6xBWfsAhQYIWFi4UNJkCBZTBwm3ZHgWXTxHJYpiRgW4HVffC1cLlkLJ/5hraFkE94BC6/9T9YuWYDunZoJfZgVqpct3YmXn7sDgqs8LCytIUJ6CWwFiyS8eOc8odatW+rYMwoFcnJ3DJo4SkSl9ApsKrHLm/fAHn5PCQsnqkdyl7d4+3SB55+58LbrW9ccmnXTimw7JpZe4yLAsseeYz3KCiw4p0B9u8kArYVWP1H3468/AIs+/51J+VTt7EOv/xu7N2fjRU/TAq5Ta7AChkVC1qQgB4C63iuhOdecKGouBRAt64KLhzFVVcWnBKmCJkCq0IaxIHsG1dDXjob7pULIeUdrzZPSv2m8J5+DjynnQM1o5Ypcmq3ICiw7JZRe42HAste+YzXaCiw4kWe/TqRgG0F1u33v4gfFy7H9CmP8/yrCGb2qSNuRkZ6KmZ97DsIP5SHAisUSixjVQJ6CKyvpruwfEXpisYEN3DH37zIyODKK6vOi3jHTYHly4C87S+4ls2Fa/lcyDmHqk2L6k6E9+R+8J4+HN623eKdQtv3T4Fl+xRbeoAUWJZOn2mCp8AyTSoYiAMI2FZg/bJ8Ha698ymcPaA3nn3oZgekUr8hFnu8OGnItejasTU+fvWBkBuuTmDNXrgCdzz4IurXrYX3X7wPTRrV09rlIe4h42XBOBOIVmDtPyDhpVdd5UYxaICCAWdy9VWcU2vp7p0ssOQDu+BaOkf7kPfvrDGPSvO22tlW3t5DoCan1FieBfQhQIGlD0e2EhsCFFix4eq0VimwnJZxjjeeBGwrsATU5yZ9jkkfTMdpp3TBVWPPRrdObZCZnhpP3pbo+8ChHAwYcwcGntYDLz12e8gxVyWwhEyccM+zSEtNxnsv3ofWZW6EpMAKGS8LxplAtALrrckubNteuvoqPV3Fnbd74SrvtOI8SnZvNQJOE1jy0Wy4lsyG69e5EOdb1fRoB7KfMhDefsOhNGlVU3G+HwMCFFgxgMomdSMQEFi7juXip6P7kK96MDTlBN3aZ0POIECB5Yw8c5TmIGBrgVVc7NFWYS3//a8S2uJgd1kuf4ByxVT8NutNc2QnTlH8sXE7xlz3ALp3aoO+p3TGoeyj8Hi9qJWVji7tW2Hg6T2QlJhQKbpgAuv3dZu0HIiD9Cc/dw86tWtZrh4FVpySzG7DJhCNwPrjTxkfflL+586Fo7zo1pVbB8NOBCuUI+AEgSXv2wF5/QrIm9fBvWxOjTNArK7y9uwPrxBXHXvWWJ4FYkuAAiu2fNl6+AS8ULG+6DBWFh7AWu8hLC84gD8KDkOsh27tzsTCZqPDb5Q1HE2AAsvR6efgDSZgW4FVWFSMq25/HKvXbw4b6dp5k8OuY6cKa/7cgnETHoaqBv/luk6tDDx693Xo37d7uWFXFFh/bd6Jq257DCIXk575B07u1q4SpmN5ZU6zLvNuSpILbpeM/EIvPF5usbLT/LLqWNJTErQLOY/lFwNheCdFAR7/r4qD2aWrr1qcANzBnc1WnQqmijvBLSM50YVij4KCIq+pYos0GKmwAMr6lVBXLYG6ZilwYE+NTamJSZBO6gv51CGQuvUG3JX/yFJjIywQEwIZqb5cVPXvfUw6ZaMkUIbA9uLjWF6wH8vy9uPXvANYVXgQ+WrVPy+3tr0cddzJZEgCIRMI/JwLuQILkgAJREzAtgLrjfe/wfNvfqGBGXR6D5zWqwsa1q8DWfwGWsMz4LSTaipi+/f/3LRDu8WxedOGyMpMQ2FhMTZu3YWp3y3A59PnQ6xke+d/95STUgGBdft1Y3DukL649OZHkHPkuLYNsV8fHpRr+0nDAQYlMGuegk+mlf8f5Qf+4UbzZjX/LCJSEnAKAWX7ZhSvWoLilb/As2Z5yMN29+yLxNOHIrFXP4DnWoXMjQVJwM4EjniLMDVnM6bnbMW8Y7uR7S0Ma7jT2pyDC2pxy3FY0FiYBEiABAwiYFuBNfra+yEkzK3XjMJNV55vEE5ndPPS29Pw6pSv0LNrO7z34r0lgy67Auv7uUuwccsu3DL+Atw8/oIqwXAFljPmjB1GGckKrLx84OEngMKiUgIn9wAuH2sHIhyDGQhYdQWWlJ8LZd0KKL8vgbp6KaTsA6HhFH+Eat8drlMHA736A2kZodVjqbgR4AqsuKF3VMe7PXn48tgWfHt0Cxbm7Q177BlyAnqnNMBpqY0xJqs1Widkht0GKziXAFdgOTf3HLnxBGwrsHoPn4DcvAIs+fZVpKfxtiE9p9ax43noe94tWpMrZ72JBLfvFOqAwMrKSMPxvHx4vQrq1cnC1LceQd3awf9HgGdg6ZkZthVLApGcgfXtDBlLlpaefeWSgYm3e5GREcYexFgOim1bnoCVzsCSd26Ca80yyGuXwrV5HaCEtuVRHMTu7XgylM694e18CsT3fKxDgGdgWSdXVot0TVE2ZuZuw8y87VhbfDis8Bu5UtE7qSHOzGqMgbWaoLWShbzC0H4mhdURCzuCAM/AckSaOUiTELCtwDrlnBuQ4Hbj5+mvmAS1vcI47bxbcORYLhZ/8zKEsCorsMRtg889fCvm/rQSH06brR0E/8ZTd0GWK2+ZosCy17yw82jCFVjZ2RKef9mFskfJDeqvYEB/nulm53li9NjMLLCk3ONw/fEr5DVLIa/7FfLREH/BlGV4W3SA0qU3lE6nwNuiHbQD6PhYkgAFliXTZsqgxeHrvxTsw4zcbfghfzt2enJDilP89GiXUAu9kxuiT3JD9EpqgGbudK1u4BbCnONFFFgh0WShYAQosDgvSMA4ArYVWOIWvQ1bdmLZ968HvTHPOMT260kcyt5r2I3abY4rf5ik3TBYVmDdcvUo3HzV+SgqKsYlNz8CcavhbdeOwY1XnFcJBgWW/eaHXUcUrsB67yMXNmwo/aU7PV3Fnbd74fItWORDAroQMJXAUhS4tv/lk1VrlsK19Q+UM7jVjFjJqgtFrLLq0hveDidDTfP9csnH+gQosMyfw3zVgy2eY9hefAxbPcdw1FsIIYsUVYEHgFdVoECFB6rva1WFR1LgVUUZwAPFX17VPosy2meIshI84nt/+bLveVWUlBNtla8r2vF9iGjCferISRiS2gyDU09A/+SmEFsEgz0UWOGSZflgBCiwOC9IwDgCthVYkz+Zgadf/RjPPnQzzh7Q2ziiDujpyxmLcN8Tb+KM3l3x+lN3loy44i2E4o2tO/biohseREFhkXbo+ynd25cjRIHlgAljkyGGI7C2bpPw9rvlTdWFo73o1oVbB20yHUwzjHgLLKkwD64VP0Fetwyu9b9Cyj0WMhtv225QO/eGp3MvKM1ah1yPBa1FgALLHPna783HNs8xbBOSqvio72u/tDqgFJgjyCiiEJv1eyTVx6DUZhiY0gzdEusilHWbFFhRQGfVEgIUWJwMJGAcAdsKrOJiDy6/9T/Yve8gXnn87+jakf9zHOq0+mDqLLRrfQJO7ta+3LY/caaVkFdPvPSBJqSmvHAvenRpW63AEm9+88Ni3PPYG2hQr5Z2HlbtrNJDdymwQs0Ky8WbQKgCS2wZfOlVGQcOlp591aypihuuDf8vyPEeM/s3P4F4CCzp6GG4flukfch/rYLkDW1uq3UawNOpl29rYIeToCalmh8wI4yagJMFVq5ajEJVQZHqRaH2oaBQ9fi/V1AELwoUr/a5UPF9Hygn6ngUL/JUj/8133tFWhvisxeF8H1dqHhK2hCrlQLlRN0W7gzs8+ShIIJVTFEnP8YN1JYTMdgvrIS0ypITw+6RAitsZKwQhAAFFqcFCRhHwLYC6/CRY1i9frMmTo4czcVJnU9E905tUL9uLSQmBl9GHMB+2eghxmXAhD397b7nMeenldrh921bNUOtzHTkHD2uraYSXJMSE/Dvu67GeWedVi76YCuwAgXEii0hv8SqrdeenFiy7ZACy4QTgCEFJRCqwFq2XMY335bKK9HYTTd40bgRV19xaulPwCiB5dq9DfLqnyGvXAjXtr9CHoi3Y08oXfrA2/EUKI2bh1yPBe1DwGiBJbar+SROZOJICKZCr0eTQ0ISFQRkUaA9eFCoiG1tHhQpQiJ5UaQomiDyiSpfPbEdjo++BMS/rCf5V1kNSmmKbon1QlplVV0UFFj65siprVFgOTXzHHc8CNhWYHUeMD5inmvnTY64rh0qbtq6Cx99OQfLf/8Tu/YeRH5BIZKTEtGkUT30PbkzLh01BM2bNqg01OoEVl5+Icbe+BC2bN+DO66/ENdfNkKrT4FlhxnjjDGEIrAKCiU8+7yMgoLSjQti26DYPsiHBGJBIGYCS1Xh2rIO8m8/wfXbYsgHdoUUvlK/Kbyde0EVZ1m16wY1ISmkeixkHwLHlGKfQNLkjgdZmQmaBNqZk6etMhKvlV1JVKD4ZJF4Taw4yvWvUBJ1fKuRSj+KVRX5anHpKqSSfnwrmCI5K8k+5CMfiTgfqqkrDU3d6WjiTkMDdypckOCGBFmSITbEuyUZMiTf6+JrSYJLleASn8WH9p5c8rWoJ+qL18QdPqKMW/XXK/c14BZlRFnxulbe35b/NfF6khaF/g8Flv5MndgiBZYTs84xx4uAbQXWuVfcEzHTb997IuK6rBgeAQqs8HixdPwIhCKwfvhRxqLFpauvXDIw8XYvMjL4l/j4Zc7ePUcqsKRjOZDyjwP5eZAK88tBkn9bDPfSWSGfZ+Vt2R7qSf3gOflMKPUa2xu4yUcnDuMObFMT4qegZBVS4HWfDCoQkkhII/8KIvFZiCSxikh8rb0n2vJLoYBk0lYY+cWUeE8rX7KtTRzlzcdsBBIkGU1caZqYaupORVNXOpompKOpOw1NXOlo7k5DsuQ2W9iGxUOBZRhqW3dEgWXr9HJwJiNgW4FlMs4MpwoCFFicGlYhUJPAysmR8NxLLihlfoMb0F/BoP78lc4qOTZznEIyuZfNAQ4fLBdmgltGcqILxR4FBUVBVvoVFcD11+9Afq4mrKTjR3QZprd1Zyg9z4Cnx5kQZ1vxQckZRD4J5BdG2vYy30qkAiGDtHOLfGJIO/+ozLlIBf5ta4EzkkrfE5KoYp0Kq5OgaDe98TEPAfGnjCTJjURJRpLk8n/ISIQLSbJL+5ws+7+vVE68LyPZ5faXl7UVSImyS/scaC9RtOtvI1lylfSlvS65kQQZQmDxqZoABRZnhx4EKLD0oMg2SCA0AhRYoXFiqRgRoMCKEVg2qzuBmgTWJ5/JWLu+9BeF9HQVd97uhSs2ux50Hx8bNCcB+eAeuOZMg3vxjEorpYyO2NuuO5STToe3x5lQatU1uvu49CdWNInb2/Z583BA+5yP/cV52mviw/daHrIVsXmNKy3jkqQKnYptaz6BI/s+w40kWWxBc/sEkPaaXCKRSgVQGdkku7VyJfJJk0c+iSTkk9aW2NamiScXkkv6Ki0nttnxMT8BCizz58gKEVJgWSFLjNEuBCiw7JJJi46DAsuiiXNg2NUJrJ07JbzxdnlTNWaUF9278hdaB04VXYbsWr8C7rnT4Fr9iy7tRdqIdgh7z/7wnHQ61PSsSJuxRL0NxUcwK28H5ubvwG6PT1iJ85j4hEcgVaz80VYd+VYPpSe4kSy7IHuENCq7Gsm/miiwqkgWK5LEqiHfqiLfSiMhnwLiyO0TRUImlVnRpIkmv1gSffMhgXAIUGCFQ4tlqyJAgcW5QQLGEaDAMo41ewpCgAKL08IqBKoTWK++7sKefaUHtzduqOKmG3lwu1Vya5Y4peJCuH6aAfecqZAP7I5pWEpKKpCcBlX7nA41ORVIEd+nAeK1hifAc1I/qGnpMY0jno0rUPFr4X7MzN2OmXk7sMVzNJ7hRN23+AlUskKorODR5I5vRZFYeSQkkU/4BCSRb1VRckk5n3zyrTSStfORfKuRyoslIZN8W9l8K5eqkkdG30IYNUg24CgCFFiOSnfMBkuBFTO0bJgEKhGwrcBauGR1xOnu16drxHVZMTwCFFjh8WLp+BGoSmDNmiNh4aLyq69uvM6Lpk24+ip+2bJWz3L2frjmTIV70XfVbhNU6zaCp9dAICkFcLkh9qcmJCYgNS0JRaoLecXiqjAXILuhulyQ3G6oshtITCqRVWqKkFUp1gKkY7RiS+D8/N2YmbdNk1ZHlCIdWwfSy8oev0QSZxOlSAlI0LacBVYPCTHkX2EkuZAmueEW5yL5t75p72lb33ySKHBeku813/a4kq/hgrhFzqwPBZZZM8O4BAEKLM4DPQhQYOlBkW2QQGgEbCuwOg8YHxqBIKXWzpsccV1WDI8ABVZ4vFg6fgSCCaxPv3BhzdrSlVciuq5dFFw0mocpxy9T1unZ9edv2morbZugWrXw9HTqBWXwKHg6ngJI5edbpLcQWodS9JEeUgowM287ZuRux6L8PRCnVYX6iFOM6srJaOhKRQN3Chq6UtBA+zrV/3VKyddCMvGpTIACi7PCzAQosMycHevERoFlnVwxUusTsK3A6jro6mqzoyjlf1lwu1xo3aIxWp7QCP/7963Wz6xFRkCBZZFEMUyUFVi5uRLe/1iGOPuq7JOYANx2ixeZmVx9xSkTnIBUXAT3klmQxflWu7dViUlNSoH31LPgGTIGSr3GVZbTQ2AJoeNVVd8HxIfi/zrwOfAafO+JMlp5BV4p8LX/s/a9r57Youfxt6V97W9f8b8mbs1T/PXFe6KMaNujhC6Yappna4uztZVWoTyZcgKGpbTA2WnN0didpgkqIa74REeAAis6fqwdWwIUWLHl65TWKbCckmmO0wwEbCuwaoJbXOzBvoOHsfz3vzD5k++xbec+PHX/BAzpd3JNVfm+jgQosHSEyaZiSiAgsNZsKMDk92Xk5JSXV+lpKq66QkHDBpRXMU2ERRvXtgnO+xLun76HlHe8ylEo9ZvCM+gCbOl9Ona7FOz25GofuzzHscuTi2NKcTkpJAQQJKBY9aLI65NIiqT4ZJEQRH4ppEklQHs/nBVIFsUdcti15UQMT22Jc9Naon9Kk5DrsWDoBCiwQmfFksYToMAynrkde6TAsmNWOSazEnCswCqbECGzrv/HM1i1bhO+fPtRtGjW0Kz5sl1cFFi2S6ltByQE1sYtKp57rRiFheXlVf16Cq66QkVmBuWVbSdAhANzbVgF15wv4f59MaCUbi3dnpWOlY3rYFdGGnZmpGJH06bY07ABtieoOKAURNgbq4VCoLErFcNSW2BEegv0SWoUShWWiYIABVYU8Fg15gQosGKO2BEdUGA5Is0cpEkIUGD5E7H2z60Ye+NDGDtyIB6ceJVJ0mP/MCiw7J9ju4xw57YkvPWeF94Kx1u1bKng8nEKEhPtMlKOI1oCkqcIrqVz4J49FfLuLeWam926Md7s0Q4zTmwWbTesHwaBZu40jEhtiRFpLdEjqX4YNVk0WgIUWNESZP1YEqDAiiVd57RNgeWcXHOk8SdAgeXPgaqq6D38JtStnYkZHz4V/8w4JAIKLIck2uLDnD1XwvyFlQ9o7t5NwaiRCmRx0jMfxxOQcw5BnjcNCeI2wdxjJTyOJyXg/a6tMalnO2yunWlKTslwwSVJkCUJbkhwQfZ/Lfteh/91/9cu8b3kK+NSZf/XqlZPvOeSAp99bfle83+o/vfF9/C3rZUHZEn29S+7tPfE1+I18Z7WnxZb2b4DbcHXh+gr0K6/rTquZHRKqG1K7k4IigLLCVm27hgpsKybOzNFToFlpmwwFrsToMAqk+HBF01E9pFjWPnDJLvn3TTjo8AyTSoYSBACXi/wxZeVbxoURYcOUtHvDP0Om2YCrEtA3rga7jnT4F71U7ltghvrZOLVU9rjoy6tkZ/gDmuAGXICmrrS0NSdjqbuNDRzp6OJOx2NXKlwST5ZI4ROaqILtVKT4ClW/5+98wBzotrb+DuTZDvbKUtbll4VEGxgw967Yhd77+UDu1716kW9tmu7NmxYsV0VFRuKNEFApUvvsL0nmfmeM9ksW7KbNpnMZN7x4Ul2c+aU3//smPxyzn9QVe31vdYglXzCqEEeNYoiCalSeH0Jq+MsTAItCFBgcUqYmQAFlpmjY52+UWBZJ1bsqfUJUGA1xNDj9WLkEZciyeXE/K9etH5kLTICCiyLBMqG3aypkTDlbRmbNjXPdyU7gDNPUTBoUIu9hDZkZOcha9sE532viSt54+pmKD4b0ENbbTWzZ/v5ldIlJ45I64Eejgx0dWWgh6sDCuQ09HRlhCyZ9LgLoZ3jyLHHngAFVuwZs4XICVBgRc6OZ+4mQIHF2UACxhGgwGpg/dnXs/B/D72IvkXd8MmrDxoXAZu3RIFl8wlg0uGXlEp4dUrrOw2mpQLnneNFt65M1m7S0MW8W3J5MRzffwyn2CZYWdbYXklqMl4b3hcvD++PTZlp7fajnysTF2YOxmkZfZER5WooCqyYh5wNREmAAitKgDw9pgQosGKK1zaVU2DZJtQcqAkIJKzAqq4Jfhcnr1fBth0l+HH2Ijw/5VOIcyaMPxq3XHGmCUJjjy5QYNkjzlYa5foNEt54R0ZdbYs7DeYBN17pgtdRA5X+ykoh1aWvjr//hENsE1z4M6Ds3jq6pHMOnhs1EB8NLESds3WeNH/jYsufWG01IXMwxqTod+c7CixdwstKYkiAAiuGcFl11AQosKJGyAoAUGBxGpCAcQQSVmANOfjCsCmKBO4fvfwA8nOzwj6XJ0RGgAIrMm48S38CYtXVNzNk/PFnc3ElWurWTcWtVychIx3YUkyBpT99c9YoedxwzP8Bzu+nQV6/srGT9Q4HPh7YEy+O7I/fuua32/l8OQVnZ/TDhVmD0NnR/sqsSChQYEVCjecYSYACy0jabCtcAhRY4RJj+UAEKLA4L0jAOAIUWOKuR7KEMaOHYtJ156Fnt07G0WdLoMDiJIg3gcpKCd9+L2HBwsC3EhwySMGZpysoyE2FJFFgxTteRrQvVZTCKbYJzvy82TbB7ekpeGnkALy+Z1/sSE9ptyt7JXfUVlsdl1YIlxS721RSYBkxI9hGNAQosKKhx3NjTYACK9aE7VE/BZY94sxRmoNAwgqsuQvPuWnQAAAgAElEQVSXBSUsPoymp6WgsHsX7ZGH8QQosIxnzhZ9BESS9h9nSpgzT4a422CgY8x+Xhx5uG+/IAVW4s8cqaYKzo9ehOvnL5oNdlaPTnhhr/74om8PeBxty6gUOHByRhEuyRqCga4cQ4BRYBmCmY1EQYACKwp4PDXmBCiwYo7YFg1QYNkizBykSQgkrMAyCV92IwgBCixOEaMJ1NcDP8+S8MuvDrjdgVvPzlY1cSVWX/kPCiyjI2Vse84FM+F89xmIJO3iqHU68O7QIm2b4F8d25dRhc4OuCBzAM7K6I9MOcnQjlNgGYqbjUVAgAIrAmg8xTACFFiGoU7ohiiwEjq8HJzJCFBgmSwgdusOBZbdIh6/8YpVVnPny/jxJwnVNa3zXImeZWSoOPhAFXuNVNByoQ0FVvxiF9OWy3Yh+c3H4fhjrtbMpg5peHKfwXhnaG9UJrvabXpcajdcmDkIh6Z2j2kX26ucAitu6NlwiAQosEIExWJxIUCBFRfsCdcoBVbChZQDMjGBhBBY4m6C/5vxK445dF84HW3fBcrEcbBt1yiwbBt6wwauKMDCRTK+/1FCeXlgcZWcouLA/YF99/XC5QzcNQosw0JmWEPOnz6Da9pLkGprIBKzP733IEzebwhq25oEALLkJIzP6IeLMgehuzPDsL621RAFVtxDwA4EIUCBxSliZgIUWGaOjnX6RoFlnVixp9YnkBAC6/tZC3HNpCfRp7ArPn71QS0pe7jH5OffxZwFS3Hz5Wdg370Gh3s6y0dIgAIrQnA8LSiBtWtlLF+p4vdFMqqqA18ThO/efz8vxu4HpKb6cl21dVBgBUVumQLS9o1Ieu0RONb4ciV+X1SAm48YjTXZHdocwxBXDi7OHoKT0ouQDPN8UUKBZZlpZ9uOUmDZNvSWGDgFliXCZPpOUmCZPkTsYAIRSAiBdd9jr+G9z37AMYfug3/ddWVE4Xl+yqd4+pWPcMHpR+K2q8+KqA6eFD4BCqzwmfGMwAQqqySsWCVhxXJg9RoJdXVti2xZBkaOUDDuYBUZ6e2LK39rFFjWn3mSxw3n9KlwfvU2JI9H2y54++Gj8L9+PQIOTtw9UNxFcELmIOyVbM471FJgWX9eJvoIKLASPcLWHh8FlrXjZ5beU2CZJRLshx0IJITAOu3Se7B05To8csflOO7w/SKK26z5f+DSWyZj2KDemPrc3RHVwZPCJ0CBFT4znrGbwIYNElasBFaulrF5S2grL/cYqmDcISpyc0ITVxRYiTHj5L+Xaquu5B2btAE9OmYYHh67R5uDu7DDQNyYMxz5srnvUEuBlRjzM5FHQYGVyNG1/tgosKwfQzOMgALLDFFgH+xCICEE1v7HX42yiip8+vpD2jbCSI4167fguPMnomuXfHwzdXIkVfCcCAhQYEUAzcan1NRIWLlawvIVwKrVEsTPoR59+yjanQU7dwpPXFFghUrYnOVEfiuR50rkuxLHjKIC3HL4aKzNCbxdcFhSHh7N2w97JOebc0AtekWBZYkw2bqTFFi2Dr/pB0+BZfoQWaKDFFiWCBM7mSAEEkJg7XHoRRCJ3Gd9+iyyMtMjCk1ZeRX2P+FqpKelYO4Xz0dUB08KnwAFVvjM7HjG32tkzJkPLF0qhzX8rl1V9ClSMHgQ0K1rZOKKAiss5KYpLO3aAtf8nyB/Pw1y2a6g2wXFSqtJeaNwRnpfhK5F4z9cCqz4x4A9aJ8ABRZniJkJUGCZOTrW6RsFlnVixZ5an0BCCKzhh18Ct9uDHz96Evm5WRFFpbSsEmNOvEa7i+GiGS9HVAdPCp8ABVb4zOxyRl29hEWLJMyZB+zYGZq4ys1V0buXin59oT2KuwvqdTAHll4kY1ePXF4Mx/wfIM+dAce6FVpD4u6CT+0zCI/tG/jugk5IuLDDINyaOxIZUhu3oIxdl6OumQIraoSsIMYEKLBiDJjVR0WAAisqfDy5gQAFFqcCCRhHICEE1iGn3YDtO0vx7gv3YOiAoojorVyzESdNuBN5OZn4adpTEdXBk8InQIEVPrNEP2PnLhmz5wC/L5ZQX9/+Whhx50Ahqvr2Afr0UZGdpZ+wasmZAsucM0+qqYJzwU+Q532H2jV/YHVOJtZmZ2j/qlxOvDe4CGtzMgJ2fkxKFzyYtx/6uSL74sMMRCiwzBAF9qE9AhRYnB9mJkCBZeboWKdvFFjWiRV7an0CCSGwLrt1Mn6Z9wduvOx0XHL2sRFF5e1pM/Dgk29gyIBeeO+FeyOqgyeFT4ACK3xmiXrGn39JmDNfwtq1ba+2cjiAol4Kigol9C5S0K1b7IQVBZb5ZpqI9nZvNdbVlmDj2t+xdssKrHNXYE1WmpbTaldqckid7uZMx705e+OY9MKQypu5EAWWmaPDvgkCFFicB2YmQIFl5uhYp28UWNaJFXtqfQIJIbBee+8r/Os/U1HQKRdfvPkIkpJcYUVGUVScesldWPH3Rlx45lG49crxYZ3PwpEToMCKnF0inFlZKWHeAhnz5gPieVtHdraKffdWMXKEipRk46RV0/5wBZZxM261uxzrPOVY66nABncl1lRu035eh3rUhbabtM3O3pS1J67J2QPJcBg3oBi2RIEVQ7isWhcCFFi6YGQlMSJAgRUjsDarlgLLZgHncONKICEEVnFpBQ474ybU1btx+nEH495bLgwL6otvfoYn//uhdk402xDDapSFNQIUWPacCOvWS5g9V8bSZRIUpW0GYpXVfvsA/fspkOKcWZsCS7+5WqG4sVYIKU+FbwWVEFZ1JVhfX47NqIMSg2AfldYT9+Xuje7OwNsJ9RudsTVRYBnLm62FT8DMAkv1AKr/OxEV0J6qUsMT8dz3z/d7QNzhQSvf5ByNiCjTtJ4m37Nop7WsR5zSpB1VVX03j/C3FajOht+Juhr7o9WzOyb+vom6fL+XkNFdgZwUftzscgYFll0iHdtxUmDFli9rJ4GmBBJCYIkBPTflEzzzyjRtbCceOQZ33nAe0lJT2o22x+vFc69/guenfKqVGzd2JJ7+x3WcIQYSoMAyEHacm6p3A4sWy5g9T8KO7W3bKJcL2HMPBfvvC+TntWO3DB4PBVZ4wDd7qrDeW4G17kqsqy/DWk8l1nsqsMZTjjKlPrzKwiidKbtQ6OyAQmcmerk6oNDVAUOS8rBnUl4YtVinKAWWdWJl157GQ2BVb5GwfQGw43cZ7vI4f/sR58APv8mDtM5x7oSJm6fAMnFwLNQ1CiwLBYtdtTyBhBFYQkZdM+lJzJyzWAtKdlaGthpr7N7DMKBPD3TISNN+X11Ti1VrNmHOwqV4/7MfsGnrTu33Pbp2wjvP3YWcrA6WD6qVBkCBZaVoRdZXkZR9zlzg90USxJ0F2zrMsE2wvRFSYAWmI2TUdzWb8HvtDk1Oia1+q9zlkU2WEM/qXl6FwhoPCpOzUdi5H3pmFWjCqrczEx3k8LaQh9ikaYtRYJk2NOxYAwGjBFZ9qYQdC2VsXwjUbLO3tGo6+Ybf6EFaF07HNt97pLuQluJEaWU9quu8BEUCERGgwIoIG08igYgIJIzAEqOvr3fj/iemYNqXM1vBcDh8iVO83tYrOvYc3AeP3XMVCjon5jf0Ec0Mg06iwDIItMHNiG2By5eL1VbAmnaSsotumWmbIAVWaBPlj/pifFezETOqNmJh/Q54G/fThHZ+sFJpbg8KSytRVFqBXuKxohaFUgp6JuegR24PyCMPgtKpe7BqbPE6BZYtwmzpQcZSYHlrJexcJGH7QgkVayitAk2UPW/wIL3A0lMopp3nCqyY4rVN5RRYtgk1B2oCAgklsPw8Z//2F156+3PMWbAUIq9AW0ffom4479QjcNLRY+EUtzfjYTgBCizDkce0wcoqCb81JGUvr7DeNkEKrMAERM6qn2o34fvqTfimegN2KrVRz6OOVTU+OSX+lVSgV1klCj1ObVVVp6wuUAp6Qu3UA0qXHlBzOiLuSdCiHnFsKqDAig1X1qofgVgIrOI/ZGybD5QsjfKuDg3DlMRbQKnJZUY8F2Je5LzSnvte18o0QaOl62tImdWYuq9lPS3/V9i0nobEV/56tKqb5ABss86GVF2N/Wloo7GfDdWIvvc/Q0FybnxufqLfLIpdTRRYsWNrp5opsOwUbY413gQSUmD5oZaUVWDhkpVYu3EryiuqIcsSMjPS0aVTLvYc0le7ayGP+BKgwIovf71aLymV8PW3Mv78q/1vwMU2wf33UzF8j/jdTTDSMdttC+EKdylm1GzCjOoNmFe3HR41vHxkSV4vepRVo1dphU9SlVZqz4W06l1SgaTcAnhHHQS1sxBVXaF0K4LqSo40PLY9jwLLtqG3zMD1ElgV6yRsnSNh1xIZoaTRS++mouNwIH9PBUlZFDiWmTAGd5QCy2DgCdocBVaCBpbDMiWBhBZYpiTOTjUjQIFl3QlRViZh8RIZvy9WsWNn+9+CW2WbYHvRsKrAWlC3A6VKHWpUD2oUr+9R9aBW9cKtBM738VHV31jrqQh5co6rTcZef69D9/XrtNVUhWVV6FlW2ep8Iai8ow6Ed+yx8PYeEnL9LNg2AQoszg6zE4hWYNVslbDmCwmly4OvtkrJE9JKQce9APGcBwkEI0CBFYwQXw+FAAVWKJRYhgT0IUCBpQ9H1hIhAQqsCMHF6TSRhH3JEgmLFktYt6H91VZiV+5eIxXsMxromB/e6p04Da/dZq0isMTKqZ9qN+PH6k2YXbsN1eI+8TofOXISDlM64Jhl63DEtzOQVtVaVjVtUuneB54DjoV378OgpqTq3Bt7V0eBZe/4W2H0kQoskZR93dcSdvzWvrhyZajIH66i03AV6T0orawwJ8zURwosM0XDun2hwLJu7Nhz6xGgwLJezBKqxxRY5g+nuO/BqtWydhfBZcsleIPcpMfsdxOMlLhZBZbIRzWzZgu+rV6PmTWbsUupi3SI7Z5X5MzE4a7OOHb1Joz59ms4tqxrt7yanArP6HHwHnAMlJ79Y9InVgpQYHEWmJ1AuALLWy1h/QwJW3+Vobbx/xtHioq8oSo6jgCy+ijNE1OZHQj7ZyoCFFimCodlO0OBZdnQseMWJECBZcGgJVKXKbDMG82Nm8QWQQm/L5ZQWxv87k4D+isYsScweJD1V1sFiopZBJbY/vdr7Vb8WL1ZS6y+wl0Wk0kk1jyMTOqEI9N64OitZRjw03dwLPkVkqf9FV3eokHwjj0G3lEHQ01KiUnfWOluAhRYnA1mJxCqwBKLRTfPdGDDD4DSxv9zcocq6LQXkDs4Mf8/Y/ZYJmL/KLASMarGj4kCy3jmbNG+BCiw7Bt7U4ycAssUYWjWidlzZfw6W4JIzB7s6NVLwfBhwJBBKpJTEnvrRiCBVaW6UacqqFe9qNP+KahTPdrP9aqKOnhQp3hRBy/qFUV7FOXqtXJeeNrIQdUW97895fi4ak2wsDR7PVVyYkRyHjKkJIjnqZIDqbITKZIDaY4kpMDR8DsXUiRZK5MuuzCk0otOs76FY/bXkEt2tNummpYBz96HwXvgcVAKCsPqHwtHR4ACKzp+PDv2BIIJLHF/CLFNUGwXdJcH/v9ORg8VRSd40aFn7PvLFuxFgALLXvGO1WgpsGJFlvWSQGsCFFicFXElQIEVV/zNGq+skvDehxLWrm0/30i3rir2GKZi2BAVGRmJI60qFDdm123FrJqtWFK/C9WKu1E01cMLDxQt8Xmt14taBNlHGeewjlbScYDSAQchE/so6eH1xuuFc/rbcCxfFPQ8pc9QeMYeA8++hwctywKxIUCBFRuurFU/Au0JrOI/Zaz7CqjZHvj/Oyn5KnodrUKsvOJBArEgQIEVC6r2q5MCy34x54jjR4ACK37s2TIACixzTIOVq2R8OE1CdU3gb79zc1Vte+CwoQpycxJDWglh9UvtFsyt3YZZtVuwpL7YHMGIoBd9iitw6JrNOHjtVhywYRsy6twR1BLaKWpGFjz7HQHvgcdDyS8I7SSWihkBCqyYoWXFOhDwVEnIS0lBfY2KbdvrG2v01AAbvpdQ1cbNQJxpKnoepqLLGIorHcLAKtohQIHF6aEHAQosPSiyDhIIjQAFVmicWCpGBCiwYgQ2jGq/nC7j1zmtv/3OyhKrrBQMHQJ0LbC+tBLC6ufazZhTs03LIfWH27rCKq+mDgeu3YqD1m/FYas3o1tFdRgRj6yod8BwbYugZ+RBkVXAs2JCgAIrJlhZqSCgAp5qCd5awF0LeGskeGv8zwFPjQpPrQQho8TvvbUS3Npjw8/1wbehtwQtu4CCsV50PwRwJFv//zucSOYnQIFl/hhZoYcUWFaIEvuYKAQosBIlkhYdBwVW/AK3c5eMd9+XsG176w8ZI/ZUcPyxCpzO+PVPj5a/q9mIH6o3YU7ttpgIK5E/KkmWkQIZSR4FKfVuJNXVIqW6GqluD1yKF8keBcleT8Oj+NmLZK/i+1lR4PIqcCkKnOJfw3OXV4VTUbXfi9fFa/7nubV1GLatRA88QetQsvLg3e9IeA84Fkpup6DlWcB4AhRYxjO3UovuSp+A8okn8VzVRJRbyKhaBZ4an4AS/5Q6Ce5qVfudkFFK7BZyBkTYabSCwiNVuDpQXFlpjlm9rxRYVo+gOfpPgWWOOLAX9iBAgWWPOJt2lBRY8QnNbwtlfPGlDHeLG8q5nMDJJ3kxdLA1P0Bs9lRhevV6zKjeiFm1W7Wk6eEcnRyp2D+lC/ZPLcCApGwkw4Fkyfeve06alvy8pMyNdOw2e/K6FUj+9y2QamvCaUorq/TsBzUlzXcLeEkGJO0JVPFcliD+g+xbHaeKx4bXG8uKn8U/2Xee79FXTtVe8z2XtDKytqJCq8dftuF8UVYSZcWhtS1D7dYbnpEHhD0mnmAsAQosY3kb2ZpIbu5fAeWTTA0CSlvpJMFTrcBbt1tACTHlqY2fgIqUTfYABUXHAamduF0wUoY8L3ICFFiRs+OZuwlQYHE2kIBxBCiwjGPNlgIQoMAydlrU1Ur46BMJS5e33jLYuZOKs860Xo6rX2u34bvq9fi2ZiNWuMvCAponJ2O/lAKMTS3QHvu6Mts8P9BdCKX1K5HyhJBXwbfwqcmpUHoPgtJ3D4jk5+K56koKq78sTAItCVBgWXNOFP8ho3KTCneV2JYnwS1WRokVUjWqb3VUjQQ1PP9uWhDJHQBXGqAmqXClqHCkSHCkqnCmqMgdKCGzD8WVaYNng45RYNkgyAYMkQLLAMhsggQaCFBgcSrElQAFlnH4N26UMPUDGeUBblO+z2gFRx+hQHYY159IWypW6rQVVjOqN+CH2k0Qua1CPXLkJOyb0gVjUgowJrUA/V3ZoZ6KlgIrmLwS2+80UdVvqO+xW+/G1VQhN8qCJBCEAAWWNaaIUg+ULJOwc7GsPYZx2YrrACUn4BSyKdUnnoR0cqb6BJQjRUVSqux7rgkp3+uOVMl3TooKcX57dyGM6+DYOAkAoMDiNNCDAAWWHhRZBwmERoACKzROLBUjAhRYMQLbpFpVBX782YHvf5Agnjc9UlJUnHayiv79zPMNeKXqwXZvFbZ7a7DNU4MdSg3KPHVatxfX79JWWoVzjEnpgkPTuuOA1G4Y7MoJ59RmZZsKLGndSiT/+1ZINVXNynj2PRzewaOgFg3iHfoiJs0TwyFAgRUOLWPLihVVu/6UUPwHULJcjsuKKpEUXYgmn1BqWPmUKqSUT0w5UuQGKdUgqDRZJc4BXBn6bCWnwDJ23rG18AhQYIXHi6UDE6DA4swgAeMIUGAZx5otBSBAgRXbaVFZKWHq+zLWB7hVefduKs4+U0GGTh9SQh3JNm81VtSXYam7GBvclZqo2u6tbnisQbXaIjFXqBU3lCtwpGFcaneMS+uOA1O7Ik0sAdDh8Ausrb8vRvLjrbcNusedDPfpV+nQEqsggdAJUGCFzsqIkt5qCbv+EiutgNJVMsJMw9eqi44ksaKpQSiJR221E+BK9j33rYYCXCniZ9/vtOcpgDNN9eXXi/NBgRXnALD5dglQYHGC6EGAAksPiqyDBEIjQIEVGieWihEBCqwYgQWwYqWMD6ZJqK1t/glG5O0+YIwX4w5W/fnBY9KJMqUef9WXYFl9MZa7S7GivhR/uYvD2vIXasf2Se6sCavD0rpjYBSrrNprTwgs75rlqLj32lY5ryivQo0Uy+lNgAIreqJiO5/qkaB4oW3tE7mnhEf3NjyqXgmKx/+aCsXjy08lyopzxLnuagVVmyWUCWkVwiFWRonk5VlFDbJJE06AI3n3CihNQCXAQYGVAEFM4CFQYCVwcA0cGgWWgbDZlO0JUGDZfgrEFwAFlv78PR7gi+ky5v/W+oNURrqK009VUdRL3y2Dq93lmF23FSvqhKTapa2w2qnU6j+4hhrz5RQcKlZZpXfHQSnd0EF8Gozx0al0PSrvvw5osW2Q8irG4Fl9uwSsJrCEGFK8uwWQJoKEPPKomjQSP3uFIBLPm0ok7TxfWe33bsUnmtySTzQ1Pt9dj+L2SSmtTVG/X0Q1SCfxWrQrpMKZnklZKnIHi39AtkhcboGcg+GMr62yFFh6UGQdsSJAgRUrsvaqlwLLXvHmaONLgAIrvvxt3zoFlr5TYMd2CW+/L2HXrtbyqlcvBeNPV5GWqt+3+ruUWjxSvABvVa7QdSAd5RR0dKSik/jnFI9p6OxM034udHbAsKQ8XdsLVplI2J7671spr4KB4uuGEwgmsLz1PsmjiaEGyaN6xSoiIXV2rzzySx5NLvnlUcNKI9WjwCtWGzX+7JdJDXKoiVjS6hT1N5FHmnCqN8FeNsOjA6R3VZE7FMgdpGjP7XhQYNkx6tYZMwWWdWJl5p5SYJk5OuxbohGgwEq0iFpsPBRY+gVs7jwZX34tax9Smx6yDBx6sIqxY7wQ2wf1Ol4o/wNPlPyOighyVvVxZqJfUjaGJuehiyNN+5fvSNEEVWdHml5d1KUeadMapEy+ofW2wQOOg/vs63Vpg5UkBoGgW9GabVMTK4UaVg81rDzySx/Fo2gCyLc6qWGbmvazCm+DXPJveYNXgqQAHrdYleQXU75zYU9fEt/J5ACy+ijIGwzkDVXh6sAgUGDFd0qy9fYJUGBxhuhBgAJLD4qsgwRCI0CBFRonlooRAQqs6MHW1EharquVAXKvZGb6ErV3LdDvQ9RX1etxf/E8rPNUBO18Z0cqBrlyMDApB4OScrXH/klZSLLI3hlNXj1+M6Tq5mN1U14Fjb0dClSskVC8DChdIWv5j3hYl4CcBMhOFZJDPPqfS5DEXfwcgNTwmrgnhMMhfu8rq73mUuFwAWkFQM4AFaIuHrsJUGBxNpiZAAWWmaNjnb5RYFknVuyp9QlQYFk/hpYeAQVWdOFbt0HCu+/LEHcbbHn066vgjFNUJKfoI6+WuUtw167ZmFW7LWCnxeqpw1K7Y2ByDoYk5WKIK8+Q3FTREWz77LbklefA41B/FldexYq7meutL5NQuqJBWq2SoLS4QYKZ+26WvkkyNPGjCSAZmvjRfhYyyClEkU8WyUIkaa9Ju8WSC9rvJYeQRHIzsSTKaq9p8slXnxBS2vOGn3fX7ysrN0gos7BJ1H5QYCVqZBNjXBRYiRHHeI+CAiveEWD7diJAgWWnaJtwrBRYkQVFUYDvf5Dw0y8OqC38lEMGjjpSwT6j9UnUXqzU4Z/Fv+GdyhUIVGMyHLgsczCuy9kTaeKTYgIcbcmrpMNPQtmpV7dingBD5hACEBC7Y8vXyihZrqJkuYyabRZbZSVBk0TaCqEGueMXPE1lj+xQd4sfIYAa5ZFPJolzZZfcQiztXqW0Wx756mlsq6EeX1uqJqR42I8ABZb9Ym6lEVNgWSla5u0rBZZ5Y8OeJR4BCqzEi6mlRkSBFX64ysokvPuBjI2bWn+YzslWce54BR07Rb/qyqMqeKliKZ4sWdhmnqsT04owKXcvdHdmhD8Qk57RnrxKu/QWbCmuocAyaez06JanSsKORRJKlgFlq2UtoXk4R3tb0bStaUIWNYodySd2mqwY0lYkOeWGFUk+IaRJJ7HqyCnK+1ca+c5LS5WRlZmEOkVBZV19w6olwJEc/TUgnHGzLAm0RYACi3PDzAQosMwcHev0jQLLOrFiT61PgALL+jG09AgosMIL39JlMj76REJdXWt5teceCk44VoFLh1UOwfJcjUjKx/15+2BkcsfwBmDy0s7ffoDrrX9Dqqlq1lPPQScg76rbtCT4FFgmD2KE3ROiavMvDmz4DiFvDRSSKKuPiuz+QHY/FSn5xkujYHchjBAHTyMB3QhQYOmGkhXFgAAFVgyg2rBKCiwbBp1DjhsBCqy4oWfDggAFVmjzoLZWwo8/A7/McrQ6wekETjxOgRBY0R7L60swaddszK4LnOeqmzMdk3L2wknpvaNtylTnS3XVcL37DJy/ftOqX0Je1Y+/FgW5qRRYpoqafp3ZsUDGuq8kiBxXwY70Hipy+imatMosMl5YtewfBVawiPH1eBOgwIp3BNh+ewQosDg/9CBAgaUHRdZBAqERoMAKjRNLxYgABVb7YGvrJMyeI+OXXxFw1VXHjirOGa8gNye6D9LB8lylS05ck70HLs8aApHzKpEOaeNqJL9wH+SdW1oNq+ndBimwEinqvrFUrAdWf+RA9Za2xVVyjoqsfipy+0N7dOh0UwS9aFJg6UWS9cSKAAVWrMiyXj0IUGDpQZF1UGBxDpCAcQQosIxjzZYCEKDACjwt6uuBX+c68MssQKy+CnTsPVrB0UcoWsLkSI9gea5kAGek98XEvFHIl1Mibca057mmT4Xr45cD9s994gS4jzq78TUKLNOGMeyO1ZVIWPO5hOI/xAxvfSRlq+h2oIrsfkBqp+hXNobdwTBOoMAKAxaLxoUABVZcsLPREAlQYIUIisXaJUCBxQlCAsYRoMAyjjVbCkCAAqs5FLcbmDvfgZ9+BmpqAourtJFO2mkAACAASURBVFQVJ5+oYkD/6D5YB8tztW9yZy3P1ZCk3MSbu+UlSH75QThWLGo1NiW/C+ouuwdqj77NXqPAsv408FZLWPethK2zZcDbejwip1WPcUDBAV4tiboVDgosK0TJ3n2kwLJ3/M0+egoss0fIGv2jwLJGnNjLxCBAgZUYcbTsKCiwfKFze4C58xyY+TNQ3Ya4ykhXMWZ/FWLllcsZeciD5bkqcmbirtxRODKtZ+SNmPhM+a/5SH7lYUhV5a16KbYMek67HGpS69VmFFgmDmqwrnmBzbNkbJghwRvo70sCOo1W0OtoFc606LbjBuuK3q9TYOlNlPXpTYACS2+irE9PAhRYetK0b10UWPaNPUduPAEKLOOZs8UmBOwusLxeIa5kzPxFQmVV4BVXGRkqDhijYvReCkTC9kiPYHmusuQk3Ji9JyZ0GASnFHhrVaRtm+E8yVMP54cvwfXDx626o2Zko+7C26AMGd1mVymwzBDF8PsgtgmK7YJi22CgI7O3gj4nqkjtYi1x5R8LBVb4c4JnGEuAAstY3mwtPAIUWOHxYunABCiwODNIwDgCFFjGsWZLAQjYUWB5PMDGTRKWLpeweImEqjbEVYcOKsbur2K/faLbKhgsz5UTEs7vMBA354xAtpyUkPNU2roByS/eB3nLulbj8wzbF/Xn3wpkZLY7dgqswHjEiqbSVRKqt6gQQhZeCYoXUBVAbfrY8FzxAFDgK+OVGsuJn6GoUJr8bvf5EhS3vlMzOU9F0XEqcgdH9/elb6/Cr40CK3xmPMNYAhRYxvJma+ERoMAKjxdLU2BxDpBAvAlQYMU7AjZv3w4Cq6pawvp1EtZuANZvkLBliwSlnc/MWVm+FVejRiiQo8zDEyzP1aGp3XFf3t4Q2wYT8ZBqquH66TM4P/5vq+Gpyalwn3EVPPsfFdLQKbB8mFQPULZGRukqFWWrZFRtbPsOfiGBNbiQI1VFz8NVFIyxtrjyY6PAMngCsbmwCVBghY2MJxhIgALLQNgJ3BRXYCVwcDk00xGgwDJdSOzVoUQUWNu3S5qoWrcB2LBRQnFxaB/wMzNVjDtIxcgR0X+wDpbnqr8rGw/k7o2xqV0TbsKJVVaOP+dCXjInYJJ2MWBv70Gov2gi1LyCkMdvZ4FVuUHSZFXJShXlq627vVRIqx6HWS/PVXuTlAIr5D9hFowTAQqsOIFnsyERoMAKCRMLBSFAgcUpQgLGEaDAMo41WwpAwOoCS2wH3LRZwvr1MtauVzVhVVsbmrDy48jJVnHQQSqGD1MgR+kGguW5ypdTcFvuSJyV0Q8ywuunmSew46/5cCyZDceSOZB2bW23q+4TJ8B91NlhD8dOAqtmu4yy1UDpKqBspQRvnfnmiuQEZIeq3S1QpGxr9tjkd+JvKilLReFRKlLyrZnnigIr7D9XnmAiAhRYJgoGu9KKAAUWJ4UeBCiw9KDIOkggNAIUWKFxYqkYEbCawBLbAdetEyusfNsBRS6rSI6uBSqKeiko6iWhf7/oV1wFy3OVBBmXZA3G9dnDkSE++Vv8kEt3wrF4NuQlsyEv/x2Suy7oiJSO3VB36Z1Qe/QNWjZQgUQWWO4qCWUrJJSuBEpWSHBXhD6vnRkqsvuqSM1TITnlBpHkE0uakG14lDTZJGmySRZTUDwK0SR+31RAyZImprTXnU3FlArZFVHoEvokrsBK6PAmxOAosBIijAk7CAqshA2toQOjwDIUNxuzOQEKLJtPgHgP38wCS1WBnTskrNsoYd16YP16CSWloX+w97N1yED3bioKCxX0KpRQ2FOBS8cP4sHyXB2f1gt35o5Cd2dGvMMdVvtSfS2k7Zsh79gMaecWYMdmCHGFXVvg2Nw6GXtblXu79oIyfAw8R50N1RV5kvpEElhKPVD2t4zSFWKVlYSabaHPa5HnP7NIQU5/ILufitTOibeqKayJGufCFFhxDgCbD0qAAisoIhaIIwEKrDjCT6CmKbASKJgciukJUGCZPkSJ3UEzCqwFC2X8uRRYv1FCXZjbAUW0hJzq0V1BUZGEwh5CWsXmA36wPFfDkvLwUN6+GJnc0bSTSKoo9QmqHVsg7RSPmyBt3wJZPK8ojajfaloGvANGQhm2N5TBo6Bk5UVUT8uTrCywxN38KkQeK01YyRA5rcRdAkM5xOqojO4qsvopyO4HdOjpW13FwxwEKLDMEQf2om0CFFicHWYmQIFl5uhYp28UWNaJFXtqfQIUWNaPoaVHYCaBVVkp4YNpEv5eE14iqlRxV7MeKnoVQpNVBV3UqHNZtRfUYHmuChxpmJQ7Cien9zZFlqtmgmrnFsjbN2l5qqRtm0La+hfKBFd69od38F5Qhu0Db+8hoZwSdhmrCazqrSLxuoSSFUD5Ghli1VWoR2pHBdl9gaz+QFZfBY7IF66F2iTLRUiAAitCcDzNMAIUWIahZkMREKDAigAaT2lFgAKLk4IEjCNAgWUca7YUgIBZBNZfS2VM+1RCXQjJqtPTVfTqqaJXL5+w6twpNiusWuIKlucqTXLi6uxhuDJrKJJF4iGDDm2rn9je13SrX8OqKrl4O6B4de+JmpHlE1ZD9tEexc+xPswusOrLRA4rXx4rIa7claFvC/TnsdK2BfZX4epgzJyOdczsUD8Flh2ibO0xUmBZO36J3nsKrESPsDHjo8AyhjNbIQFBgAKL8yCuBOItsOrrgc+/lPH7orZXXeWIO5j1alhh1VNFbq7xH+5LvHU4e9vXWFy/q1W8RM9Py+iDiTmj0MmRGpN4SuUlvm192la/LZC2b4S0cxtk8VhZFpM2RaVKdj6Q1wVKxwKoHbtBzesMpaAQSs9+MWuzrYrNJrC8NQ0rrBruFFi7K3RhJZKhZ/ZuyGMlErB3MX5OGx7ABG2QAitBA5tAw6LASqBgJuBQKLASMKhxGBIFVhygs0nbEqDAsm3ozTHweAqsdRskfPiRjNKy1h/8C3uq2GdvBb16AhkZ8f1wv9FTibO2fo2/PeWtgrZvchc8kL8PBrtyoguo4oVYLSUElVhJBZGLSmz38wurupro6m/jbDU1HWp+AZT8Ltrj7n9doOZ2hurUMdt9lCMwg8AqWyWjZIWKstUyqjaGLqzE0DN6irsF+vJYZfaO75yOMhQ8vQkBCixOB7MToMAye4Ts3T8KLHvHX6/RU2DpRZL1kEBwAhRYwRmxRAwJxENgiR1t3/4g4ZdZDog7DTY9ZAdw2CEqxuznhRSeH4gJpT/rizF+63SIvFdNj0JnB9ydOxpHpfUMuV3/Vj9NUu0Ukqph25/4OVZb/ZxOqDmdoeZ3hpLfFRCSqmMXKHkFUMW/dOvcGTEeAktsAyxeKv4B5SsleOtDn5Qp+QqyxZZAkcuqrwpHMqVVyH8sFipIgWWhYNm0qxRYNg28RYZNgWWRQJm8mxRYJg8Qu5dQBCiwEiqc1huM0QJrx04Z774vYfuO1iKgY76CM04zLqdVsGj9ULsZl277DtWqp1nRszL6YnL+2DZPl9x1kDf+DXnjamDjasgb18R0q5/aIRuKtnqqi09Kadv9CqDkip87BxumZV43RGCp0O4QKIRVyTIZVZtDF1auDFUTVUJa5fRT4cqksLLM5IqioxRYUcDjqYYQoMAyBDMbiZAABVaE4HhaMwIUWJwQJGAcAQos41izpQAEjBRYs+fKmP6NDG+AnOL77q3gyMMVOIzLfd7ufPiocjWu3/kzFDSXEDdl7Ymbc0Y0nivyT8kbhKRaDWnDSsgbVml3+YOi6Dbf1KQUKPmdgfyu2sopiBVU+QVAXgGUjl2gupJ1a8vMFcVKYHlrfXcKFCutSpdJ8FSHJq20PFZFDaus+qlIYx4rM0+fmPWNAitmaFmxTgQosHQCyWpiQoACKyZYbVcpBZbtQs4Bx5EABVYc4bNpwAiBVVkp4YNpEv5e0zpRu7ij4OmnqOhdpJ/wiTauj5ctwmMlC5tVI0PCk/ljccaKzZDWr4C06W+fuCprndQ9kvaV3E6+/FN5XXyrp/yCSqyqyowyv1YkHTLhOXoILMUNiGTrQlLVlQNbZ0moWBeasBJI0ruJFVYi+bqkJWHnQQIUWJwDZidAgWX2CNm7fxRY9o6/XqOnwNKLJOshgeAEKLCCM2KJGBKItcBaulzGtE8k1Na2lgQDByo4+XgVqanm2GrlVRVt1dW0qr+bEU+RHHhdGoRDX3seji3rIoqGyDUlclCpuV2gdCqAJO7sJ34Wuak6douoTrudFKrAcldJqNvlE1W1xRJqdqmo3SmeA+6K0GWV4CuniMTrKnIHATkDVYhtgjxIoCkBCizOB7MToMAye4Ts3T8KLHvHX6/RU2DpRZL1kEBwAhRYwRmxRAwJxFJg/fyLA1/PaC0MkpNUHHu0iuF7mmcFS43iwYXbZ+Dn2i3NaOfKyfhgtRcj3ns9rCh4+wyFUtgfap+h8Bb201ZW8YiOQFOBJeRUzS4JdcVCVKkNzyXU7JAgVllFc6R2VpEzQEHeYKBDEYVVNCztcC4Flh2ibO0xUmBZO36J3nsKrESPsDHjo8AyhjNbIQFBgAKL8yCuBGIlsD75XMZvC1pvGezZXcVppyjIzjaPGNjlrcX4bV/jr/riZrEolFLxyce/onDZn+3GSOncHUrRIN+/XgOhdO8NiNsp8oiYgH+rn28VlZBUgFLmQNVOFVVi12aAPGqRNiZyWWX1VZA7EMgZpCIpyzxzM9Ix8TzjCFBgGceaLUVGgAIrMm48yxgCFFjGcE70ViiwEj3CHJ+ZCFBgmSkaNuyL3gLL7Qbe+1DG8hWt5dXh41QcMFZH86BDvNa6y3HG1unY5K1qVtuoWgfee2EqcmrrW7XiHTQSSr89oPTySSs1JVWHntivCnelpImpOrGaqkRCzU5Vey5+J17T+5AcQEq+itQ8teFRQmonMJeV3qBtVh8Fls0CbsHhUmBZMGg26jIFlo2CHcOhUmDFEC6rJoEWBCiwOCXiSkBPgVVTI+H1N2Vs3tJcPohE7Redp6BjJ3OtbFlUtxNnb/sapUpzSXXUpjK89s4XSPY23+KoZmSj7sLboAwZHdeYWaVxVQHqS4WQ8q2iEoJK5KQS+ajE1j9vvf6SSqymSmkQVOIxraOElDzf75IyVUD/Jq0SDvYzRgQosGIEltXqRoACSzeUrCgGBCiwYgDVhlVSYNkw6Bxy3AhQYMUNPRsWBPQSWMUlEl5/Q0ZJaXND0LGjigvOUZAp5IFJjtXucjxYMg/Tqze06tHFi1Zj8lezW/3eM3wM6s+5CcjINMkozNGNZlv9dgE12ooq8Shp8kpILL0PR7LaIKWEmFKQqkkqFan5gKuDeeaZ3uNmfeYkQIFlzriwV7sJUGBxNpiZAAWWmaNjnb5RYFknVuyp9QlQYFk/hpYegR4Ca9NmCVPekiFWYDU9CnuqOHe8guQUc0iFTZ4q/Kt0AT6q/BteNO+TBBX3f78Q18xd2mwMamo63GdeC88+h1o6znp0vmqDhNJVMqq2qdqqKiGqxB3/YnE4UsRWPyGogJSOClLzJHQrSkKHzhKKPTVQzTGlYjF01mkxAhRYFguYDbtLgWXDoFtoyBRYFgqWibtKgWXi4LBrCUeAAivhQmqtAUUrsFaukvH2uzK8LVJbDRmk4PRTFFPkMt/urcFjJQsxtWoVPAGWBDm9Cl767BectHx9s+B5+w5D/cWToGbnWyuoOvXWWyuhdAVQvExC6TJJd1nlTBO5qHzb+xpXUYntf3mAeK3l0fQuhBRYOgWZ1URNgAIraoSsIMYEKLBiDJjVR0WAAisqfDy5gQAFFqcCCRhHgALLONZsKQCBaATW3Pky/vel3Go1jEjULhK2x/soVurwdOlivFje9l0E+xSX4+mv5mC/Ddsbu6u6kuA5+RK4Dz4JkGKzwijebNpqv3qLhJJlMoqXAhXroh+7K71BUonk6fliq5+iCarUjoDYChjOQYEVDi2WNYoABZZRpNlOpAQosCIlx/OMIECBZQTlxG+DAivxY8wRmocABZZ5YmHLnkQqsKZ/K+GXWY5mzITrOfF4BSOHxyDxURjRKVfq8WzZErxSvhTVqifgmUVlVbh95mKc/tcayE2W8yjd+6Du0juhduoeRovWLSry15eu9Amr0hUS6svCl1auTN+qKXF3P01S5YufxaoqFSKpul4HBZZeJFmPngQosPSkybpiQYACKxZUWadeBCiw9CJp73oosOwdf47eWAIUWMbyZmstCIQrsBQv8P5HMv5cKjeryeUExp+hoF/f+MmrKtWNl8r/wvNlf6BCZBcPcHSv8+K27+fjrCWr4VSarACSHXAfNR7uY84DHM3FXDSTxlstoWo7oLolbaWa2MGo7WIUj9rPKqD4kp1rHq3hdUWUaSwvNSkvyujDuLZUwo7fmscx2FjTu6vIHaAgvZs/cboKyRnsLH1ep8DShyNr0ZcABZa+PFmb/gQosPRnyhr1I0CBpR9LO9dEgWXn6HPsRhOgwDKaONtrRiAcgVVXK+HNqTLWrW++SictVcUF5yso6BzeljC9QlGrevBqxXI8W7oIJWJJUYCjM1y45ZcluGDWQrhaCCClYzfUXzQRSq8BEXdJNFu9VUL1NgmVW4Cabb6f3ZXhr2iKuBMxOFHkosruL6QVkD1QDZibKgbNBqySAsso0mwnHAIUWOHQYtl4EKDAigd1thkqAQqsUEmxXHsEKLA4P0jAOAIUWMaxZksBCIQqsMrLJbz6hoRdu5qv2MnLU3DBOSqys42XV25VwZsVy/FU2WKIRO2Bjnw5BTdsqMIl776PZHeLTPMAPAefCPcpl0HkvQr1qNosoWarhMqtKmq2+aRVXYm1RVXTsYtVVjn9FeQMBDoUGh/XtuJAgRXqDGU5IwlQYBlJm21FQoACKxJqPMcoAhRYRpFO7HYosBI7vhyduQhQYJkrHrbrTSgCa8NGBa+8IaOqqrmk6d5dxQVnK0hOMVZyiDsJvl+1Gk+U/o5NnqqAMcuRk3AVuuHKKW8gfdO6VmXUzBzUTZgIZeCIoDEXgqp0uYSS5UDZGhlo7cGC1mHmAo40FTn9gJyBqvYv0B0AzdB/CiwzRIF9aEmAAotzwuwEKLDMHiF7948Cy97x12v0FFh6kWQ9JBCcAAVWcEYsEUMCwQTW/MVuvPKGivr65vJq4AAFZ56m6JkuKugohSb7uGoNJpcswFpPRcDymbILl2cOwVWz/0TW529A8gZYdTXqELjPug5qWkbAOvyJzYWwKlkuob40utVVKfkKkjIBSSxek303NhTPJUfDc/ELh+r7nWhKvC5eE+UlQBa/l9Xd5zrk3WUbXvOfqz22aEerW5J87TapV/zsTFGR3sNYARk00G0UoMCKlBzPiyUBCqxY0mXdehCgwNKDIuuIFQEKrFiRtVe9FFj2ijdHG18CFFjx5W/71tsTWL8vlvDqW154W+QM339fBUcervhki0HHl9Xr8GjJAqxwlwVsMUNy4uLMwbjSnYuOLz8Kef3KVuXU1HTUn3cLvCPGtnpNj1VWrg4q0ruoSCsQj5L2mNZZ1aQRj+gJUGBFz5A16E+AAkt/pqxRXwIUWPryZG36EqDA0penXWujwLJr5DnueBCgwIoHdbbZSKAtgTV3bhI+/6r13e6OO0bB3qP0uQteKGH4vmaTJq4W1+8KWDxVcuLCDgNwTdYe6Pjj/+D8+GVI7taJ3L0DhmtbBpGVq9UTzSor2QWkF6hI7SxEFZDeVUV6AeBItcZKplC4m7EMBZYZo8I+UWBxDpidAAWW2SNk7/5RYNk7/nqNngJLL5KshwSCE6DACs6IJWJIoKXAUlXgk09lLFjUPFm7wwGccZqCQQOMkVdza7fhgZL5WFC3I+Dok1TgghIHbtymIN8DyCsXw7FycauyIjm757Qr4T7wOC3heslyGcXLVJSvDS+XVWonBdn9gdyBQFZvBeCqqhjOysBVU2AZjpwNhkCAAisESCwSVwIUWHHFz8aDEKDA4hTRgwAFlh4UWQcJhEaAAis0TiwVIoFpX87EB5//iFVrN8Hr9aKwexecdNRYnH3yYXA4mkspUWVTgeV2A++8J2PV6ublUlNVnH+Ogm5dY7vCyLF2GaS1yzCrbC1O3jO7zRFfvGA5bp79FwoqqtulUt9rOHYeeAd2bs5F6YrwclmJVVZZfRXkDAByB6lIisNdFkMMuW2KUWDZJtSWGigFlqXCZcvOUmDZMuyWGTQFlmVCZeqOUmCZOjzsXIIRoMBKsIDGczgTH3oJn379C1xOB0YM6weX04lFf61GZVUNxu49DM8+fAOcYilVk8MvsKqqJbz+hoyt25ontsrNUXH+uQrEo56HvGEVHOtWABtWwrF2BeT1K5pVv/clx2FlXlbj75xeBWf+uQb/98sSdC8PfOdBUbjK0Qu7HPtgW5eTUFbRJaw7BqZ2VJAthNVAILNIgeTUc8SsK1oCFFjREuT5sSBAgRULqqxTTwIUWHrSZF16E6DA0puoPeujwLJn3Dnq+BCgwIoP94RrVYgrIbB69yzAi5NvRUEnX66n6ppa3HD3M/hl3h+49qJTcMX5J7QSWMUlEl6bIqO0rLm8KuwhYcL5CmRH6zv5hQPQsWktpA0rIK9dAWn9CjjWLA16+ld9u+GsUw+GrCo47a91mPTzIhSWthZXXikVxY5R2OHcG7uce6NO7hS0bn8BbZVVHwU5A4GcgSqSdZZ0IXeEBUMiQIEVEiYWMpgABZbBwNlc2AQosMJGxhMMJECBZSDsBG6KAiuBg8uhmY4ABZbpQmLNDp004U6sXLMRbz17J4YP6dtsECVlFTj09Jvgcjnx40dPIiU5qfH1Ob/X4s2pMmpqmsurYUOAqya4UFFbj9r60AWWvGUd5A2rfaJq7XLtMVBS9VAo33PQcJz7xxr021UG1ZUMNSMTSO+AypQB2OUdgZ21A1Be3R2q2nprZFv1+1dZCWmVxVVWoYTBNGUosEwTCnakCQEKLE4HsxOgwDJ7hOzdPwose8dfr9FTYOlFkvWQQHACFFjBGbFEEAKbt+7E4eNvQc9unfDlW48GLH3Tvc9i+g/z8PSD12PcmBGNZS6/yQ1vCz+1z2gF553hREqSA8UVbQsseecWyOtWQFq3XHvUntfVRBwvNTUdSmF/KIUDoPQaCDW/QBNW7vSOKFshkq/Dl8uqxUqx9hrkKquIw2G6EymwTBcSdggABRangdkJUGCZPUL27h8Flr3jr9foKbD0Isl6SCA4AQqs4IxYIgiBGTMX4Lq7nsJxh++HR+64PGDp19+fjkeffQeXnnMcbrj0tMYyl1zvblb+yMMVjNlPQW6HpIACy7H4Vzh/+FjLWSVVVUYcGzUpBWqPvvAWDYTasx+UXgOgdOzWWF/1Vt8dA0uWAeXrpLByWaXk+5Kva6usejOXVcRBMtmJFFgmCwi7oxGgwOJEMDsBCiyzR8je/aPAsnf89Ro9BZZeJFkPCQQnQIEVnBFLBCHw2rtf4V/PTcXl5x2P6y4+NWDpb2f+huvvehpHHjwaj997dUCBdeHZwJ7DfC+lJjvgdMioqfPC41Uay6s/fQHllX+FFxNXEtCzL6Re/SH1HgipaABQUAhIzbct+itVvMB3twPe+tCakZOA3L4qOg2R0XEIkJKrb8L50HrBUrEmkJHq0qZMRY0bYIhjjZv1h0jA5ZQ12e/2KGFttw6xehYjgagJdEhzaXVUVDf/wirqilkBCehAQFw/xXVUpKsQ11EeJBAJAf91LpJzeQ4JkEB4BCiwwuPF0gEIPPPKNDw35RPccsWZmDD+6ICM5ixciotufAT77jUYLz92W2OZeQsUTHnXixuucKJPUWCh1LRC79pVqLjtwrbj4HDA0bMPHH0GwtlnkPbo6NkbkJvf/TBYIH9+0oOtS9q2FBmdgS7DZBQMk9FxgASZdwwMhpSvkwAJkAAJkAAJkAAJkAAJkAAJkEDEBCiwIkbHE/0EHnv+Pbwy9QtMvPYcnHvq4QHBLPxjJc695kGMGNoPbz5zR7My1TVAWmpoPFVFQdk5h0BLnCXLkLsVwikkVe+BcPYdBEevfoDT921vNMeqbxX8PnV3ci5HEjRRJYRVlz1kpOdHUzvPJQESIAESIAESIAESIAESIAESIAESCIcABVY4tFg2IIGwVmCNHIyXH9+9AisSpPU/fQU5v4smrpCcEkkVQc+p2AL88rRbk1UFQ2V0HMhVVkGhsQAJkAAJkAAJkAAJkAAJkAAJkAAJxIgABVaMwNqp2invT8cjz74TUg6sww7YC08+cG0jnrZyYrSVA8tOXDlWcxFgDixzxYO98RFgDizOBLMTYA4ss0fI3v1jDix7x1+v0TMHll4kWQ8JBCdAgRWcEUsEIfDjr4tw1cQnQroL4UXjj8HNV5zRWOPmXTUBa2/rLoQMBgnEiwDvQhgv8my3PQK8CyHnh9kJ8C6EZo+QvfvHuxDaO/56jZ53IdSLJOshgeAEKLCCM2KJIAR2FpfhoFOuR89unfDlW48GLH3Tvc9i+g/zMPnuK3H0uH0osDirLEeAAstyIbNFhymwbBFmSw+SAsvS4Uv4zlNgJXyIDRkgBZYhmNkICWgEKLA4EXQhIBK0i0Ttbz17J4YP6duszpKyChx6+k1QVBU/TXsKmRlpFFi6UGclRhKgwDKSNtsKlQAFVqikWC5eBCiw4kWe7YZCgAIrFEosE4wABVYwQnydBPQjQIGlH0tb1zRzzmJccfvj6N2zAC9OvhUFnXI1HtU1tbjxnmfx89wlOOeUwzDpunObceIWQltPG0sNngLLUuGyTWcpsGwTassOlALLsqGzRccpsGwR5pgPkgIr5ojZAAk0EqDA4mTQjcDk59/Fq1O/hMvlxIihfZHkcmHRX6tRUVmNwf174fUnJyItNZkCSzfirMhIAhRYRtJmW6ESoMAKlRTLxYsABVa8yLPdUAhQYIVCiWWCEaDACkaIr5OAfgQoRM4c8AAAIABJREFUsPRjyZoALc/Vmx9+g+Wr18PrVdCtoCOOGbcPJow/GslJrlaMuAKL08YqBCiwrBIpe/WTAste8bbiaCmwrBg1+/SZAss+sY7lSCmwYkmXdZNAcwIUWJwRcSVAgRVX/Gw8DAIUWGHAYlHDCFBgGYaaDUVIgAIrQnA8zRACFFiGYE74RiiwEj7EHKCJCFBgmSgYduwKBZYdo27NMVNgWTNuid5rCqxEj7D1x0eBZf0YJvIIKLASObrGjY0CyzjWbIkEKLA4B+JKgAIrrvjZeBgEKLDCgMWihhGgwDIMNRuKkAAFVoTgeJohBCiwDMGc8I1QYCV8iDlAExGgwDJRMOzYFQosO0bdmmOmwLJm3BK91xRYiR5h64+PAsv6MUzkEVBgJXJ0jRsbBZZxrNkSCVBgcQ7ElQAFVlzxs/EwCFBghQGLRQ0jQIFlGGo2FCEBCqwIwfE0QwhQYBmCOeEbocBK+BBzgCYiQIFlomDYsSsUWHaMujXHTIFlzbgleq8psBI9wtYfHwWW9WOYyCOgwErk6Bo3Ngos41izJRKgwOIciCsBCqy44mfjYRCgwAoDFosaRoACyzDUbChCAhRYEYLjaYYQoMAyBHPCN0KBlfAh5gBNRIACy0TBsGNXKLDsGHVrjpkCy5pxS/ReU2AleoStPz4KLOvHMJFHQIGVyNE1bmwUWMaxZkskQIHFORBXAhRYccXPxsMgQIEVBiwWNYwABZZhqNlQhAQosCIEx9MMIUCBZQjmhG+EAivhQ8wBmogABZaJgmHHrlBg2THq1hwzBZY145bovabASvQIW398FFjWj2Eij4ACK5Gja9zYKLCMY82WSIACi3MgrgQosOKKn42HQYACKwxYLGoYAQosw1CzoQgJUGBFCI6nGUKAAssQzAnfCAVWwoeYAzQRAQosEwXDjl2hwLJj1K05Zgosa8Yt0XtNgZXoEbb++CiwrB/DRB4BBVYiR9e4sVFgGceaLZEABRbnAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgKkJUGCZOjzsHAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAUW5wAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkICpCVBgmTo87BwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAFFucACZAACZAACZAACZAACZAACZAACZAACZCAqQlQYJk6POwcCZAACZAACZAACZAACZAACZAACZAACZAABRbnAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgKkJUGCZOjzsHAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAUW5wAJkAAJkAAJGERgyvvT8ciz7+Cyc4/H9ZecalCrbIYESIAESIAESIAESIAErE+AAsv6MQw6gl/n/4lLbvkXxoweihf/dUvQ8vEqsGTp33j30+8x7/dl2LazBC6nA0U9C3DMuH1xzimHweVyBuxaTW09Xn77f/j6x3nYuGUHkpNcGNy/F8477QgcvP/woMOZs3Apbr3/OewqKcfXUyejW5f8ds+Zv2g5Xnv3K/z+5ypUVtegc34ODh07EpeffwKyOqQHbY8FdhO44e5n8M1P83HPzRfijOMPNi2aLduL8c60b/Hz3CXYsHkHPF4vCjrl4sB998QlZx+L/NysNvs+7cuZ+ODzH7Fq7SZ4vV4Udu+Ck44ai7NPPgwOh9zumDdv3Ykb7nkGfy5fi3/cfjFOPvqAoOWff+NTzJr3B3YWlyErMwN7jxiIy889AX2LupmWr1k7FotrZyQCS1FU7e/k829/xeK/VqO0rBLpaSkY1L8Q408ch8MPHNUmwmiuV7V19bj/8dfxyfRfcOKRY/DQxEvbDVW012KzzgOz9Uv8v0r8v/LX+X9g7YatKK+o1uZDQec87DtyMM444RAUdu8c925HM2/FtS+aa9kbH3yNyc+9i4752fj23ceCsojmOh20chsViMU1Mxb4rPJ+0z/2cOdzLJixThIgARIwCwEKLLNEIob9MPsbiorKajzwxBT8b8ZsjUK/ou7o0bUjSsur8NeKtRAfovYc3Af/few2pKUmNyMlzj332gexas0mZGWmY49BvVFVXYdFf62C16vg2otOwRXnnxCQrqqq+O/b/8NTL38I8UZbHMEElhAR90x+VSs7ZEAv5OVkYeXfGyAEhxAab//nbnTKz45hNBOnaiFYDj39Jk0GCZbvvXCv6QYn5sXL7/wPz746DW6PT1r1691DE1FLV65DcWkFcrM74PWnJqF3z4JW/Z/40Ev49OtfNBk7Ylg/uJxOLPprNSqrajB272F49uEb4HQ4Ao575pzFuP0fL6Csokp7PZjAEv254PqHUVVdix5dO6F3YQG2bi/G8tUbkJTkwn8eugH7jRpiOsZm7lAsrp3hCqy/12/R5oG4Fop5NGRAEXJzMrXYit+J45xTDsek685phTKa69W6jdtww91PY8XfG7V6gwmsaK7FZp4DZuubiOnDT7+l/X9RHOILF3ENEn/3GzZv165TQoxfds7xuHrCSZAkKeohHDH+Flx81jE488RxIdcVzbyN5lomONz16MuY/sM8ra9C6gUTWNFcp0MGYpOCsbhm6onOSu83xbgjmc968mJdJEACJGBGAhRYZoyKzn0y+xuK8spqnHHZvejXuztuuux0bdWV/9i6oxhX3v649iHq8vOOx3UXN99yc+cjL0N8c3rEQaPw8KTLkJKcpJ26ftM2XHTTo9iybRemPDUJe+3RvxlVIQUmPvQifvx1kfaNtaIqmLtwWbsCS3w4OO68iXA6HXj+kZswevhArU4hwp55dRqen/KpVtfLj9+mcwQTs7qX3voc/37pAwzqV6jJoA9euk97brZDrBJbs2ELJl5zDvbda3Bj98Rqk3sfexWff/MrRg7rhzeevqNZ14W4Eh+MhNh6cfKtmvwSR3VNLUSdv8z7I6BgFdLs2dd880l8+Bo7ehje//yHdgWWkLXHXzARQjrceuV4XHjmUY19+Wn2Ilx7x1NIT0/B9Lf/hQ4ZaWZDbNr+xOLaGa7AWrJsDSbc8LC2Yu/is47VRL3/WPjHSlx262RU19Th5cduazY/o7leidVed/zzv/B4vNpceuGNz4IKrEivxaYNvgk79s7HM/CPf7+hSSkRlwtOPxId83Z/YSKuLeJ69MSL70P8f/XcUw/HxGtbi81whrZyzUacNOFO3H3j+WEJrEjnbTTXMvFF1vV3P62tSrto/DF499PvkNkhvV2BFel1OhyGdiobi2umnvys8n5TjDmS+awnK9ZFAiRAAmYlQIFl1sjo2C+zv6EQQy0rr2r2wazp8IVYmnDjPzUR8NmUhxtfEtsoDjntBmSkpeLb9x5DWmpKM2rig/uV//cE9h81FC9Nbr51cvwV90G8wRZbE2+7+ixcefsTmDX/j3YF1kNPvYm3PvoWN1x6Gi4957hmbQmJddaV92t1vvXsnRg+pK+OEUy8qgSvo8+5HeUVVXjkzstxxe2Pax+OxIcksx1CVDlkSVvF1PIQr4098RptNcSPHz3ZbCuh+NAnPvwFmg8lZRXa6jOxLVac5xevov7Jz7+LV6d+qUnXf99/LT7834+a6GtvBZYQDkKKiRVW/518a6t++usMNHfNxttM/YnFtTNcgRXs+ihWB/7n9U9a/f1Eer3yXzc7d8zB0/+4Hm6PB+dc/Y92BVY012IzxdvMfRFy+sQJd8Dt9mjXzOMO26/N7ooPvmdd9YAmy1949GZttWekh5BhYqVyuAIr0nkb6bVMrOg9+pzbtBVo990yQZuvww+7GPl57W8hjPQ6HSnPRD8vFtdMvZlZ4f1mpPNZb1asjwRIgATMSIACy4xR0blP7b2hECJhzoKlmPbVTCxcshLbd5ZAlmX07NYZxxy6DyaceXSr3FPX3vEkfp73B+Z/+QLmLlyKNz782rctqrIG2VkZ2gdvkaB4YN+euoxErJba//irNcE169NnG+v8+KuftVUCpx57IO6/9aJWbYmxHXTK9Sgtr8TMaU83E2Szf/sLW7bvaswpJLZeiVwx7W0hPHz8LRB5Ob57/wmID3ctD/+34+effiRuv/osXcaeqJX456T4EPbgxEu0OIkPZj9+9BRSU3yr6Joey1atx6mX3K3JwzOOPwQvvf05ZsxcoMVQyJ/B/Qq11Qbjxo5sda5fGEx97m5t+9WUD6bjvU+/x+Ztu9C3Vzdt5Vc0x8kX3amtEPz41X9o21/FIeaJmC89u3XCl289GrD6m+59Vtvm8vSD12PcmBGNZXbsKtVE6dUTTta2jPkFRXsCS/wdiL+HR+64HMcd3vqD7eq1m3DChXdof5Mf/vf+aIZrq3PbunaKuIn4ifkrZEKg4/EX3sPL73yBSdedq4ly/xGJwGoP+rczf8P1dz2t5cH69/3XNBaN9HolVsA88dL7uPCMozQh6/8Cob0thNFci201oaIY7H2Pv65dt448eDQev/fqoDW99t5X+Nd/pmLksP544+lJrcoLif76e9Pxw6zfsWnrDu31zh1zMaR/L1x78Sna/zfFdUXIsEBHsO32wTrY1ryN5lom8gSJL4+GDeqtrYweesiEdrcQRnOdDjY+u77O95v6vN8U8yfc+WzXOcdxkwAJ2I8ABZYNYt7eGwohci6++dHGxOcFnXNRWVWL+YuWadtSxNa8J+7b/aFI4BIC67tfFmri6KMvZuKQMSMwYmhfqCq0BMPijalYrSLeNA8dUBQ1YbEdUKzWEdvLmsoGkQfkzQ+/0eSV6Eug45pJT+L7WQu1FVhiJVZbx7nXPAixHaetN+Vi2fl+x12liSshsAIdYhvcaZfeo72BFqtueLRNwC9vnn/kZhywzzD4V4u0JWn8Akts0dy0dae2jVN8YM/PzdSSqosP0CK3xZXnn4hrLjq5WcN+YfDsQzdo+aiEfBDb+bKzOqBrlzw89cB1UYVq3Ok3YtuOEsz94nktkbI4hFy77q6nNJkkpFKg4/X3p+PRZ9/RVvMJMdfW8eR/P8SLb37W7gqsUy6+S8t1JWSZkGaBjn2OvVLLp7Fg+osBV5NFBSFBT7aCwPLnuRLbycRqUnHoeb3yM2hPYOl5LU7QqRT1sITkF6syXn3i/7QbMwQ7xBw44MRrtRyDLVeHiuvp5bc9ptUnVi4P7Cvy+ilYt2mbdh39/oN/Y9uOYnz/y0Jtq7P4gkrcsGLogF6NzZ53+pHIjGI7cqB5KyrX61omxr3noRe3K7D0vE4Hi4ddXuf7zejfbwaaK6HMZ7vMMY6TBEiABCiwbDAHgn0jJt6k7rvXkGYJ0kVS8lMvvktLIP35lIeb5aXyCyyRh+O5f96kCYimh9huILYdiDe8z/3zxqgJizv+/eu5qa0+6F818Qkth1XL3C9NG3zoqbfw1kff4M4bzsNZJx3aZl+CCSxxF7gzLr83YK4jf6X+lWI5WR3w8ydPRz3uRK1AJD4fd9oNyMnugG/ffVxLOCySUZ9+2b1asv63/3NXq6H7BZZ4QdxZ8skHrm2W/FzcffLsqx7Q7iQpxKlYdeA//AJLJIoX23CEUArl7pSh8PfPi5b99s/ZQHnb/PX6VyAEW1ERisAaffTlmnD+/duXtVVbgQ7/SrFPX3sQfXrxjoShxNcKAst/HRR3mBV3mhWHnterUASWntfiUOJitzL+lULihg9zv3xe+8IplEOsWhXXzqf/cV3j6lSx3fnEC+/Q7tgr7tQr5Ll/C7NYtbRmw9ZmN6QQq7jEaq5IthC218dA81aU1+taFsoHfj2v06HEww5l+H4z+vebgeZJKPPZDvOLYyQBEiABQYACywbzINKcBOJue+Jb0kfvugLHHrpvIym/wGq5ZcVfQOQFGnXUZdo3u/O+fD4qwmKbw/HnT9JyeYjVJU237p1/3UP4bfEKvPvCPW2u9HrmlWl4bsonWvJ3IRPaOoIJrDkLl+KiGx9pV8r5tywIIbN4xitRjTuRTxbbqsT2qpYrjwJtxfNzaCqwvnzrEW2La8vj3U++w/1PTGm1atAvsER5/4ovPfiKeF9806MQc0MItcMO2KuxWv+8u+WKMzFh/NEBm/PPKZEYXkjYto5gAkskfR82boK29XL+Vy+2WY//70UkmxdJ53kEJ2B2geXf3te/d3dMe+UfjQPS83oVisDS81ocPCr2KyFWNoucVl065mLG+4+HDMD//+q7bjwf4xvuIOhf+SRWcYnVXMGOWAistuatnteyUD7w63mdDsbRLq/z/Wb07zcDzZVQ5rNd5hjHSQIkQAIUWDaYA+G8oRB5iMQ3tCqAl978HK9M/QL33HQBzjjhkEZS/jfF7X0je8BJ10KstFn49UsRb1cSyVivuP0xiG2O4k5KIsdR08OfiP2jlx/AgD49AkZSbL0SAkDk5Lr+kuZ3MGx6QjCBNXPOYi3R+KEHjGx3y5nYsiDeaCya8XKzFUI2mGYhDVFIn2PO/T/tLpH/e+Of6NWjS+N5/i1155xyOCZd1/zOWX6B1d4WTrH66sCTr2uVK80vsMR2ViE79Tr8H36EuBICq+nx2PPvaX87geatv5zYsirm3Yih/fDmM83vYNi0rmACS/y97nXkZdp2nl8//0+bw7vkln9BXAtEkneR7J1HcAJmFljiDq3ixhElpRV489k7m0l8Pa9XoQgsPa/FwaNivxL+GIg79IoV0aEet//jBXz+7a+48bLTccnZx2qnia3NYutcW/nyWtatt8Bqb97qeS0L5QO/ntfpUGOS6OX4fjP695uB5kgo8znR5xbHRwIkQAJ+AhRYNpgL7b2hENuO3v/8B3z7029Y8fcGVFbVtCLSUlT5BdZ/Hr4RB+23Z0CC4u6A23eWaiuwWt4dMBTk4pvYWx94Dl99P1dLtC5yI7U8wvnW/9qLTsEV55/QZtPBBJaeKxpCGX+ilvHnXAskbYTwPOTUG7StrD989GSzbTJ+gTVsYBGmPt+2hBJ5nsQcFiLHn5/FL7ACibFIOb89bQYefPINiJUvbz5zZ2PuK399YX2zP3IwXn488hVY/pV/oa/Aar7FMlIGdjjPrAJLrEy94LqHsXrd5oC50fS8XoUisPS8FtthXoU7xohXYN35FL77eQGarsA6/vyJ+Hv9lmY3nWivP3oKrGDzVs9rWSgf+PW8Tocb00Qtz/ebnyDa95sUWIn618FxkQAJ6EWAAksvkiaup603FEIYiA8ea9Zv0RKPH3HwaC0BtBBOEiRM/eQ7TP9hbqvcF36B1d5KjmgElpBXk/75Ej77epaWt+OJ+64OuJrJ349QcmCJFT1CYLR1BBNYfoEitl6JLViBjsa7JXZIx6zPdt8t0cRTw/Cu3XTvf7Q5Fez456TLcPwR+zcW8/MPliBfrMASK7HENhux3UYcet/1TQjfeye/pm1jnPLURHTMy241HH+boeTACrSCq2mFwVZgibJ+cRdKDiyx1UyINx7BCZhRYJWWVWLCjf/U7nzZ1hZVPa9XoQgsPa/FwaNivxJbtu3CYWferP1/UHwpJG6SEsohbioibi7SNAeW/6YT30ydjK5d8oNWo5fACmXe6nktC0Vg6XmdDgrSJgX4fvMbbQV5NO83A02VUOazTaYYh0kCJEACzIFlhznQ1hsKkS9I5A064YgxeHjSpa1QPPLsO9qH/7ZWYMVCYIk7IU16+CVt24P4YD/5nqvaTEotEruLJKyh3IXw+UdEsvk92gx3MIElcnCNPvqKkO5CGGyVkB3mXKAx+pO3y7KM/m1s+ayprdNu277XHv0x5andt373fyDvV9RdWzkQ6BDf3o888jLU17sDrsAKto00lLgIqfvAE1O0rY8if0yn/NbyStQjbi4gkhSHchfCi8Yfg5uvOKPN5kMRWOIGAyJxd7C7EIrVafO+fKHZDRtCGbddy0QjsPx35pt03bk455TDGhFGI1TF39DFNz2iyatbrxyPC888KmBo9LxehSKw9LwW23WuBRu3/y6Erz85EaP2HBCsuLYSdeyJ10Bsxf9p2lPIy8nUzjnm3Nu1m1l88uqD6FsU/GYOegisUOet6J9e17JQPvDreZ0OGhCbFOD7zYWI9v0mBZZN/lg4TBIggYgJcAVWxOisc2JbbyiOO3+itvpq6nN3Y9ig3q0G5F8tY5TAEm84b3vgBW2FznGH7YcHJ17Sbh4pUU708dRjD9QkVstDCA3xpl+syPnhw38HXCnjPyeYwBLlTrhgkrZl57v3n2iWTN5fxzsfz8A//v2Gli9M5A3j0ZyAyAklco6IZMJiS0ugo67erW0jFKvZPpvycOPdsPwCS2yTm/O/5/+/vfsAs6q4+wD8BwWlKIiKwS4qUdRE7L1gQQ02RKMSYu8KFrALKsaogBoFQbF3UGMwFqJGSSIaxVhiN7EkxtgbUgQEvmcOXr4F7u4esgv37u47z5MnsnfumZl3Dod7fztnTvbkwnnLO+9/GHsdek60btUyxo0eUiuBQcU2brv30bhkyJ3Z6qXrB58+5wthsXGkx9Oncy+taEyhUrFy6vlD4w9jx8egfsfF7p03r/R0yRNgpVAthWuV7WtTsFnQPXQa+jlc2bUz7SGU9hLabcfNYnD/44syndxvSDz25+ejtgKsdE6lB0mka1DFW8Iqm6Paul7lCbBq81rc0M+5ysZf+DueHqiSHqxSXUlP301P4U1hVwq9CuW4M6+IP//15Rh43nGxx06VX3cK9WsaYC3oeVtb17I8AVZtXqerm4+G8rrPm7XzeXPe8yXP+dxQzjHjJECAgACrAZwDlX2g2L3HGdlm2mlPobRqqGJJv71Ntyx8O3HyIlmBlX5LfNoFQ7PNZbt33T76n3poNG7cqMrZSX1Mt4ylR4A/PmrwfHttpQ/p6cN6nhVReQKsQpCQHjuenqA3bylsZFzdb98awClXdIiF3/xXtel+euNlQ++KtKH7oQfsFn2PPzA7VsWnEF43sE9sven687VR+KI1b6hQkxUvhUZuuvuRGDR8ZLZRdmq/1dItqp3Gwjl1x9Bzs1t0K5a0F8xO+58aM2fNylZHFPbrKnbQPAFW4e/4VpusHyMG9ZnvMKnvaQzVrfaqdlANrEJl184XXnk7ep50cfyk45px1zXnzaeSrmcpiE3zXBsB1ieffZXdNvjBfz+NAacfEfvstk21M1Fb16s8AVZtXourHVgDrZBWTe192DmRHrRyxQUnZk9braykf9cPOOaC7N/veVdKF4KtdA1N17LqSnqKb9orqrJ/96p6//9y3tbWtSzvF/7auk5X59hQXvd5s+p9OtN5kOfz5rznS97zuaGcZ8ZJgEDDFhBgNYD5r+wDRWEFyLwrhiZMnBx9LxwW48a/GmkV08JegZVu+Tq5/5Dstque3XeNM088OPesFJ4ilD7MX3LOMXM2/k4f4I84bWD89+PP48oLT4xdtqv8w37eDxRpJdduB58eM2fOzJaIb7rhOlk/k9GQm+6P4bc+kK3OSQFNo0ZVh2+5B1hPKhY2lf5pxzXjziJf+CsOM31RS2FXWkk19t4ro0mTxecKsNLeUymkWbnd8nPe9sS4F+OUfkOyJ0Cm46d2CqWmAVbhSZYbbdAhm/cWzZfMNSuFJ8G1X7VdXDeob7RrO3tPrnR71yn9h8ZTz72S3VqWAo6qSp4AK73/wOMujFfeeHe+W8tSkNvr3KuiUePGMeaOy4quHsw1oAZYqbJr55TvpsW2+5wY302dHiOH94/1frz6XDpXjrg3RtzxYPazmgZYaf+jw065NNL/X3beMdFlh81yzURtXa/yBFipQ7V1Lc41uAZaqfDwiLQC9egee2b/XlYM09O/pWPGPhcpzE+37VX8JUCBLIWNafX1Z198Hcf9cu849pC95lrp/P4HH2erS5dq2Tx7y0N//GucPmB4Ft6np102WXyxXPr/63lbW9eyvF/4a+s6nQulAVTyebN2Pm/Oe6rkPZ8bwClmiAQIELAHVkM4Byr7QJH2zOlxwoBsj4x11lo1+9+EbydFChvSxtSH7N8lLrj8loUeYFX8spf2FqqqbLnxenHuyT3nVEkf2FNQlVZEpA/yP1m3faQvly+9+s8szDhgzx2i/2mHVjvNeX8jllaIpeAvHTt9aV2uTatsP5r0Yb3VUi3itqvPjjVXr35fkWo7VM8q9LlwWDzyxLNx8VlHxd5dtq52dOlWqXQeFm6vK6zASiuMvvjqm3j3X/+NThusHcu3aR3/+eizePn1d7Jj9j5yv0h7XVUsNQmwnn7+1Tiqz6DscO1WWHauJyPOO4iWzZvFyGvnfkJiYeVTCuE6rb9WNG3SJOtrWhnRscPq2a096amLVZW8AVZandPjhIuyW2ZXWbFttF+tXaQVEMkuBappY/y0J5eSX6CqJ2qlgCpdu9Jtrd322C5WX6VdTJo8JQviX3/7/ewJrY/+qea3EKY5fem1f2btrPDDgwkqG0E69yv+/aqN61XeAKu2rsX5Z6dh1hz1+7Fx6ZA747up07JVymusumK0XrpFpCcKpy0B0s9TwHVsz73i+EP3KYqUzqfjzrg80i+rUliV/u2fNv37+PDjz7Nf+tx3/YXZz1JJx+va88z46NMvs1u606rDbyZMil5H7lflwyBqct7WxrVsQb7w18Z1umGejfOP2ufN2vu8WVF3Qc5n5yIBAgTqu4AVWPV9hiOiqi9h6ct0uj0gfaCd/v332ZPbdtpmozjukL2zfYh2PbDPQg+w0r5Raf+oPKXz1p3i6l/1nqtqCuBuGTUmfv/Y0/HBh59mK3bSSqif79U59xf2vAFWajh9Ob32tt/H3/7+dkycNDmWW7Z1tkF8+sKwwvLL5BlGg6qTbqPasfsp0WyJpvHkfVdmt3xWV9LeUCko3LzTunHjFWfMWYGVnC8//4S44a6Hsv2jUni1RNMm2eqAX+7fJQsN5i01CbAK/aiuv+n1li2axbMPDZuvajrG7fc9Fm+98+9IDylYqd3ysUfnzeOwA3c08RuTAAAb2klEQVSvMhArHChvgJXqp/Bq2C2jY+wzL8XnX3wdLVs0z4K+Iw/+2Vyr0vKMR52qr53JJ61Ouft3T2RzO3Xq9Fi2zdKxeaeOcWSPn8Unn32ZhZ81XYGV9nVLe5jlKWeccFD296Biqen1Km+AldqsjWtxnnE29Dpp76b0AJa0SvpfH36SBeItmi2ZPVVwi407Zv/2pf33qiop3E77EqYVSCmcWnyxxtkvrtIvCU46vNtcK7tSoDRo2Mjsc0L6XNCu7bIx7JJTsodZVFZqet7W9Fq2oF/4a3qdbujnZGH8Pm9WfyYsyOfNwtEW9HyuvhdqECBAoO4KCLDq7tzl7vmTT78YJ579mygW/uQ+iIoESihQWIGVbuNLq9wUAotCwLVzUShrgwCB+iLgmllfZtI4CBAgUL4CAqzynZta69k1t4yOoTfdv8D7S9VaBxyIQA0FCgFWp/XXjtuHnFPDo3k7gXwCrp35nNQiQIBAEnDNdB4QIECAwMIWEGAtbOESHD/dspU2F057Mj334htx5sXXZbcYpJUraQWLQqCuCQiw6tqM1c3+unbWzXnTawIESiPgmlkad60SIECgIQsIsOrh7N//yF/i3EtvmGtkPbrtEmf36lEPR2tIDUFAgNUQZrn0Y3TtLP0c6AEBAnVHwDWz7syVnhIgQKC+CAiw6stMVhjHG//4Vwy7dXS26qrtcstEl+03jc7bbFQPR2pIDUVAgNVQZrq043TtLK2/1gkQqFsCrpl1a770lgABAvVBQIBVH2bRGAjUcwEBVj2fYMMjQIAAAQIECBAgQIBANQICLKcIAQIECBAgQIAAAQIECBAgQIBAWQsIsMp6enSOAAECBAgQIECAAAECBAgQIEBAgOUcIECAAAECBAgQIECAAAECBAgQKGsBAVZZT4/OESBAgAABAgQIECBAgAABAgQICLCcAwQIECBAgAABAgQIECBAgAABAmUtIMAq6+nROQIECBAgQIAAAQIECBAgQIAAAQGWc4AAAQIECBAgQIAAAQIECBAgQKCsBQRYZT09OkeAAAECBAgQIECAAAECBAgQICDAcg4QIECAAAECBAgQIECAAAECBAiUtYAAq6ynR+cIECBAgAABAgQIECBAgAABAgQEWM4BAgQIECBAgAABAgQIECBAgACBshYQYJX19OgcAQIECBAgQIAAAQIECBAgQICAAMs5QIAAAQIECBAgQIAAAQIECBAgUNYCAqyynh6dI0CAAAECBAgQIECAAAECBAgQEGA5BwgQIECAAAECBAgQIECAAAECBMpaQIBV1tOjcwQIECBAgAABAgQIECBAgAABAgIs5wABAgQIECBAgAABAgQIECBAgEBZCwiwynp6dI4AAQIECBAgQIAAAQIECBAgQECA5RwgQIAAAQIECBAgQIAAAQIECBAoawEBVllPj84RIECAAAECBAgQIECAAAECBAgIsJwDBAgQIECAAAECBAgQIECAAAECZS0gwCrr6dE5AgQIECBAgAABAgQIECBAgAABAZZzgAABAgQIECBAgAABAgQIECBAoKwFBFhlPT06R4AAAQIECBAgQIAAAQIECBAgIMByDhAgQIAAAQIECBAgQIAAAQIECJS1gACrrKdH5wgQIECAAAECBAgQIECAAAECBARYzgECBAgQIECAAAECBAgQIECAAIGyFhBglfX06BwBAgQIECBAgAABAgQIECBAgIAAyzlAgAABAgQIECBAgAABAgQIECBQ1gICrLKeHp0jQIAAAQIECBAgQIAAAQIECBAQYDkHCBAgQIAAAQIECBAgQIAAAQIEylpAgFXW06NzBAgQIECg9gUmTJwcPY4fEFO+mxq3XnV2rPij5Wq/EUckQIAAAQIECBAgUIsCAqxaxHQoAgQIECBQDgL3PDg2lm/TOnbYasOi3Xn+5bfikN6/zl679NxjouvOW5ZDtxdZH6rzWWQd0RABAgQIECBAgEBuAQFWbioVCRAgQIBA+QtMnjI1ttrrhNh3t22i/2mHFu3wpMnfxaEnXxKTp3wXN15+Rqyw/DLlP7Ba6mEen1pqymEIECBAgAABAgRqUUCAVYuYDkWAAAECBEot8Phf/ha9z7s6Dthzh0oDrFL3sZTt8ymlvrYJECBAgAABAv+7gADrf7fzTgIECBAgUFYC06d/H30HDI/H/vy8AKvIzPApq9NVZwgQIECAAAECCyQgwFogLpUJECBAgEB5Ctx276Nx/Z0PxedfflO0gy1bNItnHxqWvZbqbN+td/bfv7vpolh7jZXnvKfw2pqrrxQP3PyrrO4Ndz0cT457MT7+7Mto2bxZrN1+pejedYf42U5bZO+bNWtWjP7DuPjdmKfiH+/9JyZNmhLLLds6ttioYxzVo2ustvIKVaJ99MkXcdPIMfHUc3+Pjz/9MhZbbLFYdaW2sdO2G0fP/XaJpVo2L/r+d//9Udxx32Mx/qU348OPP48ZM2fGcm1aRbu2bbK20/vXWWvV7L0L4lNo7I1//CseeeLZSHuGvf/BxzFx8pRotuQS0X61FWP3HTeLg/bdOZosvth8fXv4j89G3wHD4qB9dopzT+4Zr7/9ftw08pEY/9Jb8fWEidGm9VKx4XprxyEHdImfdlwze//ESVPijt8+Hn8Y+1x88N/PYsaMGbHyim2j89ad4oiD9ihqUGinR7dd4uxePeKtdz6Im0eOiedefCO++OqbaNGiWTb+fXfbNn628xbRqFGj8jx59YoAAQIECBAgkENAgJUDSRUCBAgQIFDuAv0G3hgffvR5vP3uB/Hl199G2+VaR/tVV5zT7ebNloirfzU7tMoTYKVg5u7h/ePI0wbGV998G02aLB5NFl882zerUA7Zv0v0Pqp7HH/WFfHXv72e/TgFZenphjNmzMz+3LzZknHrVWfFumuvVpQw3dJ3+oDhMXXa9Oz1ZZdZOtJKqfSkxFTarbBsXDewT7Rftd1c70/hzVkXXxffz5iR/Xzpls2jUeNG8c2ESXPqpXDozmvOy/68ID6p/pgnn4vTLrhmzrFat2qZhVeffv7VnLFt1mmdGDGobyy+2NwhViFYSq/vt8f2cc4l12f9THPw/YyZMe2Hsab3Dep/XHRov0oc1WdgFsKlkCkZfvvD+FMH0tjvGtYv+3nFUmhnuy1+Grt33izOu/TGrJ2mTZvEEk2bzHWMFIRdfv4J2TwqBAgQIECAAIG6KCDAqouzps8ECBAgQKASgZP7Dan2FsI8AVY6fKulW8Qq7drGmScdHD/tuFY0btwoPvr0y/j11bfHH//yQtaDjTboEC+++o84tudecdC+O80OoL6fEX959u9x3mU3xNffTIxO668dtw85Z74ev/LGu9HjxIuyQOjgfXeKY3rula2gSiWtfuo38KZs9dKqK60Qv71hQDRbsmn2Wgp3dux+ckz5blr06LZz9r7UbirfTZ2WvSf1b8tN1ottNttgrnbz+KQ3pBVRaS+x3TtvHttv+dNYftnW2XHS2G4e+UhcOeLe7M+/Pvuo2GvXredqoxAspf7OmDkrdt1ukzjhsH2zVWUzZ86K195+Pwu13nn/w1im1VKxTKuW8cVXE+Ksk3rEztttko0zBYUjRz8Zg68dla1wO/oXe0bvI/cr2k6L5ktm405PnTzxsG7Rof3sFXVpntPKr7QqK5Vf7t8lzjjhIH93CBAgQIAAAQJ1UkCAVSenTacJECBAgEBxgTwBTd4AK4VJD912yXwrf1JY0uWgvnNuVzzp8G5x7C/3mq9D9z74p+g/6Kbs5+NGD4m0iqli6X5U/yyo6rrLlnHpOcfM9/4Ulu3xizOyFUtnnnhw9Oy+a1bnry+8Hkecelm0WqpFjHtgyALdGpfHJ8+5dXTfQTFu/KtZwDWo33FFg6X0w7Q6atglp8x3yDTuNP5CufWqs2Pjn3SYr94ZF10bDz7+TKy1xkox+qZfVdpOCutGDOxT1GLw8FFx490PZwHkYyMHx4+Wb5NniOoQIECAAAECBMpKQIBVVtOhMwQIECBAoGYCeQKavAFW2r/q5KO6F+3QqecPjT+MHZ/tAfXU6CHzhVzpTWlvq51/flr2/juGnhsbrrfWnGO98uZ7ceCxF2R/fvLeK7NbHouVPhcOy/ahSuFOCnlSKbw3tf3InQOzPa/yljw+eY417NbRMeTG+4uuLiuswErHGTGoT2y1yfpFD7nN3idlt2dusG77uHtYv6J10t5iZ/96ROb80uM3zFWnYjvXXnbafKvNCpUnT5ka23frFen/+xz78zjswN3zDFEdAgQIECBAgEBZCQiwymo6dIYAAQIECNRMIE9AkzfAGnJx79hxq05FO3Tp0Lvi1nv+ED9ec5Xs9r5iJd0ut0Hnw7KX0j5WW2/6/0FOWhGUVgal2wMfuePSSgedQqIUFqXVVk//fmhWLx133yPOjX++92GssPwycerRB0SXHTbNtb9THp88MzBy9BNx4RW3RscOq8c9151fabCUNs6fd++qQuX9juwXb/7z3/GL/XbJbh8sVgqrzdJrLz12/VxjrBhgPffw8Ei3ElZW0j5lf3rm5dh1+03iigtOzDNEdQgQIECAAAECZSUgwCqr6dAZAgQIECBQM4E8AU3eAGvktf1j/R+vUbRDA6+5O24eNSa22Lhj3DD49Eo7vd4Oh2avDb/0tNh28//fj+r8QTfHPQ+OXaDBvjb25jn10+2Fp/S7OluNlUraS2qPnbaIbntsO+fJg8UOnsen8L6/PPtKPPbn8fH62/+K/378ebYvVdoDq2KpKsBKe1k9P+a6Sse4/9HnZ/t19Tpivzim555F6z334ptx2CmXZK+98OiIbHP2QikEWGlz+PGPXFulZSFwrGq11wJNhsoECBAgQIAAgUUsIMBaxOCaI0CAAAECC1MgT0CTN8D63U0XxdprzN4QfN5SCLDSqqq0uqqyUlmAVbg1MK1OWulHy+UimXelV1qJlZ5ieOf9j8f4l96cc4y0afwpR+9fdE+pPD5p4/ne/a6O519+KzvmmqutmIVibZZZOpr+8BS/l19/J3u9qgArbYL/9AOzV40VK4UAK92mmW7XLFbyBFgVV6dV1tZVN9wX1972+6J7aeXCV4kAAQIECBAgUGIBAVaJJ0DzBAgQIECgNgXyBDTlEGCdd9mN8duH/1ztCq68Nv/56LNIm8aPeuDJ+ObbSdnbzu9zaOzfdYe5DpHH56Rzr4onnnoh2rReKq688KSiQdiIOx7MnkRYDgFW06ZN4sVHR1RJ9eur74jb73ssftJxzbjrmvPysqpHgAABAgQIECgbAQFW2UyFjhAgQIAAgZoL5AloyiHAKmyCvvyyrWPsfVfWfOA/HOHbiZOj38Ab49E/PR9LLtE0/jjq8rmeflidT9pUfdt9esWsWbPiwr6Hx34/265o31J4lUKscgiwUgefGn11dhtlZeWY0wfHU8+9Yg+sWjvTHIgAAQIECBBY1AICrEUtrj0CBAgQILAQBQpPB9x3923jojOOKNpSOQRYL7zydvQ86eKsf7cPOSd7ml9tlenTv48t9zw+pnw3La4f1De23GS9OYeuziftSZVu7Utl1LXnx3o/Xr1ot9K+VOn2vnIJsK4a0Ct22najon2dOGlKbLdvr5g6bXr0Pe7AOPTnu9UWteMQIECAAAECBBaZgABrkVFriAABAgQILHyBCy6/JbuNrqpbxcohwEoS+x5+brz97n+yEOjWq86OtOl5bZQU1GzR9fiYNm163HzlmbHphuvMOWx1PulWxC4H9c3qD+5/fOy242bzdemZ51+LI/sMzH5eLgHWRht0iFt+c1Y0btxovv4W9itLrz0+8vLsyY0KAQIECBAgQKCuCQiw6tqM6S8BAgQIEKhC4IFHx8VZF8/eD+mCPodF967bZ/+dnp63+GKNo1GjRlEuAdYrb7wbPXtdHGnFVIf2K8dJR+wXW268XhZkpRDq08+/ilfeeC+eGPdC7NF58+i8zewVRmnz9JtHjomuu2wZW226fizdsvkckff+/VEMHj4qnnz6xVh2maXj8ZGDI+0RVSh5fHbvcUb8+8NPYtWV2sZvBvTK+pZKegrh/Y88FVdcNypat1oqPvrki7IIsJo0WTwzTD5p8/r2q7bL+ptup7zhroezWx1TOWT/LnH6CQf5+0OAAAECBAgQqJMCAqw6OW06TYAAAQIEigukVUf7H3N+/PO9D7MK6Ql1zZsvmYVWTz8wJJo3m/3f23frnb0+75MGq3qtYos1fQph4VhpNdNpF14T30yYvfF6Kmnvqu+mTptrgJecfXTsuetW2c8qroBKf05BVRrX1xMmZqFNKunPQy7uHZt3Wneu4+TxGTf+1Tj+zCvi+xkzsvem46enD37y+VeRnnzYeetOceLh3aLbEeeVRYC17tqrZWHeoGEjs7270pw3W3KJbJ4LY0i3Fw7ud3yksEshQIAAAQIECNRFAQFWXZw1fSZAgAABAlUIfP3NxLj6xt/G2Kdfis++/DpaNm8W7VdbMW68/PRsNVI5BVhpGBMmTo6Ro5/I+ptWUH07aXI0bdIklmvTKjp2WC122KpT7Lr9pnNuMUzh1ugxT8XYZ16Of7z3n9lBzfczokXzJWO1lVeIrTZZP3p02znSBvHFSnU+6T2vvfV+tnLpb39/K3uqYTJca42VYp/dtom0v9isWRGb7n5M5nrPdbP3zCqUh//4bPQdMCxaLd0inn5gaKUzlfbaSntunXxU9ziqR9ei9dI+W2m/rVReeHRELFFhNVmhnVVWbBtj7rwsXn3rvbjtnkdj/MtvxpdfTchCvHU7rBbd9tguW8GWVt8pBAgQIECAAIG6KiDAqqszp98ECBAgQIBAgxYoBFjp6YPpKYQKAQIECBAgQKA+Cwiw6vPsGhsBAgQIECBQbwXyrvSqtwAGRoAAAQIECDQoAQFWg5pugyVAgAABAgTqi4AAq77MpHEQIECAAAECeQQEWHmU1CFAgAABAgQIlJmAAKvMJkR3CBAgQIAAgYUqIMBaqLwOToAAAQIECBBYOAICrIXj6qgECBAgQIBAeQoIsMpzXvSKAAECBAgQIFClgADLCUKAAAECBAg0JAEBVkOabWMlQIAAAQIE6o2AAKveTKWBECBAgAABAjkEBFg5kFQhQIAAAQIECBAgQIAAAQIECBAonYAAq3T2WiZAgAABAgQIECBAgAABAgQIEMghIMDKgaQKAQIECBAgQIAAAQIECBAgQIBA6QQEWKWz1zIBAgQIECBAgAABAgQIECBAgEAOAQFWDiRVCBAgQIAAAQIECBAgQIAAAQIESicgwCqdvZYJECBAgAABAgQIECBAgAABAgRyCAiwciCpQoAAAQIECBAgQIAAAQIECBAgUDoBAVbp7LVMgAABAgQIECBAgAABAgQIECCQQ0CAlQNJFQIECBAgQIAAAQIECBAgQIAAgdIJCLBKZ69lAgQIECBAgAABAgQIECBAgACBHAICrBxIqhAgQIAAAQIECBAgQIAAAQIECJROQIBVOnstEyBAgAABAgQIECBAgAABAgQI5BAQYOVAUoUAAQIECBAgQIAAAQIECBAgQKB0AgKs0tlrmQABAgQIECBAgAABAgQIECBAIIeAACsHkioECBAgQIAAAQIECBAgQIAAAQKlExBglc5eywQIECBAgAABAgQIECBAgAABAjkEBFg5kFQhQIAAAQIECBAgQIAAAQIECBAonYAAq3T2WiZAgAABAgQIECBAgAABAgQIEMghIMDKgaQKAQIECBAgQIAAAQIECBAgQIBA6QQEWKWz1zIBAgQIECBAgAABAgQIECBAgEAOAQFWDiRVCBAgQIAAAQIECBAgQIAAAQIESicgwCqdvZYJECBAgAABAgQIECBAgAABAgRyCAiwciCpQoAAAQIECBAgQIAAAQIECBAgUDoBAVbp7LVMgAABAgQIECBAgAABAgQIECCQQ0CAlQNJFQIECBAgQIAAAQIECBAgQIAAgdIJCLBKZ69lAgQIECBAgAABAgQIECBAgACBHAICrBxIqhAgQIAAAQIECBAgQIAAAQIECJROQIBVOnstEyBAgAABAgQIECBAgAABAgQI5BAQYOVAUoUAAQIECBAgQIAAAQIECBAgQKB0AgKs0tlrmQABAgQIECBAgAABAgQIECBAIIeAACsHkioECBAgQIAAAQIECBAgQIAAAQKlExBglc5eywQIECBAgAABAgQIECBAgAABAjkEBFg5kFQhQIAAAQIECBAgQIAAAQIECBAonYAAq3T2WiZAgAABAgQIECBAgAABAgQIEMghIMDKgaQKAQIECBAgQIAAAQIECBAgQIBA6QQEWKWz1zIBAgQIECBAgAABAgQIECBAgEAOAQFWDiRVCBAgQIAAAQIECBAgQIAAAQIESicgwCqdvZYJECBAgAABAgQIECBAgAABAgRyCAiwciCpQoAAAQIECBAgQIAAAQIECBAgUDoBAVbp7LVMgAABAgQIECBAgAABAgQIECCQQ0CAlQNJFQIECBAgQIAAAQIECBAgQIAAgdIJCLBKZ69lAgQIECBAgAABAgQIECBAgACBHAICrBxIqhAgQIAAAQIECBAgQIAAAQIECJROQIBVOnstEyBAgAABAgQIECBAgAABAgQI5BAQYOVAUoUAAQIECBAgQIAAAQIECBAgQKB0AgKs0tlrmQABAgQIECBAgAABAgQIECBAIIeAACsHkioECBAgQIAAAQIECBAgQIAAAQKlExBglc5eywQIECBAgAABAgQIECBAgAABAjkEBFg5kFQhQIAAAQIECBAgQIAAAQIECBAonYAAq3T2WiZAgAABAgQIECBAgAABAgQIEMghIMDKgaQKAQIECBAgQIAAAQIECBAgQIBA6QQEWKWz1zIBAgQIECBAgAABAgQIECBAgEAOAQFWDiRVCBAgQIAAAQIECBAgQIAAAQIESicgwCqdvZYJECBAgAABAgQIECBAgAABAgRyCAiwciCpQoAAAQIECBAgQIAAAQIECBAgUDoBAVbp7LVMgAABAgQIECBAgAABAgQIECCQQ0CAlQNJFQIECBAgQIAAAQIECBAgQIAAgdIJCLBKZ69lAgQIECBAgAABAgQIECBAgACBHAICrBxIqhAgQIAAAQIECBAgQIAAAQIECJROQIBVOnstEyBAgAABAgQIECBAgAABAgQI5BAQYOVAUoUAAQIECBAgQIAAAQIECBAgQKB0AgKs0tlrmQABAgQIECBAgAABAgQIECBAIIeAACsHkioECBAgQIAAAQIECBAgQIAAAQKlExBglc5eywQIECBAgAABAgQIECBAgAABAjkEBFg5kFQhQIAAAQIECBAgQIAAAQIECBAonYAAq3T2WiZAgAABAgQIECBAgAABAgQIEMghIMDKgaQKAQIECBAgQIAAAQIECBAgQIBA6QQEWKWz1zIBAgQIECBAgAABAgQIECBAgEAOAQFWDiRVCBAgQIAAAQIECBAgQIAAAQIESicgwCqdvZYJECBAgAABAgQIECBAgAABAgRyCPwfyaoID1vHWdkAAAAASUVORK5CYII=", "text/plain": [ "" ] @@ -5295,7 +5581,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdB3RT1QMG8C9JN5RSSpll7yUbBFmylC17y1AUARGUJTJlC4iAooiigoMpMkRBQET23rL3hra0lJaOJP9zX/9JmiahafuavCTfO8dzpHnvvnt/97Zpvt53r0qv1+vBgwIUoAAFKEABClCAAhSgAAUoQAEKUIACChVQMcBSaM+wWhSgAAUoQAEKUIACFKAABShAAQpQgAKSAAMsDgQKUIACFKAABShAAQpQgAIUoAAFKEABRQswwFJ097ByFKAABShAAQpQgAIUoAAFKEABClCAAgywOAYoQAEKUIACFKAABShAAQpQgAIUoAAFFC3AAEvR3cPKUYACFKAABShAAQpQgAIUoAAFKEABCjDA4higAAUoQAEKUIACFKAABShAAQpQgAIUULQAAyxFdw8rRwEKUIACFKAABShAAQpQgAIUoAAFKMAAi2OAAhSgAAUoQAEKUIACFKAABShAAQpQQNECDLAU3T2sHAUoQAEKUIACFKAABShAAQpQgAIUoAADLI4BClCAAhSgAAUoQAEKUIACFKAABShAAUULMMBSdPewchSgAAUoQAEKUIACFKAABShAAQpQgAIMsDgGKEABClCAAhSgAAUoQAEKUIACFKAABRQtwABL0d3DylGAAhSgAAUoQAEKUIACFKAABShAAQowwOIYoAAFKEABClCAAhSgAAUoQAEKUIACFFC0AAMsRXcPK0cBClCAAhSgAAUoQAEKUIACFKAABSjAAItjgAIUoAAFKEABClCAAhSgAAUoQAEKUEDRAgywFN09rBwFKEABClCAAhSgAAUoQAEKUIACFKAAAyyOAQpQgAIUoAAFKEABClCAAhSgAAUoQAFFCzDAUnT3sHIUoAAFKEABClCAAhSgAAUoQAEKUIACDLA4BihAAQpQgAIUoAAFKEABClCAAhSgAAUULcAAS9Hdw8pRgAIUoAAFKEABClCAAhSgAAUoQAEKMMDiGKAABShAAQpQgAIUoAAFKEABClCAAhRQtAADLEV3DytHAQpQgAIUoAAFKEABClCAAhSgAAUowACLY4ACFKAABShAAQpQgAIUoAAFKEABClBA0QIMsBTdPawcBShAAQpQgAIUoAAFKEABClCAAhSgAAMsjgEKUIACFKAABShAAQpQgAIUoAAFKEABRQswwFJ097ByFKAABShAAQpQgAIUoAAFKEABClCAAgywOAYoQAEKUIACFKAABShAAQpQgAIUoAAFFC3AAEvR3cPKUYACFKAABShAAQpQgAIUoAAFKEABCjDA4higAAUoQAEKUIACFKAABShAAQpQgAIUULQAAyxFdw8rRwEKUIACFKAABShAAQpQgAIUoAAFKMAAi2OAAhSgAAUoQAEKUIACFKAABShAAQpQQNECDLAU3T2sHAUoQAEKUIACFKAABShAAQpQgAIUoAADLI4BClCAAhSgAAUoQAEKUIACFKAABShAAUULMMBSdPewchSgAAUoQAEKUIACFKAABShAAQpQgAIMsDgGKEABClCAAhSgAAUoQAEKUIACFKAABRQtwABL0d3DylGAAhSgAAUoQAEKUIACFKAABShAAQowwOIYoAAFKEABClCAAhSgAAUoQAEKUIACFFC0AAMsRXcPK0cBClCAAhSgAAUoQAEKUIACFKAABSjAAItjgAIUoAAFKEABClCAAhSgAAUoQAEKUEDRAgywFN09rBwFKEABClCAAhSgAAUoQAEKUIACFKAAAyyOAQpQgAIUoAAFKEABClCAAhSgAAUoQAFFCzDAUnT3sHIUoAAFKEABClCAAhSgAAUoQAEKUIACDLA4BihAAQpQgAIUoAAFKEABClCAAhSgAAUULcAAS9Hdw8pRgAIUoAAFKEABClCAAhSgAAUoQAEKMMDiGKAABShAAQpQgAIUoAAFKEABClCAAhRQtAADLEV3DytHAQpQgAIUoAAFKEABClCAAhSgAAUowACLY4ACFKAABShAAQpQgAIUoAAFKEABClBA0QIMsBTdPawcBShAAQpQgAIUoAAFKEABClCAAhSgAAMsjgEKUIACFKAABShAAQpQgAIUoAAFKEABRQswwFJ097ByFKAABShAAQpQgAIUoAAFKEABClCAAgywOAYoQAEKUIACFKAABShAAQpQgAIUoAAFFC3AAEvR3cPKUYACFKAABShAAQpQgAIUoAAFKEABCjDA4higAAUoQAEKUIACFKAABShAAQpQgAIUULQAAyxFdw8rRwEKUIACFKAABShAAQpQgAIUoAAFKMAAi2OAAhSgAAUoQAEKUIACFKAABShAAQpQQNECDLAU3T2sHAUoQAEKUIACFKAABShAAQpQgAIUoAADLI4BClCAAhSgAAUoQAEKUIACFKAABShAAUULMMBSdPewchSgAAUoQAEKUIACFKAABShAAQpQgAIMsDgGKEABClCAAhSgAAUoQAEKUIACFKAABRQtwABL0d3DylGAAhSgAAUoQAEKUIACFKAABShAAQowwOIYoAAFKEABClCAAhSgAAUoQAEKUIACFFC0AAMsRXcPK0cBClCAAhSgAAUoQAEKUIACFKAABSjAAItjgAIUoAAFKEABClCAAhSgAAUoQAEKUEDRAgywFN09rBwFKEABClCAAhSgAAUoQAEKUIACFKAAAyyOAQpQgAIUoAAFKEABClCAAhSgAAUoQAFFCzDAUnT3sHIUoAAFKEABClCAAhSgAAUoQAEKUIACDLA4BihAAQpQgAIUoAAFKEABClCAAhSgAAUULcAAS9Hdw8pRgAIUoAAFKEABClCAAhSgAAUoQAEKMMDiGKAABShAAQpQgAIUoAAFKEABClCAAhRQtAADLEV3DytHAQpQgAIUoAAFKEABClCAAhSgAAUowACLY4ACFKAABShAAQpQgAIUoAAFKEABClBA0QIMsBTdPawcBShAAQpQgAIUoAAFKEABClCAAhSgAAMsjgEKUIACFKAABShAAQpQgAIUoAAFKEABRQswwFJ097ByFKAABShAAQpQgAIUoAAFKEABClCAAgywOAYoQAEKUIACFKAABShAAQpQgAIUoAAFFC3AAEvR3cPKUYACFKAABShAAQpQgAIUoAAFKEABCjDA4higAAUoQAEKUIACFKAABShAAQpQgAIUULQAAyxFdw8rRwEKUIACFKAABShAAQpQgAIUoAAFKMAAi2OAAhSgAAUoQAEKUIACFKAABShAAQpQQNECDLAU3T2sHAUoQAEKUIACFKAABShAAQpQgAIUoAADLI4BClCAAhSgAAUoQAEKUIACFKAABShAAUULMMBSdPewchSgAAUoQAEKUIACFKAABShAAQpQgAIMsDgGKEABClCAAhSgAAUoQAEKUIACFKAABRQtwABL0d3DylGAAhSgAAUoQAEKUIACFKAABShAAQowwOIYoAAFKEABClCAAhSgAAUoQAEKUIACFFC0AAMsRXcPK0cBClCAAhSgAAUoQAEKUIACFKAABSjAAItjgAIUoAAFKEABClCAAhSgAAUoQAEKUEDRAgywFN09rBwFKEABClCAAhSgAAUoQAEKUIACFKAAAyyOAQpQgAIUoAAFKEABClCAAhSgAAUoQAFFCzDAUnT3sHIUoAAFKEABClCAAhSgAAUoQAEKUIACDLA4BihAAQpQgAIUoAAFKEABClCAAhSgAAUULcAAS9Hdw8pRgAIUoAAFKEABClCAAhSgAAUoQAEKMMDiGKAABShAAQpQgAIUoAAFKEABClCAAhRQtAADLEV3DytHAQpQgAIUoAAFKEABClCAAhSgAAUowACLY4ACFKAABShAAQpQgAIUoAAFKEABClBA0QIMsBTdPawcBShAAQpQgAIUoAAFKEABClCAAhSgAAMsjgEKUIACFKAABShAAQpQgAIUoAAFKEABRQswwFJ097ByFKAABShAAQpQgAIUoAAFKEABClCAAgywOAYoQAEKUIACFKAABShAAQpQgAIUoAAFFC3AAEvR3cPKUYACFKAABShAAQpQgAIUoAAFKEABCjDA4higAAUoQAEKUIACFKAABShAAQpQgAIUULQAAyxFdw8rRwEKUIACFKAABShAAQpQgAIUoAAFKMAAi2OAAhSgAAUoQAEKUIACFKAABShAAQpQQNECDLAU3T2sHAUoQAEKUIACFKAABShAAQpQgAIUoAADLI4BClCAAhSgAAUoQAEKUIACFKAABShAAUULMMBSdPewchSgAAUoQAEKUIACFKAABShAAQpQgAIMsDgGKEABClCAAhSgAAUoQAEKUIACFKAABRQtwABL0d3DylGAAhSgAAUoQAEKUIACFKAABShAAQowwOIYoAAFKEABClCAAhSgAAUoQAEKUIACFFC0AAMsRXcPK0cBClCAAhSgAAUoQAEKUIACFKAABSjAAItjgAIUoAAFKEABClCAAhSgAAUoQAEKUEDRAgywFN09rBwFKEABClCAAhSgAAUoQAEKUIACFKAAAyyOAQpQgAIUoAAFKEABClCAAhSgAAUoQAFFCzDAUnT3sHIUoAAFKEABClCAAhSgAAUoQAEKUIACDLA4BihAAQpQgAIUoAAFKEABClCAAhSgAAUULcAAS9Hdw8pRgAIUoAAFKEABClCAAhSgAAUoQAEKMMDiGKAABShAAQpQgAIUoAAFKEABClCAAhRQtAADLEV3DytHAQpQgAIUoAAFKEABClCAAhSgAAUowACLY8CpAnfC46zeP1egD/x8NIh4koBnCVqn1pE3p4AQyJ/LHyoVcDciDno9TSigDIEAXw1yZvdBbLwWj2MSlFEp1oICKQQKhPhL/7L1fk8sCjhTIGc2bwT4eUk/P8XPUR4UyIiA4edcRq7lNRSgQPoEGGClz4tnyyzAAEtmUBaXZQIMsLKMlgVnQoABVibweKlDBBhgOYSZN8mgAAOsDMLxMjMBBlgcEBRwnAADLMdZ805WBBhgcVi4igADLFfpKc+qJwMsz+pvV2wtAyxX7DXPqTMDLM/p66xsKQOsrNRl2RQwF2CAxRHhVAEGWE7l583TIcAAKx1YPNVhAgywHEbNG2VQgAFWBuF4mUMEGGA5hNntb8IAy+27mA1UkAADLAV1hidWhQGWJ/a6a7aZAZZr9pu715oBlrv3sOu3jwGW6/ehO7eAAZY7967j2sYAy3HWvBMFGGBxDDhVgAGWU/l583QIMMBKBxZPdZgAAyyHUfNGGRRggJVBOF7mEAEGWA5hdvubMMBy+y5mAxUkwABLQZ3hiVVhgOWJve6abWaA5Zr95u61ZoDl7j3s+u1jgOX6fejOLWCA5c6967i2McBynDXvRAEGWBwDThVggOVUft48HQIMsNKBxVMdJsAAy2HUvFEGBRhgZRCOlzlEgAGWQ5jd/iYMsNy+i9lABQkwwFJQZ3hiVRhgeWKvu2abGWC5Zr+5e60ZYLl7D7t++xhguX4funMLGGC5c+86rm0MsBxnzTtRgAEWx4BTBRhgOZWfN0+HAAOsdGDxVIcJMMByGDVvlEEBBlgZhONlDhFggOUQZre/CQMst+9iNlBBAgywFNQZnlgVBlie2Ouu2WYGWK7Zb+5eawZY7t7Drt8+Bliu34fu3AIGWO7cu45rGwMsx1nzThRggMUx4FQBBlhO5efN0yHAACsdWDzVYQIMsBxGzRtlUIABVgbheJlDBBhgOYTZ7W/CAMvtu5gNVJAAAywFdYYnVoUBlif2umu2mQGWa/abu9eaAZa797Drt48Bluv3oTu3gAGWO/eu49rGAMtx1rwTBRhgcQw4VYABllP5efN0CDDASgcWT3WYAAMsh1HzRhkUYICVQThe5hABBlgOYXb7mzDAcvsuZgMVJMAAS0Gd4YlVYYDlib3umm1mgOWa/ebutWaA5e497PrtY4Dl+n3ozi1ggOXOveu4tjHAcpw170QBBlgcA04VYIDlVH7ePB0CDLDSgcVTHSbAAMth1LxRBgUYYGUQjpc5RIABlkOY3f4mDLBct4tb9R6DazfvYezQXujZoanrNsSDas4Ay4M6W4lNZYClxF5hnawJMMDiuFCiAAMsJfYK65RSgAEWx4OSBRhgKbl3XKduDLBcp69S15QBluv1HQMs1+szt6oxAyy36k63bgwDLLfuXpdtHAMsl+06j6k4AyyP6WqXbCgDLJfsNsVVmgGW4rrE7goxwLKbSjEnMsBSTFd4ZkUYYHlmv7tiqxlguWKvuX+dGWC5fx+7egsZYLl6D7p3/RlguXf/Oqp1DLAcJS3/fRhgyW+a1SUywMpqYZb/XAEGWBwgriLAAMtVesqz6skAy7P62xVbywDLFXvNc+rMAMtz+jorW8oAKyt1s7ZsBlhZ65sVpTPAygpVlmm3AAMsu6l4opMFGGA5uQN4e6sCDLA4MJQuwABL6T3k2fVjgOXZ/S9X6xlgySXp+HIYYDnePLN3ZICVWUFenykBBliZ4uPFDhTwhABr2ZPz+DB8n1G1Q7biWBjawIHKvFV6BRhgpVeM5ztagAGWo8V5v/QIMMBKjxbPtSXgiADr2OmL+HndNhw5eQERkdEI8PdDmZKF0Lb5S9J/Go3aWL0eg6bgxNnLaNG4NuZMeOe5HffZkjVY8tMm5AvNhb9WzoVarTKer9fr8fu2/fhty26cu3gDT2JikTMoO6pWLIUe7ZuiVtWysg+KM+evYcX6HTh84jwehkdCpVIhb2guFCucH80b1ECb5nUt7vkw/DGWr9mKPYdO49bdh4hPSERIzhyo9kIpdG798nPraU+AJUf5ezd8gaAc2aT++/rHjTj13xVEPXmK+rVfwFez3pfd0Z0LZIDlzr3rAm1jgOUCncQqSgKeEGAtijqFaZFHjD3ezD8M3+fllsJK/hZggKXk3mHdhAADLI4DJQswwFJy77hO3bI6wJr39Wp88/PvEoiXRoPgnIFSmPQsPkH62ovVymPB1KHIFuAn/XvdH/9i3Kxv4ePjjX9+nY8c2QOsYoqAqlm3Ebh7Pxxv9WqD997saDwvNu4Z3h23APuPnJW+5ufrg8DsAYh8/ARJWq30tf7dWuKDgV1k6ShRl7mLV+G7FX/YLE8EdTPGDjB7/a9dhzFm2tdGC18fb3h7eyHmaZzxvI6tGmDC+30ku9RHWgGWXOVv+GE6Dh0/h6mfLYdoq+Ho2aEpxg7tJYuhpxTCAMtTelqh7WSApdCOYbUsBDwhwJoVeRQLok4a217HLx/W5HuVo0HBAgywFNw5rJokwACLA0HJAgywlNw7rlO3rAywvl/1J2YvWgERzIwc1A2vvVof/n4+0Gp1+GffcYyfvRSPo2LQqsmL+GT8QAkt7lkCGnYYiqexzzB++Ovo1q6xVUwxG+j1odOl135fPhNFC+Uznjdk7Hz8vfcYCuTLjQnD+6BujQrSLK/YuHj88tt2fLZkNXQ6PSaN6IvOrRtlurMWL9+IBd+ulcpp36I+RLBTokgBJGl1uHnnAfYdPoMaVcqgYplixnsdPXUBfd6bIdXj5bpV8e4bHVCmRCHp9YjHT/Dr5l34fOmvSEzSovtrTTBuWG+Lej4vwJKz/MF9X8OiH9ajYpmiGNK/AyqVLQ4REnp5aRAakjPTfp5UAAMsT+ptBbaVAZYCO4VVsirgCQHW+IgDWBr9n7H9FX1CsKVAG44IBQswwFJw57BqDLA4BhQvwABL8V3kEhXMqgArPDIaTbt+gISERHw8sj/ETKLUx5adB/H+pEXSl9d+8zHKliws/f/H85Zh5fodUuCzcvFEq46T536PVRt3onL5Evh50XjjOSK4EgGWt5dGKrNE0YIW10+Zt0x61C8kOAe2rZwrzfbK6PHg0WM06/qBNLPr7d5tMPQN00yw55XZtu9HuHztthReLZw2VHrc8Hk+K76cgErlipud8rwAS87yxU1fqlkRX0wfJs0Q45FxAQZYGbfjlTIIMMCSAZFFOETAEwKsYY92Y3XMJaNnUe9A7Clo3y8RDukE3sRCgAEWB4XSBTgDS+k95J71i7mtQnwEoI1TITFOhdwVdfANMT22Y2g1Ayz37H9HtyqrAqylKzZj7lerUCQsLzb/OMtmsxp2eA+PIqLwzuvtMKR/e+m8/y5eR6cBycHV+u+moWQx8xBKzEpq2H6otA7TxA/6oksb0yyqgaM/xb8HTqJT64aYPKKf1ftevXEXrV//UHpt6bzRqF21XIbZDbOvgoMC8feaeXYFPGJ2VO93k2ePicfzxGwtW0f3QVNw8uxlaa2w1I8g2gqw5C5fzJrbumIucuUMzLATL0wWYIDFkeBUAQZYTuXnzdMh4AkB1psPduCP2BtGlRCNH04W6pYOJZ7qaAEGWI4W5/3SK8AAK71iPF8OgVOLNHhy3TQbo1QXLUKrM8CSw5ZlWApkVYBlT5AkaiMeAxSPAzatXx3zp7xrrGDntybh7IVr6NvlVenxw5SHYZZV6nWyxON4tVu9Iz3eNmvc22jdtI7VLhcBWLXmb0qP740d2hM9OzTL8NB4a+QcaQF2sUD7zLFv2VWOWAh9/jdrpUcc/1ox57nXGM7NGxqMHavnmZ1rK8CSu/yUj3ja1UCeZFOAARYHh1MFGGA5lZ83T4eAJwRYXe5twZ5nd40qvio1rhR5PR1KPNXRAgywHC3O+6VXgAFWesV4vhwCJxZ44eltU0lhTXQo3FxnUTRnYMmhzTKyKsBq2Ws0rt+6bzew2BXwu3ljjOev2vA3Jn/6g/SY344188wWMf9g8iL8+fdBvPpyLcydOMh4jdhxr1HHYXbfU5w4uF97DOrTLl3XpDzZ0E7x6KB4hNCeY8LspVj7+y7UqVEB38wZ+dxLtv5zGMMnfi6dc3zbt9KjkYbDVoAld/nD3+qMN3u0sqdpPCcNAQZYHCJOFWCA5VR+3jwdAp4QYLW8sxEnEsLNVG4W6QO1lTUF0kHHU7NQgAFWFuKyaFkEGGDJwshC0ilwdLYGzx6ZZmCFVtGjVPfkndNSHgyw0gnL060KZFWAZXg0ME/unBCP16V1VChTDFNG9TeeJhZxF4u5i0XdF057D41fqiq9JmZX1X9tqLRz31ez3kf92i8Yr0n5aKBY1F0sHp/W0bXty+hqY6H4tK4VrxvaOWZID/Tu1NyeSzDi4y/xx44DaFyvGhZOHfrca/49cAoDR8+Vztmz/nPkDMpuPN9WgJXV5dvVSJ5kVYABFgeGUwUYYDmVnzdPh4AnBFj1b/2KK0nRZiqnCnVDLk3ytsw8lCfAAEt5fcIamQswwOKIcIbA4RkaJDw2BVjZC+vxwmAGWM7oC0+4Z1YFWK/2GCXtwJeemUmpvcfN+hbr/vgXTepXw4IpyUHPxq17MWb618idK0h6pE7sLmg47j2MQJPO70v/XL7wI1SrVCrLu/CV7iNx6+5DDBvQCQN6trbrftPmL8fP67anfwbWX9+YrbFlK8DK6vLtaiRPYoDFMaA8AQZYyusTJdboiS4Rfe9vN1bNT6XGT/ns+wuNXO3xhACr6s2VeKCNMyPbF9YRhb1s/9Xv3h41Hp4yfUgoUFeHkBcs1xmRqx9YjrkAAyyOCKULMMBSeg+5Z/0OfaxB4lPTe5N3Nj1qTmCA5Z697fxWZVWA1X/4LBw49h8ys37SibOX0WPQFOmxuV2/LUSO7AEwrK3Vr1sLjBjY1QxQrG1Vq+VAaefDSSP6onNr0+LuWSXd570ZOHziPNq3qI+po9+w6zaGBe7tWQNryU+b8NmSNQgNyYmdaz8zK99WgJXV5dvVSJ7EAItjQHkCDLCU1ydKrNFdbSxq3FxlVrWrRXrDR2V6hj2r6+0JAVbJGz8iTpdkRrklfxtU9A2xyXt5rQb3D5o+JBRqqkOhZpbrjGR1/3hq+QywPLXnXafdDLBcp6/cqab7x3tBl2DeohenJkGd6mkoPkLoTr3uvLZkVYD11bINWLj0Vyl02r56HgL8fTPUyNf6jcPFq7ekcEg8ctfgtaFI0mqt7k4obvDG+59g/9Gzds1uylCFUl0kwiURMlmbEWar/MvXbqNt34+kl63tspjyup6Dp+L4mUto2aQ2Zo9/x64AK6vLl8PNU8vgI4Se2vMKabc7BFhnEyMRpTX9llTBJxg51D4KEXaPalxLisZLt341a8zxQl0RqvF3WAM9IcAqeO17C89f87+K2r75bDpf+EWDR8dNAVb++joUa80Ay1EDkwGWo6R5n4wKMMDKqByvy4zA3tFeFpdXfi8J2QqYf5kBVmaUea1BIKsCLLGgerNuI5CYmCStMTVheMY21vnp178wfcFPaFS3Cpo3rImxM5agQpmiWLV4ktVO/GvXYQybkLzo+ZwJ76BF49pZ2tlioXqxkLs40rPYefdBU3Dy7GWpXZ9Pew8qK2u27th9FO+OWyCV/f1nY1CzSlm7AixxUlaXn6Wobly42wdYYvrjsTOXcOnqLUQ9iUVIzsBMLTLnxmPBKU1zhwCr3d3NOBz/wOj3fd4maOZfyCme7nrTswkRaHZng1nzthdoh7I+wQ5rsrsHWJG6eFS88YuFZ1rj+dwyNSLOmNZOyFtLjxIdLR/TcFhHediNGGB5WIe7YHMZYLlgp7l4lXWJwP5xlgFWmd46hFQ0/wMLAywX72yFVD+rAizRvOVrtmLm5z9LLRWzpwb0aAWxWLtYtyrmaRzuPYiQHjPcsecoZo59S3pMLvUR9eSptLOgl0aNWlXLYefe4xg7tBd6dmhqU/C98Qux7d8jUKtV6NulBTq1bogiYXmh1+sRGRWD23cf4t8DJ3H+8k3Mn/Jupnti1he/YNnqLVI5fbu+il4dmiF/3hBotTo8CH+MIyfOIzomFj3aNzHe69LV2+j01kQp4Gtav7oUfomF58UhFqr/7c89mPPlCsQnJKJt85cwY+wAi3raeoRQnJjV5WcazUMLcOsAa/WmnVj47a8IjzQtSlymRCH8+u0Us+4W36Dim2/B1KEoXTzMQ4eCcyq5a5wAACAASURBVJrtDgHWK3c24nSKnds+y10PnbOXdA6om971SPxDtL37u1nr1uR7FXX8bM8MkpvC3QOsm0kxePHWGgu2haH10SFbCZucZ77RIOqiaQZW7sp6lO7BAEvu8WerPAZYjpLmfTIqwAAro3K8LqMCSbHAwcmWAVbRVjoUaMAAK6OuvM62QFYGWOKuYj2meV+vhk6XvMaomGnk7e0lrVOV8ti++lPkC81ltaKjpy3Gpr/2Sa+J9bB2rp1vthtf6ovEDoViAXix05/h8NIkL90hHj80HIUK5MGfP3+S6eEhypw053tpwXnD4ePjLYVTIjQTh9hFUeymmPI4eOwc3p/0BSKjnkhfFjsMip0TwyOijfUUM8imjXnT6o6KzwuwRHlZXX6m4TywALcNsOZ8tRLfrfjD2KUiPRbf9NYCrC++W4dFP6zHmz1aScktD8cJuEOA1eDWOlxOijKiTcpVCwNylHccogfcac+zu+hyL/mvMoZjSZ6X0TKgiMNa7+4BlrVZbgJ3RkgdvB5YxqbzqS81eHLNFGAFl9WjXD8GWI4amAywHCXN+2RUgAFWRuV4XUYF4qNUODLdco3MvLV1KNGBAVZGXXmdbYGsDrDEnW/cvo+fft0mrU115144nsXHw8/XFwXyhaBKhZJo1qAGXqpZ0epjdOJ6sUi6WCxdHCl3JEyrX8Xsrl8378KxUxfxKCJKCoWyZ/NH4YJ5UatKWbRuVlfWCSAiMFq96e/k+0VGw9vLS1ob64XyxdGlzcuo/kJpiyqL8GrNpn8gHn28dechYp/FIyRnDlSpWBIdWzVA3RoVbTYzrQBLXJjV5afVB3zdXMAtAyzxjSZ2bRChlRjovTo2Q1iBPKjS9A2rAZZ4dlY84/pC+RL4ZdF4jhEHCrhDgFXz5mrc0T41qg3PWQUjclZxoKL732pb7E30eWDahVC0+JOQOuj5nGBFbhV3D7AOPruP9vdMob/Bb2xwdQwOqmST88QCLzy9bXo5RzE9Kg5kgCX3+LNVHgMsR0nzPhkVYICVUTlel1GBuIcqHJtjGWAFldKjwpvm7098hDCjyrwupYAjAqzMiotH6mq3ekea0CFmMYnZTDwo4IoCbhlgGZ7Z/WBgF/Tv1tLYLxUa9bUaYIlHDBu0HypNOdyzPnnBOh6OEXCHAKvSzRWI0D4zgvXPUQ5TcmXtYoeO6R3l3GXT02t4++FOswp9GFwNQ4JesFnJ+EgVbu5QIT4SiI9QQeMHVB6a8WDF3QOs7bE38XqqkFDgDg16AaODq9l0PjZHjbiHpjWwAvLrUWVYxp2VM+pcoyYMsFyjnzy5lgywPLn3ndP22HsqHJ9nGWD55tKj+mgGWM7pFfe+qysEWGt/34UJs5ciOCgQf6/9THqMkAcFXFHALQOshh3ew+OoGOzbtMhsu1FbAZZ4rrZK0zel/jux/VtX7EeXrbM7BFglb/yIOF2SsQ86ZiuBBaH1XbZPlFjxNTGX8d4j0zPxoo4Dc1TE+Fw1bFb38Xk1zi41BSvixOqjtPANSX6OPr2HuwdY62OuYtCjfyxY+gWWxdSQF21yHZ6hQcJj0yOE1j4gpNea59svwADLfiue6RwBBljOcffku8bcUOHkF9Y/nNedZfp9TRhxBpYnjxT52u4KAVbXtyfj9Pmr6NP5FYwa3F2+xv+/JDHD662Rc9NVrtg9UCzhw4MC6RFwywCrcpM3EJwzEDvXfmZmYSvAEieJa7y8NDiy5ev0+PHcTAq4Q4BV8Nr3ZgpN/cPwQ17bu3pkkswjL/855gJGPtpr1vZu2Upibmg9mx6Pjqtw4RfzX2CLtNShYEPz9S/sBXV2gLXv2X2zqtbxy2tv1e0676eYCxiVylhc2Dl7CXyW23YgKxbKFQvmGg6vbECtCeYfEOyqAE/KkAADrAyx8SIHCjDAciA2byUJRF1W4czX1gOsaqO08EvxhywGWBw0cggoPcDasecY3v1ovrRz4aZlM1G4YB45mm1WhtghsE7rQekqt0PLBpgyqn+6ruHJFHDLAOuldkMQH5+Ag5sXS+tgGQ5bAda1m/cgFnALyx+KLb/M5qhwoICrB1jP9FqUuL7cTKyGbx6sz296dNWBnG57qyXRZzEp4qBZ+5r7F8J3eU1b6aZu/L39KlxZZ/4LbGAhPSoNydjjbc4MsCJ18ah44xezJl4q3Av+astdljI6CL6MPo2pEYctLn8loBCW5rHtvG+cF/QpNsERVXpxGgOsjPZDeq9jgJVeMZ7vaAEGWI4W5/0i/lPh3PfWAyyxBpZYC8twMMDieJFDQGkBlni6SOxUKI4du4/iwxlLEPM0Dj3aN8FH7/WWo8ksgwJOE3DLAOvNEbOx7/AZLP7kA9SrZVp82FaANXvRCny/6k+0aV4XM8e+5bTO8MQbu3qAZS1YKOUdhJ0F23tid2ZZmxdEncSsyKNm5df0zYPfnhMU3tmlxrXfzR8hFAXU+CgJPjnSX1VnBljWdgg8GtYFeb0C0t8QG1d88vgY5j8+YfHqS375sCrfqzbvs3e0ZYhWZ0YSVJb0stWVBZkEGGBxNChdgAGW0nvI/er36KQaF36y/iZUvIMO+WqbZmIzwHK//ndGi5QWYPUaMg037zxAbFw8xKN94qhUrji+mzcG/n4+ziDiPSkgm4BbBlib/tqH0dMWo0C+3Phq5nCUKFpQArMWYG3atg9jpn0NkVSLb+paVcvKhsuC0hZw9QBL7D4odiFMeYRq/HG8UNe0G88z7BawFq6U9A7CP88JCm/8pcatbZa/wBZvp0O+uul/jNCZAdaO2Fvo/WCbmdfOgq+hlHdOuw3TOnFCxAF8G/2fxWkv+ITgjwJtrF6uiwf2T7AMsGpOTIK3fNlaWlX36NcZYHl097tE4xlguUQ3uVUlHxxR4dIq6zOwCjTQoWgrBlhu1eEKaIzSAqwx07/G7gOnEPM0Vvo83LpZXbzRvSV8fbwVoMUqUCBzAm4ZYIkwSszC2n/krLTDQrtX66FW1XIYNeUrFC2UD1NGvYFL125jy86D0jniaNmkNmaPfydzmrw63QKuHmBdSYxG/du/WrT7dtG+6bbgBbYFJkcewtdRZ8xOCNH44WShbjYvurZRjTu7LQOsHCX0qPhW+h8jdGaA9dOT8xgVvs+srRvyt0J131DZhs3wR7uxKuaSRXnFvHNgd8EOVu+TGAMcmmIZYFUfo4VvcMYWy5etQR5SEAMsD+loF24mAywX7jwXrfq9/WpcWWd9BlZIRR3K9GaA5aJdq9hqKy3AUiwUK0YBGQTcMsASLmK65Kgpi/H33mNpMjWtXx2zxr0NP19OqUwTS+YTXD3AOpMQgeZ3NlioyL0+kczsLlfch+H7sOzJ+XQFhZfWaPDgkGkNPOPFKj1qjtfCO1v6GJwZYM19fByfPj5uVuEf8zbFy/5h6WvEc84e8GAHNsfesDjjeTMK4yNVODLT8q/clYclIVt+2arGgp4jwACLw0PpAgywlN5D7le/O/+qcW2T9QAroABQ5T3TOo18hND9+t8ZLWKA5Qx13tNTBdw2wDJ0qAiwVq7/G0dOXjA+Ayxe8/HxRrWKpdC9fROIAIuHcwRcPcA6Ev8Abe9utsA7XKgL8mv4DJVco2rYo91YbWV20NnC3RGk9rV6m/M/qhF+yvovsCU7aZGnZvpmCDkzwBoRvge/PLlo1s4vQxuibbZichGj670t2P3srkV5fioNLhexvuBn3AMVjs21DLAqvaNFYNH0+crWEA8riAGWh3W4CzaXAZYLdpqLV/nmdjVubrX+/q/y0qPONNMsbAZYLt7ZCqk+AyyFdASr4RECbh9gGXpRp9MjPDJK2oHB398XIcFB0uOFPJwr4OoBlvjALz74pz62F2iHsj7BzsV1o7sPfLgTG59es2jRnoIdUdQ70GpLz36rweMLVmZgAQgup0O5vulbB8uZAVav+3/h77jbZu2cGVIHvQPLyNbLre5sxPGEcKvl3SzSB+r/72aT8oSYW8DJhZaPEJbvr0XOMgywZOuc5xTEAMsRyrxHZgQYYGVGj9dmROD6FjVu77C9k0itCUnw+v8sbAZYGRHmNakFGGBxTFDAcQIeE2A5jpR3So+AqwdY22Jvos+D7RZN/jVfC9T2y5seCp77HIE+97dhW9wtizM25W+Nqr65rV558gsNYm5YD7BUGj1qTdZCk461LJ0ZYDW5vR7nEiPN2vlRcHUMCjLtsprZAdTg1jpcToqyWszpwt0RbGWmW/QVFU4vtvxDQOmeWuR+gQFWZvvEnusZYNmjxHOcKcAAy5n6nnnvq5vUuPuv7QCr0mAtAgsnv0cxwPLMMSJ3qxlgyS3K8ihgW4ABFkeHUwVcPcASs4LE7KDUx3d5mqB5QCGn2rrTzW093rY8T1M0DrC+DtSxTzWIu289wBI2ZXppEVLJ/pDFmQFWhRu/4LHY8i/FMTToBYwOriZbN1e7uRL3tXFWy9sf1gmFvLJbvPb4ghpnv7X8kFCysw55aqRvhptsDfGwghhgeViHu2BzGWC5YKe5eJUvr1Pj/n7bAVbpHlrkrswAy8W7WVHVZ4ClqO5gZdxcgAGWm3ew0pvn6gGWWJdJrM+U+vgsdz10zl5S6fwuU792dzfjcPwDi/ouCK2PjtlKWG3H4RkaJDw2BVgirAo/Zfq3mCEkZgrZezgrwIrTJaHkjR8tqtknsAymh9Sxt/ppnlfqxo+I1ZkWtk15wV8F2qK8Ty6LMsJPq3F+ueWHhKJtdChQjwFWmugynMAASwZEFpGlAgywspSXhVsRuLhKjYdHTO9N3oF6JD4xvf8XfkWPsMbJ7/+cgcUhJIcAAyw5FFkGBewTcOsAa9/hM9ix5yiu3byPp7Fx0OnTnm2x4ssJ9snxLFkEXD3AEjvjiR3yUh8Tg2viraAKshixEEg7PYodH1Mfk3PVwps5ylslOjBJA22c6RfW8v11OLvU9AutyguoM816YGOtQGcFWFcSo1D/9jqLKnXIVhwLQxvIMjzEz8ZC13+wWZatR2IfHlXh4krLRwgLN9MhrCkDLFk6J41CGGA5Qpn3yIwAA6zM6PHajAik3sQlZykdHl80vf/nqa5DyS7J71EMsDIizGtSCzDA4piggOME3DLAEgu2j5r6Ff7YcSDdkmd2fp/ua3hBxgVcPcD6OuoMJkcesgAYlrMyRuasmnEYXmkmYGt9puc57x1tvrh43VlJODRVY/ZXWBFq5SxjX9DirABrz7O76GJlo4AmAYWwLE8TWUaKeDxRPKZo6/ghTxM0tfJI7L39KlxZZxlgFWigQ9FW9rnK0gAPLoQBlgd3vos0nQGWi3SUG1Xzv+/UiDxnCqzy19Ph7m7TvwOL6VFpIGdguVGXO70pDLCc3gWsgAcJuGWAtWL9DkyZt0zqxoL5cqNW1XLIGxpsdRet1H09uF97D+p+5zfV1QOs+VEn8UnkUQvI/oHlMCWktvOB3aQGtW6txu2kpxat6RtYFtNCXrT4ui4R2D/OFGCpvYEXpyYh9boYeWrqUbKTfY8ROivAWvf0CoY83GXRxtq+efFr/hay9LCwFca2jkWhDdEuWzGLl+/8q8a1TZaPEOatrUOJDq4XYEXo4nE+4bGxnSEaX5T2zimLcVYVwgArq2RZrlwCDLDkkmQ59gqc/lqN6Mum9yaxLuOl1aZ/+wTpUWMsAyx7PXle2gIMsNI24hkUkEvALQOs7oOm4OTZy2jV5EVM+3AAvL0sZwjIBegq5Rw49h9GfvwlwiOjsXXFHCnYs3W82HoQnsTE2ny9ddM6mDXubauvr/vjX6zZ9A8uXbsNrVaLImH58Nqr9dCjfVNoNJYfdF09wJoZeRQLo05aWMj5eJerjLGsrGelmysQoX1mcYu22Yrhy9CGFl9PiAYOTzMFWN7Zdag5XjxCoMLZb0w/D7wC9Kg5XguV7bVejWU7K8D6POokZlgJScv5BGNbgXaysP+XEIGmdzbYLGtmSB30Dixj8fqtHWrc2GKJl7uKHqW72xcMytIAmQr5LeYKBj8yhYUN/Qvg57zNZSo9a4phgJU1rixVPoHUAZYq/B5UsTHQB2QD/AKhz2a5QYR8d2dJniiQehfiSoO0OLXI/LOAWEJALCXARwg9cYTI32YGWPKbskQK2BJwywCrZouBiI17hp1rP0NoiLL/ep7VQ1Ov1+Obn3/Hgm/XQjxaKY7nBViJSVpUafoGAvx9UaJoQavVq1+rEqzNVPtw+hJs2LpHCgyrVioFby8vnDh7GTFP41CvViV8MWMYvDTmv0C4eoA1KeIglkSftXBqEhCGZXmaZnX3ekz5YhFzsZh56qOeX36szPeKxdfjHqpwbI5prAVob6J26HQ8G7kQB8XaWPGmtbEqvKVFUIm018dzVoD1Ufh+fP/knEUbC2iy4VChzrKMgUPPHuC1e5ttljUuVw28k6OixevXt6hxe4dlgBVcTodyfV1vBtYvTy5gRPheYzsr+4Rgc4E2shhnVSEMsLJKluXKJZA6wPJZsRBe/5gC88RXeyCxXT+5bsdyKIDj8zSIvWd6n68yXItzP6jxLCLF195PQkBeBlgcLvIIMMCSx5GlUMAeAbcMsKo0exM+3l44uPkrewzc9pyoJ0/x4fSv8c++E3ixWnno9DocPHbuuQHWw/DHaNRxGOrXroSvZn1gt40IrkSAVbxwfnw9ZyTy50nesUwEicMmfI49h07j3f4dMPD1tmZlunqANfrRXvwYc8HCqbpvKDbkb2W3H098vkDBa9bXpqvgkwtbC5iPKVFSzC0VTi40BViB2vOoFTAZcR8vkxYdF4uPG458dXUo3i7tsMVZAdYbD3bgz9gbFkCBKm+cK9JTlqGzI/YWej/YZrOs93JWxigra7pd26jGnRTrihgKCCquR4W3XW8G1tLo/zA+wrR2YhGvQOwN6yiLcVYVwgArq2RZrlwCFgHWonHwOmX6Pktq3AEJnd+R63YshwI4+okGz8JN7/PVR2lxaZ0aURdNXyvXR4vg8nrOwOJ4kUWAAZYsjCyEAnYJuGWA9Ur3kbj/KBJHtyyBWm16s7JLxI1O6jZwMk6du4qeHZpi1ODueGf0POw9fPq5Ada5SzfQ8c0J0mN/08a8abfGa/3G4eLVW/jpi3GoUqGk2XWRUU/QpPP78Pb2wj+/zoefr4/xdVcPsN57tAtrYq5YOJXyzoGdBTvY7ZfWife0sRj8wPRoUy6NL5bkeTmty9zmdVsBVphXNhwIs5yF9PiSCmeXmAKs4MRjqI4JiP10HSLOqHFumfn22jXHpR22OCvAanVnE44nPLLal7eL9pWljzfGXsXAB//YLOvNwPKYHFLL4vXLa9W4f9ByBla2gkDlofbv8ChLI2Qo5MvoM5gaYdqUIUjtg7OFe8hQctYVwQAr62xZsjwCqQMsvykDoL5zzVh40kstkNDrfXluxlIoALGEgAYJ0SkCrLFa3Nquwv0Dpverom10KFBPxwCLI0YWAQZYsjCyEArYJeCWAdbkT3/Aqg1/44f5H6JGZct1W+yScYOT9h85i7sPwtG+RX2pNX3em4HDJ84/N8Dad/gM3hwxG290b4n33+5il8Kde4/QrNsIFC6YB3/89InVa96f9AW27DyEhdPeQ+OXTLvzuXqA9daDv/F77HWLNoeq/XC8cDe7/Ow56UTCI7S8s8nsVLnCC3vu78xzonUJKHfjZ6tVyKbywoUivSxeSx1S5U7cgypx4xC7aCt0WhUOTtRAl2T65bbSEC0CCz3/MUJnBVjVbq7EfW2c1fafK9wTgWKF+kweP8dcwMhHpkfn/FVeiNObAqiu2Uri09B6Fne5uEKDh8cs/0jgl1uPaiPTDgUzWW3ZL58TeQzzok641PcZAyzZhwELlFkgdYDlP7QVVIkJxrsk1XgZCW+MlfmuLM6TBQ5O8kJSirfNWhOTcP+QGtc3p9iZsK4OxdoxwPLkcSJn2xlgyanJsijwfAG3DLCu3bwnzSIqWigfls4bjaDAbBwHAHoNmYZjpy8+N8D6fft+jJrylTRjq09ny7WFrEFu//coho5fgNbN6mDWR9YXd/9h9RZ88sUvGNCzNYYN6GQsxtUDrN73t2FH3C2r40vOgGl77E28/mC72X2OhXVBHq8Atx/bYvZZ9ZurbLbzapHe8FGZr632YH8iLq3zN16TL+EvVHw2HXGfrIY+MCfO/6hG+CnTL7IFG+pQpOXzHyN0RoCVpNehyPXkHVWtHQfCOiHMK/MLIC+OPo2PIw4bb1HCKwcuJ0Ub/90yoIjVGX/nl6sRftpyBpZ3IFBznOvNwJoScRhfRZ82oz5dqBuCNX6K/T5jgKXYrmHF/i9gFmA9jUbACPPHcrUv1EH8Ox/TiwKyCez/yAspl80UuxBHnldDvGcZjpxl9SjfT8sZWLKpe3ZBDLCU0f83bt9Hi56jLSrj4+ONHNkDpGygbo2K6NK2EYKDAi3OGz11MTZt22f2dbG2c47AbChRtAAav1QNnds0MnuayFrLd+49jj93HsTx05cQHhmFJK0OuYICUb5MUTStXx1iQ7TUm5uJpX/qtRsiFbd3wxcIzG79M9674xZgx+6jqFOjAr6ZM9ImfMteo3H91n0pC6ldtZx03sudhuHBo8doXK8aFk4d+txOExuzjZv1rdUlgJzd224ZYAlUEaqMnvYVAvz9pBlIL5QrgeCcgVZ3wkvZCZXLl3B2n2TZ/e0JsJav2YqZn/8shVFiAfyo6KdQqYA8IcGoUaWM9A2gEl9IcXy/8k/M/nIF3u7dBkPfsL5ezLZ/j+C98QvxSqOa+HTSYOPVrh5gdbr3J/Y9u2e1zy4W7oUAtWknvMx07JqYy3jv0b9mRfyZvzUq+dreTTIz91PStVcTo1Hv9q82q3S4UBfk15j/kL+/8QEu7y5gvCYs4TeUfTYfzyYuhS5fITw6psKFFabQyzenHtU/fP6MIWcEWHeSnqLmrdU22y7W/xLrgGX2SD3zqJ5fPuxOMa7r++XHCiuL5Z9dqsHj85YzsNQ+wItTXC/AGhu+Dz88OW/GubtgBxTzzpFZ4iy7ngFWltGyYJkEUgZY6usX4DfT9DuAuIW2TBXED5st091YDAWAvaPNf/eqOysJT+8AJ+abvu4fqkfVEQywOF7kEWCAJY9jZksxBFj+fj6oVqm0sbj4hEQ8eBSJG7cfSF8Tk1uWzBmJCmWKmt3SEGCVLFYQuYODpNcSEhNx72EkxBNH4igSlhffzRuDvKHBFtV9FBGF4RO/wNFTyesjZwvwQ8F8ueHl5SXdX7wuDrFm9IKpQ1GscH6zMgzL/4hwSYRMqY/ExCTUbTsYsXHx0sZou9cvtBp03X8Yicadh0tB276NX0AEeOIwBFji/2ePfwctm9S2Sc4AK7OjMQPXiwH8weQvcfaCaZ0Fe4o5s9P6YtH2XKv0c+wJsAwzpWy1pWzJwpg7cZCUYBuOz5euw5fL1mPEwK7o162F1UsPHPsP/YfPwovVy+PbuaNMP1ASrc968daopPXLErU66NJeX9tp9PUvrsOhuOQfhqmPS+V6Isw787NjRLkLHp7EqLvmfxFYW/QVtMph/oPXaRBZeOPTz8JR48Iam3c4VLoTKvmFmL1+YdF/OH/K9MZVJP4nlIr/Br6TFkFdqiIS4/TYMlIHfYrMqtEENQLz214zz9c7+S+3CYk6pL1noTwg+2PvodGl9TYL+6tEG9TPZgrqMnrXkbf3YmH4KePlvYJL48dI0+YENfxDsbuU5Zpuez/VIfyidY3WX6ihcrE1CAfc/BvLU7RbgPxbsj1qBuTJKG2WX6dRA14aNbQ6PZK0jhqZWd4sp9wgPh64dx/w90/+L1CeH99OaYuSbmr42RmfqIP24D9ImD/erHrqEuXh+7Fnb7qjpP5y9bpo44HNw0xv7hofoOV8DbSJemwemuIXShXQZpEGXhoVNGqVNENCq+DfN129X9y9/oafc+7eTqW3zxBgic+pvy+faVFdEUJNmPMdxJI55UoVwZolk83OMQRY1sKdy9duS9mCWPO5Ud0q+GL6MLNrn8TEosvbk6SQrETRghj5TldplpQImgzH+cs3seDbtRAztESItnLxRBQqYPodc/43a/H1jxvRs0MzjB1quVHT7oOn8PaouciVMxARj5/YDKE2bt2LMdO/Rr1albD4E9OmbCLAEvWMe5aAnEHZsfGHGVJZ1g4GWA4e7fceRqDzgIlSx6b38PQAS3gdOn5OSnML5MuNAH9faaCf+u8Kvlv5h7SLoZiZ9dvSqdLAF8fcr1Zh6YrN+PDdnujVsZlVcvHoogjQqlYshR8//yi93aLY8yudWYnTzyKs1u9k+S6o5G8erGS0IeNuH8C0e0fNLv+qcAO8HVoho0W6zHUHnt7Hi+dsz8DaUbotXg4saNaeYxP34/Lt6savlXz2DYom/IRsYz6Bd7W60td3z0/CvVOmD/wV2mlQro3l43DOhFoTeRmdr2y1WYX1JVqgbc7Mh5hvXPsbS8PPGe/zUb5qZuOtrF9O/Fehu0U9tk9JQuR166FJu4Xe8DY9xelMRrvv3fXKVqyKvGx2/h+lWuHVHIXtLoMnuq7A2fN6fLrINHMwf15gytjMrzHnuiLy1zx+00rELVtoVrC6UDHkmLtc/puxRI8USIgBNgxLNLbdJzvQ9rPk72PxdfG64Wg12xv+lpMoPNKNjaaAOwikFWCJNop8oEH7odDr9dIMppSPEj4vwBLXXr5+B237jJUmWezZ8IX0WKLhEI/bidCnfOmi+P6zMdLsK2uHuO/4T5ZK54onv35eZPqjjvic3W/4TIgZYOu/m2Zx+bT5y/Hzuu0Y1KcdFv2wHi0a18acCZa7+BrqMnJQN/Tt8qqxHBFg5cqZAyWLFpQelXz15VrSxBRrBwMsB39HGDpXhDCig1+qWRF5Q3PZtSOheOTQXQ97ZmA9r+1arQ4DRsyGmE018PW20jOx4kjXDKxqC/rYFAAAIABJREFU5fHtp6YZWOHRpoVcU947MMALPl5qPIlLkma8KPWocXU1rqVYKyhlPTeEtURdf/OpoRltxwf39+CHaFPAIMoZmasqRodYTi/N6D2Uet2e2Ltod3uzzeotzdcYbQOLmb1+cfxe3Hr6kvFrZZ4tQKGEddD1Hw193eS13e7sB86vMs24yl4QqPmB7RksITmSd8+MeJIAvYMmunz1+AzGPdxvs+2L8jZElxzmu35mpB/73d2OjTGm2apz8ryEEQ/2GIvKp/HH6eKWu/EdmAXE3rc+a63ueD18XeyDQY87W7H16U0zwsX5GqFjoHIfLRd/9c3u7wUxuyUmzvUe28zIeM2qa/YdAH7bZBrPQTmAsSMd9M2eVY1SQLmGn53i/V79y0Kotq8zr1Vofmhn/KSAmrIK7iAg/qa4b6rp+1i8D4n3I3Ecma9CdIp9d6oM0qNQRQ18fTTSz0/xc5QHBTIiYPg5l5FreY18AvYEWOJutVoOxNPYZ9ixep7Zo4BpBVji2pfaDcHjqBis/eZjiCeTxCEmzzTvNgLis7IInkQA9bxDzIB6tcdI6ZFC8bn4xWrlpdPFI4J12gySZkjtWrcAIcHmS1iIe4jHA3f9tgCvdB/5/xDuc4h1ulIeYnM1Mdts3dKpKF08zPiSCLB8vL2x8quJaNt3LMIjo7FgylA0qW/5eZIBlnzj0q6SXu0xCjfvPJDWWhJrLvFIFshsgCXK+HvvMQwZO196rnj5wuRdg5at3oJZX/xi1xpYYuG6+VPeNXaJq6+BJRYXF4uMWzu+y9MEzQMKyTL83n6wE5tizR+H7ZG9FGbnNoU0stxIgYXsfHYbPe/9ZbNms3PXRY/spscFxYlXRv6Le+qXjddUiJ2B/ElbkdDpHSQ1SQ5eE58Chz4WP/BNv+hWG5MEPxuhizPWwJoacQhfRp+x2fbpIS+iT2DZTPda9/tbsCvurrGc5XmbQmxQYDiyq7xw3spuj0dmahAfaT3AqvJ+EgLyZrpqDi2g670/zdb+EjeXyzirGsI1sOST/WOLGvsOmGZh+vkCY0czFMyscMo1sHy/nADNSfPH4cXGGmKDDR4UkEMg7qEKx+aYPsyl3BX3wi8aPDpues8q2UmL0o28EODnhccxCYiNd73dc+UwYxmZF3DUGlgnTutx7abnBK1VKqpRpJDt5T1S95w9AZZhfSjxCN+eDZ+bre1sT4D1YutB0tNJW1fMkda3EsfK9Tvw8bxlqFG5DH6Y/6FdA2rOVyvx3Yo/0KXty5j4fh/jNQNHz8W/B05ZPB546epttOv3Eaq/UBrLFozFyClfYvP2A1gyZ4S0ML3huHX3oRRu5c4VhH9+nW9WFxFgJSVp8e9vC7Fl5yG8P+kL6bwNP0y32PSOAZZd3SjfSdWaD0BiUhKOblkCb295FtGWr3bOK0mOAOvClVto33+clOaKVFcc/+w7gUEfzrNrF8L+3Vrig4FdjAiuHmCVu/EzonXWZ5HNy/0SumQvJUuHd773J/amWiy+SUAYluVpKkv5Si7k96fX8dbDv21WcXRwNQwNesH4uioqAhcmX8BD73rGr1WOHY/QpN1IbNETiW37Gr9+erEG0VdMb4xFW+pQoKH1XwycEWANfvgPfnt61VjfQl7ZcTPJ9PxD6rZntB9b392EY/HJi1OKY3OB1mh5Z5NZcdZ21Tz4sReSnlq/a6XBWgQWdq3ZK23u/o6j8Q/NGjQiZxUMz1klo7RZfh0DLPmIf/xFgwsXTT8PxH4lk8czwMqscMoAy2/aQKhvmT+mq/fxRdx88583mb0nr/dcgae3gRMLTL/7ZysIVB6a/H18Y6sat7an2IG4sQ6VO2gYYHnucJGt5Y4KsJat1GLXXs8JsHp31aBhXfuX90grwIp5GocRH3+Jfw+clNaYEmtNpTzSCrDOnL8mrXMl1o3auXa+cXO4j2Z+g9/+3G32hFJag0vsJCh2FBSzuMRsLsPx/ao/MXvRCnRq3RCTR/Qzfn3JT5vw2ZI1GP5WZ7zZo5UUXokQq/trTTBuWG/jeWt/34UJs5da/VwuAiwxu2v/pkXS+cMmfI6/dh1Gu1dewvQPB5hVmQFWWj0o8+t1Wic/y7nv/50jc/EuW5wcAZZY9O7NEbOlpFckvuIQ0x8bdngPhQvmwR8/fWLVRyS8IukVz+mK53UNh6sHWEWvL0Oi3vobycTgmngrSJ41qprcXo9ziZFmtmL3ObELnbsf1nZgTNlmYSysDYfmvyM4vcQHkd5VjV+r9vQD5NIeRVKDNkjobto29u5uNa5uNL0xBhbVo9I71v8C64wAq8PdP3Ag/r6xHU39w7At7pbx3+/kqIBxuTI/y7TR7V9xMTHaWO6ugh3Q9u7veKyLN37tbOHuCFL7mg23/eO9YCO/Rfk3tchZyrUCrGZ3NuBsgvmadm/mKIfJuWzv0uLs7z8GWPL1wPzPNQiPMP9L77gPk/D/zXvku5GHlZQywPJ//zWo4ixT79gvbc+y9TAuNjeTAk+uqXDqS9MMrJTv6w+PqHBxlem13JX1qDVAzQArk+a8HGCAlTWjIKMBllgSSCwhZDi0Oh0iIqPx38Xr0i6Cfbu2kEKb1MfzAqwrN+5i6LgFuHrjLsYO7YWeHUyTCMTC6mKB9Smj+qNDywZ2YZy7dAMd35wghWFiRpThMEwWEYu7//mz6XO14XO84RFFMQusXrt3pRlU21d/arze0AYRSKVuowiwRIh36I/F0vniM7x4lDAq+im+mvUB6teuZCyHAZZd3SjfSW+8/wn2Hz2LvRu+QFCObPIV7OIlyRFgGRJmQ/prIDGU/dMX41ClgvmaPJFRT9Ck8/vQ6fXS87wpF7xz9QCr4DXbu1YOC3oBI4PlWaOq2s2VuK+NMxuBudV+OFG4m4uPyrSr/3PMBYx8tNfmiV2yl8C83PWNr3ttW4tjf1bBE00Z49dqxQxEDt15JNVoiIQ3xhm/nhANHJ6WcpamHjUnaOFt5ceGMwKsOjfX4obWtBnFoKCKWBR12lh/uR4jTf0o7PFCXSFmI6Wc7XUwrDMKepnDpN6qPGUnlemtQ0hF1/or4Uu31uJakvnmH52yF8f83Pb9MpL2aJb/DAZY8piK3W4nT/OyWN9u1PtJyM7dCDOFbAyw7j5GwHutrZYVN2899H6mxXAzdUNe7NECURdVOPONKaQKKqlHhQHJf5gSM67FzGvDkT1MjwZjGGB59ICRqfEMsGSCTFVMRgMsW7URT2Y1b1BDWry8cT3Lz2iG8EfMisqTO3lNEfHI3b0H4RABlrh+cN/XMKCn+XuZ4XNw6okaz1MxzBbz8fHGsa1LzE4VE0NEuPTXijnSpmoiYKr32hDkzxMiPbpoOPoPnyWtTb3660nS4vHiaNRxGB6GP8bfaz5Dntw5zco17EJ4+M+vjV837FiYLzSX9CihYfF5BlhZM6Ztlrr1n8MYPvFzDBvQyWKAObgqirqdPQGWmJrYpnldlChSwKzu0TGx0rae4lldkfRuWjZD2qnQcIipmANHf4rihfPj6zkjkT9PLuml2LhnGD7xCymVFkm1SKxTHq4cYMXoE1Hmuu2FZ/sGlsW0kBdlGQO2grLrRV6Hl8r+qbWyVMbBhXz75CwmhB803rWwJjtuaE2P0TXzD8P3eU1/BfFZNgcHT/ZArMa0c1ydmD7IprsBbbnqiB9qvq3uyYUaxNwyzboo3l6HfC9aBi/OCLBS9/vnoQ0w5OEuo0WbgKL4Kk+jTPdI6es/4qne9KjUxcK90O7eZrPZSNsLtENZH9MCYbpEYP84249ol+ysRZ4arjUDq/rNlbiXKihuElAIy/I0ybRxVhXAAEse2fBHKsxfZL4Iqij5vSFahORyrXEsj4h8pRg+2N09fhr+0wdaLThu5krog5J/b+BBgcwIRJxV49wPpt+LgsvpUK5v8nt6QrQKh6eZvs+9AoDmn6g4Aysz4LxWEnBUgMU1sJ4/4Gw9QigWV4968hSn/ruCb37ehKOnLlrdwc8QYFm7i5jVJQIew2fclOfIOQNLlDt62mJs+msfpo5+A+1b1IchZEr9WXr5mq2Y+fnPeOf1dhjSv70UsrV5/UOUKFoQG7633MXQWoAl7ieWAhJLAnVp0wgTP0heaoUBlhN+uImF1NZs2imFWF3bNra5laUTqua0W9oTYNVu9Y40tVAktsULF4C/ny/uP4rE1Rt3pGdm84YGY9GM4cZdF1I2xrAYnUinq1YsKe1ycOLsZWmhO5EKi0XtAvzNH0Fy5QDrkTYOlW+utNmf7bMVhwgcMns8LyizNisms/dT2vVfRJ3C9MgjxmrV9s1r9lhdDZ88WF+gpfF1vxmDsTtiOhLUIcav1X/SCb76cOgKl8KzD5Of+zYct/5W48afpl92g0rpUeFNy8cIHR1gRejiUenGL8Z6Bqt9sDC0AXqlWFy9gX8B/JK3eaa6TMyMLHT9B2MZIsq7VbQv2t/bjIPPHhi/vj5/S9TwzWP8d2IscGiy7QCrWFsd8r/kWjOwyt/4GVGpnoms7huKDflbZco4Ky9mgCWP7vkLKvy0wjLAeuetJOTPJ889PLUUwwe7+3/vgFjE3doR9/Ey6EPl2bXXU53Z7mSBRydUuPCz6Xs5pLIeZXqY3tP3faSBPsn0R6tms4GgYG8u4s4BlCkBRwVYmaqkB1yc1hpYgiBJq0XXtydDPMI3a9zbaN20jlHG2iOEer0ePQZPxcmzlzF6cHe83jl5N/OUx7hZ30qBjyFIsofasDFa6jWwxLViPS3x1JOYVDJz7FvGBdu/nj3C7NFIw4LthjIMi8n37tQcY4ZY7h5uK8ASC9uLRwlFBrB03mjUrloO67fswdgZS/Bu/w7S2l5KOlR60Studoi1li5fv4Mf126VptyJQKVk0YIIDckJ3zQWs/js4yFupmFqjj0Bltj1YMPW3Th97qq0TadYDD97gD+KFykgTbUUyWzKmVepsYT9j2v/wvnLN6StRAvmD0XLxrXRr1sLq/auHGCJx6tevLXG5nhp7B8GsZtbZo8bSU9Q59Zaq8WID9biA7Y7H3Mij2Fe1AljE9tnK4Z1KRY2L+GVA7vCkncWFIf/kBbYGbARWpWf8WsvR7eABs+gD8mLuKk/mnE9iwSOzkwRxKj0qDVJCy/T5dL5jg6wziRGoPntDca6lvcOxszcddD27mbj16r65MamAtYfybF3TETp4lE+RVAWpPbB2cI98PqDbdgea1pva3mepmgcYNqKN+GxCodnWH7gN9y38Cs6hDV2rQCr2PVlSEi1pl0JryDsCmtvL6fDz2OAJQ/53n1q/PmX5WzWN/pqUcTFNiOQR0S+Ugwf7B6s/hk+q83/gGC4S9y4xdAXLC7fTVmSxwo8OKTCpTWm9yYxE1jMCDYcx+ZqEPfAFGDVGwXkK80Ay2MHjEwNZ4AlE2Qmi7EnwBK3MCyILmY3iVlOhsPWGlhi8fauAydLEzt+Xz7T4tG8VRv+xuRPf0CtqmXx3bwxdrXi08Wr8O0vm9G1XWNMGP662TUPHj2GCJvELodbfpmNBu2H4ll8grQ8UuoN6tr2/QiXr92WdhwUs7H+2HEAX84cjgYvVraoh60AS5y4ZtM/mDjnO4TlD8Vv303Dzr3HpAXvGWDZ1Z2ZP6lCI9MuY+kt7cxO22sapbcsnp+2gCsHWBcSH+Pl27/ZbGQ131BslGHmxomEcLS8s9HqfZbkeRktA4qkDe3CZ0yJOISvos8YW5B6Hahcal+cKtxdel398DZ8J/TD9hw7TC3W69D0SfIjYHo/f8TNM4VChpOOf+qFWNNa6SjZVYs81cyzfUcHWNtib6LPg+3GdohAdEKuGmiUYszJEa7cTnqKWrdMW9iLda7EzL5BD//B+hRB4ZehDdE2WzFjfVJvVZ56iBVsqEORlq4TYGn1OhS+vsziOyVE44eThZS71hwDLHl+uG38XY1DRywDrF7dtSjtYpsRyCMiXymGD3YPF38G7+3W/+gTP3IBtMXLyXdTluSxAvf2qXHlN9P3cr46OhR/zfRe9N/3akT+Z3q9an8VStT14gwsjx0x8jScAZY8jpktxd4Ay7DTX8M6laUniwzH8xZxnzTne6zetBOvNKqJTycNNquqCJyadf1Amt0lltkpVvj5M4rjExLxao+RENeJwEsEX6mPtn3GShNyvpkzUtpArUn9algwxbQRleF8sfyPCOTE+luzv1yB8IhoaSO71E89ifOfF2CJ19/44BPsP3IWvTo2Q53qFTB47GcMsDI7KO29fvLcjIdQhuc+7b0Xz8ucgCsHWCcTwtEiRbAUoPJCbIp1hEp658A/BU0zgzIqtfPZHfS8t9Xq5WKNLbHWljsfY8P34Ycn541NnBJSG+PDD5g1+XbR5NBac3wPNIvnYmcOU0il0cfg5SdtjOdb2+0q9dbauSroUPZ18/DF0QHWj0/OY3T4PmO9e2YvjQ+Cq6DazVXGr4Wq/XA8kwv5pw5iy3rnxPaCr2FM+D4sT+E+J/dL6J69lPHeqbcqTz0GU39oUPoYjdEnocx189l5hjobxpcS28AAS55e+X65Bleumu9AKEru0lGLihXcbqK6PGh2lmL4YBc+fQw0x3dbvUqsTSjWKORBgcwK3NmlxrXfTQFVgQY6FG1lej+/tlGNO7tNr5dtp0LFNgywMuvu6dczwFLGCLA3wDKs+SQeBxSPBRqO5wVYj6Ni0LLXaGktrcWffIB6tUw79onrDY8RvlC+BJZ+Ohr+fj42UabNX46f121HtUqlsHzhR1bPm77gJ/z061/SI46btu2zucOhWK6nx6ApeO3VetKjhzUql5GW7bF2pBVg3b73CK/1+0haNmjoGx0w/5u1DLCUMbRZCyUJuHKAdTD+Ptrf/cPIWcwrB64mRcsaLojC1j69jKEP/7Xabe8GvYAxMu10qKRxkbIu7z/cjZVPLxm/9GloPUwOP2i2VtHpwt0RrPaF9+afkLTpD+wJXGE831f/EPWfdDH+29piwanDGJVGj1qTtdB4m2ri6ADrk8fHMP+x6dHJD3JWwcAcFVHqhilk8VNpcLlI70x13eH4B2iX4rFEsc6VWO9qSsRhfBVt2vFwQnANvB1k2pI49VblqSsRWk2PUl0t1xLLVGWz8OKH2jhUsbGm3fkiPZFdlWIwZGE90ls0A6z0ilk/f+58DaKiLAOs19poUa0qA6zMKBs+2EWM6Af1jYtWi4ofOBnaynUzcxteSwFJ4OY2NW6meBw4rKkOhZuZAqy7e9S4usEUYBWqq0Lt/gywOHwyJ8AAK3N+cl2dVoCVkJCI71b+iQXfroVarcLab6agdHHT8hjPC7BEHVes34Ep85ahcME80mN2KZcmEms+d3l7Em7cfoBypYpg1KDuqFmlDFQq0+8W12/dl0KhLTsPImdQdqxaPEl6TNDasXPvcWkGlAjCRKAkHhEUG6mlPnQ6PRp1fE/aOC05eOqIt3ub/nCf8vy0Aixx7k+/bsP0BT9KbRMzxfgIoVyjk+W4jYArB1j/xN1Bj/ummVEN/PNjV9xds76RY+bGN9FnMTHCtAtfyht0yl4C83PXd5vxYK0hgx78g/WxV40vLQptiE8eH8W1xCfGr/1bsAOKe+eAz9dT8OzEDezP/p3xtWyqW6gTZQp5nk34Brr8lo9dHpmhQfxj05tMmV46hFQy/dLr6ABr+KPdWBVjCu7mhNRF98DSCLv2PVJ+nL5ZpA/UKd4c0zsY/o67ZbYwvGHtts8eH8fsx8eNxQ3PWQUjclYx/vvxRRXOptiqPPV9c5XXoWwf13mE8HlrzR0I64Qwr+zppXXI+QywMs+s1QKTp1nfkKDFKzrUqe064zjzGvKXYPhgF9mvJVRPTX/kSXmn+H5joK2l3N0+5VdhiVklcP0PNW7vNAVUhV/VIexl0/dw5DkV/vvOtEZW7jJAo5FcAyur+sNTymWApYyeNgRY4vG5F6uVN1ZKbFgU/eQpzl26KQU9Go0a44a9Lq3tnPJIK8ASYVHntyZKC8AP6tMOg/uZr5H6KCIKwyZ8jmOnk/9YExwUiLACofD20uDew0jcufdI+nqJIgWwYOpQFC1ke5cYUc86rQdLjyVWLFMMKxdPtIlsmP0lTljx5QRUKmd9TUl7AiyxPPrrQ2fg6KkL0v0YYCljbLMWChJw5QBrS+wN9H9gWmvplYBCEKHWM71p1smFwj2RTZ25mRupZ+Kk7L76fgWwIl/mdqFT0HCwWpV+97dja9xN42vf5WmCBY9P4FhC8puAOAyL2ftN6ocnj4JwKNvnxtdyaK6gVqRpgcZnH8yDrqRpJpHhxGu/q3BnV4pfaqvqULqb8wKs7ve3YlfcHWM7fszbFC/7h6HijV8QqYs3fv1Eoa7IrfHPcDdueHoV7zz8x3i9WOdKrHf1bfR/mBBhelRzQI7ymJSrlvG81FuVq32AlBv4BZXUocIA1/ngfz4xEo1vr7fquCV/G1T0Ne1qmWHsLLiQAVbmUe/dBxYtth5gNX5Zh0b1XWccZ15D/hLEBzt9QjyietkOqBJ6vIek+pnbkEL+mrNEVxS4skGNe3tMAVaxdjrkr2v6Ho57qMaxOabX/UP0aDXLh2tguWJnK6jODLCU0RmGAMtabcSMonx5cqFmlbLo2aGZ2cwrw/lpBVjivONnLqHn4KnSYurrv5uGImF5LW4ndhj8c8dBKciKeBwNrU6P4KDsqFCmGJo1qI5WTepIIVpaR+93p0tBkgjKRGBm69ix+yjeHbdA2mhtz/rPbZZtT4Al7iFmirXvP44zsNLqIL7umQKuHGD99vQKBj/cZey417IVw/5n93BPG2f82qGwzijglS1Tnfth+D4sS7EWUcrCSnvnxN8FX8tU+Uq/uPv9LWYz237J+wqWRJ/BjjjTDnk/5GmCZt554T+0FR551cLxgFnGZuXyu4BqD942/jv+nY+hfcG0Za7hhdSPxGl8k3cjVP3//cXRM7Aa3V6Hi4lRxnpvL9AOZX2C8dLttalmn7VHcW/LKcX29utPT85jVMq1tgJL45OQulgVcxHDH+0xFtMteynMzf2S8d+ptyr3C9HjWbhpBlu2QnpUHuI6jxAeT3iEVnc2WWVbma856vkVsJfUoecxwMo899n/1Fix2vovkvXq6tC8qfMDLJ8Vn0N1xzQTNbHT29AVLp35xjugBPHBTnfrGqLf72XzbomdBiKxSUcH1Ia3cHeBy2s1uH/Q9F5UooMWeWub5i2LjWb3fWgeWHf82gtRsYmIjXed9yx370dXax8DLFfrMdbXlQVUejFPzIUPsfL+lp2HpIXLDM97iql7GT0++3hIRi/ldRkQcOUA65eYixiR4gN+9+wlcSw+HOcSI40S/2PvOqCjqNro3Z5NLyQQ0ui99w7Se+9VUAEREQREAeko/FRRUQRFOoqAVCnSe++9SDohCSEJKdtm//M27LzZzW6yu2E3mzDfORydnVfvm8nMu/N99ztcvCsqSX1tQIZWGRV/HHvTnplsw0soxd3QgXlq39krE30motOkt53FOmBj6kOdNpjelhdpgn4vtXD5dgzixM1xy3UWe87f4x6qR49hj5VDJkLdqH22aZO/hJfmiKBOpy++FUdo4FM+60+kowmsCuGbkKpVseO8EzoA3kIZ2sfuwS1FIvv7vuKdUUNqOn7ekrVdlXwbc5Ius0VHeVbGDN+62J8ejo9eHGN/7+wWhlX+77HHcZeEePIX3fR7hGmRGk6xk/szqDkp/zf+lmBAypzNfI4+zw+YLP6zfwt0cSthaVMOLccTWHmH++RpIf49aprAqleXQecO+X8du8wcDuELStqbI+Lzjsbbb4Fs7FRXzyJtwRdmG1d1GQZVR/ME19sfFd9iYUXg0RYR4q/TZ1HZ/hr4G+nYXf5GBCVH8679NxKoXZU8gVVYLwoHzIsnsBwAMt8Fj8AbBAo8gVW73UhkKpTw8nTD2d0/6qZVuUVWRjJb7M5x2zMY2tLfu16nIBNYa1PuYTonxGq4RwXcVSXhQmYcu6x/FWuPhi7m45stWf++zw/iTKahtha3XnjYUIj1bkKWNFjAyrSL2YPbSkrY/BPYWUderUm5x85kpk9dfHwvGrJ1ixAr6YA7crpRKuZ3F1X+o+luVT1HQtWmj0kUnuwUIu483cgGNdcgrKPjCawMRo0yZsTa+z4/gDOZz9nxby3aFk3ltnsHLX51Hcs4WldE54roXZ3KiEF/jsZbc3lxbC5Kw1Vjzwrx3y6KlW8VBi9v02OJpxZ1pxWcr9lH0iMx9MURk9fFAr+GGOJR3invHJ7Ayvuy/L1bhKucDS+3xerVtOjVPf+vY/mEbhBkprNDU46YCnVdSijnHQX7tUA2doqDO5Dx61Kznaja9oOqx4f2GwTf8juDwP0NQoNnEckoTDILc+32KiFSntLnVdMJYsjCeA+sd+YiscNEeQLLDqDyTfIImEGgwBNY67cdxNEz19CpdQP06ZwlxDZ7ie0k1MyJtpNf/FVmPQIFmcD6KeUO5r28xE56jFcVPFWl4EB6BPsb0Wtq6xpiPTCcGm2jd+EOx6vLuLFzwb0QKvbIUx/OXLlF9A48UlHh3xNBPbE//RkWJl1lhz3eqxqmHrsMyeFtiJD2xkMXSlgFBd9FxbscAqtdf6i6U00s7txfXBbiMSeUqAhHB8uRHlhPVCloFr2DHVppsSdOBvfUHX/w4qjBNbYm4D10cM0uSm/pms5KvIjVqXfZ4nP96mOER0XcUCagIyekrrbMX6c1preY4yI8+4d+5S7WkMHzc3RDIJJqUX9u/m/8LcXhn/RwfMjxOOPWm+ZTB+T+dkbjCay8r8qa30WIiMiegZC0XLECgwF989cDS6BS6sKjuaYcOgnqhu3yPnkHtEA2dhkbV0KxezPbm9bN00DQXd28G5T9eQ94ByxHoe/izq9CJD+kz6JKHzDwLmd4D5PnPHne663mIBH86qp5D6zJ3XFsAAAgAElEQVRCf3XYb4I8gWU/bPmWeQSMESjwBBa/pAUbAXsTWIKMNCD9NXT/lUjAFM0bmcRFe0nSNSxNvsH+NNGnJiJUqdjGyRy3tEhj9HMvm6dFqh35J55r6Jf3QJErYjnHOwM7oJ4su4Bgnjp1osr1orYhWp3Gjuh8cG+d/tXUxPPsb8Q7Zunm3RDfvYyn0mF46kKJ6NAy91Hu6sdsWVXTzlAN/MzkDF/eE+D+71TI3auMFpU/yiJhHElgGXs/NXYphj+LZYU9mstOaOuSTUw4g62vaWr7JX6N0d+jLB6rktE8eifbbFmJF44H0WwrEYcEiDpCsQppq0XkIUMSoNFCta3Dcng9ct+OTzhtst/RnlXwtW8dh4/Jkg55AssSlHIu87+lYrx+bbpM6VJaDBucv0SsIPE55NNpJlUyUmW/sVC3MC/omndU3l4LZGOXtmwGVOdo0hNNueoQPaTPT0LGEVKONx6BvCJwe5UIKU/ps6jKKA08SxmqpUQdFSLiICWwyrUVIrSjhiew8gr+O1yfJ7De4cXnp+5wBHgCy+GQ8x1yEbAngSU5vQ+STcvZ7tQ1mkA5ynwKUmtXZv7LS1iZcoetRrw0XmjSsTqFerOQ0LaRXpWtbdqgfNAzQ4/CVvJgHOEImP8U0BxdXUvmqQ9nrlwtcisSNZnsEK+H9MO5zOcGmfM6u5XAuqU/Q/gqEY9koxEu68eWL1X9MUqd+oheBzWbQjlyhskpv44Cbn5PxV1diwI1Ps8iYRxJYBkLqPdyK40V/k1145j18qLBNTbDpw5G5cE7aOSLY9iXHs7iscq/BQiehDQl5KneCHF6OaQve2yctbFEJwYRh4UGmQjrz1FDJHPmq4uOjSRKIAkTTJmxgL0zzYgnsPK2GgqlAPMXUCLWuLXgIC1GfpC/BJbo6T3IFo0zGFpOodB5Q+Tt1yYbu9SpI6F5TJ+NhHwTH6dZP9W1mkP50fS33znf4juHwM3vRXgdRQmsamM1cA8xJLCMk5AUrylApWEMT2C9c1fL25swT2C9PSz5lngEckOgUBJYJKwwsKgf2jSz7Iu5UqnCd2u2o0zJIPTokLVJ5M0xCNiVwDr8JyQ7VrMT0ZSsCMUXK97axKYnnsfa1Ptse/N86+MVowDRFNLbOK9qmOJTy+Y+07VqlA3fyNZ3FYjR170Mfuf0+zZIMpsH6ICKZSM2Ip2hnjwPwgbhWma8gT5TY4k/9s7LIivvySYiWkbTsZdp+B9KHBxBr4PyNaAYv8jkyBXJAlz5hm5mxa5AvZmOJ7C+e3UD/3t1jR3jWK+q+Mqntu54yavrWMq5xsZ7V8dk75o2r8SAuEM4mRHD1t9StC2ayYsjjVGhXMQm9nd3gQQEe709/VtoEDJYqjuDqCMCKFPpxqHONA2kngUjT8gvyXcwO4mGBHMBbe8ail8DWtqMsT0r8gRW3tCNiRXg59XmCawAfy3GfpzPBNb105Ctmm0wUVWnwVB1Hpa3yTuoNtnYJX/UBdpkmuBEOWAcpFvo81hdpR6Un8x30Ij4bgozAteXipFOpUh1H6HIxyiuvY4U4OYP9L73DBKg3mSewCrM14W958YTWPZGmG+fR4AiUCgJLCLi3qBWJfy61HzGG+OLoGHnMfBwd8WhrYv568OBCNiVwNqzDpL9lPzR+gYgYz7dkOd1mp8nnMEfnNCrRX6NkKnV4GuOsPswj/L4xq+hzV2R0DkSQqe3ILEbBnuUN9B/0meNs7kTJ69o7IEWETYU95RJaBe7hx15Za0cp/+3Rnd8Sz4DcRIqbly+TRRCttPwGya4NDKn/Wxy1iQT4bkvyUstJWEafKOGUORYD6wvE89hQ+oDdoyEHB3uWVF3TDz8iBeW3j7wrIg5vvVtXsUusXtxVZHA1t8T2Am1ZP664+Bnv4NLP0WXoKGZj/4UIv4KDcEo25dB5FEBMhModjUnaiAPKBgEljFpyAW0gUtRbC/WwWaM7VmRJ7Dyhu6tOwJs2043sv7+WsTH02vY21uLz8flL4ElPrnHgOwhM1a17gNVr5F5m7yDahf3EOLV4FYGvSnGL4ZsOQ0Z1JStDsXn/PuXg5akUHdzZaEIipf0Hq41RQMXX8PnkCoduDSbelsLxUDLxVreA6tQXxn2nRxPYNkXX751HgEuAjyB9QaN1v0mIjEpBdcOUY8d/lKxPwL2JLCk21ZCfJRq+GiFImT8eOCtTWpM/AnsSvuPbe8H/2ZgoMW4+FPsb93dSuJH/+Y293lLmYj2MZSoqSr1xQjPipiQcOat9WHz4BxQUaHVoFT4BrYniUCIZ2FDdZpYXGKvuFqAO0uyyMrr8gVIkFBCp2LPBAT9TrMOMj7+yPyGigkbT+PiHDE4kluoPVUDmZfWoSGE78f9i8OcMFHi/UO8gIgR0pSQp3rr7V4a3xWx3XO0RfROPFIls+0dD+qOshJv3XHFiM1IYZTsufuhA+EhlOqOH2wUIfEW3SSUH6xB9HFhrqEbDrhsbOpiQdJVfJ9802TdChIfHAlyTr0hnsCyabnp9X5KhKPH6HVcvRqDGzcpMSuXa/HV5PwlsCR710Gyj36MIYNXN+sC4sVUEKyYIh4p4weyQ9X6FYXiw6/hspCKtjOhZZH51cqCMB1+jE6OwKV5YqhS6SDrTFND6pl90BdmiKBR0Hu/2Vwt1NL8vdedHFp+eDkgwBNY/OXBI+A4BHgCC0B84iu07DMBLjIpLv2zynHo8z3BrgTWhiUQnzUkrNIX7wDccs7YR77cZZJ/SYBrgBYeYaY9SIbHHcGhjEh2FQnJIIEAQ18cYX97Tx6EjUXb2LzSJzNiMSDuIFu/uTwQozyrYGDcYfa3hi7F8NcbgW+bO3LSismMApUitrCj8xBIcD9skC6kkIQW6k2u0SJmcRYpdcl1BZLFVdlzVYenoeh3NKRQK5Uh47u9Zmd8bakIGXEc/YxPNXAPdiyB1S5mD24rE9kx7iveGTWkRXTH+9PD8REnW1471xD8FmDo3WDNctaJ/NMgKQDRuSJ6V8TqRm5DjIYK6F8K6YPiIjfdubu/CfHqAd3oVxzOIPokkPKE/lb5IwZeZfI3g5ulWMx8eQFrUu6ZLF5MJMeVEKqrZmmbjijHE1h5Q/mvnULcvEWv2Y7tGew/QI9J63Nm5G8yAummZRCf3m8wUXXDtlAOnZy3yTuodkDkTbz+ZiLbG1OuGpT9P4XLHKpNSBKsZM76zUEj4rspzAicnykCk0mf4fVnayByyf4ed2OFCGnRtFzd8YAkMH/v9cK8LoV9bjyBVdhXmJ+fMyFQKAis9IxMpGcoWFyb9/wMtaqWw7LZn+SItUqtwZNn0Vj2yzbcfxyBWlXLYsP305xpfQr9WOxJYMlWz4HoKvWGImBmzlgNJrCEWVyjjgkRwdm8FG/CoEQX0xvw/s8P4VQm1Q7aVLQNPIQSdI2lG41asiLYE0jJE2sXdGfaU4yNP8lW6+ZWEkRXq1UMFb8tKfHE6aCe1jZdIMobC4kHiOS49oZIKPFsPVSgaxO3aAukDIPzbmvwWlSanV/1z9QoMrcNJygQSP9+PyCWmMTgzmoRkh/Tl9qKwzTwqeRYAqt65B9I0GSw47sa3BdFiSAXgNOZsej3nJKaeSUwy4dvwmutiu2L6FwRvStiraJ34b6K6tYcC+qOcm+8s26vEiLlKd3oVxnJIOY08PIu/a3CUAa+lQsGgfVF4llsSn1o8ppwEYjwJMwwC5yz3EA8gZW3lVj1qwjRnE3s+0MY/L7BuQgs2U8zILppmGBAXbs5lB8WDNHzIlcPIn01DQ9U128DVZdhkE8fTEmtXDxj87bKfO13CYFzU8XQchypGn6jhsCEzN2DTUIkcrwtqwzSwrMa74H1Ll0rb3OuPIH1NtHk2+IRyBmBQkFg/bh2J1auoxt6Wxf9+3nj0LKJ7YLbtvb7LtezK4H1/VcQ3b1sAK/is4XQVDC/xgk3hXi4iW5evCtoUWm46Rea7rH7cUnxgm1/R7EO8BO5oHk0DVssJfbEqWDbyaVfU+5hBkdTa7hHBUzyqYnKHK8kuUCMx2F0I1CYrqdnqlQ0jt7OTilU7I5zwb11x7Uj/8BzDslze+UOBKVm4LTbZmSKAtk6RP/CZ0FvCFJfsb9lfLsVWm8/k1A92ipC/DVKYJXupUHReo4jsNRaBmHh6w3GFhU2DAJB1phuKhLQIZZ6kFWW+uJQ8a42LTuj1SIkfJ1BXa7OVbfY/bjMucZ3B3ZC7Tf6WEQAlwjh6q3qJxqdqHv8VfpbmX4aBNQqGBpYn8afxI60p2ZxfBo2BDJTuyCbkH97lXgCK29YzlsgglJJr9nPP9Pgp1UiZNDEp/hykhquWfxxvhgJtRM+o5p4ZBCaKvWh+GRevozH2k59Dq6D4m/qMUsE6NUtukM+OetvOTGtmwcyiIc0bzwCeUBAywDnvqLaVhBo0WiB6Xe48H+EurB3vZVqDxR7j/fAygP873RVnsB6p5efn7yDESgUBFZ4VBx2/nMKJ85dx8OnUVZDGBzoj09H9ETnNraLbVvdKV9Bh4BdCaxF40DSj3NNMfxLaOqZD7dKiwFufEdfflyKaFHLjP6JcZjXP4GdESh2Q43IP9guCaF1M6S/zatNMhou42Sc+9y7BiZ610Dos3XQcOS174UOhOcbbSKbO3PCiveUL9E6Zjc7svISbxwN6q47bh2zSyfmrrdTa/ejyoskHPfYBbWACl7Um6GG++IPIHwewZbNnP4LmKCSJmf8bJ8QMSfpS21oWwbBrRiHaWBFql+jQdRf7NhIyB4J3dNbTqSetUtI9K2IzpXe9CGa+uPBcYdxLCOaPb+5aBs0lwfpjo0zPVUfr0bcheyZCYs1LBgeWB++OIp/0uk1YozllZC+KPYmtNJanO1ZniewbEc3PR1YsJj+vRcJgZnT1VjynQjJyRxSa5wGRMw9v8xl2iAIX9KPJWQcmhyyqebXOM3167VxIVRn/mVPKwd/DnXdVnD9rBOtIhYj/ft/nG3o/HgKGAIaBXBhBueelgL155ompeIuCPBkB3XNKlYXKNWbJ7AK2JI7zXB5AstploIfyDuAQKEgsLjrdOfBM/QdNQvVKpXGnMnDc1xCoUAAL093FPH1egeW2jmnaFcCa+5HEMU8M5g4ydpEsjeZM0YNnJ9m2dc74mn1mCN+TcKryoq9EJyDR4u1qzA18RzWmchG1yhqO8LVVKWUK7xtbR/OXP6aIgGdOd5G1aV+2F+8i27IfZ4fwNnM5+zwd239F83C4/CvJ9EgowRUw2/VkC+dAOGT22xZku2KZL0yZTEnhHi2n9YnBEyp7uYJLMmBzRDevcI2pW7TB5qqDWyG9WJmHHo8pxs5khGQZAbU20tNJqpGbmWPvYUy3AkdYFN/Meo01OVkuTQmy0bHH8eeNHoP/ezfAl3cskJwry4U6bTi9EaI3riLAkSf4JB/7RkEv1cwCKxBcYdxnEPWGQN6pHg3VJD62ISzPSvxBJbt6EZECrBmLd3ABgQAY0er8f1KEeI52TQ/Ga1G0QDb+8lrTdePs+soakpWhOKLFXlt2iH1PZZNgOYh5+/v+MXQlK8O43ml/0S1HR0yML6TQocAEW8nIu56k3gAdaebJqVePRbg7mp6/3uXBCqN5gmsQndROGhCPIHlIKD5bngESK54rZYkji9cNnrKEqhUGvy69IvCNbFCOBt7ElimvlqrWveCqtfoHJG8PE8EZWrOKZhJA/WjtiGKk67uQnBvBIvdUT58I15r6UsQCe8jYX622JgXJ7ArnWY6/CmgObq6lkTP2H9wQRHHNvlnsfZo7FLMli6cus4FxXP0jKVC/A1kxbA9sL1uzKNeHMfedEqurN95Cp0ePsdRT6oPRVJjN5ivhrGGjGLkTGhqNjE5dxI+SMII9eZXhUH5IeYJLNmKLyG6RwksVfcPoGpnu9fdnvT/MPrFCbb/zq4lsCqghcFYg579bnDMDfuzZkEfqpLxHifktYLEG0feeLiRdiYnnMHm14/YJpcUaYL+7mV0x6YyPb24LETEQUpgEfIqtH3BILB6xR7AeQUlRI1x3BHYAfVlRa2B1yFleQLLdpivXRdg5256r1eswGBAXwa//CpCFEcX66PhGoSE5NOrUloqXCdlD0MnHqTEk7QgmNvUAdAmJbBDzZizHlr/QMjHd4NAkc7+nr50JyB3LwhT4sfopAiQjyrk44reZL5a1J5iOoRQkSTAlQW0rNQDqGOG7HLS6fLDciIEeALLiRaDH0qhR6BQElgR0S90mQVrVytX6BewoE/QngSW68SeQDonlzJJPV7nPSg/mJojbLd/FiHlP0pgVfpAA+9y2TcvxAuGeMPo7UZIPxQRyWGc1e1icB8EibMyt1lrRKybiHbrbUvRtmgmLw5jz5jvijRFb3cqXG5tP85a/mh6FIa8oKEnLeRBIGL5xKYknMXG11R0e8nBixh8PR4nPakGGYGdhBBK1y+C+NwhdprKQROgbtLR5LSJgDsRctebRwktqn6sMRtC6DJ/NIRRT9jyxMOPePrZaquSb2NOEtVu+9CzImb71jdorkzERmQQd8E3xhVet6bfK4oXBkkHiL4V0bnS2+ykS/gl+Q57PNOnLkZ6VdYdkzANEq6ht3qz1Yi/IsR/uymBFdiIQcluBYPA6hizBzc4mR9JuCBJIqC33wJaop1rqDXwOqQsT2DZDvO/R4U4eZper00aMWjbmoi4i/CU8wwYNliD0qXyh8ASxobDZc6H2SZJCCBCBDm9aTRwHZv10YEYQTHjhwOASAT5lH4QpLxkz2V8uwVa76xsq7zxCNiCQHpcVni73uQBWtScaF6Y/eyXIkBL3/cazFNDaDq/iy3D4eu8QwjwBNY7tNj8VPMdgUJJYOU7qvwALEbAngSWfExb4mJoMBamXA1kTliU4/ge/yXCi0v0hYaEj5nS8SkbsRHpJkgEY20mIrBNhLZtsTYxu3FXSV/wDwZ2QRWZH2a9vIjVKXfZJqf61MYnXlVt6cKp6+xPD8dHL46xY2zvGopfA1rqjhckXcX3yTfZc9NPXsfHF17hrDsVC3bx1YKIuEv+WgXJEaorlZOXVPpz4Poyjg6anxa1vjBPYMm/7AdBMl0jdcN2UA6dZDOuxmv7tW8djPasYtBercg/EMcRsCcaWST8z1ojIXMkdE5vXIKQ/Lb01XUs4WiwEf01osNGzPjFn2R6It5rj7dR8s+/thZl+xaMrE7EE414pOmtpqwISAir3pb6N0E/tyzvM2cynsCyfTX+2CbEnXuUwOreRYNaNbXY8ocQ9x7Q3/v3YVCpYv4QscIH1+GyfHK2SWo9fZGxkOot2o6CfWsKXkRDPvN9thPGuwgyv92iO5bPHAbBC5rJN3Pmb2CKhdh3QHzrhRqB11EC3PyePoPcg7SoNs78M+jqIhEyOeHCNSao4Vr4nNkL9Zo7y+R4AstZVoIfx7uAAE9gvQur7MRztBuBpVTA9bPO2WbOFA1B5qzfckQk6pgQEQfo5qV4EwYlumTfvBiHcUWEDYVIIESv5//gfCYN79tWrD0a2RjeZ86b6+eU25j7knrpfOBZEXOMvHSceNktHtr2tCcYF3+KLd/DrRR+8G+mOzb2VBpz8R6+PJGKC+40rMa1OFDjMzXE/2yGdPdath1Vm75Q9fzI5DhIVOjFOZTAItr4DeaqTXtgabXQEaWcloj+lWLMXIvnaFxwVPxx7OXoTv1YpBm6u5cyKNYieiceccgWW/WZ9qT9h9HxnHBFtxJY5U/DFYn3FfHC0hvxviJeWOa04hJvC/FgA7139OGXNoPhwIpEOJ8I6Outg2uogaj7DN86GGVEJDpweGa74gks21fhx1VixNE/1RgxTIMSYVrs+FuE6zfpXd2jmwY1q+ePB5b44lFI136bbZJauRsylv5t++QdVJOEV5Mwa71pSleGYtJy3aGx92rmVyvBhJZ10Mj4bgojAilPBbi9ihJYniW1qDLaPIF19zcRXj2g93qFoQx8K+cPWV0Y1+NdmhNPYL1Lq83PNb8R4Ams/F6Bd7x/exFYgpQkyKf0temlP+GmEA830U24TwUGFYcbvtBkajUoHb6BbV8qEOK/sKG64xEvjuBgeiR7bk1AS5DNsC1W4tl6qED7fhw6GHKhGDvTnmJs/Em2yU6uYfgl4D1bunDqOptSH+CLxHPsGAd4lMViv8a64z9fP8KEhDPsuf63n2DeaSmuaWezv3mW0qLKKA3Ep/ZCuvk79nd14w4gmbBMGXHaO0fCCji0VINv1Ajyl0MgAGJfZkDv2CdIfQX5F4ZJATSlKkIx2XZx5a6x+3BFEc8ObUexDqjvYqi91CV2H65yyvxdrCPqulivMr059SEmJ541iS/5cUvqQ0zinB/oUQ6L/BpBnQFcnMXJ9CQD6s9R49UjAe6uoZsHr7JaVP6wYHhgVY/YigSGhgSP8KiI31JpFtNPPaviS9/aTne/8ASW7Usye54YGs6f9i8+V8PdHdizT4hLV+gzoFMHBvXr5s+mVvzvdki3/5x9kiIR0kkonpOb+PR+SDctY0epqdsKihFZhJZs8XiIntAQ5cyJy8CUMfQ2dfLp8cNzMgQIGUVIKb0R+QciA2HOnv5tmDm3RCcGxZvlz73uZFDyw7ESAZ7AshIwvjiPQB4Q4AmsPIDHV807AnYjsIzCFrgjTf/hH0BkXlQ9LRq4sYITQlZEC5JhjWuvGAUqR2SFQRDzFEpxL3Sg7v8nJJzGn68fs+eW+DVGfw/rvyoTjSOidaQ3CYR4ViKLJCPZ90gWPr0ZaxflfWWco4U1KXcx8+VFdjAjPCti7htPs8MZkXg/jmQczLK2T6Lx/dUSuJkwjP1NTz6KrpyAbM089ndNjcZQjJpldpKX54ugTDHMsFeynEs2AksY/R9c5hnqXTEBwcicTb29rEWyXtQ2RHOSA5wN6oUwkkqJY4PjDuMYJ2Pe+oBWaOVqfeiNsYfVR56VMMu3HtsTyUBI9Nb0RjIQkkyEBBuCEXttvsn0lBohwK0fOfphIVpUHVswCKxy4RuRxkm+MN23Lua9pN5nQzzKY4FfQ2uX0+7leQLLNoiTUwVYsowj4CzVYvqXWdfqoX+FOH2WElitWzJo1iR/NrWSHashOfynyUmm/3gAENI52IaEfWtJdv8OyT+b2E7U7QdA2W2E7tg4AYZi7HxoKtO/P/YdGd96YUTA2AuYeFMRrypzFnNSiGf7smcdLozY8HOyLwI8gWVffPnWeQS4CPAEFn895CsC9iKwhBGP4PLtGJNzy5i7HtoigWbnbS48ilshVpOuE2vXW1GRHFdD+ukOjTWMZvjUwSgv678qExKDkBl6CxS54nJIllfZU1UymnKyxwWL3XAh2NATKF8X9i11/kPyTXybdJVtbYxnFUzzraM7vqx4gW6x+9lzdaMT8NudOrj/pDX7W5HqWpQbqIHwwTW4LKdZSZmyVZH5+VKzo7yxQoQ0ThYyIuJerlZ2Akt0/ypk300xaEfr5oGMxTtsQoAkhQ0LXw+NTuo4y8LDhkIsoC/Y5LeP409gdxrNTknCKkl4pbVG9K2IzpXeiL4V0bnSm7FG1nvyIGws2gYZCQJcW0Q3zi5vdMKsFdC1drz2LG8cEvyDf3OM5YRXdnEtgZ+NskHaczyWts0TWJYiZVju6TMBfl9Pr+HigVqM/iiLwDpxUogjx+k916wpg9bv5Q+BJf39fxBfoDp13FmQEEISSujMJlu7AKKL9EODcuB4qJtmJYqQrZoF0XXqRav4aAY0tZo683T4sTk5AvHXBXi0hd7XRWpoUW6A+Y8oL+8IcX89vde9y2tRaUTB+Oji5Evxzg2PJ7DeuSXnJ5yPCPAEVj6Cz3cN2I3AengDLstMC2kT/Q2iw5GTXZ4ngjKV44EzRQMiCK63p6oUNI2mJEUJiQfOBPXSnV7+6joWcUiBcV7VMMWnltXLfVuRiHaxe9h6laS+OFy8q+7Y2DtLBAEiSlDPI6s7c9IKi15dw/JXN9jRcUXEn6iS0YxD4pV+mYJt99vhyQ26tsXqMyjVk4Ew8jFcvvmYbYcpXgKZX682O+u7a0V4dZ+uf/nBDKo0l2XzwBJdOgLZbwsM2tFl2Vp5CLrCVtoLdTpqRlFi1Ffkglsh/bO1YpyB8Vu/hhjqUd7K3rKTrdwsg6QxEspIQhr1VkcWgF2BHZEWC9xYTr0UiegtEb9VvhLg8rccrxYvLepMLRibAWMCa3PRNhjIEbhv4hKIP4q1sxpje1fgCSzbEL50RYA9++i1WrWyFn16ZV2rZ88LceAQ3dQ2qMegY/v8IbCMvZS4s81YsBVaLz/bAHBQLZclEyB8fJvtTTFuATQVs0JxjcktxbDJ0DRo66CR8d0URgTiLgrwZDu9r4vW06L0m/va1HyNn2UuJjzuCyNO/JzePgI8gfX2MbWlxYjoOHQYZPhhmbQjlUrg6e6KEiHF0KhOFfTt2gI+XobRDaTclHmrsPffc1j09cfo2MowA7ip8Rw5dRXjvl6BNs3qYPmcsTkO+faD/9Bv1GxUKlcC234xjALR95tTA34+nji503aJElvwdNY6PIHlrCvzjozLXgSW6PYFyH6cbhJF5ciZUNdskvMfmZ9FSOGkUa/0oQbeZSmBRTIDkgyBeqsg8cGRoG66w7Up9zD95QX2HCEWCMFgrZ3MiMGAuENsNeMNdIXwTUjVqtjzhOgghEdhMiJUTwTr9TbNpzbGvMm2+FKTiaqRW9lzPhkKHHrUD8/O0DTsRMuCaFoIk+LhMjUrxJMY4+WHzAW0rjFm2TJRdmNQs3N2AktyZDskf2XXp8lY9Be07l5WL8UNZSI6xlDSkmSvJFksjW3+y8tYycHlS59a+NSrmtX9TUo8gy2pj9h6i/0aYYBHOfb4oeoV3oumQtH669xcqKA6E7g4k6ON5QLUn622elyOrpDMKFEpYjPbrZdQii3F2hmsRTcpYeMAACAASURBVBWpHw4W7/JWhia+fAyC2Ai2LU2dFmACw2xqmyewbIJNR1ARokpvLZoxaNkii6S6clWAXXvpJrhmDS16dM0fItZl3igIo5+anGTm3PVgcvAmtg2Zt1vLZdogCF++YBsl4dUkzJqYZMt3kJzcy55TDfgMqmbZk6+83RHxrRVmBGLPCPHfbnpfBzZiULKbefKZUQHnp3MkJQRaNFqQP/d6YV6Xd2FuPIHlHKusJ7DkLlLUqkrfZxVKFV4kJCEiOut55OXhhtWLJ6Ny+RIGA89vAosQbKaINTJIb093/PDNZ84BdD6PosATWIT5bNawOiRi59aByOd1dtru7UZgmfCM0YOg7DcW6hZZZJM5y0ZgdGdQrCF9CTL2TKkpLYK9xbNevHekPcGnnMx53dxKYqV/c6vX4O/XT/FJAhVq7+pWEj9x2mkevROPOZnoiHcW8dIqTDYt8Tx+T73PTmmeb30M96yoO9ZmpiM49g/q6aTV4uy99xF9QsKWD23LILgVA0FmBuQTKBGkFYmRQbTQzFj4QSGij9KXYNJG/f4mCKydayA5lD2VfebMX8EUs164/2B6BEa8OMqOiuhaEX0rY1uRfBMLOaGVn3hVxVQf6wXGR8Ufw960cLZ5om9FdK70FqNJQ91IGsZaXOSGSyF9kPxYgDurOWLtpbSoPEoDLQOc+6rgbQaea9JRmxMSXEzkCiKe3yh6O4tFiNgd54N7v5XbS7ZoHERPqUC8qudIqNrYFgLME1i2LcmmrUI8eEjv8V49NKheNesjxe07AvzJ8eKoXIlBv97544FFkkSQZBGmLGP6KmiDrA8dtg0xG2ppNJCPbc+mw9B5pxLheVHW3w7JX6sgOfIX2zDJDEsyxPLGI2ArAtHHhQj/h97XQc0ZhHXM+d69PF8MZQrtsfaXGsh88ifrqK3z5uvlPwI8gZX/a0BGoCewCBG0b4NhhAQ5H/M8ATMWr8W5y3dQsWwY/lpNEz+R8/lNYFnq+eUcaOffKAo8gVW5xfvw9nJHp1YN0aNDE93FyFvBQcBeBJZx1jkuIqoOA6HqOjxHkKKOCRFxgPMVrymDkp3pS9DpzFj0e36QbaORSzFsK9Zed3w0PQpDXvzLnmshD8Kmom2sXhRjT65hHuXxDceTq+/zgziTGcu2uyGgNVq6Zn3ZLiz2ecIZ/PHatIeQ6OldVFCcxiu5lJ3ukevD8PIcJbBKdmEQ+EZ8WT62AwQa6g2UsWw3tC5yk1DFnhXiv110/UkYQpOPpNlCCKXrF0F8jnrJ6RuzNZsWIesIaae3Ie7lsKBIo2xjXJd6H1O55WwUGB8YdwgnMmLY9sl1Sq5XvaUySlTgeCbpkxUk3RPi3u8c3ZAKWlQanvXV+vzXYjBKOuQGc9QQypz7ivxPnYImUTQkuKTYE/uKd0IlTqIGD4EE98MGvZWJyKcNgoDjlZJTVszcOuQJrNwQMn1+xY8iJCTSMN+RH2oQXDxr0/rwkQAbOTo6ZctoMWRgPnhlaLWQj2nLyYdqOJfML1aAKZlF6DujCRJiIf86K/EIMa2XLzIWUMJfsncdJPtoohJVpyFQdablnXFO/JicG4HIw0JE/kufTSGtGYS0yZnAuvezGElUUhKVPtLAuwxPYDn3Sjvf6HgCyznWJDcCi4zy5atUNOsxDkR39vSu7w08nngCyznWMbdRFHgCq0HnMUh9nc7Os2zJYHTv0ASdWzdEEV/rQ3hyA4w//3YRsBeBRbI2kexNpkzdqD2UQybmOJGEm0I83ERfgvTZ7PSV/k2PxLAXVJi2pTwYG4pmiYfn5J1lDXrGAtsTvGtgEkdge1z8KWxPe8I2aRz+ZU1fzlp2TPwJ7OKIlf9YpBm6u2d5HIhP7UND9yd46uPJDn/v+SHIuEbZkjK9NQiom/UiKp/SD4KUl2zZzPmbwPgGmJy6qfVvOTG7B5bsh2kQ3aFZEvWNKUbPhqZ6duIpN5wXJF3F98k32WKTvWtgPGfN9Sfelpdfl9h9uKqIZ/vbHdgRtWWGmHC1och2P6rE+0i4IcDDzdQDy68ag/KDsjYJl+aJoUqlM60zTQ0pXaLcIMiX83eUiWjLCd3U680Z62JFhQ2DwAZtM+NJyT9pBwFDN1WaMlWgmLjMprnzBJZNsGHmXDG0nD3qNOJ1Ic364Vm4AL+to9d3aKgWH77veAJL8CoB8q8GmJ1g5vhFYMrTpAu2IWG/WsIH1+GyfDLbgaZkRSi+oPodxs9pVes+UPUyzOpqv9HxLRdGBEhGQZJZUG/E+4p4YeVkz7ZLEHOR/jEgmlnkoxVvPALWIMATWNagZb+ylhBYpPd6HUcjLT0TR7ctQ1F/H3ZAPIFlv7V5my0XeAKLxLQePX0Vuw6explLt8EwWQ8dkUiIxnWronv7JnivUQ2deBtvzoeA3QisPesg2U+/7HJnTtJ0k3TdOVlaNHBjBQ2FkvtrUXMS3cDsSXuG0fHH2SY6uYbhl4D3dMfG4uIlJZ44HdTTavCnJ57HWk743Bzf+vjgTfgcacxYB8kc2WF1x05UYXjcERzKiGRH9GtAS7R3zQrNk/7xAzqEZOBycX/2/Pbjg8Dco15VRHzdr2rWy6vL3I8gjHnGls2c+hOYkDImZ0v0z27/TDew7kFatJuV3QOLZLokGS+NTTn4cxCvGmvts/hT+ItDSi4t0hj93MtmayYnAtWaPom+FdG50tvRoG4oL6EPcvJ7+fBNeM3RWnsYOghpV6QgYbZ686+tRdm+WffH1UUiZCZQzxZy35D7x5nNOKNlbZk/dgd2QpWILUhiFOzQb4b0g5/ItNeepfMj4WAkLIxreclcyRNYliJPy71MEmD59/T6dXUFvpxEvTNjnwM//UL//hctCnwyyvFabjll0yWzyRwzF0zVBtYD4KAa4nMHIV2/mO1NXac5lB9QbUrxid2Qbv2ePa9q2hmqgby+h4OWp1B28/RvIZ6fowRWqW4MijXKmcCKPyHBo/30GRXUgkFYh/wJGS6Ui/KOTMpRBJbq8mlonj54R1AFJHUaQ1SqgsXztYTAiotPQss+E3Q6WGd2/2DwYZInsCyGOl8LFngCi4tefOIr7Dl8Fn8fOIMnz6LZUyTrQMdWDXRkVtWKTqwXka+XQv50bi8CS7ptJcRHd5qcFBNSGplTswtvcwszauD8NPNaPtteP8b4hNNsld5upfGdf1b67wRNBqpH0jAJc5nkckPc2PvoB/9m6OFGr99fU+5hBkcsfoiNYWS5jSM/zxMReyJmrzeSGa75mxA3l6WTMKC6Dw6VpiFvWw8Mgug/SjBwxfddln4O4aNbbFuZ4/8HpnxNk9PLSBDg2iLDbHpdFmcnsORf9YfgVWK2NlTdP4CqXfbsgblhaRwWyp0vt+7FzDj0eE41vPSES27tG5+vE/knYjXUg/VScB8UF7sZFDMucyWkL3DBHU85IZZEH65U96wXfkL8EgJYb9U+VcPdySNbT2XEoL+JhAlNorfjP4472cmgHigtyZtnryDyCeTfjM62VBn/2wath7e1SwiewLIaMjx6LMAGjgdhaIgWH74JgSWtJSYK8N2P9P738dFiwqeO98AS3b4I2Y/TzE5Q8eF0aGpbr69oPWK21ZDsXQ/Jvg1sZVXbflD1+JA9JuHXJAxbb5r6raF4P3v2KNt652u9iwgY65dyvbDN4fH6jhg319OzXI/idxFDfs62IeAoAiv9l/9B+S9NImXbaAtOLdeRkyFtnbNuMXc2uRFYr9MyMGnOTzh14SamjhuEQT0NJV54AqtgXBuFisDiQn7nwTOdV9a+I+fxKvk1e6pUaCC6tW+CLm0aGbgMFozlKnyjtBuBtWEJxGcPmATMWIfDHKrGoVC1p2gg8836Src+9QG+SjzHVh3sXg4L32gVkZjq4PB1Bs1Gl3jf6sXLibwhje1Ne4ZRHC+wtvIQrC2aXfDb6o6dqEL32P24pKAZrIiwdn2XoroRyif2wMfvVcUfVSipt3H3YMiiaSbGqp9o4BGatWayVbMgun6GnV1Omz+NArgwgxKYAqEWPVeZILA+bmNSn4YIERNBYmutadQOPFVTNdljQd1RTpKd1LinfInWnCyYpAwpa60ZZ7K8HzoQHkKqKUbaaxG9E484yQJOBPWA/KwPwvfTr9z6bI+k/J1VIiQ/pR5YRNzdq5Rze2AdSo/EcE5IcBt5MH4v2hqdY/bimjKBhdVUiKW1mJsjJWzVTeMJLGtXADh/UYj9HI3DGtW16NmNElSvXwP/W0rvfzc3YMpEx3tgkWeYdMMSsxNUDp0MdcO21gPgoBrGGoHKAZ9BzckyKLp6ErLVc9nRaGo0gWLUTAeNju+mMCJAQttJiLveyg3QoEiNnJ8/2jgJzi2lZdyCtKg+zvGEdWFcj3dpTjyBZZ/VtpXAcpW7oHHdKvT5wjB4mZSCe4/CERZcFO/364Bu7RpnG3R+E1iEp/DlSKNwB9i/W0t0aFnfPkAXsFYLLYGlXweVWoMT565j14HTOHn+JtSarIcS0TFpVKeyjsxq1aQWXGSGm7YCto4Fdrj2IrBkq+dAdPWUSVx0mZBWHqLZ68ygR0LISCiZ3rjePL8k38HspEvsuY88K2GWbz32uGzERqQTN6439iBsENwF1oWxtovZg9tK6t3zT2BnVJMVYds0DnuqLvXD/uJdCuy1YGrg7WP34JaCYkDmR+ap14aZ2rI2fqpLXYs3/jkYskRKYNX4XA3XLL4L0o1LIT5DvZaUAz+Duqn5lO3nvhJBy9D177JMApkHEPsyI0s7Jy0FrpN6mcRb3bAdlEMnWb0WpcM3IFNLX5zvhQ4EEU43thh1GupG0eyAxURyXAnpZ3V/xhpPpojWLrF7cVVBSZy9gZ1R5GSAgVBucGsGoW+Ecom4OxF511vF9xn4VHTucIxdr//DmIQT7Jj1GT8Hxx3GsQzqTrYuoBVau4ZYjTO3ArkGybVobMpBE6Bu0tHqtnkCy2rIsO+AEBcu0mu0dUsGzd4keyCtqZTA3AWUwBJLgBlf5QOBdWALpLt+MztB5YBxUDdz3r/5xEtW+OgGO37FJ/OhqUKfk0Q/kOgI6k1TsTYU47JnjbJ+hfka7yoC99cJ8fIuvbcrDGXgWznn549cI8GRqZTAEsm0qD+HJ7De1WvI1nnzBJatyOVcz1YCy1yrEokYbZvVQfv36qFlk1rZiuU3gZUTGpNG98Pw/tbLk9hnZfK31UJPYHHhTUpOxb5/z+PvA6d1DKze3N3kugu5W7smqFU1u95M/i5R4e7dXgSW9PuvIL572Sx4mQv/AOPpmyO4j7eJ8OIyJTBIiBQJlSL23asb+N+ra2z9cV7VMMWH/iE0Dru6ENwbwWJ3qxazbuQ2xGjS2DrGbUSqX6NBFE1BbiuJYdWgHFy4efROPOZ4/+g9kkT3rkK2YgoWN6yC+c2qs6PauGEoZK8p4VN7qgYyr6wXU8mOXyA5TEmf3ML8ri4UIfMlXf82s8XwChKwBJbweSRcZo8wiYimWkMoPp5jFVrJjMIg652LQIQnYUNMtmGcHdBVKMaj0MFW9WfcBiFYCdFqbMaegFuLtkXI0WBDodwODIhuCLGHW0RIuE5xK9tfA/+azu2BtTX1ESYmUu88ojtG9MfGxp/EzrSnLCTfFWmK3u6lrcLZuLBk/yZI9vyerQ1V695Q9Rpldds8gWU1ZFi/SYTHT+g12q8Pg8pGJKuxyPvsr9W6LKSONMmfKyE5ZjoUnoyDCJ4T4XNnNZfpQyFMpJlyM2f+BqYYJYCFT27DZfEEdvia0lWgmGRbMgNnxYAfl2MRuLNGhORHpj88mhuJt5sEB8ZrwfnmiLoz1ZC4OnbsfG8FGwFHEVi8BlbO14m5EEKNhkFyahpu3XuKNZv34uqtRzpvpsUzPjZoML8JrEVff4yOrXgvq9z+GrxTBBYXjIdPo3ReWXv/PYeEl8nsqTvHs28scgORP287AvYisGSLxkP09I7ZgWVO+xlMcM4b0ahjQkRwwkwCmzIo2Tlrk74w6SpWcLLFfeFdE595UyKldcwu3FMmsf0fKt4FlaV+VgFVJmIjMjhvVEQ8201IvbjUWgZh4RzhBpIh7i1lSbNqoHYsXD9qG6LUlMQ7F9wLoWIPSI5sh+Svn/FrzbKY1JZ+0d+yZjjEKqpdU3+2GqI3DlmSQ39CspNmplS16QNVT/MZr26tFCE1nL4IN/1cjKKVKIElenQDsqWmvaw0pSpDMXm5VcjcVyahVcwutk5psRdOBvcw20bws9/BpYUiw4ZBaMUOm5CjhCTVW6DIFZeJvpWRjYo/hr1plPBfHfAeKhwqaSCUW7Irg8DGWffGkx1CxF3giOj2YFCsgXN7YK1NuYfpHD259z0qYL5fAxgnUpjtWw8felayal2NC0u2fAfJyb3Z2lBXqQflJzknlzDVMU9gWb8cy1aIkPSK3ttjRqlR7I2npr61+QvEUChp21O/UMOFOnda36kNNaRr5kF8hXoGMkWDIYyLYltSdX0fqg7ZSWcburJLFdePDbVFMlbshVZCs8QKo57AZT7VgyNJNUhyDd54BGxF4NZPIqQ+o/d21Y818CiR8wcUQmCd/hZIiablqn2qgXuwc394sRUjvp59EHAUgWWf0ReeVnPTwCIzJdFY/UbNxv3HEVg4fRQ6t27IAmAtgUUSyX06fQXaNKuD5XPG5gjk7Qf/6fqtXL4E/lw1y6Cstf0WnhWzbSbvLIGlh4swsmcu3dIJvx89cxXXD6+xDUm+lk0I2I3AmvsRRJyMc4ynD4QplFBSjv0G6sp1cxxzwk0BHm7iCPlWYFBxeNZGfNbLi1idcpetP9OnLkZ6VWaPez8/gHOZz9njP4u1Q2OXQIsxUmo1KBlOxW8lEOJZiaHZ6leN3IqXmkz2dyKwXUxUeD4bEjF8Ioqvt+sh/eAvkuuEf4kA8M4KoRjRLUs8n9i2n6hAMDlutJCG/YhP74d0E/26T7RjiIaMOXuwQYjE25SIqfuhCGENhKwHlvjycUh/NU04MAHByJy91uL1JgWPZ0RjUNxhtk4Tl0D8Uayd2TYqRWxGMkN32LdD+sNHz9ZZ0DPJPkiyEOqtrMQLx4OyE2YTE85g62uaaZF4JtX+p4KBdyI37bgtacwtGK5di6xMvoX5SVfYPj72rILpvnWw+NV1LHt1nf19gncNTPKukaexyFZ+DdGt89na0BYJRMZcQ0Lako54AssSlGgZhgFmzeMk6AAwc5oaIvqnXld40VIRUl/TjfDE8Rp4eTp2Q0sIckKU601TsRaI96nelO36Qd3d8G+edWjYr7Tg5QvIp1FyTeDpjbSFlDAnPRt7sTIBQciczX9EtN+qFP6WjZOIVP9UDbdckogQAuv6r0DMNXp/lxuoQZHqjr3fC//qFO4Z8gSWc6yvJQQWGenqTXuxfPVf6NGhKeZN+YAdvLVE0vkrd/HBxP+haf2q+HnhxBxBuHT9Pt4fvwD1a1bEb8sME5ZY269zoJ1/o3jnCSwu9Cmv00EyFvLmOATsRWCRF2fyAs2++JepCtFjmoFOOWQi1I3a5zhRkkmNvAzpTe6vRc1JWboIXyacxYbXD9lz3/o1xFCP8uzxBy+O4kB6BHtMvFY6uoZZDKyxd4y58MA2MbtxV/mSbVevEWVxR05esFz4RqRpKQmlFxl3+XYMSIr5E2FF0b1/a90sXBUSrPttGDsjIh3VYC6tK7p2GrJfZtNrIpcwP+N03FX7iFC+HYfAOroTJNulKdO6eSBj8Q6r0N2S+hCTEs+ydUioGglZM2fG3mlng3ohTOJhcZ9XFPHoGruPLV9LVgR7ArNrghmTtcQLqeneqkjkCuX216DImzDBqCNCRByixF9wKwahbZ3bA2vJq+tYyiGqPveugYneNbAm5S5mvrzIYjTcowLm+TWwGGNTBfXXrqlz6Sv2ARLr9Bh5Asu65YhPEOD7lZSt8vTQYtKE7Ho3JAshyUaot0/HaOBfxLEbWpdZww09rpp1NvDeU7XoDlW/T6wDwEGlScZXkvlVbyQNeurk7w1612sZ6n/UevoiYyHN4OugofLdFCIEri0WISOe3rc1J2ogD8jdA+vRLgEeHabPqdB2DIJbOvdzqxAtW6GYCk9gOccyWkpg/f7nASxauRXNG1bHym9pKLu1RFJsXCJa95uIgCLeOLptmU5j25xt+OsQFvywGX27tMDMiYbJvazt1znQzr9R8ARW/mHP9wzAbgTWpB4QpNHsk6rGHSDhCHirug2Hqv3AHNeARO+dn8b5Ui/QotGCrI3OZ/Gn8FfaE7b+8iJN0Me9DHv8ecIZ/MHxWlns1wgDPMpZvOZ3lIloG7OHLV9J6ovDxbtmq28sMr02oBXa5lFk2uJBOqCgsch4eNhQiAVCyMd2gECjxq2i3mj2fifdSPxeu+HnDQPYUUk9tKgznW5MhQ+vw2UZ9bjSlK4MxSTzYX5R/woRcZgSMeXaCVGtj4j1wCLiyuIDW0yiYGmiAG5l4ulDPH70ZqyrZtyRMXl5ILAzqnJE/nNbnhMZ0RjI8fhqJi+OLUWzZzQz9kKa7F0D7f6uZSDUXmEYA99KWS/7MaeFeLaH4hbYhEHJLs69EZj38jJ+SrnNQjbNpzbGeFXFX6+f4LMEmgyih1sp/ODfLDdoczwv/7IfBMmUdOYWzpi+CtogmlXTko54AssSlGiZ+w+E2PwHvT5LltBi+NDsBNbPq0WIiaUvoiM/1CC4uGMJLPnn3SHIoCHUJOSZaPnpTdWoPVRDcv7iax06b6+06MJhyH7/H9ugpEELJA+jgu26E+mpcJ3Yky2jdXFFxjIaRv32RsO39K4gcGWBCIoket/W/lIDmU/uBFbsOSGubaJ/BwLqalGmNy/k/q5cN29jnjyB9TZQzHsblhJYY75ahhPnbmBon3aY8gndO9hCJPX84Gs8eBKJhdNGoXMbGo5o8H6XqUSvD79GeFSczlOLeGxxzZZ+845WwW2BJ7AK7toVipHbi8Ay1t5Q9R6t00zSm7p5Vyj7f5orhpfmiaFKpcVqT9FA5qvFyBfHsC+d6gL97N8CXdxKsAVJhkKSqVBvX/vWwWhPms41t45PZ8ag3/NDbDESfkjCEI3NOLzL2BMst36c+bxSy6AkR+NLCAEiSwwzCDuJ8nBF1TFZYW/BSd5YtrU3OyWuxxz5URD9FPJ5VCSbKRaKzJm/moUg7oIAT3ZQT43QhkLU+4BDYBllNTRuKON/26D18LYY4i8Sz2JTKvXq+8avAYZ50AyLxg31ev4PzmfGsT9bG6a6J+0ZRscfZ+t3cg3DLwHvZRvvquTbmJNEEyKQ67jn9vpIfkw3CZU/1MCrbNYm4cUlAR7/RXErCBuBaYnn8XvqfXbu83zrY7hnRfybHolhL46wv7eUB2ND0SyPP5tMq4V8TFuY+z6n/GA61HWaW9U0T2BZBRfOnBPiIIeYrlObQddO2QnWtetE+I+jgTdsiAalSzqWwDJ+jilGfAXZb9+yE1bXfQ/KEVOtA8BBpSX7N0KyZx3bm6zLACR1NEp6wTBw/YQ+17QCQVaGYN54BGxE4OIcMTiymaj7tRqSXPLnkBDC1McinFpOPba9SmlReRRPYNm4DO9kNZ7Aco5lz43AUipVWPvHAaz4dTuEQgG2r5mLcqVonLEtRNLJ8zfw8ZfL4CKT6sgwEpZIsh3q7WlELGYtXosrNx+iUZ0qWL04u36uLf06B+L5MwqewMof3Ple3yBgDwJLoFJCPi7LK4eYViyFathkA70iTY0mUIyames6GAuCVvpQA++yWgx98S+OpFMx3XUBrdCa4/mUW5bC3DrenfYfPo6n4r2d3UpglX+LbNVIJkTSl97Ge1fHZO+auTVfIM6nMEpUjNjMjtVDIMH9sEEQXT0F2eqsDH/pYhGCJvbX/X/ZOH98s6MbW949RItqY+kLaLZwFQ9vEJLJnCXdE+Le79RTI6CSAM0+F7MeWLIfp0N0+4LZ+oQcIySZpWZ8TeXmTTc87ggOZUSyzf8a0BLtXS3vzzhksb97WSwp0jjbcDelPsAXiefY3we7l8OgP5ridYRpodyEm0I83ERx86vKoPxg5/bAMvaYXOLXGP09yuKK4gW6xu5n524uzNLSNTa+Bo3rqToPhaqT6cyT5vrgCSxL0c8qt3uvEJev0uuzfRsGjd5kl+W2tGmLEA8e0XID+zGoUN5x17EgMQ7y6TSzqNY3AMo+H0O2yvIwaOuQebulpUYEv3zEBCTW7ZitE9dPOwBqShykf7cPkFoXRvt2R863VpAROP+1GBxpSDSYo4aQ5g0wOTVCYDHJYhyYpmLPS720qDOVJ7AK8rXg6LHzBJajETfdn57AcpXL0KAWTbrDaLVISU3D/ceRSM/IhEgkxPTxQ3XhfFzTE0nBgf7w9HAz2YmPlzt+WWRIQm35+wi+/X4TiLY26bt0WHHIZFK8SEhCRHSWpE2D2pWwfPZYeJiQK9L3WyKkGHy8TMuBeHu644dvPnMOoPN5FDyBlc8L8K53bxcCK/UV5F/Q1OJady8oR86AbCkNtbA0S9zjbSIDsepS3RkUa8igz/MDOMsRaSdi20R0W2/Em4N4deiN6GMR7yhLzdL661Mf4CsOuWCOhLC0X2cqF6dOR62oP9khEfF2IuJu/GU/YPJAqIQCVIsKwtd7OrDlvcpoUfkjwxdQY4+G9J+oaLrx3F9HCnDzB45WTpAAbWdzCKyFYyF69oCtRohSgZqKqpMshOQ6s9SMQwL/CeyMajmEBBqHsS4r0hh93cta2p3OQ5B4CurtI89KmOVLMzrqfzcmU7u5lcSoTa2QFku7qj5ODbegrONXDwS4+xvFzbucFpU+cO6NACGLyTz1trJIc3RzL4nHqmQ0j97J/l5S4onTQTTkyWKw3xQUhj+EywLzmkXqui2hHPGVVc3yBJZVcMHYs2pQfw3Kl8vuWfXXDhFu3qYkba8eGlSv6jgP/8pwNAAAIABJREFULNGz+5AtpF7CmhIVoO46HLIVVPiViLorxi20DgAHlSbj5ArOu01ZiPgStbL1Lp/UE4I06uacsXgntG65uMw4aA58NwUPgbNTDBM0cBO5mJsNIbDkUhG2j6REKinb8Fs1BJTDLnhg8CN2KAI8geVQuM12piewTBWQSSUoFuCLujUqYFDPNgaeV/ryeiIpp9n4+Xji5M4V2Yo8eRaNTTuP4OK1eyDaWBqNBj7eHqhSviQ6t2mky1RIvL5MWV76dQ7kHTsKnsByLN58b0YI2IPAEibEwuVrmrGPKRII5affwGXmcLZ3rV8xZMyjWf7MLUzUUSEiDnL0fJoyKNmZQeeYvbimTGCr7Q7shNoyf/Z4Z9pTjI0/yR53dSuJn/wtDw0y1kP6zLs6vjDhWXUoPRLDOSFO78mDsLGoYerygnrRhatS0Sh6Ozv8ULE7zgX3hvSX2RBfO83+XmnSUMSKNGjwpCQmHmrF/u5bmUGFoYYeE/JxnSFQKdgyGct3QSsznbhB+UqAy99SIkbqDnRdLmE9sIwTBTBBpSCMfsq2rRg9G5rqjSyGv0rEFiQxdGz6jIvmGpieeB5rOWFvRFz9Q0/6tSm3joloOREv15u5DHtH06Mw5MW/bLlWrsEYv64dMhPoQ7jWJA1c/LM29ySFOfFc1JtHmBZVxzg3gfV+3L84nEE9KvXebyQDJsmEqTcfoQy3Q6lWQm4YG58X3TgL2c/U81MrdzPQOGJCyiBz6k9WNcsTWFbBhcXLREhJpdfuZ2M08DMhzm7sqdW5E4N6tR3ngWV8rWiqNYSqbV+4LKZis5rSVaCYRDOrWoeEfUuT563wBb2nPBevx3O37Jl4XaYOhDApnh1M5vxNYHwD7Ds4vvVCiYCxbqlQDDSYb0hKmZo4IbBcXcTY+4UKmRx5QpK0h0gR8MYjYAkCPIFlCUp8GR6Bt4MAT2C9HRz5VmxEwC4ElpGXAxNcGoqJSyGfQMPLtEIRMn48kOuoE24K8HAT3Yz7VGRQ8X0GrWN24Z4yia1/qHhXVJb6ssfGm/7m8uLYbEIg29wAvn55Ab+l3GNPmyMnbigT0dECsfdcJ+qEBe4rk9Aqhgr6lpN441hQdx0Ryd0YNZ4yEneRhhb3y+KTY5Qk9K+tRdm+hsSJy1cDIHxFiceMuRugLVLM5OwZDXB+quHX3F6rxXielAmtFjD25lLXbwXxBaqXZEmmS33Hai2DMI7elwgCEMH6nLKZGIePkqx5JHuepWas0zbDpw5GeWXXabuU+QLdn9MwunouAZi2pguUHBKg9lQNZF5ZL/rpz4HryyhurkWBGp/nvomwdNz2KNfv+UGczqQuZVuLtkVTeXFotVoEh1MdH9J3dAnDzDHWjEd8cg+kW+hXO3XtFhBfoTpkOvxy8Ao01RdPYFm+AhoNMHs+vTZJsqCZ09QQmvCyOHBIiLPn6Yl2bRg0NhFqaHnv1pUUn9wL6Zbv2ErqJh1B/rksGMv+xoSURuZUqu1oXQ92LE203sa2h4ChhJ/XxiOITc1OALrMGgFhHA2FzpyxBkyg5Rl77TgLvukChoA6A7g4i97fYheg3uzcnz16AuvIQhWSHtFJVxyugU8FnsAqYJcBO1zJrrUQ3jwDpmE7qOu3sUqT1JY58wSWLajxdXgEbEOAJ7Bsw42v9ZYQsAeBJXp00zBcsEzVLAJrfFcIFBnsyDOW/g3iAZGTpUUDN1bQFyK9MHjj6O14xlF3PxXUE6UknmxTVxXx6BK7jz2uIfXDvuJdLEaNeG8RLy69rfBvil5upbPVf65JR+1IGmbnK3LBrZAsTaiCbteVCegUs5edRjWpHw74tzPQNyMnO8+YgDOKF+h4szKGn6FhmoGNGJTsZrhhcpk/CsIoimvmVyvBhJoPu7swWwxNOkWy82IJkpgMID0d8s85hKiLHOqmnSE5TDW1SMYwVRsayprTepBriVxTegsWu+FCcM51f065jbkvqbi6uRBAc/1OTjyLzRzR+P/5NcQgj/LZit9TvkTrmN3s7yQj5vxVPaHOpEXrzlRD8saRjWSAIpmg9EYyQJFMUM5sXWP34YqCeoHsCuyIOrIsL5Dy4ZvwWku1Ue6GDoBXbqIqZiZLXqglB6ium6rjIIhO/wNhCv3snzF/E4jekaXGE1iWIgXEPgd++oX+Pffz1eIzjk4et6VjJ4Qg//TWohmDli0c54FlHCqt6jgYmnqt4DKLehIzRYOROWut5QA4qCS5nl2m9GN7E7h7wuu3/SazDrt8+wmEETR5ReZXP4IJtTxjr4OmxHdTABBQpghweT7Ha9ooE7G5KegJrHNrVIimyg+69wfyHsFbwUNAumEJxGcNP1IrR82EukYTu02GJ7DsBi3fMI9ANgQKJYH16bTvUL50KMaOyMpOlpuRjARDPv0GVSuWwvTx1gno5tY2fz5nBOxCYN08B9lPM9iONVXqQfHJfMhnDIUgnnpZWPKl19glHQItGi3QoFbkH4jTUDLsckhfBIpoKNpTVTKaGmjneOB0UC+LL4eBcYdwIiOGLb+xaGu8J6dZMvQnTHmIEM8dcSEQbjiX+Ry9n9MXkPouRfG3opShB0JAEIaNHYa9aeHodaUm+l+szWIW1JJBWDsjAmvZZAgf0rA5xbgF0FSkdYwX6NoSETJe0HCj1l+LkeGRCUFclEFIKuMfBE3j9pD8TbMaqtr0harnRxatufFcCXlCSJScjJBPhITSm7X6Z6Pij2Nv2jO2PglxJaGuxhalfo36UX+xP4eI3bFsZX9oOZwUCdMg4RrEVOnApdmUJCC3Rf2ZuX8FtwgoOxUy1h87VLwLKkv9dL3Vj9qGKE5aq7NBvRAmMS2wmdvwpOsWQXyeZllTDRoP0aWjED68yVZVjP0Gmsp1c2uKPc8TWBZDhdt3BPhzO93gliurxeABpsnVM2eFOPgvJbAaNmDQoa3jNrPSTcshPk0/gigHjIOmSn2Q0GW9Md5FkPntFssBcFBJ0ZM7kC0ez/YmKlEWHv9ba5rAWvo5hI9usWUzJywCU85yT1IHTYnvpgAgQMLary6i97eLnxa1vsj944mewLq+S4XHe+hEizdhUKKL4+75AgCx8w9RpYRs1SyI7lB9T/2gSYIUkijFXsYTWPZClm+XRyA7AoWSwKrc4n1d5oFfl35h8Zo36zFOF65zYgd12be4Ml/QZgTsQmBdOgLZbwvYManrtIDyg2mQLZkA0ePb9EV5/P/AlM89Y9+leWJwnK1Qe4oGNV9vQjIn1Q3RxSH6OHpL1GSgWh60czrE7MFNZSLb3v7iXVD9zYbaGGxjMu1CcG8Eiwu+CO6xjCgMjqPaSyQM88+nWkjXL2YhINkkJ/Rqgw2vH2LwuXrodr0aey6sA4MgI48J2S+zIeLoZ5EU9CQVvTm7/YsIKU8ogdXkMzG0QZkQPL6dTYtG07AtSOYtvakbtoNyaPZUuab6MtZM6+JWAj+byDrJrbsn7RlGx9Pws46uoVgd0NLie3FQ3GEcz4hmy28IaI2WrtlJ0mRGgUoRdJPsAxf88hPNjkYa4Arlahng3Fec0Ms3pK/FA8uHgk2id+A/VQrb86mgHigl8dIdt4vZg9sW3ou5DV224kuI7l1hiynGzIXo5nlDoqLPx1C3tFwoniewckOdnj9xSogjxzikVH0GHYxIbn3pS1cE2LOPboZr19KiW+fcN8OWjybnkuQjjOgmzf5JsuYypasYJihx80DG4h1vq8u31o744lFI137Ltiep1wxuk74xSWDJfpgG0Z2L9Lk8Zi6Yqg3e2lj4ht4dBEhikRvLOeHrxYAaE3L/eKInsB6cVuLW7/R5r5eMeHcQLOAzTUuB7hkbwYkD5UyJhGArB1ENwbc9W57AetuI8u3xCJhHgCew3mDTotd4JL1KxY0j1IOCv3Dsj4A9CCxT2iHkoSVdPRfiq1RYXTH8S11IRm5GBKmJMLXeKn+oQQ3pOijJTv2NPQkbAhcB3ezkVTvH2OvjXHAvhIpNe30QDSyihaW33YEdUftN+FNuc3Pm8/+kR+DDF0fZIbZ3DcX6k48gOUK9gcgXtXmNq2BF8k2MPNEYbe5WZMvrM0Zy5yjdtAzi01TPSdn/U6ibdzULw8PNIiTcoGtf530RZJUUEF05BenqOWw94pauqd9a9+VPb5qqDUAICktsZfItzE+ixIYl4YAnMqIxMI5mUSRZMEk2TEstp7A5bhsk9XAIRwdKrpRg/a/D2CJCKdBgruEm4fw0MYj3ot4azFNDKLF0ZI4vVyfyT8RyYkUvhfRBcVFWeLGxPtbmom3QXP4m5aKVQ3WZ+xGEMdTrLfPLHyB8fAfSv6hwu7pJJygHUe+V3LrgCazcEKLnd+wS4Trnfu7cgUG9uqY9LG7eEuCvnfRvepUqWvTt6TgCy2XhpxA+u88OXjH5O5BEEfLxnFB0iRTpK6iXluVI2Lek+MAWSHf9xnYi69gX8vfHmSSwjJ/L5GMT+ejEG4+AtQikRghw60dOApEQLaqaCRHmtq0nsCLvKXFhCX3eFwT9RmsxKqzlBUnxOukQksTJnKmr1odyzDy7QcATWHaDlm+YRyAbAjyBBeDm3ScYMGYuvL3ccWbXD/xl4kAE7EFgSf7dBsn2X9hZEB0iokck+XMlJMd20t97j4KqVe9cZ/t4mwgvLtOXGkKM1A6kL+ekAVPCzuXCNyJNS3fx90MHwoPs9i2wshEbkc5hAB6EDYK7wDQDMDzuCA5lUBHcVf4t0NmthAW9OHeRHWlP8Gn8KXaQ3d1KYs2Wfww8WJQjZ2JlKR8QQfJx/76Hpo+oTljZ/hr41zQUYCUhfpKDW+k10G04VO0HmgXiv71CxJ6iHhtVeojg1VAB0fHdkG79nq2nbtYFmvqtIFtEiQdNqcpQTF5uEcjGov0zfepipFflHOteUySgc6yhRtg/VuistYz+Gw9Ur9g+jhTvhgpSH5N9cq9H7zQ5Vq+nYUwSd6Du14YE1sU5YnCi7nTnSTlntcoRW/CKkwGS61FpHGq5skhzdHPPHmppydzkk3pCkJbKFs1Y+KdOk032/Zfsb5py1aGYQL0Mc2uXJ7ByQ4ieX71WhMhI+rd82GANSpcyLdL84KEQm7bSe79sWS2GmAk3tHwElpeUTx8CQeJzeq3M2wCSPdc4eYS1ov+Wj8D2kpJNyyHhhD/KR0yArH0v0wTW+sUQnzvIdqYcNhnqBm1t75yv+c4ikPxUgDurKIHlVUqLyqNyJ531BFZCghLHv6R/HwRiLRrOz73+Owu4k0xcFP0MkhVfQJhCEyuRoWndPAyet7Zk+bVmijyBZQ1afFkegbwhUCgIrEf/ReHRUxoKM3nuTyhTMgijBpv3rCCwqTVqPHkWg627juJ1WgZaNa2FFXPH5Q1RvrZVCNiFwNqzDkQAV2/6uHfxwS2Q/k2JJ0JeqXqPynW80cdECD9AX2qKNFbhvWo0M5lcKMbjUMOQKtJo3chtiNGkse2f/z971x3dxPF1r5ol2RjbGJtmTO+9l9AJvYXeQg0dAqGX0HsLvbfQIfSEFkqAQOi992IwGIwxNsZWl74zEruzWpWVbdn4x6d3Dn8YzbyZeTta7dx9796QViD8QUKmNRmQK2yTVTNnymejPpzHpriHbPvJGSrgp/Q0E0lovLT6OZ/jqb1vPiydvQgiDuG1esI6/JFOg1+i/sPIQ3VQNoyqVxG1SFICwDXZsR2Q7VnN/hcp1dK27uswBK//lSDsEL32eWuLkameFtK/bPeYoWwNKCb9xPoyBodAPck1guWekSdwKOEl29cRHxV3ok91saiWDJ41/v68FNIa2aT2RQ24ZarBcemxdHMbdir2SNqvzpZA84HGjZTdyjOkXTWn3GEboXGQUTkq6py5RJWx6YEV0cW3YOK/NgYDvAfUZ/uRaKiWHYUoOhLKsfT+YUofAAJsuWoeAMvVSAEz50iQoKL7csggA/y/qGfyvbwIE2HdBnoYzpnDhO5dUu8wq+xPVPzoeAlLDgMSKZSDGkGk1bLTVc3/CyaF0vUgpEJL+eLRkNyjAhOkfJCUEdr7vScvAqT/UpEIbZv+0Nf8IRVm6RnCXgR0ekCjFkGlFkGtMiF79rR73+bPP+ahGPfWUdDZv4ARhbsLc1gxAFbMZy2enTDByw8gv2vyAEDq/b+z/v+PO1r87J65bJAr0ETiYMhVCLpOQ6GY3IP+5vr6QzWbCu24O14eAMvdEfX480TAcQS+CQBr2fp9WLp+X7Kus7dSji1LxyF/blsOmGQ59nR2GoGUALC8di6D9ATNtNK27AP99y3Nb3m5/En6crWg7T5a8ApF3RLh0RZ6kPEpqEfDmuvZfo6U//jE0EeyNEFRuYUY2pmRUiZS0sRYJokS17JTRSd+3wUxNzAnhhKT9/crhjEBjonJhcZPK5+v/XQf46MvstPppsiDeZNo2Z5JIoVq0UEcV79Gl8h/MOnPRij8Jgvbnrx5JW9guSY9e9iKp4qU/Wm6jnS45MirIjzZQa99SFkRcrTRQbaZV4pICJZLVU0yP03jNwdwXRvFzmNf5oYop3CuRPfeoEJJDs9aYhUoC73cik8cHjdn6nrVwvfiqT7WPL/QDwH4bQcVJFAGm1BqqPXB/sZCKRKoBgFKDNTDJ2lVd6myHbO9oN9nMiAXMJ7x8SqWxFKS6RH+pTDIv0Si50UEJIiQBGMm/0CoZliyAZU/N4RIT5UOE+b/BbgISngALNcuhVotwvTZ9LtMek0e75gf502ECCtW0/ZZs5jQp2cqAVgJcfAeSnnQTApvqOb/adkrw1pCFE/52siBzOTr71oQUqmVYmJ3iN/RrGBC4E6I3O393sv2roHs6B/szLQ/dIe+XvtUmqlnGH4Exk/m8BcCGDPSAIX8fwPE+XBbjIebKYAVWNSIAp0SB2AlaFLpO+7ZesmOgOTmOXitmWr120mc6otXgrbHWEAqg7JfXTCvLMwvjZb8DUisfweSPZEvDjwAlrsi6fHjiYBwBL4JAEun0+PyzQc4de4mTp27jtdvoyCVSODjo3AaAbFIbC4bLFkkL35q3xC5QunhVzh0nhbuiECKAFg8+Vxtp6HQV64Pyb2r1qU6BUpA84twqU78a+DmIvpQJw02oHlLmllDslZI9grfWr/9G+fUtASE8BMRniIhu6eNBgG/GCsoC8A/2Zo57LYt7hGGcdToWvnkwcKgqkLDpPnPl8bexnQOL1R/QzCmzp3PztsYmg/q0ctwVROJphGHMHtnc+SKogBhiZ/18OHh0eSBR75iAuuDqHpp+jvmRIh5JMK9tfRhJ2N+EQr00MFr+QQQX4xpek+EoeR3SS7v4XMwuZKtpzYZkIeTqUce0sJzdnX5uvJBm1c5ukAsotkpXEeN3uzHjS88a3nfBWHGHrof02UzofhA64f+Oysl+PSM+ira24D0Dkq1XJ5wCjWMN+qQ/+UW1ru3WIrHnIzK5Z/uYGo0zSZxhZ/M3lTFT3nE/zkLQDPSUrKumNYH4vCndD8NXwRDbteyKD0AlmsbI/y1CKs43+XgIGBAX8cAVtQHERZx+HQCM5gwyAU+Hddm47yVmKicTuxG73WZQqCeaPnNUfzaEeLoSPYz1bQtMGVwDna7Y06J8aEc2BginYbt4vf7YYh8fO0DWIe2QLafAsikpFvXjK49MeP+r7SVPLsHMUclzZS7MPSJUB5NqXUmJAAz51oDWAP7G5Ax8H8DwIq8JsKTP+jvdVBpE/K1FQakuBlYHgArpXaXe/2SrE0ujQPjXVelIXQconbFyDZWpYUpeb/0AFjuvcYeb54IOIvANwFgcRf4MTYOtVsPQami+RKlQujZJl8nAikBYMlXT4bkGuVO0v40Fvqy1SEKfwrltD70UJA5FOoJwqT9hIqKkFKzJjKhdR/aL4/UD6dDmtsEkBCQEyJyxlYF1UQjH1ri5iji/6kjzMTRjFVWZMbOzLT0iN+Pr9aXWDLvr3PlhUedG3MD8zmZZcM+KvDrKhp3wpNC+FKe6WJR9fVeLN7SBpk/pWcdlxpugDKj9YM3kWtXzBvCtiFp5poRixxOhq9qlC4TUGKoHl6zBkLy/D7bTzN0Pgx5i8KG48iF7Ah7hP9hOTpDKqJvkh1NMOTFenBXSEpZSUmrkH026VAgzDFow+/PJTIv8iYLJv7ZiG1CgCkCUHHt3u8SxDygAFbBrgZkKJQ2D0FRBhVKcDLZAiUK3Mrejl0OHyBuky4v5mesIhRim8+lV07Ba+00uvdKVIamzyTz3+T/yeeMMaC7K4N4ACxXogTcuCXCnn30cFuooBHt2zjOzvgUJ8Lc+RxC6HQmDB8ifBh2bTbOW4kf3YBi/nC2kTFfMaiHWBRO+dlN6vGrYcySdjgPRbHRUI6iGcMmmRcCtljEOOxmYB3fBdnulexahcq63RHfr+1D9td6yA7T+y/zW/a15/XxowjzF1tnp/zU1YAcoWnz3s2P19uLYjzbQ383M1cwIncLTwbW195X7h6fz2XK+Nc17QpdA8rPab5fzugHMUeVkIhhGHIXdveUzP48AFaKhNXj1BMBuxH45gAsssoJc39H+Jv3HgDrf2DTpwiAxePf0PSfBkPR8hDFxViVeEGZDgnzaKmhs3BdmiKB/jM9kPf9cTuifD+buxT1CsQRO+TZQ6POYvtnKuc7J7AyOvjmF7wq++NfoM97epht7JMDK4NqOuzHz9jKJ/PDqWy2gJrgwGmsAcl6IdkvjI1/kYDBf3BI+Fv0AiHo/2jUoOjLbVizviP8VJQLptx4A2Q+PAAr4gUUk3vSg6EAT5UuXoTLk+kDvVQJVJikh4IQLEdxCJYnrYcpOBsUE7pCHEn5+AhAaswc6jSy/JLRjBIlbjopGeU6I8ALAWAYuxbSBpmk3oJXMrFlqlwwttTL7BhzkKod2uMZ4as35u9oQMbiafMQ9Er/GRXDqbJliNQHFzkZlXw1zLrK7Pg9k7B6Kf8iSI/vhtfuFex/E+J/bXsL56Ls4CbIDmxkP9PVaQNdC7pPnV1QD4AluN3NDU6cEuPUaXq4rVLZiLrfOz7cqjXA9FkUDPaSAWNHO87Ycm0WrrWSXj4Jr3XT6V4pU91SEmPnQKYetRTGHMK/K66NnPxWRDmRKCgyZsqWGwHzLXvb3u+99MwBeG1dSNfqQOqecBvp4kTwyWpCuhAgsLjJ5v6e/NmnjgevLQsg5ZDcC2UCp86sgLfvgGUrrV+AtG1tRBEel2RqzSex40T8J8bz/fQ7nqWKEbmaeACsxMYxzbY3GuC1fjakl6k6NZmrSSSCtutIu6ri8mXjILl9gV2Spuc4GEpXS5ElegCsFAmrx6knAnYj8E0CWFqtDlqdHul80haxqWcP2kYgRQCsOQMheWabHQOTyaoensyGIcYVujZ3lkvw6QUFsCY1OYQ7IRaSn3LyYOzL0tDGxeToy1j56S77/2MzlEXf9EWFhsLGuIcY/eE8265TuvyYmbGyw37RBjWKvaLKeunFXrgf6lhZT3ACaaTBrx8uYH0clZGfcf0V+hw9TR9Efp4BQ+GyYDKYNq/qCrmBPnxXnmV72BTFfoByFM2uMfmkh2rubqcrPjfS+oG+8nQ9lAOtCZYJPw3hqZE72ntORrimeY8mEQfZFsXkgfg7SxOXrkKV13vwXEf5cP7N1hx5ZX6CfR/rYlDjNeUNdJRFyDgiJPk7Pz8x/1nxWS4MPUIBnAxFjSjI4xl5ukeMdxfpQSJvKyOCywkfJAQnngINHuliUJMTCz4AfF79Fq3e/s2OXF4RjL2Zbb/vQlMjyqhEIZUxbdOu0H95Wyy98i+81tJSVkPxStD0pXxvznx7ACyhyFs+37FHgjt36D28WWMDypR2Dqry+YCccWa5NgvXWkn/2QOvXcvZxoTUnJCbE5P/NhiSJxTYVw/+Dcb8xV1znAqtbPZysYoIHGcp1bf3ey+59A/kv8+kay1bE9qfxljN9HO4CLd4mUH5OxiQsUTaBMWFwixfOQmSG/+xzUhGCMkM+dr28qUIa9ZbZ2A1bmhE+bJp897NjxdfcCdbTQNy1BfeI54Swq+981wYX6eFfNlYSB5ct2pskspAKByMRcvbdSLbuhCyM1StWdu6H/S1UuYFrwfAcuE6epp4IuCmCHyTAFbEuw/QGwzIntU1XojwiPdmFcLQbMHwVjrnzXJT3D1uvkQgRQCsKT0hefOCjbF63CoYs1pk7xVjOkD88T37mWrqZpgCMwlej8c7JHh/lR5+Vlc7i6NFLCBZVUVWbM9sK/u9MOYmZsfQH9uf/YpjVEBpwbH4pOwD/YpjpEC/0BcbYOAUkz0O7QhvsUxwrLTcgJ/BtvD4NXS+SoFJotRGFNuIFQvbhpXLOtHliEyoPNN+uU9iZeivTJVAG0evfdkh8fCf2JgdyySTQ7XI8oAkXz4eklsUfCQgBAEjnNmhhDD0jDzJNqmjDMH6TN+7dGm43FSkw19ZGqGMPEiwLx80K+WVEQey0jXxHYyLvoh1nyyxr/EwH/qfqM42sccz8uKAGG/OUAArZ0MjslZPm4egG9ooNHpDH3CLewXiMCej8r42Gt9zOOnyy/xxMlviVdK81s2wenOs7TwC+kp1zHEkMuDyqZzMQA7nkdDF9ABYQhGyfE4I2QkxO2NEUZAoCzqzKTOl0FHBP4wdqYeX3LXxktOKXyKj++En6OpZgHeiuCW5f5V1r/kC5CdnPHf2lR3bCdmeVaxLXc3mCOo71Py3XQCLz0vIKa1lnNz/XYKPnJJk8v+5mxuQuaIwOOHOtbnLl3zeUEge32LdGTNnB1HU/dr2+IkIm7ZaA1g1qhtRK43eu/nxenlUjPB/6O9OaF0jQmoL/+54AKyvvfOcjy/6/AleS8dA8oKqbZMeJp900A6YAUNOx6rAsr+3QvYn5azV1msL/Q9UmdCdK/cAWO6MpseXJwIC9wUTSV/4xmzG4i3YvPsYBvdqjR4dKFc+oDo7AAAgAElEQVSLo2UuWrsbKzftd7n9Nxaur7qclACwlL92NEvTM8YFqeQz+0MS9og+/LtYDx9+QoyXR+iD0f7it7HxO4tCnqOSog1xDzDmA01d7uRbADMDnYMZxN+E6ItY8wUsMP8dUA69/Io4vU4VwnciXB/PtjmTrQVyyygf1Fe9yEkcvP/7f7Ev/jnbe9X+s2h9zwJMmnx8oZq7h/2s3uMDmLCGggoibxMqTbAPYCl/aWoluayatw8mpY/DWRICf0Lkz1jxju8QvJxmcRkDs0A91VIi47VhDqQXjrJtXeEy4qstdvYtgBku7BMySLu3R3FGTeX+tmSqgxpKYbm/06o3aP+OztMRCMssZNbHa1gUazlw1b1TCD3PfMeu0R7PyKtjYrw6Tr8v2b83Insd4YNEErdKsrrxM6wqKDJhT+YGrE9+uWWwRInrLpZ4cicmnzcMksc36b1n4CwYClFAO7HAKuPIA2C5dvmnzpRAq6UA1ogheqRL57zv7HlSfLZUiptt+GA9fH1dGy85rbw2zob0/DF6H+kyHIQnyXyPWTkR0htn6We9J0BfMvGcbMmZn7O+hFiZECwzpmvVB0FtfjT/aRfAun8N8kVUCdZQsBQ0g2az/T+/Bm5xRFSYD9IyKC4UW8XknyCOoPyYpnR+UM2hZcxC/VPq8zt3Rdix2xrAKlvGiKaN0ua9mx+H5wfEiOC+OGlkRNZqwnP3AFgptaOS71f04Z1ZfIkIW3DN6B8I7S9zYMyU3ekgNurj5WtB201YfTwpM/cAWEmJmqePJwJJi8A3mYHVpvdE3H34Akun/4IalUsKRubWvado32+KWY1wy1ILz4THUicCKQFgmeXHE+LYBZAHQ/KASMymHr7XBBhKCT/88+WZL+d8gdkNjpt9NvPJhWVBNCOFGXjf52foH0VL3pr45MSKoBqCgf35/WnsiX/GtluYsSqaGvLi4TYKCEi9TSjUmT6YNY04iKsamlm2K3N9VFJkFhwrLTfoHvkPjiRQKfZNe0+j8SPL3/r67aFt1p2dfqeHJ9F3nSWbxWwBelQeZX91NgDnpA0wBWd1GArCvRLzkMa+SN0XyLKLoxCWsyDUIxeb+/PLxHTNe0BXlxIa2xtkWvQVLONwfY3wL4VB/iVcujS935/Egfgwtu2KoOpo4mPJNnRmB+JfoDeHZ62hdyhWB9dy2IWrxNf4VjF0OVuBbZu1qhE5G1sfEvhcJPbaCM0xtT4/kRCOTpGW7zIxAgASIJAxlVGPvC83W03ndSLUHpmONvxoY1fBmI1eK+U4a141V8m5PQCW8E4hIBQBoxjz8jJh7ChhQvaFSyT4EE1Br9RSZJM74HEk8+dn8mkI90sF1zI2hSOV/Bbypb9CcucS60jTczwy1bGAb3YBrGf3IJ8ziG3PF9Z4sEGM6Hu2ghbZ65qQvbbwNUz+itzvQTm8FUSfY1nH5C2yajkFLN0/omser14T4c8D1gBW4YJGtHMiduCa59Rp9WyfGG/P072Sp4URmSp4AKzUib77RxG9eQHF/GFW3xUyijFLDqgJyO2XQXBQyd3LkC+hJcnG/CWhHjxHsF9SGngArKREzdPHE4GkReCbBLCqNR+IDx8/4eSuBQjO6C8YmbjPCajYuB+CAv1xavcCwfaeBu6LQEoAWMp+dSHiJBYmLD0CiC0PNV5b5kP63yF2Adq2A6Cv0UxwQSQDh2TiMBYe8BGD21m4k9qmy4d5GWlGCtOGrw5YTZkV2zLZlhryB//x3TGcVNGUn43BtVE+MhS3l1s/WFacpgcjOMcHMpZmrIYf0uUWXFdabtDh3VH8q6LZRbt2nEDt5xEwBma2qEfKvNjpD7l9Ea0202tgCNai6lD7Kn6K6X0hfmXhcyJGwCejkxT0JzsliLxCD7F5yzxCzpO92f5cviLZke0g5T+MuULGPeD9aezlAJYLMlZB63R5Xbo0wz6cxbY4KhQwK7ASfvQtINh3e9xjDP1AsziElPU2xT3EqC+8bK2ulELby2XYMbLVMiJHPetDwrtLIjzlvMnPVN6EPC3T5mHzYHwYer2nJZwNvEOxhgfm5XqxEVrQNT4O/RHeLqg9ci+EcmBjiHQa9r8SSAahD03nsTn4uwiuewAswe2OF2EirNtA759Zs5jQp6fwfly+SooIqtWAPj30yOoY6xaeiIstFNP6QBz+lN6jRi+DMTSf5Tds8zxIzx6mv2EdBkFf1XH5r4tDuq0ZEckQR3BK+EctQebSlheJ9n7vbdSBs+aEetxqc/uEd8ANDvDInSTJrMn5P5IZZBVcO1yc5rUSQRmlQEqg266SfUfnLojx91Hr383Q7Cb06Cb8XUnhqbnknk/1kK+NAUFlhItMPBlYLoU3VRuJH900v3AWaahIDZmAGeAeOBNQCIvVkPai18+gnEqf14wCwj3JWaQHwEpO9Dx9PRFIXAS+SQCrRO2fzBxYt0/8DrGYHjydhaZU3Z4wGY24cZwePhMXSk/rpETA7QCWVgPvQZyHeakMCYspYEWUvojiF2O6Bh2ga0qzaRytwagHLvxKASyDyIh2fSycFV19C2JaYEWbrtc1UWgcQbl1SngF4pAdtUJ+x4Zv9uOm9gP73weyNEboo2A83Gz9YFlikB4+Xw5T46MvgpSiMTY+oCx6+wkTxiflmqVWn+ZvD+GSmpaCHtx6FJVfvYd68FwY81tnKE29fhu1tpdip6bJnoCaAyjAxZ2zfMEISB5SbjLNgGkwFLFPAEr6vfxbjPCTHF6NfPeR/2o/1qWeo5pFwFECkjKmr1QP2s7DnIaMEISTMjbGtmeqi6pK107Jkz5exqrYxAsFrP50DxOjaZbET+kLYXIGmlXFnzA3m7DDhbJofp1mtobWNyKkpjWAFXVTBKJEyFhgCRMKdEibh6Bdn59iUNQZdq4tfHJjcZC1SlGZV3/gLUft8XJIa2SVOi475cdPpIqHcggtcTWJxVARYJ1jst0rIDtOBQW0TbtB30BYjMEDYAnfka5dF2HffrofixY1oU0L4f24dr0EYS8Tx5slPBvhFsqRbSD69JFtqJqxDSb/jOa/vXYshfQkFWDQtuoLfe0Wwk5TqYVyYCOIOMRhqtk7kSVnFvPodgGsyDdQTujCzs6UMTNUUyy/0Q82ihF91/6LCHuly6m0xGQNY6OG/MWbavJGmIIscfpaRlQ6iVon1wIzmDBogPB35WvNmTvuwy1ifLhF5++q+q0HwEoLV4/OQXLzHLxWTYbIaL3v9MUrWdRYOS8vBWce/wnew1rS+wuHs1SwbyIbeACsRAbM09wTgWRE4JsEsCo37Y/YT/H478/FCPATJqwgqoUEwPLz9cG5/UuTEU5P18RGwN0Alig2GspRtGSLzy0hPX0AXts4kt3fNYD2xyEuTfvyVCl0tDIR/X7cjve+n83KgkRhkG/PdJ9Q9TXlacop88XZbPSH1NGglcJ34aWeEq+cy9YS8st+ePan9YNl/o5GZCxuAQ6Wxt7G9I+U2JdwZhHurP9la/ByD24ZqcLeiQ1/o1ie8nav19IrT1BqJyXyjMv9CfV6239D57VmKqRX/2VDo+k2yq78MtPARpo780MUedSH7a9r0BG6pl3Nf0tunIV85UT2M1fU5L57vRsvOBvLVSVBMkhSCP9Jv/kxNzA35gY7T1KySEoXHdnxhFfoEvmP+eNu/1VCw9uUky1nEyOyVrEGsAjhMiFeZiyggAmFuqfNQxA3u4zMt6NvfswOtFb9rPV6Hx7qYtj1HM3aFEW8hMsXmA7iiDAoJlPiWFPGLFBNsfCmMSY9cxBeW2kGsKF8bZC9KWQeAEsoQsDR42L8d47eP2tUM6JWDeHSos3bJHj0mAJYHdsZUCC/cEaH8IyctOBl6JjLy5YdBUSWefAJ3rlqlska1w2dSVkcKY9jzCTzgmrRQTAHO7sAFl8Z1tcfBPSyZF+Re4j9l5BBJU3I1z5t3lOchZJ/L2DaqkcthTFHfjdchaS7OHJMjLOcEjziSe4F/DrKVtE36aOkXM/7v4vx8QH9nhfqYkBAYeHvqwfASrlrkljP0tP7Idu2yOZbr6vaGLr2A9n7YGL8KvvXg8hI7/dCvKeJ8c1t6wGwkho5Tz9PBBIfgW8SwOoyaAau3HyImWN6oUld64OIvRCdOncD/ccsQPHCebBt2bjER9HTI8kRcDuAFfkaygkWMIEY/6BI3uzIV0xgPzcULQ9N/2kuzf/Ocgk+vaAP05OaHMKdkDcY7F8Sw/xtudaiDWoUe7Wd9e0vluNuaHvBsQqEbcFnk45tdz+0A2KOyRF+wrqEMGcDE7LWsDzA87NImvrkwnI7vFyCg6ehBjVvr8AjX6oKem77v8gxaAlgh3B984VXyL2X8glFFvqAH7paeM/4ZiOr3KY/iEy9I/twS4SHW2jsM6Z/gpLhVDGOW4YqfnIHit8G0/3lgjw6X0HySeiPULpYnsYngHeUDchf2+Toy1j5yfXMrYvqd2jx1lK21PtkFXz/gIKFeVsZEVzOGgyICxPh9jIas/Q5TSjaN20eNkkGG8lkY6xH+kKYxMtGI2snMWBsR+Z6+E7heraE5ME1yBdSompj3qJQD6WZesSv+PFtKOZRMN0Ymh/q0cIvVDwAlvBNa/sOMe5xDrYtmxtQopjwwZYQWhNia8ZatzCgWFHhfsIzctxC5ADQYXrIDm2GbP8G1gGfDzA5Yye3rzjsIRQzB7BuzFw149c4B7DUCVAOpmX8Ji85VAsPmO+55N7ryDIUMaIghwcyuXNPrf7iR7egmG9RZeSaZsB0GIp83ZdO+w+IcfmabcbbxF/1EFs/fqRWuBI1zt3VYsQ+ofMv2tuI9LmFgWoPgJWoMKdYY6JeSlRM+cZVYU3K4MrxnSF6H8F2Jfckcm9yt3kALHdH1OPPEwEnz0rfogrhxp1HMGvpNmTJFGgGpAi3lSOLif2MH3+ehucvIzCoR0v0+rGJZ7+kYgTcDWCJwx5BMbM/fYAOyQP1ryvYv8UvHkAx62f6efa8UI9Z7tKK+fwKq6udxdEi9zEmoAz6+xWz8UEEPkPC6EGDNBAif3bUh/AJEV4hrgWXNSFvawso8J/6Ddq+papyfCU1lxaYhhoR5Zhyysd46U85QS7FZke2ErXtznLfv5EIPkTL7l4Uj0CHjkF228r++h2yw1vZz3SNOkHXuLPD1cc+FeHuKvr07isPR4X3ndj2mh5jYShjIfHnv10X4lv4aFCjKAfk9BXJ8CBHR5evxM7PT/BL1H9se3vlb/acjfhwDlviqBonUcckKpmO7K42GnXfWJTFBh2riSpP8rBN87UzIKiU9aE+PgK4uYCW3HpnAUr+kjbf4i+MuYnZMbSk9Ge/4hgVQNUByUL5ggKrgmqikY/rD8CSi8cgX0+V1fRlq0P7k7VgCL+0yCRXQLVgv+Be8ABYgiHCkhVSRNJqZPT6yYCQbMJAFCk7JOWHjDVrbECZ0sL9hGfkuAXh5yM8fYyZsuWGauxK9m/Z8V2Q7aZ/62u1gLY1bZ+csZPbV3LtDOSrJ7NumBdEzjKwSGO+Amf01OO4NtsaMclSxQiSDcuYX14jivQUBieSuyZ39+fHiPFPlNH05R0Labh7Hvb87dojwa07tqDhkIEG+Pun7L53x/puLZXgM6fkt1g/A3xzCM/bA2C5I/rJ8GE0wGvtdEivUdEj4s0kEkPbdYTTDHlXRiUvFcnLRcYIh5ahEOXxdMWHK208AJYrUfK08UTAPRH4JjOwVGotmnQZjYh3H5DB3xc9OzZGze9KISRLEERf0vDJZ6fO38CqzfsRGRVjbndo8yz4pnONGNA94fd4cTuA9eimWbWEMX6mgzg6EopfKUBg8ssA1cw/XLoQr/4R4xWH4HR/8dvY+N1FTMlQAd3TF7Lrw142VXqxfW4m4uCdPgGlw3ewvoIkStzI3hb81HjSwDenCcW+ZLU80cWi+uu9bD9XyxVdWnhqN/r8CUSRrUCPBnjvQzOwroe0QbDU/vfz+PFYeB8LZGd6p0wYerXJZnfmNgfAGs1Asqgcmeq9CNfn0sOUXByNqjG0FFQ9+DcY8xc3d7cBIXzSQzWX8hrxx+ACQ+SzfDI/nMrW3OWIH0l4ie6RJ9j23ytDsCGTsCJZn/ensD+eEi0vy1gdzdI5Vi98qY9DpXDLOkYc/h7lXuRkxyzQyYjAotYHSXW0CNdmcWKWwYQyI9NmBtasj9ewKPYWux57KpBDos7ij8+ULH92YCV0dIEsn3EqPbINXvssnHnEdLVbQNfKFnRQ/tIEIo2abcflPnK0KTwAlvDXZdJUKQycLfrrKAPkXsIH28NHxDh/kYIm9esYUblSyoImkruXIF/yK7soctAykxZ/MZsyeA4Hn3AkUrYF/96qq0bKfgY5zcAiM1IOagSRVstO7sZ3xxB1mwLgPllNyNPcCAJQMJYuuwnF/0e4mbhRl545AK+tlMaA+cxVQZmUvIJbtonx8LFtBpargG9Kzs0V3zcWSJFAE23A5Ql11t8DYLkS3RRqo1VDvnw8JA/oSyQykkkqg6bfVBgLWb9MSsosvNZOg/TKKbarpstwGCoKCyoldiwPgJXYiKVO+5evI/HXkbO4eP0enr98i0+f46FUyM3JLVkzBeK78sVQs3IphGYLtppQzVa/mPEBrsm9ZMgQkB6F8+dA4+8ro251W/oY0t5eX/5q69csj98mUD7dkVNX4sDx806DEhiQHqf3LmLbvHz9Dg06WrL7Rw3ogE6tnO/rMTNW488jZ7Fp8RiULvZ1S9aTe/W/SQCLBOXJ89f4aehsREVTqWKpRAKlUg61RgudjmYDpE/njZWzh5pLCD2WuhFwN4AluXXe/GPImE2JoEEP7wEN2M/5/CLOVv/hpggPOcTUl3OEYXbDY5gTWBkdfO3fCMqH78RrfTzr9kJIK2SXOlYauq+NxvdfMl1IpwIyf5zI9gNuLpIg/rX1m1GZL1BurGUfxxm1KPiSZhVJIMLLnJQYN3WvavJGM7+Ju3ISob+0QZxcxjp7ENoBvg7Av7OH4iH6l5YMnq/4CEOb21dhlJ4/Cq+NVEZZX64WtN1HO5y0Xg1cmkAPUyLoUftTHba9euI6GDNlt/wtwF/DH+SfhFfo/IVbinzmqlIl4+ec+i1av/2bdetq5p09pcva3l/WYCcS3EyxsfsboEQ4BQcLdzfAv4A1GEC2/KXJNGaE77z8+LSZgUXI7AmpPWOEO45wyHGNX3LpKOvS0Sby+mMJpKf+ZD/WtegFXZ3WNs3lc3+B5Ckt7XTlTbEHwHJ+v4mJFWHeQgp8eHsDo4a5thf/OSXGv6fpgb5WdSNqVE9ZAItkn3ptnMsuSl+hjjkLgTHJhaOQb6D3L1e50pJ3V3att80+b94DurpthQGsEa3N4D+xBFFWnPPdbMV9VbCLEYoMRtyYT+8pymATSg1Nm6C4s2jxS0CZtiQLmGQDf037fYMEz8NsM7BShfvNDQu/NkcCdRSdf6lhBiiDhIFqD4DlhuAnxUX8JygWjLBSXDU/Rnn7mkF7d3HCyXathOyfXewMtc26g5Reu9s8AJa7I5o8f+Scv+T3vVi77RBIdQuxLMEZ4Jc+HT7HqxD5IQaEA5tY5bJFsXquteASA0IRoMdLZvntSVBrQEAjUr1FrFaV0pg3sT9kUuuMYaZvsYK5IJXS3y3uiiqVKYz+3egLawbAypk9s0P+bv/06bBk+iDWDRfAUsi9sO/3qcie1RqI447pAbCSt6dSrXd0TByW/r4Xfx75DyQri29kw9WrWR6/9GhlLjf0WOpHwN0AlvTyCXitm8EuRF+2JrQ/jbFamHJYS4jiKTm4atYOmNIHCC4+Phy4uZjeiMIDPmJwu91YElQNzX3sgyV13vyFe9po1vffWRqjmNyiJmXP+IBERUUm7M7cAFemSaD9ZPtgWXGaHgxdUp6wTVCb6AP9vdD28BPLBdeVlhpI7l2BfLEFTAoc3h5GMT08vsjRGTKRfUWqq/u00Jyn2VmHq93ClEaF7S5Ncuci5Etp+Za+cDlof57uNAznR0tgMtL41/jUBFJYfsBUv+2FyZuCksphLSCKp2z/qrl7YPKxLyaxOe4hRn6gb1zapMuL+RmruHxJ7mo/oO4bWmZWyCsAx7NSPhlHjppFHMIVDa2p2pu5AcorMjkc12gyIfuXctgpe5ug4FvatmhvA9Lntj4k8FU7yR4lezUt2sioc9j8mZZTzn4NdI22XGtTllCQewjJ0CKZWoyRkmECYrlqRFFJep0qHZJ7EvHLN9mm3yA7RwFJV7IyPACW86vw7LkI6zfRh8vs2U3o2c014IMQvxMCeMa+q2REvTopC2B5HfkD0n1r2DG1ddtA35xy7kmvnYEXp0xPX6oKtL0or6OrezIl2pkzKW7R+5m251joS1cXBrDGdoLog0WJ9Y5iDN560RcEDFCl+SjC1Zn0Onr5mVB2jGvXMSXWmlSfsh3LIDtJs6UZP7qaLaBr83VLQZevliKCk8HEzC01SmeTGk9uvyvTJdDG0t/pMmMMkPt5ACx3xNbdPkQfIiBfOAri92+sXJsCM0Hz8wz6UtANA8v+2Q3ZLkoloq/eDNp2jrPukzqkB8BKauTc348AU90Gz8KNu0/MYFCvHxuj0feVQDKYuHb/cRhOnr2OimUK22QkMSDUv3sWImMG+oKcgGH/XbqDIROXIkGlxvB+7dC1TX0rv476OlspA2DNGdcXDWs7VgXn+mAALKXCy4xzlC9VEOvmjWSrzfjjeQAs9++1FPVIUNh7j8MQHvEe8fEqKBReyBwUiKIFc8Fb+b91wE/RQH0F524HsPgqg3bKKxRTekL8hpZPqUcvgzE0n+Dq+Ydyg8iIdn3WYW1wLdT3DrXbn2THEFCKsT8y10UVBeVq4nc6EP8Cvd/TVOeG3qFYFVQL50fZV2Mq8bMePiEWL1Ve78FzHQXmTmb7AflljvnfBBec2g20GigmdIU4Jgo6sQjBwzuwMxBDhFdOMspu7TTh8xWarbWl5gUsrW8/tZdkuJBMF8bIWz6iAOXMyMGJHKAYqxTXBT6mlzCJJVAtpYAD+dy8hsjXbFurDC3eIEQJkCgCMiakBsifI7e0j3yWTeqDSyG2mT38frVf/4kHuo/sfx/L2hSFBVT1GIB09s7myBVFAX/uHuSOc47sWRMnZjP0cIA/pvZOsxpv4Psz2B3/lP2/5QfOod3d5+a/jV848jbGPcRoDtBoT6nQ2SLkcwZC8uw+3ROD58KYv4RNF9mxHZDtWc3+v756U2jbUc4+e2N4ACzn2+fSFTEOHKIgVMkSJrRo5hrwwe9btowRTRulMIC1cxmkJyjAoW3ZB/rvacmy5PZFyJdRAJ4QfxMC8LRgyqm9IXr9jO7zEYtgzFVIEMBSTO4JccQLS/ZVuk3g3iiYEmWbrE4lUH5i2gTFnV0L8oKNvGjjW1rIpFuwVILoD7YvymrXNKJ61ZTd9+7YvxcnSWFIoJ7KTdBD5gIriCcDyx3Rd92HiPD8LRoFolrKNbPow+C5gK97n1tJ+SApI2TMUPI7aHpTtWjXZ+68pQfAclckk+9n4tz12HngFHKHZsHq34Yjc5DrqtHM6EIg1PY/T2DK/I0olC8Hdq2eZDVpob72VpgcAKtN05q4cPWeOTts/ODOaNvMPp+iB8BK/t7yePBEwBwBdwNY/AOgrnYr6Fr1toq2fNEoSO5fZf+P1NkbirmGdl+eIoXOknhjtn4/bseCvJVQQ2mfb6ln5AkcSnjJtl8ZVAONfSh/EH8b8A/KP6bLj2nKylblWNw++TsYkLGE5Q1jq7d/4zwHLNueqS6qKh2DZWltC3rtWArpyX3maX3ykiLH4LbsFNOJZHjohNz8/mYRPt6mb+cX1TmB7d9Xs7tE8duXUEz6if3MFJQFqskbnYaDTw5bJn4wAgw3YAwIgno6Ld0kTvhghWbofBjyFrXrf2jUWWzncCvNCKyEzongVooxalDk5TbWt6sk8IktbSUDlHz1B94bVFiwtRWyxdIHTFLGQ7Ik+HZpkhR6zmGClBCSUsK0Zvzv6Pp9p9Hs4SvzNAkPh2rxIeyPf44+7/9lp97IOwdWBdtmUDlaG+HdI/x7jKkmrYcp2PaeYVMCXaAUNL9Q8nd7/j0AlvMdxeex+r6WEdWquHYYv3FLhD376H2leFETWrVwDfxK6j73WjsV0it0r/HJvcWPbkAxfzjr3pivGNRD5iV1OLf2Uw5sBJGOZrsTfknCMylE4k6EVYjAyl3FSER40TfZ5L5ScogBhLqU/wIJIhMqz0zZa+HW4Hxxxn/+YMYwFCkPzQDXFJFTYl7E5+x5UnzmPN8w41SqYESDeq59Z1Jqbq74PT9WCo6AMypM0UPimHKUdekBsFyJrnvaiB/dNHP8iXQaK4eGfMWh6TcFULiAOCZyKnx1aGPOAlCPXJJIL8LNPQCWcIxSo8Wdh8/Rtvckc1nf3nVTkSvUdcVo7vyEQChCVdSs269m7uwLB5ZZLU2or704JAfAat6gKsi/zgOnw1upwF8bppvLJfnmAbBSYwd6xvh/EQG3A1h/rYfs8BY2dvYU5rzWz4b04jG2jfbHIdB/R3mxnAX+9nIJ4l7QN5STmxzCpLIlQLiH7NmwD2exLc518md7imgDNaWtuD+444TWNSKktuXBcsD709gbT99+L8hYBa3T5f2f2Eeil4+hmNEPTGTf+ShQcADNOsgoUeJmdgpo8Rd1b40EMY/pdZnW6G/srFID3kx9JacDn2gdynRImGdb0sEd48FGMaLvcuS5EyYjs/4kjKH5oR5tnb1FyhNJmSJjmj6TYChR2e516PjuGE6paLbWhuDa+N4JFxXfCbe0j/nsVY4uEH8Rq3B08Qu/3IpYIz1o3gltjwCBclMmw2/5xnbIGE9LJssQQuwAWwDr6iwJNF9K8cg8CIm7PINwOUdqb1g+H9gfO0+g7jNaR6OasR2n5fMIPqsAACAASURBVBq0e0dVPr9TZMaOzNYp4w7nTXjRBtSHyEgPgAlL/gYktrr0osg3UE6g3HUmv0CoZm53GhIPgOV8x2zaJsFjzr2hTSsjihZ27TB+/4EY23bQ733BAkZ0aOta36TuY8W8YRA/vsl2V/8yG8YCpdi/bZR07dyDkjp2svolxMF7aAvWhUkshorsc5FIEMCSLxgO3aM3OJtuK0wi+r0o0MGAwC8vaIhjflYnt4Q+WXNPxc6K6X0gfkUzPpmhjTkLQj1ycSrOxHaoKTOl4OCPbIOiRU1ok8LArTsWfm6kNddM5VmuZeh5ACx3RF/Yh+Tqv2aKD5HRGnjWl65m4SGV2OcKEvbsvIXofQSU46nStNE/I9Qz6Iu/5Ppn+qcWgLU/9gWuxr9317TTvJ8m/jlRxtu+qri9yU+atwE7/jppBnSmjqQvqxO7UCEQ6sGTl2jZY7yZguj4H79ZuRfqa28uyQGw6tUoj3kT+2Hqgk3Ytu8fVClfzMztzTcPgJXYXfAV25MNdvz0VTx+Hm5WHgjJEowpI7pbzej9hxgYjEZkyhjgsG70Ky7hmx7a3QCWl0D5BQmmbO8ayI5S5UFt067QN6DKhM4C/niHBO+vUqBkdbWzGPx9HhR3wGs1JfoKVnyi8r2/BpRBP79iDoewRyjdNrIo7q6xPewSJ0GlTcjX1vIwwB9rVEBp/OxnUcdL02YwQDGtN8QRYew0n+fJjdKtKrF/E+J7QoDvyPgZUmN/2I9N5aqZS+pszGSCdz9rpY6EZUfNBy1H9nSPGO84amT5VUsRqtsFfbEK0PabatWNEMQTonjGnAGktV7vw0MdVTk5kqUJisoTx8eXWKVLMq+QF+vBhZJcAb0avNmPW9oPWPd7J/iqaem1o8yqmwukiOcqQv2ih0/SXoSl6PZt+fYwLqjfsWPs33ocVV7Rv9W/zMHNnCGoH3GAbUPKLUnZpStmo0yp9IFqniXT0J4pf24Ikd5CLEosYf5fgELpsL0HwHJ+FfhlUf1665HZMd2blTM+f1aunCZ065yyWT+Kid0hfmfJACSmHr8axiw0a5eUv5MyeMaMmUOhnrDWla2Yom3EpCxoOuVwIsIWpHyamFAGlnzZODx6XAWvvRqxc1QEmlBquCX7irFLE6XQq+jfaTWr01mglaPbQRTzwaaJKTgrVJM2pOg1cuaccBxPmGIfQEiNfZ/chZP3MRfG0fkTvZeKUzwAVnLj6q7+0tP74bWNqqcxfnVVG0PXgZJSu2s8Kz8GA7wH0BdOiRFvSsx8UgvA6h32L1ZFUeGZxMzxf7HtyhzV0SujfU5be+tp0nk0nr2MwKIpA1G7atJVLIVAqPV//I05y7ejTrWyWDDZmlNNqK+9eScHwCJk8ounDjRzcjXrNhZv3kaZwTsC4nHNA2D9D3wD4hPUmPTbehz854LVbAvkyY49a6dY/d9PQ2bjwrV7WDVnGL4rZ7/U539gyf+TU3Q7gLVxLoiKE2PajoOhr9LQKjbSf/bAa9dy9v9c4ZlhGr/6R4xXR+kb+f0lbqFb66wOuab45M8D/IphtBPy50Hvz2AXh4+HZFHVeJQPj/+wD2ClCzWheH/LgWpV7F1M+niZXVc334KYGlgxze8L6eEt8PprvdU8b46YiRqi2+z/5ZP54VQ2qtbBX9SNeVIkUMwBQ9vsxuqiVRyCQcohP0CkouqQqtk7YXLCu/DqmBivOGTOOdVbkVe7GvrK9aHtZP2WQ7Z7FWTHd7JT1H1R4rJ3IfiZULeyt0WgxDFYYc9H2Vc7EMEh/rgY0gohTpQu44065H9JsxSVYimehP4ouE/avP0bZ9VvsWVVN3gZ6H4khwR74pD8bMVifQ3wzZn2MrAavtmPm1p6oDy+8W+UiaB/azsMwrNK1VEpfDcbo6wSH1zOLsw1RjqIXj2Fcnoftq+Z52M8JenmB96Go2/kEpCSB0fmAbAcb12S9DZpmpSIg7I24Ve9veQ3u07CX4uwai3d6yFZTejVI2UBLO8hzQEVreNKmLsb8KHEs6KoCCjH0WwCU4ZgqKbR77PgFzmFGkhunoN8BSWTNxQqY1YSIyYEYBlXLMbFZwOtsq/ytzMgYynr+8WVGRJoYzgk3Wk0q9NZiJUDGkBksAVWiNAHEfz4WqZWA9Nn2wewgoOAAX1dA4O+1vxtONK8gfITXJuzJwMrZa8aXwWQGc2RGm9KzMZGvGnGNpj8HQsqJWUOHgArKVET7pNYAKvk9z9Bpzfg4KaZIIp+STVnINSZi7fwy/glMBgM2LpsHArnt6aGYfqWKJwHsi8Khvx5TBza1aq8kQGwCG9XBh7ZPNO3XbNaaFCLUt4wJO7VK5XAshmDzc3OX7mLHsPmIH06b3MpYVAgpfzwAFhJ3Q2p1M9gMKLnsDm4eN1CmkvUA0KzZcK1249gD8DasucYpi/aglaNq2PSsG6pNEvPMCQC7gaw5KsnQ3KNq/Y1Fvqy1a2CbUvoWAWa3q6pOH24KcLDrfRAczlHGFr08gPJELJnfE6rTunyY2ZG++VkpH+nd8dxQhXOuiIlZYUu50AYh4SYOw5JMCJvoYn9Ff8cfTk8PYQAfnWwfSK/tLL7RO/CoZjayyrjRFetMa60/BEEWGCsuFcgDmdt4nDafPUhwk22OG9lhxxgynGdIIqi5PrqCetgzJzdof+3F8V4tocCl1m0R1BEPRP6eu2h/cE6o1N6ZBu89lkyD4jp6rSBrgXNmGD+X2XUI+9LIhdvMQlECMvROdFZoPwsLiFC9reGBJR5tYMdN1iixHUn5ZlMw+6R/+BIwivsXN7DKk6OyjTur5Pg40N62CzU3YCAAmkPwKr5eh8ecbLgzq49gMJRlFxW931LfGjeHYVeUq4zUpr62AXQz3xd+aTbBUtDM2iWw73Gv4dpuo6AoQJVZeN39ABYju9mUR9EWLSU3q/T+5owbLDrAFTke2DJcnqoD8pows/9XO+f6PusQQ/vAbSc3Z5IhCg2GspRtJyaAO8EgP/aJj2xB147OS+GOAIqQgDWi1l38Ca6JLsEhfdnlBqnsBF9uP6bBKpIek8pOVgP76SfT1I9ZCJ1ApSD7avEplRWiKuLjP0kwm8L7L8o8/YGRg1zDQxydTx3tyPAJgE4GUuMSqUHwHL31fjiz6A3lwxKr522GsAkEpvVwQ1lrJ/NU2gWZrfkOVP82iLOQkw9agmMORy/GErKXDwAVlKiJtwnMQCW3mBAidqWskG+eiAz0rjZ67DnkPWeJJ8RIIoATowxIBRRKPSSWUSiNBotnr+KQGRUDDL4+2LGmF7mcj2+MX2dre6PlRNQtEAutgkDYDnrM6xPW3RrR58RGACrWsUSWD7TAmARY9bIZGYx/+8BsIT321dtQTYmuXj+funMbPykNpRYkRpd7QJYDBFbvlwh2Pe7dTnQV13I/4PB3Q5g8Qna+0+Doajl+jMmfnQLivk0a8aQuxA0w21Tm+2FPz4cuLmYHmheBXxE7eFSEI4me/bn5+foF0UJeZv45MSKoBoOr2zjNwdwXRvFfv5XlkbIcCwTIs5Q8ITfucJkPSRy4KL6HVq8Pcx+XFoehP1ZaElGWtxO8tk/Q/L8ATs182Fs8kZcQCxavqXqfuUVwdib2TqTjrueixOkMKjp/3TrtglzsldEUx/648Btr5jRH+KXj9j/0gxfCENuxynKhP+K8GAxFqi7hFKqkdC27gt9Lcr7Qj6X/ncIXlvms23tZWmRD5/pYlH1NeXeCpWmw3knZZKOrt8PEYdwWUMJwndnro+KCsenuie6WFTnjJtbmh5nQqzXYG8skh14ICYMm9Z0ZT8WyYBKU+0fbB5ukeDDLXrY5PPZpJX9WDF8F17pacbL9RV/Imcs/dtQtAI0/aci2wvrLMHwHF1cAhtt9kOFOtB2HeFw+TIej589kJTb2QNgOd5Jjx6LsHkbPdQmthQqNlaE3xYmHQBL7B4XfXgH5ViaDWlPJIIPgpjkCqgWULA/sWO6q71s13LI/qEZRNpm3aGv397s3hmApf0EXJ0ugsnE4b4qcgGBnW1VZG8tkeDzK3pPKdbfAN/QtAeKO4opn4uH346fbeeua+OKn/dRIixeZh/AIv0njdM7q7J3ZYgUbaN+L8K1uXT+iowmlB7uGtjsAbBS4NJo1WaydsnjW1bOTTI5NH0nw1go6aVdSZmtfMkYSO7SCgUyB0NxSlORFJ/8PqkFYHk4sJxfrVJ1e0Kr1eHwllnm5BW+rdl6EKfOUfXvh09fmUvvHAFY9kYrXjgPfp8/Egq5fZWI1C4h5ANYcZ8T0LTrGDPQNmdcXzSsbcna8gBY7vimp6CPLoNm4MrNh+Z6UII+MuYIwCIXumLjfvDxVuDSoRUpODOPa34E3A5g8eTq7SnAkawf5USaaWfKmBmqKZtcujh6NXBpAgWwDCIjSs3QgKjk2TNC0E2IuhmrqsiK7Zmt+Ze4/SqH70aYPo79r/+ytYBuVwCibjjmZyo+wIB02U14oYvDd69pmRPhf7oU4lqZk0uLd3Mj6ZkD8Nq60Mqrps9kGEpUMhObc+NWXZkVWzM5jhuf3LdNnzWYlrEiuvgWtDtrvhKUut8UGIs5LreMeynCbU4mRzr9U1RM6AFt9zHQl7NWo5PcOAv5SirRTB6SyMMS3/5TR6DtW1ruKgTSOQp/58jj+CeBZu2tz1QbdZSOs8mua6LQmMPnVMIrEIecZLcx4/764QL2RL7A2vX0gM3NAOTP78kuCSIv032bp6UBmcqnvcNmiVd/IMpAiXUeLNmNTPEUDTUGZ4N60noUe7Ud0RyU9HpIGwRLhRWTZAc3QXaAqlwKAVKSy/9Avs5SekVMSPLbA2A5vjGduyDG35yS73KljWjS2HUS9gQVMHMOvd8rFMCYESmXiSJ+fh+K2QPZBRlz5Id6lLVIBIwGePe3FhBIWE5/Y9x8m3bZHbnnkXsfY5ruo2AoV9v8pzMA69k+Md6epy8H5MZ3qFDjMPSNbMua766WIPYJvacU7mGAf760d09xFDT+9eW3U038HaZMIS7H3J0N+eWyfN/DB+vh6+vOEd3rK/41cHMR/a56ZwVKDnLtu+oBsNx7LRAXA8WiURCHW4sVmNL5QT1wJkzZU19cyGvzPEjP0he82vaDoK/W2K0LTy0Ay62T/gad1e8wAq/eRGLFrKGoWsEx5zCz9HZ9J+P2/WcOASxuJldUdCwa/jgSCSoN/lgxAUUK2FeV/9oAFlkbAen6j1lgTubZv2GGOWNs7Ky12Hv4DDYtHoPSxfL/T199kcnEZYf4n14LO/lKjftBq9ObwSiJhD4YOQKwSEeC2Or1etw+8fu3EYT/kVW4G8BSTO4JccQLdvWqX1fAFEJTQskHNm+wxRKoltJsH6HQHZqohb+KHlxLjdRBmcE+wMQHC4RK4QqGbUEcRwf6Xmh7hK9VIvYJ3ceEb4gjIIf87Q3IWNIEvcmIHGH0oJzUkjSh9bvl808foZzQ1XwtGDOUqgJNL0sp5+GEl+gReYL9rJ53dqwLthyG+GbUARfG0gdXtVSHTj03YJh/SQz2p2Up3H5ea6dDeuUk+1+aLsNhqOgYINN8FOHqTPp2V2aMRvXPLUEIvo0FrMcQP74NxbwhdF25C4NkePFt1+enGBRFy12b+eTCsqDEp9Tz1ScXBVVFSx/rPc8d+4zqDU9RLwt2ZK4neFlnfryGbeHPsHxzO7YtUR8kKoT27Pl+MSL+o/s2V1MjsnznOnggOCE3NcgfthnxJnrQCZv/B9Jr6d+k3EG15BCqvvkTz/Sf2FFPZvvBIfed1V7bMt+clceYtu0A6GvYLyMibcRhj6CY2Z9tL0TS7QGwHG+EA4fEuHSF7sH6dYyoXMn1PcgntiaE4iQTJaXMhkeqWEWLtDzPvH9uAOjpPBIWHgS87L8JTqm58v0SAndC5M6YZtgCGPIUMf/pCMDSfRLh8jTrrJ/CqlkIquUP3Q+26lF8NdiCnYzIUNT165lasXA0jvj2BSiWjXM4DfWIRTDmKvRVpvn0mQgbNjvOwOrbS48sabhcMy5MhNucDDLfHCYUc7Hc1wNguW/LkSxS+bwhEEfTrHDi3ZghGJoh82AKdFFBw31TMnuS7d8A2SFK2aBr0BG6pjSb3B3DeQAsd0Qx+T5GTluJA8fOo0vrehjR35IF7MwSA2ARPxt2HsHspdvM5X/blo+HWGx7/ksLABaZK1OWWL9mefw2oR8YhUYPgCW0K77S54TAzd/PF6d2L7CagSMAi9TMlvy+hzkD6+JByuHwlab//2pYtwNYv3a0+uEkmVUkw4pvykFNINLSLIuE3/YA3sKvFzUmA7YsiEHBt/RHuEhPA/zy2n8L/Fz3CVVe07KKHFJfnAtpafcaEyw5JMxaheh1zq64Pk8C1Tt6g/TPZ0TMY3ooy17XhOy1LSBCkZfbEGPUsP5vZm/rsLzxa240+apJkFz/j52CSeEN1aT1QPoA8//tjX8GAsww9oNPLix1AO6QEpQr0yiA9VGZgF5dt+Kn9IUwOQMlO+Su12v7Ykj//Yv9L22rvtDXdlxGR1SfL4zhENyaTKgdVwsankIYcUjUFBWTKU8UV42LO4fFsbdAQCHGeqcvgvEZyiX6soz+cB6Ea42xqRkqoFt6x4egg/Fh6PWegnf1vUOx1gWutCWxt7Dp2TPM307VIJVBJpQaZh/AenlMjHAO8X32OkZk/z7tHTb5pYFRs7dCwnuvQzjSGplu4ZqGSlfvzdwA5RXCD+PypWMhuXORvT4EpCVgrUPTaeE9kJb+MgAaxA74aeQS+KfzQoLGgJjP2kTvn2+5w/pNEhAlQcY6tjOgQP7EZexMni7lYkUYO1oPL/sJt8kOJT8rlQiQECESvgkRvSd7IklwoBzWAqJ4mj2s4pAkOwKwnv8lRsRZ6+yr7z53gLFGExCgl2+Pt0nwnpONnLeNAcFlEnc9k7A0t3UhAjNeG+c69KfpNxWGYvZ/s9w2CQeO7j0QY/sOx1QFnTsakDdP2o01ycwjGXqMkWcy8mzminkALFeiJNxGRJRIF42C6DPlkCS9jCF5zJlXcCKUI+w9eS1s7q2V6kHbeVjynPJ6ewAst4Yzyc6YzCPfdN74e8tscwaSM0ssgEUwgxY/jcfTF68x9pdOaP+D7cv1tAJgxcR+NpcSfvj4yazKSLjA1+/425OBleTdlcIdycaJ/hiHCweXQ6mgbyUdAVg37j5Bx/5T4eHASuELY8e9uwEs76EtgATOQ/ScXSBpy3xTTugCUeQb9r+JKhhRBxMyAg4tW/8GNR7mY5vmbmFE5gr2D+YfDWoUfbWdbesvluNuqP03ApH6BJQKp+TahFeLAFCXJkmgT6CHsNB6Jrw8Qv/OWMqI/O0s4/MJvY9mbYIiXoFCy0rVzyU3z0O+YrzVmNoOv0BflR7at8U9wrAP59g27dLlw28Zv7M7T9V7Ea5zuC8i/GIxsMNOtPDJjcVB1ez2kR3YANnBxL2N40u4V41rCeOslTbqhaK4GChH0NJNk096qIiSGM9ISd76OMr/NTFDefRM77pUMONuxserWBJLFRtH+JfCIP8SDq/pH58fY0gULfVplS4PFma0ltq113lD3AOsefAEs3b9wH7skw0oMdB+Rsqbf8V4wREfyFrNiJyN0haARQDp3GG0fFhmMCJy7jab5ZMS0I6Z461KNX8Pro263o5LNRknihn9IH75mN5rXMiyUIzpAPFHCpapJ64DAULtmScDy/Hta95CCWJi6b1yYH8DMgYm7hA+c64UCTRRFCOH6uHjkzK3TFJqSkpOGdM1/BG6Jl1sf79GtYMoliplqqZvhSkgKGUm5YpXrQbeg2g5jklMshb/BkOaZA/A0sWTFw8SmAwcoQfVHGTTHYLeweHy6R4x3l2kIEvuH4zInIiMOleWkpJtZMd2QLZntcMhNF1HwlDh+5ScgkPf12+KsPdPxxlYLX4woGTxxH13UnMhH++LcX893RsBhYwo1NW13xsPgJX8KyW+fw3y5eMh0tEXqMSrIV9xaAZMA7wUyR8kGR4kt86b58eYoXBZaH6ekQyPtl09AJZbw5lkZyQZoHWvibj/OAyEgH3x1EHwVsod+kssgEUcXbr+AN0GzwQByQ5snGEWi+NaWgGwyJyOnLqMIROXmudIOMGJcJ0nAyvJ2ytlOw6bvByHT1zEuMGdQSQnGXMEYJEaUYLYdmpVF6MGdEjZyXm8W0XA7QBWX2u1LkfcIPJ5Q63IJTWD58KQ3/Ghn5k0UXCbtvcR2l+mBLNZqxqR0wGvir2sKkfkzw91H1Hr9Z9sfPLJ/HAqW3OcG2ktbV20txF3VtIHNcJ/RXiwiLV/dxSnVRSY23b2Oeq8sxBSE7J6/Q/WCnKpvR1FahXkk7pBHEMPX4a8xaAZOs9qKus+3ce4aJq10s23IKYG2ueo+hwuwq3F9MH7aVAURrXah5rKbNicyb56m+zkXsh2LGPH1FdvCm27n52G49Y8KT6/o00qfO4ByVL7nHneLuxDRtWP8UjI/QnJf2JtaextTP94le3WJ31RjMtgS4DMNFjz6R4mRF9i2zuLLXcuu+OfYsXNx5j0Jz2o+uY0oVhf+2+5314Q4dleel0IyEvA3rRkBJAmWYuMpddoEbbAVtFN16oP+hYPBokBY/Mzfoc26SiQ7WhdipFtIf4UzX6snrENRgH5bj5HmzPCWQ+A5XhHjZ9sfe+c/EWxNTF7cN4iCWJiKMgyeJABAX4pc5CXbVsI2ekD7PR07QeBqLLyTTGhG8SRlPdOPel3GIO/DncSmZvk9QvIp1KlVWNQVqgn02xiewDW8wNiK3ESwn1Fsq/EMEJfpjq0PcbarPvFQTHenKa/fTkaGpGtetq6pzjbW9K9q+F1lL6k4rfVtekHXc3midmebmt76bIYBw47zsCqX9eIyhXTbqz5CtGBxU0o0NGTgeW2DeLEkeTyCcjX2YJB+nK1oO0+OjWmIDiGOPwZFNN6s+0MWXNCM84xmCzo0E4DD4CVlKilTB+izteuz2TExsUjd2gWDOjeHDUql4Kclz6t0xvQvu9kM9jliMTdkZrhkInLcOTUJTSuUwmzfqV7i6woLQFYZD6/jF+CY6evmNev0eo8AFbKbLvke71+5zF+HDDNfKF+HdQJLRtZsjD4ABZRHZi9dDt2Hjhl5soiKKo9xYLkz8jjwVEE3Apg8d4CQypDwmLKPcOdg9eaqZBepeqAXMJZZ1eLlASO+PcGBh+jwGiGwkYU7OL4wc4er5Wf2PZtwHn1W7TiKO9VUGTCdkVDK2loWToTig804up0CgyIvUyoOMXyoPZL1H/Y+ZnykCw8fAGdb1kO3cbseaEe83VLZGVbF0J2hh7QTFIZ1GNX2RDXLou9jWkcUKZv+qIY6wCUiXkiwj1O6cCdrG8wqdkhlPQKxEEH5OSSi8chXz+LvdT6stWh/cn2wMTdC49WAFHP6YG4JKbCe9You9vFlUzABm/245aWAnl/ZWmIMvLgRN8sSPkgKSNkrKNvfswOrOzQz4KYG5gTQxVYBvoVx8gAYUWgY6pXWHD5IX49SAmkCYEyIVK2Z1HXRXi0ne7TjCVMyN/BtQNFooOQxA4RhgSUfUUPlJk/J+D+UqoMybglpVyjGlTG2k/32ZEmBJRDLz8Lx49DM5mg7FcXDPxBYA9zZorEcaYD8eX1xxJIT1Ewm/AB6epR7jHueB4Ay370CehEwCfGfH1NGD448ftv6QoJ3kVSAKt/HwMyBacMgCVfMQGEB4sxR+Wmiml9rAiS1aOXwRgqDKYm8Wsi2M0mu6FAKWh+mc324wNYJPuK/IYZ9TSuBVXzEaKzlHUT5WBN/2k24746LsarYxRkCaltRGjdtAuq8BdAygdJGSFjhBeIyxXkKONO8AK4ocF/ZyU4+o9jsZjvKhtQ7/uU2fdumD4ir4jwZCf9vgeVMSFfG9e+754MrKRfAdmxnZDtWWXjQFe7FXStrA/1SR8l+T1FsdFQjmpLHXn7wkwd4kbzAFhuDKYbXIWFv8PgCUtAVAaJyaQS5MyeBel9vaHXG8zgVvib9yAlgcQSC2C9fR+Nxp1GQaXWYt38kahQilJ3MABWsYK5IJVav0hjllapTGH070ZfWDB8VTmzZ0aAn31KG//06bBk+iA2OgSoa9BxJPgqhPzwEfJ5UkoY+yne/JEnA8sNGyylXMxbuQNrt1nAixwhmVC+ZCEzUBWc0R/tmtXGkxfhOHPxNogCIbFhfdqiW7sGKTUdj18HEXAngGVTupXOD6o5u+yOLNuxHLKT9MeL/NCSH1whu6eNRu+bZzFrF73pKINNKDXU8YNShfCdCNdbbhrEzoe0RKjU9uZ0KCEMPSMpN1ED71DM19TG7SX0ocw7C1DyFz3Oj7EuvSg/Xg+iCDfr4zUsiqWyxaP/u4kRZ++YxyWllI7iIbRud3wueXoH8rnWfC66Zt2h+yK1zh3jt5gbmMcBWQgZOyFlt2fRd8Ug5L6MXc75ArMbHIczvjHp3cvwWjKG7WMoVBqagRTQsjdO2Ho1Xt+ntfSFlL8jYGInu3OyyZCwUwJW6tUfiOSo3xHFSKIcmVj78/Nz9IuiYGxjn5xYGVTDoZsp0Vew4pNlTxD7NaAM+vkJK7UQgHXOuQcYdoSWuGQoYkTBzvYPkNH3RXiwnu7dgIJGFOqWtg6bz3SfUJXDUZfrYxyuraLcaEyMSHbmjG4/guxLxkiZJinXdGbimCgoRtOSYWP6AKhnOc7AYHyRLBySjcOYvmJdaLsMtzuUB8CyfwVehImwbgPdfyHZTOj1k/MDrUijMvOViaLeAu/fgPCOLdMMwatX9GDfo6sBoaEpc5CX81V0hy+EIbdtWbF89iBInt9jF05EIuy1S+y9JKntCZ8g4RVk92vl+tB2Gsr+zQewwg6J8fpfes+WKXWo+q4hxLCUI5vLjob8ZjMdkn1FsrAYy1rFiJxN0tY9xVkMThXS2gAAIABJREFUSQkTAfvY+0qh0pDcpzyIRNzBHvdXUq9LYvod+0eEM2c592t/Ez5yMg9LljCiRbO0G2uiZEkULRnLVNGIPM1dm68HwErMTqFtSRY7yWbnG8lY1tW2z/WatJHc04ufGa9adBAmmfvELzwAlnuukzu9kCqY42eu4ti/V3Dz3lNEx3wyA04kwcUvvQ9CsgShROG8KFM8PyqVLWKVoeVKFtXqLQewYPUu5ArNgr1rp0Ams4BVTF9na2GI1Zk2DIDlrE9gQHqc3ruIbeIqgEU67D96DqOmW8BmD4Dlzl2WAr4IUdnCNbuh1eoceiebjYBXP7a0X2qUAtPyuOREwJ0AljgqAopxnVnv/DIGbuBlR3dAtpemD+vqtIauRS/Ba0NInNuEHcXGtZSXRCQxodJ0xwejum/+wl0tLSE6nKUxissz2oy1Oe4hRnIyaTr45sfod1XwYAN9KPPPb0Lhnwy4uUCK+Ajqolh/A3xDTWZOJcKtxFi3648w7+hl9u+vKbeumNgN4ne07MWQNQc049bYjfm06CtYxgFZxgSUQX8HIEvkVRGe7KAP3qfzP8Hi2qeQXuyF+6H2S4IlLx5APouWDBpD80M9midXz5vZ2y0f8OwWJe3Onf4QMv9qX7lQ6IDJV4wkQ4Xl6AypyHEJh6PNeSIhHJ0ij7MfV1dmxdZMjhUVR0adw+bPj9j2MwIrobNvAcG9f0fzAdNO3cfPJyg4FlTShHzt7e/9T89EuLOSXpf0uU0o2tu1N+KCk3FTA/K9JN9Pxgq//4iz62yzNo3+gVg6egLGc8pau/gWwPTASk5nInnxEPJZlIza1SxIyaObkM+nBLOk/FcznD60cAf1AFj2L8HN2yLs5pSwFilsRNtWzg+0ksc3IZ9nTey7o/QaXIqgqp6dOhiQz4FoR3K3pXJsJ4g+vGXdqKZuginQVoREvnAEJA+us+0I+E5A+K9l/NI4ou5FVL4Y4wJYehVwZap19lWeqm+R6yAFeg05C0AzconNcvhlyZnKm5CnZdq6pzi7BnyAUl+9GaT/0kxLfbma0HanL1ZS83oePCzGxcv09ydvHiOePLX+u3NH1wCh1Jw3M5YN56ITagf+/DwAVuKvGF/JmfFASgZJ6WBaNOXYH0FUEhlTT9kIY8YsbpuqB8ByWyg9jjwREIyAyETgyW/YCPP+n0f+MxOuEaQyPkENpUKOrJkCUb5UIXN5YVCg/zccgbS9NLcCWHz5+ex5oB5jn6NIev4ovDbOYYNjKFcbpIxQyM6qI9Dm7RGsWd8Rfiol27zMKAPkAfa/Sm3e/o2zanoo2Z6pLqoqs9oMRTKnSAYVYwP8iqHbw7JWPEJMWvzDTWJ8uMN5uGxrQHBpEw4nvESPyBOsj3pPwrF9N83OIUp/puBsQst0++d80nQSKVL2YnJQ9jL2wwX8ziE4J2qCRFXQnkWcE+P5nzQWR4rew5qqljIcR3xjonfhUE7sxroj0s6qqZTU3d440Vue48EtWqYTEnAJoaPsHxptlOf6ToahOAU7XuvjUT6cci0FS5S4np2T3p6IK3BVE4mmERR0KS3PiP1ZbHlzGJd93/+Lv+KfsyMsCaqG5j65BUd8oYvDhKN30fs0VdBzdoCMfw3cXERTp50RvgsOnkIN+LEr9zoKRzfTEh/usJtmLsHAjzR7oplPLixzoIzJ9JPcOAv5yomsG32xCtD2myq4GlFMFJSczC2TXAHVgv12+3kALPvhPP2fGMdP0PtCpUpGNKgjAGBdPAb5elr6Rjw/zNoQq000+61NKyOKFk6Zg7yyf32IiOTpF0tYchiQ2JYfyJeNg+Q2fVGh6TMJhhKOy4YFN1wyG8hXT4bk2hnWi6brCBgq0JeCXADr5d9ihJ/kZF/5mlCu61N4T+NwaGUOhXrCWptZ8cuSA0uYUCCNlSU7C6VifBeISWbfFyPZVqRcmDFDoTLQELW2r2B7/hTjxk16XSqUM1oBWlkym9C3V9oFC4niLVG+ZSwx5aUeACsRG06dAPP95zHN9Ce9TTK5mazd6AKXbCJGc2tT+eyBkDynNADqwb/BmL+428bwAFhuC6XHkScCghH45gGs/2PvquObSN73s7tJk7QUKIUWKe7u7u7OoYcc3B0c7u7u7hzucrjb4e7uToFCoUDb6O7+PpOQzMbaNA33pfzyfj79o9mZ2dl3Zndnnn3f54nVA94C/1MPeBTAenAdSknUgpAlDzR9Zji8Pu7OJSjmUHJJPnsBaHtSQMuZUw5Hv0TbsCMYu60usr+l0ThErpnINjuyP8KOYm/0C8shZ2Tdoz5dxOLPty3lCBF37Qv5rDg/CGEtIa59vo/F62P2izUSIVb3zR5LG/nfhuPYyv2W/zU9p0DI7jgV73tNBAIWKUd3ACPQTZ+hYgPomnZxesq+4aex/itVbpsSWAokIs2Rkc0Q2RSZbVvBa1hX4pLxX6LiSNQcbY3IPKv60ZRRUeEL9Uz6JdzReSLXXMKNm5RIPijZI2QZ4Jh0nYCjBCQ1m+7X3jCUpinKl7RhqC8BnfL7BGKvE76u2MblgT4CFV9vtxTLLEuCEyHOiYBbvzuMo2oaCbcyqDKquKCmF86rMWj3bbQ7Q32QqoyAjE5SeDQfGFyZQiOwlMlFFOr3Y22ATmlC0ewtHadyz99ix4YjDl2+Z8AY/AqqGhlbpBtphPBYSTeohEtL18o6jdbZ+Kp61gWj1VgOqydugJjEXlHUC2A59uCuPSwuXqbPhZrVBZR0ohZrbkG2bx18di63apBn5BgetA1a1pTe26Aej0IFvsN3P3UkfHvT+zamZ5LP0rGQXaIfJnS/DYKh2P8u6kE5sQvY5zSq03ZjaN7YvXilxiXCfaWjKZkkBTBNzjcg0RFmEwJSQDN+nd3A2irNJc0hItdvP9YzJabntbJ3fbBqKmlJIucUswdYqvDps0E7MOZI4NjeB+4eX7+Zxd271vfLvgP0f3c55NztT1zr2QKj6WoICKnoGtDsBbBc9PbXCOMam33z3KoCoafQdJ8IMW0WFxv63xRTLB4F7uopui5rPxgk6tFT5gWwPOVJbzteD8TuAS+AFbuPvCW+owc8CWAR7hIS+WI2Pm8JaDuPcdh7W9UkPlV6aIc7TmeTNrA76hk6vj+GLkfLo8J9Go1D1NWIypoj6xd+Buu+0sX9pMCS+NVBylaPDyexJdJa5azwoex4d44uIonaIVE9DLvI4NEWe4LsUEMUikoie4Ijo3FPQkqtazcQhuKVv+OI2jdtmzZBNifakcsgxiCr3OX9cWyXRAnNSVEWjfxoGo/0LLZg3rril7CtkImr6FiaBsgqdxxh6YpSoPQ8+pX7cfEOjWxKGhCGXAOTOfQlITUl5KZmI+mpJE3VbLuinqHT+2OW/6v7psWyIPfGxZaIPLZorgZv9uKiNsxy7n9S1kAJpX2aku2FaUUefbfeRIsLVOGQbBDIRsGR6b8CF8fS6BG5P1B0qInj5kcxQkzf7h0FrGwjFqX9PNupL2oloXm7roCO8h3LId9PN+L6um1BiJpdMZLiSlJdzUY4gQg3kK15ASzH3ly9nsPDhxQoad5UQK4cMW9obVUAzS3vSNwVJ/1MnC6uAGGujK9tGfbdSyhHtrf8LASHQDPSGkwzH/RZPQ2yM/TDhK5NXxhKVnfntB6po+r/CwgHpdkI+ESe82Yzb+zOrdfi1RH6PpP5iig8mIdM+wWqfpQzR/Tzh3qqPcHy58cMbi/+sdOSY3Ko7TuHpDBZ0R4kTwXy2//CVq5h8fgJHRuSLrhqrXVKuzsqnv/VtTzdxeLNKclaqa4AwpHminkBrNi9RFRPiTquNAWP1BJSpIG2xwSIgZ5LxYu9N+6VsOe+9SxXlxfAcm9cvLW8HnDHA14Ayx2veet4zAMeBbAuHoFiGQ2/NxSpAF2HIQ77akv4DlUiRE+3J6O0rUwU/ojSX+PLBdH8QmG6QI+Bb2Hsx0tY4AKfU5uwIzgSbVLLILYiuDLSbk4PQlJuNqLiRtTcbPmF/NKIyN+dhx23kiji4+R1FhU0Xb12MEi4STw2kE4aso1AIcU03SZAyEVBEEdVO4QdxX5J1NrfQZVASO0dGSFuJQSuZlta5gz25zURHG9LWRPFlDRSTlrfTilw4kaISRwDUqQes3gZTj+mPGm+iSJRYJjSYZ9kB9bDZ/syyzF91abQN6IpMiTSjkTcma2dfw6MC6SRTXEZl2jBgKwvaPqjkuHwOL1jcnnSbpXQHbir+2Q5xcHUdZHbxz6yx1Ef+m68hUZXaARf2moC0lZ2vEngdcD5YRTAYuRAybE/FoBFUilJSqXZGt59jmU7TV9oCS8a+4ICz/cat0HJLDTaIyaRAHN7dpF4LXvCULa2S8Prs3IKZOckUXwtesBQzj411AtgOXbn/EUyvKV0J+j4O480qWOOnPKZPxSym+ftGvzApcbEFGsAhkHligLKl3VtY+zSQH8rxMYhgpgQphPidLORaFYS1fo/MRv1X5FlTUqbDAUPycbOoBGxs7feOvqqloDU5QXARQXhyFcMbsyhANaPmJbsbAzYiHAoB1ElUSFJIDTDFsO3rwS4U/lBPZ1G0/6X47l4KYdXr+mYdezAY/kqDlIK2YH9DPC1D2j+L7vp9FyP/2Hx7gJdB2RqyCNlCdciJb0AVsxDyLx8BOXM/mCiv1oVFEIyQ0PURv0S/xBzILZOyA9sgHw7TU3WV2kMfeNOsVVz+bgXwHLZVd6CXg/E2wMJHsDieQGE5ypFYBIwkgVTvD3jbeA/8YAnASzZid3wkSp3xZSuQ+Ttu9Z0iW9E6ohVX+9jUPhZlHqUCb0O0ZSNZLkE5GjreFMz5/MNTJRwWxEyckJKbmt13+zGFe0Hy887U9WC/O9UiHxBF5W5/+SRJLMI3Rfg0jgKDrA+IkqMMW2uC7zciPcSdbvb87ci9Ve18ZihTG3oWvX8T8aW+fQeylHtrdKgYgIVpZ1q+e4gjqspV8ia4CqoqApx2O+HGzi8v0p9NLfSMRzP/shYdllQJVR3AnypRrQFE0bPoRn+N4RU6Z36RjFzDP59M8pyXCY3oJgTOiPZqb3wWUvTVw02qlyjP17Eoi80XXRgQCF0S+I+F0PIsxWQLtVfpm8L1snz0FVVTEeOGL3uIapcp1xkQbV0yFLeOfH8mYEcINKxKTnBADd46o1defKURVS0CI2GgUbNoEQJHt8EX9yezxsjH6L3h9OW+i1vPsa8vSZuIX2FBpAfo5vJd6WqIEdZCoYmYX1wx4lIgLlB8sWau3vZ0r6281jweYu71F9bENRZ2m1CBLDWb2Lx5BkDlRJQKYCKFUTkyO5ZUGjCFA5qNZ17A/vx8FXFvKFVje0I5vUTh+OzOGAyHiiLomwZHlUrubYxdmmgvxWSXToGn6XjLFUMhcpB98cwh03Ity6B/BBVs9Q36AB9dQqOxOW88S1L0omUo3+3NOOIT5Bs7O7sEnBnBwWAzdFXnNxU1S4idt4BgLV+tqjDGFyd9mOnJTvzJ/PyMVTj6WZZTJMJ6iELoepczfKBidSNnn/QCvyL7/i4Wn/OQg7vw+j90q2zgLXrGXz8ZP1biuSevU9d7V9s5WzXAVmb8UhRyLX71AtgOfcue/cKiHomo9daFeJzFIT2r9FADJH0sY3Zf32cO38YihVUbdpQpDx0HWjWRnz74wWw4utBb32vB1z3QIIHsH7rNdFI0F6uRH4smGjiFilVzzm3jquu4VgWSRInQr6cmdCuWU1ky+R48+xqe95yjj3gSQCLpGyR1C2z6as0gb5xR6euVw5uCfbTe8txQuJNFt8xmTlyJtP75Ji0hX7xVgWJKNjHMReHGfQyt/tromyYlNyecLfM63/wlORdfbOTaRrh07QAaCULyIJ9eahSmBZlZwdzEHm6uCTpWSRNq3roLtzShVvaObJqHwq9MakgGvIUg64L3SR9z3lpS2Qu+iaChpDIJ0oS62kbvd2H8xoaPhFTmhtRafx4h250ptQ4jAsZnxnPMS2wNJr701RP6YntUrT6zgCfOY/TvvmN/QOHviyz2lyUGG8AS/dTlrq25N2EwN242PtmtkTqs5KXRZNEjlMkY3UWgDwv1uOTQBeYN9I2Q6AD7i/SVu4X6xEhKXsrbXMEcI4jyWzPPW3Vc5S8TfuZtF40cpV2LkN9YaQMRHXMbMVGGiBz8wv+8NHWZNZ/tucREuLaBsWZD21VOztcuY+ph0z8aboOg0GUlsxmSJ8NKZoXtWrKmUiAuZBizO/gQilfiGbIIgghsRPmk/rc9TNQLBxhOZ8zgueECGBNn80hIoI+u8qV4VHFg6CQTgeMnWg9X1xJf1L1bQgmKtLhdLmtKIXlycaBkFvXrun5TTyRoyey9GYjAKq+meO1jHzvWsh3raBla7WCvm47Vx4VHi9jxyeZLT+0vaZanSfIT4k9/QzQS54FhMuRcDqaTdWrHhgNLaCesROi0vphof3M4PJ4+sD18RdRZGjC4MDiCBAg5bv6xrup6tsYTNQXix/UU7a49I709EBOncnhyxd6T/btxWPjZhYvX9HfOrTjkT5d/J65nu63uT1bYZvsrQUE5nHtPvUCWI5HRXbuEHxWWotakJKEhoLQUSQ0s1WZFTLngaavY55cd67NC2C54zVvHa8H3PNAggewStXtgs9foxCcIgBHN5seRLkreHYhJ5fLsGLmQBTI/WMTFLo3Bf63tTwKYO1cAfm+tXRRHwvfjB2A0W82iFx9TDb3801M+HQZKr0cq/5ua1W01CTH6VG7op+iUxhNU6rjmwGLgirYnSbni7X4Iugtv5PojjvDfCFKmi0+igenNC0gr8/iEBVKF5d5O/PwTy+i3bvDOCQh6V679ThqPTSRdgtpMkEzdNF3H3TZ1RPwWWzNP6Zr0x+GklSZKqZO1ArdhesSEI4QnBPOIUd2azGLLxK571F19+JWiCmyaniyIuiY2DEo5TN3MGS3aRofAZikSoG25/Lr1xjHmOXQMzTN0Jn6JPf4FhRTKVk3Aca0koVSuVdb8dhANy2bU9ZAKRd4qJz5rPSrf/DMQMHPMyGNQVLcyEbeGLGkAXgRSBUsIs0zuvEl7b3O4PrzcsHyUOS/R1M5/Zp8Rf6izhGpyxM5KwC2yCAePknjvgGKjGIwWRJ5Qfpdu4aA4sVc26A489uCL7cx9iOdAwOOh6PpFROIbajUCEmOzEKw3qTqKah8kbFnU6t79Ha6lkjKOgfwbAGRuGxObTmRxGRBUI+jzzfzNSU0AIvMx/GTrVHfvHkE/NIofmMpHeP3H1jMmU9B7WTJRPTsGjPQweg0UPWoG+OzcWzQRmQolByN6nuur+YTktQWkuJitpiiquw+1lT9BYRn739hhIuLcHKZzdHm9st5BW5ttY6+KjKYB/st+orUVQ5sDvYz/fCimbQRQmLrlG5ew+D8CDp3OIWI4qMTBoAlu3wMPn9LIuwKV4Du9yFQjvgNhF/IbJqRyyAEp/3Ph3LcZA5aDV1PDB7AY+sOBvfu0fuoWRMeuXPF/fn9X1zMnWUsIu7TvubqICBpNtfuUy+AZT9CPgc2QrbdnheWcHn+r5418Z1H5D4j95vZhBSpoRm9Mr7NWup7ASyPudLbkNcDsXogwQNYV24+xLnLt1G+ZAHkzm5SBNt7xJ7DIlZP2BQQIeLDx8/YsusYnrx4gxKFc2HptP5xbcZbPhYPeBLA8tk8H7KjlMdK17gTDFUov4RtV0hYNHfjrOVn7Z8jwBcsE2OPJ3+6glmfTfLBS1a0RFK1r6W8s835CfUbtHh3wFKurDIVNqS0J9y1BRZepPzNarHOyICS4yiadX8th/AbdMGZtamAFIUFDHhzDGu0pggkYtMOXkT7q9+4fFzk+orXxFVHQTWsNZgoCqgQ8mlCQu2qVXy9DQ/0ny3F/03TENnkjiO3rs/hECX5SjygyXY8SWFKxeySJA8GBzjm2yJ8adxFSuCta90HJNXPoYkifDtXwzm/vxHJ0QikfF15JEprv6C3TashGxKyMSHW9f1xbJMQ1JPfToU0QkaZ+zwSNUJ34qbOFGVHbF/qukj2PjkIr4nZVCoRPftqkeU55ctSgMOTDM75smx9sXLJe2R9RMla2RYfUaKA835fnc5B/Y7O0QK9efgGx30D9C6MwbyF1qBHgfxCvIGEGZ+vY+qnq5bLnLojMdKHNrX8n1i4h2KRf1n+zz/wd7wQaZSIGSh0OGd4Hr5d6XyScgPd+ZtFxEO62craTECKQjabLYGHqmstMCL9PXr2HkBuDZglNACLpIKuWG2dGpYuRMTv7T0HRDx6zFoRUGfKKKBd65g3syxRSx1JNzdiYEqQqFH2pSkdmdiRRC3wvOjvIITwnrbYlEul57PlFtSXqwN9ix6e7pJL7cl3r4J8z2pLWX21ZtA3pCmFhAvv6kQZdFG0ufQ1RKSpaD3etind6pHLIQbbR76fGWAdWefsw5FLnf8PC8n+3Q6fTVRh0FChPnTNukI5qRtYqVhD35ngM+f+D3tmOpVthCuJWNy5h8UliZKnJz4afK8Lu7WIM3KDmi1vJx7+GV1713gBLMmoiCLk62dDfnK31VART+pbdIehXMwg//caX4+0q9PAV/KRwvhOJqnKHjIvgOUhR3qb8XrABQ8keADLhWuMVxECYlVo3BMqpQIX9y2MV1veyvYe8CiAtWoqZGfpy4jI1RPZemfms3YmZKf2WA7rmneDoXy9GIdp5McLWPLFRBA+dltdZH9LUw5z/cEjaRb7BdM13QfUDqWLgbyKQOxPZb0I+MCrkf/lRsu5k3FKXFC2wNWpdNOuSCai8AC66H9+gMXro3QjaFaEm/74AKZxVC2tz5mbGHrSBLoRi561G/BRfLfpaKuQJcrk0IxYCjG56yo1JV9twQsDTeU5k6Yx0pP8SAd2ZQoHzQe6cO3RfAtCA0yKWC39s2FKoH26JjlGNhNkU2E2W6VA6amYiA9QDWqBq6rJCJfTNLIcbQQky22/mWW+fIJqAAVCRL/EUE/9B+M/Xca8zzetriL9i/TYmKki0sYjS7np2/04rXlraXdDcDUkfx4CwjUktRZ/RaJKFI3ySM6pcD1tM5fnwoYFn5DuGVUX07Z8h4r5nRPA35jHWXG4maMEXT7ht4JEHYuoZEktRQoR3f6KH+gx7uMlzJcILMzblAZB4TUtp1EwESj7uaHl//L9/8ANJtry/65UtVFIQf1hNWfCQkE25WYTkgVB8y2CynbOhlQRkK6q/TwiqnQkEstsmoHzIKTPZuWHhAZgnT7L4sAh67H09xfRr1f8xlLqlCtXWWzfRc/hCthpl+KVJS/4ElXhs2a6pekoJjHWlNiI1m2sQZS4zmdH5RVzB4OTRoTGwJdmF/VUohp0bft5ohtxboNw/RHOP7PZEsq/PsaCKMWajUQQk+grzuYVpBzXCewrqsKrGTQfQjr79O+zQ2UQaaAySow2gP1+r7M4+8NZBfmulZDvpR8P9LVbQ1+nDRTzhoC7dcFSLbZIYI91SNKQ3gCMGU/ntI8cGDrIgKP/Mjh2kq5BypflUbmia6DQ9+hnTG3emMsh8qUEwOrKw9/BxyVHbXgBrG9e4Q3wWTwaMsmHXXJEZDno/hwOPr/jtdR/PdbxOZ+qV30wGvoOj0tUdGzn9QJYsXnIe9zrAc95wAtgueDL8o164POXSFw7TNUrXKjmLeKCBzwJYCmWjAZ35SRdSHcYCkLS6HRBafvluGYr6OvFnE418MMZrI40RTN1PVIe5R/QBXamRgJSFrffhD7Tf0Xp1/9YupFOlghnQ5pYdeuBPgIVX1MwJYs8CXZqGllJhidKJyJfF7rJe3+ZwcNNdHEZmE9A9lYCNlzZjD7J6OfuVjceY+4+EzE1MQImCSkdK/q5MGQxFrFV0iKFydd48lU+LmZLRH8lpCmCZTTaTdrWxbEySKjD8Gfbdfjka1qgEOVComDoyGwjBwzVW0DXgMrYS+uwzx9AObELbisH4o0PjZ5zNub4FrFlboMs+ZdMmosBH2nEHzkW/C4lah6qiVaNGeTK6X5Uh61q4+IUFRF4OyP27rcGCoo0+Ii/ElN5+oxyf5xK4zxK0dZv2+dEIuhVUsvPH9u8RJ3czoHJO0s5RDygm4pcHXgkzRb3DdC1Gwy2breOwCIc9WSTFR8i96Hh57D86z3L9Sxbkwv+X6WLdBGVvlQBC9PY1O/xG04odZbyq4OqoJKvY+SRfXgTyum9LWX5jDmh7T/b+P+5IRwEA/VLigIisrawB3AIBxbhwjKbtv1A8EUrWw1LQgOwtmzlcOMWvXbzxYwYagDnXA8gLo8PHPmXxfGTtLHy5QRUrhDz/UU+fvisotxNhqKVQKIyFX1/AaejG54DGQegbP8qceqPK4WV4zuBfSkBcByAleZ24kL47sq541NGMXcIuNsSAEYSyczrYeSsMkTT8U5bVUDaKvZjoZjSA9wT08chYpo+MyBksU//vjBaBoMkmsvM/Rifa/gv6srXzbKKajF/MFMsnwjugiQSuE0/GEpW+y+6ZDlHZCQweToFsBIlAvr3NuD8RRZ7JOBj4UIi6tfxHNDsyYu8Nl2GaInqaIFeBvimdO0MXgCL3HDRUMwfBu4h/dhJvCcqVNB2HgMhW37XnPmDl7L9KKQeughEUMET5gWwPOFFbxteD7jmAS+AFYuf9AYeRWt2RHDyABxYP8U1r3pLuewBjwJYtopfXcaBz1PMaV9kJ3fDZ90sy3FD6ZrQ/Uo3nI4q9vhwElsiTZuMxpcLovkFqiaYupyADLXtF+aEXJuQbJvNkXoZISwnxOVmK6oIwt9htfFgHd20k0gfEvFjtq/PGNxcQI/7pgYK9DDg2KFFaJWVfpKu/CQUWzb/a6mn7T4RhBDa46bXQTmqA9hwGglEVP2MnFuOmM5j6ECO52vxVfKZ/W66lkjshGvo3DAZBIopoPXvK6CRm1JMaaODAAAgAElEQVQtSyiD8U9KGlEjPaVtGk5MCo3kCzn5Uv5I8SeeKVpYmiEbMbIhc2S+fRoB32SnD2ZKjea/VLRSCkzyOQnq7a0PH71PvPmcen04hU2RNNVpamApJL+QAydPWyMCgaXDMDnzTkt3HUUDxjQv9s7QIOnbRJYir357gqY5nIOh99ewCL9J+5D9VwGBeeMO1J06w+LgYXt0o31bHhnSxx0QM19Anw+nsSHyoeV61iwvAYXGetNc+msrqEQTp1q7P1tgRwDtx9wU5dDQz/Hi1xZk4AuUgbbjCOPmm2zCpWYLTpuP2fEi1foV+rrW3HsJDcCaPY/Dh3B7AKtHVx6BydwfS6k/t+7gcO06PUe92jyKFI65bWepcPpVC5HkLP0AEeqbA0mnzfH441M1sBmYzzQNWD1hA8SkjqMbSeo7SYE3myFvceg6O5FE9XhPrRu0VW7U9J8NIaOJSzL0OItne+n9QtRyiw61j74iZe0UO7uOB5/bWjSBlLs8iYP2Ix3bQv14KJN7Zt58T1cpFo8Cd/UUfQ//PhR84fKwpT4gwjNEgOa/tPBwBrPmSdYagSJ6duFx6w6LTVskz+9sAlo1j/vz+7+4liuTOWgkz5W4zIv/9wDW549QzuoPQn0gNSK4o+k1FWJqEz3Lz2CKmf3B3ae0Adqu48Dndr5PiMs1ewGsuHjLW9brgfh54KcHsN6EfcTeI+dw8+4TvH3/EWqNFr4qJVIFJUO+nJlRq3IJBCWnEQW27tTq9Lhy4wECkvojR5bvE7USvyFM2LU9CmBN6Q7uyV26QIxFVc52E8DnKQ5tl5g3AR3f/4vdUaaXfKlHmdDrEI3uSZZLQI629os7URQR8tyaKNJWvWxf9Av8HmYiiyZW3Tctxt6vime76eIxuISAzA1p+/pI4OIYuhFmOBElx/O4v3IUKpVPb2kr14cInF4qSZVs2w+GEp7/wmu72SYd0AxZCCEk7up66Z+thEEC9zxN3wY+jD2AQeiBzg6SgAGMiF860UjJ7PKkOJqGqkVK7xbZxaPwWTbB8pOhYFljmLwjM6vxvPBpggdKqgwWXFxAZifk08rh7cC+f43rwQGo0aoaNJJQIaVaiQa7G8JP7Wc8XbkyAqpUcn9jMOLjefz9hc79EQFFEfhvPlyXcKSR80TnfI31RSlQSojjCYG8q3Zosg5+4TQS7t4fd9E+i2OVR9Lmo80cwi7RzWaWJjyCisZ9s7n/IIsz5+zHv0ZVAaVKuu+3zu+PY4eEj2z9khqQGawjqgpH9UIAf83ool4t62JFWsr5NTZZcfyW2LHwg/zIP5BvoWnnhvL1oWveFVGvgOtzrAEsmR9QbLi9CIStCpShUHno/rCW/U5IAJZeb1IHFB1MgXateWRykbMmtvm6fBWHp8/ovGvdkkdWB+nd0nbkq6dBfma/5SdzhMzXp28RPNmaJ85Zelts/YrpuO9f1gIX0QsOOS3O3b8GxUyaMshnzw9tT2vlv/j0JS51bVX0NBM2QEgaCEfRV85SZcn5fBaNguwaBXh0BOwtYM9JeX2mDFE0Qx75uxvglyYuPf7flFVM72MV3aLtPRV81vywU5Ss0RL6+pSL7b/obWgosPBv+kxKlQr46w8Dnj1nsGwlBbZC0oj4s8OPGYF1aSwH3Vd6zxcZYoCPi7SS/58BLML950PAK4kiN5lzQlAItN0ngHAB/kxGVBXJe9VsujZ9YShpz0nrzjV7ASx3vOat4/WAex74aQEsnU6PaYs2Ye3WwyAAgjPjOBZtfqmOHr83gVxmnaLinku9teLiAU8CWMrRf4B9Q8nL1UMWQowBPGGf3YdyUldLdwnfBtmYxGRtwg7jSLRJMSjT++SYtIWCI77BQIHejpUIc75Yhy+SMKHb6VogqYS4Y93XB+gXTlOFWvhnRbfzZfH6ON20O0q9ODeMg6CzXrRp57RHjlblLJeRTGvA45mUX4tEcOhr/RqXYYq1LBP6DMqxHa0Ip/WVm0DfpGOsdW0L8KKAdM9XWX5mweBlBuuoE/NBQzRwYZQExFOKaPIbBbCCOBWuOuF4InwzhHfGbPw3WXNHHSbqYASgeyurhFu+w6hvbaLipHUVk7vj+aeXqNq6Oj76Ki2HlKIMNXfVQ7IIqrCVP5+Ixg3c3xhMjbiGGREmkIVYr6QFkHxXYTx5ah3p8izdUxypQNNVCFC6LMg6JS2mAft3vADFZ0oifqHTdfTM6Jxw+OkuFm9O0Tmcsa6AVGXiDjj9s43D9Zv2UTv58oho0sh9v/327ggOqinH1KaFzcCI1lxruaMnIJXhoNEto2uUxYz89ENG36QFjL52OGe2LIL8yBbLIZKeStJUw2+xIJLvtlZirMFKlY0cZ5/ehXJyd0tRIXUGaIYtsaqakACsly8ZLFnu+D1LUpNIipInbNZcDuGSKJ2ufxkQ5JiqzHI6uwigb6qk0dHAh8FDkENL0+RIipeujec4p0jkFYnAMpvonxTqyZuduoJ9chfKKZJ5kSEHNAM8HxUW61jYChUAUM8/CDAMQk+yVh9gCOdV4UEGyJyIltqm0mnb9gPv4EPLzfkcvj6nz4I8nXgk9hDwGev1xqOAcvTvVhEumqGLIaTJCDtC/rJ1oG/53xLyE7CXgL5mI1GtJLqVREqSiEmzBSQV0au7+8/beLgv1qrnR8jAa2ixYqMMkNHXboz1/78CWIQagTz3mG+R4mYn8emygkTqw89FBDDW0flxCvhsXwbZAZoRoa/TFvranlkPewGsH2ecvT35+T3wUwJYBLDqNmQ2/j1jChMNDEiMQnmzIU3K5FAo5IhWa/Eq9D0uXr+HyCiTolS18kUwYxQFM37+of8xrtCjANaQVmA/hlkuTD1mNcTkzr8eMZ/eQzW4Jd00JE4G9SQK9DjykJQsW6WTY9VSCqyYI6Ac1SvxagtexkBKPvfzDUz4dMVStXPiPGh6uDgIz5XZMjfiEVzceoN3YzaHyNeSxXxHHsFTqiBZ/5bGTYTZ3k9eB9k3IFdfqgb0rft4bgIIPJQTu1qpdQmBKaEZ/rdbZPFfBR1yvFhn6Z8fI8OD9I4XGNpPDC5PpAtsnyQi6re05qp7ncExr5kdgBmS2Rgx5sjkWxZAfmQrPnEFcdmPkjo7S/0ibUQuHo7KxYPwKglNuSNg3LCIani101omPXMmAW1/jTuwY+7r4s+3MerTRUvXOyTOiRSbSuF9mDXo8yDzA5wsfcJSrolfZsxKUdbluXBiFCCLpoDhkS7nMSyd83TUFwdZvDoiAWGrCUhbOe7XSQjcCZG7rQUGCujRJe7tmdtp/vYgTmpM6YGswGDjog5258isWYaMOpPK2txiOTGsYiFLmd8T58SoZMUd+s9n6XjILklSd79tyENPsXgmIRg3V3YYSaJRw7cXFZYgggjqOZQwm9RNSADWhYssdks4daSOq1CWRyUPEUTbKqoRrjRCTB2TGdOf376wFJFGWW0YdB7tI2jkm3EcCMCkMkVQxteYl4+hGt/J0gwBNgjA4cyYV4+hGud6+fj2z2k/3r+Bangby2ExSSDUEzdAMMD4XNZLImJy1GKRrLwk19umUTtRFSeKZ3f+5hDxkD7Xcv7GIyCHZ4DP7+Un0q6q/y9gvprERYipJ26EmCQZZBf/hc+y8ZbfDYXLQ/e7dZQlOfghnEUkFfZF8uQiEiXyzHU/eMhizXr7VEGNhsH4yfT9SoKIhw12/JHue/rOlbbPDpZBlGBrJcYZwLqotfD/EcBiCS3CopFgDBJFBAB8joLQknRkG7VbV8YgIZSJC3VEXK/HC2DF1WPe8l4PuO+BnxLA2n3oLAaMW2SMqBrcozUa1yoHEmllayRKi0RozViyGTwvYOrwv1CzkuPNiPsu9taMyQOeBLBUfRqCiabKdeqpWyH6OVauM/cpLmkbpE7dN7txRfvBckmbV7YHouncKjKIh09S+0Vl9dBduKULt9Tbl6oO8imSW/4f/fEiFn25bfl/aLIiKL85vxUBds52AgJsiL4JR9YHCddLlkpvkWF7C+Tt1ACvktDN1bVF25E+wsR8S/ivjF/XPGS2CwLSrLbHZONCyB17z6tBSNzNFpNSXvRb4NoMukolUXC/NFmBaLKD+mb307dCIsZ+98qEv4FqKN18CQEpoBlPgTNp30mqIUk5jGLT42yiFZZDtsqQ5gNqwYCGt5fjpr/1eWcmL4Mk57KBcDpJLUVyEd06u/9le8PXh+gTftrS5C+JsiBoWQVoJF+kycHbOW7jXDFKJN/OPwfGBZZweZhODWXB6mnf/+lxAtNSO1cmIhGEzyUcOGnKC0hfK+6A07yFMryj2LRVf8mGyl0i9/pv9uKS1tRw0Bd/zFtrLzaQWjyEXF9NG8y1eTOha62SlvPHBAAqpvcF9/C6pay25xSQKL+nu1m8kRCMmwtkayUgeT4HSoQDm4P9TJ8dmjGrIEgUPRMSgLV9F4crV+0j6YgPCuQT0SgeUYhmP9oSUquUwKD+sW+6VT3rgdGaPmgRU0/5B2IiUwTCiDEyDHrXHMl4yhIdk2qpyzfUt4LcnctQzBloqcbnLARt90lOmyGpySRF2WxkPpB58V8b++gmlNMkQgXps0E7cB7enGHxdIeE+0oO1Jkmwwe1zQNJ0mG5TcSiM/+S6EUSxUjvGx7J83kGyPme/nO21rBTvyQAQo/Jdl3ZsInFnXv0umvXEFC8WNyfpY6u8cZNBlu2UaBKGtk6cqwMguQ0QwcYvqeIsVtD4IhKoNRE19+n/98ALFvBCrPTDSWqQte2v1tjkFAqEVEUIo5iNj5vCSNJvSfMC2B5woveNrwecM0DPyWA1aH3ZJy7cgeDu/+KVo1iVwtatfkAJs1bj1JF8mDJ1L6uec5byiMe8CSAFVcwilyAql8TMJGfLddCvqqT9A1nViV0B+7qPlkOb93TFvwLClLk+oNHUgdcK03fHsBpDSXuWB9cDeVUqS3t2JJwTwssjRxLcyJawvWRryuPRDay0C8OsXglIbdOm/0psl9sj6qtq+FSapozs2/NQZR4/d54PiFVOmiGe05R02feEMgkMuCG4lWgazfA7flBItVIxJrZQmR+OB/yi8P2bInsSUTU7/U34LVEpupcSBOkldEoKHNDjDoKqt40BVT0UUI9a5fD8yhm9Qd37yoM8MexxJQEnWFFlJxgvVAmKZDtwo7gqPq1VVu9P8rRp1ArOFJhUyqBwS5ssp05dW/0c/wRRqN9qvmmRdqF9rwO1/JexeWCly3NdEuSDwMDaERRbIN2ZoD1J+2lfQ5iqROVR9LW23MsnmxzzuMW2/nMxydNkyFKojwmrdeuDY9MGdzbwFYL3YnbOhNxdvY3wRi7va5dl5L53EWhD52Nv+/NkgatGlewlKnsmxarnKRgmjnQzIU1I5dDCA6BLbG9+Xj6mgLSOFDKU8zsC+4+BcJ0XcbBIBGnSEgA1oIlMryRPNOkzk6fTkSHdq5vOp3NndehDBb9TTfjKYOBzh1jBrDsngVyH6hnU97ACZNlKPlhPWp9pVFRQmAqaMZ6BjSy4zqL5RlKAE3lwOYWFwiJk0ETS/Swq/daXMqRCEMSaWg2Q4HS0HQYaRd9lb0Gi7xNODh735P68l0rjHxQZtPXaQN9bWvuMXKMKO9KI5Pd5dWLy3XGtywT9RWqvo0szZAPa+QDGzH2xQMoJ1BeRcIZ6SgSeOkKDs9fUPCXqGoSdU1P2MXLLHbtoc/pooUE1K1janvqDA5fJJF0PbvxSBbg3vPWE3111AavBc4Pp+8movdSYkzsoLW5rf9PAJZ8/3rIdyyzc6O+enPoG9hHIH+vMftftcs9uw9FHKlDXO2rF8By1VPecl4PxN8DPyWAVapuF0RGq3Fu93wjYXtsRlIKS9XtDD8/FU7vmBtbce9xD3rAUwAWo9dC1b0OXSDKfKCeQzcgzrqsHPMn2NCnlsOaIYsghDiX1C3z+h881dM4/t1n20B9jXICZWrII2UJ+8Xdn2H/Yk80VXhZmKI86vpltJy37bvDOKw2cWsRWx5UGQHTM0JyKjiK7np/hcHDjXSzljzwKQo8bY/WDctidzbK1bN8+0k0uG9Kj4kJqHFnaJWj2oN9S3mENIMXQEibxZ2mjHUe6CNQ8fV2S/2s8iQ4lqahw/Y+3Wdwdxm9/qRZRfSqtT3GaDdpQ66Cnooxf4ALNfGrHfE/BJGhi+XiowzgJI+ZHu9PYkuUSanSbA3vPsdCTWoYGv4B242IuczwwQbIXEx5sHXGKU0omr018TQRKypLiXzL6P1g/v1CoQu4mYfKZA8KKISuSfK5NFaCHjg3lHZQz/GY130/NqV0ToD6/iqDhxvo+KQoKCJr87iDFLYpYdIOV68qonTJuLdJ2ij7aiueGL4YmyvxOCP6HLTnA/NVfECp9yYA9WxICtRqRQUQCitSYGeq2g79R55H5LlkNvX0HRBVvrgxl0PkS/sopOBiIjI3tr8On/WzITtBgVV94z+hr0IB3YQEYMU0jkmTiOjdw71xlA7A3Xss1m+Km3Ia9/oZFGP/sDRDCIw1o5Zb/p8+m4P+4xeMemctCGELJrp0IzkoJD+4CfJtlNtMX/UXkAgkZ2YLuAkqX2im73D39G7Xkx/eDPk/FNQjQgUvMnS3Aq1ZmYjaU+RQ+DMxA1iHNkO+lbZl64Ow9wyioxhEnGQQfYveP+7y6rl90W5UJETZypGUmJ0A2QTQJsaEv4VqKAXqxMBgqMeusTvL7HmsMY3QbOSZR559njAikEGEMhy1vfBvDqGh1N9/tucREuKZ83qi76QNsk66OJa+m+SJgKLDvACWrX/la2dAfso6BZ2UMQtWeGo8fuR22IhwKAdJwf8AaCZt8kiXvQCWR9zobcTrAZc88FMCWPkrd0DSJIlwfOssl5xAClX+pTfCP33GtcOei0xx+eT/jwt6DMCKIwmu2eV2xL1dxoGXRDfYDk3hlxvxlqdpJocftcanQwpLsdTlBGSobf9VtH/4Gaz9+sBSbmJgSbT2z275v96bPbisNUVIEdsWXAuGkanI8tbyW4nxBrA2/MdfXzC4KSFZ9fN5h5IfmqNflSL4uzBtf/zRy/jr4j1LW9HTtgK+MadXujotVZ2rW5G3R0/fHi9umBvaD6j5Zrfl9HkVgdifyj4yhhQIv87g/jrqlMC8AkZU2W/hNSJl1gVXRXmVY5kquwg8J9L1Uv6Sk4k2QMsGW/pXqC8PZQrTgn5WxHVMjqASzeS3ki/fYceGI2BKVIeudR+QzXBEhD2AQchxCUmuO2brs2wIRNlV9qDf6eKncC87nQfjA0ugrX8Ol05JgtoujKabhEiFFjM77cXe1I7HhjT68Q6LeyvpxoikwJJU2LhYZBSDydOcC2zkySWiaRP3gI8iLzfhDR9t7E6tG7nx22maHmjuI8saUCnCpBB3N3kSlOpAgcHMsiQ4EeIAXFVHwrc3/V2UK6CebZrTZKMlBabN50mcWUSeP+2vQ3Z0G3w2U3EJQ+ma0P1K07YSCoD1LozBvIV0HP38RERFWd8Hox0oMcZlrpCy5y6y2Cvh2SpWVECdmjHPOe7meSjmU94hW0GHOQs5I59ci4jxKKymClZEfp3IsMfXfDYvgOyoKSKHmL5xR+irNHHerEEP3261LMdFhoV6/oH4diPO9W37ra3XAeevtYJO8nxLXVZAqbamd2RMEVh2ZObl6kDfgpKZL1zCIfQNg6xaILMEm0hXXUBIPBRc43zRblRgH96Ecrok1TJzbmj7zjS2ZBf9p1BBPZNG+ZpPN2EKB7Wa3i+FCgpoUDduz1JnXf/3BId/j0miuyqKKF/W9CxavY7Fw0f0Gd6ymYAc2T1zXjdc6bCK9iODy5Pos0URIKLwQNffCT99BJZeB5+/x0J2g9IHEEcSLj/Ct8bnd04D4Kkx+mHaEUWoOlezrKzJiks9dz/AxV/Eywtg/TCj7O3I/wMP/JQAVsUmPaHW6IwRWK5ayTqdjdFaRzZTgmZX63rLue8BjwFY715BJfnCKSZPBbULnCA+K6dAdo5GrpCNIdkgOrNcL9bhs0RN8MynX/F6Aw2/SeZElW7cx0uY/+WWpVnbyJcyr7fiqd4UCULsWOLGeD8pwPK/zBcoNsL+i6ItqMBAj8pfqmF6ydwYU46qo3W/8Ryj9lGJcrMCkvsjZ6pJSPOVQ1pZmpGmRrjb9nnNOzR6u89SvZgyCNtS0s2atN13Fxg8/ocuPIKKiphW/ih2RtGounnJy6FBIsdRdcqR7cG+o9Fj6qGLIKaxKWuz4LngNx9fuJyWbuTpyCNxJtF4zr/eH7e67Kzhn3F41X4k1hnA5ysJ7V+j4SwKpX07HhnSuQdgkblD5pDZUgqJUHsN/cpo/v3fskfxJOMTS7nZKcqisV9ml4aKbEovTaC+DveLwuT2e3AyhKbG2Db0+QmD24tonSSZROTu6PrGgrRnC3zYniM+yli5X6xHhGCKkmp1tigaXMvv0Bflv9aDXPyKt34q5OxKrzeQU+JGWns/s2+eg6iOmU0ISgPNqBVGkuGzg4k/7AFMZ5su7u5lo1KU2XjJ5pf8llAArKvXWWyT8CJlzyog9C2Dr5L0pF49eAQkce8eMPvnwCEGp8/SOVetsogypWOec7KTu+Gzjn7wMpSoBl1bqjK4eBmHV68YpNfeQbePNN2L9FQzbi3EZEEu3UPOCvksHQfZpWOWw9r2A8EXjVkd1O7DwZx9cDuE083eK5aMBnflpKX28/Jz8PBqHsv/JPqq8GAe6dOZpAdjBLDOHoTPqil0nhevAu23VHSdDhg70QSeZ9IB2SS80yEVBaSr8WMBKrbu5K6dgmLRKHpt+UtB24n+r/qrqtUTIfqbkqO0Hdv3Ru6cApr94pnr3neQxdlzFKSqVUNAiW/8Wtt3sLhynR6rX0dA4UKeOa+b086umjqMwVXJRw5VkIiCfVx/z/zUAJY6Coo5g8A9vWvlN1GhMnKhCplyeWoYEkw7qgHNwHwxUQcQI89wIZ7PcNKOF8BKMFPA29GfwAM/JYDVb8wC7D1yHrtXTUDGdCSKJWZ7/DwU9doORp2qJTFpSMfYiifI4+ev3kW/0QsQ/ukLDm6YalRkjMkuXb+PFRv349rtR8Z0zODkAahcphA6tqmHJP7OlZe27TuJLbuP49Gz1+B5HulDUqJBjTJo2bCKQyJ9TwFYRA5YOVHCI5E2MzSDHSvKSa9bvu1vyA9SwnBdvXYw1KSAjK2PMj1fBS1hDP1mN2RtcH8OTSEkJOIFetsDTY5UBockK2JpR7qRJj9e4lri6Vxfy3Fn7ZIC54ZxEHR0Q1zma1Nsy+2PzrVpNMkvLyOweB1NqdTGEmnm6iRnH1yHcgbljRPSZ4Nm4DxXqzssd1z9Gi3f0SgHwhVGOMMcma1Ue+oyAhaXOo2VX+9bio9NVhy/JaaAk7QdxZTu4J7QhZ2m11QI2axBDOZzOFQSvplriSbiA0vFHrK35HEn22v8+u4QDKCb7+SiDMfnb0LqSFPEHgEewv+a5TSaiEQRkWgidyycVyOfhPg+kaBAszX2/DEHKx/AyzQUsFsRXBlVVdaKiM7Or37P4OpUCgy8SfIZY1vvxtW09sTn5jYiXwE35tCorURpROSLoww7UR8kKoRmI1xJUi4Y8vugfjxUqrj7LvPz1dB8k67qeqQCyj9wnPpaPPJ3+AuPoeVYpOzbwspFjlQubUEnIVs+aHpNg/oDg6tTnH/pLTnBAMZGb8QOJFYooZ5JUwoTCoC1Zx+L8xfpxRHVwSdPWbx4RZ9d7dsIyJAhfpvjTVs43LpD2/ylMY+8uWOeG/KdyyHfRwUc9DVbQV+PkqRLVTD7vW+HYANNB9dXbgJ9k/itG5Qz+oF9cM0yr7Q9JoHPETM3napnfTBaU/Qgsejp2wCVPdefO88TV+tIn58CWJxOtRfaKBqRnKqMAJLiZ97YxQRgcVdOQLGEkinzBcpA29FEtix9BqTXATklAFbKUgIy1Y/fnHH1et0tZweQ2kRR2isUbgBRdLQ8Rx1EocZXuVZ6Ldt3sbhyld6bDeoJKFTA5NNDRxmcPEWfWZUl0Vnu+sPT9WzfM35pROSPw3vmpwWwPn+EckYfkBRWqYmJA6DpMRli6gyeHooE0Z5yQmewLx5a+qrpNxtCJsdrxLhckBfAiou3vGW9HoifB35KAOvmvado8ddoVClbGDNGdQHDOFY9Iq4TBBHdhs7C8bPXsWHhcOTJTnmJ4ufaH6O2KIr4e90ezF76j/FaicUGYBEAasRUEz9D7uwZEBiQBA+fvMSbsI9IFZQM6+YPR1Bye6LzQeOXYOfB00b1x4J5s0Iuk+H6nceIjFKjTLG8mDehJ2Q2YboeA7AeXAPZBJhNyJIHmj4zYh0EkrZB0iDMZqhQH7pmXZ3WS/OMKtCRQs9TtsOFEXSDznAiSo63//K3+ut9DAyn4dut/LNhcqApbJuMUcjzlVbnvKn+DfdWSCJXsojI/YfjL4q2nDqFo3rjWtq3aNSskqXNMhE67Fq02fK/rmUPGMracyTF6jCbArLT++CzhkYtGopUgK7DkLg2Y1V+f/QLdAg7avmtum9aLHNClP3yEIuXEhL7kMoCNha7jJkRlPS6T9IC6J2URqNJT6aYNxTcrfOWn7R/jgBfsIxVf2wl7u8EjEAoT4m8fWtFokmGLVCLFLgkqoc7ZflRcGwvOieD0+LRn8uxWEIwLT1RjaoCSpV0byMmiCLSSuYQIwLtV9MIoLQhIl6+YrC7xi68C6JKaltS1kBJZUqXxivqNXB9Np3rzwI/YnjznXiU7len9W1BL2VyEYX6uf5lnDR8/QaLf7bTzVW+vALef2CtyMDbtOKRJXPcASzp/Tx8V03kfeU41TR/9FCkMJhUHlP3bga1RPbwXrqW8CeswRLjzh2EYiWNJjEUrQRd+0GIeMTgzhLnAFbBvjxU39JRpe2putWykjuXik0kFKD4UFMAACAASURBVADr7+UcXki4v1o0FXDrNoObt+n7uUE9HoUKxH0cpb5avJTDq9cSUKwtjwzpY27TZ8VkyM5T0Nz2+Ug4tQi3FrFi0XvR9DMdW1HpCzIe8ZGdV47qAPatiaOQmGbYEgixbC5VA5uB+UyjCNQT1kNMGvOHKZdu9DgUItG3BGAlFiqrgTu+VLyDvAtJGpdPYhqZECOAdesCFPPou4PPVQTabhOMbR85xuL4CZP/Q/RAHh3tZIrCIrI2jdszJQ6X6JGisn1r4bOTrh0M1VtA16C9pW3bSGDb8X/7Dpi/yJogMXUqEZ2crAni2umN/3C4LbkPmzbmkecb6HvmLIv9h+jz15WU3LieP77lvzxlcEuSnuyfQUTev1yfEz8jgMW8fQkiPsNGUNVs4meiWKrtPQ1iABX5ia//E1p9xYLh4CTplI7Wfe5ckxfAcsdrnq/z4vU71Gw1ABnSpsSe1TErrr9++wHVmvdF2tRB2L/OXv1V2ru1Ww9j/Ow1qFW5OKYM+8tpx+ct34b5K13jpCxRKBeWTqfKnwPGLsLuw9apvrYnCgxIjBPbZlt+Nu/Zm9atgBF96Ic3z3v2x2rxpwSwiIvNE61YwRxo3aQ6CuXJauTFMtvHiK+4fOM+Vm46gKu3HmJAlxZo84tzMuIfa9hc683nr1EYNH6xEZwjN4kgCrhw9V6MANbL0DDUaT0IMhmHhZN6o2gBEz8OAVnmLt+Ghat2GtuS3nDkOAGuCICVKV0qLJ7azwh0EYtWa9Bz+FycvngL3do3Qqc29aw67ykAi7yMyEvJbIa8xaHrPDZWR8kuHYfPUlqOgBfkZebIogQ9sr2gKkkqVmbcvF8YxcEQTTdMRQbz8LFJg9kV9RSdJOlldfzSY1GKisbT2EbPBLAKHH3fCo8kRMTJCwrI1twxuPFgA4sPkq+nOdXT8CXJSSuuniwa4OIsicKTTYRBrI5yUsBnxzLI9q83HhWgQGS538E0bgDOej8fp+a3Rz5Blw8nLHXq+2XE/BTlHbbxbA+D0BMUECD8Y3sL3MKIjxcs5dsnzokxyWjElLQhu41rq14wlLFOV+TuXDKG4JvtUeqBeBZJnxX7C93E0uIUBJOBwcaU1VFSp4BqQFNLPdEvMS7/vg1EDt2RlSwpoGZV9wAs0p40moj832ZdW8gNJoVMkhKydz+LbXW34mMA3fQeSFUXeRT0S39MA/X1OYOb86mv76V8h2ENd+Fl+rZgnXwk0EcyuDiG1pH7iyg61PWNBekPSQcjaWFmK1VCgF4HXLxC/Vi5ooDyZePmu2jBgKwvKFnyrPWNkDrC9NyytRzcCoR8MoHMuTs3RKg/jY50pHIpO7AePtup0hMhXSfk62GXWav72vY8udoLSOqAX8bui3Hv6RCy5jVWTygA1pjxMuglwam9u/O4dIXBiVOSqKxyAio5UGKMywNkynQOXyPpfCHnSRoLt5xdBJRNhOrW7Ryu3TC1yYk6jAtvCJmeRj/FlnoeW/99+zQCoqk4iHrKFoiJksRYTTWsDZgPVNJRPWolxCCqbBvbOeN9nKRWd60BRjDdd6cTrYaaDbE0K42MciUCy44nKkseaL99hFq+isPTZyb/pzQABag2ApLlEZCjddzu/XhfexwbIBx2hMvObLrGnWCo0tjyv2JqT3CPb1v+10jub/Ljk6cMVqy2Br6JEiBRBPSErV7H4eEjes/82oJHtqwm0PfGLcaonGs2T6YueqLvpI2Ihyzu/E2fI0mzCsj1u+tz4mcDsEhGgmJmPzAa+owifuLTZTWmDcIvsadcnyDbka+fBfkJyrOqa9oFhorWAh3uXJgXwHLHa56v870ArIbth+LBk1eQy2U4tmWmFaYgvQoCKG3ZY00nYnuVj5+FGvfH1SsUxfSRNHvIDGAR8C0giWOe4qSJE2HueMoP6QWwPD+HvnuLperRQTefjGVYI/jiq1IYI4Z0OhprrvCRg/xpdHq732tVLoECubOgSR3HG+XvfjHf4QTNO40CiUZr1agK+ndpgb8GzMCZS7diBLAIukzAv55/NMEfrawjdAiIRSLbSJtr5w01+stsDX4biodPX9n9To5/+vzVSJJPbnpCrK9UUHTDYwDWxSNQLKNIu6uRQHaL5ky5oO3nmPzfFmhKxilxM21z46aebO7NlqejgMSZrBdPJ9ShaPGOcm2VUaYyghzEHuk/o/xrurjNJEuMDQ9/wfP9tM3U5XhkqO04iuDVEQ4vDtKy6bQbEMQsR8YeVKkskcDg5RS6WbfleHF3+hHw7/HNXHjrUwV6xrT5T19DRJqK7i+s1399gL7hZyxdapYoK6YnL+2wi4+2sAiTpCVlaSzgZO6H6P6e8rI09MuEuSnKOawv37IA8iMS8uQGHUDkpKXGnT8ExQr6ZeZllr64H0aV547kuI+FFen5FqQoj3pEYVIU4duZpj6S0Tva9jD2HXQcgZMnj4imjdz3W6GXG/FOIjDQfEsL+EWb0n1btxKwdx+D+RU2ITIR3SifTtMYGeSukfl/fsjitmSTcD3kFcbW3Y9b6VqAgK6OzFa5kPMRUXxM3K7RltOIKG8pFQJ27KZ+zJlDAInoiYvZ3s8rlv4KP51j1dp0/seQ7bWJs6Z0+1q4k4Ly0zkCAX02zgUhpTabecP66iiHFwecRwRnrC8gVSn76/BZNgGyizQqUdeyJwxlTXMwIQBYH8IZzJaITSiUIob053HxMoNde+g45s8nonGDuM0P6ZjzAjBKokZGjo0YagDnGDO2VFWNaAsmLNTyvy1H4O69LC5coo30CJyHtLe2WMoLKdNBM8JNARjeAN+ulHdRZDmo5+2PdSorx/wB9psyKinskL8v1lbcL0Civ0gUGLG3sqq45TvYqjHphxyXACwnNABkTMdOkIH/Ni2S8wyKaOi7MGk2Abk6xO3ed/+q3atJ1ibcxSOWytp2/cEXNwlDEFPMHwbu5jl6vONI8AXoO+/GTQZbtlm/N1QqkjrtutJeTD3/ewWHFy/oc+n3djzSfeNjfPyEwco1ko9E6UW0b+v+PeqeB2OuZScWkltAzjauz4mfCcBiSSTjopFWEbvEe3zuotB2HBmvSNHvMXb/izble9dAvotmPZA1n75Bh3h3xQtgxduFHmngewBYJJuoZecxyJk1Pe4+fG7cU7d1M+jl3qMXaNZxlBGr2LZsLNKloRyaZgCLRHiRSC9XzAtgueKlH6xM7gqeD5W7fcw6RewHu+Q4defc5Tt4ExaOhjXLGuu17TEBhNsqphTCqs37IvTtBxzdPAPBkk2a+cTrtx/B2JmrjdFqJGqNGClP6pGbcN9axyGYvUfOw4FjFzFnXA9UKl3Qch2uAlgEh7x1i0XoG+BVKANCQ/WXRLFLdmI3fNZLSHjL1IKuFU3fcuY4Juw1VCPoPBKTp4R6zGqHxV8ZIlH8Fd20pJH54ULIL3i4icX7y3RzQ0CUoG8EqOaGruvCUSuU8tbk8QnEgW/qbRc079BQQlpeRBGEGRfr4O1p2maGOgKImpMj+3CNwYP1dIGZQn8K+dXDkLx/K/CSvfKr6RvgpzctPG1VtuI0sSSFCe/YhQ8DEMlR4nOZr4jCg3i3o7CWf7mLoR9pRFM7/xwYF1jCYRcfrOXw4VtkBCmQrRWPG1leonXYYUv5Cqo0WBtMNwvShuwWMlWbQt/oD6tzyQ9tgnwrlbh/W7Afbj2mUVpX0r3AhNomcLJf0gLoKUlXNCrRqSMt7e2t8w+OXnYc5UPSnOKzMSAgKAFDzdZoZ2MERJiAlq6deJw+y6B3jrXQKWj4wo20zRDImQiWY7OPt1ncW0Xn5MUMzzC55mE4ikCStnVmgHXqS6lJcdt0kfRBkkZotsYNBAQHi5gvIYdPmkRE7x5x21RJ72cfgwxrlzh/nwQFPEC+5yaeozotquB0OqpCuTFlNZRRWke+EMJmQtxsNl2HoTAUKY9Hm1mESYAQEqmp+0xv0lSlBWSsZ3+f283TKo2hb9zJ2HxCALAIJxXhpjKbmb/HEb9Zh3ZxG0fpXIv4zGD6LHqexP4i+vaKvT1Vl+qWSCLSnq1K68EjDE6dpu3WL/4aZbb/akW87S6PCvMxDCqJEIaQNDk0E0xRrTGZclJXsM8o15+754/tPM6Os8/vQznRlG5/xm81ojkafRVcQkDmhnQeuwRgvXsJkkpnNrPwwetQBoskadcBPFBcQ3vln15E3s6xj7G71+mJenZqx13HgShYmo2Q18vOOheTOX+BxZ799iisJ1Q7SR8WLOLw5h19DnXpxCM4yAQShoUxmCtJz0uRXEC3zq6DQ57wX2xtfLjO4IFEjTh5AQHZWrjex58FwOLO7DdSOjCi9cdOYwo7EURgY0HyY3P0T3JcRvy0eprlaniJYMTWHSy0OkClgJFXs3QpIJGfa2ntXgDrx5gg3wPAGjppKQjH86rZg9Ghz2SkTZUCu1aZUtzjYnoDDxJcQkCsQd1a4dfG1nsTL4DlujcTdAohIWr3tLmKeHr6vP9Fe792HWdMl3QGYH2JjAZRYyTAFQGwHBlBnpv8McIYfUWisIgdOXkF3YfNjpEEf+XmA5g8b70xqotEd5nNVQCLcKcQDhWp1a0toGhh0yLFFmRwmVhXq4ZvT5rWGNPX74f6CFR4vd3ShcyyJDgR0hCvDrN4IeGISF1OAEllk9oz/VeUfv2P5ae0skTGjT+xA9Ev0F7C+VRVFYJBh6shXLJpz9qcR4qCjl+ikS8ZEB4ss/nxz1Ay6jcU6PcbnrOULOTikp3I8tEUfWPeHMR33qn6NsK/7BYIjHXOYPqaAtK4mQq04MstjP14ydK1TonzYJiE8F7a57vLOHy6TxfeOdrxeJ7pPeq8oeHh+X0CsfcbWGh7vbLjO+GzYY7lZ6JASdKBpCb/ZzHkhyl/2Ify/XDtKgWwniYPR/9ftqGJX2bMSmECi81mG9mxveRKnHqWzqHbkyUT0bOr+xuxum9244qW8l3U2V8XwWEmoIWQnN++y6B+wDIrAbwn6VtDwbgmH/3+GoOHEqD0dOYnmFntKA6lrodcPo5BOXLu8yNk4CUbzuKjDOAcBzo59IuUQJsUaNNKQJbMAkaNo1EZ5PeB/Xj4xoHI/YE+AhW/3c8pPyfGnHU03dO2I/5JP6L4C1PKT+uGZbE7Gx3DhSkqoK6fNRmuYnJ3K9UnwsdHePlIBBuJZDNbUBHBCtAKyCkgZzv7jZctwfWHNMXgO3ScsZmEAGAdPMzg1Bk6z0qX5EEi6T5+ZDBT8uxyB4iUjtXzlwyWSt4T6UJE/N4+5nuK+RoBQqJtNlHuA/VsKnhBfj9xisPho/Q5U74sj1q3BoKkF5uNL1YZ2t+oWqTDyezgR/bZPSgndbMcEdJlg2ZQ7EIYyul9wT6kXH+anpMhZKcfh1w9v7vlzGn7b+SVcVtlWgsYjRVRuD8PBQ1SdInEnfn0HqrBLek4JAmEeuIGozoeUckzmz8PlJY8T5TBQCEHwinuXldc62k1DN68pXNDoRKRKtj6Xa0c/xfYl48sTWsGzoWQPrvlf/k/CyE/TNcH5COKvip9Hh05yuC4hEjdXHHYIAPkpizxeNmM2Rw+RThOu41WM5goEZ4gm3ryPvmRzJEacZYmrvfxZwCwbD9ymMdHX6Ml9PV/+5GG63/eF1taCPMHXa2OwbiJ1ush8v4g7xFXzAtgueKl71/G0wAW4XGu0LgH/BP54t8tM9Ft6GwcPXUFq+cMRqG82eJ0QfNXbMe8FduN9VbNHmTH0e0FsFx3Z4IGsFy/TG9J4oHYAKzb95+haceRKJQ3K1bPcUzETXi1StXtYszNPbXDtPEnaoVTFmxAx9Z10b0D5XWQev3wycvoMWyOXb6vqwAWIdAlRLpSI5vVnt0EKJUi5DtXQL5PwvFUpw30te1V2BzNBFXPemC0JqU4Ys7UnG7pPqJ66E5Lubw+ybA/dT1jBBCJBDJbgIPw9S+CDjlfUJWrxKwcd9OZ1A43RD5Cnw80WqO5Xxa0+6c8vj6lC8rcfwhIksXxF0Vew+D8COuXbpUvFVFzUFecEz5Z+rVr/WGUeWEi8BZZFup5B+J3Y6ijIOvTDif8afqjuUEShUVSSFg3FtczPl/H1E9XLX3rlSQ/+gY43pjdWsDhyzduFFKBfIn/mOYLSr2im4F0nD/OpnU8L4l0PZGwNxtJ2zCG2UtMsWISuPM0omtM214ouY2Cnh99o7Cu0zGsC7bn0LMFMrbknI1zESbuIlsjvODDBsctOknaRqu3B3FMQ9Ogqh2pjrSvTQqD5Ev9y3c8SqitowsdKeg5mxTvLrJ4vIXeg+bUye2paqGogoZA29a/NJ6zijIqOoSHPLFrC0LS1ryFHN6F2UcH2JJ1m4EtVyf1TV04anyLiswZmhKjd9CUaTJ/pbx2Pr5alHtbw9h09xrFsTo/TZ/uh9LIejc7NFpAowFyZgdKbWlhIbcmddSjV0FMkQpXprDQfKA+zNZMwION9H9VkICCfezvc/b1UyjH/mm5tI9cKlxvswbFiwkJAsCyBSGbNBKQL4/pOoePto7Qi09UiS1fD1H1JOqeMZmdgq2DdMBzF1gjh5zZShYXUCfVaSveReMzddJmIFHc+GVs+Rv5PMWh7RI7fyMhPOduUa4/7V+jweejyrOu3gfulpOd2AWf9bNx2m8l1BwFdEn0MYlClporEViEA8zIBfbNjOT4M3YY3/vk/b+/yl588f+CjO9SYtghKqLB+IsoGUdePXev2VG9Bw9ZrFlP5waJXCIRTFJTDmphRaatHrsGYiCN4pTtWwefnSbhHGK2KU07d7O4JOH8M5fr14uHv7/rz1Jn100AKgJUmc1W1dWT96gnfW9u6+0ZFk920DFIVVJAxgb/TyKwBMEYdSU7a72eI7NC17oP+FKm95bXqAds36dCcFpoRi7Do8csVq213me0bCYghwNeSkf+/K8ArDfXRXx65vr8Tuhjn6oAi4D0zqkXbK/P0wCWOfOoQ4ta6N2xKQ6duGTkdq5XrTQmDLbO2IjJ1/cfv0TTP0d+Sx0cg3Rp6DvAXM8LYLk+W70Aluu+SvAlYwOwzl+9i/a9JqFcifxYMNFx+h3hwcpT8TdwHIsbR0wkxXOXbcOCVTvQt1Mz/NaccnlIHWZuu0ThXFg6jSouaPWOH8JyjgHLMtDzAghH7JnzItZuti9bsSyDJvVZ6FfPhmE/Te+Tt+oKWS3nERXSvmn6tIT4lsoMKyevBpMmvd14n416h4qPaQRWSd9g/JulASKeizg5kfbNPxWDCsPtQ7WVNxZZtanJZ0pJmvHhOgaFUv6LXsnzo+qioogyiTsZjbRH2nVmB/oaoIuix8tEt0H30b9h8+fHlip/7z2Hxjfp/8oFO8EktleTdHWiC0/vIWz4DFxMNN9hlVyNWGSu6vpLx9zI0DfnMfU9lZQfn6o4eqdwrCJ4fKyAL6/pAr78EBZIpUfQbboZSML54F1ux18ghZsXoZ3Yx9J/Lkd++AyjEVnkADlOyhFbUigbBlUqhg2LKV+CCBGV5gKJOOuNuLHu1AEQrlJFkc1px+K8wTGfFyk/dSwHVRyik6SOb/38sNV4VzxZCZmeZkJgADB6CIcwXo10t1dZqig1StzL0BYpnWNPVuP69KiIW5J7cF+e21hW9iy2Z6yJGv6Oo8pIA/+O4hH5ljZVcTiHRKlcnWXAwJE8vtIsTEwcycE/EbBpq4DjZ+jY163BokYV1+fb6ai3qPzYxFNV6nEm9DpIVTuD8wLvblr3kYDCxIZXKIg5xXNZDjb5UBRJ9ua3/J8hnYiuF6sCAt3EKlcdBcPJsMtGGavmVA77+lpvdususI+Ie/JIh1Qjqlh1aGSGAxg2SIUkiQEZx4IXRBj4+G9mXR8Z10v2H8EjKoqWH9afs8y7waN5fP5Cj5G5SuasO3boXxHb99BnceXyDBrVjTlthr90EroZ9IMNm7coFANpegnpx9mLItZspO2WKs6gZWNA2+MXiB/fW7oqa/on5PWdq3I6uib+6E7olk6lz6AKteHzB1Xzc+YH3ezh4M8fsxz26TYKXAnTHP0vzLB5CV7tfombvlT0hGGBSmNY+Cazvg8VctMYOHvfk2OiIEDTmgJTYBio1hzHgBE8Xss+Y0t9UxRs0igVlqwyffwx1vMB6knSRv+La5eew3ZuJPYHJth8UFK3qQTw9OOEcuURMDL6dYc/vAO65XTOcRXrwOd3uk5avILH9Vv2Vza0H4tUwa4/85z5pucgHnpKF4t5U62fQbbP4HHDOSSNG077XYfl0UERd7fR+zNLNQY5G7qeLifjGHAsAwMvgHCuJRQT9Trjs0u4bpONIpPDp/socIWtFZUTynV9736KkV+h6Uh5TKH0hWrpfuw+IGDfIet3aJvmLIoXce0eMz/nvnf/L6/i8fREApqo8XRIodYcMpV3/X72NIDV+PfhxpQ/kjJIhMpIGiCJyFKrtTi2dRYSJ6KiPs4u1cDzRt4r0s7Ari3Rugnlx5XW8QJYrk8WL4Dluq8SfMnYAKyT52+g04DpqFy2EGaP6e70evNX7gByM14/shQyjsO0hZuwbMNeh/m85kZI6iI5f8E8WbFmruPorpgcvPuggO177L+kE/GzcUPkSLRlAnT/0rQP304D4VPJmoTeWfuRI7vCcIcCJolGzoEsl33Ez6Evr1DtIeWxquIfgkPZ6kKvFrGjG12csjKg0UL70KOAa0sRwdOUvvAC7ZGMU6D/q7OY8o6ef2KaEsg+Jg8MEqWlejPl8KEimnaXcmTYZ3x6Qx+ihf1nYk7vUpgRdsNSdvTVZ+h28LTlf//Jy8FlyOr2vNafPYrHc/7FLV+q/ihtjPS39mQZOB/XXv7mut1fnsKcMIoezEpbBt2DHEct7R2gR3Q4PWvNiXL4JQeY/2PvKqOjSLronR7JJCFGQoDgbsEdFnd338XdncUXd1gWW3Zxd1ncg7u7OyQkkEA8men+zptJT/V0ZpIOsCy7X945+ZHpruqq19XdVbfeu/fyIqt+8UW6xwvVpROMTx8gdBjjXeEyZIHrLOsopdCh7WF89gi7c6RH20blIahUWLWkHRxj2T2uN1sLBxsT+oiFkxHjt9fSlo3uw3DRke2IeqcC3rH1LyaM0CJt/E0ZRfeo2/Pj+CPojuXcMufKIs+DPMiWRYXh/TV4EB2CXLcYt45LqCv2OLRCudLKJgb39vK4tY09gzsLXcea0hexPks1tEzJIpLkjT06yYAPT9mksPJIDVJmUTYmiMqjS3/JyopAxF+1tLbF6fM8lq9j7SmYT4U+XeODiPact//TC9R6aH5n1L2RH+1OM8LMbJU4vL7CI4pRiuGHyLbQx77EnFJ5Mb4Cez9UfFsA2Q4xPpsUfAh+CWhkuawqhSvclu1FdCiwawDri9YRaDBPi7/6xyJGAtDVma6Foywjc9tuIwqvaQYPnqHaU1KtQ54f0qF9K2UpoIoG0d9w0vtgYNgvrN9EqP77bPM9JJs824Anz9n4GNJbg1w5lI0PeXPXbDLC7zSb2LdsrEbVRCa+0fu3InIZS5nXVakHp27WANLFqzwWr2BjrVhhDt3bqxG1YzWi1rGNCZWnN9wWMVEIJe6M2rICUZuWWE7VN2kPfYvOiRaNWDAJMcf3Wc5z6jkSuoq2N5ASrewzTghfMAknLjVHuJqlz2Yuy6FYh88fjyHNrRfc0QtOYeTEWJwrfha385hV+vSxGqxewvjqeBXQ/M/PCPX9jD7bKrL3EA96PqUmvqNMv0VFIqSthOdE5wD3NYzQnU6hb2n4HPYd1ZaqCOeBLApv6q8GPJK8Q8VrDe2rQc5sn/esiHXI37H0XFL7pTZ2qgGv37JndPRgDTJl+LLrfiX3m6q58xePO3+xe5C3Hoe8DT5/HH7Ntv1ddQkRYQibMgTG+7KdFkcnpBg+E5rcBf6uS/8n6g35sTIQw+bj7qsOYdZSLe4+sAawWjRUo1olZXOkb+WYZAArYU+LABaJtuXNaU3vIC8ZExsLyj7K4OON/eviczjfvPsELXuMR8G82bBu4WhL8cm/rcXabYcwou+PJqG0xGzhyp1YsHy7KXVw5dzhpgANWyYCWASUpfSwvUvQskFl1KrM5qvJJO6JeT/5+L/eA4kBWN8kAqtIXiydzXYW339iHxCpg12cNNBpOIRGGhATy2PXXuDUWdsPfI5sArpG/QLVpROWKvhuYyAUl+zmJnD3uMXjobrIdrL5LiMhlKwSr8S+sOf46S1LJavpnBFrfMwT01OjVYiVRBiUGS1YcYDQOUWfbcLzWKYAdzFzM2TRuqJvwEms+/TAcr1fPX9Auom5Lf+rOAEV2Qa9zZ7cnf0K/q/M6WJkubz3Ynu39BgbxFJMejz5gMmb2YKH7z0RQqEynz2uVfvW4cWuSDzS219sZW8IZCiftKiQAe9OYfVHRk4827ss2roxf0gbfHKUCgaJUvQPEwRonYHcT9YiSEK8dCdra3jbIisPfAv1cMluvpsn+FmM74qupR7UFBedVajTuhpi1eZJ8W/rmiHtRyZzX3ywgBQ2FOxVmxaBO8jq2+3SDX4pzCqHlPrhnUqFx09Yjzq3E5DDPhaU4L36JegC5gezyWyxK8VQ8FYh5M8n4MeWwLXoIFR9wZTxPN97YpJ/IzRtqOz+PN0HPDvEnsGNxa9gS7ErmOVdFu3s3B9q8LVFKgQ/ZE0v1F2Ah0LagE+hwKTp7JrOTsCY4eb2+gcAc+ZLjjkLGJMECqLdYc/Q/q15IfnTmRKof51N+LPVBgJvAZ9esHYXdZoKD/8DWF4wOwbWZJOHAi9zovgxpnLpE/sIA4NYWLmQLjP4ccsQ+hK4NEfS3rRAiSECLs9V4dNzdp3CPQW4y8bAbwtVaHmjE9Ia2GD51et3vNLmwpB+KuTKqjFFt4RFfn4K6me/CBIpSNxrq1j2NDKmB3p1Y2Nu3SYVrkvWYM0aCShW5PNaet20LAAAIABJREFUs3wNcE/Cide2FZAvb8LjW7VlMbj9Gy0X5Ou3g1C/nVUD7j0Alq9m9y5XDgEd2wII+whuYBMrAni+1wQIhe1HWcp7plrzKzg/lprOt+4DoTIDQO15Il65Nn0hfAUpeKWeD5q4Gjc/kBNEE1B6NKC3ET3n6WrmSLT3vRdrUPdtAEolFO1yx51Yc8AZa5uvQayOgaCbF1l/c0pPFqD/zMhVpf21d56tucmoYYIpStRkgW+gHi6JyvNMDeM0a5J+1Z3L4GYPYZ7MVQj8kNmW/2f8CpCSp9zatwHy5Fb2/rbX/vAIYPwUVreTIzB2hHWdfy5X4ZHkO9XhJwG5Fb7Dv9S/Sso/3g28kHDUZasLZKys3C8p9Go46NSm92dCUYJK2vJNzvkQCG7WIKgCWOYAXVdw9QA/9FcgDZsLfpP2/Asvoh7xIyBRnjVOWIkRf2SUBkqaelWlgoDqieMTpnPF99zf7Y5kACthD4sAVlLugz0Aa/T0Zdi29wR+GdwezeqyNaXIB50za3qTkmBCpiR1UCwvAlgJ1SfPdkoGsJJyp7/zcwkt/VzbsMh2NMnn1vc9lUsMwKLQRgqVVMKB5ebijDO7zESzqzYfwLQF6xVxYFUtVxRzJzDCWqUcWFu2qUH8JvZsjG4wXJ9fthyO7jUJRl8WFZHQfdBtXgjNUcbjFNukG2KrMqJ5sezO8KfoGXjcUlVD5yxYkKqC6f+bC9QIlchQ+3bl4ZrNOsSXVAhJjVC0/T71kF/niY7vjuBAxEvL7yt1NeE0lyk66dwFFBueMI/L218v4ulbxn+SLt1tXOuks2pvwTAD/BawhVpMyz4wVGBcTkkdq8S78OByXrzRsUg3rYuA2FB2n+j/4knkJ+kdeBzbw59amjM/VQU0cs5is3n2FO4qvt6Gh7EsL8kvXSPk0DLASaxMFRUBxwENLHULag0i5zOQD4KAN6OaoPqPNRBMsjRxNm5HHeR9y/Lg8nXm4ZYjfki3Zv966HaaU23Jjjm3xB5Xc+poOh8BXp7A9ZvMX40bGFGooPKJt9Qp8z7dxNQP7BkoeLMgil0tjlIleNSuyeN0lD+a+++3FEnrnwbtrtRBH4UKXs/2qPDmBNvVXl3mAv4qeANjUxZHV9d8dofPvdUcPtxiO5i52/JImU9Z+Ptbf2DRHyyqytubFBXNIA1FDkyYooFBgtmQ4hwpzykxGmM01sj6Hq6Ecg+zWYplb84j+K4K7yX3Jq/3Fvg8WoBduTKgbUMGWGV5mQmVj7EIizxR59ApeLilLmPeYojuMwVyFUeRsP3BBg5BVyUqps14ELm7aOERKkybqUbPoL7IGsuQnt9TzsIjhyLIkA4YO1SLiGgjQsJsbwgo8cffdc5RPw5+J1j/SHiDBDhEO3SEw0mJ4mqlCjzo73Ns4WKNCdgUrXtnA3xsAMvSunVLJ0Nz6ZjlJxJxIDEHqT17rsKylWzsZ8wooHOcWqLD8qlQX2ARNcY8RRHdd6ri5pPkvfoai4yN7jIGxiLWYhC2KtNuWQztEZY2Lyf+VtyAzzzx+s/+CBfYd8o7Zwiyd7IdJqyIA4uiq2RcUdsqrMcK/iNOljlp1cpVf7aDo4FFCXm1NSJnPmXP/Wd2126xzVvVuHnbem7Ss5sBaeIiaUkpkhQjReMz5kDUcOu0eyJ4J6J30YR0WRE5ikX2TZ6uMfHrya1xQyMKFfiyfhN5O5G4i+buLmBgX+v5hnz+1ai+EYULfdl1v+Z9IP4r4sESLUsDHmnLKH+H/JtI3FX+L6GfMwiqT4zflPrNp06P6H7TIXik+pqu/c/WpZ89ENxD9j1903Y6Zh8qHq+/JYrzqFtL2VhK5sD6e4bLP8WBJZK387yAE9t/Qwpna8Xuxp1Gg8Cp9QtHo0BeNn+UeoGylVp2Hw8CvBJKHRTLJKcQKh9D/8kUwnwV7cuhJ+aa234rEjvlX3s8MQArIjIKxWt1V6RCmD93Fmz43cx9cfzsdfQcPkeRCmHHlrUxqDvjplIKYK1aw+HREzZB0ekExMSwSWP/j72QPoKlT0UPmgNjdl9F90p7YAO0O5Zazo2t2gyxTRhhsnhgQ+hDDHrPFhotUuTAbC/zTvvDjWoEXmHtydrIiDSlZKHI/gdwKuqt5TrrU1dHeUcfNHi7F5eiWWrQtpgGMC5lk5AU6QUU6JMwgBUydR3uBLPd8JRpghDT04BaEjW+dDHArTkSovsaLRHbkHE5KXKW5CT9nCG4+upHBGuKWn7N0YrHo80cBAmokLUhjzSllU0AqKLO745iXwQLffnTuxJqO8XnJKNszPOjGbhBqZulJpkv3PDtXlyU+jRNLZQkuSob5tijGqTLj8g5f0HQmz9UwR8DUPPZZrxys16YrTneAg53XCy1ZW9hhHeR+BN6zck90K371XLeBcda2ORujkDMk4eHZ0oBp06zxUP1KgJ+KKtcPUnanRWh9zDyPeNSy/0gD8qeK4vqVQX8UMZo8in5VrSMLzOi2rHqGPmzEQ66xBcjj7dzCDjHnsEl5U7jgO9d9HcviCHu9tXPHm5SI/Ay83D25kZ4F038etTOx084EAG4aNmy8mj3IxtLpDhHynOitWnJI1dOZWNtTeh9DHtv5if7ZWcd5HvDAMm8HY0IeUSAHbt21owXkfXWUBzPlBoNW7It2TQBaVDnAANxS4bvRrNPjM/GULoGYtoOxpuTHJ7tZvXRM0HPBimYkpKpaOkr8chYk/Xh2nUOJO3d8cNI5I0+Yzlvhcc43NKbgbSObdQm4PN7BLDWrudwX6K82LA+jyKFWP8uXuawaw/rPx2jcz7HpsxQI1JCRq1EmdJh1gCoHzGCIQKfCISSGokIkJiAaKQy16Ob+TlVP7kDhxn9rM6PHL8SQqpEkLO4Eg4z+kL95K6lvNJvl3bXSpDymGixSRAu+RzfSsvIwVgIPIr0DIY+c/xNAiqnGMD6pSO4ALaZ82e25Zhc9RJC3EOsmvzHytbwiGAp8xHljahaR9k75Uv7Li+/YjWHJ0+tU4za/8QjaxbzGFbfPA+HhUyl0ZivOKJ7T7aqRvXhHRxHSiKB3T0ROWWD5Rw5ibp4gBbWtMD+Egt8p8I8ydi2RUK//yCHM5J3v/hN+ZLrfs2yj7ao8e4i+w5ka2JE6hLKx8O/BcDi6F0zbzho401qxow5EN1/BuDo/DXd+p+uS75xca/Cz1jyIL4QD4mNkOiIEvtWAJaStvw/n/O1OLA27DyKCXMYb6w9nzauXR4ThjIqEul5xA9NPNEUGLJy7gi7qYNimWQAS/nI/U8CWL+vYuH4tlwRFR2DgMBgXLn5AK/eBsLZSY+xg9ojV9YMyJ4lnXLv/cvOTAzAou7UbzcCj5+/wdHNc0xAltxENYbm9Sth7EBzmkXQh4+o0LgfMqbzxr618XOI6ZyBvyzAAb+LmDmmh1XurlIAa9FiNd4GsAlKwwY8dkhUZwa/64A0xmeW5kaO/B1CetuIuLxP6nMH4bByhuVnY/EqiO4YPxdp+ae7GPWBkWW2d8mNSZ6lTOVoAUoLUdF8yvPILIkyoN+7BR7D7nCWK7QoVQXUd86C8q+247GBke0cCGmBT+sZOCJGaiQ03GJ/HoGLAvO9o3sMfH8GsjxfBek07tmcTXCLMadi2Oun0mFNE+4zMbMRybFnhhTUAi7CauFPUVhFfzaCACYl1ibgEPwiX1tOXZO6Kio5sp1+8QBlY16cyCrVOAMlxpgBrA4BR3Awki2ElnpXRk0n20TjjsOaW+1mRk1aCz6lNyL4WDR+sRM3ISEoAjDSoyhq+RXEW8mOb6baPNLZiBpRXzsFh8XjLH255VAWK1Kaw40pMsrDA9h3gI2bksV51FG42yf35dbwx+gbyCIViMCdiNzFXfrNYY/QX6J2me1JNlQ8VQk/tTYiR/bEJ/tykHZBpePwy/0QnV3zYFxKllInb5d8dzxrAx5pFO6OX72uwvadDDgo4CugaWMG8JHvzp5n/qtQnkeVisomm39+uoNfPphTbOUpoQX7G/DpCYenf0mUrTK/QL4b7XDD2wMVOtS2dNMj2AONdzGVy2qhK1AjbKXleGyt1oit3wFPd3N4e5LVl6kWj3QVeby7rMKjTayPngUE5GrD+rhxixq376jQKngSikaxFOaNbkNx0ckcKZTCGRj7M4fI2O8vAmvmHDU+SaIy5VFRDx+psHod63+WTAI6tEs6iBtrACZMlgDaHPDLqMRTKuk9RgCCaFFjl4JPY/2ueP9BhbnzWRtTepACroSkf1wncP4MdDdUboSYZj2VvO7gOPonqIKYykHkuJUQvBMHvzQH1kO3g0V3xlZrDorC+hZ2/VcVwt8yf6SOPYpss8rBQmwma4RiAGtKT3AvWL7x4DzTsbT+9Xhdkj+vj7ICbbslfq//Dt/M/12DdxLBFbpGk0ZGFMxvfqdqzh6EbpVkflGyKqLbW3OsqaIi4TiARUMLOh0i55r5+ejZoWfIllWuyKNieWXvO3t9f/FShSXLWf0ZMgjo0sH6+aMISYqUFK10KR61qn/Zdb/mvXiwTo2g62x+mLOlEV6FE/+miW34NwBY3K0LoGhNlcGaE9IEiJJystacpptsyjyg3foHtIcZvcPVHF2wNqx1vMI0N6I5khJLBrCUeOnvP+drAVgieTvxaJFwmS27de8p9A5aHN/2mwlLkNqDJ6/QvOtYcByHHcsn2lQdlNeZDGApHx//SQBLefeBfUfPY8TUJSiQJyuWz/k5UXQ0KXV/b+cqAbDmLtmKP9bsQv8uTdGlTXwS9Jbdx+Hmvaf4fdpAlCvJOGPEutcuGIVC+awJXII/hqJKs4HgBXMYplSxQSmAJV8EDehrxOmzKly4aH6pjHjXEimNLHckcsJqCF5pFN0C9d3LcPiNAVbGXIUR3T8+ELfw401MCmYpWt1dfTE6ZTHTNYKuqfBgvWSBk48HpUpJbej7M1gbyriupniWRluXXPB9sR7BPGNsP/HqRwTsYi9C2kmkHUW7FhUJ3YAW8HNlZOFQCSg92Yga/n/hdswHS9Etm46iylNzFBifIz+iBjKeDUXOEk/ijXDqVROHXQ4DKtbvUhMNoMioy5PV4A2SiLTGPNKUVDbhbeK/D+ei2L3ckqYmSuvj38vIIBWuzmDX1nsKKDLU7KeBQaexMYwthGZ6lkErF9ukHXrZ4jNqxCLEps+K1gGHrCLmqN72zz5gcqWBeHmEwwsJ8JS2HI8sdeP3j3twwxTuL9pTrS8WeJlVDmtU4+HmBmzawj6MeXPzaNlcmZ/k9+twxEu0e8dSmdK/yoAaR2ug/U9GZM0iYNmnuxgtAWBz38+DsufLmtK1lKRs3V/D4f1N1tY51Y7gTPanaJ4iO+Z42Vc7erGfw6tjrBxFF1GUkRI7dYbDQUl0UunSPGpVk0Qn3VBh2w42BpIy2fzt4w1MC75iasbqP9tBL0lJIiD00zMO91axdqfM8AlFbjfAS1cnFOjBOIqcIpzQagub+Db5OAulI3ZbuhfTqi8M5evh/moO7yWplOIiK/SZCjclyoPO6QQUlKTwTJqmRnS0Co0+/oayESzVebd7L/g5slRnUmStVMl6caPEx3/nOVFRKkyezu4PEUSPHWEAJ1mPBwapMG9hwilMStooryelp4D+vRJZeAgCHHvXtOKwipi7G9CxdGG6dlgYMH02A8ecnYFhgxhgojm9zyRlL5qgd0LktI2ALnFiJsdedH3WzghKYbahaCr3AaW9U/q7aIaKDRDTgqWqKfHZ55zz4a4K91ZIbqAgoLSmH1ST7X9LFANYsrSeyo364GpO9v0S2zt9cyNkCfK0NP+cE9BvtAF21hif003FZabN0lgpbJre7VV5lI0D6bWHNkG77U9LfbFVGiO2KUsXFA/II4Ej5u0FNFrI06ilDZO/DxU3WnKiHEC29Q69ek2F7X/Z30j4nOt+zTL0nqaoQNGSkqZOZb53AEt9Zr/p/aKivHmJmaJ7fxwIcN8XyfjXvLd/V12aw1uh2/q7pfpLHg2xQW8dSUsH0/sI6No5GcD6u+7D31Hv1wCwaJ1L691smdPhrxWT7DaThM9IAI0COiiww/I9lqQODuvVCm2bxY/us1VpMoClfET83wNY5CpSEiBFgfFDOqJJHcZtotyN/44zlQBY74M/oWbroeB53gRSFS9kJs8WBAHzl28HRbcRad22pROsVN1EBUNSTvhj5hCk9TbLaFFa4oCxC3Dqwk2TUgMpNkhNKYD1yySNVJUeI4YZIPAqzJnHgRZJE/zrwVFgkTKRM7ZASGE7nUF+t7jXT6GfyFIG+bSZEDWGqUKJ58/+eB2zgq9aig90K4hBHubUqbBXKtyYxyZ4TqmBQgOtd4QnB1/Cgo8sVWWkRzH0dPNFumfWaatnH3TEK8luZ/oqPDImsNspcmycSLEVMRyTLysyxIhROIn1YY8sbf7F7xr6nTerORHAR0Df5xjn/xIYPwKnXBgZrdYFKB4X8SCPNiEer6JDjVKsy+5l67zZjWsxQZbje33qoaCOLVbEA+GvgOvz2KLSyQco1M/s84kfLmLRJ3M/yUalLI4ednia5ClEUf2no3/KcGwMZ36jOmo8eo2tr4FP7UfC/7wKj7ey++1VSEDOVvEnOdzbZ9CPZ1ER7zQZMT2VOTqnWWOjCcCS7n6nTyegaydlkyW5AyllklInRUv9LjXq7q9n4rhK5SVAzpFV4FYBFL9SAtmzCWgrifixd2PuLlcj+B4DJafWOojLmV+gjlMm/OHNPtzy8gReEYglmjxFLqHxt+8Qh7NnWdnqVXn8IInekoMWDg4CRg5T5r/pwVcw9+MNOEVrsXKZhLSbE1BmihHhr4Hrv0nGVyojyjyuinCdBukHtLBqdqdVjFS644cRyBttTk0ki+4+DsaCZXDjNzXCXjP/5e9hhEtmATGfgEuT2HXUDgJKjjf3Qcq9VDN0KaqGsZSxh75tsfh9B8t1CBzq3YNHKi9l4GBCfv9axx49VmHVWvacEC8Q8QNJzVbk1NiRBnvBPHabJl+IE2hL4G1Cpgp5D8fhZlEFkzm5IGJWfBVBCmybMJXdI60WGD1c0o/YGDgObWaV2hPTuh8M5RJWwlVFhsNxYEPL5QUHR0T+mnAEuXiy5tRe6NYy9URDmZqI+YmB5V/rHsrruT5XjfA3bBynjvFDXp/NiB4y1+4llQJYDvNHQn3bHBX5wdEB2fpac1Hm16XEzZgPGLezDvJKUn4v6IGGHY3InEl51M3X8A/hCWMnxA8tLluaN21QkGm3L4H2oIR7skFHGGq2ind5x2EtoPrEwLrIKeshuHvh8RMVVq6xHYFVpJCAhvWVve/s9ffWbRU2Sb5l+fLyaNHU+h3y4KEKayQbdEqera/hX6V13FmiRshDNibzdjLCPafysfA9A1jaXSug3cuoH0SfxNb+EbH1rMUmlPor+TxAc+k4dEsZ+fYNfXms8mDR8qKPFG2ExJ2cHIH1fYysrwFgjZmxDFv3nMCIvm3QprFERVbWxWNnrqL3iLkmtcPNf/xiOUpr5XnLtqGwbw6s+i3x1EGxYDKApXwMJQNYAELDIlCmfi+LvKVy9/27zlQCYFGPjpy8Ykr5I/K5fLkywyulGygU8m3AexB5++p5I0yotNxm/r4Ryzfsg1arQWHf7NBptbh+57HJv/Rwk3Sok4QIm8orAbA+hvGYNNV6Ajc+LlXs/EUOe/ZxmP62MjhJslzEggOKd6VUoSGmxYfFnFzwYOB2nD3HoZkk8mnSh0tY+IkBUCM8iqKXW35TMUMUcGEsm8iq1OYIKKkt+HgTkyURXD1cfdHLzRe+LxnXhTvngL8u/oiAC5LopUQ4pNTnD8FhxXRcdPoNHzXm9pDl6WjETp+7VrxIDe4/x4odp0zHBY5D5Pz9dtM+Ehrd6lsXEPH7Flx2ZrvuKTIKKBAX8UCKjJcmqSEYk85LUfn1DtyPZZwnR3waILcufjrrxycq3F7MxoVrVgG+cbw08z/ewJS46BrqR09XX4yMi5aT98th0RiobzDAYVLf3pjpaE2QWsD/A/avPQj3Kg0Q0qgH3t+xjkJwzSbAt2v8hQQRrVKKomjhnBvGpt5h+rdzRyNcUwCzJQS6bm4CBvX7vAXJ3ZgPqPqGLX49gt3ReFdTjBhmhN5BgHz8FrtaDAVvFjLxXxEPVmJGviafizau3l7cSv8G5fQ+2JCmut3i/mc5PNkh4X4qw4PSCJXYlu0cbkiivpo05FGwgHXZiVM0iMuKNVVJ/iM/JmaUPkhphOmC3fHrBrZQdvAwp7wawoEL46UcawIqhdeBKjoSHkNbWz037da2h8ZoPndAYBekMzDwM2rYfPCZc+HiBA1iJdmoRUcY4RDXzrMj1RAkEYsUAUYpsYePqnDilHmMVwzbgLqhjNjZULkxpr3pjeCP7J5kycyjgyzyMzE//J3HT51R4+Bh1r5CBXk0tnHvp89SIyycnaf0HkrbfuUqhx272DgrXJBHo0TGGff0LvTT+1qqkZNnS+uX8xCJ3yDxHO2WRdAeYeAXpSFSOqIte/9ehXfvVEDASxTdyDg7KXWQUgiVmPriETgsY2TxhmIVEdNppJKin31O8H0V7i6zjr4qFd4B+kKZENOFSYzLL6AYwPpzPNRXzGnQ80rmxZiKjFvPW3DGsFSFMSjoFIbvqY4iL1ia52UHoFB1AeV+SPw99tmdt1FQFFiQH5KOc93qWdCcYeIZMW0GwPADS0EWy9JGB214iCbSIJB4DZGo27I8uXm0+syIXbG+K9c5KzoGWxx0b96q8PufkpRRbwG9un9bXyd03yiClSJZRfPtboRrlsS/AeL53yWAxfPQrZgGzUXGW0ntFVQqU9SVsUzNrzmU/+/qIt5D2rwU7bk2L+Z5mYWppObkKIC4FJVYMoClxEt//zlfCmCFR0ShYpN+MBp5+G2ba5U1JG89EbxXbzkIb999MAFYtNZ9+PQVmnUxpw6SQmGm9Lb5d215IhnAUj4+kgGsOF8RhxMBNqd3zlfuvX/ZmUoBLOrWnQfPsHj1Lly+8QBh4RHw8nQ3pQx2/6m+TW4s0RXEc7Vm6yHcf/zC9PCnS5sKtSuXRIeWteCgY6pB4vlKAKy373grlRxSGSO1MdF+XxCLgbfYhNCo0iJ6oSSdTsF9kqdxDE1zCLxKY0VwPer9OSwPvWepbXzKkujkmsfyPy12adErmnSBSr9JSaPp/9YuOdHdNR/Kv2ZpQVm0rvjzYFME32MLsVw/8fD0tb/gJx4U4kO5ox+KNzqmnpWlPo83xQJQ/62ZS4Msc0g4ri42AyhkkVM3QHCLH92UmMs0fjsRtO0x7jiaCcnJUhUSkEMShfR0J2fFE6U0CqvMq614bmBS6qfTNUFmCu+SWfBdDndXMD955OaRp4PZT2tD72NoHEE3/d/KJQdmetqWttetmgnN2QOmcut9s6BnnTJWV0r/MQx+K/fDMzIa+uadEVy5BUJfAjck0V+O3gIKD7IxyREEOPVk4A5NqYekOWoCP8RFemIL48TuhXj8tSEcJV4xTgenCGe03dnKEinyc9AZrA5jKaylL5RB3nt5TcX79Ew8cufGfDXCJITpIxrvxMPUgSis88JuH/uRJu+uqPBoI1v8pCoiIEcLZRNCInAnInfR2rbhkV2m7rlsFYdnz9g5tKCjhV1iJvrD95UPxu5i7w+XTALyxykznhtpnQpbzmMQHJ5fQc7eTRDozNLDWm5uBedIM4Hu2IDGcOEZAEpkzLyLJ86OkERqcGaAm6KmyK7/qkE403dA/t5GuGQQIOX+i08OXx03Sw8DkaRLTWn/E/PP1zhOkR0U4SEaqWES95vcFi9V47UkOq1TByMyZVC+AKX6jvqp4CdRyaxY3ojKFROuQ33lBBz+nGBpjiF/ScT0tC2JPWm6GtFRrC9y8QNV4Bvox7SzEoSgFG1K1Zbb9p0crl7nkDX6Onp+6G85TMIjROKuxEi5kDhxRDMWKI3oL1BgVnJN+TvAO/YECkSOhb20OLFOpQAWcUURZxTdtQI9GuKVKyOlHuZcHKVdUqGh/170P1QZZYn4Ks6u64AUeXj81Drx515JP5WeIydAF8vRO4reVWQOC0dDfZOJa4gRmfJryFXRogbMAJ+zEM5d4LBXEsEqLZc5M4+OXwhYy+svXZJHrRrWfpTzcDk7Cxhm63un1HFf+bzrv6kRLnl/FOhjQIr4tJl2r/rdAVixMaZnW337olWbBY3WxHfFK1TY/spu/k9Vpwp6C8fRTPgomPPGpNQsUlLaWflmhT1HJANY38cQ+VIAa9NfxzBu9ko0qlUOE4clLnQlErWL3NDdh83CyfM3TaqFGdMlDF4Rt9aGRWMsjhMBrMwZ0sDDLf66h050d02B+ZNZuuuW3ccxduZy0/lpU9tfz80d3xs+aby+j5v0FVqRDGDFObFMvV4g1PX6Eds7pl/B18lV2PCAEgDr4VMefy6VpKGkAXp2Zekbr+8EI8c8FuUSxrnjfp+tihaxYpP0I1qDCw60tHBSqvUI1qSBVNVs8PvTWB/KeJVmeJYxgVCi3VigRtgLtsDJ19UIt2xsAbUr/Bm6B/pZzqfUq65u+UwqhKIVcUiFSZvrW6ca9TSCFtX2TJRhf6Zrg0d6lspEMtLp6xsSJHIXo0OSOjgp2uDFKTc8dWATAHmqI6VGXZ5qHYWVo7kRqRJRoCv8ciPeGSMtTbqSvjlSa5jilHgg8KoKDzfYTuPbG/EcXd4ds9RBBO5E5G7LRDl6v0xp0KR5JfASPgm3WB5Hl+1C1hBz6IxT1yF4X6Q6okJUJp4v0dROQMmxtkmEnQY2AiJZ6M0Y7x2IULth7CgzZ8uUGRpEsu5i6EADUthWo0/wNn3iY5DnxTrLOdpYDQYcaId+vc1gUa/A49gR/tRyvMKpisj+xMxX16CuEUVtqChKL3httgYRjJoMg5pvxQvPYGTXuuF4OsYJJW+kWNLHAAAgAElEQVSkXLEspQ1+OHsdW/C7BgESguQeXQ1IK6NDkytklSvLo1qVxBey/QJPYkv4Y5S/nx19jla0NMEzP49ccUqHV2eqERnInuliWZbA/fpalOxcFw88WYpyo7+aIGWIB3JkM6LrqaoWEIOe2siFBxEZxIHqEk2M8hL/l3O4ED+WYy5gmqRMwUg//BTCUhyMhcqaFjOUokepeqJR9Fn/3kaobQdtJPVR/6LzificCNBF69jOdprXxq1q3JYAXY0aGFG4YNIArG071bgmIXJWMqblPCix5eoitnV8HhRqv5yHcdAAI9xcrNtIXIrEqSiaoVgFxHRiCnTi7+I9i3dPi5RDdBc2mU3I+fG4G3MXQXS/aV90vxIq/PGhCreXWA+qUmHtkYJ/jtjGXRFbTRLFLKtIMYC1YR40x//Cwaxp0aIZe1+rjRxuZ2mJGMGIAi83ovuxcqhyL5flKrd0wDtnc/qwCAr/bY6QVPzkqQorVsd/0NJI5igO0/tC/TRxlUmH38dCfZ2pjNI4MBYph8NHOZw4ZZvjiN6F9E78Ejt+gsMRv4SFMIiijWgcpDZudNLTfL+knQmVvTpLjUiKaIwz2kyiTSWl9l0BWJHhcPh1CNQSMQPqB/HqRfeZAj6redMp2b7QA0YjnHqzKDYjOAxLQ5yuUk1q8zWIskRvTYto8+LJANYX3pOvVPxLAaymXcbi7sPnWL9wNArkTVwMLPB9CKo0Hwi9gw5+W+ei48BpuHn3iaLecJwKN48ut5wrAlgJFfb0cDXxSYsmAliJXXDXqikgmp//iiUDWJTG5h+Eai0HQz4o/is3+XvuhxIA68ZtAWskUQbZs/JoG7fApL6pAl7B8RfGBfNe7YPfc6zBgCSkYhnG9IFrIIuumpdyAZ475DVFC1DUAJkcAJifqjwaObNdYLlKW7bGRqQuySZRp6LeooW/OdKH7Ad9GnRyzYcOEuLtqo7p0WdpDcRI0oKKUApYSvuTMX2c9HiApgJuOrEdefdcAvJ2NEKekrdzw2GUf25GIqK7joWxsH0Cbntjh9Lu7jysjABtVcsp2Zsa4V3cup2Pt3MIkMhvE9F64cFGqBLgHCUQhsAY0e5kbAU3Lv7sIV5qWkkeWePkjs9G+aOpP0vbKKlPjW1pWHSatF+a/evx8PRWVP+pJiJ0Ep4bcNh16jlKnj5hOd15yBQEZSsGngfO/kwLFzbZKTXZmpxaLOQ4th1U795Y6pjmtRJRKTNgSFwU4YLf1QiQTL57djMiTWrlk29pX9I/XQFBMv8ad7wjOrczj9+2747gSARTZqx6rCoyvcxsOlakMI+G9RIGfa5MUyNKAkb0ab0J/m6fkEbtiMsZrDmhpG0KeaTCHUn6iVt2Afm6KIvAkqeWDR1kRApna9/cuqPCpi1sEZktK492kveDvTHc9d0x7Il4jgZXC+DHcyUsp6Uty4OiF8nk3Cr5fI8i7ZkJqNmmOs6nT2UpU+dAHaQJSIsOdd4i3xJG6P6J84RmwQZ8fKTCbYkPKL2F0lxEe7aHs1LuJM67QC+AInUs7wuXC2j4gKmXGXMVMkmnh4dpME3Gn02RRxSB9E9aTAwwUcIbRW0Z9bMBOhtiWQcOq3D6DLuHVSoJqFAuae1fsZrDk6fMXzQGaCwkZPK0v5j6HWCoFV+JiuqYt5BDYBCrv18vIzw9rccipSLTu1E0U5r25PWAG+MmpGNiZN0PYVvRMJRFfSeFiF2eAmPMmjdBHqovHQvy6Cuv2NMoFGkG52I6joChuH0ePKUAFpGdE+l5i6YVcTAboyko+SEHthUxR9DmfL4GzU4VQ50bvpYu3dMBz7QwpbWlTgJw8aU+uXlbhc0S/iixPhcXwfJ+l7//o8YuA58mQ7xLE0k3iQGIFtO6Pwzl6mDnbg6Xr9j+YHq4CUma59jqr/zZq1FNQNnS8Z+9KTPUiIxkHxdKq6L0qu/BaKMsOpi1regwIxwSmDPJ2/y9AFiq4EA4zB0KLuCVVRN5dy9E95sOwca4+R78/29tg+OQplCFMQXwcd5bEaq2fldT3wb2M8JdAS1BMoD1bx0Jye3+N3rg/x7AIpLxQeMW4cS566YUOSIuT7Zv5wElANaZCzx2JKCAwz1/AP3UXpZGv9ZmwxyvJaYoDIrGSMgoNH7zVg6Vro2Gb/Rpy6krPMbhlr48vL2B3t3NO5wd3x3BAQkAsMS7Mmo5MR6OV4c5vDjEJpo+5XlkrsOufzPmPWq+2WW5hq82JTq65TEp5onWzDk7ms+soAgYMZXhjXDsXRsqgUcYlw3nUjDyeVGVT4w0Ea8x/tgV9Llg3hEmqXeSfE+q6Sd0weWQwfioyWcpKo84M9VPBNVT1ADPJpc5WhqRKgGJ68zPVyFWYH57mqktdDYQr9d+HJ7vs+3vezHBqPJmp6VtObXuOJaOkSVL+/v2zE7UcnuDQGdHKzcsSVUJjX6bZiXr7jJxMd55ZQWR98pTRosNN4LSJOWmn9YH3DMGjs73nAdD5nwWZZvV69QgAmrR2rQ0IlcSCGil18v5dB3CVQz8m3jjR3SobwblGvvvw3mJumOtg7Xh4+9jOkYk70T2npBdnKhBLMvsRNd26xDsFAFnlQYPMlmLM0jrobRDWvyKliKDgAJxUWEJXc8WQbKtXX+K8KFIH9GUErn/FHAYRyNfocOp0qh9k43jTLV4pKtoHn9E1C/lo8tW5D6y+HWPt8AWwcCJP9204lR6qcmF8KELoPcHHklANhr/9ByI5n+Ow5PtbCxTlOIVlYDbd9lvjfPfQpmDfSxl+Iw5EDV8IZwc1Dh0RI0DR9kzQ5F9/foom3Qn9dlXer6UgJ7KeKYULNGA8jouXOKwe6+Ev6qQgEZJJKeWR3uJ4gUJtddBwrlE50W3HwpjSduErcQBRFxAonXrbEQ6H9nzzvPQj/rRKpo3tm5bxNb5yaoZonJd7U9LUDmcETTH1G8PQ602ilzMvXgI/ZSebDxkyIaoEUxVS1ElCk+S8w1SsRJhXeDKm7ne7KVKitUrBrD2rIb/8S2m9EFpJMSMkLpoXcic+lDv7W7kPJkJTS4zfqyHWuCxDqbNJlspqgq7meTTzpzjQBGgtkx8VxFJP5H1ixYxcxvgHD81RATvxPNiGnaEoUYrrN3A4f4D29dw1APDh35ZBNZfezhcuszqr1uHR4mi8edNcxeoQdxtovXqbkBq7yS77G8pIOcXJDEZG6wDdq/9PQBYqjfPoJ87FMSbKTU+dXpEDZgVDwT/Wxz5f1ap48RuUL1mkTJzPBfjg1sOuKQA3kkir3t0MyKtgk3FZADr/2wAJXf3H/XAfxLAmrGQkWLb866R5xEQ+AGXrt/HhxDzqmzepH6oXJZNiv7RO/N/cnElANZhPwEHD7MJlpyjgXtwDfo5Qywee6LNj4Vev0GrAQb2N8LZyfYuIZFD79qnMvGaNAmZjdKRDFza5toPZ5zNgMfwIUY4OgpoHXAQxyNZJM3a1NVQ0ZHtEgddVeGBJKVNnir1whiK0i+3WtqZQZMC7VxzY+KHS5bfemsKosK84pb/1Xqg5Dj7E1TO/wX048w52jy0OOp6kI0clZlnZ2nYHYz9YFZ2Imt65yn+3GVOVYit2gyxTZgCo9Jh59inNk7q1yOGY/nWRHxNqVFyk4MACUVhGQUeGZ+vsqridWZGciw98PwAh9dH2bigqBVKYyQLMESgyKtNltNTqR1xzUaUUIgxGnWebcYztbWPx3oUN6V3kkIZKZWJ5jp/EwI0HiYAS55SR6AMgTNy0y0cBc3N85afl3lMBAqXRstm5rYSOHvlGlsY1K9jRLFE0izt3aeCj7YgSMPSFac8bYa2lcw8MtXe/IU7MUzlqsGehvB6z/Lh5Zw+8mucH62BkWFjaNdpFSJ05h9eZmoHzk7uDqV2UIqHaHb5wmQXDA0FZsyRqAA6AT8Ptv0sTJqmRnQ08yGlTRJgkpBRhB5F6g08UBmln7BIyuwtjPCOS6eUg9LpirxHHr+m6F6nNDb6sjLlTpdHyfc5MLj8cTgsZml+tx3K4nH98chlBF5K3mFyJUZS0KJoL9FInXBHsAqk0Cda30ZPkXFhR8v/Qqq0iBy/ygRgOel0GDI2FuER7Py8uXm0/EKC5wQdmMjBs+c57DvAnk9b6mZiFXKVsyyZBXRom7QIrF8makyRkaKNHmEwfQMSMjm4LPIO2SqzfJUaTyVE0e3bGpE1c/wxRhGdup3L2H1y9QDxoIlS91JgtnnINJSIlBB8/zgQhrK2I0XlbeICXoKib0XjvdMjahxLRfiSeycvKxdw8BQuoXAo++ZGTlgFwct+aoJiAOvwFkwOOo9fSzFA2T3EHX7pG5lAdrJ+QSdhOJkCbc6x7+QTDfDAAciXT0ALifDK1/SBrboSSu+jdxVFKMk5ECMXHbLZLO2BDdDuYBQWsdWaI7ZxF/yxTI1Xr+KnNYmVKOXnsecLIognonjRmjQyomD++ON62Uq1SRVVNFL4JDXC78Hk36aS4w1QK0j5Etv+TwNY3JM7oPRjEgiRmjFLHlPaIBwZF9z34O//ShukqqfUp6Uek4BCpRARocJzCR2I0rGeDGD9V0ZGcj/+DR74TwJY+SraXvAmdEPaN6+JIT0lctr/hrv3H2ijEgDrr708SM1KtGqVrdWG5GkbdxxKYVnKKabTbSnqUBj8X7tVVtEN1UJXoEYYU386lKItDriY0xKbNzHCN5+ARv57cSGKEfJQShqlpokW9kqFG/NYO51SA4UGshVoKB+L3C/YbrsLp8VPKXJZKRuON5RBnj8Zx4HeS0CRBBRQ1NdOWS2YT7rvQDTPuHmKDDbiuou/KfpGtBzvP+HCEjNYZ4+jJaGhpQoJgm54WxyTgWVlptpecEYHA5enW0dh5WxthJcNjpswIRa5njMfJRTdIyeJz1KPR9ofzCtYQRCQ/rm1mpccCCM+lSb++3ElmnGfUdm2T4IwpfJgUz1ycn+3dX7w/xRrArAoJYxSw0TL056HR574O9e6lTOgOceAxY1uQ6GpVMNClHvkmArHT7Jx8yXpXyXv/YVXegZSzQhqgNbFzAqOpV9twQsDA7e6Hm8K43N3S/ttEaRLx8EZSpmU5Ce26rYMBs7c37sZW8OVs5EbZorCU5kUKUXTuQooNjJxcILSKim9UjRKDbKnfCUne2/R1Ih8eRNeXNV5swvXYt5j4vZ6yOXPnmNKb6Q0R7LAyyo83CThWStgRKFTVTG8ShH8XowJOJS4XAL1wn3RNeN26DaylLAzTvVxNmd/VEsJvLskURZtzCNNSTZWot6rcIWekTjjnIC9kjUrkSb/3PkdHH9m3yjB2RWRM7eaACz3FDqcOGfAqvXWfSZFQlIm/CdMJCoXr129qoAfyti+75SaRyl6onm4CxjQN/ExIp4fEanC1BkSkNRRMG08JGbkT9VHBlCTAiApAdqydRs53LvP2timFY9cOWz4NuwTHIc1g0qCpkV3GQ1jkfKmasPCVJg+29zWTu9/Rp4YBm5H9ZwAPn+pxJptOs59eAf9SBatJbh7moGyr2yhL4CbC6yRQGn0FV0ugtRsEyBdUwpg4eQu+Hq9QbBErbjyxR+wupmZq49sbsh13DgZjU6nmNjGCw1wxwFIkULA0IGJ3/ev5SJSvST1S1vWu4cRqbWBcBzeynJYIDBzGttYkZbTnNwD3bpfLT8ZytREzE+D8Os8NT5I0uPk1xJVZj+3T0rH9cYtaty+w15KpNCcP9/3AWDJv02lpxgSpCmQ++qfBLCI90y3ZCJUhlirZhnzFTdxHEJr+7v6ufc7uRzzgDxtd6vrALg2rIvnL4F7EiGlVs145LExt5P7MhnASh5dyR74dh74TwJY7fqZwYuETKVSwdlJD2L6r1mxBPLnYbvpiZVNPv71PKAEwFq3WcC162yS2KAuj6JFJOkyF47AYTmTE7+qr4S1HoyHpEdXI9KmMU+0Hj7msG2HCuESyXb6vVTELjT9yIhkzjvWxmZ38w6zyA9U8+0u3Ixmi529PvVQUMcikAxRwIWxbKKvUpsjoKSW7tkKq/9bpciO9WHmNAyy+Z+qI/ValpbomlWAbzf7E3L5bv/FtKvxMZzJ7+RuT2TQscj+Yo3VdV/P2gAngxGfw5vCPboFw5xfcS4F6wtxdBFXlz17tFlttYCnKJxCA+MT7gYZI1HwJVOC8VTrcSODbWCZgAUCGESTc3ARV0q4wADEexlbwyUOZCGAq3PgMeyPeGHV5GqPX2PdqSeIGbsUCP8Ep8FN2HG9I9xXHcLbD5EmAIsI5IlIXjQ555n4u3br79AeZpF3u126Qd+4OcqUMo/hi5c57NrDxjeNbRrjn2M/3NyPpy7+lqLTI2uhTR4zOJPvxXqE8NGWY1PutMKjS2xnt1JFAZXs8CbxBuDcSDa2eRWPFt1ZlMmF9M2QTmN7l9gYDZwfw8rSzjjtkCdmjx5zWLWW+SVrFh7tf7Ltl0NHVTh5igEYxOFCXC4JmcgNt2BNC3iHspQeKQGwPHWKIqOKv2yBmXlTY8oPBS3VF7xZCJ35ImgpLDEpgoq2P0UHHHZpi6beAsKeSsDOjkZ45GLto4zZsyOsAcKDTizztlBBHo1rRcGpXx1L3SSnTgTxIoAVEW3E9N+MVtEaXp48+vb6vLGU2P1J7Lic2y0hgJQizSZMtgZJkhJZQql9lOInGqV7UNpHgmak9OuaVqqBCQExm7dxuHmLjcemjY0o4Gt7jDksmwr1xSOWy/M5CiJq4EzT/9K2DgjsgnQG9v6P+nk++EyMnDyh9hN3C3G4WMzJBRGztiV2W5J8XA7Uu2eJRrHrjPxYSOGGyBlbEqxXKYC14/pO9HJjKVRO0TxGXeuAdi3Ys7M7/BnWnXqF3hLhhddq4GacKCgBnwSAfgsjBdD7D20DWPSuyqZ9CMdJ3dk48MmMqNF/2mya+uopOPwhEWkoWAakWCiPLnXQCYiOYf5Qys9jzx9yFVd7Qgt79nE4f5H1lZQKKRr+nzb5t0mlBkpPTvz7Im33PwVgqc/sh271LKt3ELXLULoGYn4caIna/Kd9/F+9vnb3Smj3sLkxbVxn6NcWly+rTCqxosnXHPb8kQxg/VdHSnK/vkcP/CcBrO/R0cltsu0BJQDWkpUApZiIRmkxlB4jmubEbujWz7X8f92zLlbrBln+T5dOQMe2RhNXBYEFtqx1ztMocpypRUmjuMRogIqvt+NhLCN8JE4l4laSmpwXqegIIxwk5I/5XqxDiISgvKRDapyPZtJuq97Wh+MORizhWVBArtb2F2IOK6ZBff6wpQm38iyD/+sslv8z1+XhU45HuVfb8MTwyfL73rUHUfpVIHiPVIiazJTrlIxT9bmD+LT2JK47MaA4MWJuUxTWNOsFOim9keKb1F4awlDqFVsMpdc443x62+pWcuU2eX0lX23GKwPjHjmbvgkyasxAxej357EslClD0W/FXgfhrw2HoXd0QeT0zeDePod+PFN15FL7wHXeJguAFY94uxqP9FXjT+jlIOMx55Zw7tDZFNVHdvc+h/Ub2bjMkUPAT60+L4qg0sUjeJCKEbVPQWW0zWwGRNM/W2GSpxdt84e22L+b7e5myyqg3Y+2r2uIBC78wgCGSIdYtO3IItyO+DRAbp050suWnRlmDU6UmZb4AuPqdRW272SgBIEFBBrYMuKK2riZ+TBLJgEd2iXsQzEibcPvHaEWWNkS4wzQxC2G5ZFROjcBZZ0GYZlzOIZWYylMue/nxgiHMqj1fJpVtN0m1yG44FwbtVQChDD2DqPITIrQlNqVGWpEBbFzTjkCYXHNatbYiPy+Ahx7VoeK0NM4i/x1FxxdnU0RWARg3Xsci4WLrVXRalbjUab0t11okmrZuMkaE9Ar2oihRuj19oGFqTM1iJCkQA7qZwQpKiqxO/c4bNjE7iFFRlGEVEKmeh8Ax1GMu01wcTc99/Zs124OFyVk2vXq8ChugyuIyqspJWiGtZph5PiVEFL54P4DFdbGpZqPCWgKV55tikQQ4buHQpnrmGg49avLmqvRImIeU7RV4rfEzrEVfVWg4SN4r+piKcqnz4aokQlzbykFsBo+2oiLGpZG1ezqRzRNPQA/lGH3ktKgR526gcEHmIBIgBq4GvfMNm5gRKEkKlgm5gd7x/9YosarN7bT++hdVVhzGQ5zmfACn7MQKE3VlsmpEPjsvogaNAdjxlu/O71TCVb8PF9KXC/nduve2QAfG0GIfic4HJWoFSpVe/1c3yotJ984TIx2wVa9/wSARemilDYqt9h67RFbWxkPnlIfJZ9n2wOxB/fAbTuLerzgVBt5ZgzAwSMczp5l3xMlfLp0hWQAK3mkJXvg23kgGcD6dr5OvpINDygBsOYuAl6/ZpPEzh2MyCjhGtIe3AjtdkZeHlyyKSa9YKTudFniQpHyyYhNSeXFo3lTAWkj78uI4HNgjtcflhYP7GtEjbBNVoDIufRNQTxWUruxQI0wSe68nNi8zKuteG5gTNip1Y4IMLIJ+9YnzcAfYCmAlBJHqXFSe/1GhZAQmFKk9FN6gXvxwHL4ccWVeHqFRXClKc0ja0M+noLilCOX0P3SfROgQVEcSdEep10r/0PhuK/va7lu6hICsiXCPSJXabQVhfUwNgQVX++w1Jtd64bj6WyTzMsjA/J2NsI9B1vw2ouY++PjbYwLvmjl0yzBoTi6cj/co2PMPll0CPIFhTqnL1wm/m4BsN4c5/BMQjwt+lo+zOWpIRTd5z5gIDLEjWG6n4sl/EcULUhRg59jVU+ewt0MLKJjomM5dEidDZG8wSoKj56mK84dMH+RhPxcJ4B4sGyZPA0wzDkKHdqyncudaWujmIN9Rt/P4Sg5fVaNA4fYc08RazWr2wYlQj6qMHuuJE1RJ2CUnb6I/Sv0ciOiwngsWyEh2FYJkKbCCsa4yCjLHrmA8gVnY+f7W+haz6yKRpblWRb85l4JpU8MhfruZcvvS1JOxT1dSdSIEKCS7LOXnGiAWmvt6TtL1Qh5wPp7xQF4F7d2FcEfx6HNoAoNsRSklDHH1N4WACskLAZyUmadFujfN7564+eML6Vl5BFRUlU2e3XQM0DPgmidOhiRyQannK3y5y9w2LOfLThKFudRp1bCABZFkupnDbBUJ5Li22sfjUUak6LRWBSjKG2VIW5C4igUzVC+HmJa9cXlqxx27uIozxkz/CtLRhbwZOwhpE2j1MuAUw9rwvkIO/xKymuUjcllaoTcZ/eENioKFPUDkd+LZvQtgehekxK8hBIA635MMCpLhDeowq3LHiFdl0mWdyX9Fi0Y0fD0UYzexbjCgtQCLunN7VSiqPq5/pCXmzNXjWCJYrD0OEUoleOOQLdsMhsDRcojpstom5cnMmkilRaNT5sZ7wYswcw5bMy5ugjwcAeev5Q8J+2NyJRRGdBr68JzF3B4/16irmmHP5CUEEkRUTRb9Axfy69JqcckFDOJgXw6FwHFRiXt+/lNASzeCN2K6dBcPGrVTYqojWk/DMYSVZLS/eRzv8ADL/ecR67dbOP6mVsJeE+dhBOn1Dh8lD1jP5Q1onqVxJ+xZADrC25GctFkDyTRA8kAVhIdlnz61/WAEgBr8kwgJERC0CyTL9f+tQLafYw3iVSf1se0A5G0J2RlyxhRo6r5o0TyxY4jmHx6uM4LYz3ZbnyDejw6eq5DEB9lqfJ6xpbw4uK2feN+lYM08rSy2m924XoM23GXt2/PjTaIOM3U8ERFNOLt2rlLhafPVRYpa9p5zTy5LlTRrE2v223D3e0sEsYth4B8nY1Y/OkWxkvI4lvdeoKFe86aLh85eR0Ej1SKbyylxzy+kRMvHJpbymSsyYOIqROyyCDg6kzrKKzcbXkQ2b1ot2I+oMabvyz/F9B5Yp9PPZvVymXd8/cywkUykW8dcADHI99ayq5NUx1hfAy6vfOzqs+D0+HI4u3I8kECDMzeAfXti9AtZQszbYnycB482QJgUfogpRGK5unLI5eNFDd5asgth7LwGj8Orq7msSflxKH/ie9o2KCkTcDFNlTbfwF3ct+xtOkX95Lo4p7HNG4LvmC7vSk5B9zM2AoTp6oRI0lHId4W2uGXW2SQClclHEMf3cLRuTVLlVuXujoqONrmDqK6Lk1UIyaUPcPFRhqgc014yFHEJKl8iWZP3l08Lpd57yd7T8ivlvv5GngEuWDWJpYmqveIRZGfrSMq5G0vUX43Lt1ejybNK1mq9Hnjgw1paiLfmk7g3j6z/D7TaymCNVlRSRJZpHEESvwSPwLtyQ4O/pJd37s64LkWyJBeQJeO5vGgH9se3LvXlvqjxiyBPnNWKwCLCGjnzOdM4hSimVIQG3y7KCz5YjdnDh4/JhIRJefYadKQR8ECytosB5cS4tsSfaK5cBS65SyK1FigNKJ7MGBGPl78Tqhx1I/5NKGUWyqrObUXurVzLNUIWgdEztyC4+edQbx3KYzB+OVdY8vxcM4NV7tsM/E2KjXH/vWs3v+Rc3ZC0DspLZ7geWGvgRu/WUf/5O9lgMej7dBtXmgpa/ihNmLaMCDQVqVKAKyhQWewNoxtxlR49hZzt/sj1VwWXS3W3eziMQzYwsC791ojLurM7+KE1C6/imMklYyfrIHBTjApLXprq3dYceKJIKatdhC3pBVflltKPOm/CYv+sE6Npe+GNG2xdQseuXMpHzPyaxMfG32DRCMOMeISkxvxvxFflmhKnumv7W9b9cmjZBOjM7BVxzcDsGJj4LBwFNT3rlo1Q9BoTXxXvG+Jb+Gy5GvEeeD0xieo5sdA44+uWaGdthgXLnLYLVG4VgqKJwNYyUMr2QPfzgP/dwDW24D3OH7uOgLfh8DDzQWli+ZFtsxMSe7buT75SuQBJQDWqPGwWmSLqoCiB3WbFkBzjEXtxDTpjpBSTTH7N7XNyWVKDwFNG/FIn14ySRPi0nPiKqUjQ9IctUQm5fflMYWsF+cAACAASURBVKroKoRJOJUeZGoDZ5V1GAUpjb08xCZ5PuV5ZK7DJpetAg7ghARUkY+C/WfbI/QaWzTkaG5EqqKCKTJBGqVD5fKmCkDHGxJSZ40WQSP24vqvrDypApI64JkofzTzZ2pXeQODcXqZOd0keshcExeWUnOY3he3/FshUFuOTWZbGeFVKPEdqgfr1Ai6zibLzj4CCvZjYM2lmHdo8IalwZRw8Mb2tLVtNo3AsEiJ1LGUu4gK9Ao8jh3hTy1l27vkxorQe1Z16aHGNp9aKDWmtzWZ84TVIHEA6UJNV60hnLoMtgBYROBOUWCiET9S/h7xgSfuwQ3o57CU1qdaX6T+jS1sqbw8TSQp/D/i9cPCVWhx5CquFbhmadNgj8IY4FbQFPVH0X+iZVS74GyGJli1hsOjJ2y8NqzP21xAh78Brs9l4yrYKwxdmzFAbLF3RdR1ymx3CMnvFYkL6G0AZdIKtu7gcP0Ga1tigMbqdRwePpJyFPEo4Gt/YUd8dIVepMfIPYzPxzWzEb49rMfxzflqhEoiHgrUuIVXp8ahStsaluaSmuOxLPWQfmJDIJIR5Y/x3gEt3FCaYcxw8gEK9Yu/6n1zggOlpYomElNXqSSgQrk4AEsWcUnPrkOe/FYAFpW/cInDbkl0IP3WrbMR6XwSf0aVvgcSOo843aTp2tR+6kdCduCwCqclYh3SfifWpk1b1LiVRIJpeeSuoWIDxLTobfdSZ89x2HeQ3Z9EedZiY2CKmIti6CXVvyOykWmBlDb2MQYFsRTlt5rMOFFzKSg1UanFi8ibtglEFP417M5yNULuSaKvsgrI180I7bY/oT3EiMhpwyi2jiSK0cbFEwOwSOCk8MuNiJR8X1dvP4FSrzRwmsUiocWqe986g9arzaT4ZB90sbigZd/iYYPtqw9/Dd9QHTGxwMQp9mUuCxfk0Vy93Ipjh/xE/rJphlg49WHfOnpabg05AhKoEC17Vh7OKWD1XiRgmgDqzzX5Jsbo4QZIXGmplpQQSRFRNB8fAd07f95Gy+e21Va5CH/gmlStViaeo+Ra3wTACv9kUhpUv3ho1STByQXRfaeCz5RTSVOTz/mKHli16BO632AbWAa9K2LmbDV9S+ibIlq+PDxaxKlGJ3T5ZADrK96c5KqSPZCIB/71ABYBUh0HTke96mXQo219EDm7PVu+YR/m/LkZRqP1x75RrXIYO6g9tBpr7pDk0fP3e0AJgDV0lPU9lS/udatmQnP2gKWxRH5JUuTyMGA6gVJLqlfjbcqryxcD47y3IlSd0lRvCmcBc5swiWv67UWmtlCrrKO8gq6q8EASlUPRRRRlJFq3QD8QCa09O3CwEz49Zv3N29EI91zmHVcijJVazuhL6PqBSZlTCkzEkIVWZNt0PinyhCIGeV4wrivi0QmYuR5aXkBMp1EmNUKlRn46b5yJME02SxF59JO9ukxRWKZIHtZHIppPmce8uD0R+QatAphiXzk9RbZUt1mdPDJGzjc28v25eICVtCJqwUrvqqjilB76CV3AvWH3hciUNddOg/irRNM37QB9804WAEs+cdZ7CigyNP6EPuLhc3jNZgvVIG0GOP3GCNCpfvku+OABRlC6SFLMP0CFHqdu40LRC5ZiXd3yYaxHcdyIDkKtt7stv+fVpcQhn/o4dkKNY5KoEntpIaHPVbi5kL0fP6QNRbeGjGx/hmcZtHaxPwEndU5S6RStQB8jUkgBZBsdlSsLJqaSePSYCn4SNUciGKY0HlsWI/DI8nwVKt3NiZ5+bCFMypikkCm1+2s5vJcAaTlrB8FwoAOKdm1gOS1FWArcztEIrv0ZGMarOAxNcwSpDUBhxp1vUqokxUq5fbjNgXjdRAvkgMuOQPcuRvikNY8F4tNR37tiOSe69yQ4FCkdD8CiE+Qk6pRm1KYlnyAPVVLGW0Ln0kKXFryitWrOI4+Et9BWWbmYQVJSlP5cpsZLyfU6dzQiYyLji9QiNX47LU2JbdQZsdVb2O0Wqc2R6pxoxYrwqJ+I2IJu8yJojjJidd4rLZYXWIO7dznkjLqIrsFDLfU90BXFnvwzTECjUnMc2QaqD0wZN3LCagheSchBtHMhW9FXYjq8btkUq/Qn8XubUJsTA7CWfbqL0R+YGqN3WCTuLtiGKOc0wMzV8aqe9PgaKv1RzPJ7qD4Gp9WMz0/JeFPqY3vnBYeoMOc3+3PGHNl5dFTNgfYEe+8SgElAqT1z7FcHqpgYy+GLXXZh425GU1AgPw9HPazI1GvX5FGqxOcDWEo3TyhVklImRXN3E0AE8v+00eYCbTKIliKDgAK9k9auvxvAogh/h9mDwAWxiHBqL+/uheiBs0zceMn2bT1gEg6ZpMY0/6pQgz0/JOTx6JlWsYCMtNXJANa3vYfJV/v/9sC/HsBasXE/ZizagEL5smPtApbLLL+te46cw9AJZqJRtZpDWm9PhIZF4GOomeS5ad0KGDe4w//3aPgHep8YgPX0dSwmTWcNs5VeRco9lKYlmhSQIV4c4sehkPgmDQVky2p/okf8E8RDIdp8nz/wTMhh+tfI8VjxIwMdtCoOzzLF30kNe6kCpbaJRkTNRNgs2rCgM1gjSZOQutyN02Ht5p8Q+Y4t/Ar2M8DZB7h0hcNfEv4JKlc2fBsafZpnqYK4E6I7/IxLk9WIkfByiJFJImm1WODg6gMo/iYIsU26IbaqRM0qoXEQGwOnvnVw1OUAeBVbMBQfbYDWmg7Mbi1yQEAahXUg4gU6vmPcENUdM2B5atucEOdGayDhw0fJcQYQgatoM0OuYU4Ii0aSN2iaZ2n86GJW/KIIKYqUEo12RNWXj0Nzep/lN32nQdDXaGQBsIgfnkj7RVNxAkpPiT9xfnsvGNnmsnTLSI0bhHnWql2/L1HjjYT/p1snI0h8ICn24CGHUZce4HRp9iy0TJEDs7zK4lTUW7TwZyBvSX1qbEtTC3KlP+KE69Mz/jMijzb7kPEjutVhKbYEkhFYZs9u/aG2Ambl3HC2yhE/1ztJhF3PbkakSW3fJ/IUF+LJI748W/aRj0beF+vR+FIhtLrIFsJpy/HIIgMlnu3m8OYkAy4y1jDCa3ddZOvLdm51sVo8c6sEx7Ht2BhyTY2RzhuQORbIzdakSFOGR1Yb6XxyQJSEUq94CaBoEtHiv+tGQle2ik0A68VLFZYst15gp/YW0KEtDyenpI2tpIxDOleeWkUcgu6JKMNR9BxF0YmWkOqkvD0z5qgRKklRVUIA77BojCnKUrSYDsNhKFHZbldv3lZh81apqACPpo0TIYoPfAP9mHZWKmNbcs7CudAiKBpxAK0+MvXcy/qq2OQ1EmNHJi5wIDZSzrMVNeZPEHfSl9q9lRw+3GH3QgoKxHtX9p4EY76EU58SA7DKvtqKZxJuyJ9P3cCw0zdhcHJHzKz4xPor/B8g5xwWNUyiEsc1LAKLAB0Cdv5Ok0ckqdWAUfK6IdC5H8ZCfeUkG2OdRsJQrKLdZumHtwIXEmQ5fqrpOuw4ndbyf+lSPHRaAcclQH3ligIq2lGPTaz/pGY4aaqEB9FBwEg7asK2Is4+J1I4sTYl9fjHxyrclqRZJqbcbKv+vxPAUr15Bv3coVB9Yuqa1AY+bSZE9ZsOuJk3SZPt23rg2XMVlq1UY2RAS3jwTEgpcsIqvIr2weKlSVS1TSZx/7Y3MPlq//ce+NcDWL1G/Aq/M9cwoGszdG7NJMaldzYiMhrVWw5G8MdQFPbNgdm/9IK3lzt4XsCW3X4YP2cVBEHApsW/IF+uL5/8/d+PqiQ4IDEA69aDGPy6gAE6xM9DPD1SM4VlS4iTKSpBnFDfucvh7n2gbk0BDgkoYFF9DvOGQ33nkqXqAwWm4FBgKdP/0bporGnJdoJdOR3uZmScWWIhY5QK58eyD59c0nlK8GXM/3jTpocya10wZ0lzGCJYf4uPNkKbQoCcf4UqaPRxDspGML6omPrtYajVBrf+4PDpMVt8ULQHRX10CzyG3eHPLdeeefACOl19CEPlxohp1kPRXVO9fAzt5CHwc2XXVWmA0pOUL7oi/VW4KiGmpQtTmiOlO+4Me4qeQcctbanvnAWLUtmODktM2W7pp7sYI9nVl3awu6svRqdkwIVu8ThorklA0M4joT53GOpbLCrAaeAk6EpVsABYVJ+8DaUmGMAxXM90ydu3geLzGV+LLeJ84hYhAEa0Vi145EkirwmRQ8+5+QzHyjMAsI5TJvzhXQn7I16gkwQYrOKUAau8qyAqSoXJ061BDltqccH0HK1g7QvOFoKu1RkIN9C9EAa5F7I7hu6u4hB8O/6YTGjQTZ+lBqVFijZ0UMJE5HIuMRJuGD3C9rj0N0ag6MtN6HSiDGreZgthEkwg4QSpvT3D4elO1nYi689xqT3SdGaRW3T+m9gicJzNUkUN/2PvK6CkOL6v7/TIGrALy+Lu7u6WIIEgwS2EJLgHJyS4B9eQkGDBLbi7u7vLIossy+pMd3/nzWxP1fQ48Av/fJl3Tk7YmbJ+Xd1Tdeu9e7Pmx8C4mciTICOLkV1Hli9kpHOw4ZSMwLEfbVOSwstKoNRJxQxLJtuAqgkte8JQo75DAIvqqFP56DMCKb9pKzvkufHoJeCmEIGOvDgAKQ/SnHJnLyIEzJjN/Kyov7qrR997GkXCt+U/tgsELp2HFN9I+c2ZEUC8hIuCzZ1LMke0uTP179O1pBXxW5IRqPpuGb6IYulx+4KaYVOyTvBGVc7uGgbMhJTFAsq/rzl6P+f/TkJwTsu1Ekiref7E2nzsj/Mgp8/msjtXANbhuHA05cB1ig6m6KvU0XGQDf6InbbRru19sY9hGJbZ5vNtQezPfyK9Ta0eS33yhxAUQfuj3BvCzfPWgcX1mgApd1GnvlIfou2tPgebr+SxliciaUErmxWVFXMVaepuDhDoS+CvYsSv1beX82d15BidjRjO4AEi/P3+t2C4u2t4c0PAld+ZP0JyS8jX3v1zybf7vwKwhBvn4Td7KDTxTKiH+hWz5jWnDeIj8dW585Hve3sPHDqsxY7dGnSL6IosRsYbSr8DL1MWtImuTB4so7cH0Ya+CCzfTPN54J/zwL8ewKrVsj8ePnmOhdMGoURhxwu3Rau2Y/ysZQhOGoSNi8YiNLkte/DwyQux8u+9aNmwOob0dM3l8M/dmv9GT+4ArKOnE/D7Irb5y5qFIghUANbEHtDeuWp1WPwPUyC62Ig486xh0UTojrL0tWsV+uG32xZOipiAWCxrwojiU2kDcDaj43STE8O1tiDUEBH6RMLu2ZGXMPo1A8n4sRTzC8OgqbbpBeXGWzbgFH1FUVi8dXrZBzkSGBlofIefIRatgNtrBTw7zspmqSshXUXJDJwRgKZY6wu3MGPrcXMdquuJUaRb/O/LcCJonrV4YBoZRXq736Dy7avVGmnBSQvPFdG30OcFA5KaBeXA5LAKdkNTA4Vag4zSI23HsC76Lrq9YGCY0ogC6vCN6hf/Av0RxhFGamG6I9sg3GekwkmGz4YubyEbAEsd7Va8vwi/UNsF/eEjAiosqY8AmXEjxUxaAwSx95BaOY4U1Cjd1Rvbu1/Akpvh2FaDRY1V9E+L5WlqYs27O+gRccDaXMOgrJiZCAzOmK3Fiwj2jLVpKSJnDttreHlBg+tL2UYnMt8bfFeZAVjfJ82HYaHOozBurhDwgpu/OVtICHNBVi3LwM8jbcGc4UNNbsUyx0/SIpoDgLt1MiGVA3HEe6a3KP9oLfpuq47Sd7Na/ULpg5RGyJs6tY/mafaIoSj2ZXq88Wdo5ZWXGZD2t/HWqqZilTBLNwyhN4E0IvNv7tYiQgs63vTtG6yFgSsb2FBCkTJsHujXzIV+F+Myo7Q3fb2WTgEs8uPaDbZcYjRAWpB/004CpQF9bDt3QYO169lccfTOdtSnOaVjDLvnggBzNJILVgBzMyTwQXyHihFwQCm47syOP2rUEsihqZ1Wu3tPgz8WcdeVWcY3X7vvR3v+CPzmsverBA1GplptBrAqxbBnaGPSTtifpBmc8dA5GhipKJKaomJxvSdBylXY3aW7/P7aYgGvLnHRV5lkFOrKrjOga01oJC7lZtJaICipyzZdAVgkqrEphqVv17v+AIvWs6glR8qKD8V3eDg4xKZPHsCiOUNcTjrnFFUf5COqrBYqIM6rs+dtf6Mn4BsbUQd3YJ//lH5m9VvF9pSciC2P2EFL/bqi+XlYv5HNwyKFZTSq734eOrpgeu/T+1+xlKEyenD3Wl2HUiYpdVKxnl1EhKb8+O8Qb24OzVWas4qlKCAhjwMxFVdt/i8ALHruDb+OgEayvTemQmWR8N2PgF510uXNRfvKfrAH6DCCDiXavB6GwnFsnUgZHG/zVca4SRyXrAEYMtD9Ia0PwPrg2+JrwOcBjz3wrwewitfsgLj4BOxdPdUcVeXI6rYdhLsPwtG9fSN0avulXZGzl26idbfRyJMjE9b85lyFyGOv+gp67AF3ANbOgwlYsZotmPLnk9Csse3G3n/E914tEp0NTr/+d+i3M2Lq1zXaY/RlC6AZlSQKKxsxzp/MuqQ4koGlEPFtqsEZIr4NzmZZ5C17dxN9Iw47HEJ9Yw60/o2lF/By0EuXC7h+w3Zx/NOzr5BMemVtixTJKCxdTQadprSEbI0k7I99gpYcv1ThZ6+w78+t5hP7uAEzPbpnRN776u8buBg4zFreGaePqwZvrxHw7AS7HkVtcWHUNQx+ecxalYjXR4daouB4i4/U4PQYtvB2JJ29L+4JWj1lgCTVL+4Xhr/T2kdq6tbNh2EHR0z8ZTtoD22BwPHLJJ22HNq0GWwArPPTtYh+zOZngU4ikmW1XdBv3S6g8sY2SCmyqIW4nxdASpPRekn7DgjYs4/5o1IFCTWqeQdgEci59cFL/F2H8foUNoRiS7p6Zi4w4gRTrG3S3BgbWtb85/q/tThzjl1DlUoSqlWx7fv5SQ1ucaSm7wpF4pvyLLWnRZKcmJSyvNNbrlbYy9ZAAkUyObOoKGAiT8wbCAzs634BqSxKlXZpY0cbPLVdM75G9ccbMGZNfeR8zhQ4HaU2Rj8Czs9gi9nANEAa7Rw0qRiLO9xhyNEHgcizbL61K1O1htiRphtitwgI5i7VGV8cAW97R2qRgiubs62EME6lU795MfSbFrE+araArtn3TgEsKkgg1oZNAojDiTdKq/6+vQSKdPqYRkTnRHiuWNmyEmp/5tlcHjtRh1guWOGH3iKC3XDBKakgSn8ZM8r43knqqHVQoojAboyvzBwVOXMb8Qs4dcWTJ8Dc39g8oBQx4ifzxPwHt4Tw+oW16M4kbRBqeoxicSxacmnwEJwNrIFSJSTUreOZv9RRw/FdR0P8ACWzmGfAucm2HIV524tInjtxjkS/RWBf9rsnCwJiZ7HUZGe+cAZgqdVRqf7a5ftQ9T5T2oyd8jdkf6bMq/Sxc6iIoAQ/a5cnssTj1Qv299etRWRP/N315B55W4bS+EhNUrHKFUScOKVFLCfYMCGqIYR3nLrt2GWQQ1I67UqdIrwrz1Bsi2RpraQ4SNjh8lVcNGtuCRSx+z726LEGv3KpUhnSyejggoONylIdxdp/LSJL5o/7/vD2Ol6c0YDUnxULKyojZ3PPnkulzscGsHQHNkK/bLpN6jD1ZaxYF8YWPaziQN5eq6/8x/OAIl5Q/+1MVIxmh0IkAmWs/tV7HaD5AKyPd398Lfk84M4D/3oAq2C1b8ypgEc3zUayJPby0Qo4RbxXe1ZNQcoUwXY+IS6sMnW7IGmSQBzbxOSh3TnP9/2He8AdgLVhuxEbmSidOSqFolN4syOyHb0UcgoHYRduhkuEvkTsq5ipcn2MetLTLDH9KuQV1n3JyHjz6JNjd3rHZKw3l2vx4ixb5GVvJCJ1acsijwjcicjdkXWIKoLPlrDT1qD0QOEelk07KRCSEqFihbJHoe0hWzD2ysBd5sWkOmIkWXYZBTqIeCvZErnrRAlPJi+HNlkKxI1lwJ0rNxmWTcejY0G45c+khynlilKvvLHwQwLucoTIyqJzzttLGPWKRaipU/2UPiwbLbaZDAiTUZTjCqJyEmSz+uLaqNvYEnMPodoAbE5bFyFatslR2tPvWAn9OgY+GKs1gu7gJmiMjLwoeOEOaAICbQAstVJXrlYSUhay9cWyVQKqH+xuE6Ye3286xGx5rS47c07A+r/ZpoRUpUhdyhsj8ObEs7dY04BFdWTVJ8Oh9I0wPfICxr9m5N9dkhXAkMQUSnXfxBP3dWvbvp8eEXCHS6OLKxmJNiUYgFU3KDPmhVV1Otz7WwU85gC6zHUkpK/s/PqIkH72PLYpIe4mSq1yZ+pUW0fvC2rjdPwLfBm+GXMXN0foO0beRnOI5hJvaq4z4llLmnYz+he+hLNpQ61FN19LQLkNzCfGrzrgQYGmuDZFC37GlRgiwpAYkcn3Qymgt1cJyMBdZraGEtLwEVh710G/kv1G0TtK93VPlwCW0sfmrYIN+TN9HhQooz2BZKk+3iaUeEUIVFKMeKJcqUHyPpg7X4sn4awuAVEESLmyC5c0WL2WzZWC+WU0+cr1XBESuamUdqWQULfvwJevNJjG8RuGhkro2dWzZ5QORuiARLEoIQQvdJmQLYHx7s0NnYxbhqJm7jviwPPEDL8Oh47nf+z4M0xF7CNWPWmLylCUJUVbKqZWidU+uQ+/kUyQQkqVAXHD/3DbvDMAa/Kbc/iF4ylM+jYZrsz9C0nkSGubsRNXQ05iv27bMjIBIe/Ymu9ipQg8Ps3AIeKFIn6o/5Wpn6c6tSWcPAlQKqxik8Jt34mOosn48emXToX+0GbrR7sz98HWhHrWvzt8K5oVmf/kIo6yZJHMz/D72J27gk1b7njn7FLdm0jIm/f9+n6f8Tqq8/SYBnfWcb8VpSRk/8q7MX1MAEu/9lfod9rzthnrt4exVouPddm+dj7AA/y7vGr0Cnzx1sKPTGb8rAmMjTpg9AQt4uPYu3BgX9Etd6QPwPqAm+Kr6vOAlx741wNYBDwRAPX3wjHIntleyeOniQuwZvMBVCxdCHPH93HoHlIlLFS9PQRBg4t73C/GvPSxr7gLD7gDsJauTcDe/Vx0SGUJ1VQb34AfGkITw9KzYiethewmpcHRkHRnD8Dw60jrV6ailbAsbBjOX9QgIuULbOAiW4r6pcSmtHUdXtnDXQIe7mSLWNqo04ad7HDcUzR9ylLV+AYGP6uIomtZGiydetPpN9mkqVq8fcv8MKDhJYTN7m6t/kyXCX/m/cNMwK0GdwzBMkoMtrRT8uEqPBEtwgVk+/7cgsLPXsPdwlopT3wuN+9UwiM/Bp5lqSchnYo3yN2kf3NLgyvz2aJTAeumRp7HxNcsLbJPcGH8kNyeMyTqgQYXZ3muPBQPESTVnlLgWN65QVK6oGHxL+zeFylvViFUTNYbELJkjzl9I/xVrDmqhYyikig6SbGs9SWkLWe7eP71Ny0+vzQY+eJZBFR8l5EQC7LIshs3NViyjF0PRQ5QBIE3Nme+DnfexOGvJkus1UIFP1zI1AJjXp/CrEiWajQwRXF0T1bQXO75c2DmXAYGGgwyfhxo2/fj/QLub2FzWiz3Fs0Ls4i1Kv7psNSJWiT18WiPgAfbuWeimoTMThQCqfzNWxos/ov5I1tWGe3auPfH9RsaLOVUQDOkl0GbPrURsNkkfBtWzv0WGu6cvPRIEzgxM2u1Y0O0kEzsPsdkvoiFeddhT1b2m/PXhVeovZWlb8a3H4SEItVwnOO1opmRpoOIHNntN9bLVwqIvyAgp5GNNl0lCVm+YPNJd2wnDAuZqoWpdHXoOg7xCMCiVh2BWMQN+F07CQQSfgxT8+R062xCKhbk5rILiiwh3kLFvmooorCTdEulzIFDAnbtYXXKl5VQ003El5a4aab0tfZj5qTpP93l2N5GaTCJ4wtKmkRGvz7u5yQ1qnkXiYB+roUyJoX9gae6LPA0dZLaNfw5Drrju63jTmg3EDQn3sccKcTm/VpE8nxsXmivnIbfjIHMb7kKI773JLfdOQOwij1cgWciC7krc7Iclu4fiRTiU2ubsaMWQw61V1bcPCEOyV8y8Pliw3t4vINxmGb1MMXT7eCdFFixWovLV9g7oWljESdOClbwNkCKwshn7HdSDkyC2F/WuexOHQW+L+xbbNK1ttbp2U1EfJxsEwmYJg3QpYP76FRHHV+9JmDZSs+juTZs0uL0GXbNdWtLKOVlqvv7+ttZvSeHBNzjDsPe50DtYwFY9G6md7TaEtr2h6ks48H82D7wteedB86e02Dd35b1RdHYXWj1ZrS1AVPJqkhoP9iclk7p6Yp5ki7rA7C8uw++0j4PfIgH/vUAVosuI3Hhym38/EM7NK1nq+7y9MUrEEeW0WjC1BHd8FklFt3COy06Jg6l6nSCwaDH2R0sCuNDHOur65kH3AFYvy424gRHGeWIGyigy+cg4lfFYiilgXYBXhpxiRCniGJi9vw4VmOa+YcuPHU4ttRkJ6Nl/dNgdRqWgsJ39eKcBjc5MCJFfgl5Ek9IL8ZHoFY4k9Xm6028XR1ZdjA+nlQlZORoYtkgqUmKx9TYZAO4XPIrjz9TjMIXtSSULCbh2BBb8o8yo00QdED757uxPeahtdup247h6/O34an8esBPbXHuXW+81Je0tpHnawkp8nl34mmMAk6O4hT8tDLKjhEx5vVpzOJI7gclL4ZuwYXs7uSbmxpc+Y0BHME5ZOT3MJ3H0bQgAncicldMSp0BwrNH1r+JGydk9ho7AOv+dgGPuc1zegfAzMTJWnzxcBxKxLF0xoQ2P8BUjs2f8KfAnF+ZP2jDTxt/b2zCZB3exJqwsNWf1mq0/HqUpR0GvjyKxVHXrZ+PTFEa7ZOxCDAlnF4p0LWTCam5IEYCZAmYVUxbJQqN8rKUWuJv2+ggNVMpH35YwF0uwixteQlZv3Q+zpshrAAAIABJREFUZ86d12DtBl7xTUbjRu7BAiJ9J/J3xZyBAbtiHqLnvSOYv7AVuyatEaXHsAUr7/uzk7SI5RQR76WKxLG8E7EmH9swzz75EC32MJ4x2ti/S14EVNf6btIAxmoSan9ue+2UFjR6nA4pY4HCnGIh/+6gNtR8SqaCpaHrPdZjAIva2L5Tg8NHbVPl/AwEmErIkOHDQKxXrzWYOsO9/53NayKnPsKlH1arKqFKRdfvlk1bBJw4xeYmvQNLl3JdR3tsB/wWTmTv+mIVEf/9Ty4ft/gEyz1SzGAAfvSAF8VafsFY6E6ylEF1Zz+nWodorYUGoXMHE9LaYzZ24zMsnQLdIRaiTKT+poqOD1bcvUtuLNMigkslVkdfUX1SZSUhAcXEktUR354BWs76cARgbY6+jw4v9rJnVRTQamVrDH7cEWlExonljDdq29R4JAtnzO2nWl5BxAYmyEDZoD8OMkHr/VLAnavM36sjDSkK6vhpDS5ftrxDwkwPMOAFUyWVU6VD7PCFLtumFH39WrYGPZS0CdYn6WKtQzw80dG2zxipe5LK5/uYmq+uSCEZjRo4b2v3XgH7OUVWR+nm7zOOD6nzaK+AB9vYTc5QVUImLxUoPxjASoiDWdX0Gjt8o2uSdXrEdxkFKW+xD7lEX92P7AEeiM0efxadX7HgBilnQcT1mQw6EAwPZx1//62IjG6UoX0A1ke+Ub7mfB5w4YF/PYA1Z9EGzFywDhnShmHF3J8REmw5kYuNS0CXQZNx4uw1ZEqfCpsWjQOlETqy2/ce48t2Q5AiJCkOrp/hmzD/oAfcAVhT5ibg8lXulPMrEQXys02WxhiPgB5swU6RMrHTGdDkzaUIEeHwH9rWWkVKmRYRAxebN8SP0j/C9uoscqpaQHosTu34RO3dQw0ucKkmxJlTpLcFjHhkeofSj1iKFz++3/YVR/BVFm2kLMSio4Hxv3AcPIHAj9nn2HA27QlqiS3JvgcpfvXuLuHKNAHxr5nfqH8ahzrCqf3ZG/hlx0nE9Z0CKbtzBS5lnIGdP8ORoEWI0TL+psK9TAhiSt8eu/zEMC1MsWyMlL41VjiG36MYIf/I0NJon5QBLUrjLy8KuL6EI27lQEKPB8AV1N68AD9OQU7dBkVopBg33w7AUivUpSopI0djtgEQJWD4KB3qvp2DKtEcx9ZXHWCs0cTaTUwMbEhDA/yBQf09B7B40vPf2/5mM/zHWdqh+4sDWBt9x/r5tJQV0ThJduvfC5docfsOuxdffiGiRHH2nN3bLJi51RQL+jwGdbL/Zf07lz4Ye9M3dOr6F6c1uLmSARs8OOuo0qEjAnZwgJk3PErqaEVHYACRRo+7fBETVrMxByZ5hyJDHUfoEVhKoKli54KAxwUG489iTH1t3L4L6HicKYxSatWryIw2QOsrAbiTwZ4oWSEIDxaBshyHDj1X9Hwppp6n9MwKQ6Z7BWBRW8TdQxw+vBHhddvWIrJken8Q69IVAStXc5tJJxFwzibK8RMCNnOb0eLFZBBxtStT8555ouCp37Yc+g0spc9YvTGMjVlatLP+3kft0Hrv7lyF38QeTi+lb1oG5jSoJ6JYUff3Qb96LvS7OVL/Jp1B6c/emjn6ioBWmc1xOnQhAJU3/Zal0G9kAHlCzWYwNWAphc76dQRgNXu6DYfiWKRV7pu5UeFoRXSP6IrMnCoYRcbR+1dte+YkwP8eSyHc1fgsgo4UQWQkl4LaXkTGDwRlnV2TWvyCDhxOnhZAc5gsa8IldH3JoqTFbPkR32+qy1ujO7odhkUsou1kQC2sCBlgrkNg/LAfTYiJBcZNZOsBf39gsBe/FfwAjp8UzFGZirnjXzt2QsAW7vksUVzCl1yEqLfz7mOUf7BDwKPd7BoyfSYhQw3vDtQ+BMDSvHsLw8xB0HKCL3RdclASJHQbB/EDVUE/ho98bdh6YOYcHZ4nUhKGmR5hwAsm3iWFpUfciD/x52It7txl75LWLUTkyun6newDsHwzzeeBf84D/3oA6+Xrt6jbZiDevosxA1CVy1qk3I+cuoRnL16b/z13/A+oWNqSLuPItuw+jn4j5yB/7ixYOY+RU/9zt+G/25M7AGvkL0bcf8D8066tiGxZOAAr8hUCBjI1QDlpCGIn2PMPeORh0YTAbrWtRWVBi9hZ2zB1lhang+5iTxV2eu5IyU6paIoDTvxsH11E30dK8cj3YJnD4fy1OAf071gUIUWoUKTK02fA7HlcdE4q4AdpELQXWUrasuCBOB1Y09wuLUKzPtYg8hanfNZGQmgBCRR58vVzlnJS/EkEdi3ebj5Fp9N0V6Z5EQ6KwNqVdBegYZvfMqNMEPQeedim0KV5WrzlQBPaMI1LcwhLo5jy34TQsmiV1F5dVE0qHlZcRs6m73cKTYPSPL4DkjB3ZpTul+LHSXYAVsQFATeWchLeeWTk4wikFYW0au+Wok4UA5aMnzcDKcjxNmyUzkzQq9jPP3oePRD5VoNfplruydKmSxDnz1CQsxmaot/LI9gVyyLKfktVDbUDM1n72rNfwL797DqKFpHR8EvmTzUJe4q6saiekalyptUG4lTGpk799/KSgOscbwvNxdwulKK27hRw9Cgbz+c1JFRQpWY664xSYig1RjECQAgI4W3lu5tYfPohBm353PpxSJo3yNebpSTx5W+v0eLZCfY8XTYA4flHYF4ZlkLY//BFDDrEOI1ipm3Es3MBoLqKPdYCF/1hVskjtTzFCKwj0E4vA9VjWM8anYyyo9l9EB7egv+YztYCUrosEEYt8BrAogYoCouisXijM56WzSXkzOHdBlBpg1L5KKVPMW83uCRUQYIVinmSSjtrng7PnrGr6Py9CWndAOqGpVOh47iGiLjXVMOxKAfvn5HjdOBo8cwRWBSJ5amZ+n+HZFH37YrHBabEj8Hsd8sdkKA0YNiwALpt7Pck4ct2MNVmUYXuxhUnmxAriXi4yoB3Z9lLXA4zIqbLI8TChDhZRKxkQqwsIuH8QcQ/vo1YvRYxOh2is+dFTKq0iEv83tye+T9LHcvfIkS4B+MabfgKySOTw05dt+d4iHnsI1iOLjBBvs4A52V1j6Hyi9IgTjTFvHlvuPOV+nu14ACJTJw4LWDPXsv8LRB7EO3esKg+sVBZxHd2LRKkjrC84lcOC1JY0puSJZPRt5doTl9/H4VWR9enTr+tWF7CZ9WdP/uXLmuwknuf5c0joUXT93tXeOtvZ+XvbRLwhIsKy1JHQjoX/IqO2nlfAEvz8hn8pvYDHX7yJqVIhfheEyGH2dOafKzr9rXzfh6IT9Bg9Dj2m6yX4zD2Kb/utwhTrFgt4PIV9ltEEeCFCvgArPfzuq+WzwMf3wP/egCLXHLw+EX0GDodCQkceQhtSjUaDOjaAm0as02KIxcOHPMrNu44giZ1q2BY33Yf38u+Fp16wB2ANXBEAiJesgWpOrVJ8+wRAoZ9Y21fTpkWsSOZSpe3rg/oVR+aeLaDjJ28Hhv2JMXy13ewvwIjX2+cJBumpazktPkTw7UwxbBxEwcVcVGRpb/HTrD5Btb+VhCisbT1o9ytJYQWlHDrtgaLltryI3W62Rqa50zVbnrobDwwsFPqZjklRJ5jP76Z68hIX1nECzEWRR6y1C8/k4invyyHscG3MNZs7tJd2qungZmTcTAJq68PklHyp/cDjtSgSKaaMiYU3Is1XKTQzLBKaBjEolyUAT49LOAOl5KWppyEbF6SnvMXq3nzEgGDnF+/qXxthPYYYgdgRd3X4CInQ54kvYxCXDrH/Qca/P6nFmViNqJxJEu9ofYSWtty8k2epsUbLnqA+E5CU7jf+NF18GpSqxqsxNtkb62XdzBDQ/SPOIqjXLTDyjS1UN6f5SipOafUcuq3Vgl4zqVpZWxsRJkwlg6TTNDjaibnG+fImwIu/8YBfTkl5PvO+caHSLn5jWjD+iKKOlATdDRhKcWFUl0Uo5TaenVt+6J0yp2HXqHTvorWcqlyvUGObx0DWI/2aPFgO3ueb+tkPMg9BbMrJbPW73D6OsbvsuQ7y36BiJ26AQ92aPBoN3t2b+ll3DJozEIURDCv2Ky5Ojx7bvmrejTA48Elh4rQJ7HMA01EOAL4KNHkYRB+WfFeABa15wjEokiPZkTOnNv7jSnxltFcUkwdyefufawG61OEyujV1fX7ZewEnY3yGwEJgfZ6LjZd+80aAu2lE9bP4r8fCrFYJRijNHh6lBXVJ9XYqGVSmu47RreIfr1NSJrU3VWx789P34qyV9l7QPkmJnUu/CTMY3MxUwKatU2wAECSaAaFFDDIAhZZgKX4y8eQcO0UYnU6xOh1iM6WG9FZcprr8GCSAjBZwCUT4uh7WPyaKiopZi1hh0D02S81d+NYtrueX9gHlkwdEYa6WyyiKO1fDUG++CPs3nQeAQJ/1Hb5LyDyPDvYmVP9AHqEVsDGzezZz51TQqsW3s9jd5fjDEQ6c1YDSk8iKx29CU3ecryKDt756n6EmxfhP5n9LtzV58eslBZhGQJlCZwlo1RWSmlVjKJ1KWrXW1MDztWrSqjsImVXiRRV+vFI8dPbQXlZ3luFW0fNvw+ApXlyD/5T+pr57XgjJeg44oVL6lgV3cvL8xX/yB5wtNYZcLseNLGMGzZm0lr8vTcYp854l5rui8D6yDfL15zPAy488P8FgEXXd//RMyxduxPXblnCdXJly4jGdSsjTw4WZeDID6RgWLFhd7yJfIdZY3qhSjlLBJfP/hkPuAOwug00Io6TVe/fx4Qk3B5TuH8D/uO6WgcrZcyOuMFMUcTbq/D/+RsIz1mkStywBbjwMjNGXriBQ2UOWZtrnSQXxqcs57T5C7O0ePeAbeTydxQRnCjpXeDmArzW26ezbphTAQnIY22zQEcRybLJUPMBFS0Qj5a76kAjs4X5mOyb8SqG7dqKJgFSc1EJqUvJyJ6ozFXkwXK8kFiEzpHfNyNngcpIaNbNpbtIlS9mxV6cCppmLZcko4xC3d4PwHp6VAAtPhVLWVjGhBo7sTWGhdz9lqoqagdmthsXpQxQ6oBijrinvLr3JiMCu9dxWsVYuyVStutiB2DFRmhwdiIDKEhdjlTmFLtwUYPV67QoGHsAX7/52fq5o9P4Xxdo8egRmzPeSJTzZLwb6qxHRMoIa1+kvDgg4gguGV9ZP9uarh4KGZiCnvpUkgoOGSiCuJHIrv+lxcvzbGy5WogoHGIreEGpis7MjnQ/k4xCLoAJdfh+m5YicubwDMxTA77p0sropOJHm/f2Eq5ul9D0FIvsSF/yLTI3dox8qFMgn2iBG9kWYBaXqtL08l3M22TZeEupM4LeHZQ2SXUVu+QHPNIBOXPKaNPCMk/U5OBlY4Fgbs9dsLOIpErUafRbBPZlkUIElGnmbHpvAIv6V6ft0WckVvBVAwmFCnq3+ad0a+IhU6zjdyLSp/PsvlEdowkgEnjF3BGaq8tTGuRPg92n3vqP6gDhMQNo4vpPh5Q1L15f0+DqH+x51gUApYax9kiFkBSsFOvZVURoqOfXt/gPI74+2RiHswZjTPlCiNNrEavXIcY/AK+FQCQYOFTCqxfY+xfusrcSql7LZW3gYfLX6NNsDThtg/dv3MOalQ9XRo7bOc2l20SOQOEYlk7pLDr4zloBT4+z34D5FQ+jT6kCWDWXKRY6EqTwcEgui6mfWVqT0NqEF5GoFrUEdd5xaaoOom7VnQjh9+A/4nvrx8+0mTAxleWggN5/9B4k+2Wa1iZVsncPEclDPJ+HSgeUrqukPNJndWpJKOOCP+5FhAaUOqlYiuQyenV/v9//j3EfqA31O5Z4QylF3RvzFsASSARi9lBo4rnFKQAxZyGQQAv83SDo3gzOV/ajemDPPgH7ODqEYkVkND/bDsJTtu6M+/FXbL+WHQcPs/dLtSoSiPPNlfkArI96q3yN+Tzg0gP/3wBY73ufZVlGbFy8uXqAv585astn/5wH3AFY3/W0jaob8ZPt5kTNCWNeQPRhp57eXgkpU5FClWLU1rsMhdF68zUcK8GO5r8JyodRYaWcNn9zuRYvzrK5ROARgUhkFS7Pw90gP7u662fXhVHDomKIEyogTMahw1rs2M3aqlPwNqrt4KTMQ1LiZOvlWMWF9oeZgOKWaW02AsIIECNr+2wXdnPpZLM3H0VTbRrEd2Ik5o4uTLduPl7ujcTlAEbaG1pYRu7ERbW3vqb0QUojVCwwNfBLq63YE/vY+tnSNJ+hin96u6bVnEyk8khqjx9iAT3rQZPAERBxjRG4F9aouR2AJcYDx3/iCfNllBvPFvRKhEvWhAvo+rKntUXiLiLeMd5WrBJwmVNga6rie3N1bURiTWTWZFtrbMGTdCw676/Un2PQy6O4b4qyNkFRWdl0ttL0M+Zo8YIjKm/TSkLO7BafXv1TwGtubETcXy5oEaJk9jzeyNwKQRrHuaRqZUy610X6OAcaZs7R4jk3li4dRaRJ7dmmJDZWg7EcqEjjV783iAsucn0QPrvCAONsteKQpqqt+IHisMjbGlz+lc1V4rI6k2UT5tVkHD41bj/BqtWWjbeYpyjie07A5XlaRHJpsif9gJc6QK8DhiYCLWfOCljPqWiV0QAhXJRPjqYiUnF8ZMRDZ2ML9nwQgEVt8fOHb7tZYxH5ORU6V3NQTaDvyO+ePJ907+geKta/j4gkiRFo6vovIgTMmM02GaGhEnp2df8eCOjbEJpo5uS4ccshBYdCDapTfwRgEZBFNudXLcKfsrF17igirYfzkurTWMveno0TRa5jdMXCnrjjf1omZVQQZi5tBq3MfDjlsz04koPx5X3MAQRodAjQaBEg6OAPLehvRBtQejnjsfxOmoA8z5iap7F1HxjLsxQfZTzq1LHFZU6gde10ODAjvc386d5JRNhHUthU+g5/psEc7reL3k30jnr8RIN5ieIi9d7OQuVoxndpbNwJxuqu01Q1UW8Q0J9xI0YJIRie2qJcWLiQZAaVyWbP0+LpMzYPvXk/8vdz3QYBZ8+ze9+ovoQihZ0/P+p3Kx1w0EHHp7TrS7V4eYGjS2gpgtYl3pg3AJbu9D4YfmOqdUo/puJVkPDdEG+69ZX9BB5YuETA7Ttszjf4UkLZA/2gvXrGOpr4HuOx/3VJ7NjF5lXZ0hJqu1BOpso+AOsT3FBfl/9ZD/znAaz/7J3/P3LhrgCshHgt+vzIAKyAABmD+tkulogHik7CFCOuIvMJ2Hua4fcx0J1ip7+0IKGFSetdl7A3B5NDbCUWwoTszpVlSLGNlNsUI3CFQBayuien42wYSz1Syqye3Q4yLegTrfQIE7R+MJOmEnmqYu3y7EOBvQxsEvMWA/3g/vaHFg8eWn5wAyWgEnc4aEgqo8SPFt9NfH0GUyMZV0/H09cw5sZbxA2a7dJrhl+H48Hl7LjjzyJt3kfxR+nEGAOcHM4BBhoZk3tuxtF4BgqsTVsLpf3s5bjUp+/ZGkg2qT7vc/v9B7eE8DqR2VPVQEKHoQirXtMOwKJiRwdpIUtsoVPqJxN0ieJYyr1LbbyPfhHMb1KajIj7eYFNL+r7TEp1Zcu434xTIzwp9+7Ku3AvM1PxmpuqMoZEHMNLiSGa5zI1R5hgm3NCIAqBKYpVqSSiWhXLRuDyfK0Np1r+70RU91+BcJGl257J2BSptY5PnuMjNTg9hotUC5FRYpDzjc/4SVpEcym4rkAMR/daLYFNEVgUiaXY2IjjSLIyI4rfZxG6uVpJSFnIsb/jIjQ4w4FihK/sy3AKC+qes7ZZ4kkEdi7ebv7bVLoGEtoNwJkJWsRxKdAH/YHoRDcoAOGyVQKucuBgjdQSdNwCmwiJiZhYsYBeX9qc/GtmbURwWHLExIt48+79I3hOnxWwgQPSlP6qVpFRtZL7TerNWwI2L34GGVq81qZC6lQyunZyX099/+bO1+JJOHueOrQXnaoj0kaENiSKZc8mmdUUXRlFTZAPeYuZs9P85/0tAh5zXHD0WeEeJgQlYuiUDkxpwYp9+42IzBk93ywTOJck6jEelpiFpYWYiML7vK8+Rp2O+yqgxlUG4r4IjsLUtlvhL+jhbwaaCGTSm0Enf40OSfdvQoDJhECjiECjCdrGXeAvJIJSGh0CNXr4CYIZmDIDVeb/65E1NMgMWjn6vV+5WotLV5hPuyebiczXOWL6pp1hrGpPTK9WRl1d/AyK1vaDbkteXL3O5gSRjBMX28c09bzLkU1C29YS3r7VgEQkyFq8GYPisZZ5RUbvA3ovuDM1QK2Q+5cvK6LmZ5a5tmCRgHv32DV+205E5vcQX1i+UsAVji+Q+KyI18qVqYUMKOKRIh8/lakPV/K2k5A8r3f321MAS793LfQr59hdqrFqQxibMrXIT+ULX7/uPaBWXO7eRUL6LeOgO8o9q23740RATaznaCqKFpbQ0A1NhQ/Acu9/XwmfBz6WB3wA1sfypK+d9/KAKwArIkLAsPEsSoNSNShlgzftyT3wWzDW+pGpRFUkfDv4vcZClfSr50G/m52amirVQ0KLHuh4+iw2hbLIrAYRxTCrRCGn/bw4p8HNZWzDzpNWt943Fnuz2LIMp4rSYNaSb63taTQiyo6zLFbVZJK9Mi9EhmOMR8tUuT4SmneDTTSCDNTiyKCpnTKjTRB0MKfoffecEdKXefgcWzaedEt+7z+6E668bIqnesYpl72RiNSlPd/AqR12cpQORhYYhHmtd2FXUga+bEpbF0X9Utr5WS35nrO5iDAPVLtcTQy6PuHRbYdF4n6YjNSlSjkEsM6M1yKOSyuiyCKKMCJbtkIwb6aSSG8w7BlTvJOTBCN2oq0aJYWr7+TUlMqVkVDrc88W4uv+1uLsOcsm8GC5A7iRgxHhT0pZHn0jDttc1+3Mrc0bUt5On2H8LfR5tqwy2rWxPG/qlFhKa6unX4ubRsb/sS99A+TUO+b9UAsbqFOz+HF8DJJi9TNT9wsJpbhN7E9P9iHX0iLIFsHmlk2qnmoWyCJwdDA9zxYf04xflyYcyxoyxdNsr9/i9K8bzd+TOpux/neWOhy4uSOQ/Vm6lAQCKYnPhlLhFGtRWsLrPWxzGlZERs7EdEMqYwe0TlqOkEwZPhjAorbPnRewdoN9enPBApboD0rpU5vu+G7oN/4BIjQmu+JXGgtSjEPhQjK+auA9gKUm4W/cUEShgo7fMeo5S+kgDTjxAUcPs/D0IfyHt7d+JYemRuyoJea/b/ylRQSXKkufkdgAvb/JlizT4ganRumJMpXSkSQCw0ZbnrlzVafhdMZElNvRIEl1TtYgSLAARwQE+ZvBJAsg5K8RzIBQ0JvXCLpy1gwm+ZtE+Ielh6HUZ4nl+Dpc5FMisKSL0uH6+ACb+enqPap5GY6AHzmV3uBQUOSaJ+ZIhVCpN2GyFu/eMQBrYNb5SHmEKZwa67eHsVYLu26e7BdwLzHqlL7cVOgi9LXf4vNrZbGdUzAl4mUiYP6Ydu6CBmvXs993pQ/+Hn/3qj/yxJ+0dpvQfQxM+Uq6HYYaoB6aehNihSAzuTqRrJOR0AEJHljfGR4AT446VqvPft1aBAknuLJJU7TmtGfF3jd90a0jPCxgd7jyvYhgD9PNlS48AbD0a+ZBv8teQdrYqAOMn7GoOQ+H7Sv2CTyg5lhUUoz1G/6AfpvtO+dc5lagqHjFcueS0Kq5L4XwE9w2X5c+Dzj0gA/A8k2MT+oBVwDWvfsCJs1kOzs66aYTb970BzdB/xfjZDJW+ALGVr3e+5p0+zbAsMJCmkpmKlcLCW1+QO+7J7FSc9n6eY1rpbGwlr20t1Lg3UMNLszk0uPSAEV6m8yEn90OTMHafFlsxljiRQoMWM1OmQOkJyj2sx8I6FCf+g9NMRLBlxkAldC8O0yVLREFlEZG6UBklWKAQG4tWrinCUHpgMemaJR6xBSvAowmPJm8AkoUgjPnUYrdKd0EROqYoidF4gS7kRZ2dTPUi8/ltY9iTRbm5z3pGiC3wR4UufqHgNfcyfH7nLqqx+U3tS+01xlIyX8fN+wPpM6b0yGARSTuROauWH5uAc1Hk0wKr2rTpdrf5y8IWMNxghUqIKFxI88ArEVLBdy6bbnvJ4ofx8X8F619DUpeHGNfn7bp2xFflTodi+ePOT9Vh2hOaImiUpoLm3EmnkWsEddWEQdgI3VMdG1HB9lG25Ub53hTSZtZ2tQqFhQoY0Bf7zagh45obcL/ixWV0KAe82W/+1tR5Y/qSB7LIsaKDxDh54I0Xw22bksej9+bL7aOMzQ2HremWzY4Cc26IqZYA5xKBCzoM40fsJVzQfJgGQ3ry+ZoCsUoyrTLV5I59VCxJCq+ML+R30H7hFOyGz4fIXnzfhQAi/q8fEWDFatZ/8o4KLqpZTMJelWWKEUkUGQCb0NT/42qdYJc8uk4ey9s3SHg6DHmk8+qyahYwfH937NPg30H2FgpYpAiB10ZpYr4TR9gLcKn86qBWiqU5QsJ6RK5T0iBjZTYFGvaWEQBD1MsFUVSqru6wV+ITGY5YfCDFr+nrgbhSQg2rjVAJwowJPghQ3oZHb51fS26KydhmMEObEz5SiChOzvQceWH2+sEPOP87B8qg9LWNQ5ASmpHuH0J/pN6W5sUM+dC/MBZLn2tfOkMwHodqcGUabZzbWzpJdCv57ijajY3i4yojfivKBJXsV15r+FGrbsYL31uTeOj75ImldGvt3fvD3cXdeSYgG0cByNFyhIYTTZ6ghbxcRr0iuiIDEZ2kBA3cBakzIxrzFkfAT+2toLBVGZM2DK80qVBg/oSiiWm9xHITGCzYu5S/5z1peZdpPlG886VqdNoveW5c+dbb79X//66Oohw1rY7AEsdma+0k9BuIEylXas3e3s9vvL/Ow+cOi3gb07kIUd2CW1bSdDt/xuG5TOsHdPB9fWyvfAH99vsaP+hHqkvAut/d+98Lfs8oPaAD8DyzYlP6gH3aSeUAAAgAElEQVRXANbFSxrMW8gWno4km/U7VkC/7jfrNRirN4axccf3vibtxePwm/2jtb6Uqwjiek/EgIijWPLuuvXzcsfKY1H9XKANpyNTR5xotDLKjhEh3LuOwWcX4o+itgvZL5/lQpu1TNUwxHQRhcvth/GrTlATB4/B9zCE37J2G9drAqTcRc1/E0fFlBkC4uI0KB4LhHH4B58ilef+UkTJLD3z2G8bkanHdMip7PmmqF2Fm+NgkpWIF8KsfRfrJ8I/5ftHYN3dKCD8EFuI7yh1CfOLH7O2fzj9V8iit5f5Iu4s4tBSLH8HEcHZ338c1I7f/BHQnjno8H6SKk3ajKkcAljXFwt4eYldAx/FwKuWjXxaFwEyr3SzBghiqaR37mpA5OWKZcksg4jcPTFexe5cobM4XYQBViQ4sOQd20iFCAZcztTSYbPq8PouHU1Ikxrm9DlKo1OsWF8R7aXt2B/Lc219hsoBjucP1Ts2VAeJy3ArPdIErcF+GOFPiWuIIT2pUgHdOrkn5uZbun1Xg4WcL1OnBrp2ZG10u7UOLeY3hoZjqi47xgSNPW5jbZYAaQKmFTvmL+OXb9hGm/TtX0+wnOKSqt2bsMq4yIPYaYG1TBzSXI7eaUTArxiBlvWqyzbplpSOSmmpivlN6gXtbQbyYsBkhBQv9dEALOrn4UMNFv0lID7elhOSuH5owc9zUhnmj4TuzAGbG7kyWT8U6FITNIe9taPHBWzdznxSopiEL1UqkkqbazdozSIXijWoJ6KYm0hM3eGtMCzhFEFLVEHCtxbumlOjtEjgokvoszRlJVCKMhkpzFHUl2L164ooXsyzaySfzk8kiF/Q+nfIAqt3O3MbmGJ0IBJ8xdwR2FM54cYF+E/5wVpHylEAcT/Ycus58n/CW+D0OC1kkV2LmmtNXU93ci8MC8ZYPxYLl3PLm6gUdgZgqSOZMmWU0SnzKhhWsTQtU5X6DgVG1FHOh7Pfwbo6J3Ew3VcYNVYHkXt19ukpIiRRBdjb+eio/PadAg4f5UBWLjpK+b0e/Lw5UohMSSV25GLIKe3T4dXt+4/pDOEh+32fGjoXjwy50aq5iNy5LHNGnW5OkboUseutzZyjw3Mua57es/S+dWVqpVGKSqHolE9l56bpEMN+hmxSfj0dk1MAKyEOfnN+gvbaWZumZL0f4juPgJTXOY2Ep337yv1zHqCoSXrnKFa9ioTKlSRozx2G37xh7N1WqCzuNRxhuw4JA7p1dr0O8QFY/9y99PXk84APwPLNgU/qAVcA1pFjGvy1hq1CHW1k9H//Cf3WpdZrMNZtC+MXbd77moTw+/AfwQjSlfSSnhEHsfodSy+rdLgyhhTJhgL5nW9eTgzXwcSl8RUfLCLw9n6Mu/E3ppYpYDPG7x+UwOebmQJmqoT9KGgabU5tGTk7FYwcl/3E559DI7IPYscugxzCUqFOnhbMUuJ544HM3O9tploSiLOKrMWzHTjAgQ+/bjyMep93hZTbsQqncOcq/Cb2wu5ku23GXXasyemJvSc34dlxDW6vZZu2s9keYEzNHdaqpzM2RRoHvEp2i9buJgRl8KRH52UMS6dAd2iLXQFZ0CJ21jakTRHgEMBSy3hnqSMhXSKhPM8XMvB5K6QU2UqbOLCIC0uxiJcCps9im6IUKWT08lDhcdxELWISia+v5LmCo6WYDH21gPQ2xPgZdUlwLENjh47gI7moQP26EooXk+w29jSXeyTswaZoFgk0L6wK6gbZRhbynagjmEr+aIIDbBI3bwtYvJT5IVtWCe3aeLdBoggIioTgjedq6X5mI1qs4FI6dbEoP9oxAb3SxvWlAl5eYOM6bwAmtZ2POD1bEN+buhLB8UbE95uGZ+/y48ZSTrErv4TDksaGQ0l9EyhNj8iajwzUAjJrt8woE4TE4fnNGgLtpROsavdRCKlY5aMCWNQ4zcdFSzWgyCHekiWT8XVrGWEpLffEDlAj1UpDCYRNGAd/P8/AHb59So2iFCnFFH4hRxP2z8UC7txlZYn/iiLFXJl+0yLoN7PIOeNnTWFs9D3UaaJKG8lzy8jb3vI7pI4Oc6faxo9DUQp9FxSFFV+tsH4VqvXHhYzNzX8TfxLxKClGHGLEJebM7FR4M+W04TJ89lxjVu2lKEbe7mwQ8PQI85shRAZFIDqLvqK6+p2roF/7q7UZivql6F9PzBmAtWGTgNOcVH2F8iLq+G+xBRgTo6DV/by6IuDaQnYNpzM/wLg6O/Agc1ssXqKzmRcUyUrg8McydQQUceMQRw6ZEjE9Lvwz6MB+gGOn/A3ZP1ENwMVA/KYNgPYaI5T+NfkE3PAvCT7Sae8BLfbuY/PEU546dbdqNcMfeooIdgP0qa+9fj0JxYt+PN96e48cHa74h3n33nEIYEW9gf/0gXa0AnJgUtChoZwxh7dD9ZX/xB6YOkOLV6/Zc0PrClpf0MGy/3imwi1lyoWnXWZjMhcdSoc2xMXpynwA1ie+wb7u/1Me8AFY/6nb/X/vYl0BWNt3Axu3sYVR5QoiqlezXZgYVs6Cbu9664UlfNUJphqulX5cesGYgMAeX9gUiZm1DR1fHrDZrFc9UA1NUmQxb/CdmTodhVQAQ++swpxHB/FzFUvElGKDrldBsT1sQZQhYR3yxE1HfKUGGHKTqdelQjj6h7PoGdnPH7FTLbw7vJFCkuGRgLwJFn8ZtTJyfAakr2r5AR7z+jRmRbI0s64nr2JoxuoQyzB+K7497YndEBcuwZEkbOPnl1xG8Q9UIHr3QGPmV1IsPOQNerRgPBNXMrVAsGCv2Hia0jQ4cuzi/UX4eSFn7+ieGdYvgG77MruvpJCUiBu7zCmA9WiPFg+2s0VRukoisnwhQ50e0/t1F6SPu2ptn0AOMVs+9neCBqPHMV9QqtbQQZ5FHvFA2a3sN7G//H5ru7n1IbhufGP9O58+OXamr+9w2lI6FqVlKZYxg4zv24s4PlwLkSNVLz1MRP/oQ1j+7qa17C+h5dE8aU6nz4N6o+Hsnql5mAoVlNC4ofcbpGmzBLx8yTa4fHpMr4Pb0HQTUz6TAyNQ/mfH/F3KBalVz64bNJja7DdEcAp5Z+duQJbId2bg+cnVtKAIQ8XSlJfwOIUGO/fYAkK8wyhVksCGs78IiH3O6hbpJSIwkYTeLp3lu4EI+bzuRwewaFykLLjkL8GGVJ0+9/OT0bqFZCaOVqc80fcSBMRNWg0E2UdPOp0giV88f67BzLkcf6ALZUH1Pe7ZTUSoizRQ6sKw+BfojmyzDiOhaVeYqjYwk+0T6b7aAsIkFO1rmX979mqw7yArQ79H9LvkiSkHC+Gpw7GlJuNOK2pIiU3pLHNR4cxT2nOXGiaE34P/iO+t3UtpMiHuZ0tUIJ+Ka9ADISEyvvtGgtYInBxle505mkhIVcL1M0ZRUbo9LFU0oX57mBxwUznyhTMAy075tKWEvK9320R6mYpXRsJ3LCpaaf/tbQGXfmXPyKV0TzC8/hbsTd8AT46G2rzHShaXUO8L798hzu7r4r8EkGiBYhSVSOlIZJR+e/NSHMY8q2P9XtbqEDuTKSu6mi+G30ZBd5q9v5cG/4izgdXRu6cISjsmI1EXisJSzBOFNEd9jiGRiTj2Pho8QHQLOm/fpcHhI2z+uErx9eS5+NAyp8ZqkcCB7CUGizB4GW2nBrCIz89vch8Ir57bDE9KkQrxvSZCDkv3ocP21f+HPUAHfHTQx9uPg0ygd6PmTQQCBjGePTlZCkSOWmGO5FRMqwV+HuKLwPqHb5uvO58HnHrAB2D5Jscn9YArAGvN38Deg2zRWae2hDIlbRehhkWToDtqUf4iS2jdByYHktveXGTAwGbQRL6yVokduQhtxcvYFfvI+tnne2qi0LsMIAJTZ3ZjuYAITtUte2MJGe/OwIqIi+hWp4xNtfFnaiHbcRZClCPud2RJWAJa+I4IXYEobQpz+ZKGY2h2f5C1rpQlD+IGsNx95YsHjzRYP1+HEnEM8DMlkVFpqGW8m2PuocPzfdZ2Kj54itXRGWGq3crh5eg3L0HU1qs4EzTe+n2ybBIKdPywTYGYABwfaksm3qQzSwl1xNVEAzgxXAsTB6iUHCpCzwEJ3txvpax+50ro1863qyolRjU4i8B6flLArdVsM5GymIRczSTcf6jB74kpQ9Ro15gByBrJImcoBUEsVNamv5FjdTbRdp5sKN5EamxOCp/nvI+NZZmiTlJBjyiJReyV9kuNtWntZelpIHyakzKw5k0kvPnTlhin3HgThr08gflRV6zjHxlaGu2TOueFOz9di+jHbLNUuKeIoHT2J+WHj2qxfScr5w2ZPe/MVWsFXORSO7+oLaF04vuj/7Z9aLCXKYIJKR6izABbYQX1RHh6WMAdTpXovk7GjMZLcD85U3fc9+cWFHr2GrEzt+HOZj2ojmJZ6krQ5pYxiwNn+D7SpZPR6TvL86nmeMvTWkKKgpZnTb9sGvQHNrGqLbshpEHz/wmARZ0kGAFSK1M41vgxN/lKRKnZn0Mj2b8HElr2hKkiAwk9fSYTEoBR42zfCSO4FEq+nRFjdDBxe4qhg03Qu1FE85s+ENqrLMU2vuMwiEXKI/KWgMvzHRNA0XwnU8/N8uVE1KzhWbSHAn7dzHEDB8qxlMsvA7NiTqrK5vb3H9SaFUUVo/lK89aZaSKeImAoiziWU6RC7GhLRLJ6rPQZRfEknNIgnJuXnh5EqFNF47/u5/TAQz1eRwAWpbuTKiNvg/uLCLpxxJy2pZipYGkkdBll54Lohxqc51J0b6d8gYFNNmBBqmrI9TyLDX9NWCoZ3d9DEdOZ39VKmbzK6eatAm4cfYYhL9hBk5Q8DHFjGEm0q2dB/XyvTdYDR4Iagp/bapDfE4U0R32qFQWdPWd8XeKno0hExcqUkkCRiJ/K1GuBUj+J0AV59kwqY+YBrNhb182RV8RXypuUITvieowDkro+6PhUfvD169oD164L+GsFm7dp08jo3CFx/S7LCOjyuZVQgGZP7Owd+GmkbVS2u+fDF4Hlm4U+D/xzHvABWP+cr309OfCAKwDrz7+AU2fZwoiUhEjthze/X4dDe/aQ9aOEb3+EqYRlM/C+5jexB7R3WKQMhYs3Dn6Gw3FPrU3W3lEH6Z6mQ58eovlk25GpZb7TV5aQ68FQbI59iK8bMr4rqjvnUEOkvBhqbSZv7ESkN1rS2Q4HNsC6YEsUVn39KlR8MNtazlTmcyR83c9h/6tXCUiXSOhOBWiU4SUlNG4s4Z4xCuUfM6lyInJ/cOIdEpwQ4BsWTkT4aX9cD2AkvqlKyMjRxLPoA1f34tQYLRIi2aatb9O1uB9qARCdAVjHhuggcRtXPsXqfe87RWVQdIbaxAKlEN91tNMIrNdXBZCUt2KkgERE7hcuabCaS4/sLI9F9qcsPZLEAUgkgDc131mPrhJShrreHKhBp4R8T7C4hH0qpNJP9cAMWJTKuZy7Oo2QuGPKPLGNGqIN/aQ35zDlzTnr8PuGFEHvEMcpqFSIiMkjOd4yikhM5kDxisiRiSRZMZKOJwl5b03NpVSksASKaCEbsuYovjhR0dqkIcNtlOie2WUXry4LuMaRuj7XAjObrcbVYBbdtmbFblR9GWdW9KSyVEcxhYNOrbqmfF+loohqVS3vEjU3XObaEtJXSQSw1v8O/XZO/a3hNwhp8e3/DMBSxqdO96LPg8Q3GP6cpWLyDlT4A729b1SegA0COBSj1A2ed4s+V5+oBwbIGNjP/TzxH9YewrOH1rbjBs6ElDk3np3Q4PYaxyRolDLrFyxDTQJcqoSEunU827yv3yjgzFkBZwqfwdnCLEWsa3BBDE5e3Dweiuqh6B7FMmSQ0SExfdGRHzVvXyNgQFPrV7y66YzZglmZlrev6oiIXSdAMjHfZmsoIk0Z9xt+v4k9ob3DAOv4nuMh5vGMA8gRgHX9poCly9j4UoXJ6NZZhHD9HPynst80KWdhxPWZZHf5sc81OMtxhj0OfoNeLVdjUPJi6BhYCHQYwNugfqJTzkpv56g61bNvLxGUWku2/5AW17fdQK+XnazNKocgnvSj//sP6LcysGt7knbYl/xrM4ClmHozniePhJZNPZuHShsE/BIArBgBv3wfzsZ64ZKA1Rx5fsH8MgjI/lSm5lYsM9IEwQG3oqvxWQGs0ychTx4IjZEdSlA9MWchxHcbDRj8P9Vl+vr9QA+oIwfVhwMBA5tDE/nS2gtRc4ydn9pKzUBfkBgEiUI4Mx+A9YE3yVfd5wEvPPCvB7AafTsUDWpVwBc1yiI0OSNE9sIHvqKf0AOuAKwZ82Rcv8V+LBzxm9idpncbDTF/qQ+6IsOCsdCd5FT+WvdB7WySjeJa3a31kPpFahtlIHWnapJZkmIv/LAjDglRqN/cFkD4c3tzBN1JYm2icMwghJksZOYm6DA6lSUK63vNJOR+wtJPSJ3JWNPCn6I2SiE5MlpAEoltVk74AylySmjRTELeRwsRq2H+Pb7vHjK0Y0SWfHt+v/TGnYflcd+P9ZXpcwkZqnu3aHY0zisLtHhznY1xWo29OJTzNgIFHW5mam1XxRtFO28mgvb8EfjN/dmuiqlsTSS07esUwLJTnEwNFOljgloJr2OSmch5k4GGxLtD/Du8kSLdvXtsU6dwNLi6jitXBSzn5J6TFHmBaYU2OK1SPygrZoc5B3mJN4ePEtJJQI1Y1hxtDmiTMC/yEka8PmX9omOy/PgphXOZeAL5COxTLO/XIpI7UHBTR04pvFDe3Esqq46ACwuT0b2zZaM1aul5VLtgAQ3IgvLcQOFvsrnsIvoRcH4G2/BFCcDsVjtwKskDa73fNhxCw3c6xA2Zi/PTdYh+zJos2E1E0owy1v8t4Mw5+0gfAioIsCCjCJm7XLRX6lIysiduEgm84lXaULMJQr7t+T8HsGhcBw9pbVIg0ybcxg8vGWcg70DzKfb4lUCy5N7eOqgjXHjfKI2FP9OAUqUVS5dWBkXCuLOAHl9AY2RqAjRGOVlyPNgh4NFuxxFYBTqJSJZVhnrzTnxlND89MQJrCLTZX34fbmVnJN1jQ8uibdLc5iaiYzQYP4ldk04HEHebM9PExSCgN0sHlg1+iJ22CWrfKPU/Sy1Dy4HI+qQySgwSXYoXKHUDhrSChkupihu2AFJqxuHnygeOACz1hlJJ8xPuXYP/eMatRXw0cYPs1Q4pbYzSxxR7FRiNjl8vQ7MkOTE5ZXn8+rsWj7iIz1YtJOTO6dm9cnc/XUUuEUh5bdVJfPd6oLUZMW9xxFP0jgem27UGhjVzrSUPBn2F/Zm6mg/LFLv/QGPm2lIsSxYJ7dt6d22UHsyLBgQFyRjwg/vn5/YdAQuXsOckaxYJ33jZtwdu8LjIkQG2QKUSLelxAwAIwNKdPYCY6cNhw/5P669ilZDQfhCgdRPa6U2HvrL/uAcoGp7WBIqpefH8x3aF8IBTDR0wA9O25LM5BCCAnYB2Z+YDsP7x2+rr8D/sgX89gJW/Sjvz7dNqBVQqXRj1a5VHlbJFoHeXR/Afvun/ly7dFYA15hcZT56yH4suHUWQChZvfhN6QHuX4xX6YQrEHLYE6d5er/oE1Fi7JaqUCMWVBJZW2GBjI4S+TmEmhqUfQkcW9VBjq0KWBij7uD4uBmlR+RvGj0F1l61tC90zdmxYQj8EIS8ZEffRgHpYE9IHA+N7IOUrxl3lKA2NH8ulJVq8vch+tG/ogTsGIH16GTurrcJRDZNFW3DwOmq2cSzBTqdTF+O747mBAR+82p63PubL39ss4MkBtiBeW+wclpU+BZ7cmC9vigZOjOC4CQKB0j97xhXlapzCrUvw/4VFmCllCSAkoNBZCqF6I6WoxlEqyfGT7Lo6p12M7GcWWIdg/LwZjA1tN/90sk2bZMU8AW+OnRSwZSuXqlYmEkNzrXJ6qaRKOD5lOZe3bP0GAWcSZdoNElCNA7D0SYCSQ01YGnUd/V8etbbTKmkuTAh13u7NZVoQqKtYruYiUjpQjFMTc/P8Mt7MMxI+UEdhEKcYcYtN/u0WytzMY20utOR15G6c3WXz6nlHSZl/tj+AHX5s0Ttpxwm0S0huPq1XizgopPWXrwpYwQGO1Kmfv4wh/dnm8fU1Da5y6afJsssokJjuoDuwCYZl09hYK9ZBSPfB/wiARZ1evKzBqsRIpbxxx/Dta5bSrHZgQrNuIBU5b23ZSsFGnZEiPCjSg7er1wUzZ5RieXJLaNnMzSY+OgqBfRtZ68iCgNhZlhT0myu0eMEpDPJ9KQp9dn16EfmigHKba27C09QsmndJ6hqoGsDSx9XRPd06iUjlgsg9sPNnNn6JmbPTTqWOCuhloFqcDA13oEHqiqSy6NYoxaZbLZtU0ZhpGz2OSHEEYM1foMXDR/YbSuHJPfiPdMzrZfM7EAucGMZ+B2L0Cfj6u0Uo4ZcKG9LWMachUxqlYhTFSdGcH2rEGUXcUYqpn10SIbi2YCdaRDLASixZHfHtGaDlagy6oztgWDTRWuS0fw0cyD/YnP6p2NNnGszmwFtaF9H6yBt7/UaDKdM5kYnkMnp1d9+G+oCDPxjwpv+PUZYy44/9yOaAoAPKjPZ+LZBs/xqYljPQUBmbsWJdGFsyDtKPMWZfG5/GA+p0c55TjkZkVpu8wNYzlFo+50wlPOLeUd99I4KUUp2ZD8D6NPfW1+t/0wP/egBr/tJN2LD9MO4+CLfeweBkQfiiehnUr1UBBXJn/W/e2X/JVbsCsAYNlxD1jl1I394ikqnCd/1Gfg/tk3vWQvE/zoeY3rkSmidu0R3bAUqZU8xUshpK1cyFu8Yo62eN1zdB8NtgJAmS0d/JqaUpDjjxM1tcabQyqr+uhgfBQSjcqYHNUFYu/gaad2wxWfqLA0i6zDYaaFSqFej/tgMMcYybIW7En5DC0ju9rOenNLi1irX7QgucToyCv1p+P45kZyTcPc/cRP9Go+3aonD6gB51cTxwHqJ0uazfF+wsImmWD98QqMd4MvN9TKizE+l1QTiRoYndeOJeaXBmPLeB+Ahk8tSJEP4A/iO+tevP2LQLjFUbOgWwJBE4Npg/nZVRdpxo5g2iDa9iPfJtQqbdLEXRWL42jK372PSn3nR9XkNGhXKuNxXqSIZS1ePQMf0Sp3OiU7ICGJqihMtHISpKg8nTtebD6AAJqMwBWApnzt/Rd9H5BSMb/jIoK+a4iOy6vVbAs+PMH85Sl2bM1eLFc7axdQRce/IcUxk1SfT334jImFHGvBlPUPBRJmszGWveQcZq7G9n7R8aqIXAqQOu//YElhouWIsPOXAePYWMiGvWB8e5jRUEGWXHiGYVy7h4DcZw85cqk5ppUy4NJ+6FBme4SByep4gInonoWTG5RGUk7z/6HwOwqN979zVmpcAir7eiSSR7V6r9JuYoiPgfJnt6u6zl1Gp/n1eXQQp1vKmBW3d8UVRX+/ge/EZx4EhYOsSNWGhu9tI8Ld5y0Ul8XxlrSMj4mWRWtiOAVTFvFDInTtGCnqvljZYjOgn7YTuQviGy64OtbRJPC6WIKeaOyJ3ezXzKU+z0zRg7NcAm9YXayhUPZOP29hR9RSIctOl3Z8QHFNCPKZfKAUGInczEU9zVVwNY6vQ1qq+k41OUF0V7Wec3x+vF96OOxJUgo1nn35FC64+LGZubfchz3rhLx3R3Dcr3L19pQKneipFoAIkHKPb4sQZXp63Dl1EsasxY/SsYG7OUQld96S6dgGHWEGuRK36lcbDUGLRpyYBGUgal97NiRGPAR2h5ci3qKL20qWV09gAEU0dueZq668mYvC1jjAFODv+wwyz9qjnQc+IEyhiMX3WAsYb9+sPbMfrKf3oP0DM573f2vDhatxtWzIRuH4tcJ4XVPx43sBFroAMSOihxZj4A69Pfa98I/jse+NcDWMqtunj1DtZvO4Ste44jMiraegezZ0mPBrXKo95n5RAW6iNf/L82tV0BWN362f5QOCJQVKc1EIEtEdl+iGlvnIfflL7WJsRs+VGweTmEizHWz5qvbo6gGEvKn6uw4uPDdeCqoUJUE8QbIpGlF5c6JgOr5hJwomzaLQBIwIj2EJ4yrpYL/hVRKO6gzaXRabsrU2+Eaf+yK8hS41bWW9hfkRG5V70XjqXl+0DW26r+KcDOviR/wyQwVbESQ0wwfISsXXUK3tNkb9G91Upk1wXjQAZ7fp3oJ8D5aWzRGpQWKNzL+1NXtd80UW8Q0N9+wZrw7WCYSlR1CmBRO+r7TJw5f6y0VW/7oeJ+pF3JUjRNRcojoaNtyqaat8mTTfma9QLOX2Ab3nr1RDRI/ofTadEvpAh6ueCqUioSmTSRSieRgAocgBWQSkbRH0TsiXmENs93WfupFpABi1M759ZSR9pl+UJCukr2i0FSCiJ+I8Uc8R95+nyrfVO3toRSJSUsH/cWmV5bhBHIcrd8gtDC7t8bu4doEcDxB51pfQ1jkzIOvs5XnmBYSDFE5ahtw8/jn1JGMY6fidJ/KA1IMTVIYZcmC6DsWBM0AqC9chp+M1g0h5yvOJIPm/aPAlg07ucvNLg3fQmqRPxpvY6TAbVQMpYp/NEXcWOXQwph/H6e3Du1yhrdM7p3vO3YpTGn6SrmCVea7vJJGGYOttYRcxdGfC8Lv9LpcVrEcxLrfF9hxWXkbCri8RMN5v3G+syQXgapW3pilHYmaST80YZFYVK9B5nbQks3NtFI5ZAI3xVz9w4I6NsImmh2uHKhywYsWmf7YtbJQJUYgMeqsn4pIW15D6KvCNx/eAv+Yzozv6XNjPifmNiGu+tXA1j3HmiwgEuBI14Z4pch07x7i4B+TElYDkqG2Eks9ZrvS82F2Pr7PxGvM+F6plbQxhvsSOI9Ifl3dy3q1OTMGWV8+w2bAySqcW3kAlSLZjxWxvrfwljLcaq/uj/iGSO+McXu6fPhUPUZVv4+8zOlAsH9/WUQATqxsmoAACAASURBVL43pr4HWTLLaP+1Z228D/m7N2PztGx8pAanx7DnkdQHSYXQU7NTdE2sGN9+EMSS1Txtxlfu/7gH1L8nefNKaNHE9t2n37Yc+g0WBVcyirxfju9t1lbuDhN8ANb/8YngG97/Vx74/wbAUu5KQoIRe4+cw4bth3DoxEWIouUlJQgalC9ZAPVrVkC1CsXgR9qpPvvkHnAGYPlrDej/M/uBIdn2IQPsFyaBfRoCsew0O4YWukEfhqpoIsIRMLSt1TfEj5Kta0O8kRixZ+sVbeAXbwF6vqgloXQpxxuBizO1oFRCxYpH90Jy8TyS928JczgG8S9EB2D+InbirKSg6U7th+F3e/UlpS0pbRbE/WSvmqe+qWqVnoP+MqK1Gvw/9q4CzIqqDb8zc2ODhV2WZVlg6e4OpbukREJSQkBClBaQllBKERQQECSkpJROke7u7lxq887M/3z37txz7uythZVfcb/n4dG9c3rOzJzznu9734iUEVjecJk9ecqYWJxLVQskxc4buVVL08dhe0qmfCYYVJQd7f1C0d1EIzJ22ojw1uLj2cjjG4QN6d9LkJW8JMhbQjPyAiNvsNc2VYXfJzUSFEMk/kruom4BLCITJlJhzQr1sGDarxLotFqzQQ0OI+iH3va/KdQ1pvckh/pOnhawZBnrW748Cpp7IOfVh9zRSX1d4zy8VJ2DeiNSl0aHlK7VArUGxcQKmPytCMNzAWWjWTNTZFRRqIeMA9H30fAuI4vXQndc3QfiFyKeIc0yVlOQqXrC5yYpN0d6QLBYYcXKW7fhSwsCYhghb/FeT2EOi0d23Uyk1V8YkIabarebXsOnwQxE/iBFDkxOUw4R5wWc5k58+RBAb+epHlAp1keGT4gK6dIpmL/pxYrJlgeBY2e9cQDL2oC5k+C3j82BjeG98W7c7/C/e9bevtgmXWGpysL2vOn/mbMiKIxQs5w5FAcPFPqdnhN6XjQjDzbyZHNn+vBLuXQ1xLTrD1UF9nwhAVx4HV8O8V8RDxaRohM5umbeqttp3FbPUjzD0sZL7PlDJV8cDm/m0GQ9kXt4RhWd3BC5+wxsATHiob2MJWUXYv9VR0XNHLFADiZECoOfihKDvPO+ooLpG8ArAyaG04ny6wEsPZeaAxF4bAz8PuXUKw1GRH7nXJSCQskptFezjm0X4KlfFFaH1UVxcwimfC/i0SN2vzyFY3o1N8+IWMSFAOs3w+RddqbfJJSOYm1OjCInCQyQ0IBmD6SM+KvhXJA3Lm+v+57UzzPiByOeMG+MuLP4b9vrHDJ4U5+rNFEPBBzhPFX1BwUuy46OhHnaEEgXmPesNa3JjOhuo6HkKvw6zUrO+w8bgV+XSTjFfStq1VBA6sa8kZo5qZprRgJJv6Xt70ADUbumgrKlkz2w/mG3N7k5/9EReOsALP4+PnryDGs378Gq9btw7hLzZAlI4YfalUuhYe3yKJzPPe/Jf3RevLFuuwKw4qLNGDme7RRTu+BnsErf0u4j3iKJz0R0TsTrdacUGb7d60AgN4h4S9e/DWLA2tNu4UeQLDagwR33yvlfRTw8zNqTP2o8wuLWYW/GEMTkLwVLrRbAXSPU6cz7wy+diiLxp9FRvTogOIaRRPN9kIuWQ8zHCUnH9f3Uq6HdD1dx+LFt47fgwxmINrD2HYrOg3R5yjh+2LesQMyKTdiXgoFlvqEqin6eBKBRfE2HxkmIiW8T/dTvg9+QJr2ElekducLoWsQ5EadnszYH5laQr713C29Pc8C3V30IMZy7EZ12D5kJJX0WtwDWqZkinl5kbaL2TOT4eajeUR0vOnK7hIaDiJB5u35DwCyO+8jT5pXy6tXGKOSuXuyvDh6DfB2T05THBym8e+8dOCTir9UiSnEAlk9GFcV6yDgfF4HKt1gYUR5jILZkcAyN5eu9+5eIyxwxeVg5BVnfc7xvJDxAKn2auQvR9XQv6bqe7JjCZD5q/xKHBzPBBErnDfEvte33rySEc9M+qv4DtMnAwg5q+oVjdtqquH9AxMVlnMJaCQU5dCe+ntqfYE51UBCYS4F45yp8RrAwOKTLiMBvF/9fACwKdaKQJ81iuo2yhuIaV8yw/yZnzYuYft966q7DdX14kzOenVmzJVzn+EmcEb3rKzWtmg3D+kX2n+n9G9ugvVUFldRQXZkp0EZ2/uy5gG8mcaFbqVR8/qnn96DGG3Qn3R38UYOJcJQwpcUq3TtOT+TuSR3OZ+hHEO/ftDd9XMjPeGBghxDEfVVR7331ngJ6/rw1PfBnKVsDsW2cq986K1MPYJHSIgEommmekdrfCXi9XHzX9SBvt1ZLcD/gGaakKY8mKbJbFR35eqziJW5CgLwZD3onrvmdtd2ZEuW13kORN5JxWL5oPxRiyXLeFA+9J3CkGIC/Wq1KoMRKPFzEx6XZF/1l+Ji9D+k/eUrAEk51MzFqglOnS1YPTM26dZER6oanzauOv0KiyLsCjnLPo1+YiiK9PDyPzyPgM6kPxDvXHGoUAgKh9h6PyNBk2pFXuBX/6Cxa+LbWSI1KgG+0dOYQSBRKM1JYXV/0G2zbzuZ5xfIyqsYrBbt7z/2jByO5cckj8JaMwFsNYPH36OzF69YQw98378HjCOZunzljqFXFsH7Nd5EuhIWUvCX39x/fDVcA1uMHRkyezhZjzkI1hJho+PbiPHSMJkR+yzYHr9N538GtIDy6Zy8iqD/zkKIfO8xj5NtECj14gEVzqHKo9sYWCTc2sg9g5piFyBljA4Li6rRC3HttEXFexOmfOEAmp4J8HW2bi1VD/0KL+86VAeNqt0RcfZuIgTu7tUPCtT9YG0KKKzgiCaAF7L5q03AyPSOPn3g5CM2qOJIuEzfA412PcdxvhL2apASNqFC9Qt13VXdALfQSi9Ml9Ih6eFzA+QVsE5mmkIpcLT1vIj2NE13Xh6TSb1Hjl0INCHQLYJ1fJOIhpyyXrraCuRwxfWAqFb3bPYDvAOZtQWVS2bzp+VVSUT4PG+TRYw2IYaJq6Pe5BfWfrsS5uAinXZ6ZtjLq+GX2ZjigKMC8iQbkesCSv0ihosYQGbcsL1HqJmu/K84yLef9QyIucl41aUsqyNHEcRN95w4wfSbzxkubFuje5dXDQ/VE7uT0+EmLm7g0k5FmP/V5idrDHcNmnQ3OjVsCtk03IEccey+pFZ6iaX42BiXNabEyrA6ubxRwcwubo+HVVYRXS9wcvbhcxP39HN9SAwXp3lEgRDyE78AWrIkpgxA4a83/BcDyGd0F4s1L9rZED5wGJTAN/Po7qmsmNrQ7KhoYM57NA2dqfAQkEaCkGT0n9Ly4M/PccZD2sbDX2BafwlKhHp5dFXByOrtf/hlUvOQU7KhMAjn17fL1AQb28zw/L1wUMH+hhHM5zmHXOywMvJF/NkwNqZCgyV9PlPD8BQ8QWBDqIsLV56suEG+wezApeAZumXJaywxKpSKXrCLoHneoY1ZRZogMMRFO6M6ETeLqf+TVO4QS8QAWnTeNHichNpb1r+vHFoSlY8X59moAIYaF7BPfFvFu6Y3ACwIx7HOg6QpcD36MnqkKoX9QMaxdJ2I/J6ThzPPC607EJ9y6Q8T2HWw8K1VUUKWi43vs8ee9kDHqlL3oex0nI6B4fu+q0nkC04ze03kTihRxzD5xigQKV9Tssx4ygoIc5z+NjSWSpUmZjbXzwCEBa35nc75EMQX163kHas6ZJ+HKVVZu6w9l5MzhPXjm3UB4TvXiuoDj33Pe2JlUFOzm+j0rPLgN8+S+EDk1TWstwaFIOeJ7PPNNbX2PJtvbMwL0jNCzohmdb1MosaQ753YmHrG15hys57zGnYWy8yOVHEL49syb5J7880fgPwNgabfCIsv4c99xrFy3Czv2HEWcJZ53QRBQulhe/DSh3z//rr1FLXQFYF2/asKseWwxlSunglY693bh6SOQOp5mzgCBVx0qn0l9IZ4/as3+0mhAxs8Z8OArGvDx0rYOLvSdOsgIz5BwAffgqIgLizhPjLidKBRl85qKbfkZLOXqQL+xT1NMQa5mCogcfNhoA/o+aItQS0IvrJiPBkAuVdVjF/WbM3KzL9pHtipVrYz7CX8U4rh4DorokLMdihTmwjenDsKtC1lw3odxoNBGOlsD7xa7HhtIpNDrBNzezhYZq4ocw70qdzDXCacSEYETIbhmzoAQb+p0loZ4XojvxT6nCMCattEa7ulKhZDSXlkj4s4u1qaUpVUsOcnGNVMmFR3bWhxCFGm2aGVr9VHE8/BRnKqSCAwd5Bwctc6hOGDUmITpKbTvYMx9p8OwOLQGyvum93qIjq034OU2lvyOpKLgRwpCs0cj33XmzZJKNOF0pg9dlvv4hIiznPx6cEEVuVs5bha0jb5WSLasKtq1fr0NBREuEzCoWcN3LiJ6Uw773zdTP0DT/kEex4MA379+lVCQRRLDWCQaDcsywvxcxkBsy9AQF5aIeHCIzQfyvkpbInHPix54Jr4i4i0SoqPg+1l91l6DEYELt/1fACzijCOPEc2ixi0BhVwThw9x+WgW17gT4qo7glqeBlyvGkXAbIp4xzn9c0JlDR/i+jnR6vKZ2AfihWP2qqM/GQmlYBmrlyx5y2qWuoBiBbB4TiziMDMHqxg6khPmEGz1erIjRwX8tlrCwSIHcayQ7btCpgEt+vwLFok4d4EncpdRpLBzgEA/1lODv8VVU0FrkVXKqzBuEiBwj5CSDyjX1nOb+TaRKh6p42kW26InLBUShne7GgcewLpzF5g+g42hyWSjB4iPqLcWQUC/8JSp/kaNWQzVCY/aie8lPOe45IY0WoOz6e6hrl9mzEhbGX/tFrFhMxvHMqUU1KmVuOdQ36fVv4s4yD3beu8xSh/bqx0CY27Zs17qOBthxcM9TRP7dalHQ5i52MgTn6xA9oKMf5ISfv+jAffYGRu6drIgzDFyFHuHSlA4Ly1639J7l0w/NhRSRQCfN0YqpKRGqlnjhjKKFHrzABZ5PZOnqmapcijI38l5HwTicZvcD0IkO8CmfErG7DAPmAD/tGkQ8SI2GcDyZgL8i9KcOClg6QqOtzCjCvLWTWCRz+HXm1Oo9fXH7rar8NsqlteTl2IygPUvmhjJTf3Xj8B/DsDi79jTZy/x+5a91hDDk+euWC+d2s4Iaf/1d/df0AFXANbpk0YsXsEWREWLqGhU3/GjI9y7Cd9h7BRYDQlD1Ih5SdJr0/wJMOy2kRE/9DMjZw+mwEQqR8MPt8TRY2wBV62KggpOQjJe3hBwjFMsSiFfRpmXNqW7mJ5jQVwit7ZJuLaelZW+oowsdVTr6SqdHOWP3oWPngxJ0K/oAd9DycxUAV11nKiQ9ug4pkoNla08KNN+X4rR+RmJSMmrsSi08xNUr6KifDnbeFOIyvln7+OmiYWHUehXYkJQPN2Uh0dEnF/MFqKHM13HqaYXnKra3f5TxNW1LG36CjKy1E2axbN5Sn9IZw/bm6umTI2ocb9a/3YHYOnBBkNuBWtvsjYWKKCiaWMZvp83hBDFxtsZZxt5npCnh2b9e1vg74Ke6eEjAd9yJ9ApU6ro00tGm/ubsSWShRXx4782rB6KmtN4uiX26w8Oi7jAbe5vGYDbYSq6f2JBpus2BTcymsE3s7j2CEzgaZhLQb4OjpsNeqZWcAvGQgVUNGn8egDWr8slnOI2W1WynoXpZB57u8+mv4L2n3reXP61R8TB9RJKRrO5Zs5iQf3a7JuRVvLFkfBmOPmjiGeXudDhTgpoc5UY0wN+QXkV5G1nK0MfOp1q8U5ExanWDdgbM1mGX/da7FkRRURNXW8Few1bV8C0dLr9mpIpJ8g7KzE27UcD7nIbdCJLJ09cMr0KmzeeitZx+7INhAdMsThq0A9QM2ZP+A4ur+DFLTjcQ5qrFMKpB9aGDLSAvHDd2c5dIjZvFbG93DZcysa8pcYHl0XLgNwJsm7bIYL+aUYci8S16Mz076wZQeNx3qekNWnr4ioe7GTfFnJ6elpGRYOGiXumKLSGQmw0i+k6AnKhsl7fTh7A2ndAxO/reH4zFeTBw1uC+zRsDtRQ5jWppT09S0QEB/SNqrcex8JvIq8pCJvTN8CpMyJ+5fiqEsPz5KpzpC57+ixrf7MPFOTPq+PT6dEIJgvj5jzccQXyFHcEoNwNXtynbZEq9rY9ydVuPyNtAcdDh9k/S1Y1UM3atZGRjVMFJgCdgHTeyLOwcE/bWOs9ySpXVED/vLF1G0QQv6BmNasreLesd3m9Kd/bNE/Oijgzh7WDf0fyZYhnDls53Hi1Trou5ykKmsuBQQHw8zEkA1jeDvy/KB0d1BKJu2bugFrfbjUhkNt5vB3t/jt+We5n/5u8DPXvKn4okgGsf9HESG7qv34E/tMAFn/3Ll27bfXK6t0lcafE//oZ8H/ugCsAa/8+I9ZuYBvFcu8oqFHNcYEkXr8AnzGf2HugZMyG6EE/JkmPjOsXwrjKpuR2I6U/CnVl4E16yR8znzTFipXsZMaVp4glGtg/lDuxV2NR9XlNa7nEf6SEhuPKahF3/mIf2Cz1FKQvr4BClmbGE0F/9qATMliYZxDlj/p2bQLFQFedJzd7crfXLE9bBanzKTh/chsqp2BcEEGRFjReZpP7JvUrOq32/6Q6jvqOxUNjaXv+3K0VBBdIugXry1vAsW/ZOD1I8QLbux7EpDQJeUOICJwIwTXTJO6T4sabZo2C4dAOp3PKHYB1/5CAi0vYfFDTq9jAhXfQ4p4W+T5ftoX4gG1MoofPgZLWcWM2dboB97mQPX14Dd9PCuOgcA7NtFDbbg92YOVLGyivtx0ZGiGHMZXXw3V3j4jLK9l43zAAp8xAg3oymqeZj0hi4Y+3C5lawU90JOTXrj2/JuDENPfk+3/+JWITd2/LllVQ2wnRu9eNB7Brt4iNnBdG2cDTSHUrn72Iw9lPofvHCUEEfR2/rxdxYo+IChy4aApS0aA5Uy6iPLeytMPhcRKiOa8v8nj0DUkcyKp/JjT1R6pDrzyXauYaRPmkfKMAFoVYU6i1ZkrqtIgevcD6pxjxCD4DHVXXokbNgxqscxFxcyMXLBZx7jybdzxJu57bLFO4io6cEpyrYvXcSlHf/AbVP4WVr4x4yzTL2sDmgXX/IHtnZmuoIF1ZBWO/MSCSRbdhQB8L/Ngex2nVNHf27RexptYa3E/LUDlX3pDnzgtYsJgLQQ1XQbwtzow25kSyrtmcoFE45fMusoaryHcVkDkPnHNGQM3pvdqcVqbPiA5WbjPNrKGimWxhit4YD2AtWSHhJOedWqWygkrlHb8lPqM6Q7x1mdU36EfQ911v5+aLeHSS3bcJNbZgb/YrMEHElSxtcPs28MMs9j6iMMxurxGSTPUTRyFxFWpGyn2k4Mebfp5ta7/F+j311p581h0Zos/Zkz/sNhV+BRzfUQt/FXH2HOs7iX2Q6IdmJ6ZLeM6F+Wm/F+gsI2U2Fes2itizl+WvVV3BO16CUBogq5Wpfd+87V9SpdPTCQQXUpC7pQ5M3LcZprnjElRJysKkMEwW6G9MBrCS6qb8w8r5YaaE23fY89r8AwX5dICz/T33ZTuID5jn5OXOczFtNaNbyJhexccdXYP/yQDWP+zmJzfnrR6BZADrrb69//zOuQKwtm41YDtTp7du/vUnfNKFYzBP7GPvpJyjIGJ6T0ySThsObIVp9hhrWedTp0TpTixcIrshFf4IbOxANu2Mo0VryL7hBsjchqf88w9gVh/aAahzCyQ8Os4+sLmay0hTVMWZcyIWxXu+5I3ehw5PbASTql8KyFnyILaHrX3e2JW1Iu78yRarGSoqyFxHAW5cRObYnbBwhADNl7aAf5TN5adZ1Xso+Utz7PGfi5cS+5AX7mmBfwZvavYuDWEgewZJEKx+PDZb1+svjAxjoJn2uz5cTwP8vKvJfSrTom9h2LmGzam8xa2ecmTuACy96pwlFbCZi9KpU1tBmZIKzON6QLrKFNpi+k6BnI2BKVTPz7+IuMR575CqIKmwOTM9EW+ePAo+bKpgwKM9mP+cbYD4vIfCmyKd5GHHzWW4vUPE1T/Y3LlqAM6aAX9/FYubLsR9mZHeH87YFKEG52VH3gWOTmKbSf8woHAvx1Am/aaKlLfKvZM4bxH9OF2+IoKUGjUraTyL4AjmgbW7wAH0aV3U4/ShDeO5syJqRNq8zawmqvjg45+4H4Dz4a1wbLDZQdGu7FcWCK45wp3WrcQBewdz4Den/KkHQlNOXojo4AxvFMCSLp+C+WumhihnzYeYflPsfTFP+BzSxRP2v+MadEBcLUdQy92g60/O+blA4UsUxqRZoQIKmjR2DxAIL57Cty/zpFWNZus7mOzULAlPLzgC/JF34KCamb6Cgix1FUz6VsKTCI576FPZyjXlzjQVrEVNFiLSj30MdmVojKzGhKq5pPBGSm+auSNyN83+CoYDLMZ3QeAQHPGtgno5VFg4L2ESIdzuRyK9KvrEi4R4nPTxCXw+bwAxiuOkig8V9TY/D2CRSAMJImjWoZ2MzJkcx888/lNIV1gIakyfSZCzF0hQ3YVfJTw4zMr6vvIObM9zwZpuX8YmSGMJAJGd28fRCJDH3OuYPiT50+4yglOz9gvPnsCX44B7LgZie5Nlbsmf9e258dkXyB19wP5zVNevoBayedVp9tsqEUeOsfdaw/oKihWxPQNRD4Aj3zg/SNC8lFauEXH4CMvf4D0FxYt6B7IdPiZi5SqWlygHGichpYC39+fBIQEXuIOjkOIqcjZl3wvjpqUOghJauXFVmyCuSWd7NckAlrcj/u9KF2cBRn7l+Bz06y2DxGGcGe0naF+h2d32E/HNOrY2SJ1aRa/uyQDWv2sWJLf2bR2BZADrbb2z/5J+uQKwVq8x4uAR9pF5v6GCwoUcF1fSib1WKWTN5IJlEPPJyCTpuXT5DMxf97SWdSw0CJXaMTW8AqZgbEj/XgL1t/ZtFGTJknABeGKqhOfciW3xl70Q6HfNTuB98kcJzy6zRXj+j2Wkyq5aeTaIb0OzmjnOolyjMKdktp46/eiEiHMc/5AmCy+8eIb3js/AofQspKz61hrIdNOmYtUgx2GU/7M3NgdsBr8DLzPKkigSYE/to+vbxllgfuxjT3qg9Ql8WiBvgqwXl0m4f4CNV/b3ZYSWSpx3i6v2GFfPhXGdzYuEzFKmOmLb2njx3AFYL+8AxyazhVKcScUWI2tji6YK8uZRYP5+MKST++zlk2qbXMARpHO3MdG3e/de0YFklE7569ZWMObJIUx9ysADPt/5TC3hnwgG55ubRVzfxObhJSNwIZ73/48WS3HH+NRe/M4MjZDdhXcX8QmRaphm5iAVxQc4LgaXrhBxgvOocPbcezOX+DRRUQLGfM3qLYlLCH7JVBi3lvoTg9/3HA41/UcJpI5X6SXAZikwsN1vuOj7yF7l3pTNcGMcCxcypgBKesGT5Kxf+0cYwFHhoPgXMsypVKvnKXmgahYw9ifEZMjxRgEsw+E/YZrJhB0sRSsg9mP2PjbsWA3T4u/sbUyshyyFKFGokmY8ge6u3RI2bmbP17vvyKhZzf07gLjtiONOMyVdOKKH2lRAD38tIfohK6/wpxZE3hNwgfOCIo9T8jyd9qOEu/dY2u5dZKT1oMD20xwJV26qmNNapzqauQ0kwTHMS2ufXjmre1cZaZ148RnnT4AxPtyd8i5N1RdHAuqgeqzq4H113ghcjn9uv/zCAjp08caE2Gj4furIdxU5fZM3We1pNADrzOVoTOAIlSmBs7YkCFnsOQ5y3mIJ6iTPUPIQ1Wx2uT1YV9BGnr4wtDoq+mbA6LESYjjC+AF9ZPj5vfr3YvR4CTGcV9ugfjLMPqw86dZVmEcxldA7hizYUfMnrwnSidfwcr9xKBbNxAZi2g+EXLKKQ//1YXw8QT2F2FOovXNTUay/jDXbHHmsmjaRUSCfd+NCyo6k8KhZjuwK2ug8nxI1QV4x8d29Ii7/xtoRWlpB9ngg2/jr9zBuZyq5WhWxzbrBUslRLTcZwHrFG/APz6b31KWDhs/ciOKY5oyBYf9We6+et/wCw7dWt//t56tiQN9kAOsfftuTm/cfGYFkAOs/cqP/qd10BWAtXGTAWbY/sy6OaJHEm3RgK8zxXlL0u6VkZcS2t7mEv66Jzx7Dp7+NuH1vhhDUbsXU8EqY02JVWB0rjwfxeWhWsZyMqlUSLgCJHJhIgjXLHzUeaTNcRkz/qdafDn8tIvohu160twLftAq2bhewfSfbeFeppKJShVfzRol7IeDASFaWYADKjradRA9eNQRzCrMNfamjBVDweBnrtfoBv6PMhdnYGbDc3n7iziIOraS2tT89Q+rzTAn0Yt2raFMhIe8JAXEEyGmWu5WC4ILenRx7arN06STE04zrRcmeH3K+EtZs7gAsUnraP5yNr0UENvuy2rp0kpE+TLWGMhh4FbQ2/WApyxZIlGPzVgE7d3H3vbKKSuWdj/eGTQL+2sPSatxlU58ex5gnjMtLa4knnipn43NtnYBbHMH+eaOAyybbPF9ddyUeBD+0Z/s9fT0UMTnn15KjBOwbxtrqbB6RpxR5TGnm7Ln3dA+dXZ80RcKT+JDOd+QbSBnNOK82Vd2MoTUqeSyWQDACw8pEAYHcdPuh6VZsCWbhTuuU9/HiR0YKnyJcRSE3p7buKtaTVBfsIiMgqwrzpD6QzrOT4hRDJiM2V9E3CmAZt62AcQnjuYqr3AhxTVlIN5G7E8k7b1rYtMfBJmXSsyIWcRw+5IVI3ohkenW5enUUlPJAki8d2w3zDzYBDTICRGJ62kKLdvd3RHNKD5cRdR8OCmcaf5A+hMyZJLu+f5OnSrhieYplDZfZL4VJfjgY7pqyQE/k7grMNS6ZBuO23+zlrkzZE0rmRkjJIsNB76PtPoAlHnfr0UVGiAfQTStQvHcDPsPa28tXU6cFJp9itQAAIABJREFUqUomxjQAa/2OGCzjBDjCM6ro5IRQ2fTjMBiO/mWvIrbzUFiKJAwn14t/LChzACuL2p6LkalLo33KvPj+Bwn37jPAsXNHGRnSewfUOOvjlyMc58qILx09uui5pOdTs0umItj2zgR82My7bxS9p66MmIpykQx8cQa60NqA1giaVSwv27286FvEqw9KJhUyB+KFllGwOwogIEozd56++nGgkCwKzdIsLJ2Krh8n/ZrA0xwj4RTyyNaMqBfII9s0YzgMRzgX/vgEsR0Hw1K8YoJikwEsTyP977lO4PKpswKOn4DDWoJ6UKiggiaNXD+HxhUzQF57msU1/hgD93CKvwD0zzs/MskhhP+eeZLc0n//CCQDWP/+e/iv7oErAOvHWQbcYlRBcLboNOxcC9MiFrJCin6k7JdU5tujDgRLHLZlCUPjZuz0s7xPeixOVyPBBkvjH9LXf2OTiBscB0+W6IXImu8MYjrbNlP7hhggc9zLpYZZYPAF9C7+JHFNUtevaofGSYjheHlIbjogk4qlCwai17uMXyPXtTQov8N2QtkkbibyPDmOg/7Mk4Ingn3VtjjLt2jVXWTezQCreyXvo1ETBmhpeU7PkhDBhfvkbS8jKPerb0i87YM7AIuk4fcMoAU921Bs8APU+D81t3XjsukwblnBLZASqrPpSY7dyZsvWS6Bwgg1ozAOCueY9/wcBj5ivDjadU9Kgc7GQs/Rdt4X0CIc11X/A7fD2IPqTuFQVYA9A7nNn6DinbGOm57vpkt48ID1p2tnGWGhr39vCQghQISsYuxD+MYxkG19vT8wojwDqJ2NAa/2WDgaCOOavarOQfySmSnLLXnYEMJSVr7muePtPOPTXVgk4cFRNh45mshIW1K1AjEEyGjm//lIxBWt8GYBrOUzYNzMLfYbdURcDabWSm3j1Vzp77h6bRBXt7VXQ6HfJIeEqOjR1TbwenCnZXMFuXO5fzcatq2Eacn39rotZWsitk0fxD0HDvDKnwYVZUbLiH0GHBzN5qvBByg13IJ5C0RcvMRt/FsqyKk7XNF3kIjfr4bcxIbqNmEQstI+oViRrrbLsdi2U8I2DqDQvCv1GaTls2DebBOaIPs9oDN8fJtB5byEHoeq2M+F7bVopiBvbu++JeK5I1b1Ns3kbHkR0/dbr+6hlkjb2P0wL8ZBwe/dsjJqVk/4fJvnjIW0f4u9jph2/SCXdgT66SJxIRInomYrih3FotIHrX9+FJAHo4LLQM8V5Yx03dvOPH0qOHiQpQxIGI5pOLgdpp9G24s85lMRWwsMRecO3gE8N28JuDZ5Hqq/YII0cXVbIa5eW4dmEjE1hdna51O89+2jEwLO/cLAJdFHRa5mKs7+7OiRdT6nisu3OS6vdjKy6EI5XY2LfhxSpFDR73Pv+uftWHuTTn//M1aMQc6z/SBdOO6QXTX7Wr3zlVyFnRabDGB5M9r/3DQUKkjf9xMn4cCbqG8xeae746IzbFkB0zJ2KGOp0ghDLvQEla/ZF/1l+Jidr0mSAax/7hxJbtnbNwLJANbbd0//VT1yBWBNmGzA02esK5/1lBEU6PjRMG78FcbfZtkTxVX7AHHvf5xk/adTZzp9/iNHBrR8n3lo1PANx5zQquA3tVqlgwdaYNIpUj044hiKkjZ2B/K+exxxTbpCkYG9X3A8N6KKsmNsC8FfFok4zyksebNJc9d5CoehtmimcUednTMEVSszD6xUL4xossK2WG71ZDjSWQw46TfIno+8ncjrKalt+l+XUHg1A9JeZH2OGl04N6b4CvWE9AW7ygjg1JeSul1aee4ALEpzcJSE2OdsfHf4AlEiIIrA0EEWq0y8Yd1CmFbbxAHIaMMf16ijQ5NJ4YqUrjTLlVNBqxbOx1uvRNWmpYwc2VWsfHEZ3R7uTDAUGQz+2J/R0SvG03jpQzbVIio2xAOImyttxrVMV+1FzExbGXX8GFeavuy9gwzgON9RZrQFPOe7niC772cWBHgv3uWyK9v/FLF1m21Mq0VFw6CwIMA/PlyNUYVZiLCzQu7fB6b+YHtOc8cAWbkF7d7y5zChwJ/2bPMuNoLvpmD732HlFWSt92rPC4VuUginZhkrK8hUS4Fp3tcw7Nlo/92vywBY3q39RgEs4ggkrkDNYtr1h1y6msPw6Q8ZlJD0iB7BlCvdzb3IKGDs1xyAZLCFm5F9/6MB9ziFQndCB1odxhUzYdy0hD178aDA8+sCyNNNM56bjXj5VM1tCQAdLixfK1rV7TTzBIjExAKjxxpwNucZ/FWWeRU18c+OKSHlXQ4BEdgTkb1m4S6I3B/O/gWZDrAx3RY4DrJSyp5PNKl4XErFXo7vKDGqcdK+TTDPHW8vz1KsAmI7JVTFdXcvtY3dF6PjQM+SZq6ANNOCyTDs+t2eLrZFT1gqOIYx0sXbu0Rc5Txw1hU4hdnlbcB9Bd/0WBRawxqGyivmkRgMicK8it26LeDHWZznURjQtZOjB5Zh+yqYfrV5V5Pt9quPrZl74fN49T9P9dJ9vzbrNzR8zsqwVGqA2GbdHbLqFVuLFFLRuKGcgM+NhAdIgEAfJnsnCDjGHZx58wxpDaB1yzAO3KXf3XmmeOrzq16/vl7Ezfj3OpWR3bgcWR+xcaPf1BSpEP3ZN1DTZ3FZTTKA9ap34P+XT5ZtHoQnTgo4e15AHJH8eTB6VsPc6IhIh3bAPGuUvRS5WHmMfjEcz7h1nbO9iJYhGcDydAeSryePQNKNQDKAlXRjmVzSK4yAKwBr+GgD6AOl2eABFpji+Tu03/R8RYk53femqebvB0E6uR/L82RGxwYsfKG+f1ZMD7G5oesVTpyBTMR/RTxYmqWQL6FY7UOwVG2M6EcCDnMkszwvkL7s1w190KvJaUCU8PN4ZCqXxoHIvfWiNjDFmdDrYWfECWVwyecje/vtBPDeDGIi0ow8dxRVZ9vC9cgsKSyo4GSfdHSiAZHc5rXIZxb4pUtERa+Y1BOARSqKpByn2V4fIEICAgNV++bF8OdamBZyXoPv1kZsq88dWsSrT9IFWnDpN0laBj2hMClskdLWlsgbaHOfeTBo6fMYg7AlQ4NEjcD5hRIecmTQOZrK+HmniOfPBex8Zwcu5GCxvpPSvIumKVyrkx0YaUAcU5dHqS8tMNj0AkBebENHOobnDB9iA/5e185fEPDLIgmCCtTkBBVUqNjQeS1GZHPtCUN1a/np/zPHAXm5jd+ForfwRZl19ib+dKARUh5kANbriAzcPyzg4q/s3RFcSEXuljJMS6fBsJWFjfm27ga5RtM3CmD5TOoN8TzzdIju9TWU3EUcb9XL51bidIHc7+ItevAMKBmyenVLyXPJwuED/Xtb4O8PjPnagCimHYABfS3wS4h1O9RBXjHkHaMZeeuS1+6jYwLOLWRjrJFcU7ojEyREceFnhXtYsPGwhCOcV1yj+jKKFnHtJfjooYAp0yQcKHoAxwuysM9egYXRN9C1eABtmr6Z5EjkTgck+ufh2NhlKHvNpr6rwIDtqVZDUdlgZKyq4FYqOPCJlSym4D0vQVXD+kUwrWLcXZYqjRH7AeMS8+ZG0sYuOgbo3s9xl+mKj8q4/AcYN7Ow9bjGCT1Vqd57+wVc4sj8t+U5j2mVbcB9RoM/9mX8wApe8VxqJYsreK/uqwFY/HuA6siZQ0XrDx09j4xr58H4+3z7sGxK0QabUn2EYYO9I48/dFjAjSVb8eHTr+xl8Ip52o+8yAv9ljungvdrKThs5Rnk+Nx6WUCgLPFG0mGEZhZBxRZfwe4l3KuHjNRB3nu7fjXOYL2nmnmjxunNXElMGgIvCcTULFfU98gUx8J0lTRhiOn1NdTgULfFJgNYiRn1/19aWiMQxQB5WlGYIM9F56pV5CVZIL+KQgVVK42DO5MunYL5G06YJFs+TAj43gF0dweCJQNY/7+5kVzzf28EkgGs/949/0f12BmAFR0j4KtxbKElSTYPFr1ROAiFhWgW+34XWKq9n2T9IwJiIiJeUCg7ute2cUKRNffPgQkhNkBr4xYBu/5ibS1TSkGdWo6L47hI4MBwzstKjUW5D3dDLlLOKnNNcteaBYSrKBjPl6Mn8SXlKPoYv6q9vA0cm8J5NMRzWRlXz0H10Cc4FsrC9Wptro0MtzNg1N26uGzujtsmtsHP1khBujKvtgFw1/ae93ei6YTKELnFd+mRFkg64PLgVxJi4/mMqDwiAifgT28REQIOs8guBAUJKFr41dvtCcA6M1vCk3Ns43DEDNwzwKqwRUpbZNLhP2HmiK/lwu8gpstwh6Y/eybgm8mcR4i/iv69nYdn6Df4A/vK8PVVcTD2Phrc/iPBmJQ0pcXK9O69jfSZKPTk8WmOc6y1gltQsWyFhL0ld+NUXqYWNjK4NNoHJCTe18oksJZAW82ITNgnXsGLADGa85p5IkxNzHMQGSlg7DcS/BSgAgd8PPJ/iZPtd2NgxspuiztwSMSaeEGFtBagGLdxu5/jMbpVt4WF0qZ5zIb34HM+hb08Iv6mMMJXMf37QQvf1W+Sfd5vB6XhR28UwPId2hbCfRY+SoToRIyuN/OU/pDOMj62uNotEVe/nVfDMXW6hPtcSCmB+ERkPnIMe4+5U+jjK6GNCW1QNIvp/hXk/CVxa4eIa5zKZrp3FGSLV1Q7PUdCxFk2X8nzdO9NOHAf1q2loHQp1/dXIxLeVn4rLmdlXGmTQsqhqX8Ot+NASoSkSKiZnruKQK7do9ag8TMbKH7D2BjnfHvY05P3VYkvZFy+KVo9ejXLllVBu9bezUntO6jldQUmuesIbeyOn1Lx7Qz2HU8TrKBnN+dtMK75GcY/frEXSWGndEClNwLWCWDXbE/2y5hYg3kFXs7SGlfOGa1hhJq9DuE4qf6RyIZmztT39Eq2v6Xsgb/8G8PZIZyzMaP1xPXf96NjvOowpSEexhid6rCeoDpzuIpq6VXc2sralyKDikLxnl/k+UrfTgs3n06agJvxHuP9+8jwTwS5vf7wpMcnCkLSeDenvHr4vUh0eYWIu/tYf/NETUTGOJuKsJIxO6J7jSfZTY8lJQNYHofo/5rgOh0Cn7T9i4zyfKJFa6CCBVQUzK8mUDh11xHh4V34DmEh7sT3NzXnYtCzphm9N+n96cySAaz/6zRJrvw/NgLJANZ/7Ib/07rrDMB6/ETA5O/YojRVKhW9nSiHmOZ9A8OeDfYukScLhdEklWkSzLOK5ULf6kzCul1AHowOtgFaly6L+JlT9wtNq6Jbl4Rgw77+cZDBTsVLtT0HQ77seHRSxLn5bAGWOp+CPG1tH0dPZLGJ7Sc5QewbKkHhyFyL95fhf2oN+j7eg3mFmedMycMlUfpYNoy8Xx8H/SYhwsA8K/K1lxH4N3BOfXx/G6rOKYHwx4wAu0BnGSmzOYJT+4YaIEez3pcaaoHBL+Fo6LmkTCYVg3Wqd4kZQ08A1sWlEu4fZAud0ybguhEoVEBBk3hlJPH8MfhwBL9yjgKI6T0pQTO8ufd0+kiKWJqRqpgWYnU+7ikq32IeOlqayj4Z8Eu6hFwy7sbh1CwJTznOMe3+k4fgmtBDOFqIoYQDUhdHj5QFXRan91IjtTf/9LbkpPBHSn+aEVBBymtJZQSOGSMElOLmzsW0DxDR5gJ6hrCQK2f1bdoi4M94oDqlArzDgWCRoVFo25iRWv+0vAVS3o93KyPi2B4WpEioReBVt/T8TJJZRekRMgybl8O0/Ad7GeZa70Nt2fPNAljdakJQ2EI+csoawMTrM9qaZ9j1B0wL2BxPTBghhdBRSJVmFK6XNgRWBVjNaNNMm2dP5jOoJcTHLH4t+suZUMKyQK9kl6WOgvQVbeVdWSXizm5WV5a6Ck5bVAeRBU04wVX9J08LWLJMwuo6q/AgzQN7smXpaqOsj3vPEE9E7qTG+Hj1RjR/OtbqfbUrxWLEisz7Tws5ffhIxLffs354UuPi+6LnW4v9aCAspRwV8TyNPW3slq+RsW4zu0/Fiipo+J4LAMtLeoAnZwWcmcPeGWcy38GXdVjo4db0DREUEYSpP3BejMEKPnUBnHnqh179stw7Mmro1C9Ns0bBcGiHvahfAofgqG8V9OouI3U8WO+unvUbRdzceRY9H3WzJ1My5UL0QMbfRheImJ4I6u3vyzQqSj8G4rhwp2yNFaQrzcZYzxlFWNaftCwREh8C+NNcyWFj70qF2dOYvs71CzMi8OAS4xvMH/UVwuI2Qc5TFDFdRzh9HzmrLxnAep278PfkvXOXACvgxCkRxLnmyYi6I18+BYUKIIHgk6e89uuyDL/utex/qqKInypsxNlz7Dlr/oGCfHmTASyvxzQ5YfII/E0j8FYCWBZZxsvIaKQKYJsI/fjt3HsMR05ehNEgofK7RZE3p2velr9p7JOLJQ6LR9xOMH5EbtwUMHM2+2CQ2y+puOnNPGM4JE5pJrbDYFhKJFSYedWBprKpjm9L58PQSizUo0vKAhiS2hbqRmGO5A3A7eOgecHw9Z7sexHPxDz2nwq2foqAAv5WCXDaQGlGi01adL54AYyfyLwM/PwActF/XdODETlbyEgn7cUve35GnxpsE5/lWla03ZQRvR51wZ8pFiNGZButYn1k+DiRc3/dtrW+txmFV+XCO5ey2Yty5u21m8jSNXZ0AGXHWOBMiX7JCgknTzoufNq2kpFdB4h5225PAJaej+OiEbhogpVvhXhXyMTbV+EzkkmsK6HhIGU2vY2bYMDLl+zX3r1kpErpCOQ9eCjgu2lc6FOgCuJnILsjR6LEDcb3o5X0nn8W/BDiWXGPbw95CJInkGYFushImVXF9ZsCeu47hQPF99uvNYktgCm5WBiovl8nf5Tw7HLCsijdhYsC5nPeFNmyqmjXOukALAIDnp9WUCiWPVcHslyF+cMn6JLKNehGbSNvs+Pxc8moAFW515bsK6N5O8ZrNn9OW/hEMyK8kkMsMDKHLG+nmz2dnoep5FALfI+uh2n+BHsaU4VaQKeBbw7AinwOv96N7fWrPn6ImrTKed+chREOnAYlk+tQU60gvdIrcTfRIcG8BWze0/NMz7VbU1X4dq+lA9zWAiYzzswR8SSe4J/KyNVSQZpCtuf19p8irq5l72dSb7sVQkqh7LcK5RRUq+IaQNu9VwSBEgs+WIBoXzZx9mZsgnCD+4mxdYeI7TtYXXoPXwKlMtzcgdYRI3DT2BBnfT+1D4NoUFFisGwVBKHv0zCOqJ4SUUgb8fN5Mp+x3SBeO29PFv35RCg53T8v+jIJwBo72YKLV9g7rHEDGUUKO/co1vNIxVWoh7gWrG9a+fQuoXeKZrfTP8anDZhIxo8hlVDLnAXkqaoZhWBSaPKr2LpNIvbsYYNWs5qCd3V8Wnrhgh+DvsYFnxLo2E5GJi9I0pf/JuHWkVsY8IDzBEkThqiRjNSd2k4exhO/ZX3PYgLyPGG9EiQVpYbJDh7MlkgSJpCgcLxuh83AA2Pix2TxUhGnOS64po1lFCjw6h7iib0fRPJ/brEP7hvZmq9g5DAEF5UQ264fILKx8VR2MoDlaYTezPXHjwUcOynixAkVBLp7MvK+zZ3L5m1FXKEUrfG6Rsq5pKCr2bKqK7D3NDtUfa+ujJLFk0ncX3eck/Mnj8DrjsBbCWDtPngSPQd/i+7tG6NdU4am02Cpqoq+I3/Auq37HMaud5emaN88caE1rzv4yfmdA1jnLohWlSnNePl0fszM3/aHdIaFppCLPbnaJ5WJNy/BZ3QXjHu3IMaWK2Qv9rPAIugTyDySfpoj4doNtinXy1ELkS9wadBB3DUxguPs78sILaVaFZToVFSz8GoKwqsrCU5XXXl2JbavekVEInjNUeoSTs4aiOpt2LMS8DwAoxeGolXESGxJ6cil5AowSmxb9Ok/uLse6XeFodmB4vZLGgGt9oMSA+z9km1GRBNQZqTzzQjxx/Dkm1SGsxBPb9vtCcDSEwrfkIBTPgCvfEMLI1ogaUYEs1FfM84O7ffpMyTQCaRmzvjPiAtiLue9RyEkHT6ybeRfKnHIdT2h1H3LgFwYH/yOt122pkvgNdXDAv94j6IeW89jRTamhlfoah6sq8TCbfUV6UOy8n4kIyiPbTF49JiIFVx4jifJ60R1AgDJzt/eEIksFnawsSH/GWRrJKNtAAOXnZU7a44ECmPQrFa0Csjs75ad5iDWIMNkkbBgJuOLIxCBFO1ex45NNuDlHVZCoe4yAh/+aZWK18xYsjyEnqPeGIAl3b4G80gmPkChgxRC6MpM3w2E4bRNHY4srmZzxDXs4HFY9PxFpUoqSB8GrFzN3pnuPHm0CsSIR/AZ2Jw9d77+iJpoCz/Xc+rR+KYIt83Jx6dEnJ3H6iLP0xcFVaxdl1D9zVVnNm0VsG23ip9bzXVIcj1zG0jOkHculf5byD/jmkpj3uh9+OjJ4ATeV+krKCCPMc0mTZHwhPNk+LSbjOBgz4ADjRuNn2ZRo+ZBDXbDhOxkIAjA6vipI/+VOzJkw55NMM3jiONLV0Nsu/4JSn55Ezj2HfsePAt5iQ5NFtnT9Q8qhp6pCmHM1xKiuNAjUswj5bzE2vKVIo4dZ/f+/YYKCseDnVpZ5pGdIN1mwhYT0szCHWN2tGiqIG8ez56CpHJ568JLjLxX3+l81X7UUy0Uj1ERwgFTaUuoyPFBwnfPpd9E3NvL+kA4wcnUqvXgLTFGz8D+A6wcT6G0iSnbU1rjugUgDtSjvmPw0Mi+NwXzrEPAR4nzMKa6kgEsTyP+910n76oTBFqdtHlhe2O0JyhcCMiTW0kgmuRNfndpjLt+h0rEi34BUP38seFmUezcz1z8yeOSPC+dWXII4euOfnL+5BHwfgTeSgBr5KR5WLxqKz77+AN0/LCuw2gsW7sDQ7+xnZaXLZEfcXEWHDx2zvr30hnDkC+Xa6US74c1OaW3I+DMA+vwMREruY0sLRBpoag38/iekK6csf9MoVgUkpVkFu9lMLxiEUwuk99e7BdBxdGN89igzdTho2whRxxYBJRoJty4hDvf7MFlH8b7ohGhEwEtEdFqprn8X7gkYv6CpOHt4Mcj4oKA05yKkl96oEinJzD2fR+hfVpA5RiCZ87yQd3H6/BXAANCTKlsnCp/h9W7vRamsynQZwMD+lJlU5G/M6tPL21vDABKOiHH1fNIae3lCdUT2wdPAJaej+W+BBz2AT5splgXWlZTVfh9UsNeNW2hoqZthJ6ZWa9A6UytizZStKHSrEA+FU2bsLHKeHUu9Fu0zinz48vULBzWmzHQq1cV7S3DN62t5Pl3r2BANAuXyXYlG75LXQnEDePM9ITwuT6UkSbeC0MfnvNOGQW1anje8HnTB0pz9pyIc3OfIUQJtGdZXOoQytX0c0s8T4knTJEcwhjqm1XEPmbP7WfNl+FmUAQyPgnEpMVN7OX7pFFRLJEbQ31/CEAhIEWzXC1khPocAnFLaWbIVwTiwClvDsA6fRDm7wba65dzF0UM8c24MMNuR48xJSgE0V8t9HjrSBp9EafISRuXDOlVKxipWZXKKiqVd/9OEi+fgc/XPe15lPRZED1kpvXvvYMcPVLofULvFTICDglA1Izup1hDdQBaiVevUTxnlrMOESi7/epTLG/ASMnJ84o8sDyZnheO5/vSvNOyxxzBe8+34awvE4Mg4LT4FzKMnBM6gd0EemumP2hx2hbyXPukBsdKCEROXY/EujpEPvXB2CnsoIHAIwKRXJl0eCfMM0ey+VW0HGI+HpogedQDAUe+YXMhNigGLZszAvUmKbJjSpryVuVAUhDUrNNHMkjVMbFGdAFEG6BZ21YKsmdzfEf59m8K4RlzhRoRshTPDGmsxPFEIO/JrOItt4Gv71ZxHHcn3wkt1NysAJWieOp2oOAnMgIyJ+xj9GPgsJVjlI3H8bQqurjgWXTV3u1/Sti6jZVRoZyMalUSP6aexsPhuqpaPU816ohDfhPxxMC842mtQGuGxFoygJXYEXu99MRjdeKEjdOKPLm9saxZFBQqCOTLo1p5Pt+U7dwlYfNW1sZy78qoUTXZA+tNjX9yPckj4GoE3koA64OPh+H0+atYPXc0smfJwBZBsoJaLfvh9t2H6Nu1Odo1s3mcTJm1HDN+WYMm9SpieB92ep48bf7+EXAGYHm7kfUZ0QniHXbSGTX4R6gZWPhZUrTe97MGGFAuH2YUz20vbkTq0uiQkhFV/7lLAp2ya1a6pGL1utFMOr4HT2buxEm/QfbfiNSZyJ314St52ihInV+BnizW0ybJ277KMTYeLHsInqCizEgZ/r3rolyr6jidlm3ux654jiZXbuOI39f24il0jELI/g6rdnsVnt5TMYUDAAy+tjAIzfQbFlcAwclTApZw6lR8e1+VbNYTgPX0koBTM9hmKkIE9vrCGv7Kq9/4ft4QQhSLD4z8ZnkCotlVa0UcOsw2SvXqKChVwnHzo39OypZWULsmS5P/+iJEkMsaZ+Q5SB6EiTF3pPmbI2+gLad2GH4zEwZGVEMDFwpnl5aLuLef9UvzRKT2rNsoYg/nGVCzuop3yybdXCMwYPfoZwhQWTjA9Eo70bRCGN7zd6+Kp+cka5ZedeAFG113PY5muoki1zNi0O/MkzFVThX5O75eH67+LuL2Ts5Ls4aCzDnOwGdsd/aOyZID0sif3hiARRtI4iDUzFK6ui1sx5VFR8K3d2MIChuL6P5ToWRh71VnWfW8aCEhKsIzqA4HBgQeeRJnSCCPnr8UYrqPBoVU7ecENvQec0ocsHcwp4wpqAhqpzqAavnzKiBuLlc27xcR22JuYmPVjfYk7/ikw9J0jt7hrvInIHKPJ8vWvIoyxZxG0dhghzDvsPIKsuqewdW/izh4iDtoqa2gTEn3gIrw5AF8v/jQ3jTVPyWi6H2VSDt+1Ixlq9m9z59PRTMObNcXR+q/pAKsmTMSc7qmP9BQU8ho2pqF8xYvwr3qAAAgAElEQVQzh2BNWF0rBxlxkWn2wfuyleA5sTbtRwl3OS+RTzrLSBfqWI5v1+oOwFP/dBshC0ZUqiCjSiXPdZKABx3AjLhXH37Kc/btG78UagD7PtOFr0gUI1pAtlggF+fg5gk4PzZTwsuLbDye+AF1hyYurJLmEs0pzYoXU1y+9xM7zk7Tx8XCyi92fI/98gG/7/HUkM/+d8FuMgI8hGmSx8+Ll7CSgT9/Bjx/KSA2SgAJfTx5qiDiKazXaY1EB15B9C8I1n+pg2yqwvSbXhU7Sfr4FhdCnJ2nzhFwZeOO9cYyZlRRqIBNRTCFv+dnx5syE5tm/0ERazmRD3cev8keWIkd3eT0ySPw6iPwVgJYFRt/iscRz3Bk0ywYuKBo4r3qOmASsoSnw5qfx0AUbR/wxxHPUaFRT2Sl3+eNefXRTM6Z6BFwBmBt2CTgrz0MCKDTDjr10JvPFx9CfMJIcaNGzoeaJl2i2+Aug89XXdGrQDDmF2JqUV8Hv4MPA3LZs506I+LXpa69pYjPI2rpFhxIMc2eh2StC/ey4Pi3El7cYgtJbQGmB8XKl5NBZMFJYUcnGxDJhSTRBjt0UXt0L5oBiwoyAPDTnXfR8aAvzvr2tlcbUkxFzmavtyF31Yd3by3HtdjnWDDjIxgVdv95j4gXNwQcn8op9GVQUTie94kvV8+dw19z5wLubnw9AVh6cC1SAHb6AXp1J98hbSA8ZDcgatgcqKGOLN/kYbJ1O5sXFcvJqKq7/wn5gRwBn7I3l+G65YVDl4alLoVOKdmC35v5tG+4AXIkS1nqSwsM8Z4d+6LvofHddfaLoffS4aMjdUFqac6M+ISIV0izLPUUpC9v20QvWyHi+En34TnetNddmh0DXsCosk0gAU+flciNan4J1fO0cvRcMyQq0SCDTZZesx8r/onN+c6h2qk86LzTplBKlrakihxuNure9IdUtkhtS7OQ4ipyVboO36HMo1MMSQfDxF/fHIC1bgFMq1lInKVmC8Q2bO+2O6Zpg2E4wUL346o2QVyTzm7zUNgXATWakQdSeLji4EnkThXKnm/zMhiX/2gvx1KuDmJbfoaXt2whspr5hqgo2sdx7u4fYYCF46NL01LBL5znY45sCtq0cg0EEdH29qAz2F2ahdo2TZEDk9KweeJuEJwRuZvNsCvr5Yt+gExyiL0IARaU+BIO3ld08a89IjZs8j70kfKIV87AZzzzXKMDIjooSqwtW260qhBqVscDeCaePw6fSey740rswnogw4WUC0agScdZ9nr8BQPOZ26FjZsFEOCvmSfifVf9Gz9RwosX7LlPEIr48jn8+jBuuCjBD0PS2UjlSxRXUJ8L6XRVhwaW97/fGiHyTXsy4kokzkTerGGhEQIqRgG8Uwr/XnVWz8W9Iu7/xuaCCptntTmV93dW7x1JXsbkbfy3WHQkzN8OcPC4p3r2pJiDlyKLmqA1Fa2tNKN39+ZtAu7cIVBKcAgjfd12khcQgVqBKVUrOX9goBAPcAGksJlsQJwFoHlCoBWFQ3tjRJdRuCBQoICCwFRJs+b1pl5XafSHofnyKGjeNJnE/XXGNDlv8ggkxQi8lQBWoartEZQqADtW2KSlNft82DRs2L4fg3u1RouGVR2ulWvQA9ExMTi4fkZSjGtyGV6OgDMAi0IuiA9Hs4b1FRQrkvCD4fd5IyCKbdCdebJ42QyXycw/DkeXcAXL8jEPje9CyqOxf3Z7HjqRpZNZzWgxQ4pDmhlXzAQ2r8OOgNX234hgtexXslXWOpbjJSk+QIY5SIUenEhKfgk9BwZxbuU43Q+z/F5gQDXGIVb/zB0M3pAN18wt7e3WOLped1yd5S9+41fclaPw9ZLGyPIotT1J/o9lpMpuW8hEXBRweianUKkLMdQy6Tmk+PoyZ1LRoV3iQThPAJYlGtg/lG2GacZu9E+o7uQzrjvEq7awZbKYvlMgZ3MElQ4fEbFyDXsGnHngEWhK4KlmpHRIioea1by9BidjGXcN/T4h+F00D/BMns2P195BBpAEu2bEOUbcY2SnYh+jxm02r1M/SY1Ga1xLxt/YLIJ42DTj55M+xKlNS+XV1YRcTNA9A6OhKow4u0/TFRifvyTK+bjm9CF+O+K50yxTRhU1M6kO/Vhf8gR+KrEPzfcVx/uHWUhLpuoKMsYT+L/qM0MKkCS+oBl5QRZs+ciBS03wD4Dxh7VvDMAyLpoC48619jbFNusOS6UGbrso7dsE81wWZkjeJFHjl3ocFhLJiOO8S+gknjajmnmj7mZaOh2GrYzcO+69toir0yohx1UuFfk6OL4bjn8n4QUX5hLaWMHPG9gczhSuomM895yzzoz9WsL2fAdwIv9x++XEeEISkM2HTJKnZcQz4MwZEYIKVIq0wAz23gkX1yN8DAvD1io9c07Eol89c0vyfdCETLTf5AKlENNttMd7pk8w9msDIjnhg64fywhL53pzKl475+BhqITnQPQX053Wu7s/5yEHoGXX2YgFew+eCG+OS0f9sIbzFqL1BK0rEmue1GHFuzfgM5wBuQ+l9Bib1haCnyePgg9dbHy1dsTEChg91vas93j4CTLHcRQJfSZDzs6oDCgNqbbG3hJQknO0FUQVJb+0kfe7souXRFyaKSKAuwXOvPbcjc+NGwJmcu/FjBlUfKx7dhI7vk7TP30Mnyn9IN655nBZTRmEvwIXIzoi/mMEoGhfGb5pVOv7YucuATv+TAJW71fsBIXJkscWHXikJq+t1AKCAoHAIBWkAvo2G4FVBFoReEUgliejNXPB/MRrJfzjwD96VoiXTrNsWRXQoYkzS/bA8nSnk68nj0DSjcBbCWCVqtOFqGZwYB2TGY94+gKVmvSCIAhWYCtlCkbKR8NZs0Vf3L73ECe2MvfzpBvm5JJcjYAzAGv+QhEXLrIPRsvmCnLnSvjBsHJz0I2Ot8jvN8ArWaVE3A7jsh/xUcr7+D0XO/mclbYKavtlspcSGwuMGuu4iB7xJftqa7La2wLWQhYYKUnJwTIOjHJcYL0zzpZPD064k+5NRHesSR8cFnDhV1ZvYC4VRUzjceD6IdRpyfiZcjx6itkLiuGesbK9ihxNZaR1ocCS2Hbo0+e7vhBPlVj03FwJ5S8wj7es9RWEvWu7/3pS5dT5FORp6zg3nN0PfV2D+skw+yRuEekJwKI6dg+UAIVtrg+lU9HjM8cNMYXGUIiMZiT3LRcq69BEmv/0HGiWI7sCAnR4I6VOUuzUrH1bGVk4zhMixd8dfdchD6ly1fNPHM+ffoOozVEq+LrlOcreZCFFKV4EoNmKZnDGDUPp9apu5H1F3gJk3/0g4cF91p9uXWSr4lxS2p4BKlSVKQR2+OgX/JK1KoqbmQeLvj4911jBAgoqZlJxcSl7ho7luY5RlTei+5ZKqHiezd2cTWWQx9TrWPRjIZ6zxlaKKYC8JeLg160mK1YQYJq3/Y0BWObpX4JCo+1zuPNQyEU8eBQ5CSOMcbIp14/Vd9MlPHjgmiflyy8sMDi+fhMMdwLF2jZ9YSlbA3rhhdBSCrK/7/icnVso4dExVn9oLQU/c16EngQ2CPTYUnELrma+Ym/X5DTl8EEKNk/czY9z50UsWMx54KVV7c9J+jigUCw3DdQ4vCt0gTIuoZcUPVv0jGkWnFrFp9xBi7M2GLb+BtNS5jmsea4lZj7r6yW5+8ED3e9qxXs34DOMAUFK2gyIHu5Igq+1Ye8QAxRuDEZ1XYVjYJ7ZK9PVQdCtdF5vQl31Te8NSB44euJz6eJJmCd8Zi/imjEfvkvzvfVvAr47tnd/cPL4iYDJ39nuUYfHA5A3hnksOvtOzJ4nItVZEWFcscQpSNyC7ozAz22LRBThgC8KnyXgSzJ7d3fJ82sSp4JIoMxnnyb+YMhdbcLdGzATeBXx0CGZkiYMMZ9PwIHv0yH2OXs2SwyScfa6gPUbBQdPOe969GZT2cMTUwFBwYIV1CJwK3UgXklg4M22PmFtFBZIROynTgsgINaTEbBHoFWB/HCgWPCU701fJ+484tDTLCxURVeOl5VvTzKA9abvTnJ9/+UReCsBrKadh+HUuatYO28MsmaynaxPm7sS389diXrVymLc4IRhC2XqfQJZlnFgXeLd4//LE+h1++4MwNITrn7cXgbFwvMmxETDt9d77CejCZHf2lz1k9Io/K+Fegpbs6a3F7sgtDoq+TJuNbowboKEl5xXAK+wpJHN7/ebhmcGxp1FfFe8wpXkp6L0UNsCUK9sSAtfWgAnhek3xKJJRbnSc2HZsAAZejOlLqpr3dTyeCExnpoCnWWkfAWSVG/ane3aPMSoChodLoIP9zFPsHSlFRC5Pdn9QwIuLmGLCWchjXp1Pjrd8/MDbnJgT5PGspVbITHmDYC1b5QEmVtQX84GtOrsuFkzzx0Had9me9WxbfrAUpYDIwArzwrv1Zc2REX3ro6bA0+qYh3ub8X6yOsOXVwYWh0VdXPX3Rh4Un18IkejwI3F9iLMMWa0+rU1qlZWUdEJsTYJFpBwgWY8YECeKsRLotmrKoW56o8cTfxvDOmQBQXNu8zGpvT1kc/EPP70+ROE874ro2RmOHgC3g5/jE/rrcCwVXWR/zbz5uK9BxMz1/i0qgLs+YLjrSM1zVEW+PepByGW7UBNM9YhQvaA5LxqI3T5fMZ0g3j9vP3X6P7fQcniXsmREuuBL0vlhoht2s1tq/QHGnxi8sbq5wX5tN7rMbrXeCi5i+LKWhF3ODAqU00FGas4AljX1om4tZ0DkMopmH+E/e1OGEIjYV9VdyUeBrNN+Ip0tVHaJ9Sru6EncrdnUoHyUQBPDZMxdiVyqzMRNXlVgrLJE2LkV64PWpw1hryHjZuW2C/F1W2NuHptvGq3lkjPlUSk5wRwu7ME3FupghE1lr1n+LwHRhkQx6iisLTLTiwR2Nwkr9OqMbnx3TR2z4jDiL7RibEHD0WHMkLSKCA+Rd6kY7th/oGRzZ82l8Xs1F9Zk3hTJ32jZsy2vR9bPBmN4tH8d8IGuvK2aJGI8KMi+OCsfJ1kBOZw/22zcmyuFK3E7/w5TuY6CkhgxhvTHxTxAgPe5PeURrx2HubJfSFEc/HrAORMORHTc6yVN5I8nsnzWbOzOVRcveMcPPHzpXWACn8/wfpfXz/A349+ExASJCF1oIQ42YKYOMf+P3uh4mmEiEdPVDx9Cjx+LFjDNv9uCw5WrB5b1n9BAoLIcytQRWAqWNv/TzAiYCcydgKteK9YV22je0B8VgULqiBF1X+DJQaoTQaw/g13NLmNb8sIvJUA1tTZv2H6vFUoUywf+nVrgUtXb2PQuFmIjY3D4ulfomBeR6LvO/cfo1rTz5EtU1gyB9YbntnOAKyJUyREcGF1PbvJSKOT+xaeRziE0HgbjpLY7hlOH0DDR9uwJzytPevydLVQxseRa2vWHAnXb7BFTesPZeSMX0RqMuQnfQbhromFdoSVU3BnF1t6+qZVULS3bfE06TsJT56w8uiknE7Mk8r2D5dgIZKmeCteeSeCVg1F6Y71cD6YEWEs/aEpoKZk6aw8GUnXDr4/Ga7aTthLXM2E/uvYQj0gi4qC8eDNnd0irnAKlenKKsimU6jctlPCNo4/ihTxUqcGtm5jY00EvkTkmxjzBsDaO16C8oiN66M8Kt7ThRcZl/0A4xbmtUQ8QMQHxNuLF8D4iRw3jw8wsJ8jEDZslAEKt9YeNMACM4umQK+Hu7D0xUWHcleH1XXrbaQfj7gXwIGRrB3EfUUcWJopqorwaz+zbCrQYX5H69ynZ0Bv5MlCHi2aad4C5Eg5lKuHrg8fYtGLMybmdiVIG3VfwJEJrO4HAc/xSatf8VeG95FFk51zUsOqtRIOHWb3lAj1C2ZRcYTjZnqZKgrtPlyAqQuaIvQZe15IgZAIlV/X9EqQRT63IPXEZhCfPbYXbfp2OSKMrO7XrdNdfp8BzSE+ZeGp0WMWQwkM9lil4eA2mH6ybejJKA/ldWdr14nYf8A5f0pYGNC1k+cYFe0drNUTPWIulJAMODdfxCOOdy1ncxkhRR3v1719Ai6t4ELEC6lYeInNBwLHB/Rx3oabtwXMmCXhl6bzEePDwMYDGT9Aeo1IzuOoAeO+kfCSe19TloTeVzLKvWgKs/oYkdM3OS3164kSnnMcTr16yEgd5Hp+muaOhWHfFntZsa17w/KOd+TzWqZlKyQcP8nGq0pFBZU8gCQkckFiF5qpvv6ImrjSaZ/0z8bBj49jnMQ8XEkxuF9AcYzgwDsS26X3S2Ls8lUBc+exeUDeruT1yptebXOfXx0sTdXXmkQUgWFOFHP5/HyYZ/1nU1HhJfed+KAr4qowfi3Kt2G6AQFMxwbwU1H2S9nje3PPPhHrNojIHAvk5cJzTSlVEI2B4GXknf4bNLi/BSYvPbjcjb10ch9MM0ZAiONc6wi8KlAasZ0GQzX5WLPrw9s3+jk4QFvTZMigWsnl9WT7fP2JVSGk7xUBy48jgIgngnW9+viJal2zEQk8kfBzwQGJmWZepTWbiHOLSOVt/w1KDQSRJ5eVcF6FkTkZe1VeYhLR4dqxE8CpU6LDOt1VGeTpnj83gVYAhd9xQteJqfb/lpZCnykEWjMi7x88wPm7IxnA+r/dpuSK/4Mj8FYCWE+ePkf9tl9Yydl5a1irHEYP6JjgNv+yfBPGfLcA9aqXxbhB7kll/4Nz5G/tsjMAS895Qht3X9t6xW7CvZvwHcYUI9WQMESNmJfkbSXehdrXluFoOrY5+yP9eyhsctysrVgl4SgXZmLnrJJl+HavZVUlumxuh8vmtvY2+mdU8ZLzCkqZXUGBj22IhH5hOGyQBaKXi0pvBuHsfBGP+Y1b2SvIvKE9Or33jp3vy2wx4JeZjCiayuXDx7ypx9s0kYoFOa//Yk2e9nlKfP9LU3tWyUdF6eG2jcKtbRKurWeboQyVZWSu5bgBmztfwuUrLE39urJ1ETt9BluEmM228A/aVHhr3gBYf04UId1jhUYXVFGllW6Ts24hTKtZqHJcjWaIa+T4XnIG6AwdbIEUX3RkJDD2G9YfWrAO0YXljL5xBA/3sLY89Y/BwBq5kNPoqGTlrv8xTwQciudkoXSmQBUlBjr2J/u1+YhW2W9tF7SDvyRh0ICEAFbEeRGnf+I8IfIoyPuRgmfPBXwziU1wd6CAt/dLn+7pRRGnZrK6z4Xew+DGa7AtoBlyBbsmjJm3QMJFDrBo1UJGrpwq9KGVH3SdhaXTHe9jUj0vNGY0dprlbacg7Nd2oFArzYxfzcHTIEcxgFcdK7f5VBXW8O34RPT0RU3bCK92JrExIGVXBzXCz76Bkquwyyr15ON8wry5FbTwRBzNvYO1vJFT1wOShGPfSnjJi2h8IiOAC8Ol9E8viDg1i419iiwqlnEhjQYJ+HKQ8w0Nhf/9vETBz61Y+Jv4P/auAzqKqo3emdlNo/feew+9SlekI9I7IkUEEQREOlKUpihFUUCKCCJVitJBeu+990BCQkhCNrs7M//5djP73s7uZjch6i/kO4ej2ZlX582b9+77vnsh4F5+9h3w5Rn9vELC1WvOXh+1XqhIrXJzoXkjSpi+smX3YvYWwOC6i120RMLtOyxNt84yCsfzC7qrR8BXQyFeO+O4RMqNcqkqvlTZcY/+QKp7VxmFCngBda1WBA1s7MhDFQT7GHNjZ76REPOQtelJ79v40MA8l94OyouFWevbDgToYECzIYPkRJFEnz8vYBUHZJYqpaK97hDE8OcK+G1Y5Chjd+oO2JyGrSlp45uQeh0B5QSYk70ZtQSNotm4sTTuBEsLZ5XsfRMkSBywqZYEanb3Dszt/UvEzj0iJBuHGsCPlKIdFGQu75sXlv7ZJsdBm3R0J/wWT3Wih6D+sFaub1c6jV8IkaDp4ZHOHoV/MoYGWxheo4YqypX13pbEAljeXgBZsYNYNkDrGWzgFhHKhz+j3+Dkre8tr6RcJ08nm3KijXNLQcb0pKhInlzkwaXS1JcoI68zElg5e05F2FPviyZajxQralcQLFJYSXR5iarc33xzYg7XUgCsv/lhpGSf0gNcD7ySABa179qt+5gwcwlOnb+GwAA/vNP4DQz7oAP8iIBBZx36TcC5y7cwZ8og1KvBCHhTRsrf3wN6AEuWgQmTvYc5uJK8FoJpJOM8S7aaW8yof2YermRmm/7dOVqgqL9zyJG2INTKJaLdxo0UCE8eInCcfbMSYmyI84FMGlxfx8zBCop2VGAykTw2B7b4AeRdk5ym5yLKWjwKZY+2wJzKxTGmfkVbUXmfZsTMVezENyCzggrDvC8Gk1LPcNmEMlwoGikR+smcEuEoGca0qg28IhBLMwKvCMTSjBYbdNJO40izAR9YkTULeTQ5K0j17CajQH7fvWN8AbB2zpIQyIUwiOWAap2cn51h3yb4/cIEJqw1G8PcZYhLtxGgQ8COZry3RMhjYN58Nkbc8dksOH0LJVcwwvYofxPKjjMjh+TM/5fQ84p9IuLUTPdeglq64Hu/IlRmDM2dfuuMwNhADOwvI4vO+yjqjoBz89jzS0OE5P1kPHwIfL+AtSdrVmBAv+Qd82GnRFzluIQOFbqJr97ahXWxXVClhOfQu2/nSgjjvOqoXlQ/4q+zcM/n0zbrMXU18xoxplFBPHfJYTfXiwjhwMgCzRXkPzjASZXLOHo2InN5D+N72foIz8IQ+FlH9s6lzYjYqb/6nK2ej8pSuxksHQd5TK9XgeJvrFpFAR0WJGRCWAgCx3Rl9U2dDrHTV9v+1nuikhKbn87D1BQh4CQH4tI8tElx9rDw5C147ISAJQcisa4FI5Anbz/y+kuMEdhA3xjNcliBchx/Ef1eK6oDAtTHtltezFwLBKVxKWL97xJOnua8CRsrqFLZc/8FjOsB8ckDRz6kQEhKhL6aPvyRvC8IaPfGWUb5u3BcEkWAkXMxja/Eue8lRHEHFn69wtHSj/V3UWN67M7Vyhaax4eRJ3b+17yWtLZXraygaWPnvjOu+R7GHcxramfWvvhDYmH53jze9u4TsTPeU7hGzDq0fv6to6v174l+LqUbTfVV1G/kfc7ZtkPE/oP28VTMrKKAhY2JwGwqyg/xngelJe9C8jLUjMQMSNQgqWbcshzGja5cZ5a3O8LSknGiEUn4tj8FVOQOAOlrsSMVbIc81avLqFfbd0+k5AawvLXfagUinok2cIsArYhnmvcWhSciWdUS9XWhdzBNagpHZITydoJ5uzdXurSq7SwiMlLA+YsEWgGPQryHTBKuWLSwgjKlVRQvpoJCSl8Vo/U4rcs1I49bOmTTWwqA9ao88ZR2/Bd64JUFsLTOt8oyDF6OG2RZAckIe7vvv/BA/2t11ANY5IpNp3qapUmjYpiOBJuuiVdPI+Bru2s+mVKkDExD7KfPyW3Vz87D3bTsa3U46A3kycpUCKk8/SarWBEFnTsqEK+cRsAsez0jxRI4lpoR4urrqakA0QnXt3PZZoW4EAZ9mLzAUdRdAefmsn4OyKig1u0G2Jc3G1p0tIc5Vr6VD8P/fNNRzdQFVZT1QF75sn3+wBqDKveZItnM1a2RN5SBhKQMRmTz+o18wZYKstdgfUMLLVIg1Iwn2t20RcTR46xfa1aX0ehN3xfbvgBYm76SkPExtxkoq6J8Z+fNgHRyH/x//NxRR7lcDcT1m+DShfMXSnjAeYfwm4NrN0Qs45Rx8udX8F435zGyat9D5N7ExAaogNITY5HWDYjv6fmR+hqpsGmWKhdQ7iNnYKnWg7W4ZXnuuKfN+rZI9zwd3mmpgNQTeYt5BJyZxVa2QTmB4EFWJEbpJ6lj7cFeEXe2sOf/R+kLWPTGISy82R1v1/e8QCfeIF5JiQioqQvPzJEQw4UN/1TzMHoeqMbel7wqyn7o20bQW5v0gDOFzpa49ymki8cdSQ2ffInnhe3g899p4u3LCJg60FGEkrcITJ95ntf0dTEc3wu/hZMcP6tBqe2AkgcXUz2JLp9fozcV1Kye8NwoXjuHgK8YQKwp2skW4Mhobpcl2pVh9SEuNg6yz5x3Y3szqYg1sTEzcriMADeiEKQeuPj6XWyvz0L6SPHy1+zOnHfentflKyJ+0RQEVaBWLJCaV5BTd6JUFOvT2C9WQnUT0qnnc6teTUHjtzz3X+CHjSBwccqJVfo9d0HAbxznXa6cKvq+79s74avK8KVFEiKusGeRv7sZlYOYN7bm8fbbWiKZZu+/u/kpoeewY5eAv/azubBBfRV1aukEOnT8htsKDMc2E/Mkc8fnyZdJYX0ElJGVf7ETnSPZM7VWrAPz+6Mdt19bJSH0BGv3Ywnwe8MVVHPXJlJkPHbCXo6/AtQzqQDnzVeqt4x0Xni0KC2JC5CXoWYd2ykoUTwJaxVFgd/PX8FwaKtTdWmIU9iqHB+2+jRcwOYtAq7fFGFUgAacsiXhuY8q0ni2c0Ulxv5pAMtb3YgEnYAt8tqi/4bb/h8IjxQQGSHAzIV9essrKdeJG0wfsuwpHwoLLFsGKFVcTbQwTlLq9m+kceEb9UDpkQJg/RtPJ6XM17UHXnkA63V9sP+VdusBLL0nRo7swAd9XD0xpHOH4T9vjKOZcplqiOs/8W9pdvDlBQgNYBuYc5YyyFjEeaOor3emTCoGfSjDcGg7/JbapeMtSIu9aV3JdbVKawSqt24L+MkL18bLNpQivg6NdlbMq23thFhrGPIPtofvNT1TGj0Osg15UEkVwTrOj5eth5b+hiUStR+sc2Q3Yk9DVLzE1PLyN1WQs7aCayslhJ5ii3a9KuLhoyK2/MkW1EWLKOjS0b6gphAcCsXRjHjViF/NV/MFwFo5zYC8jBoIqYurKKvjwJKunYX/V5+wsVu4DOI+cQVfV6wSbTLUmrVrLaN0PPH8yVMC1m9kbSFXfSKm523Llgik3+usrlf+ExmBiVD2e35TwPn5HKDM8ZFpZa+tFB8AACAASURBVDV+uBFnzazRLTe3QuanmVGxAnGPONdJLyAQkElFheEyTp0WsO73hNvj63PydN+tjaIT59zyqsewIfgMphzqBQqlcmf6UE0KZda4yPRhuOTRVf0G807JVEZFMV34aFLbEH5RxOUlHHE4KYdiIohTSjND/9F4XqZOUovwOZ2eqNoTAOspQ8ESh4ChbSCY2ZG2uccIWKs2cJskJoZEMtwf5/PvhKfy9LxbpPhJim4vHgOnOZ45/4wqKn7qfhxQGC2F02p2KgvwmOOW/mSQDFLV0tvvm0UsibmEw1WYYmOnNEUxPVMNn/ubbox8LmDmLPv7kd2qIjiOA1xFFTUMgxAUds6Rp+nzJVCyMOER7YLLQUtRBaTy685ceKiM/oj9dlOi6q0/NPAGmPGZB4zsBDGCqQmapvwCJYOrWuiV5RKenmX9UbSjjHqZVoC8ejU7mOtdXNuXDn9xnJN1ayuoX9d3sEXPhde8qYzKOoVRvzkjYbhwzFHu1rJfYHso+4Z2aKegZAIAD88XVjTuBPqED3XkJZeogLiPptr+ls3A0fESVJm1+7g/kKu8inff8f5NW7NOwplznCdeFhXW2+zv9MVUlPSimEj1oG8QfYs0a95UQeWKvvepls5v/gQYTu93GVvmvuNgDa5lU7XbuUuwHUBpeGqgAtThACwxNVAtkbxmWoH/bwCWt5fsxQu7p5bNg+uZiAji37L9P/0mOnmge8srKdfJy448regfhSu+6vbdjwY8esRa2buXjDy5XNudAmC96iMhpX3/Tz3wSgJYA0d9g2KF8mLAe+/41NdE7t514BQbufvoj1mogU+JU256qR7QA1h6z5LCBVV0c7MJlI7tgv+iLxxlWyvXg/m9kS9VF0+Ji95YhBiNfAjAjUfZEFCdnapSOlOcgClTnYkFPh9rhd4lfk+GP2GV3bOcFm2vIHMFBfpT66QQjvvSEee/k/CcW7SWDZiDrE/WoEKfFriVIQ167K+GpudKO7Iylgcqd0jesC4t8/NxT9Ho0UZHWb3PV8Nb+1jZWSspKNxWwaWlIiIusI188e4KMpZkC2Y67af+0+ytBipq1WQLer03Da8W6a3PfAGw5k8yoAxHvZemkIoyfZw3FMSrFvA540pScuSFaexCl+I3/yHiCEde3eRtBdWq2NtKngDkEaCZO2+yXatjEHCMEfLTvSV7KUhf1PcNhp6zKl1RBaV6OadvF/InDphCHHVpvK0JcobkhDvlRBIOoLAtzYypVVQeI2P/QQnbdrD21Kim4O0EPEO8PSt316/8LOEpt2mb3WAPDuW/g34bumHEMPebvkePBXzHAXi8hPbtTSLIM0qz8KAYZHzBSFhy1paRv2nyLO71oZxEDF8111cw7mOAgqHHEDyv6jwvJaWfvKUhZVa/X+c4bvMWAuguP78Fk2A4sddxSS5aDnGDZ3gsWs+LqN3ozaOF7jNuWwXjuh/Zt6JuS5jbD7BxivF8bOkKKyjV2/27QdxpxKGm2fVswHWOT4nU6EiVTm+/rBKxJNVRnC913nFpePryGJTeM+eXp06YNlOyKX3VjAXScEVlqaigzNXeEB/cdCQ1jfkBSs4CLlnpx3OWLCoG6tRNtUTSwzvwn8jNU1lygcjvE2OkpEqkz5olxkMnYHxPiI/vszaN/wlKNleOt+u/iXjCedbSd6J3rk04HvfEkXZZ1oZIfyUv1m9kz5DEPVq39H0uJA848oTTrFN7BcWLOafXq3NurzkPW28y5eEWzRRUquC5zCU/i7hx015GbstVfBzG+LM0z0G69viIiBtrWV1ioWJvKgGa57e3Z7TiVxFEGK9Z+zcVRK535jYKHiIjKFvC85eLV5oH9VlP9SGQ1G/OKEg3LzjdovoHIm7gFCiFSuP4SRE7dgpOCrV0cypFwBuxrH68CI639uuv/9cALG/to9DdiEg7wXxEpICIp6rT397Su7ueM4eK0iWBMqUVt2B9UvL8r6Th30uqc7fOCgoXcn2PUwCs/8oTTannq9ADrySAVapuD5sC4cKvhvv8jGq/8xEEQcDetYybxufEKTcmuQf0ANaZsyLWcAupcmWAd99xBU0Mf22E3wrGD2Gt1QTmzoOTXI+EEua59RMULq4k5IwCmeNj0NJ+OV1yWmQN+UhG1o0zQMpEmh3JuxZRzzK4La7k+zLSF1Fx6LCIP7axxWRiTq0T0wEUTkVhVZrlSbMXxR6MR8+WtbC+eD6M2PIWKt5hIWixZRU06Oz7gj8xdaHNRstHWxxJ2j0sjbYb2Ml1GjrxGyDjwnwJkTfZhkgvGT79a8mmDqRZr56yk1yzPuSBB4W81dcbgGWxAN9OMqA6x5WQKgdQ7mPn8StEPkXgCMaL4klBUx/uw4NUfAgI1dtdOw4sMkO44kzUUPAdGdmr+Q6qkEIbKbVplrGUguK6UMX3nuzE1heMTLzh7obId8/uPacnLdaHY4kGoNpkq00RSwudoXRvNVRRq4Z3TwJvz4y/fm62gqj7jENnYrM/cC1TODqt7mwLU6ZwZb2RBxx5wmlGG1bauJI93C/iNrch1qfN31xGzlq+93VCbVEswGE+3E1QUafK9zBuX+VIJrXtjaj6TPwgMX2TmHv91i+CYesKRxJL8+6wNOmSmCwgXTgG/znOBw6xYxdAzZHPbT6zv5MQyhGnazcNHSwjrZvnxmfit3I2DHt/d/xkbvUerI06IuSwiJvr2LPNUlFFkXbux9z11RKeHGPzysOsKs7GsL/79rILReiNwoCXFNmJO3mZVNycLLXxTirfeaS0PE+eEhF6VkCai5z3laCi/FAZGRYOBIV2amYa9i2Uggw40X4nT5bJHJ8X/U4HLe5M/4yUomVhGjzT5+fsrqxPh8qg8CRfLOCL/hDvXmNtGjEXSr6iLklv/S7i0QH2HPM3UzCjxD78Gs3STshYBfWflsZibi7Ll1dFrx6+zzE/LJRwnwvpdgeeBo7qDCGcAWe7mizDllMMdKtfV0Xd2p7L5AG/jNaHGBna2dFeNWNWxE5ebvv79NcSXnC8RNeNwHU/2PinKNTcm/20VMSt26zPenZT8GKr4PRtzVpJReG2Ced1+JiILX+wfNzxgnmsS2Q4Ar7+xAmkpHvVtBlgGjQNt6wFsHGTgNAw96ThVQoryHiGXXMX3u6tH7TrrxqA5a3dBGrZwS3gWbhqI5e3hSs+s6srapY5E4UHCihbmpScfXtvvZX9X7y+arWE89y826a1YusTvaUAWP/Fp5tS5/9qD6QAWPFPru67HyPiWRTO7HT1hPivPtz/Qr31AJYevKlZTUWjt1wXUcZtv8K4boGjiZaGbWF5t8/f0uRct51PnUN3PoS5l6u3l54ktnsXBSU3DoN0+aSjXmfKrkLobdcwCLqh/GAZgdlVbN0u4MAh5qVCPE0EXiS36cOS0gY9QJWQLvi2akmMq1seM1e+i7wRDGx7VFLFu39TCCF58JAnj2ZN5ILo+UN9x9+iEag2yYqz30qI5jYRZT+SkTp+40ikozM5/jRKPHakM2EwbQL5U/hCBRXQc/LFvAFYtNBeMFdCnRdsoad5GDnlr6oI6v+W4yebipsb2fvTZ0Ss3cAW6HTy2ba1va76E/R2bWSULum8wDw6G7Dedw69cqfamFDb9cTnmtAAn2ZQ2F9YHc28P+rsr4vCNwvbbunRVbFJZ/N2aKQBnGihTdly9VrRpnKkGXlGkIdEctrJyQpMzxmA9XGHNYgyWNF2XXtbGFUxN55p+pBUfoNGKp4URujJ8nY3I3dJz9cT27ZjkyVYnrPNhSRZUCZqHDJb7eFpYrNOiG7qrFKW2DJ8ud9v8TQYjjBOJ+KoscZz1PiS3naPqiJgbDeIYcxzL6FDiGW/iLjGeUBp5XgCX/h6+H83FtJZFsIX13ME5CoNXAQh8jSQkect95u0+7sk3N3K+j48k4KjJvZs3Y1zqgPxOS6ptQFhmcIcVdqYoykq+Lv/Bnjrv9OzJLzgRCLIY5c8d/1nDYN05bQjedygqZCLV3Cb3dQZkhO/zdCPZaRN69puw4E/bLxEmtlU4N77zFsVHdf1vHbZsgAffuC7B2/AzMEQrzPPNZMHtUp6LvR8NMvbSMXvFc9gcgTjh+uRpjiGStXx9bfsPgr5pNBPX43SRjxjY8Cd927goGYQzIxdf3/XjVi/I7WjiCqVFDRr4nle4w9gApRoTHrc3JGWvJJiZ/1uU1wk5UXe9gQJMAkqsmRVMbCf9zZ9v0DCQ458vV9vGUHPBVxc5DxfkQgFiVF4Mn1IaqkSCtq39T5vCyH34P/NcIjP2HtBZZCHXViv6dh8OCsuXHI/d+bJrdr6MHUcnARB0uZXUdqDN6G3Z/y6AVje+uPpUwFWGciWCLoBb3n+l69TKPjxeM44ageJN9BaQG8pANZ/+Smn1P2/1gMpABaAsxdvoGP/iUifLjUObGChEf+1h/lfrK8ewNq+U8Q+7jT1rQZArZqui17jhp9g/PMXR5MtzXvA0oSdViZXX0QpFhS/az/1JEtnMuPG7xcQN9zVU8+FV6KJgtobu0N8wsIgrjZcg7tHnRUMtbyrjJNhCFLB82DQtdatZASXTf7TL2uMgKOfOy+EGz6vh735sqNVhwb4+Yce8JcZAHI+H9Cnv+8bkMQ8gx2x99H9MZM+fyswD/rOaQTFzHKpOEK2ydmbwtgmosIwGRRORXb2vGDrO81y51LRp5fzYt6dKhZ5CZHsszfzBmDduCng558lvBnjnBMBNHoLGNISYiwj0YmduQ5EZs3b9RsCli5n7cmfT8V78QDi/AUSiNxaM/qdrvOmV8mja9qG11tbtev6UJWslRUUbuO8cBvz9AgWRV1yZFnxdEUEn7WruRLHDHHN8KZXfqvZYjd+vloJV+4x1bSunWQU8YFE2Nd20H0HP3UG87r3Wgr/mFRovfFd1K2joH4d1wUpeUISqK4ZTxpOQCoBqp4sXf9nKJXP+Zkmpr76e/WhUtr1QnGLUCBuGcT6LRDdlpGrv0xZCaWljad0+ZTjlriBX0IumXjyeH0oomr0g+nLX13eAypI73FIv5Ec/BAfAIiAKR9AvHfdUV/TJ19BKVwGV3+REHaG59NTkNUDf0/oaRHXVrBxEJNewT6Ld/Lq8ZMMWNJuKcx+bCI7lac9skqBiX48EZdEXFrsvKnX5j8XkK7/RBAvpDvTH7T06CajoBs1Vn34u+XNtrC09v2QaMcu0YlzqmZVEY0acRO6lx7Q80mZB0yBtVRll1QP90i4/Qd7jrnqyLhU9w56PdnluPeNgBz4JWsj0PPgbfxoK0QfMeaJXxpg4apPysD+nCgicbsFftTMea4buBOrVrMCiP+KeLA82djPnes341E9p1tffLcdN9aJeMzNSaGSihMB9vaTNyJ5JXqzb+ZKIJBCM+KCJE7Ik9Mlp+9rrroy8jX2vPa4eVvAYo6v0xevNgoXpLBBCh/kzZqvGHaWn4rdJ9KBVPr0Rh6yjRqqKFvG3n+R10TbekCzdEUUlHrfO3jmrm9SACxvI+b1vq7fl7hb11APpQBYr/c4SWn9P9sDrwSAde3WfVy7yaSeh038DoUL5ELfLi0S7E2rbMWN2w+xcsMuRMfEosEbFfDtxI/+2SfwmpemB7D0pKDvtFBRPtiNB9aq72DczaSyLe36w1LPN86zxHT5Y+sLVLjPwnSyRb/ApaW7ETuNKeZp+e3ZK2IXF5JXvbqCd9c6ExPffW8Lrq52v3nRgA4icCcid826d5FRqGDyA1iU/8npBAixRWDlmAGAdBVl+3XHwsUMECTRmz1pgHGj/x4A6/eYW/gglHHiNE+VH/1XNUD0XS5c8D0F134TYOFc3Ik/ibycyFxVBhUQ4KA3PSFnuzYKSnM8Wp7GhzcASyNWbxAD8HiYu1PsgLHdIYY+dBTljrPmyRNgzvdsQ5Mxk4qP40nnZ3wt4TnXD4PcqOLoARsqLE0BFWV8OKHXKkahORSio1mOmgoKtHDu0+VRVzD8KfNwyfQ0E1pttr+LBEIRGMXbyckqTM9ZD9WK6oDtuXthr5UpXpJwAwk4JJfJLwQc4bi34gxWdOm9GFlCs6DFHy3Bk/3zZa5cJeIiT6T/rozSpezjzRIj4JgOAObTyp/exxsZk7ERAO5uE3B/pytolsWyH2XLHERsT6a2l1x9p88n4PNeEB/dZWN37AIoHkL/EqqDEBeLgBHtIZgYEzN50ZI3rd72HxSxbYcz0pA3r4r3fQgBCxzWBkJ0pCPL2EnLoGbKblNhJTVWzUr3UZDWDa8JXad56Cyn2moJAnZykXzuDhlIAGDCtzJ+7rDMUYamiJeUZ0NeN+R9o1nmciqKxr9bek4xc+/RsFZwT+i/dr2E0xzpeYumMirpyMipDOMv3zhxrJnbfwhr3VY+V33REgm377D69ugooWAR5p3kLSO/HyfBcJJ9E8x9xsBavrZLspCDIm5ynqqk0Glp+hT1HzDBlBxSEI7naYcZsyQ857wYSWiFBFe8mSID4yezuZhALwK/eBPDnyBgFPtmEuH85b4rQP2gWUIhfrEm4ItprIwAf2Di03cgRD1jY3fabzg0IxMUTgHztL+AEIO9DUY/YMwI79/o6V9JiIpmz0YLxX1yTMR1DnCjAzU6WPNkT0KBOd+xOmfKqIK+RZ6MPCEJbNVbRP5q+N5vHJ5GBbhcI/rRGtVl1K2tOh006QFd4sIkTsykWAqAlZRee33S6L8/1asqaNwoxQPr9RkBKS39f+yBVwLAmrd4PeYuXv9S/RsU6I/lc8egaEFXktCXyjglcYI9oAew9BxFXTsCRYq4Lsj8lkyH4fA2R95JCmPx4dnctkSh5oM1jjvzR0Tj1A8bbGpMqtGZjF3vARRcIAJdDrZ2pFVTpUbooPU4O8d1A+qXTkWlkfaF3+x5EkI5L6MB/azImtWHyibhluurRDzhXKOLmr5DXvMqNG3XD4P/bO/I8anRimN+BgwbbEUa5iiThBLdJ1kVfQ2Dww44LrZLXRgf7q2NJ0fZpjVfExX3tgsgPiDNKKyQwgvJ5s434PFjds0TYfCuPSL2/MXyDS6nonVL76fW3gCs3XtF0L9asSpSK2xzEDxYRlB2502S/7cjIF064agseTaQhwNvL2KBL6ezzYHRAIwZaaXoK4yb6HxST8AipzNgA/nIA0tv/hlUkCebr/Zgt2QLtdLMXQgiqX2VubfSKcsOv3VEqthU8PdTMUpX3plx4YgxsQFdPboHTqWpivVBHzjySO5xFvtYwKmvWH88ShuJjzr/hhwhOdBkW1OkSa1i2BDXfvn+RwkPuZAt8ugjzz7NiJeKH4/a7yaDBeGf3USb1IV87Wqf76PQ32srBMhmDkEBEGR8jOKDM4OUHf9O88V70NfyjbqDCCVjVpjieX74PPShSnTNnfKmvlzBYkbgR02d36v4cF19SCa9F/R+uDM9WKlKwFZur00hTRQexhsB0BNWRWJ9M6auWtCQFvtys2+Cr/2kJ5yndDzJtsv3sPswWKuxMGW+HG2e0n6rVUPBWw1dN2P+c0dDOn/EkdTcZxys5Wv5VGVZASZ9YXBSQ5s8yghZ4mTjvORE6r2k4quZudtQWKs3ckkVekLENY6njkjt87a1oOAdBhxSopv5umL5Uj8nUM3Xw6GICAFfz2bzhzvvP/HuVRCJu2ZK7kK4328+vuWAz4QAnqdhAr6Zx8qgA4sRYd0hhjB+wbttV+HqVhZ+akylYiOc54EJY6zgKDvd9jI9GzP3HeW9yQiUp/GuWULCH3qV1oAAYORw9wCacf8WGJd/7VKfc5kbY4nRPV8tcQ42aaQifXrX9zLsrICrnIeyu/B2nwYreXOmMiIowIBn0Wa8iPP9++hr/in3/bd74MRJAaRCqpmnNWOKB9Z/+zmn1P6/1QOvBIBlsVhx7Mxl7Dl4BnsOnsKDkDAYJAmpUrme5vCPRxREW9hgcKnC6NWxCQrkzfHfenqvQG31AJY+vKHf+ypy5nRdUPj/MAHSKSa7HPf+aMgVk19C/rI5Ag0espPckk+e4cBPm2Ea+yOUHHaias2I4JWIXjUrG3QJ3W70d1rQRn/8PY7qwgTohlS5VJT7yN5OOoWl01jNRgyzIijxESc+jY7HRwTc4MLuslj+QrnYcRhTvT/qXGCAyrV0UbhhTWMLYdOHqvlUkJeblkRdxsinhx13dUtTDB9drunk/ZO5vALiZOJN81ojwmBSgSRwx9FvQ2UEuSEMvv9QwA8L2HMiGWgiF/a26PcGYGky65VjgUzcfrDEezIyFHNegBt2rIHfmu/Z2CgaDNPg6S69RCEvmmw4XRz5qdUWxjL9awZgBQYAn+k2DdH3BZzlNlyOjEUV1ad4b6t2/90/Rdzfzfo871sKcjdw3ew2e7gJp8yMz6TGkRoocaWkLZuB/WVkiQ/zRNQzXBgfgkgDU5isFD0AoQY/zM/E+HZ82YQlZtw9u0L8LuyZX8z5CONabkaeB3nw1k77pnj4JzJSp3J+Tl/OMIA2aZrpgTV9yI1jLsgQgbAPbqN/ujKJqabP98aGApfmyzBFOYPokr+Kol0UZCj6N4FYZhOCBnG8PKKI2Llbfa63/kYh9JGNC4vfgsf1mwC5XA2nW/VzK118o6aCN92MRT6h8Pg+AsczXjA1XUbEUpiiDBwaSeNBKzn+vfAcEYpDoySoVlbTnYGAFkVIABABQbxRSPGEv+5hZ10WGl03MBeWZ2Oehr52nN77KlMZBcU47j4SNCFhE81IZdFat6Xb7M+cE0Dh7pqVLKGggxveooAp/SDeu+G4zxMxvLtC7t0T8ONPrIxUQcA3Xxih/94n1H5f2/T0nIgrP7sKTVS/vxp3rUwqclvO5ri8JSvO+OB9pq/XvQcCfuS+7blzqujzvvO6RLpwFP5zRjmSyiUqIrLvl5gylc3Vfn52YQt3dveugAWLWZ/lyaNiQNgASDcvOm4/WmQTnj/mlU4VrLgoIpbDBUcMtSLIWbvDpTh9qCLPJXdrk4hHnLpqQuIG7g5Txo+yQtS9R8aNS2Dc8rNLPban6Yqtqd9z+Z0Iw1s1VxJca5CoAokraJa1sorCbZIGPqUAWL7ORK/nfRcviVj5G5tjPKl9pgBYr+f4SGn1v9MDrwSAxXddRGQUGrQdgvKliyRKhfDf6f6UUvUL2m/mSHgazrm2DwLSpnNd8Ok9WOIGTIZcqkqyd+ipuDA0e8Sk6is8DMPOZVth6j8Rio5jRO8xExy3B13CJ7AFbZlqiOs/EUfGSpDjnE9N0xdXUbKnDF9CFZKzkS8eA6e/4rx8lEjUiW6FpYWHIOcTtlHdn+cBosNzoVVzGRXKJ//meH7keXzOke72TVsKg8KrguTrNfPPqCKOGxtSgIqqE+wLVj1fFB9u566/9IqRvd+TQeSwCZk3AIv4qqge5UxADm4dTUpOpOjEmxhyFwETejl+UgURsbM2AH7OoDud+tPpv2YEBlnMKr5fwJ5Z1izAAB05cvgFEZeXuid3qfSZDD83J9ru2k4qe6S2p1n+pgpy6jit6No3z85g2jPGi5TrQW68vfNtW7J3WsgoHxwf4rL2R1zYXwFhxqqOPMvHDEeQchFjstvfM9p80SYsOU2/2TlQ6CZmvbUL+e8UQIO99jDfLh1lFC3CnpPFCkyc4hw2NG6Us3fDhR8lRF53fpcpr1N57yG04z2Mz5j8c5LWL/LN27g2NwLhBldeICIjJ1Ly5Dbx8T0EjGcbTjVLDsR+vvSlivGfOwrS+aNsnixWHnEfT3PKMzoamMbNU3SxWWMFVdwQ6Tq9Z1dOIWAW8+4gFTvTiLk2nh8CHzXzS6ui0qiE+4vmSZovNTsYADyPz6JObQUN6joDWBSm9/mVizhSmXkxdU1dFF9mdgbnvHXes6sCLnLgCaDGe1+xlMY1P8C4g4W1W1r3huVN94qUejAmWzbgw76u75s+9JI848hDzhfTh9xUKCugfy9DogAs49ofnVQ2NfVIffl6cDpdYRWlesvo8ng7dscyaonvstRB6uOFQKH+mtWupaBhfe9hZ5eviPjlV5bOXcixdGQ7/BezcWutVM8m9qI/hHAH8FB9KFSZQpY1K1FMQY+noyCdsx/sxIi5cSi1s1dZ+aFWfL/S+RvhLSwyzgxM/tIzqEZhtRReq5nop6LKeNkFlNKu68MRiRifCPJtpig2IQDDIWeQW4GA39INxbGgJk6P0z9ARf06qu295j2K3Y05d6GjBVt5f5bu8koBsHx5q1/fe/Rcb57C11MArNd3jKS0/J/vgVcOwKIuHDfjJ9x/GJoCYP3z4ynRJeoBLDqtNHE0GeNGqpAMbjywpn0E6RYjjo4bOgtyoVKJLt9bgoOmELTl1PFq3n2MTSt2wNMJN0mUkzcQWe2YVWjx/DtHEXQiTunOzJEQc89506uRY5PKEa+U5CtRsbd2JHSduIGII0izmtGdsC9Tb4hxjEB2ZYWzSH+lLHxd8Ce2PnoAZFD6chgsVXAbBqflzYfDJTYscP3vEk6eZm32pV3eACwt9LN4nIr8nKdG/sYqctZ1HcMBn3V0UmGK6zsecnBNp66jE3k6mdesR1cZFosACrXVjPjRKBSGNyL5JbJfd1amv4w0OsJ3T8/r+hrRKYyzUGsF2aq6bhIumsPx5sPfHdmIsoiuK7vBIBtQqYKCFs0UwPQCgSM64LwwFI/9mMJkuRfjkcW6F5OyrMQzQzZbuCyFzSan6UMhN5Y7i6U1jqLwjcKoc6Curaj69RTUfYO1Leyp4DX8xxOx+vYSl/Gk6QPMzZL8XqFav2icOzf8e+CWf3eX7iJOmKIdFYgc0fTL9ql45TQCZg1zZKMUKQPTEOY5l5T89Z4rlEfs2AVQdbxan08xOJE7d+4go5gXTzPDoW3wW8o8G+XgWojrOw7Pb4g4/wN7P+h9oPciISMCdeLd0YznHnLHiUIgzoTnR3Cx+AVHmpEZKuLDRHrlv2GO/QAAIABJREFUEfcWzwWYsbSC4l2d30HjpiUwbmYeLpamXWFp1s1tc/RhX5IEEDDrZLKMoAF2AJrMppQ6bxu8uqnG36+nAmjfSsKb9cTEAVibl8G4iYGjlsadYWnRw6VNUXcEJzW61HlVlP1QxtjwI1j4nK0RhqUPRt075bF2AwNnSpdW0a61d6BXH0JEhzh0mMObccdqGNfMd/xkrdcK5nYf2pQon0Vy6oUDZWRwE6p67ISAjZtZ3SpWUNH26ZcOqoQr/h/gnj8DJTU+Qz2nY9/3ZeTK6fkwJjJKwMyvWTnuwqdP0DqGOzgp0UNBhhLuwaF5PxgQwsRE0e99K3LmJJJAM/znj4d04ZhTP1lhxE8ZJuJKADvEIO/n8sEUyqqCPKJ9sYd/Sbi92Zm8n2gGkmIpAFZSeu31SfMoBPjuh4QPDak3UgCs12dMpLT03++BVxLAMpstMFusSJ3qb4q7+vef2ytTAz2ApXdtnzZJhcnsZvP/eW+Ij247+iF29HyouQome7/senEfXZ+wEJA3bzzEqtW7YWn4Lizv9nMpb/5CCQ8e2BdVLSNn440XHNF8/Kn41RUSwjjwhO6lsCwKz9KHyuTOraLPe94X2C/TcJLOfnaFbcxKv5iC2wFNEC0GO7L9ovE2BP/1JkqXBNon0U0/oTp+GXESsyPPOm75NEMFfJSuLA6PlqBYXD1c6MagbMQDY994LV4m4uYt1oZWLRRUCPZ8GnvpiogV3Il69mwq+vdNuJ+9AViTp0qIixNQwAwU4/hFctRSUKC5a12MK76B8S/m3Wet1QTmzoOdumnVGgnE/6NZm3cUG3fJ75t4Di8FrVs6539nq4gHu9wDWEU6ysgS7xHlbdxcWykh9BQrv3B7GVkruN8kVLj3Kx7LLJal/p4GKHC3gE2K+8N+Mgx/roDfhkW4FDAUD/wYL1HJ2GnIafkDizJMwsWAmihUUEF3LjzKWx19uX5zvYiQQ6w/llY/go3B51D8agnUPGwHDUuUUNCRC6W6cVPEEi40qWABBT10wMG97SLu6cjFKa8VlY8jpFYIfsvOQABf6pmYe0jFK3CInVQ71FAN5wLHQRGcPfhIobPkezICMiUmZ8/3Skd2wH/xVMcNmpfJS+WuqrYwQjGM7YItbzSDpdMgp2zXrBfx7Bkbi++0UEChRgkZhS1R+JJm1vrvwNy2P/QeeTwhuqf8bm0Q8eggG0OXjcDteHCwQnnFFvLE25/bREwI3IG7eRjhPXkBtUhVwOfuIu8+8vLjjeY8mvt4M25dCeP6hY6fyPuKvLA82eRpEuI4InB9+KwQ9giBYxgApoVe+lpxvYfr6E8MyJ9XSByAtf03GNf+wNrUoDUsbRhPnnYh5hFwZhbbXGrfhcVRlzGKC0tvnaoghprqYCEX2khet+R968327ZewfRd/4CGjYX3nsee3fhEMW1ew+jbvDkuTLuDXBHSxby8ZuTgePS3B3v0SdnJl1Kkl4+2I72DcsQYKJOxNsx6ywFRNtbmY5iiaqzSjOYrmKk9G6oOkQqhZlswKBvZ3vv/2ZhEPOZ7ILOVVFOngvp+WLhdx/QYrv1tnBYVzRsF/1jBId685VSNWSIUFGafijh87bCRi+6ZNFOTIljjwieZdmn81y91QQV43oi3eni1dTwGwfOml1/eeyEgBM79h70zq1CqGu+HMTAGwXt8xktLyf74HXkkA65/vxpQSk9oDPIAVFeXM7ZM6FTD2Mw8A1qjOIA8EzWInL4fqY3hDYuq6OeYO+oTudiRpfuUulq7fZyOzJVJbva1eK4HI3Mm6h49Fmbh9jls0FaW720Xc1216C7ZUkL2GAn2sPYURdGyfNLd4X9vpQtRt3oCnhsowiXSMarfBHVaj8v76KOmfEf37JK93DOU/PvwofnzOuD4o9Kp32pI4/72E57fcA1jaSTvxcJB3hsytr514l9x0hMUCTJ5msIVsajZssAyS6vZkCQFYlN/EL+ybqJwWoCwnt56pnIpiOiU+uo9CQ/znjXEU547A+o9tIg5xkul0Qm02q04k9O68x67/JuHJcff9lvdtBbnr+TamriwT8fQ8x/3QRQHx77izMeFHsIjzeNC8m+h0ffRnVqT9zK4Gd9W/P+76M361oqY5yGteg61pemJ76m4+kXP7Ora1+yicksIqNfum4S7sL3ITpS+WQdXjdk8Avbeji9dFsIpWLZw3cXogRMt/dv09eFg6FHtzJb8yKt/2oA8Yn1KMmAcn8y5xCrO1jbNk5MUy6kGFN9uCBAhe1gx7f4ffytmObEggwzT1V6iBjO8nKWUYl8+Ccf9mR1JLm36wNHgX+jk4V10F+Ron/E483CfiNgcc3zUAF+MpyEiZst27zmPjtzUSJhRci4gMEY7yN+VohvL+mX1uCgl+RHPeuuQFQ94wejPs2QC/X+c4frbWaQlzhwEey9GLE/TqISNfXjb3STfOw38GA9PlfEURN2KuT/XWK9ORh9f3M402563EcGDRc6Pnp5mlVlNYOn/sUgdTuICTU9nmUvPM3Rf7EB0eM6GXYL9MWJ6qhc0jSrPUqYHh8YcgCTVuy58iDnOCIm+/paBGNZ0X3PKvQUTljvp2/hhU5+UrRFy5xuYe+p7Td11v+jJI5ax2xHIYNyxCiLEuzgey9QaFz5MCr2iAjZuH1g2a0TjUlFLdtUnPAZkzh4p+vZ3HbvR94OxsLnw6gTBCvapl+/ohqLhzuBP5PNXjmZgZCzJNR4jBzh1K39pGb6ooW9q3b5G+LXe2iHjAhYPS+0vvcVIsBcBKSq+9PmnMccAkjsuOwlvdKXKnAFivz5hIaem/3wOvPIAlywpCQsMRHRMLlWd49tD3xQvn/fefymtUA35BG/IYmDefLZpyZAMGD3QPYAV+8g6EF4ygNXbGOpDKX3Lb2pibGBj6lyPbDudv4rvNh6DkKQzTSBYeqN3Ah7J9HNYXuS1XHWnjhn8LuUAJhJ4UcO1X51N1IuQlYODoMRGb/mCL0coVFTRvmrRFma998fymiPPzWZmp5NuIkZwJ6jv3+QnVDtdC8VtF3H64fS3L032fhh3Ez9Gsr6ZnroFOqYvawuAoHM6dpS+qomQvGQ8fwokTys9PxWgflPY0ziotb3dKYny5CQFY/KYtswxU4kj40xZUUdqNd5dgNiGQI8SmskxjF0DhQqcOHBKxlTtlrlZFgcUqgMAVzZq+raBqFecxcnGBhGfX3ANYFAJIoYC+GHHvEAePZiV6yshQ3D3It9/0CO1DGNeJf5w/uvza1ZZ0SJkNyLnNvhm96dcdNwNYKFAh0yIUMC/DuYBaWJJhIqpXV9A4iSfpntqkBwLGtdiMi7keocLZ8ih/uqIj2ajhMoiHhWznHhF7OS+EenUU0D/enl0XcFHnIUPXx7XchAe5w3ExbydfujnJ9+jnwajJa3FlbTo84zbMWubJwYulVw20tPsAlnqJV9XTN1iIe4GAER0gmJgHX3Lk7Td3FAwcv5Z2iHBtlYTQE2xcF2ytILub0Fi+nnpeuVAROBHv5E3cacShxttPSyRMqLEUFiNzxzybtwMyiQmLy2h5RN4QcOEH5+9E2Y+sSJ3LdbgQx5Df0hmOC9Yab4OUeT3ZqrUSzscftNA9pMJKylqaGU7shd+CSY6/iVSfyPV9MX0oXIH8KkYNtruqJQbAMhzdBb+fvmBtqlIf5p6fuVTBEg0c41RZDUFAlXFWPLTGoPJ9xguWRjTict7ONgVXfik4dqQVBmdRV5cy9P3V5h0ZZcvoPLDmj4fhNFPSNfcdB2twLZt6GT9fN28qo3JF1znUXRkVIzfZQLyTQTMQbmDzFB120aEX2fqNEk5yXrItmsqo5CZ/rVE3bglYsoyNK3o+Pbu5elcdnyLBzIU+FuuqIJMbsGnrdgEHDtnzy269jYFRn8DfFO7UhyFSfizINA3PJLuCYu1aMuq8ocIYryDsy7jS36P3iCzQQkGOmr591/R5pQBYSXkCr1cafXQIHcr56cZvCoD1eo2JlNb+uz3wygJYYeGRmPH9r9i57wRexHKkSl76+8Kexf/uE3nNSucXtBQCRqFgmhUrLKBXD8VtCCHveUD3v4iXRk/u7vsl+iqGhR10ZNvj1DV8ve0oVL8AxH7DVJ+0G86cFUGhLmQTQloilfrckdb05Uoo6TLZ+EyI14Q3jZdo524Be/exaw3qqajzhvcQh5dpt2IBDo/2vIIPD4pB3+4rUPJySVQ/WsOtWtvLlE9pPw7bh9+imeLV7Cy1QSEfFPZF4V/uTFPiOnxMxBYO9CtWVEHnDt4XskeOidjMpStSWEHXTp7TJQRgXbshYtlyez3TKkANThUqMIuC8kPd5+v/7aeQLp10NM/ybh9YGjLvJPLmI68+zUoWV2CVgav8iX5bxRb+xtupryTEPnYPYKUvpqDke977h/I7972EKM4Drkw/GcS94smK3/kZUSrz0Gv+Z3NkfZINn0d1RFC0PUTsrl87XA1goUD54lagSNwPCJeyY0rWFTYelFo1knfMH/9CgpkLPxvY6TeEpItE/euVUOAgC5Xlw2/WbhBx+gwbe++0VFC+nHO/mZ4KODnNVbquf5dfEZomCg/yu3L2vOy7wqcPHN0FwlPGLG6auBRK5hy4u03A/Z2u9XpZXiy/Hz6H4RTnVfr+aFiTSf3VuGoejLvXOZqnZMoB06SXJIif2BvSQxZqHjfsG8gFS9oAewLuHe9VLwXpiyb8TsSGCDjFcQfFCCr2BdnfMfJeIi8m3qb/YMWstxgvVSAMuJ6/i8+PnwQsIq+zOib03hqO74bfwimOvK0V68L8PlPE0xdKoWoUsqYZfWPoW6OZcecaGFczlVRrnRYwdxjoU931703dN2R0aWMH7RIDYEmnD9g4lDTzBKLRdHNoFPt+CRJQfYp9Dip0exlMYM9lZbZGOP5jbhDXpGYUPkdhdAmZPkS9ZzcFBfI7p/Gf/jGkm4zvzPTJV1AKl7GFBfJ97embri+D5qKiEbshL1yIA6l/cape8BAZQfEhdzyARDc1elNBzeqe26MnpPfk5X3nDwEP9rAx4inMVjtkKWA+h/fCP0OgGuNU11vG0liY6QuYhNQoXlxB40YqMmgk7z6NKPc3XV8t4skx9n4UbqsgayXfvmv6HFMArJd4EK9J0qkzJMRwXLHuPPZTAKzXZDCkNPP/ogdeSQArMioGbXqPw8MQJuvua2+nAFi+9lTy3McvaM9dEEBhF5pVChbQro0rgKX3XFENfoidzcJEkqdm9lwWRF3EuKdMIeuDY5cxZdcJ2zV3Xl8ah5WfasKUkMZOVdFANmsMcPRzZ8CownDiqVGxfqOIk6fYoqxlcwUVyydtUZaYfjjzrYSYeO4ufbor2R9j9Dsbke1xNjTb2hzv95RBvBXJaX2e7MbmF3ccWf6YpR6apMoHd14I2k2abLaeJ8pXAIT4dL761nmTn9BpfEIA1olTIjZstD83PwWozwFYUgBQdYL7sEvjrrUw/sY8+eRiwYj7mJFO374jYNESVkfiRJMtwCMOnOrTS0ZuHafK0fEGWLk68M+K5w7z9gz146LsABmpE3j2HzzZi99f3HJkW+Z8GfQ5+AJdIj53/Hbf2AyXA5l3SO6431E87mvb9dHZN6JJqyAE64Aib/VM6Dp5WxwaQX3INq1d3l+MOKMV7UKqIs22Mo7k/Nihfqf+1+y9bgry6zatqgwcGumctwoVHfougiKqOJynDfJIye8ZqtUpYHJfiPdvOupo+mwelLxFbH+HXxJwdbnowiH3MrxY/tM/gnSTE88YNgtyweQRzxBDHyJgrDMZvfnDybCWTpqSoxAThYCRnUDfC81MX6yAkj4z9CTV5T+REZg14TlND/TT3VvjIxxzZFfxQR9nAGvQggisbrjBUXYRKR325PEtpDTqLnBurvM3wpP3FRWgD0eWy1ZH3AfsndO/HwTMEtCkWZlSKtpyIZAEXhGIpZmlZS9Y3u7g02tIcyrPVUZ8dm9UtsdaJgrAunQSBPBrJpeogLiPGP8aX5mD9H6r7F2t/oUVggi882gLjsYxqoFixvTotqu1E18iHVrQ4UVCNvs7CaGhLP8B/WRk1Y2XgPE9IT6+z8ba2IVQcuTFkaMiNv/J+poU9khBU29zv5fw+Akrg3gDc0acwr15l3E7gAGfqXOrKDuQjTV33FkNdPxcfFn8IRv9Xq6sgnfdqPfFPATOfMOFERpUVB4vQ9J5nVB+V1ceQPeIsS5t0rxqCSBs1gQuoJ9PA8rDTXou0cRwO+qzTAGwXuZJvB5pv50rIuwpe48H9pORRTcHpABYr8dYSGnl/0cPvJIA1rcL12D+so3w8zOie9tGqFsjGDmyZoLkTZcXQOaM6f4/nsxrUgt+QUscE8QDoVmdmiKaNpZdPLCEqGcIHM68VNQ06RE7jYUKJGfXfRt5FlMjmIfM4EMXMPav07YiKISQQgl5i4kBps40IJv1LoaFss0YeUWQd4Rm93dJUK1sEUvhPWQ/r5BwlQv98kVpKznae3ODCJKldmd/FbmO2Q33QLJK6P5LD7RuoaC8jyTgvtat25Md2PmCLf6XZm2ABkF5YH0h4OgEV08SylcjR5/2lYToaLbw1/O5JFSHOd8ZQOF/mnVqr6C4G34SW3kZA208Lo/CKRzZOddde0Unefa3nQ+hUWOqewBLDLmHgAnvOWUWO2sDVP8g22/h4QJmzWHtT59etakQ0jjTbMgg2cbfxNvBTz171BEnUtXPffNw0ntylf9EQWBWz5u9tTE3MDCUeeiki0yPgwv/RE4L8657WHoILt5t7qhudss2lI61hwrNyzgLNXuWRpHCyQeQWqIFHJvI+jDGLw49etnl6PvH1ETcmhKOupQqpaJ9/Eae1EB5T41BA2RkckMaTnlTGZqFpYrGB91W2v78PUdTVPS3h838Heb/1VBI1844so4bMgNykXKOv2OfiLi4WEDcU2dvPBoDxTqrIK+exFiAnntw0jKombInJosE7/WbMxIGTrVMLlERcR99maT8/b/6BNI1JgxBmWiHCPr3o9okK0Qfwpn0z3pPkACToNrGBY0PzYhbr/uyu9hVd5fjt/qBubEsW0Of2nJxgegUBpq+iIKS73t+VtLlU/D/Zrgjb7l4ecQNmuaxrDt3BSxczN4JPQ8ShQ9SGKFm5u7DYa3G+NY8ZRwVJWA656VG8+WYz6zIm80ea5koAOvmRfhPZ0T+coGSiBv+jduij4yXIMeyMV6VgJZAFQdiH6HdYxbWTIm73a8N466ijnyaNlZQtXLC78GXMwwg9UbNiDeL+LN4CxzaGgSaahY7fQ3U1GltIhx0yKJZqRIK2nNiEdrv074yIJqxImDYYCvSRd7AkW+ywCJmdKQv3EYBqRZr5gKQVSKwyHN7EkNTcHK6CFNYwhyI4Ws2IfcO1+dyKLA5NmUfjAZ1VVSppEB0v7zw6X1wd9PlZSLCOX7G4t0UZCyVuPlMyzcFwEryY3htEv6wULKJLGn2XncZ+XVqzikA1mszHFIa+n/QA68kgNW61xhcuXEPIz/qgs6tfVsw/h88i9eyCvyCdtceAXv+Ygu95m+LeKOWK4AlPrmPgHE9Hf2lZMkJ0+dMaSo5O3Las1P45hnbII766wyGHjpvK4JI3InMXW+kRlcg8jjej+A2FMXKIe5jxlHiqY56cl061afT/b/bws4IuPqLe6BoTcVTWFnF7nX27oZ30bJMWiR0wutLXW/fFhHyBIiIIJAGWFNnC46YmQrZquyNUDMghy0r4jchnhO9kepQ2iqqEykv3fP5WN9J5klZihSmNKtUQUGLZu4XwQkBWOt/F3HyNFuhv01V4CKXK34qw9+DYlrgqM4QOEEC8pwgDwoynhzeU7/q2xsXLuCEjtSYNndWjperyngrDD6ItOo9VRJqB9UvSjGj5N0VUMDG7Onv1yNfJEPcHvb4DRfXMiLrzJYDCI4dbWve+rQDUXZIS5AqZHJZzAPgzLcM0HuQ/hk+7rjalv3nhtq4s4htZknV7uN4IELPeeFpXJ2dLSH6PlvYah6LlP+CrPXROOjv41X0/24spLOHHF1FPEUUasUbPferPzsDItr1xPJi/d2h29LF4/Cf7cxzZBq/CEq2PIkaDnqFT0qseSVRKCmFlGpmSAVU8XHO0HOpHQ0AwiVAr0oVESmg544LOFaRee/2SFMckzNV89qO6AfAWW68UoIyH1qRJoFhRF5x5B2nWUJgD90THSNg2kzWBwEBKkYOZwAcEbgTkbtm5BVK3qHe7MIlEb/+xuZBDRjTNnaJAbDEBzcRMKmvo0glZwGYxjBVQr4uxydLMD9n72Clz2T4pbfPIV0eb8fu2AeO2zPIQWixoh0Min1OoHBl8rxMyHyZCzy9G3fuCU7Kh+7CTalsd2WEH3mOy2sZeCXChMoTDZDi1S8p3dnzIlavZX3uyaNKa9/+gxK27WB9VaumjLcauG//3W0i7u9keRMHFnFhaUbKl6SAqbc/0vTCs9qd8GZ9FUFByTeX8+Xo+RlJbTV9saSVlQJgeXuzU67/vEJ0om5wd9iZAmCljJOUHvjneuCVBLAqvd0HsSYzjm75HqmCfCNM/ee6PKUkvgf4Be3GzSKOnWCLpU7vSggub3XxwBLvXEHAl0xhSclTCKaRjK8jOXt4QsQx/BDJeC0m7jqBAccu24ogmXKSK9cbgVB5b2xCm8ivHJes1d+Cudswr1XTexORVC9tjv5u02/q+PLm1f0Lu0vYCdbr7KuLVoGF0K6Nbx487upttdpVA3nb3W4DbgYwV6iNOZqiQrznyvkfJDy/4crnlL+pgrCMcFq8582t4n0fZNG1su/eF7BgkXd5ZLo/IQBLL2XezB+wcjy2ZT6UkYZT+eLbrt9sW2s1hZlT2yJANC7OPZ9VqiAVnw51fhbPbws4/x1rU9r8KuQ4ASQ3r1m5QVakYiKTHocXhbpSyKtmlUdbYUyT8GhsE/InDpkYGPn57pMYeNQedmatVAdh9cbg/HxWvwzWU6j4Yojt+rHARsj3+bBkHfMUSneZ8zY5l+shPm9hVwsjgOnQjIJODRo9wmrrb96ThBSziPPCnemVGg8UuolZb9k9b77IVB3d0hT7215f/8VTIR3Z4cjf3G0orNUbuZanAve2C7jnhhcrQ3EFRTsrTptidxUWIsMROKK945KaKi1iZ7Aws2RppKoiYGw3iGFs/FjrtoS5vWdFPX250qFt8F/KwnDpupItN0wj5gEBgTZVU1I31Sx1LhVlP/JtPrvyi4SnZ9i7eM4feGCAjcyXSH01o3nlvfOHcak4C7cck7ES+qUt7bWbLi2SEHGFlZG2kIrSuvBEfSbivesImMJ45ZTchWAalfA3ceIUAywc1v/ZMBmBgfZvjR5UN41bCCW7dyCWOAWJW1AzEp1o8raCpABYwpMHCBzHOOTUzDkQy3kx831waoaEWC7EL3iIFRQqTXbZHIGGDzdwkDpQ+URllL1g91Qk/sCObjyitPz1YF/qVKqNB5I3l3cjdTrETreD5E+fCviG47zUe+vRPbGxAr6YzsYkPQd6HpcXqgi/ylwDc1j/RIGZzoeyxIdIm2vNihZR0KWjZ08kPSdXw/qqjVTdnb14DJz+yk0YoaTAb/FUGI4xD0PbewYB2wt+huLd67uEV3kd+Im8Qa9QTEIpJJiSFEsBsJLSa69XmtXrRJw9x96z1i0VF6qDFADr9RoTKa39d3vglQSwgt98H4H+fji0ad6/27sppXvtAR7A0stB9+kuoXARNwDW1dMI+JqBQUqRMjANYWCR10ITccOIp4ewLOqKI8WMbUfR69Q129+W2s1g6chCHLSbKFwg9+FFaBjNCHwtTbvA0syZ30VfDQpLI4Uk3iaMsdrC1v4J06sOaWWOb7kFF3I+tP1Z+kJptHpYDR/09t3LSV93Pa8TXV/XfC3CMzDEZ3vOFijpZz95vvm7iJADrvEHhd9VcCQUTqAnkdcSia2vRn0+ZZozQNTvfStyugF3EgKwZs+TEBrGHtQ7mRXE3mF1Lt5dARFouzPyoCFPGs2Io4e4ejT7dq6EMF0ImHYtWzbgw77Oz+LpWQFXlnPku2VVKFYV4RdZfUr0UJBBR/zurm6HxxigmNmVahOtELnTf3dpCPAl4FezGncfY/MKO8gSO+YHxIgFcZoLM0ojX0bVGPvm+4GxENJ/832yjvnHx0TcWM3avrfoNcxpYA+PWp7tTVxYmg+PGQ+6TZFLkoAFP3HcY7lUENeYO7u9ScTDfSz/9cFnsLy6vf2D0wdjaHrvniu+jlf9fX6/zoFhD+NZMrf9ANb6nlUBaQxcWyFANjtPKhQWWqKHauPh82TinasI+PJDx2U1V0HEjp6f1Kp7TGfYtQ5+v7Fvt2r0R+yM1YCf98Mo8fZlEJm2QDF88aYGBNkOONQsdo/OsNMCiD9Hs4ylFRTnvEoSatCdPwU82M3SXjequO5n70veQ488kXqFb8e9XPcc2f2QpR6apsqXYH9FPxBwVsfLV7qfjLQJCCdQhvpQZCVrLpgmJCxIM3e+wWncO7j0VBWBA96GoLD56gUJlvjQ/9/9YMAjhj2i3bsySpdSkwZgRT5F4AjGu6WmzYDYqavc9t+Z2RJiOC/IcgNkpOK4+gaH7ceq6OuOtEazEe3Xtoe/OQA5ciDB75leHTlrVmBAP+c5V3xwCwGT+jjyJ7CPQD+yWBPwxTT2Xff3A0aNcE5P3w76hmiWKZOK/t0UHJvk7BVdJaY/DLNmAgYGaunDQfPkUdG7p2dAlvi4KOxQs8aNFFRPQIHz1EwRFIqsWdH2ZuQ6OBoSF+pL16yCEdebTUDeJpWTfU5wl+GZORJi7rF5jEBoAqOTYikAVlJ67fVKo39v3n5TQQ2dWEIKgPV6jYmU1v67PfBKAlhvdRiKJ2EROLltAUTxH9r9/7vP8T9bOg9g6UmThw4wIGt2i4sHln6wMI5WAAAgAElEQVTDby1TFeb+TPI7OTvj47D9+I1b+M7bfAgdz9tJk+VSlRE3gCk/aeWSkmDO379ERRPnGdFlCKw1nUnd9fV0OelNrYI8sP4p03sXaOX277ISoWnsMXzZQ3Kg9Z4mGDUi6fWikD0K3ePtt1ar8DwtU2zcn6s1ChjT2m4JOSzg5jrX8MaiHWWsOiIihCM0T4jDylM/kmokEdFqVr+eClLO0ltCANakLyWYOVCgU2EV4ZynRsHWCrJ72iSYTQj8pDUEq8VRpGnsj1By5Lf9rVen4uvlTjnx0X4Rt+IJ5ele4gojsnFSdNSsQEsFOWp4B/r0XEGeuLz4Ot21RKH6A84zR1VxZ9YqhPlXQPZpk2EKE3CS8zYIku+hRkw3+zsFCXFztyA5CVPubRdxbwdr+4bgM/g5HmBam70xHm3NgZOc2iBt6MjrkReUKF1S9cnr8KfnlzA6/IijOzqnKYppmZxD+pLzfTb+vhjGP5Y7srQ07QpLM3tferLYUODiIgkUasob8WIV7aIgQ1H3m0D9vCuXqoK4AZOTszn2vOh9GNoGgoXF4JrbfQhrvVYJlkVhuAFf9IcQHem4TxUEG/G3Ury847d7O0Xc28bGQ443FBTwEDasL/DxEQE3OFVQ8r4iLywy8tzziwd3iWeop99aPEv3zJHFHzmaoaw/C51115hLi0VEXGJ1I8EEEk7wZsKzMAR+1pG1O30mxH7hGtrF57NylYiLl1lZbVrLKFtahfA8AoGfMs9i4uMjXj5vZjYDk750PoAhTyXyWEqSB5bpBQIHt2Rt8g9A7CxX5V+64cJ8CZE32Xgu1VtGOo5H75E1BjUfrEUcTYTxVvpiGVQ9XtXmdUbeTp5Mr45csIACUgjkTbxyGgGzuEO1wqVh+sQuTEHmLQTRXZhhozwqKIRPM22ejP1iBdT0bBw9CRUwh/O4zZpFxYAPPLdn3QYRp7j5zp0nCd+2+ztE3N3O6pHZcBrB4YOd2m8xprJxromFWDi2t/HystdPzZQQy5He8153ic07BcBKbI+9fvcTvQnRnGimV26l31MArNdvXKS0+N/rgVcSwBo34yes3rQXv8wbg3IlC/17vZtSstce4AEsvRfL+E8NCErjBsA6uhP+PzFiX2ulejD3Gum1rKTc0Dd0DzbFMBn2RRv24Z3Ld21ZES8L8bPo7dRpATl+GoKCZkYgTETEREickD16BHz3I9sAZM8O9O+TdE+nxLZXD3zY0gsq2vaznySTEZF7j196wh2Jra/lLftFwrXrzpvnFW1W4EUQi1U7nqcdckh2IvOo2wLOcQt0rZzCXRXMXSc6EaqPGConmnPj/HkBq7hNqZ7QWCvPE4ClP2EnstqeFRQ82MsW/XkaKsiTgGeY/zefQrrMxAIsrfvA8qZdqGDNOglnzrkH4iuUV9GqufNmRe8RRKGW5Gl2ZwvHTVNbAf2ekMlm4MgYPnwEqDbZt/FY984qXFMZ6/H3mw7iacggdB5fCogFjk1i+RqUCNSNZl5DseQtkyf55u0ba0Q85jwOfqp5CFvK2sOCCVSIPZsVFPqkWdkyCrJlBbZz3C++evbRXEFzhmZvBubGYh+Ju319f/j7jNtXwbj2R8dPlgatYWnDQsk85ZkUXizDvk3w+4WRNRMgb+5iD/1MbtN7ltlEMIjn0JM7qjnOFlYuPmJzNdXJXZj3jTUSHh9l71OB5ooN5PXFIq8LuPAjA9PDReBoPJfc0MEy0qaxg387dot4L+8SyBJ7N8/n6YAMJEnqwfThWnRbyd4y0vsiaBAThaChnOddUBq8mLk2wSZt2yFiPyfcUb+Ogrp1FIh3r9mAQM14b6KEMrx+Q8BSzvMzQwYVg+PV8pICYFFZvnKu6YE/d4TeX0ScwJzIc44mCIqA9ms6IFVsKiSkPktzL83BmukVG+l3w/G98FvIDtHk4FqI6zvOkWbGLAnPOY6uIR/JIEEOzfTcYSWLKShyU0DcMzZOi8XORh7LWpvXI3k/ahb5XMDMWax+aVKrGJbAwZfe052Unkt78A6mMmLDgFPT2XwtqFbUiWoBA03ktA5Kn9kGXqnZE8dT58v7ltA9xPPIg/AVPpUR4IFn0ltZKQCWtx5KuX7oiIg/tnJqom7EElIArJRxktID/1wPvJIA1s27j0BE7hVKF8EPM4bCQPEgKfZ/2QM8gKVX+pk50QhZMLt4YBn+2gi/Fd862mOt1QTmzs4ngsnV2G5PdmLnCxYGsnL1HjS6YSeEVQURsfOcFY7o97t3BWSb2hkZFBaXFDv+J6jZcidYLVIfJBVCzUiJrWsn76fvydXW6PvA2dnOJ+gUUtSp/VJEqcw7qO26thjSJjXyciEavtaBgBTidOK9lSjtsvbLYPZnHhcX8nZEetHu2qAHUrSy0jdTsHI3RzCrUwLztU5xJgFTpkvOQNgwGUHxfDBaPp4ArMdPgLnfs37LmElFu7IqCEjSLFtVBYVae94kG3eshnENC8eSi5VH3Md2FTH9RpNvV53aChrUdc6XyPiJlN8xjjrKtn0/T9KfqSyp0CU8toj7ijiwNCPSdyJ/98W+3DcPs/PYAUiyt66GI8/h4ejRVUb+3CoOj+Y3RGY0iGK8TcQVR5xxyWWXfhIRwXmafPXWThwqdMuW/Z5crRAQkgE/cuGCJPleID9w9Dh7fr4olVF+R02P8U7IH46qB/tlwuacTHExudrkeCb7t8BvOfP0IP4r4sHyyRLJi2XcuATGLYkLi/apHm5uEkIf2biweNiWvL3I68ud+X0/DoYzB50uWSvWgfl9uzgAbxcXSHjGKb0mRr3M9FTAyWlsjiZdhD2p7Ll/9KGMzPEhmEu3mPFZyV8cxRpVCbcLdE2wOy4vFRF+IfHeV7ZMLWYEfdSU5W8w4MVsNg7dFXz8hIDfN7O2BJdV0bqVbBMF4EOa5eIVEDdoqtdHuXOPiL1/8WTiKt5tZZ9jkgxgUZssLIaZPLBUf1cQ0GXO6yAjS3lnT0ISmKh2fzWecTHRhW4WQt399fBBHytyeBDTPHhIxJ+cBxKF25GXJm+Gvb/Db+Vsx096HkO9OIsjXDM+xdETIjZtZn1Xo4CKtOfZ6LeDRq1gQAxMg6dDKcrCks1xwKSp3DxtBMZyfGz6B7fkZwk3OG81WmN4U309M11BTBiLHS8VOwU5LNuh5MgHE6ldpmNE814HSjLdQIcgFib6CF/4GT0VnQJgJdNDeYWzOXVGwLoNCQPZKQDWKzwAUpr2f9cDrySARb28dc9RjJjyI4oXzov3OzZFpXLFkC5t/Erz/+4xvL4V4gEsvZv9gm+MCI9yBbCM236Fcd0CR6dZGraF5V3GP5GcvdkuZCsOmBj79Ya1B1D7GjvlpzANNX0mpyJJCjvTsEaQYF/k0jI6ds6fsBHrJGCkYkdqdppVCFbQqoVvngHJ0WZVAQ6PkaBa2cKZwjAmNN+MAxwpd72/6mNYcH6Q2lFi7fETAXM5AmUt/eJOP0E2MEDlRr6uCBBYf+lVpiiduYaMXWfYPS/TXz8tFXHrNuv7Vi0VVCjn3D5PANb1GyKWLmdpKcSkWWkVV1dyPDulFNBG2ZOJIXcRMKGX47INHKWwHb8AHD4mYgvnIcTnQYqJpJzIm57ctlQfGaIROMcRCafOq6LshwkDWHpif7+0KiqN8g6oCs+e4szcj/7H3lXHOXF93zMzySZZ3GFxd3d3aXF3imvRUqQ4RUtxaGkLFEqRUqCU0iIFvi1Q3Fnc3XVZSzIzv89NdvIms8lGdpEf5P63m6d33sg7795z8FH72o5h6S0cOqzpgjrVORth8L4RAiHAjt9rvqwBLoZm2VqjKcwtWQSIr2tMW54UCEmJULExTf7A+Qx2cPlgphZIh8QgQmu10TWk1CHF2reVkDe35/V+3RKGiqr0SYoipGjC12XC0X9hWOw+8sObfonk/uJKHpLFOcrPmFoGKXsZYx5vQStmQrdvq6NJc7uBsFZu4E0XfpUxLPjCiWdHLFQG0f1ipyzqtq5G0O/OkbA2EvNh8wB9bMI2Sl+lNFbFvBU0oPL0jNw/0nmtbCWclgN69xBB0Ztkkzc9xjdFNjv6yC6nwN7sLB1O6xB79BU9L9i4CnQTkdxNOqcrh8aKVlq4FeDdv3NICXbpT2yNKwIYut2bEbRaFWlXrg7Mn3gWINE+Qxs3lFCyuP2e8RfAMn3ewikllDiwiAtLa9ooyxxNJaQvF/t+XfzyLMY9ZcqQ1E7TTc3Qv15y5M3j+v7WKtWSsh6pI6tNv/kn6P9c4fiX5aN2sDRiSskrV/O4cMn98+TfPQKIekCx2kkkCPdVByCWHSgcaV/70T3HQdSoH3tKUVSP9YelAm6p+MJ6dhWRKVMc3HdXz+LewmO4omOE+qks+1Ek/QpQZDmM7KDCrxvdz0oHx+ogqpR+y06wIo4Axzh7CQBYfl6ED6japcs8Vqxi92SunBI6tXd+ZgQArA9oQQSm+tY98F4CWJPmrMCVG3dw+txVmxqhYkZDEAwGRn7pyvv7Ni186xflQxqAAmBFRHCY9jX72A4OBuZNdQNgbfoR+i3sdJs4X4j75XVYw3t/4lg0U8fbuj0UZY+fdHQV/dlsiLmclaV44mIZ1d5RJoxPgcivfrVxgcRlu/cK2KHihqpaSUTNGv6RkvrrCy2XSLoyMlZVP4hFL5mkepHQIvg8UUkQV5SvRtwwm1VgTIF8Eu7e4zCzMUtTpDbvZGMfy/S3NmqC/nclt4xLd9lHvyvQydvx7T/AY4uKbyRfPgntWnkHYB07zmOjinOqWFEJNQvJOPO9SunMC8DIOLIt+OeP2drqMxFikfI4d47HapU0vXpOroAVihChSBHFig8VIRgAAgEVC0oio9TouMEoUvUidS/H8zO1jBJxcMUo5fTrF0G3Yz1y9W+OpyoV2Lp/10ONxCE2haxD43Ww2jNQbFY1rAH0sj2FVMpTBFGDZ3p76TyW057U92v/Cx4mtR/dn8rcGqkEE+Z/K+CRSsVM2+invUWkTet5vVtkCdlu/OSorgOHG9niFm/wOIE4CgjnjsIwb4SjhJi3GKIHOSvwedO+N7xYWkApOmZ9etO+P2WE0wdh+IZFUJH3KY1QTsMUFvjQQzAsHOUUqSWTAhyRyydzPlhQxrBvpABI7P6gqEKKLvTWjk4TEP2M1d9jBMIFoFtnEVljlEb7b7qBDUX+52iyCpcFq7PWcNvFhZ95PFEpXCUKkVF0oGewWN2gaVAjcNHspoqc/TuIwN6dUUobpbYppqjraXnVrPXawty4q0f3aFUNB/STkDpVPAGsUe1B3GaKkQohqRFq7dpmHvdUQgqUHh1SJTYgRfdnpTsbcNtq53Qky3A/A+ZzH7klMqdDJTpcUszVe4airygKSzGtmAK9H+g9oZga3KP/qdUb9TJQM1J2AvhLhg9BCvG4rbq53SBYK6ui7QBMmyEgIpKtSYV7zNVFI74s4s1SjPiyiDfLlQkn9yFo8SREi8mxN4maQF9C2TFREBJ7UPTwuGr8L6A9BCk/1QqOudinhgMAlk/u+iALaxWrCfQl8FdtAQDrg1wagUm/JQ+8lwBWwWrOm19ffHvmn7iVe3xpK1DWswcUAOvRYx7zv2FfH2lTy5gyJshlBFbQ2oXQ/W8j+1hs0QfWmu6VtzyPwn2J2nc34ayZqeP9s+8eiu5h0tHRnYdDLOssay1cDoVhJktpvKnPi4hhC0En3HGZVoLc27Sl+MxPW/fBAR5Pz8O2oRNMQOqCwK50l9Hv8W5H0ZC7GTHsXj20bO7bBosaIIXG0DPs47nBRxKsghUtU6o2/VYdTqfr6OCToXpaXif63+5kQIQqo21gPxGk3uSPPXnKYe4CFcCjB0Zr0jC0EVgUTXbmDHDiNI/nKq4SIvesUJADqTcpZkgho6QH4nv96rnQ72ZRG5bKDWBpNxC3bnFOKW7q+amjPpT/U3qexDI+UW6S1RaB5Sshe/hdDifnMp94takOD4NpZBtwFjP6fVwOqwozLqv85wug5unyNsJkLQhQJawlgmQ7eGdTnZvH/ODP9VTX0c67ZR8WvXkpSwcE8zpoify1fX5B/CoG79ZWnhs/I1xmC9MT91F85keqe8bp/R1NSFlyI2qkf+q7YhSHC6s4PL8QexeYpY6MXPu7gdTWFKN+qL/XZrJsSyPkHzNZO1JYJHCAjLt/C8ZpfcFFUyKf3WReQPTncyBly+dyWNYIDocmsDVNxPVlJ/r2HDvzA48Xl5mPjhg5PBZkqMHklptDsa/QEccYOhgKYHoG1+mPEQ+4mOgrNuQC3SQkdxMR5M7fpmEtwYUx0vjIab9A9pDapY3cIXGOJGtmQLefpcab2/SHtWqjOC/znTscvluiOoAyyRihArv9jcAyTuwO/t4NtuZGfw8pY/ZYY7m1Q8Ctv9l7JXNtGZlrub6um8Kvoc8juwqpYoNu1cXnlWMDY/Q7RV1Q9IViBMDn0URjEv8V8WApFt11BMTSNR1//72Tw57/mH9q1ZBtkaiKrV0nIPSsffzZLBzymdmzxmR4joqPmjrKWpp0g6UuU2ekH+YsEPBUJcoQ17tw1lwBz18wX2n5uJSOiKpBv3qeAxw+FLwIL3V5HePI1UpC2pKeo1LjXDjx+NHX91lcXQUArHhciA+kqnaPkjKljEEagY0AgPWBLIbANN8JD7yXANZfO5kKlK9e/rhmWV+rBMrHwwMKgHX9Joely9gHXo6swBdDXEdgBf1EH9jbHb0SkbAnhT9/h0intdcsTB1vf2g08v25jn1MNvgElvodnJoXDu+EYSkjmT9prIrwzmNBkTlxGUXZULSNYm1bSsif/+19ICrjuGJ5gSp3fnOMiyTIR/zbyZYy46t9NUvAq1fs47lvLxFBqSNR+BZTzDJEGTDncntQepxiD4/yuLzWeWO9VZUR7ElJyptxzponOAFRHdtLyJ2TjYEArFt3ZPx7IBqnQ3k8VUVhqNtvVF9C8QIyDo5n65nTAeU9EKBruWeIHDdq6mrbmGhsroxUKkkxTzECIQ6OU23QTTLKjrdfJy3pLQFqBKy5s7AbHE6rpN2TZJVRuG/c15w4kogriWxznszo2LSKo/ngiGC0XdcOtLm6uZxHpEo9smDEBGSwMvLzyC9XQE7thpTGm4sZU8byksNhVeTZS2MUunVhPE5KpJ+WoFXdRZALMDOuIWifGTtDGiNfUOy0Jx+m4bYo/+AWjONZdIycNgSRE+z+99dubudwe2fs9ZZaPoDCr76EEEPO7y6dy99+XdXT7dqAoF+/dfxEEUWR038BRBHGKb2dwC0qFN3pc4hx8Ke9us3h1HwV0JJeRrHBvj3HLv/K46GKH+1sEHBTDxugTwTfZDW3HcD5vOcd4x6fsgx6JC3g0jUXV/N4rIrwSZxRRpEBvo2JGjaN7gDuiYp30U20knoQdGhEGzPF+vQSke2X4aDIPsW8ibTbd4DHVlUEa/68Etq2Zs9OvwGs6Z+Cv37BMRZKC5Wy54/lx7u7eVxXcUiFVBGRrb77Z1vVq3/gMv/E0U66iOQ4kr8xeBciAd8tFnBHFenbq7uIjCHObRvmfA7hwgnmM41oizYNvGxpCXRApZg6/bJShIzEqvTqHLmOI8cxJpZgqd3KJk6gtkWLBdxVj7GbiIwZXc9/6gwBkapoLTpQoPen2nQbFyNo2y9O/7sZ1BoXjb0d/0uWR0LBbm/n+ySWwIhRRrkJvt8zymQCAFZCPrXfz7a0KuHEkaoG6WnWAQDr/bz2gVm9mx54LwGsd9PVgVG58oACYGlVeIoUBAb0dA1gGb6fAOH4Xvax2H00xJJVX4uDS91ai3siU1M7fjspsq1kGypXpMm6basRtJFxsvybqCVe1O+NWtXj/tj7fqmA2ypuiu5dRL+I0l+HI3JeX4EosA/EjptaYdoA37gvnj3jMFu1eQwKkjFquIh7YjhK3/7VMexErxKj7W9tQCfDyZLZP6zDb3E4qYqQknlgmyrth/hL2reJ38c0pRBSKqFiZUpLoAixew/skVYXLgh4wLJJ3bq5fRsRefPIsSKeyk4QIRjjiOIxR8H0WTNwVhY+FTV2MSzpsmKCSrVP3fGEMVYnYTZtNIcpnYziMYpU2siRQr0kJM3h3mcvLvE4s5j5I3luCQW6x+FjqwWm4a3ARdjTcyJ0ArINaQM1tVKTzU3Ro3JyCP/xIIBMbSbxLtJZdyKddQ+CureHWKxivJfyqzscTqnAvxspn2Joa7s6G3GsEdca2bXrHH78yTVISIqE/Xp7R15PbTW7vwUHoxiQsCZdHVQ2sbS3eE9K1QD34ilMI1o7/mNLn5vBAHZ/+3p6lsel1RxEs/M1Cpauo1jEGJhw187r504V0N+ONfW4yAgYaU1ZGNmNufWnEE7sdQIMqJqlejNYWsWtwEhpepSup1jKAhLyfeLbc+PO/wTc2Mr8ck0v40IQh4b1RZQuKSMsDKh5+m/cCWHEa0vS1kC94CyxvBL5iMfxr52B+fydJaTw4+AiVrTSmB8ghWSL80pouZlaNRdRan0356inEQsgZWWRN64aXP0Lj3OqyL26tSWQcqdifgNYsz8Hf1EFDA2cDiKV19qDgzyubPBeNOOv24/Qw/qnUzNzUldCy8S5YrU9c66AFx4iloyTesYZnahVui1YQELrFsw/C77V4eEjIIUElFWlVtNgytfeikTrGYm+K/XPZSsEXL3G1mSn9iJy5XT9rhn3pc5JsMTpHSKJCFr2FXSHWZQ5jYE4GcNajcOhLexAgv5fZpwIXbB3kakJ9EiwNWN5xeHwl+x5rU8io7SHlPi4+g8AWAl5dd7PtkiAiO4dtU0c6/xdEACw3s9rH5jVu+mBAID1bl6XD2ZUCoB15CiPTaoT1PJlgG7t3QBY8+iE+JjDR9H9p0IsUOq1+KzgzdV4LrHN0/nIfEg3b4yjLzFvUUQP+tqpb1JIpPB7xTYmHYAXZZp4TLmbPVfAM9WH8uCBIlLEADivZXI+NNr0/l84FMW4SGr+Uwvftc4c6+Q2riZPnuJtqVqKKSSY2givZC+SocXvLVGiuIQmDe0f+SQcde8/ATqTDMEk47+jAo7eZr3VqSWjUgX/T2CpJS2psSFIBnGxPVOlB8Y1v3RpZRQqCJQrLcFglGOlyRF/FBFjx2UGzdq2tOgNS83msThOqI0kSWR8rokeeX6Jx1kV6JQst4SCMaDTpbU8Hh1l/s/dSkKaOFJASBGNlNEU87TZ1ypxEZjSYkhP7Iq+62ijxIkS6KEvhpz3gRcX3ROWBJueI1XlZEhbTILBz7RQ6lQ7hxOZb2NyAzsROalcktolmdkCTJrq/HGqDJrI2yk9zFvr/egf/BHOhB7mpamM5olYKqW37XhbLhZ597d/e1s1znKRD3mcXco58T1RBUEORyHdAiSa8lmC9OOpkaBfFkD3z+9xFhPzFUc0qaF5sLu7BVz/k230M5SXkL2J99eWmieFT7Wi5wNBxnEjh3p1JFQoZwe8a97fgBfJXjhGsz2kIQoGxebkuriGx2MVN5JXabpu5miY1g/CjYuOX6OHL4CYLW7giaKmKHpKMSIor7OhIbhIOx8dGfE3ykmSx+lZLQeTVmXPXwDL8M0YCKcPsDm54V0jH5IvFUtdTEKeOO5Z4ouqcXQnbmW66aiTXgjGgUwtoNcQKWnTLMd+YYVO86gwDm8N/iWjGqDIWYqgVez6DQ5LlzPAhbjSiDNNsa9mCqAIj8LRQEbVnjhlIQmFCu1G0PcTHGXFohUQ3Zv9TT/88isPOgRUrFULEYUKxH7XWK3ARJVgBenKjBtl75DSvvWk5nmWpb4q7Zn7TYa1UBmcWijg1U12/+RqLiFtGd/uH0/3qDe/Rz3jcGwa86chpYySw/1//wcALG+8HihD3wj0raCYllogAGAF1kjAA2/OAwEA6835OtCTCw8oAJZWhadODaBVYzcA1lcDIFw7xz5qh86BmLPga/FvzhsrECWzD6OrhqpIMZEpHsop0yJy8kqnvolUWAhlSkfLkk/E0xyVPKbcTZiso8wYh7n6UH4tk/Si0XFPD2LxS+bzoqeK4fuSxZHJTZqCqyZ/38zj6DH2ka3wgJwxP0GduwzwS/k0JZputnOauePn0KYidu8qeuQY82KaNhBD/YHiqU5IiIyC+YCCBSWk1KTjnVog4NUt9rFfuLeIJNnjBrD0O9ZBv/47tlmJkbD/5jsB91Upd1SA+u7d3fmjXZtqSQAVAVVk2tSwzHVkZK7p/qP/8QkOF1ezTULqojLytHNTXpJgHNMJ/FMWeWRu1AVLK5XEyCf7HfNJ/Tg1eh5pjBbFZNz8m7OdpHuy4PQy0hQD0pSQEOQjoHt/P4+rKtD0f3kv4psadj43rUKglkdGGZcSiedpnMrvY58exBLVvTI6ZSn0Seos9OBtW96UC+5bB+qQisg5f0A2GL2p6rFMnLxYdWVkquH/ptFj5zEFuEf3bFxY7laKlDo9or5YBJg8qwxf/Z3H/X3sGURpZpRu5ovRBp428oq95IF9JqBGNRnVqog2vqTq/I+QeXava1VVqS4JLZDggtpIqTRlQf8AAePsz8BfPOVoLmrw15DyFI1zaoeO8Nj8F/NH6SIRaL2NEYTLPO8x0u7JEw5zVf5QgyJK5/4CWFpuKXOXkbCWiU2GrwWqKYKNItnisqELX2H1x+vUwo/Q3qvRZg6T1UAJRQ274DI09anttD4j5v8F6JhgkJY/h8jtieTe8cyYqANhYrUYbmj7qUBXCSm5YzDOZiqQUu7CiBoyy2lqWpJ4V+q0VCE8gsN0lTBHomAZw4eKQPhLmxiEcPOSU7tycBKb0qCUNY/t//f28rimEixJlktCwR7+rVdf7jlt2bgijf1pNwBg+eO1D68OiV6Q+IVi2u/TAID14a2JwIzfngfeewDr/OWb2LH7KC5du42Xr8KRKUNafDnMWVHn0ZPnECUJ6VKnAPeaU6S8ZNoAACAASURBVCLe3qV+N3tWACwtgXnzRjw+qim4JHE3TOwOQUXsGj36B4gZ406V8Hf2Ga87k/rfzdgOpgHOCkARmogHw5fdIdxlxLOzUv+AJ4lz2tLl3FlUFIcpqs0MRfCMGubbxsrfOXpT79dXlzHoMUvbzHQ7M35IVhtFCnv/8arlW+naWUS2LDKORj9Eo3t/OYaR9mFaNNxqJw0m3rBmjZ37oCg1ilZTmzaU25s5uSrzyzoBZ2LIdN21kSlERoECQKGCEpLHAaicW8bjmepUnMAfAoHiMp6IqSc4P5+I0Hz5WhMuX3GOWMqXV0I7Fc8MtXtrJ49bKi6aTNUlZKln99+DQxyurGd+S1taRq4W7teYL+Up5SRo6VTH1GSDycbfdU/PoeRttXoV0ObXtpg6yIAgHTB7vA4ZRCDEYoV9Cxe3JcosI20x2eZHShvxZDe387i9k/ltQ4kTWF3WHmGQQ5cUezIx8QetwIDStq/RffNfnMK0ZyxCtGeyghiXorSnofr9u2lEK3AvnjnqJzg3lQzc+ekGbpzJEStlMEU+CXnaSxBesxhZ0PyRLiND5CAjoinFLUNWr/x37kcez86z9ZCnvYjURTyvI3XjljCAlC0VowP5nYmAiuVF1K0t4+9TkeiclPEHmcQgXM7ZLtb4Lq0V8Ogo2wyZ0sooNkT0OyszaMEX0J057OjH/OkUWAvGve6uXOWxXJVSWSzNTXQ4xVQzXR3QaCdy4SKPw0cBijIymzlkyyqj6yeu1bmU971XFwtA0IqZ0O2zR0ySWToMgaXiR7Gqv7jM4cwP7NmWLIeMgr3ifn8uXCRgXc49uJibRa0l5vQ4krklkvD2BU08h3NUae8pkssYrOEno5Rp02eMZF02mhA5mykSUjvEOUXcU4oZjTK+iHm/KwrMWSxAASaabXu+lRolQrh3DcYv2aGZGJIV0WOYEAW1ue1vDv/tZ+27e2a5ms+Q9ndgmDMM/ON7Tn6VUqSBefAMSGkysjUVBhyZRP0o61aOSSP09oomTDk6GKIDIsUSZ5JRpL//30sBACthrsv73go9M0i8R7E+PUVkSM/eHwEA631fAYH5vUseeG8BrPCIKEyYuQx/7mTh5+T4vDkzY8OSL52uQbchX+HAsbP4fsZQVCz9+k7K36UL/66MRfmg/XW9gNMqdbpP2nKoXE7nEsAyjmoPXi2tPXkl6EM7oS1SsiLXTUb4bOJ1uJylA4wj24B/zghgIyetgJyKEU6bBjcCF8WILMak24RIPglGDBUR7IYvQntCmya1hP59vQeHEnru2vbOm5+h5l2WxmOMNOKHB21tUQfemPKRri6rRJjtjbqL1vcZKX/IvRB89PfHjqIDPxWRKiXr59RpHut+Y5vQLJllEF9YQpg2zVFpM3MmGeVL6VCqGI9oOdKJQ8RdvwQWEQikWLaGEkIqeb6mJo10fHTfL7H+WgUnKXdqs3RJCQ3rO7dH0UYUdaRYjsYS0lewl3l+icPZxapNXi4ZBeMg4teetmeoICG7BkxU+qENFn+XKdSZ67SCtamdaLjevT9wOprdLxX3V8T08nmROpWMGbPt4yEvjXw0FPd11fFQXxlWLqnHy5k0mx3ISl1MdsvDcnmdgIeH2TVYUmkfthY+a2u7YFBKbA9h6mp79wnYviN2nI+7dBx3A1z76hIGP/7P8XPTRDmwII0zd4zHyflQwDShq02RT7Go8UshpcvsQwuei+p3rsfzjSdw2jQWEqcinyMusdQyCnQVYYydIee5YS9L6EIPIWjhqFilvSEYV1c6MVuHCCZqiMKfikiS2btnmLqd/aMEyFa2VnYGA0VLSSABhx8OPcb4tExFM0tUKuzP19Bp7NHPgKN0YCGxNvwB09SNBn0/Ebrjexz/MvccB2vxSnF6mNKjZ6s44goLx/HJbUYYLmYvgOhhc+NsQxsNW6emjEoVEwbA0q/9Bvr/MQER4jgjrjOthd3icFoNaHhBhL9yDY8TN6PxS/M1EAU23l5JC2JsSjvwd/M2h8VL2TOT3gM9ujrPjX90F8axDPSTUmdA1JdMVVcZqzYVUTl0Ud79FSMANSafuZaEzLUl27cGfXMoJiVNiSgSMlDZ7r0Cduxia6lyJRGUDqo1iuKlaF7FCie9jE53hoJ7xdJd6TcpYw6YB0wF9aW1098KCLvO+srRREJ6Fd+Zl7d0vIq9vMohVDWPpDlkFPIAWMbVYQDAitfl+GAqUxowAfWKde4oIUf22Fx/H4xDAhMNeOAteuC9BLBEUUKPoTNw8Lg95Sl1ymTIkjEdjp2+6BLAWrnhb0yZtxItGlTFhKFd3uLl+PC6VgAsLQlp3248ShRxHYFlGtLEmaPj698gJ0qc4M57KkY5qeOl4A0IzdIWhhmDIFw94+gvetAMiHmL2f7WnsZGc0aMSr/F9ht9+NIHsCu7co3D8hXswzJ7NhldOiUMKJMQjpFkGdmu/wSRY+OfeLoNujX0LlWJCH6J6FexTJlk9IzZCOyIuIVPHu50/Jb9fmbU2F7X8XfRwjKaN2W+IK404kxTrFIFCXVqeQaGvPFDdBSHyV8JtigIAsaIR6RgAdmm9EcqhPT/e0+9A7C00T8Zq0nIqlKecjceLYeatUpDbMkwCP/udo7AqlFNQrUqzvM+v5wHEXArlrejhFSF7GWiHnE4pkofIeCBeLnc2e3/8bi5lbWVsaqErB/H9jNFfVD0h9qISJw4sMhmPT+Bmc8ZEXPmO5kxTaqNPDklLFrMIlmGPe+OtJFXIEPAU11p3CkyFE9upYQY7SHNkAOS5ZRsaYapCstORPlnlwp4foHVn1F3Bw7lsPNTlTKkxe8ZGFB65SqH5T/HJnLv0UVEZh9Ajv9F3kaHBzsc7qhoTI+16et5s/z8KmOa/ik4lVJb9LB5EF0otfnVeEwlSmul9NZwPjNOBE9FJM+iMqiIYJCRp4OEFHl8B4O8HReBBAQWKGZp3AWWerEjm+Jq78AoAZIKeCo92gp9Em9HwMqdmKVDBMuWtaUQZisio0UzEWP3XcWSEHuaKlmZqKz4LV91p060wGp8o6+o8aBl06E7yNadufNwWMvWinNykgRQ6joRFJOViNyBds8nO+pYi1eBuSfjfNQ2duo0h3W/qVRPeWDYZ7FV7fxNIdRvXAL9NqZQa2ncDZZ6DMxRxkPXgq6JYqY0MopTalwc9tdWHgcO8ThS7AhOFmHPJx04GxdWBl0inD3PY41K/VarrkjN6/dshn4VA/nEbPkQPXx+rJ6/ni3gZRh7Fn020C5SQgIS65cJqOBE3m6PvgpKauem8hT1ffAwD4piV8zV4Qb9pubiymk+gW7PRiFIYiI1VEbMXQTmPl9CNrkWabn3H49rm1hf8QWPfL/7gGcXOJxTAYvJ89pBdH8tAGD567kPq55WrIJELwrFKM+SJwIRWB/WegjM9u164L0EsDb8tRtjvlqK5MkSY+zgTqhbrYzNywWrdXYJYF2+dgeNu4xC7uyZsPHHSW/3inxgvSsAljY0d8QgHrmyuwawXhdpsdb1d6zhKKNSxwsREuFw5pa2VCm1So86rYGiUNTh/veFbPg67Y+2pps3kVC0iGug5VQoj3UqFaXChSS0bJYwoExCLam6N/5EqMxk+NqcqIOZTbxTV9OmOBDhOqU5kP0Rfg29H/3rGGZlS3bkWV3TadgUjUZRaWTatULqg6RCmFB29hyPbNlkkEyy2nwFsLT8S2lKysjdyvNHtnBqPwzfjnV0TdGFu5utxh8qkQP6sUkjCSWKOc/71HwBr1RKluoIE6Jy2/+FKk2Pl1FhqvvxaAE4igagqACt6X9ZCP0/Gx3/tlRuAEu7gY6/Q6OfoO49xnHGizwmHOmAyiV1WLGKbYS6i1OR7yGLxFOiLYjfhvi4np7jIKkIVN1d7+R5JaQpCqQsLCH0Gx3CVZkxXzT7HZfS2ddwZWMI1qSv42hGm+aj/DBsiGgDML01Ladbbn0y/JORpRh524635UzzR4A7e9RRPLr/NIgFSnpb3atyQUumQHfkf7ayVgTjZO7lePaAkVQrjXjiVfOqMzeFKBKHInJsYyheCRRh5ItZI4FD471f/3G1rU0PPh4EJC9oV0LtvucUtmRmKaTNLAUxPzdL5XMZfdVWtEUSxscIRCEwRTG6B+le9GRq7rfqr9agfhjj4POk7LjoBwF37zFQRi28oe7XbwBr6xrof1/C5lS3DSxNusWaUvQzziaaoRhx5ZX6Iu5n7f6DPLZs42HRWbCm+RqYDUyshUQXSHzhyDEemzazZ1SpEhKIX0ox7tVLGMZ2BB/JQCBr6Rowdx0Za4xaX/XqLiJjiGwjXw/9mUdmFXm7FpAxDWjgpMQZOfcPUPqsYrG+HwrKLkVjiJ+NnrnFIv9Bh+fORPDe3ldmF2mEpUaLCPIDCPa0Nt39/iSUx4UVKoGRghKIP85fCwBY/nruw6q38Xcex06ydde4gYSSJQIRWB/WKgjM9l3xwHsJYH0ycCqOnLyA+ZMGoEYlJrnsDsAKexWBcg36IlGwEYf+WvSuXJsPYhwKgDVjloAwFaHzl1/wyJAuNoDFmaNgGsjSMWR9ECLnOcthJ5TjtOp4OXXJsDtTU+g3LYN+CyNut6g+qkkxiZSTFDtnKIMlKe0S2BQtQ1Ezruy//Ty2/c1ejKRmRapW75J9fn8/VkVdcAypdGgJbGxQxKshfr9EwO07bKND3E3E4USm5ddqmSgXMq2s6kSWWaiQjFbNRGhJdal+XKmZXg3Oy0K+AlhPQ3mcV31kJ88joUA3z9eUi46EaRBLbaPhnf1kGZZud+b56dBWRJ7czpveI1MEmFVKlqVHidAnZWUOTxRgCWfXofRYEfpErjfOpNZGqm2KuSO8JrCNQDfFzD1Gw1qiqpNXi974BY9lFmJQb08tfFokC377na351kl/RekLdoCCzFquNsyfDHP8LVuBJ2c4mwocgVr+WO9Oa/Ak0Stb1TqmzPgxnTNQOmuegOcq1Umet6t0+UKN+EiMRLFbLMVHrXboz5g91TEtmQTuCAOAzd1Hw1rS2f+e2vD0u2HmEAiXTzuKRQ/+GteuF8PtnbEj1kitkhTgYmiEPDXt9e9cZASMw1tCTpMR0cPnOW3gvWkk4j6HEzEpq1TemFpCic8934+u2r66icf9/9gavBDEAbklW9Rsw/37cCwD41UaKJfFMFVE3JUNPB4cZHVNaSQUH+rfONRj06/7Dvqd6xz/UhRMPflmxSoBly7bnwlNX8xFxQgVGN2sJyy1W7ps4tZtDj+oomCokPqgQV3JbwBLBVpSe5ZqTWBp3S/WeMRIDgfHqyLBTDLKjo8bwDp3nsfqmOiqs3nPYH9Z9gyjDnaGNMb9/amw6192rapWkVBT9Q7Xr5wN/V7G30j1KH2Q0gi19vNqARcvsWdv+zYi8uaRcegwj8h1PBjlO5CvowRSIFTM+EU78M/Y4VHU5JWQVLQJ1C61r1juXDI6uhDcOB3K4d6KTWjycl6s8VmrNoa5zaeelovtd0rfozQ+xXI0kpC+YvzXsFedkxKoVmDEg+qkp3YDAJYnDwV+Jw/EUm2tKaGyat0HIrAC6yTggTfngfcSwCrfoC/MFqsNjBIE9vHhDsAidxev0wNWqxWnd9mjZQL2ZjygAFhafog503gkNrkAsF48gWkESyEgeW+S+X4dpo0cUThzdP9tQdDPTAXIWqo6zN3sKVQk906y74rtD26A9cnscvNFCtlTTFzZlr957FdxF9WtLaHiG+aV8OTD1WEXMfTJPkexLDezYmfp6gh2psSJ1QxJd0+apgOlqyhGSk6GIDtw8lPYBSeluo5J8qL1rQr4bZPz5pg2R8+eyU4f6qlSyRjYz3NUk6e5efO7rwAW8YQQX4hiiTICRQeojtnj6NQwdziE8yyK41Ht3pge2tqpRp+eVmRg1Gu2NKD9I5wJdstPcyaFPjVPwCsVkFjkUxGJ3aTHaTfa7rhOjFN6g791xTG2qGHzIGlS2EiJkK6zYrkv58Gg8EpOp5kNcx1D1T32e4VMypgdUaO/d+kl0QwQQPjoBPD8Mg94sQRkyGjTaymkGHW4xomy45s0zkAPpQtR2pBiKVLIGOwjObAsy8h0Y7nTuK9n7QQ95x/o5mltBq+aDexhm2hzu4GwehF546ld9e+mMZ3AqUieo8YthZQ+sy0q7uJKHpLFOc3zdfFi6X//EWLl+k6bd2/noVWqS55bRgGNiqe3bd3dy+O6So3tpg54nk22Kc2WP7wdN9OwVMe5pppoEcNJZn4JHJnqzH2Vu7WINCXiF31F49Zv+hH6LascU7A0/ASWjzt4nJJaQOWTZ2NROErFo+VG9Y8aXbtBQGioCsTILqNzR9c3or8Alm7vXwhaOdsxB2uFejB3ZM8I5QdZAvaPVEXXcTIqTIv7oXDvPvDt9/Y6EidhffO1eBlsB7fJKhjT45NjH4OUGhWrX09C2TL2Fxl//QIMlL6r8jD5m/zuyuh9dvwEK92koYgSxWX8+7MA/Wn2f1kvo/wEEbzq9Wea1AvcnauOZqO++BZS5lyOv2/e4rD4R1aB1IF7dos9/yff/oDMp5xFNagRimqjgzhvTRtdnCSrjMJ9vXgIe9uBh3IPDnK4soHNN10ZGTmb+99/AMBKoAvznjfzzx4eu/7nnr4iAGC95wsgML13ygPvJYBVrFY3JE+WBP+sn+PkbHcAllUUUaxWd1sE1sE/v32nLtD7PhgCsKKiOUyZrgr/D5Ixa7IAY5ALAOvBbZjGM54yOU0GRE6MTZiaEH47HPUQTe6zjaHCmcNfOAHjHCZrTXwzxDtDpt/wA/R/sw/EvxJ3w64k9k2Eu49K+u3XDTxOh7IXY4tmEoqoTmATYj7xbUML6CUKT4T/pWhlS4OIy65f57H0Jza3NGlk9O/DPja/f3EGE54x9SxFtY3IhYlkWDHioiL58X/3sLXiLmUlvnN1Vd9XACvqGYdjqrQWUpUqPdq7j2ziGyLeIcXMeUrii7CvnYaljTyzhHE4bFOIspur/igijIAfxbQn/eoOLq3l8UjFNZa7lYQ0JWOfspuGNgMXHuaoGjl1NeTkzullWl4oQ5QBvf5sj/BwNpaPqkei5irGSSVzHCJJjl6IW51QjLJHZT0+BbwgMMuNifwLtOnFwO42iXNjZuqKTqW1ZMhE0EpErb5aiVu/4IHIIs4OZmqBTLqE5+mjcQVv/B7YxuZladodljrOYKev49eWN/WrC06FQEfM/QOISWGKfMjj7DIO0U+cQSwhSEbeDjIopfNdsHv7eFxTRfylLSMhV3P/xkbqopRGqNgjQcbNTLItAin/6Q14meSl47ctqZugSOLktr+1IgvGVDJKJJDarG7ragT9vtTRr7VuW5ibOCuauroOxANFfFBkAx73QRbLeUexqMEzIeWJHWUbFsY5BBiUwh3bScidy7U//QawDu1C0I9M3dRaqirM3Ua7XE77hjs/JypMj/uwwGy2H6wodi3LVeyqtsup7V4X68J6gAkitG4poWB+CXRaYJzcC/wdJlxBqn1RE5YBeteSnH/v4rBnL3s+E8k6ka3/O0WAXhU1y+WVUL6rsx+Ns4aCv3TSMbbogdMh5mPZBQ8fcVigOiyJJQIjibClAR9j3GzUmAwe5i7DIJZxjkT1dL9SFC9F86qNUjYpdfNNmPZepugvigLz1wIAlr+e+7DqEfcqcbAqpv3+DABYH9Z6CMz27XrgvQSwqrcYhKfPwnDgz29hMrKPCXcA1okzl9G+36QAB9ZbWIsEYGmlnZMnlzFplGsAi79xAcZpLMydTiHpNPJ12J7Iu2jzgHHyKJw53OP7MI3p6OhSTpoCJF1PFrR4EnRHWTrPqmRf4FhwbdtvJpOMkW5Is3/8ice16+zF2LWThGzZ/P8gex3+sMgSclxb4YhgoT7WvWqP8oXUyQ+xeybAaef/2OZWyyMy9/lJfPX8uKPigGRFMDxFCbhSBKS1oU7xatZYQrGib8ZPvgJYkggcUHNOQYY2IsrddeLv3YBxYne2xnR6bGn8GyQd4z3RKkAS9xVxYCmWKKOMohrJ92ubedzbw9ZZtvoSQjRE8Er9Cz/zeHJaRQjfTkSqopoNijkawQMZz47M84hcsBXanDuzLCLvtVUw8wzAa7C1IdI9TOcYL13L8r+2A/eEsWNHjVgIKWser5ezNcIOZj06ydmVslTDjTbcQoeu2xxtdUmSD5NSlXNq+9FDDhev8DAZZRiNAEX4pUvr+6as7t0/EGpmyot/ZKiPEoY0Xs/Dl4LB21YBG1nksLVeW5gbewYuvO2DFMpMn7dga9EYjMjZTJGUfrBGARd/5vH8UmwA8XXyYnk7ByqnXfuZ60jIXNO/Zwfxqp2cw8APyso9mV7Gp30k5LqzDHJMlB/1eyVrRxg5ARR9RTxNssiehblaikhbyvf15Wreul0bEPQrexdaazSFuWVfjy5SeJGo4JgHLZFMeuyoEzlhOeS0sXkO6XmuPkgglVhSi3Vn/gJYWj5Aa+GyMPd1zVN6aIIOVhUfeekxVug9YMZTZwgg7jvF9nfZgLPiU8ffacNToOH65o6/u3UWkTWLDN3uzQha7azO6EkRUw0UUoPlykioXlLC8a+dgbckLSQULu28Lg3fT4BwfK9jHNHdR0NUpQlrAUXi7CPuPpuZo2ycisJ59o61/RsGHK8+CYVb2QVofLUzPwh4EZN6SnWzfSwhpKp/95OvfccSGPFSIMVdPwEAy9cr8GGWDz3LYe069o1FYDaB2ooFAKwPc10EZv12PPBeAlhDJ36LLbsOYszgTmjTuIbDs+4ArH5fzME/+06gY4s6GPGpb6pGb+eyvT+9EoB16xaHH1Th7xTRM3KwGwDr4gkYZ7PoJyl3YUQNYel8CemZ7RG30EWljlfblAnL0tUCJBGmTz8GR3kLMRZBPFz6IBi+GgDhml39kuzb1HNxRc9OsL8YLsJoiL1hmbdQwGNVBEP/viLSpE6YjU1C+qTihc24bmAbnGEP62Jgmdh8H+o+SdmNFN4Ua9ZERLEibG7Tnx3DvBenHL8TeEUgFqXEzZnvHIWlncvAviJSvSE/+Qpg0VgPjtGB0t0U80X1zDiyLfjnzNeeNkjaFKkU+SXk7+y8odCmPmWoJCF7Q9ebjnM/Cnh2nl23/J+ISFHAeU3y967DOLGHY35xRUS2vfIPdgt2BUCyIqeLovRxRm5NnC2FdoyFcJKlqZo7DIG14kd+LWHLK87GlfJkyw28tGbHy8Sh6NbxgKOtvkkLYVTKUn617alSxwc7sCvytqPYkrQ1UC84i6dqfv0evOd3YBVLW7ZWbQRzm/5+teWqEqUuUQqTYlL6LIgax4i12cUHbv3N4ZYLXqwU+STkaS9BcB2ckmBjjashIn0m8mfFcrcRkaa4f89YEhM4MJoBD9TKPyllNO4ahrrhLALXZDbich57ahYpt5GCm2JByWWUHCaCi00j5pc/dHv+RNAqFnVurfQxzO0He2yL3jv0/qEH7oz7NZxS4iIIjBacByiKwFeznIGf+h9JKKsBXdQd+wtg8ReOwziH8eBJuYsiaohzJKrSD4GDROauWAl616aM+/pSCiGlEipWtvM99JScOTWr7q2GXFft6Xq293JwGEyjOzgpIYsFyyD6U6be6MrpWsVGUi8rEySDnsmKPeGBQr1EkAqx2iiNktIpFTO3HQhrFXZwYDEDX6qiyXQ6YOwXViDsOYzzRoC/zVK8qY0ILgkWpZqFwh/lQMUK/oFO2jS+xJlkFPEx3drj4nRT4ObfPG7vYH5zJzDibfsBAMtbT33Y5S5f4fDTSvdq4QEA68NeH4HZv1kPvJcA1vHQS+jw6WQYgvQYNbAjmtevYvOqFsCKiIzCVwvX4NfN/9i4sjb/NBVZMrKIgDd7KT7M3gjAOn+Bx6pf2McIEVMP6OkawNKeyIqFyiK63+tRjvz91TX0fcyiqRolyo5vYzhzKAKLIrEUixrzA6SQbDANbw3uJTvBXZRvNS6/YERFPbuLyOQi5W7KdB2imAgSRg6zwsSCbd6ZxdHlwj5sNzCC4gb3SuG78oXcjo9AqIlTdKBNj2LEKUTcQoqNf3oIP7w86/h7XIrSoDRCsuMnOfz2u+sdXlwRba/DYf4AWMdmCIh6zDZVxQaLCE7v3aZZqypmrdIQ5rYD3E7twQEeV35j91G6chJyNnXenGhBLiIKpjRCVxb6HY+XV1l7hXpJSJrDuaxw5hAMC0Y5qkt5iiFq8AyX7f389AqGv2T8OsmfJ0fzTSyyp08PK7Ic/Qn6P1c46lurNYa5tXfEwu4cYxzXBebHViwuUhlj6jIE5bPkxTAkuX/RB57W12eP/8OaV5ccxaamKo9OSfJ6qubX78FHdgBL7EIRZGLpmojuOsKvtlxV0l5jMW9xRA/6ym37T8/yuLiKeLGci5jSSijQWYYhlXfrP8EmENPQyfkCwlUKnYX6iEiqAQp86fPwlwIIJFXsn2AOBTrfRj95i+N/IS9T43CRBtCm91KBXC0lpC3lH3jg8jod2gnDj9PYveNGDU9blzJDx0/SIZn4CGMetnL8LCdKisiv18fq6ugxDr9vdk75H/6ZCH0cgbh+A1jXzsH4FXvmUTQmRWW6suMEqj3w7Vmr5bwjjsrZaXZge+QtRxfBEcFovb4NeJnHiM+tSL5+FogHUzFZp7elDpJabFx25RqH5StUm9+sMgpeByhqVLFTBqBZfyvSaoI19RuXQL9tjaOcuVEXWD9yPmzV8ohO7HsHxtlDwD996DSsZ0I6LEo5E090GdGwvojSJf27H8UIDgcnOL+bSxK3perd7sv95EvZG39xuPOvZ4ERb9sMAFjeeurDLnf7LofvF7N1lz490LcnS1UOAFgf9voIzP7NeuC9BLDIhbO+W4slq+0nVlkzpUOZYvltQFXa1MnRpnFNXL5+G3sOngYpEJIN7d0aXdr4OwBHpAAAIABJREFUd9L/Zi/Z+9UbAVjaD+JiRWV07+AGwNJ+pKsI1BPaM7+8uoQhj/9zNNs6cW7MiuHMMcz5HMKFE47fbNExBcvA9Gk9xwk2fRYuqboD5y+yFx59IBOZu9oo1Wz8ZHaaT8pn40d7R/ad0HP21N7s6xfwNZhaU/4H2bCjbDW31e7eBRYtZnNzSm2IqTXi8T6seMVAsWmpyoOI3MniisIiFUNSM3xT5g+AFbpIwMtrbINSoJuI5Hm82zBowVopeWpETV3tdro3tvG4s4sBTllqS8hUy9k/4beBk/PZ9YiLWP7UAgGvbrGxF+4nIkkW57Hr9mxG0CqWSmMtXwfmTixCUj3Yp2IUCt9cA3WIR6sNrZHklV1//fPBViS/ug+GReMc1cRchRD9GSNx9udaKxxdY6oXx4IyBRxNjE5ZCn2Sugdf/elLqaONKiSgjACz12HBZw8A85nyaUKD+rFEK8rWhrkzi4pxNafIR8DZpQKin2p4sQwy8nSQkMLLeyAh/XVoog7WcNZiqZEiKArKXzu9QECY6v44ZASsrS9gdjADaYs+zY6/SlSNlb6Y0NFXNAfhxF4YvpvA7p2iFRDdm/0d1zxnzRWQ9NF5DHjCUg7ljDkQOZrx8Cn153/D49Fj3xRz/Qaw7l6H8UsW4SllyIqosYtdTuXUQgGvbqqeV31EJPEAUGpVxWpUl5Cl3DNUvbMRkir/uMzRMih8pggmdToD43RnQN1SvyMsDTp5XEYPHwILFrFnbx6TjByqww3Ce3cFA8OGWpEokXNzxKtJ/JqKWWo1h6V5b6dC077WISImhTLEchmDIoeCD3/hVOZZoqyYk2gOwgU7J1uLpiKKFPb/Hji7RMDzi8znWT+SkNGN0rJHB/lQQMsll6OxhPR+RpJRtwEAywfnf8BFnzzlMHcB+55PnkzGkIHsdDYAYH3AiyMw9TfugfcWwCJPLlu7FXMXr4fZrDkKVrlZr9fZwKsOze08RQEDyjXo6wD2XPmjQa3ymD6apZSoy/y2ZQ/Wbf4Xl6/fgSiKyJopPZrUq4R2TWs5KUIqdQjA2r2Xxw7VxpvU99o207kkcdft/gNBq5kEtLVSfZjbD3otl21Z2HmMesJSjj5JkhdTUpW39UUqhOpTWHOrfnYAaxxTICJS143V1mDfAfaxX6OqhGoanghXHGBDNNxFr2WCfjS65+ljtHm52VEz6askOFeIcYRom9x/kMeWbaoonoIyWmnUggY+3oN1r1iKw5zUldAyMVNYOnGKw4aNsaOw3rRSoz8A1oWVPJ6cYvPP1UpEWm9PvM1RMA1q7JSqSqlblMLlyi7/KuDhERW/TgsRaUs7b05oA08becV0wUCZca7B0hOzdIhgdFQoOsiKRJpsUSKNJvJoxSz1O8DSwLUKF5WpcmYLriRijZY9XBaFzhW2VZ8wxgr+2UOYRrV3tCfrDYicx9abz0tWlmHqW8eGmX1WpzSWFmd8WpNTlUPnJPl8btKbCktfnsOYpwcdRTskzoPpqSt4U9XnMsHXTwPThzjqJQTopx4ERcTpNzOhDG/Jwd8lXizRAhxUpfyBl1F+irNCp6+Ov7hKsPGtKXYqCDjd7Cg2pmBcQ3WeFMb3+Uri6BQBklWl2NdMQvqyCQu+C2cOw7DAroZLJuYviegBLCIrrvktWyEg0dk9+OS5Cjx2kRanjSLiOOCzgSKSJo0bBPEXwNLyTUop0yJq8kqXU9FyMnlzWHDwEI8/YwjsqdGSJWQ0biBi+ON9+Fl1qKI369F9S2tMCuvrE3G7eqARERymfc3eY2XNQArVp+kNHXDOYH8Okl/VFgtEdnFQMGehgKdPOOSIPoHuT0cgCKqQbloPuYvgpzRTcOYaQ8fatxGRNx5g8sPDHC6rOIF8Udr19X5Tl/fmXedL+wEAyxdvfbhlIyKBaTPY91NQEDB6RCAC68NdEYGZv00PvNcAFjn2ybOX+H3bXhw6fh437zxAeEQUTEYDQtKlQpni+W3phWlS2U+jAgZYrKTI2A3BJgNyZsvo0iWVyxRGvy5NY/02csoP2LT9P+h1AooXzg29ToeTZ6/gVXgkKpUpjIVTB0Gn4dMgAGvLdh77VSBPnVoyGtV1HYGl3/4L9L+xE1hLrZawNO/5Wi7dty9DMenpEUfbvZMWwpgYzhzdlpUI2rTM8ZulZjOIhcs7qxPmKoT/qs11Ui0pWkRC8ybOG5ebtzksXqqSwM4ko2dX79TqXsvE42iUiNyzXf/JKYrmRNr2SBPsOn9Em6Lhiiul16P/YXP4DUev36WphgaJsjmNgriwCOhTW48uIjJn9v/02Fff+QNgkeoZKSYplvVjCRl9ILo1zB0O4fwxR31z896w1nINGJ5dLOD5JRVnVVcRKfLG9s+BUc6b6bKTrBBcXL6j050jaEp8LsKo4RujlCXh0E42Pg+cVV+cOYPliZjiZIb7GfDx9voINskYESNwYBrSxIlfxh2RtDfXjwt7DtOwlraifT8uj9WFcziqUTQlRVW+Dtscfh29Hv3jaLqOKTN+TOeb0pe34wp+cA0Yz56BUsbsiBr9vbfVPZYLWjkHur2MF4hSOim10yuT3w1erMiHHI7PZM9YSnOidKf42M2tPIhMWrHLemBD439wOM1lx/+6PCuP7nfz4+5uVo7UQalvPm5xTZ+Hxl86DeMs/4BMUtYy7N6Ipi/nO/ol7jnioFMbpfpTyr9i+fNLaKsiMXY3aL8BLNX9S227S2uk387/xINSpBXL20FCqsJxg4RqAnuqp6iOPhYjUfbWekSBbU4bnjXhpz+co7+i+k2CVKis19dKSfMzSkDVSKfXKPaaADmxjOFDY69L4cR/MHw33tGPWLgcovt+6dTvosUCUl/5F+2fT4IA5zasJarA3HUklqww4IYqSk0hpfd6ApqCYjRwaLwAWWLvneKfW2FyFqH1t3m39S6sEvBEBR7naScitVZgxIdeAwCWD876wIvGStUdGwCwPvAlEZj+W/LAew9gvSW//r/t9tGT56jWfBAqly2MRdM/83oeBFwRgJUjSwZ8//XnyJA2pa0u8YwNGrsA/x0ORf+uzdC7UyOnNgnAWr+RtynOKdaksYRalVxHYOk3/Qj9llWOshS6TyH8r8NmPz+Br5+zNMHByYthaEwakO7wLgQtVcl7F6sIqUh5BP3ECGatpWvgfPVRWLZCRTaaSUYPDTh17hyP1b/6vil4HXP2ps3ipzfhYRLG8/WNvh4aZ2Q8X+o2ps0QEKFSeerbS0T6dM6gSqeHO7EzgnGOLE9bE7WCmXQ5tXcqlMe6DcxHhIOOG/Vm0yz9AbBu7eRxazsbd4bKErI38D7yQr9jHfTrWRpPXFEV3kRMkS+Pfy0g8pFqw/GZCJMLpb3Dk3SwhLGrWWqUFUFJnVeIceZg8JdDHf+kiA8aozvbf/clWpg3OH7mJA4dfumIjCn06N/bvukikQb+oio9t8dYiCUqe7M0Y5XhH9yCcbxdka9L40rYmC+rowzx2RGv3euwQ1EP0PQ+48kpHpQam0MY6XJC9hn88iEwnEWtxRWl4k+/hoWjIYSyaLLoXuMgFqvkU1NPz3G4uJJ4sZxBaAJEC3QVYUzlU3M+F352gcM51SFBshwyCvaKH4D14BCHK+sZKHZHAGa1+BM3U95zjG/Ck7ootCGTc/RVPNOd3E0+lkJvltyIGvmNV776bz8PYf1i1AhXR1M6p8Y9e85h9jznSNhuXURk9eIQwV8ACxqVUxJKsQmmuLBLvwh4dIytr9ytRKTxEO368BGHBd+yOaVILmNwTPTzF1dPYjnPoul0ooSTizYi5FWkrXexSHkQdYAvRuT3r15xyGMGcqiir57zwAETkCaNjP59Yq/LWOBkzoKIHsoI+2kMJ6evR7lri2JFb1kqN4Cl3UDbML/5TsB9FU9Yn54iMnjJyehunmd/FPBcJfaRpY6ETH6qe3rry3PLeDw7x96r+T6RkLKA9+9VbT8BAMtbzwfKTflKQFQUe87QwRsdwJEFUggD6yPggTfngfcSwCIFwpqVSiAoKA5W0Tfn4/9XPZ2/fBPNu4+1pf1NHtHd67E36TIal67dxsqFo1GsIEv/ogaevQhDzZZDQOma/26YC6OBESkTgLViFQ86CVWsQ1sJ5Uq4BrCC1i6E7n8bHWXNLfrAWrOZ1+P0peCUZ0ex8MVpR5WRKUrg02R2RUHh6jkYZqjIZTPlsG3qtKk2D6t3A/GLKJYoOPYJ66HDPDZvYfMnNSeKVHpXrcmRvTicmkUZdDeXxoQ8dtJ1tT19ymGOii8gKEjGaBdRD63ub8V/UYwQf236uqhojK1sSDLkyZIAyVPIINl2Ct9+k+YPgKXd5NIpMZ0We2v8vRswTmT3IREGR87aaFO81Nqh8TpY7Xsrm5UZa4VOw6VC/9fylhCAkNxFpJZWQbHMBCt0GmEBSvfjVCTBUeOWQkrvDD5qx5kvdB3CEr9y/LvanuqojezoHEMmr1/3LfQ7Gchl+ag9LI06e+syp3LC5VAYZtqV2Fq3qIbtOVlU6bJ0NVHbFPdY/eoUwHVLGCreYQTYIUIiHM5sjwRLaAu2RAADWESUbAxG5OzfE6wb45Q+4G+x+z1q+HxI2XxPvXybvFj3D/K4qgLACdgggCM+9uIyB0pbU+wZD3zWYQ3CErG1vWp/e+hPmBxlXlf0FXXA378J44Rujr6kdJkRNX6pV1M8R1FVi6aiZNQOR3lSMCQlQ8UoFZxSwhULySCjdw/vfOg3gAUguI8zvUPEwm0AEUVqjAQsSMhCMW94kSxW4MspzqFwE2MiKg6eEtFO/yuiTFGONluHXsWiP/fDW+J27RgX/SDg7l0ONSIA9RM81ADc1gHZs0no0in2u5/XcoFprq1W8EPp19KsJyy12XOH3sf0XlaMwDoC7eJjD49xuPwLuw+C0wPFBr/ewyVtumjB7iKS5fZ/HgEAKz4r4MOqSyA+gfmKDewnIlWMMEkAwPqw1kJgtm/XA+8lgEVqg0kTB6N+rfJo+lFlFMzrnI70dl3+bve+/8gZdB86A93afowhvZgiUVyjvnv/MWq3GYosGdNiy0rX6lRDxi/Etn8OY/7kgahRsbijOQKwbB9199gLoUc3EUXz6V1yYAX9NAO6/dvZR7aHlKX4eJs4bIjLRrGJKcuiW9L8tj+5l89gGq5SbNIFQSxTA7p9Wx3l6dSTTj/HfamzkZEr9gXJexvYP4j/i3jAFCMi2WqV310Aa9jh81iZhnGDlQ/PgXUF7Uqfajt2gsPGTezDNldOGZ3ax97wNLz3J45FP3JU3ZShPkoaNDJM8bmQCVTXHwCLIk/OL2M+8CfywziyLfjnjx2zsAkGFLFzsSkmi8D+L1QbMV5GhamuN5cUNULAmmI5mopIXy72x/++EQIgs3Llp1rBqfeNxC9FogUkYxZjEQu2Apo0Ya37W+05gv8ys6itHNdyYOCz6iCBAzLhwHYYljMlw/iQkquJ8Bu1qYk9WVmk4C/p66CSMSSBVodzM7ZU2xuMN0oHDjeyuecGi88ggvUc0L2WUxPuNvn+9EPPOXreKRY5ZRXkFP7dn2+LF+vGFh53/mGLl8QNSOQgPhb1lMOx6ezepkP5jr1ZillwdBB+WtERsirqLHtDCRkqxa9fd2MmIFnNH+dLJN6Dh4A4eRhymVnEUXS/yRALlbF1Z7EA02cKMJvZ86BZExHFingHGsQHwDINagQumiHzBODLptjI/I2/eNz5VyViUU9CpuqefT19pg7hKnJ/ImUmcua9+3jMvXkB+8oxIRfyxX9LNiN3uSYgvj9f7aeVPF5e4FFCRU9FUM//ggGRAwoVkNGqReznNvfiCUwj2rDnfZLkiPzqV0C02iLBdcd2Ow1FAo9zNUYje0vnyFU10TtVGDbEisSJfZ2Fc/m3kUZ4+lsBYdd9I+yPa5YBACt+a+BDqh1rv9JVROZMgQisD2kNBOb6bnjgvQSwCtfoAkliH1a5s2dC048ro2HtCkiZ3K54FTDXHvhz5wEM+3IRhvVri09a1vXKTTv3HMOAMfPQoHZ5TB/lmtx9+a/b8NXC1ejRvgEG9WjhaJcArJlzBbx4wT5GBvUXkSuLawDL8P0ECMf3OupHdx8NsWRVr8bpa6HPn+zDqjCmjjcjVQW0S8JIoE3964Ozmh3NSlnygL/Jypv7T4G1QGnMWyjg8RM2v97drQhR7Zt/2yTg+An2O5HIEpnsu2orTj7CiGQsjSNtVFIczxc7Ck47L3fAXO27m3DWzFISt4c0QsEgewrqu2T+AFivbgOnVKp/lKpX/DPvohaUuWtP161VGsLclkX/UbmoxxyOzVBx/KSUUXK4635u7+RxU5XWmLGGhKx1nTd6khU4MIoBYpwAlJ/ifKpO8uxGNeG6sqnycNHm//cA0zKy9DoiSF54vT3q17FX5G5fgWkyU9iSk6dC5FQmIe/LmlCTH9fuWAdHQhjw8rqB0jw3fka4zHwWmqUtUvAGX4bvVdlggwD0bQBExUiQUer2zA1AcAK860QxlrJq5DfbEStPyauRxhR6C7xYWsL1XC4EDnyZApWVJWDfSAGcSlazXY8fYdHZ77sO+8qi8Um7QAGZLlhGqVEJz32ltK/me7ONL3EyRM5Y59W0rFYgelAXpBFvO8pHjFwEZMlp+1srxpE4kYzPBosQYgdCuewvXgCWFkCduhpy8tgkS7d38Lj5NxuQq+eaq8F9v0TA7Tvs/dulk4js2WRs+5vHnv0ydjX4BjdSsii66nee4Ocy/V1GwXpy9obfefAHeKRVPW4p8ooisMjiir7WRqJFzv0DQQtGQbh0yqlbMwxYlnIysnxUHFU0YOnEKTrQtVZs9EgrEiJRQcs/lrmWhMzxBIjj8uXJeTqE32Elig6wggjk/bUAgOWv5z68est/FnDlKntedGgrIk9M9F8gAuvDWw+BGb89D7yXANbDx8/x5479NkLxi1fZBxkRiFcpX9QWlVWlXJFYhOJv7zK8Oz2vWLcd0xassoFRRG7/4mW4ba+SNlUKlCqWF2WL5wenkchZ9stWzPh2DXp1bIgB3VwTTO/YcxQDx8xH3WqlMWt8P8eECcCiEH4K5Xd8VI2wIn2qIJcRWIZ5IyCcO+ooG91/GsQC7jl34uPZTx/txm/hVx1NzE9TGc0S2T/oyQwTu0O4x8jHtX0p6VQr1/C4cJF9WLduIaJgAQZQaVMoO7WXkCun55Pj+MwtPnXPXxdRU17hxEB7OUsHmDSsxCQ3TLLDirkjjK10ZwOuWV46yu3J2Aw59BqypfgMOIHq+gNgRb/gbApkiulMQJnxvqVXCKcPwPDNGEcbcqr0iJy0wmlWL69yCP2O9UPy8YVdcKlQJW3KR5riMnK30ZD+RhI5LwOwBCNQdoLzuIWrZ2CYwRRAxWz5ED2ckUC7c/u5Cxw+4n6GJYiRwIx+Ug99SrLoKC04HPn1BsiJfAdk9H//Cv0GO6F5xa4f42yaFI5h/R3SCAVeI1CqXde7MjZGXj3rP4GWJQjA4j5vA/nJQ0eTkZNXQk6ZNt5daEFKKVkqRE3zD0zUDuZN8mKd/kZA2A32LCrYQ0SyXPE/JNg9ToBOxYcyqM063EnxHBR99f3ydjCI7B7KVl9CSJXX91znLGaYBtRnz4kgIwjk8NZ0fRsiSGbpcvfGbESyEHukk/ZZXqOajGpVvAfi4wNgGcd+Av7RXcc0oiYuh5QmduTk3T08rm9W8Q1WlJC9kWd/r10nIPSsKrKssYRiRSUQ2GTa/wcM6dajY1PnCOO16eqioil2mrsnX2//k0Oi3QR6MttvBF7EPLprVJdRrbJrv2oj0aR0mcA/YN+31OIrPjl+SPkV7uhzo3IlEbVrOK/xuAioPY09rt8fH+dwcQ17/xhTySgxzPv14WvfdFhDhzaKFR8qwpTG//s5AGD5egU+3PJr1wsIPcPWXotmEooUsj9nAgDWh7suAjN/8x54LwEstRsvXLllA7L+3HEARFCuWKoUSW0RWQRm5coej6ObN3/NXmuPSqSUu07y5cqCmeP6IltmttlcsPQ3fPvT7xjauzW6tPnIZdWDx8+h6+DpKFeyAJbMHOYo8/i5BSOYcrct++jrSYDJIEAn8IiMFmEV2Ueo+GU/4MpZR31h1Hwgd6HX4pP2t3fgj7DrjrZXZqqFhklYOqo4awRwipEbawfBf78VXJABG/8E/mVBY/ioDlCnOiv99TzgDuP9xWf9gUyvJ7MpQfz0/AVQ5Nw6PE/G7qetWRugApFfxBjJDY9S8dsSZcm08YDeBS1d/kurccfKcjjO5W6DjLp45jUkyEydG0ls0tvA3LBIC+DltzKljm638+c6rPZsgHfmQo5ztHJ0FKTe9e0hHzEmTF0OZMji+PveUeDUctZM+uJA0S6um316CTiswplS5ALKOAd0IfoF8A/DzGBIClSb5NyetH8H5O8mO/7JlaoC/tMJHj0fHgFU2vUPruRkvEpNrQWxvDBLi5TG9YR845KjLX7oDHCFSnlsW1tA+uU7yFvsgEuJno1wLQUDwY7nbImcQcl8btPbCvVubMa+CMbttinLR6gWnzABNx3rdTzMIztDunWN+WviYnAx0TPejtdluctnIE76lF3jbHnAj2eiAvFqG0D4A+DoIiDyiXNLggEo1hVIbc/YjrfRWqY1rVjlMUCwf1mQTmP5azwgsOBRTK2/Dcey3ELLwyXQ6kgJR1l9IqDqBEB4zbx9YmfVi4XScZf9zyvfyeFhkPoxgRURPK6O2ol8uYEz54HFqmeLTgAmjAKCWVCSxz6SxKjUhkWomMs91rIXkEZ3g3ybHSTxE38Al8WZZ5PK3d4PnGEc9MhYDijUznMnm7cCO/9l5erWBOrVApZ99wItDrSHSQ5H3Q51cCgjWzD5DSlwMIfrw7q4etz5HWA9w0qEc8CeYPZ388ZApXKuWxA/awM8eeC2+ejE6TDDNAfPdfb3cIUyQEuVWDQ9d0erhAtNJmDKWM/+8aaEaAZ2jQQk1eWtMBxI8po+rf8dB0SxrGZUGQ+Y4hG0bQwSQM/RKLMIi9Uz6OmNTwJl3k8P/PobsO8Qm1uzhkDlCva/lefc+znzwKwCHni3PPDeA1iKuyml8NDxczYw6+/dR23qeIoVypvdlmL4cc1yNu6sD90OnziPJImDEZI+NYJNBoS9isDpc1fx4y9bcOj4eVtk1salk5A8mR1kmLloLZau+Qsj+7dHh+bOhKuKL4+HXkKHTyejeKHc+HnBKIeLnzwDho9nXz0pUwBfjXdPvv9ySAdItxmolOTr5RASYqPm4qLXu7QZ214ydbytuRugblJG+hy5ZBaitzGyaXUTXOIkSLbUnib1v70SVv7KTiMrleXRuR1DMD4bY8ELFoCEWZP0SOp7sMkbXbZ51m3HpexXHH1+laEiPg+xE9yTHTsp45ulLGInZ3YOIwe51o1PdWIpnhKRRow9KdYVKWkH+57YpkEWmBmvM+p/pff5Y/vVxIGwhrLIQ9MnA2CozzjYLm6XcGotW2O5a/Eo2sY1ShbxGPhrBLvnglMBH093vudePQC2jmJlEqUBPprqXCZq4wpErWJgBo2HxuWNNf3hAjaW2OUomoYLxsMSjCMq4tupMP+PpamaOvSFoZEXu1FN5+p28vdrivuq5/udIp0QQsjCa7JWV7fj12fsHvk5e020T8lSkBOy27AxfSBeYIITiccvgK5AsXh3YTnwD8JnjXa0oy9VCYmGTYt3u+oGLJEyDiwS8eBMbFS4QGMBBRp6mafmZlSSKGNDL+fowWbf6cALzoqI/kxqwyQrpOts3Esq7cM/+S5i0U9tkcjMnmGFWwjIWy9+8/BmfM871ADMLK09+YodgEGjvOCiIQI/X37G1HwfCyG4/ekaVKvIY9Y3Vpy9wOZYsSyPLqr3lzfjik+ZsNG9IF5kqE+Sid9AyMfeNUrbtw5JOPg9ewZmKsWjXG/PJwV79ktYvobVq1CGR9f2Avb1mYwCT+zv8JPpUqBaZ0ZoT/9bkb0mOvhwP8uyjI2DrRBV74KzQcBN1WO1b1cdShR1vS7DhnWBeJ2B+mqfCllz4VKTWfhmLftwKFOCR89P2PyfPgOGqb61UqUApsfxreXrNdv/rRV3jrJ1kq8+j0JNPfvf136ovPad2miOHkHv3pmXP1ML1HnHPbBhs4i//mYgZ5OPBTSo+/qf7e+4WwLDC3jgjXvggwGw1J6NijZj197j+GvnAew9fBqWmPw1Ui08vv2HN34R/r90KIoSegydAYqm6t2pEfp3tfMe+RSBVaIAlsxiEVhnL1owayHzQMYQYGh/9xFY1iGtwD1lhN/C12uA1Oleiwu1ERRbstZHxWCWNiBvWwdptWrw6lFkzQ1hgj116eJlDt8uYR92ObIC/RnFDwaPdB7+7KmvZToJ2miz305jRz4WfdZInws/56rm6OO3P2T8H3vXGV5F0YXf3VuSmwJJSEIKIfQWeu9IERHpHUGaBQRE6dKrSpMqKCBFBBEQ5RNFKSIC0nvvPZQQ0pNbd/d7JuHu7C3JrQlI7nkefpA7c+bMmdky757znv2H6It400YC2rW2/mJe+MoaqAkL+XN5UrafRTqiW413UpkzEVhkqH+/ANIkEXZ1RwIFox0zQti5BfzGZbRTxZqQjaJE51d+Ae5Kgi3KtgeKNbc+Bs8Bu7MK82UKIWYnUWHSzODUWODQbNrGLwJo8KmpPv67hRD+ptXu2F4fgXndvoqgtx8bUC3xO/CSULbDxTshxjvrM7rw1zbw3y+iNtZrAXYgBb7t9R6/eCKEU1kkzNGfdEWKpALqvTLvICAXgdIxTw7jmwR68J4ZWhvDClkevO2dS3btSOQAN38c9KcOiU3YTz4HU9WU6N+ZcYQ9v4Bfv5h2bdoOsr6SzeOMUmt9BODGHwJu/ml5jwiJASr3A+ROYtoZT4EDksgTa9GEzk5jz0oG3Hk5aX8QAAAgAElEQVR6b99e5RzSvfTocYymtZO04ddm5H70FZkD91FHIJVGxsq+2gb42RFlePEkuLmjRDfcVFbBpfYLULcWg9kLTL0z5hMg3MFHrisRWJl2XaTgvWz0PCDGkjbg6UXglCQ4kETv1fjQ9sqaP59LFgOGNr8EbialOiBaen3YBzsK0OdUuNwHF0r1gMKkskX248VfAU5KbuHkCLzXBzBItvzQgQAZ35qY+0FsE1MD8mHTcfmuL5avkQBIZQQM7E+VP46DyVqGFQbG0gxw246y0eLxaQFn19DxVMFAYzdFeJkPvWcUQKK+jNJiLuDKrdwTgeXy8ucbBX8fYPDrDnqdNWkgoEObrH3vicDKN9vAM9GXwAP5EsCS+v3x0wTMXfYj/vw7Kyb04r61L8GyvLwm/H3oNIaOX4Tqlcrg+yXjMw1dt2UnZi/daBcHVotGNbBoxkfiBPcd0WD9RvqVrmQJAX17cwjyt86BpRrRAYyappup5/0CwTd3Pr21frgdZ3U0t2VHRFtUURYSbZed+Rdey6daf9msXA+kWhyRhEQGC5fQOZKqP6T6D5GUVAbzFki4i/wEjB6Re9wR7tpZM/94gq/LUyLuaD4Ah0p0ENWbV2p5uzuPcmWth+ZH3jG95mKL9XOXmW7V4wwHVuY9ZaUMyTfoi335fjwCyzuWpsA+vg/vaQNM5qNe/DsERVZOkjlJdemeHEKqZp/neOJzGXSSwgk1xnPwKkjbE74gwhtkFP8oAZWGmu5L5dIJkF+gsfTagVPBVW1gt897PtmF/WrKbTM2sDqGFcwCeGQ3L8BrHgVKuIhoaCfRCm/2DkJ0EF1EQkf1hF7COn07ug+Udh4+7R1P2m5J8jnMSjwl/mlggRhMDqrljKoc+xAOLOWaWdAdkFRn7T8OhtrNXB5Lvu1bKHduEvXo2/eHvpXjkXD2GpIbvFhJNxhcWim5/xYVUHmIe+6xR3+RgTtCr+2zRR6gVFyISfRVdCsBkU3dM54tP5KiCoS3zCiazzaAVCO0JaR6rvL7L8Vmp7yb4VTdCfD1ZXDyFJ1f8WgB/fs6PhdXOLCUy6dBfobm4OsGToGhakOLKSXfZHBxBV3nAsUFVBxk21ZSYIUUWjFKgQICJqa/D/YBjZ58JgtH7LwlaPp4mwnoPjmwJgYWtI/C4Op6Fs/O00iNhzLgnFlw3EeDOYQEW79vK7+dCflJSa4jkHmN6/pnfQG7f5/ByjV0HkUiBXzwLp2/rd9t7RFbv3N64PhUGXgJIlflIwN8i9jq6fjvh8aaRnPXn+0Yr6T5iB4OLMfXIL/2IPfD//1Gr7OqVQR0ap91nXk4sPLrrvDM+0V4IF8CWCR9kFTO++Pvozh0/AL0hqybj8pbiRN/ZkXNeMS6BwgpfscBE1GmRBH8sjqLFOefw2cxeNwCu6oQDujRGiMH0dSnP/7WYus2+lJXuRKPLh357AGswS3BEGKh5+LOcvHmM24auw3X9PRr9t+RHVBGESA2Y+/fgPfn1j/xGl5rD113yh1jTp5qrP7z8BEDAvYYJSJcwKD3bb90v+j9+eseDh+WokTijADcLtYn82u0Tg/M/ML0BXPcaA4qleWLuZo3oNS99eJ0vBkZbkbTVJYXPU/p+M4CWNc2sYg/Rfd4qS48Qms5BmARO7zH9QSbFC+apBk8A3ylLMKU89/IkHpbUlZ8EAf/4tkDWOak1pUGc/CPpu2Tb7C4uJLaXLAUj5j3TW32nv4+2Ec0nVfz6VLw0fanyK1JuYyJCTSKr7pXMLaHt8man04Dn4/binMVGAbqJTsAmfU01Oz2iffUAWCf3AfHMAgeQ4EXFgzuF6Mpi7mxzzanXcfw+KzoLyKdfEtgSYgpGbQ7xiUAltePS6Dd9Yuojtx7yD3IVfFaMwuyY39Rve+MhKF+K1fV5thfHcfi0moG2kTTaCyZl4AybwsILOfYtRN3ksWNzXQvB1flUaanYzqyM/j0PzKod2SfiigjlQfHcbnOfWW0z7jfjf/XTFkFPoxy5WU3D8Xv66H4jRJd7fPtjgNRA5GezphUrcvpQ0ROi+oKgOW1ehZkx+ke1PYbA66OJVVBeiyDs4vps9Q3QkCVj+17lkqfz/XTf0GnFEnUIYA14fPQfXIVjHt2GOtSr4pT9WMUOBHVFf5szuRm+nQGx6ebptMd8wYSzDLssntOkgGZjLTMa1F+eFdmtWN9iy7Qd6ZVn589Y7BIAsSFBPP4aDDd5zdvsfhuPb0OSpbg0be3e64Do0OubZAh/hy9HiKacCjW2k7CSAfuKlIAi5ED9T7zAFgOuM/T1AUPXL7CYqPkeVK2DI9ePTwk7i641NPV4wGnPJBvACwDx+HwiYvYvusQ/jp4CiSN0CjVK5XOJHNv1bQ2fFS2+SKc8vQr0on48L1Rc1G/ZkWsnJeVchCfkIwmnT5G0chQ/LFhjtWZjpi6FDv3Hce8yR/izWZ1xDZbtmuxcw99qapXh8ebb1gHsBidBirpoVahBIlCyS2p++An3DdQworDRTqjqJxyTDBaNUhlIGui7zIQ+uZdxJ/Mqzh9+IEB4WHA1WsMNkiq95ByvKQs78sux0+y6KP4CSkFKHnXr+FvoYZXSGaJYVJq2CjkizL5smxNEjkNKt6nVc0CWS9cKNrzpZy+swDWnd9ZPNxP93jR13kUaeH4wUGxcREU+38TfSMFSU/NkUHzzP6qTOYRW2V6cAiuRg8aiZdZXF5LbSagQfn+pjabV8VSz90Kwc/+6pGPDRmo8WCzyVqfj+qBIFLykAB25tXHxi0FX9R+gIzoUI3uAiYtGSlKOaKHdxfHIgfPq9G9cnWf/a1+gN5P9ohjNPAOx+awN9w+JgGwvH9dA8JJZhR9+wHQt3L9OvJaOAqyq2dFvblZ9VXqGIMGuLaeRdJ1S26RqJYCoprbf4+8v5vFfckzJvI1HtFvOn79WVu4i2dYJG/Mnv/E2Wvd2U3i/cVgsPcoT5Jm/NfgoywJz831K35YBMUBem/ZVuAjHPQ1TQcu4C9g5CecSaqxvXa6AmApNiyE4iB9zuvf/hj6Rs+BbokBmqcMTs2TVMILFlB9tH37hERBk2hoPz4JY+PegUqgz/2z3k2wo9RkfDyERzynRt0HW6EWKGDyYYGKmBiUc4EJcv8nzwGjqBngHyt0q9MmGezyL5MQZ1FlNDUVmLuAAvzSSG8y7sXLLDZtoTZUKMejRzf3XAfGeT27wOLq93QMZUEBNcfbtwb27iVDBnBsGp2nM5V9zcfyRGDZ631Pu9t3GKxZR+8zRYsKeK+fJwLLszM8HshrD7zyANbFq3cyidv/2HsUzxLpYbtwSCDatWyATq0boWikg4QOeb1KL9F4E2Z9i21/HsTwD7rivbdpyW5C0E6I2jcsnYiqMaYvzInJqWjedQR4QcD+XxabEOWv3aTFwUP0had5Ux5NGmUDYCU/g+rTHqI3BP8AqOdsyTXvVL2/CU85taj/TFR3hMhMSy/5jOwEZKRa2KB9byK4Gk3Ev5M0yWvXKcDQrQuPihX4zPQMaThy9WoCOrR17wtfbjjo5m0Gfe/uw+1itPLZZ4Xqop9/Oezdx2KfBLCpUV1A+zbW5/SQS0et+3QNw2U+OBFFI/Ryw3ZndToLYD38h8WdHXSPh9XjUaKD4wcH2bnD8PqakorwAcHQfJFVduvQOBnA0/1V73MDmBz4c+/uYBH7jwRUa8WjSFNqU/xZJjMt0SiFKgso20uyhhmpyNz7z4WkMjoDJr/+8Fdc0tEybnML1cfb/lkgldeKaZCdlqQOvf0JDI3oPcfmOgoCVCRiE8ATX2+UG0qrhpHrmFzPuSkXdc/Q8uF2cQgSvUmiON0tBMBS7dkM9Q/fiKr1LbpC3/kDl4fyntIfbNwDUY9m4grwkcVd1muXAgG4v5vB/b8sNzIBVMv04u2KbLq+WYanJ+m1UaIjj7C6jl9/1my+dZtB7DcyWL3UFALqTOJc4uaxy0+SRl5fDofsRlbKLBHNyAXgS9lOcfNaOhGyCzQacl3AFJxTUU5DoqtVSx71nfSbSwDW1m+g2LOV7u1OH0D/elcL1+hSGJz4jK6Ewh+oNdG+yJxVa2S4e59B96RZqKXeKerWwQtfhG5AUPEgvPv8kLog6QzmJZ0R28jB4EiRLgiXZ18Q4tRcGTTxdA9eVQK3zWrVmANOjq69Xg/MMIt8nj6Zzv/UGQbbfrWe+uToWNm1J/yKx0gaoU4SDTyUA0lBd5dokxmc/JzOQ1lAQM0Jrr0zeQAsd63Oq6/n0WPg6xUUQJV+oPWkEL766++Z4cvjgVcSwHr4OB6/7TmMX3cdwu17lD1ZoZCjecPqmdFWJIKIZV2vQvTyLKV7LFm48ie0bVkfJaMjTBSmpGVgxfrtWPPjHwgOKojf1n2RWanQKAeOnsOgsfNRomg4VswbjfDQLDJmkq45fMpSHDx2Hr06tcD4Yb1N9C5bowN5sTJKu7c41KwhWE0hZJ/Gwnsy5UfiQyKhmZ57nGVl725AmkArsZGIDRK5IRXzL97iwcEsnWrHnyyOHKOAQYtmPBo35DOBHgL4GIWAdwTEe9klKZlB3z0XcKLGcdHUHn6l8WVwg8yvU+QrlVE6tudQrYr1F9hb+mQ0iqWpTyXkBXCgiH1E4HntI2cBrKenGVyXRNkVqsij7DuOr7G1iD+y/3W+kSZfpEkAU51pOR/cHh9mcUuSulu4Lo+SHalNcccZ3PhJEkVXQ0DpbvSQIIu9A6+Z74tLwIcXhWbyKoeXZE7SaSxKohE+r6uKYG3hFpl6FH9uhOJ/q0WdhibtoetB03JtDcakJkE1Juuge6egH6oNoil1ReV+OFyERkja0uXM7wT8JiC4UQJYL1zMhehCAmD5HPkDGSsoqb++wZvQ9x7hjNkmfSyi7OZvg6DKvcqN1gx2lRfr4nIZkm9JOOj6cwgs554D9YNYBheXyOBvRV2BWjwqdnH8Ondl0bwWfwrZZUp4rh02G1z56jZVklR4khJvlCWFluKusoL4f4UcGDOKg5fSOb+5BGBt/w6KHTTNXN+2H/StLaMnOQ1wdAo9WJKsvroz7AOwCI1B0okr+OiZKXH77/4D8bdfD0ijlTJ4fWYU1jOeVrLu4lcSi4IbWfVzyi0GF5bTeynxICFv15u9fhYOBYYMss/e7BY0O6oC0v7wURZ/7KTvGnVq83irlfv3J3nWkWeeUcIb8Sjexn3jqOMZnJ7rXKRddn7zAFg2bxGeBs89kJzM4MtF1nlrPQCWZ5t4PJB3HnglAayY10xJoGPKFssErVo3r4uC/nn78p13S+mekeq89SHS0tUIDQ5AiaIRUHl74Ul8Im7fewi1RgcSubbsi+EoV8qSV2PeN5syAS4CFFarWApKhQJnL91EaloGKpQphu8WjYOPyrSU1LxlWly5Sl+qenbnUb6s9QgskhpBACOjkNQIkiKRWxJ1x7RK2r3oPpCZkT4rV0yDXBIlYrRFPXszhAKBomlHj7P4/Q86z+rVeHRoy+O3P1gcO07/3qY1j9o13feyl1u+IXrfXfEEf7akRO4VFEHYHdkOMz6X43lhz8zhh3/MIVBCEC616aIuAS0f/ir+qYIyCLsjrKdl5uZc7NHtLIBFCNwJkbtRCNcU4ZxyRrwWjYHsymmxq677EKSU74Az8+nBTRUqoNrInPUTUODKWmoTOdCX70/7PDrE4vb/so8ak50/Aq9lk0Q7uPI1oB02y+EpndHF462HNHVJARbXontBycgyI0JIZIhRuJIVoR1lVhIthxGVqz6H/ERWacZLwQXR4F2adlRWEYC9uRANJTVHEAQUuUt5hchvd6KzeOLcKQTA8j13AOkLp4hqDdUaQ/cBXR9nxmM0aqiG02vR2Sg7Z8Y276N+ClxaLYM2wQovVm8egWWyB1ZOzjbtV3WEAT5uCrp+Gs/i4JcsCpvdsrUyDpWGAcFhzgE+zvpMuXwq5Gco75p20DRwVerbVGdMtTU2/Cx0ExJllPzdmNpvU1E2DVwCsHZthuIXWh2aRF/pO1mPLnSW3HvvPgbVtw5EhIESt8fJozAnZF3mjGrX4tFGkna6PvUqxj47LM6W7Mo9Ee1RTkmf+cYfr2+S4amECD+tgICDnOXH0xLFefRz4sOG1OVz5suQlkZ1jxnJwc83aw/uPyjDnr30t8YNObRo5v79aZ5+rvATUGuSc887a9sp/RFwdiF93vmGA1U+cQ348wBYzl7Z+a+feaSjTAZMmZC1/zwAVv7bD54ZvzgPvLIAVlCAP9q+Xh8dWzdC6eK5UAblxa1Zro584Oh5/LrrIC5cuY0nTxOhNxjg56NCiegINGtYHd3avmYSeWVuDOG5Wr91N67evAeO4xEZHoLWzeqgf4834aU0i5kHMHWODuQrtlFImH50UesRWLJrZ+G1gJb65kpXgXbEvFzxh17gUexu1ssrEXLoJIdPc1H8vAKK3ZZpjBlf7zZpStIHpdUWi0ULGNCXw8ZNLC5LADzCSUG+9v4XZO4KDgtbSojcARyQ98Wa1XSd/fwEjMmhquJJbRzaPdohTre6Vwi2hzuQJpaHjnIWwMp4DJyRcJN4BwmoPta5F3rFXz9B8ROtFW+oUBNxb8zCpVUUjCpYSkCMjUIA5jaRAz052BuFpBeSNEOjRDTmUewtui/l+/4H5aavxN/1DVtD34tWDXRkWSre24hEXit2WVu4OV5XRWUS1hPieqMIXiqoF1KwM6cx5Ef3QLl2ttjkZHghtOhDycerKgvh9whKEu+IvY60rXZ/E+IkacjHinRFZA6pRo7oNrYlAJbfjdNI+3yk2J3sC91HXzijTuxjXvkytyNebRnrDC8WqfdxeLxpem2dmQbILB9Ftoa3+jv5Gv/7XBmK0UDdzHYHizzCqMEhYHNI43VqQBudlKu/gPz4XrGVbsA4GGrZrkbp86EpKfqo8Czg1yjDh3EIDHAe7HAFwDK/1xgat4Wu5zCrnjgySQ6e0puiznSDXSmcj9b/ipL/LjHR+U3QAtzwqpr5t6ZN+Mx/RuEEHk1it+G2gdJSvKaKxIbCpn40qIHjM2QQJIBVQnkBx+5ZAlgVKwro1sm554LRLkLiTsjcjSKtarhrD2tC12CMAnf3PrSaRvghB/9izu8fqY2p9xicl5DVW6uQ6+icPACWox7L3+2zi3T0AFj5e194Zp+3HnglAay9B0+hcb0qkBNo3CMvtQfGTNUhQVJtatgQDsGFsgGwzDiAuIp1oB2SVQnR3ZLC61D+3g+iWn9GgStWSJ/l//wK5Y+mL75CaATU00wjL8wrBBFC3FHDOaxYJTMB8N7vzyHKjXwR7vaLVN+GH1lMr7gZaX6U8HbW03a4/gf9ch8TI6B75+xfyg9qHqH7Y8o5kltE1+7wg7MAliGdwTFJBSpWAdSd6dwXY1L1j1T/M4ogV+Bu799w42daBSukBo/SNsh5OR1wdBL9ii1TCqgzQ1JyfY8sk3/IKFGvC4hqQX9X/LwSit2UgF3fti/0rU3Tg+31+dj4Q1ifdk1sTjiwCBcWEdWIDmDU6eJvmimrwYdF5aiaiX8E7xkfgBR9MMr+CmXRvi0lWq7nHYafwnK3mh4Z+42H23FB90y047fwNqjmFWyva+xqRwAs/4fXkDpxkNieL1YWmrEUYLRLkVkjkopGUtKMwpeuBM2I+c6ocmufu38yiP3bCi9WeVJdUACpVmgUXTKDExK+HLmPgNpTXAMJpJNRa4AfPlOgvI6OqVbo8UOFu1j1djG3ztseZcr18yH/l0bF6uzgjWPiH0M1iVZ+TWGDML0w5ZySVtmyxwZrbVwCsA7vhHId/VBlqPM6dP3GWDWFgEV6SQQSifwhEUA5SloyvCa8A5lOwnfp/RrWB9KIxjZv8ahdw/TD0q6M++gfR6sjkjE2F34DDVTh4nCPD7G4JYlkJaTmz2oJ+PewZRSmO1L6cnqf2P47C1J8xShvvcmjjhPVcO3ZA6TqJ6n+aZSwBjxKtHPPh7mUWywuLKe6C5TkUfED13R7ACx7VtXTxuiB2V/KkU5fSzLf5ck7vQfA8uwRjwfyzgOvJICVd+7zjOSqB4aM0UGrpQdlYxnpIH8lvJUyJKTqoNFlHThkR/fASxJVYajZFLp3x7tqgtX+TwwZqC6pkBYqU+G0FdJn2YVj8Fo6wUQHV7YatJ9YVmM0/2ozebwBi5fJkJRE5z9iGIcAF75054ozslG6czeDaV5/427RO2KLLrcboOCB8vQluRUP8mKenezJuI++kkNAc58orAttnpfTsHssZwEsMoB5akudGQa7CKitGUeikkh0klFuNP4Od87QlN7I1zhEv2n7a/fRqTJwpBzWc6kzlYNMldXvzg4GD/+hIEF0awGRTejBX7lqJuQn/hH7avuOBle3pd2+lDY03wOkEiWpRsgwDLwWjYXsyimxue7diTDUpMURLAbkOHjPGgL2AU0FEhgGO0ZPRW+GgmTNVEXw/XOuLaeMtrPTO0/2YK+akqCvDm2GN3ws06/tVGe1GQGwCiQ9RMoICiDyhaOgmUr5w5zRLzuyC17fUV6t3LzfOmpfwiUW1zcy4CRk0USHKpRH+X4CvAtl7ePUuwzOL6P72DdSQJVh7gOwyBjkvn6q3j4U5FkUfxqEJwXS4J8Rhfk93JSn6IBzlJuXQv73Nnq9dP0QhmY5cwqyNy7A+0saPflAUQYLg2mUJ4kUJhHDrogrAJbs5D/w+pZ+qOKqNYT2AwouSe06OUcGrSQCqcYYDl7P90J29iu/mwv5kV3UZ8+J21NlhcS/9ezGo7yVyOh2j37HSe1TsZ15avKZBTJkPJZ8CGgp4J6PgJ27LQGs5k0FNGnk2t5ct4HFjZtU9zu9eJQumfX8JTxfZ8/R3zp34FGlsmvAT3Y+TbrG4tIqOpaigIBaLhKtG8dKusri0uqcK+Q6ulc9AJajHsvf7ZcsY0HSx43y0SAOIaEeACt/7wrP7PPaA/95AKtpl08yfbbzh7lQWklRIzwkv+3O4iog5OTWhHA7te6d9UXv758W5vUa5Ovx3vvYNPfCWDXHGoAl378dyo2LRX8ZGr4FXa+s9Xe33NWnon4s/QodLffHoSK0iplxPPbxPXhPe9dkeEO9N6DrQ1MdjT8uXCIziTYjD70l35hGEkirBrl7Tu7Wd+Iki+n3zuJkNUoaXPFmOdT5t6E41OCBHMIKZ3/42Z5+B4Oe7hPbt/EthuUhptWv3G23s/pcAbBIdSxSJcso1UZxUIU4dyg0L3l/ueRCxD6tIuou0Z5HWH3bBxPCI0L4RIxS5WMDfJ/XbiAE74To3SjF2/MIl+j0mjMMstuXxd81w+eBL0NtcMTHOoHLjHbUCPTwRtJISTqpYusKKPbQFF3DGz2h6zAgW/XmkWGkIYkO+6VJQwyU7LO3fKKxIrSpI2Y61XZk/L/4Me262HdWoXp4x7+sU7qy60QArIK6FCQPohUOhYJBUM+iBPLODCj/cyOUEhJ9ffMu0HcZ6IyqXOljDy+Wuwoo5DQBwvn3XYcNUPvQCJ7hR7tiVPe859tUblsN+c6syqREdO0HwNCKpuFam4f8xD4oV30m/pRUvD6ONZyJhAQBBg7o1N72vcTWArsEYJ0/Cq9lEi68mFrQDv3c6pBnFsqRIb2nDTPANzJ769g7V+E927QwxG/+A7HPj1Y7Jr3f68+hqJXI6PPaZ2j1iFYaJW2XhDRCJ9+SSHvA4NwS6fM9q1re5TtsJphkLu3b8KhR3TVfb94qw4WLkmrHnTlUjMl6zpjTFRj5Rm2tnTO/Czwyo46lH0hiPuBQsKRzzzypDfHnWFzbQP1XqBKPsr1d85sHwHJmlfNvn5WrZbj/QEJ90p9DdJQHwMq/O8Iz8xfhgf88gGUkbD+1a6VVjiUDx6FK8yyA4eI+6xXrSKW8Wm9mpV9k1+ZFLE5+GFMKYPn6Chj7nHzaGoCl2PkjFNtopTN3lYq35ucrukQ0f/g/8adsSZ95Dj5DTFOR9G+9A30bS74s86+j5GDwsyS9QKUSQCLQ/ity6zaLGX/FYlcLmgIYHB+M9juyDtJKpYCJn+Y8ny1pN/BJ/EFxyjlVc3rRfnEFwDq7WIZ0CddbxYEcCpRw7mVeZpZKe7bgXDwVaHocqXBIKh3akstrWRDCXaOU78cjsHxWvxtbZIg7QV/QSnXhEFqL2qv6tAeYZJoap56xDkIwTZ2xNbb57wPi/sLOjPvin4cVrIyxgdUhO/YXvNZQcngupja0Q+lhW6qHvX4OXvNHQsouw5WqBO2IL7El/abpPvMtiUUh1quGOWp7Tu1nJ57C4uRzYpMRAVUxMiCLV8ddQgCsADmHpD4S/h2FEhmLf3dpCJIaTVKkjaLrPAiGFpYgvkuDuNiZ0zC4up5B0nVLQCCqpQCWBUjKoVHCG/Io3tb2teGIWZ/NF7Csk2nK+PyT/dG9s3PXtyNjm7cl1foU26kt+jd7Qd/OtKiNRZ89P0GxlUZc6Ru3gb7nx66YYdHXFQCLvXYO3gsovxtfqiI0I60Xczj/tQypkgq4Od5neQ6Z1Rdjb4v2xsmiMDdkDQTG9MPSJ0M5BAVZX08CjP+WTqOQw2Q+OFKkC+79LMcTSeXhwLICyg/gcPMWi+/WW+7X7KK8HFkI8zTBdm141HwOiq39ngV5ZhuFEMYT4vjckptbZXhyjF57YfV4lOjg+nhxJxnc2CypkFtdQOnurr03eQCs3NoFr6beDRtZXJU8c97uzqNcWd6TQvhqLrdnVi+pBzwAFgAPgPXidqcUwAoNBYY+LyNtFcD6dQ0Uf1BeKn2bvtC/5Rzvjq0Zn9U9Q+uH9MtqVWUwfo+gVcyk/VVju4NJSaAHvXdGwlDfkl+HVCEk1QiNUq0Kj9Nn6f9DQgR89KFrL2K25uXO3xOTGHy+Uo8futIS50T/u+veyxymVEkBfXrlPJ8NadcwJv6QaBaJTiFRKi+juAJgXV7DIgs+lp0AACAASURBVPEKXWvyxZh8OXZKdBqoPmkPhnzmBnDUdxlSZTRts/JQDn528KgRbhbC0WIUaeTWtQ0yxJ+jh48yb3MIrvL8AMdxUA1tJQJF5K/qr/4EXOAc/DHtBkZKgMzyikDsiWwP9uEdeM+QcH4VCIJ6tpXIovRUqKa/CyYlUZyP4OMH9eRVQMEgfJ96FZ9Kqobl1T5bk3IZExOO5ur+zgSw/JRI6t4IIKzlzyVj6U5kIjhOitc3UyA7S69Nm+mbTo7jjm73djF48JdtzkvzSEJ3jD1pTRpWN/1JVOWX5ouFsd3x5htOXt8uGKUwB6NadIa+M+VGs6ZasfUbKPbQaGNdu/4wvPm2C1ZYdnUJwLp7Fd6zaJRUTtWHL65ikXyN7vkKA3gElLW+DiTVkqRcSuWrQotxR1nJYgLjxxjg7W3dJXcNqaj/gPqPtJrhXxcxC2NMUlzL9eERFMPj8RNg2XLKP2jUaixg44rjcyJqX/6tDLEP6T39g3c5FInMPZA1+QaLiyvpWriLf+7JURY3f6Z6C9flUbKja9eaB8ByZdflv75bf5Hh7Hl6LXVsx6FaVU8EVv7bCZ4Zv0gPeAAsD4D1IvcfpABW8WIC+vfJAjysAlibl0Hx9y+ivfpug6Fv2jFX7D+seYwuj/8UdedE+qzYuAjso3vUri4DwRctY2HXkWMsdvxJX7yCAgWTlEJ3lNHOFWfkoHTKDDl+6PwDMnwyxFYdt3dCUGIQmr/Go0njnF8sVyRfxLTE42Lf9wtUwNSg2nk9DbvGcwXAuvGTDHHH6QtP8XY8whs4/9LttWgMZFdOZ9p9wHcLtDJKDF5jPAevgrYPJjlVGjQH3Mr15RFUIcte5tljqCZS0mc+IBiaL2jakl3ONGuUwGlQ6f6PJn89WaQbwuQ+UH30FhgDLS2mnvsTBL+CJm29lk6E7AIFisiP2kHTwFXJSht/UfuMRGZIUxff8InCajdzvIkA1rttgNQk0S/W/OTI2piniWpHLwRXIsYRFXnaNuEyk5laxOstK7wZDTGCCO4wjIOArek3Me3uWST5pIoqwx6HYyH3Jhq5cH07a5/iwG8gKcZGsSeaSvntZ5CfpGncur5jYKhrWk3PWXuM/VwCsJ48gPfU/qIJfOEi0ExdY9Wkq+tZPDsv+VDwNodCRuBd0oNJTYL3pD5gtDTt83ZEcywVaKqisTnBgKdOzLnoxsRnR7Am9Yo4wptXymPA3w3E/xPwhhDKMyyQlgbMmW8JYBkL2Lji6/0HWezZS+ffsD6Pli2y7ts5VSh0Zczs+lpNI3yfA6mS64o8PMDizm90juGNeBRv4/yzlNjiAbBcWZH815e8x5P3eaO0ep1H/XqeCKz8txM8M36RHvAAWB4A60XuPxMAq2IFAd26ZA9gKdfNhfywhGy19wgYGryZK/bv08Si1+Pdou6m3pFYH+baS/216yzWb8w+IoIQqhJi1f+SLF7KYmPl3bgXRdO/Gv/bBKVvloY95L9fJZ/HF4mUQ2tYgUoYG1TjpXSBKwCWeeW0yKYcols5/yKv2L0Fip9XZPppTwHTkvf1Z9tX4fDZOQZXN9ColUKVBZR9HjFHvpyTL+hGiXmfR8FSWXuTvXoG3gtHi79xJcpDO5py0zm7eOaEyDMK1cEA//JZpOx3KQE74b/hYmrRw6GVSApDw9bQ9aLE1CSNj6TzGSWv9tlxbRw6PNohjkt4vQi/lzvFCGAlD+0GIe6hqFo9dQ2EwkWcHko1rgeYJPeliTptiAMd1XGE4JmBVlLZVtq9ysccfCOcv+6Murak3cTCpDO4Y6DAlfE3cu8j6am5RZCdkzssiPdzqNhn1OM17xPIbl4U1WqHzQJX3r33YFcALCbxKVTjaUSYEFAI6i9MwW6j8Te2sIg7Qe9bJbvwKGyl0p5y7RzIj9Lnu+Clwt+t12HHEcsKoQULChj5cc6RxAm8FrXvb4FayLr3fvZzO5R5QqvxRrzGoZiksIZ5QRfSx1jAxoHtbtH0xCkWv0rAHcKpRbi1iMxdIENqKgV3jZXTXBnPVt+bv7B4coSuR2htHqU6u/aOQyqQStOCXX2Wkjl4ACxbK+n5XeqBv/fL8Pc+ei01aciheTNPBJZnl3g8kJce8ABYHgArL/ebxVjSCKzatXi0eTPr5cZaBJbXimmQnaZ8Sdr3JoKrkUNFMhdm9mfGPbwbt1fU0NonGitdJH2Of8Zg8dLs01wa1OPxxuuuvdy5MGWnuhJAbpPPWZyqQkGoClcqoMGJ+pj4qQFyyw/NJuPMTjiJxSnnxb+NC6yBoQUtUzicMs7NnVwBsMzLqYfW4lGqi/NrzT66A+/p70PHBGO/PyU5V/gLqDXRvjTUtHsMzkn2o19RAZWHZPU9v1SG1Hv0Ba3SYA7+zyuRERCZgMlGMdR8Dbp3TStxOuP6pcnn8bkEzGysCsfGwm9AuWEB5AcpCKTv8C70b2SRLDMPb8P788FgOAra8aGR0ExcASiUohmzEk5iyQvYZ+bpRUXkvjhapKsz7sm2jwhgjRkA4Q4F+jSfLgUfbRkJatfgggDV4JYmfGIZLqaJ2jWuGxpl8mJtYEAqoZmLtNKmM0NtS7+F+YlncNOQkm33OsfrYm6N8ijpJMedM3YZ+8hO7YfXyhmiipwq9hkbqSb2BvPsidhHM/lb8OHRrphh0dcVAAvpqfAZRSspCipfqOfTSovSwSzSotvxCDOLhGNvXoD3PApuk/76zgNxPLQrft5m+XyOCBcw6H3b91Tjx5ioxEDM/9GUK868GuLsL+VITzd1kzsKuFy4wGDzz3QOMRV4dH/+nJk5Sw4dDWTF+LEGeHu5dZktlKXcYnFhOb0OZd4C6kyz7cucrDL/GEQ+BBEQyxXxAFiueC//9T18lMUfO+m+rl2TR5vWngis/LcTPDN+kR7wAFgeAOtF7j+TCKymTXiQf0SsAliLP4XsMgVKzCMx3DkRkhoy7OkBUWVn35JY7CLpM88DU2dmj+gYw5DdOY/c1vXHLhY/PriPPc3o1+zQuML48HwbEI4NWzI14RhWplwSm00JrIUPCr6caUquAFgJ51lckRD3BpbjUb6/8wAWcZj3uJ5ISw3CMV9KwOwbKaDKMNt+zzy0pTI4PpMedqSlzs3Lv1cdzsEnLCtyRfH7eih+kxBFv94N+k6Up8rWmmf3+1V9IprF0sIJLBhcKtoTgQf+BCEUN4oImOl18J75Adi4WPE3QSaHZvwyCBHFTYaZknAU36bQqokkTZWkq+a26AUexe6uE4eRg8HdYn3dOqwRwEqZ+hH4S1lppURciaRhkuKhGker1wm+BaCeZ8rz49ZJ5IIyKS+WKpRHeF1YgBn2DEt2/e8Zd/Bl4mlc0ydn2yX8cRhqnKmJwnFhGDzQgLDC9mh3bxuZRcW+7IseZI5MgErCZ0ceTs+FgEMEJHKnuARgGfTw+ag1vcYZBuplNBJbaqdNcIMQt09/H+wTGjHMF46CZvJK3H0gx6q1lgBWmdICeve0fU8lVVRJFFbb/VXx1vmKolkFSvCoOND0Xr/0GzmexFHL/f0EjB5hewxba3L9BoPvf6BzICBq395Zes2jvqZNMoDJPtvW1lB2/35shgyGNDpQhXd5BJRx/tl3ezuLRwclFXLb8iDFGVwRD4DlivfyX98z5xgTsLtSjICunTkPiXv+2wqeGb9AD3gALA+A9QK3H0wALBJ9RaKwiFgFsOYMg+w2PYRqRy0EVzJ3wI71qVcxVkL63Mu/DOYUyuLTcUXmL5YhKcn6W2OXjhwqV3I9vcUV+xzte+w4i03/ZODHLjSlQ2aQ4ZtbfdC6pe25EGJtQrBtlC8K1UMf/7KOmpEn7V0BsFLvMji/jB4s/CIFVLYTaMpucsoNC5F0JBFnfGhVPlJFkFQTtFcOjTUFVI3ph6fmyKB5Rvdp9TEcvAtlrady/XzI//1DHELX4yMYmrSzd8gc29V98BPuG9LENl+HNEHHxxkgaU5GyTxwTl0NMn/5QdNKe7ouH8LQnEZrGPuMeXYIG1JpdNLsQvXQO4/2WZm765H+PLWI2HOBgHKs+0IfRABrzjjwJyjorn1/MrjqzlVaJCmbJHXTKEJkCagnUqDULYudB0pIFJZcJdhV1MDcHLLbd2bcw7zE07isp8UBzNuVSC+M8gdqISwuTPzp01EG+PjkwQTNhmCvnYH3Aprey5epDM3wL7M1hHBBqcbQiEBB4QX14t/cbrhLABaQFQ0oLVCwZAcgV1jYaSu9TL73Fyi3LDPppxm1AHzJikhOZfDlAksAq2oVAZ3a2wcubUy9hqC5JeGvpde3X9cUVK5puhnWfi/DrduSCn2FkQl6uir3YxmsXEXnEBkhYOB7HLQ64LNZ9F5PglMnfer6ePbYax4VF1qTR6mu9j+jzMcgBO6EyN0oJTvxKFzHeX1EjwfAsmclPW2MHrh6jcGGH+l1ZixYZLzPeTzl8YDHA7nvgVcGwNq7ZQGUSsvoFo7j0aRTVknog/+jX/GlrlWrtXi9x6jMP13ctzb3ve4ZQfSANIWwW2cOFWOyDsnWACzv6e+BfXRX7EvShPhI00gLd7n225RLmJJwjNpZoDymBdVxWb35i6tUISGwJ0T2/yW5cZPBug0yrOvxHfRKvWj6Kl0ntCpTwOZUPok/iC1pN8R2C4MboqtfKZv9XkQDVwAsdTyD03PpC4+ygICaE+w7FGU3V1IhLm7VSVxV0XQY8iJPXujtlVOzZdAkWAJVJ2bKoJPwpUiJ4b3MIyE/nA6usnsqR5pHSnX0LYGlBWtD9XFbkynp3p8I5cqZJn/jylWD9uM5Vqf+0dP9+Dn9lvgbiaYkUZV5IQ1jf8ZtPU05+zuyA8ooAtw2tAhgLfkM/AEJsOgCRyDZW6QKoVG4GBuRPG6bzcuhaLf6PuYlnMYFPa0ua25Zba9QjAqsjqR9ETgqIfQlpN9TJuRNdIu5Teydq/CeLanYF10GJJU0O2Hv34D35x+KPxvBYXevgqsAls+IjoCaAtsZJBrQ1/L58uhfFrd/peBGWD0eJYy8kmnJmcUnpMTtXO3m0Pb/VJwuKUoiwcky/y4lQrfll6enges/0vfQdKUO3w/ai3WRLUy6/vSzDOcu0PtuieIC+r3j2vOADGBOUxBUSMAnQzikpDKYJwHn/PyAMSPyBsBKuc3gwjf02ccqBdSeyoG1XTTUqruvb5Lh6Snqu1LdOITWcO29yQNg2drZnt+lHrh3n8G3a+gGLhIh4IP3PBFYnl3i8UBeeuCVAbDc5TQPgOUuT9qnRwpgSQEcqwDW+LfBJj4VFatnrodQKHfyNJYkn8MsCenzRwUr49PA6vZNKodW239ncfykdSL3jwZzCAl27UXMZQMdVJCYyGDBEhl2Nv8TDyIfiL3nFWiMnkElbGojFdpIpTajfBPyGtr6FrPZ70U0cAXA4rTA0clSgF1AvVmcSykc5CAWO3Yb7njRioDRDZIR2c7+9J+Ly2VIvkUPAzEfcChYUsCxKXIYNNTLtacYIH8eREAqgrFP6FprJq0Ab5ay5+z6HNQ8QvfHO8XufowiM43Qd+q7YOPomOb6Bf8AEO4e8+qExnbvxe3FHxm0UijhsyO8dnkhnR7/gaMayjG0KewNNPQOd9vQIoC1aiH4nT+JevVdBkLfvItT48j3b4dyIyXm1zd4E/reI5zS9V/q9Lc6FnMTT+GsjpLXm9tfU0mAq2popMpaQ1L1jVR/M0oBfwGEIPtFCPnAQz70GIWLiIZ20rfZmkIqd5IKnmL78tWhHTbb7aa7CmCRdGk2KV60S/P5D+ADQyzsjDvB4MYWerAMqS6gdPestVCunQ350T1iH0Lcrpn+HYQCgeLfFi6VIUESeUp+cCS13/x+uqPSRaxpeBibC7+BBs/3C9H5x24Whw/TPWNMQXLV8eYVDkkUIIkGNAe2CgUJ+Hho3uxRAgiSDyJ6SRphuX4cgso7965zdQOLZ+eo78r04hBc2TldRn97ACxXd17+6v80nsESSUS98XryRGDlr33gme2L9YAHwDLzvwfAytsNKQWwPhrMIyQ4+xRC1YgOYNSU+TS7r7DumMGcpNNYlHRWVDU6oCo+CajqsurDR1gQ3ihrMn4sB28v117EXDbQCQWEW+NE1RM4W/mM2JvwCxGeIVvS98ke7FFTYOK70OZo4RNlq9sL+d0VAIsYfHicDAJPwaLakw2Q2481WZ3z7amn8EhN/Vym4gkEv2P/Pr2+WYanJ6lNpbtxCKkh4PB4OQTJ+abuZwawz/E31ZA3TDhzMub/Aqj83LImnMCjwr2NSBNoNN+WsFZ4bf23kJ/8J9sxNMNmgy+fPcD89pNd+EdNK/StL9wCTVXOV+hzZLLmIO2SkEbo5MboLyOAlbrxW3C/0Ahifeve0Ld1jm9L8esaKP74QZym/q3e0LdxTpcjvnpRbcnemJd0Gqe09AOJuS2kguSogGpoooow+engIRl27aHXUGSkgIF28P/lxlyZ+EdQTeojqhaCw6Ce8X22Q8kP/AblD4vE3w12VC10xm6XAawp/U0AbM2UVeDDilqYEn+OxbUN9PlaqCKPsu/wsEbcruv6IQzNTNON161nceOW6fO5SycelSvajmrVJAKnJGl6xLhhPTfjUUAKyioCsDeyg2gvib46LqmWGBMjoK6VaonO+Nqc64qQwz98xOCblRTYi4gQMOi9vAGwyBzubGfxUALySoFFR+d4aY0MSVfo9eYKGGYc2wNgOboK+bt9WjqDOV/S68lHJeDT0Z4IrPy9Kzyzz2sP/OcBrGOnr7jVZ7WrlXOrPo+ynD0gBbBISDsJbSdiLQLLggdj6U6A5GvkgkxPOI7lKbS0+OTAmhhYkBKzOjvklassfthkaTOZxtSJeRPS76zt2fVb9JUMJ/zuYO9rf4lN6nmH4aewVjaH6vZ4J/7VPBLbuTs6xaYBDjRwFcAyT9erOtwAH0qb44AltOnl2U+RmECjeSqHrIbfKHqAtaX03i4WD/6i+zHqdR5FmvE4PM46N5YlZ44S6sWmPFS2xrT1+5Cn/2Bb+m2xGQFDZx67CeX/Vlvtqm/eCfouNA3KWqOOj3fgmIayJm8Na4W63i4639ZEnv8+OeEoVkkI5N11LzEOLwJY//sR3IavRKsMTTtA143yWNlpbmYzUmWSVJs0iu7tj2Fo1MYRFf+Jtv9qHmNuwikc10kYtc0sr6IshNGB1dFUFWl1TiR98Pc/6TVUtjSPXj1tAx654SAmOQGqT7uLqkl0kXr25myHUmz/Dood6+meadUTuvYD3G6aywDWF4PB3rsu2qX59Cvw0ZZciYlXGVxeTQ+WAaUFVBigy5a43TyP7dffWJw4Zfp8JiTo9lSUvPsHi9h9tO/10DiM7/yraPNXIY1BUqJzW6Z/LodB8ipBuK7uxTL47nvql+LRAvr3zTsAi1S0JZVtjeJKGmF2UcOu+NUDYLnivfzXl0QVknRjqRCg2BOBlf/2gmfGL84D/3kA68W5zjOyOzwgBbCkZaTNASxGo4ZquIQoWqFEhpsPztL5jHt2GOtygVz8aTyLJcssAazAAAHDXST1dsd6OKODRJSdeJSKb5psEbt7MzLcjKapbdnpbffod5yURD38Gt4aNbxCnTEj1/u4CmAREndC5m6UmPc4FCztWsTdmTk8Mp4pRZ111B9A9uVCgLD02iFPjjG4uZUeLEJrCSjehsPRKfTljFUCdWdknYjMyb0JBx3honOnbEu7hSHx+0WVUXI/HE8qCq+lEyyG4cOLZVYdtEboLG3c6tF2nNfStLAdEW1BgIm8EPN05EEFKmJSUE23DW0EsNJ2b4dhJU3/MtRtCV1fSujtyIC5yXPmiB251faY5gk+TzyJ49rsgavKykKZqYLNbUTqpaYyePCQgVYDaLRAQEGgXNkXBGBpMqAa3l50m+DlA/VCWtnT3J/K77+E/NCf4p/dWZBBOpbLANaXw8HeuCCq1AyfB75MFYvtkXqHwfmvJcUyigqoXn4LlFu+NmlrJG43V3DgoAy795oWWRkyiEPh0Jzv0wIPHCfV9jJo38MtL2N+yX/FIcJkPjhSpAsUTO58dDMONGe+DGmSdL3RwznEPmRMPpyR/fl297zdoyc+l0GXLImc6sMjKMZxG84tlSHtHtVTaQgH/6KuPUc9AFZu3WlfXb0zZ8mg09F9SDIoSkR4v7oT9szM44GXzAMeAOslW5D8Zo4RwFKpgHGj6WdDCwArJRGqsd3oi7l/ANRzKGDibr+Zk4svCG6Abn6lXR6G44Bpn1kWGygaJeC9/nn3RdTliVhRUO7uBqRKUr8ORnZCcUXORO6vP/wVl3SUKHlXRDvEKINywzyXdboKYF39nsWzC/TwQrhZSCqFK3JsqhwGNdXQJKU9hI8+haFCLbvUJl1ncOlbeuArWCqLM+aEZI8q/IBak7KuTfmZg1Aunybq5irWgXaIKZm6XQPn0CiV12WmEfKgvtlXsBmqjH/XpBepmKad+A34UNupgE1if8ENfbLY391E6jnNeVPadYyIpwfZTr4lsCSksatuEvuLANahfTAslPAZVakP7SC6Vo4M6DXjPcgeSgpmTFgOvkjuR484YqMzbUmK4OzEkzioeZxt94qKIIwMrIaWL2kqs615+3z4ukmTjK93Z9tFuWQc5JdOiL9r3ViQQTqoqwCW8qvxkF88LqrUDf0chhjLe1z6Q+DsIvp89QnhUO9BWxPidkO916HrM8aqTy5cYLD5Z1N28dHDDfD3z9nrCRdZXFlH7+2sQkD4+GQ0jtsKg+Q+NiWwFj4omDuVk40WLl4qy+S8MsrQD7NSCH/eRudVuaKALp3y9n3jzu8sHu6nPgquIqDM247bcHahHOk0aBtVPjHA10VKQQ+AZeuu4vnd3AOkKAIpjmAU8gE6pqQHwPLsFI8H8soDHgArrzztGceqB4wAVnAhAcOG0JcZcwCLEDh7T+kv6uBDIjIJWHNLBj3dh+0m5OJN0NbXPRUPv1wkQ7LkSySZQ0x5Ht1dKC2dW35wRC8h3yYk3Eb5OqQJ2tnwWaMHP+OWgVZoOxDZESUUBR0ZNs/augpg3drG4rGEuLfYWzwiGjv+Bdo4YcJRRbiqjMIIHJqntoC+aUfouw22yy+aeAanJNURvYN5VBgg4NQcetjxChJQY2zWtanY+zMUkmgGQ+O20PUcZtdYjjQyTy0dF1gdI3bsg+z0AZA0RiK6d0bCUN92mippW/vBFsQaKH8eiYQgkV15IX+rH6D3E0oeTQjcSaqsu8QIYKWfPg79F7QiJVemCrTD5zk1jDnfIPlYQIjy/6tCSNlnJ57AP2rJyddsMhUUgZnAVSsfS26l/9K8HQGwLIDKccvAF3X9Q425v1wGsFZMh/z0AVEtqUJqqN7EYlks7meKRDR8RnmuMonbZ6zLdi/fj2WwcpUpgDVtku2KkpfXyJAo4WUqXFtAyc4czKuqBrDKzCgsfxLWmkuyYpUMD2LpwZp8GHv8hMFvOyh4VLMGj3ZvOf/sccb0tAcMzi2RpBHKBdSaykGmcEwbeV6RdTZKtVEcVCGufQjyAFiOrYGnNbBsuRyPaW0WDHrPgJqVVB7XeDzg8UAeecADYOWRoz3DWPeAEcCKLirg3X7ZA1ik4hp7/RyYjHQgIxWMQglSGSu3JDfJxdd+z+LWbdM0gjq1eLz1Zt6+ULrbdzMTTuDrFJrmMbhARUywkSpV8/5mPOIyRFOOR3VFhMxFZnN3T+y5PlcBrAd7WNzbTdc9ohGPYm2cX3OLwxr/EA3TemVGJGmmrbHbC4fGmkYEVhvB4fR8etBQFRZA/kaEgFcExDKKvtMH0L/e1e6x7G34bcolTEk4Jjav6RWK/4W3zvw/++AW2HvX7AavSJ9K939EAkfLKp6N6o5gWd68bF7UPUPLh9vFuZgTOtvrk+zaiQDW1cvQT3pfbMYXKQnNhG8cVs/otVANM+W7yimKx+EB8rDDBV1CZsTVXnVstqOWUwRkpgq28omGafJYHhrqxqFUIzuCyUgTNarnb4Ogsn5PNQcqNbM3gS/g/ghYlwGsdXMgP0wjyUgEFYmkMhd9KnB8Jr2fKfgkNEnrKDbTdR8Kw2s0xdK8f0YGg59+ZuDtzcBbJaCAP4PXGuccJaRLAUh6HAS6eyoP5eAXJSCR06Lug59MilIMKVgJ4wNruHHFTVWt28Dixk36nHnnbR5P4hiTQgMN63No2cI10MeZCZinEZbpxSO4smPPwBOfyaBLob6uMZ6DV0HX5uIBsJxZzfzdZ/U6Fnfu0Ous3zs8Gtb0yt9O8cze44E89IAHwMpDZ3uGsvSAEcCqUI5Hj270RcYaiXte+s+SXLwlGnqbVp9y1h5rRLHNm/Jo0sixFzlnx8+tfv9Lu43B8bRSXCPvCPwY1jLH4Sre24hEXiu2uRDVA4GylzMM21UA68lRBjcl6SkhVQWU7ul4CoXRWSm3GFxYLiEsNpxHzYysaCg1KQ8fYt9+Jdwt0hLnFQbwuLSavpj5Rgmo8rzkutfyaZCdOUgPhP3HwVC7mdu31D19KurFbjXRez6qB4Kc3Bul7q2HmqcpyteK9oIv6+Cnfydn+ZRTo+r9TWLvANYLF4v2dFKbZTcRwLp3D/pRb4sNbFWgy84A5skDqKZKol2DQqH5bIPb7M0LRVf0iZidcAq71PezHa6MomBmxNVbPsVeCeDKOFHVuB5gkijfm/qLjRACgi39oNPA5+O2dL+Q+8ayXQDjfhjPZQBr42LI91MQODsgitcBRyZJ+Pt4HZqlZUU7ZvL1TVju9vnd38PivuTDhE+YgKrD6X39q+Rz+CLxlOhnL0aGfyM7IdzVErTZ7OwtW2U4f5GuYeeOHJ7GM9h/gN7Tm73G4zUXon+dvYbNie4LVeJRtrdj7z3mafO1pxgg93HWoqx+HgDLNf/lx94bN7O4fIVeU906c2jZ+OV8d82P6+OZ86vvz3iNcAAAIABJREFUAQ+A9eqv8Us9QyOAVbM6j3aSaJQXDWDlJrn4wUMsdu0xjcDq0I5D9aqufUV80Qt9S5+MRrG/iGb4Mwpcie6Vo1kl734PDcmFey43ivaGirXkCHvRcyPjuwpgJV5mcXktXXfCNxXzvvMAVvwZBtc2UgCrsG4fKmmyOI9sRRpI/Xl2iQzpD+iBp9hbAu78Tv9foISAigOz7PQ2qwamHbUQXMnc4XRpFrsNV/VZ6YJE5gc3QHcneegi76w12UKxxfrl2ZYSBAFF7pqmO9+J7uM2MmcRwHr6DPohEgJvX3+o59FoOXsnzF47C+8Fo8TmXIny0I5ebG/3F9rumj4ZcxJP4s+MexLmIVOTSisKYERgNbT1Kf5KAVfGWXpP6Qc2jkacqaeugVDYkifOAqgMDIHm8x9yZf1cBbAUP6+EYjetpqjv8C70b/SwauuhT02joZqnNAMDAZqxX4EvZlm50JUJk2pkJCJIL+HCKd6eR3h9CsqQ51uDB1vxWBJp3M2vFBYEN3Rl6Gz7klTBYyfoc6bNmzzinwFHjtG/tWrJo35dx4AjdxibHgucXSwBGJ1IIzwyQQ7JtwjUnWmAq98iPACWO1Y3f+nY9qsMp87Q96S2b3Fo39IDYOWvXeCZ7Yv0gAfAepHe94wNI4DVuBGPFk1fngis3CQXv3SFxY+bTQGsd97mULrUfxvAItvZHJCyxTX0IoEFRy8/VwGstPsMzn1FASefwkDVEZJ65w4aRAhxCTGuUYpqf0IZ7dLM/3IVa0M75DO7NF75nkWChFw+tCaPOMkBKKAs4cXKujZVY7qKHFTk/+rPf4AQGGLXOI42mpV4CqSCn1EIN9GqUMejvUjkFYnAMooXw+JWdB9HzXGpfbX7mxDHUbb940W6IsJNERgigKXWQ9+3qWinwDBZETUOiuz4X/BaPUvsxVVrCO0HUxzUkrfNb+pTMCfxFH7PuJMtcFVSXgDDA6uhvW8xsK8kdJXlc+/PBoF9cFNcAPX4byBElbRYEPbqGXgvpFUqueLloR2TO0ClywDW799D8ds6cQ761r2hb9vX6iY7OlkGTksPlq+ltAXqNYCuDwVl3bU7E68yuLya3tMZmYBakzjIzbKTN6ddx3BJIQdi3Z6I9iinDHSXKaKe3X8xOPAvtalFMwHPEoDTksN2h7Ycqld7Me8bhF9RIyGZL9OTQ7ADH+/MU97rz3b+GWp0mgfAcvs2fOUV7tzN4l8Jp2mLZjx6tPekEL7yC++Z4EvjAQ+A9dIsRf40xAhgvfkGj3p1Xh4Aq2Hsz7itzx1y8SdxwNJvTKOMPvzAgPCw//4e6Pz4DxzRUGbLlaFN0don2urEyJdpAngZxZuR4Wb0Oy+tE1wFsHRJDE58QQ8WBL+oPdn5l+/bv7F4JEkLKa35BtG6rFQ1Qa4A4b6BwjZZ8O3tLB4dpEAYKUmeKilTHlSRR7l3eECnhc/HlBtJYFmov/rT7Sk5xg1wUvsUJBJSuj8uF30bSsaUZNnWhknkNKh4/0exmbtT+GyNT35/4+F2XNDRtK7fwtugmpeVtC57lJm1MQJYGVoO2ndbgtHRlFz1gv9B8HYsv4ZEupCIF6MYmnaArtsQJyzL/S53DCmYm3gav6bfRnbxJMXlJOKqKjr4Fn+lgSujt73mDoPs1mXR+drRi8CVqGCxGLKje+C1drb499wEKl0GsHZvgeLnFaKt+uadoO/yodUNdmK8GjqOlg1soO8HYfqXgJ/7i4OYV5YNqSagdA/LqFpeENDi4f9MIkqbqYrg+8It3H6RHDwkM+G7alCPQ1ISg4uXTdOdKsa8GADr3i4WD/6itgTF8CjXx75oMIsUUSVQd4bzz1Cj8z0Altu34Suv8J8DLP76m+7jhvV59OvuAbBe+YX3TPCl8YAHwHppliJ/GmIEsLp25lBJ8kL1olMIc5Nc3GAApn9uCmCNHcXB1+fFvFC6c+dNTTiGlSmXRJXDClbG2MDqVocg3FeEA0t8iXQzN5A750V0uQpgER3u/Hp87QcZ4s/SSIOKzCKEJW+jB9ehn4OzUmre3C+P/2Vx61f6IibzEcBlUL0hNXiU7saDfXIf3lMHiN2FQoWhnkkjm9ztb5J6R8jXpRxp60Kbo7lPlENDPTSko9aDLWKfcJkPTkR1c0iHq43febIHe9UPRDVrQpujpYPzyM4GEwBraCcwyRL+Iyci5JRblkG+l6YC6zu+B33L7q66wK39CXA1P/EMtqXfBpdNzFW03B/DA6qik18JyF7hiCtzx3otHAPZ1dP0PvDxbHDlLO/Bip0/QrFtldguN4FKVwEs+f7foNy4iNrasDV0vWjFTeMP7M0LOPV1IDJk9KNJrSa7oWhNIxPdtRH16QyOTzcF0ysO4lCguPXnuHk1UmLH/8Jao6Z3qLtMytRz4hQLwrNplOrVeKSkwITYvU8vHqVK2gcaudU4ABlPGJyRFAkh+utM5yDzsv3+Y0hncEzic4WvgFqTnU/DF989fBXw8ZYjKU0H8iHAIx4P2PKAtetscD8PgGXLb57fPR5wlwdeSQBrx19HUb9mDAIK5k2ZdHctRn7UYwSwSAWPEsVfngismHsbkSQlFy/aE4Gs+x5OpMy1Ugn4qAAvbwGKl5P2yeEt+VPaTXwcT8ud5/SVmVQfJEChUV4EsODIBN0BYB2dJoeECgWuVFAiBO6EyN0oVUtsQvAZWnXO0KwjdF0H25ziswssSCRBdlK4Do+SnXjILp2A15JxYjO+dCVoRsy3qd+VBiPj/8WPaddFFe/4lcGs4PoOqbypT0ZjCTdbcUUBHIzs5JAOVxuPiP8XmyTzmF2oHnr7u4ePRwpgaUa/A/bxPdFczaSV4COKOWS+cuUMyE/tF/to+40FV8f9kSIOGfW88T0uFQsTzmJr+k0YsgGuisr88UlQFXT2KQE5k/2+dmb8/0Ifr2WTIDt/hK7fh9PBVa5nYbpy01eQ7/uf+Hd9p/ehfz13gF1XASzZ0d3wWjtHtJWr1RzaAZ+azonn4D39fRxPm4BUGb22Kg8xwK+o+1cu9h8Wd3fQ/eUdLKD66JzBj66P/8QhzWPRmIrKIOyMaOdW4y5cYrD5JwqsxZTnkZLK4L6E5/C9/hyKRtkGjNxqmESZeRphqe4cQqvbtkebyODkLDo3ZUEBNce7Djh5IrBya6VfXb3m1xkpRDXiQ/edEV5dz3lm5vGAezzwSgJYMa/1A8MwiClTDPVrVUTD2pVQJaYk5DLHUk/c42KPlpw8YASwzFPoXnQE1n+JXPxl2mFX9YloFksPRYVYb5wrap1s95Y+BY1iKcn0iwAWHPGdOwCs01/KoI6TlFv/yAA/S35lu8wyPwTUbHMcAT+MEfvyoUWgmbbGpq60B8C5JdkjqOGNeBRvw0N+cAeUGxbQQ2SdFiDgRm7Kzox7GBC3VxyisEyFU1GORQNd0D7DG49oBbMKyiDsdvOh0ZYPZieewmIJn9fIgKoYEVDVVje7fpcCWOopg0zTx5wg2fea+zFkt2gUpeaTueDLusdWuyZkpVGsIR0Lks5gS9qNbIGrKLkfPg6ogq6+JfMlcGV0m3LVTMhP0GqwugHjYahlGYHktXwqZGf+Fb1NACECDOWGuAxgnTkIUgHVKASQ03443cRU+Z6tUG79Bid8FiBJTvdrzAccCpa0DY44Ou+TX8igTaL38ujWPCKb5BzVdEWXiOYP6fORjLk0uDE6+JVwdPhs29+8xeK79RRYK1mCR2oai7g42mXwQAPCCrttSIcVmVduDCzHo3x/2xFh6qcMTs+j7/H2gIb2GOcBsOzxkqeN1AM3bjJYt4HuxeLFBEwYbpuyweNFjwc8HnCPB15JAKvq6+9BrzfNi/f18UadauXRoHYl1K9ZEUUj3Ru27Z7lyH9ajADWyOEcCvrTl8wXDWD9l8jFX6ZdQ7g+St9bb1JZkKRrkegqc7mkSwAhyzfKiwAWHPGdOwCsi8tlSJZETZXrxyGovHOHq0PjZABPD1D1pqbBZ2R7MAI9CNhDsm5IB45Nzx7AKtKcR9GWPBTbv4NiB00Z1L/5NvTt+jviQofbEgL28vd+gF7CcLQjoi2qKAvZreu4Jg4dHu8Q29fwCsGv4W/Z3d8dDVenXMakhKOiqnf8y2JWIcuoGGfGMgGwZo2C7OJxUY128Exwleo4pFY1oReYBHra1UxZDT7MsbRNhwbMoTGp3LYw6WxmFJ5esq+lXSLlvpnAVXffUvkauDL6RLluHuSHd4ou0vUeAUODNy287D17KNg7V8W/a4bPA1+miruWzkSPywCWWfQnSYnUfkz5u5D8DKop/cFo1Tij+gzxChqlWa4vj6AKtsERRyaefJPBxRUS8nZWQM2JHBS+trV89HQ/fk6/JTYsIvfLjAhVuClaMPYhg+XfUtsiIgRkpANJyfRZMXwYh8AA5547tmdou4U6Hjg9lz5zGFZA7akkjTDnvuZVDH0jgSrDPBxYtj3uaeFuD5hfZ2FhwMxxCncP49Hn8YDHA9l44JUEsDRaHU6fv44jpy7hyMlLuHT9Dnje9GEdFRGKBrUqZgJaBNgiAJdH8t4DEz7TISkJmPCpaRj4iwSwzKuWqVg5bhTtnffO+Y+OSIi3CQG3UdYWbo7XVZYHYHOS7upeIdiex8CCIy52B4BlzltVsjOHwrUdP0gYMoBj0+gBQOYN1JlmgNfC0ZBdPUMPr92HwvBae5vTPDJBBt5ADzjSDkVb8SjSlIdy7RzIj+6mut/+BIZGuQ8E9Yn7C39l3BfHJbxGoxyIXtqvfoieT2g1vobe4dgU9oZNn7izwW/pdzDw6T5RpbMVFa3ZJAWwMhZNNo2+6T8OhtoOVG4UBKiGtgLD0wN/xqLtgDJvn4+kYuPipLPYkHoNumzo2SNkvhgWUBk9/Up7gCvJxjBPDdRlcw9QjesBJknClzZtLYTQSHdue1GXywDWjQvw+pJyXnElykM7mlZMVK7+AvLjWZGaF7wn4bGS7vnSPTmEOFDlzh4HXP9Rhqen6f2yUEUeZUmhCzvkkSEddR/8ZBJJODWoNt4vYEm0b4c6iybPnjFYtJQCWEFBAtRqQK2m9o4bzUGlcvy544w92fU5u1CO9Ef011JdOITWytmm1DsMzn9N5+YfLaDSYE8KoTvXxaPLPg8kJjFYsJjuxYAAAfOmeSKw7POep5XHA6574JUEsMzdkpqWgeNnruDIqcs4evoSbtyONWlCUgtJiiFJNfygd1vXverRYLcHHj6jpeWlnV4kgGVetYxwX10o2tPuOeX3hhOeHcHa1CuiG7JLl/pX8wjdHtNIgQbeYdgc1uqldZ87ACzzyoFRLXlENbfv4CN1TMYT4Mx8CmCpQgVUG8nBooJcpTrQDZ5p06ckLYOkZ1iTYm15RDTk4T1/FNjrZ8UmWjtJ4m0ObqPB+tSrGPvssNgqRhmEXQ6kAJqnIb6uKoK1uVD9K6dpHNM8QcfHf4hNqnsFY3s4rejoio9MAKzlcyA/SCs36noOg6Gx/c80JjUJqjFdRXNIBUNSyTCvJJ7XYEniOXyfehVaWD+Yhsl88FFAZfTyK+O2qJW8ml9ejEMqSJL7gFGskvAToHJwSxNq+wxSUTSXaBZcBbCY+zeh+nwQ3ZeRJaCeuDzz/4S43XseBbcue49CrJIC6yU68QiTVDh2dQ0MauD4DBkEjt4vKwzgEFDWfkBoWuJxrEi+KJoSwCpxpEgX+LOuH4Az1AxmzaUHax+VAPI3qUx3ofqtq/4z9n+wl8W9nTTVMaCMgArv5gxGJV9ncFESXVawlICY9z0AlrvWxKPHfg9kqIFZkihCwmm7bK4nAst+D3paejzgmgfyBYBl7qL4hGQcO30lE8wikVq37z8SI7Qu7lvrmkc9vR3ywMsIYJlXLSNf+o9H0UOdQxPMh41/TL2Okc8ot0pLVRTWFLbkVtmTcR994/4SPUSqy5Eqcy+ruAPAMif+DavPo0R7xwGspGsMLq2ihxTjizz76B68p79LD3pyJdRLKKCRnW8vfStD0nXrAFbJThwK1xHgPbEP2Gf0k3lepZYlcJrMaoRSOVmkG8Lklmmp1ua3Le0WhsRTUvJ2vsXxdUiTPN1mt/UpaCjheysi98XRIu65p0gBrLT1y6DcuUmcm6HDe9C9YT9nGPvgFrw/Gyj2J6mDZJ1zWxJ4Lb5KOod1qVehFqynBIXKVJnAVW//MlDCw2eZ3ZoodmyAYjt9j9G37g19274mzdmkZ/AeR7kJBd8CUM/bmmvL7CqAxT6NhffkfnRfBodDM2Nd5v+9ZrwH2cO74m9XQybgvpYWHSjWmkeEDW4qRyb+6BCL2/+jwIvCX0DNCRwY67dPq6pTeR1q3t+CNEEv/j60YCWMC6zhiCnZtp2cQ0o4wSinTHA97c5VQ7VJwMkvJKnrjIDakznkdFtPvMzi8lrq+8DyPMr3c/z5aW67hwPL1dXMn/3Nr7NvF3kArPy5EzyzfhEeyJcAFnH002dJ2H/kHI6fvYKjpy4hLj4p0/8eACtvt+HLCGCZVy0rKS+I/UU65q1j/sOjXdQloKWE2yq76oLmaVVtfKOxPMT95c7d5Up3AFhxJxnc2EwP34Uq8Sjb2/EX8Lj/s3fe4U2VXxz/ZjVJB22Bssree0+ZspQlypKh/FRQEWWoDEGGDBkyZSniQGRPUVERXOy9ZO9VNrSlpUmz7u95W3JvkqZtdm6S8z4Pf5C845zPub3J/eZ9zzkkwcV1wjxxdTiU65H5S7Tq4z6QWuQwSh88HcZKtXPEcGmDDHcP2H8CK9fTiLhaHMLfaWM1h2beL+AUvqm60+HWzzimE447fZqvIV6LquhQaFelnMewh3v4vi9HlsPs/I0dGuupTix/U8lrmQ/crMkhwbWS1qKCq2tZ7cDa8APkP37NT6V/rif0LwqCZm5ryA/8hbDvpvLdDJXrQTdoSm7DXH4/yaTDwuQTWPr4LNKyEa7ipCq8F1sdfaMqkHDlAGnFtnVQbPxKuAbadIe+y1tWI6XXzkM17V3+NVORUtCOFcY4sIxTXdwWsB4/gmqkIMSa8sRCO30tFH9ugGK9UHmVGXWu5VrcOBTH21estQnF2jh/j83OwWNzZEi7I9wr2dxsDWfbF49PYvKjQ/wwpUSG3fFdUFjuQCKtXBabNFUOvaCNWfVWq4FRw/0vYDGjjs+Tg+W1MjfzjyXZuffguATsGL655avBoUJv2oHl7LVH/T1DYOpncmi0wlwkYHmGK81CBBwhEFIC1vnLN/HXriP4a/cRnDp31YpPmZLxaNWkNob07+oIN+rjIQJiFLBO6R6i7S2hapmzR5Y8hCZgp2GJ3EtdW2aV4+NM8d7IY3M8Yn3qJQx5sJP3s1tkGXyev6lo/faEgGW7cyqqJIdq7zj/BfzGn1Lc+EP4JZrlqGK5qlgLWzHX6hiZoeVL0HUfmCPXm39Kcd1iPsvOFfuakC/+PljOHHPz9o4NW2PnJh3DjCQht1dzdRGsLNjWoWvFNoE6E76YAObrVv7acjyxEGlOFe+FGKn7AqDVDqwt6xG2ej7vmr5pR+h7D3HYVcWqz6HY8Ysw3s7uHYcny6HjY5MOXyT9h29TziA1G+Eqv1SFd2OqZQhXKkn2RQY8YU8wzSH/ZzNYHixzMzR/Abqeg6xclNlW9atSD+xIsLeauwKWRKuB+v0XhPuPUg3NhO/4xO28r0064ErRD3DtV+HeWKSpCSU7Oi8w2WORckOC/xZY7P6TcKg72oiwPM6TY6I2y4XFChWYm6fE9RmzZUhJtf+DBEvezpK4i6HZ7kjO7UjgvYMSXFwv8C9Ql0PZ7u77QjuwxHA1BJ4Nc+bLkJgo/J2RgBV4MSSLA5dAUAtYRqMJR09eyBCt/tx1BDdvC4mlJRIJalYpmyFatWpah6oS+ukaFqOAdSj9HjrfFqqW1VUWwObC7f1EKDCXbX/rZxy32DGzvGBrPKsuauUMy3PzkUVuo1cjy2NafqF6lNg894SAxZLWsuS15uZqGfDLP0pxZ6/wkMaOIbLjiKzJju+B8svx/BqmAkWhnfBdjjjvHZHg4hr7x7JYXpJ88lNQzhCEEFPxctCOWuSzENnu6lNACiaKsgILubWFyf9hSuJhvts7eapiTN66uQ3z+PtNEjbgij6Fn/ef+BdRThHj9jqWAlbK379B+e00fk5D3Weh6zfa4TVUnw6A9OYlvn/6e5/CWKW+w+Nz65hi0uOr5JNY8vgUUrIRrvJJlRgYUx2vkXCVG06778v3/I6wH2YJ10Cj56DrO8yqbxaRq3E7sGqF3mruCljMLtsdoIZ6z0J+8G/eZE4dAe3k5bh9PA/Y/dHcWP4rlgfLE812p2psRQ6VXnddQLH9EYc9Cu+IfwmlFdFumTt/kQz3H9gXsAoVBAa+LY4dWM4eI2SfeVaxbWRC6Rfdjy0JWG5dbiE7+MslMty6TQJWyF4A5LhfCQSlgGUWrP7ZewxJyak84LAwBRrWrpwhWj3buBbyxbrws5lfwxV8i4tRwNqpuYWefq5aFuiRHvlgD5annufdGBlbG4Ojq1u5teTxaXzy6AD/GqvCxKoxibV5QsBi+sXByYLowjalNZzk/MPE2e+leHRaeEhjFbBYJSzWWCl59VBhtwJ7TTP5B3D5CmWL1rYsvGXHqgOMyPvoH4R9LSSDN9RsAt3bgkjmi5jVvrEGd41C0YfFcS3QMaJkrkvPTDqGORa7tz6IqQlWWMDXrcud37Bfe5dfdm2h59BYVdhtM6x2YO3bhbCFH/NzOnMEUJKeBvVQ64qVmjk/gVOp3bbxCacH+3tfnHwSj032zzbllSrxTnQ1vJ6nItS048pl5vLD/1r/rdZpAV1/4ZpgE7Njppa50uzlyXLZADsDPSFgqQd3gESvy9Ys3asfwvDM87AV41kFQlaJ0N1m1AEHJ8pg0gsPrGx3at4q7gkoLRN+xDl9ZgoL1lqFF8WyAkIOL1fsXvKdDDduZFNVthiH/m6Ibq7Yk9OYEwtkSLWwlQlShRrZZ3prhxRXt1jsrmtmQskO7vFntpGA5emohsZ83y+X4dJlErBCI9rkpdgIBKWAVaWFkOyzTIkiaFinMhrWqZIhXoWr3T+yIbYgBrI9YhSwtmlu4LW7QnJxf1QtC+SYMtttd1d1CC+BrwpY57eal3wC0xOP8K4ygYsJXWJtnhCwOA7Y+xHb6SR86Wk4xQCpkzmpT8yXIfWmMEe194yIKiZUwVLOHQ7ZOeHIne7l92BoYS1OWHJOfyTB4en2jagxyICY02ug2CTkVjI8+yJ0PYQcOr6I2ZiH+/CdRXXLbhFl8Hlc7kdOJz06hC8fn+RN/Di2DgZGV/OFyVZrvH3/H7C8b+a2IK4ZXooo7bYdlgLW42NHoJolVGQzlq6M9OGfO7SG7OwRKD8fyfc1FS4J7bglDo3NrhNLyP7N4zP4Ivk/sHxX9hqrwGYWriIklATXLeBsB+aJvVB+MY6fxli1AdLfta5EqvxuGmQHhM84Xe+hMDQVKve5a4PteI8IWMO6QvLksV3TjCXKI/2jhRnvPTolxdllnk/0zXIEsh1Y5iYP51BvrBESYSmXsO3W3EaPu0I1XjbJ5kLtUVdVwKX52KDlq2Q4n01RjnJlObzqgbxRLhtnM9BWlMpTmkPVt+0Ljje3S3F9m8XR+VYmFG9LApanYkHzOEdg7QYZTp4iAcs5atSbCHiGQFALWHH5YjJ2W9WvVRENalVGTHSkZ6jRLB4jIEYB66cnV/DO/X95H/1RtcxjgP00ETs+yI4RmltxeST2Fu1mZc1nSUfxedJx/rURMbUwJKaGnyzOfVlPCFhslUOTZdClCF96ag83gh0ldKbZzlFntBHKaGEOxba1UGwUxAdDtQbQDbR+iLVcjzMCe0dbC2vm92t9aET0X/Mg//cnfoi+69vQt7aOpzP2u9J3h+YWelnsjIyUKHC2eG+w4+A5tdEP9+L7lHN8l8l5G+D1PJVcMcGtMeMe7c8Qc8xtfGw9vBVdxa052WArAevcOagmCwm7TYVLQDtOEB5zWkyxZTkUv3zPdzE0aQ9dH0EMc8ZQLWfAdynnsCjpBFiFQXstWhqGt6Oron+eSiDhyhm6OfeVnjsK1dwRfCdjhZpIHzrDapBqznBIzwsCd/rAyTBWa+A5I2xm8oiA9XEfSCyKU5iXYHc97ceLwRXNFIOTL0hw6mtBaMpThkPVt9zfgcVyX7EcWOYW38KEEu3cF0/YfL3v/oF/Nbf4uauG5cXWIta7aJ0JzvqNMpw4af++WKUKh5e7us/DGXty6qtLYZ+JlkfBOdQdY0RYVNZR136TIuEfQcBieR9Z/kd3G+3AcpdgaI7/aYsUhw4L1yPlwArN64C89g+BoBSwlqz4Bdt3HMbJc1d4quacV62b1UGbZnURXyi/f4jTqlYExChgrUm9gA8e7Obt7BFZFnPyN6HIOUGAJahlidwtZRnbRO4TEg/iq+RT/KyeeqB3wkynunpKwLKtvMSSuLNk7o62rLu4ODSaZl3GXXrrKlST3uSn5OQKaGb/CCjCsl3m0BQZdMlZH3rqfGREnlVjIPtvHz82/c2xMNZu5qjJHuln5Ewof30FtExte9o2FmqHBqqCOc7//oNdWJt6ke8zK19j9Iwq5xGbnJlkfvIJTLPYceipXFxWAtb1mxlVKM2Ni8kHzdTVDpmpXDAaslMH+b4sb5Kh0XMOjTV3YsIV2325IOk/PDBZlGeymCWPVIG3mHAVVRlRUtpx5RRgBzpLL5+BasZgvqexVCWkj5hnNVI1/nVI793kX9OM/hJcsTIOzO5aF08IWKqJ/SG9fS2LAfpmHaHvJeTnS7kuwX8LBQErsiiH6oPcE2w094GjM63z7dX+yABVrGs8bEed1SWi9a3NVp+Xi/I3R+fIUi4t8MuvUhw4ZH9rWO1aHF7s5B4Pl4zKYdB/i2RIuSZ89pTqZELhJlmFqSvPeU8hAAAgAElEQVQ/SXF7t+BXdv2ctY8ELGeJUX9GYPtfUuzYRQIWXQ1EwB8EglLAMoO8c/8R/tx5GNt2HMbhE+dgMgkPiZXKlUDb5nXRulldlC7ufh4SfwQvGNYUo4D1fcpZjH4oPKz/L6oCpuRrFAy4fepDm1s/4bTuEb/mmkJt0URVhP//qId7scxiZ8zUfI0yKo6JtXlKwDrzrQyJ54Qv65b5qxzxXfdYgkOfCg9oiiig3pisebRUo3pBmvSAnzJ90FQYK2efvNz2IcI8sP44A6LmvA1JwmV+Lu3IBTCV9H2sbI/hDchTFWNzScg+4P4/+Nni6J47D4aOxCe7PrbCeNeIMpjnwBHI3Na0FLCSHyRB/b5wVJRj1drmCjvncpqL5U1j+dPMTTv+W5gKFctt+Yz3dTBiecp5zE86gXsWecosBzOxiolWbNcVCVcOYXWpk+TmJag/HcCP5eJLQzNmsdVc6sEdIdELO+M0M9aDi3QvcXhOxnpEwJr2LqTXhLyKbL2MaqgTvwfChd31aXeBY7MFsUldgAPbRepOsxVOoktzqJLNMTdX12EVeVlSd3MrKo/ErvguULhwRtH2wdrSpkYNTGj3nPu7llz1096427ukuPKzIAREleBQbWDWmNkm0S/TxYiCDRz/8Sc7m0nA8mQ0Q2eu3Xul2GpxpJV2YIVO7MlT/xMIagHLEi9L5v7X7iPYvvMw9h4+DZ1OSCTL8mSxnVltm9dDxbLF/R+VELJAjAIWy5fD8uaYmyMPySEUModdZbvY2EO7ubHKb2zXibkNfbAL6yx2xszN3wTdI8s6PL+vO3pKwLq4ToZ7hwQBK6ektfZ8ZLmvWA4sc4uI51DDTll0xYq5UOzawvfTt+oKfTfhwdZ27vMrZXhwPOsOrAaTDIgc9RIkaUJBDM1n68BFuV9Bz9kYbnhyCYPv7+SHFZNHYp/N0VTbOf93dzu2a4TdJt8VaIW24Y4JM87al1P/vzU38crd7XyXpqoiWF2ordtLWApYSam6LNXa0r7YlusabGcL2+FibhnCwMwNuY5jOy1Xpp7HvKQTuGNMs9s/UiJHvzyVMSC6KvKwqgXUvEpAej8BqnFCHlDbKqQSTRrUH1iInPIwaOYL9wlvGOcJAUs5dxhk54Qj58xO3f+Gw9DQ+m8oPVGCw9OE+2NYNIe6o10XsEwG4OAkGYxa4d5YvqcR+Wu5L5xYsr5teILGCRuRbrHDdELe+uifp7LTIdm1R4o/ttvfgdW8mQmtWohLwMo8Rmh9hL3uGEOWY4QXVslw/5gQh3I9jYjzQBxIwHL6EqMBAI4cleDHn4V7DQlYdFkQAd8RCBkByxJpmkaLnftPYOf+/7DvyGncvvuQf/vUP0t9R59WghgFLFaxjFUuM7ehMTUwPKYWRctJAktTzuJji51snSNKYVFcc34W250xX8Y1R6cI145MOGmaS909JWBd/12Km3+7nojW0STFsuN7oPxSqBTIdtOwXTXZtWu/SpHwb9aHnsYTU7JUNXREFHEJci6DUkw6VLy+0qoXKztfJoey8z3ubMVu7W1+jO1OQG/YaW/OU7qHaGuRF66iIhZ/xmefWN9Ru2wFLPWHNmLjzI3gIuwklLFYQLH7NyiWz+ZfMVZvhPR3JmZrgoEzYc2Tixk57BIMT+z2i5DI8UZUJQyIqQaWqJ2abwhIkx9C9VFPfjFTTD5oLY6R2oqVpvyFoZ20zKvGeULACls93yoPn7F0JaQPtz4ayZzQpwEHJwg7sOQqoP4E5yu9moHcPyrBhdXCQ6pMxaHeOKPThTccAfzpo0NYZFFwgv3dMIE+ysm/n8NHJNj8i/2iHG1bm9DkGXEJWIzNycUyPLao6MaqCxZpZm3nuR+keHjSfvVdR/hm14cELHfohe7Y02elWL2WjhCG7hVAnvuTQEgKWAz47XuPcPj4ORw/fRH/7j2OhDuZR21IwPLt5ShGAWtq4mEsSP6PBzEqtjbei67uWzBBsNrh9Ht44favvCel5Xmws2gX/v+2O2O+L9AKrf2wM8ZR1J4SsG7tkuKqxXGJgvU5lHEiqe6dvVJc/lH40lSwgQllumR9IJGkp0E91Fog0UxeDi6f/ZxRtvMyLuy5qfGAi1BOFvJpmQoWhfaT7xzF5vF+Xe/8hn3au/y8tjv7bBfsdHsLjqTf51/+qXB71FG6XuHLVYfuGdJQ6+ZafnisVImTxXu5Oh0/LouANeZVSB7e4d/XTF4GLl/Ox+TDls2EfK9QCU3/0pvQt+2RxTYmXK1/chlzk47hhkHYkWfZMVwix2t5KuLd6OokXLkdXecnkGieQP3Bi/xALiISmpmb+P/LzhyBcp5QbdJYthrSPxTES+dXzH2EJwQstorkSQpk545AcuYojM07wVQ0a94utmNq38cW+aokHJ6Z5voOrFOLZUi2EFZYbiaWe8kbjQn0dW+sQyonnBAYFF0dHzlZnffkaSnWrre/A6tTBxPq1fGO/e4wsf38iSzGofp71nE7/a0MSRbH7yu9YURsBfd3wpGA5U7kQnfslasSfLeMdmCF7hVAnvuTQMgIWPcfJuHAsbPYf+Q0Dhw9ixu37llxDwtToHa1cvhmllC9x5+BCZW1xShg2VYLm5i3Afr5oWpZoF8DGpMB5a4vt0pMe7H4K1BLMx8uXr6zFbtEsDPGUc6eErDYMT12XM/cYiuZUOk1xx8orm2VIuEvi0pMbUwo2tr+eOXc4ZCdE3YT6noOgqG5/epWj85IcHap9a/28gig4Uu7oFo0lrfXWKEW0od+5ig2j/dbnHwSExOFI74siTtL5p5ds83F9keRF1AlLK/H7cptQo7jUPSaUOWP9b9aoq9LOW4s17IVsFSfDoD0ppBLRztqEUzFc05ar/rkDUjv3uCn1b4/C6bygmhvBIeNqZfBdqdeM6TYdVXNhKuoChgYUx15pcrccND73iJg0CN8UHthdrkcafN/4/8v3/M7wn6Yxf/fULcFdP0+9pY1GfN6SsBy1Mg9H8kATjhq1vBTA55+7Dg6RUY/bSJwZJp18vZawwxQxzk1jVOdWWETVuDE3JQSGQ4U7Yb8MrXD81y6LMH3y+3vwOrWxYjqVd0XfRw2xsGOhjTgwATrY4R1RhmgtDipbrtLq8pbRkSXcd8XErAcDBJ1syJw5y6waLFwf6AjhHSBEAHfEQhaAYvlvDILVvuPnsGV68IREjPesqXi0bhuVTxTryrq1qgAlZKOOfju0stcSYwC1vCHe7AyRUgW+1m+Rugj4uTivo6ZM+s9m/AjzuuT+CEbCj2PhqpCGf/vfPtXHEoXhGR/7Yxx1B9PCVjJlyQ49ZXrVbJsc2iV7WZEgXr2v8Qrtq2FYuMS3kVj1QZIf3eyXZfT7gDH5lg/rIXFcGjY+EeErRKO6hieeR66Vz90FJvH+13Xp6BRgnV+prPFe2d7zKZJwgZc0Quiy874LiityONxuxyZsNaNNVZJzg8W644isghHhmbbJ4uANedDSM+f4Ptrh86AqULN7NfQpiHcMvG7VArN3J8zKlaawGHzkyuYnXgMlw2P7c6hggx981TEIBKu3IqjJwerBz4HCSeI2mkLf4f5zJvi1+VQ/CwIqfrW3aHv+pYnl88yl68FrP0T5LBMycYKUTAx3tlme6w6sjiH6u+6vpvLkfVZXrmGN9db5ZTrGVkOs/I3dmR4Rp+EWxIs/tq+gNWnpwkVyjv+g4nDi3qg48mvZHh8SRAeS7Q3Ib65YCvL/chyQJob26HFdmq520jAcpdgaI5PTpZg1ue0Ays0o09e+5tAUApYXfqNxblLwq/JZsj5YvOgUZ0qaFS3ChrXq4q4fL5PQuzvgIttfTEKWIPu78DGJ0LFtflxTdElwnslxsUWE0/awxJus8Tb5vZJ3vp482lS2ra3fsIpiyqFfxTphCph+Ty5vEfn8pSApbkvwdGZricZPv21DEkXhC/xOR2jkN66CtUk4fgfp1BCM2tjhjhh24x6YP8YawFLHcehftmvoNi6mu+u7/Aq9B37epSts5M1T9iEi/pkflhOBQDq3FiDOxaV8Q4V64HCsnBnl/RI/+du/YyTOiHn4pYiHVEzLL9bc9sKWMovxkF2Yi8/Z/rbn8BYM/uHX9aXjTE3U4ny0Hy0ED+nMeHqKC7o7QtXSsjwalQFDIqtjvxSlVs+0GDPEmCVKCVaIam+ZvaP4NSZCo5i5edQ7PyFX1DX7R0YWglHuz1rSeZsvhawDk2VQZck3CPrjDRCmdc5oYPpfyx5uyFNmCenHws8yW3Tk8t47/4OfkpmAcv1VzqHXH+W6z98KMHnC+0LWK/3NaJUSedYeNK3nOa6s0+Cy5ssC5QANQYL+ctYdUlWZdLcan5gQLj9E/FOmUwCllO4qPNTAjodMNlihybtwKJLgwj4jkBQClhVWmRW4FEo5KhTrXzGDismWFUoUwwSSdYqW77DTSvZEhCjgNX/3l/4Le06b+rXBVqiXThVp3Tl6l3y+DQ+eXSAH9otogw+j2ua8f9mNzfhkkEQIXY68QXdFVvcHeMpAcugBQ6MF4QiiZRDo6mO/6pv+yW+xlADInJIcaQa1QvSpMwcf6ylD54GY6U6dnHsHy+HUSu8FREP1IuYCPmhv/kXdX2HwdDoOXdxujV+8qND+MIi2XGH8BL4qsCzduesfH0lkk06/r1TxXshxk9H3F69ux1/WVREXFqwFdqo3auIaCtghS39DPL9QuVBXd/hMDTKvtph2I/fQr51VQYfTiLB5i7dMK1SAZyz2DlpCTYMUrzChKuY6ijgxLEmtwJOg50ioP7oZUiSH/FjNNNWg4vO/HFAuXAMZCf3C/eD/mNgrCMU13BqIQc7+1rAOjpLBs094btezfcNCM/c+OtwY8nCWdJwc5MqMpO3y3y0Ub9lwo9Wf4OtwothWYFWDtmflgZMm2n9Y4R54ID+BhQp4tA0Pu+UcYxwovXxT8tjhEemy6B9JMS19ggjVPncF+NIwPJ5qINmwXET6Qhh0ASTHAkoAkEpYH22cBUa1a2KejXpWKDYr0YxCliv3N2GvzUJPLrlBVvjWXVRsaMUpX37tHfQ9c7vvG0VFDH4Kz4zwXC9G+twyyhUMDtYtDuKuHLOw0eee0rAYubu/VgOzqIwVoPxRsjCHfsivv8TGYwa4Ut8/fFGyHMYG7ZiDuS7hGT6+lZdoO/2jl1qx+bIkHZHmDuqFIe6qYMgu3SK768d+hlMFfxblfOA9i5euiPk9VFJZDhTvDfCJFl3HZS6tgw6i+NUl0u8CpZXxh/tgwe7sSb1Ar+0J44nZxGw1iyA/J/N/Bq67u/A0DL7HTaqp0cOt5QrhmlNquFkgVi7aJhw1TuqPIbE1CDhyh8XjxNrqsf2heSBkDZBM3EZuLhMlVs15R1Ib1zkZ0sfNhfGMlWcmN35rr4WsE4skCH1hsVRs3eNYMf/nGmnv5Ei6XzuxTKcmdOZvrs1t9HjrlBYgY3dXKg96qpyL0DBccD4SfYFrMHvGpHfA6KPM7440/f011IkXRC4l3ieQ/yzmT/wHJwsgz5FiGu9MUYoopyLqz1bSMByJkLU15LAZ7PlSH1az4R2YNG1QQR8RyAoBSzf4aOV3CUgRgHLtsqZZd4md/0NtfEskXvZ68t5t9lXzwtPE7lXu7Eajyy2+5ws1hOxMvEeRfKkgHV4mgzpicIX8fK9jMhf07Ev4ntGWuzekgGNpuRcIl52bDeUiz/hY2AqWAzaT761eyme/V6KR6eFh4fo8ibUufiy1Q4uzYSl4ArE+/VSZgnR2fWTaErn7VhRsA1aqK3tMnImFL+2zMrWhJKZO3T90aYnHsG8ZCE/1bCYmng/Jof8VA4YaStgsfxGLM+RubHjnuzYp91mMmHHvLcwrVFlHC9oP7G9QiJFr8hyGcJVIT8dvXQAA3WxIMCODbPjw+amHfMVTPGlMv6rHtEdkhQhL6Hm0xXg8uYuirgD2NcC1qmvpUi2EEGq9DchupzjeZ90yRIcmmItctcYbEREvGP3aHdYWY613bFZNSwvthaxX4TDds1J0+TQCxtP+beHv29AVJSnLPT8PPcOS3FxrfAZFF6IQ833MwWs/eNlMGqFz80GE42QKd2PCQlYno9jqMw4b6EMDx5mXpMkYIVK1MlPMRAIegFLp9Pj6KmLuHjlJpJT0pAvJgovd24pBvZkg0iTuLe/9TOOW+Sp+bVIJ9QQcW4msV9ITRI24opFHh1zsnYmbDGBy9wsKxSK0SdPClhnlkqReEb4ki5Tcag9zJTrr8npjyQ4PF14sFLGcqjzUS7HD3VaqId2tkrqrJmyElxs1lJal3+UgpUzN7fYykbU3tca5kcG9qigWfA7IPPPDibL62Log11YlyrsJPlfVAVMydfI6tJh5egrXFvBvxYhkeN8iVf8dnl9+/gMxj4Sjm/1jaqAqTY2O2tcFgFr2zooNn7FT5Pdjrt/tAmYeXsvjkqe/nxss7BcIsXLEWXxQWxNEq6cDYqf+6umvwfp1XO8FdqR82EqWREwGqF+73mf/z37WsA6u0yKR6eE+1jFV03IW9VxAevGdhlubBOEEksRxZehPatLROtbm60q+X4R1xwvRGSKkTm1mXNkeGyxW8ncd8xHBoT56Bhkbjbae5/tLma7jC1brQ9NUBcwwfLHG/b+M9Nz/vHG0fVJwHKUFPWzJbDkOxluPN3tSQIWXR9EwHcEglrAWvfLP5j/zUY8TBSS0LI8WBu/mWRFeMjY+RlJ3+dNHozypemomO8uP3FWIbTNPfFXfGdUUNg/VuNLVoG61sD7/2ZUMjO3T/M1xGtRFRF/damVS/7cGeMIW08KWOmJAMvTYtILD0kx5Uyo3D/nh6zHlyVgpcTNLaokh2rv5J4/SzVnOKTnj/HjdL0Gw9CsUxa3E/6VglXeMre4ShrU2N+e/z8XnReaaWscweX1PlueXMNb94XcXAVlahwp9rLVuveNGtS8IdjLStEft+njdUMtFvj5yVUMuP8P/wrLrcdy7LnTbAUsdlyUHRs1N9uqkTs1tzEj6QgOp9+3u6wcEnSPLJuxMyxexEd63WEW7GNVs4dBeuE476b2/Rkwla8JyYM7UI8VduNxeWKhmb7W6zh8LWBdWC3D/aMWydd7GFGgjmM7ddjxu0OfWh9VK93ZhELPOC6AeRKo7bHjovJI7IrvArYzMqe24As57tn8ibMUsBPGekb08aSPtnOd/k6GpLNC/Iq1NqFoKxP2jrI4Finh8My03D/7HLGTBCxHKFEfewR+WCXDhadFdUjAomuECPiOQNAKWDO/XIPvVgs5UqRSCUwmLiORu62AtfC7TVj0/Wb0790B77/V3Xf0aSWI8Qhho5vrcd0g7ErYW7QristFvOde5NcRS7bNkm6bGysJzkSsMtd+4F9jOYwulcjmmJNI/POkgMVcurtfiksbrR9CynQzoWC97B+UHpyQ4PwKQcDKV51DhT65f4lXbFsLxcYlPEljtYZIH2gt5LM3WX4RViXR3JQPzyH224H8/9kuDrabQwyN7d6rdH0l9BB4bS3cCVWVQiXL64YUNLq5gTe3mDwS+4p285v5trm7aivj8HPhDm7ZYytgyY7sgHKJEFtjrSZIf2s89mjvYGbiUexPtyjjZbGy3GhCtydKDKnyAorL6H7nVlD8PFi58GPITgrFM9IHToaxWgPILp6Ectb7wt9z8XLQjlrkdWt9LWBd2iTF3X3CvbX0iyYUauSYAMXyXrH8V5atwQQj2C5Zf7TbhidonLAR6Zxwn5+YtwH65amUozlfL5Xh+nXrokUqJTB6pPgFrPtHpLiwRogB231V/T0O+8cJn31SFYeGE3L/7HMkZiRgOUKJ+tgjsPFHGY6doCOEdHUQAV8TCEoBa//RM3jj/elgolWPTs/ila5tULRIAdRs3c+ugHXi9CX0GjgJ1SuXwapFY30dg5BeT4wCFtuxwXZumNuxYi8jjqptuXyd7tLewst3/uDHVwnLi7WFnkOV65mVz1hjVeFYdTgxN08LWMxXtpuK7aoyN1bpqtaHRiiz2fB3a4cUV7cIX+yLNDGhZKfcH8xYPhyWF8fcOIUSmrmbAWnORwFl+7dDuXQ6P85Quxl0b4rnHmlbcME2p9Q5fSJaJggJzcsrYvD30yIC/rjW2FFadqTW3DwhqGURsM4chnLeR/wauxs9gwltGuBg+j27LstMHHqcvoKRu0+g4NvTYSpZwR9oaE0PElAumQjZkZ38jOlvjoWxdjPID/2LsG8m869nJ2R70JSMqXwtYLF7JLtXmluJdibEt8j9Psn6s8qDrAKhucXV5lDuZc8IJa5ynZZ4BPMtcufFSMPAip6ESxXZTrl8lRTnLfKAsY55ojgMe5pPylVbfDHOmC6xEqvYmlXeNOHUEiEu8kgO9cd6Ji4kYPkiqsG5xq+/S7HvQOZ1STuwgjPG5JU4CQSlgMWOBG7feRgfDuiBN3oKx1+qtHjNroDFjhg2e2kwYqIjsXvzAnFGKkitEqOAVfHaCqRwep742eK9ESUVcdIIkV8bKSY9Kl4X8hAxcw8U7Y76N9fxlheWheNQsR6i9sQbApbuMXB0pgzsC7u5RZXgUPUdI9hxD9t29Rcpbu0UvsSX7GBCkWaOPZipRvWySsaePngajJXq5Mhc/tsKhP0kHPXUt+oGfbe3RROnZSnnMOrhXt6e6mH58FsR4WjkMd0DdLj1C/8+y2XHctr5q6WZ9Chn8bfAjutdK/k/t8yxFbBY7iOWA+lQkfyY3LQG/i1ZyO78MkjQ7eQljNhzEqUTU8DJFdDM/VkU+c3cAkKDEfb9DMj3CT8a6PoOh6FRW8i3b0DYhi95QvpmHaHvNcTrxHwtYN3YLsWNbcJ9kh0/K9429/uk/glwcJIM4ISbb9W3jchT2j+7r8yBSTHp0PDmeiSZhKzsg6OrY2Rs7Wxjt2GTDMf/s/4QicvPYdBAz4g+3r5obPOYxdU2ge3MMjeH8j86aCQJWA6Com5ZCPz9rxTsH2skYNEFQgR8RyAoBazmXYYgKTkVe39ZhHC1kqeZnYDFKlrVbN0/o9/xP7/xHX1aSZRHCItd/R4mi7Sp10v0hSyXfBMUypwJNLqxHteNwrHMLws0x4B7//KDSsnzYFfRLqLG6A0Bizn84KgU51dbH1kp1cmEwk2yPnCx44PsGKG5OVO9kOVFYvmRzE3fuiv0XQfkyNx2jK7HuzA8+6Jo4nTHkIY6N61z+Bwu2gOF5OEZNu7V3kG3O7/z9jZUFcSGQu38an/5a8vxhBOO8Zwu3gvRUuFzylnjbAWs/26fxowzP+LP0kXsTsWutM4RpTAiQY+Ki4XddaZy1aD9YLazy1N/ERJQrPocih2CcGvOeadYvxiKP9fzFuteeA2Gdn287oGvBazbu6S48rNwT2X3UnZPza0l/CvDtV+F+6sqvwm1h+c+Lrd5PfH+149PY/wj4VioUiLDgaLdwPL62WtbfpNi/0Hrz5WiRTi81T8wBKwHxyQ4v8riyKACMAm/K0JdkEOtDzzjCwlYnrhCQ3OOvful+G0rCVihGX3y2p8EglLAqtGqH2JjovDPhrlWbLMTsFgnNkYul+HwVqF6kz8DEypri20Hlp4zoeS1ZTx+lij1aom+oRIOr/n51r2/sSXtGj//G1GV8G3KGf7/lRWx2Bbf2Wvre2JibwlYzLYz30uReFp42JDIONQYakS4TXV72yOHVd4yIrqMY7sDZMd2Q7n4Ex6FqVBxaMfnLNgrF4yG7NRBfkz6gAkw1njGEzg9Nsdzt37GSYuqoayqH6vux9pfaTfx6r3t/FrPquOxvGAbj63tykRNEjbgij6FH/pv/Esoq4h2ZaqMMWYBa2/yPYxL2I/tmpt252JXV6fwUvgwthbKKPIgbN0XkP8lHGfUP9cT+hf7uWwHDRQPAVuhSt/lLejbdM84PsiOEZqbru8wGBo953XDfS1g3d0vwaWNgvhRoB6Hst1yFzsOT5UhPUkQsJzZ4eptiOy7CTt+fNMiP2evqHKYma+x3aX//FuKfy1267JOpUtxeO3V3Dl42xdH5jfqgQPjZOBMdrYiA4iM51B9sGd8IQHLkYhQH3sEWP4rlgeLNdqBRdcIEfAdgaAUsBp3fg/p6Toc+HVxRh4sc8tOwLp64w46vPoRihaOw9ZVM3xHn1YS3Q4stlW/4vWVfGSiJAqcLeH9X6iD/VJYkPwfpiYe5t2sFpYX/+ke8f/3RDJrbzP0poBlSAMOfyYDKyFubqx0e40hRlhu/jvymQzah0KfWsOMUMc5JmBBp4V6aGdIOGFHgWbKSnCxcdmiU03oB+md6/z72tFfwFSsrLdROzX/rKRjmJ0kVFhsqS6KHwq2zpjDtlJh+/DiWOJm1T+njLPTucud37BfKyRSX1foeTyjsn/Mz5G1riIZnyUdxeakq3a7SzgOHSIyhavyFkIZO2bIjhuaW/o7E2Gs3siRJamPyAkofv4eil+X81bqO/4P+g6vZCRwZ4nc+Zg7cIzYE676WsB6cFSC86stil3U4FChd85iR/JlCU5ZVHiVSDnUHWOEIsITBDwzx09PruCd+4IAyT4JdsS/hNJ2BPDde6TYut16B1aliib06iGOHWWOELHNR2Y5Jk8pDlUHkIDlCEfq4z0C585LsOLpvYYELO9xppmJgC2BoBSw+g+bgb2HTmHxZx+iSf1qvM/ZCVgzFq3G0rW/o1PbZzBt9Ft0lfiQgNh2YN03aVHz+mqeQAGZGkeLvexDIsG51L+aW+h9V8jJYuvlM6qCWOfno125kfemgMXWfnRKgrPLrJOqF2tjAishbm57RskAi1+kG00xQJJzHnYrt1RzhkN6XhB7dL2GwNCsY7auqwd3gEQv5F1Jm7kBiMiTGyqfvn9S9wjP3frJas0LJV5BuESODamXMfjBDv69rhGlMS+umU/ts11swL1/8HOaIDYtimuecaTP2XZen5Q0HEsAACAASURBVIwZiUfwq8XORts5Op27jtG7T6D4mBVAmMUxRb0O6qGdIDEJ11bajA1ApLhi6ywT6p9JQL51FcJ+/JbHYd5dpx77KiQP7vCva8ctgalwSa9j87WAlXhGijNLBfEmtiKHSq/nLHZcWCXD/WPCjwP5qptQoY/4xJ72t37GcYsdp23URbH0qWBvGcjDRyTY/Iv1h0ON6hy6vugZ0cfrFw2Ah8clOLfS/gdcTHkOlft5xhfageWLaAbnGtdvSPD1d7QDKzijS16JmUBQCli/bNuLkZ8uRpFC+fHltPdRpmR8RgzsCVi/bN+Ljz79CiwP1ndzPkL9WhXFHK+gs01sAtY1fQqeSdjAcy4hj8Keol2DjruvHXps0qGSxc422/VbhRfFsgKZu2bE2rwtYDG/L6yR4f4RiyMTUg41BhsRURhgu7QOTJDzeGQqoMEE50qiK7athWLjEn4OtuOG7byx1ySpyVAP78a/xSnCoJm3RZThqX1jDe5aVA79ukBLtAsvjh9SzuEjiyTvr0SWx/T8/j0COfbRfnz7WDg+Oz62Ht6KruIw10v6x5iZeBQ/p12xyNQnDGdXT7srd/Hx34dQ+X5SxhuaaavBRefjO0kvnoRq1vv8/00FikI74TuHbaCO4iYg/2sTwtYt4o1keetY/jr1u89ZiZaa2T+CU3t/i5GvBSzb3VQsCTtLxp5dM2gyk7dzRuHey8QRJpKIrR3S3kPnO0IuQ2bf5kLtUVdlfd781Bkp1qyz3oFVv54JHduJT5TLjjE7RnjwExlMhqzHCPNWMaFiX8/4QgKW2K7ywLHn/gMJ5i8iAStwIkaWBguBoBSwmBjFdmHtO3waCrkMnZ9vgvq1KmHEpC9RslghTBrRDxevJmDrPwcy+rDWvlUDzBj7TrDENWD8EJuAdU6fiJYJm3l+FRQx+CtePEmrAyawdgyte2MtbhvT7LrQMaIEFsc9K2r3fCFgGbSZVQn1KcIXdnZEkOXD0j4Ejs0WBCx1AQ61PnTuF2hpwhWoJgu7TDmFEpq5mwFp1l+5pdcvQDV1oCByFC4B7bivRRkjJlIxscrcekSWxZz8TfBV8ilMSBRyeL2ZpzI+yVvfrz7MTz6BaYlHeBsG5qmKj/PWzdWmq4ZM4WrzkyvI7rGtrboYRuatjZqTP4D0npALi+U6YznPzE3xxxooNgmxZBXqWKU6asFBgBVrYAUYzM3QuB30nd+AekR3/rWMv/15QqJ3b3ruawEr9aYEJ+YL97SIeKDG4OzFftuk78oYDrU/sl8J1pucHJ37f3e3W+W6qxqWF1uLvGA1/PIVCZb+YH1fb9rYhDatPCP6OGqru/3YDiy2E8u25a/JgRUx8UQjAcsTFENzjtRU4LOn38voCGFoXgPktX8IBKWAxVCmabQYMWkx/t5zNFeyrZvWwfQxb0OlDMu1L3XwLAGxCVjHdA/Q4Zbwpb5mWD5sKdLJs06H6Gyv3/0Tf2hu2PW+W0QZfB7XVNRkfCFgMQCPL0txcrH1L+dFmhkRUw44/Y3wQBJdlkOVN53/Aq8a1QvSpAc86/Qh02GsmLUcu23Sd2OVekh/b4ooY2SbrD1WqsR/xXpiXvKJjPxQ5pZb6XlfOLcm9QI+eLCbXyq3a/+6MQWzEo9iU+oVGO3uuQI6RpfA6Li6KGGIypjXNr+VdsQ8mEpV4tdUfjEOshN7+f/reg+FoWkHX7hPa/iAgOzgn1B+O41fyVCvJQxtukM1RfiRzlSwGLSfCMcMvWmWrwUszX1Jxg8B5qbKz6H28OzvlUdmyKB9IIgkxduYUNTi6LY32bgy92V9MpolbLK6G3wZ1xydLI4i37otwZdLrAWsNi05NG3i/GeGKzZ6aszDk1KwXFi2zdHE/I7YQQKWI5SoT3YEVq6RIiYa6N/H9WrCRJcIEAHnCAStgGXGwASsNZv/xuET5zNELXMLC1OgdtVy6PVSKzABi5p/CIhNwNqrvYNud37nYTRSFcL6Qs/7B06QrcoSbbOE2/aaGI525YbbVwIWs+PSJinu7rP+0l6gvgn3DgivxdUxoZwLCXnZzgy2Q8Pc9K26Qd/t7SzuZzmG1KQDdH2G5obJL+/rOGPGEVUtJzyc/VioPf7S3MwQscxtREwtDImp4Rcb+c8kzU28cleojNhMXQSrCrbNYlOC4QlmJx7F+ieXYMhGuHpWFY+xheri2XxFkJZuRFJqZr4y5byPIDsjFE1gwiMTIM1NPawLJE+ESojasUtgKuL9XEh+BR9CizNxkomU5mao2RiGZ56HatFY/jVjhZpIH+qbojW+FrDSkyU4PEUQb8KiMhOy22sp1yX4b6GF0CPhUHe0EWEiTwc3/OEerEw5z7tUVB6JPfFdIHta9eNRogRzLXahsY4dnjehQf3A2oFlMgIH2DFCnfUurMLPmFCqs2d8IQErhG6OXnTVfJ/z4hI0NREgAk8JBL2AZY60ycThYWIyUp9ooFYrkS82OuN4ITX/EhCbgPW3zcPls+p4LC/Yxr+QgmT1bZobeO3un3a9EcPRrtww+1LAMumBo7NkSE+0X0Kc2RrfwogS7ZzP0WK7s8qUzdFAxfrFUPy5nseie+F1GNr1zg2T397vf+8v/JYmVEx8N7oqdJwJSx5nHhNnzdl8U95w5pTuIdre+pmfuqIiFn/Gd+b/f8eYhtmJx7DmyUUYLCpGWtrSQlUEI/LWQY2wfAhXyhATGWYlYIUtmQT5ESF5va7fGBjqNs+YQnIvAerxr/HTcUo1NHOtk+B7w2+a03cEZGeOQDlvJL+gsVJtGGs1RdjKz/nXDA3aQPfaCJ8Y5WsBy6iVYP944fudTMmhwUT7AtbF9VLcO2iZ8N2ESq97RhjxJtwHRg3q31yPdAvRflLeBngjT+ZOyzQNMG2GcOScvdalsxE1azj/meFNPxyZ+/xqKR4ctdmV3NyIku094wsJWI5EgfrkRoAErNwI0ftEwHMEQkbA8hwymsmTBMQmYLGKXm/e+5t3sX14cSwp0NKTLofsXCz/FcuDZa8Niq6Oj2KzHmMTEyxfCljM78dXgZNfsIcw+yJW6c4mFHrGhQctnRbqoZ0hsRBHNFNWgouNs8KtXDIRsiM7+dfSXxsJYwPxJtpfl3oJQx8I9pZXRKO+siCWpwq7FKbla4RXoyr49bK6Z0hDrZvC30FemSrjuOM9owZzko5hVeoF6LMRrpqqCmNEbG3UVgqxsitgLZ8N+e7feD8tjwjK9v0B5ffCzhsxHw31a6ACeHHZ5VNQzhB2SxrLVIWpYk0otiwXBKznekH34hs+8dLXAhb789k7ylq8eWZ61hxYRh1wcKIMJr1wj2WJwVmC8EBo7Hj050nHeVNjpGE4WLQ7wqUKcBwwfpI1g57dTahcKTB8s+RvW1WSvceq87IqvZ5oJGB5giLNQQIWXQNEwHcESMDyHWtayQ4BsQlYm55cwXv3/+Ut7RpRGvPimlHsPESg5vXVuG8SjvKapx0ZWxssP5GYm68FLMbi6hYJbu2wv1PUnQct1ZzhkJ4XjnPqeg+BoWlHK/xZ8ih9MBumctVEG6JEYzqq3lhlZV+9sAI4qLvHvzY/rhm6RJT2uw/xV5da2fBaVEUsTTmbrV1NVIXwYWytDEHOttkTsBQbvoJi+zq+q77Lm9C36ZHx/7AVcyHfJVST1HfsC32HV/3OhAzwHAHpzUtQfTqAn9BUrCzYP/ke4Xi87uX3YGgh7Pzz3OpZZ/K1gMUs2DdGDraT1dwaTjZAqrC27e5BKS6tF3b2yCM51B8bODmiUjkDGt9YjwcWn6lDo6tj+NMfgyZPk0OXeao4o/3vFSPKlPbMriVvXi/25t43XgaTVhAaS3bgwHJDeqKRgOUJijQHCVh0DRAB3xEgAct3rGklOwTEJmCtTD2P4Q/28JYGQm6mQLqwXrmzDX9rE7KYPD5vPbyVp4qoXfGHgMUZgGNzpdDcz5rEtsZ7RkQUc+1hRLFtLRQbl/C8jdUbIf2diVb81SN7QPI4kX9NM3k5uHxZBRQxBe2l27/iQLogWNna9nWBZ9EuvITfTa51Y03GjqvcWkNlIYzIWwsN7AhX5rF2Baxfl0Px8/f89Pp2vaF/4fWM/7MqlKwapbmlD54GYyXKA5lbLALpfendG1B9IuyuMhUsCi5fIchOHxLi/vYnMNZs7BO3/CFgHZwkgz5VEDzqjTVCEWl9vzyxQIbUG0Kf+GeNKPG8a/dUn4C0swgTvj9+uI9/RwUZ9hbrhgIyNWbOleHxY8G/N/sZUSw+sPwzO3ZxnRSpCRJEFOEQGQ/krcxBGesZX0jA8tfVG1zrkoAVXPEkb8RNIOAFrLGfebaKzqQRvtlSL+7LwnfWiU3A+vrxaYx/dIAH0D9PJUzI28B3QIJ8pemJR6ySapvdnZqvEfr6+WhXbuj9IWAxm9iX9hPzsu7Cykg0HO3aF3gmYDAhw9w4hRKauZsB6dN1jEao33ueP7zIVtEs+B2QiTtv4MLk/zAlUUhebhvTHwq0RsvwormF2uvvt731E07pHmW7DhOshsXWwjOqQrnaYk/Akv/9I8LWLuTHGpq/AF3PQYA2DeoPXoSEnS8CwEkk0Hz+C6CgCry5gg6gDtLE+1CNFvLVmfIWAFThkN66ynuhHbkAppK+OU7rDwHr8DTrHIJ1RhihzCfcL9PuSnBstvX9rM5II5R5Xbun+uvyMHImPJOwETcNqbwJvaPKY0a+Z7D/oBRPngj+1K8HREYEln++4EoCli8oB/8aJGAFf4zJQ/EQCHgBq0oLIRmtJ7Ce+sf6aIcn5qQ5sicgNgHL9gF4UJ5q+Cgv7U7w1DX8e9p19Lv3V5bp5uZviu6RZTy1jFfm8ZeAxZy5/ocEN/+0qKoVnVkpy52mGtUL0qQHwgPt0M9gqlAr4/+2ib5NsXHQTlnpznI+GXtR/xjNEzZmu9bGwu1y3M3kEyMBvHp3G/7SZN2JWEcZhw9ia6KFKt5hU+wJWLL926Bc+hk/h7F+K6S/nlmZkFUoNDdT0TLQfvylw2tRx8AgwCpMskqT5sZF5MkULdOEypOaqavAxeT3iUP+ELCOzZEh7Y6w+6jmUCPCCwvizeXNUtzZI+xsjS5rQpU3PZNTySdQLRb5Le0a+lvk7mRv7YjvgjIKkZdS9DWobNYjAUskgQhwM0jACvAAkvkBRSDgBayp81c4BVwikUClDEO4WgmpVIof1v+BB4+S+TlIwHIKp9udxSZgzUg6irkWSVGHx9TE0JiabvtJE2QSYL8SN7gpVLYzc/kyrjk6RZQSNSZ/ClgMDDtCEVEEiCnLQV3Q/V/RFSvmQmGZC6l1N+i7vp0RA9m541DOHSYIHWWqQjtsjqjjYzau4c31uGGxG8HS6C1FOqJmmG8e2nOC9cGD3ViTeoHvwpKyD4uphebqIk4ztitgndgL5Rfj+LmM1RoifeAkKLb8AMUvy/jX+Z1ZTq9KA8RMQKLXQT24Q44mpn2xzWcu+EPA+m+RDCnXBAGr2kAjoko83XloAA5MlsGoEd6v0MeIfNXdv6/6DKrNQs/d+gknLXZ1tlEXxdKC4i264S9O9tYlAUtM0QhcW0jACtzYkeWBRyDgBSxXkR88dhbs+OGNW5n5UvJEhmPEu73wUrumrk5J41wgIDYBa+Kjg1j8+BTvybjYung7uqoLntGQ7AhUvLYCKZxFdl0ASwu2Qht1MVFD87eA5Wk4smO7oVz8CT+tqXBJaMdl5sViyZ7DfpglCB31WkL3xihPm+CV+SYkHsRXycLfsOUif8V3RgVFrFfWdWZS81FaJqYNz1vLqR1XtuvYE7Ck509ANedDIbZlq0L74ZyM3VdsF5a5ib2ypDNMqa81gfB32mSLxBSTH9qp1gUPvMnPHwLW6W9kSDovCFSVXjcitmKmQHX/iAQX1gg7WmUqDvXGGfkT1N5k4a25D2nvofOdX62m31yoPeqqCnhryaCZlwSsoAmlXx0hAcuv+GnxECMQcgJWmiYdc75ai5Wb/uRD3bppHYx9vy/y540OsfD7312xCVj+JxL8FvS6uxU7NLetHF1b6Hk0diDfjz/pBJuABZ0W6qGdIWE15582zZSV4GLjMnbpsN065qZ/rif0L/bzJ36H196ffgddbgvV1iwH7ivWDcVkkQ7P5a2Of2puZkzdSu1+Pi57ApbkxiWopwhV6Lj40tCM/iIz/1W6kDxeM3EZuLjC3nKT5vUjAfXQTpCkZ634ykwylawI7cj5PrPOHwLWuR+keHhSOCJYvo8R+Z/usDq5WIbHlwVxq3BTE0p1DMzjg5ZBZMfz2TF9c2MCOdt1Si1nAiRg0RXiCQIkYHmCIs1BBBwjEFIC1v6jZzB2+jdIuJOZ9yVfbB6MGdoXbZvXdYwW9fI4ARKwPI5U9BN++ugQFj0+aWXn5sLtUVcp7l+Kg07AYhXp5gyH9PwxPha63kNgaNoRYctmQr53q/B6ryEwNAuMByGW1Ljy9VVItdnlx5w5VuxlxMnUov8bccZAuwLWo3tQf9yHn4bLWwDagZOgnpx5RJQ1LiIKmpnZ5wtzxgbqKz4C6hHdIUlJsmuYsVYTpL813mdG+0PAurBWhvuHBZGqbDcjCtTjoE0EjkyTW/lea5gB6jif4fDaQpf1yWie8CNMEI5CLo5rgY4RJb22ZjBMTAJWMETR/z6QgOX/GJAFoUMgJASsNI0WM79cizWbheTRL7RtjI8G9UZ0VEToRFuEnpKAJcKgeNmkn55cwTv3/7Va5Y8inVAlLJ+XV3Zv+mAUsBTb1kKxMfPYIGvGGs8gfcAEKOeOgOzcUf719IGTYawWONU4B93fgY1PLmcJ+LkSfRApUbh3IYhstF0BS/MkY7eVuXHqCOhf6o+wlZ8Lsa7ZGOlvC0dIReYWmeMmASZgSh5lpkiwbYZnX4Sux7turuD4cH8IWLZJ2kt1MqFwExOubpHi1g5hZxbLi8XyYwVL++jBHvyQep53p6g8Enviu0AmEXwOFl895QcJWJ4iGdrzkIAV2vEn731LIOgFrH2HT2PMZ9/g9t2HGWQLF8iLT4a9jib1q/mWNK1mlwAJWKF3YVzRP0YTm0pxO+JfQhmFuI/wBqOAJbt1DcpJ/QWhQ6GEZt4vUI//HyT3bvGva8d8BVO8uJPsW/4l/fzkCgbYiKTs/esl+gbdg5w9AYv5apsDydCoDeR7hcTd+q5vQd+6e+jdgELEY9WEfpDeEY6TWbrNxEx925d9RsIfAta136RI+EcQbYo/Z0KR5iYcmiyDIS3rziyfwfDyQg+MGjS8uQEazsCvNDlvA7yep5KXVw7c6UnACtzYiclyErDEFA2yJdgJBK2A9SRNixmLVmPdL//wMez1Yit88HZ3hKtVwR7XgPGPBKyACZVHDa16fSUkkCCPNAzR0jAsK9QG+aXi/rsMRgGLBVU1ujekiff5+KYPnWlVgZC9oZm7GZwy3KPXgDcnS+UMqHBteZYlEkq+5s1l/TJ3dgKW+sOXIElL5W0y5YmF9HGiEOfhn8NYurJfbKZFvU9ANfVdSK8LO3EsV2QFGQz1WnrfiKcr+EPASvhbhmu/C0JV/LNGRMZLcG65IGpJFRzqf2KE1PpEoc+4eGuh2cnHMStR2EHLPlv3FOuKiCDbfeopfiRgeYpkaM9DAlZox5+89y2BoBSwdh88ifEzvsXte48yaJYoWhCTR/ZD7WrlfUuXVsuVAAlYuSKiDiIhEKwClmLFHCh2CdWrDA3bQL5P2KnDhUdCM2uTSKLguBk97/yBnVphFxkTSk8X7+34BAHSMzsBy1aYtHSHk0qhmfcrIBMqsQWIu2SmgwRUs96H9KJ1rkHzUO37M2AqX9PBmdzv5g8B6/YeKa5sFsSqwo1M0DyUWFUmLNjAhDJdAj95u22E0kz6jF1YD01CEv8hMTUwIqaW+8EMwhlIwArCoPrBJRKw/ACdlgxZAkElYKU+0eCzRauwYcuOjIDKZFK81uN5vPv6S1CGBVfek2C5YknACpZIBr8fwSpgyY7thnKxkAuJU4RBotfxATXFl4Z2zOKAC/DSlLP4+OE+3u7CsnAcKtYj4PzIzeDsBCzlpDchu3XV7nBj6UpIHz4vt6np/QAmEDZ/NOSnD9r1QDtxKUxx8T7zzh8C1r1DUlxcJwhYMeVMSLpgnQeqxmAjIuKFhOc+A+KDhZannMPIh3szVsorVWJYbC38L6qiD1YOvCVIwAq8mInRYhKwxBgVsilYCQSNgLVz/38YP/Nb3L2feUSiQpliGbuuKpen6itivnhJwBJzdMg2SwLBKmBBp4V6aGdIOPs7EYzVGiJ94KSAuxhuGlIx/tEBFJdHoZgiEuUVMWiiKhxwfuRmcLYC1qz3IctmB46+VTfouwkVCXNbg94PPALKxRMgO7bLruFpC3736e47fwhYD/+TWh0XtAURUYRDjSHBk7zdXqBfvPUrno8sgdeiKkAlCbJzkh78kyQBy4MwQ3gqErBCOPjkus8JBLyAlZKahukLV2HTbzsz4CkUcgx49QX079MBcjoe4fMLytkFScBylhj19xeBoBWwWB6sOcMhPX/MLlpDi87Qvfyev7DTurkQyFbAWjgGspP77Y5Of2s8jLWaENsgJqD8bhpkB/7M6mF4FNJmbfSp5/4QsBLPSnDmu+yPyJZ+0YRCjYLv+KBPAxski5GAFSSB9LMbJGD5OQC0fEgRCHgBq0XXobj/MCkjaDUql8HE4W+gcMF80GjToTcYYTAYwHGObxEvHl8wpC4AfztLApa/I0DrO0ogmAUsxba1UGxcYheFvsub0LcJvqN3jsZd7P2yFbC+nQbZQTsCBoC0GRuAyDxid43sc4NA2Io5kFvktjNPZSpSEtqx9v/W3Vgux6H+ELAeX5Hg5Jf2BSyJLDN5uyzMWx7TvIFEgASsQIqWeG0lAUu8sSHLgo9AwAtYVVoIVaXUqjBo0/VOCVa2IT31z9Lgi7KIPSIBS8TBIdOsCASzgCVNuALV5LfsRlzX72MY6ragq0GkBLITsMJWzYN8x89ZrObyFYRmctYKjSJ1j8xykUDYui8g/yvrTitjlXpIf2+Ki7O6NswfAtaTBOD4PPvH5uLqcCjXI7iPD7oWqdAcRQJWaMbd016TgOVpojQfEcieQFAJWJ4INAlYnqDo+BwkYDnOinr6l0AwC1iMrGpUL0iTHmSBrB0+D6bSlfwLn1bPlkC2AtbmbyH/fVWWcYZ6LaF7YxQRDXICYdnFv3E76F75wKfe+0PA0jyQ4OgM+zuwqg4wIk8px3fm+xQWLeZzAiRg+Rx5UC5IAlZQhpWcEimBgBewRMqVzHKQAAlYDoKibn4nEOwCVnZHjjRTV4OLyed3/mSAfQLZCViKP9ZAsenrLINYPjOW14xacBOQ/7YCYT9l3VGu7/AK9B3/51Pn/SFg6VOAg5Oz7sBS5edQezjtvvLpBSDyxUjAEnmAAsQ8ErACJFBkZlAQIAErKMIYuE6QgBW4sQs1y4NdwGIVy1jlMsvGSaXQsIplEkmohTtg/M1OwJLv/AVhKz/P4od21CKYipcLGP/IUNcIyLdvQNiGL7MKmL2HwNC0o2uTujjKHwKWKR3YNy6rgFWygwlFmlHydhdDGZTDSMAKyrD63CkSsHyOnBYMYQIkYIVw8MXgOglYYogC2eAIgWAXsKDTQj20MySc8HDH5S8MzaRljuChPn4ikK2AdegfhH3zqbUgKVdA8/kvgFTqJ2tpWV8RyFbAHDgJpmoNfWVGxjr+ELDYuntGWgtYEimHumOMUET41H1aTOQESMASeYACxDwSsAIkUGRmUBAgASsowhi4TpCAFbixCzXLg17AYnmwZg+D9MJxPrSmcjWg/WBmqIU6oPzNTsCSnToI5YLRVr4YK9RE+tAZAeUfGesaAdn+7VAunZ5lsGb0l+CKlXFtUhdH+UvA2j9OBmO6sHs0X3UOFfrQ8UEXwxi0w0jACtrQ+tQxErB8ipsWC3ECJGCF+AXgb/dJwPJ3BGh9RwmEgoCl2LYO8i0/gFNHgAuPgKnOs9C37+MoIurnBwLZClhXz0I5fZCVRfp2faB/Qajc6wdzaUkfEZAf24UwmyPBbGnNjA3gIvP4yIrMZfwlYJ3+WoqUmxIYNZkiVpU3TYguS8cHfRr8AFiMBKwACFIAmEgCVgAEiUwMGgIkYAVNKAPTERKwAjNuoWh1KAhYoRjXQPc5OwFLevsaVBP7W7mX/u6nMFatH+guk/0OEJCdOgDlgo+tembktFu41YHRnu3iLwHL7IVRK4H2ERBRhCoPejaywTEbCVjBEUd/e0EClr8jQOuHEgESsEIp2iL0lQQsEQaFTLJLgAQsujDESCA7AUuSkgT1iO5WJmtmbQIXHilGN8gmDxOQXjoJ1cz3rWY15SsM7WTf57Tzt4DlYbQ0XZARIAEryALqJ3dIwPITeFo2JAmQgBWSYReP0yRgiScWZEnOBEjAoitEjASyE7CYrRKdFpK0J4AmFZJ0LYwlK4jRBbLJCwSk189DNfVdawGrTFVoh83xwmo5T0kCls+R04JOECABywlY1DVbAiRg0cVBBHxHgAQs37GmlewQIAGLLotAIUACVqBEKrTszEnACi0S5K0lAentq1BNfNMKiqFuC+j6WR8r9AU1ErB8QZnWcJUACViukqNxlgRIwKLrgQj4jgAJWL5jTSuRgEXXQAATIAErgIMXxKaTgBXEwXXDNcmDO1CPfdVqBn2rbtB3e9uNWV0bSgKWa9xolG8IkIDlG87BvgoJWMEeYfJPTARIwBJTNELQFtqBFYJBD1CXScAK0MAFudkkYAV5gF10T/I4EeqRPaxG67oOgKF1VxdndH0YCVius6OR3idAApb3GYfCCiRghUKUyUexECABSyyRCFE7SMAK0cAHoNskYAVg0ELAZBKwQiDILrgo0Wqgfv8FawGr3xgY6jZ3YTb3hpCA5R4/Gu1dAiRgeZdv46nvBgAAIABJREFUqMxOAlaoRJr8FAMBErDEEIUQtoEErBAOfoC5TgJWgAUsRMwlAStEAu2Cm+HvtLEalT5sLoxlqrgwk3tDSMByjx+N9i4BErC8yzdUZicBK1QiTX6KgQAJWGKIQgjbQAJWCAc/wFwnASvAAhYi5pKAFSKBdsFN9eCOkOjT+ZGaT1eAy1vAhZncG0IClnv8aLR3CZCA5V2+oTI7CVihEmnyUwwESMASQxRC2AYSsEI4+AHmOglYARawEDGXBKwQCbSLbkofPwLSnkCSlgpj6UouzuLeMBKw3ONHo71LgAQs7/INldlJwAqVSJOfYiBAApYYohDCNpCAFcLBDzDXScAKsICFiLkkYIVIoAPYTRKwAjh4IWA6CVghEGQfuEgClg8g0xJE4CkBErDoUvArARKw/IqfFneCAAlYTsCirj4jQAKWz1DTQi4SIAHLRXA0zCcESMDyCeagX4QErKAPMTkoIgIkYIkoGKFoCglYoRj1wPSZBKzAjFuwW00CVrBHOPD9IwEr8GMYzB6QgBXM0fWdbyRg+Y41rUQESMCia8CvBEjA8it+WtwJAiRgOQGLuvqMAAlYPkNNC7lIgAQsF8HRMJ8QIAHLJ5iDfhESsII+xOSgiAiQgCWiYISiKSRghWLUA9NnErACM27BbjUJWMEe4cD3jwSswI9hMHtAAlYwR9d3vpGA5TvWtBIRIAGLrgG/EiABy6/4aXEnCJCA5QQs6uozAiRg+Qw1LeQiARKwXARHw3xCgAQsn2AO+kVIwAr6EJODIiJAApaIghGKppCAFYpRD0yfScAKzLgFu9UkYAV7hAPfPxKwAj+GwewBCVjBHF3f+UYClu9Y00pEgAQsugY8SmDTbzux/pd/cfFqAoxGI0oULYQXn2+C3i+1hkwmzbIWCVgexU+TeZEACVhehEtTu0yABCyX0dFAHxEgActHoGkZlwiQgOUSNhpkQ4AELLokiIDvCJCA5TvWQb/SqClL8NMfu6GQy1CrWjko5HIcP30JqU80aFK/GhZOHQq5TGbFgQSsoL8sgsZBErCCJpRB5QgJWEEVzqB0hgSsoAxr0DhFAlbQhNKvjpCA5Vf8tHiIESABK8QC7i13mXDFBKzSxQvjq5nDUbhA3oyl0jRaDB23ALsPnsSgN7pgQN8XSMDyVhBoXq8SIAHLq3hpchcJkIDlIjga5jMCJGD5DDUt5AIBErBcgEZDshAgAYsuCiLgOwIkYPmOdVCv9OLrY3Dhyk2sWDgGNauUtfI1MTkFrbp/AIVCjn83fg6VMox/n3ZgBfVlEVTOkYAVVOEMGmdIwAqaUAatIyRgBW1og8IxErCCIox+d4IELL+HgAwIIQIkYIVQsL3l6q07D9Cm5zAUjy+A31Z8ZneZDz5ZiK3/HMT8T4egZeNaJGB5Kxg0r9cIkIDlNbQ0sRsESMByAx4N9QkBErB8gpkWcZEACVgugqNhVgRIwKILggj4jgAJWL5jHbQr/bnzCAaPnYeObRph+sdv2/Xz+3Vb8dnCVXizT0cMfbMbCVhBezUEr2MkYAVvbAPZMxKwAjl6oWE7CVihEedA9ZIErECNnLjsJgFLXPEga4KbAAlYwR1fn3i3dM3vmPHFarz9aicM7tfV7prbdx7GkLHz8VyLepj9ybt8n5Q0vd3+aqUMcpkUmnQjDEaTT/ygRYhATgQi1QpIJECKRg9wxIoIiIOAQi6FKkwGvcEErc4oDqPICiJgQSAqXJHxv+w+7wkWEfAnAXb/ZPdRdv9k91FqRMAVAub7nCtjaQwRIALOESAByzle1NsOgQXfbsIXyzZj2ICX8XrPdnYZ7T96Bm+8Px0N61TGN7NGEEciQASIABEgAkSACBABIkAEiAARIAJEgAg4TIAELIdRUcfsCMz6ci2+Xf0rRg3qg1e6trHb7ejJC3jlvU9Rq2o5LF/wMcEkAkSACBABIkAEiAARIAJEgAgQASJABIiAwwRIwHIYFXXMjoBTO7BqV8Y3s2kHFl1NRIAIEAEiQASIABEgAkSACBABIkAEiIDjBEjAcpwV9cyGwLJ1WzF94SqHcmC1bloHn08axM9EObDosgoUApQDK1AiFVp2Ug6s0Ip3IHpLObACMWqhYzPlwAqdWHvTU8qB5U26NDcRsCZAAhZdEW4T+HfvcQwcNcehKoRv9GyPDwf04Ne89VBjd/28UWEZiYkfpegoMbHbEaIJPEGAqhB6giLN4WkCVIXQ00RpPk8ToCqEniZK83mSAFUh9CTN0J2LqhCGbuzJc98TIAHL98yDbsUHj5LRvMsQFI8vgN9WfGbXvw8+WYit/xzEzHHvoF3LBiRgBd1VEPwOkYAV/DEORA9JwArEqIWWzSRghVa8A81bErACLWLitJcELHHGhawKTgIkYAVnXH3uFUvQzhK1r1g4BjWrlLVaPzE5Ba26fwATx2HHpnnIExnuc/toQSJABIgAESACRIAIEAEiQASIABEgAkQgcAmQgBW4sROV5Tv3n8CAkbNRunhhfDVzOAoXyJthX5pGi/fHL8SuA/+hT5fWGD34FVHZTcYQASJABIgAESACRIAIEAEiQASIABEgAuInQAKW+GMUMBbO/HINvlv9GxQKOWpVLYswhQLHT19CSmoaKpcvie8/H4VwtTJg/CFDiQARIAJEgAgQASJABIgAESACRIAIEAFxECABSxxxCBorWJ6r5Ru24dyl6zAaTYgvHIf2LRvg9Z7toAxTBI2f5AgRIAJEgAgQASJABIgAESACRIAIEAEi4DsCJGD5jjWtRASIABEgAkSACBABIkAEiAARIAJEgAgQASLgAgESsFyARkOIABEgAkSACBABIkAEiAARIAJEgAgQASJABHxHgAQs37GmlYgAESACRIAIEAEiQASIABEgAkSACBABIkAEXCBAApYL0GgIESACRIAIEAEiQASIABEgAkSACBABIkAEiIDvCJCA5TvWtBIRIAJEgAiEOIFl67Zi+sJVeOuVThjSv2uI0yD3iQARIAJEgAgQASJABIiA4wRIwHKcVcD23HvoFPoPm4HG9ariqxnDROvHf2cuY81Pf+PgsbO4+yARCrkMpYoXRvuWDdGnS2soFHK7tmu0Onyzcgv++Pcgbt6+n1HtsHL5kni1W1u0eKZmrv7uP3oGwyd+gYeJj/HH6pmIL5Q/xzGHjp/D0jW/49ipi0hN06Bg/li0alIbb/d9AdFREbmuRx0EAkPHLcC2HYcw/sPX0KNTC9GiuX3vEVZt2o5dB/7DjVv3YTAaUbhAXjRrWAP9e3dA/rzR2dq+6bedWP/Lv7h4NQFGoxElihbCi883Qe+XWkMmk+bo8607DzB0/AKcOncVk0f2w0vtmuba/8sffsKegyfx4FEyovNEon6tinj7lRdQtlS8aPmK1TBv3DtdEbBMJi7j7+SX7Xtx4vQlJCWnIiJchUrlS6Bn55Zo06xutgjduV9p03WYOPt7bN66G52fa4wpo97MMVTu3ovFeh2IzS72WcU+K/ceOomrN+7gcUpaxvVQuGA+NKxdGT1eeBYlihb0u9nuXLfs3ufOveyH9X9g5hdrEJc/BtvXzMqVhTv36VwnD6EO3rhnegNfoHzfNPvu7PXsDWY0JxEgAkRALARIwBJLJLxoh9i/UKSkpmHSnGXY8ue+DArlShVFsSJxSHr8BKfPXwV7iKpRuQy+njUC4WqlFSk29pVBn+LilQRE54lA9Uql8SQtHcdPX4TRaMKgN7pgQN8X7NLlOA5fr9yCed9sAPuizVpuAhYTIsbP/C6jb5UKJZEvNhoXLt8AEziYoLFy0TgUyB/jxWgGz9RMYGnV/YMMMYixXLv4E9E5x66Lb1ZtwcLvNkFvyBStypUuliFEnblwDY+SUpA3JgrfzxuN0sULZ7F/1JQl+OmP3RlibK1q5aCQy3H89CWkPtGgSf1qWDh1KOQymV2/d+4/gZGTFyM55UnG+7kJWMye/w2ZiidpWhQrUgClSxTGnXuPcO7SDYSFKbBoylA0qltFdIzFbJA37p3OCliXr9/OuA7YvZBdR1UqlELe2DwZsWWvsdanSxuMHtwnC0p37lfXbt7F0HHzcf7yzYx5cxOw3LkXi/kaEJttLKZT56/I+Fxkjf3gwu5B7O/+xq17GfcpJoy/1acT3n39RUgkErddaNtzGPr1ao+XO7d0eC53rlt37mWMw9jPvsHWfw5m2Pr/9u4Cyqpqj+P4HwSkO0QUEAGVUCkVFJGQElBScKS7G6RTuqRDQjpEBFGQVgElBBGfrVgICEhI51v/jWecuLFn7oV7Z+53r/XWE2bfE5+z53DO7+7QUM9bgOXLfdoaJEQq3o57pj/p4tLzpp53bNqzP73YFgIIIBCMAgRYwXhV/HxMwf5AcfbcBanTYqDkyXWfdGlR2/S6csrR439L657jzEtUy/pVpUPTyENu+o6cLfrNaflSRWV47xaS9O4k5qO/HT4mTbqMkiPHTsr8ib2lyKN5I6lqKNBr2Ez56NMD5hvrGzdvyO7933oMsPTloEr9XpIo0V0yfWQXKfb4w2abGoRNnrtKps9fY7Y1e1wPP1/B+Lm5WYvWyoRZb8sjeXKYMOjtWYPMfwdb0V5ih34/Ir3ahclTRfKFH572Nhk4dq6s3fipFC6YRxZM6hPp0DW40hcjDbZmjuluwi8tFy5eEt3mjj1fuQxYNTSbMu9We9KXr2eKFZQVa7d5DLA0rK3asJdo6NC9dV1p9HLF8GP5+LMD0r7PREmRIql8uHi0pEqZPNiIg/Z4bse9M6YB1sFvD0njTsNNj72m9V4wQb1T9n/1g7ToPkYuXLwss8f2iNQ+fblfaW+vPiPelGvXrpu2NGPBe14DrNjei4P24gfhgS15d7MMnbDAhFJ6XRrWriCZMvz3hYneW/R+NH7mCtF/V1+t+bz0ah892IzJqf1w6A95qXFf6d+5QYwCrNi2W1/uZfpFVsf+k0yvtCZ1K8uyNVskdaoUHgOs2N6nY2IYSnVvxz3Tn35x5XlTzzk27dmfVmwLAQQQCFYBAqxgvTJ+PK5gf6DQUz1z9nykF7OIp6/BUuPOI0wQ8N784eE/0mEUpWt1kpTJk8mm5WMlebKkkdT0xb31a+OlRNECMmtM5KGTdVsNEn3A1qGJPdrWk9Y9x8vOvV95DLCGTVwoi97ZJJ2a15LmYVUi7UtDrHqtB5ttLprSVx7Pn9uPVzD+bUq9KoX1lLP/nJeRfVtKq57jzMuRviQFW9Gg6q6ECUwvpqhFf/bMi+1Mb4iP3nkj0lBCfenTlz9X7eHUmX9M7zMdFqufc4JX3f6Y6ctk7tJ1JnSdMLi9rHz/IxP0eeqBpYGDhmLaw+rNMd2jHaezTVdtN9i8g+l4bse9M6YBlrf7o/YOnPrW6mi/P7G9Xzn3zSyZ0smkoR3l6rVrEtZ2qMcAy5d7cTBd72A+Fg2nX2zcR65evWbumVXKFXd7uPriW6/NEBOWzxjV1fT2jG3RMEx7Ksc0wIptu43tvUx79FYK62F6oA3q1ti018fLNZWMGTwPIYztfTq2nvH9c7fjnulvs7jwvBnb9uxvK7aHAAIIBKMAAVYwXhU/H5OnBwoNEnbt+0ZWrf9E9h/8Qf46cUoSJkwo2bNlkcpln5TGL1eKNvdU+z5vyPY9X8nedTNk9/5vZMHKDbeGRZ27KGnTpDQv3jpB8cO5s/vlTLS3VImqbU3AtXPNlPBtvrt+u+klUPOFZ2Vw9ybR9qXnVqpGRzl99px8smpSpIDss8+/liN/nQyfU0iHXulcMZ6GED5ft5vovBxbVowXfbmLWpxvxxvUriA929bzy7nH1404bVJfwl7v1cxcJ30x++idiZIs6a1edBHLtz/+JjWb9TfhYZ2qpWXW4rWy+ZN95hpq+JMvTw7T26DMM4WjfdYJDJZO62+GX81/+0NZvmar/HnspOTOmc30/PKlVG/S1/QQfHfuUDP8VYu2E20v2bNllnWLRrncfJeBU8wwl0mvd5QyTxcKr3P85GkTlLZtXN0MGXMCCk8Blv4e6O/DyD4tpcrz0V9sf/rlsFRr1Mf8Tq58c7AvpxtSn3V379TrptdP26+GCa7KuBnLZfaSD6R3h1dNUO6U2ARYntA3ffK5dOw3ycyDNWFwu/Cqsb1faQ+Y8bNWSKM6FU0g63yB4GkIoS/34pBqUD6c7KBxb5n7VoXnism4gW29bmne8vUyeupSKVwwryyY1DtafQ3R31r+oWzb+YUcPnrc/DxLpvSSP29Oad+0hvl3U+8rGoa5Kt6G23s7QHft1pd7mc4TpF8eFXwkl+kZXaB0Y49DCH25T3s7v1D9Oc+b/nne1PYT0/Ycqm2O80YAgdATIMAKgWvu6YFCg5ymXUeFT3yeNUt6OXf+kuw98K0ZlqJD88YP+u+lSLk0wNqyY78Jjt754BMp/XQhKVQgt9y8KWaCYX0w1d4q+tBc4KEHfBbW4YDaW0eHl0UMG3QekIUrN5rwSo/FVWnX+w3ZunO/6YGlPbHclVfbvS46HMfdQ7l2Oy9epY0JrjTAclV0GFyt5gPMA7T2uqG4F3DCm+kju0rJJwuK01vEXUjjBFg6RPPw0RNmGKe+sGdMn9pMqq4v0Dq3ResGL0q7JtUj7dgJDKYM62Tmo9LwQYfzpU2TSu69J4NMHNLBp0tVpnZnOXb8lOz+YLqZSFmLhmsd+k00YZKGSq7KWys+lFFTlpjefBrMuStvvLlSZi58z2MPrBpN+5m5rjQs09DMVXnyhdZmPo19H8502ZvMJ4R4+uG4EGA581zpcDLtTarFn/crx8BTgOXPe3E8bUo+n5aG/NorY+7418zCDN6KtoGSL7Y3cwxG7R2q99OWPcaa7WnP5Ydz67x+N+TXw8fMfXTr2xPk2PG/ZeuO/Waos35BpQtWFHgoZ/hu69euIKl9GI7sqt3qxv11L9PzfqxsU48Blj/v096uR6j8nOdN3583XbUVm/YcKm2M80QAAQQIsEKgDXj7RkwfUp8qkj/SBOk6KXnNpv3MBNJr5w+PNC+VE2DpPBzTRnQxAUTEosMNdNiBPvBOG9HZZ2Fd8W/0tKXRXvTb9Bpv5rCKOvdLxB0Om7hIFr2zUfp2qi/1Xirr9li8BVi6ClydlgNdznXkbNTpKZYuTSrZvnqSz+cdXzegE5+XqdVJ0qVNJZuWjTMTDutk1LVbDDST9S+e2i/aqTsBlv5AV5Z8Y0j7SJOf6+qTr7QZYlaS1OBUex04xQmwdKJ4HYajgZLN6pQ2/k67iHrcTpt1NW+bs12nB4K3HhU2AVaxSi1N4PzFptmm15ar4vQUWzPvdXkwJysS2lzfuBBgOfdBXWFWV5rV4s/7lU2A5c97sc11CbU6Tk8hXfBh97rp5gsnm6K9VvXeOWloh/DeqTrc+cVGfcyKvbpSr4bnzhBm7bV06PejkRak0F5c2psrNkMIPR2jq3ar9f11L7N54ffnfdrmeoRCHZ43fX/edNVObNpzKLQvzhEBBBBQAQKsEGgHsZ2TQFfb029JR/VrJS+UfSpcygmwog5ZcSrovEBFK7Yw3+zuWTfdJ2Ed5lC1QW8zl4f2Lok4dK9Bh2Hy+Zffy7IZA9z29Jo8Z5VMm7/aTP6uYYK74i3A2rX/G2nSeaTHUM4ZsqCBzJeb5/h03vH5wzqsSodXRe155GoonuMQMcBat2ikGeIatSxbvUUGj58frdegE2BpfafHlz989Xo37TJKtG1ooFauZJHwzTrtrlurl6Vx3Uoud+e0KZ0YXkNYd8VbgKWTvhcs09gMvdy7fqbb7Ti/LzrZvE46T/EuEOwBljO8L2+u+2TVnKHhJ+TP+5VNgOXPe7H3qxJ6NbRns85pdU+m9LJ5xThrAOff6n6dG0jdf1cQdHo+aS8u7c3lrdyOAMtdu/Xnvczmhd+f92lvjqHyc543fX/edNVWbNpzqLQxzhMBBBAgwAqBNhCTBwqdh0i/ob0pIrMWrpU5Sz+QAV0aSp1qpcOlnIdiT9/IlnypvWhPm/0bZsV6uJJOxtqq51jRYY66kpLOcRSxOBOxvzN7iDz04P0ur6QOvdIAQOfk6tgs8gqGET/gLcD6ZNeXZqLxsiULexxypkMW9EHjwObZkXoIhUAzszpFDX0qv/qaWSXy/QUjJOf994R/zhlSF1bjeendIfLKWU6A5WkIp/a+erZ6h2hzpTkBlg5n1bDTX8V5+dHgSgOsiGXs9OXmd8dVu3Xq6ZBVbXeFCuSRhZMjr2AYcVveAiz9fS1SoYUZzvPp2qluT69Zt9Gi9wKd5F0ne6d4FwjmAEtXaNWFI06d/kcWTukbKcT35/3KJsDy573Y+1UJvRrONdAVerVHtG3pOXSGrN30qXRuUVuavfKC+ZgObdahc+7my4u6bX8HWJ7arT/vZTYv/P68T9tek/hej+dN3583XbURm/Yc39sW54cAAgg4AgRYIdAWPD1Q6LCjFWu3yaaPP5fvf/5dzp2/GE0kalDlBFhTh3eWUsUfcymoqwP+deK06YEVdXVAG3L9Jrb7kGmyfutuM9G6zo0UtcTkW//2TWpIqwbV3O7aW4Dlzx4NNucfX+s4c665Cm008Cxds5MZyrrtnTciDZNxAqyCDz8gS6e7D6F0nidtwxrkOPOzOAGWq2Asts6LV22W199YINrzZeHkvuFzXznbi9E3+4Xzyexxse+B5fT8s++BFXmIZWwNQuFzwRpgac/Uhh2Gy0+//ulybjR/3q9sAix/3otDoV3F9Bxj3QOr70TZsn2fROyBVbVBL/n5tyORFp3wdDz+DLC8tVt/3stsXvj9eZ+O6TWNr/V53lwtvj5vEmDF198OzgsBBPwlQIDlL8kg3o67BwoNDPTF49BvR8zE4+WfK2YmgNbAKYEkkKWrt8iH23ZHm/vCCbA89eTwJcDS8Kr3iFny3oadZt6O8YPauuzN5ByHzRxY2qNHAwx3xVuA5QQoOvRKh2C5KuGrJaZKITvf+2+1xCBuGnf80LoMnGralLcyoncLqVq+RHg1x9/bBPnaA0t7YukwGx1uo8Xfq75p4DtwzDwzjHH+xF6SKUPaaKfj7NNmDixXPbgibtBbDyyt6wR3NnNg6VAzDd4o3gWCMcA6feacNO48wqx86W6Iqj/vVzYBlj/vxd6vSujVOHLspJR7uav5d1C/FNJFUmyKLiqii4tEnAPLWXRi49Ixcu89Gb1uxl8Blk279ee9zCbA8ud92itkiFTgeXOj6UHuy/Omq6Zi055DpIlxmggggABzYIVCG3D3QKHzBem8QdXKPy3DezePRjFyyhLz8u+uB9btCLB0JaTew2eZYQ/6Yj9mQBu3k1LrxO46CavNKoTTR+pk84+6vdzeAiydg6tYpVZWqxB66yUUCm3O1Tk6k7cnTJhQ8roZ8nnx0mWzbHuRR/PK/In/Lf3uvJDneeA+03PAVdFv7wtXaCFXrlx12QPL2zBSm+uioe6Q8fPN0EedPyZzxujhlW5HFxfQSYptViFsUreydG1Vx+3ubQIsXWBAJ+72tgqh9k7bs25GpAUbbM47VOv4EmA5K/P17vCqhNUoF07oS6Cqv0NNu4w04VX31nWl0csVXV4af96vbAIsf96LQ7WteTtvZxXCt97oJUUfe8hbddMT9ZkX24kOxf941UTJkC61+UzlV3uaxSxWz31dcj/gfTEHfwRYtu1Wj89f9zKbF35/3qe9XpAQqcDz5n7x9XmTACtEflk4TQQQiLUAPbBiTRd3PujugaJKg16m99XSaf2l4CO5op2Q01vmTgVY+sDZY8gM00OnSrni8nqvZh7nkdJ6eow1X3jWhFhRiwYa+tCvPXK2rZzgsqeM8xlvAZbWq9awtxmys2XF+EiTyTvbWPLuZhk6YYGZL0znDaNEFtA5oXTOEZ1MWIe0uCqXr1w1wwi1N9t784eHr4blBFg6TG7X+9PNyoVRy0+/HJZqjfpI2jQpZcfqyX4JDCLuY8HbG2TE5MWm99KbY3uEvxC6Og9dnl7bnvZo1FDJVekycIp8uG2PjOnfWiqVedJtc7EJsDRU03DN3bw2jk1M59AJ9Tbs7t6pcwjpXEIVSz8hYwe0ccnUqf9k2fjxXvFXgKVtSheS0HtQxCFh7q6Rv+5XNgGWP+/Fod7m3J2/8zuuC6rowireiq6+q6vwatiloZdTWr82Xj7+7ICM7tdaKpd1f99x6vsaYMW03frrXmYTYPnzPu3teoTKz3ne9M/zZtT2YtOeQ6WNcZ4IIIAAAVYItAF3DxSVwnqaybR1TiHtNRSx6Le3OmThn3MX7kgPLP2WuOugKWZy2VpVSsmALo0kYcIEHq+OHqMOGdMlwDctHxttri19SNeHdZseUTYBlhMk6LLjuoJe1OJMZOzt27cQaHIuT9H55t/TpPv6wVFTlohO6N6oTkXp3qau2VbEVQhnju4mTxcrEG0fzotW1FDBlx4vzk7mLl0nY6YvMxNl6/7TpE7h9TI6bWrRlL5miG7EonPBlK3dRW7cvGl6RzjzdbnaqE2A5fyOlyhaQGaN6RZtM3rseg7eent5PakQq+Du3rnv4PdSv/0weTTfg7Jkar9oKno/0yBWr7M/Aqxjx0+ZYYO///mXDOnRVF6q+IzXK+Gv+5VNgOXPe7HXEwvRCtpr6sXGfUQXWhk/qJ1ZbdVd0X/X67QcZP79jtpT2gm29B6q9zJvRVfx1bmi3P275+nzsWm3/rqX2b7w++s+7c0xVH7O86bneTq1Hdg8b0ZtL7btOVTaGeeJAAKhLUCAFQLX390DhdMDJGqPobPnLkj3wdNkx56vRHsx3e4eWDrkq9OAyWbYVf1a5eW1dq9YXxVnFSF9mB/Rp2X4xN/6AN+062j58+gJmTC4nTz/rPuHfdsHCu3JVfGVHnLjxg3TRbzY4w+b41SjyXNXyfT5a0zvHA1oEiTwHL5Zn2A8qehMKv1YvgdlsYsX/oinqS+I9FQpAAAgAElEQVRqGnZpT6ptb0+QxIkTRQqwdO4pDWnuy5op/GNbduyXzv0nmxUgdfu6H6f4GmA5K1kWLpjXXPcUyZNaXRVnJbhc2bPKzDHdJWvmW3Ny6fCuzgOmyPbdB83QMg04PBWbAEs/X7f1YDn4zc/RhpZpkNuh70RJkDChrF80ymXvQasTCsFK7u6dFy9dkZIvtZNLl6/KsukDJP9DOSPpTJj1tsxatNb8na8Bls5/1LjzSNH/H9WvpVR47gmrK+Gv+5VNgKUH5K97sdXJhWglZ/EI7YHaIqyq+fcyYpiu/5au37ZbNMzXYXsRvwRwyDRs1N7Xx0+eltYNXpRWDatF6un8y+9HTe/SVCmTm4+8v/kz6TFkugnvdbXLxInustKPbbv1173M9oXfX/dpK5QQqMTzpn+eN6M2Fdv2HAJNjFNEAAEEmAMrFNqAuwcKnTMnrO0QM0fGw7mzm/+d/ee8aNigE1M3rF1BBo1767YHWBFf9nRuIU+leJH80rdT/fAq+sCuQZX2iNAH+UcfySX6cvnFVz+aMKNO1edkQNdGXi+z7Tdi2kNMgz/dtr60ZkyfxsxHow/raVKlkAWTesuDOb3PK+L1gOJZhW6Dp8m6LbtkWK/m8mKFp72enQ6V0nboDK9zemBpD6OTp87Iz7/+KYUK5pFM6dPKH0eOy4GvfzLb7NispuhcVxGLLwHWzr1fSfNuY8zmsmbJEGllxKgnkTJ5Mlk2I/IKiU7PJw3hChXILUkSJzbHqj0j8uXNaYb26KqLnoptgKW9c8LaDjVDZu+/N7PkypFVtAeE2mmgqhPj65xcFHsBTytqaUCl9y4d1lqj8rOS8/6scv7CRRPEf/39L2aF1g0f+T6EUK/pF//70ewny78LE7g7A237EX+//HG/sg2w/HUvtr86oVlz+XvbZOTkxXLp8hXTS/mB7PdK2tQpRFcU1ikB9O814GpVv5q0afSSSyRtT617jhP9skrDKv23/8rVa3L46Anzpc/KNwebv9Oi26tS/zU58tffZki39jo8c/a8dGhW0+NiEL60W3/cy2Lywu+P+3RotsboZ83zpv+eNyPqxqQ90xYRQACB+C5AD6z4foVFxNNLmL5M6/AAfaC9eu2aWbmt7DOFpXXDF808ROXrdrvtAZbOG6XzR9mUMk8Xkkmvd4xUVQO4t5avl/c27pTfD/9leuxoT6iXq5WxfmG3DbB0x/pyOmPBe/L5l9/LufMXJGOGtGaCeH1hyJIpnc1phFQdHUZVulZnSXZ3Etm6coIZ8umt6NxQGhQ+WegRmTO+Z3gPLHUeN7CtzF7yvpk/SsOru5MkNr0DGtSuYEKDqMWXAMs5Dm/Hqz9PmSKZ7Hp/WrSquo2FKzfKdz/9JrpIQbasmaRymSelcd1KHgMxZ0O2AZbW1/Bq2lurZdunX8iJk6clZYrkJuhr9soLkXql2ZwPdTzfO9VHe6csfXeLubaXL1+VDOlTy5OF8kmzsBfk2PG/Tfjpaw8snddN5zCzKT3b1jO/BxGLr/cr2wBL9+mPe7HNeYZ6HZ27SRdg0V7Svx4+ZgLxFMmSmlUFnyqSz/zbp/PveSoabuu8hNoDScOpRHclNF9c6ZcE7ZvUiNSzSwOlMdOWmecEfS7ImjmDTBvR2Sxm4a742m59vZfF9IXf1/t0qLdJ5/x53vTeEmLyvOlsLabt2ftRUAMBBBCIuwIEWHH32lkf+dad+6Vd7zfEVfhjvREqIhBAAacHlg7j015uFATuhAD3zjuhzD4QQCC+CHDPjC9XkvNAAAEEgleAACt4r43fjmzqW6tlytxVMZ5fym8HwIYQ8FHACbAKFcgjCyf38XFrfBwBOwHunXZO1EIAAQRUgHsm7QABBBBA4HYLEGDdbuEAbF+HbOnkwjon0+7938hrw2aaIQbac0V7sFAQiGsCBFhx7YrFzePl3hk3rxtHjQACgRHgnhkYd/aKAAIIhLIAAVY8vPqr1n0ifUfOjnRmYTWel94dwuLh2XJKoSBAgBUKVznw58i9M/DXgCNAAIG4I8A9M+5cK44UAQQQiC8CBFjx5UpGOI9vfvhVps1fbXpdZc6YTiqUKiZlnikcD8+UUwoVAQKsULnSgT1P7p2B9WfvCCAQtwS4Z8at68XRIoAAAvFBgAArPlxFzgGBeC5AgBXPLzCnhwACCCCAAAIIIIAAAgh4ESDAookggAACCCCAAAIIIIAAAggggAACCAS1AAFWUF8eDg4BBBBAAAEEEEAAAQQQQAABBBBAgACLNoAAAggggAACCCCAAAIIIIAAAgggENQCBFhBfXk4OAQQQAABBBBAAAEEEEAAAQQQQAABAizaAAIIIIAAAggggAACCCCAAAIIIIBAUAsQYAX15eHgEEAAAQQQQAABBBBAAAEEEEAAAQQIsGgDCCCAAAIIIIAAAggggAACCCCAAAJBLUCAFdSXh4NDAAEEEEAAAQQQQAABBBBAAAEEECDAog0ggAACCCCAAAIIIIAAAggggAACCAS1AAFWUF8eDg4BBBBAAAEEEEAAAQQQQAABBBBAgACLNoAAAggggAACCCCAAAIIIIAAAgggENQCBFhBfXk4OAQQQAABBBBAAAEEEEAAAQQQQAABAizaAAIIIIAAAggggAACCCCAAAIIIIBAUAsQYAX15eHgEEAAAQQQQAABBBBAAAEEEEAAAQQIsGgDCCCAAAIIIIAAAggggAACCCCAAAJBLUCAFdSXh4NDAAEEEEAAAQQQQAABBBBAAAEEECDAog0ggAACCCCAAAIIIIAAAggggAACCAS1AAFWUF8eDg4BBBBAAAEEEEAAAQQQQAABBBBAgACLNoAAAggggAACCCCAAAIIIIAAAgggENQCBFhBfXk4OAQQQAABBBBAAAEEEEAAAQQQQAABAizaAAIIIIAAAggggAACCCCAAAIIIIBAUAsQYAX15eHgEEAAAQQQQAABBBBAAAEEEEAAAQQIsGgDCCCAAAIIIIAAAggggAACCCCAAAJBLUCAFdSXh4NDAAEEEEAAAQQQQAABBBBAAAEEECDAog0ggAACCCCAAAIIIIAAAggggAACCAS1AAFWUF8eDg4BBBBAAAEEEEAAAQQQQAABBBBAgACLNoAAAggggAACCCCAAAIIIIAAAgggENQCBFhBfXk4OAQQQAABBBBAAAEEEEAAAQQQQAABAizaAAIIIIAAAggggAACCCCAAAIIIIBAUAsQYAX15eHgEEAAAQQQQAABBBBAAAEEEEAAAQQIsGgDCCCAAAIIIIAAAggggAACCCCAAAJBLUCAFdSXh4NDAAEEEEDA/wJnz12QsDZD5OKlyzJ/Ym+5956M/t8JW0QAAQQQQAABBBBAwI8CBFh+xGRTCCCAAAIIBIPAirXbJFP6tPJcicddHs7eA99Jw47Dzc9G9m0pVcoVD4bDvmPH4M3njh0IO0IAAQQQQAABBBCwFiDAsqaiIgIIIIAAAsEvcOHiZSlRra1Ur/iMDOjayOUBn79wSRp1GiEXLl6SOeN6SpZM6YL/xPx0hDY+ftoVm0EAAQQQQAABBBDwowABlh8x2RQCCCCAAAKBFtj0yefSsd8kqVP1ObcBVqCPMZD7xyeQ+uwbAQQQQAABBBCIvQABVuzt+CQCCCCAAAJBJXD16jXpPmS6bPx4LwGWiyuDT1A1Vw4GAQQQQAABBBCIkQABVoy4qIwAAggggEBwCix4e4O8ufh9OfH3GZcHmDJFMtn1/jTzM61TqkZH89/vzh0qeR64L/wzzs8ezJlN1sx73dSdveQD2bpjvxw9/rekTJ5M8uTKJrWqPCcvlH3KfO7mzZuy+sMd8u767fLDoT/k/PmLkjFDWnmqcD5pHlZFctyXxSPakWMnZe6y9bJ995dy9K+/5a677pLs2TJL2ZJFpH7N5yVVyuQuP//zb0dk0cqNsueLb+Xw0RNy/cYNyZg+jWTNnN7sWz//cO7s5rMx8XF29s0Pv8q6LbtE5wz75fejcu7CRUmW9G7JleNeqVT6CalXvZwkTnRXtGP7YPMu6T5kmtR7qaz07VRfvv7+F5m7bJ3s+eI7OX32nKRPm0oez59HGtapII/le9B8/tz5i7LonU3y4bbd8vufx+X69ety372ZpczThaRpvcouDZz9hNV4Xnp3CJPvfvpd5i1bL7v3fyMnT52RFCmSmfOvXrGkvFDuKUmQIEFwNl6OCgEEEEAAAQQQsBAgwLJAogoCCCCAAALBLtB/9Bw5fOSEfP/z7/L36X8kc8a0kiv7veGHnTzZ3TLp9VuhlU2ApcHM0ukDpFnX0XLqzD+SOHEiSZwokZk3yykNa1eQjs1rSZte4+Wzz782f61Bma5ueP36DfPn5MmSyvyJveSRPDlcEuqQvh5DpsvlK1fNzzOkSy3aU0pXStSSNUsGmTm6m+TKnjXS5zW86TVsply7ft38feqUySVBwgRy5uz58HoaDi2e2s/8OSY+Wn/91t3SddDU8G2lTZPShFd/nTgVfm5PFHpYZo3pLonuihxiOcGS/rxm5VLSZ8Sb5jj1Gly7fkOu/Huu+rkxA1pL3lz3S/Nuo00IpyGTGv7z7/nrAei5L5nW3/x9xOLs59mnHpNKZZ6QfiPnmP0kSZJY7k6SONI2NAgbN7CtuY4UBBBAAAEEEEAgLgoQYMXFq8YxI4AAAggg4EagU//JXocQ2gRYuvk0qVPI/Vkzy2vtX5HH8uWWhAkTyJG//pbhkxbK5k/2mSMoXDCv7P/qB2lVv5rUq172VgB17bp8sutL6Tdqtpw+c04KFcgjCyf3iXbEB7/5WcLaDTWB0CvVy0rL+tVMDyot2vup/+i5pvdS9mxZ5J3ZQyRZ0iTmZxrulK7VSS5euiJhNcqZz+l+tVy6fMV8Ro+veNH88swTBSPt18ZHP6A9onQusUplnpRSxR+TTBnSmu3ouc1btk4mzHrb/Hl47+ZSrfzTkfbhBEt6vNdv3JTyzxaVto2rm15lN27clP99/4sJtX765bCkS5NK0qVJKSdPnZVe7cOk3LNFzXlqULhs9VYZO2O56eHW4tWq0rFZTZf7SZE8qTlvXXWyXeMakjfXrR51ep2155f2ytLSoHYF6dm2Hr87CCCAAAIIIIBAnBQgwIqTl42DRgABBBBAwLWATUBjG2BpmPT+ghHRev5oWFKhXvfw4Yrtm9SQVg2qRTugt9d+JAPGzDV/v2P1ZNFeTBFLreYDTFBV5fniMrJPy2if17Cs8qs9TY+l19q9IvVrlTd1Ptv3tTTtMkrSpEohO9ZMjtHQOBsfm7bVovsY2bHnKxNwjenf2mWwpH+pvaOmjegcbZN63nr+Tpk/sbcUeTRvtHo9h86QtZs+ldwPZJPVc193ux8N62aN7ubSYuz05TJn6QcmgNy4bKzckym9zSlSBwEEEEAAAQQQCCoBAqyguhwcDAIIIIAAAr4J2AQ0tgGWzl/VqXktlwfUZeAU+XDbHjMH1PbVk6OFXPohnduq3MtdzecXTekrj+fPHb6tg98ekrqtBpk/b317ghny6Kp0GzzNzEOl4Y6GPFqcz+q+1y0ebea8si02PjbbmjZ/tUyes8pl7zKnB5ZuZ9aYblKiaAGXm3zmxfZmeGbBR3LJ0mn9XdbRucV6D59lnL/YNDtSnYj7mTGqa7TeZk7lCxcvS6kaHUT/v1url6Vx3Uo2p0gdBBBAAAEEEEAgqAQIsILqcnAwCCCAAAII+CZgE9DYBliTh3WU0iUKuTygkVOWyPwVH8pDD95vhve5KjpcrmCZxuZHOo/V08X+C3K0R5D2DNLhgesWjXR70hoSaVikva12vjfF1NPtVm/aV348dFiyZEonXVrUkQrPFbOa38nGx+YKLFu9RQaPny/58uaUFTMHug2WdOL8qHNXOZVrNusv3/74m7xa83kzfNBVcXqb6c++2PhmpHOMGGDt/mC66FBCd0XnKfvo0wNSvlRRGT+onc0pUgcBBBBAAAEEEAgqAQKsoLocHAwCCCCAAAK+CdgENLYB1rIZA6TAQw+4PKDRU5fKvOXr5aki+WT22B5uDzr/c43Mz6aP7Coln/xvPqqBY+bJirXbYnSy/9s2L7y+Di/s3H+S6Y2lReeSqlz2KalRuWT4yoOuNm7j43zuk10HZePHe+Tr73+VP4+eMPNS6RxYEYunAEvnstq7fqbbc6zdYqCZr6tD05rSsn5Vl/V27/9WGnceYX62b8MsMzm7U5wASyeH37NuhkdLJ3D01NsrRheDyggggAACCCCAwB0WIMC6w+DsDgEEEEAAgdspYBPQ2AZY784dKnkeuDUheNTiBFjaq0p7V7kr7gIsZ2ig9k7Kdk9GK5KoPb20J5auYrh41SbZ88W34dvQSeM7t6jtck4pGx+deL5j/0my98B3ZpsP5rjXhGLp06WWJP+u4nfg65/Mzz0FWDoJ/s41t3qNuSpOgKXDNHW4pqtiE2BF7J3mbl8TZ6+UGQveczmXlhU+lRBAAAEEEEAAgQALEGAF+AKwewQQQAABBPwpYBPQBEOA1W/UHHnng4+99uCytfnjyHHRSeOXr9kqZ/45bz42sFsjqV3luUibsPFp33eibNm+T9KnTSUTBrd3GYTNWrTWrEQYDAFWkiSJZf+GWR6phk9aJAtXbpRH8z0oS6b2s2WlHgIIIIAAAgggEDQCBFhBcyk4EAQQQAABBHwXsAlogiHAciZBz5QhrWxbOcH3E/93C/+cuyD9R8+RDR/tlaR3J5HNy8dFWv3Qm49Oql7ypQ5y8+ZNGdy9idR84VmXx6bhlYZYwRBg6QFuXz3JDKN0V1r2GCvbdx9kDiy/tTQ2hAACCCCAAAJ3WoAA606Lsz8EEEAAAQRuo4CzOmD1SiVlaM+mLvcUDAHWvoPfS/32w8zxLZzcx6zm569y9eo1KV61jVy8dEXeHNNdihfNH75pbz46J5UO7dOyfMZAyf9QTpeHpfNS6fC+YAmwJg7pIGVLFnZ5rOfOX5Rnq3eQy1euSvfWdaXRyxX9Rc12EEAAAQQQQACBOyZAgHXHqNkRAggggAACt19g0Li3zDA6T0PFgiHAUonqTfrK9z//YUKg+RN7i0567o+iQc1TVdrIlStXZd6E16TY4w+Hb9abjw5FrFCvu6k/dkAbqVj6iWiH9One/0mzbqPN3wdLgFW4YF55641ekjBhgmjH68xXpj/btGycWbmRggACCCCAAAIIxDUBAqy4dsU4XgQQQAABBDwIrNmwQ3oNuzUf0qBujaVWlVLmv3X1vER3JZQECRJIsARYB7/5Wep3GCbaYypvrvukfdOaUrxIfhNkaQj114lTcvCbQ7Jlxz6pXOZJKfPMrR5GOnn6vGXrpcrzxaVEsQKSOmXycJFDvx2RsdOXy9ad+yVDutSyadlY0TminGLjUymsp/x2+Jhkz5ZZ3hjSwRybFl2FcNW67TJ+5nJJmyaVHDl2MigCrMSJExlD9dHJ63Nlz2qOV4dTzl7ygRnqqKVh7QrSo209fn8QQAABBBBAAIE4KUCAFScvGweNAAIIIICAawHtdVS75UD58dBhU0FXqEuePKkJrXaumSzJk93671I1OpqfR11p0NPPIu7R11UInW1pb6aug6fKmbO3Jl7XonNXXbp8JdIJjujdQqqWL2H+LmIPKP2zBlV6XqfPnjOhjRb98+RhHeXJQo9E2o6Nz449X0mb18bLtevXzWd1+7r64LETp0RXPizzdCFp16SG1GjaLygCrEfy5DBh3phpy8zcXXrNkyW921xn5xx0eOHY/m1Ewy4KAggggAACCCAQFwUIsOLiVeOYEUAAAQQQ8CBw+sw5mTTnHdm28ws5/vdpSZk8meTKca/MGdfD9EYKpgBLT+PsuQuybPUWc7zag+qf8xckSeLEkjF9GsmXN4c8V6KQlC9VLHyIoYZbq9dvl22fHpAfDv1xK6i5dl1SJE8qOe7LIiWKFpCwGuVEJ4h3Vbz56Gf+990vpufS519+Z1Y1VMPcD2STlyo+Izq/2M2bIsUqtTSuK2bemjPLKR9s3iXdh0yTNKlTyM41U9xeKZ1rS+fc6tS8ljQPq+Kyns6zpfNtadm3YZbcHaE3mbOf++/NLOsXj5KvvjskC1ZskD0HvpW/T501Id4jeXNIjcrPmh5s2vuOggACCCCAAAIIxFUBAqy4euU4bgQQQAABBBAIaQEnwNLVB3UVQgoCCCCAAAIIIBCfBQiw4vPV5dwQQAABBBBAIN4K2Pb0ircAnBgCCCCAAAIIhJQAAVZIXW5OFgEEEEAAAQTiiwABVny5kpwHAggggAACCNgIEGDZKFEHAQQQQAABBBAIMgECrCC7IBwOAggggAACCNxWAQKs28rLxhFAAAEEEEAAgdsjQIB1e1zZKgIIIIAAAggEpwABVnBeF44KAQQQQAABBBDwKECARQNBAAEEEEAAgVASIMAKpavNuSKAAAIIIIBAvBEgwIo3l5ITQQABBBBAAAELAQIsCySqIIAAAggggAACCCCAAAIIIIAAAggEToAAK3D27BkBBBBAAAEEEEAAAQQQQAABBBBAwEKAAMsCiSoIIIAAAggggAACCCCAAAIIIIAAAoETIMAKnD17RgABBBBAAAEEEEAAAQQQQAABBBCwECDAskCiCgIIIIAAAggggAACCCCAAAIIIIBA4AQIsAJnz54RQAABBBBAAAEEEEAAAQQQQAABBCwECLAskKiCAAIIIIAAAggggAACCCCAAAIIIBA4AQKswNmzZwQQQAABBBBAAAEEEEAAAQQQQAABCwECLAskqiCAAAIIIIAAAggggAACCCCAAAIIBE6AACtw9uwZAQQQQAABBBBAAAEEEEAAAQQQQMBCgADLAokqCCCAAAIIIIAAAggggAACCCCAAAKBEyDACpw9e0YAAQQQQAABBBBAAAEEEEAAAQQQsBAgwLJAogoCCCCAAAIIIIAAAggggAACCCCAQOAECLACZ8+eEUAAAQQQQAABBBBAAAEEEEAAAQQsBAiwLJCoggACCCCAAAIIIIAAAggggAACCCAQOAECrMDZs2cEEEAAAQQQQAABBBBAAAEEEEAAAQsBAiwLJKoggAACCCCAAAIIIIAAAggggAACCAROgAArcPbsGQEEEEAAAQQQQAABBBBAAAEEEEDAQoAAywKJKggggAACCCCAAAIIIIAAAggggAACgRMgwAqcPXtGAAEEEEAAAQQQQAABBBBAAAEEELAQIMCyQKIKAggggAACCCCAAAIIIIAAAggggEDgBAiwAmfPnhFAAAEEEEAAAQQQQAABBBBAAAEELAQIsCyQqIIAAggggAACCCCAAAIIIIAAAgggEDgBAqzA2bNnBBBAAAEEEEAAAQQQQAABBBBAAAELAQIsCySqIIAAAggggAACCCCAAAIIIIAAAggEToAAK3D27BkBBBBAAAEEEEAAAQQQQAABBBBAwEKAAMsCiSoIIIAAAggggAACCCCAAAIIIIAAAoETIMAKnD17RgABBBBAAAEEEEAAAQQQQAABBBCwECDAskCiCgIIIIAAAggggAACCCCAAAIIIIBA4AQIsAJnz54RQAABBBBAAAEEEEAAAQQQQAABBCwECLAskKiCAAIIIIAAAggggAACCCCAAAIIIBA4AQKswNmzZwQQQAABBBBAAAEEEEAAAQQQQAABCwECLAskqiCAAAIIIIAAAggggAACCCCAAAIIBE6AACtw9uwZAQQQQAABBBBAAAEEEEAAAQQQQMBCgADLAokqCCCAAAIIIIAAAggggAACCCCAAAKBEyDACpw9e0YAAQQQQAABBBBAAAEEEEAAAQQQsBAgwLJAogoCCCCAAAIIIIAAAggggAACCCCAQOAECLACZ8+eEUAAAQQQQAABBBBAAAEEEEAAAQQsBAiwLJCoggACCCCAAAIIIIAAAggggAACCCAQOAECrMDZs2cEEEAAAQQQQAABBBBAAAEEEEAAAQsBAiwLJKoggAACCCCAAAIIIIAAAggggAACCAROgAArcPbsGQEEEEAAAQQQQAABBBBAAAEEEEDAQoAAywKJKggggAACCCCAAAIIIIAAAggggAACgRMgwAqcPXtGAAEEEEAAAQQQQAABBBBAAAEEELAQIMCyQKIKAggggAACCCCAAAIIIIAAAggggEDgBAiwAmfPnhFAAAEEEEAAAQQQQAABBBBAAAEELAQIsCyQqIIAAggggAACCCCAAAIIIIAAAgggEDgBAqzA2bNnBBBAAAEEEEAAAQQQQAABBBBAAAELAQIsCySqIIAAAggggAACCCCAAAIIIIAAAggEToAAK3D27BkBBBBAAAEEEEAAAQQQQAABBBBAwEKAAMsCiSoIIIAAAggggAACCCCAAAIIIIAAAoETIMAKnD17RgABBBBAAAEEEEAAAQQQQAABBBCwECDAskCiCgIIIIAAAggggAACCCCAAAIIIIBA4AQIsAJnz54RQAABBBBAAAEEEEAAAQQQQAABBCwECLAskKiCAAIIIIAAAggggAACCCCAAAIIIBA4AQKswNmzZwQQQAABBBBAAAEEEEAAAQQQQAABCwECLAskqiCAAAIIIIAAAggggAACCCCAAAIIBE6AACtw9uwZAQQQQAABBBBAAAEEEEAAAQQQQMBCgADLAokqCCCAAAIIIIAAAggggAACCCCAAAKBEyDACpw9e0YAAQQQQAABBBBAAAEEEEAAAQQQsBAgwLJAogoCCCCAAAIIIIAAAggggAACCCCAQOAECLACZ8+eEUAAAQQQQAABBBBAAAEEEEAAAQQsBAiwLJCoggACCCCAAAIIIIAAAggggAACCCAQOAECrMDZs2cEEEAAAQQQQAABBBBAAAEEEEAAAQsBAiwLJKoggAACCCCAAAIIIIAAAggggAACCAROgAArcPbsGQEEEEAAAQQQQAABBBBAAAEEEEDAQoAAywKJKggggAACCCCAAO09OBkAAABnSURBVAIIIIAAAggggAACgRMgwAqcPXtGAAEEEEAAAQQQQAABBBBAAAEEELAQIMCyQKIKAggggAACCCCAAAIIIIAAAggggEDgBAiwAmfPnhFAAAEEEEAAAQQQQAABBBBAAAEELAT+Dz838y2wJQPCAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdB3gURQPG8ffuUqmhd6QpKqCACHaRYkVR7GLvomJDRVSsWLFh772LFT87YhdFERAsgCACIqGXJCS52++ZTS6XkHZ3ubJ399/n4QFys7MzvxmQvM7MuizLssSFAAIIIIAAAggggAACCCCAAAIIIICAQwVcBFgOHRmahQACCCCAAAIIIIAAAggggAACCCBgCxBgMREQQAABBBBAAAEEEEAAAQQQQAABBBwtQIDl6OGhcQgggAACCCCAAAIIIIAAAggggAACBFjMAQQQQAABBBBAAAEEEEAAAQQQQAABRwsQYDl6eGgcAggggAACCCCAAAIIIIAAAggggAABFnMAAQQQQAABBBBAAAEEEEAAAQQQQMDRAgRYjh4eGocAAggggAACCCCAAAIIIIAAAgggQIDFHEAAAQQQQAABBBBAAAEEEEAAAQQQcLQAAZajh4fGIYAAAggggAACCCCAAAIIIIAAAggQYDEHEEAAAQQQQAABBBBAAAEEEEAAAQQcLUCA5ejhoXEIIIAAAggggAACCCCAAAIIIIAAAgRYzAEEEEAAAQQQQAABBBBAAAEEEEAAAUcLEGA5enhoHAIIIIAAAggggAACCCCAAAIIIIAAARZzAAEEEEAAAQQQQAABBBBAAAEEEEDA0QIEWI4eHhqHAAIIIIAAAggggAACCCCAAAIIIECAxRxAAAEEEEAAAQQQQAABBBBAAAEEEHC0AAGWo4eHxiGAAAIIIIAAAggggAACCCCAAAIIEGAxBxBAAAEEEEAAAQQQQAABBBBAAAEEHC1AgOXo4aFxCCCAAAIIIIAAAggggAACCCCAAAIEWMwBBBBAAAEEEEAAAQQQQAABBBBAAAFHCxBgOXp4aBwCCCCAAAIIIIAAAggggAACCCCAAAEWcwABBBBAAAEEEEAAAQQQQAABBBBAwNECBFiOHh4ahwACCCCAAAIIIIAAAggggAACCCBAgMUcQAABBBBAAAEEEEAAAQQQQAABBBBwtAABlqOHh8YhgAACCCCAAAIIIIAAAggggAACCBBgMQcQQAABBBBAAAEEEEAAAQQQQAABBBwtQIDl6OGhcQgggAACCCCAAAIIIIAAAggggAACBFjMAQQQQAABBBBAAAEEEEAAAQQQQAABRwsQYDl6eGgcAggggAACCCCAAAIIIIAAAggggAABFnMAAQQQQAABBBBAAAEEEEAAAQQQQMDRAgRYjh4eGocAAggggAACCCCAAAIIIIAAAgggQIDFHEAAAQQQQAABBBBAAAEEEEAAAQQQcLQAAZajh4fGIYAAAggggAACCCCAAAIIIIAAAggQYDEHEEAAAQQQQAABBBBAAAEEEEAAAQQcLUCA5ejhoXEIIIAAAggggAACCCCAAAIIIIAAAgRYzAEEEEAAAQQQQAABBBBAAAEEEEAAAUcLEGA5enhoHAIIIIAAAggggAACCCCAAAIIIIAAARZzAAEEEEAAAQQQQAABBBBAAAEEEEDA0QIEWI4eHhqHAAIIIIAAAggggAACCCCAAAIIIECAxRxAAAEEEEAAAQQQQAABBBBAAAEEEHC0AAGWo4eHxiGAAAIIIIAAAggggAACCCCAAAIIEGAxBxBAAAEEEEAAAQQQQAABBBBAAAEEHC1AgOXo4aFxCCCAAAIIIIAAAggggAACCCCAAAIEWMwBBBBAAAEEEEAAAQQQQAABBBBAAAFHCxBgOXp4aBwCCCCAAAIIIIAAAggggAACCCCAAAEWcwABBBBAAAEEEEAAAQQQQAABBBBAwNECBFiOHh4ahwACCCCAAAIIIIAAAggggAACCCBAgMUcQAABBBBAAAEEEEAAAQQQQAABBBBwtAABlqOHh8YhgAACCCCAAAIIIIAAAggggAACCBBgMQcQQAABBBBAAAEEEEAAAQQQQAABBBwtQIDl6OGhcQgggAACCCCAAAIIIIAAAggggAACBFjMAQQQQAABBBBAAAEEEEAAAQQQQAABRwsQYDl6eGgcAggggAACCCCAAAIIIIAAAggggAABFnMAAQQQQAABBBBAAAEEEEAAAQQQQMDRAgRYjh4eGocAAggggAACCCCAAAIIIIAAAgggQIDFHEAAAQQQQAABBBBAAAEEEEAAAQQQcLQAAZajh4fGIYAAAggggAACCCCAAAIIIIAAAggQYDEHEEAAAQQQQAABBBBAAAEEEEAAAQQcLUCA5ejhoXEIIIAAAggggAACCCCAAAIIIIAAAgRYzAEEEEAAAQQQQAABBBBAAAEEEEAAAUcLEGA5enhoHAIIIIAAAggggAACCCCAAAIIIIAAARZzAAEEEEAAAQQQQAABBBBAAAEEEEDA0QIEWI4eHhqHAAIIIIAAAggggAACCCCAAAIIIECAxRxAAAEEEEAAAQQQQAABBBBAAAEEEHC0AAGWo4eHxiGAAAIIIIAAAggggAACCCCAAAIIEGAxBxBAAAEEEEAAAQQQQAABBBBAAAEEHC1AgOXo4aFxCCCAAAIIIIAAAggggAACCCCAAAIEWMwBBBBAAAEEEEAAAQQQQAABBBBAAAFHCxBgOXp4aBwCCCCAAAIIIIAAAggggAACCCCAAAEWcwABBBBAAAEEEEAAAQQQQAABBBBAwNECBFiOHh4ahwACCCCAAAIIIIAAAggggAACCCBAgMUcQAABBBBAAAEEEEAAAQQQQAABBBBwtAABlqOHh8YhgAACCCCAAAIIIIAAAggggAACCBBgMQcQQAABBBBAAAEEEEAAAQQQQAABBBwtQIDl6OGhcQgggAACCCCAAAIIIIAAAggggAACBFjMAQQQQAABBBBAAAEEEEAAAQQQQAABRwsQYDl6eGgcAggggAACCCCAAAIIIIAAAggggAABFnMAAQQQQAABBBBAAAEEEEAAAQQQQMDRAgRYjh4eGocAAggggAACCCCAAAIIIIAAAgggQIDFHEAAAQQQQAABBBBAAAEEEEAAAQQQcLQAAZajh4fGIYAAAggggAACCCCAAAIIIIAAAggQYDEHEEAAAQQQQAABBBBAAAEEEEAAAQQcLUCA5ejhoXEIIIAAAggggAACCCCAAAIIIIAAAgRYzAEEEEAAAQQQQAABBBBAAAEEEEAAAUcLEGA5enhoHAIIIIAAAggggAACCCCAAAIIIIAAARZzAAEEEEAAAQQQQAABBBBAAAEEEEDA0QIEWI4eHhqHAAIIIIAAAggggAACCCCAAAIIIECAxRxAAAEEEEAAAQQQQAABBBBAAAEEEHC0AAGWo4eHxiGAAAIIIIAAAggggAACCCCAAAIIEGAxBxBAAAEEEEAAAQQQQAABBBBAAAEEHC1AgOXo4aFxCCCAAAIIIIAAAggggAACCCCAAAIEWMwBBBBAAAEEEEAAAQQQQAABBBBAAAFHCxBgOXp4aBwCCCCAAAIIIIAAAggggAACCCCAAAEWcwABBBBAAAEEEEAAAQQQQAABBBBAwNECBFiOHh4ahwACCCCAAAIIIIAAAggggAACCCBAgMUcQAABBBBAAAEEEEAAAQQQQAABBBBwtAABlqOHh8YhgAACCCCAAAIIIIAAAggggAACCBBgMQcQQAABBBBAAAEEEEAAAQQQQAABBBwtQIDl6OGhcQgggAACCCCAAAIIIIAAAggggAACBFjMAQQQQAABBBBAAAEEEEAAAQQQQAABRwsQYDl6eGgcAggggAACCCCAAAIIIIAAAggggAABFnMAAQQQQAABBBBAAAEEEEAAAQQQQMDRAgRYjh4eGocAAggggAACCCCAAAIIIIAAAgggQIDFHEAAAQQQQAABBBBAAAEEEEAAAQQQcLQAAZajh4fGIYAAAggggAACCCCAAAIIIIAAAggQYDEHEEAAAQQQQAABBBBAAAEEEEAAAQQcLUCA5ejhoXEIIIAAAggggAACCCCAAAIIIIAAAgRYzAEEEEAAAQQQQAABBBBAAAEEEEAAAUcLEGA5enhoHAIIIIAAAggggAACCCCAAAIIIIAAARZzAAEEEEAAAQQQQAABBBBAAAEEEEDA0QIEWI4eHhqHAAIIIIAAAggggAACCCCAAAIIIECAxRxAAAEEEEAAAQQQQAABBBBAAAEEEHC0AAGWo4eHxiGAAAIIIIAAAggggAACCCCAAAIIEGAxBxBAAAEEEEAAAQQQQAABBBBAAAEEHC1AgOXo4aFxCCCAAAIIIIAAAggggAACCCCAAAIEWMwBBBBAAAEEEEAAAQQQQAABBBBAAAFHCxBgOXp4aBwCCCCAAAIIIIAAAggggAACCCCAAAEWcwABBBBAAAEEEEAAAQQQQAABBBBAwNECBFiOHh4ahwACCCCAAAIIIIAAAggggAACCCBAgMUciKvA8tX5VT6/acMMZWV4tGZjoQoKvXFtIw9HwAi0aZotl0v6d02+LAsTBJwhUC/To5wGGcrb4tW6TYXOaBStQKCcQNtm2fbvqvvvPVgIxFMgp3666mWl2X9/mr9HuRAIR8D/91w493IPAgiEJkCAFZoXpSMsQIAVYVCqi5oAAVbUaKm4DgIEWHXA49aYCBBgxYSZh4QpQIAVJhy3VRAgwGJCIBA7AQKs2FnzpCoECLCYFokiQICVKCOVWu0kwEqt8U7E3hJgJeKopU6bCbBSZ6yj2VMCrGjqUjcCFQUIsJgRcRUgwIorPw8PQYAAKwQsisZMgAArZtQ8KEwBAqww4bgtJgIEWDFhTvqHEGAl/RDTQQcJEGA5aDBSsSkEWKk46onZZwKsxBy3ZG81AVayj3Di948AK/HHMJl7QICVzKMbu74RYMXOmichQIDFHIirAAFWXPl5eAgCBFghYFE0ZgIEWDGj5kFhChBghQnHbTERIMCKCXPSP4QAK+mHmA46SIAAy0GDkYpNIcBKxVFPzD4TYCXmuCV7qwmwkn2EE79/BFiJP4bJ3AMCrGQe3dj1jQArdtY8CQECLOZAXAUIsOLKz8NDECDACgGLojETIMCKGTUPClOAACtMOG6LiQABVkyYk/4hBFhJP8R00EECBFgOGoxUbAoBViqOemL2mQArMcct2VtNgJXsI5z4/SPASvwxTOYeEGAl8+jGrm8EWLGz5kkIEGAxB+IqQIAVV34eHoIAAVYIWBSNmQABVsyoeVCYAgRYYcJxW0wECLBiwpz0DyHASvohpoMOEiDActBgpGJTCLBScdQTs88EWIk5bsneagKsZB/hxO8fAVbij2Ey94AAK5lHN3Z9I8CKnTVPQoAAizkQVwECrLjy8/AQBAiwQsCiaMwECLBiRs2DwhQgwAoTjttiIkCAFRPmpH8IAVbSDzEddJAAAZaDBiMVm0KAlYqjnph9JsBKzHFL9lYTYCX7CCd+/wiwEn8Mk7kHBFjJPLqx6xsBVuyseRICBFjMgbgKEGDFlZ+HhyBAgBUCFkVjJkCAFTNqHhSmAAFWmHDcFhMBAqyYMCf9Qwiwkn6I6aCDBAiwHDQYqdgUAqxUHPXE7DMBVmKOW7K3mgAr2Uc48ftHgJX4Y5jMPSDASubRjV3fCLBiZ82TECDAYg7EVYAAK678PDwEAQKsELAoGjMBAqyYUfOgMAUIsMKE47aYCBBgxYQ56R9CgJW4Q3zISWO1+J8VGjf6RI0cMSRxO5JCLSfASqHBdmJXCbCcOCq0qSoBAizmhRMFCLCcOCq0qbwAARbzwckCBFhOHp3EaRsBVuKM1dYtJcBKvLEjwEq8MUuqFhNgJdVwJnVnCLCSengTtnMEWAk7dCnTcAKslBnqhOwoAVZCDpvjGk2A5bghCbpBBFhBUzmmIAGWY4YiNRtCgJWa456IvSbASsRRS/42E2Al/xgneg8JsBJ9BJO7/QRYyT2+seodAVaspCP/HAKsyJtGu0YCrGgLU3+NAgRYTJBEESDASpSRSq12EmCl1ngnYm9TPcCyvJKvyCVfsflZ8hW7ZBVb9u+tYslb+pn9NX+50nvszwt9JffYXzP3l/4oUunXSusu/bq5J/Acqe8YrzKbWYk4dWLSZgKsmDAn/UMIsBJ3iAmwEm/sCLASb8ySqsUEWEk1nEndGQKspB7ehO0cAVbCDl3KNDyeAZYd+nhNUOQqC3+sIslrfy0QLJmvmWDIWxoqlYRLrtLwSLKKXFvdY5WET6ZeU9a+35LlLXmOXU9RSegU76vPZV5ltyTAqm4cCLDiPUOT4/kEWIk7jgRYiTd2BFiJN2ZJ1WICrKQazqTuDAFWUg9vwnaOACthhy5lGh6vACv3J5fmv+ZJGefqOrrz6GLVb5fyDNUCEGAxNyIhEIsAa+av8/XSW5/qp9l/as3aDaqXnaXu3TrosP33tH94PO6yrpww6ibNmrdQBw0aoInjz6uxi/c+/oYef3GKWrdoqk9evUtut6usvGVZev/T7/X2R1/r9/lLtHFTnnIaN1CfntvqhCOGqH+f7SPBV6GOuX8s1ivvTNWMWX8od/VauVwutWrRVJ07ttH++/TTofvvUemZuavX6fk3PtY3P/6qpf/makthkZrlNFLfnbbV0cP2q7GdwQRYkaj/23cfVONG9e3xe+yF9zTnt7+0fuNm7T1gJz1y+6URd0zmCgmwknl0E6BvBFgJMEg00RYgwGIiOFGAAMuJo0KbygvEI8Ayq65+vs2jwg2Bb8RSdVR6ne9Vw46swKpu/AmwUvVPRmT7He0A657HXtcTL71vNzrN41GTnIZ2mFSwpdD+2m59d9Skm0erfr0s+/dvffCVrrn9SWVkpOuLN+9Towb1quywCaiGHjdG//63WmefeKguOvPIsnJ5+QW68JpJ+v6nefbXsjIz1LBBPa1dt1HFZhmrpNOPO1iXnXtMRDBNW+569DU9/coH1dZngrpbx51V4fNPvpyhsRMeK7PIzEhXenqaNm3OLyt35CH7aPylp9h2W1+1BViRqv/dZ2/Rj7/8rpvvfV6mr/5r5IghGjf6xIgYpkolBFipMtIO7ScBlkMHhmZVEiDAYlI4UYAAy4mjQpvKC8QjwFrxrVt/vRNYjRDvEXGlSe50S27zc9mvXbK/nlbydVe65Elz2b83vy4rl+62f+0xXy93v8suK3nSS79eeo/LY55Vcr8ni+CqtrEnwKpNiM+DEYhmgPXMax/qzodekQlmLh91nA4/cG9lZ2XI6/Xpi+9+0bV3PqV16zfpkMG76Y5rz7Wbm19QqH1HjNbmvAJde8nJOm74oCq7YVYDnTz6Fvuz95+/TZ06tC4rd8G4+/T5tzPVtnVzjb/kFO3Rr4e9yisvf4tefvsz3fv46/L5LF0/5lQdPWxgMEw1lnn0+fc06cnJdpkjDtpbJtjpuk1bFXt9+mf5Sn03Y6769e6unt07l9Xz85w/dcpFt9rt2G+PPrrwjBHq3rWD/fmadRv15v++1ANPvamiYq+OP3ywrrn4pEptqCnAimT95596uB569h317N5JF5w+Qr227yITEqaledSiWU6d/VKpAgKsVBptB/aVAMuBg0KTqhQgwGJiOFGAAMuJo0Kb4hlgmTOofrrNo6JNgdVXBEjMyeoECLCYG5EQiFaAtXrtBg059jIVFhbpxstPl1lJtPX10bQfdOn1D9lfnvzEjdq+W0f71zfe85xefWeqHfi8+uh1VXbzhrue0WvvTdPOO3bVSw9dW1bGBFcmwEpP89h1du1UeR/yTfc8Z2/1a9akkT599S57tVe418pV6zT02MvslV3nnHSoRp8RWAlWU52HnXq1Fi5eZodX908YbW83rMnnlYfHq9cOXSoUqSnAimT95qF77tpTD95ysb1CjCt8AQKs8O24MwICBFgRQKSKmAgQYMWEmYeEKECAFSIYxWMuEOsVWEunurXko8Dqq7R6lna5yitPRsy7zgMTQIAAKwEGKQGaGK0A66lX/qe7HnlN27Rvpf+9cHu1EvuOuEir1qzXeScP1wWnH2GX+23+3zrqrJLg6p2nJ6hb54ohlFmVtO8Ro+1zmK677FQdc2hgFdW5V96tr6bP1lHD9tUNY06r8rmLlvyrYSdfZX/21D1XakCfHcIeKf/qqyaNG+rzN+4JKuAxq6NOurBk9ZjZnmdWa1V3HT/qJs2et9A+K2zrLYjVBViRrt+smvv4lbvUNKdh2E7cWCJAgMVMiKsAAVZc+Xl4CAIEWCFgUTRmAgRYMaPmQWEKxDLAKs4vWX3lLQj8X/hOB/vUdl9fmK3ntmQXIMBK9hGOTf+iFWAFEySZHpptgGY74JC9d9F9N11Y1umjz75e8/5crFOPOdDeflj+8q+y2vqcLLMdb8Ah59nb226/5hwNG7J7lYgmAOu7/5n29r1xo0dq5IihYWOffflE+wB2c0D7bePODqoecxD6fU9Mtrc4fvLKxBrv8Zdt1aKJpr5+T4Wy1QVYka6//BbPoDpIoWoFCLCYHHEVIMCKKz8PD0GAACsELIrGTIAAK2bUPChMgVgGWH9/4NayaYHVV+kNLO0y1mufCcWFQFUCBFjMi0gIRCvAOvjEK/X30v+CbqJ5K+DT94wtK//au5/rhruftbf5TX3jngqHmF92w0P68PMfdOB+/XXXdaPK7jFv3Bt45MVBP9MUPP+0IzTqlOEh3VO+sL+fZuug2UIYzDX+zqc0+f0vtXu/Hnpi4uU13vLxFzN0yXUP2GV++fRJe2uk/6ouwIp0/ZecfbTOPOGQYLpGmVoECLCYInEVIMCKKz8PD0GAACsELIrGTIAAK2bUPChMgVgFWIUbS1ZfWcWB1VddRvjUegCrr8IcupS4jQArJYY56p2MVoDl3xrYsnmOzPa62q4e3TvrpitOLytmDnE3h7mbQ93vn3CRBu3Zx/7MrK7a+/DR9pv7Hrn9Uu09YKeye8pvDTSHupvD42u7jj1sPx1bzUHxtd1rPvf3c+wFJ+iko/YP5haNufFhfTB1ugbt1Vf33zy6xnu+mj5H5155l13mm3ceUE7jBmXlqwuwol1/UJ2kUJUCBFhMjLgKEGDFlZ+HhyBAgBUCFkVjJkCAFTNqHhSmQKwCrL/edmvFd4HVV5lNLfW93CuXc15GGKYgt0VTgAArmrqpU3e0AqwDT7jCfgNfKCuTtla/5vYn9dYHX2nw3n016aaSoOe9j7/V2FseU/Omje0tdebtgv5rRe4aDT76Uvu3z99/tfr22jbqA3nA8Zdr6b+5uviso3TWyGFBPW/Cfc/rpbc+C30F1idPVDhjq7oAK9r1B9VJChFgMQecJ0CA5bwxoUVVCxBgMTOcKECA5cRRoU3lBWIRYG1ZL/10q0eyAquvtj3WqxZ9LQYDgRoFCLCYIJEQiFaAdfolt2v6zN9Ul/OTZs1bqBNG3WRvm/vy7fvVqEE9+c/WOu24gzTm3GMrEJizrfoffK795sPrx5yqo4cFDnePhFVVdZxy0a2aMesPHXHQ3rr5yjOCeoz/gPtgzsB6/MUpuvfxN9SiWY6mTb63Qv3VBVjRrj+oTlKIAIs54DwBAiznjQktIsBiDiSOAAFW4oxVqrY0FgHW/Fc9yv05EF5lt7DU+1JWX6XqnAul3wRYoWhRtjqBaAVYjzz3ru5/6k07dPrs9XtULzszrEE4/LRrNH/RUjscMlvu9jl8tIq93irfTmgecMald+j7n+cFtboprAZtdZMJl0zIVNWKsOrqX7h4mQ479Wr746reslj+vpHn36xf5i7QwYMH6M5rzwsqwIp2/ZFwS9U62EKYqiPvkH4TYDlkIGhGrQKswKqViAJxECDAigM6jwxJINoBVn6uNPOuiquvup/kU7OenH0V0kClaGECrBQd+Ah3O1oBljlQfehxY1RUVGyfMTX+kpPDavmLb36iWya9qIF79Nb+++6qcbc+rh7dO+m1R6+vsr5Pvpyhi8eXHHo+cfx5OmjQgLCeG+xN5qB6c5C7uUI57Pz4UTdp9ryFdr8emHCRXK7A/8jwP3vq1z/rwmsm2b995t6x2rX39kEFWKZQtOsP1odyFQUIsJgRcRUgwIorPw8PQYAAKwQsisZMgAArZtQ8KEyBaAdYvz/r1pp5gfNb6rW21PsSb5it5bZUEyDASrURj05/oxVgmdY+/8bHuu2Bl+yGm9VTZ51wiMxh7ebcqk2b87Vi5Rp7m+HUb37WbePOtrfJbX2t37jZfrNgmset/n120LRvf9G40Sdq5Igh1YJcdO39+vSrn+R2u3TqMQfpqGH7apv2rWRZltau36Rl/+bqq+mz9cfCf3TfTRfWGfb2B1/Wc69/ZNdz6rEH6sQRQ9WmVTN5vT6tXL1OP836Qxs25emEIwaXPWvBomU66uzr7IBvyN672OGXOXjeXOag+rc//EYTH35FWwqLdNj+e+rWcWdVamd1WwhNwWjXX2e0FK2AACtFB94p3SbAcspI0I7aBAiwahPi83gIEGDFQ51nhiIQzQBr01Jp9v1pFZqz45le5WzL2VehjFEqlyXASuXRj1zfoxlgmVaa85jueex1+Xwlf7eZlUbp6Wn2OVXlr89ev1utWzStsmNXTnhUUz75zv7MnIc1bfJ9Fd7Gt/VN5g2F5gB486Y//5Xm8di/NNsP/VeHti314Ut31BnT1Hn9xGfsA+f9V0ZGuh1OmdDMXOYtiuZtiuWvH2b+rkuvf1Br12+0v2zeMGjenLh6zYaydpoVZBPGnlnlGxVrCrBMfdGuv85wKVgBAVYKDrqTukyA5aTRoC01CRBgMT+cKECA5cRRoU3lBaIZYM152KONiwNbRhp2stTrPFZfMQODFyDACt6KktULRDvAMk9esuw/vfjmp/bZVMtXrFbBli3KysxU29bN1LtHNw3dp5/23LVnldvozP3mkHRzWLq5yr+RsLZxNau73vzfl5o5Z75WrVlvh0IN6merY7tW6t97ew0buoe269K+tmqC/twERq9P+bzkeWs3KD0tzT4ba6cdu+iYQ/fTLjttV6kuE169MeULma2PS5fnKq9gi5rlNFLvnt105CH7aI9+PYlCgzoAACAASURBVKt9fm0Blrkx2vUHjUNBW4AAi4kQVwECrLjy8/AQBAiwQsCiaMwECLBiRs2DwhSIVoC1fr5Lc58oWQ3gv3pdUKyGHcJsKLelpAABVkoOe8Q7HYsAq66NNlvqBhxynr2Ky6xiMquZuBBIRAECrEQctSRqMwFWEg1mkneFACvJBzhBu0eAlaADl0LNjlaANWuSR5uXBVZf5WxvacfTWH2VQlMrIl0lwIoIY8pXkggB1uT3v9T4O59Sk8YN9fnke+1thFwIJKIAAVYijloStZkAK4kGM8m7QoCV5AOcoN0jwErQgUuhZkcjwFr9q1t/PB84uN1w7nxxseq3SSFYuhoRAQKsiDCmfCWJEGAde84N+vWPRTrl6AN0xfnHR3zMzAqvsy+/K6R6zdsDzzzhkJDuoTACBFjMgbgKEGDFlZ+HhyBAgBUCFkVjJkCAFTNqHhSmQKQDLMsnzbzLo4JVgdVXzXay1H0kq6/CHKKUvo0AK6WHP2Kdd3qANfWbmbrw6vvsNxdOee42dWzXMmJ991dk3hC4+7BRIdU74uB9dNMVp4d0D4URIMBiDsRVgAArrvw8PAQBAqwQsCgaMwECrJhR86AwBSIdYOX+5NL818ptfXFZ6nu5V1nNwmwgt6W0AAFWSg9/xDrvtADLvLXPvKnQXFO//llX3fq4Nm3O1wlHDNbVF50UsX5TEQLxECDAioc6zywTIMBiMiSKAAFWooxUarWTACu1xjsRexvJAMvnlX6+zaPCDYHVVy13tdTtKFZfJeLccEKbCbCcMAqJ3wanBVgnXjBB/yxfqbz8LTJb+8zVa4cuevqescrOykh8cHqQ0gIEWCk9/PHvPAFW/MeAFgQnQIAVnBOlYitAgBVbb54WukAkA6x/v3Vr0TuBs69cbkt9x3qV2Tj0dnEHAkaAAIt5EAkBpwVYY295TF9Pn6NNm/PUtnVzDRu6h844/mBlZqRHorvUgUBcBQiw4srPwwmwmAOJIkCAlSgjlVrtJMBKrfFOxN5GKsDyFUkzJnhUnB9YfdVmD586D/clIgttdogAAZZDBiLBm+G0ACvBOWk+AjUKEGAxQeIqQIAVV34eHoIAAVYIWBSNmQABVsyoeVCYApEKsJZOdWvJR+VWX6VZ6jfOq/T6YTaM2xBgBRZzIEICBFgRgqQaBIIQIMAKAoki0RMgwIqeLTVHVoAAK7Ke1BYZAQKsyDhSS/QEIhFgFedLP93mkbcgsPqq/X4+dTyQ1VfRG7nUqJkVWKkxztHuJQFWtIWpH4GAAAEWsyGuAgRYceXn4SEIEGCFgEXRmAkQYMWMmgeFKRCJAGvJxy4t/Szw5kFPpqV+Y33y1LPCbBW3IVAiQIDFTIiEAAFWJBSpA4HgBAiwgnOiVJQECLCiBEu1ERcgwIo4KRVGQIAAKwKIVBFVgUgEWGb11Za1gdVX2xxoqd1+vHkwqgOXIpUTYKXIQEe5mwRYUQamegTKCRBgMR3iKkCAFVd+Hh6CAAFWCFgUjZkAAVbMqHlQmAJ1DbA2LXNp9qRyq6+yLO16jVduXqYV5ohwW3kBAizmQyQECLAioUgdCAQnQIAVnBOloiRAgBUlWKqNuAABVsRJqTACAgRYEUCkiqgK1DXAWvy+W8u/DBze3rKfpW5Hs/oqqoOWQpUTYKXQYEexqwRYUcSlagS2EiDAkmRZlvILtijN41FGBv9LL5Z/SgiwYqnNs+oiQIBVFz3ujZYAAVa0ZKk3UgJ1DbBm3OJR4frA9sEdT/cqpztnX0VqfFK9HgKsVJ8Bkek/AVZkHKkFgWAEkjLAGnDIeerfe3vdP+GiYAxUVFSsfgeeo5127KLn7786qHsoFBkBAqzIOFJL9AUIsKJvzBNCFyDACt2MO2IrUJcAa+MSl+Y8WG77YLal/uO9cgUWZMW2Mzwt6QQIsJJuSOPSIQKsuLDz0BQVSMoAq8fAU7Vb3x315N1XBD2sg4++1F6F9e17DwZ9DwXrLkCAVXdDaoiNAAFWbJx5SmgCBFiheVE69gJ1CbAWv+fW8q8DaVWr/j51PdIX+07wxKQVIMBK2qGNaccIsGLKzcNSXIAAq3QC7D5slPLyt2jWZ0+m+JSIbfcJsGLrzdPCFyDACt+OO6MnQIAVPVtqjoxAuAGWZUkzbvaoaFO57YNneZXTje2DkRkZajECBFjMg0gIEGBFQpE6EAhOgABL0mvvfq4b7n5WbVo21aev3R2cHKUiIkCAFRFGKomBAAFWDJB5RMgCBFghk3FDjAXCDbA2LHLp10e22j54nVeuQJ4V457wuGQUIMBKxlGNfZ8IsGJvzhNTVyApAqxp3/6iL777pWwUX3tvmlo2z9HA3XvXOLJFxV4t/Hu5Zs9baJc7bvggXXvJyak7G+LQcwKsOKDzyLAECLDCYuOmKAsQYEUZmOrrLBBugPXXO26t+DawfbD17j51OZztg3UeECqoIECAxYSIhAABViQUqQOB4ASSIsB6fco0TbjvBfsw9nCvbp3b6dl7r1JO4wbhVsF9YQgQYIWBxi1xESDAigs7D61FgACLKeJ0gXACrKq2D/Y8x6tGXdg+6PTxTrT2EWAl2og5s70EWM4cF1qVnAJJEWCZocnLL9C3M+Zqyiff6ZMvZ6hpTkPtslP3GkfN7XapcaMG6tOzmw4c2F8ZGenJOcoO7hUBloMHh6ZVECDAYkI4UYAAy4mjQpvKC4QTYK1f6NLcxwLbB9MbWOp3DdsHmVmRFyDAirxpKtZIgJWKo06f4yWQNAGWH9Cswhpy7GXq1qldSG8hjNcApPpzCbBSfQYkTv8JsBJnrFKppQRYqTTaidnXcAKshW+69d/0wPbBNnv51PlQtg8m5gxwdqsJsJw9PonSOgIsZ4zUkmX/6aCRV1ZqjFmk0qhBPXXq0Fp79OupYw4bqCaNG1Yqd+XNj2rKp99V+Hp6mkeNGtZX105tNWjPvjr60IHKysyoscPmeKMPp/2gX35doNVr16vY61PTxg21Y/dOGrL3Lho2ZHd5PIH/xpnK1m/crL2GX2DX++27D6phg3pVPuPCayZp6tc/a/d+PfTExMurbcfBJ16pv5f+p6fuuVID+uxgl9vvqIu1ctU6Ddqrr+6/eXSNfXjrg690ze1P6sLTR+jckw9zxgCXtiLpAizTr+ff+FjzFy3VjZef7ihsGlNZgACLWZEoAgRYiTJSqdVOAqzUGu9E7G2oAZblk3640SNvfuC09l6jvGq4DdsHE3H8nd5mAiynj1BitI8Ayxnj5A+wsrMy1LfXdmWN2lJYpJWr1mrJspX21xo3rK/HJ16uHt07VWi4P8AyRws1b9LY/qywqEgrctdq+YpV9u+3ad9KT98zVq1aNKnU6VVr1uuS6x7Uz3P+tD+rXy9L7Vo3V1pamv1887m5unRso0k3j1bnjm0q1HHcuTdozu+L7HDJhExbX2ahzh6Hna+8/C1K83j09Tv3Vxl0/Ze7VoOOvsQO2r5778GyXWb+AMvUe+e15+ngwQOqHTgCLGfMaVrhQAECLAcOCk2qUoAAi4nhRAECLCeOCm0qLxBqgLVuvkvznghsH8xobKnfOC+oCERFgAArKqwpVykBljOG3B9gmZVW7z9/W6VGmRBq/MSn9d2Mudph2230xuM3VCjjD7CqCncWLl6my2542F4kM3CP3nrwlosr3LtxU56OOed6OyTr2qmdLj/vWHuVlAma/NcfC//RpCcny6zQMiHaq49epw5tW5Z9ft8Tk/XYC+9p5IihGjd6ZKX2f/3DHJ1zxV32UUlr1m2sNoR67+NvNfaWx7RX/1569I7LyuoxAZZpZ35BoX3u93vP3mrXVdVFgBXjOT3z1/la/M8K7b/vrnbyWdv11fTZWrTkX+23Z58Kk6i2+/i87gIEWHU3pIbYCBBgxcaZp4QmQIAVmhelYy8QaoC14A2PVv4YWH3Vdm+fOg1j+2DsRy41nkiAlRrjHO1eEmBFWzi4+msLsEwtJvjZ54jRsizLXsFUfithTQGWuXfh38t12CnjZM7R/ubdB+1tif7LbLczoc+O23XSM/eOrTaDMM+99o6n7LI779hVLz10bVkdP8z8XaddcpvMCrB3np5QqdMT7nteL731mUadMlwPPfuODho0QBPHn1epnL8tl486Tqcec2CFAKtpTiP7qCWzVfLA/frrrutGEWAFN72iW+rKCY/ah7mffeKhuujMI2t92HOvf6TbH3zZHmAz0FyxEyDAip01T6qbAAFW3fy4OzoCBFjRcaXWyAmEEmBVtX1wpwu8atCB7YORGxFqKi9AgMV8iIQAAVYkFOteRzABlnlK/4PP1ea8Ak19/Z4KWwFrC7DMvXsOv0Dr1m/S5Cdu1PbdOtqNXpG7RvsfN0Zer88OnkwAVdNlVkAdeMLl9pbCJ+++Qrv13dEubrYI7n7oKHuF1JdvTVKzJo0qVGOeYbYHfvn2JB1w/OWlIdwDMud0lb+GHjfG3vL41lM3a7su7cs+MiuwMtLT9eoj1+mwU8dp9doNmnTTaA3eu/J2RVZg1X0+hlTD8NOu1oJFy/T8/Verb69ta73Xn6aaATYDzRU7AQKs2FnzpLoJEGDVzY+7oyNAgBUdV2qNnEAoAdba31367Wm2D0ZOn5pqEyDAqk0oNT/Pz3epqNgEClKx+bnQnIVU8rXiIktFRS4VFpV8Lrl09LCaD/WOlOKsXy0t/id1VqT27unWNh0CK3JrcwwmwPKfD2W28H3z7gNyuQL1BxNg7TZslL0N7+NXJtrnW5nr1Xem6sZ7nlO/nbvr2fuuqq2Z9ucTH3lVT7/ygY45bD9dd+kpZfece+Vd+mr6nErbA022YTKOXXbaTs9NGqfLb3pY//tsuh6fOMY+mN5/Lf031w63mjdtrC/evK9CW0yAVVzs1Vdv36+Ppv2oS69/0C737rO32Fsay18EWEENY+QK7T5slDZsytM37zxg7++s7TIHu/Xd/yy7rLmHK3YCBFixs+ZJdRMgwKqbH3dHR4AAKzqu1Bo5gVACrPmveZT7U+CbiXYDfdrmoNT5Zi1y6tQUrAABVrBSyV1u2XKX5vzq0q9zXdqwMfjAxKikp0sPT0yPCdBzr3r15bep83fiScd6tO8eFd/WVxN0bQHWps35GnPjwzLHB5kzpsxZU+Wv2gKsuX8sts+5MudGTZt8X9mbBK++7Qm9/eHX9tv6zFv7grnMmwTNGwXNKi6zmst/PfPah7rzoVd01LB9dcOY08q+/viLU3Tv42/okrOP1pknHGKHVybEOv7wwbrm4pPKyk1+/0uNv/MpDRu6u26/+pwKTTEBllnd9f2Uh+yvXzz+AX3y5QwNP2BP3XLVWRXKEmAFM4oRLNN7yBkqKvZq9mdPVXpFZXWPMQGWWfY367MnI9gSqqpNgACrNiE+d4oAAZZTRoJ2lBcgwGI+OF0g2ADL55V+uN4jX2Hgm8edRxerfs07MZzefdrncAECLIcPUBSb999Kl379VZo5260NG0ILrbZu1hP3EWBFY6jCDbDqZWdpz10Dq5K8Pp/WrN2g3+b/bb9F8NRjD7JDm62vmgKsv5b8q9HXTLLPzR43+kSNHDGk7HZzsLo5YP2mK07XiIP3CYri9wVLdOSZ4+0wzKyI8l9//rVUR5x+jX0u94cv3VH29RMvmCBzzrd/i6JZBbbX8AvtFVSfvX53WTl/H0wgtXUfTYBlQrwfP3jULm+2MJqthOs3bNYjt1+mvQf0KquHACuoYYxcoYFHXqzc1esqLO2rqfb1Gzdrj0PPt/eZmv2mXLETIMCKnTVPqpsAAVbd/Lg7OgIEWNFxpdbICQQbYK39za3fngn8n/asZpb6XsHbByM3EtRUlQABVmrNi7XrXZo9263Zv0q5uXULrcrLEWBFZx6FG2BV15r09DTtv08/+/DyQXtVPvfJH/6YVVEtmzexqzFb7lasXC0TYJn7zz/1cJ01cliFR/jDJXOgujlYPZjLv1osIyNdMz9+vMIt+464yA6XPnllotq2bm4HTHsdfoHatGxm5xv+6/RLbtf0mb/p9ceutw+PN5c/B/n8jXvVsnlOhXr9byGc8eFjZV/3v7GwdYum9lZC/wvwCLCCGcUIljHL8cyyvIvPOqrSBKvqMf59qyZ1NOkjV+wECLBiZ82T6iZAgFU3P+6OjgABVnRcqTVyAsEGWPNf9ij3l8A3lO0H+9Rx/9TZKhM5cWoKRYAAKxStxCy7fr3ZHujWnLnSvyuCC63MtsD0NEsZGWaLoKX0dJe9VdB8Lc18La1k62CG+ZFh6eSja3/rfST0OAOrZsXqthCaXVZmwcqc3/7SEy9N0c9z5lf5Bj9/gFXVU8yqLhPwtGnZtNLHkVyBZSr3v5Du5ivP0BEH7S1/yGRWfZnVX/7r+Tc+1m0PvKTzTh6uC04/wg7ZDj35KnXt1E7vPlP5LYZVBVimrlFX3aMvvpulYw4dqOsuO9WungArEn9iQ6jDfyhZVmaGHphwkXbv16Pau80EPm/s3fZyugljz9ThB+4VwpMoWlcBAqy6CnJ/rAQIsGIlzXNCESDACkWLsvEQCCbAqmr7YO9LilWvdTxazDNTSYAAK/FHOy/PpYItUkGBVLglEFDlF0hffevS0qXBhVZt21jquaPUq6dPjRuH9uZT3kLojHlU2xlYppXFXq+OPecGmS18t19zjoYN2b2s8VVtIbQsSyecf7Nmz1uoK88/XicffUClzl5z+5N24OMPkoLR+Pzbmbpg3H2VzsAy95rztMy5Wofuv4duG3d22YHtj905psLWSP+B7f5ztPyLck46an+NveCESs2oLsAyB9ubrYQmD3nqnis1oM8OeuejbzTu1sftM73M2V5OulyWGZUku0yXzrzsTn3/8zy7Z4P27KP99uyjTh3aqF52psyh7Yv/WaEvvvtFH38xw34FZa/tO+vFB68N+sysJCOLW3cIsOJGz4NDFCDAChGM4jERIMCKCTMPqYNAMAHW6l/d+uN5tg/WgZlbwxQgwAoTLkK3me9CtxS6VJCvshAqv8Blh1HmR36+pQLz+y3m1+ZrpZ+V/r6w3Jl54TSpRXOfevV0aaeePjVtGv63xARY4ehH/p5gAizzVP+B6GZ1k1nl5L+qOwPLHN5+7Lk3KDsrU+8/f1ulrXmvvfu5brj7WfXvs72evmdsUB27+9HX9OTL/9Oxwwdp/CUnV7hn5ap1MmGTecvhRy/fqX2OGK2CLYX69t0H7W2M5a/DTr1aCxcvs984aFZjfTB1uh6+7RLts9vOldpRXYBlCr4x5QtdN/FptW/TQm8/PUHTvp1pH3hPgBXUcEamkHkLoXk15Hcz5tZaYa8dutgrtcwhaFyxFSDAiq03TwtfgAArfDvujJ4AAVb0bKk5MgLBBFh/vOTR6lmBVRIdhvjUYSjbByMzAtRSkwABVt3nR2FhIFjKNyuh8ktCJvvXBS7l55kQquT3W0wwle+yf21WSG0pCG51VN1bGaghJ8eyV1n16iG1bhV+aFW+TQRYkRyh8OsKNsDyv+lv39131kO3XlJrgGUKXD/xGb0+ZZoOGLir7r7+/EqB09BjL7NXd0157lZ17timxk6YxTQHnnC5TFBlAi8TfG19HXbKOC38e7memHi5zhxzpwbv3VeTbhpdqZx5M6EJ5Mz5W3c+/IpWr9mg76Y8ZC/a2fqqKcAyZc+47A59/9M8nXjkUO2+Sw+dP+5eAqzwp2N4d5qVVR9/8aNee2+aZs1dYL820n+lp3nUo3tn+00Bww/cU2keT3gP4a46CRBg1YmPm2MoQIAVQ2weFbQAAVbQVBSMk0BtAZa3SPrRvH2wOPCNbJ/Li5XdPE4N5rEpJUCAVXm45y9wK7+gdOWTCaDyfTKrouzwyV75FFghlZcf+wAqnAnaoIHZHmhpp16W2reLTGhVvh0EWOGMSuTvCTbA8p/5ZLYDmm2B/qumtxCuW79JB594pX2W1qN3XKa9+gfe2Gfu928j3GnHrnrq7iuVnZVRbQcn3Pe8XnrrM/Xtta2ev//qKsvdMulFvfjmJ/YWxymfflftGw5nzVuoE0bdZB+DZLYe9tu5u56976oq66wtwFq2YpUOP+1qOzMZfcYI3ffEZAKsyE/T4Gs0h7etWbfB3tuZlZWp5k0aVVqCF3xtiVHSHOQ2ecoX9lZKs0c2v2CLGjesrx7dO+moYQM1ZO9dqu3IjFl/6JlXP9QvcxdoU16+WjVvosF79dU5Jx9m11HdZfb/miWICxYvk9fr1TbtW9t/oE44YkiV2zMJsBJjLtFKiQCLWeBEAQIsJ44KbarqG7vq/ntvVl6ZFVj+q34baeeLi0FEICYCkQiwzAokr9clr9ecryOZM93Mz16f5CuWin2St9gln8+80azk66Zs2Q//14pd9mfFxb7Sz0rqtH+U1lHss+QtVmldJeXt59l1WHYQ7K/fPNf8vijJ/zilpUlZWZaysyxlZrnsn7OzzNek7GxLXTu71KlTdFd0EmDF5I9rrQ+pLcAqLCzS069+qElPTpbb7dLkJ27Sdl3aBxVgmUKvvDNVN93znDq2a2lvs8s0p/iXXhs35emYc67XkmUrtcO22+iKUcdr197d5XIFQt6/l/5nh0IfTftBOY0b6LVHr7e3CVZ1Tfv2F3sFlAnCTKBktghWtVvM57M08MiLlJdfUBo8HalzTjo0rADL3PTim5/qlkkv2H0zK8XYQljrtKNApAT8ya6pz7wtoVvndkpPS9M/y3M1f9FS+zFV7bk1X/fvgTW/NmFXsyaNNf+vf/TvyjV2XS89NL7S3l9T9qpbHte7H38js7qtT69t7eeZVNiEhialfvDWiyutdCPAitSIU0+0BQiwoi1M/eEIEGCFo8Y9sRSobQWWOfvKnIHlvzoe4FP7QdH9ZjOW/edZzhbwB1jz5hfq9wWWFi2SNm0uFxx5LRV7XXZIZAdUKRIKxXrUGtQ34ZMJnlx2GJVV+rMJoLIz3aVfK/m6CahMOJWZJZn7nHARYDlhFCR/gGW2z+3Wd8eyRvksSxs2btbvC/6xgx6Px61rLj7Zfute+aumFVimnAmLjj77OvsA+FGnDNf5px1R4f5Va9br4vEPaOav8+2vN2ncUO3btrC/N16Ru1bLV6yyv951m7aadPNodepQ/ZtKTDt3H3a+vS2xZ/fOevXR66pF9q/+MgVeeXi8zPFIVV21rcAy95gdbCePvlU/z/nTroIAyxlzOyVaYZYlzpq3QKcde5D9doPyl9nbahJdcxjcM/eO1a69A/tu/1m+UsNOukppaR49cvulZZ+ZyfzA02/pkefetf9CePLuKyrUaYIrE2B16dhGj028vOwVo+YPn/mD/M2Pv1b5B4AAKyWmY1J0kgArKYYx6TpBgJV0Q5p0HaopwDLbB38Y75HlC/wf6l2uKlZmTtIx0CEHCZiDw1fmurTob5eWLnFp4SKXNuc5qIEJ1hS3R8rOLAmVSn4EgigTStXLcisr23xe+nVTNrskqDJhVDKc4kKA5YxJ6w+wqmqNWVHUumVT+3vbkSOGVlh55S9fW4BlypndSSPPv9neyfXO0xO0TftWlR5n3jD44dQf7CDL7AAzqyObNG5gH180dJ9ddMjg3YN6cdxJF95iB0kmKDOBWXXX1K9/1oXXTFLDBvX0zTsPVFt3MAGWeYZZKXbE6dewAite09okpJ9++ZO96mjDps1q36alvYe0/JW7ep28Pp+9Ta78Mr94tTkWzzVvSjBvTNg6PTZLBs3SwYvPOkpnjRxWoSkmxDr+vBs15/dFevHBa9S7R7eyzw8/7RrbeOuvmwJr12/U4KMvtf+gm+WPWZmBPcEEWLEYbZ4RCQECrEgoUkekBQiwIi1KfZEWqCnAyv3Fpfkvl9s+2M7SzqO9kW4C9SGg5f+6tOQfl/5aLC36y2W/+S4VL/MCM3eapTS37ODIhE9pHhMiuezfmx/p6WY1lOxtePZqp2y3sjID2/JMGJWdIWVll4RV6YFdVKlIaveZACtlh56Ox0HAZZlUIgmvzXkFuuGuZ/T+Z99X6F33rh305pM3VfjaGZfeYZ8T9didY7Tnrj2TUKNyl/yv7rz8vON06rEHlhUYetwYe3nj1NfvUasWTSrd+PLbn+nme59X+UPvTHlzn9kP/MGLd1TpZ94I+dG0H3X/hIs0aM8+ZWUIsFJiuiVFJwmwkmIYk64TBFhJN6RJ16GaAqzfnnFr7W+B7YPbHOxTu33ZPph0kyCGHTIHjK9bX/J2uy2F0s8zpcVLzEHk0QuszBlMHhMCmVAoTXY4ZEIij9sl85kJicxnaWmW3GVlXPLYZUpCo5IfJauR0tLcpXUF6iwr47bk9riUVnqP22OV/brkuf5nqexZmRlJ+a1eDGdV7Y8iwKrdiBIIREogKQMsc2D7WWPu1PSZv9lO5sCzju1a2UvwqgqwzAn/5qT/o4btqxvGnBYpW8fWs2FTnkacca1WrFyjNx6/oWyLofn67sNG2cGVCbCqun6b/7eOOus6e/WVWW1lrs+++lmjr52kYUN31+1Xn1Plfc++/pHuePBle1WXWd3lvwiwHDtNaNhWAgRYTAknChBgOXFUaFN5geoCLO8W6Yfr2T7IbAlNYHOeS+vWSevWm5/ND0tr15nV/i6tXycV1mFlVcf2ljp38qnjNi57S1zJ6qTSlUqlwZQJqEwIZVYtmXCKCwEjQIDFPEAgdgJJGWC9+b8vde0dT9mn+4+/5GQdMLC/Ldpj4KlVBlgLFi3T8NOu1rad2+vtp2+OnX4Mn2TOu1q5aq19FpV5u+C/K1frsnOP1SlHH1DWirl/LLbfnlDTKz3Nq0P3OPR8+1C6r9+5377X1Hfnw6/YbzwYfcaRVfbq069+0kXX3q8DBu6qu68/nwArhmPPoyIjQIAVGUdqiawAAVZkPakt8gLVBVgrf3JpwWuB7YMNO1jqdQHbByM/AolV46ZNJQHV2vXSVY0IpwAAIABJREFU+nVurVln2b9fv15at84d0TfqdWhvafttXeq1Q5patCxSkTmpnQuBMAQIsMJA4xYEwhRIygDrlItu1YxZf+j+m0dr0F59y2iqC7DMay93GzZK9etl6Yf/PRImpTNv828VLN86EyKdd8pwO7Arf5kVa6dfcrv22W1nPXzbJVV2yOw47bnfafbhcLM/e8ou88BTb+nh597RmHOP1WnHHVTlff66d9tlRz15V+AAeFZgOXPe0KrKAgRYzAonChBgOXFUaFN5geoCrN+e9mjt74FtXZ2G+dR2b7YPJvPsMYeWbCwNqPwrqNaWBlT2aqr1JW//i8ZlVk21bVuywqpLJ5c6dvDZZzf530K4blOh8rZE6eHR6BB1OkqAAMtRw0FjklwgKQMssw2usKjYDqNM0OK/qguwzOd99j9LxcXFmjP16aQa8imffCez+snr9cqsnjKrzczPbVs310VnHqlhQ3Yv6+9X02fr3Cvv1uC9+2rSTaOrddh58Bn2Kz1nffak0jwe3fXIa3rqlf/pqgtH6sQjh1Z5n3kLw4kXTFCfntvqhQeuTipjOoMAAggggAACwQsUFVh658JiqdzRPMPuSlNW4+idUxR86yhZF4FVa6TVayz7x5q1Uu5qS6tKf79qdV1qDv7eJo2lZk1d9o+WLaSundzatqtL5d4hFHxllEQAAQQQcJRAUgZYvYecoZzGDTVt8r0VsKsLsEwY03vImfYKrOnvP+yoAYp0Y3w+S9O++0XX3fmU1qzbWOFQ9ZiswOq7o568O7ACK9L9oz4EEEAAAQQQcLbA4q99mvFMYLVLs24u7TeWA4WcPWoVW5e7Wlr8t0+L/7HsH7mrSgKrWFzNmkrNmrjUvJkJqUrCqhZNXWpqfm4WixbwDAQQQACBeAkkZYC131EXa83ajfr+/YeVnZVRZltdgPXL3AUaef7NSX0G1tYT7Osf5uicK+7Sdl3a662nSs79+n3BEh155vigzsBq3LC+vn3vQfu+517/SLc/+HJQZ2AN2XsX3XfThWXNYQthvP7o89xQBdhCGKoY5WMhwBbCWCjzjLoIVLWFcN4THq2bH1ht1fkwn9rsyfbBujhH815zcPrSpS4tXWZp2XKX/SNab/UzGycaN7aUk2Mpp7HUpIlLOY0tNc6xZFZWNWpkyRXBhXpsIYzmzEmdutlCmDpjTU/jL5CUAdaYGx/WB1On69pLTtZxwwfVGmCdP+5eTfv2F5101P4ae8EJ8R+VGLTArMTqPfQMueTSTx8/Zm8FzMsv0K4HnRvUWwh7bd9Zrzxynd3SL76bpVFX3RPUWwhPP+5gXXbuMQRYMRhjHhFZAQKsyHpSW2QECLAi40gt0RPYOsBav8CtuY8HjncwT971Wq/SG5TbTxi95lBzLQJbCkvCquXLXVqy1NLyf13auDFyiZHHI+Xk+OwwqnGO1DTHVRpOmZBKatQwtvPAH2DNW7dWo5d/rdMa7aD9stsxTxAISYAAKyQuCiNQJ4GkDLD85y1lZqTr6otO0pGH7GMjbb0CywQ2dzz4il6fMs0+K2vKc7eqY7tWdQJNlJsLC4vsc79cLpdmffpk2Vlhh50yTgv/Xq6pr99jB1lbXy+//Zluvvd5HXPYfrru0lPsj1etWa99R1ykju1a6oMX76iS4NLrH9RH037UxPHn6aBBAwiwYjBR8le6tWK65M2Xigukeq0sdTwgtv8wjEE3Y/YIAqyYUfOgEAQIsELAomhcBMw3dv/NtfTHV4VaPccl75aKYUijLj71PIfVV3EZnHIPNYenT/3CpW++9chXh+HISJcaN7GU08hSkyZSTmOXmuT4lJNjVlZJDeo7698hjeun6+kNv+mqpdO1ySpSM3eWvmk/Qg3dgR0c8R4bnu98AQIs548RLUwegaQMsMzwlH/73jbtW6l/7x3soKpl8xwdN3ywFixeqq+mz5F5A6G5anqDXvIMd6Ann3w5QxePf0Dbd+uoyU/cWPbBfU9M1mMvvKeLzzpKZ40cVqnrx517g+b8vkiP3H6p9h6wU9nn5oB2Exy++OA16t2jW4X71q7fqMFHXyqfZenLtyapUYN6BFgxmFT/fOrRP58EvlFweaT+13nlyXTWPx5jQBGRRxBgRYSRSiIsQIAVYVCqi5jAhoVu5c6S1sxxq6jkn1pVXl1H+NRqQB0Sk4i1OHUr+vsfl956x601a0JbadW8mU/t25u3+0kd2llqkiPVq5c4/8aYX7hOl6z5WjMLVlUY/CPrd9WkFnun7oSg5yELEGCFTMYNCIQtkLQBlhF55rUPZQIZs9qouis9Pc0Or6p7e17YsnG88b/ctXr2tQ916P57aIdtt6nUku9/miezzdIES7eOO0uH7b9nWZnVazfowBOukM/ns0OqXXtvb39mWZYeePotPfLcu/a5WW8+eZO9est/+d9g2KVjGz028XK1adnU/siscrvkugdlztwaOWKIxo0+sUJ7OAMrehNl7hNurZ9fcZtGt2N8arkL3yiEo06AFY4a90RbgAAr2sLUH4rAhsUurZ7tUu5Ml4rzag9Dmmzv07bHWEpz2KqcUPqcyGXNP48//sStH2ZU/LdCVX0yK6fatbPUob1L7dtZat/Op4wEXqR0x9qfdd/62VUO37B6nfRoy4GJPLS0PcYCBFgxBudxKS2Q1AGWGVkTyLzz0df6YebvWrLsP23OK1B2Vqbatmqm/n12sLcXtmiWk1STwPTzoJFX2n0y2wC7dWqnRg3rq6CgUH/+9Y+WrVhlh0/nnHSoLjx9RKW+f/bVzzJb/szbGXt076TmTRvrz7+W6t//Vssc3v78/ePUtVPl8wEmPvKqnn7lA5lQsE/PbspIT9eseQvtVW47btdJz953leplZxJgxWC2WT7p+2s9soorfgPRuIulHucE3vwUg6YkzSMIsJJmKJOqIwRYSTWcCdmZTf+4lPuLy94eWLi+5tDKZQ7o7upT895Ss56WPFmJs1onIQenhkYvWOjWW+9Wf75Vx/aWOnTwqWN7l1q3NQeoJ8dY/bQlVxflfqlFxRsr6bT0ZOvOZntoSL0OyTbc9CfKAgRYUQamegTKCSR9gJWKo+31+mS2CH78xQwtWLRUa9Zt1IZNm2XOBGvburn69tpOxxw6sMrVWX6veX8u1qPPv6efZv+pTZvz1LxZjr1l8NyTDqvybCz/feacqxcmf6I/Fi6RaUe7Ni108KABOu24g+znb32xAis6M3TzMmnWpKpeSW5pl3FeZTaOznOTuVYCrGQe3cTtGwFW4o5dIrd88zKXVs2SVs12a8vaWlZauaTm27rUuIdXzXaylJZAW8wSeYyqa7t5e+CUD1ya82vVq646d/Lp8OHJE1j5HTZZxbp5zY96YeMf2jqKMzP45MbdNS5nVzVwVfVvp2ScCfRpawH3sr/kXrtKxT37h4xDgBUyGTcgELYAAVbYdNwYCQECrEgoVq5jxbdu/fVO1f847XigT+33YxthqPIEWKGKUT4WAgRYsVDmGUYgb4VZaSWtnu1Wweratwc26GipRW9LPQdmKrORVN1/79GNncCcuS69/z+38vIrj5/ZInjgAT7t1DM5VlqVV/007x9dvvpbrTRvtdnq6pTeUM91HqRerubK28IK9djNxvg/yVW0Re7fZ8o9Z7o8c3+Qe81KWfUbKX/i5JAbR4AVMhk3IBC2AAFW2HTcGAkBAqxIKFau48+XPFo1q+pvMLJbWOozhn+khSpPgBWqGOVjIUCAFQvl1H3GltUurZzp1qpZlsybbWu76re17O2BLXr7lFG65cz/jR0BVm160ft80yaXJr/t0sK/qh7Dfrv4tP8QS1lJ9pKXVb4CjV31rT7IW1IJN00und24h25u119NsjO1blMhAVb0pqBjajYhlXv2dyWh1Z+z5CourNS2gisfkK9T95DaTIAVEheFEaiTQMIHWMtXrNLPv87XrjtvX7a1bf6ipXVCMTe73W77vCdz/hNX9AQIsKJj+9Ntnhq3dex8kVfmGw2u4AUIsIK3omTsBAiwYmedKk/assZsDyx5g2Dev7WvtMpuac60cqnFzj5lNa/83xUCrPjOnBk/ufXRJy5tKaw8li2a+zRieMnh7Ml2TStYpnNXTtNGX+UXOXVPz9GkFvuoZ0ZT5dRPV72sNAKsZJsA/v74vPIs/LUksPp1utz/Vg4zt+560UEjVXTYqSGJEGCFxEVhBOokkPAB1pBjLtW/K9eoc8c2mvLcrTZGj4Gh/aVTk2CbVs109omH2mdGcUVegAAr8qZFG1z6cYKnrGKXR2rWw9Kq2YF/vLbZ06fOh7GNMBR9AqxQtCgbKwECrFhJJ/dzzOHrub+YlVaSOd+qtiuzmaXmO/nUsreU3brm8IMAqzbN4D8v2OJSfr6UlyeZs6zMz3nm95ste1vg5jzzuSWvt2QMzWe5uVWPp1lxtdceybka+9mNv2vc6u+rhB3XZBed37hX2WcEWMHPv2iWdOVtsldDWUWFchUVScWFchUWlvxsvl5ovr5FKi6S7DKFkilnvlbdVVigtK/fl6ug8tbRqm6xsuvL23sPeQccIG/3nUPqLgFWSFwURqBOAgkfYB1y0lgt/meF/Za71x+73saIZIDl150w9kwdfuBedcLm5soCBFiRnxXmFeZ/vBgIsBp386ntPpZ+eyrwNfPK8l2v8cq8EYorOAECrOCcKBVbAQKs2Hon09OKNpqVVi7lznJp05LaQ6uMnJLQymwRbBDCih0CrLrPmj/+dOvjqS7lrqx9nGp7WrcuPg0/1FLjJHmrYPn++mTputU/6KmNv1Vi6J/ZUvc231vbpDes8BkBliSftywQsrfUlYZIlh0YVQySVFhULmgqKavCAjtYKgmVSkInf7hUVp8/jCoqKgmpyp5TeQtfbXM4kp/7WrSVd6fd5dt5d3m79jJbcMKqngArLDZuQiAsgYQPsNZv3Kw/F/5jB1j162XZCKvWrA8Lo/xNlmXZ9Tzx0vv68PMftH23jpr8xI11rpcKKgoQYEV+Rvz1rlsrvgn8B7j9IK86HmDpxxs9Ktoc+Mfvjqf7lNM9eVdhmZVoy76SivNcKsqXsptKnYaF318CrMjPVWqsuwABVt0NU6kG8/fhqpkue0XuhsW1hyHmjYEt+lj22wMbdQpvmxkBVvgzbOlS88ZAt5YHsZWztqc0aGDpkIMs9dgh/P8O1vaMeH6+2SrSOf9N0+cFyyo1Y2zTXXRho8Cqq/IFnBJg2auL7HBoiyw7NCpdhVS60sgOfApLPysNikpCoNJVSCYUKiwsudfUVVQaKNm/L1m1ZBVvKft1WRkTPqXY5e20vXw77ynvTgPka9s5Ir0nwIoII5UgEJRAwgdYQfWyDoWKioq168HnyuVyaebHj9ehJm6tSoAAK/LzYvYkjzaV2wKy4xk+5Wzn0+Ipbi3/KhBsNd/Z0nYnJOf2AaO6dKpHSz6q+A1an8t8Mue1hHMRYIWjxj3RFiDAirZw4tfvNaHVnJI3CG6o5hDv8r30ZJUEVi12lswK3rpeBFihC/630mWfW7VgYXirQco/0eWS+vfzaehgnzIyQm9LItzxb/FmHf/fx5pfVPF/YHvk0r3N99KIBl2r7UZZgLU+X/mb8yoEP/ZKpLJQqCQo8odGZrVRSdBUuuKo0IRGpVve7K+VBFCyt76Vft0Olszqo9JVSOXDqUSATtA2WukZ8m3fV97eJrTaXVaDyJ9vTICVoJODZiekAAFWEMO274iLtGlzvn766LEgSlMkFAECrFC0ai9rzir9/lqPZAWCmwE3FsuTac41kWZNSiurxJVmqf94r/1ZMl5VHWTfoq+lbY8NL7QjwErGWZL4fSLASvwxjEYPvAUurf7VpVW/SOsXumXVkkO5TWjVw1KL3iWhVSS3lxNgBT/Ca9a69OlUt36dW/3quOxsS9nZUv16UlaWpfr1Vfp7l+qZz+qZz0rK1MuWGjYMb+Vc8K2OXEmXWQ1UbuWQHQiVbTcrXVFkgqKycGiLZnvydUKbAuUG/nljN6hxkU8v/bxS/VdtLA2Qiu2VSSVnLPnrLV2RZOrkiquAlZElpafLhE1Ky7B/dqVnyErLCHzdfFb6NVdGpqy0dCk9U3Yym5ZeUtZ83dxr35chKzNTvk7byzLlongRYEURN4Sqlyz7TweNvLLSHRkZ6WrUoJ46dWitPfr11DGHDVSTxhW3E5ubrrz5UU359Dvdee15OnjwgFqf/NlXP2v0tZM0dJ9+uvfGC2os/+sfi3TsOTdUOPbIf4P/uTVV0KxJI3351qRa25QKBQiwahnlzXkFGnDIeeretQNbCKPwJ4IAK7Ko6xa4NO/xwFlX9VpJvS8tLnvIzIke5Zc70LXbUV613DVx/nEbrNb6hS7NfSzgUHaf21LfK7zKahJsTYFyBFihm3FH9AUIsKJvnChP8BZKa3512yut1i1wS7Vk9e50qemOlsxq3Kbb+6Qq/sqMRN8JsGpX3LTZpanTXPp5plu+asLGrl182n+opTatovffbFdxcVk45LKDIv95SKVnG/kP164QLAVWKZkzk8q2vhX7t8T5D+YuV5e9ra3k9/7tci5v5bcF1ib3Udd2OuXwvbUlreLk7bx2o95+5TN13LC5tir4vFSgfFBkB0f+IMkOh0qDpNJf22GR/9emnB0+mXvS7eDIvteEUXaIlFlW1v4sI70soCopkyl5ovSXTwxHlwArhtg1PMofYGVnZahvr+3KSm4pLNLKVWu1ZNlK+2uNG9bX4xMvV4/unSrUFu8AywRsVQVrppE5jRrogVsucgZ0nFuR9AGWeUPh/z77XnN++0srctcov2CL6mVnqU3Lptpph646ePBuatk8p8ZhKPZ65Xa55XbXfl5EnMcz4R5PgBXZIVv6qVtLPglsOWg9wKcuIwL/Gl72hVt//y/weaMulnqeE96KpMi2PLK1zX/No9yfqv7z2np3n7ocHvq2GAKsyI4RtUVGgAArMo6JWotZdbtmXslh7Gt/d8uq5a9z81baJjv41MKEVjtacm21aiUaDgRY1asWFLj0xdfS9B88MtlRVVfbNpYO3N+nzg2Wy73qP/vA7JLzkLY6TLv0jCR7BZP/11sfpl16T8nWtvJb4koDpWhMgCjVOWnAjrp+396yzB7JctceS/7Ty5OnqVFhNaBRak8kqrUys0tWEvlXGtmBUGZJOFQhSCoJh0oCoZKAyaw8KlnBVFLe1GP/bAKk8quYSu8JrG4qDZwi0YEUroMAyxmD7w+wTBD0/vO3VWrU8hWrNH7i0/puxlztsO02euPxGxwVYAW78ssZ2vFrRdIGWIWFRbrr0df04pufyhzIXt3l8bh18tEH6KIzj1L6Vv8HJ37DkjpPJsCK7FjPe9KjdX8G/jHX7RivWu4SmP9Fm6QfbzL/p8tfxtIu47zKjPxxAJHtWAi1mVUIP9zgkVVcdYDl8ljqN86r9AYhVCqJACs0L0rHRoAAKzbOTnqKCanWznMrd5bs0MqEWDVeHimnm8/eHtisp0/uGJ+DRIBVeXSKiqUffvRo2lfSloKK/63yWMVqWfy3umfO167NF6h53gK5ly6QK5/VREayyO3ShQftpld7dqkEe8LshZr04XR5avh3f7V/Vlyu0i1pJtDJLA2FSlcL2QFRYEWRCYrsrWvltrjZAdLWW9/MPf66SrfHmUDKrFQqf69dJsy33znp76ZUbgsBljNGv7YAy7RyzbqN2ueI0XY+8PU791dY8RTvFVgEWMHNo6QMsMyEvPDqSfr825m2gtkzapYRtmvdXJmZ6crL36Kly3P146zf7bOtzLX/vv10zw01710NjpRSoQgQYIWiVXvZ6dd65C0M/GN4lyu9ymxaMcCd+4Rb6+cHVmFtc6CldvslzyqslTPcWvB6oH/p9S17a4x5K6H/ajvQq04HhbYNgwCr9vlHidgLEGDF3jxeT1wz161VsyXzc62hldkiYUKrPia0smQOZo/XlaoBlgmpcnNdWrXapdxcS6tWuZS7yqXVa1zylv4nN8uXp7ZF89W2eKHaFf2ptkUL1a54QbyGyhHPtVchld/CZsKe0nBoQ3amjt9tG01vWvLWcf/ltizduMKtszf4Vx/5VyaVrlTKKLclrix4KgmRGufUU70mOVq3qVB5W5Ln30KOGMwUagQBljMGO5gAy7S0/8HnyhwTNPX1e9SqReBcEQIsZ4xjba1IygBryiff6coJj9orqsZddJKOPHgfmZVWW19mlZZZoXXP46/L6/Vp4vjzdNCg2g9sqw2Vz4MXIMAK3qq2kpv/lWbdG9gPYl5/3v+6yv8YW/mTSwteC5w3kNnE0i5jk+cfbb8+7Knwevi2+3qV2cilRe8F/g5wZ1ja9ZrQDrAnwKptBvJ5PAQIsOKhHptnmpVW6xeUrLRaPdcl31YrdapqRaNOlpr3LjnXyvw3wAlXsgdYGzb4Qypp9Rrpv5XS6tUubdhY9SrgBr51GrjxJfXa8rWaef91whBVaIO9GshebVTNKqSyLWolh2QHVhKZVUqBA7j9oVPZeUn2SqS00gO2/auQSg7ctre+mXOUarj+8W7SyH8/1sLiDRVK1Xel6dGW+2m/7HZhWZa9hZAAKyw/bioRiFWAVTTja3n/+iNl2NP77SlPl+2D7m8wAdZ/uWs16OhL7HOwvnn3AbnKbUMmwAqaOq4FkzLAOuPSO/T9z/M0bvSJGjliSK3Az73+kW5/8GX7rQSPTxxTa3kKRE6AACtyliu+c+uvtwMhTdMePm1/cuWznrxbpB9urLjFbqcLvGrQwRnf7NRFpGCN9PPtFQ916TOmWBk50k+3elS8OfANRcf9fWo/OPizsAiw6jIy3BstAQKsaMnGp17ztsANCwOhlTev9rM363ew1LI0tEp34BvnkiHA8nlVspJqdcUVVatWS4XlVj3XNGtMcDVo0wvaZ/PksCeXr+O2suo3CqxQslcqlW5dy0iXKz2z9Fwk/9Y3fxhVchZSydY3/2qk8uclZcgyry8M4troK1K+VawCq1j5Pq/963zL/Fzy9cDXSr6e5ytSQVk58zVTxtzvC9xj7veVfLbZCv7sqjaeenqh9VBtnx7Gm1lK+0qAFcSgU6RWgVgFWHmP3aHCT9+ttT3JUqDe2ZcrY8jwoLtTW4Bldl6NufFhfTV9tsaNHqmRI4ZWqJsAK2jquBZMygBrj0PP16a8fH0/5SH7wPbaLrOlcI9DR6l+/Wx9884DtRXn8wgKEGBFDnP+yx7l/hL4ZqfTIT613afqgGbrsm328Knz8ODDnMi1OrI1LfnQraWfB0K8Bh0t7XR+yeqypVPdWvJR4DOzpaafWYWVHlwbCLCCc6JUbAUIsGLrHZWnWdKGRS7lznJp9WyXioMIreq1tuwzrZr39smsonXylUgBljlIffm/ZsufSytXSatWyd72t25d7UFidWMQTnBlViX52neVtc128nXoZv/ahFfRvDZbRfpg8xJN2bxIud6CcmFUkR1WbQwhWIpmO/1198lsrmdaDVFzd+3/zq+pPQRYsRit5H8GAVZ0xjjcAMt8/7/nrj3LGuX1+bRm7Qb9Nv9vbdO+lU499iANP2DPSo2Od4DVpWMbNW3SqErM44YPYqdYqUxSBlg7Dz5DOY0b6Is37wv6T9Pgoy/V6rXr9cunTwZ9DwXrLkCAVXdDfw0/3ebRlrWBf2T3GuVVw22q/sbGHPRuDnz3XybMMdsNXZV32kaugVGuyZzZOmOCR0Xltm10HeFVqwElBmbl2Y83e+Qr93/LOw3zqe3ewQV3BFhRHkCqD0uAACssNkfctPFvl/0/HVbPcVX4e6u6xmW38Kl5b5da9vEps5mzQ6vyfXBqgOXzSStzXVq2zKV/lsn+2YRV5uuRuExwNTT/BfXf9J7SfYXVVunLrierfTc7qLI6bidfx27yteoQk0O9t8irT/L+0dub/tLUvGUyv0+Ea1i9bXR/i32UYV6rWceLAKuOgNxuCxBgRWcihBtgVdea9PQ07b9PPx24X38N2qtvpWLxDrBqUhxz7rE67biDogOdYLUmZYC131EXK7+g0F6BFey1+7BR9mqtz16/O9hbKBcBAQKsCCCat/JsdNnhTPlrj9trXoZv3kZYtCkQeO1wqs9+vXqiXuvmu//P3nmAR1F1ffw/M1vTeyWB0AlNOqIIShFRUVGx99791Fd8EUUUu6+9YW/YERVQlCKKIr33EkJIQnpPNsnuzHzPnc1mdjeb7Ozu7GaT3Ps8PAm7t5z7P3cD88s552LfB44Ebsx83qF48fEVDPL+kHXSRogY9aiy/7BTgNVRT0bntpsCrI7nX/LzeuebLBoVRPXoIkXEDxcQNwQITek40MreK8ECsEjx9JMFQE4Og/x8Bjm53kdVOZ+6qCgR8XEi4mKBlLBK9DvwBWK2/NDq4RRDwmCZdiX4U8ZBiPeudpMvJ//3uhP4oeaoBK/qgxBa6cFBz7IgXw2sBnqGhQEa6FkOk0LScF/kEF+27zCWAizVpOzSEwUKYNEaWG0fs9ZSCEmt68rqWuzen4UPvlyGbbsPS9FMpP61fWtvgEVvIVT2Y6RTAqz/PPUOflm9Ecs+exYZ6clulTh6PB8zrpuD86aciucfvc1tf9pBPQUowFJHy5JdLA4tkuFNeA8Rg+9oG8xkL2ORv04eEztEQL+rOi7AOvglh9Kd8gNJ/DARfS531MBcA2x5hoPIy/16XcwjcbT7B0MKsNQ5q3QWdRWgAEtdPQMx2+GvORRvbx2eEGgVO9ha14rUt+rorb0AVn0Dg42bWGQfF5Gbz6BBQRH8trTW60TExQFxcSIS4hjExhJgJSIhweojpqocmhVfQfP3cjBm1xFXYlgkLFMvg2XiDGvtqgC2P035+KkmC8vrslGjIB3QyDSBI+krZ4VIjAYGhoOu6Xvr69Y/5HXyR/qe00IPtuk9MsY6Vu5P3iOvEyhF4FTTPCzIkp9tAAAgAElEQVQnQatANgqwAql2510rUACr8yqozs7c1cAiq1h4HpfdNh8HjuTg+bm34bzJpzYv7inAWvP3Ntwz93VMOWMkXn3y7jY3sefgMWndgf164NuFT/gEztRRq+PO0ikB1u4Dx3DFHU9i8vgReGX+XQ63Czi7ShBE3DP3Nfz57058/e7jGNQvo+N6swNaTgGWOk7LXsoi/28ZRqVOENB9etswqjYf2PmaXPCcYUWMfsKzm/nUsd73WSwmYDMpTC/ID4WZt/CI6t3y4S/rJxYF62Wt9FEihs92nz5JAZbvfqIzqK8ABVjqa+rPGatPALvfdLxogqynDbNCK3KDYARJ/VYvOMif21E0d3sArA2bWPzxJwOTyXMhQ4wikpNFJCWKiI1hEB9PvgJhYdZ/T9iKEqCmCoypGmj6J4bd8Q+0fyxpVQ8xPAqWqbNgmXCB9da9ALVsSxXerNiNX+qOo7KNNEabOeMMibgwrBfODemBKDZwdgZIDpfLUIDVnup3nrUpwAoOXyoBWMTS9xctw6vvf4+LzhmPBbNv8hpgbdi6Dzc9+ALGjxmMd59/sE0RNu84gOvvfw5jhg3AR6/MpgDLhyPTKQEW0WPRD6vwzOtfYPSw/rjmkrMxfFAfqS6WrZVVVGPrroP49NvfsH3PYcy+6wpce+nZPkhJh3qjAAVY3qjWcszONznUnvA8HXD7yxxMhXbRSJcISBzV8aKwCjewOLrEDkpFixjxiOsINJK2s+VZx9/w9ruKR+yQtiMdKMBS56zSWdRVgAIsdfX092w7X+dQmyf/zDXEiuh1kYjIPh3v565SrQIJsPbuY/D7KhblCtIzWfBIMlaie0wFUiOrkGisRKyuAka+EqiqBFNbAdRUg6mtBFtTBdRUgmkwKd221E+IjAV/9mWwjD8XosZ7IERu/isVTCjl61HKN6BUqEcZX48S6e/W18sE6+ullnqP0gKH6+NxYVgGZoRkIJ4zerS/ztCZAqzO4MX23wMFWO3vA2KBUoD1ybcr8OLbX2PCqUPx9rP/5zXAOllYismXPYiEuCis+e6VNoNmPv/+dzz35peYdf5EzHvwegqwfDgyHRpgjZtxV4utswwLjYZDiFGPk0VlaGw0N/fR67Qgf+obzS1enz5pLE4Z2BuXnDfBBznpUE8VoADLU8Va9hfMwIbHOECUH4pGPW6BNtT93Pl/scheLoOfiAwRg25XVhPK/eyB67HrdQ41dg+FaZMFpE1p/YHw8LccirfKehkTRQx7oO19U4AVOH/SlZQrQAGWcq3au2fBBgZZSxzheebNPKL6dPw0wba0DQTAystnsObnKlTnVyKEr0SoWIVQoRIhAvlajlC+ClFcBSI01QizVEBvrgTXWOe3IyFERMNy7jWwnHG+yzUk2CRBJxNKLU1ASmhAicUGo5rglFCPIt4zaKZkU4O0MTgvPAMXhWSgm0b+5a6SsZ2tDwVYnc2j7bMfCrDaR3fnVZUCrDv/+4qUfUWCV0gQi615mkJIxs286TEcPHpCKkNEyhG5aqQ298U3P4bjuYVSpBaJ2LJv3qwbHIq3jxUdGmANnOhIL9WQcO/aT9SYhs6hUAEKsBQK1Ua3yiwGexfKD0WGOBHD/6MMQpGaUKSYu32+yog5FugjfbcrUDOYioHtL9mn5IgY+SgPnetbaCWzTCXA9hcd993/eh4xA1p/kKQAK1Aepet4ogAFWJ6o1X59yS2oJPKTt0tpixkooP+1nTfyyqa2GgCLLTkJ9vAuMPnZYEj6Xm0VUFsJsbIKfGUV9JbqdnMuzzIoNepREmJAcUICisZORHG/wSglMIpERDVFTJFIqTK+AeUCuesv8NCylyYCF4Rm4KLwnuip6UD/yPvZsxRg+VngLjI9BVjB4Wh3AIsEtnz8zQq8/uFisCyDxR88hb49u/kEsP7asBN3PPIKDHqdBMNIWiK57dDWsnJO4omXPsbWXYcwbuQgvP/SQy3EogDLs/PToQEWKdSudps+aYzaU9L52lCAAizfj8eJ1SxO/C5HUcWPENFnljKARVbf+wGHysNyNFL6VAHdJnWchyrnYvSRvUUMvMX9/g9+zqJ0j6xbaKqIofe2Po4CLN/PKp1BfQUowFJfU3/MeOwnFiftau8xnPUXDfpof6wWXHN6A7DYghPgjuwCc2inBK7YitKAbiovPAQlIXqUhhitX43kjw5FoUaUhIWgNCzU+rpBi0ptYIuOtyVEOKtFHGtEHGtArMaAWNaAVG0YJhm7YZAuJqAadpTFKMDqKJ4KbjspwAoO/9gAFsnEGjs8s9koQRRRVV2LA0dOoM5UD45jMff+a6V0PvtmA0ndkuMREe46lSU6MgzvvegIob76cTWefWMRyG2HZO1e3VOg1+tQVFKOnLwiaYmxIzLx6vy7ER4W0irA6pGWhOjIcJdiRkWE4c1n7gsOodvZig4NsNpZO7q8CgpQgOW7iPs+YlFxUAYxvTysY1WyjcWhb+TxpCbL8IfdAyDfLVdnBlK83VwrA7i+V/BSIWR3rTafwc7XHB88Bt/OIzzD9VgKsNwp2jXfrzvJoOIwC02ICI0RCE8XoQ13f/7UUosCLLWU9N88pM4gqTdo39Kmikib1HF+zvqijhKAxeZlgT28G+yhneBIpFVNpS9LOoyt02qk6KjSED1KmiKlyPfF5HsCoiJCURpikN4r1WtQo5H/PVTNCC8nIrfzxTWBqDhOBlOkVlUsa5QgFYFVcZz1q4YJHtu93HLAh1GAFXDJO+WCFGAFh1ttAMuVNaSMUFJCDEad0h9XzZziEHll628DWG3tJjY6An8teb1Fl6PZeVi0ZDU2bd8PUhuL53lER4VLF8SdN2WcdFMhifpy1XxZNziUD6wVFGAFVm+6mpMCFGD5fiQ2Ps6Bb5B/IA57UIAxQXkEFblNe+MTGpBaWrY25G4eYR3g+vayfSwOfCr/h501iBjzGA+m5SVfLoXe9wErwQdbi+ojIPNm19pRgOX7We2MM+x4hUNdgfz5I5cBkEsBAtUowAqU0t6vs2chh6os+Yzo27hkwvtVgnekK4DFlBZAs+NvsId2gT20A0x923WeCsKMUvRThUGHcqMO1TotqvQ6VOrJV+ufCoMB1SFG8BoNwFn/CBoOG8KDJ0KKeCmeREdxBqlgOvlKoqTitSHWqCkbjOIMiOGMCFP6j1nwuj/oLaMAK+hd1CEMpACrQ7iJGtlJFKAAq5M4sqNugwIs3zzn/Jt9LkTEmHmePzwf/oZF8TYZ5CSNE9DzAuUQzLddeD/6wOcsyuzSABPHCOg1U7nd1ccY7H7X8eFm6H08QlNaRtBQgOW9nzrryIL1LLJ+ahnxMOoxHtqwwERhUYAV3KerdDeLg184nhFS94rUv+oqzRlgaX/6GOLKb1AYZkBxiBHFoXoUhxgkQFUUqkcRSdtr+locoke5UQ+Rcf1b6/bWkFgVyeqkCCgSESV9bYqGitNY/259L0T6GsV6fxNhe++1s65PAVZn9Wxg90UBVmD1pqt1bQU6JcBqsLt50FP3kvBC2gKnAAVYvmldsJFF1g/yw1F0fxEDbvAcYJEaWKQWlq1xBhGjHufBBtcvrh3EkgrQL3C8fXHwXbyUwuVJc77WPnaQgH7XtHy4pADLE1U7f19zLbD1OQ5CY8sH6/RpArqdGRhAQQFW8J41wWI9I+Zq+YxE9hYw8JbAnI1AK1MtmFEimFDC16PYYkIx+d5iQp3OgkJzHfJLC1FUU4xigw41+uD9v5aR0UiwKYEzIprVN9eTIhFT1jQ+I2I01tcTuZa1TAKtO13PNwUowPJNPzraqgAFWPQkUAUCp0CnBFi+3E5IbyEM3OEjK1GA5Zveh7/hULzNrgD72QK6neX5w5EoWm8jtNjVkup/nYCYTM/n8m1Hykfnr2NBCrjbmie3L9qvUrafwYFP7EmdiGH/4WGMc7SFAizlvukKPQ9/y6F4q+uoEF2UiBGP8AhE0AgFWMF72nJWsshdJf+MYlgRwx7iYYgNXpudLSvnG1As3aRXj2KhToJTReY6lAj1KOFNKObrrdDKUo96eP7Lk0AooWVYa2qeVNhc3xQpZbSm8NnVkCJ9EjRG6BDEv7kJhGBdbA0KsLqYw/20XQqw/CQsnZYq4EIBCrDsRImKDMM/P71JD0oAFaAAyzext77AoaFUfohuqwi5u5Wyf2GQ/6f8H/fYwQL6XR28AIsURSYplLbW41wRKWd49wDlXMcoYYSA3rMc904BlrsT1HXerz7OYPfbbT/kZt4kIKqv/z8/FGAF57lrKGew7UUOot2PpJQJPHpM9yxC1B+7KyLgSTChzNKA5u95EwosdVZQJb1fL70XLE3foEeY2QqYUiK0iNJqEcHqEMXqEcrpEMFqQW7gi2ENMDIcwll982uhTPBGewWLvl3ZDgqwurL31ds7BVjqaUlnogq4U6BTAqxtuw+1uW9TfaN0reXWXYfw65qN0lWaH748G4P7Z7jTi76vsgIUYHkvKElh2vykXbVyRsTYp3iwXv5fva4I2PE/eT4SLUDSCMnNasHWanKBXW847n3UXFJ3yDtLS3YwOPSVHZBgRYz8Lw9dhDwfBVjeadsZR21/iYWpWI6sCUkSEZIsomS7/BqpcURqHfm7UYDlb4W9m//AZyzK9srngdxMSW535fxQAskiCk0gyi4qikAoi0mKjpKAFG+S4FS50AD/n0r3mrECoG8wwFgfAoOJfDVa/5hC5O/rSf0oI8b21uOUwQySE9sf/rnfGe3R0RSgAKujeSw47aUAKzj9Qq3qnAp0SoDliatO5Bfhhv97XrrqcumnzyIsNAif1j3ZUAfrSwGW9w4r3cPi4OfyA1JYNxFD7vEuAslmxY7XNKjLl23qeRGPpLHB99CQ9SOLgn/tan8NEDDgeu8fy0QB2PY8h4YKOaLLuZA9BVjen9XONDL/bxbZSx2Lcg++2wIITlFZjIiRj/LQhft39xRg+Vdfb2avOgbsedfxKtQ+l/OIH6b8Z2mtaLbWkmpKz5PS9QRSW8qaxie91xRJRWpPBUMjqXpxjA7xVdVIKCxGQp0J8XX1SKypl77G19ajztwDf2vuQIMlHWhFDr1BxMD+IoYOAXp0FwKSihsM+lEb2kcBCrDaR/fOtioFWJ3No3Q/waxAlwdYxDl/rN+Ou+e8hruuvxB3Xn9hMPur09lGAZb3Lj22jMXJdfKDdPLpAjLO9x7iEEvy/2KRvVyeM7yHiMF3+AbFvN+h65ECTyLPOPD1MmwiRddJ8XVfWuEmBkcXy1FYDCdi5Bw5qosCLF/U7RxjXRVujx8uos9l1s+Ic1pr2mQBaVN8O5fulKMAy51CgX2fwPAdJL25WP75ZPs5Wik0NtWMqpPgE6kbZYuOssGqUvKaUA+TaAms4a2sZitoToqaxzfdskdqR0kFzTUG61c2BPGk2PmGNdAseR9MbXWL2SrYOPwccQ92Gc9wuRLHAn37CjhlsPUrR8tQBYX/u4IRFGB1BS/7f48UYPlfY7oCVcCmAAVYAMxmC0ZNvx0905Pxw4dP0dMRQAUowPJe7N1vcqg+IT8k9b2KR9wQ5b/hd7Wyq5v9RsyxQB/pvZ1qjyzdyeDgl/LTjSbUGuni642Jrm4MS50ooPs5VgBBAZbanux48x3+ikPxDvkzx+qsxdq1oda9kKhAEh1oa9ow69lkHAO2VN04BViqyunVZCQCandjKQr4Ooj/hiJ5ZWrzPCJELLhyGXZFFno1tz8GhUm37BmlG/RiOL0EoeI1IVKR83gCqjQESpH0vRCQvm01prQAXOEJcMs/B5e132XXtSGX4veIG9HIGBzeJ5ccdO8uYOhgYNBAEXqdb/9++UMrOmfnV4ACrM7v40DskAKsQKhM16AKWBWgAKvpJEy69AFU1dRh86/v0rMRQAUowPJObJIxsuFxTkpbsrWRj1ocajZ5NzOw70MOFYfkeUkECYkkCZa27yMOFQdl+5LHC8g4Tx37nG82JICC1Nbi9BRgBYv/28uOqmxgzzuOD/M9zhOQMl4+e3yjNTpQMKsbHdjWninACvyJKBXq8W99ATaYCrCxvhAHzOVSXakIkwFvLpoFo1kudLVi0D58OH69X40kpy2K1VmjoaRIqRDrV60NSpGIKXILH4FWRmi8JKpMQx3YYwfBZh8Af2g/NDn7oamtaHVv2dqB+DbyIRRpezj0IbWshgwBhg4WEBZGoZVfDwed3K0CFGC5lYh2UKAABVgKRKJdqAIqKUABFgBRFDFy2m3gBQE7Vn6gkrR0GiUKUIClRKWWfaqyGOxZKEch6aOtkSBqNBJhQiJNbE3NuX21r7EK2PIMB4gyIBj2kAXGeF9nto7nzcCWBY7pielnC+h2lkAjsNSRuEPO4iotzBgv4pQHWkZXHV3MonCTHHIV1UdE5s3qfDZdiUcBlv+P1Am+Blvqi/GPKQ9bGopw2FzlctE7/jgDZx3o2/xeja4Bd1/9DWr1jV4ZGS9FQZHoKCt8kr5v+iNHTxmkSCq1Wm0dg9IyoKoKYLKPQJd7AGFF+xBVfhixdccULVPHhmNpxJ3YbJzW3D8uBhgwgMcpQxnEx6nzCwdFxtBOVAE3ClCARY+IGgpQgKWGinQOqoAyBSjAArBj7xFcddcCpCTFYeXXLylTjvZSRQEKsLyTMfcPFjkr5IfkuKEi+l6pzkMyie7aRKJIGmVINPhOHuHd2/835c77DksVMeRedfZt80TuKhY5K2VtSYriiP/y6JZolIoJnywzQWx/Kbw7OHSUVwo414Yjkwy6w4IIx8ASae66AmDHK/aRWla4rI/2amm3gyjAciuRxx2OmquwsaEA/5IIq4ZC5Flq3c7RvSQGL30306HfwgnrsCrzYPNrOrBNEKoJTLEGxGoMSGhO3wuRIqViOQNiWAPkn8Bul/e4Q2ERg5JSBmWlDIpKRJgLihGStw9JdfuRbjmAbo2HoEODR/OSn4sbQs/DL+G3wsSGw2AQMWSwiDPH6dCnJ4PW/r33aBHamSqgsgIUYKksaBedjgKsLup4uu12UaDLA6zd+7PwyDPvIftEAWZMPQ3PzrmlXRzRVRelAMs7z+/7mEPFAfnxpucFAsiteWq1w99yKN4qz584VkCvi9Sb31s7tz7HoaHcbt8XCkg6VV27LCZrlJc9wCPF8YfP0FOA5a3jOvA4EvW37UXH8+AOGO96k0ONXX261AkCuk9X95zaJKUAS93DdVvRWiyry/Z40hcXX4geRXHN4+oTTKi7Pa+pnpQ1tS+SlVMLPV7AywE5JxicPElgFVBaCglamcrrkW7ejzTzAfRo3IPu5n0IFSq9WqGKjcFx7UDk6AfigG40igwZ6E+KsZ8C9OtjPfO2BzsKsLySmA7yswIUYPlZ4C4yPQVYXcTRdJtBoUCnBFiX3vqEW3EFQUBBcRkqKmukvhqOwzcL56F/73S3Y2kH9RSgAMs7LTfO58DXySDnlPt5hCSrFxZUeYTF3vflKCTOIGLMfHUjnTzdefVxBrvfdryaaswTPDijevu22ZS9nEH+X/Ja2nARM17WUYDlqdM6Qf9DX3Io2WlXuF0LjJjNg5yJ1lrRVhZHvrWL4gsRMXqefz4/FGCpc8hqBDNuKFqN9fUFbickp6GfNgqjDYkYbUjCwH3dUPK90WHckLt5hKWp/7PJrXFNHYqLGCxdweD4MSDZckyCVGmN+5HeuB+J/HEw8Nw2C7TI1fZBjm4A8owDUR6TCT46AeFhkGpZpSQDmZkCdFpHKynAUuo12q89FKAAqz1U73xrUoDV+XxKdxS8CnRKgDVw4vUeKR4VGYb5D92AyeNHeDSOdvZdAQqwPNfQVMxi+0vywzGrBcYuUP/KdRKF1FgpP7j3v1ZAzED/RJEoUeHI9yyKNvsnbdJ5fXMtIxXjtm8jb+DQ4zSWphAqcVYn6eNca45sq8e5IlLOaBtGSWm4CzgI9Xa3hF7Jg0Ruqd0owPJd0RLehMsKfsMBs+uC5HpwOMvUA6PqUjCgKh6JlRHgy1jUlzCoL22Z6JcwQkDvWer+rGSqK6D98UMwxfltblgQgPIKoLraaleoUIEky3GvRKoxJKAyfgBMKQNh7jEQTO9+CAsFwsNFaNu+nNBhPQqwvJKfDgqQAhRgBUjoTr4MBVid3MF0e0GlQKcEWG99vMStyAzDICTEgIy0ZIwZPgAGfeBD+90a2QU6UIDluZMLN7M4+r0MciL7CBh4s7oPS8Sq7F8Z5K+VIU7MIAH9r1F/HaUKbHyMA29Xl4vsmezdXy3rRxYF/8o6hyUC057WdmqAVVdIIs8Y1JcxMJUA0X1F9L7Ufxr7y3dqzUtAMQHGtmaMFzDsIWV6ZP3MouAfeWx4hojBt6sfhUUBlm/ezuGrccXJ35FtqUa38mgkVIUjtTwKPaujMbQmEeGVIUC5clrD6UQMny1Aq+Ltetrfv4Vm2WdgzJ7VpPJEGYHTobFbP7C9+wO9M8H3GgQxPMqTKVrtSwGWKjLSSfykAAVYfhK2i01LAVYXczjdbrsq0CkBVrsqShf3SAEKsDySS+pMUpNIipKtpU0RkTZZ/QdjUxGL7f+T1yHr+Stlz50KtfkMdr7mmNI3aq76e7a3g9TaIjW37Nupd2jAZtR32iLuh75mUbLd0ef+BoXufN9e75MUUpJKat8G3SogopcygOXq8zPsQQHGBGXjle6bAiylSgGiBTCRqCkCaIsZnCyqx66CCsRWhCO+Jkz5RG307DlDQNJp6viY2/UvtN+9A7bkpCq22U8ixKdAyOgPISMTQs9MCOl9VF/DNiEFWH6Tlk6sggIUYKkgIp2iudYflYIqQBXwvwIUYPlfY7pCGwpQgOX58SAFpUnqiq1l3iwgyk+RSAQaEXhka71mCkgco87DmSc7L9zI4ugPMlgJVDTYoW9YlGyzi3ZLYzDoHnOnBFiWOgab5jsCO+IjXZSIYQ/y4LpQkCpJnZUKt5vlUxo7WEC/qz07+7vf5VB9TP78kIsWyIULajYKsBzVJD4jcIqk9pGfk6YSESbpe8DclFanpv5kLgIlDbFASKKI7uf4nibKFOVC9+Vr4A7uUMVUwWCE2L2fFVb1ypS+iqHhqsytZBIKsJSoRPu0lwIUYLWX8p1rXRqB1bn8SXcT3ApQgBXc/un01lGA5ZmLzbXA5ift0lkYa3F1Tu/ZPEp7569jkb3MLg2qu4jBd/o38smVbUe+51C0WQYB6dMEdDtTXRDgal2SRrf9RQJ17IDhjTyi+vn+kKrUB4Hql/cni+O/OEZf2dYmNz32vND/egdqr+7WObiIReku+zpzIoY/zEMX4W6k4/sl2xkc+lqGgpxexKjHebDKM9LcLtgVARbfYE1xrS8F6ktYCVJJsKoUsNS0rEnlVkQ3HRgOMMSJMMaJMMSSr4wErMj3+ijR/seDT0sxDSZoln4K7erFLucR9UZYzr8ODan9sWWnFjv3aWERNOAZDXhoIDCc9L3Ichg+gsX4iRx0oe1PninA8ulY0MF+VoACLD8L3EWmpwCriziabjMoFOgUAIvcJpgUH+NWUEEQ8esfG7F63TYUl1YgOioM40YOwsxzxkPnfG2O29loBzUUoADLMxXL9rI48Jn8YB2aDAy9X/0C7jarzDXA5gUcIMoPhcNnW2Bw/3HzbGNueu94WYO6QrnTwJt5RPYJDEQiehPdbS0iQ8QgP9QyUlUwDycTRUjpko0VrT/8D7rdgogMDyfugN0rjjDY975jJJq3wFTkrZ8fEt1ma70v4ZEwSr2z21kBFtGMACopeqrUGkklFU0vgYOeah0xM8cjPJaFMV6EMVZESLwMqXSR6kEq12RKhGbjSmiWfAC2qtxlF8vYKWiceRu2Ho7GytUM6kyuP6t9+wg452wRsTHqnTFfNaYAy1cF6Xh/KkABlj/V7TpzU4DVdXxNd9r+CnR4gLX7wDFcfvt8CUS99+KDIMXZXTULz+O+x97A2vUtQ/J7dU/Bhy8/jPhYdQqWtr9bO44FFGB55itSk4fU5rG1xLECel3k38iYfR+xqDjo/5pbrSkhNAIbHnMMWRnzJIk6C8wDWm0eg52vOwINEoUW3j0w63t2QrzrXXGIxb4PHaOv9NEiSB0wW9PHiBj2AA9y62VnbtteJLfLyVqQfY+Y7X3UYfYvDPL/lM9PaJqIoXd7P5+z9h0ZYJlrrJDKluonRVOVA/VFAImyUrvxGgG5ERUoiKzEycgqFEZVS19HJcdgQY8Rrf7/QW077Odjjh+C/stXweYcdrmMkNoTDdc8iONsP/y0jEVxsWtd4mIFnDcd6Jnh338PvNGCAixvVKNjAqUABViBUrpzr0MBVuf2L91dcCnQ4QHWax8sxntfLMVZpw/HGwvubVXdV9//Hu8vWia9T4DVkMxeqKyqwbpNu2E2W3DKwN744s1H2+U/sMF1JAJrDQVYnum96y0ONTnyA0yfy3jED/cvSCnZweDQV/IDOAEbIx5R7wHcnQJVWQz2LJTXJ6k8w/8TuPWJfXvf51B5RNY9up+IATcG1gZ3Ovny/oFPWZTtk6FN/AgBiaME7HnXERwmjxeQcV7wPSD7snf7sc4RjuS9zFt4RPX2/jPWUG6NbrPPMzvl/ywISVLH6mAHWKTulDXdjxROF1FfylqhVal/IBUBrCS1j/ycsKb9MTDEiPgftxkfYk8L0WdHD8e9kUPUcYYHszBV5dAufheaTWtcjiI1qswX34aygdPw628M9u53nd5rMIg460wRo0cIYF138cAq/3SlAMs/utJZ1VGAAix1dOzqs1CAFRwnICevEOdcNRs90pKw/PPn2jQqr6AEUy9/CGkpCVjx5Qtt9l30wyo88/oXmD5pDF587I5W+7718RK8/elPisQYOzxTCqCxtdkLFmLZqn/bHBsbHYG/lrze3Of7ZX9i3ksfY9b5EzHvwesVrdsZOnV4gHX9/c9h844DmPfAdZg149eD9DQAACAASURBVEyXPiEphtOu+A/MFh6XX3AW5t5/TTOoOnj0BK6771lU19Thjafvw1mnDesMfu0we6AAyzNXrZ/tCBQISCJAyZ+N3Ny16UnOISIikBFIznW44oYL6HtZYCFK1VEWe95zfDo85X4eIcn+1d6ffrXNTQqWb3nGMcJsyN08wtJEqXA+KaBv30j0EIki6oztyPcsijbL+40eKGDAtb6ftX0fsKg4LM+bMFpA74t9n5f4IBgAFkk9tab5kZQ/0XrTXwmDhjLGoRC+WmeG0QAhCSJIdJxUlyqOQYhUnwrQRjieTbMo4I7itfi1LsdheRYMXos7HTPDeqlllst52LIisCePg8nPBpOXBZZ8LcgBY250vS7LwnLG+ag75wb8uSUMf//LgXfBykmw+aiRAiZNFGE0BvfnkQIsvx4xOrmPClCA5aOAdLikAAVYwXEQ/AWwLrpxLg5l5UKr1WDt968iKtL1zcUEKH2//M82xTianY86Uz3OnjgKLz9xV3NfG8Ai8C060vVFK1ERYXjzmfsowBJFUv2k47aJF98v1bP6duETGNivh8uNvPj21/jk2xXISE/Gko8WQKtxfFgjkVkkQuvcSWPxwmO3d1wxOqDlFGApd1p1NoPd78hnVxMiYvS8wEQBHfmOQ9EWu9vUxgjoOVOdB3B3ChxcxKF0l7x2xgwBySpdU+9ubfv3972lQYXdM3DsEAH9rgqMBp7Y6WnfnN9Z5K6W4Yox0ZoqSBrfAGx/iUNjlaw/iW45haQSqliI3FOb/dWf3MJoX69qwPUCogf47uPSPSwOfu5YFJ4Uc1fjZseAACwRaCCQioApUpeqqYC69XY/BqTWl9qN0xEwRaKpyB8BRlKTKk4EH22GJcwMEyyoF3iYRB71ogVCK/+TebliG9bX2xXQI7cGMhosTJiIScZuqpnN1FaDzT0KNi8LyM8Gm38cbP4xkMLsShvfZwgsl92D7WU98dsqBtWt3JrYPV3EjPNExMf5fjaV2uZLPwqwfFGPjvW3AhRg+VvhrjE/BVjB4Wd/AKyd+47iyjufwoA+3bH/8HE8fNcVuO7Ss73a8IEjObjstvnQaDiJSaSnJjTPYwNYJMKLRHopaTQCS4lKQdjnlCk3SymAJJyOhNU5NxJ1debF96O8shoLZt+Ei84Z36LPkWN5uOCGR5GemohfFz0fhLvsvCZRgKXct863xMUOEtDvmsA8wFQeZbD3Pbvb1AxNt6k5smDlm/Gg59bnOSmSw9YG38UjPN1/3L1aMOO9yj14MNoxGlM8bsC/b9sVzGdEDHuIhzHOg80EWVdXRcZ7zeSROEbW11VRc3IDJCls3plabS6w8w2ZyjGcCFJrTQ1QJwrAlqc5kJpPttbzAgFJ43zXUC2ARWxsLCc3+TVFUhFIZbvpr5wF/ACpzDoLqqNMqIiuQ3lkDUqjq1EUWYOCiEqUGGub4VS9yKOOhIKq0CJZHb5KmoqhOu8+uEy9SQJTJJIKecfAnjwGNi8bTE2l19YJUXGwXHwrclLPwtJfWOTlua5zFRMtYtpUEf37+X5uvDbWi4EUYHkhGh0SMAUowAqY1J16IQqwgsO9/gBYc5//EEt+XYfPXp+Dmx58AWnJ8Vj62bMeb1jKBLt9PgjE+u89V+Hqi6c4zEEBlnJJO3wK4ZBJN4LnBfz90xsuw+1W/rUF9z/+JkJDDBLkMuhbXiltqm/EyGm3IsSox+ZfFypXj/b0WQEKsJRLuP8TFuV2dVB6nCsg5YzAPMhIt9Q94xiJQ+AZgWj+bJZ6YNM8O6jAihizgAfrR3B2acGvUsTGOEMi3os/C9GcXtpiUrQBv8+1oKZI3jG5TY7cKtdRW8kuBocWyWKyWiuYdI4Mco7AAyNi6L08QlM66s5b2n1iFYsTK+3SB/uLGHCDer7NWckid5XrSDdfVHQGWFVCI0yiBQT6kAilehKpJFpgEgU0WHg0lrHgSzmgjANTpoW2TAtduQ7GCgMYu9tGfbHJfmytrlECUgWR1SiIshZPL4iskr5WGZVHJ6lhTxIXgu+Sz0ZPTaSi6dicQ1IkFUMiqfKywZ7MBlterGiskk5CXDL4ERNQOeFqrPjLiB07XRex0utETDgDGDfGvz/7lNjsTR8KsLxRjY4JlAIUYAVK6c69DgVYweFftQFWTa0JEy++D+FhIfjj+1dxz9zXsebvbfj8jTkYPrivR5t++5Mf8dYnP0rjPnv9vy3qblOApVzODg+wzrjoXpSWV2HxB0+if+/0Fju/7eH/4e9Nu6XIKxKB5aqRGwqHTroJLMtg95qPlatHe/qsAAVYyiV0Tm+y1SlSPoNvPY//yiBvrQw7YgYK6K9CfaC2rHK+HS8sVcSQe9WDCs5rP1q6AZ9UH2h+OU0Tho8TJ2GANhrJMUac2CRg0/uO64+cw0MX6b+IMJsxu9/lYK4GLHXWV4Y9JEAb6tu6pK4Xqe9la8mnCsi4sCWU5E0Mtv2PBSnIbWv2qYa+nazgGL3rTQ41J+T9kds9yS2fajVXtcY8qSX3e90J/FiThRy+2gqmmlLnGgisgoA6QY5QSiuPRlJFJJIqI5BcGY6EqnCkVEYivtp1TQVf91ira0BBBAFT1ciPqkBhZDVORlVJrwUaUrW2F/IZJpFX8Zyxze1qNvwOzS9fgi3O81WW5vFCRAzE1B4QUnpKX8XkHhBSM2BhdVj/L4c/1zFoNLdcjtS5GjZUwNQpIkKCvM5VW2JRgKXaUaIT+UEBCrD8IGoXnDJQAGtpZTa21qr3i5Rgd9X5UT0wIiResZlqA6yvflyNBa9+jpuumI4HbpsFW2DMjKmn4dk5tyi2i9TcnnXrE02pg09JWV/OjQIsxXKiwwOsWx56Ceu37MHt187APTfOdNj5jr1HcNVdC6TXvnz7MQzNdF2stbKqFuNm3CVFZ2397T3l6tGePitAAZYyCRvKmaabzKz9SRHjU59WJ6VGmQWAqYjF9v85RgiQGlykFpe/Wu5qDjm/29XeOlVATxeARY31P68+iEdKW97+oQeHN+PPwE1p/UEeKJf+pxHEH7ZG6nGRulz+bGW7WRz4wlF7clNgn1ner0tqF2170TGUjdS2Ckl07U8S/UeiAO1b2lQRaZP8BxT9qan93OZaBpufdNTCH2DS+bZHdxcSbG8oxg81WVhcexSVglz0W2fRILUiEolVEdKf5IoIJFaGI7kyArG1rguL+qpljb4BJyObIqkiKlAQVYMC6e9VqDLU+zq9R+PDWS0M4KRaVgaWg4F8ZTjr9yDfa2C0/Z3RIIzT4daIgQgjPzjbaNoVX0P704ce2WLfWTSGQkjJgJDSA2JqBsQUAqp6Qgxp6ZODh1ks/5VBRYXrdMH0biLOPVdAciufR6+NbIeBFGC1g+h0ScUKUIClWCrasQ0FAgWwbjv+J94r2ddlfLGw+wTcGpepeL9qA6yLb35cSvkjKYM905OlC+FIRJbJ1IC1P7yGiLAQt7aRQBlS94rM88jdV+KaS6a6HEMBllspmzt0eID13bK1eOKlTxBiNODd5x/AiCHWcD5COu+a8ypOFpbC+ZpKZ3n2HDwmHayk+Bis/u5l5erRnj4rQAGWMglbRCKliSARWIFuO9/gUJvrvygV5/3s+4hFxUEZmvS+VEDCSO+hTWt6ra8vwKUFK9qU87+Jw/FMtzHY/msDji6WbSLPxKMe9S/IO/AZi7K9LdOLBt0qIKKXd3oc+5nFyX/kOcMzRAy+ve0zdegrFiU7HO0gBd9JNFZHbsVbWRz+Vt5XSJKIU/5P/c+X8+eYaOYMgXMtNVhcm4Wfy7LRWMJKUVSJ1RFILiewKhzJFZGINrn/D5M3/qjWN0hAioCpk1HVTal/VciLrkCdzvWteQTwWiGSHUhq+t4KkaxwSfreBpoIYCKv2+ATgU4s2wSeNNAzrHUcbCDKOkeIGwDlzZ5tY3TfvAnNWmVXX5MxQrdeEFJ7AMkZ4NN6QUxKhxAjF2NtzZbaOgbLljPYa5cObt83KlLE1CkCBmV27M+U/Z4owPLlZNKx/laAAix/K9w15qcAyz9+9hZg6XVaZPZ1fbmbzdJGsxl7D2YjLSUBK758ocUGdu/PwuV3PCkFwJBAGFt75vVFWPTDSsy592pcNXOy242//elPeOvjJVLq4Kev/VfK+HLVbACLgLIYF3W9yZjLLzgL55wlF3inRdzdyh+cHUgBd0JHjx7PlwzslhwPcrFiXkGJ9HcCtr577wmQKylba1//tAZPvfIZRg7tJx0s2gKnAAVYyrQuWM8i6yf5AdvX6Btlq7bsdXI9i2N2doSlixhyl/oP+raVSVQMiY6xtbYihLzdU46lGtPylzpEuLQ217mR3fFy1OnY/7TBIZ2u21k80s/2zwMnSd/b+ITrol/6WBEjHvZcf8EMbF7Aga+Xte17JY+4oW3vgdzQR6Lw7IuR+zut01u/ejLu4BccSnfLWqSeyaP7NOX+nHnyV+TzteipDUd3TQR6aMPRRxuFdE0EemsdLxfZ+hznEMEXO1hEyEAzdhdUIregHpoKnRRRFVnfdqqbJ/uz71tvaER1tAmm6Ho0xDTCHNMAIcYCMdYMrdF6Q58VRlmBk5HlYIVUTTBJep/8sQKnztB0Hz4DzZY/XG5FSOxmhVNpva3RVMndQV7zpu3aw2LZLwzq7T53tnk0GuCM8SJOP5UH+b4zNQqwOpM3O99eKMDqfD5tjx1RgOUf1b0FWJ5Y0xrAeuyFj/DDL3/hiYeux6XnTWyektxEeMkt89C3ZzfpJsG2mpLUQdt4G8Bqa76Hbr8MN1x+TnMXCrA88XSQ9c09WYw7Zr+MrJyTDpbFx0bh5SfudFtk7fbZL2Pdxl248fLpePD2WUG2u85tDgVYyvxL4BWBWLaWNlVA2iTvIm+Urei6l7nGCj5gV+x5+GwLDDG+zOp6rHPaJKsRMeYpHozrOsdeGUBuHDz/5FIcNlc5jP8uaRoaweP2orUgfexbH20E3jx0HqpWyFEwrE7EqLk8muq9e2VLa4MKNjDIWtJ61fpukwSkT/XsLBRtZnDke3lOkgZK7GcUFMcv2cXi0CJHJ5AbCcnNhB2xkdv3Nj7OQTDb3XR5J4/w7soA1kvl2/FK5c42t05qqdng1qjNvZH0R7JfpSL+JLdjGuJEGOMZGGIFGGIBYzzA6ZXty68GBsnkTGM9dG/PBXewpf8ab5oDy8gzVbG0ppbBT0sZHDzk+ofXkMECpk0RERbWOX1DAZYqx4hO4icFKMDyk7BdbNpAASxaA6vtg6VWCqGteLsgiNIlcGGhjr9UnHnTY1K211dvP4YhrZQoIqmDl9/+JAjwait10LYjmkKo/IdGh08htG2VRGKt/XcHDh45Ib3Up2c3TBx3CkgIYVuN3GB4/f3Por7BjCf/cwMG9OmuXD3a02cFKMBSJuG+D1hUHJYffvpfLSBmcPsAA+fbEEkNJFILSe1WupvFQbu6TxE9RQy6zfNoo7bsuqrgd6ytt0Zv2tpzsafimvB+0l+PW6pxbeFKHHECXHF8CN7+/DIwJpn4dJ8uInWCuvYRG0jx9upjMlwhcIJEQtk3UtDdGK/8PDingnoacXTgcxZle5xSCT20Qe3z4u18VVks9iyU90L0JWl9StqGhgJcfLLt1FPneSLrjPjg06uUTN9mH1LA3xAHhMUDMd000MUIEEIsMCSKLW6R9HmxzjhBdQUMrz8CNveow+5EvRENdz4Foe9QVXZNbhb85TfXUVfh4SIunSmgh0JYqopB7TAJBVjtIDpdUrECFGAplop2bEOBQAEs6oS2FVALYNmys9zpPXP6GXjq4Rtddnvns5/w5kckdbAPPn1tTqupg7bBFGC5U1t+v9MALOVbpj2DSQEKsJR5wzntaOj9FoT6N4ijVcNKdzI4+KUMbnQRIkY+quyBX9lurb2yl7PI/0sGCylnCOhxrnJI426tBWWb8U7VXodu14f3x9OxYx1eqxEtuLNoLVabch1en7V5OC7dMrz5NU2oCFL4m1Ux/cfVzXXkFkZSDJy8Z2uepHLW5AK73rA3UsSIR3joo90pJr9vrgO2v8DBYrKzoZuIwXfzUqH7jtSOLWNxcp1deu5wEX0uc3+ey/kGTM7/CQV807WQHmz6/34/C+OO9nQ7ggkTEBbLwGgfSRUH6e+szjo8RM8hKkyHugYeFTWu61S5XaiLdWBKC6F/+QGwZUUOOxcjolF/3wtS8XVfW3U1gyU/Mzhid8unbU7yGRk9UsCUyQLc/I7NVzOCYjwFWEHhBmpEKwpQgEWPhhoKUIClhoq+z6EWwLIVbyd1tDjOdfT0ngPHYNBr8ecPryM0xOBg/KGsXMy6dR5YlsWPHy9weeug824pwFLufwqwlGtFe/pBAQqw3IsqWIANjzpSkbFPW1QFJe6tkHuQjLpNT3IQGmVSMeh2HhEZ6kZh7VnIoSrLrkbTVTzihqizxuKao7i3ZJ3DtkfqE/BD0jRwLnIUyarv1O/GMwVbYbMgpEGH9z69Enpe9k3GBQKSx6kH2XL/YJGzQv6Hk0BLAi/LDzHY/6Fjvl/vS3gkjHKvD0kdJCmEthbdT8SAG90DG+czUryDweGvHG3ocZ6AlPHq7d+Tc+ltX3ITI7mR0db6Kjxn1xSuxBpTnlfLDspLxryfz5XGlofUSYXTy6JqEBevxaDkSGQmhcMYL4JtO4BYGk8BlmcuYPKzYXjlITA1lQ4DSV2rBgKvopVf193aytt2sPj1NwYNDS1pbkyMNeoqNcX9Z9WznQVvbwqwgtc31DKAAix6CtRQgAIsNVT0fQ41ANbuA8dw+e3z0atHKn7+5OlWjbKVIJr3wHWYNUMuOWCfOjj7ritw7aVnK9oYBViKZJI6UYClXCva0w8KUIDlXlRTAYPtr9hFPEWJGPlfz4GD+5WU9zjyPYuizTJYSRwjoNdMdcHFhsc0EOwCSqxRQr4/9O1oKMEFJ5fD0oyiAFKjaEXy+Yhqo4hVcowRyyuzcWnW76gXrfpfu340zt85pFk4ncq+IQXTTUWyzvZpivs/Y1FudzMhZxQx/D8CSGpZa40UhN+0gINokXsMuF5A9ADvfOecTkpqeveZ5b4YvPKT5t+eDWUMtj7vCOHGPElqmbV9zj6q3o/HSjc6GPdIzAjcEzHYpcHFvAlZlkocNVfhaCP5WomGPA57o4owPjwJM8N6YYIhBRovCrxRgKX8jLCHdkL/9mNgGkwOg/iMAWi451nAGKp8Mhc9KyutUVdZx1r+tpZlgfGn8Zh4hghOQa05nwwJssEUYAWZQ6g5DgpQgEUPhBoKUIClhoq+z6EGwHr8xY+wePlfmHPvVbhq5pRWjfpj/XbcPec16bZDcmGcrb372c9446MfMGxQH3z2uvvUQds4CrCU+58CLOVa0Z5+UIACLPeiklpDpOaQrUX2FjDwFu+Ag/vVlPWoOsZgz7vyUxhnEDFmvnpQra6QwY6XHYuMK61L1NYO8i21ODv/Z5QJDc3dQhgNfks5Hz21kW1ungAskvqztiAfVxesQh5fi+i6ECkKy771mSWA3BLpa6srYLDDDlyS+UiKoi7SCldICiGBL00sTXotfriAPpe1vrbzLZK+AjdzNYNtL7LgnSJNEscK6HWR7xr4qqG78QX/sMj62bPP1t7GMpybvwxmyPsbo0/E4qRpYNohf5ICLHdetr7P7VwP3XtPghEcf05ZhpyKxpvnAtqmnExl07XotWUrixUrGTTaRabaOiUlirj0YhHxccH/mfBy+20OowDLH6rSOdVSgAIstZTs2vNQgBUc/vcVYNXW1WPixfeB1Mhe+8NriAiTL2xy3iEp8D718gdxsqhMAlgEZB0+lotLb7GmDpIbCrt3S1QsDAVYiqWiEVjKpaI9/aEABVjuVXVOI0s6VUDPC9v3QUgUga3PcGissk+9EhA3RB27nG/Ji+ovIvMG3wCZSbDgHOnGQTl1iFj/ReIUTDSmunWEDWCdLDOhgm/ELUVr8E99AW5bezom7+/fPL4xugETZnM+14I6/guLvD/t4EpPEQOditjn/8ki+xfHaI+Bt/KI7OU6gmjbCxzqS2WfqXGbpbOvbEKEpojof61ntbXcOkHlDns/4FB5WNaD1FgjtdZaa+QMTcz/EbmWmuYukawOa1MvQgLneEONyqa2Oh0FWO6V5tavgO7z/8E5oc9y6tlovOZBePNhLS1lcDyXQU4OcCKPQXGR6+JvZ08RcNqp6vxcdL/T4OxBAVZw+oVaZVWAAix6EtRQgAIsNVT0fQ5fAda3P/+B+S9/iovOGY8Fs29ya5CtUDtJISSphLfP/h/Wbdwt3VqYnto2vCK1tb5+5/HmNWwAq0daEqIjw12uHRURhjefua/5ve+X/Yl5L30s9U9OjG3V3teevBspSXFu99NROtAIrI7iqU5qJwVY7h17+FsOxVvtHrLPF5Byevs/EB3/jUXeGhmekDQ0ko6mtO0zl+Px0o1YlDQFejjm1BxdwqJwgzx32mQBaVOUz+1sgyiKuKFoDVaarLeU2trj0SNxW+QgRSbbAywC8ASIeLJ0M5bk5+CtLy4Da/d4/M+MPbhvXB/oGO9yhVwBQlc1rkQB2PEqB1OhfD5ImuWwh1oWk688ymDve3b2sCJGzeWh9S1rStKuYD2LrGUs4MQYSWRev6sFRPXxPfVTkZM86MQ3Ahsf5wBR1m74QzwM8a3bel/JOnxf43hr3acJkzA5JM2DldXtSgFW23pqf/4E2l8XtehkvuBGmKddodgZeXkMsnOswOp4DoM6uwsMXE1Cbha86AIB0VHBd/YVb1qljhRgqSQkncYvClCA5RdZu9ykFGAFh8t9BViX3DIP+w8fx1dvP4Yhmb3cbqq4tAKTZj0Ag16HtYtfw40PPI/d+7PcjiMdWJbB7jUfN/e1Aay2BsdGR+CvJa83d7EBLHcLLv3sWfRMb6fbv9wZ58X7FGB5IRodop4CFGC513LXWxxqcuSH7AE38Iju3/4PRfVlwLbn7YrLMyJImp9GQSDKz7XHcF/xOjRCgKub/3a+zqE2T709v1CxHa9V7HQQe2ZoT7wRf4Z7BzT1cAZYtoFkL4e+5DDuiHyrXE5MGRZduw6fJExCLOd4M4mSBSuzGOxdKMMmhhUx+glSm6nl6Ja3CgLdJglIn+oI/A4uYlG6S4aCsUME9LvKeyjobElNHnDgE8eoPFuf1DN5dD9bRIsQGCVi+KlP6R4WB+1Scwn4I3XWWms/1R7DncV/Orx9Q3h/LHC6tdJP5rY6LQVYrqVhq8qgXfgEuKz9LTo0Xj8bljGTW9W0oZHBiRMMjh8XcfwECwKvzHZ149rysV4vYtoUESOGq/fZCvSZUns9CrDUVpTOp6YCFGCpqWbXnYsCrK7re7rzwCtAAVbgNacr2ilAAZb747BpvgaWOrnf8Id5GGLbH2ARi3a9waEmVwZN7m7h45uilj6o3uew8S8Tp2BCUxofKVGzcS4HUZDnHT3fAo3nHEhaY2ltNm4vXuuw3lBdLH5KPhdaD4pmtwawJB1OVKL6zRgwdoTm6XNXID+jFCRCZ4jes7Ddo4s5FG6S9+8ONh1dzKJwk10qISti2AM8jE0Xqplrgc0LOMBO07ZSDd2fStc9zHXAoUUsKo+0LGJNbqnsdzUPbZi3s6s7zvk2xuTxAjLOcw0dTlhqMDFvSXPxfmJJP20UVqSc73WUnVq7oQCrpZLc0T3QLZwPprrC4U1RZ0DjbfPAZ450eL2igkFuPnDsGIOcEwwKW0kHbMtnWi3Qp5eA86aLCAsLjp/Pap0xX+ehAMtXBel4fypAAZY/1e06c1OA1XV8TXfa/gp0eIBVVlGNmCjXeaLtLy+1wJ0CFGC1rRDfQNKcHKOcxj3nWy0odz7x5H3nouBhaSKG3O3avkqhEdcXrsKmhqIWS8SweqxLnSndAlidw2D3W3L0kT5GxIjZ3u2ZFNw+L3+ZFOlla8lcCH5LmeFxZFRbAEuCWB8DNQdkX+1NOYknLlgOHVi8Fj8eM0IzFElLAN6mJzgIdsWg+18nICaz9YgOiwkg9a0sdTL0CksXMeQuq265q1nk/C5DJQJACQj1SxOB3DUcclYysLvoUVpKGyai//U8wtsv4655y5vmO+qVeQuPqN4twUOjyOPck8uxr7Gseaye4bAqZYbbwv9+0ddpUgqwHAXRrl4M7Q/vA07F2sWwSNTf+xyEbr0lQEXSAHNyGBw/AVTZ1fJT6rOICBHpaUD3NBHp6SJIofZ2qOGv1Nx27UcBVrvKTxd3owAFWPSIqKEABVhqqEjnoAooU6DDA6yhk27CGWOH4IJpp2PCqadAq/Gu5owyuWgvtRWgAKttRauPM9j9tnymjQkihj3oJ/DghXMJOCEgwKGO0GwLDDGOk+03l+O6wlXIs9S2usrZIWn4KGESnKFY7FAR/a70fM9FvAnn5C9FAS+Hr5FaW8tTz8MAbbTHu3UHsFyl8s2+ZAmy4kultW4Oz8T82NFu13VObeOMIkY9xoN186OtaBuDI984diJ1s+JHiNjyNAdzTWDrqFVmAQc/42BxqhVEgt66TxeQMr79UqycfcVqRYx5koergLz5ZZvxXtVeB7+9GDcOV4b1devLQHSgAMuqMtNggvbTl6DZ/lcL2evje2HDqU/hQGkiTuQyICmCnjQCphITrKCqe7qI9G5AZNNtoJ7M01X7UoDVVT3fMfZNAVbH8FOwW0kBVrB7iNrXmRTo8ABr4MTrm/0RFRmGcyeNxYXTTpeusqQt+BWgAKttH5Hi7aSIu62RKBwSjRNMbf8nLMr3y9E9qWcJ6H62bOMvtcdxb8k6mET3RWRejj8dw5f1Q/E25TfDudKiATwuyv8FOxut8MjWPko4C2eHpHslnzuARSYldatI/Spb25qeg+fO/b357+MNyViYcCbIzXWtNVKXiUAsW0scI6DXTGU+37OQQ5Xd+qSIes8ZAap1YgAAIABJREFUIg5/65jSN2Y+D/Kev1tDpRVi2aeZ2tYkRf/7XiG4rOvlb7tOrGJxYqX7emB/mPJwdeFKB3Omh3TH+wln+ttExfNTgAUwRbnQvzkXbHFeC922Gyfh68iHwTOtf+acB+m0QLduAtLTCLBikNZNgE75cMW+6yodKcDqKp7umPukAKtj+i3YrKYAK9g8Qu3pzAp0eIC1c99R/Ljib6xYsxFVNXKkRe+MVFx49uk4f+o4xMVEdmYfdui9UYDVtvuOr2CQ94cMsFIn8Og+3f/gwZNDVbabxYEvZBigixIx8r/WiKlnyrfgrco9LaYboY/Hhwln4a7iP/FPfUHz+yGMBou+uxqWYjkVb9AdPCJ6eLZnMu+Ptccc1n04ejjuixziydYc+ioBWJWHWez9wBEWPTjrB+TEyuln6VwYPk2ajL7aqBa28PUMNs5zjKIafCeP8O7W/ZMItkbwyNBEuNyHqZjF9pda1p+y75wwUkDvS5UBMa/Fchp4bCmLk3+3tIukhw64TkBIkmf+9dWunW9yqD0hg8Y+lwmIdyq6XcybcFbejygTGpqXS+FCsSb1QoSzWl9NUG18VwdY3M5/ofvoGTCN9Q6amqHDj5H3YmPIuW61JjWruqfDGl2VJiIlObDn0a2BHbwDBVgd3IGd3HwKsDq5gwO0PQqwAiQ0XYYqQKLuRXK/fCdojY1m/LF+O5b8+jf+2bwbgmDdFrmi8rRRg3HROafjzHHDoCO/WqUtaBSgAKttVzhH4/S6mEfi6OD6yLqq2dTz1nrcG7rKAU7ZdnpVWF88EzsWGoZFoaUOZ+b/CFIfizRjoxaffXidLAojYsxTPDgPPravV+7C8+XbHIQ9L6S7FPnkS1MCsMj8zjco7u6Tiycnr3BY2sho8G78BEwOcSwGRQq3kwLuttYQ3oCvbv0LWeYqHDNXoR48CAa6Iqwv5saMRISLSC5S64rUvGqtkRplpFZZoFvZPgaHvmQhmB3TtxhOlIBa/LDA2CQVtH+SaGyzQ8Sox3loQ2VFyD+LFxX8is129dpI75+Tz8VwfVNl/EAL2Mp6XRZgCTy0Sz6AdtX3LZQpZxPwYcyzKNDKN4PaOpF0wIT4plRACVgBUTQd0K+nmQIsv8pLJ/dRAQqwfBSQDpcUoACLHgSqQOAU6DQAy16ykrJKLFv5rxSZdfhYbvNbEWEhmHbWGFw07XQMyewVOJXpSq0qQAFW24djxysa1MkBShh0G4+InoF50Pfk2DrfmrcxMwsvTVjTYoqX4k7DFWF9HF5fUZeDm4qsfQflpmDe0unN74ckAaf8n/vUQ9uA3+tO4Iai1Q7zD9HFYknyOTAwdsXwPdlcU1+lAMu5hhUYET/dvB5faPa3WPXKsD7opg3HkcYKZFuqceG3ozEgP7m53+IR2/H16K0urY1mdZgTM7JFLSbBAmx/iUNDecs6P6GpIobe63k9MS/kcjnEVAIc+ISDqbilbSQyjKRKMn4uY1i0hcGR7+RF7Ivd24x+o2o3nitz1H129HDc60MEn1oaOs/TFQGWpbwCzGvzEF7oeJsp0eaAfjS+iHoM9ax83SWpXzWgn4B0kg6YJkKvC76fof46H8EwLwVYweAFakNrClCARc+GGgpQgKWGinQOqoAyBTolwLLf+v7Dx6WorF9Wb0B5ZXXzWxnpybjg7NOkFMOkeKeK08q0o71UUIACrLZF/HeOBqIdbyDFvMlNbsHWqrIZ7HlHhgJ12kbccsMiNHJW48ktg58mTm41euWB4r/xTe0RXLh9KK7aMKp5ewmjBPS+RFm62wFzOc7PX446u1pb8awBv6XOQCIX4rNkSgEWWWjbiyzqS+QoKLKPNVN3gxQEb63F1IRi4edXOLx93xXfIz+qok3bT9HF4bm4UzFYF9vcz1UqI3mTRDoRUNSeTTADRxazKNneMkosJFmUarwZov13xg98zqLMrsZY92kiUs+UP2RbG4ow4+QvDhKN1SdhcfK09pSt1bW7EsAqLmKwZ/lBnLFlLsKFcgdNBLBYEX4T1oRdKb2u1QKDBwoYOVxEt27+O09BeSiCzCgKsILMIdQcBwUowKIHQg0FKMBSQ0U6B1VAmQKdHmDZZDBbeKzbsBM//vY3/vp3J8jfSWMYBmNHZEqF3yePHwGDnlZqVXZ01OlFAVbrOpIImq3PyVCINYgYO7/9omfceXzNMxYYKg3N3V6euhr/9jqGYfo46XbBBM7Y6hQEOk3K/RGXLh+Dsccymvulz7Sg2xh3K0OqUzQ9fylOWGqaO5MbB5ekTMdQO7DjfqbWe3gCsIq3si0Kp496lMdGXT5uKVqDKkJxnNqMnUNwzXr5lsIj8cX47yU/KTb56rC+UkSWrUD8oUUcSnbJkU7k/IyeyyNYyjcVbmBxdElLiEXs7DtLRMxA/4C2jY9z4BtkXU75P765BheJ4HusbANy7W7LJHqSuldJKkBQxc70oGNnBVjkpsCcEwxO5IjIyWWQm8tifPkinFP9QQt1atgofB49D0d1p6B7mojhw0UMyhQkiEVb+ytAAVb7+4Ba0LoCFGDR06GGAhRgqaEinYMqoEyBLgOw7OWoqKzB8tUkxfAf7DuU3fxWaIgBm355V5lytJcqClCA1bqMzlE0pG4RqV8UbK1GtODe4j8RuTYOl24d0Wzelu7HcWJWNl6MO02RydsainHihXDE18ipP39dvw2PDHBfeH3myV+xsaHQYZ234yfgglAZhikyoo1OngAsMg2Bj/ZpfMmnC8g4X0AOX43rC1bjoNkxsuqFby9CRqkcRfXnxL0oGVmM7roIpGnCmqPIvqw+iCVOBeptZpO0wkdjRklpmuZqBke+Z2CMBwwxAEmVCwuySJTaPAYkIspVuqM/LiyoOspiz3t2Fw5Eihg5h0eWpRJzSzfgT9PJFifg44RJmOpUq8zXs6Tm+M4CsMorGJzIZZCTAxzPYVBYJEPG7o17cEXFs4jj81tIl6Ptj29SF6D3iCiMHA7ExtBoKzXPlxpzUYClhop0Dn8pQAGWv5TtWvNSgNW1/E13274KdEmAZS/5kWN5UlTW0t/Xg9TO2rv2k/b1SBdbnQKs1h1+cj2LYz/JD9vxp4joc0XwAawnyzZjYdVeJFSF4a1FlzdvSCQF2Ofx0LQeeOWweXMNsPkpuU6VhRVw5a0f4fOkKTjTmNqqUA8W/42va484vH9vxGDMjpFhmhofK08BVsF6Fll2/mM1IkbOtepRK5rxeMlGNEJAd004MipjkfyOXcFpRsSouSRd1LXlWxqLMKf4X+w1O6ZR2XqTqLfnYsdhkC5406PX1ufhiLkSg4RYhH6fhOpDLYtfkdsX+13DQxeuhgeBY8tYnFwnf6ZiRlvwzZmb8V7VXpcL3BDeHwtix6qzuJ9m6agAq6SUxaHDwPETwPFsBnWmlnXRjEI1ZlS9hVGm31yqtyv1YvCz7kS/vv6J1vOTy7rctBRgdTmXd6gNU4DVodwVtMZSgBW0rqGGdUIFujzAsvmU5wWs37IH48e4j/bohOeg3bZEAVbr0hN4RSCWraVPEdBtcvA9qA3J+QqlQoNk5jOLZ6BPUUKzzSTiiEQeKWll+1gc+FTe78HEQsyduVSqn/Vnt5nSV+f2QfU+zCvd5PDy2SFpUsqi2s1TgEWKqW95hoOlVn4w7zZJQPrUlnoc/5VF3lp571F9RWTe5B5WfllzCM+WbZVSKF01cuPjo3ZphWpr4ul8OZZqfFl1CN/VHkUBX+cw/LqdozF9/WCwzbcDWt/WhIrofy2PiB6ertay/7YXOdSXyP5469w/sDb9qMuJbwwfgLmxI0FSUYO5dTSAVVPDYNVqBtt2tn5TJtF7ZN1vOL/6HYQKlS3kt3AG1FwzB7oxpwaza6htTQpQgEWPQjArQAFWMHun49hGAVbH8RW1tOMrQAFWx/dhh94BBVitu2/fhxwqDskP232v5BE3NLjSY0gUzVUFK5s3cfHeIbj8L7mOU1iqiCEKb707/huLvDXyQ+3yIXvwyWkbpLknG7tJReDt25+mfFxZ+LvDa/21UViach5CfLxx0JVXPAVYZA4CpQicsjXOYE1Z45xY3JanOTRWyb7ucxmP+OHKfF0lNOLF8u34qLrlLYdkXfu0wvb4YWESLVhWexxfVR9qkebpbE9mfhIe+G0SIusdw/YERkTJxEIkn2nBQF0cwrzwb30psO0FOcLPzPK49uZPYeEcgeIEYzLmx4xFH21ke8jl8ZodBWA1moF16xj8/S8Hvg02G2vJx6zKF9GrcYdLLYReg9B47YMQErp5rBUd0D4KUIDVPrrTVZUpQAGWMp1or7YVoACLnhCqQOAUoAArcFrTlVwoQAFW68fCuYbS0HstCG09k65dztdtxWuxrFauI3eXbgjOfGMUREGGMcNnW6QaTO7avg84VByWx702+Q/83UeOjnk+9lRcHd5PmibLXIlz8pehRpSLoZNi26tSLkCKJtTdUl697w3A4huAzQs4CI129XymC0idIEOTqiwGexbKUT6MRsSYJzwvtk7S8WaXrMcGp1pgts3eGjkQ86LlGx69EsGDQSTN8euqQ1hamw1SJ01pi6oz4qEVk9GvMLHFkO1pJ/DqlDWICdVhgDYamboYZOpjkKmLRoYm0il2y3H44b94FC+XyeHW7jl4broMQHtowvFE7GhMMaYpNTUo+gU7wBIEYNsOFqv/YFBrF43oLF6YoRHnWb7AsLyvwbm45EAMDYd55q2wjAvO2yCD4jAEqREUYAWpY6hZkgIUYNGDoIYCFGCpoSKdgyqgTAEKsJTpRHv5SQEKsFwLS9LPNjwqR4uQXmOftoB1fMlPXlE2LYn8GZDzpUPnP1IvhPBlDEg6oK11O1NA+jT3aYTOt8N9f+Pf+EZ/wGH+f6RUQgPOyV+KbEu1w3s/JJ+DMfqW0EPZbtz38gZgkVmdI8tIShyJwrL5MusHFgUb1at19nPdMTxdtsXhJj3b7tQubO+sWjFvwnc1R/FF9UEcd/KPK4WJvxpEHjsaSxzeZkUGV/87CufvbJnSXRxWgxemrUR2fKnDGAM49NNFSTCrvz4Gg3UxzdFaUo2rT+MxKDelecx7Z/yNlQMPwMhocF/0UNwTMdj9IQjCHsEMsPYfYLFqDVBc4jpdsGeGgJEjRPQw7ULcjy+CLWlZRJ9Ibhk7BeaLb4cYFhGEHqAmuVOAAix3CtH321MBCrDaU/3OszYFWJ3Hl3Qnwa8ABVjB76NObSEFWK7dW1cI7HhZplW6CBEjH3VfEymQh+Xz6oN4pPTf5iUHaWPwW+oMlO5mcfALu5veIkSMmMODaVmjuXmsqYTB9hflKCROL2LAEyacmfejQ62kobpYhLFa/FNf4LDVV+JPx6zQ3n7dvrcAy2ICtpAoLIssQM8LBSSdKkDgSeF6DrxdAesBN/KI7qcsfbC1DTeAx9uVe/BS+fYWkGdp6nnI1EarqtUfpjx8UrUfq0y5bucdoY/HrLDeuCC0J8JZbXN/chPgocZK7G4owZ7GMumWxsQjMbh31UQYzTqHec0cj49O/xerMh0BZ2uL68wcPvvwOnCifC5vvfZLTElMxpzokYjnFN404HZ3ge8QjADrZCGD5ctZ5OS6/tDHxgqYNhXon1wB7fdvQ7NxtUvhhLhkNF4/G0KvgYEXlq6omgIUYKkmJZ3IDwpQgOUHUbvglBRgdUGn0y23mwIUYLWb9HRhogAFWK7PQekeFgc/lx+2I3uKGHhbcAGsC/J/AUkTs7X5saNxc3imFco8yYGvlx9eie1kD6214h0MDn8lA6yoPiIyb+axvr4AlxasaPPDckt4ppT65e/mLcAidh1byuLk37I/9VEihj/Mo/wAiwOfya+T6Cxy+yDTdn1rxVs92FiBc08uA6lDZWtpmjCsSJmBKNYRCime1KnjJ9UH8GiptVZZay2FC8UloT1xaURv9NQory1VJ1qwp7ASNV9EwlBsaDH9ut5H8O6Z69CoafuzMSarBx76Ta6hVhBfid731mOILtbbbQfNuGACWNXVDH5bxWDXbtcH2GgUceYEEaNGCtBvWAHtDwvB1Na00FLktLBMvxKWqZdB1MiQM2hEp4Z4pAAFWB7JRTsHWIH/Z+88wKMqtjj+v3dbeg+QQg8t9F6k944gTVEQEMUGSlUUpYkPVESKoCggiBSp0qQJ0nvvnZCEFFJJ23bv+2Zj9u7NbpJNstmWme97n5LMnDnzP5M89uc5ZyjAsrLgTrodBVhOGlh6LLtUgAIsuwxL6XGKAizTsY48zCLib+FDYLnmHKoMKLgMz1o3h5SHtYrcItruSoWhCGCzIUPusrgyTXiEDcobMjzeySLaAPCEdORQsVv2eWcnnsNyUgJmYrR1DcL6st2scuziACx1KoNzX4lfs6s+hEPCLSDhqhDnoJc4VO5r2TjvzHiEsXH/ijR6yaUcNpUrfi+hNS/u4FODLDzDTcjrfX09KmGgRxhauwQVK0akpPb+nyyeXzYGI0l+afi5178472G6/Ixs/O7htuh4u7reh7xegyyWkzZabA8AS6licOQocPqM6QbtLAs0a8KhU3seLskRkK/9FpKHN00qpg2rC9XwSeADhXJPG0lLt7WQAhRgWUhIaqZEFKAAq0RkLXVGKcAqdSGnB7ahAhRg2VB8ujXNwMrrDpAP63HnhQ/rlftwCGptWbBRnPs3L/ECFqVe05vo5BqKNQavBL54wuDaj+KSwGZfaJHX43FkLlmTM2q9ycG3lnDeLlE7cFOdJHK5itQLe4L7iMrQinOmgtYWB2AR2/c3s4g7J8TUJYCHMokBb8D1yIuN5OVGS4+vEs/hx1wQ8G2v2vjSr+hN3Umfq6km4FUrl7IY4lEdPd0rWvw1SKIf0TH3kMh5VBysRXT1eNxSJ+GOMklXhnhDlaBrIP/zb6/BN8NNv6zeB1p4lLe8zpaOmzn2bAmweD67QfvBQwzSM0yXC9aoxqF7Nx4BXkpId/8O6cE/wWiMm/rzHt5QD3wXmuadzDk2neNAClCA5UDBKoWuUoBVCoNeAkemAKsERKUmqQJ5KEABFr0aNlWAZmCZlj830Kn5phZ+teznA3eTp5vwTJuhd/6nMu3R262S6DC5X1Gs/qoWAQ2Mz8BzwJnp4h5RTadrIPMQzN1Tp6B91Db9FzwYKfaH9ENFqafV7m9xAVbmc+DStxKAN/1BX+HHo/HUkisTfTV2H45mirOUlgS2Q3/3yoXW8I+0u5j8/KRonScjxdbgXhbvr5XbufRnwO3fJDr4l3uUIxlsvTgwBsluDx9nIWaZcJmkbjyaEpiaT0+2QgtiwwW2AljRzxhs28EiNs60kIGBPPr05FCpIg/23lXIV88HmxhrUil1q+7QvPIOeDeDH3obakq3tqwCFGBZVk9qzbIKUIBlWT1LqzUKsEpr5Om5baGAUwKstPRMXLn5AC81rWNS0xdpGfjp9524fP0+pFIJOrVuhFf7d4JUIi7xsUVAStueFGCZjvjZWVJo0oXvNZykhWugfQCsY5nRGBq7X++cGyPFzQqvQZarcdPTAyyeHhSyZXxr8qg10hjQpEcBVxYZNKz3zn6lL/dYmXoL0xPPgAWDDWW74iXX4pWlFfZnrbgAi+x3Z50ECVdNf+Cv0IVDaOeSy7Ijr0Z2jNouAo9ysNgb3Ac15eY3dd/w4h4mJpwQyUfuwNZyPVBXYZ2eUlol0ZJF8h3jbCyPUB41hmuh+K/VVu57GNiYR7XBJQcKC3uvijvf2gArLZ3BvgMMrhiUvhqewd2NR+eOPBo15MCmp0C2aSmk5w6bPCZXNjS7SXulmsWVga63YwUowLLj4FDXQAEWvQSWUIACLEuoaHkbEVFx+GvfCZy5dBOPImKQmpYOVxcFAv19EFzWHy81q4sOrRqiQkgZ0eYdBn6EuOfJoq8p5DL4+XohvHpF9O7cCl3bNTHpsKm1uSd279AM3335nv7LU+f8hF0HhYexTBn29/XC0W2L9N+KiIpFj2FTdX/+5IPX8MbArvkKOO3rFdix7wTWLp6GRnWFthqWV73kLTolwNp96DSmzF6OwX074MsJI0QqpmdkYfA7M/D4qfgVs05tGmHR7HElrzjdQaQABVjGF4J8OD/zhQB0wPBoOddyjb2LewXHxR/DlvQHejOve1THvIBWRmazEoGL88TnIA3KDTOryKLYMwwebBXgsX8dDjXeMA1yXo3Zj65u5THSq1Zxj1Ho9ZYAWBkxwOXvDTQx8KLxNI0euhTaOTMX3FYl6Zq6ZxnULQZJ3HAguB98JYoCrZiCVy6MBH+W645GisAC11t6QtS/EkT8zYBk8RkOqWs2xPKuAlxdLEGawWt41YdxCKhXcqDQ0mcsyJ41AdbxkxIcPsJAbVwBqHOzdSst2rUFFDIOshN7IN32C5gME03aZXJoer4BdZdBAP0PRwWF2OG/TwGWw4fQqQ9AAZZTh9dqh6MAy2pSm7WRWq3BklXb8Ov6PeBJvwMAQWX84O3lAZLoEpeQDJVKrft6qyZ1sOLbSSK7ORCKgB65LPvv7RlZShBolJyS/feajq0bYcGM9yGTihNgctbWrVkZUqnpv/O3bByO90f21++ZA7AqlS8HX2/T1SU+Xh5YMne8fo0hwHJRyLF91RyUDxaDOMNDUYBl1tWx3aRJs5Zh7z9nMHPSSAzs3U7kyMIVm7Fi3S64ubpgzLBeIBd81ca9yMxSYfGccbrLSIf1FKAAy1jrtKcMri4Rfhm6luHQcKJ9fOAm/YTqP1mPLAgZLH8F9URjhelfmLlLIUmDctKo3HDc38Ii7qyQSVOpB4/g9qYzZMj+pHzQFsMSAIv4fXOlceaQZ0Uedd+zTlbQ7ozHeDvuiEjCFopy2BKUf1P3jen3MSH+uGidCyRYH9QVzRRlbRES3Z6pjxndi53qNBMlhS05xJwSZ2k1n6WFRGEf2YyWEM0aAOvhIxbbdzJITjadPVgtjEPvnjx8fXgwMU8hXz0Pkid3TB5PW70BVMMngvcvZ4njUxsOoAAFWA4QpFLsIgVYpTj4Fjw6BVgWFLOYpgiYGvnxPFy+cV8Hg95+vTd6dW4JksFkOG7de4LDJy6hReNwo4ykHAj179YfEOAnvJ5NYNjxs9cxYcZSZGRmYfJ7Q/HmYPHfn/Nam9+xcgDWN9PfRc9Ozc1SIAdgubrIdRyjWcOaWLlgKpg8emRQgGWWrLab1PfNz/DgcRQO/bkA5QL99I6Qi9b+lY9AsrB++XYyWjaprfvezv0n8cncn9G5TWP8MPtD2zleCnemAMs46PEXWdzbaFB6V4sDaWpuDyN3Bk55qQdOhw7M07XYMywebBXO4h7Co/44Mai5vFCCjGfCB+M673DwqmIf5zU8mKUAVu4G92SPqv05lG1hvTPPSTyPZanXRXEb4xWOGX7NTMZya9oDjHt+DIbYR8FIdKWczVxsB69ynCXw6vbvLF48yr+xlXc1DrXfsp7O1viZLUmAlZTMYNceBvfuG5dqkrP5+fHo24tHlcocGLUKkt1rIDu4GYzWGMZyXr7QDH4PmsbtrSEL3cOOFKAAy46CQV0xUoACLHopLKEABViWUNEyNmZ8uxp/7jqCKhWCsOK7ySIWYO4OBUGoDTv+wezv16BWtYrYvGKmyGxBa035UByARSrOTl+4qcsO++Lj4RjSr6PJY1KAZW70bTSvZe/3kKlU4dL+FSIKuXXPUUyfvxItGoXj1wVT9N4pVWo06zEWgQE+OLjxOxt5XTq3pQDLOO4R+xhE/iNkYAW31aJSL/vIGHklZi9OZwmNmCf5NMDHPg3yvLzaDAZnZopTa0k2GckqI4NTA6c/F2dU2WuGjKUAFjk3eUlPkwlIXQDSVDy0Q/Y/rTU4ntf1MTuRJW7qviywHfrmaupuCl7JwOL3sl3Q2sp9yArS58keBqSsMK9hKgOwIJv2/v2SAFgkq/7wvwxOnZGAM5EYqJDzaN+OR4vmHCQsILl9CfK134JJjDMpl7p1T2gGvA3e1d3e5aT+lYACFGCVgKjUpMUUoADLYlKWakMUYNlH+K/feYQh78zUlfVtWzkHlSsUrV9uQRDq/qMo9Bv5GTw93HB61482BVj9e7QB+d/wcXN1FWZ//TZXVy6Ze1CAZR93NE8v6nUapUsZJGl/hoME9sLVu7osK5JtZThIZlbKi3Qd9KLDegpQgGWs9Z3fWSRcEzIewgZyKNPU9lkjEeoXaBm1ReTw+dBBCJLm/6H09loWideF85DyQFImSEbubCR7KpfMHRlLAizr/YTlvVNeTd13BvVCnf+asZuCVxIw+K1sZ3RwDbGHYxj5kHSLxZ0NDLgs42ysxlO0UPhbDxRaQyBLAyzSnH3fQQZpJkoyyXka1ufQrSsPN1del3Ul2/ITpP/+ZfKoXLkKUI78BHyFataQgu5hpwpQgGWngaFu6RSgAIteBEsoYC2A9ewKj6THtv9MYAnNzLER1ICFb0Xzn42eueA3bPrrsA7ozJk62pwtTM4pCGDdvh+BV976AkFl/Y2SXwpaa2rD4mRgdWvfDAtmvIc5C9di/fZDaN2sLn6aP9FoGwqwinwdrLOwdb8PkZ6ZhYv7ftZnYJGm7b3e+EQHtg5vWWjUcK3L0EmIjU/E1UMrreMk3UWnAAVYxhfh8vcSZMQYltRp4VXF9h+6FyRfxnfJl/UOt3Apiy3lehR4kxNvsLi9RgBYcoNXBp8dZ/Fop/C9wEYcqg2xz/9jdjaARQJ3R5WMntE7RT3NykhccTikP45nRmNs/BFR2SCBV7+U6YCubhUKjLstJ2QlMbizhkV6tPBz5BrIoeEk+7xbxdHKUgArJpbBjl0soqJM/0UxOIhH394cyD/JYCPuQf7LHLDx0SbdVw94O7tJOx2lXgEKsEr9FbBrASjAsuvwOIxz1gJYF9Zo8eio8/1dJq9AN3pDgirtTLcxMLWmz/BP8TDime5hNvJAW1Fr+YrlAAAgAElEQVRHQRBq9ca/8c2yDejStgkWzvpAtE1Bay0NsEj/btLHm7RK6jfyc0THPNfBOwLxDAcFWEW9DVZaN3rCfJy+eBOrvv9E19CMjKlf/YRdB07hzSHdMfndoSJPOI5Hk+5vgzyPeSpXGqCVXC6121CAZRz6U9Mk4LXCh8gmn2kgF/cdtMl9afl0CyK0L/R7LwhsjSHuYQX6QkqQzs2SQGuQERM+RgufMB53/5Dg+RXhrJX7cQhqZZ//x+yMAIsEb0/6E4yJPyyKY3WZN+6qU4xi+3OZ9ujlVqnAmNvDBPLQ4oNtLOLOZf/FJ7gNh0q97fNuFUev4gKsjEwG+w8yuHSZxX8P9Yjc8fDg0a0zj3p1Oej6gnIcZPs3QrrrN5O9rrS1GkP1+gTwfnm/hFOc89K1jqcABViOF7PS5DEFWKUp2iV3VgqwSkbbwgKsBp1HQ63RYvfa/4G86FfUkR+EOnbmKj76Ygm0Wi3++HE6wquL/16cs7Z+eFXI/nvBMLcfMya+KSpvzMnAIn27/HI1m89ZO7RfR/ToKDR4z2ni3q5lffz49ce6aafO38Bbk76Bl4ebrpQw0N9HvzUFWEW9DVZat2nnEcz8brWuadvIoT10Dd3J18gl2rtuvlFd6J0HTzFg9HSTjdis5HKp3YYCLHHolUkMLvxP6OHDynm0mG2d1+nyu4Sns2LwSszf+imkgfe18kPhzsrMursEJMSeNsi0asyj2mAtLs6XICtBAFh1P9DCs7zts81MHcpZARY5q6mm7oYakAgtD2yP3u6OAa8MfY+/xODBZha1RnPwtoNMRrN+YAoxqagAi+OAs+dZHDrCQGmi3JKVAC2ba9GhHQ/5fz/mTEIs5Kv+B8kD8QMAxF0utArUg9+Htlq9QnhPp5YGBSjAKg1RdtwzUoDluLGzJ88pwCqZaBQGYGm0WtTvlF02mPv1wBzvSC9s0hM79yAgigCnnJEDocgLhXJZ9l+ClEoVHj19hrjnyfDz8cTX097WlevlHjlr81Nk409fok6NyvopOQArvzWTxg7RcY2ckQOw2raoj2X/ywZYZOScMSczK+frFGCVzB21mFVCXt/4YA6u3X4ksvnph8Pw+itdjPZZuGIzVqzbhWEDumDauGEW84MaKlgBCrDEGqXcZ3FjhQB6PEJ41Mv1al/BqopnXFUloJ7cv7DLRPMnPT+O9Wn39V/r714ZSwLbmW0zLYLB1aUCmJPIeTSawuHcHHHD7VbzNGbbtPZEZwZYRMtXY/fhaKa4qXuOxosD22KAexVrS26x/UhJrls5+wSjxT1kUQDW4ycM/trF4HmC6bT8GtU49OzBw9dH0Ex66gBkGxeDUWaKXWYYqLoMgrbPSPBS8YMMxT0bXe8cClCA5RxxdNZTUIDlrJG17rmsBbBoD6z849qw6xioVGrsXTcPFUKMX8n+5Y/dOHJSaIdCklhI6V1eAMvUbvXCq2LV91PhopCbdMbaJYS5AdaLtAz0fXOaDrR9M/1d9OyUnbVFAZZ1fycUaTdyGVes243zV+7A3c0FA3q2Rdd2TUzaIuWFUc+e4/OP3kDNMPvu7VIkMex4EQVY4uDEnGTxcIfwoTKgPo/qrxU9A+tQZiSGxx7Er2U6onsR+xYpoUW9J+uRxgtw6Y+yXdHONbhQN4tklpEMs5wR2JhD/AXhrO6hPOp/WPSzFsqZIkx2doCVwqnQPeovRGjTROp8F9AaQz0KLhUtgqR0iQUUKAzASk5msGc/g9u3TYMrPz8efXvxqFLZoNQyIw3y1fMgvXbayFvOrwxUo6aBq1rbAiehJpxVAQqwnDWyznEuCrCcI462PoW1AJatz2nv+3d/bQqeRsdh+byJaNPcODsqt/9D352Fa7ce5gmwDDO5niemoOfrU5GRqcTG5V+idg3TVQm2BljkjATSvT9tIXy8PbDzt691GWOfz/sV2/Yew9rF09CobnV7D2W+/jE8b6rrhUOfiTrvQApQgCUO1sO/WMScED5clu/Co3znokGdTE6DNlFb8UybgeI0396a/gAfxh/TO+rHKnC5/BBIGPObKpLFkYckiNif90si5VpyqPKy/fYocnaARWJ0W5WEXs92IYs0kALwnf9LGOpJX5Cz51+p5gAsjQb49xiD4ycl0Jr4daJQ8LpSwebNOEgMfqzZ25egWPU1mNQkIwk0zTtD/eqH4BVu9iwP9c0OFKAAyw6CQF3IUwEKsOjlsIQCFGBZQsXi28jpeT1iUDdMef/VAg0WBmARY7/9uQ/zl67Xlf+tX/YFWNb4c409ACzia05ZYvcOzfDdl+8h54VGCrAKvBaOMYEwvMwsJaQSCeQ5zT4cw3WH95ICLHEIb66UIPmO8Muw2qtaBDYoWunT3KTzWJoi7lXzW9nO6OwaWqh781rsPvxrUFr2nldtfObXtFA2yOSsRODivLxLjMIGaVGmSdHOWmhnirCgNAAsIsuujMd4J+4IZvk3w2jP8CIoRZdYU4GCANb1mwz+3s8iNdX4L1mkKXvD+hy6duHh5ir87DFqFWRbfob03x1GR+Fd3aF6YxK0DVtb85h0LwdWgAIsBw5eKXCdAqxSEGQrHJECLCuIbMYWOZlHnh5u+HvdfF0GUn6jsACL9NkaMPoLXX9tUrn16sudjMzbC8BKTknTlRImJKXqXmW8eO0uVm/6m2ZgmXGPbDKlea930axBTSz+arxZ+6vVGjTp/g7qhVfB2sWfmbXGESaRFMfNu47g4LELuP8oCukZWfDz9UST+jUwckgPo1cTDM9ESi/JE6GXb9xHWkYmygb4olPrRnhneF94e7rneXySmrh517+4/zhK9zpDxdByeLl7a7zWvzMkhv9p/z8LFGCJpbwwTwJlovBBs96HGngUjjfpDN5Tp6B91DaTcVpTtjM6mQmxYrQZaPx0k8jO4ZD+IK/UFWVcWybBi8ems7AaTNDAzbhcvSjblMia0gKwiHgXlfFopAgsER2pUcsqkBfAio9jsGMXi4hI0z9v4QHR6N4sEf7yJLAkwyotBVCrdM5JLhwBGxtp5Ki2ViOoR0wB5128nnqWVYBas3cFKMCy9wiVbv8owCrd8bfU6SnAspSSxbNDklIGvT0Dt+49AWnAvnjOeLi5KvI0WliARQydvXQbIz/+Hwgk27XmawT4iT8T2QvAIr7uO3IOE2Ys1fnYrX0zrNt6gAKs4l2xkltdu/2baNEoHL8umGL2Jp0GTdBlYZ3cudTsNfY8kRDoL75ZqaOu5AeM1Om6KhR48CQKEVFxOpg0//OxIGmFuQcBUF9+u0r3ZbLO39cb9x4+xbO4RN0Ljn/8+AXKBAjPcuas/3TuCvy1/wRkUgka1q0GmVSKKzcfIC09U/dKw9KvP9JluRkOCrAENXgOOPWpOEOp+SwNJHn/3s3zCvaL3oPzqrg8v7+uXBe0dwkp8AovTbmGuUkX9PPqyv3wd3DfAtflNSHmNIOH28R3gMxlpTxafFW0UskiO1PIhaUJYBVSGjrdhgroAVZCIlKfxUOTkITrp1MRcz8ZHppEeHBJ8OSS4MEl6/7dg0+GgsvViL0A/3mZHOoBY6Bp/7INT0q3dlQFKMBy1MiVDr8pwCodcS7pU1KAVdIKm2+fvM43dOwspLxIR5UKQfhgVH+0b9UQilxVVuTRt1ffnaWDXXk1cc/rNcMJM37EviNn0btLS8z77B2Rc/YEsIhjH32xBAeOntedX6lSU4Bl/lWy7syiAKyWvd/TNWW7cuhX6zpbQrsRwrp01XZMeGcw+nVvrYNKZBAy/ce2Q5i76Hddc/sDG78TZVSRxne93/gUUqkEy+dNQNMGNfXrlqzahuVr/jIJBwm4IgCL/KL4+dvJOtBFBmmmT35wTpy7jg9HDcDY4WL4QQGWcAEyYoHLCwSAJfMEmn5e+Ff5Nqbdw4TnJ/K9WTKw+L1sF7R2Dcp3XovIzXiqEZp6z/Rrhre8il5WpskEzs2SgOfEWSHeVXjUfocCrBL6dUDN2qEC0qM7waQkFt4zZaauJxWTlgwmNRlMWhKYFOMeVYU3bHoFVz4su1F7ufKWMkntlDIFKMAqZQF3sONSgOVgAbNTdynAsq/APImMxcdfLgF5ZZAM8jm4UvkgeHm6QaPR6uBWZHQ8SEkgGYUFWDHxiej9xifIzFJh5fdT0bxhLb0AOQCrbs3KkObxOnPLxuF4f2R//ZqcflWVypeDr7enSTF9vDywZK5QXUZAXY9hU5H7FcLci0nzeVJKmJKarvsW7YFlX3dV701hAdamvw7rGpsR6HJw0wI7PVXh3SI/nHmV+40Y/7XuhUbS1M0wC4uArXVbD+KjMQMxZlhv0aYEfhFSfe32I6xb+jka1BZeJnt55Oe49yjS6OvEQFLKC5AMN5lMCkKyDZ8dpQBLkDjhOos7a4UOyl5VeNQpJNRJ5VR4KXILEjml3jDpeVVV5o2fUm+I4qmABKQnVps8INZl5XNdQ2/DcbXCUPizLoW/jAYryBnJWQ1HSDsOFXvabwN34ivNwCpW2OliAwVk+zZAtt3O/2MJw0DddQg0vUeAz+MvYDSoVAFzFKAAyxyV6BxbKUABlq2Ud659KcCyv3iSz62kjc6Bf8/rKoISk1N1wIlkInl7uSM0KBD1w8PQuF51tGxSW5ShZU4W1Yp1u7BwxWZUrhCEbb/O1n3OJSNnbX6K5DRWz5mTA7DyW+Pv64Wj2xbpp5gLsMiCnftP4pO5P+vWUoBlJ3eVlMv9e+qy3ptNO4/oStzat2yQr4ckdfDBk2hcvflAN29ov46Y/vFwOzlVyboxd9E6XR3stHGvY9iAzvrNugydhOiY5/jnz+9RNtDXyIn12w9hzsK1GD6oG6b+97oDmU/WVQgpg73r5pt0nNTfkjpc0pes40sN9XMowBLkivpXgid7hMykMs04hL1SOKgzKeEE1r+4pzfqwkhwKnQgykhc8WXiWfySelMUHwUjwZoynU1mYn2ScAprX9wR7oZrKFaXFe5KUW9o0i0Wt1aLAVbNNzj41SncWYu6f1HXUYBVVOXoOkMFpGcOQr56ns1FIc3YeU9f8J4++v/hv38n/+SCK4ELqmhzP6kDjq8ABViOH0NnPgEFWM4cXeudjQIs62lNd6IKMDzBkw4+/tx1BF/98DtIM/aijrDKIfht4acFvlZQVPv2ti6H9JJUxA6tsoFSaloGSCklAVcEYJkapE544JgvddlXJAuLjEPHLmLc9EUm64BzbOQ8O0qyukh2V86gAEtQ+f6fLOLOC2CnUi8OwW3NhzoXsuLQN2aPKGxf+jbF29619V/LDaXINwjE2lC2K5q5CB3U1TyHek83gGR05YyfAtujt3sli1zlszOzS1olroDUFag1nIPc275/FVGAZZHQl2ojkpvnoVj8aYlooGLkSGd8kCoJQKbUE14hPvCv7A3W2xe8hw94Lz/wHl7QwSmfgBLxgRqlCphSgAIsei/sWQEKsOw5Oo7jGwVYjhMr6qnjK+AUAIuEgfRaOnn+BnYdOKVrVObn44nG9WrkGyGWZeDt5YGGdcLQvX0zyHM1d3P88Jo+AWngltO0/p/N3+vLDG/ceYzB78xAo7rV8nyNkZQlturzvq4+9/iOxboNyGuF3yzbgHfe6INxo18xuSlJ4Rw/fTG6tW+KBTPepwDLhEq5X+irOYKDX7h5AEvLc2gftR0PNal6yzVkPjgQ3BcSRpztZApikUyt9QYQa2f6Y4yNP6K35cXKcbX8UMhy2XLWnxFT56IAqzRF2/JnZSPuQfHtx2DUQnkvL1NA03kgwJh+KdCUF3HJLrjy0AexSl+ksT5IY32RJvGGknHTmWnYgEPXzjzcXO0bCFteYWrRXhWgAMteI0P9IgpQgEXvgSUUoADLEipSG1QB8xRwGoCVc1yShdV5yESEVQop1CuE5snlHLN+XL0dS1dvx7ABXTBt3DD9oc5cuoVRH8/LtxkcSdir02Gk7hXDq4dW6tYuWbkNy9bswKSxQzByaA+TIuXYJk+a/vqd8DpkQqqQ4WO40NNNCrmUxYtMDVRq8yCOo0fn+HQG6uz+errR/BPArYx5H0KXJF3DjOdnRRIcLN8PDVxMZ1qMiz2KP1KFUkOy0JWR4M+Q7mjhWg6vRe/H/vTsxodkvOldC9+WaeXoEhfLf38vuW594gsVHD9vtVhS0MWFVSAhFuysd8CkC4CZZ1hwH88DwhsXaC0jE7h8hcHpc0BsHo+LVqkE9OnFI7hcgeboBKqAVRXI+d2Z1//fW9UZuhlVIJcCHi4SKOQSpGVqoCwlf9+kl8DyCuT8nrO8ZWqRKkAVyK2A0wEscsC1m/frGorPmjyKRjyXAifPX8fYqQtQLtAPW36ZBU8PN/2MY2eu6r7XqU0jLJo9Lk/t6ncarXu1gbzYKJVI8N3yTVi5YQ8+/XAYXn+li8l1l67fw+sffIWGdarh9yWf0bjkUkCdxWPHBwYlsAzwyk9SMGzBmRmRqjRUu/4HsnjhFb+xgbWxrELbfHUe/fgwVibcFs1xY6XYWKUr+twXlyKeqjkALdyFEkMaQKoAVcA8BbgXKUibNgZcbLT4Z+29zyBvbxr4k4lKFXDxCoczFzjcvMODy4Pj+3gDg/pJ0LyxONPSPO/oLKoAVYAqQBWgClAFqAJUAaqA4yjglADLceS3rqekWf3oifPBMIyuRLBGVfGz6FbJwGoULsqMy+u/dskkDEiJp1rL5fnBzbrqlexuSY94HJ8vfEJ1KwN0+q9PVEE7D3r8N3amPtFPC5S44nrNIfCWKApairGRR7A6UWjUbmpBmNwb12sOLdCWs09QyLIBAckINC8vztkVoecrSAE+KxPKWR+AfyLOdpS+MhqyASNMLr9yAzh/icPV6zw0BbR17NGZQY/OLNxcWWg5HhotvZkFxYR+3/oK5PzupNkt1tee7liwAlIJAwnLQKPloC0dCf8Fi0JnFFqBnN9zhV5IF1AFqAKFVoACrEJL5pgLrt95hNET5kOj0eKn+RPRpL5xf7Db9yPwyltfmNUDy9vTHSd3LtWJsebPfZi3dL1ZPbA6t2mMH2Z/qBeRNnHPliLuIoP7G7Mbm5PhU5NH+EghoyqvW3ckMwrDYg+Ivr04sA0GuFc166JyPI9xz49hW/rDPOdP8WmI8T71zbLnzJNoDyxnjm4JnI3TQvHDJ5DcFV7IJbtoWnSBaoRQRk3KUZ9EMLh8lcGt2wwyMwvOuqxVg0OPbjx8fHi4KSTw8ZAjQ6lFcprpkuwSOB01SRUwWwHaA8tsqehEGyhAe2DZQHQn3JL2wHLCoNIj2a0CTg2wtFoON+48woMn0UjPyAKXVw2GQXiGD+pmt8EqqmMk82rM5G915//x64/RtEFNk6ZII/ymPcaa9Qph3ZqVsWH5lzo7/566gvc+/d6sVwhHDe2JiWMH6/enACtbioj9LCIPCSVAQW04VO6d/38KzOI1aBO5DdFaoXFWK5ey+LNc3mVJed2hD+OPYmseEOtc6CAES92Lev2cZh0FWE4TSqscRL7qf5CePSTaS1u7GZTvzQJYCdLSGRw/weDaDQYvXhQMrby8eNStw6FRAwaBAQbZmhRgWSWedJOiK0ABVtG1oytLXgEKsEpe49KwAwVYpSHK9Iz2ooDTAixSDjd93q+IinleKK1vHFldqPn2PvnitXt4Z8p3uqbrJPOqfnj+mTl9R0zTAb9//vxeB7Jyj/XbD2HOwrUY3LcDvpyQXQLzPDEF7QaMR4WQMti7br5JSSbMWIp9R87h2y/eRY+OzZ0KYP26SoKUF4CfLw9fX6BtGx6+3oUr5bmzjkXCVQFgVenPoVyL/AHWV0nn8WPKdZHeJ0NfQUWpZ5Gu5Xtx/2JHxiPR2pdcymFTue5FsudsiyjAcraIltx5ZNt/hWzfBtEGGYFh+KfND3jyzAVR0QxUqoKhlUwG1K3NoV5doEpl078PaAZWycWRWraMAhRgWUZHaqVkFKAAq2R0LW1WKcAqbRGn57WlAk4JsB5FPNOVwilVap22crkM5QJ9wbIFN7ndvfZ/toyHRfc+e+k23vt0ARQKOX75djJqVatYoP0fftmCn3/fiY/GDMSYYb2N5g8dOxPXbj/C8nkT0KZ5Pf33SYN20qh93dLP0aB2mGhdUsoLdBo0AaRc7ei2RfAyaBzv6BlYV6+x2LxNfK+6d+XQqgD4lFvYywulyHgmfDV8jBY+YXlDsAfqFLSP2g7Dbkwf+zTAJJ8GBcY4rwlansPouMM4kCm8Prgg4CUM8ahWZJvOtJACLGeKZsmdRXJiLxS/LxD/DpSUxfcBPyGD9TZr42phHBrW51GzBg+pNP8lFGCZJSmdZEMFKMCyofh06wIVoACrQInoBDMUoADLDJHoFKqAhRRwSoD1xTcrsWX3UQSV8cPMyaPQqkltXePy0jROnb+B96cthJenO379bjKqVgox6/gJSano/toUXbkhgVQ55YY8z2PJqm1YvuYvVK8Siq2/zhZpmvOCYZUKQfj528k67ckgZYkff7kUx89ew7ABnTFt3OsiPxwZYClVDBYuYvFHhx147i9k+g2/3Rlfdw81S++cSaemScBrhTvaeJoWinyyuF6O3oNzqjj9HiTrimRfWWKMiTuMPRlP4AIJrlYcCndGZgmzDm/D0gBLtmMVoevQNOsM3p++8FgSFyQrK7tEz9WFR0gI4OtTuMxIc3yKi2cQGc3gWTSguHoMfR/PEC1LZ7ywKGA5EqRB+ZoLDuLRoD6P+nV5uLqa7ycFWOZEic6xpQIUYNlSfbp3QQpQgFWQQvT75ihAAZY5KtE5VAHLKOCUAKvbq5MR+SzeKEvIMpLZv5W09Ey06T8OKpUavt6e8PbKv3/R4q/Gg4CnnHHo2EWQkj+NVovaNSohwM8bdx9G4llsAkjz9rWLp5kEYt8u34hVG/ZCJpOiYZ0wyGUyXLn5AC/SMhBevRJ+++FTuLmKX8ZzZIC1ey+LU+eB1cNWgWeFD5wNrjfA7t7mZ0Kpkhmc/1po4M5IeLScm3cD9w0v7mFiwgnRRfyzXHe0cilnkcup4TmMiDsEP1aBxYFtLWLTGYxYDGCpVZCvnAvpZSGG2iq1wTXvDE3j9uDdPZxBLpue4f4DFucvADdvi7MjFS48yofwILCofHkGIcE8PNzNh0UZGQwioxg8ieAR/YxBxFMW6uxEX1RSXcPYhAmQQng6UA05lgQsRpSsukk9ypbhUaM6ybYC/P3N98PQGAVYNr1qdHMzFKAAywyR6BSbKUABls2kd6qNKcByqnDSw9i5Ak4JsBp0eUv32t6l/St0MKW0DVKy17qf8NJfQeff8sss1AyrIJp28+5j/LR2Jy5cvYu09AwE+PvoSgbHvtHXZG+snMWkz9XvWw7gzoMIkCb6IUGB6NmxOUYO7QGF3DiTx1EB1rMYBst+liA+IB5/9dwh0i7kWTA2h3ZDhfLmfSBNuc/gxgoBYLkFAw3GCx+CDY2nciq0ityMJE54bay/e2UsCWxXUJgL/f1HmlRUlnoVep2zLrAEwGLSUiBfMg2SJ3fzlElbtwU0TTtA27Sjs0pZIudKTGJw8RJw6QprVlP0HCc8PHiEBPEIDWUQHMwjNFjIgHrylEFkJIuIpzyePWOQnGI6kzdI/QgfJLwPBZ8pOtuvfl/jlqKF7mve3jyCgnhUCGUQGsLp4BnpcVXcQQFWcRWk60taAQqwSlphar84ClCAVRz16NocBSjAoneBKmA9BZwSYDXt8Q6kEglO7frRekrSnYqkgKMCrJ9+kegaMd+scQOnmp8SnV2mkmF17HC0b5N3FpXhgphTLB5uFzJF/OvxqDHM9NqJz09gQ9o9/XI3RooToa+gjMS1SPrTReYrUFyAJYl+AtmST8EmxZu1Ka9whbZxO2ibdYK2hvkZfWYZd5JJKhVw/SaLixcZRERarkzczZVHRqZ59ty5FIx7/i78tQZN7MjrrGETkdqoB8rrgBUPNzfzgHZhQ0MBVmEVo/OtrQAFWNZWnO5XGAUowCqMWnRuXgpQgEXvBlXAego4JcB6eeTnePAkCuf2/gQXhdx6atKdCq2AIwKs8xdZ/LUrGzj9+9IR3K963+jc488MwpQh+Zdu5ix6tJPFs+MCwArtxKFCV+MXxy5kxaFvzB7RXl/5t8CbnjULrTtdUHgFigOwJDcvQP7zTDBKcYaOuV5wPv66jCxtkw7gKtCm+k8iGFy4xOD6DRYa08mK5kpbrHkeXDLeTRiPspoIkR11z9eh7pP9SmtJDwqwSlphar+4ClCAVVwF6fqSVIACrJJUt/TYpgCr9MSantT2CjglwFq8cquu2fgPsz9E5zaNba8y9SBPBRwNYJGsjO8Xs1BmZWdnbOm7Gck+yUbn63CsA1a/WrHAF8TIwlsrJUi6I2R7VBuiRWAj42yNdlFbcV+dqt+rvtwfe4L70NtlJQWKCrBkx/dAtu57Iy+1dZpDNeZzsNGPITl9EJILR0BKDAsa2uCK4Jp1hrZ5FxCwVVoGeTTh9BkWly4DpFywoBFWlUPTxkCtmtkwOCmZQUwMg+hoHs9iGZAy4BcvCraTe59yZbN7aFUKSEWTPeMgTxBe7SRzNS26QDViSkHuWez7FGBZTEpqqIQUoACrhISlZi2iAAVYFpGx1BuhAKvUXwEqgBUVcEqAlZqWgb4jpul6Lq1ZNC3fnk1W1JpuZUIBRwNYW3dIcPlK9odetUyNNa/+ZjKutW/WxtLqzVAtrOCyoYvzJchKED5I1/1AC89c/bPuqpPRIWq7aK8DIf0QLvOl98pKChQFYMk2LYPs8FYjD9UdB0A96F2jr0tvnAN77h9ILhwFoxH6nOV1RK5qHWibd4KmSQfwruZl/FlJLotuo+WAVb9JEPE0f+Dk48OjcSOgcQMOpLdVQYM0ZScgK4YArWc8nsUAzxNY8P8t9fXOfr0wNJTX9cfS9a2SAkz6CygWTAQb/Ui0hU5OGyoAACAASURBVLZeSyjfnVXQthb9PgVYFpWTGisBBSjAKgFRqUmLKUABlsWkLNWGKMAq1eGnh7eyAk4JsIiG9x5FYsT4r8FxPPp1ewlNG9RE2UA/uCjy75pbrXKolUNQurdzJID19CmDFauEZusx5Z5hd9fdJgNYNrYs/veiJ7p2zv9DNM8Bpz4VPzTQfJYGEvFjjfgj7S4mPz+p36ujawjWlu1Sui+PlU9fKIClyoJixRxIrp8ReckzDFSvfQRt6575ek9KDSVXToE9cwDS2xcBzrik1NAAL5FBW7c5uOadQDK7eKkFuoNbWd/8ttuwiTV6UdBwft06HBo3BKpUzl8nc46k1gBxcQz8fAFXVxM/v5npcPn2I13mnOHQVm8A5YdzAStrTwGWOVGlc2ypAAVYtlSf7l2QAhRgFaQQ/b45ClCAZY5KdA5VwDIKOCXA6vvmZ4iIjIFaY14TbUMpbxxZbRllqRWzFHAUgEX4weJlLBIShF5Vj1texaFqZ02eU6KR4JPDb+K9Mfnfwcw4Bpe+E6CYzANoOt24qc/458ewOe2Bfq8pPg0x3qe+WRrTSZZRwGyAlZoEl0VTwUaJs3N4mQLKsTPAhTcplEOkrFB67h+wZw7m+3phjlGSiaVp1BZc887QhtUFmMKXyRXKwRKevPcAi1OnhJ+7nO3KBPJo0phHg3o8XFwKzrayiJsEXn0/CexTcd87Hbz64CtAZv2eixRgWSSy1EgJKkABVgmKS00XWwEKsIotITUAgAIseg2oAtZTwCkBVu32bxZZQQqwiixdkRY6CsA6dYbF3n3iD9ERIw/igFachWEoQv+dA/DNW96mszj+m5h4g8XtNYJdz0o86r5rDL1eitqCx+oXevN/luuOVi7liqQ5XVQ0BcwBWEzkQyiWTAObkiDahPP2h/KDueBDqxRt8/9WsfFRkJw+AMnZf8A+F796Z8ow51cGmqYdwDXvCi6oQrH2tsViUz93BFaNGMYhJMRK0Crn4HnBq6q1oRw/3ybwirhGAZYtbibdszAKUIBVGLXoXGsrQAGWtRV3zv0owHLOuNJT2acCTgmwnicW3Ag5r3AE+HnbZ6Sc1CtHAFhpaQwWLJKIXjtr2ZLDrJqbEKFN00emgsQTEVoBMrU52QbTG1ZD7Vp5lzVF/cviyR4BYJVpyiNsoBhgPeeyUD9ig+gGPKj4OlwYcemhk14RuzlWQQCLvXkeiuUzwKiVYngVUhlZ4+YBXpbtVyZ5eAuSs6T5+79mNX/nQqtAq2v+3gmcl5/d6JqXI7fvsPhjoxgaSyTAW29qrQ+vsjLhsmCCceZVpZpQfvwNIHexmZ4UYNlMerqxmQpQgGWmUHSaTRSgAMsmsjvdphRgOV1I6YHsWAGnBFh2rDd1LZcCjgCwNm6R4MYNoQzL3Z3HmA+zUDd6neg0U3wbYX7SRf3Xat6piY80rdCnV94A6/5mCeLOCbYr9uQQ0k48f0/GE4yJO6y320Duj9309UGr/yzlB7BIo3bZn8uh7/79n3faWo11ZYMlCji0WkhunYfkzCFIrpw0AmhGQjEMtNXrQ0tKDBu1Aa9ws7qWBW345CmDVWsk4AxYLssCr7/KgbwuaNWRlQnFD1MgeXxbtK2WwCuSeeXialV3cm9GAZZN5aebm6EABVhmiESn2EwBCrBsJr1TbUwBllOFkx7GzhWgAMvOA+Ts7tk7wHr0mMUqgxI/Eo/Br2jxvGokhsUc0IenkSIQU30bYkjMfv3X/BP8Mfr0yxj/ft59sK4vlyD1kQCwag7n4Fdb/AF9ZtI5/JxyQ2/3La9amOnX3Nmvht2dLy+AJT11API18438VXcYAPVg45cGS/Jguubvl09AcuYAJLcEmJrfnprG7aBt2hHa+q1K0jWzbZNXAJevYKBSiXt3DRmoRe1w65YNMqosyBdOheTRTZH/XIVqUH70jV28/EgBltlXi060kQIUYNlIeLqtWQpQgGWWTHRSAQpQgEWvCFXAegpQgGU9relOJhSwZ4BFsj8WLpUgOVn4IF2pEodRwzl8n3wZ3yZf1p9opGdNkAysWhF/CKfkgZG/j8InE3h4uJv+4H1uthRqoQoRDSZo4FZWLFSfZ7twUflc/8Xlge3Rx70SvU9WViAvgKX43/tGzdVVQz6Apn0/K3so3o55kQwpKTE8c8io9M2UY6T5u7ZZJ2ibdoC2ah2b+P7iBYNlK1iQsl3D0asHh+ZNrZt5ReCVYtGnYB9cF8OrkCpQTlxgF/CKOEYBlk2uKt20EApQgFUIsehUqytAAZbVJXfKDSnAcsqw0kPZqQJODbAys1TYvOsIDhw9j/uPopDyIh01qpbH1l9ni8Lxz/GLSM/IQue2TeDqYv1XpOz0bljFLXsGWP8eZXHoiNCDR8IC4z7QwteHx4jYgziYGanXaGFAawzyCEObyK14qEnVf73Pnr545yV/NKxvDLC0SuDMF+I+Vi2/1oAxaPuTxWtR/cnv0EJYf738UPhKbNdzxyoXww43MQWw2KiHcJnzjshb5ftzoK1jXxlybGwkJKf3Q3ruMJiEmALV5f3LQdO6J9TdXy1wrqUmKFWMLvPK8KVPYrt1Kw5dO1sfXsmXfAbJvaui42mDK0H18XfgPbwsdexi26EAq9gSUgMlrAAFWCUsMDVfLAUowCqWfHTxfwpQgEWvAlXAego4LcB68CQaH0z7ARFRsSI1TQGsiTN/xN+Hz2Lup2PQr9tL1lOf7gR7BVgpKQwWLpZAa/C5uX07Dh3/609VN2I9EjmhWfeRkJdRTeaDTx6cw1qJUO7X4mxLvCYPxysvG5cRpj9lcGWJRH8LFH48Gk8VzzudFYNXYv7Wzykv9cDp0IH05thAAVMAS7b+B8iO7tJ7o63REMqPjMsJbeBunltKHt4Ae+YgpKT5e7rw6ICpBVxwJSjfmg6+hF8w1Gqh63kV8VSceVWvLoeB/a0Lr6BWQUHg1V0hw5Jow5Utj6yJCwBPH3sKJ83AsqtoUGdMKUABFr0X9qwABVj2HB3H8Y0CLMeJFfXU8RVwSoD1Ii0D/Ud9jmdxiZDLZejUuhEqhpbF8jV/mczA2n3oNKbMXo6u7Zrg+5kfOH5UHegE9gqw1qxjcf+BkArl48PrelmRV9Citelo+vRPvcplMz3x17PBiD0HZCUBfzQ/j+0Nr+i+H/YgDL0ut8OUicYAK/4ig3sbBYDlU4NH+CjxvMUpV/E/g8bwA9yrYHFgWweKsO1cJdkzigUTwXn5gnf3Al+9AVRDi/7znRtgkdcGFVMHg83M0B9SNeZzaBq1s92hC7mz5NppSP6DWfktVQ94G+ougwpp3bzpPA/da4N37opfHCTN2knTdtK83ZpD/sscHdwzHFzZUCgnLABv4ZckLXEumoFlCRWpjZJUgAKsklSX2i6uAhRgFVdBup4oQAEWvQdUAesp4JQA68fV27F09XaEV6+ERXPGIahM9pPxtdu/aRJgPY2OQ/fXpqB8cBn8/Yd9Z09Y72pYZyd7BFi37rBYv1H8qXnkcA6VK2VnguzNiMBbcf/oBVq4YwBCorPvWM44W/kxlnY8ClmmGwbuGIhx72sR4C8uI4zYxyDyHwFgBb3EoXJfcbbJ8LhDOJTxVG/3a/+WGO5ZwzrBceBdSDNzl9ljwCSIMzCzZq0GFxhSpJPlBljSU/sgX/Ot3haBZJnfbimSbVsvYpQZkFw6DsnpA5DcEWce5fjGVa0D5chPwPvnatJWTOd37WVx9pz45y0kmMfoN7WQiitsi7lT/svZ1ETIf55t3PMqIAiqSd+D8/Yv0f2LapwCrKIqR9dZSwEKsKylNN2nKApQgFUU1eia3ApQgEXvBFXAego4JcAaMHo67jx4is0rZqJWtYp6NfMCWFlKFRp3exsuCjku7PvZeurTneyuhFCtAX5YIkFqqlDKVDucw5CBAlgiGVEkMypnrN70GtwT3Iyi+cw7BfN6HETnPf3wclcWzXI1ob67ToLnV4V9qrzMoVxLMcAi/a/SeY3e9oHgvgiXi2EZvUbGCuQu7cuZoWnbB6pXxxVJstwAS/HNOEge3tLbIhlKJFPJ0QebFA/puu8hvXHO6Ci8whXqwe9B06q7RY554iSLfQfF8Mrfn8M7o3m4uFjvxUHJnSuQ/zIbTFqK6FwE1iknfg/ON9Ai5y0JIxRglYSq1KYlFaAAy5JqUluWVoACLEsrWjrtUYBVOuNOT20bBZwSYDXp/jZkUilO7fpRpGpeAItMatR1DNQaDa79s8o2kSilu9pbBtaJUyz2HRA+UMtlwEcfauHhIXyYHhqzH8eyovUR27hmJNh0IZPKMJRKiQYnA1JRNdQHQweL4dTlH6TIEMyg9ltaeFcT9rmrTkaHqO16c+6MFLcrDAPLiPsEldKrk+exJbcvQfHDFJPf56VyZP1vA3h3z0LLZgiwmOgncJn1lshGcbK7Cu2MFRbITuyFdONSkFLJ3ENbtwVUb0wEX4x+UNdvMNi0Rfxz4+XJY+wYTvTzVtJHle1ZB9nO1UbbcIHBUI6fB9LQ3p4HBVj2HB3qG1GAAix6D+xZAQqw7Dk6juMbBViOEyvqqeMr4JQAi8AoTw83/Lv1B7MAVkamEk17vAMfbw+c2LHE8aPqQCewN4BFsq8SEgVA1K0Lh5dyZUXVfLIOL3i1XuU/l40GkD9UinThMehLreiFwVPTJOC1wrrGn2ih8BUA1roXdzAl4ZR+n/auIVhXtosDRdcGrmamw2XmKLApiXluruo7EpoerxXaOUOAJduwBNIjO/Q2uGr1kTVBKCcstHE7XcAkxkG+YjYkj28beUggoGr4ZGjrtTTL+/QMBg8eMnjwALhzl0FGpvhnxtWVx9ujOPjnKrU1y3hRJqWnQvHLHBDgmXtoGraBasRkQOFaFMtWXUMBllXlppsVQQEKsIogGl1iNQUowLKa1E69EQVYTh1eejg7U8ApAVbP16fiSWSsDmAF+HnrJc8rA+vQsYsYN30RGtapht+XfGZnIXJud+wJYJEX0H5ZJWSEkP47pPm6i0KASg/VqWgTtVUflACNG5atEMOQ5GbP4XM2wChwimAe9d7iIHPnoU5lcO4rYS9GArScK5QKksUfPT+OP9Pu6+1M9mmAj3wa2M2FIKAvMZFBXDyQkAikpgIN6vGoU9t6pV+5xSA9qUhvKsOhadEV0tP79V/ivPyQNW9joXU0BFguH78MJjNdb0M1eho0TToU2qajLJAd2gzZ5p9Muqtp2QXqIR+AVxiX0T54SB5D4PHwIYtnsQzKaJ4iQPMUZbSR8Nc8hZc2EVdcO+KaVyeMGqEF6X1ljUFKP2UrZoFNfm60nWroh9C062sNNyyyBwVYFpGRGilBBSjAKkFxqeliK0ABVrElpAZoE3d6B6gCVlXAKQHW3EW/Y93Wgxg2oDOmjXtdL6gpgEWyr4a+OwsPHkfhozEDMWZYb6sGoLRvZk8Aa+sOCS5fEbJC6tfj8crL4lcBt6U/xAfxR/Vh66uuhjd+EV6dk3nycJ0ch5nHb+Dj/R2Nwku+X2s4B40KuLlCAFjuQUD9j8QAq3XUFjxSv9Db2FiuK1q7BFv1ypBeYARUJSQA8QnQ/TMhgUFSMgNOXBGp98vbm0eLZjwaN+JF8K+kHWevn4XLUjGA1nR4GaoBb8N16mAwGWl6F5QjJkPbomuhXMoBWHG7d0D+2zf6tbyLW3bzdokVO44XynPLTGZjI3XZWGzUQyODvF8ZqN6cimjv+oi8loSk2xHQRkXCT/UUgZpI3f/8tc/Awvg1TmJM5RkIplNfaNr0Bu/mYRmH87AiO7QF0m0rwGjFvpAm7cr354AvH1ai+1vaOAVYllaU2rO0AhRgWVpRas+SClCAZUk1S68tmoFVemNPT259BZwSYD2LTUCvNz6BUqVG7y4tMfGdISgT4GP0CuHFa/fw1Q9rcft+BLy93PH3H9/Ay8M4i8D6YSk9O9oLwMpSMpj/nQQaA4Y0eqQWFcuLM0JmJJ7FitSb+gB9pmyJBitr6//sWpZH/Y81qPxkDSrE+2Pqni7wy3A3CqhXVQ6pD4ReW/51OdR4XSBCSdos1Hm6Qb+OYLX7Fd+AC0nVKsFx9x6Lu/eBp09JZhWDXJ/xC7WzTAY0aURKMHl4eZVsZg2TmQGFrnQwQe8jFxAE5RcrwMsUkP21GrK96/Tf0wZXhHL6L4U6Tw7ASpg2FpL71/Vr1Z1egXrg2ELZcuTJpF8U6RtVUkPdqju0XYeAKxtq0S2YrEzIfpsP6eXjRnY14U2gHvUZePeShWcWPdB/xijAKglVqU1LKkABliXVpLYsrQAFWJZWtHTaowCrdMadnto2CjglwCJSHjx2ARNmLIVWmw0FKoaW1ZUVeri7ok7Nyrj/KArPE7NfnJLJpFj+vwlo0TjcNlEoxbvaC8A6d4HBzt0CHPLx4TFhnHG2yMvP9uCcMk4fsbXpveGyRmjy7FmJR913tejzbDcuKuPhlemCqXu6onpcmXyjHNqBQ4XuAsDamxGBt+L+0a+pq/DH30F9LH5TUlIYXT+iO/eAR49ZEcCz1GYsC4TX5NGmNYegciUDsuQrv4b0nKAX2UU5dQm4SjWyj/EiCa6fvgZGKxDKrI/mg6vR0OxjEoDFxTzFi/GvitZkzlwFvoxlYYvZTllpIs8DzxNYREUBkVGA6t49dL83CwFag1cILOyLtnp9aDoOAGkYD3KJijGYqEdQLPsCbEKM2ArDQN1nBNTdXwMc9HEECrCKcTHoUqsoQAGWVWSmmxRRAQqwiigcXSZSgAIseiGoAtZTwGkBFpHw2q2HmLngN9y69yRPRWtULY+Zk0ehbs3K1lOd7qRXwF4A1k+/SBAVLZQPdulIgEuuEiOeR7WI35HFC18/kfIGov9Q6M/jV5tDzeEcpieewcrUW/qvf7KtHxrHBOYZ+WqDOQQ2FgDWrMRz+Cn1hn7+KK9amO3X3CI3h4Cqu/d43L3PIj6+6C8aenryCAzgEeAPuLnxOls3buUPGkhGW8sWPMJr5VF/WIQTSq6e0sEJw6HuNBDqge/ovrT/EIOMDAaDE+eJemERMKJ8b7bZOxKAlbVmEZS7N+nXaMPqQjlxgdk2HGUiabgeEcEgKppHZBSDp5Es1MK7BbpjyHgVeqUuR+uMbWYfiysTCpIZxwdXBOQugFoJyZmDYFOT8rTB+5eFpkN/aFr1AO9a+AxZ2fHdkK1baGSf9/CG6q3p0Naob7b/9jiRAix7jAr1yVABCrDofbBnBSjAsufoOI5vFGA5Tqyop46vgFMDrJzwXLv9COcu30JEZBzSMjLh6qJAcDl/NG9YC43qVnf8KDrwCewBYJGeTj8sNWiozgBTJ2nh5irOFrqpSkSX6L/0agdJ3LAreigebhWgTWBjHtUGa7El/QHGxR/Tzy0fWQFv7u+KuioeDG8Mjeq+r4VnBWG/nAyuHAPLAtuhr3vRICuBEXfvMbh7F7j/kIFSaT60krCAXwCPQL9sWBUYyCBA908eMhMtn168YHDyDHDxEovMXK/MGV5TP18erVrwaNiQM2nH3CvNpKXqXh1k0rKzKcngAkOgnP4znsYqsHk7q2s0T8abHR6izh/kxUhhZM1YCa5sebO2IwArdXQP8GlCXzLlqE+hbWrc68wsg3Y2iQCqq9dZnL9AwJX5dyRMdQlDk7+Cjza7fDPDtQzUgeXhEhoMNjgYfFBFcIHBurjkNUjjfemBTWCfReQ5h5fKoWnVFVyLruBd3MGkJoFJSdD9D6mJ2f9O/pmc/Wc2MyNPW9oqtaF+ezpI3ytHHxRgOXoEnd9/CrCcP8aOfEIKsBw5evbjOwVY9hML6onzK1AqAJbzh9FxT2gPAGvP3yxOnxUgVI1qHIa9apwhtP7FXUxKOKkXu4dbBcy80QVP/hY+7Ae34VCpN4cH6hS0jRIyU1yyXDBs0+uoFQBUjeehyRADguZfaiFxywZYGp5DlSdroYUAtC6EDkY5aeGzT9atZ5F+8z4iZeaBWoWcR5WqPKpVAapU5uHnV7SSP9JL7OoNFidOMYiPyxuGuLryeKkl0LKFtkggS/7zLEgvCaCQ6Pfi48XYeTscFy+Ls8EIcPtSPgkuDy7oY6hu2xvqV8eb9QMUcOsYMhbN0s8lzcaz/rcRvExu1np7nRQTy+D0GQbXbhhnWRXkc3AQj/KhPKoFpaGiRzwUYRULWpLv96XXz0JyYBMkd68Uy05+i9WdB0L9SnZ2njMMCrCcIYrOfQYKsJw7vo5+OgqwHD2C9uE/BVj2EQfqRelQwCkBFikbHNCzLS0LdIA7bGuAxWmBr7+ViLKSXh3MoVZNY4D1yfOTWJt2V6/qJ76N0Od4A0QfFUBJ+a4cynfKXlv1yVpRueGQLUPhlemBqe9rcHetBOlR2WCHcKlmXwq9mc5kxWJAzF79PiFSd5wNHVToaF66zODi5jv4MOF9bPKejLNuPY1skNZCoSE8wsKAsMocQkL4IrUCkm35SWebr1Ib2rA64D199Hs9fszi5Fngzh0WpJeSqeHhwaNzBx4N6nNmtzuSXvgX8l/miMzFNh2CZcnvIC3NNDRrpjiLwY+n6tcQ+JQ1dz14D68C9fVaPAWam5f089QdBkA9+N0C19njBJJtde06i7MXGESbmW0llwHly3OoUIHRPW5QPpQDadRfEoONfAjp/o2ivmbF3YdzdYN6xFRo67cqrim7Wk8Bll2FgzpjQgEKsOi1sGcFKMCy5+g4jm8UYDlOrKinjq+AUwKs2u3f1EWmaqUQDOjRRvcSYYCft+NHywlPYGuAdeMmg42bhfJBdzdeVz5oanR/thPXlMIrdxvKdkXQ7vKIOyfAkiovcyjXMhtgDY7ZhxNZz/SmOh7phMoRlTF8GIcqFTnc28gi4SoLz4o86r4n7Lkk5Sq+TrqoX/eye2UsDWxXqOgrVQyW/aDE2Cej4afNblz9q9/XuKVoAX9/DmFVgKq6LCsO8mImEMl2/gbZnt9F/vF+ZaCtHA6+aji4yuHQVqqB5GQGp88yuHAp7zLGwAAOnTsBtWrk3yOLlI+5zBgJJjNdv2+KWyhme68tUKfpqSPgnS6Uqqn7jYK6u7gxe24jbOxTuMwYJfpy1he/gAsqXsZRgc5aeALJtjp7nsGVqwVnW3m48yhfnkflSkCF8jxItpW1B5sUD8mBzZCe2ANGlVXo7XkXV/CefroSRs2rH+r6bznboADL2SLqfOehAMv5YupMJ6IAy5miabuzUIBlO+3pzqVPAacEWH2Gf4qHEQI4kEhYtG1eH/17tEHblvUhkwrAovSF3L5ObGuA9dvvLB48FDKoWrfSomtn4w/qap5D2JO10BiU9d2q8Bqif3dB4g1hffXXtAion71+btIFLE25phe83vV6aHqxGV5qqUW3LtlzYk6wSIsGwgYJwGZE7EEczIzUr/vKvwXe9KxZqMDt3ccidP93aJ6xR79OK1EgcewCuNcxr5zQnA2lp/dD/ts3BU4l/YvIi4DaquHQVKyNKxl1ceCcN1JTTWdKkQyfbl04hIaahiaKH6dDcu20aN9F/ssQIRfrRICkjw9EPZ2aZezB4BTBZ87LD1nzNuZ7BpJhJju4WdCyah0oJ31f4LntYUJhs63CqnBo3IhH7XDrA6u89GIyMyA9uReSg3+CUSl1GX68l392ph/5dx9/3T858mcvX3CeviDN30vDoACrNETZsc9IAZZjx8/ZvacAy9kjbJ3zUYBlHZ3pLlQBooBTAixysOt3HuGvfSex95/TSEwWmi77enuiT9dWOphVvUoovQU2VsCWAItkBC1YJIaZH77HgWQB5R4XlfEgjdVzRmWZF46HDMC15RK8eCRAmNpvcfCulr1+d/oTvB1/WL8mKCYIPff3QlA5Hu++LWRccSqANciCqv7kd6TzQknh/uA+qC03v9l0XByDwwtPY2TS50bn4N09oJy6JN+G2uZeCcnNC1As/sTc6UbzSFPvGPeaOJdaFw/YOoiWVTWaQ0o5CewjTd9zhvTMQchXzxPNPeT+GvZ6jRF9rVFDDt068zrkuHQ5C9JgPmfMiu0HNy5V/2fViCnQtOiS51lcJ/YHk5Fm9vwii2LhhUeOSnDsBGP0gmDubUgJZ+OGHJo0Ary97QdcWVgOpzRHAZZThtWpDkUBllOF0+kOQwGW04XUJgeiAMsmstNNS6kCTguwcuKp0Wpx4ux1/LX/BA6fuASlSngLPrx6JR3I6tW5Bbw93UvpFbDtsW0JsP45wuKIYf+q8jzGjDRdPrgq9RY+TzyjF6u/exUsCWyLywukyIgVNKz3oQYe/3HRKE06mkX+qf+mRCPBm3+M1P3508lakAbmucc9dTLaR23Xf1nBSHC/wutgGfNfhVv/UzJeuzIKrrwAbg334f3LIeuTJeA9il5Wy0Y+gOKbj0RlXaSfFFeppu4VODY+qtAXS8m44KmsJh7J6yJCVhuP5eHIZD11PbEIjOrUgYenKh7ymaPAZmXq7cdIK+LbwNX6P5PG8y/35VDJ4FXHiKcMfl0t0ffg6vriN3RNE9ZwoVWQ9Vl2H6/cI3evLd7VHVnzNtl18/ZnsQw2b2EQ/1zcyN7wbETXGjU4NG1Eykm5IvU+K3SQ6QKLK0ABlsUlpQYtrAAFWBYWlJqzqAIUYFlUzlJrjAKsUht6enAbKOD0AMtQ0/SMLOz/9xx2HTiFM5dugf+vo7RMJkXHlxrpYFab5nVtEIbSu6UtAdZ3P0iQkiKAof79ODSsb7r30vjnx7A57YE+UDP8mmGMVzjOz5FAZZDZ02iqFi4GL/fVjViPRE6pX/fK9oHwSfXB0EEcwmsZ7/XHi7uYbPDSYRuXYGwo19XsC3L9JgOfn6eiulJ4ac/UYi60KpSTFoBXFP5lQyYxDop5H4BNTRKZVr47C9p6LXVfY9JSILl3DcyD62DvX4PkidD83uzDkBJLaUU8ldVChDwcka61MZRf7IlTvgAAIABJREFUhrKx50UmFgb8pH9lsX0bLTp2MJ1BdOy4BAf+yY63B5eMGbH9xf5/9A20NRoYuadYOBmSO5f1X9e07wfVkA8KcwyrziVnJGfNawT4c2jUkEHDBhxIiSUdjq0ABViOHb/S4D0FWKUhyo57RgqwHDd29uQ5BVj2FA3qi7MrUKoAlmEw454nY+/hM9h3+Cyu3BTAxI0jQlaGswffHs5nK4B1/wGLNeuE7BS5nMeUiVqQl9ZMjfZR23BPnaL/1vZyPdHUpQxOTZOA1woQrNlMDaQugoXhcYdwKOOp/gvtjrdH2MMwNGvCoXdPY4D18fPj2JR2Xz9/gk8DTPQxhiqmfCS9jk7N3oHu8UtE31YNnwT23jVIT+0TfV1bqxGU48SleAXdCdKLSPHNh2CfCU3QyRr1oHeh7jggz+WMWgX24S2wD6+DuX8dkoc3wBhkURW0b17fP+DxBvZ5jkL5UJJ1xZss/zRcu+Z3Fvf/63k2KOUbcY+wOs2hfF/8qiEbHw2XL0aItld++Qu05eyveXtEJIOt21kkJhpn60kkQN062b2tSH8xOpxHAQqwnCeWznoSCrCcNbLOcS4KsJwjjrY+BQVYto4A3b80KVBqAZbuQ7dGizMXb2LrnqPYd+ScLu4UYFn3+tsKYG38k8WNWwLAatSAABDT5YOZnAZhEcIrewQP3KvwOuQaKc5MlxoIxqPVPLGNBcmX8V2ykL0Tfrs2Wp5tCT9/Hh+9b7xf66iteKQWejOtL9sVbV2DzQrKyW1RaL//LUgh9M/KrNkC/PjZAKeFYvGnkNy+JLKladQWqjHTzbIPrQaKhVMguS80picLNa17QjXsY/Ns5MziebDPHkNy/wYYkqFFgFaCQS2mGdZipRWwJPhXdOrComlj80rgMjIYLFnGIi2dQaAmAlPjBThFsE7WlyvBlyuv3122dQVkBzbp/ywJC0fapB/0pYhmuFniU9QaYP8BFmfPsyb9Is3Y+/Ti4GaiZLXEnaMblLgCFGCVuMR0g2IqQAFWMQWky0tUAQqwSlTeUmOcAqxSE2p6UDtQoNQBLI7jcfbyLew+eBoHj55HalqGPgyN61XHmkXT7CAspccFWwCsjEwG87+TgDNIgHprpBYV8shMOZkVg0Exf+uDEi73w4HgvlCmMLgwVyjVkroDzb4Q4BFZQLKvSBZWzigTXwZ99vbV/ZFkfHm4C9kwSdos1Hm6QT+XgLL7Fd+AC1Pwq5lJyQzY6W8hSPNYvz7LxRf87F/Ae3jpvsYoM6H49mOQ/lWGQ91tKNQvjy7w0slXzoX0nNCUniwgJYOkdNASg01N1JUbMveu6yBZbj9z77Gtyc94aUgVkAbkhRmG/bDeSpyMmkqhJFHdpjfUr43Xm3OdPFBXDpkz3N79FAn1OxYbYJF4rVjJokIoj8qVgEqVeJQJ5Avdh+pxBIOt21gkG5TC5vhKdHm5D4/q/z0qUBiN6FzHUYACLMeJVWn1lAKs0hp5xzg3BViOESd795ICLHuPEPXPmRQoNQDr3qNI3auEuw+dQmy80LsnqIwf+nZ7CS93b4MKIWWcKbYOcRZbAKyTp1j8fUDIvvL34zH+A9PZV0TEZanXMSdRgByv/p+9s46zonr/+Gfmxu5SS3eHdCONIA3SKPUVpZSSbiRFlA6REKUEBUUaRBCRkpTubpaGZfvGzPc1F3dmLxs3du7diWf+cnfPec7zvJ+jv+/v/TpzJm0RzMhUAxEhwOk50gmswMw8KgxzjvOKs6D4nZ8lKcUx6LqqGxgwaN3CjvLlJPnyR+QddH+8Wxxb0pwRO3O+ll2unitfLEa5EOnCeGF8RJ+vwZSu5Dz11QsECvdXPX/s9PuYDwfDXqNJosuYNvwA085fnP7O5SmM6KFzAHOAq/S8+jtjiX792uH1168d4tolGG2vhfPDah8h3UedvYorTNq7j8Vfe1gUjT6KT16MEOPwBiOipv4KpE4Lw/G9CPghziuFAYEIXvo7HobZky2wfllnwPnzzq/6CZf658vLI38+IH8+3vG1ysTu7o+xMNi+g8GJkwlf0l6xAofGDXkEmD2Te14DpYkpRoAEVoqhp4XdJEACy01QNCxFCJDAShHsmluUBJbmWkoFKZiApgWWcM/V738ddnyB8PJ16R4is9mE+rVeX9petUJJsKz7X3hTcC9VmVpKCKx5C1inr7M1asChRrWEL28XoPZ8sgdbI6STTVMyVUPntEURep3B+cXS6ag0eXmUSeC1wCr31uKeLULsT6strZHpRSaULcOhbStp3UnP/8WiV+fEcV3SFsPkTFVd9vX+rjMosm6I07hHZVoibe+ELxpnH91FwNR+YKKknITJlp7jYStXM956pn1bYVo91+n3fKZsiB45P1lfMnRZWAID7Nevgr19GUzdZt5Md5qzfCWLGzdZDH3cFdntUn+tLbvC2rgTAr4ZAcPFE+Icc4PWSPXJEIQ8j0qWwHoQwmDR965P1ZlMQN48HArmZ5AvP+c4rSU8V66y2LiFQXh4/P9uZUjPQ/gYgSDA6NEHARJY+uizmqskgaXm7mk/dxJY2u+xPyokgeUPyrQGEXhNQJMCa9OOf7Dlz4M4fPyC+KVBodjSxQo4pFXTelWRNo3nX1+jTSM/AX8LrHv3GSxe4iwPRgy1J/k1tqr3fsNdW7hY/B85mqF0QGY8O8fi8krpBEyGYjyKd41/kqvnk7+xNeK2OL/G4ZoodqWY49W34YOl8S1CtuF4zBNx3PzM76BVmoJJQre9CgPzeQ+ktT0Xx70IzI2Aad8BJnOic4WTTQGzBoOxS688CqePYobOBpe/mDiPPXcEAQvGCv+hEH/HB6ZC9Ih54LPnlX9D+DFiRCSD+YtYlHi8He1Cp4sr21MHwzp8DgLHd3XKJs30FTDmK5RsgbV0hQG3bnsnzVOn5hERkfDcGtXtaFSfxJUft5AiliKBpYg2UBJJECCBRdtDyQRIYCm5O+rJjQSWenpFmaqfgCYFVsk6XcTOZM4YjGYNqqFNk1oolD+X+jumsQr8LbA2bmGdXrsqXoxDx3aJn7568xVAIxjHvVQmhsWjowyur5NkWJbyPIp0iC+wFoSexeQXx8XOFb1aFDUP1XL83L8vh8yZONh4DgVvr4QdkoA4mvsD5BIu1kriefnVZOS8u8dpREjvxQguU8DlTjGe2A/z9873V/FBqREz7BtwOfKCvXMFATMGg7HGOMWKGTwD9iJlXcZXwwBBJAlCacLDVkjDS3ddcdnzgH0ondq05y+KjFOXOF7pS84JrDe/fikwEu5ee/IUiIryTmoJd2e1acUhZw6SV2rYc3LnSAJLbqIUT24CJLDkJkrx5CRAAktOmvqNRQJLv72nyv1PQJMCq2y97qhdvazjtFWtKmVgFL4hT48iCfhTYFkswNSZRlitEooPO3JJXnK9O/IeOj/eJU6oEJAZW3K8fn3t/l4Wt3+XTmDlqMGhQIv4Muyf6BC0e7hDjJHxeUa03trG8XOzJhwqv83haPQjtH64XRyTzRCEE3naJ9mzmN1/IsPaaU5jzpbojkL9Orjda9Pu9TCtXeg0ngvOBOun42AWTl5FSF9EFAZZenwOW8U6bsdXw8A9+w0wbF6BRuErEk3X0mkgsrR8P9kCa94iA548lkRV4YIcPvrw9Z55/ITB7TsM7twF7txm8CKBi9nfTLBBXR61aiZ+f5sa+FOOySNAAit5/Gi27wmQwPI9Y1rBewIksLxnRzMlAiSwaDcQAf8R0KTAev4yDBnTp/UfRVrJawL+FFjHTzDYtFWSmamCeAivDyZ2UbZQ1OyXpzDj5Smxvq5pi+HL/+6lur2dxf09ksDKU59DngbxBVYUZ0PhO6skRjzw8c9dYLQbEXsCbH7oWXwV55RWi9QFsDBL7US5Ms8ewjC+J8x26SuatwJLI3jqbI8v7jb9Mh+mPRtd9tDavAusTf/ncpzaBghvR65ZGobu/76Wim8+fEAQoqf+guw5MiZLYJ08zWDDJmeZ3reXHdmyJnxyKjyCwa1bgPClwdu3GYfgin2TM3cuHm1bcxA+QECPvgmQwNJ3/9VQPQksNXRJvzmSwNJv7+WsnASWnDQpFhFImoDqBdad+48cFebJmRVMUiYiCQ48z+Pug9dfZcubKxvtGT8S8KfA+n6pAXfvSadfhJMrwgmWpJ4uj3bhz6h74pA5mWvigzSFHT9fXye8RigJLOH0lXAKK6Gn9v0NuGaVXlFr9kdzZHucDQEBPD4fYceb63yRsQq6pyueaGrcpIFI8+C8+PdoJhXO/28JitfI7FX3zIsnwnjyQKJzbdUawPLRcK9iq2GScB/WnQkzUTFMOgUXm7e1VjNYOw1AjoxByRJYM+YY8OqVtP9Kl+LwQZvEX199k1t0DIO7dxlERADlyro/Tw38KUfvCZDA8p4dzfQPARJY/uFMq3hHgASWd9xoljMBEli0I4iA/wioXmDF3nd1Yuf3CDCb4pHjOB7jZyxz/H7S8G4Jko2MisbbTXo5/nZ+z3L/0aeV4C+B9ewZg7nznU+/DBpgR4bgpAVW6Tur8ZyT7oDak6sVipjSOzp3eRWLZ2clgSXcfyXcg5XQM+DJfvwWcV38U9VjVVHyYinHzz172NHQ9jNexllne45mKBOQsIwyblsF81bn19225x+J2iPqeb+jbFbHpe6Gm5fixbAXLo2YgdMAg9H7+CqYef/4fRT5Qbo/LzblyOHfAgWKJktg/XOQxY5d0l5hWWDwADvSpaUTVCrYGopOkQSWottDyQEggUXbQMkESGApuTvqyY0Elnp6RZmqn4DmBZbNbodwJ1ZScooEVsptZH8JrO1/sjh0SBII+fPx6PZx0ncHPbBH4O27a0U4gYwB1/N1Fn8+t9iAV9elEzXCFwiFLxEm9Cx7dRFjnh8R/1ToRiHUOfCu4+eSjV9gcNZ14t8CGAOu5f0QbAInCtnbVxA4pa/TEqcC6yB41JhEX0Vzt7tMRDgCpvcD+0g6cWbPmQ+Wod+AD9LHVzvDJn6ObA+PisjuGYvgUNNFeK8J57XAEk5OzZzNIsYi7ZVqVTg0aUSnqNzdmzQucQIksGh3KJ0ACSyld0jf+ZHA0nf/5aqeBJZcJCkOEXBNgAQWABJYrjeKr0b4Q2BxdmDaLAMi43zlrXVLO8qXTfr0y/bIO+jxeLdYevXA7FibvbH486m5RkQ+kMiU7mtH2rwJxzwR8wTNQ7aJg4NDg/H+pg8cP7+odgnri0iv79UIzIFfszeKh5yxWmD+4hMYnkqLvjRkwu76y9C4VZAsLRLu1gr8ug+YiDDwaYIRPWoB+IxZZYmthiDMnWs4s/wQQsNeZ3s9oDyum8uhY3sOdasFePUK4c5dLA4clOSpyQQMHWhHUBCdvlLDnlB6jiSwlN4hyo8EFu0BJRMggaXk7qgnNxJY6ukVZap+AiSwSGCl6C72h8C6cJHFmrWSQBDunRoxxA6jizfiprw4gXmhZ0Q+vdOVwpiMlcSf//3aAMtL6VRN+aF2BGVJWEpYeQ4Fbv+IuH/tvPojmK1m7Ku+D1cLXxHjljtTHk0fVECOHDxy5gBy5uCRIzuP1L/OhvHA7079WpJjNloPL43AQPlkCHvnKgLmjULMoOngchZI0f2REouHhzP4diHrJDyFt5MnjjIhSyYg5HmUeJm6q/zCwhhMn+386mq9ujxq05cDXaGjv7tJgASWm6BoWIoRIIGVYuhpYTcIkMByAxINcUmABJZLRDSACMhGgAQWCSzZNpM3gfwhsH78icW165LAqlSBQ4tmrl/f6vBwJ/ZHS6edFmWpg+ap84tlHh5rBGeRqq48zgZj6sQpNA7ZgrMxz8QBTf5sgpwhufBby7UIDZYueG+0qzFyP8jtFCgd9xzjHrV1+t3e1O+D6dQbQj1yP0x0FPhAeU51yZ2bP+LduMli+Uppzwhr5svDYOxQo0cCa+MmFidOS3FSp+Ydd1+ZtH2dmD9aRGv8R4AEFm0FpRMggaX0Duk7PxJY+u6/XNWTwJKLJMUhAq4JkMAigeV6l/hwhK8F1qswBjPeOAEjXJqeK6frE0vFbv+EMN4qCavc7yOPMY3jZ54HDo10thDVptgcr5gl9ox8ehArw6WTVlVOV0Lhi8XwU4dV0hQecJzMspmdwlSK2oEOL6eIv3tqyIkVZVah96dJ3+Plw9ZpPvTuvxns2e98eqp+bRa161jcOoH1+Ilwkst5fov3OFSqKL9w1HwzqMBECZDAos2hdAIksJTeIX3nRwJL3/2Xq3oSWHKRpDhEwDUBElgksFzvEh+O8LXAEgSEICJinyxZePTr7Vr63LC+Qq3768V5aRkTLuX7n/izNQw49qUksAyBQJWJtiRJrQm/hiFPpbuumqTKi0Z8EQyM+kucl+llRrTa3CZenA9fTES56D3i7/9K/T/kHdzVLRHnw/ZpPvTSFQbcuu1sJTu151CsqGsJ9dMaFpevSKevMmbkMfAz13tP81CpQFkJkMCSFScF8wEBElg+gEohZSNAAks2lLoORAJL1+2n4v1MgAQWCSw/bznn5XwpsIRTUsL9Q8KdRrFP44Ycqld1LR82RNzAZ0/2ifPeDcqFVdkaiD9HPWZwcqZ0uiYgI4+KI5KWE5esL1Dv/iYxRk5DarRMXQALX50Tf/dR2qIYYaiOkIcMHoTweBDCICQEGHG9BYL4CHHcjipzUatLiRTtnR4WD49gMG8Bi6g4HwAwm3n078shXdrET/Hducvgh2XOp6/avc+hVAnXe08PXKlG+QiQwJKPJUXyDQESWL7hSlHlIUACSx6Oeo9CAkvvO4Dq9ycBzQisaWN7wWhw/n8YBZA8z2PIxAUOprMm9E2QrcVixcivFjv+dn7Pcn/y1/1avhRYN2+xWPaj8z1Go4a59/W3ic+PYfGr82J/BgeXxZAM5cWfw24xOBvn9bDUuXiU7e/6dE3h26sQxUsntQoa0+GG7ZUY99sstdE6tfPF6YYbFxAwfYA4xsYG4PmUzUiT1rk23W8mHwG4foPFilXOrHPn4vFp98T7/d0SA+7fl8Sp8Mqq8OoqPURAbgIksOQmSvHkJkACS26iFE9OAiSw5KSp31gksPTbe6rc/wQ0I7DkQkcCSy6S7sXxpcDauIXFiZOSeChZnEP7D9w7AdMq5Hcci3ksFrE8Wz00CMoj/vziAoOLKyRhGlyER0k3BMWbcd+kdCh3W+Q1pnX6tWnrCpi2Sfdk2SvUQswn49wDTKNkIbBrN4N9B5wFebWqHJo0jL+fLl5isfpXZ+HVrYsd+fO6vndNlmQpiK4IkMDSVbtVWSwJLFW2TTdJk8DSTat9WigJLJ/ipeBEwIkACaw3NgQJLP/+G+IrgcXZgSkzDYiOlk7BdP3IjgL5XUsEjudR5M4qRPPSiZkzeTogk3DR1X/P4+MMrv0qCY1MZXkU7eT6hM2E50fx/asLCUJOzwbgfN6O8f4WOPUzsLcui7+3fDgYthpN/Nsona8mvI66cpUJ124675+P/sehcCFJYnEcMHeeAS9CpX33VhEeH3Z0vTd0jpjK95IACSwvwdE0vxEggeU31LSQFwRIYHkBjabEI0ACizYFEfAfAdULLP+hopV8QcBXAuvyFQY/rZEEU5rUPIYNtif5lcDY+i5YnqPBg81iuTkMqfBvnnZO5T/Yz+LWVumUTbaqHAq1dn266827teIGbZY6H77L8q4z5qgIBA1uhbjXiEdOWwukTe+LdlDMJAikNgVh3NdWRERKgwIChY8CSPdhHTvOYss2aV8IX6Xs09OObFldi1OCTwS8IUACyxtqNMefBEhg+ZM2reUpARJYnhKj8QkRIIFF+4II+I8ACSz/saaVEiDgK4H123oDzpyTtE9ir3sl1JTVYVcw9NlB8U/C1wJ/yFrXaeidnSzu/SWJilx1OeRr5Fpgvfl1w7hBJ2SsjE/SOV/Mbjj2FwKWThGHcbkKIHrM6/va6PEvgRwZg3D5Go8Z3zp/bTJnTh6fdLOD54BZcw0QLn6PfcqW4dG2FZ2+8m+n9LUaCSx99VuN1ZLAUmPX9JMzCSz99NqXlZLA8iVdik0EnAmQwKIdkaIEfCGwbDZg8lQj7HG8wac97Mid071TMCOfHsTK8Csil5EZKqBfcBknTjc2snh4SBJY+d/jkPMd1wJLCFLs9k8I463xuG/L2QzlzJmdfh+wfCoMR3aJv7M2aAdrm09StGd6XVwQWMKJqh/XRse7D6tGNTsCAhjs3iPtCZYFBg+wJ/m1Qr2ypLrlI0ACSz6WFMk3BEhg+YYrRZWHAAkseTjqPQoJLL3vAKrfnwRIYPmTNq0Vj4AvBNb5Cwx++U16fTBDeh6D3PhCYGxyjUO24GzMMzHXNdkaolZQTqfcr/xswNPT0kmbwh/YkbWSe4Ksw8Od2B/9wFlUMQZcy/shWMGQxHmChr0PJjxU/E30wOngipajnZQCBGIFVsjzKHy/xIA795x7ZTIC1jiHs6pX5dA4gUveUyB1WlLDBEhgabi5GimNBJZGGqnRMkhgabSxfi6LBJafgdNyuiZAAkvX7U/54n0hsIQvwAlfgot93qnFof677p2OsvIcCt9eCRskGXUxbyekY81OsC4sMeDlFUlgFPuYQ8YS7q0x5cUJzAs94xSvemB2rM3e2Ol37O3LCJzymfg73hSAqDmbANb5a3gp30V9ZBBXYIW+YjBvIYuYOB8JiEshwMxj8AAOQUHuSU19EKQqfUGABJYvqFJMOQmQwJKTJsWSmwAJLLmJ6jMeCSx99p2qThkCJLBShjut+h8BuQVWjIXB5CnOgqdfHw5ZMrsnl07EPEHzkG1ifwqY0uFArjbx+nVmngHhcU7glOplR7oC7smK7ZF30OPxbqeY/YPLYESGCk6/M27/CebNy8Xf2ctUQ0zvL2jvpBCBuAJL+Crh1WssVv4sidK4aTWoy6NWTbr7KoVapatlSWDpqt2qLJYElirbppukSWDpptU+LZQElk/xUnAi4ESABBZtiBQlILfAOnWawfpNksDKlhXo28v50u2kCl4edgmfPzssDmmTuiDmZXkn3pQT0wyIfiadwCo32IZU2dxD+dAeiYp3f3Ua/FP2hqgT6PyaYsCMgTBcPy+Os3QaAFutZu4tQqNkJ/CmwBIW2LmLxYGDzhJL+OKlcPeV0Sh7ChSQCMQjQAKLNoXSCZDAUnqH9J0fCSx991+u6klgyUWS4hAB1wRIYLlmRCN8SEBugbXyZwOuXpPEUr13OdSu5d7pq9gyz1qe4ZzlOc7HPEOVoGxonqpAPAJHJxhhi5J+XelzG8zp3Ac148VJPLFH4RVnxSsuBguz1nF+TTEqAkGDWyHuLUtRX/0MPkMW9xehkbISSEhg2Tng+6UGPHggdaplMzsqVnDvNJ6sCVIwXRIggaXLtquqaBJYqmqX7pIlgaW7lvukYBJYPsFKQYlAggRIYNHGSFECcgqsqCgGU2YYILzeFfsMGWBHcLC8MkGIf2ikcMpLkhbVptgcX6iT6zGc2IeA7yeJ4bjseRE9folc4SmOFwQSElhCmFdh0n1YmTLy6N/XLute8CJVmqIjAiSwdNRslZZKAkuljdNJ2iSwdNJoH5dJAsvHgCk8EYhDgAQWbYcUJSCnwDp6nMXWbdLrXLlz8vi0h/z3EFkjgWMTpffDhPvdq05y/zVFd4CbV86E8eAf4lBrvTawvt/bnak0xkcEEhNYwnLXrrP48ScWHdtxKF7MsxN/PkqXwuqEAAksnTRaxWWSwFJx83SQOgksHTTZDyWSwPIDZFqCCPxHgAQWbYUUJSCnwFqy3IDbd6RjUE0bc6haWX6ZEPWUwcnp0j1b5mAelUbLK8qChr0PJjxU7E1M/ymwF6+Yor3S++JJCSyBzekzLMqWkX+/6Z071Z80ARJYtEOUToAEltI7pO/8SGDpu/9yVU8CSy6SFIcIuCageYFlsVhx8vw1XLt5D6FhkciUPi3at6zrmgyN8AsBuQRWeASDaTOdvz44fIgdwoXacj9hdxmc/VZaK1UOoNxA+U5gMfdvIOjLnmLavNGEqFkbAZNZ7lIongcEXAksD0LRUCIgGwESWLKhpEA+IkACy0dgKawsBEhgyYJR90FIYOl+CxAAPxLQtMBau3UP5i1Zj2cvXolIixbKg/VLpLuFhD8MGDsPl6/fxTdf9sdbBXP7ET8tJZfAOniIxR9/Sq8PFsjHo+vH8p6Kiu3Wi8sMLi6VBFZwQR4le8q3lunPX2Fa/724OWylq8DS50vaLClMgARWCjeAlk+QAAks2hhKJ0ACS+kd0nd+JLD03X+5qieBJRdJikMEXBPQrMCasegXLFuzXSTAsgw4jkdCAmv+sg1YsGITenR6D4M+/cA1NRohGwG5BNZ3PxhwP86X4Jq/Z8fbFT0/fcU+eQD2/g0gMhxMZBjsb5UFl/ctp3qfnGJwdbUksDKV4lC0s3yvjgXMGQrD5dPimpb2n8FWp6VszCmQdwRIYHnHjWb5lgAJLN/ypejJJ0ACK/kMKYLvCJDA8h1bPUUmgaWnblOtKU1AkwLryMmL6DZoKgRp1a75u/iwbQPkzpkV5ep3T1BgnblwHR37TEKZEoWwesHYlO6JrtaXQ2CFhjKYOVcSSsLXAEcOtSMoyHOBFbBwHAxnDok9sJetjpheE516EnKQxc1N0mmvbJV5FGorzwksJiYKQQNbOK0X9eWP4DPl0NW+UGKxJLCU2BXKiQQW7QGlEyCBpfQO6Ts/Elj67r9c1ZPAkoskxSECrgloUmAJrwTu2n8cQ3q1Q7cOTUUKJet0SVBgCa8YvtO6P9IHp8E/m751TY1GyEZADoG1Zz+L3X9LQumtIjw+7OiFUOJ5hzxiLNFifTzDIGrqr0Da9OLv7u5icTfO64q5anPI11SeE1iCPBMkWuzDZ82JqIkrZONNgbwnQALLe3Y003cESGD5ji1FlocACSyOyHyvAAAgAElEQVR5OFIU3xAggeUbrnqLSgJLbx2nelOSgCYFVu02A/AyNByHti5AqqAAlwKL53mUq9/DMe70X0tSsh+6W1sOgTVvoQFPnkhfH2zTyo5yZTw/fWW4cQEB0wfE64G1bU9Y678v/v7mFhYhByRhJsgrQWLJ8Zh+ngvT/q1iKOHVQeEVQnpSngAJrJTvAWUQnwAJLNoVSidAAkvpHdJ3fiSw9N1/uaongSUXSYpDBFwT0KTAKluvOzKkT4s96+Y4EUjsBJYwSJhjNBpwfMdi19RohGwEkiuwHj0G5i8yivkYDMCoYTaYvfhgn2nbKpi2xj/txGXLjegJy8Q1rv5iwJMTkjATXh8UXiOU4wkc1RHsy6diqJg+X8JeuoocoSlGMgmQwEomQJruEwIksHyClYLKSIAElowwKZTsBEhgyY5UlwFJYOmy7VR0ChHQpMCq0fIzxMRYcPT37xz3YMU+iQmsW3cf4r3OI5E7RxbsWD09hVqhz2WTK7B27WaxL85pqJLFObT/wLvTUIGzBoO9ejbBRkSPnA8u3+vL3C8sM+DlJWlfCRe4Cxe5J/dhH91F4IRuYhjeaELUrI2AyQsbl9xkaH48AiSwaFMokQAJLCV2hXKKS4AEFu0HJRMggaXk7qgnNxJY6ukVZap+ApoUWD2GTsehf8/ju2lDULNyaZcCa/qCNVj+6x9o3rA6poz+VP1dVVEFyRVYM+YY8OqVJJM6fMChRHEvZJLVgqCBzcFwCc+1vtMM1o6vXy88M9+A8DtxxGhPO4ILJv8ElvGv9TD/tlDsnr1EJcT0+1pF3dR2qiSwtN1ftVZHAkutndNP3iSw9NNrNVZKAkuNXVNeziSwlNcTyki7BDQpsLb+eQgjJn+HnNkzY9GUQSiUP5ejgwmdwNq66xBGTl4M4R6sZbNHonL5YtrttgIrS47AunefweIl0tcHzSZg9HAbWOlXbldsuPAvAuaNEsfzRjMYm0X6OVUaRM3c4Pj5xHQDop9KAqvsQBtSy/CRQPO80TBeOCauaW3XB9Z3W7tdAw30LQESWL7lS9G9I0ACyztuNMt/BEhg+Y81reQ5ARJYnjOjGfEJkMCiXUEE/EdAkwJLkFHCKazDxy/AZDSgZeOaqFy+OIZPWoT8ebJj0vDuuHbrPnbsOeoYIzxN61XB9LG9/UeeVnIQSI7A2r6TxaHD0mXqZcvwaNvKi68PAjCt+w6mXb+JXbG90xzs6YNgQ5+Jv7P0+By2inVw9AsjbBFSAyuOtiMgOJknsIQTYINbgbFZxcDRE5aCy5aHdopCCJDAUkgjKA0nAiSwaEMonQAJLKV3SN/5kcDSd//lqp4EllwkKQ4RcE1AkwJLKDsyKhrDJ32Hvw+edEmhfq2KmDqmJwID6K4hl7BkHuCtwOJ5YPosA8IjpJNQnTvZUaSwdyIpcHJPsPduSLKq53gw927AtG2l+Dt78YqI6T8FB0cIR7ykdatOsoFN5tYxnDuKgPmfi2tx6TMj+uvVMtOmcMkhQAIrOfRorq8IkMDyFVmKKxcBElhykaQ4viBAAssXVPUXkwSW/npOFaccAc0KrFikgsD6ZdPfOH7mikNqxT5mswkVShVBx9b1IAgselKGgLcC6+YtBst+lN4VDAzkMXKoHax0IMv9giLDkWqI9KqeoMCE1wUZSwwCR3UQVZXw+4jxv+Dw7KxibMbAo9pX3p36ipug+df5MP69UfxV3Du33C+ERvqSAAksX9Kl2N4SIIHlLTma5y8CJLD8RZrW8YYACSxvqNGcNwmQwKI9QQT8R0DzAisWJcfxePYiFOERUQgKCkCmDMGO1wvpSVkC3gqszdtY/HtcslWVKnJo8Z4Xl7cDMP67B+Ylk0UQwtcGha8OCk/g7GFgr5wS//aqwWc4eqSt+LM5LY9KY5IvsALHdwX7+J4YN6b3F7CXqZayzaHVnQiQwKINoUQCJLCU2BXKKS4BEli0H5RMgASWkrujntxIYKmnV5Sp+gnoRmCpv1XarMAbgSV8KHDKDAOio6XX+Lp9bEf+fN69PmheNQvGf7aLgK2NOsDaqrvjZ8ORPxGwfJr4t9D0VXCMmyL+nCobUG6wLVnNYV48QdDoTmIMnmERNWcTYA5MVlyaLC8BEljy8qRo8hAggSUPR4riOwIksHzHliInnwAJrOQzpAgACSzaBUTAfwQ0KbAGjvsWbxXMjT5dWnlM8tT5azh94TqMBgPKFC+I0sULehyDJrhPwBuBdfUag5U/S6fn0qTmMWywHYzks9xPQDhlNboT2BdPxDkxA6bCXqzC65+Fy9WHtgVjef366XNDBZxIPVMcmzY/j9K9k3cCy7h3M8xr5okx7UXLIWbgdI9qoMG+J0ACy/eMaQXPCZDA8pwZzfAvARJY/uVNq3lGgASWZ7xodMIESGDRziAC/iOgSYFVsk4XFMibA1t//NptksIrhqO+Woytuw45zalVpQxmTeiDVEF0GsZtmB4M9EZgrdtowOkzkq2qVo1DkwbevT7IPH6AoPEfixnzRhOiZm0ETNKt7HFPaD0y1sbZVBPE8RmKcyjexbu1Y4MELBgLw9nDYkxrm09gbdDOA4o01B8ESGD5gzKt4SkBElieEqPx/iZAAsvfxGk9TwiQwPKEFo1NjAAJLNobRMB/BDQrsIICzfjxm9H4af0unLt8E5ydQ6H8udCuRR1Ur1QqHuF12/Zh3PSljt8L49KnS43T56/DZrejSd0qmDGut/+6oqOVPBVYnB34apoRFqsEqWcPO3Ll9O71QeP+rTD/PFcMJpy8Ek5gxX0M188jYMZAx6/umZrjUtBg8c9ZKvIo0i4ZJ7A4O4IGtRJPeAmBo8csBpergI52gTpKJYGljj7pLUsSWHrruPrqJYGlvp7pKWMSWHrqtu9qJYHlO7YUmQi8SUCzAksolGEY8Hx8sfFZt9bo/VFLJxad+03GibNX0b1jUwzu+fr0y807Ifh4wNd49uIV1v3wBYoVzks7SGYCngqsCxdZrFkrXd6eIT2PQf29F0jm7yfBeGKfWJWlVTfYGnWMV2Xg5x+Cff4It8z/w7XAHuLfc9TiUKCZ9yewDJdOIGDuCDEelz4zor9eLTNlCicHARJYclCkGHITIIElN1GKJzcBElhyE6V4chIggSUnTf3GIoGl395T5f4noGmBJeBsVKcyypQoCLPJhEvXbmPzjn9gtdmxYu4oVCpbVCT+dpNeiIyKxvafpiFvrqzi77fsPIiRXy12Elv+b5N2V/RUYP3yG4vzFySBVbsWh3rveimQeB5BQ1qDiYoQAQtfHxS+QvjmY/xjNcybluJqQE/cDugg/jlPQw556nm5PgDTusUw7VorxrPVaALLh9IJL+12Xn2VkcBSX8/0kDEJLD10Wd01ksBSd/+0nj0JLK132D/1kcDyD2dahQgIBDQtsITX/oTX/+I+J85eQed+X6FRnbcxa0Jfx5+E+69K1+3q+OdTf/4Ak8koTomKtqBa8z6OC92FVxLpkZeAJwLLZgMmTzXCHufA1cB+dmTM4N3rg+ztKwic8noPCA8flBpRMzcIR/fiFcm8fIbA0R1xMWAoHpibin8v2IpD9mreC6zASZ+AfXBLjBfz6XjYy9eUFzJFk4UACSxZMFIQmQmQwJIZKIWTnQAJLNmRUkAZCZDAkhGmjkORwNJx86l0vxPQrMAqlC8nNq/4KkGgXQZOwe17D/H3b3McfxfuuSpbr7vjn8/vWR5vTsuun+NlaDj2rpfuSvJ7pzS6oCcC6/RZBus2SF8fzJYV6NvL5jUZ085fYNrwgzjfXq4mYnqOTzRewLejce5Gczwx1RLHvNXJjsxlvRNozIsnCBrdSYzFMyyi5mwCzPTBAK+b6sOJJLB8CJdCe02ABJbX6GiinwiQwPITaFrGKwIksLzCRpPeIEACi7YEEfAfAc0KrHq1KuCbSf0TJDl+xjJs3H4Ap/9a4pbA6jZoKk5fuI7jOxb7rzM6WckTgbVytQFXr0qno+rX5fBOTe9PPwV8MxKGi8dF0paO/WF7p3mi5I3/7sWZ1Znx0lhWHFOiuw3p479x6Fb3jAd+h/mn2eJYrkhpRA+e5dZcGuR/AiSw/M+cVnRNgASWa0Y0ImUJkMBKWf60etIESGDRDpGDAAksOShSDCLgHgFNCqzKTXuhaKG8WDkv4Vf++n0+F0dOXsTR3xc5KEXHWFCx0aeOf07oBFaPodNx5MQFnN29zD2qNMptAu4KrOgYBl9NlU5fCQsMGmBHhmDvTj8J7yEGDWwOxiZ9zjBqwjLw2XInnrvdhtMjHyGCzSeOKffeGaR6p4Tb9cYdGLB4IgwnD4i/srTsBlvj+BfIexWcJslOgASW7EgpoAwESGDJAJFC+JQACSyf4qXgySRAAiuZAGm6gwAJLNoIRMB/BDQpsDr0mogrN+5h649fI2f2zE40n78MQ9MPRyA8IgrL54x0XOR+9eY9tOo6xjHu8NYFSJsmldOcNt3H4sGjZ46/0SMvAXcF1u27DJYskwRWjmw8evf0/uuD7OVTCJwzTCyGT5MeUdOly9QTq/Lfz6NhsaUR/1wl/1wYekv3aLlNh7MjaFArMJZocUr06IXg8hR2OwQN9C8BElj+5U2ruUeABJZ7nGhUyhEggZVy7Gll1wRIYLlmRCNcEyCB5ZoRjSACchHQpMBauuZ3zFz0Kwrlz4VRn3VC2ZKFYTIacOnaHUyeuxJnL91EcNrUsFitaPxuFZy9dAPXbt53MF0ycziqVpRO1ISGRaB2mwEoUiA31i6eIBd3ivMfAXcF1omTDDZukQRWqVI82rXxXmAJXxQUviwY+9iqNYLlo6Eu+3JoFAuei/MVxPCWsE5fAaSSpJbLIADYq2cROEv62iCfJhhR039zZyqNSSECJLBSCDwtmyQBEli0QZROgASW0juk7/xIYOm7/3JVTwJLLpIUhwi4JqBJgSV8ObB9zwm4fvuBSIBlGcfXBoUnU4Z0WLNwHAaO/xbnL7/+AlzuHFmQK3tmCMLqu2lDkDljsOP30xeswfJf/0CX9o0xrHcH10RphEcE3BVYu3az2HcgjjiqxaHeu8m4/2pafxhuXhRztXQbBdvbdZPM3W4BjoyVvlAJnkf9sLpwdXdWQkFNm5bCFFegVW0Iy8fSiTCPINJgvxAggeUXzLSIhwRIYHkIjIb7nQAJLL8jpwU9IEACywNYNDRRAiSwaHMQAf8R0KTAEvAJrwpOmr0Cf+47Dp6X7kmqVqkkJg7t6pBVwt1Xf/x9FJFRMWhat4rjovY+o2YjMMCMtwrlQVh4JG7eCXGc3try49fIkzOr/zqjk5XcFVi/rGVx/qIksNq0tKOct1//i45C0KAWToSjpv4KPl2GJKnHhDI4/pV0CszEvUTt8Nbg8hZB9Cj3Xy81njsK04ppYMJDJYH2yRjYKtTWSdfVWSYJLHX2TetZk8DSeofVXx8JLPX3UMsVkMDScnf9VxsJLP+xppWIgGYFVmxrQ19FOO64snMc8uXOhuxZMibZ9XlL1+O7lVtE6WUyGTF5ZA+8V68q7RYfEHBXYC1YbMTDh1ICPbrakTePdxe4G04fRMCi8WIwe878iBn7vcvqIkKA03OkE1ip7HdQPeJjx7yYMd/Dnit/kjGYyHCYfv0WxiN/xRsXNWsj+KDULnOgASlHgARWyrGnlRMnQAKLdofSCZDAUnqH9J0fCSx991+u6klgyUWS4hAB1wQ0L7BcI4g/QrgP68TZK2BYBjUrl0GOrElLL2/WoDmvCbgrsCZ+aYQ9zhuDwwfbkMaza6dE5OZfvoVxzybxZ+u7bWBt19tlS0KvMzi/WDqBFWy7gLcjX1/gbq3bBtYPEo9hOHsY5h9nOJ26il3QVqU+LF1GuFyfBqQsARJYKcufVk+YAAks2hlKJ0ACS+kd0nd+JLD03X+5qieBJRdJikMEXBMggeWaEY3wIQF3BNbT53ZMmyWdfDKwwPgxNq+zCpzQDeyju+L86D6TwJV2fcLu2TkWl1dKrzFmth5GuahRjjiOS9inrAEMce7IAsBEhMEkCLNju+PlywWlgq3dZ7BVbeB1LTTRfwRIYPmPNa3kPgESWO6zopEpQ4AEVspwp1XdI0ACyz1ONCppAiSwaIcQAf8RIIHlP9a0UgIE3BFYl69xWLJcOvmUIwfQ+xMvBVbYC6Qa3k7MhGdZCK/vISDIZX8eHWVwfZ2UR3Z+D0qFTRTnxfQcD3u5muLPhtOHYF41M8FTV/YiZWDpNhp8+kwu16UByiBAAksZfaAsnAmQwKIdoXQCJLCU3iF950cCS9/9l6t6ElhykaQ4RMA1AU0LrHshT3Dw2DmEPH4Oi8XqmgaAYX3oS4NugZJpkDsC69BRDhs2S+KoZEke7dvavcrAeGgnzD9OF+faC5VEzNA5bsW6v5fF7d+lE1i5sp1G8asDpVilqyKmz6TXp65WfwPj8T3x4vIBQbC1/RTWWs3cWpMGKYcACSzl9IIykQiQwKLdoHQCJLCU3iF950cCS9/9l6t6ElhykaQ4RMA1Ac0KrG+WrMP3P20Fx3l20ff5PctdU1PhiCMnL2LYFwvx7MUr7Fwzw/EVxqSef09fxvJf/sCp89cQHhmFbJkzoF7NCuj5UQsEp038svEN2/fjt617ce3WfdjtduTLnR2tGtdEp9b1YRDe/XvjcUdgbd3BY99+ae47NTnUrxvnQiwP+mFePsXpEnVrs49gfa+zWxFub2dxf4+UR94qL/DWn22c5lo7DoBxy/LET119PBx8pmxurUeDlEWABJay+kHZvCZAAot2gtIJkMBSeof0nR8JLH33X67qSWDJRZLiEAHXBDQpsHbtP44BY+c5qk8fnAZFC+ZBhvRp8cffRx3iJn+e7AiPiMKVG3cRFW1xXNLe43/NUKxwXpQrWdg1NRWN4HkeP/y8DYLQi5V5rgSWIKDGz1jmqLJk0fzIlCEYV2/cdZxkE1j9vGAcsmZOH4/CqK++x+ad/8BkNKB86SIwGY04feG6g3XNyqUx/+uBMBqkk1RCAHcE1o+rgXPnGXG9Vi3sqFDOMzEZOzlo2Adgwl+KsaKHzAZXuJRbHb2+jsWjo5LAKtCCQ4F9vcHeuZLkfN5khq11d1jrtAYYqQ63FqVBiiFAAksxraBE4hAggUXbQekESGApvUP6zo8Elr77L1f1JLDkIklxiIBrApoUWD2Hz8SBo2fRpG4VfDGsG1IFBbyWMXW6oHvHphjc8/UdSIK8+m7lZsdJLeF3wt+09ISGRWDUV4ux99BpVK1QAhzP4ejJS0mewLr74DGadR4Fo9GARVMH4+1yxRxIBBH27bINWPTjZkesJbOGO6ESxJUgsArmzYHFM4aJX26MjIrGwHHf4p9j59CvWxv0+qiF0zx3BNbs+QxCQqRp3bvYkS+v5wKLDbmNwC96iIF4cyCi5m5xu+WXV7F4dlYSWEU62JEjbDPMq79JNIa9QHFYu44AlyWX2+vQQGUSIIGlzL7oPSsSWHrfAcqvnwSW8nuk5wxJYOm5+/LVTgJLPpYUiQi4IqBJgVWzZT+8CA3Dwc3zEZxOet3tTYEVC2fS7B+xZtNurJw3GhVKv+WKmWr+3qHXRJy9dBP/a1Mfw/t2RO8Rs3Hw33NJCqyvvlmFn9bvwsBP3scn/3O+p0mQWB17f+GI+dP8MU6n1Vp1HYOrN+/F+70AS+hFvQ8Gw2QyYu/6uQgMMIsM3RFYY78AYizSyaVhg2xIm9bzNhj3bIT5l/niRFupyrD0nex2oHOLDXh1XcqjeFc7MuYNQ9CQ1gnGsLXqAUuj9m7Hp4HKJkACS9n90Wt2JLD02nn11E0CSz290mOmJLD02HX5ayaBJT9TikgEEiOgSYFVpl43ZMqQDn//5nw5d+m6XfHR+43iXdQuvBpXv91gNKxdCbMnfqaZ3XL4+AWEPH6G1k1qOWr6eMDXEO62SuoVwgYdhuLBw6fYvXY2smXJEI/F6o1/4cs5K/HRB40wom9Hx9+F8cK8vLmyYvtP0xLkN3jCfOzYcwzzJg9A3Rrl3RZYdx5a8MXXkjQSrtEaP8a7LxAGLBgLw9nD4tqWtr1gq9/W7X6fmmtE5ANpeOm+dqTNy8P8w5cwHt8r/oHLVRAxPcaAz57H7dg0UPkESGApv0d6zJAElh67rq6aSWCpq196y5YElt467pt6SWD5hitFJQIJEdCkwKrU+FOkS5vaIWHiPm836YVGdd7GlyO6x2NRu80AMAyDPevc+yKdGrfTh59NxslzVxMVWK/CI1GtWR+HuHqTXWy9F6/exvufjHecvhJOYQnPX/tPoP/Yb9CsQTVM/bxngmhWrN2BafNXO051Cae7Yh9XJ7BOnLdgwWJJYGXLBvTt6YXAstsRNLgVGEu0uHbU54vA5y7kdiv//doAy0spl/JD7QjKwsNw/igCvv0cYA2wNu4Ia9MPgTfu+nJ7ERqoWAIksBTbGl0nRgJL1+1XRfEksFTRJt0mSQJLt62XtXASWLLipGBEIEkCmhRYLT4ejeu3H+Do74uQOlWgCOC9ziMdX9D7ecHYeFCEV9yevQjFqV1LNLtlXAms85dvoV3PCahQughWzvs8QQ7CvVrVm/dFhuC0OLDp9UX5wtcKpy9cg56dm6N/94RPNMVerC8IxFkT+rotsHbus+DXdZI0KlmcQ/sPPP8CoeH6eQTMGCiuywelRtSsjR71+vBYIziLNKXyOBuMwhuqHIeAucNh/aAPuNwFPYpJg9VDgASWenqlp0xJYOmp2+qslQSWOvuml6xJYOml076tkwSWb/lSdCIQl4AmBda46Uuxbts+zPuyP+rWrCDWK1wmvvufE9jx83TkyJZJ/P3zl2F4p3V/h+w6sm2hZneIK4F15ORFdBs0Fe9ULYuFUwYlyEG4B6vUu11hMLA489dSx5hvl27Awh83YWiv9ujaoUmC82JjV61YAktmShfAh0VaExwfFGCA0cDity02/LFLurC9Xm2gWWPPW8RtWgF+w3JxIlO1Lthe8UVmYpF5Htg5wPmvDefSRwU974R6Z6QJMjk+IhkWZQU8/4aAegunzBVNwGRkEWg2wGrjEG2xKzpXSk6fBNKmMjkKT+z/3uuTClWtFALCfz+F/44K//0U/jtKDxHwhkDsf+e8mUtziAAR8IyAJgXWibNX0bnf5Hh3Wq3/fR/GTluKMiUKOV51E+5sevo8FONnLMOeg6dQuXwxLJs90jOCKhrtSmDtP3IGvUbMQr1aFfDNpP6JVla2XnfY7Hac/msJjAYDZi76FUvX/I5R/f6HD9s2SHCe8OqisH75UkWwSnjdzs1n8Qo7jp6Q/gfFxx0MqFVN+hKgm2EQPq4PbJfOiMNT9RoJc13nS+qTihXzCtgyWJJtpiCg5bzX/6OcHiJABIgAESACRIAIEAEiQASIABEgAkTAtwQ0KbAEZJPnrkTD2m/j7XLFRIIxFiua/m8EHj557vhdqqAAREbFiH+fO6kf6teq6FviKRjdlcDyywmsCiWwZJb7J7AmTrfh7j3puMtnnwKFCngGkbdawPVs4njVL/ZhZ64Bkymb24EiHgIHvpKGp8oE1Brv9nQaqAECdAJLA03UYAl0AkuDTdVYSXQCS2MN1Vg5dAJLYw1NoXLoBFYKgadldUlAswIrsW5euHILfUfPweOnL8UhwutwvT9uid4ftdT0JnAlsC5du4O2Pca5dQeWcJfYwS3zHbx+XLsDU+evdusOLEEQCqIw9nF1iXvfYVbExLl3auggO9Kl9ez9LcO5owiYL5364rPmRNTEFR71OuwWg7MLDeKcNLl4lOlPr+t4BFHlg+kOLJU3UKPp0x1YGm2shsqiO7A01EwNlkJ3YGmwqSlQEt2BlQLQaUndEtCdwBI6HRVtgfC63INHTx2XuletUMLpTiyt7gZXAisyKhrClxrd+Qph6WIFsGbR6yNIew+dRp9Rs936CmG3Dk0xpFc7twSWzWrAwNHSa3sGFhg/xvMvEJrWLYJp1zpxTWutZrB2euNCKxdNf3GRxcXl0quL6YvwKNGDBJZW/11JqC4SWHrqtnpqJYGlnl7pNVMSWHrtvDrqJoGljj4pPUsSWErvEOWnJQK6FFhaaqAntbgSWEKs2C847l472yGy3nxWb/wLX85ZiXYt3sX4wR87/izcI1a7zQDHnWLbf5qWYEqDJ8zHjj3HMGNcbzSpW8UtgfUghMVXsyRhlS0r0LeX5wIr6MueYO7fENeM+WQs7BXe8QQdnhxncPVX6QRW5rI83upEAssjiCofTAJL5Q3UaPoksDTaWA2VRQJLQ83UYCkksDTY1BQoiQRWCkCnJXVLQJMCq2KjT5EnZ1Z882V/h1Sh5zUBdwTW3B/WYfGqLRj4yfv45H/xLznv0Gsizl66iUVTB6NWlTIi2tjYP80fg3IlCzshfxEahnofDAbH89i34RukS5PKLYF18jSDJaskSVSiGIcO7Tz8QkxkOFINaS2uJ7x8GDVzA5AqjUfb4sF+Fre2SiewslfjULCVh7l4tCINVhoBElhK6wjlIxAggUX7QOkESGApvUP6zo8Elr77L1f1JLDkIklxiIBrApoUWCXrdHFUvn/jPGRMn9Y1BZ2McEdgPXvxCo07DQfHcQ5JFXsJPs/z+HbZBiz6cTPeKpgb65dMAsMwIrnYLxgWzJsDi2cMQ46sGR1/E15LHDR+Pg4cPYv/tamP0f0/dKKd1B1YO/4CtvwhSaKa1Tk0rO+ZNDIe+xvmpdLt61zeIogetcDjjt/ZyeLeX5LAylWXQ75GnuXi8aI0QVEESGApqh2UzH8ESGDRVlA6ARJYSu+QvvMjgaXv/stVPQksuUhSHCLgmoAmBVadtgPx5NlL7F0/F5kzBrumoJMR7ggsAcVf+09AeOXPZrejZNH8DoZXbtxDyKNnjjvDVs4bjUL5c8WjNmPRL1i2ZjtMJiPKlyoMs8mE0xeuI7nBL7YAACAASURBVCw8EiXeyo8Vc0c5vvwY90lKYK1cAxw5LkmiFu/ZUamiZxe4m1fNgvGf7eKS1obtYW3dw+OO39jI4uEhSWDlf49DzndIYHkMUsUTSGCpuHkaTp0Eloabq5HSSGBppJEaLYMElkYb6+eySGD5GTgtp2sCmhRYY6YuwYbt+/HliO5o3aSWrhsct3h3BZYwR/ha43crt+D4mSsIj4hE5kzpHa8M9urcIsG7sWLXEe65WrXuT1y+fgd2O4dcObKgad0q6NqhCQLMpni9SEpgzZzH4+YdSVh1/ciOAvk9E1iBozuBffFEXDem/xTYi1f0eE9c+dmAp6elE2eFP7AjayXPcvF4UZqgKAIksBTVDkrmPwIksGgrKJ0ACSyld0jf+ZHA0nf/5aqeBJZcJCkOEXBNQJMC617IE7T7dALMZhPWLBqH7Flev85Gj/IIJCWwRoznEBEp5TxkoB3B6dyXRszj+wga//p1UuHhjSZEzdoImMweg7iwxICXVySBVexjDhlL0Aksj0GqeAIJLBU3T8Opk8DScHM1UhoJLI00UqNlkMDSaGP9XBYJLD8Dp+V0TUCTAkvo6Knz1zBg7DwYDQaMH/Ix3qlaVteNVmrxiQmsIJMZw8ZKgsjAAuPHePYFQuPhnTCvmC6Wbi9aDjEDpZ89YXJmngHh9ySBVaqXHekKuC/TPFmLxiqTAAksZfZF71mRwNL7DlB+/SSwlN8jPWdIAkvP3ZevdhJY8rGkSETAFQFNCqyde//F85evcPXGPazZtNvBIGvm9HirYB4EBTrfwfQmoDlffOaKGf1dRgKJCaxXL02Y8Y0kiLJmAT7r7ZnAMv00B6YD28Rsba16wNKovVfZn5hmQPQzSWCVG2xDqmxehaJJKiVAAkuljdN42iSwNN5gDZRHAksDTdRwCSSwNNxcP5ZGAsuPsGkp3RPQpMCK/QqhN909v2e5N9NojpcEEhNYN66ZsPxnSWAVL8qhY3vPXtkL+rInmPs3xMyiB80E91YZrzI9OsEIW5Q0tdLnNpjTeRWKJqmUAAkslTZO42mTwNJ4gzVQHgksDTRRwyWQwNJwc/1YGgksP8KmpXRPQJMCa+JM7yXU+CHSnUm63x1+AJCYwDpy2IRtOyWBVaMah0YNPBBYlhgEDWwOhn8dg2cYRM3ZApiTPoGXUMlCiEMjDQCkE1jVptjASD/6gRQtkdIESGCldAdo/YQIkMCifaF0AiSwlN4hfedHAkvf/ZerehJYcpGkOETANQFNCizXZdMIpRBITGBt3WbC0eOSwGr+Hoe3K7ovsNjLpxA4Z5hYJpenMKJHL/SqbGskcGyiUZzLmoGqkzx7ndGrhWmSogiQwFJUOyiZ/wiQwKKtoHQCJLCU3iF950cCS9/9l6t6ElhykaQ4RMA1ARJYrhnRCB8SSExgLV1hwq3bksD6uLMdhTy4NN34x2qYNy0VM7fWagZrpwFeVRL1lMHJ6cIJrNePOZhHpdF2r2LRJPUSIIGl3t5pOXMSWFrurjZqI4GljT5qtQoSWFrtrH/rIoHlX960mr4JkMDSd/9TvPrEBNa0mUaER0jpDR5gR/pg97/6F7BwHAxnDokBLB8Ng61aQ6/qDbvL4Oy3ksBKlQMoN5BOYHkFU8WTSGCpuHkaTp0Eloabq5HSSGBppJEaLYMElkYb6+eySGD5GTgtp2sCmhdYFosVJ89fw7Wb9xAaFolM6dOifcu6um66kopPSGBFxzD4aqokjIS7piaO9UwYBQ1tCybilVhq9ISl4LLl8ar0F5cZXFwq5RNckEfJnnQCyyuYKp5EAkvFzdNw6iSwNNxcjZRGAksjjdRoGSSwNNpYP5dFAsvPwGk5XRPQtMBau3UP5i1Zj2cvJJFRtFAerF8yyanpA8bOw+Xrd/HNl/3xVsHcut4Q/i4+IYH14AGw6AfpzqksmXn06+O+MGKePkTQ2M5iKXxgKkTN3uR1aU9OMbi6WhJYmUpxKNrZ/fu4vF6YJiqKAAksRbWDkvmPAAks2gpKJ0ACS+kd0nd+JLD03X+5qieBJRdJikMEXBPQrMCasegXLFuzXSTAsgw4jkdCAmv+sg1YsGITenR6D4M+/cA1NRohG4GEBNbZcwzWrpeEUdG3OPyvg/vCyHjsb5iXfiXmaC9RCTH9vvY655CDLG5uYsX52SrzKNTWfaHm9cI0UVEESGApqh2UDAks2gMqIUACSyWN0mmaJLB02niZyyaBJTNQCkcEkiCgSYF15ORFdBs0FYK0atf8XXzYtgFy58yKcvW7Jyiwzly4jo59JqFMiUJYvWAsbRg/EkhIYO3dx+KvPZIwqlaNQ5MG7gss89oFMO7eIFZhfa8zrM0+8rqqu7tY3P1TyidXbQ75mrqfj9cL00RFESCBpah2UDIksGgPqIQACSyVNEqnaZLA0mnjZS6bBJbMQCkcEdCbwBJeCdy1/ziG9GqHbh2aiuWXrNMlQYElvGL4Tuv+SB+cBv9s+pY2jB8JJCSw1m8y4NRpRsyiWVMOlSu5L4wCp/YDe+uSOD/ms8mwl6zsdVU3t7AIOSAJLEFeCRKLHn0RIIGlr36rpVp6hVAtndJvniSw9Nt7NVROAksNXVJ+jiSwlN8jylA7BDR5Aqt2mwF4GRqOQ1sXIFVQgEuBxfM8ytXv4Rh3+q8l2umuCipJSGD9sMyAO3clgfXxh3YUKujmFwjtNgT1bwaGk17xi5y1EQhK7TWNq78Y8OSElI/w+qDwGiE9+iJAAktf/VZLtSSw1NIp/eZJAku/vVdD5SSw1NAl5edIAkv5PaIMtUNAkwKrbL3uyJA+Lfasm+PUqcROYAmDhDlGowHHdyzWTndVUElCAmvqTCMiIqTkB/W3I0N694QRe/MiAqf1FydzWXMjeuKyZJG4sMyAl5ckgSVc4C5c5E6PvgiQwNJXv9VSLQkstXRKv3mSwNJv79VQOQksNXRJ+TmSwFJ+jyhD7RDQpMCq0fIzxMRYcPT37xz3YMU+iQmsW3cf4r3OI5E7RxbsWD1dO91VQSVvCiy7HZg4WfoCIcMAE8fa3K7EuHs9zGsXiuNtVRrA0mW42/MTGnhmvgHhd+Lso552BLt7IixZK9NkJREggaWkblAusQRIYNFeUDoBElhK75C+8yOBpe/+y1U9CSy5SFIcIuCagCYFVo+h03Ho3/P4btoQ1Kxc2qXAmr5gDZb/+geaN6yOKaM/dU2NRshG4E2BFRICLPxeElhZMvPo18f9L/6Zl0yG8d89Yn6Wjv1he6d5svI9Md2A6KeSwCo70IbUOZIVkiarkAAJLBU2TQcpk8DSQZNVXiIJLJU3UOPpk8DSeIP9VB4JLD+BpmWIAABNCqytfx7CiMnfIWf2zFg0ZRAK5c/laHZCJ7C27jqEkZMXQ7gHa9nskahcvhhtDD8SeFNgnTvP4Nd1BjGD4kV5dGzvvsAKGvMhmGePxPnRoxaAy1skWRUd/cIIW5xXGiuOtiMg2L1XGpO1ME1WFAESWIpqByXzHwESWLQVlE6ABJbSO6Tv/Ehg6bv/clVPAksukhSHCLgmoEmBJcgo4RTW4eMXYDIa0LJxTVQuXxzDJy1C/jzZMWl4d1y7dR879hx1jBGepvWqYPrY3q6J0QhZCbwpsPbuZ/HX39IX/2pW49GwgZsCKzwUqYa9L+bHm8yImrMFYKV43iR/cIQg1KQTWFUn2cCavYlEc9RMgASWmrun3dxJYGm3t1qpjASWVjqpzTpIYGmzr/6uigSWv4nTenomoEmBJTQ0Mioawyd9h78PnnTZ3/q1KmLqmJ4IDCAr4RKWzAPeFFgbNhtw8pQki1o241GxgnsCy3DmEAIWjhMz5AqXQvSQ2cnK2B4NHBkf504uA49qX7mXT7IWpsmKI0ACS3EtoYQAkMCibaB0AiSwlN4hfedHAkvf/ZerehJYcpGkOETANQHNCqzY0gWB9cumv3H8zBWH1Ip9zGYTKpQqgo6t60EQWPSkDIE3BdaS5QbcjnNheo+PeeTN554wMm9cCuOO1WIh1gbtYG3zSbIKi3nO4PhU6ZVGc1oelca4l0+yFqbJiiNAAktxLaGESGDRHlABARJYKmiSjlMkgaXj5stYOgksGWFSKCLggoDmBVZs/RzH49mLUIRHRCEoKACZMgQ7Xi+kJ2UJvCmwps0yIjxcymnEYB6p07gnjAJnDwN75ZQ4OebT8bCXr5msAiPuAafnSSewUmUDyg12/6uIyVqcJiuKAAksRbWDkvmPAJ3Aoq2gdAIksJTeIX3nRwJL3/2Xq3oSWHKRpDhEwDUBTQqsx09fImvm9K6rpxEpTiCuwLLbgYmT47yuxwBfT+RhsbkhsDgOQQObg7FaxJoip/8GpAlOVo2hVxmc/0ESnekK8CjVy418krUqTVYiARJYSuwK5UQCi/aA0gmQwFJ6h/SdHwksffdfrupJYMlFkuIQAdcENCmwStftihpvl0brJrVQt0Z5mEySFHGNhEb4k0BcgRXyEFi4WOpV1izA0AE8oi2uhRFz7zqCJvcSU+fSZ0b019LrhN7W9Ow0g8s/SwIrYwkOxT7mvA1H81RMgASWipun4dRJYGm4uRopjQSWRhqp0TJIYGm0sX4uiwSWn4HTcromoEmBVbJOF7GpwWlTo1mDag6ZVbxIPl03W4nFxxVY5y+y+GWt9MXA0iUYdO7EuSWwjPu3wvzzXLFEe4VaiPlEutDd29ofHmZxY4OUU9ZKPAp/4FqoebsezVMuARJYyu2NnjMjgaXn7qujdhJY6uiTXrMkgaXXzstbNwkseXlSNCKQFAFNCqztu49g886D+OfYWdjt0mmZooXyOESWILQyBKelnaEAAnEF1r4DLHbtlmRRvXdYNGpod0tgmVfOhPHgH2JF1jafwtrgg2RXeG83izs7pJxy1uKQvxmdwEo2WBUGIIGlwqbpIGUSWDposspLJIGl8gZqPH0SWBpvsJ/KI4HlJ9C0DBEAoEmBFdvZZy9e4bXM+gfnL98SG240GFCnejmHzKpZpTSEn+lJGQJxBdbGLQacOMmIiXRsa0D58ja3BFbgFz3AhtwW58YMmQ174VLJLurWVhYP9ksCK28jDrnrksBKNlgVBiCBpcKm6SBlElg6aLLKSySBpfIGajx9Elgab7CfyiOB5SfQtAwR0LrAitvhm3dCsOXPg9jy5yE8ePhU/FPmjMFo3rC6Q2YVypeTNoWfCcQVWEtXGHDrtiSwBvYyImduq2uBFRWBVINbiZnzDIOoOVsAc0Cyq7m21oDH/0o5FWzNIXtVEljJBqvCACSwVNg0HaRMAksHTVZ5iSSwVN5AjadPAkvjDfZTeSSw/ASaliECehJYsd3meR4nz13Flp0HsWPvMYS+ihA3QuniBbFmYfLvTaKd5T6BuAJrxmwDXoVJsuirMSYYAy0uBZbh4nEEfDNSXJTLWwTRoxa4n0QSIy+tYPH8gnQCq2gnOzKV5WWJTUHURYAElrr6pZdsSWDppdPqrZMElnp7p4fMSWDpocu+r5EElu8Z0wpEIJaApl8hdNVmq82OoycvYt22vdix55hj+Pk9y11No7/LSCBWYNntwMTJ0hcIGQb4bpYJLyNcCyzTtlUwbV0hZmWr3QKWDv1kyfLcdwa8uiFJtRI97EhfhASWLHBVFoQElsoappN0SWDppNEqLpMEloqbp4PUSWDpoMl+KJEElh8g0xJE4D8CuhVYIY+fY8ffRx2nsM5cuC5uCBJY/v13I1ZgPXwELPhOEliZMwFTxpnwPMy1wDIvGAPj2SNi4jFdRsBepb4shZyaZUTkIylUmX42pMktS2gKojICJLBU1jCdpEsCSyeNVnGZJLBU3DwdpE4CSwdN9kOJJLD8AJmWIAJ6FFivwiOxY89RbN5xECfOXhE3QWCAGQ1qV3Lcg1WlfHHaHH4kECuwLlxiseZX6VW9EsWAwb3dE1hBg1qCiY4Us46asAx8Nnks079fGmCJ81pjhRF2BGakE1h+3CKKWYoElmJaQYnEIUACi7aD0gmQwFJ6h/SdHwksffdfrupJYMlFkuIQAdcENH8Cy2q1Yd/hM44L3PccOgXh59inXMnCDmnVpG4VpE4V6JoWjZCdQKzAOnCQxc5dksCqXYNB53ZGlyewmMf3ETS+i5gXH5gKUbM3yZbnodEG8HbpFcLKE20w0laRja+aApHAUlO39JMrCSz99FqtlZLAUmvn9JE3CSx99NnXVZLA8jVhik8EJAKaFVjCRe2bhYva/z6K0DDpovYsmdKjZaMaDnGVP0922gspTCBWYG3aasDxE5IoatuSQZO6rgWW4cguBCyfKlZhL1UZMX0ny1KV3QIcGSu91gjwqD7VLktsCqI+AiSw1NczPWRMAksPXVZ3jSSw1N0/rWdPAkvrHfZPfSSw/MOZViECAgFNCqxGHYfhXsgTscMmkxF1a5R3SKvqlUrBYJBO+tA2SFkCsQJr2Y8G3LwlCaze3VlULGNweQLLvGYejHs3i0VYm30M63sfylJUTCiD418ZxFjG1EDlcdIJPlkWoSCqIUACSzWt0lWiJLB01W5VFksCS5Vt003SJLB002qfFkoCy6d4KTgRcCKgSYFVss7rV8qKF8nnkFbN6ldDcLrU1HoFEogVWDPmGPDqlSSwxg1nkTeXa4EV+HUfsHeuipXF9Psa9hKVZKk0IgQ4PUc6gRWYmUeFYXQCSxa4KgxCAkuFTdNByiSwdNBklZdIAkvlDdR4+iSwNN5gP5VHAstPoGkZIqDVE1hTvv3ZIa6KFsrjUZPDwiORNk0qj+bQ4OQREASW3Q5MnBz3VT3gm6ksUgW6EFh2G4L6NRWOEYpJRM7aCATJIytDrzM4v1g6gZUmL48yfUlgJa/j6p1NAku9vdNy5iSwtNxdbdRGAksbfdRqFSSwtNpZ/9ZFAsu/vGk1fRPQ5AksT1sqfJHwt6178cffR3Fi5/eeTqfxySAgCKzHj4FvF0kCK0N6HpM+NyDQnLTAMlw7h4CZg8TVuex5ET1+STKycZ767ByLyyul100zFONRvCsJLNkAqywQCSyVNUwn6ZLA0kmjVVwmCSwVN08HqZPA0kGT/VAiCSw/QKYliMB/BHQrsF6EhmHTjn8c4urmnRBxQ5zfs5w2hx8JCALr4mUWq3+RRFGhgjwG9XYtsEx/roVp/WIxW1u1RrB8NFS27B8dZXB9nXQCK0t5HkU6kMCSDbDKApHAUlnDdJIuCSydNFrFZZLAUnHzdJA6CSwdNNkPJZLA8gNkWoII6FFg8TyPQ8fP47et+7D7wHFYbZKMKFY4L9q3rIt2zevQ5vAjAUFg/XOQxY5dksCqXInDR+2NLk9gBXz/BQwn9ovZWjoNgK1WM9myv7+Xxe3fpbxy1OBQoAUnW3wKpC4CJLDU1S+9ZEsCSy+dVm+dJLDU2zs9ZE4CSw9d9n2NJLB8z5hWIAKxBHRxAuvx05fYsH0/1m3bi/sPn4rdF75O2Kj22+jQqi7KlypCuyIFCAgCa8tWFsdOSKKocQMOzRq6FliBozqCfSn1M2r0IvB5CslWxe3tLO7vkfLKU59DngYksGQDrLJAJLBU1jCdpEsCSyeNVnGZJLBU3DwdpE4CSwdN9kOJJLD8AJmWIAL/EdCswLLbOew9fNohrfYdPg2Oky76Fmof9OkHaPveO8gQnJY2QwoSEATW8pUG3LgpfYHwfx3sqFbRlPQJrPBQpBr2vpg5bzIjas4WgJWEU3LLur6OxaOjUjzh9JVwCosefRIggaXPviu9ahJYSu8Q5UcCi/aAkgmQwFJyd9STGwks9fSKMlU/Ac0JrHshT7Bu2z7Hiasnz16KHRJEVf1aFbF26x7H7+iuK2VsXkFgzZprwMtQSWD162NH0QJJCyzDyQMIWDxRLIIrUhbRg2fIWtTlVSyenZUElnD/lXAPFj36JEACS599V3rVJLCU3iHKjwQW7QElEyCBpeTuqCc3Eljq6RVlqn4CmhBYVqsNu/Yfx2/b9uLw8QtiV8xmE96tXh4tGlZHzSqlYbFY8XaTXiSwFLRv7z2JwoQvpS8QCqlNGGND5mBzkiewTOu/h+nPX8VKrA3bw9q6h6yVnVtswKvrklgTvkAofImQHn0SIIGlz74rvWoSWErvEOVHAov2gJIJkMBScnfUkxsJLPX0ijJVPwHVC6yp81dj885/8DI03NENhmHwdrmiaN6gOhrWfhtpUgeJXYqMiiaBpbA9e/pyNOYtkL70lz6Yx+ABdmRMm7TACpw5COy1c2I1MT0nwF6uhqzVnZprROQDKWTpvnakzUsCS1bIKgpGAktFzdJRqiSwdNRslZZKAkuljdNJ2iSwdNJoH5dJAsvHgCk8EYhDQPUCq2SdLo5yAgPM6NK+MTq2qofMGYMTbDIJLOXt/b8PxeCnNdJregUL8OjS2YXA4jgEDWwOxmqR5OT034A0Cffd26r//doAy0vpBFb5oXYEZSGB5S1Ptc8jgaX2DmozfxJY2uyrlqoigaWlbmqvFhJY2utpSlREAislqNOaeiWgeoHVrucEnL98S+xf4QK50KBWJTRvWB35cmdz6isJLOVt89+2xuCPPyWBVakihxbvcUmewGJvX0HglL5iMXzGrIia/JPsxR0eawQnOTJUHmeDMbXsy1BAlRAggaWSRuksTRJYOmu4CsslgaXCpukoZRJYOmq2D0slgeVDuBSaCLxBQPUCS6jn0rU7WLtlD7buOoTwiCixxDIlCqFVoxpoXLcKgtOmBgks5e3/736MwbHjksBqVJ9DjepJCyzj3s0wr5knFmOrWBuWHmNkLY7ngUMjne/mqjbFBkY6kCXrehRM+QRIYCm/R3rMkASWHruurppJYKmrX3rLlgSW3jrum3pJYPmGK0UlAgkR0ITAii0sKtqCP/4+gt+27sWp89fEek0mI+pUK+e4E2vYpIWO39NXCJXxL8TXcy24fkOyQp3acyhWNGmBZV4+DcYjf4oFWNr2gq1+W1kLsoYBx+JcLm8MBCpPtMm6BgVTFwESWOrql16yJYGll06rt04SWOrtnR4yJ4Glhy77vkYSWL5nTCsQgVgCmhJYcdt6/dZ9rN2613HBe+iriHgd3/XLTOTIlol2QgoTGDbeghdx7pn6rLcNWbMgyVcIA8d3Bfv4nph5zLC5sBcsIWslUY8ZnJwpXS4fmJFHhRF2WdegYOoiQAJLXf3SS7YksPTSafXWSQJLvb3TQ+YksPTQZd/XSALL94xpBSKgeYEVW6DFYsXOff86TmUdO3VJ7LzwtcLa1cqiQ8u6qPF2abAsvRuWEv9a9BhgdVr2i3GvTzkl+hXCqAikGtxKnMOzBkR9sxUwOL/ul9xawm4xOLtQElhpcvEo058EVnK5qnk+CSw1d0+7uZPA0m5vtVIZCSytdFKbdZDA0mZf/V0VCSx/E6f19ExAsyewEmrq7XuPHCJr4x/78fxlmDgkZ/bMaNe8Dto0fQeZMqTT837we+1xBVa6dDyGDnwtiRITWIZzRxEw/3MxTy5/UUSP+Fb2vF9cZHFxuXQ3V/oiPEr0IIElO2gVBSSBpaJm6ShVElg6arZKSyWBpdLG6SRtElg6abSPyySB5WPAFJ4IxCGgK4EVW7fVZsfuAyccMuvQ8fPghRu7AZiMBpzatYQ2iB8JxBVYBfLz6PpR0gLLtHUFTNtWiRna6rSEpf1nsmf85DiDq79KJ7Ayl+XxVicSWLKDVlFAElgqapaOUiWBpaNmq7RUElgqbZxO0iaBpZNG+7hMElg+BkzhiYDeBVbcHXD/4VOs27YXG7bvx+OnL+lydz//6xFXYFWqwKFFM86RQWInsAK+GQnDxeNiljHdRsL+dj3Zs36wn8WtrdIJrOzVOBRs9To3evRJgASWPvuu9KpJYCm9Q5QfCSzaA0omQAJLyd1RT24ksNTTK8pU/QR0eQIrobbZ7Rz2Hj6NujXKq7+rKqogrsBqWJ9DzepJC6ygQS3BREeKFUZ98SP4LDlkr/jOThb3/pIEVu56HPI2JIElO2gVBSSBpaJm6ShVElg6arZKSyWBpdLG6SRtElg6abSPyySB5WPAFJ4IxCFAAou2Q4oSiCuwOrbjULxY4gKLfXgHgRO7i/nyqdMhasY6n+R/YyOLh4ckgZW/GYectUhg+QS2SoKSwFJJo3SWJgksnTVcheWSwFJh03SUMgksHTXbh6WSwPIhXApNBN4gQAKLtkSKEogrsPr2siFb1tfpJPQKofHQDvy/vfuArqJa2zj+JiFI70VEQRFQKVcBUbBLEUFAAVEUURBp0rt0BKQ3KdIEFESaygVRqooFvIKK2DsqIii915C73o2TQk5yJmROzkzmP2t967uSOTN7/97NMOfJnj2Z542Na29MuZvlVPthIWn/j69Gyd5t8W+mLPVQjBSsdH6tNDZ/ChBg+bPubu81AZbbK0T7CLAYA24WIMByc3W80zYCLO/UipZ6X4AAy/s19HQPEgZYg/qdlah/100PFGBlXjBRMn30Vlx/T9dvLmdrNw1J/799MUoO/hQfYF3X/JzkvY4ZWCHB9shBCbA8UiifNZMAy2cF92B3CbA8WDQfNZkAy0fFDmFXCbBCiMuhEbhAgACLIRFWASvAypUzVnp0jX/LX6AAK8tzbSXyz1/i2nuq8yiJubZiSNr/5aQoObozPsAq3y5Gcl7JDKyQYHvkoARYHimUz5pJgOWzgnuwuwRYHiyaj5pMgOWjYoewqwRYIcTl0AgQYDEG3CRgBVhXFY+VFk+kEGCdPiVZu9STiNj4EOn48ytFMl8Sku58PipKTu6PD7AqdI+RrIUIsEKC7ZGDEmB5pFA+ayYBls8K7sHuEmB5sGg+ajIBlo+KHcKuEmCFEJdDI0CAxRhwk4AVYFWqGCv31015BlbEvt0S+eevEvn7jyJHD8mZRzuHrCubB2WSsyfjD1+5/1mJzhmy03FgDwgQYHmgSD5sYT42igAAIABJREFUIgGWD4vusS4TYHmsYD5rLgGWzwoeou4SYIUIlsMiEECARwgZFmEVsAKsmtXPye23xq8xFegRwvRqqE7y+vgZXYwrfgZW1ZFnJSL+P9OrKZzHRQIEWC4qBk2JEyDAYjC4XYAAy+0V8nf7CLD8XX+nek+A5ZQkx0EguAABVnAj9gihgBVgNWl8TsokWCQ9nAHWmeMiW57NFNfryMwiVYaeDaECh/aCAAGWF6rkvzYSYPmv5l7rMQGW1yrmr/YSYPmr3qHqLQFWqGQ5LgJJBQiwGBVhFbACrKfbnJVLC8c3JZwB1om9EbJ1zL+vQxSRzLlj5ca+8Y83hhWMk4dNgAArbPScOAUBAiyGh9sFCLDcXiF/t48Ay9/1d6r3BFhOSXIcBIILEGAFN2KPEAr0e+60HDwo0qt7jERHuyPAOrIjQr6aEh9gZSsickMXZmCFcBh44tAEWJ4ok+8aSYDlu5J7rsMEWJ4rma8aTIDlq3KHrLMEWCGj5cAIJBEgwGJQhFXgr30nAp4/nDOwDvwQId/NiQ+wcpeIlbJtmIEV1oHigpMTYLmgCDQhiQABFoPC7QIEWG6vkL/bR4Dl7/o71XsCLKckOQ4CwQUIsIIbsUcIBdwYYO35IkJ+WhgfYOUvd06uaRa/wHwIOTi0iwUIsFxcHB83jQDLx8X3SNcJsDxSKJ82kwDLp4V3uNsEWA6DcjgEUhAgwGJ4hFXAjQHWrk2Rsn15ZJxL4Zti5epGzMAK60BxwckJsFxQBJqQRIAAi0HhdgECLLdXyN/tI8Dyd/2d6j0BllOSHAeB4AIEWMGN2COEAm4MsHasj5Qd6+IDrKJ3npPidZiBFcJh4IlDE2B5oky+ayQBlu9K7rkOE2B5rmS+ajABlq/KHbLOEmCFjJYDI5BEgACLQRFWATcGWNvfjJRdH8UHWBpeaYjF5m8BAix/19+tvSfAcmtlaJclQIDFWHCzAAGWm6vjnbYRYHmnVrTU+wIEWN6voad74MYA66fFUbLn84g4V318UB8jZPO3AAGWv+vv1t4TYLm1MrSLAIsx4AUBAiwvVMn9bSTAcn+NaGHGESDAyji19GRP3BhgfTs3Sg5+Hx9g6QLuupA7m78FCLD8XX+39p4Ay62VoV0EWIwBLwgQYHmhSu5vIwGW+2tECzOOAAFWxqmlJ3vixgDry6lRcvSP+ACrbJsYyV2CGVieHGAONpoAy0FMDuWYAAGWY5QcKEQCPEIYIlgO64gAAZYjjL4/CAGW74cAAOkoQICVjticKqmAGwOsz8dEycm98QHW9V3OSvYiVM/vAgRYfh8B7uw/AZY760Kr4gUIsBgNbhYgwHJzdbzTNgIs79SKlnpfgADL+zX0dA/cGGBtHpJJzh6LZ63UN0Yuyc0MLE8PNAcaT4DlACKHcFyAAMtxUg7osAABlsOgHM5RAQIsRzl9ezACLN+Wno6HQYAAKwzonDJewI0B1qbeUSISPwOrytCzEpmZqvldgADL7yPAnf0nwHJnXWhVvAABFqPBzQIEWG6ujnfaRoDlnVrRUu8LEGB5v4ae7oHbAqyYkyKfDMoUZxoRFStVh8d42pjGOyNAgOWMI0dxVoAAy1lPjua8AAGW86Yc0TkBAiznLP18JAIsP1efvqe3AAFWeotzvkQCbguwTu2PkM9G6Qys81vmnLFyY38CLIatCAEWo8CNAgRYbqwKbUooQIDFeHCzAAGWm6vjnbYRYHmnVrTU+wIEWN6voad74LYA69ifItsmx8/AylZY5IZuZz1tTOOdESDAcsaRozgrQIDlrCdHc16AAMt5U47onAABlnOWfj4SAZafq0/f01uAACu9xTlfIgG3BViHfoqQb16Mn4GV66pYKdeWGVgMW2ZgMQbcKUCA5c660Kp4AQIsRoObBQiw3Fwd77SNAMs7taKl3hcgwPJ+DT3dA7cFWPu2RcgPr8YHWPnKnJNrnzjnaWMa74wAM7CcceQozgoQYDnrydGcFyDAct6UIzonQIDlnKWfj0SA5efq0/f0FiDASm9xzpdIwG0B1u7/RcqvyyLj2ljoxlgp2ZgZWAxbZmAxBtwpQIDlzrrQqngBAixGg5sFCLDcXB3vtI0Ayzu1oqXeFyDA8n4NPd0DtwVYf74bKX+siQ+wLrv9nFxZlxlYnh5kDjWeGVgOQXIYRwUIsBzl5GAhECDACgEqh3RMgADLMUpfH4gAy9flp/PpLECAlc7gnC6xgNsCrN2bIuXPDRFy+lCEaWjxe2Ol6N3MwGLcMgOLMeBOAQIsd9aFVsULEGAxGtwsQIDl5up4p20EWN6pFS31vgABlvdr6OkeuC3ASoh5al+EREaLROeK9bQxjXdGgBlYzjhyFGcFCLCc9eRozgsQYDlvyhGdEyDAcs7Sz0ciwPJz9el7egsQYKW3OOdLJODmAItSIZBQgACL8eBGAQIsN1aFNiUUIMBiPLhZgADLzdXxTtsIsLxTK1rqfQECLO/X0NM9IMDydPl81XgCLF+V2zOdJcDyTKl821ACLN+W3hMdJ8DyRJlc30gCLNeXiAZmIAECrAxUTC92hQDLi1XzZ5sJsPxZd7f3mgDL7RWifQRYjAE3CxBgubk63mkbAZZ3akVLvS9AgOX9Gnq6BwRYni6frxpPgOWrcnumswRYnimVbxtKgOXb0nui4wRYniiT6xtJgOX6EtHADCRAgJWBiunFrhBgebFq/mwzAZY/6+72XhNgub1CtI8AizHgZgECLDdXxzttI8DyTq1oqfcFCLC8X0NP94AAy9Pl81XjCbB8VW7PdJYAyzOl8m1DCbB8W3pPdJwAyxNlcn0jCbBcXyIamIEECLAyUDG92BUCLC9WzZ9tJsDyZ93d3msCLLdXiPYRYDEG3CxAgOXm6ninbQRY3qkVLfW+AAGW92vo6R4QYHm6fL5qPAGWr8rtmc4SYHmmVL5tKAGWb0vviY4TYHmiTK5vJAGW60tEAzOQAAFWBiqmF7tCgOXFqvmzzQRY/qy723tNgOX2CtE+AizGgJsFCLDcXB3vtI0Ayzu1oqXeFyDA8n4NPd0DAixPl89XjSfA8lW5PdNZAizPlMq3DSXA8m3pPdFxAixPlMn1jSTAcn2JaGAGEiDAykDF9GJXCLC8WDV/tpkAy591d3uvCbDcXiHaR4DFGHCzAAGWm6vjnbYRYHmnVrTU+wIEWN6voat6sGzVh/Layvfl5992SkxMjBS//FJ54N7b5NEGNSQqKjJJWwmwXFU+GpOCAAEWw8ONAgRYbqwKbUooQIDFeHCzAAGWm6vjnbYRYHmnVrTU+wIEWN6voWt60Gf4LFmxdqNEZ4qSCuVLSXSmTLLt21/k6LETcttN5WXqiC6SKSoqUXsJsFxTPhoSRIAAiyHiRgECLDdWhTYRYDEGvCJAgOWVSrm7nQRY7q4PrctYAgRYGaueYeuNBlcaYJUoVkRmju0pRQrlM205fuKkdBk4RTZu+Vo6PtlQ2j5enwArbFXixGkRIMBKix6fDZUAAVaoZDmuUwLMwHJKkuOEQoAAKxSq/jsmAZb/ak6PwydAgBU++wx15gda9Jeftv8pC6b2lxvKlkzUtwOHjkj1xt0kOjqTvP/G85LlksxxP2cGVoYaBhm6MwRYGbq8nu0cAZZnS+ebhhNg+abUnuwoAZYny+a6RhNgua4kNCgDCxBgZeDiplfX/tq9V2o26SHFihaSVQtGBzxtt8FTZc2GLTL5uc5S7dYKBFjpVRzO45gAAZZjlBzIQQECLAcxOVRIBAiwQsLKQR0SIMByCNLnhyHA8vkAoPvpKkCAla7cGfNk73z4uXQaMEnq1qwqo/q1CdjJl5eukdFTF0qrpnWlS6sHCbAy5lDI0L0iwMrQ5fVs5wiwPFs63zScAMs3pfZkRwmwPFk21zWaAMt1JaFBGViAACsDFze9uvbS4tUyZtoiadOsnnRq2Sjgadd/+Jl0HjBZat1VWcYPbh+3z6kz5wLuHx0VIZGREXIm5pycC7xLenWP8yBgBC6JPv8WzdNnzkksJgi4REBf7popKlJizsXK2RhGpkvKQjMSCFjXzuT+vQcLgXAKZIqKkKjICDkbc05iuN8MZyk8fW7rOufpTtB4BDwiQIDlkUK5uZlT5iyTafOWS4+2D0uLJrUDNvWTrd/Jk11HSZVKZWT2uF5u7g5tQwABBBBAAAEEEEAAAQQQQAABlwkQYLmsIF5szrjpS2TOorelT8em8lijmgG7sPXrn+SxDs9JhXKl5JUp/bzYTdqMAAIIIIAAAggggAACCCCAAAJhEiDAChN8RjptqmZgVSwjs8czAysj1Z++IIAAAggggAACCCCAAAIIIBBqAQKsUAv74Pjzlq6RUVMX2loDq8btleT5oR19oEIXEUAAAQQQQAABBBBAAAEEEEDAKQECLKckfXyc9z/eJk/3mWDrLYRPNqkj3ds+5GMtuo4AAggggAACCCCAAAIIIIAAAqkVIMBKrRj7JxHYu/+Q3NmwsxQrWkhWLRgdUKjb4KmyZsMWGTuwndSudjOKCCCAAAIIIIAAAggggAACCCCAgG0BAizbVOyYkoAu0K4LtS+Y2l9uKFsy0a4HDh2R6o27ybnYWPlg2STJlSMbmAgggAACCCCAAAIIIIAAAggggIBtAQIs21TsmJLAh598KW17j5cSxYrIzLE9pUihfGb34ydOStdBU+WjzV9J04Y1pG+nx4BEAAEEEEAAAQQQQAABBBBAAAEEUiVAgJUqLnZOSWDs9MUyd9EqiY7OJBXKlZTM0dGy7dtf5MjR41Km9JXy8vN9JFvWS0BEAAEEEEAAAQQQQAABBBBAAAEEUiVAgJUqLnYOJqDrXL3y+jr54Zc/JCbmnBQtUlDqVLtZWjSpLZdkjg72cX6OAAIIIIAAAggggAACCCCAAAIIJBEgwGJQIIAAAgggkE4C85aukVFTF0rrx+pJ56capdNZOQ0CCCCAAAIIIIAAAt4XIMDyfg2D9uDjT7+Rp3qMkVsrl5OZY3oE3T9cO3z13a+yeMV7suWL7+XvvQckOlOUXFWsiNSpVsWsn6WPJgbaTpw8LbNffUvWvr9F/ty1x8z00kcWmz14j9x1yw1Bu/PJ1u+k55Bpsu/AYVm7aKwUvbRAip/5dNsP8tLi1fLFNz/L0eMnpHCBvFL9torS5vH6kjtn9qDnY4d4gS4Dp8i6Dz6VQd2by0P17nItza5/9svCZevNWm47/tojZ2NizDpvd1S5Xp569D4pkC93sm1ftupDeW3l+/LzbzslJiZGil9+qTxw723yaIMaEhUVmWKf/9q9V7oMmiLf/PCbDOvdUhrUvj3o/tPnr5BNW74WfTto7lw55KYK10qbx+pLyauKutbXrQ0LxbXzYgKsc+dizd+Tles/li+//UUOHjoq2bNlketKF5cm91eTmnfcmCxhWq5XJ0+dliHjX5blazbK/bVuleF9WqVYqrRei906DtzWLv23Sv+t/PjTr+W3Hbvl8JHjZjwUKZxfqlQsIw/Vv1uKX1447M1Oy7jVa19armXzX1srY6ctloIF8sj6xeOCWqTlOh304D7aIRTXzFDweeV+0+p7asdzKMw4JgIIIOAWAQIst1QihO1w+w2FrpE1dMI8eeud/xmFUlddLldcVlAOHj4m3/74m+iXqOvLXC0vjuuVZA0t/exjHZ+Tn7fvlNy5sst/rishx46fkm3f/mweYez4ZENp+3j9gLqxsbHy4qtvyaTZr4veaOsWLMDSIGLQ2Llm37LXXCn58+aWn37dIRpwaKDx6gsDpVCBPCGsZsY5tAYs+nZKDYPUcsmMwa7rnI6L2Qvfkqlzl8mZs+dDq1IlrjBB1Hc//S77Dx6RfHlyysuT+poXGFy49Rk+S1as3WjC2ArlS0l0pkxmXbijx07IbTeVl6kjukimqKiA/dYXI/QeNkMOHTlmfh4swNL2PNF5hBw7flKuuKyQlCheRHb/s19++GWHZM4cLS8M7yJVbyzrOmM3NygU187UBli//rHLjAO9Fuo4KnvNVZIvby5TW/0z3Zo2rCl9OzVNQpmW69Xvf/4tXQZOlh9//dMcN1iAlZZrsZvHgNvapjUdMXmB+XdRN/2Fi16D9O/9jr/+MdcpDcZbN60n7Vs8IBEREWnuwj1NekjLR+rIw/dXs32stIzbtFzL1GHA6NmiyxnopqFesAArLddp2yA+2TEU10wn6bx0v6n9vpjx7KQXx0IAAQTcKECA5caqONwmt99QHD56XB5qPVhKlbhcurVubGZdWdvuPfulXe/x5ktUm2b1pFPLxI/c9B81W/Q3p/fceaOM6NtaslyS2Xz0j51/y5PdRsuuv/fJvEl9pdJ/SidS1VCgz/CZ8v7H28xvrM/FnpPNW79PMcDSLwd1m/WRTJmiZPqoblL5hmvNMTUImzJ3mUyft8Ica/b4Xg5XMGMebtaClTJx1mtyXaniJgx6bdaz5n+7bdNZYtt37JI+HZpKlUpl4pqns00Gj5srK9d9LBXLl5L5k/slaroGV/rFKNCbOfWYG7d8HTBg1dBs6kvnx5N++bqtcnlZunJDigGWhrX1nugjGjr0bNdEmj98b1xbPvjfNunYb5Jkz55F1rw6RnLmyOY2Yte2JxTXztQGWF99v11adBlhZuy1fOQ+E9Rb29avf5LWPcfK8ROnZPa4XonGZ1quVzrbq9/IF+Xs2RgzlmbMfzNogHWx12LXFt+FDVv433dk2MT5JpTSujzRuJYUzB//CxN9669ejybMXCr67+pjjWpKn45Jg83UdO2n7X/KAy36y8Cuj6cqwLrYcZuWa5n+IqvzwMlmVtqTTerI4hXvSq6c2VMMsC72Op0aQz/tG4prppN+Xrnf1D5fzHh20opjIYAAAm4VIMBya2UcbJfbbyi0q4cOH0v0xSxh9zVYatF1pAkC3pw3Iu5H+hjF3Q92kRzZssr6JeMkW9YsidT0i3u7ZybILTeWk1ljEz862aTts6I32PpoYq/2j0i73hNk06dfpxhgDZ/0iix4Y710afWgtGpaN9G5NMR6pN0Qc8wFU/vLDWVLOljBjHco9ardtLccPnJMRvVvI217jzdfjvRLkts2DaqiIiPMLKYLN/3Zbfd3MLMh3n/j+USPEuqXPv3yF2g8HDh0xMw+08di9XNW8KrHt97mqaHrxCEd5fW33jdBX0ozsDRw0FBMZ1i9OLZnknZaxww0dt3m7ab2hOLamdoAK9j1UWcHvvDy8iR/fy72emVdNwsXzCuTh3WWM2fPStP2w1IMsNJyLXZTvd3cFg2n72/RT86cOWuumXVrVE22ufrF95Gnh4oGWjNGdzezPS920zBMZyqnNsC62HF7sdcyndFbu2kvMwPt2R4tzHi9oUZLKZA/5UcIL/Y6fbGeGf1zobhmOm3mhfvNix3PTltxPAQQQMCNAgRYbqyKw21K6YZCg4RPPv9Olq3+ULZ+9ZP8s/eAREZGSrGihaVO9ZulxcO1k6w91bHf8/LRlq/l01UzZPPW72T+62vPPxZ19ITkyZ3DzHbSBYqvLVnMkZ7obKlb6rU3AdemFVPjjvnf1R+ZWQKN7rtDhvR8Msm5tG93NuwsBw8flQ+XTU4UkP3vs29l1z/74tYU0kevdK2YlB4hrNmkh+i6HO8unSD65e7Czfrt+OONa0nv9o840veMehBrTOqXsOf6PGXqpF/M3n9jkmTNcn4WXcLt+5//kEZPDTTh4UP17pZZr66Udz783NRQw58ypYqb2QbVbquY5LNWYLBo2kDz+NW819bIkhXvyV9/75OSVxY1M7/SsjV4sr+ZIfjfucPM46+66TjR8VKsaCFZtWB0wMN3GzzVPOYy+bnOUu3WCnH77Nl30ASl7Vs0MI+MWQFFSgGW/j3Qvw+j+rWRujWTfrH95bedUr95P/N38vUXh6Slu776bHLXTq2b1k/Hr4YJgbbxM5bI7IVvS99Oj5mg3NouJsBKCX39h59J5wGTzTpYE4d0iNv1Yq9XOgNmwqyl0vyhe00ga/0CIaVHCNNyLfbVgEpDZ58d/7K5btW6q7KMH9w+6JFeWrJaxrywSCqWLy3zJ/dNsr+G6C8vWSMbNn0hO3fvMT8vXDCflC19pXRs2dD8u6nXFQ3DAm3BHrcP1sDkxm1armW6TpD+8qj8dSXMzOhyd7dI8RHCtFyng/XPrz/nftOZ+00dP6kdz34dc/QbAQT8J0CA5YOap3RDoUFOy+6j4xY+L1I4nxw9dlI+3fa9eSxFH82b8Gz8lyLl0gDr3Y1bTXD0xtsfyt23VpAK5UpKbKyYBYb1xlRnq+hNc7lrrkqzsD4OqLN19PGyhGGDrgPyyuvrTHilbQm0dej7vLy3aauZgaUzsZLbHuvwnOjjOMndlOu086p1nzbBlQZYgTZ9DO7BVoPMDbTOumFLXsAKb6aP6i6331xerNkiyYU0VoClj2ju3L3XPMapX9gL5MtlFlXXL9C6tkW7x++XDk82SHRiKzCYOryLWY9KwwddyypP7pxy2aX5ZdLQTmkqVbXGXeXvPQdk89vTzULKumm41mnAJBMmaagUaHt56RoZPXWhmc2nwVxy2/Mvvi4zX3kzxRlYDVsOMGtdaVimoVmg7eb72pn1ND5fMzPgbLI0IWTQD3shwLLWudLHyXQ2qW5OXq8sg5QCLCevxRl0KKW5Wxry66yMuROeMS9mCLbpGLj9/o5mjcELZ4fq9bRNr3HmeDpz+dqSuq7fOfl959/mOvreaxPl7z375b2NW82jzvoLKn1hRblrrow7bbPGtSRXGh5HDjRu9eBOXcu039dXb5ligOXkdTpYPfzyc+43036/GWis2BnPfhlj9BMBBBAgwPLBGAj2GzG9Sa1SqWyiBdJ1UfJGLQeYBaRXzhuRaF0qK8DSdTimjexmAoiEmz5uoI8d6A3vtJFd0yysb/wbM21Rki/6T/eZYNawunDtl4QnHD5pgSx4Y53079JMHnmgerJtCRZg6VvgHmozOOBaR9ZBrZlieXPnlI+WT05zvzPqAXTh82oPdpG8eXLK+sXjzYLDuhh149aDzWL9r74wIEnXrQBLf6Bvlnx+aMdEi5/r2ycffXqoeZOkBqc668DarABLF4rXx3A0ULLzdko7/ta4uLDd1pgNtG6bdVxrBkKwGRV2AqzKtduYwPmL9bPNrK1AmzVTbMVLz8nVV/JGQjv19UKAZV0H9Q2z+qZZ3Zy8XtkJsJy8Ftupi9/2sWYK6QsfNq+abn7hZGfTWat67Zw8rFPc7FR93Pn+5v3MG3v1Tb0anluPMOuspe07did6IYXO4tLZXBfzCGFKbQw0bnV/p65ldr7wO3mdtlMPP+zD/Wba7zcDjRM749kP44s+IoAAAipAgOWDcXCxaxLo2/b0t6SjB7SV+6pXiZOyAqwLH1mxdtB1gW68t7X5ze6WVdPTJKyPOdR7vK9Zy0NnlyR8dO/xTsPlsy9/lMUzBiU702vKnGUybd5ys/i7hgnJbcECrE+2fidPdh2VYihnPbKggcyX78xJU78z8of1sSp9vOrCmUeBHsWzHBIGWKsWjDKPuF64LV7+rgyZMC/JrEErwNL9rRlfTvhqvVt2Gy06NjRQq3F7pbjDWuOuR9uHpUWT2gFPZ40pXRheQ9jktmABli76Xr5aC/Po5aerZyZ7HOvviy42r4vOswUXcHuAZT3eV7rE5bJszrC4Djl5vbITYDl5LQ5eFf/toTObdU2rSwvmk3eWjrcNYP1bPaDr49Lk3zcIWjOfdBaXzuYKtoUiwEpu3Dp5LbPzhd/J63QwR7/8nPvNtN9vBhordsazX8YY/UQAAQQIsHwwBlJzQ6HrEOlvaGNFZNYrK2XOordlULcn5KH6d8dJWTfFKf1G9vYHOorOtNm6dtZFP66ki7G27T1O9DFHfZOSrnGUcLMWYn9j9lC55uorAlZSH73SAEDX5Or8VOI3GCb8QLAA68NPvjQLjVe/vWKKj5zpIwt6o7HtndmJZgj5YJjZ6qKGPnUee8a8JfKt+SPlyisujfuc9Uhd04Y1pW+nxG/OsgKslB7h1NlXdzTolGStNCvA0sdZNex0arO+/GhwpQFWwm3c9CXm706gcWvtp4+s6rirUK6UvDIl8RsMEx4rWIClf18r1WptHuf5eOULyXbvqR5jRK8Fusi7LvbOFlzAzQGWvqFVXxxx4OAReWVq/0QhvpPXKzsBlpPX4uBV8d8eVg30Db06I9ru1nvYDFm5/mPp2rqxPPXofeZj+mizPjqX3Hp5Fx7b6QArpXHr5LXMzhd+J6/TdmuS0ffjfjPt95uBxoid8ZzRxxb9QwABBCwBAiwfjIWUbij0saOlKzfI+g8+kx9/3SFHj51IInJhUGUFWC+M6Cp3Vr0+oKC+HfCfvQfNDKwL3w5oh1x/E9tz6DRZ/d5ms9C6ro104Zaa3/p3fLKhtH28frKnDhZgOTmjwU7/M+o+1pprgUIbDTzvbtTFPMq64Y3nEz0mYwVY5a+9ShZNTz6E0nWedAxrkGOtz2IFWIGCsYt1fnXZO/Lc8/NFZ768MqV/3NpX1vFS9Zv9imVk9viLn4FlzfyzPwMr8SOWF2vgh8+5NcDSmalPdBohv/z+V8C10Zy8XtkJsJy8FvthXKW2jxc9A6v/JHn3o88l4Qyseo/3kV//2JXopRMptcfJACvYuHXyWmbnC7+T1+nU1jSj7s/95nJJ6/0mAVZG/dtBvxBAwCkBAiynJF18nORuKDQw0C8e2//YZRYev+euymYBaA2cIiRCFi1/V9Zs2Jxk7QsrwEppJkdaAiwNr/qOnCVvrt1k1u2Y8Gz7gLOZrHbYWQNLZ/RogJHcFizAsgIUffRKH8EKtMW9LTFndtn0ZvzbEl08NNK9ad0Gv2DGVLBtZN/WUu+eW+J2s/yDLZCvM7B0JpY+ZqOP2+jm9FvfNPAdPPYl8xjjvEl9pGD+PEm6Y53XZT6KAAAgAElEQVTTzhpYgWZwJTxgsBlYuq8V3NlZA0sfNdPgjS24gBsDrIOHjkqLriPNmy+Te0TVyeuVnQDLyWtx8Kr4b49df++TGg93N/8O6i+F9CUpdjZ9qYi+XCThGljWSyfWLRorl11aIOhhnAqw7IxbJ69ldgIsJ6/TQSF9sgP3m+vMDPK03G8GGip2xrNPhhjdRAABBFgDyw9jILkbCl0vSNcNqn/PrTKib6skFKOmLjRf/pObgRWKAEvfhNR3xCzz2IN+sR876OlkF6XWhd11EVY7byGcPkoXm/9PsuUOFmDpGlyVa7e19RbCYLOE/DDmAvXRWrw9MjJSSifzyOeJk6fMa9sr/ae0zJsU/+p36wt5qasuNzMHAm362/uKtVrL6dNnAs7ACvYYqZ26aKg7dMI88+ijrh9TqEDS8EqPoy8X0EWK7byF8MkmdaR724eSPb2dAEtfMKALdwd7C6HOTtuyakaiFzbY6bdf90lLgGW9ma9vp8ekacMacYRpCVT171DLbqNMeNWzXRNp/vC9AUvj5PXKToDl5LXYr2MtWL+ttxC+/HwfufH6a4Ltbmai3nZ/B9FH8T9YNkny581lPlPnsd7mZRbL5z4nJa8K/jIHJwIsu+NW2+fUtczOF34nr9NBC+KTHbjf3Cppvd8kwPLJXxa6iQACFy3ADKyLpvPOB5O7oaj7eB8z+2rRtIFS/roSSTpkzZZJrwBLbzh7DZ1hZujUrVFVnuvzVIrrSOl+2sZG991hQqwLNw009KZfZ+RseH1iwJky1meCBVi6X/0n+ppHdt5dOiHRYvLWMRb+9x0ZNnG+WS9M1w1jSyyga0LpmiO6mLA+0hJoO3X6jHmMUGezvTlvRNzbsKwASx+T++St6ebNhRduv/y2U+o37yd5cueQjcunOBIYJDzH/NfWysgpr5rZSy+O6xX3hTBQP/T19Dr2dEajhkqBtm6Dp8qaDVtk7MB2UrvazckOFzsBloZqGq4lt66NZZPaNXT8PoaTu3bqGkK6ltC9d98k4wY9HZCpy8Apsu6DT8WpAEvHlL5IQq9BCR8JS65GTl2v7ARYTl6L/T7mkuu/9XdcX6iiL1YJtunbd/UtvBp2aehlbe2emSAf/G+bjBnQTupUT/66Y+2f1gArtePWqWuZnQDLyet0sHr45efcbzpzv3nheLEznv0yxugnAgggQIDlgzGQ3A1F7aa9zWLauqaQzhpKuOlvb/WRhSNHj6fLDCz9LXH3Z6eaxWUfrHunDOrWXCIjI1KsjrZRHxnTV4CvXzIuyVpbepOuN+t2ZkTZCbCsIEFfO65v0LtwsxYyDvbbNx8MuYBdtH7zn9Ki+/rB0VMXii7o3vyhe6Xn003MsRK+hXDmmB5ya+VySc5hfdG6MFRIy4wX6yRzF62SsdMXm4Wy9fy5c2UPWkZrTC2Y2t88optw07VgqjfuJudiY83sCGu9rkAHtRNgWX/Hb7mxnMwa2yPJYbTt2odgs72CdspnOyR37fz8qx+lWcfh8p8yV8vCFwYkUdHrmQaxWmcnAqy/9xwwjw3u+OsfGdqrpTxw721BK+HU9cpOgOXktThox3y6g86aur9FP9EXrUx4toN522pym/67/lCbZ82/3xfOlLaCLb2G6rUs2KZv8dW1opL7dy+lz1/MuHXqWmb3C79T1+lgjn75OfebKa/TqePAzv3mhePF7nj2yzijnwgg4G8BAiwf1D+5GwprBsiFM4YOHz0uPYdMk41bvhadxRTqGVj6yFeXQVPMY1fNHrxHnunwqO2qWG8R0pv5kf3axC38rTfwLbuPkb9275WJQzpIzTuSv9m3e0OhM7nufbSXnDt3zkwRr3zDtaadajRl7jKZPm+FmZ2jAU1ERMrhm+0OZpAdrUWlry9ztbwa4At/wm7qFzUNu3Qm1YbXJkp0dKZEAZauPaUhzeVFCsZ97N2NW6XrwCnmDZB6fD2PtaU1wLLeZFmxfGlT9+zZstiqivUmuBLFisjMsT2lSKHza3Lp411dB02VjzZ/ZR4t04Ajpc1OgKWfb9JuiHz13a9JHi3TILdT/0kSERkpqxeMDjh70FaHfLhTctfOEydPy+0PdJCTp87I4umDpOw1VybSmTjrNZm1YKX5s7QGWLr+UYuuo0T//+gBbaTWXTfZqoRT1ys7AZY2yKlrsa3O+XQn6+UROgO1ddN65t/LhGG6/lu6esNm0TBfH9tL+EsAi0zDRp19vWffQWn3+P3S9on6iWY6/7Zjt5ldmjNHNvORt975n/QaOt2E9/q2y+hMUbb0L3bcOnUts/uF36nrtC0UH+zE/aYz95sXDhW749kHQ4wuIoAAAqyB5YcxkNwNha6Z07T9ULNGxrUli5n/O3zkmGjYoAtTP9G4ljw7/uWQB1gJv+zp2kIpbVUrlZX+XZrF7aI37BpU6YwIvZH/z3UlRL9cfvH1zybMeKjeXTKoe/OgZbb7GzGdIabBnx5bv7QWyJfbrEejN+u5c2aX+ZP7ytVXBl9XJGiDMtgOPYZMk1XvfiLD+7SS+2vdGrR3+qiUjkPr8TprBpbOMNp34JD8+vtfUqF8KSmYL4/8uWuPbPv2F3PMzk81El3rKuGWlgBr06dfS6seY83hihTOn+jNiBd2Ike2rLJ4RuI3JFoznzSEq1CupGSOjjZt1ZkRZUpfaR7t0bcuprTZDbB0dk7T9sPMI7NXXFZIShQvIjoDQu00UNWF8XVNLjb7Aim9UUsDKr126WOtDevcIVdeUUSOHT9hgvhvf/zNvKF17ftpf4RQa/rFNz+b8xT+98UEyfVAx37Cv19OXK/sBlhOXYvtV8efey55c4OMmvKqnDx12sxSvqrYZZInV3bRNwrrkgD65xpwtW1WX55u/kBAJB1P7XqPF/1llYZV+m//6TNnZefuveaXPq+/OMT8mW56vLrNnpFd/+w3j3TrrMNDh49Jp6capfgyiLSMWyeuZan5wu/EddqfozFpr7nfdO5+M6FuasYzYxEBBBDI6ALMwMroFRaRlL6E6ZdpfTxAb2jPnD1r3txW/baK0u6J+806RPc06RHyAEvXjdL1o+xs1W6tIJOf65xoVw3gXl6yWt5ct0l27PzHzNjRmVAP169m+wu73QBLT6xfTmfMf1M++/JHOXrsuBTIn8csEK9fGAoXzGunG77aRx+juvvBrpL1kszy3usTzSOfwTZdG0qDwpsrXCdzJvSOm4GlzuMHt5fZC98y60dpeHVJ5mgzO+DxxrVMaHDhlpYAy2pHsPbqz3NkzyqfvDUtya56jFdeXyc//PKH6EsKihYpKHWq3SwtmtROMRCzDmQ3wNL9Nbya9vJy2fDxF7J330HJkT2bCfqeevS+RLPS7PSHfVK+dqqPzk5Z9N93TW1PnToj+fPlkpsrlJGnmt4nf+/Zb8LPtM7A0nXddA0zO1vv9o+YvwcJt7Rer+wGWHpOJ67Fdvrp93107SZ9AYvOkv59598mEM+eNYt5q2CVSmXMv326/l5Km4bbui6hzkDScCpTVKT5xZX+kqDjkw0TzezSQGnstMXmPkHvC4oUyi/TRnY1L7NIbkvruE3rtSy1X/jTep32+5i0+s/9ZvCRkJr7TetoqR3PwVvBHggggIB3BQiwvFs72y1/b9NW6dD3eQkU/tg+CDsiEEYBawaWPsans9zYEEgPAa6d6aHMORBAIKMIcM3MKJWkHwgggIB7BQiw3Fsbx1r2wsvLZercZaleX8qxBnAgBNIoYAVYFcqVklem9Evj0fg4AvYEuHbac2IvBBBAQAW4ZjIOEEAAAQRCLUCAFWrhMBxfH9nSxYV1TabNW7+TZ4bPNI8Y6MwVncHChoDXBAiwvFYxb7aXa6c360arEUAgPAJcM8PjzlkRQAABPwsQYGXA6i9b9aH0HzU7Uc+aNqwpfTs1zYC9pUt+ECDA8kOVw99Hrp3hrwEtQAAB7whwzfROrWgpAgggkFEECLAySiUT9OO7n36XafOWm1lXhQrklVp3VpZqt1XMgD2lS34RIMDyS6XD20+uneH15+wIIOAtAa6Z3qoXrUUAAQQyggABVkaoIn1AIIMLEGBl8ALTPQQQQAABBBBAAAEEEEAgiAABFkMEAQQQQAABBBBAAAEEEEAAAQQQQMDVAgRYri4PjUMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDCCAAAIIIIAAAggggAACCCCAAAIIuFqAAMvV5aFxCCCAAAIIIIAAAggggAACCCCAAAIEWIwBBBBAAAEEEEAAAQQQQAABBBBAAAFXCxBgubo8NA4BBBBAAAEEEEAAAQQQQAABBBBAgACLMYAAAggggAACCCCAAAIIIIAAAggg4GoBAixXl4fGIYAAAggggAACCCCAAAIIIIAAAggQYDEGEEAAAQQQQAABBBBAAAEEEEAAAQRcLUCA5ery0DgEEEAAAQQQQAABBBBAAAEEEEAAAQIsxgACCCCAAAIIIIAAAggggAACCCCAgKsFCLBcXR4ahwACCCCAAAIIIIAAAggggAACCCBAgMUYQAABBBBAAAEEEEAAAQQQQAABBBBwtQABlqvLQ+MQQAABBBBAAAEEEEAAAQQQQAABBAiwGAMIIIAAAggggAACCCCAAAIIIIAAAq4WIMBydXloHAIIIIAAAggggAACCCCAAAIIIIAAARZjAAEEEEAAAQQQQAABBBBAAAEEEEDA1QIEWK4uD41DAAEEEEAAAQQQQAABBBBAAAEEECDAYgwggAACCCCAAAIIIIAAAggggAACCLhagADL1eWhcQgggAACCCCAAAIIIIAAAggggAACBFiMAQQQQAABBBBAAAEEEEAAAQQQQAABVwsQYLm6PDQOAQQQQAABBBBAAAEEEEAAAQQQQIAAizGAAAIIIIAAAggggAACCCCAAAIIIOBqAQIsV5eHxiGAAAIIIIAAAggggAACCCCAAAIIEGAxBhBAAAEEEEAAAQQQQAABBBBAAAEEXC1AgOXq8tA4BBBAAAEEEEAAAQQQQAABBBBAAAECLMYAAggggAACCCCAAAIIIIAAAggggICrBQiwXF0eGocAAggggAACCCCAAAIIIIAAAgggQIDFGEAAAQQQQAABBBBAAAEEEEAAAQQQcLUAAZary0PjEEAAAQQQQAABBBBAAAEEEEAAAQQIsBgDCCCAAAIIIIAAAggggAACCCCAAAKuFiDAcnV5aBwCCCCAAALOCxw+elyaPj1UTpw8JfMm9ZXLLi3g/Ek4IgIIIIAAAggggAACDgoQYDmIyaEQQAABBBBwg8DSlRukYL48ctctNwRszqfbfpAnOo8wPxvVv43UrVHVDc1OtzYE80m3hnAiBBBAAAEEEEAAAdsCBFi2qdgRAQQQQAAB9wscP3FKbqnfXhrce5sM6t48YIOPHT8pzbuMlOMnTsqc8b2lcMG87u+YQy204+PQqTgMAggggAACCCCAgIMCBFgOYnIoBBBAAAEEwi2w/sPPpPOAyfJQvbuSDbDC3cZwnh+fcOpzbgQQQAABBBBA4OIFCLAu3o5PIoAAAggg4CqBM2fOSs+h02XdB58SYAWoDD6uGq40BgEEEEAAAQQQSJUAAVaquNgZAQQQQAABdwrMf22tvPjqW7J3/6GADcyRPat88tY08zPd586Gnc3//u/cYVLqqsvjPmP97Oori8qKl54z+85e+La8t3Gr7N6zX3JkyyqlShSVB+veJfdVr2I+FxsbK8vXbJT/rv5Iftr+pxw7dkIK5M8jVSqWkVZN60rxywuniLbr730yd/Fq+Wjzl7L7n/0SFRUlxYoWkuq3V5JmjWpKzhzZAn7+1z92yYLX18mWL76Xnbv3Ssy5c1IgX24pUiifObd+/tqSxcxnU+Njney7n36XVe9+Irpm2G87dsvR4ycka5ZLpETxy6T23TfJIw1qSHSmqCRte/udT6Tn0GnyyAPVpX+XZvLtj7/J3MWrZMsXP8jBw0clX56cckPZUvLEQ7Xk+jJXm88fPXZCFryxXtZs2Cw7/tojMTExcvllhaTarRWk5SN1AhpY52nasKb07dRUfvhlh7y0eLVs3vqd7DtwSLJnz2r63+De2+W+GlUkIiLCnYOXViGAAAIIIIAAAjYECLBsILELAggggAACbhcYOGaO7Ny1V378dYfsP3hEChXIIyWKXRbX7GxZL5HJz50PrewEWBrMLJo+SJ7qPkYOHDoi0dGZJDpTJrNulrU90biWdG71oDzdZ4L877NvzR9rUKZvN4yJOWf+O1vWLDJvUh+5rlTxgIT6SF+vodPl1Okz5uf58+YSnSmlb0rUrUjh/DJzTA8pUaxIos9reNNn+Ew5GxNj/jxXjmwSERkhhw4fi9tPw6FXXxhg/js1Prr/6vc2S/dnX4g7Vp7cOUx49c/eA3F9u6nCtTJrbE/JFJU4xLKCJf15ozp3Sr+RL5p2ag3OxpyT0//2VT83dlA7KV3iCmnVY4wJ4TRkUsMj//ZfG6B9XzhtoPnzhJt1njuqXC+1q90kA0bNMefJnDlaLskcnegYGoSNH9ze1JENAQQQQAABBBDwogABlherRpsRQAABBBBIRqDLwClBHyG0E2Dp4XPnyi5XFCkkz3R8VK4vU1IiIyNk1z/7ZcTkV+SdDz83LahYvrRs/fonadusvjzSoPr5AOpsjHz4yZcyYPRsOXjoqFQoV0pemdIvSYu/+u5XadphmAmEHm1QXdo0q29mUOmms58GjplrZi8VK1pY3pg9VLJmyWx+puHO3Q92kRMnT0vThjXM5/S8up08ddp8RttX9caycttN5ROd146PfkBnROlaYrWr3Sx3Vr1eCubPY46jfXtp8SqZOOs1898j+raS+vfcmugcVrCk7Y05Fyv33HGjtG/RwMwqO3cuVr758TcTav3y207Jmzun5M2dQ/YdOCx9OjaVGnfcaPqpQeHi5e/JuBlLzAy31o/Vk85PNQp4nuzZsph+61snO7RoKKVLnJ9Rp3XWmV86K0u3xxvXkt7tH+HvDgIIIIAAAggg4EkBAixPlo1GI4AAAgggEFjATkBjN8DSMOmt+SOTzPzRsKTWIz3jHlfs+GRDaft4/SQNem3l+zJo7Fzz5xuXTxGdxZRwe7DVIBNU1a1ZVUb1a5Pk8xqW1Xmst5mx9EyHR6XZg/eYff73+bfSsttoyZ0zu2xcMSVVj8bZ8bEztlr3HCsbt3xtAq6xA9sFDJb0D3V21LSRXZMcUvut/be2eZP6SqX/lE6yX+9hM2Tl+o+l5FVFZfnc55I9j4Z1s8b0CGgxbvoSmbPobRNArls8Ti4tmM9OF9kHAQQQQAABBBBwlQABlqvKQWMQQAABBBBIm4CdgMZugKXrV3Vp9WDABnUbPFXWbNhi1oD6aPmUJCGXfkjXtqrxcHfz+QVT+8sNZUvGHeur77dLk7bPmv9+77WJ5pHHQFuPIdPMOlQa7mjIo5v1WT33qlfHmDWv7G52fOwca9q85TJlzrKAs8usGVh6nFlje8gtN5YLeMjb7u9oHs8sf10JWTRtYMB9dG2xviNmGecv1s9OtE/C88wY3T3JbDNr5+MnTsmdDTuJ/v8ebR+WFk1q2+ki+yCAAAIIIIAAAq4SIMByVTloDAIIIIAAAmkTsBPQ2A2wpgzvLHffUiFgg0ZNXSjzlq6Ra66+wjzeF2jTx+XKV2thfqTrWN1aOT7I0RlBOjNIHw9ctWBUsp3WkEjDIp1ttenNqWY/PW6Dlv3l5+07pXDBvNKt9UNS667KttZ3suNjpwKLl78rQybMkzKlr5SlMwcnGyzpwvkXrl1l7dzoqYHy/c9/yGONaprHBwNt1mwz/dkX615M1MeEAdbmt6eLPkqY3KbrlL3/8Ta5584bZcKzHex0kX0QQAABBBBAAAFXCRBguaocNAYBBBBAAIG0CdgJaOwGWItnDJJy11wVsEFjXlgkLy1ZLVUqlZHZ43ol2+iydzU3P5s+qrvcfnP8elSDx74kS1duSFVnv9nwUtz++nhh14GTzWws3XQtqTrVq0jDOrfHvXkw0MHt+Fif+/CTr2TdB1vk2x9/l7927zXrUukaWAm3lAIsXcvq09Uzk+1j49aDzXpdnVo2kjbN6gXcb/PW76VF15HmZ5+vnWUWZ7c2K8DSxeG3rJqRoqUVOKY02ytVxWBnBBBAAAEEEEAgnQUIsNIZnNMhgAACCCAQSgE7AY3dAOu/c4dJqavOLwh+4WYFWDqrSmdXJbclF2BZjwbq7KSilxawRXLhTC+diaVvMXx12XrZ8sX3ccfQReO7tm4ccE0pOz668HzngZPl020/mGNeXfwyE4rly5tLMv/7Fr9t3/5ifp5SgKWL4G9acX7WWKDNCrD0MU19XDPQZifASjg7LblzTZr9usyY/2bAtbRs4bMTAggggAACCCAQZgECrDAXgNMjgAACCCDgpICdgMYNAdaA0XPkjbc/CDqDy67Nn7v2iC4av2TFe3LoyDHzscE9mkvjunclOoQdn479J8m7H30u+fLklIlDOgYMwmYtWGneROiGACtz5mjZunZWilQjJi+QV15fJ/8pc7UsfGGAXVb2QwABBBBAAAEEXCNAgOWaUtAQBBBAAAEE0i5gJ6BxQ4BlLYJeMH8e2fD6xLR3/N8jHDl6XAaOmSNr3/9UslySWd5ZMj7R2w+D+eii6rc/0EliY2NlSM8npdF9dwRsm4ZXGmK5IcDSBn60fLJ5jDK5rU2vcfLR5q9YA8uxkcaBEEAAAQQQQCC9BQiw0luc8yGAAAIIIBBCAevtgA1q3y7DercMeCY3BFiff/WjNOs43LTvlSn9zNv8nNrOnDkrVes9LSdOnpYXx/aUqjeWjTt0MB9dk0of7dNtyYzBUvaaKwM2S9el0sf73BJgTRraSarfXjFgW48eOyF3NOgkp06fkZ7tmkjzh+91iprjIIAAAggggAAC6SZAgJVu1JwIAQQQQACB0As8O/5l8xhdSo+KuSHAUokGT/aXH3/904RA8yb1FV303IlNg5oqdZ+W06fPyEsTn5HKN1wbd9hgPvooYq1Hepr9xw16Wu69+6YkTfr402/kqR5jzJ+7JcCqWL60vPx8H4mMjEjSXmu9Mv3Z+sXjzZsb2RBAAAEEEEAAAa8JEGB5rWK0FwEEEEAAgRQEVqzdKH2Gn18P6dkeLeTBunea/61vz8sUFSkRERHilgDrq+9+lWadhovOmCpd4nLp2LKRVK1U1gRZGkL9s/eAfPXddnl34+dSp9rNUu228zOMdPH0lxavlro1q8otlctJrhzZ4kS2/7FLxk1fIu9t2ir58+aS9YvHia4RZW12fGo37S1/7PxbihUtJM8P7WTappu+hXDZqo9kwswlkid3Ttn19z5XBFjR0ZmMofro4vUlihUx7dXHKWcvfNs86qjbE41rSa/2j/D3BwEEEEAAAQQQ8KQAAZYny0ajEUAAAQQQCCygs44atxksP2/faXbQN9Rly5bFhFabVkyRbFnP/+87G3Y2P7/wTYMp/SzhGdP6FkLrWDqbqfuQF+TQ4fMLr+uma1edPHU6UQdH9m0t9e65xfxZwhlQ+t8aVGm/Dh4+akIb3fS/pwzvLDdXuC7Rcez4bNzytTz9zAQ5GxNjPqvH17cP/r33gOibD6vdWkE6PNlQGrYc4IoA67pSxU2YN3baYrN2l9Y8a5ZLTJ2tPujjheMGPi0adrEhgAACCCCAAAJeFCDA8mLVaDMCCCCAAAIpCBw8dFQmz3lDNmz6QvbsPyg5smWVEsUvkznje5nZSG4KsLQbh48el8XL3zXt1RlUR44dl8zR0VIgX24pU7q43HVLBbnnzspxjxhquLV89Uey4eNt8tP2P88HNWdjJHu2LFL88sJyy43lpGnDGqILxAfagvnoZ7754Tczc+mzL38wbzVUw5JXFZUH7r1NdH2x2FiRyrXbGNelM8+vmWVtb7/zifQcOk1y58oum1ZMTbZSutaWrrnVpdWD0qpp3YD76Tpbut6Wbp+vnSWXJJhNZp3nissKyepXR8vXP2yX+UvXypZt38v+A4dNiHdd6eLSsM4dZgabzr5jQwABBBBAAAEEvCpAgOXVytFuBBBAAAEEEPC1gBVg6dsH9S2EbAgggAACCCCAQEYWIMDKyNWlbwgggAACCCCQYQXszvTKsAB0DAEEEEAAAQR8JUCA5aty01kEEEAAAQQQyCgCBFgZpZL0AwEEEEAAAQTsCBBg2VFiHwQQQAABBBBAwGUCBFguKwjNQQABBBBAAIGQChBghZSXgyOAAAIIIIAAAqERIMAKjStHRQABBBBAAAF3ChBgubMutAoBBBBAAAEEEEhRgACLAYIAAggggAACfhIgwPJTtekrAggggAACCGQYAQKsDFNKOoIAAggggAACNgQIsGwgsQsCCCCAAAIIIIAAAggggAACCCCAQPgECLDCZ8+ZEUAAAQQQQAABBBBAAAEEEEAAAQRsCBBg2UBiFwQQQAABBBBAAAEEEEAAAQQQQACB8AkQYIXPnjMjgAACCCCAAAIIIIAAAggggAACCNgQIMCygcQuCCCAAAIIIIAAAggggAACCCCAAALhEyDACp89Z0YAAQQQQAABBBBAAAEEEEAAAQQQsCFAgGUDiV0QQAABBBBAAAEEEEAAAQQQQAABBMInQIAVPnvOjAACCCCAAAIIIIAAAggggAACCCBgQ4AAywYSuyCAAAIIIIAAAggggAACCCCAAAIIhE+AACt89pwZAQQQQAABBBBAAAEEEEAAAQQQQMCGAAGWDSR2QQABBBBAAAEEEEAAAQQQQAABBBAInwABVvjsOTMCCCCAAAIIIIAAAggggAACCCCAgA0BAiwbSOyCAAIIIIAAAggggAACCCCAAAIIIBA+AQKs8NlzZgQQQAABBBBAAAEEEEAAAQQQQAABGwIEWDaQ2AUBBBBAAAEEEEAAAQQQQAABBBBAIHwCBFjhs+fMCBCwUFUAAAYGSURBVCCAAAIIIIAAAggggAACCCCAAAI2BAiwbCCxCwIIIIAAAggggAACCCCAAAIIIIBA+AQIsMJnz5kRQAABBBBAAAEEEEAAAQQQQAABBGwIEGDZQGIXBBBAAAEEEEAAAQQQQAABBBBAAIHwCRBghc+eMyOAAAIIIIAAAggggAACCCCAAAII2BAgwLKBxC4IIIAAAggggAACCCCAAAIIIIAAAuETIMAKnz1nRgABBBBAAAEEEEAAAQQQQAABBBCwIUCAZQOJXRBAAAEEEEAAAQQQQAABBBBAAAEEwidAgBU+e86MAAIIIIAAAggggAACCCCAAAIIIGBDgADLBhK7IIAAAggggAACCCCAAAIIIIAAAgiET4AAK3z2nBkBBBBAAAEEEEAAAQQQQAABBBBAwIYAAZYNJHZBAAEEEEAAAQQQQAABBBBAAAEEEAifAAFW+Ow5MwIIIIAAAggggAACCCCAAAIIIICADQECLBtI7IIAAggggAACCCCAAAIIIIAAAgggED4BAqzw2XNmBBBAAAEEEEAAAQQQQAABBBBAAAEbAgRYNpDYBQEEEEAAAQQQQAABBBBAAAEEEEAgfAIEWOGz58wIIIAAAggggAACCCCAAAIIIIAAAjYECLBsILELAggggAACCCCAAAIIIIAAAggggED4BAiwwmfPmRFAAAEEEEAAAQQQQAABBBBAAAEEbAgQYNlAYhcEEEAAAQQQQAABBBBAAAEEEEAAgfAJEGCFz54zI4AAAggggAACCCCAAAIIIIAAAgjYECDAsoHELggggAACCCCAAAIIIIAAAggggAAC4RMgwAqfPWdGAAEEEEAAAQQQQAABBBBAAAEEELAhQIBlA4ldEEAAAQQQQAABBBBAAAEEEEAAAQTCJ0CAFT57zowAAggggAACCCCAAAIIIIAAAgggYEOAAMsGErsggAACCCCAAAIIIIAAAggggAACCIRPgAArfPacGQEEEEAAAQQQQAABBBBAAAEEEEDAhgABlg0kdkEAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAVb47DkzAggggAACCCCAAAIIIIAAAggggIANAQIsG0jsggACCCCAAAIIIIAAAggggAACCCAQPgECrPDZc2YEEEAAAQQQQAABBBBAAAEEEEAAARsCBFg2kNgFAQQQQAABBBBAAAEEEEAAAQQQQCB8AgRY4bPnzAgggAACCCCAAAIIIIAAAggggAACNgQIsGwgsQsCCCCAAAIIIIAAAggggAACCCCAQPgECLDCZ8+ZEUAAAQQQQAABBBBAAAEEEEAAAQRsCBBg2UBiFwQQQAABBBBAAAEEEEAAAQQQQACB8AkQYIXPnjMjgAACCCCAAAIIIIAAAggggAACCNgQIMCygcQuCCCAAAIIIIAAAggggAACCCCAAALhEyDACp89Z0YAAQQQQAABBBBAAAEEEEAAAQQQsCFAgGUDiV0QQAABBBBAAAEEEEAAAQQQQAABBMInQIAVPnvOjAACCCCAAAIIIIAAAggggAACCCBgQ4AAywYSuyCAAAIIIIAAAggggAACCCCAAAIIhE+AACt89pwZAQQQQAABBBBAAAEEEEAAAQQQQMCGAAGWDSR2QQABBBBAAAEEEEAAAQQQQAABBBAInwABVvjsOTMCCCCAAAIIIIAAAggggAACCCCAgA0BAiwbSOyCAAIIIIAAAggggAACCCCAAAIIIBA+AQKs8NlzZgQQQAABBBBAAAEEEEAAAQQQQAABGwIEWDaQ2AUBBBBAAAEEEEAAAQQQQAABBBBAIHwCBFjhs+fMCCCAAAIIIIAAAggggAACCCCAAAI2BAiwbCCxCwIIIIAAAggggAACCCCAAAIIIIBA+AQIsMJnz5kRQAABBBBAAAEEEEAAAQQQQAABBGwIEGDZQGIXBBBAAAEEEEAAAQQQQAABBBBAAIHwCRBghc+eMyOAAAIIIIAAAggggAACCCCAAAII2BAgwLKBxC4IIIAAAggggAACCCCAAAIIIIAAAuETIMAKnz1nRgABBBBAAAEEEEAAAQQQQAABBBCwIfB/js56HPMrz4kAAAAASUVORK5CYII=", "text/plain": [ "" ] @@ -5305,7 +5591,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4Xuzdd3wVRdvG8TuFltBEQBClWikiiooFRRErIqIiCgpWiiKIKEoRlKIgVUWxYEFQsKAoj4iIoNh7wS7VQpcaCJDyfu7h3Zhyksw5ew6ZTX77z/NIdnbv/c4c4rmcmY3LzMzMFA4EEEAAAQQQQAABBBBAAAEEEEAAAQQcFYgjwHK0ZygLAQQQQAABBBBAAAEEEEAAAQQQQMAIEGAxEBBAAAEEEEAAAQQQQAABBBBAAAEEnBYgwHK6eygOAQQQQAABBBBAAAEEEEAAAQQQQIAAizGAAAIIIIAAAggggAACCCCAAAIIIOC0AAGW091DcQgggAACCCCAAAIIIIAAAggggAACBFiMAQQQQAABBBBAAAEEEEAAAQQQQAABpwUIsJzuHopDAAEEEEAAAQQQQAABBBBAAAEEECDAYgwggAACCCCAAAIIIIAAAggggAACCDgtQIDldPdQHAIIIIAAAggggAACCCCAAAIIIIAAARZjAAEEEEAAAQQQQAABBBBAAAEEEEDAaQECLKe7h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwGAMIIIAAAggggAACCCCAAAIIIIAAAk4LEGA53T0UhwACCCCAAAIIIIAAAggggAACCCBAgMUYQAABBBBAAAEEEEAAAQQQQAABBBBwWoAAy+nuoTgEEEAAAQQQQAABBBBAAAEEEEAAAQIsxgACCCCAAAIIIIAAAggggAACCCCAgNMCBFhOdw/FIYAAAggggAACCCCAAAIIIIAAAggQYDEGEEAAAQQQQAABBBBAAAEEEEAAAQScFiDAcrp7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLMYAAAggggAACCCCAAAIIIIAAAggg4LQAAZbT3UNxCCCAAAIIIIAAAggggAACCCCAAAIEWIwBBBBAAAEEEEAAAQQQQAABBBBAAAGnBQiwnO4eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDCCAAAIIIIAAAggggAACCCCAAAIIOC1AgOV091AcAggggAACCCCAAAIIIIAAAggggAABFmMAAQQQQAABBBBAAAEEEEAAAQQQQMBpAQIsp7uH4hBAAAEEEEAAAQQQQAABBBBAAAEECLAYAwgggAACCCCAAAIIIIAAAggggAACTgsQYDndPRSHAAIIIIAAAggggAACCCCAAAIIIECAxRhAAAEEEEAAAQQQQAABBBBAAAEEEHBagADL6e6hOAQQQAABBBBAAAEEEEAAAQQQQAABAizGAAIIIIAAAggggAACCCCAAAIIIICA0wIEWE53D8UhgAACCCCAAAIIIIAAAggggAACCBBgMQYQQAABBBBAAAEEEEAAAQQQQAABBJwWIMByunsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIsxgAACCCCAAAIIIIAAAggggAACCCDgtAABltPdQ3EIIIAAAggggAACCCCAAAIIIIAAAgRYjAEEEEAAAQQQQAABBBBAAAEEEEAAAacFCLCc7h6KQwABBBBAAAEEEEAAAQQQQAABBBAgwGIMIIAAAggggAACCCCAAAIIIIAAAgg4LUCA5XT3UBwCCCCAAAIIIIAAAggggAACCCCAAAEWYwABBBBAAAEEEEAAAQQQQAABBBBAwGkBAiynu4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsBgDCCCAAAIIIIAAAggggAACCCCAAAJOCxBgOd09FIcAAggggAACCCCAAAIIIIAAAgggQIDFGEAAAQQQQAABBBBAAAEEEEAAAQQQcFqAAMvp7qE4BBBAAAEEEEAAAQQQQAABBBBAAAECLMYAAggggAACCCCAAAIIIIAAAggggIDTAgRYTncPxSGAAAIIIIAAAggggAACCCCAAAIIEGAxBhBAAAEEEEAAAQQQQAABBBBAAAEEnBYgwHK6eygOAQQQQAABBBBAAAEEEEAAAQQQQIAAizGAAAIIIIAAAggggAACCCCAAAIIIOC0AAGW091DcQgggAACCCCAAAIIIIAAAggggAACBFiMAQQQQAABBBBAAAEEEEAAAQQQQAABpwUIsJzuHopDAAEEEEAAAQQQQAABBBBAAAEEECDAYgwggAACCCCAAAIIIIAAAggggAACCDgtQIDldPdQHAIIIIAAAggggAACCCCAAAIIIIAAARZjAAEEEEAAAQQQQAABBBBAAAEEEEDAaQECLKe7h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwGAMIIIAAAggggAACCCCAAAIIIIAAAk4LEGA53T0UhwACCCCAAAIIIIAAAggggAACCCBAgMUYQAABBBBAAAEEEEAAAQQQQAABBBBwWoAAy+nuoTgEEEAAAQQQQAABBBBAAAEEEEAAAQIsxgACCCCAAAIIIIAAAggggAACCCCAgNMCBFhOdw/FIYAAAggggAACCCCAAAIIIIAAAggQYDEGEEAAAQQQQAABBBBAAAEEEEAAAQScFiDAcrp7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLMYAAAggggAACCCCAAAIIIIAAAggg4LQAAZbT3UNxCCCAAAIIIIAAAggggAACCCCAAAIEWIwBBBBAAAEEEEAAAQQQQAABBBBAAAGnBQiwnO4eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDCCAAAIIIIAAAggggAACCCCAAAIIOC1AgOV091AcAggggAACCCCAAAIIIIAAAggggAABFmMAAQQQQAABBBBAAAEEEEAAAQQQQMBpAQIsp7uH4hBAAAEEEEAAAQQQQAABBBBAAAEECLAYAwgggAACCCCAAAIIIIAAAggggAACTgsQYDndPRSHAAIIIIAAAggggAACCCCAAAIIIECAxRhAAAEEEEAAAQQQQAABBBBAAAEEEHBagADL6e6hOAQQQAABBBBAAAEEEEAAAQQQQAABAizGAAIIIIAAAggggAACCCCAAAIIIICA0wIEWE53D8UhgAACCCCAAAIIIIAAAggggAACCBBgMQYQQAABBBBAAAEEEEAAAQQQQAABBJwWIMByunsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIsxgAACCCCAAAIIIIAAAggggAACCCDgtAABltPdQ3EIIIAAAggggAACCCCAAAIIIIAAAgRYjAEEEEAAAQQQQAABBBBAAAEEEEAAAacFCLCc7h6KQwABBBBAAAEEEEAAAQQQQAABBBAgwGIMIIAAAggggAACCCCAAAIIIIAAAgg4LUCA5XT3UBwCCCCAAAIIIIAAAggggAACCCCAAAEWYwABBBBAoMQJ/PLHarn0hnukWePDZfojg0rc8/PACCCAAAIIIIAAAggETYAAK2g9Rr0IIIAAAr4FghhgnXlZX1m/cUuOZy+VmCBJSWXlkJrV5LgmR8hlF54hh9Wrlcfnlbnvy9Cxz+T48/j4OCmfVE5q1zpIWhzfUK68pLXUqFalQNtNm7fJrDcWySdfLpWVf66Vbdt3SnJSWal50IHS4riG0rHdmVLnkIPyXEPDQjWfPKqvtDrl2JD3eP6Vd+SBR16QpHJl5KM5j0jp0qVCnjds7LPy8tzF0vOai+WW6y4x5wwY8bjMffcTqVm9isx5dpSpKb/j77Ub5ZxO/U29U8ff6XsscQEEEEAAAQQQQACB/SNAgLV/nLkLAggggIBDAkEOsE5sdpSUSkw0mmlp6bJ563ZZsXqN7E1Ll7i4OLm3/7Vy6YWn59D2AqzqVStL/doH72ubni6bt2yXlX+tlfT0DBMcPTyyjwl2Qh16jfsfniGpu/eYH9eqUVWqVK4gKTtT5c9/1pv7JyTEy02dL5Kbr21vavGOcVNekqdnviVXX3aO3HXLVSGvf/3tY+TTr34yP5syup+0POmYkOed3/lOWf33enn+4YEmtNPDC7D0/3e8qJUMvb1bvqONAMuhDyKlIIAAAggggAACYQgQYIWBxakIIIAAAsVDIMgB1vuzJ0nVKpVydISGSI8+97o8O+ttM3Np4UvjTbjkHV6AFSrc0QBs5KTpMu+9z8x1337hQSlXtnSO67/4+kIZMfF5E0p1u+I86Xr5uVLtwMpZ5+zclSpzF3wiE554Wbbt2CldLm0jd/funPXzT778UW7o/6AcUf8Qee3pEXkGkdZ/arubpUL5JPl3y/Z8Q6i1G/6V1pf3k6RyZeWTuZMlMSEhR4Clde9K3SNPTxggJzU7OuRgJcAqHp9hngIBBBBAAAEESp4AAVbJ63OeGAEEECjxAsUtwPI6tP21g+X3FX/JhHtvkXPOaG4VYOlJe/bslQu6DJA16/+VR0b1kTNPaZbVdtVf6+TiawfJ3r1pMnpwd2l79sn5jp8/VvwtV/YaLhpoPT7mdjntxCbm3N179kqLtr3MfZa8/nCOcE1//s77X8ptQx+Rbh3Pk1lvvCfJSeVk8asTc8zi0vPmzP9IBt7/pFmGqMsRvcObgXVHr07y4KMzzZLK158ZmSeI0/MJsEr8xx8ABBBAAAEEEAioAAFWQDuOshFAAIFQArqMa+brC+WNdz6WFav/MafUPbSmtDvnFLnykrNF90zS46MvlspNd4yVRkfWlZceH5Yv5s0DJ8rij781y9Iua3tG1nkakjw5fa589s3PsmXrDqlcqbzo0rYbO19kZtn4PXRW0HMvzTf3/nvtBnO5g6pVkUZH1JXe13cwAUX2Y8lnP8jMOQvlh5+Xy9ZtKVKxQpIc2+gw6Xxpm5BL4goLsPSZnn3pbVn08Tfy95oNkpkpcujB1eXslsdL147nmplCuY/egyYZ16/fedLU8Mgzs00wozOSLm97hgy8tYsvFm8PrFAzsLwL3zJwkql59KDu0rbNf0FTQTOwvLYaIGm9usRPl/p5x73jn5OX3lgk57Y6QcYPu7nQZ1A3DZF0eZ8u8/MOb4nguKG95LwzT8xxnUEPPCWvv/2hTBl9u7z4+rvy/iffyczH7pEmR9fPcZ6GVybEurWzdO7QJutnXoD17qxxMnjMVLMUMfcsMO9kAqxCu5ATEEAAAQQQQAABJwUIsJzsFopCAAEEwhfQWS89BoyXr77/zSwF03BK9zYyoc72FBPk6N5CpUolSmZmppxz5R3yz9qNMueZkSE3/tY2Z1xyq8THx8sHrz0k5ZPLmaI05LjjvsckPSNDGh9VTw4+6ECzJ9HPv68yy9cm3XeLnN6iafgP8P8tNFzqfuc42fjvVrNU7KjDDjXPservdbJ9x05Z9MpEOfCAilnXHznpeXnhtYVmOdkxDRuYpW3rNvwr3/+8TDIyMuWmLhdJnxsuzVFPQQHWb8v/khv7P2juf1C1A8wzZmZkyvc/Lzd/dnCNqjJ13B1m8/PshwZY7330jSyYOVZuvGOs2eS8QZ2DJS4+Ttqdc6pcf+UF8uY7H8vXP/xmZaOBY/Yw0CbAOr/zAFn99zp59an75KjDamfdxybA8uofMeB6ueT8llltz+jQxzz3MxPuMiFlYYcGdi0v7m322Moetk198S0Z//hLeZYHah+d0eFW2Z6ySz6d+6gJX+8d96zc2Lmt9L3xshy3O7tjPzNL7M1p90v92jXzBFhvPDdKypYpLe2vHWSWEmqApm+azH4QYBXWg/wcAQQQQAABBBBwU4AAy81+oSoEEEAgbIF7HnxaXv3fB9LhgtNlUJ8u5ou8HhpE9RnysHzx7S853tz26HNzZPIzr5k9je7o2SnP/V56c7EJEi5ofZI8OKSn+bkuJ+tw/RApU6aUPHr/bWaWk3d4y8B0dtL8Fx+UShWSw34G3SD84m6D5K81G8wsIA0wvOfQ0G3Fn2tzBBf6Njp9K52++U7Dueyh0rKVf0uPuyaYkE7r1+fwjvwCLL2/LsPTTck19Lrhqraib+vTQwOZR55+TZ6cMVcOr3eIvPzkvVkz2vTnXgCkwaEumdPZShpgZT+GjHlaZr/1gZVL7jf2FRRgacA3Zdoc0T7VWWKThvfOcY/CAiwNPzX80qBK96jygjO1a9OpvwkHP583Rcrk82bA3A/kvXXw4RG3ylmnHWd+/NNvK+Xym4aZPpo3Y3RWk+9+WiZX9RpulhvqssMNm7ZIq0v7SoO6teSNZ0dmnachqW7grqHiey9PyHFLbwaWF9zNmP2ujHpoutSrXdOEednrJsCyGn6chAACCCCAAAIIOCdAgOVcl1AQAgggEL7AmnWb5Jwr+5twQPf+8ZYKeldavnqNXHTN3VKpYrJ8NOcRs7eQboh9dsfbzWwmDQT0DXLZj259HzChV/a9jLyQ7P6BN5pZRbmP2+99VN5e9HmeJV62T+QFLTrTR2f8FHTozJ02V9xunmPmlKHS5Kh6eU7X2WjX3DpKateqLm9NH521p1J+AZZ3f30DngZioY7rbhttlk4+MPAmueicU7JO8QKsiuWTZM6zo0Tf+BfNwwuwzji5qZQuVcpcWkM9nZX26/I/pXSpRLn43NPk5msvydP/BQVYutxR+/XdJV9Jm9Oby8T7bskq+/uflpk9rWpUqyILXx5v/TiexZDbrpFOF5+VVetp7XubJafvvjRealavYv580lOvyhPT35RBfa6Wqy5pbf6sY/dh8uOvK2XejDGm7/TwnkFnh+ksseyHF2DpclgNENXlmlvvN7PddOZbv+4ds04nwLLuRk5EAAEEEEAAAQScEiDAcqo7KAYBBBCITMB7S1zuL+vZr3bC+T3M5trZQ4EeA8aJ7h+ls6k0GPGOdRs2S+uO/cxSRH2jnRdutWzf28zo+uTNRyU5qWyeYr39j3T/Jd2HKdzj1iEPycIlX+fZwynUdbwQSmfZzJ12f7638pbVZV8qmV+A1XvwQ/Leh1/L2Ht6yvln/TdjK/vF9W17A0Y+bjZJ183SvcMLba7tdL7073FFuI9e6PlegJXfiS2Ob2hmX116welmKWf2wwt/NDQ6vP6h5keZmRnmjX+/LftTdO+0c1udKBpMZp+t5L09sDDj3DV5gdJtN10uN1x1YdaPvYBz5F03SPvzTjN/rjP6fl32p1l6qcsz9Xhs2hwz2003ZdeN3fW4Y/hj8tbCz2TMkB5yYesWOW7p3W/W40Ol8ZH7gkydLXjJdYNlb1qazHxsqAm29CDAKnSocQICCCCAAAIIIOCkAAGWk91CUQgggEB4AsMnTJOZc96zapR9c+wFH3wpfe95JE8Y8+yst+XBx2bKdZ0ukNt77Ju9omGHBlg2R8uTmpgNucM9dJaYzhZ7/ZkRZpleQce89z6T/vc9lqf23G10+aTOLho/rJcJafTIL8Bqe83dsmL1mnz3BdO2ukeWBiO6PFD3XPIOL8DS5XsaJEX7CLWEUGcapexMNW8e1OWjr81bYtyemThADqhUIasEL8DKr6aHht8qrVvuW+qX/Yh4Btb/B4HZZ2DpdbVGne2ls/c0LNPZc60v72dq1j73Dq9/jj/mCJn20L6N4L29uHQ/tux7oOnPQgVY+ufPzJwnY6fMyrHkkwAr2iOT6yGAAAIIIIAAAvtHgABr/zhzFwQQQCCmAjojSGcG6UbtOlumoENnCNX6/5kuOvOm9eW3mTflvf/qJLPEUA/dq0j3LMo+a8nbg0g3Vr/43LzLB7Pfs0Hdg+XK9vuWg4VznHX5baKzv7LPxsmvvReG6EwendGT3+G9ue6+O66TSy883ZyWX4Blc38vAMm9F5MXYD019g45uXmjkOXEehN33fdJ93/SN0bqmyO9I78lhOOmvCRPz3xLzjq1mTw8sk+emnVp6tlX3G72wPpi3pQ8M7vyM7/sxqFmU//se2Dpud71vCWJ3j5r+W3Yvm7jZvnw9Udk05ZtZgmsbkyve1rlPvILsHRvsM43D5cfflkhvbpebJZXejXoZ2Xq+DvDGZ6ciwACCCCAAAIIIFCEAgRYRYjPrRFAAIFoCehm6xoGZF9yZXttL8QY3PdqEzrp2/MuvPous+RK9xTyDt3gW2fB6NLBz9+aYnv5sM67oMsAs/QrvzcjZr+YLvXTJX+5l/LlvmE4M7C8zccLun9hM7AKCrBitYm798zehugaUL4zc2yhAZYuKdW+Xr9xizwyqo+ceUqzPP3lzXx6btLd0rzpkYX2546UXXLaxbeYZYmhZkt5SzrfnTVOxjz6onmr5fRHBuV5W+CIic+LLo0dN7SXbNueIveOf07yW56ZX4Clxepm/tqvmZliNt6vUrmCGccEWIV2JScggAACCCCAAAJOCRBgOdUdFIMAAghEJjDt5fkyevKLct6ZJ5ov/OEcGhhpcNSs8eEmSHj02ddl8rOvy8Bbu0jnDmdnXUqXq51y0c1mttab0+7P8TbAcO5X0Lk975ogH3z6XZ63BoZqs2zVP9Ku60DzBkLdoD2/wwtMsi9LzG8GVr9hj8r8xZ+H3GfJu/7cdz8xS9Zyb3huMwPLj1NBbyH0ruu96S+pXBn5Yt7jhQZYesL/Fn4qdw6fYvafeuPZUVKu7L63V3qHtzxV953S/acKO2bMXiCjHpphwi4NvXIf3vX0zZAjH3re/HjJaw9nve3RO/+jL5bKTXeMlY7tzjR7t+kMwyfH9pdTmjfOc82CAiw9ecq0N+Thp2dLwyPqmllXJ7ftRYBVWEfycwQQQAABBBBAwDEBAizHOoRyEEAAgUgEVv+tIdRdUqpUotnQ3FsiaHstfVOfvrFP30Z4051jZeXqtbJ49sQc+yjpte4a9YToMriOF7WSobd3s7289Xle+HHqCY3liQf7F9rO2zMr1Awebfz1D7/L1b1HmnDmnRcfLPQthPoGRd1oXJcA6kyqUMf1t4+RT7/6ybwJT9+I5x0uBFje3mW5l9oV9BZCrb9rn/vly+9+lVBL+TTgvPjaQbJ3b5rZtF5nvOV36Djs2P1e82bE/Gai6X5kOiuu7dkni4aB+iZHfaNj7kPvd0q7W6TuoTVkz969oktYP3lzspQtkzNg03aFBVhp6elyRfd7zdLRvjdeJhOffIUAq9BPFycggAACCCCAAAJuCRBgudUfVIMAAghELDB49FSziXeDurVkwrBe5n+zHzo7Z+2GzWa/o9zHG+98JHePelL0LYZTX3xLzjrtOLN/Ue5DN1i/7IZ7ZPeevdLnhkvl2k4XSKnEhKzTNLhY/PG3csoJjfNstG3zYLr8TDdS37Bpi/S85mLp0bWd2X/JO3R5o27gXaF8kvkjLww59ODqMmV0PxN2ZD+3+53j5K81G8weWd5b7/Tn+c3A0qDjyp7Dzf5fN3drL92vbpf1BkbdT2nKtDny6HNzzH1emzo8x55QRRlg6ey4RR99IwNGPmFmK3nLQT2LwgIs3QRel9nFSZzMfnq42aA++/HCawtl5KTnjcVNnS+Sqy87J2u/ND1vz5698vbiz+XBR2eazf71zYG6nDXUoWPklHY3m7cd7krdY2YM6szBUMdtQx8xz6XL/5ofe6RMHRd6z6rCAiyvzzt2Hybx8fGSlpYuJzU7mj2wbD6UnIMAAggggAACCDgiQIDlSEdQBgIIIOBXQMOAWwc/JB9/udRcSmfhVDuwsmzZul3+WbdJNm3elu8Sw9Tde6TVpX1F/1dnvuT3Vjq9ru49dcfwKebcShWS5egj6pj76ebrf/2z3ux95GeJ4bc//iE9B4w3SxU1rNLn2LM3TXTz9H/WbjSbeOufeYcGSpOfec0EXc2aHC7VD6ws6zdtkW9++F00kOp2xXlyR8+cYUp+AZZeU2f69BgwzuzFVbN6FTmmYQNzK30j35r1/4puQP7kuDvyLKHcXwHWaSc2kdKlErOef+eu3fLHyr9F9yjTQ4O64Xden2NJXmEBlrbTZX86A+6EY4+SZyfelWc46h5rox95wfR7fHyc1Kt9sFSumCx6f31zo/65Blw9rm4nvbq1L3A4X9lruPHUPvtwzsNZgWTuRl6wqn/er3tHE7CGOmwCLG036alX5Ynpb5pLsAeW379xaI8AAggggAACCOxfAQKs/evN3RBAAIGYCmRkZMpbCz+V1+d/aGYR6WwXnely8EFV5dQTm5i3B2YPf7IX422aXblSeVn86qQcM6tyF61h0nMvvS26T5G+1U2DosoVy0vDI+rI2S2bS7tzTrF+Y10oEA3D9O14Sz773oRGiQnxJozT/Y96X9chx+wfbf/Ft7+Yt+99//My2fTvNqlYIUmaNjxMrurQOuSeSQUFWHo9ddMNxHVJ4Z//bJCMjAzRWV5nndZMunY8zwR3uY/9FWDlvq+GQFUOqCBNjq4vl15whpxxctM8tdkEWPrMuqG7Bp33D7xR2p2T902TGpLNmvOe6fdVf68zTsnlypolmi2ObyhXtDtLateqXugY1/2odF+qE5sdJc9MyBuWeRfYui1FTmt/i+i4fvmJYWYPKz8BloazOtNM908jwCq0mzgBAQQQQAABBBBwSoAAy6nuoBgEEECg6AQ0ABr10HSzcbtu4M6BAAIIIIAAAggggAACCLgiQIDlSk9QBwIIIFDEArrJ9dJfV8hLjw+TRkeGnulSxCVyewQQQAABBBBAAAEEECihAgRYJbTjeWwEEEAgu4DuR6T7EuV+e50fJV2upUvFbI7qVQ+QLpe2sTmVcxBAAAEEEEAAAQQQQKAEChBglcBO55ERQACB7AK6z9C1tz0gvy77U8YPu1nObXVCVID0bXgnnN/D6lpHNjhUZk8dbnUuJyGAAAIIIIAAAggggEDJEyDAKnl9zhMjgAAC8s3S32Xay/MlLi5OPv3qJ9m6PSXfNxTChQACCCCAAAIIIIAAAggUtQABVlH3APdHAAEEikDgs29+lrtGPi5btqXIITWqymUXtZKrLjm7wDcPFkGZ3BIBBBBAAAEEEEAAAQQQMAIEWAwEBBBAAAEEEEAAAQQQQAABBBBAAAGnBQiwnO4eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDCCAAAIIIIAAAggggAACCCCAAAIIOC1AgOV091AcAggggAACCCCAAAIIID6q/6AAACAASURBVIAAAggggAABFmMAAQQQQAABBBBAAAEEEEAAAQQQQMBpAQIsp7uH4hBAAAEEEEAAAQQQQAABBBBAAAEECLAYA0UqULHcA0V6f26OQNAFGibFyWVV46VRUlyBj/Ljzkx5ZWOG/LQzMyaPfHTZeOlQJVGOLhdvdf2fd2XI7H/T5OfUDKvzY3WSrZ93/1g7NkoWuaK6SOPyBfenV8/SHZkya73IjymxErK7rmt1Ny6fKVfVzJAmFQoe7z9sj5MX1sTL0h123nYakZ9lW7d3h1jVf0zFdOlySJocU9Hu8/n9tniZ/leifL8tIfKHj0LLppXSpGvd3XJs5XSrq327JUGeW1lGvtuaaHV+uCe5Vo9t/eHWrddt/vYo28tzHgIIIIAAAhELEGBFTEfDaAgQYEVDkWuUZAHbACbWwQsBVnRGoWtBkO1TuVa3bRAUqwDI1i33ebZ1E2CFFg43eCHAio4jAVakn3jaIYAAAgiEK0CAFa5YCT3/6x9+l659RklGRqbMenyoND6yXkiJ1+YtkVfmvi9/rPxb0tPTpc4hNaT9eafJVZecLQkJeWdmEGCV0AHFY0dNgADLH6Wtn3eXWAeBrgVBtrqu1W0bBBFghe5hZmDZjvyCz3MtULN9qnDrJsCyleU8BBBAAAG/AgRYfgVLQPvtO3bKJdcPkTXrNpmnzS/AunvUk/LGOx9JqcQEadbkcCmVmCjf/bRMdqTsktNObCKT7+8riQk5lxcQYJWAAcQjxlTANoCJdfDCDKzodLNrQZDtU7lWNwGWbc8RYLGEMO8YIMDy9/mhNQIIIIBA7AQIsGJnW2yufPu9j8p7H30jLU9qIguXfB0ywNLgSgOs+rVryhNj75Ca1auY59+5K1X63vOIfPTFUul9XQfpcU27HC4EWMVmmPAgRSRAgOUP3tbPu0usg0DXgiBbXdfqJsCy7TkCLAIsAix/nxZaI4AAAgjsTwECrP2pHcB7zX7rAxky5mm5+dpLzAws/edQM7DaXztYfl/xl8yYPFiObXRYjifdvHW7tL68n5QqlSjvz54kZcuUzvo5AVYABwUlOyVgG8DEOnhhBlZ0hoVrQZDtU7lWNwGWbc8RYBFgEWD5+7TQGgEEEEBgfwoQYO1P7YDda+Wfa+WyG++Rw+rWkumTB8ug+5+Sue9+kifA+mftRmnTqb/UrlVd5s0YE/Ip+w2bLPMXfyEPj+wjZ53ajAArYGOBct0VIMDy1ze2ft5dYh0EuhYE2eq6VjcBlm3PEWARYBFg+fu00BoBBBBAYH8KEGDtT+0A3WtvWrpc1Wu4aIj16lP3mXCq/32Pybz3PssTYOmywluHPCRt25wsowd1D/mUz708X8ZMflFu7NxW+t54GQFWgMYCpbotYBvAxDp4YQZWdMaJa0GQ7VO5VjcBlm3PEWARYBFg+fu00BoBBBBAYH8KEGDtT+0A3evBx2bKs7PelvsH3ijtzjnVVK57Yb296PM8AZaep+d3v/oiufX6S0M+5btLvpI+Qx6Wc1udIOOH3UyAFaCxQKluCxBg+esfWz/vLrEOAl0Lgmx1XaubAMu25wiwCLAIsPx9WmiNAAIIILA/BQiw9qd2QO718ZdL5cb+Y6Xt2SfL6MH/zajKL8B65OnX5LFpc6R/jyvk2k7nh3zKz775Wa67bbS0OL6hTB13JwFWQMYCZbovYBvAxDp4YQZWdMaKa0GQ7VO5VjcBlm3PEWARYBFg+fu00BoBBBBAYH8KEGDtT+0A3OvfLdvlkusGS5nSpWT21OFSPrlcVtX5BVjjprwkT898S+7u3Vm6XNom5FN+s/R36XLLSGnW+HCZ/sggAqwAjAVKDIYAAZa/frL18+4S6yDQtSDIVte1ugmwbHuOAIsAiwDL36eF1ggggAAC+1OAAGt/agfgXj3vmiAfffGDPP/wIGnasEGOiqMyA+u4hjJ1/H8zsFrWGGGtsiMtTtamxktKepx1m1icmJyQKQeVyZTyiZlWl9e61+2Oi1ndrtVjhSIiSfEi1UuLJCfYtUhJF1m/R2Rnht35tme5UodtvbnPsw1gYh28MAMr0h7M2c61IMj2qVyrmwDLtucIsAiwCLD8fVpojQACCCCwPwUIsPantuP3mjF7gYx6aIbZx0r3s8p95BdgTXt5voye/KLVHlhntzxeJg3vnXXpp1oMsVb5Y0eCzF9bSpalWCYe1lcO78T6SRnSplqaNEi2C7CWpcTJgg2JsnxnfHg3sjzbtXosy5a6ZUXOPECkXlm7FitSRRZtFlmZane+7Vmu1GFbLwFWpFKh29kGgF7rWAeBrgVBttqu1U2AZdtzBFgEWARY/j4ttEYAAQQQ2J8CBFj7U9vxezU750bZs2evmXkVH583bFnx5xrZsnWHHNngUEkqV1aOPry2DOpztbz/yXfS6+4JVm8hvK7TBXJ7j45ZEl+eN9Ba5dstCRLLf9G0LeSYiunS5ZA0Oaai3VSg77fFy/S/EuX7bbEJ3lyrx9bRlS+8rtRh60aAFakUAVZ05XJezbXPEQGWv94O6u+VppXSpGvd3XJs5XQrgFj/e4Vr9VihiEi4det1m789yvbynIcAAggggEDEAgRYEdMVv4aNWnUL66GaNz1Snpt0t2z8d6uc0aGP1K5VXebNGBPyGv2GTZb5i7+Qsff0lPPPOokAKyzpgk8O6hcNV77wulJHpEPCdgZRrGcOsYQw0h50OwiyfSrXPkcEWLY9F/q8oP5eCTd4IcAK3f/hOhJg+fu80RoBBBBAwF6AAMveqsSfmd8SQoXRDdp1o/YZkwfLsY0Oy2G1eet2aX15P8nIzJQPXntIKpZPIsCK4mgK6hcNV77wulJHpEOCACtSuX3tbP28u8Q6CAzqeHStbgIsf5+LoP5eCTd4IcAiwPL3SaE1AggggMD+FiDA2t/iAb5fQQHWks++lx4Dxkv92jXlibF3SM3qVcyT7tyVKrcNnSwffv6DdO5wtgy8tUsOAZYQ+h8QQf2i4coXXlfqiHQk2AYwsQ5emIEVaQ/mbBfU8eha3QRY/sZjUH+vEGD563evdbiO2o4lhNGx5yoIIIAAAgULEGAxQqwFCgqw9CJjp8ySZ2bOk1KlEqVZ48OkdKlS8t1Py2T7jp3S8Ii6ZrlhUrkyBFjW4nYnBvWLhitfeF2pw663855FgBWp3L52tn7eXWIdBAZ1PLpWNwGWv89FUH+vhBu8MAMr9DgJ15EAy9/njdYIIIAAAvYCBFj2ViX+zMICLAXSfa6mv7pAfl22WtLTM6RWzWpywVknybWdzpcypUvlMWQGlv9hFdQvGq584XWljkhHgm0AE+vghRlYkfZgznZBHY+u1U2A5W88BvX3SrjBCwEWAZa/TwqtEUAAAQT2twAB1v4W5345BAiw/A+IoH7RcOULryt1RDoSCLAildvXztbPu0usg8CgjkfX6ibA8ve5COrvFQIsf/3utQ7XUduxhDA69lwFAQQQQKBgAQIsRkiRChBg+ecP6hcNV77wulJHpCPBNoCJdfDCDKxIezBnu6COR9fqJsDyNx6D+nsl3OCFGVihx0m4jgRY/j5vtEYAAQQQsBcgwLK34swYCDzVYoj1Vf/YkSDz15aSZSkJ1m1icWL9pAxpUy1NGiRnWl1+WUqcLNiQKMt3xludH+5JrtVjW3/dsiJnHiBSr6xdixWpIos2i6xMtTvf9ixX6rCtN/d5dcqItKoUL3XKxhV4iVWpmbJ4a4as2h3pnQpuV7t0nJxeIUHqlLEb56t2Z8gH29Nl9R67z1FsqmYGVrRcCbCiI2kbvHl3+2F7nLywJl6W7ij48x9udQRY4YqFPj/cICjWgZrtU4Vbt16XGVi2upyHAAIIIOBHgADLjx5tfQu0rDHC+ho70uJkbWq8pKRH91/UrQv4/xOTEzLloDKZUj7R7ou31r1ud1zM6natHlvPpHiR6qVFki3zyJR0kfV7RHZm2N7B7jxX6rCrNu9ZWn+1UupY8OciJT1TNuyNvp9XkdZRNTFOkuPtPp8pGZmyMS0z6v0ZrqPtDDbvurGeyeZaEGTr6VrdtkFQrAIgW7fc59nWTYAVjMAo3CCIACvSTw7tEEAAAQRKigABVknpaUefs2K5BxytjLIQQKAkCBBgRaeXCbCi40iA5c/RtcDItXpsdcOtW6/LDCxbXc5DAAEEEPAjQIDlR4+2vgUIsHwTcgEEEPAhQIDlAy9bUwKs6DgSYPlzDDd4ifWMJ9fqsdUNt24CLFtZzkMAAQQQ8CtAgOVXkPa+BAiwfPHRGAEEfAoQYPkE/P/mBFjRcSTA8ucYbvBCgBXaO1xHAix/45bWCCCAAAL2AgRY9lacGQMBAqwYoHJJBBCwFiDAsqYq8EQCrOg4EmD5cww3eCHAIsDyN+KKd+vMzEx5+c3FMvutD2TZqn8kLT1DalSrImeecqzcefOVxfvhfTzdveOelZfeXCxtTm8uE++7xceVaIoAAqEECLAYF0UqQIBVpPzcHIESL0CAFZ0hQIAVHUcCLH+OBFj+/LzW4TpqO/bAio69S1cZOvYZeWXu+6akpHJlpWL5JNnw7xbpcP7pMqx/twJLzcjIlKkv/s8EYOs3bZFDalaTrh3Plcvbtsq33dJfV8gV3e+Vow6rLa88ea/Exdm9FCbUBf/dsl1eemORfPDpd7Ji9RrZsXOXlC1TWqpWqSQN6tSSE5odJeec3lxqHnRg1MmjEWB9s/R3uXngRDmywaHy1Ng7JSHB7g3PUX8Yhy/42/K/5N0PvpSvl/4uK1atkS3bdsjetDQpn1RODj24ujRtdJic2+oEOf6YI/bLU0x/dYFMfPJl6XLpOdL3xsv2yz1L6k0IsEpqzzvy3ARYjnQEZSBQQgUIsKLT8QRY0XEkwPLnGG7wwgys0N7hOhJg+Ru3Lrb+8deV0rH7MFPa3b07S+cOZ5tAaeeu3bJnz16pXKl8gWU//PRsmTLtDRMkHNfkcPnkqx9l/cYtMuS2a6TTxWeFbHvNraPkq+9/k6nj75QWxzWMmGXJZz/IncMfk207dhZ4jdq1DpJ5M0ZHfJ/8GkYjwHr0uTky+ZnXzC0WvTJRqletHPU6w73gqr/WydwFH8u1nc43gWZRHRp0jpsySz7/5hdTgo5LDUirVK4g8fHxsmHTFhOa6jjVo/GR9WRw36ulydH1Iy7Z5tmvve0BU1OsxlXExRfDhgRYxbBTg/RIBFhB6i1qRaD4CRBgRadPCbCi40iA5c8x3OCFACu0d7iOehVmYPkbu6611vBEQ5TD6tWSOc+MDKu8rdtT5IwOfaRyxfIyd9r9Uj65nGzavE0u6nq36Mysxa9ONLOhsh8Ll3wttw55SE5v0VQee+C2sO6X/WQNGtpfN9iEF7VqVJUbOreV45scLlUPrCy7UnfLn3+vl29//EMWffSNnHbSMdKr68UR3yu/htEIsDRA7D14khzZoLZMHtVX4uMjn40WrQec+OQr8uSMufL+7ElmJltRHI9NmyOPPvu6GUdnnNxULrvwDGlxfCNJKlcmRzl796bJB59+L6++9b68/8l3ZgabhqcFzQAs6Hlsnv3luYtlwhMvS9fLz5PuV19UFDwl5p4EWCWmq918UAIsN/uFqhAoKQIEWNHpaQKs6DgSYPlzDDd4IcAiwPI34opv67tGPSFvvvOxnH/WSTL2np5hPej8xV9Iv2GT5erLzpG7brkqq+3ISc/LC68tNIFMq1OOzfrztPR0ubjbIFn99zp5/ekR0qBurbDul/3kUQ9Nlxmz3zWzcd587v4CZ4rpHl9+linGMsCKGCCGDS+5brDosr2iCrC8vtVg8v6BN1kvDXxr4WcybNwzkrIzVSbce4ucc0bzsJWK+tnDLriYNyDAKuYd7PrjEWC53kPUh0DxFiDAik7/EmBFx5EAy58jAZY/P691uI7ajhlY0bF35So6G0pnRXW8qJUMvb3g/a5y16yzZB55+jW5t/+1clnbM7J+rJvBDxnztNkf6MbObbP+XAMnDSciuVfue3vLEC85v6WMGHB9kXB6M7B0/6Xxw24ukhqifdPsS0qLIsDSTfHVtX7tmvLspLvlwAMqhvWIuqy0513jzT5u82aMkUoVk63bF/WzWxdagk4kwCpBne3ioxJgudgr1IRAyREgwIpOXxNgRceRAMufY7jBCzOwQnuH6+hagLV1W4rMeO1d+eCTb2XFn2slNXWPmYlTveoB0rRhA2l92nFmE+/EhIQsgK597pcvv/tVunU8T+7o1Snfgaj7Oun+TrqfzszH7slxnhdcaGih4cWCD76Uma+/Jz//vkpSd++Rg6odIC1POkauu/IC8zY/PVb/vV6ef2W+6BfsdRs3S6nEBDmsbi1pf35LubztGb5mCP3020oz4+mr7381+0/pnug1qh8oJx/fUK6+7FypXat6jvrXrNtkzn//k2/NWwdDHffcdo1ckc8eVt75oye/KNNenp9ntou3TLDr5edmvcVwR8ouOe+qO2X3nj0mWPC7NM1vgNWo1b6wLvcssdwW1/cbI59+/ZNcf+UF0q97x5Dj4MLWLWTMkB4yf/Hn8srcD8w42JGyUw6oXEGOa3KEmaF2bKPDQjrrrKE7hj9mgpaP35gc8hydQfa/dz+V1+d/KL/8vlq279hpxnmzxofLVZecLSc2O6rAv1B1TOom+ws//Fr+WPG3qa1ypQpmY3ut65rLz5W0tDQZOWm6LPns+3yvNeDmK8253rF89RqZ8eoC+eLbX+TvtRslPSPD9GvN6lXM3matWx5vNuq3PTb+u1Uu6DJA0tMz5LWnR+QYt5u3bpdnZs4zS0L1XrpU8IBKFaTuoTXMM3S74rys/boefGymPDvrbbm5W3vp1a19obf/85/1YT17QUtHvf68sn1rsx+XfjafmTVPvvj2V7P5vM4YPLbR4eZFB/p3lB762dBwV8fPn/9skPT0dDnk4Opy1qnNzLirUD4p32fwOzYKxSniEwiwirgDSvrtW9YYYU2wIy1O1qbGS0p60a4DT07IlIPKZEr5xEyr2rXudbvjYla3a/VYoegbbeJFqpcWSf7v3x8LbJqSLrJ+j8jODNs72J3nSh121eY9S+uvVkodC/5cpKRnyoa90ffzKtI6qibGSbLlPg0pGZmyMS0z6v0ZrmOdMiKtKsVLnbJ2f6+sSs2UxVszZNXucO9kd37dsiJnHiBSz3J/1BWpIos2i6xMtbt+rM5yre565TKl9YEZUr9cwU+8fJfIwk3xsmKXXf/Hys+7rm3dWV8UYlR//aQMaVMtTRok2/2eW5YSJws2JMrynUX7pqwGyelybo29clj5dKuu+mNHgsxfW0qWpVj+IrK66n8nuVaPbfnh1q3XveHT4baXj+l5+kX8+tvHiH7p1aNc2dKSnLRvDyb9Uuf92cKXJ0ilCv/NwohmgHXztZeY+8+a8565n37R1C+j3v31y+qMyYNNaHDniCmyK3WPCa5Kly5lljl5R9uzT5bRg7uH7aX30T17nnrhf1ltk5PKSkZGhrmXHhreDb7t6hx7An361U9mjyM9flv+p+ib/HTz8Pq1D866joYu2Zf/hSouvwDr3SVfSZ8hD0v2AGv84y/J1Bffkt7XdZAe17QL+1lzNxgx8Xl58fWFJiz83/OjTf+Hc0QzwOpwwemye/ce+d/CT00JGi7FSZxo6OIduWejeX9eWIC1c1eq9B78kGif6aF7iuk427xlu+iSTD2u63SB3N4jZ7jmXV/HXs+7J8g/azfmy/P2C2NM8Kl7Tu1M3S3f/7TMnKvhW+lSiVntOrU/S9qcvm9ZntZ996gnsmrQGU9x8XGiobJ3aEDzwqNDrLtl3JSX5OmZb8kt110iPa/5b88yDYF63jXBfNY0IGty1L5N2v9Zt1F+Xfan+f/ZZ4vpea0u7WteLGCzeb++UCCcZ7cJsDRUvPSCM2TQA08ZI927Ky09I2vDef1cjh3aU46of6jc2P9BE8rpMlfdR04DSu/QmWgvPnaP+fPch9+xYd0xRXgiAVYR4nNrkada2P8FFut/0bTtD9f+xd61emwdXfnC60odtm65z7MNYGIdvNQuHSenV0iQOmXsvsCu2p0hH2xPl9V77L4gR+pTWDvbANC7zv4IAl0Idgtzy/1z14JgDfZtHL1gvKj/w4jnaVv3f+NxX7Af7fqD+h9GtO4aZTPC+g9MsfwPY67VY/u5Drduve6StYNtLx/T87rcMlK+Wfq7mX0yuO810qDOvvBFvyyuXL1WFn38jZQqlWhmWmU/ohlg6awZDaw0lNFNozW40E3F9d5Dxz5rvog2PKKurFj9j/kyfXfvLmY/H509om9Qe/DRmVmhx1Nj75CTmzcKy0xDKA2w9NClejrrQwMdPVb+udaEVK+//aH5Z2+2WO4b9L3nETODLJJlfY8//6Y8NPVVGda/W46A7NX/fSD3PPi03Hr9pWaT6zXr/zUzaypXTJa3po8JO2wKhaKznC6/aZgJC3UMPDCwe9az2yBGM8DSUGn3nr3mWTt3aGNm2eihfazBiC6L0+Oh4bdK65bH5SivsADrloGTzHg6uEZVuee2rnJK80Zm/OhbIjXAm/jky2aj89x9oDfRAK39tYNN8KOzom694VI57cRjTKCrf/bT7ytl2cp/5IarLsyq6fcVf5k2euS3hFDH9ZmX9TUhqb61svvV7bKW+ulsLw2cdBaejufTTmxi0x37NmvvcKtsT9kl7786KWvpn96rXbeBJmDTUKtH13Y5ZlQee/b1sjctXb6a/0SOFwZc0f1e0bcYfjjnYTNTy+aweXa9jk2ApYFqekamnHN6c9GgW2dB6jP++NtKE2otW/m3qeuASuVN6K5vAD379Obms6HB1Kw5i2Tc4y+Z8X1Tl4ukzw2X5nkEP2PDxsOFcwiwXOiFElzDl+cNtH76WE/1ty3kmIrp0uWQNDmmot1UoO+3xcv0vxLl+22x+S+8rtVj6+jKkiNX6rB1y32e7RK4H3dmyisbM+SnnbEJjI4uGy8dqiTK0eXsAqyfd2XI7H/T5OdUu89RpD60QwABBBCIvcC2XXfF/iaF3EFDqqat9+17NHvqcDmywaHWNUUzwNKb6swXnQGT+9CldTpDSQ8NNOZOeyDPfjz6xfvCLgPM7IurLmktg/pcbf0c6zZslnM69TeB3R09O5klVKGO+yZMMzPENGxb+NKEPOGRnwDrvY++kd6DJpnQZuCtnbNuP3zCNJk55z2ZNLy3nN3yeBkw4nGZ++4nZq8q3bNKbTR80aWMGszosrROhSxXDPVsukxMl4vpoWFlu3NOEZ0Nld9yvezXiGaApdfVtxxqUBHq0CWCGlTVrnVQnhlBBQVYGlxpSKGz9l596r6Qm9571rpX1LuzxpnZfd7h/UzH36tPDTez7Ao7bEIcs6Sy3xgThH30xiO+lr969fzw83Lp1PM+OfWExvLEg/2zyvRCWp0N9vzDOb9L6hsIj21zgwm0vls4NcejDRj5uMxd8InMnDJUmhxVr7DHNj+3eXY9zybA0vPye9Omhq+X3Tg0q6ZpDw0MuVG997kJ9YZQv2PDCsSBkwiwHOiEklwCAZb/3ifA8mdIgOXPz2tNgBUdR66CAAIIBFHAhQBL3Zqfd5OZAaJvztM36Nke0QywNDT5aM4josv2ch86w6Jdt0Hmj0Ptn+SdP3j0VHlt3hI5pXljeXLsf1/cC3seb4+uagdWloUvjTezckId23bslFYd+pgZQl6AlP08PwGWzgI6o0MfszzqzWn3m42zddZRu64DZc/eNDODZ9Vf66Rj92EmZHzlyfvMfkC6nFDDFA0lvl36h6zd8K/k3l+psOf3fv7+J9/JA4/MMHuMeYcuu+rY7ky59MIzTG2hjmgGWGq/5LWH890wPHswovup6b5q3lFQgNVjwHizJ5VukK8b5Yc6VqxeI22vudv86OkJA+SkZkeb/6/hzskX9TKfkXBsbUKcH35ZIZ163GuCtXkvPGhmd/k9Xnpjkdw7/jkzy0qXEHpH55tHyLc//iEPDukpF7TO+TnXpa8t2/cOuX/YsLHPystzF8tzk+6W5k2PtCrP5tn1QrYBln6e9XMd6jjt4t5mhlyoPfa88+fM/0gG3v+kcf723ZwBnZ+xYYXhyEkEWI50REktgwDLf88TYPkzJMDy5+e1JsCKjiNXQQABBIIo4EqA5c0uKVO6lFlio8vnbN44Fs0A6+jD68grT94bsht1aeFJF/Y0Pwu1dMxrpBvFaxgV7n5BN/R/UD758kdpf95pMvKuGwocSt65bducLKMH5dxry0+ApTd97uX5MmbyiybEaNroMLNBvi5P8/Z86tb3AbPJty6RPLbx4XL6Jb3NLKG50+43S6i2bk+R9tcOMksxF70yMeReP4V9TnQWmi5Z0yDw4y+Xmk3A9dCZR7psM3fwoT+LZoAVaoZM7ppPaXez2R9q4K1dzLI778gvwNLlZjp+dDmZ7o+m+6SFOnQW33Hn3GCWp+ksOJ0Np8d3Py2Tq3rt269O97jSJaw2h02Io/e65Pp9e7vpktV+N3U0LzPQQDfSQ5fC6mwrHcs6pr1DA1IdTy89PkwaHVk3x+X1BQQalh5Ss5rMf/HBHD/TmYE6Q/D1Z0bI4fUOsSrL5tn1QrYB1mf/eyzf8XzpDffIL3+sli6XtjHLB0Md3kw3/dm3C57K8vU7NqwwHDmJAMuRjiipZRBg+e95Aix/hgRY/vy81gRY0XHkKggggEAQBVwJsHSvqWHjnhWdpaCHhiL61i798nvqCU0kPp8XjUQzwMpviZDWo8HDCef3MLU9//AgOa7J4SG7e/Izr8mjz80pcCZGqIbnd77TzDrSvXE0wCvoGDnpefPWQV1ap5vKZz/8Blh6LX2D2vOvvCNr12+SmgdVNcshdRN4b4lhy5OayJTRt5s3MPYYMM7Mjhrar2tWGV54MX5YLzm31Ym+PhYm7HhzsVmm6G2GpxddVQAAIABJREFU3b/HFXJtp/NzXDeaAZbu8/T4mNsLrFv369K9oXLPxssvwNKZbLoReTiHLmHUpYx66Ibydw6fYpbXffvuU9bL/GxDHN3X7LZ7HhadjaWHhpEXtG4hHS5oGdabB73n88bohHtvkXPO2LdRvB6nX3Kr2SMqVBD1zvtfym1DHzH30yWW2Q8Ntlb/vU4+fvPRfGfh5ba1fXabAEv3svry7Sfy7T5vPHj7xIU68fNvfpFrb3vA/Ojrd54UDev18Ds2whlTRX0uAVZR90AJvz8Blv8BQIDlz5AAy5+f15oAKzqOXAUBBBAIooArAZZnp3vnaHiyYMlXWW/4qlWjqvTserEJs/TNXtmPaAZY+ka2iffdErIbswdY+iY2nWEV6og0wPJmptx1y1UmLCro8N4AGGqmUDQCrFD31llRuhn4qr/WymtTR4je25utlXsW0tuLPpfb733UvJ1QN8SPxqFBlr4JUZefaYijs5BqHnRg1qWjGWDpxuw6y66g4+reI+XrH37Ps9dZfgFW9qWBdQ+tkRVeFHSPK9qdKVf8/15i3pI8fWPhp3MftSa1DXH0gjoTSN84+cJr75pZdt7RrPHhcttNl4fc1ym/QsZOmSXPzJyXZwbWlb2Gm7cijhvaS847M2e4qZuh60sK6hxykLw1fXTWpXVmk85wanFcQ5k6/s6oP7tNgKWzQT9+Y3K+9/YCrPzeTqkN8wuw/I4NaxAHTiTAcqATSnIJBFj+e58Ay58hAZY/P681AVZ0HLkKAgggEEQB1wIsz1D3etJNm6e/+o7Zd0mPUEvmbAMsb1ZQqD1qCvoC69UT6wDr4msHmSVc4czACrVMMVYBlm7SPmLi8zn2b/KWS+oyRu0b79ClkLrMUTdyH3LbNVH7WOib686+op9ZUqjXzb5RvG2ApcvwdDleqH3MvHFgMwPLWzKmb/zTcMc78guwdF+w1pf3M6cVNIMvP6w33vlI7h71pFl2psvPbI9wAqzs1/xrzQZ5Ze77osGZLgvVI9SbEfOrY+qLb5m90fp172isveOpF/4nE5542cyy0j2+dON4PXRvMN3gvlbNqvLnP+vl9WdGmjeR6sxM3R/qs29+NrPibN+CqNe0ffaiDrD8jg3bseDCeQRYLvRCCa6BAMt/5xNg+TMkwPLn57UmwIqOI1dBAAEEgijgaoDlWWpYoRuF65dePaaM7ictTzomi9rbk0lnLenspfwO/fKvIYCrAZa3ibPNHlg39h9r9oa6sHULGTNk37JG74hFgJWyM1XOu+oO2ZW6W95+4UGpWqWSuV1+AZbWpjVGO8DSe5575R2i4Uru2V1egPXwiFvlrNOOy3ccnN2xn+hyuYICLA1O3nhuVIEfZ93PSvf5Gtz3arNfm3fkF2Dp3lYnXtDDBDLhBEHedbPP3tG3E2affVZQobYhTn7X0GWb9zz4tOjyvrJlSpsXDFSuVL7Qv+p0M/5ed0+Q3LPZdBP6Tj3vNWGtXkffKKibt//02yqzYf3APl3MbCu9ly7T/X3F3/LP2o15lqkWWkCAAiy/Y8PGwpVzCLBc6YkSWgcBlv+OJ8DyZ0iA5c/Pa02AFR1HroIAAggEUcD1AMszvf72MfLpVz+Z/aF0lpJ33Dxwoiz++Fuzz47ut5Pf4QUfrgZYuqeV7huk4dB7L0/I9y2EGproPkL6FsKht3eTjhe1yvHIsQiwvNlr2fdk0pvqvlSjJ7+YZyNzbwlh96svEt0TKFqHLnE77eJbzIwg3ShbN8z2Dt2fTGfJDepztVnWF+rQIKRNp31vhiwowNL91t6f/ZDZND7UoUvgdCmcHrk3Iy/oLYTX9xsjupH3yc0bmU3wwzn0DZGnXNRLNOzIHZoVdJ3sb89896XxEb1hMPsbELVurb+wQ0NPfWuiBlE6nssnl8tqsmXrDnno6dmycMlXpi/1hQEXtj5ZburS1ux9p7Oxxk15yczEOuTganJV+9YmwMq9fLiwGmyfvahnYJnx6GNsFObg0s8JsFzqjRJYy1Mthlg/9R87EmT+2lKyLCXBuk0sTqyflCFtqqVJg+RMq8svS4mTBRsSZfnO0K8ytrpIASe5Vo/t89QtK3LmASL18r5lOuQlVqSKLNossjLV9g5257lSh121ec+qU0akVaV4qVM2534euc9clZopi7dmyKrdkd6p4Ha1S8fJ6RUSpE4Zu3G+aneGfLA9XVbvsfscxaZqrooAAgggEA2BoARY3lLBm7u1l17d2mc9+oOPzZRnZ71twgZ9c1lSubz/cjLvvc+k/32PmTauBlg6C0VDNg1hQm1S7j3w/Q/PkOmvLpDkpLJ5ggE9J9oBli5vuqDzAKlYIVnmzRgjupm1d2igqMGihmgapnmHF3jp7DCdJVbYkZmZKZmZku9G/V573cxdwwY93nh2pDSoWyvr0h27D5Mff10p3gbzoe557/jnzJI4PQoKsPTnN3Zua968GOrQmUU6w6he7Zrm7YvZj4ICrAUffGn6R4+x9/SU8886qTCaHD8fMPJxs6y2etXKZh8ym5lQuneY7q+mR7hL8Lyba1jaom0vM3vs2Yl3yQnHHmVVt246r5vP5w4+rRpH4STbZ3chwPI7NqLAtV8uQYC1X5i5SX4CLWuMsMbZkRYna1PjJSW94C/q1heM8MTkhEw5qEymlE+0++Ktda/bHRezul2rx5Y1KV6kemmRZMs8MiVdZP0ekZ373oIctcOVOiJ9IK2/Wil1LPhzkZKeKRv2Rt/Pq1vrqJoYJ8n5vOEp9/OlZGTKxrTMqPdnpI60QwABBBCIXMCFAEuXCXa+ZYRc1OZkOeu043PMEtm8dbtMe/kdeWL6m+YhX3nyXjn68DpZD5x9NswZJzeVIX2vyVpepbOV9K2G46bMksTEBNFZIa4GWPpAr/7vA7NcS2ea6Oylqy89Jyuk0P2f1ED3otJjxIDr5ZLzW+bp+GgHWHeNekLefOdjGX7nddLhgtNz3E8DDX2zXlx8nLz1/GjRja51yZnu56WB3OJXJlqFLBra6cyo009qKqe3OEaOaHCo1KhWRcqVLWMCvT9W/m1qmPXGItGwS59bnz/74e25pH+m4ZPO5vHCTF0y+NSMuTJzznsm+NNxUFCApW+H09BG97e65vJz5cADKppbaSCi4dxr85aYf35kVB8585RmOeooKMDSE3Ujet0oXWd5det4vtlTTDct1+favHWH/L1mg5mB9OuyP2XS8N45rq0zyHR5ne4Pp+HZHT07ySnNG5l9sXSsL1/1j7z/6XfG55Ca1bLaerMPGx5RVx574LasJaDafzrj6cvvfjUhsO5jdsoJjaVi+aSstrrBuM6GWvTxN8ZBly9qG5tD215y3WDJyMyUqePutA6+bK5te05hz67XcSHA8js2bD2K+jwCrKLugRJ+/4rl9r0GlAMBBBBAAAEEEEAgmAIuBFj6hrumrf8LJPRNa5UrlpeUnbvMl3r9cq/H7T06ynWd/tsQ2hP3ZiV5/6wbQ+uX7E2bt5o3qzVveqRcflErGTDicacDLK1f38Cos8o01NMgS5cUZmRkyKbN28zjafBxe/crpNsV54UccNEMsH7+fZVcduNQOaL+IfLqU8NDzpDSUGj4hGkmdDy+6ZHy1fe/yZp1m8J6A2H2DfIL+xRp4DO47zVSKjHnf0VN3b1HrrtttNmg3TvUTh01BNVDx44GUzNmLygwwNKw7sPPl8r8xZ+bdnod7QsNsLyxmHtzcu+ehQVYWufg0VNFZwV6h75VUQ/9HHjHoQdXN29azH3o890ycKIJCL3DC9y8f371qfvMJuneobO2dPaWN35qVD/QBIO635qGYN6m+975GlRp+Ldl2w4TSOqh/6yBne5TFc6hYZ8+r34eB97aWS678AyrpYA63r3gMJz75T63sGfX810JsPyODT9O+6stAdb+kuY+IQUIsBgYCCCAAAIIIIBAsAVcCLBU8L2PvpH5iz6Xpb+ukHUb/pXU3XtFv5jrZtW6mbNuCK4zSPI7dAnOq/97X5b+slK27Ugxe+4cXu8QuajNKWbmkM5O0ZlBLs/A8p5t2ap/ZNac98yeX2vWbzKhiYYOGh7ovk86+ya/I5oBlgZC+va3Jx7sL6ee0Djfe+qyvGdmvS1r1m2Ug6pVMfsVXdfpfKugQi+qz7f4k2/NXmYamv2zdpPsSNkpaekZZsaUziZq1vhwM7Oo0ZH5jwGdUfTC6wtl/uIvTH+npu4xM8CObXSY2Wi9xfENxdtrrKAZWPNmjJbatQ4yAdbst5aYMbljxy45oHIFOf6YI6Tr5efKMQ0bhPQoLMDyGqnr7Lc+kG9++N0EYxpe6ZjV+5547FHSts0pJjgMdWiopM+hZitXrxHdH0ufs1aNqnLmqc2kc4ez8yylXbjka/MyhF+XrTb7aFU/sLL07HqxMdXgZM7bH8riT74zb+4z9aSlG3udHXZK88bmmtUOrBzRX3Yvz10sIydNF91Lq+6hNcw91VFDOg2bdYaWBnIrVv9jPJZ8/oM5V4O4aBwFPbtLAVY0xkY0vGJ5DQKsWOpy7UIFCLAKJeIEBBBAAAEEEEDAaQFXAiynkSgOAUsB2wDL8nLF5rTflv8ljz77ulk+6c1iK+jh2p59sowe3L3YPD8Psk+AAIuRUKQCBFhFys/NEUAAAQQQQAAB3wIEWL4JuQACWQIEWAUPhnUbNsvn3/xslnrqTK9t21NMg/Lly0mtGtXk6MNry4nNjjZ7oHEUPwECrOLXp4F6IgKsQHUXxSKAAAIIIIAAAnkECLAYFAhET0Dfuqdv39O3Yi55/eHoXZgrIVAMBAiwikEnBvkRCLCC3HvUjgACCCCAAAIIiBBgMQoQiJ7Acy/PlzGTXzT7lM2ddn/0LsyVECgGAgRYxaATg/wIBFhB7j1qRwABBBBAAAEECLAYAwj4EdC3GsbHx5u3IuqSuGv7PiDLV6+Ri889VUbdfaOfS9MWgWInQIBV7Lo0WA9EgBWs/qJaBBBAAAEEEEAgtwAzsBgTCEQu8MmXP0rPuyeYt+lt2rzNbFBeqlSizJoyVI5scGjkF6YlAsVQgACrGHZqkB6JACtIvUWtCCCAAAIIIIBAXgECLEYFApEL/PLHaukz5GFZt+FfE1wd07CB9L6ugxzb6LDIL0pLBIqpAAFWMe3YoDwWAVZQeoo6EUAAAQQQQACB0AIEWIwMBBBAAIH9IUCAtT+UuUe+Ai1rjLDW2ZEWJ2tT4yUlPc66TSxOTE7IlIPKZEr5xEyry2vd63bHxaxu1+qxQhGRpHiR6qVFkhPsWqSki6zfI7Izw+5827NcqcO23tznaf3VSqljwZ+LlPRM2bA3+n5ePVpH1cQ4SY63+3ymZGTKxrTMqPdnuI62ft5194ejC5+LSBxdqlv/XrSpx/t7pah/r3jetnX/Nx73/b0Y7fqD+ntF665RNiOs38+x/PcK1+qx/VyHW7ded8nawbaX5zwEEEAAAQQiFiDAipiOhtEQeKrFEOvL/LEjQeavLSXLUiwTD+srh3di/aQMaVMtTRok2wVYy1LiZMGGRFm+Mz68G1me7Vo9lmVL3bIiZx4gUq+sXYsVqSKLNousTLU73/YsV+qwrTf3eXXKiLSqFC91yhYcHK1KzZTFWzNk1e5I71Rwu9ql4+T0CglSp4zdOF+1O0M+2J4uq/fYfY5iU7WIrZ93/1g7BnU8ulZ3vXKZ0vrADKlfruCRs3yXyMJN8bJil13wGqtx6F3Xtm7v/FjVH9TfKw2S0+XcGnvlsPLpVl0V63+vcK0eKxQRCbduve4Nnw63vTznIYAAAgggELEAAVbEdDSMhsCX5w20vsy3WxLkuZVl5LutidZtYnHiMRXTpcshaXJMRbupQN9vi5fpfyXK99tiE7y5Vo+teaNkkSuqizQub/fFcemOTJm1XuTHFNs72J3nSh121eY9q2FSnFxWNV4aJRXs+OPOTHllY4b8tDM2gdHRZeOlQ5VEObqcXYD1864Mmf1vmvycavc5itSnsHa2ft51Yu0Y1PHoWt2Ny2fKVTUzpEmFgsf7D9vj5IU18bJ0h93fQ4WNJ78/t63bu0+s6g/q75WmldKka93dcmxluwAr1v9e4Vo9tuMz3Lr1us3fHmV7ec5DAAEEEEAgYgECrIjpaBgNAQIs/4pB/aLhyhdeV+qIdCTYBjCxDl4IsCLtwZztgjoeXavbNgiKVQAU6WiwrZsAK7RwuMELAVZ0HAmwIv3E0w4BBBBAIFwBAqxwxTg/qgIEWP45CbD8Gbr2xTvcpyHAClcs5/m2fl6rWAeBQR2PrtVtGwQRYIX+/AT19woBlr+/D73W4ToSYEXHnasggAACCBQuQIBVuBFnxFCAAMs/blC/aLjyhdeVOiIdCbYBTKyDF2ZgRdqDOdsFdTy6VjcBlr/xGNTfK+EGL8zACj1OwnUkwPL3eaM1AggggIC9AAGWvRVnxkCAAMs/alC/aLjyhdeVOiIdCQRYkcrta2fr590l1kFgUMeja3UTYPn7XAT190q4wQsBFgGWv08KrRFAAAEE9rcAAdb+Fud+OQQIsPwPiKB+0XDlC68rdUQ6EmwDmFgHL8zAirQHc7YL6nh0rW4CLH/jMai/Vwiw/PW71zpcR23HJu7RsecqCCCAAAIFCxBgMUKKVIAAyz9/UL9ouPKF15U6Ih0JBFiRyu1rZ+vn3SXWQWBQx6NrdRNg+ftcBPX3SrjBCzOwQo+TcB0JsPx93miNAAIIIGAvQIBlb8WZMRAgwPKPGtQvGq584XWljkhHgm0AE+vghRlYkfZgznZBHY+u1U2A5W88BvX3SrjBCwEWAZa/TwqtEUAAAQT2twAB1v4W5345BAiw/A+IoH7RcOULryt1RDoSCLAildvXztbPu0usg8CgjkfX6ibA8ve5COrvFQIsf/3utQ7XUduxhDA69lwFAQQQQKBgAQIsRkiRChBg+ecP6hcNV77wulJHpCPBNoCJdfDCDKxIezBnu6COR9fqJsDyNx6D+nsl3OCFGVihx0m4jgRY/j5vtEYAAQQQsBcgwLK34swYCBBg+UcN6hcNV77wulJHpCOBACtSuX3tbP28u8Q6CAzqeHStbgIsf5+LoP5eCTd4IcAiwPL3SaE1AggggMD+FiDA2t/i3C+HAAGW/wER1C8arnzhdaWOSEeCbQAT6+CFGViR9mDOdkEdj67VTYDlbzwG9fcKAZa/fvdah+uo7Yp6CeHW3fWj8/ABuUqlMssDUillIoAAAtEVIMCKridXC1OAACtMsBCnB/WLhitfeF2pI9KRQIAVqdy+drZ+3l1iHQQGdTy6VjcBlr/PRVB/r4QbvDADK/Q4CdfRiQArtYQFWGUJsPz9LUdrBBAIqgABVlB7rpjUTYDlvyOD+kXDlS+8rtQR6UiwDWBiHbwwAyvSHszZLqjj0bW6CbD8jceg/l4JN3ghwCpGAdbOEhZgJRFg+ftbjtYIIBBUAQKsoPZcMambAMt/Rwb1i4YrX3hdqSPSkUCAFakcM7D8ybkdvBFg+evdoP5eIcDy1+9e63AdXZiBtS2lZAVYFZMJsKIz2rkKAggETYAAK2g9VszqJcDy36FB/aLhSnDkSh2RjgQCrEjlCLD8yRFgRdPPu5Zt8Oad/8P2OHlhTbws3REX1XKC+nsl3OCFGVihh024jk4EWDtKWIBVngArqn/pcTEEEAiMAAFWYLqqeBZKgOW/X4P6RcOV4MiVOiIdCQRYkcoRYPmTI8CKph8BVnQ0ww1eCLCKUYC1rYQFWBUJsKLztwZXQQCBoAkQYAWtx4pZvQRY/juUAMufIQGWPz+vNXtgRccxqOPRtbptZzLFagZTpKPBtm7v+rGqP6i/VwiwIh15OduF66iti/othNu3lqwAq0IlAqzojHauggACQRMgwApajxWzegmw/HdoUL9ouPKF15U6Ih0JzMCKVG5fO1s/7y6x3gw/qOPRtbptg6BYBUCRjkrbugmwQguHG7wwAys6jk4EWFsaRPqxC2S7CpWXBbJuikYAAQT8ChBg+RWkvS8BAixffKYxAZY/Q9e+eIf7NLYBTKyDF2Zghdtzoc8P6nh0rW7bIIgAK/Q4DOrvFQKs6Pw9FK6jEwHW5hIWYB1AgBWd0c5VEEAgaAIEWEHrsWJW71Mthlg/0R87EmT+2lKyLCXBuk0sTqyflCFtqqVJg+RMq8svS4mTBRsSZfnOeKvzwz3JtXps669bVuTMA0TqlbVrsSJVZNFmkZWpdufbnuVKHbb15j6vThmRVpXipU7ZgjdxXpWaKYu3Zsiq3ZHeqeB2tUvHyekVEqROGbtxvmp3hnywPV1W77H7HMWmahFbP+/+sXYM6nh0re565TKl9YEZUr9cwSNn+S6RhZviZcWu6G6CHul4ta3bu36s6g/q75VwgxdmYIUeqeE6uhBg7dhUsgKs8gcSYEX69yztEEAg2AIEWMHuv8BX37LGCOtn2JEWJ2tT4yUlvWi/aCQnZMpBZTKlfKLdF2+te93uuJjV7Vo9th2aFC9SvbRIsmUemZIusn6PyM4M2zvYnedKHXbV5j1L669WSh0L/lykpGfKhr3R9/Mq0jqqJsZJcrzd5zMlI1M2pmVGvT/DdbT18667Pxxd+FxE4uhS3fr3ok093t8rRf17xfO2rfu/8bjv78Vo1x/U3yvhBi8EWMUowNpYwgKsqgRY4f6e4nwEECgeAgRYxaMfA/sUFcs9ENjaKRwBBBBAAAEE3BEgwIpOX4TrqHct6k3cUzaUrAAruRoBVnRGO1dBAIGgCRBgBa3Hilm9BFjFrEN5HAQQQAABBIpIINzghRlYoTsqXEcnAqz1JSzAqk6AVUR/zXBbBBAoYgECrCLugJJ+ewKskj4CeH4EEEAAAQSiIxBu8EKAVYwCrLUlLMCqQYAVnb81uAoCCARNgAAraD1WzOolwCpmHcrjIIAAAgggUEQCBFjRgQ/XUe9a1EsId64pWQFWUk0CrOiMdq6CAAJBEyDAClqPFbN6CbCKWYfyOAgggAACCBSRQLjBCzOwQndUuI5OBFj/HFZEo65obpt08B9Fc2PuigACCBSxAAFWEXdASb89AVZJHwE8PwIIIIAAAtERCDd4IcAqRgHWXyUswDqEACs6f2twFQQQCJoAAVbQeqyY1UuAVcw6lMdBAAEEEECgiAQIsKIDH66j3rWolxDu+rNkBVjlDiXAis5o5yoIIBA0AQKsoPVYMauXAKuYdSiPgwACCCCAQBEJhBu8MAMrdEeF6+hEgLW6hAVYtQmwiuivGW6LAAJFLECAVcQdUNJvH8QAKzkhUw4qkynlEzOtum9HWpys2x0nKelxVueHe5Jr9djWnxQvUr20SHKCXYuUdJH1e0R2Ztidb3uWK3XY1pv7PK2/Wil1LHh8paRnyoa90ffz6tE6qibGSXK83ThPyciUjWmZUe/PcB1t/bzr7g9HFz4XkTi6VLf+vWhTj/f3Sqz+fg7X0bbu/8bjvr8Xo11/UH+vNEhOl3Nr7JXDyqdb0f+xI0Hmry0ly1IsfxFZXfW/k1yrx7b8cOvW697w6XDby8fkvF2rSliAVYcAKyYDiYsigIDzAgRYzndR8S4wiAFW/aQMaVMtTRok2wVYy1LiZMGGRFm+Mz4mnelaPbYPWbesyJkHiNQra9diRarIos0iK1Ptzrc9y5U6bOvNfV6dMiKtKsVLnbIFB0erUjNl8dYMWbU70jsV3K526Tg5vUKC1CljN85X7c6QD7any+o9dp+j2FQtYuvn3T/WjkEdj67VXa9cprQ+MEPqlyt45CzfJbJwU7ys2GUXvMZqHHrXta3bOz9W9Qf194oGbzXKZoT1H5jWpsZHPQD0+se1emzHb7h163WXrB1se/mYnJe6omQFWGXrEWDFZCBxUQQQcF6AAMv5LireBQYxwDqmYrp0OSRNjqloNxXo+23xMv2vRPl+W2z+C69r9diO2EbJIldUF2lc3u6L49IdmTJrvciPKbZ3sDvPlTrsqs17VsOkOLmsarw0SirY8cedmfLKxgz5aWdsAqOjy8ZLhyqJcnQ5uwDr510ZMvvfNPk51e5zFKlPYe1s/bzrxNoxqOPRtbobl8+Uq2pmSJMKBY/3H7bHyQtr4mXpDru/hwobT35/blu3d59Y1R/U3yt+/WkfucC2XXdF3jgKLVOXl7AAqz4BVhSGDZdAAIEAChBgBbDTilPJBFj+ezOoXzRc+cLrSh2RjgTbACbWwQsBVqQ9mLNdUMeja3XbBkGxCoAiHQ22dRNgRSpMu1gJFHmAtezwWD2ak9ct2+B3J+uiKAQQQCDWAgRYsRbm+gUKEGD5HyAEWP4MXfviHe7TEGCFK5bzfFs/r1Wsg8CgjkfX6rYNggiwQn9+gvp7xd/fBrT2I1DUAdbuP0pWgFXmMAIsP+OVtgggEFwBAqzg9l2xqJwAy383BvWLhitfeF2pI9KRYBvAxDp4YQZWpD2Ys11Qx6NrdRNg+RuPQf294u+pae1HoMgDrN9KWIB1BAGWn/FKWwQQCK4AAVZw+65YVE6A5b8bg/pFw5UvvK7UEelIIMCKVG5fO1s/7y6xDgKDOh5dq5sAy9/nIqi/V/w9Na39CBR5gPVrCQuwjiTA8jNeaYsAAsEVIMAKbt8Vi8oJsPx3Y1C/aLjyhdeVOiIdCbYBTKyDF2ZgRdqDOdsFdTy6VjcBlr/xGNTfK/6emtZ+BIo6wNrzS8kKsEofRYDlZ7zSFgEEgitAgBXcvisWlRNg+e/GoH7RcOULryt1RDoSCLAildvXztbPu0usg8CgjkfX6ibA8ve5COrvFX9PTWs/AkUeYP1UwgKshgRYfsYrbRFAILgCBFjB7btiUTkBlv9uDOoXDVe+8LpSR6QjwTaAiXXwwgysSHswZ7ugjkfX6ibA8jceg/p7xd9T09qPQFEHWHt/LFkBVqlGBFh+xittEUAguAIEWMHtu2JROQGW/24M6hfHa1zGAAAgAElEQVQNV77wulJHpCOBACtSuX3tbP28u8Q6CAzqeHStbgIsf5+LoP5e8ffUtPYjUOQB1tISFmA1JsDyM15piwACwRUgwApu3xWLygmw/HdjUL9ouPKF15U6Ih0JtgFMrIMXZmBF2oM52wV1PLpWNwGWv/EY1N8r/p6a1n4EijzA+uEIP+UHrm2pJr8FrmYKRgABBKIhQIAVDUWuEbFAEAOs+kkZ0qZamjRIzrR67mUpcbJgQ6Is3xlvdX64JwX1i0bTqnuk61E75Nhqe60e+dsNpeS5X8rLdxtLW51ve5JrX7xt6/bOI8AKVyzn+bZ+XqtYB4FBHY+u1U2A5e9zEdTfK/6emtZ+BIo6wEr7rmQFWIlNCbD8jFfaIoBAcAUIsILbd8Wi8iAGWMkJmXJQmUwpn2gXYO1Ii5N1u+MkJT0uJn0W1C8aJx3xr/Rtu0xaHPmvlcunv1aRiXMbyGe/VbE63/Yk175429ZNgBWuVOjzCbCi4+ja54gAy1+/BvX3ir+nprUfgSIPsL4tYQHWsQRYfsYrbRFAILgCBFjB7btiUXkQAyzX4IP6ReO0pmvlrmu+k9OOXWdF+uG3B8kD05rKh9/VsDrf9iTXvnjb1k2AFa4UAVZ0xEJfxbXPEQGWv94O6u8Vf09Naz8CRR5gfVPCAqxmBFh+xittEUAguAIEWMHtu2JROQGW/24M6hcNAiz/fa9XsJ1BFOulb+yBFZ3+dC0Isn0q1+omwLLtudDnBfX3ir+nprUfgaIOsNK/LlkBVsJxBFh+xittEUAguAIEWMHtu2JROQGW/24M6hcNAiz/fU+A5d/QNgD07hTrINC1IMhW2LW6CbBse44Ay58UrT2BIg+wvixhAVZzAiw+fQggUDIFCLBKZr8789QEWP67ggDLn6FrX7zDfRrbACbWwQszsMLtudDnB3U8ulY3AZa/8RjU3yv+nprWfgSKPMD6ooQFWCcQYPkZr7RFAIHgChBgBbfvikXlBFj+uzGoXzSYgeW/7/UKBFj+HG39vLvEOgh0LQiy1XWtbgIs254LfV5Qf6/4e2pa+xEo8gDr8yP9lB+4tgkn/hq4mikYAQQQiIYAAVY0FLlGxAIEWBHTZTUM6hcNAiz/fU+A5d+QAMu/oV6BACs6jrbBm3e3H7bHyQtr4mXpjui+5Taov1ei0wtcJRKBIg+wPithAdZJBFiRjFPaIIBA8AUIsILfh4F+AgIs/90X1C8aBFj++54Ay78hAZZ/QwKs6BjqVQiwomfJlfavQJEHWJ8ctX8fuIjvlnDyL0VcAbdHAAEEikaAAKto3Lnr/wsQYPkfCgRY/gxdmzkS7tPYBjCxXvrGHljh9lzo84M6Hl2r2zYIitUMpkhHg23d3vVjVX9Qf69E6k47/wJFHmB9XMICrFMIsPyPWq6AAAJBFCDACmKvFaOaCbD8d2b9pAxpUy1NGiRnWl1sWUqcLNiQKMt3xludH6uTmjT4V646d5no/9ocPyyrIi/MbyD6v9E86pYVOfMAkXpl7a66IlVk0WaRlal258f6rDplRFpVipc6ZQteQrQq9f/YO+/4KKq3i5/0SgIhoYl0kJJQBAEBlSJYQFRAQUCaKKBSRPSHFFFQpClNFJEiCEgREEUBKaIUQemhQyiRElogIZ2U9zPLu4GQzebOzk72zu6Zf5YP+9znnvt97uxmzt65k4UtcZk4l6qPIhpY9uFq1Pkom+7yflloUTQTFfys1+V0MrDpujvOJNv3FjxbZ4OobnN+vfQb9XvFVu5sp52Aww2s7dW0D8JAGTwaHzWQWkolARIgAfsRoIFlP5bMZAMBGlg2QLuvSYBHFor7ZCHQU8zASkh3w+VUNyRmOPaCLTggDWVKJCA4ME0IQlyCN6JjAhGX6C0ULxrk7w4U8wYCPMRaJGYAV9KApEyxeL2jFP1hXop+6/VMzMjC1dv66aaBZZ9KG3U+yqZb+VwUOa/N57OjPw/Ns0dUtzleL/1G/V6xz1nILLYQcLiBta26LbIN28ajyRHDaqdwEiABEtBCgAaWFnpsq5kADSzNCJmABKQgQANLijJQBAmQAAk4hIDDDaytLmZgPUYDyyETnZ2SAAk4nAANLIeXwLUF0MBy7fpz9M5DgAaW89SSIyEBEiABtQQcbmD9VUOtZEPHezx+2ND6KZ4ESIAEbCVAA8tWck7cbufeI/jl9x3YG3kSV67dQEZGBsJCi6BuzSro/tJTqFa5bK7RHzsVjfa9P7RK5eMhPdGhzRM5YmhgOfFE4tBcigANLJcqNwdLAiRAAjkIONzA2uJiBlbT/A2sizHXMPP7n7Hj30O4FhuH4KBA1K9TFX26tkWl8g+onsHJKWmYs/hX/P7nvzh/6Sp8vL1QvUo5vNqhFZo2qp1nvq27IvHDTxsRefQ04m4lws/XB1UqlMZzLRuhfesn4OHh2D1ZVYNgAxIgAYcSoIHlUPxydX4zLgGDRn2Jf/cfg5ubGyqWK4XSJcOQkZGJk6fPI+ZqLNzd3fDZsDfQ5slHc4j/e/dh9B4yEWFFC6NEMcubbL/R9Tk0b1yHBpZcZacaErALARpYdsHIJCRAAiRgSAION7D+CDckN1tFezQ7ZLXp0ZPn0H3gZ0hMSsGDpYqhQtmSiLkSi+NR/8Hb2wtfjR2ER+uJm363EpLQtf+nOHXmAoKDAlCzWgUkJqXiwJFTpuuE/r3aoW+3trk0TZ+7EjMX/Gy6fqhfpxpKFQ9F7M147NxzBCmpaWhULxxfj38Hnh6CG5HaCoztSIAEnIYADSynKaX2gWRlZWHkhLkoFloYHds2R/GwItlJlS+n+cvX4fOZy+Dv54M/V06Fv9/dx7b9umkn3h8zE4P7vIzXXnlWWAxXYAmjYiAJSE2ABpbU5aE4EiABEtCVgMMNrM0uZmA1z9vAUv5mf677Bzh3/jLe69cJPTo+nV37v3YeQP/h0xAQ4Iv1iyeiUKC/0LwYMX4OVq3dilZP1DP9kO3rc+eBOtEXLqPX4Am4dPk6FkwbZrpbw3ycPHMeL/QcYepj/tQP8FDFB7PfU1aE9XpnPKLOXYSlOzSERDGIBEjAJQnQwHLJsts+6DbdPsCZ6EuYN3moaRmy+fj+x98x7svF+HRob7zwdBPhDmhgCaNiIAlITYAGltTloTgSIAES0JWAww2sTRG6jk+25B4tIvOUtOGv3Rj04ZemFVazJ72XK27SzKWYt2QtBr3eAa93aZPv0K7fiEezDoMQ6O+Hjcs+z/EDttJYMcX6DZ1sWk317aQh2fkWrdyIsdMWosfLT+O9Nzvl6mfNxr/xv0++Md3VMX5En3x1MIAESIAEFAI0sDgPVBHo1G+06R72Zd98hBoPlctuO3X2Csxa+Atmjn8XjzUQ/yOCBpYq/AwmAWkJ0MCStjQURgIkQAK6E3C4gbVR/G9P3WEUQAceT+ZtYA0fNxs/rduG8cP7oE3LnFt+KNKizl5A2x7DUbVSGayYPTpftUouJWf71o9j9Hu9csUrd3A80W4gbsYnYOuq6aZbDJXjxzV/YtSkeVC2EBnYu32udhu37sHAkdPxcttmGDW4e746GEACJEACNLA4B1QROHT8DF7pNxqhIcFYt3iiafNG8/HRpO+wfM0W/PjtxxY3ec+rIxpYqkrAYBKQlgANLGlLQ2EkQAIkoDsBhxtYG2rqPkaZOvBoeTBPOe1eG2na62rtogko80Axi3ENWvcz7Y+1d/0s055Y1o7Ppi/CwhUbTOaVYmJZOt4eNhV/7NhnWoGlrMRSjv8uXsGzXf+HEsWKYvW8T3Ks3FJMr35Dv4Cywfs3E95Fk/quZUDKNJeohQSMRoArsIxWsQLWq2zaePHydazdvAuLV22Ep6cHJn/8NhrUqZZDSf8R07B5217TBo63EpKRmJRs+kIsU6oYHmtQM8+nndDAKuCCsjsS0IkADSydwDItCZAACRiAgMMNrPUuZmA9lbeB9cgzfZCUnIr9G+fAy9Py5ugv9hqBE6fP4+fvPkXFctafSPjmB5Px598HMOfz99GwbnWLs3HstEVYtHIDRgx6Fa+80CI75su5q/D1gtWoXL40Rr7TzbRH1qUrsfh0yvcmw6tr+5b4oH8XA8xwSiQBEpCFAA0sWSohmQ7zrYJmWcpqqy7tWqL7y0+ZVmDdf5h/eclrGE83q48x7/fKdd88DSzJCk85JGAjARpYNoJjMxIgARJwAgION7DW1XICiuJD8Hj6gMXgzMwsRDTvCT9fb+xeNyvPhN0GjMWegyfw/fTheDiistWOzbFLvxmF8IfKW4w1G1UDXmuPPq8+lyNmwfL1ULYaUZ46WKn8AzgbHYPCwYF4542XVO2bK06HkSRAAs5MgAaWM1dXw9imfPsjzv4Xg7Tbt3E9Nh4nzpxHWtpt1KpeEcMGds31Baa8t2vfMTxYKsz0FEMvLy8oTxjZtfcIvp6/GucvXUXjR8Ixa+LdzR0VeY+V+ERYZUK6G2JS3JGY4SbcRo/AAI8sFPfJQqBnllB6RfflVDfddMumRwgKAH93oJg3ECD45OTEDOBKGpCUKdqDWJwsOsTU5o5S9Id5KRytnxeJGVm4etv+/MyKaGDZWsGc7Yw6H2XTrXwuiny+mD9XHP29Yp4ForrN8bLpt89ZwCxGJOBwA2ttbSNis1mzxzP7LbZVTKK6T72BoEB//L3mqzzz9x4yEX/vPmza5F3Z7N3a0anvx4g8dgYr54zJ8STBe9so++AqJpWl/a6Ufj6Z+r3pusLTwwPpGRkIK1oYb3Z/Hh3aNIW7u2P/rre5CGxIAiTgEAI0sByC3XidJqekYclPmzD52+Xw8fbGmgWfoXhYEaGBKE8veb7HcNyIu4U5X7yPhg/fXX48u+FIoRxK0KkED6yP8UJUoqDjIZxZXWAF/0y0DEtHxQAxAysq0Q0brnridJK7uo4Eo2XTIygb5XyBZkWA8r5iLc6kAH/cAM6miMWLRsmiQ1Tv/XFlfYCmwe4o62v9D8BzKVnYEpeJc6m29mS9HQ0s+3A16nyUTXd5vyy0KJqJCn7W63I6Gdh03R1nkuW4gBLVbR6VbPrtcxYwixEJONzA+s3FDKxnLRtYyt5S4c3UrMAahocjqlidcmpWYPXv1c60nYj5+HzmMsxd8ptpw/j3+nUyPQDq5993YM4Pv+Ly1RumWxKnfzIg1x0aRjwHqJkESKBgCNDAKhjOTtPL5FnLMXvxr6bbCYcNEL9nfcKMHzB/+XrTl5ry5WY+dj89TJjN/psemH/WBwfiPIXb6BFYMygDXUuno2aQ2FKgg/HuWHjeEwfj9THeZNMjyrxGANCxGBAeKHbheCghC0uvAIcTRXsQi5NFh5ja3FHV/d3QIdQdNfytczyclIUfr2XiSJKY8apWDw0stcQsxxt1PsqmOzwwC51LZiKikPX5HnnLDYsvueNQgtjnkH2qnHcWUd3mDLLp15sP88tLwNEGVvqvdeSFo4Myz9b78syqbNCekJgstAfWqrmfoEqF0lYV9h8+FZu37xPaA0u5NlCuEZTD/BRC5enkU8cMyPHwJ2WPrvfGfI0tO/bjxWcewyf/e00HSkxJAiTgjARoYDljVXUck3K/vPJLzCO1q+K7KUOFe1I2dlQ2eLzf+KKBJYwwz0AaWNoYynbhrXY0NLDUEssZL8rP3EpvI9Co81E23aJGkGwGkKhuGljaznu2tj8BhxtYa1zMwGqTt4H1cp+PcPj42XyfQqiYXP+u/Qb+fj5WJ8TEr5fgu6XrhJ5COHP8YNPDm5Sj9atDTbcNblgyCaVKhObqIyk5BS07DcHNuATT7Y7KbY88SIAESCA/AjSw8iPE93MQ2LH7EF4fMgn1aj2E+VM/EKaj3Bev3B8/6PUOeL1Lm+x2NLCEEdLA4gosi3NA1IDR23jhCizt57KSQTYjSHRUsukWNYJoYIlWmHEkYJ2Aww2snx92qRJ5tt2b53jHTF6AJas3Y/zwPmjT8tFccVFnL6Btj+EoX6akaUuQ/I71W/7B4I++QvvWj5tMrPsP5bbFJ9oNhLJlyJYVU0z7Wymbydds0QuBAX7YaWUvrl7vjMeufUex7JuPTLcX8iABEiCB/AjQwMqPEN/PQWDstIVYtHIjXu3QCkPf7ixE53Z6Bp7vMQznzl/GD1+NRM3qFWlgCZETC+IKLDFOeUXJduGtdjQ0sNQSyxkvys/cSm8j0KjzUTbdNLC0nRdsTQJqCTjcwFrtYgbW83kbWMqm6com7Y3qhePbSTkfnqTUddLMpZi3ZC16dXoW7/Z9OUeplX2pQooEwcvz7rYXykqtx18cAF8fb2xc9nmu/ar+2nkA/YZORkTV8lgyc1R2vkbPvYW4W4n4c+VUi08wVzZzb/HSYNNDnzYvnyy8t67aucl4EiAB5yJAA8u56qlpNNv+icTxqP/Q+smGKBEWkiOX8iWzdPVmjPtyMTw8PLB63qcoW7q4KSb6whVs2roHz7VqlOsLKvrCZSim19ZdkVDugZ85/t0cebkCS1PJTI1pYGljKNuFt9rRiBowehsvXIGltnKW4406H2XTTQPLPvORWUhAlIDDDayf6opKdYo4zxf2WB1Hp36jEXn0tGnj9B4dn86OVcymASOmwc3dHesWTchhGimmlmJuKXtiKU8cdHO7uzegeTP2Vk/Uw7jhfbL3s1L+zn/t3Ym4GHMNU0a/jZaP18vua9SkeaZ9sJrUj8CEEX0RHBSQ/Z7ytMRx0xdj+ZotqF+nKuZNFt+WxCkKyEGQAAnYTIAGls3onK+hebNFZWTKsmLFoPLz9UH8rUQcOn4GcfGJpl9dJozsg2aN7u41cOxUNNr3/tD0Rae0KV0yzPRv5cvszH+XTMuIH46ojBmfvZPr/nYaWNrnEQ0sbQxlu/BWOxoaWGqJ5YwX5WdupbcRaNT5KJtuGljazgu2JgG1BBxuYK1yMQPrResG1n8Xr6DLW5+Ybut7sFQxVChb0vTUP+VvduVv9HHD3sh1e2H/EdOwedudlV07fp6Rw3BKS7ttMqr2Rp4w/X/NahWgPKF8/6FTUH7kfvm5phj1bo8c00bZ26rnO+Nw4vR50z5bdWs+hGKhhXHj5i0cOBJl0vZAiVDMmzLU9MqDBEiABEQI0MASoeQiMbcSkrB6/XYov84oX3yxN28hOSUVgf5+KPtgCTSuF46X2zYzffnce9y+nY5V67Zh87Y9phVcyhdTVhZQODgQ1SqXQZsnG+GZ5g3g4eGeiyQNLO2TiwaWNoayXXirHY2oAaO38cIVWGorZzneqPNRNt00sOwzH5mFBEQJONzAWnl35Y+oZiPHebbbna98xSD6ev5qbPl7P65dv4nAAH/UiaiM3p1bo9Y923mYE/3y+w6Mnjwfj9argWljBuTKr2wJMn/ZOvyyYQf+u3AFXl6eptVaHds2t7jXlpJAMb6W/bIFv//5L06duYBbiUnw9fFBuQdLoEWTh01bkgT4++Y7FgaQAAmQgJkADSzOBYcSoIGlHT8NLG0MZbvwVjsaGlhqieWMF+VnbqW3EWjU+SibbhpY2s4LtiYBtQQcbmCtcDEDq33+BpbaGjKeBEiABIxAgAaWEarkxBpnNxwpPLpTCR5YH+OFqMS7G0sKN7ZjYAX/TLQMS0fFgCyhrFGJbthw1ROnk3KvQBNKkE+QbHpEx1TOF2hWBCgv+MPbmRTgjxvA2RTRHsTiZNEhpjZ3VFkfoGmwO8r63t2rwlKucylZ2BKXiXOptvZkvV0Zbzc8XsgDZX3E5vm51Ez8dSsD0Wli55E+qgFRfub+9eZo1Pkom+7yflloUTQTFfysz5zTycCm6+44k2z9/NFr/t2fV1S3uZ1s+guKE/uRj4DDDazlj8gHRUdFni/9q2N2piYBEiABeQnQwJK3Ni6h7LESnwiPMyHdDTEp7kjMcOyFRoBHFor7ZCHQU+zCW9F9OdVNN92y6REtqL87UMwbCBD0IxMzgCtpQFKmaA9icbLoEFObO0rRH+alcLR+XiRmZOHqbfvzMytSdIR6uiHAXez8TMzMwrX0LLvXUy1HUX7mvAXBUYbzwhaOMulWPhdF9Jg/Vxz9vWLmLar77ny887koi36184bxzkPA4QbWMhczsF6mgeU8Zw9HQgIkoIYADSw1tBhrdwJBfuPsnpMJSYAESIAESIAESIAECo6Aww2spfULbrAS9OTZ8R8JVFACCZAACRQ8ARpYBc+cPd5DgAYWpwMJkAAJkAAJkAAJGJuAww2sJQ2MDVCles9Ou1S2YDgJkAAJOAcBGljOUUfDjoIGlmFLR+EkQAIkQAIkQAIkYCLgcAPrBxczsF6hgcVTjwRIwDUJ0MByzbpLM2oaWNKUgkJIgARIgARIgARIwCYCDjewFje0SbdRG3l23mlU6dRNAiRAApoI0MDShI+NtRKggaWVINuTAAmQAAmQAAmQgGMJONzAWuhiBlZXGliOnfHsnQRIwFEEaGA5ijz7NRGggcWJQAIkQAIkQAIkQALGJuBwA+v7R40NUKV6z1f/VtmC4SRAAiTgHARoYDlHHQ07ChpYhi0dhZMACZAACZAACZCAiYDDDawFLmZgdaOBxVOPBEjANQnQwHLNukszahpY0pSCQkiABEiABEiABEjAJgION7DmN7JJt1EbeXbfYVTp1E0CJEACmgjQwNKEj421EqCBpZUg25MACZAACZAACZCAYwk43MD6zsUMrB40sBw749k7CZCAowjQwHIUefZrIkADixOBBEiABEiABEiABIxNwNEG1u15jY0NUKV6r57bVbZgOAmQAAk4BwEaWM5RR8OOggaWYUtH4SRAAiRAAk5KIMAjC8V9shDomSU0woR0N1xOdUNihptQvF5Biu4SvpmqdMekuOumWzY9otzV6lbybo0ZIZpel7jbc5voklfWpF69tskqjbpIgARIQFcCNLB0xcvk+RGggZUfIb5PAiRAAiRAAgVLoIJ/JlqGpaNigJiBFZXohg1XPXE6yb1ghd7XW8WADDxV4jYqBWYI6TiV4IH1MV6ISvQQilcbJJseUf1qdSt5e+8cI5pel7i0Oa5lYHm/RgNLl4nEpCRAAtIToIElfYmcWyANLOeuL0dHAiRAAiRgPAI1gzLQtXQ6agZlCok/GO+Ohec9cTBeHyNISASAWsHp6F4uFbULixlY+296YP5ZHxyI8xTtQlWcbHpExavVreStt26saHpd4tJmP6ZLXlmTevfeKqs06iIBEiABXQnQwNIVL5PnR4AGVn6E+D4JkAAJkAAJFCwBGlj24a3WCNLbUBMdlVrdUhhY3z4uOjyniPN+/S+nGAcHQQIkQAJqCdDAUkuM8XYlQAPLrjiZjARIgARIgAQ0E6CBpRmhKYFaI4gGlu3cU2e5loHl8wYNLNtnC1uSAAkYmQANLCNXzwm008BygiJyCCRAAiRAAk5FgAaWfcpJA8s+HEWypH7zhEiY08T49PnTacbCgZAACZCAGgI0sNTQYqzdCdDAsjtSJiQBEiABEiABTQRoYGnCl92YBpZ9OIpkSZ3ZVCTMaWJ8+m5xmrFwICRAAiSghgANLDW0GGt3AjSw7I6UCUmABEiABEhAEwEaWJrw0cCyDz5VWVK+di0Dy7cfDSxVE4TBJEACTkOABpbTlNKYA6GBZcy6UTUJkAAJkIDzEqCBZZ/acgWWfTiKZEmZ0UwkzGlifN/6w2nGwoGQAAmQgBoCNLDU0GKs3QnQwLI7UiYkARIgARIgAU0EaGBpwpfdmAaWfTiKZEn+srlImNPE+L292WnGwoGQAAmQgBoCNLDU0GKs3Qk8VuIT4ZwJ6W6ISXFHYoabcBs9AgM8slDcJwuBnllC6RXdl1PddNMtmx4hKAD83YFi3kCAh1iLxAzgShqQlCkWLxoVHJCGMiUSEByYJtQkLsEb0TGBiEv0ForXOyjIPw1liiUiOOC21a7iEr0QfSUA8Un66DbpCE1CsL91HWaRcUleiL7mr5seUe6i/LJ168zRqPNRNt1BgakoUyoBwYWsn9dxt7wRfTEQ8Qk+olNG1zhR3dnzUSf9RjWw6pRKRu/6sXj4gWShOu294IfZ/4Rg30U/oXi1QbLpEdWvVreSt8ak2aLpdYlLnu5iBlZ/Gli6TCQmJQESkJ4ADSzpS+TcAmc3HCk8wFMJHlgf44WoREHHQzizusAK/ploGZaOigFiBlZUohs2XPXE6SR3dR0JRsumR1A2yvkCzYoA5X3FWpxJAf64AZxNEYsXjYqoGIvOT0VBeRU5IqNCsHh9RSivMhzh5W6gc/MziCh/06qcyDOFsXhzeRw6W0QX2eFlbqLzY+cQUTZOKH/kuWAs3loWh6ILC8XrFSTKz9y/3hyNOh9l0x1e5TpeaXMS4Q9ZP68PHQ/BD2sq49CJonpNMVV5RXWbk+ql36gGVv0619C/1zEoryLHP/tCMX1uVSivehyy6REdo1rdSt6SdXeKptclLnlaC13yyprUb8AmWaVRFwmQAAnoSoAGlq54mTw/ArufHpZfSPb7+296YP5ZHxyI8xRuo0egbH/Yy6ZHlHmNAKBjMSA8UGxF3aGELCy9AhxOFO1BLK5JrRgM7XYATWpfFmqwbX9xjFtQC9sOlBCK1zuocY0rGNrpEJqEX7Ha1bZDxTBuSTi2Hy6mi6TGVa9iaLujaFJN7MJx29FQjFtZDduPhemiRzSpKD9zPr05GnU+yqa7cd1LeP+NfWhSN8b6ebGnBCbMqoPte0qKThld40R1Z89HnfQb9XulYZOLGDx0Dx597JJQnf7eWhJfjKuLndtKCcWrDZJNj6h+tbqVvMHep0XT6xKXNPVJXfLKmtR/4EZZpVEXCZAACehKgAaWrniZPD8CNLDyI5T/+0a90KCBlX9tRSJEDRi9jRcaWCLVyj9GNiMof8V3ImTTLWoEbdPJABLldn+cqG4aWJYJqzVeaGDZh6MUBtYUFzOwBtHAsvVzlu1IgASMTYAGliFIVfsAACAASURBVLHrZ3j1NLC0l5AGljaGsl14qx0NDSy1xHLGi/LLNgx0Xslm1Pkom25RI4gGluXzx6jfKzSwtH0emlur5SiFgTW5pX0Gb5As/u9sMIhSyiQBEiAB+xKggWVfnsymkgANLJXALIQb9UKDK7C0117JIGrAcAWWZd6i/GhgWZ+vNLDsdD4L3vqYPR91WkFm1O8VtcYLV2BZnrdqOcpgYCV+0co+J6FBsgQM/t0gSimTBEiABOxLgAaWfXkym0oCNLBUAqOBxT2w7psDogYMDSwaWNo/bfLOQAPLPnRFV47RwLKP8UIDyz4cpTCwPn/KPiehQbIEvLveIEopkwRIgATsS4AGln15MptKAjSwVAKjgUUDiwaW9pPmngyiBmC2YcBbCC3yp4Fln2lJA0sbR7Urh2hgOY+BlTDJtQyswCE0sLR9WrA1CZCAUQnQwDJq5ZxENw0s7YU06q0evIVQe+2VDKIGDFdgWeYtyo8GlvX5SgPLTuczbyHUBJIGliZ82Y3VclQaOvophAkTn7bP4A2SJfC9dQZRSpkkQAIkYF8CNLDsy5PZVBKggaUSmIVwGljaGMp24a12NKIGDA0sGlhq55aaeNnOI9GVTNzE3XKVjfq9otZ44Qosy/VXy1EKA2vCM2o+sgwfG/j+WsOPgQMgARIgAVsI0MCyhRrb2I0ADSztKI16ocEVWNprr2SggaWNoyg/cy96G4GyGUGidGXTTQNLtHI0sL4YVxc7t5XSBiyP1mqNIL0NNdFBqtUtg4F1a7xrGViF/kcDS3Q+M44ESMC5CNDAcq56Gm40NLC0l4wGljaGsl14qx2NqAGjt/HSuOpVDG13FE2qXRMawrajoRi3shq2HwsTitcrSJQfDSzrFZDtPKKBpe2MMer3ilrjRW/DSDY9orNCrW4pDKxxz4oOzyniCg39zSnGwUGQAAmQgFoCNLDUEmO8XQnQwNKO06gXGrVC09C9agJqh90WgrD/qhfmHwvEgWveQvGiQQ2qxGJQmyg0fChWqMnO4yGYsqYidp0IEYrXO0jUgKGBZbkSovxoYNHA0vtcVvKLGm/Z83FPCUyYVQfb95S0q7w6JVLQq85NKK8ix74YX8zdVxjKqyOP+nWuoX+vY1BeRY5/9oVi+tyqUF71OGTTIzpGtbqVvCXr7hRNr0tc/Getdckra9KgD36VVRp1kQAJkICuBGhg6YqXyfMjQAMrP0L5v29UA0sW40gWIy3/SluOEDVgaGBp45dtGPAphBZBcgWWrWdwznayGFgNIq5hQOcTUF5Fjl2RoZi2uAqUV0cedUolo3f9WDz8QLKQjL0X/DD7nxDsu+gnFK82SDY9ovrV6lby1pg0WzS9LnHxY13MwBpGA0uXicSkJEAC0hOggSV9iZxbIA0s7fU1qoElywWvLHtx2ToTaGDZSu5OO1F+NLCsc5blfDarFDWCuIm75bo2anAJQwbuRaOGl4ROsB07S2LS1IexY5d9V4IJdX5PUK3gdHQvl4rahTOEmu6/6YH5Z31wIM5TKF5tkGx6RPWr1a3krbdurGh6XeLiP22jS15ZkwYNXyOrNOoiARIgAV0J0MDSFS+T50eABlZ+hPJ/nwZW/oysRdDA0sYv2zDgHlh2ASmbESQ6KNl008ASrRwNLBpYueeAEQ2suE+e0zbpDdY6eMQvBlNMuSRAAiRgHwI0sOzDkVlsJEADy0Zw9zSjgaWNIQ0sbfxoYNmHnzmLbEaQ6Ohk000DS7RyNLBoYDmJgTXGxQyskTSwtH3KsTUJkIBRCdDAMmrlnEQ3DSzthaSBpY0hDSxt/Ghg2YcfDSz7cqSBpY0nbyHUxs/cWu1KJr1vaRQdlVrdSl5H30IYN7qt6PCcIi74w5+dYhwcBAmQAAmoJUADSy0xxtuVAA0s7ThpYGljSANLGz8aWPbhRwPLvhxpYGnjSQNLGz8aWPbhpybLzY+fVxNu+NjCo1YbfgwcAAmQAAnYQoAGli3U2MZuBGhgaUdJA0sbQxpY2vjRwLIPPxpY9uVIA0sbTxpY2vjRwLIPPzVZbn7kYgbWRzSw1MwPxpIACTgPARpYzlNLQ46EBpb2stHA0saQBpY2fjSw7MOPBpZ9OdLA0saTBpY2fjSw7MNPTZYbo15QE2742CIf/2T4MXAAJEACJGALARpYtlBjG7sRoIGlHSUNLG0MaWBp40cDyz78aGDZlyMNLG08aWBp40cDyz781GS58eGLasINH1tk9CrDj4EDIAESIAFbCNDAsoUa29iNgBENrDolUtCrzk0oryLHvhhfzN1XGMqrHodsekTHKMtTy2qFpqF71QTUDrstJH3/VS/MPxaIA9e8heL1DmpQ8QYGtjqLBpVuWu1q16nCmPp7OeyKKqKLpAbl4jCgeTQalI8Tyr/rTDCmbS6DXWeDheL1ChLlZ+5fd45VYjGoTRQaPhQrNOSdx0MwZU1F7DoRIhSvV1ADyXTTwNJWaaMaWHVKJaN3/Vg8/ECyEIC9F/ww+58Q7LvoJxSvNkg2PaL61epW8taYNFs0vS5xN0a6mIE1hgaWLhOJSUmABKQnQANL+hI5t0AjGlgNIq5hQOcTUF5Fjl2RoZi2uAqUVz0O2fSIjlEWA0u2C29Rfua4miG38WrlJNQKSbfa9ECsJ74/6Y+DsV5quxCKjyicjq4VUhFRxLoOc7LIG55YeNoHkTc9hfLrFSTKz9y/3hyNaqjKppsGlrYzxqgGVv0619C/1zEoryLHP/tCMX1uVSivehyy6REdo1rdSt6SdXeKptclLnZEO13yypo05JOVskqjLhIgARLQlQANLF3xMnl+BIxoYMn2h71sevKrufl9WQwsWXSIcrs/rrq/GzqEuqOGv5vVFIeTsvDjtUwcScqytSur7ar5uqNdiCeq+bkL5T+anImVsek4mpIpFK9XkCg/c/96czTqLa2y6aaBpe2MMer3SsMmFzF46B48+tglIQB/by2JL8bVxc5tpYTi1QbJpkdUv1rdSt5g79Oi6XWJix3eXpe8siYN+XSFrNKoiwRIgAR0JUADS1e8TJ4fARpY+RHK/32jXmjIYhzJoiP/SluOEDVg9DZeaGDZWsGc7WQzgkRHJZtuGliilbMcZ9TvFbXGCw0sy/VXy1EKA2uYixlYY2lgafuUY2sSIAGjEqCBZdTKOYluGljaC2nUCw1ZjCNZdNg6E2hg2UruTjtRfuZe9DYCZTOCROnKppsGlmjlaGBxBVbuOWBEA+v6Bx20TXqDtS762Y8GU0y5JEACJGAfAjSw7MORWWwkQAPLRnD3NKOBpY0hDSxt/MytuQLLPhxlM4JERyWbbhpYopWjgUUDyzkMrGtDX9I26Q3WOnTccoMpplwSIAESsA8BGlj24cgsNhKggWUjOBpY2sH9fwYaWPZBSQPLPhxlM4JERyWbbhpYopWjgUUDy0kMrP+5mIE1ngaWtk85tiYBEjAqARpYRq2ck+imgaW9kFyBpY0hDSxt/MytaWDZh6NsRpDoqGTTTQNLtHI0sGhgOYeBdfX9l7VNeoO1DpuwLF/FF2OuYeb3P2PHv4dwLTYOwUGBqF+nKvp0bYtK5R/It/39AckpaZiz+Ff8/ue/OH/pKny8vVC9Sjm82qEVmjaqbTVfZmYWftu8Exv+3I3Dx8/g+s1byMrKQsliIVi7aIJqLWxAAiTgugRoYLlu7aUYOQ0s7WWggaWNIQ0sbfxoYNmHnzmLbEaQ6Ohk000DS7RyNLBoYDmJgfVeR22T3mCtwyYutar46Mlz6D7wMyQmpeDBUsVQoWxJxFyJxfGo/+Dt7YWvxg7Co/VqCI/6VkISuvb/FKfOXEBwUABqVquAxKRUHDhyChkZmejfqx36dmtrMV/M1Vi8PWwqFE2K6RVRrQJKhIUgOTUVV67ewJKZo4R1MJAESIAEaGBxDjiUAA0s7fhpYGljSANLGz8aWPbhRwPLvhxpYGnjadTvFbWbj/MphJbniVqOSpZg79PaJp3G1leGuJaBVWxS3gaWYig91/0DnDt/Ge/164QeHZ/OpvvXzgPoP3waAgJ8sX7xRBQK9BciP2L8HKxauxWtnqiHz4a9AV8fb1O76AuX0WvwBFy6fB0Lpg1D3ZpVcuSLT0hCh94f4kLMNbz2yrN4o+tzCAzwE+qTQSRAAiRgiQANLM4LhxKggaUdv1EvNGQxjmTRYetMEH2Knt5Pz+MthLZWMGc72VYyiY5KNt00sEQrZznOqN8rao0XGlhOZGC920nbpDdY62KfL8lT8Ya/dmPQh1+aVljNnvRerrhJM5di3pK1GPR6B7zepU2+I79+Ix7NOgxCoL8fNi77HP5+vjnaKKZYv6GT0aheOL6dNCTHex9/MR/Lfv4DQ/p2RM9Oz+TbFwNIgARIID8CNLDyI8T3dSVAA0s7XqNeaMhiHMmiw9aZQAPLVnJ32onyM/eitxEomxEkSlc23TSwRCtHA4u3EOaeA2qNQCWDo1dgXR78irZJb7DWxb/4IU/Fw8fNxk/rtmH88D5o0/LRXHFRZy+gbY/hqFqpDFbMHp3vyJVcSs72rR/H6Pd65YpX9rJ6ot1A3IxPwNZV0023GCpH3K1E0/+XKl4Uv34/Dm5ubvn2xQASIAESyI8ADaz8CPF9XQkcHtJbOP/eC36Y/U8I9l107NLjBhHXMKDzCSivIseuyFBMW1wFyqseh2x6RMfYoEosBrWJQsOHYoWa7DwegilrKmLXiRCheNEgWXSI6r0/TtSA0dt4iSicjq4VUhFRJF1oKJE3PLHwtA8ib3oKxesVVDPkNl6tnIRaIWK6D8R64vuT/jgY66WLJNmMINFByqY7vMp1vNLmJMLz+Xw5dDwEP6ypjEMniooOVdc4Ud1mEXrpr1HtOjq2P4Hw6mKfz4eOhGDpiio4fNSxHKtHXMNLnU+gRsR1oTodjiyK5Yur4IhO38+y6RGCohj7KjkqeZ9usV00vS5xMe+4loFVYnLeBla710aa9rpSNkcv80Axi7wbtO5n2h9r7/pZpj2xrB2fTV+EhSs2mMwrxcSydCh7XP2xY59pBZayEks5lFsOlVsP3+71Ivp1e16XujMpCZCA6xGggZVHzY+disbGv/bg5JnziE9IROmSxTDm/Zy/Oly9fhMZmZkoHlqEvyrYeO5c2tNQuOU/+0IxfW5VKK+OPOqUSEGvOjehvIoc+2J8MXdfYSivehyy6REdY63QNHSvmoDaYbeFmuy/6oX5xwJx4NqdfRfsdciiw9bxyGJgNSgXhwHNo9GgfJzQUHadCca0zWWw62ywULxeQQ0q3sDAVmfRoNJNoS52nSqMqb+Xw66oIkLxaoNkM4JE9cumOygwFWVKJSC4UJrVIcTd8kb0xUDEJ/iIDlXXOFHdZhF66Q8qlIoHSycgOMg6v2wd8d7473wg4m85lmNQcCpKl7mFoGAx3fFx3jgfXQjxcfrolk2P6ORVq1vJ+/uGaaLpdYmLGdRZl7yyJi0xZXGe0h55pg+SklOxf+MceHl6WIx7sdcInDh9Hj9/9ykqlrP+RMI3P5iMP/8+gDmfv4+GdatbzDd22iIsWrkBIwa9ildeaGGKGTN5AZas3mwytfx8fTB78a/Yf/gUEhOTERZaBM0a1TbtiRUa4ti/A2StMXWRAAlYJkAD6z4uyq8RH3/+HX7dtDPHOw9VfBAr54zJ8X+vDZ6AnXuPYNbEIWj8yJ1fG3ioIxCXVkG4gd57VYgKqRmUga6l01EzKFOoycF4dyw874mD8Zb/iBBKYiVINj2i45HlglcWHaLc7o+TxcBqXPUqhrY7iibVxFYmbjsainErq2H7sTBbh26Xdo1rXMHQTofQJPyKUL5th4ph3JJwbD9s+VdtoSRWgow6H42qW2u92J4ESOAOgfjkoQ5FcWlQF4f2X9Cdl5yyyGKXmZlZiGjeE36+3ti9blaesroNGIs9B0/g++nD8XBEZavyzbFLvxmF8IfKW4z9cu4qfL1gNQa81h59Xn3OFNNj0Dj8u/+YaQXWjHk/oVrlsqgTXhkpqanYF3kSp6MvoXhYESyaMRIli9l3dX1B14P9kQAJFBwBGlj3sFae2vH6kInYte+o6X+VXwTKPFAceyNPwJKBpfzSoPzi0KHNE/h4SM+Cq5oT9UQDS3sxaWBpY2j0C28aWNrqTwNLGz9za6OfR/ahwCwk4LoEHG5gDXQxA2uqZQMrJTUNdZ96A0GB/vh7zVd5TsjeQybi792HTZu8K5u9Wzs69f0YkcfOmH7IV66HLB2zFv6CqbNXmFZUDezd3hRivpVRWQU2fkQfPNW0fnbT9IwMfDp1oWmD96aNamPG2EGue/Jw5CRAAqoI0MC6B9fK3/7CyAlzUTg4EB++0y37g7ZG0x4WDaxTZy7g+Z7DUbl8afw07xNV4Bl8hwANLO0zgQaWNoZGv/CmgaWt/jSwtPGjgWUffsxCAkYn4GgD6+KArkZHqEp/qWkLLcYrG6qHN1OzAmsYHo6oYrVvNSuw+vdqh77d2pryPd35ffx38YrJ0FKMrfsP5TbHlp3exc24BGxf/aXp+osHCZAACeRHgAbWPYS6D/wMuw8cx/RPBqB5k4ez38nLwLqVkISGbd5EgL8v/vltZn6s+b4FAjSwtE8LGljaGNLA0sbP3Jq3ENqHo1Hno1F126dqzEICJOBwA6v/qy5VhFLTv89zvMoG7QmJyUJ7YK2a+wmqVChtlV3/4VOxefs+oT2whg3ogi7tWpryKU86VJ54+MuCz1ChTEmLfZhXgi2YNgx1a1o30lyqwBwsCZBAngRoYN2D5tE2byLtdrrJjPLwcM/XwFIC6rR6Henp6YjcPI/TzAYCNLBsgHZfExpY2hga/cKbK7C01Z8rsLTxM7c2+nlkHwrMQgKuS8DRBtaFt13LwHrgy7wNrJf7fITDx8/m+xRCxeT6d+038Pez/hCDiV8vwXdL1wk9hXDm+MF4rEFN04nQ653xpm1ZrJlk74z6Er//uTvH0wtd9yziyEmABEQI0MC6h1LtJ19D4eBC2LJiSg52ea3AUu7frv1kb9MKrF2/fi3CmzH3EaCBpX1K0MDSxtDoF940sLTVnwaWNn40sOzDj1lIwOgEHG1gnX+rm9ERqtJfesaCPOPNT/8bP7wP2rR8NFecsipKWR1VvkxJrFnwWb79rt/yDwZ/9BXat37cZGLdfyi3LT7RbiCu34g3XUOFFS1sCvl85jLMXfIbPhrSAy+1aWqxH7PZZm1/rXwFMoAESMClCNDAuqfczToMQuyNW9j569emp3dk/2Gexx5YyqNgu7z1CffA0nDK0MDSAO//m9LA0saQBpY2fubWvIXQPhyNOh+Nqts+VWMWEiABhxtYb7qYgfVV3gaWsjm7cmteo3rhppVN9x+TZi7FvCVr0avTs3i378s53r589QZCigRB2XjdfCgrtR5/cQB8fbyxcdnn8PfzzdHmr50H0G/oZERULY8lM0dlv6ds/K5sAF+p/ANYMXs0PD1yPo07+sJltOn2AQL8fLFt9Zc57n7hGUUCJEACeRGggXUPmSGjv8bazbsw8p1u6PR883wNrLeGTcGWHfvxaodWGPp2Z84yGwjQwLIB2n1NaGBpY2j0C2+uwNJWf67A0sbP3Nro55F9KDALCbguAUcbWP/16+5S8B/8er7V8XbqNxqRR0/jvX6d0KPj09mxitk0YMQ0uLm7Y92iCSgeViT7PcXUUswtZU8sZUWUm5tb9nvm1VStnqiHccP7wMfby/SeYkK99u5EXIy5himj30bLx+vl0GW+VmrdoiE+GtIz+3bF+IQkk45/9x9Dv27P4+1eL7pU/ThYEiAB2wnQwLqH3b5DJ9H17U9NH8rDB75qWiqrHPffQpiUnIIJM5Zg+Zotpl8LlOW3ZR4obnsVXLjluk2NhUd/OLIoli+ugiORocJt9AiUzTCSTY8oc1kueGXRIcrt/jhZDKwG5eIwoHk0GpSPExrKrjPBmLa5DHadDRaK1yuoQcUbGNjqLBpUuinUxa5ThTH193LYFXX3j36hhoJBRp2PsukO8MhCMW8gIOcP/rmqkJgBXEkDEjPuXqgJlkqXMFHd5s710q/oKO6ThUDPLKFxJqS74XKqm8M5KrpL+Gaq0h2T4q6bbtn0CBUTynmjjqOSd2vMCNH0usT917eHLnllTfrgzO+sSlOe/qfcJaLc1vdgqWKoULYklNVVx05Fm4ypccPeyHV7Yf8R07B5215T3h0/z0BwUEB2H2lpt01G1d7IE6b/r1mtApJT0rD/0CkoW6q8/FxTjHo3dw1uxN1Cz0HjcfLMeVO7OuGVkZmZZcqjrOxSVol9Ne6dHCu+ZGVOXSRAAnIQoIF1Xx2++GYZ5vzwm+l/y5Yujvq1q5mMqmKhhdHp+RY4dfY8tu6KhPIEQuUY0rcjenZ6Ro5qGlBFq5YDhFXHx3njfHQhxMdZ32xSOKGNgbIZRrLpEcUqywWvLDpEud0fJ4uBFVE4HV0rpCKiSLrQUCJveGLhaR9E3vQUitcrqGbIbbxaOQm1QsR0H4j1xPcn/XEw9s6vz/Y+jDofZdNd3i8LLYpmooKf9QqdTgY2XXfHmWQ5DCxR3eZR6aW/gn8mWoalo2KAmIEVleiGDVc9cTrp7gNw7H1uiOSrGJCBp0rcRqXADJFwnErwwPoYL0Ql5uN0CmXLHSSbHtFhqNWt5O29c4xoel3iovu4loFV5hvrBpYCWTGvvp6/Glv+3o9r128iMMAfdSIqo3fn1qhVvWKuOvzy+w6Mnjwfj9argWljcv99fjs9A/OXrcMvG3bgvwtX4OXlaVqt1bFtc4t7bZk7SElNw/xl6/Hb5p2mdu7ubqhY9gE8/3QTvNy2aa5bC3WZIExKAiTgNARoYFko5XfL1mHq7BVQfm3I61A+tBXzqmv7O4+K5WEbgSC/cbY1dGAr2Qwj2fSIlkaWC15ZdIhyuz9OFgOrmq872oV4opqf2AXs0eRMrIxNx9GUTFuHbpd2ovzMnR1OysKP1zJxJEnswl6tSKPOR9l0hwdmoXPJTEQUsl6nyFtuWHzJHYcS5DCwRHWb55Ve+o36vVIrOB3dy6WidmExA2v/TQ/MP+uDA3H6GOmy6RH9PFKrW8lbb91Y0fS6xEW/0VOXvLImLTOLTz+XtTbURQIkoC8BGlh58FV+tVi9fhv+2XfMdH93YlIK/Hx9UKp4UdSvU810e6H5KRv6lsi5s9PA0l5fo15oyHLBK4sOW2eCqAGjt/FCA8vWCuZsZ9T5KJtuUSNILwPI1tkgqpsGlmXCao0XGlj24SiDgXXu9dxPx7P1PDRCu7LfzjWCTGokARIgAbsToIFld6RMqIYADSw1tCzH0sDSxlC2C2+1o6GBpZZYznhRfuZWehuBRp2PsukWNYJoYDnX9woNLG2fh+bWajlKYWD1djEDazYNLPvMdmYhARIwGgEaWEarmJPppYGlvaA0sLQxlO3CW+1oRA0YvY0XrsBSWznL8Uadj7LppoGlbT4a9XtFrfHCFViW54lajjIYWGd7v6Zt0husdbnZcwymmHJJgARIwD4EaGDdw7FR27dMT8eYMXaQKrrKUzR++GkTDhyOgqenByKqVUCHNk8guNDdp3eoSuhCwTSwtBfbqBcaslzwyqLD1plAA8tWcnfaifIz96K3EWjU+SibbhpY2s4Lo36vqDVeaGA5j4F15rXe2ia9wVqXnzPbYIoplwRIgATsQ4AG1j0cazTtgQdKhOL3JZNM/3szLgEZmZkIKVzI9MhZS4diXr3SbzROR1/K8XbxsCL4bspQlHmguH0q5aRZaGBpL6xRLzRkueCVRYetM0HUgNHbeOEKLFsrmLOdUeejbLppYGmbj0b9XqGBpa3u5tZqOSrtHL2J+5leLmZgzaWBZZ/ZziwkQAJGI0AD6z4Dy9PDA0P6dcSCH3/HxZhrpneLBBcyrah6q8cLpkfG3ntMn7sSMxf8DG9vL7R/9nEUDgrE2j924ex/MahaqQx+/PbjPM0vo00WPfTSwNJO1agXGrJc8Mqiw9aZQAPLVnJ32onyM/eitxFo1Pkom24aWNrOC6N+r6g1XrgCy/I8UctRBgPrdM/XtU16g7WuMO9bgymmXBIgARKwDwEaWPcZWNawPtagJr4e904OQ+r5nsNx6swFjP3gdTz/VGNT85TUNHQbMBaHj5/FzPGDobTjYZkADSztM8OoFxqyXPDKosPWmSBqwOhtvHAFlq0VzNnOqPNRNt00sLTNR6N+r6g1XmhgOZGB1eMNbZPeYK0rfDfLYIoplwRIgATsQ4AGlgUDKzQkGP26P4+a1SrA28sLx05FY8Z3PyH6wuUcRpXStHbL3rh9Ox1bVkxBWNHC2dl27TuKXu+Mx0ttmuKjIT3sUy0nzEIDS3tRjXqhIcsFryw6bJ0JNLBsJXennSg/cy96G4FGnY+y6aaBpe28MOr3Cg0sbXU3t1bLUWnn6FsIo7q7loFVcT4NLPvMdmYhARIwGgEaWPcZWB4e7lg+62M8VPHBHLWMuRqLNq8ORc1qFTF38v9M72VkZKJmizuP7T24aS6UtuYjMzMLjz73JsqWLo5l33xktHlRYHppYGlHbdQLDVkueGXRYetMEDVg9DZeuALL1grmbGfU+SibbhpY2uajUb9X1BovXIFleZ6o5SiFgdWtj7ZJb7DWFRd8YzDFlEsCJEAC9iFAA+s+A6tm9Yr44auRFum++cFk7D98Cjt+nmF6Pz0jA7Va3Hls7+Et3+Vq83Kfj3D+0tXsePuUzLmyGNHAquCfiZZh6agYkCVUjKhEN2y46onTSXcNTqGGgkGy6RGUjXK+QLMiQHlfsRZnUoA/bgBnU8TiRaNk0SGq9/64sj5A02B3lPW1/KAJc/y5lCxsicvEuVRbe7Leroy3Gx4v5IGyPmLz/FxqJv66lYHoNLHzSB/VgCi/guJo1Pkom+7yflloUTQTFfyso3RLmgAAIABJREFUz5zTycCm6+44k2z9/NFr/t2fV1S3uZ1e+o36vVIxIANPlbiNSoEZQiU7leCB9TFeiEr0EIpXGySbHlH9anUreXvvHCOaXpe4U6/21SWvrEkrfT9TVmnURQIkQAK6EqCBdQ/eiOY90bzxw5g6pr9F6B9N+g4r1/5lWm2lHPkZWL2HTMTuA8exfwOfFJLXLDaigRXgkYXiPlkI9BS78E5Id8PlVDckZuhzgSSbHtFPLH93oJg3ECB43ZCYAVxJA5IyRXsQi5NFh5ja3FGK/jAvhaP1+ZWYkYWrt+3Pz6xI0RHq6YYAd7F5npiZhWvpWXavp1qOovzMeQuCowznhS0cZdKtfC6K6DF/ruj1+ayWo6juu/PxzueivfUb9XtF0V3CN1PV93NMirvd+ZnrI5se0fmoVreSd2vMCNH0usSd7OpaBlblhTSwdJlITEoCJCA9ARpY95So8fNvo1TxUCyfZfmWP8WQOngkCv/8dudLIyExGQ1a9zP929IKrJ7vjMPegydxYNMc6SeCowQa0cByFCv2SwIkQAIkQAIkQAIyEohPHupQWSe73Pl73FWOyou+dpWhcpwkQAIkkIMADax7cLzx3iRs//cQvpsyFI/UrpoD1PGo/9Dh9Q+h7G31Xr9O6NHxaVOs0kY5/lw5Fcrm7/cerV8divhbidj603ROuzwI0MDi1CABEiABEiABEiABYxNwtIF1ovObxgaoUn2VxV+pbMFwEiABEnAOAjSw7qnjb5t24b0xX8PXxxvdXnoKtWtUgo+PFw4fP4tvF63BrYQkKHtkKauwSpcMw7XYOKSkppkyjP3gdTz/VOPsbNEXruCZLu+jXq2HMH/qB84xW3QYBQ0sHaAyJQmQAAmQAAmQAAkUIAGHG1ivuJiB9QMNrAKc3uyKBEhAIgI0sO4rxrsff4V1f/xjsUR1a1bBnM/fx7gvF2PJ6s2mmOaN6yA4KBBbduzH6Pd7oVG9GqZbC4eOnYW/dx/GkL4d0bPTMxKVXC4pNLDkqgfVkAAJkAAJkAAJkIBaAo42sI53ekutZEPHP7TkzgOleJAACZCAqxGggXVfxZVbBBVz6sc1W3DyzHlkZcG02qrds4+hZ8dn4OXlaWpxIeYakpNTUan8Azhx+jw69v0YaWm3c2QLK1oYaxZ8hsCAfB6D5Gqz7p7x0sBy4eJz6CRAAiRAAiRAAk5BgAZWwZaRBlbB8mZvJEAC8hCggWWlFllZWcjIzISnR/6PSfvz7wMYNWkerl6/acpYsdwDmPRhP1SpUFqeakuohAaWhEWhJBIgARIgARIgARJQQcDRBtaxjm+rUGv80KpLvzT+IDgCEiABErCBAA0sG6Dl1SQjIxPRFy7D3d0dZUsXt2Nm501FA8t5a8uRkQAJkAAJkAAJuAYBRxtYR1/u7xqg/3+U1ZbxAVEuVXAOlgRIIJsADSxOBocSoIHlUPzsnARIgARIgARIgAQ0E3C0gXXkpQGax2CkBNWXTzOSXGolARIgAbsRoIFlBWV6Rkaufa3yCvf387VbUVwpEQ0sV6o2x0oCJEACJEACJOCMBBxuYHVwMQPrRxpYzngecUwkQAL5E6CBdR+jS1diMWPeKmzddRDXYuPyJ/j/EYe3fCccy8C7BGhgcTaQAAmQAAmQAAmQgLEJONrAOtx+oLEBqlRfY8VUlS0YTgIkQALOQYAG1j11VAyr9r0/VGVchRQuhKqVyuLbSUOcY0YU8ChoYBUwcHZHAiRAAiRAAiRAAnYm4GgD61C7QXYekdzpwldOkVsg1ZEACZCATgRoYN0DdsKMHzB/+XoUCvRH786tUSe8MooULoTnun2A51o1wisvtEBCYjIOHInC4pUb4evrjcUzRqJYaGGdyuP8aWlgOX+NOUISIAESIAESIAHnJuBoAyvyxXecG/B9o4tYNdmlxsvBkgAJkICZAA2se+aCYlSdjr6EmeMH47EGNbPfqdG0B1575VkM7vNy9v9dvnoDXft/Ci9PD6yYPQZ+vt6cVTYQoIFlAzQ2IQESIAESIAESIAGJCNDAKthi0MAqWN7sjQRIQB4CNLDuqcXDrV6Hm5sb9qyflaNCioHVq9OzeLfvXQNLCfhjxz68PWwq3ur5It7s/rw8VdWoZOfeI/jl9x3YG3kSV67dQEZGBsJCi6BuzSro/tJTqFa5bJ49rFq7FT+u+ROnzl4wtStbugReeLoJOr/4JDw83HO1o4GlsVhsTgIkQAIkQAIkQAIOJuBoA+vgC4MdTKBgu6/50xcF2yF7IwESIAFJCNDAuqcQNVv0QsliRbH+h4k5ylO7ZW+8/FxTDBvQNcf/307PQINn+6J8mZJYMXu0JCW1XcbNuAQMGvUl/t1/zGTkVSxXCqVLhiEjIxMnT59HzNVYuLu74bNhb6DNk4/m6uiDsd/i59+3m1al1YmoDC9PT9Ptlsptl03qR2DGZ4Pg6eGRox0NLNvrxZYkQAIkQAIkQAIkIAMBRxtYB55/VwYMBaah1urPC6wvdkQCJEACMhGggXVPNR5/cQCSU9Lwz29fmwwc86H8v7If1tQx/XPVrlWnIYi7lYhdv34tU11t0pKVlYWRE+aa9vTq2LY5iocVyc6jmFjzl6/D5zOXwd/PB3+unAp/P9/s9xXjSjGwKpQpiVmT3kPJYiGm95KSUzDowy+x/d9D6N+rHfp2a0sDy6bqsBEJkAAJkAAJkAAJyEnA0QbW/rau9TCl2j9PknMiUBUJkAAJ6EyABtY9gF8bPAHK7XM/zx+LimVLZb/T5a1PcP7SVfzx4xTTCqR7j/rP9kVa2m3s3zhH51LJkb5Ntw9wJvoS5k0eivp1qmaLeqHnCJw8cx6LZoxA7RqVcoi9EXcLLV4aDC8vT5Px5etzd78wrsCSo65UQQIkQAIkQAIkQAK2EnC4gfWcixlYv9DAsnWush0JkICxCdDAuqd+i1ZuwNhpizCwd3u80fW57HcmzVyKeUvWYtS7PUy3EpqPTVv3YsDIaabb7O6/7dDY0yJv9Z36jUbk0dNY9s1HqPFQOVPgxZhraNlpCMo8UAxrF02w2HjwRzOwfsu/mP7pQDRvXCc7hgaWs84UjosESIAESIAESMBVCDjawNrX5j1XQW0aZ501Obc7canBc7AkQAIuTYAG1j3lV24FbNp+EJ5q+gjGDXsj+53jUf+h3WsjTbcVtn6yIapVKovoi1ew8re/cPt2Orq0ezLX/ljOOKsOHT+DV/qNRmhIMNYtnggfby/TMM1GXpuWj2L88D4Whz5/+XpMmPEDXu/SBoNe70ADyxknCMdEAiRAAiRAAiTgkgQcbWDtbf2+S3F/+FfLPxi7FAQOlgRIwCUJ0MC6r+yXr97IsfeT+e1Pp36Pxas25ZokJcJCsGzWRyhaJMgpJ9CthCRcvHwdazfvwuJVG+Hp6YHJH7+NBnWqZY/3u6XrMPHrJejz6nMY8Fp7ixw2bt2DgSOnm8zBLz56iwaWU84WDooESIAESIAESMAVCdDAKtiq08AqWN7sjQRIQB4CNLAEa5GZmQXlFsMff/0TF2OuI7iQPxrXj8BbPV40bXrubIf5VkHzuJTVVl3atUT3l58yrcC69/hy7ip8vWA1hvTtiJ6dnrGIYte+o+j1zng0rFsdcz6/+yvZYyU+EUaXkO6GmBR3JGbk3IdMOIGdAgM8slDcJwuBnllCGRXdl1PdHK5bSCyDDEfA3x0I8wICPKyfF4kZWbh6G0jK1GeIio5QTzcE3LdPYF69JWZm4Vp6lm56REcpys+cryA4FvNW6ik2gsQM4EqafnUVUwEoHGXSrXxOi+gx83P094qZs6juu/PxTv3trd+o33OK7hK+maq+n/X8u0I2PaLns1rdSt6tMSNE0+sSt+fZ/+mSV9akdX8bL6s06iIBEiABXQnQwNIVr3GTT/n2R5z9LwZpt2/jemw8Tpw5b9qsvlb1ihg2sCvCHyqfPTjlyYRzl/yGD/p3Qdf2LS0Oet+hk+j69qempzku/HJ4dszshiOFIZ1K8MD6GC9EJQpe2QlnVhdYwT8TLcPSUTFAzMCKSnTDhqueOJ3krq4jRpOAAIGyPkDTYHeU9bVuYJ1LycKWuEycSxVIakNIGW83PF7IA2V9xOb5udRM/HUrA9FpYueRDZKEmojyMyfTm2M5X6BZEaD83Ye8Wh3HmRTgjxvA2RSh4eoWJJvu8n5ZaFE0ExX8rA/5dDKw6bo7ziQ79ocRs0pR3eZ4vfQb9XuuYkAGnipxG5UCM4Tmut5/V8imRwgKALW6lby9d44RTa9L3O5nhuqSV9ak9daOk1UadZEACZCArgRoYOmK13mSJ6ekYclPmzD52+Xw8fbGmgWfZd9qqWoF1sPVMeeLuyuwdj89TBjS/psemH/WBwfiPIXb6BFYMygDXUuno2aQ2FKWg/HuWHjeEwfjHWu86cGCOR1PoLq/GzqEuqOGv/UL8MNJWfjxWiaOJOljGFXzdUe7EE9U8xMzsI4mZ2JlbDqOpoidR3qRFuVn7l9vjjUCgI7FgPBAMUPlUEIWll4BDifqRUgsr2y6wwOz0LlkJiIKWZ/vkbfcsPiSOw4liPEWo2F7lKhucw966Tfq91yt4HR0L5eK2oXFDCy9/66QTY/ozFSrW8lbb91Y0fS6xP379Ae65JU16SPrPpNVGnWRAAmQgK4EaGDpitf5kk+etRyzF/9qup1w2IAupgEuWL4e42f8ILQH1pOP1cXUMf2zwdDAcr45whEVLAFRA0Zv44UGln3qLpsRJDoq2XSLGkF6GUCi3O6PE9VNA8syYbXGCw0s+3CUwsB6ysUMrPU0sGz9nGU7EiABYxOggWXs+hW4+j0HT6DbgLF4pHZVfDflznLtP/8+gDc/mAyRpxD26vQs3u37Mg2sAq8cO3RWAjSwtFVWlJ+5F72NQNmMIFG6sukWNYJoYFmuMFdgic5863GyGWqio1KrWwYD659W4iv6RTnIHFf/d8eueJOZDbWRAAk4NwEaWM5dX7uPbsfuQ3h9yCTUq/UQ5k+982vXtdg4PNFuIMo8UAxrF1l+rO/gj2Zg/ZZ/MenDfnimeQMaWHavDBO6KgFRA0Zv44UrsOwzA2UzgkRHJZtuGliilaOBpefWBGqNIL1XhInOCrW6ZTCwdrW8u7+q6DiNHNdgw6dGlk/tJEACJGAzARpYNqNzzYZjpy3EopUb8WqHVhj6dudsCMoG7cpG7YtmjEDtGpVywLkRdwstXhqMzKws/LVqGoIC/Wlgueb04ah1IEADSxtUUX7mXvQ2AmUzgkTpyqabBpZo5Whg0cDKPQeMaGDtfNKxT0HUdsapb91wo/hTvNVnZwsSIAESkJcADSx5a1Pgyrb9E4njUf+h9ZMNUSIsJEf/6RkZWLp6M8Z9uRgeHh5YPe9TlC1dPDtm666D6Pu/L1ChTEnMmvQeSha70z4pOQXvjJoBJXeXdk9i2ICuOfJyD6wCLzM7dDICogaM3sYLV2DZZ2LJZgSJjko23TSwRCtHA4sGFg0sbWeLY1rTwHIMd/ZKAiTgeAI0sBxfA2kU/LjmT4yaNM+kp3yZkiaDys/XB/G3EnHo+BnExSfC388XE0b2QbNGdXLpnjRzKeYtWQsvL0/UCa8Eby8vHDgShVsJSahepZzplkN/Px8aWNJUnEKcgQANLG1VFOVn7kVvI1A2I0iUrmy6aWCJVo4GFg0s5zCw/m4xUtukN1jrRzeNMZhiyiUBEiAB+xCggWUfjk6RRTGaVq/fjr92HsB/F68g9uYtJKekItDfD2UfLIHG9cLxcttmKBZaOM/xKvtcLVyxAcejopGRkYkHSobh2eYN0LPTM/Dx9srVjiuwnGLqcBAOJCBqwOhtvHAFln0mgWxGkOioZNNNA0u0cjSwaGA5h4G1o/mH2ia9wVo32jzaYIoplwRIgATsQ4AGln04MouNBGhg2QiOzUjg/wnQwNI2FUT5mXvR2wiUzQgSpSubbhpYopWjgUUDy0kMrGYuZmD9QQNL26ccW5MACRiVAA0so1bOSXTTwHKSQnIYDiMgasDobbxwBZZ9poBsRpDoqGTTTQNLtHI0sGhgOYeBtb3pKG2T3mCtG2/52GCKKZcESIAE7EOABpZ9ODKLjQRmNxTfs+BUggfWx3ghKtHDxt7s06yCfyZahqWjYkCWUMKoRDdsuOqJ00nuQvGuEuTvDhTzBgIEy5mYAVxJA5Iy7UsoOCANZUokIDgwTShxXII3omMCEZfoLRSvd1DNkNt4tXISaoWkW+3qQKwnvj/pj4OxuW/ltYfGiMLp6FohFRFFrOsw9xV5wxMLT/sg8qanPbq3OYcoP3MHenOsFZqG7lUTUDvsttCY9l/1wvxjgThwzbHzUTbdtYulomd4PJRXa8f+Kz6YdygIyqsMh6hus1a99NcpkYJedW5CeRU59sX4Yu6+wlBeHXnUKZWM3vVj8fADyUIy9l7ww+x/QrDvop9QvNog2fSI6lerW8lbY9Js0fS6xG174iNd8sqatMmfrjVeWetAXSRAAgVPgAZWwTNnj/cQeKyE+GOAE9LdEJPijsQMN4cyDPDIQnGfLAR6ihlYiu7LqW4O1+1QaBY6L+cLNCsClBe83jmTAvxxAzgrdj0lPNyIirHo/FQUlFeRIzIqBIvXV4TyKsPRoOINDGx1Fg0q3bQqZ9epwpj6eznsiiqii+wG5eIwoHk0GpSPE8q/60wwpm0ug11ng4Xi9QoS5WfuX3eOVWIxqE0UGj4kNh93Hg/BlDUVseuEY+djA8l0N6h2HQPbn0TDatetTp2dR4ti6orK2HW0qF5TTFVeUd3mpHrpbxBxDQM6n4DyKnLsigzFtMVVoLw68qhf5xr69zoG5VXk+GdfKKbPrQrlVY9DNj2iY1SrW8lbsu5O0fS6xG193LVWJD32l2utONNl0jApCZCAIQnQwDJk2ZxHdJDfOOcZDEeiioAstxw1qRWDod0OoEnty0L6t+0vjnELamHbgRJC8XoHNa5xBUM7HUKT8CtWu9p2qBjGLQnH9sPFdJHUuOpVDG13FE2qiV04bjsainErq2H7sTBd9IgmFeVnzqc3R6POR9l0N657Ce+/sQ9N6sZYPy/2lMCEWXWwfU9J0Smja5yo7uz5qJP+Rg0uYcjAvWjU8JLQeHfsLIlJUx/Gjl2O5diwyUUMHroHjz4mpvvvrSXxxbi62LmtlNA41QbJpkdUv1rdSt5g79Oi6XWJo4GlC1YmJQESIAHpCNDAkq4kriWIBpZr1fve0dLAsk/tRQ0YvY0XGlj2qadsRpDoqGTTLWoEbdPJABLldn+cqG4aWJYJqzVeaGDZh6MMBtZfj7nWpuaPb3WtTett/UxlOxIgAecjQAPL+WpqqBHRwDJUuewqlgaWfXDSwNLGUZRftmGg80o22YwgUbqy6RY1gmhgWa4wV2CJznzrcbIZaqKjUqtbBgPrzyZjRIfnFHFPbBPfQ9YpBsxBkAAJkMD/E6CBxangUAI0sByK36Gd08CyD35RA4YrsCzzFuVHA8v6fKWBZafzWfDWx+z5qNMKMhpY9qmnWiNI7xVhoqNSq1sGA2tLY/E9VUU5yBzXdPsImeVRGwmQAAnoRoAGlm5omViEAA0sEUrOGUMDyz51FTVgaGDRwLLPjLOchQaWfeiKrhyjgWWZt1rjRW/DSDY9orNUrW4pDKxGLmZg7aCBJTqfGUcCJOBcBGhgOVc9DTcaGliGK5ndBNPAsg9KGljaOIryyzYMeAuhReA0sLTNQ3NrGljaOKo1Xmhg2ccIlMHA+uPRT7VNHoO1bvb3cIMpplwSIAESsA8BGlj24cgsNhKggWUjOCdoRgPLPkUUNWC4Assyb1F+NLCsz1caWHY6n3kLoSaQNLA04cturJajDAbW5oZj7TN4g2RpvnOYQZRSJgmQAAnYlwANLPvyZDaVBGhgqQTmROE0sOxTTFEDhgYWDSz7zDjLWWhg2YcuV2Bp46jWeOEKLMu81XKUwcDa1OAzbZPHYK1b7PogX8UXY65h5vc/Y8e/h3AtNg7BQYGoX6cq+nRti0rlH8i3/f0BySlpmLP4V/z+5784f+kqfLy9UL1KObzaoRWaNqotnO9mXAJe6DUCV6/fxJC+HdGz0zPCbRlIAiRAAjSwOAccSqBVywHC/cfHeeN8dCHEx/kIt9EjMKhQKh4snYDgoDSh9HHx3vjvfCDib+mjWzY9QlAAyGJgRVSMReenoqC8ihyRUSFYvL4ilFcZjvByN9C5+RlElL9pVU7kmcJYvLk8Dp0toovs8DI30fmxc4goGyeUP/JcMBZvLYtD0YWF4vUKEuVn7l9vjkadj7LpDq9yHa+0OYnwh6yf14eOh+CHNZVx6ERRvaaYqryius1J9dJfo9p1dGx/AuHVxT4XDx0JwdIVVXD4qGM5Vo+4hpc6n0CNiOtC3A9HFsXyxVVwJDJUKF5tkGx6RPWr1a3kfbrFdtH0usTRwMqJ9ejJc+g+8DMkJqXgwVLFUKFsScRcicXxqP/g7e2Fr8YOwqP1agjX4lZCErr2/xSnzlxAcFAAalargMSkVBw4cgoZGZno36sd+nZrK5Sv//Cp2Lx9nymWBpYQMgaRAAncQ4AGFqeDQwms29RYuH+9/9AUFSLbH/ay6RHmGAB0LAaEB7oJNTmUkIWlV4DDiULhwkHBAWkoUyIBwYGChmSCN6JjAhGX6C3ch56BQf5pKFMsEcEBt612E5fohegrAYhP0ke3SUdoEoL9reswi4xL8kL0NX/d9IgyF+WXrVtnjkadj7LpDgpMRZlSCQguZP28jrvljeiLgYhP0OcHBtF5aI4T1Z09H3XSb9QfRoKCU1G6zC0EBYt9nuv9w5hsekTno1rdSt7fN0wTTa9L3Mb643TJK2vSJ/8Zmqc0xVB6rvsHOHf+Mt7r1wk9Oj6dHfvXzgPoP3waAgJ8sX7xRBQK9Bca4ojxc7Bq7Va0eqIePhv2Bnx97vwtEX3hMnoNnoBLl69jwbRhqFuzitV8S1ZvxpjJC9C6RUP8umknDSwh+gwiARK4lwANLM4HhxKIS6sg3L/eS/1Fhcj2eHHZ9IhylGUFlqhexpEACZAACZAACVgmEJ+ct6FSEMw2POJaBlbLf/PmveGv3Rj04ZemFVazJ72XC/+kmUsxb8laDHq9A17v0ibf8ly/EY9mHQYh0N8PG5d9Dn8/3xxtFFOs39DJaFQvHN9OGpJnvqizF/DSGx+hVo2KaPfM4xg6dhYNrHzpM4AESOB+AjSwOCccSoAGlnb8NLC0M2QGEiABEiABEiAB2wk42sD6vd5428UbsGWr3f/LU/XwcbPx07ptGD+8D9q0fDRXnGIkte0xHFUrlcGK2aPzHb2SS8nZvvXjGP1er1zxWVlZeKLdQNyMT8DWVdNNtxjef6Sm3UbHPh8j5mosVs0Zg+3/HsKoSfNoYOVLnwEkQAI0sDgHpCJAA0t7OWhgaWfIDCRAAiRAAiRAArYTcLSBtb7uBNvFG7DlU3vez1N1u9dGmva6WrtoAso8UMxiXIPW/Uz7Y+1dP8u0J5a147Ppi7BwxQaTeaWYWJaOt4dNxR879plWYCkrse4/Pp36PRav2oTPR72Jp5vVx7Kf/8DHX8yngWXAuUfJJOBoAlyB5egKuHj/NLC0TwAaWNoZMgMJkAAJkAAJkIDtBBxtYK172LUMrKf35m1gPfJMHyQlp2L/xjnw8vSwWNQXe43AidPn8fN3n6JiOetPJHzzg8n48+8DmPP5+2hYt7rFfGOnLcKilRswYtCreOWFFjlituzYj7eGTcGLzzyGT/73mum9pas3Y/TkBTSwbD/l2JIEXJYADSyXLb0cA6eBpb0ONLC0M2QGEiABEiABEiAB2wk42sBaW2ei7eIN2PKZfbn3tlKGkZmZhYjmPeHn643d62blObJuA8Ziz8ET+H76cDwcUdkqAXPs0m9GIfyh8hZjv5y7Cl8vWI0Br7VHn1efy465FhuHF3qOQFAhf/z47Wj4+915YAYNLANOOkomAUkI0MCSpBCuKoMGlvbK08DSzpAZSIAESIAESIAEbCfgaAPrtzqTbBdvwJbP7rO8WXpKahrqPvUGggL98fear/IcWe8hE/H37sOmTd6Vzd6tHZ36fozIY2ewcs4YPFTxQYuhsxb+gqmzV+CNrs9hYO/2phhlb6zX35uE3fuPYfFXI1G9SrnstjSwDDjpKJkEJCFAA0uSQriqDBpY2itPA0s7Q2YgARIgARIgARKwnYCjDaxfa7uWgdV6v2UDSzGNwpupWYE1DA9HVLFaeDUrsPr3aoe+3dqa8s1d8hs+n7kM7/XrhB4dn87RBw0s2881tiQBVydAA8vVZ4CDx08DS3sBaGBpZ8gMJEACJEACJEACthNwuIFV63PbxRuwZesD7+apWtmgPSExWWgPrFVzP0GVCqWtEug/fCo2b98ntAfWsAFd0KVdSxw+fhZd3hqDR2pXw6yJ78LNzY0GlgHnGSWTgIwEaGDJWBUX0kQDS3uxaWBpZ8gMJEACJEACJEACthNwtIG1puYXtos3YMs2BwfnqfrlPh+ZDKT8nkKomFz/rv0me1+qvBJO/HoJvlu6TugphDPHD8ZjDWqiz/ufY9s/kahYthSCCgXkSq3sjfXfxSsoVSIUxUOLmN5f+OVwA1aCkkmABAqaAA2sgibO/nIQoIGlfULQwNLOkBlIgARIgARIgARsJ+BoA+uXCNcysJ6LzNvAGjN5AZas3ozxw/ugTctHcxU16uwFtO0xHOXLlMSaBZ/lW/T1W/7B4I++QvvWj5tMrPsP5bbFJ9oNxPUb8diyYgrCihZG94GfYfeB4/nmvjfg8JbvVMUzmARIwDUJ0MByzbpLM+p1mxoLazkcWRTLF1fBkchQ4TZ6BNaodh0d259AePVYofSHjoRg6YoqOHy0qFC82iDZ9IjqL+cLNCsClPcVa3EmBfjjBnDIhy5dAAAgAElEQVQ2RSyeUSRAAiRAAiRAAgVDwNEG1s/hkwtmoJL00vbQO3kqUTZnVzZpb1QvHN9Oyr1X1qSZSzFvyVr06vQs3u37co48l6/eQEiRIHh5emT/v7JS6/EXB8DXxxsbl30Of7+cf7j9tfMA+g2djIiq5bFk5ighQtwDSwgTg0iABCwQoIHFaeFQAq1aDhDuPz7OG+ejCyE+7s4jeB11BBVKxYOlExAclCYkIS7eG/+dD0T8LX10y6ZHCAoAf3egmDcQcPdvJKtNEzOAK2lAUqZoD4wjARIgARIgARIoCAKONrBW15hSEMOUpo/nDw+yqqVTv9GIPHo61wbqitk0YMQ0uLm7Y92iCSgeduf2PeVQTC3F3FL2xFKeOHjvvlXKZuzKpuytnqiHccP7wMfby9Qm+sJlvPbuRFyMuYYpo99Gy8frCTGigSWEiUEkQAIWCNDA4rRwKIEgv3EO7Z+dkwAJkAAJkAAJkAAJaCPgaAPrp+quZWC9cMS6gaXsL9XlrU9Mt/U9WKoYKpQtCWV11bFT/8fefcdHUfx/HH8nkBASehMsVEGlWFGxF8SKqICKYqEKqBQRUAFBRemI9CKIIKCoiCh+BbGgInYBQVCkF+mdQChJfo9ZfhcNuSR7Lbd799p/UDM7+5nnzF28N7tzG61gqn/3x7I8Xti+53B9ufA3ayEs+miUihb5d++qY8eOW0HVb8tWWf/9/PMq60jKMS1ZvlonUlN1353Xq/fTzWwvIgIs21Q0RACBUwQIsFgSYRUgwAorPxdHAAEEEEAAAQQCFgh3gDWr+rCAx+CmDu5Z0THXck14NWbybC34fol27d6nQkmJuqhWVbV68A5dUL1KlvM//myRXho6WVfUrqHhfbI+IXH8RKomvztXH89fpE1bdiguLr91t9b9DW70utdWTgUSYOU6fTRAAIFsBAiwWBphFSDACis/F0cAAQQQQAABBAIWCHeA9cF5wwMeg5s6aLjS/hYcbhoXtSKAAAK5CRBg5SbEz0MqQIAVUl46RwABBBBAAAEEQi4Q7gBr5rnRFWA1+pMAK+SLmgsggIAjBQiwHDkt0VMUAVb0zDUjRQABBBBAAIHIFAh3gPX+OSMiEzabUTX+q31UjZfBIoAAAh4BAizWQlgFCLDCys/FEUAAAQQQQACBgAXCHmBVGxnwGNzUQeNVT7qpXGpFAAEEgiZAgBU0SjryR4AAyx81zkEAAQQQQAABBJwjEO4A672q0RVg3fs3AZZzVj+VIIBAXgoQYOWlNtfKIkCAxaJAAAEEEEAAAQTcLRDuAOvds0e5G9DH6u9b/YSPZ9AcAQQQiAwBAqzImEfXjoIAy7VTR+EIIIAAAggggIAlEO4Aa8bZo6NqJu5f/XhUjZfBIoAAAh4BAizWQlgFCLDCys/FEUAAAQQQQACBgAXCHWC9UyW6AqwmawiwAl60dIAAAq4UIMBy5bRFTtEEWJEzl4wEAQQQQAABBKJTINwB1tuVx0QV/ANr20XVeBksAggg4BEgwGIthFWAACus/FwcAQQQQAABBBAIWCDcAdb0StEVYD24jgAr4EVLBwgg4EoBAixXTlvkFE2AFTlzyUgQQAABBBBAIDoFwh1gTas4Nqrgm65vG1XjZbAIIICAR4AAi7UQVgECrLDyc3EEEEAAAQQQQCBggXAHWFMrjAt4DG7q4KENbdxULrUigAACQRMgwAoaJR35I0CA5Y8a5yCAAAIIIIAAAs4RCHuAVT7KAqyNBFjOWf1UggACeSlAgJWX2lwriwABFosCAQQQQAABBBBwt0C4A6y3zhrvbkAfq39402M+nkFzBBBAIDIECLAiYx5dOwoCLNdOHYUjgAACCCCAAAKWQLgDrClnvR5VM/HIptZRNV4GiwACCHgECLBYC2EVIMAKKz8XRwABBBBAAAEEAhYId4A1+czoCrAe3UyAFfCipQMEEHClAAGWK6ctcoomwIqcuWQkCCCAAAIIIBCdAuEOsN48Y0JUwTfb0iqqxstgEUAAAY8AARZrIawCBFhh5efiCCCAAAIIIIBAwALhDrAmnT4x4DG4qYPm/7R0U7nUigACCARNgAAraJR05I/ANWVftn3aoRMx2pYSq+TUGNvn0BCB3AQSY6Uy8VJSvtxanvx5cqq045h0OM1e+1C3MvWXjjP15/y6SE5N187jzqk71C70jwACCCCQdwLhDrDeKBddAVaLrQRYebe6uRICCDhJgADLSbMRhbVMqPO87VGvPpRP87bFaU2yzaTBds80jGaBignSDcWlSgn2FNalSF/tldan2Gsf6lYVCkjXF41VhYScA6wNKelasD9NG46GuiL6RwABBBCINoFwB1gTy74RVeQtt7WIqvEyWAQQQMAjQIDFWgirwC+3drd9/SX78mny+gJauj+/7XNoiEBuAjWSpPvLSDUL2buzb/mhdM3YIf2RnFvPefPz6okxalwqVjUSc67/j8Ppen9XmlYcTs+bwrgKAggggEDUCIQ7wJpw2qSosTYDbbW9eVSNl8EigAACBFisAUcIEGA5YhqiuggCrKiefgaPAAIIIBAEgXAHWK9HWYDVmgArCKuWLhBAwI0C3IHlxlmLoJoJsCJoMl06FAIsl04cZSOAAAIIOEYg3AHW+DLRdQfWYzu4A8sxi59CEEAgTwUIsPKUm4udKkCAxZoItwABVrhngOsjgAACCLhdINwB1rgoC7DaEGC5/SVD/Qgg4KcAAZafcJwWHAECrOA40ov/AgRY/ttxJgIIIIAAAkYg3AHW2NJvRtVEtN3ZLKrGy2ARQAABjwABFmshrAIEWGHl5+KSCLBYBggggAACCAQmEO4Aa0yp6Aqw2u0iwApsxXI2Agi4VYAAy60zFyF1E2BFyES6eBgEWC6ePEpHAAEEEHCEQLgDrFFRFmA9QYDliHVPEQggkPcCBFh5b84V/yNAgMVyCLcAAVa4Z4DrI4AAAgi4XSDcAdbIktF1B9aTu7kDy+2vGepHAAH/BAiw/HPjrCAJuDHASsqXrtMKpKtQ/nRbCodOxGj70Rglp8bYau9rI6fVY7f+xFipTLyUlM/eGcmp0o5j0uE0e+3ttiLAsiuVczszn6Xyxygp1t46T05L164T6UGfT19HY+ouHWfWoc26U9O183jw16Gnbqe8LvxxdMLr2VO3eV+0U4/nfSVU78++Otqt29NvqOp36+8VU3fZhDSffj9vS4kN6e9nJ9Vjdz366mj6/XZbT7vdh6TdiJKTQ9KvUzttv/tRp5ZGXQgggEBIBQiwQspL57kJuDHAqpyYpnqlT6hKkr0Aa01yjObvzK+1h2Nz4/Dr506rx+4gKiZINxSXKiXYO2NdivTVXml9ir32dlsRYNmVyrld+fgYXVs4nyoUsLfONxxN0zcHU7XxmL3XUXCqzNpLhQLS9UVjVSHBXoC1ISVdC/anacPR0FTklNeFr6NzWt2VCqarbsk0VS6Y80jWHpG+2B2rdUfszb+vLr62t1u3p99Q1e/W3ytVklJ1S9njOrtQqi361Yfyad62OK1Jtvk3KbZ6/beR0+qxW76vdZt+W/3Qx273IWk3vER0BVgd9hBghWQh0SkCCDhegADL8VMU2QW6McA6v0iqHjrzhM4vYu9WoN8PxGrq5vz6/UBo/gfZafXYXbFOCY6cUoddt1PbVU+MUeNSsaqRmPMH8D8Op+v9XWlacTg0gdF5CbFqWCK/zitoL8BaeSRNH+w5oZUp9l5H/vrkdp5dP08/oXZ063p0Wt01C6XrwXJpqlU45/W+7GCMpm+N1fJDzgiw7NbtWY+hqt+tv1cuKHpCj1Y8qguL2QuwluzLp8nrC2jp/vy5vVX49XOn1WN3EL7WbfqtPbev3e5D0m5Y8egKsDruJcAKyUKiUwQQcLwAAZbjpyiyCyTACnx+3fpBwykfeJ1Sh78rwW4AE+rghQDL3xnMfJ5b16PT6rYbBIUqAPJ3NditmwDLu7CvwQsBVnAcnRBgvVZ8ir8vO1ee12nvI66sm6IRQACBQAUIsAIV5PyABAiwAuKzTibACszQaR+8fR0NAZavYpnb2/XznBXqINCt69FpddsNggiwvL9+3Pp7hQArsPdDz9m+OjohwBpaLLoCrKf2EWAFZ7XTCwIIuE2AAMttMxZh9RJgBT6hbv2g4ZQPvE6pw9+VYDeACXXwwh1Y/s5g5vPcuh6dVjcBVmDr0a2/V3wNXrgDy/s68dXRCQHWq1EWYHUmwArsTY6zEUDAtQIEWK6dusgonAAr8Hl06wcNp3zgdUod/q4EAix/5U6eZ9ePO7Bydnba64gAK7DXhVt/r/gavBBgRU6ANbhodN2B1WU/d2AF9i7H2Qgg4FYBAiy3zlyE1E2AFfhEuvWDhlM+8DqlDn9Xgt0AhjuwvAvb9SPAIsDy9zXqy3l2gzdPn6F6BNKtv1cIsHxZbdm39dXR9BTuTdwHFXkrOIN3SS9dDzzskkopEwEEEAiuAAFWcD3pzUcBAiwfwbw0d+sHDacER06pw9+VYDeAIcAiwPJ3jdk5z2mvI7tBUKgCIDtm3trYrZsAy7uwr8ELd2AFx9EJAdbAKAuwuhFg+fs2y3kIIOByAQIsl0+g28snwAp8BgmwAjN02gdvX0dDgOWrWOb2dv08Z4U6CHTrenRa3XaDIAIs768ft/5eIcAK7P3Qc7avjk4IsAYUjq47sJ45yB1YwVnt9IIAAm4TIMBy24xFWL0EWIFPqFs/aDjlA69T6vB3JdgNYEIdvLCJu78zmPk8t65Hp9VNgBXYenTr7xVfgxfuwIqcO7D6R1mA9SwBVmBvcpyNAAKuFSDAcu3URUbhBFiBz6NbP2g45QOvU+rwdyUQYPkrd/I8u37cgZWzs9NeRwRYgb0u3Pp7hQArsHl38x1Y/QpNDc7gXdLLc4ceckmllIkAAggEV4AAK7ie9OajwB9dWtk+47ctBTXhpxJa/E9B2+eEouFFZVPU4qJ9Mn/aORZvS9Abi4vJ/BmKw2n12B2jUz7wOqUOu26ntrMbwHAHlndhu34EWARY/r5GfTnPbvDm6TNUj0ASYPkya9m3dVqgZndUvtZt+g33Ju59k6IrwOqeTIBldz3TDgEEIkuAACuy5tN1o9n6ax3bNf+0uJRGvHGuzJ/hPC6vtUsdHlwl86ed48dlpTR8ejWZP0NxOK0eu2N0SnDklDrsuhFg+StFgBVcucy9Oe11ZDcIClUA5K+13boJsLwL+xq88AhhcBydEGC9HGUBVk8CLH/fZjkPAQRcLkCA5fIJdHv5+49Vtj2E778tp1f7X6IfFp5u+5xQNLzy8q3q0vE3XVlnq63uF/1QToOHXaxFP5az1d7XRk6rx279TvnA65Q67LoRYPkrRYAVXDkCrFB4EmAFpkqAFZif52xfHZ0QYPVJnBacwbukl+cPN3VJpZSJAAIIBFeAACu4nvTmowABlo9gXpoTYAVmSIAVmJ/nbDZxD46jW9ej0+q2GwRxB5b3dcsjhMF5PfsaBIX6jjC7o/K1bicEWC9FWYDViwDL7nKmHQIIRJgAAVaETajbhkOAFfiMEWAFZui0D96+jsbuHk7sgeVd1q6f5+xQO7p1PTqtbgIsX99JMrcnwArMz3O2r0EQAZb/7i8WjK47sHof4Q4s/1cLZyKAgJsFCLDcPHsRUDsBVuCTSIAVmKHTPnj7Ohq7AUyogxfuwPJ15ry3d+t6dFrdBFiBrUcCrMD8CLCC4+dLLy8kRFeA9UIKAZYv64O2CCAQOQIEWJEzl64cCQFW4NNGgBWYodM+ePs6GgIsX8Uyt7fr5zkr1EGgW9ej0+omwArsdUGAFZgfAVZw/HzppXfCdF+au77tiykPun4MDAABBBDwR4AAyx81zgmaAAFW4JQEWIEZOu2Dt6+jsRvAhDp44Q4sX2fOe3u3rken1U2AFdh6JMAKzI8AKzh+vvTSq0B0BVgvHSXA8mV90BYBBCJHgAArcubSlSMhwAp82giwAjN02gdvX0dDgOWrWOb2dv08Z4U6CHTrenRa3QRYgb0uCLAC8yPACo6fL730jLIA62UCLF+WB20RQCCCBAiwImgy3TgUAqzAZ40AKzBDp33w9nU0dgOYUAcv3IHl68x5b+/W9ei0ugmwAluPBFiB+RFgBcfPl156xEfXHVivHOMOLF/WB20RQCByBAiwImcuXTmSuV9cZbvuP5aV1HvTq2nFslK2zwlFw8tr7VKHB1fJ/Gnn+HFZKQ2fXk3mz1AcTqvH7hid8oHXKXXYdTu1HQGWv3Inz6tQQLq+aKwqJMTY6mhDSroW7E/ThqO2mvvcqGKCdENxqVKCvVPXpUhf7ZXWp9hrH6pWTqu7UsF01S2ZpsoFcx7x2iPSF7tjte6IvfkPlZ+nX7t1e9qHqv7KiWmqV/qEqiSl2xrymuQYzd+ZX2sPx9pqH6pGVZJSdUvZ4zq7UKqtS6w+lE/ztsVpTXI+W+19beS0euzW72vdpt9WP/Sx231I2nWPfzsk/Tq1077HHnBqadSFAAIIhFSAACukvHSem8DN9Trk1iTj5wf2x2vzxsI6sL+A7XNC0fCisilqcdE+mT/tHIu3JeiNxcVk/gzF4bR67I7RKcGRU+qw63ZqOwIsf+VOnpcYK5WOk5Ly2QswklPTtfO4dDgtsOtmd7app0y8qcde/8mp0o5joavHXhUnHZ1Ud1K+dFv1ePySU+3Nv10Pf9vZrdvTf6jqN3WcViBdhfLbC7AOnYjR9qMxCrejqbtsQppPdW9LiQ1Z3U6rx+669LVu0++323ra7T4k7Z6Li64Aq99xAqyQLCQ6RQABxwsQYDl+iiK7wCIF+7tugE57tMJp9didUKcER06pw64bAZa/UpyHAAIIIBAqgQNHng1V17b6fTZ/dAVY/U8QYNlaGDRCAIGIEyDAirgpddeACLACny8CrMAMCbAC8/Oc7dY9sIIzenpBAAEEolsg3AHWM1EWYA2wEWD9s22Xxr71kRb9vFy79uxX0SKFdNlF56rNQw10dqUzfF6wR1KOaeL0T/TZ1z9r89adKhAfp+rVKurhxjfr+isv9Nrf4SNH9f6cBfr821+1et0WJR9OUYnihVX7gnPU/P7brPM5EEAAAV8ECLB80aJt0AUIsAInJcAKzJAAKzA/Aqzg+NELAggg4GaBcAdY3fK942Y+n2sfmNokx3NW/r1Bj3bsZwVGZ51eRpUrlNO2HXv015pNio+P0+i+nXRF7Rq2r3vw0GE91P4VK4QqWiRJ559XWcmHj2rpitVKTU1T+xYN1faRBpn6W7BoiXoNekO79x5Q4UKJqnFORRUsUEBrNmzRxi07lC9frAb2bKtbb7jMdh00RAABBAiwWANhFSDACpyfACswQwKswPwIsILjRy8IIICAmwXCHWB1ibIAa3AOAZYJlO589Dlt2LxdXds1UbP7b81YWt/8sFTtewxXUlKC5k0fZAVLdo6eAyZq1qff6ubraqtf98eUUCDeOm3jlu1q0Xmgtm7frSnDu+uS86tldDftg/kaNelDdW5zn+669WrF5T+5uWN6erqmz/pCfYdPVVJigubPGKKihZPslEEbBBBAQARYLIKwChBgBc5PgBWYIQFWYH4EWMHxoxcEEEDAzQLhDrCejo2uO7CGpGV/B9b8b35Rp14jrTusJgzummVZDR47Q5Pe+VSdWjdW66b1c1125g6qGxp3UqHEgvr83SFKLJj5S4lMKNbu2aG6snZNvT64S6b+9h9MzjacMneI/bL0Lw3p/Th3YeU6CzRAAAGPAAEWayGsAgRYgfMTYAVmSIAVmB8BVnD86AUBBBBws0C4A6zOURZgvZpDgNWj/wR9OHehBvRoo/r1rsiyrNas36IGzXro3LPLa+aEl3JddqYv02ejO67VS11bZGlv7qi6rmFH7TtwSN/OGmE9Ymjn6Dt8msxdWt07PKSmDW+ycwptEEAAAe7AYg2EV4AAK3B/AqzADAmwAvMjwAqOH70ggAACbhYId4D1VJQFWENzCLAatnze2uvq02kDVf6MMl6X1eV3tLP2x/pt3nhrT6ycjn4jpmnqzPlWeGVCLG/Hk92H6atFi607sMydWHaOZ14epzmff6+RfTvqhisvsnMKbRBAAAECLNZAeAUIsAL3J8AKzJAAKzA/Aqzg+NELAggg4GaBcAdYnaIswHothwDr0tvayHz735LPJ2bsO3Xq2rqnRU+tWrtZH735iqpUzPkbCR9/bqi+/n6pJg7ppjqXVPe6TD13U/Xs9LAeuLturkv56LHjqntvZx1JOaov3x/KHli5itEAAQQ8AjxCyFoIqwABVuD8BFiBGRJgBeZHgBUcP3pBAAEE3CwQ7gCrY5QFWMOyCbDS0tJV68bmKpgQr1/mjs92ST3Soa9+/X2V3hrRQxfXqprj0vO0nTGut2qeU8lr25FvzNKYKbPVoWUjtXn4zlyX8ug3P9SoNz9U04b11L1D01zb0wABBBAgwGINOEKAACvwaSDACsyQACswPwKs4PjRCwIIIOBmgXAHWO1j33Yzn8+1j0h7wOs5KUeP6ZJbHlORQon6fs7obPtt1WWQvv/lD2uTd7PZe05Hk7Yvatmf6/TBxD46p8pZXpuOn/qxhk2YqcceulMdWzXKsb9FvyxX22deVdnSJaw9uOx+E6LPSJyAAAIRKcAdWBE5re4Z1M31Otgu9sD+eG3eWFgH9hewfU4oGjotMHJaPXbNLyh1TI+ee0gXlj5u65QlO+M0+c9CWrrr5Fc3B+twSh3+jqd6Yowal4pVjcSYHLv443C63t+VphWH0/29VI7nnZcQq4Yl8uu8grG2+l95JE0f7DmhlSlpttqHqlFirFQ6TkrKl7Of5/rJqenaeVw6HKKyTT1l4k099kacnCrtOBa6euxVIbm1brvjox0CCOQsEO4A68koC7BGZhNgmQ3Va97gyx1Y3XVxrWo5Tq4vd2C1b9FQbR9pkG1/v69Yo5ZPD1RMTIx191d2gRivNwQQQCA7AQIs1kZYBeZ+cZXt6/+xrKTem15NK5aVsn1OKBo6LTByWj12zS+vtked6q9RnXP22Drlh79K6LU5VfTjqhK22ttt5JQ67NZ7ajsCLH/lTp5XoYB0fdFYVUiwF2BtSEnXgv1p2nA0sOtmd3bFBOmG4lKlzN9Snu3F1qVIX+2V1qeEph67vbq1brvjox0CCDg7wHoiygKsUdkEWGaWzAbth5KP2NoDa9YbL6ta5TNznNz2PYbpy+8W29oDyzwOaB4L9HYs/2udWnYeqBMnUjVu4NOqfcE5vKwQQAABnwUIsHwm44RgCuw/Vtl2d99/W06v9r9EPyw83fY5oWjotMDIafXYNb/6gm169pGluvrC7bZOWbjkNPWfcoEWLi1rq73dRk6pw269p7YjwPJX7uR5dv08Vwn1nWxufaTVrXUHtno4GwEEPALhvgPr8SgLsEbnEGDd1+YF/fHX+ly/hdCEXD9/Ok6JBXN+smHQmHf05oy5tr6FcOyAzrrm8vOzvDDMnVetuw5WWlqaRvd7SpdeeC4vHgQQQMAvAQIsv9gi+6StO/bo7Vmfa+FPy7Tpn506kZqqcmVK6No6F6jVg3eoVImiWQD+XL1RjVr1yhHmxS7N1bj+dZnaEGAFvpYIsAIzJMAKzM9ztlsfISTACs78E2AFx5FeEHCrQLgDrHax091K51fdY9IezPa8PkOn6J3ZX2pAjzaqX++KLO3WrN+iBs16qFL5cpozpV+u15+34Cd1fmG0Gt1xrRVinXqYxxava9hRu/ce0IKZr6l0yWKZmvy27G+16TZE+fLFWndeXVC9Sq7XpAECCCCQnQABFmsjQ8B8c8nEtz/RqEmzdPzEydCqauWzlJqaqpV/b9CefQdVolhhTR7eXZXLl8skZzaCNBtCml9aZct4f8TLbOx441UXEWAFec0RYAUGSoAVmB8BVnD8PL24NQhya93BnT16QyB6BcIdYLWJsgBrXA4Bluf/ya+sXVOvD+6SZVEOHjtDk975VC2a3K6n296X6efbd+5VieJFFJf/340YzZ1a197TQQkF4vX5u0OUWDDzM+7f/LBU7Z4dqlrnVtI7Y3tn6u+nxX/q8edeVYEC8daG8edVrRC9LxJGjgACQREgwAoKY+R00qnXSK3btFXPPdlUdS6pnjGwIynH9MKQSZoz/3vr63bNxov/PT754gd16zNWndvcp5YP3G4bhDuwbFNl25AAKzBDAqzA/AiwguNHgBVcR3pDAIG8FQh3gPVYlAVY43MIsMzMN2n3kpatXKuu7Zqo2f23ZiwGEzZ16DlcMbGxmjttoE4rXTzjZybUMuGW2RPLfOOg2WjdcwwZ+67eeOd/uvm62urfo40KxMdZP9q4ZbtaPj1I/2zbpddeelL1rq2dcY4J0p7o/pqKFE7SxCFdVaXiGXm7KLkaAghEpAABVkROq/+DMkFVvtgYxf//L6b/9mR+dvVdT8p8Re/XHwzL9CjhW+9/pv4jp+uVZ1vp7luvtl0AAZZtKgIs9sDyugbsPgIX6r2beIQw8Ney6cGtdzK5te7gzBq9IIBAuAOs1lEWYL2eS4C16Z8davrEy9ZjfWedXkaVK5STubvKbPlhgqn+3R/L8nhh+57D9eXC36zFvOijUSpaJCljYR87dtwKqn5btsr67+efV1nmc8GS5autrUbuu/N69X66WUZ7c9fWNfd0kDmveNHCmfry9moZ8UrHLE938KpCAAEEvAkQYLEufBK4p0VPrVq7WR9OellVK/37rSXDJszU+Kkfa+yAp3XN5bVs90mAZZuKAIsAiwAr8JdLlh7sBoCeE0MdBLo1CHJr3SFYUnSJQFQKhDvAahVlAdaEXAIsswhNeDVm8mwt+H6Jdu3ep0JJibqoVlVrP1tv+1B9/NkivTR0sq6oXUPD+3TIso7N9iKT352rj+cv0qYtOxQXl9+6W+v+BjdmCcP27j+oq+7AZxsAACAASURBVO9qb/u1MHPCSzr37PK229MQAQSiV4AAK3rn3q+R33jvU9bf4Pz0v7FKSvz3GfgXBr+p9+Ys0Puvv+jT8+0EWH5NQ6aTeIQwMEMeIQzMz3M2d2AFx9GtQZBb6w7OrNELAgiEO8BqGTstqiZhYlrTqBovg0UAAQQ8AgRYrAXbAuYrec1X85q/tZk++vlM53luO277SAMdPHREyYePWI8hlj+9jPV1umdX8v7cOwGWbf5sGxJgBWZIgBWYHwFWcPw8vbg1CHJr3cGdPXpDIHoFwh1gNY+yAGsSAVb0vtgYOQJRLkCAFeULwO7wzVfktuw8UD8uXqlhfdrrpmsuyXTqk92H6atFi7Pt7tYbLlOfbi2yfHPJ3C+usluC/lhWUu9Nr6YVy0rZPicUDSsnpqle6ROqkpRuq/s1yTGavzO/1h6OtdXe10ZOq8du/bWq7NGDt6yR+dPOsWxNCU2fV0Xmz2AeTqnD3zFVKCBdXzRWFRL+3WzVW18bUtK1YH+aNhz190o5n1c+PkbXFs6nCgXsrfMNR9P0zcFUbTxm73UUmqolu36e64fasWKCdENxqVLmL3nKdvjrUqSv9krrU0IlZK9ft9Ztb3S0QgCB3ATCHWA1i7IA600CrNyWJD9HAIEIFSDAitCJDfawRr4xS2OmzLaCKxNgnXqYTRp/XPynzjq9tMqUKqa4uDjt2rNfP/62wnr+fvPWnbrq0poaPyjz1/neXC/rM/bZ1X5gf7w2byysA/sLBHt4PvWXlC9dpxVIV6H89j54HzoRo+1HY5ScmnPA4FMR/2nstHrsjqNo0jGVL3tIRQsds3XK/kPx2ritkPYnx9tqb7eRU+qwW++p7RJjpdJxUlK+nNdXcmq6dh6XDqf5e6WczzN1lMofo6RYe+s8OS1du06kh6weu6O06+fpLy8cy8Sb+bQ3guRUacex0M2rvSok4+jGuu2Oj3YIIJCzQLgDrEejLMCaTIDFSxIBBKJUgAArSifel2FPn/WFXhn2lrVR49SRPTPtfWWnH7OJ5F3Neshs6Djx1W6qc3H1jNOKFOxvpwvaIIAAAggggAACCDhUINwB1iOxUx0qE5qypqQ9FJqO6RUBBBBwuAABlsMnKNzlmY3ZzQbt5c84TVOGP6fSJYv5VdLAUW9r8nvzZPbIat+iIQGWX4qchAACCCCAAAIIOE8g3AHWw1EWYL1FgOW8FwEVIYBAnggQYOUJszsv8s7sL9Vn6BRVPKusJg191no00N9j2gfz1Xf4NDVtWE/dO/z7zSncgeWvKOchgAACCCCAAALOEAh3gPVQvui6A2tqKndgOWPlUwUCCOS1AAFWXou75Hpvvf+Z+o+cbj02OGFIN5UsXiSgyodNmKnxUz9Wp9aN1bpp/Yy+CLACYuVkBBBAAAEEEEAg7ALhDrAejLIAazoBVtjXPAUggEB4BAiwwuPu6KtOeudTDR47QzXPqWRtul60SFJA9R4/kaq7mnXXhs3b9fbo53V+9SoEWAGJcjICCCCAAAIIIOAcgXAHWA/ke8s5GHlQydupD+fBVbgEAggg4DwBAiznzUlYKzJ3SZm7pS6uVU1jB3S2tWH7xi079MW3v+rOm69UqRJFM9W/cct29R0+Vd/+uEzXXF5LYwc8nenn3IEV1unm4ggggAACCCCAQMAC4Q6wmkRZgPUOAVbAa5YOEEDAnQIEWO6ct5BUveiX5WrdZbDVd7nTSqpAfFy21ymUWFAzxvW2fv7n6o1q1KqXYmJiVOHM03RmudLWP/+zbZfWbdqqtLR0XVyrqkb1e0pFCiUSYIVk9ugUAQQQQAABBBAIj0C4A6z7oyzAmkGAFZ6FzlURQCDsAgRYYZ8C5xQwb8HP6vzCKFsFFUoqqB8/GWO1PX78hGbNXagvF/6qv9Zs0t59B5WeLhUrWkjnVS2v+jddqdtuvFz58sVm6Zs7sGxx0wgBBBBAAAEEEHCsQLgDrPuiLMB6lwDLsa8FCkMAgdAKEGCF1pfecxEgwGKJIIAAAggggAAC7hYId4DVON8UdwP6WP37qY/4eAbNEUAAgcgQIMCKjHl07SgIsFw7dRSOAAIIIIAAAghYAuEOsBpFWYA1kwCLVx4CCESpAAFWlE68U4ZNgOWUmaAOBBBwgkBirFQmXkrKZ6+a5FRpxzHpcJq99qFq5bS6k/Kl23L0+CWnxoSKxqd+7dbt6TRU9Zs6TiuQrkL5023Vf+hEjLYfjVG4HU3dZRPSfKp7W0psyOp2Wj22JlPm/cc3R9Pvt9t62u0+JO0aRlmA9QEBVkjWEZ0igIDzBQiwnD9HEV0hAVZETy+DQwABHwUqJkg3FJcqJdg7cV2K9NVeaX2KvfahauW0uisVTFfdkmmqXDDnEa89In2xO1brjjgjwLJbt2dUoaq/cmKa6pU+oSpJ9gKsNckxmr8zv9YezrrXZajWnLd+qySl6payx3V2oVRbl119KJ/mbYvTmmSbibGtXv9t5LR67Jbva92m31Y/9LHbfUja3RNlAdYsAqyQrCM6RQAB5wsQYDl/jiK6QgKsiJ5eBocAAj4K1EiS7i8j1SxkL1BZfihdM3ZIfyT7eKEgN3da3TULpevBcmmqVTjnAGbZwRhN3xqr5YfseQeZLUt3duv2nBiq+s8vkqqHzjyh84vYu7Xv9wOxmro5v34/EJogyK77BUVP6NGKR3VhMXsB1pJ9+TR5fQEt3Z/f7iV8aue0euwW72vdpt/ac/va7T4k7e7ONzkk/Tq10w9TH3VqadSFAAIIhFSAACukvHSemwABVm5C/BwBBKJJwGlBkF17p9VtNwgKVQBk1+3UdnbrJsDyLuxr8EKAFRxHJwRYDaIswPqIAMvft1nOQwABlwsQYLl8At1ePgGW22eQ+hFAIJgCTguC7I7NaXXbDYIIsLzPMHdg2V35ObdzWqBmd1S+1u2EAOvOKAuwPibAsrucaYcAAhEmQIAVYRPqtuEQYLltxqgXAQRCKeC0IMjuWJ1WNwGW3ZkjwOIRwqxrwI0BVv0oC7DmEGAF9ibH2Qgg4FoBAizXTl1kFE6AFRnzyCgQQCA4Ak4LguyOyml1E2DZnTkCLAKsyAiw7sj3ZmCL3mVnf5LazGUVUy4CCCAQHAECrOA40oufAgRYfsJxGgIIRKSA04Igu8hOq5sAy+7MEWARYEVGgHV7lAVY/yPACuxNjrMRQMC1AgRYrp26yCicACsy5pFRIIBAcAScFgTZHZXT6ibAsjtzBFgEWJERYN0aZQHWXAKswN7kOBsBBFwrQIDl2qmLjMIJsCJjHhkFAggER8BpQZDdUTmtbgIsuzNHgEWAFRkB1i1RFmDNI8AK7E2OsxFAwLUCBFiunbrIKJwAKzLmkVEggEBwBComSDcUlyol2OtvXYr01V5pfYq99qFq5bS6KxVMV92SaapcMOcRrz0ifbE7VuuOxISKxqd+7dbt6TRU9VdOTFO90idUJSndVv1rkmM0f2d+rT0ca6t9qBpVSUrVLWWP6+xCqbYusfpQPs3bFqc1yflstfe1kdPqsVu/r3Wbflv90Mdu9yFpd3P+SSHp16mdfnaiuVNLoy4EEEAgpAIEWCHlpfPcBAiwchPi5wggEE0CibFSmXgpyebn6eRUaccx6XBaeJWcVndSvnRbjh6/5FRnBFh26/bMdqjqN3WcViBdhfLbC7AOnYjR9qMxCrejqbtsQppPdW9LiQ1Z3U6rx+67hK91m36/3dbTbvchaXdTlAVYnxNghWQd0SkCCDhfgADL+XMU0RUSYEX09DI4BBBAAAEEEIgCgQNHng3rKOvmfyOs18/ri39xokVeX5LrIYAAAo4QIMByxDREbxEEWNE794wcAQQQQAABBCJDINwB1g35J0YGpM1RfHWipc2WNEMAAQQiS4AAK7Lm03WjIcBy3ZRRMAIIIIAAAgggkEkg3AHW9VEWYC0gwOIViAACUSpAgBWlE++UYRNgOWUmqAMBBBBAAAEEEPBPINwB1rX5J/hXuEvP+uZEK5dWTtkIIIBAYAIEWIH5cXaAAgRYAQJyOgIIIIAAAgggEGaBcAdY1+R/PcwCeXv5b0+0ztsLcjUEEEDAIQIEWA6ZiGgtgwArWmeecSOAAAIIIIBApAiEO8C6Ki66AqzvjhNgRcprh3EggIBvAgRYvnnROsgCBFhBBqU7BBBAAAEEEEAgjwXCHWBdGTc+j0cc3sstOv5YeAvg6ggggECYBAiwwgTPZU8KEGCxEhBAAAEEEEAAAXcLhDvAqhM3zt2APlb/w/E2Pp5BcwQQQCAyBAiwImMeXTsKAizXTh2FI4AAAggggAAClkC4A6zLoizA+okAi1ceAghEqQABVpROvFOGTYDllJmgDgQQQAABBBBAwD+BcAdYl8aN9a9wl5718/G2Lq2cshFAAIHABAiwAvPj7AAFCLACBOR0BBBAAAEEEEAgzALhDrAuiRsTZoG8vfyvx9vl7QW5GgIIIOAQAQIsh0xEtJZBgBWtM8+4EUAAAQQQQCBSBMIdYF0cZQHWbwRYkfLSYRwIIOCjAAGWj2A0D64AAVZwPekNAQQQQAABBBDIa4FwB1gXxo3O6yGH9XpLjj8e1utzcQQQQCBcAgRY4ZLnupYAARYLAQEEEEAAAQQQcLdAuAOsC+JHuRvQx+qXHnvCxzNojgACCESGAAFWZMyja0dBgOXaqaNwBBBAAAEEEEDAEgh3gFUrygKsZQRYvPIQQCBKBQiwonTinTJsAiynzAR1IIAAAggggAAC/gmEO8CqGT/Sv8JdetbyY0+6tHLKRgABBAITIMAKzI+zAxQgwAoQkNMRQAABBBBAAIEwC4Q7wKoeZQHWCgKsMK94Lo8AAuESIMAKlzzXtQQIsFgICCCAAAIIIICAuwXCHWCdFz/C3YA+Vr/yWHsfz6A5AgggEBkCBFiRMY+uHQUBlmunjsIRQAABBBBAAAFLINwB1jnxw6NqJv461iGqxstgEUAAAY8AARZrIawCBFhh5efiCCCAAAIIIIBAwALhDrCqRlmA9TcBVsBrlg4QQMCdAgRY7py3iKmaACtippKBIIAAAggggECUCoQ7wDq7wLCokl99tGNUjZfBIoAAAh4BAizWQlgFCLDCys/FEUAAAQQQQACBgAXCHWBVLvBawGNwUwdrj3ZyU7nUigACCARNgAAraJR05I8AAZY/apyDAAIIIIAAAgg4RyDcAValKAuw1hFgOWfxUwkCCOSpAAFWnnJzsVMFCLBYEwgggAACCCCAgLsFwh1gVSgw1N2APla/4ehTPp5BcwQQQCAyBAiwImMeXTsKAizXTh2FI4AAAggggAAClkC4A6zyBV6NqpnYeLRzVI2XwSKAAAIeAQIs1kJYBQiwwsrPxRFAAAEEEEAAgYAFwh1gnRllAdZmAqyA1ywdIICAOwUIsNw5bxFTNQFWxEwlA0EAAQQQQACBKBUId4B1RoEhUSW/5ejTuY73n227NPatj7To5+XatWe/ihYppMsuOldtHmqgsyudkev5NEAAAQScKECA5cRZiaKaCLCiaLIZKgIIIIAAAghEpEC4A6xyBQZHpGt2g9p6tEuO41359wY92rGfkg+n6KzTy6hyhXLatmOP/lqzSfHxcRrdt5OuqF0jqswYLAIIRIYAAVZkzKNrR0GA5dqpo3AEEEAAAQQQQMASCHeAVTYhugKsbSnZB1ipqWm689HntGHzdnVt10TN7r81Y5V+88NSte8xXElJCZo3fZAKF0pkBSOAAAKuEiDActV0RV6xBFiRN6eMCAEEEEAAAQSiSyDcAVaZhEFRBb4jpWu2453/zS/q1GukdYfVhMFZ2w0eO0OT3vlUnVo3Vuum9aPKjcEigID7BQiw3D+Hrh4BAZarp4/iEUAAAQQQQACBsN+BVSphYFTNwq6UbtmOt0f/Cfpw7kIN6NFG9etdkaXdmvVb1KBZD517dnnNnPBSVLkxWAQQcL8AAZb759DVIyDAcvX0UTwCCCCAAAIIIBD2AKtklAVYu3MIsBq2fN7a6+rTaQNV/owyXlfn5Xe0s/bH+m3eeGtPLA4EEEDALQIEWG6ZqQitkwArQieWYSGAAAIIIIBA1AiE+xHC4gkDosbaDHRvyjPZjvfS29ro8JGjWvL5RMXlz+e13T0temrV2s366M1XVKUi30gYVYuHwSLgcgECLJdPoNvLJ8By+wxSPwIIIIAAAghEu0C4A6xiCf2jagr2pTzrdbxpaemqdWNzFUyI1y9zx2dr8kiHvvr191V6a0QPXVyralTZMVgEEHC3AAGWu+fP9dUTYLl+ChkAAggggAACCES5QLgDrCJRFmAdyCbASjl6TJfc8piKFErU93NGZ7sqW3UZpO9/+cPa5N1s9s6BAAIIuEWAAMstMxWhdRJgRejEMiwEEEAAAQQQiBqBcAdYUQOdy0DT09NV8wZf7sDqrotrVYMPAQQQcI0AAZZrpioyCyXAisx5ZVQIIIAAAgggED0CBFjOmWuzQfuh5CO29sCa9cbLqlb5TOcUTyUIIIBALgIEWCyRsAoQYIWVn4sjgAACCCCAAAIBCxBgBUwYtA7ua/OC/vhrfa7fQmhCrp8/HafEggWCdm06QgABBEItQIAVamH6z1GAAIsFggACCCCAAAIIuFuAAMs589dn6BS9M/tLDejRRvXrXZGlsDXrt6hBsx6qVL6c5kzp55zCqQQBBBCwIUCAZQOJJqETIMAKnS09I4AAAggggAACeSFAgJUXyvauYTZnN5u0X1m7pl4f3CXLSYPHztCkdz5Viya36+m299nrlFYIIICAQwQIsBwyEdFaBgFWtM4840YAAQQQQACBSBEgwHLWTDZp95KWrVyrru2aqNn9t2YU980PS9Wh53DFxMZq7rSBOq10cWcVTjUIIIBALgIEWCyRsAoQYIWVn4sjgAACCCCAAAIBCxBgBUwY1A42/bNDTZ94Wbv3HtBZp5dR5QrltH3nXv25eqNiYmLUv/tjXh8vDGoRdIYAAgiEQIAAKwSodGlf4OZ6HWw3PrA/Xps3FtaB/eHdbLJI4aM668xDKlrkmK3a9x+I16bNhXTgYGjqdlo9tlAkFU06pvJlD6loIZuOh+K1cVsh7U+Ot3sJW+2cUoetYr00KpJ4TOXLJKto0vEcu9ifHKeNO5J04HBw/TwXteoodVhFE3Ouw9N+/+E4bdyVGLJ67Hra9cuoO8SObl2PTqu7SKGjKn/6IRUtnPP7y/6D8dr4TyEdOBSa92e76zDjdWSz7oz1GKL63fp7pUjRozqz/EEVKWrv90qo/7/CafXYXY++1m36/Wz+cLvd0y6PBEx4NWbybC34fol27d6nQkmJuqhWVbV68A5dUL1KHlXBZRBAAIHgChBgBdeT3nwUmPvFVbbP+GNZSb03vZpWLCtl+5xQNKxx3m7d32iValbfY6v75StKaMbMavpjZUlb7X1t5LR67NZfq8oePXjLGpk/7RzL1pTQ9HlVZP4M5uGUOvwdU82Ke/XgjetUq9K+HLtYtq6Ypn9ZScvXh+ZxgZrl9+nBazaoVoX9toaybENRTf+2gpZvLGarfaga2fXzXD/Ujm5dj06ru2a13Xqg/t+qeU7O7y/L/yqht+dU1fJVoXl/9nXd2q3b02+o6nfr75XqtXbp3gdXqUat3bboQ/3/FU6rxxaKJF/rNv3eWvc7u93TDgEEEEAAAb8FCLD8puPEYAjsP1bZdjfff1tOr/a/RD8sPN32OaFoeOXlW9Wl42+6ss5WW90v+qGcBg+7WIt+LGerva+NnFaP3fqvvmCbnn1kqa6+cLutUxYuOU39p1yghUvL2mpvt5FT6rBb76ntrqqxQ882Wa6ra+7IsYuFy8uo/zs19d0fZfy9VI7nXXXuTj3bcKWuPm+Xrf4Xriyl/h+cp+/+LG2rfaga2fXzXD/Ujm5dj06r+6pLtqrbY4t19SXbcn5d/FpWA8dfpO9+Dc37s6/r1m7dGesxRPW79fdKnav/Uednf9UV19j7/Rzq/69wWj1216OvdZt+i8avtds97RBAAAEEEPBbgADLbzpODIYAAVbgim79oOGUD7xOqcPflWA3gAl18EKA5e8MZj7PrevRaXXbDYIWhigA8nc12K2bAMu7sK/BCwFWcBwJsPx9xXMeAggggICvAgRYvorRPqgCBFiBcxJgBWbotA/evo6GAMtXsczt7fplBAYhvpPNrevRaXXbDYIIsLy/ftz6e4UAK7D3Q8/ZvjoSYAXHnV4QQAABBHIXIMDK3YgWIRQgwAoc160fNJzygdcpdfi7EuwGMNyB5V3Yrh8BVs4r1GmvIwIsf99RTp7n1t8rvgYv3IHlfZ346kiAFdjrjbMRQAABBOwLEGDZt6JlCAQIsAJHdesHDad84HVKHf6uBLsBDAEWAZa/a8zOeU57HRFg2Zm17Nu49feKr8ELARYBVmCvFM5GAAEEEMhrAQKsvBbnepkECLACXxBu/aDhlA+8TqnD35VAgOWv3Mnz7Pp5rhLqINCt69FpdRNgBfa6cOvvFQKswObdc7avjuY8NnEPjj29IIAAAgjkLECAxQoJqwABVuD8bv2g4ZQPvE6pw9+VYDeACXXwwibu/s5g5vPcuh6dVjcBVmDr0a2/V3wNXrgDy/s68dWRACuw1xtnI4AAAgjYFyDAsm9FyxAIEGAFjurWDxpO+cDrlDr8XQkEWP7KnTzPrp/nKqEOAt26Hp1WNwFWYK8Lt/5e8TV4IcAiwArslcLZCCCAAAJ5LUCAldfiXC+TAAFW4AvCrR80nPKB1yl1+LsS7AYwoQ5euAPL3xnMfJ5b16PT6ibACmw9uvX3CgFWYPPuOdtXR3MejxAGx55eEEAAAQRyFiDAYoWEVYAAK3B+t37QcMoHXqfU4e9KIMDyV+7keXb9PFcJdRDo1vXotLoJsAJ7Xbj194qvwQt3YHlfJ746EmAF9nrjbAQQQAAB+wIEWPataBkCAQKswFHd+kHDKR94nVKHvyvBbgAT6uCFO7D8ncHM57l1PTqtbgKswNajW3+v+Bq8EGARYAX2SuFsBBBAAIG8FiDAymtxrocAAggggAACCCCAAAIIIIAAAggg4JMAAZZPXDRGAAEEEEAAAQQQQAABBBBAAAEEEMhrAQKsvBbneggggAACCCCAAAIIIIAAAggggAACPgkQYPnERWMEEEAAAQQQQAABBBBAAAEEEEAAgbwWIMDKa3GuhwACCCCAAAIIIIAAAggggAACCCDgkwABlk9cNEYAAQQQQAABBBBAAAEEEEAAAQQQyGsBAqy8Fud6CCCAAAIIIIAAAggggAACCCCAAAI+CRBg+cRFYwQQQAABBBBAAAEEEEAAAQQQQACBvBYgwMprca6HAAIIIOAqgT9Xb1SjVr10Uc2qmjqyh6tqp1gEEEAAAQQQQAABBCJFgAArUmaScSAQoMBDT76ixcv/1vTRz+uC6lUC7C10p6elpWv+N79ozuff6/cVa7Rv/yElJSbovGoV1OSuG1Xv2trZXvyfbbs09q2PtOjn5dq1Z7+KFimkyy46V20eaqCzK52Ra9Fvvf+ZBo+ZodKliunzGUNybT/r02/1/pyvtXr9FqWmpqrCmWV1961X68F7blK+fLG5nk8D3wVOpKbqgrotFReXX0vmT/C9Ay9n+BNgsU6DQh+VnUz74HP1HT5Vt9e9XIOeb+cag2Ur12rGR1/p5yV/avuuvYrLn0+VypfT7TfWUdOGN1mvSW/HkZRjmjj9E3329c/avHWnCsTHqXq1inq48c26/soLcx3/j4tXqutLY7R77wF99s5gnVG2VI7n/LL0L705Y66W/LFahw4f0Wmliqvu1RerzSMNVLRwUq7XowECCCCAAAIIhE+AACt89lwZAUcJuCHAWrtxq555eZxWrFpvfTiqcU4llSheRNt27LH+mzmaNqyn7h2aZrFd+fcGPdqxn5IPp+is08uocoVy1nl/rdmk+Pg4je7bSVfUruF1Tsw5zw+cqHkLfrZ+Xu60krkGWM/1fV0fffadVedFtaoqLn9+LV2xRoeSj+jqy2ppVL9Oyp8vn6PWQCQU44QAi3UaCSspfGO4p0VPrVq72Qp8Frz/mooVLRS+Ymxc+eChw+ozdIo++eIHq3XVSmfqrNNLa9+BZOt9OeXoMesvRSYM6abEggUy9WjOfaj9K1q9bouKFknS+edVVvLho1q6YrVSU9PUvkVDtX2kgdcq0tPTNWH6Jxo+caZMYGyO3AIs8xcKvQdPstrWOKeiShYvqr/XbtLWHXtUrkwJTR/dS2VKFbMxapoggAACCCCAQDgECLDCoc41EXCggBsCrGV/rlPzTv2sO5haPnCH9YHHc5i7xx7rOliHjxzVxCHdVOeS6hk/Mx+E7nz0OW3YvF1d2zVRs/tvzfjZNz8sVfsew5WUlKB50wepcKHETLNjPlh17DVC6zdtU4smt2vGR1+qSOGkHAMsE1yZAKty+XIaP7ir9cHIHIePpKhTr5H67uflOX4wc+DycE1JTgiwWKeuWS6OK9SE3A8+3kfnVa0gE7p3e+IBPXrvLY6r878FHTh0WPc99oKqVj5TnR+717rrynNs27lH7Z551Qrk2jx8pzq0bJRpLD0HTJS5U/Xm62qrX/fHlFAg3vr5xi3b1aLzQG3dvltThnfXJedXy3Te/oPJeq7veH39/VLVubi60tLT9NPiP3MMsDb9s0P1H35O+fPn09gBnXXphedafZogbOSkWRo75SOrr4mvdnO0N8UhgAACCCAQzQIEWNE8+4wdgf8IuCHAMuXuP5CcKbj67ySOmjRLoyfP1v133aheTz2S8SPzyKEJjswdVhMGd80y74PHztCkdz5Vp9aN1bpp/Yyfm8cMb2vaTcdPpOrFLs111y1X6cKbWqpUyZwfIby7eU/9vW6zpo3qqQtrnJ3penv3H1Tdeztbd1d8/cGwjA9sLMbgCDghwGKd/Ku3/AAAIABJREFUBmcuo7EXT6BjQpuWTw/UWeVK6+Mp/RxPkdP7sgmWmj/V3wr0/zsW88jfDY07qVBiQX3+7hAlFkzINE7zlwvtnh2qK2vX1OuDu2T6WZO2L8oExebRRBPytXtmqBb9sjzHAMs8lmkezzz1fd4TYj3Q7iWrT2/v246fAApEAAEEEEAgSgQIsKJkohkmArkJZBdgNWjWQ2vWb9Gn0wao/BmnZenm6LHjuvjm1laotOijUZl+fvkd7VTz3EoaP7CLZv7vG82eu9DaD+ro0WM6rXQJXVvnfLV79G6VKFY4t/Js/fzzb39Vx+dHWPtgvfbSkxnn9Og/QR/OXagBPdqofr0rsvRlxmfGee7Z5TVzwkuZfm72vTIhVK3zKlt/U1/zhuY5PkJo9tmq16SLyp9RRp9OG+i17s4vjLIeRxzxSkfdeNVFtsZGI3sC2QVYJji8+q721uNBX73/mtfOvv1xmdo+MyTL+vFnD6ycqmWd2pvLaGtlHi++vlFH6y5Qs0bb9xyuLxf+prdGdNfFtTLfgeSxCeT92fQxe953en/OAutRavOotLfjgbvrqmenh/2eDnO31JV3PpHld4R5TzbvzY3uuFYvdW2RpX/zfntdw47ad+CQvp01ItNfXPzw6wpt3bFb99x2jXWeeTzc7G2V0yOE5n3ZvD9/+d5QnVa6eJbrvf3hF3r5tbf0yL236JknHvB7vJyIAAIIIIAAAqETIMAKnS09I+AqgVAFWGaz8kvOP0fmA8cddetYe0+ZD2rm0Y/lf62z9qN6b/wLWR7d8wfPs7+JeeTG/K2852jY8nnrA5oJlEyw5O0wYZv5APfbvPHWnljeDk84ktMeWF98+5s6PD/cCspMYObtmPzePA0c9bZ1t5e5G4AjeAJuCLBYp8Gb70jqyROgtHzgdnVuc5/1ZRXmztEGN1+lft1bex1qIAHWS0OnaMbsL3VmudK646Y6KlIoSStXb9D/vvjB2lPq4lpVrVD/uisutPbt8/cwjwPe1vQZ67HI919/MaObfiOmaerM+VZ4ZUIsb8eT3Yfpq0WLrTuwzJ1Y2R2e31/ZBVjmMccr6j9uBVcmwPJ2mEc2G7fubf2FhbkLiwMBBBBAAAEEnCdAgOW8OaEiBMIiEKoAy4RVpUoU1dujn9fp//l2KPMB6fHnhurbH39Xl7b3q3mT2wIet+nPBGPjB3XRVZf++2Hn0tvaWHtjLfl8orWpurfDs3HyR2++oioVvX8joZ0Ay3y71aAx73jd78VzXc8dOLdcf6lefeGJgMdNB/8KuCHAYp2yYr0JNGrVS+ZuP/OYnXnczjy6bO7IOnLkqBZ8MExFTtmfz/Thb4DlCWvMXyDMeuNlFUw4ufeUOTx7+JlHpvs+5z0482UGPe+Jpwb2ntfBqXsW/rfvvsOnadoH8607wMydYNkduQVYf/y1Xve1ecEK5d4a0cNrN547xYoXLayFs0f4MkTaIoAAAggggEAeCRBg5RE0l0HA6QKhDLC6d3jI2qvk1MOEV22fedX6qvRRfTsFROTZZ6Va5TOtD2SewwRltW5sbn1A+2Xu+Gyv8UiHvvr191XWhxvzIcfbYSfAGvnGLI2ZMjvHUM587XuLpwZYG82bD28cwRNweoDFOg3eXEdST8tWrlWTdi9Z39Y3ffTzGUPzBDjZvYf6G2CZPf/M3n+PP3qXnmh+TyZK6+6rW1orX2ysfpk7TjExMX5Tm0d373yku/UFFuYO2P8+uud5z50xrrdqnlPJ6zU876dm83ezCXx2R24Bluc999o6F2hM/6e8duN5RNzcNfz7F2/4PWZORAABBBBAAIHQCRBghc6WnhFwlUAoAyzPHQWngqzZ8I8aPNpd51evYt2h5e9hvunKbMC7d99BTR3VM9OHIfMV7pfc8ph198L3c0Zne4lWXQbp+1/+sDZ5N5u9+xtgDRn7rt545396rn1TPdSontd+zDcmGu+LalbV1JHe7wbw1yLaz3NygMU6jfbVmf34nx/4hj743zd6oUsz3Vv/+oyGnjulTg3mPQ38DbBGv/mhRr35obXXk9nz6dTD7Fll7kjK6a7V3GbT3EFm9pQzj497ez/0bMT+wcQ+OqfKWV67Gz/1Yw2bMFOPPXSnOrbK/A2G/z0htwDL85clda+5WMP7dMi29AvqtpR5D1n6xUTlz+f9bt3cxs3PEUAAAQQQQCB0AgRYobOlZwRcJRDKAOvnT8cpsWCBLB6evVGqV6to7YPlz2H+hv/RDv1kwrCXn2mZsamvpy/P36rbvwMr+w2Tg34HFl/Z7s+U53iOUwMs1mnQpzpiOvRs3m7ufPpm1nAVSiqYaWyePfxMyG/C/v8e/gZY5kskzJdJeAt01m7cqjsfeS7Ltwb6Am7G0rXPGM396ifrPdm8N596+HIHVvsWDdX2kQbZlpBbgMUdWL7MHm0RQAABBBBwrgABlnPnhsoQyFOBUAZY2f1tdqAB1r79h6yvZ1+1dnOOj+yZDdrNh0Q7e2CZxw/N3Q7eDjsB1pT35mnAqLdt7YF10zWXaFif9nk6z5F+MScGWKzTSF91gY3vndlfqs/QKbl20vD2a9WnW+Zv6/M3wDJ3R5l9/9Zt3KoH76mru2+9RkUKJ+rvtZs1dPx7MiGW2Z/P7NPn62HCq+79X9fHny3SjVdfrKEvPuH1bqb2PYbpy+8WW49Rm8epvR3/PkLZVE0ber+j1ZyXW4Dl+SZRO3tgFS2cpEUfZ/5GXV8NaI8AAggggAACoREgwAqNK70i4DoBfwMsz7c7FS2SpEUfZf6ffk9wFIoAa8++g2rZeYAVXnVt10TN7r81W3Ozea/ZxDe3byE0IVd2d4uZzu0EWGYTebM5sZ1vIWzR5HY93fY+160VJxccSIDl+QbJetfW1msvPZkxTM+HX38e+WSdOnm1OKM2z+bt5k5Us/+St2P5n+uUUCBOX38wXEmJCRlNcguwcnp//mfbLnV7eZzMI83/Pcy3rJov1rj1hst8BkpNTVP3fq9rzuffywT0g3s/nu0XZ5gvuzAbvNv5FsKxAzrrmsvPz7ae3AIsswfXpbe1tfUthLXOraR3xvb2eeycgAACCCCAAAKhFyDACr0xV0DAFQLZBViex1ey28fq73WbdXfznsrLAGvXnv3WJujmscHnn3pETe66MUdjc3eDucthQI82VrB06rFm/Rbr27wqlS+nOVP6ZduXnQDL1HZdw44qf0YZKzDzdphHd8wjPIN7tdNtN17uivXhliKzC7A8H+RLFi9iPabl7Zj2wefqO3yqghVgsU7dsmrCV+eyP9fJ7AVlvvnUfANqdof5sguzj1Pvzo/qvgY3ZDQL5P1589adatapv86tUl4tH7xdR48dV5lSxVXprLJ+bdxuXnvd+ozTvAU/qf5NV+iV51rluI+Uadf5hdFqdMe1Voh16mEe/zbvpbv3HtCCma+pdMlifgdY5kSz36L5nfHle0MzbSbv6fTtD7/Qy6+9ZfkaZw4EEEAAAQQQcJ4AAZbz5oSKEAiLQHYBVsvOA/XDbys0buDTuvqyWllq8zwyl1cB1vade63HBjf9s0N9urXU3bdenauX2ZzdbNJ+Ze2aen1wlyztzbdxmW/lyu2OKDsBluncYzltVE9dWOPsTNczeyHVvbez0tJP7ndjNpfnCJ5AdgGW9c1qN7eSeXTq13njlVAgPstFPY80BSPAYp0Gb04juadeg97QzE++UfcOOT8i99WixXqy+zCdul9gIO/PnXqN1Nc/LNV3s0coseC/d3X5421eV0+/OErmLsbG9a9T787NFBub87cXmjter72ng/Va/PzdIVlq+OaHpWr37FDZuSMqtzuwzJjMZvBmU/hOrRurddP6WYbp2VQ+t7u9/PHhHAQQQAABBBAIjgABVnAc6QUB1wtkF2CNnjxboybN0o1XXaThL3fI9DfzW7fvtr763dxpkhcBlrle86cGyPw58Pk2uuV6+4+4mDrNV9Wf+rih+ZDUoedwxcTGau4pX/N+6qTaDbA833hVuXw5jR/cVeXKlLC6Mo+xPNV7lBb+tExNG96k7h0ecv26cdoAsguwTJ0m+Pxp8Z/q9sQDevSUb1779sdl1jemmSPQAIt16rRV4cx6kg+n6PpGHWUeu1vwwbAcw2wTwN7c5Glt3bHH+sILE2SZI5D3Z/PootkD66uZr8ns++TvcezYcXXqPVLm8emHG9+sZ5980HZXnm9tvfm62urfo40KxMdZ55r9EVs+PUjmMUfzOK95TeZ02AmwzJ1ctz7YTWlpaTIh1aUXnmt1ae70GjlplsZO+cja/9B8K2JMTM7hm+0B0hABBBBAAAEEgipAgBVUTjpDwL0C2QVY5o4h80HH3FFi9gC6ts75KpSUKPPYndnnpPYF5+jX31dZf9se6j2wmj7xspb8sVrmGwVPK30yFMruMF+7ftctV2X82NyxZc43H2LOOr2MKlcoZ43J7G9kPqz07/6Y18cL/9u/3QDLnOO5qysuLr8uqnm24uPitHTFGh08dNj68Dl52HNev5nRvSvIGZXnFGCZdWoePTVtzP4+5hvdzMdUs6bmf/OL6t90pT767LuAAyzWqTPWgtOrePejr/Tiq5Oz/Za+U+sfM2W2Rr4xK9MjboG8P3vCL3MX6NmVzlR8XH7rkomJCTr9tJLWBu4X16qWK+Nrr7+v16fNsdpVPKtsju2vuKSGenZ6OKONCb9MUPXbslXWX4Kcf15lHUk5piXLV1uv0/vuvF69n26Waw12AizTiblDzDzCbfqucU5FlSpR1NpH0YTOJsR7a0R363FODgQQQAABBBBwpgABljPnhaoQyHOB7AIsU8iOXfs0ZvKHWvjzcu3YuVfx8XGqUvF0Nbj5Kt3X4Ho92qGf1m3aGvIAy7NhsR2cZ554QI+ccpeNCa/GTJ6tBd8v0a7d+6wg7qJaVdXqwTt0wSlfT+/tGr4EWOZ8s8/V1Jnz9deajdZdFmeUK63bb7xczZvclnGngZ2x0Ma+QE4BlunF3IU3ftocLV72tw4cSlahpIKqdW5lPdSoni676DzVvvUx1b36koA2cWed2p+vaG7ZuHVvrfx7g94e/bwVpuZ27Ny9T3Xv62w9crdg5rCMANyf92fzyN/MT77WkLEzdPjI0WwvbR4HfLFL8xxLM/tGmf2j7BzmTt4Rr3TM1NTUMvndufp4/iJt2rJDJvQ3d0Ld3+DGXP9SwdOR3QDLtF+xar3GvfWx9Rcvh5IPq1TJYtYG8W0fbuB1byw746INAggggAACCOSNAAFW3jhzFQQcL+D5MDVzwks69+zyjq+XAhHwJmAey7rs9rZWMPXjJ2NAQgCBUwRMyGvuRPx95Vr16PiQbrzqYpkvNzCHeZzOBFom6O328ljrjtUZ43qr5jmVcEQAAQQQQAABBMIuQIAV9imgAATCL2A+sJhvezJ7NC36eFRA+6GEfzRUEM0Cvyz9S4927GeFsCaM5UAAgcwCc+Z/r2deGaeWD9yuzm3uy5bHsz/Vy8+0tB5z5EAAAQQQQAABBMItQIAV7hng+giESWD9pm0qU6qY9h88bD1G8umXP6rOxdU18dVuYaqIyyLgu4DZQ+ef7btVtkwJmTXdvd/r+mvNJrVv0VBtH2nge4ecgUCECwyfONN6hK5PtxZqePu12Y629+BJen/O1xrVt5Ouv/LCCFdheAgggAACCCDgBgECLDfMEjUiEAKBm+5/2tq41nOUKFZYk4d3l/nmPA4E3CKwZdsu3dykS6Zya51XWW++9qy1VxAHAghkFpg97zsr6K1zSXWN7d/Z2nPq1GPegp/0zMvjVKRwkua9Pdj64gwOBBBAAAEEEEAg3AIEWOGeAa6PQJgEzN/CL/1jjfLnz6ea51bSA3fXtb6RiQMBNwmYb3V8ZfhUbd+5x9qU/8raNay7SgrEx7lpGNSKQJ4JHD9+Qs2fGqDFy/+27sI1G5iXLlnM2v/KbAhvvpVz3catKl60sEb27agLa5ydZ7VxIQQQQAABBBBAICcBAizWBwIIIIAAAgggEEUC5tHb9+Ys0Nyvftaa9Vt0MPmw8ufPr+JFC6lKhTN09eW11Oj2a60vQ+BAAAEEEEAAAQScIkCA5ZSZoA4EEEAAAQQQQAABBBBAAAEEEEAAAa8CBFgsDAQQQAABBBBAAAEEEEAAAQQQQAABRwsQYDl6eigOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIOBoAQIsR08PxSGAAAIIIIAAAggggAACCCCAAAIIEGCxBhBAAAEEEEAAAQQQQAABBBBAAAEEHC1AgOXo6aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggICjBQiwHD09FIcAAggggAACCCCAAAIIIIAAAgggQIDFGkAAAQQQQAABBBBAAAEEEEAAAQQQcLQAAZajp4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAKOFiDAcvT0UBwCCCCAAAIIIIAAAggggAACCCCAAAEWawABBBBAAAEEEEAAAQQQQAABBBBAwNECBFiOnh6KQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAgg4WoAAy9HTQ3EIIIAAAggggAACCCCAAAIIIIAAAgRYrAEEEEAAAQQQQAABBBBAAAEEEEAAAUcLEGA5enooDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCDgaAECLEdPD8UhgAACCCCAAAIIIIAAAggggAACCBBgsQYQQAABBBBAAAEEEEAAAQQQQAABBBwtQIDl6OmhOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICAowUIsBw9PRSHAAIIIIAAAggggAACCCCAAAIIIECAxRpAAAEEEEAAAQQQQAABBBBAAAEEEHC0AAGWo6eH4hBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACjhYgwHL09FAcAggggAACCCCAAAIIIIAAAggggAABFmsAAQQQQAABBBBAAAEEEEAAAQQQQMDRAgRYjp4eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAII5LnAgUOH1fTxPjqSclRThnfX6WVL5XkNXBABBBBAAAEEEEAAAQTcI0CA5Z65olIEEEDANQLvzVmg0iWK6forL/Ra8y9L/9KjHftZPxvQs43q33SFa8YWjEJz8wnGNegDAQQQQAABBBBAAIFIEiDAiqTZZCwIIICAAwQOHzmqKxs8oXtuvVq9n27mtaLkwylq1qm/Dh9J0RuvPqPTShd3QOV5U4Idn7yphKsggAACCCCAAAIIIOAeAQIs98wVlSKAAAKuEPj821/V8fkRuu/O67MNsFwxkBAViU+IYOkWAQQQQAABBBBAIKIFCLAienoZHAIIIJC3AsePn1DXPmM1/5tfCLC80OOTt+uRqyGAAAIIIIAAAghEjgABVuTMJSNBAAEEwirw1vufacL0T7Rrz36vdRRKKqgfPxlj/cy0ua5hR+ufP5z0sqpWOjPjHM/PqlQ8Qx+9+YrVduLb/9NX3y3Wtp17VCixoKpWPkON61+vO+rWsc5LT0/X7Hnf6cO5C/X3us1KTj6iUiWLqc7F1dW6aX1VOPO0HG22bt+tSTPmauFPv2vbjj3Kly+fyp9RRnWvuUQPN6qnwoUSvZ6/duNWTZs5Xz8v+VNbtu1SalqaSpUoqnJlSljXNuefe3Z561xffDwXW/n3Bn365Y8ye4at37RNhw4fUcGEAqpc4XTddsNleuCemxSXP1+W2v73xY/q2meMHri7rnp2elgrVq3XpBmf6uclf2nfgUMqUaywLqxRVY/ed4suqF7FOv9Q8hFN++BzzVvwkzb9s1Opqak68/QyuvGqi9Tygdu9Gniu07RhPXXv0FR/rdmkN2fM1U+LV2r33v1KSipojf+eW6/RHTfVUUxMTFjXKBdHAAEEEEAAAQQQcK8AAZZ7547KEUAAAUcJ9Br0hrZs3aVVazdpz76DKlOqmCqXPz2jxsSCBTTilZOhlZ0AywQz74ztrVZPD9Le/QcVF5dfcfnzW/tmeY5H771FHVs31uPPDdUPv66w/rMJysy3G6ampln/nlgwQVOGP6fzqlbw6mUe6evWZ6yOHjtu/bxk8SIyd0qZb0o0R7nTSmr8oC6qXL5cpvNNePNc3/E6kZpq/fcihRIVExuj/QeSM9qZcGj66Oetf/fFx7Sf+9VPevrF0Rl9FStayAqvduzamzG2yy46V68P7qr8+TKHWJ5gyfy80e3XqUf/CVadZg5OpKbp2P+P1Zw3uHc7Vat8llp3GWSFcCZkMoYH/3/8pgAz9rfH9LL++38Pz3WurXOBbrvxMj0/4A3rOvHxcSoQH5epDxOEvfrCE9Y8ciCAAAIIIIAAAggg4KsAAZavYrRHAAEEEMhRoFOvkbk+QmgnwDIXKVokSWeVK6Nn2z+oC6qfrdjYGG3dsUf9RkzVF9/+ZtVxca1qWrz8b7V9uIEeuKfuyQDqRKq+/fF3PT9wovbtP6SLalbV1JE9stS9bOVaNX3yZSsQevCeumrzcAPrDipzmLufeg2aZN29VP6M0/TBxD4qmBBv/cyEOzc07qQjKcfUtOFN1nnmuuZIOXrMOsfUd0XtGrr6slqZrmvHx5xg7ogye4ndduPluu6KC1S6ZDGrHzO2N2d8qtdef9/6937dW6vBzVdluoYnWDL1pqal6+Zra+uJ5vdYd5WlpaXrj1XrrVBrzfotKl60sIoXLaTdew/oufZNddO1ta1xmqBwxuyvNGTcu9Ydbo89dKc6tmrk9TpJiQnWuM23Tj7ZvKGqVT55R52ZZ3Pnl7kryxyP3HuLnnniAV5BCCCAAAIIIIAAAgj4LECA5TMZJyCAAAII5CRgJ6CxG2CZMOmTt/pnufPHhCW3PNA143HF9i0aqu0jDbKU9f6cr9V78CTrv383e6TMXUz/PRq37m0FVfXrXaEBPdpkOd+EZbc/9Ix1x9KzTz6ohxvfbLX54bcVatl5oIoWTtJ3H4306dE4Oz52VthjXQfru5+XWwHX4F7tvAZL5j+au6PG9H8qS5dm3Gb8nmPK8O665PxqWdo98/I4zfn8e51d6QzNnvRKttcxYd3rg7p4tRgy9l298c7/rABy/owhKlu6hJ0h0gYBBBBAAAEEEEAAgQwBAiwWAwIIIIBAUAXsBDR2Ayyzf1Wn1o291tf5hVGat+Bnaw+ohbNHZgm5zElmb6ub7n/aOn/aqJ66sMbZGX0t+3OdmrR90fr3r95/zXrk0dvR5aUx1j5UJtwxIY85POeaa386fZC155Xdw46Pnb7GTJmtkW/M8np3mecOLNPP64O76MraNb12efVd7a3HM2udV1nvjOnltY3ZW6x7v9ct5yWfT8zU5r/XGTfw6Sx3m3kaHz5yVNc17CDzZ5e296t5k9vsDJE2CCCAAAIIIIAAAghkCBBgsRgQQAABBIIqYCegsRtgjezbUTdceZHX+gaMeltT3punc6qcZT3e5+0wj8vVurG59SOzj9VVl/4b5Jg7gsydQebxwE+nDcjWwIREJiwyd1st+niU1c70e0/Lnlq9botOK11cnR+7T7dcf6mt/Z3s+NiZkBmzv9RLQ6eoerWKem/8C9kGS2bj/FP3rvI0btSql/5cvVEPNapnPT7o7fDcbWZ+tmT+hExj/G+A9dP/xso8SpjdYfYp+/r7pbr5utoa+uKTdoZIGwQQQAABBBBAAAEEMgQIsFgMCCCAAAJBFbAT0NgNsGaM662a51TyWt+g0e/ozXfnqs4l1TVxSLdsx1Dj+mbWz8YOeFrXXP7vflQvDH5T781Z4NPY/1jwZkZ783jhU71GWHdjmcPsJXV73TpqePs1Gd886K1zOz6e8779cZnmf/OzVqzaoH+27bL2pTJ7YP33yCnAMntZ/TJ3fLZjvPexF6z9ujq0bKQ2D9/ptd1Pi/9U86f6Wz/77bPXrc3ZPYcnwDKbw//86bgcLT2BY053e/k0GTRGAAEEEEAAAQQQiCoBAqyomm4GiwACCIRewE5AYzfA+nDSy6pa6eSG4KcengDL3FVl7q7K7sguwPI8GmjuTjqjbClbMKfe6WXuxDLfYjh91uf6ecmfGX2YTeOfeuxer3tK2fExG8937DVCvyz9y+qzSoXTrVCsRPEiiv//b/FbumKN9fOcAiyzCf6ij07eNebt8ARY5jFN87imt8NOgPXfu9Oyu9bwiTM17q2Pve6lZQufRggggAACCCCAAAJRLUCAFdXTz+ARQACB4AvYCWicEGA9P/ANffC/b3K9g8uu0OatO2U2jX/3o6+0/2CyddoLXZrp3vrXZ+rCjk/7nsP15cLfVKJYYb32UnuvQdjr0+ZY30TohAArPj5Oiz97PUeqfiOmaerM+Tq/ehW9Pfp5u6y0QwABBBBAAAEEEEDAEiDAYiEggAACCARVwE5A44QAy7MJeumSxbRg5mtBMzh46LB6DXpDn339ixIKxOuLd1/N9O2HufmYTdWvubuD0tPT9VLXFmp0x7VeazPhlQmxnBBgmQIXzh5hPUaZ3dGm2xAt/GkZe2AFbaXREQIIIIAAAgggEF0CBFjRNd+MFgEEEAi5gOfbAe+57Rq9/ExLr9dzQoD127JVerh9X6u+qSN7WN/mF6zj+PETuuLOx3Uk5ZgmDO6qK2rXyOg6Nx+zJ5V5tM8c7457QTXOqei1LLMvlXm8zykB1vA+HVT3mou91noo+YiuvaeDjh47rq7tmqjZ/bcGi5p+EEAAAQQQQAABBKJEgAArSiaaYSKAAAJ5JfDiq5Otx+hyelTMCQGW8bh+/o4WAAALQ0lEQVSnRU+tWrvZCoGmDO8us+l5MA4T1NSp/7iOHTuuN197VpdeeG5Gt7n5mEcRb3mgq9V+SO/HdesNl2Up6ftf/lCrLoOs/+6UAOviWtU0edhzio2NyVKvZ78y87PPZ7xqfXMjBwIIIIAAAggggAACvggQYPmiRVsEEEAAgVwFPvrsOz3X9+R+SC92aa7G9a+z/tl8e17+fLGKiYmRUwKsZSvX6uEOfWXumKpW+Uy1b9lIV1xSwwqyTAi1Y9deLVu5Tl9+95tuv/Fy3Xj1yTuMzObpb86Yq/r1rtCVl9ZUkUKJGS7rNm7VkLHv6qtFi1WyeBF9PmOIzB5RnsOOz21Nn9HGLdtV/owyGtang1WbOcy3EM76dKGGjn9XxYoW1tbtux0RYMXF5bcMjY/ZvL5y+XJWveZxyolv/8961NEcj957i7o98UCua4gGCCCAAAIIIIAAAgicKkCAxZpAAAEEEAiqgLnr6N42L2j1ui1Wv+Yb6hITE6zQatFHI5VY8OQ/X9ewo/XzU79pMKef/bfQQL+F0NOXuZvp6ZdGa/+Bkxuvm8PsXZVy9Fgml/7dH9OdN19p/bf/3gFl/t0EVWZc+w4cskIbc5h/H9m3oy6/6LxM/djx+b/27h9UqzqO4/h3Mf9FQkSBFZeiBKNFyMWiIiIqGuLS5lZIIA0tRUstbdGfIUIocAkCEQIbQoTCoYyQIsOgS4MNLVGomTl5MX5HbjQYdr/ih4fH15mf7/N9zuvc6c2553x59HjtfuWdOr+8PM2O7x9vH/z191M13nz4yP3b6oVnF2vxuVdnImBtvXthinlv7tk3PbtrXPP169ZO13nlHMa/F7712u4asctBgAABAgQIECBAYLUCAtZqxXyeAAECBC4rcPqPs/Xu3o/r8JHv6reTp+v6DevrzoXNtfftl6e7kWYpYI2TOXP2XO078Pn0e8cdVH/+da6uW7OmbrpxU92zZaEe3rGtHnto+z//Yjji1oGDX9Thr47VTyd+uRhqzi/Xxg3rauG2W2rHfffWzsVHazwg/lLH5XzGzA9LP093Ln3z/dL0VsNheNcdt9bTjz9Q4/liFy5UbX/i+cl1//sXn5m1cnz62df10ut7atMNG+vIJ+/95/Uaz9oaz9x6cdcztWvnU5f83HjO1nje1ji+PfRBrf3X3WQre27ffHMd/OiNOr50oj7cf6iOHvuxTp46M0W8rVsWavHJB6c72Mbddw4CBAgQIECAAAECHQEBq6NmhgABAgQIEKiVgDXePjjeQuggQIAAAQIECBAgcLUEBKyrJet7CRAgQIDAnAv83zu95pzB6REgQIAAAQIECAQEBKwAshUECBAgQGAeBQSsebyqzokAAQIECBAgMJsCAtZsXhe/igABAgQIzLyAgDXzl8gPJECAAAECBAjMjYCANTeX0okQIECAAIGsgICV9baNAAECBAgQIHAtCwhY1/LVd+4ECBAgQOAKBASsK8AzSoAAAQIECBAgsCoBAWtVXD5MgAABAgQIrAgIWP4WCBAgQIAAAQIEUgICVkraHgIECBAgQIAAAQIECBAgQIAAgZaAgNViM0SAAAECBAgQIECAAAECBAgQIJASELBS0vYQIECAAAECBAgQIECAAAECBAi0BASsFpshAgQIECBAgAABAgQIECBAgACBlICAlZK2hwABAgQIECBAgAABAgQIECBAoCUgYLXYDBEgQIAAAQIECBAgQIAAAQIECKQEBKyUtD0ECBAgQIAAAQIECBAgQIAAAQItAQGrxWaIAAECBAgQIECAAAECBAgQIEAgJSBgpaTtIUCAAAECBAgQIECAAAECBAgQaAkIWC02QwQIECBAgAABAgQIECBAgAABAikBASslbQ8BAgQIECBAgAABAgQIECBAgEBLQMBqsRkiQIAAAQIECBAgQIAAAQIECBBICQhYKWl7CBAgQIAAAQIECBAgQIAAAQIEWgICVovNEAECBAgQIECAAAECBAgQIECAQEpAwEpJ20OAAAECBAgQIECAAAECBAgQINASELBabIYIECBAgAABAgQIECBAgAABAgRSAgJWStoeAgQIECBAgAABAgQIECBAgACBloCA1WIzRIAAAQIECBAgQIAAAQIECBAgkBIQsFLS9hAgQIAAAQIECBAgQIAAAQIECLQEBKwWmyECBAgQIECAAAECBAgQIECAAIGUgICVkraHAAECBAgQIECAAAECBAgQIECgJSBgtdgMESBAgAABAgQIECBAgAABAgQIpAQErJS0PQQIECBAgAABAgQIECBAgAABAi0BAavFZogAAQIECBAgQIAAAQIECBAgQCAlIGClpO0hQIAAAQIECBAgQIAAAQIECBBoCQhYLTZDBAgQIECAAAECBAgQIECAAAECKQEBKyVtDwECBAgQIECAAAECBAgQIECAQEtAwGqxGSJAgAABAgQIECBAgAABAgQIEEgJCFgpaXsIECBAgAABAgQIECBAgAABAgRaAgJWi80QAQIECBAgQIAAAQIECBAgQIBASkDASknbQ4AAAQIECBAgQIAAAQIECBAg0BIQsFpshggQIECAAAECBAgQIECAAAECBFICAlZK2h4CBAgQIECAAAECBAgQIECAAIGWgIDVYjNEgAABAgQIECBAgAABAgQIECCQEhCwUtL2ECBAgAABAgQIECBAgAABAgQItAQErBabIQIECBAgQIAAAQIECBAgQIAAgZSAgJWStocAAQIECBAgQIAAAQIECBAgQKAlIGC12AwRIECAAAECBAgQIECAAAECBAikBASslLQ9BAgQIECAAAECBAgQIECAAAECLQEBq8VmiAABAgQIECBAgAABAgQIECBAICUgYKWk7SFAgAABAgQIECBAgAABAgQIEGgJCFgtNkMECBAgQIAAAQIECBAgQIAAAQIpAQErJW0PAQIECBAgQIAAAQIECBAgQIBAS0DAarEZIkCAAAECBAgQIECAAAECBAgQSAkIWClpewgQIECAAAECBAgQIECAAAECBFoCAlaLzRABAgQIECBAgAABAgQIECBAgEBKQMBKSdtDgAABAgQIECBAgAABAgQIECDQEhCwWmyGCBAgQIAAAQIECBAgQIAAAQIEUgICVkraHgIECBAgQIAAAQIECBAgQIAAgZaAgNViM0SAAAECBAgQIECAAAECBAgQIJASELBS0vYQIECAAAECBAgQIECAAAECBAi0BASsFpshAgQIECBAgAABAgQIECBAgACBlICAlZK2hwABAgQIECBAgAABAgQIECBAoCUgYLXYDBEgQIAAAQIECBAgQIAAAQIECKQEBKyUtD0ECBAgQIAAAQIECBAgQIAAAQItAQGrxWaIAAECBAgQIECAAAECBAgQIEAgJSBgpaTtIUCAAAECBAgQIECAAAECBAgQaAkIWC02QwQIECBAgAABAgQIECBAgAABAikBASslbQ8BAgQIECBAgAABAgQIECBAgEBLQMBqsRkiQIAAAQIECBAgQIAAAQIECBBICQhYKWl7CBAgQIAAAQIECBAgQIAAAQIEWgICVovNEAECBAgQIECAAAECBAgQIECAQEpAwEpJ20OAAAECBAgQIECAAAECBAgQINASELBabIYIECBAgAABAgQIECBAgAABAgRSAgJWStoeAgQIECBAgAABAgQIECBAgACBloCA1WIzRIAAAQIECBAgQIAAAQIECBAgkBIQsFLS9hAgQIAAAQIECBAgQIAAAQIECLQEBKwWmyECBAgQIECAAAECBAgQIECAAIGUgICVkraHAAECBAgQIECAAAECBAgQIECgJSBgtdgMESBAgAABAgQIECBAgAABAgQIpAT+BgwTxUlaSThGAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdB3RT1QMG8C9JSweUVcreQ/ZeggIqQ9lD9lCGyJQlCCJTlgiKTBkyBJGNMhWQLXvvLatsSimlLR1J/ue+/pM0TdL5mrwk3zvHc0zz3n33/u5tab7ed69Kr9frwYMCFKAABShAAQpQgAIUoAAFKEABClCAAgoVUDHAUmjPsFoUoAAFKEABClCAAhSgAAUoQAEKUIACkgADLA4EClCAAhSgAAUoQAEKUIACFKAABShAAUULMMBSdPewchSgAAUoQAEKUIACFKAABShAAQpQgAIMsDgGKEABClCAAhSgAAUoQAEKUIACFKAABRQtwABL0d3DylGAAhSgAAUoQAEKUIACFKAABShAAQowwOIYoAAFKEABClCAAhSgAAUoQAEKUIACFFC0AAMsRXcPK0cBClCAAhSgAAUoQAEKUIACFKAABSjAAItjgAIUoAAFKEABClCAAhSgAAUoQAEKUEDRAgywFN09rBwFKEABClCAAhSgAAUoQAEKUIACFKAAAyyOAQpQgAIUoAAFKEABClCAAhSgAAUoQAFFCzDAUnT3sHIUoAAFKEABClCAAhSgAAUoQAEKUIACDLA4BihAAQpQgAIUoAAFKEABClCAAhSgAAUULcAAS9Hdw8pRgAIUoAAFKEABClCAAhSgAAUoQAEKMMDiGKAABShAAQpQgAIUoAAFKEABClCAAhRQtAADLEV3DytHAQpQgAIUoAAFKEABClCAAhSgAAUowACLY4ACFKAABShAAQpQgAIUoAAFKEABClBA0QIMsBTdPawcBShAAQpQgAIUoAAFKEABClCAAhSgAAMsjgEKUIACFKAABShAAQpQgAIUoAAFKEABRQswwFJ097ByFKAABShAAQpQgAIUoAAFKEABClCAAgywOAYoQAEKUIACFKAABShAAQpQgAIUoAAFFC3AAEvR3cPKUYACFKAABShAAQpQgAIUoAAFKEABCjDA4higAAUoQAEKUIACFKAABShAAQpQgAIUULQAAyxFdw8rRwEKUIACFKAABShAAQpQgAIUoAAFKMAAi2OAAhSgAAUoQAEKUIACFKAABShAAQpQQNECDLAU3T2sHAUoQAEKUIACFKAABShAAQpQgAIUoAADLI4BClCAAhSgAAUoQAEKUIACFKAABShAAUULMMBSdPewchSgAAUoQAEKUIACFKAABShAAQpQgAIMsDgGKEABClCAAhSgAAUoQAEKUIACFKAABRQtwABL0d3DylGAAhSgAAUoQAEKUIACFKAABShAAQowwOIYoAAFKEABClCAAhSgAAUoQAEKUIACFFC0AAMsRXcPK0cBClCAAhSgAAUoQAEKUIACFKAABSjAAItjgAIUoAAFKEABClCAAhSgAAUoQAEKUEDRAgywFN09rBwFKEABClCAAhSgAAUoQAEKUIACFKAAAyyOAQpQgAIUoAAFKEABClCAAhSgAAUoQAFFCzDAUnT3sHIUoAAFKEABClCAAhSgAAUoQAEKUIACDLA4BihAAQpQgAIUoAAFKEABClCAAhSgAAUULcAAS9Hdw8pRgAIUoAAFKEABClCAAhSgAAUoQAEKMMDiGKAABShAAQpQgAIUoAAFKEABClCAAhRQtAADLEV3DytHAQpQgAIUoAAFKEABClCAAhSgAAUowACLY4ACFKAABShAAQpQgAIUoAAFKEABClBA0QIMsBTdPawcBShAAQpQgAIUoAAFKEABClCAAhSgAAMsjgEKUIACFKAABShAAQpQgAIUoAAFKEABRQswwFJ097ByFKAABShAAQpQgAIUoAAFKEABClCAAgywOAYoQAEKUIACFKAABShAAQpQgAIUoAAFFC3AAEvR3cPKUYACFKAABShAAQpQgAIUoAAFKEABCjDA4higAAUoQAEKUIACFKAABShAAQpQgAIUULQAAyxFdw8rRwEKUIACFKAABShAAQpQgAIUoAAFKMAAi2OAAhSgAAUoQAEKUIACFKAABShAAQpQQNECDLAU3T2sHAUoQAEKUIACFKAABShAAQpQgAIUoAADLI4BClCAAhSgAAUoQAEKUIACFKAABShAAUULMMBSdPewchSgAAUoQAEKUIACFKAABShAAQpQgAIMsDgGKEABClCAAhSgAAUoQAEKUIACFKAABRQtwABL0d3DylGAAhSgAAUoQAEKUIACFKAABShAAQowwOIYoAAFKEABClCAAhSgAAUoQAEKUIACFFC0AAMsRXcPK0cBClCAAhSgAAUoQAEKUIACFKAABSjAAItjgAIUoAAFKEABClCAAhSgAAUoQAEKUEDRAgywFN09rBwFKEABClCAAhSgAAUoQAEKUIACFKAAAyyOAQpQgAIUoAAFKEABClCAAhSgAAUoQAFFCzDAUnT3sHIUoAAFKEABClCAAhSgAAUoQAEKUIACDLA4BihAAQpQgAIUoAAFKEABClCAAhSgAAUULcAAS9Hdw8pRgAIUoAAFKEABClCAAhSgAAUoQAEKMMDiGKAABShAAQpQgAIUoAAFKEABClCAAhRQtAADLEV3DytHAQpQgAIUoAAFKEABClCAAhSgAAUowACLY4ACFKAABShAAQpQgAIUoAAFKEABClBA0QIMsBTdPawcBShAAQpQgAIUoAAFKEABClCAAhSgAAMsjgEKUIACFKAABShAAQpQgAIUoAAFKEABRQswwFJ097ByFKAABShAAQpQgAIUoAAFKEABClCAAgywOAYoQAEKUIACFKAABShAAQpQgAIUoAAFFC3AAEvR3cPKUYACFKAABShAAQpQgAIUoAAFKEABCjDA4higAAUoQAEKUIACFKAABShAAQpQgAIUULQAAyxFdw8rRwEKUIACFKAABShAAQpQgAIUoAAFKMAAi2OAAhSgAAUoQAEKUIACFKAABShAAQpQQNECDLAU3T2sHAUoQAEKUIACFKAABShAAQpQgAIUoAADLI4BClCAAhSgAAUoQAEKUIACFKAABShAAUULMMBSdPewchSgAAUoQAEKUIACFKAABShAAQpQgAIMsDgGKEABClCAAhSgAAUoQAEKUIACFKAABRQtwABL0d3DylGAAhSgAAUoQAEKUIACFKAABShAAQowwOIYoAAFKEABClCAAhSgAAUoQAEKUIACFFC0AAMsRXcPK0cBClCAAhSgAAUoQAEKUIACFKAABSjAAItjgAIUoAAFKEABClCAAhSgAAUoQAEKUEDRAgywFN09rBwFKEABClCAAhSgAAUoQAEKUIACFKAAAyyOAQpQgAIUoAAFKEABClCAAhSgAAUoQAFFCzDAUnT3sHIUoAAFKEABClCAAhSgAAUoQAEKUIACDLA4BihAAQpQgAIUoAAFKEABClCAAhSgAAUULcAAS9Hdw8pRgAIUoAAFKEABClCAAhSgAAUoQAEKMMDiGKAABShAAQpQgAIUoAAFKEABClCAAhRQtAADLEV3DytHAQpQgAIUoAAFKEABClCAAhSgAAUowACLY4ACFKAABShAAQpQgAIUoAAFKEABClBA0QIMsBTdPawcBShAAQpQgAIUoAAFKEABClCAAhSgAAMsjgEKUIACFKAABShAAQpQgAIUoAAFKEABRQswwFJ097ByFKAABShAAQpQgAIUoAAFKEABClCAAgywOAYoQAEKUIACFKAABShAAQpQgAIUoAAFFC3AAEvR3cPKUYACFKAABShAAQpQgAIUoAAFKEABCjDA4higAAUoQAEKUIACFKAABShAAQpQgAIUULQAAyxFdw8rRwEKUIACFKAABShAAQpQgAIUoAAFKMAAi2OAAhSgAAUoQAEKUIACFKAABShAAQpQQNECDLAU3T2sHAUoQAEKUIACFKAABShAAQpQgAIUoAADLI4BClCAAhSgAAUoQAEKUIACFKAABShAAUULMMBSdPewchSgAAUoQAEKUIACFKAABShAAQpQgAIMsDgGKEABClCAAhSgAAUoQAEKUIACFKAABRQtwABL0d3DylGAAhSgAAUoQAEKUIACFKAABShAAQowwOIYoAAFKEABClCAAhSgAAUoQAEKUIACFFC0AAMsRXcPK0cBClCAAhSgAAUoQAEKUIACFKAABSjAAItjgAIUoAAFKEABClCAAhSgAAUoQAEKUEDRAgywFN09rBwFKEABClCAAhSgAAUoQAEKUIACFKAAAyyOAQpQgAIUoAAFKEABClCAAhSgAAUoQAFFCzDAUnT3sHIUoAAFKEABClCAAhSgAAUoQAEKUIACDLA4BihAAQpQgAIUoAAFKEABClCAAhSgAAUULcAAS9Hdw8pRgAIUoAAFKEABClCAAhSgAAUoQAEKMMDiGKAABShAAQpQgAIUoAAFKEABClCAAhRQtAADLEV3DytHAQpQgAIUoAAFKEABClCAAhSgAAUowACLY4ACFKAABShAAQpQgAIUoAAFKEABClBA0QIMsBTdPawcBShAAQpQgAIUoAAFKEABClCAAhSgAAMsjgEKUIACFKAABShAAQpQgAIUoAAFKEABRQswwFJ097ByFKAABShAAQpQgAIUoAAFKEABClCAAgywOAYoQAEKUIACFKAABShAAQpQgAIUoAAFFC3AAEvR3cPKUYACFKAABShAAQpQgAIUoAAFKEABCjDA4higAAUoQAEKUIACFKAABShAAQpQgAIUULQAAyxFdw8rRwEKUIACFKAABShAAQpQgAIUoAAFKMAAi2PAoQIPgyKs3j+rXzp4p9PgRWgU3kRpHVpH3pwCQiBXVh+oVMCjFxHQ62lCAWUI+HppkDlDOoRHavHydZQyKsVaUCCOQG5/H+mVrX/viUUBRwpkTu8JX28P6een+DnKgwIpETD8nEvJtbyGAhRIngADrOR58WyZBRhgyQzK4tJMgAFWmtGy4FQIMMBKBR4vtYsAAyy7MPMmKRRggJVCOF5mJsAAiwOCAvYTYIBlP2veyYoAAywOC2cRYIDlLD3lXvVkgOVe/e2MrWWA5Yy95j51ZoDlPn2dli1lgJWWuiybAuYCDLA4IhwqwADLofy8eTIEGGAlA4un2k2AAZbdqHmjFAowwEohHC+ziwADLLswu/xNGGC5fBezgQoSYICloM5wx6owwHLHXnfONjPAcs5+c/VaM8By9R52/vYxwHL+PnTlFjDAcuXetV/bGGDZz5p3ogADLI4BhwowwHIoP2+eDAEGWMnA4ql2E2CAZTdq3iiFAgywUgjHy+wiwADLLswufxMGWC7fxWygggQYYCmoM9yxKgyw3LHXnbPNDLCcs99cvdYMsFy9h52/fQywnL8PXbkFDLBcuXft1zYGWPaz5p0owACLY8ChAgywHMrPmydDgAFWMrB4qt0EGGDZjZo3SqEAA6wUwvEyuwgwwLILs8vfhAGWy3cxG6ggAQZYCuoMd6wKAyx37HXnbDMDLOfsN1evNQMsV+9h528fAyzn70NXbgEDLFfuXfu1jQGW/ax5JwowwOIYcKgAAyyH8vPmyRBggJUMLJ5qNwEGWHaj5o1SKMAAK4VwvMwuAgyw7MLs8jdhgOXyXcwGKkiAAZaCOsMdq8IAyx173TnbzADLOfvN1WvNAMvVe9j528cAy/n70JVbwADLlXvXfm1jgGU/a96JAgywOAYcKsAAy6H8vHkyBBhgJQOLp9pNgAGW3ah5oxQKMMBKIRwvs4sAAyy7MLv8TRhguXwXs4EKEmCApaDOcMeqMMByx153zjYzwHLOfnP1WjPAcvUedv72McBy/j505RYwwHLl3rVf2xhg2c+ad6IAAyyOAYcKMMByKD9vngwBBljJwOKpdhNggGU3at4ohQIMsFIIx8vsIsAAyy7MLn8TBlgu38VsoIIEGGApqDPcsSoMsNyx152zzQywnLPfXL3WDLBcvYedv30MsJy/D125BQywXLl37dc2Blj2s+adKMAAi2PAoQIMsBzKz5snQ4ABVjKweKrdBBhg2Y2aN0qhAAOsFMLxMrsIMMCyC7PL34QBlvN2ceMuI3Dn/mOMHNAZnVrVc96GuFHNGWC5UWcrsakMsJTYK6yTNQEGWBwXShRggKXEXmGd4gowwOJ4ULIAAywl947z1I0BlvP0VfyaMsByvr5jgOV8feZSNWaA5VLd6dKNYYDl0t3rtI1jgOW0Xec2FWeA5TZd7ZQNZYDllN2muEozwFJclyS5QgywkkylmBMZYCmmK9yzIgyw3LPfnbHVDLCcsddcv84MsFy/j529hQywnL0HXbv+DLBcu3/t1ToGWPaSlv8+DLDkN03rEhlgpbUwy09QgAEWB4izCDDAcpaecq96MsByr/52xtYywHLGXnOfOjPAcp++TsuWMsBKS920LZsBVtr6pkXpDLDSQpVlJlmAAVaSqXiigwUYYDm4A3h7qwIMsDgwlC7AAEvpPeTe9WOA5d79L1frGWDJJWn/chhg2d88tXdkgJVaQV6fKgEGWKni48V2FHCHAOvxUTX++0NtVA2ooEexDlo7KvNWyRVggJVcMZ5vbwEGWPYW5/2SI8AAKzlaPNeWgD0CrDMXb+D3P/7BqfPX8SL4FXx9vFG8aD40a/CO9J9GY/r9rWPfCTh3+RYaflAd08f0SbDjflq0HotWbkXOgKzYteYHqNUq4/l6vR7b/jmKP3f8i6s37iH0dTgyZ8qAimWKoWPLeqhWsYTsg+LStTtYvWkPTp67hmdBwVCpVMgRkBWF8udCg9pV0LRBTYt7Pgt6iRXrd+LQiYsIfPQMkVHR8M+cEZXKFUObJu8nWM+kBFhylH9481xkyphe6r+Fv23BhSv/ISQ0DLWql8P8qUNkd3TlAhlguXLvOkHbGGA5QSexipKAOwRYD/arcXe76RegLCV1KNlVxxGgYAEGWAruHFZNEmCAxYGgZAEGWEruHeepW1oHWDMWrsMvv2+TQDw0GmTJ7CeFSW8io6SvvV2pFGZNHID0vt7S6z/+OohRUxcjXTpP7N84Exkz+FrFFAFV/fZD8ehJED7v3BQDP/vYeF54xBt8MWoWjp66LH3N2ysd/DL4IvhlKGK0sX/c7N6+Eb7s3VaWjhJ1+WHBWixd/ZfN8kRQN2VkT7P3dx04iRGTFhotvNJ5wtPTA6/DIoznfdy4NsYM+VSyi38kFmDJVf7mXyfjxNmrmPjTCoi2Go5Oreph5IDOshi6SyEMsNylpxXaTgZYCu0YVstCwB0CrLs71HiwxxRgZSysR5lenIGl5G8HBlhK7h3WTQgwwOI4ULIAAywl947z1C0tA6xla//GtHmrIYKZYX3bo8VHteDjnQ5arQ77j5zF6GlL8DLkNRrXfRvfj+4toUW8iUKdVgMQFv4Gowd/gvbNP7CKKWYDfTJgsvTethXfoWC+nMbz+o+cib2HzyB3zmwYM/hT1KxSWprlFR4RiVV/7sZPi9ZBp9Nj3NCuaNPkvVR31oIVWzBr8QapnJYNa0EEO0UK5EaMVof7D5/iyMlLqFKhOMoUL2S81+kL1/HpwClSPd6vWRFf9GiF4kXySe+/eBmKjdsPYM6SjYiO0aJDi7oYNahLsgIsOcvv17UF5v26CWWKF0T/7q1QtkRhiJDQw0ODAP/MqfZzpwIYYLlTbyuwrQywFNgprJJVAXcIsG5vUuPRYVOAlT4PUH5ADEeEggUYYCm4c1g1SYABFgeCkgUYYCm5d5ynbmkVYAUFv0K9dl8iKioa3w7rDjGTKP6xY99xDBk3T/ryhl++RYmi+aX//3bGcqzZtEcKfNYsGGsVc/wPy7B2yz6UL1UEv88bbTxHBFciwPL00EhlFimYx+L6CTOWS4/6+WfJiH/W/CDN9krp8fT5S9Rv96U0s6tXl6YY0MM0EyyhMpt1/Qa37jyQwqvZkwZIjxsm5LP65zEoW7Kw2SkJzcCSs3xx03eqlsHcyYOkGWI8Ui7AACvldrxSBgEGWDIgsgi7CLhDgHVjrQbPTpn+8ff216PSV5yBZZcBlsKbMMBKIRwvs5sAAyy7UfNGcQTORwXhXkwoXumiEKKLRiPf/Cjg4WdhxACLw0YOgbQKsJas3o4f5q9Fgbw5sP23qTarWqfVQDx/EYI+nzRH/+4tpfOu3LiL1j1jg6tNSyehaCHzEErMSqrTcoC0DtPYL7uibVPTLKrew3/EwWPn0bpJHYwf2s3qfW/fe4Qmn3wtvbdkxnBUr1gyxZSG2VdZMvlh7/oZSQp4xOyoLl/Ezh4Tj+eJ2Vq2jg59J+D85VvSWmHxH0G0FWDJXb6YNbdz9Q/Imtny51CK4dz0QgZYbtrxSmk2Ayyl9ATrkZiAOwRYV5er8eKSaQaWR3qg2hjOwEpsbDjyfQZYjtTnvZMiwAArKUo8R26B5o+242TkU2OxP2V7F20yFGWAJTc0y5ME0irASkqQJO4vHgMUjwPWq1UZMyd8YeyVNp+Pw+Xrd9C17UfS44dxD8Msq/jrZInH8ao37iM93jZ1VC80qVfDai+LAKxSg8+kx/dGDuiETq3qp3g0fD5surQAu1ig/buRnyepHLEQ+sxfNkiPOO5aPT3Bawzn5gjIgj3rZpidayvAkrv8uI94JqmBPMmmAAMsDg6HCjDAcig/b54MAXcIsC4u1ODVLdMMLLUH8PYkBljJGCZ2P5UBlt3JecNkCjDASiYYT5dF4MOHW3AxKshY1qDM5TEsc0UGWLLospD4AmkVYDXqPBx3A58kGVzsCrh0xgjj+Ws378X4H3+VHvPbs36G2SLmX46fh7/3HsdH71fDD2P7Gq8RO+699/GgJN9TnNivW0v0/bR5sq6Je7KhneLRQfEIYVKOMdOWYMO2A6hRpTR+mT4swUt27j+JwWPnSOec/Wex9Gik4bAVYMld/uDP2+Czjo2T0jSek4gAAywOEYcKMMByKD9vngwBdwiwzs/S4PUD8/UDakyJgco0KSsZYjzVHgIMsOyhzHukRoABVmr0eG1KBWoH/oFbMSHGy1ulL4zZAZbrB/ERwpQK87q4AmkVYBkeDcyeLTPE43WJHaWLF8KEr7obTxOLuIvF3MWi7rMnDcQH78SGuGJ2Va0WA6Sd++ZPHYJa1csZr4n7aKBY1F0sHp/Y0a7Z+2hnY6H4xK4V7xvaOaJ/R3Rp3SApl2Dotz/jrz3H8MG7lTB74oAErzl47AJ6D/9BOufQpjnInCmD8XxbAVZal5+kRvIkqwIMsDgwHCrAAMuh/Lx5MgTcIcA6PU2DN8/NAyzxCKF4lJCHMgUYYCmzX1grkwADLI4GRwhUC1yHBzFhxltX8grAllyWsx8YYDmid1zvnmkVYH3U8StpB77kzEyKrztq6mL88ddB1K1VCbMmxAY9W3YexojJC5EtaybpkTqxu6DhePzsBeq2GSK9XDH7G1QqWyzNO+zDDsMQ+OgZBvVsjZ6dmiTpfpNmrsDvf+xO/gysXb+YrbFlK8BK6/KT1EiexACLY0B5AgywlNcnSqyR9o0Kl5eZ/nHVeOhR6jOdXavqDgHWiYkaRIeaB1iVh2vhlVVv03pJ6BVse33X+H7XTMXR1Ne0xbFdO8kNb8YAyw073cmazADLyTrMRapb/t5qPNe9MbYmm9ob5/KbrwEk3mSA5SId7uBmpFWA1X3wVBw7cwWpWT/p3OVb6Nh3gvTY3IE/ZyNjBl8Y1tbq1r4hhvZuZ6Yn1raq1qi3tPPhuKFd0aaJaXH3tGL+dOAUnDx3DS0b1sLE4T2SdBvDAvdJWQNr0cqt+GnRegT4Z8a+DT+ZlW8rwErr8pPUSJ7EAItjQHkCDLCU1ydKrFFkiAqnJpueVxd1FGsziTWa7HW4Q4B1dLQHdFHmouUHxCC95e7JxpOGBR3G76HXja+/zFwBQzJXsFe3uP19GGC5/RBQPAADLMV3kUtWsOi93xChM1/D8VaBLvBWmf8uwQDLJbvf7o1KqwBr/vLNmL1koxQ67V43A74+XilqW4tuo3DjdqAUDolH7mq3GIAYrdbq7oTiBj2GfI+jpy8naXZTiioU7yIRLomQydqMMFvl37rzAM26fiO9bW2XxbjXdeo3EWcv3USjutUxbXSfJAVYaV2+HG7uWgYfIXTXnldIu10hwAp/pEJMhGnWSvpcemh8bM9YUQi9U1XjTZAKp783/6Wz6igtPP3s5+wOAdbh4ZaJYNneWvgVsu3c/9kB/BH2n3E8fZ6pNMZmqepU48uZK8sAy5l7zz3qzgDLPfpZaa3Mc2eZRZV25m6G0umymn2dAZbSes4565NWAZZYUL1++6GIjo6R1pgaM/iTFAGt3LgLk2etxHs1K6BBnaoYOWURShcviLULxlktb9eBkxg0JnbR8+lj+qDhB9VTdN+kXiQWqhcLuYsjOYudd+g7Aecv35LaNWfSQKhU5k8RiPL2/HsaX4yaJZW97KcRqFqhRJICLHFSWpefVB+eZy7g8gGWmP545tJN3LwdiJDQcPhn9kvVInMcQPIKuEKAdWGeBqF3TT8wS3bVIUtJ+z7eJm+vKK+0sEfAuZ/Mw5UKg2Pgm9N+dXX1ACs6HDgx3jLASmw893i6B3+H3zN2RCe/t/C9f037dYyb34kBlpsPACdoPgMsJ+gkF6viG70WRe6usGjVouzvo5FvAQZYLtbfSmhOWgVYom0r1u/Ed3N+l5opZk/17NgYYrF2sW7V67AIPH76QnrMcM+h0/hu5OfSY3Lxj5DQMGlnQQ+NGtUqlsS+w2cxckBndGpVzybfwNGz8c/BU1CrVejatiFaN6mDAnlzQK/XIzjkNR48eoaDx87j2q37mDnhi1R3w9S5q7B83Q6pnK7tPkLnVvWRK4c/tFodnga9xKlz1/DqdTg6tqxrvNfN2w/Q+vOxUsBXr1ZlKfwSC8+LQyxU/+ffhzD959WIjIpGswbvYMrInhb1tPUIoTgxrctPNZqbFuDSAda6rfswe/FGBAW/MnZv8SL5sHHxBLPuFt+g4ptv1sQBeKtwXjcdCo5ptisEWBYvohkAACAASURBVOdmeSDsgcmvaFstsle238wgx/Scfe8aek+FC3PNZ2CV/lyLTEXs5+zqAVbkCxVOTTU3Fr1crL0WARVtO3d4shMHIh4aB0Tz9IUwL6COfQeIG9+NAZYbd76TNJ0BlpN0lAtV86UuEqXvrbJo0eisVdA7Yxmzr3MGlgt1vAObkpYBlmiWWI9pxsJ10Olifx8TM408PT2kdariHrvX/YicAeazDA3vD5+0AFt3HZFeivWw9m2YabYbX3w+sUOhWABe7PRnODw0sb8niscPDUe+3Nnx9+/fp1pflDlu+jJpwXnDkS6dpxROidBMHGIXRbGbYtzj+JmrGDJuLoJDQqUvix0Gxc6JQS9eGespZpBNGvGZ1R0VEwqwRHlpXX6q4dywAJcNsKbPX4Olq/8ydqlIj8U3vbUAa+7SPzDv1034rGNjKbnlYT8BVwiw4u/cVrCJDrlrcQaWnKMo5JYKlxaahyvFu+jgX8Z+zq4eYFmb5Sb6sHALHXLWsO3c4tF2nIh8auzuur55sTy77b/oyTkuWBbAAIujQOkCDLCU3kOuV79H2nBUub/WomFd/IrjO/8aZl9ngOV6/e+IFqV1gCXadO/BE6zc+I+0NtXDx0F4ExkJby8v5M7pjwqli6J+7Sp4p2oZq4/RievFIulisXRxxN2RMDEvMbtr4/YDOHPhBp6/CJFCoQzpfZA/Tw5Uq1ACTerXlHUCiAiM1m3dG3u/4Ffw9PCQ1sYqV6ow2jZ9H5XLvWVRZRFerd+6H+LRx8CHzxD+JhL+mTOiQpmi+LhxbdSsYh5cxy0gsQBLnJvW5SfWB3zfXMAlAyzxjSZ2bRChlRjonT+uj7y5s6NCvR5WAyzx7Kx4xrVcqSJYNW80x4gdBVwhwDo5WYOoENMjhHnr6ZC/vv2CFTt2l8Nu9eKKCleXmQdYRVppkaM6Z2DJ1Smvbqtwcb7lDKwCDXXI857t8fzhwy24GBVkrEZ17xzYmLOhXNViOYkIMMDiEFG6AAMspfeQ69Xvv+hXqPVgo0XDavvkxqocDRhguV6XO7xF9giwUttI8Uhd9cZ9pAkdYhaTmM3EgwLOKOCSAZbhmd0ve7dF9/aNjP1S+r2uVgMs8Yhh7ZYDpCmHhzbFLljHwz4CrhBgHf/WAzFhJq9cNXUo1JwBlpwj6Pl5Na6vVJsVmf8jHfK+b9s5MOY1Zr08j/vaUNyPDoOf2hN/5W6a4mq5+gys4KsqXFlqGWAJY2Ft66jzYCNuRpse0y7tmQU78zRPsTMvTJ4AA6zkefFs+wswwLK/ubvf8Wp0MOo+2GTBUMDDD4fzfswAy90HSBq03xkCrA3bDmDMtCXIkskPezf8JD1GyIMCzijgkgFWnVYD8TLkNY5snWe23aitAEs8V1uh3mdS/53bvdgZ+9Fp6+wKAdbR0R7QRZm6QKwXJNYN4iGfwNPTKtxcY/4Pbe7aOhRsbDtY2RMRiC5P/jGrhPjFVfwCm5LD1QOs52dVuL7K8peZnDV1KJxAIFstcB0exElwrX1ASIk3r0maAAOspDnxLMcJMMBynL273vlM5DM0ebTNavMfFOzKAMtdB0YattsZAqx2vcbj4rXb+LTNh/iqXwfZNcQMr8+H/ZCscsXugWIJHx4USI6ASwZY5ev2QJbMfti34SczC1sBljhJXOPhocGpHQuT48dzUyngCgHW4eHmO7dlKaFDyW6cgZXKoWF2+dPjatzcYD4DK3sVHYq2se286fVt9H2+36ycb7JURt9MZVNUNUcHWK/+M29/xsLyjrEnx9S4tdH8HgIqoLIOxdravleZe6sQrIs0mvprvHE+X/sUGfOi5AswwEq+Ga+wrwADLPt6827AoTeP0PZx7G5m8Y/DeT5GAU/TH7K4BhZHjBwCSg+w9hw6gy++mSntXLh1+XfInye7HM02K0PsEFijSd9klduqUW1M+Kp7sq7hyRRwyQDrneb9ERkZhePbF0jrYBkOWwHWnfuPIRZwy5srADtWTeOosKOAswdYumjg6CjzAMuvgB5l+3IGlpzD6OFBNe5sNQ9XspTUoWRX28HKb6HXMDwodrcVw1HJKxu25GqSoqo5MsCKDgdOjDcfZ29PiIE6XYqaYvWiB/vVuLvdMsDKWkqHEp/adhZblYstyw2Ht0qDWwW6yFcxlpSgAAMsDhClCzDAUnoPuV79/gm/j0+f7rbasNU5GqCWT27jewywXK//HdEipQVY4ukisVOhOPb8expfT1mE12ER6NiyLr4ZyN/RHDFGeE/5BFwywPps6DQcOXkJC77/Eu9WM822sBVgTZu3GsvW/o2mDWriu5Gfy6fLkhIVcPYAy1qw4JNdj4pfMsBKtPOTcULgHjXu7TAPV/wK6lG2j23n+a8uYsKLkxZ3OZ23LXJ4+Cbj7rGnOjLAsrZDYJVvYpAuY7KbYfOCezvVCNxtGWBlKqxH6V62nfPcWWZR5v0Cn0L9/1+c5KshS7ImwACL40LpAgywlN5Drle/rWF30OvZPqsNE7sQit0IDQcDLNfrf0e0SGkBVuf+k3D/4VOER0RCPNonjrIlC2PpjBHw8Zbxr5+OwOY93V7AJQOsrbuOYPikBcidMxvmfzcYRQrmkTraWoC19Z8jGDFpIURSLb6pq1Us4faDwp4Azh5gRYaocGqy+bpBYmZ61VEx9mR0+XtZC1d8AvSoONR2sDL95VnMeHnWwmaS/9vo6pf873NHBljWFlgXIakIS+U6bm9W49EhywArfR49yg+w7hyui0Gxe79ZVOFi/g7IovaSq2osJwEBBlgcHkoXYICl9B5yvfqte30Tg57/a7VhfTKWwaisVRhguV63O7RFSguwRkxeiH+PXcDrsHDp83CT+jXRo0MjeKXzdKgTb04BOQRcMsASYZSYhXX01GVph4XmH72LahVL4qsJ81EwX05M+KoHbt55gB37jkvniKNR3eqYNrqPHKYsIxkCzh5gRTxT4cz0+Atf61FzKmdgJWMYJHrq7a1qPDpoHq54pAeqjbEdFI57cRyLXsV+f8c93vHOhbU5P0z0nvFPcGSA9eSYCrc2mo+zsv208MsvX4B1Y60Gz06ZHrk2tN87mx6Vhlkfz0HaCJS7v8bC8lje1sjrkSHZxrwg+QIMsJJvxivsK8AAy77evBuwPPQavo63hIDBpbFvASzM/r6RiTOwOGLkEFBagCVHm1gGBZQq4JIBlsAW0yW/mrAAew+fSdS+Xq3KmDqqF7y9OKUyUSyZT3D2ACvsIXBupvnaRIJI7vWJZGZ3uuJu/aHGk6PxZwclHBR++fwQVr++YdFWNVQ4n68dsmi8k+XgyADr/i417v9j3v6S3bXIUly+AOvaCjWCLlrOwEpoRmFgzGtUD1xv4fhP7mYomS5rsnx5csoEGGClzI1X2U+AAZb9rHmnWIGFIZcwPviEVY7S6bJiZ+5mDLA4WGQVYIAlKycLo0CCAi4bYBlaLQKsNZv24tT568ZngMV76dJ5olKZYujQsi5EgMXDMQLOHmCF3lXhwrz4M7CAyiO18MokX7jgmN5Rzl1tzQ6qNi4GHj7W69nr2V5sDbtr9c0fs72DdhmKJauBjgywbq7X4OkJ89lRb3XUIlt5+cbYpUUahNy0nIGl8gRqTLQ+0+1G9Eu89+BPC8dNuRqhipf8O9wkq8Pc5GQGWG7S0U7cTAZYTtx5Tlr1mS/P4fuX1v+A7aXS4L84G41wBpaTdrLCqs0AS2Edwuq4tIDLB1iG3tPp9AgKDpF2YPDx8YJ/lkzS44U8HCvg7AHWy5sqXF5kOY4qDI6Bb07H2rrS3a+t1CDovGW4Ih5tE4+4WTs6PdmFfREPrL5X3ycvluWolywiRwZYl5do8PKaefsLt9IhZ3XbuwMmq3EAzs/W4HWgpbEop8aUGKgsJ2fhfORzNHy01eJWK3PUx3s+sWsP8khbAQZYaevL0lMvwAAr9YYsIXkCU4NPY1bIeZsXXcjXHln/PwubAVbybHm2dQEGWBwZFLCfgNsEWPYj5Z2SI+DsAVbwZRWu/GoZYJXppUXGwvLNjkmOqSuee2WpGsFXLROUsv218Mtn3bnZo204FfnMKocn1LiSvyN81JaPf9ryc2SAdfZHD4Q/Ma9ZgUY65KkjX4B1epoGb55bD7Cqjo2Bp5WNG4+9eYJWj/+yIJsf8B6api/oikNRcW1igKW4LmGF4gkwwOKQsLeArTUwDfXYkqsxKnkFSC8ZYNm7d1zzfgywXLNf2SplCjDAUma/uE2tnD3Aen5ehesrLQOsEp/qkLWUfOGC2wwIGw219XhbyW5aZClhPcCq++BPXI1+aZNuQfb30MQ36SGLIwOs4+M8EBNh3pS87+uQ/yP5xtjJiRpEhVoPsCoP18Irq6Xz/oiH6Phkp4XxjwHvol36ou4+bO3SfgZYdmHmTVIhwAArFXi8NEUCYgF3sZC7rWNeQB00T1+IAVaKdHmRNQEGWBwXFLCfAAMs+1nzTlYEnD3AEru2ifWZ4h/F2moRUJkzsOQa9GKdMbHemIVzOy0CKll3rha4Dg9iwoyXNPUtiC3hd4yvm/sWwrzsdZJcRUcFWNoo4Nhoy5liOWvoULiFfAHW0dEe0EVZ5yg/KAbpc1m+tz38Lno+3Wvxxvis1fBZxlJJtuWJKRdggJVyO15pHwEGWPZx5l1MAoOeH8S617eMX8iu8cFTremvQMOzVMKATOUYYHHQyCbAAEs2ShZEgUQFXDrAOnLyEvYcOo07958gLDwCOn3igcLqn8ckisYT5BNw9gDr8RE1/vvT8tG2gk10yF1LvnBBPnHnLOnsTA+EP7Sse8GmOuR+17pzqXu/IyROIvNbjvro/GSXsRBvaHCrYJckgzgqwHrzTIXT0y1D0oAKehTroE1y/RM6Ua8Djnxt+3FKW4/Ebgi7hQHPDloUPSxzBQzKXEGWurGQhAUYYHGEKF2AAZbSe8j16tfr6T5sjfMHqzo+ubA/4pGxoWKGsJgpLA4+Quh6/e+IFjHAcoQ67+muAi4ZYIkF27+aOB9/7TmW7H69tG9Zsq/hBSkXcPYA6+EBNe5sswyw8tbVIX8DBlgpHxnmV9panykh5zx3zL+XHxTsior315j9FXZFjnr4wCdvkqrpqAAr5JYKlxZaBliZS+hRqps8AVZMOHB8vO0Aq0RXLbKWtPwDwG+h1zA86IiFX5+MZTAqa5UkufKk1AkwwEqdH69OewEGWGlvzDuYC3z65B/8ExFo/GJPv1JYFHrZ+Lq6Vw5szNWQARYHjmwCDLBko2RBFEhUwCUDrNWb9mDCjOVS4/PkzIZqFUsiR0AWqFXW13eJq9SvW8tE0XiCfALOHmAF7tHg3g7LcZWrhg6FZHy8Sz5x5yzp5BQNol5aOtt6jC5CH4Oid38zNtZX5YEbBToj/roY7TMUww/Z3kkSiqMCrOdn1Li+2jIkzVhQjzJ95AmwIoNVOPWd7V1Z3+qoRbbylgHWoleXIRbLjX908SuO7/xrJMlVSSfFhKsQ/tg0zjzT6+GTI/GZu45sAwMsR+rz3kkRYICVFCWeI6dA28d/49Cbx8YixWyrIc/+Nb7OpfHFyXxtGWDJie7mZTHAcvMBwObbVcAlA6wOfSfg/OVbaFz3bUz6uic8PWx/MLOrtgNvduzMFQz79mcEBb/CztXTpWDP1vF2k74IfR1u8/0m9Wpg6qheVt//46+DWL91P27eeQCtVosCeXOixUfvomPLetBoLD+EO3uAde9vNQL3WrZLzse7HDhsFHPr4996IM5yVsZ6+ZfXo3hHyxDnSUw4KgWuNZ4XoPbC2fwdcCDiITrEWXQ8s9oL5/O1g0Zl2YfxG++oAEuMLzHO4h++OYEKg2Nk6aOwR8C5n2zPwCrcSoec1S1nFIptysV25fGPlukLY05AbVnqZs9Cnp9R4fpq078XmYvpUeozeULCtGoHA6y0kmW5cgnED7BUQY+hCn8NvW96wNsP+vQZ5LoVy6GAJND00TacjrML8eZcjdDs0XYznf8KdoEXNHyEkGNGFgEGWLIwshAKJEnAJQOsqg17IzziDfZt+AkB/pmTBOGqJ+n1evzy+zbMWrwB4tFKcSQUYEXHaFGhXg/4+nihSME8VllqVSsLazPVvp68CJt3HpICw4pli8HTwwPnLt/C67AIvFutLOZOGQQPjXmY6OwB1p0tajz81zJcEDvjiR3yeMgjYGuB8UxF9Sjd09L5VnQIaj/4w3jzIi9e4diuGwj/aiZK3VuF1/po43trc36Id7ytrFAer+qOCrDEGmtirbX4R7pMelQZKc8YC72jwoWfbQf9BRrpkKeOZYAlwisRYsU/6vvkxbIc9eTpfDuW8uS4Crc2mBwy5NGj3AB5jNOqGQyw0kqW5colED/ASrd6Njz2bzYWH/1RR0Q37ybX7VgOBVD/wSZcjg42SuzO0xzdn+zB3ZhQ49f25mmBtzwzM8DieJFFgAGWLIwshAJJEnDJAKtC/c+QztMDx7fPTxKCq54UEhqGrycvxP4j5/B2pVLQ6XU4fuZqggHWs6CXeO/jQahVvSzmT/0yyTQiuBIBVuH8ubBw+jDkyp5VulYEiYPGzMGhExfxRfdW6P1JM7MynT3AurVBjSfHLcOFDPn1KNdP2R98k9y5Cjjx8HDrs4N8cwMVBlrOQjoXFYRGD7cYa17hcRD2bD+HiG+XY+Dzg1gfZ3eibn4lMNH/7URb6agA6+pyNV5cshxjGi+g+rfyzMAKvqrClaW2Ayxba42JxwfFY4Txj5reObEu50eJmirthEeH1Li92WTtnVWPSsOV/X3MAEtpo4j1iS9gEWDNGwWPC6Y1SmM+aIWoNn0IRwHZBN4N3IjbMa+M5R3O+zFGBB2RZmEbjl+z10U933wMsGRTd++CGGC5d/+z9fYVcMkA68MOw/DkeTBO71gEtTrxda/sS26/u7XvPR4Xrt5Gp1b18FW/DugzfAYOn7yYYIB19eY9fPzZGOmxv0kjPktyZVt0G4UbtwOxcu4oVChd1Oy64JBQ1G0zBJ6eHti/cSa8vdIZ33f2AOvGGjWenbYMF3yy61DxS/kWcY8KUeHaKtN9xNo8JbrIV36SO9pBJ9oKsLyy6FF5hGXA8O+bR2j3eIextrXuPsbmTccQ/uMf2BF+D92f7jG+J7bXPpOvXaItc1SAdW6OBmH3rf8cqzlVngAr6LwK11baDrByvaNDoWaW423488P47fV1C7uyXv74O1fTRE2VdsKD/Rrc3W6y1vjoUX0cAyyl9RPr41wC8QMs7wk9oX54x9iImHcaIqrzEOdqFGuraIEq99fikda0FIZY72rmy3NYEXrNWO/xWavhs4ylGGApuiedp3IMsJynr1hT5xdwyQBr/I+/Yu3mvfh15teoUr648/dSCltw9NRlPHoahJYNa0klfDpwCk6eu5ZggHXk5CV8NnQaenRohCG9Yhe4TOx4+Pg56rcfivx5suOvld9bPX3IuLnYse8EZk8aiA/eqWg8x9kDrKsr1Hhx0TLA8sigR7XR8n3wFQGGCDLiHnKFF4n1r6Pf10aocGyc9XBFnQ54e4JliPN3+D30iBNSNbwRiN837kf4vJ2Igg4l7/2ON3pT/2zN1QQVvWyvCycMHBVgnZioQXSo9QCr+ngtNN6pX2T86XE1bm4wjWO1J6AzPWWJ7JV1KNrWMsAa8OwgNoTdshgihTwz4t88rRw9dJJ9/3s7VQjc7VzfZ5yBlexu5gV2FogfYPkMaAxVdJSxFjFV3kdUj5F2rhVv58oCpe+twktdpLGJl/J3wKrXNzDxxUnj17pnLIkJWaszwHLlgWDHtjHAsiM2b+X2Ai4ZYN25/1iaRVQwX04smTEcmfzSu31HC4DO/SfhzMUbCQZY23YfxVcT5ksztj5t82GS3HYfPI0Bo2ehSf0amPqN9cXdf123A9/PXYWenZpgUM/WLhNgXVmiQfA1a+GCHjWnyhdgWXvEq8o3MUiXMUld5NQnRb1S4eQk27OD3p4UA3W8JwzXBV/GoBDT7nhtL97Ggm2HEfH9Ouj9MqPXs73YGnbX6NIvU1mMzFI5QSdHBFgiYzsyUrTdeoAlZp+JWWipPR4eUOPOtjiPzmXT4c1z0+usZXRWZ/z1fLoH28PvWdw+qbPaUltvua8XBsIi7lFtTAw8FPxPCAMsuUcBy5NbwCzACnsF36Efm91CW64GIvt8K/dtWZ4bCxS5u8Lsj1S3CnTBnohA9Hy616hS1zcflmevywDLjceJnE1ngCWnZsrLuvfgCRp2Gm5RQLp0nsiYwVfKBmpWKYO2zd5Dlkx+FucNn7gAW/85YvZ1sbZzRr/0KFIwNz54pxLaNH3P7Gkia7Xdd/gs/t53HGcv3kRQcAhitDpkzeSHUsULol6tyhAbosXf3Ews/fNu8/5ScYc3z4VfBl+rEF+MmoU9/55GjSql8cv0YTaxGnUejruBT6QspHrFktJ577cehKfPX+KDdyth9sQBCUKLjdlGTV1sdQmglPeQPFe6ZIAlaESoMnzSfPj6eEszkMqVLIIsmf2s7oQXl7J8qSLyyCqwlKQEWCvW78R3c36XwiixAH7IqzCoVEB2/yyoUqG49A2gEl+Icyxb8zem/bwavbo0xYAe5r+YGk775+ApDBw9Gx++VxU/jutnvNrZZ2BdXKDBq/+shwtvfxsDtZc8A+HpaRVurjEPccp/EYP0eeUpX8mlRDxX4cw02wFW5ZFaeGUyD3F+vbMPI2F6RKXH6WuYvusk3oxdAl3OfPjz9X/o9/yAsdl5NOlxPF+bBBkcEWBFvVTh5BTbbS8/MAbpc6e+9+LPPMpUVIeQm6YgR7wu3dNyBlbnJ7uwN+KBRQV81B64mb9z6itm5xKsLZhfcZgWPtlSHxKmVVMYYKWVLMuVSyBugKW+ex3e35l+BxD30BavgMhB0+S6HcuhAPLcWWam8KBgV1yKeoEGD02bBxT1zIT9eVoywOJ4kUWAAZYsjKkuxBBg+XinQ6WybxnLi4yKxtPnwbj34Kn0NTG5ZdH0YShdvKDZPQ0BVtFCeZAtSybpvajoaDx+FgzxxJE4CuTNgaUzRiBHQBaL+j5/EYLBY+fi9IXY5TXS+3ojT85s8PDwkO4v3heHWDN61sQBKJTffBMpw/I/IlwSIVP8Izo6BjWb9UN4RKS0Mdq/m2ZbDbqePAvGB20GS0HbkS1zIQI8cRgCLPH/00b3QaO61W2aM8BK9XBMfgFiAH85/mdcvm76EJuUUi7tM/9HLynXOMs5SQmwDDOlbLWpRNH8+GFsXynBNhxzlvyBn5dvwtDe7dCtfUOrlx47cwXdB0/F25VLYfEPX5l+oERbX8fJU6OS1i+L1uqgU/BSTwen6vDyjvUPt/Uma+Bj+bMtRcPlv916XFpvDlGtjxo5yrn+Gm+vHuixf6LtQVBnlBoZ85g7TD26CmN9TQu4Djp6EWP3n4PXuHlQFyuDV9oo5Ln8K6L1pnJPF2+DUl6xmw9YO7w8YwOdqGgd7BVnvPhPj0PTbLe95hA1/IulfgxcWqvDf3tNrcr7tgqBR02vMxUEag+3DNLq39qMg2GPrHqFl/0c6nhhd4oGvx0vOvOrzqzd4tbvDlcjS8HUG6dVMzRqwEOjhlanR4zWXiMzrVrj2HIjI4HHTwAfn9j//DI4tj6ucnfDz87IaB20x/cjauZos6api5SC17fuvemOq/S1EtoRpouB/8XFxqqkV3sgqEwPvNHFIHOcr6uhQni5z+GhUUGjVkkzJLQK/n1TCbasg20Bw885GjlWwBBgic+p21Z8Z1EZEUKNmb4UYsmcksUKYP2i8WbnGAIsa+HOrTsPpGxBrPn8Xs0KmDt5kNm1oa/D0bbXOCkkK1IwD4b1aSfNkhJBk+G4dus+Zi3eADFDS4RoaxaMRb7c2Y3vz/xlAxb+tgWdWtXHyAGdLOr/7/EL6PXVD8ia2Q8vXobaDKG27DyMEZMX4t1qZbHge9OmbCLAEvWMeBOFzJkyYMuvU6SyrB0MsOw8lh8/e4E2PcdKHZvcw90DLOF14uxVKc3NnTMbfH28pIF+4cp/WLrmL2kXQzEz688lE6WBL44f5q/FktXb8fUXndD54/pWycWjiyJAq1imGH6b801yu0Wx5+8cE4NXD61/aKw/zgOZ8srzwffiH1pc3Wb+m1WlLhoUrmO5/pZisVJYMRHi7Jlse7HyOkM9EFDC3HnYX7MxPbvpucLRB85iyJFLSD/ie3hWqinVpPHNbdgeYnr87dvcVTE6V5UU1jJtLgs8qcfR+bbbXrO/B3JXSP0YO7lMizv/msZXicZqs/HmlxP4cGLsX2/iHlWvrMfJ8GdWG/+yQg9k0pg2bEgbIXlLPTpfi8CT5t9n7w7yQM4yqTeWt6YsLS0ELl/T48d5pu+3XDmACSMtx31a3NtdyozcugYRy2ebNVedrxAy/rDCXQjYzjQWeB7zBgHnlhrvks3DG8/Kd5NeZz+3FM9i3hjfu1+uC/J6MqlO4y5h8RSwm0BiAZaoiMgHarccAL1eL81givsoYUIBlrj21t2HaPbpSGmSxaHNc6XHEg2HeNxOhD6l3iqIZT+NkGZfWTvEfUd/v0Q6Vzz59fs80x91xOfsboO/g5gBtmnpJIvLJ81cgd//2I2+nzbHvF83oeEH1TF9jOUuvoa6DOvbHl3bmnYFFwFW1swZUbRgHulRyY/eryZNTLF2MMCy27CNvZGhc0UIIzr4naplkCMga5J2JBSPHLrqkZQZWAm1XavVoefQaRCzqXp/0kx6JlYcyZqBVakUFv9omoEV9Mq0kGvce/v5eiCdhxqhETHSjBelHkcnqhDxwnrtKvbTI7NMT6ReW6fCQ/NHslGwgR6FTD+TlEqU6nq9vAmcmWc7QCj9CZC9gnmIOHznNCwuZJpN9f2uE+h5+jp03YdDXzN2bbffQq5h0NN/jfUr65UVe/O3tFlf/4yxYcyL/dnavwAAIABJREFU0Cjo7TTR5f5+FW5usk1YsqMeOWXI3C4sA56fNxkXbw1cW2+6bzo/Pd4x/yOV9GbNu+txPSp2OnT841zBdsjjZB8Mzv8CBF02H2ulOuuRw3IWd6rHtVwFiL/6ZvDxgJjd8jpCnl0p5aqbs5Vz5Bjw51ZT/2fKCIwcZqdvdmfDSkZ9DT87xb/36lWzodr9h/nVAbmgnbIyGSXyVArYFgiMfo0Kd9YYTxAB1dmCsTsNf3R/C06+iX2ESByb8jbCh1nywiudRvr5KX6O8qBASgQMP+dSci2vkU8gKQGWuFu1Rr0RFv4Ge9bNMHsUMLEAS1z7TvP+eBnyGht++RbiySRxiMkzDdoPhfisLIInEUAldIgZUB91HCY9Uig+F79dqZR0unhEsEbTvtIMqQN/zIJ/FvPFjsU9xOOBB/6chQ87DPt/CDcHYp2uuIfYXE3MNvtjyUS8Vdi03owIsNJ5emLN/LFo1nUkgoJfYdaEAahby/IXXQZY8o3LJJX0UcevcP/hU2mtJbHmEo9YgdQGWKKMvYfPoP/ImdJzxStmx+4atHzdDkyduypJa2CJhetmTvjC2CXOvgbWiUkaRL+yHq6U+FSHrKXk+WXo2m9qBF0wn22VvaoORVvLU76Sv0deXlfj8mLbM82KfqxD9mrmDkP+moA1JfMZm/Xz1sNof+k2olr3QUzd2OA1WPsGZe6vNmv6sbytkdfD+l9jHbEG1p1tKjw8YHsNrMItdMhZI/Vj4NIvaoTcMBmX6q7D5SWm15p0elSfYLkpQfXAdQiMCbM6fPbmaYG3PDMreWhZ1O3SIrXZ2l/iBLmM0wqCa2DJJ/vXDjWOHIuzmYEXMHI4Q8HUCsddA8vr5zHQnDf/a4zYWENssMGDAnII3IoOQe0HppC0iEcmHMgb+8ep/s8O4I+w/4y3+cH/HfTOWQq+3h54+ToK4ZHybb4jR1tYhvMI2GsNrHMX9bhzP/W/9zmLbIUyahTIl/RZ8EkJsAzrQ4lH+A5tnmO2tnNSAqy3m/SVnk7auXq6tL6VONZs2oNvZyxHlfLF8evMr5PEO33+Gixd/RfaNnsfY4d8arym9/AfcPDYBYvHA2/efoDm3b5B5XJvYfmskRg24Wds330Mi6YPlRamNxyBj55J4Va2rJmwf+NMs7qIACsmRouDf87Gjn0nMGTcXOm8zb9Ottj0jgFWkrpRvpMqNeiJ6JgYnN6xCJ6e8bYnk+82TleSHAHW9f8C0bL7KCnNFamuOPYfOYe+X89I0i6E3ds3wpe92xrtnD3AOjbWA1rTbHSzMVG0jRbZq8jz1/tLCzQIibdYfJYSepTs5vq/bIngTgR4to78H+qQ9wPTP+aqkBf47PhcbC9mCrB+27gfjW8EIrphJ0Q362osqvXjv3HkzWPj6zFZqqBXJtM/AnHv6YgA6/rvGjw/Z/qHW+w4GBlsep3/Qz3yfpD6MXB+jgav75vKLd9fi3NzzIOzmlMtP8iXu78aQTa+ATbnaozKXgFO9XPy/FwNXt8z/0UpX30d8tVT7i+LDLDkG2K/rdLg+g1T/4sl3MaPZoCVWuG4AZb3pN5QB94yK1KfzgsRM7em9ja8ngKSwMXIIHz4aItRo0w6f+zI3VR6Pe3lGfz08pzxvQGZymFK3uoMsDh2Ui1grwBr+RotDhxW7u8kqYaMV0CXdhrUqZn05VISC7Beh0Vg6Lc/4+Cx89IaU2KtqbhHYgHWpWt3pHWuxLpR+zbMNG4O9813v+DPv/81e0IpMQuxk6DYUVDM4hKzuQzHsrV/Y9q81WjdpA7GD419/Fkci1ZuxU+L1mPw523wWcfGUnglQqwOLepi1KAuxvM2bDuAMdOWWP1cLgIsMbvr6NZ50vmDxszBrgMn0fzDdzD5655mVWaAlVgPyvx+jSaxz3Ie+X/nyFy80xYnR4AlFr37bOg0KekVia84xPTHOq0GIn+e7Phr5fdWfUTCK5Je8ZyueF7XcDh7gHVkpAf0NvKDgk10yF1Lnn9kzv7ogfAn5rS+uYEKA13/w5W1HRjjSuSqpUOhJiZnzZVTaPN0Fw4WMG008Ofqf1Dn7hPE1G6KqA6mbWMXv7qCMS+OGYur6pUdf+ZqZHUMOyLAuvizBq/umD5QZymhQ/BV0z/kuWtrUbBx6kPSMz+oEfHUVG7FoTqcn6eGNtxEUW1cDDx8zGmK3fsN4TrrY3BVjgao7SPDFol2/Il77icPxF+TPte7OhRqKs/3cVo0hQGWfKoz52gQ9MI8wBz1dQz+v3mPfDdys5LiBlg+Q1pAFWE5azP8511upsLmppXAiTdP0eLxdqv/rq97fRODnpuWDmievhB+L1iPAVZadYYblcsAK206O6UBllgSSCwhZDi0Oh1eBL/ClRt3pV0Eu7ZrKIU28Y+EAqz/7j3CgFGzcPveI4wc0BmdWtUzXi4WVhcLrE/4qjtaNaqdJIyrN+/h48/GSGGYmBFlOAyTRcTi7n//bvpcbfgcb3hEUcwCe7f5F9IMqt3rfjReb2iDCKTit1EEWCLEO/HXAuNnePEoYcirMMyf+iVqVS9rLIcBVpK6Ub6Tegz5HkdPX8bhzXORKWN6+Qp28pLkCLAMCbMh/TWQGMpeOXcUKpQuaiYVHBKKum2GQKfXS8/zxl3wztkDrMPDbc/wEzNjxAwZOY4TEzWIDjX/YOWZXo+qY1I/+0aO+qVlGU+Pq3Fzg+2/vgRU1qFYW1PA4PHPBnyY4Q7O5vQ3Vmv38r9Q6dELxFSpg6geo4xffxITjkqBa82qfzFfe2TRWK6F54gA69R3GrMZV7nraPFwv2lmlFyPkcZ/FLbqKC3Oz1Wb3bvyCC3EDLC4R/ytyuO+tyj7+2jkWyAth4bsZZ/6XoPIIPPvs4BKOhRrxwBLdmyFFSh2ux0/ycNifbuvhsQgA9d4TlVvGQOsRy/hO7CJ1bIiZmyC3tu0GG6qbsiL3VrgYMRDtH+y02hQyzs3VudsIL0+9uYJWj3+y/hehXT+OFSsFQMstx4x8jSeAZY8jvFLSWmAZas24smsBrWrSIuXf/Cu5bpPhvBHzIrKni12K3nxyN3jp0EQAZa4vl/XFujZyfzfMsPn4PgTNRJSMcwWS5fOE2d2LjI7VUwMERNEdq2eLm2qJgKmd1v0R67s/tKji4aj++Cp0trU6xaOkxaPF8d7Hw/Cs6CX2Lv+J2TPZr6Uh2EXwpN/LzSWYdixMGdAVulRQsPi8wyw0mZM2yx15/6TGDx2Dgb1bG0xwOxcFUXdLikBlpia2LRBTRQpYD5z4tXrcGlbT/Gsrkh6ty6fIu1UaDjEVMzew39E4fy5sHD6MOTKHruAdnjEGwweO1dKpUVSLRLruIczB1jaSODYGNsBllibSKyfI8dxeLgILeI/A65HjclaqGwvkSTHrR1exqNDatzebAqw4j9Gl6WkDiW7mpzTLZ+OGqU9cdM/k7HuxxdtQbEXr6AtWRmRA8y31W38cAvORgUZz53iXwOf+BW3aLcjAqz4Aelb7XW4vtpk4V9Wj+KdUx9iHh3tAV2c/RTe/jYGF342n41UYXAMfE2T2vBGr0WRu7Z3DpuR7R20zVDM4eMnORU4OVGDqHhBceYSepRS8KO6nIGVnB62fW7QcxVmzrP8YTqwvxb+WeX5Q4Q8NXW+Ugwf7B6dvQifyb2tNiDiuzXQZzJtvOF8rWSNlSKwM/w+uj3dbaxOA598WJqjrvT6sTYcle+b/miVRe2FwJKfMMBSSuc5cT3sFWBxDayEB4mtRwjF4uohoWG4cOU//PL7Vpy+cMPqDn6GAMvaXcSsLhHwGD7jxj1HzhlYotzhkxZg664jmDi8B1o2rAVDyBT/s/SK9Tvx3Zzf0eeT5ujfvaUUsjX95GsUKZgHm5dZ7mJoLcAS9xNLAYklgdo2fQ9jv4xdaoUBlgN+IImF1NZv3SeFWO2afWBzK0sHVM1ht0xKgFW9cR9paqFIbAvnzw0fby88eR6M2/ceSs/M5gjIgnlTBht3XYjbGMNidCKdrlimqLTLwbnLt6SF7kQqLBa18/XxMmu/MwdY0aHAiYm2A6xsFfR4q0Pqw4WEgjJrs2IcNsDS6MYP9mpw929TeOdXSI/Q23Fe59ejbD+Ts/eUfijVtDSexAlYr8zZiJxhEdDlL4Y3X8c+92045oScx5Tg08bX4rE38fhb/MPeAVZMuArHx5s+UHv46lGsvQ5Xlpi+lqmYHqU/S90Y0+uAI1/HGccqPWp+p8WFnzUIjfP4Ytk+WvgVNH2QD9ZFosy9VTZ7fULW6uiesWQajYq0Kfb4WA/E2WFdukmG/HqUizO+0ubOKS+VAVbK7eJeee26CitXWwZYfT6PQa44wa08d3OvUgwf7J7s3QOxiLu1I+Lb5dAH5HIvGLY2TQQ2h91Gn2f7jWU3S18IPwfUMb4ufHcFIuOs/fCoxKfImd6Xi7inSW+4T6H2CrDcRzRlLU1sDSxRaoxWi3a9xkM8wjd1VC80qVfDeDNrjxDq9Xp07DcR5y/fwvB+HfBJm9jdzOMeo6YulgIfQ5CUlNobNkaLvwaWuFaspyWeehKTSr4b+blxwfaF04aaPRppWLDdUIZhMfkurRtgRP+OFtWwFWCJhe3Fo4QiA1gyYziqVyyJTTsOYeSURfiieytpbS8lHSq96BUXO8RaS7fuPsRvG3ZKU+5EoFK0YB4E+GeGVyKLWfz0bX8X0zA1JykBltj1YPPOf3Hx6m1pm06xGH4GXx8ULpBbmmopktm4M6/iYwn73zbswrVb96StRPPkCkCjD6qjW/uGVu2dOcCKfKHCqam2pz9lKa5Hye6pCxeE75sXKpy2cR8R3Pjld7lvYbNhdW+nCoG7Tc7ZKujw/GycncKy6VBpmGkGlk//hsg78GOEx9nAIfDHNUgfHQO9fw5ETPzNrPzAmNeoHrje+DU1VLicvwP81OnMzrN3gBX2UIVzM03t9s2pR5FWOlyIM0skQz49yvVP3RiLiQCOjzMFWB7eQLXxMbiyVIPgq6agUGwYIDYOMBwPY8JQNdD2zmHDs1SCWCDXmQ5ra9p5Z9Oj0rDUGaelAQMseXQPH1Hj712Wjyr36KpFARf/GSuPoO1SDB/snq77HenWmf8BwXBVxKgF0OcpnNZVYfluILDm9Q0MeX7I2NJ2GYrhx2ymtW7ef/Anrke/NL5/qHAL1MySiwGWG4yNtGwiA6y01E162UkJsERphgXRxewmMcvJcNhaA0ss3t6u93hpYse2Fd9ZPJq3dvNejP/xV1SrWAJLZ4xIUoV/XLAWi1dtR7vmH2DM4E/Mrnn6/CVE2CR2OdyxahpqtxyAN5FR0vJI8Teoa9b1G9y680DacVDMxvprzzH8/N1g1H67vEU9bAVY4sT1W/dj7PSlyJsrAH8unYR9h89IC94zwEpSd6b+pNLvmXYZS25pl/YtS+4lPD8VAs4cYIlF1cXi6rYOuWZuvA5U4fxs60FZ8S46+JeR5zHFVHRjml56Z5sKDw+Y2h9/HSgxM6na2NiAQf3sAdKN6Qr/4Z2MdVLp9Xjx/e/Sa723DyJmbLao7wcP/sS1OL/QzsxWC60zFDE7z94BVvBlFa78amq3CETFxgBnfjB9TY5wRexqKNbaMhzpMutR5Wst4u+A+FZHLbKVNwVY8bcqj4/aL1NZjMxSOU3HhpyFW8xE+3/hHumBamOUu1kCAyx5RsGWbWqcOGUZYHXuoMVbxVz7jwTyCNouxfDB7tmCn+C52/THgrhXRA6bBW1h55qxmdZuLD9lAr+GXsXIoKPGiz/1K47J/qYZFl2f/INdEYHG93/LWxedcrzFACtl3Lzq/wIMsJQxFJIaYBl2+qtTo7z0ZJHhSGgR93HTl2Hd1n348L2q+HFcP7MGi8CpfrsvpdldYpmdQvkTnlEcGRWNjzoOg7hOBF4i+Ip/NPt0pDQh55fpw6QN1OrWqoRZE0wbURnOF8v/iEBOrL817efVCHrxStrILv5TT+L8hAIs8X6PL7/H0VOX0fnj+qhRuTT6jfyJAZa9hvb4H1IeQhme+7RXXd39Ps4cYL1+oML5WaYP/mpPQBdt6lGfAB3Ebm6pPV5eV+PyYuuLmBdurkPOmqm/R2rrmJbX//enGo+PmNpfqLkOtzeZe9ScGhswaM4eQsSvk1FoYBtjlTJGRuHuT6aZQtZ2u4q/tfZHvvmxOPsHZs2yd4D15Jgatzaa2pm9mg4F6ushFlw3HB4Z9Kg2OnWzgyKeqHDmR1OZPjn0qDhEK91b1MFwFGmtQ46qprEWf6vy+GMg/oeGtBwjcpStjVTh2BjrQbFhfMlxH7nLYIAlj+iyFRr8F+fRZEOpbT/WokxpBlipUTZ8sAuaPAKas6Yd4OKWKdYmFGsU8qBAagXmv7qICS9OGovpnbEMRmetYnw97sVxLHp12fh6Qo5qGJW3MgOs1MK7+fUMsJQxAJIaYBnWfBKPA4rHAg1HQgHWy5DXaNR5uLSW1oLvv8S71Uw79onrDY8RlitVBEt+HA4fb/MnOeIKTZq5Ar//sRuVyhbDitnfWMWbPGslVm7cJT3iuPWfIzZ3OBTL9XTsOwEtPnpXevSwSvni0rI91o7EAqwHj5+jRbdvpGWDBvRohZm/bGCApYyhzVooScCZA6xXd1S4+HOc2TD+eryJs4OZZwY9qqYyXBB99ey0CjfWWP9gnfd9HfJ/5NoB1s21ajyNMzOiaBsd7mxRm61VVHVsDDx9Ac/tK/F4/zqU69PCOMzzhEbg4ryNxtfWFgu+FBWEBg+3GM/xhBpX8neEj9o0w87eAda9nWoE7jYFSPnq6ZCntg5H42wcIKr39qTUzQ4S61yJ9a4Mh18BPcr21eLONjUeHjDdv2AjHXLXMY21+FuVx/+50jp9EcwMqKWkHzcJ1iWhNe2qfxsDjfnyfYppFwMsebrih5kahITE3ygDaNFUi0oVGWClRtnwwe7F0G5Q37thtajI3uOhLV8zNbfhtRSQBGa8PIvpL88aNQZnroChmSsYXy95dQWjXxwzvu6WpQSWFH6fARbHT6oEGGClik+2ixMLsKKiorF0zd+YtXgD1GoVNvwyAW8Vzmu8f0IBljhp9aY9mDBjOfLnyS49Zhd3aSKx5nPbXuNw78FTlCxWAF/17YCqFYpDpTL9bnE38IkUCu3YdxyZM2XA2gXjpMcErR37Dp+VZkCJIEwESuIRQbGRWvxDp9PjvY8HShunxQZPH6NXl6ZWy0wswBIXrdz4DybP+k1qm5gpxkcIZRueLMhVBJw5wIo/MypTMR1CblifGZSa/nr4r1oKbKwdAZX0KNYudTNwUlM3e1x7faUGz8+bfviLR9nu7VCbhYUVh2rhE6BHuoUTcP3+ObzTw7S9bYng1ziycJOxqm/G/AJdrgIWVa92fx0eaMOMX18Y8D4apzedZ+8A68ZaDZ6dMrW7yMda5Kimx+ERGkBv+nqNKTFQWR8eSeqe4Gsqs4XhDWu3Bf6jxr04awLlradD/vqmAOtAxEN0iLNVefybfeibD0uyx+785AxHQmvNKXmzBAZYqR9dWi0wfpL1x8EbfqhDjequ/UeC1AsmXILhg11wt0ZQhb2yenJktxHQVnOenxdpbcbyUy4wJfgU5oRcMBbwdZZK6B9nPcbd4ffxSZxdCt9Pnxt7SjRngJVycl4JgAGWMoaBIcASj8+9XamUsVI6vR6vQsNw9eZ9KejRaNQYNegTaW3nuEdiAZYIi9p8PlZaAL7vp83Rr1tLs+ufvwjBoDFzcOZi7B9rsmTyQ97cAfD00ODxs2A8fPxc+nqRArkxa+IAFMxne5cYUc8aTfpJjyWWKV4IaxaMtYlsmP0lTlj98xiULWl9TcmkBFhiefRPBkzB6QvXpfsxwFLG2GYtFCTgzAHWi0tqXF1uSg6yltIh+IYa+jiPEcoxcyP+TJy43ZepqB6le7p2gHVlmRrBV0zOJT7VIXCPCq/vm0Icw2L23uO64ZTHGzTobNohpOrz19i5OE6A9eUM6IqWsfgumPDiBOa/umT8eqv0hTE7oLbxtb0DrEu/aBByI84i6t21EOHS8fEeiAk3Vb/qqBh4+qX8m/r5OZW03pXh8C+vR/GOWjz6V43bcYLT3O/qULCp6YN8/K3K06s8EKY3zQZ71zsn1uT8KOUVs/OVCa1pV35ADNLnsXOFkng7BlhJhErgtMdPgHkLrAdYH7yvw3u1GGClRll8sNNHRSKks+2AKqrjQMTUMv3hITX347XuLTAm6BgWh14xIkzwr47ufqb11W5Fv0LtB6ZZ2QU9M+B2uS4MsNx72KS69QywUk0oSwGGAMtaYWJGUc7sWVG1Qgl0alXfbOaV4fzEAixx3tlLN9Gp30RpMfVNSyehQN4cFrcTOwz+vee4FGS9ePkKWp0eWTJlQOnihVC/dmU0rltDCtESO7p8MVkKkkRQJgIzW8eef0/ji1GzpI3WDm2aY7PspARY4h5ipljL7qM4AyuxDuL77ingzAHW87MqXF8VZ3e88nq8+g+ICjWFDmIxbLEodmqOW3+o8eSo9R9yPtn1qPilawdYl35Rm81sK/WZDo8OqiBmDhmOEl218C8aCZ8BjfFP4Vxo08a0ftX7z8OwcfGfxnMj+3wLbTnTgq6GN+I/EpdB5SntRqj5//QmewdYYrH2iKemNlYYHAPfnMDp7zVms88qDdXCOyDlY+zJMRVubTSNYzHLS8z2enpShZvrTF/PXlWPoq1NY21T2G30jbNVeSGPjLgdY5pdUSFdNmzL7TwfSEUgen6O9Ud1RUgswmIlHgywUt8rl6+osXqd9Z+x79bUoUE9xwdY6VbPgerhbWNjo1v3gi7/W6lvvB1KEB/sdIF38GpIZ5t3i27dG9F1P7ZDbXgLVxf4KugwVobGzhwQx/f+NdDJr7jxtVavQ/67y80YYir1QmhYDMIjXfv3KVfve0e2jwGWI/V5b3cTUOnFPDEnPsTK+zv2nZAWLjM87ymm7qX0+Onb/im9lNelQMCZA6wnJ9S4tT7OIttVdHh9Xw0xk8NwlB8Ug/QJb0SRqNq1lWoEnbf+4crDG6g2PnVrICVaAQefcGGeBqF3TUFOmd5aaXHxZ2dMXyvaVoucAdfhPaUv/iyeH91amNZeavbsDX5dssHYiqguXyKmpuXMIPGjsMz91XipizSe+1uOenjfJ/bZeHsHWMfGeEBrqgqqjY2Bhy9wbpYHwh6YOqVcfy0y5Ev5j/GH+9W4s900vnLX0km7HQZdVOPaCtPX/cvqULyz6YP8qtc3MDTOVuXVvLLjeORTY8WKembE/jytHDx6kn77kP9UuLTAeoD1P/auAzqKqgt/M7ubzaYTILQUeu8dREB6FekiCIgiKkWkSJcqRRAQEH5EEVAERBQBAWkK0juh95DQkxBCSDZbZuY/L2HnzbZkd5NNljD3HM9xd16573tvl7xv7/1u2d4cClR1HWPHvXC+pUxgOY+ZZY8DB1ns2Wf7O7ZuHR4d2uY+geU9+T2wj2nlNHtEfNbRyP4RyMXOcPowkmd/bndwQ8d+MLSzT3Blv1fyiHkVgaGxB/B78i1xeYsLvo4uvuZVhevEbMR9iWTA9crvoIBBIxNYefVQ5MC6ZAIrB0CWp5AReIHAS09g1Wr9IVJ1egQG+OLwlm/TllWpaX+XN/jiv65XMHR50le4ozsJLDbmRlpVOpPxYaXBVX8t29B+cJg1q4ZHqgGmPGDwTFLJqtKHHAJLZe3ie+E7BZ7dtBYXNi2kwUwjGNv37mxba24OZEXYDDUi9gybluJmMkK4hHvtgteqOVhbpRSGtKsvPnsn1ohvV24QX5PIBUPzbjaXNC7+CNYkXRWffRJQCROC66S9zkkCi9MDxybRlCZWJaD+jPRfhgnJQsgWk1X6gENgGdfPGNG5InpXJgtryYMIxpP0RZLGaLKgMgIqfkB/nV6ZdBmT4qkQbnufCPyVckdsX1jhg1NhPXLz6Dg1d8IVBpd/tP1BKtmFR2EP1UGSCSynttlm481bFDh91vZ3bLWqArq+lftRGd4jOoHV0txh/fvjYaz9RtYXnwMjkIudbtcf0H7/td3Z9K17wvjWBzngjTxFXkfgg8f7sCMlWlwmqShMKgtLrfvDHTicSn9t/LtMB9RlC8kEVl4/HG5cn0xguRFceWgZAQsEXnoCa83Gv7Hv0Bm0b1Ef3TukC7FN/dp1EmrySNfJL/l0OY+AOwks5b+b4bUhndQkxlWuB93gGc47aafHvf0K3NlOLz1Fm3BIjWNAtLFMRvSaiDZWVuzsQkUaMWbPao3hoA52ncDIim850ffM1yy0jymmNUaS6CAG0X9TTEKbcSiVvByq3RuxrE55jG9Gy7F/+ITFnBU/ia4aWr8Nw1vv23R9/fMbGBlHy7xLdbByksDSxrI4M4+u2bsAj5qj08/R5TUsEqRn7F0ewZVdP2NE50pKBpZ8k0fh13gkxzA4J0mp8wsXUHUwvcgvTbyALxNoqfL+/uWxKumKiKsfo8TViJcnouLJBRZXJBFn0gNSvK2Aok1zn8SwdWhlAivr30Lfr1IgOtr2d2yF8jx69XD985V17wDGoE9Lj5aavu8oGBtQrb/smMddY5CLnfbnpdBt+UWcQvANMBN0NzbpBP3bcgS8u/bgVRq398Nd+Df1vrjkXwq1QhNNUTMIRsUdxLrnN8T3loY3Ri9NGZnAepUOSjavVSawshlQeTgZgQwQeOkJLHl3X24E3Epg7VgLry2UzOTDyyB13NJsAyxmF4OYvTRiI6ylgNQnMKscRzSDiHZQVuzElwoYntHLlVegAL2k3HvljzkEFM/aHFnxz919T85SQP+Urp8QdkT/6tZmSvAUqsej4r0xUFw6iTmvVcHsRlVFt0YkemPS/34QXxsbtYe+93Cbbu9JiUE/SXWiRt5FsKFw+iUxJwksy+inwJICKg1KJ1DsVSd0dR9u/KbA4xOw7IYRAAAgAElEQVSSdMwXZ5bobxEdLpNZ6q3NSziDBYnnxOej8tUAeU9q94q/PD8IPD7F4MavtiOwijbmUbx97pIY9vZXJrBcPfm031fzlXj+3PY4pUoK6Ncnd8lLJu4BNJP6mjmo7zkExqb2BV2zjkr2jUAudskLvoDhyD5xUK5sNSiu0e8PQsYRUk42GYGsItD14Q4clURXbSrcBvW9zSt9LUqMxJyE0+JUIwtVw8Sg2jKBlVXwX+H+MoH1Cm++vPQcR0AmsHIccnlCKQLuJLBUv6+Aavev4nRCYH5oZ6/Ptg0g0VckCstkEe0EGJ4JuC9NbWvPg1x+s2KHx5hXxwoqx+PpVUreeLI+T1bWbep7fJoSxmQ6Eqm6R1LozCrnVeVR/XwPMInxmPRGDSypS0vnTk7Oh+FLqC4eV/N16AZ+YdO1SF0c2j7YJj4rpwrCvmJvpb3OSQLLUkC9YA0BZd5Ov0RHbWXNz1g7HkWbuH7GiM4V0bsyWdnePApU5aF/xuDkl/R8ewUIqD2BXuQtqzZ+EVwbXyecNatEeDWiN4gY/stgD4+yuPWHbR0kSwF7T1qPTGBlbTd0egZfzrafgx1aTMCH7+cugaW4dQnquZ+aLZREkZJo0pfByMUuafyH4G5cEt01NnkTyv1b6OuaTaAfOPFlWI7so4cj0P7+VpzVx4tekmIipKiI1LYk38bHkiIkbwWVwI+FmskElofvrSe7JxNYnrw7sm95DYE8SWCRtMIihfKjZePaDu2XXm/AN99vQukSxdC5LRV/dqiz3ChLCLiVwFr3DVQHKBlBYpS0S3cBjP10PGcWc+tPFg8P0wtviU48jClAzG76XrFmPCJau04u8HrgqJkWEhBSm8fDIxL9p2wgyZxZd063JesnOJis3jQjnkeb6zMFFDegbmSrtCbDW9fF6uplxPZzDcXwwfyvxNdcuerQDZ9rcxkPuBTUjqGkZz5WjQvhvdLa5iSBFbOXRcwuyTlqyiPihZA0OV8xEs2q0OY8wlu5fsaIzhWJ+DIZ0bkieldEQJ4IyZtM4QXUm04LBoyPP4LVEr2wWfkb4JunZ/GQ04p9iAYW0cJ6Gez+ARZRf9kmsIIr8Sjf13WM3bl+mcDKGrr3HzD43wr7BFZIQQFDPs5lAuvsQaiXTzVbqKF9Hxg69Mva4nOoN7nYJQ7sCCExQZxR32sYvNYtEl8bK9eFfvCXOeSRPE1eRqDZvc24angqLnFfsU4op8pntuSz+ji0v0//PqyiCcaB8M4ygZWXD4ab1yYTWG4GWB5eRkCCQJ4ksIiIe/2aFfHDfPsVbyxPQYMOn8Dfzwe71s+TD0gOIuBOAkv942woju81W432q40Q/IOyZYU3NipAImVMVqorB97A4PYWegku3IBHybdcv/jqEhickkQHeAUJKFxPQPTf1lXjsmVRHjiIZQRag1lGpDxIr8ZnMt9gLRpEtUt7+f6bjfB7hQjx2TKUxdtzJouv+dBSSJ3wP5srJZUIQ++sNnsWFdEXKobNUQLr5u9sWqVFkxFytEjD9HN0/z8WUdvosyKv8Sjxputn7PwSBZJi6DmuMpiDf3h6SurhsQpAoM8azqEE1mdx/+HX5zdFHxcWeB2Ln0bipjFRfG9/sc4orQr0wFNl7dLdvSyiJaShtEVASQGVX6RwetpiZAIrazty/iKDjZsogVWwoIDYWHrmg4IEjBiWuwSW8sBWM7KHrNjQojsMXT/M2uJzqHdRfxZP+zQ3m003fB7UC2nKIFemGnQj5L+/cmhL8vQ0De7+hmgjzQk+EtoV4Up/szUn8DpUjl4nvqdmFHhYtr9MYOXpk+HexckElnvxlUeXEZAiIBNYL9Bo0XMk4hOe4cyuFfIJyUEE3EpgLfsCisgjZqvRTvgfhFDzcsquLpeksMWdoxedMr04gAeub6CXoQLVBJR9x/XLT/I9BucW0fF8iwoghAUhz0yW1TlcXX9O9OONwNEJlKgi1RZJ1UVLYk/tnYLXH6eLHPfo9gZ2l6KCrWu8a6Lj1JGiu3y+gkidScWELddRJWY9nnCp4tsnwrqjqMI3Rwmsy6tYJFyWFAPoy4NEAREjelVEt8pkBWsKKNPT9TNGdK6I3pXJaozkQPSuiB2brIQECtSbaoTCO73lR4//xdaUKLHf8pCmWPb0fKapGzlxblyZI3oni7v/2I7A8ikEVB9ByTtXxndXH5nAyhqy//6nwL5/6PmvVpXHuUh6DjQaAeNGu/75ypp36b1V21ZD9dfPZkMZG3cEiWJ6GaywLhbPhr8juirkLwTdB5PgPYeKtme3RuXLgIvso3sQqBGzAY8lkcBnQnsgRGkdCVzuzlo8FwyiE1dLvwM/o5d7nJJHzfMIyARWnt9ieYEehIBMYAGIjX+KZt0/g7faCyd2LPeg7cn7rriTwPJeMBrstbNmIOqGzgJXMePU0mhjUtqvdzHG5yirCkQtdYjNjbBFMjAKAZd/pORCUDkBFQe4fvl5ep3Fpe/pZSqoDNHUEnDpBzqHJ0eHZPUEG7XA8SmSNDY1QFIIeR1wVJLexjJGNEtsmTZd294tcTSU7tkfwW+g6Rhanl3wUkP7DU0dsPSx+b3NuCJJP9hetCOqeeXPUQKLRJcl36OeVR3CwS8snVQielVEt8pkpMolqXbpqhGdK6J3ZbJa4zmoA9PnOjlTYVYwQPqs76M92Ku9K/ZbU6gFlidewKHUh+J7vxZug9csxHNd9dPd/SyrMUrn8/IXUHui659jd/ouE1hZQ/e3P1hEnqefp3ZteGzfaU5kTvsid8lLr7ULoDy43WyhxgatoO87OmuLz6HeITGReD5T8iNC2arQvz0U3tMGih7whcKQOmVlDnkkT5OXESgfvRZJPCWmroT3hj9rrcXY9v5WREq0snZFdEQlJn9ehkZemxsRkAksN4IrDy0jYIFAniCwUrSpSNHqxKU16fIpalYpiwVTB2e44QYjh5tR97Dgu424ciMaNauUwU+LJ8iHJAcRcCuBNWsw2OhrZqvR9RsNrn66VpItW5IYiVmSyjQDAypiSnBdm20vrlAg8YZEO2gAlxadcn4pJZf8wwRUGeL6xTf2LIPr68yjrUKbcTi7gJI63gUE1MzlCAF3HRlLIXGVP0BE3IkdGa+AwFH8mz1rCRZGNHqvHS6GUL2LXUXfRO1Pe0KqfJayeDugtC0u/vbDXfhPUoJ7dUhztPAJy1EC68R0JQySqmi1JxjhFZCO8tMbDC5JNHuySmAem6QEZ6ExplCnz3V2vhIpj+jukigkEo1ErPvDHTgsqfS0sXAbfP/sIv5OiRE7/BDSDG18wt11PLJ13JubFHh03LY+HtGhbzAjd0kMe4uVCaysHYPlPyhw7x7d9/7v8lglIYjJ6LlNYKltRBMbazWB/oOXQ/S8wOm/kbKCpgca67WEoWM/aCb2ETcvs8jYrO2y3PtVQqD4nTUwCPRHHZMMgCUGg2L/xbZkSRRxkSbooC7xKkElrzUbEZAJrGwEUx5KRiATBPIEgfXtj39g6eo/s7zZi2cMQ7NGNbM8jjyA4wi4lcCa/B7YxzRChHiVWeUm8scM+aPGZM19wrAmxFy7w/Ts/DIFkqLoxYdo5Kj8AJKSZbKskksPDrIgkSEmK9yQR3hLHsenUgKLVQmoP8N1kszx3cr5lqlxDE7PpXiqgwXUGpO+1pMzFNAnUfwbJfWAtxCLaoM6ITrIT3SW6F+UGz8ATBIVddXOWg8hyPYvrcNi/8OmZKrtNDd/Q7zjXzbHCCyBSyfnIFJuAhrM5sTaA8/vApGL6f77FAWqf+oauUL+xj8yzrzKpVTnipCxSXds62N1uL8NZ/RxIs5birTHmmdX8JsEu28KvI5uftmTsuvu00eIYkIY27P6XxrBmkPlbpccGl8msByCyW6jGbMV0Ovpvo/4lMOy5QpoaRYxxo4ywicXaxGQVDs26qrZGrjK9aAbPCNri8+h3vn+Xg3dZpoCSQTojU3fgmZ0N9EDwdcf2nm/55BH8jR5FQFO4BF+Z424PBYMYorbLnYwK+EUliSeF9uOLVATQ/2q5lVo5HW5GQGZwHIzwPLwMgISBPIEgXXn7iP8seM/7D9yFtdumRMWjux2aJGCGDqgCzq0bOBIc7lNNiLgTgJLM6YnmGdPzLw1NusCffeP7a7gov4JWt2npb1LKQNxILSzzfZWaV5DjVAHAidm0Fuu0heom4X0k+jdLO5KKs6FteAR1pLH4XEKgKeXrrpTjVC+0CbKxu3J9aGSiVj7QglZI9EiIlFoKTRbDfWffwA//iZKDuuGBM2LECIA58PeRtEZg8E+jBbXkzrxO/DFbP/SOv3JSfzv2QWx7edBNfBpULUcI7B0TxicmkNJO69AAbXHU4IyI1LP2Q0zpgLHJ1unaJrGubRSgadXJVGG73MIKpueXtj83p+4YqBVxfYUfRM/JV01q0w4M3999PMv76xbudL+yhoWTy7a1sAiDtWewMErIH3tnmQygeX6bqSkALPnSc4/C0yeaMTX3yiQmCghtYZxIGLuuWXeE3qDffLYbPqMqqnmlp/25g38eQ4Mh/aIj/V9RsBYpzl8Pk3XLUwzpRIpi3d4muuyPy8ZAkTTimhbmcyPUeFqRG+bq1ibdBWfx1Od1J4BpTE/uNFLtmLZXU9BQCawPGUnZD9eBQTyBIEl3aiLV6PQY9AUVK1YCtNGv5fhHrIMg8AAPxQIfjmqZOXFA+lWAmv4m2B0WjPYjLXfgP798Xah1AkcSt75SXye0a93Z+YpoJVUqyLpVZoQ4MhYaZiGgIZzXI+OurWZxcMj1tXoTs9RIPWJbeHtvHROSHU8UiVP/GO0mICqLyqCXVyuQOItikHN5BEI5s4g+PN3IDD0/ZiIfvD5egTYm5SUItWuSNUrW0Z0nKYlnBQf9fcvjy/z17dLYKl2/gL20imxvbFld3BV6ru8Dc9uM7jwP8mawwVUHUzPkDEZOD5NQpJqgLpTXIvA0j9lcHKWfbLs6loF4iMplmV7cyhQNf0i3/DuJtwxJonrPFSsK355fg3fSn7RHpevJoYEvhy/aBNduafX7EdgVf/MCJ/CLm+r2zrKBJbr0EbHMPheolkYEgIM+ciIxUsViI2jZ2HwR0YUsi2F6PrkTvT0+Thd309qXIkK0H2+yIlRcq+p/4LPwF2TfP8OnweuXDVYritl2e7cc1KeOU8gEMtpUT1mg7iWggoNzob1tLm2g6kP0PPh3+Kz+t6FsKlw2zyBg7yInEdAJrByHnN5xlcXgTxHYJGt/GjM1zAYOPww//NXd2dfkpW7k8Cy9Uc/X7YqUj/7OkN0asZswCNJBRtbJZjJAKdmK9Kq4Zms1lgO6nwCjk1SgJOkpNSfYYQN/VCHdujaWgXibBAIF5Yp8EySvlhpII/A0q4LeTvkTC40SrrN4LyEzPEvIaDKR+lkztWfWcRLxJerpUyBPw6iyMi3RU/VDItbEX1hqSGj+3AyuBq2f2n9Pfkmhsb+J47R3icC34W8YZfAUi8aC8VlSmBllqaaGYyEMCLEkcnyV+FRro/53h4eYz/tL7Pxpc9THjE4O5/OpSkkoMYISpbd+I3F4xOUQC3dnUdI7XRfLCs9nQ7tgQ3JNzBHoiE3LLAqxuR7OdKyyTkj582eVf6IQ0CJ3IvCseeXTGA5c+LN2545y+CPLfT8VyjPo1cPHt/9oMBdiS7WwPc4hL0oouD6bC72TE6Cz6guVp1JBCmJJH0ZzHd8LwgJNN1YO20NhIJFoBneCYwuRVxCyvw/AA1N/34Z1ib76FkIkCI8De5uEp0KV/rhSChNVZV6e9f4HPXu/ia+VUihwWk7ZJdnrVL2xhMRkAksT9wV2ae8ikCeJLCi7z1OqyxYq2rZvLpveWZd7iKwGG0yNCPesv6j34FKR10e7sAxiTj1L4VaoommmNVYJAqGRMOYjIiLE5Fxq6puL4gtVzbNSij+Aw5BZYQ0gkMaGVO6J4eQmp53uXZlzdI+CVcY86qOZQVUfD+dYLm5icWj45RcKa9dALXqb5QdSv9Yza/wRmTY2/BaMxfKI7vEofW9P4OxUTub7h1MvY+eD2nbOuoQbC7Szi6B5f3lR2DvUs0sQ4vuMHT90OWl39/PImo7XVeRRjxKdDQnsI5OUoK3I7zuzMRE30padMDPItrr9jYWD/6jvhTvwKPo6+m+lL+zFkmSEuSXw9/Bb89vYtKTY6ILAwIqYHpwPWdcyrW2kYsUeC4hLVQBAgyS6ozl+/IIruR5JLFMYLl+ZPbsY3HgID3fjRryaNWCiLgrcEtCZvbrw6FUydz5fmUf3IH3NFpF1bRaQgARIsjjjePgM6SN6CZBUbtkJ6BQwDLNXztrHYSgAh6/JNlBz0XgmuEp3ri3WXSwrCoI/xSz/lvQ1CAsajV40M/2zYh34c1QUttzVyp75mkIyASWp+2I7E9eRiBPElh5ecPy2trcRmA9jYNmXC8ruASNL7Tz6R83tvAcGXcI659fFx/Z0/GxRyJYajNV+9QI36Ku7dzZhUqkPKB9qw0zwrcYYEksRLTlUayp512uXVs17RV/gcVVSUUwQiAQIoFY9E4Wd/+hl89SqT9A8N2MWh92EgeIUPrjcGhXqH5bDtVe+ktrRlFSV/QJaH6fFoUorvIHSY8rEqxJE1J/8EQLQXKX1YztCSaRaq0ZG7SGvu8ol5cetZXFfcmlunh7HkUbm++tpYB9rfEc1IHOX7CJvhXRuTIZ0bcyEYTkvZjdLGJsaLCRZ5Z/+JNKT38k38RncYfE8br7lcbCAi+HpsiZr1loH9Pz5Bcm4HkMjciSRp+5vLlu6CgTWK6DumEji4uX6Z6/1ZFDzRoC1m1gcfkqff/t7jwqVsid71f26ll4Lxxt/W9ZQDC0c2iqlOsouLcn8/geNJP7i5PwQQWQOmtd2mvN5H5gHt8Xn6VOXgm+cJh7HZJHz9MInNPHo939reIaq3nlx/aiHe2uudG933Hb8Ex8vrdoJ5T3olWM8zRY8uKyFQGZwMpWOOXBZAQyREAmsOQDkqsIuIvAsverNVlsypIdgMJ+ObHFiZGYLUmDGhhQEVOC61rhZJnG1WCWEQwLXFiuwDOJNlOlQRwCXfz1/uRMBfQSMWFTmuL9Ayyi/pJE6bzGo8SbuXPBcucBij3N4PoGSrAUqC6gbK/0CCzLSKVw3UZog9ahaX8aWVXJKxi7ir4J5Y5f4LXlR9FVQ8seMHQZaNP1J1wqqsSsF5/5Mkpci+hjm8ASBGg+aSXWCySdiP6V7pPpLsNydS2L+Ei6t2Xf5lCghjk5RSpdah9TcsVVfab4cwyu/iJJV6zKo1xveo7u/8ciapvknL3Oo0QHHnqBRwkblZ62p9zBwMf/iGtv5xOOFSHNXMYiJztapgQHV+bx5IIk+swGkZiT/tmbSyawXN+Fb5cr8egR7T+gH4fiEQJ+36zAWUnqdudOHGpUc54gdt0z2lN5fB+8fpxlNZQjP8Zkx/xZHYOkV5M0a5NxpSpBN2ph2kvL6NXUcUvBh5fJ6pRy/1cYARI9T6LoTVbPuxB+z0DXqs+j3fhHe09svzKkGVr7hL/CCMpLdxUBmcByFTm5n4yA8wjIBJbzmMk9shEBtxFYUVfgPWeoTU+109dAKFDE7iq2JUdhUOy/4vMWmlCsLtTCrD1vAI5OpCQYiThvMDNdSPvKahZPLtGLb7l3eeSv7Bq5dGS8AgJHiYr6041gvYDYswyur5MQD5V5kHnymj06xuDm73SdIXUElO6WTmA9Psngxkb6rIj+bzwpuQlvdqRko0mUVfnfNnj98o0Ij/G1tiCVsGyZIAgIvbPa7BGJLgrP72sVgcUkPYXm8+5mbbmSFaAb7bq4cuS3CjyPpnteeRCHAAsC1LJNlY85+Bd3/oL96DiDm5ts40sWZfm8UF0BpbpySOR1qBidHkVBzJ9R4UpEbxzQ3kevRzT9srGmKNYVavVSHMsT0xQwJFPcCzfk8fAw/RwXa8ohoq3zGLt78TKB5TrCU2cowUm+Nj8fYYSfH7D1LxYnTtG9b9+WR706ufP9qtyzCV6b/me9SIUCKSQVz8NNeXA7vNYuEL3k6jSHbkA6oaWeNxyKmxfFZ6kjF4AvXdnDVyS758kI/Ku9h96PaDGApppiWFvIugiCaQ3j44+YVc6dnK8OPgys5MlLlH3zUARkAstDN0Z2K08iIBNYeXJbX55FuYvAUlw5DfU3Y2wCoRv9DbiSFe2CdFEfj1aSEPRSykAcCO1s1t6YAhyfKim/7g3Um5pOYF3/VYHYU5LUo24cCPHirBGNI5KmaDJGIaDBzHTyhlTfI1X4TGapXeTsXJ7anqTSkZQ6kxVpyKNEp/SLZMJlFpdX0Wf5DUfwoMFu9K5D8zVN5KPi1H6ov58hjsNVfw26QVPsLrt2zK94wFFxYZJC2KBQiBWBxd67De8Z5npXfEgoUqfSaC9nsSVVAUl1QJPV/JyDd37z80PS/kj6n8kqvMchX3nnz5hVJN+LCCvTuKSAACkkYLL8VQWU683hIZeCWjG/iu+HKDQ4E9YTp3SxePPBX9R3dQFsLdLBWQhypb1lSnBEOwF3tlOMC9XjUapL7pAYGQEiE1iuHZfEJAZfL5BU4PQSMHFs+vfrrj0sDkrIyxbNeDRulDt7r/p9BVS76WdNutqUb3cCrGfr9ai2rIJqx1rRbWObXtB3GpD22rIAhm7Il+AqWUc7u7bDcq9XEYEdKdH44PE+celtfcLxfQZRwN8lXsTUhBNie1PV4VcRO3nNWUNAJrCyhp/cW0bAGQRkAssZtOS22Y6A2wisswehXj7Vpr8ZVaAjHXQCh5J3fhL7smAQU7yf2Vi6RAanZkouP/4Cak9Mv/xYCV+341G0ifOXH1LhkKQ1mcwrUEDt8elzpMYyOD2PPiPVD0l6YV4zonFFtK5MVqwJj4h26VgmRTE4v4xiEGi8hBsdD+CT4pT0e8u3BL4t2ATs1TPwXkirkvJlqiB1xHy7cLW9vxWR+njx+ebC7fBm0QgrAssWUSr4+kM773eXtoJoa5GoO/CUOCGRfZaasiTtj6T/maxMLw4FqztPYGWkcUXGttLIKieg4gAuTTOEaIeYzKQT5qyArksguamTZUpwmV48rq+TEKRVBJTr43mfMZnAcu1A3IpisGoN/f4oWkTARwPT93f/ARZ7/6V73/h1Hi3ecP473DXPzHt5rfoKymM0okT6lOg5klRCTzb1j7OhOL5XdFH/znAYX2+f9lq9fAoUZ6lmnm7gF+Bqvu7Jy5F983AE/ki+hSGxB0QvO/uWxJKCje16/XdKNAZICK83NMXwcwYRWx6+fNm9XERAJrByEXx56lcOAZnAeuW23LMW7DYC6+guqFfPtblY/dtDYWzyZoZA1IzZgEecVmxzJLQrwpX+4mttLIMzEgKJRMiQSBlid/ewiN4tIV2a8Yho7fzlJ/kecG4RJWN8igDVh6dHeXF64JgkOgusgIazPO9yndXTFr2Lxd29FMuwFjzCWqZjabkHPlwMzvc9hrEBT8Vp3/Uri9kFGoKNuQHvmR+L7/NFiyN10gq77vV9vBd7U2LE598VfAMfhJW3JrBO7IV65WyzcdKqbC3dhbTGTpr+GaliSfdc6QvU/SJ9z6VmWYGx5Fs8Cjdw/oxlVGWQzJcUzeD8t/SS7x8hoMonHC7pn6Dl/S2iSxW88mFP0U64b0xGnbsbxfeLKHxwMqyHkyjkTnNLAouI2V/6QUKQlhZQ6QXBkTse2p5VJrBc240Tpxhs/Yvub5VKArp3Tf8OPXyUxc5d9Hunfl0e7do4//lyzTPzXpZRStKn2tnrIQTmz45p3DaG99efgb1xQRxfN2w2uAq10l5bklu6fqPB1X85Uo7dBpg8cJYQ+CXpGkbHHxbHeMe/LObmb2h3zMv6J2gh+beshCoAB4t1yZIPcudXEwGZwPKMfY++9whte1tn4Hh5qRDg54PiYYXRsHZl9HizKfIF0nudyfsxM5Zj254jmDvpY7RrnnkV7b3/ncawSYvQsnFtLJw2JEMQLly9jZ6DpqJi2eLY+J15Fohp3owGyJ8vAAf+cF2ixDN2KHu8kAms7MFRHsVFBNxFYCn//RNeG5bY9MrQrjcMHWlVJFuNiAgoEQM1GdHxIXo+Jkt+AJxbKCGXCgHVR6QTDQ8Os7j9J738FKrPo1Rn5y8/T68zuPS9/Qv0sS+U4HTUe0J0EMIjLxkRqidpbiYj0VckCouYMRk4Pk1C9gjPcGrICczgb4vtPw6ojInBtcEmxMJ7/Dvi+3xgfqTOpkLtlpiNij+EdUm0EuWX+etjXEQNKwJLtXcTVL9Z69No5/4GwS/Q6a14fpdB5GK65z5FgeqfWhNYd7azuLef4hLehkeoCxEiN35T4PEJSrQRfSuic2WylEfA2fnW59xequAzXo8K0b+I/QNYL1wOp7g7DUgOdeBSGBybSnFXaARU+oA32wtS/ZNUAc0OU578B8yDaHEornZT8EUiXBpaJrBcgi2NoCJElcmaNubR7EUl11OnGfy5jZ6HGtUFdH4zd34g8J4xCOy9WzYXmTp9DfgM9BxdQyZ7e3lP6A32yWNxUJJeTdKsianWfQPVgW3iM0OvT2Fo/HKkHGcvSvJo2YXAymeXMenJMXG4AQEVMD3Y/iU0VeBQKpOI++zyTR4nbyMgE1iesb8mAkvj7YWaVcqKTun0BjyOS0D0vfR/jwL9fbFi3mhUKlfczPHcJrAIwWaLWCNOBgX4YcnMTz0D6Fz24qUnsAjz2bhBNaiUnq0Dkcv77LHTu43A2rkOXn+utLnujAS8TR1Gxh3C+ueUwJiZvz76+ZcXx7OMTPELE1B1SPoFJ/YMg+vrJZXzqgko+47zl5+4MwyuScbJX01AOck4JAKMRCGZrNpwI3zta9N77BnIyLFbm1k8PEIvmUT/iuhgERNStTjyhR+NdBIE/Pf5UdgThPgAACAASURBVCx6TkWBPw+qgU+DqoFJ1ULzGY26ExRKaEk1Sjs2J+E0FiVGik/JGAtKNrQmsP74Hqpd1qXsUyf/AL6w85WMnlxkcWUNXW9QeQEV37M+O3f3sYj+23ZqpTMbffVnFvHnJRUPe3MoUJUSWFapsi/SWA+m3kfPh1Ss/TXvwvi1cBvwgoAwiQA+OZ13i2dMFjvjr7vakkqfpOKnyVQBAqp8xOP0V+5J01XPHQbFrcvifIYuH8LQ0rwYgKNrlQksR5Eyb7d2PYur1+jZ79qZQ7Uq6Wf/wkUGv0qKG1SqyKNnN+d/hHDNM/NepEgEKRZhy7QTl0MoVjI7pnHPGBwHzZA2YpXWtOhUIjyvSP9cqX5bDtXe3ySfg4EgFWJlkxFwFYFvE89jZsIpsfvgwCoYny894s+e1by7AY+MNOL+WGg3hCr9XHVB7veKIiATWJ6x8SYCixBBf/1kniFBPLz/MA5fzPsRR05eRIUyEfhthbncTG4TWI5GfnkG2rnnxUtPYFVq2h9BgX5o37wBOrdtlHYYZXt5EHAXgeW1eSWUf9MqaVJEuMr1oBtMBb1tobU4MRKzE06LjwYGVMSUYCou+/QGg0srJNFRJQVUGpRONCRcYXD5R/osqKwAko7krFlGcpEUMZIqZrIL3ynw7GbWhbyd9Ssn25Mqg6TaoMmkEUKKW5dwZFkJGFkaArxn6DEsN54X208Lrof3AyqkvdYMaQuGoxE02gVbIHhrbC7nx2eXMVHyKy5JQ/i5THMrAstrzVwoj1AixzSYq9W0SNW7W5LovcL1eJS0IRxOSD1C7pnMVYFxEuFHIv1MRvStgspRAotLBY5Nti5WsFsbg/6PqK5Nc58wrAlpnjZM6eifoeUpztfD+8CHpWPk5PlxdK7UOAan59LPLEkJrjqUw/EpkrWrgXrTsicCSzOhNxhJVIojpLq9tcgElqO7bN5u0bcKxMXTs//hBxxCi6af/WvXGfwsqfJaprSAd134EcI1zyS9BAGaT1qJBJDleKmfLwJfIv37zRONiXsAzaS+omtCYDC0synhr9q2Gqq/fhafG9q/C0MH2t4T1yT75NkIfP30LOY/PSs6OTKoOkYEVc/Q6a6PduColkbcbyjcGo2889ivgZ69bXnCO5nA8oxtzIzAIl4+eZqExp2HgVQdP/jnYrOIJ5nA8ox9zMyLl57Aqt/hEyQ9p9XCypQIxVttG6FDiwYoEOx8Ck9mgMnPsxcBtxFYG5aApBHaMj68LFLHfZvhQrYlR2FQ7L9iG1M1O9MbTy4zuLKKXnjzlRNQYUA6SZVRdJYz6FkKbIe24BH+Qv+JjEOivEi0l8ks07+cmctT2177RYE4iVh52bc5FKiRfslU/vcXTmypBS2bno5CbMf7x7HSi0ZOzS/wGnr6lUl7phnTE8yzJ2Lb1C/Xgg8Osbl0W/u/q0JHKwJLvWQCFBePW42h+2gquGr2dTfs4U0E64lwvcnIfpN9t7TsivKL/FaB59H0DBF9K6JzJTUzbShGQMPZHLYk38bHsfvFZh18i2N5waZpr2vEbMBjiX7cmdAeCFH6eOoRS/PLUm+ORDKSiMbDY8hnXCKoP9voirSZ1do1g1uD4em+cqUrQzdygUsYyQSWS7Bh8nQlSNEEk00Yy0Htlf5G1B0GK1fT7/fwcAEf9Hf+RwjXPKO9mKdx0IzrZXeY1OFzwZfL+HKeVR+y0p+9ehbeC0eLQ3AlKkD3OdXvINUVSZVFkxladIehq3lV16zML/d99RCY8eQklj2jmmtEQoBICWRkoxIOYV0ijbgnmlnkRyvZZAScQUAmsJxBy31tHSGwyOx1232E5JRU7Nu4AIUK5hMdkgks9+1Ndo780hNYJKd138HT+PPvgzh04gJ4Pv0PUIWCxWt1quCtNo3wRsPqIOJtsnkeAm4jsDKo3CQE5Yd2ln39I4LSRX08Wt3fKgJWWhWI/cU6i6/jIhlcW0svOPkr8yj3rm1xce8CAmqOdv7yQyJxSESOyUp05FFEUsrdSgfJDtnhebvuuEeXV7FIuEwxKN+XR3CldJyJxtmZ462QqKwoDri11zGsCaIRWER8vb1velSm9/SBYO9HiW1Txy8DH1bapjPHUx+h80OaYljNKz/OVO5hRWB5z/oEbDT9w9c0mL7PCJCoGmft+gYFYk9TwqR0Nw4hdayrCyZcYnBZcsGWEqjOzHnmawW0j+l8RMfNp5D5CKRYACkaYDIShfSb4TpGxNHqYd39SmNhgUZpTUh1QlKl0GT/FeuCkqoAZ9zK8baWFS39wgVUHczh+FQljPT3EdSZZIQqi5klJB2MpIVJLSuVK2UCy/nj8iSBwUKp1pwPMHYUja578BBY9h2NvitUCBg8KHui75zxlny3kO8Ye5b6yXTwVeo7M2SOtlUe+Rtea+aJcxprN4H+/Ynia+X+LfBav1h8bXi9AwzvyPoeObpJeWyyCfFHsSrpirgqol/ZXyL/YGu5S1PO48vHNO1wSGAVjMsk7TCPwSYvJxsQyCkCy3DyILhbV7PB45djCFXt16AoSSVcMvPaEQLrUWwCmnX/LE0H69CWJWAkRZdkAiszhD3j+UtPYElhjI1/iq27D2PzzkO4GXVPfESqDrRrXj+NzKpSwYP1IjzjTOSoF+4isCzLc5tdFh2oEqcTOJTMQNgz9hSD679SAqtgTQFleqaTVIYk4MSMzCvJZQa0ZfRRmV4cClanZMaDgyxub816GllmfuTm84vfK5AoTXF7nwNJySTmPX8UIu++jTgVvcBt6XQSPxWl6QNS8X3v+SPAXqfkVurwr8CXq2FzeYSAIUSMyUg1vXvV+lkRWJpxb4N5Gm81huGt92Fo/bbT0FmmhZLUU9N6pYM9u83gwv/o+TMRLs5OSHSfiP6TyWqP4+AVZE6YnfxSAf0zSZsJHH5hLoNcFEzWz78cZuZvkPayzYOtOK+jmOwo0gFV1QWcdS1H25MzRs6ayQJfVBwkaYUkvdBkNUZx0BS0JhSdcZaJuQnNzI+sumi/2gjBP8iZodLaygSW05Dh+g0GP/0iibAKE/CBRGsuPp7BN5Lqm/nyCfhsqPM/QjjvmXkPxYXjUH87we4wug8mgqvVJKvTuK2/atsaqP76SRzf0KonDJ0/EF+T9GuShm0yrl4L6PpbV49ym4PywHkOAUv90q/zv4a3/dOjsO3ZdkMUBt6jEffSiOI8B5C8ILchkFMEVsp3X0G/h1aBdtuCPGRgnw9Hw6tFJ4e9yYzAep6sxahpy/DfsUiMH9Ybvbu0NBtbJrAchjpXG+YpAkuK5MWrUWlRWX/tPYqnic/FRyXDi6BTm0bo2LKhWchgru7CKzy52wisb8ZAcYVqWFlC7Mhl0TIV6mhoN4S9EPZ8eJTFrT8k5FFdHqW6vhAXF4AjY6WaPwIaznH+8pMReUPWExfJ4tpa6kO+Cjwq9M8doWF3HeHzyxQg0TEmqzyIQ0DJdAJBM7IzLgpD8VBFy65vbXUKa0qdEdtvLdIeNdUF015bkpoZXf6SeQPKRq8Vx1GCgb7mR9YE1sctberTECFiQ5eBTsNiSZjYiogig1pWwdSECKgx0vkzZlnJst5UIxTe5m5bRmmReVZ5nwdJ1TDZRwGVMSm4dtrL7g934nDqQ/HZxsJt0NC7sNNY5GSHJ5dYXFlt/VmKXKLA85iMUyyd9dMeKeGqbppMYDm7A8DR4yy276T7Xb2agC6d6Ofn+XPgK0n1TV9fYMzInI/AUh7eCa+fvra7QH3f0TA2oN9/ziPh3h6WGoH6Xp/CKKkyqDh9AOoV00UnuOqNoBs02b1OyaPnaQQ+id2PP5NpJeKlBZqgk1+JDNd8hX2C5rcoIVDVKz92FO2Yp3GSF5f9CMgEVvZjSkZ0lcDy0XjjtTo0fZjjeTxJeIbL1+8gIrQQ+vdsi06tX7NyOrcJLMJTBOeznbXwdqdmaNvMflVV9+yAZ46aZwksE9wGI4f9R87iz50HceBoJIxc+h+pJFywYe1KaWRW80Y14a328swdyuNeuY3A+moYFLdplS9LGHUTV4ArZl461bJNl4c7cCyVCntKo3nuH2AR9Re9ABVtxKN4R0oeHZ2kBG+RdqVQO7eZ5xYp07R5TFZ1qBF+VO4pjdghBI/J/IoJqDrMeRLDOa9ytrU1Bhz8QgUwzxKgGdMD19SDEa3uJjq1rdE5rK5yQnz9T7G3UFaVHtWi+nk+VIdoWqCh93AYGrW3u6CIqNUwgkbbxFZ9DwVU3njwRJumncOkPE8j0WyZsUFr6PuOchqsoxMV4A2UMKk71QilBaFEBtU/ZXByFt17L38BtSc6v/dm+lYAGs6xvqSfX6JAkpTEGcJhhf8ZELFck30WVB2jXgjl9n+0B7u1d8Vnqwo1R0tNmNNY5GSHuLMMrklEu00VPy+tVODpVbof5ftzCK6QtQgse6SE/t2RMDZs4/SyZQLLacjw104Wx47T7+8WzXg0lqRnG/TA9NmSKFoV8MW4nCewVH+vh2rzD3YXaOj1KQwSQsh5JNzbQ71wNBRX6feEfuhMGCvWESdVXDoJ9eJx4mtjxdrQD53lXqfk0fM0AgMe78XfKTHiGleGNENrn4wrAuvURpS8SosJ+DEqXI3onadxkheX/QjIBFb2Y0pGdJXAsueNSqVEq8a10eaNumjWqKZVs9wmsDJCcdRHPfHe287Lk7hnZ3J31DxPYEnhTUhMwl97jmLzzoNpDKzJ/Hw1aQe5U+tGqFkl41Dj3N2uvDe7uwgs72nvg30QLQIm+AWCeZ4ovtYNmwOugvUXlxRhovGz4TnVN5qVvwH6+pdLaxKzl0XMLnoBCn2DR3gbSmBZpmbVIgLB+Zy7+GY2hu4Jg1Nzsk5iePKpOjNPAW2stUaT4vJpqBeNwW2vd3HTe4C4hL9rXcD3dWlq24mw7iiq8E17rvr9O6h2bxTbZpbm1/DuJtwxJontz1fsicqaYJHAYh/GwHsqnVuKI1e1AXQfT3MKWlLFW1r1jlUJqD/DNillWR2Q9QLqT3fugm1VYdALqGdjDMtIwEofcFic/4SZUC4pU07KlRMbEnsAfyTfEte+uODr6OJbyikscrrx4xMMbvxGP0shtQWU7s6lkVqE3DJZ6Z4cQmo69zm2XItq+1qotq6yWqKhRTcYug5yeukygeU0ZFizVoEbkgquPbvzqFTBPHrVUuR96qTsEfB3xlvVr0uh+ucPu12I4DkRPvdU857YF2z8A9G91MkrwRemZDZ78wK8530mPudKVYZulGvFDDwVA9mvnEWg16NdOKC9L04q/eHRnidBvioEX1oJIh1hsgvhvZCPdfJXx5xdqjybhyGQUwSWrIGV8cbbSyHkOB6JSck4f/kWvv9lG06fv54WzTTvi4/NBsxtAmvupI/RrrkcZZXZx/uVIrCkYFy7dTctKmvbniOIe0KJjYv/Wl8sMgNRfu46Am4jsMa/AzYhlv5hXLISFLcuiq/1/cfCWK95ho4vTozE7ASahjgwoCKmBNdN62NVLa4Vj9Dm9AJ0doESKTSLCtWGGeFbzDmcMoviIn9rHRlvnqrYYDaXLVXSnPPUfa1PzVZAl0AJhJpjOHgHC1Dt+Q2qTcsRo3oTVzX0AvRPpatY2vg/0aEr4e/An7A7hMCyiGYwNO8GQzf7hEGnB9txUvdYHGt3mY5oERBKCaxrZ+G9gFbYkqLAlawA3WhabcsRhMh5IefGZJmJ/x8eqwAESYW8WUYwlFPNdEpdIoNTMyUEaICA2hOsCbOrP7OIP08HJsUK5hc5bCaUOz24HgYEVEibc2z8EfyURAVGpcRvpk7lUoMHh1nc/pOusXADHiXf4mFZSIFEWZJoy6yY19qFUB78y2oIrnJd6AZ/6fTQMoHlNGRYsEiBhKf0s/PJICMKWxQv+HK2EjpJFO34z43wthEN6fzsjvfw+n4GlKdotU++YDGwsTQs19CxPwztPDRSRBCgGdLGrNpmyjfbAC9KCrB3rsF79mARED6sFFLH/89xgOSWMgIWCLz1YDtOSP7d3ly4Hep42642bOpKCKz6tzbhvJZWKd5etCNI8RbZZAQcRSCnCCxH/XlV22WmgUVwIdlYPQdNxZUb0ZgzcRA6tEjXcCXmLIFFCskNnbgILRvXxsJpQzKE/cLV22nzVipXHL8un2LW1tl5X9X9Na37lSWwTAAQRvbQifNpwu/7Dp3G2d3fv+pnIkfX7zYCa0QnsFpaPsxYvxWUR3eJazN0+RCGlhn/cr01OQofxVJhzxaaUKwu1CJtjKitLO4fpBfe4u15FG1ML7YXlivw7Ba9IFX6kENgKccjN3gjcHQCJTMYhYAGM63JhePTlDAm0y0jBIRXgOPz5OhmuzDZielKGKiEHepMNELljzThXyIA/EjZFOd9qGbKkZK3ML/1PnGme8X7i/+vPLgdXmvpr/tEO4ZoyNizgY/3YXsKjeL7uXgL9M5fRiSwlCf/hdcPtgkHPiQUqVN/dGrFJFWNpKyZzCQkbm+Q45OVMKbSp3W/MEKZHmzmkKU8As5KdH7s6WiRyCQSoWQyUhlxdomDZtGJ8/I3RK8XZcddKWPukMNubHRvPwtS1dNk5LNMPtPRu1nc3SOJtGzBI7xl1ggs9dJJUJynUYKmOYUCRaCdvsbpVcoElnOQ8TwwRVJkg/SePMEIBf3opQ04d74CSc/puR85nENgDn+3quePguL6OXGBJGqYRJ+aTN+6J4xvUVF055Bwb2vmyWNoJlByjQkIQvIcGgFLZreMYuVDiiF1qvwjont3Jm+PbllEZGeRDqiSSRERQmD1vrcHm59S7axlBZvgTd+MtbPyNpLy6pxFQCawnEXMPe0dIbDIzCvWbsPCFb+hc9vXMWPM+6IzzhJJR09dwvsjv8Lr9argf3NGZrioE2evoP/w2ahXowJWLjAvWOLsvO5B7+UZ9ZUnsKRb9ex5CkjFQtlyDgF3EVg+H5tXlSDpYlItEUPzrjB0s64EJl35RX08Wt3fKr5VWhWI/cXSNY9u/c7i4TF6sS3ZmUfh+vRie2UNiycXzaNW8ld2/OJrFR1jR+Po3EJlmqC3yaoOTdeIyitmFYX2QmSclJYnJeafKGritC8VOb5Q9D6mdtqetnxfRolrEX1EKBRnDkL93VTxdWZpfuPjj2C1JJJoXrGGGFm4GiWw9v0Br41LbUIt+PpDO49WMXRkPx4dZ3Bzk+3Klrb6W0Wnfc7BO7/je58UzeC8pNKaf5iAKkOsSVIrsrYjj+nl/sEWiVDutwUa4y2/9Aqv3zw9h6+eUiH9T4Oq4fMg29UeHcElJ9rE7GYRIyGqwlrwCGvJp5HUZP0mK9yQR8lOjn+ObfluOru2nqUs+gtQOafHKBNYzp2Q2DgGi5fSz1mAv4BRn1mfe1KFkFQjNNnQTzgULOD458s5r2y39p7yHthHVE+O6F2pDmwTGxuavgVDTxrBlB1zZtcYpOIrqfxqMlIGPWn0YrPhmadx0IzrJb4nBARDO2dDdrkgj/MKItDk3h+4YaBZFeRvNvK3W0ZGCKxJcccx/xEli8fkq4lhgVVfQQTlJbuKgExguYpc9vZzlMBa9etOzF26Hk0aVMPSWTSTw1ki6cGjeLToORIhBYKwb+OCNI1te/bTb7swe8kv6NGxKSaPpD+wk/bOzpu9qL18o8kE1su3Z3nKY3cQWIxOC83wN+kfxSo19O8Mg3o1LddtrP0G9O+PzxBLoodQ8g4tAc6CQUzxfml9rm9QIPY0/ZIq04NDwVr0cnNjowKPT9LnpbpyKFTX8csPEW8nAuYm8y0CVBturXFkJTLdj0dwxaxdsD3pgFmKjDeYaQSjADRD2oLhjEhiS+GYH42avJP/CUb1SCeOCis0OBXWU1wOa5Hyx5WqBN2ohXaXu/DpWcyVCJWPLlQdX4U2EAksrz9XQrlznc3+ZKe1S3eRahEOw0kIFEKkmMxSV81yoLMLlUiRkJfVhhrhKxH5z2zip9cYXPpBEvFVRgDRt7I0yygkEoE0scouM6H2H0Oao5VPurbN988uYfKT4+IwHwRUwNRgz87nJwUZSGEGk0W041GsCY/Hpxnc2EAxKlBdQNlezovlSzHVjO0JJpGmqkifaScuh1AsnQh01GQCy1Gk0ttducrilw10r0sUF/BeX+s9/d8KBe4/oJ/fDz/gEFrU8e9w57yy3Voz4i0wWhpiSyKHiZafyQwN28Dwbsa/+GaHH66MoTi2G+pVX4ldVfWbIrHfBPOhUpLgM7KL+J7g7QPtgj9dmU7uIyOQhkC9uxtxVxKWfiy0G0JfVI+2BxEhsFYlXcHgaCo/0Mu/DOblt65QJsMsI2APAZnA8oyz4SiB9cm4Bdh/5Bz6dm+NMYPpDymuEEld3p+EqzdjMGfCIHRoSdMRzf6+S9Wj6weTcOfuo7RILRKxJTVX5vUMxHPHC5nAyh3c5VlfIOAOAot99gTeYyhxwQfkg6Hf52bVjvgy1ZA6Yl6m+1AjZgMec1qx3dHQbghT+uHqTyziL9BLUNneHApUpZeb29tYPPjPfophZhMn3mBwcYUkSqCUgMofWl+yLNO7LCPBMpvHk59bplGCEdBwNmeWdpLKhOCgP/3FPt43GR/1TSeVpBFz5DVz7xY0M6jmFV84HKmT7Vf4Wpt0FZ/HHxEheje4LNaUaE4JrJ/nQympamiJpfarjRD80ysgOmIk+opEYZmMaDARLSZ7ltU01bhIBtfW0jNGIgSJvpWl3d/PIsoivW5MrR04mErZs/WFWuF1TdG0ruuTrmNk/CFxmLf9yuDrAp59Ebi1mcXDIxJSoxOPIg15PLnM4MoqilG+cgIqDMgCgUV0gT5pBXu0pv79iTDWbuLIcRHbyASWU3Dh0BEWf0uI4tq1eLzZ3vrc/7hagdt36E71e5dDqRI5S2BZRhLrBoyDeiWt0mes8wb0AzL+IcY5dLKvtWr7z1BtXS0OqO7YCwntLIpe8Dx8BrcW2wgMk078yyYj4CICVWPWI55UKHlhkWE9kV+hyXA0QmD9p3+ANtdpdGND78LYWNj5qrAuui13ywMIyASWZ2xiZgSWXm/Ajxt2YtEPm8CyDDZ9Px1lS9Jff10hkg4cPYePxy6At9orjQwjaYmk2qHJbkU/wJR5P+JU5DU0rF0ZK+ZZVyl3ZV7PQDx3vJAJrNzBXZ71BQJuIbAe34X35PdEjInwre7DSdB8SVMG+UJhSJ2yMtN96PxwO46nUiFvU0Wbyz8qkHCFXm7K9+cQXIFebu7uZRGdQZXCzCaOO8fg2i8ScqEqj3K9rS9ZZA4yl8mIkHx4q7wRgUX0nYjOk8kUaqDeNCMUp/+DekV6hT8OavwTsFNsY2A5vDMoXXuqhlcBbCvaQXxmla7iHwRCMtmz3doY9H+0V3zcMiAUu8p0FAks9bcTobhwzG5/Qo4RksxRszpTmUTTXV7FIuEy3fvyfXkEV3J87y1TFkPqCCD6Vpb26BiDm7/Ts1ioLo/PGm7FKR0tkvBnkXaorU4Xyt2WHIVBEu24Dr4RWF7wDUdhyJV2lhGTBAeCR9IdBucl6Wb20iwdddryDFr2M3ToC0P7dx0dLq2dTGA5BRe2bGNx8jT93LRpyaOhDaJ47ToWV6/Tdu/05FG+nOOfL+e8sm7NxD+CZiJNgRaCQ6Dv/jHUyx1Pg86qD1np72VB8GsGfIb4Ou2shvQZ2hYw0ujilG/+ArycS6PNip9y37yFQJnon5FCfv16YdfD+8CHlRa7sV4vIbDuMckoe+EX8SGpXkyqGMsmI+AoAjKB5ShS7m1nIrB8NGrUr1lRnIwXBDxLSsaVGzFI0aZCoWAxcXjftHQ+qZmIpNAiBRHgb1tYNl+gH76ba05Crdu8F7MWrwXR1iZzl4ooCrXaC4/jEhB9L/0eWb9WRSycOgT+NuSKTPMWDyuMfIH+NkEKCvDDkpmfuhfAl2R0mcB6STYqr7rpFgIr+jqIzozJ+PAy0A2dBc3obuJ7go8ftF/bL09uajgi7pCZWLWpotrF5QokSkTaKw7kEFSaElgPD7NpFcxMVqg+j1KdHb/8ONqfRI2Q6BGT2SMhXsbzo38GnPyS/uFJxNvTRNwtftnfG7gHgkAJlj4DV0GnNKKRdxFsKEx/3ScYWEY0pCzbbReas/o4tL9Pf5GtoglGZMWelMCaMwSKKFptT1B6gTHSsmW60QvBlazkMPTWemZG+GWQEmiZxlq6O4eQ2o5HiNz/j0XUNolweSMepMqepVmSqQWqCRjc9A9c0tM0uF1FO6LSi4pN/2rvofcjimtTTTGsLWSuSecwKDnU8OovCsSfo4Q0SRMk6YLaxwzOfE3PVmaVITNz17LqmmV7Y51m0A8Yl9kwZs9lAsspuGAZWdX7bQ7lylp/bn77XYHIC/RMdO3MoVoVxz9fznll3VoRdQXqOUPFB1zx8jC++R7Ui6jwKxF11w2bk9Wp3NKf+CkVnPcdMwexxWtazaUZ1QVMcpL4vnbeHxB8/dzikzxo3kegWJR5EQBpIRd7qycEllrNQnl6uVmT6Ii+UDhT2jfvwyuvMAMEZALLM46HicCy5Y3aS4XCIcGoU708endpaRZ5ZWpvIpIyWk3+fAE48Id1pfGbUfew9o+9OH7mMog2FsdxyBfkj8rlSqBDy4ZplQpJ1Jcty8q8noF8znohE1g5i7c8mwUC7iCwFNfOQb2AMuNcmWrQjZhnRV5oF/0FIRPB5EWJkZiTQKs+DQyoiCnBdRG5RIHnMfRLqMpgDv7h9HITe5bB9XWSCKpqAsq943jqkZUekp3IqieXWFxZTUmIoHICKmYlxcmDTmhqPIPTX1EM1cECao3h4PXdNCjPUK2KAyE7oE+l9e0/7rMecf7P0dYnHN+HNDNbkWZYBzAGHb0sLfwTgtp24Yb7xmTUuUsjtAoqvfG42nsigUUqbJFKWybji5UEe++W+Fr30VRw1Ro6jOjxqUoYsCq9OQAAIABJREFUaeFMseKivQEIQUqITpMR8qloI8dJUkvh8lA7FfZIpCGJDjNZvvICBrb6FbcN9NL5X7HOKPlCKPek7jE6PUgX0idGIrNIhJYnm1U024voN7LEE5KKdUofoO5kay06R9emOHcY6v/RqpmCxtdM44gPK43U8cscHS6tnUxgOQUX5i1Q4FkS/e7+9BMO+W2Is1tGanVoz6NuLcc/X855Zd3a8qyQohOGVj3gPY+KzXKlKkM3ilZWzeqc2dmfREGzj6kAfcC8NXhIxBwtzHv8O2ATaDRn6pdrwQenR3PKJiPgDAKWuqVqhsWtiL6ZDkEILB9vJSIif0a05N+1A8U6o1QmAvCZDi43eGUQkAmsV2ar5YV6AAIygeUBm/Aqu+AWAivyCNTLvhBh5SrXg27wDGjGvg0mMV58Xzv9JwgFCmcI/9bkKHwkSYdqqQnFqkItcHaBEikPaddqnxrhmy4BlGaWl/6gMgIq2hDItjf57T9ZPHCAnHh+l0HkYkou2BN7fxnPGMGX4GwyTYiAGiO5tPRQ6cXoSImdSI5Xi+1Gd/sdUQWfoLtfaSws0Mhs6d7jeoF9GufQGTAIPIrfWWPWn6/5ER4mpEIQrKO5jPWaQ3mMphzq3x0JY0PHNDQEDjgyXpLmwApoMJPLUAPeMn3UVDnP0b220mlrx6NoE+sLelIUg/PL6BnzLy6gf4df8FCiDUdSLUjKBbEr+gQ0v0+FmMur8mFvsU6OupUr7YjeHNGdMxkRsw8sI6Tt85Gx0vQTAQ3nOE5EWy5GeWArvNbRX+2MtZpCeepfs2YZRQXaAkcmsBw/MhwHTJVEdZIaC5MnGMFSHlgcbOcuFoeP0getW/J4LQNNOse9cKyl8sA2eK37RmxsbNQO5D/v2UPE9/iwUkgd/z/HBszJVkTrbUgbMDz9Pgn8eS8eJFl/v3hPGQD2UYzoXeoX34MvEpGT3spz5REEEnkdKkbTwiqBrBcuhb+T6epMBFaTy3/iQMp9sf2akOZo/qI4SaaDyA08DgHVnz+CjTwEvkFrGOu1dEqT1JXFyASWK6jJfWQEXENAJrBcw03ulU0IuIXAOrHPQug2PS1HPXswFHeuiZ7rxiwGScvIyC7o4tH6wVaxiUkYnEQGkQghk9UYxUFTkEZgJUUzOP8tvfT7hQqoOtTxi++1dQrEnZVUOezJoWBN6/QV/TMGJ7+k8yh9gbpfuB4hkk3bmi3DkAg3EulmMt9iAqp/rIVmWHuz8U9U24PE27TdtI7bcT70PgYEVMB0i+p33l8OAnuXRkmljlsKkmJqzypFr8NTnkZs3avaF0wSC6SkQDOCkjKCtwbG1ztAtZtGbJGKYYaWjmlopMYxOD1XEm2WT0CtsRmfF1I1j1TPM1mR13mU6OB4hIilaHypLhwK1bM+Y8kPAJLeKO5DEaBXlzVI5Gm65IXwXsjHppOId43PUe/ub2L7UKUvjoU6hkO2HBwXBon8VoHn0ZKIyo85EKKO2LFJSnB0qag7xQhlxprAdj0gf1CrdlKdFUO73lAc3AFSeMJk2i/XgugdOWoygeUoUsCDh8Cy7+hZzh8s4NMhtj9n/+xnQf4zWdPGPJo1dfzz5bhXtltapkob2vUBV7c5vKdI9B0LhSJ1SrrmnyeZZSEVxi8AgSu3w9a/996zBoONpv8up477Fnx4WU9ajuzLS4LAQy4FtWJ+Fb21rERsbxkmAqv/jX1YnUhlAWYE18N7ARVektXLbkoR8PrpaygPU31U8kw/aDKM1c1/1MxO1GQCKzvRlMeSEcgYgTxJYA2d8A3KlQrHkAGdHdp/UpHg3aEzUaVCSUwc7pyArkMTyI3sIuAOAssqyqFRe+h7D4fX0olQnqei27pBk8Fl8o+ZZUg6CwYxxfvh5AwF9JI0lFrjOagD6eU/NZbB6Xmua+dc+l6Bp9fphZpUPiMV0CwtPUKEzEPbNphpBEOnfmlPX+JNBhe/k1RiLCGgattL5hEIIcVwrswaxJ+nF80FLfficOnbGBZYFWPymWuueC8YDfbaWRET3bDZ4CrUsovRG/c245rhqfj8VIVuKJLqB+aRdaEA7rU2UG2mVQ0NLXvA0GWgQ/hbrtU/QkCVTzImsBwVYbfnwNW1LOIjJZU03+FA9K0sTZfA4NRsc3KtW68foRfoZf5WxLtQvzh0CbwOlSW/ggexalwMpyWKHQIkhxudXahECi2qiGrDjPAtlu4EWTvBwGQ1P+fgnd81LSSv1XOhPEqrrBl6D4fixD6w1yLpmRwyE1ylOg4jIBNYDkOFCxcZ/LqJnuWyZQT06WX7c3boMIu/99DPR4P6PNrmYIEMr7ULoTz4l7g4fa9hINHEJHXZZHxQAaTOohEnjiPh3paKmxehnjdcnERRvAz8v/rRNoE1fwTY6+fFtqmfzQVftrp7HZRHz5MIRBmS8Nq9TeLaiqv8cahY10zXaiKwpkSfxNTYE2J7k2REpgPIDTwHAYMe6uVToLhI99HkHCmQQgqluMtkAstdyMrjyghYI5AnCaxKTfunVR74Yf7nDu95487DwDAM9v9OQ/Yd7iw3dBkBdxBYql0boPrje9EnQ4vuMHT9EJZVkciFwNi4Y6a+14jZgMeSdKmjod3wYHoQSJU8k9WZbIRKIqVkeA6cmE5/6XdWO+fcIgWS79FLM4neIlFctsyKTBvLQZ3PtQt2pmDkYIOEqwwur6SXTZKGWbXSdnitmSd6QQjIywWn4uExetFc8foh7Kp8GePz1cLgwCpmHqu/mwrFmYPie6QEPSlFb896PPwbh1Ips/FX6XaowYWAuXHBSouGa9Aq7YyZzNigNfR9rUvl2prLSjOtqoByvTMmsOIiGVxbK9FZq8yj3LuOR4hc+kGBp9ckJOl7HIi+laUZtcDxKZJqkBqgS3/6+SLtpUK5pNJL2J3V4jBkhrvF++fgyXF+KhL9RqLgTFZzFAfvFxGV5xYpkXyPjpnRZzGzmdWLxkJx+ZTYTPfJdCgij5oTFd0/hrFZl8yGEp/LBJbDUGH/fyz2/iMhperxaNva9mfmxCkGW/+in69aNQV06uB4FK3jXtluSdLgFZFH6FkZNBl8qcrQfE6jGQVff2jn/Z7VqbK9v/L4Pnj9OEscV1W3MXxHzbRJYKmXTIDi4nGxbeon08FXqZ/tPskD5n0ELuufoMX9LeJCK3jlw56imaevmwisVQ+u4r37+8T+JsmIvI9cHllh8jOk/Rsbfd3mgkgKtr431RDM7lXLBFZ2IyqPJyNgHwGZwHqBTdOuw5HwNAnn9tIICvnguB8BtxBYW36EaockTedFaXrVllVQ7VgrLsrQvg8MHfplusjOD7fjeCoV615fqBWU08NBdItMVn+GEayKvs6qdo5V1McYDt7BtkmpyEUKPJeQXSRyh0TwvOwWf4HF1Z/oZTO4Eo8qPsug2kvT08gvajeV/XFXcildX/cUNtU6A1PFSCkOXmsXQHmQCozr3x4KY5M37UI1OHY/NiffFp//EPEG2rIRUJz6D14rponvk7B0rl6LtF/+TMZVqQ9CUDhi9/azuLPduXRAQj4REspkgaUFVBro+AU7o7Q5qc8k0OrIOIkOFCOg+0f0e9KXUeJaRB+zZZa68xNSJR+QmxHvwtuDwwJJGi5JxzWZNKLSUh+r4vscgmxUrXNkn72nDwR7P0psmjp2CdgbF+H1GxVuN76IGHVkPNJGJrAcRQr4/U8FzkqqTXZoy6NuHdsEVuR5Br/9QT9flSsL6NHF8c+X417Zbuk9ZyjYqCviQ93ob0AKRWiGS350UXkhZRGN0srqnNnVX7lzHbz+XCkOp27XA5r+w2wSWF4rpkN5+oDYVv/+BBhrm5c1zy6/5HHyNgKndbHo+IB+HmqqC2BrkQ6ZLtpEYO2Pu4+md6h+YzlVEPYVeyvT/nKD3EeASYiFev5IsHGSUGoLt4xV6kH/yQy3OSsTWG6DVh5YRsAKAZnAAhB56SZ6fTIdQYF+OPTnEvmY5CACbiGwfl0G1T/0V2lDj09geKMzlPu3wGv9YnF1hkbtQVJ4MrMRcYew4Tn9RYcQI6VnVDLr1nCOte7U0UlKSGSCUG+qEQpaLC/Daa36TjNCQXXKzfpaVlAr25tHgaqOR+Jktv7ceh57hsH19fQCSdLbqsSNNotg0X84GdFJjc20oP6qegGrXjuKxQVfRxffUmbukxQ/1d/r6Rno9B4MbeyLvE55chwrnl0S239ZrB7e86oAxb/mZ4lE8nH1mkM9l54nrmQl6EYvdAg+K9H+9jyKNs54D5NiGJy30AirNszxC/bZ+UqkPKLuVf/MCB87NQ0sz2OfgaugU6af+QIKDc6F9TRbZ9WY9YjnaIhiZFhP5Fe4KBzlEIJZa0QizEikmcmkEZVWqZa9OBSo7hpBrBnVBUwyrd6onfNrmiabevFYcW6ubDXoPqNRhpmtTCawMkOIPl/xowIxkuqx/fpwKFXS9l5evcZi7XpKKpcpI+BdO+mGjnvgeEvNxHfBxNNKIdoZP0HIX9iqmq6zov+Oe+B6S9XahVBJ0h81Az6Duk1X2wTWmnlQHvlbnEzfbzSM9Vu5Prnc85VF4HDqQ3R/SHWPGnoXxsbCmRdSMRFY0YnPEXHjJxE/khZP0uNl82wEFPeioFr0OdhnCWaOkghV6b+3rlT5dWblMoHlDFpyWxmBrCGQJwis67fv4votmuMxevoylC5RDIP62I+sILAZOSNuRt3H+j/34XmyFs1fr4lF04dlDVG5t1MIuIPAIilmZn8Q9xkB42tt01LHSAqZyRyNkFmSeB6zEmjaz8feVdBsQT1xHNYLqD/dmsA6OVMBfaIkqmMMB7WdKCopaLwRODrB8cpnN39n8UiSQleiI48ijV5+AsuWxlOVE93ASASvUyevxKN74bj+KyW69pe9gSXN/8XqQi3QQhNqdh5Vu3+F6vcV4nskVUvf/WO7Z3bZs4uY8YRqKQwLqYKxvrWg3LIaRGTZZCQSjKvdFN5T3xff40NCkTrVMYFlEmlGIs5MVtaOHpXUUW0sgzNZ0FmzOp8ZpJ5apqkO7LsWT33TGZ9whR+OhHUzw/C1u5sQZaREzZHQrghX+jv13ZCTjcnnjXzuTCaNqLz1O2uWolryLR6FXalGx3HwGUIvU4Q20S7dBebJY2gm0gg2ISAfCLHlqMkElqNIAbPnKpCipd/JIz7lECTRLpSOFHWHwcrV9HuleISAAf0cJ4gd98p2S81gUsWPzpeyZAegUELzaXswelpVQLtgC0gRCU8y9eJxUFw6KbpE0gdJGqGtf+/Jj0rkxyWT6XsMhvENOeolt/bTYAR0qQy0qQxStQLCwlwj63PD/3+099Dn0W5x6uaaUKwp1CJTV0wE1tPneiyJu4AiCh+EKv0QpvRHEPkDTzaPRYC9dSktbZDRSX6BAsCVqADDuyPhPe0D0XfBPwjar2ihnexelExgZTei8ngyAvYRyBME1tJVm/Htqs1Z2mcfjRprv52EsiXNL7xZGlTunCkC7iCwrHSO3p8IY+0msBSW5SPKInXst5n6uDU5Ch/F0lL3b/Il8e7yZmI/e5X/SOU2UsHNZFJh6Iwm1SUyODWTXpy8/AXUnmj/4nR3z//Zu+r4KI4v/j2/CxYICRLc3b1YoUCR4k4p7u7uLsW9xa2lWIu2haLF3d0hSAKEkJzv/j5zx93s7e3dbpJLQvnd+yvZHXnzZnZv5zvvfZ8cT/6m4EdoFQZZ6/z3Aayw43I83EXHlb60EYUOcgAAhRL6BXvw7pYCNzkbzQtZnmBa3b9sJ6/kBJYryn/3ufBUkbA/Y/thHqfjt4/30D+ccmY1S50T8wMrQbWBF4pICJaLV4ozPw3JtkiyLjqkMCcLniflzFHA2ckcnrVYZqA8PU4JjpOU1+x6fI6ofq1+w4vASJtqeVSBOMQLs6j54g9cN9HMen9l/A4F1UGiz1pSFTgxjAsYA1yPysf75Hh+mK7DLDUZZKoe++dL9iYMurGUQJYNDIJ+mt0bUNenDmQWs3P4MXP/ACSCEn4AS9qqMRhkmDrTNbvFRC8ZW1+EybDsJ1o+YwYW3WMRoitNKw+lYqIQMIjyoLHaAOjn2kObdIObQBb9wVmRbMjIxuxzEu34jpC/eupUiRC4EyJ3od97wldJeCsdYmrYEZZan3fSh8/J1r7WZexE13fhSEJfoPlvgFh7oh+j65tDTpPUDciKFSGeOS4dBbkAVowx8UBqX8/d/1t7issnoP55sstvJ7GBpUh5mDqPBpQq6HrWdKY4sh0aLdoPKBImy5EfwPp/W4H+8SalBb4IAMtstuDs5Vs4fOIyDp+4iOcvw6FUKJAsmfd4LblMbgsbLFYwFzq1qoPsWTIk5Vz8X/adIAAWnyi5zzRYC5SCLCIMutF0A8mkDoZhKuXK8jQB14wRqBW2y3m7TExGDFlbx/m/OpBFqRHuHz3XlysQ+YCCEgW6WBGYS/xDkIBeBPxySEA6oNhAdw8vx32+p1JwCRa5W/z3P8IIaEDAA4dkKvIS+Y7TjQ2TJTcMI5Yg6rEMV5fQD5K7Ia8xsskf2J+hHgpr0rpMK/ng0Swb57xGsnoZe3nmRDiif47WnBPdyskz4JfgWlAvHQfSlkOM3cbDWuyrOIf3uHEwSfDWY8zAqdGu3FQVpkufdz5oU36aBTJqbhe7XVmowMdndC0Pb7IT90PCbWWKqoOwN6NrMoQmL/fhlIHGJ25PXxtltek+y3ec1QicHkvtyPeojAs/mdBA5fd5xP/Z8sI4zB6yrp3SHfJn9+l6GrIA1hzS0rf7ASxpy+rZcxlWcDjjQoKB3j08v1fDI2RYsJiTJCENi369pT9f0rQSLiUnWU7Hd3DeZNJlgmG83ZtTO6oN5G8pJ6N+ykawaULi053P6+r61oPMbHS2m2r1PsiSpRAGsPZuhGrXGmdZEtJtbkDH7nPlPoMGFQ9uQM7JksbmKABLLDKPJtQQYmKA6bNdAay+vaxIG8esqwmlp6d2t368j37hx5y3mybLifnBlUTV8ANYoib67ArwKUEcCpor1oGZQ9SuHdbcJbQwId+XfgDrs1smfoW+YAt8EQAWd37eRUaherOBKF4od6yyEH7Bc/xZDy1BAKxZfaF4cJNuBgfNhTVXIcBqQUDv2s7rrFwB/WLKl+DJUEbWihyPKS9C5nepMecXmppZm5ZFiSHuG5tb6+R4e50iAnm/ZxBUWNxz4/09GW5wTv5T5WBRsJvnjRM/W19sybw/1wVCvMqId5lDsua8gdwXezn/JzwphC/F8EaGC5xQurBUkejb+jccD22M7KqULsMj6dq1cwY6rxE3c+PQBR5NcMP0FjU4WY3yaFLhcMZGUM/oC8VD9zXmxnEkwTvCTvhPNsoOgIhF+alWSOE8P0HqsRRYKjvJAoWEiAcx0IZvED6R+YTv9uJaphe2YuW16bGVxzPyw+uDOBhDPTDWhlTHNwGZP8ulJubJ5gYQl2SRu3nsgQzlucNQr5xC117RCjB2t4c0k+vkvkNMbQfBUkGcu4WU9wNY0pbVpSsybN9JAan8+Ri0au75ffwhSobZc2n5FMlZDBkY+3mXpp1rKfmdS9DOHeK8yOQuDMNAe4ZTvneTYexPYDJki0s3CVJHFvkWuuGUE49VqZF6oz2zm6AH1oGtUG1bTt/rImHdCaJ0IjfKTyjj+C1LZDXcunv3Toa5C129Uzq1tyJrFvGDt6TWnfS/Puo2hkfQzJ1tk+fB9LQVRFXzA1iiJvqsCvC5TB3Kmeu3h7l2GxddtdN6Qs7JSkiSYVhzFEiQ8fgBrAQxq79RvwUELfDFAVhklONmr8azF2/8ANZ/YNEnBIClndgF8jCa6Us/ahnYTHYyb92ABpAZYpyW0c/aCjZ5KlFLFXvyC94wdlLqHG/SYsZWytGRLBQg4YF8ubdVgddnKbiQs4kV6cqIfwiGX5HhzkbOyX9hBgT88iR8jy1dCIvigxJnoyVquHgUeLRHjhdHKYCVI8MR5LhNs/yZG3eFuUYzmGOAsxPoqfFHjREdOq7HlSwtESR39cIk64KsD4eI8VRFMAYUeUJJ31Mp1LiZpTW0hGA5nEOwPGEN2JBQaMe1h/w15eMzjFsJJn0Wr1bgh4yqkgOlx3j2DOE2dnaSEuaP9EqpURaoXTE7wb5jG6bKB2NnfXsAZ7Lbn7FqulCsT1fDpR9+9salIVVQPyB7PFZDwlU1vpXh/Az6vGlSsyg5nD4//GyYqfMzyN9eHIjma6w8sA3qbcuclwnxv6mVnXNRtWc9VLvXOe+ZazSHuTFdp95G7wewpK2Nfw7LcZjzPqlYgUHNbzzPo8EITJ1B3ytqFTB6hLTnUppGnkspzx6CetVUulZKVrGHxBAAi7chI2HwJBz+cxGSOZFkUHQIG5oDqefa17bQ773y2G6oN82nY/WQ6v6HVwfw2hqDQuo0KKIJRt1kWd3e75+LDcT0UG+cByWH5F7ME1isPV/df/kKWLLc1QOrRTMGBfPH/n3nK51i087PUTcwLuKMs0rXlAUxLk1p0Sb8AJaoiT6PAowV6jUzoTxrB8Sd7xiZDKb2w2AtU91NT82SMVBcPeW8buwyBtYSlRNkPH4AK0HM6m/UbwFBC3yRAJbJZIbJbEHyZJ8Xsal/DbpbIEEALH6IxaT1YNPauZDcTq9HrwATKr6xbhy2D6eN9pCofGHpMGknDZlKkY0F4Sziy6Pdcrw4xvEgqsOA8FOJycuTcjzYyeF+KssgR2PP9SzRwBkObwXJdEgyHv7XhdiA2MIhuZNtQdawpfRD5FNoqLsHE9Cs+894nr29mwlkkRHQDW9JP3ySpYR+9javpgp9RMNbSMGH2dsiVc+6LgTLhJ+G8NRoPHn/eekh6okMVzmhSp4AUaEm+NxUBLgkAKaY6F/LcPFHCtp48iJ0tENI8t+cp2DsomqHcSTvPdttIZ6RYeEnsOHjHacas9N+hVbJc4uplST3SSZGkpHRIXwAOPK+DNdXcDxxPDzvYsqrtq2A6gAlkDXVbw/Lp9Ni5bkjUK+koazWIuVh7DFRrEnbfT+AJclM2LJdgWvX6BpuUM+KkiW8Pyt8PiBvnFnStJBWSnlwO9Rb6buOkJoTcnMimh8HQHHvmrMhw4AfweQpIq3hRCjltpYLl0PQGHtWTaHfe8WZg9Csnu7UzFLqa5g6jXTR9LIpAnVe0DB+cnNJcBU0SCb+250IQ451F5rlE6C4RLkViUcI8QxJannyRIaf17h6YNWrw6BMKfHvlqTWnfS/OPIqpnIS7vRNWRjD0pQUVc0PYImaKOkLmE3QLBkNxa2LLrqwShUIhQNTqIygjqpN86E6ttt5z9SsJyzVGiXIePwAVoKY1d+o3wKCFvgiAaywVxGwWK3InFEaL8SzsDe2LIRZQkMQoPPOm+VfR761QEIAWLrBjSCLpm4p+tnbQdLp2j7+5w6G4s5l5yCM/WfBmreY6KAGhB/Hlo/2DXvRp6EYvZuGInoK2Xt6UI6nf3E4nL5mkOVb8Q9BN1L2agyy1vJe78QIBcDEPpRMdOBJWIDvwZbfMh+hMTRZA8nURjK2ETkzQQkLdaxDpw4bcDMfBaq4wwjo4eotJJaGvsTTX/HKSjPcnE5XF3kGtnY2yao00C+wfyBplo6F4goNYSAgBAEjvEl8PHz43FSFe1mRQkK4Bx80S56ZRREv/D4Pf5cj7ARdy6sqnsS+wtdtwxLiGZn49iyWf7DfJzI2dSl0S1UoCVeT564JeT4h0XdIslAWRftSQNpXHo7qVdNcTo5NPwyFpbx9LZI04JrJHM9ADueRmNH8AJaYhez3CSE7IWZ3CMkoSDILepNJ05Uw04R/GD3MArVGWn/xKcUPkTE37ARzLfv7jGTcUtykWXGNn4D8+PTny7qqv3+DavsKZ5PmrxshuMcg2/+CABafl5ATWuto5IfXB3Aw5pmLmjOCyuP7FHl9qXqitaWZMwiKu1ec/THpM4Nk1E1quXtPhvWbXAGsqlUYVJNw8JbUupP+Z76/iPnv6ffd0MDi6BdYVFQ1P4AlaqIkLSD7+AHqxSOheHTbRQ82WXKYek+DNVs+j/qp9m+C6neaDdpUqwUsDWlmQl8OzA9g+dKa/rb8FvBugS8SwJq2cCM2bPsbA7o2Q+fWdUXXwIKV27B8/S7J5UUb9BeQbIGEALC8ARTqn6dAeZ7DNdNhBCxlaEZBT4oviLyCGe8u2G6XeZgNQ/bT1MyeQor4nlTpyjLI6cWTytE3ybxHMvA5JFs9BhkreQewzk9XwPiObs6KD7ZCFyzuiSN5opKg4J1NCoRfpmMqqJ+MDOaDNk0IIEmASYecmyWHKZzabHTrP/BPUUq0z1Vf17++S8pl/ZydYHXJPI6w1otduGaKcN7fFVAGFcf1c/7PBGWAYbI9REa9dhaUp/5y3pPCZcTPtpiuHIOcjcSBTtIJn5uqQEcrAvOKz/v7uzLc+JluVMR40x7/Kcfzf6h9N5c+h+2lLtnGKcQzMuf9Jfz43n6fyMDAYhgUKA4UJ8EyA9/DKmV2FoW6UwDLLcQzBVB6dOw9HDVzBkNxlwOe950Ba/4SziHHFlh1VPQDWNJWzeTpCphM9H0ydKAFyZN7rztzjhIfOSG6QwZYkMJ+FpKgol43E8qTf9P3SLshIDxJtnfM8vFQXvqX3us2DpZiFRNUn9g0rv5lIQjBskPMTbsjuPn3tn8FAaybF6BZQDPBWvMVh7HfTGd9fhIVx43PGRQXs5d2YifIw544ixEaA0JnkNRy7boMW7a5AlilSjKoX1fa71FS6z/h3VmsiKQHJ+NSl0bXVAVF1fIDWKImSrICsohX0CwcDpLYgitMYBBM/WeBSeedW1N58k+o19k9QImQ731ThxEJMh4/gJUgZvU36reAoAW+SACrebfxuH77ERZP7Y+qFcQ3TVdu3EernpNs2Qg3LrbzTPglcSzgcwDLZEQq/1RqAAAgAElEQVRAv3pUeaUKMQv3Ov9X/7YUyn8o8EF4ZgjfjJjsiXmErq/twFfFuznQ7wAFvdIWZZGntXsIYfhFGe78wuGyKsIibxtxbqq7mxV4c4lutHK1sMJa9CN6v6bZdQIVaqwMoTpcWazAxyccsKerFalyigMZYuNOyvu31srx9gYFTYrEjEWIxW4Dy7etYGrQ0aneuUUymJ5SWy9scgCby1QVVF83qg1k3CxeE9aCDcnocaiEe+Wgnn48rWFyocEsO/k2ESZbPhiGLbT9zQ8TMzfqDHNNSmgs1MnjvXKQTHcOyVyTQebq0jYMtzfIEXGVkyigtRVBRcXnPfyKHHc20npBhRjkbeu5T34mvt+LXcaG8mdtKndLWRBjeTwjfC4SoTJJuba4fb+7JcPN1XTtBOZhUaATfU6tJuD0GC4vDIsKM8SfY/743PjReOHLujGuvGpSybn9AJb4SiIgFAGjHKJWsxjN4Tnz1ML8RQpEvKXv1cTKyKZZOAKKG+ecahl7TYH1U4gM35PPSLhfytIDFXFrJGwJzeJRUFyjPETGLmORroYdfBMEsB7cgGYWPRDgJ9bo+Pog/uQkhHBoPzh1cQxIJe5dk7CjjVvruiFNIfsY6axM3tj6pRSwjFur8a91/oIMv+92BbAK5GPQ0kuyg/j36rsWRkacxNoo6qUj1UvPD2D5bg582ZLsxSNo5w52eVZs31wZssJAQO5UaUS7U1w/C80iGpLM5CkGw4BZovXiUsAPYMXFav46fgvEzQJfJIBVuVFfRLz7gENb5yEkbaCoZaI+xqBcvZ4IDgrE4W3zRMv7C/jOAr4GsGQf3kE3jAJS/JNN1Z+/gIRnOMT8TROYm3QXHRD3FLjazTzocZiSQIaUYpGrmfuG1i07YG4WBTuLb3xvrFLg/W26acrfwYp72V6h4UsKxBGFH2RtC82nVHV8ICNPSyvSFhcHMkQHnoQFiIcQ8RRySPHooQiyngUTlB6EHB0qmm7vzCorLLdpbM/G705gcUVhTgTt1B6QP7WHgxIh4BMBoTzJwPB/8evHu87bM2KC0XUhfU9w+Yrc1pcEMu47mxUI5wCWJMNdcElpc8cPs8zRyIr05cTrkuQCpK5DSH/eMuu9PC3Hg+0U8PqrwE38VMXuBdI3VREMS009ici1TVF3MCTihLP91inyYFaQeDaopFhuBAAkz49D0hRkkO8HVzDv5EgFWCtdi+UmWiCPZSiZrm89yMxGZz8xxIPwU2gzuei28e86Dtbi4p41fgBLfNU8eizDqrV0vWfMwKJ7F/F38dIVSoTRXA3o3tmCjJ6xbnFFJJbQTukO+bP79B01YgmYLHYOOfWGOVD+u895z9S6HyyVOIc2EvtIqGL8JCqG4YuQvoT9IFHo91727D50U+hvMJMxGwxjfrKVv2N6j69f0LBxrs7dUxbCmDSlEmoYCdcuy0LXs6Yz56yjo5g5OwCdiEtgwmlla/nEKTn2c2gPyLUsmVl07iD+rCSwapKa7x9+HL99onogFealrYhmyXOJ1vUDWKImSvQC8juXQQjYZUZK30CUsAHcfacD2gBJOsmeP4BucjdnWbHEPZIa9VDID2DFx3r+un4LxM4CXySAVbR6JxsH1tV/VkMup5sOb6YpXrMLWIbBpQMU3IidKf2l42IBnwNYr59DN46SdxPydv2k9U7VFKf+gmYtPX2xlK4GU0dxd2Ija0WOx/Z2al8tiI7HKa9R+vIMcjR0916JeirDVQ63TvJQFkU43Dqe7HVlgQIfn9N1W7i3FUfTPELXN4dcqvyVsT4Kqu0nUA//kCPsX07YYR0GGf8jvBWe7HB1qQJRj6gdSkX3Q6D1CgwDZoPJ43ryfnKzCewl+kGzt8ZFTP6msGDTmnlDobhNiUCNvafAWlAY7CINTH93AQsjKV/JoEgdRi/72dm2hZM1S3l8L9Qb59J75WvB9MNgr4/GteUKfHjA8Z7rbEWq3OIglG3ed8sRFodEASS5AEky4JAMXzHIXt+zBxbfm/BY7vtY8I19PQ5PXQJ9UrmSSP8R/RA93hxxtl8/WXYsDa4Sl1dEgtd5fUGGe79ywLxiLHK3ct2wnZusgCmKsxZHWKEOlDZHZAAyfTR0A2nmUlYuh37xny5jU21bBtUBmlDAVL8DLLUp15onQ/gBLPElcuGiDDt30TkuVIhF88bim/KVaxR4zPFslcKbJa6NeAlyCEMOYxyin7YZbGBa27/qLYuhPERBHVPTHrBUbyzeaCKV0PWtCxmHOEw/8zdkyJbB1rsggPX6BXTj2jm14/5md379D/bF0FA77hCEQpcTaYjx6kYW9R66oc3c2tBPXAc22G6npBKSpZNk6+RKUBoW/bzwIyaVrkL9dntzGLujaQbqZcFV8V2ybKIq+gEsURMlagHF5RNQr5jokiiHKGApUt6ejZVzeCmqWPQHBAxuQt8vHM5S0bqxLOAHsGJpMH9xvwXiYYEvEsCqUL8XIj9E4/jvC5E6lThhBclaSACsVCmS4cSuxfEwp79qbC3gawBL/uSuLc24Q5hMOWEYRVPXk7AMEp7hvB8Ld+JiT3/FG6seDS4WwfenKOCRsTKDbAIcEfo3Mlyczcn0FsSixFDxTdP5GQoYOWErpM4v6psYFUFTARP9lwdXRb1PH2fPD8vxeB8HkKjEIHs9aWFosZ2zxCp/eQ6D6FfUy6rMx+4IKJ8Dpu8HuqlwZEc0VKdSOa+fqHwbg+vmFFRV/fNkKM9TcMXYYbhg+mVH5ZUfbmLs29POtn54K8P8nzY4/zfXbgNzfTtoqrj0LzTLxzvvSckmd2GmAoYIjqeZxEyCpBM+4X8miYkCnh6Q4+nfnAQD1Rlkqel5vby9KcMtTnaq81mfYHodO9fXhDRl0DllARdb/xPzDG1fH3Beq6bLhPXpPp8wJ66yfO+ydGVY5Gzi+pySLIUkW6FDivazIFksPHHkYY+hnUiJY9m0GaCfZOdNc4jy2B6oN3E8+8pUB1mbYuIHsMQsBPx1QI7jnCQEVSszqFZV/P24YbMCdzheoG1aWpE3j3TgUlwzgRI8Dx1beNmSvwCZ/R3BJ3jnZrOMU38+rETC4kh4nENYlRr6BXvg2NgJAlj8zLApAkFAL2/eV6T9xslyYGEw9YT24TAStCn+u8DRmWH4YjBZ8yRo32KN//m3HP9yMv+S8ho1MGp47Dn/xPpKiPvtXh3AAU64/9qQ6vgmwDtHEtHDD2AlxGzErU3l0V1QbV7g5qForlQP5lZ9ne/B2LSu61ULMoa+78V4T2PTNresH8CKq+X89fwWiL0FvkgAq12/aTh3+Tamj+yK72qKh60cPnEJvUbOQ5ECObF5yZjYW9FfI84W8DmAdecKtHPtGY+IWHMVgnEQ9YhxC1dIn8UejiZBGoftw2njKzQ/WwLNztGQqUzfMMhSw30zZIkGzkykvCuKAKDsOPEPQcK3Q3h3HFJmggVz9Rcwj+MFRO6NSl0KPT9lduN7kRAepLwCvFwShvnZFLk0KhwxlvROfcqxfSGfMAkQIFw/8GckAv4Jcpa9XvYRujTOJDgWt7TKzXuBpKn3JLtiHqL7awp41X5rxqaftjiLm1r0hqVqA9v/8nvXoP1xAF1/EtKjxyeDJJ8A3pM3IH9sxPuKeGE5JGsdBqFePPaIhxjxFHPIjYxhGNdgj+3f2Wm/Qqvk9vAmh5wzvUaDFzTktawmHbZnoJk7P5tFRrxC+N5oFRlk/871eb62TIEPD+POMae4dQGa+ZSomslVCAbOe8m2du5ehXYOBWeZLHlgGCF+oOIHsMRX0y9b5Lhxi673Jo2sKFpYHIgihNaE2NohzRpbUbiQeD1xjTyXkHkAdBw1VHs3QLVrrbMBPh9gfPqOb13549vQTu/tbMbGVTP2Z+8AliEGugH29ycRVq2Bfv5u9Hh9BH/EPPSo0rcBWVx4IOOre2LVl/O+URz9GntPhbVg6cRSQ7CfXbvlOHvB1QOLFBw/ygK5KzVWkurpqfMWL/fjuIHG/G5NXxvltelEdfUDWKImSpQCJHspyWLKF24W1rgoohv7A2RvwpxVyTuJvJt8LX4Ay9cW9bfnt4BnC3yRANa63/7EjMWbkSFdkA2QItxWnuR95Ed832cKHj4JQ7/OTdD1++/86yURLeBrAEtx5SQ0S8c6R0BCw0iImEPc3PcDUiDmR0rq7m3oA8KPY8vHe/j+ZBk0uERDprLWZhAqcJrPssDJ4bEjf/ZUh/AJEV4hrrRInhtz0n5luxR5T2bLSOcQfia1RJxSn3RFMsec2VYCBgUNqShd7yRUlYQ/8H8/8hrBe6lLzMOiYWjTOlhQF9Ufq6Hat8l5z1y3Lcz1fvCo90nDSzR9ud95v8R7Iw4upxmjjJ1Hw1rSHh7HP10X41twAzk1QNmJ4iCnQ5nX52W4t8V7+JvQwO5vU+DVGboxz9GYQfqynj1Sol8Al+fTtfwwbQSGNttha3phcCU0Tubq7XbD9BY1XtBMZAXUafB3xvo+WRu+buTpQTmecnhfhLzY+AkF8n7PIKiwuAePQ1fF6b+hWUMzq1lKVYGpk2vCEP67idVooZ+3S3S4fgBL1ERYtEyJ169pua6drMgUKg5EkbBDEn7okAb1rChZQryeuEaeSxB+PsLT5xA2NAf0o5c7/1cd2ArVNvq/pVpjmJrR8vHpO751FReOQfPTRGczhHieENB788AihfkZOG8s3Iavnrn+LndNWRArPtAMcxW16fFr+m/jq3Ki1+fbyKEAyYwmJSNyQiq8dbsCV665024M7GtFYCxCphNSR29t1w/bg/PGN84if2Sog5KaEFF1/ACWqIkStgBjhXrlVCgvHHXph5XJYWo/1KuHvBTFyKEiOVx0COHQsuYvKaVqrMr4AaxYmctf2G+BeFngiwSw9AYTvms3AmGvIpAmMAW6tKmHr78qjkwZgiH75IZP7h0+eQkrNuzC6/D3tnJ7N8xAiuTSiAHjZXV/ZacFfA1gKc/8A/Xqac723TaKAgSqMYv2AQou0CQ8QfPfX8bM9xfR8Vh51L5GUzMT7iDCISQkQt5USq3nBWD6AJybQnVRpQBKj7aA7xpPWiijDcGO9HVsjelfy3Dxx9iHK36WS/HjB5CMbMeUG2CSp3aqWGqUBeqUwhpvOv0M2bZTrotXeSLQqBMNKeTWctsAVm0A4kXlSe6bI1H5uR2sIZIpxoSrC+kpoWHAj2Dy2AFNNxAiWUroZ1NeI34ffGBIF8Ki+CDxMFNHO2+vy3FrHT0xT52PQf4O4sDK7Y0KRFyhG5U8raxIW8zzxtzwVoYLM+j6epXiA3p/b/dC+zmkGmoHZHEZ2hNLFMo/o+POokyOk5loaNHntO6e7Jfj2SFqQxJKmYmXBfLebwq8PkftlbOxFenKSgcylH9uhnrnKuewzdUbw9zUHXTQ9f8OMqPBWY7LfeTJZn4AS3w1TZishJXzWIwaboVGLT5/+/6U4+Rpuja+rcGgQnnx50tcI88lFNfPQLNolLMA2WjZSIs/ifLobqg3z3f+z+Xgi0+/vqjLf7eaK5Own36iAJauX13ITNTtuMP4Edipp9xXhOuRZJSrF2b3+iRSXJMWuzN8PuT1Uu2nPLYb6k10/hz1uJ68UtvydbmNm+W4fdfdA0sq4OtrfWLbHjk0IYcnDuHyhHpryw9gxdbSPixvMtgOnRW3KC8paZ1VqmDsORlMftcEMXHpWb1yCpTn7FnEiRjbDYG1nD0zqi/FD2D50ppxb+vJ81eo3WYYsmVOjz3r6W+nUIvPX4ajZsvByJwxBPs30UNGobIbtx/A1AUbUKd6Wcwa4/nQaPHqHViy9ndJAyhXogBWzhnqLDts8nLsPnDSa92g1ClxdMcCZ5mtu49g3OzVaP5dVYwbRDmgJSnwHy70RQJYZD7uPXyOToNmIvwtTVWsVCig02lgMJpgNlMvh5TJA7B85iBbCKFfEtcCPgeweB+Hlq9qu3Em6Ya3BAnTcIh+8gawQeJu5ruiH6L7myPocagyqt2iXBWEL4fw5gjJuWkKmN7TjW/JYVZo0njeOEWHAZfnUQArIB1QbKAFtV/swhUT1Zn0FazQ4VLmFrZurQbg9DgOCCdnUWGadCAkcWfde2+2k7hzh3A4+R5Y5BRQLjvBAoUH8G/F5XsotIlmEvyQJQrf9tIJdqQ8+RfU66QT+X9gTMj/hHpsKRkGb2ZtdrZtGL8KTLpPPBsi/DV8hd7dkuHmagoMEfJ2KZkqHe1EPpDhOie0T6rnnVCmy9T5PK9LvqfYB60BnTrYecA2pquBqrpQl6G9tRpQ+OkvzmtpFFpczdzyc1pmTl0e7ZLjxXFOAoS6DAivHVfcQi49eF16GqD610VQHqYfNObGXWGu4U7krJndH4r71MtEykmxH8DyvqzeR8owZz59xgICgOGDpXk5Hjwsx5GjdG1Uq8KgagInxyDep+p1s52DspStYfNCcAg/EYlVIldaYjx8buu8UWeYa7YQB7CGNrOB/0QeBCZHqW4NwH0brQ6pDgKCV39Bn6E8qkAcCvUc+p0Y441LH/wQUEcbxAuYeAMnpaxeq8DDx+4eWInC/eaDgVd8vh0PzR+cLR0LbYwcKg+nXpz+/ACWD4wflyaiP0A7b6hLxlXSDBuQwgba+4oTTrV1OVQHqde8qUFHkNBrX4sfwPK1RePWXkIBWI06jsadB8+gUilxeOs8BKYSzhpLAKWteyjtiNAo7j96gRi9AbWqlsac8b2cRRwAFgHfPHF4B6ZMjkVT+znr+AGsuK2Tz7rW2/dRIEjo738eB/HK4otKqUCtr8ugf+emtnBDvyS+BXwNYKkO/AbVthXOgZirN4G5KU3RTW5op/WC/AkNxzMOWwhrNgp+eLLCVWM4vg3bjf5/VcNX93M4i5GMZcEevFcuzVMihobeo2gfC5IJUzPZ2nMDJHKwKNTNilJPtyDMGuOm2oOsbaGR2Tdnp0YrwJjpx2eZ8RYohTGcxJ9oiT1ySfYPpDgAfBobqV5+qoX7r0uLs29dQ4XV9lTtRPTBBlQfLOxVp7h2GprFNHzLUqA0TH2metUw66O1sHC2VI/mbUEqo9ne1487wAbQHzLd4MaQRUdRXWZvB5tMOJnEy1MyPNjBCQEsySJ3c+nAY/Rz4PICDuCZHig2QHxzfnWJAlGcjUqh7lYQ8MuTsAxwcgTthwGLFj3s3HHb09dGWR7PiIllkP0xJSnXyOR4kNVzmKbE5ZEgxe5vk+PVGQpS5M75LzJmuGXri82QBZZSX+PZP3I8+ZOWIXxhhDdMqpCMSsqLx5zFTZ1G2trli2r9j1CdoOGqUrwy/ACW91l48FCGNevpM5Y5M4suHaQ9Y4T4nRDAO+Sr8gxqCfAdSl0HUsqp//wVyp00y6mpZnNYGnVxVlVeOAY1J0zPUrwiTF3HSWk6wcvYPCmu0NNjU5fRsJSoIg5gjW4LWYSdu6hb3QrYUii7U9fcqlQ4HNoIzywfUfYZ3YRmVCTD2czuIHCCDzKeHai2LIHqEPXodTRn/roxzM2TNhR06U9KhHG+Vxy6JUbobDzNaqvO/04i64OsEzHxA1hiFvL9fVlEGDTzh0P+5oVL4+Qw2dhnGj0U9EHXqoPboNpKkzlZqjSAqaVnr/u4dukHsOJqOd/WSwgA6/KN+2jdcxLy586Km3cfY2ivVmjXrFacFL917wladJsApVKBHasmI0soDXN2AFjEw4t4ekkRP4AlxUr/0TLE2+rG3cd4FvYG0dF6aLVqpA8OQqF82RGg0/xHR/VlqO1zAGv3Wqj2cDLECfAbqZeMhvIqzSpn7DYe1mJ2LilvYmStyPF4PYbu+walH9FwtXw/MEhTUHgzS7xjCCjlkIJdrEiVyzNQEH5Fjjsb6YYpqBCDPN9bkekxJe3l6rg/Qz0U1tjTq1+YpYAhnPZFPLeIB9d/RkxGaMe1h/x9OFgocDAlzWIHGYsK0z1vOkc9PIe6y8o5h2pJbkblMe4nyaQA8XAhni4OIad8JAOUNyn3bCueWj46i5z+aRfyvP0AVq6AfjEFHEgB2xheP3eWdfHQ4nXy5G+5LZOgQ0jomrdsgHwd+aF96kAWpUaIb87dsur1tyCZSAb3U6OUYDjYWJsuq2FSWsFdg1z9Mj1a4+JF8TRrO8g/hXB/Tmvy7i8KvOHwHBWMmYYMFnuGRSZzLhhGLsXLU3I82EHnSShTobcxaWb1heLBTbomBswGk6eoWxXV31ug2v4TXcdV6sPUso9Xc/kBLO+r6cw5OXbvpXNXrCiLxg3EnxHSKr9uqZIM6gtknPXlelb/tgTKfyjAYWrSHZZvaBp4xdXT0CyhADwh/iYE4J+D6CZ3g+z5A7rOhy4Akz2/KIClndgF8rBHdu+rrvXBct4TP4V8jToBWfHOakAhjldnoFyD61l870WR0HZUr5oG5dl/3Lr5HDzp5i1W4C0nI65DyepfM6hSSTpgn9A29NR+wSeb8Z4xOm9fy9IKqeXi3/h+ACtxZ0xGeP4WDAfJWsoVW9KHAbOBFJ55i+OiKQkfJGGEDiHf++S739fiB7B8bdG4tZcQANboGSuxY98xrFsw0hbdlTlDMHato3Q1UjU1W6xo2X0CCIg1ok8bfN+khktVP4Al1ZLAFxtCKN0E/pJJaQGfA1hbl0J1kJK/CoXqqDfMgfLffc5hm1r1g6WyNC6Nok9/RfedVVH0GQ2ZKtDRisC8wqDU7fVyRFyjm6c8bRikLeL5Q9B9o8wgdcMYl3As7nwtDa6C+snsp9UkSxzJFucQEopGQtL+K6LeshjKQztt6loQgMMpKd+JQg2UneTZs6jHy8NoO/cb51BZOYuvPIRQyl8+gXZCJ1o2OAP0E6m3kJC9vgvbgwsccthdmw6g4tNXYFIHwzCVhheSunywgmTBJNkwheTeVgVen+WQqTdikL6c9I2CJQY4M4GT6VIiCXxsQ1uJ7mcnK2GmjmXo3G4jIgP0OBLaCLlU7nxjhZ5sxjvuZiJzS6T2FAOahIuU/4wWjhmPdBa7+zfh4dAv3IuIyzLc3kS9eAiwnLet9HnSjmoD+VvKIq6fsAZsiGvYJenPLQlF3uIw9vfOy+AHsLwvHj6P1TfVGFSuKG3uLl2RYftOOu9FCrFo2lga+BXXJa1eORnKczT8gE/uLb9zCdq5Q5zNM7kLwzBwTly782k9Xd+6kJmpt7t++q9gU6URB7Bm9IH80S30qlMOmwpTKgfifXUoY0Mbd6njAMmhMHlrPsv23+P70CwYDsXN82525yec8enESGxs5hwlPtJzGmet8mUZ1K4l7ZmR2FWCFMv5eD0MLH0+72X5Hjq5OL+pH8BKkOkQbFR+57KN409mpkAjKWjNXQTGnpMAre95iPnZoZlseWEYtsjng/YDWD43aZwa9DWA9TFaj6pN+tk4sg9tnYc+oxfgn+MXsH7hSJQoTOlkpCi7ZM1OLF6z01Zv3YIRTl5uR10/gCXFivYyfgBLuq38JRPAAr4GsNzAqdb9YKnkCk6p/lgD1b6NztGIZaHjDrth2F7U/6Us8r2krk0kxC9lDmGgiA9QiJE/C2VEi6kW4cL9wdVnaGBx9Au0e3Lc2axA+CUKhpBQtOCS/w0AS/bkLrTTesKhvVGWBsdSUBJwVXKg9BjPAFbrV3+hy4Ka0Fjox2q5iRYIHb66ZaLUJUfMHPeQDq6dO73+B/tjKKnwz78fR5Nbj8FkyQPDCFfvLRKeSMIUHWLsPgHWohUEn54bKxV4f4fOWf52VqQuIH3O+KF9pJPy0yyQufPwuvR/ZpwSFsoVjtLjLFCJfDfyPfz6tN6Cl6k+4EymZghVuodplH+2FU84XmunMjVFZqUwZ0ACvFokN8nnAysWMxxpLXT+9NN+wfs3aXH9Zw5XWQ4WBbtJBDIIL1rvbyFj6AYwZtF+QOGel172+gV049o5dWdTBUE/nXKJCQ3KD2B5n+r1mxW4e5c+Y82bMihUQNpm/OYtOTZvoQ9TvrwMWreQVlfyAuQV1M4ZDPndy86rhv4zweQt7vyfAD3aGdQrT+gdFNe+41UvJgoBgxrTtSuXQ0/WuUwmCmBp5g3Bixd3ULx7A1jl1N7Lgqvgu08HNKRhvlcnN4Q+XronYmXt1O6QP73v1iOTLR8MwxYmoibuXU2argQHf3QWKFSIRfMEBm59MfDQR2tcmnkuEeD0A1i+sL54G4rzR0A8EGWM62+npURlmDqOkJRMSbwX9xKyN2HQjaUUBkxgWhimUR7TuLQpVCexAKxdkY9wPppm2/SV/p9rO98FZkPJAOGs4kI6+xrA2rzzICbPW49OrepgYLfm+PvoOfQfuwj1a36FaSNpeL+Y/W7ff4rmXcd/Ch2chCyh7iEyfgBLzIr0/hcPYBE3vQNHz+Puw2f48DEamTKEYNLQji4WehPxHlaGQbq0qd3QUOmm9JeMiwV8DmD9PBnK85zT644jYSntyjVDyJQJ2axDYpPFaUD4cZRcXQg5wu1he0SK9LEguQdeq0d75HjBIQEmvDmEP8eTCBFK3y/9DC1f2UOa+NI0eU7MT1vJdpnfV5ZvGWT6OmE3W3GZc7c6Viu0U7pBHvbYeSs6uBhOGuc6/9ekZlFyuGfAgKTP7vxTdaSNpgAJKU/quQnLIqCnawaamCV/2TZanmR4xEmsj7rtvD314Hn0OHcLlsJlYeo52aUaIYgnRPEOMX0/ECSZgJC4hfL1tSCZu2OOVzPHNtMlaezEcAXA0vFKAb0uL1Ag+jmtM6zpDjwIjrCRsxOSdr7wM0L9nbE+CqjT+GTJ+LIRvudiyegBSG295OzC0H8WopIVw+WFHK6xDECx/uJcY6QRt8yUumTQz7F7GgqJrk8dyCx2fjUiMXP/ALSeyez8AJb31cAPi+rZzYL0EkOr+fxZ2bOx6PCDROAyjotUO74j5K+e0vU39icwGWjIuvzFI2gn0Y9mJn0WGMbZ+eiSUpp45lAAACAASURBVOQkLGgq5XAiiS1I+DQRx8bO0++9ZskYDAxlsa5oLucQsilT4HhoY5dvMrcQsc/Uq9PbPOhGtITsvWtCFlKeDckI/QRhqoDEmFeWBcZNEvZWSox1H98x6hkLcj2h9BHE84p4YEkRP4AlxUrxK6M8ugvqzTRzmqM1c6V6MLemhNTx68VDbasVAb2/dd4kX4V6kW++uOiRWABWt8dHsCL8RlxU/E/WWZ61CrqmLSBZd18DWE06j7WF/JGQwRxZMoCEARKPLL3eiMPb54MkghMTi9Vq470i7Qzv3RptmwpnwfQDWGKWpPe/WAArOsaACT+uwZ6Dp1yskTdnZmxfOcnlWqeBM3Hqwg2smDUYX5UWDvWRblJ/ydhYwNcAlmbRSCiun3WqYOg5CUxhyo1EbiguHodmxQRnGWuR8jD2mChJ7fnvLyPj0pwIfU9j9L1xTbmRP1dlkLW2Z1Dp7q8KvLng6kV1NN899H1DCaC5ipbUBOOPDHVtl14ck4NkS3NI+goMcjT4/AEs5b6NUP/henL6tvNyXNhCXXN1ISyKD/K8caz2fCc6bfoa2cNpMoaiXsAg3cCGkOmjnbbSz/wNrBfehTnvL+HH9xTU6H/qOsYduQRLhW9hajvIZe2QJAIkmYDzA+1TJi6hBebmCTXGAuJtFhs5N1UBUyQn06Un4O5To1YjcHos3ajI1UA5L+GZDl34fG7jG+zB9Yxhtk2CUJgG8VY8a6RhczvT10FpLSWrjM0YE7LslQUKfOQAc6WjeyCV1U7iTsTUuh8+FvwOF2ZQjyl1KhalRkoDMmRP70M3lSaSsPF8jKUk3fyxEXCCgBQOIaEOJOTBk/gBLM+rgzi9TZiiBNmcO2TcKIuQ85tgI8+ey7BiJZ33TBlZdO0sbd7jumYDBjYC9DSOK2b2NiAZzaQmCw+Dbgz1JmDThEA/hXoUx7Xf+NZTXD4BzTJKJm/NX9KWSYyIGID1esN0lKoQ4uJ9tThtZTRMTpOlkHbKPPsNz0lK1E/yuXp1erOlrndtyKzu4DdJ9KGfTekP4jsfsa1vMABTZwoDWCHBQO8e0gD72Pbrq/J8jjTCfUU4sKSIH8CSYqW4l+FnAXS05Ckbb9x78lxTN7gJZNE0Q6V+2mawgfQg2hd9+gEsX1jRvY24AlgatQoF8tDDHyHtTGYzrt9+hMwZQ7B/kztdw9WbD9Cyx0QULZATm5aMcTYxdcFGbNz+N0b2/R5tGlP6Ek8WWLL2d1tSORI6uHb+CMjlwgfmDgCLAGVpUgtnUG3ZoBpqV6ME734S94RZd0nSqtXKoMvgWTh90U6amzZNKpur3oWrdyAEYJFFSBZj03pVMGFwhyTR+f+1U58DWLw09IQbhHCEcMWNxDsW8fC7oh+CmZsewVE0q1zJYVZo0giHfb08KceDnRxQqSyDHI09g0o3Vynw7jZ9seVrb8WvoVcx+e05wSVCPF+IBwyR8Msy3IkHT09SrEHZq2fQTu7q4nFirlwP7yr1x5WFdOOYLJRF0b6eN46ln/6GzjsrozCHm8wbB5huTFvIwu1Zr4gYxq0Ckz6zRxMQ7yviheWQVlcfYMnek7DUagVTQ1ePTuWfm6Heafc8IGKu0Rzmxu5uxlYTQLynnCJnUX6q1ZsjmKB+sSVkN32Q4dwUaltVCqD0aPHNya21cry9QdfyjG//xrnsj+EpTKPtqwP4R//MqfOGdN/ga52XFJxJsQABXPxRAf1r+syV+9gByRkKIJm/aQJ93e4gYKNDpIJ+pLwb6Xa+EjD2m+FxtJqfJkJxgQLWxvZDYS3rSvTJrewHsDwvnPAIGRYspms9ZQoWgwdIB6BevwEWLaXzHpyWRZ+e0uvHeklbLQjoTb01hZJEyCLfQje8hbNpArwTAD6pRfnPdqh/W+pUg+vZLAZgjTy5DGszUC/ObGY5juVq65b04evnO3HH/N7Zx8GMDZBPnTqphy65f5khBroBDQTLJ5RXiFTlIj/I8OM897BmUj8gABg+WPw3QmpfCVHuhSUapZ/R5yA2WSr9AFZCzAghtrLYQgaVF466dMDK5CCZeK0lqyRQx+7Nku9M+fOHzhuG4YvAZPV8MBQXxfwAVlysJl4nrgCWeMu0hCcAa8zMVdi+9yjGD26PZvWqOiuQTIRNu4xDnhyZbJkEvYmU0EFHfQeA5a29wd1boENL+p3gB7BiM9OfeVmy2MiiC0yVHGMH/IBaVcvYNC5Ytb0ggHXv4XM06DAKubNnws7V3hfiZz70/5x6vgaw3LIgjVxqyyTGFf4JthARtydDXjWG49nUVEhloCE9ZPNPQAAhIZxUhJvKIUFFWORt43kDdGWRAh+f0s104V5WzElxBisir3uc29tZ2iC5XGUjcCfhUA5JnoVFkV4JuNnywWrTzOwDxUPq7WLbjE1chw8vAlzGkiIbi8I9PI8l/5NN6LS/Iircpyf2eVpbkbaoMLCondYL8id3nCMwDpkPaw7PLsp/xjxBx9c0c1T1By+w9bdDMDXrAUs1yvtCGlQe3wv1Rhr+KOSlRcoZ3shwYTadLwKCEjA0tnJ1qQJRj+ia8cbJRtomYA0BbRyiTcuixBDxfvnegQurHcaZfA9xP2tbQZW7vzmMXdEUCOLz2cR2nAlV/vx0BYzvqP2+imoDHUtTe1sLlYWx12ScGEZsxgm7nG6RBDa6rYeyNWBqP9TjcPgcfUIgKbeyH8DyvDLu3JVhA+f9G9tQqMhIGX6cH3cALLZrVhbxCrrRNOxJ6LeJD4KwGi3083bFtiufl1fxEqiYGnSE5Vu7B4w3AOuVJQZln/wKM+dEetFLLRqVsx/McKXei924aAp3XiLex8QL+b8ifC4evt58b7vEHNebcBkWLhEGsIgeE8ZIe98lps7cvh6YI1HpOeWyzKFMiWOZXH+bPenmB7ASYNZMBhtZu+LuFZfGWZXGFvHA5C+RAJ16bpIfnUF0INEXvpTEArD8HFjeZ81XIYQO8naGYXF0xwIkT+ZK5dC40xgQcGrzkjEoUoAmH+FqR0IHW3afCAJ4eQsddNTxhxBKfyK/yBDCdv2m4dzl21g4uS+qVaQvSU8AVtTHGJSr1xPJArQ4s3eZdOv5S8bbAj4HsEZ/D7IJcAjhlCDcEi4i4ZTb08CiGBPOjlFDyyELLzvRAoWHTM3vb8tASKIdkioXi4JdPIMFJEzJ8JZukosPsWIIewQ7omlqcr5uezLWQzF1WhjCZSBE2w5RB7IoNUIcmIj3JMaxAeWx3VBvmu9S29h9IqxFy4Nvt8DcLAp4Cd0h5L6djn6FWtfzO9vL0ZBB+vLC3m78TFBCoaZcxUgGQpKJ0CGFXr3DsTV7YRLgWFNc+hea5TRFs6cQ1ff3ZLjxE50vMZDOk5lvrlbg3S0OEXx7Bqnze/byi3oqw9VFHKAzlEURL95tjn6JJyHxKHTIz5X+xdmiD50egHz9Bkf8i81Rd52XZwdVQKsUscvYEselFatqZycpYeZk3qoU1QQa9q2zDSYkFIYJa3BmohKc6CWUGmWBWtjD26V/1Z71UO2mWS7FACnF2YPQrLKHXhERS/ntB7A8T/eJU3Ls/4uu2dIlGHxXT3pYdYwemD6LemBptcDIoQnniSJ/eBPamX3p2suaB4bhrkkiwFgR0IvyuZDCMUv/jtWaT4jC5J1H3n0OMXYcDmvp6rZ/vQFYoyJOYU0UPcTI9CEa556lhLWOOzDe4uWfOG4Ic/axOV1NVNbxft8TYnA+apM/v/xm9eNXg02XNF6q/HBZvm5DBliQwsNBnY/ME69mrpsiUPMFBXILqtPgr4z1JbXpB7AkmUl6oaj30C4YDvkz12QFbPJUMPSdDpZ3qCy94biXjE/2cam9JhaAJVWf/9dyvgKwfvn9H0ya6z1DObFx4zqV3bi1HbZfuu53LFpFQgdzY+38kR5DBx3l/QCW9FX7RQJY5ev1hMlssYFRCgX9ePUEYBFzFa/ZBRaLBVf/WS3dev6S8baAzwEsfpy7B24j4sZPTrIdEpuTzxPDXHkiskyKRCa1exY20jYfLBALhSPcRISjyCFlxlvQJnI/jhtouFsymRLRLN1ELQ6ujIbJcoBkjz45Mv4hafGeVCkNfHgH3bj2LnNgLV4Rxq52DpWIa3LcXk+f3TQFGORrJ7zx1LMW5Hq8AS3PlEST8zRbV+YaDDJ/I1xHvXIqlOcOOTU1thsCazlhUkVS6JnlI8o+2+osH/JRj9uLt4MQfDN5i7mMWH73KrRzBjqvEc8u4uHFl9cXZLj3KwWSiLcY8RqLrbhln2xhRXAJz5kMI+/KXDLqpczJolBX8X6f7Jfj2SE6J5vKnsPZMndxOlMzQZUnvD2LFR+o5+DEoDLolEI6EWds7RDX8qfGKMGYaO2qH+pCCfpuIOEO+kV7ceFHtQ0kdog37juuLsQbj3hhOcTUojcsVYXDiEgZ+eM70E7v5SwvRtLtB7A8z/zuvXKcOUfX7Lc1GFTwAGoLtcIntiZ5HognSkKJG49U4XL21PI8CehTG7BQPWLm7wHU6oRSS1K7hMCdELk7xDh4Hqw5C9r+9QRgvbLGoMTTLS7tL957Es0yloG5YSe3fvnZYFeGVMO3AVkk6fc5FJJfPQUth0eFr5Nh6AIw2ekhTGLqfP+BDGs3ePbA6tHVggzpE1Oj2PV13vga9cPoe7a0OgQ7M9aR1IgfwJJkJkmFyAGyZs5AyN9S/ktSkUkTAuPAOWCDJGbQkNSb9EKqXWuh2ktJ/s2128Bcv730BiSU9ANYEoyUCEV8BWA5yNsJjxYXS+AO4dqth9BqVDiyfYHNCYYrdx48Q/Ou4yCXy23RXUJZB/nm8ANY0hfIFwlgFfumEwJTpcDhbfNcLOEJwCIufsW+6WxbfKf3UA4H6Wb0l4yrBXwOYPWsCRmHsdfTh71bpqcxP4HJ6J3sz/YjbAFOjaIgkUXOQD7uGSpqhU+B9eEyXOR4RWnTsCjhIUyMqH1yOBccY1FhhhVfP9+BO+ZIp4mr6DLgiJ6eQg9OXRwDUhW13T8zXgmLns6Gt/DGuM6ZL+oREn1Cpu8QVhsA/YQ1QEo7n8mbSzLc5YT+eAN3SAhKiWdbUPdyIbQ/QQn7M3zFIHt9DwDWLwuhPPKHs39T0x6wVPccbmBmGWR7zDmJYVm8nbkJRl6GMNIgyaaondjZ2TY3GxfXdgQMIqCQQzJWYpAtFt4hjnr3d8jx6hRtJ3sDBhkqePYyibgqx+0NHHCwIIN8P4h7pfD13VH8Es5UuosjoY0El8Ts95cwl0N8PziwGAYEuoJ9vlhL8W2DD0hX/1AdMrjag3CkXdqWDR+fcEI1u1uRMrtnoNChl2bxaCiunXaqSUBaAtZ6FLMJAX3tiRmIOAA0yD3w02gUCEyuRozRivcfOUhcfA3zBdRfs14BkknQIW1aWpE3j/iccYc+caqSixVh9AgL1KqEMQ7fK9VThlwxoveE0c57q7rBjSGLjnIW4pIkewKwxr49jZUf7FylRIj31cVlvwNV6oMAvXzp8+YotnO8keelrYhmyV0pApJi7FL7VJ78E+p1sz0WN/acDGthSs4rtV1flLtxS45fttDfBX6bP7SxIlfO2D07vtBLahvHDS/Q4iXN/ltRmwG/pq8lqbofwJJkJtFCMpKJdMFwyD7S71VSicmU0+Z5BS+JckQbj2cBt3dr+Vow/TA4nq26VvcDWD41Z5wb8wWAdfXWQ7TsPgE5s4XijzVTPOrSfdgcHDt9BeMGtkPz+jTjPTd0cFivVvihmbR3kR/Akj7tXySA9XXT/nj7Lgqn9iyFTktPJT0BWJeu30ObXpP9HFjS143PSvoUwHLb+MnsqXIFRDt3EOR3aGw+IVW25hOPybfEAGcmUJApWm3Cy6F30TaFMBkkCTkioUcOUeoA4lUlJKYPwLkptCzJRld6jAWFnmzCO46LyNDUJTDz3QVnE42T5cDC4Mq2/90Ivb1k4vPZJMayIcXlk9AsG+tSy9S6PyyV6Kb91RkZ7m+jG/aQ0ixyNRX2ErpvjkTl5ztQ+XYu9PmHkiwGF2ORu5VwHdXutVDtid1pXIGnmxBJmNc/ya1F25By3Hq37IWyqPfQDaVeSWyylNCTTGI84YfkEfCKgFixlcf75Hh+mG48MtdkkLm653Zen5Xh3lZqW+KtlbuFuAcWPyHBn4Vu4PQ3t7E/w3eCKi+PvIaJ72jyge4pC2FMmlKxHV6ClucD0jLWgupR7oTphC/j2vmKLqGaxCOQeAaKiXZaT8if0FBKKV4W2pGtIX/3xtm0YfwqECBUSPweWJ5nYM58Bd5zMnT27WVF2qDYbcKnz1YihjrkYdggC5IJO9yKLQXR+yTUlIScOsRc53uYv2vnVk83vCVkkRHO6/qpm8CmTkIuKJMRAf3qOfVh5cRrcT8cJHFCANZbq8HmfWXmgMXz953CD1fuw+Jhc0kSaZCEGg6ZGlQO7VLkE7Xr51JA9fcWqLb/5FEdY/thsJYVz2iVEOO5eFmGHb979sBq3NCKYkVi9+wkhJ6e2vxb/xTtXx103q6hy4Q16aTZ0g9gxX+m5DcvQLN0LGRmTggBCYHPXQTG3lMAtat3Svx7jF0Liisnbfo5xFqgFIx9psWuEZHSfgDLp+aMc2O+ALDGzlqFbXuOYmTfNmjT2HMSnUMnLqL3yPm2bIe/raDUIcvW/YGFq7ajeKHcWLdAPHTQMVg/gCV92r9IAGvwxKXY989pjBnwA0i6SYd4ArB6jZyHwycuoW3TmjaSNb8kngV8CWCR019yCuwQb2mp3ULIOo6AtTRdK54swM/g9i4gBuf7XMbYNKUFqwh5VZWfLpxpLuaVHYByiC6ERfFBVoQ+WuPS9tb0tdH05T7nteKatNidwb55uP6zAiREzCFFApcjSHPD9q81R35YGlLPoMSbZdqTzKCHZkIHyN/TzZc1V2EYB81xUSfsXzke/sHJ3liBQY4GwmDBZVME6rzYhRJPMmPEHnrKEZiXRYGOHgCsQzug2rLE2aeFnPi37OPVJNXCduK2kWbAOrpmD3KOF87+FdDD9QdPiKOGn9UvTxsr0sZhg0DAKwJiOSRjZQbZ6noGVl4cl+PRLmm25RrkzQUZCJG7Q47muYfTdW9gR3rhMI0NUbcxjJO5sW3yPJietkJSLDuPffIBaQX7EV9HuQNy5qbdceNNc7y5SJ+tXM2sCCklvqHTDmsB+QfKqWWYthmMSPpuPkebN8JZP4DleUmN5RwekFITx8Y+/G/OAgXev6fzPqCfFalTic97XBa6avN8qI7udlY1t+oHkpWVL9pxHSB/TTN8GiasBhOSNNxJRDfF80fQTKaZVpngjDBMXEvfSUF28lvu7/2Ed2ddkpM4vK+ULAtLySowdR7tNu5Jb89h2YdrzuujUpdEz1SuWYbjYvfEqqPc8RPUf7mGTHL7NjfvCfPXwh6tCa3jmbNy7Ob8jvD7+7YmgwrlxAH7hNbTU/skQ3T3N0ect79Llg3LgumBlje9/ABW/GZNcfYfaFa5g0GW0tVg6jgifo37qLb82QNop3RztmbNmA3GMZ7B5Lh06wew4mI139eJL4AVHWNA1Sb9YLUyOLx9PlImD/CoJCF4r9lyEMJev7UBWATIuvvwGZp1sYcOkgyFWTNJD5v1A1jS18MXCWBdvHYX3/eeAo1ahVH92qJJXbt3Ch/AitEbMHPxL/ht92FbfOvuddMkxahKN6+/pJgFfApghYdBN+YHZ5dsmhDop2wUVIGk+yZpvx1ibtwF5hrNxdQFPyTwVYoP2NX1JFaF2MlqhUSI14p4YvEl8r4M11dwMl5lZ5Gm8weX1NDBci32hdZHKQ5vCOHEupPVnrnq7hYF3pznEHrrZyHUbOeFINkYDSOTNkRWtWk+VMfoBo1VqmAYvcKNuPb5ETke75UGyhBSX0Lum/tVMKZup9xCyTOxKNJHGMBSnD4AzZoZzimwlKoCUyf3DRN3jlqH7cERI/WK+W3PWVToxSNY/lQhYFBjIIYTTjNrKwiBKVcuL1Ag+jkn42RPK1Jkjf3G+OUpOR7soLZKV4ZFziaePaqeHZDjyd+0fGg1BllriW9M3t2U4+YaWu9s1sc43eQ6NqUT5g7b+fEBeoXT9NkNk2XH4uDES5st+jADMEbKcH4qJxMkE45KH905vUgo1+0Ug0CAVYdI8phjWehIWPOnSmR2bZ4pCs+eDqSo+tdFUB7+nb6fGnaCuZZ7VjZSwA9gCc80AZ0I+OSQFClYDBkg7mnIb23xMgVevabPaa/uVqQLif1zKmU9apaNA+HBcoincFPtlO4uBMmGEUvAZMktpYsEKePm3ZC3OIz9Zzr74ntgEe+r0s9+g4EQN36SH/88g46X7J6K1kJlYOzlHrZBQpJJaLJD+gUWxdBAynuYIIPzYaMkfJCEETqE8AJxuYI8edz5UAWPTR3/V4G/DtJ1zi/4VQUran2TMOveF+Pb8vEuBoTTJALNk+fC3LReQrU5nfoBrLjPgOrv36DavsKtAXP1pjA3pYBR3HvwTU1Z5FvohregjQWkQMyPdA/gi178AJYvrBj/NuILYG354xAmzFmLRrUrYfIwdy5GvoYOonYSQkhCCbsP+xHHTl+1ZS0U470i2MMvHM9AB4CVLXN6pE4lnDUjMGVyLJraz6nG1t1HMG72alv5DOmCPBpw/sTeyJg+bfwN/Jm08EUCWMS2c5ZvwcrN9o07QT/LFMtvA6pC0gaiZYPquPfomW2BkQyERAZ3b4EOLWt/JtPy/6OGLwEs+fMH0E6WdsKi+msLVDvo6Yv5m6YwNxH/sY0OAy7Po15ST1K/w/K2B3EotKHHSTs/XQHjO/phSDiwCBcWX9yIywsy0Ld4jXphFPApoE6DvzPWR/ZH62DihF5cy9wSqRVaG6cSl2g7h3E1chjt3E0EQNHPokTkib3KFPevQTN7gEu35gYdYf6Uap174+nfcjw9QMGCTN8wyFJDGGTZH/MEhNw3fWRKLNxEQUhvfGPK62ehXjTS2aU1fwkY+1JAS8g2A57vxRYzJSZddOo+GrV0J1gmdd08JARCwM5OVsJMMS6UHG6FJnXsNwjhl2QgRO4OCSrCIG8bz4DUoz1yvDhKbZu1DoPQKuIAFh9gvZ4xDKdaXQUhUhaSAzFP0e41Den4RpcJayWGdCTW2tS/keHibGo7nfU5voq2g8FcseYpinuF5riuyeoMstT0bjf5+3BoR7RyNsWkTA3DDM8eGI6CxAuHeOM4xFKuJkzthgiaxQ9gCa+WR49lWLWWzm2mUBZdO3kHsGRGvY2vTBb+EnjzAoR3bIlxIJ4+pe/vzu2tyJIl9s+plDWtmdUXigeUE4okfyBJIPiimdkPiod2z1oinspJ6dMXZQifoPqXhXS9VvgWpraDnP/zAawpb89hCceTKoRV4urs9VAz9ufJFnY08Ec31VZEXgfx3HJIl5QFMD5NGV8MIVHaICFMBOxzCPndUdykdAAkuYMQ91diKPf3QRmO/Uufl9SBLN5xPA+LFWXQ2IMXdGLoJ9bHuqjbGMHx+P0hRV5MCyovVs123w9gSTKTWyHixa46tMPtOvFYNldvErdGE7AW3zNev2APWJXvkl/4AawEnLxYNB1fAKtpl3G4efcxNi8ZgyIFcor2/CbiPao3HwitRo3D2+aj48AZuHrTc+Z4boNyucwleZwDwPLWaVDqlDi6Y4GziAPAElN017ppyJElg1ix/8z9LxbAIjOwZst+zP95G0wms8cJUamUNvDq+yaeY1z/M7P5H1TUlwCW4sF1aGb1px+HOQrCOMSVyN9xU3n6ANRcD5wy1WDqIO7qHPVEhquL6Ufe3ZA3GN9kFx5mo55f/Gm4NF+JmBf0apE+FiQXiPZ4eUqGBzto28ST5n7tR+jAAQGq6kKxMV0N1HjxB26YaFjSHxnqoqQmGC9PyPHgdw7wY/oD+QxznZ0nZbp17fgOkL+iYS/WjFlhHPOz4Kol3lfEC8shWWszCK0qDBb89vEe+ocfR3KDBqtX09TrCi1QdoJwyJDi0S1oZtCQQSZLHhhGCHtTOXSY/mg3FiLcqdOYG2/QvY4wqCC2wbRnjCRzTX1zyk+1QubdMUfQVu9uyXBzNa0YmJtFgc6eN+r3t8nx6gy1bY5GDNJLCA2Jfg5cXkDB2wdpw3G6/RUn/xpfuVOGl2jycr/zcnltemxN/+1n9ZaKfgFcnk/HlMz6AOWj3U/cmMAgPKy7BQ+5oZflGeRo6B3AUjy6Dc0MSkYt1QtScecyNHMpwSwJ/zUOoR8sXCP6ASzhJXX5qgzbOO/TggUYtGgqMl93L0Mzx5XYd0uJn3EmjH7Etm1tRe5cCQNg6Ua3hSyCZpzVT14PNsg99Ztm/lAobl10DpyA7wQMSSrhh8aR7F4ky5dDuABWJGNCiae/unhfTZXlQI/p9DDAmi0vjMMWuQ2HH5bcOkUezAr6vMKSvc0BH6C0VGkA5RHqaWkp/TVMHenBSmLO5559cpw+S38XcuVkcO++6/8/eDkYSUxdhfricy52S1nQI7UDv74fwIr97PFpOBwtkJBBEjr4OYpu9PcgWRIdYpi0Dkxa323o/QDW5zjrfp2+VAt80QAWmbSIdx/w+5/HcebiLRBUlsS26rQaZEwXhDLF89vCC4ODAr/U+f3sx+VTAOvaGWgWj3KO2RtJo+LGOWgWUsDKmrcYjP1nidpLyAtlfIM9OJOpGUKVwsy+15crEPmAnuAX7GxFqtzuG6Bn/8jx5E9OaFdVBscq3nThESIZl0jmpa6vD2FPzGOnvvPTVkLT5DnB9+JKaz6BYnpqE5Lpjw0JFR2nrwvwSdPJ6EnYC+sh7IWAcASMc0j27xhkqCi8+Vz94SZGvz0NsMCWZZ0gc4JCQPnpFgePsMuQZK+eQTe+g/MaSe2sn0xJ3YXGv+rmDozR0ew63Z7GYGylnoKmcss812MirEXoaTDx0KftGQAAIABJREFUyCOeeQ5RpQBIxsi4SNRjGa4u4YRKZWZRuLdnAOv2JgUiLtP1SIjuCeG9mBjCZbjAyagZlioSp7tdxkwPG8hrxgjUCtvlbLaQOgh/ZhQmfBfrO6Hu822XynIDpWN6CXb3uMN+3N2mcd7zlhnTUUhx6V9ollNiT0vhsjD1nCw6HNn7cOg4nlusRgv9PGpLbgN+AEvYnEePy3HgH/oOKV+eQW0PXpzO+Tr9NzRraOgbuX47Yx38xFKgunlTBoUkkPeLTrJAAV2vbyFj6LMbs2gfoOBmprVX0iwZA8XVU84WjN0nwFo06YAczU8TobhwjOrTfiisZemhIBfAmv7uAhZG0gQqIQodzipKI+Uk6gHNpM8Cw7iVbhbihyXXT5YdSz+zsGRv864d2w5y4tn3SYi3FQkXdog1f0kYSba2JJDtv8tx6TJ9XsqWZlwArQzpWfToGvsQ3MQayrz3lzCLE17aP7AohkgML/UDWLGYJUOM/f1zlz7DpDar0tjI2pk89ozYn6NoZvaF4iH1cDUM+BFMniI+U9UPYPnMlP6G/BYQtcAXD2CJWsBfIEkt4EsAS3nuMNQrKW+GtUQlGLu4ZrtzDFb27D50U7o7x85kyArDWGFvIK6B3t6U4dYaChZczPwUU+v9iV/T10RFbUZBW95eL7cBSw7xRNb9cLccYcc4HDt1Gfxa5IIL50evVIUxMnVJTHt3HosirzrbdHys8T3EUljuoGwM3RgY+s8Ck7dYos45AYu0EztB9ik8hHRu+bohTM2FgQJyn2TJI9nyHEI4nYhHmpCQzRDZFBFZufp7pDTQbDcEFCLgkJtEf0DAYOrizmoCoJ9HT8KF+tl9bhO6paVZCBu9ZbCoREdBndTrZkF5kmbANH0/EJavaIhy1CMZri6l6yh5KIsifeO2OeCT/2vTsigxxHNbN1cp8O42hyetnRWpC4gDWOaPwNlJdDMdqdPjVN8LmJBGOO37I3MUvnpOsy9mV6XA8dDPK6wg8p4M13/ihM1YLqBkDA194k5uWKu1uL4ni/OSmKcbKUh4rLgbVMKlZWrjGkbr6WHU9f8OMqPBeVs//Rewqdz5DfwAlrAFd+2R4+x5+j6tXYtB+bLePbCU+zZB/cdqlwatMhXGhuyAUW4/oGhY34oSEgDfWL9k9R8RMJASeHt7J6lXTobyHCWsJt7DljJJ5/Wgnd4L8sd3nEPmbwwdG7ubbyJt/I0xLAXrJ6Qpgy7mIBDvCIcwqYNhmLrJzYT8THPVAzJjnRf+yVjPQQJX0A5sALmeprQknnOaBcOcvVqz5oFxuHdP4IRScfNvcty86fq87OMcqMWVQy6h9OW3ywdGh6cugT6ppIETfgBL4ixFvYd27mDIw+jhKalJ6CkMfaeDzZxLYkNJU0yzYgIUF487OyfejsTr0VfiB7B8ZUl/O34LiFvAD2CJ28hfIgEt4FMA68R+qNdT3gwLj4eDOwzZx0johjR1XvKWsZBbL/yKHHc20o+8U9kf4sdvD2J6UHm0TZFX0FL3tynw6gwFDHI0siJ9OXfAgGR4I5neHEKynM3NfgKE28EhhO+D8H78EnUXgyIoYWmDZNmxJLgKTO9lODeNbsjVTAQqf6TjNLUfDktZz4TzCTHV/LAJsjkxjl8F1kta5TubFAjnegm1tCK4uDDIwgXz5m1qitBI6lFJsjiSbI5CIiVTILfe2UM/oWF2lfPSV3oFtuSnIYvcsoTUlJCbOsTcuCvMNSg5ePgVGe5spPOUpgCDfO3EeaiExsEnIhfz5iLAGQHQHFKomxUpc4gDWIwFODWKAlgmhRWnhpwH2SgISbhVj6JPf3XeClbocCkzh0Q1IRZbLNvkE9PzPRa5zUU0momLB2m2USmgo+r31VDtpxtx83ftQIiapQgJcSWhrg4hnECEG4gvfgBL2JrrNytwl5ORtWVzBgXyeX/G+FkAHS3/nrI3jiWzg69SgDAp88svI3/1FNrxFBBn0mWCYbwrmOaoQ37nlCdoeK7ph8GwlKcZWOPSf3zq6IY2gyyKZmgl4BN5zzvEsbEbcP8E5r2/7LyeWq7B2UzNEBATA90QzoFCshTQz3YnWP7XEIbmLykJ+ucYluzNjvzfHBLCpOUkniHhTORaUsjaDXLcf0C/bUi44DrOtw7RKS5ZPBNrLOPensbPH6h3DQFGO6d0548T0scPYInPEsl6SrLjckPwSC0mOBTGftPABvkuFE9cm7iVUG1ZCtUhTvImH3N1+QGsuM2Lv5bfAnGxgB/AiovV/HV8ZgGfAlgHtkG9bZlTN0u1RjA1Ew7xAi87GKnkKVyDO9jX52W4t4UCD0fz3MPC6ofhjW/BjTTbA5/TjdUKvL/F8Yxpz2BI0AHsi3niVIGES5CwidOGV2j8cp/zehF1EPZl/A5u3Eos+z/2rjq8ieyLnskkaVKjpZRSpLi7u8MuDovLwuKui7ss7r6wOIu7uzuLu1OgUKQttNA2OjO/7yVN3sTatA27wK/3+/pHk2dz583kvfPuPQfVv1QzJ9VpG7SHXsRN4rIb6aAh6wgUUkzdZwr4fCXi7frhWgk+3qOL6dxtefgVsL/5HBFxEWviQL6JO+sj9zsqWVugOwfvrA4ALGulwKmbIaRK7XBcL3fOQLmidFOWUy/FqRz2wQjp4Y2Q71ppbosoXBKlS5OFnpXgxT56femc4FNyNDBeA1waQ4EliRQoM8lxOuLNOVLEUpodFO6rh4eTWaXnh7IWKZpXhl1DP1/7KQMqXo8cr2hapoJh8SyzfcDva89DR+0TkJSApSYL0J5CQfV4w7+EF03yikaVfK7eF/9coREy8YkEmNqzicRr3R/6inWdulz5mhmQXhJF8bXqB32lejZ1UwAs++5cvFSKd5TuBN06c8iQPn6gVr54FKR3Lts0GM6mx1T/dSD5yNWr8qhcMWlgc3w3XvL4liG6wWR8jgJQD6T8heK6hDCdEKebjESzkqjW/8S0Grj3o/NSkEiMSpsM/S0jG7toToeAW6stoq/G+JZAt1QFAKs2IJUhdoFRhEdst7QRqBNKU2kLuvnhUOC3lZbs6B5IIiOgGE6VRPlUflCP/ssyEljpAdXsXf/JbfxrBYvXIlXcbp04rFrLQkwhO2ywHu52FJT/kwFbdTo0/ALWRdP39TS/svjVwaGi9XhTAKz47yAT8hSKuUPAiJSVDb+RGbNDTdRGPby/hSmQ4BhkhzdBtoumJutqNIGuCc3ESLCBBAqkAFjJ9WBK/RQPOO+B7x7A4jjewHPl75cKjGjB5LwLUkr+lx5wJYAl27cWsv1/my+HkMgSMllHphzWEkxUhPlr1aT1EFKnjdcd7y5J8HwnBR6O5nuIvyqfw8/umbDSQSoDUQUk6oAmI4pvRPnN2u4sZPFFpHZVsCeH1vJ9uK4JMxclJNjk1PmDPhZFX1M1Mw9GiseZjWCKtbpdhS/NoBCM5OP6CnWhbUOJ7r/mvWc+hUExvqNFGpS+RBVoO1FOLkf931/OIlIUPZG3Iwff3PY3n33DzmJ7zDNDU0MP1kSJF5nNzeZpxyN1fvubTeXY38B8oHwkJIWUpJI6MtVfw5HjJxpll0qQ4H5W++T90nMHIF9PN5/W0YAEvCIglsmCavHIWDXpm+ILw1hAoBvGslP0YGjzFpfkrCqmPT+cGidArqJRaA/730PHQPuRh6R+xherCTWZ2UIy/wZJEt/Tz4MliIkVoFYzUKsYlCnDQWZLD5SoKU3SVEm6qskCtYeQX21Uo9RVaQTZKbqZVBWrh/NPaXqhVAGUciASYGqPnFizD66Z29f0nAiuoP2US+uBW4OgjtJuv0cAa+MWCZ6/YKBUAEo3oGoVAXlyJ33+27vpU2awUKnoMzFsMAd3ZfwAlnJiNzBv7KsH/eU7HY8VJVGxAoea1RKOWEzURCTpplYp8PpilaDtMtpuM7IdyyA7St//ukadoPuZgiOJ7Ts55Uk6kWJCZ3MT9vgEycZuwturGBtKFQRN0VdKgrgDsImIXXQYkFi+xJ7qolD5DVU9yyb1xtmMjZMz/H+tLhPyDMrJdLMsZMgG1cglUPb8ScTaCMQuPmIB/v1bA1ywhEXYB/q89OnJY/1GBh9FCsrkM/80rn1OXXV94nUAaXO+f0U08UhYQYyUTQGwHN8FyYPrIOqZjE5jUYjLUxSaHhOAeCLpXXVvXdUOe/kY3MTiTSUqQ9tplKuaRwqA5TJXpjSU4oEEPfDdA1gdBkw1ELRXKlMYf041couUa+CYWydBj8QVYCUSpPL2RKG82dC+RW3kymZHNs7ZxlLKOfSASwGs7UshO7bN3Jd12pb1IBRTellEWGiGLgCXJU+8d8s6cmZ/obtYXf4Scsl8cDKD/RNwa9AroBSP7E1sF4GEIJsQZZus6CAOVTVbEaKPNn92JsMvyC5LZfg/64u10IK2cytTC6RhlQalOKIYZ7JS0d3hzRvTEPUFSkHbi/KEfc2paU1kLrh7Qk1I5D2N44/P7i5h8TnYuTS3jh+O43BsiKG5nicqoeqjXOamczTlkLak/c2mTYrWoDngshdwOCyPSV3g07qcxebiReZ2kNlBiqzJuwmBu2GxF2fWROo5WnBIWyzpm+J/xkuhp9QqKDlaD5mn/Uv5Z5wUepVofozRw4H+gE0DRyfr4BFFj+Bf9nqCVkFZHfos/6uNiCQhYnF2P6gVUkkoEXpC80D8/ZgJlmhV144cMmZMus9I27aqnbuQRz3P0K220wgQpSWT6YNy4VTkUoshOxIJMBVy+6Mz2FDKF6IeuRR8xmxOXTZ76wLclow1l3VE8Pw9Aliz57OIjKTPd6UKHGq4EBTSaoGJUy3nizPpT8pBv4CJoe9b8Y2651YOq1JPAiG3rlvb9Zt4IkdPZOlNRgBUXQv7axnZgfWQ7V1Ny9ZpA119x4c1Tk24JBayEUTJVRiaATMtWvP2kSLjnbWI4iiH4Ejf4uiZqqC5nHJAAzBq+mJSzdkDQWEZ7vOWizVwaJksgFXi+jeWluzIjSwBAsR8V3HCMcpBTcDEfDZXU83Y5tRvZBJvl8NqM+ey+PyZPpODBnDYvFWCkNf0s07tOWQOSt4719XjNrXX5cMJHBBFqy9LWxV13B0fSInHkQJg2b8r0ktHIV9jKWpBShIaCkJH8b0Za6Uyy2cvAPUg+1GuSbm2FAArKV5LqZPigaR54LsHsMrV74WoLzEI8PfFia3GF1H+Kq5dyMlkUqyeOwxF8n/bBIVJmwL/bS2XAljr50J2bj9d1LfpD10Fx+k6NkpOVkpx9jzz5iSLl4fogm57sRvYVNoYYfEmi/15F3GbwSMR35FfQR65f7XdAF0ey4JT07ZLj+WQ68NaqEEJuR8GtYGXxBgBUyt0D+5oP5qHuSuwDkq6pcWD1RIQbh+TFY4dDX+9kbiSz5AN6lGWm/CvMQOkN85A/heVRSd9aNsNgb4sVaaKr9/b81lEi9IZCvXh4OkArGj+7hDOq405cb9eKIWGtyhPUJa6PNJXsr/ZlC8cAek9GhFAACaxUqD1+DwGN0HO9jUQ5kE3VY7UJ9lnd+E2k5J1E2BMI1ooXZ8hgTqc3qMCXXl4Z0/6pvjadBaaCDp3ig/h4OYngGzkDRFLaoATgMAAAReGWm7sy01zXv1w/ywVfD9QVvzwbi/RIJvj/MMyr7dZALCE7ya9s2iZ6AZExzCYPotGSpGv6tbiUbpU0n1meGZPs3h5gPrNU7ITp/KfNPSsr9YY+batQeMHL4zPjtIdp732WTyjpcZykLo73tBZAyKJ2ZxacyKR6FASJWpt3xuARebj5OmW97JgAR7NGifvXor9EhYuwYLF9PlKnVpA/3iUOUldRquGsl/86WgT025GlmJp0Lih68ZqGjdJbSEpLiaLL6qK8OsRnj1z2ZrNQA5s/gsjXFwW3JN2NrdrdA8w4g1NzfSVyHE1U3MoGPouUgxrCYkoIlo9bTN4b8uU7i+8Dnle0WfAi5HiYVzk8X9x7YnpU3rtFOTL6eGRvngVaDuPhGJsBxB+IZOpx60EH5ApMU27pOwk8hsiWn+MGMphx24GDx/S56hFUw75nRD8cMmAEtlI2/dHcUJFT+7Wp6uJKgrncuNTACxbZ8sPb4Z0l62wEeHy/K/eNYmcEjbFyXNGnjeT8f7poZ6wJrnNmuunAFguc2VKQykeSNAD3z2Adf3OE1y6dg+VyxZB/txZDBd84Lgth0WCnrAqIEBA+McobNt7Cs9fvUWZ4vmwYtaQxDaTUj4BD7gSwCIKhCQNw2SaDsPAlXJMWC5fNxvS85RHStu6H/QVbTlmxJfw6jCD1yfo5mtTqWvYXvyGoYijzXnkEwnuL6eLwFQ5eOTvYrsBsgYWCk5RWSzWFWDxLAvlEOrx4TT2xAabhzc3TUU088yOZ5v0eH+DKvHlUc1FRl2cwp7SE7GzaQrGV5mgqhgoR7cFE/PF3DwhnyYk1M7ajdksVO8psFDkdw7uAfaBAsKJQrhRiDW6XgRtLlN+rfRVOGSp7SACa+VUsFeOm4ekbTsQJNXPrgkC3Hv+hIod6uBuWl9zkf2B9VDELY3tQskqrYZsSMjGhNjjjRKE37RMjSGqgUQ9MKl2ax6LmFDqL6JoSCiVCa+JyZRKAUP7c7g0im4aGRYoO9l5AGv7ws8IDKGbypj2oaiZ13HabbU3u/BIR8mdT2b4BbniIggTc63vPzBYtMQS9ChSmE82kBBynEXIEeq3KJ+96NyKEieVePsRR9fSd8TZTEehiaL+MwGFdq+F4+Dem84nMTdQm3dHcEpN01fnp6mEJp5WkVk8B2XvOmAE+q6Inb8fkMktuvveACySCrr6b8v5H5RRQOeOSVPhtOf7p88kFgTU2bLyaN82ftBJQtRSx9HNjeCXDiRqVBLy1NzFcc9WeFmyMwghvKstIeVScX/W3IK6SvWga9XP1UNyqj2b1P2fWkD3C00pjBF0KPt6GyI4Gok53Lc4eouir0hH1indqnGrIATYRr5neEEjz0g9RwdHTg3+XywkPbkL8i1UYVBfpSG0LXpDMa0PJGKxhkFzwWXP/y+OzNiVdYQriVjcs1+CqyIlT1ccGnytC2v67hAuxh1kkT52BNZCabd0TnWXAmCJ3CQIkG2cD9nZfRa+I6sTXau+0Ff6Pjjn7N54rRruokMKw28ySVV2kaUAWC5yZEozKR5wwgPfPYDlxDUmqwgBsao06Q+lwg1XDlKC8GQ1mlLZ7AGXAlhWBLwJRdTI9qyG7CA9zdXVbQtdPfucRqYBB++T4K2Iu2hNucvYV/iO4evN6X5GBYWtEkt0CIPbC+nmmxBmE+Jssem+GLmrTEaCVPyGR6CSiO8jSOqJixmpouC0T9cxP+q2uU7fVIUw1LcYXm8Kw6sbdBxZNH8jh4YSisfO2wfIk5bG5czUtVbIEqQyqMeugJDGeZWaa9NYaD5SYKHYEA4KP/sAT4U3OxCsM6Zg1LiXB93OVDAPM6CUgOxN7G+MyWaCbCpMFl/KKRMZDuXwVmjSvCpOZE1vrrMybTX87B5k4xbm8ycohzY3fy54eEM1czteHpDgzWnLzft7FijRk0OmZKTD3VvKIuo59Vf+zhxCOQaEa0hsPX/j8VwUmULSDEm6obO2fmkEsj6nJPnalh9Qpahj4vsGb/fjmojDbU9gHRR3i59nzt5YiDoWUckSm7+/gD49kgd6WN+PV4F7MbARBbDSqbR4MJ+qSV7Mth8x4e7mYRTsxcHLQUoN4Vcjm3KT8anTQh0XQVXp9U4800eZvxvgUwSDfIrYXDpRpSORWCZTD1sEPjNNkSWff28A1vmLEhw+ankvvbwEDB6QvHspdt71GxLs2kv7cAbstEnxylEQXJmaIAcdJothvLGuzGa0bZdM8jU7k9xt4Qiw4ojQePjSbKKeyvwE7W+DnX2MXVqOcP0Rzj+TWRPKL4q6g8mfKA+cN4m+ytgMHnGRxKZ6ikndIXlt5DIkph6+GHxQTpuxZn/5N9RErSTOngT9Cvc4Hi2XXpiLG5PtXQPZASpqYVpvuC0aCfbuP+beElq3uHhYhuZ0euCPyXROy2XAqOF6nDjJ4NRZunapXJFD9apJP2j5GmM3tVkvdB9uaI1cn8T2BdZDUTuHS/bGkAJgxXmF00P+1wRIb1+0cJMgYaHtOgZc4XJf8xb+K20rBzQEo6Z8C4mJik5ogCkAVkIeSvk+xQOu80AKgOWELys37oeoz9G4eYyqVzhRLaWIEx5wJYClmP07JE+MYBIx9YAZ4HPZbgpN31ufYjtDcP58hwTvLtON0bKK53GkgFG6eapfWbS1o3pDeK0Iv5XJ3FILKD7UcrMW+x64OZsuIJX+AtS934CcKpqsuJs/9gTSlMit0U/RP9yYGkisnkcWLPWvgvB1d/D4TlHz5+m1B5FPTXkMCJjEp7MFXZy4XQkWsVbSIhXIabzupxYJ1hUXsCaiLzFSD7kDoZuiIZvxgTNyp5R5lhUDj9CoO0LgTojc7Zl15ID+51bQNqIy9uI6kpePoZjaCz3qlsGmApQY1tE9JyqXJGLLZGTJH/zbUTzfabnx/SgBriiAFs155Mub9KgOG9XGX3k8UQEHROIBZCwNqvDQ7qfzl0R9kegvZ23FqvfI+1CUltEkAuVKOeY0a/P+KE6J0jo2BNREZaVzaR3iMd28zWDHLssILMIFTzZZySFyf75bYuDBMtntrHvxRy2RdJ0gIGzGRkgF46btarYtiAynSpR5O3DwzWN/Q0feReSdZDIua15ohsw3/Gu9CW/skQ0L/CvZ3AbCgUW4sEym6TgMXEnLqNLvDcDatoPF7bsUbDVd29hRerAOhAecnZ+mcsdPSnBadNBQuRKP6lXif76kFw9DvpZyN+lLVgOJynQb1Ayslm54DmcdiopDaiR2SAmWV0zuDkmICMCxA1aaGkkM4XuCHSezgNvCkWDviQCYrmPBFTUeIhAl0pKvt+KTiAePALUEsLU2txn9wD6/b/6YKDASJUZrKxSyCRGc2vzxzUwt4M9+o9J4osHLNsyziGrRtuwDfeUGcFs1Few/okjgdoOhL0t/O5J5e5yqHh0NTBetPzw9gSG/63H5igT7D9KHsngxAQ3rOf974VTnLipU/c1uPNR9Mrd2PH1D5JHTaOn4ukkBsMiCORYGWo0n9FCU+ExwU0LT8w/wueyrDbvo9v1rzVgfCqlGLQURVHCFpQBYrvBiShspHnDOAykAVgJ+0uk5lKzdDQFpfHF44wznvJpSymkPuBTAstkALASf2bFCGnvjHNz+Gm8eqzXRtr2LeLKZRdh1uvlaVO00TuV+Yija3bsARqem6Wum+rpY4Mp4UXSVHfWyz88Z3F1KN+heWQQEt3uKHmGnzcOo7R6E5Wmrmf+/qvmAhm/pyXd+eWocSd8An5cfxN0nNMzbT/cPiqqGmutp+k4FIYR2uem0UIzvBEmEkY+KGFH1M3BuSSzBh4T6vjxGClHGiUHtjai+2bMcr9YZNkrE8ocGYtxuCvJ5ZxNQoJv9BXdiAExyQk5OysdVLoJ5ZWh6x0CfIvjdzmaMjMV9YGMgTnY6XFoaN92nEKYd8yVEM8BFJcAxyedzerKFRdg12jaJOrv9hcHZ85aIQOkcAnxv0XL2ogHjuzfz171CiTt0sSev/xklKtCIJOu63cJOYl8MJTH/y78q6no4R6wrbuvcBQmOHLNFNzr+xiFL5qRHBBAFQqJEaLJT+fdiUSURgAXgxpLdyBJlJPa+lWU5wj5SADNnKw7+Rez3bw0ycEUqQNNtLD5yahQMoVxHpN1ibv7YKwKnTeOx4UWq8yt09WlUl2GeubHw8ZQjVsMhMpqSZCf0jP1X389fxCJcxNdmGke/3hz8Uif9XoqvZ8duFjdF87xBXQ4lisfftqNUON3aJUh1cbu5+VD3PPCZtcDl7lMOawEminIaqqZsguDjZ7cf9vZFgzKYyfQFS0Pbc6LLx+RMg9bKjeoh88FnzWuoujTqLiZ8umpuxp2RggBO1tFXpICNYmfvyeDyl7QZAklHfCUSNjmfoQmyyCgvnzNj/i/KkLUGWXOYTNN5FLjilSHfuhjSEzStX9ekG3Q1aKT1vzHWiAgG8xbR3+jUfgL69+Jw974EW7bR927uXDzatEz6QcvXvJbyb7bjBQllj7PEzIv/ewAr6iMU84aAKIqKjQjuqAfMhJDeSM/yI5jb3CFgHxlpP4hpek8Cl7+USy4tBcByiRtTGknxgFMe+OEBrLcfPuLA8Uu48+A53oV9hEqtgbtSgcC0qVEob3bUqV4GadP4OHSWRqvD9duP4evjhTw5vk7UilN36gct5FIAa0x7SMIoiad6wmrw/o6jPchpLzn1NZk4QsKRux+tkyDiDl3Qzf7pOC5mN/JQ/eyeCSvT2nJukeCNi8PEkTcCyk7lQCJITBZxV4JHIl6Y1Pl4nP3lLsZ9pCfb7bxyY4pfWVqHU6FQyGbz/3JIEJylHbSzFuLqh/7mzz34YJSNppFFJNVEX8b1J7zWm20yAPXIJeAzOidlLfb5xeFSiKh/UGaSHvayRHhBQKaXlIQzKMIXs7Y0MTflHgAU+d1+ipz0ygnIVxJQyWj6ohUNYfL2zKTGs7hEboysTkFKEnFHorDsmSJuPn6W5MRVjwXgGZq2SdhgLigBTdxUqlSBR41qSd8YBO+V4O05Oi8Jef3Fjwxu3baMdMnuBeSk+CJSZROQ3wHAZ++apmx+isrXqVKn+88xKFLNcTrq7+HnsTnaCPASm52mPFp42qYFJfR6O3REgguXbAGsWjV5lCubdL893sAiXAR0bCu1F5uLWwJYezccQ4UQ42f3M0xF6JfS5uFmbcgjsJyDCL/j2yHbRtPO9ZUbQtuyN+5owlHrrSW/SGpWgTuZWtq4wVoFSl+sMrRdLGW/vycAS6czqgPGBbRZXG/7thyyZXUNgLVqLYvgF3Tut23NIWeOBABudHJfAAAgAElEQVSsv2dBdoFGvJoiZL4Ev0PAdMo9aHivOUhvS2gex/e9ew9LgYvYP486LM4+ugm3uTRlkMtdGJr+lsp/yRlLYupaq+ipp2wC7+NnN/rKUaos6U++dDykNynAo+02FvoiNB3cNKaaoXtwXyReciR9feSX2wf6EnMdX7us2+yBFtEtmt9ngstZGDaKkrVaQ9eQcrF97XGR9kNDgSXL6RolMBDo0UWPFy8ZrFxDga2MGQR07fRtRmAVC9mM93GR2OSarmdsjgCp48MVsV//nwEswv0nJ+DVpzCLqcanzQhN3ykgXIA/khFVRfK7ajJtu0HQl/3ZJZeYAmC5xI0pjaR4wCkP/LAAllarw6ylW7B+xzEI9lbLce5hWQnaNfsZ/To3hUyauCgRpzycUiheD7gSwFIOaQbmCyWMVk3dBCGV44UtE/YWyjGU80rMUeNo0A9Wsfj0kG6MptY+gmtZXhmK55b54ESGRnarXh4rhSjrAaXG6iFeW73/h8Gz7XT+pS0pYEv1f0D4Q0xmL/Ui18t1iBEoQEMWbenHDsZZPVUalDExqBxFyelJBIeuzq8unZlM6AsoJnazIJzWVW8KXdNuie6HAFcEwDIbI6DcVPuL5kheg/yvNpqLBql8MGs1Pb0mB/MlR9kHsAjfDOGdMRkXJ2tub8BEHYwAdNvyZkaXBnRTVcs9CCtEUXHium7T+0LzIgpXPBZDJxGl2UkFnJMxiBbhMYULCWjSKOkbg1dHJXgtilDKWIPHiXcMngdbAlgBeqAo5VIGAUrz/OY8ADRy533UvURVHr0qq1CwjlEV056N/XgZyz8bU2yJTUhdGp28jdEZibHtO1ncumObdlaogICmjZPuN2vFzsVVD+BkHkquTsb4574LaHnPCFI/8R2Al1wD89Az1eSRqYYDAGvbUsiObzOXJempJE31YOwrdP5wwubyn2VuCwVh1ReZJPgBFNP7mj/h02eBevQyizLfE4AVEsJg2Sr7v7MkNYmkKLnC5i1kESHi0OvdQ4+0NPPTbhc2EUBxqqSxsUD4iJHIo6GHCSTFS9vOdZxTJPKKRGCZTPDygWo65V6zHrDk+QMoZojmRZY8UA91fVRYgvfCWqiApA0uPgJyOrPs832LAxgPiRRXMjZHKomlCIGpD+tUOs1vg8HZOWghUcck+thkO9PVRikF5eVLcMz/UQHFhM4WES7qUX+Bz5AVNoT8FetB1/rfJeQnYC8BfU1GolpJdCuJlCQRkybz9REwoG/S37df0/V5X23AZ55GoD4Iag3Ct+aM/b8CWIQagbz3mLhIcZOvuKCcIJH68HDA2+CMU7/RMvJdKyE9TNeMunq/QVfXNevhFADrG73pKcP6IT3wQwJYBLDqM3I+Tl4whon6+XqjWMFcyJAuDdzcZIhVafA6NAxXbj1EdIyRO+enyiUwZ3zvH/Imf8sX5UoAy71vXUBHFzCqOXsgKOLhxuD0cO9dm24aJCxUi+gJvD2/WZNlj69/AHczGje8pggoe/WuTWWh+eSYlPz1SQleifiKMlTmMafUGRCeK5NN9yuLNlYcW2IFPlJue7paqDqgLY57nTBsIkxW7XN1SGDcaOvK1YKu7UDXTQueg2Jqbwu1Lt4vHdRjlieJLJ4AfQTwMxlZg5b5wz4I9VofjdKvKUiQCV6Y/aeYb0tAuWn2F9ySF4+gmEafeRIpRiLG7Jls25+QHd+Bs0EBaNCK8t84Sv0ibTDzJ+NaSFeoJaITTEaApIKAA9cto4myZ+Px26/OA0nWYww9K8GLfbTNwPI89oUyCPtgCfqk1wGFRFlm/sUE5Gzh/Iakz/4baHWGpvWkKqtF/kaOiYumR97AvMhb5uEO8SmKfj6J59IgBO6EyN3a/Px49OuVdL/dW8Yi6in10R/1D+J2RhrFSfobeeYWBl28a+j6pbwFnii6m4cRWIFH1vr2+5evmAzp1ZPmsqYN+fLP9zFWFFlpKnA4sD4KuFkB7moV3AdQwIwIIqgW0LRhUvd7ArD+uSLBPhGnjvh+VqnIoZqLCKKtFdUIVxohpo7PDOnP74yHEcTEUVabhl9Gx0ga+Wa4DwRgUnq45D3KhDyDcjKdVwTYIACHI2NeP4NykvPlXTJIO41YHwKRAyNycKQVOMN72cRNSKqOSFcMvRQU/LZuTr5+LqTn9ps/1jpQPGv9/ghOqyjI/HfaGqjmbqtW+LWuOant2h6wbYaQKjWkV05CvnKyuVl98crQdraMsiRfhkdIEE0z5JAmjQBPT9cAvo+fSLBuo22qoFrNYPJ0CmARvsHRI5wX/Uiqr5JSL+vLtdCKwraDM7eDnHGOVO//EcCSEFqEpePA6HUW7ubyFIWGpCNbqd0m5Z58i3USQx2R2PGnAFiJ9VhK+RQPJN0DPySAte/oRQydtNQQUTWiX1s0qVMJJNLK2kiUFonQmrNsKziOx8wxPVC7Gk0PSbpbU2o66wGXAliJSMEwjU/xe0NIVCJFkpk7IXh4Ohz+nYUsvoTQDe+0podw1f+1ufyVjM2QnkgIWtmt+VLEiPbFhfro4SlacxPwgYAQJstch8eQPIctCLBXB1RHTWUmi5Z7hZ3GrhhjdAixWZKc6DhlHM55bIKapafS5aNbQ8m/NZQh/FeG0zUXmfWCgDSr6TcdZCGUFLNWZIxPKe+h9hOqh+42d0Oi4CYvaQrRQSxKT9CDtZPlxkS8hXKUKALP1x/qyRvsDpmkGpKUw0d+3ijTmfKLWStDmipzOuDexHBEqy3D73M053DzEwPC6SQ2/zQC+vR0HkiyHiThcSJ8TibzLy5g6wsGasp1bPgqsxbIK1qvpivLI1sj5wGg9kcuouvxiuZ+fItyyNvS8SZqcdQdTBIpkPX0LoCRdnjiEponi5ZI8Z4GXVgUJxuqpBK531nM4stL+jyPbrQXDwMtUwjb3X+FeXvPGvoMldbCfXfKJxcfAOg2exDYJxS80/SfARLlN/7TFfwVdc/mkokAAxFisDbFsJaQREWYP1b/sRa8SNHzewKwdu1lcf2GbSQdubgihQQ0TkYUoslB1oTUSgUwfEjCm25l/wZgNMYDLWKqGdsheBojEMb+IcXw9y2RmqNzIz7V0oTms/X37P1rcFswzPwxl7cYNH2nOWyGpMqTFGWTkflA5sW/bZKnd6CYJRIqyJwLmmGLsOrzA4z6eNk8HBJZ+LbQb4iNcvyukVlFLDryb9cPJ7E/lnL1LPGvgvp2npt/2xcJ9ecoRdRG/ZIACP2o6Iqp3U1bJLj/kP5u1K3Fo3Qp59/d8Y3v9h0G23bS3w9xZOu4iVLwom5GDdV/TRHjhNxo93tO4BH0ks5/CRiEZLHkCoyv4f83AMtasMLkG32ZmtD+NiRJ9+B7qUREUYg4ism4gmUMJPWusBQAyxVeTGkjxQPOeeCHBLA6/T4dl67fx4i+v6JN44TVgtZuPYxpizaiXIkCWDZzkHOeSynlEg+4CsBiYqOhHPiLeUyCuydUsygxqqPBKsZ1AOEAMJl6zArwgY65zm7OkSJWxCG0qs0pHPCmUVKb0/2MCopAm+7u/sXi8zO6ccvXmYNPTrrxtybhztGUQ5sMuy24Pvanr4ci8jQWbc+MvIk5kTfNn/VReWPC/D9xxX0RoqT5zJ+XiOkDH84YRUKuj1ynq0y+aCSkIhlwfeka0Lanm/zE9qP5yODaNJFqo6+A4sPsgzvWRPZEqXHM6gbQRlJfE8VHovxobYwqBsrfacqnIFdANW+v3eG6zRsC9uENRCrkyNqvmbmMFAxeWi2UySEwSU2LfGQJUmXOehcZuueBPRU2hQIY4cQm25EvrTnUfPPx2PjSFrTPrgVyigCsjFV5BNVyfhP0y8lTGHyIvlPjU3kkY1375RGGR1BJbmseN2fnxrRZUsTE2C/dvh2HbFmSFolwc54UsaKMwSFNdyLYn4JFpMdq779g++o9hs7D2PK45UHJsn3yCMjXwf7cNHGgmd8t41aBD8gIa2J70/cjfIujV6qCNhfpNncQ2EcUCNP2mgR9AUo6+z0BWH8uk+KtEUe3scxBAjq1TzqIa2rwTSiDpcvp+yNdANCzW/wAls27QCaHaj6NBpoyXYqy4RtR5wuNiuL9AqGe6BrQyIbrLIF3KAE0CbBpMt47NdTTKB+is89VcsuRCEMSaWgyfZHyiO462ib6akhAEUzLWBaOfu9Jfdne1QY+KJPp6rWDrq4l9xj5jijviiOTk8qrl9xrT0x9JuYLlIMam6sIHl5Qzdxh+F/y6jEUU3rRe+kgEnjFahYvX9HfNaKqSdQ1XWFXrkmwV6ROW7IYj/r1jG3PnMPi8xfab/8+HFL7Ju1964qx2msjhtch1ys6dzwYKR5ndj4t7P8JwJId2gjZ7pU2btT93BK6Rp2+1i36ZtplXzyCmzjyPiinIdrWFZYCYLnCiyltpHjAOQ/8kABWufq9EB2rwqV9iw2E7QkZSSksV78nPDyUOL97YULFU753oQdcBmB9/ADlyDZ0ERhPNI14+LZREjNBCHEd2fUZLNThdDG3v9NlrJZTnqppfmXxq1WaH2mLELQTkMFkuVtz8CtMF4EPVknwSXS6SniJqnltRJiIlNRedNf2mGfoG2aMDiFWN0rAuiUbcEs5HmGySubPC8aOQ4DeqGgYH1CTlFurGN8Rknch5qrqEX+Cz5QjKU0Z6sS+B26KJL2VaQUUHWh/Y3tS9Rq/vj9m7quyMj2Gbq4Tb7SbeGDOEie7/dEFbOgLQ1X/Qa2gF0V0PgxqDS8R18aTzRKEWaUIBuhOInfFh9D/0gXWGxHTeMaM0EMq5vpPhAdJGhxJhzOZe5CAHXaU3nJpgGyivTwBrwiI5YypBQ4Nzx/H2L11zMW9swso0NUx6LAj5hn6iOZnE4/smO9PI7ic6ZeUsU4JE9f7uaaA8mWTBnxYP8/9Wm5DqC/l0SP95IrV4/ICIzgQKSmIq57zzd17Bgko1Mt+38q+9cDoKOGYavZuCEp31AvdhxvacJtLb+OVC9P9ytl8Lt84H9IzFFjVNekKXQ0Kon5PAFZ899EnlYDf+yXtPoqd9uChBBu3JE45jX3zAm4Tu5ibIQTG6vGrzP/Pns9C9/Ezxr+35Di0BhOdnc/W5WRHtkC2k3Kb6Wo2A4lAcmTWgBuvdId6No1ETeo4EltPdmwrZNspqEeECpbXrWkBWpPoq5BCbZFGqowfwDq6FbIdtC1rH3wIYxAbw2C2cBHbmeTz6iX2WpNTnhySkcMykxEgWz3OOL+YiHdQjqJAneAXANXEdTbdzV8kMaQRmoy888i7zxVGBDKIUIa9tpcsZxEaStc8XTtyyJjRNf26YuykjXBOhcIiQZs0rBK3MompBOLv6f8FwJKtnwPZOcsUdOIZk2CFq+7Ht9yOJDICiuFi8N8X6mlbXDLkFADLJW5MaSTFA0554IcEsApX7wSfVJ44vWOeU04ghao3+x0Rn6Jw85jrIlOc7vz/uKCrACzJm2AoJtIFPx+Y2cjBlIDJV0yE9KoR2CGm6TAMXClbJUHT91cnstCKTiNv9rqDSTxNlejuXQCj7aRIEYJ2QtRusmyNeaQrTYGD24tYRItOVwt01yMvs9pi9C8yt4PMitPhmiYMDd7SSIF80VqcX7QVD9364rUbjUjLqVmEzBrKFRU7awfg7hrpcWXPny3I22Nn70oWN0z0a+D2AorkeGQACve1H0GxNyYY3cPo/avnkRl9d9Ww4DXK14mDTy77C27l4KZgoqPMfnYkXS/mLynYoxFee9M00bMZfkE2mZGkPeS4BCGijQD5zEd/C8ViB4IvVxPatgNBNsORoggxU+eEHJeQ5CbFrH0m8wf20sxYc5P5NUAmkStJ+iBJI3TGPnFqNLx2DFO30028ZwYBheIh9T0SG4IOH46bm/9JmQmrAhw/X/bGER3DYPosxwIbBfIJaN40acDH1ckstFH0uezx6yaEe0VbDEPBA29nGE/3oyVZcMmTAhuKNAKKDbbTtyoa7r+LIkJlblDNNyoPFgnZbAFMmzorrwjElnS2akjSEzsh30pPiPXla0P7K03b+l4ArPcfGCxaQu+jh4eAmBjLdMIJYxJO9Utorl66IsEBEc9WqZI86tWOf46zdy7DbTHlHbIWdFiwhDXwybWKnIziKqpgReTXiQx7ck2+9U9ITxgjcojpmnSDrgYVo7BpX6+Dex8KJAuMBKrFh5M7jETXtx53bKMOKJlPhlCOhkt2886PJTmNhynxRWDZkJlXqgddK0pmvmQZi9C3DK4UvYLbBWlE4lDfYuibyjG3VqIv6itUkDy5A8VsUapl9vzQDJpr6Mkm+s9NCdVcY8Sn2KbMYKFSiXg0i/Jo5IB/L7GXcPIMi5OnRNFdVQVUrmh8r/29QYInTym41boFjzy5nfvNSOw4klo+RB+NMmIuTKknLmWM5/mx6uiHB7B0WsiXT4T0No2GJi4gXH6Eb40rbHtwktR78c3XEwQoe/4E02wnKy7VwkMAm3wRrxQA65u/+ykD/IE88EMCWFWb9odKrTVEYDlrZev1NERrHd8629kqKeVc4AFXAVjs8/twm0EXu7yTqkw2G4fGXUFOfh3ZP2Ol0It4hcIHPUePGKoo5kiV7uUBCd6cpotA68gX60iQTP1jUEZDlVJ8JW64G9TKZlgEVCgQssn8uZzj8X7mRryQt8FTRWfz55nZvcj5ic5tkwJScm+h5OMHKESRb+LUiKS2/fk5g7tL6WLCK4uAgj3sAxQbvzzGoIgL5q5aeuZE1yOVEHGLLsZzteSQpqh9YEgxriMk72n0mGrUUggZslkO3WrBU6Ptz7iWnqZyEuL8Mop0CL/F4PEGy0WQO/cKpWJ6QIpYcIXKQtNjgsNooo7tOWQJShqApQpncGMG7ZvxFHBQsOUaKqwGAkWuJATuhMfJGQvVx6DB3SOYv5E+Hw4BnLgGL6jfodk7KoxQXpEOW9LVcqY7cxlr4MO6cnKUsS6Pl4ITAX0d2/+NL0qRTGNcZ8/nb4WvSgsN44ezXhQIJnR3peyALpK3L0FUx0zGp80A9fjV0As8Mou4WsTXklHqgcsZbd897INrBqUok3GizS/57HsBsG7ckmDnblFkVE4eoe8YfBEdCAzox8E3lXPz0dEkOnyUwfmL9Fn4qbqACuXjBzilZ/dBvoEeeOnL/ATtb1Rl8K+VLF6/ZpBZcx99PtJ0LzJS9aT1EFKnTdScti4sXzEJ0qunzB9rOg4DVzJ+oNfm4GDBQSQ5hDOJo3dbNgHsdRoBvKJHLwzyphGMJPqKRA4XSOtr6CFeAOviEcjXzqDzvHQNaOJS0bVaYOJU46HGzYI3cK3oNXO5PqkKYZhvsSRewb9Tjb15Dm5Lx9NrK1wOmu70f2WPmuYNNSkUG6fkKB6ddfRi/rw8WjRzDZB08IgEFy/RZ7NOLR5l4vi1du2W4Pot+l3DejyKF3NNv67y/hNdJKq82WVuLqcsFU5loAcICfXzQwNYqhi4LRgONphGLRJ/CG5KAxcqn41STSTkpx/le+XQFmA+fzRfDnmHExXy5FoKgJVcD6bUT/GA8x74IQGswX/8iQPHL2Pf2inIGmTLR2TtnmcvQ9HgtxGoV7Mspo3s5rz3vqOSl288wOAJfyLi02cc2TTToMgYn1299QirNx/CzXtPDemYAWl8Ub1CMXRr1wCpvBwrL+08eBbb9p3G0xdvwHEcMmdMh0a1KqD1LzXsEum7DMC6dwVuC0fQBWKeYtD0c0yCayooO7wJsl006o6k5pAUHUd2aaQUvChIwHP0O9QON0ZWECMk4icyWKaZkM/tqQwSonaTWW+kvYaFoVaUJTm5vXZJ/Vwv1yFGoIO6u3gHJOpKuKekm94A5VUUfE83ZJpek8CJeHSSOpUlj29BMYfyxvGZc0E9bFFSmzPUi3zM4P4KugFNlVNA/s72N6CEDJuQYpusi3c+tDtTBu8u0gV31oY8AsvZX3C7zegL9jld2KkHzASfyzKFlImKgFLEN9O6WXUczEbJ2Zf4V0bF0Gx4sFICgaegkUyhQ+mw1lAIxnQxAjxE9JjnMJqIRBGRaKKkmC4auPIHjVoT5MBhO6prxdWAv8iVedvz8M3r3GbkmS4KDZ4cwrI1NFVX5gWUHOU4aua2Jhy139Lno7DcDwfSUxJ8Z66VqA8SFUKTEa4kMRcM+Xz4YA5KZeJ9Z/08t+m8ClqZ7Vw7s3o/Cr6PBA8ZTngfEQ3bvsqlNejE5yoE9YBZCNZ9RoU3NNLG+vpfZW4H1irK0gYkdlNANZemFH4vANb+gxJcvkLvI1EdfB4swavX9Jnp2I5HlizOzUdHc2fLNhZ379M2mzXhUDB//HNDtmcVZAepgIOudhvoGlCSdLEK5uCw9gjQUxJxXfWm0DVN3rpBMWcwJI8plyH57eLyxA/KKPs3BKOh6Gvs7J2A0rEAiTPPWmLLiN+feoZBkcG/4Q1DSfY6e+fF+NSlYdrYxQdgsdfPwG0ZJVPmilSAppuRbFn8DriX5x4ulaKRJB288mCiX5nEDv1fLW8DkFpFUdoqFG4CUXQ0mb0o1OQq14odsGuvBNdv0GezUQMexYoYn8OjJxicPUd/j6uLorP+VSfG05n170whuR8OJuJ35ocFsKI+QjFnoAXPK3Gj4O0Ldb/pENLbioZ8K/f0a45DMaUnJK+emLtQD54PPlveZHeZAmAl24UpDaR4wGkP/JAA1p2HwWjVYwJqVCyOOeN7gWHsqx4RL/G8gD6j5uH0xVvYtGQMCuTO6rTzvoeCgiBg+Yb9mL9iu+FaiSUEYBEAauxMY5pM/txZ4OebCk+eh+Dth48ITJsaGxaPQdo0PjaXP3zyMuw5ct6g/li0YE7IpFLcuv8M0TEqVChVEIum9IfUKkzXZQBWPIvf+O4Te+kI3NaITn1LVgc5/XZkF4ZakhQVnBKLPK/oxkcOCYKzUGU7UzvvLkvwfAddIAaUEpC9iXGjLAjAxWFkgUiDmtVjXqJtGOV2IsTwhCDenllz6uzZeAz5QjPhhju9Lh/3lyjxjm7ItK37QV+xXrKnsPT8QcjX0cgufYkq0HYamax2P96T4OFa6qvU+XgQTjB7NjvyJmaJSOz7+xRGi3+K4/VxWj9TDR6ZajoAsBaNAnuXpoBquo4FV7SCRVfWEvf9fqmGtbkoMD5NXwk5VucEr6PvGdZNQKFmIfBbTJWQ+IBMeNp1Ff4SEUyLO6pVk0c5J9P5rH1BiOMvDhcBWBBw2IOOJ1NGASGvGZRSAalFrsjflUOq7M4BP3c1Eaj/6gDWL6dcLoT6q8wfjgGs57rPqCgCbLJJvXE2IyUzdmai3LotwfZd9H4WKsgjLFxiQQberg2HHE5eh7hP6+e5WQ/7accbtp9G7adGsYcTXofAM1TWsvR4PVgrqkXr94q+ZDVoOw7HOfVbtHjnONXrTIZfkD0uHVU8TmWfOhZy56rpWyF4Gd/B3wuAtXwVi1ciBddWzXncvcfgzj06Txs14FCsiHPz0dHc+WsFi9dvRKDYbxyyZI6/Tfnq6ZBepqmB1u9HwqlFuLWIlYo9gOZR9N0qKNxB7kdyZOcV4ztB8u6V+ZLUo5eBT2BzqRzWAkwUjSJQTdkIwSf+gylnnrfElCHRtwRgJba+YDb0rlPWXF0GCS5nbIoAqbtzANbdf+C2iP52cPlKQNNniqG946ckOH3G6P/H2R/jbPkz5n6ae+bAnDSW7+zEXMO/UVZ6cD3keyglgP7nVtA26mju2joS2Pr+v3sPLF5qufZIHyige5ekpU5bX/Pm7SzuiZ7D5k04FIgDfS9clODQUfr+dSYl99/wqbiPf9Tv8cu7g+aPSinSYmc6mmKb0Hh+RACLeRcCIj4jibTkWySKpZrfZ0Hw9U/ILT/s925/jgErSqe0t+5LysWnAFhJ8drXr/PqzQfsOXwel2/cR/Crd/gcHQOlwg3+fj5IH+CH8qUKomq5ogjKYBmFR7K5PoRbcqK6yWVI7euNfLkyo16Ncvipcgm7F2CvrnXBWlVLYdbYnuaPh05cin3HLNN8rev4+XrjzE7Kw/rqzXvUbmMUzRrWuzXaNv0pXoeOmLIMuw+fx98LRqBYwVxf3/lfsYcfEsAyLKZ2HMPk+etQqmgetG36M4oVyGngxTLZx8gvuHb7EdZsOYwbd59gaK9WaNfMPkDwFf3/VZuO+hKD4ZP/MoBzZYrlAy/w+OfGw3gBrJDQD6jXdjikUhZLpv2OkkXyGMZIgLCFq3Ziydo9hrZWzLaU2iXAFQGwsgUF4q+Zgw1AF7FYlRr9xyzE+St30adjY3Rv18Diml0FYNkAKVYpII4czd6/agivNhmXuyg0/W0lrMn3nAa4PIYuIk2b98KvNiGcp3mFVzM1QyBrGaVGUtoeidLL/AryyP2rEUmwjp6RugMvBj3EgLBz5nE19siGBf6UlF18PX3DzmB7zHPzR/MOXUbjO3oLrh6lIhLlP9CQeusIg6RORPnuldj2+hKOZMuAFz4eeOHvhz8CK+MXD6s0vER0EH6DweNN9MQ3TWEBuVrbX6j/8fEKlny+Z259bOqSqHe7IF7spQtuEn1ForDsmc3Gtc0A6CtYLnyt58jkhj9hRh7j4i91tDsWbG8GeSwNd2IkAvJ14eCT5hOUQ5ubuxU8vHGt804QOXR7VrYsj9oOgDZn3HdxlBSCSGHwqDvAxe3jSUrIgUMSlFcBXiJXEG4xwjHmjF3VfkDD0APY/GcnEJlyk5WdoodV0JD5O/JckOfDZAGsEtcTQa5L6pF0MJIWZrJyZXjotMAVEVF+9ao8KldMXOQOrwEuiZ5nLatDm65r7LpixsXH6HzGGOl31nMLNBK6+Lencik9vBHyXVTpyRTZuSXmqcVzbd3Z+nQ1UUVhe0NsTox/nw0+p1Gx8HsBsP6YLIVOhHX+3pfD1esMzpwTRWVV4lGtSuLuo7UPZ8xm8SWazhfSjxmSXpMAACAASURBVE8C3HI2EVBWEao7drG4edvYJitoMSniF0h1NPqJcJIRbrKkmvvAxkDsF3N11YxtEDyNvHqOTDm6HZhwKumoGr8GQtr0SR1C4uuR1OretcDwxvtVvGt9PPf1NrcjjoxyJgLLhicqRwFoBs4xtLdqLYvgF0b/B2cOxonKlFevrntm/JW2auLH/y/WIBx2hMvOZNom3aGv0cT8v9vM/mCf0d8xtej5JoWeBzNY/bdlejpRAiSKgK6wvzewePKUPjO/tuKQK04l+fZdxqCcazJXpi66YuykjTOqt2j1nh4MVFGkx/p08W/kxH3/aACW5OVjuM0dDEZtSYTJBeU0pA3Cgz6nrroH31M7so3zIDtDI8O1zXtBX9U2cyKx15QCYCXWY1+3vE6nN+xbV2w8YNjDEiN701TenobAig8RkdBqjYvmciUKYNlMmk1CPjOBUATokcuMe79YtQYENIqMMnKlVqtQDLPH9TIEbojNVLdgnqyQOlBnKls8H3p1oPsyE4CVJVM6+Kayz1Hs4+2JhZMpXY4YwFK4ybFr1URkSu84HTYFwPq6c87p1ss1oFwUpkoSRmIAX9yVboaIIdPkJN8T5JT8qbU6m8/rVC+DIvlzoGm9yk73/60XbNl9PEg0WpvGNTCkVyv0GDoHF67ejRfAIqAfAf/6d2mKLm0sI3TIC4BEtpE21y8aZfCXyRp1GIUnwa9tPifff4r6YiDJl8mkBmJ98pCZzGUA1okdIHxWJtNXaQhti94J3iLm9TMoJ3U3l+MDs0A9hqpBiRuwAZri+G8ahR7AFa3xFJrYtnS1UVYRYNF35BMG90WRN6lyCMgfd3qq+sDghoikmvAKXex6E5M/UZ6PHt75MSp1SbvXMzfqFmZ8umH+rs/l+xhz6ilOeVMiWJbVo+qnmtQ/TgJ8CTmQkODXyquw4ITKJUuFk4ngn7Dug5DdE9J7k6UtISBHM/sL9cHh57EhmoaCz0hTDjUf58aTzSIArIiAXK3s15dt+xOy4yLy5EadQOSkxcZePgq31RTUXNGwLgbl8YFSK8OU7Q2RIdIyGpGAbQR0I6F17j3pIpr8fJ747RgOHrFPFlqggIDmjZO+IbEWGDipBDRx2EDbNjwOHGSQ/zUDd1EwCiEgJ/PNGTureouW7w9j5aq28FLTCKSSY/WQudtvQSXokeMlVdTyZKR4lAh5c9KqNacRUd5SuPHYvY/6MW8eHiSiJzFm/Tx/UajQsQOVYhe31ffZJ4zfZlRvuuixAjEsBWjtgYDyzQtBSKlNZtqwzou6jemfrjsc5sTUpdHB2zaVQb5yCqRXKNeetnV/6CvWNbTzPQBY4REM5i+i98tNIWDkEA5XrjHYu59+XriQgCaNkv4McDwwfqJlpMrYUXqIREPt+l459jcwH0LN31lzBO47IME/VynQ1s9vETLdpVxofLogqMcmUQCG08O9NwW/BAkL1SLKG+dosij+6AJJnDIqKaMauQRCxuyJeQSSVZZEf5EoMGJb8mdFt3qWRNDXMjVHOtb4YnAKwHr5GIqpdE3HZ8oO9YglIPd04hQpuLhp8TrDaxyuTv1TVZEB69LR37ZkXdRXquy2cirYKxR007QfAq40HbPb4tFg71wy967pNg5ckfLm/2/fYbBtp+XvhlJJUqeTL3pAOlm+msUrkYhM5/YcguL4GJ89Z7BmHe2bRDN2/C3pz+jXcLG1WIgjLlJHff9IAJaERDIuHWcRsUuum8tfEmReJSdS9Gvcu/+iTdmBdZDtpYdVZM2na9Qp2UNJAbCS7UKXNUD2/h0GTDPQ4BAwqOuv9VC3RlmQCCaxPXjyEifP30CZ4vlsIpJMIBTZt6ZJTQ+UyF743D938fu4RYYgjcE9W6J9c0tuV0d147tAE4A1Y3QP1Kle2ilfmAAspUJu4P4mQTsrZw91mHmWAmA55davXyh/FZoS5are7p2yVH5zVbv/RTuXrt3H2w8R+KW2Ubb+t35TQLit4kshrNlyEELfhePE1jkI8DcSr4pt467jmDj3b0O0GolaI0bKk3ok/PLgevvRS+RBP3zqChZM6odq5Yuam3QWwCIg+d27EoS+BV6HMiApUz260kWU9Q+SvlYraBvSEH1H/me+RILwT5gsPhJyzScG16bShZzcR0CJ4Rz6h5/F1uhn5jYIiNLa0zI0M/o1g9sLRApcImW9z8EM7orUubwyC9ja4gJWfKHcTCSyqKt3fruXsSvmOXqF0ZSKOk9CsH7HGRxLdRwQ6Kar6ufaYGGMFLNW2Urq/CQbjtwNCiLc3TKHamXaavjZPShJzb69IEGwiOyZqOQRtTx71vPDaeyODTZ/9Wfayqj4KhserKK+JgqERInQntksZGo2h65xF4uisqNbINtBQc09TZqhU1YFRu+tjXxvLTn2gmryyFiDjtWgRKeiqnYH6m3HiWvG6ERrS+7G4MZMFqoweop+TklU84y99O7O4fxFBr4XJKDwMVBytB4yJ2lzDse+QscPJ7BoXQuk/UJPh+xFIImvLcMLy3fqmyyJe2+T9EGSRmiyJo14BAQIWCwi+vdJJeD3fonbVFk/z2Ge0ejZlkaLia/hlwg9Vi7fbPjoqvscREqLmL8mQDQBpMVGCJsJcbPJtJ1GQV+iMgaFn8PG6Kfmz9OzHhaKbZ298mG8XymbuWEzT2s0ga6JEXj/HgAswklFuKlMZuLvscdv1ql94u6j2FmRUQxmz6P9eHsJGDQg4faUvX42RxKR9qxVWo8cZ3DuPG23Yek3qLDrVwvi7aTyqDAfP0ApEsLgfdJAPYUKeNh9WQBQTOsNyYtH5q+T2r+j9hP6XPLyERRTjYdEJbo0wLPU9J3Qzis3pvjRdEKnAKz3ISCpdCYzCR+8CWWwVHT48z7tO+yrRaMnSrmlxc5A59PFErqur/E9EWEgvHgmI8qVRMHSZIS8XnqRcutZR/Rd/keC/YdsI3ddodpJxvDnUhZv39Pfjl7dOQSkNb7TPnxgsFC0PvFPw6NPz8QdFnwNn4rb3B0TjJ4iNeJfPLJiob/zh9E/CoDFXjhkoHRg4qJNTD4ypLATQQSJ/ejvr31/vrX2pcRPf88yD4sTCUbs2C2BRgso3WDg1SxfDvD0cO6QLwXA+nbu9LiZq7F13ylDVtCyWYORzt/+uju+EScEQm3afQJ/zFmLvDkzY9syKspB2kyorr1+kwNgNW9QFWTPTwCtMQPaoUXDanYvLQXA+kbmKCFqd7U5i3q6ut9/o71fe08ypEs6ArA+R8eCqDES4IoAWPaMoNVNu4w1RF+RKCxix89eR9/R8+MlwV+z9TCmL9poiOoi0V0mcxbAItwphENFbPXr8ihZ3LiQIgADARpMRvglCM9EgmalMEfKxy48CLCWp/jkc3uRUiSCZW7kTcwQ8TB19y6A0akt86LV4QyI0qDJ3HwFFB9m3FhZcz4RUu25dU9gX8wLc/kF/hXR2MP+6fpNbTjqhoqI5MMjcWnFfpxLfxDqaAoslYtuB3feqLhn2hwk6J8ECjBDmyJ9D1surQLy1Dic3jJd1Nm+iFojUW00WfpKPLLUtb9gbvv+GE6ojNxExNakrY7SEUG4s5D62jODgEJ97W9ipaf3QL5pgbk+SQMimwexybb/BdmxreaPzrX4DacfVkHpYEsCVP9iPHK2sByndWTHrrJrcO6FfWAvdWoB/XsnvNl25EdyzV9EHEOXFEBknBsIyfm9Bww0m8XJf0CZSXpIbKe63S52xjxH77AzmLmlMTJH0MVA4f56eMSjlZH31QZ85rXmNh8GtYYXyb910sQE2qRKuzY8cmTnMX4Sjcognw8bzME9EUTuse+Bm7Ppxb/xiUT/VjSqRjy8Ehopjs41ntjeUo5HmIym8+ZqwyFNISsAa3pfC9Un9cA54HMUMKS5kHQXk7X0yIFNMRTQqqnMiNUBNWw8Y01wHZ6hFNxHTTKU+x4ArCPHGJy7QJ/J8mU5kEi6jx8ZzBU9q0kBIsXOehnCYIXodyIoo4DOHeN/pmwOMWRyqObvt7gHZ86xOHaCbvArV+RQ5+4wkPRik3GlqkPTwTF/oqPpLnnxEIppfcxf80G5oB6esBCGYvYgSJ7cMtdT958OPjc9HHLy8UpyMcIhQ7hktubLgq71abQQCwYXMzZBBilFxp0BsJhPYVCOaG0eDyExV03dZFDHIyp5JotIHYFd9Wg6Xm5papzImLTfmiRfvKiiRs3g7Ts6N9yUAgIDLN8Hisk9IAmhz7l62ELwmXObW5FtXwLZse3m/8khiq4mTT8/foLBaRGRuqng6OF6yOyIdST2uubMZ/Ep0n7abayKwVTR2oVs6snvybdk1mrErbxyYqYfnZMJjfVHALCsDzlM16yr1Rq6hpS3MiFf/D98b0sdUgSa/jOg0TKYJDqkJr4gvx/kd8QZSwGwnPHS1y9z91EwWnQbb0jr27lyolNibvZGlRAI9TT4DRp2GAkvT3dc2rfYoomE6trrLzkAFglUIX/t+k6Gu1KBPWsmm6l8xH2lAFhff/6l9PAVPJAQgHXv0Qs07zYOxQrmxN8L7BNxE16tcvV7GUIyz+02bvyJWuGMPzehW9v66NuJ8jqIL+HY2WvoN3oBfq5S0pAvbDJnASxCoEuIdMVGNqv9+/BQKATINsyD7Kwop71lH+grO7eoJQpzRGnOZI4kdWNCGdwSne57pBdQuB+HPbHB6PHhtLm+vfB1TsXg8ji6gWMVAkqPNy4CP1yV4OlWem1pS/AYUmE/Lmvem9vckq4Wyiuo8p3YD194HfK8skx9+jRtPf7JdwifX9NUr+KxA+CrNypdCRIJVIsck0k7Nf1UMXgxpT3KdzSmMlnbxoCfUUmZsAqodb2Q4yxCjtDFdMbqHIJ+sr+AaPz2oIWfdgXWQaHoAFybbh8stO6LSNcTCXuTkbQNQ5i9yNxWTwN7mRLq/1P8L3x+ktOijE9OHvk624JsblZAxra883Ep0shdZG0kxX70iKSnhNxbIUHUYzqPrikYhLFGv5GT+vdvGDybbwkCl5vmfH8bo59gUPh5TNhVD3nf0rlYsCcHEjXoyEqGbLWIMrqeqTkC4lKLnJlni5aweP/BNjrAmqzbBGw50yYpE/OGwS2RP575h2NYU6MUu5/EDRGEJCvOAnkp7s8wAlj3FYMQKqdz3ruSgJcSAWoNoFYDeXMD5ba1MpNbkzqqCWsh+Aei0usdeKb/bG6X8Nr1EUVPOkq/lbwJhmIiVUf9yAbiVrt1KF2K/y4ALGsQsmljHoUKGJ+XMRMsEdTkRJVY8/UQVU+i7hmfEb4Yi9Q1O+mAl/6RGDjkTFa2NI96gecNAI7JDO/UaVsBz8Txy5iAIFM7XIHS0PSamOA0JoTn7N1/zOU0PSaAK0SjnhJsIJkFpGf2Qr5xPkp2ro+nfvSa23jmwvQ0lumEzgBYhAPMwAUWZwZy/Dm7Db/75Pe/hEowpD9/kXG4m/0Z9he+ixDfTwgUvHA1q/11RzIv0anqj59IsG6jSKAlrQASwSQ2xfBWFmTaqonrIPhRmgHpwQ2Q7zEK5xCzTmnas0+CqyLOP1O5wQM4eHk5t7mO72IIQEWAKpNZq7q68hl1yqmJLLT6y0OMjKApmB298uIPP+dScEhX3zWAxfOGqCvpRcv1HJkV2rYDwZWzTG1KpGt/yOLWv6dEYEc9biWePpNg7XrLfUbrFjzy5HYu4vDfArDe3hLw6YVzY/oRbmBgEQl8MzsWY7O+xvGz12DLnpMGQGfi0KSnhiYEQj18+gpNOo9BYIAfjm2mEX1kPAnVtXdfkgNg/VylFGaP62nIkCKZUkQ4ben0gTbdpABYP8IT8X94DQkBWJdvPEDHAdNQqUxh/Dl1gF0PkdzfAlU7gGUluH3cSFK8cOVO/Ll2NwZ1b4EOLe0T2ZraJnnGK2ZRAniNzv5LWMYykEgY6DgehCP2wmUB67falq1akUHThhLoFv0B/QWqIiXrMRLSCs6R8mtGdQEfTFMx3CYsgSR7Ppvr//QMODeTLkx9swMVBrG4pgpD+SeURymfmy+u56anp6aG9vawXNTW/9MIJjw7KuD+Dnpt2WowaFFgC55qosxjuJ67GfK5OQ6BzXhvNcIJy3yc3Vq2H9GFdyH0Gl3cFtROQYCapiko/twDxttWTdLZR4MPfoidq8ejTZMqdqtU8kiPI9nrO9ucudz9nTyeHaHjztdYguw17f94lXy8DXfUFHz8J1dT5BP8cPB36mupEqg92z7vFH/nCjRT6UuezVMY8tE0IosMinxPyhELkf+CR4q+FtcU7BeBnqP8IVXYjlEzcyj4G1RVZGumibisd3wyPHMiC6WVop2zDry2nLe43zcVwDsW8PMFJoxkof0CHB5C/UJmS4XxLNI55nu06HpR+F0MDD2PYQd+QvGXNIqsdG8Wae1ntxrqF320BQ80n8xt3czVHHkUtunJjq5z2DgOX2gWJqaOY+HlCWzZweP0BTpP6teSoFYN5xc5H58A52dTfzwIfIcxjYwgeF2vIOz/QlXhyGcEFCb22K0bXrlRnjRNdgYn39FxZAkS0PtKTYCnbSvWngDDSqG4vdTiMt/lb4909yxTLNWFutm44vlTLQLHWkZmjctyGKOHK5HKG5CyEnC8AD2X/M2ss/MtMeWGjOUQE0NrjB5C592ICRyiKKZnmKtkzibFjp4UsGs/fZdWr8ygcf3402a4q2ehnUMPbCQFS8JtmOVi9OIVAes203bLlWbQugmg6dcMwscw81ClzbtC1vDXRA2dO7EH2hUzzXXYKnUh72JUFYrPtPPHgLt8ylxE3mc82DL/Hpm5fusybHl4Gh0bGikKiJHoqwd5WiFIbklA6yYz3gNHv/fkO4HnoW4r+i1hGCjXncbQsRyEaAYVYy3n9ppyl7Gv8B14c0p8KGqr/JuQ/1z1vfXc8PYCpoy1/L1RtasGcPSwQLHmOBgpDZ3iju2GdhWdc2zVepB3puukv1ZzuHXXdsSjBksQGOD8O8/RNfcfzkEnEgBZNNNy/Nbv4EljWPgkDqd1lbvttjPrw02MfEczMgb6F8akwDJO9yllGbASBnqON3CufS8m6LSGdxd/yyobRSqDvO94sMW/bXXO/8rPQvQXqLuJDl4V7lCuOIR9h3kcPGr5nmnXUoLSJZx7xkzvua99XdfWcgg+8x1N1GQ6pFhbFtkqO5/+Wr/dcDx/9Rbz/+iL6hWLJbn3hEAoU/BGzUolMHeCJedyQnXtDSo5ABYhk18wsa+Bk6thh1EGah8C3pkohEz9pQBYSZ4OKRX/Sw8kBGCdvXwb3YfONjzw5MF3ZIWrd4Ke43Dr+ApIWRazlmzByk0HMLxPG/zaxD6ZKkldJP0XLZAT6xbaj+6Kzzf7jvDYtd/2JJ1hgEkjZfBYNQy6q5RzxmPwFMhK0oV1fG3HTB0C3fUL5iIeQ6ZCVsL2h//9fQFnZ9NFaNq8DCoNlOIzp0Wqm5TAV85IoClmuwnd3UcHnYqOpME8GeQewO2tHB4fpj9GBZuwKJluJUhklcnCC3eAn9QxslH2xt+4xNNd/q5Tj5Al4yw8OUrbzem2BZnDKNG91/RVYLNYRhIlZn7qLp7AzLMbMKJ6cYfVzuf+BeU87UeOOap0cwOHpyfouIu0ZJGjhv0fr6x31uEFQWbi7HnBNsgq98a2zqLVOIAmy6R2SQ254Mf4MpTyrkgyZYX3rL8thvZlSHtwL57ig7QCbivHQyy5F+ERg6FNd+Jx2ZZIS5AyK4tdPBnaU0byb2KbfYbiipKeiKb1Bz7Q/S/+GCFDoCX/v9O3xHpRc09GADcge1YGw/tLEf0eODSS+iWGAbJ1ZFGxrHMLg6nvrmP4m8vof6Qayj+jJOalu7LIVMpxG2UebsflGCpycDlPE5TycA41I1QeXfpb3stlc2Ugz/35yzxWbaDvhML5GfTp6mQ+JIB3dwWcm0uf51sZX2NifSM5dC//AtgR+RxvRUpzt5bvR1BEJILlrfFMQXnSPgcAF0QAmycfiXHvqbIM4+mNVCsPIEyvQtpbFKzyYeX4VKQT/G+tQrieqpi+KtgWmeSWxGQ79nEouq4ZfHnqxyn+G5C3Qga0b2UfnHV64nzlghGfgKHj6D0khOpLZhvvIbHJs/V4/pJuGgb3liJ3Tuc2DNZDX7eFw6nz9N3RsjGLGgksfDWHtkO1kqbMy6vXh3s3SwDpyg0eS1fTuVaiqATd27NQ7/ob6g0UlGT80iLVn/QwwxnXqrethnrLcnNRRZP2ULTonGDV2EWToD190FzOvedIyKskXQkxwQ6tCsQsnoTi2Vk8SkPJbTv45cHKLEkH0SKbW/7uahadw8iJOuTRAlksXwM4mu8h/qp8DjKOhbYUjU5M7HUkt/yBozzI8yk20zvK8Jlahch2onWR3A0+6yihOylCfktj5tBoPlmZKvD4nUbhTZ2rx9NgW3B6SF8pcmVP2rNiGq/1O5Y8l2T8Yhs7VY83b2n/owdJkTlT8vpNrt/F9ce/vYpxocZDJmJjA0tgXHr7ojeu7Pe/bEuIjUb0lMHgHt2xHIbSHZ7DZ0Kap9B/Obxvvu/IX6sBWkpt4LP2KGatkOHBY8vnrEUjFjWrOrdG+rcuOgXAit/TRWp0gk7PYf/fU0EU/ZJq8YFQZL/cf8xCcByHDYtHI18uS0oRU93C+bIbBMzs2biB7S3SG00AFuHtSm1FNm+q37JhNdSuRqNLTSTulcsWxuIpxsCTi1fvofOgGfD2dDekEvr70UCFFAArqbMhpd5/6oGEAKx/JQKrWD6smE1PFiM+0x8QsXO83KWQSyX4otJDq+Ox9wBw7qL9BVPO7AK6hv0O5pExPY4YP3AmhLzOIe+SNTPBnKUgA992AITKtpFD4XcY3KFR/vDLL6BQXHRqnufrEc7RTeidbK0QaJUmdXESA1GwEMqMEKBMAzzcxOAtzQRB9uYcivmJOgIQnjP+MNg+N9dhoweNwJr1KArVPAbi6V7q1SDPM8gVOpb6qPdECEUsUz0SM0GZgxswMvIGlpTI47DaTx6ZsCG983LWpKFHWxiE0mwA5G4mIL2DzJhcz9fhoyjy7En2X+ErccO50Qx0ooiP8uMFWAUFGMcc9vZ/7F11fBNZ134ySVM3WijQFoq7u7PYYovb4q676OLuCyyLO4u7u7u7uxcpbWmRetNk5vudpJM7mSZNWlhevvft+S+Za3PmjtznnvM8UA5vYxw/8a7wMxnfFR1QDmqGL1E+uOY0B4KCfdjH2GkwvOluBHl+wdmsTZBPnTRsRLFlEbgjrL19rj1wysUQvUOpHxnSK/D8BXNf1w4CcjFxz5RcDv21fnOS3SOP7YCXaqBQAQFtWwGRb4Brs9jxCA5IqAg0a2Rb1M608BuY8fEmup+uiJoP2DXP3UyAbzLTqNm7gzgVwxTedvrVRSUbU0sjIoHJ09mYnZ2AMcMN4w0OAWbNlxxzFjAmBRREH+4ocE8S/HQl2yvMqG1IFR3lXRKHowJxNY6hiweO3kW5G3fw1u4XPHJkPGlhLsA1iQszJzzDwDAGcAm+AeDHr8Dt+DBUf82UCQuo0+F01sao82aPST97/euhnCxdeO5CBVrd6YJMWjZZZnsvxlu7PBjcT4E82VX66JaoWNtTQlM0ub6iMHGvrdkgeQ75AX16MIdt2KLAbckarHljASVte3QnGdXKdcCjx2xOtP8VKJA/+fmt2LYE3CEDQb/+3dGgA4QGHUzafvQEWLmWtZsnl4DOFPQT9QXcwKYmBPB8n4kQitnOv6NYNxvcKaYYy7f+HUI1BoBacn2Sem36QvgGUvC2XupDGyagbSlfk+JXA5ojm13S0BwvNwPnnaX3vdiIsm9DUCqhaNc778amA26oHgPIlwD3M7/HuIYGrrJ3WbtAIm5s6yl8k3Lmvk1GDRX0UaJ6+xAE5XBJVJ6XD3TTTEn6FQ+ug/t7sHE8Qp6i4Af/bfw9YzZASp5y69gGyJfXtue3pZONjgEmTGVtOzkCY0eYtrlspQLPJO+pTu0E5DXVqfkmvkxtIxPCrmLupzvG6uPTl0YfD/Op+ub6cHFQwl6t1D8/k4sSTO34vnm9jx/AzRwERQjj/6Q+BDdP8ENmAxn9v3mX/20NKke0BSTKs7qJqzFiaRZpoKT+lKtXEVArKS2lWXeIz7l/21dpAJZlD1NwBQVZkMnVA8Vao6evwI4DTPhK/J+AKAKcRBNBKMocUieSDcbHa/DyzXuEhn1GOg9XTB3RXZ+uJzexbnJzYfOSsSiYJ5uxiAhgJVdHnukkAljyzCnxHMXILLHNNADr3747v7L9Vr0mpLqFTRJOi1Q38oNWtAZgifm8tnBgubs648JeA9Hsmq2HMW3BRps4sGpUKoE5Exlhra0cWNt2KEH8JpZsAt8DTiFPjIfjhs4HH8BIUpO7JHZ7VsHuIOOQSqjXDgn1k6YkhN1W4MkGFu3gXURA7taGndcG7/fjejxb7G7J+DMqOJjyP92ep0T0W3YORfrq4Owr4NFqDh8fsB0er7bRqObKPnBJqeyqP1NKNHcu888uxVR/RozdI1yB3qqOJuN1cQxG2RBGbK9JAU+YuT6Jd6G9TwwO5vIzHu7gmgerI1k6Jh046dsIue1sT1V8spFD2C3mj1y/8khf1Hy4tN+rVZB+ar/J2gGcQoGbMznEhrI2ig3i4ZghaRuKuBg4DmhoHL+gVCGWSPxFo+3p37rgivN8aBWmC7OxDffjQWYDIfdGn1qo7Jg5iZtUhzZCvduQaqv3hXMr7HczROf5Zhbg7QXcvsvmRJOGOhQtkroFybuTSgQeYm29sBPwRK1A2dI86tbm8eUZh/vLJGTInIBX/sDvvW0j5J3w8SqWRNxH2wul0fA2290NqM8jcyXL4ezdQk/gQAxLx1ueoRrq2KhQ+T4YWLSULV0zZCBFRQNIQ5dm4lQVtBLMhhTnSHnOFvtwi8NTCXfN3EWqwwAAIABJREFU2VzPMLeGISVrVvqKOB7z1kRIYdHdMLQ6cBihdpUNkXiJFqoScMOe+T1f3CV0+TTceFyXvyTif5+KAzGB6BZ60vh/dSd/rMlQXc+BtSOarQ7/8iqPX13Z6jA6RoFpfynRO6wvsicwpGdxupl4Zl8c/r7A2CF2iInX4XOU+Q0BW/zxb5U5cYrDqTNs3pHwBglwiHb0OIez5yVqqVV4/FQldekRC5eo9MCmaD27apE56W1pcqrqf6ZAdY1dF7kCHBV+FajAitXs2Z8li4CuiWqJ9iv/hPIKi6jR5SuB+L5/2uxOkrxX3jpvLB/fbQx0xa1HD9ttWwK740x0QE78bfMAUlGQqASq3V6IJx7OxtrNkB5zAszzIdrEgUXKijKuqB1VNuL1/YwoaGZaU/Rrz/aG9+S+hDYolusbsJmnwhdbtytx977pt0nvHlpkTIykJaVIUowUjc+SC3HDTQl/ieCdiN5FE3yzI3YUi+ybMl2l59eTW5NGOhSVCUik9BSIvJ1I3EXz8BAwUCZ6Iv/+atxAh2JFbXvOpnQ8qSk/KvwSVkY+MladlK4MOrnls7mp/08cWIrgN3CYNQiKCJaWTyfK+/ghvt90CJ7pbT7v/+WCDn8PBPeUvU+D2k/H30eTRu2VLsWjfh3b3kdpHFj/zoxKKQdWsVrdoNEk4OD6acjimzSlYfmG/Th1gQU8PH7+Rp96ZwnAMndWhfPnwMpZQ+FgYefke6cQygGsyKgYNOg4Qg+0zRjdC6JAXRqA9e/M0W/WaoGqKZNpl3Z8/5QpH8k3G9QP0JA1AItu4FJ1etqkQlgobzZsWmyI5jl98TZ6D59lkwph51Z1Magn44eyFcBas47DsxdskaNWC9Bo2EfjiPC2SKd5Z/Ry3Nh/wGc0r/YmvxSqU7uh3jzf+HdCpfpIaN0vyRULvarAM4kUfIaSAnI2Nyz++304i23Rz411pnmVQ1tXUwDt/jIlvjxjY87fVQePXALuLlQiMpD9r+oShsZqA5k0WVG1F/ZnTp5L6sC2SehWkgFJNTVOmO/UAnfmscW/vToKlcJYO3Ki2JROUYdZg1GpYmY8SM8ijw5m/gVDws7jruajsblfnAKwOIN5nixzfT5aw+mVGUXL046HVyLhs7R8LK9FztfrjH/ZKzi8yGoAHu8uUiLyFfNpwR46uGU3/8Ht2KsmpMuP2Fl7IDgY0gG1IV9w568ExHGmYcin69/FfH/GOzHHuxKauSRViVSd3Q/1htnGMV5xrIMtHoYIxHz5eHilE3DuPFs81KouoGIF2wAlue+CL3B4sZv57bUKeGAP1KohoGJ5HcLvcXi8lh0PVQI3HICRw3SwV1tfjAwPv4g1kY/R9HoxtLrC0kb9qvPIUsvyB17/sHPYGsUUuGZ7V0RzF9vCzJ6/4EAE4KLlyM6jQ1vWFynOkfKcaG1a8ciT27aPzeBLCrzYyXx/PN9jLK56Vt/Uep+aOBv7HosjGPHMyGABf6zegI/K4rjhzPhqPiqBK5Ls3jLR+9A8gh3XlvsZmvZ/YFnEA4z7yEItCeyd4lUOf32+hVkSFdPf3QtjmCcLQbp1mwNJe3f+OBL541mq8yrP8bjnYFBD7NxGqQc+f0QAa/1GDo+fsmvYqAGP4hJA+up1Dnv3s+N0jMqkxqbOUCJWQkZtizKl/cwBUD5j15nAJwKhpEYiAiQmIBqpzPXqYbhPlS8ewH6G6fsidsJqCOmtIGeJjdnP6Avli4fGtuMHzYIuZ0Grp2+3dzVIeUw02nShzZfvYYdjXqNz6AljVwpBwDmPGgjwNB/5YTOANa4zuBCDUi7Zshwr4R0WAEuY9K/dV0Cr5DErsAVaVHH6HqeepI9Vazm8eGmaYtSxHY/s2QxzWHn3MuwXGhSbyXQFSiH+tykm7Sg+hsJxpCQS2MMLsVM3GcvISdTFA7SwpgX219iHUAXmSea2jxkS+kNHOFy4xM5RfKd8Tb/fsu4f4eexMfKpsUn5JoC1vv6/AFgcPWvmDQdtvElNlyWXXkUPjgxQtnbO/+vH5RsXj6oMw/InSXlzSWyEREdsse8FYNkylv/lMrVbD8GboFAsnjYIlcpYj8SkoJe7D19YBLCkkVxhH7+gbtuhiImNx+bFY1Egj2nqoOj3/zSAReMgkK7PiNnwcHfB3tVT9RFjo6b9g50Hz2LtvBEoXugHCqNNxYRVCLSV9l9mi9ewcHxzpxYXr0HIh0+4cfcJ3r7/AGcnB4wd1BF5svsjZzbTkPj/JtdYA7DoXBt0GIHngUE4sXWWHsiSG6kbkMpBiwY/YexAQ5oF3dBVmvRDFt8MOLh+ulmXDRy3AIdPXcVfY3qZ5O/aCmAtWqLE+xC2UG3UkMcuyWJ9TEhTuPEMNKGPP8HDy6bLp7x5DvZLWUSFrkh5xPdkv8VG3l/g8FLSZ8ZyPLI3MrzYZn++hRmSRWgvt4IYla6kSf+P13EIv8s+Ail6i6K4bsxQIi5MktrV6w26gCnK1HT0wyqf5GOYH8/sjmpNWR5XDjjilH9LXBqpBATWdtWI+lDBkFunK1Ud8Z1TkHMl8yZ9cGfqVA3xKrawu5+lNa7Gh6BjiCnHx1nfJshuJrXE3AV68I8Sn59IIlo66+CZJ+ljKkwXiyJvWOqPl9IBd/wN6XkPV3H49JD5Om97HukKmP8IcRzawmQ3U1Sh1GmAe3O1iP5gyj0WUIfHosIXsSKCLTrpWtM1l5vy1jnYL2Fz6Z59BaxKZ+A2ocgoT0/g4GE2zjKleNSzcbdP3teHGwo83cyuRZASuOMAiLv0H64r8HRL0uPtWuuQK6f110C/sLPYFvUcde8UQKfzLKczU0Ue2X6x/IEn3x2f7FUWHV0tp51Kz+vmbQV27mZjLlxQQLMmDOAj3128zPxXpTKP6lVt+9gMOsvh1T5W90Ch+1hZ0UC4fyxzA1yMC8HojwykbB/thDnzlyGSy4nLLsuMw4wkPi7J2rlm5Cr8HGVQLCRLqNMaCQ066cErArFEG+FZAn3cC+nBPQL5RPvFOQCL0zPAd/M2Je4/UODXT5NRIo6pYW52H4KrTgbOIxdnYOwwDrEJP14E1l+zlIggJyWaPCrq6TMF1koiW7NlFdCpQ8pB3AQtMHEKA+w5Dhg3ynpKJT3HCEAQzdzmR/hHBebMZ/MwnScp4EpI+sd3ARfMogy11RpD07y3ucdbkv8cR7eDIizY+H/s+NUQMlgHv1SHN0K9i0V3JtRsAYrC+h5W6+0u3Nd+NnbV9OErzK09FkZiM9kgbAawpvYG95oBEUvTrUJ2bVaLpzS02S68SB+G3y83w7CWprxx38MP1Mf8xSqEsumj77ZpYx2KFDI8U1UXj0C9ZoZxOLoyNRDf0ZRjTREXC8cBTDVZUKsRO8eQHkn3Dt1D5qxaVR5VK9v2vLPkj9dvFFi+krXv7y+gWyfT+48iJClSUrRyZXnUSWbT4nv5Xuynz4fT2BX90tjtAu/KaOTCeBqtjef/A4DF3bsCitZUaE3J4PSAKCkn27EIfGvnm3YcsNu+FHbHGL3DzVzdsD6qdRLX0LcRfSPZYmkAli1e+vfLDJ28BPuOXkSH5j9jSB+WdWKp55QAWNTG6q2HMX3BRn3638ZFY/SCY3L7EQAsGpOYllj7p9KYObY3RIXGNADr35+H/3oPB09cxog/l6NwvuxYOWuY2Yn4rw/iO3VgC4A1Z/l2LF23F/27NUO3NvWTjKxVz/G4++glFk8biEplWBqR2Pb6BaNQtIBpdMWnL5Go3nwgeEHAmZ1z9cRyotkKYMkXQQP66nD+ogJXrho+qiYH14G9wGLsSX6bZLhtMeXz+7D/q7+xKB+QF3FDTZXo6OC70xwCD7CPuMyVeQQkpsLsjnqJ3mGnjW3UdsqCfzJUM+n++XYlQq6wB132xjwyluVxZbwKWsmG2vMBjzAsji1o27jmxnSvZEiG4mKhG9oEWQa0NPbHQYFXWdvh7lw1JPRDKBY9BF46A9kpn6sQ4gYyng1bfMWcpEPM4IbI9Xsz41/24PAioD306SVBu/EkgS1wWrjkxCxv2xRx7i1RIuIF81OB7jq450gKsLxMiEDFd4wwOcDOFed9DXLqz7YqEXqNtZGjqQ4+pc2DNA6yxWfciEXQ+ebEg384fdqd1PycLiDruNKY8/kOpn26YTzU3b0AxnomDT/nntzRh/uL9tKuIBZ4G+bWzzV5uLsDW7axPvLn5dGqReoWJJ8eKPBQkub0gQOuOwId2+mQPZuA9+c5vNzD+gpUAQ/toU/XsiVlq8eHk9gXHYiqj3Khz8kqxnNKX0JArhaWP/DIT3O/MH4Sii6iKCNb7NwFDkeOSRZO5XjUqcn8c+uOAjt2scVXSj42357g8FoCHu4sdgsbyl7TD+uefytciQ81iTKpLrhj2/SFiFP44Jwri46gp84pycZ30y8zUS7GoGZIpvm1L7SVf4E8lVJcZF2NC0WjYMbBV1jtBYpkFG3yNCXi4xVo/GUuKsTsNP6/z6MPTjmy+48UWX/6ScZ0bYuT/8UycXEKTJnOrg8RRI8doQUnWY9/CFNg3sLkU5hsGaK8nXReAvr3sbLwEAQ4/lbbhMMqZs4+QG1v0mVUFDD9bwaOOTsDQwcxcEx1/qBeyl40evfETtsMqK1Lijr2of7ZOGMohVlpXYxAdWIn1FtZKpq2akNoWpoqIdnit5SWORbzBh1CJRsUgoBrW84j01BGRC9v02YAS5bWs8N9O9wEy+q7c2qcwLlcL9DoYCPM7eEBEgj43jZtpspEYVP/bK/Bo0J5w3PK7ugW2O1ggHdC9SZIaMbSBcXxyiOBY+YdAFR2kKdRS8+vnOx5mJpzlwPI5p6hN28psHOP5Y2E1PT7Let0CT2BQ5I0dfr2om8wW+1HB7CUFw7pny8U6Sg1fXRv24EAofVpliIPqI5th3r7YmOda56NsMkhaeaFX2YB3bumAVgpcu5/uLAYeeTq4oRD66frI5CSs5QCWMSz1aTLGDx/9Q6j+rfDr42qJ2n+RwGwPn+J0qcShn+K0IuzUeDOqi2H0iKw/sNz9Jt1v37HUUyZux4TBndG03qGlIz/RrMFwKJJTuGXPM/rQapSRQ2REgRKzF+5ExTdlju7H3b8M9FE1U1UMCT1hKV/DUamDIaPTkpLHDB2Ac5duYs2TWpgRF9TiXFbAaxxk1VSVXqMGKqFwCswax6H+FgBM4JNHyAxi47afAkVYe/hOJpxXgnpMiB2MuPEEht6c0yJN0cZKOJfXQf/WoYPituacNQNYozpee08cdyXcStRmVcHFQg6xT4CA+oIyFxVhwtDTRcr54ZfxZzPt43j7+9RBIM9ilk8H5FjI0+fJgh1YUp4BOZod7kj9JqETypuGbJqDIzKgndGxE40Vdyz1Wlc8BvcXzoYNdozRb386nQ4mtmwiywH9Ehe/apfc/iorIOKt+crES1JCyv8uw4ufknBp7vxYaj9ngEFRIp9JLH/V/sVCDrDfJ21rgDfKuY/QuQpRHH9p+PJ7RIIvW76UeidcBGlihxBRMeR2BDxBH+Es3Suxs7ZMT990mcH9/4VHCawqIhQVRZMT2+IzmneRKcHsKS7336+Arp3se1jSX6tKA2V0lFF+8gBVxwNHFfpvQXIObKe2wl4qlYgZw4B7dtY77N96DE9L1TpF9kw+DC739IV5JG3nWXQbf6XO5gqAfvkKXLJzbmDRzlcvChNXeFRMXFhSPXkoIW9vYCRQ62fC9V9fViBtyeYvzaVvo7tJW6C5urrgA64Fx+On9+zezqP0hWXpiyGTuGIk64McKK2DkkArM4fRyB/vCGSi4yiOSmqk54P9JwQbVfGuijlkAGh2hgUe7vF+L+Lwg6PsxrSiaTcS7Uj/0GNKJYy9rRgeywJ72SsR+DQb714pPdOHQBq672fknLPniuwZj3zMfECET+Q1MxFTo0dqbUUzGOxe/lCnEBbAm+TM8XncDgON0Rt6s3JFTEzk6oIUmDbxD/Zc5r4XEcPl5xHggaOQ5qbpPZoWveDtlLSTSDpeBSx0XAc2Mj4l2DviNjZyUeQi4VV5w5AvZ6pJ2rL14amHQPLU3KdUlK2VtAe3JekiDd+GIhl9z4ifvAci83YCmDZzx8J5X1Dmm2Cwh2nXVkqPf3nnFlAdBB7B28ufQPbStxA3cP1MLJ2BgRktR5JmpJztVaW8ISxE5OCjRXK8foNCjK7ncthd4RFCmsadoa2dtKoAMehLaGIkEaRb4Tg4Y3nLxRYvc58BFbxogIaNbDteWfpXO7dV2DLdtZ+gfw8WjYzfYY8earAuo2sjC33ljXffcvjrUOO4HQsEwrZ4FMTVRxtz6b4kQEsu72rYHcg6fdoQt22SPjFVGziW/r0v70t1bXTUP/DlD7vOFTGGs+kmRc2bYQkOistAuvHmDW0Xm3efRwePg0EEbDPm9QPTo6mm1LSkaYUwKK6V24+QqcBf4JAsn1rpsI7HVPjpeM/CoBFY6HsJ8qCojH+XLU0CPNIi8D6MebqV4+CyM7KN+ijzwddPYeR7351wz9YA7YAWDTk42dv6Cc7ocyU30uT/smLt3gfEg4ib6eJnyMg6cfBX4s3Y+Wmg3rJ0GIFc+pVG24/eA7yL0mMkm/lDxFbAKwvUTwm/2n6ATdhjGHxcPkqh+P7YzAphEUs8GonxM1hal9WL4NOC6ffmPy4wCnxdMRhXLzEoXlT9nFI0VcUhSVa1jo8fBPTlSJ5DfK+ZlJbanB4GWBKBP/uFIfAg6YRXH5VeVyZwD6AVY7A1t/PYEMkI6Sf6lUO7WV8WtJzUl4+CvtV01GnTU1c8stgPLTOpwby3cxiwouUIeEUCscaXtICxyF2/iGLaR/J+U157wr2n1iCLg0Y2fDPTv5YkcEAbFC0Xdm32/BOx6QAKW2M0ses2a2/VYiREDEXHaCFkxkl3AtxwWgefMjYXFkHH2zPaLiOb09yeH2I+dq3Co+sdc0v7O0XjYHyDgMcnpRbgdf3mTIIteeqe4KS0b/D6ef6+Ny4F45Gm0YhEGE/EffLjYhWKUVRtGjOHWN9DIuyrp11cHMB/pYQ6Lq7CxjUL3ULkuj3wO3ZbC5FKYBzTsCIoTo42Av66EHp/H2iBl7YQc9/RTxY1ox8TT4v/MYXo/ex+8U9p4AC3SzXXx35CCPCmaxkJ9e8mGTDPKDxbNvJ4Y4k7bZpIx5FCptex0lTVdBIAo/If+RHa/ZyH4f3Z9kcWVPuMvYWvQt/lQsu+TXDJ10cCr5hkVYOCiWCZm2FIj4Wx1xPmNw3R5wAPnFdPeBDN/hqGeeXKChB6a6U9ioaCTOQQANZ9sC1iBeYDykCzFPpgGMnFDhzzvDsqxq1CfUjGbGztloTTAv6DZ++sAV9tgAendr/OADWuQtKHDnGxle0CI8mDZOOb/pMJaKiWTlbr6H0Gt+4yWHXXnY9ixXh0dhMX9I63MuHcJje1/iXnDxbWlbOQyS+g8QydtsWwe44A7+Ig5HSEc1ZeLgCoaEKIOQNSmxmnJ2UOkgphLaY8upx2K9gZPHaklWh6TLSlqqpLnMy9i3ahrA0VlJSuPjPPuTMWhSabqMttmszgLVsApQ3DDx0gepWeOpgELwgUzgLyFFXwLOt7BqfzfUcc2ucRM0TtdAltz8qVbT+HEv1yZupKAosyA9J57l67UyoLrD3lKbNAGgr1k3SGm100IaHaLEjF0Pwy6EXryESdXOWLy+PX1MZsSu2d+M2Z0LHYI6DLui9AouXsTGY48n6ln5NaVuNgw/gShzL49yZsQ5KOyQlb7bU7g8JYPE81KumQXWVcc3R+AWFQh91pSvPNg9T6q+08tDzHtLmpWiBdvkxz9sgTCU1J0cBxKVoi6UBWLZ46fuUIXW+Vj0n4EtkNCiw4rfOjVG1fDHYq03FPhK0Ovzaa4Ie7LJE4m5JzXDguIU4fOqKWf7nHwnAIo/3HzMfR89c059/vCYhDcD6PtPw+/RCHE4E2Jzfzci8v0/P368XWwEsGtGDJ6+wZO1eXL/zBFHRMfD28tCnDPZs18AsN5Z4FoT0rtt+FI+fv4ZOx8M3U3rUrVYGnVrVSfLgoDq2AFjvQ3kTlRxSGSO1MdFWzQ1H74dsFz3KzhvcXFOZamteJiU6KTHm6Ax7EKt0NSG4JoJsIsoWjXh/iP9HtEJvNuGjjqUxSheoVEZOGk0pbZSGePMv9mHo4C1gTvvDOBbL5JGtqbYRDwrxofxWpyzWF2ZE4hPTlUHzz/lxdwFr35F/jwqSPP/YPzdBcLeNK0zqQyK+XxB4AhOqsMiwbm75MS5daWOxjZGmUUp24HDDvwXSKZNPq7kxTYm4j2wxW3ywDuQXuR2NfWPCtVXD0Q+rE7nCQi4r8Fzy0Z+hlICczcx/hKjX/AXVRQPnWJBdLTxwNAWxHfhglI7uAbUQAYcWXfGpWkvcjgtDHUn0F6ksktpiEhMEOPWuZfybzmJwRgP4IS7SrS2Mrc1d8Xj8JwWuS4Be4rK+4M4iRV7s4BAs4Yt6oAZeJ77Lf+9tPXKnftA+3NSEIWdIekzdwaILXfwFFP7N8gce8WYRf5ZoRHZPpPe2GBG4E5G7aO3b8MiZwxQAWbGGw6tXrAwt6GhhZ83k/lhW6TyOFHyIkvYZsDuTYYGZI3At4iTA0vOdt5DuyX2ccdkBDcc4Ak86AvGJQxgb0gSuPFOIIj6+BHdPZA1cYxwSRXkFZm1vjGKtGbQHDyRRLfsy1Ucxe29Iuf+SksPXwt1yQ0Ek6VKz9fyt+edbHKfIDorwEI3UMIn7TW5L/lHi3TtWrksnHbL6Wwchpe2cOKXAKUnUZdXKOlSrmnwbyhtnYL9sorEZbaEy0PRmu/LS9idPVyI+jo1RLn6g+BAEhzEdTAQhKEWbUrXltnM3h5u3OWSPv43eH1n6OpG3E4m7LUbKhcSJI5qucDnEf4UCsy19/vJ+P25I1HZ/efwaa3adhaW0OLFNWwEs4ooizii6audcNiGeYyBEphoCvHPxeoEO0V54h2Fo812oeuYn1FZlQ7vW1u97W87T1jJyAnSxHj2j6FlFZr9wNJR3GYAvRmTK+5CrosUNmAE+d1FcusLhgGQzRlovIIBH568ErOXtlyvDo87Ppn6U83A5OwsYOsi2Rb2tvvyacnWC9uKOJLr1YKb6KGzvbXOTPxyAlaDR39vK+wa6B9EElZ2e74ovyL6zbD7JtIImHpBnXnziMmCyD4uUlBaWb1ZYcmUagPVjTbLAtyEYMHY+SGWQzE6lRIB/Jri5OkGr1enBrbdBH/Rrf7KUAljBHz6ifrthiI3TYMWsoShTjCmfigAWCZ6pVOYpAcqVyI8+nRobnSbyVQX4Z4Snu6tZZ3q4uWD+FJbqSkBdnTZDIVchlFcmrmpKJfwSYQgqSIvA+rHm6leNpvwvfRAdE4fbx83vmH5V42mVLXrAFgDr6Usey/6RpKFkBHp3Z+kbwTcCkX1ZV2MflKb1ps9KmxaxYiUHmfrRDO+VCLELgFTVjBQISYlQNDmvUoP3+3Fd8nFPETkUmSNa2B0FnkjSaUhZL3MlweSD3CWLgGGNd5mkGu3JVBcl7FlkldyZogz7rLIFMKFKUePhzm75MN69TLJE7mJ0SEqnKEUbDFG9xaqiuYxVJ6Qrgy4S6WqtwKPU260IlUSd9HYriJEycnt531cnqZAQyf4tOVILtVvSEe6Ifo7fPzBgRJrGJ1fcIwJ3InI3Z6IcfbiyOG46TQcUbK6puFiU/tIVToIhPcGp+2CEF6+FIG0MSr5haV8enD3uZzFPFuk0sDEQG2XsekyGXYhRumPsKK2es2XqDBViWWAOhgzUwiUVfMTaOODKWPaipDvkpr+Afong0pMNSoTdZvP3jj0QlFi8YX0dShRPfrFf/d1uPEr4BN9PHpi9iXEvOaYXUOwPy4sZ4iYhjhLR6jhlAYGyttiCxSqESAiSe3XXIpMsGk+ukFWpAo+a1a0vZInwnojvRVtQ7TRO5XmK+s5ZsST9T/q/q7zbiWcJX4xlTl39iCInDuKi8ypEKxm59DlHIIoDcuXQofu5GkYQgzwau/AIXmgjUUnC1+ancsZlv+bGdruGnsBBCYcL8WPV5HJgmgTcLhJ7Cu0+S8QmilbQL2YoRY9S9USj6LP+v+mgNB+0YYvbv1kZIj4nAnTROnfQmU3z2rxdifsSoKtxQx2KFUkZgLVjtxK3JPPbljkt50GxpEBL45fzMA4aoIO7TB7Pfu4wKB9eN56vtmQVaLowBTrxgHjNklzT4pUQ322MTf6nfqg/0XR5iyO+3zSb6qam0NnYILQKOWJS9eLyvcgbHoGEJt2RUJPNZ3n7NgNYm+ZBdXoPwlRlcMuJRZfxEFB2vA6CFrgqSdlL4HRo3WMlKlysiMKBefTpw5RK+73sxUsFVq1NeqNllHyj2E/vC+VL6yqT9ovHQnmbpaXTPNAVr4RjJzicOWee44iehfRM/Bo7fYbD8VPJC2EQRRvROEht/OiUp/l+zTiTq1v13U48lT6nfRshl52Hzd39UABWbDTsZw+GUiJmQCdCvHrxv08Fnz2/zeeVVjAZD+h0cPqNRbHpwGFoxmNmMxKIssTBcgaasZM0AOvHm3GUTnjs7HUcPX1NnxH08XOEHnCiSCR3N2f4ZUqPIvlzokTh3ChXsoBJoIUtUVTL1u/D7GXbkC1LJuz8Z6I+A4lMrJucR0RidbGMCGAlV8fL003PJS2arQAWld975AKGTVmqr5oGYP14czVVIwoKDkPNVn9APjFS1VhapRR5wBYA6859AeskUQY5s/No35YtUOVpIK/t8mBtjkUYkIJULM34P+ARzHinFqX7G8/ti+mjBShqgEwOAOT6VYf0Rdkiq9+Hs9gW/dx4/tO9yqGNJPWPCMHvL2Mfiu45eWSqADxazf7zzMujXY1NeK9jrO4X/Zoii8o8Gk+dieDb7jz+6NiI8TD95OiLdT5T5w/EAAAgAElEQVQ1IU/JKx49EOl0N/XjjO8+FrpitpGrSy8spd01z+eIkwEMoFvlUx01HU1l1P+JeIgxEiU3J4UK1/xbwJ2zrJhzeawKkkA2lB6nBaVWym1N5GMMD2epf+1ccuNPbwPZ/ZfnCtxfyhYWbtkEFOxpHmRRHdoIzd6TuOK8ALyCdaRQCijmtQDpnm03du08eCrCcpQEzwvwCzRN9XmVtT3sFEkXGo5jO0ARyvg5pnmvRlw6fwxOjCJcsFiJEEonSrTePXTI6JOyxbtY98JQOmfW1qN8Ajp3NJz3g5VKfH7Ejt2wB0IT1yTFi/FolIySINUv/3Y7ArWRSBfthCVrmFqP2lVAyVGWAaxzce/RMpipalZyyIxNGVlUWnIPDHlq2ZBBOrg4m/rm3gMFtmxj1zpHdh4dJM8HS+0/XsuBgE7R/q51HBdzvNSDsATGksm5Vda+UaH+htW45jQPn1VMdfKKA/BRCXSq9x4FljPfRHBeUC3YhHNxQWgZzBb/ZRx8sCMx3ZX6mfjxGhZH3DOOZYhHMVQOLAaK1BGtousVNHrC1Mt0eYrqpdOjo1SYJtNioMgjikD6T5pGA0yS8EbRWEYN00Jt5tY/fEyB8xfYNaz+k4AqlVI2/lVrObx4yfxFc4DmQnImT/vTNOgEbZ2kSlTUxryFHD6Esfb79dHBy8t0LlIqMj0bRdOnaU/ZCLibEpGLkXUVo7ajUSSL+k4JEbs8BUaXPX+yPFRfOxfk0Vd1nr7Fhh0G4RJN5xHQljKAvubMVgCLyM6J9Pym4xSE2zGl09j0QPU/DEDNpdFK8Br2HOvRfgNyPSiEgg8LoU9PHSi97XvZ3fsKbJXwR4n9uroKxue7/PkfN3YF+Iym70mqRyTdJAYgmqZ1f2gr1cPufRyu3zAPYHm6Cyn6zjHnF/m993NNARXKJb33ps5QIpbCehON0qoovepHMKIreKNlm0SUAk6p4LbajwJgKT59gP2cIeBCWAQ+nQPv4Y34ftMhmJk3tp5jWrmkHnAc3AyKKLZBNT7DdkQqk4pGDOyng4cNtARpAFbaLEvzwPfzgEIgePJ/2IhkfND4RThz6bY+RY6Iy9Ps+3nAFgDrwhUeu5JRwJHvRD9VF8MSr7/1URgUjZGcUWj81u0cKt2egKJxp4xF13uMxE3HGsiQAfitp+HDmYCmjw/Yh2Sedjwoikq02Z9vYcbnW8bfvdwKYpQk2ij6nQK3JXxHREibqTwPiuwSLX0JHlVLM2l0+t8SMKKvw+vg+FtdKAQe9zJ4olInxq0hqvLJI01yxS1GVo0hVJqk3knyPaXmMLEbStUvhBeeLDTqeOaGyKtmaVXUZiyv1UdhfeLjjV0M8iiKgR4sUkze98URKkiytlB2shacmQjcBV/uYsonFu0g9XdMMHBrFqvkmEFAMQspD9rDx3HrWCloOOmHiwC6vr57e5nIurtOWoJQ7+xE/YIkKaN+zZFZJWHzTjwxh2m/g3v1yHia873mQRtQwKhss3aDEkRALVqbVjrkyZ26x/KFUSpAwgf1roSA5okKgfcWKxHxkvUjgi7UL5G8E9l7clb0zWZ80MXCIUGFtcsZbw9hkWUnWo4CuKUJQ70gRrZfTO2NfZmTJ7emcZgjSDa3608RPhTpI5qtRO4PVyjx6THzx9S6R3Aj62uM8CyBPu6GtK/B4RdM+eiivdBz/twkC+yb9kCICpjU7q4Jp9IbVR5ED1mACx5PMCj8vHGMTZ1zYG56lkYpB2NJtbPsycq4/5A9b5oUuofyR343tsFnyYW44QvhZK/E0eNKHD7BnkUU2dfvd9s+ulN679taXkpAT3W80rFoQHkbV65x2CdReC1WVEDjFJJTy6O9RPGC5MZrL+FconLxHYdAV6am2SrEAURcQKL16KqDb2bZfcrzcBjVFtynD8ZyCfXbI6FeO5M2ReW6uhHLUS2aETRrGnSEto6BwN+aca+fwmFqbzYf/HMgbgRT1bJWPyXH5XyDVPf0ygMoHGpIlbWUKin2YTOAtX8tdPsP6dMHpaFUquo6lE4UTLk7X4lIicjHuIb7YR+aCcXuFNdvNplLUU3Juaak7IVLHCgC1JyJzyoi6SeyftFi/toBOCfdkBLBO7GcplFnaH/+Fes3cXj8xHwfjg7A8CFfF4G1Zz+HaxLBkvr1eJQukfS7ac4CJYi7TbQ+PbXwsRwYnhI3fnVZOb/gbf+W8Faa2fWy0NOPAGApgl7BYc4QEG+m1HgfP8QNmJkEBP9qp6U1AMdJPaB498LoiVleS/DRPRdcXYDQD2yu9+qhQyYbNhXTAKy0SZXmge/ngf9KAGvGQka8a8mVOp5HyIePuHb7MT5+NuQrzZvcD9UqWFZ7+36X5X+nJ1sArGOnBBw5xj7g5BwNypvnYL+Updbcs6+AVekmgSI5B/bXwdnJPBhA5NB7Dyr0vCYNvixA5ZhtRsfvceuFM84G8u3hg3VwdBTwYLkSn5+yl1r+zjp45GFt74p6gT5hZ4xtyFOl4j4pcEPCUWTvKSBjOQO5tmjpKmpQvRDjynHj1HiYxXxEANXhgl/DYXwXffV4JYeMf7A0Ng4KvMraDiHnVXglITfOqDmOgnEGnpeEGs2R0LR7iiec4+914T2gGXiJfPPzrO1ARNdym/flDv6UqNDROd3wawFHM6iUwAMXh5uiVeWnmf9An/bpBuZ+uWPsjqJW+nkU0f/WRADXJCkPdq5AqVFJ29HGAHdmahAXZaqOGFCP1/OTkUIZKZWJ5jZ/C0JUnnpwRUypE4/tz1wfRdVJeTfUC0dBdfeysY0VnpOAYuXQqrlhkUDg7I1bbF41qKdDyRKpA7DOj1NBIUlHjCwv4OeGBmDq1mwVYt6zq3PBEYiQrIvknD7y65gncD2iBAM6tnlRF9D8Eq3cVC3MBJ/pD1MKHqXiiZbLzh2nfK2DppGRwAwJCOnkBAxLjMKQj23yNCXi49l4KG2SAJPk7N4SJSJesDrjG+zHPd/3en4u4ukik4PSfTg/TJo6DfcchyPYjkWR3VMD0ekF/FH5NOyXsGfRffsKeN5gAm4Xv4G/JeB2X/fCGOpZ3Di8M7FB+FWSnlXa3gfFV/4CUugTrW/jl8iysLPxt5A+E2InrNEDWE5qNQaPTUA0C9xE/rw8Wn0lwXOyDrRy8OJlDgcPswlmTt1MbEKucpYtQECn9imLwBo3SQVesu4ePUKrfwckZ3JwWeQdMldn5RolXr5i86Vjex2yBySdYxTRqd7NNiEEN08QD5oodS8FZlt8nobSsRKC77YDoa3ABBKSGzsX8kYffSsan8EPceNXfs0ls1i3RfAhnI8LNh6vFRiKzZuY0m/sxDUQvFk0rrwhmwGsY9sQuJfHKwf2zotUAMX/MCipksk3ZJZWPodgQY3SN0qjQAEBLSXCK/+KMySNJpfeR88qilCScyDGWlBItju8CXa7GIVFQs0WSGjSDUtXKPH2reW8SFv5eSz5ggjiiShetKaNdShSKOm8XrFaqVdFFY0UPkmN8Ecw6buJxkMqrqTmaqv9pwEs7sUDfTowCYRITZctnz5tEI5JN8ZsPbe0cpY9IFU9pVL/eE4GipZFTIwCga9TPtfTAKy02Zbmge/ngf9KAKtAVRYdYKsrO7aojcG9JXLatlZMK/dVHrAFwNpzgAepWYlWs5pgojZEpK9E/iradcea2OgxQv/TnKIOhcHv2acwiW74KXID6kUtM7Zx0rkV9rsZFJBaNNWhYAEDV1WkZAFTsIcObtnZB9xtTTjqBu01tpHXzhPHfRnZtS5Ogctj2XlwDgIylRFMlOEca0ajfk5GQJ9D5Y4zfpYX+8pb50wWzPn6tUCwA/twO+vbGN5vPECLddGcdK9RPtogv2yJoyW5i6r4HIbwKV1QqDcbl5fSAXf8zd8/0XwCKHonhghMEm10upLo6cZSsMT/dfHA5TFs1ZlcdM/oj5exIoJxi0g5uGiReHGYdPUqoPw00wUxrwUoKilKsptP48jkcB7ZxhtSyBz71IaCCEASzX3DKQRHJOgBrFbBR3A2jqUGmkuhpGrq1TOgusTSxza7D4Hqp5+NRLnHTypw+iy7Pl+T/nV2ggpKttkPxU88yiWmwF4nkEfCR3Qvs4C3EgU7cwTp0nng/2o1iIuGbNU/7eCsYaQQpcdrobLAzR+si0EJCV9YJqWTPo3UmlFaJaVXipac8pWc7L1lMx0K5E9+cXVnnhJRkoXhiCa78dTnAzZnrIWKDpn13W6Neob+YeeMY2jklBUrx07BY4c+eKNmPGCP1YCQi0f3LDuh3sxSwi44NcDF3P3xtOkZbI56amznT69yaCdJLw5MiET5dyxV1RtOaChJ0yTS5GFdQ+E4jN1jgrMbYv/argewPFzUOHNJizUbTc+ZFAlJmfA/YSJRudh3rRoCKpY3D0pRah6l6Inm6SFgQF/bAayYWAX+nCERq3AU9BsP1oz8qfjCAGpSACQlQHO2YTOHR4/ZGNv8yiNPLjO+jYqA49DmUEjQtPhuo6ErbkjvjopSYPrfhrF2CR+GfBoGbsf1ngi+kHWlVqrLfQyFw0gWrSV4eBmAsm9sxOtI/I5SO7XyAIokRl/R/zGkZpsM6ZqtAJby9H5c2lcVCRyTJH/sLKDTGHYt3xzn8EYS9bSv8F1cTh+BCpcqwMVFwJCB1q/7t3IRqV6S+qU5+62XDj52H+A4nG0q6cHMaYw7UVpPdXY/1BtmG//Slq8NTbtBmD1PiY+fLANYospsas/J1nm9eZsS9x+wcZBCc6ECPwaAJX03kR9eZ20PpaUdFTOO+k8CWMR7pl4+CQqtJHQagK5AKT3HIews0y2k9pqn1TN4QJ62u91tANwa1UfgG+DRI4kwTHMe+fJZf4+mAVhpMyvNA9/PA/+VAFaHflOtelChUMDZyQHE9l+7amkUypfdap20At/eA7YAWBu2Crh1m71MGtbnUaI4e5mQIp7JotGxIXZ4MGWnXt11yJQxcff2OYcduxSIlki201mViDmMX78w0tjrDjWw0dMgSS7yA92eq0L0O+aDwr/r4OLHPuAieQ3yvt5gLKAGh5cB7U2cdmGoaUhAhpI8Qq+xc+MbfERLXybFXs4hI7ZltCyXLN/tr9uzJS66sz5WZ6iOn1T+uDzatN+fImpDiXikhjeFe3YPN7ZMQb3WLALFWlqYPFrKk7PXKxKqZRFbRN5OJO6iUUZe6THmI7AIWCCAQbS/vSugpQsjlb80WgVew9xfZrwWogAiAVDEgfTxvuniwyvhEgq7LUb8uOVAdASc/mjKGnBwhMeao3j/MVYPYPX9cBbbk+E8EyvabV8Mu2MMnNjn2gMOTVqgfFnDHL56ncPe/WwcNLdpjqfGTkxUwYFRgcCpFo+iiYTml8erIKFWQ1gpHtckKbE/VRXwkwXeJI3AI5tERW/h2lZIH8U4RkoM04EiCs0ZRW3RDrlorgo7PMpqPU3q2XMOa9Yzv2TPxqNjO/N+OXpCgbPnGIBBHC7E5ZKcybnhBrXYjtden3BKQgAsT50qZZ8Bh+atw6uYOnhh38nY/As7wKkUj1bCcr0iqGiHXDrhmGt7POiyHxcTWPjbOp8a+MnRz1hOJ/AICFxrBAjpQId1HaHiDfdC0SI8mtSJg1O/esY6JKdOBPEigBUTr8P0uTqTaA1vLx59+6RuLqVm/knryLndkgNIKdJs4hTTZ1RKIksotY9S/ESjdA9K+0jWdJR+XdtENTA5IGbrDg53JZxpzZroULig+Tlmv+JPKK8eN3bP5yqCuIF/6X9LxzrgQzf4atkzLG7YfPBZ89jkeuJuIQ4Xozm5ImYme3fY1IgNheRAfVVVeuyczIAWwcUdsTNY9LK5Jm0FsMK33sfja4YoWr0J8XhZ1A5tJOqCYXc4PJE8F65neY2teV+g6vmq+ioEfBIA+j2MFEAfPzUPYNGzKofdUzhO7snmQeYAxI1mG2XSMcojyXVFyoMUC+XRpfZqAfESDjBb+Xks+UOu4mpJaGH/QQ6Xr7JzJaVCiob/T5v83aRWcHiZ1fS7y9oY/1MAlvLCIajXzjR5BtFYteV+hqbtQGPUprXxpx1PnQfs9q2G3f51xspHXdrDv197XL+u0KvEiiZfc1jqLQ3ASt11SKuV5oHUeOC/EsBKjSPS6vxnPGALgLV8NUApJqJRWgylx4imOrgB6j0sdeJyhlbYqjRET5H5+gro3F6n56ogsMCc/Zr3CkqcZATJT9QlsNTLsOAQowFuzlQiVkK2XXSgFk5M5VtfNgkvkn9zZFay8O/L45XQxbBzcc0mIFLCS/SpZRC6pztgHGID52xYlL6KxYtjv2oalJePGY//1rsj1ruynbxx6Uqjm1t+3JihRFwY67dkVF948HfBe6ZH3BQGutkyC5SXjmDH9e3oXY+R7Fob5xdeg+JvNiNOQm411asc2kuiUKhvihCiSCHRCBQhcMScyZXblqb/CfWcmTLc9T+ViJfsXBcfqoNDYlrZi90cgi+YzgU37QOUiBkAztUJsdO3gnsfCIcJTN2S88kMt3lbjACWnHh7sEdR9DfD7SUHGSm6z7lTV31UH9nDxxw2bmZjyZVLQLtfUxdFcGiCEm4ScDZdbR55fzLcKxeGKQGBzQF1Ux32HJKSnwvo0NZ8v1/4eOR/zYCZWZubwe8jU3kqOkALJ5k6oPSa+b5aZXIJ3wVYj5K9eVuBnbvZ+AgsINDAnBFX1OatzIfZsgro1CF5H8oj0n5vvQXB7hH6lF1KcyWTR0bRvXxn+1UEvQzAY4e+xqG8UQHeNXnUCZxmEm23xW0wrjjXxcE2WxCkjDCWP+nbCLllKlkV323HS4n8ZuM9TZHus4FTrnkTHQoVFODYuxYUEtrK2Nl74ejmrI/AIgDr0fMELJREW1Ld2jV5lC/3fReaFLQ4fopKD/SKNmKIDg4OloGFP/9SIUaSAjmonw6kqGiLPXjEYdMWCT9hLh4UIZWcKcJD4DiqrbGI4Oqhv+8t2d59HK5KyLR/qcejlBmuIKqvpJSgGUzqmv6LnbAaQvrMePxEgfWbDPN6TEgzuPEsAiyGCN89k6Yhmx2TJh5O/SRccio7xMxj7w5b/GatjLnoq318flSYYdjcIeP9ciBuZPLcW7YCWPdmxCAijPEqOukuIKpJWVQsz65l9Hvg9mwGdr53/4KZFa+ixqka+vE0aahD0RQqWFrzg6XjS5cr8TbIfHQUPauKqa7Dfg77ruBzFwWlqZoz7sktOMwazPyasyDiBs3CmAmyTa/0ggk/z9cS18u53Xp21SKzmSDEU2c4nJCoFdqq9ppa39paL4LXIJ9k49Aa7YK5dv8TABali1LaqNwSfumIhLrWN3hs9U9aOcseSDiyH+47GRh/xaku8s0YgCPHOVy8yN4ntvDpUi9pAFbabEvzwPfzQBqA9f18ndaTGQ/YAmDNWQS8e8c+Ert20iGLP1vYyD8Ewqp2xp+PTUlziQtFyicjDiW9N48WzQRk1Dwz2SkNtgvAX94MFBvYV4fnizkTQKTEUB3sZTw7cqWmLRl/RgUHxg0iXzTbuQpIIJKPRHve7hmGuTAy+a5u+TA+URFNLPMuSIHPn6FPkXKY2gfc6yfG+jMHDMQkdYjxdwfXPJjiVS6JgmLuuPnIotmuTwijKI6UaI/TrtXMz7cxrWJhYz+/uRfCcM8Syc7xcR+vYFnEA2MZX6UzLvg1hUoS6k8AIQGFojmmF1DsD/NAhDwyYKNPLVR2ZF/eliLmgs5weCWJeKK+HPl3KB3VE3aIMvhk0VHIFxTK3AXhOmmxEcBa8uUeJny6lsTXcifIU0MuO9aFx4CB8E+cw3Q9lyyXRI9kFEBRg6mx3eNUSC+h0chUj0e2yjx0GphG4SkE5BzEY/4iCVioFkA8WOZMngY4bWdDZA9ObyxaqJcOrmb4gMQCco6SJ1nawJlLnqPk/EUlDh9l9wZFrNWuZR6U+PxFgb/nsHNRqwWMsnAu4pgo0k+CF6F7hw2IcIrBawm4phV4ZJVEnlHdkItfEH4xFvcdRxnPP1gpIKCFgHJnhoBEJURbnu5PPLQvjVXtVoBXsGfWsyxtk3DAtQk5ilOxLMSzxskayPomQN+UCP44DmkOReRnY/uUMubok8EIYH2O0kBOyqy2A/r3TaremJr5ZWsdeUSUVJXNUht0D9C9IFqXTjpklTznk+v78hUO+w+xBUeZUjzq1UkewKJIUoeZA4zNiqT4lvqhuUhzUjSai2IUpbk6xE1IHIWiaSv/As2vfXH9JofdxEkoCJgRXM0YfUGz48XYo8iUDBAs78eplynhfIwFfiVbr5u8XNuQozgpmZMVHTJhW5ATiPxeNF3B0ojvMznZLmwBsOTCG9Rg5vgpUA4aanxW0n+U+n1pJAN1dAoegxocQu1jBgETWxRVU+sPeb1Zc5T4JEnDlh6nCKVK3HGoV0xhc6B4ZWi6jTbbPZFJE6m0aHymAIQOWI6/ZknUdF0FeHoAgZK09y4ddciaxTag11zHcxZwCA+XqGta4A8kJURSRBTNHD3Dt/JrStoJ0cag+FuWlumjdMQN/5YpaQLfFcDidVCvmg7V1RMmY6SIWk3HodCVrp6isacVTr0H3uy/jDz72Hv8lXtpZPhzMs6cU+LYCfYuqlhBh1rVrd9jaQBW6q9FWs00D6TUA2kAVko9llb+m3rAFgBryl/A588SgmaZfLl60zyoTu8xjkvTog82fW4CImlPziqU1+HnGoaXEi0KaXEoWpzKDaPS7zb+bvgLD36vAgmS6JZSo3WwczF9qfX7cBbbkkkruzNXiSgJGCcf36WutzHT7qrxb1ERjXi7du9V4GWgwihlTTuvAVPqQxEfZyy/Y/xMdIm5YfxNgA4BO3LQJlPCYRSINaRMxk7ZAMGTgRHWLjClx/yWIRqbChqIrsmmeZVDW1k0lbwd+tAkRUJdIo8SHZ/tXRHNXXIai0YHKXBbAkQ4+wooYoELp37QPtzUhBnr7s1UD8Xt2Xk8WM7hsyS9I38XHrp4AY/XmRLNq5wElA7rCCctW2zG/r0LyvtXof6HLczsSleG8x9TjADWjujn+P3DWWP/9ZyyYmmGpFLy5kQGvCeMh5ubYe5IOXHoN/EdDbWgmGjt2mwcqURWLbtXstbj4VuZR0KUAlcnsvPWn/NYHSb9qYRGko5CvC0Z0if9UHuZEIGK71h60sQD9ZA3kAGz5FuP3JYBgxJvNiNYx5A1IvH3UZkS58vPjSImSeVLNEvy7uJxucx7P9lzQt7+5TFK6CTE7x26rIGPgxLnspgufihyMEQy9uuvXeCx5SZuOE8zNhnGCSjQTUCBdV3AvX9l/P8v73/w0i0TNjRnKZQenD3uZ2G8OGLhEeEXsTrysbFu6WtlUOhBIfj7CejW2QAsOoztCC6UgVxxY5bDISC7CYBFBLSz5nN6cQrR9CmIDb9fFJZ8sZs7F4+2ViKi5Bw7TRvxKFLYtjHLwaXk+LZEn6iunIB6JaMb0BUuh/heDJiRz5dTZ5Q4cYr5NLmUW6qrOncA6vWzjM0IdvaI/WsbTl92BvHeueg+YVxoE/bs49xxs9sOPW+jrebY/xeT53/srN0QHJK/r2xt+158OH5+zzgdqd6eTPVQ5vw5qLcuNDajrVgXmjYMCDTXvi0A1rPtHEKvSARNtNfhpV2B9HPmJGnyAmFCXxiINb7OCZQ5U01fLjm1S1vP3dZyE6aooLUgAkiL3rrKXSb0BiKIaa594pY04ctyT4cX/bdg0VLT1Fh6b0jTFlu35JE3j+1zRt438bHRO0g04hAjLjG5Ef8b8WWJZss9basfv6acPEo2q8pVvzGWEvtuAFaCBvYLR0H56KbJ8ASVnZ7vii9YOiXDTiv7lR44v/kFap5ioPEXt+ywm7YEV65y2HdQAtYW49HoF+v3WBqA9ZUXJK16mgdS4IH/OQDrfUg4Tl+6jQ/hn+Hp7opyJfIjR4BvClyWVvRbesAWAGvUBJgsskVVQHEc8jQ6Tfs/8LlQbfw9V2n24zKdp4BmjXn4SfiraDdcn54jObkhGY+CVxg+kgsV5JHlpgI6yWK/zEQtlDJ+zVmfb+EvidpYL7eCGJWupLHV+8s5fLHAmUGFtvc+h03CI2N5EeCRR+lQgfzpQ9D5joTUWWWHGzPXoUYQA/P8VS645NcMEc853FvKXsjOuhcoF52oXjh4jp4Ly1azn94Xv5Tzw0V/pqEtj36y1NaQ8AtYH8kixrKpXHHWtwmIk44sMlCBuwvZB7trVgGFepuPCiJlO1K4E03KXUT/PdmgRNhtdkUzluMRLAkLpzJ0eQv31MF7QUtTMueJa6G8c9Fkoaau2QhO3f4wAljn4oLQMpiRsxM/0q5MhigAqXFP7sBh1iDjXy/tCsJnLlvY0gF5mkhK+H/EhqOiFdgxlUPOBHbO/rUE+FfXIT5cgevTk6ZmrlnH4dkLNi8aNeDNLqDvaz6ilmRejTn2Mwo99TeeU562OniZUa4SC8ivFYkLZLdjRM3m5sv2XRxu32FjswZorN3A4ekzVr5ZEx6FC1r+6JTz0TXvtRxl1emxPTPjmaJx/fJ+H27EM6B0d2wAii7YgSvObBH/hQPKDNbBb1IjIJaRkI3JsAuBPhrsqcvA8ALqdDiSuUGSU1765T7Gf2Lgdb5H+VD+SgVU/0lAlUqJAJYs4jJ+8BzY5ytkAmBRw1eucdgnUTel/3p01cE3s/VdZFufA8mVI043abo2jZ/OIzk7fEyB8xKxDul5WxvTlm1K3EshwbTdkc2w27nc2LS2akNoWv5msauLlzgclJCHW+VZS9DoN0UUcSwvktrfFdtYv0DKlPAcg8JYivJ7VQDO1P4HlJpoqyWJyJu2BUQU/i2sfehxHI95Y2yqvENGbM1YG3Y7lsHuKIt4SajfHgn1TCOe5f1bA7BI4OTqJCV4CY914Zgx4NRv4TRzaZLTubJUB+1zJlGQtUcAACAASURBVCKxoPIF5Lhe3lhu6B+W1Ye/hW+oDU0CMGmqZZnLYkV4tFCuNOHYIT+Rv8yaNgFOv7P3B90t9wYfBwlUiJYzOw9nF5g8FwmYJoA6tSbfxBg9XAs7M8GxpIRIioiiZc4soGfX1EUKp3as5uo90nxC9SD2fJWL59jS13cBsKIj9EqDytdMzIPGJji5Ir7vn+Cz5rZlqGllvqEH1iyKQM87DOzUOrhBM2u7/l1C7xTRCuTj0TJRNTq57tMArG94cdKaSvOAFQ/8vwewCJDqPHA6fqlVHr3aNzAuhM2d98pNBzFr2VbodKYv+8Z1KmHsoI6wU5lGZqTNnn/fA7YAWENGmXJMyBf39ovHgpRcRIvvPha6YhWThAHTcUotqVWTNyuvLlekmpR+Mz6rDCCNi7OAihL+K/qv3FQt5EI3u6JeoE/YGeNY6jhlwfIMhp1hssfrOYRLFuVyD8/uvx/n4xnZ83qfmqjq6KvfcSXCWKnljr+G7h8lnBlZcuHLsHnIHrjWpBwp8ghxHK6Mk3xsCzyqRdYCBx00XUbp1QhtNVo0FWpbFe/cGLfXOd8myGbHuEsstfVWG4Wyb7dJYrAAKXfV56cKPJCk07nnpMgW8x/J8qieqzK+sRe7uCSAlcm4FALydeThmVeAw8Ru4IJY5AyRKatunQfxV4nm0KwTHFp0MQJY8g/nADtXnPdNuvMb8zQQ3n+zhWqYnT+c5q4wGYp8F/yPATq4uaYMbAgOUeDgfCXySIjrM1Xika0+j6i3wJ157Po7ZQKK9tfi5BklTkqiSiylhVyPD0WD94xfZ+TZmih6j/GN5Wiqg09py+OtF7QXtzSM6+dA5l9QRO2V7JSTKwtaU0k8cVKBUxI1RyIYpjQec2YuDalVzxVo6JwNC2Wccz0+nMK+aDY3FqgLodHkebjgwshfYxVAlfHxcOvPBBd4BYchGY/jZZaXOFGVEXrXcvTHSp+kaSKHY16jcyhLK/F954fax2ujZzcdMmcy+Jb4dJSPWIRl/G+TYV+8XBIAi8rKSdQpzahNKz5ZHipbnwHWytFClxa8ov3agkc+CW+hufpyMYOUpCgtW6HEG0l/XTvrkEW6QWGmQxL+IAEQ0RIad0VCLcupR6Q2R6pzopUszqOBFbEF9dZFUJ1gkYu8dyasLLwODx9yyB13Fd0/DTG2R7yL+wvN0AONtprjyDZQfAw1Fo+duBaCdwpyEC10ZC76SkyHV6+YapL+RGTT2gp1kh2yNQDr/XkOL/cw36r5j6gU1Qyxzj7AX6bvM+rozg4doi4zAGtryVtwfVg0RfPNVh9bKvfpswKz5lr+ZsyVk0dnxSzYndlnbIIATAJKLZljv3pQaNgD/Gq3vdi8j4llFC7Ew9EBJmTqdWvzKFs69QCWrZsnlCpJKZOiebgLIAL5/7TdjA9D/ffMx9YEZcyN998GsBSfPsD+70Hgwti3HY2D9/BG/MCZem68NPu+HtALh0xWYlpwDSjB7h8S8nj2ys5mARnpqNMArO97DdN6+9/2wP97AGvV5kOYsWgTihbIifULWC6z/LLuP34JQyYaiEaVSg6ZMnghMioGXyINmvPN6lfB+D+YqtT/9rT4fmdvDcB6+S4Bk6ez8ZhLr7KfPQTKxywkm3azdPkMfEzEi0P8OBQS37SRgBzZLX/oOUztDU6yO7Yo40I8V+TTt0P0NT9LCIZJPK/clKS5A7c0YagXxD6m5LuBz7dzCJGkSUg9rXIAhnbfhicJjOOGIjUoYuPaDQ57JPwTVK9C9A40jphnbIK4E+I7DUPJN1vwXiI3J0Ymyfm3SkX3gbvuARKa9kBCDYmaVXKXn0Lg+9WH95DWJqVSIlvd58Np7Ip+aaxPZNZEak1GqoCP1rCFjGc+Xg8ymbPcgesQLbBr8ChLa7gmkm9T+ddHObw9ZjmNNHsTHTKWMQADFCFFkVKi0RxSXj8N1fmDxv8cugyCw8+NjQDWR12cnrRfNBUUCAzokGSo7x99Qo45LYz/x6rcIcwzVe1avFyJIAn/T48uOr34QErsyVMOp9ZwKCgBsDKUEpCzmQ6fnynwQKLS5pZNQMGeOsiV/ogT7vfeSf0tjzYbdrkaStxgyq0B9Xhkrmz53moRfBjn49jHu5wbztx5Ej9X6AcGgvTuoUNGH8s+kae4EE8e8eWZM20sTADdaLUGHbusQXf3AhjrWcqkyoSPV7Ek4r7xv+EexdB/xESccd3F7j0AlQe9huNYdv3j3Xww0nkT7uW7i8ulLhvLdnLNi0leZZMMSw6IukW4oeOR5qBoEtHsl44HpaSKpukyEuoK1c0CWK/fKLB8pekC2yeDgE7teTg5pWxupWQeUll5ahVxCHpYUYaj6DmKohMtOdVJ+XhmzFIiUsIlaAsBvP2iMfooS6MvOw2HtjTbbJD3cfe+Alu3S0UFeFCUX3Km+BAEhzEdTCJ7t+WeiUuRxc0q327xHomxIy3kpJnpSM6zFTdmGYg76Wutc+hxHJZEX1FqNqVokyV5Vv42GboCyac+WQOwbkxXIi6c3evZ41Yhu2Y1tE4e0MxMSqz//IwOIfsZgHU671PEvmEKtAToELDzb5o8IkmpBHSSxw2Bzv0wFsobLM2c7ldtSYNaojlzGP4ruM8s2vNcsw3YdZ6lapcry0NtJ+C0BKivVlVAVQvqsdbOn9QMJ/8picy1FzByqPlnprmIs9REClsbU0qPX4wLRrPgQ8Zq1pSbzbX/bwJYiqBXcJgzBIqITyZd85myIq7fdMA9XUpPOa38N/DAq0AFVqxWYmRIK3jyjDc2duIavI3PjCX/pFDVNo3E/RtclbQm0jxguwf+3wNYfUbMxqkLtzCge3N0bW2a+iG6ISY2HrVa/YFPXyJRrGAu/D2uDzJ4e4DnBWzbdwoTZq2BIAjYsmQcCuT5+o8/292fVtIagHXviQazF7APW+LnIZ4eqTn82QdcIEtLixs8F3x2A/D04CGHh4+B+rUF2CejgEVl1QtHQXWXLTSPFJyII+EV9e2oBKCGBMBSOgBlxiddaETyCcj7mvHd2EOJFwEsvSLwIId3EiUfk/PwEtC+1Vp84hkCcTtLK3hzDpDzr1C9xl9moUKMhPurQUdo67RBi+BDOB8XbGx6lU911HT0x+N1HMIlvGB5Y2fDL2E3tNWaQNO8l02TUfHmOd4vGowS3VkKlK/KGVf8GH+YtYYeaz6jWhBb/FP5y37N4KdyQdgtBZ5sZB8OXkUE5Glt/oPamrLd+3McXkoiJqTjIrCFQBfR1EvGQ3VLAgx0HQnlpWNQ3mPzwWngZKjLVjECWFRXPoanWdvCKTHtVGz7/n2g1HxGtmyOOJ+4RQiAEe3XljzypZDXhMihL+/kUDSenalXQR552vFJgEGPvALyd9IhLk6BKZLUQqppTi3uWOxbdAhhapdDb1VFyYuMu8y/Bg//mpYXjF1CT+BQDOMYE+dkcnNl+kwlKC1StCGDkicil3OJkXDD6BHmwQBNhALXJrN59skpRk/iPi5dKXRzK2AyrJURDzHqI5sHJIww7e9lOKtdY1KuQpebcJw10PifNlsBDIubj8slL+JefgaAjU5XCj1lfVClOEGLHIEsqov+m3urMyh10jhP1/1tAqpqWveDukZDswAW1ZGn8tF/BFJ2ai+Y5bmxdu/acpxAR6k4ACkP0pyyZh/COMxbKAGvPQQMsMB/J2/L1igSk+etbMOCFN/4nAUtDpMA4nWSKNg8uXl9RJs106cNSYj9H7lWwnKXCfgpaiPqRbL0uFPOLbHPrSdSoion33SJGzoffEAea0NK9ri55/Mmn59RydEApBBIqwgNMrYRO2oJBF8GZptrPDkA68tzBe5LeJ4g8ProK3vhEwS1A2LnmPJwUfufHyvwQJLO9jBTMAIjWOTZ90hvk6vHUp/STQiKoB0lDAD39LbRJXH9p4PPU8yi/4nEncjcRTtZfRH2P8hr/E1E0pxS0Csqi5ZcpKm1iUCgL4G/ohG/1h/9Ld+rE6eoTMRwRpCyr/2/C4ZbO4dTce/QJviosVg1R1+s9TEVN7DWxr8FYHFPbsN+4Wgo4iXKKgB02fLp0wbxjfjqrJ1f2vGkHjh3XokjxxX4LawPAhKYuBC9B8K9C5lEV3q6CxhgQ7RhWgRW2kxL88D388D/ewCrdusheBMUitVzhqNkEfMfbmu2Hsa0BRvh7uqMvWumwsvTNNVp/N+rsWXPSbRuXB0j+yXP5fD9Ls3/Rk/WAKyL1zX4Zw1bxGYLoAgCGYA1rjO4EMbVkdpdaLVscfi4/EAse/mL/kLYCwr8FCNRPnQVUGqU+Q+9Qq834iPPUIQb/i3gozQQ6747rUTgAfOy2y5ZBNSp94/JhX+XqIhG0VcUhSW1nuEDkVMjiTxLTJ0cGnYB66IYoDc2XSl0dyuAdyeVCDzE+s6kOYACcTP06ZaUdmmLUfTHxSNL0bgli1Qoa58R2zOx1Clb2mnwfj9Iol20tT41UM3RD6HXODzbys4zQwkeOVskXSTKgUIXhQqPs7Y16frDLQ5PZWmXVCBdQR5525m2abd2JuwusF1cUgtTXThkAoy6jF8IVb7CJgCWPNqNyGOJRFZq5/+PvasAj+J43+/tSQQIISGBEEJwdy3uWhyKW6G4FStQoMUKFGhxKy0UK+4Ud3fXIoWggQAhIcnp7v/57rI3e5vTQO3/u+95+pTczc7MfjO7N/PO973vSQ6VVjaBn8C4kRKnbwTSsPeQXDmOFNQo3dUTO3SEw7WDSpTWsnmaPjePQt15vLrI4a6EgDdjcR55k0m158xX4lUMmxcd25mQJ7ftpmR74p/o9fKItTvDb1VF6cMs4iGsEo8cTkhOB8YcxYb3bGM2N6QqmqXJ4fD2BAH4doItv8y4MUaXYpnfT1ciIZHdS79eRoQyqjZrexTtQVEfor0IiEP/9uvM6YOURig1eWpfTb+sWLzsGK7EjIBRwca6fKMjSLNqrPVSY8kqmKcai19zHsDDSJaCuCi0Ghr62z8oyX97HeJ9GVK+NLEl6hRkKUTqjQuh3r/R2galvakbtXMIYJEfN2215RKji2lB/nkXHpQG9LHt8lUFNm1hvrX3zrbXpjmlYxIbc46DORopmR7PYTdJ4IP4DkUj4IBScF1ZCv6oiSshBGdyeNmfDxVYulxyX5ECPu/suh1Kb6c0d9F4KDAhdIMZwKqSyCIxt6frhSNpW8MRD529jpGKIqkpiqYdNB183mKubt3p991fHsLOxEfWMqV8Qszk7aL59a0LBS9JuZm+CUhj+86TN+AMwJIfrIQYjqBYEnuO7Ckr6t4qcEESORTrl4jTHCOvpzlDXE4qxxRVH+QjulguVECcV5eu2P5GT8XnNqIOrsA+3xnDzOq3oh0sMw07nzAOzSYNTebnYct2Ng+LFxPQvInreWjvhum9T+9/0TIGCxjQ13FdlDJJqZOiDexjQnDGj/8O8WRw6GCEDkhEa+AficV2xFSc1flXAFj03Gt+Gg8Fb+tPY9Hy0H8xGlDLCFQ9uWlv2Q/2AB1G0KFEx7djUUzL1jZEqRFXsCqmTGcvDx8NMGqE68hYL4D1wcPircDrAbc98J8HsErV7QGtTo9DG2aao6rsWcNOI/Fn1HP079ocvTqlJM+9dP0uOvT7DvlzZ8PGnx2rELntVW9Btz3gCsDad0yPtRvYgqlQQR6tW9pu7P1GtoEilvHraL9bBT7Izq7VRa/U236FeheLnoqt0RkTb3UxX+XPK1AliS3UfIIElHIQat/o+e+4KAFniPiWCHDJXp7jcG+D/bQ237wGNKq5zNpLqRz0qjUc7vxhe9030S0QwL+xlidFMgpLXxh3HRPenLd+3jFtXkzJWAGxf3C4+QurI53pLsol9DCf2NPJvTtG5L0r7x/C4HrlrMVJRZDI5j0xOcgmqi0SyTpxV4lGxOs5JREo4ufPTAko85illmRW+uGCTDpbfr90LYGERe0s0FWbF0OzV0JM3LgLlMd3gpPwy6SbtQbKsKw2AFb9Z9txVcLttDlzfZT1td0E79rDoer2jshoYlEL2m+XgM/MSNAPH+VwUBKZV6USj1o1PAOwCOS8e55Declhb5qsAor1N+HFSQ4PtjK/ZvqER65mlvq3bFPi4mX2jFWrwqNGNdu2176/i8ExJ6zjMvzPyii9mx0YhJbhkVv2XErng1xhb3JweXRyoloZHw9MmyHh7PIHRgx1vYAUF6Vi27Sxow2e3BJfKHBZEnnwKPgNhrbahA2Z64FSUKR2TReDehKOlQKaDFi54SWeP26EJC6rtWjZijsRsGua9W9jjWbYm7kfBvpvQ0wwSwsiMIBAAbkR8Fb52i5EZ2LRk8sz1EXN9CyFSP37Cqh3sMgvY922ULXu7hDAojYIxNq6gwNxOEmN0qq7d+WRwUVqnyfPNZUlonMiPBetfHke9Z1E50nrnzxNhSTJ/B0yyIT0LrjgxFQQsZ6ICAHdHaSOWtsymeDfj4Hu5qjIubuJX8Dh7T57Biz8mc1JShEjfjJ3zPfrduDeMsB+X9qOCDY+RUkt23ivSj8Kl/xroWxpHg0buPfs+8wZCeVN9q7X9f0Opg9QMvtDH4vqsujYlZlqobpf8jxPiIP/UMbzJ3AckubtcekCRwCWXB2VKiqW+BVCjEzMIGnGNgi+finakIswnM6pQ2w0Syvs3MGEXDn/OnCF0vhITVK0qpVMOHteiSQmCoyp8c3AvWeUAEmTV0MIzOjQX/IU4f35x2D3O3ZYRIqDhB2ukRzyUKQuReymxp48VeAnSapU1iwCejjhYKOydI1oXTubkD3yr/OxO/e0MeE+BkjUgFukyYXZIZXdudRa5mMDWKqj26FePdsmdZgaM1RuCEPbAXCJynvUe2/h1HhAFC9oEjcXlRPYoZC+RS8YarZI1QGaF8BKzUh4r/F6IHUe+M8DWEVqfG5OBTy1Yz4C0qaUjxbBKeK9Orh+BjIGpVS+Ii6sTxr2Qbq0/ji9gylLpc6l3qs88YArAGvrHgO2M+5oc1QKRadIzXdwE3BJLGoh6cetEPw8lxJXHdkGzRrGKWWs2hgTn31plphOawIqSRam/pmA4oPtb6hpMUWLKtGmBpdH++TNesxVDn+ssg9gqYonoVl5BqAV1gRjTxZLBNiin5UgJULRiuaKR6fjtmDszRH7zYtJecRIRd8wEOeQnPdHIRhRPb4eEBgI7WTG5eRs/DSrZ+M7xWPM/ISlWQ0JLI7BgYxA153x/yXuFr6RpGWJi86nRzg8kqinyVP9xLqJJ6z6U5aGmFudHkfCm9k2LQDv7nN4dRF4fV0BdVqgaD8TVHamhnrvOqg3L7Zeb6jRHKpjO6AwsHTO9Mv2QuHnbwNgyZW6FoVUQ8M0ttE1q9dzqHmsv02Yum7YbJiS01yp0YuXOWyRkBiTqhSpS3liBN48ucOhigQA8M0ooOQwE54c5BC1h8278Ko8IpM3yfK2iSeucwfbtn+Nv41Rr09buzP8aUWU3mZJ0yULLsIjn+waad8nv72Aue+uWT8alaEU+qQv4vD2iJB+/iIGJhB3E6VWuTJ5qq299wXVER+lwLV5rP67oS/xdYttZkXMnDIxAjnXWQCnwcadweDv5kacioF4xQtsRMYzDAg2tOiBqMKtUCl2NbS+7OVxIaIVMidHZErvh1JAh7w+hru5mUqVHOhTH9oM9Tr2G2Ws2gSqzgOdAlhiG7/v4mzIn+nzNP4CunbiERL68TahxCtCoJJortQgpT5YuFiJZ8/ZtQREESDlzK5eV2DDJjaWRQoJ+KyF87nCJXNTifXygcEu34Gv3ygwa64kvTmYx8C+7j2j6j1roN7ComvjuUC8UmVDTj3j3VsY/CPuaUqYue+IA88d0/w0DiopJ1rPb2Es7tlhgrSdXq8OY7tEsECumKl89gg+E5ggBR+aFdpxS1121RGA9Xgfh8cSnkLKGK4Z1xRpBaYumzRtA4S0KddtG79PQNgb9nlU6fe4eYtFKxIvFPFD/VUmf54a1Odx7hxAqbCiTX9e3aZ5e9Fk0gLqVTOhPv679aMDkYOxS29ZA5D16GYyKzL/uoK1kT07b36GU2MP/uRs6nLFO5ci1f0zHgUKpK7t1PTX3jUr4+9g+GvGZdchbV58n5EpUrrTzscEsNSbfoJ6X0reNkOTrjDUa+tOd7xl/mIPSN/l1RPW4tM4Cz8ymaH2ZzA074Hvpiqh07LfohFDTS65I70A1l88cN7qvR6QeOA/D2AR8EQA1LZlk5ArMqWSxzfTlmDj70dRuVxRLPye8ZNIZwGpEhat2RUcp8C1g64XY94Z9PE84ArAWrVJj0NHJNEhVXnUqGq7YPLvbct34GqR6Kj3yssn4LNIkgJUvBJWh47HlWsKBJqATyQAVtoIwQyG2LMZsZcxPZalAfQJKIxRQZY0gHf3ONxYbB/A0n/yDu1LsIUPpdRRah3Z9JlKxMUxPwxvdh0h8/tbm49WZcOvBZaaCbjl4E4WZRqQQh/Z+UlK6N+xesq974F0/F246zPic+mexw+bCzAFOoq+oigsT+y49jlav2An9yJY9+SAElF7Wf8iapoQUSflJoQi3CjSTTRXykPE9W7UEohlf0ND6YKaFT9Y6zMWr2hWIRRNUGsQuPKg+eD0+Zskc1QL2dDXJ7A6ngEOE4PK4fMABuxQmZ9+VqLO9a9RUMcAIF2fCTAVYUTef9xVYKWE+4siByiCwBNbsFiFN89sU11V/gLKfmvCw10KPDvMNt+R9QSEV7fU//IlMHchiyzRaASMHmHb9vx31/Dd2wvW7ox6XQnF1zFulvR5eRTq5ngjM/vdVXz/lqnnDUhfFMMzlHR4e3fvKbDiN9bfnDkEdOno2h93/lBg1Rp2XdZwwbzpk1vcfQ7Xf2LP4fUszzCuyU7czdYe/lxKDflcj1ZAK7B6Fu8tjZx39HijYuTVRbKuQaabi6xN6bqOxPtSVZA7ivFaKXgFDqMzctuhDFqzjsNv6iu4UIL5uVdAYYxJfndQxarT+6BZxlQtjOVqQtVzlFsAFl1vD8QibsAvuvAgkPBjmJwnp19vI0JTBpzZbYoiS4i3ULQWzUwoVsR5v44e57D/ILumYnkedV1EfCmJm2bGUGs7Zk6ar2Y7vf24eAWmS6L20qUVMGyw6zlJlSrev4PfMOdCGdNDluKFKjvcTZ2kejW/ToHqDFO41HcZAZoTqbE/DXGo9JQpJlIdy0JropY/ixRV3rwAnzkjmN/yFoNu0HSXzTkCsM5NVMIgId+/pVGg/ds2CDKxKMSkiSsgBKdUVlz80wsUus8iIOMrxePEJZbKmMPNFE+XnXdQYO0GJW7cZL9VrVqacPYcZwVv/fh4TIhmh0yCf1ok/bDZaXMEchLYKdrhkG7YoWKp8QP7maDTCjaRgJkzA316uI5OtdfwrdscVq9jz46raK6tO5S4cJHdc8P6PMp6mOqeWn87uu7nuJv49s1Z69dfBBTAuCAWIe5Oex8LwKJ3M72j5abv9BWM5T3j5XKn394yqfPApcsKbN5mWSeUSNqP9rHfWSsylqkOfdevzWnplJ4umjvpsl4AK3Xj4b3K64HUeOA/D2C17TMBV2/ex7dDuqBVI1t1lxev3oA4sgwGI2aO74faVRiXgNRZCYlalG3QCxqNGpf2siiM1DjUe41nHnAFYP20woCzLEPCHH0l5QZSaBPhN4jJUgsaHyTNYiqAnvRGef8GfKZ/yRbnOQrgdJ055h+6IBNQVgJgBeQUULin/c3L5oQH6PfqqLWe+v7Z8HOoJQ0g4QlwZY59Yo43VZ6jZyEGyrROmwc/Zqxovk5OUjyp1g4bwOW6T0X8GjQRn9bjUbyMATkf2UqPP4jsCB+FEreXcXhzU7JgTZqOcMPvcFd+3e+bTqhVryguZmFpEJsy10c5WdqcK7+/MiWh+OO11mJqcHiYvZM5+oqisETLVo9H1uopgZGjSc/QNnqvtVxl3yxYk7mOq2Ydfk8E7kTkLhqfKSu46CfWv4kbJ3D+xhQAFoEyBM6IZg+YmfajEp8+noLSWtZffcchMFZgKUzPXwALfmLzgjb8tPH3xKb+qEJiPFBHIjZA8pkVpphwfxOH6DPMrzka8wiryPwqhtOL7fXtZUQmSRbuD7GX8aMElP0moSKKLGdAnaPUTLG+JXG3MEYScdctoADGO9lkXL6iwKatUsU3AS2buwYLiPSdyN9FcwQGvL2pwK1lrNyFbFGYV28vbueypAzLrerTzbhnYFEh/Q/VQqurD/BCw9J7CgSsQPiTJdZLaWP/R47sqPKUbVrTxQdgxvOWqF/Hdk5TWtB3U1S4nfU+Dlc5ZPfdQR/K+ZSMRcpBNWiy2wAW1bFnnwInTtmmyvloCDDlkTXrh4FYb94qMHOOa/87mtdETn1Skn5YozqPapWdR3js2Mnh7Hk2t+kdWK6s82uUp/fCZxlL9zSVrAxd92+cPm46vWWMRNNogNFu8KJYyy+ZDNU5ljIob+zb0M1IUFpoEHr3MCIsJWaTon+aVTOgOs5ClInU31i5oSevDWtZ+s2i3y7R5NFX9DmpshJXpGimMjWh68oALUcN2wOwSFCE+K9EoxE74A8MevU5MpsYZ5wj3qhp6++j4nkJ72mFeOy+wgAsygYdPdIIpWMh2lT5SbxIHmlIUVBnLihw44Zl0xtijMLwV0yVVAjNgqRxjCLAXuOUoq/exNagx9N9hi1p+1iLEg9PQoLtM0bqnqTymRqT89UVLyqgeVPHdR04xOHIMeZQe+nmqenHh1wz591VTJEcjvRPXxQjnByO2GvrgwEsvRZmVdPbjJOU2hFUauj6TARfwPFhzYfcu/fa1HlACsTm0l1C7zcsuIHPUwTawT+CDgSfM+FkdO9mQoQLZWgvgJW68fBe5fVAajzwnwewFizfirlLNiNrWAjWLvwWgektIeRJWj36jPwRZy/dRrbwUOxYPgWUXUXLswAAIABJREFURmjP7j98isZdRiEoMB2ObWEpZKlxqPcazzzgCsCasVCPG7ckp5wtTChciG2yuHev4TuiDVsEBwRB+z0DRjzpjeL1C/iNZiT+dOr7auRK84Y4xKRAKQk5dmA+HgW72t8kXdbH4NNnDEQjzpz9WSwgm5x8Vtq/h6VOYFjZW9aPxIVYQgLw/Q+2fECjcy2w4Ww6mKYddgZ0Byl+DerPo9rrdXhiTLDWdSBLE+TXZIA8wilcvxUFtDOhHToDfC7HClxiRRTtlrt/C7z297XWTdFdFOXlqRWK+g2xEsVFSt/CrkC8OCEBWprwCKuQ0s+/JzxCj1eON/qe9kV59yp8fhzi8DKK0AiasjgFgCVXqGubLg+mB1tARzITD4ybqELDuAWoliDh2GrRA4ZaTLkxMRE2pKF+vsDIr9wHsKSk5/XYsJv7UOF7I/5YwyFGwoGUpxWPkFLMr8tWKnH/AXvOGn9qQulS7Dmb+OY8FsQxsujxfCUUWMQisPwyCSjhJBpl/ft7+DKGqTxKwVl7Tj9+ksNeSWqRJzxK8mhFe2DA62sK3FnJgJaTuR5gR42jOJzbVghA7Fu76L04ksQ4zOofroOvr1zFCw0DC/IZFiEiiUVPUGrV4XScDdAa9iIMnS40SEGULBKEvwp+hW2fbrW6pKAmCPuysCgO+TylZ5YbNdsjAIsqJ+4e4vCRGhFed+pgQvZsqQexrt/ksE7C8ecoAs7Rg3bmLIffd7Pnv1RJAURc7czkvGfuKHiqd6+BeitL6TPUbAlDy54uXxupUTsUK1U+uAWfaQMctjE0jL3PmjYyoWQJ1+Og3rAQ6gMSUv/PeoPSnz01ir6q/HQTpC3+EloD9fyz2VSl3rkK6u2/Wj/T120NY1OWUuioXXsAFkUiU0SyaE9UwHUfoH9MX0RKVMEoMo7ev3Ibe/AG6uxhhPV8oUSceeuHd5II4+5dTYj4QFDW0T3JxS/owOHcBQ40h8ly6K+j72sWJW3KWQi6YTOdDo3q1B5olrOItnN+9bA2cLj5GgLjx442IjEJmDKNrQd8fUk51v3fCmkHzpzjzFGZorniXzt9lsNOyfNZuhSPxhI1X0/n3ccoPy32EmbGMqXHYYHF8aWHlAYfAmAp3sdBM3cklBIlbLovIU1a6PtNgekDVUE/ho+8ddh6YO4CFV4mUxKGGJ9g+Cu27udDwqEd/yt+XaHEgz/ZmqhDWxPy5nH+TvYCWN6Z5vXA3+eB/zyA9fptHBp2HIG494lmAKpqeQsXz8nz1xH96q353wu/H4LK5Rzzrew8cAbDJixAoXzZsU6SQvb3DcP/bkuuAKwJPxjwKIr5p0snE3JmlwBY0Y/hO7artQAfGg7tOLbA9sizJiP8+9W3XiJwSiTN242Z85RQv1CgBKNDQnBhHvlkSnbihfG8HvmjfrPWowGHP7N3Mv8t56GS9u9Svt8wqQYLn5kQVA5dAwrgRTQwf5EkOicUGMKPhPIaS0lbnX4ELvjXNVdHi9CVJXfjmJZtuCkCjCLB5JEnAaZbKJvQx3yKTqfpzkzx6jkU47ogbCjjceCgwOPs7JTZE3+3fLEbp7QsVYQ2THl25UD0WbZoyNXchEzlUi4a5KTiqSGSl/aVpMtJwtyRUbpf0OjpKQCsHQkP0fPVYetlNf0jsDyU+VFUSKvxfhUaxP9sLWeo0xqkICe1sRNVZoJe0b4d7X70wLs4BX6YaQEkqicAjMoYKD3KiPsbOby9zTYqNHdpDot28AiHw5LItxLFBTRrzIAD4r8iHizRJqsqIfccBmBp0gso/bVjoIFUzUjdTLRP/SPxkxOlqF37OJw6xfpbpxaPSnaATHvjRSkxlBojGgEgBIRI7eV5Be6tZwDO4Xx3cbXKOazJ3cruFBj2+iR+i2fKnhVOV8R3Zx8gRs3U2XLoliGXjr17Emdtx2pdFIa+PmmtM/f93Kh6oppZJY/U8kQjsI5AO52PDitbs+hJipqk6EnRuMf34Dupt/VvPkt2cBOXeAxgUQUUhUXRWFKjM552bXjkyZ06XhtK5aOUPtE83eCSUAUJVojmTirtvEUqREezu+jd3Ygwxntvdzw1q2ZCJeEaIuJeYy1GTm73IgATpqggocUzR2BRJJa7ZvzqCwTEM4U/8Tqtf0aMTs/Sx10BCeJ1mq1LoNq92tq8vnEXGOu3d7c74A0Ar1dgzMuz2B/3FBqDEhqTCjmF9JgWUBG8EeANCtA5A/0fF05BePQQvMIHJvjCEFkExqCsEJK/p/pMBkFyDf2tgA0y5qB3x/2A9xyQQl134Pcw5U8ZwTLi4gU0XstSxUyZ9IjOrgZxoonmyXvDbaclF5QLDpDIxNkLHA4esszfwknH0CWWRfWZipaHrrdzkSB5hOVNnwpYEmRJbwoIEDD0S5M5fT01Cq327k+eflu5Io/aNR0/+9dvKLBuI3tvFsjPo60dlWBPffkh5ce/OYdFcTesVXyToTR6pnd9GCdtM7UAluJ1NHxmDgMXIwnVAcwiQrovp0EISUlr8iH36r32wz2g0yvwnUTBVC1oMfmFdN1vEaZYu4HDDUm2AkWAFy3sBbA+fAS8NXg98HE88J8HsMgNx85cw4Axs6HXG2y8olAoMLxvW3Rs6Ty1aMSkn7B970l81rAaxg61n0LycdztrUXuAVcA1ojxesS8ZgtSeWoT9/AOfL/vZ62Wz5YH2pGpJ+KndERKSxQt8YdN2HYoPZ6d5lBUAmCFlOSRx4nyT9Go1XjN66z1SImb5epJYqE9JZfg53Js8fhTaDV86p8d9+4rsHwVWzTSpq7X3Q5QvGQA1ezg+YjSsFPq+K7HsM54x9r+6KAy6B1QyMw3QrwjoikEPWrG14WhaTcY6rJINnszVXnrAh78NgUVurFNe05VAI5l9fzEn+qXgyLEiVRvd3HEXGQb2LxteGQskXJBvST+Fsa8PmPtZtd0BTAh2DPeC+k9koolqVk6MmPF+ggeMCoFgHVO9xJNn7MUnmKaYOxMJt6nuh5FKfDLr0p8krgdLd+x1BuqT9/BlpPvx1lKxEqiB4jvJDjIdRQGtSNVk6qcKCCNwJ4ZInG/t5FDnCTCqlB3HuklIIWcc0oupz7k1XGsSbhndc/M9FUQPiWv9W+lr4By4xwDWMeSnqNNNOM8q+abBaucpHwSKbd0I9qsiQkl7KgJ2hsvSnGhVBfRypTk0aih7RyKPs3h/mZWZk+hm3hX5Q/MzG4//WrWu6uYKklTKXa1GCYdeYtEFfttidBtQj6dJYJX8PFH0sytmP72Ema8Y9EBJa6UQMkrpVKkQs9bqEL0S0uPV7RZDr2GvWwuZ2uDEM4S8aiIeQ6/MRYwnIzPEALuh7WpArDoensgFkV6tCZy5nyeg1jEW0ZzSTR5JJ/DByz5CzlYHxQs4Es7qqHSeiZPVdkovxGQ4O9Cw8Nn3igorzPeHF33MTCVrAJKbV4ex4DajCo/dE7HgFpK033/nrU+bJAR6VjWmqvbw5XZu1D+FnsPiBckZsqLbzjGnxaZWUCndrwZYDKZwSHxPxFMghlcwuXzwPUrMCk0MCl8YcxWGIbwAmZQijcSkETXKyTXE6BkAa2IF/DfYu+UAk75WuZN1zejUFDHQF8CfQj8kdvgxyfRcm4V9iyoePg0B7b/LgHq8/Bo39bzeezKL45ApIuXFKD0JLJyCTvwWZyEV9HOO1/eDnf3Gnx/ZL8Lf6oLYV5GizAEgbIEzpJRKiultIpG0boUteupyQHnmtV5VHWSsitGiortuKX46WmnPCyf4nDFhcKtvepTA2Apnj2E74yhZn47qZEStJZ44dLZV0X38Pa8xT+yB+ytdYbfbwRFEgtdT5xuWfefl6xF3UlN90ZgfeTB8lbn9YATD/y/ALDo/h49icaqTftw+54lXCdvzgi0bFgV+XPbhsDLfUEKhpWb9Ufsu/eYN+lLVKvgmZqad3Z9mAdcAVj9RhiglaiqfTXYiLRMaAjcnUvwnfmVtRN8nmLQDnZNKuuo1xTNxUU/tn6t/fYXXH2THafWcCjE8ChkKscjV3PHC2MiGCeicdHWZ66HCr4WUpOzXxtgNKWUBV9SfTF25WebP5FbSs4HVKKwDu32N4BCYO1PyvU73iSyXdvTCtewOzcDeNqly4tpwRZlnnMTlCD5ctHKv+8KnypFoW/NgEB7/iFVvgNnN6Jdi6rWr6v6ZcFvmVLHPbU8/g5GStSDmqTJgQG7q+PNdbYByd+RR5AkUkhseFbsFUyNZXwTrkjBXc5SowH+/Rs4LGao3w4Zu/RJAWDJiY/DlP44H8GieK5eU2DDZiWKJB1F59hvrfXbO43/aYkST56kTqJcSsb7SRIQKJmaJDZAHFgJUhXLASaklfA5yE8lqaOjRphA3EhkvV8dwbaEP639n5+xKkIm5LHxF6UqOjI56X4pnxBsC2NAqPw6efh+x3Ym5MntHpgnB3yzhAno1d0WXHt2lMNDyUZ3e7GrSFf1Fb4OZ3Nb2id5CmSuB7kweZcKCo7JtWc27EPhpEnmy/hMEdCOXYJBMcex7j0D/iqdqox8d/MhTx4BHdta+iQnB9/66RbEBMdYm98a1gClfZIJyRLi4D+URQoRUKZYsCPVABY1Ik/bo89IrKBFUx5Fi3i2+ad0a+IhE63nFyaEZ3Fv3OgagxEgEnjRXBGay8tTGuQ3X7tGZnwn9gD3lM1n7VezwecogAOJj0HKoqIFcj64kY1FnJIKISlYiTawrwnBwe7f34qlBnQ+1xIJysK459MFPHws0UyqdEjgA5BSPsDlm+v/RYFrPsDT5GHv+G48iiWyaE1H0cEjYk6ixuxySKtj8abZe5qwUJIabE+Q4mM4TP7M0pqE1iZSEYka8SvR4L0kTdVO1K28L9zzh/Ad3936cbQyG6aFWniz6P1H70GyH2YpbVIlBw0wIUOg+/NQbIDSdcWUR/qsQT0enzjhj3sVowClTooWlEHAl/1Tx7/1McaB6pC/Y2dkrIhWaW1/m1y15SmAxZEIxPwxUOgki1OiDMhTFCTQAl/PVbBd9dH7/cfxwMHDHA4fZWvMksUFtLnUBdwLluqhHf0T9tzOhWMSOosa1XgQ55sz8wJYH2eMvLV4PeCOB/7fAFju3Ky9MoIgIElrQSb8fH1AUVte+/s84ArA+mKgbVTd+G9sNyfKq6fM5JmiuROm7+zuSJmKFKpE0w3+Ae+zFsPqSSrk17MFYmh5HrmbOv4xG/DqGDYm3LfWQ+ARgUhkF0e9hdaYUpZrbLPFuJGZzT/ihMqpDsDxE0rsPcA+b1DkPmrslUiZB2bEuQ5rsF4S2h+VNQr7ajDS8PK+mbEhs4U0/OYSDrF32A94oaQpCC0YD10vRmJuz0eqzYux5M0VjKzJxBA6ps2LKR5KVot1n9a+QIsXu61N5VdnwJw9zWz6VrAbj8C8Kf0s52QalaEU+qR3nCbszoz2G9gICr2EqV9yEYF7Ic3bpACwEngD8katsqn+aXYWxSlGuOTQX0Xf1wOt5Yi7iHjHpLZ2PYcbEgW2VjK+N2f3QCTWRGZNVjpJQEaezRfy4f3NCugkG2+KyvLNaLvhmbNAiVev2HUd2/PIk8vi+y7R+7EviZHaLw2tifRTssOkkyhaTjBC6SCdSq6MmU8diIPhTR3e0twFSryU9KVPTxMyZ3Jvg5aUpMDkabb8TvL3hpwLbn2piyhSU0DXYMapI+3cCe1ztJKoZmaKzoyJWyIRyLM5F2w4gxJJFkJrU/4S0A2cilYvduOEJE227r56yPo8K9QqYEwy0HLxEoct29nzeKruAdzMxMAVucqnXHUVSw5+EIBF/ZXOH+l9t25pQqGCrv1OqTS6Z9HYsyoab1WZcU9TwlyN3O/uPIc0djSGon012IS0DtRDX8VwmDOf+S44mMfAvq5BN7+hzaBIYKFU2ilrwKcPhhxUpz7cytYOAZxlYi/4SYnnL1jfevc0IczNeUnXU1/L35+PCJM/7vuw1Hd3/PL/oQwJfHJqAeROTiVAqVEgQQ/sloz3F/xU5I/eZb1dQ4fBMFRkKT7iF5Q6FrE0J/K9zGQtS5Gl8zcrbOZP/14mhHwkhU2xoefRCixYxN4x9G6id9TTZwos+tnyeaO4eaiasIHdR8teMNR0nqaqiI+F31eMGzGeC8S4TBYRiGJFeTOoTDZ/kRIvotk89OT9KJ1Hm7dyuHSFPT/Nm/AoXszx8yN/t9IBBx10/JPW69VhbE9gpP8LQ6qiUZocHnXJEwBLdeEwND8z1TqxIWOpatB/Mcqjdr2F/34PLFvJ4f4DNuebNuZR/ugwKG8xlWTdgO9x5G0Z7N0vOegtx6N+XS+A9fePmLdFrwfse+B/HsDyTox/1gPOACy9TonBoxmA5ecnYOQw28WS6uxBaJZOtt6EsWwN6D8fmeqb0vwyCarz7PRX3+1rGEtXx8apKoS9ZtX6FudR0klqwozYy5guUW3rE1AYo4IswM+1EVGIF3Km6GPbHj/BKBEauBPZHmkVajNpKpGnitYl/2EUPsTAJlOBkqAf3J+XKhH12PKDGxsQi41N2eI5s9IPFyJam7+L2qPAk4Ns8R2h34g8oXtcpl5qfhqHMUGJWFiapSp+naEU+qYSOHpr0qHwY8bfQj3fvacr4iSLiyK9TEiXI+UGmk7fV7xnnESTU5E2IB8A36/bgXvLouak3+t7jEFIzbopACwqE/lwGYwSkpfrEW2QQWnJ5xDHLpPhEYbFMGCLzxwB7bdMsU5aVmyXlOrKf+J6M07lpaTcxbQCwkxs4ZWvvcmcLmdMZJ+VGWOCWgYKEIhCYIpo1aqYUKOaxfetX+zBcS3j+ViTqQ78ZkRAL0l5LDPKBHWAfbDjmSkBZR4zjp9wVRqczco2avKx+H66EgmS/joDMew97HIJbIrAokgs0R7t4PH0GEPbVpU7j/p1A9EwTXa7746HhnhUfMrIstO+T4sxqysipzHCWj7AdBNlE/qa/zaWqwV9l+Hma+ha0VpsaYnAOEtqiQgQrl7P4ZYEuHzZ+Cy2BzJly0GBxTFUQkrs92Vjm5N/xbztSB+SAYk6E2LfS/KK7N6J4w8vXOKwVQKkiSWrVxNQvYrjTaqcEP2RuiDmZJyHTKEC+vbyfHO7cLESz56zudqjq8mhOiJtRGhDIlqunLxZTdGZUdQE+VBqiQv2mf+c9PYC5r27ZvPdnrBGKOwTbP6M0oEpLVi0bp+bEBnhGuATyxM4lzb+KRq+v4bn6pSgjIdD9tGKa1UG6FRG8GoeYX5+UKoV4FSAUpMMNpmBJ8Dn+BZw0EIJPVSCFsY2PcyfcxrBco0IUKnpWss19F94Jl/z3/Z+79dtUOL6TebT/gFzEXlHQkzfqjcM1VOmqZMyqnZTAKrfYanMuZrxOPgIuCU5oCGSceJi+5gmn3e5c/Lo1IFHXJwCJCJB1jZ2EkolWeYVGb0P6L3gyuQAtUjuX7G8CXVrW+bakuUcHj5k875bFxMiUyG+sGYdh5sSvkDisyJeK2cmFzKgiEeKfPynTH648mummqjtx97L7vTLXQBLfWgT1OsWpKjSUL0ZDK2YWqQ7bXrL/DMekCsu9+/DI3znFKhOSZ7VTl/hrF9dbNnGnrESxXg0a+IFsP6ZUfO26vVASg94ASzvrPhHPeAMwIqJ4TBWkpZEqRqUsiE11dHt0Kyebf3IUKUhDG1ZpIunN6fesAjqAwz4MVZpBH3bATi0QAmfh2yRrc0poEZPx5szkiMnWXLRGvhnw+LQGuY/bw+5jDcqFsVEnymRiOa9GfG7ShDwKMfn5vJyMskvI5ch62lGFm2s2gT6Nv0gjUbgFTyWdrQFSIgMmkihX1/ncGcF+2EONF5DKeU3SJrKAAZ7fvP9rhc6lM2KXXmyWr9OzWmntO4Sj9fipYmF4W/e1gVGMZcEQJF+JqSzs0GUS77PCamM5mlyeTrcNuXp/rgnLGpO+qV2yI/IVLasXQCrwpONeGRkIMXB8CbIp85gvnz1Ws68mUrLx2JsdDNrlULa9EiaxuYZfUHh6vsOsHGp8AmPenXc23ht3qbEpcuW+UmprhGSQMXcLXnckyjDUZlPJhrNG0upXbjI+Fvo85w5BHTpaJnj8pRYSmtTzg1D0kv2TJQYYoKfg0iHOF6PAhJhA3lqlrQfH4OkWP7MNPyUR1nJJvbhWh2eXWTKmUsrnkLPupEsVU82k4wCj8hHy9mnAjB0aTuU07FUET/+CSq+txCukzqboUk38zUmCbjZeVUXqEyW3V65sjwIpCQ+G0qFEy1Tl1uYxJ+w/t08TU7MCWFcPymA1ulrEJgt6wcDWNTg5SscNm1NqdZbpLAl+oNS+uSmWTsXqsNMOZG+nxi6DpElMqJFU88BLDkJf8tmJhQtYh8kks9ZSgdpKhEfsPdC4F48hu84Fv0kBGdC0sSV5qJ9Xh3BVkmqLH22OLQ6GvhHmr9fuVqJP+6yOe+OMpXYB94EjP3OMvZN4u5Bp8xtr3vWz4jGTqURoCAwyAwSMUCIopgIEFK9fwXVH+fMYBIHHRRhmSFUqG4pnwwscWpF8t8MjKLvY7hEVIzeAJ2SjZGz96ji9XP4jZbwr6UPBkWuuWP2VAjF66b+qMR7SUr7iByLkfEk+y00NOkKQz2Wxilet+jddVzfb0Tbs+y3NKwSj2fBwB6JgikRLxMB88e0y1cV2LSFHQKJbUjH+Is3XyG/7py1WX3/STAWLOOyG3KAekymHUji0pjJ1YlknYyEDkjwQDR3gCd7DcvVZzt3MIE4Np3Z9BlKc9qzaKlNX3TpCDcLyA9X1maug0q+npGnuwNgqTcugnq/7W82ddHQvAcMtR0fxrh5G95if4MH5ByLYoqxeutSqHfbvnMuR7YHRcWLli8vj/ZtvADW3zBM3ia8HnDLA14Ayy03eQv9VR5wBmA9fMRh+ly2s6OTbjrxlpp67zqoNy+2fkQLCVpQpNZoI0YbMtGMFepB33EILq3kkHSN/Zg9DQI+G+6Ya+WyPgafPtthraeAJgP2Z2liJvy8N+YKojUWMEs0pf97NO/MNgM5Yt/jRO6OIKBDfuo/JmgC0t84aL1W36Y/jFUtEQWURkbpQGTrmq1DfLo4a7m9WRqjkCYIurcKXJCosHCCFjXi60OMQnDkO0qxq9ShBm6GWMAZst+zNERxTcbUuhttXuy1UUtcvaETVK9YZEyJQSb4ZU65oO4cvR/7JSltqTl1lXfaZ+ZQKO+w9FHp99qxS5GpQB67AFaT5ztxXpfMwE2Ao2QBLY0mmf68uk2Tcn9fucph4xY2x4oW5tHSCc+atLLlqzjcu2+5Np9eQA5S/kq2yHoCHu22TY22x1clT8eS8sfUfrYNN/VvJHOpEUyLQ/FeEo1CXFtpHUSj8IKAiEcWLhcy6s0TSaql9F5oM0ubWtHS+AsYPtSzDejxk0qb8P+SJXg0bcQWn/eXvUf0TUayu7DaMXxXuwgiVBKCPdkEkYOtnde1Q8PXDMBSC+9QNd6SFqlv3RfPKtVBiSfrrLWkF3zRckUH698Z0gto1kQwR1OIRlGmVfs/xWeS1NqSPiHYLuEL85nwBZTPJEp24xYjsECBjwJgUT9u3FRg7QbbFEz6nKKb2rXmoZYBnz4LvwWpp0ltW0A/pG3RzCmfjqOXxq69HE6dZj6pXUNA5Ur2x//gYQUOH2V9pYhBihx0ZpQq4jN7uLWINJ238fPfcUHCXUiFxgSVRq8Ai6oZKbCREptorVqaUNiNFEsqLyqS0r+rJRjhCwuYpVACBTrziE5QYMN2DjwE0OObNVxAj27O70V18xw0c7629sdYsDT0/VlEsjM/EP8gpUyKll2VDpS2zjmgUeDuX4fv9EHW8qbIvNCNmOfU1+KXjgCst+8UmDHLdq5NLrcS6i0S7qi6bcwiI3JbEX8HW869wJA9TPWV0s3T1xesaXx0Tbp0AoYN8uz94eqmTp7msHsvm6MUKUtgNNl3U5XQaRX4MqYnshpYlLB2xDzwkSxazFEbfqM7gFJyRZsUshpvVJnRtAmPksnpfQQyE9gsmqvUP0dtyXkXab7RvHNm8jRaT3nuXPnW0+/lv782nIFuVuYKwJJH5ovV6ruMgLGcc/VmN7vgLfY3eOD8BQ7bJNyXuXPx6NSeh+rINmjWWARYyOjg+k75L7FU8ttsb/8h77KXA+tvGERvE14PJHvAC2B5p8I/6gFnANa16wosWsYWnvYkm+Uy4oaGnWH4lG0SPb055bUz8Jk/2noZn7c4tIOmmVXcXkrS+G6ogQ6jTKANpz2L5/XIL4k40YDDn9k7gVQTH866jyca2xQWZNHhsyYrrFV98vgltr0MgKFFL8iJgyehOzTPGTG09sup4PNZOGeIo2LGHA5arQK7a+7G03DGW7QopJo1RerMt0qYtFIi9y7gvh0HITTc7v2I3ByZh7SBTsU2HNci2iAoOV3OU19T+W/fnMHPcbesl65Y3RG+sYyU1x5XExVu8WIXTmvZIp/4vYjn60PMZ/F4KC8es1sFqdKERYTaBbC6vzyInYmMAFQaxSBVLZvwoiH8BKnSzUYgTYC1vQd/KkDk5aJljxTQtbN7Gy+pil1uvQK5DWxekuBA9Bm22VH6Cyj3rf165eH1fXoakTkTUOnpRvwpSYU7Ft4M2mVBiJVEoxTsZkJgXsebnzxRK5Folk6z2L1sHeBHeUoye/6CuIbY56GhQL9erom5pdXc/1OBZRJfZsoE9O3J6ri7MBav/mTA66xah7CqVkWoFHZCjJIrbvhsBy7pGbl6w52N0PkR498hffta8RZgmlTtzhcqiIbPGYhdWB2Mcr+wKDwqR+80IuAXjUDLCk3ibdItg5W+uBrBFDJ9pn8J5X0mG4/hPyKwVNmPBmBRXx4/VmD5bxx0Eo4z+py4fmjBL+Wk8p3SF9wjtlGncqSeljRkFmgOe2qnznDYtYf5pHRJHo1lKpJinZu2KkEiF6JMh7eEAAAgAElEQVQ1bWRCyRLO21Sd2AXNSokiaOlq0HezcNeUfLwW0ZKIUPqsc7p8mBRsUcEjhTmK+hKtSUMTSpV07x7Jp4uXWp7vugkWEFc0iohM1CtAJPiiuSKwp3LcH1fhO2OI9Ro+d2Foh9hy69nzf7QxEeWebIABDNSVc63Jr1OdOwTNEotIAZmpWAWXvIliWUcAljySKVuEgF6R66FZz9K0jNWa2BUYoSjnqbev4Yd1jFfKN0hAsWEmTJysgknyihs80ITA9O6Nkzvzdc8+DidOSUBWSXSU+Hv99cs2CDKx36ikCSsgZHT9G+U7qTe4xxLF1+CFeKLJh/ZtTMiX/H6V0wpQpC5F7Hpqcxeo8FKSNU/vWXrfOjO50ihFpVB0yj9ldZ5tww3Z4UohjSXl111zCGDptWaOVeVtJhhDdQpqH5A6Jl+gpLtNeMv9CzxAUZP0zhGtZjUeVavwUF4+AZ9FY9m7rWh5PGw23nYdEgL06+18HeIFsP4Fg+ztwv+MB7wA1v/MUP87b9QZgHXytAK/bWSrUHsbGXn6iv6z3jDWSMmX4e7dc88fwXc8I0gX00vurlXilWTjQqpJFVubULiQ40Vx4ajVeMsz6UJSp8t65Tyilj/HI5/2Nl3S505A+9qMD6rx7Sj8+vtpc2rLhPmhMEi47Ke9rAMFaaEnW9Lk1RAC2Wb83AXOLCV+suxJ3Mp/01puRIaS6J++qPnvGz8r8U4CPhRO/A6B/eqCz2dfhZN7cAsJc4ch94CW1vooHZHSEj/EVsXfwVcSJcJlyzvCP4EBWKVHmaCxw6skX7TuDmuIIj6pjwSje9CsmgHV8Z0pbkfglEiatxthQX52AayvX5/CMkkkwzcZSqNnekvEhpQvZMTL9shoematnziwiAtLtJjXHGbPY5uioCABX/ZzD8CaMk2JxGQi5EiDAgUkggOB+XgbYnyfDAJKOSDelUZyUb+aNORRqiSPUo/X4oVkY09zOW51WryWRCXmbc8jY1HHGxl5BNOViNbIqEypxnn3PocVq5gfcubg0aWjZxskioCgSAipSblars56jffPGPi0oNZerKhtGxUpnwg9Xx3CjgQW+VTtaHX0vZ4N5hyvZKsW1wgqvIdu2CxsyeQPIhgWrZ5/NlTYWduGQ0neBqXpEVlzxMNl5kgc0e5HdoQvheoA8Jk3CsrrZ9ml/ScisHK1jwpgUeU0H5evUpgjh6QWECCgcwcBIRktY+I3og0U7yQEgbTBo4ij8evgI4nWdPc9QalRlCIlmsgvZO/6X1dwePAnK0v8VxQp5szUO5ZD/Ts7LDDUbgVD8+5IkSaaXEkNv6xYkcnCXSSPDnOl2ibth6gU6scDVSXiZao0QNlkcRLiTyIeJdGIQ4y4xBwZAYcEIIrGZ8tjw2UY/VJhVu2lKEapjX59Gkvjb1s/yqJMgzNZWzqMvqKC6n3rod70k/Uaivql6F93zBGAtXUHhwsSqfpKFU1o4LvTFmBMjoKWt7M38TG6Pz+E1T/ZkuGXn2zEslW284IiWQkc/lgmj4AibhziyCETI6anPK8NFdiGN2nGNgi+Kd938j75zBoO5W1GKP1Thqn4w7cMpJFOh44qcegwmyeueOoc3bdczXDIQBPSuwD65PfepBGPUiU+nm89HaPKTzbhgZFFmtPhSk51eo+qsQtgxcfCd/aIFLQCgn860KGhEOE8BdijDngL/y0emDlHiTdv2XND6wpaX9DBsu/3TIWbz5YXL/rMx4+S6FA6tCEuTmfmBbD+lmH0NuL1gNkDXgDLOxH+UQ84A7D2HAC272YLo6qVTKhZw3Yhrlk+DapTTG1P32EwjHYUi9y+SYMe/gM+tSmeOG837vymttmsX/YBwsvy5g2+I5PzBm0Mq4fKx47j6fZ3uOfb0+ayd0Vi8UUlxq/Q/cIdTN1/HroqTTHqLuP0CsVzfPW8nfVawccXSTO3p+gCKSTtD7qF02UsqT1pdX7on7kg+iUTrj/ayeHpEbbxy6Zbh8g2aWH6pI7d21GePYCbuxejRieLkiFZAXUG7A9v4rZr7RW8qHtl5lcSbfmSzvDTMUCg7FgjVHbW/BWfbMRDCe/UyawtEKlK90F90WxZAtUeBiKKlfGBGaGdvNohgDXr3VVMfcs2HL0DCmF0UBnI02MGve2DcC2LNiOQw5SzoLXPOr0C30lSOylVa8xI9yKPpEBZuBEownBT+GUSkCRRrPLPLKC4g5QaSseitCzRIrIK6N7VhEJRvyGWZwThpMz2cpMfXp5jZXO3NCG0jOPNtnyj4WjM5DxMRYvwaNnM8w3SrHkcXr9mc1yaHnNmegxMr1g0xLJav2NR7bpO5w+pni2KY5FPZS+Ww7AzJMbAuLQqxreHn/DMDDz/pI7B2DeMA6dbugKofasC9h20BYSkjVKqJIEN1Z9uxh+Gd9av9oU3QcFkXrUU6SxfjEBgnYYfHcCixt8nKLDyN86GVJ0+9/ER0KEtj8gIHn596thEE4md1rfqC2N1x0qTjpz98qUCcxcy8NGZsqB8jAf2MyE4yHmkjWbFD1CdZOqnYj8fGuNQ8cmmFN3KrQ7AkXDLocjBQwocPsb6Rr9H9LvkjokHC0EmoKxE7JTSbin9lkzkzBPrc5Uaxj1/CN/x3a3N85mzQfutJf1OmoqrUQOBgQK++JxHnDoRBCZL7ceQSmidxvmGnKKiVAeZf/RNusJoh5vKni8cAVgplE/b8Sjw9oBNpJexVFXov2BR0WL9J7UvzKm281e2Rkg8e/cXH2zE2Tu277EypXg0+tTzd4ijcV3xG4e799i7haISKR2JjNJv717XYlJ0A+vlglKFpLlMWdHZfNH8PBGqC0esRValH41L/jUxaKAJlHZMRqIuFIUlWnk3FNLstTlpqtIcrS3a18NN8PVx/vzs2a/AiZPsGXCW4uvOc/GhZco+WY+nRhbZfD7iM4Qp2TvZnfrlABalcPr8OBjcG0YNQPXwQaHQfTkNQohnHFvu9MFb5q/1AB3w0UGf1EaPNILejYrYGPiNZDx7QkAQ3k1ca47kFE2pBL4d5Y3A+mtHyVu71wPue8ALYLnvK2/Jv8ADzgCsjduAQ8fYorNBfR6flLFdhPosGgfl5ePWnum+GA1Tqaof1FO/Ea2heMf4fpImLMfN7eF4K0n1ueCrgDGYBxGYOrL+r45iU8ID69fTM1ZE55178eq4Djf8vrK57HGZ5xhcmgE5Y45eweBT10EL3/HBaxGvDDKXL6M5jdaPmMoinz0/tMNZ7r5YadQTBcbtfoHdtdiiOTIpGCcLNDIXociZOxL1rgzGSyhS6yqM9W0jw8T61L+vxM57h9ClSWVrv+v6R2BJ6IfxPyQIBuR9tMpa5/oFLPqNPrTH1USfF41ajdeS6LYr2dogI2dR/kutqfetg3oT41MT6xGjGhxFYK1+fxdDYxjpdos0OTE7pAoePVbgl+SUIaqrb+Jw5HjHImcoBcFU1JKaJNqEySqbaDt3NhSx7xQ2J4XZ1EDBWFYn5yuAl2xSArILKNzb/ryVpjmJNbT5jEdtP1tBgKfZu+DP7RyeH5dESjXmkTmZZNjeGNR/th1X9SxSZ0+WxiisscxrqZ04pcSefWxT5QmZvbSe9Zs4XLvO+vdpfR7lkt8fx6bEQPmWAVib62zHtJrOVeGWxN/CmNdnrE0UuF0AY48VA2dkvFnl3vdAWv4ukubuxjex5/FLPAMsvw0qgybawpgnAWek/c2SRUCvLyzjIud4WxxSHQ3SWIjE1atnQX2UpSaiXT8ENm3zlwBY1J7eAJBamcixJu1z+3rRKLGUpTdKv+PzFIF2MEvVc/e51OuBiVNsU0vHJ0coyesYP0kFo2RPMeZrI9QuFNF8Zo+A8tYFa1W6nmNhKl7RrLJJhND2jOY7mXxuVqxgQt1a7qWmieCXHGAOLiqAlELJjhxTmhVFRaP5SvPWkSliXsBvDIuCFYJCkfSd5X0q7yt9RlE8P/mcwc/xLDI3q4qir1yTUGsWT4DqIhMm0XUe5vDAQ95fewAWpbuTKqPUvv7KhDR/nDSnbYlmLFIO+j4TU7jgij4GDZ7twKgd9VD8MRMWyd+Jx7s0sOGvCQkV0D8VipiO/C5XypSqnP6+i8Mfp6Ix6hU7aOIzhEA7iZFEO3sW5M/3poABOJmmGaRzWw7yu6OQZq9NuaKgo+dMei3x01EkomiflOVBkYj/lBWJWo03krXA9Yi2yKBkUdzu9EsKYCXdu2OOvCK+UqnxWXNBO2AKkI5xJ7pTt7fMv8MDt+9w+G0tm7dhmQX07pG8DhIEm4MYeqMnzd+LbybYEj66ej68EVj/jrH29uJ/wwNeAOt/Y5z/tXfpDMD69Tfg/CW2MCIlIVL7kVqKzUi/STAVcq3048whPtMGQPmAbTwpXPza4dJ494BtLM76AG9UwOABJvPJtj37MfYySOpbtD4BhTF+3Xa8vqHCVf9xNpdcq/Qnxhc5YP1s9q7T6HjVooh3wr8pNqe3RGE1Ua9H5aj51nLGT+pA33mY3fZXbDFhRHGWKkN5PdMvd0LbZhy0MQpclGweiMi9SrG50Lf/0m5dmmXTMFd4gnHVLFxbZF8EFMC4oHIfPLfKPF6PZybLCaq7AFbOR8uhEySk3JIUq9R2iKIyKDpDbqbCZaHr+53DCKx9SY/RJZqNXWXfLFiTuQ6uXldgwya2QestTEauF5JowY5DQCIBUpPznQ3oyyNjsPPNgRx0yhMoINdTx1E+GfILKCATQ5D2QZ5GGBBowozGS236SRv6qH0cnkjUviJq84io5bivFC1BUROibcxcD5/Y4S0jcmQiSRaNpONJQt5Tk3MpFS/GgyJayA599xY+cSHWKg/W24bR1VnEhL22didGodtLJp4Q8SQbph2sDGUCCxEskTAMQf73zIqeVJauEU3koJOrronfV6tsQo3qlneJnBvu6wyl0Dc5epIIrtV7JOpvzT5HYNtufxmAJfZPnu5Fn2fV38GXr3vZHRrzJmC6Lc+bu2NIwAYBHKJR6oaUd4s+l5+o+/sJGDHM9TzxHdsVXPRja93aEXPBR+bD6vg/MPS1LRm9WIhSZsOU/pCTAJctzaNhA/c271u2c7h4iUNuPZBbkhIeXpVHZHIdFNVD0T2iZc0qoEdXx/ekiHsLv+GtrOWl6qZz5nNmZVqp1W6egC7p1kErsDq/Dy6PDunyuRwan2kDoXzAgC/dwO9hyu8eB5A9AOvOXQ6rVrP+hYYI6NfbBO7OZfjOZL9pfJ5i0A6enqJ/dw2xqPZ0C7oeK4/61wtZv89Wj0emSjzoMEBqI4c55qx0efOyAvJUz6FfmkCptWRHjitxZ/cfNs+FPLXTWXvqbUuh3sXArj1pu+Bwhs5mAEs0+WY8f34e7Vq5Nw/FOgj4JQBYNAJ+pW046uPV6xw2bGLjVqSQgM9auH7uPPWxu+VzR61Ekhvcis7qswJYF85B+HEEFAZJCDPxveUpCl2/7wDNhx2SuXtP3nIf3wPyyEH54YA8FZ6oOSYvzmSlZqAekRgEiUI4Mi+A9fHHzVuj1wOOPPCfB7CadxuDpvUq4dNa5RGcgREie4f8v+EBZwDWnEUC7txjPxb2+E18pg6A8k9JWtbQmTDlYovZ1HhBs2QyVOckKn8dBuPi5YY2imunfIF3StgoA8nbIpLZfq/YiXUD/2xY8fN6xD5Lh4tpbCMTjtS8gbl5T1mrWLPhEOret/AlGaHCd6GWKKzuiunI94xFapE6k6Gu/QgISiH55P5mvE3PwnHq722AKv6Z0bY1jwvfKsCbGMBSNss0qAYylSnp/fj8MAjDcvphaQmmojQuqCy+CGApcKnxNV3TIXofDiU9ha9BhRU/WyIdyEg2/pMJKUO2PVG086RPpKRGimpyM5avC32noQ4BLLniZH51BhwIbwK5El7PtHOR5+5Ga/XEu0P8O1IjRbqHD9nmQORocHYfN29xWCORey6SlUf4Hcdk5BmLCcjbzvGGg3hzpFFCepUeK9ott3YhjUKFPyI74NkRDg93snayVOaR3UlKbZfo/dgnUY5cFloTtfwZB5jYgDxySuSF8mQsqaw8Ai4kRED/5Miz/ePi4J/Ior8uNtqJfpXsp8+K7V7TxaCehJQ96G0Q5h9sCuVL5oPCieMRmjkK2lELUe/5dlzTsYizHWENUcInI7Zs43DxcsrxIaCCAAuyJXG3MOYNi/Zqny4vpgZXMH9H4JVUpQ11P0Ngt4F/OYBFbR87rrRJgSyoPYGub1Omd4k+07cdYFZ08tTkES5S34h1PY9WgFKlRcsSJoAiYVyZ34BPoTCwdNik79dBCMiAabGXMDPWvgrp5sz1UdY3E+Sbd+Iro/npjhFYQ6BNES0QLulmzmY8MicTcCckKvD9dHZPKhVA3G2OTKFNhN8glsYtaHyQNGsH5L4Rr3/R9Ax+D7hmrS5U6YdzWT9zKl4gFvYb1R4KSUqVduwS8JlSPr/2+moPwJJvKMU0P+7hbfh+z7i1iI9GOzKl2uEzYwLKPFmP+tcKoetxFskaWlpA7s9M+OkXJZ5IgPz2bXnky+PeWLkaT2eRSwRS3l5/Dl+8HWGtxlSgFHQUveOGqfZvhGbjQmvJY2la4Ei2vubDMtEeRSnMXFuiZc/Oo2snz+6N0oOlogFp0ggYPsT183P/AYdlkujtHNl5fO5h2264we0i4Q9/tSkrRku6XQEAArBUl44icfY42LD/0/qrZBXou44ElC5COz1p0Fv2b/cARcPTmkA0OS+e7+S+4KIkqqHD52DWzoI2hwAEsBPQ7si8ANbfPqzeBv+HPfCfB7AKVbNseJVKDlXKFUOTehVRrXxxqF3lEfwPD/q/6dadAViTfhDw7AX7sejT02RWwZKaXFJeN+ZnmLJYUm1Sa+qtS6DezbiQDPXa4vyfPZDwnNV4wheIV8JMDEs/hPbski7GRoWsgCYDTvy4HO+TQnEmrW2q2toGZ7Ahkm0sDmy/gJI3GcnuSf/G2JR+EIbrByLk9VVrc7o+E2Aq8onDW+3/5CQ2GdmPcqlLpVD8WgmEhwuoGJ+EuOf+1msL+y5AwDjGpyKt1HdkG3xWpygO5mDcD0tDa6KOHQDCU79PeHMeC+OuIyDJF7/8yhQkpeTG0jrfmLQo8phFoARyPriRjfEXeNq+WF754AZ8pqWMQCOAkIBCRymE4kZKrIdUGUmdkVJJzpxjQEXv8FXIdf5na/fEeqX9pZNt2iSL5g54c/och5272DVlCwoIknBTyf2RqSyPXC2cb3a2bOVwMVmmPdE3EatbsYgAIl4nAvboMwrcl0SYZSorIJeTk3h5Su28jFXQNC1xSNmanJhbyi/jydiS8IE8CoM4xYhb7MC3SfDTMt6cR58dQNvSzlOP5fNOo9dgzaGOMEkiM/MnzUTmvM+g7zcJchGHyxGtEaL0w41bHNZKAEe6Jx9fAaO+YpvHg4lP0PHlfuvtVvQNw7rMFo4u9fHfoV410/qdUKUBMvT7+m8BsKjRazcUWL/Rsnkun7gNLd45Vr0z5Stu5ozx1Fav42zUGSnCgyI9pHbrDmfmjBItfz4e7Vo7n9eKxPfwG2KrBJm4YJ+5ioExx7DhvSXqVW6iQl+KNj2IfBFBOeK/Ih4s0Qp0NSFDPnZv8uiefr1MCHVC5O7fu7ZNd+l+5Cp1VEDro8W6z1bDwLHGJweXRyc3oq/oenk7STO3QfBxTUpO19oDsBYvUeLxk5QbSu55FHzHd7PekyksErpv2HtT/OIdr0PBqNUo9jgco3ew9N90kQKK9DGZ05ApjVI0iuKkaM4PNeKMIu4o0eTPLokQ3FpyAO3eMcVGY9ka0H/OUv+d9UF1eh80y6Zai1zwq42jBUea0z9FexGtwHwJeEvrIlofeWJvYxWYMZvdR1AGAV/2d12H/IBDejDgSfsfoyxFEuZ6xKLMSeiCBC88tYCjm2BczZQvxesNNVvA0NJ+hKmnbXjL/7MekKebSznlqGeaRWOhusyoIHS9xmHBhcp4InlHffG5CaSU6si8ANY/O8be1v+3PPCfB7AWr9qBrXtO4M8ohi6kD0iDT2t+gib1KqFwvhz/WyP6H7tbZwDWyHE84t+zGxo6yIQAWfiu79ftwL1lOtBEnkzKgR9iKWTWy9TA6dejzWl3oh31AxI5IG0aAV85OLWM5/XIH8U2/hpwiP5+BbSKzDiezpYsfGbT/TgR9tBa/+XX4Yj8mS1i6QuKwhr2rgc0OsbNIFeyk9/3uvd3MUjCzxTxNAJ1Dlg2wmWQhGBJ+lN20wZkmW6HdDmZ2L5090a4H8SiHPdnaYwCdjiMPPW92MeQ+LSYv5JFk2kCBZQemXJBHWWMR/knLJIpQpUWp7MydURP2xfLywmRxc/1LXvDWLO5QwDLIPDI/ohFKNF1TyI7Y806JWjDK9qAAtuQ7SDb7JPYAIkOSE2+6apTS0ClCs43FfJIhhoVBWj2Ok4hzFKFR3YXhMbx8Qr8OFtpPoyOSxuH9c3XWbsp+jvmigJ//CYh2y4mIJ+TyK4Rr09hhUSt0VHq0pyFSrx6yfpvD7h2d4zlJNHdPzchIkLAgTEG+OnZ5vt955OoU7Csy2oj76+AUcnGY+vJz6G/wnyQS7sEEWVi8K7dAFBqi2hKKPAoshMUCgW0OgUmfW/L/UNqpq0k4N8DwztUfrrZer2Up0h17pANyTVKV0HgV5P+NgCLOvXwkcKsFFgtZilqv2cbyPN+dVE6yZZHKmn6JghpPBNYkKv91akpgBTqpCYHbl3xRdG1iif34fcd25AKIWFIGm95dlu+2I1TkhRXaVtDAotjcGBxs+IhAayieaKQOW2GEvRcVU0ApLBPiaEm+ElO9YmnhVLERHNF5G4WHZFElCXO2oEps/xtUl+ornMlz+FqYRZhRtFXpDyoSVa3dDb5iROSuCFFE3z9kTRjq8vnRSwgB7Dk6WtUTkzHl/N6EXG2NpnXS9qgGIkbGpcO81axvokHH/I0O1fpmO7ezOs3ClCqt2gkGkDiAaI9farA7Vkb0CieRVGRMjIpJLtjyqunbDjAbvmUw9Gyk9CxHQNnSRmU3s+iEY2BNELLnXbkUXphmQT0dgMEk0duuZu6606fPC1DKs90UGD1QyoOs9S/zYL6mIRTMLkyQ4seMNRyzQ3naZ+95f9+D9AzuegX9rzYW7drVs+G6igTRNK37oelz5rZiDXQAQkdlDgyL4D194+tt8X/XQ/85wEsceiu3XqALbuPY9fBM3gXzxRJcmUPR9N6FdGodgWEBHvJF/9tU90ZgNVvmO0PhT0CRTpNp1N10ZKmb4aQhpEqp+Z+lX9cgc+ModZLTTkL4YR+DvQSefPDfoA2eY/hLKy4UNRqxEoIRm/M34SQ9xyOpLNdMA1ptRFRwW+tbRIA4je+G7gXjKvlqm9lFNUes7klMXrA0X3KN8JqgxqdVnc2Fw8zAMVYJg2CjOdRYEoBCGpbAlTxRDx4WFvwHNtY0UknnXh+qIkpeOFvAzFzDQOifDMKKGmH0+aG/g3qPNtmbbagJgj7sjT+0G5AER8Lv69SLlj13b6GsXR1hwAWNSwfZ+LM2boknY1625DKRxC2bqy1n8biFaHvyf6mL+S8Te5syjdu4XDlKhuXxg156CWRKXLHZKvNI6sTriqxPJFJE6n0m8C32NyYAYZ51YE4FN4Ub28rcEtCUk9RJBRN4sgmvjmPBXHXrV+PCSqNXgGFUxQnpSDiNxLNHv+Ru4Mt903D+jzKluFxZCSg5llKiH+/6ygekd9ltUWub8abtAxA3nC9HYRjLIoxQr0XORrocbtMeVSVAFA51OlwPLyFtX5K/6E0INHkIIVJ4JFNBopGRXaCUsFBefMCfOaw9CShYClkGDvrbwWwqN8vXynwdvp0lIhjin4b0w9CFdPvCHnPoj4NHQbD4KEyrFxljcaMxk5qe/crzGm6ornDlaa6cQ6auV+zd3u+YtB9aeFX+uTJBjw2Sk5MJI19ljY3KArr6TMFFv3M2swaLoDULd0xc9qZANRLtC1dfrIRCklGKakcEuG7aK7eAX5Dm0OREG8tf7XPVizfbEunoFPrsKblahjVLB1xQlA5dA0o4E7XwT2+B99JDIBxFBXlqDI5gPUwSoElkhQ44pUhfhkyxfs4+A1jz4qQJsDCpWbHKPqGonB+W/Q51Dwbl3LjjdDzKUni3SH5d+UQeWpyZISAbhJOQRLVuD1hCWoksMMrQ5NuMNSzn+ovb494xohvTLSH6oI4XnOOlb+PPpeD4L6+AogA3xOTj0H2SAFdO7tXR2rI3z3pm7tliTuTODRFM/PURdim5TurK4Wia3JhXdeRMJWp4W43vOX+5R6Q/54UKMCj7We2vyfq3Wug3mpRcCWjCPk16G6ztnJ1mOAFsP7lE8Hbvf9XHvh/A2CJo6LXG3Do5GVs3XMcx89eg8lkeUlxnAIVyxRGk7qVUKNSSfiQdqrX/nEPOAKwfJUafPUt+4Eh2fZRw1MurswS7gIL6U2ct4cG+4PuSxHzHH5jOlnrIH6UI36bYExi1R7wBwzJe4xP6/EoV9b+qUyj5ztwURdjvXDH6n2oGPUS+9MdBBRsk9Kz0294k8ayswlW+uJqRBuozh+B5peU6ktiZXxYdmi/SamaJ795ObjSfGsLZHiXAWlMQGWJnLtSeI/yg1+CpNilRifCMSsno3Afi5Q8mZgm90GOTr5YL5iQ49EK5HwVjO83sPSeNOFAsQEp+V/OaKPR/AVTVyzjE4otYc4JuN3qpyDAv09KHiQi8efzlXAKYFV/ugV/GBjX2K6whtg9NxPotFq0UU0uIsPCIda/TbkLQzfENv3q+k0F1m1gG7GC+Xm0cUHOK0+5o5P618s48BJwUnr/ORrxCKvkmi9Fp1dg5mwOD/1isO1TFm1RXBOM37M0QvxDBa4tYH0VU3cc+XpW7BVMjb1k/XpQYHEMDSyeovjH3HL9FGoAACAASURBVBzJAcGSxXgzb93J4bZ8JtlHP0WWdK4jN8ue2oenYU+tfV4Z1RQ+v2e0/h1SSkCeViYcSXqKdtGW1DQyaQqgW3MRQLkn6/FEIg9/LLwZcqrTQ3n/BnymS1Jdc+ZH4JSf/3YAi+5DOXMkfO6ct97S5hwTUSbLn8h6gm0EPOH/ESu6dZsDpRGKlic3bxOBQp/Tc0LPi2gUwUaRbM5MdXQHNKtnsWewXC3ougyHIAiIfLQcJkKY7Fg530zYlLm+mQ+FyNFFc1fdTuS28jcBVSTvXE06AaVH2/6uyYncI7IK6O4EGPYd2RZcLPuNWVf+N5x9GGZzF+eLn8eVokxQJAPng4sRrdyKvjKPsywqyNMxlQNYci41GyJwvQ7+Axuy/qvUSJyz0+64UCo5pfb+sKYFsr3NYC1TpK8J6bIJmDWPw+vXbLxcpWO682zeusVhtSQFWL4ZpuiyW1/NQLkk1md9u4EwVpbck5OGSGCAhAZEe6XMihNNfwVF40rtQ9+T8nlG/GDEE+aOEXeW9LftQw4Z3GnPUZkHhjhUfrrJ+nUOdQCOh7N1isO6tYn4P/auAjqK6/3e1WwSIAkhWAR3d3eX4u7FKa7FpXhxSqFQChSKu1MkuDsEl+KWkBCX3Zn5n283s292shbgx5/SfOdwONl9/t7Mvnff993rsngcVA8YHYMxrdYFcX2ngs9d5FOalZL3KxuBjVtUuCX5rahbmwepG0tNffZvaFczsQgSSNqe/kcLGoh6dXiUK5PigfWVTW9Kc/6jI/DNAVjSeXwfFoE9h89i54FTuPeIebKkTuWGetVKo0m9SiiSP8d/dOq/jm7bArD0cS6Y/DPb2FvjZ1DEx8F1kIQgWKNFzEJGcP7RPeQ5uParD4VE5e6I11FIhJtwyB0QW2ePe2VA8AlsjX5sbsqifefQ/uYjfFAVgiF/GRjqtsUTQyTqadktYn6NFw75moh5Ywd1g3c8UzKT9okrVhHxPZOSjsv7LVdDa/6oIjxPm7xN6kUnQIDWnKV0i2tQl7L0ilEf2YYr57agXnsG7hAZNZFSfy4r/2IrdC/cMGU7m09bgEhg7At0fMv4gWq4+mF1hpqfpSmugxpBES9BKum2e9zv4DNntQtgtX5zAKck4UdrMtTEsVlZLdo0pftD6CYzjjEiQCYiZKk9e67AcolXk6PDK+WVq41RyN2LP5RICLceRpirFQ+fEs4dVC5eVuL3y2+xtzZ7rkooM2JXQF3EvlXg6lwGYLlmEFBsiO0b/BWRdzDuPSMm75E6PyZ6W4btkfAAqfSJZi9E15kJl5MdU5hMr07xODeRqUnFqfWoPtV2yKVYD7Wt0ZkzuJf7nrnqxSH14LPZ1/x32vw88nbmsT7qAYZJQnfbpsqJ2ekqOtNkcxr5mlqbsRaq6nyRJNQ1ox88F274fwGwaD0rX7HQ57iRv0JI7Qki/BZNUCgRO2sz4O68yIo8vMkaz87yFSo8k/CTWCN6lw+4ducKqCX8hvT+TWjcFa+5aJSUeHLI8/mq3XHBryUiIhWYPU8SuuUhYMhAx14rIm+QN6dAqTgGRBDIQmCL1ORE7o7U4XQTvofy3QtzETN9/kSwml1CJGjjsaH5Bug1TPpwkndpdE/tvACHHPgzlKuNhE7W1W+tLXI5gEVKiwSgiCZ6Rop/J+H1snExVe75VjzjIjHk7+oo95jx6YnvOHk9JF6Sz04IkDMPKL0Td++VcA5aUaJ8OnQC8sUwRcuorhOgLOXc8y/3BI5RpsbpDjuTKLESDxfxcYk2+kcOOhfnOb6CbimwKZHLjspIjprgoiUqowemaH17c8hgh6fNmXH9mDR39WGo8ZJdrhTQeOFg4t7JZnmRH6CbNwzK108tkihSe0IY+jNiMqTQjnzMXHzNecTwbbGNIpWAtM2qO5dBquaikcLqgWKzcfQYW+dVKnGokagUbO899zWPRUrbUkbgWxmBbxrAkk7S3YfPjCGGew+fRegH5m6fxS+DUcWwUZ0KyOjDVKm+lQn+2vthC8AKDdZg/hK2GbMWqpGElyO1p1G+/nOY69gOULx/ay7qcJqjFsUecGd/Ein02JEGqUOV+ct54dcxO4x5nQw6dwsTjptuwvX1O0D/XWcci3uJ9m+Yt0YV10xYl8HEU7Vzwmm0fWcZZiYWrq/XHvpGTLXPVr8XhwdhahjzkmjlnhPlTlQBbWAbRj2HQcGUpDLluoxs3S1vH7UbF2Fr8E30bsiUnhq5ZcOS9PZJr5MzD9+/PYI3D3iM283IeD1yCihgRVVsV8w/6PPuuLn4xm7ZsPgztUWutEWV0JqiQ7ktEndK0y/4OLZH/2Nu00+uFfF0KQtJ8/QQMLRLsCWPjJX1KudX8aB8Dg7IU2eoES/xthoxxICHy9SIYcvXYirydOThXdA5AIvngcFbXmNLacZrlDvUD0eL10R8mAKXZ7DDvC3OMrHyTdEPMTj4lLktbVPlwux0FSza9vo1sOR35h2VPj3Qr7dtFTZHa0xO5E5Oj107PsHLJQxcjHKJQ20K73Jgz18q0PfiDVwuetmccnxYBRTawMKwUmcVUKgPZ3zm6dkXbahXMQzxSN6t/oiQM1grCcWb6l0WXVLnheJDCFxHSUQL0njBc/nu/xcASx6+RtLjgmc66Kb1hvI5I0QnrjfifHPWYuOA6T+zObGmxkdAEgFK5jEeyIGeF3vmsmomVOcZ+J3QdiAMlRviQvxbNH3NvDoLa71xI4EpSFKZpG4mb5erDhg1wvH6fPBQgTXrVPDVA4Ukz2q6ogJyt00KgM2aq0JklBQgMCBDeus9k4/1PO9leKnNZUzs5SHgWvHLOOzPvK88BBdcydoSOoXjNS/WqNm1Epr9kpC4eu2gb/S9s9NpQeJODtNTZ6qQkMD616enAZkysuJcBzWGIp7FWsbO3QHBVfKjm5i05suduKMPQ7vzJdH0CvPm9KvGI6Aujz37lbggEdKw5nnhdCcSEwYeV+LYcQZgVa3Co3oVy/dp6JBB8Iu9ZS76bff5SF3CSXVkmScwreizvQ6hqMxZde4CFShcUbTB/Tl4ecmEDvRh+MCxBVdOx7xML15WYPde9v4uWZwHhZ87YytXq/DPE1Z3x3YccuV0Hjxzpg5n0lyJD8Z3r9nlSklteuzMbNsbWxH8Ci7zh0MpUdM01uOdAWl++hURrmmN79EU+3ZGgJ4RelZEowANCiVWyQI16CLG4oIxYwAC66zEgYMSsNpKKLt0pFJCCL+ddZPSk69/BP4zAJY4FQaOw8nzN7Bj/ykcP3sNekMi74JCgTLF8+GPOSO+/ln7hlpoC8B69kSL5avZZip3Lh4dZO7tircv4DqRbaKFdJkQO9mSTPtjh0o3bziU902bfg46HE3DDjdKLXDCU7Bwoe/RjYO/b9INHIEaBG6I9t29Z1i9w8RjldB+MAwV60N+sG/unh0LfSqD54CJU9UYHtwZGQxJvbDivx8JrnQNh12UH86yq9PghG8zo1JV2sDbEJTM40oQrsO9fSEULSIJ31w0BnM8YzG9YmFzXX09CmK0V0mHdTubYFrYJZy/FokfDzBFLa98PPJ1SbqhpkM9He5Fa5cqF2bJgBBn65WnI54X4nsRjWY0dvFBY7inPQBr4vsL+D3ytjlfL0UJGP4sZv47IEBA984GixBFadliQop4njSFHSxpszVhjHVw1LiG9MCU6UnTBy1RIfKpda+iAt05eORy/rCx9MEz/KQJNPcl69OsWJm5GrL7CbgwUQIy6IDSk2wf5vdFP0WPYAYEf+eWFb+lr2oxBeJBX/wwezYBXTp+2oGCCJcJGBStaq0b0O1gazncNRL1JjpWUyPAd+q1xzhRgT3P3aILo+5q5kXmml5AsaEcBoWcxGaJot1cn4po7Z4zWctSDjyTxwx5zijiYuE6WML5ptbAc93RLw9gcRzc+tW1+qyo96+FdheTt+cKlEZ8v6nJ6r9cNYqA2VSJ9Iby54QKnjTO9nMiVqybOwzKBwxYjPthMvhCZbEt+jFIJVO0Bm5ZcD0hxDKE068psqk8MGEyW/MEiFK9juzqNQW271IhZwKQkzlCQQRa5PnXrlfi3gMpkTuHokWsP7PEl0S8SaIt8l6IJ9pCxj/LV09A/0wbEKNiIEb78NL4uYjz3ldUjnb1LKjPHjTXkdB2AAyVJd7PDgZA6oH1+g2wZBkbQ63WRA8giag3Av10QSVa7PQNEDy9k9TS+NU+XEp4h6p3c6HvUXahQgA9AfWnzyjx92E2jmVL86hf1zmQxlaXdu1V4tJl295jxvfyoC7wjGehxo+6r0CmEuyiyNF6UfVvAhdJ+PDNH7YhRyFLIYRfl6rxVnJJ0aeHAZksI0eR99laRPJswS1NXxUN3UzgvXxsKKSKAD5njFRISY1UtGZNOBQt7PxvijN1OJPmdNwbtHrDOPgq6jJiY0b2TpKWoSAet/kjoIhhF9j0Pe+XAy4j58A9fTp8iEpIAbCcGfh/UZqbQQpslqgl2xRziImE21AWfkqA+ZnOO7F9JwO/HHkppgBY/6KFkdLUf/0I/OcALOmMhUdEY++Rc8YQw6B7Ju+JW8fYpvtfP7v/gg7YArBuB2mwYRvbEBUrKqBpI8uDrPLpfehm9DX3kvfPgbjRTPnnU7qvXTMH6jOmjVGCwhMnUjNFMFI5elFEwLXrbANXszqPylZ4hegQVP8VI2wv8O4DTq003RjGD5gB4hL5NfwmpoUxr44fPApijFdJ4+0q3RwViDuF78PGJekOhevwWXI77GY8OGR/wpTCKMPNgLZIq3TB7bnX8OEtA6JU/CPsTZ0DtaoLqFTRNN4UotK/pB/WFWLhtrPSlUe7VI7rdti4xATbox9j3dkXGHyIEad621C1WxZxC5NCL5qL7p2mAMalLeVsVXbTuSz4Eaq7V8xphDRpETtzo/FvewDWkohbmCJpU6OEfPDZwLyLChYU0KoZB9chTaCIZSITMUROLAutIs8T8vQQ7cehBrgndT4wfh3yXoGFv7INVpo0AoYN4ozk6kSybs0K9eOQ2o4UtDzP1qjHGBDCDve5HuVC0zuV0b8Ph3OjJV4cCgHlZ9gGm47HvkK7t+wQXE3ni78yMsCS6qVnaptkw1i4oIAWzT4NwNq4VYVbksNW7uJnkf0k8yYMcw9Fg/GOw9tOn1Vi1c232CcJp6yVkA09/2AgsiY1UGqsAS3f7MeZOHa63JSxLiroJC4mTqxWOeBXy9UPqxJDZeXcfx4bTiBWLxgPYF/KFMGv4TpewhXo6Q0CGsgU717AdYLkcoHCCOduB3SM8N5ROxcvVeON5IBOZOnkiUsmV2FzxlOR8lF7qd2ixY75DYJfDvwScRMzQtk7uFeaAriZEGIxh+sy1EYV18yQA2vjRhlAXrj27MQpJQ4HKlE4DsgsWc45mnHIUCbpwf/ocSXon2jEsUhci9ZM/s5a5vUz7utM70O3nlfwSxx7n+nidZj+oDVaNXQcMiuti0JrKMRGtPg+P4ErzJ4hR3MpBbDOX1Ri734pv5kA8uCRWpJ5mrgSQga/JNW0f3MQx+JeIfeb9Ji6nYG6bhmBooMNuHVHiY0Svqrk8DzZ6tOGTUrcvsva37oljwL5ZHw6/ZtCKxEEuNJ9G/KWcF6JUz+wMzwSXpmb8KTvn0hfMLNFk1b8qTKqgYrWpROH7FnZWtoS9QgDQyxFX8izcH9mE/Ao9ySrVoUH/XPG9v+tNAqOiFanFo8K5ZzL60z5zqY5EvsCnSR0AtJ3pLQM5Z0rRmVHhT7eomgubzHQWvb0Sg03nToFwHJ24P9F6eiilkjcRbMH1Lr2rQMFuZ0n2rV+e/HXVvabRV6G8neVdChSAKx/0cJIaeq/fgT+0wCWdPYePX1l9Moa2tt5BZN//ex/BR2wBWBdOK/Bnr/ZZqxieR61ZcppqgfX4TJXohaYsxDih879LL3SHFgHzc6VxrJiFRlwOrXpYEam9RCgbshj2w4GHNjyFInkE5D3GQu90Bo4vJ1jKov4j4gHaXzoefwRccdc/gSvUujpUQAUsvR7ovTv4OAe8DUwzyBjuxbuSaIYaKvz5GZP7vairUxfA7Xd/BF3/Dqu7Cth/lwpRGFfopsDqV/RbbX7D7XQoG1NnAlg4QfrMtRCFVfG/fOpg34r4T2mH7mHH45VNhclEmLLy5714Srmf5CEZyVK3H9qG4xzu3wK1JeZhw3vlx1xY5Yai7YHYG2OeohBISw8rmxsNhTYzIAN2tzTJl83vjOUwexgEjdpJfj0lgezRUvUeMemCvLwGmk/KYyDwjlEE0Nt769TIUQCsErzkIcQeQo5a6sj72HU+7Pm5Hnv5UWF8xXRuCEH/XaVBVl82Z8MUFqKWJrzXY5/h0avGbGxNfL9k6eVOHSEbTbLleNRr9anHYxOnVHioMQLwyvfUZS5VM3crnCPd6g32nH4+N4DShy6HYXNzTaZ8+YQPDHjN6acSTJz5WdyIE63pwZ203/StxmyaxyDZNI5oWei9ism651L44FjviaRA3nonsfvuxGrS/NFASzloyDoZg82N5nLmgfxPy4y/+0yuQdUEn6shC4/wlDGea66tRuUuHefrQUpSbuc2yzAX0B3iRKcrbUt51YSVWuHh5zGuqgH5mxT0pbBzYRQbJR8Nt27HDqlzoMZs9WIkSgJjhxmgJsDXI7WzvkLSpSJBbwky9mWN+S9+wqs3cCea39/AcTbYs3oYE4k6+Z3u9cU3NJVQKZsCVhYZQMiJGoOJa+UROPIIk6rzYll6kgR9zXzAo4btRh8gClM0RmTAlibtqkQFMSAl+rVeFStZPmM66b0gvIl446kdzC9i+XW410g9sU8gy5BgzV/mNR1yRQqAeWmcXj1CvhtOQPZKQyz7yeEJFPZxFFIXIWikXIfKfhJTb7OjnY9Avo9ddbCBveDbxzj2gvpuwhuBfNYZF+3UYm799jzQWIfJPohWtM3+3Ah7l2SKkmMgEQJ9h9U4uw5lr9uLR7lnQShREBWLFz8fXO2f58r3e7oJ+gdfMxcXEP3rFjqY+nVqz5/GNpVM5NUScrCpDBM5umuSQGwPtekfGXl/Pa7ykINuk1LHvllgLPYZN34LlAGM8/Jx71WYfGuLOYe+WUW0LO77Qu1FADrK5v8lOZ80yOQAmB909P79XfOFoAVGKjGMYYHGA//8hs+VdB5uPw61txJQ8HSSOibvDAVWyOkvhgI7Yrpxq+jFQE4m/pPc1JdOgG5+/AWZNPWOFrEDHIVwNu/bkOmqFgzAEUbMNqIifZruspokio77txTYv1G0wYzX9x5dAszEUwKbqnAZc2LhP6m9jljk8IuYlk44+To61EIo71KQPH8Ec78kgOChA/lqCsQn7ivbV3jLUr91QaFejfBCw/mBvQxB3J77SQlwt57L6H7Sea1lK6sAbmZKKE5+4TQ81huBfBzZhwcpdGuXwj1CQYaSNW27AFYctW5XDEZUXkLI7mvX49H2VI8XGb2h+rJXXMz4ocvAJfdMpznz7+UePSYHSxIVZBU2KyZnIg3b14e7VrxeLRNibeSG3Jp3pJjOGjTOA9gLQ0Pwk8SDrWCtwqizOWycHcXUD0W0Et4iEqOMUBrA6e5mxCGGq8Y4W5+bVocyiwJhQOSHKpIeati+U/zwHr8jxKk1CiaMuch1L7OPL8ivV6hzkgbBEOSgaMD4+37wMoOK4DE86sKCmxYQoph7EBbZpIe2d5YKto9zdIJakXy1FHjBA45njLPSReFCo+zdDS2SA6Eppm/DnHevl8UwCKglwBf0bgi5RHfe5L5b82+tdDsloQRFi5n9HZw1uQ359K1QOFLFMYkWuGCPFo0sw8QKKLC4TqcgY2CxsX4DiZr+/YgTsQyYJkA/jsJoRaqmX3SFMTYtCUxb6EKYR8k3EMDOSPXlD0TVbCqRgNMPgAoNpyDa7qkeUnhjZTeRLNH5K5dMQ3qiyw0d63nOFx1rQ59q6tYrWNeU9oELdpsaQtvVzWGDU7eM6Ub0hjKWAkn1cxNIHVeZ00KYJFIAwkiiNatC4csAZZj4PLzQKj+YWGR8cPmgcthKS5C+cnDiDyNyFas6IDU8Wx0S4zkILgCRHZuHkcNQB5zn2LykOSB/Th4p2XtV0SEwfVHdhEaqfTEsRZb7JI/y9vzfPBo5IljXsaxfaZBKGzpZbx9pxJXr7N3SpNGPIoXNT0Dj/XhqPSSeY1Ly6/t6o+VGWpgx24lrlxl+Rt/x6NEMedAtivXldixk+UlyoFmjZ3L+yljL88rvzhqmSon5kvEMjSHNkOzbVmSKvU1WkDfopf58xQA63POytdTlt4ATJ5myfU3YigHEoexZnQhThfjor3pOhez9zMqiLRpBQzqlwJgfT0znNKS//IIpABY/+XZ/wr6bgvA2rVbg0tX2Y9M8yY8ihSWuelLQCbqivRG7VO7pnp8By6zBhiLiVTmwvlUbBPk7gsUGWBIov7WtROPrFmTbuK+e70HV+KZzPme9YdQPizBTDjf/M1+nLMIN6qDCrpMRp4N4tsQrU7Ou6jYNJNVMltH/d0b/RQ9JfxDoiy8IioCNye+RYSKEVFfdgGCE3/zG+e8gvKnhiHdiHYWVTzL0gmqZB7IHbVxzK5baHCaEV2rykehTGPpcc9UwtCQ09gg8YyY7V0ebVN/nnBGza5V0Oxfa26qoWwtJHQ28eLZA7BuJ4Si1qtd5nzpYtOg8WZ2iGnbike+vLwRcCXgVbT4vlPAFSxjMTT2DibyMTxzTmlBMkq3/A3q8Xi6X4mXx6wDJmV+MkBlw0vK2hzN/3ANsz4wEuiiN4qhxDWT115tCFBGs8NosWEcXH2sbw5fGKJQ5sUWcxX+6lQ45yf1XgI2b1PiZhBrt7Xn3tE6kn8fG6vA9FnsEBuf8280vm4SSSCLTfcCNYY7Du9bslQFUsdb12ItYt2YUuW2Nd3ASQ7kASOiUCaSeWymU7niun/r5DbbmL7w8w14z7F40ov+LZFZ5Q7d9B+gfMY8hlLP+APxvjm/KIClOboNmk1L2LNStTESWvcz/6188xy6SQTuMYudtwuCzjHfGOWgECUKVRKttIRA99QZFQ4eZuuuQnkOdWraB5GI24447kTjM/ojboJJBbTSi214bIgwf3cwcyPc04ehfzALwSJerGXpq2HxUhXevGV19+vNIb0Dj8Y/VqpAXmN1JZ5bVFm56QbYeo3KlbP69eGQ3sqzpVkzB5rEcHcqc7PHcJz3qo1NbdYhUmAhpSWulkDRm6bD2PjRBtClizOmSIiD60BLvquYJUx0xJkyRADrzuM4zJEQKttqS5KQxQEzweUrnqSq0e/P4s9Ik6fSlG3fIc9b5iWcvxsHz9wCps5QIV5CGD9yGAc3N+cBfHmlU39WIV6i/jdmBAcXHStP9fIJXKYwtdnX6qw4XucPpwnSidfw8YiZKB7HxAbiu44CV4qF11Ob5GF8UoL6n0IvYmkEu7CS9+Gsb3Oc3+VpwWPVqgWHgvmdGxdSkCSFR9Fy5uDRqf2XB7Dk3sEdyUPS2xTaqtn4KzTHdiRZMwmt+8JQtYnF5ykAljNP8b8vjdxTly4aBtsRxdGunA71Bcb3Gdl+NCYFsssuN1cBI4enAFj/vpWQ0uJvcQRSAKxvcVb/RX2yBWCtW6/GXXY+M26OaJMkNc2pvdCsnW/+SF+xPvTtWUjLpwyDMiIUuh9Nh84PqoK45P6LubjUWQQU+oEz8ngQn4doVSpyqFE96QZwQPAJbI1m4RCL9p1Dm0i1Odym8otteCQ5PB33bYacmjQIPKbAsRPs4F29qoCqlZN3cy62LZiPQ9Fn7FCtgwqPspq8OZ4OOYCXGuYt9I8mAfe0WuN3jVLvhf+7pSjei3nK+Kndcd6v5acMr9W8i3Y+RfEzjGcrvFII6jX0TJK217tj2BPDPNaWpa+KBonEtJ/aKNWjIChvM68FPkcBcPlNHGH2AKxQPh6Fnq03V+9i0KLDOsYP1LsHh8yZBGMoA4U0iJbQaQQM5Sx5oA4HKnDilGTeqwmoWsn6vP99SIHTZ1lakbvsxVElnh2wAmA54KmyNn7EDUQcQaKVulIKhYNMQGO5OMBD0rTC/TikssGvRaFM+SThtN5KF9wIkKjpAUZPKfKYEs3ac/8xczxvgQphiYpdkXkPouXl2uZi+IzPUXGwjP3YSiUEghEYtqv+TgSnYzGeW7Z0hhDMSJBc+gSjEZinWTGXdNiTiT1fyWm/SFIt5tmWqS7KuGSEy7xhUN1nN8Wpxs1HQu5iXxbA2roUmsMMkNQ37gp9Xcv51E38Hsq3L8xdtnYQtzUed+4qsX6TlCuJB3kjksnV5RrW51G6pP0DtOr6Gbj8NsFcHQEi8QNMoUW+Tyy5L+8GtMcD/QcLhTORP0geQmZNkl3ep/mLVIgPUaASwz2NoeglR9t+n8uJ3G2BuZpNi6E5yrxtdqQZgB2Nc2Bn5gvmZuj0Lmi1pQ00etM67d+bg4+TYcTKt8+hm8iASCFtesROZSC/M+tZBLAOHI/Hlm1sTv39BPTomnQMtEsnQn3tNHtP9poAQ9GKSaoi8Y9fw4OMn/8QWBnV7rGLjGyNeGSqwOPX31R4+44Bjr26c/DN7BxQY61v42WKpT+Nt/TooueSnk/RHmmL4mj5OWjX2jmAh95T//y0CBVjGPhiDXShvQHtEUSrUokze3nRbxH9JomWSqFGlMDaSaGw+f+uAAKiRLPn6Ssfh1evFaDQLNEyZRTQp+fH7U2cWT+20iyPvI0J79k6J+668WlLQbtsEtRXJS78iQUkdB8LQ4mk6skpANanzMLXlZfA5Vt3FbhxExZ7CWpl4UI8WjS1/RyStx557Ymmb9YTo85a/qbJn3dp71NCCL+utZDSmm97BFIArG97fr/63tkCsJYuV+Mli+iAtU2n5tAmaLb9zn5sajaHvnnvz9Zn1/71oTDo8V5dElfdZpnLR7ljNAAAIABJREFU9cgpoEAPDvIDlsg/JG/A3A/XMEfiwTLo3C2MDU+F+F6mw1Sep2sRJTCloNsBbeGhdEni4k8S1yR1/bFW7sUWPJMQy+7O1ADFXXwQOnYV7uq7m4sNV0TjrJspXLCF/nfEpjqKZq3Z7a/ovfWx7bCVb+P2YPifY0DCg8rP0LmBJXEt5SUicCIEF+2vDDVRzTUpwe/nbp89AEsQBPg9ZWGmVPf3a7pCKZgOCKLbumbLEmiObJNskHpAX8uSd09OcmxP3nzTVhUojFA0CuOgcI4355R4vD0pgKV2oBRobczkHG0VrpRF3iBTOE+pOMBbcm6xp3DICwL8JWNErX6RtYtFlb8sUSE4mPWnTy8OmTJ8/GFTLJyAEHpeyd4XPIz25xkXk8b/BUr1s++BJVV7PFLlCJ5kMYl+kK3b0x6a58yrKKLjC3RLxZSxRM+dj1mPpIxHCnmizfGugDapcxmBGAJkRHMfMhn6YpW/KICl/WMa1JdY6FpCp2EwlGOebdQ2zZ4/odn7l7md8jBDe2MiPyT7+AhG4QAyObjTvg2PPLntvxvVR3dAu+lXc5XUVmpzMBeLos9NQg1kOoUKj7J0xDtDDIq9YHxnHkotbge0w+q1Sjx8JDn4t+eRS3a5Iu8XEb97xAGlJBzSabIJKNjb9qH/6AkVjkoACtG7Ul62autyuBxm7d/u2Q2DewoIV7DKaj4vhixHGddh29Y88uVx7rdEee+qUb1NNC57PsQPX5is5Swe7H5bHW+h4FehHIc6tZI+3y4rZ0B14Yi5jvguI8CVsQT66csFH66bwzybXimKdueZIEnG8jyyN+Yh54qyRrrubGfCwxUWHmRpUgtJwjHVl45B+wejMriuq4LAghPQq5tzAM+Llwo8nb8ataKYorK+QQfoGzKOL2ovEVNTmK1o4vqgyx265BEttVKDhekq4/t3bDzpu1GnOuDdY+bh3LULh6yyUE5b4yIfh1SpBIwY4lz/nB1rZ9JJ55/SD0yVH+NWb4TqwQ2L7IKLK+JJcTQ38/CWJkgBsJwZ7a83DYUK0u/7zSBY8CbKW0ze6fa46NRHtkG7ReJVXL0pxj0YACpftNE/ctC5WN+TpABYX+8aSWnZtzcCKQDWtzen/6oe2QKw5sxXI5xFdGDwAA5enpY/Gprdf0Kzjx2O9A06Qt+Qeb186kDQrTPdPgerKuC6O+N68crHI18XHtJDrVjX2FEGaGWKVNuiH1mEojS6+wzLo3ygb9EHeoFH1qdso6qGAk+zmjaqf61X4r5ESt2ZQ5q9Pg8IPomt0Sa+EDKRLD7h5wW49H6o+XMDEnDY3eSB1SFsEq7lfYHBdViYW4tUObAgXaVPHd4k+Y9si4LreeZxdaLqbYyslzQ0UE5IvzNTfZR0ccxh9KkNtgdgUdnFn2/EW465WLTc1gppotJAqQQmjDEYZeLV+9dBu8skDkCmr90a+qYMPKTPSOGKlK5Ey52LR4e21g+bciWqTu055MwhIOSqAvclJNBiWVpPASVHJe+gMez9aayPZO6QPcMrgNtpCjktGgdklBRH0vUkYW/LiNOJuJ1EI04n4nYSTU6QPXywAamdF++yWe+xk0oEHjWN6ZuiJ9DlNBML8MjxGgV6+thdHu/eAYt+M8VcnS95HkH5mUfa8sMt4fHAw5z/afMnGJaeedn1SJMfE9OW/qjlN/vDNcyTgN/9PQpjpFdxaFfPgvosU3R06z0Shgr1viiApZs7BMoHbBzi+083eyuKnVW8fAzXKYxrRlCpETt3B6B1HMMaEwvMmMXi3KQ8g78uVeOtRKHQntCB2Ba67KBLD/OzlwgKkLgFvVNEk3KzZX+6BvGS9XonoB32b9UZ1e1EcwSIxCcAU2eo4a8HCkhEIn2KC8jV2vazSAT2RGQvmi0i95AVfyHgIgPPh1bpgBVl2W+lm0KNaXdb4+Z5BrImRzVOdf4QXFb9bG6HoXhlJPRIqoprb4GLB7vRU/WgZ0k0W0Cadu18qE+xOUloOwCGypZhjFTG8ojbmBBq8sAp8zgrhv3NgGmPXAIIUJeH2pEYDInCfIy9fKXA0uUSz6NMQJ8elh5Y6mM7od3IxAzOuDVCYJZBGDLAufcuzfvT5dvRJJKVYZCF51Lb5YqtRQsLaNaES8Ln1jl1HkzzLpckTLbSo+LIfZqFZTrzDIljxnPAxKmWMaj2PFM+ZqydyTMz7AoWhjOwauzVpxh60NLzSkjlgbjBsyFkzmqzyBQAy5nR/rrScByMHoQ3gxS4e18BPbsDttlQelYz2XG2Vl0+Dhcpr2PxSpgaNQkREp5Pa2cRscIUAOvrWiMprfm2RyAFwPq25/er750tAGvSVDXoB0q0sSMNSIxqM3+m3bwE6kCJN0vzXtDXtOTU+ZQBcPl1DFRBF/BGXQ1BbuPNRXkXEZAnUfZbrnBiDWS6Gh+Chq9NZMFkBd6FITAyCww1muGpPhLlX241fycNz5OX/amhD3K+iIbuWbDUpxrUK2fj5J1hFkTuh90AgwIYFNILf5R3xfyyjEB3iGdRDPUs+ilDazXv5c0GxF9iN8Lrqp7HonrMa0DMVP3lDtzTfzCXcSRzY+TVOk8o/LENdwRg1Xm1G0EJ783FNzzwHTK8ywBPT8F8eFGf3APtugXmNAQ6JHQYYtEkqfokfUEbLvkhScwgJxQmhS1S2gq7q8CdleygJaZ3ywAUHZI8EuO+wcexI5p5HC30roTHy3MjMlKBgnGAn+Q5zdmSQ/qStj2mijzfiBAJyHfTvw3SqkxzLgjAhMmWh6JJ40zA36fa/QcK/LVeBV7B422R8/j+tIknhSxzgWBk7WR//Yj5Kf2tfEE4V+qcOf+8k43gF8QA1KA6DzEpO/OAIPCKQKyPMSKoJqJq0b5zz4rffKpCu3kx1IEsbMy1Y19wtVt9UQDLdUJnKN5JFDXH/Q7eyiFRruyU0G0MDCUtlcJsjQ15Lhkky/XHoQa4uwPTZ6kRKwnHGzncADcH1FrkFUPeMaIltB8MQ8X62B39D3oHM+XRWq5+WJXBBIRUe7kD9yXvmgOZGuLh3xlw9RpblE0bcShW1Paafx+iwILFKuSKB3JI+uJXg0dAbdtACh2aZs+zJHKnCxL583B9xhaUe2pSSk1QKpF7QBuEu7D2DfQsgkr3SljwiZUqzuO7hs6BOOoD66HdaeIKIzNUb4aEloxLzJl1TQe7uHig3wjLU6YtPirN1t+gOcx+F/XNknqqUr3rI+9j2HuTJ2LAey/M2dTc3BwXLwFE5C7nUitVgsd3DZzru7xv0vcAfZcrp4COiXsBMa1mz2po9jLxhUOpOuGQx/eYONa59+7lKwo83xSIduHT2JhLFPPED6UiL/RZnlw8qrSMsOAZpM8PZ26MfFovbIh8gKHvWVimS4IWbTe1h4o3rbFB/Tmk9XLe23XaTLVxTkVzRo3TmbWSnDQTQy/g9whG9j/tyGX0ucREUvh0mRA/aBYEb8aNZq38FAArOaP+/5eW9ghEMUCeVhQmKOWis9Uq8pIsWEBA4UKCkcbBnqke3YLL7EHmJCSwMyf1rxaguz0QLAXA+v9bGyk1//dGIAXA+u/N+VfVY2sAVly8AtNmso27SmXyYJGbds0cqCXktQntBsFQqcFn6592wy9QH9+FV5p6uO3KQijSl+SRs6VpA3zwiAKnTrO2li3No35dy81xGB+PghJ+JK2Bw7OoPOCKVsSl+Hdo/Hqfuc3FXdJhdyJfjpzEl5Sj6Mf4Y+1WQihqS4jGPZUuuBXQFppdK3HlRFVEqpgs+iWdAiEqAVPeNEDf74pjWz4mJUwqP6T287nt3gYl3ktUkX6pcQx/1CwDN6WlS1up55vxios2V3/BryV81UwhUfziwwcFrjDucXh5KVCsyMcdXKhMRwBWx7eHERjL+H5qHKuBrM+yGRW2SGmLTHXlJFx+Z0ps1kKqIiIUmD2frSlS+/txqPXbe/kBfxSpmrkKiHyqwM3FSQEskb8tOXPX9d0R/B3z3Jxlefrq8H2cBVu2qZA3QUBWPTssZ2vMI5Md74YKL7fiiT7SXNZZv+YIUJtcrAgQozUvmiPC1OT0ISZGgRmzVYhIHQ59lgdoLwk18i31AVlapLJb3MXLSuxOFFR4EvAER6oyD6tx52ui8BXT7T4dmveXu4klWRgvC41XPbeA5DTXnFb+fhB5mOSHZF3zLuCbfP9lAay+daDg2fMUM3sb4J7UXY7eL5r968x94opXQnwPdiFgb2AWLVHhnSSklEB8IjKfPJ0BnfYU+qRl08GEDiiixfebBq5AKSyJCMKU0Evmz79PnRdTvMsa/+707giOSNb+Mp9qwIlsFtyHDeryKFPa9ntFJBIuEgdkkoK9rXikL2H/fURKhKRIKJqcu4pArjNTdqNZhAkUX1oiD0bWZGF05H11yb8V3j7SGT16RcuejUeXjs69C8XfQTGvLTDJ3jzSwe7GLQELl7Hf8XTePAb0td4GZ72rd0X/gz4S8HHzEktv1nJTDbj3SGkMIxTtUwjHSfWPRDZEs6a+J1ey3Z6mP067N4O1SzhrY0b7iWd7L6B7ouowpSEeRvJwlJqcoDqLv4CQJhctPJKKaL2xL7PJc42Ufks+34z3PBOFqHCuIvLez2v8/sdhHNyTQW4vvzzp/wMPn3TOramPehlayTQy5AzWRN03fzP3wHl8f/2h8W/eLwfiBv0MuNuQxZWUlwJgfa4Z+d+U8+y5wuhpRf9iYh3faNEeqFBBAYUKCEkUTu21UBHyBq7jTNywZMT3tyjXBqMAh2j03qT3pzVLAbD+N/OfUmrKCFgbgRQAK2Vd/L+OgDUAKzRMgfm/sIOsh4eAoVaUQ7S/T4b6yglz+5Nzs+9Mp0UJ5heaJrjrOtCcJWM5HtmbmH7AHj1W4s+/2IY2Q3oBfa3wmuS5vxxRWnbouqoojvRZCmNfzFP0eMd4ZOq4+WNF+hrGsh2RxTrTB2ka4iDK+2wtoiVkrqQCl+3sMTzcpsYrLSOavq9R4LUqApPfNULNjnVwOXM6c1FbM9ZFWZ1j1bbktu/uGiVCJQp0s+sewY/l8oI4t6RGROBECC4agXAExslNziWl1QoYO9K5MA5rbXcEYA0JOY2NEnXE8ufLI9+9/ChckEeLZqb1orx/HToJwS+XsyDih85LUp0zc0+3j6SIJZo0xCrmrQLX5iYFsDxz88jfLXmHjLZvD+KEhHNsbYZaqOrqayTxdX8K5JAAWFnqCvCtZnuM5V5qpPZWQJvW2AVS+COlP9EIqCDltc9lBI49cHsDd6/XaHmZhc5kqRYL37qyuF9ZpYeOKHAyEagO8Q7BzgaMYLnXjXKoebqAOcfZYg8wtyzz6NmfqSEKu7DnJzn9kfMzpVJocC9Le6gPb4V262/molzqNofQfsCXA7BiIuE2tJm5fkGpROyvf1vtmlz9T9BoEUtglxNhhBRCRyFVolG4XnofGBVgRaNDMx2eHZluTHsoQ1n8Wtz438Fnyoox789hVSTz2hjvVRK9PEwep+NCz2NFxB1z0ePSlkTOS4UsRBZE4QRb9QfdVmDTFhXKxgKekmYW7MUjTXb77XZE5E5qjKG7DqJN+Ayj91XhPk3wNhVzRRNDTkPeK7HwVzZmjtS4pH2R860lfD8KhtKWiniOxp4Odlt3c9h/mPW3eDEeTb6zAWAd3AjN9uXmYvU1W0LfvGeSaghcJJBRtOVr28Ejws38d7HBHCKVFP7L3ive3jwG2gDOHPVDrn5ZsTyH2jL1S+3yKVBfZs//X57jcM21Ogb145A2reMLqAMHlXhx4i4GvO9rbg4fkBtxoxh/G31BxPREUG9+Dnx4rGi4Hu8kHq6kyEfKfKLJOaM8wj3QfGcLKKBAckMA/1hlUtYUzZYKs6Mx/ZTvBz7cgS1q5o39254zaH3rH3B5iyG+z0+ANqmKsbX6UgCsT5mF/03e128IsAJu3lKCONccGVF35M/Po3BBJBF8cpTX/D3Hwa1fXfOf9Lv2R+WDuHuPPWdtWvLIny8FwHJ6TFMSpozA/2gEvkkAy8BxiI6Jg0fqpF4Z4jieOHcdV4MeQqNWoVqFYsiXi3mY/I/GOqVYKyNgDcB6/kKB31ewHwxy+yUVN7m5/DIKqtvs5jz+hyngCjGupk8dcNXVU3BZNglPtG3wUMd4XDJX5pE1MQSBwhzJG0DiiADRC0Zaf6Ozc3A5k7f5o21pKqJM2pz4M/IuRr9n4UgdU+XGjHTlERUF/DyXAV5ubgC56H+qycGIRT6V0eJxMN79fgH3XJmC42sV8F55D4Pe90au/s0R4sY2ghf9WiKzFY+nT23bnRUqhN1jG5XpDf5Gy2J+IMUkqfk9WQXpMeB5ls5QWokz27RNhaAgy41P5w4ccmR3fIiw1hdHANaMsCv4RcLHUfRGMZS4VsLIt0K8K2TKV0+gm8wk1vkM/oibyMJzxHpnzlEjmjmZYeggDh5pLNsdHKLALxIvK+KII34GsvhwBS5PSwpgeRcWkKd98kChJq/34WI8O/hvz1gPpXUZ8OyFAod/UyGvJCpIk59Hqc62D+XN3+zHuThGXiSWRW1+8FCBNetYm7NnE9ClY/Laam8NEhhwIOEh/NTx+O5GIXPSrPU5ZK5if02Qt9mNxLUU6xKLda2ZClv9e/nxfWB5c3kXcj7BrFrMQ+uGf2t4qxzEt9lpuJyHKSigLXzOHQV5oIqmrVwX6DHqiwFYytdPoPuJrWPBJxNif2JcfvLu6Ea3gzKMKTeSBxZ5YjkyudIrcTfRJcHqtWyd0PNMz7VdEwS49qtr6TG2YI8RROv89jAOSzwnl/pURUN3k0fdsvBbmBR20Vw0vYvq3amAw4EMDKpckUfN6rbX/JlzShAoUS0akMLsJX7k4OIA0Ag8rsSx46wuuYcvgVK+L46j44efsLx4bgyvVcrcViKjv+LfGkQ+T79PE6dYhudSSBvx8zky3Yy+UD5lXi5xQ+aCz8WeH0f56XsCsGbMN+DhP+w5a9aYQ9Ei1p87OY+UvnJD6NuySySxznNxb9D8DRNM+HlvI2R7xsJ5c7fn4ZmfB3mqikY/FRSa/DG2/5ASZ8+yQatTk0cFmcepbt5wKO8z19+lXrPwQFcS3btwCHCCJH3rdhVeXn2JkcEST5B0mRA72fL5Ig/juQvZcxCS+yl2lj3E3glQGj2spR7MH7h4lHixyYKHsFZgLWR5mSXZY7JhsxK3JVxwrZpxKFjw435bP2YuiOS/V9hp7MzDvFtX7TiBBmlyIaHLCECZ9PfPVj0pANbHzMDnzxMaqsD1ICVu3hRAoLsjI+/bPLlN3lbEFUrRGp9qriNaQhHJQNEtNbbh3G1GMfBdAw6lSqSQuH/qOKfkTxmBTx2BbxLAOnMpCAPGLkS/rs3QpRVD02mwSC1s+OTfsD/wvMXYDe3dCl3b1P/U8UzJn8wRsAZg3XugNKpMiZYrJ5NPlxbvMmsQVI8lISHD5oHLwbiaktmUJMmVLx5BN7U3Hms747GOqaX51eQRUIsdWP5YqcLT5wwokctRK2KiMPDoLGwukM1cx2zv8mibOrdRQYluRUUjbinimJLfrtry7EpuH0kNkVQRRSOC1xnxGRE/dR4uplps/jxGAYQrjqFl5GRkGsZkhJVQ4HkiyXxy63aU/tZSFcIfs3Gc2HgvSuXxwNTEcB7KH8MbkOsZI+53VarxMKCD1aKJP0ZKvkmJrIV4OmqX+L0jAEtKKEx58tzPg4rnKkGqfEMbI9ogiUYEs7GztiRpwpJlKtANpGjW+M+IC2LVGvacUAhJt+9NB3kuHjg/3vLASp9nKC0gR/PkgUJyryniASqU6FG0a5EK6SRr/6070FQmKy/tnDwka036mqjuZlKQvHZdiW2S8BxHktfOzpuYjmTnl705j9yxHqh920RCT0belORVac+Wr1SBwhhEW9NpJRJgGseiz/wwZi/7nbmV+TVo7ZKJinbJbas0fa1Xu3A7IdT80d7MDVHy1l2jVLxomlKVoBgw5YsBWKo7V+Cy8Edz/VyuwogfwgA1eX81O/6A5u8N5o8NJaoiofsYh8Mi5y8qXYpH5kzAjl1s3dvz5BErUH54D92oNub6BFd3E5k8gBovd+KuPsxifItqTR5zf8c8Q9d3gebvqrn6YsCzOtizP6n6m63OHApU4PRJFWrHWKYoN90AhYMzmvy3UPqMiyqN+eLOo2P46CTeV33SFMTYtCyccN4CFcIkngwD+3Lw9nYMONC40fiJFjtlNQRvO0zIVgaCAKzuAy35r+yRIavPHoJ2tYQ4vkxNJHRh602s4mZ8COpK+CWHnamGMtdzmFsQUIeHX3Ue02epECsJPSLFPFLOS65t3aHE9Rts0po34VGksOW7w2VyD6hePTEXPSfdcrzW5EDbVjzy5XXsKUgqly8fRGPy20ZW16v4oZxq4Uj1g3ji98ycp3WqXJibrkKSLo56fxbEhylaxjeZ0OJkfePFW3KMnoELF9lYOAqlTU7ZjtJq9q+FZtcqtG5RFQdz+JqTr3vEoUqNbo6yJ/k+BcBK9pB9tgzkXXWTQKsgkxe2M0ZngiKFgbx5+CSiSc7kt5dGc2ovBCJedEsNwc0df78ohhMXmFcneVyS56U1Swkh/NTRT8mfMgLOj8A3CWBNnrcaG3YGYnDPlujezpITacue45gw26QCVq5kAej1Bly6bvox37xsIvLntq1U4vywpqR0dgSsAVhXriuxQ3KQpQ0ibRTlppvSE8qXjFw6dvRvEPzZ5tXZNthMlxgm81DbA0907czJstTj4VuVtYcOU1eusY0ccWARUCKa4vkjLDj+K2ZWLGz+rK9HIYz2KoHh789gXSS73RZd/h88UmLN2s/D2yHtH4WCkReWaBS+ddCzGnRDWyIw9UFIT1QJwiZkdVmHCt1YaGE2TWqc8mVEuZ88xpICbixSIUoCEoxuthM+WVTYnJGBA28NMSgukbZPr3LFVf/WSZoh55ESE0gJ1ZPbdkcAlpyPJeB5AGodrY12rXnjRstoggC3H2qbq6YjVOxiGnfLjZtcgdKaWhcdpOhAJVrB/AJatWAbqzMjVYBgWW7mSjyyOkneLJZb+cV2PDKEm+s57tsUOTUm1b1/Tirxeg9rwysVkLM1D+KGsWZyQvglPlXQyN0E7MrDc8qX5VHXDsl1cufv7j0lxtw/hJLvsqPKfcb35oh4nuqZs0BlEcYQ2GUz/uFNY5I1JC1mbWbhdC89PmBQOxMomUPtgRN+TZPbVIv03d8FYn8MO5guTlcFzV6EwWUBO9Cr8xeFctSCLwZgkQIiKSGKRqTsFMJty5RP70E3ox9b9xRGSACS2n7oJkmjr5coctLBxTezAAIjRateTUDVSvYP38rHd6CbNcCch8jm48b9bpojmTLmdf/WSJfoMUfAIQGIomVXp8Ev71tYAK3Eq9e0sW1ggkDZh1eVqCghnRcJxh0tDDkvnJTvS/ROyxF/FTr/xRhSl3kfE3BKnrKiQALVQ2A3gd6iyS9arLaFPNd+qA3pWyRm0QEk19UhJlyHGQuY1xOBRwQi2TLVlRNw+X2y+WuuWEXE95yQJPljfQQqvWRCLu1uF0fT4yw8WFR6JOVAUhAUrcf3HEjVMblGdAFEGyBa5w48csjCQF1/bAVFBANEf/LZjAh1OiNxPBHIOzKjeMsrYNab6pbjbuV3Qgw1j3GNwfoW6yDNsCtTfZSwos77TB+JchLhGGpPp2NNMb0LU1J11Eb6/thJFQKPsjGtXJFDzerJH1Nn6mIvDsHoeao+awpX/q5tDZwKYHQGtFco/xH0BikAVrJm4ZMTE4/VzZsmTivy5HbGsmXlUbgQkD+vYOT5/FJ24pQKhwNZGytW4FC7RooH1pca/5R6UkbA1gh8kwBWy54Tcfv+E+xaNRU5srLbGY7jUbf9CLx6E4LhfdqgS2vTwXjB8q1Y9tdutGhYBZOGfZ+yWr7gCFgDsJw9yLqOaQ+FhNOEQlgolOVzmuvgxrgvdMNzF3ZAzfYdj0wV2Ub05CkV6JZdtDKleKPXjWiqG2ex6/gK9PyO3YY2cMuCZemrJQlfWZG+Ouq4BUBOFuvokORsn6N4vZEHS/z5pVY/zNIRXgMb4bzmN0SpmZeYq34jIn13o21zphhW2TUz1mdgAIyz9TqT7to8NWLesJRDW21FhE80bgUw8PCRPhyVXzL1tWyaNDjly+ZGzB10S4FNW637k38s2awjAOts3Bu0kISz+AT7oNH+xsbwV6n6jeuQJlDEsvjAmNlbkxDN7tyjxOUr7KDUsD6P0iUtDz/y56RcGR716rA05yepwcm8Pvxr8fBPDGd0Zk4oTcnnm/BaUpCUND/0jgJ3V7FxfqcEFBV4NLYBkv0YcgZ/SUh3Z3mXR7vUuY1N2X9QibPnJOE5tQRUKJc8rwB7fSIwoPWFHajxsBjKPc5uTkqKoqQsas/knGQPeu0z84J5xrji9z/bm7NHaxPQpZsp3OdzPC+TQy/ht4ggc/kjPIthcLjOAhBSZc0J1eQ/vhyAtX8dtLtMF0Fk+hotoG/BwqytjWWSMMLek0AiBvZMzovm4yPA31ewuDAg8MiROEMSefQCpRHfbyo+8PEoIBHYkHvMxQmcEeASjTxQD8Z9bwGqFcjHg7i5bNnqv5QIf6BECcadDY/sAgr0cm5tJyFyTyTLFr2KfPW3sKLlYbxIwygTSPWS1C+ltmuvEpcuSy5a6vEoW8o+oKIIC4braPb+FdzTIJbeV8m0G9dcsGUX62+B/AJaS8B2eXGk/ksqwKJZIzGn7+QXGpVeZceAnYyfK1WAgMJ9OSMHGXGRidayOWckeE6uLV6qwhuJl8gPvThkzGBZjmufWhbA048ZD4JTaFC1MofqVR3XSQIedAHz09tGcOOZ4EXsz5shpPa0aPK0n1WIi1PgWqGruFzssvm7bOo0OOWX9HdRTND+RSCOGRgonv9VdhxCa7N9AAAgAElEQVQqXzlZw0FridaUaCWK237vJ6tgW4n1CTDyi904a05Rq2NtXMrsY/57d6YGKO7C/rZWFHn8REXDSAYeGQFERiuQEKsACX2EhfP4EA7j93T5QxdeFJrv5QXjv7ReMH8mV8X+LH38hgshzs5b9wi4MnHHOmN+fgIKFzSpCKZyd/zsOFNmctNcuKTEnn3OefymeGAld3RT0qeMwMePwDcJYFVpNhChHyJw9dByqCVB0cR71WfkPGT1z4jdf06HUmna0IR+iETlpgOQjT5fban08vFDm5LTmRGwBmD9fUiB02fZoZhuO+jWQ26uw5pBEW1/g+dMG+yl0U3rg7vBTfFKy8JLKQSLQrFEu3VHiY2bbXtLEZ/HjRPrUasT8yTKr02LQ5kbof6r3biewMIzxA2YHBSrVJEDkQV/DpOHJG3IUBu1Zo3DnbB2eK2tY64irX4XLubfZ6Fq1SFVbsxMZ//Q+bFtvEKb8fcSxa12m/DGIwJSj4hrCSFo8GqPuQpRlU1ep5w7R/q9PRdwe213BGDJwTX36FRos7VNEnUn13GdoAh5ba4qduJKCBlMYXSikYdJ4DE2FlUqcqghm/+k/ECWgM/lmSrEh1rebpL3FXlhJcfogE8HfdFu+rcxe3ZEPFYgSEK8HqoE/skigNTSrNlPoRexNIKF/U7wKoWeHiYC9C3blLghIfG3Fp6TnHZbS1vt7EY0v1IJxZ8x3pR8nTl45bf9bMm5ZkhU4nWHE1gf+cBUhQBs+q2bkQhZtDY9/wCnEtA2dS7M9k4axpOcfqyJvIeR79mhrVWqnJjPZ4PrBBbWrPTJCPXcjV8MwEqiTNe8F/Q1W9jtlmbb79Ac2mROw5WqgfiuI+3mobAvAmpEIw8kf3/ewpPIniqUOd/hLdBsXWoux1CxPhLaD8athPeo/Wq3+XPyLCQPQ6kVer4BoRxDn7bwrbD/L6ZsljM7j04dbD9TRLTt8lKB/Ex3Aj4lBORq5RyAZY3I3cUFZmW9N9lOYW8lRkKv4XhcydrOwvuK+nP6rBJ/H3I+9JHyKP+5A93PzHNN8M2O2LFsHJ1dx1u2aowqhKLVdwCeKe/fgG7eULZWbIhdRPN65H7G+Oj8oj0xbzVbh0qtgLKTORw8rDB6eIrmiHjfVr9+nqtCVBR7zpOEIkZHwm0YA45iFW4Yl9EUTlyyBI9GidyZ9sZNBMt/fNcRPhxTtSWuROJMlBqFhYaGAxubbUR0qijzVwReEohpy3Y/e4fePFM/VgjARf+WyJQMbku5dyR5GZO38f/E4mLgsnAkVP8wQQWqh7zDb6djnmOHMzdCvkRREPqe3t2Hjyrw+jWBUgqLMNJPbSd5ARGo5ZlGMJLze3oqEgEugBQ2UwzQGwBaJwRaUTi0M0Z0GUUKAQUL8vD0+Dx7XmfqtZVGfhmaPy+PNq1SSNw/ZUxT8qaMwOcYgW8SwCpcoyu8PFLj+DaTtLRoQyYuxt/HLmDsoI5o28Sk9CZaxcb9ERcfj0sHln2OcU0pw8kRsAZgUcgF8eGI1qQRj+JFk/5gGEMbBPYDF7NwL6DROlmzc8lclk7C7XtV8FZT05whVxsOPsVYvXQjSzezotFmhhSHRKODW9SpHcg+gHEfaaHEP1k7JfFuOe/XAn7qVJCDE5+TX0LOgTHMsyhGrt6AVw+z4J5rf9YP/WlsKbcdS0qZZLbJRnkVRz8PFgrp3Cg6l+rSFBUSIiW8T53WIdQ9Bpsy1kEFncmz7lTca7R+w9TOKugyYpMkxFCsSc4hJW1BlgAB3bo4d3iU5nMEYJEyIikkiqbgFej6V7ck6k66mf2gfMI4SOKHLwCX3fKwceWqEjt2s2fAmgcegaYEnopGSoekeCja9YVqRL+0HPucLTikL5W8TaE8xIo4x4h7jCz6FXB9AePaIsWv066wKRk/78M1zJZwsImcb1SWPMSpU3v+49WEbCy5UjfXoGdgXRR4xTw18/fg4JnT9pgQvx3x3IkW4Ccgstlli36sXdMZ2igWDte3/Ua8SxOJ4Z5FMcizqHMPgI1UJ2NfoY0k7JdUObe7l7PgUlO4p4bmtz1fDMBKokzXdTQMparZ7afyyV3oZrL3i+DiavLmcRBGSCIZegl9Et3E02FUNGfU3bSbl0AdyELN9N91hr5+hyQcV6SuSSqbUmvwajeuSS4Zlqrq48LKzGw9+Avonsg9Z20AZsxSwT9cgWySPiTHE5KAbGnIJHlafogA7txRglfw2NJ0HSJTMYCt163nGN9gXJKm3LmnxPqNjrklpRlFIRPxM65gacT3nZrs9TxjlhoxkhDKPj05ZMpo+5mTh5zy/jkRN3qJ1Xp9n6yy+HzLsm4QOLY+So834OpdJXZLvIVoP0H7iuSaI3VY5Zvn0E3qai42RJUZM9KbALa8eXm0s3HwFTPEJygwdYbpXdM/5Adk0TPAJn7YfHA5mNoppSHV1kuKVzhQe7+5TjUUuBnQFmmUtvdCDx8p0SRiO8K8WKijNa89e+Pz/LkCv0vei36+Anp2S/7vqsM5CA+FbsEIKF8/tUgqpPFCiR+a4R+BrX3yxiavbHpfnDilwPGTn4HV22EDrSegMFny2KILj7TkxZVWAS9PwNNLAKmAfstGYBWBVgReEYjlyGjPXKgA8Vopvjrwj54V4qUTLXs2HnRpYs1SPLAczXTK9ykj8PlG4JsEsErX701UM7i4n8mMfwiPQtUWg6BQKIzAVppUjJSPhrNO2+F49TYENwNZWMTnG+aUkmyNgDUAa806JR48ZD8Y7dvwyJNb9oORkAC3gYzfTFAoTFxCn9k0W5bi9pnCCNYwxaw8HXl4S4CChARgygxLwmypJLUoqx0wqCUiXdimkribij3faNHil1lNXhVycMKedG9yu7w1+hEGBJ80Z6ND2+aDNxB5/iUuuy80f+7GPcOvdf7Avlzs1lfKWZTceh2lvzBBDYMkzOb779cgShePyWnLoGsaE+n2gZhn6CYhVa7j5o8V6S3BaGvzIa97zAgOLrrkbSIdAVhUR5Ynf8Ig0Ujst78DRvWxXBsUGkMhMqKR3DdXuJxFE2n903MgWs4cPAjQkRopdZJip2hdO3PImkXiGSgjxad0pMqVTkY67Ghe5AdEcY1SvrhQBa7MZIcEIv8/4QZY44ah9HJVt15pCmB8WpNy2i+/qRD8jvWnb2/OqDj3OS3Hw1UYv7Mxcr1jYSaF+nJIbUcdTM41VqggD6H2PQwOOW1u2rJtbeD1NpX57zFNd+F+xneYn64iWqbK+UldeGaIRLkXLGwro8oVl31bwq0v85YkDjXt6mNfDMCSg7DOKtPJ+YGsrX35YP2yRIXgYNs8KeNHG6BOqldgUQypyRIYI1pCp+EwlKsNufCCNQ/TPsHHQfx2ok3WVsKT5UwZ1ZHABoEeReKATJKzfc5WHNLbULKS9//efSXWbmDvAp/0gvk5uZ/jPk5WOGHOouE4XF97HB7jkypC0rNFz5ho3mkFDJRctFhbpOrA7dBuZuIeoudacha0vF6Sux87yv6pVvn2OXQTGRDEp/dF3CRLoEpsA4l6kLiHaLu2d0O8RACjUB8ObzmF04dQW32TewOSB46c+Fz1MAguc5ia71NNfvyS7ldjkQR8d+9qH+AJDVNg/i+mOeoWOhL54pnYkLVnZcVqJVb6H8PjbI/NzW7sng2LfarYnSICP6defIKjlZlAAYXPXvdvg1RK+7x0YsFhHxSYJ1FBJFBm8MDPC2Ap3jyHC4FXH0Is+sOny2QUjSgeFYg3HENGL/u3wrs7qXDgoMLCUy456/VLpTWHJ3oAXt4KI6hF4FZaT3yUwMCXareteigskIjYb91WgIBYR0bAHoFWBQvAgmLBUb4v/T1x5xGHnmiZMgjoYyP8OwXA+tKzk1Lff3kEvkkAq1Wvibh17wn2rJ6ObAGmm/bFq3bg11U70LBmOcwcm5Sro2zDH8BxHC7uT757/H95AX1q360BWHLC1Z5dOVAsvNSSqLl9JDeHo/ZT+N+tXQF4r2Hy5Pm7cvDMY9memXNUiJZ4BUgVllx+HmB0fa/ZsQ4uZzapW5ER35VU4cpTqTXzPcmVDWnjSxvgz2HyA7G7Qo1HQTzUezbhaBomSU51TW08D9cypzZXuydTQxRLVKD7HG2RlnFujBqScwja9VwBvYpHx1S5MSMxbHFz1EMMCmEH0RbuObDAh4GLVJ5cnY9u99zcgBcSsKdFM87IrZAccwbAKvlkC16DhXL0v9AcI1ux8aP6XFbNhOr8YXPVCZ2GwVBOAkYARp4VqVdfeh8B/fpYHg4cqYrdXa1E6C1Lt/383Th45na+345UHw3RwIWfGHpA+9ZAN6BGNQFVrBBrk2ABCReIJgUMyFOFeElE+1ilMFtzGsknIO+zdZizoTkCwpgsdpFBBrjboc5LEs5bgYNrhVcWnoAzD3yH7P9kMFc9q85hXMj+xMJ7MDlrTZqWE3hkfboGvAQYfUS8dYMaQ5HAQju1y/bjA+cAyfnYRsjyuY5qA4VUmW7SnxDSM68kW9VotiyB5gjzhDKUrY2EzsPttkp+oSFNTN5YI4Y6PjQnAdwG/Qw+TzFMDL2A3yNum4v80as4Bsg8TKeHXcai8JvmND/oiiJ+GVP3sycMIZKwl4sFPCT4c8FeHNJkd+45lBO5iw0RIGBzk82ITBNhblu3K/cw68RtxM7fmWRMyRNi8jTbFy3WJkEe9qlv0BH6hp2StYrkXElEek4Atz1Lwr3l4Y3YGUzFUpqXLoHeSUCMfSc7IzqIgTDkdarIpsAvi9m7kHiN6Dc6ORYcorQowycdD+JTlJrq+hmQd6Jot13KYUXaacY/namTfqOWrTAdltuGTUWJOOnvhAl0ldofWw2YUGwtBCVbSxsz1kHFRI9lW/0jjs1tOxXY0GI9YtwYUSKpVpJ6pTMmvyiSCgw4k99RGuXT+3CZPxyKOEsiRy4gF+IHzDDyRuZ/tg7hPIvNHXmiA4Kf6KwW7eZK+wAB7m4K4/+uboC7G32mgI+XCmk9VdBzBsTrLec0IkpA+Acl3ocJCA8HQkMVIPDuf23e3rzRY8v4z0sBL/Lc8hTg6QFj+78GIwJ2ImMn0ErqFWurbTQHxGdVqJAAUlT9N1hygNoUAOvfMKMpbfxWRuCbBLAWrdiOJat3omzx/BjRty0ePXmFMTOXIyFBjw1LxqNQPkbgSxP5+l0oarYaguwBmVI4sL7wyrYGYM1doMIHidz3gL4c0snkvhXvX8N1LNtIC94ZETuFke1+rm6ob1/EjT/c8UHNwuasHT6Wr1ThmURBr2M7DrkSw5JEGfKeDctjcwFGkt4zTQEsk/AB5dZ44Ggi/8q8X1QIC2ObJLoppxvzz2VyXqNjwelQZMUCnHVfhWhVFnM1kxvuxA3/YPPfN/xbwztRoetztUUs58yPloerln2WG78q5ZIeOzKZOMhWRtzB2FB2K905dR5M87b0Xjp6QoWjEv4oUsRLmxYIPMoOMETgS0S+yTFnAKwaD/firpqNV7/79TCqNgM2qD7Nlt+gOcI8aoj8mkiwpRYVBfw8l42Hqw4YNcLSa2HiFDV4yV57zEgDJA5+eLBJheDLlhttR95G8vF4z8WisMRLkFTNiANLNIEHzo5i7aQV+rc7jGufngG57Y7+B72Dj5s/Fr0FyGN2wmTL+Z80ziAXZ0zOdCVJ+1Afjiovt2PRX62QIZJxGBUfzkGXzvaztXOPCpevsHEkQn2fIh9QUaJ+Nux4DZS5zZ7t5ZVO4++Cd3DatzmyaiwBzI/pRMWXW/GPnvH9Bfo2RpGxvaGMCDUXp124FR80rF8fU4+zedz6WIbZxSw55FRW1eM7cJGoAQqu7iY1Qju2Z78SFy5a50/JlAno08NxjIr4DhariftpFXgfX/R4F4h9EoXHX3wqoZm7pZLt2sh7GCHhIGuqy4G0y1i4JIHjI4dZb8OLVwosW65C9WhAGtBVchQHrafz7/OZs1WIJvdGiT3M/hDHKx4zf6LieQQt3o6M0XGwNR+z5qoQKeFwGtSfQ1ov2+3QrpoB9fkj5joSOg6FoTzjcnRm0rdsU+FGEGt79So8qlZxAGDFRoPELszvGTvrRP5s7LvVDtHkBppovlV4+Nbm8ZMEvCPRV3q/JMceP1Fg1WrmiUHeruT1KjX1mQNGlTzRzrvVx2YPE0CrVAITx9qvUxrm2ShiESpHS34nWvaBvrolMXv/M3ewLTP7PfTh3HE1ewtjpIE9O3teif1/KxGULwjnS50zJ82ocgPRGKgVzvEVyX+Dxv5ogNYlOaNqPa0q6Dy0y36CQi8hjgPAFSyDhB5jIWhNIFX2p6sRTz9Cidblr++h4i3DBn19BaOoiJxsX1pzclUI6feKgOXQD8CHMIVxvxoaJhj3bEQCTyT8EnaLTx8QWQkuWuLcIlJ50/9eaQEv8uQyEs4L0DjnRPdR7aLLtes3gVu3lBb7dFuFkad7gTwEWgEUfudgaX5Um/6XmSj0mUKgRSPy/rEjrT/HKQDW/3ImUspOGQHLEfgmAayw8Eg06jzaSM4utSZ1K2LqyO5J1sBfWw9h+i9r0bBWOcwcY19JKWUBfd4RsAZgyTlP6OBOB3ipKZ8/BBGsi8b7ZkPc2M/PX0a8C9fnGBCpYiEjhftzSCXzhtq2U4Vr19mm0cxZxXFw7VfXSO88s2JhzKhQyNzmIlpvCwJ3KZ+TfGM4cYwBys9I59Dz3VHsjWGcErP1vug292fcdB1jwfe1ssJZ7CtsIt12U6jxIEuHz7sAEksjjvBz49kmIV5tQIceppCRNEoN7gSYVN5+Db+JaWFMbamfRyGM8iph0aZVa1R4/A+bi0YNONAmdskyVr6Liyn8gw4VzpozAFbj24G45MbUnXq/qYZxZRkgSHWp5QputVtD39TyvWQN0Jkw1gBVYntjYoAZs1l/aMM6ThaWc3snjw9nLHlQig3l4JqMsLyXhmiUfrHZPES+aneQCqHUzo5VQ5Dw+xx0AzQuAsaMTApgHYt7ifZvGNhR09UPf2aoiYhIBWbPYwvcHijg7HzJ052Oe4NWbw5g2ap28IplB9xc/Tj42LkNXr1WhYeP2Hrq0JZD7lwCpKGVbc+XRLMrjOtqS4kr2Fj6CqThlh/bbsrX4c0hHI1jhGY0Zg1njgeFWommmbYS4V6WYgCfUqetvIrw93AdyUBMuKVGzBzmVeWoziRhhP2mgitgqZgnLUNOPi79Ll8eHm0dEUdL3sFi3phFBwCVCvVe7cYNCb8VAeUEmEvtZOxrtHnLePdKazOg0PLvzEnUKmD8GOsHGgr/W79eidpSJxKFgPIzkgee/7VehfsPLEGJLY03I9wj3NyOLlcfYN5BU2hyzC/7rHKLrfhThSdPWTmd2nPImcM2gKWbOwzKB9fNdZByo725sjb38gupzh055MjmALwzGODWv565OHsUAXVe7kKQngG5e962Quw2BuSmLcAjbyfeeCFAFwOiDRnIJYskOihIgU3b2DuqQAEBrWWXIP/H3nVAR1G10buzJZVOEgi9916k9w7SexeQDkoVQUEFpKMgVUDpvTeRjiC9d6QnEAKkEpJstsz859vN7JuZ3c1uQtRfyHcOR7Pz5rV58+a9+77vXs2BDdDt+sVWxjHfztiXjq0paeOblHodAeUEmJM1jFmFxm9Z2KSxaVcYW8pVsivd24kQjyhbeV1jKmJWKdceVCf+4HDkOAez2oT1HdbDoGNA0QK/WmjjIz/kdfZOK59tahy0qc8fgW7lDBm/KZVvqlQPht5jIS6EeDOQK1geVtp3NfuOEgdV4wYCyrgRMp9cAMvVHGfmrSCWBdCKggXcIkL5iCj6DTJvfVd5peQ6eTpZlBMtnFs8MmckRUXy5CIPLoGmvmQZeZ2RwMr1GwLCwl0vmmg9UqSwVUGwUEE+2eUlq3J/c+LkHK6lAVh/88NIyz6tByQ98F4CWNS++4+f4ds5q3Dl5n14eerQpmlNjBnUGToiYFBY54Hf4sbdx1jw/WeoW61c2gD5B3tACWCZzcC3U12HOXD3b8Bz7khbTYnclEhOU92MBlz78hVi1XltWZf93ADv7PKPuLggFBMR0W7TxjxUr0LgNamX5ectJfKifwvnimRtfPJhgV9t6PXA9zMlYIsOIO+a1DTy/Po24oItyw5cAH6eNhdPtR1x34sBgycK38eC+laPmWLaTDico1VqVsOWlzIU7Y2nHn0/WWu7fjlXRwSovaEM5xmfqQKGZGCgIC026KSdxpFoQweZ4O9HHk1yBalPepqRL6/7XhDuAFhdLp/FH5mZIlif2CqYXIKR4FOdNCf3QreeCUyYqjeFoTsby2K9CdAhYEc0qbdE6Etg0VI2Rhzx2ZzcHwv1CabQRPlUGG+GRzIIZO8bo1Hn+Q5bHQpp0+N4DrkXwIUpGkicg3DMG0hQAcMGm+Gn8Gy6kPAKrV8w9auPPAKwPXtThIQAS5az9vj7A0MHpu6Y3xH7CENf/4FVy3vC28iAvfRdeZQs49wjZP5CNcIk6phUL6qfNHSpyY3i6HuKqXMeLnYXO+tfwuVcnVLlfZkQfhYrY9i4+iZzJQxdslSmyqX96idE55CPtVQpXJGJHcF2YF7ov17mdlG6zQuhOca8rpyNfzFDpQqUtKCPKvOgw4KkTBUWCq+ve9iSCL4ZED9rq+Xv0kEbEC5R2LxISmxqH1l2QeYYVA2WcpB5o8XKrjIPC2feghcuqXBstxo1JNx+nlkElB+bPACLwAb6xoj2KO8jGX8R/X5j8U7kfBNrSWIBFL3tPf927lbj8lWJN2FTHpUrOe8/z0m9wb1iwCkpEJISobumDH8k7wsC2l1xllH+7oq0tH3xG84lvLRVaZupJfhlDIQkwJ6AewrNk4aRJ3f+F72WxII+qsSjeVN532m3LYH2MBsrR/wH4Dc1A3tdebydOMnhSKKncLXYHWj7hnFSGmu1gLHLZ7Z2XjS8QqsQNpfShZ+Cu6JtTddCNgcPczh12jqeLpQ/h+slWYhsEW1GHM3BvN+SetbkXUhehqKRmEHudwgN0+5fB+0ee64zY5MuMLZinGhEEr77iBk/NlllK1tr1KLnhl6WQ56qVc2oW8t9T6TUBrBcvR8mExAZxVnALQK0IqNE7y0KT0SqqiUq60LvYDpfCkdkhPJWgnmrN1eG9ILFSyo6WoWbtwm0Al5IOOWctY0OWAsX5FGqpICiRQRQSOn7YrQep3W5aORxS4dsSksDsN6XJ57Wjv9CD7y3AJbY+SazGRoXxw1mM7GLCC7T/Rce6H+tjkoAi1yx6VRPtHTpBIwZYb/YV984B49FX9nSmUtUQsJQK9dEatvlseHQq1gYWIVPX8CjICOBpvKUm6wihXh068KDu3cVnj9aQwguZs+Chj2dh1/0z1ACkzJVspxwzV/INivEhfDZkOQrJiXVD5cSXqPlC6u8N1lejS+uTF2KSHU5XPKZa/s9OHMkRnayLsjranNhbQ45YXpq9XVCpAqXEtWXKM9o3zj068EU/dYHNERtrxwYH34Gq2KYgt/ULFXQOx3btNNCixQIRZMS7e7dz+H8Rdav1aua0bhh6gJYvU5ew+FcV2zldzaXwpwCcg8x9eWT8Fj2HRu7ZaohYeC3dl25dIUaz5873hzcf8hhjUQZJ29eHn16ysfI/sPhyHhIHr5Y+hs9fL3cX1leM4SjWcgeW91KeWTBgezM+4QuXJ6lhj6M1fMPLyCOA9q04kHqiVK7bYhAw5Ddtp9K6DLjYGBLJEfpJ6VjblH0DUyNvISNS/pALbBxENfQjAYNnI8D4g2SKikRATWdgzQP2YurBiu5cJWH+TDqIHs3LuUJwsE2V7AnOxOaSGm96T4l+T2N+dnrd0F9+6ItW82o6XhTUD7W3qVMZ/eqr5+Bx+KJbPwWq2DlpHHTuAc34Skhuha80yF+1habZ4UyGyWJrvR644Y8qldNem5UHnaIinbxvAkFgxhIroYKT/P0tAu/Ig6y3E/lpOiDt3yChHg2z4wfa4anA1EIUg+8eViF8oyqDBkKCijxafIArLv3OKxPVBB0xH3V/U4wftrNyNzjp22EkDGL3RNR8rlVrcKjaSPn/ec1pDFUkjjlOFKN9HE/TPXGLRW2bGP9lCNQwIB+7rXde2QbIJ65TDkru8fLwzga/8zW1lUZGsB7OjtwQqLH25btRDLN3ntH81NSQ/jwURX+OMXaUr+egNo15G1R8hsezDcWB/XMk8wRn6e0TArrI6CMrFzcEXSLnmK7bKpQG4Z+bM0zIuwUNr99YLueJygvJsTWswPVHLWJFBkvXLKWE+sVi83tN4JXSXm0GqGGp2tOOxIXIC9D0bp05FGsaArWKjwP3dq50Jxhno6UJ9WIwlbNiWGr4REq7NuvwoNHHOI94rG+k1XhkcxT74nJ17uiaSMrV1Ry7J8GsFzVjUjQCdgiry36b4Tl/4GIaBWiI1UwSDyeXeWVkuvEDaYMWXaWD4UFli4FlCgqJFsYJyV1+zfuseMbdULpkQZg/RtPJ63MD7UH3nsA60N9sP+VdisBLKUnRvZswKD+9p4YmksnQOp+oikXd6nZ/ovj4mEQ2Gl2la7XwZUpLitCWe8sWQR8NsQMzZlD0K2eaUkb4alDgc/k4VfSTEQC1cdPVPjVBdfGu7bPJPDI/3QNzBJi6AfL9iNDhAHH0++1ZU/QLpGpm9UC2qM45uV1HurzLnWKf63Cldlsc/AmUxz6dmYAFgF7BPCReiKpKIqmVHk7e57D/gNsQV24EI/uXawLagrBoVAc0YhXjfjV3DV3PLD67r2PAyWZOl1zrgB+zi0nmVffvw6PuaNsxZoLlkLCKAYaihc2bOYsMtSidWxrRslE4vnLV1TYuYe1hVz1iZheautOPEO+/ZKNHAC/KWEopM3obpNxVh+KdqGM2L+ypz92ZLPykYl2bb4asRKg7bQX8IYDKpQn7hF5nUeDI68AACAASURBVJQCAsQPRTxRV66qsGN30u1xu9JOEk6KOIeVUfewYSk7yScw4GFpgEKpHJkyVFPKRSYNwy36IgCTdzJg76FfGP7seRVL/Ou8a7Ut9x+MC8YnrxgXkUU5dO8FaC4es+WvGfwV3pRKWn0sNSqjPbUP2nXM25UECEiIIDnmOa4zuOhw2y2G3l/A9FEDh1nExgIz5jgGXaXvhLPyqY90K9jhBil+kqLbX8Yo1H3OPMFya3xxJqeci07M86NnW/CM3EQTrffh9lCHsPdo1GdmkKqW0nbv4/D6DIdikg1nQGUBBZLJvxf9RoU5P1rfj8d5HuFobaYeR8Db5U1/IvcTppSo/24VeD97AMLuoKUwD1L5dWQqJQ+V1gPx89m3wZ3nrTw0cAWYSfP0HN8VXCTjE9R/vx58JvnBEaUf+Po49sQ+sd26KGttZJ9bCJLHZfF4O3WNACg2n9apxaNeHffBFiUX3sfNzaikUJLULRgPzS3m2fx76Wk49LqKrW6dO/IongTAI+ULK5xwCf0j2HtlLlYeCcNnWPKK440gHksDWP0bHmmEjzPnQrs2rr9p23aoce0GO3R41OUojmmZkmFdrxxYGyDnuXP0vOkbRN8i0T5uzqNSBff7VLxPt/RbaK4ycRbxd8OASTCVrWFRtTtyVGU5gBLx1Lc+MdjUjqk4Z4MvLuV1/P66Gqv/bwCWq/rGxVk9tSweXFEcIol/y/L/9Bsn80B3lVdKrpOXHXla0T8KV3zfbfEyDV68YK38tK8ZuXLYtzsNwHrfR0Ja+/6feuC9BLCGTZiHIgVyY2ifNm71NZG79xj2vYXc/avPWaiBWzenJXqnHlACWErPkoL5BfTsbr8g0/75G7Rr2abfWK0JjD0YKPBOlVLcfPZLHjzP3PKrNzsAobZ8s6VPUOH7GXJige8mmqB0ic83qhuinDjA/ORXC2198kN5ap0SwnF32q8MvVh7/C6an7uEP33WIl6dw5bFhLa78VfAK/SPr4JJxf6eEKXY58C1+axj4gPi0bMtO13t4lsQs7PWQN9XR3FAQrr8q399NPLOZasrnfZT/4nWqL6AGtXZ+FF600jVIl31mTsA1qdrn2N/DcbxVFOXAxsD5RsBdchTeExmXB189tzQT1xhV/y+3zick5BXN2vCo0pl6+aAPAHII0A0R95kC04/QPld7HnFaQ3QTghFbS/XJ+tivsf1IegWetBWTh3PQKzLJlfCurVUjehHrC7nPYEINeBIOTGKN6BEEAMm/ThPXM3dGadOq3HwMMujWhUeTZLwDHH1rBxdH/jqOI5EhWDVCib+QLjCmawCxo1xvOl78VKFxUsdS2h/F3EBSxNFGLJFp8dP6zvaig33icW1odfxVWamXpqSOov3KEM582vS4+wfwdCeZICCpvcovPkoeQTbKamTdvdKaH9j76axSVcYW8m5eVzlq9u4AJoTTCnPXKgMEkbOdnqbkhdRTOjKo4XSaQ9uhnYHC3E01WkFQ6ehUPKx1fDMhk3ZHPdfp9ADOKUPtdWv08XG8L3N5h1SoyNVOqWt38wB1zjklZzB5GrEI1f95G/yZ85RW5S+dny8HRGZGOdTR98CWLx4DbgQCYD19c/gA5mogFgv5Xj28xMwTKFuKqa1m6f8AkHAWHKMlFSJ9Fm05HjoeH7zCbiXzLNKP+kX8NlYn4t5jg47hQ0ST6Q5WWugxOoiiJFwfRX7xIzH8QT6MwCLxD3atnL/OZAHHHnCida1E4+iReT3e04bAi7oL1uaQ9UX4fdHxWx/t2zBo2J552WuWsvh4SNrGTmN9/B52EDbvaLnIP2wNuYevpAIC/i89UHn7V0gen67ekYbNnEgwnjRPuoShv5auZgCCcqQsExSZueV5kR91lkeBJLqfhoP9WOmBEppeS9vGIdMhblASVy8zOHwEZVMoZbSRKePxtbWjJ9RKoLjqv3K6/81AMtV+yh0NzLaSjAfGa1CZLgg+9vV/Y6uB2YXULI4UKok7xCsT0me/5V7pO8l1blnNx4FC9i/x2kA1n/liabV833ogfcSwCpRp7dFgXDF3LFuP6NabYZbQgdObGfcNG7fnJYwxT2gBLCuXeewbSdbWJUpBbRrY++BpT28FdptS23lmuq1haED425KcYUc3Hj6C6oPq1PtqstgbG2/YZs+Sy1bZI0cbob/ntkgZSLR6n/eC5c9HHP7bAhohFpegThzlsNvB1l5yTm1Tk67p0ZcxKI3N223DHkYiSlb9+OG10S81DKVLVFRbdiLehhXNXdyinA7bcwTFW4sZkABnysBnVowVcnyHlmxJ3sLCwk3kXGLppQMn/WD2qIOJFrfT8wyuWZlyIMUFHJVWVcAltEIDFsWgT3NWIhccV1mHApsKctaSYItpMuI+JlsIS4mVob7SEEqaQgIpXfUjq8vXEXTrRVtZYf7vkX050/RPR0TJHDV5v1xT/HpK+bl09Q7N5b715PddncVh4jbbLxe8QBeJmKRStJiXhCQ6ynbBHuq1HiYp4dFEUsMnaHMGzUQUKOaa08CV/WXXm8dvAsPYhLw86qutp+J1uK4DyxhyhSurDTygCNPONFow0obV7Llb25jUoSVNFttVmHjz31t6ciz6974m+iTgW1ek1NXZVq9YEaBp+x94KBC6GUDtIc225KqO3yKmHoMRHuX8pK6l1TWpHOaoctwmGrJw0pdla168RRe38mFC+InLoeQXS54IObz02I1Xr+2V1YbPcKM9A6em7R83cafoDnB3klD6z4wNe6C1TH38KUEBOjoWxA/ZK3hsOqjwv7Exrf3bdea3auK7OdK2P4e0NcqFKE0CgP2f6hCgGQoF+pihl/Z5HstXL7CYd/bp1iSi3niUY+czNEWxeZOAPeEcaTpx8wHn99+7JEny1RJqDbVlw5aHJn61gV4LBhvu8QXLg39CKaw5+oZOyrri9FmUHiSO+Y5bTC4INbn+nELwecpbHfrxIhzWPHmju33bzJXRt3fS+HVRTZe8n7MQ58DWLmGvct5cgvo29v9OebnFWo8k3iaOgJPvSZ0gyrila0uR5utwf4rTFihXh0BdWo5L1MK+GU2hWD8a6t4CZmQ2R/xU63Acf3nO3HXyMjby14vhwpXK1j4p4iHypX9uprD4yesLz7pyeMLz/2yb2sn30KYm9U5ZyeVcfYCh/2/SYAwB7xgTusSHQHPH0bJQEpLO9Nngv6zmXhsyoc9e1V4HeaYNDxr1VeYUYi9147C2131g3j9fQOwXLWbQC0ruAVERQgWcnlLuGKUVV1RtKxZKDxQhdIlScnZvffWVdn/xeubt6px8zbrl/ZteUufKC0NwPovPt20Ov9XeyANwEp8cnXafY7IqBhcO2LvCfFffbj/hXorASwleFO9ioDGjRx4YO1dDe0+tqEzNusO48dWsvTUttNfyF2m6hT+Doa+bGEvlqckie3VnUfxPWOgvnvZVqW+Iwdhu/aNwyoeDWyNIrqM+P2QCn+eYWAO8TQReJHapgxLqhxtwu9LNuGpRxfc9+hvK+5w0btYWvcURt9sgxEtkj6RTWkdox9wuLWMLVQ9CxrxcUMGdIgKiMTHRLxMov0W+DFK66xcL0Q6OkfCn0a/TRwvJwymTaD0FL5Afh70nNwxVwAWLbSnrY7DprYbbdmJHkay/AUB3oOZFxMtC+MXM68tMe3Vaxy272J9QiefHdpa66o8Qe/Y3oySxeULzJ63TqDmIRbq+ip9DDStI/FFZvd5kkTic7FOotCAtD33N3F4fZnV87oOCEnUyujdg7dIZ0st/5M1SAAbz6TUt3U7Z1E5Eo08I8hDIjWt2pONiI/RYeFaBvLEqQT84a2yhFEVKWxfnjIkVUrcTJ6A5BEompIcPu6LIDTI7L63m6u2VgjejFAzk7NLZwaW7ziORg+tJNtci6542zx5nlCuynR0nUANAjdEI/42cxlGYO9unpbN61/XbclNNZrB0G2Ew9vXrOdw/4H9RtYZ+CLNhPi6iLfLVt9PxsFcub6dIMTIDGUwKpNjEZf50dcxI5LN4zWDS6LwMRYa5micU3nE51gsVIUMkqFVeogZvrlTthls9HwXbhkjbW1p55Mf8/1qwePHMVDfu8ra+NkMmIuWd9iXM2arZfw2oz83I316+/po/vzNwkskmkUFrs+X7j5eO167AD9gyCD3hRmIJ4340kTTj5gNvnAZu/JnRl7GvGg2jsZmKo/2V8vh6X624cxWlUemOgJ+mM++qxTySaGf7hrdGxnF8nTkvev1WQuoDIzw7FSPPdh52NdWROWKPFo0cz6vSQ9gPPm3mPKSAcOChxfif9yNm4YINJbwCFLmnbd1gU+sD/z8BQwb6LpNS5arESIhXx/4qRl3MwaD+MSkdjVXJ/ipvZx2kTIktUQxHp06uJ63VaHB8Jg3FlyUlUNQND4gJ8L6zsK+s/64dccxcJUrp2Dpw2eZXjoUBHH3eUrTfWgAlqs+Cg9XwWQGApKhWOwqz//ydQoFv5jIGUftIPEGWgsoLQ3A+i8/5bS6/9d6IA3AAnD99kN0GTwZGTP44s9dC/5rz/A/XV8lgHXoCIeTf7KFS6P6QI3qDjywti6F9ohVSYrM2K4/jA2c80ultJPMehXOTWKLXg3/FjX9vkDCWHtPPSWvBC2yau3pBe4VC4OY8uUEzOEZX4e0Xjdyd0FmzgNSHgy63ra1GWVLp2zDk1S7I80JKBm8QZYkcsY6RKor4JIPC+d5nDUcYzvswNjDvfGZ3Gkipd1qd1/kHQ53VrLnnqkYj1Z1VyNWYM/+XM726BJ6EI9MDAA8mbMN8musoNr1mypL34mWM4eA/n3li3lHqljkJUSyz67MFYD18JEKv2wEVnb9VZYVATRK8xzZClw8AyPi5+yA4M02OpT+wUMVVq9j7cmbR0CfXtb2LF2uBpFbi0a/03WplQ/ehJfmeNlv4obXVVvF6+ve/oWxYadtybv6FsIsxan8450cXpxhz+6BVoUHOmtdiGOGuGakVipoAyIkym9/hefEzuvVcS+Y8cz16GpGoYKpO+ZzPFmJ3BGZMGdTO1t16LD5T2+gTm0e9WrbL0jJE5JAddGkpOHXDeFoKiG4n7e+PQKjGS9SumERKJXTfcJrV89k1OtT2BjLSJvF9BNOXsPo0zfB1WuJtx2Gucrmna97TP4U6hA2h+m/XAg+t71njKuCNFdOQfczEy8QtDrop2+yew8oH6XHIf1GcvAj3QAgPL8fBC6Y9Zt+1FzwBUthyOsT2BnLwu5+8KuBjj4FHVZ7R+xjDH1tVWMlKxWRB5X3stBgZ6Fx30zRoG4MIJ1eKn1lhtaF15ijShyKD0bvl8z7itKI858dSDd4MsylGMAmzU950NK7pxn5HaixKsPfjQ07wNiWHWy4er6Hj3IyzqnqH3Fo3Njg6jbbdSWflGHo9zCVsA/JXRR9E1MjmZjB4PQlMOjFR7i7mr23GQryKNaXBz0PqX3zlQmcY5zErp6Tp2tglFSflIE9JIJ/KmMCvIa3kN13ftgRbN7KCiD+K+LBcmYTv5PXb/YL5glN98QtPmTxGiTvQdFyhORAk8NWonjyRiSvRFc2b6EaBFKIRlyQxAlZ89l22fd1WPpSGJfEgcejJyqslPB1uuPVpn50C7oFE0Dhg1Iz5SmCI+Vm4NilDCCVPqWRh2zjBgJKl7L238n4F+j8kpG+1/LKjg0BjV013eH1NAArRd32wdyk3Jc4WtdQZ6QBWB/MkEhr6P9BD7wXANb9x89w/xGTeh4zeTEK5suBAd3loTvK/jaZTXj4JAQbdx3F29h41K9ZHvMnD/8/eCwfThWUAJaSFLRNSwHlyjrwwFr3A7SnmIS0sdvnMNZIHcUvae8b3gAXp7JFpY4PR01VP4chX8dPcDh6QhL6V5VHu+1y1b510+djaOQ5hw9YBDqIwJ2I3EXr1d2MAvlTdzMv5l3r2XY8lABCB9f+jnLP4+2I3Pv0Xo9u27ph0lfun6AnZxSHXVPhr/UMrMlSWsCYertBaomirQloAArleSUBZYg/ibycyOxVBnkQ4KA0JSFnx/Y8ShZ3fWrsCsASidXXdF4Ng47tdKR1FOviObEXuNchtqrpHXDWvHoFLFjCxl7mLAI+TySdn/2DGm8krv6fOVDFIcBGaVU8smFbdvd5klbE3MbEcGuYHFm/dMXxbRY5kf/Lcyo8lACHROBORO5kBEIRGCW1ak824SkYsHZj8U5cyfAZTpgYIEDCDSTgkFoWzRtQPGg9Cr30w/fbW9myjeKAs16AlOxfWubGzRxuS4n025lRsoT1XQzn9SgdxLztvtvZAsVesErn6ZOAHEXkvHjv2p7ZkVfwQ/Q1u2ya3Q/G8pceELq7Hzaf0rp4jWkP1dtoNnanbwSfwV7xzp38Pb/sIvPCcHYQceo0h4OH5UhD7twC+rkRAqasb/yUNRCyZEOrkP24aGDhXluyNUE1T8eD7nLCa3wsUW3NFZcFjbYyjk1HhwwkADB7lgYNGE4NURHPnb5RpmkSshs3DIz7qrVPPiz0s5L2k6AJCZuIZvj0K5jKOyb0375TjavX2felZXMzKirIyCkf7fp5Mo41Q6chMNVp7XbVf1mlxhMJD1XvLmrkLySRY3SRk27ZFGguS9rU/2uYytWyu2tlzF1MCD9r+71XuiL4ylQVV+dKvtsZBFQcb8bsH9V484a1nYRWSHDFlfFm4BvJOoBALwK/pMZFvILnBBbyR4TzdwdsAPWDaEmF+MXrgWkzWZ09PYDJ4W2gimGhghRqXiRyH2J4pgpQ/3gD5A2yinVodcDX41x/o2fNVSPmLesHMRR3w9v7GB3GREgycTrczM1CrpX99Oo1sGAxq3OWzALoW+TMlAqmYrrIvFWwRDcJ4THWb7nU1BxQraoZdWoJsoMmJaDb2DsXfvFPmUpyGoDl6g34sK8rvz9VP+LRtHGaB9aHPSrSWv9v98B7AWAtWrkTC1fKCSiT27HeXh5Yt/BrFM7P+AqSm0da+uT3gBLAUnIU9egCFCpkvyAjVSmpAheF9Jkqyk8rk18b+zv0YSpcnsUWoF7mEFSP7WZRYxK0HrIblB5AZfNFovvptrY0go8vzkxdhuYv7JWcAtU+uJDL6kH20yI1XoexxeXQgSb4+6dGa+zzGPn6FDZJvDqmHr2MwRfu4EiGzRAEpvg0rcFxlDtTB2NGmJCOOcqkWqWIr+TBFtbPfhUELKt3EuQBJBoRYs+NvII4iVfWgzzd4aWyLqAXLtXg5UtWJWdeEUePczj+h5TMV0DbVq5PrV0BWMdOcKB/21ptQVQGtsE/nKMVimkzyfrKY/44qO9csv1Gng3k4SC1uHhg+iy2OdBqgK/HmyAIwKTJ8pN6AhZpoS8agXzlgplCk/h7Lo0vzjpRWnP0MBdE37CEWok2PH0puxBEYyxwQeE5cMwLSOAAD52ACePkfdv45nLc9GX1P7tiL14bG2OnN+OwS+1xJirOlXyeHZN2M6A7ggPOewHpfAWMGWk/BpYsUyPkBXsXyaOPPPtEK/h0LeITx+OIg/VQ7WF+dq2TGf7lXW+Ok/sSUejvsNcn8FbyHlAehd8m4NeiXZBXk3peX47q5j1ILkpAXiEpNe2BjdDuYmH7fGZ/6BN5fqR5KkOV6Joj5U1lPVRGA7yGyw82xPoqQzLP5mqPXGq5F6SYnxKs9Dbr0GUdEwMgb1sKD5MaAdCrFmpQnYjWEs0zq4DyTgQDkupDJeE8pZWSbOtWzYLmLBNbMPQaA1MVudiCmL84T4l/16jGo1ED+82Yx8KvoL7JDlsM/SfBVM4xR5iy7mYemDJNI1NDmzpBC7Na7hGaVJtJvZdUfEUjpUtSvFTa1rcP8VnYSdvPHXwLYG7Gmjg7QT5HVplqwsp1clDN3cOhyEgVfviJfZ8cef8ReTuRuIvG5yyAZwOXYv5CycFMEgBPeJgK8xaxtHRgMS6sF7jQYFuea76aiuFGRnielfNEq5XdZV3y7dcmqOzp4mRp6NkYJMqYUm+yMkEbEcazQbs+oJFT4Q+lSqunJzB+rGMAjQ4ctet+sHt+N7I2xSqtY+CdOAebNRaQMaMDhc+4xxj0igGcjsLb3Z2X0gAsd3vqw0x36bIKpEIqWtkyjteMaR5YH+b4SGv1v9MD7wWAZTSacOHaXRw/fQ3HT1/B89AwaNRq+PjYn+ZIu5lTcZawwbIlCqJvl2bIlzv7v/MUPuBSlQCWMrxhYD8BgYH2G0uPhROgvsk8Q0gWneTRU9viQoGrP7CFsK/pMarE9YF+4jLw2a2nnqIRwSsRvYpW2vsOej4cLFvQvhj3I0oGM68NW1pdFhCfExmdwtJprGjjxpjg7ZyG4p2avC7mHsZKiIxb/BWENTtOYn/AHOjiGYfK1pJ34Pu4mCWETRmq9k4VSLw59AyHRxLy/oAqPI43uCnz/iGFxu2xTOqbbhW91ogwmFQgCdyx9dtoM7wdEAY/C1Hh5+XsOZEMNJELu1r0uwKwRJn1fY32ITQb01xeG9AAdb3kwLjm8Dboti1hY6NwWehHzLLrSgp5EWXD6eL4L0yWMJZZkjHp5Ql8qdg0EE8Y8YUpTQ0VnubpaRGscMeI94f4f0Qbm7EcPstoz0NzfYEab4NZnrd1QFBi3NSwwWb4ZU18MDFRaHdtGc7mZODogbW/I/PrXFiahfHtuLMJc6f+Yprj8c/R7eUhlH+aG1/uZxv712rgUuJnYuwoM3x95Bul6bM1oE2aaEpgTRpy88mpqmh2gxF752nGI4eDsMTk1NtZ2ofGaPR4th9PVXKPFl+VFkv966COF1MRTY3yxDxUYS/g9TUDboQMWRA/3X4+c7vM2DfwGtcZKhPbTTvi1FLOrZR/zeo8GrpQ81O9fAavbxgvmJAhM+Knb4JJ4JHn6WpZNem90Kicx5Plf7oGCQL7FnXf2AMeBushBgFABARJjUKKf1upRnnJI8pYWEBxRVizO33VKGQ3bkm8r1r45MFSP3Zgo9swH5o/2PtOKouktujIrt1QgcLdRStejEdnB7xFnt8PBBf80JbOGTG8ozKCg1VY9isrw8cbmDdNC+X3Pqm2u9umfbFP0f+1vdDEpRlqJESwOanMcBMOXFDjmhveZ8p6BT9XYZnk254zUED/fvJ1ifrWeXgsmGC71VysAqIHTMf3MySeYDqAQtYdWVCQCstXsj7LlUvA0LChUD9igFXjMQNwnntru31Q+pJQr6iCeAkuOG60Cd7eSY8qZaiilEvum4jzWPaGlZmUuIGjw5RvJpjAKRxPtXtWQbt/rV2lDqXrgd99+9j9ToThrT/mk1xrbIy5j1HhzFuss28hzHFBOu+sV9IALHdmoQ83ze07HDZuYd8GZ2qfaQDWhztG0lr+z/fAewFgSbstMjoG9TuMRLmShZKlQvjPd31aidQDygXtvAVqhEsWnaM/A9JnsF/wuUvw+q69HBOswo0FbDWW3nQXleMGQT94MngFx4jSY6ZswnF0j2AcL8RJkjB4Moo8XYe3guT4k1SFvHNhtX99uBOq8K5tkt4veqaIv2WKT8Cj+VuxuuBoBL5ingsXs71CWIw/Wn9sRvlyqe9VEnKCw5P9bIEQWJPHswbP0SmUcVzk0aTDU1OMrfrpOS3u5LaGbCj5oqThdo76S6kY+WkfM4gcNilzBWARXxXV41jNo3iUjwFtP2Stjo6+hWRZc6FB8PxWolqn4hD/4y5AJwfd6dSfTv9FIzDIaBCwZDnbFPn7AUMV5Mi/xwWhj4RgXFr4hZwdEKjxcWsYKTczkzJVQv8MDKQRMwk+wiFYopz5mgMuJYKubVqaUS5RdU27fRm6ZXiNQwUYufnWzUdR7ckbfJ3N6plImy/ahKWmbXp7HyPD/kTVh/kw8iALM3mhBq4ldnn3LmYULsTGgNEETP6e9TOFDU2aIPdu6Bx6ECf11lDQNpfLous5pvqYvSaPfC1ch6amtJ1vn/2FQX9txdH8cqJ4Gi1ERj4igz3QmNKyxPvUD27CYw4jWifuK+LAehdTeg+Zi5RDwuczZVm+fQvMlISE0cUWTXlUdkCkK72Ru3cFnj8y7w5SsSM1uyfGGFR/vs2WNLvaGxdzJa3gWO/5TtyTKL+12tsaWSOyWvKoXYtH/TryZ01hepe3qFFUwpuU7SMe+ROFGNztsxPxz9H1pdzL7VhgaxTWMb417bafoT3MlEyNbT+FsaHj9ijBmIAAYMgA+/fNLlR06jqQh5w7pgy5KV9ahcF9NckCsGiukKpsiuqRyvJFcFr8vaZnIDZma4Tbv6gRdY/NnYW7mnE9SgUK9RetVg0eDeq5fkfv3uOwfhO7z1HIsfrcIXisZOOWPMLJM1x5COEI4KH6UKgyhSyLVqwIj97hE6C+YQ2PfJApHSr1l9NinMzRBruWZJZ9I1yFRSYYgKnTnYNqynBZH5UGt3J3hdYJuKsMRyRifCLItxjPW4QANGfYd9zyM1TYkmE0Lng3kz1OD08B9WoLlvda6lHsaMwpQ0d7pyuKqVkc8765GrNpAJarHvqwryu53pyFr6cBWB/2OElr/T/bA+8dgEXdN2n2r3gW8joNwPpnx1KKSlMCWHRaqZecWE8aL0CtsffA8pw6ENwzyemwE4ntFFVKclP0IxVuLZWEDpiuomLcCDg74SaJcvIGIqsVuxkt3yy25UYn4nRf85C9uGqQq++I5NikciRVSnKXqPhd2lkiaD2ieAln09KdWF2kA6reYaqOod56XFV5wt0Ff3Lr8+wIhyAJAJKzPg+v+rEo6yAMTsw7p8YH53Jaw+6SGxa4c7cal6+yzY077XIFYImhn2crnsGt4rdsXTAhU0UMzlDSrkuU/D8JA76BuaxctpxO5OlkXrTePcwwGlWgUFvRiB+NQmGktibmHsZJPOuk13YFNkNFnXsbUSJwl4ZxzsxaDd187Qm7Y18A135kmyLaEh72BngVULE8j5YEHlqCbwAAIABJREFU5OjjLN42/RqVx/bizHtx9Y6T+PivIEzx24goTYAlXJbCZlPTxFDIOvcKYchRxg30XA3cSASw6tXlUacm28yGhatchv+MDjuFDW+tBOF17hbCkGMs76xlBNCm+e8ykXNnWo3SmFm9lF0xxAmzwK82SMEztUxz8QR0K6bYsiOvV/J+fRdTBT+A1/csfJTyip+4HEL2PLJsv/teIyN37tbZjCKFkwadNWcOQreaeTaay9ZAwoBJOK0PRYfQA7b8K+n8sTNQvplWtqn3y8M4FM8EOaTcQ444UQjECd7HIY9kKOdpyiOHAuhy1XctX+yTcQE29c6N5f71ZLdp966Cdh/zcDE27wFjC+YpJ02sDPtSq63ArMzMZngPZVx5FqXURQfh0k01MRMlFUCn1mo0rMslD8DatwbavcxLzti0G4wt7QUxLiW8QssXjA+zgocfdmdvjse7ObyQCMLkbsgjzE/A9l3se16ypICObV2/o8oQIjrEocMcqWkPb4V221LbT6a6rWHoOMSiRBkVLVEvHGZGpkz24/bCJRX27GN1q1BeQIfw6bbQ0An1ymNRpWK2/EU+QyWn44B+ZuQIdP5eRMeoMOcHVo6j8Okqz7Yi2MQ8vVYFNEADhRexWJFFP2sQGsp6YmA/EwIJUzca4LH0G5liKaUyQYtfM03GPc+PbDeRQ3C5shTKKoA8ot2xJW9uYXIEU0Ml8v4Jme1J/t3JKw3AcqeXPtw0L0KBxT8nfWhIvZMGYH24YySt5f98D7yXAJbBYITBaIKvz98Ud/XPP6f3tkQlgKV0bZ85RYDeYL/ApDAWCmcRLf7blRD8Uz9sJvKuCnckoRBZjedQNn4cjA3awdhuoN1zWbpCjefPrYvVVtE/oWbcdlsa8VR86Os/sEMRCkdhWRSepQyVyZlTQP8+rhfY7zJAerw8hKPxTARh6d7T2FKkFAYclnhaQMBBbxVKlBDQqX3q1yfoAIdnxxgok7sxj5z1eEg5hpRtLKLNiKM5rKTCK9dwePSY3d+6JY/yZZ2frN+5x2GD5EQ9W4CAwQOSbpcrAGsqhawkqHCt5FVcLM9UsfqlL4ZvM7PFutgO7YZ50P7B+NBMNZrB0I31OaXbvE0N4v8RrX0b3sJdsnuvlMOLR9tW8rYqQ/+kfbfArxba+DCupqTGzvDXJ7EtlgHF87LWRHvfAg5vuTBFDaOEWP6KB/BSY5XiHjLQDM2BDdDt+gWfNfkIq8swtbef9p9F9xsP8UumKbjtWR0F8vPo1d21V0Ryxvz48DNYFXMPjW4Ww6cnGUgYpAFuJ1LZFSvGo4sklOrhIw6r1rJ+zp+PR+8e8nrNjbqKOVFXLVUpG5QTE/axTX+G/AJKuBhTyWmDMi2peHmNtI7/3wvkQJ9WNRBHRGkSy69JDxI/yKtNHV4szZHt0G1loLyxVgsYu3z2Ls2w3OsxczjUj++wubJmCxi7yvPdtpNDVBR7F9q05EGhRkkZhS1R+JJopnptYOgwGMrwIykhurP8vo44h1/esDpWulQZpW+VtiQvX463hDxJ7cBBDvrjHPwl0woBmgRsumun9CHoFMq4reg+pfcV/ab9fSO0OxmXGHlf0ffGmU2dqUaCnvWlMnzWPlTUGnrprik9XL8apUHe3KrkAViHtkC7/Wc2Juq3hbG9HOiki7cNEWgYstuWrqg2E47kaIXQ0xwe7WLvr19ZAboaPFZIvufkdUvet67s5Ck1Dh2VHniY0aCe/Dnqdv4Cze9M1df4cS8Ym3WHdE1A5Qzoa0YOCY+eWPaJU2ockZRRu4YZTSIXQ3t4G4ycCgWHt8cbieyhOBfTHEVzlWg0R9Fc5cxIfZBUCEXzy8pj2GB5+ikRF7H4zU1bmnY+BTDfr6bDLFev4/DgISu/ZzceBQNj4PHjGKiD7svuiVf5YHnmGXiqY168RGzfvBmP7AHuvxeU6Q9RVzE7ce6lv0dkLIvRGcu6epQOr6cBWCnqtg/mpuhoFebMY++Mr6+AsQ44M9MArA9mSKQ19P+gB95LAOv/oF/TquBmD0gBrJgYObePrw8w8UsnAJZCCYvUeYR0LKTCzeJdJgu/weGeZBPrb/wDpeOtZLZEaqu0rdvVIDJ3sl4RE1EqgZHLGhJVlGjRRYsvqZHrO7nAK2PtKYygS6fU3cwr6/zTmxuYHsGIuvtc+QsHC+TAxB2fIlMcI9P40wvwCQQG909d7xiqz5M9HEJOsUVw3hY8KIywbehvOKeXMLNLKi+etBMPB3lnmCX7EBnvkoOnbDQCU2dqLCGboo0ZYQZJdTuzpAAsym/yNCt48FeBv3Cy+h+2bFr65MPiRLUwad4UGuKx6GvbT44IrH87yOHMWdYvdEJtMAgyEnpH3mMULkdhc47sy0zlMTSDdePtyj59dRT744JsyX72q4vmPnLPGPHi410cXpxmdRW9m+h0/asvTUj/pVW9bkLd8lhUmXkSTDtyEQMv3sPv6T7BId+ebpFzu6q38nrfV0dxIC4IH18thZ5nGJj4WAPcSwSwlN6Odl4XZQW0binf7IqhiVRe3rDMmLWFiTZ4+QkoN9r15ji5bZGmlxKq38+cDh0GdZOF2VLa1OTFIkBBe0gSqtaqD4xNurxLEyz3ai4che6XabZ8SCBDP2MTBC/3Ql2dVUC77kdoT+2zXTa2Hwhj/XaWja90Dh6aoRS+zFQhyXYQLxCF1IpW9K9iqH7WCoaSMmXHdvJnvWWbGukuqJBeMqWUGmpGulzub9RJ+ZBCukRr6JUTKwMa2NVTc3wXdJsW2H431W4FQ+ehTtujFCfo29uMPLlZvdQPb8JjNgPTzXkKI2Gce6GiSmU68vBaMkdrcd5KDgcWPTd6fqKRyjCpDSstyBSDqs9YOKjomRt9X4VbEq5D35wCcvfkLR5Rovn6AmNHuv6e7T/A4ex5Nrc1acSjWhX5d5kIyh0pI6/bwOHefXYvfc/pu640ZRmkclYrch20u37B9mK50bclA5DSqbS4lrszPFRqCzcPrRtEo3EoKqU6GgBKDsjA7AIGfiofu9cTwtBUIjaTVBihUtWyU71QVDgyVkY+T/WI4rJieZZZCNVYvW/pW9u4oYDSJVO2vvk+8hIWRt+wNXF8pgoYksHeE9WdySkNwHKnlz7cNIYEYIqEy47CWx0pcqcBWB/uGElr+T/fA+89gGU28wh9HYG3sfEQpAzPTvq6aMHc//xT+IBLlC5oQ18Ci5YyD4LsAcCIYU4ArOHNQQpTosXP3weBNKRT2cIuc/hL4qmT3XAQJfTTwOcqCP145okgFisNZfs8bAByGpmKXsLY+TDnK2bxviIvLKkt96+Lpt55cP4Ch72/scVopQo8Pm6esgWeu11xNiEU7V6wcJoiYdG4lzUDxu1vhApP2ftwwwMI1Tn+cLtblrN0D7dzeHmOtbtgOx7+lXmInjOO7qvrmQNrszVESAhknFA6nYCvFMp3ju4XOavEa46UxKT3JQVgSTdtzwOf40CD32y3VvMMwJZsTe2qoDLo4fWZlbhfNP3E5eAloVN/nuHw+yHWL1Uq8zCaVCBwRbTmTXh8VFk+RrqFHsTxRG4mZcHJ4QrpHnoIx/TMO29dtoao4+nY0zH6AYdby1hdieXtSCL+MLLULgQetG5GKdyNwt5E+/qPaxh55iZueNbAqkyTUbUqj6YNU3fMi0BAu0vl0Pk8Ayoe6gTc17K+nDDWDOJhITtynMMJiVpl3do86J/Uzuhfon2o9VlniPPC8lVWTjYytZeAj775ewEsr1FtoIpjoT6vZm3C4NjLOCIJdRPrMyZTOXz+jrxYul+nQXP+qK2Nhp5jYaoqVyV09K6585vX2A5QxUTZkho7DoKxLgME3clDmUa3cAI0ErEP8RDh87CT2PKWeRY6C42V5nc4/hl6vTxs+ynn8xxofMT6XhN3GnGoSe3XVWoUuK2C1Ceu0kQztAqhAGftOpfwEm1fsHmE0pHQR2ldFrtbiGNIt3q27XdTtSYw9BjltMs2b1fjZuJBCyUiFVZS1hJNc+kEdMsloaJlqoHI9d0xZShcvrwCJoywfpuTA2DROKPxJpqpcj0YPvnSrgoRfAJKBTHPpyycB67n7gJDlAoXpzGwivMUUOVbs0XBVboUnDjeBI2LKFtlf7VvY0bpUgoPrKXfQHOVkYobBkyCqWwNi3qZdL7+uLkZlSrYg5iOyqgQvdcC4rXpVA/H8zKRoT7pimFyFisQv3OPGpevsDmsZXMzKjrIX+y4h49VWLWG9Qs9n0962s9T1Z5tk4Hhv/jXQ2Nv+/Xx74dU+POMNb9spicYFjMKHvoI2XMKVefF8iwzEaW2infUqmFG7ZoCtIlCH+6MK2WaieHnsCKGeUROyfwRPknPDkaSk2cagJWc3vow0yqjQ+hQTqcYv2kA1oc5NtJa/e/0wHsLYIVFRGP2kk04cvIS4uLlSk1JdfWt4yv/nSfxgZYqXdBSCBiFgolWpKAKfXvzDkMIU1PKPamuf3Wew4NtrE45DHtQTD8Xgs4T8fPsVd6uXedAoS5k34a2go/wxpa9fvpG8BmyWPhMiNdEajuzNUMlT38cOabCiZNscVm/roDaNf/eTbBeMKPg0zVQLqk7ni+HDpfYZv+pRsAdDxUcqbW96/C9v5nD60sSktxOPLKW56EkapWWIypxnb3AYb8E9CtSmEe3zq4BkHMXOOyT3FeoII8eXZ3flxSAdf8hhzXrrPUPzxyOnS122KpaQJMBf+Rs47CLPOZ/AfWdy7Zrxnb9YWxg5fUiI28+8uoTrXhRHiYz8Jf0RL8DDwp/k1r957tw1xjpsMz63jmx2t/ei8NRYqUH3NZsTVDVM5vTx31uohrmBLaZOucJRKqB72K6wPutlShlQaWi+LoeG1fDz93Gt8evIEKdDd/7b7DwoNSolrpjvmLwZrwwx6Hr2Ypoc4WFmbzIAlyTKH5Kw2+27+Jw9Robk21a8ShXRt7Pj41vUOM5CxPesrifrG+qzXDt3fEu747XV92hCmceivrJq2HOmh1zI6/gh+hrdu90fa+cWEK8WFzKdo4ec0dDff+arcoJw6bDXDxpzyV326dUKuOzZId+ilwp0N28xHQekz+FOuQJq++YeTDnL27hvyIeLNEcKYUqy7pjiEADSahahugMaL/L+q6S9xJ5MUlt0U9qlH3G3gWiIqs61f3x0DH0d/ypZ2Hy9bxyWsJBHZnm4jHoVnxvu2SqUAeGfkwRT3kPhapRyJpo9I2hb41o2iPboN3KVFJNtVvC0HmYW92vfG/q1DSje3sr0VxyACz11T8tHEqimZ2AaPG8CQWDGP+Xh4rDozxW/q8zEzQQJF1eoh+PX35TgbgmRaPwOQqjS8qUIeqf9OSRL6/8Ho9Zn0P9iHEf6kfNBV+wlCUsUNrXzr7pyjJoLioceQwvN/2A0gNbyfjHDge2QjFdJkuVpQAS/d24IY/qVZ23R0lI78zLe3rkZfwkUaBt5ZMPixx4EouHLPkMN9An4kt4CbGyrnysLYkVWaZBr/JF0aI8mjYWkEkkeXdrRDlONCb8NNbHsAPCWVmqoWs6e35Gd4pIA7Dc6aUPO82M2WrExrF5w5HHfhqA9WGPkbTW/7M98F4CWNExsWj/6SSEhMqJst3p2jQAy51eSr000gXtjVsqUNiFaBXLqtCxvT2ApYqNgddodjJPYSbxc3emXqUkOb04xeHxHgk3U8JWFE6whlLEz94BwcdXVq7IYaUT9Pg+VO51E7fYqiQVadajZLBcev50jnbIo02HnXs4XL7Cymv1MY8K5VyDMe/a+KYhe3DdEC7LptLjvBh7gG2YIjngnBfQ7xMziLciNe3uGg4RN1m7i3bnkbkUjzP6ULSXkC1LyxRls5U8Ue4CIMSnM3e+XO87qdP4pACsS1c47EocJ3GecdjQcb2tquk5He7k7uqwu7RHt0O7hXnymYuURcLnjHT6yVMVflnF6kicaGYj8OIlW0j172tGTgWnSomgDYjiHQP3Uu4wV89QOS72BbZAWZ1Vec2R3VunRrhEpv6RRoC3cBzdIxnR98qyBTGiMQvj63PlPuYctIZmfZVtD5q19kZZBVDkqp5JXSfP25xPrTxIn5yqgmY3GKF+bAEBJ0NZX0rHDvU79b9ofXryyKvYtJoEHnmeMpDl51VdZWG3FcaZ4eGAsPld2iO913PqAHDPmOKl/stF4HNbFS8PxwVj4OsTiJfu4AG8Cy+W56RPwL1iROZKj8F3aRf3JgKeX3SSZWEYMhWmkpVTlC19JzzHdwV5Ooqmn7YBfMasUJJUH8/RGoW0SYegE9Bf4OkaW14qXoU+a61KotmzCRjUXw5gzf9ejYoS8m5PPwHl3QwpdXTI8Xv2j1HSw977ispXhiO7ItcnYJaAJtFKlRDQQRICSeAVgViiGVv1hbFJZ7eeA82pUq4y4rOrWckap5ssAOvOZRDAL5q5WHkkDJ/hsA45n6yUgbXBeXqBU6lwY5EaMZJ32CtAwDU/QcaXSIcWdHiRlP20WI3Xr9lcMHSgGf7+8m+g5zefgHspfTdWgM+eG+fOc9h3gPU1KeyRgqbSFi5R4+UrVgbxBgZGXsHMS2sxtxqbs8rqsmBfIPPcdcSdVV/BzyUtS3rIRr+XKc2jXWv7+twyRKCRBLD1VKlxM1cXeHFydzXK76+Nf6JX5ES7NoletQQQtmgGO9DPrQHlJJGSSzQ53I7KLNMArHd5Eh/GvfMXcggLZ+/xsIFm+CnmgDQA68MYC2mt/P/ogfcSwJq/YhuWrtkDnU6LXh0ao061ssjunwVqV7q8ALJmzvD/8WQ+kFpIF7TKhV7dGhyaNjHbeWCpIl7BawIL1REy+yN+6rq/pceeHeUQ9LuEmylhHQomLLeURSGEFEootbg4FabPViPAFIQxr5mKH581O8g7QrR50ddhkhAwkew92Zr1HO4/YOW5s7hOjYZ/HX4Ov0jc8SnPrDG+WLyWbVpoe3bIG2jbmk8VgOFtrArx8Sok6AXEHOJAhPmiFfvEjExFBYs6IqkkOrJP0xXHN1kqY+ZcNd6+ZfcmB2D7aYkaryWbBvLcIg8uR5YUgHXsDzWOHWd1WNHTOkZEe57XXj2LrnGhwfD8to8sbfyPuyB4WLnHIiJU+HGBRAUzowDi24qNZWWN/MwM4m+SWo4nzj1J06k0uJunu1vDpu7zHfjLGG1LezxHGxTSOp8jX19R4f5GVl96LJXj+iHQyMK1trZujU+LMG6jTjcfYcm+M5YyFmX+EdX7lEKhAqkH2obxepQJsgLGA4/XRP07RWzt0VQUsPcO60spl5FyIz5iuBmZMtoDt2WDNuI1bwVJZm5pg3xhDGQoNcSMdBJuIbc6PRmJ7DyiRs6GuVAZWw4PjG/Q6+UhPDHFyHKlMbDIvw7Iqyc55jW8BVRGBow6AvGTk58yrW75VGguHbf9bC5WAQnDp6coS4+5o6C+f112r3iIoHw/HubpDk831Bqlz5oy7rytC3xifSxk8p8PZQCWyQQs/VaDcizK3TKf0bzmjilDgOt4BmJdtkZOb1XfvQKPeWNZvxUth4TPZjpNHxSswnIJmXlgoICB/VjdKHyQwghFM/QaC1MV16GiNA/TfCy1r8aZkDe7VVAnWQDWo9vwmMWI/M35iiNh7DyHbSoetB7REiVdOjCgg4Pohyrc+llenzeFeJwOYd9YV6HjVKDS++KL0Wb4eMvnAjpUI9BUtPhZ2yD4psetOxw2bWHllSjGo5NELEJMr/yOEUl0+qgHKBN1EK98mSDR7KzV0cXXClKTKT2JP6rEo7kDgExMf/4ih737JYBaRQKXHM+3tZ5tx0MT8yL/2b8OmnszBVnKM3L7XuQ4ZP9cznh9jL3ZRqB+HQEU+p7a1u/VUfwm4Wd0FuLoTrlpAJY7vfRhp/n5FzWeSTxq+35iRh7FQW4agPVhj5G01v+zPfBeAlht+36New+DMX54d3Rr616ozD/b7WmliT0gXdAePa7C8T/YYvPjJhxq1rAHsNTPn8BjClNYMgfmQcLXcsAgtXo46CCHZ0fYYq+A/hfkM1hP4YnEncjclUZqdPmiL6JfpGRDUaQMEj5nHCXO6qck16VTfTrd/7ttd+xjDHrNNixieStX9ISPgXGLnfICKtQyI6kTXnfqKir2iWlbZhBgCGFAQon+ZmQoYG13meBNCDPH22VLqkP9VOVkpLyU6LuJ7ofpkLIUKUyJVrE8j5Ytkg9g7dzN4fJVNk62dl+HaI7V+WzO9silkXvriWUSGEugrGgJg74DeVCQScnhnfWrsr1KUuPc6nSIFhJkG7zbubsgA5fIXp7EA/vo2RY8M7GQkKTaQdmY9MD5b9SAwJ5l9Zgu8BJYuNbeSXPQQ8/CJpvcD8aG7VZOuJ3ph6H0yFYgVcjUspsJ4Wj8whruO/xwXdS8z1QUszbmsVYiHiAFIpScF87GVfOQPbia6L04fm9jlAvOZat6kR48sqSQpNid9nssngj1dSv4R0Y8RRRqJbUY3oABr47jhIITjZ4QAecj3OTFkqoeUv7EOUjcg6lpagVoQXnrv/kFfADrU3fKUyp80j2iV1KIKRaVnjEi+sxqT9zI5Z53UYuQvbhiYJ7dzX9vjmwvs0OpShUZrcKOWWoUJSK4RMtWlUd+B54uyvZIx6t4bXf25iDRCmemfnQHHrOG2y4nBfZQIjo8mDmHzXuengLGj2UAFhG4E5G7bVx9PgvkHerKlGCNSBAubuySA2Bxzx/Bc8oAW5F8YD7ov2aqhNK6iCHC4m8XcnZAoMYKkt/+RY2oe2w+EjwFHOJU4BN/onBl8rxMytyZC5zRGjwNVsmUDx2Fm1LZjso4+PIGPolnAiveRhOuFeglCwG+fpPD1u3s2+PMo0ps36nTahw8zPqjRnUzGtV33P5ZUVfwYxQLGW7unQc/+9e1dRUpX5ICptJ+S9cXUbW6omE9Ad4KoM/VGHL3ereXh3Bcop68LqAh6nilTIk6DcByt9c/3HRrN3Ay6oaunXgUVYgxpAFYH+74SGv5P98D7yWAVbFJf8TrDTi/fwl8vK3cC2n2/9kD0gXtnn0cLkh4kLq2V6NsWZOdB5b64S14zGZqRESMTgTpf4c93svhxUm2OCwUvxh5jJstRZFMOcmVK41AqNwP96J99FzbJVPVRjD0HOOyio5OYWlz9HebclMnlvfVniYo84x5aVzTAVnKCOjY3j1PAkf1fvVKhQVL5KfitUyAtyTiTeq5ouSCEfP8OnNFVAsqLVu8uyuLLuah9ERwJo9M6ZPywFq9lsMDiZT58R7b8VDFiGyT2oAqN9umGs1hkKhtKcE+aZ+SFwB5A0jtfMJLtJGQP3/kEYAYwWiRmxftYGBLlNBldjmsSgdvRLiZhWBdy9UJWdXMG8BRBjeXqvHmEdsgFdIvQR7DJktSU8Xa+KNbP7SThIXWCArFng1HLNcveDVGnu/GWACB1DIKpev1ypr/mAMNUPkx8yAggGmeZPNHacZ/YQbpQ8z6wbVsNqXv/+oY9sU9teQ/6Fgt1LvLeFgIsCDg4u8yj5UzoD7HiMUNPUfDVLWxXXHUm+/Ki8W9eALP79jBgZA1O+IlXqWp1UbPqQPBPWMee6Y6rWDo5FxRT1mu+sxBeKxmYbh0nQ/ICf24RYCnF87rX6JNIvE+XSujy4L9kpCspNpBID+B/aLV+rM2Cj0sBKVwRHCwCn8uUSO3BEvP25xHYC3XY6HHy8M4KiHhr+6ZHZuz2T9TaT254Afw/H6Q7Sc+ZwHoJzAOK0dtmjJNA4MEYPtyjBleXtb3Tgmq6yetAJ/NtcANcQqSR5Bo5HnTrAmPlABYqlfP4TWJea4mNd5qP9+BBxJP0WM5WqNwYkhoXChw9Uc5qH5PBzxOpIEj/sAuDjyixDYowT5Hc64qOgJe41j4q+CbAfGztlqyCA9XYd5CNpdkycLjsyHycUCeyNNmsTT0HOh59H7xOw4lMB607jcfYUYLFo5N+RMfIm2uRStciEf3Ls7HmR0nVz0BtWs4/p7fM0ai3vNdtrxtYYTgoFs5w6IeKjUeKhzK/yUK9qyH7Kl4COFo/Cr5Gbdna4qPPANSNA2lAVgp6rYP6ibitqVwWdHatrKPREgDsD6oIZHW2H+5B95LAKtsw37w8tDhzN5F/3L3phXvqgekAJZSDrp/LzUKFnIAYN06D48FjKD2XcJMXNVPqY5XJP4H5DLuttxmrNUCxi4sxEHMiziZcp79BQ3eMmJZY/PuMLZgIYWOyiVlJFJIktq3X5ss8uP/hClPsalMJen1Ew0QnRcY9Kn7Xk7KuitDGOh69XggnWTNXeZzE3wSRZeUakNifrOyVkO6E0VloCeR1xKJrbtGff79TDUSJMTjA/uZEBhon0NSANZPi9R4HcYe1O3e+3GGD7Fl8qt/fTTyduxFQh405EkjGnH0EFePaPMXqhEW7ngQBAQAQwbIn8WeuMcY+Ip507Xyzgc9TPg9LtiW56qABmjgRvhY4adrESvhULqfpzu8XYRahfzB4ck+ttDLaLqGinFWwDn+659x2y8jGkg2ReVehOHo6t8t159rCyDjvCWpOuY3vL2P0WFWdTAlIFu8jxnrjqvxkvGgWxS51GrIQqyIY4y4xhzZdxEXsPSNlby5y7mKaHuZearkbMAjdzLGo7vjVkyn27QAmuNsg2noMAimes6V+w7GBWPY6xN4q+DFKqRNj5UBDZBXk95pFdR3LsFj/jg2TguWhH7UD8mtssv0mtMHoFszx5ZO0HogfvZWQOf6MIp7chdEpq2ShGcLnt7Qj18Cwc86oeyMfYQhEhXYZt55sEziVZJUBWdEXML8NzdsScpdK4fy16wk9lIPPfJEerCGg59kyBTpziNLqaTnJuIhJN45qe3I3hSVPZLemCtDkXn/HNB/m7QgzcKlGtm4t3HpCQK8hjaBimd1jSPBEjf6f/HPGrxgzpbo2M4b22kcAAAgAElEQVQMCstNEYAVHQ6vccwzTkifCfEzrIdHSmsWsgfXJByO+wNboIyEq+/+ZjVeX2JzKM2YJ7wBowrInj3p75lSHdnfHxg6UD7ncs8fw3NKf/ZuZMsNAv0sc54emDaTfdc9dMCEcfL76dtB3xDRsmQR0GXgW5QLtgL/oh1Z/TuKjl8NaJgIw9MgFVasZPfmyiXg0yRCVYmPi+gaRGvamEfVj5yPS2UY+aLMNdBx9S9Q37ogq5tJpcWDFt8id7NKLt/x1EigfObOFDrdKSsNwHKnlz7sNMr3pklDHtUUh1NpANaHPUbSWv/P9sB7CWA16jwar8IicfngcnDcP7T7/2ef23tTmhTAUpImjx6qgX82o70H1qUT8JBKfJergYT+k/6WPlEufEvET0d2o3WzbS5RCQlDmfKTbZF5TIXA3dNRQS/xjOg+EqbqclJ3ZYWVJ71JeQP9HY1VehdQGVUe5sOog/VtxRGH5fUMAiaMS7kH1tYdHK7fYAtoyrxmHCBVly9H3gBZrd4Aa2Pu4YtwFiYlVmZR1tp4vq4gQiWE5o7cul31lfJkrV5dAaScpbSkAKwp09UwGNhcEzHgGHbEMy+S6Vmqokc6xr0ky9ugh9eotlCZmDuEfuIy8NmtnkJKdSrpvY6UE5e9uYVvItjmgrjCjLAqOormruS4kivIGZeXtE6koH55hgSIFQTUiWmBoHQlkW3mVDwxxqD6c0YQXSDiDS4us27azVAjYeF+gJOPD1fPMKnrc6OuYk7UVUuSyTs+RtFQBgaUHGDG0RsqXJaoDdKGjt49qaBEyeLueR2+OM3hsYQcO6CygAIScux3aYeje7W7V0L7G+P/MzbvAWMLqwKbM3tojAZ5+TxV8GL5qrRY6l/HaRiO+uxBeKxink3kTWfo+1VqNwnk/kbAhSqO8QkZOg6BqW7rJMuiMFzPaYOhess42wSVykL8zRe1cgySzYu6hplRV2x/989QApMyubfpXhdzD2Mlc1HBhwVR+886lryI60mXGG19/gKHqO0cfCW4QOlhJvi6oBzr/fIwDkm8r8p7+GFP9uYu+1gVFQavL7vY0gkZsyB+mn1olzSjjZs53L7L3rP2bc0oXVKA6k0kvL5gnsXEx0e8fK7MYACmTJcfwIiKtSkCsPRx8BrRirXJwxPxP9or/1ICparkpmyNUMOTnUIkRAOXZ6ohmNgc/VgD3POAxeuMvJ2cmVIdOX8+HqQQKDXu3lV4/sg8rHkFuOsqBNFRmOHb1pdl41ScJ+OnbYCQkQlpvHqtwoLFDMDy9xMwdJDz9uzYxeGKZL5z5EkibduPUVcxK3H+pN+bPovE+nX7Ze03an0snGtcgZSpALoaW46u132+E38Zo2yXpF53yc0vDcBKbo99eOmJ3oRoTkRTKrfS72kA1oc3LtJa/O/1wHsJYE2a/Su27j2B9Yu+RpnijO/k3+vmtJKd9YAUwFJ6sXzzhQbe6ewBLM2fv0G3NvnheSl5CvfWcQiXuA2XivsWASYryTDxshA/i9KuXFUh+68jkd/ACISJiJg8xZKyFy+AxcvYBiBbNmBw/5R7OiW3vSve3MHEiHOy27JFp8dP69lmxkLk7gOMHWmCr2NKJ5fFzp2nRpREnYtuqB0HJEavWO6vMN4Mj0Ri8gv6V2gdKl8wU5oVmRvgzLy8IC8q0caNNiebc+PmTRU2b2cbAJG3RdkQZwCW8oSdsBft4LNY9IZxyIzKWBYjMzrnkPGY9wXUdxkvlLFtfxgbdrBUYdsONa7dcAzEly8noPXH8s2K1COI7p+YuSJouzUl4qKtSYPSl8RXmSsm+aySkqd39ZCvzOARH8G400rEf48d6Zuj2zclEK2Kt/Caieb3Vo+/FjJAK568ZXKl3rz9RdhprH1rlVtXkqwTqHDrBQcKfRKtdCkeAf7AIQn3nbuefWGkyLWO5ZWpGI9ivd33CHTVr8rr2kObod2+zPazsX5bGNuzUDJn+aWEF0tzYAN0u9h8Z2zQDsZ2A5NbZbfSK7l1LCIY362CU9c8QwI8pw8FhTlKzVGY99jw01gXYx0PZN9l/gh90xdzq16n9CHoFHrQljbgVQBaHLAqwo0eYUb6dNbJ6PAxDh4HOEgDpStPNCGRlslhWX8ZolA3RK6muylbY9TwTHRFTaqGsTHwlijzwjsd4uZsT7JNBw9zOHWajdV6tXnUqc2DC7pvAQJFo9BB0ZsoqQwfPFRh9TrW4kyZBIwYZp2bUgJg0X3OeKWU9VACf44IvZ/+xuH5cdZeeitPeAEJHJCU+izNvTQHi6ZUbKTfNRdPQLdiii2NuWwNJAxgh2qzf1TjzRuJ8MZwMzJKBCGU3GHFiprxQ9XNeG5m/IPTD1/EgEv3EP/VUgg58tvKin6jwhwKkUy0dL4Cxox0DmApPd1J6blkcedz1GPjG9R4zsaSxszj0fwtSGewrk3IY5jAKyFb8njq3HrhkkhU9dlWBJne2lKcydkOuTXpUpRtGoCVom77oG46c47DbxJBp8oOxA/SAKwPakikNfZf7oH3EsB6FPQCRORevmQh/Dx7NDQUD5Jm/5c9IAWwps/WIC6OVXPOZC3MKoOdB5bmyHboti62JaSTeTqh/zvs9q9qREnU8crGjkdWs9UbSFBxiF9k9caSWlCQCgEzuiETz+KS4r/5FUJA0sfvf91XYe0GNlYLFRTQo2vKPZ2S2x/XE8LQ9MVe2W35tOkw5+eOMOvZ4vsPL6BrXzNyKxRY3CkvJkYl4xYS76kXCzC4A6g8yQSNVYgPcbwRhYLsVSbnm5vh2jp2yp4ls4DPJEpg7tSH0iToVfh+lloOhI0xw1uKqCXBgfXyFbBwCQMeM2cR4N39Or6NZF5Q5H1FXljOTHt4K7Tbltoum4uUQ8LnVhUx5UZTmkftWjzq15FvPga/PoFdEp4ekhdXQyUj6f/YJy+W+Fk9R5xZpFmPksHMiyMj54FbuZmXR1L3Ppt1EUFhVWxJ0pkuYUuGCujdw4zAvCYUeGoVQiDzMvIImctCJokrjjjjUst6vTyMw4leLT+ub48c0RltWZcbZUZYArBMoshGku/58gIU6ioaqXqRupcre/NYhZsSfjffnAJKJ27iXd2bkuuaU/uhW8fC+Ij/iniw3LHk8mIpwxWlIKs75SUnjcWb6qvuUEnQ6YShU2EuUdlhNrolk6C5dlp2zVShNgz97D3Eur48iBPxLLw3OeplT40xqCbxHvSO80aXrV0t5Q4fYkbWLFYAa/dWNbJekIDOnIBq05Key/u+OooDElU1d72vLAUaDfAeLvHU0mgQ99NvSXb5xUsq7N7HvjdlSwto29psEQWQhjSbi5ZHwmczXD6+I8c5nPhDSiYuoF3rdwSwqE1ESJdo5IEleNiHkg55fQI7JXPeT3410dZHDoKTwMTl6WqY4tlzCVED1z2BQf1NyJ7NcRNPn+Fw4BBrF4XbkZem1DQndkO38SfbT0oeQ6U4iy1cM/GO85c47JWEXfvWfIZ5+Q7Y8iPQ6MH8rchgMEI/Yhb4wuwwxJAATJF4vFJ04cQvnR98rVqrxkMJRyGtMWitkZQ1eroVtwQGFi3Zexqdbj0Gnz0P9KR2mcE1n6LLAZTMBGWDN+G1RNzlaq5O8HPBz+isiDQAK5md/wEmv3Ltf+xddXgU19s9O7OahAQIJFhwdylW3KFocfdSChR3dwoULfygWKG4FijaQvHi7g4hECxYiO3uzHzP3c3snZnsJrubBPqRfZ+HP8jeufLOnZl7z33fc1T4Y0f8QLYHwEqBE8Mz5M/mgS8SwCLe3H/4DIZPXYr8ubOie5v6+KpYPvj5Uun2z+ZxT8MyD0gBLGWY/bJ5GrwJjwtgaXavgWbXKls9pnptYWrUJVk8e20Jiw/36YK3pGkU0kbRjRJJ0yDpGlL7+BHwH1IHrCXuBSBLw6gF+2Ah1onHiIodUbMTrWRxHk0aJbxpTqqB84KA3MFrECPQjVZlQyaM3l4P7yUL3ks6oEJzHkTtyFW7dkOFTVvk5NhEer3WR4CV7PfKTTaDoTQfsMfPNeVpYzw4SJW5EuOv335n8PAR9X2TxjxKFpOPz1EE1r37DH6XRN2QFJPU395D79dWZT1idb2yYnlAdYfuYp4HQz+hm+13CzhK0na0epw6y2CPJEJIWglRTCTKiVJTkttuyVAXWhWLRqFUMc6ZzbGS2D8j64VzQXFFC5SDUr0LQ8yYKTjnRYUVeHD4y4tFzRoCKlfkkOXRSstzIVrY9LUQvW+u/i2MLWgEiKtzTFm+buifuBoTZvnzot9bI10EDR0sNZwDk0rApKny1CdyD0nqkGjt2vDIlyfh+R79WoULEjJmrZ+Ar0YmHwjNKtOpFZEfzviOkNz3fHUEUQperJxqX6wmvFgaKy+W7tfxYC9ZucSIGbuOhLk0VSRzpi1Xyijb4wqXQUzvKXGqUEaGkQIWEnMi7KGRwuLWSyuH/IH7Zppm6KygAbmWE3hkffy7rA9dVncFIzDo+R0HEr1JbNNSBlnu0fnDpAHKKXiPpJXYi75aF1gLVVxQVYsTrbRwH8A4/uY8esRgxe+0j1mzCOjelYP66C5o18+zdc9crjaMnRIWIFG+Qxs35FGqhPWZcTcCyzCkuSwllHBgES4spUmjLMlv0/zLo6OdlO1nxxk8+lOenkyUdRu35ZEvr/3nW6lUS5T1iDqy1DS7fodmNwXllWuStesZ3L7r+H1y5BiLg4foB/BqswM4402jCZvfeIilf1rXHYQugVOoHyeUoijt69IVLJ6E0LZ6dOWQJYtjAIt5cAP/O7kCkyoUtlVT+/5TrDv/AiSyHPrYkyZXHu4kKJv/8VqLOIlot7K2RSom7vPuTFMeAMsZL6XsMnfvMVi9jj7DuXPx6NhO/s7wAFgpe454Rv9pPfBFAliT567G/cdPcfXmA4saoWh6nRY6nWRXbMfX/+5c+GnvQApvTQSwIiNV+Olnutj28gLmT3MAYG1dAs0BKoNuatINpjrOyaC76u4rC1l8DKaLvVLe05AmlKaQxAyaAy43XdiR+hkSPTCqna2pcCYNomZsho+U5MlOR44eZ3HgH0mOfUUONaonnRqbM2NXcom098mLH05XBCHmFo2oN2WswYFwRblqSpWqCuU5vHipQm5Jmiap8+vp8hNkZdQEKTPwTAu8v+Vn64I90MnZ/p08xWDvX3SM+fPzaNvSOQDrwkUG2yWbouLFeATWeQqiniiaM4CRfkQbMO9e266J+WEiuKLlcfMmg/Wb7XNC2QNWCL8U4ZkS7VjmpvBi1Cj1hBIgB7IGXAiiqln2/ES4kio//cP2EwE0jmVxTBAuFtRsXQz1ga046rMdJoben7M6wL+AVSGrUPB6vOOp7OSjuZvgF2PdjPB5iyJ6ACXxdvYeOipHiJBfxp7Ur1jRHqliaARH6TFmaHyAXxaxePXKMV9in54cAgISnu+EO/zUSAqGqRgB5ROIvEnM+JTE6ly+4ojpL1fgc6Z+Z3ix9NN/BCFJF43cI3KvksuUvELE+ySNUEhPoy6Za2egWzgK0jtnUYAb/SvgJz9YEPuZ9dEqcBL49EbWNvBjdE4Po1zIFjyRpC41294cqT+kRrfOHLJltc6R9bNYZHtJe2XIIaBET8dA5vevDmFXhFXJkhhRCCXAmitm6N8Iqpgo2yVRc3aAENg7MpLSRlLbRCPfJ8JZpeRVM9dtA2Pjrgl2hYDAJslru29vHun8EwlgjWoHEo0nGlG9JGqESiPRrkveW4UUiBGF2p6+8u8y+Tt5Pi/OZBHzlt4bwuuYroljInNyqEQOl0Sz950h0VckCks0pZgC+T6Q74RoUnCP/E36XYzWRWNDy7XgVPR9s3P9AVQKtkZ0G9v2h7mSnBftp5ksIiWRZSL3mL2bRviyCG+WaIQvi/Bm2TP28r/QLpuMpwYNivT61laEEQTczNQSPrrPdygc9GgVeMlzHJytI1iVe9yJHgArwcc7xRcIDlFh2Qr6viSgLwF/peYBsFL8NPE44BN64IsEsApVpdLLrvry+uH4lXtcrc9TPn4PiADWq9cMfvkfXXwEpBMwdYzWbgSWdu1cqI/TaBJjm74wV7bykCS1XZ6rRgRVsUbpzAvhd9Mqj00spvMwcGVryppl712DbtYA29+CNfkQOXQhyAl3fKYEd5xNW0rKMa8Ov41/IkPgy2rgp9Khrnc25L2ZEXc20A/3awaI+UpACzfIqRctYRH6nC6e27Tk4aMT8ESSdkWWBFl+IGlcFEBS8jqRMXfZ1gHMR7rx7NebA1FvcsfC3qgwbwEdo1YDjFakYSgjsAjwdv06cOkqg3fv5OSe2Sq+RxUJb0hW1gcng5rH2zXN+nnQHKUpnKZKDWBq2w9PnqhkKW7SSqRRH+Lfcz9eI4umuZ+tPfQqNVwlZL9ueoPaT+mmrLAmLfZnTmBTHREOw4jWUJmMuK4fhlBtXVt3H6uBR6mthMnln2xBMEdTUm4u3IYMH62bb4vq3Hx5Kqs791S8RjruNUs6Q8dRgKncRDMIdqEk8le2N3IYB73Oubl1aowaPD03QULcR4kZGwGUCLAkGp81D6JHuKe+G86bQFKxDkpIxMV6h6QpgeE//SQDWKMmrIQQkDkx3U/wWhKVSKITRSMKiwQcIKZ6/gT6n3pBFRNt+11gWMQMmQs+e367db/hY1AkmKarplKpcStb+wT7IS3Q6vk+HI+mUnt1DtZFlqdZIAWT105UIwelL0LarwTkb2EfwLpjeg+i9Ca1tRlqoareNd8ahraAKpySWkf9tBFCAqldysgdIs6RasNMqE9S8N3Y+keYq8T/3D99qsKvyyUHUAYBwyXE6O5GYOkndgcTSoG96NFLwGfOEed+zX5/GbPeUmL+QWlKYKBfMbv39fVlFe6sk0emRRQVUKud/ftDoi5I9IVoBIDPq4jGJPxXhAdLtJiuw8GVpuInfx9U4dgJ2mbN6tZIVNFIVDKJTiZ2rcA1nC59yvZbzmgB5+ets/3f3oHd3AUs3ryh36D4voVKDsqBCj4usSH10T+hWT/fBg5X71gXFzNSUHhO+opo6Z3bpWcnKQu7+j2Lr20PgJWUd+bLrEu5R0mbVkB/BWWFB8D6Mu+9Z1T/TQ98kQDWnoNyImpXXP9NjbKuFPeUTaQHRADrUbAKKyRS0DmzASMH2o/A0q6YBvXZf+hi0Q6IlMhu2S4n6UAkLUi0MkXWwvfEMrqYbNAJpvryDRB79iB0K36ylbmsr4KIzmNBInPiMxJlQ6JtRGvTgkeBAgmnLSXVWB3VE/VKhYuS6DgSJ3Mzt2BJmXHF7KlUDRvMQScIODORggpk738vv4DuEinwTRH3MODVcVlz3X7vbvt/QkpSzvRz9nxWBkR1aMcjTy7qfwJgPXkq4MipGFy9xuCN5BRfWn+j+jzylohGgWC66dCDxf3sHeLthpJ7hpDjRk9bb+kT6Zs9GzqQsyjmiUZAiPwSvjA/RosbWa0cPV+HbJUpz50Kao4g1jET/znjSzR+RsnzS2sDsD3TN/GOQbNnDTR/WtN7X6or4YrXRFt5QqN22Asgm6uW0X/glkRB6vet/6LhvYe2slGTVkNI54CUxpmbGVvmBReJkpLIs82L6Jyx+CQ20k9J0Cptwh6YGV8XlO+M4gPM8Er8UOw2ybx4Av14Gh0jBGRC1ASaXu2Cq2xFf357EXPeX45zab27T7Bk90n4xEbKRTqRFu1O+9JrlOlsJKIoavpGgOOgn9oTzGsKJJHrYjoOARcPf9plYxi+eUaV7Apq0uDvzFTpzpn+Dn59HOs/3rMVrXCqAvLfKWAB9AnBN7GNo9QIkkQjZW/AI1Ml++/yPq+O4A8Jf1MxrT/2ZHL9QMZAOMPCJLyLDqKVpGMkh0ZkYybaD99zyL5xGEhkn2hiJGh8vvn3FIN9kgjWAvl4tGlFx+s2gDW9D5hHt+k7ZOh88DniEu7/+uEaJkpEKnr6FsKYtI6VJU9NZ8FLAB+jXkCVcRzsBfD8uozF02d0DfB9dw6ZM8nBbN3cIWBvW5VOLfNQIdqiTAMnfHrkgEo0afrllsab8d6PpriOfaXGgBUSyoRaLUHECaS2eBmLZ9I+duOQObN9wH3aTBZRkmgtcqBAvp+y5277Mmj3U6EN8tuCMgUwplpJW7Gq+kxYmyHpuAqdefbEMhGCCXkfU17MVIwGt7LSqHdX6iJlPQCWqx5LeeWVKuGEI1UK0hOPeACslDcvPCP+fB74IgGsz+dOT8uuekAEsJQqPEULAX172AewdAtHg71GQcqYnhPAFfva1aadKn9uCgujRD2obLU9SLVDIiVvhzRZvX89tNupWtcR7xZ4X78nalaLH4xasoJFiISbggA47hClOzUwFwudHCWXID/pK2DQKNcALKVKFSE779+bg/GdCuemUYCGxOEc8QY6deCQK4d1YX3Z+BrfPKNROVqeRYc1lPeM8Je0a504sI+kEJJUQtHKlObRoB6P0BfWSKvbt1m8eJWw49q15pAvrxAn4okssMlC26EZo2EY1BQqM+X1iB67DKbAbJgwWc7RJNYxYYxZJsymjObIp0mNfzI3sRRXRo5syVAP5fWBDrtzLCoUrV/QSIwqhoxYF1jHcf/NJhiGtYQq0hpZxUGHw357IAjUpyf0QK2mHMan342zRpoaRMpnf/sRzW4+RKM7IcjXpC+44hUSdnYCJa4Yw1AvFrDQmdVYs5RG5zJqoNwUK8rw8JEKv/1uHyQkioS9ezqvBkpI3AmZu2iFunPwy+Nc9JarA1a9fwPDcJoKakmfm0kjRF2tTyz/V+QT/PjqCD4qeLHyhr3D+q1HQaJCImfLo4bcbSu+61TGaOjJnIqmqXHGVn3AXjouAwxIHaZqTWFqGb8C4+7IR+jx0qoiS6yOVxBWBNBIGWfGsPD9VUx9SwGeIteLoMz5smhYn0PpUgLCw4FDU9VIJ3kd5e/II22huO+n+6YPqCyJ1CTtrwqsiZqG+AU/7PUzTrTSmKXgM2WPd0hKbqaWzTh8tbWbPOpp+ALw2fLFW8/6jQxu3qbPeZ1aPIhyp2huA1hzhoC5IwGG+k0HIZVX2tqPdzD0NeWmJKnv09M5XhPcP6fCi83y5z13Sw4BpeI+p7PmsXgvUc21F7Gkn9wDzFMKwJMoSBINKZpS6bZQQR6tmlP/LFikxstXwIuAF9hVlwKs5Prrz/yRaTXlEzRXqAdj+4EyF6xczeKB5J3TsR2H3Lnsv3PGTVLLBEtk3xCeg3blDNkBIWmIcDI+7DYIpfyp+IGlb1nbIrWbvFPOPGuOyrzmo1EsmAqMBLAGXEwgJT6+9jwAVmLuRsq4luiJkGdHahPHytcFHgArZcwFzyj/Gx7wAFj/jfuQYnshAljnzjPYKVHhKV8G6NbOAYA1ZzDYOzRCIGbAz+Dy2k8XSKxjT09Qg5MoI5ZvfRbeS4baquXyFUNM/59lzWjXzwcJvxdtu29fvC/TJMGUuznzWLyVLJQH9OOQxi95Nr6u+uXqIhbhj+im/IIO6DYi7sltfPX+c1iFw0fppoGQpBM+EWWEV4QKOOYFS8olIRUmFimY8duHm/BltJZ/1457I+Y05cKpXVNAxa9dA9SUfVWSGuu0AggX21tJemB84wsMEFC4EFCuNA+dXkDZkM0IMdM8omNZvkVONeWEsleXbj6Jfrhg+8nUvCdMNZpByXFCCqRKJWDIAPmYj0aFoo0EdKpsyIj1saDTgNfHsOnjfVvdc9NVQgsfuVKXtE/7I4PR9SWNdExos69U4iJgyoV8W/H2Lr3ndzVAmvI8Npbah8PR8s2QtO08MUDjDCXQ1DsnsrkpjU7qk47BN1qP5b/RaEnWCyg7zroANZqAydPsg4SEvJ2khzlrt9eyCLtCn5U8rTikL5l8z3Ec8u5Ffzvb1XjL3TN9QIfnfyOYo3xqlnkXY8SSE/dQuatVJTO5TbNlMTQHt8bbDJe/BGKIGloCtvjDdUx6Q9VBu6YqgEn+rkVdE4VPovQpWvbH2VDjSC3Urc3j63JWwPvaHBZSysNifc3wtpMR+OOro9gW8cBWl1Npug7GqPupN9jHd2y/xgxbAC57/MATiZoi0VOiEYLy2tsaQhVF31uEv1FIRZU77TWvfD8pVfbcBbB0/xsD9ipNp3MUDfZHxAP0eUVFM771zoEF6as4nA2EL+qviSwCJI+11ldASSLqoMCxlWmWY0eaoVa8KvTDWoH58MbWHomcJRG0oj16rMKKVbRiwpVGONNEmzGLBYnwOFrhCO7mumv7ez2vrFj5VAvtkgm2v5HDOnJoJ7WNmxmQQ0DRWjbnULhg3HeO2QxMlAhWEF2ZcaOs70CS9q0hap43zsXxm7H3FJgLl0HD0N24EENPcWam+xptffIm9Ngl+e/knVT+CX0nkG/Ev1maud2OB8By23Up6kKyRiBrBdGU1AIeACtFTQfPYD+zBzwA1me+ASm9eRHAUqrw1K4OtGxsH8DST+sFJpgu8qKHLwSfLXkWUadGqcFLDlnK93kI76mSlJ20AYiaQkPZyf0kpMLstTO2W7sy9US8yVkxwZS7CVPUJDPGZvYWyp9rvjz8k0HocbpAvqcBqv/AIYuDNAV7/Vy5mpEpuxGFRaIcGPEUuDyf7gjeM8BJg7WGrh15ZJdwYdkW/LNZEPVC0QjQlRDHmDO+Uy5QEromUyYBhfIDhQrxSJtGvmFoELoLF2MoKfu2jHVRVhd/LpnmwBZotv5qa1aUsP/fryyev5CTjJO2e3aXA1jKVEsCUBGgipgyNWxwmhIY4IAnhpTfHvEAvSWbwibeObDQ0aaQ56Ef0xHMG5rCZGzUBSFp2uPBH3TeEHz2QXYBvu1uWDhrXvGUv8iRr0maV6NUOdHcOycysq6RBv8efhsjwk5aqk4X7oNFa6jYg1IhUMkjI/ZHjMRLaC6Ivz/cySD0BB1ztm94ZK7iPADmbDtiOX0q04IAACAASURBVK9etSENqYia+ycEHSWqd7U+afn4eLGGpimJfn7JR+Iu9kP16hn0YzvJiNqlfeTTZUD0yMWAIeG5MTrsFH4Lp0T0JM2MpJu5YmQDTzbyovmH+aPJ7m9RvaqAqpU5C1/Sy6WMrL9KVVVy7SPzB1QI2SZrmiiVEsVSd0w/ZxCYO1dsl0YP+Bl8Agc7Z84x2LWHztXSRSPRaj8lCBcYxqqgq3IscBAWpsK8hRSckYIiYmfcBbCU3FLGLiNgLhNXzVUJttc2BOG3wPgj62ZNYVHug0p2n5TPaoxRhSk/0bGRQw3CE6Y0ww+1ZPVE/rIHUNNoWyV/DiG3JyT3ohGQzKg1YnVrucLlmsBaqPHkFfRzqAokn6cIogfOlnVBSRJvT52WXBARqcJ0CR2At5cAksaPiA/QzR8OVrKuIuUFr1SWdEhxfbX0w3WMlwDAFfUZsDED5Tl0Z966c40y0jivxg+HMlOSeVfr9ABYrnosZZYnohdE/EI0ZTSmB8BKmfPCM+rP44EvHsC6dS8YB46ex92HIfjwMQJZMgZg0lC5os6rsHfgeB6B6dJAFc9C7fPcoi+7VRHAUhKYN2vEoF4N1i6Ju35sZzCvntKF+vgV4AODksVR/w6TH7VWmBwJQ1+5AlCkIuJBN6k72GeUeHZ2uqUI88mFUcMcRwhFR6swdYZkoawXMGpo4iKKktIhL8+rcG8T7d8rBsjRlkfRIs5vzB2pVIU/VuHq/2jdhFrqdKx4VrYgAd0kXFhkTCRKjUSrSU0Zyu3u2DduYXE9lkzXUR1ZMgkoWBAoXIhH6ngi5Dq/OIC/JYTYi9JXQSPvuATE0nYYQkw9Qf5+IoTmqzYZcO++XGEpfz4ebSU8M6Seee8uY8Y7Smb8o19RDE9jTblZH34Hg8Nomk1rnzyYlc5xmt668DsY4mR5wklHuOlEE3QGC39XjMkb56bIn6FDBmDIKDM0GuD7X1/jQfb7CM56DxEGydGmA+cX16ZDE58caOKdE+nZWJQznptNfEF8Qizz29SYu4ES6evTCSgpIZretJXFtetxN+quRveFHGIQvI/eq4yVeORo4Pxz4urcNQxvCdX7t7bLoqZvguCbxtVqHJYnsOzcy5swyzcCguL7WMOQBYvTV4FXfKmxSdAT7cJRUEsOBWzzTKtHDElxy5jNqVY6vTiAA5JncnH6qmjoHX+anbLi11wUij2h/EAaowYdN3QCUVStU0vA+ZMMYrbT+8+zQMWpcVNQ+78+js0SLq08ZBOeqYnbaxDtgpFQX6fRZcY+U2Eu5JgHiozr/gMGq9bQvhZPH4z2VzrR59jOAY3SH7fvMDh7HiBRRkajCtmzCejayb46l/i9d+pmAdCungX1v/tsxU3tB8JUoV6cy49HP0Or51QduII+AzYlAKwsXMwiXbAKQZKusjoBpUZyUMfiv4TncO4v9FuTJrWAAX3lYyMp04ZBFDwR9AZEzaHiF6SzhHOKcE+JptcLGBn7fRcVmG/mu4F/y9L3M0mLu5ClJdjQR9BP6mG7lsuUDTFjKA8n+WH/3yqcOEnrd/TOsjeege2eQjd3KJjXErUaotiYJj2MA2aCT09DB19xUSgumfuk7etBbZCadV7F09l7H1+5S8bXqC+hFCiu9cduN3jjxDY8AFZS3JUvvw7yziDiPaL90INDxgz04NIDYH35c8Azwv+OB75YACsiMhoTZq3E7oM0/Jy4PV+uIGxbPkl2B7oNnIFTF25gyczBqFA6rvTyf+d2fXk9ERe0m7eyuCrZPHZqo0Klcmr7AJYyXH/6RvC+aZPcOURJjCiKiUaoHspNMkM/ojWYd2G2v0dNXg3Bn0bWGAY0knG2jAnciSgmFYYP5uDlZT+VSHlCmz4djx97Jd+m11VnRT4HLs2hvoghp7P1OEvUgTP2LFSFxUvtq1S9v6fCdclvYSxwVhJAIpWnJ21ducpgiySqh/CESQnfnemPozKXrzAWRTqlBWURUP4rNb4qziBGiJJxiDiqa2jYv1gbTlN6JqQtg+6+BRPsnkEhHR/TaxK2PvxaJuVOKildikfD+vI5MjLsJFaFU9LjKf7l0DmVVZHtaNQztHlBN3mV9JmwIR4S3uUfbmLsG8o119W3ACaltZ9uRTZYzDPKAWOs3RLmb61EwyS6jkTZiXZdC9TsxiOdv4CZc6xzQlAJaKRti635s2FX3iC8NcS/ISJLyDK6QDTyyWEBBdMSKUE7Nuj1CWz4aI3WzPnKH9O30I2mVyageD8KLBz/l8VfB+ICWI7ScRzdyJfnVLgn4ddJV1xA3jbJB0YbJnS1KPKJFp0MgL5m92r8c/MgujaqiEitHJDMqfbF6sCayK7xTXBuu1uAvXEeul+Gx7ncGYJx6UU1n+3ATSMF+3ZlbIASOprq5Wz/cj5ejRiB3tP2GzugQmENiIDDsZ0s2BN0HnGpgEqj5QDWU/NHlA/ZCg70/ekOmCbtr3bJRKgvHrP9ydhjHMwlKsY7JJIePUciEFGEvYhOIZRfictREDFD58VbxwxFNGztGgIqVkgaAEuz6X/QHKJca4TjjHCdKY1EupKIV9GcIcJfu4HBw9sMqkQC0uMQQrZPSPeJBYeosGwF/ZV8B76LTWsX22JiIwTF//PpMiJ6kjySivymTEUUD13Eb/+2hlvxNg2dmwNTF8eg1MUtaw2y5rDV75sW0UTIQGJHj7M48A+dc5UqciDpoEojUbwkmle0Ir730PHpYKg+UtJ48hufOSeMfafZXVc1Cd2DszGUv3Cqfzl0iv3GOPv8JLbcqejnaPacApvl9IHYmiEusOlsOx4Ay1lPpexyJA2YAPWide7AI2eOuFx/KdtLntF7PPBpPPBFAlgcx+O7wTNx+uJNixfTpfVD1syBuHD1jl0Aa+22vzF1/lo0b1AFEwZTYuhPcwtSdisigKUkIe3VjUHJovYjsAz9GoKQ+4oWNXcnSMRHUhuhL5Kq46m9gDLjzNDN7A/2wXVbczH9Z4LLV9zyf+VpbIxKj1EZ9lp+IwtfsgC2Z/cfqrBqNV1Y5sguoEvH5Nv0uuorgQdOjmQJ0mC79EUJAd+2dq6PSpUqafTQ2xsq3JTwg4R7CzghScjIkU1AF8mJPuFKI5xpolX8mkftmkkD9sVEqzBlBmvJmCHAGOERKVRQsCj9ERVC8vfQN84BWDPfXcTc2Ogf0tc+fkUwIk2pBF2v5FAzV26IvRn748hRObBWvSqPqpXl4+768iD2R1IwY1lAdRAeFWIPTO9R6SndDObQ+OJ45ribQbGDC95fwbS3lI+rt18RjLTTfxL1QaI/pEaIxAkHFrEnfzN4coD2/RUL+NXjkTcXj8XLKBgy9F13BETdh5lR4VD2jNjcrCn2seEIVxCJKx3IQmUho2/ikwsNvLLLiPLbv/gbh6Ks6Fn+0EBM2k7V3VJlE1CkF52/9x+osGpNXCL377pwCApyDqgl7by9rcJNyabXL6eAQt8795wkODnsFDBM7wOVRKktZuh8cHaU2typW7xGs3oWNP/uw920qdCyeTU8SpNKVp2PSoNfA6qiqsEO0VNiGpZcqx/XBczLENtfTI27wFTXqrDprOV6vBrREuDpUlArpyL5lPVXf7odtyUqmo13N0H1jP5o3pTD3ysZeEv4iISMAir0l9//wWEnsD6cpsEnNvqK9E+7cjrUpw/YumrsPAzmsjXjdQ3PAyR1nRAUEysZdQBt302xXWMuURnGHmMc1nHlqgpb/pCkDzLA0EFxuRHdTSHUbF8OzX5K1m1q3A2muhTMETt2x/QO1Z5ut/Uzt8YPRxJIKduzj8GpMwxyG4HckuBPFWPlwtL5ATduMdiwib67lOqKpEHNsV3QrKMgH5c9P2KG/RLHZz/PYfEhnH4/B/Xj4OcnWAQkZu5+ix31af/JxST6KlDtZeGmSijq+/RZBiSKXTR7hxvkNykXVy7jJXR7OwpaXkLyScQ38hSF8YdJEAyxYdCKkaz4cBNjJAcbiQWPnH12peUORYWg/Qs616sZMoOkW7prHgDLXc+lrOuUYhVE9KJwrPIs8YQnAitlzQfPaD+vB75IAGvbnqMYM2MFUvv5YOyAjqhTtYzFy4WqdrYLYN17+BSNu4xCnhxZsP23yZ/3jqSw1kUASxmaO7w/g9w57ANYyUVarHR9zFsVzkv4L0TOHJIqRVKmRJOmNZAoFGm4/3M2O34O+M1StFkTHsWK2gdarlxjsGUbXYAWKcyjRdOkAWWSakqdm8PC+JwuwB9lBNr2d06djWwCyGZANKlKVdhlFW6vk6RP5gR2UColyyUkjZCkExJTzhWiPkhUCJPKbtxkkD27ACKTLDVXAaxV4bcwMoxGgLb0yY056eKPiCDtsVdOQrdorK1pIW0AjjZdjz8lIgfkR5FDTNrH+s/+xCUjjQ6URpiYBR7ZHtPIAAL8BGen6UJK/ykBuMGpi2NAaitQKzXNxoXQHKabL1OlBjC17WcrouQ4I3fqcVEeZcoCq9fROdGdm4b8L2mEmBhtsS8yGDs/PsTfUU8sZP4JWXVDZjT2zol63lnRJHQvbhit5MrFnmTG6F30lN4vt4BC31FgQZnmI7YzdCBnATCdNeV4DQECSgxKRgDrl+FQ3aCqeDE//gSuYMJAqbPjIeW0v4yE+oY1Pe2DVo1OfbrgsEa+8SVvhkEJ8Kq50maceXboD5CIHGIksohEGLli7/kYFAxeb7skofkfX93K9ODqh6ujrj67RQl1z1wWqUPpe1JTgEfpzvT9ZC/66n/pqqCxT/zpxQmNlYAoBEwRjTyD5FlMyKTcb9U+bkD9cMrBl5CyI4mqJdG1opUswaNJw7jvYrcBrH0boNmxnI6pTmuYmnSLM6Sn5giUCdls+3tG1gvnglrGO/STpxns3c+AFWCJwtJKSqcvISBPaw7nLjDYuYu+o74qyYPwS4mm+vgBurEdwETRZ8FcujqMXUfEaVvpq++7c8icSbCQr/cN/he38lFuNiUgY+jbACoTiXu2WtS8PyFoaZhynPVDIcGuaAzhZyPv3OJRh9H+nZwI3tnnyl4aobtAcEJz09HveyOD0V0iMEIOachhjbvmAbDc9VzKum77DgYXLtP3QeMGPEqV9ERgpaxZ4Bntf8UDXySA1anfNJy7fBu/TO6L6hWp5LIjACv8YyTKNegFby89zuxZ/F+5NymiHyKANXM2i3AJKfekkQwyBsYFsFRRkTAMbGzzDW/wQvTsHcniK6U6nsiZo9m5Epq9lLjdJFlUE8Ukopwk2k1dGSxPO93yXxItQ6Jm7NmJkwz2/00/jETNiqha/Zfs9mYGYedoHx/qgXYTEgYUyBgI/wcBCESTRrW8Oq/CXQm/VvpSAg68hUXNSzQxIk1Jqkt+jy81Myn95yqARYCXbpJFdjV9ZqzJkPApsSomCob+jWRdv9FpJVb8Jef5ad+GQ948cmDlqyebECqRzbwQ1BKBRG4v1oj0OJEgF+1K1tbwZ+wTfhO1NqLaJpojwmsCthHQTTTjd6NhLilXADs9kQVH5CVj7ao3UKYxjz920PnUynczSt+2AhTEzOVqwdiJKn7GgMO+iGDsjHgI4ltXrczD7Biyj0akpCnAo4AEWCD1zZ7P4p1EdZJhrCpdrlAjmsKBs5NpZJnaAJQZ79xz4uqYSHnD8slQnaOqeMbuo2Eu5ViBzZ029FO+BxNC1fKIcMYM3wjMeU/VYMV6iVolUYDzUtlXdXSnfXKNKjoK+qHNIaTPjJhh82UbeGfqvGl6i5pP6bcil9oXR7M4jkCMr86xYaexPNwa4U2szIWyaPSxsCVqdvdUNdJIMrJSVeBRpBF9lw97/S/WfKSpxbk1vjgSTySkM2MjZTRbfoXm4BZbcVHBNKHrV69jcfee9dn89v08VIiUgNFNe8BUq4XdKp6EqLBUEmlICpG0d5L+rjS3ASwJaEnqNFVtAlOr3nHq/8AbUSB4ne3vfowWN7LGH5138xaD9bHRVVlNQEGjvNriA8w4c5vBP0foO6pKZR41JN9wzdo50BzfI7uQpA+SNEKlrVnP4s5d+g5s15pDvrwCzpxl0NJvNUxaGgamJPPXj2wL5i1V/4ueshZ82gBbE6ReUr9oeXIL6NA2Lmh+9ZoKoat3osmH+XH6Z67SGMbWfRKaLpbfmz/fh5PRz21liZInUfT8VKYUGElIdTKhfnkArIQ85PmdeCCOamsNHpUqeAAsz+zweOBzeOCLBLDKN+gFo8lsAaNYli4+HAFYxPElan8Hs9mMq/9Yo2U89mk8IAJYSn6IuT8x8DHEBbCYNy+hH9XO1jkhtT+iptEUg6TstTKSQuTMUZ/YC+0aqgJk/qoajN2sKVTqwzug3bjA1o2TXg2w1W+Q5f9FCwuWFBN7tvdvBidP2o9QSsoxJaauF2dUuL+VLpJfMECdsWZ4JZC9GfZGhXkL5CpVo0eYIT6az08yeCDhnQosy8NcWMDaDfJ0rh5dOURGQbZQJzxKfXsnX3SL1F+uAljnYl6icSjd3BTW+mO/k0SzunnDwN6i6XuvavXE9GutZLfvhx5mZJSIGgqCgCyPV8nKhGTrJCOF/ubZn7gsidDanakBCDG6PRsedhKrJXxajrhO9FN7gnly31ZF9ND54BUpbPf/YPDiFJ3fIWpAW4aXnWY2zH0BVY5ZnxVifOYciB69xG7fIgQT9kU8wY6IBzgS/Qwkuiwhq3gnJ/odpKf06YoJyKvY5CkjBdOkETDgR9fmF0nHOjmczF26WS031QwmbnZiQl126nevdXOAY3SeGdv2g9mJyBunKo8tZBjSXMaTEzVtPYTU6XAg8gl6vjqCKEVkXHLxYml2rABXqYFs8+7sOJRKdVUMmbAusLazl8vKLftwA+PeUKXZ/HcKoMXjry1Ks3vHquFHg2WQqSmP7GWt8/OFORKlQzbLuK/mp6+EZt653OqH9CLNzt+g2UtBHFPDTjB90z7BeqUCKp3ejkWRaAmPlgPVP1Lppm0srl2jczxnDgGdO9h/VtwFsNTH90C7do5tDOav68LYgb4jbO8KQUCQ5N1HehWSvXO8Yw99DixaEguyCkC1GAE6jo7HNyePR0EAUWoUrX5dHmXLWO8l8+g2dCR9V9IK8Tfxuz37YyeLi5do6SYNOZQsIWD8+ftY6k997sPpcC1nK2hUtF3D5O+heioBkEcuAh+U29ZM8BMVlv1GXzBEHbhHt7j3ImzRUgRd2RSneySqjRzEOWtSdVdyzVe6AOzI+I2zlye63Nrw2xgaqy5LKmuXKi9m+H/tdr0eAMtt16WoCw8fY/DPIcf0FZ4UwhQ1HTyD/cwe+CIBrOI1uyG1Xyoc3jpX5l5HAJaZ41C8ZndLBNbp3Ys+8y1JWc0TACs6RoWp0+niS6sVMHsKC73WDoD1jCjyWMmhiRH1QUJanBwW/kiFq4tov0TOHOb2JejnUllrwjdDeGeIabYtheZvukDc49MN/6SybiIcLSrJb5u3Mbh6jX4YmzflUbRwwpvy5Bi3ozqVgF60CsjX15oGEZ8pidGzZRVAiNlFe3aUwSNJepyo2qZMuSBkmYRD7Mgxek8cpawkh19cBbCCuXCUf7LV1pVAoioVJAehHPVTc2ALNFtpKo8xbymMDP9ZVlwZefaSi0IJiUKUvfa+e3kIeyKpQuaygGqo52Vfwa3/62PY/JECU3PTVUILn7gbbcPgplBFhNv6JoIb0s4qeaFIsMOZ9AI+RtINXb1qUaixjm6CiOJdFJGjZ+OP5AnnTdgZ+RA7Pz7AcUlUgNK3TS7lQLuTNWx/DigtIHdz+SZPSYZM5hwhanXVzk1mYZTw3ZQinDppnE9DdKU9r+1LgP00fcr0bXeYajs3z5xqh+Pg1aeurSgZRdT//oIYlnbP9AGdXvyNR2Y6B0hhH5UaiwKqorohi1PNJHehFeE3MSaMihK088mLGenc2/SSdNbOLw7aupz5WWZ0uFTHEoF0cLga0uzjgr05pM5qvfdKkYUcal8cdzMKTOkv9b710O6g30JznTYwNpErmtrzMeGBInxQxPq+/gFZTTSVLXrALPB5i8a5LDxcZRNgEH/s0JZHntz2nxW3Aawz/0D7G1U3NX9VBcZuo+1OlcyPVsr+/jQBAMtoBCb/RN8tgSaghCIK61VeAeef0ndUqxY8ChXgQUjDLFGJT6lwBVHti56wEtBIkxFpl/7+R4Vjx+m3i5CsE7L1yjf24L4XJUX/NqoIFhSQpwDrZw8Gc5dGO8b0mw4uP80uePlKhQWStUocERieg3b5VKgvHJX5SAADY5eh4MrQ96Izz2EYH42iwfKDw/NBLZFBEu3rTD3ullE+y91SFcBEf/sCI8604QGwnPGSpwzhXiUcrKIp158eAMszRzwe+HQe+CIBrGrN++PN23Cc2r0IBj1dTDgCsC5dv4d2vSd7OLA+3byztUQALKW0c+rUAiaPcgBgPbgJ/cy+tuv57PkQPYxGPCXlEN7fVeH6MrrgFDlzVK+fwzCmA93Q+aYBka4npl02GerzNJ1nnd9IXPCypo0ZDAJGDLF/Qv3b7wwePqIfxq4deWTP7vrGOSnHr6yL56xE7irJmbN3Kw7FSsa/Md+xi8H5C3RslStyqClRSAo5yCD4L/p75uo8stXhces2g3Ub5cTlPt4CPkpS0Zo25lG82Kfxk6sAlkngkV3COUX8qYyIcnS/mNDH0E/sTueYWoO9jf8AL+q7A3EUIElkFYmwEq2o1h97FRFf49+cwdIPN2xlxqUpjR5+hex24/tXh7ArgoJdi9NXQUNvBU+PMQZe/SjPjsAwiFqwzwZuiBXzZuDkGBYqnm4GT+mBd5KoJHIvy29uC1UYJUAjqWp8trxOT+t3vNGSYrj94wOcjXkB6czodiIH6l6hG7UMX/PI2Vg+d169VOHOfQYGvQC9HvD3FxAY4DrwpFReLNKbQ6pYEMPpwThZ0Gv/OmA7jRw2120DY+OEgQsnq0fc911aRClU0MJ5I75/edgSDSe15ObFcnYMpNyEt2ex5D1NiR2augT6pS7mShW2sjeNb1Dz2U7b/30/+KHbP83R5wce58eSdyS1cpPNYDTW6KuyIVtgkszKOekqoKVPHrf6oLxI/c82aDfTAzhz9W9hbNErwbpFXiRScMyLFvDjX9uuiZqwCkJApjh1HDykkh0k+KcV0K+P40hFdwEsJR+guUhZGHvZ5yktHLweb3ka+nYlqBX82fjDg5Wp7U1SCYiW8DxG6wQcVtO7KSriqo/ugna9XJ0xIUVMKVBIHFquDI/8Nd7KhDXI31dHt0T1/HICdd2SCWAvHrfdh5juo8FJ0oSVgCLh7CPcfRYzRls4FdlbF2X30QgdLlabjCIt4/IaJjhpALR6vh/Ho0NtRcem+Qrf+30aFW+lwIizAimOxuUBsJy5454y126osGkLXbQQMJuA2qJ5ACzPHPF44NN54IsEsAZPXIS9/5zGmAEd0boxTRlxBGD1HjkXh/+9hA7Na2N4H9dUjT7drfoyWyIA1pMnKiyVhL+TiJ4RA+wDWOzN89DNp3LqXL4SiOk/I1mc8+YGg1urKIBi48zhORj6fAOVJG0pcv5uy8mrbkZfsA8pN8qidPNwX0NPsEcO46DXxd0Qz1/I4nUYXSj/2ItD+nSub5yTxRGSSo9NUYP9QP9gKi2giiKKRdmHX/7H4tVrOjYld1PwPgYhkrDsrHV4ZKnOW5SxFixiQGTGHVm/Xhz8P5GfXAWwSJ/zPV6LjwLlNrkc1ArpEthUiWPVj2gD5h3dTCa0QVKmSNUyZMHKQLkKmTL1qbtvAUxIa//kuuPLAzgYSVXfVgXUQE2vINmtYEIfQT+RRkQK6TMiamJcCXly0bn/sTBKJKjvq4G7Olod4WwpfGAs2Mv/2v5obD8Q5gruyaMTri/ClfLnnUM45++NIX/nQJl7FMDKXIVHtm+SB/wkKoQk6ky0/B15pC2UPG15HdsBrKMgvrlKIxhb/5hkrwL23jXoZg2w1cdnzYPoEZSrTPyBvK1mv71o4cVSvrlqGLKAAKBeBMn5TNbj5SHslkQf/pK+Epq6mbpHlAyJoqFoBJj9YXNXdGsp4MFi+r4yMUCVaVb+s7FvTmP5B/ptyMR642SWZlBLUsUS4xr1sd3QrqNR5+aK38DYjt43R3WT7w75/pAX7szn1WXgWyQBo1l57ivHATNmyzkN69fjUba04/ntLoDF3L4I/VzKg8fnKYbogfJIVHFcZUM2I4RIB8ca8W1WtVwtU+kDkkJIUglF61iXw0tJmjz5+xUd8Cw2UMvyXfYKh2F0e6iiaFtcoTKI6UPVG+35WqnYSNTLblQ7KTtQyPA8I7ZkqAvC+Sg1kkZJ0ilFM7bpB3NlenBgMgKTJNFkajUwdqQZCH8H/fzhYEJoJC2pI1KVCov9Z6NIvZyo8LV77yVlGl9xrT92O5kin5h5Tq79+d0lzHl3yVaNI4ERZ9vxAFjOeipll7t3X4Xf1zpWC/cAWCl7fnhG/2k98EUCWBev3UX7PlOg02owql8HNKtf2eJVJYAVGRWNGQs3YPOuwxaurF2/T0PWzIGf9g6k8NYIgKWMtCHE1H17OACwLhyDbulEm9e4Yl8jpmdcNZ2kcOvrSyrckRCj+hcTkC+WM4dEYJHIBNGixywFnyk7DMNaQfXBqnpGbHH+9bj3nhIV9ejOIYudlLup09WIlvCmjBhqhsE+t3ZSDM3tOk79yoJ/QDfm4UFAnT6OCartka6PIulUWrpAf7iLQegxuunL3oBHpkrWRTVRaNq42T6AFV9Em9sDjOdCdwCsSiHb8MBMEb+DmRsjvyaNU91TqoqZKzeEsQ2NPlRWQviqCG+VaB1T5cM0//KyYkpi+fjUm1o834t/o2k01JYM9VBeL38/stfPQLdglK0NPm9xRA+YaXd8IScZBEu4zsJVAk540bn0w3dmZD3/OzS7KTBgrtoYxlbOEQs7+d+4dwAAIABJREFUcqp+XBc8jXmLu7ou4KOb2YoF1eQRVMu9zVtCN/DeFhYvz0r4gb7lkaFc8rTlde4AsNwqFEGMK10DMV0pyJ9QXxP6nT1/BLplNOqFK1oeBEx1ZH9FPkEvO7xYeTS+WBVYC9kSABUS6o+7vyv53/7IWA9ldO5/74sHb8AriSBC661t8P3XBryWzPEoHVBjohn2lNtmpauI1j6Ux8jdcYnXsWcOQvfbT7ZqHKnhKdvheWD8ZDX8uFcY85Iq9wnevoj6maZAi9edv6DCjl3ylP9hgzho4sEm3QawHt6EfoYk4jpbXpCoTHtW/el23Da9s/3kzLtWyXlHOCo151R4e5N+c0iq/BEDIKiA4UPMSL11NggPpmiCWmNJHSRqsfHZ/YcqrFot2fxmEzCr2mq85WneYtXjVTGnTnYEpJfXpNm+HJr9NGXP2KgLzPXkh61KHtGJvZ5CP2cgCG+o1N6ygVicdhbC1JnRsD6H0qXcOyh7zxtRUEKcT9o4FdQcQaxPYqdygtdPeXMW/3NCYCTBimILeAAsZz2VssuFPFNhiSQrI0MGoFcPuv71AFgpe354Rv9pPfBFAljEhbN/3YTl660nVtmyBKJM8QIWoCogXWq0blwD9x6F4NjpqyAKhMQG92yFLq3dO+n/tLfsy2qNAFjKBXHxYgK6t7cPYKlP7of2d3oCay5bC8bO9IQ2Kb1DNqBkIypawFcCcrewhuXr5g4Be5ueAFqiYwqVgaFPXdsJNlkWLq9yALfu0DrIApmQuUuNpOaNn0K5OIjy2fjRyadalhgfXd/N4P1Rurh/7y2g3ljHqSO37zBYu4GWDwgA+vSUj+3BNgbPT9MyOZvyyBBLehxfFFb+fDzatkoeUMCej9wBsJo+34vTEhBoXWAtVDFkduoWKNNn+NTpED1tvcNrp7+9gPnvr9h+H5K6OPqnlqeHXI15jbqhu2xliuj8sS9jQ7t1Nni2CxeNNALsz4z1UVIn31mpj+2Cdh1NpTGXrw1jR8oPJ63YFAGcmShPQSUbw6jYWz9kgBmpH/wL3eJxtsu43IURM4iSODvlOEUhkaPrrq4nHusoNxSJviJRWMlhyqjC5ATLvG6cAn6hyqdc4bKI6W0/zcqdsSpT00yVGsDUtl+8Vd03vUeHFwfwOA4vlga/BlRFVSefAXf66+iaIk824A1HFTjPZmmBTGpvt5toGLoLF2Lo81F/f318FxAIk0SsIDKNgJrDOShTd5M6+ooMgr10HLpf6WGOK4c7s+ex8H11C33DaMqhkDknokZTHj7RUb/8Tx4V64xirtsAlpLzMmM2RI9dZveeNQzdjQsxVKmPkIoTcvH4TKkqVr0aj7L5eVycRSLSKAB9Wws81ACTO16HfrocUDfV7wBTg44JzqOXL4EFi+l3/lWR+9hZ4pDtOo1Rg3ab2mPkAAHeimlJeDUJv6ZopprNYGrWU9bmTz+rEWldziKT6R76Rw0GEyGRwwTw1jsb5nrPRQSb2lKu+bccihZxD8Ai17d78TcORz219WNkmlLo7VckQV8ktsCosFNYGU652qb4l0PnVPndrtYDYLntuhR1oVKQKLWfgIH96PrXA2ClqOngGexn9sAXC2ARv67ctA/zlm2F0UhTeJT+1mjUFvCqfbOE5e0/8736ZM2Xa9DLBuzZa7RBzfKYPvp7u/35Y+8xbNl1BPcePQXHcciWJQOa1K2Itt/WlClCihcTAOvocQYH/qEARoXyPNo0VdslcVcf2g7tJnoCm9TpMtJBPf+XwYMdtF8ZyvPI2cS64SUqhNJTWGPL3lYAaxxVICKkrturbsC/kg1N9So8qio2zfY4wAb2dU357FNNjtBbKjyUpHsS8KFGbIqMvT78dYDB8X+pD78qxaNRfTlocHcji1cX6GYhd0sOAZJTYaJ0RRSvlFanFg8yVz6VuQNgff/qMHZFPLJ1cW66imjhbNSFMRqG/o1lqarR45aDz5DV7pAHvj6BjR/v2n6b5V8BrVPJ+XXIBp5s5EVLw+hwLWsbu/XVeLoDt0xvbb8dyNQIBbRpZWUJaTQhjxbNVL89TA3sq3CRMocnq6GVcH3f0gKPYiM3Jowxg3n7EgapyqhGh6j5FHBz+V4LAgy9altA5Zv6/niqbWyrgvBfER6s5LDQEwwe7qTzPrAMj1zNkqctr0dXgekDbcNICtBP6hOlMIWz6nb/JV6sKN6M3MFrbMMiMOrjbB1lCp2uzgMSZbYjgpJ4VzpRGT0j8kB7n77LooIElPghwqI8SNIORfvJvzw6pMrnapPxlmevn4VugVUNlxhXoBRi+tKIrPguXrmahfeNY+j0TgIe20mLU0YRqVTAoH4cfH3jB0HcBbCU/Gt82gBET1lrdyitn/+FYxIONmcOC06fYbA7lsCeVFqqpIDGDTjc38rgxRn6/JIjl3PpeIyM6e4Scbu0o5GRKvz0M/2O7a+7ByEBlDOu4K1CKH+mPMh7kPhVanGUj+0cFMxdyOJNmAo5Yy6h+5vh0EIS0k3mQ56i+D39VFx/SNGxdq055MvrPoBFvjfkuyOaK0q7iZn8ym/d7HQV0CoRXHIeACsxdyPlXEtUsH+aSUForRYYPdwTgZVyZoBnpP8lD3zRABZxdNjbD9ix/zjOXLyF4KcvEBEZDYNeh0yB/ihTooAlvTC9v/U0ymOAyUwUGbvBy6BDruz2I0UqlSmC3l2+jeOuEVOXYudfJ6BRsyhRJA80ajUu37iPjxFRqFimCBZO6w+1gk+DAFh7/2JwUgLy1K4poFEdBxFYe9dCu5OqDRHpZyIBnRz29AiDx3voIjZTZR7ZY8EXtbIfNZqCK1Jerk6YuzBOVJ0nUy0pVpRHs1gQTOxzcIgKy1ZIJLCzCOjR9b8JYFmJ3NUynpTiIzh4pba/CCbS3kTiW7Tm3/IoWkS+kb+9hkHYVernvO14pCsqLzNvIYOwMHkq4XddOAQFub/4dnXOuANgjXlzGiskvDej0pRCLxdOqHXzhoG9dcHWVWOznjDXpGlw0jG0ffEXjkTRDdGawJqoZkcBjnD3SDfT97K2h4GJq/RXPmQLgs0fbU2cyNwM2TVyThmSskRSl0RLiLPq1BoW/FU6H8gtPWsAvAwChscKHBgGNpHxyzgiknbm/qnC38EwtIWl6HX9cIRq69guIwqERIkwOez1FQZ31trhz0uGxrxePATG97DVzGfOgejRS5KsJd2Kn8Cedf4eSxv+r/Bi3TW9Q9Wn221dC1L74FSW5onykTLiscTlkuh7qwR83tD5zRUWcKT+aSz6cM3WVgBrwOkszaFVxQXlE9Mh5u5V6Ge7B2QSZS3d0e349sMvti4Q7jnyPEuNiGqQlH/RChTg0UZCYuyo/24DWJLnl9TtKK2R/Nb95T/YGxls68KS9NVQ39u+wqpYSEpgT/4mqo6aPgLnprEQzPReCtq7qPWaPmekfHTvyeALO69+J6b5ffQOx8amGyH9kH67symCjGkwbHDcbz976QR0v463jY0rUg4xvSbJ3L14GYt094+g3bvJYCGvw1yyMoxdR2D5ah0eB8clpXd33n3kTSgUvA5mCevd8cxNkUPj626VTl33w6sjFrEO0Ralr4JGSoERp2qyFvIAWC44K4UXjZOqO9YDYKXwKeEZ/mfywBcPYH0mv/6/bfZV2DtUbdYflcoWweLpg5weBwGuCICVM2tGLPl5CDIGWCM1CM9Y/7ELcOLsNfzYtSl6dmwkq5MAWFu3M7h8hS6KmzTmUbOi/QgszR/LoPlro60OorZFVLeSw54cYPDkb9qvLDV5ZI3lzFGf/QfaFRJ57+IVwBctL09vLF0dt6qNwsrVtI6gLAK+U4BTN28yWC/heXJ2U5AcY3amzoNj1DBI5MYDm/LIFZvyp7xe+bEnkWVEZVJqN35j8e6WhPC6M4e0BeRlrlxjsGUb9SPBQceN+rRplu4AWPPeXcaMd1T96TvfghiftowzbraU0RzYAs1WmsYTX1SFMxFTpM4qT//APRNNLTmcuQnyaOKC+MWfbLRw94h2IUtLBKrl6lj6WQPA3KObcxLxQfroyIKvMwj5nd5HcpcPeAFpAwX82NO66dLPGQLmjiQ997ux4EpWctpn0oLMiyfQj7cq8l01jMULTTXbz3nbckhXLHkArA8PVbi2mAIUPkECisaj0ubW4GIv8vrwEhjWzlZFfFEq7rSjnz0YzN3Ltktj+kwFV6i0S1UdiHyCnnZ4sXKqfbE6sCayJ/OG91BUCNq/OGDr89f6DNicoa5LY1AWXhd+B0PCqOBArvu5MepoVaSiWYrgqhjRudBaGWCc2HQnR51mHt+G/iea3uaIbN/e9SdOMmC3LkP1CGk0pTw17u07FebMl4Nu3bpwyObEIYK7ABYUKqdEKMUimGLH+r06hi0RlKzcmWjXl69UWLCIjilNagEDYqOfL21kESmJDFYJZlT42AZ6wZo2mhAXnL0+EvL7jx9VOFfiHC4Xoe+49K/So9HexkifXsCPP8QFsOKAk7kKIWYwJewnbV2evhXlHi6OE70lTfn9368snr+Q8A724JAxQ+LegR1fHsTByCe24SZG3dPZB7LLi4P4K4q2+VtADdRWCIw4Wxcp5wGwXPFWyi47dQaLaEKMF2vk4I0cwBHzpBCm7LnhGf2n9cAXCWARBcIaFUtCq/18ikef9jYmXWu37gWjWfexlrS/KcO7O11xky6jcfdhCNYuHI3iheTEtG/fh6NGi4Eg6ZpHts2DXqe11UsArNXrGJCTUNHat+FRrqR9AEu7fj7UR/+0lSUEz4ToOTmMRF+RKCzRstblkaWaNTKIfXATupkSctksOcEVrwjNLqrAZq7TBi+rdQPhFxHN20uIc8J65iyDXXtpO0TNiag6/VftrxksfCSKibqSAkq1irvoVkaWyaS9JYO7/iuL9xJi+EI9OPjliruoPnmaQWpfIHUaAUS2nYRvf0pzB8BaH34HgyWb3CbeObAwfRWnu82EPoZ+In0OCWFw1OztFsVLpRUKXo93Ehn5a0GtkYaNqwSg5C1ZG1jLLieRUkHxZta28GXk7ZJ0P5WEJDh63ArwGeRKhcp+HhyuRux6z/LTZR1gyMOjcwfrnNdsWQTNwW22y0z12sHUqLPTPpMWlCroXTRMRZiGktoX6MyDKIsmh0W/VuHCTAnRtZ+Ar0YmT1SllykS6EvfgYLeC1FzdiTZsAgJPvOSqlESXiTCj+SqfU5eLKXAAUnjJQBHYux49DO0ev6XrYrAF4H4eXtD6CVT6mDLa1jsf8pWJrmir0gDzPNg6CfQaGQ+MAjR41c4NcSbJKpq8TSUiqYgH1EwJEqGou3dz4C8g0XLlFFAz++cm9NuA1gAvH6Q0ztELtwPEKJIhY0IO4nfw2/b/uoMUGgyA5OmyqNPJ8ZGVFy6wODtRgYSoVRkMP2FwlHT4Cxxu7KPi5eyeBoKrG25BjF6muJX8WQl5LubDzmy8+jSMe47iVFygSnurVLwQ2zX1LQHTLWsEajE5i5g8UYSIUjAOgLaJca2fLyPfq+P2aoooE2DA5mSZ00mNqJMF90QWBuVDJncHoYHwHLbdSnuQgLiEzBftH69Ofj7ewCsFDcRPAP+7B74IgEsojbo6+OF+jXL49t6lVAoX/bP7uj/Lx04ee46ug+eiW5tvsHA76kiUXz9f/b8NWq1HoysmQOwd+0Mu0UHjl+I/YfP4pcp/VC9QglbGQJgkUXds1D6QfiuG4di+TV2ObDipCx1HAJCHJ0c9nAHg1AJf1OOhjwyVrQuLlUf3sIwTKLYpNaCK1Md6n/32bpCiI7J6ee4SWqiUG6zkcM46HX0D4T/i/CAiUaIZKvGqvAlx7gSW+ehFSx0t+n94jMCFfvHjYY6doLB3wfpuAoVEtCqWdwNz5WFLD5K0hqK9OaQKmviFtWJHaO9690BsEjkSaeXNP2qgj4DNrkY+aEf0QbMO0oWbREMKCpXFzQLPLI9puAp4fgJzm6fi2po2L9YG37HNsTp/uXR3g4fT9CjVeAlqSHB2TqCVUk2joRfiogWEBmzWItcsA9QpAkrfblrOou0kk1UKOFL/koAETggxp76C7pVVMkwMaTkUiL884bZeKuh755C33Hwy50884yk2p4aSTfGKkZA+WnObfZdnbteGhXQvabsMkebfFfrJuUNfRtAZaKb7aiZWyD4+LlTFT4XL9a0t+ex4P1VW58HpC6OwQqBA1cHFGwOR/kQqtLnHeGNlb/Lo4G7fbcaH9TUdxPTlkU33wKuNuVUeQIkS/njXInEe/ES4KYMRW4jjRaN6T0FXGFrtKjJBEyfxcJopO/9pk04FC/q3POTGADL0L8RVDE0EpQA+IIhLvn+lDfn8D9JquaINCXRx69ogr6bPkuNiAhajJAyE3Jmwt14cw+DQgoK1XIfu0D3TRUQvj9X7fe1DA4ag3GgGgUK1SY12m5uB41Zg8IFBbRsHvc9oXofBsPw1rbmhFSpETVjM8CZLZHg6gtHZV3hweBm9dHI0UIeuSoleicXDB1ohk8iRQM/Rxphk9A9OBtD1RW3Z/gGpfXxE/bHd688AJarMznllo+zX+nKgWRWEPNEYKXceeEZ+af3wBcJYBWp3gU8TxdWeXJkwbffVELDWl8jbWo5h8und/l/u8XdB09h6KTFGNq7DTq1oHwx8fX64LEL6DtmPhrUKo/po+yTu6/avB8zFq7Hd+0aoP93lHuEAFiz5rF4/54ujPv/yCF3VgcA1qKxIJtS0WK+H2eJfEoOu7+VxYsztF+5mnEILEPnleHH+lCZaS4dnzUvmGAKDBh/nApzwdKYv5DFa0nEUs/uZmSSHBb+sZPFxUu0HUIiS8hk/6t2dj8Dk4R036wXUHlC3EX3mvUM7tylgMc3dXmUKxP3dPnyXDUiQuloi/Uzw9v9w9Rkc5s7ANaVmNeoJ1H9y6Pxw+HMcfnj4uu08nTdXLkhjG1o9B+59pEpHBWe0s10VrUPTjrg+FGmNfb1K4phaUrKumAUeOSQAGIaFYNH2eRKW0SeXS8lXBc3VQncgYObGRjOyQmSI6rzqFcnFhwOuQ/DFKqwJaT2R9Q0Sjzvyg2Wkh+f9VqI9+qCtsuTGyg9NUYNXpJqW3qcGRp5BqYrQ3FY1kvHAr0aANGxEmQkdXvWNsAr8d86VVQECCeZaALDIIpEwCTCPgcvVu9XR7BdwpljT+DA1SFxBDR+tBqCyvquDviQCgvXUpXLjxoTunRfZauWCCZcCGqZ5NxXYgNSvjfyNwIyErDRGTObgZj+XZCeo5F2kSMWA1lzWS4nkVckAks0H28BgwZwYOMGQtltLlEA1rCWlgMj0aKmrYeQOl2cdua+u4SZ72hanr33mr3OLVnOIuQp/f526cghR3YB+/9mcOKECo0iXsDIZLBdmlZ1Bfkn5bYbBZuQr7ftYDDD/wCeZKFcXSTyikRgEYsv+loZiRY1709oF4wCe5cqz5I6jNBhZdopyFqvBCrHHriJ/Zo4VQ1yr0UbPcKMpEhU6PbyH+yT8I8NTF0cgxIJEMfnyzrP/sQ1Y5ityP6MDVFY55+Q+x3+7gGw3HZdirtw1RoW9yUZA+3bcMibxwNgpbiJ4BnwZ/fAFwlgvXz9DrsPnLQQit95QBdkhEC8cvlilqisyuWKxiEU/+x34z/QgdVb/sJPC9ZZwChCbv/+Q4SFUyHAPw2+Kp4PZUsUiKPctHLjPsxctAHfd2iIvt3sE0wfOHYe/cb8gjpVS2P2+N62kRIAi4Twk1B+26JquBkZ/LX2I7DmDgF7W8KP038muHzFk8Vzd9azeC0BlvK05pC+BAWWdBO7gw197LBtMZ1q7QYGt+/QlX6r5hwKFaT1KFMoO7bjkTtX8qQ2JYWjHtxTIXQpifGhVnaSGawiq23aTBZRURK+je85ZAyMC8yRVCuSciVaicEcDOn/ewCeOwBWKBeJr55sso0tNaPDdQeqf47uDXv1FHT/G2P7WfDPgKjJq2XFT0e/QNPne21/K60LwPaMNP1HWliZ8tHMOxfmp5ef1L/nY1AwmPLhkNRBkkIoNfbBdehm9rf9icueHzHDKAm0o/HcvMXg1W8MpIk7/NcCKjamIKgSHI76eRsEb9cBGc3fm6HZZiU0P+m9HBEsTX0r1t8M74xJ8UTYr0M5r4sPNMMrMOnbIwCWakhrCGE0IiFqyloIad2PSBB7ybwIgX58F1unef+MiJ5MI/0SM5pPyYvVOHQPzkkiNjZmqI2K+sSj5EXvbEGY1ip0UPhpRozbWd/mkjsBrzCqGU3lHJemNHr4FUqMy+K9VmUywtCXti9o9SAgh7Om7tUQWoESeIWO2Q6/TNZIp3kLWBAJedGqVxVQtbLzEYWJAbD0YzuBeUXFKaInrgKfPu69W/L+Oia8PWvrI4l0IxFvCdmmLSyu3ZBEljXmUbwYDwI2GU7+iUoR53HFa6KsGkdp7gm1tfFQFAZml5O3N9rdGOnD0lsurV5NQNVK9v2qjETjA7OAPJ9S+8ikxtK0M/BUkweVKnKoVV3+HY2PgDqhvsf3+/aPD9D7NY0Cy65OhRNZ7K8FE9OOeG3lkD9w30x5HI9m/ha5NO5FhZI6PQBWUtyVlFHHpq0srl2XCBM15VG0sHW97onAShlzwDPK/4YHvkgAS+ra2/efWICs3QdOgRCUi+afxtcSkUXArNw57Kvt/Tdu0afthRgp5ajV/LmzYta4XsgeRE8kF6z4A4t+34HBPVuhS+t6di89ffEmug6YjnKlCmL5rKG2Mq/fmTCcKndbso9+ngwYdCzULIOoGA5mjoI5/PieEB5Rngt2zEIgF42qSEpvXVwGvJQcbhbvBgQWoy1ws4cDV047bJJZsg8qrQ7bdwNHjtNi9WoDtSmXNH6eDwsvhmiDfgSyJH5vlZSukNX17j1wcBzgI8HYyvQF0kioz56/EDB9Lv3Iq9XAjImIQzBLKj4yFoimjyaqTAT0/0FhUB+DxtL/8CgTJJl18fpZEAT43VouKxOWvytIRJOzJsREg+9ZHxCow9lpq4CMWW1VbHn/AF2f/WP7f1PfHFiZuYbdJo5HhuKbx5QIuYJXBuzN1kBWNtQcgXx3KYCVQe2FO3nkABZ/8gCEX6fYrlN9VRlMnwkJDisiEtg4Csgs2afpCgBVf6CX8uN6QHh81/YHZvBMqAp/lWDdygL8xl8h7LVGb53wXoMolr7rK44BvK37xmSxM/OAt5RTGl/1BvzzJX1TGjUD44jO4J9QVS5m4jKoYqNnEtOicP08+JmDaRV5i4AdOT8xVcquvRvzDs2f7MdDU7js76kYDVZlroGaPlmSpK38d9fjmZnmiV3K1RI5tYlXSit3YQ9uGKzgSvWbefHD4cq2/p7I9QBza1ufybSsDjdzt7Gr9pkkA4ythOss+bCQdNyVh5yqXogIB9+bCqxwYPBg1EHkzwNcvwUso4FkULPAhFFEOdSpqi2FUnlZ+UjDIxX5eE5UwY/uBiHkAX0XTFwKVVY5zyb5cdW72/gxlHIxdfDLi4WZ6P1w1NSufcDBI/TXOjWAujWBlb++R/NT7WAQInDW6xe8Vxe2FfLJCFQY4UTnFUV+OH8Ba72oqqzvB1+02E6pCJo1BiqWs18vN6g1EPbCYaMxPoGYaZiLd2rr2uzrMkALSbAvee+OlggXGgzA1LGuj8HeFVG8GdnuyNVtT+ZoikJ6q5hPUluhexvwhEhFxtr13K0RpHE/F1KvZUHeo9FGDibzf/fwMKn96KnPdQ9s/gP49wy9rmlDoNLX1v+L7znXa/Vc4fGAxwOueuCLB7BEh5CUwjMXb1rArL+Pnreo44lWOF8OS4rhNzXKWbizUrqdvXQLqXy8kClDOngZdAj/GImrNx/gt417cebiLUtk1vYVk5Haz7pgmLV4E1Zs2IMRP7ZD+2ZywlXRlxev3UX7PlNQonAerFkwyubisLfAsPF0UZs2DTBjvGPy/Q/924J/RsPvfWevAZMleTjOjs0x48V1eoJZqb8agYUpKBO1fDZi9lOyaem8Ufmkgt8Ka0TMoeM81m6mu/WKZRl0bksJngeNMeH9B3r17Mka+LoebPJJp+2CniZkkETNFWzGomA9CsocO8lj1QY65oL5VBjYS06WK3Z4Rz8TTBIOkkbzNNDGpTj5pONLysbSX/4Nr830fRNcpAOCtK4ttj9O7AfztfO2bhk69YWuPt34zH5xGYNCqCJa/4CimBNUwe4wHhnDkePqGttv2bQ+eFSkg6zs3Zj3yHttne1vuXS+uFeYKt2RH6K3r0b0OqqQSPpD+uWMzRhuRE5J1J3aG2gyjz73kYumwXiIgmyG9r2gayQH0JxpR1rPMZ/NiGFo6lGDnzXJCpSeWmxGyDn6/ijTnUXWcs4Dl86MTywTPuYHcLcpx5PP+AVQF0x8ZKrx6D5ELphs64qmfHV4D5BHo7jST3tlP3BGtHjwF/76QFXFSDnyph2fqTTGZnQduJS2Q/jhNBfoPP0/9q4DOoqqjd6ZLcmmAYEEEiCht9B7B2kigvQmIkV6FaULUkSadIRfQKRIR1AQ6QgK0nsHqaGFhJCebJuZ/7yEnTe72WR3M5sEyX7ncA7ZefWbN+Xd+b57yTFD1YFQOgAipzXHFieO4pDmdvLhrmerotMFmor7a5XL2FT7fPKxuYXqYEx++efDlq+jP2kC6Gneau6fDwNuqYUcLNsh4Gfsl/Qe8EoRiKfDtqBxPRYLlhtx8w5dx/VqsegjeX7ZGpPc43GTBoK7e0Nsxnv6cijKpOa22vL6Hro/PCSW65KnOLYWs82PafmsqluTRd8eCpwc/C3KRaY8w2PZkjjrlRLJabKanykQVMf+65l8zAi8uAFhoMBL7bN1EHKbRuUN6atE1UrS2GbaX9zYPuAeUVBfOhZFcAn8224Blm+jLw41q7IY0Iu+Z7yOAsZK3rXy5gHmpPOu5eh56/zgAH6ufp6mAAAgAElEQVSJokDjVwWqYkZB2xFwjvZDyls+UyMq9UE+pe11npG+XHVcHpB6YOceDnsPUZCzXSsFWr9v/33A5U2XB1wecI4HcgyAJXWXVqfHnycuYe+R0zhx7hoMb/LXiGrhpYOrnOPZd7AVjuPRf/R3INFUgz79CMP7dkiepUMRWFXLYfUCGoF1864BC5ZRZxUMBEYPTzsCi/u8ExBNuQ8UC7cDeVLzYTjD/ZYRFJZRRsKBX8Bvlgxe2mlwSSimpbzw3r3H4H+r6QagWDAwnFL8YJTFl9yFs5wx+sxt46epQMHXtI9c5YHaA+jfm7YD5+iHZnzQnEELi3QGU+lDXwK85MN8s3lIlY6YubOxr/WMRGCRlms/2IGbOsrhcrRoW1Rzdyz0RziwHfzm5XSg5atDMZoSnU8MP4PvIymAMcO/JkbktU5gTDb0vrepOhlJBn1dpq9ZavA13WvUe0DB2RD3PDhV1DwlhF+3CMJRmiLF9hgOpnnKPcGWPX8KXCPDl2S41B0HeL8JkBKO/Ab+58ViM0ydZmAHUuDbVvum4/ySSRAu/pP851Hv38ExFDhsMhuZwkll6vvWDiBUEtlRui1QxHpQnL3TsVqORA5wCybAcJECmOznM8FUNif6z1Anf2wGt51u3JkWHcF+PCxDTaVXiSyDWREXMOfVpVTBje97Fcbagk3gyWZMVfiBPhaV79M03gClB+5YRBNmdEJDL1zBzx4paWvDjzRGw7s0MmhFwxM4HHIbuVh1cvSihrUO4Ge0b2v1uOHtgTgazqr4/jfAHsL9GxfASSLt7qsr4Wbbhahdg8GcheY9jf0cCHAwFVZOBFbyuG5Q8F4xZh4QUi3V9A/Eh6LzE6oK2dyzMHYE2ebxtHw+Fy8CDGt6E9wMSnVAOrtUdD0iI6nCqlsuoOFUgKUYUbqn8kjCU7QPpSIvLMeix7ZPoDbQ3PthAwHSv9Vza+EHsUxINShHTMetx55YsYbeUMuUEjCwDwXDwsJhdi4L5AfG0Qxw2cvw19gH6PWMRgEXU/ngcgn7hIAc7Tzgzlok8PQL2ovSveEp4/pyRWA5egZybvmjxxns3kuvs0b1BLRrnXKduSKwcu66cM086z2QIwEsqZvDIl7ju+VbsP9oSkzojWNrs/4s/Id6PHryEoZNXIyqFUrh56UTk0e+fvsBzFm22S4OrGYNqmHxN8PFGR87rcWGzfQNsHgxAb0+4eDrbZ0DK7Ui0S4ImsyJmru6RIF4CblrxeEcvN6ojZAJKC7/A7cVU62/bFasA6IWR+x1FINFS+kcieoPUf8hFhvHYN5CeszbS8CYL+znFsmupbPzRxYFJATtbG6g9gT6QrlwqQJRUfTluXdPDsWKWue1OjnOfGNXd05qRcPsmqe034xwYJH6lpLfa/M3RXMN3QjZMzc27Ancp/U1K5q05A8IqpTNz5CIv7BLQlL9vV9DtPekfE+WfRBeLsLPZbJzhTsjUEHD3i7owvHRi73i8apu+fB7gHmaoXrZV1Bep7H0uoFTwVW2HvVlbY43flQg5l+6RoLe51GoScqXTcX963CbN0qsxgUGQzf5R3tcZVaGtEHaInbE+xAEhq612t8aIWPPY3MsT4+yCN1Pv8wGNuBRpLXz01MIB5Z6zWzoj9PNu77PBBhrNrE5RlsF1Fu+h/IvClIaOg6AoVlnW9UyfDwzeLFOaF+gaxglnq/m5ofdAZQrKsODBbDg2mPM905J05v+a2uUDaOp9TNa78OVws8wMU81DM1VQU43dtclogpEXMFk2m83gqgR2jKinqv+eb5Y7KJ7E1ys/RU8PRlcuEiv0aLBAvr0cvz5JIcDS71iGpSXaQ6+fuAUGK0It5zShqFTGAWIarnnx84C1ikNpP4gAitEaMVkPj4CJiX0B/uU5v9GKgLAT16PK+RZLVB/FGnFI7CRfdf0wIij2JNAOTOLPyiOxifMUz6HD+Hgl8/6c1L94wwoL0gQcSD5GifXOrEnTxisWkPnUaiggAGf0XNl67itNWLrOEkjLP9kM7QC7XN/QGtUcHP+B8aCj8zf058V6W1reOked3FgyXJfjqpM7oe79tDrrHIlAR3e8He6OLBy1FJwTTabPZAjASySPkiU8/YdPYOT567DYEx54Grc1Ti/3zxMPJvPz1vXPSHFb993EkoVK4Rff0pJLfnr1BUMmbDQLhXCvt1a4ctB9KvcvqM67PiNbvIqVuDRqT2fJoBlqcTjTLl4S2dfmq9AUjh9WbUkYWaf3IP7TAlxj6QBY+O20HelkQqW5Kkm9Z/nLxgQWV6TBQYIGNTf8Q1CVi+UA/sZeB+l4xYgoM5MLvlrdHwCg7nzzT9LT55ghMpKAAWnB85MpqACowLqzHi3AKwREX9jRwJNrZiXrx66e5V0+JS5T+gONvoV3ZwO+QZ8hRTClA4v9uGMjvKj7AxoiVpudDNt2Vm753txTk83ursCW6G6mm50/9GGoYtkM1jfvQC2Fmhp1oz79P5gXzyi4xm/DHxwKbvn9eIki4e76LXvXVhAhWFv1r5eC4+RbcS2BIZB0tK9gMKxKBb3qX3BvnwCASyO+ByhY2ME1J2duddZ+HkG97bT68CvsoCS3Z3fJwGw3LYshe7gr+L8yL2H3IPkmtuKaVBIwQMnAWPpjeueIRY9ww4hlLPgxWKUWObfGE01jvFibUu4h1ERFABp71kU3/s1kuua5Prbb73G55rdyf//4eduyBtPI/xGdN+OJN8knC3cGZ7kxpYFZlrvpq60U1aDL0C58tIaguqPDVDtoURXxzy74njhgUhIYMxU6z7uyqNMafsAG2lfcgAst59mQ3GOXru63mPB1UpNVXBNH4mWzylpfQW1L/YHUl6v9NwvfT7XTfgVHWLNed7WBMxD168r4f6vLF6epvcshZuAahM52Mpei+S1qBhqrqT64cEPUSDMXEViwhgOGo11AItJjIfi7BEoTx1MVjs2NOsEQ0eq+hwZyWCxBIjzy8dj+BB6ru4/YLFuAx178WI8en3i+LlMz49Dwv/CrkTKxTckV3l8lUdeCrC1/qQAljsUuF/EPAXe0UvNBWA56rGcW56I0GzeRq+j0qV49OjmInHPuSvCNfPs8kCOAbCMHIdT52/g94MnceTERZA0QpNVrVAymcy95Xs14aFx5dGntxiJD/uN/g51q5fHqnkp5L6vXsegUYeRCCroj30b51qt/sXUZThw7BzmfT0YHzShvAjbf9fhwGH6MKhTi8cH71sHsBhtEjSj6Aup4KZB0qKUzUNm2IXZCugkUURVx3Fw96Uvl4wuCSQizJoZOg2EoWkn8ZClitPgAUYEFADu3GWwcQvd5BI5XiLL+7bbuQssorez8JS8a1cYysE7SMD1myy2/SKJPEkHlCO8ymenU1BC6QHUnPJuAVjfvD6PH2JTooCIjcldGZ9nQGJctXkxVH/vEduRgqT1nu3AIwkR9vGCHUBSONKyoRF/4TdJxNayfA3RzotGbB1KeoLeL+mmsZmmENblb2bWXKpoyO92QPCynxhbHwuc/1YKSAmo8TUH1ZtAsFTqYxOWgQ+yHyAjg9WM6QQmPgZGeOCYD+XUIoqZRDkzMy3qDoNbP0kiO4oLKD/A+dc2AbDcd69J5iQzmaFtXxhadpc9Pbe5I6B4eEtsR/fFfHAlraemyu5M0kAcr8fA8GP4S0vV58hh8jnhyzxVMCqXRE3DRsfzoy9jQTRVrh2WqwIm5EmdgpaR8Z+8q0Nn9WawPIOtKz4za6LrwNX40rdShq71jIyF1HGfNQRsKOVJ0k78H/jCqQnPLdtXbVoM1XF6b/nNZzhOeJqnA/t4C/jyc86qEIet8coBsFQbF0F1gl67ho9HwtDAPBqU9P/AEIMGzyiIW1TljRMF7VPCI1HQJBrai4/GuPCe0AiUp+qKeyPsLfE1Rg7lQXjDyXsBb6AftgIb8ijyYfpAELn/k+eAyTzjvdBtZ7dUbps22WiXf5nX4alURuPigO8W0vupNNKbdHTjFout2+lzuVwZHt26OBfA2pcYin7hNI0wQOGB84Wdm0YYzesQIlHIzYiyr6XjXQCWrSvYddzkgYePGKxZT5/rQUEC+vVOea67IrBc68TlgazzwDsPYN248yiZuH3fn2cQGUWZsvP75cFHLeqhQ6sGCCroIKFD1p2ft66nr2b/iN/2n8CoAZ3R72OahkEI2glR+8Zlk1A5xPyFOSomDk07fwFeEPD3r0vMiPLXbtXhxEn6UtX0PR6NGqQBYEW/gmYC3ZQJPr5ImrM103x0boYSUnGsGpOMUFmQq3t82QFINI8UIAPS9ZsErhr9yk/SJO9K0qW6dOJRvhyfnJ4hDUeuWkVAuzbO3+Q620n3HzK4vEqBAMlQi7XlUaAuj30HWJw6kxqUtDYGXQyDCzPpy4A6l4DqE9/O+Wc0hXBFzHVMj6Kbl17epTEzr+P8RIqrp+D2PyobxefOB+2sFKXAoEfrwEnYgx4Hf5ouSfXMqAtYFkM5sybkqYphuSgwsTvhIQZH0HSVNp5F8INfY3oKE+OQvPbfGEllJCmNjtrlRUokShQ4i3fkkL9mCirqtnIaFJckqUMffw5jAwdSvwQBmiEtkkEPHeOL4947xOGR65hcz5lpCc+AK0vohlLjL6DKl85f2wTA0hzehqRNP4jTIWl+JN1PrrlP/BhsVITYTNK0tRD8s0a1l6yCBVGXsDDmSipeLBKF9YNfI3jYwYs16tUJbIu/J85hVt46+NTbOXKQDx4yaMyvh1+8J5Zuohv1SM8EfNlzBy4Fd84wd1dGzp3b/FFQ3KNgufbLheBLUPW8tNp0WzYJiutUUXd97im4qpFc7wBatuBRt3bGAA9ZANaOH6A6TK9dQ4cBMDRPncYaxiWi2hPKdeav0OBS4a52uXH1GgUeP2HQNXo2aiTRdFM93DDLfyN8i/riszeb1CeHWTw5RJ9vDCug6ngOhBMrLav/dCceGun7Z40LNVDxhjkIawk42TVwSSGDAfhmlnmE6vSv6T3u4mUGv+22nvrkaF9plTcIPEJCNyFBoP3uCWiNKk5MIySp7yQF3mTOAMlcAJazVsC7386LMOB/K+l1RlJ+SeovMReA9e6ff9cM3x4PvJMA1vOwV9hz+BR2HzyJh6F0d6RSKdG0ftXkaCsSQcSy1tVe3p7Tk/UjWbTqF7RpURfFgwPNOo+NT8TKDb9jzZZ9yOebC3vWz0pWKjTZ8TNXMWjcAhQLCsDKeWMQ4J8in0zSNUdNWYYTZ6+hR4dmmDjiE7N2l6/Rg7xYmeyjDzlUryZYTSEkqUAkRcJkfP5C0E5dk2lOIqltJMXNZLWmG6FwM+/O8ou36ajWIp1q734Wp8/Sl95mTXg0rM/j2N8s/jxGfyfgHQHx3naLjmHw63cKlJaQr/vXEFCiE5ecEklSI01mAuuszUkbweDiPPpS7Z5PQNUxzt/kO8OfGQWwdibcx/AIKu/eyiMIq/wd5yeyFvGnnb4Wr/PmM/si7cOqcSsofcW+9XF3MCHylOgWsqEnG3uTbY3/F1+8SiE/J9bFqwQW5qsv/q149ghuM/rTazEgCNqvVzvs5tCDLJ4eoes/T1keZXunrH/V/s1Q7aJk88ZGbaHvZj+BOBMXDc3YlI1uEhOIf7w3iuNz8xVQbVzmrjMCfhMQ3GQKD6BWJkQXEgDL4/Q+JK6kpP6Geh/A8MkXDp8PywqWKdtJS/ZAUFncBGX3kn4DcnmxOoftx0ltmNjJz/7N0MTDsTTEtEb49BmDluG/oXCCByb/TvmWbhd4iUcdnmB6cOYrD0rH5rZkPBS3KOG5bsQccGWpMmJa8yCp8CQl3mRL8y7DY3U58W+VEhg7moOb2np6m60lIAvA+n0dVHupaqqhTW8YWpkropL+SdRemVCqnOrJKHE32Px9I61xEhqD6PO3MTzSnLj9D++BOOrVDdJoJfJOQKKwjAn0GedXVUDJrtbvJ2e0L9EhLEXNkBiJ1uu+vQfcdebR/vn9gaGD5IHqaVEVkH7JRyXycclktWry+LCl8981RkQcx44Eyh82IFcIpuSpYWuJ2H38oSEW9Z9RgRFHIu3S6sQFYNnt/hxfMCaGwfzF1nlrXQBWjl8eLgdkoQfeSQArpLE5oWNI6SLJoFWrprWRy5sSFWehn/8zXdX6cDDiE5Lgny83igUFQuPuhpevovAw9DmStHqQyLXls0ahTInUvBrzftiaDHARoLBK+RJQq1S4cvM+4uITUa5UEaxbPAEeGvPNz7zlOty+Q1+qunflUba09QgsxaM7cJtDN7AknUg7IQ0VQCd4/OR4c8LWOrOMsFReV6+cBqUkSsTUbdKcbRB88oijOHOOxR/76DyrVuHRrg2PPftYnD1Hf2/dikfN6s5/qXSCO1I1sfhrJWro6M+aAKD8UGOqr8Bjv+TgJc01lLSU8By4sphu8j0CgMqfy3uJz4y5kjYzCmCd0D5H1zBKsF3dzR+7AlplaJhui8dCcfuSWFffdShu1GuEJs8o0XYpVW4cLdgu3fYJKNArnKYINvUohPX+NEVwTewtTHpNIzIso8YU107DbflksQ+ubDXoRsx2eE7xTxhc/Z6+DDIKAbWmc8nk6iQihESGmIwrXh660RaSaOn0qF49E8rzKQTb8WwRnPaiYLdHfoBw2mWmCQJwitxDkmPAUqz2TKPdqmX2jo0AWJ5XjyNh0RSxirFKQ+gH0PNjb1vSciT1kqRgmkzw8ELSfJqilZE2M1rnviEGPV8exmOjebSrF6PCCv/GaKxJOyqsztNfEGqkKWHk2iDXiDMs4hWLj24eQal4dwz8q4HY5PES99GtUwCC81CFOWf0Z6sN9YqpUF6mwLNu0DRwleraqiam2poKfuu/FVEKyolnSu232VAaBWQBWAe3QfUrVYcm0VckCsuaZZTc+89jDKruGIhAIwVewpWFMddvfXI3NWvwaP0BfS6HnWbw4FcJzyMjoPLnHDys0A6OjDiOXySATsirYNTem5rDq1hRHr17ynv2z12gQHw8vd9In71/n1Dg8J/0WMP6HJqloQyc0fNM6lmmn+dj3XElKHW6ZEb7uKl/jebPKXVEObUvDtnJdZZWny4AK6NnI+fVs4x0VCiAKV+lvEu4AKyctx5cM84+D7yzAJZvbm+0aV4X7Vs1QMmizvnamn2nKet6Pn7mGnYfPIHrtx/iZUQUDEYjvDw0KBYciCb1q6JLm8ZmkVeWIyM8Vxt2HMKd+6HgOB4FA/zQqkkt9On2AdzUqYlsp87Vg3zFNhkJ0w8Osh6BpbhzGW6LxohludKVoPt8XqY4hwjpnJooIRdXAHVmpt7wqnauhOrQ9lRjSPzfIbPfSPqgVG2xSLCAvr04bN7K4pYEwCOcFORr73/Bln2vQJUn0ihGAfn781i3ib7Y58kjYNTwtCNd4h4zuLZcotAYJKDi0MyNjMmobzMKYN3WR6HpcwowBSu9cbKQfdwslmNVHfkFql9WiD8by1XHoX7D8PFLut4auAdiS4EW6U7TckxlVHlwpCAl/V4ecw3fRtFIjkE+5THZl5LxKo/tgnrr92IfhvqtYOhBVQMd8fHZaQoYE+k6IhFYJBKLENYT4nqTOcJ5pzxzGOq1c8S6MYoyOOf5P/FvoiZKVEUz2yzTkKuRVKM8GYtiSWusBMDyuncJ8TO/NFsX+uGzZE2PqLC5fzuI3m8DgqH72nElSFmDkFTOCC+WIAgIfrzeLL32XtAn0DhJfpJ8je988iwqxWrQ/iKNtjpe+DnGDPZ3Olhpy5fqn2ZBeY5yEOn7ToCxhu1oT8tIu9EBKcCvyUaN4JAnd8bXrRwAy/JeY2zYBvruI6y6okToBhA1PJPdDephVwrniw27UfyfpWZt/uC7EPfcUs7pe4345H/ivYgHiMiL9hW9b+UuJaCcRPWPlI3l9agUugV60LqDH7SA/kTqD4Dlywvo0kHePYmQuBMyd5NJVQ0PHmbN6BpMUeC21pSjx62lEZIPNuTDjTPsoi4CbV7QdHVrCrmO9uMCsBz1WM4un1akowvAytnrwjX7rPXAOwlg/XniIhrWqQQlgcZd9lZ7YOxUPV5LiNJHDOWQL28aANblf+C2Yqo4H65iHegGT8+U+Rm1wNkpkvQfN4CkEFqa8q/dUG8xf/EV/AORNI0qOpE6lgpBhBB39CgOK1crzAC8/n04FC6c8Y1CpjgjjUY3bWWR/xILqWiSoR6PI5dpRFmligI6tkv7pTz6HoObEhVGn0wiunaGXzIKYEVxumR5cZNpGCXu2ZnaYjluovpH1P/EjZRShXUzFmBU1Gnxty5exbEwH40GsTb3BMGAUo9pSp0Xo8QdyZgWxFzB/Cga6UWIs7+QEGerdq6C6hDlITG06QVDK/vSdSzHc38Hi5eS9FrCgUW4sIhpvmgHJilBrKKd8hP4AoXTPZ3Mqxdw/2YAGL1WLBeZuzEu8TRCyaeYgPID5W0W7VlThAOLcGGZjKgsErVFZxoBsLyf30XcJAo28UVKQzuOAowZ6c+Sc40rUxW6kRQUzEibzqgz5/UFLIml/G2mNltoCmOpfyOQtWyyF1wCqj+hHxh8WTdcC5JPbm9qP0kL9Nx9FzVj3FD/XnGx32s+Rgz8yhmzdawN9YYFUP5D09X0dvDGMa/CoJlMVdxiWV9Mz085p6QqW46NhpaWBWCdOgD1evqhylirOfS9x1odSuXQLYjg6XV/Oagb/FgbwjzxMXD7qicU+iSxzcvujbEhD71ftP6QR81q5h+WXt9kcXsdfdaRyiEDOOQqTq/vtXG38VUkvTcHKjwx43ZX/HPKvB6p64yUvvTeJ37/gwURXzHZhx/wqFUjcz6WfRFxAlsTaErqZ95lMT0vFe/J6Doi9U5pX6KTJCWznnsBbLNQyHW0fReA5ajHcnb5OfOVSKCvJcnv8uSd3gVg5ex14Zp91nrgnQSwstaFrt7keGDoWD10OvrF0CQj7euthrtagddxemj1KRtNxemDcFtHeV64Gk2h6zteTvdp1rVUSEuL9Flx/SzclpnvVLjSVaD7PLUao+VXm68nGrFkuQLR0XT+X4zgkFvGl+5McUYajR44xCDhqAIFJDjAy0ABl2LofNq25lGtatovya9vMbi9lgLNucsIKNcn84GFjPgpowAW6csyteVucA94MqkjEu0ZF4lKItFJJps7ahRmqcPFv4f7VMB4X9sqa+VCNyGGpyRvhDeL8GcR+zbqPJbHUDLoSb41MNgnROxDvXoGlOcpybuu1xhwtdOP+kprbpZrQOmRokbIMIDb4nFQ3L4oVtV/NgnG6lQcIVWbHAf32UNBoodMJjAMwrr+hBt7i4i/5SktoGzfzF9nRIWQqBGarMynPHxDnLtpJACWT/RzxH5BAUQ+f2Fop1L+MHvWlWUZ5fE9UG9aLP5srN0C+l40AjYjbTqrzsHEJxge8RfiJWTRpO2SKh+szd8MRZQpapgXdOH46MVesduK6rzYF9jGWcNIbofc16vpjfAzUODstp+AvqMzf31ZTkS9bRmUR3+j10vnwTA2MVcTtKzD3rsO9/k0evKpqhQW5aNRniRSmEQMyzE5AJbiwl9w+3GG2D1XpT50Ayi4JB1Xvac78EiSZkoiXUnEa3qmXvcdlKdpireJuD1OkVes1r0Lj7JWIqNJ9DCJIjaZJr+AKl/Q89782S7cNESJx0fnqYKaN6vggIQE3nSw6XsCGjWQt2bWb2Rx7z4FqXr24FGyeMr9hvB8XblKj3Vsx6NSRefei0xzOaZ9jh6StPkCCg9ccJIa4dGkZ/hEEnFsTSHX0bXqArAc9VjOLr90OQuSPm6y4YM4+Pm7AKycvSpcs89qD/znAaz3On2e7LMDm76D2kqKGkkh2HMohayYkJNbM8Lt1OqTlC96R39ZlNXnIEf312+khAUcgEk1xxqAlSptqWFrGLqPzBT/aSMZXJwrIRf3FVDVCukzGxYK92nm8unGOu9D/+noVONatFRhFm1GHnpLfzCPEpSqBmXKxJzY6PkLLK7/yqKU5BQ+UwPXJLjMsMEc/P3S3vy8usrg7kbqg7wVeZTukTkv1XKnLgfAIqpJRD3JZMcLdkAxVcom21GzlLz/sndn/JSfcu18m7c2enuXsdks4REhfCImOxj4EULUKeILJGqARA+YbIZvLfTxKSv+7TZ3BBQPb4l/a0fNA1/KXFXL5gDeFCAZP2enmkvTVxjKwTtIgGrHSqgO0wga4/vdoW9HhRws+7CMDCPHSXTYi0Kf4u5G+sKZtzyP0jL5ZuyZ371fFAg/Rze4xTrwKFDLueubAFi59LGIGUR5z4RcvkiaLU+hVbVnPVR//CxO05bv7fGHM8vYw4vlLAGF9Mb9zUwl6sUA0jif+yUE9OwvD4zIiK/Uv/0E5QEa7alv2xfGlulHnCnPH4N69bdid9FF6+Js/Rl4/VqAkQM6tJW/XmUBWNfOwG25hAsvpAZ0w2ZadY/lPe1AQBuUd6NAlGUl9tEduEt4NcnxPd4DcczLnLOpXx8OQVYiJ+OfAVclSqOkfsluHPyqCLiij0Sr57+bdXmxUBeE3fRKBpMszdbHHnvWw7YdCly/IRFQ6cihfEjK89eSrsDEN2pPu46W4QQeFZ5sMftA8kuBlqjjboUkzMHG9yQ8wsCIY2Kt1p7BWOH3noOtmBd3AViy3JfjKq/6SYEnTyXUJ304BBd2AVg5biG4JpytHvjPA1gmwvaLB1dZ5VgychwqNU0BGG4cW2vV2UQpr8YHKekXaZXJ1rP0DncuBbA8PQWMeyMzbxXAOrAZ5AXdZIbmXWDoQNOpnOmmxDDg8kIJuXhapM88B4+hLc26NnzYE4bWn6YajuXXUbIx2LmLvshqNAJIBNp/xR48ZLFnDYvqEiL3aBY4rUmZgT3zCb/A4N42CmClp+aU3X6RA2B98Px3XNVHilPYWeAD1HLPn6EpWaZ29ejWAvJnepIAACAASURBVHuD/cS2fvRvgg88UnOsWHbW++VhHEp6Kv68Nn9TNNekpOcRBUKiRGiy+XnroZt3SfFvzfhuYGLofJK+WQ8hX0CG5kMqkVQckpJjsoJNeAS/z0Nx9gjc1lByeC6kJnTD6GZb2iH771W4LfhSQpkOcCUqQPfFfIRfZLNlnYXuZ/H0KJ1X4WY8CjeXDwhI500ArNxKDtGfSoihVWokLqE8MRk5ManS0boOg7Ex5UnLSJvOrhPHGzAo/ChIxIelkWgXFVjMknC5DfAJwRRf5ymikT7nfqdAfQkXEvntWQ0BnTtl/b2cqPWpfqfp64YPesDwkbmojaWfVId/gWoHjbgyZMKHITkAFnv3KtwXUn43vkR5aL+0LubQPmwvzmppNOqOAi1ROy3QhOeQrL747KHoknBFYXzntwYCY/5h6fNhHHx9rX+IubORRaQkskntI6DqeA4Tok5iQ/xdse0mmkL4OX8z3H/AYt2G1ABWWlFejlwzlmmCH7XmUf1NBPTan1mQZ7bJCGE8IY7PLBsTeRKb4uj8LYVAMtrv9vh7+PzVCbF6J6/iWGwjZd5WXy4Ay5aHXMelHti4mcWdf+m19HFXHmVK864UQtcycXkgCz3gArAAuACsLFxxFl1JASx/f2DYGxlpawCW5ddlObw7tmYc/5TB1aX0JdazsIBKw6xvSDTjuoKJpZEs+p5fwljXHNQi/REVQqJGaLIqlXhcukL/9vMTMHxw1m96bPkireNR0QyWLVaiSaL5i/3+N0KfpUry+KR7+i/IL8+wuL+T+iB/LR7FO2TeS3VG50rqyQGwer08jMMSsGilf2N86EFT2hwal14LzedtwQgpfmra831cDMwnNvFHQGtUdqN/p9X2pMjTWCOJspJGbg0J/wu7EunGbrlfI7T1LJrSFMdBM6ylCBSRs5/0/X5ABudg+HkW97bTdeBRQEDlURzY54/g/o2E88vHF0lzrEQWJcRBM/0zMLE0XSdZNe/r1UAuX7w8zeL+r1m/zl6cZPFQAlJnxvpOBrC81Iju2gAg0odvLHHZAYBNvVG2d62R1GiSIm0y3cAp4CrXt7d6lpabF3UJC2Ou2Ozzm7y10NebRhLarGBHgR8WKFHxJS2YxAjQvyfgg/ez/j6WCoxq1hGGjpQbzdp0VDt+gOow5bzSf9QHxg8+tmPm9heRBWA9vgP32RL14cIloJ1IBRmkoyBpa1Iwc0P+5ngvDYVKkmpJUi6l9n3eJXikrpBqYhPHGuGeBpWWLpLBBUm0NqlcsLURLYI2mKW4rvZvgpYeQQh7CSxfQT+OmTozCdjY79XUJdMjal/xowLPntOokQGfcShUUF5qaHpjPaF9ga5hB8QieVk3XHUC/9yGuDsYF5mSVUHsU+/SmJW3jhy3wQVgyXJfjqu841cFrlyj11L7jzhUqeyKwMpxC8E14Wz1gAvAcgFY2boApQBW0SIC+nyaAuBYBbC2fA/lX1TNTd91KIyNadqMMycSc5/BjZUUwEqP9Fm1eTHYF6Fi94ZOA8EHlUo1nNNnWezdTzeUvnkEs5RCZ8hoO9MH9rQ15RslGsWbp8/8owHiWKB5Ux4N6qW/iXt+nMWjPdQnAQ14FG2d9Rs/e+YqB8AaHfkPNsfRiKZvfGuhryQlz57+pWXcFo+F4nYKyXq5Ie3xwttDPHyucGcQsmBb9r/Y65jx+rxYbLBPeUx6ozRoCbit8W+KFh4p0VlMZBg0kyjpM587H7SzaNqSrX6tHTckAOemk+uNvhRW/8oItQ+gGf4hGCPl6kr67hcIXrnMmnFbNgmK62fMftMNmgauUkra+PO/WTz6I+vX2aurrFnqom85HmV6OXd9iwDWZ62BuGjRB9b85Mi5IQqEUi4x3bjvwRUp7UgTWVr2cOITDIr4C0kWvFjSQfzk3wTv2xGdaM/ACX4ccYnFjZ0M3Ix03UayQO7Wtu999vThaBnV8T0gKcYmsyeaSv3jt1BeoClZ+l5jYawtieZzdBBWyssCsF4+hfvUPmKrfP5C0E5dY3VUAyOOYk/CY/HYD36N0MYEvEtqMHHRcJ/8KRgdJW5/GNgUywSaqmgqTjDgqZNSC7hIB/BgF4uwk/T+wqs59O65AUnqlPz6PAS8KdwNLMMgPh6YuyA1gGUSsJHj7r9PsDj8Jx1H/bo8WjRLud+kp1Aop8+06lpLI9xaoAXquwfK6m5lzA1MizonttHfpxym+taU1aYLwJLlvhxXmbzHk/d5k7VszqNuHVcEVo5bCK4JZ6sHXACWC8DK1gUoBbDKlxPQ5U3ahVUAy5JsNY1IJ2dMKPoui5ur6QMqdyke5T6Tt/G8+y+LDZvTjogghKqEWPW/ZEuWsQh6xsCfoxu4a27AMyXQry+HoELpf+F9dlSBx/tp3YLvcQhumXlfheX4Vg6AZamcNsKnAsbZQbSe1nhVh7ZDtXNlyuZoXA+zYs+KpJ8yZCr8e+JDDAqnROwfeRTF//xTCNK7hu3HCW2Y2O7WAu+jvntKiiB75zLcF1Eyb65YWejGLJHj2uS6V5cpEB9K10LRtjwC6vIppOyPaSoK4b/hQmgamLVICmP9VtD3kBBT/6lA6IGsX2eE4JkQPZvMK0hAxaHOjbI0AVgxw7pACKepdElT10DIXyjD50UztjPIRt9kSTM3QchDU1Uz3HAmVrxniEXPsEMI5eKs9nKw4EcIUaXwvMmxiAssQo8wINE3lkbufaW6Zh5BdnrjthQ6SU+xz9SO27zPobh/Q2xWN2I2uLK2RSAc8Z8cAIuJioBmIo0IE3LnRdKsLVa7/zLiBLZI1O/m5auH7l409dlUSb12LpRnDoltCG4aHG21HntPp45czZVLwJcj079mjYkMzs8kPH50WLsqX8GGOilAy9Bc5TExT3XxoKWgCzlgErBxxK+WZc9fZLFb8kGICKgQbi1i3y1UIC6OrleTcpqc/mzVnRB5Cuvj7ojFeniVwtx81rlobbVlOr409hpmv74gFpf7LCUNuQAse73vKkc8cPRvBY4eo9dSo/ocmjZxRWC5VofLA1npAReA5QKwsnK9pepLCmDVrMGj9QcpL1vWACy3FVOhuPwPfdHuPxlc1YaZMv7X11nc/lkSLVWeRxmZpM+vIhksWWbOrSEdfL06PN53Mj9OpjhH0igB5PgbCpQwUNDpsVLAHQ2DyRONUNjIYCLgFQGxTEbAKwJivY0mB8CylFMnmyqyucqosS8ewX16f4R5aVB2KFUZ81docKlwV7uavaiLQJsXlCepmpsfdgd8mFy37fO9OK+nXDK7A1qhmpt/8jHlqYNQr6dqoMbqjaH/zFyJ064BWBSyBDNzleQR0o+HeuNCKE9QJTlDu89geD+FZJl5/hDuM4eA4WiEBO9fENpJKwEVJbZ/vI/Bs2NZv84s04vc8gioNt6561sEsMb2hfCIAn3a8cvAB6eOBLXr3FhLE11+EMnSkG+5EV6sweHHcFT7LNVIpUqbGZnGq8sMQg8x0EoUqCzbua1m0KiPEcWLZT0Qr7j4N9xWfSMOKT3FPlMhzaRPwETSHEjt1z+CDwjOiHvSrCMHwEJCHDxG03ucoPFE0gKqtCjtdHLkGfwUR8UlrKWMsvevw30eBbdJfUPHgTjn3xk7f0v9fA4MEDDIDkJ+y/sXaXdwzy145RUPSzXEOfOVSEgwd5czBFyuX2ewbSedQ0g5Hl07pbxTzZithJ4GsmLiOCPc3Zx6mlM1dkr7Ep3C9om/+7Aq3Aoy/+Di6AgsPwZNyFMNw3KlTvt0pF0XgOWIt1xlT51hse8AfbmtWZ1H61auCCzXynB5ICs94AKwXABWVq63VH1JAaz3GvEg/4hZBbAWj4Pi9kWxDd3wWeDK0a+azpxIxEUG/26VkItXEZLVheQYzwNTZ6ROHTC1aQpDltNHVtfdd5DFvRMsqkmI3KNY4EUpAUS5yZY93MPixXH6IlCkNY/ABm9nFJocAGtvwmP0jzgqusMZ0t/uE7rjqjuP93p9ILZbUZ0X+wLb2HJ78vFwLglVnlA+KanUebNnu3BLIv9+uGBblFXlSa6n+mMDVHskRNFOElNIfAlclqbWMAJqTuXgfmY31FuWinMSATODHu4zBoANp0CFoFBCO3E5hMA3fF1vaj38ncWLE1m/zngOOD2RXvMMK6DOLNvXhV0n8E0hE4AVO3U4+JspaaXE5ETSEECDABsmc4aqoSNzckZZKS9WSZUPPvUpmzH+KwGIvE6AKxZJL9MG8CJZAffUDKIUwJCBRhTImEaDrKkrUin2pS16kNyRIKTw2ZGH0xsj4BABiZxpsgAsowEew1vRtcgwSCJgqhWzBDfG+1bDcB8JuEGI26f3B/vyiVibz18Y2q9X4fFTJVavTQ1glSop4JPutq9ZEn11fpYCxgS6Ro6V/heXWt3G9gL0Hk06XvaDEi/p9wF4ewkY84XtPmydk3/vMfh5E50DAVF7fZLSrmXU17TJxizBoyuHbkEErxWHvil/CzTSZDyNcNrrc1gZSyMGp+WtiX7e5Wy5Jt3jLgBLlvtyXOXLVxkzsLtCiIDOHTkXiXuOWwmuCWenB1wAlgvAys71BymARaKvSBQWMWsAlvuc4WAf3RbHqxuzGFwxeS8uaU0+7DSDB7/SF8H8NQUU7yj/BXPBEgWio61vgjq151CxQtZ/tZezAM6eY3H4DxaNKZUIiJeSmvFoYUc0GSFwJ0TuJivWnkeB2u8egHVOF452L2gUUSV1Xuy1E2hK6/yoNy7C4bDL6N6xsVikhaYw1uRvavcpLfjIXJnVlH5Y/+lOPDTGiu38U6gDiih9kv9OpU7XbTiMjT6yu8/0Cl6YrYAuil4fpT7mkN/rOkiak8mSN5xTfwKZv/KEudKevtNgGJvSaA1Tnfs7FHh5lrZbrD2HArWz5lo7PVkJXhL5UGOKESpKWSbbbyKANXcC+PPH6f2x/9fgqjbIUPskpczM50EloZ2wPENtZWclQuidm1HbJWqQapwC8PoGmxxxlRiWNnCl9xZw0cAgWoJ9jB9thIcTz7G9PmTvXob7Qprey5eqCO2o+WlWJymiJFXUZILKDUlL9tjbnd3lZAFYRNF2SAswUoGCpXsBpSpV/8tirmGmRHWSROaQCB2TKf/8Fert5utYO3oh+OLlERPHYP7C1ABW5UoCOrS179lP7jHkXiPeqyAgatBjtClqnsq79mcFHjyka4qAnQT0lGtPnjFYtZr2XzBQwMB+HHR64NvZFEgnwamTx8vvz57xWkbFdfMsgfl+GReDGB95Cj9L0hJJSiJJTZRjLgBLjvdyXt07dxls3EKvsxLFBXzawwVg5byV4JpxdnrgnQGw/ty+EGp16ugWjuPRqMPIZB+f2EW/4kudnpSkQ/Nuo5N/unHMfEOXnScnJ/QtBbC6dORQPiRlU2kVwJr2GdgwSpZO0oT4guaRFs7y2fMTLB79LiF9rs+jaBv5wIrli6t0vITAnhDZ/5fs3n0G6zcq0DQBkG4ncncUUK6m7Zf+f7cpEHGBvsiX6MLBv9rb6QM5EVgPDbGo/2yneGoDFB44X7iLrFOtuHISG85swOgWlMC2p3dpzHZAkanu0x14bKR8QScLdkSwyhvVnmxFGEdRSTJWMmZibkvGQ3GLcpDoBk8HV1GeCpTJEZaRUvkqCyjdMQGakeZRZfr+k6BeNcPMf1yZKtCNnGvVp/9uViDiMl1nJbty8KuaNevs4ncKaF/Rvit/YYSHE6NzRABr6bfgj9N0Hf0nX8BYzzzyw94FlyoVrUJt6IbQ1DR72/mvlou6xSL0IIMEiWqb5Vy8gwUEtRBw4h5wRkLoS0i/p3yVNdEtlmNiH92B+xyJYl9wKZBU0rSMfXIP7jMHi4dN4LCzz5tcAMvji/ZAUrw4rMR5OwDPFEBdaj/F3sLk11TMobd3GRB11WSLj0kWn5ASt3M1m0LXZ7zYBBElkeBkyb9LidBt+eW3uAcwLs2PwBgqMuFTmkf5vubvDr/sVODqdQmgXlRA7562n5e2+rekKfDNK+DzoRxi4xjMk4BzXl7A2C+yBsA6q32J9pI0Qk9GiRtBH0PFZEwhdeSr4/gl/r7oikX56qOzVwlbrkn3uAvAkuW+HFc59AmDH9dQAKtQoIAB/VwAVo5bCK4JZ6sH3hkAy1ledAFYzvKkfe1IASwpgGMVwJr4MdioCLFh7bcbwfum8PI4254eZREqUQws9B6PoJbyAazf/2Bx7oL1F7fhQzj45cuaTbWz/BUVxWDhUgWqaQE/yft30Y48Amra9tedjSwir1J/lOrBIV/Ft9MHcgCsBN6AUqEbzdz+NLgXGBmcQmQjNn/HJMyvS1NkxqqLY2Sg/VE3ncP246SErH1bgfdRzz0A5UI3IUYSNnQjqDtysymEKUQRjH35lF6Hk1eCt0jZy+j6ir7H4OYq+mKocEtJI9RM6wM2nPZp2b7gnRuEu8dSndBU7vZ6NjmaxmSle/LIW972+szoPKT1rv+gQKwk2qJcfw65SzhvjYsA1upF4A/8InZN1FANTTtlaArKY79BvZUCH/ao2WWoo7esUvQdNpnsP/5Z2hFX3kEpwBXhaCNGVN+I+pvJfLwFEILs7DD2xWO4T+8nds0FBkM3+cc0h0KUO4mCp8m4slWhGzHH6UOXC2CRdGk2+hW958zcBN6KoMC2+H8x6hXlyezkVRyL86XcD9Vr50B55rDYBiFu105fB8EnJTWa2KJlCry2IOZ3JLW/S9h+JN1RY8LeFmY+DBnAIVdxes3vO8Ti1Cm6ZkwpSHIdb6lwSKIASTSgJbCV11fAyGFZs0YFQUDlJ1vxSpJGuM6/KZq9UbV1dM4DI45hT8IjsdoPfo3RxrOIo82YlXcBWLLcl+MqR7xisFQizmK6nkz3uRznENeEXR7IBg+4ACwLp7sArKxdhVIAa/gQHn750k4h1HzRDkwSZT5NnLcT8PTOlAGHHmTx9Ah9wQxqzqPQGzlqOR2eOs2C8EZZs4njOLi7OW9jK2ecjtQl3BoldUBxyQfdgAY8ir5RP0qvrVtrWETdpv4o24tDnnJvpw/kAFjEB8GP1sEIOrdrhbvBV+HuiKtTlR3z1yJsCs4t/r4wwgNdatgf2fX5qxPYHn+PbuDefM0u8ng9DAIFeB4E94QbkwIsaYa+b8aZk7jgV0DjJWsepsqky7NTFeB0FEAIGcjB789voLxAFRMtO9OOmAO+bNU0x3DzRwWi/6Vtlu3LIU/prFlnliAt4dLzq+K8vk0AVtzmH8H9SiOIDa0+gaFNrwydF9XOVVAd2ibWNbTuBcOHlBMrQ42+xZWI6ixJFZSqYFoOlyhIBjUXQBRppXbipAIHD0sULgsKGPhZ1oADlmNkXr2AZvKn4s9CvgJI+ubnND2vPL4H6k2LxeP2qBZm5DTKBrCmmAPY2imrwRcISjUUAmwQgMNkrTyCsMq/CawRt+s7D4axiXm68foNLO49MH8+d+rAo6IdYPdTYzxqPU0BkGfsbIPSL2mYpSa/gCoSjisSfXXuPO0nJERA7Tf0CRnxr7SOJdcVIYd//oLBD5IPA4GBAgb1y7o1OvX1WayKvSkOs5NncSz2s/9Di3R+n4YfwZFEymEmBwwztesCsOSuupxVPz6Bwdz59EObh0bA+DGuCKyctQpcs81uD/znAayzlygnkjOcWbNKGWc042rDTg9IASwS0k5C24lZi8BKxYOx7ABA8jUywR7tYfFcSi5OFEbeEMzL6e72HRabtqYeM5nG1ElZE9IvZ/zW6i7+XgFlOIMqEiJ3n2ICyg+0/YJ8faUCsffp5s/Z0SnOnKtcAMsyXe9IYFuUUdOv/xkZa4+b63HMg26ot559hvpd7FcE/C76EhZFXxG7Hp27Mkbkqoigx+vNhmPixkrNmaNG0hJzHqqMzENa5+4mBV5doWuCgKEllRuh3vWT1aYNTTvA0ImmQVkrdO1/CsQ9om2StUnWaFbYw90sXvwjIZB30r3ENHYRwNq1BdzG78UpGd9rB32XoRmaotua2VCcPSLWlZOOmKEBZFGlmHspqYJxj9OOuPIsJCC4hYDcpa1H7JH0wT8k0bqlS/Lo0T1rovss3cTEvIZmPFUhJdFFSXMoEGlZXvX7Oqj2bqBrpmV36Nv2dbr3ZQNYs4aADf1XHJd2/Pfgg0unGufRpKf45CWNsiJk4Zv8mqZJ3A7WnPNq9x4W5y+aP58JCbo9ipKzoi7g+5hryWMqGpEXc39pbza+kt05+FXO/HvO9JlKGCWvEoTrKvQZg3U/07kWDRbQp5ft57OzFsIFXQQ+kijeykkjJFFu/1iJGpYzVheAJcd7Oa8uSTMm6cZSI0CxKwIr560F14yzzwP/eQAr+1zn6tkZHpACWFIZaUsAi9EmQTOKEkULajWSFjt34yydz/1fWbw8LSEXb8ejQB35m5KIVyyWLk8NYOXJLWDUiKx7oXTGuTO1QSLKQu8wqPCUbgJZlYDaM2zP5+oyhVnUQ4UhHAi3zNtocgGsti/24ryOSk9tyd8CDWSoMREfNX28HbcFGpV4Yt1+FJ24HiAsvXbY5ri7GB15UizZ3bskpuSpgTKhm8TfyGbjbnBK9A37+C7cZ1NQhHDQES46Z9qrSwzuSghS3fIIqNn6FNyWpQbm+IAiyaqD1gidpWO6skSJBCpWiIrDOXgVypp1ZpmOHNiQR5EP5d9LTPMzAVjxh36HcRVN/zLWbgF9L0ro7cg5IkTghBDcZLph34ILoVxrjrT1NpaNfQg83m8OalqO07NgSqpgnjLpn6u4OAZPnzPQaQGtDsidCyiTBtiV2b5gtInQjGordiO4eSBp0a40u1X/PB/Kk/vF43onCjJIO5UNYM0fBfbedbFJ7ah54EtVSjWvc9pwtAujYhnV3Pyw95YO6u3/MytrIm63bOD4CQUO/WkOZg4dxCG/f/r3Cl4QUPHJFkTx9CvO2r+6wPMm5elS+wioOp6zxMycviTmLlAgPp7OYcwoDs+eM2Yfzsj6/Lir8+5B9kyi+pNteMElikVX+zdBS4/UUXS22mrz4g9c1FEqid0BH4KcZznmArDkeC9n1p0xWwG9nl5nJIOiWKC8iPqc6UnXrF0eyJgHXABWxvzmquUkD5gALI0GmDCGfjZMBWDFRkEzjqZGEc6bpLnbnTSK1M2kIhfvzMG/uvwNL8cB075NLTYQVFhAvz62AZ9Mm7ATGj4zRQFOSx/oVcZw0Njg9Lq8SInEF7TzSiON8My4wrYTZpF2E3IBrP7hf2JvIhUhWOLXAB09i8sac0joZkRLNk33F2+HV/+pMJarYVe7fyc9R/eXVJK+gXsgluSrjypPadRGPoUGVwqnRHUoL5+AesU0sW2ufC3ohpqTqdvVcTqFjNqUNEIIkrU04DXyzutoVosopukm/QDe31zhy1rTl+YpkBSReUTq6c05/ByDe7/Q6AcShUGiMZxlIoB18hiMiyR8RpXqQjeInitH+kvFczZpBfiCxRxp4q0sS1IEHx9gQCKv0jLPQAGFmwvwLZe1G3xnOcxjcHOzphL/dyjNptVLJ0B587x43JmCDNJO5QJY6u8nQnnjnNikfthMGENS3+Nu6F+jxfPdYrmyCh/8M3+tGXG7sU5z6D8da9Un168z2LbTPCprzCgjvG0wFexPDMVn4X+KbWoYJc57dcOteW4QeHrfKdKaR2CDzF1XS5YpkjmvTDZscEoK4c7f6LwqlhfQqYPz7kH2rN1vXp/HD7EUhGznWRTL/BrZU9WsTPPnu3FT/1r87VDgRyin9nW4HWkFF4Aly305sjIRRSDiCCYjH6BDirsArBy5GFyTzhYPuACsbHG7q1OTB0wAVr68AkYMpS9UlgAWIXB2n9JHdBzvF5hMwJpZdmejApFX6cOp9Mcc8laSD2CR8c5frEBMjPlX3pCyPLp2ztwX28zylandG6sUiLlH51XqYw75bPjMUqGt6mgO7n7O8bOz5ysXwJoYeQrrJPLfk32rY5BP+QwP0yjwCJak+il4Hq++2wzDe+1h6DLErnYfGmNR/ylVRyyu9MHP+Zuj7rMdYv0gpRdOFUohA1f9uRMqSTSDsWEb6LuPsKsvRwpZppYSAYViYYuguHQcJI2RmL7nlzDWbWlXs+dnKaCPpmuz2jgObr5Zs86i7jC49RPdPOYqISCkv/M2jyYAK+HSORhmjRL9wZWqBN2oeXb5x7IQUX1k9Frx56R5OyFkEt9ghgboYKX4pwxC9zOI/jdt4MqjQErElW/If/s+7AiA5fZNPyiePxa9qZ2wHHxQSQe9a7u4bABr5XQoLx0XOyIqpMaqqcGPR4Y41JPcu4KTjLi8ZKtYL5m4/Zv1IB/ArNmTZwxWrTYHsKZNtq0o+Wn4YRxJpCITPbxLYW7eurBUVVVqUqKwlJm4z125WoGnEhEC8mEs7CWDPXvp2q9ejcdHTowCtb0CgCv6SLR6/rtY1J1R4Hrh7tCwqT/opdceUfMlqr4mO16wA4qpUitS2jMmUxkXgOWIt1xliQeWr1Ai7CX1xaB+RlSvoHE5x+UBlweyyAMuACuLHO3qxroHTABWcJCAz3qnDWARxTX236tgEhOAxDgwKjUMGZSIt+dcZCa5+NqfWTx4aL6RqlWDx4cf/Lc3To/+YPH8bzqvgo14BLdKf07nZyqgl4B51SZycMuVNcCCPetAWkYugLUo+jK+i6ZpWQN9QvC1r32RUtbGmmqzFh2Hyyt2J0ckaaetsXt6BR9R4m9S6WjBdnjv2W9i/dKq3PizYLvkvwl4RUAskxk6DICheWe7+7K34PMTLB79TtcSSSsl6aXE2KcPwIbetRu8InXOTlfCSDMtUWOSEarM0X9INUWSukhSGE3mkR+o7EQJexHAunMLhsn9xX74QsWh/eoHe10ulmN0idB8TtPQyIH0ongc7iALKyQ8Z/CYAFd30gauCME24bhKBq7SpsLKwlHL60rzIaphbQAAIABJREFUZXswifFiI0kLfoOg8bTaqKUwinbOVvA+8qJZrHUkG8BaPxfKUzSSjERQkUgqS3vFJaHSEwpY5U3U4t5SCsbruw6DsbH52pa2kZjI4JedDNzdGbhrBPh4M2jcMH2w+aUxEdWebpPIcwB/BLZGZXU+GBKBi7PNRSnseS7KWQHrN7K4d5+u954f83gZzpgJDdSvy6FFs6x/zlqmEa7wa4zWDioIWrZxvnAXBCg85LgMLgBLlvtyZOWf1rN49IheZ7178qhfPUWp2WUuD7g8kPkecAFYme9jVw/peMAEYJUrw6NbFwp2WCNxz0pHWkaAkIgJEjnhDLNGFNv0PR6NMjm1wBljT6+NV5cZ3N3sWKTJ2WlKGCktBmp+bYTS+l4rs4dvs325ANbGuDsYG3lK7KeDZzEs9Wtos9+0CpzRvkSHsH3i4dpPwrFvU8omL4nIw/vZl4tZOXQLIiQS5z/nb4aeEiJkshEjGzJibiumQXH5hNinvs8EGGs2yfAc0qqofQ1cnCP9Mi+gxtccVBlcG6cnK8HraW+1phuhyKJ3TUMccG4GnQvZa9Wa4jzBBhHACg2FYfTH4iRtKdCl5Xs2LBTu0z6j7eTNj6QZlOjb6Sc7ExpMDEsBrqJupQ9cEXXZvOWFdwK4MrlRM6EbmOhI0atJszZDyJ0vtZf1WniMbEPPM7lvLD8IMM5H8WQDWJuXQPk3jd5JC4hK4o0oEUrXqruBw4sFW5LnmMzX99UKp89vYfRlzJN8mCijyo0jbwB/0q8lBx6jFFB1LPlQkwkLH8D2HQpcu0HPYcf2HCJeMfhbIkrTpDGPxg2z/oOZlOiezL61ZzBW+L3nkCMs0+ZvBHVHblbezdwFYDl0ClyFAWzexuKWREG7S0cOLRpmYmily+suD7g8YOYBF4DlWhDZ6gETgFW9Ko+PWr89AFZmkoufOMni4GHzjVW7jzhUzQKFosw82doIBhfnUQBL4S6g1rT0v16fmqSEYJAAC98YobCPfzwzp2K1bbkA1qGkJ+j9kiq71XcPwNYC72d4HrviH2LIq7/E+u1vPcZPu1PAJVuRBtJOSVoHSe8w2WTfGvjmNeWbqeNeAL8USEnVc7dQA9ONXgSueEiG55BexcsLlEiUhOiX6MTBv0bGQOST48zTVOrOcR6AZGvyRLHo1HhyXdBNZe2ZRqeROYsAVkQkDEMlBN6e3iCpf44ae+cS3BdRjiByfsl5/i9Y4ksmWVXw9fV0gCt/PpnjKl+Fdwu4Mp0f9ym9wYZTxYKkqWsg5E/NE8e8fArNVElafh4/aGdS8QZnnm+5AJZq5yqoDlFePkO7z2B4v5vVIRZ6tNYsGipyzkaQ1aAd9z34IqmVC+XMUxAEVH26DeFcktjMDN9a6ONTVvybNwAX5yqgj6XXv181ASW7OC+NWDoHkip49jxd/60/4PEqEjh9lv7WsgWPurWzHsC6oY9EC5lphMUf/wytQH13P7gnSDqiHHMBWHK8lzPr/rZbgYuX6TXd5kMObVu4AKycuRpcs84OD7gArOzwuqtP0QMmAKthAx7N3nt7AKzMJBe/eZvFlm3mG6yeH3Mo6aQIr+xcXqcnKcAb7Ocayk5gwVE/yQWwLutf4cPne8Ruy6jy4EjBtNNZbI1vZcwNTIuiQNPgc7cx888LydW48jWhG/qtrSaSjw8IP4o/EikPTnevEtgcf0+s20RTMJkXi5hmbGeRg4r8nTRzE4Q88hSg0hpk6H42OXrBZCTFq8ynjm+6OD1wZjIFsAjlSu1vsw7AIuMnEVgkEstk1SdwUOfOGBhn6S8RwEoywNCLRjMIDJMSUeOgKc4cgtvauWItY9WG0Pef7GArWVs8KYJF6AEg8lrawJV7PgJcAX6V3o1UwbQ87P7tILBP74uHkyb+AKFwarEI9s5luC+iKpVc0bLQjV2SKSdONoD1x89Q7Vkvjs3Q6hMY2vSyOtYyjzcgTqDX96NF2+BZtQn0n452+tyOJj3FJ5JoVTVYXAnqBh/W/CtM+HkG97ZLQBZGQOXPOXgUcPqQcOgIg+P/0L6aNREQ+Rq4JNlst2vDoWoV59x/HJ1Bvac78MhIb4bL8zVCW6+idjdjmfL+rEhvu+umVdAFYMl2YY5r4MAhFv+cos+bZk14dGsrLxIwxznRNWGXB2R4wAVgyXCeq6p8D5gArA/e51Gn1tsDYGUmufjLcGDZD+YRIYMHGBGQCS+z8s+QYy1cX6FA7AMJ+X1PkqJjHXQgX6ZPT6J+YFRAnRlZCyw4Mju5ANZzYwJqPKXKmb4Kd1wrbD2KwJ5xEfCKgFgmm370IoafvZX8p6BUgXDfQGU7nG3a63NYGUvbqa72x3l9uNjuhx7BWOn/HqDXwWNkSiphch8si6Tv9zs9JcfUflwog2vL6EaMVQmoOZWDg5y/ydxXhAPLZEoNUHNq1q4zwoFFuLBMVmEYB+/CztlAmgCsRB0H3WctwOh1Yj9JC3dBcHeMH0Z1YAtUv60W2zA26QB958H2LMksL6ONZBB6gMUrIriRhjvd8woIaiYgX5V3G7gyOd/tuxFQPEi5DxDTjVkMrli5VOdGceYw3NbOEX/nqtSHbsCUTDmHsgGsQ9uh2rlSHJuhaQcYOllfk9XurEaYG71vXPtpP3zHrgC8nJ+zZwn+E1VZoi5raQIPXF6kQNJL+mzMU1pA2b7Oj8I6cVJhxndVrw6H6GgGNyTptCTdqXyIc+4/ji6YudGXsDj6ilitpUcQVvvbl4ZumSJKCODvBX3i6BBSlXcBWLJdmOMa+Os4iyOSD2z16/Lo3dUFYOW4heCacLZ5wAVgZZvrXR0TD5gArM4dOVSQvFBlNwdWZpKLG43A9JnmANa40Rw8PbLnhdKZK5EQbxMCbpMVbMIj+H3rABYhuD03LfO4gZw5L9KWXACLtOHMr8dDI/7CbwkPxWmuOnIVnc5foxvXYTPBWZGat/TLT3G3MDnyjPhzblaNaAlhVGev4liUrwHYl0/gPrWvWE7IZG4kknp3broCxkS66Svbh0OeMo5dJ0R9kKgQmkztI6D6V87fOKa33ogKIVEjNFmZXjx8yzkeTWatDzMAa1gHMDES/qMMRMipty2D8igl8Td06A9D8y7OvpxktZcMXB1m8OoSmyZwRVQmTcAVk3ZglqxxvI2V3RaNheLOJXofGDkHXJmqqYaaCqh8rx30XYZmypTkAljKv/dAvXmxODZj/VbQ96CKm6YD7P3raBh9BP/mpWDVyee5EFy3vdPnFclrUTE0hV/LZDsDPkAtt/xW+7JUIyWFyg82wqeIc4d2/iILwrNpsqpVeMTGwozY/dMePEoUd879x9HR3zXE4L1nv5pVuxP8CbwY22qEUZwO5Z9sFuvmY92TI97kmgvAkuvBnFff2nU2pLcLwMp5K8E14+zywDsJYO09cgZ1q4cgdy6v7PKrq187PWACsIiCR7Gib08E1plpSnAScvEaU4xQORbIkK4HiMy1Wg14aAA3dwEq2+9udno0e4uFX2RwbysFC9L7yqyLYXBhZvYCC454yxkAliUBrRwFpY5h+3BaS0midl2PR8M/dtFNXpP20HceYnOK+xJD0S/8zzTL9fQujdl560Bx8zzclk4Qy/ElK0D7xQKb7cspcO8XBcLPUeCnQC0exTo4tvFKimBwScLN5p5PQNUxWQtgkfQhkkZksmLtORSo7RgQl5YfpQCWdkxPEBJ2k2knrwIf6NgO2W3lNCguUaJ+Xd/x4Go0lXManVZXG8Xg6SEGEZdYkKgWa+aWR0DhZgL8qvCQSY3jtHFnZUNuyydDce202KVu8HRwFeukGoJ66/dQHqP3i8wEKuUCWJZprWQ9knVpZjwH9+n90bRlCC4XyCse+iPgQ1R2c36a8/9ir2PG6/NiP0WVPjhRqEO6p/r6ChaxDyi45BkooNJI596Lrt9ksO0X+lwNKcsjNo7Bk6f0/tOvD4cgJ0WAZmRtW6YRLs7XAJ28Uqe5Wrb9zJiAmpIo5oJKT5wtJF8F1wVgZeQs5uw6ltcZEaL6YrALwMrZq8I1+6z0wDsJYIU07g2GYRBSqgjq1iiP+jUroFJIcSgV8oges/LE5JS+TACWZQpddkdgnf5KCV6SZVTrLSYXf5vWCiHdJuTbJlN6Cqj5tfUX9LcBWHDEd84AsN579hvuGqLFbvcFtEZFNysKYXYMrN6zHXgkIVY6GVcEZZdT3ivevxC009bYbOmq7hU+eEG5uSwrDMgVgil5akB5Yi/UGxeKh7lazaDrPc5m+3IKvL7B4vZ6uuFTeQuoMcmxDR9J3SMpfCbzCAAqf561KYSWfF6FmxE+JseAuLT8KAWwkqYMMk8fywDJvmUKmnbUd+BLVZZzGmXX1UUxeHKEQcSF9IGrQk0F+FfNmcCVycnq1TOgPE/FHfR9J8JYI7XSm9uKqVBc/kc8N5kJVMoGsC6fSFZANRkB5AgwJzXl4R1Q7/gBrbs3wz9BNApqW4H3Uc89QPYatGyg5pPteMYliD9P8q2OwT7l0+0nMQy4vND8a1WpbhzyOZGP6v4DFus20Htm8WI84uJZhNOscAwZaEQB64FiTveTtQYtlRubaQphXf5mNvu+b4hBQ0n0VnFlLvxdSH50nQvAsul6VwELD9y7z2D9RrqnLFpEwFejbFM2uBzp8oDLA87xwDsJYFVu3g8Gg/kGxdPDHbWqlEW9mhVQt3p5BBX0d44HXa3I8oAJwPpyFIdc3jQiIbsBrP8SubisE+DkyiQq4szXFkTuE4lkeOpok4QXwJVF9GXeMwColMXAgiPTdwaA1SVsP/7RhondrvNvimYehR0Zhlg26NE6cBLin8cBXeA9qj0YSWiKPSTrrzktKjwxT4WRDmhk7koYm7sKVL+vg2ovlag3fPAxDB9RFbMMTcJGJULAfnaqAgJHowcqDufgVcj+6KW4Rwyu/Y++aHoFCag41DEQTO7cXvzD4uFuuqnMX4tHcQcjydIagxmANXs0FDcosb9uyAxwFWo5NHz3r3qAfU13u2mp2DnUaAYL62NSgKuXRFUtjVNGyPALNxGQvzoPuL5RQb1+HpSnDoge13/yBYz1Pkh1BtznDAP76I74u3bUPPClKmXwTKVfTTaAZRH9SVIidSMpfxdiIqGZ0geMLgndOjbCgRJUdXGNf1O0yOA9Nq1ZndKGoVPYfvGwEgwuFe4Kwmtoy/7drECEhFCdRAxWGcM5TZX02XMGK36kF0JgoIDEBCA6ht5DR43gkMdJIhK25mvt+ENDLOo/owqpxH83gj6GF6tKt7nruki8/+J3sUx5dV4cCGyTkSGY1XEBWLJdmOMasLzOChQAZkxIf/3mOCe5JuzyQCZ64J0EsLQ6PS5d+xenL97E6Qs3cfPfR+B58w1P4UB/1KtRPhnQIsAWAbhclvUe+OpbPaKjga/Gm+9OshPAIvQ/p6WqZWqg9jdZG7GR9WfCeT1eXaZAfKiEt6g3jzxlU0ebWJJ0Zwew4MisnQFgWfJWzctbF929SzkyjOSy0bwOJB3RZET16lbQx3BbNAaKO5fp5rXrMBgb21Y6tJQmlw5ofJ6qGJ6rItRr50J55hBt++PPYWzwocNjd7TCzTUKRN+m66lQMx5BDkQvRf/L4KZkQ5erhICQ/lkLYL26yuLuRvmKitZ8JwWwEhd/bR5902cCjDXtI0hOblsQoBnWEgxPr9fExb8D6qx9PhpIytOfDF6eYSGkBVzlegNc1XABV9J1YZkaqE/jHqCZ0A1MtIQvbdpaCP4FHb087SovG8C6dx1u8ynnFVesLHRjqGKi+qdZUJ5LSYPu16YedpSjabPf+zVEe89ido3T3kIjIo5jRwJVehSFLuxoQBcDXJytgMDTe1qR1jwCGzgnIjMyksFiifiFr6+ApCQgKYn2N2EMB43G/o8AdkzL4SLNn+/GTf1rsd6CfPXQ1atkuu2c14Wj7Yu9Ypnqbv7YFdDK4b4tK7gALNkuzHENREUzWLiEAsW5cwuYN80VgZXjFoJrwtnmgXcSwLL0Zlx8Is5dvo3TF2/hzKWbuPdQIgcFJKcWkhRDkmo44BP5X3Oy7Wz+Bzt+HplkddTZCWClUi3zAGpOcQFY9i6vB7+xCJPIC6eVLhVzn8GNlfQFIFcxASEDsxZYsHdOpJwzAKypr89iVexNsVsS2UQinBy1O4YoNHlG+WtKqXLjaMF2UB3aBtXOVWJzxgq1oB8yw2bzjZ79inuGGKvlpvnWRD+fcnBfMBrsv1Q9SmcnSbzNzm0UCDvN4MGvdJ14BAKVR9p/PVqmIRIwtWxv52wW7Z1b7EMG13+gcyAKhESJ0BlmBmCtmAvliT/EZvXdR8DY0P5nGhMbBc04SthOFAyJkmFWmSGewdM/GYSdThu4UvkIKPyegPw1edjB+5xVQ39r+iHXP7kPmMzQvh8MLbqaj48AlUNagEIaQCJRFM0kmgW5ABbz5D40MweJcxAKFkPSpBXJfxPidvd5FNwa2bIW1lcqIZYl/H2Ex89ZFsvrUSl0C/Sg95CN+ZujscZ+8O/hHhYvjlNAW6kRUHU8B6UTcOLEJAazv5PcLzUCyG9Sm/61/fdPZ/nNsp0lMVcxJ+qi+DPxH/FjenY86Tm6vTwoFmngHogtBVrIHqILwJLtwhzXQGISMPs7mkFAOG2Xf+eKwMpxC8E14WzzQI4AsCy9++p1DM5eup0MZpFIrYdPXogRWjeO/Z+9645vqvri37wkbVI2ZZWWsvfeIENkCMpSlgxxK+JgKEOQJUORIUMRt6hsAeUnIlNEEGQP2ZuWQqGsQmnSrPf73Ja8l6RJm9WXl+Tcz6d/NO/ee875nvte3v3m3HMWBcwZ4ShYjgRWtqplhXg0GuufzWY4+Jgl3WbJt63NFWFw+6QCpxbZ/IJVjUeNF+WLsz8IrM9T/8O0OwcEbF4sUA1To5t5vCy265LQ/7oYDWV9keeuJUAz+WVxo6eKgO5TkdBwJaj/9U3Yrrvq9PKM6OYYUKAqNOOeA3frmtBHP/E7WEp5d/zRE4OND1g1Qvu8MY3eNyGioHuz3DykwJnl4jqLrsujan9p15nupgKHbDaV7NhQQ4eoU/esyd7LlsBKW/w5IjauEDqZnnoFho4O5EUOgrgrF6CZNkjowfzL/JzXjVWatBJXFqNzaSz/WVxbHiyRfzgmZ3fXB+r1S6D+TXyPMT75LIxdn7cbzt29Bc0YsXobn68gdLNWuyvC436+ElhcShI0E14Q12WxGOin/Jj5f+SUV6C8elm4NrZ7OyysVkr4f0KRRhhUKOfcVJ4Y9P29kxh3W6zaWkKpxcG4Ppl5V91tJj0yC5iYM8QxsW0sKPuEf4j1CQ7PS1u9GEc58f3AE1hXTQ/Q2CYhOwcF/ivTF4WVrhNhb9Yl4oXrWwVzOmjjsMiN3Fm5+YUIrNwQouvOEHC8z76ZRwQWrRRCQCoEwpLAYuCm3LqLv/89in1HTmHPwRO4cTMrsTIRWFItvSw5ciSwgi25uLQey13ag6vAkXk2v0y5IAAdj1VF17ag6rP+eYHPXUvPe/iDwPo57RyG3RQrvHXJVxZfFs+eYDk37VamncXwm2IC5t75K2FusZaZwxxzGGUM+Rjm6g1ynHLUrV1Ycv+M0z6fFm+FHvkqImqw/a/juvnrwKulqbpz9FMl0myqaFXobkGpR9xbK9f3KnB+tUhglWjEo1JvaQksixn4d6x4Tyg4Hs0/8o8OdhFYq3+C6tdvBD8aO/aF8SmR0MxtXan2/omI7z8SuplqNIbh7Q9zG+b19Uzi6i8geRfLm+d8GlX+rIirUs2JuHIHaPXmn6Fe85W4Bjr0hrHHa3ZDuctnoJn+pvCZpXR56MeLY9yR40kfnwmse7ehGS0SsZaCRaD/eCXUW1dDveoLO1Umvzcac/grwmfvFq6Hdwr7rwhBu6RfccqmEMeIwvUw3Iv5k7ZzuLxejMJSqHg0GMXyRXqCrPO+Uz5SwejiftJqgTEjA09gMc07XfsN/2WIx1itP5a4QuB/Dy5icIpYoKBbvvJYWPxRnwEjAstnCMNygo9mqKDTi6YTgRWWy4CMDhACYUVgnblwBX/uPIg//zmI46cv2UFesVws2rVsgKGv9AyQK8JTrBwJrGxVyzw8shSenhStZjnE/33fPsdHk0kmqLT2yNw4qMC5FSKxULwBj8rP+GdTnxc+8AeB5Rg51URTAr+U8jyHx7y7RzDj7iHBTJajiuWqYi1iyVy7Y2Smtk/D0PuNHCFxnM+287cl2uIJQz6wnDnWltcRG47KXtnCIWGzuNkrXJlHjVfcWyuOCdQZEVLhKffIL3+uI5ZXj+XXszZ2LFkV5bsEuwis31chYvmnwqTGVl1g7D/UbSHqZfOg/lusSOksesftyXLoaNYpcGU7kPwPB7PBeeSKOh+PWEZcNbMgl9zO/lApZOZQ/bUWLA+WtZke7QZD37ft7FM6VvWr2RjsSHBeNV8JLIVeB+3wbuLzJ1IL3QffC4nbBVtbdsa8ru0x9fZ+oe+ggjUxoWhjv5h2KOMmuthUbGUr90BcH5T04kZmpDbLhWW4J65/f5HrMz9R4n6a8/uKJW9nSdzl0BwjkltqYrCiVEeXqq1IO4t3bH64YTmzWO4sXxsRWL4iGJ7j53yqxJ074n1GBFZ4rgOyOjAIhDSBZTZbcOjY2UzSauvOg7hyLUVAmYV716tZKZO0ateqIVUlDMz6k2UElmPVsgJledR+Qx4vfAFyk8dij85XIi3JJpH7S2YUqWqfNDZ5D4cLa0RSgh0NquCnymweK+zGAH8QWCxpLUtea23l1QWwM9Zz0nzsrd344b5YQWxadDO8UKBa5rTKI7sQ+cVEQYalRBz0H3yfo4Wr0s5j6M0dTvssLdkBba+lInKmSIRY4itDP+ZzN1DzTxfHqD6FkkeTSWYo3ciZmvQXh8t/iOusdGsLynWWnsA6OFMJ/U3xnqj/rhnaEr4nUrYlsO5v+wOR300XQDc1egyGl8e67QTNtNfBXRGTU2e8NQ3mmk3cHp9bR7Negat/A1d3cnbHp2zHqaJ4xD0GlGpuJuIqN0CdXFft2oCIn2aLa6B5RxieG2HXMxvJ1eIJsGqFedV8JbCYXo4RoKbGj0G1b5ugMq/NB/3UxfjBnIQxt3YLnw/MXwXTiz3iF9McI1XbRcXhxxLtvZ7b8UccKHhkPheKez1l5sBPP1cixeZZYztbqZLAG4PkEYHl6THCH+6fwthb/wrmPF+gKj6Mbu4bWACIwPIZwrCc4Iuvlbh6jQissHQ+GR1wBEKSwLISVn/tPoy7qWkCyBERajRrUCOTtHqsRX1EF3EziUrA3RS6CsgxAiv1rALHA1y1LNg9fn41h+t7RdIgvqMFcW3tSYOrOzhcWif2iWllQfku0hML7mLtDwLrplmHuolijqJ8ChXOlH3WXRWEfi/d2IqN6YnC/9+wKKmo+Mz/WSl57TAxWoF9ppv6E/hoMS+Mo0DHsvC2138p9QQeOX4KEd+IyeBN9VrCMEgkyTw2wIsB+6YqwarTWVuVARYUq5P7emGRWyyCy9pcFRXwQiWPhrAk7iyZu7XVfM2MQhX9S2Cl/bsTEQveF2R4cgRQkZEO7TD7ipW6Of8Dr3EInfTI6qzOZgNwbYcSSX8DjMRy1jKJq0eBUi2IuPICYmGI6sB2+3u1YRsYXhHXBOvIjpna5krLq0g7q1L+ILC0QzpDYbQJYXQAyTDwXZge6QRHMr5Hvgr4tHhrXyDNHJtuMaJO4groeJH8YdGpnR4+d70VcOgTJXTXxXuiSDUe1X3MBfn190okJjq/z+LL8HjFx/m9tdXZuC5X1+GQ4aZw6cPoZnj+4Y8xjv2/uHcMU2yi614vWAvjizbyWR0isHyGMCwn+GGxEucvEIEVls4nowOOQEgSWDXbiMk+K5YtjWYNa6BZw5qZ5FWUVpqcLQH3bJAoIEcC685JDicXiRveQFQtCxL3uVTTMboqupYFVQfakw1X/uSQsFHEOe4xC+I75U5IBAobfxBYPM8j7vIPdiZcKvsc1AoRB3fs63z1Nxw2iLlD1sV0Qf3IYsLQyLkjoTx9WPjf8MxbMLWxJyds5SSa0tDsyiqnojfEdEGD7Vuh/kXMrWR67CkY+og5dNzR2dc+F9ZySN4l4uTukdNLv3O4+rc4ruyTFsQ+Kv06O72Ew62joh6V+5lRvJ5/Cax7hw9CM1usyGauUAMZI+e5Bb3y1EFEzhst9LXElIN+gljR0q1JHDqxvFbXdipxhRFX6c431EpGXLXOIq7ciajzRo9wGqM8uhuRCycIJptrNUXGm/aVSCO/nw7lXjEZtqH/MJhadc4zmPxCYI3oCcWDe051NJetgoz3FmRe25CegJdv/Cn0e1xbBt+XbOezbUvvn8HIW7uEeYpwkThapi84D5K3O1PCsRov61NrsAkFy3mv8uJlSpw56/x+q1yJx0CJi1jkZMlXqcfxwZ19QpfmmlJYVaqT0yFz7x7GzLvi99qwwnUxsnB974F6OJIILJ8hDMsJVq5W4thxIrDC0vlkdMARCGkCq3h04cxoqyb1q6Fp/RooXCh/wAEnBewRkCOBdfOIAmeWBrZqWbCvE5ZwmyXetrbIojwajrY/hpmwicOVrTaRMY9bUKad9MSCu1j7g8BishokrsB1s04Q+09sT5RTF3BXjcx+DRNXINlmjn1leqO0Mp8wh3rzSqjXiOSDqXZTGN6w38TaCjTxFpS9nFXVy7Ftj30aNVb/CNV28eijsecgGNv38khnXzvfPavACZvISGUkjyYfmJHb/vHCrxySd4vrrHx3C2LcTADvq8624y/+jwPLx2Vt7BgjO87oa7M9Qnjv9GlopooJuy0xZaGfIBKPOclS/74Y6nUiuWpq+SQMA0QyzBM9M4mrXUok/QWwRO3OmlLLI7Y1ENOSiCtPsM2tL3f6EDRzRwndzFXrIWPYTLs7zJf3AAAgAElEQVRhmjkjwZ0RiYCMN6bCXLtpblN7fd0vBNb7A6C4fSObDowC1r//Jfi4CpnXduiuou/1TUK/FpoYrMwhr5K7RnW9tg4HM8RIobcK1caYIg3dHZ5jP/ZcY883a8tXmkfdod6nLVi1Romjx5zfdzVr8nimp/dz+8Vgm0lSzDrUs4lKZpcOl3kGxZXZIz8/unMAn6X+J4weU6QB3ipUx2eViMDyGcKwnOB/v3PYf0D8TqccWGG5DMjoACEQkgTW10vWYcvfB3Ds9EUBVmvOq/atG6JD60aILSVGKwQIexIr0yqEN/YpcG6VTXLxhjwq95HPC18wLJzMqmvvKwFefIl2TOR+cR2Hazv8v6HPK3z8RWB1vPobjtlET62NeRKNIku4rbazKK4rZZ+3K+POXb0EzZRXhTl5lRq6T34F1K6TRjVKXIlr5vRseuyN640KX02H8j8x90jGq+NhbuD7sRy3jQbAigPsmcCq1YlrqtYgMwpWyDmK6exKJVIOiGMq9TKjRGPfI5880Z31vbKNQ8IG/+fisiOwEq5kVqG0Nr5wNHQfLXdL1cjPxkJ5XIyEYHmTTM1dJ1R2Nikjrq7v4XDlTwWMD1wQVxoepVsDpVtYoNRI7we3wAjiTtyFk9DMHCJYYC5fHRmj5ttZpJn4IrgbYqU+3dgvwJepmGdW+4PA0kx+Bdy1y9l0NLbuAmM/MT/fgYwUdLv2u9CvXkQ0fi/d1SfbLhhT0SrpF7s59sT1QpzKPz+KpicDh+faf19W6WdGMS8jNNet57B3v/Oo3gb1eTzVVV7vM92vrcf+DJGcnFy0KV4uWD2bzybc3oNv750UPnfVz1NnE4HlKWLUnyGw5U8Of+8kAotWAyEQCARCksCyApmcchtbdxzA5r8P4MDR07BYxJfl6pXL4vFHG6F960aoEB8TCOxJpkwJLBatwaI2rC1QVcuCfYEcnqtC+jXRipqvmlGokngPnv+Fw/V/RZxZZTiGtVybvwisgde34E+duHn8usRjeDKqrNtmJ5vT0TBxpdC/hFKLQ2XEEvPWC5ox/cDdFSMGMt7+COYarvOFOG4irPP8V6YvYj8aCkXSBUGmfvRnsJSr6rbO/uroeAzPnYTsp5coceuoTe4sHzaGvtiRjRivz6NyX983krYEVurNu9AOF4+K8qxa21wxci4n/VneNJY/zdr0E7+DpVQZt0zmzci8lxO3KezylNkO5hhx1cKSGXVFxJVbsHrVSXHlPLTTXhfG8rEVoBv3pd1c2iFdoDBmCJ/pZq4Cn7+QV/LcGeQXAmv6m+Aun7ETl1kNdfIPQJRIJJ023kHbpLVCv8rqQvgr9ml31HTZx5E4aaEphZUujrl5K+jsCiVSDorPqcgiPOqPNIMTf0tze2rHjbXtwOZNLXiio7y+ZxkpxTC2NvaDDvthx7E5JtGfEd0cAwr4/j1EBJbbS4s62iDwz24OG22qI1MEFi0PQkA6BEKawLKFkSVz//Ofg9iy4wB2HzgBg8EoXGZ5slhk1uOPNka1SlmJkKlJg4AcjxCyfDksb461ubNJlgat4JJy7mclbuwXX8gdcw85RsawKLfiDeUbkeEvAouVAWflwK0tp6S1zjx+xHALT179TbhUJyIafziJMFAvmQv1TjESwdiuJ4y9xI2t49xvpmzHrw/EqFXr9XPxz6LoyN5QpIsFMXQzfgZfoLDkC5Jt8NhGz9rYJq/hezmTQCe/53DnlHg/V3vegqI1pN/A3TmtwMnvRN0ZmctIXV+bLYF1N82QrVpb+sLNuYpgkS0swsXaMomBWatzHcfyWV/fxyGRRVzdcxFxFcEjpuVD4kor3/s7V2ODpAOXkgTNBDEPqGMVUoUuHdp3bEhOVQR0n4rPibww0x8EVuTcEVCePmKnnuH5kTA1e9zusyumNDS1yefHjlazI9betgzejLoJy3GfF98ZFxRrjafyZx1Z9FfLSAUOzlCCN4n3UbmuFpRu6fmzaucuDptsClfY6vhoawvatfF8Tn/Z6Wwed48Rvp3yN9Y8EH9I+bR4K/TI53vkIBFYeend0J374CEFfv1N/E4nAit0fU2WyQ+BsCGwbKFP1+mxY89R7NjzH/49eALXrovJkI//tUh+XgphjeRIYCVu4ZBo86tKXDsL4h+X1wtfMCwJlnCbJd62tmJ1eVSxSR7rGBlTtb8Z0XXlu8H1F4E1/c5BfJp6VMDF00S0G9MT8JJNkuIO2jgsKpm9lLvyyC5EfiFWCmTRNCyqxlX78M4BLLDJL2LtdzXmmWxVDd0hRfJijZr0wN6J7IVR3OTVH8HKzrteN8e+UuLeeZvqfw6RgHmhp7M5HyQBR+arhEtRJYF67/hezt6RwNK++7Q92ThrDfh8OedYU//zB9SLPxF0M9dpjozBk11DwyKu9mcRV4a7zokrLgKIecSM2EcBVmGQmjQIcKm3oHmvryDMUjgaeptjpI5kpaVYDPRTnOe/85fG/iCwIpZ/apeHz1yhOjJG2h+NZPresWSgVsIyQfVCXAROxPf32pQ1D87j7ZQdwvgCCjX+i+/nceENdxS4vJ5D0nbxO1Ol5dHgPTNUGndGi30OHFRg7TrnoVuPt7egZQByAOZmQc/kP/Cv/rrQbWKRxnitUE27Ya/e+BPr0xOEzzyNXnalAxFYuXmHrjtD4MQpDstX0hFCWh2EQCAQCEsCiwF97cZtHDhyGkdOnMP23UeQlJx11IYILGmXoRwJrMt/cEj6S/xSYpXxWIU8ap4hcP+yAv99Lr5Ea4rxaDBSjDhxjIyp/rwZRWrId6PrLwLrm3snMPH2XgHMAQWqYEb0I26D++P90xhza7fQf2CBqpge3TzbeEVGOrTD7CsP6qYuBh9d0qksx3lZJy2nwkVlS0ROFfNpWUrGQT/pe7f19XfHY18qcc+mdHVuVQWPLlAiLUEkWWq/YUaBstKvM8M9YP80kcBSRQFNJuYBgTVuIBS3kgXYdVN/BB+d8zH5iB9nQbV7ozDG+PSrMD7eJ5vr2FHBlEMcErcokHHHBXGlBko9YkZcGyKu/L323ZlPoXsA7TtPCV35fPmhmyXmb1KePIjI+WK1SXOl2sh4VyQv3ZHhaR9/EFhMpuLBfShPH4Ti5CGYH+0KS1z26BsDb0F5m4IUbJVeKSdGpHmqe+/kDdilF++nVwpWxwdF8ybhPSPoD3yohDlDvLe8qc577ASHlauc58Dq2tmCxg3l9z7zw/1TGHtLzLNYP6IY1pXuYueuZ69vxjZdkvDZ4pLt8Zg2zlOXZutPBJbPEIblBBcvKfD9jxSBFZbOJ6MDjkDYEFgpt+5i7+FT2HPwBPYeOoXEq/bVbCIi1GhQuzK+nS1W7wm4d8JAATkSWI7Vwsp3tWQegaHmGQJmQ1bSbdtE7k2nmKB8mEf8+NdKpJ4LfGSMu1b5i8D634OLGJyyXRDrKoLKlV4f3zmI+TYRXCML18OwwvWcdo+cOxLK02K1MUPft2F6tJvTvlvSE/H8ja1214oqNTh+txw0n48XPjdXrY+MYTPchc3v/a5u53Bpvbg5K1ieR63XXR/FOzJXhQc2udjqDjUhX2m/q5XrhDwP7H7PPnqs2Ycmr3Lc2ApzjMDSTHsd3JXzQhf9mM9hia+co36aSS+Bu54ojhk+G5YqYnUvlkD/5iEOCYy4up0DcdXcjLjHiLjKdTHkZQeTEVFv2+QPUqmQ/ukfgkTVrg2I+Gm28L+pURsYXn4/LzWCvwgsd5WMu7QIthT1hbIDEanwPJmU43FEJn9H7NOooM67fGGOKQwUKh6Nxpih9iBf/PkLCvyw2Lm9vXqYUaeW9AR+br67a85AzUQxco713xfXG6VVYnXdXskbsNuGTFxVqhOaa0rlNnWu14nAyhUi6uAEgeTrwOdfij9K0RFCWiaEgHQIhCyBxXJeWQmrPYdO4mKCzQ7mIb6VyseiRaNaeKRxLTSqWxWaSNcVuqRzSXhJkiOBdX61Etf3ipu0ij3MKNlUfi98wbBSDs1WQnfDedU4Fp3ForSsLVCRMe7i6C8Ci72Asxdxa/O0SpZjDq3Z0S3Qt4BzgkK9eSXUa74WZJlrNUXGm1OdmnzKcAftrorJj1mnWFU+HLygQcQy8aiO6ZFOMAx8113Y/N5Pfxs4+LH40gjwaPKB62M2B2cqob/p/pFDvytsM+G+qSoY74sfNBxrRmQh354t2QisOe+COyMeUdUPmwlLVecEZ6Ym+nRE2SZ+5zjo5v6WVbGSB24eziKubDG0xUihAko1s6BMO56OCubl4vFgbu0bHaFgrOPDlr5gA6xMqXr9Yqh/+0G4ZmzfG8aer3kwu+ddpSawaiYsw12LmKSeFaJgZLynzfFYdcPI4vhfTGdPp/GoP6vge3C6EgabnHKsaiqrnupuS7qqwJffOCewBvS1oGoVef4g1yd5I/7Ri+/q7xdpiDcK1RbM7nz1Nxy2qeD7e+kuqBfhe0VxIrDcXVnUzxaB1FQFZs+jCCxaFYRAIBAISQKrx8vjcfq8+GuyFdjoIgXRvGFNNG9UEy0a10LxaOmTEAfCyXKWKUcC6+wyJVIOixteVimseH3fNply9kFe6nZ2uRIph2yS0naxoHSrrJfnw/NUSL8qSq87xIR8sXmpjW9z+4vAOm9MRWubkuyeJhnuf30TtutE4HI6RsFdvQTNFPH4H6+OhG72mixywqHpLCZUSlhs92kldSHs2ncb6o3LxQ1v54EwdnnONzB9HH1olhK6FHFdVepjRgkXBQD2T1XCcF/s6w/SyFv1WQ4slgvL2uq8ZUb+Mr49WxwJrMiFE6A8Kh4xzRg0CeZ6LVyqzPqyMdZmKVsF+tELcPM/BRI3K6C74fwoEgtoYcRVXFse6vy+2eAtnjTOOQKsEqVCny5c1H3yK3htViSLeuk8qHesE64Zeg2GqV2PPIVSagKryZWfkWR6INj0b1wvlFF5EMIEwMLzqJO4PDOnlrXl9GOBPwFk7x/sPURoCh7132W5/tyTcuuWAvMWOCewXnzOjPLl5Hm/Lr5/GqNtjsfXjozGhpiugtFtk37FaeNd4f8/Y7ujqrqIe6Dk0IsILJ8hDMsJDAZg6nSKwApL55PRAUcgJAmsmm2y8h2o1So0rF0lM8KKEVZVK5aBQuH8+EPAPRGmCsiRwDr1I4fbx8VNW9WBFkTXkucvlnJfNld3cLi0TsSyeAMelZ/J+iXZMTKmwQgzNDkk4w60rf4isO5ZDKiesFQwRwUFLpd73m3z2iWtxSnjHaH/5tLdUCOiqMvxmjH9wN3NyvHHWsaQ6TBXb+i0P9OL6WdtbAPx5/r/oNq/TfjM8NwImJp3dFvfvOjIqoSyozbWxu5Pdp86a3snqsByy1gbyzvF8k8ForEqhKwaobVVf8GCItV9e7Y4ElgRi2ZAtUesPGh4biRMze0rtdnaHvHrd1BttB7dUSC5/kicT+sE3XXn35WMuCrZ1IIyjLgqIM+NcCB8KyeZ2veegSL1tqCSbvpy8IWiM/+PXDAOymN7xOfBK+NgbvhonqovNYH1WNKvOGNDdGwt3R3VIjwjOtanX8arN8TnnlahwtEyzyCKU+cpVtbJD32itLsHC1fjUeNF96Kw0tOB6bNso1RFlV9/xYTSAThC7Q5o7Bhh7cTlsNgcALU9RvjIldW4bBJDWHfF9kRZdc4FKtyRSwSWOyhRH2cITJhMBBatDEIgEAiEJIE1Y8EyNG9UC43r0bHAQCwqT2TKkcA68Z0Sd203mS+ZUaQqbdQ88au1L0u2zZJuW5tt5bX9HyphSBU3ySzPR0Rh+eLsLwKLYVHx0k/QQ9yMsCpZrFqWO61GwlKk2pBMx+P7o3AOYyOWzIFq53phamO7HjD2GuxUVIektThhQ441jSyJ35dshPL8caG/ftgMWKrWd0fVPOtz76ICx74Q1xWn5tFkkhmckz3b7rEqsOTj1tZsmslpvzxT1mbicz8rcWO/f48nZyOwVnwG1V/iUVBD78EwtXUdYaN5eOQwRdUK5yOfR5rSeVn6TOKqSdZRQSKupFgt3svQjn8OipviUSzd5B/BF89K5K/5cDC4xHPC5Bkj5sJc0b7am/eSnY+UmsDqcm0dDmWIpP1vMZ3RINLN8KWHJjybvBnb9GK4pKtiGf7Gyjpf6nkFjn9lH0VVa7AJBcvlLpHl25s4xTmBNeRNM4pFy/d7dkDyJvylFyOMxxRpiLceHiNskLgC1806AYDDZZ5BcaU2d0By6UEEls8Qhu0EMz5RIS0ty3zKgRW2y4AMDwACIUlgBQBHEuklAnIksByrnNUaZEbBCvJ94fMSekmGZSZyH2/zIq3g0XSyOTOR+97JKtic8kCTCSbY5GuVRD9PhPiTwGqeuAoJ5odvPQAWFG+Np/JVcEud2EuLhH6RUOJCuYE5jlMe/geRX04S+lhKloF+0ndOx7x0Yys2povHr9toSmP1vO/tIrh0HywCXyKwZz3ZBm3fZCVM6SIZVOMlMwo7EM0sDdDuMfYbuUc+9r3yn1uOctIpYQOHK9vEyLEyHSwo096/EVgsvxHLc2Rt7LinsbOLNWKx4ME7U3FBNRD3lS4SvTPiqnFWxFWEj/m6vMWNxnmGADs2zI4PW5t+3FewxJbP/Fc7qjcU98VjWLppS8AXLeGZAA97S01g9bu+EX/rRAJvecmOaKXNuRKnrUnXzA/QKPFnOys3lO6K2hFZUWxSNceIzXyledQd6l4U1pTpKhjFYFpB5ZHDTSjge9BSnkGw8sE5DE/ZKcxfQ10Em2OzqulWT1iCexajcO102WeRnyXh87ERgeUjgGE8fP4CJW7eynoPIQIrjBcCmS45AiFPYBkMRhw6fg7nLl5B6v10RBcugGe6t5UcaBLoHAE5ElhH5yuRliRujOu8bUb+OCKwvF3DjkcFrcna/x2vgk0gEZpNMcHNICRvVfFpnD8JrBeub8Fm3RVBn4KcGttje6BELr8mJ5juo/mV1cK4eGUB7C7TM2e7DHpoh3W3S+qs+3Ap+CLZIxLev/UvFt0/JczXSVsGSydNh/VuYHeB7rMNgNLzil4+ge9k8NmVSqQcEO/TUs0tqPCUPRlkzmCVMMUNDltfbJ0Fql37hwOrcmptJZtZUPFpPxNYm3+Ges1XggxXEXd3z3BI+C0DaTdcRDAogRINLYhvT8RVoNaLt3I1H78F7tJpYbh+9KewlKsGmM3QvtVJ8vtZagLr5Rt/YkN6gmD/tyXaolNUvNtwfpJ6BLPvHBL625Iobk/ih47pycDhufaVfKv0N6NY3dzfR2bNUeKeTe4/qzrj3jMhwr1gXz9Y4PkUjkfs2Qzsu7GSuiBsf7xhnyeVy0oX4msjAstXBMN3/NffK5GYSARW+K4AsjxQCIQ0gfXzur/w6bdrcOvOPQFflgdrzbdT7PAeOv7TzKTv86cOQZUKcYHyRVjKlSOBdfgTFdKvi+6o944J7OgbNe8QOLNUiZtHRKKhQncLSj1iwa7R8omMcccyfxJYSaY0PJr0K3S8SKY8qimNpaVc5ypiOu7RX0eP5D8EdRtHlsCvMU/mqr5mzkhwZw4L/Qz9hsDUWkyOa73weep/mHbngNCvh6o0vp02U/ifL1QUuukrcpUnRYdb/3E4vVgkg9ixtsbj7KMTWMU/VvnP2lgp+sbjA0dg3TyqwJklIvlXtKYF1Z7zL4HFjouyY6PW5lg1MvUsh8ubFEhLcJHjigOKN8w6KhhZJPeNshS+JhmeIaD5ZAS4s0eEQfrhM2GpUg+Km8nQjhej8fiCRaD7eKVnk3vRW2oCa0jKDqx+cF7QdG6xluidv5JbmvM8jwZXVuKGzVG1adHN8EKBam6N93cnx2PH7J6sP9JsLSrpUtxnC1W4kWJ/maWA/SCAzz93sXnuxlZstYkEfrdwPQwtVAfxl38UpuCgQKIHuSNzkk0ElrueoX6OCPy0TImzZ4nAopVBCEiNQMgSWLO+WIHvl4sbPY5TwGLhMxO5OxJYC77/BZ//sBav9O+M4a/1ltoHYS1PjgTWgY+VyLgtbu4ajDZDU5Q2ct4u1KTtHC6vF4kGVhK8Qncz/h1nExmjAlhuIjk3fxJYzM4laWcw6uYuO5NnFWuBfvldHOUC8L/0ixh8Y7swpltUeSwskXsCZvXmlVCv+VoYZ67dDBlv2BP57GKKWYdzRpHwL5WYgJqfjBXGsSgOFs0hh8aOp+6dpARvFu9Vx0qW+tsKHPxYJIzY5q/he+4dwckLGx1zd+WP51HnTd/0ccyBpTz4NyK/Fn1rrt8SGa9NxL3zHBI2KXDvkgviijejRGwCYp+Lh4aIq7xwv2RzRi54H8pjewV5GW9Mhbl2UyjPHUPk7OHi/RxfGfoxn+e5XlITWGNu7caP98UItI+im+O5AlXdsvMvfRIGJItFENigU/EDUECi5O2OSmakAgdnKMGbxPu2fFcLYlrmTHx/s0iJBAeSWhMJjB0t7+9ZZv/qtAsYcvNvAYrK6oJYV7obql4Wj0YzfzC/+KMRgeUPFMNzjjW/KnH4KBFY4el9sjqQCIQkgbXn0Em8NPxjMNKqT9fH8GzPDogrXQL12r/slMA6euI8+r0xBXVqVMSyz8cH0h9hJ1uOBBaL2GCRG9bWeJwJfih0E3a+tRqcek6B41/bJHIvDdR61YS9H4gElkoLNJkk7xdrfxNYDJ9eyRuwW58srA1W6Wp77FOIdVHy/avU4/jgzj6h/6sFa2BS0Sa5ri2WD4flxbE2Xh0J3dy1yO1nfOWeLYhc9LEwztSgNQyvyucZ6VhwwTGnFIukZBGV1qYtkVWOPlBNd1OBQzP9S6hlI7BOHkDk/PcEE2+V74FzBd7CfRfEFXgLYkybUSHjByhGvg9LOfc2+oHCkOTmjkDk15OhPLhD6Jjx6niYG7SGav92RHw7VfjcFZGduwTPekhNYE29vR8L7x0TlBxbpCHefJgIPDfNX73xJ9bbHD/sla8i5hVvlduwPL3umDtPpeXRcGxWLklXbfEyDmfOij8csX4FC/AYMTxwzz93QUrjTXZkFRu3slQn9EneIExRnNPgcHxfd6fMsR8RWH6BMSwnWb+Bw797s+4zyoEVlkuAjA4QAiFJYLEjgVt2HMC7r/fBS33F4zU127zglMBiRwxbPz0EhQvlxz9rPwuQK8JTrBwJLJYzh+XOsbamH5ig1ISnf/xhtVmvwJ6J9jmTWBTMgeniZyw5dKOx8n6xzgsC67opHa2TfkEaLyambRhZHGtLPQkFO+/h0Cbf3ocv74kVAccXbYTXC9Zyy02aMf3skrFnDJkOc/WGOY5V/bEEEf8Tk8Yb2/WCsdcgt+RJ0Sl5N4cLv4qbtHyxPOoOEddRWqICRz8T11n+WB51bK5LoaOtDMeiBgqOR/OPfFv3jgQWy33EciDdU9bA2ciXcEflwscKoJRhEypk/IQoyxXwKjV0c3+TRX4zqf0SavIifpgJ1b+bBLMMz42EqfnjUG1ZjYjVXwifG1t3gbHf0Dw3X2oCa87dw5h1VzwyPbRwXYwqnHvl1NtmPeokLodtvPWaUk+gqSawOQRMeuDgdCVMOvE7Ie4xC+I7uY7CWv2LEkf+s/8OKV6Mx9tv+Pa8yfPF8lCAYx6zXvkrYFXaBUF8vDI/dpfp5Rd1iMDyC4xhOcm27RzYHxFYYel+MjqACIQkgfVoj6G4m5qG3es+R5Q2UoDXFYHFch7Ua/9KZr8jW78NoDvCT7QcCaxd79knTW3+kQkK+x8yw89RPlrMyKqMO+LLdNUBZpy2yQWkiebRYJS8X6zzgsBisP7y4ALeShGPS7DPPohuglcK1MiG+hs3tmNt+kXhc0+qF7K8SCw/krUZ2/eEsefrOXrWcYyhz5swPfaUj6vBf8MN94D90+xzqTV634SIglkyHEvRs2qirKpoIJtj8QIWecgiEL1tjgRW+pEbSPjxCm6rXETmKYBidS0oV3oPCi+3OR5auTb073zirRo0TkYIqJfNg/rvdYJG1px36lVfQr11lfh5txdgesI/x7ByMl9qAuub+ycw8ZZ4hPLVAjUwKTr3SNXPU49h2p39gikVVQXxd1wPWXj26k4Ol34TX0QUKh6NxpjB8vo5a7//wWHPPvsXl7jSPF57JbDPP3fB/PXBBbxp870YpVAh3SZnZBV1IWyLfdrd6XLsRwSWX2AMy0l27+Hwx0YisMLS+WR0QBEISQKrbruXUaRwAfy1eq4duK4ILNaJjVGplDiwUazeFFDPhIlwuRFYvBnYPVbcECuUQPMP5X20LRiWyqmfONw+Jr5MsyTuybvE/6NK8agn86MNeUVgMf+9eH0rNukSBVeqwWFLbHdUUheyc2/P5D/wr16sMLCqVCc015RyawkoD/+DyC8nCX0tpeKhn5gzYR/52Vgoj4tHFjNe/wDmuo+4JU+qTkfmq/AgSZRW4WkLSjXLiky4c0qBk9+LEViFq/Ko8VJgN3COVTnZkUZ2tNHbZiWwks+bcfwXE+6ccsG2M+KqNo8yj/PQFrcg4ueFUP25RhBr7NgXxqde9lYNGicjBByJKmOP12Ds0Dvz+CA7RmhthudGwNS8Y55rLjWBteT+aYy6tVuwq1+BypgV3SJXO5sk/owk8wOhnycRrrlO7mMHixmZx49tfwhi+SQr9XL+PNu6jcP2HfbPggrlebwwMLDPP3dh0FlMqJawBCa7eDhxdN2IaKwvnb0Qibvz2/YjAssb1GgMQ4Dlv2J5sFijI4S0JggB6RAISQKrRfe3kJFhwN71X2bmwbI2VwTWpcRkdB74HuJiimPjMrHilnRuCF9JciOwzHpgz0SRwFJGAk0nE4Hl6wpN2qbE5Q3ivZivNI8HV8X//ZHM2lcdcxuflwTWXXMGHklajVSLQVCjuroINpXuBs7mKGGLpNW4ZJOgbUdsD1RQPww3ys0Agx7aYd2h4MVjJ7oPl4IvUtzlSM0HL4NLFsvR68cuhKWMe+1adsAAACAASURBVNW8clPHX9cTN3NI3CJu1IpU5VH9IUnlWKkwupYFVQf6VvXPV72PfaEES+YufC8NMqNQBe8JLMstJRI2cbh62MUcPI/oOjzKdOARVVLsw44ZsuOG1pYxeDLMdZr7ah6NlwEC6t9+gHq9mPDa2OV5GDs/m5nAnSVyF3zuxjFif5gjNYH1a9oFvGmTBLxbvvJYWDznYhe79MnobZNjSQUFDpV5BkVllD+AVfNlVX2FpsjK6ad18gj/ZxeHjTbPRTamejUL+vUJ7PPPk/X02o1t+D39stMh7FgnO97pj0YElj9QDM85Tp9RYMlyIrDC0/tkdSARCEkC65URM7F7/3F8OeNdtGxSW9wouMiBNfPz5Vi0cgO6Pv4Ipo99LZD+CDvZciOwjGkK7JsiviCqC/BoPC44frGU8+K5e4bDiW9dn8MsWMGCWoPk/WKdlwQW893G9AS8dONPOzeOKFwPwwvXEz6Lv/QDzDa/SF8u+xxUHpxv1cwZCe6MmBvG0G8oTK27uFw62iGdoTCKpFr6rNVAPjcJM4kWJCNCj8yzz7HWbIoJXASQcpDD2RXiuivWwIIqzwR2nZ1erMQtm9w0VfqbUayu5wRW+nVFZlVB28hGR8iLG7ejkmERFJ98BkSIx+lhNEA7rCsUFhGL9Jmrgfzy8q1ESyjkxKg2LkPEr98Jdlmj67TjB0JxUywaoZ/wNSwx5fLcfqkJrM26RLxwfatgV7uoOPxYon2Odr6d8jfWPBBzLHXJVw5fFm+T59h4KuDofCXSkkQCvEh1C6q/kP2ZduCgAmvX2T8X69bh0fOp4Hmf+e3BRbyeIkYM2mLVRhuLJSU7eAqf0/5EYPkFxrCcJCFRgW8eRnlTBFZYLgEyOkAIhCSBtW7zboye9iVKlyqGL6YPR8VysZnwOovAWrdlN96b9hVYHqzv57yHJvWrBcgV4SlWbgSW/pYis2S1tWmK8mgwOnhe+OS6ikw6YO8k+1xFtroWqcaj+ovyxjmvCSyGx9CUHVj14LwAjRIKbCjdFTUiiuKuJQM1E5YJ1wpyETgZ398jl6s3r4R6zdfCGBZxwyJvnDVFWiq0I8Ukubw6Arr5v3skT6rO+6YqYbxvk2NtoAUs2ip5D4cLa0QCq2QTCyr2DCyBdXEth2s2x2fLdbGgdCv3ddKlcJnE1a2HpbudYVwMe1Ap7Svkt2RtyHXTl4MvFC105c4dg2b2cOF/S4k46D/4Xip3kZw8RkD15y+I+PlzQQrLW8fy12nf7GhHWuo++RW8Nl8eawNITWA5RlM105TE6hyide5ZDKibsBwGiPfh0pId8Kg2691RTu3eJeDYQvvv0lqDTSjowEMeP8lhxc/2Pxo1aWxBlyfcf9YE2m52jLBW4jLoWW4Hh9YpKh7flmjrFxWJwPILjGE5ScpNBT79nCKwwtL5ZHRAEQhJAouRUSwK698DJ6BWKdG9U0s0qV8do6Z8gXJlSmHKqJdx7lISNv61N7MPa0+2a4qZ4wcH1BnhKFxuBFb6deDwJ+LLYVRJoN47dITQH2tz/4dKGFKzV9Zjc0fXtqDqs/J+sZaCwLpvMWRWJbxh1gmQV1QXwpbS3XDRdA9tk9YKn1dRF8a2WM8SqnNJF6GZKkaZ8upI6OauBTj7X+qZEC7hLDQfvSGSHDFloZ/wjT+Wgt/nOL+Gw/U94mateEMelfuYcXUHh0vrxM9Lt7SgXNfArrMr2zgkbBB1in3UgrJP5q4TI9cZcXXzCAcXaWHAojHKduJRdOEL4G5cEXBmuc5YzjNrU29aAfUvoi9ZhTpWqY5aaCDAijWwAgzWZmrxBIzdX4J2VG/hs8x7f76Y6D0vLZeawDpiuIUnr/4mmFQ7MhobYlznS/r23klMuL1H6B+rzIc9cb2cVoLNS5zcnfvk95xdrjt2JL/uUHuS58JFBRb9ZP9cb9XCgg7tcn/WuKuHFP0Gp2zH/x6IhUusMp/OVwGfFW/tFxWIwPILjGE5SVoaMOPhnoEisMJyCZDRAUIgJAkshmW6To9RU77Etl2HcoW2fauG+HjcIGgiI3LtSx38i4DcCKy0RAWOfia+9OWP41HnbXlHBvnXI3k328lFHO6cdH6MsHgDHpWfkTfOUhBYDP3d+uvolfyHnSMGF6yJVtrS6H99s/B5K01pLC/1uMcO04zpB+7uTWFcxtCPYa7WINs8jknfzTUbI+OtDz2WJ8UAx2TtqigejSeYceVPDombxDWXW+l5KXS9sU+Bc6vEZ0xua19/R4HETQqkHHJNXMXUUaBiZwUshbOOezrmt9KPmg9L+eqCeZELJ0B5VExybeg/DKZWnaUwn2RIgIBy31ZEfjddkGRq3BamDr2h+VD8kc5Ssgz0k8RjhnmpltQE1nljauYPAdZWXl0QO2NdVxNseWVN5g8E1jaycD0Mszm6nZfYeDO3LgU4NNu+WnLV/mZE2xxFvnpNgS++tiewOrTl0aqlvL9nHfFYn34Zr97Ylg0mdxPzu4MvEVjuoER9XCGwdAWHwoWAVwbYHNMnuAgBQiBPEQhZAsuKGiOwVqzdhgNHz2SSWtYWEaFGg1qV0e/pdmAEFrXAICA3Aiv1vALHvxJf+gpW4FFrUHC98AXGk7lLdUy2bTtCDke7crNAKgKL6THm1m78eF9MsM0+G5C/CpaknRHU7JO/IuYUa5Wb2tmus8gMFqFhbcZ2vWDsNShbv2zHkFp2hmHAMI/lSTHAYmJHVJWwGMUIv9qDzZlVCFnEk7WVedyCMgGOQLhzWoGT34nPmEKVedR0UtqeVRtL3KLIzONlk3ffDs7CVSyo0lWB+OoRSM8w425aFoEVOf89KE8eEPoy4pERkNamHdEDigf3hf/147+GpXTe50KSYi2QDGSSk4yktDZTvRYwPdIJms/HC5+Zq9ZDxjBpitZITWBdM6ejUeJKwdaSSi0OlnnG6dI4mJGCrtfEo9HsCXIgrg9KqqJkvZTOr1bi+l7xeRdZhEeDUWZYUyLevqPA3E/tCazOnSxo2iS4IrCMvAU1E5biAW8fCf9SweqYUrSpX3xEBJZfYAz7SazPubAHggAgBCRAIOQJLCuGFguPW3dSkfZAB602EtFFCmUeL6QWWATkRmA5bi4LV+VR42FFs8AiFfzSWfQVi8Jy1uRwtCs3hKUksHS8CY8l/YpEU5pLtd4uWBvvFfWcfHeMrLK4OBqoXvUl1FtXCfIN3V6E6QnPcm7lhqk/r5/6ibNLaF66jRkwKXB1p7jmPM035U/9rHM9SAKOzHd9TJkds03YosCNAxzggjsvXNmC+E48WIRoVKQShfPbE1gRX0+B6uDfou9eHgdTo6wqbIobSdBOfEG4xkdqoZv7v7wwleYMEALKkwcROX+0IN1cvQHM9VshYuk84TNT0w4wvDBKEg2lJrDuW4yolrBEsK2AQoVTZZ91auvIm/9gadpZ4Vp7bRx+KJlzwndJQMtFiDEN2P+RErxJJLHKd7MgpkUWQZWuA6bPtM+V1aO7GfW8KBgRaHsdE+wzfd4oVAvvF2nkF9WIwPILjGE/CRFYYb8ECAAJEQgbAktCTEmUBwjIjcC6dYzD6Z/EDS9LBF11YHD9YukB/JJ2zUhV4MCHzkljORztyg0MKQkspst+/Q10TxYjpRz1mxbdDC8U8KLohEEP7bDuUNiE9eg+XAq+iH0t9sivJ0N5cIcgNuOF0TA3le/GLuUAh7MrxXtXW8KSmdj4+l7xswo9LCjVNLD3s+EesH+auLFU5QOaTDBlJqFnxNX1fa6Jq0KVLCjbkUf+eLFqoVMCa/EnUP0jHkO1PSKo/HcTIn8QI2/kfDQ0t3uSrjtHQHnhOCJnitGS5oq1YKlWD+rfF4sEVsd+MDz1kiQQSk1gWXgeZS7/YGdbUjmRtLVeSLcYUSdxBdgPBtb2XYm26Bgl5ouTBCAvhSRs4nBlq/h8U2l5NBxrhjIC4Hlg4hR7AqtvbwtqVA/s888bUx2rSrI53i1cD+/46ZgnEVjeeIXGOCJABBatCUJAOgSIwJIOa5LkBAG5EVgphzmcXSa+EBZrYEGVZ4LvhU+ui23fFCWMadkTucd35BHXVt5HNaUmsJgPp97eh4X3jjt1py8bLc2ckeDOHBbmNfQfClOrLnZysuVReucTWCrXluvSgumBAnsn2xOkBcryuH9ZXG/sXmb3dKDbrtH2G8tSzS1I3u08OpHpyoirMh14FCwnEldWG5wRWOrVX0G95WfBTGOPV2Hs0Cfz/4glc6HaKR6ZMnZ5DsbOAwMNCcn3IwLclfPQTHtdmNFSphLYn2rXBvGef+YtmNp096NU11NJTWAxTSpdXmxHTJ0r+yy0Cvv7blnaWYy4+Y+geHFOg8PxfSXBxB9CzBkKHPyYg/GB+Ixj36Ps+zTz+2O6CoasU8WZ7flnzahYIfszxB+65PUcLKKORdZZ2/iijfF6wZp+EUsEll9gDPtJiMAK+yVAAEiIABFYEoJNorIjIDcC68ZeDudWixvJkk0tqNgj8BveUFk7J77lcPdM9o26HI525YZxIAisDJjxeNJanDOKCYateq4v3QV1I4rlprbT6+rNK6Fe87VwzVynOTIGT7brqx3dB4p7d4TPdFMXg48u6ZU8qQb997nSjrBylFttoAVFawX+ft43VZkZcZVbK1CeR9mOFhQs73rT6ZTAWr8Y6t/ECBTjE/1h7PZipjhWhZJVo7S2jCHTYa7u+VHU3HSn64FDgLueCM0kMbrKUjIOfHQpKE/sF/0+aBLM9VpIomQgCKx6CcuRYhHznh6J74tinMbO3i7X1uFQhljQYkjB2hjtxbFsSUB0ISR5F4cLa8XvVMbRNXrPDHUBHrPmKnHvnvicefVlM8rEBieBNeLmThzNuIUakUXBqkp21MYjTpXfL9ATgeUXGMN+EiKwwn4JEAASIhD0BNb4Gf6tojNllDQh9RL6WNai5EZgsXw5l34TXwZjWlpQvmvgN7yydqIHyl3eyCHpz+wEVoWnLGBRKHJugSCwGB5HDbfwhE1JeCtGB8r0QSmld4mGGYHBiAxr49WR0M1dC3API5jMZmjf6gTr1odteXSfbQCU8s4bmPQXh8t/uI5kqv6iGUWqBX4Dd3ieCulXXa92FmkV/ziPghVzvyecEViqbb8iYuUCQYDp0W4w9H0b0KdD+85TULDzRQB4hQK6eesANVXglfOzx1PduDsp0IwV89VZipYANFHgrl4SptKP/gyWclU9ndqr/oEgsJonrkaCWSxUsCuuJ8qqCgj6nzGm4jGbSoXswu64noi36eOVsRIPYifBD85QghV9sLaSTXhU7GnGnn0cHjwQn3dNGgP58wX++ScxRLmKIwIrV4iogxsIEIHlBkjUhRDwEwJBT2DVbJM9r4Ev2Bz/a5Evw2mshwjIjcBK2qbE5Q3ii2BsGzPKPkEvfB661WX328c5nPoxO8FQuY8FxRvmvln3lx7ezBMoAovpOuvOIcxJPSKoXVqZD/vK9PbGDGGMZkw/cHfF6AP9sBmwVK2fed0x0belSHHoP1zqkzwpButucDg02zWBVet1c47RTFLoyGSc+I7D3dPZ9WS5reI78GDVBd1tzggs5Z7NiFw0Q5jC3KQdMl7MqkzIKhRamyWuIvTvf+GuKOoXJAiwCpOs0qS18fkKZpGW6SKho/toGfjC3kVwegpDIAisDklrccIoRpBuju2OGuoigurjb+3Bd/dPCv+30sRgeamOnpomi/63j3FgRSxsW/0RFmiLu/8ckYUhAVKCCKwAAR9iYonACjGHkjmyRiDoCayPPhUrzbiDtEKhgCYyAlHaSHAch59WbcLN26nCUCKw3EHRf33kRmA5JkWN72BBXHt6CfSXx9mvxAemZ4/iqdrfjGiZV0cKJIHF8H83ZSdqaIqilaY0qqgL++wS9ZK5UNvmQmrfC8aegzLnVZ4+gsi5I0Sio2It6EfM8VmmFBOw9WUbjWArs85bZuQvE3hC+tzPStzYLxLl3hBXVrucElhHdyNy4QTBdHPtZsh4YwrUv/8E9bofhc+FyCwpHEMyJENAYTRAO6RzjvLSF26WTJ9AEFhPX1uPvRk3BBt/jXkSjSNLZP7PjmbXT1iBVIuYIOqLEo+ia1R5yTDxt6Aj85R4cFV8phSpbkH1F+jdxR2cicByByXqkxsCRGDlhhBdJwT8h0DQE1jeQrHv8Cmw44eJV7NecArmj8KoN/vh6SdaeTsljfMCAbkRWJfWcbi6Q/wls9yTFpR+lF4CvXCtyyF7Jiph1tvn/2Ev2uyFW84t0ASWv7FRHv4HkV9OEqa1xJSDfkJWXiyW7Dnip9nCNVPjtjC8NMbfKuTJfBfXcbhmcw/bCqn3jglRMkjjlbCBw5VtHPKV4VH2cc8irhxBc0ZgcWeOQjPnXdG3lWpB/+6czOgrFoVlbXKvLJknCyRMJo0a3MGlpZbCxaD/aJlkSASCwBpwfTP+0iUJNv5Uoj3aRsVl/r/6wXkMSRErrBZQqPFffD+oFa6jNyUDy0tB9y4BxxbaJ6mvNdiUWYmVWs4IEIFFK8QfCBCB5Q8UaQ5CwD0Ewo7AStdlYM5XK7H0l60CQu1bNcT44c+hWNFC7qFGvfyGgNwILL8ZRhO5ROD4NxxSz9pvFGq+asmstCbnFmoEFgx6aId1h4IlUXnYdB8uBV+keGaUDovWsTZjx74wPvWynN0j6Hb/ogL/feE8V1fD98yILBL4CKw7p7LWf5Fqvq95ZwSWIvE8tB+KVej42ArQjV2Ylf8qQyf6e/KP4IvHBIVfSUnPENAO6wpFhpjE3Ha0pVw16Ed/6tmEPvQOBIH12o1t+D39sqD1F8XboGu+LDanV/IG7NYnC9deLVgDk4o28cFCeQxlx/PZMX1rYwR53bfkXd1XDsgRgSUHLwS/DkRgBb8PyYLgQSCsCKw9h05i/MffIik5K+9LdJGCGDfsOTz+aKPg8ViIaUoEVog51A1zLq/nkLTdnsCqPdiMAuUCTyzkpH7IEVisIt2ckeDOHBbMNvQfClOrLoj4cRZUuzeKn/cbClPrLm54N/BdGB+3d5ISrMS8Y2s8zgS1mMc58Mr6QQOnBNbtG9C+P0CYnS9aAvo3pkA7NeuIKGt8vgLQzVrjBw1oCjkioB3VG4r7d52qZq7fEhmvTZRM7UAQWMNv7sTKtHOCjbOjW6Bvgcq4YkpD0yur7GzfEfs0KqiD/wdMXQpwaLaSVWcQ7KsywIJidXwnyiVbLAEQRARWAEAPQZFEYIWgU8kk2SIQFgRWuk6PWV+sxIq1fwqO6PZ4C7z3dn8UKpBPts4JB8WIwAoHL9vbePOIAmeW2kfI1B1iQr5YeWMRigSWevNKqNdkHRtkzVz3EWS8/gEi546C8vQh4fOMN6bCXLupvB1ko93ZZUqkHM5OYDWdbIIyMmjMcEtRpwSW7kFmtJW18dp8MD79CiKWzhN9Xa8FMgaJR0jdEkadggYBRmAqbos5oGwVNz32FAx93pTMlkAQWONu/Yvv758SbJxctCleLlgdU2/vx8J7x4TPG0WWwNqYJyXDIq8FXVjDIXmP+AMRizhtMMqMID4dmdeQgQisPIc4LAQQgRUWbiYjZYJAyBNY/x44gXEzvsW167cyIY8pURSTRryIlk1qy8QF4a0GEVjh53/dTQUOzbQnsOqPMENbnCKwpF4NyquXETnlFZHoUEdCN38dtBOfh+LGVeFz/bivYIkNngTHt44ocNqBJGXGNP/IFHIbOWcEFrPVMQeSqXkHqHaLibuNPV+Dsb1vlSylXq8kz30ENB+8DC45wekARmYaH3/G/cl87BkIAuujOwfwWep/guajizTA4IK1UD9xBe5YMoTPPynWAs/kr+yjhfIZbkxDZqEUi1Ek8Mt3tyDmEYrCcuUlIrDks36DWRMisILZe6R7sCEQsgTWg3Q9Zn6+HD+v+0vwSb+n2uGdQb0RpdUEm59CVl8isELWtTkatveDLAJLqQVUWqDGixao8xOBFYjVoBnbH9ydFEF0xrBZdhUI2QXd3LXgI6MCoZ5XMtnxwT0TsufBeuRjk1fzyXmQKwJL++7TUKSnCapbChYBd++O6OeR82CuUEPOppFuPiCg+ehNcAlnnM7ACjKwwgxStUAQWIy8YiSWtb1VqDbqRBTDaynbhM+0ChWOx/dDpMJ5zjyp8PG3nMQtSiRuFgksdT4eDd4zQxnhb0mhMR8RWKHhx0BbQQRWoD1A8sMJgZAksP7ZdwwTZ36HazduZ/qybFxJTB39MhrUrhJOvg0KW4nACgo3kZIserOoFgoFcO22Dry8uTaP/KVeMgfqneuFMaZmHaD6V4zU4aPyQzf7F4/mlEPn418rkXpO3MSpNECTD8KHwHIkJm19wnMcdPPXA8rQ2rjLYd3JRQfN7OHgzolH5Wz10g+fCUuVepKpGggC67v7JzH+1h7BxpcKVMcF0z27yoQDC1TF9OjmkuEglSCzISsKy/RAfP7FtbMg/nGKwnLmAyKwpFqZoS2HCKzQ9i9ZJy8EQorASnugw4zPl2H1739noqxUcnihTye8+eLTiIxQywt50iYTASKwaCEECwKhSmApD/+DyC/FXEi8OgIKo0FwiyW2AvTjvgwWNwl6Ju/icGGtmAsmohCPRmNDryKXqwisyCmvQnn1klO/mStUR8bI+UHnU1LYfQQiPh0L1Yl9TgfoJy+Cpbh0SQcDQWCteHAO76TsFOxvoymNv/TisWh2YUPprqgdEe0+qEHU8/oeDufXZD3/VFE84h/nUao5EVhEYAXRIg4yVYnACjKHkbpBjUDIEFg79vyHibO+w/WUrCMSVSuWyYy6qlElq2wyNXkiQASWPP1CWmVHIFQJLBj00A7rDgUr3+ekmWs3Q8YbU4JuSWTcUeDibwpEFgE00UBUCaBQpdDbwLkksGYPh9JFBI6xXS8Ye4kVCYPOuaRwrghEfvkBlIdFAsd2QPpnGySNvgsEgfV7+iW8dkNMIeEIWC11UWyM7ZYrjsHc4b/PlYiuBZRqbgZHv+G6dCVFYAXzKpeP7kRgyccXpEnoIxD0BNb9tHR8vGAZfvljR6a31GoVXh/YDa8M6AwVHY+Q/QomAkv2LiIFHyIQsgQWAM2ckeDOHHbqa1Ob7jA88xatA5ki4JLAWjAOymPiESpb9TNemwhz/ZYytYjU8gcCkd9Ph3Lv1uxTRRVA+uw1/hDh9hyBILD+TL+CgTe2uNTxw+hmeL5ANbdtoI6hiwARWKHrWyktIwJLSrRJVrgjEPQEVpuew5By626mH+vWqIjJI19CTMlo6PQZMJrMMJlM4D1IWBMfWzLc14Sk9hOBJSncJMwHBEKZwFJvXgn1mq+domPs8SqMHfr4gBwNzUsEXBJY302Hcp8TAgNA+szVQP6CeakWzR1gBCKWzIHKJredVR1L6XLQj3d+r+eVyoEgsPbqr+Pp5D+cmhQBLjN5exSFJeWVy4NqXiKwgspdslWWCCzZuoYUC0EEgp7AqtnmBcEtWk0E9BlGjwgrR58e/2tRCLpZviYRgSVf35Bm9giEMoHFJV2EZuprTl1uePl9mBq1oeUgUwRcEVgRy+ZD9fdv2bTmo0tCN3WxTK0htfyFQMTPC6H6M3uklblmY2S89aG/xLg1TyAIrOOGW3j8avb1zxTunb8S5hajCES3nBcGnYjACgMnS2AiEVgSgEwiCIGHCIQUgeUPrxKB5Q8U3Z+DCCz3saKegUUglAkshqxmTD9wd29mA1k/cj4sFaoHFnyS7hIBlwTW2u+g2rAs2zhT47YwvDSGEA1xBCJc+b/FEzA8+46k1geCwLpovIeWSc6PSv5S6gk00VC0vaSLQMbCiMCSsXOCSDUisILIWaRq0CMQ9ARW0HsgzA0gAivMF0AQmR/qBJarI0e6j5aDLxyalbqCaPl5TGCpN62A+pdvso1j+cxYXjNqoY2A6o8liPhf9ohyY+dnYezyvKTGB4LASjHrUC9xRTY7y6sKYmdcD0ntJ2HyRoAILHn7J1i0IwIrWDxFeoYCAkRghYIXg9gGIrCC2HlhpnqoE1isYhmrXGbbeI6DjlUsUyjCzNvBY66rCCzVjnWIWDovmyH6MZ/DEl85eAwkTb1CQLVlNSJWf5GdwOw/FKZWXbya09tBgSCw0i0mVE7IflR2YpHGeK1QTW9NoXEhiAARWCHo1ACYRARWAEAnkWGLABFYYet6eRhOBJY8/EBa5I5AqBNYMOihHdYdCt4igMEXi4Fuyo+5g0M9AoaASwJr/1+I+HaaPSGpUkM3bx3AcQHTlwRLg4BLAvONKbDUbiaNEg+lBILAYqJjL9lHoKmgwKEyz6CoUiOp/SRM3ggQgSVv/wSLdkRgBYunSM9QQIAIrFDwYhDbQARWEDsvzFQPeQKL5cH6ZAS4s0cEz1oq14X+nVlh5ungMtcVgaU8vg+Rn421M8ZctR4yhs0MLgNJW68QUO7ZgshFH2cbqxv7BfgyFb2a09tBgSKwql1ejPu8SVC7W1R5LCzxqLdm0LgQRYAIrBB1rMRmEYElMeAkLqwRIAIrrN0feOOJwAq8D0gD9xAIBwJLvflnqH7/Cbw2H/iofLA0fAzGJwe4BxD1CggCLgmsS6cQ+fHbdjoZnxgAYzexcm9AFCahkiCgOrwTEQ5Hgplg3czV4PMXlEQHq5BAEVgDkjfhkOEmUi2GTFVWlOqIlpoYSW0nYfJHgAgs+fsoGDQkAisYvEQ6hgoCRGCFiieD1A4isILUcWGodjgQWGHo1qA32RWBxV27DM3kV+zsy3hzGsy1mgS9zWRA7ggoj+9F5Gfv23XMzGm3YGPug/3cI1AEltWM+xYjLpvuo1ZEUT9bRtOFAgJEYIWCFwNvAxFYgfcBaRA+CBCBFT6+lqWlRGDJ0i2klBMEiMCiZSFHBFwRWIr7d6Ed1dtOZd3sX8BH5ZejGaSTnxHgzh+DZtZwu1kt0THQT5U+fbxW/wAAIABJREFUp12gCSw/Q0vThRgCRGCFmEMDZA4RWAECnsSGJQJEYIWl2+VjNBFY8vEFaZIzAkRg0QqRIwKuCCymq8KghyL9AaBLgyJDD3O5qnI0gXTKAwS4hDPQfPSmPYFVsRb0I+bkgbScpyQCS3LISaAHCBCB5QFY1NUlAkRg0eIgBKRDgAgs6bAmSU4QIAKLlkWwIEAEVrB4Krz0zInACi8kyFpbBLhrl6CZ/KodKKZGbWB42f5YoRSoEYElBcokw1sEiMDyFjkaZ4sAEVi0HggB6RAgAks6rEkSEVi0BoIYASKwgth5Iaw6EVgh7FwfTFPcTIZ2/EC7GYztesHYa5APs3o3lAgs73CjUdIgQASWNDiHuhQisELdw2SfnBAgAktO3ghDXSgCKwydHqQmE4EVpI4LcbWJwApxB3tpnuLeHWhH97Ebbej5Okzte3o5o/fDiMDyHjsamfcIEIGV9xiHgwQisMLBy2SjXBAgAksunghTPYjAClPHB6HZRGAFodPCQGUisMLAyV6YqNDroB3ezZ7AenkcTI0e9WI234YQgeUbfjQ6bxEgAitv8Q2X2YnAChdPk51yQIAILDl4IYx1IAIrjJ0fZKYTgRVkDgsTdYnAChNHe2Fm1OAOdqMyRsyFuWJNL2bybQgRWL7hR6PzFgEisPIW33CZnQiscPE02SkHBIjAkoMXwlgHIrDC2PlBZjoRWEHmsDBRlwisMHG0F2Zqh3SBwpghjNRNWwK+aAkvZvJtCBFYvuFHo/MWASKw8hbfcJmdCKxw8TTZKQcEiMCSgxfCWAcisMLY+UFmOhFYQeawMFGXCKwwcbSXZnL3bgPpD6BIT4O5QnUvZ/FtGBFYvuFHo/MWASKw8hbfcJmdCKxw8TTZKQcEiMCSgxfCWAcisMLY+UFmOhFYQeawMFGXCKwwcXQQm0kEVhA7LwxUJwIrDJwsgYlEYEkAMokgBB4iQAQWLYWAIkAEVkDhJ+EeIEAElgdgUVfJECACSzKoSZCXCBCB5SVwNEwSBIjAkgTmkBdCBFbIu5gMlBECRGDJyBnhqAoRWOHo9eC0mQis4PRbqGtNBFaoezj47SMCK/h9GMoWEIEVyt6VzjYisKTDmiQRAkRg0RoIKAJEYAUUfhLuAQJEYHkAFnWVDAEisCSDmgR5iQARWF4CR8MkQYAILElgDnkhRGCFvIvJQBkhQASWjJwRjqoQgRWOXg9Om4nACk6/hbrWRGCFuoeD3z4isILfh6FsARFYoexd6WwjAks6rEkSIUAEFq2BgCJABFZA4SfhHiBABJYHYFFXyRAgAksyqEmQlwgQgeUlcDRMEgSIwJIE5pAXQgRWyLuYDJQRAkRgycgZ4agKEVjh6PXgtJkIrOD0W6hrTQRWqHs4+O0jAiv4fRjKFhCBFcrelc42IrCkw5okEQJEYNEa8CsCv/yxA6vWbce5S0kwm80oG1cKT3Vqif5Pt4dSyWWTRQSWX+GnyfIQASKw8hBcmtprBIjA8ho6GigRAkRgSQQ0ifEKASKwvIKNBjkgQAQWLQlCQDoEiMCSDuuQlzTmw6/xv03/QK1Son7tylCrVDhy4jzSHujQskltLPhoGFRKpR0ORGCF/LIIGQOJwAoZV4aUIURghZQ7Q9IYIrBC0q0hYxQRWCHjyoAaQgRWQOEn4WGGABFYYebwvDKXEVeMwKoQH4OvZo1ETImimaLSdXoMm/AZ/tl3DG+/1AOvP9eNCKy8cgLNm6cIEIGVp/DS5F4iQASWl8DRMMkQIAJLMqhJkBcIEIHlBWg0JBsCRGDRoiAEpEOACCzpsA5pSU+9OA5nL17BkgXjUK9mJTtb76TeR7ve70CtVmH7mnnQREYI1ykCK6SXRUgZRwRWSLkzZIwhAitkXBmyhhCBFbKuDQnDiMAKCTcG3AgisALuAlIgjBAgAiuMnJ1Xpl5NvokOfUcgPrYE/lgyw6mYdyYtwMa/9uHTaUPRtkV9IrDyyhk0b54hQARWnkFLE/uAABFYPoBHQyVBgAgsSWAmIV4iQASWl8DRMDsEiMCiBUEISIcAEVjSYR2ykrbuOIgh4+ejS4fm+Pj9QU7t/OHnjZixYBleHdAFw17tRQRWyK6G0DWMCKzQ9W0wW0YEVjB7Lzx0JwIrPPwcrFYSgRWsnpOX3kRgycsfpE1oI0AEVmj7VxLrFq3YgJkLl2PQwK4Y8nJPpzK37DiAoeM/Rcc2jfHJpDeFPvfTjU77ayOVUCk56DLMMJktkthBQgiBnBDIr1VDoQDu64wAT1gRAvJAQK3ioIlQwmiyQG8wy0Mp0oIQsEGgQJQ68z9X3/cEFiEQSATY85M9R9nzkz1HqREC3iBgfc55M5bGEAKEgGcIEIHlGV7U2wkCn333Cxb+uBYjXn8GL/Z9wilGew6dxEvDP0azhjXw7exRhCMhQAgQAoQAIUAIEAKEACFACBAChAAhQAgQAm4jQASW21BRR1cIzP5iJb5bvh5j3h6AZ3t2cNrt0LGzePataahfqzIWf/Y+gUkIEAKEACFACBAChAAhQAgQAoQAIUAIEAKEgNsIEIHlNlTU0RUCHkVgNaiBbz+hCCxaTYQAIUAIEAKEACFACBAChAAhQAgQAoQAIeA+AkRguY8V9XSBwI8/b8THC5a5lQOrfauGmDflbWEmyoFFyypYEKAcWMHiqfDSk3JghZe/g9FayoEVjF4LH50pB1b4+DovLaUcWHmJLs1NCNgjQAQWrQifEdi++wjeGDPHrSqEL/V9Eu++3keQefWWzqn8ogUiMhMT375voMTEPnuIJvAHAlSF0B8o0hz+RoCqEPobUZrP3whQFUJ/I0rz+RMBqkLoTzTDdy6qQhi+vifLpUeACCzpMQ85iTdvp+LRHkMRH1sCfyyZ4dS+dyYtwMa/9mHWhMF4om1TIrBCbhWEvkFEYIW+j4PRQiKwgtFr4aUzEVjh5e9gs5YIrGDzmDz1JQJLnn4hrUITASKwQtOvklvFErSzRO1LFoxDvZqV7OTfSb2Pdr3fgYXn8fcv81Ewf5Tk+pFAQoAQIAQIAUKAECAECAFCgBAgBAgBQoAQCF4EiMAKXt/JSvMde47i9dGfoEJ8DL6aNRIxJYpm6peu02P4xAXYufc/DOjRHmOHPCsrvUkZQoAQIAQIAUKAECAECAFCgBAgBAgBQoAQkD8CRGDJ30dBo+GsL1bg++V/QK1WoX6tSohQq3HkxHncT0tHjSrl8MO8MYjSRgaNPaQoIUAIEAKEACFACBAChAAhQAgQAoQAIUAIyAMBIrDk4YeQ0YLluVq8ejNOn0+A2WxBbExxPNm2KV7s+wQiI9QhYycZQggQAoQAIUAIEAKEACFACBAChAAhQAgQAtIhQASWdFiTJEKAECAECAFCgBAgBAgBQoAQIAQIAUKAECAECAEvECACywvQaAghQAgQAoQAIUAIEAKEACFACBAChAAhQAgQAoSAdAgQgSUd1iSJECAECAFCgBAgBAgBQoAQIAQIAUKAECAECAFCwAsEiMDyAjQaQggQAoQAIUAIEAKEACFACBAChAAhQAgQAoQAISAdAkRgSYc1SSIECAFCgBAIcwR+/HkjPl6wDK892xVDX+kZ5miQ+YQAIUAIEAKEACFACBAChID7CBCB5T5WQdtz9/7jeGXETLRoXAtfzRwhWzv+O3kBK/63DfsOn8L1m3egVilRPj4GT7ZthgE92kOtVjnVXac34Nulv2PT9n24ci0ls9phjSrlMLDX42jzSL1c7d1z6CRGTl6IW3fuYdPyWYgtVSzHMfuPnMaiFRtw+Pg5pKXrULJYEbRr2QCDnuuGQgXy5SqPOogIDJvwGTb/vR8T330Bfbq2kS00127cxrJftmDn3v+QeDUFJrMZMSWKonWzunilf2cUK1rIpe6//LEDq9Ztx7lLSTCbzSgbVwpPdWqJ/k+3h1LJ5Wjz1eSbGDbxMxw/fQlTR7+Mp59olWv/L376H3btO4abt1NRqGB+NKlfDYOe7YZK5WNli69cFcuLZ6c3BJbFwmfeJ+u27MbRE+dxNzUN+aI0qF6lLPp2b4sOrRu5hNCX55U+w4DJn/yAtRv/QfeOLfDhmFdzdJWvz2K5rgO56cW+q9h35e79x3ApMRn37qdnroeYktFo1qAG+nR7DGXjSgZcbV/WLXv2+fIs+2nVJsxauALFixXGlhWzc8XCl+d0rpOHUYe8eGbmBXzB8r5ptd3T9ZwXmNGchAAhQAjIBQEisOTiiTzUQ+4vFPfT0jFlzo/4feu/mShULh+HMqWL4+69Bzhx5hLYJqpujYr4ZvYoRGkj7ZBiY599exrOXUxCoYL5UKd6BTxIz8CRE+dgNlvw9ks98Ppz3Zyiy/M8vln6O+Z/uxrsRZu1/7d3F2BSVX0cx/+kdIcYgAiohAqCioIoICWglIIr3d0gS4d0SYeA0iEiiNKhhBKKqK+tqIiAIN35Pv+Dd92YOLszMLM73/M87/PKzpkbn3v27J3fnHOutwBLg4h+o2abugUfyC2ZM6aXn349IBpwaKCxYHJfyZYlwy28mgln0xqwlK3d2YRBarlkWv+gOzltFzMXfiiTZi+XK1dvhlb58txrgqjvfvpdjp88I5kypJV3xodLnpw5Yhx/zyEzZOW67SaMLVI4nyRLmlT2ffuLnD13QUo+XlgmDe0oSZMkcXneW3d+JT0GT5NTZ86Z170FWHo8DToMlXPnL8q9d2WTPLlyyOG/j8sPvxyQ5MmTyeQhHaVEsYJBZxzMB3Qr+s7YBli//nHItAPtC7UdFXzgPsmUMZ25tvozLWE1npfw9mExKH3pr37/84h07DtBfvz1T7NdbwGWL31xMLeBYDs2vaZDJ8w3fxe16Bcu2gfp7/2Bv/42/ZQG483DqkqbRi9JokSJfD6F8nW6SpO6leWVF8tYb8uXdutLX6YOfUbMlLVbdptj1VDPW4DlSz9tDRIiFW9Fn+lPuvh0v6nnHZf27E8vtoUAAggEowABVjBeFT8fU7DfUJw+e15ebt5f8uW5Rzo3r21GXTnl8NHj0qrHGPMhqkW9qtK+SdQpN72HzxT95rR86WIyNLy5pLgjuXnrHwePSOPOI+TQkX9kzvhweezh/FFUNRToOWS6fPzpPvON9fUb12XX3u89Blj64aBKvZ6SNGkSmTq8sxR/9EGzTQ3CJs5eLlPnrDTbmjmmu5+vYMLc3Iz5q2TcjHfloXy5TBj07owB5r+Dregosf0HDknPtmHy5GMFIg5PR5v0Hz1bVq3/VIoWzidzJ/SKcugaXOkHIw22po/qZsIvLecvXBTd5vbd37gMWDU0m/T2zfakH75KFi8sS1dt8RhgaVhbtUFP0dChW6s60vCVihHH8sln+6Rdr/GSOnUKWbtgpKRNkyrYiIP2eG5F3xnbAOvr7/dLo45DzYi9JnVfMEG9U/Z+85M07zZKzl+4JDNHd4/SPn3pr3S0V69hb8nVq9dMW5o29wOvAVZc++KgvfhBeGAL398og8fNNaGUXpcGtStI1sz/fWGifYv2R2OnLxX9u/pazeelZ7uYwWZsTu2n/X/KS416S99O9WMVYMW13frSl+kXWR36TjCj0hrXqSyLV26SdGlTewyw4tpPx8YwlOreij7Tn37x5X5Tzzku7dmfVmwLAQQQCFYBAqxgvTJ+PK5gv6HQUz11+lyUD2aRT1+DpUadhpkg4IM5QyNe0mkUz9XqKGlSpZQNS0ZLqpQpoqjpB/dWr4+Vp4oVkhmjok6drNNygOgNtk5N7N6mrrTqMVZ27PnGY4A1ZPw8mf/eBunYrJY0C6sSZV8aYtVtNdBsc/6k3vJowbx+vIIJb1PqVSmsh5w+c06G924hLXuMMR+O9ENSsBUNqpIkTmRGMUUv+lrJF9ua0RAfv/dmlKmE+qFPP/y5ag8nTp0xo890Wqy+zwledfujpi6W2YtWm9B13MB2suzDj03Q52kElgYOGorpCKu3RnWLcZzONl213WDzDqbjuRV9Z2wDLG/9o44OnPzOihi/P3Htr5x+M3vWjDJhcAe5cvWqhLUZ7DHA8qUvDqbrHczHouH0i416yZUrV02fWaVcCbeHqx9867YeZMLyaSO6mNGecS0ahulI5dgGWHFtt3Hty3REb6Ww7mYE2oCujUx7fbRcE8mS2fMUwrj203H1TOjvuxV9pr/N4sP9Zlzbs7+t2B4CCCAQjAIEWMF4Vfx8TJ5uKDRI2PnFd7J8zVbZ+/VP8vexE5I4cWLJeXd2qVz2CWn0SqUYa0+16/WmbNv9jexZPU127f1O5i5bd3Na1NkLkiF9GvPBWxcofjBvTr+ciY6WeqpqGxNw7Vg5KWKb76/ZZkYJ1HzhGRnYrXGMfem5la7RQU6ePitbl0+IEpB99vm3cujvfyLWFNKpV7pWjKcphM/X6Sq6LsempWNFP9xFL8634/VrV5Aeber65dwT6kacNqkfwt7o2dRcJ/1g9vF74yVlipuj6CKX73/+Q2o27WvCw5erPiczFqySjVu/MNdQw58C+XKZ0QZlShaN8V4nMFg0pa+ZfjXn3bWyZOVm+evIP5I3991m5JcvpXrj3maE4PuzB5vpr1q0nWh7yXl3Nlk9f4TLzXfuP8lMc5nwRgcp83SRiDpH/zlpgtI2jaqbKWNOQOEpwNLfA/19GN6rhVR5PuYH219+OyjVGvYyv5PL3hroy+mG1Hvd9Z163fT6afvVMMFVGTNticxc+JGEt3/NBOVOiUuA5Ql9w9bPpUOfCWYdrHED20ZUjWt/pSNgxs5YKg1frmgCWecLBE9TCH3pi0OqQflwsgPGvGP6rQrPFpcx/dt43dLbS9bIyMmLpGjh/DJ3QniM+hqiv7NkrWzZ8aUcPHzUvJ49ayYpmD+3tGtSw/zd1H5FwzBXxdt0e28H6K7d+tKX6TpB+uVR4YfymJHRhZ5r5HEKoS/9tLfzC9XXud/0z/2mtp/YtudQbXOcNwIIhJ4AAVYIXHNPNxQa5DTpMiJi4fMc2TPJ2XMXZc++7820FJ2aN3bAfx+KlEsDrE3b95rg6L2PtspzTxeRIoXyyo0bYhYY1htTHa2iN82FHrjPZ2GdDqijdXR6WeSwQdcBmbdsvQmv9Fhclbbhb8rmHXvNCCwdieWuvNb2DdHpOO5uynXYeYkqrU1wpQGWq6LT4Go162duoHXUDcW9gBPeTB3eRUo9UVic0SLuQhonwNIpmgcPHzPTOPUDe5ZM6cyi6voBWte2aFX/RWnbuHqUHTuBwaQhHc16VBo+6HS+DOnTyl13Zpbxg9r7dKnK1O4kR46ekF0fTTULKWvRcK19n/EmTNJQyVV5Z+laGTFpoRnNp8Gcu/LmW8tk+rwPPI7AqtGkj1nrSsMyDc1clSdeaGXW0/hi7XSXo8l8Qkigb44PAZazzpVOJ9PRpFr82V85Bp4CLH/2xQm0Kfl8Whry66iM2WNfNw9m8Fa0DZR6sZ1ZYzD66FDtT1t0H222pyOXH8yr6/pdl98PHjH96OZ3x8mRo8dl8/a9ZqqzfkGlD6wo9EDuiN3Wq11B0vkwHdlVu9WN+6sv0/N+pGwTjwGWP/tpb9cjVF7nftP3+01XbcWmPYdKG+M8EUAAAQKsEGgD3r4R05vUJx8rGGWBdF2UvGaTPmYB6VVzhkZZl8oJsHQdjinDOpsAInLR6QY67UBveKcM6+SzsD7xb+SURTE+6LfuOdasYRV97ZfIOxwyfr7Mf2+99O5YT+q+VNbtsXgLsPQpcC+36O9yrSNno85IsYzp08q2FRN8Pu+EugFd+LxMrY6SMUNa2bB4jFlwWBejrt28v1msf8HkPjFO3Qmw9AV9suSbg9pFWfxcnz75autB5kmSGpzqqAOnOAGWLhSv03A0ULJ5OqWNv9Muoh+302ZdrdvmbNcZgeBtRIVNgFW8UgsTOH+5YaYZteWqOCPFVr79htyfmycS2lzf+BBgOf2gPmFWnzSrxZ/9lU2A5c++2Oa6hFodZ6SQPvBh1+qp5gsnm6KjVrXvnDC4fcToVJ3u/GLDXuaJvfqkXg3PnSnMOmpp/4HDUR5IoaO4dDRXXKYQejpGV+1W6/urL7P5wO/PftrmeoRCHe43fb/fdNVObNpzKLQvzhEBBBBQAQKsEGgHcV2TQJ+2p9+SjujTUl4o+2SElBNgRZ+y4lTQdYGKVWxuvtndvXqqT8I6zaFq/XCzloeOLok8da9++yHy+Vc/yuJp/dyO9Jo4a7lMmbPCLP6uYYK74i3A2rn3O2ncabjHUM6ZsqCBzFcbZ/l03gn5zTqtSqdXRR955GoqnuMQOcBaPX+4meIavSxesUkGjp0TY9SgE2BpfWfElz989Xo36TxCtG1ooFau1GMRm3XaXdeWr0ijOpVc7s5pU7owvIaw7oq3AEsXfS9cppGZerlnzXS323F+X3SxeV10nuJdINgDLGd6X/4898jyWYMjTsif/ZVNgOXPvtj7VQm9GjqyWde0ujNrJtm4dIw1gPO3uk+n+lLn3ycIOiOfdBSXjubyVm5FgOWu3fqzL7P5wO/PftqbY6i8zv2m7/ebrtqKTXsOlTbGeSKAAAIEWCHQBmJzQ6HrEOk3tDdEZMa8VTJr0UfSr3MDebnacxFSzk2xp29kS73UTnSkzd51M+I8XUkXY23ZY7ToNEd9kpKucRS5OAuxvzdzkDxw/70ur6ROvdIAQNfk6tA06hMMI7/BW4C1dedXZqHxsqWKepxyplMW9EZj38aZUUYIhUAzszpFDX0qv/a6eUrkh3OHSe5774x4nzOlLqzG8xLePuqTs5wAy9MUTh199Uz19jHWSnMCLJ3OqmGnv4rz4UeDKw2wIpfRU5eY3x1X7dapp1NWtd0VKZRP5k2M+gTDyNvyFmDp7+tjFZqb6Tyfrprs9vSadh0p2hfoIu+62DvFu0AwB1j6hFZ9cMSJk2dk3qTeUUJ8f/ZXNgGWP/ti71cl9Go410Cf0Ksjom1Lj8HTZNWGT6VT89rS9NUXzNt0arNOnXO3Xl70bfs7wPLUbv3Zl9l84PdnP217TRJ6Pe43fb/fdNVGbNpzQm9bnB8CCCDgCBBghUBb8HRDodOOlq7aIhs++Vx+/PWAnD13IYZI9KDKCbAmD+0kpUs84lJQnw7497GTZgRW9KcD2pDrN7HdBk2RNZt3mYXWdW2k6CU23/q3a1xDWtav5nbX3gIsf45osDn/hFrHWXPNVWijgedzNTuaqaxb3nszyjQZJ8Aq/OB9smiq+xBK13nSNqxBjrM+ixNguQrG4uq8YPlGeePNuaIjX+ZN7B2x9pWzvVh9s1+0gMwcE/cRWM7IP/sRWFGnWMbVIBTeF6wBlo5MbdB+qPzy+18u10bzZ39lE2D5sy8OhXYV23OM8wis3uNl07YvJPIIrKr1e8qvfxyK8tAJT8fjzwDLW7v1Z19m84Hfn/10bK9pQq3P/eYK8fV+kwArof52cF4IIOAvAQIsf0kG8Xbc3VBoYKAfPPb/ccgsPF7+2eJmAWgNnBJJIlm0YpOs3bIrxtoXToDlaSSHLwGWhlfhw2bIB+t2mHU7xg5o43I0k3McNmtg6YgeDTDcFW8BlhOg6NQrnYLlqkQ8LTFtatnxwX9PSwzipnHbD61z/8mmTXkrw8KbS9XyT0VUc/y9LZCvI7B0JJZOs9HpNlr8/dQ3DXz7j3rbTGOcM76nZM2cIcbpOPu0WQPL1QiuyBv0NgJL6zrBnc0aWDrVTIM3ineBYAywTp46K406DTNPvnQ3RdWf/ZVNgOXPvtj7VQm9GoeO/CPlXuli/g7ql0L6kBSbog8V0YeLRF4Dy3noxPpFo+SuO7N43Yy/AiybduvPvswmwPJnP+0VMkQqcL+53owg9+V+01VTsWnPIdLEOE0EEECANbBCoQ24u6HQ9YJ03aBq5Z+WoeHNYlAMn7TQfPh3NwLrVgRY+iSk8KEzzLQH/WA/ql9rt4tS68LuugirzVMIpw7XxeYfdnu5vQVYugZX8UotrZ5C6G2UUCi0OVfn6CzenjhxYsnvZsrnhYuXzGPbH3s4v8wZ/9+j350P5Pnuu8eMHHBV9Nv7ohWay+XLV1yOwPI2jdTmumioO2jsHDP1UdePyZYlZnil29GHC+gixTZPIWxcp7J0afmy293bBFj6gAFduNvbUwh1dNru1dOiPLDB5rxDtY4vAZbzZL7w9q9JWI1yEYS+BKr6O9Sk83ATXnVrVUcavlLR5aXxZ39lE2D5sy8O1bbm7bydpxC+82ZPKfbIA96qm5GoJV9sKzoV/5Pl4yVzxnTmPZVf62EeZrFi9huS9z7vD3PwR4Bl2271+PzVl9l84PdnP+31goRIBe4394qv95sEWCHyy8JpIoBAnAUYgRVnuvjzRnc3FFXq9zSjrxZN6SuFH8oT44Sc0TK3K8DSG87ug6aZETpVypWQN3o29biOlNbTY6z5wjMmxIpeNNDQm34dkbNl2TiXI2Wc93gLsLRetQbhZsrOpqVjoywm72xj4fsbZfC4uWa9MF03jBJVQNeE0jVHdDFhndLiqly6fMVMI9TRbB/MGRrxNCwnwNJpcjs/nGqeXBi9/PLbQanWsJdkSJ9Gtq+Y6JfAIPI+5r67ToZNXGBGL701unvEB0JX56GPp9e2pyMaNVRyVTr3nyRrt+yWUX1bSaUyT7htLjYBloZqGq65W9fGsYntGjqh3obd9Z26hpCuJVTxucdldL/WLpk69p0o6z/ZI/4KsLRN6YMktA+KPCXM3TXyV39lE2D5sy8O9Tbn7vyd33F9oIo+WMVb0afv6lN4NezS0MsprV4fK598tk9G9mkllcu673ec+r4GWLFtt/7qy2wCLH/2096uR6i8zv2mf+43o7cXm/YcKm2M80QAAQQIsEKgDbi7oagU1sMspq1rCumoochFv73VKQtnzp6/LSOw9FviLgMmmcVla1UpLf06N5TEiRN5vDp6jDqHhApUAAAgAElEQVRlTB8BvmHJ6BhrbelNut6s24yIsgmwnCBBHzuuT9CLXpyFjL19+xYCTc7lKTrf/HtadF/fOGLSQtEF3Ru+XFG6ta5jthX5KYTTR3aVp4sXirEP54NW9FDBlxEvzk5mL1oto6YuNgtl6/7Tp0vt9TI6bWr+pN5mim7komvBlK3dWa7fuGFGRzjrdbnaqE2A5fyOP1WskMwY1TXGZvTY9Ry8jfbyelIhVsFd3/nF1z9KvXZD5OEC98vCyX1iqGh/pkGsXmd/BFhHjp4w0wYP/PW3DOreRF6qWNLrlfBXf2UTYPmzL/Z6YiFaQUdNvdiol+iDVsYOaGuetuqu6N/1l1sMMH+/o4+UdoIt7UO1L/NW9Cm+ulaUu797nt4fl3brr77M9gO/v/ppb46h8jr3m57X6dR2YHO/Gb292LbnUGlnnCcCCIS2AAFWCFx/dzcUzgiQ6COGTp89L90GTpHtu78RHcV0q0dg6ZSvjv0mmmlX9WqVl9fbvmp9VZynCOnN/LBeLSIW/tYb+CZdRspfh4/JuIFt5fln3N/s295Q6Eiuiq92l+vXr5sh4sUffdAcpxpNnL1cps5ZaUbnaECTKJHn8M36BBNIRWdR6UcK3C8LXHzgj3ya+kFNwy4dSbXl3XGSLFnSKAGWrj2lIc09ObJGvG3T9r3Sqe9E8wRI3b7uxym+BljOkyyLFs5vrnvqVCmsrorzJLg8OXPI9FHdJEe2m2ty6fSuTv0mybZdX5upZRpweCo2AZa+v06rgfL1d7/GmFqmQW773uMlUeLEsmb+CJejB61OKAQrues7L1y8LKVeaisXL12RxVP7ScEHckfRGTfjXZkxf5X5ma8Blq5/1KjTcNH/H9GnhVR49nGrK+Gv/somwNID8ldfbHVyIVrJeXiEjkBtHlbV/L2MHKbr39I1W3aJhvk6bS/ylwAOmYaNOvr66D8npVX9F6Vlg2pRRjr/duCwGV2aNk0q85YPN34m3QdNNeG9Pu0yWdIkVvpxbbf+6stsP/D7q5+2QgmBStxv+ud+M3pTsW3PIdDEOEUEEECANbBCoQ24u6HQNXPC2gwya2Q8mDen+d/pM+dEwwZdmLpB7QoyYMw7tzzAivxhT9cW8lRKPFZQenesF1FFb9g1qNIREXoj//BDeUQ/XH75zc8mzHi56rPSr0tDr5fZ9hsxHSGmwZ9uWz+0ZsmU3qxHozfr6dOmlrkTwuX+3N7XFfF6QAmsQteBU2T1pp0ypGczebHC017PTqdKaTt0ptc5I7B0hNE/J07Jr7//JUUK55OsmTLIn4eOyr5vfzHb7NC0puhaV5GLLwHWjj3fSLOuo8zmcmTPHOXJiNFPIk2qlLJ4WtQnJDojnzSEK1IoryRPlswcq46MKJA/t5nao09d9FRsAywdnRPWZrCZMnvvXdkkT64coiMg1E4DVV0YX9fkotgLeHqilgZU2nfptNYalZ+R3PfmkHPnL5gg/tsffzNPaF33se9TCPWafvm/n81+sv/7YAJ3Z6BtP/Lvlz/6K9sAy199sf3VCc2aSz7YIsMnLpCLly6bUcr35bxLMqRLLfpEYV0SQH+uAVfLetWkdcOXXCJpe2rVY4zol1UaVunf/stXrsrBw8fMlz7L3hpofqZFt1el3uty6O/jZkq3jjo8dfqctG9a0+PDIHxpt/7oy2Lzgd8f/XRotsaYZ839pv/uNyPrxqY90xYRQACBhC7ACKyEfoVFxNOHMP0wrdMD9Ib2ytWr5sltZUsWlVYNXjTrEJWv0/WWB1i6bpSuH2VTyjxdRCa80SFKVQ3g3lmyRj5Yv0MOHPzbjNjRkVCvVCtj/YHdNsDSHeuH02lzP5DPv/pRzp47L1kyZzALxOsHhuxZM9qcRkjV0WlUz9XqJCnvSC6bl40zUz69FV0bSoPCJ4o8JLPG9ogYgaXOY/q3kZkLPzTrR2l4dUfyZGZ0QP3aFUxoEL34EmA5x+HtePX1NKlTys4Pp8SoqtuYt2y9/PDLH6IPKbg7R1apXOYJaVSnksdAzNmQbYCl9TW8mvLOCtny6Zdy7J+TkiZ1KhP0NX31hSij0mzOhzqe+0710dEpi97fZK7tpUtXJHOmdPJEkQLSNOwFOXL0uAk/fR2Bpeu66RpmNqVHm7rm9yBy8bW/sg2wdJ/+6IttzjPU6+jaTfoAFh0l/fvBIyYQT50yhXmq4JOPFTB/+3T9PU9Fw21dl1BHIGk4lTRJYvPFlX5J0K5xjSgjuzRQGjVlsblP0PuCHNkyy5RhnczDLNwVX9utr31ZbD/w+9pPh3qbdM6f+03vLSE295vO1mLbnr0fBTUQQACB+CtAgBV/r531kW/esVfahr8prsIf641QEYEACjgjsHQan45yoyBwOwToO2+HMvtAAIGEIkCfmVCuJOeBAAIIBK8AAVbwXhu/Hdnkd1bIpNnLY72+lN8OgA0h4KOAE2AVKZRP5k3s5ePWeDsCdgL0nXZO1EIAAQRUgD6TdoAAAgggcKsFCLButXAAtq9TtnRxYV2Tadfe7+T1IdPNFAMduaIjWCgIxDcBAqz4dsXi5/HSd8bP68ZRI4BAYAToMwPjzl4RQACBUBYgwEqAV3/56q3Se/jMKGcWVuN5CW8flgDPllMKBQECrFC4yoE/R/rOwF8DjgABBOKPAH1m/LlWHCkCCCCQUAQIsBLKlYx0Ht/99LtMmbPCjLrKliWjVChdXMqULJoAz5RTChUBAqxQudKBPU/6zsD6s3cEEIhfAvSZ8et6cbQIIIBAQhAgwEoIV5FzQCCBCxBgJfALzOkhgAACCCCAAAIIIIAAAl4ECLBoIggggAACCCCAAAIIIIAAAggggAACQS1AgBXUl4eDQwABBBBAAAEEEEAAAQQQQAABBBAgwKINIIAAAggggAACCCCAAAIIIIAAAggEtQABVlBfHg4OAQQQQAABBBBAAAEEEEAAAQQQQIAAizaAAAIIIIAAAggggAACCCCAAAIIIBDUAgRYQX15ODgEEEAAAQQQQAABBBBAAAEEEEAAAQIs2gACCCCAAAIIIIAAAggggAACCCCAQFALEGAF9eXh4BBAAAEEEEAAAQQQQAABBBBAAAEECLBoAwgggAACCCCAAAIIIIAAAggggAACQS1AgBXUl4eDQwABBBBAAAEEEEAAAQQQQAABBBAgwKINIIAAAggggAACCCCAAAIIIIAAAggEtQABVlBfHg4OAQQQQAABBBBAAAEEEEAAAQQQQIAAizaAAAIIIIAAAggggAACCCCAAAIIIBDUAgRYQX15ODgEEEAAAQQQQAABBBBAAAEEEEAAAQIs2gACCCCAAAIIIIAAAggggAACCCCAQFALEGAF9eXh4BBAAAEEEEAAAQQQQAABBBBAAAEECLBoAwgggAACCCCAAAIIIIAAAggggAACQS1AgBXUl4eDQwABBBBAAAEEEEAAAQQQQAABBBAgwKINIIAAAggggAACCCCAAAIIIIAAAggEtQABVlBfHg4OAQQQQAABBBBAAAEEEEAAAQQQQIAAizaAAAIIIIAAAggggAACCCCAAAIIIBDUAgRYQX15ODgEEEAAAQQQQAABBBBAAAEEEEAAAQIs2gACCCCAAAIIIIAAAggggAACCCCAQFALEGAF9eXh4BBAAAEEEEAAAQQQQAABBBBAAAEECLBoAwgggAACCCCAAAIIIIAAAggggAACQS1AgBXUl4eDQwABBBBAAAEEEEAAAQQQQAABBBAgwKINIIAAAggggAACCCCAAAIIIIAAAggEtQABVlBfHg4OAQQQQAABBBBAAAEEEEAAAQQQQIAAizaAAAIIIIAAAggggAACCCCAAAIIIBDUAgRYQX15ODgEEEAAAQQQQAABBBBAAAEEEEAAAQIs2gACCCCAAAIIIIAAAggggAACCCCAQFALEGAF9eXh4BBAAAEEEPC/wOmz5yWs9SC5cPGSzBkfLnfdmcX/O2GLCCCAAAIIIIAAAgj4UYAAy4+YbAoBBBBAAIFgEFi6aotkzZRBnn3qUZeHs2ffD9Kgw1Dz2vDeLaRKuRLBcNi37Ri8+dy2A2FHCCCAAAIIIIAAAtYCBFjWVFREAAEEEEAg+AXOX7gkT1VrI9UrlpR+XRq6POBz5y9Kw47D5PyFizJrTA/JnjVj8J+Yn47QxsdPu2IzCCCAAAIIIIAAAn4UIMDyIyabQgABBBBAINACG7Z+Lh36TJCXqz7rNsAK9DEGcv/4BFKffSOAAAIIIIAAAnEXIMCKux3vRAABBBBAIKgErly5Kt0GTZX1n+whwHJxZfAJqubKwSCAAAIIIIAAArESIMCKFReVEUAAAQQQCE6Bue+uk7cWfCjHjp9yeYBpUqeUnR9OMa9pndI1Opj/fn/2YMl33z0R73Feuz/33bLy7TdM3ZkLP5LN2/fK4aPHJU2qlJIvz91Sq8qz8kLZJ837bty4ISvWbpf312yTn/b/KefOXZAsmTPIk0ULSLOwKpLrnuwe0Q4d+UdmL14j23Z9JYf/Pi5JkiSRnHdnk7KlHpN6NZ+XtGlSuXz/r38ckvnL1svuL7+Xg4ePybXr1yVLpvSSI1sms299/4N5c5r3xsbH2dl3P/0uqzftFF0z7LcDh+Xs+QuSMsUdkifXXVLpucelbvVykixpkhjH9tHGndJt0BSp+1JZ6d2xnnz7428ye/Fq2f3lD3Ly9FnJlCGtPFownzR4uYI8UuB+8/6z5y7I/Pc2yNotu+TAX0fl2rVrcs9d2aTM00WkSd3KLg2c/YTVeF7C24fJD78ckLcXr5Fde7+Tf06cktSpU5rzr16xlLxQ7klJlChRcDZejgoBBBBAAAEEELAQIMCyQKIKAggggAACwS7Qd+QsOXjomPz46wE5fvKMZMuSQfLkvCvisFOlvEMmvHEztLIJsDSYWTS1nzTtMlJOnDojyZIllWRJk5p1s5zSoHYF6dCslrTuOVY++/xb82MNyvTphteuXTf/TpUyhcwZ31MeypfLJaFO6es+aKpcunzFvJ45YzrRkVL6pEQtObJnlukju0qenDmivF/Dm55DpsvVa9fMz9OlSSWJEieSU6fPRdTTcGjB5D7m37Hx0fprNu+SLgMmR2wrQ/o0Jrz6+9iJiHN7vMiDMmNUN0maJGqI5QRL+nrNyqWl17C3zHHqNbh67bpc/vdc9X2j+rWS/HnulWZdR5oQTkMmNTzz7/nrAei5L5zS1/w8cnH288yTj0ilMo9Ln+GzzH6SJ08mdyRPFmUbGoSN6d/GXEcKAggggAACCCAQHwUIsOLjVeOYEUAAAQQQcCPQse9Er1MIbQIs3Xz6dKnl3hzZ5PV2r8ojBfJK4sSJ5NDfx2XohHmycesX5giKFs4ve7/5SVrWqyZ1q5e9GUBdvSZbd34lfUbMlJOnzkqRQvlk3sReMY746+9+lbC2g00g9Gr1stKiXjUzgkqLjn7qO3K2Gb2U8+7s8t7MQZIyRXLzmoY7z9XqKBcuXpawGuXM+3S/Wi5eumzeo8dXolhBKfl44Sj7tfHRN+iIKF1LrFKZJ6R0iUcka+YMZjt6bm8vXi3jZrxr/j00vJlUK/90lH04wZIe77XrN6T8M8WkTaPqZlTZ9es35H8//mZCrV9+OygZ06eVjOnTyD8nTkvPdmFS7pli5jw1KFy8YrOMnrbEjHBr/lpV6dC0psv9pE6Vwpy3PnWybaMakj/PzRF1ep115JeOytJSv3YF6dGmLr87CCCAAAIIIIBAvBQgwIqXl42DRgABBBBAwLWATUBjG2BpmPTh3GExRv5oWFKhbreI6YrtGteQlvWrxTigd1d9LP1GzTY/375iougopsilVrN+Jqiq8nwJGd6rRYz3a1hW+bUeZsTS621flXq1yps6n33xrTTpPELSp00t21dOjNXUOBsfm7bVvNso2b77GxNwjerbymWwpD/U0VFThnWKsUk9bz1/p8wZHy6PPZw/Rr0eg6fJqg2fSt777pYVs99wux8N62aM7OrSYvTUJTJr0UcmgFy/eLTcmTWTzSlSBwEEEEAAAQQQCCoBAqyguhwcDAIIIIAAAr4J2AQ0tgGWrl/VsVktlwfUuf8kWbtlt1kDatuKiTFCLn2Trm1V7pUu5v3zJ/WWRwvmjdjW19/vlzotB5h/b353nJny6Kp0HTjFrEOl4Y6GPFqc9+q+Vy8Yada8si02PjbbmjJnhUyctdzl6DJnBJZuZ8aorvJUsUIuN1nyxXZmembhh/LIoil9XdbRtcXCh84wzl9umBmlTuT9TBvRJcZoM6fy+QuXpHSN9qL/37XlK9KoTiWbU6QOAggggAACCCAQVAIEWEF1OTgYBBBAAAEEfBOwCWhsA6yJQzrIc08VcXlAwyctlDlL18oD999rpve5KjpdrnCZRuYlXcfq6eL/BTk6IkhHBun0wNXzh7s9aQ2JNCzS0VY7Pphk6ul2qzfpLT/vPyjZs2aUzs1flgrPFrda38nGx+YKLF6xSQaOnSMF8ueWpdP7uw2WdOH86GtXOZVrNu0r3//8h7xW83kzfdBVcUab6Wtfrn8ryjlGDrB2fTRVdCqhu6LrlH386T4pX7qYjB3Q1uYUqYMAAggggAACCASVAAFWUF0ODgYBBBBAAAHfBGwCGtsAa/G0flLogftcHtDIyYvk7SVr5MnHCsjM0d3dHnTBZxua16YO7yKlnvhvPar+o96Wpau2xOpk/7fl7Yj6Or2wU98JZjSWFl1LqnLZJ6VG5VIRTx50tXEbH+d9W3d+Les/2S3f/vi7/HX4mFmXStfAilw8BVi6ltWeNdPdnmPt5v3Nel3tm9SUFvWquqy3a+/30qjTMPPaF+tmmMXZneIEWLo4/O7V0zxaOoGjp9FesboYVEYAAQQQQAABBG6zAAHWbQZndwgggAACCNxKAZuAxjbAen/2YMl3380FwaMXJ8DSUVU6uspdcRdgOVMDdXTS3XdmsSKJPtJLR2LpUwwXLN8gu7/8PmIbumh8p+a1Xa4pZeOjC8936DtB9uz7wWzz/lx3mVAsU8Z0kvzfp/jt+/YX87qnAEsXwd+x8uaoMVfFCbB0mqZO13RVbAKsyKPT3O1r/MxlMm3uBy7X0rLCpxICCCCAAAIIIBBgAQKsAF8Ado8AAggggIA/BWwCmmAIsPqMmCXvffSJ1xFctjZ/Hjoqumj8kpWb5dSZc+Zt/bs2lNpVno2yCRufdr3Hy6ZtX0imDGll3MB2LoOwGfNXmScRBkOAlTx5Mtm7boZHqqET5su8Zevl4QL3y8LJfWxZqYcAAggggAACCASNAAFW0FwKDgQBBBBAAAHfBWwCmmAIsJxF0LNmziBblo3z/cT/3cKZs+el78hZsu7jPZLijuSyccmYKE8/9Oaji6qXeqm93LhxQwZ2ayw1X3jG5bFpeKUhVjAEWHqA21ZMMNMo3ZUW3UfLtl1fswaW31oaG0IAAQQQQACB2y1AgHW7xdkfAggggAACt1DAeTpg9UqlZHCPJi73FAwB1hdf/yj12g0xxzdvYi/zND9/lStXrkqJqq3lwsXL8taoblKiWMGITXvz0TWpdGqfliXT+kvBB3K7PCxdl0qn9wVLgDV+UHspW6qoy2M9e+6CPFO9vVy6fEW6taojDV+p6C9qtoMAAggggAACCNw2AQKs20bNjhBAAAEEELj1AgPGvGOm0XmaKhYMAZZKVG/cW3789U8TAs0ZHy666Lk/igY1T1ZpLZcvX5G3x70uxR99MGKz3nx0KmKFut1M/dH9WkvF5x6PcUif7vmfNO060vw8WAKsooXzyztv9pTEiRPFOF5nvTJ9bcPiMebJjRQEEEAAAQQQQCC+CRBgxbcrxvEigAACCCDgQWDluu3Sc8jN9ZAGdG0ktaqUNv+tT89LmiSxJEqUSIIlwPr6u1+lXvshoiOm8ue5R9o1qSklHitogiwNof4+dkK+/m6/bNr+hVQu84SUKXlzhJEunv724jVS5fkS8lTxQpIuTaoIkf1/HJLRU5fI5h17JXPGdLJh8WjRNaKcYuNTKayH/HHwiOS8O5u8Oai9OTYt+hTC5au3ydjpSyRD+rRy6Mg/QRFgJUuW1Biqjy5enydnDnO8Op1y5sKPzFRHLQ1qV5Dubery+4MAAggggAACCMRLAQKseHnZOGgEEEAAAQRcC+ioo9ot+svP+w+aCvqEulSpUpjQasfKiZIq5c3/Ll2jg3k9+pMGPb0WeY++PoXQ2ZaOZuoycLKcOn1z4XUtunbVxUuXo5zgsPDmUrX8U+ZnkUdA6b81qNLzOnn6rAlttOi/Jw7pIE8UeSjKdmx8tu/+Rlq/PlauXrtm3qvb16cPHjl2QvTJh2WeLiJtG9eQGk36BEWA9VC+XCbMGzVlsVm7S695yhR3mOvsnINOLxzdt7Vo2EVBAAEEEEAAAQTiowABVny8ahwzAggggAACHgROnjorE2a9J1t2fClHj5+UNKlSSp5cd8msMd3NaKRgCrD0NE6fPS+LV2wyx6sjqM6cOy/JkyWTLJnSS4H8ueTZp4pI+dLFI6YYari1Ys022fLpPvlp/583g5qr1yR1qhSS657s8lSxQhJWo5zoAvGuijcffc//fvjNjFz6/KsfzFMN1TDvfXfLSxVLiq4vduOGSPFKLYzr0uk318xyykcbd0q3QVMkfbrUsmPlJLdXStfa0jW3OjarJc3Cqrisp+ts6XpbWr5YN0PuiDSazNnPvXdlkzULRsg3P+yXuUvXye5938vxE6dNiPdQ/lxSo/IzZgSbjr6jIIAAAggggAAC8VWAACu+XjmOGwEEEEAAAQRCWsAJsPTpg/oUQgoCCCCAAAIIIJCQBQiwEvLV5dwQQAABBBBAIMEK2I70SrAAnBgCCCCAAAIIhJQAAVZIXW5OFgEEEEAAAQQSigABVkK5kpwHAggggAACCNgIEGDZKFEHAQQQQAABBBAIMgECrCC7IBwOAggggAACCNxSAQKsW8rLxhFAAAEEEEAAgVsjQIB1a1zZKgIIIIAAAggEpwABVnBeF44KAQQQQAABBBDwKECARQNBAAEEEEAAgVASIMAKpavNuSKAAAIIIIBAghEgwEowl5ITQQABBBBAAAELAQIsCySqIIAAAggggAACCCCAAAIIIIAAAggEToAAK3D27BkBBBBAAAEEEEAAAQQQQAABBBBAwEKAAMsCiSoIIIAAAggggAACCCCAAAIIIIAAAoETIMAKnD17RgABBBBAAAEEEEAAAQQQQAABBBCwECDAskCiCgIIIIAAAggggAACCCCAAAIIIIBA4AQIsAJnz54RQAABBBBAAAEEEEAAAQQQQAABBCwECLAskKiCAAIIIIAAAggggAACCCCAAAIIIBA4AQKswNmzZwQQQAABBBBAAAEEEEAAAQQQQAABCwECLAskqiCAAAIIIIAAAggggAACCCCAAAIIBE6AACtw9uwZAQQQQAABBBBAAAEEEEAAAQQQQMBCgADLAokqCCCAAAIIIIAAAggggAACCCCAAAKBEyDACpw9e0YAAQQQQAABBBBAAAEEEEAAAQQQsBAgwLJAogoCCCCAAAIIIIAAAggggAACCCCAQOAECLACZ8+eEUAAAQQQQAABBBBAAAEEEEAAAQQsBAiwLJCoggACCCCAAAIIIIAAAggggAACCCAQOAECrMDZs2cEEEAAAQQQQAABBBBAAAEEEEAAAQsBAiwLJKoggAACCCCAAAIIIIAAAggggAACCAROgAArcPbsGQEEEEAAAQQQQAABBBBAAAEEEEDAQoAAywKJKggggAACCCCAAAIIIIAAAggggAACgRMgwAqcPXtGAAEEEEAAAQQQQAABBBBAAAEEELAQIMCyQKIKAggggAACCCCAAAIIIIAAAggggEDgBAiwAmfPnhFAAAEEEEAAAQQQQAABBBBAAAEELAQIsCyQqIIAAggggAACCCCAAAIIIIAAAgggEDgBAqzA2bNnBBBAAAEEEEAAAQQQQAABBBBAAAELAQIsCySqIIAAAggggAACCCCAAAIIIIAAAggEToAAK3D27BkBBBBAAAEEEEAAAQQQQAABBBBAwEKAAMsCiSoIIIAAAggggAACCCCAAAIIIIAAAoETIMAKnD17RgABBBBAAAEEEEAAAQQQQAABBBCwECDAskCiCgIIIIAAAggggAACCCCAAAIIIIBA4AQIsAJnz54RQAABBBBAAAEEEEAAAQQQQAABBCwECLAskKiCAAIIIIAAAggggAACCCCAAAIIIBA4AQKswNmzZwQQQAABBBBAAAEEEEAAAQQQQAABCwECLAskqiCAAAIIIIAAAggggAACCCCAAAIIBE6AACtw9uwZAQQQQAABBBBAAAEEEEAAAQQQQMBCgADLAokqCCCAAAIIIIAAAggggAACCCCAAAKBEyDACpw9e0YAAQQQQAABBBBAAAEEEEAAAQQQsBAgwLJAogoCCCCAAAIIIIAAAggggAACCCCAQOAECLACZ8+eEUAAAQQQQAABBBBAAAEEEEAAAQQsBAiwLJCoggACCCCAAAIIIIAAAggggAACCCAQOAECrMDZs2cEEEAAAQQQQAABBBBAAAEEEEAAAQsBAiwLJKoggAACCCCAAAIIIIAAAggggAACCAROgAArcPbsGQEEEEAAAQQQQAABBBBAAAEEEEDAQoAAywKJKggggAACCCCAAAIIIIAAAggggAACgRMgwAqcPXtGAAEEEEAAAQQQQAABBBBAAAEEELAQIMCyQKIKAggggAACCCCAAAIIIIAAAggggEDgBAiwAmfPnhFAAAEEEEAAAQQQQAABBBBAAAEELAQIsCyQqIIAAggggAACCCCAAAIIIIAAAgggEDgBAqzA2bNnBBBAAAEEEEAAAQQQQAABBBBAAAELAQIsCySqIIAAAggggAACCCCAAAIIIIAAAggEToAAK3D27BkBBBBAAAEEEEAAATk9MVcAAAI+SURBVAQQQAABBBBAwEKAAMsCiSoIIIAAAggggAACCCCAAAIIIIAAAoETIMAKnD17RgABBBBAAAEEEEAAAQQQQAABBBCwECDAskCiCgIIIIAAAggggAACCCCAAAIIIIBA4AQIsAJnz54RQAABBBBAAAEEEEAAAQQQQAABBCwECLAskKiCAAIIIIAAAggggAACCCCAAAIIIBA4AQKswNmzZwQQQAABBBBAAAEEEEAAAQQQQAABCwECLAskqiCAAAIIIIAAAggggAACCCCAAAIIBE6AACtw9uwZAQQQQAABBBBAAAEEEEAAAQQQQMBCgADLAokqCCCAAAIIIIAAAggggAACCCCAAAKBEyDACpw9e0YAAQQQQAABBBBAAAEEEEAAAQQQsBAgwLJAogoCCCCAAAIIIIAAAggggAACCCCAQOAECLACZ8+eEUAAAQQQQAABBBBAAAEEEEAAAQQsBAiwLJCoggACCCCAAAIIIIAAAggggAACCCAQOAECrMDZs2cEEEAAAQQQQAABBBBAAAEEEEAAAQsBAiwLJKoggAACCCCAAAIIIIAAAggggAACCAROgAArcPbsGQEEEEAAAQQQQAABBBBAAAEEEEDAQoAAywKJKggggAACCCCAAAIIIIAAAggggAACgRMgwAqcPXtGAAEEEEAAAQQQQAABBBBAAAEEELAQIMCyQKIKAggggAACCCCAAAIIIIAAAggggEDgBAiwAmfPnhFAAAEEEEAAAQQQQAABBBBAAAEELAT+DzOkUTwMXjkMAAAAAElFTkSuQmCC", "text/plain": [ "" ] @@ -5315,7 +5601,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdCbgO9d/H8c9Z7fsuZCmyZ4uIioiylBZKi6WyFGWLZCcRspfspd1a6Z8K2RJlKxEh+77vnPW5Zjz3uR3Oct/n3MvMfd5zXc/1lDPzm+/v9f31Lx+/mQmKjY2NFQcCCCCAAAIIIIAAAggggAACCCCAAAIWFQgiwLJoZygLAQQQQAABBBBAAAEEEEAAAQQQQMAUIMBiISCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIClBQiwLN0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWFqAAMvS7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNaAXwUOn7ri1/tzc88KFMyVwRyQvnrWldEQsItA9kxhypg+VGcvRujytWi7lE2dCCDgIYHw0GDlzpZOEVExOnnumodGZRgErC3g+O9fa1dJdQgEhgABVmD00bazIOiwbesSLJwAK7D6yWwQcFeAAMtdMc5HILAECLACq5/MxjUBAizXnDgLAU8IEGB5QpExUixAgJViOkteSIBlybZQFAI+EyDA8hk1N0LAkgIEWJZsC0V5WYAAy8vADI/ADQIEWCwHvwoQYPmV3+M3J8DyOCkDImArAQIsW7WLYhHwuAABlsdJGdAGAgRYNmgSJQaMAAFWwLTSnhMhwLJn3xKrmgArsPrJbBBwV4AAy10xzkcgsAQIsAKrn8zGNQECLNecOAsBTwgQYHlCkTFSLECAlWI6S15IgGXJtlAUAj4TIMDyGTU3QsCSAgRYlmwLRXlZgADLy8AMj8ANAgRYLAe/ChBg+ZXf4zcnwPI4KQMiYCsBAixbtYtiEfC4AAGWx0kZ0AYCBFg2aBIlBowAAVbAtNKeEyHAsmffEquaACuw+slsEHBXgADLXTHORyCwBAiwAqufzMY1AQIs15w4CwFPCBBgeUKRMVIsQICVYjpLXkiAZcm2UBQCPhMgwPIZNTdCwJICBFiWbAtFeVmAAMvLwAyPwA0CBFgsB78KEGD5ld/jNyfA8jgpAyJgKwECLFu1i2IR8LgAAZbHSRnQBgIEWDZoEiUGjAABVsC00p4TIcCyZ98Sq5oAK7D6yWwQcFeAAMtdMc5HILAECLACq5/MxjUBAizXnDgLAU8IEGB5QpExUixAgJViOkteSIBlybZQFAI+EyDA8hk1N0LAkgIEWJZsC0V5WYAAy8vADI/ADQIEWCwHvwoQYPmV3+M3J8DyOCkDImArAQIsW7WLYhHwuAABlsdJGdAGAgRYNmgSJQaMAAFWwLTSnhMhwLJn3xKrmgArsPrJbBBwV4AAy10xzkcgsAQIsAKrn8zGNQECLNecOAsBTwgQYHlCkTFSLECAlWI6S15IgGXJtlAUAj4TIMDyGTU3QsCSAgRYlmwLRXlZgADLy8AMj8ANAgRYLAe/ChBg+ZXf4zcnwPI4KQMiYCsBAixbtYtiEfC4AAGWx0kZ0AYCBFg2aFIiJT76fG/tPXBUfbo8p1bNH7LvRNJQ5QRYaajZVpwqAZYVu5LymgiwUm7HlQgEggABViB0kTkgkHIBAqyU23GlfQUIsOzbOwIs+/WOAMt+PQuoigmwAqqdIsAKrH4yGwTcFSDAcleM8xEILAECrMDqJ7NxTYAAyzUnK55FgGXFriRdEwGW/XoWUBUTYAVUOwmwAqudzAYBtwUIsNwm4wIEAkqAACug2slkXBQgwHIRyoKnEWBZsCnJlESAZb+eBVTFBFj+b+ee74J1ZHVwqgsJSSc9PinMHIe+ppqTARCwpQABli3bRtEIeEyAAMtjlAxkIwECLBs166ZSCbDs1zsCLPv1LKAqJujwfzs9FWApKFZPTg0nwPJ/S6kAAb8JEGD5jZ4bI2AJAQIsS7SBInwsQIDlY3AP3o4Ay4OYPhqKAMtH0NwmYQECLP+vDI8FWJKe+ChMQSHswPJ/V6kAAf8IEGD5x527ImAVAQIsq3SCOnwp4IsAa9PfO/X5giXa8Ne/On3mvDJmSK9SdxRW0wa1zP8LCXE+TfFspyH6c9tuNapbXaP6d0ySYuzUuZr62SLlz5NTP381WsHBQXHnx8bG6vsla7Xwx9XavnO/Lly8rOzZMqtSuTv17OMP6Z5Kd3mceeuOvfrym2Va/+cOnTh1RkFBQcqXJ6eKFSmgBnWqqkmDmrfc88Sps5o99yf9+sffOnjkhK5FRCpX9qyqXOFOPdX4wSTrdCXA8sT4a76dpGxZM5n9m/Lpd9ryz386d+GSalevoMkjunncMZAHJMAK5O7aYG4EWP5vkicDrGYTwhSWgQDL/12lAgT8I0CA5R937oqAVQQIsKzSCerwpYC3A6wxU+Zo2uffm1MKDQlRjuxZzDDp6rUI89dqVC6j8UO7KFPG9ObfL/hhlfqOmK7w8DCtmD9OWTNnTJDDCKjqt+yhI8dO6ZXnmuj1l56IO+/ylavq3He81m7YZv5a+nThypI5o86cvaCo6Gjz19q2fETdOzztEWqjltEffa2ZX/6Q6HhGUPdun5fj/fznlevV+50pcRbpwsMUFhaqi5euxJ33xKN11L/bi6bdzUdyAZanxv/242H6Y/N2DR07W8ZcHUer5g+pT5fnPGKYVgYhwEornbboPAmwLNoYF8taPzREERecf1LTeHSY0mcjwHKRj9MQCDgBAqyAaykTQsAtAQIst7g4OUAEvBlgzfp6sUZ+8KWMYKZnp5Z6rGFtZUgfrujoGK34bbP6jZyhs+cu6tF6NfRevw6m6JWrEbq/eRddunxV/bq+oJbN6iYobewGeqHLMPNn388erqKF88ed91qfcfplzSYVzJ9b/bu+qJpVy5q7vC5fuaYvFi7V2KlzFBMTq4E9Wuupxg+kupMfzf5O46fPM8d5vFFtGcFOidsLKio6RgcOH9dv67eq6t2lVK5Usbh7bdzyr158/V2zjgdrVlLnds1VqkRh8+enz17Q/P+t1MQZ8xUZFa1nHqunvm88f0udSQVYnhz/1daP6YOPv1G5UkX1WtvmKn9XcRkhYWhoiPLkyp5qv7Q0AAFWWuq2BedKgGXBprhR0sb3QnT1lDPAajQsTJnyEmC5QcipCASUAAFWQLWTySDgtgABlttkXBAAAt4KsE6dOa+HWnRXRESkBvdsK2Mn0c3Hj8t/V7eBH5i/PG/aYN11RxHzrweP+URffbPMDHy++mhAgsqDRs/S198tV8UyJfT5B/3izjGCKyPACgsNMccsUfS2W64fMuYT81G/XDmyaslXo83dXik9jp88q/otups7u9o/30Rd2jl3giU1ZtPWb2v33kNmeDXhnS7m44ZJ+Xz5YX+VL1083ilJBVieHN+4aa1q5TRp2BvmDjGOlAsQYKXcjis9IECA5QFEPw6xeUyoLh91FlB/YKiyFQriK4R+7Am3RsCfAgRY/tTn3gj4X4AAy/89oALfC3grwJrx5f80evLXur1QPv3v0xGJTuz+5q/r5Olz6vhCM73W9nHzvH927tOTL18Prr6Z+Y7uKBY/hDJ2Jd3/eBfzPUwDurfW002cu6g69Hpfq9b9pScb369BPdokeN89+4+o8QtvmT+bMaaXqlcqnWJ4x+6rHNmy6Je5Y1wKeIzdUc93vr57zHg8z9itldjxTKch+mvbbvNdYTc/gphYgOXp8Y1dcz99OVo5s2dJsRMXXhcIiADL2CY5d9FyGc+o7tpzyPwH0dg+OH/6kHh9XrZ6o7mV8qE6Vc2tlxz+FyDA8n8PUlPBlokhunDA+acddfuEKmdxAqzUmHItAnYWIMCyc/eoHYHUCxBgpd6QEewn4K0Ay5UgydAyHgM0Hgd8qHYVjRvSOQ7wqVcGatu/e9X66Ybm44c3Ho5dVje/J8t4HK/6ox3Nx9tG9G2vxg/dm2BDjACscoOXzMf3+nRppVbN66e4ca/0HGW+gN14QfvwPq+4NI7xIvRx0+aZjzj+/OWoJK9xnJsvTw4tmzMm3rmJBVieHv/GRzxdmiAnJSpg+wBr977D5hbH/YeOxZtkQgFW90EfaPEvv2vYWy+r2cO1WBYWECDAskATUlHC31NCdH63M8Cq0z1UeUsTYKWClEsRsLUAAZat20fxCKRagAAr1YQMYEMBbwVYjzzXS/sOxv89blI8xlcBZ47pHXfK19/+okHvf2w+5rds7ph4LzF3/L644YP3aPSATnHXGF/ce+CJN9zqwqttHlenF5u5dc2NJzvmaTw6aDxC6MrRf+QMzft+pe6tWlbTRvVM8pKfVqxX1wETzXM2L5luPhrpOBILsDw9ftdXntJLzz7qytQ4JxkBWwdYxtcXHm/bV0eOnzafu613X2Vzi+XkT75NcAfW90vX6s0hk9Xg/qoaM+g1FocFBAiwLNCEVJTwz8xgndnu/Gxvrc6hKlCRACsVpFyKgK0FCLBs3T6KRyDVAgRYqSZkABsKeCvAcjwamDd3dhmP1yV3lC1VTEPebBt3mvHkkfEyd+NppQnvvK66tSqZPzN2V9V+rIv55b7JI7qpdvUKcdfc+Gig8VJ34+XxyR0tmj6oFom8KD65a42fO+bZ+7Vn9fyTDVy5RD0Gf6gflq1T3fsqa8LQLkles2rdFnXoNdo859dvJip7tsxx5ycWYHl7fJcmyUkJCtg6wPpg1kJNmrVQZUoWNT8dWiBvTnOSZR9onWCAZXzBoOGzb6pwwbxa/Pl7LAkLCBBgWaAJqShhx2chOvWXcwdWjfYhKlQtmHdgpcKUSxGwswABlp27R+0IpF6AACv1hoxgPwFvBVjG71uN37+6szPpZr2+I6ZrwQ+rVK92ZY0fcj3o+e6nNeo9bIpy58xmPlJnfF3QcRw9cVr1nupm/u3sCW+rcvk7vd6Qh5/pqYNHTuiNl5/Uy60au3S/d8bN1ucLlrq/A+vnafHesZVYgOXt8V2aJCcFXoDVvF0/7dh9QHOnDlLpO2+Pm2BiAZaRMld5+BWlTxeuDT9OYUlYQIAAywJNSEUJO78O0YkNzgCrapsQFa1FgJUKUi5FwNYCBFi2bh/FI5BqAQKsVBMygA0FvBVgte06Qus2/aPUvD/pz2279WynIeZjcysXTlDWzBnleLdWm5aN1KNDi3jixrut7nmkg/nlw4E9Wuupxs6Xu3urNS++/q7W/7lDjzeqraG92rl0G8cL7l15B9bUzxZp7NS5ypMru5bPGxtv/MQCLG+P79IkOSnwAqyqDV9RWGioflt0/dOhjiOxAMv4eeUGLysyKkpbls1kSVhAgADLAk1IRQn/LQzW0d+cf2pT6dkQlahLgJUKUi5FwNYCBFi2bh/FI5BqAQKsVBMygA0FvBVgGa/FmTBjvhk6LZ0zRhkzpEuRzmNt+mrnnoNmOGQ8clfnsS6Kio5O8OuExg3adXtPazduc2l3U4oKuukiI1wyQqaEdoQlNv7uvYfUtPXb5o8T+srijde1enWoNm/dpUfqVdfIfh3jDZlYgOXt8T3hllbHsPUjhEYYlSVzRq2YPy5e/xILsC5fuaZqjdqbz70az79y+F+AAMv/PUhNBXu/D9bhlc4Aq/yTISrVkAArNaZci4CdBQiw7Nw9akcg9QIEWKk3ZAT7CXgrwDJeqF6/ZQ9FRkaZ75jq3/WFFOF8Nv9nDRv/mR6oebca3F9Nfd6dqrKliurrjwYmON7PK9frjf7Xf688qn9HNapbPUX3dfUi40X1xovcjcOdl50/02mI/tq225zXxHdeV1CQ86kQx72Xrd6ozn3Hm387a2xvVbv7LpcCLOMkb4/vqg/nxRewdYDl+GKBEWAZia3jSCzAWrpqo7r0G69K5e7UpxOvJ7Yc/hUgwPKvf2rvfuDnYB1Y4gywyjQNUZmmBFipdeV6BOwqQIBl185RNwKeESDA8owjo9hLwFsBlqEwe+5PGj7xcxPE2D318rOPynhZu/HeqouXrujo8dPmY4bLft2o4X1eMR+Tu/k4d+GS+WXB0JBg3VOptJav2aw+XZ5Tq+YPJQr9er8JWrJqg4KDg9T66UZ6svH95sfSYmNjdebcRR06ckKr1v1lvs5n3JDOqW7YiElf6JM5P5rjtG7RUM81r68C+XIpOjpGx0+d1YY/d+j8xct69vF6cffateeQnnxlgBnwPVS7ihl+GS+eNw7jRfULF/+qUR9+qWsRkWraoJbe7fPyLXUmtgPLONHb46caLY0OYOsAa9j4T/XZ/CXmP3zGP4SOI6EAy9h91bLjYBnbAd15QVwaXRc+mzYBls+ovXKjQyuCte9/zgDL2H1l7MKir17hZlAELC9AgGX5FlEgAl4VIMDyKi+DW1TAmwGWMWXjfUxjpsxRTEysKWDsNAoLCzXfU3XjsXTO+8qf5/pHzW4+er3zkRb9/Jv5y8b7sJbPGxfva3w3n2+8O9p4AbzxpT/HERoSYv6l8fih4/DUx9GMMQeOmmW+cN5xhIeHmeGUEZoZh/EVReNrijcev2/arm4DJ+nMuQvmLxtPWhlfTjx1+nxcncYOsnd6v5TgFxWTCrCM8bw9vkWXtKXLsnWAdeTYKRmLzkhVG9e/V93bt5DxmdGbA6yNW3bK+JLA9l37lS1rJi3+fKT5LDGH/wUIOvzfg9RUcGRNsPZ84wywjPdfGe/Boq+pUeVaBOwrQIBl395ROQKeECDA8oQiY9hNwNsBluGx/9Axc+OG8W6qw0dP6eq1a0qfLp0K5s+lu8veofp1qqpWtXIJPkZnXG+8JN14Wbpx3PhFwuSsjd1d8/+3Upu27NTJ0+fMUChzpgwqcls+3XP3XWpcv6ZKFi+U3DAu/9wIjOYs+uX6/c6cN993bTxpVaFMcT3d5EFVqVDylrGM8GruohUyHn08ePiELl+9plzZs+rucnfoiUfrqGbVconeP7kAy7jQ2+O7jMOJpoCtAyxjAsbWRiN1NbYXGoextdF4jtb4B6vcXcXMrX/GP2zGYSTVk4d3U40qZWi/RSx9gZwAACAASURBVAQIOizSiBSWcfyPIO2ae/1PY4yj6H3BqtqaACuFnFyGgO0FCLBs30ImgECqBAiwUsXHxTYV8EWAlVoa45G66o92NHdxGbuYjN1MHAjYUcD2AZaBvuWf/zTo/Y/1z859ifagVInCGtSzrcrfVcyOfQrYmgmw7N3ak5uD9O8XzgCrULVg1WhPgGXvrlI9AikXIMBKuR1XIhAIAgRYgdBF5uCugB0CrHnfr1T/kTOUI1sW/TJvrPkYIQcCdhQIiADLAb9l+x79sfkf7T94XBcvX1GG9Ne3VVavVFqVy9+63dCODQu0mgmw7N3R09uCtf1j5yOEBSoGqVbnUB4htHdbqR6BFAsQYKWYjgsRCAgBAqyAaCOTcFPADgFWi/aD9PeOPXrxqYf15qvPuDnD5E83dni90nN08ifecIbx9cCXnn3UrWs4GYGACrBop/0ECLDs17MbKz63K0hbpzr/BCdv6SDV6U6AZe+uUj0CKRcgwEq5HVciEAgCBFiB0EXm4K6A1QOsZb9uUue3x5lfLlz0yXAVuS2vu1NM9nzjC4H3Nu6U7Hk3ntD8kToa8mZbt67hZAQIsFgDfhUgwPIrf6pvfmFfkLZ84AywchYPUt0+BFiphmUABGwqQIBl08ZRNgIeEiDA8hAkw9hKwGoBlvHVPuNLhcaxbPVGvfXuVF28dEXPPl5Pb7/+vK1sKRaBmwVsHWDVbPqqKpW7U5OGveFWZ41/gL9YuFR/bt2t0NAQlS9dXE82vl/ZsmRyaxxOTr0AAVbqDf05wqXD0p/jQuNKyFYoSPUHEmD5syfcGwF/ChBg+VOfeyPgfwECLP/3gAp8L2C1AOu5197RgcPHdfnKNRmP9hmH8fvdmWN6K0P6cN8DcUcEPChg6wCr7AOtdVv+3Prpy1EmydlzFxUdE6Oc2bMk+glRI7x6puNg/bf/SDzGfHlyaNbY3uYnQTl8J0CA5Ttrb9zpyokgbRrl3IGVOa/UcFgY78DyBjZjImADAQIsGzSJEhHwogABlhdxGdqyAlYLsHoPm6LV67bo4qXLKpg/txrXr6l2zzyidOFhljWkMARcFbB9gBUaEqIeHVvok7k/6fDRk+a8ja8rGDuqXm39mMLCnLtDjJ9NmDFfkz/5VuHhYXrikTrKnjWzfvhlnfYeOKq77iiiuVMHJRp+uYrKea4LEGC5bmXFM6+dC9KGYc4AK302qfFoAiwr9oqaEPCFAAGWL5S5BwLWFSDAsm5vqMx7AlYLsLw3U0ZGwP8Ctg+wkiKsXb2CPhzeNV4g1azN29q155CGvfWymj1cy7z86rUIvdBlmLbu2KvJI7rJuI7DNwIEWL5x9tZdoi5Lvw9yhsRhGaRmEwiwvOXNuAhYXYAAy+odoj4EvCtAgOVdX0a3pgABljX7QlWBKRAQAVbunNnU8cVmqlC6uMLDwrR9135NmrVQ+w8dixdUGS28u/5LioyM0vJ5Y5UnV/a4rq7b9I/adh2hpxo/oIE9Wgdmty04KwIsCzbFjZJioqS1bzsDrKAQ6YmPCLDcIORUBAJKgAAroNrJZBBwW4AAy20yLggAAQKsAGgiU7CNgO0DLONzoHOmDFKpEoXjoR89cVqNn++tCqVLaMaYXubPoqNjVKHe9U91/rV0hvkpUccRExOre5t00u2F8unrjwbapoF2L5QAy+4dlNb0DpFir3/pxDiemBKqI2euvzCSAwEE0pYAAVba6jezReBmAQIs1kRaFCDASotdZ87+ErB9gFWhTAl98UG/BP06vTVGm7fu0ppvJ5k/j4qOVsV67cy/3rp81i3XPN1+oA4eORF3vr+akpbuS4Bl/26v6xeq6AjnPB6bGKbjl67Yf2LMAAEE3BYgwHKbjAsQCCgBAqyAaieTcVGAAMtFKE5DwAMCtg6wytdto7q1KmvckM4JUgwcNUvzf1hp7rZyJcB6qcdIrf9zhzb/PM0DtAzhigABlitK1j7nj6GhirzgrLHJ+2E6FUmAZe2uUR0C3hEgwPKOK6MiYBcBAiy7dIo6PSlAgOVJTcZCIGkBWwdYtZq9poL5cmvOlIQf+TMCqb+27dbv/5tsKly8dEXVH+1o/nVCO7DadB2ujX/t1J9Lp7NufCRAgOUjaC/eZsOIEF077XyEsNG7YToXTIDlRXKGRsCyAgRYlm0NhSHgEwECLJ8wcxOLCRBgWawhlBPQArYOsF7pOUq//vG3Zo3trWp33xWvUTt2H9CTL/eX8W6rnh1bqnWLhua5xjXGsWL+OBkvf7/xePT53jp/4ZJWLZwQ0E230uQIsKzUjZTVsvn9UF0+5ry2waBQXUzPO7BSpslVCNhbgADL3v2jegRSK0CAlVpBrrejAAGWHbtGzXYVsHWA9b+l69RzyIdKny5cLzz1sO4ue4fSpQvT1h17NfWzRbpw8bKMd2QZu7AKFcijk6fP6eq16y/rGfbWy2r2cK24vu0/dFyNWr2pqhVL6eNxb9m1n7armwDLdi27peC/Jobo4gHnDqy6b4fqalYCLPt3lhkg4L4AAZb7ZlyBQCAJEGAFUjeZi6sCBFiuSnEeAqkXsHWAZUy/+6APtPiX3xOUqFKhpKaPflPDJ36uL79ZZp5Tt1YlZcuaWcvXbNbgN9uqZtWy5qOFvYdN0W/rt6pHhxZq07JR6mUZwSUBAiyXmCx90taPQnTuP2eAdX/PUEXmJsCydNMoDgEvCRBgeQmWYRGwiQABlk0aRZkeFSDA8igngyGQpIDtAyzjEUEjnJq7aLl27jmo2FiZu62aP1JbbVo0UlhYqAlw6OhJXblyTXcUu03//ndQLToMUkREZDycPLmya9En7ypzpgwsGx8JEGD5CNqLt/lnZojObHcGWPe9HqqYggRYXiRnaAQsK0CAZdnWUBgCPhEgwPIJMzexmAABlsUaQjkBLWD7AOvG7sTGxio6JkahISHJNm3Fb39qwKiZOnHqrHluiaK3aVT/jipZvFCy13KC5wQIsDxn6a+RdnwarFNbguNuX6NDqIKLEWD5qx/cFwF/ChBg+VOfeyPgfwECLP/3gAp8L0CA5Xtz7ph2BQIqwHK1jca7sbJkzqjo6BjtP3RMwcHBur1QPlcv5zwPChBgeRDTT0Pt/CpEJzY6d2BVaxuisFLX/FQNt0UAAX8KEGD5U597I+B/AQIs//eACnwvQIDle3PumHYF0lSAtXHLv5q7aIX5zqyNP01Nu1230MwJsCzUjBSWsnt+sI6tc+7AqtQqRBkqEGClkJPLELC1AAGWrdtH8QikWoAAK9WEDGBDAQIsGzaNkm0rEPAB1plzF/TNj7+awdWe/UfiGrV1+SzbNi2QCifAsn839y4K1uFVzgCrwlMhylyVAMv+nWUGCLgvQIDlvhlXIBBIAgRYgdRN5uKqAAGWq1Kch0DqBQIywDLehfXbhq2au2illq3eoMio6Dipu+4oohbN6urpJg+kXo8RUi1AgJVqQr8PsP+nYB1c6gywyjYLUbaaBFh+bwwFIOAHAQIsP6BzSwQsJECAZaFmUIrPBAiwfEad5I2MVwM1atXrlnPCw8OUNXNGFS2cXzWrltPTTR9QjmxZbjmv19CPtGjJbxrZr6MeqVc92UktXbVRXfqNV/06VTV28GtJnv/3jj1q0X6QypQsqjlTBsY713HfpAbIlSOrVi4Yn2xNaeGEgAqwjp88qwU/rNK871eYXx10HMaXCB++v5paPlZXlcrdmRb6aps5EmDZplWJFnrwl2DtX+wMsEo1ClauByLsPzFmgAACbgsQYLlNxgUIBJQAAVZAtZPJuChAgOUilJdPcwRYGdKHq3L5knF3uxYRqeMnz2j/oePmr2XLkklTR/VU2VJFEwyS/BVgGQFbQsGaUWT2rJk1cdjrXha0x/C2D7CMF7GvWPunGVqtXPunYmJi48l3feUpPfFonUQXgz3aFLhVEmDZv7dHVgdrz3fOAOuOesHK24AAy/6dZQYIuC9AgOW+GVcgEEgCBFiB1E3m4qoAAZarUt49zxFgGUHQ97OH33Kzw0dPqv+omfpt/VaVvvN2zZ06yFIBlqvBmXcVrT+6bQOsg0dOaN73K80dVydOnY2TNlLLh2pX0ZxFy81f411X1l6EBFjW7o8r1R37PUi754XEnVr0vmAVbEKA5Yod5yAQaAIEWIHWUeaDgHsCBFjueXF2YAgQYFmjj8kFWEaVp89eUJ3Hu8h45dDqbybE2+Ti70cICbBcW0e2CrAiI6O0ZNUGzf1+hdZu2BY3Q+O51gdrVlLTBjV1X/XyioiIVLVGHQiwXFsDfj2LAMuv/B65+YnNQdr5hTPAKnxPsAo/QYDlEVwGQcBmAgRYNmsY5SLgYQECLA+DMpwtBAiwrNEmVwIso9J7HumgS5evatmcMcqXJ0dc8QRY1uhjclXYJsAaMekLffvTrzp77qI5p6CgIFW7u5Sa1K+pBvdXU+ZMGeLmevnKVQKs5DpvkZ8TYFmkEako4/TWYG3/xPkIYcG7g1T0mchUjMilCCBgVwECLLt2jroR8IwAAZZnHBnFXgK+CrD+/DtWew/E2AsnFdXeXS5YtxcOcnkEVwKsYyfOqO5TXc33YP367UQzU3AcBFguU/v1RNsEWGUfaG1CpU8XrtYtGuqZx+opd85sCeIRYPl1Tbl1cwIst7gsefLZnUHaNs25AytvmSDd8SIBliWbRVEIeFmAAMvLwAyPgMUFCLAs3iDK84qArwKsT76K1so1aSfAer5FiO6v6fxD8uSal1yAdfHSFfUY/KFWrftLfbq0Uqvm9eMNSYCVnLA1fm6bAOvp9gO1dcfeOLU7it2m+rWrqkmDmrq9UL54mgRY1lhcrlRBgOWKkrXPubA3SFs+dAZYue4IUqmXCbCs3TWqQ8A7AgRY3nFlVATsIkCAZZdOUacnBQiwPKnpHCulAVbGDOlVq1q5uIGiY2J0+sx5/bNzn5kbtG7RSM0ernVL0f4OsIoXKaCcObImiNmyWV01qlvdO9A2G9U2AZbhun3Xfs35brkWLflNRoLqOCqUKaHHHq6lhnWrm9sBCbDsswoJsOzTq8QqvXRI+nN8aNyPsxcJUplXCbDs31lmgID7AgRY7ptxBQKBJECAFUjdZC6uChBguSrl3nkpDbASu0tYWKga1Kmqhg/eo7r3VbZcgJWUTo8OLdSmZSP3AAP0bFsFWI4eXLkaocW/rNPcRSu0eeuuuNYYi/KBe+8234nVc8iH5q/zFUJrr1wCLGv3x5XqrpwI0qZRzh1YmfNJFbpFuXIp5yCAQIAJEGAFWEOZDgJuChBguQnG6QEh4KsAi3dgJb1cEnuEMDo6RucuXNKWf/7TtM8XaeOWneZuplH9O8Yb0N87sPgKoWv/c2DLAOvGqe3ee0hzFq0wX/B+7vylW2a95KvRKpAvl2sanOVzAQIsn5N7/IYRZ4O0/l1ngJUhh1SpNwGWx6EZEAEbCBBg2aBJlIiAFwUIsLyIy9CWFfBVgGVZAIsUltw7sIwyo6Kj1aL9IPPJrhF926vxQ/fGVe9ugLVs9UZ17jte9etU1djBryWp8PeOPeZ9y5Yqqq8/Gpiq4Mwi3H4rw/YBlkMuIiJSP61cb+7K+mPz9jhQ48sC999bUcZzo7WqlVdwsOtfMvBbV9LQjQmw7N/syMvSH4OcjxCGZZKq9SfAsn9nmQEC7gsQYLlvxhUIBJIAAVYgdZO5uCpAgOWqlHfPcyXAMiqY+tkijZ06V483qq2hvdqlOMBau2Gb2nV/T7Wrl9fkEd2TnJyRT7R+Y7iqVyqtGWN6EWClYikETIB1o8G+g8fMIGvh4lU6ffZC3I8K5s+tp5s8oOaP1FGuRF6QlgpLLk2BAAFWCtAsdklMpLS2rzPACg6VarxDgGWxNlEOAj4RIMDyCTM3QcCyAgRYlm0NhXlRgADLi7huDO1qgDXr68Ua+cGX5iaXD97tmuIA68ixU3qoRXflzZ1dy+aMkbFxJrFj9tyfNHzi52YWMaB7awIsN/p686kBGWA5JhkZFS1ja58RZv22YatiY2PNH4WFhmjzkumpYONSTwkQYHlK0r/jrOnlDLCMSmqOIMDyb0e4OwL+ESDA8o87d0XAKgIEWFbpBHX4UoAAy5faid/L1QCr01tjtOK3P/XCUw+r16vPpDjAMi5s3q6fduw+oBFvt1fj+s7HEW+s0nh/9xMv9ZOxycbYqWXs2LrxcPfRRWto+6+KgA6wbmQ9dPSk5n2/Qgt+WKXjJ8/ycnf/rbl4dybAskgjUlnG2n6hiolwDlJjcJSC06VyUC5HAAHbCRBg2a5lFIyARwUIsDzKyWA2ESDAskajkguwjFcOzfxqscZPn2e+VmjetCEqWbxQqgKslWv/VMfeY5Q+XbgZhhmPJRoflnMc/+0/ooGjZmrDX/+qZtVymjqqxy1YBFjurZ80E2A5WIyvEKxY+6fq1qrknhRne0WAAMsrrD4f9PfBoYq64RsK1fpGKSyLz8vghggg4GcBAiw/N4DbI+BnAQIsPzeA2/tFgADLL+y33NQRYGXMkE41KpeJ+3lMbKzOX7ik7bsO6PKVqwoJCVbfN14wH+e78XAESYUK5FHWLJkSnFSObJk1ZWT8EOqLhUv17oTPZOQMxr1L3F5Q6dKF6/jJM9p/6Lg5To0qZTR20GvKkjljogFW0cL5lSNbwr+Byp41syYOe90a0H6uIs0FWH725vY3CRBgBcaS2DA8RNfOOJ/7rtIrWulyXn9klwMBBNKOAAFW2uk1M0UgIQECLNZFWhQgwLJG1x0BVkLVpAsPU/68OVXt7rvUqnn9eDuvHOc7AqykZmO8R3vlgvG3nLJ77yF9tmCpft/0j4x3Y0VHRytH9iwqV6qYGtevaX6pMLGPyaXmvtaQ920VBFi+9eZuBFgBuQY2jQ7RlePOAOvublHKmC8gp8qkEEAgCQECLJYHAmlbgAArbfc/rc6eACutdp55+0OAAMsf6l645/o/d2jWV4u1eesuXbx8Rfly51C9+yqr/QtNlS2RLZCulGF8MWHUh18pT+7sWvLV6EQv2b5rv554qX+SQw7q0UZPNr4/3jnswHKlC9Y/56/xIbp4yBlgVegcrcyF2IFl/c5RIQKeFSDA8qwnoyFgNwECLLt1jHo9IUCA5QlFxkDANQECLNecLH2W8ZXFAaNmmjWWLVVUuXJk087/DujI8dMqkDenPv+gv/l5T3eOS5evqt970/Xj8j/Mywrky5VkgPXb+q16qcdI5cmV3dyemdDxynNNbnn3GAGWO12x7rl/fxSi8/85A6xy7aOVtTgBlnU7RmUIeEeAAMs7royKgF0ECLDs0inq9KQAAZYnNRkLgaQFCLBsvkIOHD6uxs+/pdDQEE0e0c18rtc4YmNjNXHmAk3+5FvzJXbT33/T5Znu2nNIr/efoL0Hjqpty0f01bfLzBfZJbUD6/ula/XmkMnq1v5ptXvmEZfvRYDlMpWlT9w2I0RndzgDrNJto5WjFAGWpZtGcQh4QYAAywuoDImAjQQIsGzULEr1mAABlscoGQiBZAUIsJIlsvYJw8Z/qs/mL9EbLz+pl1s1jlesEWI903Gwtmzfo88m9dXdZe9IdjInT59To1ZvKjIqWsYjf80erqW7H2qn3LmSfoTQeNRw+MTP9U7vl/RYw/uSvY/jBAIsl6ksfeKO2cE69XdwXI2lnotRrvIxlq6Z4hBAwPMCBFieN2VEBOwkQIBlp25Rq6cECLA8Jck4CCQvQICVvJGlz6jfsocOHz2pZXPGKF+eHLfUanzWc+jY2XrhqYfV69VnXJqLEUYZYVf50sXNnVzlHmyT7COE46bN05RPv9PkEd1Vu3p5l+5jnESA5TKVpU/c+WWITmxy7sC6o0W08lZmB5alm0ZxCHhBgADLC6gMiYCNBAiwbNQsSvWYAAGWxygZCIFkBQiwkiWy7gnnL17WvY07mcGVEWAldPyzc5+efHmAGUgZu7DcPaKio1WxXrtkA6yBo2ZpzqLlmjt1kErfebvLtyHAcpnK0if+Nz9YR9c5d2AVbx6j/NXZgWXpplEcAl4QIMDyAipDImAjAQIsGzWLUj0mQIDlMUoGQiBZAVsHWMaLxn9Zs0mb/96lg0dO6FpEhLJlyayihfPr/nsrqlK5O5MFsPMJW3fs1dPtB6py+Ts1e8LbCU7l3IVLqtnkVeXIlkWrv5ng9nRdDbA69x2vZas3qsMLTXXh4hVdunxF4eFhKlIwr2pXr6A7it2W4L0JsNxuiSUv2LMoWEdWOQOsoo1jVLA2AZYlm0VRCHhRgADLi7gMjYANBAiwbNAkSvS4AAGWx0kZEIFEBWwZYEVGRmnqZ4s06+vFMkKsxI6KZUpoyJttVaJowuGJ3dfFuk3/qG3XEapTo6I+HN41wek4HgEMCQnWX0tnuD1lVwOs1/qMM8PExI6GD95j9iJjhvTxTjl1PsLtmrjAegL//U/at8T5CGGxRlLR+jxCaL1OUREC3hXInD5E6cJDdPFKlK5FEmJ7V5vREbCeQGhIkLJlClNUdKzOXYq0XoFUhIAXBHJlDffCqAyJAAIJCdguwDp99oI69BotY/eREYY81rCWucOnaOECypA+XKfOnNe+g0e1aMla/fLrJmXNklFffthfRW7LF3ArYNW6v9Sh1/uqV7uyxg/pkniQV6+djCDqz6XTFRoS4paDqwFWRESk1m3arsIF8yhv7uwKCwuT8UL4dRu36cOPvzF3yNWqVk5TRvZw6/6cbA+B7d/H6O8F0XHF3vVIsMo1d2+t2WOmVIkAAggggAACCCCAAAIIIOAPAVsFWNciIvXca+9o2797VbViKb0/8FXlypE1UbfVv29Rx97vq8H91TR6QCd/+Hr1nlbagZXURI1QsVnrt3Xm3AVNf/9N1ahcJu50/oTeq0vEZ4P/tzRWW+c6d1sUqxukck85Hyn0WSHcCAEE/Cpg7L4ICQ5SVHSMotmA5ddecHME/CEQHCSFhQYrJjZWkVHsxPZHD7in7wXShfHfvL5X545pVcBWAdaYKXM07fPv9UDNuzVuSGeXdhO91GOkduzar1UL3X//k9UXxfZd+/XES/1degdWtiyZtOa7SW5PydUdWMkN/N6kL/TxnB/Nd2R1bts87nTegZWcnD1+fmxdkHbPd+64yndPrEo84dyRZY9ZUCUCCKRWgHdgpVaQ6xGwtwDvwLJ3/6g+ZQK8AytlblyFQEoEbBNgGbt36j7VTZkzptc3s4YpZ/YsLs33qVcG6tCRE3HhzYWLl/X7pu3KkyubKpQp4dIYVj3p8pWrqtaog0tfISx/VzF9OXmA21PxVID12fyfNWz8Z2rVvL76dGlFgOV2J6x9wYlNQdr5pTPAynN3rO58hgDL2l2jOgQ8L0CA5XlTRkTATgIEWHbqFrV6SoAAy1OSjINA8gK2CbA+nfez3p3wmbl7x9jFYxxr1v+tn1duUOaMGZQlcwZl+v//b/z9lWsRWr5mk/63dJ2aP1LHfIG4cRjvaqrT/HVz99by+WNd2sWVPKP/zmj6Yh/t3ndYy+aMMYOsm48vFi7V0LGz9XTTBzWg24tuF+qpAGvctHma8ul3euPlJ/Vyq8YEWG53wtoXnPo7WDtmO7dP5ywbo7te4Pkha3eN6hDwvAABludNGREBOwkQYNmpW9TqKQECLE9JMg4CyQvYJsDq9NYYrfjtTy3+/D0VLpjXnFnfEdO14IdVic4yfbpwGV+/e/v15+J9/a73sCn67qc1+njcW+a7tOx8JBYMOebUssMgbdm+R5NHdDNfdu84oqNjdOL0WeXPkzPJ6XsiwIqMilaz1n207+AxffFBv3g733iE0M6rz1n72R1B2jbDuQMre8lYlWnHDqzA6C6zQMB1AQIs1604E4FAFCDACsSuMqfkBAiwkhPi5wh4TsA2AdZDLbrr2rWIeO+yat6un46eOK02LRrp4qUr5v+dOXdRu/cd0n/7Dit3zmx6p/dLqlm1XDwxI/Qywq+bdwN5jtV3IxkvSG/47JuKiYkxQ6pqd99l3jw2NlYTZy7Q5E++VcnihTR/+hAFBQXFFdax9xitXPunnn28nt5+/flEC3YlwNp/6LiWrtqgJg1qmuY3HvsPHdOw8Z9q1botql29vCaP6B7v5wRYvlsr3rzT+f+C9PdHzgArS9FYle9IgOVNc8ZGwIoCBFhW7Ao1IeA7AQIs31lzJ+sIEGBZpxdUEvgCtgmwKjV4WcWLFNC8aYPjulL7sc4qWaKwpo9+85ZOGaHK0LGf6PfN2zV7fB+VL1087px/du7Tky8P0OONamtor3a27/LSVRvVbeAkGWFT2VJFzRDp3/8O6sixUzJe3j57Qh+VKHpbvHnWaNxJxvvA7ixWSAtnDk1VgOV4mbwRkN1eKJ8KFchjhmWHj57UngNHFBMTa75oftK7XZU1c0YCLNuvuFsncPGg9NeE0LgfZLpNqtglKgBnypQQQCApAQIs1gcCaVuAACtt9z+tzp4AK612nnn7Q8A2AVaFem1Vqdyd5mN/jqNivXZ6sFYljR38WoJ2xkvOG7TsaYZXHw7vGnfO+YuXdW/jTgnuCPJHEzxxz23/7tVHs7/Thr/+1cVLl5U7V3bzkcEOzzdN8N1YQ8Z8ooWLV5vvFGvdomGqAqzIyCgtWLxay1Zv0I7dB3Tm7AXFxkrZs2VW6TuLqPFDNdWobnWFhNz6iVl2YHmi+/4f48rxIG0a7dyBlSFPrCr1YAeW/ztDBQj4VoAAy7fe3A0BqwkQYFmtI9TjCwECLF8ocw8ErgvYJsAydgwZ776aM2VgXO9qNn1VxYsU1KcT3060n+3fHK0t//wX9xVC40THY3HG+69uDMRYFL4XIMDyvbk37njtTJA2DHcGWOHZY1X1LQIsb1gzJgJWFiDAsnJ3qA0B7wsQYHnfmDtYT4AAy3o9oaLAFbBNgPV42746cvy01i76IK4bHXq9b36J8JuZfr3huQAAIABJREFU76hYkQIJdsl4VNB4H9bGn6bG/dyxA6tOjYrxdmYFbputOzMCLOv2xp3Koi5Jvw92PkIYmkm6pz+PELpjyLkIBIIAAVYgdJE5IJByAQKslNtxpX0FCLDs2zsqt5+AbQKst4ZN1bc//arvPnnXfBeWcSxfs1mv9hmrIrfl1cAebVS9Uul4HXC8rL1CmRLm1+8ch/Fi8Uateqlpg1p6t8/L9utaAFVMgBUYzYyJkNb2cwZYweFSjSEEWIHRXWaBgOsCBFiuW3EmAoEoQIAViF1lTskJEGAlJ8TPEfCcgG0CrO+XrtWbQyarS7sn1P75JnECA0fN0pxFy82/N3ZhGWFWeFiYuetq977D5q9PeOd11a1VKe6aRUt+U6+hHwXEVwg9txT8MxIBln/cvXHXNb2cAZYxfs0RBFjecGZMBKwsQIBl5e5QGwLeFyDA8r4xd7CeAAGW9XpiVGR81O3bH3/Vuk3btGf/UZ2/eEkZ0qdTnlzZVTBfLtW6p7werFnJzA9uPB588g0dP3k23q+lCw9TzhxZVabk7eb7nRvcXzXBSSd07c0nNnzwHo0e0Cnul41cwsgnkjpy5ciqlQvGx53i2JBj/ELv157V8082SPL6Pu9O1Tc//mp+3K1y+ZLWbJiLVdkmwLp85ZrqPdVV4eFhWvz5SGVIH25OMTY2VrO+WqyPPv3O/KrejYfxBb5erz2rZg/XivfrjkUSCA10sc+WPY0Ay7Ktcbuw3/qGKjbSeZmxA8vYicWBAAJpR4AAK+30mpkikJAAARbrIi0KEGBZq+vGB8Ymzlyg6V/8z8wKjKNA3pzKljWzLl66ouOnzioi4vpvWmpWLaepo3rEm4AjhDKCnvCw639Af/nqNRmh0dlzF82/r3tfZb0/8FWFhTrfAWz8uuPa8ncVU2ho/D/cd9zk3ipl9Gqbx+Pu6cgmihbOrxzZsiSImT1rZk0c9nrcz24MsNKnC9fCmUPN94UndhBg+WmNfvDxN5o0c4Gee6K+3urcKl4VV69FaOOWf3Xw8AlzoRYqmFdVKpSU0dAbj8NHT5qPD+bJlU2Lvxip0JD4i85PU0uztyXACpzWG+/AMt6F5TiMd2AZ78LiQACBtCNAgJV2es1MEUhIgACLdZEWBQiwrNN1I5hq03WENm/dZYZBrzzXWI8+dK+MHUw3Hv/s3Kdfft2kGlXK3LIjyRFCrZg/TrlzZou7zMgYVv/+t7oNnKTLV66qZ6eWav10w3jjJnZtUkKOAGtkv456pF51lzAdAZaxqefK1QjdU+kuzXi/l4KCghK8ngDLJVbPn2QsyOYv9dee/UfUp8tzatX8IbduYnx9sM0bw7Vxy06Xttq5NTgnp0iAACtFbJa8aP27IYo46/wfzSq9o5Uux/U/9eBAAIG0IUCAlTb6zCwRSEyAAIu1kRYFCLCs03XH64WMd2ZPHd1T+fPkdLu45EKoL79ZpiFjPlHpO2/X3KmD/BpgPd30Qa3dsM3cHda/6wtq0awuAZbbHffyBfsOHtMznQbr3PlLMhrW7ZWnlCVzxmTvapzfY/CH5lcLK5e/UzPH9mb3VbJq3j+BAMv7xr66w6ZRIbpywhlgVeoerQx5CbB85c99ELCCAAGWFbpADQj4T4AAy3/23Nl/AgRY/rO/8c5/79ijFu0HmY/1LZgx1Hw/dkqO5AKsXXsOqVmbt80MYu2iD/waYD3eqLaM/3uhyzBlzJBe3348zHxc8uaDHVgpWQkevOa//UfUsdf7OnjkhIz3XDV/tI7q16mqMiWLxnsO1djm9+9/B/XzivX6fMESnbtwSXcUu03TRvU0X97G4X8BAiz/98BTFfw5PlSXDjlHq9g5SpkKeWp0xkEAATsIEGDZoUvUiID3BAiwvGfLyNYV8FWAFbl+taL/22FdCA9XFla1lkKK3+XyqIPe/1hff/uLGegM7dXO5etuPjG5AGv7rv164qX+KpAvl5Z8NdqvAdbDD9yj9wd20tCxs/XFwqW6757y+ui97gRYKe6+Fy80njudNHOh2ahr//8StpCQYOXLk1MZM6ST8dL3M2fPm8+EGofxPGjTBjXV943nzXSSwxoCBFjW6IMnqtjyYYgu7HXuwCrXPlpZi7MDyxO2jIGAXQQIsOzSKepEwDsCBFjecWVUawv4KsC6POU9RSz51toYHqwu4ys9Ff5QM5dHbPLCWzI2uowf0kX1ald2+Tp3AyzjA3IjP/zS3EAzdvBrfg2wjJfJTxjaxXwnV7M2fWW879sI74wQ78aDHVgpXg6ev/DMuQv639J1WrXuT/2zc79Onj4XdxPjc5fGjqsalcuYTUzpNkLPV82IDgECrMBZC9umhejsTmeAVaZttLKXIsAKnA4zEwSSFyDASt6IMxAIZAECrEDuLnNLTIAAyztrw90A6+6H2ikyKlrfzx4u44t+KT2S2oG1at1feqP/REVHR+vzD/qZT4DdeDiurVimhML+/wuGN9cxsHvreLmE4yXuxnu7ct70snnHtS2b1VWjus4XvDte4n7/vRX1wbtdzdN+W79VL/UYqayZM5qPEt74xBkBVkpXgw+uMz6beenyVaVPH37LFwh9cHtu4aYAAZabYBY+ffsnwTq9NTiuwlLPxyhXuRgLV0xpCCDgaQECLE+LMh4C9hIgwLJXv6jWMwIEWJ5xvHkUdwIs42NtFetdf2zw5q8HOsbt994Mzf/fyluKNYIoI3ByHI4QyvhCYXhYmPnL165FaM+BIzp+8qxyZs+id/u8Yj6ud/PhuDYpka8+GqBypYrFneIIsJK6pkeHFmrTslHcKY4Aq06Nivpw+PUAyzgcc3TszHL8OgGWd9Yoo6ZBAQKswGn6zi9CdGKzcwfWnS2jlacSO7ACp8PMBIHkBQiwkjfiDAQCWYAAK5C7y9wSE/BVgMU7sJJeg5UavKyIiEj98NkIFbkt3y0nT/v8ey1fsznu13fsPmA+epdYgJXQ3SqUKaGZY3olulEmufdnJTSmI8Aa2a+jHqnn3GWV1GwTC7AuXLyspq37mEHbjeMRYPG/Xwh4SIAAy0OQFhhm97wQHfvdGWCVaB6tfNUJsCzQGkpAwGcCBFg+o+ZGCFhSgADLkm2hKC8L+CrA8vI0bD98w2ff1IHDxzV5RHfVrn7r7qibJ9iy42Bt+ee/RAOsG3dyGa8peuS5XuZ7tr+aPEBlS8V/dNAxtr8DLKMOI6R7tc9YZc+WWd99/K65Y6zviOla8MMqzZ7QR5XLl7R1r4NijU/1cSDgJwECLD/Be+G2e74L1pHVzkcIizaJUcH7eITQC9QMiYBlBQiwLNsaCkPAJwIEWD5h5iYWEyDAskZDer3zkRb9/JtefOphvfnqM8kW5U6AZQz28Zwf9d6kL8zH/774sL+Cg51/cG+lAMuoxbGrq+GD92j0gE5yfKGRACvZZcEJCCQtQIAVOCtk/+JgHfzFGWAVeThGheoSYAVOh5kJAskLEGAlb8QZCASyAAFWIHeXuSUmQIBljbXh2HmUJXNGLf7sPXMHUlKHuwGW8Z6t5u36a/feQ+r7xvN65rF6twxvhR1YRlFnz100HyU8dea8+VXGjVv+1ayvF7MDyxpLlSrsLECAZefuxa/94NJg7f/JGWDdVjdGtz9MgBU4HWYmCCQvQICVvBFnIBDIAgRYgdxd5kaAZe01YDxY9tQrA/XPzn0yXsA+YejrypghXaJFuxtgGQP9vmm72nQdLiMkW/TJu8qdM1u88a0SYBlF/bj8D3UbOMms8eEH7tFn838mwLL2EqY6OwgQYNmhS67VeHhVsPYucgZYBWrHqFhjAizX9DgLgcAQIMAKjD4yCwRSKkCAlVI5rrOzADuwrNM94+XmLTsM1rkLl1S8SAG91vZxPVCzktKFX/+aoOOIjIrWMx0Hm2FXYi9xT+xrht0GfqAfl/+uxvXv1Yi321s2wDIKe6P/RP28cr05/2sRkQRY1lmqVGJXAQIsu3bu1rqPrgvWf/OdAVb+6jEq3pwAK3A6zEwQSF6AACt5I85AIJAFCLACubvMLTEBAixrrY19B4+p64CJMr4yaBxhoSEqWriAsmbJqKioaDPcOnj4hIxHAo3D3QDr6InTavx8b125GqEZY3qpeqXScQCOHVjl7yqm0NDQBGHurVJGr7Z5PO5njvdVFS2cXzmyZUnwmuxZM2visNfjfpbYVwhvvth4+bzxKOG585fMH/EOLGutVaqxoQABlg2blkjJxzcGaddXIXE/zVM5Vne2uP4vBg4EEEgbAgRYaaPPzBKBxAQIsFgbaVGAAMt6XTceJ1yyaoN+XrFef27brdNnz5uBk7ETKVvWTCpUII8qlrlDVSqU1L1Vy8bboeXKY4BTP1uksVPnqliRAlowfYjCwq6HVY5rkxJxvFjdcY4jwErqmlw5smrlgvFuB1jGBd/9tEa9h00hwLLCMt2+a78yZkivIrfldamcyMgo/frH38qXJ4dK33m7S9dwkncFCLC86+vL0U9tCdaOT507sHKVi1Gp59mB5csecC8E/C1AgOXvDnB/BPwrQIDlX3/u7h8BAiz/uHPXtCkQFGvEkzY9yj7QWjUql9H09990aQbGVKs2bK9CBfPom5nvuHQNJ3lXgADLu76+HP3M9iD9M9O5Ayt7qViVacsOLF/2gHsh4G8BAix/d4D7I+BfAQIs//pzd/8IEGD5x527pk2BNBVgGS2u37KHzp67oD9++ChtdtxisybAslhDUlHOud1B2jrFGWBlLR6rcu0JsFJByqUI2E6AAMt2LaNgBDwqQIDlUU4Gs4kAAZZNGkWZASGQpgKsiIhIVW/cScZOrM0/TwuIBtp9EgRYdu+gs/6LB4P01wRngJX5tlhV6EKAFTgdZiYIJC9AgJW8EWcgEMgCBFiB3F3mlpgAARZrAwHfCaSZAOvS5at6Z9xsffPjrypxe0F9+/Ew3ylzp0QFCLACZ3FcPiZtft/5tY0MeWNVqTsBVuB0mJkgkLwAAVbyRpzhusD580Gac8PXbTNmjNUzT/NuRdcFfX8mAZbvzbmj/wUIsPzfAypIOwK2CrA+m79Eny9YEtedvQeOKn26cOXPmzPJjhmfyzx6/HTcpzK7d3habVs+kna6bOGZEmBZuDlulnbtdJA2jHDuwEqXI1ZVehNgucnI6QjYWoAAy9bts1zx+/cHados579XpFgN6hetoCDLlUpB/y9AgMVSSIsCBFhpsevM2V8Ctgqw1qz/W5NmLjQ/hZnSd88/8WgdDejWWiEhzq+l+Quf+0oEWIGzCiIvSH8Mde7ACsssVesXFTgTZCYIIJCsAAFWskSc4IbA39uC9fXc+P+91rNrlLJkcWMQTvWpAAGWT7m5mUUECLAs0gjKSBMCtgqwHB05e+6iFv64WiM/+FJFC+fXs48/lGSzgoODlD1rZlUsU0IF8+dOE421yyQJsOzSqeTrjL4mrevvDLCCw6UaQwiwkpfjDAQCR4AAK3B6aYWZrPs9WN8vjh9gdXgpSgULWqE6akhIgACLdZEWBQiw0mLXmbO/BGwZYDmwHm/bVzmzZ9X099/0lx/3TaUAAVYqAS12+ZpezgDLKK3mCAIsi7WIchDwqgABlld509zgS5YFa+Xq+AFWq5bRKlUyNs1Z2GXCBFh26RR1elKAAMuTmoyFQNICtg6wjEcK9+w/qlbNk96BxSKwrgABlnV7k5LK1r4dqpgbMqsaQ6MUHJaSkbgGAQTsKECAZceuWbfmhd+GaOPm+C+8avJojKpV4UXuVu0aAZZVO0Nd3hQgwPKmLmMjEF/A1gEWzbS/AAGW/Xt44wz+GByqyEvOX6k2IEphGQNrjswGAQQSFyDAYnV4UmD25yHauSt+gPVAnRjVfYAAy5POnhyLAMuTmoxlFwECLLt0ijoDQYAAKxC6aOM5EGDZuHkJlL5peKiunHH+oEqfaKXLxqMegdVlZoMAARZrwDcCH04J1ZGj8e9VpXKsmjXmC7e+6YD7dyHAct+MK+wvQIBl/x4yA/sIBESAtf/QMf20Yr3+23dYFy9fUWxM8r9hnvDO6/bpUgBXSoAVWM396/1QXTzmnFPlHtFKnyf5fx4DS4HZIJB2BdiBlXZ7742Zv2f8O+Vi/JFL3hmr554hwPKGtyfGJMDyhCJj2E2AAMtuHaNeOwvYPsCa+tkijZs2T7Gx7v0meevyWXbuW8DUToAVMK00J7J1YpjOHXD+s1ixS5Qy3RZYc2Q2CCCQuAABFqvDUwLGf9YNGBIiKf4jhPnzS51e4QMhnnL29DgEWJ4WZTw7CBBg2aFL1BgoArYOsIyXuL/cY5TZi0wZ06timTtUIF9OhQTH/2JNQs0a0L11oPTQ1vMgwLJ1+24pfseUMJ3a7QywyneMVpai7oXLgSXCbBBIWwIEWGmr396c7YUL0sgx8b9sa/73XiapV3cCLG/ap2ZsAqzU6HGtXQUIsOzaOeq2o4CtA6zOb4/Tsl83qUqFkho3pLNyZMtixx6k6ZoJsAKr/bs+DtPxbc7AqsxL0cp+JwFWYHWZ2SCQuAABFqvDUwLGu6+Md2DdesRqQN9ohST/Z5WeKoVx3BAgwHIDi1MDRoAAK2BayURsIGDrAOv+5q/r5OlzWjBjqEoWL2QDbkq8WYAAK7DWxN4vwnR4szOwuuuFGOUsy9eiAqvLzAYBAizWgPcF/t0ZpE+/MB4hvPXo/nq0svGBEO83IQV3IMBKARqX2F6AAMv2LWQCNhKwdYBVsV47BQUHaeOPUxUcHP8dCTbqQZoulQArsNp/YF64DvzuDKxKtoxW7krswAqsLjMbBAiwWAPeF9i4OUgLv004wHq5XbQK38a/W7zfBffvQIDlvhlX2F+AAMv+PWQG9hGwdYBVs8mrio6J0brvP7SPOJXGEyDACqwFcfi7cO1d7QywSjwRrXz38JuMwOoys0GAAIs14H2BFauCtfSXhJ8TbPl0jMrcxe5e73fB/TsQYLlvxhX2FyDAsn8PmYF9BGwdYD3feZg2bvlXq7+ZwPuv7LPmCLBs2itXyj7+Y7h2LXP+pqJYkxgVuI/fZLhixzkIBIIA78AKhC5aYw7fLw7Wut8TDrAebRij6vfw7xZrdCp+FQRYVuwKNXlbgADL28KMj4BTwNYB1tff/qJB73+s3q89q+efbEBfbSjADiwbNi2Jkk/9Eq4di52/qSjSMEaFHuQ3GYHVZWaDQOICBFisDk8JfDUnWFv/STjAqnNfjB6qy79bPGXtyXEIsDypyVh2ESDAskunqDMQBGwdYEVHx6j1G+9q27/79P7AV3X/vRUDoSdpag4EWIHV7nNr0mnrN9FxkypUL0ZFGvCbjMDqMrNBgACLNeB9gWmzQrR/f8LvN727YqyaN3P+u8b71XAHVwUIsFyV4rxAEiDAskY39x86pkatet1STHh4mLJmzqiihfOrZtVyerrpAwk+vdVr6EdatOS3eNeHhYYoa5ZMKlG0oOrWqqynmjyg9OnCk5zw8jWbtXj579r89y6dOnNOUdExypkti8qUKqqHaldR44fuVchNn9I9d+GS7mv2mjnumm8nKUvmjAneo3Pf8Vq2eqPurVpW00b1TLSOR57rpX0Hj2nGmF6qXqm0ed6DT76h4yfPqu59lTVhaJck57Dgh1XqO2K6Ordtrg4vNLVGg/+/ClsHWGfOXdDf2/eq1zuTde78JZUqUVhVK96l/HlzKF140gurVfOHLNWItFoMAVZgdf7i+nT6a47zNxUFa8eoaGMCrMDqMrNBgACLNeB9gXETQ3TqdMIBVonisXrxOQIs73fB/TsQYLlvxhX2FyDAskYPHQFWhvThqly+ZFxR1yIidfzkGe0/dNz8tWxZMmnqqJ4qW6povMIdAdYdxW5T7hzZzJ9FREbq6IkzOnz0pPn3txfKp5ljeitfnhy3TPrk6XPqOmCS+Yoj48iUMb1uy59boaGh5v2NnxtH8SIFNH5oFxUrUiDeGC07DNKW7XvMcMkImW4+IiOjVLPpq7p85ZpCQ0LM1yglFHQdO3FGdZ/qagZtv303SUaAZxyOAMv465H9OuqRetUTbRwBlpfWdNkHWqd45K3LZ6X4Wi70nAABlucsrTDSlb/SadNnzt9U5KsRoxKPE2BZoTfUgIAvBHiE0BfKaeMeA4eGKCYm4QArbx7ptY5RaQPCZrMkwLJZwyjXIwIEWB5hTPUgjgDL2Gn1/ezht4xnhFD9R83Ub+u3qvSdt2vu1EHxznEEWAmFO7v3HlL3QR9q556DeqDm3Zo07I141164eFlPtx9ohmQlit6mnh1bmLukjKDJcezYfUDjp8+TsUPLCNG++miAChfMG/fzcdPmacqn36lV8/rq06XVLfWv/n2L2r85WjmzZ9HpsxcSDaG++2mNeg+bovvuKa+P3useN44RYBl1XrkaoezZMuu7j981x0roIMBK9XJMeIBHn++d4pETWtQpHowLUyxAgJViOkteGLkjnf6Y4Qyw8lSJ1Z1P86fklmwWRSHgBQECLC+gpsEhIyKloe+GJjrzDBli9VZP/t1ixaVBgGXFrlCTtwUIsLwt7Nr4yQVYxihG8FPn8S6KjY295UNwSQVYxrW79x1W0xf7KDg4SL9+O8l8LNFxGI/bGaFPmZJFNWtsb3P3VUKHcd9+780wz61YpoQ+/6Bf3Gm/b9quNl2Hy9gB9s3Md265/J1xs/X5gqXq9GIzffDxN2pUt7pG9e94y3mOWnp2aqnWTzeM+7kRYOXMnlV3FL3NfFSy4YP3aPSATgnWSYDl2prjrDQoQIAVWE2P2ZNOayc7f1ORq3yMSj3HDqzA6jKzQSBxAQIsVocnBE6fDtLYic4/tc6ZI1anz8TfjTW4PzuwPGHt6TEIsDwtynh2ECDAskaXXAmwjErveaSDLl2+qmVzxsR7FDC5AMu4tlaz13T23EXNmzZYd91RxJz40ROn1aBlDxnv5zaCJyOASuowdkA1fLan+Ujh9PffVI3KZczTjUcE723SydwhtXLBeOXKkTXeMMY9jMcDVy4cr4ef6fn/IdxEGe/puvGo37KH+cjjghlDVbJ4oXgBVnhYmL6aPEBNW/fRqTPnNX5IF9WrfevjigRY1ljTVGFBAQIsCzYlFSUFHUqvX8c7f1OR465YlW7Dn5KngpRLEbCVAAGWrdpl2WL3HQjS9JnO/yC/vXCszl2Qzp51hlhvdI6WEWxxWEuAAMta/aAa3wj4KsD67txebbh0wjeTssBdmmQvqioZ87hciSsBluP9UMYjfL9+O1FBQc5/r7gSYNVo3Ml8DO+nL0eZ77cyjq++WabBYz5R1Yql9PG4t1yqd9TkrzTzyx/0dNMHNaDbi3HXdOg1WqvWbbnl8cBdew6pWZu3VaVCSX0yvo96DvlQ/1u6TlNH9TBfTO84Dh45YYZbuXNm04r54+LVYuzAioqK1qqFE/Tj8j/UbeAk87xvPx5mPtJ440GA5VIbOSktChBgBVbXw06m14qRzgArW/FYlW1PgBVYXWY2CCQuQIDF6vCEwNZtQfpqrjPAKls6RucvBunAAedvNNq1jtbtRQiwPOHtyTEIsDypyVh2EfBVgNV+3wpNObnNLiyprvOj2+/XK7mv705y5UguwLp46Yp6DP5Qq9b9Zb5jynjX1I1HcgHW1h17zfdcGe+NWj5vXNyXBN8ePk0LF682v9ZnfLXPlcP4kqDxRUFjF5exm8txzPp6sUZ+8KWebHy/BvVoE/frUz9bpLFT56rrK0/ppWcfNcMrI8R65rF66vvG83Hnzft+pfqPnKHG9e/ViLfbxyvFCLCM3V1rF31g/vob/Sfq55Xr1ezhWhr21svxziXAcqWLHjjH+MKA8bnI8xcuKX36cJUrVcwDozKENwUIsLyp6/ux059Pr2XvOAOszIVjVeE1Aizfd4I7IuAfAQIs/7gH2l3X/h975wEdRdXF8f/MpBESOoEQeu+EQGgCIk1FVIqKXcSChaKgolSRIigiIKjYaJ9dUBAVRJDee++995a+M/Odt3HzZjdty+zuzO5953iOJK/c979vdvb9ct99m0T8+ZeYNa2miQpu3wb27OM/e6S7jLp1CGAZzfcEsIzmEbLHFwoQwPKOyu4CrMgCEbgjkUclyYqCq9duYt+hE9ZbBHv2uNcKbRxLXgDr6Mlz6Dd0Co6dPIfB/Z7EE93aZzVnidVZgvVRb/VCt06tnRJj/+GT6P78cCsMYxFRtnLw6Gl07TXUmtx90XcfZP38yT5jsG33oawjiiwKrOWDfa0RVEt/nphVzzYHBqQc58gAFoN4m/6abq3PjjCyo4Q3bibh8/ED0appvax+CGA55Ub3KzFHf/LNPKxavwMZlszNco0q5TDv61F2nU795ldcuHwN/Z/vbnU2Ff8rQADL/z7Q04Ko1Aj8PYIDrMhSQPwAylOip8bUFylgZAUIYBnZO+axbckyAatW8wisDm1V3LqtYv1GDrDu6aCgRXPKsWg0rxLAMppHyB5fKEAAyzsquwuwcrMmNDQEHVs3tiYvb9sye94nG/xhUVExJYpau2FH7s5fvAIGsFj7V3t2wQtPdLYbwgaXWEJ1lljdmWKLFgsLC8W2v7+0a3Jnt/5WuLTkhwkoU7qEFTC17NIHsTHFrUcXbaXX6+OxYds+/PzFu9bk8ay06f4aLl25jn9/mYSYEkXs+rXdQrh50RdZP7fdWFi6ZDHrUUJb8nkCWM540c06LOztzVGfW5OeaUtOAGv0pDn4/relePPlR9GzB8/I7+bQ1EwHBQhg6SCigboorBTAX+9kZFkUUUxFwiCKwDKQi8gUUsCrChDA8qq8QdP5vPkStu/gxwW7PCAjKUnAkqUcYN3RXMHdHQhgGW1REMAymkfIHl8o4CuARTmw8vZmbkcIWXL1G7eSsGvfUXz13UJs3XUoxxv8bAArp1FYVBcDPLExxbL9Ws8ILNb5oDHTsXDJOowe9By63tsKNsjP/9hEAAAgAElEQVTEor5Y9JetzPnlb4yb+h1efvpB9OnV1QrZ7n/6HVSpGIcFM7PfYpgTwGJ9vfLOx1ixbgceub8NRgzsae2eAJaXPjnYIn3w2aFIT89AtUpl8XjXdihfthSeG/BBjhFYazbtxotvTkDzxnXw1YQ3vWQVdeuKAgSwXFHL+HWLhRTAwoEcYIVGA4lDKQLL+J4jC0kBfRQggKWPjsHey+xvJRw+wgHWk4/JSE4B5v3Go7Lq11XxUDf6A4nR1goBLKN5hOzxhQK+Ali+mIuZx8gvBxabm0WW0aP3SLAjfOOH9kbn9s2zppzTEUJVVfH4q6Oxc+8RDHr1MTz98N3ZJBo6/msr8LGBJGc0/HftNvQZPDlbDizWluXTYnm17u/YAuMGv5iVsP2LD9+wOxppS9huy6NlSyb/1EMd8Xafx7OZkRvAYont2VFCdrzwm48HoWnDWpi/eA0Gv/+lNacXy+1lpCKozCsmLSM/momffl9uTVL2/jsvQhQzv+zUadMzR4B17uJVtH9kgDWcjoXVUfG/AgSw/O8DPS2IiSyA3/pygCWFAU1HEcDSU2PqixQwsgIEsIzsHfPYNm16CC5c4Pa+/KIFKSkCZs7hAKtSBRXPPkMAy2heJYBlNI+QPb5QgACWL1TOfwxnABbrxZYQnUU3sSgnW8ktBxZL3t7jpZEoEBGOP+aMy3Y076cF/2LkxFlo0rAmZnz8dv6GApg4/Sd8/f2f6PFgWwx//Wm7NhcvXweDTeyWw8Xff4jWXfshNS0daxdMsx5j1JYHeg7BkeNnrDcOsmisv5ZtwGfjXkfrZg2cBlis4i8LV2DEhBkoG1sSv80Yg+Vrt1kT3hPAcsqdzldiV0Qy8uh4xjM3gMWIa3z75xESImH7kq+cH4hqek0BAlhek9YvHccWjcDcFzXASlDRYhxtMPziDBqUFPCDAgSw/CB6AA45/qMQJCXxib35ugWpaQI++ZQDrOLFVPSnS0IM530CWIZzCRnkAwUIYPlAZCeGcBZg2W76u7N5A3z6/uv5AixW4d0JM/HzwuW4u00iJr77ajbg1KHHQGt018LZ76NS+dg8rWUXz93z+JtgoIoBLwa+HMsDzwzGkRNnrafGnn/jQ7RrlYApo/plq8duJmRAjuXf+vCzH3Dl6k2sW/gpIguEuwSwWOXnBn6A9Vv24snuHdC8UR28OngSASwn1p1LVeI7PI/C0QWtxFFbcgNYrE7Dji9AkRXsWPq1S2NRZe8oQADLO7r6q1f2Ap/bOwOqhlk1G2OBaP/HAn+ZR+OSAqSAlxUggOVlgYOge3YuYMQoBqpsRwhVjBwmIy0NGPsBf5mEhqoY9g79gcRoS4IAltE8Qvb4QgECWL5QOf8xnAVYtpxP7DggOxZoK3ndQnj9xm10enKQNZfW9A8GomUTfmMfa287Rli/dhV8M3EQCkSE5WrwmMlz8N2vS5FQrxrmfDIkx3pjp3yLb+ctsR5xXPjPulxvONyx9wgef2UUutzT0nr0sHGDGpg1+Z0c+8ztCKGt8pnzl9Hl2SFISU1Hv+e6YfJXcwlg5b/sXKvRpNNLCJEkrP19mlMAi2XzZ1n92Q2EjtDLtZGptl4KEMDSS0lj9MNe4PP7ZiAjhdvT5F0LQgoYwz6yghQgBbyrAAEs7+obDL3fvCVgwsc80ioqCnjrv9tsR70vISOD58Ya8rYF4bnvEYJBLsPNkQCW4VxCBvlAAQJYPhDZiSHyA1gsb/aMHxdhytdzramH5n41CtUrl3UKYLFKP8xfhlEfz0b5uBjrMbvwsNCstrduJ+OR3u/i5JmLqFWtAt565TEkxteAIPB31onTF6xQaPHyjShSOAo/TX/Xekwwp7J87XZrBBQDYQwoMXbBGIZjURQVbbr3R3JK6n/gqTt6P3W/WwCLNfp23j8YO+V/1rmxSDE6QujEwnOlClsk7EzqbzNGW5O420puEViMdDLi6Rgu6MqYVFdfBQhg6aunv3tjL3CWxD31Brek8RAZYYVMm2rP35LS+KSAqRQggGUqdxnS2LNngc+/4pFWsaUBlgOLlUnTJFy9wjcD/V6VUaI4vV+M5EgCWEbyBtniKwUIYPlK6bzHsQEsdnyuWULtrMqKquLmrSTsP3zKCnokScTQ15623rqnLXlFYLF6DBY9/OIIawL4V555EK8+29WuPQuWeW34VGzbfcj686KFo1G2TEmEhkg4f+kazp6/bP15lQplMGV0P1QsVzrXCTE7m3d+1XossW6NSvhx+ohc69qiv1iFHz4bjnq1KudYN78ILNaIpUd/ut/72LrroLUPAlg6r21bAjaWKf+z8QOyKGhOAItdK/nkq6OtYX9j33kBD959h87WUHfuKEAAyx3VjNuGvcD/GpyBpIvcxoZvyChQkjYYxvUaWUYK6KcAASz9tAzWng4cFPDtDzwCq1pVFU89nnlU8JtZEo6f4ACr59MyKlek94uR1goBLCN5g2zxlQIEsHyldN7j2ABWTrVYRFHpmGJIjK+JJ7p1sIu8stXPD2Cxetv3HMYTr462JlOfP2MMKpQtlW04dsPgomUbrSDr6vWbkBUVRQtHoU6NSujQuhHua9fcCtHyK0/1HWsFSQyUMWCWW1m2eiv6Dp2C6KhIrJk/Nde+nQFYbAwWKda111CKwMrPQe78PjklzXrl47kLV1A+rhRefbYLmsTXsmbtr1GlHOZ+9Z7VAYuXb8LX3/+BpORU689/+uJd69FDKv5XgACW/32gpwXsBb7kXQtunOYbigb9LShYRs9RqC9SgBQwqgIEsIzqGfPYtWWrgPkL+Xe0hHgVXR7IBFg/z5Wwaw8HWN27ymhQjwCWkbxLAMtI3iBbfKUAASxfKU3jkAKAoLI4MROXYyfP4fmBH+L8pat2s2DnWkVBtIbd2Qq7FvKbjwfletbUxDKY1nQCWKZ1XY6Gsxf4srEWXD3KP1bqvSIjuoKpP2YCy0k0G1LAiwoQwPKiuEHS9YqVIpYu53+Zbt1SQfu2inX2i/4WsXY9/13H9gpatsj8HRVjKEAAyxh+ICt8qwABLN/qTaMFtwKmB1jMfTdvJ+PzWfMx98+VuJ2kyR79n28jwsPQ/b47rRFa7NZCKsZRgACWcXyhhyXsBb7yIwsu7uPAqs4LMgpXJYClh77UBylgdAUIYBndQ8a3b+FfIjZu4pDqvnsUNG2SCanWrhOxaAn/XfOmCu69mwCWkbxKAMtI3iBbfKUAASxfKU3jkAIBEIGldSKLttp36CTY+dekpBQUiAhHmdIlUK9mJYRpbgkgxxtHAQJYxvGFHpawF/iaTyw4t4MDq1o9FRStRRsMPfSlPkgBoytAAMvoHjK+fT/8JGLvfg6pHnlIQd3ame+QXbsF/DyPHy+sU1tBj4fo/WIkrxLAMpI3yBZfKUAAy1dK0zikQIABLHKo+RQggGU+n+VlMXuBr58u4/QmvqGo/riMEg0oAiuwPE2zIQVyVoAAFq0MTxX4coaEU6d4nqvnesqoUD7zHcISuLNE7rZSvpyK55/lqSI8HZvae64AASzPNaQezKcAASzz+YwsNq8Cpj5CeP/T76Brp1Z4oOMdKFGssHm9EMSWE8AKLOezF/jmGTKOr+EAq+pDMmISCWAFlqdpNqQAASxaA95R4OMpEq5d5wCrfx8ZxYtlvkOuXBEweRoHWEWLqHi9HwEs73jCvV4JYLmnG7UytwIEsMztP7LeXAqYGmDVadPTqjZL2N6qaX10vbcV2jSPt15rScUcChDAMoefnLWSvcC3fSvjyL8cYFV6UEEsJdl1VkKqRwqYWgGKwDK1+wxh/LujJSgKB1gjhlhguzhaVoCRo/l3PFFQ8e4wAliGcNx/RhDAMpI3yBZfKUAAy1dK0zikgMmPEI6cOAuL/92IG7eSsnxZpHAUOrdvboVZNauWJx8bXAECWAZ3kIvmsRf4rl9kHFjEAVaFTgri7qQcJS5KSdVJAVMqQADLlG4zjNGpqcDYDzigCgsDhr5tsbNv7PgQpKbxH739pgWRBQwzhaA3hABW0C+BoBSAAFZQup0m7ScFTB2BxTTLyLBgxfodWPD3GqxctwMZFv6XOAawunVqhfvaNQcDW1SMpwABLOP5xBOL2At87wIFexfw57BcewXlOhDA8kRXaksKmEUBAlhm8ZQx7bx8RcAUzRHBYsVVvPaqfYTVJ59KuHSZR2i9+pIFpWKMOZ9gtIoAVjB6neZMAIvWACngOwVMD7C0UrFIrEXLNmDhP+uwddehrF+Fhki4646G1qisOxLrQZL47Ta+k5pGykkBAliBtS7YC5xFX7EoLFsp01pGxfsoB1ZgeZpmQwrkrIB8KhS3TghITZeRYXEdXBepAURXoM+LYF1fx44LmDGb57iqWEFFr2fsAdbMORKOHuMA6+knZFStQmvGKGuGAJZRPEF2+FIBAli+VJvGCnYFAgpgaZ15+twlLFyyDr8vWYvjp85n/apk8SJ4oGMLDOj9SLD73hDzJ4BlCDfoZgR7gbP8VywPlq2Ubq6gchfXN7K6GUUdkQKkgM8UODxHwsXdHC64OnB4URWN3qacRq7qFij1d+0W8PM8DrDq1FHRoztfD7dPCli2RsLOgwLShUxo1fUBGQ3jCWAZZQ0QwDKKJ8gOXypAAMuXatNYwa5AwAIsrWP3HTqBxcs34d+123D42Bnrr/YsnxnsvjfE/AlgGcINuhnBXuAn1irY9A3fcMQ0VlD1YQJYuolMHZECBlZg8+gQpN/yzMCK96oo04YglmcqmrP12nUiFi3hUfLNmyq49+7M98fVPSL2z+a/SxVULI8U0PYuBW1a0TsmJ4/vmyki9TKQkSJAThEQ319GgVLehX0EsMz57JHVnilAAMsz/ag1KeCKAkEBsPYcOI6/VzCAtR1HjhPAcmWBeLsuASxvK+zb/tkL/PQmBeun881nifoqqj9Bm1HfeoJGIwV8r0D6DQGbx/LoGXctEEOBRoNkhEZ7d6Ptrn3UznsK/P2PiNVrOaRq31ZB65aZcGrv1yKuH7RPAbE0EmiYqKBzJwJYOXll7SD7W7lrPKmgeD3vakUAy3vPB/VsXAUIYBnXN2RZ4CkQsACLHRtkxwf/XLoeJ89czPJcbKni6HJ3S/Tp1TXwvGnCGRHAMqHT8jCZvcDP7VCx5hN+a1TRWgpq9fTuF+bAUpFmQwqYU4Eru0Qc+B8HDAViFJSo5xyEOrdOhCWZHz0skaCgeg/63DDnSnDf6nm/Sdi+k6+Dbg/KiG+gIu2agC3jssPR9QWA2FoKHqO1kk10OU3AhuH2mpXrqKJcO+/+QYkAlvvrn1qaVwECWOb1HVluPgUCCmBdvX4Lfy3bgN//XoNd+49leSM8LBQdWje2JnFvmlALguB+fg7zudjYFhPAMrZ/XLWOvcAv7lOx8iMOsApVUVH3Re9+YXbVTqpPCpAC+itw/A8RZ1dygFW2nYLyHZ2DUOc3iDg6zz66pl4fC6LL6W8n9WhcBWb9T8KRo/w72lOPy6hWVcWJxSLOLMt+Ac+uMECooOLF5+kd4+jV1MsCtn5oD7BKNFBR/XHvakUAy7jPF1nmPQUIYHlPW+qZFHBUwPQAKzUtHf+u2WaNtlq9cRdkmX9Zrl+7ihVadWrbFFEFC5D3DagAASwDOsUDk9gL/OpRFcvGcoAVVV5FfYdr0D0YgpqSAqSAQRXYPV3CTQ18YJGXLALTmaKqwPaPJKRc4vAiMlZF/Gve3Ww7YxvV8Z0CUz8PwUUeNI9XeltQqiSsR1MzbmX/4+OxEOBcCRVvvE7rxNFLt04K2DXNHmBFxgLxr/H3szc8SwDLG6pSn0ZXgACW0T1E9gWSAqYGWEPHf23NbZWUnJrlkxLFCuOBjnega6dWqFw+NpB8FZBzIYAVWG5lL/Abp1UseZd/QS4YCzTw8hfmwFKRZkMKmE8BVQE2DJOgWDhkSBxmQWiU83O5eQzY/bl9zp6qD8mISXTuGKLzI1FNoyowbkIIkpO5dW8NsCDtuIgDc7JHX7FalyRgS4SKkcNkUHC9vVev7RWwb5Y9wBIkFc3Hehf2EcAy6tNFdnlTAQJY3lSX+iYF7BUwNcCq06andTahIRLatGhojbZq2aQeJCnnLzrkfOMpQADLeD7xxCL2Ar99EVg0OCOrm4jiKhLe8u4XZk9sprakACnguQJJ54Adkzh8iigGJAxyPdLjwHcSruzgECykoGpN6C6Fe24j9WBsBWQZGDmGAReb/zPB1L4ZEq4fyDn1A0ubtjISYKArygVYamwl9LHu4iYBh3/JnjcsYZCMiGLeg8IEsPTxH/ViLgUIYJnLX2StuRUwNcDq/vxwK7Tq3L45ihSmby5mXIoEsMzotdxtZi/w1BvAwoEcYIUWUpE4hABWYHmaZkMK2CtwcbOIwz/zPx7FNASqPuo6wGI3GW4ZL0HVfGSUaS2j4n3e23CTL42hwI2bAj6axIFLdJSKfs8qOSZv11r8TyTwwosWxFLQvZ0jz66UcPyP7OCv9nMKilR37mivOyuDAJY7qlEbsytAAMvsHiT7zaSAqQGWmYQmW3NWgABWYK0M9gLPSAHm9+UAS4oAmo50fSMbWMrQbEiBwFbgyFwRFzZygFXtAaDkHe4996f+EXFqCe9LEFU0fENGRPHA1jDYZ3f6rIAvvuIAq0ysik7lFZxexn8WFafCkgqkXuFgZl0E0PkJGTWqE+TUriHHSxVsv6vYSUGZOwlgBfvzRvPXVwECWPrqSb2RAnkpYBqA9cvCFdZ5sIgrd48IWmQZv/212trPQ53vpJVhAAUIYBnACTqawF7gLHJibm8OsAQJaK5J6q7jcNQVKUAKGESB7ZNDkHyWG9O4r4qwsu5FXioWWG9PS7/OIUXhqgrqvOC9TbdBZAxqMw4cFPHtDxoIWk1FzSOwS95e9SEFV/YA1/bxervCgYQHZSQ2IoClXUCHfpJwaUv2CCyWU47llvNWoQgsbylL/RpZAQJYRvYO2RZoCpgGYNnyXW39+0uEh4Vm8wO7ffC+p962/nzRdx/k6KfklFQk3vuS9Xd7ls8MNF+acj4EsEzptlyNtr3Af3khHVD5F+fm71sgUGq6wHI2zYYU+E8BOSMzgXvWMy8Ad41XkaY9B+iiWpd3ijj4rf2HRs2eMorVIkjhopSmqb5pi4Df/+DRVs3LA4X3cfPFUBWJw2Wc/kfEmRV8bRwLBWI7KGjrxagi04ioMXQvyx22PzvAiq6got4rBLDM6FOy2bgKEMAyhm9OnrmAe58YhIrlSuOPOePyNOrM+cvo+OgbKFcmJld2YOvg23n/YOyU/6FTu6b4cNjLufY7bcav+HTWfKfEaJZQG19PfCur7qDR07Hwn3V5ti1etBBW/jolqw4L8BkxYQYeub8NRgzMzA0eDCVgABaLrmrQ7jmrz3KDUwSwjLekCWAZzyeeWGR7gf/6agbkNN4TO0LIjhJSIQVIgcBT4NZxAbs+4+ChUJyAJm8qSE7zbJPM+mR920p4scyjhGL2vNSBJ2oQzmj5ChHLNGCqQwEV0mXu/1JNFFTpruDiFgGHf+KL4KIECC1UPNjZs/UWaJLvnCrh9qnsAEsMU9FslPe0ogisQFtJNB9nFCCA5YxK3q/jLYDVtddQHDx6GqGhIVj+y6Rcc28zoPTLH5mnxnIrR46fBWMSd7dJxMR3X82qZgNYDL4VLRydY/MihaIwdWz/rN8RwPL+mvJohPwisAhgeSSv3xoTwPKb9F4Z2PYCn/96BjJu8SEaD7EgrJBXhqROSQFSwM8KnF0l4vhCHhFTsaVoPaLkKcBKvghs/0h7Kx1QoZOCOIq08bPHvTP8gj9EbN6SuY4iFKBNCou24wCmwWsWFIwFbp8WsPMTDrDYTYTnGqh46jHvQRnvzNi7vW4dLyH1as63NyYOtSA05/2Rx0YRwPJYQurAhAoQwDKG07wBsHbsPYLHXxmFWtUqYN+hE3jr1cfwzMN3uzXh/YdPokfvkQgJkfDrN6NRPi4mG8BiEV4s0suZQgDLGZX8WIcAlh/F9+LQBLC8KK4fura9wBe+lW73xTnhTRkRJejojx9cQkOSAl5X4OB3Ei7v4BvlRk9LKJpg8RhgMcOP/ibi/DoOx1j0SKNBMkLp4mGv+9XXA3z/o4h9BzJ9XTUdqMpTKaJgnIoG/TIBFcuRtn5IiJ15OysDL/V279IAX8/TV+NtGBYCOT3n0er0llG4snfeyQSwfOVhGsdIChDAMoY3vAGwho7/Gr/+tQqzpwzGcwM/QLnYkvh99vsuTzjDIuPRl0aCQax3+j6BJ7t3sOvDFoFFACt/aekIYf4aUQ0vKnDu+DkUeOthL45AXftDgXUFv0aSVDlr6Ka3eyFaOeYPU2hMUoAU8LICq6O+RapYJmuUZrefR5RyRJdRMxCFNdHfwSLwcJHY9EWokzpel/6pE+MpoELAqqifkS7yaydrpUxAXMYfWcauLvgdUqVYzTvmBUQrh403GT9ZpCAEywotyXX0Gikfo1zGAj9ZR8OSAv5XQK5cC2lv8lxCnlpEAMtTBfVprzfAup2Ugjbd+yM6KhL//jIJfYdOwbLVWzHnk8FIqFfdJaM/nfkbps38zdpu9pR3IAj2EbIEsJyXkwCW81pRTS8oQADLC6IaoMtNkdNwI6R2liWJt19BYUWTjdcANpIJpAAp4LkCFkRieSEOFkQ1DXfduhcC9IvuOB3aBfsL8JwPzOqmt59HtE6QzHMVqAc9FbgU0hI7IkdldSmqKbjzVjdISM362fYC7+NyaLOsf9dNHoPSln/0NMPUfaUKJbA6+udc51AubS5qpE019RzJeFLAEwXMCrDO7VBx7Xjw3MgbGy+iaIWcj0Ln5H+9Adb3vy3F6Elz8NxjnTCg9yNYsnIzXhs+FQ90vAPvD37B6SV44MgpPPLiu/8dHRyF8nGlsrUlgOW0nCCA5bxWVNMLChDA8oKoBuhyS4GJuBbaMMuSRkkDUFTeZgDLyARSgBTQU4HLIU2xPZLf9FPYsguJyf30HAIqRKwr+A2SpQpZ/RaS96FJ0iu6jkOdGUOBbZHjcCWE5/+IS/8dtVIn2hl3KLw3ToQ/mvWzimnfomraV8aYgAGsuCVWwYao3PUoZtmMhOQ3DWApmUAK+EcBswKsLbNlHFsZPAAr4SkJle90/hpzvQFW9+eHW4/8sSODlcvHgh0DZBFZKSlpWD5vMgpFRea7gFmebpb3ivXzdp/H8dRDHXNsQwArXymzKhDAcl4rqukFBQhgeUFUA3S5vcBYXA5tnmVJfPJglLDkfTWsAcwmE0gBUsBFBY6G98TR8GeyWpVP+wnV0z5zsZf8q18LiceWyI/tKtZNHovSltyPSeXfK9UwmgKpYmmsjvrezqymt7MfDzwbeg/2FhiUVa+kZRUaJA832nT8Zs81qRG2FJyQNX6ochUZYrGsf4crF9Hqdg+/2UcDkwL+VoAAlr894Nz47gKs8LBQ1K5eMc9B0jMysOfAcZQrE4NF332Qre6ufUfx6MvvoUHtKvju02FZvx875Vt8O28JBvd7Ek90a5/vRD6dNR/TZvxqPTo4a/I7EMWcI8psAIuBsmJFc7756tEH2+LetvwPPJTEPV/5/VvBlsT9kQfugiRmJ7GqquKH+cusRj7WpV2OxlosMn5euNz6uz3LZ/p3QjS6VQFK4h5YC8GWA+DfKWm4spM/pzUel1G8gX5HigJLNZoNKWBeBfZ9I+HaAf5lLL4XULVFKK7fTtclibtWmQNzRFzZzT9XQgqqaPS2DCnMvPqR5ZkKXLwETP0sBNXSgSq5JG/XanXrpIBd0/hNhEkCULanglo1gycyIa+1c3m7gIPfc32K1lFwbY/9d+emoyxeeXYoiTs91cGogK9yYFEEVt6ryxaB5coazA1gDfvgG8z7cyXefaMnHu7cJqtLdhPhQy+MQPXKZa03CeZVnDk6aGtvA1h59ffGSz3w7KP3ZlUhgOWKp/1Q1waw9BqaAJZeSnrWDwEsz/QzWmvbC3zFZ+m4tIVvaqs+LCOmMQEso/mL7CEFPFVgw3AJchp/1tuMFFAiLsQrACvtGrD1QwmqzMeLu1NBhU4ELTz1o7/bHzkmYNZsCW1SgAjNq6JyVxmlm2V/d8hpwIbh/CZCVkPqpqBZU1oLzJfn1oo4Np8Dq9jmCq4dFJB6hT879fvIiCqn/3uZAJa/nyYa3x8K+ApgUQ4s5wBWxXKl8cccnt4gp1Znzl9Gx0ffyDECy5a8XVFUrPx1CqIKFrDrottzw8Dg1PefDkP92lVyNIodHXz0pffAgFdeRwcdARbdQpj/E2yaI4TP9Hf9usq8ps9C+Kj4XwECWP73gZ4W2F7gq79Ow/l1/Mtz5S4KSjenjYWeWlNfpIC/FWCb4a0f8CgPFhHVcbyIyAjvACw235N/izi9lH+2CKKKhLdkhBf1txo0vicK7NglYPXPEhqm8V7EUBWJw3OPsFszIgQCz+uO1BYK2j5I7xnrc7JYwOll/Nks31HFrZMqru3nz07VR2TENCKA5cm6pbakgE0BXwEsUtw3AIud6hr18ex85e7WqTVGvdUrx3qfzZ6Pqd+wo4PVMGvy4FyPDhLAylfmbBVMA7Bcnxq1MIMCBLDM4CXnbbS9wNfOTsPZlfyLcsX7FJRpTRsL55WkmqSA8RVwPKZUpKaKFn28C7DkdFihWcYtHklStJaCWj3p88X4KyZ3C9esFXH5dxElNW4s1URBle65+3X9xxKU83wdXK+uotNzspll0M32I/NEXNjA38FVuipIuQK793JcGwUV7tX/uaEILN3cSB2ZSAECWMZwll5J3G3J21keLUnKOYn87v3HEBEeihXzpqBgZISdAAePnsYjL46AKIr4bcboHG8ddFSMkrg7v4YIYDmvFdX0ggIEsLwgqh+7tL3A1/+QhtP/8A/8ch0UlGuv/xdlP06VhiYFgl6B47+LOLva/rNk0sAAACAASURBVDmv96Dk1QgsJrojOGM/q/28jCLV9I8mCXon+0iAxfNFRK0VoU1tW7+vBVFlczdg2xwRKZqcaFdKqrj/DQJYTDHHfHHVn5ChpAGHf+FRWcVqK6j5jP7vZQJYPnpoaBhDKUAAyxju0ANg7dp/DI++NBJVKsZhwcwxuU7spUETsWrDTowY8AxYjm5b0R4dHPTqY3j64budEocAllMyWSsRwHJeK6rpBQUIYHlBVD92aXuBb5qbhhN/8Y0t5anxo1NoaFLASwrs+lTCrRMcOdTqJaNSQojXARabzs5PJNw+zccOL6Yi4U0ZgvO3bXtJFerWHQUWT5EQfYb7UyisovngvGHUwX8EXF7Cgcy1SOC+ERZ3hg+4NrunS7h5lOtZp7cMMQR2ie8jSmQ+M3oXAlh6K0r9mUEBAljG8JIeAGv4h99g7h8rMbjfE3iiW4dcJ/bv2m3oM3iy9bbDn794N6ve57MX4JNv5qFh3WqYPSX/o4O2hgSwnF9DBLCc14pqekEBAlheENWPXdpe4FsWpOHYAr6TLN1CQWXKTeJHz9DQpIC+CqgKsH6IBFXhm+QmIy0oUTzUJwAr6SywYzKDF3z8ip0VlGmlf0SJvspRb44KsLW0apiEEAv3ZXQrBfU65+3LC/sEHJmpuYlQAjqMJYDF9N32kYSUi5rbQQdYEF7EPvE9BBXNx+oPfQlg0TMejAoQwDKG1z0FWEnJqWjTvT9kWcHyeZNRKCoy14mxBO8dHx2IcxevWgEWA1mHjp3Gwy9kHh1kNxRWKFvKaWEIYDktFUVgOS8V1fSGAgSwvKGq//q0vcC3/ZWKI3P5xiImUUXVh/T/S6//ZkojkwLBrUDSGWDHFH4LXETxzGTqRQr6BmAx9Y/MFXFhIwflYpiKRoNkhEYFt2/MNvure0Tsn839yBBUtX4WxMblPRNLKrBxhP1NhE3HWBDCf2Q2KXSzd+N7IbAk8e4Sh1oQGg1sHi0hXZM/Ln6ABZHO76+cso8AllMyUaUAU4AAljEc6inA+mnBvxg5cRa63tsKowc9l++kbIna2RFCdpTwpUEfYdWGXdZbC8vH5f3hynJr/fDZ8KwxbACL3aBYtHB0jmMXKRSFqWP7Z/3ul4UrMGLCDGv92FLFc7V38nt9UKZ0iXznY5YKFIFlFk8FqJ0EsALLsbYX+M6lqTj4PQdYJRqoqP44AazA8jbNJpgVOL9BxNF5HDrYnnFfAixLMrD5fQlKOo80KdVERZXu9FljprW57xsJ1w5wH54MAR4YYkFk7n/4zpre8ndCEKYJ1Kr8vIzSQZ4LTVWBdW9roxNVNB8nQxCA3V9IuHmEa13jSQXF6+kbtUgAy0xPH9mqlwIEsPRS0rN+PAVYD70wAvsOncD3nw5D/dpV8jXm0pXraPfIAESEh2H53MnoNWA8du07mm87VkEUBexaNiMbwMqrcfGihbDy1ynZAFZ+A/4++31ULh+bXzXT/J4AlmlcFZiGEsAKLL/aXuC7V6Vh/yy+uaVbwgLLzzQbUoAlg764KfvxPV8CLOYFlkSeJZPnRUWD/jIKliEfmUGB1GvA1nH2R0HXRaoYMDwTuORX/h4ZgqhkXqvY3QpqttUXyORng9F+zyKvWASWrUiRQNP/coMd/U3E+XX8eSnfUUHZdvrqRQDLaCuC7PGFAgSwfKEyjUEKZCpAAItWgl8VIIDlV/l1H9z2At+3PhV7vuIRWIWrqqjzAkVF6C44dUgK+EmB7RNDkHyBD17vZRnRFVWfHiFko7P8SVs/lJB2ldOOqLIq6velzxs/LQ2Xhj35t4jTSzlQYafbdpVS8cbrzvlv8QQJ0Ze478PiVTR+zLm2Lhlqosos9xXLgWUr2mTt59eKODpfEzkZr6K6znoRwDLRYiFTdVOAAJZuUlJHpEC+ChDAylciquBNBQhgeVNd3/dte4Ef2JKKXZ/xL9DRFVTUeyW4NxW+9waNSAp4RwE5A9gwTALU/8CBoKLZGBmiBJ8DLDbD64cE7NUAc/azao/JKBmvekcA6lUXBRh83DxWQoYmJ9PuMEApr+IlJ//gseRrCQUPcoClxgF39AvuRO7s9kF2C6GtMLDMADMrNw4L2PMl/13BOKCBznoRwNLl8aBOTKYAASyTOYzMNbUCBLBM7T7zG08Ay/w+1M7A9gI/tDPFLsFzZCwQ/1pwbyoCy9M0m2BW4MZRAXs0G2TtJtjXRwhtfmBHlq/u5ZElodGZSeWlsGD2lLHnnlPy9n8jgarVFTzxmHPH2lb+JiJEcyROjgJaDQvud82V3SIOzOHPQrE6Cmo+naln+k0Bm8dwgCVImTcR6lkIYOmpJvVlFgUIYJnFU2RnIChAACsQvGjiORDAMrHzcjDd9gI/uj8VWyfkfIQhsGZMsyEFgk+BMytEnPiTb5BLNVVQpVvmBtlfACuN5VL6QIKq8GicuLYKKtztHAgJPi/6f8aOydtPScCeCKBRgooHOzsHVbZtFJCiufFWFVS0GCtD0KZF8/9UfWqB4wULjhcbrB9mf/EBu7kzvJh+0YoEsHzqbhrMIAoQwDKII8iMoFCAAFZQuNm4kySAZVzfuGOZ7QV+7GgqtozlACuskIrGQ5zbkLgzLrUhBUgB3ynAojtYlIetVH1IRkxi5gbYXwCLjX1ykYjT/3K7WHRJwpsywov6ThsayTkF0m/iv0ggDhzXFgBuikCb1gratnEOPB45KuDkdAnhmmEbviGjQEn9gIxzMzJOLZZTjOUWs5Wydykofw/Xc9dUCbdOcd1rPSujaE399CKAZZy1QJb4TgECWL7TmkYiBUwPsGRZwW+LVmPx8o04evIckpJSoLA7hPMpG/74LL8q9HsfKEAAywci+3AI2wv85KkUbBzJb0EKKQA0eTe4j3X40A00FCngVQVY3qL0G3wDHD/AgshSmUP6E2DJ6ZlRWNqcStrjU14VhTp3SYGckreviczsonMnBU0aOwewLl4ENn4cgmKa6jWeUlC8rnPtXTLaJJWP/S7i3GoOsCp2VlCmFdfj0E8SLm3R3CB6n4IyrfXTiwCWSRYKmamrAgSwdJWTOiMF8lTA1ABLUVS8OngSVq7f4bKb9yyf6XKbQGzw61+r8MvCFTh8/AxkWUaFsqXR5Z6WeLxre0iSezH4qWnpeG/iLMxfvAYP3n0Hxr7zQq7SEcAKrFVle4GfvpCC9UM4wBJDgGZjCGAFlrdpNsGoQMZtYNMo7bOtoukofmTLnwCL+ePSVgGHfuTRn+xndV+yoFClYPSWMeecU/L2PWHAqdBMex97REGtms4BleQUYMHoEJTXvF7KdVRQrp1z7Y2pkGdWHfxewuXtHFBV6yGjZAL/w262I8BNVFTprl+ENAEsz/xHrc2pAAEsc/qNrDanAqYGWD8vXI53J2SCqIR61dG6WX3ExhSHKOYPXjq1a2pOj+lo9Ttjv8SCv9cgNERCw3rVEBoSgh17j+B2UgpaNqmHae+/hhDJfiOQ3/AnTl/Aa8M/wcGjp61VCWDlp1hg/d72Amdgcu0gvslls2z+viWo85IElqdpNsGqAEuUzhKm20rhyirq9OabX38DLGbXzk8k3D7NN/DsOFn8gODOi2Sk9eqYvF0RVCwtIED+z2Uv9JJRrmz+kfS2OX09TEKtdO7vYvVV1HxCPyBjJO2csWXPVxJuHOJ61O4lo0gNrue1fSL2zeTPsPaWQmf6z68OAaz8FKLfB6ICBLAC0as0J6MqYGqA9Uz/97F5xwE82b0D3un7hFE1NqRdDFwxgFW5fCy+mPAmYmOKWe1MTknFa8OnYs2m3ejbqxteevoBp+1fsnIzhoz7ChaLjJ497sH0Ob8TwHJavcCoqAVY64eFQEnn82r6ngWSNlFJYEyZZkEKBJUCJxaLOLOMb37j7lRQoROPdjECwEo6C+yYbA/QKz2gIPaO4I3KMdIidUzefqEAsE3zd8cB/WQUKeICwPpQQq3LHNiExwCNBgZvxO/2ySFIPss9Xr+vBVFl+b9TLgvY9iH/46QYpqLZKP2AHwEsIz1tZIuvFCCA5SulaRxSADA1wGre+RXcvJ2MtQumoXChguRPFxTo8uxQHDp2Gt9OG4r4OlXtWl67cQvtHh6A0NAQrJg3GRHh+d9Dzo5xvvz2xyhVsig+Gd0fGRYLnnh1NAEsF3wSCFW1AIsdM2LHjWwlcagFodGBMEuaAykQvAo4Rnc45hsyAsBi3jn8i4SLmzjUkAqoaPSWjJD/8iwFrwf9O/Ockrevj1RxXeC+GjHEAleCv2d8KaHGYd4eoooW7+sHZPyrmOujO+aoa/Q2u8iAA0F2hHP9UAmqLeQNQOIwC0KjXB8rpxYEsPTRkXoxlwIEsMzlL7LW3AqYGmDVb9cL0VGRWDN/qrm94GPrz56/jA6PvoHycTH469sPchx9wLvTsHj5Jnwypj/a3tEwXwtZMv2Pv/wZPR+5ByWKFcbGbfvx7OvjCGDlq1xgVdACrC3jJaRd5ZuKhEEyInS8qjuwlKPZkALmUGDDcAlyGn+uGw2WEV6Yb46NArAYPGefQYrmaFmppgqqdKMoLH+uNMfk7RExKn5L0hz3jADeecu16Kkf50ootVGA9k9t7PbJiBLOR3H5UxO9x1432B5OsfyTLA+ltmz/OATJ5/lP6vaWUaiyPnoRwNLbo9SfGRQggGUGL5GNgaKAqQFW6679YJFlawQWFecVWLpqK/oNm4LOHZpj/JDeOTac9fNifDDte7zwRGe89sJDznf+X811m/fg+Tc+JIDlsnLmbqAFWNsnhiD5Ap+P9qYyc8+SrCcFglOBlEsCtk3gR49CCqpoMtw+0sUoAIt56OwKEcf/1ObEVBE/UEZkTHD6z9+zzil5e8n2Cuas4z4qWUJF31dci576a7EIeblodxNhrZ4KitYKPlgppwEbhmsuWQgDmo3KDgQPfCviyk6ue+VuCko31UcvAlj+ftJofH8oQADLH6rTmMGqgKkBFruBcPna7Vj2c+bRNSrOKTDzx0X48LMf0Pup+9Hvue45Nvpn1Rb0H/YJ7m6TiInvvupcx5paBLBcliwgGmgBlmMi5fp9ZESV0+cvvAEhFk2CFDCZAhe3CjisueGvWG0FNZ+x3/QaCWApMqzATRsJqnfCapO50K/mOiZvF0NVlHhKwWzNmqpUUcWzT7sGsFavFXHmDxHlNJymwr0K4troA2T8KpqLg6deFbB1PIfM7OggO0LoWE4uEXH6Hw6wYlsqqHS/PnoRwHLRaVQ9IBQggBUQbqRJmEQBUwOsFet24JV3Psazj96LN17qYRLJ/W/m1G9+xWez51s1Y9rlVDZs24der49Hs0a18fVHb7lstLMA68pNTZZvl0ehBkZToHihzEMczK/bpgm4foRbGP+KiqL26daMZj7ZQwqQAnkocHCegDOreYXKnYAK7e2hdFSEhPAwCbdTLEjL0GdD7IlTrh4EdnyuyY8EoM7TKmLiPemV2rqjwM4vgSv7uC/KNAOSqqv4cS7/WXx94LGHXftDx7YdwLrvBNTK4FaVbgzUety1ftyZk9Ha3DwJbJnE9YwuCzQekF2HC9uAvXM0NzdWBxq8pI9eIZKAwgVDYZFV3EjSOMVoYpE9pICOCti+/+rYJXVFCpACuShgaoDF5jR60hx8/9tSazTRMw/fQ8ncnVjqH33+E7754U/rzY3sBsecyrbdh/BknzFoWLca/jd1iBO92ldxFmC53DE1MI0CqydZcH43/0Lcsn8IStez30iaZjJkKClACmDpGAuuHePPdOsBIYipbfxnevVkC87v4nZHFAbuHRcCKdT4tgfKsku5ruKPN+yPsrUbGoINR1T8soBHCHW8S8QjXXgEkTPz339IxYxJFiSm8dpFKwhoN8wh8ZMznZm8zrmdKtZM4TqXriug5WvZdbhxSsWSkbxegaLAfR+Gmnz2ZD4pQAqQAqRAMChgCoD12vCck7SLooDwsDCsWL8dN24mIUSSUKViGcSUKJrvzXmT3usTDP7NcY4uRWAl1MbXE70XgWWEv9AH7ULwwsTDQzOPJDC/bv5CwbltfNPY6HkRZRrRhtELslOXpIDXFVBkFX/2U8DyGNnKPRNFhBawf6ZZ9IUkCrDICmT/B2BZTU26pOLfd+1tr3GfgOqdtfmxvC5hUA9w4HcFB//k74PoMkCbYRLmLlCwbCX/edfOItq3ce09ceEiMH6cjLtSuMSCBHSe6hoICwQHnVqnYvts/uCVbSqgYc/s61zOyHyetaXTFFEXqCsKQGiICEVVkWHRJ6orEHxDcwhsBWzffwN7ljQ7UsAYCpgCYNVp01N3tfYsn6l7n2bpcPbPizF+2vdO5cBq36oRJo/q6/LUnI3AOntF843T5VGogdEU0ObAOvSjhEtb+Uak6iMyYhrRl1mj+YzsIQWcUeD2KQE7NUCA3fDGbnpzLEbKgaW17fgfIs6u5Bt5QcrMDRRWyJnZUx1PFMgpebstafjPcyXs2sPfE927ymhQz7X3RFo6MGZcCNonAdpYI+ZflgMqmApb42yt20psKwWVOudMklmuLJYzy1bq95URVdZzvSgHVjCtOJqrTQHKgUVrgRTwnQKmAFgjP9IfNo0YqD8U853bPBvJljvMmVsIez3aCQNfesTlAQlguSxZQDTQAqwj80Rc2KC55airgtLNDBKSERBq0yRIAd8pcH6tiKPzNbfFJaio1sM8AIvdzrZlvARLEt+wF6+voMYT9Jnk7VWUU/L2xOEypDBgxiwJx05wn/R8SkblSq5DlFHvS0i4KaCoxp21npVRtKbrfXlbD2/2f+JPEWdW8Oe0/D0Kyt6V8xrfO0PC9f2aPzL1kBGT4LleBLC86WHq26gKEMAyqmfIrkBUwBQAKxCF9+ecLl+9gTu79Uf5uBj89e0HOZoy4N1pWLx8EyYMfxn3tm3qsrkEsFyWLCAaaAHWsYUizq3iX6Qr3qegTGvaLAaEo2kSQaeAY0Rl5QcVlG6R/Xk2agQWc9jFzQIO/2x/rKzuSxYUqhR07vTphPfNkHBNA0pKNVFRpXsm/JwyTcLlKxyi9HnZgpiSrps3eZqE2LMCymrSbFXspKDMncH1zmHrm61zW2E6M71zKo5RiQx0MeDlaSGA5amC1N6MChDAMqPXyGazKkAAy6ye89BulqCdJWr/dtpQxNexvxru2o1baPfwAGv+gpW/TkGhqMis0VJS05GckoriRfM+d0EAy0MHmbS5FmCd/FvE6aWavwR3VFC2nedfjk0qDZlNCphaga0fSki9rDlu1EdGVLnsG2MjAyzmgO2TJCSf4/MoUFJF/EAZgmtpl0ztS18an34T2DyGQcOcj6qNHR+CVE3y9bfftCCygOsWzpgtQT0koKbmYuOYRBVVH8oeJeh67+ZpsW+miGv7+Hu35tMKitXJ+b17cZOAw79woMvqsfqeFgJYnipI7c2oAAEsM3qNbDarAqYGWCyXU2yp4ujQurFT+qenZ2DyV3NRtVIcut7byqk2gVpp1YadeGnQRFQuH4svJryJ2Jhi1qkyOPX6iGlYvXEXnujWHoP7PZklQVJyKjo9OQhXrt3ERyNext1tmuQqDwGsQF05ec9LC7BO/yvi5CL+RTqujYIK93r+5Tg4laVZkwL+U8CSCmwcwbMLCaKKpqNliDnkyDY6wLp1Ctg11f5WtspdFJRuTp9N3lhhjn/IiCytIv71TKgky8DIMdwXoqji3aHuAadf5kk4u11AYw0Miy6nol4f9/rzhha+6HPnNAm3T3JYWO9lGdEVc47AunVCwK5P+UPMYG7DNzzXiwCWLzxNYxhNAQJYRvMI2RPICpgaYLHk7s1cvCWveedXEB0Vib9/mBDIfnVqbhM+/xEzfvgLoaEhaFi3KsJCQ7Fj7xHcup2M2tUrYtbkdxBZIDyrr/2HT6L788Ot/3aEW44DEsByygUBV0kLsM6uFnH8d00y2TsUVHqANokB53SaUMArcOOQgD1f8Y0ui7yqnwsYMDrAYs5yPA4pFVDR6C0ZITzYOOB96osJ5pi8XZML8do1AR9/wtdV4cIqBvZ3D6AsXiJiyxoRbTT3wohhKpqNcq8/X+jjjTG2fiAhVXMkkwEpBqZyKiwv3IbhGpgrqGg+Vobg4eWcBLC84Vnq0+gKEMAyuofIvkBSIOgAVvseA60RRNv+/jKQ/Oj2XFieq//NXYIDR05ClhXExZZEp7ZN8eyj9yI8LNSu37T0DDzddyxOnbuIye/1RWJ8zVzHJYDltktM3VALsC5sFHBkLt+caPOemHqSZDwpEGQKnF4m4uRivqtlua9YDqycihkAVsZtYMs4CUoGj1TJa05B5m7dpnt1r4j9s/i6EUNV2JK3s0FOnRLw5Qz+jihbRsWLz7sHnNauF7HobzH7TYSDZYQX9jwxuW6ieLkjBqQYmLKVJiMseYLZTaNDkHGL1284UEaBGM/0IoDlZSdT94ZUgACWId1CRgWoAkEFsC5duY62D7+OiPAwbPpreoC61FzTOntF8+dSc5lO1uaggBZgXdou4ND3fHNSIl5F9cfc25yQ2KQAKeA/BRiEYDDCVqrmcVuZGQAWm8eZ5SJO/KUJNRFUxA+QERnjP521I99Q0nFDTcNNOQNFxXDEhRQ0hmEuWJFX8nbWzd59In74WZOvqYaCx3u4F6W7e4+An+ZKaJYCFNF0Ufs5GUWqewZkXJiyX6sqFmD9EO3xWBUtxuf9zt0zXcKNoxzk1nhKQfG67vnANnkCWH5dBjS4nxQggOUn4WnYoFTAVACL5WdKTuF/WmI36SXUq46PR76ap/MyLDKOHD+Dj7/4GewYXEK9apjzyZCgdLjRJk0Ay2ge8cweLcByvDpdrwSxnllIrUkBUsBVBTa+J8GSxDe5eR1LMgvAUmRg2wQJaVf5vFiuIJYzyN9lzNVN+PTmniwzeheqg+HFEv1tlkvj55i83SHx/8ZNIhZqIGJigoL7O7sHT06cFPD1TAl1U4GyGhdW7KygTCv3+nRpwgaonH5T+C9hfqYxodFA4lDNtYw52HjkVxEX1nOIWK6jgnIeXrZCAMsAi4FM8LkCBLB8LjkNGMQKmApgTZvxKz6dNd9jd30yuh/atkzwuB/qwHMFCGB5rqGRetACrOsHBez9mkdgFammorabx0OMNEeyhRQIJgXSbgjYMpY/x1K4iqbv5Q55zAKwmA/ZbW3s1jZt0SMCxdP1MeTKesy8tT+rm06R5fFlTFtPu/Vp+5NLRJz+h2urTd5uM2TpvyJWrOJ17rpTAfvPnXL1moBJn0iolAHU0NxEGExH15POAjsm8wisyNJA/Ot5A6xza0QcW8B9UDJeRTUPI6UJYLmzgqmN2RUggGV2D5L9ZlLAVADrxOkL+PWvVVixbjsOHj3tss5lY0uib69u6NyhucttqYF3FCCA5R1d/dWrFmDdPCZg9+d842uU6AZ/aUPjkgJmVODKLhEH/sc3uIWrqaiTB4g2E8Bi/tjzpYgbh/n8woqoSHhThmh/UaFPXTfg8hr8ePtQ1pj1wotjUez9PrXBk8HyS95u63v+QglbtvIIuPvvU5DYyD2AJSvAyNEhKCkDjVK59cH03rlxWMCeLzVJ8SurqNM774hCxwsaCsYBDfrlDb3yWxsEsPJTiH4fiAoQwApEr9KcjKqAqQCWVsQ9B47jkd7von7tKnjvzWfz1FcUBBQuFIUSxQob1Q9BaxcBrMByvRZgJZ0GdnzCd4F6fDEOLLVoNqSA8RU48aeIMys44Ilrq6DC3blDBrMBrNQrwNYPJUDlIKV8RwVlPTxG5YlnX760AguSjmV1UUQMx57yj3nSpU/b5pe83WbMnO8lHDrEdWf5r2rWcA9gsT7f/yAESAbuDNKbCC9vF3BQk3eyeH0VNZ7IG2A5RlgKUuZNhJ4UAlieqEdtzaoAASyzeo7sNqMCpgVYTOyXBn2EjAwZX098y4zak80ACGAF1jLQAqyUS4I1x4ytRJTIjGygQgqQAuZRwDHJc81nFBSrHTgAi3ni2EIR5zRH2dhteQlvyQgr5B8/PXPhH/yTYh9lfqTCk4gQ/BgW5oIUe2dIuL6fg6ncjvF9/qWEs+d4vRefk1E2zv2E61M/C8HFS0DHJEB7MLTxEIvffOmCbB5XdTwOWLq5gspd8geC64dJUNK5Hxq9LSO8qPt+IIDlsSupAxMqQADLhE4jk02rgKkB1skzF8FuFmxUv7ppHRDshhPACqwVoAVY6dcFbH6fA6ywwioaDyaAFVgep9kEsgLsKNgGtrm18M1t4jALQqNyn7XZIrDYTOQ0YMt4+0T1JRqoqP64fz6vHjm/GGtSz9mJvLTMg6gZVtTwy82avJ3lTNNEtNV3SN5um8SHEyXcus3X1sD+MgoXdh+czPqfhCNHBTRPAQprbyJ8QUaRqu73a3jR/zPw5N8iTi/VJGRvr6Bch/wB1s6pEm6f4n6o3UtGkRru60UAyywrhuzUUwECWHqqSX2RAnkrYGqARc41vwIEsMzvQ+0MtADLkgRsfI9HDIREAk1GeJZbI7DUotmQAsZWIPkCsH0if4adgdBmBFjMCxc2CjgylwN39rN6fSyILud7H91/7g9sTbtkN/CsmHZoH+kHY1ycvjPJ21mXqgqMGMX05uBkxBALJHsXuDT6vPkStu8QUC8NiNO8aio9qCC2Rf4gx6XBDFjZ8UbByg8qKO3EvA/9JOHSFu4HT29uJIBlwMVBJnldAQJYXpeYBiAFshQggEWLwa8KEMDyq/y6D64FWHI6i97gm18hFGg+mgCW7qJTh6SAlxS4uEnA4V84USheVwG7pS+vYlaAxYDKjskSkjVH2iJjVTToL0Pge3svKW3fbYezC7A3/ardD0cXa4pnC9XyyfjuDuJs8nbW/+3bwAcaOFqgAPDOm569H/5ZJmLlahGV0oEaGXwWpZopqNI18AEWu2yBXbpgKzUel1G8Qf6RVKf/FXFywQYL1AAAIABJREFUEW9XqomCKt3d14sAlrtPELUzswIEsMzsPbLdbAqYBmBN+vIXLF6+CV3uaYneT2XexvPa8Klu6z3pvT5ut6WG+ilAAEs/LY3QkxZgMXvWDrLP2dJivGcbFCPMkWwgBYJFgSPzRFzYwDe2FTopiLszMAEW8+mtU8CuqfafWVW6ySjVNH8IoOeaaHlmLo5l3LLrsnehOhheLFHPYXTvy9nk7Wzg8xeAT6dzrWNKAn1e9uz9sGGjiD8WiShpARql8ekVqqyibj638ekuhh863D1dws2jnLbWeVFG4Sr5r92re0Tsn82f80KVVNR9yf3jswSw/OB8GtLvChDA8rsLyIAgUsA0AKvR3S8iNS0dhQsVxNoF06wuqtOmp9uu2rN8ptttqaF+ChDA0k9LI/TkCLDWDwuBks4ta/aeBWK4ESwlG0gBUiA/BXZMCUHSGV7LmQ2xWSOwbLNkt7ix29xsJaSgikaDZEg+/NxKOPUjLsiaq/QAdC5YAdNL3pWfy/z6e8fk7TGJKqo+lDMIOXRYwJzveHRf5Uoqej7lPjRhE9+7X8QPP4mIlIHWqVyKkIJAk+GewTG/Cuvk4Ns+kpByka/dBq9ZUDA2/8aplwRs1Vy44qleBLDy15xqBJ4CBLACz6c0I+MqYBqANfvnxVi2Zhvua98MD3duY1V05EfuQ6gRA92HX8Z1p/ksI4BlPp/lZbEjwGI5sFguLFvJLwF0YKlBsyEFzKuAIgPrh2iScQsqmo6SIYXmPSezAyyWhHzrBxKUDA4CyrRUUPF+949UuboKap38Dje15B9Ag7Di+LNMZvS5EYsryduZ/dt3iJg3n0f9NKivoLsTN+blNfczZwRM/zoTijneRJg4woLQSCMqp59Nm0aFIOM278/Z2xfZ0c91g+0T7ycOtyC0oHu2BQvASkoWcEkDDN1Ti1r5Q4HQMBVxZfKPTnTFNgJYrqhFdUkBzxQwDcDybJrU2qgKEMAyqmfcs8sRYG0ZJyHtmn7Xc7tnFbUiBUgBVxW4dVzArs94hExkKSB+QP5RLGYHWEynU0tFnPqbwxUIKhLelBFR3FUV3atf8cRsZDCqoCnFpAjsKveoex36oJWzydttpqxeK+Hvf/i7oWULGR3be7ahvHlTwIRJmWvW8SZCdoSQHSUM1MJyuK172z4pfvNxFqfzt7HLGtilDbbiiV7BArA2bhKx8C/N50SgLq4AnFepGBWvenBMNidJCGAF4EKhKRlWAQJYhnVNcBhGACuw/OwIsByPNDQcKKNATOBuIgLLmzSbYFbg7CoRxxfyzVlex8G0OgUCwFIswNYPJaRf54ClcFUFdV7wfhSWDBXlj8/KcekdqfAkIgT7HF1GWKOuJG9n9h4/KeCbmfbXDd7bUUHzZp7rO/y/m2/rpwFlNLy1chcFpZt73r8R9M7Jhmy3/kYATUbmD5xtfTkmgK/cVUbpZu69q4MFYP25SMT6jQSwjPpM5GUXASwzeo1sJgW4AqYGWOwI4R1N6qFpw1qIjgrw2PAAXbUEsALLsY4Aa8cUCUln+Cawfl8LosoG1pxpNqRAICpw8DsJl3fwZ7dyNwWlm+YPAAIBYDF/Xtkt4sAc+81pzWcUFKudvwaerAd2dJAdIcyp/BvXBdVDi3jSvVfaXtsnYt9MrpUYqiJxuAwpLPtwp08L+Ga2BIsDW+n1jIyKFdwDJtpRxk+QwI52VU4HqmtuIizdQkHlB73rO6+I62SnKZcEbNPksYookRk16Gw5+beI00u5Dz05NhssAGvOdyIOHSaA5ewaM1I9AlhG8gbZQgq4roCpAZYtibskiahfqwruaFIXLRProU6NShBFH9977br21AIAAazAWgaOAGv35xJuHuPPoifHEgJLKZoNKWBsBVgeqNQrmoTQ/SwoGJe/zYECsNhM2RFKdpTSVsKKqEh4S4ZoHzyUvygu1LhgSUbC6Z9ybDE7ph3aRZZzoTffVHU2efvZcwJmzBaRlmb//azL/QoSGuoDlz6bLuHcBQExFiBBexNhFRV1X3Qe6PhGOf1GYe9Z9r61legKKuq94vx8L28TcPAH3r5IDRW1eznfXjuTYAFYk6ZKuHqVr+W4OBUhXvxs0G+1UE/Fi6no8oA+nzk2NekIIa0rUsB3CpgaYD3dbyx27j2CDIv9S7ZwdEE0a1QHLZvURYvEuihdspjvFKWRXFKAAJZLchm+siPA2vu1hOsH+Re8Wr1kFK3h+V/ZDS8EGUgKmFgBSyqwcQQ/qiaIKpqNkSE4EWwQSAAr+SKwfaJ9cuvy9ygoe5e+Gx/tUjmecQt3nJmb4+oZW7wZnomuaaiV5Wzy9kuXgC++kbLBq/vukdG0iX7vhP99L+HgIQGRCtBac5FjaDSQONT5I3WGEtkJYxwjBlmkIIsYdLaw20bZraO2El5URaO3CWDlpp+iACPHSFBV/v1m+GALQox3wtfZJUD1PFSAAJaHAlJzUsAFBUwNsNg8U1LTsWXnAazfuhcbtu7DvkMnoLJslppSpUIZ61HDFo3rIjG+BiLCc4hrd0E0qqqfAgSw9NPSCD05Aix2BId9sbaVGk8pKF7X+S/VRpgT2UAKBJsC1w4I2PeNe9EcgQSwmN+PzRdxbq398Ti2sQ+N8s6q2Jd+Fe3PLsix85cL1cXQYo29M7CbvZ5aIuLUP1yfyNIq4l+3Bx9XrgBfzpCQnGwfeXV3exl3tNAPXrEpzF8oYctWAVCBjsmAlrk2fc8CKdzNiRq82fn1Ao7+yp9ZZ3PW2abF8r6tH2JPX5qNsUB0A8gEQwTWlasCJk/VfEZGqXhzgHvAz+BLi8xzUgECWE4KRdVIAR0UMD3ActTgxq0kbNq+Hxu27sX6LXtx9OQ5uyphYaFoVL86vprwpg7yUReeKkAAy1MFjdXeEWAd+kHCpW1801Kth4ySCfpuWIylAFlDCphfAQYkGJiwldhWCip1dg48BxrAktOAze9LkFP45xj7DGOfZd4oW9Mu4f5zf+TYdeeCFTG9ZBtvDOtWnzkmb3dIln7tWia8un3bHl61uVNB2zudW1OuGLdsuYjlKzPXbotkoJDmdVPvZRnRFQPz/XN6mYiTi/kzG9dGQYV7XdN3y3gJaZojcQ36WlDQjZyVwQCwDh0WMOc7DrBY/jaWx41K8CpAACt4fU8z970CAQewHCW8dOU6Nmzbh227DmHFuu04d/Gqtcqe5TN9rzaNmE0BAliBtSgcAdaRuSIuaG7p8eRmo8BSimZDChhXgX0zJFzbz4FD9cdklIh3buMfaACLeen8ehFHf7U/P1mvjwXRXkhHtTr1HHqcX5zj4mgYVgILy3Q2zMLJL3n7jRuZ8OrmTXt41aK5gns6uAZXnJ30pi0ifv8j01cNUoFYDVOo0k1GqabOrWNnxzNKveO/izi7mq/RivcpKNPaNY1Z1CWLvrSVao/KKNnQdb2CAWCx2wfZLYS2ktBQRZf7CWAZ5Xnwhx0EsPyhOo0ZrAoENMC6eTsZqzfswor127F5+wGcv5QJrwhgGWe5E8Ayji/0sMQRYGX7Ut1ZQZlWrn2p1sMu6oMUIAWcV2DDcAmyJtE2S1weUdy5jWwgAiyWlWD7RxLYTW+2EhmrIv41/Tes/ySfwjMXl+borBJSAewo18N5R3q55r4ZIq7t55t47bG1W7cy4dX16/bwqkmigs4uRga5Mo0DB0V8+0OmTVXSgWqamwg9uVnPFRv8UffQ9xIubedaV+0hI8bFaOdjC0WcW6WJ4mqroMLdrr+vgwFgMXjFIJatdGinoNUdrmvlj7VCY3pHAQJY3tGVeiUFclIg4ADWuQtXsGzNVixbvQ2bduyHLPMXCkvmftcdDdGuZQKaN65DK8IAChDAMoATdDTBEWCdXCTi9L/8S165jgrKtaMveTpKTl2RAroqkHpVwNbx/GiMFK6i6XvOg5pABFhM4JvHgN2f2ycEqvqQDAZt9Cy/Jx3DS5dW5NrlkQpPIkJwIzGRnkYCyCl5e70+MqLLqUhKyoRX2hva2PCNGip48H7vfv6fPQt8/lWmPqUygIbpfOJFqqmo/bzza1lnybzaXbYLU56VUbSma2vzwkYBR+byZ5/lq2R5K10twQCw2PFBdozQVh59WEHtWq5r5aq2VN+4ChDAMq5vyLLAUyAgANaBI6ewdDWDVlutSdy1pUrFOCuwatcqAXVrVAo8D5p8RgSwTO5AB/MdAdappSJO/c0BFru9i93iRYUUIAWMqcDlHQIOanK7sFtD2e2hzpZABVhs/ge+lXBlJ9+0hhRU0WiQrGti8J9uH8Lrl9fkKvfyuC6oFlrEWXd4rV5uyduTU4CvZki4fNk+8qpBPQXduigQ7H+su30s8uvDjzMBVkFZRatUPmBYYRWNBzu/lnU3zosdshsE2U2CtlK/r4yosq4BrFvHBez6jAOsAjEqGg50Xa9gAFgsgTtL5G4rr/S2oHQpLzqYuja8AgSwDO8iMjCAFDA1wBo39TsrtDpz/nKWS0RRQHydqmh7B4NWjVA+LiaA3BV4UyGAFVg+dQRYZ1eJOL6QA6xAPsIRWJ6k2QSrAo7HiMq1V1DOhXxFgQywWNTRlnESVJlvXFmeIZZvSK8y89Z+DLmyPtfu5sS0R9tINzJr62UggNyStxdpqODrmRIuXLSnVDVrKHj0EQWil+EVmyI77jliFIMwmTcR3p1s/b+sEqg3EW4eKyH9Bp8puykzvKhrAItdWLBhuCa6T1DRfKwMwT79W74rKdABlqIAI8dIUFWu9/DBFoT4PzAyX99QBe8pQADLe9pSz6SAowKmBlh12vS0zqdEscJo36oRmjWqjSYNa6FwdEHytEkUIIBlEkc5aaYjwHK82rtUEwVVuuu32XPSLKpGCpACTirAIjBYJIat1HLxKFIgAyymiWPkkSCqaPgGyxHmpMD5VPvs5m6Mvro511rvF2+Op6Nr6DOYm704Jm8XJBUNBsuY9b2Ec+fsKVW1qgoef1SB5CIEcdM0a7MPJ0q49d+thy1TgCjNK6feqzKiy7sGdjyxxVdt1w22B6vN3rNADHd99E2jQpBxm7djEVgsEsuVEugA68oVAZOn8Ui1QtEq3njd9Ug1VzSlusZXgACW8X1EFgaOAgEBsJg7qlQog8T4mtbcVi0a10FkgYjA8VIAz4QAVmA51xFgXdoq4NCP/Iseu9GI3WxEhRQgBYynAIus2TBMgmLhEKLJSAtCXHidBjrAUizA1g8lpGuSk7NcQwz06VEm3diBD69ty7WrVwrXxZCijfUYyu0+HJO3l2ikYvkt4PQZe3hVuZKCJx9XEMJfAW6P6UrD6V9JOHM205b4VKC0xjXeyFvmim3eqKukAes1kVMMKLLIKXfK7ukSbh7lfqz5tIJidVz7o1OgA6yDhwT873u+qCtWUNHrGff0dsdH1MaYChDAMqZfyKrAVMDUAGv7nsP4Z9UWLF21BSfPXMzyUFhYqBVidWjd2Jq0nSKyjLt4CWAZ1zfuWOYIsK7sFnFgDv/Tu7tJYd2xhdqQAqSAawoknQV2TObnYCKKqUgY5NrGLNABFlP08k4BB7+1pzIsOThLEu5pGXNtMz69sTurm+qhhXEw40bWvx+MrIRPY+70dBi32+eUvP1YRRUHNDc0ss4rlFfx9JMyQv1wrOq7H0XsP5D53qmaDlTV3kSo85FPt4XUsWHaVQFbNBcvhBVR0fgd155bmzlH5om4sIG/s1nOSpa70pUS6ABr3QYRfy3mGjVKUPFgZ/f0dkVXqmtsBQhgGds/ZF1gKWBqgKV1xcGjp/HPys1WoMWSutuKJInWY4UdWjWy5sRixw2pGEcBAljG8YUeljgCrGsHBOz7hm/0ilRXUfs5+qKnh9bUBymgtwKOR35LNFBR/XHXntdgAFhMd8ejluHFMo8Sih5GGw29sh4zbu3Pcm3nyIpYmHw8698J4SXxe+x9erve6f4cj1Cmhav4N8Q+8qpsnIqeT8sIC3W6W10r/v6HiE1bMgFDaQsQn8a71zNaTlejPejs9ikBO6fyhVcwTkWDfq49t7bhz60Wcex3DmdKJqio1sO1vgIdYP2xSMSGjVyjju0VtGzhGuTzwN3U1KAKEMAyqGPIrIBUIGAAltY7p85exNJVW60wi0VpqSyrJ0vpKQhoWLeqNTLr6YfvDkiHmm1SBLDM5rG87XUEWOwoAjuSYCuFKqmo+5JrX4YDSyGaDSlgXAUO/yLh4iYOIyp2VlCmlWsbs2ABWMkXge0f/Zcs/D+XsmTuLKm7J2XgpdX4IelwVhcDizbER5ojhTFSAWwr18OTIdxum1Py9j2hwKkw3mVsbOZxqnDNz9we0M2GK1aKWLo8EzBEyUDLVN4RS2zOEpwHUrm2X8C+Gfr8oej6IQF7v+J9RcWpqO8iDAt0gDXnOwmHDvPPyUcfVlC7lmfPfSCtx2CdCwGsYPU8zdsfCgQkwNIKefnqDazZtBsbtu7F+q17ceHSNeuv9yyf6Q+9aUwHBQhgBdaScARYt08DOz/hZ0g8+ctwYClFsyEFjKfA9o9DkHye21XvZRnRFV07FhcsAIupdORXERfW80gMMUxFo0EyQqPc9+0rF1dgfvKxrA6mlmyNPpdW2nV4pmLmBTa+Ltf2Ctg3i8MNtmVfGgnYLmUsFaPiuZ4yIlzImeaNOWzdJuC33zPtFFSgY7IKQXMXYbMxFoh+ONrojbmyPi9uEXD4J31yTbLcbpvf5325k08r0AHWpE8kXL3GAdYrvS0oXcpb3qV+zaIAASyzeIrsDAQFAhpgnb90FRu37cPmHQewY+8RHDt5DrKc+VcSAljGWL4EsIzhB72scARYKRcFbLNGKWQWdpsRu9WICilAChhLATkjM4E7bFfDCyqajpIhuXgMLJgAliUZ2PKBBDmFb2ZjGquo+rD7n3HPXliKv1N4GoSZpdqBHSs8bUnKWjAr47qiSqjv0yE4Jm8/HQLs/u+muxIlVDz/rIzIAv5f1yw6hkXJ2ErbDBVh6dxH9fvKiCrrGpj1/6xyt+DsChHH/+QgNbaVgkqd3Y8IWs8uctDoxfJpsbxazpZABliKAowcI0G1fU4CGD7YgpAAAqLO+pnq2StAAItWBCngOwUCCmCxaKuN2/ZbodWGbXvtErszSUMkCQ3qVMEdifXQ+6n7facyjZSrAgSwAmtxOAKstGsCtozjG4lAPL4RWB6k2QSrAo7HfSPLAPH9LS7LEUwAi4lzbq2IY/M5PGA/a9DfgoJlXJbO2uDR84uxKvVcVuMfS9+NSdd3YF0qD437tlQHtCkQ594AbrbKKXn7ugjghgQUK6bihWdlFCzoZuc6Nzt/Afh0OicKTRUVRTWQseojMmIaOQ9kdDZP9+5O/CnizApN4vW7FZRt6z7A2jlFwm3NjZIsbyXLX+lsCWSAdfmKgCnTNGkRolW88br7wNpZTame8RUggGV8H5GFgaOAqQHWjZtJ2Lh9Xyaw2roPR06czeaZCmVL4Y7EumiRWBdNG9ZCZAE/x7YHztrRZSYEsHSR0TCdOAKsjNvAplF8IxFSEGgy3PVNsWEmSIaQAgGqwNmVIo7/wTfBpZooqNLd9U1wsAEslhdq+0QJKZpb+Fh0D4vycac8cO4PbEm7lNV0QWwnzLl1ED/f5nmxxhVvjqeia7jTvdttHJO33xKANZFAkSKZ8Co62u2udW+YnAyMm8DfOzUtQEVNIve4OxVU6OT62tbdUJ06dMxdV6WbjFJNnQdOjmYc+lHCpa2aXHj3KyjT0nm9AhlgHTwk4H/fc4BVqYKKZ59x71nXyf3UjUEUIIBlEEeQGUGhgKkBVp022fNAFI4uiGaNaqNF47pWcBVbqnhQOPL/7F0HdBTV9/52ZtNIJ71CQgmdEEqogtI7gjSpIioWFBGVH4qAiH8rCjYUkY50lQ6CoPQWem8hjfTeszPzP5OQmdklyZbsbnY2753jwd157777vntnM++b++6V6yIJgSVXy1WstyaBxRYBpz4SNxKULdBxISGwrMvqZDXWgMCt9RTSLosEVoMRDHw66L8Jrm0EFm/77AfA1WXqZ4gajmbgHaE/fr0TduB6cbrgUgf8h2Bvfgy+ybwofDfdtRVmu0eYze14ku74PBqU5FjZdVsg06OMvHI1/2lGrWufv5AG+/iYl18J0LpYHOLelEXTyboTMlonq+EON1ZRyLgh3rtNJrKo29zw9cUdphCzT5TnG8kidLju8qyZwDp5msLe/SI2bSM4DB1ECKwavgUsYnpCYFmEGYgStQQB2RNY/LHAVs34Y4FlhFXzsBBQlHpJ51piS1kukxBYsjRbpUprElh8xxPvq2/sOn9OCCzrsjpZjTUgwB/15Y/8lrfwt1Wo46v/ymojgcWjdGsthbSr4sbWxplDxHsMaD2r8XWN34YHJTkC8EcDhuNsURJmph4XvhvmGIIfvLrrbxwDRxzeRMNOEpHDUxknPDm8NJWBu7uBQk08bPESGplZZf7szABdJJUI7T3KbGMt7fIPNHJjxHvXkOILUizSr1G4uUb0ZZdQDi1e0R0vayawdu+lcPqsiE2fXiy6dtad3LMWnyPreBIBQmARryAImA8BWRNYh09cIMcCzecrJpmJEFgmgbXGhFZEYJ38UAmuRFQpcqFK701djS2ITEwQqAUIaB71pZRlCdwV6qmddEKithJYRRlA1Jc0uPKSfAACerCo11+/zW3b2E1IZAoErM8FjcL9kiyMStwvfNfWzgs7/AbqZI/qdjp+QoGUXTS8JfzFIzvgqekqeHlVV7rpxv/yG424uDJSh69E2DdffS5rqkTI+11hqkhgtZnFwMFL/+i/coT447AXvhKPyel79N+aCaw162ncvSdiPWYUi2ZN9LvHTef1RHJNIkAIrJpEn8xd2xCQNYFV24xljeslBJZ1WbUiAuvMAiX4al3ljc+BxT8Qk0YQIAhYBgL88SP+GFJ50zfiQrqK2kpg8RjEHKAQd0jEUUGVRfrY6RGl1DRmA7JZ8bzbteCxpZ87xW0TYPahHRAVNNrkznP6jAIH99DoUQBI49r9xzKoH244QWJyxQFs3ELhuuRYXX8FBy5XXEXrN1VwNG8efJMt+8w8JVSSCLP281SwqWP4dPyR0ZNzJBVJAUR+rAL9uOKkNsnWTGB9+x2NdEmk6uvTVPDx1oYIuV4bECAEVm2wMlmjpSBACCxLsUQt1YMQWNZl+IoIrHOf0ih+fJSDX62+JbmtCyGyGoKA5SGgSbz4P8Wi/kDDogpqM4HFFANRX9Ao4TOcP2765luq/3ANSngG4XF7UG8ieEqM/76cMuKlR9ebCKUhIXI6ut+5KAV27KLRoBhoJImgtfHg0F4Gx+9276Nw+oxIJvZ15qBIFO3SaCwDLwsn4XQxFccBJ2dLj+lz6PQZA0U1M2lc+JpGQbJhxxKtlcBiWWDBIhrc49xqvH0+mqOCUj1Lgi5mI32sEAFCYFmhUcmSLBYBQmBZrGlqh2KEwLIuO1dEYBn7eIN1IUZWQxCoeQSu/0oj8464WW08joVnK0JgGWKZ1IsK3JZUKeNlNJvKwK2R9oglBhyCo1cL09JQIKb+pNLP7WO3IIHJE67xubFCbVwMUVHrmIuXFdj+JwVwitLoK3uJ6qHDWPh2Msw3tE5sxA7/HaNw8B+RwHrag4OdJE9UwDMs6vW1/HVog6Q4Gzi3SGRQbJyA9nOrn2dSM6ebPkUdrJXASktVYMmP4tFKF2cOs97WPTeYNluS6/JGgBBY8rYf0V5eCBACS172sjptCYFlXSatiMC6tFSJvHhxna2nq+AYaF3rJqshCMgZgdMf0WCKRAKr7Wz+2Jt2wqWiNdfmCKxyPC5/RyP3cf4l/ju7uhwi3tWeUyyHLUaTmA0CrE4KG9yqN6708/DEvThdmCRc+92nD55y8De62125psDWbRQ4KOClAtoWiVMoaA4d5uufmN7oSuog8MIlBf74SyQbOnhzqPtA9HG+Sh9frU/uLe8RcOlbkcCq4wOEz6w+gfVwP4V4CQHo141FyCDd8LJWAuv2HQXWScjpkPocXphICCy530PG0p8QWMZCksghCGhHgBBY2jEiPUyIACGwTAhuDYiuiMC68hONnGhx49BiGgOXEMM2xzWwJDIlQcCqEXgyYTOHDh8ZvikjBBaQlwBcWsKTJ+LvXv1BLPy7VU0AJKvy0SZus+BvXrQDLj7OdfVWylFszbsnXPvCoxPGOYcZ1Tdv3FSU5o4qPyIVUQi15O3e7Tk0fM5w3zCqslqE3X+gwKq1IoEV5sUhRPJ3yN6zjFSUe8u8q8D15eI6XUM5NNejYmBl60+5oMCdjaJc9zAOTafohpe1ElgnT1PYu1+M6msXwWKIjqSe3P2M6K8dAUJgaceI9CAIGAsBQmAZC0kixyAECIFlEGwWO6giAkvzeFKzFxm4NSYElsUakShWqxB4YqPalEXTybpFWlQEFCGwylC5t41CkiQHE2XLleb/U1aRXDu6JAdd4sVk7fWUzjgROKJU3peZF/Bt5iUB8jddW+F99wij+SofXbJhIwX2cX4fOxboUcDHYUnyIL3OwDlYHr/dKakKfCc57uXhxqF9vCQxlIJDp0+1R8UZDWATCUq9pMDtDSLR5NGKRdg4w+/fcjXz4oBL34mRXXxEJh+ZqUuzVgJr114KZ86KBFafXiy6dq4+1rpgSvpYPgKEwLJ8GxENrQcBQmBZjy1luRJCYMnSbJUqXRGBdXMNhfRr4kMff2yDP75BGkGAIFDzCDzYQeHRcfH+DOrDIqin4fcnIbDKbMpXXj33fzTYYpE08enAgc8lVFm7UZyOXgk7hMtNbNxxKGBo6effc25jVtoJ4dpwx1B85/WUURzo3n0F1m2gwLCirg2LgYaS5O11fDmEyyjfT2Eh8OkXIgFDKTgMtgGKJBXkwt9WoY6vUSCsMSGPTlB48Jd4//p0ZNHgWcPv3/KFsCrg1AcwPw/OAAAgAElEQVTq2ck7LlKB0iFhubUSWKvX0eDvlfI2dhSLpk2qj3WNOQ+Z2KgIEALLqHASYQSBKhEgBBZxkBpFgBBYNQq/0SeviMDiExrziY3Lm7VUfzI6eEQgQaAGELjyPY2cWPH+1DXheGWqEgJLRCbhGIXonSK5AHBo/RYDx0pSV0UVpWDwo92CgDa2ntjlP6j087HCBIxOPCBca2/njT/9BlTbY6IfAmvW0VAxog8oOA79OIArEL+TS/J2KSDzF9JCRBn//Sh/DtmSYgVhzzPwaC2PiLLKDB37N4XYg6KPBfZiEdzbOKTK+c9oNcKv9ZsqOAZodzlrJbC++Y5GhoQAfWOaCt7e2vEgPWoHAoTAqh12Jqu0DARkTWDl5hXg0vV76NK+RYVo5uTm4+d1O3Hx6l0olTR6do3A2Gd7QkmL4daWYYbaqwUhsKzL9hURWPe20Ug6I26EGgxn4BMp702DdVmNrKa2IsAywOkPaXCSyJsOC1RQ2huOCCGwROw4FuCrsBali79/ToEcWk2vOArreOEjjErcLwjobO+LLb79Sj9rHi/0o+vgXNAoww0FIDYOWLWGRolKcrQOwNB2LIr+FUkROSVvlwKy5HsaaRLsxzRjkSk5AhbUi0WQkcieahmiGoPv/0kh8aRoq5ChLPyMdKzt+m80Mm/p//LJGgkslgXmf6IefvbRHBWUOkSkVcO8ZKiMECAEloyMRVSVPQKyJrB2HzqF9xYuw6ghT2PezLJS0+UtL78Qo16Zj+jYRLXve3aLwNKFb8recNayAEJgWYsly9ZREYGleUSp/mAW/l2N84bYutAjqyEImBcBvlIeXzGvvBkjsTUhsNRtmHlHAT4PoLQ1HsPAs82TJP7B/FhMSj4kdO1ZJwhrvHuWflZxLOo/XIPyUTytEF1vIpQKaYSX7v6TkAD8tppGcYk6eTWwHwOX6wpk3BDlerfj0HCkbvmPdNfA9D359UU/FNc3qh2LbAkx59GSRdh4ef8turWeQtpl0VaNxzLwDDfOC6IHuyg8OiqJ7urJIriPdryskcBKTVNg6Q/ifeziwmHWDPndE6a/62rvDITAqr22Jys3PwKyJrBmffwT9v5zGgtmvYDnBnVXQ+/b5VuxfP0u1HGwx0vjBqKkRIWVm/aioLAY333yJp7parzkp+Y3m/XMSAgs+dvyoSoHsapc8P/28gpAmzqekNo1Zh+FuMPiQ3BwPxaBT2t/CJY/MmQFBAHLRoCP3OAjOMqbVxsOjcZUb1NGCKwnbX5zNYX06yLONs4cIt5jQNuq992dH42Xk48IXw6uUx/LvHsInzvEbUG8Kk/4fDJwBIKVzno7WWISsGIVjaIidfKqby8G7VtwOPcpDTxO5s4Lb2lBydv358cgjsmFq8IOrrQt2tv5wI3SAPIxIpu307h6VVzj0C4Mig6IJISDN4c271TP3/UG38gDrv1MI0uSl6n5SwxcGxqHwEo6rcC97ZIE8ToSftZIYN26rcB6SVXGkPocXpgob98xsivWenGEwKr1LkAAMCMCsiawhkz+APei43Foy2L4etUVYMsvKESPETPAR2H9+tW76NSueem1nQdOYPanv6BXt7ZYsnC6GWEmU1WGACGw5O0bM1OOYVPeXWERQ93q488G/dUIrLhDFGIO6P8WV97IEO0JApaPwJ3NNFLOixv8kCEs/LpUj1wmBNaTdi/KAKK+UD+qGVhBNMuW3HuYkXpUEDDKqQG+8ewmfB6WsAdni5OFz1t9+6OTvY9ejpaSAvy6kkZBoTp59Ux3Fj26s9DMqWRpydtbxfyONLZIWPMCjw6Y6tysQgz2/k3hpOR4Xa+nWCj3SiLWrKAS4cXFSuQnictvPUMFRz+9XKLSztkPFLi6TCSw6vgA4TNVWoVbI4F14hSFfZLnmHYRLIYMqt5vpVYgSQdZIUAILFmZiygrcwRkTWB1GvQaCoqKceHAcigU4sPY9j3/Ye4Xv6FjRDOsWPyeYKKi4hJ06D8NXp5uOLjpa5mbzjrUJwSWvO3YI/4P3CnJEhbBbw3iW00Cmy3ejwn/UYjeLW4a/LqxCCEPfvI2PNHeKhC48DWNgmTxXjVGpA0hsCp2Dc1IVD6vVMS7DOzcxf6rc25iTtop4YuJzmH4P49OwufpKf9he9594fNXHp0x1rmxzr6YlgYsX0kjP1+dvOrciUW/3iz4nF189FVJjiR5+1AWvkbKqaSzopV0/CPvPt5I+U/tai+HQKz26VXhiOMnKOyXJDiPbM/C54ICxVni+vgILD4SS67t7CdKlOSI2rf7QAVbF+OspiQPOPuxJMmTjoSfNRJYu/ZQOHNOfI7p25tFl06EwDKOp1mHFEJgWYcdySrkgYCsCaxWPafA3dUZ/25foob2xDc/xfnLt0ujrPhoK2njI7OycvJKSS/Sah4BQmDVvA0M1aCQU6HBw3VPDP/Irx1esRMLKySeonD/D0mZ70gWDYaTBz9DcSfjCALGQIAp4RO4i5tTBcUh8hMGVDVrnBACq2LrMMVlUVhScsijBYuwCeJv4U/ZV/FJ+jlBwDSXFphbt53w+fOMKCzNuix8fsutNd5za6OTO2RklJFXubnq5FWH9iwG9S/TIf2GAjdXiQ5gacnbhz3ag7NFYgQar7OjQolb9cZDfVVlkFy+osDWP8T1NGvColW2AnxesvLG58Dic2HJtZ14n1+fuJ5On6kgeZ9b7WWd+VgJyalVRMxiYO9VNeFnjQTW6nU07kmOao4dzaJpmHz9ptqOQQQ8gQAhsIhTEATMh4CsCayuQ6cjr6AQUft/ESKw+KTtAyfMLiW2Dm/7FjZK9afx3mNmISklHZcP/WY+lMlMlSJACCz5OodmWffylfgqHXA2cBSoxw/VyecVuLtZvA+9Ijg0Gk1yR8jX8kRza0Ag864C15eL92VV1fH0WS8hsCpHKyVKgTub1J9JWkxTwSWkbMzizIv4OvOiIOBtt3DMcgsXPm/IuY13004In0c4NsBSL/GIYWUzZ2WVkVfZkshYvm/bNiyGDhY34TdWURabvP12SSaejv+zwiXu8huENnaeT1x7EK3AyjUi3oEBHHr7cGqJyYN7swjsJU8iQpUPnFkgktC0PRC5QPsRP33uZ/4IIX+UsLw1mciibvOq8bJGAuubpTQyMkUc3pimgre3PkiSvtaOACGwrN3CZH2WhICsCawXZ36BU1HXsfKb2ejQpkkpru8v+hm7/j6JyaP74d1Xx6hhzbIc2vV7GXa2Nji560dLskOt1YUQWPI1/XdZl/FZRlSFC1jh/Qz61QkuvZZ6mcLt9WIElmbUgXwRIJoTBOSLAF9YgT/WVt58O7EIHVb9jTwhsKr2Cb7qI1/9sbw5eHEIn8mALya4KP0cfsy+Klyb494Wr7u2FD4fLUjAmKQDwudIex9s9+1f5YR5ecDPK2hkSjbf/IDWLVkMH8YK0TrF2WXHBy01efvs1BNYm3u7wrVq4lTeSbNynKsrh/GdWNzbJpJanq05NH5eni9UClMUiPrKuFVENQG+t41C0hn9irBYG4HFssD8TyRHKQF8NEcFpfpX8v1jQDQ3CgKEwDIKjEQIQUAnBGRNYG3eeQQLvl5VmsD9hTH9SxO689/Z2Cixd/0X8PMWE7vzaNy6F4vhL85F00b1sHX5Ap0AIp1MiwAhsEyLrymlv5j8D/blx1Q4xdMOAVjn07v0WsZNBW6sFB+y3cM4NJ0izw2DKfEksgkC5kTg5hoK6dfEjWnDUQy821Y/FxAhsKq2Yl4CcGmJ+s43ZCgLv84sPkw7hZU5NwUBC+tGYopLU+Hz/ZJsdIvfLnz2px1xNmhkpRPmF5QlbE9NVT9g16IZi+dGsKAkX8cepEoTuJc3S0reXsCp0DJmI/h/K2o9HAKw/vHfG+n14mLgk89ErCkFh5njWbXE5HzCcz7xuRxbTrQCV36SRFEGc2j1unH/tiYcpRC9S1KpVIcIamsjsCoiQt95y7g4y9H/iM7qCBACi3gEQcB8CMiawCpRMZjwxie4cvOBGmL/mz4O40eUbZ6l7dvlW7F8/S6MG94bc94cZz6UyUyVIkAILPk6R5vYTUhmCipdwOnA5xCodELWPQWu/SI+ZLuEcmjxCnn4k6/liebWgMCZj2mo8oyfzJoQWNq94+5WGslnRexpBw5t32MwO/8Yfs8Vq7ou9uqK0Y4N1QQGRK9S+xxff3KFExYWAitW0UiSJOnnOzYJYzFmJAtKUozP0pO3aya3d1YokSMhs+oolLhTb3yFOCz6TImiYvHSrOkqXJWQWnyer46flEXAya3xBDRPRJc396Ysmk6ufhSlFIfMWwpc/02/o8bWRmDduq3A+o0iBqEhHCZPIM8wcrtfTK0vIbBMjTCRTxAQEZA1gcUvI7+gEMvX78a5S7fgWMcewwc8hT7dxaSnUmPzxwvjH6XiwxkT0KRh2fEm0moWAUJg1Sz+hs7+iMlDu9gtwnB+AxGidMa1kgzhu+kuLTG7blvkxipw+Xv9HoAN1YuMIwgQBLQjUJSlwHn+uNjjRttxiPzYOBsyQmBpx78kFzj/OQ22WCSxfDqy+LrLYfyVL76Q+9GrO4Y6Pk6Q9Vhs29jNSGTyhUlOBo1AMO2sNilP2Py2msajR+qRV40asnh+DAtag6ypKHl7+7kMlA7a12KOHj3it+NOSbYw1Qfu7fBr9jUkSV6g/OU/AO1sn0xKtPQHGnwETXl79WUV4n+lUSyptNhmFgP+KKfcWtIZhdpxSO/2HBo+Z5z7uByLogwFzn8m/lZQthw6Lqx6DmsjsE6cpLBPEp3YPoLFYFJJWW63i8n1JQSWySEmExAEBARkT2ARW8obAUJgydN+/NFB/ghheetk74vhjqFqCYbdKVtcDBqD4mQKFxeLxzjq+ADhM+V5ZEOe1iJaEwTUEUi7SuHWWpHFcG3IoflLxtn4EgJLN29L+JdC9B4pk8Rh86Rj2FLnliBgpXdP9KkTpCZw6KM9OCepxLfJty+62vsJfYpLgFVraMTFq5NX9YI5TJrAQKOuTek4S07efqIwESMT9wnrU0JR+ndlXvoZbMu7J3z/rls4ZkgS3pdfWLWWxn1JEvLxYxmUHKGQdVe/xOS6WdW8vTTz2AV0Z1FvgHEjsPgVnZxDg2NEvNrOYWDnWjnhZ20E1q49FM6cE+/Vvr1YdOlsfJzN6z1kNmMjQAgsYyNK5BEEKkegVhFYHMehoLAISpqGra0N8QsLQIAQWBZgBANUWJRxDj9micmGX3Npjrfd2yA8diPyWJGcWubVA72LQhD1ufgG186dQ9vZxtksG6A6GUIQqPUIPNxLIf6IuCELfJpFcD/jbMgIgaWbe7EMcOErGkXpIjEQ75+OGUPFHFcbffqgm4O/msDXU/7Fn3lilNZizy4Y7dSotE+JClizjsbDGHXyiq++N3kig4oeeyw9efu0lCPYmRctYFBeeXFjzh28k3Zc+L6LvS82+/Z7Avztf9K4eFnEY+ggBnVjFXh0Qr/E5LpZ1by9Huyi1Coq1h/Iwv8p49zH0pVcWkojT0KINp/KwLVR7SGwVq+jce++6EPPj2ZLj+KSRhCQIkAILOIPBAHzISBrAity4KvoEN4E3y16SyfESkpUaNfvFbRqFoq1332g0xjSybQIEALLtPiaSjr/Rpx/M17efvbqgUGO9fFJ3ln8lHJN+J6PDFjn2BdnJRV8bJyA9nNJBJapbEPkEgS0IXD1FxrZ90wTgUIILG3oi9cz7yhw/VeR3OevLO5zCCcblBFUf/kNQDs79WNxfOVXvgJseXvbLRyz3MKhYoB1Gyjcf6B+PtDPj8OUSQzsbCvWy5KTt6cwBWgXuxkqiGTJDr8BaGvnjThVLiLjtgqLsgWFW/XHwRbqeB44SOGYhKx6pjuLJnbA/T8kicnbcGg0Rn4vVe5sopESJd7HjUYx8DJCIQZNT7mzkUbKBXGekCEs/LpUTuBYWwTW4qXqVTzfeFUFby/d73PSs3YgQAis2mFnskrLQEDWBFbzHpPRMaIZVix+T2c0e46cWRqFdWLnDzqPIR1NhwAhsEyHrakks+DQKHodCiE+8J8NHAl/pSPS6xSg5fVNalOf8h6J2AWuwneULdBxISGwTGUfIpcgoA2BUx/QYFXihpQnlHli2RiNEFj6oXh9JY3Mm6ItUpxy8ebzm6GiWRzwH4LmturVlNfl3ML7aSeFSZ5zaoDFdbthw0YKd+6qk1c+3hxenMzA3r5inTgOOLeIRokkH1ToUBa+FnI86tvMi/gy86KgfGMbVxwOeFb43DFuK2JVucLnzb590UVynJK/cPI0hb37RVz4/EXdm3G4+rNIdDkGAK3flN/fJD65Op9kvbw1fYGBexPj5/KK+4dCjARDPl9bg2drB4HFssB8yQs4Huv5H6rUiiDod8eT3taKACGwrNWyZF2WiECtI7A6DXoN+QVFuHRohSXao9bpRAgs+Zn8ZnEGeib8JSjuQdnhcvDY0s/8H/BON7fjVF6ScH2aSwv0/Lyj2kI7fy6/zYL8LEU0Jgg8iUB+EtRy0tm6cmg3x3jRJ4TA0s/rCtPKjhJyrEhEbG4XhS3to3A0YDhCbVzUBP5bEI/nk/4Wvou088Fz/w3EzVvq5JWnJ4epLzCoU0UidktO3s6/KImI2YQUtlBY65cenfG8c2Ph8zupx7Ex947weYZba7zr1kYNr6vXKWzeKmIT1ojFqKEszi4Q8zLylQg7fWq8e0A/DzC8t+bRvlZvMHAKMj6B9UTOvFAOzauoJGxNEVgpqQp896NIdrq5cpj5lvx8xXAvIyN1RYAQWLoiRfoRBKqPQK0isDbvOIwFi1fDz7suDm5eXH30iIRqI0AIrGpDaHYBmrlH+jgEYaVPT4HAWpV2Ey9EHxb04pO5//rzREhSY6HjIhUocf9g9jWQCQkCtRWB5HMK3N0ibsg8WrAIm2C8fC6EwNLfs6J3U0j4TyRZSigGr43fiINNBsOPrqMm8H5JFrrF/yH+vhY7YfjGMWp96tbl8NILDBwdq9ZFM3k7f/yMP4ZmCW1vfgymSgqFOCuUuFxvrNoRQT6J+5spRwV1O9h74w/fAWrqx8Qq8OtK0d/9/ThMe4nB2YVK8NUgy1vE+wzs6xqf/DEllnx1QL5KoKnXUJCswIWvRQxtnIH2H1b+EsqaCKxbtyms3yjem6EhHCZPsIx7xJS+RWTrjwAhsPTHjIwgCBiKgKwIrCMnLuLfk2I4+eadR+Dt6YYencKrXH+JisG9hwm4fL2sYs2Yoc9g7tsTDcWMjDMiAoTAMiKYZhI1O/UE1ubeFmZ73z0Cb7q2Kv3M/wEv4hh4XVyJHLZE6LNp5QugCsUH4A7zVFCq78vMpD2ZhiBQuxG49weFpFPihqxefxYBPQiBVZNewRQB5z+nocoTyYgTDe5j6lQfuFF2aqqpOBb1H64Rs0JxwAvrpoDiymzq5lZGXjk7V70iS0/ePibxAI4WJgiLmOrSFAvqRqotio/OCo/ZKHzHVyi8U3+8GsmVkanAN0vFvz3OThzencng2s80siSJuZtOYuDeTF4ElmZ1wMiPVaDV3cUobs2xZZUIwYn+WdVc1kRgnThJYd/f4u9lu7Yshgw03u+lUQxEhFgEAoTAsggzECVqCQKyIrC27DqCRUvWgU/GbmhrGBKA1d/+D26uRkr4YagiZFwpAoTAkp8j9EnYgWvF6YLi0kpZ5X/Ap945ghXZN4Q+v60dB+dc8SyLtjLc8kOFaEwQkAcCT1QUe5mBawPjbdxJBJZhfqAZGcdLCZtWAo8Q9YqC/PdtYjchmSkQJhq1fTScc53h4lJGXrmKKQcrVcaSk7dHq7LRJU6sxsgv4njgcNRXqh+n5L/vFrcd91XZwjo3+PRGd4cA4TPDAgvUchhxWDCXwYO/KCSelBC5A1gEdJcPMcEWA6fmmu8YJH/MtSBF9MWWrzJwrl/x74Y1EVg7d1M4e170k369WXTuJB8/MezXiIwyBAFCYBmCGhlDEDAMAVkRWPwS8wsKceLcNez6+yT+/u8c6ro5o22rsCpXT1EKuLo4oU2LhujXowNsK6olbRh+ZFQ1ESAEVjUBNPPwQk6FRg/XQfr4djN4HJwpm1JNyv+AH09KQlfJBmTphpHwyxJ3VRGzGNh7GW/TbGYYyHQEAVkiwDLA6Q/V8y1FfqICXXb7GqURAsswGBlw2PRFNuqneQgCHLw4hL/DQKHBYXW7sQf3HZKFfgP2D0SjPN9S8srdXfv8lp68fX76GSzPvi4spJu9Pzb69qlwYbPTTmJtzi3h2uuuLTHHva1a3//7UokCke/DrLcZ5F9R4P5fkkqEFnR8UrsFUXp0kD9CWN6MnctOU4ebayikXxPxajCCgU8H6yewVq2lcf+BeAM+P5pFkzBCYOnio7WtDyGwapvFyXprEgHZEVjlYPFRWL1Gv4OG9QP0qkJYk2CTuZ9EgBBY8vKKs4XJGJa4R1C6gdIV/wWKVaHK/4Dzdn02cQ/OFJZtsr7Y8ixCUsWNGV/xia/8RBpBgCBgPgRyYhS48oO46XXw5tDmHePmcyEElmH2zGGLMejs3/i/7UPVBIQ+y8K3o7hh5o8zLVIewf2Q+0K/Xue6YfHTDeAh/sRWqUTGTQVuSPJC8UnM289loKwi4bthq9J/VDEYtHr4O3I4MdL+V+9n0L9OcIXCduY9wLSUf4VrbWw9sct/kFrfH5YpkSTyfXhlKgOnAuDaL+K94BTIodV0494L+q9e9xG5ccDl78QILFNXUozZRyHusEhg+XdjUX9QxUSONUVgLV5CIzNLJLCmv8bAy5O8fNPdU2tPT0Jg1R5bk5XWPAKyJbB46NZuPYA7D+Lw8btTah5JooFBCBACyyDYamzQL1nXsCDjrDA/X8J9iWc34bOUwNqedw/THyfY/eSPwQhL9BH6VXX8oMYWRyYmCFg5Ao+OUXiw07RRJ4TAMsyJklX5aBO3GW8c6o7utxsJQmgHDu3+x5TmNjryH4V/jlA4G3EWl1tcEvpMsw3HXP+qc4FKtbLk5O2aRUK8KHtEBY8GhSePUvJrymKL0Sxmg7A8vteteuPgqBDDCtesp3H3nnoUTQN/FmclRwspWw4dF8qHwMq4pcCN3yTV8RpxaDbVdPqnRClwZ5M4n3sTDk1fqHg+ayGwWBaYr3b8FJj/oQqUesFPw254MsrqECAEltWZlCzIghGQNYFlwbgS1XREgBBYOgJlId1eTfkXO/IeCNos8uiIyc5NKiSwSt+kx2wsTeY+d0d/tIoXQ66aT2Xg2oi8xbQQsxI1agkCd36nkXJR3MhrRvcYAwZCYBmG4sOSHHSO3waXAnv8uG4M7FRidI1fZxYJXhz2HywjEG40voETHY8LE41yaohvPLvqNLGlJ2/vl7ADVyQ5Ft91C8cMt6rJuZ7xf+FmSYaw/tXePdGrTpDw+Y8dNC5I/H7QQBYd2rI4M5+GqkC8H9rOZmDnLo+/S8lRCtyVEEpe4RwajTUdgaUZ8cVXbOQrN1bUrIXASklV4LsfJSShK4eZb5kOY51uYNLJYhEgBJbFmoYoZoUIyJrA2nngRGk+rHEjeqFFWIhW86zffhCnzl/D5NH90bZVY639SQfTI0AILNNjbMwZOsVtRYxKrD2+238Qwm09KySw+C/5aC0+auu9Pb3R/mE9oV+TSSzqNiN5JIxpGyKLIKANgagvaRSmihv21tNVcAzUNkq/64TA0g+v8t43itPRK2FH6cdhF1pj3Kn2EkEcjjookPc48iMuIBb7e+4Xrne298UW3346TRx3kEKMpKpaHV8O4W9bxqb8QlEqBj3aJayDryp4LmgUvOiqzzZ+lH5arWjIy67NMc9dxO/gYQr/HRXDZrp3Y9HzaRZXl9HIluQ3ajqFgXuYPAishKMUoneJa/LryiJksOn+prIq4NQHIqnKG6njIhUo9a9KbWctBNbNWxQ2bBIxDg3hMHmCZdwrOt3spJNZESAEllnhJpPVcgRkTWC99r9v8O/JS3j3tTGYPEr7wxtPeM3+9BcM7tMZn815uZab3jKWTwgsy7CDLlqksYWlEVXlTamgcC94PPh/y5v0CCH/3QNVdmky9xkHnkGXe6FCv8ZjGHi2kcdGQRdsSB+CgKUjoCoEzsyTVC2jOHRcxEBy+xplCYTAMgzGqKIUDH60u3QwzSjw8+9j4ZpTRxCWQQGnH/M4Oe6Z2Dx4q3AtSOmEU4HPaZ24ouTtIUNZ8BFeltBmpB7Dlty7gipDHEPwk1d3rarty4/Bi8n/CP2a29bFAf8hwuczZyns2iv+nYoI5zBsCIP72ykknha/rz+Qhf9TloGFtkVr5qQK6sMiqKdpdT/3fzSKMyUE+FsqOPo/qam1EFgnTlLgc86Vt/ZtWQweaFqMtdmdXLdcBAiBZbm2IZpZHwKyJrD6j3sPMfHJ2L5iIcIaiOHilZnpUXI6eo2aiXqBPtiz7nPrs6YMV0QILPkY7WB+LCYlHxIUjrDzxE4/9WS5mgQW33lU4j602tsYz9wUox6rqmAkH0SIpgQB+SCQeUuB65KcOU7BHFq9bvxoAkJgGeYTxwsfYVSiGFU1PqE1hv4ljcICouyANFsOI58vRm9qrTARH6kUXX9SJVmiRH0sOXk7f9S8VczvKJbUuN3m2w8d7X21AprHlSDs4XqUvxLhKZZrwc/DlbItHXvjJoXfN4tERKOGHCY8z0AzJ5x3ew4NnzP+PaF1AQZ0uLeNRtIZ6XFgBr4dTftS6PoKGpm3xTkbj2XgGf7knNZCYO3YTeHcedFv+vVm0bkTIbAMcNdaMYQQWLXCzGSRFoKArAmsdv1eRkFhMc7u/Rl1HOy0QqpiGIT3mlra98yeZVr7kw6mR4AQWKbH2FgzfJV5Ed9kXhTETXFpioV1I9XEV0Rg8Tmzzm4vRv+rzYW+AYNLUK9rxUl5jaUvkUMQIAiICGgeHTPVkWPCZHwAACAASURBVCNCYBnmdZovCCLZILzwax94MOLvZIGCQ+BkFmFNOLSO3YRUpkCY7EzgSAQoHauc/OZqCunXTZvE37DVA8uyr2Jh+jlheGMbVxwOECvcapPb79FOXClKE7pJKxfGxSvwywoxl5GvD/DaKypk3VHg2q+SSoQmInW16W7IdU1bhk1g4dHCtOQKXwCCJ/3KW2AvFsG9n5zTWgisVWtp3JccMR03hkVYY9NibIgvkDGWgQAhsCzDDkSL2oGArAmsiD4voai4BBf//hU2NhUcxK/AhuG9p0KhUODCgeW1w8IWvkpCYFm4gSTqjUv6G0cK4oVvlnp1wwjHBloJLBXHYsGm2+h/oYXQN+OZZAzsW1c+iyeaEgRkjsCNlRQybkqiUMYy4BM/G7sRAsswRHfmPcC0lH+FwSEPQzDwcE88VQC1yKryo2KDEnbhQnGq0F9btFKFydtfY+Bcz/g+oC8CvAaRcVsQr8oThn7q0RGTJAVCtMn8OP0sfs6+JnR7wbkJPvHoWPo5K0eBr78Riao6dYDZs1Qozlbg3CLxezlVIrzyE42caJHcbPEKA5dQ09qSP27JH7ssbx6tWISNs14Ca/ESGplZIsbTX2Pg5WlajLX5ObluuQgQAstybUM0sz4EZE1g9Xv+PcQmJGPbrx+jScNgrdaJT0xFnzGz4OfjgYObvtban3QwPQKEwDI9xsaaocnDdcjhVIK4owHPItTGVSuBxXdYtzMRocfEbNH/dLiOD0eQQgrGsg2RQxDQhsCZj2mo8sTNWJt3GTiYYDNGCCxtlqj4+ubcO3g7Vaws2OheIzx1vDuaFAH1xZ9dUDYcIt5j8GbREezMixaEfevZFSOdGlY6uSUnbz9cEIfxSQcF3R0USlwJHgP+X13bofxYTJQccQ+zccM/AcNKh/O5v+Yt5Ikq0f/nfagCTQGn5tJgi8Xv233AwNbF8kkKzYIMbd5h4OBtWr2z7ytw9WcJEegDhM+UOOdjY1lDBBbLAvM/Ufe/+R+qQIn8na6uSfrVEgQIgVVLDE2WaREIyJrA+vDzFfhj71EMH/AUFr43RSugX/60Eas27cPAnh3xxdxpWvuTDqZHgBBYpsfYGDM8KMlG1/jtgihnhRI3641/QnRFRwj5TjcOq5Cxz17ovyP8Mp4f7o1WdmIFQ2PoSWQQBAgCTyJQlKHA+c/EjSdtxyHyY9Pk+iEElmEeuDrnJuaknRIGN7nVFF1OdwHNcejNm6pIJFn4vENb+p7Gj9lXhf6z3MLxtlt4hZNbevL2yUkH8XdBnKD7JOcwfOrRSS8gNfNg8YOvS/JgfbFYiVyxgC5mvsnAzY3D5R9o5MaI2DafysC1kWmJIL0WVknnM/OVUIknSNHhIxW0nCCt9rQlucDZhZJCEDSHjp88WQjCGgis5BTg+5/EtfK+wvsMaQSByhAgBBbxDYKA+RCQNYF19dYDjH5lQSlar0wYjFcnDYONUnxIL4eRz321cuNefLu8rGrPym9mo0ObJuZDmcxUKQKEwJKHc2zPu4fpKUcFZbs7+GODT58nlK+MwEo8SeH+n+Kry/3NbyB/YAq+9OgsDwCIlgQBGSOQelmB2+vFv41uYRyaTTHNZowQWIY5ymcxV/EdK+aAanmtFTqc74AhgxgEqQA+abe0xbxwD+/YHxa+GuPUCF97dqlwcktO3s4fG+wYt0WSuh04HDAMjW3c9AaSr+LIV3Msb3wFQ76SId9+Wq7Eo0eiyJdeYBAUxJXiKk2GHjKYBZ8fzpIbT0ienC2NDuLQ6TMGCjOkldSMWGszi4GDlzrhZw0E1s1bFDZsEp9ZGoRymDTeNL+ZluxrRDfdESAElu5YkZ4EgeoiIGsCi198eVQV///urs7oGtkSIUF+pYnaC4uK8TAuCUdPX0ZqelYpVrpGa1UXWDJeNwQIgaUbTjXd66P001iRfUNQ4y231njPrc0TalVGYCWfU+DuFnEDdiTsDlb2PI5LwWNQR49jIjWNA5mfICBHBKJ3UUg4qj35sjHWRggs/VFMSABeO38ZZ1tGCYPbXIrAXL/WiOzAlR6Bu7SERv4jkaFgfYow+tm1wqm4LvZ+2Ozbt8LJLTl5++cZUViadVnQu6O9D7b59tcfRACfZUThO4msCU6N8Zln2UuSdb9TuH1HvAdGj2TRvClbel/w90d5841kETrcsgmskhzgrOR4Gx95xUdgmaNp5t5qMolF3WbqeFkDgXX8BIX9B0W/6NCOxaABlu0X5rA/maNyBAiBRbyDIGA+BGRPYHEch5/X7sRPq/8CH2lVVZs0si9mThsFJf1klJb5ICczSREgBJY8/EHzzfYqn57o7RCkM4GlGQFyssF9LO7zD/RN1CsPtIiWBAHLQuDqMhrZkmpaTSYzqNvUNMekCIGln+0Tk4AVq2gca34Wl1uIRM6YzHb4OlwsfJETC1z5Xj0nz7IeR3Go6a3SCespnXEicMQTk1ty8na+wEd47EZksMWC3tKoKf2QBI4WJGBM0gFhWIiNC44FDC/9vGMXhXNRIiExoB+Ljh1YZN5S4Ppv4jOhSwiHFtMsO9ImPxG4+I3oC3zuKz4HljmaZsRavf4sAnpYH4G1cxeFsxJ/6debRedOhMAyh4/JdQ5CYMnVckRvOSIgewKrHPSklAz8ue8Yzl++hbhHKcjLL4S9nS18veuiTYtGeLZ/N9QL9JGjjaxaZ0JgWb55+U1Gg5h14P8tb5eDx8CDEnNalX9fWQRW+g0Fbq4SNwnng2Pw2cADkCbatXwkiIYEAfkhwN+2p/lE1Soxeqf9XBVsnEyzFkJg6Y5rSgrw60oaBYUKnGx/AtebXhcGL6wbiSkuTdWE3f6dRupF0Y5Z9gV4Y9xmFNqWQAkFoutPUqtYyA/WTN5u71GWBN4S2p+59/F66n+CKl6UPc4FjYJSYVim7GIwaBS9DiqI5OzF4DHg5R7+lyr9r7x17cyiTy8WxZkKnPs/8W+T0oFDh/mWgU9lNsq6p8C1XySkWygHvgqhOZpmxJpXWw6NRqnPbQ0RWKvW0rgvIf3HjWEQ1tg0pL857EbmMD0ChMAyPcZkBoJAOQJWQ2ARk8oTAUJgWb7dLhWnYUDCTkHRQKUjTgeOrFDxyggszQfuq/4JWDB0T6mMHX4D0NbO2/KBIBoSBGSIQN4j4NK3YrSGnTuHtrNNt9klBJZuTpKWBixfSSM/v4yQOtrpP9xudFsY/JVHZ4x1Vq/UykdTRX1Bgy0RSaxdra5gdZfTpePOBo2EP+0oyLD05O3PJu7BmcJkQd8Zbq3xbgVH03VDtKzXiMS9OFWYJAxZ6tUNIxwb4Nx5BXbsFkmf8FYchg8ruw808zq1/1AFG2d9ZjVvX82IZo8WLMImmCc6KOOWAjckEWvOQRxavmF9BNbXS2hkZYn32ZuvM/D0IASWeT1dXrMRAkte9iLayhsBQmDJ236y154QWJZvQs3qWIMc6+Nnrx56EVg5MQpc+UHcPNzxTsacETtKZfCl3/kS8KQRBAgCxkeAT1AtTQDu0YpD2DhCYBkfad0lZmSUkVe5ueIG+XC3f3A/5L4g5EfP7hjqVJaAXNpiD1GIPSBGEjEKFm+N3YIk1xz84dsfHezFSHNLTt5+uyQTT8f/KSyNX1FU0Gh40Q66A1lBz68zL2Jx5kXhyminRljs2QW3biuwfqP4Nyg0hMPkCWX3weXvaeTGSioRvszAtYHlkhWaRVF8Ilk0MFPeLs2KppQth44LrYvAUqmAjz9VP647/0MVKMMCA6vlz2SwfBAgBJZ8bEU0lT8ChMCSvw1lvQJCYFm++WakHsOW3LuConPrtsM0FzE3i3QFlUVgaUaBxLhn4J0x20qH2oLC5eCxcKZsLB8MoiFBQGYIaOasqT+AhX9300VrkAisqh0kK6uMvMrOVi8Zd3roflx1jRUGr/TuiT51nswzyKqAqC/p0qNv5e1yQDwWDtmL8mij8u8tOXn77LSTWJtTlr+Lb/3rBONX72eqfXedKkzEiMR9gpzyiGG+AiFfibC8eXlymP5aGfFyZzONlPMinqFDWfh2Nt09Ut1Fxv5NIVaSYDywJ4vgPubT9+QcGhwj4tXuAwa2LiLhJ/cjhMnJwPfLRF9xd+Pw9pumI/2r6w9kvGUgQAgsy7AD0aJ2IGAVBFZBYTG27jqCv/87h7sP4pGVk4ewBkHYvmKhmhX/ORZVmhur11Pt4GBvWzssbOGrJASWhRsIQPf4P3C3pKyKJ9+2+/ZHpOQtv3QFlRFYhamK0k1XeUtxycFr4zYJnxfU7YCpLs0sHwyiIUFAZghc/FaJ/Eei0nyuHJdQ00WXEAKrcgfJySkjrzIl5BPfu0UzFtu67sWxQtFQG336oJuDf4XC0q5SuLVWPRzk8/4H8Ey4B/gKsXyz5OTtBZwKLWM2gv+3vFW1Xn1uOT5XY6OH61AMkdA5GTgCdQud8cVikZSwtwPmvF82f/y/FB7ukVQi7MQidJj5CCF91sf3vf8nBT4Kq7yFDGbh19V8+l5aqkRevKh185cYuDa0HgLrxi0Kv28S8W0QymHSeEJg6eunta0/IbBqm8XJemsSAdkTWPceJuCNOUsQEy/mPOABrYjAemfBj9h3+Aw+/d9LGNq3S03iTuZ+jAAhsCzbFXLYEjSJWS8oyT/S3ak3HvYK9fD68g6VEVilm6lF4phixxKMm7hafABXuuBYYFm1KNIIAgQB4yDAlJQlcAf3OFpCwSFyIQPahMGOhMCq2HZ5eWXkVXq6euRVkzAWY0ayGJa0G+eLUoTBf/kNQLsqcgNe+YlGTrQoK9ElGydfuogvvTuXyog7RCFGctTQkpK3r8q5iQ/STglrra90xvEKKigaeheMSTyAo4UJwvCvPbqAP0o4byH/EkXEbN6HKtAUoHnU0jWUQ3MzJUU3ZI23NtBIuySuo/EYBp5tTEdKa+qoWUwgZCgLP0nEmtwjsI6fpLD/b5HA6tCOxaAB5iMIDfEJMqbmESAEVs3bgGhQexCQNYGVk5uPZ6d8iEfJ6bC1tUHPrhGllQaXrdlRIYG1+9ApvLdwGfp0b4dvFrxRe6xswSslBJYFGwfAscIEjE4Uy5I3s62Lv/2HVKp0ZQQWUwicnicSWJQdh5FTVkjekQPbfPuho72vZQNCtCMIyAiB7PsKXP1ZjHys4weEzxCjXkyxFEJgPYlqfkFZtcHUVHXyqlFDFs+PYUtJlN4JO3C9OF0YfMB/CJrb1q3URPnJwIXFNBTl5CSA411v4d3BDVBh8vYhLPy6WMYmvEvcNkSrcoS1GTsCd2nWZXyeESXI55O488crv/qGRnaOaIO3Xmfg4cGhKF2B85+L9wlfoZOv1Gmp7eovNLLvSXJ2TWXg2sh8BJYmOeqrEbEmdwJrxy4K56JEAqtfHxadO1rGvWOpPkn0AgiBRbyAIGA+BGRNYP246k/8sOpPNGtcH0s/eRN+3mUPe817TK6QwIpNSEa/599DkL839m34wnwok5kqRYAQWJbtHJobgeedG+NLj7I3/BW1yggsjgVO/k8StaXgsPztAzhQIOZ8edYxFN97PWXZgBDtCAIyQiDhXwrRkqNRPh04NBhh2qMwhMBSd5DCQmDFKhpJyerkVWgIi/HPs1A+5k26xm/Hg5JsYfDRgOEItXGp0tuitpeg8LSY9LxYqUKX/wG5cQrcWCkSMgqaQ/u5DJTVy49uFM/XzFFlihyI54uSMeRRWZVbvnlR9rgYPAa//EojLkG0w5RJDOrXKyN+NPM6tZ+ngk0doyzZ6EIufqNEfqIotvVbKjhWfNrU6HPzAtOuULi1TiR4NCPW5E5grVxD44EkunHcGAZhjc1HEJrEaESoyREgBJbJISYTEAQEBGRNYA1/cS5u3YvF1uUL0LRRPWFRlRFYhUXFaNv3Zdjb2eL8/l+IG1gAAoTAsgAjVKHClORD2J8vkkw8ecWTWJW1ygissg2CEpxk71zw4QNMTDskiFJCgYtBY+BO21k2KEQ7goBMELi1nkbaZXHDzpNXPIllykYILBHdomLgt9U0Hj1SJ6/qBXOYOJ6BjYTTbxu7CYlMgTD4XNAo+NFVMyj5hQyOfQo4FYm/mV5tWfARr+nXRILBqy2HRqNMS1zq6lOvpvyLHXkPhO7aXoroKlfaj8+D1SxmA/IkObaOBjyL09vdwec3Km8jhzNo2aLsfri0lEZevGgnU+eKM2Rd5WPOfUKjWBJJ1nYOAztX097XUn3zk4CLknxiNs5A+w/FiDW5E1hffateZOHN1xl4epgP3+r4BhlbcwgQAqvmsCcz1z4EZE1gtev3MmyUSpzc9aOa5SojsPhOEX1eQolKhSv/rKx91rbAFRMCywKNIlGpVczvSGOLhG/444P8McLKWlUE1ul5NJhCcYPQYQGDzqmbEa/KE8RVVeHQspEi2hEELA+B85/R4Mvel7fwtxnU8TXtRowQWGVol6iAlatpxElIEf57Pz8OL05mYKuRh4wnXLLYYsFW14LHwo3STua/tvc8xh+JrNL5Wr7GwPlxpFFNemkGU4Tw2I1QQfTBwwHD0NjGzehqTUg6iH8K4gS5n3l0gvuxpjhzVnI0rDeLzp3Kjobd2Uwh5bwkcfdwFj6Rlnls7MT76jkoO39u/uOOmjpELmBA25fZVc4ElkoFfPypOr7zP1SBUq+ZYHR/JQLljwAhsORvQ7IC+SAgawKLJ6Ocnerg3+1L1BCvjMDKLyhC+/6vwM3VCcf/+l4+VrJiTQmBZbnGTVDloX3cFkFBe9C4U388KEkSXE3tqyKwNN8a86W3f2Iv4ovMC4KYAKUjzgSOtFxQiGYEAZkgUJILnF0oyTunLEvgrjDxRowQWICKAdZtoHD/gTrYPt5l5JW9/ZNOFPJwDYr5s9aP24N6E2Grg7H6x+/EC2t6IDDTvULPtKTk7UsyL6n93re188IOv4EmuaOWZV/FwvRzguzBjvUx9uYzOHRYtEmnTiz69y7DPO4whZh94jU+X1jIEMsjsFQFwJn54n3NByxHfmx+AouvKsxXFy5vLV9n4BwsfwIrORn4fpmIr7s7h7enW0b0okluFCLUaAgQAstoUBJBBAGtCMiawBow/n08jEsqJbA867oKi62MwDp0NApvzl2KNi0aYd33H2gFh3QwPQKEwDI9xobOsDvvIV5OOSwMj7T3wXbf/lWKq4rAivqCRmGa+MDbaCyLAqcivJx8WC2Z+7y67dDS1tNQtck4ggBBAEBuPBC9S9yQO4dwaDnN9Bux2k5gMSywYSOFO3fVyStPTw5TX2BQp4I8VAw4BEeLVVlpKBBTf5JOfvxS8j94cLcYH/81qML+oUNZ+EoqxOkk1ASdWHCIiNmEFLZQkM4nVucTrJuiXS5KRf9HuwTRrpQt1qePwx87xNxgLVpwGDW87J7IuEHhxirRZk7BHOr3N220oiHrLs7mwFcBLG92dTm0fd/097WmrjfWUMiQHFNtOIqFd9sywk/OEVg3blL4fbMkEi+Uw6Tx5sfXEN8gY2oWAUJg1Sz+ZPbahYCsCaxPl67D+u0HMW54L8x5c7xguYoILD76asyrH+NedDxmvPQcXhpX8cNe7TJ/za+WEFg1b4PKNFiUfg4/Zl8VLk9zaQH+iF9VrSoC6+I3NPIT1XPBWO7qiWYEAetCwP8pBvUHmn5DXpsJLJYFNm6hcFOSZ4n3orp1Obz0AgNHx4p9KoctRpOYDcJFJ4UNbtUbp5MDLsg4i1+yrmHGgWfQ5V6o2hgFDXSYy4B2ML3dtSm7Lz8GLyb/I3Rzp2xLcx4qdYgy0ya7ouv8isMerlPLg7WSGYZj68WXI3wCdz6RO9+K0hQ4/4VIDBkyZ02McQri0OoN8xMsD/cqEH9ExCugO4N6A+QfgXXsBIUDB0UCq0N7FoP6W14kXk34GpmzagQIgUU8hCBgPgRkTWA9SkrDwAmzUVRcgkG9O+GdV0bD29PtiSqEUVfuYNGStbh5NwauLo7Yt+FLuDhZaHkZ89neImYiBJZFmKFCJZ5L3IeThWKpo2VePcAfwzCUwLr8A43cGEJgWa7FiWbWjEDYeBYeLU2/EautBBbLAVu3Ubh6XT3yys2tjLxydq7cu5JV+WgTt1no4EU74GLQaJ3c8bfsG5ibfhoeeU5Yum4kbFmRVOATujcaZXqb66Lo2KQD+K8gQej6umtLzHFvq8tQg/toFiF5zyYSaStaCvI86nJ4S0L+aBYaMXhiMw50b8qi6WTz2zglisKdTRToOhyc/Dl4RwC8v/FNzhFYO3ZROBcl3sP9+7LoZKG50MzoZmQqHRAgBJYOIJEuBAEjISBrAovH4ODR85g5/wcwfNw+gHqBPqXHCp0cHdCiSQjuPohHanpW6TUbGyWWfTYTHds2MxJ8REx1ESAEVnURNN34Rg/XIV9SxYnPTcXnqKqqVRWBdW05hSyNYzWm055IJggQBKQItJ3NwM7d9JE4tZHA4jhg+58ULl1RJ69cXMrIK1cxw0GFThnD5KBT7DbhWjDtjJNBI3Ry4IMFcZiUdLC0b7+rzfF0fAgi3b2hdAB8IwEHb/OTG5qKP1TloHOcuD7+ui5/T3QCoIpOv+XcwNy000KP3nbBCF7eR/hMKTjMnytGL11aQiMvQV4vWbzbsWg40vw2ZvIVYIoBW7cnf1PkTGCtXEPjQbToA+PGMAhrbPrfzer6ur7jb5dkYmeuWA1U3/GW0P9l1xZwpjSqYdSgYoTAqkHwydS1DgHZE1i8xa7cuI8Fi1fjxp2HlRowrEEQFrw7BS2bhNQ6I1vyggmBZZnWuVWciWcS/hSU86TscSl4jFZlqyKwHu5TIDu64gzSfML4GFWOIN9OQaONnZfW+UgHggBBQDsCtC2HZlPMs8ktJ7DuZmUjpiAXTWwqTi6uXWv59PhrJ4XzF9R/25ycysgrdx2Wr/l729TGHQcDhuoEgObYBkoX/Bc4XKex5ur0cfpZ/Jx9TSSSHAKxyqeXyafXxIbPgzVq9QSwnEhQzHlPJSTVjz1II/OuydUy6gRerTn4Pq6kaFTB1RAmZwLrq29oZOeI/vHWaww8PK2PwNIkd6th7hob+rR9ANb59q6x+TUnJgSWxZiCKFILELAKAqvcTlduPsDZizcQE5eM3PwCONjbwd/XA5FtmiKiZeNaYE75LZEQWJZps015dzEz5ZigXB+HIKz06alV2aoIrKoGp7GFaBWzUa3Lbr9BCLcjydy1gk46EAQsBIEctgQjkvbgYUkOctmyymingp5DEO1kIRoaX41deymcOatOXtWpU0ZeeXjoNt+l4lQMSBATjrex88QuP93ydOZxJWj8cL3aRPH1J+s2sZl6tY3djEQmX5htvW9v9LAPMMvs4TEbhcTxXpQ9Bv7TH3SMaJjprzHwskKCQhu4y7Ov4cuMC3ChbMETe4OdQjDDtbW2YTpdlyuBpVIBH38qViBUKDjM+4ABZeLKrTqBauROmqSykcWbTdxbrq3wnnuE2earaiJCYFmEGYgStQQBqyKwaonNrGqZhMCyTHO+n3oC63JvC8rxDwj8g4K2ZiiBxcsdl3gARwqlOVJaYI571UnjtelDrhMECALmQ+B0USKGP9qnNuE0l+aYW7e9+ZQw40z7/qZw4qT67tbBvqzaoJceAaQnC5PwXOJeQfMu9r7Y7NtP55U0j9mATLZY6M/nz+LzaFlCu1mSgZ7xfwmq8CTSRR2ieY2l+/SU/7A9774g7pkHEQg5Km54J09gEBpifRE22vB7JfkIduVHC9062/tgi5Yqw9pkll+XK4GVlAz8sEwksOq6c5gx3fwJ8nXFuTr9pib/g735MdURYTFjV3g/g351gmtcH0Jg1bgJiAK1CAFCYNUiY1viUgmBZYlWAfrE/4VrJRmCcr/79MVTDn5ala0OgbU25xZmp50U5qindMaJQN3ywGhVjHQgCBAETI7ArznXMS/tjNo8LpQNooJGw0EhbgxNrogZJjj8LwX+P2mzs+Pw4mQGvj76KXCoIA4TH+ex4kf2dAjEGj2O2PWN34GrJenCpDv9BiLCQo5g/5h1FYsyzgm6PecUiiWeT+kHUDV678h/gFeT/xUkBOV5oM+2Z4XPw4cxCG9V+wisiNhNSGIKBBzqK51x3Eh/b+VKYF2/SWHjZvGebtiAw8Rx1klg9U/YicvFaYL9xzk1ho+FkN7abvdVOTeRzhYJ3exAY1/AEDS20ZJsUJvgal4nBFY1ASTDCQJ6IEAILD3AIl2NjwAhsIyPaXUlFnIq8AncpRlzbgaP0ylZZnUIrGSmAPxDtXQrcSRgGBrZuFV3SWQ8QYAgYAYE3ko9iq25956Y6TOPTpjgHGYGDcwzxfETCuw/KFb742e1teEwZRIDf3/9ddiZF41pKUeEgYMc6+Nnrx46C9KMpvjB8ykMcwrVebwpO45I3ItThUnCFObWjT/WykeoMZK/LOM2jYd9kX2pTr17sujWxTz54UyJsz6y+ZyT7eO2qA1RQoGH9SfpI6bSvnIlsI6doHDgoEhgRbZnMbC/dfpG85jfkSkhgc4HjYIvLY/q7BeLUjE0cQ9UnGgbvvDFgYAhOj2nGsXJKxBCCCxTIUvkEgSeREA2BNbhExdw5MRF9OneHl3atyhdyfrtZZV3qtNomoKrsyNaNg1FoJ8eMf/VmZSMFRAgBJblOcOZwiQ8KznOEqp0wVEdkwJXh8DikRj8aDeiilIEUN53j8CbOhxdtDwUiUYEgdqHQK+Ev3CjWIzcLEegkY0LjgRYVmJxQ61z+owCu/epk1dKmsMLkxgEBRomdUvuXcxIFXMOjnRqiG89u+osbH76GSzPvi70/597BN6wgN/NAk6FsIfrBfKIT419Q8eXITovXoeOmiRat+NPofG9sryokR1YDOxnnSRFZdBoEqbl/S4HjYaHEaJw5Epg/bWLxvkoMYF7/74sOkVan2/wLykbPFwnuAdPXkbXnwQ51d/cvpAHIAAAIABJREFUknsPM1KPqrl4V3tf/O7bF1QNrYQQWDr8GJMuBAEjISAbAqvDgGnIyy+Eh7sL/vtjaenym/cwbqLSAT0j8ensl2BjY11HHYzkKyYRQwgsk8BaLaG/ZF3DgoyzgowRjg2w1KubTjKrS2D9mHUFizLOC3OF23pgt/9gneYmnQgCBIGaQ4B/Gx7ycI1a5KZUm02+fdDV3oDwpJpb0hMzn4tSYMcudfKKpjiMf55Fg1DDj6GtzrmJOWmnhPkmOofh/zw66bzyX7OvY166eHRzglNjfObZWefxpuq4O+8hXk45LIhva+eFHX4DTTVdpXI1/67Ui6mPXkfKqiA2a8pizEjrIymqAlmT8Czvu89vEFoaoXCKXAmslatpPHgo0jjjxzJo3Mjw+9rsjq7jhLdKMvCMJC9diI0zjgXIL12DZq5WfvlvuLbE/9zb6oiEcbsRAsu4eBJpBIGqEJANgfX2vO/x93/nMaxfV3zy/oulaxo4YXa1rctxHNIyspGbV5YL4KVxgzDjpeeqLZcI0A0BQmDphpM5e/FHWfg3tOVtYd1ITHFpqpMK1SWw4lS5iIzbqjbXhaDR8DbCW2GdFkA6EQQIAgYhcKk4DQMSdlY6tm+dIPzmrb2SqUGTm2HQxcsKbP+TP14kbnApBYfnx7DV3uQuy76KhelinqhpLi0wt67uBSz258dgSvI/Ago9HAKw3qfmy8u/k3ocG3PvCHq96xaOGW7hZrCW+hS3SzLxdPyfwpdKlRITN06CglUgMJDDy1OsM89RZUBrRjqX9/vN+xn0NUIybLkSWF99QyM7R7y/33ydgaeH9RFYB/NjMSn5kOAeXe39sMm3r9nvy+pOyL80GfpoDy4Wp6qJqqmk7oTAqq5FyXiCgO4IyIbA4pfEk00KhfGDXHm5/HHE//tuPQJ8PXFg41e6I0h6VgsBQmBVCz6TDO4UuxUxTK4ge4//ILS29dRpruoSWPwkPeP/xM2STGG+RR4dMdm5iU7zk04EAYJAzSDwe+4dzEo9LkzewMYF90qy1ZQ5GTQCfK4SubUr1xTYuo0CJyGvFAquNHKnaZPqb3C/zbqELzMuCLDMdG2Nd9zb6AyTZqW/BkoX/KfjsW+dJzGgY5vYTeBzG5a3vf6D0crWwwBJ1R8SGbcFcao8QVC/vwcg4JE/3Fw5zHyrdhFYAdGrKgTUWH9r5UhgqVTAx5+Kpy/4+3veBwwo9ToN1XdEC5CwJucW/icpmDPWqSG+0uPIsgUsQVAhhSlAn4Qdar8zfMGQ3X6DEGZr3vyphMCyJM8gulg7ArIisExtjMiBr6KwsBiXDq0w9VRE/mMECIFlWa6QxhaiVcxGQSmlgsK94PHg/9WlGYPA+jLzAr7NvCRM18XeD5tl+HZQF7xIH4KAtSAwJ+0kVufcEpbzgWdb7M+JxbmiZOG7V1ya46O67WW15Bs3Fdi4hQLHiS/PFODw3AgWLZtXn7ziwfg04zx+yLoi4DLHvS1ed22pM07ZbDGaxmwQf7eNmJBbZyU0Ol4rTi/dWJY3D8oOl4PHGiqu2uM+TDuFlTk3BTnNbjRHp7OdwEfRzZ9bewis80XJGPJoT4V48j7H+151mxwJrMQk4MefRQKrrjuHGdOt0y8+ST+Hn7KvCmauqcjI6vpZ+fiKkrr70474J2CYWZO6EwLLWBYlcggC2hEgBJYEo85DXgfLcji160ftyJEeRkGAEFhGgdFoQjRDy/XNQWUMAutqURr6PhKPItFQ4Frw82Z9EDEaoEQQQaCWIDDk0W6clxRg2BTYB2mFRXgt9V8BAWeFEheCx4B/Qy6HdvuOAhs2UmAl5BXAYfgwFuGtjENe8Thokiv6HNsux7FB9FoUQtxwXwwaDa8aPHr9fdZl/F9GlGDm5xwbYImOuRRN4RtHCuIxLulv0RdznDHqj9Gln2fPUqGOPAqwVRsazRyXUoHPOobie6+nqj2HHAms6zeoUqK6vDVqyGHC89ZJYGmmieALRvCFI+TcLCGpOyGw5OxBRHe5IWCVBFZRcQkKCopQx8EOtrY2OtmETxA/7f2v0TAkEPNmGqeUsE4TG6nTuUu3sGrTPly8dhe5+QXw8XRHz64ReGXikNIqi/o2feXdvBuDEVM/qnKaBbNewHODuqv1IQSWvpYxbX/N6Cf+6B5/rEDXZgwCi59L8+iJNTxg6Yoh6UcQkBsCLDiEPFyrVtb8WoMxcFLZol3sZqSwhcKSPvPohAnOYRa/xOiHwOq1NBhWPW3BkEEM2kUYj7zigdDMFfWVR2eMdS6rkqdr652wA9eL04XuO/0GIsKu5iorD0/ci9OFSYI+P3p2x1CnEF2XY/R+JRxbGqXGV0YsbyP+fA5u2W547RUVfH2MPqVFCnwl5TB25T2sULdIex9s9+1fbb3lSGAdO0HhwEGRwLLm6pSDH+1CVJGYN2qbbz90tPettt1rWsDs1BNYm3tbTY3XXFrgAz3yCVZnDYTAqg56ZCxBQD8ErILAUjEM9h0+g11/n8DlG/eRlS3mOXB3dUarZqEY0qcL+nRvD4oyfg4t/SA3fu+tu/7FvK9WlgpuHlYfHu6uuHM/Fo+S0+HnXRcbfvwI3p66nwU3RN7Jc9cwddaX8PJwg6933QoX+fL4wXimi3peD0JgGd8fqiORf0PNv6kub/oSR8YisDSrJPWrEww+MSdpBAGCgOUhcKckEz0kSbLdaFs8aDgB+UUMlmRewheZYn6nRjYuOBIw3PIWIdEoNg5YtYZGiUr9eWFgPwaRHYxLXvHTvpbyL/7KeyBoYAjZMyX5EPbnxwoyfvLqjiGONUMY5bAlaB6zAQzKsOJRvBE8rsajaDUx6nC+A1pea1UaacNH3NSG1jZ2MxKZ/AqXGqR0wqnA6hcxkiOB9dcuGuejxPu9f18WnSKtszpleOwm8LmjytvpwOcQqHSSvfvXdFJ3QmDJ3oXIAmSEgOwJrEdJaXhz7ne4flusmlYZ/q2aNcCSj6frReZYui1jE5IxaML/oFTSWPb5TLQPL0t2zSem/37lH1i2Zgc6RjTDisXv6bQUQ+XtPnQK7y1chpmvjMKLYwfoNBffiRBYOkNllo78piOTLRbmOhr4LEKVrjrPbSwC63RREoY/2ivMyx85ulZvLOygXsJeZ8VIR4IAQcBkCPyR9wBvpIhHBfu7BGODX+9SAkszrx6vxGbffuhioW/8ExKA31bTKC5RJ6/69mLQpbNpSA5NYmW1Ty/0cgjUy14fpZ3Gipwbwpi5ddtjmktzvWQYq/OevId4KeWwIK69rTf+9Nf9ucBYemjK0Sw04JfoiwEHBmHYYAYRbUxjW1OtxRC5SUw+ImI3Vzk0vv5kQ0SrjZEjgcXf89EPxXt+/Fim2tVFqw2kiQRoJvE3hs1NpKreYvlo377xfyFJQtDxz4+7/AeiiY273vL0GUAILH3QIn0JAtVDQNYEVkFhMYa/OBcx8UlQ0jSe7tKmlMDhKwna29kiv6AQsY9ScOLsVRw7U5YgNTTYD1uWLyi9bg3t06XrSisoznjpObw0bpDakngSa+yrH+PKzQdY/8OHCG+u/Yy7ofLWbj2Az77fgEWzp2JYv646Q0sILJ2hMnnH+yXZ6Ba/XZiHz1dzs954veY1FoHFbyVaxmxAhoRMq6nSyHoBQDoTBGohAgvTz2GZJCnw+75tMNs1opTA4ttbqUexNfeegEwfhyCs9OlpcUjxiZxXrKJRVKROXnXvxqLn06aLxhiTeABHCxMEPDb69EE3B3+98NHMbTTROQz/59FJLxnG6qx5JNJSkkSns0VoGfO7sEwFq8D4zRPQr7MSPZ4ynX2NhWt15ezOj8bLyUcEMa1tPRCtykGW5O9sVOAo+CirlxBMjgTWV9/QyM4R7/u3Xmfg4WF9pOa9kiw8Ff+H4AOBSkecDhxZXdeyqPGVJXX/O2Ao3CjT7f0IgWVRbkCUsXIEZE1gLV+/C98u3wpfr7r4+Yt30DAkoFJzXblxH298sASp6Vl6RwlZsg/0HjMLCYmp+GfLN/DxevLtwu9/HsIn367FxJF98f7r2isAGSpvya/b8Mu6nVj2+TvoFql79SRCYFmOd23Pu4fpKUcFhbrZ+2Ojbx+9FDQWgcVPOivtOH7PuSPM/5xTAyzx7KaXPqQzQYAgYHoERifux7HCRyIBE9obfW2CBQLrWkk6+sSLFen4TDNngkbCj9Y/P6OpVpOSAvy6kkZBoTp51aH9/7N31XFyVEv3rLu7bzwhStzd3T0hBEJC4EHwB3xIcHu4BA1x9xB3JR7innV39/1+NWF6ejqzOz09Pbq3/oHs3Fu37rk90qerTlVh+BDDkhtCAfwtIUPR3ilQp63uLIrDk2kHuDl9XcKxLKi/Tj7kGtwqbhUyq0o5dztCR4DIEnOwQUnbcKUskwulz5G+mOgXjZHDDHvG5rD3hVln8EveVS6U2R7NcLI0BdfLsrm//RU6HG0c/fUK19IIrIoK4L2PVI0lbGyq8c6blbAV13xZL6yMPflwcSKm8poZdHYOwgYZdM+MvQ9t62kSde/oFIgNIUNgqyhqlt8YgSU/pswjQ6AmBCyawBo/5x1cvx2LHz9+Ab26tNZ6ygdPXMCzb3yj0Ila+/O7Wseb+4C8giJ0GT5fQVwRgaXJCB/CibKvKAurNtPH37tf/Il12w9h/a8L0axRlGjoGIElGiqDD3wr6xT+yFOVoDzn1Qqv+bTVaV05CSxhR0TKCLsaNQ3UlZAZQ4AhYD4INItbgbyqci6gmy2mILDclSOw6IVRyTtwtjSNGzPXszne9u1gFpvIzAR+XWyHoiL1z5Z2j1Zh1AjDExtCAfY9oSPR3FGzlmRNgAm7tzZy8MKhsDFGx/dqWSYGJqm6yPrZOuFSpPaHZ8YKVNiopOHdhngqvSemTTb8ORtrjzWtIyRKfwzohQ2Fd7G/KIGb8mtgHwx1Ff8bTtNalkZgUebljz+rCCw/32o8/6x1diBckX8Tr2ae5I7Nmh8M/jfzJJbl31S7RA35vcMILFN/wrH16xICFk1gdRgyD5WVlTiz82fY2Wl/VFJZWYVOw+bB1tYWp3cssvhzvnozBhPnvou2LRth2XdvatxPbn4huo54BiRmf2zLd7XuWR9///m/b3Hg2HnMmzkS+QXFKCwqVnSAjAwNRI9OrWrMjmMElvlchsLONIsD+2Gga4ROAcpJYFHXqKaxK9Raw68JHoTuziE6xcQGMwQYAoZDILGiEB0T1nELuNrao/DROcgpKFMjsLYU3Mf8DJVOFhHSFyIng/RJTGnZ2Q/Iq4ICdfKqdcsqjB1dBRsj8OXdEzfifnkeB8PRsLGo7+CpEyw5VaVoziuPc4Yd7kbP0MmHHIO/y72ET7LPm+0N8oXSDAxP3s7F51jmiNcOz8C8OdZJWCg3SgLXDeKWq3UKJcH273MuYTmvc9tC34540vMRvS4FSyOwrl23xep1qnsIEvQnYX9rtE+zz+Pb3Evc1hZ4t8Yr3urNlaxl38YWdWcElrVcOWwfloCARRNYjw6cA29PNxxc/7VorPtPfBFZOfk4v+dX0XPMdeCpC9cx+4VP0bNza/z0yQsawyQdrBZ9HlcQfJf2/1HrVvTxR5ltlOFWkw3u0xHvvzobri7OakMYgWUeV5emH7eXIifDz1b9vLRFKyeBRWs9nX4YW3nduR73aIoP/DprC4O9zhBgCBgJgd1FcZjNK13r7BKEk4+MfYjAos+Y9vFrQSK7SiONJtJqMpXl5j4gr/Ly1FmqFo9UYfy4KhiraTHhkszrDHc2YiJC7HTXIWoQs0yN8L8UMQl+di5GhXdsyk6cKknl1pTSUdGQAZOqUYvYVcipVpU4Tjw8HF89pl/ZnCFjlsP3udI0jEzewbnytXXC5cgpD3UJlSNDxdIIrKPHbbF3v4rA6tSxCsMGW2dG3n/Sj2Bj4T3uOvjCryumeDSW4xIzSx/URKR/4hak8UTdidynsuYmjuK7s4vZHCOwxKDExjAE5EHAogmsIdNeQ1pGtiIDy1bEL03KwOo4dB5CgvywfenH8iBoQi9HT13CvNe+RL8ebfHt+8/VGEnrfk+gorIS/+z/XSF2X5Pp46+srBynLtxARGiAosujg4ODQm/s1Plr+GnJFiQkp6Nbhxb45fOXTYgYW7omBM4UpaHj9Q3cyxEO7ohrZfyn98L41mTfweR7e7k/hzi4IqnVY+wgGQIMATNB4N2kM1iYfJaL5pmAFvg+UrNW3QfJ5/BW0mlubDNnb1xrbpryspzcanzydQUystSBbNPSBvNn24n6TSHXEfhc/B05larur1ltZsPHzkln962urcHlYtWGTjcbhw6uumlp6bwob0JuZRn8Lv6BSjwQvyZaMLvNE/CyM5xwspR4Z90/gCVZqtKi1pfa4MKszrAxRrqdlIBlmPNl6j94KeEE52mMdz1sbDAYSzJvYlaMSjttok8DrKmvm/alDOGZ1MWfqypx7G8VYTVlnB369dRe1WHSoCUu3v3GJhwvTOFm72s8Av08dOt4KnFpk027UJSBTjc2gLL6lUa/cS82nwhfCZ+zJtsIW5ghwBDgELBoAuvj71Zg+Ya9+PPr/yq6D2qzv89dwxMvfYbHJgzCqyIEzbX5M/Xr+mRMaYpdbn/KNTKz8zBq1pvIzs3H71++is5t9UtPNzXu1rj+D+lX8GycSsB9vE99rKs/yORbLa6qgPfF31HG++Fxptl4tHcNMHlsLACGAEMAGHlnB7blxnJQ/BbVG0/4N9MITVZlKYIuLkbFvwQHDTLFDVR+QTU+/qoCaRnqYbZsZoNn59jBzs4IdYO8pZ3O/6z2GVfadi4cbXS/gRaexdr6AzHBp4HRLtN12Xcx8d4ebr0ubkE40XSs0dYXu9D67LuYwIvTN9sX9zpOgpduVZtilzOLcXQudD5K+yy8C14JaoMD+Ynod0vVYMFcz8yQIH72bQVu3VV1HFwwzx4tmhn3M8CQ++P7jri0FAnlhdyfbreYioZOXsZa3mTrCIlaCqS7ezAONxltMFF3k22WLcwQqAMIWDSBlZ6Zg+EzX0dokB/++Oo1hc5TTUbZQI8v+ASpGdn4a9knCPCTN3XUFNfKjTtxGPfk26I0sLw83HBi2w+1him3P/5in/2wCkvW7VZoZP1ntuoHLSshNMWV8/Cawjb3/+fbHk97ttA5OLlLCCmAmWn71ERmpYjL67wRNoEhwBAQhYCw/O14/dHo6hPyUAmh0pnws2agSwQWB/UTtZYcg4qKH3QbzMhQv0GtX68K06dWwb7mJGU5ln/IB2UrRcYs4f5OTSrioqVlmQobcUj9HJe60RczjmNNgapz7CvebbDAu41UdwabV1xdgUYxK1BtoyItdjhOROtQ3cs2DRakzI7bxa9FCq9MdWPwEHRyDsK98jz0SNzIrRZq54YzERP0Wt3SSgg//9IO+TwNPBJwJyF3azMq446OXco9PqBPwJiombCXQJZbIjavZ57EUoGo+xzPR/Cub0dZtsNKCGWBkTlhCIhCwCIIrNv3VR1SlLuytbGBvb09bt2Lx38//AVOTg4YNag7Hm3RCCGBvgoB8dLSMiSnZeLcpVvYuucEqMztt/+9grYtraPeu6i4BCRkL6YLYcum9bB60Tu1XhRy++MvtmLjXnz07QpMGzsAbzw3jXuJEVii3qcGH9QzYRPuVuRy66wPHowuzsE6r2sIAmtl/i28kqkqfWjs4I2DYaN1jo1NYAgwBORFIK+qDM3iVnJOKWco65En4OXiWCOBdbU8CwMTVRkfdBNFN8whdm7yBqfBW0kJ8PufdkhNUyevoiKrMXN6JRxMoCdfUF2OJrEruGjdbRxwM0r1HakLKL/kXsXC7DPclMc8muAjvy66uNBrbKu4VcisUmlLkc5Ma0c/vXwaanKPi3twzzuJc7+goiteaWgdvw2FmCVVFqJDvKrRAhEWNyOnwtnGXiHqHhW7lJtC74z46Fl69fq1JAKrogJ47yPVG9/GphrvvFkJW90TIA11qcrmN7Y8H10TVVIRwXYuOBcxSTb/5u6oJlH3nwJ7YaRrPb3DZwSW3hAyBwwB0QhYBIHVvPcs0RvSNjAs2F9Bcn36f3O1DbWI10c+9gbuxibhwLqvFESW0FZt3o8Pvl6GiSP74J0XtT/VldufMp5vftuAX5Zvw4I54zFn2nAuTEZgmf4yy68qR9M41Q0U/W67HTVd8eNWVzMEgZVdWYqW8at4RUfAqfDxCLd31zU8Np4hwBCQEYEjxUmYkqoqGXvE0RdnGo2Dq7N9jQQWLT8qeQfOlqZxkcghHK1tW6VlwB9L7JCcrE5ehYdVY9bMSjg6aPNgmNfTKorwaMJaznmAnQsuSryp3FEUizlpBzlf/VwjsDTQONltV0ozMSh5G7e2n60TLkWaRt9MzEk9e/w6NoWd4oa2L4vAlsbGwUpMfHKO2VYYg3nphziXRCoSuai0FnGrkM0jHolQpkwsqWZJBFZKKvDjz6rfOr5+1VjwjHV2IDxekoyJKbu5Y23nFICtIcOkHrNFztMk6u4IW+wKHam3qDsjsCzykmBBWygCdY7AUp7T1UN/WuiRqYddEzGkHDV53kJcvnEfiz59ET06teImk6B9elYOggN81RxK9VcbmOUVlRg16w3EJqRi1Y9vodUjKk0ORmCZ/jI8WpyEybyb0GaOPtgXOkpSYIYgsCgQYWerN3za4RmvlpJiZJMYAgwBeRD4MfcyPsw+xzmb6N4Qi6P6aCWwthTcx/yMw9w8Dxt7XIicDBcJpLmYnZSVA38utUNCojp5FRJSjdmPVcLJhBrjwqyIKHsPnAgfJ2ZbD425VJqBIcnbub83cfDGASNlq36bewmfZp/n1h7v3gDf+GsW85e0OZknLT+aj9ciVNko9tW2uBM9HQ5WWE71btZp/Jp3jUNwtmczvO/bifv3wKStuFqmEv/fGjIU7Zyki/9bEoF19bot1qxTpVs1blSN6VOsk8Ci8l4q81XaaLd6+CGgl8zvLPN3d6UsC8OStyuyD5VGhO3esFHwtpX+ZcAILPM/exah9SBgEQQW6VfJbf6+1iFaSALpg6e+iqqqKgVJpRSzr66uxveLN2HR0q1oXD8cG39/X63DztP//QpH/v4HU8f0w5vPq7rNSfEXl5iG/UfPYcTArhDiGpeYio++XY6jpy6jR6eWWPTpS2pHyQgsua9s3f19k/MPPsu5wE2c4tEIX/h1090RAEMRWPTjm36EK62tkz+2hagy+SQFyyYxBBgCeiEwP/0wthTe53y859sJL4W00kpg0Y0DaWelV5Vwcz/264KZHk30ikfT5PIKYOlyO8TGqZNXQYHVeGJWJZydZV9SJ4c3yrLRL2kLN6epgw/2h0l7gJBdWYIW8as5X9Qu/m60cbrJjknZgdMlqqy6H/17YZS7/mU5OoGpw+BTp23xmMs65Hvkc7OWBPZDf9cIHbxYxtARyX/hfGk6F+wP/j0x2r0+9+9Zqfuwt1gl1bEooBdGuEk/O0sisI4cs8W+AyoCq3PHKgwdrCI2LOOExUX5v5yL+DLnIjf4Wa+WeN2nnbjJVjZqXcFdLMhQNS6i7XV0CsT6kCEgHUIpxggsKaixOQwBaQhYBIElbWt1Z9b+o+fx4rs/oKKyEs2bRCtIpFv3EpCcmgkSb1/23RtoEB2mBkjn4fORX1CERvXCsXnxB2qv6epPKf5OLaijwoMQHhKgIMuSUjJwPz4ZVVXVCqH5Hz5+AZ7u6iKpjMAy/XX6eOp+7CmO5wL51K8Lpku8kTQUgZVQUYBOCevVwLoQMQmBdi6mB5BFwBCoowgItfNIGHqQX7hWAovgEhLnjRw8cShM3o51FZXA8pW2uHdfXdDG17caTz1RCVcz+Pi4UJqB4bysqUcd/bE9VDo53yBmGUqgyiC5HDEZvnaGZemoDL1Z3Ao1cejrkdPgYWuiukwR78dr122x4P5pXH3kCjd6hkcTfGJEzTARYeo9hMjiBnHL1bJN/g4fjwheCf4bmSexhCdu/bZPe8z10r2JizJYSyKwNm+zw/kLKsJi2OAqdOponQTWCxnHsLbgDndN0bVO13xdNeF1Tzg86dkMC3nZibpgwwgsXdBiYxkC+iHACCz98DOb2dduxeDnZdsUgvUFhUXw9/NWlAzOmzFSozbW+18txeZdxxQdAWdNGvzQPnTxV15egU27juHAsXO4eTce2Tn5qK4GvL3c0axRJIb374ohfTvBzu5hVUxGYJn+EhIK7+4JHYHmEoV3DUVgEUqDkrbhSlkmB5ihMjZMfyIsAoaA+SNAndwaxi5XC/RO1HSEuLuIIrByqsrQOm4VKnjqdmuCB6K7c6gsm6+sAlautsXtO+rfO97e1ZjzeCU8am5aLMv6Yp2cKEnBhJRd3PCuzsFYF/zwd7JYf/0St+BGeTY33BhC6tsK72Neuqok1BK0deITbLBwZwp2DtjJYRVs54pzERPFQm0R486VpmNk8l9crL62Trgs0Cb7PvcSPuaVf+pzE08LWRKBRbp4MbEqAmvG1Eo0amh9HQjpXOhzhj5vlLY8qD/6uIRbxHVsiCCpA+zIpL9wsSxDzb1UUXdGYBnilJhPhoBmBBiBxa4MkyLACCyTwo/EikJ0TFB1J6KSk9vR02GrZwq1Ic7165yL+JyX/t7TJRSrggaaFkC2OkOgjiJAIuwkxq60eg4eOBY2Dt5uDqIILJr3fMZRrC+4y/kY6BKBxUH6C2lXVQOr19rixk118srT8wF55WVGCgL7iuLxWNp+DgN9hddnpu3H/iJVRu0vAX0wzC3KoFepMLPjFe82WODdxqBr6us8J9cG//vOFksnL0GFfQXnbm/oSFAzAmsxYWfKwa6R+D2wr9r2NhTexXPpqnKqYa5R+CWwj2QILInA+vxLO+QXqAis55+thJ+vdRJYXRLWI66igDvXQ2Gj0cjBW/I5W8PEmkTdt4U1DtM4AAAgAElEQVQORwsdPwcYgWUNVwTbg6UgYNEEVikps0o0J1O1HJIYr7VOe/J56WdorZgYc1/3I+/hQO8D3JJBaUEYvkvVnciYsWhbK8s7G5tGqkR3bapsMGPNDDiUSxfd1LYme50hwBDQjMC1ptdwsuMJ7sXo2Hrod1g38inTNxObh29SLVANTN44BW6F0jug1XRebm5UNlgFH2/zujkVdogb7haNnwN6S77s3sz8G3/m3+Dm61sOJiYQYRbvzpDhaOXkL2aqSce8/Z499vfaj5golY5buwvt0eayeZNvuoB2oOd+3I9W7a/DuQ5odbW1movkoGTsGKTK0gpID8DIndJ02HSJzRzHvve2isw0x/ikxkSfetExS9QyXu9K7DYtNQZznadJ1J3kKQ6GjdFJ1J0RWOZ6wiwua0TAogms5r1nST4Ta+lCKBkAM5nICCzTHsTptqdxucUlLogW11qi01lVdyLTRvfw6mvGrkKBeyH3Qq+jvdHwfkNzC5PFwxCwegSOdjmCW41ucfuUeuO/bfBWpAWqxL8N8Rnk5lqNJ2dXmWVmxbqCO1iQcYzDcYJ7Q3zt313y9bMo7wrezzrLzX/coyk+8Oss2Z+2iZdLMzCYp+HlZ+uES4ISNW0+TPX6p1/Y4ULIbRztdoQLITAtECN2jTRVSLKvu3rcKhS6qb4zh+0ajuC0YLV18tzzsG7sWu5vrsWumLJuquyxmLtDP78qPP+MdepfJVUUogMv297PzhmXIiab+5EYLT45RN0ZgWW042ILMQRQJwks0mY6vuV7dvxmgAAjsEx7CH8N2o6UIJUmQp8jfVE/RtWdyLTRPby6kHCTkvVhbnti8TAELBGBzcM2IdNPpUk3cN8gRCTp3sHtbvQ9HOqpygJ1KHPA1PXTYF9hLwssLs7VePLxSgQEyOJOdidL82/i9cyTnF/qxEj6flJte2EM5qYf4qb3dwnHkqD+Ut1pnScU4x/v3gDf+PfQOs8cBvzwsz1ic0qwYuJycFXz1cCMNTPhWGb5mb1FrkVYNX4lB7VNNfDYylmwq1R/b1XZVGHx9D/UMHh8+WzYVj+sW2oO52aoGBo3qsb0KaoGCIZaxxR+T5ekYkyKSu+tjaMf/go1z2x7U+BDa2oSdZ/t2QzvixR1ZwSWqU6OrVsXEbBoAuv8ZdXTX02HV1xShrSMbIWw+c4DpxQi4r9/+RpaNpXeHrguXiSG3DMjsAyJbu2+q22qsWTKn6i0V/1gm7hxEjwKzETdWEP4qQGp2D5kG/eKXYUdZq5+DLZVdeuHtumuGrYyQwCgz44/py1Gla0qW2HquulwKda92x3dPK8evxLFLiUctF3/7oZmt5rpDbWTUzWemFWJ4CC9XRnMgTBjaq5nc7zt20Hyev+UZWJokuozspmjD/aFGq4cbHTyDpwpVWXQ/ejfC6PcLeM31rKVdrh9xwZbh2xBekA6h3mvY73R8J7lZ/bej7qHA71U5LB/hj9G7Rit8dpaOWEFil2KudfM/beA5DdILRO7dKrCkEHWmYEl1Dkb7haFnwOk65wZAn9T+9RX1J0RWKY+QbZ+XULAogksXQ4qPikNj7/wKSorK7FtycdwdzOD/tm6bMBKxxpC7NtKoZJ9W9fLstA/aSvnV47SD0N2IaRAScehbfwapFWqfmj/GdQPA1x0z/yQHVDmkCFQRxC4WpaFgbzPDtILuRAxSbF7XUTclXAJGzQ0cvDEobCxdQLNr3Iu4gtec4oXvNvgZT0E0DMri9Eqfg2HHTXmuBs9wyBY5leVo1ncCq6PJElhX4+cBg9bB4OsZyinwjMY4RaNRXrokBkqTl39vpt1Gr/mXeOm1ZZNMiRpGy7xuvxuDB6CTs7SmF9LEnHXFVNLHS/MlNSXKLdUHLTFrY+oOyOwtKHLXmcIyIdAnSGwCLKDJy7g2Te+wTOzRmP+LM1PoeSDlnkSgwAjsMSgZJgxK/Nv4ZVMlQizvt2vKEpDE1i0BpXbUNmN0ia5N8KX/t0MAxLzyhBgCDyEwNqC23gh4zj3974u4Vj2b5maFAIrp6oMreNWqQkMrw4aiB4uoVaP/kfZ5/BD7mVun2/4tMMzXi312neDmGUogSqz9krkFPjYOunlU9PkrYX38XT6Ye6ldk4B2BoyTPZ1DO1QqONFBNzVyKmwk9iN19DxivU/MvkvnCtVZZb94N8To901SwQ8kXYAu4riONe1jdW2PiOwtCFk/Nfptx795lPaB76d8Lin/lmuxt+J4VckUfcRSdtRBlU2Hj2k2Rc2Cn62NWcZMwLL8GfDVmAIKBGoUwRWeXkFOgydh/qRIdj4+/vsKjADBBiBZbpDeDXzBFbwftDQU396+q+PGYPAOlKchCmpe7gwfWwdcTlyqoXfauiDOpvLEDAuAm9nncLvede5RZ/zaoXXfNoq/i2FwKJ5z2ccxfqCu5zPgS4RWBykW1dD46Igz2pvZZ3CHzwsSW+FMmX0sT6Jm3GrPIdzsStkOFoaoCsgic+TCL3SXvV+FM97q3e402cfxpzbMm4VsqpKuSXXBQ9GV2d1sXNjxqPvWhXVVWgQtxz0X6WdDB+HSHvNEgHC6/BNn3aYL5FIZQSWvqcn/3z6zUS/nZTGMtdrx3hr0X08naYi52l0G0d/bA0dViOxzQgs+a9b5pEhUBMCdYrAIhD6TXgReQVFOLNzEbsqzAABRmCZ7hAGJG3FtbIsLoAVQQPQ2yVMr4CMQWCRTkHz2BXIr1a1u14fPBhdLPhmQy/Q2WSGgJERGJuyE6dKUrlVfw7ojeFu0Yp/SyWwrpZnYWCiqqSZytHORExAiJ2bkXdn3OVezjyOVfm3uUW/8OuKKR6N9QpiZto+7C9K4Hz8GtgHQ12j9PKpaXKruFXI5JE+O0OGo5UBiDLZA9fgUJihYuklVpR5RRlYSvO1dcLlWrpD/pR3BR/I1L2SEVjGuGJ1W6NHwkbcq8jjJu0NHYlHHH11c1LHRr+Z+Tf+zL+htutZHk3xYQ1dXRmBVccuELZdkyJQpwis6upqtB88F5VVVbi49zeTAs8Wf4AAI7BMcyWUVFegUexyXoI0cEMG7RJjEFiE2HPpR0GipEp70rMZForsFGMaxNmqDAHrQaBh7HIU8wjk42HjEO3wILNDKoFFc4UlT095Ncc7PtIFzS0B8fnph7Gl8D4Xqhwi6MIya8KQsJTThGV3cmgoyhmfrr52F8VhdppK8LyBvReOhI/R1Y3ZjP8l9yoWZp/h4hnsGonfA/vWGN+WgvuYn6HKOBnkGoE/AqVlQDICy2wuA0UgpB0aHbNErUT7btR0ONvI0+nVvHYrXzQ1ibp/7d8DE9wbPLQQI7Dkw555YghoQ6BOEVgXr97BtGc+QGiwP/au/kIbNux1IyDACCwjgKxhCcqeoCwKpdVz8MCxsHF6B2MsAmtHUSzmpB3k4uWLSOu9CeaAIcAQqBGB++V56J64kXvdxcYed6Kmc//Wh8AS3kR72NjjQuRk0BrWao+n7see4nhue4sD+2Ggq35NKX7MvYwPs89xPp/wbIb3ZCb4haLQ490b4Bv/HhZ7TETINotbiXKRJXfmvtG56YewvTCGC1NbSeDpklSM4f0maOnkh10hIyRtkxFYkmAz2KS0iiI8mrCW8+9l64hrkVMNtp41OdYk6m5vY4u/QoajhSCDjRFY1nTybC/mjkCdIbAuX7+H/370C2LiUzByYDd8/MYccz+bOhEfI7BMc8w/517Be9lnucXHuNXH9wE99Q7GWAQWZZA1Fdxs7A4ZgRZOfnrvgTlgCDAEakZgW2EM5qUf4gZQpzLqWKY0fQgs0utpH78W6VUlnL+P/bpgpkcTqz2SySl7cLREpU0jh3j9tsL7mMcTVzeEntio5B04W5rGnYscmWOmPuRpqXtxqDiRC2Ohb0c86fmIqcOStD69j5Iri7i52roKJlQUoFPCem68n50zLkVMlrQ2I7AkwWawScJy0uaOvtgTOtJg61mbY7Gi7ozAsraTZ/sxZwQsmsCa8NS7WrGtqqpCSnoWcnILFGPt7eyw5ud30LRhpNa5bIDhEWAEluEx1rSC8OksPZ2np/T6mrEILIpzdtp+7C5SZS4s8G6NV7wf1XcLbD5DgCFQCwKfZJ/Hd7mXuBHC7B59CCxy+nXORXyec5Hz38jBE4fCxlrtmQiJoC0hQ9HeKVCv/V4ozcDw5O2cD9K6Ic0buSy/qhzN4lYoSpPISK/sugwl6HLFJ9UPiemTmLnSejiHYnXwQKnuTDYvpbII7eJVGTe2AG5rKRkj8jg6dil3phR8bNRMULaJrsYILF0RM+x4YbdQfcpDDRup+XqvSdSdPq+V7xFGYJnv+bHIrA8BiyawmveepdOJeHu5Y+HLj6N/j3Y6zWODDYcAI7AMh21tnjslrENCRSE3hFqfUwt0fc2YBBZ1v6IuWEpr6uCD/WGj9N0Cm88QYAjUgsD01L04yMtS+cq/Gya6N+Jm6Etg5VSVoXXcKjW9Fjmyksz1UIXNNCgzgjIk9LGMymK0jl/DuXCGHe5Gz9DHpdpc4Q0xfXfQd4ilm5D4sYMNbkZNs7gSVmGWZGtHP+wI1V4O2C5+DVIqi7lj5Gvb6XK2jMDSBS3DjzVGSbHhd2H6Ff4v828sFoi6z/Bogk/8uiiCYwSW6c+IRVB3ELBoAuuHxZu0npSNjQ1cXZ1RLyIEndo2g7OTo9Y5bIDxEGAElvGwVq5ENf2t4lZzC9PTo7uR0yU9aRVGb0wCi7IAmsetBAltKu1U+HiE27sbH1S2IkOgjiBAmTd5VeXcboWEi74EFjl+PuMo1heomjQMcAnHn0H9rRJh0hMjXTGlHQ0bi/oOnnrvtUHMMpSgkvNzLXIKvGyd9Par6Xxe9X4Uz3u3lsW3qZ30TtyE2+W5XBiG6uBoyH2SeDuJuCvtcY+m+KCGzmn8OEYkb8f50gzuT+uCB6OrhO6+jMAy5Onq7tsYTR10j8ryZtBvzfHJO3GaVzpNu1CKujMCy/LOlEVsuQhYNIFlubCzyJUIMALL+NfC3uJ4zErdzy3cytEPO0U8nRUTqTEJLIpnUspuHCtJ5kJ7y7c95nm2EBMqG8MQYAjoiEBqRRHa8sSAify+HzUDtooisgcmB4F1tTwLAxO3cj7J+5mICQixc9MxYvMfLtQqOhsxESF2rnoH3itxE+7wiJg9oSPQ3FEejcBWcauQWVXKxbgzZDhaOfnrHbM5OPgg6yx+yrvChTLJvRG+9O9mDqGJjkHYzZP0LUnnUpvNTT+I7YWx3DAS5Sdxfl2NEVi6ImbY8TPT9mF/UQK3iCWSsoZFSLx3yhDuk7gJabxMRfoe3BI8FEND9Wu+IT4KNpIhwBBgBBa7BkyKACOwjA//59nn8TVPw+Yxjyb46N8UaH2jMTaBtST/Bt7I/JsLu4NjIDaHDtV3G2w+Q4AhoAGBA8UJmJG6j3tFE/ktB4FFC4xK2oGzZSqR8Kc8m+Md3w5Wdy6PxK1EblUZt6/rkVPhaat/pvj0lL04WKISJP89sC8Gu+qv/Xm5LBODk7Zx8fraOuFy5BSrOZdTpSkYm7yL24+frRMuWdj+wmL+VDuPvyPGI8JOe2byu5mn8Wv+NW7u6z7t8KxXS53PlhFYOkNm0AlEuNzikdm7QkegpUxktkEDN1Pnws9ACjPIzgUpbXSTtTHT7bGwGAIWgYDVE1hVVdWwtVU9HbaIU6lDQTICS57DLqiuwOXSTFHOPsk6p3Zj+K1/T4xz1/50VoxzYxNYQs0SivFi5GQE2DqLCZeNYQgwBHRA4NvcS/g0+zw3Y4p7I3whyE6Ri8ASiuZ62DrgQsQki9Mj0gavkGxIjJbnJuiNzJNYkn+TW36hX0c86aF/R71vci/hM941MMG9gaKExpqsSexy0Heq0kg/inSkLMEulKZjePJfXKj0XUjfiWLs17yreDfrDDeUun9SF1BdzRIILCIhCqpUZ6zrHuUa/6iTH5xt7OVyp9FPo9jlKOJdz9cip8JLBpLcoEGbufMNBffwXMYRtSir2z1t5lGz8BgC1oOAxRBYFZWV2HXwNPp2awtXl9p1HLJy8vHtbxuw/9g50P97uruiS/sW+M/sMagXGWI9p2cFO2EEljyH+E9ZJobynorr4vVw2Fg0lEFzhdY0NoFFawrLJT7z74pp7o11gYCNFSAQU5Gn+FEdLEMpEwP3AQJHi5OxpfAepno0RlsZGiaYAte5aYewvSiGW/ojv854zKOpWihyEVjk9NH4NWqlGtb43jYUgfVj7hV8mH2WO5u5ns3xtgwZbKOTduAMLzNuUWAvjHCtZ4rL0WBrPpN+GJsL73P+n/dqhVd92hpsPTkd/5Z/De9knuZcUtYdZd+Jsb+KYvBU2iFuqFTtOXMnsOizeHLqbjGQGHwMZZVSdqmhjEreSCtUaW429rgVNd1Qy9Upv29lnsIf+de5PTMCq04dP9usiRGwGALr8Ml/MP/1rxAS6Iu9a/4HEmfXZJnZeZjy9HtITFEJUSrHkYD7r1+8grYtVR2TTIx/nV+eEVjyXAJSCSx3G3vclPHHjCkILOGNWpi9G06HT5AHWAN6mZyyG5fKMuFl4wgvO0e87dtRkmCu3CGSOH7XhPXIqiqFE+wQ6eCG3wP7o4FMJKfc8VqCP2HWSmMHL3wT0BNUgmcI65W4ERmVJQrRbm9bR3wf2BP17b30XqprwgbEVuRzfraEDkV7x0A1v3ISWMKMr0YOnjgUNlbvfZiLg8LqcjSOXcGFQ1lmNyKnyRLelsL7mJ9+mPM11DUKpH2jj9Fnw6CkrWrXgFwlj/rEJffcTYX38Gy6enbF7tCRaKFnd0i549Tk7+m0w6DsRaW95dsB80QSJMLsreYOPtgjobOvORNYyZWFCn09+n4zBwu0c1FklhrKhHqC9N1zMGyMoZarc37Hp+zCyZIUUKfX4nZP1bn9sw0zBEyFgMUQWO9/tRSrtxzAuGE98d4rs2vE6/m3vsO+o+cUZYMTRvRBm+YNkJNbgDVbDyImPgXBAb7YtvRjrVlcpjqQurYuI7DkOXGpBFYP5xCsDh4kTxAmysCiG2q6sebbnrCRaO6gXyt62UDR4Ci9qgRteJ0gaYjUcg254/wg6wx+ylN1sCL/7/p2wByRN0Fyx2PJ/kjb6Jm0w2paRMr9vOfXEU/IUNIlxGdz4T08I7j5luMpP5EXTeNUZAuteydq+kMlfXISWMKOqbTm2uDB6CahM5o5XkfC/elS7qVtP+dL0zGCV0omR7OOdQV3sSDjKLd0J6cgbAwZoi0Ui3tdmLVCG6AHI3tCRykIYXO2jgnrkFhRyIW4KWQIOjoFiQo5tbIIbePXcmN9bB1xJXKqqLn8QeZMYNF7gt4b5mSf+HXBDI8mBglpV1Ecnkg7wPnu5xKOpVba0dUgAGpxSkTok6kH8L5/JwwIDjNFCGxNhkCdRMBiCKzJ8xbi8o37+OLtpzGkbyeNh0Wv0ziyj16fg1GDVJ1jCgqLMXHuu4hNSMU7L83CxBG96+SBm9umGYElz4ncLc/DqxkndHY2yr2egjiRy0yRgUWxT0zZheMlKdw26Mcg/Sg0V1ucdx3/l3VKLTxzyByjGx+6ARJaH+cwLA8eYK5wmmVcV8qyMDttv9rNJD9QEkcmkWS5rXfiRtwuz1Nz2905GGuCB+u11N+lKRjHE7emsmMqPxaanAQW+SbChIgTpQ10icDioH567cVcJsdXFqBz/HounCh7D5wIHydLeOmVxWgTv4bzRcTLVQlkBD+YGal7caBYJQz/vl8nzPZoJku85uZkRcGth75Te7qEYFWQfA985N4zdUajslu+3YueocikFWvCklZNJLU2X+ZKYAlLvmgfLR194WZjXFKSiML7FarPaEN+9wt1zWZ5NMWHfp21HSF7XQICyt+/EqayKQwBhoCOCFgMgdV15DPIzSvE1iUfoUFUqMZtvvL+T9ix/xS6tm+BX794+aExm3cdw5uf/IYenVph0acv6ggVG24IBBiBZQhUTefTVATW1sL7eJpXLuNqY49/IieD/muONjp5B86UqjqsKWM8HDYGDR30L/WSuud56YewrVClcaT04whb3I6aDmoXzUw7Asvzb4JulspQVePgSe6N8KVAAF2759pHCN8HytF2sMHNqGl6CaD/knsVC7NVAs8j3erhp4BeDwUkN4ElLIEh8YAzERMQYuemL1wmn3+jLBv9krZwcTR18MF+CSVbmjZSDSA6ZgkqQP/3wO5GTZcsGE1ZSa3iVqHyX390DhesvGHGs+mHsYmnhUUY/serFf5rpnpY2wtjMDddpWElJeuuQ/w6JFWqMriOhI1BAx2/k8yRwBLqe9FZ9nIJwYqgQTB2m6eEigJ0S9ig9t782r87Jrg3lP0z6e2sU/g9T6XT9KZPO8yX0FlS9sCs0CEjsKzwUNmWzBYBiyGwWvd7AiTkfmLrD/DyfPiHa25+IXqPW4CysnIFeUUkltBIF2vg5JcRFOCDA+u+MttDqUuBMQLLuk7bVAQWodgybpWargV1R6MuaeZmpMHRPv7hLCeK01BlZWIwEOqfCOesDx6CLs7iSlHErGeNY0qqK/BKxglsLLz30PaaOfjgenk293dDlHII26Xzg/gzqB8GuERIhv35jCNYX6Da15s+7THf6+HvWbkJLAp4VNIOtc6pJHpMZZGWbv+UZWBo0nZuG486+WN7yHDZttUzYSPu8jI9iBwjkkyKrS64g5cyjnFTrbV8kI9NKSoxMvEvXCnPUoNscWA/DHSV/l6Sgr+YOe9lncHPvPJvyo6jLDldTPheWxM8CN2ddWt+ZG4E1p3yPAxJ2qrWiY+ynvaGjjJZNz7h52l9e08cDZdf34+ygHcXxXOXwM+BvTHcNVqXS4KNFYkAI7BEAsWGMQRkQMBiCKw2A55EeXkFDq7/GoH+3g9tfdXm/fjg62W1irzTfPLj6OiAC3t+lQE+5kJfBBiBpS+C5jXflATWB1ln8VPeFQ4QantO7c/NzYSZLPz4eruEYUWQaUr1hN0chbiZc+aBOZxxXGU+Zqbsfah8j7LXPvDvjKYO3hiZvMNg16cw+0KIib4aa/0St+AGj4BbGTQAvVwe1vwwBIG1peA+5meoBMk9bOwV2T8uZpphKfZ6PFGSggkpu7jhXZ2DsU7PUk/+2lNT9+BwcRL3J32IF6Gv93w74QlP6ywf5GNIZdX9kjaDNOCURp3c9oaNApV8mpMJP8O/D+iJMW71dQqRMpkpk1NpX/l3w0QdHwSZE4FVXF2B/olbEMNrPkGZxNtChhmsiYYYwKmEkAhmfo7uooDeGOEmL7k0IGkrrpWpCFjat6V2wRWDqynHMALLlOiztesaAhZDYA2Y/DKSUjKw9Ns30K5VY7Vzqq6uxujZ/4c79xPx1PQReP5JzRoSSgLLzs4Wl/b/UdfO2iz3ywgsszwWyUGZksCKq8hHFwsQcx+WtB0Xyx7ukqoEXZ8yH6kHt63oPualqQgC8jPFvSFWFdwxGOEiNVZznEdCuc+nH0FBdYVaeKF2bvgjqC9aOvopOrfxmw3Qa1QKJ5f1S9yMG+U5nDt6on+Pl30TYe+Ov8PHS1qOMlHqxyxTm3stcqrG7AVDEFi0MGn7kMaP0gwpfCwJJAmTDhYnYnrqXm6m3Fl5r2WcwPKCW5x/qZpVmkTNqXMadVCrC3a0OBmTU3erbZW6udEDEnMiUYX6VX9HjEeEnbtORyRs4vGqT1s879VKJx/mRGDNTTuE7UXqZfEf+3WRVftTJ3B4g+elHcI2Xmz0kGN/2Gip7jTOeyRuJaiZiNIuRkxCQB1538oKpAhnjMASARIbwhCQCQGLIbBeWvgjdh08rRBmJ4F2vm3aeRT/9+nvIGJq54rPEBbsrxGejKxc9Br7PFxdnHFm5yKZIGRu9EGAEVj6oGd+c01JYBEak1N242hJMgeMvlknciMsFG0m/x62DmpP91cGDUQvF806f3LHo/TXJX4DKINIaSTa/n1gLzSPW6m2ZE2khaHisgS/72edwSJB10aKu69LGH4I6AXPf7uWFVVXoFHscrUtJUbPkmWLwk5T5PRA6GiMSN6OQh6pdjR8DOrb666xdrksE4OTtnGx1ka+GYrA+jb3Ej7NPs/F0MjBE4c0iMjLAqiRnOwojMWc9IPcaiNd6+GnwId1xaSG80PuZXyUfY6bPtezOd6WUHq5quA2Xs44zvmpC+WDQsy/z72Mj3lY0usjXKOxKNA8GgJdLM3AsGRVOarUjpZ/5F9X6Pcpbbp7Y3zq31WnS9BcCKw/82/gzcy/1WIf41YP32vQ7tNpgzINpoxWymzl27Kg/ujrEi7LCoXV5Wgcq945Vq7vHFkCtDInjMCysgNl2zFrBCyGwDp66jLmvfY/BZjPzh6D0YN7ANXVOHD8PL5YtFahfUWdBanDYE127tItzHzuI0SGBWHnik/N+mDqSnCMwLKukzY1gbWt8D7mmbGY+4+5V/Bh9lnu0B9x8EFXl2D8xhNZfdKzGRb66qZbos9VtCjvCt7PUsVEgt+Hw8egnr0nhiRtw6WyTM69IUoc9IndlHOpy9uTqQfVtJkoHpK5f9mnLZ7zavWQOHBU7FJUVKuKRq5FToGXrZPe2xBqX1EZCp2VUP/kXd+OmOP5iM7rkSj9a5knuXn9XcKxpIZW7IYisCgLqHXcKjXh49VBA9HDyGSvzuDVMmFdwR0s4OlKkYgziTnLZZsL7uGZjCOcu6Gukfg1sK/O7ien7MHRElUpYl0pHxQCNTN1H/YXJ6j9+R2fDnjKq7nOmMo9QViaPtg1Er9LOOsdRbGYk6YiVfu4hGG5jmXt5kBg0ffWiKTtap8XRHrvDB1pVllzs1L3YS/vmqKuiLtCR8pyeVDpIJUQKs1QOluyBGsFThiBZQWHyLZgMQhYDIFFiD731rfYf1T1BJaPcr3IEKz68S14uLvWCP6ipVvx3R8bWRdCMxB1pOkAACAASURBVLo8GYFlRochQyimJrCIHGgTvxrZvJT5z/y6YJpHExl2p7+LgYlbcJWnI/S6Tzs0d/TB9NR9nPMG9l44Ej5G/8VEeCBSoHP8WuTzsnRmuDfGJ/8+caeMA8o8UNo0j8b4zE+3p/EiwrC4IWfL0jA7ZT8yq0rVYve2dcTvQX3R2SlY4546J6xHfEUB95qUDl9Cx3uL4zErdT/3Z+qodSBsDKjEaWn+TbzOI54os48y/HS1/2aexLL8m9y0Bd6t8Yr3oxrdGIrAosWeTz+K9YV3uXUHuITjzxqINF33aIrxwvORO2P0bGkaRvF011o6+WFXiG66gHWx+2BN1wJltAxI3KooB1YaEf6bQ4aaXFeIug+SDp7SpHabo/J2KnNXWhMHbxzQsazN1ARWdmUp+idtQUplEbcPKvXcFzYS0faepnir17imMLuVBq4NHoRuOgrna1pA+N3Q0yUUqyR8/psVYGYcDCOwzPhwWGhWh4BFEVglpWX48Jvl2LzrKKqqVK2h+/doh7demAl/39pLIyY//R4uX7+HF56agCenDrO6w7TEDTECyxJPreaYTU1gUWQfZp3FjzwxdymtxA1xKjEVeeiWsFHN9ZnwCfC3d0aTmBUo48m5no2YgBC7h7utyh3XW1mn8Acv+4t+5JNuir+ts2KpYyXJmJSi0n6RW7dJ7v0Ywx9l0X2SfQ6VUH0H0bptHP0V5FWwXc0PUaik73ypSv9sQ/BgdHbWTHaJ3cugxK1qXdKGuEbit38zL4QdL0lQ/mb0NDjCTqx7xThh3OSf1tFkhiSwrpZnYWCiKqOAyDrSETPGe0UnwEQO/jn3Ct7jZWTO82yBt3zbi5ytfRjdwLeLX8sN9LZ1wtXIKdon8kYISbaOzoHYFDxUJx/WNJg62g1O2goSB1cafV7uDx/NfW6aYr8d4tchqbKQW3pj8BB0ktA1Nq2iCI8mqK4ZDxsH3IiaptOWTElg0acyNUY4WZKiFvMvgb0xzEy7701J3YMjvGYL1PWRuj/qa/TdTt/xSmMPoPRFtPb5jMAyLL7MO0OAj4BFEVjKwDOz83AnJlHxz0b1wuHrrb0TTGVlFb76dR2qq6oxc8IgBAVIayXNLh95EWAElrx4mtqbORBY1DWqU8I6NXqB9ICaOD7cvdSYeH2VcxFf5FzkluR3SZyWuheHih98ppEZQ2SWuiD1StikRsS89m/pmzKOMlQ+RK4dCxuLeg7m9RTbGOdIAu3zUg/iYInqnJTrPu7RFFSeR92tarPHU/djT7Gqpbm+JZn7i+IxM02VfUVrH/w3+0oZR6/ETbhTnsuFtTSwH/q5RoiGrArVqBe7TK30kcTgSRRekxmSwKL1hJ3WqCSSsLdE+zrnIj7nfSa84N0GL3u3kW0rdDMfHbNErYxK1yYRE1N24TiPDKir5YP8Q9lZFIsneWV29Bp1dtsUPETrZ4Bsh8tzJCQq6VPodtR0OEvo0inHNWNKAuvznAv4OucfNZiNXZav6xn/XZKCcbxupDR/V+gIRfMPfey9rDP4mafP+Kr3o3jeu7U+LtncWhBgBBa7PBgCxkPAIgks48HDVjI0AozAMjTCxvVvDgQW7Vio2SJFiFZu5LolbFBr5f22T3vM9WqhWObXvGt4N+s0t+Qg1wj8EdhP7hDU/An1kYLsXHAyYjycBNk5piDXDLpxCc5JbPfxlP2Iq1SV/5EbVxt7fB3QXfST/VczT2BFvqor3Id+nTHLo6mEiB5MEWZfadKmouuKri+lzfZshvd10Fi7VZ6DPombufmetg64HllzRoahCSyhrpOHjT0uRE42K10bsQdKAusktK60N3za4RmvlmKnixrXPXEj7pfncWP3hY5EM0dfUXOpfLBF3EruYQBlvBHWJBBe1034viI86L1M72ljG5UOUgmh0vTNOu6SsB5xvFLng2Gj0dhB/AMgUxFYh4uTMC11j9rDK8JiW8gwkxCLulwHY1N24lRJKjdFjvLop9IO4q+iWM7ndwE9MNatgS5hsbE6IMAILB3AYkMZAnoiwAgsPQFk0/VDgBFY+uFnbrPNhcDaVhiDebwf9EQ0/BM5WUE4mMKul2WhP09MlWK4yLsRpAwZypRRGsVJZRukr2IIO1eahpE8bRxa49uAHhin4cetsMyJX6JmiNjMzeemwvt4Mf2oWoknxUgi98uC+yv+K9Y+y7mAb3jZAbVpSWnzebg4EVNT96oN2x06Ei0E5IRwXD0HDxwLG6fNPff6xsK7+E/6Ue7f3ZyDsTZ4cI3zDU1gkc5d+/i1SK8q4WIwRsaiaMB0GCgs4SVikQhGOU1I5i8J7If+IjPwluTfwBu8Lm51vXyQfy5UQjw6eQfOl6arHRd1uKNOd8a0hdlnQCLuSqOM0A/0INKEZMqKoAHo7RImekumILAoC42aWeRVlXNx+tg6Yl/Y6FrLukVvysADhZ/TD7QMdSMOhSEOTdqGf3hNWChDsKOEslIDb91q3DMCy2qOkm3EAhBgBJYFHJI1h8gILOs6XXMhsDSJuX/q1wXTTSTm/mn2eXybe4k77A5OgQrhX77RTXkyT3R2XfBgdNVTH6mmq4s0XC6XZXEv19b5SNjJiMi1W1HTDUStmc/7gconX08/idWFdx4KaqBLBH4I7KUzIbo47zr+j6dJok9m4Ijkv9RunmvqFqapDPRE+DhE2WsvvaeNC8tQtJXsGZrAopiEpXeRdh44GSGelDOXq+zlzONYlX+bC+cLv66Y4tFY1vBeyTyBlbysvw98O+FxkSTZeIGWECsfVD+ajKoS9EvYDPqv0khnbmfYCDR1MJ5MhbCs9vuAnhjjVl/ydfRs+hFsKrzHzf/cryum6nBdGpvAou97+jzkd8ylMsq1wUPQxYIIG+H38ki3evgpoJfkc2wZvxpZlaprkzQ3Q+0Nr60pOWALn8gILAs/QBa+RSHACCyLOi7rC5YRWNZ1puZCYBGqwg56+pZV6HNSwvJBTZkW/804gWUFqvIyKiWikiK5bX3BXTyfocqoIf9bQ4ainVNgjUu1jlutdpO2NWQY2jkFyB2a2fgjHbWZqXtxozxHLSbSuHrbtz2e8HhEUqzCzECppaLHSpIwKWWPWgy1neHMtH3YX5TAjdeFxJiYshvHS5K5ud/498B495rLUIxBYFFpW+u4VWraTtRdi7psWZI9k34YmwvvcyH/6N8Lo9zlzd6hjD/K/FPaXM/meNu3g1aYKMPt0bjVrHxQC1KUgTUmZaeaRlyYvRv2h46Gh62DVpz1HUDkTYO45Wrrnwwfh0iRBLWm9YWlrbpqsxmbwBJ2SaU9WaLe056ieDzO0zQkEu5I+FidsnyV51lSXYEGscu547WHDWKiH7P6B0/6vp/0mc8ILH3QY3MZArohwAgs3fBio2VGgBFYMgNqYnfmRGCZi5j75dIMDE5WtSWvSUdmV1Ecnkg7wJ3gI46+2Bs6UtYTLUUlusSvR2plMed3sGskfv+3a11Ni/0n/Qg28p7Iv+LdBgtkFJuWdZN6OjtYnIin0w8hn1eKQi5J9+fPoP5o4+QveQWhWC8JP5M+i64mzL7S1rVKmPnVzzUcSwP7i1q2WdwKtbKc/aGj0NSx5uwSYxBYFPjz6UexvvAutwc5NGNEASLjIKGo/+LAfhgosrxPbBjCEtBhrlH4JbCP1unCDmasfLBmyP7Mv4E3eaWWNLKHcwhWBQ8yOGFwrjRd0dhAab62TrisY6dJ4c6E+5nk3ghf+nfTes0oBxiTwPqrKAZPpan0vyiGXi4hWBFkeOxFAyJyIAno903chFu8phu6Yq9c6nZ5DnrztAsj7d1xMny8yEjYMCkIMAJLCmpsDkNAGgKMwJKGG5slEwKMwJIJSDNxY04EFkEibE+tT8mWVIg/yDqLn/KucNNr0hAqqq5A09gVal0BL0VOhp+MgsnCbAzS2DoeMQ4Rdpo7yimDXldwBwsyjnF7oPbs1Kbdmow0bT7NPocfc6+oiQDTHjs7BeOXoN56n8Xd8lz05GmdSbmpoPbwVNrFt/XBg9GllnLT2Ip8dE3YwE2hMqeb0dPgKBDsF55nQkUBOiWs5/5MGWj3o2bAtpbbcmMRWFfLszAwcSsXGxHDZyImIMTOckpkhPpUq4MGoofMWWRnStIwOmUHhxO/+2lt798xKTtwuiSNG8LKB2v/tHs2/TBIL49vL3m3wYsGJvqFDUDEPJDQ9rktzASizEbKcBRrxiKwbpfnYkjSNhRXV3Chhdu7YW/oKHjaOooN16zGbSu8j3nph1WfubDBmYiJCLRz0SnOA0UJmJG2T+vvDp2cssG1IsAILHaBMASMhwAjsIyHNVtJAwKMwLKuy8LcCKy/CmPxVPpBDmRTiLl3iF+HpMpCLobatLiEmjNf+XfDRPdGslwkpNPSOX692o99se3FaS6VESqNyhGuR03TWQNKlo0YwElmVQlmpxzA2TLVDTstQ6QIlXK+5tO2VtJGbEi5VaV4JG6VCkcbW8RGzRQ7XTFOWNJHpZxU0qnNuiduwP3yfG7YyqAB6KVFmFmYFdjG0Q9/hY6odSljEVgUhFD7R5s+lzaMjP36qOQdOFuquua2hAxF+1pKeaXER5899BmkNF87Z1yOmFyrK1Y+qDvSpDU3JHGbWtkxfX6sChqEHi4hujsUOYOalVBpstLk6GQpzBpu6OCFw2FjREYEGIPAKqwuVxDYMRWqzzQi2HeFjkAzI+qPiQZF5MAqVKNnwibcr1B1DpXS3XJp/k28nnmSW3Wie0N85d9dZBRsmBQEGIElBTU2hyEgDQFGYEnDjc2SCQFGYMkEpJm4MTcCy9Ri7sLyDsp4ovIOrxqeDn+fewkfZ5/nTlNfEVf+ZfFq5gms4Ik5e9jY4++IifAW+aS6T+Jm3OJpQunSzcxMLk+NYRBp9WTKAbWudjSQ9Gt+CugNEkeX06Jil6rp1dyOnA5XW3HdMUlvh8oH+bYmeCC6O2vXfhJ2vBND9nyRcxFf5VzklhOTwWhMAmtzwT08k3GEi4+u6QuRk+Fiom6jul4nA5O24iqvmcKe0JFoLugiqatP4XgqS4qOWaKmF3Y3ajqca8Hot7xreCfrNOeKlQ+KOwUqW++XtFmt/Jg+R0gPi3SxDGHCByQbggejs57NPzIri9Eqfg0XrjPscDd6hujwjUFgzUrdh73FKl0/Cu4Tvy6YYaJGLaLBETFQmPHsYGOL8xGTQOWhYk2oY0aZgJQRyMxwCDACy3DYMs8MASECjMBi14RJEWAElknhl31xcyOwFD9qs8/jO14HwCYO3or21Mawd7NOg0o8lFZTpzjl61fLMjEwaZvqhtzWAdcjp+mto0LEU7/Ezajibfodnw54yqu5aBjeyTqF3/Kuc+Of8GwGKiuyZPsl7yo+zDqrdnNP+2nq4I2lQQMMctMp7DZ5ImwcohzEdQQUlsSKzb6iPe0visdMnkCwmKwK4U3ix35dMFPLDaIxCSwiqAlPyhhSmpgYzeWa7Z64EffLVZkWR8PGor6Dp+zhdUvcgBhe9t2BsFFoUkuWijAzjJUPij+So8XJmJK6W60MmT5PqDOhtpJd8as8GJlVVYqWvIxOEv2+rYWcFLtGlID0vBo5Bd4iCRRDE1jCskna01i3+vguoKfY7Zn1OPpco/dsQoUqc/tpzxb4P9/2ouOen34YW3glrXJmc4sOoo4NZARWHTtwtl2TImCVBFZmdh5u309Abl6BAlwvD3c0iA5FgJ+3ScFmiz+MACOwrOuqMEcCS5OY+86Q4Wilhxi3mFOjzAfq4sW/uRbzI7JV3CpkVpVyS8jR8W9a6l4cKk7kfEbYu+NY2FhQyYVY21cUj8d4BEgjBy8c0qGsROw6xhhXUF2B/6Qdxp7i+IeWm+zWEB8HdJH9ZlO5EGm28Nu9a+sAqZx3pSwLg5JUmk/09+VB/dHHJVwUZFTi1CRmBcp4NOZZLZpRQrKNBOdJeL42MyaBRXF8nXMRn/OyxCLtPHAyYpwoTEw9SIjv2YiJCLFzlT2sSSm7cYzXSbK27En6vGrDKxeuqemE7EFakcMvcy7if7xrkrY2xq0evg/oJesutxfGYG66SsBczk67wpJjaihCjUXEmCEJrHOlaRibvFPtoUMjB0/sCRtlsM9sMXuWe8zy/Jt4jVcC6GZjD/p8EKvtJSyvXhs8CN2cDVfKKvf+LdEfI7As8dRYzJaKgFURWBev3sH/Fq3B+cu3NZ5Hiyb18MLcCejcVloLdEs9ZHOOmxFY5nw6usdmjgQW7WJq6h4cLk7iNiSmFEr33avPEHacI7LoauRUuGspbyKxdCohUJq+qf8nS1IxPmWnWnA/B/TGcLdonbZIIvPNYleo3Tj8EzkZ/jKKzOsUkMTBJPw7M2Uv4iofPOBQGgmbfxnQQ3GjaUibmbYP+4tUpS/UAZKEl7XZjNR9OMArmWnh4IvdYbp1qRS+D2rLVsqrKkOzuJVcWER13o+aqZX0NDaBlVNVhtZxq9SuSxKcJuFpc7fmcauQwyOrdcly0WVvL2Ucx+oC1e+ij/w64zGPphpd/JJ7FQuzz3CvsfJBXZB+MJYeXkxJ2Y2jPNKQ/l4b7rqvAsU50Xkp7XGPpvjAr7MUVw/NmZiyC8dLUri/61IybigCK7uyFH0SN6k9FCJiZ0/YSETby5+5KAuQEp2UV1ehY8I6pPE6BuvSFKBt/Bq1bsMnw8ch0l5cpq/EkOv8NEZg1flLgAFgRASshsD6+/w1zHv1fyivqESb5g3RpGEkvDzcUF1djbyCIty4HYt/rt2Fra0NfvhoAXp2bm1EmNlSNSHACCzrujbMlcDaURSLOWnGFXN/I/MkluTf5A54oEsEFgf103rgWwruY36GqgtRWyd/bAsZrnWepgEkCEulg/y23LqUnQl9jkvZib9LUrk/i8kokxS4gSZRl7CX04+hBJVqK5A+zdKg/mhqBPHfFzOOYw2PTBCj26Ip++rPoH4Y4BKhE1LC0ptBrhH4I1DzNXm4OBFTU/dy/hs7eOOgiNJbYxNYFODz6UexvvAuF2t/l3AsCeqvEzamGFw/dilKq1WFvUQQOuqQFSk2ZmGWWm3lSCOSt+N8aQbnmpUPikVZfVx+VblCD4sygJVGDzG2hwxDS0c/aU4Fs4RZNt8H9MQYt/qy+H4+4yjWF6jeU7qU5hqCwKLvMmpgQV1Y+Sblc1AWgIzg5Pe863g76xS3kqetgyILy83GodbVqQQxOnYpV8ZKWZQxIh4+GGFLVr0EI7Cs+njZ5swMAashsCY//R7uxiRi8df/BWVaabLLN+5j9gufol5kMNb+/K6ZHUXdDIcRWNZ17uZKYNGPXyrNy64q4wCvrRugvqdSiWqFNkkub70f/HtitLv2mwu68WkWt0LtxyfpYJEYsK62Iv8mXuWVIdB86tIk9Qbqm5x/8FnOBS4MulmimyZzN3qaTSLmy3iEojLmPs5h+CmwtyR8pez74+xz+D73Mjf1Fe82WKBFXPex1H3Yx8u+auzghYMSyjfvlOeiV+Imbm0SO78ZNQ3UXEBoP+ReBgkBK03sWZuCwLpanqXoSKY02s0ZLeWRUs5Ozjn0GREZs4RzSWcQF/2YnEtwvoiIIEJCaZR9SVmYQiOyhbI++DiSKH6AhWVZGgRECU5vlGcrOhPyy3aD7FwU5W76Zq4SSdEgbrlaQwg5s2w+zT6Pb3nakc95tVJ0YxVjhiCwhPFQHKThSFqO1mol1RWKDqKkdaY00sEiAro2u1eehx6JG7khVJZMxBczwyLACCzD4su8MwT4CFgMgfXxdysw/7HR8PLU3MmlzYAn0adrG3y18NlaT/ilhT/iwPELuLDnV3YlmAECjMAyg0OQMQRzJbBoi8IfwIYUcz9anITJqXs4ZKmL09WoKbV2/uIfgzALQiz5xfdRXF2BzvHrkcETuB7lVg8/6qHDIuyCR0+EiVwzZ6Ob8tmp+3GlPEstTCIMXvVpi2e9Who1fGEWlLYW6Zqyr34N7IOhrlGS4hbqLq0JHoTuGrRRnk4/jK08EeC3fNtjnpYbJwrIFAQWrSvMRhHTZVESgDJNKqguR5PYFZw3dxsHBZloCDtVkoqxvDLiNo5++Ct0xENLLcq7gvezznJ/Z+WD+p8GZX0+m67KqCWPpCO3OWSoRuJY7IrCz2LqUEcdbuWypfk38Trv4cd49wb4xr+HKPdyE1hU/k/lz3yjTOKNwUO0ljSLCtiMB/2Yexkf8h4k0DlTR0LqTFiTCX9/sPexcQ6YEVjGwZmtwhAgBCyGwGreexY83F0xd/oITBvbH46O6tkI3Uf9B0EBPlj3y0JFmaAmq6qqxqR5C5GWkY3DG79hV4AZIMAILDM4BBlDMGcCy5hi7q9knsDK/FscsjVlPNQEvVAEWJebB6VPypSijCmlUfnKsfCxiLBzl3zipO3ySNwK5FWVcz72hI5Ec5HivpIXljiROoLNST+g1taeXPnZOuGXoD7o7BQs0bP0aZsL7uGZjCO8ayMKPwf0qdHhE2kHsKsojnudsq8OhI2R3JmSbkrp5lRpNZWT9UjYiHsVqg55a4IHoruzdl0pUxFYQlw9bOxB2UOUZWaOll5ZjDbxa7jQAuxccDFikkFCTaooRAdeZpW/nQv+0bDW0KRt+Kcsk4uBlQ/KcxyU/fkHr4MredU3e0iXcmApuxA27ejmHIy1wYNFuZKTwEqoKMCApC1q3zk+to44GD62TmQGFlaXKzqt8r9zP/TrDHrwUZOtyr+FlzNPcC9bU4dGURegiQYxAstEwLNl6yQCFkNg/blmFxYt24r8giKEBvvjhTkTMKRvR9jYPCCr3vtqKdZsOYAu7Ztj/LBeaBgdpiC8yPIKCnH7XiI2/HUYpJU1a+JgvDJ/cp08cHPbNCOwzO1E9IvHnAks2pmwG980j8b4zK+rfpsWzNZUPvhLQB8McxOfMSN8uk6EyyUdnq6nVhahS/wGlPK0nuZ7tsCbOrThrgmUOWkHsINHqIjNzJEVZC3OqGT0f9kX8E3uJbV29jStjaM/SDeFCANTGHWDo65wSuvkHKTIJNBkpF3WN3GT2h5+CuiFkXoIze8pisfjvG6SpPu1P2yU2vKUvdcwdrna365HThXVActUBBaVVNGNHr/rp9yi2XJeL3EV+eiSsIFzGWXvgRPhhumeSMRzdMwSNaH7u1HT1TJCWfmgnKer7ou+E0Yn7wB9rvPtt8A+GCIxk3Je+iFsK4zh3L3h0w7PyJhNeq0sCwN4XU/rOXjgWJi461MuAove04OTtuF6eTa3T8o7Whs8BF2cgwx3YGbm+auci/iC19Uy0M4FZ8In1Jh9Jnx4pUv5p5lt3aLCYQSWRR0XC9bCEbAYAotwzs0rxI9LNiuIKhJrb9m0Hl59ZgratmyMgsJivPDODzhx9kqtRzKkbyd8+N8n4STI4LLwc7TY8BmBZbFHpzFwcyewdhbF4cm0A1zsrjb2oE569F+57EBRAmak7ePcUddB6j5IGVBijW44SQeL9LCUtjtkBFo4iRP/FQrwets64u/wCbLoPAlLS3q5hGJl0ECxWzP4OOpK90TqAfxdqi72Sws/4dEMb/t20Oks5A74Znk2+iZu4dzWt/fE0fCxGpd5Ku0g/iqK5V6LtvdQjLWVnH8FEDlFpWt0U620swK9qDMlaRidsoN7nUTuT4dPEAWFqQgsCk4oVh5p54GTEeJuukVtTsZBwutAE5Eo43LokrAecRWqzpuHwkajkYM3t4RQ84yVHcmJPhSl3P0SNquVdFN24K7QkWjooHsHPdJGSqpUCcRvCB6Mzs7yZZRSd0zqkqk0e9ggVqRGm1wE1quZJ7CCl8lMsbyuKPtuJe/hmLk36ghL5HxhdQUX6Zf+3TDJvZHGyIVNLT7z64JpHk3MfJeWHx4jsCz/DNkOLAcBiyKwlLDGJabhy5/XYu+RB1oN/Xq0xUtzJyEqPAhn/7mJwyf/wb24JOTlFyle9/Z0Q6P64ejXvR2aN9GtdbzlHKVlRsoILMs8t5qiNncCizJz2satUcvSENMFTpdTEpJHUtP356cfxhaeBtF/fdriPyJ+uF8uy1Q8teabtpIDXfYXU56PbomqzBFH2OJm9DQ4wk4XNwYZe7E0A1Ryl1L54LNfaURQ/hDQCwNddevaZ4ggsypL0DJ+Nefa09YRlN0kNE3ZV98G9MA4twZ6h0XdvI6XJHN+Pvfriqkejbl/L867jv/jdb+qrVuhMBhTElhEXraOW6WWabQqaCB6umgvfdQbVB0dXCjNwPDk7dysRx39sT1UWrdRMUtPTNmF47wObssC+6Ovazg3dXDyNlwuZeWDYrCUOoYysCgTi08eU+bd3rCRWjvL8dckUW9qEqI0ejRyW5BRJzVG/rwGMcvUOrZeipgEPxGZq3IQWBsL7+E/6apSa4qrl0sIVgYNkmNrFufjk+zz+I4nql/P3hNHwsdofJhBeneke6e0lUED0MslzOL2bGkBMwLL0k6MxWvJCFgkgaUE/MKV2/j8x9X459pd2NvZYdKoPnj6sVHw8fKw5DOpU7EzAsu6jtvcCSxC25Bi7lTy0DxuJQp4T0qXBPZDfwnEybqCO1iQcYy7QDo7B2FDDaVm/KtIKGZNP3QPh4/RSzBYeJUKn/6L1Ucy5NVOpMu72WfUunLReo0cPLE4qD8IB3MwynuKiPlTrSwwVkOLc6GIuhzZV8r9C8W6h7lG4ZdAlQ7XSxnHsbrgNgfXS95t8KKWTonKwaYksCgGYfZBf5dwLAnqbw5HrxbDiZIUTEjZxf2tq3Mw1onUGJKymRczjmMN70w/9uuCmf9mZbDyQSmISpvzW941vJN1Wm1yP5dwLNXhGt1eGIO56Yc4H60c/bBTgyi/tAhVs3ombMLdilzuD2KzgPUlsG6X52Jg4ha17o3h9m7YGzpKVBmzvvs2x/lEWnaIW6tGKNZUTk6dROk9rbSjYWNQ38HLHLdlw8+8ngAAIABJREFUVTExAsuqjpNtxswRsGgCS4ntroOn8dUv65CQnA53Nxc8NX0EZowb8JDQu5mfRZ0MjxFY1nXslkBgaRJz3xE6Aq0dxZXn1XZiu4viMJtXoiilfFDpP7OqBK3iVJk61DXvRtS0WssdhfpG5Iv0nga4yJt59FrGCSwvUInUk/YKabCYwoqqK7Ag/ahaqZ0yDiJmKGvJWcYSUTn2+Gj8GqRVFnOuSM8k1F7VYTemIg/dEzaqkVy1lYzoGtONsmz0S1KVMVIpE3XAo2uMbFDSNlzhiXkvDuwnOnvN1ATW1fIsDEzcykFCOzojKJHUFS9DjN9fFI+ZPC2yfq4RWBrYzxBLKXwKG0Pw37OU2UEZHkpj5YMGOwaFYypjp3J2vulSGrcw+wx+yb3KTX/coyk+8Osse9CTU/bgaEkS51fs54A+BBaJltP7N6Yin1uXsnx3hI1AMwcf2fdoSQ7fzToNEu9XGjX0OBg2Rm0L9BAtOnYp991Bn38xGh6QWNK+LSVWRmBZykmxOK0BAasgsOggyssrsGLTPvy8dCvyCooQEuSHBXPGY1i/zpzQuzUcmLXtgRFY1nWilkBgEeIzUvfhQHECB75cYu7Csr/J7o3wP/9ukg95YNJWXC3L4ub/FtgXQ1wjNfqjspReCZtwn9c5rotzMNYbIKtDmAHQ0skPu0JGSN6n1Im01xkp+9T2TL6oxfg7Ph3wuGczqa4NOo/EkUkkWWlCAvXZ9CPYVHiPe500qE6EjZNVu4s0VZJ5pZYkJE+C8lRmWy92mVomm5Bgqw0cUxNYFNuI5L/UBLPneD6Cd307GvRMdXUufA/p2qlU1/WEGZ3UCIAyOMiE1yPrPqgrurqNJx26wUlbcadc1eWTygDXhwxGJxGdUUcl78DZ0jRu0e8DemKMW33dghAxWpi1J7YUXR8Ca1bqPuzlfTdTmF/4dcUUXomziNCtcgg99KDsqvLqKm5/wgdU8RUF6JywnnudBN8vGKi7qVWCrMemGIGlB3hsKkNARwQsksCiToR3Y5OQnfvgCY2XhzsaRIXCy9MNufmFWLR0K1Zt2qcQeifNq1fnT0H71kzAUMdrwyjDGYFlFJiNtoilEFi7iuIUWklKk0PMvaS6As1jV6ml+OurPfFx9jl8n3uZi3O6e2N86q+5a6JQt4huiPaHjUZjnlCzXBcCico+ErdSLUNIbJc6uWL4qygGC9KPgTKw+BZs54rfA/uijZO/XEvJ7mdq6h4cLlZlNvDLTCn7qkfCRqhuUQBDiPC+knkCK3kCyaSvRjprV8syMZCnoeZp64DrkdNEY2AOBNbmgnt4JkOln+NhY48LkZNBmWbmYkJCaYJ7Q3zt391g4Z0sScF4XsliWyd/bAsZriB/KdtPaZSxQVgF2DobLBbmGIityMeAxC1qwtzUbONA2GgE2T3ooK3JKMOmQdxyNYKZyO0oB/mlM6jzHXXAU5rYTFupBJawtJnWlaohaa3X2OuZJ0GNVJTW0tFX0QhAaTW9z60VD3PaFyOwzOk0WCzWjoBFEVjXbsXgq1/W4+/zV1FVpeqgpDwk6kb4wlPjFV0J45PSFGWFuw+dUbzct9ujeHHuRNSLDLH2M7Wo/TECy6KOS2uwlkJgGULMnVqaU2tzpXnZOuJy5BS9tKeEP0ZD7FxxNmLiQ+dA3Qo7J6wDiVgrzdA3xMOTtuNCWQa3Xk16HFovGh0H0A3cwqwz+CP/+kMzOzsF4/egvqAbQXM2oU7T//y6YbLHg45SwiYA2lqmS93njqJYzEk7yE1v7uiLPaEjFTpJlHmhtB7OoVgdLL7LpDkQWHSNUIZZelUJt4+P/DrjMY+mUuGSfZ6wmyfpUZEulaEsoaIAnXiZGQF2LrgYMQnf5PyDz3IucMuy8kFDncDDfvcXJ+Cx1H1qDwKIkNgeMrzGbEsSgqcMQ6X52jopvmcMYURwE9GtNMryomwvbSaFwDpXmoaxyTvVGjBQyeCOsOFm0SBE256N9Tq9j7slbFDDia9BKSTGR7hFY1FAb2OFV6fXYQRWnT5+tnkjI2AxBNb5y7fwxEufo6ysHA3rhaFZoyh4ebihuhrIzS/AtZsxuBeXrBBzX/Tpi+jSvrkCShJ4/+yHVbh49Q7s7GwxcUQfzJ81Gr7e8j+tMvLZWcVyjMCyimPkNmEpBBYF/HnOBXyd8w8XexMHb8XTb6n2VNpBNR2mGR5NQB0O9TEqC2wau0Ity+hQ2Gg0EmRVfZB1Fj/lXeGWcoIdTkaMq/VJvj5x0VyhGP4Uj0b4wk96uaSYeKi74BOpB3CRR5zRPMoaec6rFV72eVRjVyYxvo055v2ss6BsA6UpO0ySPhsRkfzsK0MRL1TG1CR2hVpHtEuRkxXviT/yVOTgPM8WeMu3vWh4zIHAomApc4QySJQWaeeheE+Yi/2cewXvZT/opEw217M53vbtYNDwwmL+VPOfGD0L/ZO24HpZNvd3Vj5o0CN4yLnwe4gGUEdQ6gyqyUgDibSQlKZLh1Bdd3awOAHTU/dx06jEmEqNtZmuBBYRzQMSNqsRzm429orv43B7d23L1bnXhaWd3ZyDsfZfqQDh5958zxZ4U4fP7zoHpowbZgSWjGAyVwwBLQhYDIE17ZkPcONOHH785AV0elSzrsnRU5fx3FvfokmDCKz+6W21rVMm1te/rkNcYhrcXJ1xescidnGYAQKMwDKDQ5AxBEsisNIri0Fi2vxcTqli7lQ+2CRupVpZB2lPkQaVvkaljlTyqDTSdnrK6wFBTxZfWaAoAaKsE6Ut8G6NV7wf1XfpWucLs8NC7dwUYtmGsr9LUxTkFT/LjNbysHXArwF90cPFcrJrhaUySo0m4Y0JZV+dDp+g0PQyhI1L3gXCVWlf+/fAyoKbOF0iXV/HXAgsuk5ax61Sy1RYFTQQPV1CDQGlzj6/zrmIz3kE2wvebfCyyE6POi/27wTSxiGNHKVR57uZPIKC/n6RlQ9KhVfSPPr+mZKyG0dLktXmfxnQHZPcGj7kk7J8KdtXadQ8g0r7DGE3y7PRN1HV7CHS3h0nw8drXer/27sTMJ3K/4/jH2bGOox9N5YihWxtKpUsRZZECKlIFEUqSlGivexKm0oppSzxq2wVkrSQSGWNsY19Z6y/6z5dM+aZhTMzz3LOc97nuv7X//8397mX1/ehmc+cc98ZCbDM09C3bvtKvyXs9Ok3EIePnHfiLmlgXvu9LsVr5t+Uaq7qOQor5QmygfoFiEuogjpNAqygcjOYxwVcE2DVatxNjerV0csDe5yzZCbA+mHJCi2d/XaqdmZPLLM3ltkj68cZYz1eemcsnwDLGXXw1yzcFGCZNZsf3sxrHIlXx+jKejmdPabOZTT18Ab12jk/qYnZh+m3NF71y4zzxEOr1W/X2dc4bshVShOTvdLVc+d8TTu8Ialrs3fN4rJtgrLfT6WNH/k8HfZDmdtUITJ/ZpZ5zntG7v9DLyc7JS2xsTk+3mxsbzY5d9M15fB6Pbjz7B5NrfJWUP9CdXRV3NnNd816hhS+Ul3yBW4j+tf3r9RzyZ4CapmnguYejfPZl2dhmVaqGGn/CHanBFjGr/euBfr80NnN8BvlLqP3izd0xEcl5f52TxW6XPfnPxtMB2KSKQPLK3MW15KE+KShzP8/peT5n7AJxNy83Of+08d109YvfcJF4zGrVAtVy1HIh+bKzZO1+eThpD+bWrKJrshZPCB85kTAyhsn+vRtnto735WRAOv5vb9q7P6zT6OavnvGVNOAgvaf+jzffMLx6+b7DfN9R+KV+G9bu+3f6IdjZ38pMbFEI92Qq3Q4EjhuTQRYjisJEwpjAdcEWFe36KmKsaX00Zgn0y3HmTNn1Lb7YG3fsVsLp41Ot505pTB/dPqbZIZxvR23NAIsx5UkSxNyW4A152ic7o6fl7Rms8mzeQIhOoObPd8TP0+zj8Yl9XNvvks0uLB/Tj0zr83VifvMpy7rynVSLjPXhF26ZdtMn6+9WuQa3RH9335Kgb5SBoD+/m2v2dvr/h3f67tjW1ItxR+vaAbaJ73+FxzdpjviZyV9+dpcJVQuMr9MWJl4FcmeS0vKtrHqHKhr1Ym91kbS6V25FKF15e/M0PBOCrBWHt9jBQPJr8VlWis2MvRbCAzcvcRnH7ehha4M+KmZfXYt1ORD69KtZ6AD0wx9kDzWOK2/iyaYn12qZdKefuap4Zpxn6b534JAcV208SMdSnZQhp0n9OwGWCn/+2vWYPYx/KLkzYFaTtj0u/rEftXfMtVnPXNLt7SeUjYHBCRe35dupUpR9n8BETZAIVgIAVYI0BnSswKuCbAGvjxeU75aoBuurqnWTa+z9sHKH/3fb93NyYOr18dp8ozvteiXlbqzTWM93quDZ4vqpoUTYLmpWuefq9sCLLOi2nGfKv7U0aTFmSewzJNYdi8TslTZ5Ptb6hklb1HtnEXtdnHedjdsmaI1yY5cT/ytqtnM12zqm3hdElVQc0q3PG9//mrw7sFVGrT77H4sN+eJtU4A9Mf1x/HdunfHtzL7QiW/zP5epkZtoi/wxzAh6eOvE3vVMFlwZJ6aS77huJnUoEKXqXv+agGfn3mN1hzPntZVJ2dRfVnylgzNwUkBlpl4i23/83k9qVu+S/SMn8LlDMGkaPzorkX65NCapD9N75WxrIyR8t7X9i7TsP1n9/1L+fVlZdvJvLbKFRqBlE9mmllcl7ukPil+kzWhr49s1L3JDl6okaOwzGvvgbxu3DJN/5zYlzSEndfs7QRYm04eVOMt03UwWThmPnuzS7fkBEybBTWHcJjDOBKv5nnKa8aRs6+Xmj9fU66TzCnLXIEXIMAKvDEjIJAo4JoAy4RUvQaM0NIVZ7/hS6uMDerV1ktP9lDuXM4+hYqP4H8CBFjh9UlwY4CV8oe6qlEFrW+i7V6fHV6rh3f+kNS8TGReLSnj372gntn9s94+uCppjK75LtYVuYur+46zpx6aL04ucbOu9sO+W3bXvvrEPtXfMi2peb5skfq7XCe7t6fb7r0Df+mpPUtSfb1sZLTM3ihVogpmeYxQdmDCqpqbJqU7BXOy2M9lbw/Ka6B9d/6gTw+vTXMumTkZz2kB1vTDG/RAstd782eP0tKy7YJie67PWMpXgF4ver1a5q0Q0I9lyn+rkg/G64MBpbfd+YDdi/XBwX982j+Yv7oeL1RHQ/b8onEH/kz6mnm92Dw1F8ir0/Y5Pk/Aml9QmF9UnOuyE2CZAN8E+cmvQL4OGUijUPWd1hOmyedSMHsOrYzll/nBqg8BVrCkGQcByTUBlimWeUVw4ZI/NH/xcq3ftFUHDh6xalggJlqVK5ZVo+vqqHZ1+09O8AEIvQABVuhr4M8ZuDHA2nbqsC6Lm+zD8HWp5jL7K9m5Un6D/0BMNT3p5/075h/dqg7xs5OmExthTmbKpk2nzr4qUD9XaX1UopGdKfu1Tcon2L4s2VR1chbL1BhmM/zHdy9O8zUn80OT2WTcbNoeDlfKE+GSrymQGzOntPvfkX91X4ogNLHNa0WuVfvo1BtJn8vfaQGWmWvKp8xeKFxXJpwL5ZXycIYPijdUw9xlAjqlxcfi1Wb712mOEYxXGAO6uDDqvNm2mVqWsMtnRe8Va6DX963QL8eTH7Bwvcz+eYG8zP6LyV9ttvOa6fkCrLRC82A9cRpIq1D0nfI1/uRzMN/DmO9luIIjQIAVHGdGQcAIuCrAomThJ0CAFV41dWOAZSpwV/xczU22mXuH6Ep6pcg15y2OOems6qaPfdqltfHueTuy0eCCfz/UMZ1Kt+X80rfpwij/b6B+vqml3Ffn0YK19HBMjfPdlurrJoy7Z/s8/Z3sdZXERsHY4DrDE87iDTU2TdKu08dS9RKTPYd1mmPebMEJ6tJ6BTZxUhkJchPvcWKAlfIQgIqR+bWwzG1ZrGDWbu8QP0vzj549ee7TEjfp2lyBPUnTnFia8qCAxFXw+mDW6unPu82+h+bVPbO5e+Jl9mU8ceaMEpL9N2Bx2daKjQjsfm4j9i/XK3uXJc2jR/6qGljo8nMu91wB1qRDa/XIrrNPLJuObspTVuOLNfAnoWf6MlsImK0E0rqa5Im1DjnhCo4AAVZwnBkFASNAgMXnIKQCBFgh5ff74G4NsFJuJmv2jFge2/68e0d8dPAf9d+9OMmxfGQ+LSrT2u+upsNO8XP03dHUm5mbr90ZXVkvZuL0RH9M9IvD6/TQzoVJXV2es5imlWyaoa5nH4nTgzvn+2wWbDoonD2nxpdooMtyZO6JrgxNIsiNU+4tkzj8owVq6uECNYM6m5bbvtKvCWef7DCDZ5e0oVxnRWYz/5f9y4kBlgmaa2z6RCd1JmkhHxdvpOtzh+50rpTm00s21WWZfHLRbnVOnjmt8hsnJFP4784rchXT1BIZ+ztrd0zaZU5gScJ23b5tlk6lqtZ//ZnXjFfE3pG5zjNw16eH1qjvrkVJd7TIW0FvFL3+nD2kF2CZVwabbpmh4zrt89/M2aVbBC2wz8DSXdO07fZvtCjZyYOJE++W/xI9U8g/h8m4BiOEEyXACiE+Q3tOgADLcyV31oIJsJxVj6zOxq0B1mmdUe1Nn/pspG3nNaOU3zj2LlBD/QrUyipjmve/c2CVnt5zdsP0xEbm5MSfyraRObUuFJd5isg8TZR4RSqb/irX8bzhn2lvfjh7bs+vejPZvi6J/ZjQ6p3i9VU0TDeVbrt9lhYdO/sEjll33myRWhbbLug/zI3ct1wv7zv7lIWZy8U5CmpuKft7wSXWzYkBlplb750L9fnhsyfwmdf1zGt7oboab/1Sfx7fkzT87FItVDVHoYBP54rNk1MdjPBsoSvVNf/FAR+bATIm8Ob+lXp2769p3hSsp5YWHt2q9sleXzchqwlbz3WlFWAdOH1cjbZO1+Zkh3LkUHZrv0lOycvY5yJl6x+ObVO77WdPtU38+uBCV+je/JdkrXPuti1AgGWbioYIZFmAACvLhHSQFQECrKzoOe9etwZYRtKczmU2dM/K9V3pW1U5qkBWukj33vUn96veZt9js01js7mv2eQ3lFeDLdPSfPUvs3NyyklxmZ2/nftSbuJt7jGvXppXMIN9mRMfm2yd4TPs7dEXWHuOZfRyaoCV1hozurZAtv+hzG2qEBn4V4Bv2/a1liTE+yxladm2Kh6RJ5DLo+9MCqQ8aS6xG7PPotlvMdDXuhMHdN2WKQEZZlSR69Q6umJA+vZapylPWzXrNweeNMpd1msUIVsvAVbI6BnYgwIEWB4supOWTIDlpGpkfS5uDrDS2sw9IyKVo2L0XelWGbklw22v3DzZ5zfYJSPyaFHZ1sqpiAz35c8bUp6Oldm+zT4vI4ted95TrjLbv5PuG7znF72V7Mkz8/TVz2XbqkD20Jygm3JPLjubNafl6dQAy8w1rR/ynPKZCNYeVCn3rOP0Qad8AtKex5EzJ9V065dac+KAT4MpJZvI1C7QlzlY44KNH/l9mI7RlfVyiF579/tiHNDh98e2qOP2OT4zMa9mVo0K/FOdDli+I6ZAgOWIMjAJjwgQYHmk0E5dJgGWUyuTuXm5OcAyK74nfp5mH43L1OL7Fayt3jGXZupeuzdNO7xesw/HWacPbjhxQEMLX6VWeUP/G+zvj21Vx+1nT0m0u57k7apEFdC7xW9U+SA8hZKZ+fn7ng0nD2jWkTitSNilP4/v1k15yumJgnX8PYzt/qYe3qD1x/cltb8t3wWZeiLIyQHW9MMb9MDO+bZNgtnw79iOQTlh0zxR80vCDm06cUCbTh5UwzxldasD/g0JprXbxjJP3zbZMsPaI/DiqIKqkaOwnitylXJliwzKUqpt+lh7k20on9VBq+copG9KtchqN9yfQsCc7hiVLbvKReVXbFS0muUpj1EQBQiwgojNUJ4XIMDy/EcgtAAEWKH19/fobg+w5h3dLHMsdWauxWVaKzYysCdCZWZewbjn6JmTujALv6U3R8GbUx/Nfl5c7hZwcoBlZGtumuSz151TtLeUv9spU2EeDhQwv7Qomj13SP6NbLhluswG7P648mWP0pzSLVU2Itof3dEHAo4RIMByTCmYiAcECLA8UGQnL5EAy8nVyfjc3B5gZXzF3IEAAskFnB5gUS0EEAisQHqnEAZ2VHpHILQCBFih9Wd0bwkQYHmr3o5bLQGW40qSpQkRYGWJj5sRcL0AAZbrS8gCEMiSAAFWlvi42aUCBFguLRzTdqUAAZYryxY+kybACp9ampUQYIVXPVkNAhkVIMDKqBjtEQgvAQKs8Konq7EnQIBlz4lWCPhDgADLH4r0kWkBAqxM0znyRgIsR5aFSSEQNAECrKBRMxACjhQgwHJkWZhUgAUIsAIMTPcIJBMgwOLjEFIBAqyQ8vt9cAIsv5PSIQKuEiDAclW5mCwCfhcgwPI7KR26QIAAywVFYophI0CAFTaldOdCCLDcWbf0Zk2AFV71ZDUIZFSAACujYrRHILwECLDCq56sxp4AAZY9J1oh4A8BAix/KNJHpgUIsDJN58gbCbAcWRYmhUDQBAiwgkbNQAg4UoAAy5FlYVIBFiDACjAw3SOQTIAAi49DSAUIsELK7/fBCbD8TkqHCLhKgADLVeVisgj4XYAAy++kdOgCAQIsFxSJKYaNAAFW2JTSnQshwHJn3dKbNQFWeNWT1SCQUQECrIyK0R6B8BIgwAqverIaewIEWPacaIWAPwQIsPyhSB+ZFiDAyjSdI28kwHJkWZgUAkETIMAKGjUDIeBIAQIsR5aFSQVYgAArwMB0j0AyAQIsPg4hFSDACim/3wcnwPI7KR0i4CoBAixXlYvJIuB3AQIsv5PSoQsECLBcUCSmGDYCBFhhU0p3LoQAy511S2/WBFjhVU9Wg0BGBQiwMipGewTCS4AAK7zqyWrsCRBg2XOiFQL+ECDA8ocifWRagAAr03SOvJEAy5FlYVIIBE2AACto1AyEgCMFCLAcWRYmFWABAqwAA9M9AskECLD4OIRUgAArpPx+H5wAy++kdIiAqwQIsFxVLiaLgN8FCLD8TkqHLhAgwHJBkZhi2AgQYIVNKd25EAIsd9YtvVkTYIVXPVkNAhkVIMDKqBjtEQgvAQKs8Konq7EnQIBlz4lWCPhDgADLH4r0kWkBAqxM0znyRgIsR5aFSSEQNAECrKBRMxACjhQgwHJkWZhUgAUIsAIMTPcIJBMgwOLjEFIBAqyQ8vt9cAIsv5PSIQKuEiDAclW5mCwCfhcgwPI7KR26QIAAywVFYophI0CAFTaldOdCCLDcWbf0Zk2AFV71ZDUIZFSAACujYrRHILwECLDCq56sxp4AAZY9J1oh4A8BAix/KNJHpgUIsDJN58gbCbAcWRYmhUDQBAiwgkbNQAg4UoAAy5FlYVIBFiDACjAw3SOQTIAAi48DAggggAACCCCAAAIIIIAAAggggICjBQiwHF0eJocAAggggAACCCCAAAIIIIAAAgggQIDFZwABBBBAAAEEEEAAAQQQQAABBBBAwNECBFiOLg+TQwABBBBAAAEEEEAAAQQQQAABBBAgwOIzgAACCCCAAAIIIIAAAggggAACCCDgaAECLEeXh8khgAACCCCAAAIIIIAAAggggAACCBBg8RlAAAEEEEAAAQQQQAABBBBAAAEEEHC0AAGWo8vD5BBAAAEEEEAAAQQQQAABBBBAAAEECLD4DCCAAAIIIIAAAggggAACCCCAAAIIOFqAAMvR5WFyCDhDYMVf6/Xpl9/pl9//VvyuvYqKjFCF2JJqeuNV6nhbQ0VFRaaa6Iefz9aLYz4+5wK+nviSYksXd8YimQUCCKQrsH7TNn0xc75+WrpKm7ft1NFjCYrJl1dVLyqvNs1uUMN6ddK999fl/+j9T7/R73+u1aEjR1W8SEE1uLa2unduYfXBhQACzhfYt/+QvvhqgRYu+UNrNmzWwUNHlDtXTl1QrpRurn+F2re8UTlyRKVayINPjdK3PyxNd4HFihTQd5+PcD4AM0QAAQQQcIQAAZYjysAkEHCmgPkGdcjwCfrfvJ+sCVaqUEZlSxXVvgOHtWr1vzqWcFw1LrlA77zWT3ly5/RZxMh3vtBbH82wgq7ovLnTXOCIZ3upRNFCzlw8s0IAAUvguZEf6uOp86z/u2SxQrqwQmlFRUYqbutO6wdZc7VreaMGPdw5ldjnM+fr6Vffs/7chF2FC8Zozfo4bduxx+rr49cHyfwAy4UAAs4VmD5rkYYM/0BHjx1X/ug8qlIpVvmj82rXnv1a8fd6nTp1WtUuqqD3RvRXnty5fBbSqddzWrZyjapXqSBly5ZqkYUL5tfY5/s4d/HMDAEEEEDAUQIEWI4qB5NBwFkCBw4dUdv7nlGlimXU977brTAq8dq+c4/u7z9Mq9dvVvc7m+uhrq19Jv/Mq+9r8szvNemNQap+cUVnLYzZIICAbQETXi1ftVb3tGuiKhfG+tz302+r1HPACCvMfn/E47q8ZpWkr8dt3aFmdz6hyMgIjXupb9LXzpw5ozHvTdW4CV/qqtqX6N1h/WzPhYYIIBB8gRV/b9CItybr7nY36+rLqikiInvSJLZs36X7HntV/8ZtV8+7b9UDd9/qM8Gmnfpr+449Wjr77eBPnBERQAABBMJOgAAr7ErKghDwr8D+A4cVkz/t13x+Xva37nn4RVWMLakZE17wGTjxtYE5k15VqRJF/DspekMAAccIDB72gT778js9cFdL9bynVdK8nh/1kSZOmas+3dqoW8dmPvM1IdYd9z8r84PxxLFPqWbVCx2zHiaCAAIZE/j62yV69Nk3dFmNi/TByCd8br6q2QPKF51H5nsBLgQQQAABBLIqQICVVUHuR8DDAvsPHtbVzXtaAdePX471kUh8bcD81jVnGvtieJiNpSMQVgLD3vxM737ylR67v731hEbi1aj9o9q6fZe+nTxcxYsWTLXmT6ZggoV7AAAdw0lEQVTN09ARH6rz7Tepf887wsqExSDgJYGFS1aoR//XdH3dGnr9hYeTln7i5CnVbNjVegrbPI3NhQACCCCAQFYFCLCyKsj9CHhYYNOWeDXp2F8XVyqnz98e7CNhXhsw+2P8/NU4DwuxdATCW8C8Znxb14HWK0Lm34DEVwzNn9dt9oAVXJkAK63rrzUb1abb09bTV+YpLC4EEHCfgHma8qGBo62N2gc81Mk62CXx2rl7n25o3Uf1r66lMc/3dt/imDECCCCAgOMECLAcVxImhIB7BMzJYq+8Mcl6Pci8JpT8Mq8NmH0y7m57s7Vh87FjCdZm7hdWKKMbr6mlIoVi3LNQZooAAkkCZr+rHbv2atEvK63TBbft2K1HerTTXbfflNTmz3/+Vdvuz6h29Ur6cPSTaeolPsFZMCaffpg+GmEEEHCJwMlTp7Rz9379+c8GffDZLC1dsVo33XC5Xhl4v8/+WH+v3aTW9w6yDnupe1lV7d5zQObeAjHR1qbv9a+pxRPaLqk500QAAQScIkCA5ZRKMA8EXCawd/9BNe88QEeOHtPXE1/2eUXI/Ea2bvOe1jHbaV1RkRG6/65brc3fuRBAwB0Cia8KJp+t+aH1/rtaWieUJr+WLPtLXR5+SdddVUNvvHj2laLkbcy/E9Xq32P9wPvHvPHuQGCWCHhYIPFVweQE5nTRXve0sv6up7xW/rNB7Xs8K/N3Pa2rUIF8Gtr/XuvVQy4EEEAAAQTsCBBg2VGiDQII+AiYfS3MfhfmBLInHuyoTq0bpRIyrw6s3bBF5WNLynyTai5zWtHcBb/q7YkzdeRoQpqbO0ONAALOFJg5Z7HmLvxNp06dknl6yvz9Nv/bHNLQ+97WatawbtLEFy75Qz36D1ODerU1ashD6S6oRoOu1hMZy+e9q8iICGcunFkhgIAlYJ6oMqeHnj5zWoePHNPGuO3WE9Zmk/b2LW9Ury6tUv09/mddnPWLrtjSxa39MhMSTmjtv1s05asF+nzmfCvAfm/446pzaWWUEUAAAQQQOK8AAdZ5iWiAAALJBU6fPqPHhryhb777Wa2a1NPQ/l0zDJT4dIbZ3N28OpQnd64M98ENCCAQWgHzb8H3i3/X06+M1559BzX6ud7W68Hm4gms0NaG0REIloDZy27wa+9bJ4pm9ECGMeOn6o0J01W7emV9OHpAsKbMOAgggAACLhYgwHJx8Zg6AsEWMD+wDnjxbc2Y/aNuvLa2hg/umemnJszmzeYb33eH9dNVtS8J9lIYDwEE/CTww88r1L3fa6pcsYymjh9q9Zq4942dPbBi8uXVjzN8TzH109ToBgEEgiCwb/8hNWr/iMz+eAumjpLZ187OZbYZMNsNmGvZnHdkthfgQgABBBBA4FwCBFh8PhBAwJbAqVOnNeCFtzVz7mI1rFdHrz79QJa+2ew9cLT1OtLIIQ9a/XEhgIA7BUywXbNRV2VTNv02+y0r1DavDF3epIetUwirV6mgSeOedufimTUCCFgCZs878+Tl+yMe1+U1q9hWubp5T+tVZBNimzCbCwEEEEAAAQIsPgMIIJAlAbNHTb8hb2rW9z9b+9w898S9mX7yKnEinXo9p2Ur12ji2KdUs+qFWZofNyOAQOgEjh8/oVqNuylbtmxaPvfdpFPIWtw1QOs2btW3k4f7HPKQONNPps3T0BEfqm2L+nq6712hWwAjI4BAlgU69hyq3/9ca+1ndUUtewFWwvETurxJd2XPnl3LZr9t/RvChQACCCCAAAEWnwEEEMi0gNmw/ZHBYzVv4VK1aXa9nu57t7Jnz9o3mZu2xKtZ5yeUK2cOLZo+RlFRkZmeHzcigEBoBeYs+FV9Bo1RlQtj9cU7zyZNZuQ7X+itj2ake1hD+x6DrX1zxr3UV/WuvDS0i2B0BBDItIA5tKVR+0etAx4WTh2tAjHRtvqa9s0PevLFd3TtFdX15suP2LqHRggggAAC3hbgFUJv15/VI3BOAfNkRZ+nx2j+4uW6s01jPd6rgy2x73/83TplsP41tZQ7Vw6fe8wrBmbD142b49W3e1t1vaOprT5phAACwReI37lXH3z2jZo3vloXVyqXagLmJNJHn31De/cf1AsDuqlF42uS2uzee0A3d+in06dPWyFV4mtFZ86c0Zj3plqnmZl9s6a8O4QnL4JfWkZEwLbAy2M/Ud3Lqunqy6omPWGZeLP5b3n/oeOsMDrlwS4Tp8xR5YplVefSi3x+8WW2JDDh1YtjJlr7Zk0YNUC1qlWyPR8aIoAAAgh4V4AAy7u1Z+UInFdgxNuf6+2JM6125cuWOGf7unWq6qk+d1ptJkyepZfGfmI9WXVh+dIqVqSAdXT2pq07tHX7LqtNh1YNNOChTvzget4q0ACB0AmYpyWbdOxvTaB40YLW3+f8+fLq2LHjWr0+Tlu277L+Dne/s7ke7HJbqomaJzf7PjNW5jXkqheVV5FCMVq9frO2xe+29rsxJ49dUL506BbIyAggcF6B+m36aMeufcoXnccKnc3fY7P3XdzWHdaBDeYyT1EOH9zL55dWDz45Ut8uWqbovLlVqUIZFcgfrX0HDunfuO1W6G1OIh786D1WQM6FAAIIIICAHQECLDtKtEHAowJmfxqzT42d68Zramn0c72tpuYb00+mfasff1mpDXHbZE4aioiIUNFCMdZvWc2eN3UurWynW9oggEAIBcyTEuYVwdnzf9XaDZu1Z99BHTh02PrBs1SJIqpdvbLaNr8hzaezEqe9avW/evPDGfrtj9U6dPiIihQuYP2w2+POFmnujRXC5TI0AgikIbB0xRrNmPOj/li1TubJyn37D1r7Vpkgq1qVimrWqK7M9wApr3X/brG+F/jtj3+ssPvosQRr6wDzb4f5pVeHVg0VW7oY5ggggAACCNgWIMCyTUVDBBBAAAEEEEAAAQQQQAABBBBAAIFQCBBghUKdMRFAAAEEEEAAAQQQQAABBBBAAAEEbAsQYNmmoiECCCCAAAIIIIAAAggggAACCCCAQCgECLBCoc6YCCCAAAIIIIAAAggggAACCCCAAAK2BQiwbFPREAEEEEAAAQQQQAABBBBAAAEEEEAgFAIEWKFQZ0wEEEAAAQQQQAABBBBAAAEEEEAAAdsCBFi2qWiIAAIIIIAAAggggAACCCCAAAIIIBAKAQKsUKgzJgIIIIAAAggggAACCCCAAAIIIICAbQECLNtUNEQAAQQQQAABBBBAAAEEEEAAAQQQCIUAAVYo1BkTAQQQQAABBBBAAAEEEEAAAQQQQMC2AAGWbSoaIoAAAggggAACCCCAAAIIIIAAAgiEQoAAKxTqjIkAAggggAACCCCAAAIIIIAAAgggYFuAAMs2FQ0RQAABBBBAAAEEEEAAAQQQQAABBEIhQIAVCnXGRAABBBBAAAEEEEAAAQQQQAABBBCwLUCAZZuKhggggAACCCCAAAIIIIAAAggggAACoRAgwAqFOmMigAACCCCAAAIIIIAAAggggAACCNgWIMCyTUVDBBBAAAEEEEAAAQQQQAABBBBAAIFQCBBghUKdMRFAAAEEEEAAAQQQQAABBBBAAAEEbAsQYNmmoiECCCCAAAIIIIAAAggggAACCCCAQCgECLBCoc6YCCCAAAIIIIAAAggggAACCCCAAAK2BQiwbFPREAEEEEAAAQQQQAABBBBAAAEEEEAgFAIEWKFQZ0wEEEAAAQQQQAABBBBAAAEEEEAAAdsCBFi2qWiIAAIIIIAAAggggAACCCCAAAIIIBAKAQKsUKgzJgIIIIAAAggggAACCCCAAAIIIICAbQECLNtUNEQAAQQQQAABBBBAAAEEEEAAAQQQCIUAAVYo1BkTAQQQQAABBBBAAAEEEEAAAQQQQMC2AAGWbSoaIoAAAggggAACCCCAAAIIIIAAAgiEQoAAKxTqjIkAAggggAACCCCAAAIIIIAAAgggYFuAAMs2FQ0RQAABBBBAAAEEEEAAAQQQQAABBEIhQIAVCnXGRAABBBBAAAEEEEAAAQQQQAABBBCwLUCAZZuKhggggAACCCCAAAIIIIAAAggggAACoRAgwAqFOmMigAACCCCAAAIIIIAAAggggAACCNgWIMCyTUVDBBBAAAEEEEAAAQQQQAABBBBAAIFQCBBghUKdMRFAAAEEEEAAAQQQQAABBBBAAAEEbAsQYNmmoiECCCCAAAIIIIAAAggggAACCCCAQCgECLBCoc6YCCCAAAIIIIAAAggggAACCCCAAAK2BQiwbFPREAEEEEAAAQQQQAABBBBAAAEEEEAgFAIEWKFQZ0wEEEAAAQQQQAABBBBAAAEEEEAAAdsCBFi2qWiIAAIIIIAAAggggAACCCCAAAIIIBAKAQKsUKgzJgIIIIAAAggggAACCCCAAAIIIICAbQECLNtUNEQAAQQQQAABBBBAAAEEEEAAAQQQCIUAAVYo1BkTAQQQQAABBBBAAAEEEEAAAQQQQMC2AAGWbSoaIoAAAggggECgBbbv3KOv5y3Rj7/+qdXr47Rv/yFFRUWoVPEiqnflpepyR1MVLpg/3Wl8/e0STf16oVat3qj9Bw/p9OkzabaNyZ9XP345NtXXlq1co4+nztVvf6zWnr0HlCd3Ll10YVm1aHyN9T8REdkDTUD/CCCAAAIIIIAAAmkIEGDxsUAAAQQQQAABRwiY8Oqm9o/p5KlT1nxMeFQwJlq79x7QsYTj1p8VLVxAk8YNUomihXzmbIKqfkPHyQRY5qpyYaxKlyyiHTv3atWajTp16rT155ERESpWtKAqVyyjsc/38elj+FuT9c7H/0tqV7BAPh08dCRp7KtqX6JRQx9S3jy5HOHFJBBAAAEEEEAAAS8JEGB5qdqsFQEEEEAAAYcLPP78W6pQtqQa1qutiuVKKVu2bDpz5ozmL16u/s+9qUOHj6pVk3oa2r+rz0o+njpPz438UDlzROmNl/rqyloXJ33977Wb1L3fa9q1Z78e79VBd7ZpnErh/c++0SuvT7Luf+yB9rr15nrKnSuHFXzNX/y7Br4y3noa7JYGV+nlgT0crsj0EEAAAQQQQACB8BMgwAq/mrIiBBBAAAEEwlLg7YkzNeLtz1WkUIzmTxnps8bbug7UP+vi1K1jM/Xp1ibV+idN/1ZDhk9Q6RJFNHvSqz5fN094NWz3iI4fP6FnH+ui1rdcl+r+Wd//rL7PvG79+RfvPGs94cWFAAIIIIAAAgggEDwBAqzgWTMSAggggAACCGRBwOxL1fmh560els9713od0FzmCa1LG3Sx9rt6/YWHdX3dGqlGWbX6X91+3zPWny+aPkYFYqKT2oyf9JVeG/eZypUprq8+eindGV5/W2/rKa77O7dUry6tsrASbkUAAQQQQAABBBDIqAABVkbFaI8AAggggAACIRFYv2mbmnd+whr7l6/HWXtkmcvsmVWz4b1WkPXusH4ye1WlvNZu2KKW9zxp/fGCqaN8NoLv0X+YFi75Q22aXa/Bj96T7tpMeGZCtIb16mjkkAdDYsCgCCCAAAIIIICAVwUIsLxaedaNAAIIIICAAwXMa4Az5yyWOQ0wbusOaxP1hOMnUs00eYBlvnhzh35W+0d6tFWX9k1TtZ85d7H6D31TBWPyaeG0UdbeWolX0079tXFzvG2NK2pV0XvDH7fdnoYIIIAAAggggAACWRcgwMq6IT0ggAACCCCAQBYFzNNTL4yeqIlT5lo9mX2ualS9wDptMGeOHDJ5047d+zRj9o/W11MGWG9+OEOj3v1C+aPzaMLoAapUoUzSjOJ37tXdfV7Upi3xae6RlfhqYLEiBayA63xX1YsqaEi/LudrxtcRQAABBBBAAAEE/ChAgOVHTLpCAAEEEEAAgcwJfPj5bL045mPryahBfe9Sm1uuV/bsZ5+SMr0uX7VOHR4YkmaAZTZg7/rIy1q6Yo0iIrLrylqXWBu2mz2rlixbpSNHE3T1ZdU09vneypEjymeSiU9vPdS1tbrf2TxzC+AuBBBAAAEEEEAAgYAKEGAFlJfOEUAAAQQQQMCOgNmfyuxT1axRXb30ZPc0b1n0y0rd99h/JwimfALL/NmJEyfVufcL+mPVOuXNk0vHEo4rb+5cqlIpVi0aX6OWN12bKhQz93V5+CUtWfaXbmlwlV4e2MPOdGmDAAIIIIAAAgggEGQBAqwggzMcAggggAACCKQWuLxJDx05ekyP3d9ed7e7OU2i1z+YrrHvTU03wBoyfIImTf/2nH2k1fG4CV9q9Pgp1uuH8yYPV57cOSkRAggggAACCCCAgMMECLAcVhCmgwACCCCAgBcFGrbtq2079qhdyxs16OHOqQh27t6nVl0Gau/+g2kGWFu271Lj9o+qTMmimvXJKxkiNH03av+o9QRXeuNnqEMaI4AAAggggAACCPhdgADL76R0iAACCCCAAAIZFRj0ynh98b8FioqK1LCnH9CN19a2ujh56pQW/bxSz4/6SKdOn9a2+N1pBljm9UPzGmKunDk09vk+uvSSikl7XWVTNmtfrHNdiXtwmTZm7G4dbpHZrN3cd+jwUW3fscd6zfDbRUv14oD7VLRwgYwukfYIIIAAAggggAACWRAgwMoCHrcigAACCCCAgH8EzEmB7e8frB279lkdmj2szImA5umohOMnFFu6uN4f8bjadBukPfsOprkHVs8BI/T9j7+nOSGzcXu50sXV6Lo6urtdE6v/lNf4SV9p+FuTdfr0GetLZkN5E6iZDeKTX/MmD7NOR+RCAAEEEEAAAQQQCJ4AAVbwrBkJAQQQQAABBM4hYE4MNPtRLfhpuUygZUKnMiWLqMG1ddTljqbW3lRmE3ezmXvKTdzXbNisCZNna8pXC85rfEG5UvrkjUFphlibtsRr4pS5+mnpKm3dvlvHEhKUK2dOlSpRWDWrXqhG112may6vZoVbXAgggAACCCCAAALBEyDACp41IyGAAAIIIIBAAAQWLlmh3gNHKXfunHq0Rztdc3l1FS0ckxQymdcQ9+w9qB9/XanBwz6wnqjq062NunVsFoDZ0CUCCCCAAAIIIIBAIAQIsAKhSp8IIIAAAgggEBSBU6dOq2G7vtarh6OHPpS0d1Z6gw8d8aE+mTZP9a+upTHP9w7KHBkEAQQQQAABBBBAIOsCBFhZN6QHBBBAAAEEEAiRwIZN29Ss8xPW6L/NesvaxP1c15jxU/XGhOnWq4Ajnu0VolkzLAIIIIAAAggggEBGBQiwMipGewQQQAABBBBwjMDGzfFq2qm/NZ/5U0aqSKGYdOdmNoNvfe8gmdDr4ftu170dbnHMOpgIAggggAACCCCAwLkFCLD4hCCAAAIIIICAqwVa3DVA6zZuVd3LqmrQw3cptnQxn/WYUwWXrlitV8d9qhV/rVexIgU0bfxzismf19XrZvIIIIAAAggggICXBAiwvFRt1ooAAggggEAYCvy9dpO693tN5hRDc1WILWlt4h4ZEamDhw7r383xOnjoiPW1yhXLaNgzPa02XAgggAACCCCAAALuESDAck+tmCkCCCCAAAIIpCNw4NARffbld1rw03Kt37jNCqyyZZPy5M6lUiWK6JLK5VT/mlq6oW7NpNMJwUQAAQQQQAABBBBwjwABlntqxUwRQAABBBBAAAEEEEAAAQQQQAABTwoQYHmy7CwaAQQQQAABBBBAAAEEEEAAAQQQcI8AAZZ7asVMEUAAAQQQQAABBBBAAAEEEEAAAU8KEGB5suwsGgEEEEAAAQQQQAABBBBAAAEEEHCPAAGWe2rFTBFAAAEEEEAAAQQQQAABBBBAAAFPChBgebLsLBoBBBBAAAEEEEAAAQQQQAABBBBwjwABlntqxUwRQAABBBBAAAEEEEAAAQQQQAABTwoQYHmy7CwaAQQQQAABBBBAAAEEEEAAAQQQcI8AAZZ7asVMEUAAAQQQQAABBBBAAAEEEEAAAU8KEGB5suwsGgEEEEAAAQQQQAABBBBAAAEEEHCPAAGWe2rFTBFAAAEEEEAAAQQQQAABBBBAAAFPChBgebLsLBoBBBBAAAEEEEAAAQQQQAABBBBwjwABlntqxUwRQAABBBBAAAEEEEAAAQQQQAABTwoQYHmy7CwaAQQQQAABBBBAAAEEEEAAAQQQcI8AAZZ7asVMEUAAAQQQQAABBBBAAAEEEEAAAU8KEGB5suwsGgEEEEAAAQQQQAABBBBAAAEEEHCPAAGWe2rFTBFAAAEEEEAAAQQQQAABBBBAAAFPChBgebLsLBoBBBBAAAEEEEAAAQQQQAABBBBwjwABlntqxUwRQAABBBBAAAEEEEAAAQQQQAABTwoQYHmy7CwaAQQQQAABBBBAAAEEEEAAAQQQcI8AAZZ7asVMEUAAAQQQQAABBBBAAAEEEEAAAU8KEGB5suwsGgEEEEAAAQQQQAABBBBAAAEEEHCPAAGWe2rFTBFAAAEEEEAAAQQQQAABBBBAAAFPChBgebLsLBoBBBBAAAEEEEAAAQQQQAABBBBwjwABlntqxUwRQAABBBBAAAEEEEAAAQQQQAABTwoQYHmy7CwaAQQQQAABBBBAAAEEEEAAAQQQcI8AAZZ7asVMEUAAAQQQQAABBBBAAAEEEEAAAU8KEGB5suwsGgEEEEAAAQQQQAABBBBAAAEEEHCPAAGWe2rFTBFAAAEEEEAAAQQQQAABBBBAAAFPChBgebLsLBoBBBBAAAEEEEAAAQQQQAABBBBwjwABlntqxUwRQAABBBBAAAEEEEAAAQQQQAABTwoQYHmy7CwaAQQQQAABBBBAAAEEEEAAAQQQcI8AAZZ7asVMEUAAAQQQQAABBBBAAAEEEEAAAU8KEGB5suwsGgEEEEAAAQQQQAABBBBAAAEEEHCPAAGWe2rFTBFAAAEEEEAAAQQQQAABBBBAAAFPChBgebLsLBoBBBBAAAEEEEAAAQQQQAABBBBwjwABlntqxUwRQAABBBBAAAEEEEAAAQQQQAABTwoQYHmy7CwaAQQQQAABBBBAAAEEEEAAAQQQcI8AAZZ7asVMEUAAAQQQQAABBBBAAAEEEEAAAU8KEGB5suwsGgEEEEAAAQQQQAABBBBAAAEEEHCPAAGWe2rFTBFAAAEEEEAAAQQQQAABBBBAAAFPChBgebLsLBoBBBBAAAEEEEAAAQQQQAABBBBwjwABlntqxUwRQAABBBBAAAEEEEAAAQQQQAABTwoQYHmy7CwaAQQQQAABBBBAAAEEEEAAAQQQcI8AAZZ7asVMEUAAAQQQQAABBBBAAAEEEEAAAU8KEGB5suwsGgEEEEAAAQQQQAABBBBAAAEEEHCPAAGWe2rFTBFAAAEEEEAAAQQQQAABBBBAAAFPChBgebLsLBoBBBBAAAEEEEAAAQQQQAABBBBwjwABlntqxUwRQAABBBBAAAEEEEAAAQQQQAABTwoQYHmy7CwaAQQQQAABBBBAAAEEEEAAAQQQcI8AAZZ7asVMEUAAAQQQQAABBBBAAAEEEEAAAU8KEGB5suwsGgEEEEAAAQQQQAABBBBAAAEEEHCPAAGWe2rFTBFAAAEEEEAAAQQQQAABBBBAAAFPChBgebLsLBoBBBBAAAEEEEAAAQQQQAABBBBwjwABlntqxUwRQAABBBBAAAEEEEAAAQQQQAABTwoQYHmy7CwaAQQQQAABBBBAAAEEEEAAAQQQcI8AAZZ7asVMEUAAAQQQQAABBBBAAAEEEEAAAU8KEGB5suwsGgEEEEAAAQQQQAABBBBAAAEEEHCPAAGWe2rFTBFAAAEEEEAAAQQQQAABBBBAAAFPChBgebLsLBoBBBBAAAEEEEAAAQQQQAABBBBwjwABlntqxUwRQAABBBBAAAEEEEAAAQQQQAABTwoQYHmy7CwaAQQQQAABBBBAAAEEEEAAAQQQcI8AAZZ7asVMEUAAAQQQQAABBBBAAAEEEEAAAU8KEGB5suwsGgEEEEAAAQQQQAABBBBAAAEEEHCPAAGWe2rFTBFAAAEEEEAAAQQQQAABBBBAAAFPChBgebLsLBoBBBBAAAEEEEAAAQQQQAABBBBwjwABlntqxUwRQAABBBBAAAEEEEAAAQQQQAABTwoQYHmy7CwaAQQQQAABBBBAAAEEEEAAAQQQcI8AAZZ7asVMEUAAAQQQQAABBBBAAAEEEEAAAU8KEGB5suwsGgEEEEAAAQQQQAABBBBAAAEEEHCPwP8BIr7LPLhCZPYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdCZhO5f/H8c/MmLHv+y4qZcmSErJkKyJRlhKhzR4hkiyJCNkrqYhfpZCSSkKWkJIlaZOy7/u+zcz/uo//8zDN4pmZZznned7nuv7Xv2bO8r1f31vX5fO7z33CYmNjY8WBAAIIIIAAAggggAACCCCAAAIIIICATQXCCLBs2hnKQgABBBBAAAEEEEAAAQQQQAABBBCwBAiwmAgIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFu3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs5EFCBvUfOBfT5PNw5AjmzpFXayHAdOXlBFy7FOKdwKkUAAa8KmP8OmP8emP8OmP8ecCCAQOgK5MmWTmkiwnTw+Hldjo4NXQhGHlCBAjnTB/T5PByBUBIgwAqlbttwrARYNmyKTUsiwLJpYygLAT8LEGD5GZzHIWBjAQIsGzcnhEojwAqhZjPUgAsQYAW8BaFdAAFWaPc/OaMnwEqOFuciELwCBFjB21tGhkByBQiwkivG+b4QIMDyhSr3RCBhAQIsZkZABQiwAsrvqIcTYDmqXRSLgM8ECLB8RsuNEXCcAAGW41oWlAUTYAVlWxmUTQUIsGzamFApiwArVDqd+nESYKXekDsgEAwCBFjB0EXGgIB3BAiwvOPIXVInQICVOj+uRiA5AgRYydHiXK8LEGB5nTRob0iAFbStZWAIJEuAACtZXJyMQFALEGAFdXsdMzgCLMe0ikKDQIAAKwia6OQhEGA5uXv+rZ0Ay7/ePA0BuwoQYNm1M9SFgP8FCLD8b84T4wsQYDErEPCfAAGW/6x5UgICBFhMC08FCLA8leI8BIJbgAAruPvL6BBIjgABVnK0ONdXAgRYvpLlvgjEFyDAYlYEVIAAK6D8jno4AZaj2kWxCPhMgADLZ7TcGAHHCRBgOa5lQVkwAVZQtpVB2VSAAMumjQmVsgiwQqXTqR8nAVbqDbkDAsEgQIAVDF1kDAh4R4AAyzuO3CV1AgRYqfPjagSSI0CAlRwtzvW6AAGW10mD9oYEWEHbWgaGQLIECLCSxcXJCAS1AAFWULfXMYMjwHJMqyg0CAQIsIKgiU4eAgGWk7vn39oJsPzrzdMQsKsAAZZdO0NdCPhfgADL/+Y8Mb4AARazAgH/CRBg+c+aJyUgQIDFtPBUgADLUynOQyC4BQiwgru/jA6B5AgQYCVHi3N9JUCA5StZ7otAfAECLGZFQAUIsALK76iHE2A5ql0Ui4DPBAiwfEbLjRFwnAABluNaFpQFE2AFZVsZlE0FCLBs2phQKYsAK1Q6nfpxEmCl3pA7IBAMAgRYwdBFxoCAdwQIsLzjyF1SJ0CAlTo/rkYgOQIEWMnR4lyvCxBgeZ00aG9IgBW0rWVgCCRLgAArWVycjEBQCxBgBXV7HTM4AizHtCpeofe36aftu/arf/fH1LpZXecOJIQqJ8AKoWbbcagEWHbsij1rIsCyZ1+oCgF/CxBg+Vuc5yFgXwECLPv2JpQqI8BybrcJsJzXOwIs5/UsqComwAqqdvp0MARYPuXl5gg4RoAAyzGtolAEfC5AgOVzYh7ggQABlgdINj2FAMumjUmiLAIs5/UsqComwAqqdvp0MARYPuXl5gg4RoAAyzGtolAEfC5AgOVzYh7ggQABlgdINj2FAMumjSHAcl5jQqViAqxQ6XTqx0mAlXpD7oBAMAgQYAVDFxkDAt4RIMDyjiN3SZ0AAVbq/AJ5NQFWIPVT9mxWYKXMjau8JODNAOvfyyeVOTxKucLTeak6bmMnAQIsO3WDWhAInAABVuDseTICdhMgwLJbR0KzHgIs5/adAMt5vSPAcl7Pgqri1AZYU07+qikntuhA9DnL5eWcd+qJzKWCyojBXBEgwGImIICAESDAYh4ggIBLgACLuWAHAX8EWBt+3aoP5y3Wz7/8paPHTipD+nQqeWNhPVC/mvV/ERHhbopHOw/Vpt+2qUHtyho9sFOSROOmztHUDxYoX+4c+vbjMQoPD3OfHxsbqy8X/6DPvvlef2zdqVOnzypb1kyqUOYmPdq0ru6scIvX+bf8uV2zPl+qdZv+1KEjxxQWFqa8uXPohiL5Vb9GJTWuXzXeMw8dOa6ZcxZp1U+/ave+Q7pw8ZJyZsuiirfdpOaN7kmyTk8CLG/cf/X8ycqaJaPVv7f/94U2//6PTpw6o+qVb9NbI5/zumMw35AAK5i764CxpTbAevPkr3rl6Dr3SDtkuVVDc1R2wMgpMbkCBFjJFeN8BIJTgAArOPvKqBBIiQABVkrUuMbbAr4OsMa+PVvvfPilVXaaiAhlz5bZCpPOX7ho/eyuiqU04ZXuypjhylso875eqQEj31VUVKSWfzpeWTJlSHDIJqCq16q39h04oqcfa6xnn3zIfd7Zc+fVbcAE/fDzb9bP0qWNUuZMGXTs+Cldjo62ftahVUP16tjCK5ymljFTPtG0WV8nej8T1L3a/6k4v/92xTr1G/a22yJtVKQiI9Po9JkrixvM8dD9NTTwucctu/8e1wuwvHX/+e8P108b/9Ar42bKjNV1tG5WV/27P+YVw1C5CQFWqHTapuNMbYD11dkdeurgd+7R1clQSDPy1LXpaCkrNQIEWKnR41oEgkeAACt4eslIEEitAAFWagW53hsCvgywpn+yUKPemCUTzPTp3EoP3ldd6dNFKTo6RsvXbNRLo97T8ROndX+du/TaSx2t4Zw7f1E1m3XXmbPn9VLPtmrVpHaCwzSrgdp2H2797suZI1SscD73eV37j9d3qzeoQL5cGtjzcVWtVNpa5XX23AV99NkSjZs6WzExsRrcu52aN6qVasYpM7/QhHfnWvdp2qC6TLBTomgBXY6O0a69B7Vm3RZVKl9SZUre4H7W+s1/6fFnX7XquKdqBXV7oplKlihs/f7o8VP69KsVmvTep7p0OVqPPFhHA3q0iVdnUgGWN+/fpd2DeuP9z1WmZDF17dBMZW8pLhMSpkkTodw5s6XaL5RuQIAVSt224VhTG2BtuXhE9fd+4R7ZjZFZtbxgUxuOlJJSK0CAlVpBrkcgOAQIsIKjj4wCAW8IEGB5Q5F7pFbAVwHWkWMnVbdlL128eEkv9+lgrST67/HNsh/13OA3rB/Pfedl3XJjEeufXx47Qx9/vtQKfD6eMijBIQ4ZM12ffLFM5UqV0IdvvOQ+xwRXJsCKTBNh3bNEsYLxrh86dob1ql/O7Fm0+OMx1mqvlB4HDx9XvZa9rJVdz7RprO5PXF0JltQ9H2j3orZt32OFVxOHdbdeN0zKZ9abA1X21uJxTkkqwPLm/c1Dq91RRpOH97BWiHGkXIAAK+V2XOkFgdQGWOdjo1Vix0x3JeEK065ij3uhMm5hNwECLLt1hHoQCIwAAVZg3HkqAnYUIMCyY1dCryZfBVjvzfpKY976REUL5dVX/xuZKGzNZs/q8NET6tS2ibp2uPI/5P++dYcefupKcPX5tGG68Ya4IZRZlVSzaXdrH6ZBvdqpReOrq6g69n1dK9f+oocb1dSQ3u0TfO6/O/epUdsXrN+9N7avKle4NcWNd62+yp41s76bM9ajgMesjmrT7crqMfN6nlmtldjxSOeh+uW3bdZeYf99BTGxAMvb9zer5hbNGqMc2TKn2IkLrwgERYBllknOWbBM5h3Vv//dY/1BNMsHP313aJw+L/1+vbWUsm6NStbSS47AC6Q2wDIjKLPzIx2LueAezE+Fm6tARMbAD44KvCpAgOVVTm6GgGMFCLAc2zoKR8DrAgRYXiflhikQ8FWA5UmQZMo1rwGa1wHrVr9d44d2c4+g+dOD9dtf29WuxX3W64fXHq5VVv/dJ8u8jlf5/k7W620jBzyjRnWrJChiArCK9Z+0Xt/r3721WjerlwK5K5c83We0tQG72aB9RP+nPbqP2Qh9/DtzrVccv501OslrXOfmzZ1dS2ePjXNuYgGWt+9/7SueHg2QkxIVcHyAtW3HXmuJ4849B+IMMqEAq9eQN7Twux81/IWn1OTeakwLGwh4I8BqtHeBNlw87B7N3Hz36a50V9/htsEwKcELAgRYXkDkFggEgQABVhA0kSEg4CUBAiwvQXKbVAn4KsBq+Fhf7dgd9++4SRVqvgo4bWw/9ymfzP9OQ15/33rNb+mcsXE2MXf9vfi+e+7UmEGd3deYL+7VeqhHsjy6tG+qzo83SdY1157sGqd5ddC8QujJMXDUe5r75QpVqVRa74zuk+Qli5avU89Bk6xzNi5+13o10nUkFmB5+/49n26uJx+935Ohcc51BBwdYJmvLzTtMED7Dh613rutc3dFa4nlWzPmJ7gC68slP+j5oW+pfs1KGjukK5PDBgLeCLA6H1quz8/86x7N2FzV1CLTTTYYHSV4U4AAy5ua3AsB5woQYDm3d1SOgLcFCLC8Lcr9UiLgqwDL9WpgnlzZZF6vu95RuuQNGvp8B/dp5s0js5m7eVtp4rBnVbtaBet3ZnVV9Qe7W1/ue2vkc6pe+Tb3Nde+Gmg2dTebx1/vaPnAPWqZyEbx17vW/N41zn5dH1Wbh+t7col6v/ymvl66VrXvrqiJr3RP8pqVazerY98x1jmrPp+kbFkzuc9PLMDy9f09GiQnJSjg6ADrjemfafL0z1Tq5mLWp0Pz58lhDbJ0rXYJBljmCwb3Pfq8ChfIo4UfvsaUsIGANwKskcfWa8KJX9yj6ZGtnPpku/IfaI7gESDACp5eMhIEUiNAgJUaPa5FILgECLCCq59OHY2vAizz91bz99fkrEz6r+GAke9q3tcrVad6RU0YeiXo+WLRavUb/rZy5chqvVJnvi7oOvYfOqo6zZ+z/nXmxBdVsazvFwXc+0gf7d53SD2eelhPtW7k0TQYNn6mPpy3JPkrsL59J84eW4kFWL6+v0eD5KQEBRwdYDV74iX9uW2X5kwdoltvKuoeYGIBlkmZb7/3aaVLG6Wfv3mbKWEDAW8EWLNObVWvI6vco2masbgm5Y7/lQ4bDJcSUiFAgJUKPC5FIIgECLCCqJkMBYFUChBgpRKQy70i4KsAq0PPkVq74XelZv+kTb9t06Odh1qvza34bKKyZMog195a7Vs1UO+OLeMYmL2t7mzY0fry4eDe7dS80dXN3b2ClcBNHn/2Va3b9KeaNqiuV/o+4dFjXBvce7IH1tQPFmjc1DnKnTObls0dF+f+iQVYvr6/R4PkpOALsCrd97Qi06TRmgVXPh3qOhILsMzvK9Z/SpcuX9bmpdOYEjYQ8EaAtfr8fjXfv9A9moppc+uL/LxjbIP2erUEAiyvcnIzBBwrQIDl2NZROAJeFyDA8jopN0yBgK8CLLMtzsT3PrVCpyWzxypD+rQpqE56sP0Abf13txUOmVfuajzYXZejoxP8OqF5wBPPvaYf1v/m0eqmFBX0n4tMuGRCpoRWhCV2/23b9+iBdi9av07oK4vXXte6yyvauOVvNaxTWaNe6hTnlokFWL6+vzfcQvUejl6BZcKozJkyaPmn4+P0L7EA6+y5C7qjwTPWe6/m/VeOwAt4I8Dac/mM7tw92z2YXBHptalw3P81IfAjpYLUChBgpVaQ6xEIDgECrODoI6NAwBsCBFjeUOQeqRXwVYBlNlSv16q3Ll26bO0xNbBn2xSV+sGn32r4hA9Uq2p51a95h/q/OlWlSxbTJ1MGJ3i/b1esU4+BV/6uPHpgJzWoXTlFz/X0IrNRvdnI3RzJ2ez8kc5D9ctv26xxTRr2rMLCwuI9cun369VtwATr59PH9dMd5W+Jc05iAZY5ydf399SH8+IKODrAcn2xwARYJrF1HYkFWEtWrlf3lyaoQpmb9L9JVxJbjsAKeCPAMiMovP19xSjWPZhtRdsoXdjVL0wEdpQ83RsCBFjeUOQeCDhfgADL+T1kBAh4S4AAy1uS3Cc1Ar4KsExNM+cs0ohJH1rlmdVTTz16v8xm7WbfqtNnzmn/waPWa4ZLV63XiP5PW6/J/fc4ceqM9WXBNBHhurPCrVq2eqP6d39MrZvVTXTYz740UYtX/qzw8DC1a9FADzeqaX0sLTY2VsdOnNaefYe0cu0v1nY+44d2Sw2fde3IyR9pxuxvrH9u1/I+PdasnvLnzano6BgdPHJcP2/6UydPn9WjTeu4n/X3v3v08NODrICvbvXbrfDLbDxvDrNR/WcLV2n0m7N04eIlPVC/ml7t/1S8OpMKsHx9/1SjhegNHB1gDZ/wP33w6WLrD5/5Q+g6EgqwzOqrVp1ellkOmJwN4kJ0Xvht2N4KsKrv/lT/XD7prvvbAg+oVNSVTf05gkOAACs4+sgoEEitAAFWagW5HoHgESDACp5eOnkkvgywjIvZj2ns27MVE3Plf6w3K40iI9NY+1RdeyyZ/bry5U747z99h03Rgm/XWKeb/bCWzR0f52t8//U3e0ebDeDNl/5cR5qIK4sDzOuHrsNbH0cz9xw8erq14bzriIqKtMIpE5qZw3xF0XxN8drjxw1/6LnBk3XsxCnrx+ZNK/PlxCNHT7rrNCvIhvV7MsEvKiYVYJn7+fr+Tp73gard0QHWvgNHZCadSVUb1auiXs+0lPnM6H8DrPWbt8p8SeCPv3cqa5aMWvjhKOtdYo7AC3grwHrswLf67twe94DezVNb92UoEvgBUoHXBAiwvEbJjRBwtAABlqPbR/EIeFWAAMurnNwshQK+DrBMWTv3HLAWbpi9qfbuP6LzFy4oXdq0KpAvp8qXvlH1alRStTvKJPganbnebJJuNks3x7VfJLzekM3qrk+/WqENm7fq8NETViiUKWN6FSmYV3eWv0WN6lXVzcULXe82Hv/eBEazF3x35XnHTlr7XZs3rW4rVVwtGt+j22+7Od69THg1Z8FymVcfd+89pLPnL/w6XNIAACAASURBVChntiwqX+ZGPXR/DVWtVCbR518vwDIX+vr+HuNwoiXg6ADLDMAsbTSpq1leaA6ztNG8R2v+YJW55QaZpX/mD5s5TFL91ojndNftpWi/TQS8FWD1P7JG75/60z2qQdnv0NNZS9tklJThDQECLG8ocg8EnC9AgOX8HjICBLwlQIDlLUnukxoBfwRYqanPXGteqat8fydrFZdZxWRWM3Eg4EQBxwdYBn3z7/9oyOvv6/etOxLtQckShTWkTweVveUGJ/YpaGv2VoD19oktGnLsJ7fT45lLanjOKkHrFooDI8AKxa4zZgTiCxBgMSsQQMAlQIDFXLCDgBMCrLlfrtDAUe8pe9bM+m7uOOs1Qg4EnCgQFAGWC37zH//qp42/a+fugzp99pzSp7uyrLJyhVtVsWz85YZObFiw1eytAGvh2Z164uBSN8896Qvqf3nrBRtXSI+HACuk28/gEXALEGAxGRBAgACLOWAnAScEWC2fGaJf//xXjze/V893ecTrfGaF19N9xiTrvubrgU8+en+yruFkBIIqwKKdzhPwVoD128Wjqrd3vhugeJosWlmomfNAqDhRAQIsJgcCCBgBAizmAQIIEGAxB+wkYPcAa+mqDer24njry4ULZoxQkYJ5vM5nvhBYpVHnZN23WcMaGvp8h2Rdw8kIEGAxBwIq4K0A63xstErsmOkeS7jCtKvY4wEdGw/3rgABlnc9uRsCThUgwHJq56gbAe8L8Aqh9025Y/IF7BZgma/2mS8VmmPp9+v1wqtTdfrMOT3atI5efLZN8gfIFQjYSMDRAVbVB7qoQpmbNHl4j2SRmj/AH322RJu2bFOaNBEqe2txPdyoprJmzpis+3By6gW8FWCZSsrt+liHo8+5i/qxUHMVTENPU98le9yBAMsefaAKBAItQIAV6A7wfATsI0CAZZ9ehHIldguwHus6TLv2HtTZcxeszdvNYf6+O21sP6VPFxXKrWLsQSDg6ACrdK12KpgvlxbNGm214viJ04qOiVGObJkT/YSoCa8e6fSy/tm5L0778ubOrunj+lmfBOXwn4A3A6zG+77U+guH3MXPznefqqbL57/B8CSfChBg+ZSXmyPgGAECLMe0ikIR8LkAAZbPiXmABwJ2C7D6DX9b36/drNNnzqpAvlxqVK+qnnikodJGRXowGk5BwN4Cjg+w0kREqHenlpoxZ5H27j9saZuvK5gVVV3aPajIyDRxOjDxvU/11oz5ioqK1EMNayhblkz6+ru12r5rv265sYjmTB2SaPhl71Y6szpvBlhdD63QvDP/uCHG5KymVplvciYMVccTIMBiUiCAgBEgwGIeIICAS4AAi7lgBwG7BVh2MKEGBHwl4PgAKymY6pVv05sjesYJpJq0f1F//7tHw194Sk3urWZdfv7CRbXtPlxb/tyut0Y+J3Mdh38EvBlgvXZ8g8Yf3+QuvHvW29Q3e0X/DISn+FyAAMvnxDwAAUcIEGA5ok0UiYBfBAiw/MLMQ64jQIDFFEHAfwJBEWDlypFVnR5vottuLa6oyEj98fdOTZ7+mXbuORAnqDKs5es9qUuXLmvZ3HHKnTObW3rtht/VoedINW9US4N7t/NfB0L8Sd4MsD45vVU9D69yizbJeIPeyF0zxIWDZ/gEWMHTS0aCQGoECLBSo8e1CASXAAFWcPXTqaMhwHJq56jbiQKOD7DM50Bnvz1EJUsUjuO//9BRNWrTT7fdWkLvje1r/S46Oka31bnyqc5flrxnfUrUdcTExKpK484qWiivPpky2Im9dGTN3gywfji/Xw/tX+h2qBCVSwsKNHKkC0XHFyDAYlYggIARIMBiHiCAgEuAAIu5YAcBAiw7dIEaQkXA8QHWbaVK6KM3XkqwX51fGKuNW/7W6vmTrd9fjo5WuTpPWP+8Zdn0eNe0eGawdu875D4/VCZBIMfpzQBrb/QZ3bFrtns4OSLSaXPhVoEcHs/2ogABlhcxuRUCDhYgwHJw8ygdAS8LEGB5GZTbpUiAACtFbFyEQIoEHB1gla3dXrWrVdT4od0SHPzg0dP16dcrrNVWngRYT/YepXWb/tTGb99JESYXJV/AmwGWeXrh7e8rRrHuQrYVbaN0YRHJL4wrbCdAgGW7llAQAgERIMAKCDsPRcCWAgRYtmxLyBVFgBVyLWfAARRwdIBVrUlXFcibS7PfTviVPxNI/fLbNv341VsW8ekz51T5/k7WPye0Aqt9zxFa/8tWbVrybgBbElqP9naAVXPPPP196YQbcVGBxiodlTO0UIN0tARYQdpYhoVAMgUIsJIJxukIBLEAAVYQN9dBQyPAclCzKNXxAo4OsJ7uM1qrfvpV08f10x3lb4nTjD+37dLDTw2U2duqT6dWatfyPutcc405ln86Xmbz92uP+9v008lTZ7Tys4mOb6xTBuDtAKvtwcVacna3e/hT89yjhhmKOoWDOpMQIMBieiCAgBEgwGIeIICAS4AAi7lgBwECLDt0gRpCRcDRAdZXS9aqz9A3lS5tlNo2v1flS9+otGkjteXP7Zr6wQKdOn1WZo8sswqrUP7cOnz0hM5fuGj1dvgLT6nJvdXcfd6556AatH5elcqV1PvjXwiV/gd8nN4OsAYc+UHTTv3hHteAHJXUKUuZgI+TAlIvQICVekPugEAwCBBgBUMXGQMC3hEgwPKOI3dJnQABVur8uBqB5Ag4OsAyA+015A0t/O7HBMd8+203690xz2vEpA816/Ol1jm1q1VQ1iyZtGz1Rr38fAdVrVTaerWw3/C3tWbdFvXu2FLtWzVIjiHnpkLA2wHW1JO/afDRq/OhTeaSGpGzSioq5FK7CBBg2aUT1IFAYAUIsALrz9MRsJMAAZaduhG6tRBghW7vGbn/BRwfYJlXBE04NWfBMm39d7diY2WttmrWsLrat2ygyMg0luqe/Yd17twF3XhDQf31z2617DhEFy9eiiOeO2c2LZjxqjJlTO//ToToE70dYC06u0vtDy5xa9ZMX0Af5q0forrBNWwCrODqJ6NBIKUCBFgpleM6BIJPgAAr+HrqxBERYDmxa9TsVAHHB1jXwsfGxio6JkZpIq7/1bnlazZp0OhpOnTkuHWLEsUKavTATrq5eCGn9jJFdc/7eqXmLFiuv7fvUXR0tIoWyqcH77tbjzatq4iI8GTdc/Pv/+jj+d/pp41/6MDhY4pME6EbiuRXw9p3qXWzuu4w8dqbejvA+uPiMdXZ+7n7ETdEZtb3BR9K1jg42Z4CBFj27AtVIeBvAQIsf4vzPATsK0CAZd/ehFJlBFih1G3GGmiBoAqwPMU0e2NlzpRB0dEx2rnngMLDw1W0UF5PLw+a814YPlXzF62ygqYKZW9SZJo02vTbNuuVyrvvLKvJr/bwKAw0nkPHztCXS36wbG66oZAKF8it4yfP6Le/tlv7jpUrVULvjHleGdKnjePn7QDrfGy0SuyY6X5GuMK0q9jjQdOzUB4IAVYod5+xI3BVgACL2YAAAi4BAizmgh0ECLDs0AVqCBWBkAqw1m/+y1ptZPbMWr9oaqj0OMFxmuDKBFjFi+TX26P7KH+eHNZ5Z8+dV4+Bk6wvNnbr0Ewd2z5wXaeTp8+qxdODdVPxQnru6ebWqivXsf/QUXXq+7r12uYzbRqr+xNxV0N5O8Ayz62w62MdjD7nruGHQg+rcJpM1x0HJ9hbgADL3v2hOgT8JUCA5S9pnoOA/QUIsOzfo1CokAArFLrMGO0iEPQB1rETp/T5N6us4Orfnfvc7luWTbdLDwJSx4PtB1h7hn0weYD19cZrD2NWp/lz1it/yz8db33l8XrHiZNnlDVLxgRP+3HDH2rfc4QVln0x49U45/giwGqy7yutu3DQ/ZyP892ru9NdDdWuNxZ+b08BAix79oWqEPC3AAGWv8V5HgL2FSDAsm9vQqkyAqxQ6jZjDbRAUAZYZi+sNT9v0ZwFK7T0+5916XK02/mWG4uoZZPaatG4VqDtA/b8vfsPq16r3ipSMI++/uC1BOt4bvBkfbPsJ00c9qz15cbUHCdOnVHVxl2sgGv1/Mk+D7C6H1qpuWe2uZ8zKmdVPZr55tQMgWttIECAZYMmUAICNhAgwLJBEygBAZsIEGDZpBEhXgYBlj0mgNkaqEHrvvGKiYqKVJZMGVSscD5VrVRGLR6opexZM8c7r+8rU7Rg8RqNeqmTGtapfN1BLVm5Xt1fmqB6NSpp3Mtdkzz/1z//VctnhqjUzcU0++3Bcc51PTepG+TMnkUr5k24bk2hcEJQBVgHDx+X2ZR87pfLra8Oug6zkujemneo1YO1VaHMTaHQ1yTH6PrD1qheFY188ZkEz31/9jd6bfJHeqp1I/V46uFUmbn+Y3LrTUU1Z+oQnwdYY45v1OvHN7qf0zVrWb2Q/fZUjYGLAy9AgBX4HlABAnYQIMCyQxeoAQF7CBBg2aMPoV4FAZY9ZoDr75zp00WpYtmrixcuXLykg4ePaeeeK2/oZM2cUVNH91HpksUSDJICFWCZgC2hYM0UmS1LJk0a/qw9oANcheMDLLMR+/IfNlmh1YofNikmJjYOac+nm+uh+2skOhkC7B+Qx0//eKFGvTkrwT2pXAUtXvmznn1pou6tdYdeH9wlVXW6npdQGOaLVwhnn/5bPQ5/7665ccZieit36K64S1XzbHQxAZaNmkEpCARQgAArgPg8GgGbCRBg2awhIVoOAZY9Gu8KsEwQ9OXMEfGKMm8hDRw9TWvWbVFCCysCvQLL0+DMHtqBq8KxAdbufYc098sV1oqrQ0eOuwVNalm3+u2avWCZ9bNQ3+sqoak16b15enPG5+rdsaXat2qQ4Oxbu+F3deg5UnfdXkrvjnk+xTPU7KfVuG1/a3N487pi3tzZ49zr1NlLKb53YheuObtf9+5Y4P51xXS5tOyGB73+HG7oX4H0adMoTUSYzl64rOjouEG1fyvhaQggEEiBiIgwZUibRpejY3XuwuVAlsKzEUAgwAIZ06VReHiYzpy/HO9/xA5waTw+hAQyZ4gModHad6jXC7BM5UePn1KNpt1lthz6/vOJcRa5EGDZt7fXVuaoAOvSpcsyK4PmfLlcP/z8m3sc5r3We6pW0AP1q+ruymV18eIl3dGgIwFWInNwzFuf6L1ZX+mFbq312EP1Ejxrw69b9VjXYdYrl/+b9GKKZrPZe6xj3zFWr5J6VopunsRFey+dUcFfZrjPyB6RVkfLd/D2Y7gfAggggAACCCCAAAIIIICADQQ8CbBMmXc27KgzZ89r6eyxcRZXEGDZoIkelOCYAGvk5I80f9EqHT9x2hpWWFiY7ihfUo3rVVX9mncoU8b07uGa1T4EWIl3P1krsCqW0ruvJ38FlnmVs8/QN7Xwux/VtEF1vdL3iQQL8sUKLPOg3H9M04XYq5v37765rbJEXP9rih78meGUAAmwAitA8DwWAZsJsALLZg2hHAQCKMAKrADi82i3gL9WYG36NVbbd8WEjHz5MuEqWjjM4/F6EmAdOHRMtZv3tPbBWjV/kpUpuA4CLI+pA3qiYwKs0rXaWVDp0kapXcv79MiDdZQrR9YE8Qiwkp5TM2Z/IxMIPtOmsbo/8VCCJ7v2wDKvY44f2i1Zk9SEV/1HTNUXi1ar9t0VNXZIF6WJiEjwHr7YA8s86J49n+mvS1dfLV2Yv5HKps2VrHFwsr0E2APLXv2gGgQCJcAeWIGS57kI2E+APbDs15NQrMhfe2DN+DhaK1aHToDVpmWEalYN93hKXS/AOn3mnHq//KZWrv1F/bu3Vutmcd9EIsDymDqgJzomwGrxzGBt+XO7G+vGGwqqXvVKaly/qooWyhsHkQAr6Tm1fM0mdX5hrDz5CmGHVg3Vq2MLjyep2VS//6tTrU+QmvBr9KDOikyTcHhlbuqrAOvxA4u1+Nxud91TctdSo4xxvzTh8aA40RYCBFi2aANFIBBwAQKsgLeAAhCwjQABlm1aEdKFEGD5pv0pDbAypE+naneUcRcVHROjo8dO6vetO6zcoF3LBmpyb7V4RQc6wCpeJL9yZM+SIGarJrXVoHZl30A77K6OCbCM6x9/79TsL5ZZ4YhJUF3HbaVK6MF7q+m+2pWt5YAEWEnPwsNHT6hms2dVpGAea2P1hI7nBk/WN8t+0uiBnTz+w3I5OlrPD52ib5b9qEZ1q2jYC08muvLK9UxfBViDjq7VOyd/dw+tf/bb1SVrWYf98aTcawUIsJgPCCBgBAiwmAcIIOASIMBiLthBgADLN11IaYCVWDWRkWlUv0Yl3XfPndZbQv89Ah1gJaWY1MfXfKNv37s6KsByMZ47f1ELv1urOQuWa+OWv926ZlLWqlLe2hPL7L9kDr5CmPDkMxu0m43aP5g8QOVL3xjnJPPlwDrNn1NMbKxWzJugLJkyuH9v7E1AmPM/6bDZsL3XkMlasnK9Hm5UU4Oea2d9FeZ6h68CrHdP/q6BR9e6H/9Ypps1MlfV65XD720sQIBl4+ZQGgJ+FCDA8iM2j0LA5gIEWDZvUIiU568Aiz2wkp5Qib1CaN4QOnHqjDb//o/e+XCB1m/eai3QMAs1rj0CHWCNeqmTGtZhldX1/rPhyADr2kFt275HsxcstzZ4P3HyTLzxLv54jPLnzXk9h5D7vXn3t2Pf12WWKr49uo/y58lhGZhwquegyfr+x81q3ayu+nd/zG1jvtbQ8LG+OnLspMYM6qR7a91p/c589bHHoEkyrya2ebi++nV91GNPXwVYi8/u0uMHl7jrqJ6ugGblq+9xXZxoPwECLPv1hIoQCIQAAVYg1HkmAvYUIMCyZ19CrSp/BVih5prc8V5vDyxzP/PGUMtnhlhvdo0c8Iz11pDrSG6AtfT79eo2YILq1aikcS93TbLcX//813pu6ZLF9MmUwXHOTe5zk+sSbOc7PsByNcSEKItWrLNWZf208Q93n8yXBWpWKSfz3mi1O8p6tCoo2Jqc2HhGv/Wxps36WmblWoUyNyoqMlKbftumU6fPqtTNxfT++BeUIX1a9+XmD/pDTw60/v3acGvc1Dma+sEC6+fFCudLkq/K7aU1oEcb9zm+CrDMBu5mI3fXUSRNJq0p9HCotDYox0mAFZRtZVAIJFuAACvZZFyAQNAKEGAFbWsdNTACLHu0y5MAy1Rq/t5q/v7atEF1vdL3CXfxyQ2Sfvj5Nz3R6zVVr1xWb43slSSCySfa9RihyhVu1Xtj+xJgpWLKBE2Ada3Bjt0HrCDrs4UrdfT4KfevCuTLpRaNa6lZwxrxXoFLhaGjLzX7XP1v7rf6c9tOmeWVBfPnVsPaldW+VQOljYqMM7YLFy+pbbfh2rXvoMa/3E13lL/F+v0r42bqo8+urnZKCqR2tQqaOOxZnwdY52OjVWLHTPdzwhWm7UXbKCLM8y9ZOLqxQVg8AVYQNpUhIZACAQKsFKBxCQJBKkCAFaSNddiwCLDs0TBPA6zpnyzUqDdmWYtc3ni1Z4oDrH0Hjqhuy17Kkyubls4eK7NwJrFj5pxFGjHpQyuLGNSrHQFWKqZMUAZYLg+zL5NZ2mfCrDU/b1FsbKz1K/NVvI2L300FG5d6S8BXK7BMfbfv+lj7o69u9r+64EMqGpnZW6VzHz8LEGD5GZzHIWBTAQIsmzaGshAIgAABVgDQeWQ8AQIse0wKTwOszi+Mtba+adv8XvXt8kiKAyxzYbMnXtKf23Zp5IvPqFG9q68jXiti9pB+6MmXZBbZmJVaZsXWtUdyV37ZQztwVQR1gHUt6579hzX3y+Wa9/VKHTx8nM3dAzfn4jzZlwFW0/1f6cfzB93Pm5W3vqqnL2CTkVNGcgUIsJIrxvkIBKcAAVZw9pVRIZASAQKslKhxjbcFCLC8LZqy+10vwDJbDk37eKEmvDvX2lZo7jtDdXPxQqkKsFb8sEmd+o1VurRRVhhmXks02/O4jn927tPg0dP08y9/qWqlMpo6une8wRFgJa/fIRNguVjMa3LLf9gk8yobR+AFfBlgPXt4peac3uYe5IicVdQmc8nAD5oKUiRAgJUiNi5CIOgECLCCrqUMCIEUCxBgpZiOC70oQIDlRcxU3MoVYJk9nO+qWMp9p5jYWJ08dUZ//L3L+mBZRES4BvRoa73Od+3hCpIK5c+tLJkzJlhJ9qyZ9PaouCGU2Urn1YkfWNvxmGeXKFpAadNG6eDhY9q558piirtuL6VxQ7oqc6YMiQZYZi/p7FkTflsoW5ZMmjT86jY8qWBy/KUhF2A5vmNBNgBfBlhjj2/U6OMb3WKds5TRizkqBZlg6AyHACt0es1IEUhKgACL+YEAAi4BAizmgh0ECLDs0AXJFWAlVI3Z2zlfnhzWHs6tm9WLs/LKdb4rwEpqNDmzZ9GKeRPinbJt+x59MG+Jftzwu8zeWNHR0cqeLbPKlLxBjepVtb5UaFZ9JXSk5rn2kPdvFQRY/vXmaf8R8GWANffMNnU/tNL9xEYZi2pK7nvogUMFCLAc2jjKRsDLAgRYXgbldgg4WIAAy8HNC6LSCbCCqJkMxfYCBFi2b1FwF+jLAGvdhYNqsu8rN2DZtDm1MH/j4AYN4tERYAVxcxkaAskQIMBKBhanIhDkAgRYQd5ghwyPAMshjaLMoBAgwAqKNjp3EL4MsA5Fn1P5XR+7cTKFRerPoq2dixXilRNghfgEYPgI/L8AARZTAQEEXAIEWMwFOwgQYNmhC9QQKgIEWKHSaZuO05cBlhly8R0zdSE22j36X4s8ouzhaW2qQVlJCRBgMT8QQMAIEGAxDxBAgACLOWAnAQIsO3WDWoJdgAAr2Dts8/H5OsCqs+dz/XHpmFvhqwKNVS4qp81VKC8hAQIs5gUCCBBgMQcQQOBaAVZgMR/sIECAZYcuUEOoCBBghUqnbTpOXwdY7Q8s0aJzu9yjfzN3TT2Q8QabalBWUgIEWMwPBBAgwGIOIIAAARZzwG4CBFh26wj1BLMAAVYwd9cBY/N1gDX46I+aevI3t0S/7BXVLettDpChxP8KEGAxJxBAgACLOYAAAgRYzAG7CRBg2a0j1BPMAo4OsM6cPa/vVm/Qxl//1u59h3Th4kVlzZxJxQrnU80q5VShzE3B3LugGJuvA6xpJ3/XgKNr3VaPZr5Zo3JWDQq7UBsEAVaodZzxIpCwAHtgMTMQQMAlwCuEzAU7CBBg2aEL1BAqAo4MsC5duqypHyzQ9E8WyoRYiR3lSpXQ0Oc7qESxgqHST8eN09cB1pKzu9T24BK3S7V0+fVJvnsd50TBEgEWswABBIwAARbzAAEECLCYA3YSIMCyUzeoJdgFHBdgHT1+Sh37jtGWP7crQ/p0evC+aqpe+TYVK5xf6dNF6cixk9qxe78WLP5B363aoCyZM2jWmwNVpGDeYO+lI8fn6wBr26UTqrFnntumUJqMWluouSOtQr1oAqxQnwGMH4ErAgRYzAQEECDAYg7YSYAAy07doJZgF3BUgHXh4iU91nWYfvtruyqVK6nXB3dRzuxZEu3R9z9uVqd+r6t+zTs0ZlDnYO+lI8fn6wArOjZGRXbMiGOzs2hbRYSFO9IrlIsmwArl7jN2BK4KEGAxGxBAgACLOWAnAQIsO3WDWoJdwFEB1ti3Z+udD79UrarlNX5oN6WJiLhuf57sPUp//r1TKz+beN1zOcH/Ar4OsMyIKu36RPuiz7oH933BZrohMvHg0/8KPNETAQIsT5Q4B4HgFyDACv4eM0IEPBVgDyxPpTjPlwIEWL7U5d4IxBVwTIB17MQp1W7+nDJlSKfPpw9XjmyZPepl86cHa8++Q1r9xWTr/FOnz+rHDX8od86suq1UCY/uwUm+E/BHgPXQ/q/1w/kD7kF8kLeeaqVnXzTfddU3dybA8o0rd0XAaQIEWE7rGPUi4DsBAizf2XJnzwUIsDy34kwEUivgmADrf3O/1asTP1C3Ds3Use0D1rhXr/tV3674WZkypFfmTOmV8f//v/n3cxcuatnqDfpqyVo1a1jD2szdHBcvXlKNZs9aq7eWfTrOo1VcqUXm+sQF/BFgPXd4lT4+vdVdxKs5q6ht5pK0xWECBFgOaxjlIuAjAQIsH8FyWwQcKECA5cCmBWHJBFhB2FSGZFsBxwRYnV8Yq+VrNmnhh6+pcIE8FuiAke9q3tcrE8VNlzZK991zp1589jFrw3fX0W/42/pi0Wq9P/4Fay8tjsAJ+CPAGn98k147vsE9yI5ZyuilHJUCN2ienCIBAqwUsXERAkEnQIAVdC1lQAikWIAAK8V0XOhFAQIsL2JyKwSuI+CYAKtuy166cOFinL2smj3xkvYfOqr2LRvo9Jlz1v8dO3Fa23bs0T879ipXjqwa1u9JVa1UJg6DCb1M+NXjqYf1VOtGTJIACvgjwJp35h91PbTCPcqGGYpoap7aARw1j06JAAFWStS4BoHgEyDACr6eMiIEUipAgJVSOa7zpgABljc1uRcCSQs4JsCqUP8pFS+SX3Pfedk9ouoPdtPNJQrr3THPxxvlzj0H9cq4Gfpx4x+aOaG/yt5a3H3O71t36OGnBqlpg+p6pe8TzJEACvgjwPr5wiE9sO9L9yhLReXQtwWuvIbK4RwBAizn9IpKEfClAAGWL3W5NwLOEiDAcla/grVaAqxg7SzjsqOAYwKs2+p0UIUyN1mv/bmOcnWe0D3VKmjcy10TtD177rzqt+pjhVdvjujpPufk6bOq0qizqlcuq7dG9rJjX0KmJn8EWEeiz+m2XR+7TdOGReifom1CxjhYBkqAFSydZBwIpE6AACt1flyNQDAJEGAFUzedOxYCLOf2jsqdJ+CYAOuuRp2tva9mvz3YrVz1gS4qXqSA/jfpxUTln3l+jDb//o/7K4TmxMvR0TLhl9n/6tpAzHntc37F/giwjFLxHTN1ITbaDba5cCvliLi6L5rzJYN/BARYwd9jRoiAJwIEWJ4ocQ4CoSFAgBUafbb7yzajwQAAIABJREFUKAmw7N4h6gsmAccEWE07DNC+g0f1w4I33P4d+75ufYnw82nDdEOR/An2xbwqaPbDWr9oqvv3rhVYNe4qF2dlVjA11ilj8VeAVW/vfP128aibZUH+RqqQNpdTmKhTEgEW0wABBIwAARbzAAEEXAIEWMwFOwgQYNmhC9QQKgKOCbBeGD5V8xet0hczXrX2wjLHstUb1aX/OBUpmEeDe7dX5Qq3xumba7P220qV0EdvvOT+3c49B9SgdV89UL+aXu3/VKj02pbj9FeA9eTBpfr67E63weRcNfRgpqv7otkSh6LiCBBgMSEQQIAAizmAAALXChBgMR/sIECAZYcuUEOoCDgmwPpyyQ96fuhb6v7EQ3qmTWN3fwaPnq7ZC5ZZ/25WYZkwKyoy0lp1tW3HXuvnE4c9q9rVKrivWbB4jfq+MoWvENpglvsrwHr56E+acnKLe8TPZ6ugZ7OVs4EAJXgqQIDlqRTnIRDcAqzACu7+MjoEkiNAgJUcLc71lQABlq9kk3df1yKV/14VFRWpLJkyqFjhfKpaqYxaPFBL2bNmjndzkw+YnODaIzJNhLJkzqgSxQqodrWKat64ltKljUqyMLPIZuGyH7Xx17915NgJXY6OUY6smVWqZDHVrX67GtWtooiI8Dj3OHHqjO5ucmVf79XzJytzpgwJPqPbgAla+v16ValUWu+M7pNoHQ0f66sduw/ovbF93Yt87nm4hw4ePq7ad1fUxFe6JzkG10Kgbh2aqWNbe338zDEB1tlzF1SneU+ZCbjww1FKn+7KxImNjdX0jxdqyv++0KnTZ+M0ImvmjOrb9VE1ubdanJ+7JufMif1VsezNyfuTwdleFfBXgPX+qT/U/8gP7tpbZbpJY3LFnRdeHRg387oAAZbXSbkhAo4UIMByZNsoGgGfCBBg+YSVmyZTgAArmWA+Ot0VYJmc4Nq/41+4eEkHDx/Tzj0HrSebjGDq6D4qXbJYghnBjTcUVK7sWa3fXbx0SfsPHdPe/Yetfy9aKK+mje2nvLmzxxvF4aMn1HPQZK3f/Jf1u4wZ0qlgvlxKkyaN9Xzze3OYt8kmvNI93hZIrToO0eY//rXCJRMy/fe4dOmyzB7gJhdJExGh7z+fmGDQdeDQMdVu3tMK2tZ8MdnKT8zhCrDMP496qZMa1qmcaCcIsLw0Sd94/3NNnjZPjz1UTy90ax3nrucvXLQmy+69h6xQq1CBPLr9tpvjJaRm8pnXB3PnzKqFH42yms8ROAF/BVjfndutxw4sdg+0Srp8mpPvvsANnCcnW4AAK9lkXIBAUAoQYAVlWxkUAikSIMBKERsXeVmAAMvLoCm8nSvAMiutvpw5It5dTA4wcPQ0rVm3RbfeVFRzpg6Jc45rkUtC4c627XvUa8ib2vrvbtWqWl6Th/eIc61ZSNPimcFWSFaiWEH16dTSWiV1bdbw57ZdmvDuXGsbJBOifTxlkPWROtcx/p25evt/X6h1s3rq3z1u1mHO+f7HzTIfqMuRLbOOHj+VaAj1xaLV6jf8bd19Z1lNea2X+/4mwDJ1njt/UdmyZtIX779q3SuhgwArhZPwv5ddvHhJzZ4cqH937lP/7o+pdbO6ybqz+fpg+x4jtH7zVvXr+qjaPFw/WddzsvcF/BVg/XPppKrv+dQ9gAIRGfVT4ebeHxB39JkAAZbPaLkxAo4SIMByVLsoFgGfChBg+ZSXm3soQIDlIZSPT7tegGUeb4KfGk27WwtezAqma18lTCrAMtea7YkeeLy/wsPDtGr+ZOu1RNcxYOS7MqFPqZuLafq4ftbqq4QO89yXXnvPOrdcqRL68Jp9un/c8Ifa9xwhswLMfKTuv8ew8TP14bwl6vx4E5mFPQ1qV9bogZ3ineeqpU/nVmrX4uqCDRNg5ciWRTcWK2i9KnnfPXdqzKDOCdZJgOXFyWre5Xyk88s6cfKMWjxwj557unmi74he+1hzfu+X37S+Wlix7E2aNq4fq6+82JeU3spfAVZ0bIyK7JgRp8ydRdsqIizu+8cpHQfX+V6AAMv3xjwBAScIEGA5oUvUiIB/BAiw/OPMU5IWIMCyxwzxJMAyld7ZsKPOnD2vpbPHxnkV8HoBlrm2WpOuOn7itOa+87JuubGINfD9h46qfqveio6OsYInE0AldZgVUPc92sd6pfDd15/XXRVLWaebVwSrNO5srZBaMW+CcmbPEuc25hnm9cAVn03QvY/0+f8QbpLMPl3XHvVa9bZeeZz33iu6uXgh969MgGX2Cv/4rUF6oF1/HTl2UhOGdled6vFfVyTA8vKc/mfnPnXq+7p27ztkLb9rdn8N1atRyUo8r22gSTj/+me3vl2+Th/OWyyzOZqZUGbDs9w5s3m5Km6XEgF/BVjWf6x2z9aey2fcZa4s2FTFI6+838xhfwECLPv3iAoR8IcAAZY/lHkGAs4QIMByRp+CvUp/BViX1n2v6H/+DHZO9/giK1VTRPFbPB6vJwGWa38okyGsmj9JYWFh7vt7EmDd1aiz9Rreolmjrf2tzPHx50v18tgZqlSupN4f/4JH9Y5+62NNm/W1tSBn0HOPu6/p2HeMVq7dHO/1wL//3aMm7V+0tkiaMaG/+gx9U18tWaupo3tbG9O7DpOPmHArV46sWv7p+Di1mADr8uVorfxsor5Z9pOeGzzZOm/++8OtTOXagwDLozYm76Sz585r8rTP9NFnS2Q2ZjOH2c0/b+4cypA+rbW52bHjJ60E0xxmcj5Qv6oG9GijDOkTXtKXvAo42xsC/gywWuxfqFXn97vLnpmnrmpnuJpKe2M83MN3AgRYvrPlzgg4SYAAy0ndolYEfCtAgOVbX+7umYC/Aqyzb7+mi4vne1ZUEJyV4ek+iqrbxOORXC/AOn3mnPVG1sq1v1h7TJm9pq49rhdgbflzu7XPldk3atnc8e4vCb444h19tvB762t95qt9nhzmS4Lmi4JmFZdZzeU6pn+yUKPemKWHG9XUkN7t3T+f+sECjZs6Rz2fbq4nH73fCq9MiPXIg3WsfMN1zP1yhQaOek+N6lXRyBefiVOKCbBMNvLDgjesn/cYOEnfrlhnffBu+AtPxTmXAMuTLqbwnGMnTlkNXLl2k37futO9u7+5XdqoSGvFlVmW17RB9Xg7/afwkVzmRQF/Bli9j6zSR6e2uqsflvMutcvsearvxWFzqxQIEGClAI1LEAhCAQKsIGwqQ0IghQIEWCmE4zKvChBgeZXTfbOUBlhmsUq1O66uSoqOidHRYyf1+9Yd1lcE27VsYIU2/z2SCrDMG2DdB0xIcC9us7G62WB96PMd1KxhDY8w/vh7px56cqAVhpkVUa7DvD3WtMMAa3P3hR++5v75Y12HacOvW92vKJpVYHc36WatoFoy+3X3ea4xmEDqv2M0AZYJ8X76eop1vnmF0bxKaLZaemtkL1WvXNZ9HwIsj9ronZPMu6PmndZ06aLifYHQO0/gLt4U8GeANeHELxp5bL27/Kezltag7Hd4czjcy4cCBFg+xOXWCDhIgADLQc2iVAR8LECA5WNgbu+RAAGWR0zJPimlAVZiD4qMTKP6NSpZm5fXvjv+vk+u8MesisqTK7t1G/PK3f6DR2QCLHN9l3YP6qnWjeI8whUumQ3Vzcbqnhyu1WJRUZHasGhqnEtqNnvWCpe+nTVaBfLlsgKmux/sqvx5clqvLrqODj1Hau2G3zX77cHWVkrmqPVQDx06clzfzRmnPLnibpnk+grhuoVvu+/h+mJhvtw5rFcJXZvPE2B50kXOCUkBfwZYn5/+V50PL3c735ehiN7NUzsk3Z04aAIsJ3aNmhHwvgABlvdNuSMCThUgwHJq54Krbn8FWOyBlfS8SewVQrO5utkLe/Pv/+idDxdo/eatCX7BzxVgJfQUs6rLBDz58+SI92tvrsAyN+87bIoWfLtGr/R9wnqLzBUytW5WV/27P+Z+/sw5izRi0ofq1LaJunZoaoVsjdu+oBLFCmr+9PhfMUwowDI36/zCWC1fs0ktGtfSoF7trPsTYAXXf6MYjRcF/Blgbbx4WPfvXeCu/tao7FpcwPP3qr04bG6VhED0hTCtHRj3axpVR14WARbTBgEEjAABFvMAAQRcAgRYzAU7CPgrwLLDWO1cw/X2wDK1X46OVstnhsi8wjdywDNqVLeKe0gJvUJoPgr3aJdX9Mtv29S3yyNq2/zeeAQDRr5rBT6uIMkTo+9Wb1DX/uPj7YFlrjX7aZl9tRrXr6oR/Z92b9j+9qjecV6NdG3Y7tpHy7WZfJuH66tf10fjlZFYgGU2tjevEprXC98b21eVK9yqz79Zpf6vTrX29DJ7e9npCIs1XeFAIEAC/gywjkWfV5lds9wjTRsWoX+KXt30LkAEPPY/Aqd3h+mXiXEDrDteuqx8BdJaf3E9cvKCLlyKwQ0BBEJUgAArRBvPsBFIQIAAi2lhBwECLDt0QfIkwDKVujZEN6ubzCon15HYHlhm8/aWHYcofbq0+nLmiHiv5n0y/zsNef193VnhFk0b288jjNenfKJ3P/pKLZvU1sCebeNcc/DwcZmwyXzl8JuPRqlG0+46f+GiVs+fbL3GeO3xQLsXtW37HuuLg2Y11tdL1+rNET1V465yHgdY5sQ5C5Zr0OhpKpQ/tz6bNkzLVm+wNrwnwPKonZwUSgL+DLCMa/EdM3UhNtpNvKlwS+WKSB9K5LYf66GNYdr6UdwAq2KfaBUsHkWAZfvuUSACvhcgwPK9MU9AwCkCBFhO6VRw10mAZY/+ehpgub70V7NKOb3xas/rBljmhMGjp2v2gmW6t9Yden1wl3iBU72WvazVXQtmvHrdD8dduHhJ9z3aRyaoMoGXCb7+ezzweH9t27FX74zuoyd7j1Kd6hU1YWj3eOeZLxOaQM7svzXqzVk6cvSk1ix4QxnSp01WgGVOfqLXa/rh59/02EP1VOX20urSfxwBlj2mNlXYScDfAVb9vfO15eJRN8H8/A11e9o8diIJ+Vp2fhuu3YvD4ziU63ZZRUqxAivkJwcACPAKIXMAAQSuESDAYjrYQYAAyw5d8HwFlmvPJ/M6oHkt0HUk9RXC4ydOq+Fjfa29tKa81kt333n1i33metdrhLeVKqH3Xu+r9OmiEkUZNn6mPpy3RBXL3qSZE19M8LzhEz7QB59+a73iuGDxmkS/cLjpt216tPNQPXjf3darh5XKldT7419I8J6JvULoOnnP/sN6sP2LOnf+oro/0Uzj35lLgGWPqU0VdhLwd4D19MHv9OXZHW6Cibmrq1nGEnYiCfla/vowQoc3hcVxKP10tIpXYAVWyE8OABAgwGIOIIAAARZzwGYCBFj2aMj1VmBdvHhJ0z5eqAnvzlV4eJjmvjNUNxcv5FGAZU6a9flSDR07Q0UK5rFes0sbFem+9tTps2rxzGDt3HNQt95UVM93fkR3lC+psLCrf6fZsfuAFQp9s+xHZcuaSZ9MGWy9JpjQsWz1RmsFlAnCTKBkXhHMlSNrvFNjYmJV66Fndfbc+f8Pnh7SM20apyjAMhd98OliDZ/wP2tsZqUYrxDaY25ThY0E/B1gvXJ0nd48+atboE+28uqRrbyNRChl04Q0OrMnrsMtbWN0U5VIXiFkeiCAAJu4MwcQQMAtwAosJoMdBAiw7NCFqyuwzOtzd1Us5S4qJjZWJ0+d0R9/77KCnoiIcA3o0db66t61R1IrsMx5Jixq/vQgawP4zo83UZf2TeNcf/joCfUYOEkbft1q/Tx71swqVCC3ItNEaP+hY9q7/7D18xJFC2jCK91VrHC+ROFMnVUadbFeSyxT8gZ9PGVQoue6Vn+ZE2a9OVBlby2e4gDLbI/etvurWr/5L+seBFj2mNtUYSMBfwdYM079qReOrHELtMh0o8bmuttGIpSypn+EYqPjrsC6sUW0br2HFVjMDgQQ4CuEzAEEELgqQIDFbLCDAAGWHbpwNcBKqBqzoihfnhy6o/wtat2sXpyVV67zrxdgmfM2bvlbrbu8Ym2m/vm0YSpaKG+8x5kvDC5c+qMVZB09flLRMbHKnjWTSpe8QfVq3K7761SxQrTrHW26DbeCJBOUmcAssWPp9+vVbcAEZc6UQas+n5Tova/3CqHr/malWNMOA1iBdb0GpeT3Jv3MkD6dtYzPk+PSpcta9dOvyps7u7W0jyPwAv4OsFac26tHDixyD7xyurz6NF+DwENQgSVw8WSY1g2Lu4G7+fkND8SoTANWYDFNEECAAIs5gAACBFjMAXsJEGDZqx9UE9wCYbFmnZhDj9K12lnLA999/XmPRmCGWum+Z6ylfCYx5Qi8gL8DrO2XTqnanrnugeePyKB1hVsEHoIKLIET28K05e34AVbh+jEq35QAi2mCAAIEWMwBBBAgwGIO2EuAAMte/aCa4BYIqQDLtLJeq946fuKUfvp6SnB31iGj83eAFR0boyI7ZsTR2Vm0rSLCrr+M0yGkji5z/9pw/fNp/F4UqBGj2x8hwHJ0cykeAS8JpI0MV84saXXhUoyOnLzgpbtyGwQQcKIArxA6sWvBVzMBVvD1lBHZVyCkAizz5YHKjTrLrMTa+O079u1KCFXm7wDL0N61e452XT7tVl5W8EHdFJkthNTtO9R/F4Rr38r4AVbeO2N0Z3sCLPt2jsoQ8J8AAZb/rHkSAnYXIMCye4dCoz4CrNDoM6O0h0DIBFhnzp7XsPEz9fk3q6yd/+e/P9weHQjxKgIRYLXc/42+P7/PLf9+njqqm6FwiHfCHsP/bVqEjv8RdwN3U1mucrGq0jENXyG0R5uoAoGAChBgBZSfhyNgKwECLFu1I2SLIcAK2dYz8AAIOCrA+uDTxfpw3mI30/Zd+5UubZT1RYGkjsuXo7X/4FHrM5Tm6NWxhTq0ahgAbh75X4FABFjPH1mtD05d+TSoOYbmqKwOWW6lOTYQWD8qQucPxw+wspeM1d09CLBs0CJKQCDgAgRYAW8BBSBgGwECLNu0IqQLIcAK6fYzeD8LOCrAWr3uV02e9pk2/bbNeg0wJcdD99fQoOfaefTpypTcn2uSJxCIAGvSiV/06rH17kKfylJKg3PcmbzCOdvrArEx0pr+EVJs/AArc9FY1epHgOV1dG6IgAMFCLAc2DRKRsBHAgRYPoLltskSIMBKFhcnI5AqAUcFWK6RHj9xWp99871GvTFLxQrn06NN6yaJEB4epmxZMqlcqRIqkC9XqsC42LsCgQiwvjizXR0PLXMPpF76QpqeN+k55N1Rc7eEBM4dCtOG0fG/QGjOzZBXqjM4glcImToIIGD9d4BN3JkICCBgBAiwmAd2ECDAskMXqCFUBBwZYLma07TDAOXIlkXvvv58qPQr6MYZiADrlwuH1WDfArdlychsWlrwwaCzddqAjv0ert+nJ/w1yKissbp3BCuwnNZT6kXAFwIEWL5Q5Z4IOFOAAMuZfQu2qgmwgq2jjMfOAo4OsMwrhf/u3K/WzVg9Y+dJllRtgQiwjsdcUOmdH7nLShsWoX+KtnEqYdDUvXd5uLZ/lXCAFZFWajiOFVhB02wGgkAqBAiwUoHHpQgEmQABVpA11KHDIcByaOMo25ECjg6wHClO0XEEAhFgmQJK7vhAp2MvuWvZUKiF8qTJQHcCKLBtboQO/Bh//ytXSY3fJMAKYHt4NAK2ESDAsk0rKASBgAsQYAW8BRQgiQCLaYCA/wQIsPxnzZMSEAhUgNVg7xf65eIRd0Wf5WuoO9LloUcBFPh1SoRO/pN4gNXg9QhlzBKuIycv6MKlmABWyqMRQCCQAgRYgdTn2QjYS4AAy179CNVqCLBCtfOMOxACQRFg7dxzQIuWr9M/O/bq9Nlzio25/hcKJw57NhDePPM/AoEKsJ45tEwLzmx3VzM+V3U9nKkE/QmgwE+vROjSqcQDrPojIpQlFwFWAFvEoxGwhQABli3aQBEI2EKAAMsWbQj5IgiwQn4KAOBHAccHWFM/WKDx78xVbOz1Q6trXbcsm+5HZh6VmECgAqzhx37W5BOb3WX1ylZez2UrT6MCJBB9IUxrB8b9AmH6PDE6d/Dqnli1BoYrV5EIVmAFqEc8FgG7CBBg2aUT1IFA4AUIsALfAyrgFULmAAL+FHB0gGU2cX+q92jLK2OGdCpX6kblz5tDEeEJbwR9LeygXu386cyzEhEIVID1v1N/qu+RNe6qHs5YQuNzV6dPARI4sydMmyZcDbDS542V2bj99M6rK7Kq9Q5X/lsIsALUIh6LgG0ECLBs0woKQSDgAgRYAW8BBbAHFnMAAb8KODrA6vbieC1dtUG333azxg/tpuxZM/sVj4elXiBQAdb35/eq5f5F7gHckTaPPsvfMPUD4g4pEji8MUx/fXQ1wMpRJkYxF8J0fOvVAKtyl3AVrkCAlSJgLkIgiAQIsIKomQwFgVQKEGClEpDLvSLAK4ReYeQmCHgk4OgAq2azZ3X46AnNe+8V3Vy8kEcD5iR7CQQqwNp5+ZSq7J7rxsgbkV7rC7e0F04IVbNrcYR2fXs1rCp4T7TOHwnTkV+urqas+ES4ilchwAqhacFQEUhQgACLiYEAAi4BAizmgh0ECLDs0AVqCBUBRwdY5eo8obDwMK3/ZqrCwxPf/DlUmunEcQYqwIqOjVGxHTMVo6t7p20r2kbpwuLuw+REUyfW/NeHETq86eqf4RsfjtapneE68OPVn932aLhurk2A5cT+UjMC3hQgwPKmJvdCwNkCBFjO7l+wVE+AFSydZBxOEHB0gFW1cRdFx8Ro7ZdvOsGaGhMQCFSAZUqptmeutl865a5qacEmKhmZnT4FQGDThDQ6s+fqg8t2itaRX8O0d+XVFVi3Ng1X6fsJsALQHh6JgK0ECLBs1Q6KQSCgAgRYAeXn4f8vQIDFVEDAfwKODrDadBuu9Zv/0vefT2T/K//NGa8+KZAB1iMHFmnFub3u8UzPW0f10hf26vi4mWcCa/pHKDb66mqrOwde1r414dr17dUA66YGYSr3UBq+QugZKWchELQCBFhB21oGhkCyBQiwkk3GBT4QIMDyASq3RCARAUcHWJ/M/05DXn9f/bo+qjYP16fJDhQIZIDV7/BqzTz9l1ttSI479WSWUg5UdHbJF09K64alcQ8iPCpWdw2N1t7vw7X9i6sB1g21wnT7YwRYzu421SOQegECrNQbcgcEgkWAACtYOunscRBgObt/VO8sAUcHWNHRMWrX41X99tcOvT64i2pWKecsfapVIAOsN05s1rBjP7u70CHLrRqaozJd8bPAiX/CtGXK1b3HMheOVdmu0Tq4Lkx/z77688KVw1T5KQIsP7eHxyFgOwECLNu1hIIQCJgAAVbA6HnwNQIEWPacDjv3HNT8b1Zp7Ybf9O/O/Tp5+ozSp0ur3DmzqUDenKp2Z1ndU7WCihTME2cA9zzcQwcPH4/zs7RRkcqRPYtK3VxUjepWVf2alRIcdELX/vfE++65U2MGdXb/uO8rU7Rg8ZokEXNmz6IV8ya4z9m554AatO5r/bsni3n6vzpVn3+zSjMn9lfFsjfbs2EeVuXoAOvYiVP69Y/t6jvsLZ04eUYlSxRWpXK3KF+e7EobFZUkQetmdT0k4jRfCgQywPryzA49feg79/DqZCisGXnq+HK43DsBgf0/hOmfeVeDqtwVY3VTS7MHVrj+nHl1BVa+cmG6uxsBFpMIgVAXIMAK9RnA+BG4KkCAxWywgwABlh26cLWGS5cua9K0eXr3o68UG3vlg1358+RQ1iyZdPrMOR08clwXL16yfl61UhlNHd07zgBcIZQJeqIir7wlcvb8BZnQ6PiJ09a/1767orWAJjJN3A+Aua4te8sNSpPm6hsm1z6gyu2l1KV9U/ePXAFWscL5Et0WKVuWTJo0/Fn3NdcGWOnSRumzaf/H3nlAR1F1cfy/u2mUECBACCWU0EPovUtRulJF6QoCFkBAkY6AgIh0RFC6iAiCUlSkSO8llBAQAiEFCD1A+s7Md2bz7b7d1N3NlpnZO+d85zuS997c+7sv2cwv772ZhdIlTEWc8T1JYElkjga1GmR1JKGH1lndlzrajoAzBdbV5Cd44/4uQzIV3X1wqCT7YWK7LGmk7AhE7FabHNZe+nUepdvwiLulQugP7EPBt5IKr31OAotmExFwdQIksFx9BlD+RIARIIFFs0EKBEhgSaEKaTGIYmrwp18jJPSWTgZ90K8zOrVtDHEFk/EVdvMu/j1+EY3qVsuwIkkvoQ5vX4wihX0M3UQZduzMVYyZvhwJiUn47MM+GNS7vcm4WfXNjpBeYH0zZQQ6tjFvN5BeYOXx8kBiUgoa1K6CNQvGQ6ViZwqTwJLOvDRE0qn/F1ZHtWfjXKv7UkfbEXCmwHrJp6BK5M+GZDxVGtwu0992ydFIZhEIW6vGs+tspVWlvjyK1ODxKlqFy0uZwPIprUK7aSSwzIJKjYiAggmQwFJwcSk1ImAhARJYFgKj5nYhQALLLlitGnT6/HXYuvsQygf444dvP0PxooUtHicnCfXLHwcxc+EGVK1YBtt++NKpAqt319dw6vw13eqwqZ8OwNtvts40X1qBZfE0oA5EIHMCzhRYYkTVIzfjGZ9sCO5c6d7w1+SlcjmQwIVvNEh6zP5aUHO0Fvn8gaRHKlyYzwRW3qJAxznu9BZCB9aGbkUEpEiABJYUq0IxEQHnECCB5RzudFdTAiSwpDEjrt64g7eHfanb1rdjzSyUC/C3KrCcBNatOzF4c/AkeOfPi1O7v3OqwOrWoTnE/w0YORt583hh5/rZuu2S6S8SWFZNBepEBDIScLbA6nRvF0JSnhgC2168Axp6+VGpHERA4IGTEzWAwARWo6+0ULsBqS+Bs7PY3nGP/EDXRSSwHFQaug0RkCwBEliSLQ0FRgQcToAElsOR0w0zIeAogbUrLgLn4x+5TA26FCyLuuJfsM28vlywHr/u/FefU4/aAAAgAElEQVQndGaNf9/MXhmb5SSwrt+KRI8hU+Hv54v9W751qsB6o1UDLJj+IWYt2ojNvx9AswbBWDlvLAksq6tPHYlADgScLbBGPDqMnfF3DFEuKtIMvfJXoLo5iED6VVYeBQXUm8Dp7s6nAqcmGx1+qAJ6/kACy0GlodsQAckSIIEl2dJQYETA4QRIYDkcOd3QiQJr2N3DWPX4msvUYGWZlvigSDWz8+0yYAJuR97Hkpkj0aZ5HbP7pW+Yk8Bat+VvfLPiF7RrUQ+LZnzsVIElHia/dNZI3Zlcbw6ejHsPHuvknSjxjC9agWX1dLBvx+SUVNyNjsWLl/Hw8vJA9crl7HtDGj3XBJwtsOY+u4ClcZcNeXxasBbGFayV67xoAPMIPLumQth6o3OuKggIGpomsMTrxBemq7O6r3DHs8RkJKfy5t2AWhEBIqA4AiSwFFdSSogIWE2ABJbV6KijDQk4agUWCazsi1ar7ftI1XIQz7oW3+hn7ZWdwDp6+jJGT10GjuPw83dTUK1SWZPb6PvWrBYI9/+/wTB9HNPHDjLZ3qg/xF08t6twusPm9X37vNkaHVqzA971h7i3bFwT3835VNfs5LlQDBn3DQrkz6vbSljUt6Dh1iSwrJ0Ndur33+1oLF2zHUdPXdJNWvGqHFga21fPNLnjsjU7EPv4GUYN6WHyRgE7hUXDmkHA2QJr88v/MO7JCUOk3fOVx9KiLcyInJrYgsC9I2pE7GEHuBdvzKP8W0xOnZnhBm08u1OXBe54BRJYtmBPYxABuRIggSXXylHcRMD2BEhg2Z4pjWg5ARJYljMzp4clK7C0HIeabdK2DaZ/e6D+XlPmrcH2P49kuLUookThpL/0Ekp8Q6GHu7vun5OTU3An6j4ePn6OwgW9MWfiB7rteukvfd/s8tuycprJQhu9wMquz7jhb2Nwnw6GJnqB1aJRTayYmyawxEufo35llv7fSWCZM+Mc1GbfkXP4bOb3SE3VmtwxM4Gl3xv62Yg+GPS26SsvHRQu3SYdAWcLrONJ99H7wV5DVHU9i2Knfyeqk4MIhP+mRuwZJrDKdeHh34wJrAvzNEh6ws7Hav+VO5LzkMByUHnoNkRAkgRIYEmyLBQUEXAKARJYTsFON01HwFECi87Ayn7q1X59KFJSUvHXpq8RUDLjmcY//rwHh06EGAa5ER6l23qXlcDK7G41qgVi7cLx8PL0yDSYnLYfZtZJL7C+mTICHduwVVbZZZuVwHr5KgFdB03UiTbj8UhgSeTHllg4ca+nOFErliuFd7u1QUApP7w/Zl6mK7COn72KDz6bj8b1gvDj/M8kkoVrh+FsgRWtfYWG0dsMRSiqyYOQ0m+7dlEcmH3oSg3ibjNBVfU9DoUqC4YILi1xQ3wMC6jNZDfwhVNoC6EDa0S3IgJSI0ACS2oVoXiIgPMIkMByHnu6MyPgKIFFzLMn0P7dzxF17yG+/3osmjfMuDoqfe8+I2bgStjtLAWW8Uqux0/j0LHfeCQkJmPL99MQVNl066B+bGcLLDEOUdJ9NHERCvrkx671c3QrxiZ/vRo7/jqKjUsnok5wJVlPJZUgCOxpUWapfPntOvy66xA6t2uMORM+gFqd9iAc1GpQpgLr/sOnaNt7DIoVKYh/ty2SWbbKDNfZAkukWjpiPXiwb4PwMv3hpWLnMimTvDSyOjdLg5SXTGDV+ZyDly+rRXrB1WKsGzQlSWBJo3oUBRFwDgESWM7hTnclAlIkQAJLilVxvZhIYEmj5uO/Wond+05iYK838PlH7+QYlCUCSxxs/da9mLd8s2773+YVUw3uwfhGUhBYYjz6VV3tX2uAb6d9CP0bGklg5Tgt7NvgjXc+Q/T9RzoZJUop/ZWVwBL3xtZqOwRubhqE7PvRvsHR6GYRkILAahazHXdSXxji3V+iK6p6FDYrfmpkPQFeC5yaZPyWQQFN5rID3MWRr69X4+k1tsWw8Ydu8KpAAst66tSTCMifAAks+deQMiACtiJAAstWJGmc3BAggZUberbrq1955J0/L/7eNE+3Aim7y1KBJbqE7u9PRXhEDCaP7o933mqTYXipCKznca90WwmfPHuheyvjhSv/Yd2vf9MKLNtNN+tGqtVuCHy88+kOajO+shJYYhtxbyzP8bh0YLV1N5Vor3OXbkB8pWdI6C28SkiEX5FCaNOsDoYN6KpjZO21cds/mL9iC4oWKYj9W77NcpjrtyLRY8jUbG/z5bjB6Nm5pUkbKQisvrH7cCiR7VNbU6w13sgbYC0y6mcmgfho4NJSJrDyFBNQe6ypwLq5RYNHF9gKrXqDNfAOTqUthGYypmZEQIkESGApsaqUExGwjgAJLOu4US/bEiCBZVue1o4mbizr9cF0hN28C/EA9qWzRiFvHs8sh7NUYIkDnbl4HYM/nQtRku3eMCfDi+GkIrDEWPceOosx05frYnyjVQNs2r6PBJa1k8tW/Rp0HA43jQYndi03S2CJe1dbdh+lK2J66WWrmJwxzrbdhzFt/lrdrcX9uL6FfHDzdhTELZP+xQrj5++mmqxQMyfG+IQkTJm3WjfxxcvfzzdbgaV/baf4us7ixTJfvfRBvy5o3bS25ATWhCcnseHlDUNc0wrVxwc+QeZgoja5IPD4ogr//cK2ahYO4lFlADvAXRz69h9qPDjBVmDV7KNB4QYksHKBnboSAdkTIIEl+xJSAkTAZgRIYNkMJQ2UCwIksHIBz8ZdxTOy+wyfgbiX8Sgf4I+P3+uGVk1qw9Mj7W2C+itVy+GdETN0siurQ9yzepvhmOnfYe+hM7pjjL6eNMxkXCkJLDGw0VOXQXzpnZh/ckoqCSwbzzeLh+s9bDpCb0Tg97WzdIe466+sVmD9vOMAvlq8ES0b18R3c9jrJi2+sYQ6iAfVde4/Qbct8vuvx6B+rSq66EQDvWztDny/YSca1amG1Qs+NzvqW3diMGrqUkREPcB7fTpiy86DKOCdL1uBtefAKXw+83uMGdYb77/T0ex7SWEF1sq4q5jx7Jwh5kHeVfCVbyOzc6CG1hGI2qdG1H4mp0q25FGmo6nAurtXjZiDrE3QmxoUa0kCyzri1IsIKIMACSxl1JGyIAK2IEACyxYUaYzcEiCBlVuCtu1/NzoWn05bBvEtg+Ll7qZB2dL+KOCdF1otp5Nb0fceQdwSKF6WCqwHj56ic/8vkJiUgjULx6Nh7aqGBPQCK7hKObi5GR2VYpRi47rV8NHgboZ/0Z9XVbZ0cRTy8c4URsEC+bFs9ijD17J6C2H6zuICHnErYdyLeN2X6Aws2841i0f7YdNuLPphm27SrPh6jMGsZiawbkfeR7+PZukm7OwJQ/HmG00tvp8UO8xe8hM2bd+P0UN7YmjfziYhihJLNMtXrt/BpuWTUSuoQo4piJO8Q9/PIVppccufyKlW2/dRxDf7LYTiVsO5y37GV18MwVvtm+V4H30DKQisvxIiMeThQUPMrfOUwka/tmbnQA2tI/DfZg0eh7DtgRV6cihW3/SdEjGH1bj7JxNYlV5Xo2R7LW0htA459SICiiBAAksRZaQkiIBNCJDAsglGGiSXBEhg5RKgHbqLz8H7j57HvsPncOlaOJ4+f6ETTuJKJJ8C+VDKvyhqVquAujUqoXG9IJMVWuasotJ7iHIB/tixeibc3dNklb5vdinpD1bXt9ELrOz6+BYqgCM7lhiamCuwxA67/jmBL2av0vUlgWWHyWbJkOJrLEWjeD/2CQJK+uGjwW+hQa2quolTObA0fvtxBkQDK26DW715D8RtceK//7pqum7roRKudn3G4d6Dxzi4dSH8ihbKkNLm3w9g1qKNGNDrDYw3420Muom97R+d7AquWl63kqv6a4Nz3EK4+MffsOqnXWa/tlQfqBQEVmjKU7x+b6eBXaCbD46UYlZcCfNEijlcWqJBfAwTWMEjOHiXNRVYD06rcXs7E1jlmqtRthsJLCnWk2IiAo4iQALLUaTpPkRA+gRIYEm/Rq4QIQksV6gy5SgVAipBNBQyvu5E3seQsd9AXMpnfKnVKqhVasPSQPFromkVl/mVLF5Exhmz0F+8SkDjzh/qxJUosDK7xH29PYdO0wkpcRWWpZe4tLJmm/dzFFjT56/D1t2HsO2HL1G1YhmzbyMFgZUkcAi8u9EQsxoqRJUdaHYO1NA6AqemaMCnMIFVf4oW7uleFiKu0BJXaumvUvXUqPguCSzriFMvIqAMAiSwlFFHyoII2IIACSxbUKQxckuABFZuCVJ/ImA+AdkLLDFVUeR8v/4P/PbnEbyKT8yQvZenB3p0aqlboZWbN/KZj9UxLcXzv8RzwOoEV8TGpZMyvam4ZbJJl490+2mP/bHU4sDMFVifTF6Cg8cuYPiArnj5KhHxCYnw8HBHQIliaN6wBiqUK5npvaUgsMTAakT9gidckiHGs6V6oYSb9W9vtBi0i3VIeQGc+4rtC1d7CGg00/QNhCKSZ9dVCFvLBJZfkArV3udoC6GLzRdKlwgYEyCBRfOBCBABPQESWDQXpECABJYUqkAxuAoBRQgsfbFE2RJ2MxLintD4+ETk8fJEieJFIB6iJsoUpV2nL4bhvU+/RotGNbFibuaH0uu3AGo0alw+sMZiBOYKrI8nLsa/Jy5mOb6413fm5+8hbx4vkzYvE1ItjskeHVpH/IFziY8MQ/9ZphOa5fW3x61oTABPbwJnjXyqTxmg0diMaJ7fBk4vYv9euLxK147jZL1wlOYAESACuSCg0aiQ19MNWk5AYrI2FyNRVyJABOROIJ+XG8RdF/FJWvA8/W4g93rKNX7vvMp7zpRrLShu5RNQlMBSfrlMMzx6+jKGj1+ANs3rYMnMkVmmL24BFEXUpQOrLT77y1yBlZKSitMXr6N0iaIoVqQg3N3dIR4If/rCNaxY/wei7z9C0/rVseqbcZIs07t39mHz01uG2NaUfQ2DfdPe6EiX7QncOcLj/Aa24iqgsRoN3s94Lt2LGAH/TGMPqN7+wBsz6ZcE21eERiQCRIAIEAEiQASIABEgAkSACEibgKwFVpcBE9CtY3N0fb0pihT2kTZpO0QnpRVY2aX35NkLvDloEp7FvcTqBZ+jUZ1qhuZSWYE169F5zHvMVpB95lsLU4rVs0PVaEiRwI3fgQj24kdU6AQEvpGRTdIz4PA09u9eBYHWX6loBRZNIyLgwgRoBZYLF59SJwLpCNAKLJoSUiBAK7CkUAWKwVUIyFpgBbUapKuTuHRYPGepW4fmaNW4luE1lkov4vVbkegxZKpZZ2CJZ3+d2LXcYiTmrsDKaeB5yzdj/da9ujOyPnmvu6G5VM7A2vLqJsY8Pm6I66185bC8aMuc0qKvW0kgbJ0az8LY2wUr9eVQpEbGpf/isWSnp7GzsjSeQIs5PJ2BZSV36kYElECAzsBSQhUpByJgGwJ0BpZtONIouSNAZ2Dljh/1JgKWEJC1wPpywXrs/fcMxIPK9VdBn/zo3LaxTmZVqRBgCQvZtU1ITEL9DsPNeguheA7YL98bLWUxM1tbCaxN2/dh9pJN6Nu9HSaO7Cs5gXUy6QF6PvjbEFcdzyLY5d/ZTErUzFICF77RIOkxewNhzVFa5CuR+SgnxjOBJbZoNZ9HCsdbektqTwSIgEIIkMBSSCEpDSJgAwIksGwAkYbINQESWLlGSAMQAbMJyFpgiVmmpmpx+NQl7PznOI6cvIRULTtXRxRY3Ts2R6c2jSGKLSVeXQdORPjdezi4daFOZKW/Nv9+ALMWbUTvrq9h2piBFiOwlcBa/ONvWPXTLowe2hND+zIxJJUVWPe08agfvdXAx1fjhcul+1jMizrkTEDggZMTNYDABFajr7RQm3oqw0Cnp7qBS2bjNp/Fg3MngZUzaWpBBJRJgASWMutKWREBawiQwLKGGvWxNQESWLYmSuMRgawJyF5gGacmrsT6++Bp7N5/Eheu3DR8yd1Ng9ea1tatympaPxjiG/mUcmUlhvT59Rn+Ja5cv4Pvvx6j22apvziOx6Onz1G8aOFsUdhCYIlS8c1BE3E3Ohabv5uCGtUCDfeUisASAyodsR482Da28DL94aXKeLC4UuaOs/JIfKTCxfmMq4ePgHoTmXhOH9e52RqkxDHZ1XgyD5U3CSxn1Y/uSwScTYAElrMrQPcnAtIhQAJLOrVw5UhIYLly9Sl3RxNQlMAyhie+9W73vpPYte8EIqIeGL5U1Lcgur7eBGOG9XY0a7vcTzwgvf27n4PneZ2kql8r7c15giBg2dod+H7DTlQqXwrbV8+ESsUkwIgvFuLIqUt4t1sbTBrVP8vYzBFYkTEPceDoeXR5vUmGw/QjY2Ixe8lPOHr6Cpo3DMb3X481uZeUBFaL6B0I18YZ4vunRFcEeWQv+OxSVIUP+jRMhevrmMDyqSAgaGjWAitkgRsSYhmU+uN4uBclgaXwaULpEYEsCZDAoslBBIiAngAJLJoLUiBAAksKVaAYXIWAYgWWcQHDbt7F3kNn8e+Ji7h1J0b3pdBD6xRT4wNHL2DM9OUQZVNQ5bI6ifTf7Wjcj30C8fD2jUsnIrBsSZN8G3X+EC9fJaBiuVL4fe2sXAks/WHyoiArU8oPpfyL6mTZvQePcSfqPnhe0B00v3zOpyiQP69kBVb/2P04mBhtiO/HYq3RIa+yz1FzxjfBvSNqROxhqyD9GvEI7Ja1kLrynQYv7zL5WvtjHnlKk8ByRu3onkRACgRIYEmhChQDEZAGARJY0qiDq0dBAsvVZwDl70gCLiGwQm9E4J/DosAKQXiE8gSWOGGu/ReBlRt34fzl//AqPgFFfAvqtgwO798107OxZi7cgN//PqZ7I+Cgt9vnSmCJ55Dt+PsYDh47jxvhUXj2/CUEAbpzx6pWDEDntk3QoXXDTLduSmkF1qQnp7Du5XUDiymF62F4geqO/H50iXvd3q7Gg9NMYJXtwqNEs6yFVNgaDZ7dYAIreIgA74pZr9hyCYiUJBFwYQIksFy4+JQ6EUhHgAQWTQkpECCBJYUqUAyuQkCxAkvcNihuH/zzwCmIW9z0l7+fL956oxk+fq+bq9RY0nlKSWCtigvFl8/OGngN8K6MOb6NJc1PjsGFrtQg7jYTUlUHcyhUhZ09lj6nGz9r8OQSa1+tH4+CwbQCS461p5iJgC0IkMCyBUUagwgogwAJLGXUUe5ZkMCSewUpfjkRUJTAevr8Jf46eBq7/jmuO7hcf3l6uKNdi3q6Q9wb1qlqchaUnIqlxFilJLD2JkTivYcHDZhb5SmJTX7tlIjdqTmdm6VByksmpOp8xsGrSNYCK/w3NWLPsBVblXsK8K1PK7CcWkS6ORFwIgESWE6ET7cmAhIjQAJLYgVx0XBIYLlo4SltpxCQvcBKSk7Bv8cv6lZbHTtzBeLb9fSX+LY7UVp1bN0Q+fPlcQpgumn2BKQksMJSnqLtvZ2GgMu5F8Cxkt2phDYkwGuBU5Pc2IgqAU3mZi+jxPOyxHOz9FdgJwF+LUhg2bAsNBQRkBUBEliyKhcFSwTsSoAEll3x0uBmEiCBZSYoakYEbEBA1gJr8terdWdbxSckGVCIB5h3fb0punVsjvIB/jZAREPYk4CUBFaSwCHw7kZDumqoEFV2oD3Td7mx42OAS0uYwMpTTEDtsdnLqKgDakT9wwRWmTYCSr5OAsvlJg8lTAT+T4AEFk0FIkAE9ARIYNFckAIBElhSqALF4CoEZC2wgloN0tXJ3U2DVk1q61ZbNWsQnOlh4a5SULnlKSWBJbKrFbUFj7hEA8bTpXqilFt+uWGVbLyPQ1T4b7PGEF/hIB5VBmR/ntX942rc2ckEVsmmAsp0JYEl2SJTYETAzgRIYNkZMA1PBGREgASWjIql4FBJYCm4uJSa5AjIWmD1GDJVJ606t22se+MdXfIjIDWB1fX+HpxPfmQA+WvxN9DUi1by2WpmRe1XI2qfkYxqyaNMx+wF1sPzKtz6lUkvv7pAYG+trUKicYgAEZAZARJYMisYhUsE7EiABJYd4dLQZhMggWU2KmpIBHJNQNYCK9fZ0wBOJyA1gfXJoyPYHn/bwOUb3yZ417uS0zkpJYCbmzV4FMIOcA/swcGvQdYHuIt5Pw1V4/oGJr18gwRUHkArsJQyJygPImApARJYlhKj9kRAuQRIYCm3tnLKjASWnKpFscqdgGwE1rbdh3WsxRVXGg17mLWkAFqOw+9/HdN16dm5pSVdqa2dCEhNYM1/HoKFz0MM2X7iUwNfFKpjp+xdb9jLSzR4FcMEVvXhHAqUy15gxYWrELqKrcAqGAhU+4BWYLne7KGMiUAaARJYNBOIABHQEyCBRXNBCgRIYEmhChSDqxCQjcDSn3d14Z8f4OnhnqE+4tsHO/X/Qvfvf/88L9P6JSQmoX6H4bqvhR5a5yo1lnSeUhNYW1/dwujHaZJTvLrmK4cVRUl22moSnZqiAZ/CBFb9yVq4e2c/enw0cGkpO/g9f0mgxkgSWLaqCY1DBORGgASW3CpG8RIB+xEggWU/tjSy+QRIYJnPyp4tI2Ni0aHveJQtXRx7Ns7N9lYxDx7j9T7jULpEsSzdgX6ATdv3Y/aSn9CxTUN8M2VEluMuX7sD363/w6wUG9WphtULPje0HT9rJXbvP5ltX99CBXBkxxJDG3GBz7T5a9G7SytMG5t2NrgrXIoRWOLqqppt3tfVLCs5RQJLelNaagLrdFIsuj/4ywCqlocv9pToIj1wMowo5QVw7ismotQeAhrNzHkrYNJjFS58w1ZgefkKqPN5zv1kiIhCJgJEwAwCJLDMgERNiICLECCB5SKFlniaJLCkUSB7Caxu703Gf7ej4e7uhkPbFmV59rYolLbtSds1ltUVHnEPopN4o1V9LJj+kaGZXmCJ8q2QT+Z/3S9YID+WzR5FAksQhOz370hjPiKnFVgksCRSKAvDkJrAus8loF7Ur4YsCqo9ERrwjoVZUfPMCLy4rcLVlUxE5S8toMbHOYuo1FfA2ZlMfLnnBepPoxVYNMuIgKsSIIHlqpWnvIlARgIksGhWSIEACSwpVAGwh8C6dC0c7344E1UrlkHYzbv4/KN3MLDXG1YlfP1WJN4e9iXc3DTYsWYWAkoWyyCwxBVe4kovcy5agWUOJSe2IYHlRPh2vLXUBJaYavm7G5EsMLFyPeBdeKs97EjBNYaOPaNC+G9MYBWtLaBin5wFlsADJycwgQWVgCZzc+7nGlQpSyLgegRIYLlezSljIpAVARJYNDekQIAElhSqYB+BNfnr1djx11FsWDIR74+dh9L+RbFrwxyLE07Vcugz/EuIEmvCJ33Rr0c7kzH0K7BIYOWMlrYQ5syIWtiRgBQFVquYHbiZGmfIeq9/F1T39LUjBdcYOmKPGveOsBcwBLTjUaotb1bypya5gTdadNVophbkFM1CR42IgOIIkMBSXEkpISJgNQESWFajo442JEACy4YwczGUrVdgvYpPRKseo+CdPy/+3bYIn0xegoPHLmDj0omoE2zZW+q/W/c7lq/7Xddvw5IJUKnYmcBiyiSwzC88CSzzWVFLOxCQosAa8PAADiREGbJdVfQ1dMpXxg7Zu9aQYevUeBbGBFbldzn41jRvB/PZWW5Ifcl41ZukhUcB1+JH2RIBIpBGgAQWzQQiQAT0BEhg0VyQAgFHCaz7lwQ8izDvj79S4JLbGPxrqVGojKnoyW5MWwuszb8fwKxFG/H+Ox0xZlhv7DtyDqOnLkPX15tizsShZqd3IzwKvT+Y/v+tgzMRUNIvQ18SWGbjBAks81lRSzsQkKLAmvr0NFa/CDNkO6lQXXzoE2yH7F1ryIvzNUh8xD6Eao7UIl9J8xiIh7iLh7nrr9rjOOQpap78Mu8O1IoIEAG5ECCBJZdKUZxEwP4ESGDZnzHdIWcCjhJY5zdwuHPEdQRWnf4alG/J/vidUyVsLbB6DJmq2/InbhksH+APcRuguCIrMTEZh7YvRoH8eXMKCeI53eK5V+I4X3z8Lvr3fD3TPiSwckRpaEACy3xW1NIOBKQosH58cQ3Tnp4xZNs/fyXMLdLEDtm7zpC6c6wmagCBSahGX2mhNjraKjsal5do8CqG9Q3+mIN3aRJYrjODKFMiwAiQwKLZQASIgJ4ACSyaC1IgQALLPlWwVmB5erijWqWy2QaVkpqK0BsRKF2iGP7+eV6GtlfCbqPPiBmoWS0QP383xfD12Us2YdP2fZg4sh/6dm+bY+Lfrf8Dy9fu0G0dXL94AtTqzFeU6QWWKMoKF8p8m0mfN1ujQ2t2wDsd4p4jfuc20B/i3rvra9CoM5pY8WWKv/xxUBfkO2+1yTRYrZbD1t2HdF8LPbTOuQnR3XUEpCiw9iVGYVDsAUOFWuQpgc1+mdtyKqN5BBIfq3DxG3aAu4ePgHoTzT+IPfQHDeJusR/4QUM4+FQkgWUefWpFBJRFgASWsurprGzuRqkgcOxzpWxZ11nV4Czm9rgvCSx7UKUxLSVAAstSYua1t1ZgmTd6WqusBNaUeWuw/c8jmD5uEHp1bmUYUnwTYc+h01CpfCndmwSzu8zZOqjvrxdY2Y03bvjbGNyng6EJCSxLKu2EtnqBZatbk8CyFcncjSNFgXUj9Rlax/xhSKyMmzdOlOqRu0RdvPez6yqErWUCq0CggOofmC+wrm9Q42mo0flZ/Xj4BtPDhotPK0rfRQmQwHLRwts47WkzNBDABNbYTzn4eNMfRmyM2e7DkcCyO2K6gRkEHCWw6Ays7Ithqy2E+sPbeV7AkR1LkD9fHpMbd39/CkQ5tfm7KahRLTDToMStg32Gz4AovLLbOpheYNFbCHP+hpPNFsKBoyx/XWV26YtL+OhyPgEpCqwkgUPg3Y0GOGqoEFGmPzQq8/dgO5+stCK4d1SNiN2Mn18jHoHdzBdQN3/V4NF59qBRoSeHYvXpQUNaVaZoiIBjCJDAcgxnJd9FywEzvptOGroAACAASURBVDLdwz7iAy38iys5a2XmRgJLmXWVW1aOElhy4+LoeG0lsMRdXTMXbsgx/O4dW2Dm5+9l2m7Fhj+wbI24dbAi1i+emOXWQRJYOWLO0EA2Asvy1KiHHAhIUWCJ3OpEbUEsl2hAeLJUDwS4ecsBqSRjDN+uRuxpJrDKduZRorn5AuvOLjXuH7O+vyShUFBEgAhYRYAEllXYqJMRgYQEYO58U4E1qD+H8uXoDyNymygksORWMWXGSwJLGnW1lcDSH94unqOl0WS+gOHq9Tvw8nTH4e1LkC+vlwmA/25Ho/cH06BWq/H72lmZvnUwPTE6xN38OUQCy3xW1NIOBKQqsN66/yfOJj80ZLyl+Oto5lXCDgRcY8irqzR4Ec5WUFUdzKFQFfMfFCL/USP6APsAKd2WR+l25gsw16BMWRIB1yBAAss16mzPLJ89V2HhEratXbxX7+4cqlc3/3PJnvHR2OYTIIFlPitqaT8CJLDsx9aSkW0hsK5cv4M+w79EYNmS2LnuqyxvP3z8Ahw9fRnTxgyEeEa3/jLeOjj+o3cwoNcbZqVAAsssTLpGJLDMZ0Ut7UBAqgJr1OOj2PYq3JDx176N0c+7sh0IuMaQ577SIOUFE1h1PuPgVcT8B4V7h9WI+JMJLP/mPMp1JoHlGrOHsiQCpgRIYNGMyC2BB7HAdytNV2B17sCjQX36XMktW0f3J4HlaOJ0v8wIkMCSxrywhcCa+s0a/LbnCCaO7Iu+3dtlmdi/Jy7i44mLdW873LpquqHd9xt2Yuma7ahdvSI2LMl566C+Iwks8+cQCSzzWVFLOxCQqsBa8DwE3z4PMWT8kU8wJhaqawcCyh+S1wKnJhk9KKgENJ7NwZIjxWLPqBD+G/truXj+lXgOFl1EgAi4HgESWK5Xc1tnHBWlwg9GLxYRx2/dkkerliSwbM3a3uORwLI3YRrfHAIksMyhZP82uRVY8QlJaNVjFDiOx6Hti1Egf94sgxYPeH+9z1jcf/hUJ7BEkXXzTjR6DU3bOii+obBMKT+zkyaBZTYqWoFlPipqaQ8CUhVY4uorcRWW/uqcryxWFmWvULUHC6WOGR8DXFrCBFaeogJqj7NMPj25pMKNn5nAEt9AWLkfPWgodc5QXkQgOwIksGh+5JbArXAVNmwy3ULYsAGPTu3pcyW3bB3dnwSWo4nT/TIjQAJLGvMitwLr153/4ssF69GtQ3PMGv9+jknpD2oXtxCKWwmHj/8WR09f0b21MKBk9vJKPFvrlxVTDffQC6yypYujkE/m5y4XLJAfy2aPMvTZtvswps1fq2vv7+ebZbyLZ3yMEsWL5JiPXBrQCiy5VEqhcUpVYJ1Neoi3HvxpoB7s6Yu//bsotAr2TevxJRX+M5JPhavxqDLQsoeE5zdUuLaGPWz4VBQQNMQyCWbfLGl0IkAEHEWABJajSCv3PqFhamzZanowb3CQgF496HNFblUngSW3iikzXhJY0qhrbgVWz6HTEHbzLjZ/NwU1qgXmmNSjJ8/RpvcYeHl64NBvi/HemK9xJex2jv3EBmq1ClcOrs0gsLLr7FuoAI7sWJJBYOV0w10b5qB8gH9OzWTzdRJYsimVMgOVqsB6qE1A7ehfDdDzq9xxo0xfZRbBzllF71cjch97UCjRgkfZTpYJrJeRKlxZzgRW/tICanxMDxp2Lh0NTwQkSYAEliTLIqugLoaosGOn6QqswPICBvajzxVZFRIACSy5VUyZ8ZLAUmZdKStpEiCBJc26uExUUhVYYgHK392IZIH9Mhsa8A4Kqj1dpja2SvTmZg0ehbAD3AN7cPBrYP4B7mIciQ9VuPgte9iwZhuirfKhcYgAEXAuARJYzuWvhLufOqPGn3+brsDy9wdGDNUqIT2XyoEElkuVW7LJksCSbGkoMAUSIIGlwKLKKSUpC6zWMb/jRupzA86//Dujhqdy9g87ap5cXqrBq2gmsKoP41CgvGUCKzlOhfOzmcDy8BZQbzL9pdxRNaT7EAEpESCBJaVqyDOWw0fVOPCvqcDy8REwdhR9rsitoiSw5FYxZcZLAkuZdaWspEmABJY06+IyUUlZYA2K3Y99idGGWnxftCW65CvnMrWxVaKnpmjApzCBVX+yFu6Zn02Y5S25ZOD0VHYQvNoDaDST/lJuqxrROERATgRIYMmpWtKMdd8BNY4eNxVY7u7AlAn0uSLNimUdFQksuVVMmfGSwFJmXSkraRIggSXNurhMVFIWWNOfnsEPL64ZajGhUB187FPDZWpji0RTXwJnZxmLJwGNZlr3F+4TX7gBRgu3Gs/RQmX6/GGLkGkMIkAEJE6ABJbECySD8Pb8pcbpsxk/QKZO0sLN9GgsGWTj2iGSwHLt+kslexJYUqkExeEKBEhguUKVJZyjlAXWmhdhmPL0tIFeX+9KmOfbRMI0pRfai9sqXF1pdPh6KQE1PrFOYJ2d7obURJZj/WlauOeVXs4UEREgAvYlQALLvnxdYfTtf2gQcomtDNbnPHY0B58Clm1xdwVeUs6RBJaUq+M6sZHAcp1aU6bOJyB7gcVxPH7/+xj2HjqD25H3ER+fCF7I+ZeP03tWOJ8+RQApC6z9CVEY+PCAoUrNvPyxpfgbVDULCMSeUSH8NyawitYSUPEd6wRWyDw3JDxhN68znoNX4Zy/1y0Il5oSASIgAwIksGRQJImH+Muvaly7nnEF1ogPtPAvLvHgKTwTAiSwaEJIgQAJLClUgWJwFQKyFlg8L+CjiYtw5NQli+sVemidxX2og+0JSFlg3UqNQ8uYHYakS7vlx6lSPW0PQcEjRuxR494R9pBQuh2P0m15qzK+usQdL2KYsKo5Sot8JawaijoRASIgYwIksGRcPImEvv4nDcJvZ1yBNbAfh0ALXzIikZRcNgwSWC5bekklTgJLUuWgYBROQNYCa+vuQ5g+P01E1QmuhBaNasC/mC/U6pwPxunYpqHCSyuP9KQssDiBR8DdDSYgI8sMgIYOXjJ7cl1fr8bTa+z7sdK7HIrUtG7V1PVV7ngazvpa8zZDswOnhkSACEiWAAksyZZGNoGtWq1BdExGgdW7O4fq1a37jJJN8goLlASWwgoq03RIYMm0cBS2LAnIWmANHDUH5y7dQL8e7TDhk76yLICrBy1lgSXWpl7Ur7jPJRjKdLxkD5S19BV6Llzki99qkPiQPSTUHKlFvpLWAbm10R0Pr7IHi6qDeBSqat1qLusioF5EgAhIgQAJLClUQd4xLFvhhoePMubQqQOPhvXpc0VO1SWBJadqKTdWEljKrS1lJj0CshZYjTt/iBevEnBi53L4FMgnPboUUY4EpC6wuj/4C6eTYg15/OzXDi3zWGlgcqShrAYCD5ycqAEEJrAafaWFmr2U0KKE725zR8xZJrAq9uFQtDb9pdwiiNSYCCiAAAksBRTRySl8u1iDuLiMK7Bea8lD/B9d8iFAAks+tVJypCSwlFxdyk1qBGQtsGq0eQ/e+fPi+B/LpMaV4jGTgNQF1qePj+HXV7cM2czxbYwB3pXNzM61myU9VuHCN+wAd48CAupNsu4Ad5FkzB533D3ChFX5t3gUb0wPGq49yyh7VyRAAssVq27bnOd844ZEo7fa6kcXV1+Jq7Dokg8BEljyqZWSIyWBpeTqUm5SIyBrgdWi20hoOU63AosueRKQusBa9DwE3zwPMcAdUaA6JheuJ0/YDo762XUVwtYygeVTXkDQMOsF1sMD7rj1DxNYAe15lHqNHjQcXFa6HRFwOgESWE4vgewDmDZDAwEZV2AFBwno1cP6zynZg5FhAiSwZFg0BYZMAkuBRaWUJEtA1gJLfAPhoRMhOLh1IfyKFpIsZAosawJSF1jb48PxyaOjhgQ65S2DVcVeo5KaQeDeUTUidrMD3P0a8gjsbr1wenrCA9f/YP1LtuJRhv5SbkYlqAkRUBYBEljKqqejs9FqgRmzM9/LLr6BUHwTIV3yIUACSz61UnKkJLCUXF3KTWoEZC2wDp+8hA8nLMTgPh0wbvjbUmNL8ZhBQOoC63zyI3S9v8eQSZBHYfxToqsZmVGT8B1qxJ5iAqtsZx4lmlsvsF5e9MCVX1h/v0Y8ArtZPx5ViAgQAXkSIIElz7pJJeqEBGDu/MwFln9xYMQHWqmESnGYQYAElhmQqIndCZDAsjtiugERMBCQtcASs5i1aCM2/34Aw/p3wcBe7ekwd5lNbqkLrMdcImpGbTFQ9VRpcLtMf5lRdk64V1dp8CKcbdGoMohD4arWH7qeGOaBi+uYsCpSS0Cld+gv5c6pLt2VCDiPAAks57FXwp2fPVNh4VK2vd04pwIFBIwbTZ8rcqozCSw5VUu5sZLAUm5tKTPpEZCFwBo9NfND2tVqFTw9PHD4VAjiXsTDTaNBYNkSKFakELw8PbKlvWjGx9KrhgtGJHWBJZak/N2NSBbYL7RXS/dBIY2XC1bLspTPzdYgxegtT7U/45CniPUCSxvhgTMrmMAqVIVH1cG0AsuyqlBrIiB/AiSw5F9DZ2bwIBb4bmXmK7Dc3YEpE2gFljPrY+m9SWBZSoza24MACSx7UKUxiUDmBGQhsIJaDbJ5/UIPrbP5mDSg5QTkILDa3vsDYSnPDMnt9u+M2p5FLE/WhXrwWuDUJKMHBJWAxrM5qNiOQstpxHrgxAImrAqUE1B9OP2l3HKQ1IMIyJsACSx518/Z0UdGqvDjusxXYImxTZ2khVvWX3Z2+HT/dARIYNGUkAIBElhSqALF4CoEZCGwvvzW9rJp2ljbSzFXmTS2zFMOAuv9hwfxd0KkIe3virTEm/nL2RKD4saKjwEuLWECy6uIgDqf5U42ucV54MhsJrDy+QM1R9NfyhU3eSghIpADARJYNEVyQ+DmLRU2/py1oRo7ioOPj/WrhXMTG/W1nAAJLMuZUQ/bEyCBZXumNCIRyIqALAQWlU+5BOQgsL58dhar4kINRRhfqA5G+tRQblFskNmTSyrcMHpAKFSVR9VBudvulyfFEwemMAnmWUhA3S9yJ8VskCoNQQSIgIMJkMByMHCF3e7qNTV+3Zb1cuARQ7Xw91dY0gpOhwSWgosro9RIYMmoWBSq7AmQwJJ9CeWdgBwE1rqX1zHpySkD6He8K2K+b1N5g7dz9NEH1Ij8hz0glGjBo2yn3Aksb40n9o5jwsotD9BgOq3AsnMpaXgiIDkCJLAkVxJZBXQhRIXfd2a9AmtgPw6B5WkFllyKSgJLLpVSdpwksJRdX8pOWgRkLbA2bN0Lfz9ftGtRzyyqKSmpWPzjb6hQriS6dWhuVh9qZF8CchBYBxOi0f/hfgOIJl7FsbV4e/uCkfnoN3/R4NFF9gbCwO4c/Brm7oGgcH4P7P7ISIKpBDSZSyuwZD5VKHwiYDEBElgWI6MORgROnlbjr71Zr8Dq1Z1DcPXcfV4RcMcRIIHlONZ0p6wJkMCi2UEEHEdA1gJLPNy9UZ1qWL3gc7OJNe78Ibzz58U/v8w3uw81tB8BOQis26lxaB6zwwChpFs+nCnVy35QFDDy5WUavIpiAqv6MA4FcvkXbd8CnvhzFAcuhQFqOEMLjacCgFEKRIAImE2ABJbZqKhhJgQOHVXj4L9ZC6xO7Xk0bJC7FcME3nEESGA5jjXdiQQWzQEiIAUCLiew2r49Fk+evcDFf36QAn+Xj0EOAosTeATc3WBSq8gyA6DJ1Sv1lF36U1M04FOYwKo3SQuPArnLWRRY+77gkBTHxqk3iYNHAfpLee7IUm8iIC8CJLDkVS+pRbvvoApHj2W9hfC1VgJea0Gre6VWt6ziIYEll0opO05agaXs+lJ20iLgUgLr0ZPnaN3rU3h5euDsXyulVQkXjUYOAkssTf2orbjHxRuqdLRkd5R3z6WRUWjNU18CZ2exNxCqPQQ0mpn7hwFRYB36ksPLBwxc7bEc8hQjgaXQqURpEYFMCZDAoomRGwK7/1LjzFm2AsvXl8eTJ+y/G9bn0akDrcDKDWNH9iWB5UjadK+sCJDAorlBBBxHQFYCKyExCQmJyQY6LbuPQp3gSlj45UfZEkvVcgiPiMHCVVtx/VYk6gRXxMalkxxHme6UJQG5CKxeD/7GiSRmTn7ya4vX8pSiymZC4EWECldXsL9u5y8poMZI2wis4/N4PL3DhFWNjzjkDyCBRRORCLgSgdwIrFeRKqTEqVA4mASFK80Z41y3/6FGyCUmrCoE8rgVzv47OEhArx65/8xyVb6OzpsElqOJ0/0yI0ACi+YFEXAcAVkJrOVrd+C79X/kms7SWSPRulmdXI9DA+SegFwE1tjHx/HLq5uGhGf7NsJA7yq5B6DAERIeqHDvqApJz4Dkpyrd2VcVe+f+YVFcgXV6KY+H15iwqvY+j4KVcj+2AstAKREBxRKwVGDxqcDNLWo8u6kCn5S2tbnaezwKVqafHYqdJNkktvlXNcKuM2FVry6Pc+fZfweW5zGwH5sbT6+qkfwcSHwCJD8Dqg6ieZMZ3kfn1XgZBWgT0/5XqpWQ67MvzZmfJLDMoURt7E2ABJa9CdP4RIARkJXAuhsdix1/HcXhkyH473a0xXUs5V8Un7zXHZ3bNba4L3WwDwG5CKzFzy9h3vOLBgjDCgRhauH69oFCo2ZKQBRYF37kEXOeCawq/XhaSUHzhQi4GAFLBVb8PRUuLTY980jjJaDWaB6ehWgFp4tNH6z/SY3w20xYvd5GwD8H2JmN/n4CRgxLW4Elys9Tk9mWePHfao7kkK8kzZv08+byEg1exTCOJV/jUKa9/TmRwHK172Bp5ksCS5p1oaiUSUBWAsu4BKE3ItB72HTUqBaIGZ8NzrY6apUKPgXyo0hhH2VWUcZZyUVg/f7qNj56fMRAun3eAKwu1lrG5OUXuiiwrmwSEHGM/fU7sAcHvwb2/wVZfrQoYiKgXAKWCqxHF1S4uSXjod2ihAj+iIM66/O8lQvRhTNbtVqDaCPR0rsnh1+3sUng4yNg7Kg0gZXyAjj3lanAos+dzCePePaleAam/vKpKCBoiP23YpLAcuFvZgmlTgJLQsWgUBRPQLYCS6zM8PHfIjWVw+oFnyu+UEpNUC4C62LyY3S+v9tQhmoehbGvRFellkWSeYkC6/p2ATf3MYFVthOPEi1oO4ckC0ZBEQE7EbBUYEX+rUb0v2zFjXFYxRvzKP8W/QyxU6kkOezSFRo8esRWCg0bwmHlj6YWc8ZUrS72xEcqXJxv+rXiTXiUf5PmjHFxBQE4+YXIiXHVeApoOIMEliS/CSgomxMggWVzpDQgEciSgKwFVmTMQ4hvFqxboxKVWKYE5CKwnnJJCI76xUDZU6XB7TL9ZUpdnmGLAiv8L+DaTvYLcam2PALa0YOEPCtKURMB6whYKrCub1DjaWjmAkuMoFI/DkWCaSWnddWQX69vF2sQF8dEy5hRHBak22I6ZaIW7m7AqygVLi8zFVjeZQUEj7C/mJET2ZTnKpybk3EpY51xHLyK2vd7i1ZgyWmmKDdWEljKrS1lJj0CshZY0sNJEVlKQC4CS8yr/N2NSBbYL62XS78NX00eS1Om9lYSEAVW1GEg5BdWA/9mPMp1IYFlJVLqRgRkScBSgXXhGzWSHjOBpfYA+BSWutodqDWag1cR+z5oyxK2AoOePU+DpP8f5i+mN+EzDsu/V+PFS1OpVdBHQNwtNUJ/MJWf4vxpNDNthRZdaQQyE33iv1fqw6NIbft+RpPAolkoBQIksKRQBYrBVQiQwHKVSks0TzkJrNfv7URoylMDyZ3+nVDXs6hEySovLFFg3T8NnFvHBFaxegIq9KK/hCuv2pQREciagKUC68R40zOMqg/jcHWl6WqRPMV41B5r3wdtqqk0CEyboYFgtNVt+hQtVqxyQ2wsi2/EUC38/YEnV9W4sTHj6r3a4zjksfPKImnQMi+KJ1fUuPFTRk6O2G5JAsu8GlEr+xIggWVfvjQ6ETAmIBuBteiHbdh76Czeat8Mw/p30eUweuoyq6u5aMbHVveljrYjICeBNfThQfyZEGlIflnRFuiWr7ztYNBI2RIQBdbjyyqcXMH+8u1bnUfl/vTQSVOHCLgSAUsEVuIDFS4uZLLKqwiPOp/xuHdEjYg9pg/c4koRccUIXcolkJoKzJzDhKabBpg6SYu1GzS4E8FWYA3sxyGwvICH51S4tTXj1rjK73LwrUkr9vQz5f4xNe7syiiw8pcWUONj+/6RiQSWcr9f5ZQZCSw5VYtilTsB2Qisum98gKTkFPgUyIcTO5fruAe1GmQ1/9BD66zuSx1tR0BOAmvm03P4/sVVQ/KfF6yNUQVr2g4GjZSjwHp+U4WjC5jA8qkgIGiofX85prIQASIgLQKWCKwnl1S48TMTEIWr8agyME1Sha1T41mY6UM3vWFOWrW2dTTx8cDX3zKBlSePuIVQiy2/aRAaygRWz24cagQLyErMlGzFo0wHkp36+tz9U42YwxkFlkotoOEs+77pkwSWrb9LaDxrCJDAsoYa9SEC1hGQjcDasHUvDh6/iE5tG6FX51a6bL/81noJNW2s9fLLOtTUKzMCchJYG17ewIQnJw1pvJ2/IhYUaUqFdRABcQVWfLQKB79iAit/KQE1PiGB5aAS0G2IgCQIWCKwovapEbWfPViXeo1HQPs08cAlAyELNEh+zsSFSpP2MyWfvyRSpSBsTODpMxUWLWVCs2BBAWNGctj9pxpnzrF50rE9j0YNeETvVyNyX0YxU7CygGrv0WePvjw3N2vwKIR9HxmXTVyBJa7EstdFAsteZGlcSwiQwLKEFrUlArkjIBuBlbs0qbdUCchJYB1OjMG7sfsMKBt5+eG34h2kilZxcYkCK+WJGnsnpxpyEw9drvMZPUQortiUEBHIhoAlAuvGJjWeXGYCouLbHIrWYQ/T8feBy0s0EHj28O1ZUECtMRw0nlQGpRG4/wC68670l18x4KPhWhw8pMahI2yetGrJo3VLXrfNVNxumv5yzy+g/hT67NFzCV2pQdztzAVW+Td5iGdh2esigWUvsjSuJQRIYFlCi9oSgdwRIIGVO37UO5cE5CSw7qS+QLOY7bnMmLrnhkDB+Dz4YUNfwxDP8yZi6MBNuRmS+hIBIqBgAt/+0gMBzwoZMhzf83fcLvrYJOO2oVUw7Egzk387V+Yuvu7I/mChYESUWjYEPjjcDO2uVcm0xdABm/A8XyLxA7Dk517wj/PJlMXhSjexrM1hu3LaVaEjGgh+0HL2W+ll1wRocNkTIIEl+xJSAjIiIGuBJW4hbNogGA1rV4V3/rwywk6h6gnISWCJMZeMsH7bKlU99wQ8tW746Qe2/TdFw6HvB2tzPzCNQASIgOIIqHkVfl41GBqBraB554M10GoyrgYZs7cNGt8uZ8JgfZNT2F2TnXuoOECUUI4ERu9rjaa3Mn9Zy+yOe3GxTFSOY7hCA/FzWfx8zuyKKfgco9/ZZlcMJLDsipcGN4MACSwzIFETImAjArIWWPpD3DUaNWpUDUTTBtXRrH4wgiqXg1qd+VJmG3GjYWxEQG4Cq2H0VkRr422UPQ1jDYGtK4aYdOs14kdrhqE+RIAIKJyAuCJEXBmiv2K9X+Djfr9mmrX48D1n65so/Zyt1hIbTuq+C//5xSqcFKWXFYEJe15HnciATL/8c6Nz2FE7xOXh5U3xwPrVA7LlMPD9DUjwSLEbKxJYdkNLA5tJgASWmaCoGRGwAQFZC6wBI2fj8rVwpGpNzyHw8c6HRnWD0KxBdTSpXx3Fixa2ASoawh4E5Cawej/Yi+NJ9+2BgsY0k8CaNf3gnexlaP3+4J/wwivJzN7UjAgQAVch0OB2WXy2t60h3QsBkZjT6Z8s0y8eVwDzf+1uspLkSb54jOu9Ha+8kl0FG+VpRGDmji6o8sAvUyYnA29jwesHXZ5XqWcFsfCXngYO9wvEQQUVir8oYPi3GV3+xJVS9+zGigSW3dDSwGYSIIFlJihqRgRsQEDWAkvMPzEpBecv38CpC9dw+kIYwm7ehSCY7oEPLFNCt9WwSb3qqF+rMrw8PWyAjoawBQG5CSxb5ExjWEdAPMRdPLx59/gUJD1hKyzFQ9zFw9zpIgJEwDUImHuIe/RBNSL3su2DJZrzKNs5+8OkH19R4b+f2FvqRKIFygsI+oCDihZ2y36CnTytxl9Gc6JhAx6d2vN4/lyFBUtY3Qt4Cxj3KYeQBW5IyGIBHr1EJG06PL+pxrUf2feZ+P3i4Q08vsS+YcQ3f4pvALXHRYe424MqjWkpARJYlhKj9kTAegKyF1jpU497GY+zIddx+sI1nDp/DbcjTVfLeHi4o26NSvhx/mfWU6OeNiNAAstmKBU/kF5g/T0tFa9iWLo1R2qRr6Ti06cEiQAR+D8BcwXWzc0aPAphD9EVenIoVj9n2R2+Q43YU6ZvnivdjkfptvZ5AKfCOo7A4SNqHDjEatuiGY+2rXmkpACz5rIznDRqAdMmczg3R4OU51mby4YztdC4+N9EH55X49avjGmRWjzylwIidrN/K1yNR5WB9vn+IYHluO8fulPWBEhg0ewgAo4joDiBlR7doyfPcfpiGC5euYnDJ0Nw/+FTXZPQQ3QYt+OmWdZ3IoElhSrIIwa9wNo/JwXPw9kDRfVhnG6FBF1EgAi4BgFzBdalxRrE32M/K2p8xCF/gHk/Ky4t0SA+xlRcBA3l4VPBPg/hrlE552f5z341jp1gYkWUV6LEEq8vZ2nA8azmk7/Q4uJsDbhE9m8ePgJS4th/B3/IwbuMeXPK+dnbJ4LogxpE7mVMSrTg4FsduPIdW9Hm7i2g/mTT4z5sFQ0JLFuRpHFyQ4AEVm7oUV8iYBkBRQusF68ScOz0FRw+FYJzITfw4FGavCKBZdkksWdrElj2pKussfUC69+FKXgSyn5ZrjKAR+EgeqhUVrUpGyKQNQFzBdbJiRoIHPtZ0XCGFhpP88gmPQMuLdKAS2L9p/j+1QAAIABJREFU3fIKqDWG022PokueBHbtUePseSawOnXg0bB+2ufH/IUavHjJ6j1mJIdrc0y3k4qrix6HsP7l3uTh38S1P3/Ct6sRe5oxKduFR/HGPE5N0gAC41l3IgdPH9vLPhJY8vxeVFrUJLCUVlHKR8oEFCew7sc+wcHjF3Dw2EWcvXQdHMd+sRAPc3+taW20aVYHjesFSbkuLhMbCSyXKXWuE9ULrKMrUhF7ng1X4W0OxerY/pfiXAdMAxABImAXAuYIrKSnKlz4mskHD28B9SxcAfL8PxWurTYVGOIKruDhHFSm/2yXPGlQ2xPY/rsGIZeZVOn2JofaNdM+P5avdEOs0XlXwwZqcfc7o22FngJKtxEQ8SeTNeKWVHFrqitfYevUeBbGmFTqy6NIDR6Xlrgh3mi7f+X+PHyr2172kcBy5dknndxJYEmnFhSJ8gkoQmDdCI/CgWOitLqgO8Td+AosW1InrNo0r4Pqlcspv6Iyy5AElswK5sRw9QLr5NoUxBxnDyD0F3AnFoVuTQScQMAcgfU0TIXr65hl8qkgIGio5aLh7p9qxBw2PQ+rRAseZTvZ/kHcCShd7pabt6gRdoPVs08vHtWqptVy3UYNbt9hny39uvF4/BNrK24frNCbx7Uf2LwSz18Uz2F05Su9qNJvq0y/MqtkSx5lOtr++4YElivPPunkTgJLOrWgSJRPQNYCa+6yn3XSKubBY0Ol1GoVagVVQOumorSqi4CSxZRfRRlnSAJLxsVzcOh6gXV2cwruHmAPGaVf51G6je1/KXZwenQ7IkAEzCRgjsASpZMon/SXf1Me5bpa/nNC4IErKzR4FWl6HlaVgRwKV6OVn2aWTDLN0kuqgf04BP7/DMVff9PgqtH29O5teCTsZHMoTzEewR/yODOdrcpSqQU0+oqDytRxSiZfRwRydpYbUl+yO9X9goNnIQEPz6pwa5uRRBbf5jnMcomcUw4ksHIiRF93BAESWI6gTPcgAmkEZC2wgloN0iVRpLAP2javi0Z1q6FB7arw8c5H9ZUJARJYMimUBMLUC6yLO1IQvoc9TNrrr7oSSJlCIAJEIBMC5gisW1s1eHiO/Zwo341H8UaWCyzx9ikvgZAFGmgT2Hhqj7TzsLwKUYnkRGDVjxpEGx3sP/Q9DqVLpYnI3X+qceYcM1Ed6vMQjN5YKG4fFV8EkP7NhDVHaZGvhJwo2C5WgQPEs+YA/feGgMaz07bYJsSK3zdM9qnd0mSfrS8SWLYmSuNZQ4AEljXUqA8RsI6AIgSWmHpgmRKoX6uK7myrJvWCkDePl3VEqJdDCZDAcihuWd9ML7Cu/J2CG9vYg2TxhjzKd7fuwVTWQCh4IuCiBMwRWFeWafAyynZvK40LVyH0B7XJodR5iwuoMZKDms7Dks1MXPqdBo8es3nx8XAtiv1/of7BQ2ocOsIEVutqAjzOsrYFKwqoNoTD9fVqPL3G2lXoxaFYPddcjZf8TIXzc43fNgjUn5y2pVJcvXh6iga8ljGsNUaLvH62nS4ksGzLk0azjgAJLOu4US8iYA0BWQuskNBb2H/0PA4cPY/ImIeG/D083HUSq12LerpD22lFljVTwzF9SGA5hrMS7qIXWNcOJeOa0bkkRWoKqPSu7f+qqwRmlAMRUCIBcwTWKfHBOYU9ONefqoV7LhdnRx1QI+of071ifg14BPYggS6XeZbhTYOjOBT8/5vxTp1R48+/WX2bBgjwDmNzyDeYR+V+PKL2qRG132h7ajMe5bq45hx4eVeFK99lfSZY6EoN4m4zhvaQfSSw5PLdp+w4SWApu76UnbQIyFpgGaP873Y09h85pxNa4qHu+kujUeu2FbZrXld3Jpa43ZAuRmDHX0exbfdh3IqIAcdxKFOqON5q3wzvdmsLkZ01V1JyCmYsWI8/9h7Hm280xewJQ7MchgSWNYRds49eYN04lYIrP7JfiAtVEVB1MAks15wVlLUrEshJYCXHqXB+NnuodssHNJia+4O2BQG4tlqNuJumn42V+nEoEuyaK3DkNv9mf+2GpGQW9RefaZE3T9p/X76iwrYdbN40KCagsNGh7vo3Dj4NVeP6BjYHCpQXUN0OZzvJge3jy2r8t4mxKFSVR9VBTOalfwmCXyMegd1sK/tIYMlhpig/RhJYyq8xZSgdAooRWMZIo+49xIGjF3QyS1ylJYi/dYo79FUq1K5eQbcya0CvN6RTBSdFMmH2D9j5z3G4u2lQO7gi3N3ccOlaOF7FJ6JZg2AsnzMabhrL9kbcjY7F6KlLIQpF8SKB5aTiKvC2eoEVHpKMi8vYL8zeZQUEjyCBpcCSU0pEIFMCOQms5zdVuPYj++yypWDQJqadh5Xywug8LPe0rYR56Z0xkp+x02ZoIBjOawKmT9FC/f9S3gpXYcMmNm/q5AeKxbKU/JvzKNeZR/ptc2p3AY1mueZn0L1jakTsYp/Hfg15BBpt6X9yRY0bRium7fHWRhJYkv+2c4kASWC5RJkpSYkQUKTAMmb7+Gkcjp+9itMXruHUhWuIffRM9+XQQ+skUgLnhCGKK1FglQ/wx6r5n8G/WGFdIAmJSRg9dZmO2SfvdcfwAV3NDnDfkXOYNPdHaLUcBr3dHis37iKBZTY9apgTAb3Auns9GWfns1+YxfM0xHM16CICRMA1COQksHJ6qM4tpVfRwJXlGgg8k1hevgJqjuag8cjt6NTfXgRSUoFZc9ih4m4aYOok9tlx7x7w/Y/s6zU9AP+0Xxl1V+m2PEq3S1s9dHqaBlwSq3+dzzmIc8DVrog9atwzOjcs4HUepYzeCpx+NSRUaQe52/LcOBJYrjbrpJkvCSxp1oWiUiYBRQusB4+e4szFMJy7dEO3suhO5H1wXNovH64usN4aPBk370Rj0/LJqBVUwWR2P4t7iTa9xsDd3Q2Hty+Gl2fOv5EfOXUJI75YCL+ihbB01iikarXo+9EsEljK/LnhlKz0AismIhknZzGB5VFQQL0JrvnXb6cUgm5KBJxMICeBFf6bGrFn2M8I8Xwi/2a23bZ0/7gad3aabiX0rc6jcn/b3sfJqBV1+1evgHlGb8XLmxf4YhwTWM/jVFiwmK3AChYElDR682TZzjxKNE+r79VVGrwIZwJLPBtLPCPL1a7/NmvwOMTojKueHMStlsbXmRkaaONZm+APOXiXsZ3sI4HlarNOmvmSwJJmXSgqZRJQlMASV1uduXhdJ61OX7xmcrC7WD5xO1zNoEA0rR+MYf27KLOiZmR178FjtOszDgEli+GvTfMy7TFm+nLsPXQWS78ahdZNa+c4qigGF/6wFYN6t9edMybWYfCnc0lg5UiOGphLQC+wYh8k4+hk9uCo8QIafkkrsMzlSO2IgNwJ5CSwrn6vwQujs4uChnDwqWi7B2Y9v7B1ajwLM5VY5d/iUbyx64kMOcypJ09VWLyMCapCBQV8OpL98SM1BZg5l63ACk4BSqayzAJ7cPBrkDaPInarce8oq33J1jzKvOF6db+6UoMXRoe0V3ufQ8FKpt9r6d/aWLYLjxI2FMoksOTw3af8GElgKb/GlKF0CMhaYMW9iMeZkLA0YXUhDOF372UgW6aUH5rWr44m9aujYe2qyJvHSzr0nRSJeD7YyClL0LldY3w9aVimUazfuhfzlm/G0L6dMXpoT4sjPXkuFEPGfUMCy2Jy1CErAnqB9fh5Mg6NM3poVAloMpdWYNHMIQKuQiAngXXmSw20Ritn6k3i4FHA9gKLSwYuLdYg6QlbXaJSp52Hlc/fVaohnzzvPwBWrGKCqrgf8OEw0z9+fDlLA+7/W0NrJgH+Rh8tlfpyKFIjbR49uqDCzS1MhhWsIqCaC75M5MI3GiQ9ZvNf3M4vbus3vqIPqhG5l31mF6kloNI7tvvMJoEln+9BJUdKAkvJ1aXcpEZA1gIrqNWgDDx9vPOhUd1qaFKvuk5c+fv5So250+NZt+VvfLPiF90qtJHv98g0HvEA/FFTluKNVvWxYPpHFsdMAstiZNQhBwJ6gfXkRTIOf6EGn8I6NJyhhcaTEBIBIuAKBLITWKkvgbOzmKRQewhoNNN2D8vp+SY8BC4t0kDg2EO8Z8G087Dc/v92O1eoiRxyjLirwpr1TDoFlBYwJJ10mr9Qgxcv02pZNxEoarSoynh1UUKseJg/m2ce3gLqTbbfPJMq3xMTNIDRWXANpmszzPu4myqEGr1UwauIgDqf2Y4VCSypzg7XiosElmvVm7J1LgHZCyxxW2CNauK2wDRhFVS5HNT6V8o4l61k775szQ6s2PAHxg1/G4P7dMg0ztMXw/Dep1/rZODqbz+3OBdzBdbLBKP1+RbfhTq4EoE8nm5w06iQkKzFgYkCkuNY9i1nAF4FXYkG5UoEXJeARqNCXk83aDkBicmmK2ie3gTOLmVsfMoCjcbYl9W9s8CVjab38K0M1LP8bz/2DdTFRw+7Aawyen9P1UrAB4NNocxfAsTcT/u3hglAIaOFe+I8EueTeAk8sG9M2v/rr9ZzAfe8rgM5JR74dwLLV+0OtPs2Y/7aJOBAul8j28wD3Gy0ISKfl5vu9/74JC143vYrLV2nopRpbgh453XPTXfqSwSIgAUEZC2w/j1xkbYFWlBsfdNvv/8Va375ExM+6Yt+PdplOsLFqzfR7+OvULt6Rfy0bJLFdzFXYFk8MHUgAgD2TknFy/8/ZIhAXp/hhgIl2AoIgkQEiIBrEgj/l8fFTWx1R9lmatQbxFbd2IvKuXUcIo6ZnoEU3FODyu1Nz8iy1/1p3JwJnL3IY+U6Njfq1lRhxHtsFZU4wrfLtQj7L02CNEsA8hv5kPSfMwdmafEsgjVo/qkb/IJc53MoLlrAvulMIOcvBrSfnflD/N+TUvEqltWo+Wg3+FV3HVY5z05qQQSIABEgAuYSkLXAMjdJamdKwKIVWHWqYfUCWoFFc8j5BIxXYB3/RkBcBIup4WigYHnnx0gREAEiYH8C2a3ACtsGRB5hMVR+Eyjbxv4x8Vrg5HzglfFRnCpA97OpnP3vT3fImcCps8CW7axdg7rAO+mO+NywGbh4Oa1NqwTAy0hgpV/pG/oLEH2CjVepK1Cubc5xKKXFozDgwgqWTeGKQP1PMs/u8kbg/ln2tQodgcD2tiFBK7Bsw5FGyR0BWoGVO37UmwhYQoAEliW0FNJ2w9a9+Hr5ZrPOwGrbvC4Wz8ziN5JseJi7Auvek0SFUKU07E3A+Aysi9+r8Pw/9tfbqu9xKFSZtg7YuwY0PhGQAoHszsC6ukqDF+FGPxsGcyhUxTE/G5KeieciacCnsPu75xdQawwH93xSIOfaMZw4pcbf/7AVcY0a8OjY3nTV3O6/1DhzNq1Nm3jAeD1R+rMWH5xS4/YOo8PJawqo9K7tznaSerViz6gQ/htb3Vi0loCKWRzOfv+EGnf+YKwKVeFRdbBt3tpIZ2BJfaa4Rnx0BpZr1JmylAYBEljSqINDozh88hI+nLDQrLcQvtenI8YO721xfCSwLEZGHXIgYCywLq9T4cll9pAoPjQUqemYh1QqFBEgAs4lkJ3AOjdLg5T/H8ItRll3PAfPwo772fD0mgrXjQ4KF2MoUF5A0FAOKtpN6NSJc+iIGgcPsSK0aM6j7WumEuXgYTUOHU5r0z7eNNwmX5uet/YyUoUry5nAsfXh5E6FZcbNo/arEbWP8SzZkkeZjplLqZdRKlxZxli55RPQYKptZB8JLDOKRU3sToAElt0R0w2IgIEACSwXnAyPn8ahZfdRCChZDH9tmpcpgTHTl2PvobOYP3UEOrRuaDElElgWI6MOFgisa7+oIP71V3+V78aheCPHPaRSsYgAEXAegawEFpcMnJ7KzjRSaQQ0nm2bh2RLso3Ypca9Y6a2qlQbHgGv22bFiSWxUFtGYO8+NY6fZHVp14ZH86amNTl9Ro09f6vhxgNtjRaIi2+5FVdgGV88B5yapAEE9lnUcKYWGg/XoB7+mxqxZxjPcl14+DfLfI6LrE5P1kAwemOhreQyCSzXmG9Sz5IEltQrRPEpiQAJLCVV04JcxAPaxYPaNy2fjFpBFUx6Pot7iTa9xoAXBBzZsQQF8rPX6iQmpSAhMQm+hQpkezcSWBYUg5qaRcB4BdaNHcC9o+wX57KdeJRoQQ+HZoGkRkRA5gSyElgvI1S4soKt8shXUkDNkY4XWAIHXF6uQXyM8SHVAqq9z6NgJRLtzpp+O/eoce48+9zo3IFHg/qmnxuXr6iwbYcGXjzQykhgefgIqDcx41y6+K0GiQ9ZnYM/5OBdxjVqfG2tBs+vs9wr9+PhG5z15/DlZRq8ijJq/y4HXxusnCaB5azvKLqvMQESWDQfiIDjCJDAchxrSd3p6OnLGD5+AcoH+GPV/M/gX6ywLj5RTn06bTmOnbmCvt3bYuLIfoa44xOS0LHfeDx59gLfThuBN1o1yDInEliSKrcigjEWWOF/AZFGWxdodYMiSkxJEAGzCGQlsDKcyVNbQMU+jhdYYhLJccClRRpoE9gDu8Yr7TwsTx+z0qRGNiawbbsGl6+yenR/i0OtGqayKfy2Cut/0iAfJ6B5Emub1w+oNcZ0BZYY3n8/a/D4ktFq4Ld4FG/sGn9MCVnshgSjlxYEf8TBOyBreXf7DzUenGACsURzHmU7554VCSwbf6PQcFYRIIFlFTbqRASsIkACyypsyug0//stWPvLX3B3d0Pt6hXg4e6OS9fC8fJVAqpVKov1iycgbx5PQ7LXb0Wix5Cpuv9OL7fSEyGBpYw5IqUsjAVWxL/AnV3sF2H/JjzKvZn7X4SllC/FQgSIQOYEshJYd3arcd9oZWZAex6l0p1x5EimceEqhK4Sf04xwSGuCqvxEQcVWyjmyJBc+l4/b1Hj+g32udGnN49qVUw/N+7fB1b84AYfDmicxHDlD0irW/or5rAad/9kY/o1EBDYwznS1NHFPTPDDVqjc8LqTeDgUTBrgfXwggq3trCJX6CcgOrDc8+KBJajK0/3y4wACSyaF0TAcQRIYDmOtSTvJJ5z9dNv+3AjPBIcx6Okf1F0bN0Qg/t0gKeH8ft3gOSUVAz4ZDai7j/E4hmfoH6tKlnmRAJLkuWWdVDGAivqpIBbW43eflRXQMXeuf9FWNaAKHgi4CIEshJY19Zo8PwGk0VVBvAoHORcsS2uFI3eb3oelnhOkHheEF2OJbB2gwZ3Itj8GNiPQ2B5U+HyPE6FBYs1KKIF6iWz+ApWFlDtvYyfMXE3VQj9kX0W5RcFpRO2rTqWJCBukz05Ucxbz1NA47kcVMa7ZtMFlfhIhYvzGSu1m4CGM3P/cgMSWI6uPt2PBBbNASLgXAKyFliv4hN1K4aa1q+eKUVxJdHKn3Yh5OotuLlp0KZZHbzTrQ3cNPSnT+dOO3b3e0+MDpmQSlAUhyQJGAusexeBGxvZQ6H4kCo+rNJFBIiA8glkJbDOzdEg5Tl7gq4zjoNXUeeeRyTwQOgPGry4bfpkX2Ugh8LVnBub8meKaYYrf9Qg5h6rw9D3OZQuaVqD1BRg5lw3FNcKqJXM2vrWEFC5b0aBpU0Ezkw3enGA+n/snQd4FEUbx/+7eyUJgQCh9957CygKCtIVRQQUC0VApffeq8BHFemCFAsiqKAiTYrSQXovoYYWOkmu7O73TMLd7F0uyfXcXmaeh+chd1N/M7u389933ldG7YmeizKBPjeGBxwOf0mfpbWZgZojkh+xtB/H/lECRAXXyn3MyJTXs9EyAcszfqy0dwgwCyzvcGS1MALOEFC1gPX7tn0YNH4B2rz1Gkb3+8RmvMRfU5tuYxB9/bbN5w1eqYY543s5w4bl8QMBJmD5AXKQNKEUsO6ckXF6MX14jiBh6rsxC6wgmWo2DEYgVQKOBCzJTCLC2UYgrD0hMIQE03Pg6AwBpmdUEOF1Mir3FhGag022vwjMmSfgfiydgx6fm5ErZ/LWx04QkNfIoYLCAiu1o4GHJgkwPqb1VulrRlgef40qfdqxD5jgrOUZEXMfX6SsyHFLwtaTxAQsT+ixst4iwAQsb5Fk9TACaRNQtYA1YNx8/Ll9P8YO6IjWLerZjHbW4rVYvHojwkJD0KV9c5hMZiz78U+QKHpzJ/TC63WrpU2H5fA5ASZg+Rxx0DSgFLBir0g4PpduVtMr2ljQwGUDYQRURMCRgPXsBofjc6moTQQEIiQESnp6FTixQAAkunkPzSmjch8RPL2VBUp3g7If02cKePKU8u/fW0RERHLxZPosAdliOZQ1UgypORw/s5zHwzPUIrhEWxG5qnkmygT6BMQe43DuO3q9ZS8nocwnaVtBX9vE48bf3vUZxgSsQF8tGaN/TMDKGPPMRhkYBFQtYL3VYTguRd/Etp9mIE/OpCh6JJFIevXf7QNihbVk+kDUqVE+8fMNm/dgyKRFaPhKdcwe3zMwZiCD94IJWBl8AbgwfKWA9eiWbONLIySHjGoDmQWWCzhZVkZAtQQcCVh3D3O4uIZuqCMryyj9QWDdE27t4hH9u60/rFw1ZJR4L7D6qdqFkUbHJ07RwKAQpYYOMiM0JHmhrxdpEH4NKGGi3xV8Q0LBho4FmmubedzYpggq8oqEol6IrhfI83BrN4/ojXTMJPJisbfTFrAenOJxdgUtF5YXqNLHM6GZCViBvFIyTt+YgJVx5pqNNP0JqFrAqtPiC8QbjPhv82JwCs+R6/7YhZFTv0HtauWwdMYgK2XihLxW08+QM0dWbP3xf+lPn/UATMBii8BZAkoB69kDCQcnULMFTSag1ijPHoKd7QfLxwgwAulLwJGAdfVPHjd30I0xERuI6BBoyd5ah/SvZFsROYPcYicQ5mH0OAGyIiLkmJFm8A6cji9fKUB3lkMRxU9KkRYSiBWWoxR7krfxyZgRjrQT8YqIWJZUqLGEAq+nfb2ZngEHxytMDrkkR+6Cbcwgl5YLE7BcwsUy+4gAE7B8BJZVywg4IKBqAatSg07IFpEZO9fNthnax70m4fDx84lWVsTaSpmIZdbjp88TRS+W0p8AE7DSfw7U0gOlgBUfL9n4uwEn46UpzIpBLXPJ+skIeELAkYBlLwyVai8iR6XAO8YlGpL8YRkUzuY5IekoYVguT6iwsqkRsDhnt+TRaIBRwxy/9FizTgAOcyig+LpEaxG5ajpeTwkPOBxRODQXQmREjQ3u36Pz3wm4f4yqfyQKcM7qzl1v9j7DKnQTkcUuGqQrq5kJWK7QYnl9RYAJWL4iy+plBJITULWAVbdlTzyPT8CRvxZZLbCI0/bmHw1JFLb+/nkWtBrbiINvtBuAO/ce4Pi2b9h6CAACTMAKgElQSReUApbBJGHPEAGQ6QN07Ylm5ktGJXPJuskIeELAkYB1ZJqAhPsKR9r9zAjL7Ukrviv7PAY4PkeArPCHFRKZ5NRd0Puu3Yxc87PnHKb+jz4PZgqTMXiAY5Hp9z95JOzmkVfxdekPJURWTNnCaN8IAZKJrr/qQ0Toszkn6KhxXk4uEPDkCh1v+U9FRJR0brwkgjCxWrOkIs0k5KuXtvVWSpyCUcBKSOCwZ58aV4Zzfc6Rg0OlCu7PuXOtAOS6P3DQ2dzJ871e37k1TUoyAct9zqwkI+AqAVULWJ37TcW+I6exbOYQ1KpaJnHsgycuxMYte9GhbRMM/LydDQ9JklGjSVfodVrs3fi1q6xYfh8QYAKWD6AGaZX2AtaBcRqYn9PBkhDeJJQ3S4wAIxDcBOwFLPsIhMQis86kwIhAmNJM3N7H4fJ62xds2cpKKNvB95u64F4djkcXG8th9jzKO1s2GX17Ohawtu/k8WwTjxyKqSj3qYisqQg0pxYKeHyZCjplPpaQvXzwziWxOCOWZ5ZUtb+I0FzObfZv7uRx9Q8qYEVWklG6vfsWa8EoYF27zmHJMtv7QzBdtzlzyOj5hftz7iyL02d5/LDG1u+gs2VJvtHDzRCcnAYmYLlCluVlBDwjoGoBa82GHRj7v+WJDtw7tmua6NCdfKbVavDn6qnIm4s6dieYzl26jladR6JsycJYu3isZ+RYaa8QYAKWVzBmiErsBSx7i4uqA0lIeuceoDMEMDZIRiBICdgLWMSi6dgs6ldHLUEd7C1RyHQVfVNC3rrBK3yk15KMucNh/kK6E82bW8bn3RxvoPcf5BG7jkdWxTRU7CEic8GUf1+iN/C49U/g+2DzFv89Q20jakaNNUNw4BDfUXtE6COCnyURSzViseZuCkYB6/gJHmvXuy+8uMvSn+XG+cFv6Y5dArbvcODozsmButJHJmA5CZVlYwS8QEDVApbJLOKjHhNw4uwVGxRDe7bHh+++kQzPrMVrsXj1RrRv9QaG9WrvBXysCk8JMAHLU4IZp7y9gHVsjgbPb9LxV+ppRniBjMODjZQRyKgE7AWs+0c5nP+eboiJ5QuxgAn0JBqTjhLG31NssHgZlbqL7F7m5cmLvsrhm2/pGilUSManHRyLJidOcohZLSBcsYTSsjCyj4IZzNZ0xPKZWEBbEq+VUXuC8wKUaAL2j7R1AVBzpBnacPcmPRgFrB07eRBLwGBOX3QzI4+Pj3kT6ytiheVuYhZY7pJj5RgB3xJQtYBF0MTFJ2Dx6t9x6Ng5ZAoLQatmr6JRvRoOqZHjhTdj7mNEn49QpkQh35JltTtFgAlYTmFimQDYC1j2RzbKdRGRtQSzwGKLhREIdgL2Ata1zTxubKOblAKvSSjUJPAFLDJP8feJ9Zit/yRdFhlV+onQhAb7TPpvfOcv8Fj1PV0jJYpL+Li94zVy6TKP6EU8QhU/JzWGiyDzklKytwLURcioMcx5Ucd/JDxvyRsWj0dnaBB3h/alTAcR2cu69/sdjALWul95HD1G12vZ0hJy53aPj+cz7p0aTp3lce8uFevbvCuiQnnfjmnWVwIeKI66RtWUEKq8sNMYGvOB5Z25Z7UwAt4moHoBy9tAWH3+JcAELP/yVnNW+rfRAAAgAElEQVRr9gLW2RU8HpyiD3ilP5IQ6QenoGpmyPrOCAQDAXsB69wqHrEn6L2gZDsROav6dmPkTY73T3A4v8rW0UpESQnlOkvg3D/94s0uqr4uYlX1E4ku+CKVLyehbWvHAlZMDHBhlgbUxgiIGmdO1cG+LAH7hts65q81xhyUIuTDsxzOKPwzZSkuo0JX18S6iz8JuHuILu4CDSUUesM90TkYBaylywVcvUb5fNxeRIni6rmnObphbN3OY5fimO2rr0ho+Jp7c+7MDcloBCZMoVcxBxkjh4uwi+3lTFVO5WFHCJ3CxDIxAl4hkKEELFmWEZ9ggEYQoNNpvQKQVeIZASZgecYvI5W2F7Au/Cjg3hH3wnhnJG5srIxAsBGwF7D++5+AeMWb/cq9zMiUX12jvrSex519tkddCjaSULCB7zZ46iLkWW8PH+Hw60YqYFWrIuPttxyLLo8ecTg9meaVIePlL9MWaI7NEfD8piIyXxcREUFoFXznAIdLP1M+OavJKNk2bT7KGby9j8dlhY+nrKVllOvkWh2W+oJRwJo+U8CTp3Qt9e4uIjJS3QLWsRMcflYEriBWZe+39d397fpNDouXKtapjx3HMwHLs3s0K80IuEJA1QJWVPPPUatKGcyd2NupMZtMZtRo0g2VyhXDyrnDnSrDMvmWABOwfMs3mGq3F7Cu/MojZg/d8DHnx8E022wsjEDKBJQC1v1HBuwdZutPp/ZEM3il+YwKYEpikj+suNsKkytORvkuEiJUbnkRCPj37OWxaQv9vagTJaFpY8eb54TnwBGFjycTgHpfmtMcBhF1iLhjSUWaS8j3qu826Gl2yEcZrm/hcX0rZZm/voTCTV0b5/MbwLG59CIV9DKixjEBi0yZJAFjJtjewMaMMIN335WTj1aCa9XG3AbmL6Ljiswuo3cP9+bcmZYPHebw2+9UwKpQQUabVr5rjwlYzswKy8MIeIeAqgWs8vU7oHa1clg6Y5DTNBq81y/RCmvPhnlOl2EZfUeACVi+YxtsNdsLWPZ+b8jxA3IMgSVGgBEIbgJKAevGRSOIBZYl6bPLqD7Yd5sUX5JNeJjkD0tMoCKIJizJH5Yusy9bDv667Z1i13tFQoMUji8ZHnI4PIWuqTgOeGWcGXpd6pxu7+Fx+VeqMuSsIqPk++pci6mN1F6oK9pSQt6XXPvtdXTkstpAESSCqKsp2Cyw7t3nMPdruv6yRsjo11v968gsAuMnCpBB72+jhpt9dqTv9z95kIiiltTwdQmv+jDCKxOwXL1yWX5GwH0CGU7AqtPiC8TFG3Bs21L3qbGSXiPABCyvoQz6iuwFrFu7eET/Th9OyJtu8sabJUaAEQhuAkoB6/weE86tpPeBrGVklOuo3s3eo/McTiuOvZCZDC8ko+LnIjiVW2Ck56r8awuPf/dSgI0aSqibgugSdxs4OpNaijzhgKjBIrJlS11ceRrN4cR8KjyE5pJBohcGWyL+r4gfLEty1//k8XkCnin8PBGxj4h+rqZgE7DOX+CwShFVtWgRGR0/Do51NPsrAbEKp+qffWpGvnyuzrhz+UnUURJ91JLatxNRupTr68u51gAmYDlLiuVjBDwnkKEErDW//Y2xM75F3lzZsXXNDM/psRo8JsAELI8RZpgK7AWs2/s4XFb4U8hdS0bxd4PjIS/DTCobKCPgBgGlgHVsvQnEGtOSgkHIvvoHj5s7bdWq/PUkFG7GBHo3lktikQ0beRw8Qpm2aCahVg3HPO2FqIc8ULmniAL5Ut/8ikZg/0jF0S9ORu2JInhb//zuDiFgyh2dpUFcDO1OxR4iMhd0XRiI3sDjlsKpd966EogrAFdTsAlY+w/w+H0TXavVqsp4+83geLb5YQ2P02fp2Fq9LaJKJdfXjjNrZPxkASYTFbCIFRuxZvNVYgKWr8iyehmB5ARUJWDt2HMUO/cetY5izYYdyJUjK+rXqZLq3JrMIi5dvYXjpy8l5mvX8nWM7PsxWw8BQIAJWAEwCSrpgr2Adf8Yh/Pf0Z1BZCUZpdsHx0OeSqaEdZMRSBcCSgFr7wIzyL3Akkq0FpGrpu82Kf4YMDleRSx5lNYppN1ynUVk9aEFgT/Gll5trF0n4PhJuk5S2zjbR9m7xyexL+mEQ/Yj0wQk3KftuCvupBcnZ9o9ME4D83Oas/owEXo3hIH7/3E4/wP9DSeWhpW6u/4bHmwC1p+beexVBHQgR13JkddgSNt28Ni5iwpYxAqSWEN6Oz1+zOF/s+na0mpljBzq+tpypV9MwHKFFsvLCHhGQFUC1k8bd2Di7FUgztjdTSWK5se3s4Yia0S4u1Wwcl4kwAQsL8IM8qrsBayH5zic+UbhJ8KDKEZBjo4NjxEIKgJKAWvbeBFxt+jwKnYXkbmQugUsMhrjU+DoDAFm4oDpRRJCZFTuIyIkW1BNp18Gs/p7Hucu0I3z+20klC3jeONs/3IkRgCKt3POUuTcdwJiFYJqsVYS8kR5f4PuF2gOGpFFYO8wpYNxGXWmiOAUsQec7RsR+ojgZ0kcn2Sx5upR2WATsL77kcfZc3StvtdKRMUK6r+nkXk+eZLDmnV0zkuWlPGRD/zEnTvPYbVCHC1cSEbnDkzAcvbaZPkYgUAnoCoBi8CMi0/AnkOnsHHLXmzZdQjZs2ZG9UqlU+XM8xwisoSjaoUSaFK/FnQ6baDPS4bpHxOwMsxUezxQewHL/piHu29vPe4Yq4ARYAT8SkApYG3sYYYs0t1z1DgzBL1fu+Ozxh5f4nBqMQ/IdHxheWRU6hV8x9J8BvFFxctWCLgSTTl2+EhEsaKORYE7+zlcUmyyr2mAQm9KeKl22kLUjb95XFMc/8odJaF4q7TL+Xr83qo/4QGHI19SAUKXWUaNEe4LA/tHCRANdF4q9zQjUwHXehtsAta8BRrcuUsZdO0sokD+4BCw7t4FvlpABdCsWWX06+X++klppez6h8fW7VQErFVTQgsXI2W6tgqZDyxXebH8jIAnBFQnYFkGS6ywGrbtjxJF8rsUhdATWKys9wkwAcv7TIO1RnsBK+4OsVCgD0LB6jA3WOeTjYsRcJeARcB6eFPCttF086OLkFFjmPc3Q+720xvlrm/jcV3h44vUmaeOhGJvB48o4g1OadWxYLGAWzFUKElNFLAPEHJFC+RuIKFhClELlW0/OsfhtMIymPiGIscIgyU9ucLh5ALFsb8CMir1dH98hBVhZknF3pGQxwmhUMkz2ASscRMFmBWi/JABZoSFBccKkmRg7HjbSIQjhpihSyPCp6ujJ1ZexNrLkt5sLqJmdd+KgOwIoauzxPIzAu4TUK2ARYa8cu1mXLhyA+MGdnKfACuZrgSYgJWu+FXVuL2AZXjM4fAkxZvgINy8qmqCWGcZAT8RsAhY1w6LODCfCjkRJWWU/9T9zbSfuu9SM7IMnF7K47Hi+BupoNSHInJU9O2GzKWOBnjm2fMExMbSDW3PL0TkzOGYHwkKcGMbtd64oAWy1ZHwlhNRbs3xwIEx9MWKu8fiAhWn/fHK7OUllPnYfTH12hYeN7ZS1rlqyCjxnmvXcDAJWM+eAVMVL+Y0goxRw13jEahrx9KvuV8LuKfwE+cLCzP7Nrp0ElGwgG/vl0zACvSVx/oXTARULWAF00Rk1LEwASujzrzr47YXsMQEYP9oulEQdEDUePf947neI1aCEWAE0oOARcA69buIM+vp5tndKGbpMQZX2iSiCPGHZXxCBRhem+QPKzSHKzVl3LzTZgh4+ozy699HREQWxxvaKxt4xCii453RAuGVJbR9zzmh5tAEAcantK2q/UUQC+FgSLd28oj+gwpOnloDPjjD4exy+iIqLDdQpZ9rv+PBJGBdv8FhscKCL3duoHs313gE+jr78WcBp07R64NEWCSRFr2VzCIwfqLvrbzs+8sELG/NIKuHEUibgKoFrA2b9yT6w2r/bkNUKF00zdGuXrcV+w6fQoe2TVG9Uqk087MMvifABCzfMw6WFuwFLDKuPYOVzmSBOpPNLjuADRY+bByMQEYhYBGw9i8x4/o+uvEp9o6IPLW9txEKJJ7PbgAn5gmQJbrxC82Z5A+LiPcspU5gwhQNjEaaZ+ggM0JDHJe5sEbAvcOU83EdoC8ho+MnzlnCnFkmgEQytKSS74vIWSU41uWVjTxidlMBq1ATCQWcOFqZ0uyYngEHxyt+xzkZUeNFCC64qg0mAYtEyiQRMy2JBBogAQeCKe3YyWP7TrqG6tSR0PQN740xJgaYv5iuqezZZPTx4Jirs+yZgOUsKZaPEfCcgKoFrC+GzsTOvccw8It26NCmSZo0iOA1ZNIivNnoJUwZ1jXN/CyD7wkwAcv3jIOlBUcCFrHAIpZYllRrrBmaFDYlwcKBjYMRyOgELALW1vFmPLpKhYEK3URkKRYcQoGjOY75l8eV3+jGj+SJrCCh9Efe2/wF69oaNc72ZceYkWbwKUTOO7eSR+xJyvkICQqQD+jxmXOWMFf/4nFT4UA636sSijhx/FAN7M+tFhB7nIIr0UZELg99Cx2eIsDwkNZZvpuICBeu42ASsHbu4rFtB117JHBAk0bBdX2fPsPjh5/oGIsXk/HJh86Jw85cI0ePcVj3q/9FQCZgOTM7LA8j4B0CqhawmrYfhGs372Ld0vEoXbxgmkRi7j5Awzb9ULhAbvyx6ss087MMvifABCzfMw6WFhwJWIcmCzA+og++1YeI0GcL3g1ssMwlGwcj4AkBi4C1vrsJooHWVHOUGdpMntQc+GXPLOfx8IytiBXMlmfemBGjAZjwJRWwNFpg1NCUxahTiwU8vkh/Vw6GAMYIGQP7ObfJvn+cx/nVdI4iSsgo38W5st4Yry/rODFfAIkAbElkXGR8niR7UaxwUwn56zsv2gSTgLX+NwH/HaV8WzSTUKuG8yw8mQd/lb0fy2HOPCowZcksY0Bf710ff27hsXcvvf7q15Pwej3fM2QClr9WEGuHEQBULWDVaNIV8QlGHPxzIcJC046bbRZFVGn4aWLeA38sYPMfAASYgBUAk6CSLjgSsEgUQhKN0JIq9zEjU16VDIh1kxFgBNwiQASsMLMevw8yWctrw4GaI52zkHGr0QApRAS7Y7MFJCgckhNH4eQoIbv3OZ6kp0+BaTOpgJUpEzC4f8pr5fhXAp5dpyLC3hDgsSBj3CjnNtkJ9zkcmUY36EKIjKixzpUNkGWWYjfsraW84d/LPuqjq1aFwSRgffOtgOirdO199IGIkh4KhIG2pkgkQuKjSlQch/ZmJMLlKwVcvkIZtntPQrmyTMAKtHXA+sMIeEJA1QJWtUZdYDCacHTLEmi1tubhKUGp8san4DgO/21e7Ak3VtZLBJiA5SWQGaAaRwKW/dvgip+LyFzEs7fBGQAlGyIjoGoCRMAyX9Nh9ywqQpCjg+QIYUZIcXeBY7MEyCLdpOmzyqjST4SQ9ru8jIDIZoz2Fh9p+cQh4hMRoSxpVygQxwPDBpsR4iTffSMESCaFdfAwEfoI9f827RkqAArhgQRO8dQH25MrHE4ucD+icDAJWNNnCXiiCNbQq7uIHJHqXzf2N515CzW4o3j5+GkHEYUKeWeck6YKSEig117v7iIi/cCQWWBluJ8WNuB0JKBqAavJB4Nw/dZd/LxkHMqUKJQmxpu376NRuwHImzsSW3/8X5r5WQbfE2AClu8ZB0sLjgQse2e5ZTuKyFbGOw9BwcKNjYMRCDYCRMB6sF+LYz9SwSp3bQnF3/H9W/ZAYXnvCIcLP9JNP+lXtrISynbIOAycnYtbt4AFS+hLzjx5gC+6pmyBZR9FcHsoYOSR6AiaiF/OJCLIEGHGksi8kPlRc7J3uO6tyL+iCdg/UgBkyotYUxKrSmdSsAhYkgSMmWDnq22EGbztiWFnkAR8HuKonjist6Q3m4uo6aEvNVLXs2fA1BmK6NS8jNEj/PNigwlYAb/sWAeDiICqBawRXy7F+j93o1WzVzF+UKc0p2Xa/B+w/MdNaN6gNqaO/CzN/CyD7wkwAcv3jIOlBUcC1vnvBNw/Rh+CSrUTkcOL4ZiDhR0bByMQTASIgBW9XoMru6kgULSlhLwvqVsgcHWOLq4VcPegrSfyIs0k5PODvxdX+5qe+a9Ec1i2gop9hQvJ6Nwh5U3tvpEaSIqIhVvCAGLs1vVTEQXyOSdgEWf7xOm+JRV6Q0KBhupen89vAsfmUHEgNJcMcoTQG+noLA3iYmhNZT6WkL28c7yCRcCKvc9h9td0nUZEyOjf2zt8vTFH3qxj524e2/6m10dULQnNmzg336n149JlDt+uogzJ9UquW38kJmD5gzJrgxFIIqBqAevkuSto221s4kC6ffQmPv/kbWg1tm8kyXfE99WyH/7ErMVrE/MumzkEtaqWYWsgAAgwASsAJkElXXAkYF1ex+P2fvoQVKyVhDxRnj8EqQQJ6yYjkCEJEAHr+NcCYi9SMaFcFxFZg8xXTFqTK5mB43MFxN1WiFi8jIqfichcOK3SGef7c+c5rP6BPhsSn0LEt5CjJEvA3qFUpCEr7K8XgQE+fF9EqZLOCVh3D3G4+BNtk4gxRJRRc3pwhsPZ5QqBxYvO6S/9LODOAbqOC7wmoZCTgkawCFgXLnJY+R3lW7SwjI6f+Ed88fe6PHuOx3c/0me3okVkdPzY87H+u4fHX1tpvdWryWjZwvN6neHDBCxnKLE8jIB3CKhawCIILFZV5P/ZIjKjblRFFC2YN9FRe4LBiKs37mD3/uO4/+BxIjFnrbW8g5fVkhYBJmClRYh9byHgSMC6+gePmzvpw0rhZhLyM+sDtmgYgaAmQASsXUN5mwiENYabocsS1MN2OLiEh8DRGQIkI938a8OT/GEFe0RGZ2f7+AkOa9dTYaB8eRlt33W8qTXHAQfGUgGLYN0eltRSq7dFVKnknIBlb61EouOSKLlqTrf3cbis4JizuoySbbwzJiJeERHLklyJ3BgsAtaBgzw2/kmfZ6pVkfH2W97hG2jrLvYBh9lf0flOK7CCs/3/+RcBx47Te2GzJhJq1/KPcMwELGdnieVjBDwnoHoBS5ZlLFy5AfO//TXR0iq19Ml7jdHvszbQCMmttDxHyWpwhwATsNyhljHLOBKwrm/jcX0zfeBz5a1txqTIRs0IqJ8Al8Dj39H0uud1MmqPD86NnjOz9eA0h7Pf2j7XEKf25buK4GxPGDpTXdDlOXiYw4bfKZ9qVWW8/abj9WJ4yIFE2rOkOA7Y9ULAavKGhJfqOLcZJpZc+4YLkBUOz2uNMUMTql6817bwuKGwbvHm7+3zGBKYQOG7SC8japxz13SwCFibNvPYs4/e115/TUL9V5xbb2pcVWMn2EYiHDLQjDAPr4+vF2lw+zalQay6iHWXPxITsPxBmbXBCCQRUL2AZZnIO/ce4pdN/+Dw8XO4EXMPz+MSEKLXIU+u7KhaoSTeafoKChfIzeY9wAgwASvAJiRAuqM5vBMQRci58kHKkQ9yeBY4ErBi9vC48it94MtTR0Kxt4P3gS9Apod1gxFIVwLx0QL+m0+VmcyFZVT8wrnNbrp23IeNR2/gcesfW2/PBRtKKPhGcN0P+Zir4J4+spIUS1VOk+qevTw2baFs6kRJaNrYMRd7IeUpD/z7YlP96isSGr4mgb97AzAaIYeFA5nCIetfKFx2PSH+ooglliWV7yYioph/NtNpQnEjg73PNfJbS35zvZGI4EccuUtmel1XHSAiNGfavIJFwPp+DY8zZ+k6bf2OiEoV0x6/N/inRx0LFgu4FUPn21OxSZKB8RNtRbGhA80I9VAUc5YNE7CcJcXyMQKeEwgaActzFKyG9CDABKz0oB7YbfI3LiFkom2QhYRh85GtfHmQo0OxTwwwmJIemu8e4XBREYkrZzUZJdtm7I1sYM8u6x0j4DmB+/sFnF9HNz65asoo0TpjX/eyCByfJ+D5TaXJFbHCkhBRPHg2wSGD24B/8tC6iEzt+8JUt1mqi+rvnTzIP0uq96qEBvUdCy8kciCJIGhJD3jgwIsNcM1qEt5sISF0xEfgYqmZh/HTETBXr5esD8QHFvGFZUlFWkjIp2KLmtPfCHh0jo7HFUfrzlz19pEbS7QVkata2ms3WASseQs1uHOHkurSWUTB/GmP3xm26ZWHe/4UoQNaQQ6PgJwpM+SwzDAMmpPYHfvjfs2bSoiq6b4gevcu8NUCasWXJbOMAX3997vABKz0WmWs3YxIgAlYGXHWA2jMTMAKoMkIkK6ETO4O/tp5m96YGryLLJ16JxOwHpzicXYF3ZiwMPIBMomsG4yADwlc/U3AzX8VwkBzCfledX/j48Ou+rVqw2NyDEuAmZx7e5E0YTIq9xGhj/BrV3zSmHB8L/TzR9nULUfmQfyElam2Z380q1FDCXVTiFj58CyHM8uogHWXB468ELDKlZXwYfGd0C0eZ/v79HJTmD7sl6wPJAohiUZoSWp/wXJ0pgZxiuNZlXqKCC/gPYEleiOPW7tdt6gOFgFr3EQBZhLu8kUa3N8M4htKzUlz9B/oFiYF27KkhKHzIBUqhX/28NisOJJao7qEt5q7fx+393VHAi6QwAv+SkzA8hdp1g4jEERHCNlkqpMAE7DUOW++6rVm+3rofvo6WfXk7V3Ygt+g1wk2FliPL3M4tZBuNojflwrd/PfA4isOrF5GgBFImcDpxQIeXaQbvbKdRGQr7b2NtJrZP77E4dQiIgJQPpnyy6jUXQSncvef+nnDIZw8kGx6DB0GQ4xqmOK0/baRx6EjVBhp0UxCrRqON8r3/+NwXhGx8JYAHA9JqrpIYRmf3+0B4fJpm7ak7LmQMHF1svafXOZwUvH7FJYHqNLXrNrltX+sBmIc7b63AyfcP87h/Gq6SIk4RkSytFIwCFhxccCU6dR6SCPIGDU87bGnxSa9v9f9+BU0O3616Ybxg94wv9IC5y9wWPU9ne/ChWR07uD+mLds47H7X3qdv/KyhDcauC+IucqOCViuEmP5GQH3CQSFBVZ8ghFrN+7All2HcPHKTTx++hylixfEuqXjbchs/+dIom+shq/WQGiIzn1qrKTXCDABy2soVV8R/+QB9KM6gDPEOxyLfsj/EFotykbAso/0lCk/ULmXejcIqp9ENgBGwA8EDk3QwPiUNkSiu5EobywlEbB3tk0+y/uKhKIt/LeZ8/Zc8I9jETL0fUBOPs9SzvxIGLsMKXms/+lnASdOUUEvtWiCt/fzuLyOboKvaYDT+qTRVA4/g48ufOFwaPFjv0302ahMopH4daKiBDgZtSeK4FUoJJIjqnuHKcYCGXWmeDdIgL0DfY6XETUhbV7BIGDduMlh0VK6MPLkBr7opv5nmZBxXcDHRNtcF+a6zWBs3xePHnGYMYeOWauVMXKo+wIWEcOIKGZJ/vYhxgQsb9/1WX2MQMoEVC9gXbp6Cz2Gzca1m4qD44BDAav/2K+x6e8DmDS0C1o2fpmtiwAgwASsAJiEAOmCfuEYCEf/TbE3mrqNEd5rpI2AlRDL4chU+gAUkl1GtcHuPwAFCArWDUaAEUiBgGgA9o+iG2lOkFFnErvmlbiIQ+xTiwUQCyBlKvOJiOzl1Cn0aTeugPb3lI8KGrqOhli1rsNVs+p7HucvUFHq/bYSypZ2LObd3Mnj6h807xUtcO7F+84OT8eiwrMdDtuwWJXYf3lkmoCE+3QeKvU0I7yA+i5vMgYyFkvSRcioMcz7192BcQLMzymvij1EZC6Y+poNBgHL/vgbWZ9knao5cc+fIXTAO8mGIBUqiYShSZb24ycLMJnofA/sa0bmzO6NevpMAU+e0rp6fGZGrlzu1eVOKSZguUONlWEE3COgagHr6bM4vNNpBGLuPoBOp0WDutUSIw0uWPGbQwHr9237MGj8AjSqVwMzx/Zwjxgr5VUCTMDyKk7VViac3A/9vBE2/TfXb2lreh4ShqxLNiI2QbY6cTc/Bw6MU5jdhwG1Rqv/raVqJ5J1nBHwMYGn0RxOzFccMyLH43p5fyPt42H4vHrTc+DoDAGmZ3RDx+tkVOknIiSbz5v3egOhw9uDe3DXWq+cKRxkg2xJyk2xfePffCsg+irl8MlHIooXdSyKXP2Lx83tVMA6rwUu64Bs4l0Mv9s2xXGZq9WDsYvtbxjJfG4Vj9gTtL7i74rIXUt9IqL9cUgiKhFxydvpzDIeDxWR+Iq2lJA3BX9llraDQcDasZvH9r8VkTLrSGiq8giimv92QbfI9iSMZc7i5m9J/C+xOiPWZ5b0yYciirsRqTM+Hpg8jT4LCryMkcNF8LYavreXq019TMDyKV5WOSNgQ0DVAtbXy3/BvOW/oFypIpgzoRfy5sqeOLjy9Ts4FLCu37qLJh8MQsF8ubDpu6lsKQQAASZgBcAkpHMXOJMB+tEdwT+8Z+2JuVxNGHtOShbtKVOfsXhSoa5VwCKWBnuH2h7ReGmK9x+q0xkRa54RYAReELizn8OldVTAUrtjbF9O7NOrwAkSUU+iu7iwPEl+hXjlaTBfdsILdWtOH4Ru7jCbmkgkM/3UXraf9ZwMsVyNZC0uWCzgVgxl0PVTEQXyORaRrvzKI2YPFRLOhQFXOKDFk/mo/3yNtW4pS3aQY++WRAS1+Onrk7V9YzuPa3+57pjcC9i8WoW9b7DIChJKf+R9C6EbW/nEI7CW5Mz1HQwC1i+/CThylK5RTyPyeXXy3axM9/0caHZtcFiaRJaWCpbALxsEHPmPjrtJIwkv1XZ9XV2J5rBsheIIZh7gi67+fZnJBCw3Fworxgi4QUDVAlarziNx7tJ1rF08FmVLFrYOPyUBK8FgRPXGXRGi1+HwX4vcwMWKeJsAE7C8TVR99WnXzod22zq6ERC0SBi7FHJkXuh+/QaaTd9bv9NUqwPDFxOsAhb5Yu8IDWQTHXfUeDME5uJOfQuB9ZgRcIJA9AYet/6hG9xCTSQUeM31DQ6nCcMAACAASURBVI8TTQVFllu7eET/TnmRQRELIGIJpJZkf7zc/FITGD/qD/2C0RCO7bEOQyxaDoZBs5MNa/ZXAmIf0E1yzy9E5MzhWMC6sEbAvcM078WsMq4ZjRh1pxVCZOrB3Nh5GLTfzQYX/9zanmVTruyAfVTDzIVlVPxCPewtY7FfR8QqilhHeTs9Osfh9DcKtwA5ZFQbmDqvYBCwln0r4IrCSpBEzyNR9NScQsZ0An/nusMhGD/oA/MrzbFnL49NCsGyejUZLVu4fn3sO8Djj030Plelkgzi686fiQlY/qTN2sroBFQtYNVo0hVajQZ7N9pGLUtJwCKTXa1RF5jMZpzYviyjz31AjJ8JWAExDenWCeFmNPSTugESfRA2vt0J5sbvJ/aJvx+DkJEf0/7xPMSZ62HQhVk/OzhBA5PCobO3IyOlGxzWMCPACCQjcHqJgEcKR71lPpGQvZz3N9LBhP7Mch4Pz9iKWKU+FJGjYuBvkLlnjxE66D0b5+0Jg+ZAKloW/LULCJls61Q9od8MSCUr2kzftBkCniqOUvbvIyIii+Oxn13B48Epyio6D5AzZi1aPp1nrVPKmgMJE1ZB980kaI7ssn5ueudTmBrZHjM0PgEOTaTmbrxWRu0J/t1Ye2Mt2wvHhZtKyF/f+9edOQE4MNrWPLDWWDM0LyJBOhpLMAhY/5st4PFjKpz26i4iR2TgX58prS1inRgyOOUjt6ZXWsD0QW9cvMRhhSLyZIH8Mrp2dv36+HWjgMNHKL/Gb0h4uY7312dq1xITsLxxp2F1MALOEVC1gEXEqMzhYdi5zvaNW0oCVly8ATWbdkPWiHD8++tXzhFiuXxKgAlYPsUb8JXrp3SHcPU83RjkLYSEUUtt+h0y6XPw1y/SPO17IaHum9a/7Z3kVhsgIiSneh/8An7SWAcZgXQkcGiSAKNio1d1oIjQFKxp0rGbAdU0cXxP/GEZHin8YWmTfIeF+dHJsTtQdH/9CM0vS6xFxXxFYBi52Pq3fs5gCGeOWP82l6sBY8/JNk1NmKyBUWGlO2yQGSEpCCInFwl4colyulFExlunPkB28bZCqOoCU6M20P7zB7SrZ9K+la0OQ68pyYa5f7QAMYHWqcbfqHOrecQep8JeybYiyPE+XyT73/Tyn4qISMUaSe0CFnl/N2aCrWg3ZoQZvK3m7AvUPqtTc+hv6JZOSrF+sUgZGAbPTXS6TpyvW5K7kQgXLRFw4xa9xj5uL6JEcd+sz5QGxQQsny0nVjEjkIyAqgWsZh8OxtUbdxIFrBzZI6yDS0nA2rb7CHqNnIOqFUpi1VfD2XIIAAJMwAqASUinLmj+/gW6NfStNumGYeBsiMXK2fRIu+UnaNfRI79ysXKIH0hF6+NzBTy7oYjy1ENEeBpRi9JpyKxZRoAR8IBA8giEQJ1J/vVz4kH307Xo8xjg+BwBssIfVkikjMp9xMA9ci3LCB3xoY3zdmPbHiABPiyJP38MITMH2LAlEc6IU3dLGqUI9EE+GzPSnKJzZ8LomcKptJD3EF47N9BalyjoYZz+E+SQUHB3byF09CfW72Ry/H3WL5A1tmfYyZE4cjTOkkp9ICJHZf9urj1dfCe+FvBUccStfFcRET4SCM5/L+C+wh9UocYSCryesjWN2gWs+7Ec5syjIk6WzDIG9HXdCsnTOfZmeSLsEoHXksixX82eTTZNWBy520ci7NdbRNYI166PsRMEiIp7myfRDN3lwAQsd8mxcoyA6wRULWBNmrMKq9dtRftWDTGs14fW0TsSsIj1VbvPx+FS9E306dIaXdq3cJ0WK+F1AkzA8jpSVVRIzMv1ozqAM8TTB5y6zWBs3zdZ/7mnj5KOkChSwvgVkHLkTfyEhIt/fJFuDtJ6W6sKQKyTjAAjkIzA0+scTnyl2Ojl51Chl8K0hjFLlcDtfRwur6f8SGZfOeP2xlQIZ49AP3uwtapEgWjaT5BDM9lUr5/aG8KV09bPxCovw9BtTOLfBiMwcQq1btFqgZFDUxY97a1/ygpjkf/hDmvdN0q3RPY+NIp1yPD24BXRERP6TIVUuqpN/67+yePmDmpOQ47ekSN4akqHpwgwPPSPFRnxcUeOLFpStrISynYIXgHrwkUOK7+j12WRwjI6faJuAStkVAfw925a59DQ60voVkwF9yjW+ln8sAWQCxbHkmUCrl2na8tV/1/2AmBIiIxhg/zPjwlYarqjsb6qnYCqBayYO7Fo/tEQGIwmtHijDvp3a4tcObImi0J45MQFTJy9EmcvXkNElkzY9N00ZAmnPnTUPolq7j8TsNQ8e+73Xb9wLISj/9CNSabMSBi3AnJYuMNK9bMGQjh31PqdqcXHMDX/KPHvcyt5xJ6kD7skMhLZlLHECDACwUWAONcmTrYtKX91DoXbMAHLlVm2v1+SssVaSsjzUuDdM3VLJ0BzaKd1eOaoN2DsMCjZcIWTB6CfZ2tVnzB2GaRcBZIdUQoPBwb1S1nAsvep+OrTVtDJDxPblGVge7NVqPNWbmsfdKtmQPPvn7SPjd8H8eOoTLHHOJxTCBRZS8ko54afH1fm2Zt5ybj3DrONZunLYClPr3E4obBI0mSSUWtUyoKE2i2wDhzisfEPhQPyyjJatfS/AOOtNZPM/xUvIH72b9AtGg/hxD5rM8YP+8H8clNs2Mjj4BE6/kYNJdR14X506gyPH3+i5YsVldHhI//zYwKWt1YQq4cRSJuAqgUsMrytuw+j35h5EMWkh6/CBXInHisMzxSKCmWK4uKVm7j/4HHid1qtBgum9EPt6rZHlNLGxHL4igATsHxFNnDrFU4fgn7uUJsOGjoOgVirQYqdJhsEslGwJCkyLxImrEj88+JPAu4eom/vSrQWkauma+bngUuL9YwRYAQsBK7+wePmToVY3YJH5CtGBsgFAqIx6Shh/D16z+R4GRW7iwgv4EJFPs5KovuFDHwXnEg3oob+MyGWqOCwZf24TyHEXLV+J9ZsAEOnIYi9z2H211T0jMwuo3ePlDe39lFtX3/SGDyS1thp/Us43nA83mpBxT7NoR3QLZ1If5uKlEbCYFsfq4T1f9NpH4QQGVFj/b/BdnfKSJAUIuxZkhACRI313dFdSQT2j7A97lpjqAhdVse/62oXsP7awuPfvfS+9np9CfVfDTxB2dn1I+zfAv3yqfRaLF4ehgGzoN24AtrfV1o/N9d7C8Z2PZEsgqCLAt72HTx27KL86tSW0LSR//kxAcvZFcLyMQKeE1C9gEUQnDhzGWNnfIszF+jDiz2a0sULYuzATqhYpqjn1FgNXiPABCyvoVRFRZzJkHh0kH90nz7clKwMQ7/pqfafM8QhtH8rQLGZIZsEqUhpXNnAI+Yf+vBSpIWEfK/4/+FFFRPAOskIqJjAmWU8Hp6l13r1T3noSzIBy9Upjb8PHJslQDJREUuXRUaVfiI0oa7W5pv82q1rof15IRWGcuZHwrjlKTYmHNkN/eJx9HuOQ/z4lbhpyI0FS6j4kjcP8HlXx+KLLAF7hyqcacsSGj6lL1bmZ58BfeXKaNeG/r5wcc8Q2v8dm37Fz/oNst4W5L4RtrzVFC33+U3g2BzKJTSXjKr9fSvAHZsj4LnCF1npDyVEVnT8u652AeuHNTxOK+5r774jorIKIoSmdDHqVkyHZu9f1q9NTdvD9FYHCMf3Qj9/FH32K1oWhkFzcOkKh29XUoE3X14Zn3Vxfn19/yOPM+fo78I7b4moWsX/LzGZgOWb3wJWKyPgiEBQCFiWgZ04ewUHj57BtRt38SwuHqEheuTLE4moqmVRrWIptgICkAATsAJwUnzYJe3PC6Dd+rO1hUSfJmOXQo5M8meVWsq8fCLE/dQXifm1t2Fs0x3XtvC4sZU+vBR8Q0LBhkzASosn+54RUBuBI18KSHhARZf6I3kYw5mA5c483j/B4fwqW39YESUllP80MO6dIaM7gr97wzo0Y+vPYW7QKuWhyjISyyj87pjrNsO5l/th2Qo6zsKFZHTu4HhzbH4OHFA4fNdKj1Hv2duJbd4RCmJarhVw5J8oZNJn4K9fsvbN0G00xCp1bfp6Yr6Ap9F07ZbtKCJbGf9vst1ZKw9PczjzLWVIIgISX5O+TJfW87izT+E3rJ6Ews2CU8D6epEGt2mQS3TpKKKgigPRJAZeiL1jXR4Wv3DE/1Xo0HaK5z8B8XP+wLM4HlNnKCz8eBmjRzi/vmbOFfBQ4Z/ts0/NyJfPl6vTcd1MwPI/c9ZixiUQVAJWxp1G9Y6cCVjqnTtXey7cjIZ+UjeAxIx+kUwtPoGpOQ3AkFqdWc/th3HWCPrwEx6B+C9/xK1/tIj+nT7o5n1FQlHFEQ9X+8nyMwKMQOARkMzAvuEK6xgOaPEVjwfPmIDl7mxd/oXHbcXRJVJPoSYSCryWviIWf/EkQv5HA3qk5LzdftzCvs3QfzuN/kZoNDjV6Tss35DT+lmpkjKIk2hHiYijRCS1pFDxFl5+3j7xzx8ihuBQWGPkygn0+NzWgkv78yJot/5kLWd+9U0Y3+9l04Q967Qi67k7p74od3s/j8vr6G9szuoySrZxXmBwp0/ELQBxD2BJEcVklO/muE21W2CNmyjALFJxk/hoI77a1JiIcEUELGt64f/KEpkzdGBrcM+S3LqQlDBiEaT8RTF5qoD4BMqgT08R2bOlLfAajcAERZAGDjJGDhehsdXm/YKSCVh+wcwaYQQSCTABiy2EdCXABKx0xe+/xsnb8SndwV+7YG1Tyl0ACSOXAIJzTxqRYQLiuzUHEmjkQkOPibj1PAqXfqZ1EP9XxA8WS4wAIxA8BOyPMWXOA9QfLSD2iSF4BunnkRBfQ8QfVtxtunEEJ6Pi5yIyF/ZzZxTN6ZZPhWb/FusnFn9WafZIFBE66mNwiqiAMZXexf/u0aiBFcrLaPOu49+H57eAY7OpSBouXkTt513wjIvAuNw/Q+KERGHB3gm8cOoA9F9RJ/LEeTxxIq9Mdw5wNr9T5DgcORanhnRtM48b2xTWUK9LKNzYt32PuwMcVVjl8BoZUeNFcLQbVnRqFrDi4oAp0+ma0wgyRg1X7/OLZs8m6Fb+jz7nlaqEhL70bxJsgQRdsCTjxwNhrtMIy74VcOUqvQ990FZCmdJpr7Hr1zksXkaf/3LmkNHzi/ThxwQsNdzNWB+DhQATsIJlJlU6DiZgqXTiXOy2Zsev0P1o69jWMHA2xGLOB1SIzKKH+M00GLdtsNnY3KwxFOdXK5z0qmhj4CJGlp0RyLAE7h3lcOF7RQTCahyqdeGZgOXhikh4mOQPS1RYP2jDZVTuI0KX2cPK3Sie5Lz9PXAijS6Z0Hc6pFKVnapNs2sjdN/Ppr8RGh3GRK5FPJ80mOrVZLRs4XiD++Qyh5ML6RrLaj6GGnF9sCm8I7Zm/vhFnTLG2UXE48xGhPZ+CyCK4IsUP/UnyJmzWv9+fgM4NpcKFSGRMqoNSp+NtlMgFZkurhVw9yAVF4q9LSFPnbTFBVfbsc+/b7gAyUzbrdLPjDAaADIoBKwbtzgsWqJ4AZcL6PGZ7xzkezonaZXXL/8Swv6t1mwkWjSJGm1J2t+WQ/vnauvfFlcQG//kceAgVScbvi7h1bppr7GDh3lsUFjgpyZQp9V3T79nApanBFl5RsB5AqoRsP7e8x927DmKRvVq4uWaSVFoVq+jN0nnh2ybUxB4RGTOhIpli6FAXmpm7m59rJxrBJiA5RovNeYmIZWJ43bOQC2nyBs38ubNlUQELOHCMTwb09NajJil3/78N5z6Vm/9LGtJGeV87J/DlX6zvIwAI+A5AXsrkLIteJRozjEBy3O0eHSew+mltpaw4YWSLLEcWbx4ockUq7B/2SGl4bzdviLObELIkHbgnj+xfrUtU3v8meXTxL9Ti1Bm7+sph+lfVDaOxYR8a/HYnMVa39BBZoSG2LYcMrM/+PPHrR8aPx4Ac53G1r+JtkUEGchUkIkab4ag8yVN79RN1gZZI5ZU5hMJ2culLS542vqphQIeX047wrCaLbBOnuSwZh299kqXktC+ne/Zejo3KZUPGdwG/JOH1q+J9ZVUqpL1b+Hov9AvHGP9W3wRofDAIR4b/6ACVqUKMlq3SlvgJWVIWUtq8JqEeukUxIcJWL5aVaxeRiA5AdUIWLWafYbncQmIzJYFu9bPSRxJ+fodvDqnzRpEYdKQLtBqFX42vNoCq8yeABOwgn9N6BeNhfDfP9aBypkyI2HcCshhrjl5IAKWXsPhYbd3wCmiGN5/azKO7qhtrT9zQRkVUwmTHvzE2QgZgeAjcG4lj9iTdKMS1UVArmpgApaXpvrqHzxu7rQ9n0V8YRGfWP5M+vFdINyKtjZpatUVpjfec6kL9hEMDVwoxuVeCwMXhvqvSni9vuMx2Vv55TFuRZnqRzAldiAePaZCSu8eIiKz2/rn0f6xCtoN39KNec0GMHQaYtPvY7M0eB5DP6rQTUSWYmn7+XFp8D7ITI7ykSN9llSppxnhBXzQkF2V9msyd5SE4q2Sz52aBaxd//DYup1ed3WiJDT18fFMX80cd/cmQkfTfRnxXRc/e4ONmwhyvDd0eJJfOZJkrR4kamf0dQHfKAIF5M4NdO+WtiXakuUCrl2j1yYR/4gImB6JCVjpQZ21mVEJqEbA6jv6K2zZdRhvN6mLCYM7J85X849sHw7cmURZlhH78AmePU+yDunSvgX6dGntTlWsjBsEmIDlBjQVFRFOH4J+7lCbHtu/mXZ2OIkClpbHg2++Ar/pB2uxp6VaYP/t/ta/Q3PKqDog7Td3zrbL8jECjED6E/hvuoD4e3Sj0nCUBqF5ZSZgeWlqZAkgkfKeKTaDgIxynSVkLeUfkYWPPouQLxUWtoKAhCk/Qg6PcGmUnMmAkMFtQY4jWtIf4Z2xPfOHaNRQQt2XHG9w72y8i0u7afiy/MZfUXRwJXy9oQhuxdC116WziIL5bZnwl88gZBp13E76HD9trU2/L6wRcO8wrafoWxLyvpw+m21XgB4YrYE5gZaoMdwMHTVIc6Uql/ISwZoI15aUKT9QuVdyUUPNAtavGwUcPkLXRLMmEmrXCvw14WgiNbt/h+67WdavxNJVYegzNVnWkH4twcfHWT9PGLUEz7IWxpRptpEIiTN2XuGez1Gb4ycLMJlopn69RGTN6p/7lX1/mIDl0uXNMjMCHhFQjYBFRknEJo5L427mBg5SLzmOOHnuauTPkwObf5juRi2siDsEmIDlDjV1lCGbCHJ0kFdYS4nFysIwMMmC0tVkEbBiT5+BMKaLtbhByIndmdZY/9ZlllHDhRDMrvaD5WcEGAH/EiDiyt5htsevWi3QwEReQDEn7l6bDONT4jhbgDmOPmcJITKq9BOhd01DcqtPulUzoPn3T2tZc416MHamkWddqVT7+ypoN1KLqHguHONzr0WjFlrUqu5YILg9dQcuxza0NlMofBsKjKyHb1cJuKQ4yta+nYjS9qKeLCO0z1vgjFTpsURYs1R4azeP6I1UkMlVQ0aJ9wL7ZYsskmtPcSqBl1FnkggfPIonm17DYw6HJymOtnIyak8UwdvFfVGzgLVshYAr0UoLIgdry5WFn455dd9MhubgdmsPjG91gLkptbayfKGfMwTCmcP0Ga7DYIhRDTF1hgbPntEB9OouIkdkymLUo0ccZsyhi0GrlTFyaPpdT0zASsfFx5rOcARUJWD5enaimn+OhAQjjm1b6uumWP0vCDABK3iXgnbtQmi3Kd5A8wLImzYSfdCdZBWwnhjAjewIPuZaYjUiQvB3Frrp4XVA7fFpm5670wdWhhFgBPxPwD4iWWikjOZf6mAwSUzA8vJ0PL7E4dRi3sZXU6b8Mip2Ty4ceLNp4iMxZFAbWwGoz1RIpau61QxniEPI4HY2vhd/zdwduT56B5UrJt8UkxctN8ZsRbT+Q2t7RapeQ752+bB2nYDjJ6nI0KqliCqVk9ehnz8KwvG9dAPf+nOYG7Sy/p3IdhHdcIflA6r0DuzfKmL1SKwfLUmXVUYNP4oEB8YJMD+n7BMjZBaxZa9mAYsIMESIsSQSQY9E0lNjsvd/Zeg/E2KJJJ/FyqT75Rto/vre+pH59VYwvvc5lq8UcPkKZdH2PQnly6ZsjXbuPI/VP1BBuFAhGZ92YAKWGtcO6zMj4CoBJmApiL30VndIkox9G792lSPL7yYBJmC5CS7Aiwk3o6Gf1A2Q6MOHqfmHMLX4xO2eKwUsaeN30P5CheatWbYBUPiRmGz2u/NhtwfGCjICjECqBO4f53F+Nb2+I8vJeK0fE7B8tWxubOdx7S9bf1h5X5JQtKXvjjbZHz+Ss+dC/IRV8MTUh/xGaP+ix82f8Nlxuft3KFXOzoQHgPbnBbi0Oz9u6N+xYi32log8L8v4YxOPfQcojyZvSHjJQRQ+ewf05opRMH4xwVqfaAT2j6TWTBwvI2qCb4VBT9cIcaJOnKlbEnHuX6m7/0SCsyt4PDhF2RdpISGfnZNutQpY5PFozARbn7tjRpjB2156nk6hX8rzd64jZEwna1uO/F9ZvhSO7IJ+8XhrXqlkRST0m4E//+Kxdz8d/Ov1JNSvl/I9Z8duHtv/pvlr1ZDQopnv7lFpgWQWWGkRYt8zAt4jEJQClsFoQny8AWGheuh0WqdoEQfxnw3+H0oULYDR/dzfZDvVGMtkJcAErCBcDLKMkCndwV+7QB9mIvMgYcxSkKiB7ialgGW6ewchwz6wVrUj/DeYX4RJJx/WGm2GJszdllg5RoARCCQC17fyuL5F8ab9dRm1PmAClq/mSJaB00t5PL5gu5Mu84mI7OV8Yx2S+Jtx9bx1SKa3O8PUuJ1HQ+SePYZ28AfQSEb6zNG4D7K+3dym3kSfWQPfwym+D25rG1m/K9FWRK5qMnbs4rF9B2Xxal0JDV9PvlHmY64iZFxStEOSZF0I4mf8YuPE+vCXAgwPqJUJ8elEfDsFarr3H4cLP1ABK7KihNIf+k8kuPE3j2ubKPsclWWU+sBWQFOrgBX7gMPsryjbLJllDOjrP3HQm2tOs2sjdN/PtlYplq0OQ68pDpvg7scgdOTH9DohjtznbEz0BUZ8gllS+XIS2rZOea39+LOAU6fotfRmcwk1Uzge7M2xplQXE7D8QZm1wQgkEQgKAcssitj09wFs3LIHx89cxuMn1HFntojMqFSuGN5q9DIa1asJPi2PgGxl+JUAE7D8itsvjdm/hSaNGvpOh1iqskftKwUscnQoZEY/8BdOJNb5T6bvkCDktdZffbAIvV2UKI8aZ4UZAUYg3Qic/07A/WN0o1L2fQnlG+jZEUIfzog5PskflvEJ5c7rZFTuLSI0h3cb5m9dQcj4rnRD66bzdke9OjtqPqrdW2f9ypQlF0yTV0Jp5qLZtg66tfNxLHQ87mnrWvOW+URC9nISDhzksfFPKqJUryajZQvHQkPowNYgwpkl2R+jso+mWaK1iFw1fSMKemOWSGRKEg3QkvLWlVD0Tf8JWI8vkiOtVNQIiZRRbVBwCFjErxrxr2ZJhQvJ6JyOR+A8WS+6JROgObzTWoXx7U4wN34/xSqTOXIf/Q2umgph8TLKgxylJEcqU0pz5gm4H6sIrtBRRMGC6XctMQHLkxXEyjICrhFQvYAVcycWvUbOxenzNOxySggqlSuO2eN6IleOrK5RYrl9RoAJWD5Dmy4V808eJDpuJ/5MLEms1QCGjp5HDLUXsJRHTvaFLcEzTXFrm5V7m5GJBpNKFxasUUaAEfAOgWOzNHgeQ+uq0UdCkQpMwPIO3ZRreXYDODFPgCzRTSKJ8lq5jwje9uSTR13R/TAXmp2/0d+MqnVh6DraozothZfOeoTu59qBB90IG144jU7MI0kIGf4B+EexOBw2Aw811OdW+W4iIorJOHmKw5qf6ca6bBkJ77dxLOLolk+FZv8Wa99NzT+CqQW1Nrmxjce1zQpB6GUJJBphoKYrv/GI+Zf2t3AzCflTOdbl7XGQ6IckCqIy1RprhiaEfqJWC6yDh3ls+J2yJX7ViH81NabQ/u+Ai6Me2BMGzYFUtGyKQ9HPGgTh3H/W740dhyKuyuuYMEVxxBYyRo90HInQLALjJwqQQe9NI4aYoXPfyN9j7EzA8hghq4ARcJqAqgWs+AQjWnUeiWs370AjCHjt5aqoWaVMYiTBEL0OcfEJuB5zD3sOnsQ/B5IsNYoVyoufFo9N/J6l9CfABKz0nwNv9kC/eByEI7utVcqhmZAwbgXkcM9jbtsLWNzzZwgZ3BqcKOJQ2Gw80lSytluhm4gsxdLvTZw3mbK6GIGMTIBEINw3QoAs0o3KK5Ml5M7JBCx/rAsiXhARQ5lyVJVQqp13RBfObIR+0Hvg4+OsTRh6ToZYroZXhkcimzW9MQ1R8X9Y65Ny5kfC2GWJ/rWU/nj2hy3EU00pa77KPc3IVAC4dIXDtyupgFWksIxOnzgWGoT9W6BfPtVaB3FiTaywLOnhaQ5nvlUcGysqo8JngSta2FuMlXxfRM4q/v1tJU7kiTN5SyrbSUS20rQPahWwNm/l8c8e530+eeWC8EEl/K1ohIynkaFlfSjiZ/6aqv867brF0G6h0aNNDVrD1Lobps8S8ERh9dn9MzNy50re6Vu3gAVLqNiVLZuMvj3T9zpiApYPFherkhFIgYCqBazFqzdi1uK1yJMzOxZO7Y8SRVN2JHDizGX0GD4b9x88Rr9ubdD5/WZsUQQAASZgBcAkeKkLwulD0M8dalObsX1fmOt651qzF7BIQ/oFoyEc24OjoRNxX/sSfcD9REQ2H/lq8RIuVg0jwAg4QSBZFLQIGS+PlkHuBywKoRMAvZDlzHIeD8/YiljF3xWRu5bnQoZm72boVkyz9tIbztuVQx4/RYPw+DsYdvd9cKD9NXQbDbFKXein9YJw+UxikX/DVyKep1Fyqw0UEZJDRsxtYP4iullO7WgT1SW0/wAAIABJREFU9/QRQge9R7vAC4ifsR5kU0+S4TGHw5OogMVrZdSekL4b79SWyPF5Ap5do+JR+a4iIop7Pu+uLMsLPwq4d4T2oeAbEgo2pAKqWgWsH3/icUpxXbV6W0SVSv5l68o8pJTX3m2EWKEWDN0nplq15tAO6JbSPFKpKkjoOw0rvxNw4SKd6zatRFSokJzJkaMcfvlNYRVZWsL7bb0jqrvLhAlY7pJj5RgB1wmoWsBq3WU0zly4iq8n90W9Omn71/l7z3/oMWw2ypcugjULx7hOi5XwOgEmYHkdabpUSJzgkqODJBS5JYnFysIwcI7X+uNIwLK8PT8ZMhy3dQ2tbZVsJyJnVfU9CHoNFquIEQgSAg9O8zj7LRVPspaSUfUzJmD5c3pFA3BstoAEhb8ZTpBRqaeITNT1oFtd0k/vA+HSKWtZ41sdYG7a3q26HBUaNS5JePrg0QRUiyfRapOSVLAETB/0hv7LntbPdoavh4mnLiZqjjRDGw48fsrhfzPpZjlTJmBwf3OKfSSO3IlDd0tK+GI8pIq1rX/vHy1ATKCbdItQ5rVBe7GiQ5MEGB/TvlYdSHyg+fe39fYeHpd/VdwDysgo15GKfmoVsOYv1iBGcTT6044iCqWjDyd3l41+4VgIR/+xFje16gLTG21SrY67exOhoztY88gvHLlv2sxjzz461/VekdDgteTClH3EwvqvSni9PhOw3J1DVo4RUBsBVQtYNZt+BlEUcfDPhRCEtOPOiqKEqOafged5HPhjgdrmKij7ywSs4JhWzfrF0G2m5uBkVAmjlkLKW8hrA3QkYJHKiTPQc3JX3NS1tLZV7G0JeRyEOfdaZ1hFjAAj4BcC9lHI8tWVULoVmAWWX+jTRuLuAsdm2R7l1GeVUaWfCEHvXmf4OzcQMqajTeH4L9dAzpLNvQrtSiUYgElfJglYeczRGHDPti0pR17w96mCsD3LFkigllZ1JpvB8QDxtzNuotIPk4xxo1K2mtKu+Rrav9fTDX2Dd2Fq/Zn171NLBDy+QEWhUu0l5KiUvptvR8BJNMq9wwRA4QOtziQzOKrleWWe0qrk2XUOxxXR+jSZZNRS8FergDWRRKQ00HUwsK8ZmTOnRSPwvg8d8C6450+sHUsYvgBSAeqTNKUeJ3PkPn4FDt/Ih/VKy6oU/M0tWyHgSjRl1/Y9CeXLpu81xCywAm9tsh4FLwFVC1hVG3VB1iyZ8PfaWU7PUMM2/fDg0VMc2bzY6TIso+8IMAHLd2z9VTN/8zJCJnSzaY6EPydh0L2ZUhKwdCumI/pIQUTr6Vt7EoFQF+HN1lldjAAjkB4EEmIBk8InSonWEgq+xAQsT+eCMyZA1ik8YTtR4b3DPC6ssX1ZGJJDgjYz3Ug6UY01C3/vFjiF1S7xlSjlLeJKFanmFUXg+g3at7ziFYSJdKNtX/iRhlryE5GGiDWWNGGyBkYTLTF0kBmhKeATTuyD/uuR1sxiviIwjKTPnNF/cri1g6pAAft7JQFPr1J+QpiMqNHpc9xxz2BbR+7Vh4jQZ0uyBFOjgBUXD0yZRsekEWSMGp4+bD254JJFECX+r2bRgAyp1a2fOQDC+WPWLMYuIxCdpz4WLaHXRvZIGX26J+cyaaqABIUVY+8vRET62TLQfmxMwPJkJbGyjIBrBFQtYDVtPxh37z9MtMDi+bQfoIgFVq1mnyFv7khsXDHZNVIst08IMAHLJ1j9V6ksI2RKd/DXLljblCPzIGHMUsga7wZKSEnA4s/9hztfH8WFEOpE1H8AWEuMACPgTwIVvxCRowTHLLA8gE4sn3TzhsMwaglkjdalmi6u5XH3YNoW7y5VGoCZtZlk1FRY+cyYLeCR4ihd7+4iIiMdH6UjUXhD+7xlM6r4qT9Bzpx0PPH+cQ7nV/vZjMkLjENzy6jaL31EFmKBRSyxSOI0QPnONFCLGgUseyfkuXICPT5P+ViqF6bPJ1Votq2Dbu18a91ipTowfD7Oqba0Py+AduvP1rzk2GF8yy421o7Eb93I4SI0isvl6VNg2kwq/gm8jNEj0mddKgfKBCynpp1lYgS8QkDVAtbkuaux6uctWD5rSGL0wbTSvsOn0bn/VHzyXmMM6v5+WtnZ934gwAQsP0D2YRMk9DkJga5Mht5TIZahoci91XxKAhap/8Hgb3AWXb3VFKuHEWAEApRA1BgRYVmYgOXu9Ai3rkI3oy+4509h7DEJ5vI1XapKNgNH5wiIv5P2S0OXKg6wzCGRMqoNopviBYsF3IqhY+7SSUTBAin7gtJP7Q3hymnrqIydhsJc8/XEvxPuczgyTX0CVtZSEsp1Tp9jWsQPljmeQ0QJCZkL23JXo4B18hSHNT/TNVC6pIT276cPW08uPf38URCO76Ui1Hufw/R6K6eqFA5uh/4bakxAnhvJ8+PMOQIePqLX2uddzMir8LVHnLwTZ++WlD+fjG6fMgHLKegsEyMQJARULWDdi32EFh8PRb7ckfhm5mBki0j58DiJPtixzxTcuf8Qv6+cgpyR1FFnkMylKofBBCxVTltip7lnjxEy4iOQt82WZK75GoydhvlkUKkKWAv/xtnLb/ikXVYpI8AIBAYBbWag5ggz9FqeWWC5MSXkuLd+Zn9wz58lljbXaQzjxwNcrinhIXB0hgDJGLwiVqb8QOVe1CJmxWoBFy/R8bZvJ6J0qZQFLO2Gb6H9YxX9bXypCYwf9U/8W5aA/aMESCZ18ctVU0aJ1ukvFNgvWDUKWLv/5bFlG7VkrBMloWlj9QlYyfxYjVgIKX8xp+4p/J3rCBnTyZpXzhSO+Onrsep7HucvUDb20Rn/2cNj81b6fbWqMt5+0zfrUvfDV0C2nDCXrQapUMlUx8UssJyadpaJEfAKAVUIWBeu3Eg2WJ7joNFocP7ydQyZuAh6vRYtG9dF1QolkTdXduh0WhgMRsTcjcXh4+fx2+Y9MBpNWPK/gahWsZRX4LFKPCfABCzPGaZXDcKxPdAvGE0fPvShMIxbDilLdp90KTUBS7p4FabZX3ncrlirAcwvN/O4HlYBI8AIeJ8Ar5cRnl9mApYbaPnrF6GfNRBcXJJ4lSikhGZC/Ixf3KgtyYrIqPBN5kolmkM7IOzeYFPE2GUU5HDvOi68dp3D1r/pRrdAfhmNGkjQ/jAXfEy0tX2xRn2YX3nTpj9CiIxM+ahAtXadgOMnqeDUqqWIKpVTFrD4SycRMr2vtU4pW04kTPrO+jc5Dqc2AUsfIUOfwrFJV+bf23nVKGD9ulHA4SN0PRHxiohYakr8jUsImUiDE8iZsiB+Oj0S6MxYyFFb5UvQ+AmrsPloXhCBz5LqviShUUPK5uf1Ao6d8D077T+/Q7ua+lgm4zOMWpziMy4TsJyZcZaHEfAOAVUIWOXr01Crng47f54ciSLXlyNsnU57Wi8r7x4BJmC5xy0QSmk3/QDtr0utXTG99g5Mbb7wWddSE7BIoyFjO4G/fd2j9on4lvDljx7VwQozAoyAbwkwCyzX+ArR56CdMwh8fFyygsaek2Au59oxQtdat83NPbibGHmQMxmtX5ijGsDYYYgn1TosSza5ZLNrSRUqyGjTSgTpgzL6oJS/OIj1R2rpj0089h2gm+rGDSW8/FLqgkNo7zdBnOVbUgJ5wZMzv9fHmdErVKOAtXylgMtXnLfoC8Q51m5bC+3ahfQ6rloXxq70paYzfSYiLxF7LYmUPyS8gnW/0Ou2VEkJHyqOV369UIPbd2jtHT8WUbRIymKyM/2wz0PuD/pxXcCZDDZfJQyYCal4BYdVMgHLHdKsDCPgHoEMJ2BZMJ3asdw9YqyUVwkwAcurOP1amW7pJGgO/W1t09S+L0x1fWe9lJaApTl9ENwl6nPEWRia3RvBPX1EH6C6T4S5Qi1ni7N8jAAj4GcCTMByHrhw+RR0s4fYCCnK0u4eI3S+B7Y5dXOHQnP6kPVDKTQMhjHLIWfJ5m6VKZY7cJjHxt+p6FS9moyWLdw7arRjF4/tO2hdr7ws4Y0GqQtYuq+GQXPqIP1teb8XzK/aWnp5fdAZsEI1Clj2fp6IA3fiyF1NiQSC0Jw8QNd32x4w12/p0hC0a76G9u/19DmycTtc+z971x3nRNVFTzLJJKF3pAiCgCIgCCgWilJsIL2IFOm9Lb2XpS4svffeBGli+VRQBAsWBEGRKiAC0nvqzHy/G8xMJpvdTd9k992/lH3vvvvOmyQzZ+49t0pHLFyqiLTnzCEhrs+jz60oAePGc5CgkH/DBjlgMvm1bKqDDQm9wZ37M8k4ItqJcPdmjMBKFVY2gCEQMgRigsAi/apQW55coU1VD3V8GcUfI7Bi96SNE7qCNFVcZh00B0Lx0mHbUGoEVqAL63csh/5/m+TpjgDeIga6NpvHEGAI+I8AI7B8w4w79Rv4eSOSJa/Ii5QpC8zTlQdI3zwHNkr36zfgl4xXTba36gd71bqBOUxllqdWzksviXirTmBlWj/+rMXuT/wjw/R7PoR+6yL22xKW01WcxhqBJYrAuIkcJEkhYUYNd0CvcDZhRiw07j3L/6yjlkEoWNQv57qDX4JflaB8Rp6pjIc9Jqs6EdIfRw51gOfhzLyiDCyXZcsqYWBcYKR0coHqP/8A+u1Lvf7ZXr8d7G+18vo3RmD5dfRsMEMgKARigsAKaodsclQjwAisqD6e5IMTRZj61oXGoYjcmmftgmQI8WswtwjCRWBpblyBaWQbeSWJ42CZsjnkeiwxetIsbIZA1CHACKzUj4Q7eQSUAeReqkeziDDS7VgmC7nTv1l7T4bwTOXUnQYxQmN9CMPodtDevSV7IVFky9D5gCY8YuaUMUWZUy57tbqImq8GRmB5do0r/bSIls1T9qW5eAYmd40g0hwjsjBM+w3ieGJ6aqwRWDdvaTBrrlIilzWLhEH9Q0vChPtAtef+hDGht3LfFCARrr10DsbxnZXvBFMmWGbsxKz5HG7eUL4XunQSULig5NS+ci8LLllCQpv3QocdvZQ1TuoBiN59Ol55C7bW/RmBFe4LjPlnCKSCACOw2CWSpggwAitN4Q94ce2/F506Ji4Tc+WDZeL6gP35MjFcBBatbZjeH9zpo3IYdj9aQfsSOxvDEGAIhA4BRmCljCX3x8/gF46BxqHoTNEM2/uD4HjxdfAb50D3jSKibn/5Tdj/65AXulNSe+I3zYVu3y7VP1pGLYFYsFi4lsSnn2vx/Q9uulV1RLzyUmAE1pm/NFi9ViEdihaR0LFd6g/OpsHNVCXqRNiJRVkjoVAeeqwRWGfOarB6nXItFXlcQqf2qV9LocQsWF/6L7ZAv22J7MZRqQZsnUYG5NbUp55Ka4ruJdd/+RiO/6l8dhvWF1CxguTsPkiZlS7zFHgPKAC3SYbxncBdOp+sG+GpCrD2m+b17ywDK1j02XyGgO8IMALLd6yieuTPR05g1ebPcPj307j/0Iz8eXKiVtWK6Nq2PrJnzex37P76+/P0BTTpNDrFdcYNbI+m9WqoxjACy++jiYoJ3KH9MCyNl2Oht/f0Fj+cFk4CS/fdZ+DXTpfDF/MXhmXsynBuh/lmCDAEAkSAEVjJA8cdOwh+0RhoBLcHYq0WtvZD4aj8mnOi9sRhGGcNkp0429dP3QpolYfqAI/G6zTthZMwTu6p+pu9TnPYGyuZF6Fcz+XLs9PbO3VFPF8pMALLs3Qpbx4JvXukTjrwyyeCui66zNagAxxvtgzHdjOsz1gjsH76RYOPPlY+axWeldC4YerXUjQdsGHuMBBRLl/XQei7Gab1AXf2uOzL2nUMPr9VHfv2K0TVyy+KePN1EWs3cDh1WsnMatpYwLNlQyPgrtu+FPznH6i/pxp0VDUrEvMWhCV+tdejYARWNF2hLJb0jkBME1hWmz3g8zHw+oDnRtvErbv3YUzio4ftMk89gdw5s+PU2b9x+epNFMiXCxsWjEa+PDl8DjsQf9///Ds6DZyGvLlz4LF8ubyu1aX1O6j5ynOqvzECy+djiaqB+o/XQr97jRyTvXYT2Jso7ZTDEWw4CSxq42wc3FzdMWrwHIjFwqfpFQ6MmE+GQEZAgBFY3k+ZyCvDwjHq8hcirzqPgqNCVWWSJME0qLG6jLDXJAhlwtCNUBRgmNhVldUg5sgDa/wqSHpDWC/XDz7kQKV/LgvmYffuPQ0SZyqkQ6ZMwNCBSgl9chvRffsp+HUz5D+nlMERVjDSsfNYI7A8s4herSGiZo3AiNU0OVZBgLPDpqA8g1nGLIf4WJGAwvHMziSNqUPF22PLNuXzVuJJCW1bCZg2g8O9+8pnumc3B/LnC2hZ1SRqdmGY1k/1b0KV2rC16gfKEJNNy+HhvE+9lgEzAiv4c2AeGAK+IhDTBFaZV9v5us8k49JLF8K/L11FvTbDoNNxWJTQH89XeNq5V0mSMG/ldixaswsvVnwGy2cM9gmrQP19vOcHDB6/CP27NkfHlr53omMElk/HEnWD+KXjoTv0jRyXrc0AOF5+M6xxhpPAosApA4sysVzmqPo2bK3iwron5pwhwBDwHwFGYCXFTHf4APilEzzIKw62ziPV5NV/U/n1s6A78LHyfZeCtov/J6TM0H++Gfrty1QuIqG5RQuu28jh5CnlYbfVuyKeKhUYUeAQ4CEsLSF+dOpZM5qbV2EaoYg+S5wellk7IOn4YGBlc90QiDUCa/NWLX7/Q8kuatRAwHPlQ5NFFIkLgzvzOwyJCtkjZssJS4I6c8mfODwz4IUyL+Bi80mYu0ghsLJlk9Czq4DJ0xQBd04rYdQIAdogJfToBaYhvhO0N6/KYYvZcsE6diUkUyaYBjaB5sFd+W/myRsh5ciTZIuMwPLn1NlYhkBwCGRIAitH9iz4due84JCLktmT5qzD+m1fol/npujcyu0twX8kVsvu8Tj6519YP38kKpQpkWrUgfpbu/VzTJm3AROHdkLDN93e9KayIiOwUj2SqBxgpB/7y4pOgGXIXIhPPCJPw2XhJrC408dgmK4QVhJvhCXxQ0h69qARrjNlfhkCgSDACCw1arqfvwK/cgpA7c3+M2pGYes2DkLZKl4h5v48BMPsIcr4MJQRam9dg2FMO5WQvKNidWdGWCRs+SoO5y8oT7ft2woo9kTgRMGEyTq4J/4PHeRAJh/6lpjGvA/N1Uvylq19pkAoXSkSEGSINWKNwFq0lMOly8p1SVpqpKkWK6b7dD34XavkcKk02dZxeMDha/4+A9MkJYNfypId5mlbMTpe3ZaxdUsR6zYqxF/+fBJ6dkudRE4tMH79TOgOfKIaZo1LhFCqvPPfjJN7QHvhlPL5HTATQomySdwyAis1pNnfGQKhQyCmCaxDR0+miITZYsPV67fwy28n8eneg+A4LZbPGIJyT4dPNDR0R+ObpzrvDsSlK9exd8tM5M+bM8mkjTv2YMKstWjb7A0M6Zm67kKg/mYv+xBL1n2ERQkDUK1KOd+CB8AILJ+hip6BoohMvd6kND85pnB3IKSFwk1gOW9UxrYHCdS7zPr+IAgvvh492LNIGAIMATACS7kIdD98AX71VNVVQVk+tp4TIJSumPzVIgowDW4a1m6EhjlDwR3/RY6ButRS6SBlN0TCFizR4coVZaVunRwoWDDwlWfM4XD7tkI89OkpIE/u1IkH/YbZ0O/fLS9sf70F7I06BR4Im6lCINYIrMlTdTBblC0MjBOQLWvq11G0HLth1mBwJ36Vw7G91w+OanUDD4+6Wvd5W6XbR1lOczbkw7XrCmFVtoykKgku/6yIJg0Dy6h0BUs6XqTn5W6OVxvA1qKX/E+GJePA/XpAuS9sPxTCC7WS7JcRWIFfAmwmQ8BfBGKawPJns1Qa1z4uAYIg4KPVk5Elsw+vzfxZIA3G3r3/EC/V6+EkrojA8mbHT51H085jnNlXlIWVkgXjb2ziKmzZ/TW2Lh2H0iWL+owGI7B8hipqBnq2PZZy5YM5zB0IafORILA8y13EkuVg6a/ol0TNIbBAGAIZGAFGYD06fP2BT6Bfr/7tp4xRG+lZ/Zc9kNJl4pl5kFKLeH8vN93P+8Avn6CaRg+F9HAYKZs1j8PNmwrh1LeXgNy5AicKFi3jcOmS4q9LBwGFC6fuz7PpiVikJCzDFkQKhnS/TiwRWFaLBhOnKqVxHAeMGZG6llrUHKIX/SvzuFWQ8hUKKkTjlJ7QnleSEqzd47HhZFX8/ofyedPrALsbVG8E0VWUgtU8uA/j2HbQ3L8jxy7mKQDr6GWqzHv91sXQ79kqj7HVbwfHW0pZsOsPjMAK6hJgkxkCfiGQYQgsQuWr735Fr+Gz0bNdQ/Ro19AvoKJx8O8nzqF517GoWK4k1s4d4TXEO/ce4OV3eiJn9qw4sHNuitsIxl/vkXOw98AhdGtbH/fum/HgoRk8r0eRgvlQrcqzKFHM+48bI7Ci8cpKOSbqqESdlVzmKFcFth7qB5Vw7CoSBBbdyFDbc1V22YS1kHI/Fo4tMZ8MAYZAAAgwAisF8qrfVAjFy/iEKmVHUZaUy0LVjVBjfQjD6HbQ3r2lPBgSaTN0vlfxY5+CDWDQ1Bk63L+vTAw202XNeg6nz7hragl4qlTqBJbm4X2YBjRS7cA8fTukTFkC2BWb4olALBFYly4Bi5YppXG+drOMllPXnvwNxpkDlM91kPpXLkdJshTrtsHnWdvhq31KBpYnBm3eE1CyROqfv+SwMywcDe6375U/azSwDJ0HsUgp1RTd1zvBb1ZkZ5Ij+hmBFS1XKYsjIyCQoQgsu92B59/uhuJFCmDb8vExf74Hfz2ODnEJqP5ieSyc4l1smsTcy77W3lk++dueFSnuORh/RAwSQZicvfnaCxg/uAMymYyqITfu2mL+HDLaBrQ7VkKze61yA/NmC0hNu4YdhmyZ9dBzGtx9aIfdEfhNS2qBaueOgOaIclMjvfUexCas3CM13NjfGQKRQkCv0yBbJj3sgoS7DwLvRhypeEO9jmbvDmg3zFG5pfI8xE2FWMI38so5WRTAxTUGHtxTvs/jpkIqUzmokDXrZkH79S7Fh1YLccxSSIUiK98wKl6j0qyKHynBEETjw41bNDj8m7KtZo0kVE6hStMdRO34btC4ZZiI3cZAqlwjKJzZ5EcI5MjCg9MCt+/bIARXURZ2SH87psH6zcoyT5eS0L5N2JcN2QKaXauh3bVa9ie9VAdiR3UJXiCLafbthnatku0uPfsiDtecrMLK0++IwRKyZQ1kNUBzcA+0S5UXseRFevs9iI2T3utpDn8H7TylgkUqXQnigGlJFs6djemlBnYabBZDwH8EMhSBRfDUatYfVCr306eL/EcrymbsP/gbug2ZgVrVKmLO+D7JRle+Vkc4BAFH9iyHjvKVk7Fg/Nlsdhz89U88XjAv8uXJAb1ej+s37+DgoT+wcPVOXLx8Da88XxZLpg2MMhRZOP4i8CBxBOw/7pOnZeo5AnyNt/x1E7Xj7T9+gweJiiCpJmceZF+4DdAm/yYwajfDAmMIMATSFQLWXRtgXudRfmbKhKyjZoMrUdrvvT5cnADbno/keXzt+sjUxbeuxd4WE87+iXtD1Q+BhnrvwtRW0ZTxO8gAJoiihC5x6tKsZbP1AXhSpmzaJuDLfQpD0qwBhzdq+va7YF6/ENad691wboBMXQYFFQ+bHHsIfLZHxNZdivB4zepavNck+fvyaNvh/bG94PjjsHL/130Y+NeC0L/6z5Nw9gTuDe0o+9XkyI2H43di1CTvLyioecKcKYF9nqVb13Gn33uA+aG8HlfkSWRNWAF4eUYSLpzBvYHvy2O1jxVGtjmbou1oWDwMgQyFQIYisCgbqfKbXSGIIg5/oW7rHIunHkzGlLf9htqfa40bt+6iQbsRuHXnHpbPGIwXKz4jL2+1R/nrsli8MMIcs2VQa0iXLsirGCYsgbZYeDsQ0mKUdaHVaGB3iBDDl4Dl7ORl7tEAuKfoIvADp4B77uUwI8vcMwQYAr4gQG3T9TotREkKazamL7FEcoxj+yrYt3pkUmfOCuOI2dAUTb3LsLdYxaM/wTpFKQlClqwwLdwFaAN4qBYFWIa1h3TxnLJUzrwwzdgA8EGkPgUAstkMDBylEAUGHpgxKYA9ua396RcSdv9PuWep85oGDev6RmB54qx5rBCM0zcGsDM2xRMBXqeFRgPYHKJ79X9UArVxq4gDPyg3ME3qa1GzulKWGpVBu4Ky22Du8IYzc9NlxpmboclXIPiwHQ6YO9QBBLfP7Pwd6Dc5u/s/yeuUKqFB326+ffY8g7NO6APxuELCQaeDcfJKaAomo99rs8Lcvo7iRsvBtGZvknJoKm1nxhBgCEQGgQxFYB3+/TRa9ZyAgo/lwRebEiODcBhX+fP0BTTpNNonDazsWTPju4/mpxhNqP25LzZ1/kas3vI/p0ZW7w6N5T8xDawwXiBhcK1x2GHqU1etETX3E0i6wN6E+RNiJDSwXPF4inYKFarC2nWMP+GysQwBhkCYEMiIGlj6DxdD/6UiJEzQkoaSbcAsCMk9ePmCv7duhH0TIDztY22c2xqeTTDoT9bekyE8E1xJoi/b8Bxz564G02cphFXWLBIG9VcejgPx+ePPWuz+RHlIrVRRQoN6vvnUOGww9msIjaBklFDzE2qCwiw4BGJJA2v1Og5nziqE1XstRDz9VGy8yNWeOAzjLCVrMNQNfIyTe0B74ZR8MVh6jMe876riyr9Jr4+Xqoh46w3/cdN98xH4jerya3vDjrC/8W6KF6FpYGNo3EqtzZM3QcqRWzWHaWAF9zlmsxkC/iCQYQiso8fPYuikJTj39xXUf/0VTB7e2R+conLsQ7MFz7/VzacuhOWeLoZNi1J+AA+1P3fQ1m/7ApPmrEerxnUwvI/SvYMRWFF5aSUblObvMzBN6ib/XcpbAOb4NRHZRCQJLO2/F2Ec217ZJ8fBMmUzpCzZI7JXtghDgCGQPAIZjcDySl5lzgZeHargAAAgAElEQVRb/xnBkVf/QcyvmwHdt5/KgDuq1oWtVT+/LkHtrWswjGkHjV3RtRQqvAJr17F++QnV4GvXNZi7QCGwcuWW0K+nb2RTcjEc+12DDz5UfJZ+SkTLFr4/RBtmDQZ3QtEKtbXuDxKEZhYcArFEYM2ay+HmLYXA6tnNgfwxwmHqP1oN/SfrlO+Jl16HrW3oymA9v4fs9d7HBsv7OPp70gy1hvUFVKzgXyq+9tolGOI7g8hklzk7gvrQXMKTXLMOnAXhSbXeICOwgvscs9kMAX8QiGkCq1mX1G+MRFHElWs3cfvOo1Y0pAG1efEYPF2iiD84Re3Y+u8Px5nzl7B3y0wnkeVpG3fswYRZa9G8/msY01+p4U5uQ6H251pn9rIPsWTdR+jXuSk6t6onL88IrKi9tLwGxv20B4YVU+S/Cc++BGp3HAmLJIFF+zFM7QPur+Py1uxNusJeu2kktsrWYAgwBFJAICMRWNT9irpguZuUNQesA2ZCzF84JNcJ98fPMMxVhJgD6UZI3Qypq6HLSFTeGr8KYrZcIYnRXycXL2mwZJlCNhUoAHTvrNbE8tfn2XMarFqj+CxSREKndr6TYrr/bQS/QykBdVR+FbaO3jtI+xtbRh4fSwTWmPEcJEkhZEYNd0CvNCWM6mM0TI8Dd/qYHKP1/UEQXnw9ZDHrvtkNfuNs1f3l/8pOwN6vkpbmdevkQMGCfiwtijAm9FJleEk6HtbRSyHmTd2RYfE4cIcPKHvvMBTC87VUATACy4/zYEMZAkEiENMEVplX2/m1/RzZs2DcwPaoXa2SX/OieXByxJAr5ne7jcPRP//CooT+qFblWeWHQRBx7eZtPJZXfXMZqL+UMLI7BDRoNxznL/6LjQtG4dlnnpSHMwIrmq+upLHxO1dA95mi2+F4oyVsDTtEZBORJrB0+z8Gv2GWvDd6WLSMXRmRvbJFGAIMgeQRyBAEliRBv34m9G6ZUYSImCM3bERe5QmB7owLYi9lhJZ+UyE+9ZxPl6Hu533gl09QjbU16w5HTUUuwCdHIRx05i8NVq9VyKYnikro8L7vZJO3UKiUacFihW3Ik1tCHz+yurTnT8I4pafsWjJlhnnGjhDuOmO6ihUC69ZtDWbOUa7JLFmAwf2DI1UjdeKUtWTqW1+lf2VJ2BxSglp77k8YE3or91w58uDXdpuxcbOawNJAwqgRAnR+SNrRfSvdv7qbrWVfOKorL9RTwlK/dSH0e7bJQ2z128Px1nuqKYzAitTVyNZhCAAxTWDNX7k91TPUaDTIlMmIYo8XQJWKpWEkJc90ZCSQ/uZ7g0GZZkRSPV/hkZg2CdbPW7kdi9bsQqnihbFt+XgQFi7rPnQmvvnhCN5rVAsj+io9fAPxd+Gfq9iz/xe88/rLyJNLXWJ14Z9/MWnOOuw/eBTVqpTDogQ3sVgAjMCKrYvRsHA0uN++l4O2enkLFa4dRZrA0ljNMA5sqko3twyeA7GY/52+woUJ88sQyIgIpHsCS5LAr54K3cEvVcdL5JV14GxIufOH/Nj5tdOh++4z2a+9Wj3Y3+ub6joa60MYRreD9u4t5cHTx7KcVJ0HMeD4Ca3qwbdUSRGtW/pe7udt6bv3NEicqTw1Z8oEDB3oBwEhSTANaASN+YHs3jx8EaTHlZd6QWw5w06NFQLLk1R9/HEJndsHR6pG6tApu5KyLF0WDvkIjcMBU5+3VRqr/4zciZnLs6m26Tdx/M9ZGCf1UJFvQsnysPb3XQtZt3c7+C1K91dH1bdhaxWniosRWJG6Gtk6DIEYJ7DYAT5CYM/+Q+g/dj4cgoAyTz3hJJFOnr2Iy//eAIm3r507HE8+UUgF14v1euDe/YcoWawwdqxUvzn1159L/J0IsqKF86NwgbxOsuzSlev46+/LoHbWFcuVxPzJcciWJZMqjvHTlVp0dp7Rj0Dbw62R3XpJDnRj2aW4njkyN98R60Lodgx1Tk/B0zc+l//lWL56+KpY/+g/KBYhQyAdI5CuuxBKEt44PQGlbn6lOsF7fD58+Mxs3DOEnryihYrePoj6J5QyQosuK5ZW3JGk05bnZVXjr1l49uou1T9vLLcc1zMVS9Mr8OFDCdeuK5kbz5YV0bRxcAQWbWh0vLreq2gR/3R43j45Bk/e2i9jc6BIN/xaoHmaYhXri8dKF8Ik12Q5EU0bBX9NRuL8qPSVSmBdRtptpOEWajNN6ArNP2dlt9ZeEzF6x8uqToRln5HQvKlvxB81HjJM6ALSNXWZZDTBOnYlxOxqEfaU9kIvbukFrsuE0pVg7aPIadC/MwIr1FcD88cQSB6BmM7AYgerIPDHyXNYvPYj/PLbSdx/8BB5cudwlgx2a1PfqzbW+JlrsOOzA86OgO1avJkESn/82e0ObP/sAPYe+AUnzvyNW7fvOVsZU8lm6ZJFUK/2y3irZhVwXNI69k59lY487DyjGwGdZMeUK4regQQNhj32Pzg04e9AmFbIFLceRo+byls2q8aIsfl3wq5JX5mcaYUvW5chwBBQENBCQMtbE/GcRU1e3eAKYGHuObjN5QkbXLR2/JX6MEoP5TUW5pqBM4bkywgL20+g77VucEvuxv7MTbAzW6+wxRmo48oVRdSvFzxZMHEKB6stqai0r3G99GAnmtxVStOP81WwPLf6QdhXX2xcbCPwanUBNV/1jwBNqx17aoKGK/ueX5MI3ff/k7dpq98O8y62xaXLymeudk0J1av6RmDpty2F/osPVLAFErvm4hmYJioNjMR8hWEZp5aUYARWWl2dbN2MiEC6J7Ao+0dLr2uZRSUCjMCKymPxGlQh20nE3egq/+0a9zgS8kWmA2FaojT86rvIJSh9nDdmH4pfMr2RliGxtRkCDIF0hoBWEtDm9liUsyhCwbTFq7rHsTDXbNzjkjZpCTUEzW8n4AWzUkb4bab62J5dXSbjWpMIr7hrnVDAcU4O4642JxLyrYNVo860DnWcgfh75SUBb9QJniyYOZvDrTuB31PmcfyNodfayltwQI/hj30KUeOHoE8gALA5UYdA4wYiKpQPnlQN98aoTNjUv3FY9a9ce6CGFdS4wmVChao4VG0s/r2q7LLcM0DefKl/lrmzv8MwTd1NNdDGQxq7FaY+bnpZWg4P532qylBlBFa4r0TmnyGgIBAzBBaVx3321Y+o+UpFZDIZUjzDm7fvYc6yD7HnwC+g/6aytZcql0XvDo1QrEgIhU/ZlRQ0AozAChrCiDmoZP4cLW9Pltc7aqiO1bnGRWz9tFqo1v21eOueIv55ln8WC3IrnXLSKi62LkOAIZA+EOAkB96/NRLPWA+qNnSFewILc8/EAy5HRDb6tOUgOt1SdG4earNiTP6doGxbT3vt/kbUvbdE9c+rco7DMWP1iMTq7yKv1hBRs0bwZMGipZwqG8TfOGj8iKstkFNQnsgX5JqFs4bygbhic2IYAWoqQM0Fot24Yz/CMF/plinmfxyWsWpB9FDtgTv7BwzTFO09KVc+mCeu99s9aZga4jtBe1P5nElZssMydhWoy2oglql/I8D8qKM9mXnyRkg5lKxYRmAFgiqbwxAIDIGYIbD2fX8EPYbNRIF8ufDF5ukqQXL3rZMIecvu8fjnyvUkiJCA+9LEQU49JmbRgcB3v1ijIxAWRaoI5Pt6KfIc3CSPu/ZyG1yr5l8n0FQXSWFAtsx66DkN7j60w+6I3E2f/t4NlFyg1ig51W097NkfC2Y7bC5DgCEQIAKkh5ctkx52QcLdB7Fdhq4RHHh863BkOfeLCg1L7idwvtVsCKbAHrYCgVYjCSg1syE4u1JGeK7ldDwsUkHlTn/vGp5c0hZah6Jheb9YZVxonhDIshGZkyOnhBzZg//duPKvBhZz4BlYtNmCn0xDjqNKplukf0sjAngEF8mRhQcpVNy+b4MQPEcZscgLFRKhjwEFBs8yPF8bPAQCpMZmgalffZWQO3XqpI6d/hi/fiZ0Bz5RTbH2ngzhmcr+uFGNNU7qBu3fZ+R/sw6aDaH4M/L/MwIrYGjZRIaA3wjEDIFFmk2bdu5Fk7rVET+oQ7Ib7TtqLr7c/4uzbLDZO6+hQpkncfvOfWze9RXO/X0Fj+XNhY/WTE41i8tvJNmEgBBgXQgDgi1NJvELRkJ3VMkQsHUcAUflVyMWS6S7ELpvzDBvOLjff5L/yfFGS9gaJv89FDFQ2EIMgQyIQHrpQkit6fkFo8AdP6Q6RbFwcVj7TQ84UyCYS4JfMw2675XGFY7q78DWso/KJXUjo65kLpP0PKzjVkHMmTeYpTPMXN2Pe8GvVLKZheKlYR00J8PsP9QbjZUuhKHed6T8GSf3hPbCSXk5W8eRcFSuEbbljfGdob2slCaTWDqJpvtq3B8/wzBXaUhB80IhOm9YNAbcke8UHNoPg+OFmvL/MwLL1xNi4xgCwSMQMwTWu93G4eiffyFxdHenILg3o7/TOLJJwzqjwRuvyMPuPzCjedexOH/xX4wZ0A7N34ncg3fwx5R+PTACK3bO1jSyNTQ3FC0oy8glEAtFrtNUWhJY3KFvYFg6Xj4s6l5jmbQB0CZtTBA7J8oiZQjEJgLpgcAiTRV+7ghwp46oDkEoWgq2vtMgmdJGR4o7ehCGBSOV77psOWGZslnWetH9vA/8cnXnYnuTrrDXbhqbF1MaRK15eB+mAY1UK5tn7YJkMKVBNLG/JCOwwneGTv2rfg3U12ri9rCS64ZVCeAOfqkQRQ07gF4a+mKaB/dhHNsOmvt3lO+wXPlgHb0s6M8Xv2UhdHu3KXE16ADHm0pcjMDy5YTYGIZAaBCIGQLr5fo9cefuA+xaPQlPFi3odfeDxi/EJ3sO4uXKZbE0cWCSMdR1b8SUZc7ufIsSQt/+NTRHkrG8MAIrNs6b9AScad0u02jwcN5nESVw0pLA0jgcMAxuAq1ZKa2x9BgPsdyLsXGALEqGQDpCINYJLHoo5GcPA/fXH2ryqtgzsPWdDMmQNuQVBUNt540Dm4C+811miUuEWKo8KG7D6HbQ3r0l/00oWBTWEYsBLRMh9+cjZprQFZp/zspTrN3jQQLTzPxHgBFY/mPm6wzut+9hWDhaIYMKPAHL6KW+Tg9oHJFERBa5zFGxOmydR/nki2KlmN3NOmgWhOJlfJqf0qAkcVWtC1srRSSeEVhBQ8wcMAR8RiBmCKzytTqChNy/2zUf2bMlrYW+c+8BXm3SDzab3UleEYnlaaSL9fq7A5E/b07s3TLTZ5DYwPAhwAis8GEbSs/acydgTFBao4sFisIyelkol0jVV1oSWBQcv2UBdHu3Kw9uFarC2nVMqnGzAQwBhkBoEYhlAktjJvJqELjzSkkOoSMQeRU3FZI+5SY1oUXSuzd+9TTofnArI6xRH7Z3e0O/cTb03+xWTbIMmw+xSKlIhJWu1tBvXQj9HiWbw/FaQ9ia90xXe4zUZhiBFT6k9R8ugv7LD+UFHK82gK2Fci8YjpW1p47COENJMpDyFIB5fOodrz1Lcyk2e63GsDftHpIwqXyQyghdRnpapKvlMkZghQRm5oQh4BMCMUNgVajTCXa7A19tnYV8eZJ25Nm4Yw8mzFqbosg7zSc/PK/Hr5+H9w2CT+izQWAEVmxcBLrv/wd+TaJyE+PHG7FQ7TCtCSztvxdhHNte3o7Ecc7SGupsw4whwBCIHAKxSmAReWWYEQftRSXzxklelSwPW++JUUFeUTy6Yz+Cd+86li0nbD0mwDhFTbBE4mE2cldVZFdKUqqZBi+FIrvj8K3GCKzwYWuc1B3av0/LC1g7j4ZQsVr4FqQsUBJy7/uOao3UhNy1d27AMLY9NBYlc1TMXxjWkUsg6UKjlE84EB4u8+zGyAissF4WzDlDQIVAzBBYdd4diEtXrmPNnOGo9Kz6bZ8kSWjYYSRO//UPurR+B307NfF6zC4Ci+O0+G1PeFrAsuvLPwQYgeUfXmk1Wr9tCfRfbJGXt7/zPuxvt45oOGlNYNFmPcVM7U27wV7L+/dNRMFhizEEMhACsUhgkTaLYdZAaC8qXayc5FXpSrB1jwcJoUeTGfs3UJVME1Gv0pXJlssp3C4ZmW5TIOfm7SHdMmUTSF+RmX8IMALLP7x8He1Vqy3M+leu2IzjOkB75W+FOOuXCOGp8smGbpgzJEkzDMvwhRAfL+HrdlMd5w2Phwu/kOcxAitVCNkAhkDIEIgZAmvAuAX47KsfncLsJNDubts/3Y+RCctBxNSn66ei0GN5vAJ0/eYd1GjcF5lMRvz06aKQgcgcBY4AI7ACxy6SMz278EXiLZzn/qKBwNLt2wV+01w5NHrDZxm7MpJHwdZiCGR4BGKNwCLih58xANzl86qzc5R9Afau4yDpdFF3pvyqqdAdVB7OPAO0dh4FoWL1qIs7lgIyTo+D9vQx5SG93WAIVerE0haiIlZGYIXnGLjD38KweKzsXCpUHOaRi8OzmIdXfsVk6H7aK/+rvXFn2Os097q27puPwG9Ud/G0120De722IY/V1KcuNHab7Nc8ZROk/0hnRmCFHG7mkCGQLAIxQ2DtP3gU3YZMd26kV4dGaPhmNUCSsPfbQ0hc9IFT+4o6C1KHweTsl99Oom2fSShSKD8+XZ/ALosoQIARWFFwCD6EYBz+HrS3rskjLWOWQ3ysiA8zQzckGggsjfkBjIObQ+NQbmAsg+dALFY6dBtlnhgCDIEUEYglAktz9xYMM/qDSpDdjcgrW7d4gItO8XNP8Wb32ClrjFrbMwsOAf3Ha6HfrWj7OKrUga3d4OCcZsDZjMAKz6HzH8yH7qsdsnNHzUawNesRnsU8vFLGP2X+u8xR+VXYOo5Isrb22iUY4jur7snEgsVA2Vfh+G41TuymyqK1DJoDsfij+z9GYEXk0mCLMAScCMQMgUXB9hk1B3v2H/J6dMWKFMDGBaOQNUvy3XsWrdmFuSu2sS6EUXTxMwIrig4jmVBIU8AU59aBEIB72nSkdhANBBbtlV8xCbqfvpK3ba9aF3a3TjShwsPZ+cf8ICTuxKKlQK3umTEE0gMCsUJgae/eBJ8YB3rIcjdHpRqwdRoZ9UdBnWfduxFSwFTqaB27EmKufFEff7QHyJ39HYZpShczMUduWCZvivawfY5Pd2gfuK93+TyeGhjYek/yebxrYLQSWNpr/0DMW8jv/UTLBOP4LtBe+ksOJ5KdMrlTR2CYoXSTp1Jl8fGSSaDR3LgC7c2r8r9LOh7WkYtA+lThMM8uh/Q9Tt/nZIzACgfizCdDwDsCMUVgWaw2TJy9Djs+2w9RlOQd1a5WCaPi2iJPrpTFlN/tHo+jx88irkszdHqvLrsmogABRmBFwSGkEgL313EYpvaRR4mFisMSoTRy99CihcDiThyGYdYg5YbJaIJl6paQCjBr/zkL44TQEk7mxG2QMmeN/gvuvwhJSBoP7wMP70Gj5WCvXi9mYs8IgfJzh0N75TykvAWdD2mOt96DFGZSQ/f1TmjP/QkufyFkLvI4pNIVcUMbndc0lQ0aEvslzbx6viZsHYbFxCXCr0qA7uCXqljtjbvAXqdZTMQfC0F6koT2Jl1gr50+8DWNbAMiGPwxe8OOsL/xrj9TEI0ElqusTcyRB0K5FyE+/xqEks/6tS9fB2vPHIPukw0A/b5nzgqxZHk4ghRa1zy4B9PAxqoQzDN2QjIlnyTga7y+jKOGF6b+DXwZqv5+at4D9tca+T3P1wn6DxZA/5XSjdr9+5ARWL6iyMYxBIJHIKYILNd2b9y6i9Pn/nH+b8lihZErR+o3sIIgYubSLZBECW2bvYH8eXMGjx7zEDQCLgKLfhS01y8DN65Ac+sqLDN2Bu2bOQgNArrvPgO/9lH5Lpnj+ddg6zA8NM798BItBBaFbBrZGpob/8rR29oNhaNKLT92k/JQ/Wcbod8Z2kYTtnd7w1FDnUkXsoBD7IhuyI2JcSqvltHLIBYoGuKVmLtAEPDsSko+7G+2hL1Bh0Dc+TRHY7fCOOxdkBi6y7i338W9dzr6ND+Sg5yC7VQ26Ja94PzufPF12N5XyO9IxhTIWtyJI9CvnwnKJCFLq5cXgcQeK3M8Mzqcn6U0aJISarx0P3wOfvU0v91SFpZlwlpI2Xy/R482Aov7aS8MKyar9k4kvyV+ld94+DKBsvgom89lYs68sEza4MvUZMfofv0G/JLxis8iJWEZtiAon/5ONo5uJ3/3+DJXKFEO1gEzfBka8Bj93m3Qb1koz6d7Krq3ImMEVsCwsokMAb8RiEkCy+9dsglRi4CLwEqisRS/GmLeglEbd0YKjH6s6UfbZfSQSg+rkbZoIrA8tUtCfeNkSOgF7tyJkEIsPPE0rEMUAfqQOg+xMyLviMRzN3u1erC/1zfEKzF3/iJA5RqG+E5JSsso08AyWX1m/vpOabx+/27oN8xWDdEULYEHQ5WHiVCuF6gvjfUhDDMGQXvhpMoFEdxEdMeqaW5chobTg86ZWegQ4E79Bn7OMJWGD3mnLCTKRopVCyT7yrVXx0t1YGvruxZYNBFY3NEfYFgwyuuxmRM+8IuY8+Xsdb//BH5e0heK1kGzIBQv44sLr2OoWQ01rZHv+2o1hb1paLPCUwuOXzYBul/2pTbM+Xcn8TlmOaTc+X0aH+ggT2F7R5nnYev1qOyVEViBosrmMQT8R4ARWP5jxmaEEAEXgWWgDk2nfpM9W/skQChdMYQrMVeBIuDZntjabRyE8i8H6i7gedFEYJGgPZGu7mYJEelKujnGIS1Uvq29JwM6vX/YCQLo7FQxknZN/sL++UmD0cbJPaC9cEq1MmnvWCZvhpQ5SxpExJZ0IUDls1RG682sfadCePq5sIBlHNMe2qtqIXRayDxtK6QsKcsHhCUgL041Ngv42UNV2RA0jL4v6XuTGUPAGwJOEmveCND14272mo1hb9Y95kDzzNCUeCNsdP0n07BAe+JX6D9Zr/6tGjYfYpFSPu09Wggs7uQRUGm1e5MX9w3Yuo6Bo0JVn/bk6yBPUXHXPCqjszcPXHDdGN8R2ssX5DCIpCGyJpJGVRkaN32rlNaWsuaEWCD8jYW0F8+AMHcZrWkZvdz5v4zAiuTVwdbK6AgwAiujXwFpvH8XgcWvSQTd9LjM1rIPHNXfSePo2PKEgGnou9DcuSGDYR67ElIakCDRRGARGIbZQ8D9qTSVcLzREraGwZdQ6Q58An79TBlvoURZWAco/+/PVWlYMg7crwfkKaGK0Z8Y/B1L2kGmQU29TgtEH8Xf9dn45BHQ7d8N3iMLyn20UKU2rO3UpGko8OSOHoRhgXfRc1vHkXBUfiSim5ZGrdX5OUPBnT6qCoMIPVvPiZD8JaDTcjNs7YgjQCVg/NxhoKYp7mZ/5S3YW8UBGk3EYwpoQVGAcWQbVdfiVH93aM6ELirCxJ+M4WggsLQXzzo17zybHqjOsnYT2Jso5EdA+LpN4n7ZB8OyCV7dSFlzgDK+ArluqATaNFCtI2WetROSITL6V8HiEtb5D+4hk5s2GL1YM8/52LkkI7DCijxzzhBQIcAILHZBpCkCsgbWZxug37lSjoVEYkkckVnaIqAxP4Cpf0M5COrwYp776Mc60hZtBJbu56/AL1c6JonZcsGSsDloWAyLxoA78p3yWQhC1Jf77Xs4uxn+Z6HQxgh6g6k40B3cA37VFK+jYiH+cOOTVv5J881IpYNuWSJivsKqrChnlty0LSF/0PHMAnXHIFxdQP3Fmcp4qJzH3cQny8Lad0pIGzz4GxcbHzsIUNmpYdZg0O+u6hp/+U3Y2wyIiY14al9JBhMsE9en2kCEspcMM5Wuc7RZW6cRcFR6NdV9pzWBpb3yNwyJfVT6fBS045nnoftD+U4QipWGdfCcVPfj6wDjuA6gtZMzy8CZoO8gf033y9fgl02Up/lDJvq7ViyOp67c7kSzKwuYEVixeJos5lhFgBFYsXpy6SRuF4HlSQY4nqsKW5cx6WSXsbsN7swxGNzEtMXHS8AyPG00Z6KNwKJTNQ1oBA11yvvPQpFmb+pTDyRY7TLL2BVBtYSmTkLUUchl1rhECKXKR+1Fya+YDN1Pe5ONj74X6PuBWWQRoIdLesh0GT2YWkcvAz97iIrEsr0/GI4X64QsOO7SeRjGd0rWn5inACzj14RsvUAc8YvHQnf4W9VU4YmnYOs3NeRkXiDxsTmxg4Azk2fWgKRkSJXasIUhuzHUyHhqX/nT3MHzc0R6a9b41SBiPCVLSwKLiH3q0kyl/+5ma9ET4nPVYByq7qhI2Tqp7ceXM9H98AX41VPV3zmlyqu+ox2vNoCtRS9f3KnG6NfPgv6A8qLS9npzOBp19ttPep1AHaKpU7R8jzZ0PsSipVgGVno9cLavqESAEVhReSwZJygXgcX9ddx5E+AysfCTsIxYlHGAiNKd0k0M3cy4LC2FiKORwPIUOiV9C9K5CNR0x34EP3+E8jnIWxCkrRWM8ZvmQbdP6epJ5AKRDNFqnoSbULI8uFMKcUJvlOnNMrPIIUBivnStqx7Q2gyA4+U3offInhWeKg9rv8SQBUcdUKkTqvLbUBz0kO9uZupalvuxkK3pjyN+6QToDqmFhsWCxZzdsKRMTK/NHyzZ2EcIaC+fB+mCUjm1uzkq1YCtk/dS2mjAzpv2FXXDkzKn3imc4qdGAaaRbVVbsb/TDva3W6W4vbQisDT3bsMwrS+01y55xPw+7G+3dv6baUQrlY6TtX8i6DctWPPshEzd8IRnKqsyrkkbkLKD/DVPvUFr7ykQnqnkr5t0O96zc6it80g4KtZgBFa6PXG2sWhEgBFY0XgqGSgmF4FFNwKmwc3knadlqVoGgj/VrfKb50H3tUJ+kMYT6VmkhUUjgaU9fwLGKcobTonjYJmyOWBRadK+Ig0sl9lDoJmhPfcnjAmP2jyTOUs6SPg6lbfaaXHG1HmROjDKsWbJDuvwhUkF80csApHczMKPgLN0cGwHldamG04AACAASURBVDCxO0mlvX0dxmHq7wTqRhiKbnWUOUiEprvZOg6H/rtPoDmuCMnbWsXBUfXt8IPhvoIkgV+dACp5dTcxbyFnt09fH9ojGzRbLVYQ0P57EfysgdDeVvQnKXZH2Rdg7zoOkk4XXVvxon0VSCdF/bal0H/xgfIbwOlhnbgWYvbcye43LQgsyrzmE/uBu3xeFZeneLpnRrGtfns43lI3gPH3IOmejO7N5N9JHQ/LxHVApqwwUsa1VdFRs/SbBvGpCj4vkaSJjJaDefYu0D05s0cIeN4X2xt1gv31FozAYhcIQyCCCDACK4Jgs6WSIuAisOgvpt51VQ9J5qlbQEKUzNIOAePMQdCeVB4Urd3jITz7UpoEFI0EFgFhHN8F2kt/yZjYm3SFvbZ3EfLUgKNyA62bYL4lLhFiCMr9PMs6rO0GQ6gSujKv1Pbl69/1H6+FfrdSDia8UAvW9kOdb5VJz8tljhdfh+39Qb66ZeMCRUCSnCXEJDAtPywZTbCOWQkxh/JAaZw5ANqTShdZW/12cLyVctaELyHRtUDXhMtoTcuE9TDu+QDa7SuU66FyDZCYeyRNv24G9N9+qlqSssCofX1KD9uRjJGtFdsIUBc2Kt317MRGHZptPcZHFang2XzEqYdHL3P8zEIkbSHjqDaq7DPH8zVh6zAs2cOMNIHl7DZKnbPPn1TF5HipDmxt1dnNntmrQtkXYO2p6Ev5e4VSswgjZXXdu63cc9RqCnvTrs7/N6ycAu5HhVR3VK0LW6t+Pi9Dc8mHy4Tiz8A6aLbP8zPCQP2XW6H/cLGCf/V6sLfsywisjHD4bI9RgwAjsKLmKDJmIO4Elmc7YMvgORCLlc6YwETJrikrzv1GyTx+DaQ8BdIkumglsHR7t4PfskB5yM5fGJaxSkMCX8FKks1lNME8fTug5Xx1kew43afrwe9apdyUPl0R1r4JQfsNtQPDtD7gzh6X3RJ5RSQWdXukro+y0VthIrh9LE0JdZwZxZ9uzzbwW9Wad97IT923n4JfN0OGhYgcKusLxqgVvXFoC5UWkL1xZ9jrNIfx4gloJ7pl6mXK8uizEiHzfANPy1ITB9uQuRBz5YtQFGyZjICAU2OJXiTduKzaLpWh2fpMig4Sy1v21estQJkpgZjn9wn5IPFzEkH3ZpEksDQOO/g5w1Rl7RSTU7e10yhAq1WFqPn7DEyTlM6DlAFtnrUrEFicc/Sfb4Z++zLlu5Y3PhLJz5LN+W+ejVuIQHSWEfp4H0Hf44S/yxxvtoStQfDdlQPecBROpM7O1OHZZUKZF2DtNZERWFF4Viyk9ItAuiSwbty6i1N/XcSdu4/ElbNnzYInnyiIvLlZNk+0XcruBJZh8VhwbkK4tvbD4HihZrSFnGHi8SzfoZIF81x1xkEkwYhWAos6RhkHNYFGEGQ4AiFfPbNNUnvr7A/24Szz8ieOlMZ6drykseYZOyCZMjuneXZcstdrC3vdNqFanvnxQIB0XQzxnVVZsdRVy9Zb6bzpmqKxPoRxYDPVWHprT2/vA7UkpBhldEzdCslogkGnAderHmC1yO7NwxdBejz8ZaX6j1ZD/8k61bZIa8aZeZWvcKDbZfMYAskiQN/f/KxBoLJCd3OSWL0npnmXS6/ZV6R9lSV7YKcqSTBO6qbSuhMLF4dlhJL14u44YgSWKD7KBj52UH0OpSvC2nMSwHl52SSKzk7OqrK+kUsgFirmNzbkwzDsXWjND+W59rdawV6/nfz/GocjSRmhtc8UCKV907AyjWoLzXWFLPVnrt8bitEJ2vMnYZzSU45efKwILGOWMwIrRs+ThR2bCKQrAuvw76cxfdFmHDp6yutplH2qGOK6NsOLFQO/qY7NY47eqN0JLP3WxdDvUQQnQ1WGEr27j+7ItCePwOjW1losUgqWYfPTLOhoJbAIEH7peOgOfSNjQ3o8pMvjjxkndYf279PyFFvHEXBUTr2FuK9reJZ52Rt2BGmURIvpft4HfvkE5abQ43rT7f8Y/AaloQCVF5snb/L+0BAtm4rVOKh0MKGXqkRGypwFljErky3r5pdPAnWTdZm9Wj3Y3+sbMALGse1VD+yO1xrC1vzRQ4NBr4Vx8VjYf9qvrBdE6a6vQeq/2AL9tiWq4aIpE2yD5kIsUMRXN2wcQ8BvBDR3bzlJLE/NJaHYM7D1nZx23S69ZV/VaQ7KlgzGPBv7kC/r+4MgvPh6EreRIrD4NVOh+/4L1fpO/OOmpagpaZg7DNwfPyu/7e/1haNaPb/h0e9eDf3HCnlO3z3WiRvklzwuh/yqqdAdVOJ0vPIWbK37p7oe079KFaJHAx7cRaaBTeTBVC5L3SUL5jb56IANYwgwBIJFIN0QWD8c+gPdBk+H3SGgQpkSeKpEEWTPmhmSJOHu/Yf489R5HPnjDLRaDeZP6ofqLwbfBSRY8Nl8wJ3A0n3zEfiNc2RYHC+9AVvbgQymNELAU7vB8dLrsLVNO92haCawuN9/hGGe0j1QorT+xA99FkonoV7jMDcySauFOXE7JFOmkJ2+Z0aLGGCpY8gC8nDEr5kG3fefy/+a9M1y0pIyV4lhuGLKqH5JRJnElN0tNUI1yWfAlPlRxlQAYtPc8V9gmDNUWV6jgXn8aki5H5UvE4GV5bvdMK9QulG6yjjCdWaewsm0DpUDUVcxIveZMQTCjQB1JTTMHpykC6dQtBRsfaeF9PfC172EPPvKbWF+2QToflE6fFKZrpW+B3ijKrxIEFj6DxZA/5W6TFksVBzWgbOcWaEpGZFORD65TKhSG9Z2biXxPoCtuX/3kfaVTck6TU4QXnv0BxgXjJK9+lpGSL+/9DvsMrFEWVgGsI6/3o7H1KcuSI/MZSRpUOCJtJHX8OHyYUMYAukOgXRDYL3bPR5nzv2DlbOGgjKtvNnRP/9Ch7gEFCvyGD5YPDbdHWYsbsidwOJ+/wmGecOVH89Sz8ISNz0Wt5UuYtZvnA39N7vlvbj0Z9Jqc9FMYIFKHoa1VAmwE9lHpJ8vpvtmN/iNilCq8NRzsPab6stUn8d4K/OyDJ0HsehTPvsI50DToKYq4V56MBCeLKNakrQ/SANEvsFOoawknLGmZ9+PSgc7gkpRXCaUfxnWbormh9f9iwJMQ1qoz7DTSAiVavgNF5HBRIjJ61eoCmvXMfL/E4GV8+5l3O3/qFU9GT3UUsmp1zIevyNQT9Af+AT69eoHOerKZYtLhFCc6TQGCS+b7gcCmgf3wc8dkkRAnErsrP2mgzIlI2Zhyr5yxU8NTQwj2kAj2OUt2d96D/b67VVbDDeB5UlA0eJULkxl0i7tqZQw1544DOMs5eUf6YiSnqg/5lmhQPqPTu0rQ1LyzGsZYa+JIJI/JeNXT4PuB7eXSHVbw17vfX/CzDBjjeM7Q3vpnLxfy5B5eKyS790eMwxQbKMMgTAhEDME1uS569Hj/YbInu2RHoqnVajTCa+9XAEzxynCrt7GDRi3AHu//RW/fq5+uxwmfJnbVBBwJ7A0/16EaaxyY0Jt2KkdO7O0QcA4oz+0p47Ki1PnHOqgk1YW1QQWiavuWgn9pxtkeMSS5WDprwhbp4SbYf4IcMeUB3Zbs+5w1GwccqipRI9K9VzmeLUBbC1S/s4MeRBeHHoK3VJphGX6DkCjUY3W3rrmfAtNhKHLgtVaisT+YmYN0niZ2ltdOpglu7MpgS+C+Z4PWULZKrD2VMpCfcFBe+Vvp96Zu1kHzIRQoqz8T0Rg0ffB7U7vAHdvyf9Onzf63IXSdL98DX6ZumsYZZXZekwEdYNjxhCINAIa80PwVJb21x+qpYUCRWHrPz1w7Sk/NxLO7CtXKJ6acxKnhyV+FSS3ZgnhJLDoJR69zHM3MWde2AbPVXViTQk6ytQx9a2n+t0yT/vQJ/KL/FL5qHFEa5XGoK1JNzhqK2Vsnut7klG+ZNAbhzSH1v37NG4axFKMlPF2tob5I1VaaNZOI5H/9Tf9/ASx4QwBhkCgCMQMgVXm1XbImiUTurZ+B60a1wbP61V7rtqgN/LnzYktS8Y5ywS9mShKaNFtHK5ev4V921hb2EAvmlDOcyewIArI1FP9A/Bw/mc+d08JZVzMF2Aa2EjVAcxMb/vSsMNWtBNYmhtXYBqpFhWnTmzUkS3Fm1ubBcYBjVQZL+YJa+RyqVBei9zRgzAsGCm7JIF0c+KHaf4Z0/9vE/Q7lstxOSpWh62zUgLhjkESvbHKNWDrqOwplHhlNF+6/20Ev2OFatu2XpPgKPO8T1BoL1+AMb6jMpZKYRM+8OuBml8/C7oDH8s+xILFYBml1p1yEVj358TDccA9Y6ANSNw/VEZNRQxL4wFRdNsTB1v3eDjSkMwP1f6Yn9hFgDJq+fmjk3TDo9Jwa/8ZkLLlDO/mvGVf1W4Ge5MuIV2XSuYMo94H6TO5zPP3IVwElu6nveBXTFbtx9mwgbqN+tmN2Ti5J7QXTsq+rJ1HQahY3Ses9BtmQ79fyYYn/UfLpI0plmcn+a03mGBJ3JbsHM21yzCNVr47iSg0z/4oLBmtPm06ygd5dqKlCoW877JstSg/NhZeOkIgZgisVZs/w6K1u3Dv/kMUfCwP4jo3w1s1X4Dmvzf08TPXYPPOvXipchk0rVsDJZ4o5CS8yO7ef4BTZ//Bhx/vA2lltWv+Jgb1iB7x4nR0Pfm9FRWBBcBENf43r8p+LGNXQMz/uN9+2YTgENDcuQnT0BayE2d5Dt3MpKFFO4FF0HgKpTveaAlbw5RbUDsfkt1KmsUCT8AyOkwZot7KvLrHQ3j2pTQ8WcA4YyC0p47IMZDgLAnPejPt6WMwTncTyNdyME/eGP4HtjRFKPyLE/lkmNRVXTr4fC1YO7hpUfkQhnEidQ87o5xlKpkC7i6p86mRyhDdSoa8aW+5CKwHez6BfbHSFZGytChbKxSmO/Yj+IWjQS9WZNNoYO0yBkKFV0KxBPPBEAgKAY3d6rxGueOHVH7E3AVgGzgDlMUeLotE9pUrdu7HPTCsnKLainXwHAjFHpXvhoPA4o7+AMOiMSryml742AbOhlCwqN+w8lsWQLdX0dCiDGvKtE7NnFnHI1ur4rC17AtH9VRE4Om3vn8jVfdDawq/9Uk0MktVgCVO0cNKLc6M9nfPhh6O6u8gTy//dM0yGmZsvwyBUCIQMwQWbfrO3QdYsHqHk6gisfZyTxfD4J4tUbFcKdx/YEbcmPn47udjKeLzVs0qmDi0EwweGVyhBJX58h0BTwLLOHMQtCcPyw6sPSZAKFfFd4dsZEgQ4P48BMNs5ceYbhTphjEtLRYILO7gFzCsUrSrxOy5YZm0AdBqk4WOXzsduu8+k/9OnQGpQ2C4jN+yELq922T3wnNVnQ/laWXUGpzajLtnuZinbU0xa8c4satKyNjxZkvYGqRMFKbV/mJiXVGEswvmP2flcCnTwBK/xm9haP2XW6H/UGl3Lz7+JCzDF/kEg+7T9eB3rZLHijlywzIx6efHRWBZr1+HuUdDxTeRmTO2e9WF8SmA/wYRIcAvGKEi8+hPtnZD4KhS2x9XbCxDIKwIaBw26BePAxGu7kbZ0lRSK+XOH/r1I5R95R64IaE3uHN/Kt8NpH9I3ysaTcgJLO7kEfBzh6o+/5Le4CzPFJ4ITDOSO/QNDEvHK/EXLQXL0NS7OhtWJYA7+KXbd2IeWCau8ylrml+TCN33/1N+61MQjzesmALupz3KfUi992Gvq2gMhv4iim2P3KH9j7Jz/zOS18g92jfJiNjeOYueIRAdCMQUgeWC7MI/VzFj8Qf44ptHbWlrVauIAV1boGjh/Pj5yAns+/4Izl64hLv3Hjr/niNbZpQsXhi1qlZCmaeeiA7kWRROBDwJLH7dDNCbIJeRPg/p9DCLLAL0ppDeGLrM1zbM4YwyFggs0rowDmyi6hRk6TEeYrkXvUMjSXCKlz+4K/893JpO2gunYJzcQ15P4rhH3eIyRVD81w2NJBlohYrBMlJdMuYJHvfD5zCsVt4Ok3CxZcpmkLA2M/8R8CZS7E/poPuK1CnNNKS5ipC0jFkB8bFUMmkFwZn1SfNdZm/cBfY6zZJsSCaw7CIe9G8F7b9/K5+fIF96cKd+Az9nmEpvhpzbW8XBXvVt/8FlMxgCYUaARLv1pG94+FvVSkQA2wbM9LvcLbVwdfs/Br9hlvIbouedL2qI9A6XUVYnZXe6mytTN5QZWNqLZ2GY2geU3eYyp+Zd7ykQSgXevZy6CJoGuWlWUWfV2btT7FTs1AOkkmw3zUd/msMk6QybQhlhEv0rum7cdAfDda6x6ld7/iSMU3rK4YsFiiLX7PWxuh0WN0Mg5hCISQLLhfKvx05h2oJNOPLHGeg4Di0avIbu7zdAzuxZY+4gMmrAngSWpxaOvVYT2Juqb1oyKlaR3Ld+/Szo3XRo7M26wx4GUXF/9hQLBBbtxxM7x3NVYUsmw4neKNObZflGOUt2UPZRuI1uiqlkzGX2ln1hT60kIUxBeep72F5vDkejzqmu5tm10NZmABwvMxHVVIHzGMD9cw6GCWq8HS+9AVvbgf66ksfz84ZD9/tPyvVVqynsTbum6E93cA/4VUqZEHXXcpKSXlrUuxNY95ZOh+7rnW5rBf6bwf11HPzsIaqyG3KcHJEWMEBsIkMgDAjwyyZA94vSpIOWELPlhK1fIsQCRUK2IjXS0LpJPdh9+HyHYnF+9VTofvhC9XtpmbAGefPngo7T4OptCxyC0uDD3zWdZdTT+6q0P8lHSqV3/qxhHNkW2huX5SnW/okQSiZPivFL4qH7db88nvTNqKGGP0bZzRrzA2VNL2WE2qsXYRyjNFCiF0HmuYoOoT/rZZSxzhc1g5oq1yJvRM51SqZcRsGB7ZMhkFYIxDSB5QLts69+xMwlW3Dx8jVkyWxCl9bvoE2TOkmE3tMKZLZu8gh4Eli6n78Gv1zp+ETaPHTzwCyyCBgS+4E787ty09NnCoTSlSIbhMdqsUJgaf86DuPUPsqNDWU40YO4l7fTnp0LgyUOfD0g/eebod++TB6eliWixmEtob19XY7F0m8axKdS73yk370alDnkMsrwoUwfZn4gIAjObDz30kEqe7WOWeF36aD7qrqfvgK/QtGmomvfnLA5xbIX44SuqjhS0ohxJ7Buf7MHhsXjlM9boeIwj1RKGH1FgzDgp8dBa36Uue0y+9utYX+HifP6iiMbl4YIiAKcZWNuJWcUjZQ5G2z9ZwSk3eS5m7TIvnLFQKSBcXgrVXaUvU5z5OzQO2gCiwg5fmofaO/cUG3Z1mEYHM/XDMmhepYD0vcKfb94M/o+ou9Ed6NmJY7KNfyKxbOqwVH5Ndg6Dlf50O3fDX6D0tiK7vWsfdSaY34tmkEGm/rUBWXduyzHBwcyyM7ZNhkCaY9AuiCwCEa73YH127/E4jW7cPf+QxTInxv9OjdF3VovykLvaQ83i8ATAU8CK0labsEnYBkVJkFrdhzJImDq+46qDM48eROkHLnTFLFYIbAIJOPY9tD+e1F5CG7SFfbayts61x+ME7pA+89f8jhrVxKIrhp2nIkwIuLI3cLV+TClzWivXIBxnKL35WwWMHOHT/oe1FrcRHtwE9km0VnW9tv3y8eTBKSZ1n7TIPhAIKa0irOUlkpjrWbl2k6htI90D0n/UDaNxlmSlJwItTuBdfPyDWfHVNW1nLgdVFbqqyWXeUHl61TGzowhEDMISBL062dC7ybFQLFTibg1LhFi4ScD34pX7asmsDeJXJa87tMN4HcpWUhUAp9l1mbo8z8WcAaW5t5tGBL6qLKjnM8VIc5MTkIUlXke1l4K0e9+MIZ5w8G5ZbF668bqy0Fyf/wMw9xh8lCJyj1n7FR1I+Sp/PRnJXOP9CRJV5JZyggY4ztDe/mcPIgRWOyKYQhEDoGYJLCoE+GZ85dw6849J1LZs2bBk0ULInu2zLhz7wEWrdmFjdu/dAq9k+bV4B4tUbl8YMKLkTuKjLmSJ4GFB3eRaaCiE8BSmSN/XWhuX39EDPxn0dCBkEKJJQLLs0ONt9R/7e0bMA5TuqGSzoZl+nYQ3pEwEuknsX6X2d9qBXv9dpFYWl5Dt2cb+K0L5f/3N+PSU3hWKP8yrN2UbJyIbibGFiOtF6cWmhsB6KhaF7ZW/UKykyRv/ivVgK3TSK++DdRJ7bfvleugYjVYO49ONg53AuvGXSs8W9TbOgyH4/nXfNoHlc8YpvVTaW/RRPsrb8Heur9PPtgghkBUISBJ4D+YryqtpfioHNfWd1rAQuRpmX3lwpdE6w1j2qtKGHWVqyHL4MkBEViah/fBU8b55fOqIwwHiUMvq+illXxvZTDBPINe2KibvGhPH4Vxuvq7J+AyRupGOJh0Nu/L69J3q1Cxmvz/pgGNQDi4zDJoDsTijzo8MkseAX7BSOiOHpQHMAKLXS0MgcghEFME1h8nz2Hmkq344dDvEMWkde7UjTCuS1NnV8K/L111lhX+7+tHOhw1X3kO/bs2R7EiBSKHLlspVQSSEFgATHH1obEob+7NUzZByp622T+pbiQdDfB8Yyc8WQbWgYpga1ptNZYILKc+wuBmKvFVy+A5EP9r+00Ykm4Pv3meDKdQ5gVYeynls+HG2VMI3dnxbdJGZ1enSBm9GabrzWW2ln1A7ah9tSTCvpS5M3E9xJx5fXWRMcdR6eCEziCRYJc5u5aNXhZ0Bz+XP+3J32CcOUDxT6W007dBMmRSYa69fhnGUW1V/5ZaIwNPAku/YzlIP9Flvjad0Ny4DMPUftDevala30FkW8cREf0sZMwLke06nAhQN1DqCupupC1n6zMZQvEy/i3tLfuqVmPYm3b3z08IRnt29COXWcbOw82CT/ulgaWxWcDPGADu/ElVVPbXGsHeXGl0EoKQZRemfvVVmalU7iwVKq5awjClpyomoWgpWH3oWJhcnCm9TNBePg9jfCfle5pItenbAY4L5bbTpS9+01zo9u2S98YIrHR5zGxTUYpAzBBYh46eRMcB02Cz2VGiWCGULlkU2bNmdjbnuHPvPv44cQ5nL1x2irkvSuiPlyo/+nEmgfep8zfi8O+nwXFaNH/nNfRo1xC5cjCh92i4Jr0RWE5Nlgun5PCIPCEShVlkENB9+SH4D5W296HMyghmB7FEYNE+DYvGgDvynbxlR9W3YWsVJ/+/Yc5QcMd/kf/fX/ImGCxprrPMq38jVbc1C5WYBNFpyZ+Y6E26sV9DaAS7PM1ZNuYn+WSY1gfc2eOyD3vtyJa0+LPnaBnL71wB3WcbVeFYB86E8GTZkIZIGYaUaegy23t94ahWT7UGkbjuIuzUpt46RCF2vQXkSWDR54g+Ty4TiYybmHJHKNK64RN6Q3vrmmoJZxZfl9E+lbGGFCzmjCEQBgT0O1dC/9kGlWcqI6Muo/501YuG7Cv3TRim9wd3+qj8T9rCj+QmHKJvIGocdme3Ue7UEdUEx0t1YGs72DcnAYwyzB8B7tiPbr/7feFwa6Di2TmQBlr7JkB4umIAqz2a4vn96CwjpJcJeoOTgCEixmVCCmWNAQeQTifqv/gA+m2KxAkjsNLpQbNtRSUCMUNgteo5AX+evoAFU+JQ5Tnvqa37Dx5Fn1Fz8NSTj2PTQnX5AWVizVq6BRf+uYrMmYz48RPlAT0qTyaDBOWNwDIsjQd3SOm8Ym03BEKV2hkEkbTfpufbOlvznnC81jDNA4s1AotKoqg0ymVUGmhJ/NDZNpve/JriGgCicrdtmbwJlAUVSTOsnALuxz3yktTFj7r5RcLoJp5u5l0m5n8clrH+i7B7Nn5wdq+b+kHESjEjgVUo13CWDk7qpsoODJfWk/6j1dB/ogjtC8WfAWVXuYwybY2Dm6lEma2dRkKolLJQsSeB5Y0MNY9bDSlfQa/QUYakYWpfaK/9o/q78PRzsPaazLIPQnnBMV9pjoD+0/XQ71qlikPi9LD1nAChtA/EiJfsq5SaLERiw56ZQ7Sm470+sFXzIYNXFGBYOAbcMaX8yzmfBM7bD01S0hfK/XhqeAnP14K1g0K+G8d3gfaSoospPlkWloEzgwvBSxmhSxDe837b3qgT7K+3CG69DDKb+2UfDMsmyLtlBFYGOXi2zahAIGYIrOde74w61Sph6qiUxSKJwDpw8CgOfZ5U+Js0sUgbizSyvvtoflQcQEYPwhuBRW806M2Gy+x128BeT11iktFxC+f+DVP7gNrJu8zSbyrEp54L55I++Y41AovIKSoj1Dy4K+/P1nYQHC+9Ds8SCPHxErAMV7SgfAIkBIOSvJkl8mfaVifJFm5zarR8tUNexlGzEWzNAijbEASYhr0LEuJ1me3d3nDUqB/uLcScf8o6MEzsqiodFPMUgJVKB8Nw5lSiZxqp/u52bxbg2Q3TWcY6cUOqD5CeBBYdhGHWIHAnDivXgJdsL/qj5sE9GBL7qjCgfxdKlIOtz5Sw4BBzFwoLON0h4KnLSBskAXRbt3EQylZJcb+e4uPODJ5JG7x21o0kcPz6mdAd+ERekoTq6fuDtL5SMn75JOh+/ko1hDCwdh8X9sxL7ckjMM4cqMScOz/MEx6R/PTilggld6NsVMpKDdY8saJmMdQ0Jon+1ZB5EEOwXrDxxsJ87bkTMCYoTT4YgRULp8ZiTC8IxAyB9XL9nihepCDWzVPe2HsegiRJaN51HK5cvYH9O5SUWM9x1KUwWxa1Dkd6OdBY24c3AsvzZslRpQ5s7cKX0h1rmIU73iQdCKdshpQ9V7iXTdV/zBFYAPTbl4Ee0l0mliwHS/8Z4FdNhe7gF/K/pxlJK0mPSLb7d+RY6G0wvRUOtxlJiPeq0qmR9L9IBywQ83yrLeYuAMv41UzDyANMz5cD9OdQPSAld25JSjzfbg1qHw/S4RrZGtQR02W2Jt3gqK008UjWp17rbOpgtYsgEXcyz2vAUbE6bJ1HqVxozA9gSIxTZTjQALFISVgHzGBZ/AmLGgAAIABJREFUe4F8+NicmEHAU3fRGbiWg63zSDiS637rNfsqwJcNIUaKfreMI9uoNKVSywzTf7AA+q+2qyIRSpZ36oJJOn2II0zqjkr3SQdL1T2Xsq+z5YQxvqOqe3EodTGJ3CeS393ou9/gRsBQ9rJ5lqLpFHYwYnwBemnm1Dr9zxiBFeMHysKPKQRihsAaNXUFtn3yDV59uQKavF3dqYOVLUtmJ9jUefDk2b+x5aOv8e1Px9Cm6esY2uu9mDqIjBqsNwKL+/NXGGYrhFVIUqgzKsB+7pv0YIzDlc+OlDkbzIkf+uklPMNjkcCiEiXjaHVnP8u4laAsN8oEcZll2ALnQ3RamG77UvCfKxmPjmcqw9Z7clhD0dz4F6aRrVVrmOd8HHD2i+b+XZgGqYkPa+8pEJ6pFNZ9xJJzyqqk687d7HWawd5Y6YoVjv3o9++GfoNSNij9l3Gg+2UfeLfyC8qasFDDDg+Rd28xecvA4s6dUD+MeXx3aawPwc8aAu7cnyqXlP1ojUuEZHp0P8GMIZCeEdB99xn4tdOTbNHWcbizhM7T9N9+Cv26Gap/ps+pGCWNdfR7tkK/dbE6vrErQCXpSfbyyXroP1KXUpJAui1umk/fO6G6LjxJfRt1XLVbwa9KUO9jxCKIhZ8M1bIwDWqqellFQv7c2d9l//52AQ5ZYDHsyP2FLyOwYvggWegxh0DMEFhEUvUaPguHjiri3t7QrlWtIhJGdIPJGP4SmJg77SgM2BuBpblxBaaRbeRonWUlk5UOU1G4jXQTku6Pn8DPHa7c0JQsD2v/xKjYXywSWAQcZXxwZ44pmJYqD+6kIhyb1tc3d+k8DOOVLkQUqDnhA0jZcobt3PXf7IZ+o0JqOJ55Hrbek4Jajx6y6GHLZaHwGVRAUTSZ3vobSFvFTfNJzF8Y1hGLAyYNfd0etWenMhV3swyYAeqQRqSTy+y1m8LepKtPbr0RWDTR2L8BtOaHsg/LiMUQCxd3as4Z5gyD1u1zSIPEAkVg7T8TUpZsPq3LBjEE0gMCuoNfJiFLaF8kXk4i5u5mGtEKmptXlc9pGDv0BYpt5rHtIf2rZPM6ywF7KtpE5NdTrJz+TShQFLYBMyFljmxTJ8/ukFTuTpqQdO8r/349Vw02aiYRQqPfXPrtTc7szbrDXrNxCFdM/64M8Z3AXT7v3CgjsNL/ebMdRg8CMUNgEWRUIrj/4G/Y9/0RnL1wCXfvPbpRzZE9C0oVfxx1qldCxXKlogddFkmqCHgjsGhSpu7qm6hgsjNSDYINkBHQf7kF+g+XKDdRNeqD9ISiwWKVwNL98Dn41dOSv2msXg/2ln3TFGLjpO7Q/n1ajsHepAvstZXU+FAHR+L2JHLvMmpZTq3LgzESviUBXHezxK+CmLdQMG7TxVzKUKBMBXcLd+mg+1r8knjoflUac1DWk/v1RmOpayB1D/TFkiOw+MVjoTv8bZLr2DBnCLjjh1SuxbwFYRs4E2K2tC+P9mXPbAxDIJQIeGZAyt/FreJgr/q283+jPfvKFXPuvw7DPNWjPK5PgixQrzu4B/yqKUk+/9ThOpwvapI7L+7wtzAsHpvicVpGL4NYoGgoj9z54szgpr/l6dwS4oyvkAYfpc74+SOg+6+rJCOwovSQWFjpEoGYIrDS5Qlk8E0lR2AZR7WF9vplGR3LmBUQH0uaEp7B4Qv59oloIcJFvplt2Rd2txbPIV/QD4exSmBR6ZJxcAtnFog3s/WcCEfZwLSf/IAvxaH6vdug36KIyAsFn4B1VNJGGKFajzRANFaz8vlOpuTD3/Xo5tw9u81RowFs7yoiq/76Sw/jKfuPsgDdzf5mS9gbdIjY9rijP8CwQK1H5b64o9KrsHVKXt/SM9DkCCxPjR9nhzUdD1rf3cQceZzdECUfCbOIAcUWYghEEIHkiBRbi55wvNoQsZB9RXDly2GEZcoAOI78KKNHGaaWsSudL0rcuwHTACKtrYPngMqZ08JIu4vK+ZIzR5VasLVTOhOGMkbPMkKXb9GUCZYZO0O5VIbwxW+a68zuI2MEVoY4crbJKEGAEVhRchAZNYzkCCzDnKH/b+8+oKyoz/8Bv+zCshTFhoo1aiyxBkvs8aexSzQaC9FEDfbELjYUG3ZRBFGJNXZjQ6LGEjWxRCUaS7A3AqIUBVFQ6sL/zPgHWXYXd9ndu3fuPHNOzslhp7zv817h8mHmO5G8IW3ONu0PfaJqvc3yylSwvpMFPed9rCd51GfWj9cr2PUXdKGsBlhJT8maI8naI/NvsysqY0r/h1rcd/7FSJOCmutfY+f/V+AkRJhywR1NYjD/X1YS33RdpZyub9RqxrRoe95h1f4xIHlsJnnrYKG3dj33qrbu27zXb+jdYHUFWGVjPonKcxcczM1eZLE0vEruwLIRyLtAcvdIchfJ/FvVmhtE+XvfP+qe/plQRGtfzVtvEmCVjR4RX59YfV3F5HHI1i9+/7KU5JjkccFpJw+IJOBqyW3+l5jMW8vUPrdG8nbY5tjmDVzmPf/MrlvF9MPPbo5LlvQ55327pwCrpEetuSITEGAV2UDyVk5dAVbFHVdG6+cfmcsxfZ+jInm7jK15Bdods0u0mjlz7kWm9H2g4OtD1NVhlgOssg/fjMrLq98Fk/RZTIumth3YK8rfenku/w+9zWlhP4nzvwlvxtbdYsb+TfQI5axZUXnGAdXebJesq5Ssr5THreIvAyO5K2nuVlYe6QsDVli14Bw1avn/FVStunYaKDVkqyvASs6RvlVz0sRaTze7Q8eYdlL/dO0rGwEC3wkkj9dWXNs7krXy6tpm/t8eMX2/4rybNQmwWpe3ignX9o2yfzxYZw/JW/aSxwZb4ve/+Yua/273OT+fudWuMf2Amt8VmuqzWvb+61HZr/rjlsm5p+/zh5i5XeMe42+qGrN0ntavPBMVN3633poAK0uTU2vWBQRYWZ9gxuuvK8Ca9181Mt5iZstPXus89ZLv307X0o1kOcBK7CrPOijKPv+sGuP0350UM7fYuaVp0+u3fuUfUXFj4xZSX5hGph11XhrkNdVW21upmurcWT/PjF8eFDN2rX6XQqF6KhvxflRe/Mcal0vewDVzw60bVMaCAqzkTV7JItXzb8kjMtNPuDyS9bdsBAhUFyj/4I2oGHhmnY+6Jy/SSV44UozbnADr80+/iNZn/q7WOz1nt6mIacddEslbrYthq+ttkFMvuiuSR5ybc6st5J925vVRtfyPmvOyJXnued9+K8AqyRFrqkgFBFhFOpi8lFVXgNX6teej4rpz88JQlH1WrdU1ph13adHUlvUAq80T90SbwdXXlZpy2X0xu2OnojBO/vW9MnnN9jxrUxWisClXDmnSV5i3mvJNVJ66XySPz9m+F0iCm6m9vl/nrCVsKs87JMpGj5x76eQxmeRxmYZuCwqwanvDWvIo6fTjLo2qVX/S0EvZn0BuBMo/fjsqBpxW48+A5AUbyYs2inWbE2CNmzg14ukhkTwmN/+WvOU2eTNtsWxlY0dF5Tm/r1ZOoZznvxt2dodFY0rf+4uFJlN1zLuemQArU6NTbMYFBFgZH2DWy68rwCob9VFUXnBk1tvLdP2F+jJVX6SsB1itvv4yfXX57PaLRPIoUyy9Qsz4xa/r235B9qtrra7munjVGhvEtBP6NvnpK+4aEK2fbfm1xZq8sUaccOpZN7b4o3PJXQflL32/Jk3VlrvEzE23b3BXCwqwkscHK26/IsreeTUNMWe3rojpR18YyZo+NgIEFixQNvL9aHvlKZH8Q8CcrVjXvppT37wB1syq2dG2z6FR/tmIufVPP7x3zOz686IbfZsHrvsu0B8/Jsq+Hh9Tz745kjX6mnsrH/5OlD9yW0T7jhHtF4lZP1ozZm62Y3NftmTPn7xRd/aSy0aXFTuXbI8aI1BsAgKsYptIzuqpK8BK7gJJ3lRmazmBGfO8Trvlqvj+ylkPsIrB8Idq+KHXbP/Q8Q39+Yy9Do8ZO+zT0MN+cP+ycaMiWSTX9p3AjF8dEjN26l4yHAsKsOZtsvzt/0S0bh1JUGojQKB+AmWjPo62V/ZMH8Wbuc3uMb37MfU7sIX2mj/AShafT+pPtmJ6TL+FeFy2QALLLdmuQFdyGQIEBFg+Ay0qUFeA1aJFuXhRCgiwinIsiiJQcIH6BlgFL8wFCZSIQHIHU5uBp8f0U6+KWZ2Kc+2rOdTzB1jJr7e9pnfM+knXmLGtl/+UyEey6NsQYBX9iBRYQgICrBIaZhZbEWBlcWotU7MAq2XcXZVAsQkIsIptIuopRYFWU6fE7Mriv6uktgCr1bRvm3RtxVKcr56aVkCA1bSezkZgQQICLJ+PFhUQYLUof6YuLsDK1LgUS6DZBARYzUbrxAQyJ1BbgJW5JhSceQEBVuZHqIEMCQiwMjSsUixVgFWKU22engRYzePqrASyJiDAytrE1Eug+QQEWM1n68z1FxBg1d/KngQaKyDAaqyg4xslIMBqFF+uDhZg5WrcmiVQp4AAy4eDAIE5AgIsn4ViEBBgFcMU1JAXAQFWXiZdpH0KsIp0MEVYlgCrCIeiJAItICDAagF0lyRQpAICrCIdTM7KEmDlbODabVEBAVaL8ru4AMtnoL4CAqz6StmPQGkLCLBKe766I9AQAQFWQ7Ts21wCAqzmknVeAjUFBFg+FS0qIMBqUf5MXVyAlalxKZZAswkIsJqN1okJZE5AgJW5kZVkwQKskhyrpopUQIBVpIPJS1kCrLxMuvF9CrAab+gMBEpBQIBVClPUA4GmERBgNY2jszROQIDVOD9HE2iIgACrIVr2bXIBAVaTk5bsCQVYJTtajRFokIAAq0FcdiZQ0gICrJIeb2aaE2BlZlQKLQEBAVYJDDHLLQiwsjy9wtYuwCqst6sRKFYBAVaxTkZdBAovIMAqvLkr1hQQYPlUECicgACrcNauVIuAAMvHor4CAqz6StmPQGkLCLBKe766I9AQAQFWQ7Ts21wCAqzmknVeAjUFBFg+FS0qIMBqUf5MXVyAlalxKZZAswkIsJqN1okJZE5AgJW5kZVkwQKskhyrpopUQIBVpIPJS1kCrLxMuvF9CrAab+gMBEpBQIBVClPUA4GmERBgNY2jszROQIDVOD9HE2iIgACrIVr2bXIBAVaTk5bsCQVYJTtajRFokIAAq0FcdiZQ0gICrJIeb2aaE2BlZlQKLQEBAVYJDDHLLQiwsjy9wtYuwCqst6sRKFYBAVaxTkZdBAovIMAqvLkr1hQQYPlUECicgACrcNauVIuAAMvHor4CAqz6StmPQGkLCLBKe766I9AQAQFWQ7Ts21wCAqzmknVeAjUFBFg+FS0qIMBqUf5MXVyAlalxKZZAswkIsJqN1okJZE5AgJW5kZVkwQKskhyrpopUQIBVpIPJS1kCrLxMuvF9CrAab+gMBEpBQIBVClPUA4GmERBgNY2jszROQIDVOD9HE2iIgACrIVr2JUCAAAECBAgQIECAAAECBAgQKLiAAKvg5C5IgAABAgQIECBAgAABAgQIECDQEAEBVkO07EuAAAECBAgQIECAAAECBAgQIFBwAQFWwcldkAABAgQIECBAgAABAgQIECBAoCECAqyGaNmXAAECBAgQIECAAAECBAgQIECg4AICrIKTuyABAgQIECBAgAABAgQIECBAgEBDBARYDdGyLwECBAgQIECAAAECBAgQIECAQMEFBFgFJ3dBAgQIECBAgAABAgQIECBAgACBhggIsBqiZV8CBAgQIECAAAECBAgQIECAAIGCCwiwCk7uggQIzCswetyEuGvwk/H8v4fFJ599HjOrqqLL0kvEzzfbIA7df7dYaolONcDe/XBk/PrQsxYIeW7P38fe3baBTYBARgQmfjU57v/bs/Hc0P/GB8NHxaTJ30a7yrax2srLxc7b/iy677FdVFS0qbWbz8Z8EYNu+2u88PKb8cWEr6LToh3jZ13XiiN+u3v8eJXlMyKgTAIE5gi89Orb8dATL8Srwz6IcV98GVVVVdF5qcVjo/XXiIP22Sl+svrKvhv4uBAgQCCHAgKsHA5dywSKQWDWrNlx412PxNU3D44ZM78LrVZfdcX0S+o7H4yICRMnxRKLLRK3DOgVq67UpVrJL77yVhza87LovORisezSS9TazuG//WVst2XXYmhVDQQI/IDAkMf/FX363RJTpk6PRTu2j7VWXykW7dghDaOGvftxVFXNinXXXCVuvvLUaN+ustrZkt8vDjruovjm26mx4nJLx6ord4kx4ybEex99kgZe11x4fGy+8TpmQIBABgSSIPv4swfGy6+/G61atYrVfrRcrNClc/p7wAcfj4oxn0+IsrJWcVGvw6Pb9pv7bpCBmSqRAAECTSkgwGpKTeciQKBBAsefNTCGfzI6Tj/6gNhso7XnHpv8Jfacy2+Oh//+Ymy43upx21VnVDvvI0+9FKf0GRQnHrFvHPKbXRt0TTsTIFB8AsPeHR5XXndvHLzfzrHFxutGeXnZ3CI/HfNFHH5y3/jfJ2Pijwf/Kv5w8K/m/iz5S+0vDzo9RowaGycf1T09fs727EtvxDFnDIgOHSrj8Tsvi0U6ti++xlVEgEA1gdmzZ0fvS2+KpZdaLPbbfbtYpvPi1f57v+Xex+LyQfdE+3Zt45kH+lcLtH038GEiQIBA6QsIsEp/xjokULQCSVBVXtaq1seCkp9ttcfRMXXa9PRL6ryPEt523xNx8cA744LTDo1f7bxV0fanMAIEmkbg0aeHRs/zro2NN1gzbul/+tyT/v3ZVyIJwpM7rG7oe3KNi/Ud9Je4+e5H4/jD9o7DDujWNMU4CwECLSrQ7cDTY/jI0XFzv9PSR4XnbL4btOhYXJwAAQIFERBgFYTZRQgQWBiBPXucGe9/PCoevPn8WH2VFeaeov8N98d1tz8Ugy45KbbedL2FObVjCBDIkMBzQ4fFkadeHttsvkFcc9EJcys/4+Ib4sHHno9Lzjgiuu1Q/XGiZKeP/vdp7H7wGbHWj1eK+284L0MdK5UAgboEuh91Xgx75+O450/nxDpr/sh3Ax8VAgQI5EhAgJWjYWuVQNYEttvnhBj7+Zfx778Nig7tv1/35py+f457H/5n3Hf9ubUu5Jq1PtVLgEDdAskjRcf2viqefv7V6HXsb+OAvbafu/Neh/RO17p69I5LY6Xll671JJvudlS6Ptarj19X5yLw/AkQyIbAm+8Nj98cdV56V/Zjd14Wbed5sYPvBtmYoSoJECDQGAEBVmP0HEuAQLMJvPXe/2LfI86JDdZeLe68pne16xxz5oD0L7NHHrh7TJo8Jb75dkr6F9OVlls6tt50fW8da7apODGBwggkbyP9fPxX8dZ7w+OWex6PV4e9Hzv93yZxWe+jqq2PtckuR8S3U6bF60/eGG1al9da3Jw7Of/65wtitR95I2FhJugqBJpOIHkj6Wdjx0fyKPGdg5+M1q3Lo9+5R8emXX/iu0HTMTsTAQIEMiEgwMrEmBRJIF8CyR0Xh5x4aQx97Z3o3+eY2H7rjaoBHN2rf/zjhdfqRNl5259Fn1N61HhbWb4UdUsgewJzHhWct/LkEaGjf79n/HyzDao1lLzJdL3tfh/tKivilceuq7PZA4+9MP7z3/fTl0EkL4WwESCQDYE5jwrOqTa52+qAvXaIg/bdqdq6mHN+7rtBNuaqSgIECDRGQIDVGD3HEiDQLAIDbxoc1946JA2ukgBr/m369Bkx9LV3Y8XlOqdvKmrTpk18MeGrGPrq23HtLUNi1OjPY8tN1o3rLuvZLPU5KQECzSPw7ocjY9Ctf41Zs2elj/2N+GRMjB43IX2DYPc9touje+wZrcu/u9MqecHDRjsdHot2bB8vPnxNnQUd2vOyePGVt9JF3pPF3m0ECGRD4Mrr70vfPjp9xowYP+HreH/4qEj+/E/uzO513G9j3TVXqdaI7wbZmKsqCRAg0BgBAVZj9BxLgECTC9w5+Km4oP9tscaqK8TtA8+stvZVfS42/suvY4+Dz4gvv5oUN15xSmy24dr1Ocw+BAgUqcA7H4yIcy//cwx7d3gcuM9Oceoff5NWmtypue62DbkDq1dsuN4aRdqlsggQ+CGB5O3Edz/4VPS7/t5oW1ERD996USzTefEfOiz9ue8G9WKyEwECBIpeQIBV9CNSIIH8CCQLsyeLsK60/DJx64DTo/OSiy1U85defVfccu/j6RpZx/TYa6HO4SACBIpHYOJXk2OH7ield109O3hALN5pkbS4ZIH2yd9MqdcaWINvOj8Nxm0ECGRboN9198YNdz6SPk7Y69gD6t2M7wb1prIjAQIEilZAgFW0o1EYgXwJ3D3k6ejT79b40YrLxs39TksfDVzY7Y4H/h4XDrijwV9uF/Z6jiNAoPkFepxwSbou3p+vPC02+ela6QWTFz0kL3z4obcQJiHXy4/+Kdq3a9v8hboCAQLNKpCsaZesbZf8PpD8flDfzXeD+krZjwABAsUrIMAq3tmojEBuBG6774m4eOCd6d0RN1x+Siy5+KKN6r3/DffHdbc/FMcftnccdkC3Rp3LwQQIFIfAAX88P15/68M04P5Z1+8CrCT0TsLvS844IrrtsHmNQj/636ex+8FnxCordUkfN7IRIJB9gRdeeTMO69k3Nt5gzbil/+n1bsh3g3pT2ZEAAQJFKyDAKtrRKIxAPgRuvvvR6DvoL+lirMmi650W7dCoxmfMrIo9Du4VI0aNjbuu6R3rr71ao87nYAIEWl7g8/ETY4fuPaOqqiqeG3xVLNapY1pUsjh7skj7FhuvG9f3rfnShuT3luT3mB7dd42Tjty35RtRAQECjRa4cMDtcccDT8bv9t4xTjt6/3qdz3eDejHZiQABAkUvIMAq+hEpkEDpCiR3SSX/IposrDzokhPrtWD7yE/HxVPP/Sd+ueMWNV6jPfLTsZF8sX1u6LDYetP1YtAlJ5Uuns4IlJBAsjbN5huvG1tsvE6Ul5dV6ywJo089f1C6iPueu2wd5596SLWfdz/qvBj2zsdx8lHd4+D9dp77s2dfeiOOPXNAtCori8fuuLTeiz2XEKtWCGRO4Pl/D4v3Pvokdtt+s1i28xLV6p9ZVRV/GfJ0esd2eXl5DLn5glh5hWXSfXw3yNyoFUyAAIGFEhBgLRSbgwgQaKzAnEcAkvN0WWbJaFvRps5TdmzfLv7yp7PTn7/74cj49aFnRatWrdIvrit06Zz+/8/GfBHDPxkds2bNjg3XWz2uvuiEWLRj+8aW6XgCBAogsO3ex8e4LybGIh3bp48SL7VEp/S/5U8+G5f+N59sW2+6fvQ79+hoV1lRraJkn+TxwuQtYysut3SsunKXGPv5l+lxye8NF/c6vNbHCwvQlksQINBAgfsefibO7ntzelTy6G/y53y7yrbx9aRv4s33hsdXX38T7dtVxqW9j4htt+g69+y+GzQQ2u4ECBDIqIAAK6ODUzaBrAs8/s+X48Rzrq5XGx07tIuhj1yb7jtjxswY/Njz8fTz/0n/lfbLiZNi9uxIHyn6yeorRbftt4hdttu0xl0c9bqQnQgQaBGBV4d9EA/9/YX479sfpUHUxK8mRVlZWRpkrbvWqmkAtd2W3/9ldf4ik2OuvWVI/PPF1+OL8ROjY4f20XW91ePQ/XeLDTxG3CIzdVECCyMwafK3MeTxf0VyB2USTk+YOCmmTJ0WyT9krbzisrHlxuvGvrtvW+NFL74bLIy2YwgQIJA9AQFW9mamYgIECBAgQIAAAQIECBAgQIBArgQEWLkat2YJECBAgAABAgQIECBAgAABAtkTEGBlb2YqJkCAAAECBAgQIECAAAECBAjkSkCAlatxa5YAAQIECBAgQIAAAQIECBAgkD0BAVb2ZqZiAgQIECBAgAABAgQIECBAgECuBARYuRq3ZgkQIECAAAECBAgQIECAAAEC2RMQYGVvZiomQIAAAQIECBAgQIAAAQIECORKQICVq3FrlgABAgQIECBAgAABAgQIECCQPQEBVvZmpmICBAgQIECAAAECBAgQIECAQK4EBFi5GrdmCRAgQIAAAQIECBAgQIAAAQLZExBgZW9mKiZAgAABAgQIECBAgAABAgQI5EpAgJWrcWuWAAECBAgQIECAAAECBAgQIJA9AQFW9mamYgIECBAgQIAAAQIECBAgQIBArgQEWLkat2YJECBAgAABAgQIECBAgAABAtkTEGBlb2YqJkCAAAECBAgQIECAAAECBAjkSkCAlatxa5YAAQIECBAgQIAAAQIECBAgkD0BAVb2ZqZiAgQIECBAgAABAgQIECBAgECuBARYuRq3ZgkQIECAAAECBAgQIECAAAEC2RMQYGVvZiomQIAAAQIECBAgQIAAAQIECORKQICVq3FrlgABAgQIECBAgAABAgQIECCQPQEBVvZmpmICBAgQIECAAAECBAgQIECAQK4EBFi5GrdmCRAgQIAAAQIECBAgQIAAAQLZExBgZW9mKiZAgAABAgQIECBAgAABAgQI5EpAgJWrcWuWAAECBAgQIECAAAECBAgQIJA9AQFW9mamYgIECBAgQIAAAQIECBAgQIBArgQEWLkat2YJECBAgAABAgQIECBAgAABAtkTEGBlb2YqJkCAAAECBAgQIECAAAECBAjkSkCAlatxa5YAAQIECBAgQIAAAQIECBAgkD0BAVb2ZqZiAgQIECBAgAABAgQIECBAgECuBARYuRq3ZgkQIECAAAECBAgQIECAAAEC2RMQYGVvZiomQIAAAQIECBAgQIAAAQIECORKQICVq3FrlgABAgQIECBAgAABAgQIECCQPQEBVvZmpmICBAgQIECAAAECBAgQIECAQK4EBFi5GrdmCRAgQIAAAQIECBAgQIAAAQLZExBgZW9mKiZAgAABAgQIECBAgAABAgQI5EpAgJWrcWuWAAECBAgQIECAAAECBAgq7r7kAAAQ70lEQVQQIJA9AQFW9mamYgIECBAgQIAAAQIECBAgQIBArgQEWLkat2YJECBAgAABAgQIECBAgAABAtkTEGBlb2YqJkCAAAECBAgQIECAAAECBAjkSkCAlatxa5YAAQIECBAgQIAAAQIECBAgkD0BAVb2ZqZiAgQIECBAgAABAgQIECBAgECuBARYuRq3ZgkQIECAAAECBAgQIECAAAEC2RMQYGVvZiomQIAAAQIlKzDm8wnx6FND44VX3or3P/4kJn41Odq0KY/lllkqtt50/ejxm11jycUXrbP/R58eGoMffS7efn9EfDVpcsyaNbvWfTst2iFe+OvVNX722psfxJ2Dn4z//Pf9mPDl19G+XWWs+eMVY/cdt0z/V15eVrL2GiNAgAABAgQIFLOAAKuYp6M2AgQIECCQI4EkvNqp+8kxs6oq7ToJjxbv1DHGf/l1TJ02Pf21zksuFncPOiuW7bxENZkkqDrl/EGRBFjJttaPV4rluywV4z7/Mt7+YERUVc1Kf711eXks3XnxWGPVFeLqC4+vdo5+190bN9z5yNz9Fl9skZg0+du5195sw7VjwPnHRof2lTmailYJECBAgAABAsUhIMAqjjmoggABAgQIEIiI0y68LlZZsUtsv/WGserKy0WrVq1i9uzZ8cyLb8SpF/wpJn8zJfbcZes4/9RDqnndOfipuKD/bdG2ok1ce8mJsWnXn8z9+bsfjowjTrk8vpjwVZx29P7xu713rGH953sei8uuuTs9/uQ/dI9f7bx1tKusSIOvZ158PXpfdlN6N9huv9gsLu19pFkRIECAAAECBAgUWECAVWBwlyNAgAABAgQWTuD6Ox6OK6+/L5ZaolM880D/aifZ65De8d5Hn8RhB3SL4w/bu8YF7h7ydPTpd2ssv+xS8cTdfav9PLnDa/v9Torp02fEeSf3iF/v9vMaxz/+z3/Hiedck/76/Tecl97hZSNAgAABAgQIECicgACrcNauRIAAAQIECDRCIFmX6sBjL0zP8MZTN6aPAyZbcofW+r/oka53dc1FJ8Q2m29Q4ypvv/+/2Ofwc9Jf/9eQgbFYp45z97np7r/F5YPuiZVXWCb+dvsldVa4zV7HpXdxHXXgHnF0jz0b0YlDCRAgQIAAAQIEGiogwGqomP0JECBAgACBFhH4eOTo+OWBp6fXfvnRQekaWcmWrJn10+0PTYOsG684JZK1qubfPhz+aezx+zPSX3528IBqC8EfeeoV8dzQ/8be3baJc3v+vs7ekvAsCdG233qj6N/nmBYxcFECBAgQIECAQF4FBFh5nby+CRAgQIBAEQokjwE+/PcXI3kb4CefjUsXUZ82fUaNSucNsJIf7rz/Ken+Jx25b/TovmuN/R9+8sU49fw/xeKdFonnHhyQrq01Z9v1t6fGiFFj663xs65rxc39Tqv3/nYkQIAAAQIECBBovIAAq/GGzkCAAAECBAg0UiC5e+qiq+6IOx54Mj1Tss7VBuuslr5tsG1FRSR507jxE+OhJ15Ifz5/gPWn2x6KATfeH4t2bB+3XtUrVl9lhbkVjf38yzj4+Itj5Kdja10ja86jgUsvtVgacP3Qts6aq0SfU3r80G5+ToAAAQIECBAg0IQCAqwmxHQqAgQIECBAYOEEbrvvibh44J3pnVFnnXhQ7L3bNlFW9v1dUslZ33j7o9j/D31qDbCSBdgPOenSeHXYB1FeXhabdl07XbA9WbNq6Gtvx7dTpsUWG68bV194XFRUtKlW5Jy7t4495NdxxO9+uXANOIoAAQIECBAgQKBZBQRYzcrr5AQIECBAgEB9BJL1qZJ1qrrtsHlccsYRtR7yr5ffjMNP/u4NgvPfgZX82owZM+PA4y6K/779UXRoXxlTp02PDu0qY63VV4rdd9wy9thpqxqhWHJcjxMuiaGvvRO7/WKzuLT3kfUp1z4ECBAgQIAAAQIFFhBgFRjc5QgQIECAAIGaApvscmR8O2VqnHxU9zh4v51rJbrmliFx9c2D6wyw+vS7Ne4e8vQCz1HbiQfd+te46qYH0scPn7q3X7Rv19aICBAgQIAAAQIEikxAgFVkA1EOAQIECBDIo8D2+54Yo8dNiP322C7OOuHAGgSfj58Ye/boHV9+NanWAOvTMV/Ejt17xgpdOsfjd13WIMLk3Dt075newVXX9Rt0QjsTIECAAAECBAg0uYAAq8lJnZAAAQIECBBoqMBZl90U9z/ybLRp0zquOPsPsd1WG6anmFlVFf/695tx4YDbo2rWrBg9dnytAVby+GHyGGJl24q4+sLjY/21V5271lWraJWui7Wgbc4aXMk+ybUP23+3SBZrT46b/M2UGDNuQvqY4dP/ejUu7nV4dF5ysYa2aH8CBAgQIECAAIFGCAiwGoHnUAIECBAgQKBpBJI3BXY/6twY98XE9ITJGlbJGwGTu6OmTZ8RKy2/TPz5ytNi78POigkTJ9W6BtYfe10Z/3zh9VoLShZuX3n5ZWKHn28UB++3S3r++beb7v5b9Lvu3pg1a3b6o2RB+SRQSxaIn3d76t4r0rcj2ggQIECAAAECBAonIMAqnLUrESBAgAABAgsQSN4YmKxH9exLb0QSaCWh0wpdlopfbLVR9PjNrunaVMki7sli7vMv4v7B8FFx671PxAN/e/YHjVdbebm469qzag2xRn46Nu544Ml46dW347Mx42PqtGlR2bZtLLfskvHTdX4cO/x849hyk3XTcMtGgAABAgQIECBQOAEBVuGsXYkAAQIECBBoBoHnhg6L43oPiHbt2kbPI/eLLTdZLzov2WluyJQ8hjjhy0nxwitvxrlX3JLeUXX8YXvHYQd0a4ZqnJIAAQIECBAgQKA5BARYzaHqnAQIECBAgEBBBKqqZsX2+52YPnp41fnHzl07q66Ln3/lbXHXg0/Ftlt0jYEXHleQGl2EAAECBAgQIECg8QICrMYbOgMBAgQIECDQQgLDR46Obgeenl79P49fly7ivqBt4E2D49pbh6SPAl553tEtVLXLEiBAgAABAgQINFRAgNVQMfsTIECAAAECRSMwYtTY2PW3p6b1PPNA/1hqiU511pYsBv/rQ8+KJPQ64fB94tD9dyuaPhRCgAABAgQIECCwYAEBlk8IAQIECBAgkGmB3Q/qFR+N+Cw233idOOuEg2Kl5Zeu1k/yVsFXh70ffQf9JYa983EsvdRi8eBNF0SnRTtkum/FEyBAgAABAgTyJCDAytO09UqAAAECBEpQ4N0PR8YRp1weyVsMk22Vlbqki7i3Lm8dkyZ/E/8bNTYmTf42/dkaq64QV5zzx3QfGwECBAgQIECAQHYEBFjZmZVKCRAgQIAAgToEvp78bdzz13/Esy+9ER+PGJ0GVq1aRbRvVxnLLbtUrL3GyrHtll3j/zb/6dy3E8IkQIAAAQIECBDIjoAAKzuzUikBAgQIECBAgAABAgQIECBAIJcCAqxcjl3TBAgQIECAAAECBAgQIECAAIHsCAiwsjMrlRIgQIAAAQIECBAgQIAAAQIEcikgwMrl2DVNgAABAgQIECBAgAABAgQIEMiOgAArO7NSKQECBAgQIECAAAECBAgQIEAglwICrFyOXdMECBAgQIAAAQIECBAgQIAAgewICLCyMyuVEiBAgAABAgQIECBAgAABAgRyKSDAyuXYNU2AAAECBAgQIECAAAECBAgQyI6AACs7s1IpAQIECBAgQIAAAQIECBAgQCCXAgKsXI5d0wQIECBAgAABAgQIECBAgACB7AgIsLIzK5USIECAAAECBAgQIECAAAECBHIpIMDK5dg1TYAAAQIECBAgQIAAAQIECBDIjoAAKzuzUikBAgQIECBAgAABAgQIECBAIJcCAqxcjl3TBAgQIECAAAECBAgQIECAAIHsCAiwsjMrlRIgQIAAAQIECBAgQIAAAQIEcikgwMrl2DVNgAABAgQIECBAgAABAgQIEMiOgAArO7NSKQECBAgQIECAAAECBAgQIEAglwICrFyOXdMECBAgQIAAAQIECBAgQIAAgewICLCyMyuVEiBAgAABAgQIECBAgAABAgRyKSDAyuXYNU2AAAECBAgQIECAAAECBAgQyI6AACs7s1IpAQIECBAgQIAAAQIECBAgQCCXAgKsXI5d0wQIECBAgAABAgQIECBAgACB7AgIsLIzK5USIECAAAECBAgQIECAAAECBHIpIMDK5dg1TYAAAQIECBAgQIAAAQIECBDIjoAAKzuzUikBAgQIECBAgAABAgQIECBAIJcCAqxcjl3TBAgQIECAAAECBAgQIECAAIHsCAiwsjMrlRIgQIAAAQIECBAgQIAAAQIEcikgwMrl2DVNgAABAgQIECBAgAABAgQIEMiOgAArO7NSKQECBAgQIECAAAECBAgQIEAglwICrFyOXdMECBAgQIAAAQIECBAgQIAAgewICLCyMyuVEiBAgAABAgQIECBAgAABAgRyKSDAyuXYNU2AAAECBAgQIECAAAECBAgQyI6AACs7s1IpAQIECBAgQIAAAQIECBAgQCCXAgKsXI5d0wQIECBAgAABAgQIECBAgACB7AgIsLIzK5USIECAAAECBAgQIECAAAECBHIpIMDK5dg1TYAAAQIECBAgQIAAAQIECBDIjoAAKzuzUikBAgQIECBAgAABAgQIECBAIJcCAqxcjl3TBAgQIECAAAECBAgQIECAAIHsCAiwsjMrlRIgQIAAAQIECBAgQIAAAQIEcikgwMrl2DVNgAABAgQIECBAgAABAgQIEMiOgAArO7NSKQECBAgQIECAAAECBAgQIEAglwICrFyOXdMECBAgQIAAAQIECBAgQIAAgewICLCyMyuVEiBAgAABAgQIECBAgAABAgRyKSDAyuXYNU2AAAECBAgQIECAAAECBAgQyI6AACs7s1IpAQIECBAgQIAAAQIECBAgQCCXAgKsXI5d0wQIECBAgAABAgQIECBAgACB7AgIsLIzK5USIECAAAECBAgQIECAAAECBHIpIMDK5dg1TYAAAQIECBAgQIAAAQIECBDIjoAAKzuzUikBAgQIECBAgAABAgQIECBAIJcCAqxcjl3TBAgQIECAAAECBAgQIECAAIHsCAiwsjMrlRIgQIAAAQIECBAgQIAAAQIEcikgwMrl2DVNgAABAgQIECBAgAABAgQIEMiOgAArO7NSKQECBAgQIECAAAECBAgQIEAglwICrFyOXdMECBAgQIAAAQIECBAgQIAAgewICLCyMyuVEiBAgAABAgQIECBAgAABAgRyKSDAyuXYNU2AAAECBAgQIECAAAECBAgQyI6AACs7s1IpAQIECBAgQIAAAQIECBAgQCCXAgKsXI5d0wQIECBAgAABAgQIECBAgACB7AgIsLIzK5USIECAAAECBAgQIECAAAECBHIpIMDK5dg1TYAAAQIECBAgQIAAAQIECBDIjoAAKzuzUikBAgQIECBAgAABAgQIECBAIJcCAqxcjl3TBAgQIECAAAECBAgQIECAAIHsCAiwsjMrlRIgQIAAAQIECBAgQIAAAQIEcikgwMrl2DVNgAABAgQIECBAgAABAgQIEMiOgAArO7NSKQECBAgQIECAAAECBAgQIEAglwICrFyOXdMECBAgQIAAAQIECBAgQIAAgewICLCyMyuVEiBAgAABAgQIECBAgAABAgRyKSDAyuXYNU2AAAECBAgQIECAAAECBAgQyI6AACs7s1IpAQIECBAgQIAAAQIECBAgQCCXAgKsXI5d0wQIECBAgAABAgQIECBAgACB7Aj8P/1VJh60wr+hAAAAAElFTkSuQmCC", "text/plain": [ "" ] @@ -5325,7 +5611,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdB5QTZb/H8V/KNnpHEAEp0pWOYKXYsWFDsYCKBRUQ4RXpiIAIgqC8FhQrdrC82BUVRVSaIIKIKCJFpQtsT3LPhLvJBnY3ZVMmyXfOuedcd2ee8vkPb3Z/+8wzFpfL5RIHAggggAACCCCAAAIIIIAAAggggAACJhWwEGCZtDIMCwEEEEAAAQQQQAABBBBAAAEEEEDALUCAxY2AAAIIIIAAAggggAACCCCAAAIIIGBqAQIsU5eHwSGAAAIIIIAAAggggAACCCCAAAIIEGBxDyCAAAIIIIAAAggggAACCCCAAAIImFqAAMvU5WFwCCCAAAIIIIAAAggggAACCCCAAAIEWNwDCCCAAAIIIIAAAggggAACCCCAAAKmFiDAMnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEW9wACCCCAAAIIIIAAAggggAACCCCAgKkFCLBMXR4GhwACCCCAAAIIIIAAAggggAACCCBAgMU9gAACCCCAAAIIIIAAAggggAACCCBgagECLFOXh8EhgAACCCCAAAIIIIAAAggggAACCBBgcQ8ggAACCCCAAAIIIIAAAggggAACCJhagADL1OVhcAgggAACCCCAAAIIIIAAAggggAACBFjcAwgggAACCCCAAAIIIIAAAggggAACphYgwDJ1eRgcAggggAACCCCAAAIIIIAAAggggAABFvcAAggggAACCCCAAAIIIIAAAggggICpBQiwTF0eBocAAggggAACCCCAAAIIIIAAAgggQIDFPYAAAggggAACCCCAAAIIIIAAAgggYGoBAixTl4fBIYAAAggggAACCCCAAAIIIIAAAggQYHEPIIAAAggggAACCCCAAAIIIIAAAgiYWoAAy9TlYXAIIIAAAggggAACCCCAAAIIIIAAAgRY3AMIIIAAAggggAACCCCAAAIIIIAAAqYWIMAydXkYHAIIIIAAAggggAACCCCAAAIIIIAAARb3AAIIIIAAAggggAACCCCAAAIIIICAqQUIsExdHgaHAAIIIIAAAggggAACCCCAAAIIIECAxT2AAAIIIIAAAggggAACCCCAAAIIIGBqAQIsU5eHwSGAAAIIIIAAAggggAACCCCAAAIIEGBxDyCAAAIIIIAAAggggAACCCCAAAIImFqAAMvU5WFwCCCAAAIIIIAAAggggAACCCCAAAIEWNwDCCCAAAIIIIAAAggggAACCCCAAAKmFiDAMnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEW9wACCCCAAAIIIIAAAggggAACCCCAgKkFCLBMXR4GhwACCCCAAAIIIIAAAggggAACCCBAgMU9gAACCCCAAAIIIIAAAggggAACCCBgagECLFOXh8EhgAACCCCAAAIIIIAAAggggAACCBBgcQ8ggAACCCCAAAIIIIAAAggggAACCJhagADL1OVhcAgggAACCCCAAAIIIIAAAggggAACBFjcAwgggAACCCCAAAIIIIAAAggggAACphYgwDJ1eRgcAggggAACCCCAAAIIIIAAAggggAABFvcAAggggAACCCCAAAIIIIAAAggggICpBQiwTF0eBocAAggggAACCCCAAAIIIIAAAgggQIDFPYAAAggggAACCCCAAAIIIIAAAgggYGoBAixTl4fBIYAAAggggAACCCCAAAIIIIAAAggQYHEPIIAAAggggAACCCCAAAIIIIAAAgiYWoAAy9TlYXAIIIAAAggggAACCCCAAAIIIIAAAgRY3AMIIIAAAggggAACCCCAAAIIIIAAAqYWIMAydXkYHAIIIIAAAggggAACCCCAAAIIIIAAARb3AAIIIIAAAggggAACCCCAAAIIIICAqQUIsExdHgaHAAIIIIAAAggggAACCCCAAAIIIECAxT2AAAIIIIAAAggggAACCCCAAAIIIGBqAQIsU5eHwSGAAAIIIIAAAggggAACCCCAAAIIEGBxDyCAAAIIIIAAAggggAACCCCAAAIImFqAAMvU5WFwCCCAAAIIIIAAAggggAACCCCAAAIEWNwDCCCAAAIIIIAAAggggAACCCCAAAKmFiDAMnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEW9wACCCCAAAIIIIAAAggggAACCCCAgKkFCLBMXR4GhwACCCCAAAIIIIAAAggggAACCCBAgMU9gAACCCCAAAIIIIAAAggggAACCCBgagECLFOXh8EhgAACCCCAAAIIIIAAAggggAACCBBgcQ8ggAACCCCAAAIIIIAAAggggAACCJhagADL1OVhcAgggAACCCCAAAIIIIAAAggggAACBFjcAwgggAACCCCAAAIIIIAAAggggAACphYgwDJ1eRgcAggggAACCCCAAAIIIIAAAggggAABFvcAAggggAACCCCAAAIIIIAAAggggICpBQiwTF0eBocAAggggAACCCCAAAIIIIAAAgggQIDFPYAAAggggAACCCCAAAIIIIAAAgggYGoBAixTl4fBIYAAAggggAACCCCAAAIIIIAAAggQYHEPIIAAAggggAACCCCAAAIIIIAAAgiYWoAAy9TlYXAIIIAAAggggAACCCCAAAIIIIAAAgRY3AMIIIAAAggggAACCCCAAAIIIIAAAqYWIMAydXkYHAIIIIAAAggggAACCCCAAAIIIIAAARb3AAIIIIAAAggggAACCCCAAAIIIICAqQUIsExdHgaHAAIIIIAAAggggAACCCCAAAIIIECAxT2AAAIIIIAAAggggAACCCCAAAIIIGBqAQIsU5eHwSGAAAIIIIAAAggggAACCCCAAAIIEGBxDyCAAAIIIIAAAggggAACCCCAAAIImFqAAMvU5WFwCCCAAAIIIIAAAggggAACCCCAAAIEWNwDCCCAAAIIIIAAAggggAACCCCAAAKmFiDAMnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEW9wACCCCAAAIIIIAAAggggAACCCCAgKkFCLBMXR4GhwACCCCAAAIIIIAAAggggAACCCBAgMU9gAACCCCAAAIIIIAAAggggAACCCBgagECLFOXh8EhgAACCCCAAAIIIIAAAggggAACCBBgcQ8ggAACCCCAAAIIIIAAAggggAACCJhagADL1OVhcAgggAACCCCAAAIIIIAAAggggAACBFjcAwgggAACCCCAAAIIIIAAAggggAACphYgwDJ1eRgcAggggAACCCCAAAIIIIAAAggggAABFvcAAggggAACCCCAAAIIIIAAAggggICpBQiwTF0eBocAAggggAACCCCAAAIIIIAAAgggQIDFPYAAAggggAACCCCAAAIIIIAAAgggYGoBAixTl4fBIYAAAggggAACCCCAAAIIIIAAAggQYHEPIIAAAggggAACCCCAAAIIIIAAAgiYWoAAy9TlYXAIIIAAAggggAACCCCAAAIIIIAAAgRY3AMIIIAAAggggAACCCCAAAIIIIAAAqYWIMAydXkYHAIIIIAAAggggAACCCCAAAIIIIAAARb3AAIIIIAAAggggAACCCCAAAIIIICAqQUIsExdHgaHAAIIIIAAAggggAACCCCAAAIIIECAxT2AAAIIIIAAAggggAACCCCAAAIIIGBqAQIsU5eHwSGAAAIIIIAAAggggAACCCCAAAIIEGBxDyCAAAIIIIAAAggggAACCCCAAAIImFqAAMvU5WFwCCCAAAIIIIAAAggggAACCCCAAAIEWNwDCCCAAAIIIIAAAggggAACCCCAAAKmFiDAMnV5GBwCCCCAAAIIIIAAAggggAACCCCAAAEW9wACCCCAAAIIIIAAAggggAACCCCAgKkFCLBMXR4GhwACCCCAAAIIIIAAAggggAACCCBAgMU9gAACCCCAAAIIIIAAAggggAACCCBgagECLFOXh8EhgAACCCCAAAIIIIAAAggggAACCBBgcQ8ggAACCCCAAAIIIIAAAggggAACCJhagADL1OVhcAgggAACCCCAAAIIIIAAAggggAACBFjcAwgggAACCCCAAAIIIIAAAggggAACphYgwDJ1eRgcAggggAACCCCAAAIIIIAAAggggAABFvcAAggggAACCCCAAAIIIIAAAggggICpBQiwTF0e8wxu5Y8bdcOgSXI6XXrtybFq2eT4Igf31gdf6c2FX+rXzdvkcDhUr84xuuTcU3XNpT1ks1nNMyFGggACCCCAAAIIIIAAAggggAACcSNAgBU3pYrdQA8czNSlN43Wjr93uwdRXIB136Q5evfjJUqx29SmVWOl2O1avW6TDh7K0qkdW2n25MGy22yxmwg9I4AAAggggAACCCCAAAIIIIBAXAoQYMVl2aI76HvG/1eLlqzSaZ1a6bOvVhYZYBnBlRFgNahbS09NG6ZaNaq4B5mZla3BYx7TkmVrddeNvXTb9RdFd/D0hgACCCCAAAIIIIAAAggggAACcS9AgBX3JYzsBBa8v1ijH5qrO/pd6l6BZfx3USuwLuk3Sht/36p5s0epdYtGPoPau/+Aul8xRCkpdn25YKbS01IjO2haRwABBBBAAAEEEEAAAQQQQACBhBIgwEqocoZ3Mpv//EuX9x+jRvWP1UuzR2nk5Ke18NOlRwVY2//apbN6D1XdY2vog3kPFTmIIeNm66MvlunRiYPU7ZQ24R0orSGAAAIIIIAAAggggAACCCCAQEILEGAldHlDn1xevkPXDJggI8Sa//T97nBq6P2P64NF3x0VYBmPFQ4cPUs9z+qsKSNvLbLT59/4SA/NfkX9+/TU4P6Xhz4wrkQAAQQQQAABBBBAAAEEEEAAgaQTIMBKupIHNuGpj7+q5177UJNH9NdFZ5/ivsjYC+vDz78/KsAyzjPOv/W6CzXwpsuK7ODTr1Zo0OhHdc6ZHTR93B2BDYKzEEAAAQQQQAABBBBAAAEEEEAAAUkEWNwGRwl8s3yt+g+dpp49OmvKKO+KquICrMfmvqXHX3hHQ2+7Sv16n1ek6Her1uvGu6fo5HbN9czD//Gcs313FhVIIIHaVTPcs6GuCVRUpoJAEAKVyqaoTLpd+w7mKjPHEcSVnIoAAokgkGq3qlrFNOXmO7Vrf04iTIk5IOBXoODnX78ncgICCJRagACr1ISJ1cCefQd06Y2jlJaaogXPTFC5socDCeMoLsB6+InXNffV93XfXX107WVnFQmyau1GXXvnRLVp2VgvPTaSACuxbhvPbAiwErSwTAuBAAUIsAKE4jQEElSAACtBC8u0ShQgwOIGQSB6AgRY0bOOi55uHz5DS5b9qBcfHamTmjf0GXNYVmC1ba5nprMCKy5uhhAGSYAVAhqXIJBAAgRYCVRMpoJACAIEWCGgcUncCxBgxX0JmUAcCRBgxVGxIj3UeQs+0aRZ89z7WBn7WR15FBdgvfDGR5oy+5WA9sDqcVo7zZxwl6dpHjWLdFWj2z4BVnS96Q0BswkQYJmtIowHgegKEGBF15vezCFAgGWOOjCK5BAgwEqOOgc0yzZn91dubp575ZXVaj3qmt//3KF9+w+qScPjVCYjXc0a19XIQdfpy6WrNeC+GQG9hfDG3ufrntuuJMAKqCLxdxIBVvzVjBEjEE4BAqxwatIWAvEnQIAVfzVjxKUXIMAqvSEtIBCoAAFWoFJJcF6LM/sGNcv2JzXR8zPv0649+3VGr0Gqe2wNfTDvoSLbGDJutj76Ypmmjbld53XrRIAVlHT8nEyAFT+1YqQIREKAACsSqrSJQPwIEGDFT60YafgECLDCZ0lLCPgTIMDyJ8T3PQLFPUJonGBs0G5s1D5v9ii1btHIR23v/gPqfsUQOV0uLX5rliqUK0OAlaD3FQFWghaWaSEQoAABVoBQnIZAggoQYCVoYZlWiQIEWNwgCERPgAAretZx31NJAdZX363RbfdOV4O6tfTUtGGqVaOKe76ZWdm6e+xsff39j+rTq4dGDLzWx4E9sOL+tvCZAAFWYtWT2SAQrAABVrBinI9AYgkQYCVWPZlNYAIEWIE5cRYC4RAgwAqHYpK0UVKAZRBMe+I1PfvqB0pJsatNy0ZKTUnR6nWbdOBgppqfUN/9uGGZjDQCrAS+XwiwEri4TA2BAAQIsAJA4hQEEliAACuBi8vUihUgwOLmQCB6AgRY0bOO+578BVjGBI19rl6a/4k2bNoih8OpY2tV1/ndOqlf7/OUlppylAErsOL+tvCZAAFWYtWT2SAQrAABVrBinI9AYgkQYCVWPZlNYAIEWIE5cRYC4RAgwAqHIm2ELECAFTKdKS8kwDJlWRgUAlETIMCKGjUdIWBKAQIsU5aFQUVYgAArwsA0j0AhAQIsboeYChBgxZQ/7J0TYIWdlAYRiCsBAqy4KheDRSDsAgRYYSelwTgQIMCKgyIxxIQRIMBKmFLG50QIsOKzbsWNmgArserJbBAIVoAAK1gxzkcgsQQIsBKrnswmMAECrMCcOAuBcAgQYIVDkTZCFiDACpnOlBcSYJmyLAwKgagJEGBFjZqOEDClAAGWKcvCoCIsQIAVYWCaR6CQAAEWt0NMBQiwYsof9s4JsMJOSoMIxJUAAVZclYvBIhB2AQKssJPSYBwIEGDFQZEYYsIIEGAlTCnjcyIEWPFZt+JGTYCVWPVkNggEK0CAFawY5yOQWAIEWIlVT2YTmAABVmBOZjzrguuGa/Off2nEwGvVp1cPMw6RMR0hQIDFLRFTAQKsmPKHvXMCrLCT0iACcSVAgBVX5WKwCIRdgAAr7KQ0GAcCBFhxUKRihkiAFX+1I8CKv5ol1IgJsBKqnCLASqx6MhsEghUgwApWjPMRSCwBAqzEqiezCUyAACswJzOeRYBlxqqUPCYCrPirWUKNmAArocpJgJVY5WQ2CAQtQIAVNBkXIJBQAgRYCVVOJhOgAAFWgFAmPI0Ay4RF8TMkAqz4q1lCjZgAK6HKSYCVWOVM6tlY9+6Us3L1pDYIZfIEWKGocQ0CiSNAgJU4tWQmgQsQYAVuZbYzCbDMVhH/4yHA8m/EGREUIMCKIG4MmuYRwhig02XYBSxZmUob108Wp0OOtqcrv0NXORu2lCyWsPeVaA0SYCVaRZkPAsEJEGAF58XZiSFAgBW/dSTAir/aEWDFX80SasQEWAlVTlZgJVY5k3Y2qc9Mkn355z7zzxk2U44GzZPWJNCJE2AFKsV5CCSmAAFWYtaVWZUsEI0Aa9XajXr5rU+1Ys0v2rP3X5XJSFeTRsfporNPcf+fzWb1DPKaARO0et0mndetk6aNub3EwT8y503NmbdQx1Svok9ee1hWq/ePdS6XS+99+q3e/uhr/bxxiw4czFSliuXUpmVjXXNpD3Vs0zTst8ZPGzbr1XcWafnqDdq5e68sFotqVq+i4+vW0tmnt9eFZ3c5qs+du/fpxTc/1pJla7V1x07l5OapaqUKantiY13Rs2uJ4wwkwApH+9+8O1sVK5R11++pl/6nH9f/pv0HDum0TifqiSlDwu6YyA0SYCVydeNgbgRYcVCkIIbICqwgsDjVlAL2lV8qdc4DR40t564H5WjezpRjNtOgCLDMVA3GgkD0BQiwom9Oj7EXiHSANeOpN/T0y++5J2q32VS5Unl3mJSdk+v+2sltm2vWAwNVtky6+7/f+uArjZryjFJTU/TlgpmqUK5MkUhGQHVW76Ha8fdu3XLthRp082We8zKzsnXXqFn6dsU699fS01JVvlwZ7d13QPkOh/trN/Y+X/fcdmVYCmCM5eEnX9ezr35QbHtGUDd5RH+f73+yeLmGT3zKY5GWmqKUFLsOHsrynHfZBadrzJAb3HZHHv4CrHC1/+7zk7Tsh5/1wCMvyphrwdGnVw+NGHhtWAyTpRECrGSptEnnSYBl0sKEOCwCrBDhuMwUApaD+5U+tq8smQePGk/uTaOU3/4MU4zTzIMgwDJzdRgbApEXIMCKvDE9mE8gkgHWc69/qKn/fVVGMDNsQG9dcu5pykhPlcPh1JdLf9DoqXO1b/9BXdD9ZD00+jY3TlZ2rs7oNVCHMrM1+u7r1fvibkWiGauBrh84yf299158UPWPO8Zz3p0jZurzb1ap9jHVNObuG9SlfQv3Kq/MrBy98vZnemTOG3I6XRo3tK+u6HlmqYvy5Iv/06xn5rvbufS802QEOw3r1Va+w6k/t/+jpct/UvvWTdSyyfGevlb++ItuGDTZPY6uXdrorpt6qUnD49zf37PvgBa8v1iPzV2gvHyHrr6ku0YNvu6ocZYUYIWz/Tv6XqL/Pv+OWjaprztv7KVWTRvICAntdpuqV61Uar9kaoAAK5mqbcK5EmCZsCilGBIBVinwuDTmAmmzhsu2fkWR48i9ZrDyT7sg5mM0+wAIsMxeIcaHQGQFCLAi60vr5hSIVIC1e++/6nHVPcrNzdP9w26UsZLoyOOjL77XkHH/dX95/tP3q2mjuu7///4ZL+i1dxa5A5/XnhxbJNz4h5/T6//7Qic1b6iX/zvac44RXBkBVord5m6zYf1jj7p+wowX3I/6Va1cQZ++9rB7tVeoxz+79umsq+5xr+y69boLNfAm70qwktq8qO9Ibdq8zR1ePTpxoPtxw5J8Xn18jFo1a+BzSkkBVjjbNzo9pUNLzZ402L1CjCN0AQKs0O24MgwCBFhhQDRREwRYJioGQwlKwL54oVJfmVnsNXm9+ivvrPAskw9qYHF2MgFWnBWM4SIQZgECrDCD0lxcCEQqwJr76vt6+InXVa9OTb3/0pRiLc7oNUi79uzX7ddfrDtvvNR93vqNf+jy/oeDq3eenahGx/uGUMaqpDMuHejeh2nsPX115YXeVVS33TtdX323Rpf3PEPjh/Yrst/ft+xQz+vvc39v7ox71alNs5BrVbD6qnLF8vr8zRkBBTzG6qjr7jq8esx4PM9YrVXccfWACVqzbpN7r7AjH0EsLsAKd/vGqrmPX31YVSqVD9mJCw8LEGBxJ8RUgAArpvxh75wAK+ykNBgFAeuuHUq7v78seTnF9pZ3Xh/lXdQ3CqOJ7y4IsOK7fowegdIKEGCVVpDr41EgUgFWIEGS4WU8Bmg8DtjjtHaaOeEuD+EVt4zTul82q++V57ofPyx8FKyyOnKfLONxvE4X3O5+vG3KqFvVs0fnIktiBGBtz77Z/fjeiIF91KfXWSGX7pZh09wbsBsbtD844paA2jE2Qp/59Hz3I46fvDqtxGsKzq1ZvbIWvTHD59ziAqxwt1/4Ec+AJshJxQoQYHFzxFSAACum/GHvnAAr7KQ0GAWB9MkDZN2y0aen/JPPlv3bjz1fy+t6qfKuHBCF0cR3FwRY8V0/Ro9AaQUIsEoryPXxKBCpAOv8a+/VH1v/DpjEeCvgszOGe85//d3PNX768+7H/Ba9OcNnE/N7xv9XH37+vc7t2lEPj/X+fGO8ce/MywYH3Kdx4h39LtWAGy4O6prCJxfM03h00HiEMJBjzNS5mv/eYnVu30JPTxtW4iUff7lcd499zH3OD58+4340suAoLsAKd/t333KFbr6GrSgCqa2/cwiw/Anx/YgKEGBFlDfqjRNgRZ2cDkspYP/wFaW+M9enlbwLrpWzem2lPfeQ5+tGoJV7Q8k/IJVyKAlxOQFWQpSRSSAQsgABVsh0XBjHApEKsAoeDaxRrZKMx+v8HS2aHK8J/7nRc5qxibuxmbuxqfujEwep2ylt3N8zVleddslA95v7npgyRKd1OtFzTeFHA41N3Y3N4/0dV13UVVcVs1G8v2uN7xfMc/id1+i6y88O5BINvf9xfbDoO3U7ta0efWBgidd89d2Puu3eh93nLHnnMVWqWM5zfnEBVqTbD2iSnFSkAAEWN0ZMBQiwYsof9s4JsMJOSoMRFLBu+03pkwZIzsOvgzYOZ93Gyv7Po7L99L3SHh/j+brjpC7KuW18BEeTGE0TYCVGHZkFAqEKEGCFKsd18SwQqQDr3Gv+434DXzArk450HDXlGb31wVfqflpbzZpwOOj538ffaPikp1StSkX3I3XG2wULjr927lH3K4a4//PFR0eqbavGES/NOVcP09YdOzW4/+Xq36dnQP1NnPmiXn7rs+BXYH3ytM8eW8UFWJFuP6BJclKRAgRY3BgxFSDAiil/2DsnwAo7KQ1GSMCSn6e0B26R9e+tnh5c9lTljJnjXn1l/eUHpc/wrrhyNGmtnMFTIzSaxGmWACtxaslMEAhFgAArFDWuiXeBSAVYN949Rd+tWq/S7J+0et0mXTNggvuxucVvP6oK5cqoYG+tfr3P09DbrvLhN/a26nj+be43H44b2ldX9PRu7h6pOt0waLKWr96gS887TQ/ce1NA3RRscB/IHlhz5i3UI3PeVPWqlfTF/Ed82i8uwIp0+wFNkpMIsLgHzCdAgGW+mpRmRARYpdHj2mgKpCyYo5RPXvfpMveqO5V/5uE9HIw9sYy9sQoO98qs+w6/ppqjeAECLO4OBJJbgAArueufrLOPVID1xAvv6tG5C9yh02dvzFCZjLSQiC/pN0obf9/qDoeMR+5Ov2Sg8h2OIt9OaHRw05CH9O3KdQGtbgppQEdcZIRLRshU1Iqw4trftHmbLuo70v3tot6yWPi6Pnc8oB9++lXnd++kqaNv92myuAAr0u2Hwy1Z22AFVrJW3iTzJsAySSHCNAwCrDBB0kxEBWy//aS0qb4blDoan6ScId632Fh27lDGmOs943DVqK2s8c9HdFyJ0DgBViJUkTkgELoAAVbodlwZvwKRCrCMDdXP6j1UeXn57j2mxtzt/bkkGK15Cz7RpFnzdGaX1jr7jA4aMXmOWjSpr9efHFdkM58sXq7BYw5vej5tzO06r1unYLoL+lxjo3pjI3fjCGaz86sHTNCadZvc83ps4iBZLJaj+l709UrdNWqW++vPPTJcHVo3DSjAMk6KdPtBQ3GBW4AAixshpgIEWDHlD3vnBFhhJ6XBMAtYcrKUdv/NsvVf0sQAACAASURBVO75x9OyKz1DOeOelbNiVc/XLAf2KeM/V3jPKV9JWQ+9EebRJF5zBFiJV1NmhEAwAgRYwWhxbqIIRCrAMnxefPNjPfjYy24qY/VU/2sukLFZu7Fv1cFDWfrrnz3uxwwXLVmpB0fc4n5M7shj/4FD7jcL2m1WdWzTTF9884NGDLxWfXr1KLYEg0Y/qk+/WiGr1aK+V56ny3ueoXp1asrlcmnv/oPatmOnvvpujTZs+lMzJ9xV6lJOmf2KXnjjI3c7fa86V9f2Oku1alaVw+HUP7v3acXqDfr3YKauubS7p69ff9+my28Z6w74epzWzh1+GRvPG4exUf3bHy7RtMdfVU5uni46+xRNHtH/qHEWtwLLODHS7ZcaLUkbIMBK0sKbZdoEWGapRHjGQYAVHkdaiZxA6kvTZV/ygU8HuTePUn67M3w7dTpV5o5zvF+zpyjz0fcjN7AEaZkAK0EKyTQQCFGAACtEOC6La4FIBlgGjLEf04yn3pDT6XI7GSuNUlLs7n2qCh+fvTFdx1SvUqTlvROf1MJPlrq/Z+yH9cX8mT5v4zvyIuMNhcYG8Mab/goOu83m/n+Nxw8LjuNq19CHL3vf2hxqIY02x017zr3hfMGRmpriDqeM0Mw4jLcoGm9TLHx8v+pnDRk3W3v3H3B/2XjDoPHmxN17/vWM01hBNnH4zUW+UbGkAMtoL9Lth+qVzNcRYCVz9U0wdwIsExQhjEMgwAojJk2FXcC2brnSHr3Pp9389l2Ve9OIIvvKGHSBLLm5nu9lzv5Isnrf1BP2ASZAgwRYCVBEpoBAKQQIsEqBx6VxKxDpAMuA2bLtb81b8Kl7b6rtf+1Wdk6O0tPSVPuYqmrdopHOOr29TunQssjH6IzrjU3Sjc3SjaPwGwn9oRuruxa8v1irftyoXXv2u0OhcmUzVPfYmurYuql6ntVFJzSo46+ZgL9vBEZvLPz8cH97/1WK3e7eG+vE5g105YVd1e7EE45qywiv3lz4pYxHH7du36nM7BxVrVRBrVs20mUXnK4u7VsW27+/AMu4MNLtB4zDiW4BAixuhJgKEGDFlD/snRNghZ2UBsMkYDl0UOnj+spycL+nRWeFKu5HB10ZZYrsJePeK2X5d6/ne8YjhK7yRy/ND9MQE6IZAqyEKCOTQCBkAQKskOm4MI4FohFglZbHeKSu0wW3u1dxGauYjNVMHAjEowABVjxWLYHGTICVQMWURICVWPVMpNmkPT5GtjWHl84XHDl3T5PjhJOKnWb62H6y/rPVG2CNf06uGscmEkvY50KAFXZSGkQgrgQIsOKqXAw2TALxEGDNf2+xxkydq8oVy+vz+Y+4HyPkQCAeBQiw4rFqCTRmAqwEKiYBVmIVM4FmY/vuU6U9N8VnRvldL1HulXeUOMv0B++Q9Y9fPOdkD39MznpNEkgm/FMhwAq/KS0iEE8CBFjxVC3GGi6BeAiwrrp1vNZu+F03XHGO/nPH1eGauqcdY4XXLcMeDqpd4+2BN19zQVDXcDICBFjcAzEVIMCKKX/YO2cFVthJabCUAtb9u5U2rp8s2Vmelpw16yhn5JNypaSW2HrazHtl+3mlN8Aa/JCcTVhyXxIaAVYpb1guRyDOBQiw4ryADD8kAbMHWIuWrNJdI2e631y48IUHVffYGiHNs6SLjDcEdu45IKh2e51/uib858agruFkBAiwuAdiKkCAFVP+sHdOgBV2UhospUDa9KGybVztbcVqU/aI/8p5bAO/Lac9OV62H772nJdz6zg5Wp/i97pkPoEAK5mrz9wRkAiwuAuSUcBsAZbx1j7jTYXGsejrlbpv8hwdPJSlay7trpGDrkvGEjHnBBIgwEqgYsbjVAiw4rFqxY+ZACux6hnvs7F//rZSX5/tM428C29Q3vnXBjS11Bemyb70I8+5udcPU37nswO6NllPIsBK1sozbwQOCxBgcScko4DZAqxr75yoP7f/o8ysHBmP9hlHq2YN9OyM4cpIL3n1eTLWjznHlwABVnzVK+FGS4CVWCUlwEqsesbzbKw7tyvt/v6y5Od6puGs21jZ9z4mWa0BTS31jcdlX7TAG2BdMUD53S4N6NpkPYkAK1krz7wRIMDiHkheAbMFWMMnPaWvv/tRBw9lqvYx1dTzrC666erzlZaakrxFYuYJI0CAlTCljM+JEGDFZ92KGzUBVmLVM25n43Qqfcqdsm7Z6JmCKzVdOaOelLN67YCnlbLweaW895Ln/GBWbwXcSYKdSICVYAU10XSyd1n02zsW2TMssmW4VKa6VOtUp4lGyFAMAVZgcR8ko4DZAqxkrAFzTh4BAqzkqbUpZ0qAZcqyhDwoAqyQ6bgwjAIp772olIUv+LSYe80g5Z/WM6heUj59Uynzn/QGWD2uUN5ltwTVRrKdTICVbBWP3nx3rbbol5e9r31PLe9S+1GO6A2AngISIMAKiImTEkyAACvBCsp0TC1AgGXq8iT+4AiwEqvGBFiJVc94nI11229KnzRAcnp/sXU0a6ecgQ8GPR37kg+U+tJ0z3X5p56v3D53B91OMl1AgJVM1Y7uXLd8YtXWT72P/1pSpM4P5Ed3EPTmV4AAyy8RJySgAAFWAhaVKZlWgADLtKVJjoERYCVWnQmwEque8TYbS36e0h64Rda/t3qG7ipTTtnjn5OrXMWgp2NbuVhpcyZ4A6x2Zyj35lFBt5NMFxBgJVO1ozvXDS9ZtftH3/3rOj+Yr/9/0VZ0B0NvxQoQYHFzJKMAAVYyVp05x0qAACtW8vTrFiDASqwbgQArseoZb7M5ctN1Y/w5t42X46QuIU3Ftm650h69z3Oto0UH5dw5KaS2kuUiAqxkqXT057nqYZuy/jn8WviCo/3IfKVWiP5Y6LF4AQIs7o5kFCDASsaqM+dYCRBgxUqefgmwEvAeIMBKwKLGyZRsv6xW2oyhPqPNP/ls5d4wLOQZWH9fr/SHBnoDrAbNlDNsVsjtJcOFBFjJUOXoz9HllJaOsEku3wCrzT0OZdRwRX9A9FisAAEWN0cyChBgJWPVmXOsBAiwYiVPvwRYCXgPEGAlYFHjYEqWrEyljesn6797PKN1VqmhnDFPy5WWEfIMrH9tUfr4m7xt1qqn7DFPh9xeMlxIgJUMVY7+HDP/ln6Ybj+q41YDHCpfjwAr+hUpvkcCLDNVg7FES4AAK1rS9IOARIDFXRBTAR4hjCl/2DsnwAo7KQ0GIJD6/FTZv/3Y58ycYY/I0aBFAFcXf4pl325l3NfbG2BVqqbsya+Uqs1Ev5gAK9ErHJv57Vpj1S/zfPe/MkbSrJ9DlZsSYMWmKkX3SoBlpmowlmgJEGBFS5p+ECDA4h6IsQABVowLEObuCbDCDEpzfgVsq79R2hNjfc7L63GF8i67xe+1/k6wZGcp4+6LPKe50soo65F3/F2W1N8nwErq8kds8n9+atWfnxwdYDXu7VD1NgRYEYMPoWECrBDQuCTuBQiw4r6ETCCOBFiBFUfFSsShEmAlVlUJsBKrnmafjeXgfqWP7StL5kHPUJ016yhn1FNy2VPCMvwyA86WXN5fkDNnfyRZj/5FOiydJUAjBFgJUEQTTmHDyzbtXu27/5UxzOMvdqpWF6cJR5y8QyLASt7aJ/PMCbCSufrMPdoCBFjRFqc/HwECrNjeEDl7LMo2/m+vVKaGq9R7iRBgxbaeydZ72qzhsq1f4Zm2y25XzvDZch7bIGwUZe7pJWUe8LSXOf0tKaNc2NpPtIYIsBKtouaYz6rpNmX9fXSAVfccl+p0c5hjkIzCLUCAxY2QjAIEWMlYdeYcKwECrFjJ069bgAArdjfC1s+t2vKhdyVJ7VOdqn9h6f6STYAVu3omW8/Wrb8pfeKtPtPO63WL8s66IqwUGaOuk2X3X542sybOk6tKjbD2kUiNEWAlUjXNMZfi3kBojK7WaU4d37N0n1vmmGXijIIAK3FqyUwCFyDACtyKMxEorQABVmkFub5UAgRYpeIr1cW7f7Rqw0veAKtSU5ea9yvdX7IJsEpVEi4OQsC68UelTx/iucJxfHMZG7fLcvQqjSCaPerU9Im3ybp1kzfAGvWkXGFc4VWasZnx2kQMsOzffCj7/56Xs1kbOZu1l6NZe7nKVTAjf0KOKWunRaum2YqcW432LjW6onSfWwmJFsNJEWDFEJ+uYyZAgBUzejpOQgECrCQsupmmTIAVu2oc2iGtfsT7WvL0ai61HVa6XwQIsGJXz2Tr2Xh00HiEsOBwNG2rnEFTws5ghGRGWFZwZN8zQ85GLcPeT6I0mGgBVsqiBUp54/GjyuOs01D5zdvJ1ay9+34I155riXIfhHMeu9dateHFovedq9LCqabXswIrnN6lbYsAq7SCXB+PAgRY8Vg1xhyvAgRY8Vq5BBk3AVbsCunMl74d6Q2wZHGp8ySHLKXYn5oAK3b1TLaebWuWKu3xMZ5p57fqpNwBD4SdIW32KNnWfudpN2fAA3K06hT2fhKlwUQKsFLee1EpC1/wWxpXSqocjU+Uq3k7OZu2l+PY+n6v4YTABf78zKo/Py76g6lCA5da3lq6P7wEPhLODESAACsQJc5JNAECrESrKPMxswABlpmrkwRjI8CKbZGXP2BT7gHvI1fGCixjJVaoBwFWqHJcF6yAfeVXSp1zvzfAanOqcm8ZG2wzfs9PnTtZ9mWLPOfl3jRC+e27+r0uWU9IlADLWHVlrL4K5XCVqyhHy05yNm0rRwvjccOKoTTDNf8v8MsrNu36oehHg8vWkk4anI+ViQQIsExUDIYSNQECrKhRl9jRlm1/67w+9x51TmpqiiqUK6P6xx2jLu1b6sqLzlTliuWPOu/eB57Uwk+Xauro23V+d/9/rPzsq5UaOHqWzjq9vR65/84Sx7Z2w++66tbxan5Cfb3x1Difcwv6LamBqpUraPFbs8wBHeNREGDFuADJ3j0BVmzvgLVP2vTvb95fDJrd6FDlJgRYsa0KvQciYPv+M6U9+6A3wOrQTbk33hfIpUGdk/rKLNkX/88bYF09SPmn9wyqjWQ6Oe4DLJdLqS8+LPvSj8JWNuOtmI5mbeVs3kHOxsbjhqlhazsZGvphpl2Z24ueaWpFl9qPYAWWme4DAiwzVYOxREuAACta0iX3UxBgZaSnqm2rEzwn5+Tm6Z9de7Vl2z/ur1UsX1Zzpg1Tiya+K6ZjHWAZAVtRwZox5koVyumxSYPMAR3jURBgxbgAyd49AVZs74BN8236+3tvgHX8RU7VOiX0/URYgRXbeiZT7/YlHyj1peneAKvLucq97p6wE6S8/YxSPnrV027epTcr7+yrwt5PojQY7wHWkSvujLoYb53MHjJdrqo1PWUy3oJp7MNmXbdM1l9/kiU/N6ASGuGVEWId3gy+nZx1GgR0XTKftHSETS5H0SuwrKnSyRNYgWWm+4MAy0zVYCzREiDAipZ0YAGWEQS996L3j5wFV23/a5fGTHtWS5f/pGaN6+nNOeN9Gox1gBXoyi9zaMduFARYsbOnZ0kEWLG9DbZ9adMf73t/MTimi1MNLibAim1V6D0QAfuX7yr11Ue9wdLpPZV3dfj/MmX/6BWlvj3XG5Sde7VyL74xkCEm5TlxG2A5HEp9ZpLsqxb71M1ZtZZyh06Xs1K1Yutpyct1b/RvXbdc1vXLZdu+OeDau8pXOrw6ywi0WnSQ8d8cXoGc3RateMj7BkJbGZccmb5hVpcpBFhmumcIsMxUDcYSLQECrGhJly7AMq7es++ATr90oFwul75+51GfFU8EWOaoo79REGD5E+L7ERUgwIoor9/Gj3y7U6UmLjW/MfTHMViB5ZecE8IkkPLpm0qZ/6Q3wOreS3mX3x6m1r3NGI8PGo8RFhz5Z1yk3N53hb2fRGkwHgMsS36+Uh4fI/u6Zb7hVc06yjFWXlWoHFR5LAf2yfbTMnegZft5pYz/DvRw1K4vp7Eyq3l7OY2N4VOS+3HDveutWv+cdwP38vVcytppUX6mV7TjmHzZywYqzHmRFiDAirQw7ZtRgADLHFUpeISwuBVYBaPseP5tOpSZrUVvzFDN6t7PeAIsc9TR3ygIsAoJ3TVyppo0rKs7b7zUn5v7+7m5ebrurklq1ayBRg2+LqBrOMlXgAArtndE5l/SDzO8byJMr+pS2/8QYMW2KvQeiID9w1eU+o53ZVTeOb2Vd8lNgVwa1Dm2ZZ8pba53GbqjY3fl9BseVBvJdHK8BVjGo3+pj42UbcMPPmVy1Kqn3CEPh2UD9pAfN7SlyNmohXvvLPcqrToNJUvRj9Il6j22/QubNn/gnXONjk73vo3Zu7xfazPUoYzqoe/dmKh2sZoXAVas5Ok3lgLRCrBWr3Vp85+hPykRS6NQ+m7d0qp6xwX+uRdIgPX3zr3qdsXd7n2wlrz7mCyFPlcJsEKpUvSvIcAqZN7izL46uW1zPTP9PwFXwliCaNz4Xy6YGfA1nOgVIMCK7d3gzJe+HekNsGRxqfMkhyxFv7Hc72BZgeWXiBPCJJCy8HmlvPeSp7W8C65TXs/rw9S6txnbmqVKe3yM5wuOEzsr53bv2w/D3mGcNxhPAZYlJ0tpj46QddNaH3VjX6qcwQ/LVbZc2Ktx+HHDNbKuWxH844bG2w2btpWzRfvDK7QqVAn7+MzW4MbXrNq50vuBZOzTuHOlRQe3en+haXWnQ+WPI8AyS+0IsMxSCcYRTYFoBVgvvObQ4m+SJ8C67iqbzugS+C8l/gKsg4eyNPT+x/XVd2s0YmAf9el1ls9tQoAVzX81ofdFgFXKAOvMywZr774DWv3ZM6FXIYmvJMCKffGXT7Ipd394/ppNgBX7eibLCFLeelopH7/mDbAuuUnGKqxwH8beRunTh3iadZ5worLvfjjc3SRMe/ESYFmyMpX2yFBZt2z0sXfUO0G5g6bKlVEmKjUpzeOGzlp15WjaXq7m7eQ44US5UtOjMuZodrJmlk0Ht3k/n1rc7NTWLy3av9H7NeOxd+Pxdw5zCBBgmaMOjCK6AgRYkfEONcAqk5GuUzq09AzK4XRqz95/tX7jH6pXp6b6XnWeLj7nlKMGHesAq0HdWqpSuUKRmL0v7qbzunWKDHSctUqAVYoAa826Tbp6wARVqlhOS955LM5Kb47hEmDFvg4/PWnT/t+8vww06+dQ5aah/TJAgBX7eibLCFLf+K/si97yTDf38tuV371X2Kdv2bpJGRNv8wZYxzVU9ognwt5PojQYDwGW5eC/SpsxVNbtv/uGV8c3V+6gyXKlRSe8KqrmIT9uaLfL2aDF4c3gm7eV87jGCfG44ZFvIGw3wqHNC63avcb7mXXCNQ5VOym0z6xE+XdnpnkQYJmpGowlWgIEWJGRDjXAKm40KSl2nX16e53btaO6ndrWdAFWSYpDb7tK/XqfFxnoOGs1qQOsjb9v1cbftnlKNmzC42p0/LG69dqLSixjviNfmzZv16vvLJKxFLH7aW01a8LAOCu9OYZLgBX7Omyab9Xf33uX59a/0Knap4a2PJkAK/b1TJYRpLw8UylfLfQGWFcPUv7pPcM+fcuuv5Qx2rvHoataLWVNeCHs/SRKg2YPsIwVT2lTB8u60/vZb9g7Gp+k3LsmypWSZppSlOpxw7IV5Gja5vCjhs07yFmpqmnmFehAsvdYtHKK9w2E1lSXTp7g0G8LrPrrO+9nVoNLnTrm5NA+swIdC+cFLkCAFbgVZyaOQLQCLPbAKvmeKe4RQofDqf0HDunH9b/p6ZcXauWPG92rmaaN8X35T6xXYE0dfbvO784qK3//y5DUAdZ/n3tbs597259Rid8vk5GmebNH64QGdUrVTrJeTIAV+8pvX2zV5ve8vwwc09mpBpeE9ssAAVbs65ksI0h9YarsSz/2BljX3aP8LueGf/qHDqjMUO/KLlfZCsqaNj/8/SRIi2YOsKz7ditt2mBZdv/lo21skJ47YIJcdnO/8a9UjxvWrCNHMyPMaifnCSfJlZZh+jtuz3qLfn7OG2CVq+vSiXc49McHVm37wvuZVfdcp+p0De0zy/QIcThAAqw4LBpDLrVAtAKsUg80wRvwtweWMf18h0NX3TpeP/+6RVNG3aqePTp7VIINsBZ9vVJ3jZqls05vr0fuv7NE3bUbfnf326JJfb3+5Difc4PtN8HL6Hd6SR1g5eXla9nqn/XFN6v1xTertO2vXbLbbCpbtuR9JKwWq/uxwdYtGummq8/X8XVr+YXmhKIFCLBif2fs+cmqn1/w/jJQqbFLzW8O7U2EBFixr2eyjCD1mUmyL//cG2D1u0/5HbuFf/pOp8rccY63XYtFmf/1Bmfh7zC+WzRrgGXZvUNp04fKuucfH+D8lh2Vd+t4ueyFXmYRJyUI+XFDm03O45sf3gy+aTs56jaWrIFvkhstnm1fWvXH+95x1ejgUqPLHTry67VPd6r+BQRY0aqLv34IsPwJ8f1EFCDAMkdVAwmwjJHOmbdQj8x5U5eed5oeuNf7Butgg6RvV6zTTfc8pNM6tdITU+4pEWHZDz+r7+AH1alNM82dcS8BVilumaQOsAq77d1/QN2vGKI2LRsH9RbCUthzqSQCrNjfBpl/Sz9M9/7yllbFpXb3EmDFvjKMoCSB1CfHy/7D194A69axym99akTQMgZfJOONdQVH1qz35Eox92qdiEAE0KgZAyzrX38q1djz6t89vuFV61OVe+vYAGZl/lM8jxv+tEy2n1cdtb9XSTNwZpRxB1nGZvD5zdrLVbWmKSa88XWbdq7w7nVV/3ynap/h1N/fWbRpgXdlVs2OLjW8LLTPLFNMNMEGQYCVYAVNwOkY+yC6yhW9UXao0yXAClUuvNcFGmA99/qHmvrfV3VG55P038l3ewYRbIC14+/d6nHVPapRrZIWvTFDFov3M+vImb345sd68LGXdeWFZ2rsPX0JsEpRegKsQnhjpz2rrdt3EmCV4oYK9lICrGDFwn++M1/6dqTv6oPOk/NlCeEP8qzACn99aLFogbTZI2Vb+73nmzkDHpCjVWT2DcgY3luW/bu9AdaDr8pVMf72FIrGvWS2AMu67Tf3hu2WQwd8w6t2Zyr3xuGS1RuERMMnWn2U6nHDGnXkbNZWDmP/rCbG44ax2dR+zWM2Hfzz6BeM7Fpj0S/zvHWr2tKpJtexAita95a/fgiw/Anx/VgK2Jd8oJS3nlLeRTcq/9QLwrb6lAArllX19h1ogDXgvhn6culqXX/FObr3jqtDDrCMC3vdNFobNv2pKSNvVc+zvI8jFhbJys7VZTeP1h9b/3av1DJWbBU+gg3OzKEdu1EQYBWyz83NU25evsqVNf/eELG7ZcLbMwFWeD1DbW3Fgzbl7PX+otDmHocyagT/VicCrFArwHXBCqQ9Mky2DT94A6zBU+Vo0jrYZgI6P338jTJW8RQc2ePmylnzuICuTbaTzBRg2TZvUOqse2XJOuQbXnXqody+vsv3E71O1i0bD6/MWrfM599NIPN2Nmwph7F3VtO2cjRoHsglYTnn29E2OXO9n0vthjuUVtml/Rst+ulpb4BVsZFLLfqzAiss6GFohAArDIg0EREBY+VV+tgbZMk86G7feWwD5d48Ss5jSv95ToAVkZIF3ai/AMv4Xf/Z1z7UrGfmy2q1aP7TE3z2sQ4lSFr87WrdPnyG0tNS3WGY8Vii8bbDguO3LTs0btqzWrHmF3Vp31Jzpg09al6h9Bs0TgJdQIBVqJir1m7U5j//0tlndFDZMiXvg2Vc9tV3a/T7lh3qekobHVe7RgLdFtGbCgFW9KxL6umnOTbt/7XQX7r7OlW5WfB/0SbAMkc9k2EU6dPulnXTWs9Uc4Y9IkeDFhGZetrUgbL9tt7Tdvbw2XLWOyEifcV7o2YIsKy7dsi+YrFsH8zzefTTsM075TzlXTsk3plLNX7v2w2Xy7Z+ZVCPG7rSM+Rs0kaOZu3kaNlBrqqR2QM0d59Fyycf/QZCY+IHt0prHvX+clD2WOmkgfmlMuHi8AkQYIXPkpbCK5D6/EOyf/uJp1FXmXLKHv+cXOUqlrojAqxSE4algYIAy3jJ2sltvX9wcbpc+vfAIf3865/KzMqWzWbVqMHXux/nK3wUBEl1alVXhfJlixxT5Yrl9NRU3xDqlbc/0+RH58l426HRd8N6tZWWlqp/du3Vlm2H9948uV1zPTL+TpUvd/Sq5oJ+6x93jCpXLF9kv5UqlNNjkwaFxSneGyHAKlTBeyc+qYWfLNUt116oQTdf5re2L7zxkabMfkV9rzxXwwb09ns+JxwtQIBljrti0wKr/i70WnJjQ1xjY9xgDwKsYMU4P1SB9MkDZKwqKTgiGSqlzRou2/oVnr5yBj7o/gWe42iBWAVYxhsGbSu+kHX55zJWXhV1uMOrPndLJexRkYw19XnccP0KWQ7uD5jBWa3W4dVZxhsOm7aVEXCF49i7waL1cwu9gbCOSyfedXiVVfZui1Y+5P1eafZtDMdYacNXgACLO8KMArbf1iltqu8v/7l97lb+qeeHZbgEWGFhLHUjBQFWUQ2lpabomBpV1KF1U/XpdZbPyquC8wuCpJIGUrVyBS1+a9ZRp2zavE3z3vpM369aL2NvLIfDocqVyqtlk+PV86wu7jcVGqu+ijpK02+p0eKwAQKsQkW7uN9I/fr7Nr346Ei1bdXYbzk3/bFdF90wwv0P4K25D/g9nxOOFiDAMsddsX2xVZvf8256VbOTUw17EWCZozqMosgfRCb0l237Zs+3ckY/LUftehHBSn1qguyrFnvazr1lrPLbRGbD+IhMIIqNRjPAMva1si3/XPZln/usxitqunndL1fe5bdGUSJ+uzKCYfv6lbKsXx7044YO4+2GzdrK2bydHA1bhoxw5GdS9XYuNb7ycICVnyl9P967AsueLnUczwqskLHDfCEBVphBaS4sAunj+sn691ZPW8b/VuX8Z2ZY2jYaIcAKyqrmzQAAIABJREFUGyUNIeBXgACrEFHnngP078FMLXnnMVWqWM4vXk5untqe3d99rnENR/ACBFjBm0Xiir3rrVr/nDfACnVPEVZgRaI6tFmUQIaxj8U/2z3fyhr3rFw160QEK/Wl6TI2fi04cq8dovxTzotIX/HeaKQDLEt2lmyrvpZt2WeHwxWn/72P8npcrrzLCK9CubcKP25oNQKt7X8E3IzxdkPXCa0PbwZvhFrVjw342l/ftOmfZd6/VNc736ljzzj8RxWXS1o6vPCLR1zq/KCDhXUB60b2RAKsyPrSevACKe+/pJT/Pe+90GpT9pin5QzjzwwEWMHXhSsQCFWAAKuQXOseNykv36E1n811PxsbyGEEWMbzrqs/eyaQ0znnCAECLHPcEln/WLTq4UKPZFR2ydgwN9iDACtYMc4PVSB9xDWy7t3puTx74jw5q0RmL8KU+U8o5dP53gDr8tuV371XqENP6OsiEWBZ8nJkW7NUNmOl1dplsjjy/Bo6q9eWo90ZcrbvJsex9f2ezwmBCZTmcUNX1WOU36ydXMb+Wc3aypVR9P4ixkjWzLbp4JZC+zLe4FDl5t4Xi3w31i5HtnfMHcfmyx6blyUGBpdEZxFgJVGx42Cqlt07lD72Jp/Pjbyzr1LepTeHdfQEWGHlpDEEShQgwCrEc+Zlg7Vz9z59/Oo0HXtMNb+3zv4Dh9TlwjtU3LOwfhvgBBFgmeMmcDmlpfcV/ou2dPLEfFl9v+R3sARYfok4IUwCGf+5QsYv0wVH1pTX5apQOUyt+zaT8t6LSln4gueLeRdcp7ye10ekr3hvNFwBliU/T9Z1y92hlRFeWXILpRXFIBkBphFaOdqfKWddNtmP+L3kcsm67TfZ1q2QsTrLunFtQOGie1xWqxx1T5DTCLNatJfz+GaS1ftHlCPfQNj2Pw6lV/UGWEe+ObftvQ6lVwn+zbkRN0rCDgiwkrDoJp5y2vShsm1c7Rmhs1I15dz/nFwpaWEdNQFWWDlpDAECrEDvgbtGzdKir1dqcP/L1b9PT7+XvfbOIt0/4wWd1qmVnphyj9/zOeFoAQIs89wVK6bYlLPH+xfv1kPyVaZmcOMjwArOi7NDF8i4+2JZsjO9Adb0t0tc0RF6T5J90QKlvvG4N8Dq3kt5l99emiYT9tpSBVhOh2wbVsu2bJFsP3wtS9Yhv07OClXkaHu6nB26ytHA+8YhvxdyQtgFSvO4oSvNeLtha/fLEbKP66Dvn6rrGZ/F5lLnSb4rglfPsuvQNu8UTrorX2Uj8wRx2J0SvUECrESvcPzMz/79IqU+O9lnwDl3TXY/1hzugwAr3KK0h0DxAqzAKmTz0RfLNGTcbKWnpeqxiYPUuX3xr2Rf+eNG3T58ug4eytLE4TfrknPZ0DeUf2gEWKGoReaan562af9Gb4DV9HqnqrQIbiN3AqzI1IZWjxYoc9d5Ur534+bMWe9JKakRobIv/UipL0zztJ3f5VzlXscfLYrCDjrAMlbx/PaTjF80bCsXB/QGPFfZCspvc9rh0KrxibxVMCJ3fekbDfVxwz22dlpZ1vvvrWwth04a7Lu6au1TNv27yft51aK/Q8bejRyxFyDAin0NGIFkyclU+shrZbzso+BwtDlVObeMjQgPAVZEWGkUgSIFCLAKsbhcLt18z1R9u3Kd+6vdTmmjrqe0Uf3jaqlMRpqMTds3//mXvlz6gz7+crmM81s1PV7zZo8OeM8s7kNfAQIs89wRv71t1V9LvXu/1b/AqdqnE2CZp0KMpLBAmdvP8gHJfPyTiAEZm4anPTXe+0Nw29OU039MxPqL54YDDbCsf/xy+PHAlV/67GVW3NyN/ZIcrbvIYexp1bSNz+Nm8eyVNGMv/LjhumWy/vpTsY8bbkm9TL+k3+mhOSbvEzWr8ab7cUPj7YbO41vo51dStXut9/PqhD5OVTsxuM+rpLGP8kQJsKIMTndFCqS8MlMpixd6vmes8jQeHTRW7UbiIMCKhCptIlC0AAHWES7GWwiNVVhLl//k955p1ayBe6VWtSoV/Z7LCUULEGCZ587Y/pVVmxd6fyGo2dGphpcF9wsBK7DMU8+EHklursoMusA7xZRUuVdgReiw/bxSaTPv9QZYzdopZ+CDEeotvpstKcCy7tgi2/efybbiC1l3et8gWWxolZYhx4kny9G+q5zNO8hlD3JTvvimTOjRl/S44fr0IdqWeqFn/o2yn1b93Hk+v4iuqzJeOw518HytYS+HanZiBZYZbhoCLDNUIbnHYN3yi9In3+GDkHvF7crvFrmXrxBgJfc9x+yjK0CAVYS3sbLq4y+X6fX/faHVP/2qrOxcz1kpdptaNDlevc4/XRefe4rsNu+mo9EtXWL0RoBlnjruWW/Rz8957+eKDVxqcWtwbyIkwDJPPRN6JJkHVOYe7w+ixuqcrOlvR2zKxmqh9Ae9Pww76zdR9r2PRay/eG74yADLeAOUfdkXshr7Wm3f7HdqrpRUOVp2PPx4YMuTZfw3R+ILuB83XLvMvRn8qp8v036Ldz+zkw6NUnXHEh+EjWm36o+03p6vNaj5ueqc4ZCjaTu5ypZPfDATz5AAy8TFSYahOR1Km3irbNv/8MzWUbueckY+GdGVuwRYyXBzMUezCBBg+amEw+HUnn3/uve6Sk9PU7XKFZSSwl+Bw3UDE2CFS7L07WTvtGjlNG+AlVrRpfYjCLBKL0sL4Raw7N+jjOFXeZo13j5ovIUwUof1rz+VPv5GT/POmscpe9zcSHUX1+0aAVZG5j79+8XHyl/6qWx//OJ3PsbKKmfTdnJ06CbHSZ1lPOrBkbwCR76BsHNmP5XN9w0/N6f20a/pN3uQ6ufMU6Ocp93/7azbWPnN2srVrIOcDZvLZU9JXswYzJwAKwbodOkRSPnkDaUseMpHJPu+2RF/My0BFjchAtETIMCKnjU9FSFAgGWe28LllJaOsEku78a4J0/MlzWIvJYVWOapZyKPxLL7b2WMutYbKFWpoeyJ3keMwj33owOzKsqa8lq4u4nr9iwH97s3YU9b+YVcG9b4n4vVKofx1rn2XeVoc7pcGWX8X8MZCS+Qd0Ba9oD3Q8f9BsKxWbJtWiPruuXuFVrGyoo/Uy7Shoy7PR51ct5V05wZR/m4UtLcG/27WrR3v+HQWatewhvGeoIEWLGuQPL2b927U2lj+8p4RLngyD/zYuVe5d1TL1I6BFiRkqVdBI4WIMDiroipAAFWTPmP6nzlQzZl7/YGWCcNzlfZWoGPkQArcCvODF3gqBVRNeooe/yzoTfo78oj9txypaYpa6Z3c1h/lyfq9y3ZWbL98JVsxhsEN/wgOf2s2LRY5GjUSo72Z8rR7kwe9UrUG6MU89q/yaKfnvKuBC5TS2o92Pu2UaNp43HD3R9u1c/LW3t6qpn3uVpl3e+3Z2elqnI2aytHs/ZyNmsvV7kKfq/hhOAECLCC8+Ls8AmkzRou2/oVngadFSq7N253pUX+DyQEWOGrIy0h4E+AAKsYoZ9/3aJPF6/Qxt+36t+Dh1SnVg1N+I/3ERLjsp2798nhdKpmtcqyWLy/9PtD5/teAQIsc90N6+batG+D915ucp1TVVsGvpE7AZa56pmoo7Fs3aSMibd5f0g99nhlj/J9ZCDccy8z4GzJ5d0kOnP2R5LV+9KDcPdn1vYseTmyrVnqfoOgde2yYt8kV3j8juObydnhTOW37yZX+UpmnRrjMoHAX99Y9ds73n9X1U5y6YRrjg5Gjc8p4/Oq4KhcZYdapz1U4tsNi5qes05DOZq1db8kwNmohVx29lwr7W1AgFVaQa4PRcC2+hulPTHW59Lcm0Ypv/0ZoTQX9DUEWEGTcQECIQsQYB1BdygzW+Mffk7vffatz3eaNDxOC56Z4PO1m4Y8pG9XrtNTU4fqlA4tQy5CMl9IgGWu6hu/OBi/QBQc9c536tgzCLDMVSVGY928QelTvI8EOOudoOzhsyMKkzHschmPyRUcmdPmS2WTY/WGJT/P/fiWEVoZ4ZUlN9u/dd1GymvXVY4OXeWsXN3/+ZyBgKRNb1n197fez6C6ZztVp/vRn0EHtlj042xvgFWujksn3uVwPzpk3ej7uGGgsMYLA5yNWslZ8Lhh7eMDvZTzCgkQYHE7RFvA+MNK2pi+su7b5ena0fgk5QyZFrWhEGBFjZqOEBABVqGbwNiwvf/Qqfpu1Xr3V6tVqai6x9bUyh9/UVEB1rwFn2jSrHm6vOcZGj+0H7dTCAIEWCGgRfCSHV9b9fv/vL881OzoUsPLAt/InRVYESwOTXsErBt/VPr0Id4fVBu1VM49R+9/E06yjDHXy7Jzh6fJrAkvyFUtiOdrwzmYaLTldMi2YbVs338m2+olsmQd8turo1Y9pXburrLdztO/ZaoqMyfw/+3w2zgnJIXA2idt+vc3/6uAj3zpSHo1l9oOO/p+877dcJls61f6hND+QJ0VqsjZrI2czTrI0cJ43LCiv0v4viQCLG6DaAukzH9CKZ/O93TrsqUoe/wzclWN3mc0AVa0q05/ySxAgFWo+gveX6zRD81VpYrlNObu63XOmR3d321xZt8iA6xff9+mi/uNVOPj6+jtZx9I5vso5LkTYIVMF5EL9/5s0fpnvX/VrtDApZa3Bv5LKAFWRMpCo0cIGHtcGHtdFByOpm2VM2hKRJ3SJw+QdctGTx/ZIx6X87hGEe0z6o27XLJuWiu7sdJq5eKAftl3Vq8tR7sz5GzfTY5j68t4C2GZdLv2HcwlwIp6AeO/w+/vtyu/UFba5h6HMmp4H90tmGHeQWnZBO9m7/ayUscxvntlHaVh3N/bfpNt3QpZ1y0L/nHD2sfL0byde+8sZ+NWMlZscRwtQIDFXRFNAdu2zUqbdKvk9K7UzL2on/LPuyaawxABVlS56SzJBQiwCt0ANwyarOWrN+jRBwaq26ltPd8pLsA6cDBTJ/ccoLJl0vX9+08k+a0U2vQJsEJzi9RVWbssWjXVG2Cllnep/SgCrEh5025oAsZjbGmPj/FcnN+qk3IHRPaPCOnTh8q6cbU3wLr7YTlPODG0CZjsKusfvxx+PHDFFz6PYBQ3TGeVGu7QytiM3Vn3BJ/TCLBMVtw4Gk5eprRsfKHX3lpc6jzJIUsRW80Z29EtHV74FbkudZkS+GeVweLez23jGlmMQOv/324YKJexV5azcUt3mOV+u2GdBoFemvDnEWAlfInNM0GXS+kP3uHzxyVnzTrKHv20ZPP+LBuNARNgRUOZPhA4LECAVehO6NxzgHLz8t1hlM3m/YmpuADLuLTN2f2Vn5+vHxdF8A1YCXy3EmCZq7gup7R0hE1yeR/hOHlivqyFf08oYciswDJXPRN1NLaVXyltjveNY442pyrnFt/NW8M9dyMwM4KzgiPn9vvlOLFzuLuJWnvWHVsOPx5ohFY7t/vt13icytH2dDk7dJWjQfNizyfA8kvJCcUIGI8OGo8QFhxlakqthxS/qurb0XY5c72Ndbo/X7a00HlL87ih8XICYyWos3l7OVp0SOqXFRBghX4PcmVwAvbF/1PqK7N8LsoZNrPEz6jgegj8bAKswK04E4HSChBgFRJs3eMmVapYXl/Mf8THtbgAK9/hUOseN7tXYH333uOlrUVSXk+AZb6yr5xqU/Yub4B10qB8la0d2DgJsAJz4qzSCRjBS9qzD3oaye/QTbk33le6Rv1cnfrcQ7J/94nnrJy+98rRqUdE+wx345bdO2Rf9oWsyz6Tbfsffpt3la2g/DanHQ6tGp8oBfC2XQIsv6ycUIzAX99a9dtb3j8eVj3RpSZ9il9VtXySTbn7vZ9V7YY7lFb56McNQwIv5eOGjtr13KuzXM3buf/tuFJKkayFNIHYXUSAFTv7ZOrZcvBfpY+6VpacLO/PAp3PUe71Q2PCQIAVE3Y6TVIBAqxChe96+WDt2XtA3773uDLSvXsbFBdg/fDTr+pzxwPsgVWKfzwEWKXAi9Clxh5Yxl5YBccJfZyqdmJgbyIkwIpQUWjWR8C+5AOlvjTd+0Nrl3OVe909EVVKfe0x2b94x9NHbu+7lH/GRRHtMxyNW/ftlm3F57Iajwj+8YvfJl0ZZeVo3UUOY0+rpm0ka3CPYRBg+SXmhGIEfn/Hqh2F3oJ7XA+njjur+M+eH2bYlfmXt7Fg/tgSbBE8jxv+tFzWn1cEFAAX9GFsKO1s1FyuZh2Ub+yhVadhQGFwsGM0y/kEWGapRGKPI/WZSbIv/9wzSeOzK/uBl+QqUy4mEyfAigk7nSapAAFWocIPvf9xfbDoO42++3r1vrib5zvFBVh3jHhEX3zzg667/GwNvzO6mwVG8n79duU6/e/jb7Tyx436Z9deORwOVa9WWe1OPEE3XHGOmjWuV2z3b33wld5c+KV+3bzNfV29OsfoknNP1TWX9vB5LLOgAQKsSFYytLZ/f9eqHUsKvcb8XKfqdCXACk2TqyIhYP/yXaW++qin6bzTeyrv6kGR6MrTZsq7zyrlg5e9AdbFNyr/3Ksj2meojVsO7ndvwu7e1+rXH/0240rLkOPEk+Vo31XO5h3ksgf4zHARLRNg+eXmhGIE1j5l07+bCv/xxKFqJxa/ourINxa2uMWhig3DtALLT5VK9bhhuYr//7hhOzlbdJDxeG4iHQRYiVRNc87F9stqpc3wXWll/BErv8u5MRswAVbM6Ok4CQUIsAoVfdXajbr2zolKS03RyEHX6bILTnd/98gAKzMrWw/NflVvLPzCHcosfGGy6h5bM+5vn337D2rw2Me07IefZbFY1LB+bdWpVV0Oh1Mbf9uqv3bukdVq0eQRt6hnj6P3frlv0hy9+/ESpdhtatOqsVLsdq1et0kHD2Xp1I6tNHvyYNmP2FSRAMt8t43xF3DjL+EFR432LjW6IrDNcVmBZb56JuKI7J/OV+p874sz8rr3Ut7lt0d0qimfvK6UBXO8odnZVynv0psj2mcwjVuyDsm2eols3y+SbcMPkrPkf7PGG9QcLTsefjyw5clhe6MaAVYwVePcwgLLHrAr74D3K8b+V8Y+WMUdPz9v1Z513s+qptc7VaVFYH9sCau88bjh1k2yrV8Z2tsNa9WVo2k7uYz9s044Ua7U9LAOL9qNEWBFWzy5+rPk5yp93E2y7PYuv3Q0aKacYb57YUVbhQAr2uKB9bdl2z9696Ml+m7VOv2+5S/9e/CQMtLTVL1qJdWuWVWndGylrl3aqO6xNXwaNJ7K+mfXPp+vGflAlcoV1PyEeurZo4vOPqN9kYMo6tojTzy3a0c9PHaA58v3PvCkFn7q3We1qIarVq6gxW957/Mt2/7WeX3udZ9qLKQxFtSUdIyYPEfvfLRELz46Qm1b+b6AJzBN85xFgHVELaY/+bqeeeV991fr1ampjq2buYOqGtUqqffF3fXr5q366rsfZbyB0DiG3naV+vU+zzwVLcVIXC6XRj801z3Xqy7qpprVK3taM0Ks59/4UA8/8brKZKTpywUzVSbD+0OWEVwZAVaDurX01LRhqlXj8F8UjbBv8JjHtGTZWt11Yy/ddr3vIzcEWKUoWIQu3bfBonVzvY8Nla/vUqvbCbAixE2zIQjYP3xFqe/M9VyZd05v5V1yUwgtBX6J/auFSn15prfP03oq75rIrvryNzr3Y01rlrpDK+tPy2Vx5JV4ibGyytm0nRwduslxUmcZK6/CfRBghVs0Odpz5EjfjQnsDYQFIhtft2nnCu+KrUaXO1SjQ3RWYJVUlVI9bmj8Gz2+xeHN4Ju1lbNu47h73JAAKzn+zcZqlinvPqeUD+Z5u7falD3maRlvH4zlQYAVS/2j+87Ly9djz77l/p3e+P3WOIzfTStWKOdeWPHP7n3KzT38M1OX9i01Z5rvir6CEMoIelJTDn82ZWbnyAiNjAUfxtHt1LaaPu4O98KNwkfBta2aHi97MSvaO7drrjv6Xeq5rCDAqn/cMapcsXyRmJUqlNNjk7w/dxYOsNLTUvX2sw/ouNq+QVzhhgiwzHWPhn00z73+oWY+Pd9zYxfVQUqK3R1eXXvZWWHv38wN9rz+Pv2+ZYeenTFcHds09Qz1kn6jtPH3rZo3e5Rat2jkM4W9+w+o+xVDZJgZwZfxj6zgIMAyX7Wzd1u08iHv/xinlJc6jCr+TVCFZ8AKLPPVMxFHlLLwBaW896JnankXXKe8ntdHdKr2ZZ8rde4kTx/R2Di+qAlZ8vNkXbf88EqrH7+VJTe75HlbrXI0ae1+PNDR5nS5MspE1IkAK6K8Cdv4gc0W/fi493Mno7pLbYaW/IeT3xdateMr7wqs+hc4Vfv0GKzA8lOVUj1uWLa85+2GxuO9zkpVTX8PEGCZvkRxO0Dr31uVfv/NPiuMjUf5cy++MeZzIsCKeQk8AzCCqX53T5GxV7URBt1ybU9d0KOzjBVMhY/1G//Q50tW6eR2zY9akVQQQhm/t1arUtFzmRGGff39Wg0ZN9u9SGPYgN7qe6Xvo6vFXVuSUEGANXX07Tq/e6eAMAsCLGPf7qzsXPfv5XOn3+t+iqqogwArINb4Pmn33n/1zkdf6/tVP7vT1kOZ2e4lh8Zyw45tmrkfLzSWHybb0fv2+/Xj+t/0+pPj1KJJfff0t/+1S2f1HupefvnBvIeKJDH+oX/0xTI9OnGQup3SxnMOAZY576Bvhtskl/d/AE+emC9rANviEGCZs56JNir7208r9aPXvGHSJTcr95yrIjpN+7plSn10hKcPR8tOyrnjgYj2Wbhx65+/yv75AtlWfS1LtvetS8UNwNmwpRwnn+V+i6CrbNF/zYvE4AmwIqGa+G3+/Z1FmxZ4A6yqLZ1qcl3JYdSfn1r15yfeAKtOd6fqnm2+AOvI6lm3/CL7+lWyrF9++HHfIA7nMcfJ2bStnC06ytG4VURWUQYxnCJPJcAqrSDXFyeQ9vAQn30dXVWPUfbYZ8L2CHxp5AmwSqMX3mvHTXvO/fSU8VTQnIeH6Zjqwe8z6C+EevWdRZow4wX3vtBvzhnvMwF/1xY129IEWFde1FXfrljnzivG3H29riq0j3fhvgiwwnuf0VqcCKzd8Luuvv1+dxL94ctT3XuFGcdnX63UwNGz1POszpoy8tYiZ/P8Gx/podmvqH+fnhrc/3LPOQRY5iz+yqk2Ze/yBlgnDcxX2WP9j5UAy78RZ5ReIPWNx2Vf9H/sXQeUE1XbfmYmZXfpvffeexUQQaQLoiigIE2Q3jvs0rv0Ir0oTURE4RMUFAHpvfdepPfdTZmZ79xZk5tsTbKZ7GRz7znf+X83977leS9J5slbfrILMn/SDda6LRIvOB4JwrVzME7va98hFiwJ04CZqup0FE6mLpLpi/EtMV8xSJVqw1qxDuRUSfMDCyOwfHYlkpWim7/yuL/PPTKKDBshQ0dsK2t1CfmbaZ/AcgycU7nhhWMQHtxyOa6yIEDKVxwSmWxYrALE3IUBnuLhsiAvb2QElpcBZeIUBHQHfodh9TQnNEz9pkMsXEYTCDECSxNhAHlW/azrGKWsb/Py8ciXO5tHhiVEQl29cQ/NOoxAqpQhOLh1gZOOhM7GZlBiCKyPGtYE+V+73hOV9j6/rJpob+XjqIsRWB5dBXbIHxEgvb7uP3yqTGdcu3kndDoBM8f0RJVyxezurNywHdMWrkfXtk3Ru9PHsbq5c+8x9Bk1F/VrV1LqhW2LEVjavBUXVvB4fpF+ES7SRkSGMgn3FmEEljbjmdys0q+bDf2erXa3SC8qS80mqrop3L8F4zjatF3Kng+RoxarqtNRuGHpBOiO7Y6hT8qZH1LFOrBUrA05Q9IPE2EEls+uRLJSdH6pgBdXHCYQthaRsWz8nzmPj3O4soFmbWUqK6NQa9f6NWoVPHu54fkjEC4eB5ko6uqSg4KVckO5WEWIpapASpfJ1aNe3ccILK/CyYQB4MLfICisvdO/B2uFd2HuPFIz+PiKwLIc3Qfx+iXN+K22IfqK70DIT1vWJKRvzIxV+OGXvxRCZ/wQz3ujJkRCXbx6Gx93DkW2LBmwc8M3SUpg1a9dGTNGd8f4Wd9h3c+7lMFpi6YOiAEVI7ASuj3sdb9HwFYqaHOEZFt93qIevvy0vlMtMHl93vLNWLh6S7wN7Q+duICO/aYodcbLvhlsx+d1ePxNh/0eSD914OJm4NZf1PiCjYEC9RN2JlVIVFYei2vCWLEdniMgLZsKeS/NRuI7DwFXQ+Xx2c+fQuxHs0eRKSuEaes8d8LNk+KMIcDpw/ZTXL2Pwb/fHEjixrXR3QgyCNDreESaRVis/pUN42ZI2HYvIrB7FGBy4GqqDwFSJZD1+/gccHwRNSJjcaDC1140Sguibl4Czh2HePYwcMG9ckNkzQWuRAXwZaoBpSv7zBuB5xASpIMoyQiPdK1/ps+MY4r8EgFp+TTIe6IGbJElG0Ogm/odkMb90jC1ALB9/1VLvk1u+OKpMO/8RW01mpEf0mUQDO83c9mepu2G4frtB5gzrjfq1izv8rnoGxMisGzJG/VqVcSssT2djid0NjajEpOBRZrJzx3fW+nJ1azDSKW1DyHvCInnuBiB5fF10M5BEtzjZ6+gUpmi9ml7pAl5YhfP80iTKkUMkiexcn19ftaSH3Hzzr8wWyx4+uwVLt+4qzS1L1O8AIb3+QIli+Szm0QmEy5f/z8M6/V5nE3tT5y9gi96TkC5koXw/bwRvnaH6XMTgWt/STixhv6Snac6j0odnadsuCmSbWcIeA2Bt7NHw/LPTru8FL3DoK+h8kCN8Ld40Z6yuFxISqRZud1rPiUk6HVod4gXT9u3pRy7ALqipRM6xl5nCGgeAWukjJ97OhAdHNBioQ68LvZGtDaHnl6V8ddkei59fg51hrvQrFHziMRhoNkE6/kTsJw6DMupI5Du3nDZE33V2kjRcxRgMLp8hm1kCGgBAfHyWbwe6cxMB3fsB2OD2Cs+tGDqZ71fAAAgAElEQVSzmjYwAit+dMu+3wkWq4ht300Gmejn6YqPhNp76DT6hs6DKIpYu2AUiheO6gltW7az5JmZDDCLbY0e0N6pvNFGYJG+XemjNZu3nW/VrA4a1qEN3m1N3N+tVgYLJvVTth04eg6dB05D6pQhSimhY79uRmB5ehs0dO79T/vjwaNnyuXZunqSYlmJ2u29ZiFJKezyRVN82rS212QmpSAy3WD9z7swc8lGGA0GBbMsmdIpJrmVgVW+OJbNYBlYSRlLV3Q/uQgccyjpTpsPqBL13hjvYhlYCSHEXvcGAtKcUMjH99pF8b3Ggqvg/EuTN/RElyG2f8/pT8JKhzRFNRQ6yBRHdgLuXrf/RRi3FMhVQGWt7otnGVjuYxboJ17eBA7OoCiEZAJqjkoYlbf/AvvoYFCkyALUCKTfx169gHziH0jnjwPnjgEJlRtmzwuhzzjVszZZBlbCd5ftcB0BcdiXwIPb9EDeIhBGf+u6AB/tZBlY6gDtTgaWVRRRpm5U2WD06YE260ZNXY6f/rcnhrGEiCKEk23ZSChSOWTQR1WXmExm3LjzAI+evED6tKkwaXgXpVwv+rKdjQ+RDYvCnJJBbARWfGcGfv0ZOrRqaN9iI7BqVS2DhZPpQ5rNR1tmlu0AI7DUuaM+ldq47VAlw4iwphsXj1Z0e5PAsjkzYWhnNG9Qw6e+qals5uKNWLp2m1JOOLz354qq1Rt3YMr8dS71wHq/ZgXMHtfLbiLrgaVmtDyXbXrG4dgUmnGlSwFUDk24FID1wPIcc3bSdQSM80dAICU1/y1T9/FKzxe1V3C/ZuAiw+1qImZugRwUorZaRX7wyC/APX1IdY9bDTmjZ81J1TSY9cBSE93kKfvREQ5Xf6SfN+mLSyj6ZcLlp+ZXwNEJ9NdtfSqg0siEP6eSJYqyDP7uNejOHwN34Qj4q+fBiTFbNMiGIJg7DYdYuppqMLAeWKpBG3CCddvXwbBlOfWb52EavghiDueMFy0Aw3pgqRMFd3tglfvgK6Vi6Lc1U5A7R8y+oOQZdvd+Wo596dodpfQuLgIrNq9KFy+AFTOHIMhoiNVpX5cQRiewSP/qD9sPV4i2aaO6oVHdqO/HjMBS5476VOrL129x+dodhcBKERKk6H7yzPVmmXEZK8uyIof8A9n+12EULZgbm5aO9alvaio7dvqyMuWgUtmiWDlrqKLq7wOn0H3YTJemEHZs1QgDvv7UbiIjsNSMVuJk7x8qADIt4agy1gohgeoDRmAlDnN22jUEjLMGOY2fN/WdBrFIWdcOJ2JX0PA24J8/tkuInLQeUtoMiZDo+tHggR+De/vKfiBi2ibIKVO7LsBHOxmB5SOgk5Gam1t53N/rMIHwPQm5GyRMYElW4OAIx/IMGdWn+HcTd2+FlUw35K+cgbDrJ+jOH4kh1lKnBSwtu3lLnZMcRmCpAmvACeWePkDQ6M7grGa772re28QC7CsCK7F2JvfzDdoMxp37j/DtlAGoWSVmdlR0/209n+MisBwzucjzfaMvhiA8woQN34ahRJHYidSkJrCIj4Sk6zF8FtKmSYlfV01SMsZGTlmGzb/txXdzh6N8qcJ+fRU4mTAubHkdAYvFikqNvgbHcTjx+xKvy08qgfuPnsVXA6ejYpkiWDV7mGIG+Qf9bos+yJ0jM35bMzVW0/qPno8du49gemg3p/pdRmAlVSQT1nviGwERjyiBVbqXiJQ543+7YARWwriyHYlHwDi9L4Rr5+yCTANmQixYMvGCE5AQNO4r8Pdv2ndFhi6BlM03vwSHdP8AcPi4Dp+/A+DpQ7/qzruogBFYLgLFttkRuLBcwPNL9LOmUCsRmcq59tWUEFiEyLKtKuOsEGL/UTxgEddvXwv9Lyud3j8IGGK+4jB3Hws5ZRqvYsMILK/CGbDCjHOGQrhwzO6/lDodTGNXKg3ctbgYgaWNqAyZsAhb/ziAL1vWx+AerRM0yh0CiwhbtXEHps5fp5T/rVsYCp6P2atRCwQWsdVWltjgvcr4Jqw7bBMaGYGV4LUI7A2E1HnzNgLHdvhu1LraiE+c8z3W/LQTbT/5AEN7trGrIw3aSaP2NfNHomyJgk5mPH/5GnVb9ocky9izeY7SWM62GIGldsQ8l39hJY/nF+gDcuFWIjIm8FDBCCzP8WYnXUcgaFJ38Lev2A9EDp0PKY/6vyYZp/WBcP081TtoDqT8xVw33NOdFjNCejemp3V6hM+lE5k8FavGOUZgqYFq8pZ5bLIA03P6EFCmtxUpEphAaEPk6HgB5tf0bMURIgypXSO/kjeqzt4JV07BsGg0uLdvnF4gpIClaxjE/CW8BgcjsLwGZcAKEo79DePS8U7+m7qEQSyn3ZYsjMDSxnW1ZR6lShmC7WumKhlI8S13CSzSZ6tFp1Bcu3kPI/u2RevmdWOI1wqB9eLlG6WU8OnzV8pUxuNnLmPlD9tZBpY2rqo2rXgbHokqjbuhSIFcflNCuO/wGZBa4MbvV0XWTM6jack/2A1b/sTkeWshCAK2rJiAPDlpbTGZyPD1kBkg0xMWTx+EbJmjzpO64n5h80Fkf97ifQzv/YVTwBiBpc37S6yKXtaRq56EXO/HX9bBCCztxjM5WRYjE2rkYkg56GRUtXw1zhsB4ZxD762eEyGWqKSWOrtc7vULBA9uaf9vOVVaREzdqLpeTxQwAssT1AL3jGgCDoU6T2mqOsEK3sVhgtEzhcv2tyIkZtuTwAXYwXP+xRMY5o9UemU5LV6ApUVnWOp+4hWcGIHlFRgDVghnCocxtD34V8/tGIjFKsDUe7KmMWEEljbCQwrLWnYZjQtXboE0YJ87vg9CguPuf+IugUW8PHziIjr0mwxCkpGhZhnTO2exaoXAIraS6idSBUVsrF+7Mtb89AcjsLRxVdWxgkwo/N+ugzhz4Tr+ffwMEZEmhAQHKcRM6WIF0KhuVWTOmDZe5YT04Tk+1vRCdaxOnNQft/6NsOkrFCFkOiMhqIKDjHj1+i3OXrqBl6/eKhhMHdUV71UvF0PZ9G83YMX635SRoeVKFlSmNpw6fw2kmRzpNUZKDqO/iTACK3ExU/P0vwd5XN9MM7BISQcp7YhvMQJLzYgw2TYEgsO+BPfovh2QiNErIGfJqTpAhmUToDu6267H3GkkrBXfVV0v9/gBgkPb2fWQ5u0R41arrtcTBYzA8gS1wD3z5g6H0/NoA/eg9DLKD3G9j9WZhQJe36QZWCW/FpE6H8vAiutGcVYLdBvmQ79vW4wtpLG7ueMwyMbgRF1IRmAlCr6AP2zYMA+63Vvo553eANOYlZDSZdI0NozA0k54yHS+Vl+PBel3TRIrenb8CLWrl4PREDVN0LYsVhGtu41VyC5XemA5nu0/egF27D4ca/9nLRFYxOa+ofPwx56jiv8ms4URWNq5qt6zhEwu+GbRD0qZXHztwQSBR7uW9dGn8yfQ6+iXL+9Z4ntJhGjasuMf7Dl4SmmA9+zFa4W4SxkSjDy5suKdiiXx6YfvxUvcEab3+01/4NK12xBFCTmyZUKjOlWUsZ/R3ziIh4zA8n2cXdX48iqHc0vo3U6VS0apnozAchU/tk89BGI0U5+wBlL6zOop/E+yYc1M6PbR0j3z5/1grdFIdb38nasImkgbLku5CiByuPbGiBMgGIGl+nVIVgoeH+Nw5Qf6OZOuqIRiHRJu4G4D4fwKAS8uUgKrWHsJ6Yq5fj5ZgemGM8KRP2FYNT3GpEIpUw6Yu42FlC23G9KctzICy2PoAv4gf/sygib1cCYZPuoMywefaR4bRmBpK0S37j5Ev7B5SmURWeRZPW+ubEidKgRWq6iQW3fvPwZJNiHLXQKLJLc0aTsUEZFmLJ85BFXK0XYSNgKrVNF80OliTyeuVqE4enT4yA6arV9V3lxZkS5NqljBTJs6JeZN7GN/jRB1DT8fguhTCKMfJr2qSSkhSUQhi/XA0tZdTbQ1hLDqNWIO/tp/QpGVIV1qpUt/jqwZYTTqlakD5LIfOXVR6W1F1gfvVsTMMT0TrTtQBTACS7uRJz1JSG8S29KFAJXD4h9RzjKwtBvP5GQZKacjZXW2FTHlB8ip06nuov6nJdD/8YNdj6VFF1jq0dI+tQzgL59G0MwBdvFSwZKIHDBTLXWJkssIrETBF3CHb/2Px72/aaZvjncl5GnkOgF1Zb2AxycogVXwMxGZy7MMLFcuEn//RlRJ4bNHTttlvQGWDkNgLVfLFTEx9jACyyPY2CFJhHFCVwj3b9HPuiw5ERm6FOC1nyjACCztXWHyXL9z7zH88fdRpSLo2YtXCuFEEirSpE6BnNkyoUzxgqhQujCqVSzhlGjhShbVkjVbMWvJj0rV0uZl45QKJLJsZ+NDxNZY3bbHRmDFd4bwEqSXtG25SmCR/b/+vh9DJ0b15GYElvbuaqIsIlMLyPQCwtIO79MWHzeqBZJpFX2RLC2SoTVzyUYlyyj6ZL1EGRFghxmBpe2AHxguQBbpw0GVsVYIcZeSgxFY2o5ncrEuuF8zcJHhdnciZvwMOTiF6u7pflsDA5nm9d+yNPoClqZfqq6XP3MQQQtG2fVYS1WBubtzg1vVjXBRASOwXASKbVMQuLCCx/OL9HtWwU9FZK7gOgF1YwuPB/vp+XxNJWSr4ToBFuhh4CLewrB4DISLUT/cOi7ru81gbtkNENwjDxiBFei3yjP/dX/+BMPGhU6HTYNmQ8xf3DOBPj7FCCwfA87UBTQCnBxfnVyAQdOp/1QcPH5eaTROGo4ntFZv3IEp89ehesWSWDJ9YELb2euxIMAILG1fi5MzdAh/SG0kJYSklDCuxQgsbcczuVgX0qshYKXZgOFztgF6g+rukb4cpD+HbVnfaw7zp87lDmoYoTv8JwwrJlG9FWvD3GmEGqoSLZMRWImGMKAEHJ8iIPIZ/ZGkdC8RKXO6TmDd/oPH3Z2UwCKDRsjAEbbcQECWod++FvpfVwGyM/Zi3iKwkJLC1M6DfeKTzggsN7BnWxUE+FfPlMbtnCmquoUs6zsNYf6iv98gxAgsvwkVMzQZIMAILIcgVm/aA2/CI3Bw6wKlWXlCi5QUVm/aHSlSBOOfLfShJqFz7HWKACOwtH0bLq7m8ewcfTggTdxJM/e4FiOwtB3P5GJdSLd6Tq6EL/zDJ64JB3+HcdU0+gW72gcwtxukum7d3q0wrJ1N9dZoBNJ/S4uLEVhajIo2bZKswMERnk8gJF7d38srE3Nti2RfkSwsttxHQLhyCoZFo8G9feN0WE6ZBuYuoyAWKuOSUEZguQQT2+SAgHHRGAgn99n/IqdIhcixqyGHpPQbnBiB5TehYoYmAwQYgeUQxDJ1OyFtmpT4+yf6oJBQjOu27I+nz1/i5M5lCW1lr8eCACOwtH0tbm7jcX+P679uMwJL2/FMFtaZzQjp05i6otMjfC5trK6mj8Kp/TB+G2ZXIZZ9B6auo9VUqcgmfbdI/y3bsrzfEpaPu6iu1xMFjMDyBLXAPPP2LnBqLiWwjOlkVBjq+gRCgtqjoxyubqQlbpnKyyj0mXsyAhP92L3mXzyJ6ot195rzBp6H5cMOsNRvlSBcjMBKECK2wQEB4fxRGOcOc8LE1H4wxCrOP1RpHTRGYGk9Qsy+5IQAI7AcokmarpHmbiQDy9VVrUl3JVtr18YZrh5h+xwQYASWtq/Dw0Mcrv1EHw4ylpVRuHXcDweMwNJ2PJOFdRFvENKfTm4hva9IDyxfLP7ySQTNpBlXYpGyMPWlGVlq2aDfugr6bd9TAqtJO1gat1VLXaLkMgIrUfAF1OHHxzlc2eAwgbCIjGId3SOfSIYwyRS2LTKBkEwiZMtzBDirBboN86B3mLhqk2YtXgmWr0ZBDgqOUwEjsDzHPtBOchaTUjpIiFPbIpl+pv7T/Q4KRmD5XciYwX6MACOwHII3aNxC/G/XIWxdPUmZKJDQunbrPj78cjia1KuGKSO6JrSdvR4LAozA0va1eHmNw7nF9AGD9CYhPUriWozA0nY8k4N13MtnCB5KR2qT6YNkCqEvFn/rMoIm055XUu7CiBw2X3XVpLEtaXBrW+ZPusFat4Xqej1RwAgsT1ALzDO3t/O4+xcln7LXlJC3iXvk06vrHM4uop9RqfPJKPm1eyRYYKKfsNfCkT9hWDUdnGhx2ixnyApTjwmQsuWOVQgjsBLGlu2IQiD6ZF8ybTBi7ArIGRJ+BtMahozA0lpEmD3JGQFGYDlE98zFG2jdbSzer1kBM8f0AMfRxqLRL4Ekyeg1cjb+PnAK678NRcki+ZLzPVHNN0ZgqQatVwSbXnI4NpE+HPAGGVXHMQLLK+AyIR4hwD17hOARn9vPSukzI3LCGo9kuXuIe3QfwWF06qCUOQcix9CphO7Kc3W/4btvoNu/3b6dNLYlDW61uBiBpcWoaNOmi6t4PDvvMIHwExGZK7newJ149fYBcGoWLUMMyQKU7U8HPGjTc/+xir9/I6qk8NkjJ6NlvQHmtgMgVqoTwxlGYPlPfJPSUv7hXQSN7QRIlLS2NP4ClibqT/ZVw29GYKmBKpPJEIgdAUZgRcNlzU87MXHO96hcrijaflIf5UsWUvpi2dazF69x7PQlrPphB06cvYIhPVqjXcv67H55iAAjsDwEzofHDgwXIIuUzK0caoUuRewGsAwsHwYmQFXx/95B0JiOlMDKnBORY1b4BA3u9QsED25p1yWnSouIqRtV121YMg6643vsekydR0Ks8K7qej1RwAgsT1ALzDPHpwmIfEI/W0r1EJEqt3sEVvQfWQypZVQcwTKwvHmjuIi3MCweA+HiiRhiLTUaw/pZD8g6vf01RmB5E/3kK8s4rTeE6xfo52mGrIgcvQyyTv2JwmqgyggsNVBlMhkCjMCyI1D9w5hjz3mOh04nICTYiAePnsFspinTRoMe5H+RZkuMvzeqWxVlSxTEJ020+TCh9YvPCCytRwg4OVOH8H+pnaW6i0iVJ/aHDEZgaT+e/m4hd+86gsfTkm0pRz5EjlzsG7ckCSE9HH6w8FEDedLgljS6tS1TzwkQS1T2jc9uamEElpuABeh2ZQLhSAGQKYFVZawVgtE9QCQTcDCUZmDxBqDqOJaB5R6KLuyWZeh/WwP91tWA7Pz5L+UsAHOP8ZDSZlQEMQLLBTwDfItu7zYY1s5yQsHUbzrEwq5NutQifIzA0mJUmE3JFYGAzMAqUbu91+N5brf6ZSReN1oDAhmBpYEgJGDCpe94PD3rUObxqYjMFRiBpf3IJU8Lo/ehEvMUhmmo+n2obGgG924MzmK2gxu+8A/VgTZO6wvh+jlKYA2aDTF/cdX1eqKAEVieoBZ4Z6KX/hnSyKg43LPMqf1DSJk7JcKqTbYing4QgQe2Fz0mWViGJWPBhb9xkiqnSAlz9/EQ85dgBJYX8U6Oorg3LxEU+iVIZp9tWSvVgbmj8yRCf/OdEVj+FjFmrz8jEJAEFmnU7u3VqG4Vb4sMCHmMwNJ+mG/9j8e9vymBlbOuhNwfxN5ol2VgaT+e/m6hcO0sjNP72d2QCpRE5MCZPnMraMin4F89t+uLmLYJcsrUquo3jvsKwv2blMAatRRi9jyq6vRUOCOwPEUusM49OcHh8nraXzFtIRnFO3tGYB0eq4OVPguj0kgr9KkCC09fekv6YRkWjgJ/97qTWkvdT2D5pCsjsHwZDD/UZVg5GbpDu+yWk0nCkWNXQU6Zxg+9oSYzAsuvw8eM9zMEApLA8rMYJWtzGYGl/fA+PMzh2ib6oJGxjIzCbWJ/0GAElvbj6e8WCpdOwjhrkN0NsVh5mHpP8ZlbQaM7gDSfta3IcashZVR3YlLwyLbgntI63ogJayCnz+wzn91RxAgsd9AK3L23f+dxd5fDBMIaEvI2dW8CoQ296L20yg0UEZzJvV5agRsJzz03LB4H3Qnam8/6bjOYW/VkBJbnkCb7k8LlUzDOHOhMfLbuA0utJn7vOyOw/D6EzAE/QoARWH4UrORoKiOwtB/Vl9c4nFtMCawUOWSU6c0ILO1HLnlaqDt7GIb5IyiBVbIKTD3G+8xZ4+QeEG5dpgTWsAWQchdSVX/wwI/AvaUlOxHfbIYcQoeLqKrcTeGMwHITsADdHr00vUALEVmqeEY6nZkn4PWdxDWDD9AwJMpt/b7/Qb+GZr9a3mkIyxf9GYGVKFST92FSOsg/vk8/v/MWhWnI3GThNCOwkkUYmRN+ggAjsPwkUMnVTEZgaT+yltccjoynBJZglFFlLCOwtB+55GmhcHwvjEvG0i/A5WrA1CXMZ84aZw2GcIlO44rsOw1SkbKq6g/p/oFT4+Tw+TsAnmavqKrcTeGeEFj3/hbw+rYM0zMOkc+BEh0lpHRzGp2bZrLtSYzAiW94RDyidzi+4SAJmXpuGY+Xl6ms4p0kpC3sWTZXQrrY6xQB3YHfYVg9zf4Ha5V6MLcfzAgsdkliRYAMANBv+46+xvMwDV8EMUfeZIEYI7CSRRiZE36CACOw/CRQydVMRmD5R2QPjtRBooM5USlUhD5FzF/LWQmhf8TTn60UDu+CccVk+tDk4+avxkVjIJzcZ9dv6joaYtl31IPUbEJIH1peIRsMiJi9TT19iZTsCYF1YIQOssPguOy1RORt7Fk2TiLNZ8d9hMD+IXRyIFFZZbQIIdizmF9eK+DJKZqBVbi1iIxlPZPlI/eThRrdkb9gWD6RvhdXrA1zpxGMwEoW0fWuE9zTBwgK6wROpF8kbT3TvKsp6aQxAivpsGeaAw8BRmA5xLxVN/qrvrtXYf3CUHePsP0AGIHlH9fg5Cwdwh9QW0t1E5EqLyOw/CN6yctK3T+/wfD9DPrQVL0BzG0H+MxJknFAMg9sy/TlIIhVP1BNP/fyGYKHfmaXL6dKi4ipG1XTl1jB7hJYltfAkfHOZIYxrYwKwzxr6J1Y+9l59REIfwicnEFjbkglo+JIz+N9bTOPhwdpBlb+ZhKyVmcZWGpHUjixD8bFY+xqxLI1YOoaxggstYH3Q/nGGQMhXDllt1xKmxGmsSsh641+6E3sJjMCK9mEkjniBwgwAsshSCVqt/c4ZOd2r/T4bCAfZASWf0T/0vc8np6hDwgFW4rIXJERWP4RveRlpe7vX2BYT3tmkOavltZ9fOakYeMC6P7cbNdn/rQHrO81V00/9+gegsPoZ5OcOTsixqxSTV9iBbtLYL2+xeHMAlqibNNftp8VIVkTaw07r0UEnp7icGktjXmagjJKfOU5gXV7O4+7f9HPp1wfSMhVlxFYasdeOH0ARocfb62lqsDcfTwjsNQG3s/kC4d2wrjSedCK6esxEMtU9zNP4jeXEVjJKpzMGY0jwAgshwB9u/qXeMMVaTLj4ePnOH7mMu4+eIwUIUEIG9AeRfLnQsF8OTQeam2axwgsbcYlulXRHxByvichd4OYDwishNA/4unPVup2boJh07d2Fyx1W8DySTefuaTfugr6bd9T/U2/hKXRF6rp529dRtDkHnb5pGF85LAFqulLrGB3CazHxzlc2RCTwMpdT0LO9xkJkdh4aPH8nT943NlJCads1SXka+Z5rO/v4XFzm8NEw5oS8jbxXJ4WMdOiTcKFYzDOGWo3TSxWAabekxmBpcVgJZFNXPgbBIW2A/f2dYx7kkQmqaaWEViqQcsEMwRiIMAILA8vxW9/HsLwyUtRulh+rJg5FDxP+y94KDIgjzECyz/C/ugIh6s/0ofMDKUlFPmcEVj+Eb3kZaVu+zoYtiynBFL9VrA07+QzJ/U7f4R+0yKq//2WsHzcRTX9/OWTCJo5iBJYhUsjst83qulLrGB3CSxCZBBCI/pKkQMo09uhMVZiDWPnNYPApTU8np52KPn7SELWqp4TTg8Pc7i2iX4+Za4ko+Annmd0aQYojRvCXz6FoJkD6XtToVKI7D+DEVgaj5svzTOsmQndvv/ZVcp6A0xjVkJKl8mXZvhEFyOwfAIzU8IQUBBgBFYiLsKan/7AxDlrMHZQR3zcuFYiJAXuUUZg+UfsX93gcPZb+oAQkh0o2yfmwyXLwPKPePqzldEnGVkat4WlSTufuUS+jJMv5bZlrdEI5s/7qaY/epmOWKoqTN3HqaYvsYLdJbCu/CDg8bHYfwCqOMIKQ+rEWsTOaw0B0v+K9MGyrZJdRaTO73nT9adneVz6jhJi6UtIKNrOc0JMa3hp1R7++gUETettN0/MVwymwXMYgaXVgPnYLv72ZQRNotnDRL2lRRdY6rX0sSW+UccILN/gzLQwBBiBlcg78PpNOKp/2APlSxXGqtnDEiktMI8zAss/4m5+BRydQJvucoKMahNj/sLNCCz/iKc/W6nfvBT63zfYXTA37whr/dY+c0k49jeMS8dTAqviuzB3Gqma/qSeuuiuY+4SWGcWCnh9M3YCi5SBZa/JiAh3Y6Dl/bIEHBguADKNeaUwK/Qhnlv94iqH80scemrll1GiK8vA8hxR107GVd5s0PHImMYIs1XCk5cm14SxXckLAUmEcUJXCPdvUYIzex6YRiwC+Jgl48nBeUZgJYcoMh/8BQGWgZXISL3bog+sooh/tsxLpKTAPM4ILP+JO3nokEX60BFbdgQjsPwnnv5qqWHjQuj+/IkSWJ90g7VuC5+5I5w/CuNc+oOFWKISTD3pKHlvG6LbsxWGdbPtYi01m8DSxndN6931x10C6+h4AebXsRNYJCuHZOewlXwQiHjE4cQ39AFWnxKoNCpxpaJv7wGn5tAfWOLKEE4+KGrDE/7eDQSNp+XTUra8iAxdwjKwtBGeJLWC/MhEfmxyXJHD5kPKXThJ7VJTOSOw1ETXddm37z1Ew8+HxDhgMOiROmUI8ubKiuoVS+LTD2sjXZpUMfYNGb8IW3cecPq7XicgdaoUKJA3O+q8Ux4tm9ZGkNEQr1G795/E9t2HcfLsVTx9/hJWUUL6NKlQvEhevF+zApq8Xw2C4Nw+4eXrt4iwxxAAACAASURBVKjRrKcid/8v85EqZey/7PQaOQd/7juOahVLYOl02mIiukGNvhiCW3cfYvnMIahSrpjy8nuf9MWjJy9Qp0Z5zB1PM2hjc2bzb3sxcsoy9OrYAl+3+9D1IPhgJyOwEgly9aY98DY8Eqd2LUukpMA8zggs/4n7qdkC3t6nD5olu4lInde57IMRWP4TT3+1VL92NvR7t9rNN7fuA2utJj5zJ0bZTP7iMA2iBJO3DYn+IGCp9yksLb7ythqvyXOHwJKtwIERlHiIzYjKYSJ0IZ6Xl3nNMSbIKwg8O8vjokO5X+oCEkp2SVyWnek5h2OTKSlmTCejwlBGfHolYPEI4R7eRfDoDvYdUuYciByzkhFYagOvcfn888cwhrUHZzHbLdX6Dy/egJQRWN5AMfEybARWcJBBqZCyLZPZgkdPnuP2vUfKn9KkSoEl0wehRJG8TkptBBYZzpYxXRrlNbPFgn8fP8f9f58o/50nZxal/3WWTOliGPzk2Uv0C5uvDHwjiwx8y5E1I3Q6naKfvE5W/tzZMGd8b+TLnc1JRquvx+DMxRsKuURIpujLYrEq1V/hESboBAH7tsyNlegiQ+fqtOynEG0Hfp0PQuCRZSOwyP8/bVQ3NKpbJU7QGYGV+PuoSQnkItdrNRAZ0qXGns1zNGmj1o1iBJbWI0Ttu7RGwNPTlMAiTXJJs1zHxQgs/4mnv1pqWD0dugM77Oab2w6AtXoDn7nDP7iFoLGd7fpsWQdqGaD/ZSX0v62xi7eoPPUwsX64Q2BFPOJx4hv6CyQhHgQD59QfqcDHIrJUZgRWYuOilfN3d/K47dC0P2s1CfmbJ47AskYCh8MoESoYgSpjE5fVpRW8tGwH9/QhgkfSCaxS+syInLCGEVhaDpoPbCOTKcmEStuSU6RC5NjVkENS+kB70qlgBFbSYe+o2UZgkUyrbd9NjmEUeXYPnb4CB46eQ7FCefDjkjFOe2wEVmzkzrWb9zBgzEJcuXEXtauXxfyJfZ3OktZCn3YdrZBkBfLmwKBunylZUoRosq1L1+5gzrJNIBlahETbsCgMubJntr8+e+kmLP7+V3zeoh6G9/48hv37Dp9B18HfIH3aVHj24nWcJNSvv+/H0ImLUaNyKSyaOsAuhxBYxM6ISDPSpkmJX1dNUmTFthiBpY077VUrwiMilUu85+Ap1KxSGt9O6e9V+YEijBFY/hPpWzt43PuTPmzmqC0hT0PnBw9GYPlPPP3VUsOyidAd/ctuvrnDMFgr1/GZO9yLpwge1squT0qbEZGT1qmm3/DDfOj++pn627I7rHU+Uk1fYgW7Q2A9v8jjwgr6npKmoIRUeYC7u+jf0hWVUKxD4giOxPrEznsPgctrBTw5RX8Iyd9MQtbqiY/v/iHkAYHKrTbZCo4Nh/Ze4GKRxL18iuCh9L1QTpMeEZM3MAJLVdS1LVw4sQ/Gxc6EgKnjUIiV6mrbcC9YxwgsL4DoBREJEVhEBSF+an3UG7IsKxlMjqWE8RFY5Oy1W/fx4ZfDwfMc/vllvlKWaFuk3I6QPsUL58XKWUOV7KvYFtE7aupyZW+Z4gWwdsEo+7bDJy6iQ7/JIBlgW1ZMiHF8wuzvsHbzLnT/shkWrNqChnWqYHpotxj7bLYM6t4K7T+lP/ISAit92tQomDeHUirZ4L3K+Case6x2MgLLCxfSFyKmLVifoBpRkvDw8TMcPXVJ+QdA1twJfVDnnXIJnmUbYiLACCz/uRVkUhiZGGZbGUpKKNKWEVj+E8HkYalx0RgIJ/fZnTF1CYNYrobPnOMiIxDcj/YCkI0hiJi1RTX9htXToDvwu12+rzPO3HXMHQLrwX4eN7ZQsipzZQnZqkpO/YzIwIjKY0QIUdnvbPk5Aqdm6fD2AXWiRBcRaQokPsPu0BgdxHAqt3KoFboUfg6W1s1/+wohAz+2W0kybSKm/8QILK3HTSX7OFM4jKHtwb96btcgFioDU//pKmnUllhGYGkjHq4QWMTSyo2+VloA/blxplMpYEIEFjn7TrOeePHyDTYtHYuiBXMrjv/7+Bk+aDUQoigpxBMhoOJbJAOqQZtBSknhshmDUbV8cWU7KRGs1rS7kiFFqrtIlZfjIjpIeeCen+egfutB/5Fw80D6dDkuUiFGss02Lx+Pwvlz2l8iBJZBr8eGb8PwYfvhePr8FeaM6426NWOWKzICSxt3OkErStRun+Ce6BsIq0nYTbY8Q4ARWJ7hlhSnyKQwMjHMtlJkA8r0dS7TYBlYSRGZwNJpnD8CwtnDdqdN3cdDLBV3Db8a6IR0/wCQ6UN3+PwdAO/cjNNbesmv2eRXbdsyfRUKsXxNb4n3uhx3CKwbv/J4sI/iRjI6SWbnsUkCTC9o+kzhz0VkLJ14ksPrzjKBbiFAJhAeHOk8DKTSSCv0sVcvuCX7+BQBkc/onSk3SERwRnZn3ALRzc1cZDiC+zWzn5KNQYiY9SsjsNzEMblsjz5gRRb0iByzDHIG5x4/ycXf6H74isD69eVNHHv7OLnCGMOvpmnzokJIJpf9dYXAsvWHIiV8//wyD5xDuq4rBFbVJt2VMrzf109X+luRtWHLnxg7czUqlimCVbPpoJ/4DJ/+7QasWP8bPv3wPYT1/9K+9esh32DvoTMxygOv3riHZh1GoELpwlg9ZzgGjVuI/+06hCXTByqN6W3r7oPHCrmVMX0a/P2Tc49WQmBZrSL2/jwXO3YfQf/R85V9v6yaqJQ0Oi5GYLl87ZJ245d9JiVoALnkJCWQ1NY2qF0ZpYrlT/AM2xA3AozA8p/bYXkNHBlP+4yQzIhqE50b5TICy3/i6a+WGmcNhnDphN18U58pEIvG/OVITf9CBrQAwqMycMkKn7EZCFanv0f0fiKmXpMgFq+opnuJku0OgUXKB0kZoW3ZiKqbv/K470BsZSwjo3Ab1pQ7UYHRwOGIxxxOTKc/guiCZVQe7Z24npoj4O09SmCV7iUiZU5GYKkadqsVIb0aUhWCgPB52xmBpSro2hQu3LsJ48SugESz8i1N2sHSuK02DVbBKl8RWF1v/Y3FT86r4IE2RS7K8y66ZIzKTnJlJURgvXkbgYFjF2LvodNKjynSa8pxJURgnbt0U+lzRfpG7d402z5JcMTkpfh5+z5lWh+Z2ufKIpMEyURBksVFsrlsa+UP20Gqwj5p8i7GDKSDMpas2YpZS35Evy4t0blNY4W8IiRW6+Z1MbIv/be2adsehE5bjib1qmHKiK5OphACi2R3Hdy6QPl739B5+GPPUTSr/w4mDnMeEMQILFeiyPYEJAKMwPKvsB8cJUAy04eECsNFGNPQhwRGYPlXPP3RWuP0vhCunbObbhowE2JB+suTL3wijYtJA2PbipiwBnJ62oTTmzYYp/aGcOOCXWTkoDmQ8keNQ9bicofAOvGNgIhHjqSDFSlzAq+uczi7iBIdglFGpVARfPwDC7UIB7PJAYFn53hcXE0Jy9T5ZJT82jsE1rklAl5epXepeGcRaQsxAkvtCxjSzfnhL3zhH4zAUht0rcmXZQRN7gH+9hW7ZXKGrIgYsxJwaF6tNbO9bQ8jsLyNaJQ8TwmskOAgvFOJfjckLYCePX+FC1duKVME23/WUCFtoq/4CKzrtx+g98g5uHH7AYb3/gKft3jffpw0VicN1scN7ogWjWq5BMbFq7fxcedQhQwjGVG2dfn6XXzUcaTS3H372qn2v3/RcwJOnL1iL1EkWWA1mvVSMqh2bZxh32fzgRBS0X0kBBYh8Y78tkjZT0oYSSnhy1dv8e2UAahZpZRdDiOwXAoj2xSICDACy7+iHv1X7hJdRaTJzwgs/4qif1sbNKm70xflyKHzIeWho5J94V3w+K7g7l23q4ocuRhSjnyqqCYTD8nkQ9uKHLUEUnbnsc+qKPZQqDsE1oERAmQrJR0qh1mhC4mqzjwyVoA1nL5WrKOIdEUYIeFhWDRx7O5fPG5vpwRW1ioS8rdIfAN34tylNTyenqayi7QRkaEMuy9qBz6kVyPAarGrCZ+zDYbgIGRMY4TZKuHJS5PaJjD5SYyAbvcWGDbMc7LC1G86xMJlktgy36pnBJY6eHtKYMVljV6vwwe1KirNy+vUiJm9byN/SFZU5ozpFDGk5O7fR09BCCxyvkf75vjq8yZOKmzkEmmoThqru7Js2WIGgx4nfl/idOTdFn0UcumP9dORPWtGhWCq0bwnsmXOoJQu2lbHflNw6MQFbFw8WmkeT1btj/vi8dMX+OvHWcicMa2TXNsUwqPbF9v/bptYmDVTeqWU0NZ8nhFYrkSR7QlIBBiB5V9hjz5BqkALEVmqMALLv6Lo39YGjfsK/P2bdifUJI/iQirom37gr561v6xmFljQ8Dbgn9N+F2RMPRlXr9XlKoFlfsXh6ATHcjKg8mjaU+/qjwIeHaEEVpbKEgp87B2yQ6vYJXe7rqwT8PgkjWm+phKy1fBOTK9t4vHwMCWwCDFGCDK21EUguG8zkObdthUxcwv0KVMyAktd2DUjnX/1TGnczpki7DaJVd6Hqf0QzdjoK0N8RWCxHljxRzSuEkLSXP3l67c4c+E6lq7diuNnrsQ6wc9GYMWmhWR1EYInW+b0MV72ZgYWET5kwiJs/eMAxg/phI8a1oSNZCJZXyT7y7a++/F3TJ63Ft3aNUPPjh8pJFvTdsNQIG8O/LIy5hTD2AgsIqv7sJn4+8ApfNq0NsIGRPUEZwSWr9493NRDJgYQtjGhJUkyfvvrEHbtPa4wmunSplSapbVoWBOENWXLcwQYgeU5dklx8vbvvNOI++y1JORtTB8SWAlhUkQlsHQGh30J7tF9+sA0egXkLHTCii/QMM4fCeHsIbsqNRvJB/dvDi7irV2Xmv22vIGdqwTWqxsczn7rMBQih4wyvWk52bMLHC6udCC4QqLKCB16rXrDXCbDhwicmqPD23tUYYnOItIkUOb36jWHjZsoMRUcIqPNpzGJqVv/43Hvb7ovdwMJOd9jBJba4Q0e9Am4Ny/p+/HUjdCnS88ILLWB14h8w9Lx0B37226NHJwCkWNXQ07pPDlNI+aqaoavCCxVnUgGwhPqgUVctIoiPus6BqSEb8rIrmjyfjW757GVEMqyjDY9xuP0+WsY0qM12rWsHwOpkVOWKYSPjUhyBcq/9p9Az+GzY/TAImdJPy3SV6vpB9UxeXgXe8P2xdMGOpVG2hq22/po2ZrJt/3kAwzt2SaGGXERWKSxPSklJOWFy2cOQZVyxbBlxz8YPmmJ0tOL9PbS0uJkEpUAXGcu3kCrr8coRNTiaQOcJhA4wkEueZ9Rc7F7/8kYKBXIk10ZfZkpg3N6XgDC6bHLjMDyGLokOfjoOIerG+hDZfoSEoq2YwRWkgQjQJVqISPJsHwSdEf+tEfA3HE4rJXeUyUivpx46A0HXCWwHh3jcPUH+l6SobSEIp/T9xLJChwOEyA5lBiW6iYiVd6A/MrijdAkuYwDw50nEFYcIcKQOv543r8PfLvUufnZMDJhMNj5XPTyxBzvSsjTiBFYagc9eGgrcC+fUgJr0nroM2ZiBJbawGtAvnD+KIxznaetmdv0hbVmYw1Y53sTGIHle8xj0+gKgUXO2Rqik+wmkuVkW3H1wCLN2z/7egyCg4zY9t3kGKV5P/zyF8bMWIXK5YpixcyhLoExY9EPWLbuf/isWR2E9mvndObRkxcgZBOZcrhj3TTU+qg3Ik1m7P9lvlLG6Lg+bD8C127eUyYOkmys3/48hIWT+6FW1ZhlvHERWETej1v/Rtj0FciZLRN+XjEBu/efUBreMwLLpXD6ZtPspZuw+PtflfrXueN7x6mUdPsnl5wsQliVLl4AL1+9wd7DZ2CxWFG2REF8P29EnASYb7zxXy2MwPKv2L2+zeHMfPrQGZIFKNuflv2wDCz/iqc/Whs8uCW41y/oA9OUHyCnjupT4KulXzcb+j1Rnwtkmdv0gbWmcz8Eb9jCRUYguB/91cs2pt4bstWS4SqBdfsPHnd30oyZ2AiHS2sEPD1NS86y15SQtwkjJdSKnZpyI59yOD6VfnbwBhlVxyXcwP3aDQ6rvqPniI0d2onIF43I/PcQj+s/0fvESk7VjCaVHWOgxbjV0GfNwQgs38CfZFo4qxnGUV+Cf/HEboOYvxhMg+YkmU1JrZgRWEkdgSj9rhJYtkl/71YrgwWT+tmNj6+J++jpK7Fx627Ur10JM0b3cHKYEE71PhugZHdtXT0J+XJnixcQk9mCBm0GgZwjhBchvqKvD78cjmu37mPp9EHoPHAa6tYsjznjYnIWNq6C9N+atnA9nj57hQNbFyAk2BhDZnwEFtncacBUHDx2Hl98XA/VKpRAj+GzGIGljasdZUX7vpNx5ORFhPX/Ep9+GPsv56TEsEHrQbBYRbRqVkcZUcn9V79w6dodfNlnEsgEgLkT+qDOO+W05J7f2MIILL8JlWKo9S1weCxl/jlBRrWJ9CGEEVj+FU9/tDa4XzNwkQ49V2b8DFK24Mul/3kZ9DvW21VaPuoMywefed0E7sUTBA9rbZcrp0mPiMkbvK7HmwJdJbCurBfw+AQlp6L30yM2PTnJ4fI6Sl4Y08qoMCxh0sOb/jBZ3kHg+XkOF1bRWKbMLaN0j4Rjef4Cj/UbKTFFrGlYX0K1aP2tnp7icGlt3Bl93vGCSYmOQNDojuAf3rH/OXL0cuhy5GEEVjK/Koafl0O3Yx31kucRGboMko/L+bUEMyOwtBENVwksW88nUg5IygJtKz4C68XLN2j0xRCll9aiqQNQozKd2EfO28oISbLL8hlDEBxkiBOUCbO/w9rNu1C+VCF8N3dErPsmzlmDNT/9oZQ4bt15IM4Jh6fOX0Ob7uPQvEENpfSwYpkiWDXbOTvSpiAhAuvev0/QvMMIRESa0btTC5CEH5aBpY27rVhh69D/w6LRKFEk9olO0xasB2FoCYu6efl46HXOvwLa0g8b162KqaO+1pB3/mMKI7D8J1Y2Sw+OEiCZ6YNnxWEiDGmjyjkYgeV/8fQ3i0N6NSQjYexmk6lX0Mf9JUEN/8gXd/IF3rasDVrD3Kyj11Xx/95B0BgqV8qcE5FjVnhdjzcFukpgnVkg4PUt+j5S4isRaQo6l4VZI6OmEcoi3VemrxUp4v9h05vuMFleQoD0pyJ9qmwrS2UZBT5OmMA6dpzDlq3O373Kl5PRvKnz2RdXOJxfSveRu0TuFFvqIhA0vgv4ezfsSiJGLoI+T0FGYKkLe5JK5x/eBZmOC4n++7LU+xSWFl8lqV1JrZwRWEkdgSj9CRFYZrMFKzZsx5xlm8DzHDYtHYfC+Wkf1fgILCJ//ZY/MW7mauTOkVkpszM69MImSS2fdh2N2/ceoVihPBjcvTUqlS3iVKV16+5DhRTasfsw0qZJCcJDkDLB2BZpX0QyoAgRRgglUiKYMX2aGFtJr+7aH/dBeETkf8TTx+jatmmsMhMisMihNT/txMQ53yu+kUwxRmBp424rVpSt11kpAdyzeQ4ypIvZbJBkXb33cV88f/naPgEguvlXb9xDsw4jkDtHFvy2ZoqGvPMfUxiB5T+xsll6eq6AN3fpA2Xxr0Sk/e/BkxFY/hdPf7M4pFs9J5PDF/7hcxd0f/8Cw/q5dr3W2s1g/qyn1+3gb11G0GSapi7lLoTIYQu8rsebAl0lsI6M18HymmouP0REUPqY/ZAuLBfw/BJ9v8n1voRc9VgZoTdj5gtZV34Q8PgYjSMpBSUloQmtf/bz2OFQakr258guo2tnZ3KKfCaRzybbShFtKEBCetjrniEQNKkH+NuX7Ycjh86HrkBRRmB5BqdfnDJO6w3h+gW7rVLajDCNXQlZH7NcyS8c8pKRjMDyEpCJFGMjsEj5XNXyxek9lWW8ev0WF6/eUYgeQeAxsm87Zeqe40qIwCJkUcsuYUoD+O5fNkOPDh85nX/y7CX6hs7DibNXlL+nS5MKObNnUpJg/n38HPf/jSq7JW2J5ozvjby5ssbpMbGzWpMeSlliySL5sGFRWJx7bdlfZMP6haEoVSx/rHtdIbBIe/R2vSfh+Jmo93ZGYCXyUnrzeOm6HUFGau7bMle5XNHXH3uOKhcwRUiQQnIFGWP+wk/Y0IoNuig1pkd+W+RN8wJGFiOw/C/UpKSHlPbYluO4ckZg+V88/cpisxkhfRwaxOr0CJ/7P5+7IBzeBeOKyXa9ao0N5y+dRNCsQfQLWOGyiOw3zef+uqPQFQJLsgAHRzo0IeWiSpE550oxRe3DQxyu/eTQdy8bULYvzcBzxza2N+kQOD1HwJt7Dj98dBSRtkjCDfl3/cXj773OF4MXgNEjnO9AxBMOJ6bRe0LIUEKKsqUuAsZpfSBcP29XYho4C0KRUozAUhf2JJOu++c3GL6f4aTf1GsSxOIVk8wmrShmBJY2ImEjsGKzhmQUZc2cHpXKFsXnLeo5ZV7Z9idEYJF9J89dxec9xivN1LesmIA8ObPEUEcmDG7/87BCZD178QqiJCNdmpQoUSQf6tWqgMZ1qykkWkKrba+JCpFEiDJCmMW1/tx3HL1GzkGqlCH4Z8u8OGW7QmARHSRT7KOOI1kGVkIB8vXrpJv/0+evsGnpWGV8ZfTVdfA32Hf4DKJPJ3DcRxjRMnU7KSmIZ/7UdlmHr/F1VR8jsFxFSjv77vzB447DL+KOjZUZgaWdOCVLSyLeIKQ//bWL9L6KmPGzz10VTh+AcWGoXa9YuhpM3cZ63Q7h1H4Yv6W/uKmlx5uGu0Jghf8LnJxJCaygDDLKD46dbLC8jSojBCj5UX6oFUG+7dvvTYgCUlaMCYQOpefxAbLtNx6HjsT8kt+7h4iMGSgBFr0/oxACVAljRKfaly1oxkDwV07Z1UT2nQZdifKMwFIb+CSQz715haDQduAi3tLPvrI1YOoad1ZIEpiZZCoZgZVk0DPFAYgAJ5M8sQBcXw2cjv1Hz+Lrdh8qqXGOy8askr+tXTAKZYoXiBWhl6/eovqHPZTsrGM7Fgcgiol3mRFYicfQ1xJI42XSgNm20hWTUKx9VCkII7B8HY3A0se9fIbgobRZupwqLSKmbvQ5CPzl0wiaOcCuVypUBpH9p3vdDuHQHzCunEofFirXhamDa+OZvW6MiwJdIbCenedxcRUlJdIUklEiWkmYo7ozCwW8vulQftZYQvZaCZefuWgy26YyAqbnHI5Ndn8CITHrx58EnD5LY28z9bOWEkoUo3eAfJM9MNRxtLiM6lNYBpbKoYVx7jAI54/a1Zh6ToRQpgojsNQGPgnkG1ZNg+7g73bNsjFYKR2UUqdPAmu0p5IRWNqLCbMo+SIQsAQWGYNJxmGGBAfh2yn9UaF0YSXKZLogaZj24OFTpXZ22YzBcUb/7KUb+KzrGGTNlB67Njqn1CbfK+NdzxiB5V08fSHt9R0OZ+bRh5HgzDLKDYh6UGAEli8iELg6uGePEDzic0ocpc+MyAlrfA4Id+cagifSwR1SroKIHL7Q63bE6LVVqynMrWOOUPa64kQIdIXAur+Xx82tlMDKWkUCKUWOa93fw+PmNro/VV4ZpboxciIRYfLp0ecXOVxY4TCBMJeM0j1di9936wRcuRKTwKpdS0Kd2s535lCoDqKJulZ5jBW6IJ+6GnDKjAtGQThzkBJY3cZCKP8OI7CS2U0gZaKkXNRxmT/pBmtd5wSAZOa2W+4wAsstuNhmhkCiEAhYAos0cP+4cyiu3bqvAJgzWyaQZDQyPpIsQmxtXDw63uZqtkkE8Y2rTFR0AuAwI7D8L8jkAYE8KNgXJ6P6ZEZg+V8k/c9irUzl4578i+BRbe0AyhmzIWLcaq8DGn3aoeWDz2D5qLPX9XhToCsE1vUtPP7dTwmpPI0k5Hg3bgIr8jlwfLJzdk2lUBH6FN60nMlSC4H7f/O46TCBMHNFGQVbukZgLV0h4PadmARWsSISWn/mfGdIlhfJ9rKtCkNEGGMZDKCWn4Eo17hkLITjeymB9dUoCJVrMwIrOV0GUUTQuM4g0wdtS8yeB6YRiwDSkI4tBQFGYLGLwBDwHQIBS2ARiO8+eIxuQ2bg+u0HTohnypAWM0Z3R/lSUVlZca2vh8zA3kOn0bFVIwz4+lPfRS0ZaWIEln8G89AYHcRwarvtQYFlYPlnPP3Fau7edQSP72o3V8qRD5Ejk6B8++1rhAykvzzLKVIjYvomr8No2LIcuu3r7HLNH3aAtWEbr+vxpkBXCCySjUOycmyryBcSMpSKvyTw1Cwd3jp8VBdoISJLlYDsgODNcPlE1tUfBTw64lkJ6LyFOjx6HNPMdOlk9OvlTIKdnK1DeNRvksoq09uKFDl84mLAKjEsnwTdkT/t/ps6DoVQrR4jsJLRjdD/73vof13l5FHksPmQcsf/jJSMIHDJFUZguQQT28QQ8AoCAU1gEQRJJtbuAydx6eodBdBC+XOidvWyIJMK4ltkgmH7vpMQabJg7KAOKFYoj1cCEmhCGIHlnxEnJYSklNC2incWkbaQzEoI/TOcfmM1f/MSgqb0tNsr5SkMMrbd50uSENKjPlXLcQhfQHuDeMsew4Z50O3eYhdn/qwnrLXjnkLjLb2JkeMKgXV8moDIJ/T9wxWiIfrwiHRFZBTr6FoWT2L8YWcTj8Dp+QLe3KbxLtZBRLqirpGP02YIeP0mZgYWsWrkMCscv6qdWyTg5XWHz6WvRKQt6JqexHsZmBIMq6dBd4C+95nbDgBfqxEjsJLJdeCePkBQWCdwosXukfXdD2Fu1SuZeOg9NxiB5T0smSSGQEIIBDyBlRBA7HV1EWAElrr4qiWdNHEnzdxtK39zCVmrSYzAUgtwJldBgL96FkHf9LOjIRYsCdOAmUmCTnDfpuBMkXbd4bO3AgajV22J3jTX3G4QrNU+8KoObwtzhcDaP1QAZPr+4Uqvorf3gVOzaRkhJ8ioPEaEEP9vTd52j8nzAIGDowRIx+i4tQAAIABJREFUZs9K+8ZN0sFCn52dtH/VQUSuXJSguriax7NztDS1SFsJGUqyZv8ehMzlI4Y1s6Dbt82+39ymD/j3PmQElssIanujccZACA5TJqXU6ZTG7bIxRNuGJ4F1jMBKAtCZyoBFgBFYARt6bTjOCCxtxMFdK+7s5EEyImwrW00J+ZowAstdHNl+9xAQLhyDcQ6dwicWLQ9TnynuCfHS7uChrcC9fGqXFjF5PeQ0GbwkPUqMcdFoCCf/scsk48rFsjW8qsPbwhIisEwvORybSPumCCFAlTCrS2YcmyTA9IISIYXbiMhYhmXYuAReEm2KHm9CPFab6FrmHJksGDbOsfeZsxNNG0uoVIESVNFLFQt8LCJLZXY/1Ax9jCzRlt3Bf/AxI7DUBN1HsnVH/oJh+UQnbeZOI2CtWNtHFviXGkZg+Ve8mLX+jQAjsPw7fn5vPSOw/DOET05wuLyePoSmKyqhWAdGYPlnNP3Hav7MQQQtGGU32FqqCszdxyeJA0GjO4J/GFV6TlZk2HJIWXN51RbjrMEQLp2gBFbvyRCLVfCqDm8LS4jAenWdw9lFDhPpcsooHa2XUVw23djK48FeSpxnKCOjSBvXyBBv+8nkuYbAi8sczi+j8U6RQ0aZ3q7F7M0bYOqMuAmsyhUlNGlECSwy2ZJMuLStvI0lZK/FMrBci5Rnu/SbFkO/c6P9sKXFV+AatmIElmdwauYUZwpH0IgvwL19bbdJLFQGpv7TNWOj1gxhBJbWIsLsSc4IMAIrOUfXD3xjBJYfBCkWE9/c5XB6Ln0oCcooo/wgkZUQ+mc4/cZqMu2KTL2yLbFcDZi6hCWJ/UFTeoG/edGuO3LIPEh5i3jVFtLvi/T9sq3IIXMh5S3qVR3eFpYQgUWaeZNMGdtyh4R6dYPD2W/pWV4XVUbIx81xeNs9Js9NBAihRIgl28pUXkahz1wjsJ4+4TB7QdxTzvLkltGpPZV1ZxePO79TXTnfk5C7ASOw3AyZW9tjGzTBN/2CEVhuoai9zfp1s6Hfs9VumCzoETlmGeQM2bRnrEYsYgSWRgLBzAgIBBiBFRBh1q6TjMDSbmzis0w0AYdCHZ4auaiykByZgpVjLK7+GVetWy0c2QXj8sl2M62V6sDccViSmE1KGUlJo22ZVMiOipHlFboUUjZtDwxJiMC6/TuPu7s8IxlISdmRsQKs4Z41BE+SixLgSq9tEvDwMI1XnoYSctR2jVS6d4/DIofsrTRpZLx8SWUZDTJGDKUE1r8HeFz/md6tLFUlFPjINV0BHiaP3ddvXQ39tu/s5y2NvwDXvAMjsDxGNOkP8rcvI2hSDydDzB+2h7Xh50lvnIYtYASWhoPDTEt2CDACK9mF1L8cYkSHf8XL0drDY3WwvqV/KT9YRP7CQYzA8t+Qat5y3T+/wfD9DEpgVW8AMvUqKRbJBCMZYXYCq0sYSEaYN1fwsFbgXjj02Zq0DnLajN5U4XVZCRFYl9cJeHKSkhDu9imKToiQHkdEBlvaRODMQgGvbzoQju0lpCvmGql07TqPVd9TQipfXgmPn/AgpYW21b+PiLRpovpcPT7J4co6mrFF+qORPmlsqYeAbsc6GH5ebldgqd8K3CdfMQJLPcjVlSyJME7oCuH+LbseKUtORI5aCghxZ0Oqa5R/SGcEln/EiVmZPBBgBFbyiKPfesEILL8NHaKPRi/eUUTx6ozA8t+Iat9y3Z5fYVg3hz4s1WoCS+s+SWI4IdIIoWZbhEizVm/gVVuC+zYD6UViWxEzt0AO0vb0p4QIrDPzBLy+QwmNEl1EpCngeqPt5xc5XFhBH6R0ITIqhYrgqEivxoAJSxwC0ScQklJzUnLuyjp7nsMPDuWmxYpKMJs5XLtOg/15KxFFCkfJi3430haRQT6X2FIPAf3OH6HftIi+J9dtAa5VD0ZgqQe5qpKjx5MoMw2aDTF/cVX1JgfhjMBKDlFkPvgLAozA8pdIJVM7GYHlv4G9skHA4+P0QSJfMwkVmhoVh1hc/TeuWrZct3MTDJu+dXpYsnzSLUlM1m/6Fvqdm+y6zZ90g7VuC6/aEtKtnpO88IV/eFW+GsISIrCiZ25WGCrCmM41QoPYK1mBw2ECJCt97ynZVUTq/K7LUMNvJjMmAuZXwNEJtNTcnQmERNrR4zx+ceifVb6MhKBgYP9BmpVV9z0J79aMyuh6fZvDmfmU3EyVS0apnozAUvNu6nZvAZlEaFvWdz8EvujDCCw1QVdJNv/8MYxh7cFZzDSe1T6Aud0glTQmL7GMwEpe8WTeaBsBRmBpOz7J3jpGdPhviEkfG9LPxrayvSPhnQ6MwPLfiGrfct32dSBNg22LlKtYmndKEsNJ3xfS/8VuS+O2sDRp5zVbuMhwBPdrZpcnG0MQMWuL1+SrJSg+AkuyAAdHOvfOqz7ZfYLh8loBT05RAitbTQn5mrhWlqaW30xuTAReXuVwbgkllEKyA2X7WF2Gat9+Ab/vpHGuXlVCliwyNm+hMkuWkPHpfyWkEY85nJgec7iIywrZRrcR0O3dBsPaWZTwqNEI+HIAI7DcRjLpDxgXhkI4fYB+5gSnQOTY1ZBTpk564/zAAkZg+UGQmInJBoGAJbBadBqF5g1qoPH71ZAhHXtzTqobzQispEI+8XrJAyR5kLStdEVk1B1kUP6TxTXx+DIJMRGI2TDYu6SRO5jrdv0Ew48L7Ucs738My8dfuyMi3r3ciycIHtaaPkykyYCIyeu9Jt8VQaSE69YtDhGRQEQEUKUSULhQ/ERRfATW2/vAqdmUwLJNL3XFFsc9T09xuOTw3mNMK6PCMPeJMHf1sv3uIfDgHx43fqE/cmQsK6Nwa9fj9MefHPbuo58x79eRUaSwhPkOkygzZZTQq3vUnbS8Bo6Mp/dLlwKoHOo6Yeaed2w3QUA4+DuMq6bZwbBWqQd0HsoILD+7HsL5ozDOdR6IYv6iP6zvNPQzT5LOXEZgJR32THPgIRCwBFaJ2u2VaAsCj1pVyqBZg3dQu1pZ6PVsHrcv/xkwosOXaHtX19u7wKm5zg+jTSYzAsu7KDNpjgjoNy+F/vcN9j+Zm3eEtT4leXyJlm7/dhi++4Y+uL3TEOQLv7cW/+9tBI2h2WVSllyIHE2zz7ylJz45a3/gcfEiJSDKlpHQopnnBNbTszwufUflpS0so3gn1wkNm62iJaqMUBZpdk6Z3lakyOELVJgOVxG49hOPh4dovHN9ICFXXdcz5X7ZxuPoMXq+cUMJVSpJCB3r/D1t7H8kFZlSeWCo42syqk9x/3656h/bB+iO/AXD8on0fbBibaDrKEZg+dHl4CwmGEPbg3/xxG61mL8YTINov0k/cifJTGUEVpJBzxQHIAIBS2AtWbMVW3b8gxu3H9jDniZ1CjSuWxXNGtRAySL5AvA6+N5lRmD5HnNvaXQsB+KDZIRkABqMYQSWt/BlcmIiYNi4ELo/f6IElgp9p1zFXTixD8bFY+gX/vI1Yfoq1NXjCe7jb15E0JRe9n1SnsKIHDo/wXPe3LDyOwHXb1CSKEWIjCED4ycE4svAur+Xx02HnkZZq0nI39x1QsPRtwsreDx3INdy1ZOR631GVngz/omVdeZbAa8d7k/RdhLSl3A93j9sEnD2HL1/LZqLKFtaxryFOjx6TK37urMV2bNH/ffBUTpItIUPqo6zgo/6WGJLBQRivA+WfQdyj7GMwFIBa7VE6n9cBP2uH6l4XkBk6FKQ6YNsuY4AI7Bcx4rtZAgkFoGAJbBswJ25cB0/b9+H3/48hJev39rxLJA3B5o3eAdN61VHpgxpE4szOx8HAozA8u+rcWyKANMz+oBRZ7gO6fNzrITQv8OqWev1a2dDv3er3T5z696w1mqaJPYKF47BOGeoXbdYrAJMvSd7zRbh4nEYZw+h8ouUg6nvVK/Jd0XQ4qUC7t53Hu/X82srMmeO+3R8BNb1n3n8e4Bm1ORtLCF7LdcJDUetDw9zuLbJob9SVqBsP1Yu5kpcfbXn8GgB1gh6f8oPFBGUyfVm+6vXCLh6LebEwY2bBJxxILY++lBEubJRco9OEGB+Rc9UGC7CmMZ1nb7CJrno4c8cRNCCUXZ3rKWqAL0nMgLLTwIs3LsJ48SugETfh0lWM8luZss9BBiB5R5ebDdDIDEIBDyBZQPPbLbgr/0nsWXHPuw7fAaiGPVmzvMc3qlUEs3q10CdGuVhNOgTgzc7Gw0BRmD595W4tEbA09P0YaFsGwEF6/CMwPLvsGrWesPq6dAd2GG3z9x2AKzVGySJvfzNSwia0tOuW8pbFJFD5nrNFuHkPhgXOWR4lX0Hpq6jvSbfFUFzFwh4/MSZwGpQT0L1anGTTvERWOeXCXhxmcor0lZChpKeEViWt8CRsYTAciBIhloRlM4Vz9getRGwvAGOjHOeQFh1vAiO8pcJmrB4mYC792h8O7UXkSe3jD37eOz8kwqqVlVCww+i7tHJGTqEP6Siy/S1IkW2BFWxDR4iEBuRL/efyggsD/H06TFZRtDkHuBvX6GfY2kzwjRuFWQdS1t0NxaMwHIXMbafIeA5AozAigW7p89fYevOA9iyfR8uXbtj35EqZQgavlcZzRvWRJniBTxHnZ20I8AILP++DPf38Li5jT5I5KnGo1IngRFY/h1WzVpvWDYRuqN/2e0zdRwKsVLdJLGX//cOgsbQX6m93aMqtubI5vaDferrN7MFvHzpTGAVKiijbZu4S/XiI7COTxMQ6UCIleljRYr/Sr88cezsIgGvrlP7EpPR5Yl+diZuBF5e53BuUeIy5GbPE/DUIcO3x9dWZMkMXLrMYc16Kjt/Phnt20bdybPfCnjlULZYsquI1PlZBpZad5W/fBpBMwdQAqRQKUiDZzECSy3AvShXt2crDOtmO0k09ZoEsXhFL2oJHFGMwAqcWDNPkx4BRmAlEIOLV28rJYbbdh7Asxev7bvz5MyiTDH8sP47yJopfdJH0k8tYASWnwbuP7NfXuNwbjF9kEiVDag/Ts8ILP8Oq2atJxlJJDPJtkxdwiCWq5Ek9nIvnyF46Gd23XLq9IiYQhvMJ9Yo3e4tMGyYZxdjrd0M5s9oxldi5btyftJUnTKB0HEJPDByuBXk/8a24iOw9g8VAJkSTlXHW8EnIqk5ek+tVHlklOrO+mC5Elu195BSUVIyalsZysgoEg/xGZs9U77R4S3t7IAB/USkSSUrpCohV20rKEjG8MFRcb+wksfzC1Svu3231MYlucnnr19A0LTedrfEfMUgD5/HCCyNB5p78wpBI78AZ4qgnzHla8H8FS0H1bgLmjOPEVjaCMntew/R8PMhyJsrK7Z9F39bh3v/PsEHrQYiV/bM2L42/hYNa37aiYlzvkejulUwbVS3OJ2dv2IzFqza4hIYVcsXx7IZ9IfJIeMXKQk08a0M6VJjz2Y6YOHHrX8jbPoKfNq0NsIGRA2oC4TFCCwXo2wVRew9dBo//7YPfx84CYs16ssSx3GoUr4Yln3j21/GXTRb89sYgaX5EMVrIJkGdmik80Sojxbo8PB1tKde/3aTWa8RBIzzR0A4e9hujan7eIik50pSLLMJIX2a2DXLxiBEzPrVa5boflsLwy8r6MNFEvQlCRunA5nsFn21bycif97Ys1riIrBMzzkcm0xJB10KoPJ/0+M8BS3yOXB8svPUuUqhIvQpPJXIznkLgej9znLVk5DrfffKRaNPGxw51ArDf5VN4ybpYLFQawf3tyJlSuDKBgGPj1OStGBLEZkrsgwsb8U1uhz+1mWlDM22pFwFIYUuYgSWWoB7SW70bGbZGAzT2JWQUrMf5D2FmBFYniLn3XNqEVgfdRyJy9fvQq/XYfePs5A2TcpYDSeE0o/b/o7XqWs37yM8IhL1a1fCjNH0/dNGYBHyLV2aVLHKSJs6JeZN7GN/jRFY3r0/yVray1dvsW3XQaXE8OylG4qv53avTNY+q+UcI7DUQtZ3ck98IyDiEX1geHeQDpaMjMDyXQQCR5Nx1mAIl07YHTb1mQKxaPkkAyCk+wdwZHjC5+8gjRO9Yo/+52XQ71hvl0Wa6pLmur5a5DeasROcyWmb7lo1JLxfJ3YyIi4CK3q2ZspcMkr3THy21Kk5Ory9R1HJ30JC1iruESW+wjSQ9JDyQVJGaFuFP5eQsbTrcbGYgXFO5CQw1oHwXL7q/+xdBXgURxt+d/fuIhAgCR40uDsUL06R4u6uxeHH3bU4xV2LFZdSrMXdiru7RC653f2fSXo3e5eEnObukpnn6fP/ZGe++eb9Zndv3v1EwKPHVH6bliKyBMp4uIvHy5OKQgG1JKQta/68CclG9lgr/+IRPMd1MoiS0mSCNHYZI7DsAa6DZAh3rsBj1gAj6WGNe0BXoa6DZkwYYhmB5Rp2dgSBdeXmfTTvPg65smXErbuPMahHM7RpVM2qBZPIriZdxkClErB9+XhkCKBVcfQEFvHwIp5e5jRGYJmDEusTBYH7j19EeGX179qYoWMFAozAsgI0Fxti+sU7X0MBPsW0LqYlUyc+IOAxvQ+E+zcMS9H2nwUxa16nLc1rYENw3z4b5g+evhVIlMQu+mg2zIHqOPXoIuGDJIwwrlpwMDB5evQEVto0Mrp2ip58ionAMq0amLyAjOwWhpRFt/anh3k8PUQJi2TZZeTuYDsxFlc4x9d5zo1XIZxmXUCh/iK8UprvCfXlK4fpsxQ5tLyBwQNolck9+3icOUftXq2yhNKlpIi9QPaEvqWrLCFDFUZgOWqfca+fwWt0O0pgpQyANGE1I7AcBbiNcjldGDxHdwD3/hW1WYZsCB08n4SU2Cg9YQ9nBJZr2N8RBNbwKcuwfd8JrJ4zFB36T0X6NCmwa/UkixdMoreadh0DQmIN+aUFWjaoYiSDEVjmQ8pCCM3HivV0AAKMwHIAqHEs8uU/PB7uVBwYinLI0EgR2xHH+rDp4i8CnpNIxaQ7hgWSH91SxuxOW7DXiNbg3r00zB8ybg3k5Kntoo/HyikQzhw2yNK2HQSxhPGPHbtMFIOQT584zJxDCQTTbiTnEMk9ZNpiIrCe7Ofx7C/6nAioKCFjNduJhaCXwJVfFUQbJ6P4aBEqT0eiw2R/DwFRC5wZaWyTkhMtq0D45i0wbyGV4ecvo08PSkyev8Dhjz10fxbIL6NBXTHC+4p4YelbmlISMtexfZ8xi0ePAPfhDbyGtaBkiF9KSFM2MALLRTeMetcqqPeuNdJOO3wJxIBMLqqx+6jFCCzXsJW9CaxvQSH4sUFvkEJuf/3+K34ZPgdHTl7EmrlDUTifZb8/F6zcgfkrd0SMWz1nSEQaImVjBJb5e4gRWOZjxXo6AAFGYDkA1DgW+fUJh2vzFV/K/YGCg+iX8jhWh00XjxEgoSokZEXfQocvhhSQ2Wkr9pzYDfzTe4b5Q4YugpzePhVqPRaOhHCVJvPUdh0DsUCpOFvrmzfAvEXRe2ARJRrXF5E3r/kE1u31At5fUeQmaigiZTHzPXK+t/ALkwRoP1HZ2ZqJSFHQPrLjDPB4NBGpAkiqAeob8bwiHliWtCdPOSxdQWUEpJXRpSOV8fQ5hyXL6PXUqYHunXV4c5HDvU307ykKycjW1LK5LdEzofflPr+H1+CmBhjkpH4Qp29hBJYLbgz+9TN4ju0ISPR+IGGDJHyQNdsRiCsC6+UVGR8fJRxSPk1BHr4ZzfcOtDeBtWHHnxj/6xp0aFYD/bo0xqHj59Fn5Dz8XLU0Jg2l4dOx7aDb95+icefR/4UOjkOGgFRRhjACKzYU6XVGYJmPFevpAAQYgeUAUONYJPktdGa4AFmiL5jio3VQecWxImy6eI+A56i24N/QhEcho1dATpXOaev2nDkA/N0rhvlD+86AlD2/XfTxnDUQ/J3LVHafqZByFLKLbHOEPH3GYcnymD2wCheSUbd2VGIgJg+sq3MFfHtGnxF5uohIGmgfkunRHh4vjisq3uWTkKNlwvmBb44947LPqzM8HmyzzR6373BYt5HuP5LfiuS50rewcGD8JEqw8gIwaqgOn25xuLWKjkuWU0budozAcpj9g77Ae0ADKt7bB7rZOxiB5TDArRfsMa0XhAe3DAKkJL4RidtlD2/rhbKRBgTiisC6sFrEw+MJ5/1WuJWAwPLm5xa1N4HVoOPIiJA/EjIYmCFNRBE34pEVEqLF0W2zkSRx7PcPKQRH8l4ROYN7NkerhlWjvXMYgWX+A4URWOZjxXo6AAFGYDkAVCeINE2knKudCN+c9jmcOmE5bEoXRcBzaHPwH99SUmfCOkh+NAFmXKsdxUuq21iI+UvaRQ1nh0s+eMhj5Rr6o1GthlHVNx8fGQP7mk9gnR2jgi6YQlN0iAhNMvs8I74+4nBtISUteJWM4mNE8DE7kNnFRkxI9Ag8/IPHy79ty0N19TqP3xUkWN7cMho3NN5vv84V8OEjJUV7dhPh+Q1G3l8+GWXk684ILEftVS40BF59fzaIJ9VYxXl7GIHlKMCtlKs6dRCa1dOMRms7jYRYuKyVEtkwUwQYgeWYPWEtgeWhUSN39u+HxoaFh+PG7UdInzYl9q+fGmUB1249QNNuY1EgdxasXzDCcH3inHVYt+0QhvZqiRb1K8e68AWrdmL+iu0RoYOrZg8Bz0fvUaYnsAhR5ucbfT7VpnUq4qeKNME7S+IeK/ysA0PA/ggwAsv+mDpDIvnaTr6665s1JdOdoTeb070Q8BrUCNzXTwalQ6ZshpzE12mLiJKnqt1giMUr2UUfz1HtwL95ZpAVOno5pFTp7SLbHCG3bvPYsIne09mySnj0mDcisXr3EOHvb0xCReeBpQsFzo4yzolUarL9SAVZBs6NFaALpj8Kc7UR4ZvbPgSZOXixPhSBG0sEfL6nqEDYXARJ2m9JO3uOx+59dP8VKyKhdk1jr4MNW3jcukX7EIIr0F/G5Zl0r1kTvmiJngm+r04H719+ojAIAnSLDjICy4U2Bhf8DZ4jW4MLolUVxFxFoO012alavnjJYd8Bev+mSimjVg339SxiBJZjtpO1BJYl2sREYI2Yuhzb9h7H6AFt0ajWjwaRpBJhw06jkD0wXUQlwe81c0IH9eP1BNb35A3o2gTtmtJnLiOwLLE068sQsBMCjMCyE5BOFmNaYcw3p4Rc7dz3h4iT4WTTx4CAV9864EKpG0/IzB2QvRI5DS/NpnlQHd1pmD+s6S/QlafeCLYo5vW/JuC+fDCICJm0AXKy5LaItGjslas8tu6gh4v8+SSEhHC4qyAmalaXUKK48X0eHYEV9BwgXpr65plcRuGB9iOwiFxTEp3k18pq4rFjEQCss9UInB8vIOwrJbAK9NEhURrLxB09weOIIul/mVISqlY23mt/HeNB/tO3sqUllC8m4/wE6o2n8ZFRdLh995plK4n/vb27GReX0C35kxFYLmR2zdqZUP29z6CRrNZAO2YlJN8UTtXywkUOO3fTe9XfT0bvnu57r8YVgcVyYH1/29orhFCfvF2SZBzfPgeJExnnRanfYQQIObVhwQjkzx197lMSOti061gQwut7oYOmBNa0Ed1QoxL1svreihmB5dTHGJs8oSLACKz4YXnTSmCqRDKKj3TfHyLxwyrxbxXev9QAdLTCZfCcPYBa47SFqv9YAfW+9ZTAqtMeuurN7KKPV5/a4LShlMCatROyZ+y5FuwyOYBzF3js2kPJgaJFJCT3B/YfpH/LkU1Ci2axE1jvr/G4vZaOS5ZDRu729n0+fLrN4aYiZ5fKW0axkSKrDG+vDWGmnOgqEP4w3vJwTrLP/jlN90zlihLKlTHeazdv8di4ReElmE1G8wYizoxQ5MZSAT9MYEVFzDSfVd1Mn8u6BfuQPLkPwnQS3n3WWiWTDbIPAsKDm/CY1ttIWHjdDgivRhPv22cmy6UcPsLj+El6/3p5AUMGuu+9GlcEluVIJ6wR9iKwNu48gnGzVscKXv0a5TBuUPto+y1cvRPzlpPQwWxYNXtojKGDjMCKFeYoHVgOLMsxYyPsiAAjsOwIphNFyRJwZoQASUe/utszx40Tl8amdiEETL/0By885FTt1Ac3Qb19qUEHcigghwObmyTBu0c1KobjELzgoM1iLRHw9ykBBw7R+7l0SRGFCshGlQlJXqyh/9NBUORXjc4D6/kxHo/30k6pS0oIrGtfD03yDDo7WoCoVSSK7ywiaRbLQtcswYj1jYrA18ccri2gXhXWetvt2CXg4iVqy1o1JRQvYrxn3r/nMFtRATdJEhkD+oj4539kfjqWEFgsH5rjdqtXnzrgtNQzVpz9B/zT+DECy3GQmydZFOE5riNI9UF9k1KlQ+iIpYAQc4EO84Tb3mvLVgHXbhjnAhozQue2Hx0YgWX7nrCHBHsRWPrk7SSPlqD8kaNQ8vq/D+HpocaxbXOQyNvTSP07D56hcedR4HkeO1aMj7bqoOl6WRJ383cAI7BiwCosLByXbtzDvYfP8PlrMPyT+aBJnYrmI8t6moUAI7DMgsktOpEkyiSZsr7laCXBP699D6luAQRT0jEIhIfBu1dNKlulRvDcvY6Zy0ypqhO7oVk/29A7vFwthDcz/tptpijjbiHf4N2vnuFvJEyShEvGZfvzKI9jisp+FcpLIP9NmS4gSJFrqn0bEZkyUpIoOgLLNLwvU00JacvZ/9lwZ4OAd5fpMyhNGQmZa9t/nri0g7vNZRpO7pdHQs7WltuAeFYRDyt9a1RfRL68UcnIcZNURnnZhg/R4coUFcJpuh8UHaaDJvp8uO4Gr0vq6zWwIbhvnw266WZuRfJ0qRiB5WRrqQ5sgGbHciMttANnQwzM7WTNIqdfvEzAs+fGBNbgATp4x52jsV1xYASWXeG0Wpg9CKxr/z5E065jkCVTAP5YOSFGXbr+byZOnLmKUf3aoPHPFegzUBE6+L8ezdC6keKD5HdWxggs883OCKxosNqy+yjmLtuG9x+Ig7SWAAAgAElEQVS/GK7myJIe25aNM+rde8TciPjXOeN7RSRyY81yBBiBZTlmrjri0S4eLxTu4AE/Ssj4k+UHF1ddH9PLyQi4AKljioDq3F/QLJ9If7QUq4iw9kNsBor/8Aaew1oY5EjJkiN00gab5VoiYN9BHqcUIVzVKksoXUrCtp0CLl+hh47y5SRU+pHe59ERWDeWCvh8l44hhAYhNuzd3l3lcWedonKij4xiLP+RvWH+rryHu3m8PEFtEFBRQsZqltt65RoBDx7SPdOquYhsWaMSWKaHYEKoftzCI+QtHVuovwiSzJ01xyDgNbgpuM/vDcLFqZvgnymAEViOgdssqaRar8eINuBEGnKvK/0Twlr2M2t8XHSaMkOFoCDjmXp3F+Gf3D3vVUZgxcWuiX0OexBYI6ctx9Y9xzG0Vwu0qG+c40+pwV//XELPobMjqh1uWTzacGnR6j8wd/k2FMqbDavnxB46qB/ICKzY7avvwQgsE6ymL9qEFRtpskNS6pIkcIuOwCIlMUlpzI7Na6Jv50bmo856GhBgBFb82QxvL3O4u4G6pSfNKiNPJ/vmuYk/aLGVWIoA9/kDvAY3MQyTfZIhZOoWS8XYtb9w7Qw8FgynB7e8JaDt8f2KNOYowL98BM+xnQxdpTQZETqShiqaI8PWPiS5Lkmyq2+kAhypBHflGoet2+l9ni5ARucO9D6PjsC6OEVA6Afbknqbsx5yVjs7SoAsKub6RYdE7PuSOfDZpc/NZQI+3aH4Z2smIkVByw+kC5eo8PIlValTBxHpA6LKMd2npLCA1zkO355QHfJ1E+GTyXId7AJIAhDiNaIVuHevDCvVTVqL5FkyMQLLibb3mDMYwq0L9H2ZyAehY1dD9k7sRK3o1DodMHaiojLtf5c6thORIb173quMwHKJrQVbCayg4FD82KA3RFHC0W2zkSRxzC6BhB+o2rQ/Xr75EEFgESLr7sNnaNQpMnSQVCjMmC6V2cAwAstsqMAILAVWZy7dQvu+UyKSrDWuXQEtG1RBurQpUbByh2gJrKs376NZ93ER1QdIFQLWLEeAEViWY+aqI8gX70vT6cFW8JRRYgwjsFzVXu6mF/fhDbyUXkl+KRE6YZ1TlyHcuw6PGX0p0ZQ1L0L7z7JZJ/7BLXhO60XlZsqJ0P/NtVmuJQI2bxNw/TolARrWF5E/r4xvQRymzjDOnzJ0kAhPz8hDhymBRXJTnRoqALIiJ9F4HXi1JdqY3/fWSh4fFaFn6SpJyFDVcg8g82dkPZUInJ8oIOyzgkDspUOiAMsxmjVXwMePVE6vHiKS+0c92J45y2PPfurxVaSwjOxvgY//Kjz+2orwy+Weh2LLkYv7EZ6j24N//dQwsThuJfxzZGUEVtybImJG4cIxeCw1/pCibTMQ4g9VnaRR1GlfvwHmL4pKYLVoKiFHdvd8XjMCyzW2l60E1uY//sKYmatQ76eyGP+/2HOa6hO1kxBCEkrY9X8zcOLMtYiqhRkCvk9ekdxaGxeONACnJ7AypU8N36Q+0QKaLElizJtIU1XoqxCS/mlS+cdohNljeyJt6rirZO3o3cAILAXCJCTw8IkL6N+1Mdo3rWG4kufHttESWCTEsFy9XkiWNDH+3jnP0baKl/IZgRW/zHp2tAq6ELqmwgNEeKZgB4f4ZWXnrIZ/9RSeY2ilFyllAELHrHSOMv/Nyj9/CM/xnQ06yAGBCBn+m806kS/n5Au6vom5ikDba7LNci0RsHYDjzt3KTHQvImEnDkiDxbzf1Ph9WsqrUkjCXlyRV4zJbCI5xXxwNI3dWKg2AjHVZp6c47Dvd/pfN6pgIL9HDefJZjG975RKhAisgKgNQnUJ01TIUTxLhnUT4fE0TiPPHrMYfkqY4/ACt4A8QjWt2xNRKQozN5Djtp/XuO7gHv+wCBeN3IxkufNzQgsRwH+Hbkkmb7HyLbgv3yk74/AXNAOnOMEbWKe8vYdHus2Kqp//Ne13s8iClnhsekKi2MElitYATZ7YDXsNAq37j6OcEwhDiqxtbfvP6FS437w9NDg6NbZaN9vCq7dos/D740nDjPXjqwwdNETWN8b4++bBMe30/tZT2DFpueu1ZMQmCFNbN3c5jojsBSmKl+/Nz59/oZTuxfA28vDcCUmAkuWZRSs3DGi35U/l7mN0V1JUUZguZI1bNfl3ko13tyiB4VsTUWkKMQODrYjyySQAxI5KOmbFJAZocMXOxUY01xVsl9KhNjBK0y4eAIeS8bSA0jBMtB2GRWna12xSsDDx5QEaNNKRJbMkffygUM8/j5FDx/FCkuoXSt6AuvzPQ43llCCIXEGGfl7OM4zMzwIODfWuApd4cE6ePrGKXwJcrKvTzlcm2d7BUIC3sixxt4ZMVUnCwsHxk+ifUllzBa5Jbz6h+7PzD9LSFPaPb063GEjeU7qAf7JHfq8GrYA/gXyMwLLCcbTbJoH1dGddGZeiAg/J9UHXamdOsNj34GoBFa1KhJKl3TPe5URWK60w5gu8R0BRmApLFygUgf4JvPB0a2/Gtk9JgKLdCJjVCoBFw449yDlrhuVEVjuarno9X5/VIPb++iPD1YFLH7Z15mr4R/dhueUnpTAypgdoYPnO1MlwCSxPLx9EDxjm806qU4dgGb1dIMcXcmqCGs90Ga5lghYtETAi5eUwOrcUUS6tJEE1v0HHFatpURFkiQyBvSJJKVMPbBenebwQJEzK3lBGdmbOY7AIjrc+E3A5wdU94w1JASUd89DkSU2c3bfN+c53NtC94VvLgm52lqOe6gWmDiFklIqNTBySMxedNN/FfDlC7V3i/wS3isI1vRVJKSvbLkezsbTXeb3mNYbwoOblMAa9Cv8ixZlBFYcG5CQiIRMVLbwGi0RXrtNHGsS+3SEvCIklmkrW1pClUruea8yAit2u7MeDAF7IcAILAWSpev0hFYbhrN7f4vIg6VvMRFYj56+Qs1Wg5EuTQoc2DDNXjZJUHIYgRW/zC0/9sSpBfSg4ZNRRr7ujj2sxi8E2WpiQoC/dx2einxTYta80Noh35StiHt3U1So4TgELzhoq0iojmyHZssCgxxdhboIa2x8MLF5klgEzJ4v4P17+h78pbuIFP9VhxLFSK8XUXHO6N1ThL+fHIXAeryXx/Nj9KASFzmpXp7k8XAXndPRXl+OtoW7yH+0h8eL44oKhFZWov30mcPM2ZQI80ksY2C/mN8jazYIuKuoclk3t4zQc3TvpikrIfN/HoLugqU76ek5ayD4O5cpgdV/BvxLlGAEVlwaUZbhMb4ThBePDbPK/qkROnoZZJUmLjUxay4SPkjCCE0byWFXp5Z7/mZkBJZZpmedGAJ2QYARWAoYOw6YhlPnb+C3qf1Rpni+WAmsaQs2YuXm/ahdtRQmD6V5UOximQQihBFY8cvQvpwX9gyiZZs5XsYPE0RwUX+nxK+Fs9U4HIEoeaFyFoa29xSHzxvbBF5964ALDTZ0C5m1E7JnzFVrYpNHrqv3roV61ypD1/CfmiP853bmDLVbn+mzBHz5SkmA/r1FJE1Kw4FXrhHw4CG9XqumhOJFpCgE1u11PN5fpQ+ArI1EpCzq2LDisC/A+QnKEDQZRYeJ0CSxGzxMUDQI3FohGCVPz9pEREorck+9eg0s+I3ajxCnhECNqR0+wuP4SbrHKgXKUF+jezNFERnZGrvnodgdNprH3CEQbp43qCr2ngz/0mUYgRWHxlMd2QbNloVGM2r7ToeYvUAcamH+VCSBO0nkbtpy5ZTQrDHzwDIfSdaTIZAwEWAElsLuuw+dwv8m/BaRpX/R5L7IkimydE50Hli7D5/C4AmLQfJgrZg1GMUL5UyYO8jGVTMCy0YAXWw4+QL1R59whH2jihXorUOitC6mKFPH7RDgr52Gp6Laqy5fCYR1N6605IxFeQ5pBv7TO8PUIZM2Qk4WcyUYc3RUb1sC9aHNhq7h9ToivGoTc4barc+EySpow6i4IYN08PKk/z75D4+DhylpoD94mIYQXpmjQtBzOi5vFxFJAh1LYJHZrswREPSckhiBdSWkdtPcKnYzqoMFXZgsQKuoHJj/Fx0SW5F65+EjDitWUw+s9OlldGoXMwF19RqH3xVhqkVSy0hxn9reL7eEnG3c81DsYJPZRbzHwpEQrp4yyBJ7jIN/+QqMwLILurEL4b98iEjczmlp1QNd0R8R1mFY7IOd1GPMBBWIJ69py5RRRvs27kk2Mw8sJ20mNm2CRIARWAqzEzKKeGGdvnATapWAOtXLoHihXBg0bhFISctxgzrg3qPnOHD0bEQf0mpUKoFpI7olyM1jj0UzAsseKLqODPIC/3uODi+v0gNqlgYiUhV3/IHVdVBgmjgCgSiJzQuVgbZz3CY2j25dnmM7gX/5yHApImFumow2QaBePxvqE7sNMsKa9YKuXG2bZFo6eNQ4FWTFbWuaRPvlK2DhYuPk2cMH6+CbWA1vTxU+fQtDsFbEmZECRC0lE4oMFeGh8OSyVC9z+z/9k8fTg5RgS5pNRp6O7nkwMnfNzuwn6YDTw4wTr1tbgfDWbR4bNlHbZc8mo+V38qa9eQPMW0TnzugtI9dbuucIYUqIU9YcgwApOEGez/omdh0J/4pVGYHlGLijSPVYPAbCpZOGv8seXggdvxZyYtd0OQ0KAqbMMH5W6JVPmQLo2c09q8YyAiuONjybhiEAgBFYJtsgOCQUg8b9hr/+uRTrBqlctgimDO8SUTqTNesQYASWdbi56ijyAr+5S8LNnfSwkKq4hCwN2NdvV7WZu+glnPsTHssnG9TVFauIsPZDnK6+aQLj0IFzIAXmskkvsk6yXn3TthsMsXglm2RaMti0sptKAEYOi3qomDBVgDaUEgXESyZfTpWBwPryUcTZMYqDCiej1OS4IRKCXwOXZxrPXXy0CJXCi8wSTFjf7yPw7RlwdS7F28NXRpHB1tn68hUO23ZSD6z8eWU0rB+zLEK0jpmogvRfFx8JKE2dUeCdGijY1z0Pxe6w7zTLJ0F17gglsDoMgX+1mozAigPjkdBNEsKpbM744GHJUp8+57BkGb2/lWMTJwYG9XPPe5URWJbsAtaXIWAbAozAigE/QmBt2vkXLly9A0Jq6ZtGo0bhvNnQrF4lEAIrPraXbz5gw/bDOHn2Gp6+eAudKCJNSj+U+6EAOjavieR+SWNc9vZ9J/D77mMRnmqiKCJjutSoW70MmterDEGImgiJEVjxaweRF/irazJOzqY/QBIFAAV6uecPkvhlHfdejervfdCsnUkJrFLVEdaqv9MX5TFvGIQbZynZ1HMixDzFbNLLY8EICNdOU5ndxkLMX9ImmZYM/vYNmKogf7y9gcEDot7Dv28TcPU6JbAqlpdQt4ZgILDe3JdwdS49qHilkFFogHWkhiX66/temCRA+4nql62JiBRW5GSyZu6ENubNRQ73NlFbJ8spI/d3wv6+hw+pTkaqlOlb8aISatX4/keQBYtVePUqcoSnBPyoILA0SWUUHRp3+y6h2Z5UTCWVU/VNbDsQ/jXqMALLwRuBC9dGhA4qQ9ilDNkiq/Ny9LnnYDUsFn/tOoct26InsIiwsSPd8/ciI7As3gpsAEPAagQYgRULdJIk4/3Hz/gWFAIvLw/4+yaNCC+Mj42sddmGPZi/YjvCdZGkVbbA9BFE1K27j/Hh01f4JfPBqjlDEZghTRQIhkxcgj8O/h2BT6F82aBWqXDl5v0I7EhS/PmT+kAlGGPHCKz4tZPICzw8WMZOJWHFRSZy5+PnbRO/DOjCq1Ed3wXNhjkGDcPL1UJ4s95O11izbDxU548Z9NB2HA6xSHmb9PKcOQD83SsGGaF9p0HKXtAmmZYM/vCRw68K4ilZMhn9ekUlAC5d5rD9D3pjZ0gvY0BP3kBgPT0r4fZ6et03p4xcVpIaluiv72taAdE/r4QcrZg3qDVYxjbm8T4ez49S0iltOQmZalqH9ZFjPI4qKleWKyuhcoXvy9q6Q8CVq5GHdkEGqtC6CuA1wA/j3PNQHBvurnBds+5XqE7uMagitewDv58bMgLLwcYxzZUInod26G8QAzI5eGbbxJOCC6TwQkxt6CAdPN3QU5YRWLbtCzaaIWAJAozAsgStBNC3z8h5ePj0JYb0bIEfiuQ2rDgkNAyjZ6wASXRfOF82rJlrnBySEFeEwCLE1uLpAyPIL9KI9xqR+fe56/ilfX10bf2zEYqMwIpfm0r/At81MMwomW++HiJ8MrA8WPHL2nG7GtXhrdBsXWSYNLxSfYQ3dH7+Qc26WVCd3GvQK6xFX+jK1LAJHM9J3cE/uWuQQb6oSxmz2yTTksGm+a1SpgR6do1KAHwL4jB1BiWoeB6YMoaDb5LIHFh39st4sp8eVFKXkhBYxzpSwxL99X2/PuFwbb5CP5WM4mNE8NGnX7FmCjbmPwRureTx8ZZ9qk0S7yvihaVv1apIKB1LAv6//+FxQFFUoFqQDA7UC6XkZJ0rO6W49T7SbJ4P1V87DGuQmvSAX4NmjMByoFX518/gObYDINHnaXjlBghv0NWBs9pH9M7dAi5cjNlDrM8vIvx83e/3IiOw7LM/mBSGgDkIMAJLgdK6bYeRJpU/KpYuZA52Rn3CwsJx//ELqFQCMgakAgk1dMdGiCqB56LVn1wrU6cnQrVhOLZttlEoYd12w3H34TOsmz8cBfNkNVr6x89fUalRP6jVqohxypxhjMByx10Ss876F/hfc7R4f5UeQDL/LCFN6bg7uMYvVNlqCAKqAxug2bHcAEZ4taYIr9vB6eBEqRhYvzPCqzSySS+vUW3AvXlhkBEyegXkVFaUc7NSiydPOCxdSYmfdOlkdG4ffQjW3AUC3r5T5MFqzaFEkUgC69p64PVZei1TLQlpy8btc+DceAHhX6kOOVtL8MsTtzpYaQa3GnZxqoDQ9xTnfD1F+KS37hBK8l+RPFj6VqeWiCKxhH7ef8Bh1Vq6ZyuHAirFli02Qgd1YreC1G2UVW9dDPXhLZTAatgZfo1bMwLLgRb0mNYLwoNbFPNkyaEduxKy2sOBs9pH9Mo1Ah48jJnA6txRRLq01j077KOhdVIYgWUdbmwUQ8AaBBiBpUAtz49tkTNrBmxdOtYiLLfsPoppCzYiKDgyV5ZPYm90blkL7Zva9hXeIiXiqHO99sNx58Ez7FgxHtkyRx6oXrx6hypNByBDQErsWzc1Wk36jZ6PA0fPYe6E3kYEISOw4shwcTSN/gV+bpsWJHxH30jeGZJ/hjWGgLUIqHevhnrPGsPw8JqtEF6rtbXi7DZOvXct1LtWKfRqifBabWyS7/W/xuC+fDTICJm8CXLSSK/WuGj37vNYvU7hTRMooXXL6Emfvft5nD5L+5YtBbRpoo4gsM7OBb7cV5BHbST45Y5b8uj+dh6vTyueRUVkZGvMnkX23EfRVSAsMVYHwcqzNKlASCoR6luzRhJy5fr+vjH1BiwXIsNbonuv8AARninc71BsTzs5SpZm53Ko9m8wiJfqtoNf8w6MwHIQ4KoTe6BZ/6uRdG2X0RALlnbQjPYVO3OOgE+K3ISJE8kg96++tWohIVuWuH1P2GOFjMCyB4pMBkPAPAQYgaXAiRBYSX0S4c8ts3Dg6FncuP0QoiQjS8a0qFGpBHyT+kRB9cylW2jfd4rh7zzPgeSSIq1Pp4bo1KKWeZZwk14VG/XF67cfcXbvIiTyjgxS//PERfQaMQe1qpTElGFdol3Jqi0HMHX+hgg8CC76xggsNzG8mWrqX+C3zobixmLnJW82U13WzY0QUO9YBvWBjQaNw+q2h65aM6evgITOkBAafdNVrIewRt1t0surd01wYWEGGSG/7oLsEXdJQa7f5LH5d0og5MopoVnj6A8Ud+5yWLuB3uspkwMTR0QSWCfGwCiUmFSCIxXh4rJ9usvh5lKqn+Ahg1Qj5GJOwRKX6sWLuYKeA1fm0LhMW5OmL18l4NFjeqBt20pEYObYyaeJxAvsv6qYP4QAyRRbloWxO26rkQ8L5AODvkm1W8GvVRdGYDkAcu7bF3iObA0uJMggXcxVBNpetEKvA6a1q8iRY41juHPmkPCvgrBuWE9C/nyMwLIr6EwYQyCeIcAILIVBCYFFWgr/ZHj7/pORqRMn8sL0kd1RtkQ+o7/3HDobpGJh2RL5MWlopwjvq10H/8Ho6SvBCzwOrJ+GlMmTxYttc+P2IzTuMhoFcmfB+gUjDGtauWk/pi3ciC6taqNXhwbRrvXwiQvoPWIuqv1YDDNH9zD0YQRWvNgahkXoCaynr0JwZrjxj5QS43UQ3DOyNn4ZyU1Xo9myEKoj2wzahzXsBl2l+k5fjXD6IDxWTTPooStZFWGtB1qvlyTBu0c1Op7jELzgoPXyrBhpmpy9QH4ZDepG77UUFg5MnKJSpmLB1NFqcEIY/uxnHCbyw3gd+Dh+BsgScHa0AFFLdcnTWUTSLLETIlZAlyCHvL3M4a6CxEyWXUbuDtZ7uS34TYVXrymUXTvqkDZt7NAqQ5OKhgDJFWfg3O1FJMvBbB47ipb3MA3vln5qBr92PRiBZTmUsY7wWDkFwpnDhn6yWgPtmJWQfFPEOtYVOhDPK+KBpW/E+ypXThnnLtAvCj9Vk1CyBCOwXMFeTAeGgKsiwAgshWX0BBb5U6oUvsiVLSM0ahVu33+Kx89ew8tTg+3LxyN92pSGUWXq/AKS4+n3JWMi+uvbgpU7MH/lDgzo2gTtmv7kqvY3Wy9ZltGh31QQj7PZ435B5bJFDGPnLd+Ohat3fnetek81khh+2YxBhrGMwDLbBG7RUU9gEbtemi4g5C07NLqF4dxASfWG2VAf323QNKxZL+jK1Xa65sLlv+Hx22iDHmLBMtB2GWW9XkFf4T1AQcx5JUbwzO3Wy7Ni5JmzPPYokq8XLyqhVo2YDxSmHjNtmgrIklqHfybQ+1/tAxQb7pxKcHc3Cnh7ieqSppSEzHGYTN4KE7jVkMcHeDxXVBVLU1ZC5lrWH0BnzBbw+TO1l7lJnfcd5HHqv3DRAqFAGgWHlr2ZiOQFGYHliI1lWmBDqtwAfp37MgLLzmALd67AY9YAI6nh9TshvEpjO8/kOHEPH/FYsZqSVSS/YpZAGceO07+VLyuhUixVRx2nofWSWQih9dixkQwBSxFgBFY0BFbLBlUwoFtTqFWRXwkIebNi0z7MWLQZzepWwvA+rQx/z1uhXcT/P7fvN3h70YQP7z9+Qbl6vSI8thZN6W+pXVyuv56kIsQVIbCUjeCyfONeDPmlBQh20bVL1++iZc8JKJQ3G9bOM65g6HKLZQrZBYGzy0Q8OUUPMfkaCshRncXt2AXcBCgkeMFEhB2l1f68uw2BpkJNpyOhu34R38b2MuihylsEiUfOtlov6d1rfOlOPVm55KmQdMFWq+VZM3DvIQnbdtPTf/VKPBr+TL+am8rcc1DC9j20f9GCHOoVF3BiFiWs/LNwqDDEOeX/nl+UcWoB1cUzKVBrRhy7glljCDcZ8898HV5couRQkTYCMpe1/lnfY1A4tFq6+NmT1EjkHTsYf5+RsGJ95D7MrQUyKPjSQi0EZKlgvU6xz55we2j3b0XI8lkGADyq1YdXh34JFxBHrFwU8aV3U0hvXhqk8+kzI8m0lQAf87PZEarYIvPkaQkrN9B3RYkiPDJn5LBxG/3bj6V5tGzsPmuyBQ82liHAELAOAUZgKXAjHlgk3O/gxhkG8koJK6m0FxYejr1rI3Ne6UQRBSpFVsG6/tcKcJxxuET15oMgSRIObpxunXVcZNT67X9iwuw1yB6YDmvnDTfkvtKrZ5EHVuHcWDaTemC5yBKZGg5A4N6fEi4rfqgEFOFQsptzDrAOWB4TGccIBM0Zg/CThwyzevcaCU2ZqnGsRdTpxAe38XUwrYYoBOaEz+SlVuslPXmALwNocvqIQ8oMmrzeasEWDCTkFSGx9K1uDQG1qsV8+H/4RMaEGZQt8PIC+lQTcGkdPZRk+IFH8Y7OOZSIYTJ2/KKDrPDIqTRcBd9MMVfCsgCuBN91/7BwfFOE/BGikhCW1jRZBjr1CTcauuRXNUx+XkUr+vFTGeOmR+7D7GFAoEJM3noCctZkBJY1NoltTNifuxD8G80Fq6lYC95dB8c2jF23AIHQLctB/lM28p4h7xt3auRDB/ngoW81qvBIk4rDsrWKDyCFeHRt65x3hTthyXRlCCRkBBiBpbA+IbBILqtFU6L/cjR00hLs++ssLh1cEjFKSWDdOLoyyj5q22dyRCJ44p3lro1UWCT5vDIEpMLqOUMi8oOZttVbDmDK/A1m5cAy9eBiIYTuujOi11sZQvj1CYdr8+mPEA9fGUUGW58XJX4hxVZjKQIev42BcPmkYZi28yiIhcpYKsbu/bk3L+A1ilYdlFIGIHRM1PeBuRML92/AY3ofQ3cxMBe0A+eYO9wu/UwrC1avKqHUDzGHhBHSYeI0Adr/EmgTJZrllvHxHCUx0lWWkKGK9WFlti7s31U8PtxUhK5UkJChuvP0sXU9rjI+ogLhcAGQqa1tqUAYHAJMnqZICK8Bhg82L/RUFIGxE1Ug+zFTGJBTQWClLSchU01mb0fsG9M8gHLJqvDtO5KFENoJbO79S3iO6gBOpBtaV6YmwlrQ94SdpnK4mC1bBVy7QZ8VdWqJSJIEWLOe/lbMnElGu9bu91uRhRA6fPuwCRgCBgQYgaXYDIWrdkLRAjmweJpxjLm+y8BxCyMq7l38j8AKD9ehYJWOEZejI7A6D5yOUxdu4NqRFW655TbuPIJxs1YjU/rUWDFrcIzJ6I+duoLuQ2aZVYWwfdMa6N+VxuszAsstt0aMSisJLEkETg8zPtgUG6GDOnH8WjNbTdwg4DF/GITrZw2ThXYfBynfD3Ez+Xdm4b5+gtegRoYechJfhEzZbLVewo1z8Jg3lBJYuYtC+8skq+VZM3D7HwJIInd9I4eMIny6bHAAACAASURBVIW/nz9o0+88bigIoupJAbygs2dtLCJlEeflIHp7gcPdzYrKqCllFOrvfocka+zpyDFBL4ErvyoIJx8ZRYdbj+uHjxx+nUvtlDSpjP69zZc3d4GAt+84pAsH8tJCnkhZTEbWhubLcSRm8U226txf0CyfaFiWVKwC/AaOYwSWnQztMXMAhLtX6DsmkQ9Cx66G7O1+P6YWLxPw7Dl9t7RpJcLDA1isqBSbKhXQo4t5pLWdILaLGEZg2QVGJoQhYBYCjMBSwFS79RB8/PwtIuRPmc+KdAnXiajZ8n948/4T9q+fitQp/PDy9XtUbhKZ34qQWh4a45waTbqMwYMnL9zSA2vN7wcxed76iLDBpTMGwd83SYwb6t2HzyhfvzcyBKTEvnVTo+3Xb/R8HDh6DtNHdsNPFUsY+jACy6z71G06KQksojQprU5KrOtbrnYifHM67xDrNkAyRaMg4PHrIAi3Lxn+ru09BWLOws5HyrRqoFqD4Dl7rNZLuHAMHkvHG8aLhctC22mk1fKsGWhKRjWuLyJv3u/ft+cvcPhjDyUefhQBz1A6e96uIpJkdt69rwuNrEao9BQqNEAHL/co3mWNGeNkzLsrHO4ovCeSZpWRp5P1RNGLF8CipZQQS50K6G7BYXbzVgHXb3BIFQ4UUhBY/nkl5GjFPLAcsSmIZyzxkNU3uVAZ+A6ZzAgsO4AtnP0THismG0nSthsMsXglO0iPexFTZqgQFETn7fuLCPJWUJLWSXxkDOhr/TMk7lcVOSMjsJyFPJs3ISLACCyF1QlhQ4ib6hWKY1T/tkiSODJrqDYsHJPnrsPmXUcj/p05Qxp0blkLJ85cxd4/z0T8bevSsciZNYNBGvHOIknc/f2SYvfquP16butGXrFxH6Yv2oS8OTJHeKMlTZIoVpEkQTtJ1L5u/nAUzJPVqD+p0lipUT9Isozj2+cYcCWdGIEVK7Ru1cGUwLq/lcfrszRsJ31lCemdGEbkVmAyZY0QIGF1JLxO37T9Z0HMmtclUPLuVRMIp6fl4PkHAN66fDuqv/dBs3amYV26UtUR1ipuC4GQcI679+hX8hZNReTI/n3yiVSNI9Xj9K1KEKDMYlJ0mAhNEucRWESv64sFfLlP10VCCNO5YbUrl9j0/ynx5BCPZ4fpXk9TWkLmn60nih485LByDd05mTLKaN/G/MPssRM8/vyLh78IFFMQqEmyyMjb2Xw5roSxq+vCXzsNzwUjDGpK+UvAb/gMRmDZaDgu+Bs8R7YGF/TVIEnMVgDafu6ZV1eniwzx1TeS127UMB3CwoGJU+jfSU760cOYB5aN24cNZwjEawQYgaUw78s3H1C33TB8CwqJ8MAiRJWHRoP7j57j89cgCAKPX8f+guGTl0b8mzTidZUmlT9yZEmP6SO7g+cjfxzv2H8SwyYvRd3qZTBhcGSYoTu0xWt3YfbSrSicL3tELrBE3p5mqU3IvK7/m4nADGmwePpApEnpFzEuOCQUfUfNx8mz19CifmUM7dXSSB4jsMyC1206mRJYr89yuL+VHkaS5ZSRux07RLiNQV1IUc9JPcA/uWPQKHTwfEgZs7uEhiSEkIQS6lvI1C2QfaLmCzRHWdWf26D5faGhq65ifYQ16mbOULv1WbpSwJMnlOghBAIhEmJrv84X8OE9B40MVAymvTmVjJITnH/fv/yHx8OdlGxJnF5G/p7O1ys2XF35+u21PN5fo5gG1hOR+ofY90pMa7pxi8emLVRezhwSmjcxnxC7fYfDuo0CkohAKQWBlSgAKNDL/Q7Frmx7vW7CrQvwmEOTtsu5CsN3zBxGYNloPM26WVCdpJV3ZUGN0DHLIPunsVGyc4a/eQPMW0SJKt9kMvr2inz+jhxrXOBnxGAd1Brn6GntrMwDy1rk2DiGgOUIMALLBDPiRdR/zAK8fvvR6Arxxpo0tDN+LFUQD568xLL1eyLImdaNquHfe08w/tc1yJMjE0oWyYMv34Kxfe/xiLDD1XOGokh+1zhkxbY9/jl/HZ0GRH7ZIaScaUikcnxiby9s+m2UkUjitUW8t9RqFQrlzQqNWo0rN+/j67dg5M6eCatmD4kSmskIrNis4l7XTQmsoBfAldn0h4kqkYziI9mB0b2s6hraeo7rBP7FI4MyocMXQwrI7BLKeY5qC/4NjZUNGbMKcsq0Vumm3rMW6t2rDGPDa7REeG2aJN4qoRYOWrBYhVev6KCuHXVIa8Zydu/jcfYcj6QiUFJBHni5SL6psC/A+QnGB6Wiw3TQxBwhbyFyCa/7pRkCQt5QstPWUNELFzns3E0/ehQsIKN+HfPfGZ8+c5g5W4CXBJQPofZgRUQctzf5O1fhOYt6icrZ88N3/AJGYNkAOflYQz7aKFt4zVYIr0Ur1Nog3ilDb9/hsW4jJaeVydqnzlTh2zeqVr/eIpIltZ4Id8YCGYHlDNTZnAkVAUZgRWN5EjJ48sw13H7wFJIoIWO6VKhUtkgU8kU/lFQj7DRgGs5e+tdIWvN6lTCsdyu32VskRxXJVWVOS5zIC2f2UC8B/RgiY+3WQ7h9/wlEUUJAmhSoUbEE2jX9KVpCjBFY5qDtPn1MCSxZikzkLkv0gEMqEZLDhGkr/HQTfHg1Mqh8Iv4b4lcUiTnjw6b7IME0tTcCUUii0Ssgp0pn72mskmdP7zD11sVQH95i0CO8fieEV6GFL6xS0MJBs+cJeP+B3rO9u4vwTx77YeLWbR4bNvFIrQMKaumkvjkl5GpnvheNhepa1P3qXAHfntG1BdaRkLqUa+hm0UJcoDN5vp8aar8KhGRJf5/iceAQPeSWLCHhp2qW2WfcJBXkMKCywgtQ8ARKjGEeWI7YNvyDW/Cc1ssgWg7MDd/JixmBZS3YkgiPCV0gvHhMMfVPjdDRyyCr3MwtSYHBqTM89h2g9zYpDEIKhJA2b6EKb97Szt066ZDGzRzNGIFl7YZn4xgCliPACCzLMYt2BCGxft99DOev3AbPcahUtjCq/VjcTtLjrxhGYMUv25oSWGR11xYI+PqYHhhztJTgn8/4QLI96CF6vj1mBMafAXWQU+0bvwBiq7EaAc+hzcF/pL9wQyesg+SX0mp59hxommA+tM80SDkKWjWFadhIWPPe0JWtZZUsaweZfg0f2FcHH5/YpelzmWQKBbLTiu+wNS9S7DOb3+PZXzye7KeHKFuTjps/c/zrGfwauDyTfmRQ+wDFhttGEh3+i8fxE9Q+P5aXULG8ZQTWspUCHj/mUC0YoG8eoORkHUjeHdbsiwD/5C48J3U3CJXTZ4XvjJWMwLISZvWhzVBvW2I0Wtt3OsTsBayU6BrDCHlFSCx9q1RBQvmykff28lUCHil+J7ZpKSJLYOwfTVxjZZFaMALLlazBdInvCDACy0YLP33xBlv3HEefTg1tlJQwhzMCK37ZPToC6+EfPF7+TX+0BJSXkLGG8YGk/qt9OBP62giMDamqopyXGXFL8QtCtpoYEIiSZ2rKZshJXIPg9PhtNITLfxs013YdA7FAKatsqVk2EarzfxnGhrUbAl3xilbJsnbQuMkqZU56DBusg4eZH/5XrlLB+w6QTsFjZKotIW0Zy0gIa3WPbRwJdyNhb4bGySg+WoTKvHSPsYlPUNffXeVxZ52CDAyUkaeL+eF+0YGlD0PVXyPeV8QLy5K2ey+Ps+d5VAoClLWhi4/SQRVZm4c1OyJAQrtJiLe+yWkzwffXtYzAsgJj8pHGY1RbcIqiIKTiIKk86O6NhA+SMEJ9a1hPRP58kSTVxs08bv5LrzWqLyJfLJVvXQ0PRmC5mkWYPvEZAUZgWWFdUmHw8IkLER5Xpy/ejJBw4+hKKySxIYzAil97IDoC6+1FDnc30QOjaTWoh7ovKPNsWxQgZicvi4aJs8QvgNhqrEbAq28dcKE0Jihk5g7IXrFXSLV6QgsGalZPg+rUQcMIbZuBEH+oaoEE2lWzYDhU1yKr25Km7TYWYv6SVsmydpBpQt2xI833qjl1So33f8jwU3AOudqI8M3tOl/TL04TEPqOuuJkbSwiZRHX0c9au8X1uKeHeTxVhPulLikhsK5lZJOpzr9vE3D1OrUNyX9F8mBZ0s5d4LFrD49ywYC3YmjhQSI8/S2TZcm8CbUv9+Y5vEa1NSyf5P/znbeZEVhWbAiSDJ8kxdc38o4LHbsacmL3T9Q3f5EKr99QUDp1EJE+IPJ+JHnvSP47fav5k4QSxWx7llgBv01DGIFlE3xsMEPAIgQYgWUBXKQa4e97jmPngZP4/CWyCiFpqVP44c8ttOy5BSITfFdGYMWvLRAdgRXylsOl6ZTA4lUyflBUJBv94SyWfIkkgpVthF9RdE2SN34BxFZjNQLev9QAdDQuLXjOHrhKmSLNlgVQHdluWFtY4x7QVahr1Vo9Z/YDf/eaYWxo3xmQsue3SpY1g7RhwITJirAwDUAqQpnbPrxT49I0GV6KAQX76eCdylwJju9HQghJKKG++eWRkLO1ex2WHI9S7DPcXi/g/RVFPrG6EgiJZUtbu0HAnbtUZrMmEnLlsEzm06cclqwQUDIYUOaBzv+LDoldI22eLRC53Fjuwxt4DWth0Ev2TwXfhVsZgWWhpYTLJ+Hx2xijUc4IIbdQbbO7j5mggqhw0BzUT4fEiSOHHz7C4/hJ+kwmYcMkfNidGiOw3MlaTFd3R4ARWLFYMCQ0DPv/OhPhbXX5xj2j3iWL5kGzOpUiKhMKAn3wuvumiEv9GYEVl2g7fq7oCCwy65lRAsRQeigpNECEVwoZYRCR/8lGfJUUCXP+U5OQV4TEYo0hQBDw7lbFCIjghYdcBhj1rlVQ711r0Cfs57bQ/UQPdJYo6jmxK/in9w1DQocuhJQ+qyUibOr79SswbRYlsMgBgxw0zG1JPFXY39u4d8ZfdAhwIeLg21MOV+cZk+rFRosQlPFm5i44Afe7PEuFYEW1yjydRSTNYpuHEyGeCAGlb+3biMiU0TKZJBfb+EkqFAsF/BUH5jwdRSTNZpmsBGxes5fOfX4Pr8FNDf3lpH7wXfIHI7DMRhDgtMHwGNkW/BdaAV3KkA2hQxZYIMV1uwYFAVNm0PeKIACjhtH3yt//8DhwmJ6jShSXULM6I7Bc16JMM4aAcxFgBFYM+N+88whbdh/DnsOnEBRM64EnSeyNuj+VRbO6FZEhwIU+KTt3H1k9OyOwrIbOJQfGRGBdXyzgy316KMnWRESKwjK2Bt1Hr7cnol1Lg0RZMCdFWZdcJ1MqjhEID4N3r5p0UpUawXP3xrESMU+nPrQF6m2LDR1I1UBSPdCa5jWyNbi3Lw1DQ8asAgnJiav27j2HOfMpuePnK6PPL+bnNVIHqXFsLCUJtByg/llCGRer9HduvIDwr4riEq0k+Od1rwNTXO2J6OaJqDA7XIAsUgyLjdBB/Z9HhbW6zV0g4K0ivLN7Fx1SW/FTa9ZcARlfckit2LrZW4hInp8RWNbaJsZxQV/hPaA+veztg2Qr9zECywKgNVsWQnVEkUqB56Ed+hvEgEwWSHHdrs+ec1i8jL5XUqYAenajBNalyxy2/0Gv588ro2F98987rrBy5oHlClZgOiQUBBiBpbD012/B2PPnaWzZdRT/3ntiuMLzHCQp8kfPhQOL4WluNtuEsotsWCcjsGwAzwWHxkRgPd7L4/kx+nVNX5Ws3qu9OBuqSIqgWBNJ4E4SubPGEEDIN3j3q2cAguQFITmwXKWpTu4FqR6ob7oyNRDWoq9V6kVJVj91C2SfZFbJsmbQixfAoqX0S3nq1ED3zuZ7YIU/UuPcQkoSfOCBd7lltG3lWoeRBzt4vDpFn0mEUCfEOmvmIWAaGq7yikyGb2ubNlPA12+UFOvXW0QyZRygmRNs2MRDuMobFRMIrCci9Q+MwDITQrO7caEh8Or7M+3v4Ylkaw4zAstMBIXnj+AxsQsgUQLdlo8gZk4bp92uXeewZRslqHJkk9CiGV3v7Tsc1m2k10kFQlKJ0J0aI7DcyVpMV3dHgBFYAC5eu4vfdx/FgaPnEEoSgPzXcmfPhJ+rlooIEazefFDEX1mydvtueUZg2RdPZ0uLicB6f43H7bX0sJg4gwyfLh+jTd6uX0MujS8Op63j7CWx+V0AAe7LR3j9r7FBE0LohEzd4gKaRaqgOn8MmmXjDfroiv6IsA7DrNIvSq6v2XsAjZklAK2a0XgQKWVOSprrW4YMMjq2Nf8g8fm8Gje2UJLguQDc9AaGD9GBhI24Svt8j8ONJVQhwSOSgOFYNgCzTPT+Oo/bayhYSQJl5LWxAiGZeOwklTLVHYb+TwdPD7NUMup05CiPF4d4BCq4V1L9llTBZc3OCIgivHtWp0J5Ack2HmMEljkwyzI8J/cA/+SuobeULDm0Y1dCVlux8c2Z0wl9SH4rkudK334oLqGGIkRQn7dOfz1tGhldO5n/3nHCkqJMyQgsV7AC0yGhIJBgCayPn79i54G/sXX3MTx4QsM10qTyR63KJVG7ailkyRgZthEcEopiP3WN+P+MwLLvrcEILPvi6WxpMRFYYZ85nJ9ID4ucCjjS7RwW6K4YVC7ukRJntdQbKwXvicsZaF4NZ6+Nze88BEyTBEt+KRE6YZ3zFDKZWbhxDh7zhhr+KuYpDm3PCZbrJ0nw7lGNjuM4BC+g1Q0tF2j5CJJAmyTS1rdsWWW0am7+QeLlARUeHqHz3lNzuKeR0bqFiKw25keyfDXfH3FmtAAxhHr75OkkIWlWRnCYg/PzvwQ83k+xs0cFQlkGRo2j3n9ED0sqYCr1vnGLx9n1AnKEUTI1oIKIjNWZB5Y59rW0j2mOwmSbTzICywwQVUd3QrNpnlFP7S+TIOaOX/k/TasMVq8qodQP9Fn7/h2H2QvoeydZMhn9epn/3jEDaod3YQSWwyFmEzAEDAgkWAKrYOUOCNdFPhxTJk+GCqULo0bFEiiSPzs4jv4oI9cZgeW4O4YRWI7D1hmSYyKwiC5nxwjQBdN7K1Qdjg0lLmBvvusRqm5KXQ1NXh0wUvt5Jlqa2xnrYXO6BgLc62fwGt3OoIyUMgChY1a6hnIA+Ae34Dmtl0EfMTA3tANnW6wf9+0zvAY2NIyTE/kgZLoiL4rFEi0fcP06h82KUI88uSU0aWg+qXN/nYDXV+l9flUDvFAj4rBCDi2u1O5u5vH2AvUKSF1KQmAd19LRlfBS6nJnA493lyl2BDeCny3t2zdg6kxKYHl5AUMGmh++qpyb5HLbPltAHi39a6oSErLUt01HW9YXn8eaeo4mW3sEYbwK7z4rDBCfAbBibfyXDxGJ2zltCH13FCwNbZfRVkhz7SEr1wh48JC+F5o3kZBTUV00OASYPI3e+xp1pNeuOzVGYLmTtZiu7o5AgiWw8vwYeTAm+ax+qlgC5X4ogDLF88HbK6rLLiOwHLfNGYHlOGydIfl7BNatFTw+/hs1PueZ70fs+vEyVv9QFgWebsR7kRZNuJSuMVKqvJ2xFDanCyHAPX8Ar/FdDBpJAZkROpwmTXe2qvzLx/Ac25HqlyYTQkcusVgt7t0reI1oZRhHytGHjKfVDS0WaMWACxc5kK/l+laooIx6P5v/JfzKTAFBr+lB5bQX8IlHRCJukpDbldqHmzz+XUWfSZqkMooONX+trrSWuNblymwBQS+onfN2lpAki23kkGkBAV9fGX0tKCBgisGi0Srkp9wA/PLJyOlmeXXi2q7WzufVtw640GDD8GQrDyBM48UIrO8Aqlk6HqoLx+jzXq2BdvwaSEn8rDWDy44jRRU+fqTPC9PiDNF5X5Iqha4Udh4buIzAig0hdp0hYD8EEiyBdezUlYi8V8dOX4EoRv7oImRWpTKF8XO10ihZJA8EIfKHLSOw7LfhTCUxAstx2DpD8vcIrG9PONzdwiHkTfRJZnxzSRj5w0H84/nMoPrBtD8jjyb+/Zhzhm3ceU7+8Z2IPCH6JmXIjtAh811mSdynd/Aa0ozq55sCoRPXW6wf9+w+vCZEhquTJgcEImT4bxbLsWXAqTM89h2wrpz5p9s8bi43vr+PeANh/51bBvUXkTiR64RwyTrg9EgVZAVnlb+niMTpXUdHW2zpyLGnhhrjVmy4CLWPbbg9fc5hiaJSma15cNbPUSHTc4qCRzoZRWwgxByJp7vLJp6jxINU35Iu3Y1w7ySMwIrBsMKdK/CYNcDoaliDrtBVbuDuWyFa/UloMCGp9G3kUB1UxtHCmDxdhWDKgWJgXx18fNwHDkZguY+tmKbuj0CCJbD0pnv7/hO27zuBrXuO49nLtwaLpvBPhlpVSqJOtdIISJ2c5cBy0F5nBJaDgHWS2O8RWBEHchG48Xc4Xh4SkCgsamJqUZCwo8AVbC9yBVqVDutSVcGPXgFOWg2b1lUQ4O9dh+cMWtVPzJoX2v606p+z9SSeB8QDQd9kT2+EzNppsVrCvevwUK4zSx5oB/xqsRxbBhw7zuPPo5SEKldGQuWK5nnWXJ4lIPgV/cr+OZGMU6D/rl9XRMH8tpEctqwturH/rubx4QZdb8CPEjL+ZN567a2Lu8gLfcfh4jTqpcdrZPwwznbPtbv3OKxZT+UGZrateuXu9QL8rihSQvgCpQa7lhegu9g8Nj29hjQF9+m9oVvSRdsRnsSfEVjRAMfpwuA5ugO4968MV8W0GaEd9hvAu1Cli9iMbub1j584zJpD1+XtDQweEPU+nD1fwPv3MXtpmTmd07oxAstp0LOJEyACCZ7AMhw4ZBmnLtzA77uP4cjJi4b8WOR6tszpcPdhpFcIS+Ju37uEEVj2xdPZ0mIjsIh+Iz+cwZY3D9H8dDFU+Dc7eNk45xzp8z5RENaWPIuGJdOgUeKszl4Wm9/JCAj/XoTH7P/RH/s5CkHbZ6qTtTKe3rt7VSg/MQcvPGSxfsL1s/CYT6sXWp0M3uKZ6YCDh3mc/IcSOoS8IiRWbO3dVQ531ikOX5yMkNIyjl2isgrkl9Ggru1ER2y6WHL9zUUO9zZRvT2SySgyxLV0tGQ9cdHXNPTSJ5OMfN1sx8w0/1ruXBKaNop978W05lOHBciH6PtF5yWj3Gjb9YwLjN1tDhL6TEKg9S3JvM3Q+aVmBFY0htTsXA7V/g1GV4hHMfEsjo/twSMOK1fTZ2y6tDI6d4x6Hy5ZIYBUI9S3dq1FZM7kWh88vmcfRmDFx93L1uSqCDACKxrLfPj0FTv3n8Tve47h0VP6QiZdG9Qsh6Z1KiJ39kyualO30osRWG5lrliVjY3ACoOI/E824qsUHiEr4zs/TPunJrjn0ZeLDkobhFKNPJAosiAoawkUAf7aaXguGGFYvS5fCYR1H+9SaHj3qweEfDPoFDJzB2SvRBbpqDp/FJpltHqhrkh5hHUcbpEMWzvv3sfj7DlKOpFS56Tk+feaLCHCI0f7QVGVrijAFxexfBU9uCTylvG/Aa5FIOhCgbOjBUBBpBfqL8IrpfscnGy1uaXjn/3F48l+ukdSFZeRpYHtdj17gcfuPVRu4UIy6ta2Xu79fzm8XkH3n44Hyk1iHliW2tuc/p6j24N//dTQNcmsddClSs8ILBPw+NfPIvMlSnRf68rVRlgzWgTEHLzdqY9pXsW8eWQ0juZ5sW4jj9t36P3fpJGEPLmsJ7DjGiNGYMU14my+hIwAI7Bisf65y/9GeGUdPH4eYWGRh27S8uXMjCZ1KkYkgCe5s1izDgFGYFmHm6uOio3A2vLtHvq8O2lQP50qEU6na4T3l3g83Msh/EtUbywSgZSyqIRMNWSovNmh0lVt70i9hIsn4LFkrGEKsVAZaDuPcuSUFsv2GtYC3Ic3hnGhE9ZB8ktpkRzVyb3QrKOhkbrSPyGsZT+LZNjaeesOAVcUVQRJAneSyP177c05Dvd+V3pfAaWGyRATiZg4RYVw+upEj646pLIMFluXFOv4G0sEfL5Hnz0ZqklIZ2bYZKzC42GHu5sEvL1I8cpUS0LasrYfNI+f5HH4CD3Ali4poVoV6+UGB3O4PIbuS7KLS09hBJYjtiQpskGKbeibz7SVEAMCGYFlArbHtF4QHtwy/FVK4gvt2JWQPeJvsZrDf/E4fiL2sPTtfwi4dJk+V2rXlFCsiPX3vyP2+fdkMgIrrhFn8yVkBBiBZab1P38Nwq6D/2DL7qO495BmBU2S2Bt1qpfB4J7NzZTEuikRYARW/NoPsRFYdV7uxXktPeQP9S2CHknzRYBAnLIO7/sMj9PJoBaj5oEQPGVkqCojdUkJXPR54OMXmGw1BgSEc3/CY/lkw791xSoirP0Ql0LI9ABHqiSSaomWNPXh36HeSpO2h1eqj/CG3SwRYXPfjZt53FRUC23cUELe3DEfIogjwcXJAsIU5HNgeR6B9UQEa0Ws2SDg7l16KKleRUKpkq51KHl1iseDHfShkjhARv5e1nv+2GwEFxdwZY6AoOfUprk7iEiW3faPC6bhqxUrSPjRRmLsxP9UUL5NsvcVkTy17bq6uIniXD3PST3AP7lDCaxJSyFmzM4ILIUlVP/sh2bNDCPbhLUfCl2xCnFur7iccMtWAddu0OfFzzVFFC0S9R48cIjH36foc7hSBQnlbbz/43KdjMCKS7TZXAkdAUZgWbEDLt+4F+GVtf+vMwgJDYuQwHJjWQEkAEZgWYebq476HoH1UPcFZZ5tM6iu4nhcSt8EfjwNHzwW8hy9751Gu5MlUOxR9GG6XilkBNYXkTTQVVFgetkbAdXf+6BZO5MSWKWqI6xVf3tPY5M8kmSeJJvXN5JkniSbt6Spd6+Ges8aw5Dwmq0QXqu1JSJs7rtqrYD7D+hho1VzEdmyxnzgf/kPj4c76aGDkMs1p6kQKoRHEFimVQ2JLCLTlVrYF+D8BOOSWEWH6aBJ4kpauo4up4YKkEW6R4oMFeGR1HZSaNduHucu0r1U8ycJJYrZRnYeG66CWuEBmJSEJRW1TabrWMJ1NPGY3gfCS65ZzQAAIABJREFU/RsGhXzGLoh4/r37rHUdJZ2oCfftCzxHtgYXEmTQQsxWANp+052oVdxMvXiZgGcKwrtNSxFZAqM+L078zePQn/T+L1lSwk82eGDGzeroLIzAimvE2XwJGQFGYNlg/W9BIdhz+BS27D6G35eMsUFSwh3KCKz4ZfvvEVgjPpzB8i/Udb5Wooz4LYXxl8cbYR9Q9cUfEaDkfZYWPY+Xg//nxNGC5JdHQubaMjx8bT84xS8rxL/VqI7vgmbDHErslKuF8Ga9XWqhmgXDobp2xqCTtscEiHmLW6SjeusiqA9vpets0AXhlRtaJMPWzouXC3j2jJITHduKyJAh+nuMeE1emCwg/Bvtn7kCUKSFGp++hUUQWG/fcZi7gPrACDwwfKgO5H9dqV2bJ+CrIoFw5p8lpCnNiA5TG5E8Zxem2L8CIZln01YBNxSeGg3ri8if17bn+8lxKvA0NR3Cy0goX5vZ1d73nuesgeDvXDaITTxyDqScBRmB9R8imtXToDp10ICPLKgROmYZZP809jaFy8mbOlOFb4p7sM8vIvyi+d1mmivLFYt+fA9cRmC53NZjCsVjBBiBFY+N6w5LYwSWO1jJfB1jIrBMk7cTiRtTVUVZL+Ps7G/FEBR8uskwYUrOG3ufNsXjQxyk0Kj5sTgBSFtORPpKMni1+Xqynu6FgOrwVmi2LqLEjhNC62JDTLN8ElTnjhi6WRMaQrzMiLeZvoU17wNd2ZqxTW3X6/MXqfCaRvmiW2cd0qSOfornR3k83keZKF4to+J4Dsn8KYFFRk6ZLiAomN6/bVqJyJLZNmLCrosGYLqWpIEy8nRxLU8xe6/ZGnkf/+VwS5EYPXEGGfl72AcnU++/ls1EZM9m2z45PVOA9Jruvdc5ZNRrbx99rcEvvo7xmDcUwo1zlMAaOh1S3uKMwAIgPLgJj2nGH1zCa7dBeI2W8XU7GNal0wFjJxp7t44ergMfzQeMW//y2LCZXsiWTUarZu5zrzICK95vZ7ZAF0KAEVguZIyEqAojsOKX1WMisGJK3m5KSZGjSvpHK6E/spDrTzO1hRjM4dFeDm/O8zBcVECnTiIjU00ZKQqyL+vxa0dFrkZ1YAM0O5ZTAqtaU4TX7eBSS1VvmA318d0K8qk3dGVrWaSjZtl4qM4fozI6DIOu6I8WybC188w5Aj59ondm754i/P2ikgi6kEjvK1FBLKerJCF/PQHeniqDBxbRxzQ5b9nSEqpUcq17NfQjyeWlOGhxMoqPFqHytBXR+DX++TEej/fSQ2bKYjKyNrTPIXPxUgHPXii8/9qJyJDeNgLryhIeQfeovneSA20HskTu9t6VHgtHQrh6yiA20aDJkAuWYgSWKMJzXEeQ6oP6JqVKh9ARSwEhaq5Pe9vF2fLevAHmLaLP1WRJZfTrHf3z4tFjzqhqbboAGZ072OfZEhc4MAIrLlBmczAEIhFgBBbbCU5FgBFYToXf7pPHRGD9/HIPLmjfGuYb4lsYPZPmj3b+Ak834Z0YYrh2MV1jpFJFVugJegHc3ybgmyLURykkcXoZWeqLSGTs2GX3dTKBcYuAK+SGim3F6u1LoT5IvQfD63dCeJXGsQ0zuu4xbxiEG2cNf9N2Hw8xXwmLZNjaefJ0FYKDqZRB/XRIHE0U75ODPJ4p8pWQIgtFh4nw91VHIbCuXuPw+3Z6WEuTBujWyfVIhEszBIS8oQRK1kYiUha1jUCx1R6uNv7uZgFvLygqENaQkLa8fcjI2fMEvP9AZffspkPKFLYhcG+zgDcKfa9rgA6jdQmBO7ANOAtHkyqxpFqsviXqNw5y0fIJnsBS7VsHzR8rjdDUDpwNMTC3hQi7Z/fbd3is20gJ5MyZZLRrHT0pZRpuTj6ckA8o7tIYgeUulmJ6xgcEGIEVH6zoxmtgBJYbGy8a1aMjsG6HfULFFzsMvaNL3q4UVeXFH7gZ9sHwp4NpayOPxt9otrcXeDzaxyH8a9SwQtIxVQkJGavLUHmzw2d82GHqHcugPrDRsJSwuu2hq9bMpZam2r8Bmp0KL7GfmiP853YW6egxoy8ERSL40P6zIFmYCN6iCaPpTMI9SNiHvo0YrINaY9xRF8zh/EQhonKovmWsISOgvIhkiaISWKGhHCZONfY2GDpIhKena92fTw5weHaE6kny7OVsbR9yxla7uMr4q/OMPyDk7iAhWXb7YGRKng7sq4OPj20rf/R/9q4DOoqqC38zsy0JJEAIJZDQm7QQuggiTZCO0gURRUD46UjvSFGaIEVEQJBeBKQIIkqR3nsnlCSkh4T0nZn/vISdmV02yZbZZJPMPcfjIfvKfd99U943t+ynEXRSPEDf1VBoNViPkt7OtfcsXSXxQn64Q1yPR3kOVQfIg7+lOphrR6rEkmqxBnH931SgYYs8TWBREcHQTfsCFCveKPUNWiH5s7H2QJ2j+poW8fD349Gpg3lSiuTJIvmyDOKiAyZ843wfOtIzgEJg5aitqSibwxFQCKwcbsCcrr5CYOV0Cxrrb47AmhxxFuti7woNzSVvl47SM+QITiQECX/6rWgLfOBS8i2gyOH5+VEKgf+ad8MnHiGlWvEopiRidtgmYxMoMC6OPwhqdqyE6phYwTL5k8HQN+/isHXZMrDq+D5oti4TuuqbdkRy96FWDeUyeyCowMdCn4SJq8D7lLNqDHsa8zwwbZZ4gKAoYMaUtw8QT/6gEXxKPEQTorjORDY1D505AovotHK1CsEvRe26dmFR3c4E3fas1VzfuEAK15aK9xOSY6/+DL2SX08C1rmpDNgk8cNBnQksNAXkuQdMnWmcK2fyBD00duY2JIQkISYN8lDNo2oXDrX95dFZ7j2Y2Xj3t9IIv2J87dWblv1eKpoNC6A6c1hQ33XwBKBxmzxNYGkXjQHz4JqACe/ihsSZG8DnyzvlTQ8dplMr0RqkeVMO7zcxT7iaPn9IH/L8Ic+hnCAKgZUTrKTomFsQUAis3GLJHLoOhcDKoYZLR21TAstc8vYtRVuhiUnydulww8JOYlfcI+FPSwq/h675yqcLFKmK9Xgfhag75suauXjxKNuFhUfZ3IV1dq8mOYZKzYHkWYND8YY88pdy3IHwrfxSPYdB36R9dkNgND9z/m9o180T/sbWb4GkfuOs0tFlSh9Q4SLLkzBrA/jCWVelKiERmPudSCJoNcCk8cYEVnIscGkOA56TVB7syKH4u2mHkvQIrCNHaZw6LV6jGX2Jtwo0mRtfmM0YeXZW+pSDZ/Xs93CReZk2DZccTeHiXMdUIExJBmZJc5ABmDnVfu+L4NM0nuwV991TFeDRmMNHrXOmTS/MMq76SQxZeyILrYfj7r+WbBb15h+gPinmAHT9cgzQrEOeJbBUF/6BZu0cI+iSPx0FfaM2lsCZa9qQ8EESRmiQzCqLzvlOhcREcfnjRuvh5pYz4FAIrJxhJ0XL3IGAQmDlDjvm2FUoBFaONZ1ZxU0JrO2vH2Bk+H9C25IqN5wt2RUZfVCbFXkRq2JuCn0mFqyNIR7VMwUq+iGFx7tpJEaYH52EA5Vpz0NrpnxzpoMrDd5CIPYphRsrxMOsS1EexRvw8KrNg9HKe5gy/bqf3Gc09O+2diqrkATGJJGxQdgaDZE0eKZVOrqM+RhUXIzQJ+H7neDzeVg1hj2NX8VQWLhEtGn+fDzGjjL27ni0i0HIefEa07jz8B/Pgn7TLT0C6/ETCus3imO7ufIYNyb7PUdM8Xqyj0bwf+KBy8uPR4UcVAnLHvtn1jf6HoXba0Ub5ivJo8b/5LHhq1gKCxdLxs4HkPxr9krYFQoPtorjBqmA2Io8Pv9MHr3t1c+a/iQ/G8nTZipVPmdRsLK891xr9CJtNduXQ/WPmCrApd9wUK0+zpMEFpUUD+3UfqBjosTnQdkqSBq71FpYc3x706q2Az5n4ZNBYYYlyxhERonPl/99zcKrcPbubUuNoBBYliKltFMQsB8BhcCyH0NlBDsQUAgsO8Bzwq6mBFb74AO4LEnePr6gP/6XTvJ2w3IIeUVILIMMcH8H0wvVs3i1L/+jEXCEAiepjibtXOIDFj7NeSUsyGJEzTcMv0bh/ua3D1Mk7IpUgyzeiIdbCXlePDVr50J14ZigSFL/8WDrNrdzBfJ2p+9fh27xaGFQrkJNJI5aYNUkrl+3AkgcxRuJX34YZuuNWzWq5Y3fSqLryWP4EPGgnxRB4ZJJLqsK3Th41Ra9WdIjsFgWmD1XBVbi+OKMh5OYxxRu/iTua0bDo/6snEd2WG51y1uSsFESPmoQYndifznEtFqZp8nes3WO6Hs0bq8VdQ6jedwqCJAcbDlNQs7SePT7257GJN8jea5lp6h3rYb66A5BBZdPvwb1UY88SWBptiyF6sQfojloBolT14BUH8xrMuNbFci93yCZ5bUzrUT6RT8WpXzleY9wNPYKgeVohJXxFQREBBQCy8xuiHoVixfB4UhKSoaHuxtKFPOCq4tW2TcOQEAhsBwAajYOKSWwrE3eblB75+tHGB4uVjPq7FYWP3o1sWpVJMl0wAEKoZdowMy7j9qdR+m2fCrRoohtCLz4h8azP82HbRpGJAQWCS8s7MfZRRhqf5oB5uopQdGkr6aBrfWebYo7qBf1/BFc5gwSRud8yiNx4krLZ0tJhuuwtmJ7lRrxyw5a3l+Gli+CKJADhEG8i/MYNEA8fdzfwiD8qvh1XFuIh/9YFpRkG6RHYJExf/2NwaPHYv82H3JoWN+5rkGeA0iYFrmHGOSdL1gUqJgzDlEybIN0h3i4k0HoBRGXUh9xKCFTBcJnzyisWS/uvZIleHz1hf2kjKmnaDQNnHUBRo9k4ZE/Z9n03m80Im68fc/1rMGjUm/7sbJn76j3rYP60GZhCF2PAaA79MlzBBb97D50c4cYQZnyYQ+kdPrCHnhzZN+4OGD+QjEknWGAaZMy9qr8bQuD+w/Ee0zP7hyqVHKuZ0R6xlAIrBy5TRWlcygCCoH1xnCvYuKwafdf+OOvM3gWGGJkTrWKQR2/yvi8exs0qlsth5raOdVWCCzntIutWkkJrEkRZ7Fekry9rWsprC7yQaZDkwTuJJG7QRrpimN7sQ8z7WeuQXwwhYe7abx+Zj6skORtKteZg2vxnHWQsQkMmTsRTwDiEWCJ0BqgSB2SJwlw8bL+ZVSzYjJUN84JUyV+PQtc9QaWTJ1lbajwYLhM6SvMx3sVR8LMDRbPT8VGw+WbrmL/fB4gIYRZKY8DKKzfIJIIpUvx6P8m1CohhMKVRcYed5U+ZeFZ3fjayYjA+u80jcNHxT1TsQKHT3tavx8cjcnD7XQa+f1GijbgUu8TeV1uLGcQK7mXVvmcQ8HK8uBy7z6FTZJQv/LlePSVgZRJCKVxZaFoy9cUj1OuFD7tyaJihZx13z83gwErIVYN+1FXmIP/WHnsYOseVx/YCPV+8X6n+6Qf6C798xaBxbHQfjsQTNBTAUauQGEkzfoVvMqklKutQOegfi8CKaz+RXxmkFBA4nWbkezew+DqdfF9rVN7Fv61csZ1qhBYOWhzKqrmeAQUAgvAkeMXMX3BOryKjQNNU3inQmmU9i0GF60WEVGv8PRFCB49TauK1q3DB5g6si+onFIWw8m3qEJgObmBrFTP8AAPiHiNGs+2IpaUCnwjm4u2xPsuJTId8XZyJFoG7RPaVVIXwLESnTLtl1GDsMs0nhygoH9tnsgqUo9D6TY8SDU1RSxDgITlkPAcg3hU5FIPt+mFbhraEdKwaD0+ldCyVLRLvgFz74rQPGn4fLCV/S3tnjXt4mLgOuZjYS6Su8oaAooKC4bLVAkBVrg4SBL3rJS792hs3maeYLr7K43I2+JvhPT1G/H2YSQjAutlCLDiJ/GLvFoNTBynB2MZD5plUJCCEHfWi0qp8/GoOyV7PVyybPEZTHRuCgM2WbyH1h7PypZTkBxayeHVINWq8ejWxX7MU15TqR51BkkEj3/dKLRszqFxDqpQG/+SwlVJjjBTMzWYnb3VMtWHt0K95xdBLW3H3mC6D8xTBJb66E6od/1kZJqk/80F+04dZ7h8s1yHGzcp7NgtXnsVKvDok0k+wUNHaJyRfBhr1YLDe28KhGT5AqycUCGwrARMaa4gYAcCeZ7A2v7Hv5ixcH0qIUU8rD7r9iEKF3o7ae7dh8/w3fItOHflTiqB1b1jMztgV7oaEFAIrNy1FwwP8MVPr2OUlcnbDUiEsQnwe75NAKYQo8MNnx52A0W4tGdHKQSfZMCbORcxOh6+rXgUa8gZhUTZPXEuHYB44xCvHIPUGMrCrTiP8Js0Xp6lEPsk49rXjCuPIv48vBvxIKFoGYl24UgwD8XE/omjF4Mr72TesBwH1yEST0GKQvwK0ZMws21AP38I3ZzBQjOuZDkkTlqVWTdZf79+k8JOyYHDQCLEPgdu/CgST2TSyv1YFKrytt0yIrBIv/kLGMRJvEiIhxfx9HIm4fTA+WkMOL24h6sPYZE/h+RicQSWpOroxW/FwyjF8Gg4x36CyaDrufM0DkhCkuvU5tChreUkd3prJinlzowX9y7ZaYfdgBrVeJCKaDlFgk7SCNifPtOb3ftTdXQXNLvE+5W2bTcwvYfmGQKLjgqDdlo/UKSc5hth/RsjaYBY2COn7DW59DxxisbRY+KerV+PQ9tMqn/+e5LGsX/EPoS8IiRWThCFwMoJVlJ0zC0I5GkC6+qth+g7bA5cdFosnPY13quXcaWz5OQUtO07ITUf1t513+aWPZCt61AIrGyFX/bJDQ/w2jd34HJSuDC+JcnbDY3JAcMnYL2QuoocIZ+X7pdh5UJrFpIUSeHJH5SRN4m0v0sRDmU7Ah7lc8ZLkzVrl7Pt2ckqSBzsUHcqC7WbSESQ0J2Xp4HQyxTYpIzJLPeyXGquLJLLxZyQnCIkt4hBEscvB1eqopzLkWUsl+HtQCUnCWPF/3AA0FgWOkI/uAHdolFCX0LQEaIuK+XCJQp/HBBJitr+PDq2Y3HrZxqvHoqHCuJFVz2dUJDMCKxdvzO4dkPcD+835tD8A+e71kzzDXm/z6L0R85FtGXl3iD2J/vAICS/Xc1h8hFAx0/Q+PtfcXziHUW8pOSQM5NU4CWpd/5yAzyLAEMH2V/lUA79LBnD1APStE+5LhyKZmM+OdXxfdBsXSaopf2wC5jPRuQZAku7ahqYa6eF9fNaFyTNXA/OvZAl5s2VbfbuZ3Dpsnivb92Sw7sNM76mz1+isf+AeB/w9+PRqYN89xlHAq0QWI5EVxlbQcAYgTxNYH0yYBruPHiKBVMHo02z+hbtja8nLMa5y3dw6fBqi9orjTJGQCGwctcOIQ/wmwmRqH5b9KAiryLXfHuiEG15IQTigUU8sQxyyacbijGusoIV/ZDC4900EiPMkyuFqnIo056XLURGVuWzeTB9HHB+psQjh07zxjAXWU283cKv0gg+S6Wbi8ywHBKqVaQuh+INAE0BkSzQzf4KdOATYdWJk1eDK1Emm1F4e3qXcd1BxUQKPyTM2wbew7IDDH3jLHQrpgh99dXrI/nr2Vm6RtMcVQ0bcGhUgcPNVcbeV9UG6eGeDvyZEVhXrlH4fa8kWbc3j6++dL4DStgVCg8kOZm0BXjUnuB8embVBnmrAmEtHhV6yIfHn0donHZQ6NDF2QySY8X7/D8uQDIDTJ+sN3vPyipMrZnn7BQVONG5J7UwBrmvGoR4DpftJA/hZ41ehraqUweh2SQS7ppm7aD68ps8QWAxty9Cu2yCEWzJXb+GvllnW6DMNX3Wb2TwWOKJ3bMbhyqZ5My7eZvG9p3ivq5ciUOv7tm3r60xhkJgWYOW0lZBwD4E8iyBRUIB+4+cj6bv+mH5nBGpKMYnJCI+IQn53Fyg07791Zzkweo9ZDaKFymE39emHSwiomLw1dgFKF+mBOZPGmifNfJgb4XAyl1GJw/wIc9OYEXYLWFhH7n64uci1oXckhxYJBeWQf4s3g7VtYVlB4uQK8Gn6dTQQnO5mygG8G7MwqcFb1cVPdkVz+YBX78Ari8TSQ1d4bRqdJlJfAiFl2cohGXmlUUBBSpwKNYQqUmiXWb0Ax0aKAyfMH0deCcsSa6b3h90yHNBz8Rpa8EV88kMltTfVeePQbNurtBWX6cpkr+YZFFfuRr9c5wG+c8g7zfh4HWDwusX4uHfowKPqhkQTpkRWK/jKHy30DgZ/MRvWOh0zuXdpE8Ezk9nAF5cu98oPVyLyoV2zhrn0S4aIefFveHbmkNJGT3n9uxjcFlS4bJ9WxZ1a8uzJ64sZJAQKtrxlAvwmga+HqhHsRxgT3L9XV8mXjOMC49KPXmQPIQGIeGtJIwwu4Q5ewTaX78Xptc0aQ3VoIm5nsCiUpKgndoPdLTocc56l0LS5J+RY9hRB22axcsYREWJ150l15tpIRFfXx5f9su+fW0NNAqBZQ1aSlsFAfsQyLME1rc/bMTm3//GstnD0Oy9tGTAy9f9jhW/7k07TDAM3Nx0yO/mmkpoJSQm4XlQKBiGSe3TuH4NAfkeg2bgxt0nOLZjMYp6FbTPInmst0Jg5S6DexbSwPPqWsSRJDJvZFPRlmhqQfJ2KRK9Qo7geEJa4QQiG4u0QDPXkg4DSx9PIeAAlVZ5zMyZSe3Oo3RbHl5+OeNLoMOAejNwxE0a9zaKh6cCFXi8Y4UXDQk9JN4DhMx6HZhxeKHGg0eJ2J3webUVGj6N1Ez8dhO4QkUcvUyrx9fN/x/ogLtCv8RxP4IrXcmicVQn90Oz+Qehrf69j5Dce6RFfeVqdPgvGv+dEe36YTUe1Dlj+9QcoYdb8fRnzIzAIj1/XKVCaKg4RrdPOFR7x/murdtrGERLSrr7tuJQUqawNrlsllXj3FjJIDZA3AuV+3IgXqpyydbtNG7fFfdet49ZVKsqD4Flqvs5LRClArp0YuGXTtiyXOuSY5zAf2k8PSRiQ0KtS7fjcGmOSGrRah4NZmffQV918V9ofhFTa6jfbQb10Om5nsBS71oN9dEdRmZOnLAcnK/zhbjLsRetGWPaLBVIDjqDTJ2oh8rYmfet4UwLfRT25DEsG4lZa9arEFjWoKW0VRCwD4E8S2B1/Wo6HgYE4vyBlVCr0+6oxJPqvws3oVYxSNG//SJQqmRRLPt2OMqV8jZC/ce1v2Plhr2YO3EAOrRqZJ9F8lhvhcDKXQb/k3+KL57+IyyqpMoNZ0t2tTp/1fCwk9gZ90gYZ3HhRuiWr4LDwYoLAh7tZvD6uXlSJZ8Pj3JdWLgZ3wIcrpezTWCaUJhUFSz3sW2HJ1JdK+gUhfBrtFGIjOmaKZ5FYfY0fJL2w+XbMeA9nO9jgXbpeDB3LgmqW1MtUf3Xdqh3/yz0TWn+CVI+yVqv3j/207hwWTwot6Z5QBJ6RQgLQlxkJJYQWIf+onFGQpTV8efQoZ18ZIhc18vLszQe/y7N+wTUHJZz8ibJhQMZ5+wUBpykAmGtMSxcvOQhmMj46zYweCIhyD77lEW5svKMf2cdjSgJOXZZC4SqgEYNOXzY0vn2nandTInUsl04FKvP4dw0Bmyi+KyS2ybW7B/m6ilof5ohdFHXawL1iNm5msBiAgOgnTMQ4MQ9pG/aEcndh1oDXa5sGxVNYfFSkWB1cQEmjM383hkTS2GBpNqmqyswfkzm/ZwBRIXAcgYrKDrkFQTyLIHVsN3X8HDPhz83fyfYumWPMXDP54pda2YiJUWP2LgERL2KxaOAIBw/cxX7/zqDOn6VsGreKIH0Ip1PX7yJAWMW4LOuH+KbIT3zyt6RZZ0KgSULjE4zSJewgzgXJ7pWjCvoj2EeoreipYrOiryIVTFi1bkJBf0x1IZxLJ3PtF34ZRpPDlJIkRzehTYUUKQOl5rQWeUqzwHLVj2zq9+TP2iQnDgG8WnFwcdOzxQ2GQi7lFbBkJBaGYmuAItiDWkUqcc5lQ20P88Ec/mkoHrSV9PA1nrPIjOp9/8K9YHfhLYp7foipW0fi/rK1YhUICSVCIkUTwFqSnLugOLhN4qFayaOb5YQWA8eUti4WTzcuLvzGDPCNgJUrrWbGyclDrgwk+gp7sc6k/TQuDtyVucbOyUWuDBbdJ0gFQiJtw+VflE8qxex8mcVgoPFbiQvWklvee6vD7YxqWHLBrmuAYLUQPlyPPr2dr59JwWPhLkT8pBnRf39x7DQefG4uZpBzCPx7xV7cyhcI3sIOebGOWhXTBZUV/k3hGbM/NxLYPE8dPNIcZEHwpo594Kpidt5rbz5Oq2+mJygg2koYAlvHgMt8NJmWWDGt8ZuWjOnKgSWE5hUUUFBwKkQyLMEVvVmn8OvanlsXCbmGKnT+is0rF011cvKnJw8dx2Dxy/GkM87YXDfjkKT4NBItOg2Cs0b+2PprGFOZWBnV0YhsJzdQpbrdy85Gs2C9ggdbEnebuj806ubmBl1URhrgPs7mF6onuXKyNCSJMx99jeFoJMMYOaMw+h4+LbiQZLnynmQk0F1hw9hWhGLJHP2qiXPYZMo//oZlZr0nXhlSauHvbUwBihcNc0G7jJ5a9gDnua3RVD9d0gYIrnPaOjfbW3RkJodK6E6tlvs+/Eg6Ft8bFFfuRpt3kbj7r20MNomCYCUn/Xy41GhZ+aHfUsILHJImTVXJXVcwPAhLDw95dtDcmFyfTljVHygdHsO3u9lD0kg15qsHefVIwq3VouEIwkhJaGkcgrx1iBeGwYhYUMkfEgOebKPRvB/Itt2RwM8VQP58/EYOyrzPS2HDraOEfOEws1VIvak0EXdKWk6P9lPI/ikuC4S3krCXLNDiOcp8UA1iKp6HWgmLMq1BJbqxH5otogh32TdSQOmgPVvkh3wO92cpPogqUJokKpVeXS30Et79lwVklPEJY0fq4eri9Mt8S2FFA8s57eRomHuQSDPElj+rQagSoVS2LRc/GJUq9UANKpTDT/OMU9gEbOTyoVx8Yk4tGkwZcT+AAAgAElEQVS+sAsSk5JR+8Ov0MD/Hfyy6JvcszuyYCUKgZUFIGfRFBMizmBD7D1htjauvlhjZfJ2Q+ddcY8wLEz0ZOnoVgYrvN7PopUYT5MUSeHxPgpRd8y7G5AwmrJdWHiUzRb1smXSqz+oEC+mKEO1QSzcy8hz2JQuiITHhF6mELr7GeKY0hmu1cWLQ7EGxDuOByEXs0PUO1dC/beEhOo6GPpmXSxS5S3y69NR0DdqY1FfuRoZwrhK6oFqSZJRqbQk/TrPzGeyhMAio5iGjLX7iEO9Otlz+M5oVYHHaTw9KF77hCitNtC5SY/MrWRdi5enaTzeK2JQuCaPir3kxWDudyokJIp6jRuth5ubdXqm1/r5XzSeHxX1f6gGHr6p0zNhLAsXl+y5X1iyOqI30d8gXv48KnRPwz70EoWH20WSgBS8qPJ59lxD9P3r0C0eLeipqlITminLciWBRb2OgW5qX1AJccJ62Sq1kTRsniUmzRNtjv5D44SEXH3vXQ6tWli2Nxf9wCD6lUhmO+vHDVNDKgRWntjayiKdBIE8S2B98MmI1EqDhzaJIYTt+k5AXHwCjm5bBIYxf1gd+M1CkAqGV/9aI5iQhBv6tfwS9WtVwdrF45zEtDlDDYXAyhl2ykzLeF6Pms+2gvzfILYkbzf0PZEQhJ4hR4SxGumKYXsxyzxZMtPV1t+jH1J4vJtGYoT58DaSH6hMex7ags57GLJ17ab9zk9XQZ8g/rX2RBZaDwetOyUZrsPaIpqpjhfqDghVvw+OUqe7FEoFFK7JoXgDHvl8HaRTOrOr92+A+sBG8dlgRRig5udZUF0+IfRN+nIy2NpZS9quXsMgMJDC+wmAlAMsWo9DuY8tO3xYSmCdOEXj6DHxOVulEoeeTlguPTEKuDxPGtLCo+5UFmqZyBW5rklHjvN4Dym4IKlA6IBk9lNnGocNzZiil62Im2nOvgAVcFebhthnfViUcwD5Lpc9bv7EIOax+Mwp35VNJemJxAUD15aIuJGCF3UmykssWroO+skd6L4TIxCY8u9AO3NVriSwNGvnQnXhmAANz6iRNOtXcAW9LIUr17eThqOTxVpTVdQ0nHjAFyx8SmTts9wWAykEli2oKX0UBGxDIM8SWF+M/g7nLt/B+YOr4OqS9iaz6Kft+GXLQQz5vDO+/kwMETRA+yomDm0+/QYatRr/7loiIB4WEY2mH49Aq/frYPEMJXmjNVtRIbCsQct5226JvY8xEacFBW1N3m4Y4E5yJFoE7RPGq6gugH9KdMp2AEg+kuDT5Is4BTbpbSKLYgDvxix8WvCg0+dYsn0d9ijApgDnJksOmzSPhnNY2Q6bb+mW8BquozoLf05xKYqnnTen5spKDM84V5ZrMR7FGvDwqs2BeeNxYc/aM+ur+ns3NDtXirq2+BgpHw/KrFvq79plE8DcFsNmk4Z+C7Zq1obNLlvBwDWIQhVJ+AZF8yAEpSa/RcuApQRWUBCwao24j9RqYPJ4+UgLy7S1rNXVRSrEh4hty3/Cokhd5z9QWba6zFuZkiiV+nDwrGYZoZn56EBiIjDnO8le0ABTxssXohh2icIDiadSIAPc0KVp1roVh3cbyLcWS9ZraRtSzJfkvwInyX81Xg/dm/oVPAecnWycH6vedD1U2RBuRXJB6eZ+LSyNKV0B2jm/5DoCi7l/DdrFY4xMmNyxP/Stlfy3UlBW/8LghaTCsDVFGX79jcEjCWnbuweLShWd/36rEFiW3tmUdgoC9iOQZwmsFev3YPn6Pan5rpo1qpWKZGR0LDp9PgkRUTGoU7MSenRsBt8SRaHRqFITuf+8aT/uPnyG7h2bYerIvgL6l288QJ//fYtenZtj0vCsTbpr/xbI3hEUAit78Zdr9nZB+3ElOVwY7psCtTC8QE2bhw9nE1Dz+TahfwFai1u+zvOCqI+nEHCAQuhF856aancepdvy8PJzzoORzYYBEP8SuLpYPGxqC/GoPc5xX/2pmCi4jOsmqMznL4CE79LKlsc8olNzZUXcoszmKTN0ojVAYT8O3o14EFLLUaI6/Sc0GxcKw5MQwORPR1k0nfb74WAe3xbaJo1ZArZcVYv6ytVo0SIG/iEUpFxf8cYcylhRIdBSAouUV5/zPYMkSRW1Lz9n4evjOPvYitOzIzRe/C1e69kZqmXrGuzpd36mCnoxWgq1RrNwKSKfnaKjKSySVCxzz89jzEj57imRt2mQvH0GCWWAy28IrFp+PDp3kG8ue3A27fvqIYVbP4shgrpCPPxN7rWm4dxVv2LhUU4+21i6Hjo4ALqZA4TmdMnS0H23IVcRWJQ+GbrpX4CKeCmskytaEolT1gCMaCdLMcvN7b5bpMLr1+IKrQkD3LGLwQ3yTH8jnTuyqFUz6/e0tfZRCCxrEVPaKwjYjkCeJbDuPXqOLl9MQdN3/bB8zggBwdv3AzBk4hKEhkebRbV8mRLY8MNEeLiL8QOE2Fry807MnzQQ7Vo2tN0aebCnQmDlfKObS95+yac7ijC2fwYmryo+AetJLmlBnpbqC5WTZUuPCwIe7mQQJ/nSKLVoPh8e5bqwcPPO+XY2rCDqNoU7v4ov6x5leVR1YE4gKjIULpN6iweGQkWQ+O0mI0AJoRh6npBZQFJUxl5Zbj58anghCTOU20uOVCAklQgNovdvguQBUywyvm7WANBBAULbhMk/gS+RtYnVNk1XoYwkNJRW86g9wbpwOUsJLLLQ7bsY3JQcVD54nwP5z9kkLhC4ttS4Cl+9GSyYXOplKcU/JR64MEPicUm98biUsQJh8Etg5WpxjiJFgKGD5PPAIiF4xIvMIJE0cP7N48m7OI9BA5yTwHr2J40X/4hAF63Ho5xJImziWUY8zAxSuh0H78ZZfw1RoYFwmdZP0IMuVgK6RVtyFYGl/uNXqA+KlWLJYpPG/gC27DvOdsvKVn30emDmHOOQ4OmT9aAtvGcc+JPGufNi49YtObzbMOv3tLUgKgSWtYgp7RUEbEcgzxJYBLJ+I+bhwtW72LhsIvyrVxRQjHkdj217j+Hf01fxIjgMPM+jZHEvNHvPH727tISLTvw+zXE82vYZj+dBofh7+yIU9Xrj2227TfJUT4XAyvnmHh9xBhslyds7FSiD5QXsz91T6/k2hLLiafqiTzcUZ5ywPDUPhF2hEXCQQkqsGfKEIonFOZT+iIdKWtYth5reNKGzV20eFbo57gBIhbyAy/TPRQKrSAkkzlhvHj0eiH5A4+U5IOo2DRJik56QRO9FavEo1gggCeDlENNKXNYk9iUkHSHrDJIw+zfwnkXlUMuiMUhOs/+mqyDlZLw/4FC6tXXYWENgXb5CYc8fIrHg48NjwOeO20sWAZFOowuzGaPru2JvFoVrOL9XgD1rJn1NyR/XooDfKPnIJTLHkwAqNam/QXx9eXzZT759YOo1+poCTr15lNAMMG2ic4aumlbAJFVASTVQqZjm93L0/Ti9/WT6oYEqXBQuS3fkGgKLDnkB3cwvAU7cl6TCLKk0q4gxAqGhwI+rRALLw4PH6OGWX8//HKdB/jNIk/c4tGhm3XMoO2yiEFjZgboyZ15FIE8TWDfvPUGPQTPhXdQTW1ZOhWdBd6v3ASG6Zi7eoOS/shq5tA4KgWUjcE7SzVzy9kMV2qJGiv3JTFsG7cPt5EhhpYeKt0MNbWEnWfnbanDJwLOjFIJOMWbD2Qhh4tuKR7GGHJzMkcwqTAMO0Ag6Ib5c+rTg4NPScS+XVOBjuMweKOjIlSiDxMmrM9U55TWFkPNpZFZydMZeWe6leRRtyMOrOgfYEQlCB9yDbr6YB5ErXRmJ45Zlqitp4Dq6CxAfK7SNX7AbcLMw8ZRFM2Tc6OkhGoH/inYlabAa2ZBPxxoCKyaGwoIlxoBPGs9Cq3E+YijgDxpBpxxbiU8GM8o+xMuzNB7/Lq7bswaHSr3lvd7v3KOxZZs4R6UKHHr3lG+OpFcULs0R91kyDRyTOAgPG8KhsKd888lhBDYJODeV6Czeu+pM1r+Vi+7VIwq3Votrc/UG/IbLSzBash7qVSRcxncXmlIeBeGycm+uIbC03w8D8/iOsD7eLT8SZ24A75rPEnjyVJt7D2hs2iJez6VL8ej/meUE1rkLNA4cEvvXqc2hQ1vnuj7NGVQhsPLUNlcWm80I5GkCi2BvyIVVrpQ3ls8dAR/vIhab5Ozl2xg0bhEoisL2n6ahQpmSFvdVGioEVm7YA1tfP8To8FPCUkpp8iGgeh9ZiMneL4/g38QgYezfirbEBy4lnB62pEgKj/dRiLpj3l/exYtH2S4sPLI2Okw23O5tYhBx3XxVLNkmkQxEP70P3bwhIoHlWxGJE5ZbPhUPRN2j8fIsEHWXhlFcqskoxEOOeMsVfxc2VZOkQ55DN72/qGsxXyRO+8UiXV2/bgWQxFBvJH75YVgcc2HRDOk3SokDLs5hwOtFuz52BT6dZv1B2BoCi2i0dDmN8AjxWunVnUPlSs53WDH1RGK0POpNZ3M0GW3Jtnmyl04tXGEQRxDWV6/R2L1XnKNmDQ4fd5JvD3BJwNmpokcIyYl+ROLM2/0TFlXfcS7SNOouhTvrRGKK5BwjucdMhXhOkqqwBqEYHg1mZ8O+jIuF65guoh5u+eHy84FcQWAxZ49A++v3RtAn9x0LfcNWllxCea4NIa8IiWUQ/5ocOnW0/Hq+eZvC9p3i3n+nMoce3Szvn12AKwRWdiGvzJsXEcjzBBYx+uwlG7Flz9+poYFf9GqLXp1aGOW4Mt0Ysa/jsWHHYfz02x9gWQ4zxnyOT9rZHzKVFzeg4oGVs60+LOwEdsU9FhYxw7suphavIwuBNSL8JHa8fiSMvcjrPXR3K59jAIt+SOHxbhqJEea9fwpV5VCmPW8TUZKdINz4kUHsc3FNjk4aTD+8Cd3CkcKS2fLVkDR6sU0QJL+iUj2yQi7QSInJ2CvLozyH4g2AglUt95ijXkXAZXwPQTfewxMJ87ZmrmtyElyHtxP7aTRI+OFA5v1kamFKUiQBuFqcx8gRln81N6hiLYFFvrSTL+4GqVeXQ7s2zndYIdzihZkMSL41g1Tpz6JgJeciPmTaEsIwJIk4SSZuEEeETp49T+Pgn+IeqF+XQ1uZ98DpccbeTH8SAuvNst5vzKL5B85lx4D9NEh4oEGI527ZdEg9Qj6Te5tBao7Qw6243Dsh4/GopES4jGgvNtJo4br+rxxPYFHxr6Gb2hdUnOgdy5atgqSxS7MW4BwyW0AAjbUbjD/edenIwa+m5ff0R49p/Pqb7R5c2QWVQmBlF/LKvHkRAYXAemP1rXuPYeGq7YhPSIRarUI9v8qoUaUcSnp7wdVFl/p3Up3w2u2HOHvpNuLiE6FWMZg2uh86t2mcF/eOLGtWCCxZYMy2QZoH7sXdlChh/r8rdkCz/CVkIbBmR17EypibwtjjC/rjfx41sm2ttkzMs0DwfzSeH6XAJr1NmFAM4N2YhU8LXvaE4rboa0mfC7NVSBHf5VOrYpHqWI4S5u5laH8YJwzPVqqFpBHf2TUdyY1FPORI0vdX5EtxBuqr8/MoWpdDsQaAxiOTdZoSUVodEpb8kamupuE30kqLmXa2s0HSK+DyPAY8cUt5I7c1QEJxHv/72vEE1r37NDZtFQ8rhTx5jBhi/bx2wmBRd1KwIfSCiFPRehzKfWz5wcyiSZysken1TvJfkTxYcsqx4zT+leS8eb8Jh+ZN5cX1wiwVUiRV0f5xBQy35EoVOfTuIe989uJDigaQ4gEGqfQpB08S4mxG7qynjTx+y3djUaS24+7JZpVgWbgObS3+RDNw/e2fHE9gaX5bBNV/h4zWlTh1DUj1QUXeRmDZSgZhYeI90suLx9BBLKiMvxcZDRQcDKz8WfQqLFoEGCJjUQdH2U0hsByFrDKugsDbCCgElgSTsIho/LrjMPYcOoWoV5ITmgluDEOjddN6GPxZR5TxzeLPXLlsFysEVs41qJ7nUObpBkhfqaP8+qMAo5WFwFr96hZmRF0QAPrSvQpmFKqfIwEjXhsBByiEXjQfVqh251G6LQ8vP+c6RJmCTQi5MxOlngxvKpLZkTcqM4PSN85Ct0Ks5KevXh/JX8/OrJvFv5P8WITICiVeWSS7c3pCAQUrpRFZBStz0tQ0Rj1sCQU0reDFF/FGwoxfLV6DPQ0f7mAQelFcdyIFHHcBSpTg8dWX1hNJ1npgJacAc+arwEm2Pkn4SxL/OpuYVuAkIad1p1p3OHO2NWWkT1oeJsdWICTzE+8r4oVlEEdUHbv8PYPEcHGfn9QBcW/uWwUK8Bg1zPq97ihb6uOB8zOMPcbqTdNDlU4Nk2dHaLz4W8SveGMOZdpl/bPEdXBL43vh5hM5msBiHt+G9vvhRmtKadMLKR3EoiKO2gM5cdyr1yns3mP8MtCnF4sK5a27l0e/orDoB3Gc/Pl4jB3lPNdnerZRCKycuGsVnXMqAgqBZcZypLLgrXtPcOfBUwSFRCAuPgFarQYFPfKjfOkSqOtXKdUrSxH7EVAILPsxzK4RriaHo23QfmH6kio3PK/ZN/Xfcth1d9wj/C/spDB+B7cyWOmVs0N144IA4sURF2ieKMnnw6NcFxZu3tll1YznTQyjcHmB+GJJPJLqTHTsiyVz5RS0q2cIirF+7yFp4DTZASLkXORtCi/PUnj1MON635oCPIrVB4gHjjqf8cu5y5iPQcXFCPpZkoz9rTxfPuWROHGl7Gs0HTAxAiAHe/DifryhAQLVQJnSPD7va71trSWwiE6/rGfw9JmoQ4e2LOpktQeJBWhzeuD8NAacJFdY9cEs8pe27oBmwVRO0SQ2gMKNlZI8TF48ao2xfk9ktphdexhck+TV69SBhb9Jtb3Mxsjsd9OKfudcgSjJbXjyBD000hKcmQ3owN8jbtK4t1G8B2WWmD3iBo17kpArj/I8qg6Q306ZLdl1WFsgJVlo5rr+KMITcui1wbLQzfoSpPqgQXjPYkic/gt4lViJPDNM8srvej2waCmD15KPQNYmbzdglZwMzJ4nEuekUuj0SdbnY8xq7BUCK6sRV+bLywgoBFZetr4TrF0OosMJlpEnVfgt9h7GRZwR1t7a1ReHqrRN/bccdj2ZEIQeIUeE8d/VFcOOYpIQhZyKOg+EXaERcJBCSqwZIotCaiLx0h/xIB4eziTRDyjcXiP5MlqaBznAO1KYC39Du3aeMIW+bjMk95/gyClBEvEHn0Gqx5w055HppKSaZMF30nJlkZxZJKeOy5S+oMKDhaYJszaCL1wsQ33p+9egWzxGaMNVrIHEkQsdukYyuGlCfpLe6QSpzkYhNZE6SahurdhCYP17gsYxSQXEqlU4dO9q/dzW6mpL+3ubaERcF8kF78YcSmeDt4stulvbJ+QchUe7xevdsxqHSn3ktwsJISWhpAYhCZtJ4mY55fZaBtH3xPvtk+LAPZFnxpf9WPj6Osf99vFeGi8lifMz86hKCKdwhRDRb4RUvK0/w7H3ZXO2cRnZEVRivPCT65pDCE+RePDJaVAHj6U6vAWaPWuNZkkauQBsxZoOnjlnDn/iFI2jx8RrmIQMDh3IwquIbdfU9G9V4CRbePI4PTRa58ZGIbCc2z6KdrkLAYXAyl32zHGrkYPoyHGLziUKj484g42x94TVjCngh+/LNUz9txx2vZscheZBe4Xxy6s9cLxE51yCHsAlA8+OUgg6xQBmzhrkEOLbkgdJ3ktyZTmDmB5ovfx4VOjp2IOS6vSf0GwUyRz9u62R3Gd01sDBAuE3SIghjdgnGSfx0HqmeWX5nhoJ7Ytrgn4JE1eB9ymXob7M9TPQrpwqtGGrN0DS17Mcusa4YODaEuPD5VUt8PLNn2pU4/FJF+ttawuB9TyQws+/iJtcq+MxcaxzhuaFX6Fwf6tE1wI8ak+wHieHGlemwQP+oBF0SjyUlmzOwbeVvMQSUXXtrwwCnorXV7++LMrK7NV2fzOD8GviHDEVeJwOEv/d7iMO9erIvzZbTHF1kQrxIWLPKp+xKJhJlcSzkxlwKeJ6ak9koc3iMFyXb7qCio0WFHdZtQ8RPGHEc5bQUWHQTusHSuJNpq/zPpK/mJyzFpJF2iYkUFiwmEGKxEnKvxaPTu1tvy+S8WIkH/hGDmNRsIBtZFgWwQCFwMoqpJV5FAQAhcBSdkG2IiAH0ZGtC8jDk7cP3o/LSeECAuuLNsdnJSum/lsOu0awCajxfJswfgFai1u+PXMd4sTb5/FeClF3zYet6Tx5lPuEhUfZ7F/608M0AiVfWUt+wMG3tWMPfaoTf0CzRaz4lNKkHVJ6GuclyQpkSDXJoP8ohF2mwCakT2ZR0KNIynH4JO9DAfY6EkctAlehesYEVjZ4md1exyD6rmQdHjz+lITG1fXn0N4GzyJbCCxS4W/O9wySSAKuN/LVFyxKlnC+A4s+Ma0aIc9mb9W3rNjzxNuSeF0apGJPFoVlDu0jYy9fpUJIqLiiwQP0KC5zetHHe2i8PCPxEKnJ45CkumKd2hw6tHXsvcwSm6Xlv5ISyzzqz2TBZOJ9cmMFg1gJCVi5H4tCVbL2+nGZ0ANUdIRIYP24CxGMuyXLdqo22qXjwdy5JOjEa12QNHM9OPdCTqWnsyiz/xCN85JKsmoVMHI4i3xutu+/FT+p8FJC4g76Ug9vJ02tYLCDQmA5y45U9MgLCCgEVl6wshOvUQ6iw4mXl2tV48CjzNONIIncDXLBpyvqFCksG4FFXn18AtYbFYh7WqovVCRuKxdK9EMKj3fTIESJOSn0DocyHXhoC9r+UmgvbA+2Mgi7IupH8nUVre9YfVR/74Zmp5gPKqV5F6R8Mtjepdjcn+TKCr9KKhhSeC3J22RuQFc2AMXrcyjcoRQYbfo4qU7sh2bLD8IQKY3bIaWX40i62OfAjR+Nva+4+jyO3BRt26ghhw9bWn+gt4XAIgvfup3GbQmJ2+wDDk0bWz+/zYa1oqNpOJpPSw4+LZxTVyuW9VbTi3MYJL9yPFG3YAmDmBhxHkd4W5iS7/nq8dh5S5zTx4fHgM9t9xixB2dp3/CrFO5vET38SF7EGkMz18uUoPP9kEPJZlm7J03Dp3VLtiJS6ykXNFkyDnP5BLQ/G3u/Jvf4H/Tvd8iS+XPaJBGRFJYuZ0A+Qhjkg/c5kP/skXUbGDwJEK9PW5LB2zO/LX0VAssW1JQ+CgK2IaAQWLbhpvSSCQGFwJIJyCwe5kFKNJoG7hFmdafVuOPbW3Chlsuu/s+3IYRNEOa5ULIrvFVuWbzarJuOkCPB/9F4fpQCa6jxLpmehBJ6N2bh04IHnQ0Jh2+uYhAjCaV75wsWBSo6mMAyyUWS8mEPpHT6IuuMksFM8SEUXp5545Vlxl6GrsRWhWtwKNaQBzmQmor6yDaof18j/DmlZTekdBngsDWSxNwkQbdB8pXkEV6Nw78nxYPzB015fNAk84OzqZK2ElgXL9HYd0Akp0v58viin/XzOww0ycAk0f/j30WsMkuynRU6yT2HuQqEDWazoB2Q0mj2PAbJyeJ+nPgNC51O3vtK0HGSd1DcX14NOGy8If6bJHAnidyzWx7tYhByXsSiRFMOpdpkTgaY7knPGjwq9c7a60c3vT/okOcChC7fb0REvozz/2U33tL5qaR4aKf2Ax0TJfyZ862AxPHLAZLUyYyQ0FeSrDyvyuZtNO7eE6+jfPl4jPwfC7Wd7yfbdjK4dVvEnISzk7B2ZxaFwHJm6yi65TYEFAIrt1k0h61HLqIjhy07x6v7e9xjDA07Iayjsc4bW4u1kp3AahW0D7eSI4V5Dnq3R01Nzvqia4uxSeLwgP0UQi+Z9zZTu/Mo3ZaHl1/mBxtb5k+vz8W5DJKjxZdKUpHMxcuxL5Xq/RugPrBRUCmlbR+ktEurdukswqUAYVdphJyh8DqdCpMGXd28eRRrwMPLnxNISPW+9VAf2iSusf1nSPnoU4csL/o+hduSfFNkkmqD9PjvAY0zZ8X91roVh3cbWL+/bCWwol5RWCwpnU70cqbKcFJjpMSlhRGmZrt/I/7j9dAVdIjJsmXQ2GcUbiwXSTpdYR7+Yx1DiEydacyKzZwqP5EUeoFKrQBrkCJ1eOx+DqOqaaOGsyiQxXmjTI1LqoImhov76p0vWRSokPk9NvY5hRs/Zo290tuQLrMHggp8LPysm7sWkQV8smX/2jKpZtuPUP0r5t0ETSNp4k9gS5Q2OxypvDd/IQMPd6BzBw4lnDDk2RYcLO3z7AWFNWuNE3R26sDBX4b3kv0HaZy/KD6PPmrDoUFd659Hlq5FjnYKgSUHisoYCgKWIaAQWJbhpLRyEAIKgeUgYB087KzIi1gVc1OYZbB7NUwuVEd2Aqt3yF/4NyFQmOfXIs3RwjXnvBDba4bXL5BaBSwuHVKEePOQMD63LMgNQbzDzkyUHtp5NJzDOjzBvHrPL1Af3ipAmdypP/QfOm8utJTNexB4QYeX6ubgqPQTGDMaHoX9eRR/l0eB4z9C9Y/o0ZjcdTD0zbrYu33M9r+6mEH8S/GA7FGeR9UBLPbuZ3Dpsvj39m1Z1K2d+cHZdBJbCSwyzuJlDKKiRB1692BRycEefraCbOrFRioRkoqEuUVMCR8Swlz5M/nXFx8PzFsgElg6HTDxG/kJrIibNO5tFA/EhapyOMVSePbcscnjrdkPybHAxdkSMo/m0WCWZV5vnB4gidzBi+upP0sPRmONBva11c0bAvrpfZHAmvUTIgs7QfJGC5ZFP7sP3dwhRi0zC1e/foPCzjeemMRBq44/h5YteOgyCBe3QJUc02TlagbBkmeJlxePoYPkKb7x9z80jp8Ur9emTTg0ayr//UdOsBUCS040lbEUBDJGQCGwlB2SrQgoBFa2wm/z5N1fHsapxGCh//LCTdApX1nZCawR4aew4/VDYZ4Fnu+iZ/60RPF5Rngg7DKNgEMUUiRVeYT1U0CROihaEPIAACAASURBVBxKf8RD5Wo94WApjiTZ/KX54tdWdX6g7mT5D5qm+mh2rITq2G7hz8mfDIa+uWPIHUuxyKidIRyQpVzwUtUSzzz7Ii4+Y6/B/C6B8I3ciKL6Y6D5lNQqi6Taotxieogn41cfqkd+H2D7LgY3JTmBbA3ZsIfAIiGEJJTQIA3qcfjIwUUCbMXYNCTNvQyPaoMc46Fkq4729AvYTyNIcoB0VMGGqGgKi5eK95WCHnxqAmi55dUjCrdWi/N4lOVxx4vH9ZvifuvSkYNfzew7JIddovBgu6ijtXvqygIGCWEigVV9CIv8vo57JpjaSLtgBJhHt4Q/66b9iMhileQ2pfzj8Ty0sweACXoqjM25F0TS7I3g1elnz9/wG42Hj429pF1deLT5kEfNGtm3j+QH6O0Rr9+ksHO3sfdVvz4cypaRZ91nz9M4+KeIbf26HNpaEEqbFWtPbw6FwMpO9JW58xoCCoGV1yzuZOtVCCwnM4iF6lR5tgkxJG7qjRwv0Rnl1R6yE1jfRl7EComn17iC/hjmUcNCLW1rFhdPwc2BRJBtWgFcMlJzYwWeYgAz5ztGx8O3JY9iDTmHeEWZHgDz+/CobkFyYVvXa+in3vID1Cf2C8Mk9xwGfZP29g7rsP6qk/uh2SxJyN6kHaIajQDJURN+nYbksnlLBxUfC+/kwyjSxQeaJrVl1ZHUW7i6yPiAK/Wq+W0LjfsPxAND754cKlWw/jBiD4F15w6NLTskeYoKc/jf19brICtw6QyWGAVcnmdcLa7uVBbqXJKi785aBlH3RDKkQg8WXrXkJ0OCgims+lk8CBcvymPwQPkJrLhA4NpS0V6uxYGwGixOkvvpG2n2AY+mjeWf29L9+GAbk1rl1CCkMAApEGCp3NvMIOKa2L9sFw7F6lve39J50munXTIWzL2rws/aSUsQVbKqvcM6vL/q2O/Q7FhhNE/SwGlg/d5Ld+6YWAoLFhsTONLGpUtz6NiOh2ch+a8ZhwNiwQSmhRfKl+PQt7d8e+36DRo7fxefBdWr8uj6cfZdmxZAIrz/WtJWaaMgoCBgHwIKgWUDfsnJKWAYBgyTO6uh2QCJzV0UAstm6LKtY6A+DvVe7BDmd6FUuF+qN2hQshNYq1/dwoyoC8Jc/d2rYFah+g5b+4NHNDZuolGtKo/WLTm4uzvfyyfxhHq8l0KUpGKbFBCdJ49yn7DwkDlyI/QShYcS74CsShKs2bAAqjOHhSU6yjtJrk2lOn8MmnVzheHYus2R1H986r9JYn6CIyGzEkLMJwU2dHQvS3JlcShMEtemf06yWO3QyxQebpMMRPHwG8XCtUjaEGs30AgIEJ9p/ftyIIcwa8UeAisxicIciZcfmXvsSBb58zvfdUh0u7ZEhTjRERXlPmZRtJ5z6mqtHS/NY5AkCeesOUwPtxLWjpJ5+8dPaKyXhPaRPUf2ntxC1kLWZBBNAR58Kx5/SAoHkNw9JIdPdsmFWQxSXov3hWoDWZD7gKXy4h8azyReK0XrcyjXJevWo/1xIphb4vNaO+47RJWuZan62dKOjolMTdxOJYnFYtgqtZE0bF6G+hDi869jGd/DyQC2FsPIFjAsnPTUaQZHjhqvfehgFkVkzIf58BGNDZvE51G5shw++zTr9rKFUBg1UzywbEFN6aMgYBsCCoElwS04NBLb9h5D7y4t4OVZ4C1Eb957glmLNuD2gwBQFIX3G/ph8vA+KOqVizK32raPbO6lEFg2Q5dtHQ/HP0P/0GPC/LW1XthXvG3qvw0PcLnsaposvr1baazyauqQtT8JSHthYiUf+Zo15fHeuyxUDqi8Ze8ioh9SeLybRmKE+Zdo4l1TpgMPbUHLD0AZ6fTiKI1nf4kvlN5NOJRu6/gXSs3auVBdEPcbIYMIKeSswtw4B+2KyYJ6bLX6SBoy+y11YwLSiKyI6zRIfrH0RO3Gw6sOh+INYbMtifcVSQ5NyE+DFPbjUbGnODHxgiHeMAYZNICFd3Hr9449BBaZe/VaBi9eiHpkd1hXRvvs+V+kYqh4TRSszKPK587tJWDJdZOaT2mS8U2vwbd6h1QgNPW6q1yZQ69u8t9X2ETg3DRxTSQ3lGc/zmkOyQnhFK58LxJsFJOW/4pUnrVUou5SuLNO7JDPl0eNIVm3H7Urp4K5fkZQVzt6DqLK17VU/Wxpp109A8yVU8LcvFqDpBnrwRX0ylCfH35kECG5n3oV5hAWbv6jdqFCPDq05WULr8sWoN5MGh9PQn5pJEmqhtb2J95m8l6zgUEUfloj8cwsxmPwV1m3l23BWCGwbEFN6aMgYBsCCoElwW3T7r8wZ+kmdGr9Hr4d/6URoi+Cw9C5/xTEJyQa/b2Mb3HsWjMTWlKDWRGrESBEBx36AvTjO9A3aGl1f6VD1iOwMPoqFkWLYQKf5a+EOZ4NUxWRm8A6lRiE7i+PCItsqCuGncXkzw309DmFDRsZpJhJ6US8sIg3FvHKcjYhxEfwfwyeH03z7jEVcvjxbszCpwUvVLyzdQ2kghdJ7GyQsp241HBFR4tm9QyoJAeM5K+mQV8r/dAOR+uT2fjMo5vQLhgpNGPLV0fS6EXpdmMTKETM2YHAhHeRwPhmOHyBCgRzoGAVDpQVDsAvz9J4LAnHAJVWUU4nSc31w3IaERHioMOGcCjsab197SWwjv1D4d+T4sHFmUNH4oKAaz+IpAghHerNYMHk8NeB188pXJdWtCvEw3+cYw6Pl67Q2PuHuO9q1eTQuaP1+y6z65L8fnqcceXI8qNY/PiTuNc8PTkMH+KYuTPTj5DZj98kBCdtDcUVMusn/T05Brj4rbgfaTWPBrMdYzdzemlWz4LqilidWDtiJqIqpb0bOKOobl2A5seJRqqldPkKKS27ZqguIdgJ0S6VcWNYxMYidS8T8sWc1KjGoU1r3ilTFFhqnwOHaJy7IF6v5OMeqd6Zz03e9yPT3HikOiiZx5lFIbCc2TqKbrkNAYXAklh04DcLcer8DSydNQzNG/sb2XrMzJU4dOwcypcpgemj+yElhcX0hevw9EUIJg3vg16dndcjwJk3beSgLqAjQ1NVTJi/Hby74s3mzPYiuvUP/RuH458Lan7v+S56vUmsLjeBdTc5Cs2DxLLW5VQeOFGys6wQvQiksH4Dg2QxpZfZ8X19eLRvy6FoEXlf1ORYDAk7eXqQhKeZZzXU7jxKt+XhZUd561s/M3j1UHwxr9yPRaEqjsdCu3wymJvnBJiSh3wLfbV6csDmkDFIImDtLPEDCFeyLBIn/ZThXLqJvUBHhSFK5Yfn6g4I1TYFuPTDU4g9i9ZN88pSZxJeR3JukdApaWgSCXMj4W5S+X4xg1hJkYAxI1m42xC6Zy+BRarCrZF4kZCkyOPHOu/B5dJcBknRoq0q9mJRuKbjrwuHbN43g5omEy9YmUOVzx1D7Px3hsZhiWdnw/oc2nzomLnOzVCBjReR85ugxzxJXizyy8ypji9MYc529zczCJfkr/JtzYEkzrdWzk1jwCaK+7HWGBYuMoZ2ZaQPCZ0mIdQG0QydguiqTaxdQpa0p1KSoJveH9Sb908yKeddBolTVmc6/779NC5eFp+1VSpx6NldtBUpRHH4bwpJEjsYBtXqeHzYnEed2tbbNlPFHNwgMorCkmXGxF3zD3i874C8ccTD61tJyK9aDUyZkD3XpqWwKgSWpUgp7RQE7EdAIbAkGLbpPQ7PAkNwZv8KuOdzFX55GRaJlt1Hg6Zo/LFhLnxLpCUNuXjtHj4bPhf1a1XB2sXj7LdGHhwhupvoSZFZ0sw8CI9TLpnkvyJ5sAxy0Ls9amrSXDnkJrAi2URUf75VmMuD1uC2by/ZcCEhU+s20Egy471kbhJSKpu4y7dsxsPFxfkOqa9fAI92M4gLNE9+5PPhUa4LCzdv6yEkIWiJ4eK4fiP1cC1m/TjW9tAu+QbMvStCt6Th88FWNv7AYO2YjmxPDkQuk3oLU/CeRZEw+7cMp3QZ1QlUgnhNxczeg9Ab7gg+B6Owv7cGoQBCLhAiq0BFDjBjdtNqeRTNo/ZEFpr8xqN9O0+FpGTxbxO+0cNFZz1S9hJYLAfMma9CioRQHjxAj+LFrdclK3o82U8jWFKtz7Mmj0q9nJdwswSTpwdpBB4XD+gl3udQ6iPHHLiPHqNx4pQ4V7OmHJo2ccxcl79jjEKua41lsXgtg0SJY/03o/TIl88SlORtc246A+KNaRBbKwiafmio2JtD4SyqiKfZuBCq038Ka9B8NR7RtZzz46769zUgFWOlkjhhOTjfjKsc6/XA3O+N70+EvCIkllRIMZiDf1K4IalyKf29eDEeXTo55wex9Hb21u00bktyb+bLx2PUMMelWJg60ziMedokPRgrQmrlvUIzH00hsDLHSGmhICAXAgqBJUGybpuBICeAC4dWGeG7+rc/8MOaXej4YSPMmTBAPJjwPOq0HghXFy1O7lkml03y1DhSAiulZTekdBHxzVNA5JDFxnDJqPJss6AtOXY8KdUXqjfxTHITWIQi8glYDylV9FQynz2whYQST4+3yasG9Tg0b8bj72MUSClnc0K+ojZvyoO0dTrhgbDLNJ4cpKCXJAQW9KSAInU4lP6Ih8rCaos8D5yZyBh5BdWfrc+SUCntwpFgHt4U1E8cvRhc+WpOB7ugUMJruI6SeAm65kf8wt0Z6uv6dSuAgPxG4pcfBmgaZONHP6Tx8iwQdZsGyWWVnpBcZ8XqAyRxs8GubDJAPIT08eLBuHhjDmXM5CuZNkslVQEzpuhBCFtrxV4Ci8y3aQuNe5KKiC2bc2jcyAmvNQAxTyjcXCWeqmhVWhgh7YR58yy15Z11tFGRiArdWHjVdgxhv/8gjfMXxfvsR605h91Xry9l8FpC7tcYyuLXgwxCQkRkvvqSRUlvx6w1PfzjQ0iFUEnon4ZH/ZmsTddfwAEaQSck5GMzDqUc5NFmuh715h+gPilWjNX0H43ouvKH/Fu6j9NrR4e8gG7mlwAnEs369z5Ccm8x9Du9vtdvUNgpCfUkHqIkfDC9e+XTZxR276FBQuJMhfQh7xAtmnEgHkbOLM+fU/hZ4hlLdO3cgUUtP8ddK98tUuH1axGV0SNYeDhhYR2DhgqB5cw7WNEttyGgEFgSi/q1+ALu+d1w4velRnZu22c8Ap6/xOYVU1DznXJGv7XoPhph4dG49vcvuW1vZMl6pAQWW64qksYsyZJ5lUlsQ8A0J1UVTUEc9e6I13EU4uMAvyppLhtyJXEnY/k/34YQVqwQdL5kV5RQ2VerniRb/XkthUQTF/96dTm0ayMelEmS1v0HKTx6bJ7IIjlT2rUBSIUcZxMuGXh+lEIgKRNvxiGE1vEo1ZJPzWOVWaJg09wqjCtQf1rWuPPr5g4B/ey+AG/i+OXgSmX8lTxbbcFxcB3yoagCRSF+hZjH7a1DTGICXEZ2EP7Ma3VIWPLHW0sgIYAh52mEnIdRdThza/WszqFYAyDmKYXnR8SDE60G6kxgoTLJV0Jyv82aI0lwzQDka7ctIgeBde48jQOSamply3Do18f5rjGCD+EdL8w0JglJIneS0D2nyuX5DBIlCapr/I9FvpKOWc+O3bSRl8rHnTjUdJDH0K01DF49EK+Hd75gceAyhXv3xft7964cqlbJ2r0W/B+NJ/tEHQpU5vGOjcUAwi5TeCCpNurI8E/T/a3Zvhyqf/YIf9b0HYbohu2d7jLQfj8MzOM74j3XLT8SZ24A75q5692vv9FG7wOWhrySvH4kv585IZ5MbdvwWb7vrDHMqjUMgiS5vUjFQVJ50JGybCWDsDARs68HsihW1DH3ITnWoRBYcqCojKEgYBkCCoElwalFt1EIjYjGhUM/CUnZz125g/4j54Mka9+/QSyNbujWrOtIREbH4upfayxDXGllhICUwALNIH7pATi1j3Aet99PMTcxM/KigEK3fOWwsGBjrFnP4GUIhd6fMGjckJaVwGodtA83kiOFOaUhi7aYIzKSwupfaMRLwjXIOP41OXRKJ3kwOeAcOkyB5IAwJ5UqcvioNY+CBZzv5SopgsKjvRSi75kn4VyKcCjbAfCokP6h7fUzCteXi14mbiV41Bzm2JdXA8662V+BDnwiwJ4w+SfwJcraYvos6+MyoiOoJDHZTsLifeB1Lmbnp6LD4TKhp3iY8iiEhHnGoS2mHYktg0/DyEvGksWVbMbC98O39yj5yk2+dhvE1RUYP8Y2Aitem4Lb+kicjn6J+4nR+NHrfUtUM2oTHkFhqWS/MTQweYLzho883EkjVJLYuEhdDuU/yVoSxGqQ0+nA64EzphUIZ+lBa+SawXic37YwuC8hlXr3YFGpomPuo/c2MYi4Lt7DK/VmcTaQMkpK/WELDo3ezVrb3d1II1ISalamPYfi79mmQ0IIhSuLxHu1xoNHnYlZc69W7/4Z6r+2CwbW9BqM6MZdHLNxbBxVdeogNJsWG/VO6jcObP0WmY5IcgSSXIFSsabYRdQrCnv2UiAVj81J+bIcOrbn4eHhmP2f6QLTaXDzJoXtu43X3b8vh9Klbdujluqx9lcGAU/F6/WzPizKlXEubKRrUQgsSy2rtFMQsB8BhcCSYDhy2o84cvwiZn3TH10+aoKUFD36DJuDG3ceY/zQXujzSSvjh15yCkjYYUGP/Di++wf7rZEHR4j8qhPo6HBh5YnfLAVXpkoeRCJnLHlY2AnsinssKDvLsz68jlfFBUlC0zq1aLRpnSybS/ynL//CP4mBwpy/Fm2BFi4lbQKMvECuXkMjLs6YiKpejcMnnbkMQzZItMHpcwz+PQEkS0pIGxShGaBhfRYfvM/DGYuSEtKDEFmE0DInBatyKNueBwlFMxWSXJgkGTYIaVulr2NfXg1z6ab1Ax0q2j9h+jrwRW2zv02bxoZOugk9je5rCXO3gi8gKfknGZN++Ry6Gf2Fv3BFSiJxxjqLZk2JpVKJLOKZJU3Sbq4z48KjzngOjO5t+xJPQ1IWXrBvAR4jbSAow9gE+D03Jt+WeTVBFzfrCccFSxjExIh7tU8vFhXKO+fhhVxbt9dKKnO58qg3LWtIA4s2ihWN4oIoXPtB3AvkflB7vOPWQqq5kapuBvmiH4tSvo6x86PdNELOiXYq14XDAxY4clT8GwnpImGMWSlnpzHgJN7ANYeTPIW2Y3B6nHH8av1pLBgLw8XtWbd63zqoD4kpBtTdvsSrD7rbM6SsfanXMdBN7WuUb5CtUBNJoxZYNM/xkzT+/kfcKyQvH8nPZ63cvE3yY9F4bSbEX61C6jtEw4YsCHGf3ULee5YsZxAtLVRRgcenPR13TzCsect2GnckObe6fcw6ZTVog74KgZXdu1WZPy8hoBBYEmufPHcdg8YtglrFoEnDmnj2IhQPnrxA4UIeOLTpu9RcV1IxeGfVrlERG5Yal+LNS5vInrWGz58E1aXjwhDJHw+CvsXH9gyp9HUgAk0Df8eDlFfCDHNi2+DR7yXemrFQQR49unGyuHuPCD+FHa8fCnNIqx5as1RyGF6znjZ6ESP9SbgKCVuxVMhL59G/KVy+Zv7t0s2NR4tmPGrXsnxMS+eWo13QSRrPDtMg1enMiXdTFr4teJBwM4MEHmdSqxwahHgHEC+BrBDdpN5CpVIyX+K3m8AVSiuk4ayimzkAdHCAoF7i1DXgipcyqy799D5084YIv3G+FZA4YYXVS4u8RSP4LPBKEg4lHaR0Gx7EtuaE5INbLsnjRCptDhlk/QHlZEIQeoQYh0uWUuXHqZJdQJvLMJ/BKvf8QePyFfEae7cBh9atsmbPWQ0+gHNTGLASYrv61yzyl7KdhLBFBzn6hF+hcX+rJJytEod3+jsO92UraJCQboP8bxALLwdVen36J4XAf0RyjlwTUUU4bNsp/s20opwcmGY0hilhSPLX2Ut+mub6qjaQhXtZx+9F9YHfoN7/q7BcdZfP8Krlp46G0OLxtevngzl3VGxPM0iYuQ68p2UVIkgFPqkXdtvWHOrbmAczMYlKDSlML8+mV2EOHdrzKOXjeLtlBODpszT+PGL8rvO/rzkQ/Rwtps8AUgW6rhNXb1QILEfvCGV8BQERAYXAMtkNMxdvwLa9YhlgQlqtmDsSdf0qv7Vvpny3FrsPnsDQ/p0xuG9HZV/ZgEDojk3Q7Fgp9GT9GyNpwFQbRlK6OBoBPc+hzNMNkL62fLa5H1T69LMVy/HCMSfqEpa/uiEs75sCtTC8QE2rlktIp5/Xvp1Iteo7PLp/Yv1BnUxOKhiSBMQv0qn4R6oMkfWXLJG9L6DmgCLeOgEHKYRdMk/Cqd15lG7Lw8svzdqPfqcRclZsW7o9B28bQ1ysMhwAl2+6goqNFrolzN8O3r2gtcNkaXvTHCsZeZbS965Ct2SsoB9X0Q+JI7+3Wd/kaArBZ4CQi7SQxJ8cikkYkZSUlE7w7DkpaCAe4n1K8hjQ3/rrYk3MbUyLPP+W7osLN0K3fBWsWhPxUtguIRZsJdWsmtSOxvc2M4i4lnmyfDumyJKuz/6k8ULiZeLdmENpM0n/5VLmu0WMkSfKmJEs3PM75p4Z+C+Np4eMqysyNXms/kXc++S+Pfgr6/e+rXiQhOsk8bpBPKtxqGRnvreHOxiEXhT3IrEfsaOjRX14K9R7xHywqva9EPPR546e1qLxmfvXoF08xqhtSts+SGnX16L+5pKYTxjL2l2NmHw8+H0fbZRfSqoQqXrcqnn2VD1OSKCw8AfayOO8Tm0OHdo6fi8RDI78TeHUf+K1SYrrvP9e1l2bFm0MSSOFwLIWMaW9goDtCCgElhnszly8hYvX78HNVYfWTevBu1hhswiv23oIMa/j0atzc3h5FrDdCnm458tLV6GbP1RAgHfLj4QFGVfsysNwZevSLyWFoUPwAUEHj9fu+GR3t0x1qlKFQ+cOPHRa2w4lq1/dwoyoC8I8n+evjNmeDTKd19CAJJj/ZT2FiAhjsobo1bOr/S9iV6/ROHyUeiss0TA/8fD6sAUPkqjV2YRU5Hq0i0ZcOiRcPh8e5T/m8PRPUpVMPBBV7vt/9q4Duolji97dldzANGNTbIzpvXdC7zX0Tgg1lNBLSAKh9xoChJBAKIEQIBB6h9B77x1jA6YYjAu2JWt3/xk50qxk2d5Vs/nonfPPD9LMvDdvRuuZu+/dJyBbCdt9J8cfniNbm6R8xC3YBtHTNhJ/OXptaeO+5Htwt+ie1QyZCb54RYtDctdOw/2Xicbv+NLVoBk4xRb1+r4iD7y7nVjBMFsJIFcKvD4PH7FYu57+PggXS4/uytf3m7ensT6aEu4bJpGby4CzedqDUxCFRS5PM+ea8q58M4pHRjMCepsdZacBzNNs3bOIqPBd+r1sJTftu2tY/b4xSMH2PPwqOe7ZNWWGCjpJFtYP3+nsln5uPseXZxk8llSQy1FZRI7GAgiIZhBPTxEEmHCW3FnFmTxb87USUvytyrEr7CSLJzvpGpIKkqSSpKNFdXgr3P6mLyRVTTsg6vOvHK029fF5Hp4Te4J5+9LYVvTJifhJKyGq5JG77djF4qKEKsFe5weDQaQS58HDDDSapCn+ZE82aSSiXBnlz+TUnZN8i70HWJyRvLgi1AgjSHqrE9JRiVXm0V9yCfNtmbMtfV0Ali3ec/V1eUCZB1wAljJ/uVrb2QMvXsfAc/jnYHRa48hx09dDTOcpQnZ2w0cx3Nroe/ju7RmjrUFP86H+sfrGf5PqTXExauzYm/SgnCWLiK6drEsp/OfDYwx+c9yop0WGICz3rSPLZ+QSTKoNhpuBVwULCOjWRbAbx4Q2ATh6nMGZMxx4C2dMcvCrXVNEdcJrYXonlzUPRzcikVhPdjHQxVrmx2JUACF3NoitHC1K5uM1pBmgo/mO+kIPanmXDiV67NnWbeU0qC7S1GhN3/HgK1gmMycpLSS1xSB85frQ9PrWnuakOtbN2yw2/U0vvMWLCvoUYKXSOmwPLmheW+xmTRTWL79x+khHg7RtzaNsaceBKUrnK23Paxicm2D64y47nIdXrvRpb3JzvTyXQ3w49XnpwTwIkO0IIRUcJ041jeCdMkE5p5Bc297eYHFvnSTaqZSAwt0ETJ6ugiDZ7j98rwPhInKGmKeelhslgBTWsEWinzC4IUkJJnxa5JntaFEd2wG3vxYb1agbtEZkO5oe7Wj9yY2v3v0H1LvWmnytGTEPfGF5kdwEYJ05V4UESdq9I4oNfIhlsHsvi5u3LP8dJpGxbVqJyO5j2/6Qsw6EL3TRYs7kd1GvroA6TojkM9h35SqJTqPP1DKlRLRr4/h9LMc/ltq4ACxrPefq5/KAcg+4ACyJz+4+DIGXpwcC/eXxqxCS91MXbiKHb1YUK2SZ30T5knxaPV68jYPH/BFgH940Tlzb+3voKtX9tBzxEcx2bPhprIuh0RUVrlRA2Rvl9JbXqC6gUQMB5A/4g8cilq5IAIl8kgohOW/SUAAhyVUiJ+PD0OnlfmOXKh45sDVn01SH0MQz+G0Vi9eSMsykU74gAT26CQ4BkiLeM/pqhXeTqfhHgLymjUQUK6rMB6lO1g4NBC0QeogB4btKTapM4kFIwZ0hXgMbmqiJXXbQGWpt0kGqXJFqVwbRdh8J3WeW96z5pU9XqyW0XYbapF9p5yQXhdIi2rVWflEo9HQdYqVIp8QQa6KwDh5mceIUBRwIeEVArPQqd1aRSEVqb56GIvI0SL/2WvJjEgLwKTw4K6NnU1sne1a/TE0X+T7yIYtbv9H1yVxQQIl+Asy5jQYP1MHPV86ItrUxr+6qziii0g+27xc+nsG5iabP8eqzHQcMGrxgXuFPVbc5ojoOt81JNvZm3obBY2IfMDxFn/hK9aHpLf8lwfWbDP6WVOHz8hQxdjSfYtEXW8x+GsJgy7akfJ1kTJYFPqvOo24tESoHgqwb/2ZxSxKJSSLIRw7lHarT3Gek+vN6CR8fOKV6pQAAIABJREFUKeJBinmkV3EBWOl1ZVx2/T96wAVgSVa1RJ2eqFq+OFYu+EbWWouiiIpN+iMgty+2r5ouq4+rkakHCICl/mcF1Ado5SpdnVbQdqJphS6fpQ8PNHuxE9e0b43GNDrcGHme50H+fAK+7J5Ywc/wB/zhs3j8tZlBsIVy0YUKCujYVoS7hWpolmZ6PyESdZ//Y/yqgCoTjgekXJpbqwVWruYQ9tIURCPg1RddBYcfwkjp5x27kkZ+GSZBqmx93kJ0ChGq0t2jecfg0TYGpLKaJWFVIqpOd9IhMkELr6HNqRkqNWIXU2BI6dyc1V695VeoD202qkto1x8JDdpbVK/avwFu236nbRt1QkKbvs4yVa+HEAmTqlgGqVxJQIumykDW13wcykkqEHozakSLppUCFvrWQMcMBWXP7XEwg9Vr6UWcpK6Qi2N6lVfnSUquxN5cQJnhjgcO7OWPD2HAtR/prdgtcyJ3mqMk/C2Dn5ZSf2XzETH8a8fpi3nG4Ppiyfr4A2WG6rBqLYcnwc6vePnsSGJBDYNkLyOisJ0u6JdmcdBE0DmRfZhBHle51cvNnTsI99VzjP1VNRshqivl97N6YBs6ui8YDe7BNeMIJP08fspaiBkzyR51zToOjx5TX35WTUDjhsqej7KV/deQ54FjJxicOGk5qjtTJhGtWoooVMD+dpCoVxL9KpU2rXiUK+Ocl1YGvea8Y/65RfTv67jng9I1Mm/vArBs9aCrv8sD8j3gArAkvlIKYJGuDTuPxvvIaFzYu1y+110tjR4gABZ3/Qzcl1HidiGwMOK/W+ryUjrygAAR+YL/gE5C4d55cxfkdvPC4P6CEYwy/AEn60rSQ46d5PDvUUb/31Ihhy+SUphbRnrNOz4epUL/MnbPxLrhTmDXZL1Dwvx/X8vhuRmvU2AeET2/cN4bRJKSQngtDh9lQKLBzIW8SSUVdRrUlQ/mOXNLEADr0T+MySWI6PfKKaLsCOccIpm4DyAcWAYhlw/CgZXeRb1nHdQ7aTWuhObdkdDiS4tmu23/Hap9G4zfaT/vBV3T5Pe3I+Z+/CSLQ0foRdoQUalE14m4MHR+RSMlq3vmQHF1NqyIumMcRmkUFknHnTZDZZKWO6i/DjlzKLHMeW1JCu75yaYXv/Lf8vDI6tyLn7UzDr/O4P56an+WQgKK97X/BdlgX+gzkuJN9Tn6gkrA+UuzqT73bCIqjOWxdTuHqxICfnsUH5GzBiQajESFGaRgewF+lezj77trWZDKpAYp1FGAr4MruKkuHoXbSvoyl6tWF9E90q5CN3f+MNxXzTJZCm3XYdDVbCFnefRtoqMZzF1o+pse+rXglDQ+op9UPfxnOwsSlWVJCBdXy6b25dj89XcOz55Rfb6+IoYMdM7ffOkc34YzWPQz9X3WrCJGDHG+HXI3iwvAkuspVzuXB2z3gAvAkvhQKYCl1SagSotBIJFYVw+usH01PsERCNDBxETBc0w7OnuGQdyiXRDTOc/Np7RclyPfo2UEBQ7ctG7o/XcPfNWXB6kOZhApgGX47Gkog42b2KQphSzQoJ6IGtVTPpCQ0fMEr4b0Cvg0bw+omKQRQoSrYvUfHEhVNan4+4vo3YN3GDlwSnuB8HARctZLV9gkQB7pRwha69cV9WAWiWJLV8IDz09yeHYI4LWJxmUtKqBYL/tcslKbKxMVAc+xtFCA6J0FcXNoZFNq/dPqe9W/2+C2iYLwunptoO0wyKI5bhuXQHV0u/E7bcevoatLQTtnzIGAVwTEMkj9OgJq11K2xiujb2PCW1qBsHeWohjqXQZVQv+GBvQ3Pt/nM3T2ll+R8I8/OTx4SH8YjRsI+CwFQnpn+CslHTd/4RD1RFIBrpmA3LWV+TKt5hBygMWzw3QfkEqjpOKoo4SsK1lfgxTIL+LL7o67oCbEAhcm0wgzlSdQeZIOR46yOHqczrtWDQEN6jlu3mS+pMjC2R84iDzdK+XH8PDIbh+wM+Qgi2eH6Jxy1RSQz4HVJMmcuKun4L58knE9uUq1EN37B0dtnxTHZWJj4DGhB5gP0cZ2QmAhxH+7FEr+0B47weKwpCpnQG5Rf+5xtpA0xr37WYvFYtzcRP1Zqkol288Qt+6w2LjZ9GzVu4eAoCDH/h4s+TM2Fpg1j/5e3d2Acd+m34hWF4Dl7F+FS9+n7AEXgCVZfSUA1ofYeExf9Ae27z+FAnlzY8eaGZ/yPrJ67gTAIuI58Uswr18Yx4kfMQ+CTIJNq5W7OsrygMADQ/Y9wbYSlJTa/3kA1mRrBPL2TyqWACzyfWwck2xKYYH8Ajq2S7lMdIXQjXjJJ+4VIucC2iNAldFENwm5J5XUnpilLZKy6H168nBLY97vN68ZbN/FIkTyZlM6AfKWs1ULASRSLL1JQgyD4D0MCNl7zmoC8rd2zmGWffcaHuO60QtINj/ET1+f3tyTxB7VmQNwWzvX+LmuWmNoe5iWcDd86bZmLlRnDxjbanuMga5aI6fOcfc+FufO00tL08YCSMUnJTLm7Wn8KalAOMevKrp5FcWkd+fxW9Rt41BKo7BOn2Gx76AkSqWAiB7dnH+BlOuLFydYBO+i9noHiSiVBtELcu2Vtrv3B4u3N6ntBdryyFHFcc+jGzcZbJZwC5UoLqBTe2X7Tsk8SSTwmW+lxEEiqs/mcfkKg207KZBWuqSI9m0du8ciHzO4tZzqtBf/lcEfZB3JehokUwERJb9y7Jy4G+fg/vN4o062bFXE9J+qZIns1tZt/Y9QnaRVkwl5lOb75eD9gxTpWLiIAyE0N0iLZgIqV3TcHk3JuHgNg0OHGVy4ZPllGHmZ2KaVvMh2S3rIWe/HpRzev6fzLVxIQPcuaTNfS0UeJv+gU4I/KlprWxu7ACxbPejq7/KAfA980gDW+q2H8Oc/h4zeCg59CQ93N+T0y5aiB3U6Hi9fv4OO3JgBjBrQEb07N5PvdVdLowcMAJbb6jlQnaPkzNrWvaFr3MXlqXTggR27WSzFedwsQYn2m70rjd/Kl09iXXIAFmlIDiPHT3E48m/SlEJCENq1o4CAAMuXpcYvduKmhH9rZ67mKO9OWXbJT5GQfT58ZPrmkIBX5O2hXL4tZ7j75m0G+w+yiJQciqV6CSjYtKEIQvie3oRwyCREM8hqBlw6yk7m1TN4TuplHF7w80f85NWOUme3cc0jEfiyNaDpP9Hi+CRigbQ3iOarieDL1bCbLXIGIpWeCJG7QVq14FGhvLL993nYblzSvDGOsT1PU1TkciCC16BC6Caro7BevQaW/kJBB44Fxn+nc0gRBjm+Sq0N4R0i/ENSIcTcBKBI73JlPou41/QZWmoQD++8jrP7/CUWu3ZTfRXLC/jcwVFC5yZx4OPoXq8ymUfwC4DwHBkkMFBE356OBXtCDzAIPUx1+lUQUNCKyp/J7SnzdEmVl4jKEx07J+7OJbj/RMnRuZIVEf31TKdvezbkPjxmmlY/TGjQAQntvlJkS0gIgxWr6RqRtP9vR/PwkMnfqUiZgsaEo4qkFb56nTRkm0Rx66kJ6ovwUFh84cw5Vh/lZRAy1tCvefhkc9wzILVpk+qPcfTdJb4ZqUNG03eXqQ3htO9dAJbTXO1S5PIAPmkA6/TFm1i6ahuu3X6kTwO0Rto1r4WJI3uCI6dqlyj2gAHAUp3YBbc/Fxn786WqQjMobd7cKZ7E/3GHy9dYbNvOYk+j3QjLGWac6TLf2vg8Q74kM08JwDI0JtwKf5KUwhjTwxc5LNWrI6JWjaTVfb54dQhH4p4Z9a3yq49GXnn0/yY8Oes3JAWv/HxF9OuVvsArwwRIquOJ0xxOnGRA/ttcOA6oUY1HrZpimqQ9ppctzTx/DM9p/Y3mCP75ED/+1/RiXrJ2sPeuwuNHSl7MFykHzXBKbizt6L5oLLi7l40faYbOAl+sglPnaF5xqmNbHiVLKvubaF6B8F7BrsioSwx7tDUKa/Y8DqTEvEEIl13+fMrsc6ZDry5SIZYGFCN/Gx45q6Zfe4lvRAE48z0HiBJwZ4oOnLvjPGcP7jWl1pmTm5cfyyNGhAmZfObMIkYNcyzYc2MZh2gJcXzBjjz8Kth3j5wdz0FIoOtZ4Xse7pntq0Pqf/bBDXgsGGn8iCtSGtHD5ytdItvaCzzcp/cH9+Ip/buRJTs0U1ZDVCvbzNt3cbh0mfqvZAkRHds5dl/InTy5spy7wOLwEQaa/9L7pX0zZBBBImlJNKEcIdFdC39iQSgPDEKAMMIHl5ayaAmHt++oTYMH6OAnr1C80812AVhOd7lL4SfsgU8awDKs+/vIGGzbfxJzf/4LQXlyomubBiluCZZlkCVTRpQpXgC5c2b/hLeP7VM3AFjMs0fwnD7AOKCYwRtx87barsA1gtUeIG/5fl3JgZCR/9F5LbRuWuNYJ/zbIr86aRUfOQAWGYQckjYkU6WQcC107iCClKo2yIjwk9gU89D47zk+1dDNu4jetg2bWJByy1LJ7iOgX++U0xKtdowdO0ZFMdh3gAWJyrIkmbxFNGooonTJtD1E2nHKioZin96Hxyz6Jv1jKfDAPr0Hj1m0kqqQt3Ai94oF8Zg9GGzwPeM38WMXQwgqqshPtjY255nq3oVH4ULyLj5E9wv+AyqFUm6ybJw7HhXsjlhN4mXPUhTWPJ/q6OJdWJbpW7ZxuHad/kasIZmXpchOjUIPsQiVpD1mKSKieO/0cfFNboqxr4CrCyQVCL1FVBzvWJsPHGJx8jR9dhPeKcI/5UgxBxfLDNHBIzcweZo0tRBwZKqSoEvkv4JA93TF8Tq4edt35uYgWdGePLIVk/+7VmoN++QOPOYMNXZjCxRHzGj6YlLpeNa0Vx/cBPXW30y6aobMBF+8oqLhyIslEv1DisIY5IuuPAoVdJz/FBn4X2PyIpCkgN9K5gxBKh63bSMgayrAJYkKP3WG/hbVKmD0CF7P0ZmW8tsqDqQaoUF6f8kjyIFRobbM1QVg2eI9V1+XB5R5wAVgSfzVpvd4ZMuSCSsXfKPMi67WVnvAAGARJIJUG2M0NFY4btIqiDkCrB7b1dF6D8R8YPDz8sQoqeiMUdjUdpNxME9GhYd5u1scXC6ARTqTN4gnT3H6Kn0EiJJKxgwiOrQTke8/4tCZEZewJPKGscmYLGUxLHNZPdno7bum4FW2rCL69RGQwSttD15KvE9I5wk/1ps3loEsQkJP+LFy5vh45qRk/sm1ZR/ehMf8Ecav+YIloRm10B5DO3QM5vVzeE7sadQh+AUgfvIqizo9JvUG+yrU+F38hBUQcuV1qH3mg5M0GZIuY+0l4Vjcc3R9RVPAa2XMhe3+zYwAFhl3csQF/Bp5y6hDCRfWtRsMtvxDU3ly5QQGfpV+yXw/hAHXfpQAIoyIypN4qDycuqyKlJlXIMxcUESJfo4FsHbsYnHxMn1+t2guoLKDK+UR3inCP2WQ4v14ZCkoYs4CFWJiqMtGDuORxUHRSu/vMbgtqb5IiNsJgbu95fF2Fi8lAGFgYwEBDiSnZ0MfwmPGQOM02KBCiBn7s72nlex4bMQbuE/sCSaBvmzjy1SHZsBkxTaYP3MIzcGYEUmjwxUP7KAOj5+w2LaTMeGvMqgiCSK1a4mo+RlvMfWacHwtWpz4stIgzgCT5biCRNffe0CfEZ07Cihe1LEgtxy7LLVxAVjWes7Vz+UB5R5wAVgSn5GUwichL9GtbcoRWMrd7OqRnAeMABag504gHAoGSQsyY9dKAYTIk1xonz1PPOQHBz7B4TqHja6p7OGHf3Ja5nxTAmAZBkwppbDWZzzq1hGxMua2Pg3JID29i6Lsseq4ISEcJt8R3qivegsgh82PTQigRyoVEpJWQnpvLiTFslwZQR+RJY1O+9jmqcReklpHUuwMklIqnpJxHd2WiX4Pz286GNWImbIibjYFgaX6Pb/rDOb9W+NHcTM3QMzi3MjepctVePWKWjWgrw65c8v3EgGmCEBlkAG+JTAzW1UTAMtSFNZcn+roKiMKiwDqc+ab8kp9/03ac9Gk5KFLMzlopGTInXlkL5d+n0skYoxEjhkkV3UB+Vo59qK4cQuHW7fos65DWx6lZKY8yd+dpi3NieqLdBfgU0rA8hUcnr+wHsRVYs/TPSyeH6O+zlFZQIF29vf1q/MMHm2hvxuf0gKKdLO/HsPc2bBgeEzpZ3QFExCED+NMo6GU+ElpW/MzJKlkrZm8GkJWypcpd0xSzfixpJpozc8ENKzvON/JtSuldoQL9OhxRk9PQM5x5pI1i4i2rQWQqCypbNrK4eZNuvfJ+WnkUB4q06BEe5ioeAxzfsbPm/OoaOdUW8VGJdPBBWDZy5OucVweSN0DLgArdR+5WjjQAwTAunuPRdEiAtS71kK9+w+jNl2NZtB2o9EXDjTDNbTEAzt3s/oqNwa5VPYSrpa+Yvx370zFMDVbFYs+swbAIgORlMLNW5kkJOzku7x5RGT4/CFGRdMqiOUig1B+uynQTELk+/QSkClT+r0kytlomnhGH5V2VlIVTtrPTQ3UqS2iRnX7v7GX6mHi46C6+C/YMweQ0KYPhIKl5Jhv1zbsjbPw+JmWYdeVqgLtoGl21eGQwQQBXl83pkOr3RD7k6QilkSp5/BWYDSxxk/iFmyD6JnBIWYlN+iPizm8i6AXmGGDlRH3jn57ChuiHxiHX5ynBrp7FTEBsMiXU95dwPIo66Kwlv7CmZAWd2jHo1SJ9PtbD97N4MVxCXhQSgABS9Kr3FvH4e0NugcKtBWQQ2ElSqVzW7OOxaPH9G9Nj24CChZwrI8ebmbx+qKkqmV7AX6VBPy1yTSat30bAaVLOcaWa4s5fJBUoy3cjUf20vbfy6ToxvXFdA96ZBdQfoxj5kTW3jzylMnpjw8TnVN0g7t6Eu7LTSOtEtr1R0KD9kq3JaKiGcxbaAqYDx/MI1sakpkrmQR5lpNorGCzisyGMci+btpY1EepE9CWgLdSaddaQJnSjtsnSuay/yCDU2eofY3qi6jxmWPPPkrsk7Z1AVjWes7Vz+UB5R5wAVjKfebqYUcPTJyt1f8B7dZZQPGEc3Bf8r1x9I+FsNmO7lA8VLSQgBkRFxGSEI1nfAxUYHHYv7XicQwdLl9lsW2HaUreyeb7cc+Hpjgt8K2BThkKWtRhLYBlGOzkaQ4HDiWNPnqX9wX+qb3HqDPnq5xovr+F8d+EK6pvLyFdVu6zdjHehLPYsw8mFzzpWOQwTQ6hRQrZ8aApCHpCce7MAXDXThlTMRLafoWEhjSiyNo5Ke3HXTkJ91/ppSSlan5Kx3Z0e68hzQAdJVCJXbofpJS7uXgNbGjyUewymornaBsN48+ez+HDB/q7+2YUD5LGK1dahu3GZUkFwiOFP0c5xjcJgBUuxKNMyF8mw87L/hm6ZCyUqirzi0z5MgJaOzhCKFWjUmgQ/ZTBjZ8lFczUQNVp6Tft8coCDnGvJITVA3hkcjBR/i8rOLyQRD3178ODpEs7UsyBxaDmAnLXEvRchKfP0t9nw3oiataw/0WZ1zA4N8GsSuUEHmoFvzcl/jk91jSMJncdHkFNHeNj9t1reIzrZjSP8fHDh2nrlZhrVVsmQQP38V+AjYow9udz54Vm3HKANfW1HAUnTnI4eIT+FgIDRPRN5xx2luZ1/QapKsiYFMAwtCOVmQkYRLgFCYWBQUjl5oFf2X/fy/G7pTbmZ8LPqvFo3NAx+9daGw39XACWrR509Xd5QL4HXACWma94XsD2/Sex/+gFPHr6Ah8+xEGQUaHw3O5l8r3uamn0QN9hiRc8Ej0zsn8MPEd8buKduIU7IHp4ujyWjAcEiMj/9A8kkBJS/wnhpyI8VUrl+XMGy1eaHvYIMPRnu7/wSvhgHG5/rpYo6e5jcXhbASwyKEkpXL+RNblQR2SOwNZWW4w6M0VlRodtiYAKuWgTzisSHv//KHfusdi3jwHhqbAkhQoKaNZEtKnUNeFg4k7therMATAxkUnU6MrVgvYrGgnlLD9zF47A/Xdahl1XqR60vb9zlnqb9JAUQpJKaJC4uX9DzJjZZEwSeUUisAwiunsi7scdNum1pvPUmaZkxeO/04FE+skV8wqEr8r0hFs8lwTAIuNNfXcRv0TdNA4tlwuLROqQiB2DeHsnctKkVyHHhgtTOOgk1ROLfckja/H095yyVIGw0kQd1F6O9e6PSzi8k1QYG/Y1Dx8fx/on9DCL0AN0HwXUFRDYRMDZCyz27KWfVywv4PMWdnw58J8rI+6wuLOa6vHKAZQd6Thg88p8DnGvTf92+NcRkLep/edmnjqNzFkRO8ty6rQ9d5Z68zKoj5gW/dGMXQI+qIhVaswjUlu3FFC+nP39ZZVxCjvFxzM4dITBeUnUYUpDpDeSdEKrsH0n/b2ULSOgbTp9ceECsBRuTldzlwds8IALwJI4TxBEfP39jzh+9ppil9466pwwacWG2djhj78PYN6yjfDNngWHNqZeDvmfvSfw965jeBj8HDzPI29ATrRuUkNf2ZEjTJJmYgCwyMf164lo/G9vsC+Cja2sqR5j45Q/uu5NwnbihoZy6OzI1QwV3JXVGSYcM8t+ZREdbXrQ7dYvDvU09A2qimHxKLA7yP9bEnsAWGRcklK4ZRuD+/+Rd8a7xWN953VGleoENXps+FIfAk8irxx96UkPm+L4SQ7HjjNISOauQ95M1qkJkDercoT5EAPuwmE9aMWG3E+xi5DND/HTHf8m3dwI1el9cPuDPnd01RpD22O0nOmleRuPiT3Bvn5utCNu8hqIfqbEUoT7inBgGUTM7IO4WaYRSs6YyIQppoD3lAnyL9QvdB9Q6RmtQJiVdce7cr3xPkZrEcCyxIVlqCqa0lzJvp86w9TOIYME+GZPvxfLx1tZvDxHn5V+lUQUbJ/+QDcCcBCgwyCqDEBlBXvA2j06ay5nwvenNPLPGr0vz7B4vE3CP1VVQIE2AsiLgg0b6efkxcAXXe2/t4J3snhx0nlcY5EPGdxexULUOQHEio2G16i2xmVhMnjjg4OrSXPPg+E+oz+kDOQJtVogocswa7aHvuIdqXxnEI4Dxo7m4eEu7++qVUqd0IlwmhIg6JUZmClVTag8unay/563ZXp37rL6StMGKVJY0GdspEdxAVjpcVVcNv2/esAFYElWdtOOfzF5wRr9J2VLFESd6mWRy88HrIW0D/MN0ay+ZU6gj3XjfIiNxw9zVuoj0YjkyuGTKoD13YzfsOPAKahVHMqVKgS1SoVrtx8h5kMcalQuhaUzh0NFTgMSkQJYhDByQu658DpHU8USWn6JhGaWK959rL61t90jw09hYwzln5npUw09vJW9eVyxijMJIyc2krdckYVDTaqLlXDLhgO5TaPkpPOxF4BlGJOUdSblnYms/GIFIDmDf72lF/p9yaTrC6y915pUhdx/iMG165YBRELu3qiBmOLbYu7GWXBnD0F1mXKKybGTkJATMnJnivr4Lqg30DLsulotoe1Cy7Q70xalutxnfQ3uKQUG48f9AiGggMkw7Ktn8JjUy/iZkDMP4if+rlSVTe21WmDaLAoMubmJGP+tfJDl37hn6P7qkNGGGl45caJYm2QBLNJw2ruLWGZFFJY5Z1KzpgKqVkqflxkyT/NqcyovEZUmpL9KZm9vsiDk5gbJnF9Eif7y94C1G9AW4NRaneFXGNz/i55DspcRUbgrj7BXDJYtp5/7+ooYMtD+PiDVKUmVSoMU7SEgWwnH7mE9iPU7C5F3LIjFaOPhOawlnZyHJ2IXOjai1Pw5K3pnQfzUNRDdrQsfNK+MWaqkgA5tHbs+1u5la/oRbk0SkaXVJo3odkYEpFKbn4YyWCkBFNNzOqcLwFK6uq72Lg9Y7wEXgCXx3RdDZuDyjfvo+HldTBz5pfVe/ch7PnzyHMMmLEZw6Ev07twMG3ccQSbvDCkCWAS4IgBW/sBc+HXeGOTyy6b3QmxcPIZPWIJTF25iSO+2GNDDFPwY8q1WH21jkFZZ96Pm7VnGf+uKV4R2CE0h+shd6xDzV0TdxkRJhb4vvItglk812bp27WGThJdXriigRTMBSyNvYEYErQzZKWMhLMj+WbJj2xvAIorIm0NCsLu88V+I9aKpjLs8O6BcDueSXct2qoMbEp8Qsv2wl5bTCnP4iWjZXEBgnsS3xmzIA3BnD0J17iCYWEmteAt2il4ZwVeqD/b2RbBvaASRZuAU8KXl7yt7uED971aoN9H07IT67ZDQfoA9hnb4GO6LvgF3lxY/0IycB75QGRO9XPA9uM8ebPyMDyoKzdjFDrdNqoCAonMW0It7hgwixo6Sf3FfHnkTUyIuGofsl60Yfs1XJ0UAy1IU1myfauieCvBuzodSuJCA7l3S7+WSpOadn8SB8B4ZpMRXPDIXSF/RHM8OswiRpNXlrCYgf2vH+jUhASCpqwbRv8D6Xn7kn7U/koh7DO78Tvd7lsIiivfh9eeQmXPp52oV8IOd7dHFAucnS6MIRVSeyENlHdaiyAVk3nfXOB7Eciann+r4Trht+MnED9o+30NXsa4i3xga63TArHmcCbjzZXcBBfI79rdglbE2dCLP/J17Gdy5Q0HrypUEtHBAWqkNZuq7Ei7QxT9TO32yiSBFRtKjuACs9LgqLpv+Xz3gArAkK1utxSBExcTi6JYf4euT5f91zVOcV/i7SDTt9g0SdDwmj+6FVo0/Q9kGfZDdJ+UUwta9xuPBk2dYv3S8PnpNKhGR0ajfYSTUahWObV0ED3c349fb9mtAABSD+CaEYGw4BQ/TihPmY1r80/Ev0eHlPqPJFdx9sSNXc1lTuHyNxbbtptE8Af4kLY/X800PfHMMOz48MY5Fqg+SKoTJiSMALKKLVOar+WgHnmeQpko2B5nrpyqEY4dEYh04zIAcSM0lA/8eLTPvR5nofVC/pGm5lvwlqlTgS1YFX60R+BKVAY6DesuvUB+iqWG6xl180V8TAAAgAElEQVSgbd3bqe5W7d8At200IimhcWcktO7jVBusVea+fBK4q6eM3TUDJoMvU91kOEKY775orPEzvkg5aIbPsValVf3ehjNYJCEbV3pBGBV+Cn9JIkAX5PoMI3KXThHAIoZOf3cRPyuMwgp7CSz7lQIAajXw/VgdLGSnW+ULR3S6v4FD+FUJSXINAflapq8L8f0/OYRfozbmbyUgZ3XH2hgZzWC+pNKbd0YRY0Y6/mIaHcLgxlIKVGXMI6L0fxfiKTNUICCGQb4drYOXHcGl8Oss7q+nf28z+ANlhjoetDPMJzkQK08DAXka2me9nQVgsVHv4D6hJxhNHH1+FioD8qLAWrl6ncHWbZK9QfbkiPQXMWnt/Mz7PXhE+KUYaOKBkcMEeHqmL2Cd2BsTA8xZQJ/5np7Ad2Oc95tR4msXgKXEW662Lg/Y5gEXgCXxX+n6veHupsaFvctt8+pH3pvwXhEQqlSx/BBFESXr9koxhfDFy3A07Dwagf5+2Lve8uVr5KSl+nTExdOHod5n5YweevE2Th+2T8L3DTL19efw5KON/44f/ytIRUKXWPZAlKBFsZA/jV8SAndC5J6aWCqfnDGjiEH9BWMFsprPtuKxLso41D85m6KyR45kh3YUgEUU9nh9CIdjnxl1/+5XD429AlOb5v/999oE4OhxBidPcVCJCSgRfwoV4vahqOYCWKR8KeHzFgZftZE+4krMkNHEV9zl43D/bSq9HBQpC83wuU71p3rXWqh3/2HUmdD8CyS06OFUG6xV5rZmLlRnDxi7a3p+A76KacVB89LvBOAiQJczhUTxLfuVXtqUVqFqGbYLlzXhRpP3BrVAE588qQJYlqKwSOQoiSBNSWbP40yqavXuySMoMP1dvAxzMAct1N4iKo13PFCjZA+Zp7U5I0rs9RsGS5ZJUvayCyCcZo6W+DcMLs+jej2yiyg/JnE9Fi/j8OYNPYsM7M8jVw777a1H/7B4Jal0SKofkiqIzpTkQKzAJjwC6to+V6+hzYEErXFKsYt2A270paW95uq2chpUF2kavMipET95JUSfXFarWP0Hi8dPKMBYpxaPenVs94nVBjmhIwFsn71g0vUzNC1Sja1xvQvAssZrrj4uD1jnAReAJfFb7bbD8CE2Dhf3/WqdN/8Pe+l4HmXq90kRwDp84jKG/vATWjSshtnj+lv0wprN+zFn6Qb069YCw/u1N7YhAJZ59bve78ahuOa0sY226zDoarb4P/Su/aZUKXQzXvA0ve6Ef1vkV2dKVgEhbf95OWsSuUMirvr25BEQkHhgixN1KPiUEqeTz1KrcOhIAMuc60vOZdd+Hk7fI3GP7yDh2AG4XToKNz7lFEEhiw90letDqNEMgq9/shMzL4kuqt0Q9+NO6EPznCTqbSuh3k9JzUkEGIkE+xjEbdNSqP7dRp9jnQZDV4dWHCRfcGcPwH0NBQV1VRpC2/Mbp07vSTCDVWvphT5voIg+PeUDLOYVCJ8U6Y6gjN6pAlhkkiQ9maQpG0RORcLNWzjcuEVBhlo1BTSo61wQQMkC8QnA+YmcCf9QmSE6ZAhQMorj2pI0x7PjTe2rNF4HtbfjdJKRn4YwWLma7rs8eUT06yV/31lrXUI0cGGaJHVRQlj/x58cHjyke6tLRwHFitpvb12eyyE+nI5frBePrEWdD5Do0yhJJUTBNHLXHiCW58jWYOLoWSRuwTaInvZN9efuX4P7QtNiHgktvkRC89Rf3CW3b0gBm7mSiEDSbsQwXl8h2yVp64EZs1WI11Ab7B0Zaa/ZuQAse3nSNY7LA6l7wAVgSXw0ZPxPOHLyMvaun41A/+SjTFJ36/9PCzkA1uqN+zB32V/o/0VLDO3TzuLkD524hGE/LEbjOpWwYNLXxjYEwCLy91YO128mHqbqxaxHs+gVxja6qo2g/XLM/49THTCTL18dwqE4Gp20wq8umnrltahJEABC2k54lKTSsjmPShXoYe2i9jVavaCE+vlUmXAygFYYsjS4IwGsWe8uYXEUveyOyVoOwzObcgo5wLXpdkj2/Vs9AEL+R8jAUxIt44ab7jVwyasp4vOXw+ctAV+/1A/mnqPbgflAI/Dif/gNQu4gp/lE/fcyqA/T8uja9gOhq5/yHnSacakoUu9cA/UeCgBrP+8JXdNuJr1UR7fDbeMS+qyr0wraTpQTyxlzuXefwXoJqXWhgiK+6CoPSEhagdANz4p9CS8PlSwA652gQZXQzYgVaUrI3OzV0TVj4WSnfuUqg392UODDP7eI/n3l2esMf1rScWcVi4i7FPgNqC8gsJH9gBFb5hX3hsEVSUQS6yai6lTH+9N83xUuJKJ7F8frJanXZ7415aGqPjtRrzmBd9PGAqpVsc86aaOBixLgDKyIKpN4cO62rJ71fd/dZnCXEPfbGcTy/KYDmOj3RsPi5mwGIVa3lzA6LTwm9QHz9qVxSCFHAOJ/WKFPfVciSyJvYHDmUvoux46zOHyU/kaVAvlK9LraKvPAwsUcIiLoeXXYIB4+2VM/vyjTYntrF4Bluw9dI7g8INcDLgBL4ilCNP7VmHno3KoefhjxcaSpyF1oa9vJAbCW/P4Plq3djtEDOqFX56YWVZ27cge9R8xG1QrFsXI+jTCIjk3Qt4+KZjBtrghC7JpfcxWD3o2g4+TMA27WWmun8En0m/rmIuaGXzXO9ZvsZTHet6LFuW/ZDpw8a/pV5QpAFxoYp//yt/d3MCqMcvi08c6HNQH1U/Snt5da/71hXe3p/GURtzD25RnjkP2yFMP8XMkTyttTd7oZS6uBePE4hBN7gbtXAXIbS0GCPUrhgntjXPWsCw1DyVwYBqhaGWjRGPDyTH4AYfEEiJdOGBuwvceAqdXMae4Q1i6EeIRWsWJ6DAdbzzSKyWnGKFQk7t0IYeMvxl5M085gO5lGqAq71kP8m4L1bPNuYDr0VajJtuZXrgFraZAbypYS8WVXy8UBzDUdjHmGdqGUf6+mVy4cLvQ51CoW8VoeCbrUL/+TX1/A/LfXjEPnVnnhbqGuyU4qOobBhOmm+37GRMDTwzY/OLL387PATZrljYy5gM++c6RG+WO/vg5coVsQWfIDVYbL729ty4uXgfWUYg8VygLdO1k7mrJ+h0YDPM1yQ/25gModOPgvsIdm/aJ2TaC1nR53Ly4AN2g2NDIHAVVHKrPb3q1f3wCurgRIFJ5UCrUE8ptmO8tWzY/oCES8MbbnFm4CstqPq5I8L8lzUyrc+CVAwRKybSQN+z0/io1RDzHZrxJG+JTB1Dki3klAks7tgSoVFA3pauwgDyxcCoRI3tH1GqDBFs9rmOxX2UEarRvWcP61rrerl8sDLg8o8YALwDLzFklzI+luPTs1Qd+uzZE1s4Pj6JWsVhq0lQNgzf9lE37/aw++G9IN3dtZPvVcufkA3QdPR7mShbBuyTiLM9lzUMDWXTzUohYzXjYBA3pJybxyNxjvzGnggY9D5eaIR+j4mJ68W2bOix0Fk568T54TsPpP07fcgQEMxo1UJXl52ffpv1gZftfogBn+VfBdzvJp5pC/3j1ElycHjfrbZsmHLQWapJk9TlMsitDduQrt0b3Qnv0XiKektZZsYH1zwq12E7jVbYG4DDmxZSePE2cEi1gXAa8+b8qhXk3WYmagZts6xP1JQRi3Bp/D6yvnpbjFLpsJ7b+7jdP0Gvgd3OrKK1DgtPVJRpH20A7E/ko5Ad0atILXV6aRpMS3xMcG8ejaHx6tv3Cq6WRvrPmLPhNqVGHRs6u8SIZ5r65izDMKKg/yLYGlgbUU2R/JaxFwfQ1iBBqFtSywFgb4Jn8h/WFGAsJeUTUDenKoWM55qa2KJkiKUMSI2DnclHi46WwVMvjIAwqV6lPS/u4eATe30vXPX5tF+S/krb8SPeZtDx8XsGEL1Vu3BotuHRyvl9ixe0wC4iKoRc3nqOGZDThzQcDKddSmCmUYDOwtjdayfsYXV/MIPkmRoqLNWZRs45z5pmT1i6sCTi/lITlu6ZuX6cSiUEPl9kUN7gjh9QujykyLN4HNkdt6x0l6Ci9CEDXyC0Cga+RWqwm8Bo+XPX6CKKDD4/3Y/j6xsIkbw2JXpk7YuJimOZKKmItmqiGpNyR7fFdD+3vgx190uHlHBBjgfoH7uFH9PN4jHr/mrY1+2YvbX6FrRJcHXB5I9x5wAViSJSIk44+evsC6LQcQGfUBHMeiQN7cyOGbzaRynqVV/XGKc9M+nLWz5ABYiiKwyhfHygVJI7AM85k6V8S7dwyGvRmAPLp7xmmyw6aBKfeJRdsoWOSHCZEo/5C+zs6jzoBbBU25gkKfAQuWmg6awQsYM4xB5kxJI3lqPdmGq/GUnHlrYBM0SIW4xZERWCdjX6LZ013GCVT1yIED+Voq8NJH1jT8FYQTuyGeOgCES27rFqZBqnWylWqBqdkETOEyAAmxksiLMIBE3j1+atkHOXxFtP2cReGCpvtAvHMFwmwaJsAE5Ac7baXTHCksnwbxzGGjPqb/OLDVGjhNvy2KxHNHISyjhOxMlbpgB04wGVJc+yOEI9vp/LoPBdugjS1qFfc9fprBPzvputeqLqJNS3nAyqAXx7Eu8r5R54Jc1THYr5SiCCzSedLrC1igIAqL2EvsNgiJJuzkXLcp9vP5n4CIh7Rb4VZAvpQDWhXrsKbD9T+AsAu0Z7G2QGAda0aS14cAj4+DgWs3RDx4RNewYV0RzRrJ23fyNCXf6tQsIIZiLKg+FvD2Bx4FA0skNXwCA4ARlPHAJrXHJgLxEtCs4teAT8r1CmzSp6Tzy6vAtVVIAmIVaQsEKdwL/HdfAmEhRvXcjNVAbst0BkpsJG35aV8DD2/Tbp4Zwc1dB2SU93IzTtCh87MD+PeDZPEBFIjNgTp/07NEpfJA1w5Krfv42gdro7H2/V1sinqECX4V0TGTaQXx9DKj9ZuAQ0/e42SVE3iVg56Fcqk8ca+QaVp+WtrsisBKS++7dH9qHnABWJIVL1Gnp9Xrf+voaqv7pueOcgCstZv3Y/bSDbI4sBrUrIBFU4cYp2zgwDJ88PARi7XrWbSO/Ak1Yv8xtiPEzYTA2SXJe4AQrhPidYPcDewGbzYxpe9DLIOlv5iStpPP+/biEZjHchqaf7Dpnr4e2Bk+bMp5Oo7kwHqYEIXazykfkhxOro9tvzCaWH1lJfbMAXCPbqZsPsOAL1wGfLXG4MvXhKhOnUzl1h0We/cx+pRdS1KksIBmTURkzZK4J5gEDTyHtaSpigyDuEU7Zemyh+/df50M7spJ41CaryaCL1fDHkM7fAzu1gW4L/neqIcvURmawdNN9Lqvng3u3CE6PwuVCh1t6LETHA7/KyFFr8GjQT15/CItwnbhiqQC4ZZcTdAkWx7ZHFiGub0XtKgcugkfJM+vlIo0PHjI4o8/acRVlswiRg5zPH+SLWvx4iSL4J3U5oyBIkp/nfY2X/tJhQ/P6cxK9OWRuZC89Zfjj9BQBk9DWTwNEREcwkATb/nZ07ihgM+qpZ5yKkdnam1uLucQ9ZjaYai6GBnJYP4iGnWUMYOIb0bZvkaadwwuzZZEM7GJPGOsfYK7UpuurO/DbzC4v54FRNP1CWrJI3cN+fvBY/oAsM8eGXXGjfsFYkABWTak1Eh1eh/c/phv0kTbbQR0NeTleMaIOnzx8gDOa15bVFP9XHUUu5cYzdO7h4CgIOfsRZsdY+UAhP9rZsQlk96ED+y7rOkrb5Kcab++chX7s1k+D03xqYw+3ukjCsvFgWXlZnR1c3nACg+4ACyJ0ybPtx6EmjjKevDLinVzWhc5ANaxM9cw6LuFsqoQ9u7cDKMGdDTabw5gkS/+2MAhw/V/0f39VHr5K1gamlGmhxenOeEjUdQybDcuayj3xNZcTVDFPSeSI21v0VRA5UqWD2l3EiLQ4DmNDPHjPHElT+oEJY4EsCIFLYqHUCKZjIwK9/JaX3Uo3SyrIIC7ewXc2f3grp4CIylBbslGwS8AfLVG4Ks2AqkoqFRI2ezjJxmcPM2B/Le5cCxQrRqPOrVEuKkBj2lfgX3+xNgsfsQ8CCTKywni9vN4qG6co7oHTYVQqqoTNNuugnt8G+5zh9FnWIES0Iz+0WRg92UTwF2nKXia/pPAl3VupOmBQyxOnqbASoN6AmrVkHd5K/x0nQnodCOwC/J7Z1QMYBGnzH53CT9JijSk9MzRJgCkMhV5thlk6Nc8svvIv2jbvsLKRtBGARenm5KHVxzHwy35YrHKFFjZ+sz3phUIE22yzo/keRJCwCoCWj0VEfqM1fNaypFWLXhUKG+dXjnjS9uQCnwRd+ieL9pDQLYSAngBmCwlWgcwcbwO5Jloi7y+wODh3xTAypxfRIn+tgNjtthkqa89QCyPWV+DfUqjMuPHLoEQZFuoGRMbA4/x3U2qG/L5i0Ez5idZLiBnh45h+3Az4V2y7VU6Fdpv7wB/tRdGDOHNg5hl6fmYGvV6dRgH4kKTmNzEKxBLfWvBg0l7dHVXbDAmvj2Pl3xssq7NyrrhXJ4OyMAkvqxNS3EBWGnpfZfuT80DLgDrU1txhfOVA2CFv4tE7bbDEOjvh73rKeeLVNXISUtBUjTnTRiIpvWqGL+yBGBFvGewamE4xr/ubGzHs27QLN4Ji0Q9Cuf0/9r8m/DTWB9DD45Tfaqgt3cx7N7L4twF0xN42TIC2rZK/pL6d8wjDAun5N0NPQOwOkfqqVuOBLDIuplHhT0O+gLuUM7TkR72APvmOdiTe6A6fxikomBKQsqQ6yrUgUCAq/z2edtIog32HWRx67bliIgMGUQ0biCi8o15UJ3aazQvoU1fJDRKHcy0h4/dF40Fd/eycSjNsNngi6YdD5uSObFhwfCY0s/YhVRvJFUcpeL+4xhw92jxhfjhcyAUKadEjc1tzZ8PKQHbUmXmFQh9WHdcD+yCLBnUVgFYSqOwfl/LIjiYPtdaNBNQuaI84M1mp1k5gHm0U/42AnJWTTub498yuDyHPj+VViAk0VQkqir4qYinIWySyrZy3OTmJoJUfGvUQEQOGZVR5YyZWpsHmzi8uUSfewU78PCrmAieLVjE4X0k/W74YB7ZstkGrD3YwOHNVTpmnoYC8jRIu3VPyT+2glju80eAe0ijZTSjFoIvWDK1JUnxe7e186A6s5+2YTnET1gBUn0wNQkX4vXg1b0EWhmR9Cnrlh33tO8RB/oWx/+FP+byTVC7ZvoDF1Obp9Lv6z7/B/cTIi12K+PmgzU5GsCXS6HCi1KFCtqH6KLxXfgZHI03TfVMboixWctjaObSCjQ4pqkLwHKMX12jujxgyQMuAMu1L1L0gBwAiwxACNoJUfv6peNRtoRpHn1EZDTqdxgJQRRx/J+fkCkjrYZmCcAi4x08wqDOlk7ILNCL/auBS+FdOvny6p/6Uq6Ovotxb2l5wc4ZC6H785r4Z7speJU7l4gB/VI+oE14dw4ro+4YXUoOB+SQkJo4GsCqGLoJYZK3caf92yGv+uMptMB8iAF34TC4swfASd5SW/Qry0JXrAIEkiJYphpElVtq7rfq+6chDHbsYvAm3HKYQSPVLjQKpdGPfNka0PSfaJUupZ3ML0PxoxZCsPEypNQGa9sz78Ph+R3loROy+iJ+hqQUHQCPmV+DDZFEK3y7FEJe5z7jtmxjce06XXsCbBOAOzU5HBuKHq8pP1l1j5zYnLOJ1QAW0Tc74jJ+irxuVO3LeuBCno5QM0n35vGTHA4doaBAsSICunRK3e7U5uXI758dZhFyQJL6WEhE8b5pd1mOuM3gzhpJylwqaY0xMYyev4qkBT4OZvDmjXLOKpKWR9LW8wUBgXlF5MphGzhkzXqRVE6S0mmQoBYCctdM3DsrVnEICaXz+rK7gAL5bdtXF6ZySIihY5YcwCNTPufPW66v3lxh8GBj0nTC/K155KyWst32BuXNI1nJHMgLFPIiJTV5rvuA9mF7EcLHmDQt+CEH6h9oguv+D3Cm8mmT72Z61UQPP9tTHlOzLa2/zx/8BzRI/tmTk/PCupwNUUyd1WmmasFjSeRNLIm4btG2TNHeqHm6FjQln+OQP33x48WocDlPJyNlhtMMNlPkArDSyvMuvZ+iB1wA1qe46grmLBfAOnHuOgaMXYD8gbnw67wxyOWXTa8lNi4eIyYuxcnzN9CtbQN8P9Q05Ss5AIukHTz7fipKxBw3Wnsy/2CUH9NKgfWfVtOL2tdo9WKPcdLF4YNqa02ZjT08RAweICBTKikibcP24pyGkmWu8KuLpl6pE7E6GsBq9mInrmkpqLkzV3OUd7dfiW6H7BieB3frfCJodeMsGEt5exLFfO4gfaSVrmojiDLJae1h98VLLA4cZhBvxlGTM+ExRof3MaoQs/ggbuZf9lCZ6hjpAeBJ1chkGjDxsfAcQZ9XoocX4hbStFzSzWNSb7CvaBpH/KTfIeTIY61Kq/pt2MTizl16me/cQUDxYqlf2H+JuoWp7yj7dy/vopjmU9UmAItEYVUJ3QTCV2OQ5Liwnr9gsHwFBV/c3USM+zbtwCA5zo99BVxdIEnNYURUnsRDlTK1oJyhrWrz/BiLp3vo2ueoLKJAO+rD8LcsQkKAJ0+B0GcM3kQJOF/uLKIzRSMqYxQEVkCbXe2gTkg+fSdLlsQIq8A80P+/n6/9gJtYUQdyeVUqoYdYhB6k8w6oLyCwUeKe37yVxY2b9LvWrQSUlwHoJmdD3BsGV+bRfcpwifxXTDoPHLYWxCK8f4T/zyCE94/w/1klPA+PqX3Bvnpm7C5kyQ7NlNWp8jA+0UWhQ9g+kxdeZJCAZwFocKwBOD5x3+xuvAsvc7w0jp+ZdcPxgLbIngrfp1XzAWB+TpNLz2CtPkv9XvGxKB+6yfgV4UrNr8pkcrYiX5Lf1s9+tdHQ0/F/k47FvcC34WcQwkdbnGrFK5VQ5kYidUHO/Fr8XOsvRAhaY9uvM5fE91kr2tNNisdyAViKXebq4PKA1R5wAVjJuE6rTcCVWw/x8MkzREbHwieLNzq1qme1oz/WjnIBLDK/eb9sxKq/9kKtVqFcyYJwU6tx7fYjRMfEonjhIKxZ9B28PE2JppMDsMh4b9ZtQd5Tvxhdd8WjLjBoPIoUSv1y9bH62xa7yWG+0NN1xiE4nkPP9b1MhuzTk9dfIlITc26bMwHtEKhKPdLJ0QBWj1eHcDiOHmZX+tUD4WxIj0KIbLnTB6C6cBhMjOVQfYPdBKjSVayr57YSAgul2XQIeEUIvaUpp4woYPqrpnAT6WExbu7fTgHXzPm34sYvh+ifP838o1Sx16BGlACfAPrLDpoM4Tm2E5goyssSN3MDxCzZlaqxqf2adSwePaYX9h7dBBQskPozdkT4CWyKoWTNBqDJ2hRCwyTmRVzBwshrxjmRSIBLeShvonSyM+ZwJoBr3948AgNSf77Z5DAbO1+ayUHznkbjFOrMw7dc2thsnkqXrZaAiOxAcAgQHMwgLs40wuq13yvsbLLTxAPF7hVD9XOUt83XT0TeABH584sICgQyZnTM3Eia+8HYUCz3U1gmD0DYKRZPdtA9n7O6gPz/pdQfPMzgxCmKLtWpxaNeHevn8PIMi8fb0k/UnZLtaw2IlYTXb+AU8KWrKVFrbKvaux5uO0y5aTVDZoIvnjJQceFtJHpE7kEUqzHRG/Q0L+ofa2jyWZR3NDa32WjyWQuvIKv2lZxJTnt3Acuibpk0PejfCsWdGOl0TvMSbcP2GW0gLwE352yMwW+OY28srSBpaDAua0UMymxbGmhyviFgGuG52hkbbLFJM6+8GCxWwZbllCzQ11eEqtt1EF8ahFBJnMvTPs3SHokdLgBLzi/A1cblAft4wAVgWfDj5l1HsXjlVryNiDJ+W6RAHmxdSUnFyRfDfliMe49C8dO0oSicP/VcfPssmXNHUQJgEcsIz9W6LQdx71EIeF6Afy5fNKtXBb06N4U7YYQ2k5QALPbJHXjMGWrsEcHmwJLCGzBiMA82nb+9dO4qUW3VQv82CZdvt6M9srzPom/QtLGAalVSv5gS/oFqz7YYB83EqnEnUF6pYkcDWKPDT2JDDK1FPyd7dXTL6NyUq5TWlgBVqnMH9cAV+4ISn1vqI6pU4EtW0ZOxk/8Hl342NUknJGmFJL2QyMDwESiQQEP2//afjHwdaoCkbTlSPCb2BPualkiLm7QKogzeE0fapGRsr5FtgDiavhK3YBsIn5lBPIe3BKOJN/6bRGiRSC1nyq+/c3j2jAIVfXvyCJQBcjd/sQtXteFGU7fmaooq7jlsisAig0UJWlSSGYW1cTMLUlnTIHVqC6hX27F70ta1IRFPJPLJID4lBRT5wtTmE3FhOBAbgihRg0hei+YZ8qFDRvumNfE8cPlHFRIkRdkuugPhKQQ03Sp+C2cr0qIDhjmMDW2Ohr45EJRXhKen9WCPXN8uiryOORGXQVJMrwZSrky5/V9fZvBwI33e+pYVUahLYuTZ+Ussdu2m61O2jIi2rayP7Lu3jsXbG3S8vE0F+NdJX3uURFMOyFTCovv0INZfxH5TMDO5dEK336ZCdZlGzmv6jgdfobbcpTG2Y96GwWNiHzA8rQJAKtCSSrSWJOwlgzt3gSNh7/Bn+X3QuJuCVwUfF0Ttk6Zgp5eniKKFRVwveRPLufMmw67yq49GXvaPPPrs2RYE60yjjL7PWgFfZy6l2EfWdtj04SFGvKHVfdtmyI/FvrX0w5HKhKRCobl0zlAQ833tWwF4edRNzHl3BfEWUhkDuYyYkb0a6nr6IzKawfyFklTnjMCwkRpUDf0br/k4o6mGKGBr/WJrPxeAZasHXf1dHpDvAReAZeYrQxSR4WOWZSAIIiwBWEtX/YOf12xH367NMeKrDvK97mpp9EBKABZ4Hp5DmoMR6eFxYo5tqFrfG7X/46twudLUA31eH8E+yRu0uifqIv+TAihdUkD7tnH6wVAAACAASURBVPIOzXs+PEW/N/8aB67mkRN/52wiy9WOBrBmvbuExZJKZaOzlsOIzM6piJecAxhdArgbZ/SgFXf7IiCkfNkRAgtDR8jYK9WHmCGjLL+mVaM791js28+gWshvqPdhg9GMfzN0xu5M/fXRfJ+3EOGbXd7eUjoPj3HdwL6jN+y46eshZvNTOkyatfcc1w2MxP746eshGOwXBHh93ZjaxjCI/fmA021d8osKryUgxqD+OuTMkboZBZ+uAylxbpDbgV1B0m9sjcAi48mNwrp4icGO3fRiExAg4qve1oMNqc/a9hbRIQxuLJUQp6tEVJ7Mg5UAR+bP8XLu2bErVwublGu1iRUCnwSLCPmPcL1uNCDFq456AvEpVNz7t/ZhPM6bFJjPq/LGEf9WTqlcZh75dyqgLYJUyko5mnN/ZSkqonivxH1z/wGDdRvo+uQLEtGrh/V76twkDrwkkq30YB4Z8zge5JOzWcjLqkFvjuGKJhz/+rdGYXXiyy5zeXWBwaO/5YFY7qtmgTtPufE0vb4FX7m+HHNM2rgvGA3uAY3EFN099amDQqZEegpSgTT4KUl/Bu7dZ/TE+y9zhOFAvQNIUJuWvixyvwhqnK2p75ctq4iiRUQUKybqozWZ/3A5c3oCktp33L+tXXmVCGk6IU83FwL8kxcAzhLzc9TIzGUwKistHrIl5jGGhlMQ0mAXOQuSqHfynLdFLmheY2z46STE+oYxze0hYPtkkwquwJQJOqyNvofv3poC6mfztEceLm3OVS4Ay5Zd4err8oAyD7gALIm/zl25g94jZoOAVh1b1kX3dg0RkNsPZRv0sQhgXb/9CF0GTUXp4gWw4ecflHne1VrvgRQBLADmJM5rs0zEHe86GDGUd1hqwse8NGMfXMc6Na3aVvpmaTQPrYSBX/GyA3zMy9n39S6OyT7yOCwcDWD9Hn0HP7w9Z1yiL72LYIaPdekJtq4z9+QO2LMHoLp4FKTMd0pCDt18lfrgP2vqdI4jW+dJ8LgHm06j3HH65vuRWxks8/lRPzTLApUqCGhQV4S7h30vZp7fdAATTatHxc3eBDGT80hlbfWdeQokqUJIqhHqJS4G+git/8QSR5at+uX0X/ATh/eSlLbhQ3j9JS8lCeVj9G+/DSKNhLEHgBUtJKBi6EYTLqzpPlXR07uoiVmkkub8RaaRi+O/08FCsK8cVziljSgCF6dzSIimES1FvxSQrTgFgSs/2wxCQC2V8wEd4K+i0XupGRsbS6oDkv8BT58yePmaAdFtEE8BqE2DF/S12A6ZDU/8mCePgKAgBkGBAjowm/CcN7XLMB6J4PkhW6XUzLL6e8KL1u/1YRyPCzMZY6FvDXTMYFo4JjUl0cEMbiyj+8Y7r4hSgxJBKgLmElDXIFmzihgxxDoA60MYcO1HOhap8lhlCm8ETVKz05Hfk8v/5LfnjdEvM32qoYd3kWRVJgdiFWjPI0clurHc/pgP1WmanqbtPhK6z5SBM+RvqtvK6Sa2aDsMRFzNtnjwkMXtu4lAo5Sv8Xnu5zhY5wB4lelalbhdAm1fVEWxokDxwgJIiqsluZ/wHnWfbzP5qkvGQpiXnabH2roe5OUbAY8s6s/bDRmY5LnkbNUt7T/w9THsiKVA9E/Za6FdRtPUfAIyffnqECIlPFNkjCCVN9bnbKgYNCZ9I3iNPu3vrw80il5qV23PXJjlU90iXcXUWSokUBYDfP+NDh4egPmzsmPGAliYPRGsdLa4ACxne9yl71P2gAvAkqw+SQk8dOISRg3oiN6dmxm/KVGnp0UAi6QY1mozFFkyZ8Sp7Us+5X1k9dxTA7DUW3+D+iAlmzyWoQN2ZhqEkiVFdGxr3aHSamPTeccXYQzGHXyGA7Uoz05gmD/2Fm+ELJnlAwvdXx7Ev/E0bWtR9ppoLzN9xdEA1s7YJxjw+phxJZp6BWKFn/O46diod4mRVmf3mxDLWtoapGogX6Y6hOqNoCtaIRHp+UiFpEZ6jmlvtF7LuGFcjr0QJdXhSOpQg3oiKpYX7HZB8xzZGkwcvTCbp+Cld3cmKSk/+kfwBRJTdZiIN/D8vqtxCoScOH4mjXJz1txmzVMhNpZq+2akDhlTeYFNeOgIH51BPvPIiU3/RWnaA8Ai486PuIIFEi6s5MiOf1zK4d1bCgZ16SigWFHHRATaa00e/cPi1Vn6PPCtIKJQx8S/Z+SSVzI06T6YlK0S+iWT5qXv957RA1V6wCqEwdt3KVcIzK4DKkqyrN6zwLVsiYTrQXkTCddz5RSNj603fBzKhppyBZn7Y2/ulijt5mMvNxnHIWlCXV8ewJ2EiCRjW5PaZE6m7+knotyoRP8n6ICpMySgEwtMHKez6pn24gSL4F10nbMWE1CsZ9ruzXAhHiPenMCROPo3nsy7pVcQfkmFTywRxDJPdRdRoL1gBLHUfy6C+sQu+reiyzDoasmPHmQ0sXCf0BNsFF3rD1mDsK7ECjwO5khgfhJ5GvgUh+qY8guSRh1iy2Ba3vIglS/lCOHeI9GfUiGVVUmFVXuIeZSXdEy5hXIcYceOXM1QwT1pZDOJ0Ov28iAe6yidCtHvzaiwOmcDVHWX75c/Y+5jyrsLIC8nzCUX56V/Sdrc67+XOxYmSV5UkBcWBjG8aNn64TGGvDGNFiORcwXUyqIy7eFXF4BlDy+6xnB5QJ4HXACWxE+12w7D+8gYnNn1swnZeHIAliiKKNsgsZTvtcMr5Xnc1crEA6kBWNzVU3BfPsnY56m6OBZnX6r/d59ePPKmk1D8tF7WmA8Mfl7OIgwx2NSWXjJ84InrQZ0UmVc25C+8ESgvzyH/VrJLKTsawDqreYl2EvLRSm5+2Jabgs2KJiqzMZOgBXflJLgz+8Ddu2pCym1pCD5/icQqghXrQvTwlKkl/Tfz+L4r2Ig3RkPnZ1+BMHVSXh5CsNqqhYBAO/w2vYY0A3T0wBv7025AbVv6gjM97fbzeKhu0IhBzdfTwZdMjGZkw4LhMaWf0RwhV17ET1jhTPP0uqZMV0EnuRTKiWAiJMRSAl0p94i9ACzChVUhdBNIcQqDTMtWBb0yFTPx0a49LM5fpCABiQZs2TxtQYLUFjHyAYtbK6jNnJeIKhMTF+Fo/HP9pdFcKrj7Ykeu5vqPSSTV6zf/AVYhhKsOiJZEdKWmn3wflMCgqJZe7DOVEFEyhVS5/bEh6P36iHHoAFUGaATe5G9FYXVm/OtvWvlWji0ptbmnfY9urw4kqSZn6FNAlUlfNU6JkOi3C9MoEKP2FlFpPP0RzJyjQhz9E4jRI3hk8pYHgkjtuLOaRYSEoy1fSwG5aqTd3iRrODr8FN4JpvxQxGYf1h3XA7uk6kZzUnrSwdNPQLlRifNy2/wzVEdomhyJnNLVk78+bht+guo4LRRA9voi31/wTG05Ouxh/oc4VuNoErsnZquEr1IAfJObKEnxI6l+Bsmjyoij/q1tTo99ycfqn2fJib2jvVJayGIh6xElAZIIjxyJorUk5Dnc69URkLOXuZDoNGJ3SkJAZ5IueElDzw7S9kMylcKIbGVBSNhTkmW/qRAmCb78qi+PgNyJv0nzNSPE77/51U11L9u7gQvAsrdHXeO5PJC8B1wAlsQ3Zer3QdYs3ji6JTE1xiDJAVjke9JHpeJwaf+vrn1mhQdSA7CYmCh4jmlnHFkAh29z7ofAcHrencED7RftYYX56aIL4YJYsYrDs+eJb6fWdlmNBDW99F0P7AwfmSWhydvZMiF/GedFDhWPg76QPU9HA1iPEqJQ6/lWoz2Ee+V0AN0fsg1NraEognt4A9yZA+AuHwejkeTaWOhLeJl0lRtAV6MJRJ9cqY3+UX7v/tsUcJdPGG1/VGsk1r5ogQ8fLEd6FC8qoFkTEZkyKb/4GZR4DTStGGVexS+9O9Jt5QyoLlI+OW2fcdBVTCQSNi9SIQQVRfzYxU6dErkcTpxKo00IH8zkH+izIzljhoefwGYLFQhJe3sBWGQsOVFYd+6y2LBJQoqeTcSwwek7OlcUgPOEG0lDfzslvuKRuYCInyKvY3YETQOXrsGyV10Q/dgTT0NN06fkbhqSGhpEIqyCAPUtBpHXqP6g5gJy10oeXDEndybpZrU8c6Pva7q/iR325CU8Hf8SvV8dQrQExLQ01xuBXZCNNa1wnJJPyN397HjJvudEVJtB98zPv6rwUnJf79ebRx6F1S3Jb+vcBA6Clvq4zHAdMqTBn4cPYgImvj1nUgDFkn+O+bdFQRmRKy/PMHi8LRFwcM+amH7p9l/Ai3nUfELbfkhoaLmKqMEG4qvnLxi8OHMftQ8PMqGLP+XVBv9kpsV8pHY/KXUHR8qdSjKV1NIhU9ob17RvQSKlpNLPuzgmyaRRSG7sNdF38f3bs8avPRmVCYdgStVW5f6+5bQjKYHFQ/40Ns3AqHA/b/dUu456c9Ji6l//TCUwwULqMIm0IoUWCO2DJSFRuzN9qsuOlFqzjsOjx/S31L0Lj8KFEs8WhPeV8AZKZV/ulijlgGjQlBzlArBS3UauBi4P2M0DLgBL4srPWg2GRqPF+T3L9TxYBkkOwAoOfYnmX3yLgFy+2L9hrt0W5VMaKDUAi/jCc0IPMG/oq5clPosR7JZY0rdFUwGVK6XdG830sFa79rI4f4Fe4HY33oWXOejpm6T2kMOCHDkW9wJdX1Ei6TJuPtiTu6Wcrvo2jgawyNvAYlYcvuROgHn7Ss/foTp3CMzbpG8cpeMQUllSFYmv2hh84dKwKsdErmHpoB1J5SWXE4MQXpOYTiNx9BiD0+c4i9z1pLBijeo8atUQoVZK75GghdfQxIgTvajUiF28Jx14Qr4JSdJpug6DrmZiOg135xLcf/rWOBhfrAI0Q2fJH9wOLUmUCYk2MYi7GzDu29QBLPNUGEMFQjKOPQEs8nuvHLrJBMAwj8LSJgDTZpqWzhs1jEdmBWnTdnDl/9i7CvAoru97ZmbjCUmIE8UJ7u5avFCkWFva0hYq1J2Wugstpa5AKQVa3N0dCgTXCBEkBtHdmf93N+y+mcn6bkL4//Z+Xz+a3ad33s7MO+/ec+xu4sxfAkjhzWBRHUXUHCrqN2JyIQ55w+33dUSjEw1t7isiXEJ8PKUESqiZAPj5MjD5yDcCbtxSGaUGEyfqENzAPNg8MmMVdhZlGvv+MrSLXhnx4ayNWCUTDqECFIVF0VjOmDki6QcDEnGgOAsENBjsl/Ce6OcbZ1d3u14VIOmY/9u9o4VwK7hz7l88Tp1mz1SiKyDaAnvsRgqHIzNZVIngI6Hd9MoHVslXT2RtVagTm5uHPaq+FImVsoFDsydEeAYx33gs/Q0eq+YauygZ8gC0/curGBO34rkLZSTsJ09zKLgh4pkrDyNKe9FYN48Pxkfhc1DMMWVWOrgkEvZD9Y9hhnZfuak4wommbuS97P2YlXtM8fGKqEFo7hVqzxJQlB2TuUbB3/ZicEs9wCO3jTXuRn1P00T6DnesqqgG6Bp5BGNt9FCbmiefkG/U1tcnFt+Ed4MvV3YfJn6tN67uUURnGupQpNdbIe0w1K+mTX0aCi1YJOBoEvu9Dr9bh+ZN2bpTP5O6e9fA3Mi+dvXhbGE3gOWsB9313R6w3QNuAEvmq4ef/wS79ifh+4+fQ+e2TNLWHID1yay/8NvfqzG4b0d8+OojtnvdXdLoAVsALLWqzfKAR7HZv0w629ubCFbFSpHuroqX7cgxHgv/UXIrHeq+HQfjThqHa08oPckn00m7wcb618UndpCYVjSAReOKvvib4lKcjR8POs101IhzQziwFZqda8CfU760mmpTV68ZdB36QdeqKyQP20/9HR1fVanHnzkK78+fNQ6HyMiJlJyM+HdWruJw6oxpni9Kv+nbR0RTOzaBxH1FHFgGk3z8QBxYd5J5/PsTPNaylF55NAJFs1FUm8F0zTuj+FHTEvEVNWc1CTpdJ0qXsmZqBcKkuLEIuqVM5UoAi8YxI/eIYqNnigvrx18FpKSwzc3ggTq0aWUf4GBtzq7+/voxHidns98L5yshr6OIp2P+Rp6PaaL0yMxIDFxjmk+IKPaioijCSkRCPJGuWxZV2D1NAzk/c6uXdfpoGnNW99IcRTqnIVqHuLEoKlaektTcMxQratjOe6TuU33NDd+/Xr0NJldrBLXQiCME8pRCKCfSpxRCSiUkW7Gax5697Nr07S2ic0f7DsrStgi4tJKtyZAmIuqPt68NZ9ecWm1O3h6lbgUInnhf9rwf5lcTM8O62dytroiDoBLu8FgxBx7Lfze2UTpgPEoH36//u6iY05OvnzgBnDnHoUQWndb1xgIMyZ+l6Ht20Js44ttdH/1GJOyNEkUEBUnlVEoNlb4P745BFniUbJ1YMXTomboYF7X5xirOpMdSNFKDZAbqUaO7Yu/BK1d2YXPRZWMfrwW3xpTAssPZirIlNy/olScNZm+63dqCFH19uQIttUVA2PSQdpiRcxjbi0wf/lFKJ6kd+jvwvrZiFY89soPa/v1EdGjHfk/bCtNxb+YahdvkBysV5U95u24AqzK87O7D7YEyD7gBLNlKWL5uF15673vUiAzFdx8+g9oJ0fpvTQFYy9fvwsvv/QDiwfr1i5fRtoVSHcm9wGzzgC0AFvEhEC+CwZJ8uuDXILbxa91KxJAqznlimzfsK0Wk7T/+LEAneyf28pIQ/uBJTL/Jwurv8auFr8K62tT4o1mbsbyAnYC+H9Ie96uUvyw1VBkAllp1ZlfMPSZVayxOWBT1fFbCrjUgnjWutDwniLy+GBYNXYc+0HW4C2KQ60mKbbo4t7kQ+chn6mDGAcZxKJyxTAHinb/AY+kKDtfNEEhHR5fxY0VGWAcXuLxs+LzEUk+kgCAUfrzgNnvBvu41q+fBc8kvxkql/ceidMhE/d+aXWvg+cenxu+0Hfqi5L4X7OvAydJXrnL4ehaLEgkJkTD1ccsAliUFQhqOqwEsUp+jKCy5GpY6CmvjFh6btzDAoWGiiHtHVi5YYM+lIL6q8+c43PiLAycxkGNzYDG+GTvbYlNjFoyDb6EPNBogJvoWYJXA6dUCPWzE8YtzORx4n113TpVCpx4A8VD1vMzA42q8B07EsagaSieltFK52XNwIq9nLlVpZlhXDPMrU0rbVJiG8ZmMJ6ylVxiW3eIHs/U6HPpMQGEW833zZ7XwjSirvWMXjzXr2HqiKG+K9rbHjv8kIOcMa7/W3SIiO9jXhj39ycueLc3DE1c242jJ9XJNxAn+mBneVU/arY7GiRB8cDDWPs5MdQcea/6Cx2LGCXuzx2jsrfmIPtLq4iUeRHmgtmridbycNQaeEpOZSw9shnP3fo7E+pLigPLNa3vxU/7xcm38HtEbvX1iHHVZuXqkwnd3ujLi99nAZnoAxl779+YFPCEDjRp6BGNd9FD9PGg+BuvoHYEFkfYpNto7FnWKMgFmBJzZY8dKrmNC5jqQuIIt1tYrHB+FdkQ9D8ejy9T3+G5dRPTqoVxMxI8q5+qqDI5U+fzdAJYtq8Fdxu0B13jADWDJ/EhgFEVh7T5wHB4aAUPv6oy2LRLx4jvfISE2Eu+8+BDOXkzDms179WXIBvRqh0+mTXbN1fgfbMUWAItLOQef9x8zeqfEMwCvhixVeGvKozqbNsX/X1xsIG2/cYO9IBN/zX3jROREZ2JI+grjVBM9g7G+hm0h4p3SFuFiKTt1NKdOY86PlQFgqUPFl0QNQGsTCjqmxshfSQO/YxU0ezaAz7lqcTmIPr7QtequJ2QnYna3Ad7vPwY+5ZzRFUVPfwKxfnOFawhQpZTWjVs4FBeV58eiddqiuYi+vSX4+pgHsvjrWfB+jW2SxerhKHpPeYpd1a+JZvMSeM5nCrXa7kNRMvoJ/bCJ6JgIjw0m/66y5pV6mcMPPzEgo0aUhMcmWQaw1hWm4IHMDcYhyhUI6UNXA1jU5hc5h/FpzmFjn5SGsi92FDxuqWAmp3B6HkCDeXlLePUFXZXJ6r1ylUdyMnAxuUwhMCen7HfRogiIkLn7UHAe3r+XET2HZ4VD4iRcCWMEyBOz2+ORsETEREngLfMem11GOac5HP+ZVfaLltDsKfPXfW7+Kbx4bZexPeK+mhehTM9Rp0h5Q8Dm2GGIFaxIWt5qlYDKhzM3YFuRjKmZKAQ4DX4N74UuPow8isrWvzTHOB4NOJxOGG+VCFrukKOzBORfYvenJpN1CEgoux8dS+Lw9yLmn3p1RYwfYzv4JOmA3dOUKYotntfBJ8w6cO/sb584h967th9FKH89x/jX0adv+XFl+dwiJNS5OAcUcWSwbdHDUcsGHixz49Rs+AeeC781fr3VdwSWBj5ucVoPXJ+GxsXbjWUkwQNFb/2s4JMkzz1vgoeJ1tnvkb3R2dv15GKvXduN3/JZNDutMwKe7AViJmVtxEpZmu0zQc3xfFBznC3NRbc0RngvgMOp+HFORZRbWz9PX92OBTfOGot9GNIBEwJME+RbaotI6Umx2pQyqKFeKO8NipqkVGNnjSIiKTLSYKbEOv4ruYoBl5kCJpX9PbwXevvGOtu9TfXdAJZNbnIXcnvAJR5wA1gqNxYUFuHFd77Hpp1KKV1T3u7dpRU+ev1ReBNxiNsc8oAtABYd2VHkB6dlp3Pf1J6DCwVlEXJk0TUkPPqw9dQXhwZZxSqpSdsNw+vdU0TXziKKJC1qy17u6fu0hAeszkK9KaAK5+LH26W+UxkA1v2Z67G+MNU4n5/De+IuC/wnlIom7N0AYfdaCBdPWfYDz0PboCXEjv2ga9YRksb925Y7zHPul9BsZ+Boyd0PQtvPtHJVQSGHdRs4HDzE61XT1EbRgj26SWjXVoRgIvOQy0yFz/SyaCUyMTwaRW8p00etLurbXEDYsx5ev31kHIW2XR+UPPCi/m/NqrnwXMrmI4/Oqqxhn7vA4ffZbKNeM17CxPst30fVPCjESfROSDvjkCsCwKJ7U5uU+Yo0NeqT+iaj9fXuhxqUyhTaH3lIp49QqmyjsaRnkDIgh4uXgEuXONBvwZRFa4EmsuDPqz6FmPwAA2k7ZzZEbX9//O7HojRIun5R1F1OTevyNh4Xl7MfXVhLCXVHm7/uz1/driAAfyawmZ6sXW5p2pvokvqPAgxp5xUBSuOxZpSGODZjLY6XZiuKEjH7vMh+aOxZvVwTvdIW42RpjvFz8gn5xlY7/quAnJPsuiTer0Nww7L1kpJWFt1ssMgIYMqj1rnhDOXzLnA49p1M5dBfQptpFft+Qj6cenUrthQqAUAaE6X3fhnWBX18ym/kx2WsVaSx2aIsp/YxrXkCkY+f4OC7awn6Z7KI+Z0+Q/FP0NMmLwulA3YP2ovOuxgXIBUsGTIR2v5jFXUmZ23RcyvJjcDN+ZF99dFkFWGUJkcAE61tg9nLC0r16l2ag5syIQK5snO71AVIlbVv7X3G2XkOT1+FPcWMy25+ZD+HwT9SiJ2StRnrZO9jhvHdH1AfLwe3QrVbqeXOjvvIUQ4L/2W/qUYNRYweUR5UVr8fNvAIwoZoRkXg7Dgs1XcDWBXpXXfbbg8oPeAGsMysCAKw5i/ZhANHToNALYN5enqgZeO6GDOsFwjAcptzHrAJwCKlmy9fhHCKgYopA1/BjIPKE+B7hunQrEnlb1ic84D9tdVcANRCYgMRY0axh3nntEW4IIukWltjMBpZUWTZU5SJ4RmrjAOq4xGILXZKolcGgPX8tR2Yl3/GOE6TikOiDkLSvjIVwSO7welkO1sTLtdFxUPs0A/a9n1AqWpuM+0BIrj3nP2Z8UsC+Yofe8uiuzIyOSxfwSM51fQmvnp1CUMGSqhVU/kyyqddgPe7jFtQjK6JotfvLLVX4cgueH37BvNX0w4onlyW/lxOrWvYwyjt61z6jr3r9uQpHn/OZ0CGLZEmT13ZhkU3WRSe+vdXEQAWzevLnMP4xEIU1rz5PE6cYnPp1V1ENwuqevb6ylx5nQ56BdiLyTwuXZT061zO7WOpH0ECehdAobo2efxfuBpwQ1/ti9BO6ORdA5Q2bTD6FR2TcY45Mo9ziwRk7mW/x7i7RMSo0nHk7fZMW4xTMrDIXFTDz3kn8Mb1PYohWVOEO12aowev0nUFinoxGj8siuyPGI3pCK6Xr+3C7Hx2IPFiUAtMDWpmszvUJPp1RusQ3rLs/SE/H+jz3wbkBGbD/6Y/ggqqYWArP300WayHv/7fSI0veMWVY12nrOeRIktBDGsuoe6YigOwVhVcwrNXtysAXsNoiMx6RnhXUDSMKfs69wg+lJGJ3+NXG1+FdbHqx1ItcPZcGQn7aSJhvwXSti1YiVG5TNRoj88ALAhiqdFRERISE4EG9UVEVS+C1xsPKKKhxYgYFE37CSAFEAKzoMODGRuxqShNMSZKY50feReaVrDS3PaidIzOUHIrTaveGo9Vs42rSh2xSut6T8xI41xeubYLf8jW8diAevgkpKNV/ztaoEXKfEXq3+6YEYg18xuzpQ/6xbx9fR9+yEvSF2/iWR1fhHVBokewLdVtLnP2HIc/5soOWxIkTLyv/G+KIsJ6py1RtPttWDcMsZM03uaByQq6ASxHvOau4/aAYx5wA1hW/CaKEq5l5+LGzUL4+HghJDhQn17oNtd4wFYAy2PZ7/BYyVIGtN2G4BdpKk7LSKP9/YnQXWe/2plrplJhrWi1QEYGh4wsDhmZZelZciNVnkcnifCUqbypuaxmhHbBCCth3JR6MO0a23zc7VcT39hB6EpjqgwAS03gS5wUxE1BxqcnQ9i+Apq9G8DdyLV4TSS/atC17gFtx74Q4+pV2PX7/9Qwn34R3m9PMk6JfFj46SKbpkgKQqvX8iD+H1NG4En/fhJCqpdtIvlLp+H9IUs9oWtU9Mo3NvVVVQrxp/+D9xfPG4cj1muOomfKNnflFArHPAVtV9sVP10xR7UIRJNGEkbeY3mj3f/yMhyRKcD9G9UfSpjftAAAIABJREFUbb1ukQdVUAohzdUaF9be/TyWr2T3xvg4CQ894HrQoLiEQ7I+ukrCpUvmgVlr1yckREStBCD8FAddJvtNzG23D4tb/qevvin6bn26kjpt2tG0H8OYjn4rIP+iLProARHBiaZT5G5Kpah3SZm6eyx2DIIF0wIWQy+vxP6SLOP0/TgNtsQMQ5TgV84lO4sy8GDmeoXKJBUiUGJOZB+EmAFdqIyaV8he1bHzS3hk7GTrpeZgEVGdy3yQI5agkUzt1ty1JD4pArRiBH/EeQbo/6W/Nb9GoPgCIySrM0KH8DauP1wjcvBXr+3CPzfPlxsiKcK9FdIWY/0tP9sOFl/BYBnlQA3BD/tiGcAib7iwsCzK6uRpKFQa5WVaFa7FmJwPjB8d8OmDXc1fRmJ9OmiTECRTB/VY9AM81it5DYtfmAFdrTKlTYrwmZi5vhwpeAjvhYVR/e1O5bP2mzT3vZqXzYvSY2Putol7U12XiMyJH85gGwpTcV/meuPfUYIv9scy7kdHx2yqnqPR+baMYd6NM5AgWV1vtrRlqgxFtX77gzwqUgJRh5iyx69sweKbLFqvtqYatsYMd7Rrm+u5ASybXeUu6PaA0x5wA1gyF2ZdzUF4qDv6wulVZUcDtgJYQtJeeM18zdiyGFsHlyd/h6++ERSkoKQURIpBd6pl53LINIBV6ZIetMrO5kymYNEcKQ1r8iMiqqvUo9REnZMCGmJ6SFuLbnn2ynbMv8m4EQyKT/b4sjIALDXQNsG7Jj5LuqqPtuLTyr/Iy8cvCQLERm2h7dAPYuN2kIgJ2W12ecDnmSHgihh5K/FSET+VLUZg7NZtHLbvEkD/rzZSUmvfVkSP7hJ8k4/C67NnjEV0dRqj+LkvbOmmypThU87C+33GkSjG1UXRK2W8V16/fAhhH+OSKp74MnRte1Xq2Pcd4LFsBdvEt2pJJPuWQZ/aF2cr+HVOxI1VpIlUVAQWOcaUIuHu2BF67qOr1zj988BgtJZefUmrAPYdce7NAg4XLxIBdVlaYGaW+fuxufaJ9y0yXEJ8vISa8dD/6+tbBmik7+BxYSm7BmfCr+DVe5aAuH3OJUzQl1GnbXb2jtRHnzhqxM8kyhTgWr6gg3eoaYBlR1EGRmWsNnaVoAnAjph7zHZNBOLd0v5RfN/DO1oPSMmNQJcnr2wt1043nyj8FN4LBMBYMkrrkkemkbLZqfjxNrskeS2P1A3M77F9RMTeeneYe+M0Xry60+a25AU1Oh5zfnwAgsTaXjVpD0LDPPQAV4yHH+I0/iYBPXs6JLLqJ7O24bKuvGIlkdp/E9bVJoCF+lSripJCXpwQoB8O8bUdP0nKgZw+utBUOrh83M0KN2NCDovKLWnRDdpHXi83NSHtIrzefxTyFzh6LpfcVwb4Ezg3LnMtDhQz/jf6nFRIKS21pqaaPe5yqmyeWKJPJZSTltuaHts4+U9ky+Q+F0cNQBtZyiOlKZL/5WYArp0atInKJ0uz0UsWnVRZwI4r5kHr8POv2P3dkmLuRW0eOqUq70GfhXbGvf51XDEUs224AawKda+7cbcHFB5wA1gydzTpORGd2jTBsP5d0LNTC3jYKunjXlQOe8BWAIs2zLRxNppeAW051m71wrYdyoi4p5/UlQN0HB5gBVWUR1VlZQHp6ZyeN6XEcqZbudFMGCuibp3ygB1JHU/MMk+0bGpafS4vxXGZahGR9BJZrz1WGQDWspsX8JhM0WfgmVTM+YfJQpsaLwGeug59oW3bG5Jf2Yu52xzzgDqdt3jSNOha2qZyaegxN5fD6nU8ko6bjsYicveRiQfQZAVLPdHVb4Hipz92bNC3qRZ3NR0+0+4z9i6FRaHw7T/0f3vNmgbh6G7jd5RaqGvaoVJHunM3r4+KM1jH9iLu6mv+AIAEHkjowWBhgg8Oq1TLKhLAomigVil/6ze3BptevS0mVSuL2PhshgBaWwYbN0ZE/br2HWiQgubFFIqyAlJSACJgd8RiYyQkJIhIiOMQFyfBy9M0QFSSB+x/TwnWTLpvLmpX98fSW8p6arDGmTRCdX/WFAhn5PyHj3NY+j4pAZIioCVT16GylJZG6WlkX+b+h0+yy/OMDvOriRlhXUFk1rZYy5T5yJQpodmSKm9oV80DVqOziITBZWtlZMZqUHSYI9YktQbeWDbAWPWKfz6mTJhfrikSIIgW/PTpW5QmGecRwP5f449wwdekF0olER9mH9CnbKlXtobj8WxQczwR2MRmH9LAKEWOUuUMNk3TGXXP1AWlGBNga4v5+Eho1FBCe347Epa+aaxiMs1ckvTRtXwyowKQfPxQ9O4cSL7+yNYV66+BmiCcIt4o8ipaUz6az5YxOlNGHSlFbX0U0gHjLRCg7y7KwD0y8DeY98TRuLHlruuYzLXYWnjZOLzXq7fGZBtTFO2Z06qCZDyctdFYpadPDGZH9LanidtWlvgN3/lAeZ98+w3zvHRqqgmKbKN0SfqNVJS5AayK8qy7XbcHynvADWDJfNKoOyO6Dgzww6A+HfRgVmLdePfaqSAP2ApgUffebz8MPv2ScSSkgFZcqzm++FqAXI2vTm1Rr8ZXFY3UA3/6hcf1bNteCi3NoVdPCd06m46WUG94iAz3aJxpsm1DH9EXlQTZSQ7wrFQ0gCVcPIm9SRswpBF7gW2begVr5q4t5yqxWrA+okXXsT/EqLiquBzuyDF5LvkFmtXzjGMv7T0Spfcwrip7JkURLUuXcyZBgsSi3Xgo+xVjc9om7VAy5V17mr/9ZW/mwfd5Fq0i+Qei8JOF+nF5f/48+DNlqWJklFpIKYaVaZu3Cti4md2LunfVoWd386lOaj4XU5FAFQlgkW++yT2K97MPGN1EioR74kbqo7CWLOdx4CDboLRrI2Jgf8vPAuJoo3V44UJZlJU5wnVL14XOumJjRSTEc6DUxZoJ9j1/jnwl4EYauw4/ddmB6A5QkOP3S1uKY6XXjcP4JLSjQ+k6uWc5JP3IDn18awDNp5rfCD6YtQFrClKM/b5bvR0mVisjz7dkfdOWIElGyh7Ie2Jz9DB8nH1AQQhvaGNKYGO8FtzaWrOK76dkbcESGbH3+yHtcX9AA5vayNrP4ewC5oewVhLqjtLpo2yIJ0hujY43QljtIhRWu4EU7Q2TUU+G8mP2tMbwg+x3vLHBaXzbo3ykmS2DpGi3OA9/RAv+iPesBkqd+zn3uIK83tAORdPMDO/mECeUOrKx7rm66Lqjm9UhEgl740YiGtQH4mLK7hvC0T3wmsUirnSN26L48fcUbWm2LYfnnzMUn1HkFUVgkf9HZazCmdI8xfd1Parh78j++gis22Xq9UZRf5SaFiH4mhzS9Gt78WN+mWI52Vj/uvgktFO5sj/lH8eb15hQg7MRlub8Q6DnW9f3Gb9WC3DcLr/a2u9b72lAnIMGm/aqFubiDEglkQ475CYX/rC1T3vKuQEse7zlLuv2gHMecANYMv+t2rgHS9fuxI59R6EjLfhbVr92rB7IIkArONAdveHcklPWtgfA8pzzOTQ7GMl4yZAHoO0/DkeOcVj4jzIKy1xkkivH7khbZ87xmD3XsROg0BAR4WFAZCSHyAhJT4JqyRKT5ypIXQ/EjkKkmRetoyXXcNflZcbmLPFgWOqzIgAsPu96GRn7rjXgM1Nxtno1tJnEuIISsm/g0A9lpJ2kGkhRLKQiqE1sBVAekdtc6oFyxOQuSO3bf4DH2g0ciopksvaFW3F/DjvJL27cBbrHGSG6SydVUY2JInwf78da5zgUzCoDW70/mKKIQCh6eSbEePvlzJ0Z+pp1HHbsYvfOfn0kdOpgPoVwZu5RfCADj0xtgCoawKIorLYpC/Q8RQYjrp+HAxri+Akefy2QqeuFinhyivI+SWlQyZd4XCAOq2TbCdflfvbylhAfK5UBVrEiYmOd4zdK3cgjeQ0b95HoNIQ+eEPBW/h13lF8eJ0Bd5Rq92eEbG3ZuBDUKYuhzSXUs0Aw3iR5Hq6LTCpxZY1BaOYZarU3UhTsoyJTNlfJHuBJ3oY6nXyob03MCrcOvFAb15N4nPyD+Zw4wBIfEPFz/nG8IQMTAnMDMWLJSHTqqEO/3uw6U5pSSulNJOvykVxK/91Aii4fo+d1Qu3MMOMwv+65GVvrs9R8q45zoAD9Dl8Paa0HcW01ivYm8vWTpzhsys7C4l7LjVUD8v0x6t97TTYVHS2hYX2gfj0R4eHl171w8iC8ZrxkrKtr0BLFU5kSK3cjD95v3AdSBzaYrlYiil/4Sq/2NyJ9td6ncmvoEYz5UXeBDuJup10Ti/RKm7mye09Pn2jMjlCmxxrG2D51oR7wNBhFO1HUk9pMpd2ejh8HP05GbOqCiasJ498OaYuHAsqiV+8E++QLQcGh+fzTOlSrZv7eS6AggYMGIyGDXbEjrKYnO+oLN4DlqOfc9dwesN8DbgDLhM+uZeehDMzagaRTF40lNIKA7h2b68Gszu2agP52m3MesAfAKqeAJjvZ++lXQS/jbLDgIAnPPOV6Al/nZgts2y5g3UbL0VeBgRLCwyRERkoID+X0L4lRkfZvkEZkrMYuWRqEuZcnmtNfN87iuavbjdPr4xOD3xwILXcVgMWVloA/vB2aXWsgnDwEOfFGnpcn4p9mJLM+pVqkLD4CsX1faNv0guR9+05onV0fd0J9Isf3eWGEcaiShycKv1zmNFhIBMEUDbTnlkhBi4INGJfLIq4O+fZCxt2voVuXqve7tnTdfKYOAlfCAICCGSsAT094v/kA+CymrFU4/VdIEeU3NxW5Jpau4EHgocGGDBTRupV5YJw4i+SE0aZSaCoawKKxmovCkoo0eP9j5XN5+FAR164TWMXrI6wcMUpp1fNXJQAJ8ZL+AMGVVpjF4dBnbNw6TkTYazloEMB4fi5o89BZxetyPG4sKLLJHjv3D4/MPTLup74iYnuZvuYpuhton1IWMWiwtAQWqW6tXwI7CfS0ZD+Ed8dA3wRrTZn8Pqn0OvqmLTV+Rwc0dFBji+We45AkI4WuVlNC48d0GJK+QsG71OpwazQ/0hxNG4sYMdzyoZGuGNgzXQBEts7OPH0Cl7xycEmbj9TSG7iky1ekwNoyVnNlKBppRmhXdPWJsqkZilSntG0iYT93Xnm489vYX6HTsHvrmIVj4VtQFllUu5aIxg2BBg0k+N3ibjPXIX/mKLw/f9b4tVinMYpk3IWev3wAzT6WxgZeQNEbP+FM9WoYmbFKkRJKjTT3DMW8yL4Knj2bJltBhZbcvIApMgoD6ubb8G4Y4ltT0aNaDS+A0+CkBY62dqkLkKploN6v4b3Q1zfWpbMYm7kGWwpZqugfEb3RywSg5tJOXdjYN98JipRWInG3dC8mwLFt8gIFZ+PL1VvhyWpNXDgq1pQbwKoQt7obdXvApAfcAJaVhXEhOR3L1u3EsnW7cDnjqrF0aPVADO7bUQ9m1Y63jyfIvRaZB+wBsPjMFHhPf9BYWfLyQeGXZS+vxNNADze59e0toXPHqrXZnb+AR9KJshdHb+8ykCoyHAgPByLCJERESLS3dYmRoiCdUBvM0oNbXVau7GfPYJwFsPizR6GhaKuDWxRE4eoxBL80TvFRRZxW2jPv/7WyPq+PB3ct0zhtIiYngnJXGHEOrVgFhCStwehcxnm11+cu/B30kl7Fql9fCY3MqKa5YgyubMPnpdHg8ljqV+GH8yEFVofPS6PA5WUbuzJ87sq+rbW18F8eR46yjeyIYSKaNjG/Sb/r8lIclfHkqRUIqb/KALAoCqtdygIFObIhCuv7nwSkXXYMqDL4q3p1CXGx9B8QHweQ0mtFGqVNbflIh+hcJiJTZ7QO4S2VQBnJw8t5gT4P64zRfvYREx/7XkDeeeaf+hNEhDQ2Pb9lBRfwWBbjF2zlFWbk5bLFH8XQoVfqEhD4pjba0P8R2UehYGlLm+oy9S7NwU2JpUDujRlpE0fSzXTgvy8Zp45vJBD6ZA7apSoBu5H/jka1/AB9itzDD1p+n8gmsvNf2XsIEeMTQb7aiMOtLIKrLGqLoreStflIof9Kbyo23OZ8Msg3AR+HdrQKYNK70anTPE6eAlJlaarqdlf1WYHLUQzcmHCpG+4Lr406dZQKx9auEX/xJLw/etJYTExogKKXvtb/LZz+D14yVVb6THvXGBweMAyj01crIv3ou/ZekfgjspfLI5GszcHa9/dnrsf6wlRjMUrt3BI9XKHM+UXuf/hUxvNmTdX5tWu78Vv+SWOb4/3r4aPQjtaGYtf3HVMX6YFUg9GY63hUHhm+XYM1Ufi32TzOX2DPqwcmiKhV0/K9+ZPsg/gy94ixNbrv7I0dVSGAqBvAcvYKu+u7PWC7B9wAlo2+kiQJh46dwbK1O7Fmyz7k5rGTkiaJtfDXt3dYaouN867oYvYAWDQWn6eHgCuWKaC9+TPEyDJ+I5JQJyl1g1FuPEVh+fu79rTcGZ98OVMAkQQb7KGJOn0qSkWYOqrK0gvU8PRV2FPMAAlHT/8cAbD461n69EBh1zrw19gLtCmfSJ7e0LXohBbdYpHKMSLnXTH32Ky4VBG+dqTNdN1NXNMVI5j3QpDgWeVe0i3NyfPnd6HZzza2JWOmQtt1kCNuMFvn6t8rELfpS+P3O3yH4N9ApkpIXEODB5hOY3HpQJxsjEB3At8NZoi08pk6EFwJS4OjKDbJy9vJ3uyr/ud82tiye+aYUSISG5jfENS6OBsEShjMVARQZQBY1L+5KKztGzXYst2+6GiKeCWi9do1JT1gVdnPDNoMr1mSg2GHGHdSdeIWuk95LdTk56bU/aytgL3TBWgL2TOo5fM6eIeZfgapOXxsUbNV97+vOAt3p69UfEyRQ39F9EN9T+dVn9VRJTPDuoHI4K1ZSQ6H/R+wdeIZKGHP44cV/GqhV0MxdOXd+qYCAiS88IxlAOvich5EDm+wiPYiag+zH/y8oivUp57pQS3dTVwqyUOq9gYuld5AnlSMd0LaY7hfLbNTpDTZEyeAE6d4xfuGJZ8cb3sQuxocNBYZ418Hn4Z2tubGct+XU16NrY2iV78Dpy2B9/SHwF1j5PhSSCR2vfoRxlzdpKA7oEYpRfaX8F7wtqJGafcAXVAhU1eArqn/4IYMOKXr8bVM3EDNWfddeDcMVkVpyYdC9wACxgxGRPUExrrS1Dyn9kRTunIcjrY1f6GgEH4ZdY8OjRtZfn8msJii2+RpnyRy8EpwK0eHYbaeG8ByuUvdDbo9YNYDbgDLgcVRqtVh76ETWLRiC9ZsLiNETNqsJMB2oNn/ySr2Alies16H5ugeo69Kxj8Lbaf++r8pBenLmbz+X4M1aSxipJWw/8pyPHFOvKtSUXn9Fedl3s2N/7+Saxgg47WqrQnE1phhJourZbT3xIzQKyPZa7YCWARCCge3Qti5BsJZyykmNAZd3WbQdewLXYsuoMi7gZeX4XDJNePwFkcOQBvvcHuHe9vKayURfS4vwenSXOMYvg7rguG3VLpu28Bs7FizfhE8F31nLK3t0Bcl9zHFQBubsVhMs+EfeC781lhmq+8ILA18vFydNq1E9O4pgVSwqqJ5f/QE+IunjEMrevkbkCqmOW6sypzDr3/wuHDRthPt86V56JLGpMkJhDikUiCksVcWgGVKkfDN4Dbom9MYv/xuGcCqEVVGtE4cVhRpdbvXzqc5h7HsVBo++Geo8fLzGgltpusgyGhwTpfmoEfaYmMZUus7Hj8ORCZti5XeAPa9w8qSAmH7d3UwJ8w1OH0FDhZfMTY9K7QbhvpbB4fUY3n12i78nl/2GyCy8flR/RAluEZJ7vOcw/gs57CxywkB9fFhiHU1T3263xvMF5SJOW3yPwol3rYH2qJJUlNj25ZUz6jQf19pcJNlBaPeOB1Cm1bOfYmirE6cJNCKU7wDWVoXBNwSYE0k7BerX8aojDXG4gkeAdgRzQQobFlfVIZPvwjvtycZi4tR8foUQY/lv8NjxRxFM1ufewtjPM6jQAYEUYF+vrH4IaxHhSrG2Tofc+X+zD+NF67tVHw9L6KfPp1TnXpLipMn48ZaBOMKJS0aXvoTJTJtyY3RQ1HfI9jZoerrXyjNQ2fZ/dtRnlOXDMbBRpat4LFPlvJOAh0k1GHNZuYewQfZDJwlrjgS/iABEFeaG8BypTfdbbk9YNkDbgDLzhWSnnUdazbt1UdhHTl+zljbDWDZ6chbxe0FsDSr/oTn0l+NnRF4RSCWwSgCiyKx5PboQzoQ8ejtNiIM/vk3trGqHizh6ScrNsVRfeJ2PmFCOaLX89pcdEn91+ge4lShyApHzCKAJYoQTh2GsHsNhEM7wJUyXiBTfYmhUdB16Add+z4QqyvBqQcy12OdLIT/p/Ae6O9756iFfpZ9CJ/nMgU6mj+pLG2OHu6I2yu9jnAuCV6fPm3sl6Igi9782aXj0KyZB8/FvxjbPFZzDH4rMq12SOm4PXtIaNtKrHK8/V5fvQzhBCPfJkJjXWxd+D4vu9Y+/ij4nP0GXepIC42p0+0mPaRDrJl75ZqCZDwok2A3p5RVWQAWTUsdhUWpPLtjRuGzj7xAsutkRFUZEy0hIU5EvF4lUISHa7mRnb5c92Wux4bCVPzw+1gE3+IdokYpAosiseTWLe0fEOmzwb4M7YKR/rVtGoOa94nS5po/Y16BUP382B07ArGC/QcbBDZ2S/1Xr6Y3O7K3S9N3dhRlYFTGauP8G3gEYUN0WdSUNdv5Ej2P2YHXyMd+kv+Jh1aPAbIY0PbMkzoEB5t+l9AWAHvfUrbX9k0tNKYF6qwNzer3xUXEZcXh+Eng7DneuN4tVeQ46AHbhg0kNEyUQHybBqPISoqwlBsB1Paq/vFX0+E97T72bAiLRvHUD+DzxkRAZO87q/r1w9jm5cUAKHqOoujuBBudsRrbZTyjUYIvtsQMw183ziiEAHr7xOB3GzhF1dGEb1Zvg0eqNXKJKzYXXca4DKbW3NE7Agsiyw5/7xRbv4nHVlmEY49uIug/a1YkadEmZYEiRbUiFBjdAJa1K+H+3u0B13nADWDZ4Mu8GwVYs3kvlq7ZiYNHTxtreHt5ok+31noerHYtrMtK29DV/1wRewEs/vRheH/BIj0Mp3tyx337vYD0TPZSGhUhYfKjFQsU2XLh9u7jsXwVA9eIw2f0SOsPX1vaNleme9o/CjnqFVGD0NxL+dKo5jlxRsLZFIDFX0mDsGM1hD3rwecwHjlTYyYCdm3LbtB17AexdmOzU3/h6g78eeOM8Xs6caeT9zvBTpZmo5cZda7vw7uDuE2qunFaLXyeGqAg1y/8fAkkH9ft1jyW/wGPFWxDVTpwAi40v1//G7qcbprjiLiKBvaHVV6MyvSv1w9vQTjEBBKKH30TYlw9+LzGeNwIoC16b25lDkvf19ffCrhyhfnyick6vYCEKVMrED4UkIi3Q9qVK1qZABYBI0QyLlfJIy6shH2N4OHBIyFeBKWaVnVrnvwXrohFeGhbR9x1jKmChbWUUHe08tmlBr9t3RyTDzJ28Ti/mD2DQppJqD/W9LNRHcFLCl7/xZlWprPFv6R0W9cj0OUpYRS5QhHEcjsRN9YmkGzv2xrIeLPx8P1zketbRlHQzisC/VYOQpqMN+rB+3V6En9Tdu0Yj1OzmW/9ooBmT5sHB23xmbpMTg6HE8SzdRq4KIuctNQWAbh1aotolEjKgZajDe9JX43dxSzFb1ZYNwy1IR1T3j+ffQXer7IDMLq3SSFREM6wA5sljevggYHl7x1j/evik9BOjrjmttShtM7uaYtBa9Bg9wXUx9nSHOwsYpQMn4V2xr3+1rnqSDGPlPMM1sU7Cn9F2q80asoZf+SfAqkQGuxO8zWNe/deHitXs99Y+7YiBtxl2zv07/kn8eq13QrX2MqXZ+vicgNYtnrKXc7tAec94AawzPiwtFSLrbuP6AncN+86DPrbYM0b1dGDVv17toOfr2tDUJ2/pHdWC/YCWFxJEXymDlZMsvDzxZB82CkpvXB+/7MyhWTQQFEfnXE7bfFSAQcPs81izx4iunep2DFNydqCJQUXjNP+NLQTxvgrybbfz96Pb3KPGcs8Vq0RplVv45CrDA/w9NSresBK2LcBwnlGJG+uUV1iy7Joq+adQap21uzj7IOYISPmfDawGYh4/k6wvmlLkFTKyLvlY67nEYhN0abTPKva3Lw/eBx8MgP0i6d+DF0D110Dj8U/w2PNX8Zpa+9+GCX9RusFKQ8f4bF2PYebN00DWQ3qixjQT0JQ0O0HLzxmfwaPnSxCpOS+FyEm1IP32w8b56arEY/iaT9V+iX+9EsBeXnMh88+pTPrsyeubMG/N9m9hAikx/nXKzfmygSwqPNv85Lw7vWyVH4ySguh9BBKE7kTLENXgFYpf+uH2iS1Bt5YNsA4bMFLQtvpyhS/UyU56HmZpRFS4ZNx4xDAWw8rI/CKQCyDxfYREdvb9DPo17wTeP06S9fv6xOLXyN6VUmXUqo8AW4Gs1Vd7eAnAoqusvU/9d6FuByco2/mg5AO8FqTiKTjzF/DhurQopnpe8r5JTwydrKyUZ1F1Bzs/POdDuOIz4q46jJkB3OWLgSpZhJYldgAqFtH1Ech2mJEOk7k4wZzhEhcrVKr7ndu09p4on/7csMxB4jbMu7bWYaEckgEx5IdjRuD6ryX1WFSZCVFWMrtTPx4+NqYImypg7eu78MPeUnGIq8Gt8LjgRWjxmd1og4WOHyEwz+L2WJu2ljCiOG2H06rlR5JAIOEMFxlbgDLVZ50t+P2gHUPuAEslY+IqH0pEbVv2ovcfEbUHhYShKH9OumBq4TYSOuedZewyQP2AljUqPcHU8Ans+ib4ifeg65RW0V/C/8RcOQYezGlFKNnnhRvK9fJtz9qkC7jKB8/Rod6dSt2gz0r9xjey95v9I2psOnxGeuwqYgRd9hKglvuAos6hKUcQckyqA9HAAAgAElEQVTmVSjZtx2cjpGsm1oMYlQcdO37gfiTpAD7yHzVmytHXrRtWqAuLqROeTLV/M/hPXGXb5kwQVU2z3lfQbN1mXGIJUMegLa/Uh3SmfF7LPwWHhvYy3zJiMnQ9mJpd8Qpt3kLh517BHlmirFLgQc6dNChe1cJntb39s4M1WLdcvMYORlSQgN4fTLVWE9XKxHFL3xVYWMw1/D7H2tQVMS+ffkFLXx9TJdWA6+LowagjVd53rnKBrAoPaRtygJcE1lKskGRsNId6kCHawtSMDFrg74mL3L449f74FXCFmyjSToE1lE+J4hA+pxM2W9mWFcMs0DqbRhW0vcCcmUKhPXGiQhtahpkUQOWRHpM5MdV0ShqhaJXDGYrSfORmQJupLD3hFeHL8GZiDLOLwId9q73wc7dDJTq2V1E966m/XX4cw0KWNANGtwvonpD+wEsUQQuJfM4fgI4dZpDTq5tiprBQQRYSWjQQNILw1C6oL22rTAd92YyHiziK9saY2dae0E+fJ8zXeenlvXwQp/yh2NTA5vixeCW9g63ypQfenkl9pdkmRwPRfL9E2V7qp4aZKHUQ4qydNYezNqANQVMTOSH8O4YeAdEe8vnffoMhznzGIBVu5aE+8fbDmAtvHEOU69uU7hya/Rw1HaREqMbwHJ2lbrruz1guwfcAJbMV/3GvIDUdEZY6uGhQc9OLfSgVcfWjSHQjshtLvWAIwCW5/yZ0GxeYhxH6YDxKB18v2JcN25w+OIrAbLAObRtLWLQAPtfKF0xYYoaees9Dejl1GDPP6NDtYCKBbA2FqZigkzZxtTLVJPkeYoUHIoAokggW41PT4awYyU0ezeAyy87vTZnkl8AdK17QNe+L3QJjqf8LS+4iEezNhu7IcCHgJ+qbOdK89BVdbpKZLXVeE8suMH49Bp5BGNtNCNzrqpzEnavhdfvnxiHp2vSHsVT3nHZcD3mzYDH1uXG9krGPAVtV2X0JX2ZncNhxSoOp8+Yvj+TolzfXhKaNRUd2tQ5O6FyqZCD7gNJy3vNfJX5rmFrFD/5gbNd2V3/zXc0+og2g73xmhYaM9Eaaj4kUwqE1E5lA1jUpzoKi7iw9saOdHm6mt0OtqGCOuplxtahqJEUZqwZ2UFErbuVz62Prh/AV3lM/ILuI6TYZs32vatBaT4r1fxZLXwjTNfqmLoIl7Ss8N+Rd6GTd9U8vFt58xImXdlknIitoMHxnwXknGZIz3sDV+NwXCq6e9fA3Mi+5VKWWrWUMHRQ+Q1zGf+VnEhfQru3dRCsB93ox0x8bWfO8jhxCqBNulyIxtI1JTGCxEQgsZ5r1FgJDK6tSsc8HDsaYYIZVNvE4LjiIvg8Xf4+PaNdI0zvzlQ2DVVfC26NKYHm6QKsremq8L2aR1Q+prdD2uKhAJYWbG28csEDKkspiRQN6Kz1SPtXIRqzpsYQNPas7myzlVo/NY3DD7LsClr/j02yHcCiwao5BImygagbXGFuAMsVXnS34faAbR5wA1gyPzXq/oD+r8S68XrQalDvDgis5hqlHNsux/9eKUcALM3ejfD8lW32dPVboPjpj8s5b+t2Hus3Kje1T04RQTw5lW0ZmcCs79kLrpe3hNdetO/B68iYSe655a30FKofwGlwMn68sSn19/SFLdLK3M18aPasg7BrDfjU85aHxgvQNW5bBlo1aQ9JY5tilqVG9xRnYnj6KmORll5hWBY10BEXVVodtaIXkeVviRmOfLFYQaJPA/otohf6+MRW2tgc6YjPTIH39AeNVSW/aij8dJEjTZms4zn7M2jkqXcTnoO2411m2z9/gcfSFZxZ2Xh62R0ySAT9W5mmVmws7TUCYs0G8PrpXeMwdC27oHjSG5U5LGi1wNvvyxTpOOCtaaY5ey5o89A5lUXDRQg+OGhCgZAmcDsALFMkvZQGTenQVd0mZK7DxkIWAfvjtQEI+ruGcdgeARLavK58ViSVXkfftKWKqZ2OHwc/znyooVp1D5yEDu+bViAkTjE62JDbqfjxNqsdVrbPr+gK0TxlvqJbW55jp/8UcPU/BmDN6L0R2+ueh4EY/8QpHvPms3cIcxEfVw9zOC2LDPGPltD0KcvP94JCDidPlpGwnzvPQ2fD6wDPQ6+emVgfaNhQgr+f6+9l6mii78K7YbCvHcqTog6+jyvv0783r4On+5XnvHq3ejtMrPb/gz/WXHS1vYrO6wtTcb/s0DFa4wfianLWiKCfiPoNZmvasbP9urL+tescZsxkJyxEEUBp7/aYGuymumujh6CRh/NgnhvAsudKuMu6PeCcB9wAlsx/H878Uw9c1a9dtTeOzl3yqlXbEQCLu5oBn2kTjBORNJ4onLEMavkxEryZ8Y2gj9AwGCnwPDzRvgeeKzx2+D8O/yxxPPTZmTE0Tv4T2WKJsYldsfcgTgjQ/03KV6SAZTBLQBARdwtHd4Mib4RjexWKQqbGJ8bU0pOxa9v2AUVeudLUJ55xgj92xY5wZRcubevHvCRMl/H0UONfhXbFPf619P2o03WaeoZgVY3yp9guHZQLGvN5Zgi4ojLSY7LCd2ZDCnVNlIbnLx9As2+jse3iB1+Gro3lKBOdCOzdy2PjFg7FxaZzaJo3E9G3d8Vs/ky5VLNrDTz/+NT4VWmn/pBqJsJzzufGzwiYK5nwnAuuiO1NFBQAH37KACwfH+CVF0wDWKsLkvGQDQqE1PvtALCo3+/ykvCO7DdGnDP77oAorKbJ8xTpj5vDh+Pae8EQtWz9NnlCh4BYJVjRIWURknUsQuqbsK6420IaYd4FDse+Y88gn3AJLZ4z/SxUR+7W9wjCRhuV/Wxfga4t2SFlIZJ1N4yNLqkxAK09y6e4yns99y+PTFmK4E9ddmBN4xMwgHXpGcC3P7DfSEh1CVOfKO+zc4t4ZO5lQFd0NxHxJqK96V2EOLVOnAQomkQe/WjOG16eEurWARo0ENGgngRP6xSRTjn2w+sH8LUsuu/+gPp4384IIN/JfYxjWFUnBmPvKa8qSNxDxEH0/8nuurwUR0uuG6fU2KM61kQPsWuKptQgt0QPRx0n0tzkPHs0GIpQPRI3xq5xVYXClO5Oae8GI2qA11+xXyihX9pSHCtl16mHdzTmRLI16+hc3QCWo55z13N7wH4PuAEs+33mruFCDzgCYFH33i+NAp/HiLCLXv8eYnQZGKB4QT3P4/c5yiisEcN0aNrE9SeXltyyag2PXXvYODp3pE105USC3ZuxBtuKGPnWr+G90Ne3DKSlF1V6YTWYqXB14cIJ8DtWQXNwK7hCxgtnar5cYDA8O/dBXos+0EVXnJpevliKBslMtc2H0+CsLLLMhUvU6aaStfnokboYRbLTz14+MSCiYYOdKc1F97R/FX3NjeyD7t7RTvdfkQ14ffUyhBNs/ZQ8/Dq0rVwjge75w9vQHGJ8FSWPvgltc9sIVym6gUjeDx3mTW4SPT0ldO8CdGyvA28jwbGjftQc2g7PH94yVieVTalOQ3j8/a3xs9Iew1E6arKjXThUjzbTlGZtsMBACc9NNQ1ofJV7BB9lHzSWtUS4fLsALFNcWFU9Cku9sfTjNDgdPx4n/+BxPUkGiHQXEd9f+bz4IPsASBnSYAN84/FjeA+zayFjN4fz/7LrHdJERP3xpp9B6rTGMf518Gmobb89hxajCypNvboVC2+waODXq7fBZCsReMmreaRuYn6e12Y/irpmG/1YUAh8+AnbMFME1PTXy2+Y1WTwDR/UIai+pL/3pF3m9KmBFG115aptNBSU9tygfhkJe+0EscLvUXL3bym8jLGZa40fOSIs4vPUQHClJdhfIxSD7+2FIg/mQ28I+CK8M4bYE9XlgvVRGU0cL80GqYTW0gQg3qMa2nhFoL6nffyeNM6xmWuwpZC9sznL6aeOWG/lFYalVTxi3dz1euNtZQT/m69pbRYpMLSpXuP0uTlOR3vWjRvAssdb7rJuDzjngf9ZAGvh8i16z1HElaPcVlqdDotXlcmjjxjkmk2bc5fzzqvtKICl3tyWjp2K0i6DTDpg9jwBZ86w02x6OXzmSR08KpHY+ZffBVy8xMYwargOjRtXDog2/fpe/JjHCG6fDWqO54LKuCgeztqIVQXJRr99GNIBEwLqg8+5BoFSBHevBZ/BiD/NrTBti84QOw1AeNeu+iKOXld7VnD8pT+gldgG7GTcWATwFXw8bc8Ab5Udlr4Se4sZwSttUokYN1LwVbT26JXNWH7zovEzR05vHRieU1U8lv0Gj5UMSCztdQ9KRzzmVJuGyl7fvA7hGFN3Knn8PWgbK8UarHVEql1LlvMgZVJTRsTH/fvRZrHiwGTh5CF4zXjR2L22YWtIdRrDY+lvxs9KB4xD6eCyFPbKssws4Jvv2GYgLFTCk1NMA1hTrmzBEpkC4UchHTA+wDSH3e0CsMhv3+UdwzvXmWhFMO+JA3Gjq6wiId176R5ssHbeEfgnsj+yDnI4O5+BTd6hElq+oLw2R4qvon8644jz4HjQPdDbjGLZhaU80ncwACWmt4i4PqbX/ZjMtdhaeNk4ro9DOmCcmetdWevVWj+z80/h5Wu7jMWI+JoIsC1Z6hYeySuZT5Y1O4KOQ30x2I8dvlCaLaXbGuzFZ7Xw92d/l+QD+9+Vbap5CWETJZw4DZw8zYH4OG0xojYgAvaG9YHo6Mp5NzA1rptSKRpcmgv5ykiKG4sgO56tvs8OwwUvDj3uvwu53uyZLIDDH5G9q/zBjC3XqyLL/JCbhLeymbJqF+8a+Cuyr8Nd/pV/Bs9d22GsP9yvFr4OK3tXu9Pso880uCk7R33hGS0CHAjwJwoKAvYM1swzBCudjHp3A1h32mpyj/dO9sD/LIBl4Ls6uPZHeJmQqNLpRAyc8LL+2q7+szy/En1eUFiENv3LNmtJm9lm5E5eEJU9dkeBDo/1C+Gx6HvjcHXteqP4gZdMDv96NoevvhEUBOpdO4vo3bPiNq3qgbzzvkZBKP/U4zqEhlTOS+rfN87gmavs5UVOeN4+dSFStCztYlV2JNps2wzh5EFYy2/QJTSA2KEftG16QPIp44ozPMAdva72rL+2qQuQpmVvMtuih6OWE2H29vRta9nf80/i1Wu7FcU/CemIsQH1yjVxujQXPdP+hXxVzIvoi64+jA/H1n4rqxx/dDe8Z01jv8NaDVH8wgyXdO8146WydXjLiqd+BF0Dx5SqjiZxWLOOR16e6c1krZoiBvZHhfDjCRdPweujJ2Q+SoRYqzE81i8wflY6fBJK+4xyid9sbSQlhcOPvzKQJCZawiMPmQawel9eghMlLOL138j+aOttmv37dgJYlH7TKnm+ImX69eqtMbla1SSJpqg2im4z2KRqDTG9eltoi4C90wVAYuuV0v0o7U9u6nvgt2HdMMTPNF9R0o8Ccs+y9uqN1SG0melnUINLc5AvMdRmXY0haFjFCZ9PlWajZxoTd/HnNPpUQEu2fUce+KWM+2ZTg9N4fmK8AvD8epaAK1eZ3x59WIfoGsxvVw5wOPM3+x3laIDdNpC3k0pgbHQZCXujRBHE51NVbNDl5ThUctU4nO/DumOQDNSzNs68/Az0vbIOKbzyfkKgCYEnbrPsgbOluegmi8j2BI/j8WNBkeaOmPo+80xQczx/6xDTkfZuZx3173HKo1pEmhGisDTO/0quYsBldgBAZWeH90ZPX8cVH90A1u1cGe6+/9c84AawzABYFF3VrNdD+vVgDpxyA1jO/1wcBTqE88cVMvRSWBQK3/7D7IDWbeCxTXb6TKkATz+pQ1Bgxb80Zmdz+OJr9oJL0fTTXrU/b99Rbx8rvoZ+6cuM1eM0/tgVMwJ5YgkSk/80fs5LEjI+/QsecqlEVadiUCgILNR1ugtiWPn0tsoEsAZeXobDJdeMI6TIBYpgqCpG6UEkd39TthHs7B2J+ZHmicjVEXFVPdSfKyyAz7NMMVESBBR9udwlRP1enz0D4ewx4+Useu4LiHUcByIoimLrNg7bdgomCZPpntCmlYjePSSQyIKrTE12L0bFQazdBJrtK4xdlIydCq2ZCFJXjUPdzrnzHH6fw+5LtWpKeGBCeQBLhIRal2ajVBbteCZ+PHzNbKZuJ4BFc/w+9xjezr4zorDGZ67DJhmB+9dhXTDcr3bZe4cKcIrrJyJGdehC0WYUdWawQX7x+D7MdBrh/ncFlOQzIKbZ01r4RZVfXWdKc9A9bbHxC0r5OpMwHjxsiySqqPVqS7v1L83BDdn9dlP03ajnYT6F64udp9FuCVOIS6mbhdEPK8mcZ/8p4IwM+Bs9UtQDThRZlXSCQ/YGHtUYtouzHsBZM4HAggDUriXqUwMTG0jw9XHdfcYW/9ha5t3r+/GtbF1NDGiAd0Pa21S9QNJi8OUVOFkqcwqAF4NaYGpQM5vacBcCWqf8jXRdgdEVv4f3Qu9b1A/2+uexK5uxTBbd/WVoZ4z0vzP5x37+TcClZHYvmnifDjUTHPsdkUI38f0ZLNEjGOudUIB2A1j2rkx3ebcHHPeAG8ByA1iOrx4X1HQUwKIdqO9TAxVE4oWfLILkX83kqEim+suZAvJlL/D164kYd2/FR2GdPMXjT5mSUWyMhEkPVi6RfPRFZYTgmWr9kHR0Pe6OZ+NIvJKDnb+wTbXBkZKHF3QtOkHXvh909ZuXI8uXO7wyAayJmRuwtpClN/4Y1gMD/OJdsCpd04Sae4w2/Fuih6GGxryy6bGS6+h3WakutijqLrT3cg0xur0zS9fdRJRgWYnV5437wF1hfB1FL8+EGG86vcye/r0/fBz8pdPGKkUvfwMxvnzkmj1tUtmcXA5r1tLm0zQfjY+PhD49JbRu5Zp7A5eXDZ+XWHSVGBQCsU5TaPZvMg69ZOIr0Lbtae9UnCp/4iSPeX8zHxBJ9NhR5edsjwIhDeh2A1gUhdUm+W8FMbotfEhOOdPByqT0R4p/BtsWMwy1NIH6PzN28ji/hF0fU8p26igCApuOJ4wtlzJpSoGw/bs68CYCOv6+eRbPXCmjRiDr6B2BBZH9HZxh5VYj9TZScTPYx6EdMc7f/D1j2I6NeGEpS80SE4rQebLSKUtX8Nh/gF2HqEgJHA9cvly2ie5xE5AHXO31Bq7LePWIhF2fGtgAqFNbrFTqAke9T6AqgasGs2djr37uURuOEME7Ovb/L/VevbYLv+efMk7ngYAGeM9GEFHtgwGXl+E/2WGfLQIHVdWP9MyiZ5fBxowUkZjo2LPalJqrM++RbgCrqq4a97j+P3rADWC5Aazbuq4dBrAAfQQWRWIZrPixt6Br1tHsfI4c47DwHyVj84RxIurWduzhZ6vjNm7isHkb67ddG0pXqtg+1WPrlbYYJ0tzjB+vnrMWB2uE4NWerYyfjUq6gO+X7zT+ravTRK8iqGvZFZKXj03TrUwA64WrO/DnjTPGcb0f0h73BzSwaZwVXeivG2fx3FW2CaT+PgjpACLJt2ZqYK6TdyT+thC1Za09R76fe+M0ZmYf0at6PVWtCZ6u3twsj5BaLbDk3ieh7Waf8pKpMXq/+wj4tAvGrwpf/x6SCaEGR+ZHdYiTbtkK88TK4WESBg0QkRDv2OmuYVxcaTF8nirj5yvWCDheIwJNAmOhOcr4vYonvw1d0w6OTsWhev8d4bFoMdsING0iYsSw8vcltQJhN58o/BnRz2yftxvAooGpVT+roiLhZe1NtEllaaQGAneDY0vygP3vKcGU1q9p4ak6o1GnEf4U3gP9fZVAfv4lDkdnWebUMvRLPFLEJ2WwxwMb49Xg1g6tscquNCv3GN6TRd/d41cLX5nh+iEF3jePHcLHC4cZh+lbA2g+VRkdvW27gHUbTUef+YpAVybCqueNWucL+AVIaNyQuPUASk++04yi2CiaTW7HYscgWLCcG6lW06X61sQF7jTfVNZ4CYglQNZgsRp/7I5xTGk5MXku8sRSY1v/xd2LUN67sqbi0n4WL+Nx8BB7bg0ZKNp12JSXz2H3HqBrZ8DbW8KjWZuxvIBxj5LaI6k+OmJuAMsRr7nruD3gmAfcAJYbwHJs5bioljMAlseiH5Q8Mn1GgbhkLNlPvwpITmEvo0Ti/MxTFRsNNXcej1Nn2AN36GARrVpU0kutJEE4dRhP5OzGwkgGQn26bh/2RYVgfmPGR/HOxgOYcj4Xug59oOvQD2J1yxLkpvxcmQCWmteB0hMoTeF221WxCJ1TF4GUEg3W1isc/0YNsGlopqKwlkYNQCsv+6+HTR3eKkSpH7PzT+K73CRk6WS7MgDRGj9MD25rMsJNs/FfeC6YZexK264PSh5gpOX2jEFe1vvNieCzWDRF4fRfIUU4zk9hbhwHDvJYu4FDYaHpTSqd7g7oK4FU+my1TF0Bzpbm4VxpLs6U5ODCkQ04ExKItABfSByH1tcK8Nv8NYjOL0sRKXruc4h1mtjavEvK7d3PY7mMwJrSJwcPLH9f+jLnMD7JOWzs8+FqiXirejuzY6gKAJYpLqxXg1vh8cDK9bGlC7Wy4BImZbEovA7ekVioAqqPzBRwQ/a8qjlERFQn5TVSi3QQBxZxYcktcy+Hc4sYgFW9kYgG95l+BvW9vBRJJUxi/ufwniDexDvB9hRlYnjGKuNQDenypsb+5JWt2J5+Bd/MHW382itYQquXVWT5Jg6+DBViSoHGJax1XYiEOveJoCitO93uSl+Go8UsRf+n8J7ob2EdqNMOaf4d/SLwZ2g/kMCA2+zzQKGkRcNLf6JERqe/NXoYanuURWjaatm6IjRO+YutcQg4nzDB1upVrhw9q7fvYPcyipbu0tn2d3gDAEZUHq1aiqjdOQ+9ry5UiBZ8HtoJo/3r2j13N4Blt8vcFdwecNgDbgDLDWA5vHhcUdEZAEs4tB1eMnl6XZ3GKH7uC4vDIhnrr2cpX6b69hbRuWPFAUqffiGATn0MpiaBdYUf1W1w19Kh2bYSwt4N4LOvYGbbREzrwQiw7z98FvtqhOJ4OOMHWaCrh461zUew2TLOygSwfs07gdevsyiWcQH18HGIc+O3ZY7WytyXuR50um8wSuvZEjMMMRqZdJWVRtTcON18auDPCMdViCx1R1xoP+Ym4Zf8E8gRZbsxE5UoGuyDkI6oLSPL5y+cgPfHTxlLixGxKJr+izU3Wf3e+7Vx4K8z9cbC9+ZCcgBUtdoRRUYVcVi/icO+A7xC7MFQV6MBOnfQoWsXCfT/ZKSAeV6bj3OlOTirzcOZ4myc04NWOQoCbHP9VysuwY/LdqLvuTQUvfYdxJgy7qPKsu07eaxdz+6FnTqI6GdClW7ylS1YaqMCIY29KgBYNA61kldVUyRUA/CPBDbCm8FtFJc/dROP5NXsGgXWktDoUeVm7UBxFoakr1Tcb07Gj1OABheW80jfxtqJ7ikivl/5Z16RpEXdS3MUm7mjcWNAEWx3gtFvsval2dDKpDAOxo5ChErxlQDOxIt/QlMs4Ldf7jNOTfAG2r2ljMAivh3i3VEbcea154Bqeeyb2L4iYntV3LtEZV4DNTBqCbj+Lf8kXlOJlTT2ro7Nde9Gcf7/D39Upu8Nfd2bsRbbipgaKAk8kNCDPXao+CoGydRKSYyBRBnuVNuxi9cLshisQ3sR/fvatsayczh8+bWg0CciTrufw7ZhviyaP0rw1Ue7aewEXt0A1p26qtzjvhM94Aaw3ADWbV23zgBYXH4OfF4caRy/5OGJwq/KczipJ7hsBa/fqBqMTmIoCsvf3/WnpkVFHN7/mL38kvLQm69qwZd/H3b6OnBFhdDs2wB+91oI508o2ttUMwrDRzGOnaYZ13EkUklWezJuHAJ4D6fGUZkA1oqCi3gka7NxvP18Y/FLeC+nxu9s5X9vXgClUcjtnZB2eDAg0a6mDxZfweB05VpeWWMQmnmG2tWOpcIUZfVt7jF9uhCd9tpjUwIb49mg5kZVJN/JfRTVCz/7F5Kv7YCdqb69XxoNPo9FghR+shCSv32nz/bMicoSwL10OacgiS31KMH14GzkVstBUVguUOsarnjl4aI2397mTZafdOAU3u72FMRQE4zaLunBdCMbNvHYIgM1enYT0b1b+Y1A77QlOCEjZLYWDVhVACwCKdolL8AVscjogGnV2+Cxao0q0Ku2Nz0uYy02yzans8K6YahKQbAoGzj4oSyNkJPQdroOGlX2j5rw+Zfwnugni5Y5/rOAnNPsEKXuGB3Cmpd/3u0tzsSwdBbBFKPxw54Y9oy1fXa3r+Tdl1diXwkDvn8I746BvgmKAcmfHX9/+xA4GUF9hw+1oOe0wYgz7/MZZQ9sEqyuXUdEw/pAg3oSDn/IQyeL3GwyRYcAJ1OOb5/nlD2rU9iaeFbHahPAx8qblzDpCoskpFYo3W1vw3tQnfPG1VzG8VZV5nanjOOn/ON489pe43C7e9fA3Ej7DrKW3LyAKbJ3kjs9pfPgYQ6Ll7IX6GZNJdxzt20RWH8vEnAsif24iSbgick6vZo1pWLLjfjGiHfMHnMDWPZ4y13W7QHnPOAGsNwAlnMryMnazgBY1LXPtAngrmYYR1H00tcQEyw/dAhU+uJrXpEy1KypiHvutu0Ux54pn7/A47fZDCwzPDDtacNiWVEHzfED4HethfDfTnA6lrYmr3fFzxv1nrjHbFNxgj92xTrGryBvtDIBLPVmq4VXKJZHlXEN3Q6j1EFSHcyVRTG19gwHEaY6YmMz12BLISNH7+UTgz8iejvSlKJOsi4fM7OPgniuzBlFq0wKbIwbumLMyksyWSxC8MH0kLYY4lsT3h89Af4i480pfvID6Bo6x5vj8+zd4ApvGvsu+PxfwMc5UMyS8y5p80GE5SdKcnDgSi6OZufhakAOirwYAOK08800EMf7Is6zGuI0AajpEYh6nkGI1wSgrp3pIvaMb9UaHrv2sHsTnWLTabba1AIQ1oDuqgJg0TzUG0Ba13tiR8KPcw6ot1YFoF0AACAASURBVMfPpsoSqNY8maX1UJkdMcORoCkvQnLoMwGFWTLwaZQOYa2U4BNtcmmuBhvuVwtfy7if9r8voCRXpkD4lBZ+5UVk8V1eEt65vs/YDv22vw1XpiM6O/eKrv/e9X2Ke9ZDAYl4O0SZ8kqpm5TCSfbrLxPgX8wizNq8qYWHr3KUlHbUKBGoW4f9PgoygcOfM3CR95TQbroOXAUcTlW0z0y1TynwDZLnKr5S//b3FWfhbln0HxUO4j2xOnYw2oWGo0QrugEsJy4eRfR2TftH0cK5+PHwNqMAa6qrr3KPgKI9DUaHT6/dIZx2puZDdBxEy2GwenVFjB9j/d09I5PDrO+VP877x4t6VVCyadf26KPQDRbGe2N37Ai7fO0GsJxY7O6qbg/Y6YH/eQBr1JAeECgWXGWSJOGvJRv1n46523RUh1arw4LlZREgSZuVKm92Xof/2eLOAlhev3wIYd8Go/9KRkyGtpd1Asa9B3gsX6G87o8+pEN0tGujsNThzs2bShhu42mRpUXBpydD2LFKP3c+TylXXW4t+/lD16oHGrYPwRXONMBFHCfEdeKsVSaAdVGbh06p7OXOVSCcoz6Qb4qoDS8I2BAzFDVNbEpt6cPU5mBNjSFo7KmMnLOlLSpzujQHX+X8B4oSM2fhgg/oBXdCQH3jixuBOq9f3a2IFpHXp7TCj/eeR8NV/xo/Lh10P0oHjrd1aCbL6VVGS1lKYwFFV3qY0ae3sSdKkTpVmoPzpXk4X5Kr//9Lpfk4VsoivWxsymoxuv5ECFvbIwiJB/eg3ukzCL9ZiP8ig/F6DyaeYK0hWtc1PQNQVxOMeP2/QYj39EecEGCtqsXvlywXcOAgAzUGD9ShjQoYUW+gIgVfHIhlioqmOqhKAJapKKyqwIX1QfYBzMw9anSfpUgnSiGkVEKDVW8oosH9yg2b+l4RwGlwMr7s91dOgRBA+/e0JhUI1few6dXbYFIViVizdbGvK0zBA5nsnaCpZwhW1RhsrK4mKJ85ZxQi8hlw2PIFHbxDrb8HpO/kcUGmEhlcX0JiJasL2+oTR8v1SVuC47Loy98jeqO3TxkP4enSXAxJX67gevThNCDV3Da+4QgN9HIDWI46XlavXeoCpGrZQc6ciD7o4WMCfTbT1zNXt+HvG+eM334S2hFjLShzumDIFdoEcdgSl63BYqIlPPKQ9QisOfMEnD7DnndxsRIensjq0QEkRewWgX1GQB+9D9lqbgDLVk+5y7k94LwH/ucBLOddWNaCG8ByzJPOAliazUvgOX+msXNtq24oefh1q4ORJOhPYzJlJ9sR4RKmPKpTpA9YbchKAVI9JPVDg93VR0THDtZPi0w1y93Mh2bvOgg714JPZS8kJofAC/oIGF3HvtA16QBJ44GxmWuxpZDxKcjrPR/UHM8ENXd2uqhMAIu4mxKT/zSOmfgKLsUzPhOnJ2NHA8tvXsSjV1g6I1V9LbgVpjhJGj0yYzV2FrEIQ0fSJEk++4vsQ3p5eXPbMgJJpgQ1weiAOvCE6RCCtQUp+nQGiuBSG8WzPLL3BF7ZcQR+JVpom7RDyZR37fBg+aLqtMSCb5msu7WGDSTqZ4mfqiQXZ7X0bx7SdTfN+sBam+a+9yn2QgIXhBbBgajnFYi6nkF6ot0Ywd+YmOQ1axqEo7uNTZwOCcTY4d1wrrrjIJTn/7F3HtBRVV0U3tPSSCEEAiGE3nvvSAdBiiIgChbEgiLFiqKCKP52QBELVhAEAUGKdFBA6b33FgIhlBASUqf8606ceTOTSfImmcmU7LuWS83ccs5335S33z3nQInKmhBU1YShqjoEVf1Koqr4f3UYyqjyrxpqG04x8AEdGjawvkL+vHsRz1iEB3UIKI8F+YSweJKAJYB/f+cYJt2SwnBEmLQQ4dx1CksIKM0uLYD4t6lNKdUKw0PthxmnXFbg0AyLMHSVAS0n66CyOEQmdq3JpQVW4ZI/l+2K7oExSI5V4PCXFhUIIwxo+pr9G74Gl+bjll4K+fqjXG+0CHBt8YiCvu9yG5eoy0D92Pnml4X0d7zSMAT/d2plUcoZjLOoEPvZ7wNQMUF6KNBwtA7BFfIXsE7MUeLWUUlYrHyfHuXvKdh3u7MZOGu+ibd24oc70qkUU5428fna68oKXLMo9qGCAnPKdUOngGj4qZUUsJy0CW/c3I45FlVBh4fUxpSI1rJnfyB+FXalSyG1v5XrgfYB5WWP97SON24q8MVM6fMsopQBY1/IW8CKu6LAt99b/66xl4v2w8R9mJF0yOyy+K7YXWGw7NQaFLA87WqhPb5MoNgKWI+P/cCp+zr78zecOl9xmaywApby0mkEfPC8GZe+ZATSP7AOzciNZVycAt/+YP2lZu8UQmH2YsZXKly/IQlYTzymQ9XK+f84Nq2p0GqhOrIDqu3roDy6Cwpd3l/U+uiq0LXpAW2rbjnyBU25tRtf5xIOZvlktTD+FqWAJex0NLypML7lNlaEDIrQQfEEz9Qa+UVglcVT/4Kuuz39GgZaVNUS82wqfz9q+UnJ93ObW4iV4sfYdgsBzLZvNXUoRoU3xEMlqss2cVrSQXyauN9u/zJ30zBpy0E0unUXVd/8RfacOTpmZcJ4AsvU1BqkzpASVZv+LE6VXchKxomsRGO1P1H1T/xjKQ4U3AjrkdGKEARdL4mA+JIoeackwu6URMmkkvD/L/yoVCkD+t1nQNUqOW9i/X/60FhQwbJlqFWY1Kkx1lSPwcWwEs4y0zhPCYXaePJPiFs9S8Tg/hJStVHTQr/MV+G0xRPpoUP0qFXT2nbbvX4qpC4mR7TM01ZPE7CEsU1if7OqrOnOU1hfJR3B+4l7zAwjlP44VPHhPJnunqJClkUhkFqP6hFR33qv3rq5Az8lnzDPMzC4Kj4vfQ8S9ihwZpH0PRdeR486T+S8RuN1qWgWu9DKDlGtTJwk9LbWMW6JsQqoqc0v2xP3BGbnmHv02npsSoszvzZr1SCEX5Ry69V9SoeSNfL+jhYPwHZNVlnlv2o4Wotg5xdJdSv6NamXMCIhOxJBNHGabWG5e40nr8QJLMv2eekOGBicXYiCApbzts02F5k4ebs9Jvd0ELYr23727aww0KGCMs7zxDkzpaYCH34qhe4GBgBvvJZ3Dk/b6uO5hR2K33LixJtlBekxoQ0wvpS8E9MUsJyzx5yFBOQQKLYClhw47ON6AoUVsETJsMCxfaHQSqFG6e/Pg15mtTLbE1IBAQa8OFqPwED5IlNulPQ6YPL/1FYVTya8poNYI7+mvHgKapGMffcmiJNXeTWR2Frbsit0bXpCXyHnjapprL0E46bX7FVqys9Ge68XtYDVJnYxLulSzKbklkemIL7IHTPm+hb8fvecVfe/oh9ATSflL7JNSnxfUCXMiuycq3nipmP67QM4nJl7WFx9TSmMCW+YI7mxXJ/FSabJN3djReqFXIeEQIVWgVFoFVAOLQMjIfKByW0i95XIgSVasp8GRytE4ehzr+NcVhJOZCYaQwCdlUTd0iYRApMd9pd9kqq6Jsz433U04cZu4sZ1/yElNmxQIOWuRaZni0lEnpw+vQ0ILym9z/0WzIB683K77hsiyiJtylyczLwNkYfrpPY2zmbexoXMZJzW3s63MmR+TIWYtTfmoRxPkX+crcKFi3mL688lbMbyVCnk9NPS7fBwPuXFPVHAsq1Y6s5cWI0uLbASu+WIaSJUTYSsmVqZJgbUGGL9MGNnRjwGXF1j7hOq1OB4xaG48KcSV7ZYVCDspEelXjkFrNWpF/FUgpSM21kifH7Xpytef/XGv/jVoqrYS2GN8HJ4E2N+wroWp3bF2su2PIrMo1IOrJpDdSjdMO/v6LuXgYMzbPJfvevc09uu4OLonKIqbT0bXs38y2BvxnWrqWxDrShgOUo69/6iwEr1i3OtOsj9nSNC5qvZjI2r/ITzjHPDTOI7eNJ7FoUtAEx+27rwgqVZImxQhA9atlEjdRARF/aaCO0WId6mJqpI76w4CKWVNpUz7AymgOWGC4JLFlsCFLCK7dZ7huOFFrBErqHpr0J18oDZocwRb0HbXF7i2ZQUBaZ9oUKWxQOcVi30uM/OD3xHiV2OU2CWxQmvkmEGvDQ29xNUoqqiWiRj37EWIsdVXs2gVkPXoDV0rXtAV78l5JQ1FE9MO8dJeYpM84sS6aJUujNaUQtYojy0KBNtakujeqGlf1lnuCJrjk1pl/HotQ1WfV8v1QyjQxvIGi+n09a0qxhyba1VV3sC2eKUs5iRdNDq5IHt/C38Io3CVZf/8pjIWT+vPjsy4vHGje05nsbnNqaVf1m08o9E68AoNA8oYxXGZZlE/dzda7hwZjdOli6Jm4HSzWVh7TWNFwlaq/8nUFX3C0NNdTiqaUIRrZZ3EiozC/jrbwW271JBCNW2TaRVbNNKh04dAX8/A/yW/Qj1GimsybK/ProK0t+alatr4mmwOGF2Tvtf3q7MRKPQZXsCIi82k0q1wDM2uYy+/k6Nq1KNANgLqegS94cxT5ip5VeBUPTzRAFL2OUJp7BExc/Xb24388xNXLTdy6SzChydJd2EqfyzqxHaVnlveGk+blqEAIp8OWUXVMTtE5JQWf0hHSKb5rx5sz2hKypwiUpc3tgWpZzFuBtbzaa3DyiH38rdi/kpp/HKjX/NfxcPGb7fMRDXdkl8qj6gQ7nWeQtYVzYrcWGVRV6yenrUfsy3wgdNkLrG/YETFp8BtteDqLArKu1aNgpYzn3X2BZ0ySvk2HJl8VCky5U/zH8SJ663VMg/R6xzrXf+bB98okZamjTv+Je1KJHLV/eXX6uQcF16fzeoZ8CgB3P/HS5Ev9axi63CseWcPBbWUMBy/l5zRhLIjQAFLF4bbiXgDAFLs/wnaFZLuZC0XR5A5iAprDA/B7f+q8T6jdKPUVFC+4Xn9ChTunA/SHfvVWKFRaL4OrX0ePgh6znFyTHVgX+NVQTVJ/ZBnCjLq+kq18oWrVp2hSFQ3s225Xy2IXfiNRFaIUIsnNGKWsB6MmEj1qbGmk23VzLdGX7lNodtglVxsmltdD+nL9n36p/YZ/HU+/4SVTCzTEeIJNULkk/jq6TDVolebQ0Q5beFcNXKv5zTbRMTiuo9nybsRJKD0UaiNHuKXmus/ueKVlUdajxFJUQqIVjVUIehhqak7JwW+dmUeFuBlasUOH0mZyEQMTa4hAHduhrQKv5XaJb9YHc6XbV6yHhlen5L2X09W/RLxsnMWziflYzzWUlGAVOEg1m979UlsKvCIKu/ff6lCjdvST/sRz+vQxmb5NUFCdH1VAHLE05htYn93SqH3Kiw+pggoyKYQQ/sekcFXYa0X/ZC3Sbc3I7ZFvlyhpSojkd+6IiMRGlcbqFuD15dAyFIm5qoYiiqGXpjE++Ltpd/N5sepFDjdKVhGBy/Bv9ahFSLhw39/mmEuM3S+1ecTovulPf38PGfVEi0EAWr9NUjqn3hfi94Kuc3b+7AzxahqZZ29g2qjG8iO+UwnQKWc3fTtppq54BozC3XPd9F1qZewpMWIaDOqmSc78Iu7iDnu0uYcOSoAiLXo6mJ3/bjRuusTkfbM1X8nhFVCS3bnphBiFLl/ZubApaLN57Tk4AFAQpYvBzcSsAZApbq8E74fyUlbtdXqon012fK9kucoPh8pgriZtTUbCuUyJ7MouPyP5XYs1f6Ydy5ox7iH9FUZ48YRSvVvs1QplnfbNquJfJ6iZxW+na9oC8jv/qMPZt7xi3PUXHt+dB6eLNUi4K4mGNMUQtY429sw9yUU2Y7xIkBcXKgKJrt2mLN9dH9Ufe/cDNn2vB3ehyGxlsnMRc3vwuTz1g9KbRdU1SXHFeyERr4RTjTHLtzJR3bjlX/zsW/FSKxLSYS14LzTyTuDKPEKRZTqJ8I+6upEcnMw5wWwinHxnPnlVj+pwK3LAQhy3E9lcvQPc6+SKWr1xIZL7wvZxnZfVINWmNetqsWQtY3kR3RN6iKeY5PpqqQnCJ95r08ToewUOnkiRDCRC4hU4tSBWFPPhUIRV9PFbCEbbansCaWao5nQ+VXmZK9AXY6Lrt7Hs9f32z1yoGKQyBOA8pppxeqcH2vtF9lW+tR7QFr0UQUfBCFH0ytlCEA335jXQ00twqEIkxJhCuZmtwwJTm2u6NPYztJ7S2rEwqbtld4EMqtYRCVHk0tuqMelXrnLkYZdMDOd1TQZ0p70fhFLYJc82zAHeis1vwz9QKeSbAuUCI6mE612TOQApZzt822GqyYXU5+ull3jmLyrd1mY+ydlnOupUUz26wfVbh8WXr/jXhCh0oVrU9NilDD6V+okJgk9WveVI9+feQJzS1iF+GKTqr+KELnRQh9Xo0CVtHsP1chAUGAAhavA7cScIaApUhPQ+CLFqdelCqkTV8Og8ZPtm9nzykxe671KYrBA3SoXz//fFW5LSLCB0UYoakN7x2PmglrodqxDsrr9qsBmvoK23WN20HXuid0tZsAIibJCe2l6//gt7tnrGayvbEtzDJFLWB9krgP0y2qxowLa4hXw5sWxgVZY5fePYcXrm+x6mvKsyJrggJ0ElWfDmXelDVSnJwYU7IRajgpD5ecRRVpqQh8qb+568VSofh3/EfYnpkAkZ/ntEVSZTnz2fYpqwo0ilPiBFVVTeh/1f5C830qWpC1CjJGpwd27lLir80KZFiclBFzNUndiKFJ9qsyyq2c6qhNtiFhTfxLY2VUH/M0Uz5UI1NKHYgJr2kRYKGlrLp7EU9bVCAUp/jm5VOBUEzuyQKW7Skskc9neZRFsQBHITvQv1vcMhzPSjSPeCykFj6IaCN7hlvHlDgxW/oe0IQY0PzNnHmXLCsJVr1eGh8tzs4lJ5p/uAHNXs8ZPnM06xZ6xEk52kSOsCMVH5Ftmyd2fDrhL6xKvWg2TYRPnbU46Wl6P8TvVOLcEolr2ZZ6VHsw95vc5IsKHP7KIpwz0IBW7+RdXMUT+ci16aY+HQ0vWRfGqacJx5Ly95krO9rORQFLLl35/WxPe88r191Y8TGvZlvBUIR6ChHL29u8+UqcPC29Z0Vkg4hwsGx79ymwbKXF+1QFiIc04lS0nCZ+J4vfy5Zta4UHjFV+c2sUsOSQZR8ScA4BCljO4chZCkjAGQKWWDpg8ggo46W8UekvTYW+hmN5iGyrcgUHi4TuOmgsypXLdVM8/Zn8vhoabRoapG9B87Q1qJ4p5enKbR59tfrQtu0JXbN7YPAPkruc7H4/JB/DxJtSSXkxML8vZdmTW+QAcNa+5rf27OQTmHBzh7nbI8E18Ek+T8nymzO/10XuoV5xy5EO6aalqX8ZrHDxjbBtNSJ7dgr/R4c3hKhU5I4WMGk4lAmXzUunj58BfeXsE3HiRmhn2jVjVUTxj+XNvKWtIol69Sw16m7fghq37qDWzTuoFhQJ9StfuMMlh9dMTVNg3QYF9h9Qmgs41E7fjqcSJ9idS9uuFzKHveTwOvkNiNPeRcvLi6y6LSvf25xMf+K7eSfCnZp0EJ9ZVJsUObRELq38micLWPaSUh+IeQhlVK49LWjvBOWOmIGIUQXnh9P8ul4L7Jqkgl5rkc9llA4hNicPXruxDfP+O5V6z8nqGL1JCvEKr21AneE5xZa5yScx3iI3l9wQJdnGu6GjbdiVrQmimqbIbXPjoAKnfpVudCMa6lFraO4C1uVNSlxaK908RzQyoNYjvitgCW6iMMiOtHjsy7yO27oM/F6+d54nBylgOf+Ctw3lHBFSB+/a5B6zXdU2d9acst0gwgi9vS1ZpsKBg9LnYP8+OjSzyOsnoiqmfqHCHYvKrW1b63FvD3mnr0x8bKuZ9g+qgq8ic8+vSwHL268s2u9NBChgedNu+aCtzhI6/H75DOptUuhE1v0jkNVziEPEbiUq8MVMlVUaqo4d9Oja2bEvPXHXmrz7IGLnr0eDjC3wN6TnaYchopwxRFDb9l6IimSubCL/h8gDYmqi6tqZStYhJoVZv6hPYNlWzuoRGIOfynYtjAt5jhWhWSIMUyTUNrUwpR/Wl+8vOwF4YYzrHrcMxyxOcYi5RJn7YSE1MapkA5RVOV/0dMRe/58/gmqnlNQ+c/AoaDtLJ0As5xLJyYWQdSYryRwCKBKpi6Y6cwT+n71o7q6rXh8ZL09zxBS3942/Jp4AKxEXp0DlzMN44eYYuzZldR2ArIHPucTeZxP+xkqLSpF9girj28hOxpNX4gSWqanVwMQJ1qXIRyb8bVVlUk4FQjGfJwtYwj7bXE9y/SrMBtmu+UCJKviyjLxCI5brnvxFiZtH8g53syz68MiO5nhgf2PzFOXv0aPyfTm/z2xP5r4S3gQvhjUqjMtuH3sw8wZ6X1mZqx2myru3TylwzKLYSlgNA+o9lbsgdfQ7FZLOWCR9H6BHuVYO/kZwOx3XGkABy/l8bR9gifyOW/NJyC7ywIl8cKa2OXqAscqut7c165TYtkP6HOzRTY/2baX3oHhN9DE18RD6lXE6h6uLi+9O8R1q2fJKE0EBy9uvLNrvTQQoYHnTbvmgrc4SsNT/robf3KnSDW/DNsh47l2HiW3YpMSWf6QvPpUSGDtaB1FBML+muHkV6n9WQ7VrI5S3EvLsbvAPhK5JB+ja9oCuekNAZJcsgiYqrOzPkMLQAhUqNPYv7bSVi1rA2pVxDQ9cXW22v7FfafxZXgqTcppj/01kG5Yi/iwqfXUOLFxuMrl2iifhI/5LyhqiUOOJkDp4pmR9iEqSntDUfy+D329fSu/DFl2R8eTrDpumOrEP/p+Pl+ap1QQZ4z52eB5PGHDoiAIHVl7AyItP2TVnV/RjKPvMYyiTS1nvwviwJzMB/a+ssppie8yDKJUWgo+nSgJWUBDw+ivWApaoWGpZ6VCcMBQnDfNrni5g2eaF6R5YAT+X7ZafWwV+XRRfEEUYLNtf0fcbw2Edbdf3K3B6gXRayL+kAc3eyCm21L30K5L0mXhtVXe0uFjJvEz1QTpENs/5XdYpbolViK8IFRUho97eql34xeqkrMmfNgHlsLjcvcb/TYlV4NCXEtPgaAMajrEvYIn8VzveVsGgk76vm7yiQ2CZ/H8feDtLR+yngOUILXl9xcOzGhfnWn+WV3gQFdW5n7a2LcIRV/kJeYt5eC/xG138Vjc1IV4JEUs0USH4s+kqpKVJ71HL/LOOutYjbhmOWjw0zCsRPgUsR+myPwkUnAAFrIKz40gnEHCWgKW8ehEB70o3iIYSIUj7VEpALNfUrCxg2gwVUiySG9eupccjNtUDTfOJ/FvqPZug3L4WqnPH815GoYCuVuPsvFZN28Og8QzRQS4bOf2KWsA6l3UHHSwSTUfbqbYmx245fX64cxwTb1lXpnkhrAHeCG8mZ7hT+ojbpIFX16BTiWgMD6mTaw4SpyxWgEmUF08h4MNR5pGGyPJImzzb4ZlsCzNoG7RC5vP2c0g5PLkbBmivJSD0naF2V14RMhJbQh5Ci2bitKfB4afE+blje2rvqdA6GIPWEJWcTC28pAEvWty062FApQuzYXmuRFRxE9Xc8mueLmDF6lKMZdJNTaNQ4njFRyBOo7qiPX5tA8TpCVPrGhSDOZEFOyWqTc+uRgiDRQLxl7QIsjm4+/KNf7Eg5TRmzBuMcnekExcNXtAhJMZabBEnIWtfmmfl+omKQ51WqdMVTOXOKRLai8T2tu3DiDZ4NKSW8c9pNxTY/4n0XgiIMKDpa/YFrKSzChydJfXVBBvQ4m3fDh+Uy9qyHwWsglDLf8yQ+HXYmi7lT51SqhWGh9rPaXU+6w7aW/w2Kq8qgd0x1pVo81/RM3vs2avA8j+l92HTxgbc3y/7fbh5ixIb/5bErcBAgzH3lV8BUoGI+TamxuKxhI1WIFaV74NGfjkf/FLA8szrhVb5JgEKWL65r17jlbMELOFw4Lh+UGSkmX1Pm/wzDJGOn4w5dFiBxUulL0cx4ePD9KhW9b/bOb0e6uN7s0Wrg9uh0FpkQrZDPkEdg/TmPRDZvztERUFfbkUtYCXrM1H70q9mpGqFEhcrPeZ0xCJ5et8rK6GFdPPXwi8SS8r3ghJFc3rO6U65YEKFVouAcX2g0Ek3dWlTl8EQ6Fhoo2r/P/CfNdlsoa5xe2Q8O8kFFhfRlKnJCHp5gN3FFoW+jJ0lsk8NBgQY0LWTAS2a651VtwF/pJzDqBtSwYEAqLAu4GHMniVlbC8bCYwaKZ3AOpmViC5xy8z2yq1AKAZ4uoAlbOwUtxSns5LM/v0Q2QWiYqez2zltEu65vNTiUwOwzENWkPWOfa/C7dMWFXN76FGhq3UI26bUyxh+dRPmz3rSaolW72qhsnlusjktDo9ckyqcyglNKojd7hjzUeI+fGFR5EPYoIIChys+DBH6LZr2LrDLIh+ciMJuNcn6NKLJ9kvrlbi8Qbo5LtPUgBoPUcCy3VsKWK652mclHcXkRKmqYNegCpgTaf/06F9plzHsmhTO3zagHBb9d+rQNdYV3azHjiuxYJH0PjQ9ZM5IV+DjaSqIB9Gmdm93Pdq2KVyIb+8rK3DQooBOK/+yWBLVK4fDFLCK7hrgSiRAAYvXgFsJOFPA8v/yTaiOSgnKM554DbpW3Qvk3/c/qXApVrpJMJ5QGHgBmu2roNq1Cco7t/KcN00Zgv0BnbE3sCcu+tXFCyO1iIwskCleNaioBSwBp9LFOdAapB8ox4w3J8473Zaoy0C3K8sQr0s174Wo0vVXhQF5JrL1qo1zorH+n4yxOo2YMep96Oq3dGgF9a5N8PvpA/MYbYsuyHzyDYfm8KjOej2CRvW0a9LckhNxILCz1WulI0S5bwMqVyp8aJJ4b7S+vBhXLa7fFxQtkDZbynEUE2PA0xbJvVfcPY+R1zebbeoYWB6/lu0hC6k3CFj/S9yLmUmHzf48FFwDU11Q/GHM9a34/e5Z8zqtAspiSbmcNz6ywP7XKX6H8PxbVAAAIABJREFUEueWSjdvJaKBRmOsBRcdDOi5ZzXeXSRV5zWEatHuzZwrTbt9AJ/elgqMDCxRDZ+X6eCISR7b1/YmXhjaJbACfrEIGRUFV7a/bnn6zoC2H9kXpQ5/rULyBel3QW4hmR4LpIgMo4DlGtCns26jU9wf5sn9oMTJykPhB+sHrqLDz8knIBK/m9rDITXwaUQ71xhWxLNeuKjAj7MlnytWNOCpJ3RYt0GJf7ZJn42i4qDIfaXMicchi3dmXMMAi1QVYvC8st3RySZ1BAUsh7CyMwkUigAFrELh4+DCEnCmgKVZNReaFVK4UlaHPsh6ZGyBTLx+Q4kZXykRpL+Dpmkb0Dx1DSpoT+c9l1IFbd1mSGncEx9u6ACtIvvMslIJTHpTW1Rprgrkr7MGuUPAahO7GJd0KWYXnFlVUUw6NH4d/rY4ti/+trhcL7QJcG3CfWftSVHP47foa6g3SeG7Wfc9iqw+jp2KEwUZRGEGU9O26YnMx14palecul7guP5QZEgiqGnyX8p+gIPK1nbXEqXBe/U0oGTJwglZXyUdwfuJe8xrlDWUQJ9fHjb/f7WqBjw+TLppF9UHRRVCU5NbgVD09wYByzYvVYTSH4cqSjycsfH2qkDOK9cdnQIcPxVsaU/mHWDP++KOTBJSmr+phZ9NbuapW0+i9cp65qHXqySi/8ic+XIeu7YBGy1CHC3D65zBwZ1zpBi0qGWTN2hGmXswoERVK7N2vq2GzuIgdcvJWqilA4rGvqIKpMh/Bb0F97e08HNPwVd3Ys13bQpY+SIqcIdWlxfhsjg2+F8TDxbEAwbbNvnWboh8f6b2ZnhzPB9Wv8DretLAhOsKfPm1pEqVKa3H8McNxtxXFoe/0e8+HZo3K9x3p8nvYfHr8Vd6nBlDQ78IrC7f1woLBSxPukpoi68ToIDl6zvs4f45U8BSntyPgOmvmT02RFdF2lvfOkxAhEEpj+zEjWXrUS5+B1TIO0RAV74y9G17QtuqOwzBYTh5SoF5Fol2K5Q34Jk8qho5bKAHD3CHgNXn6krsz7hhprIk6l608i/nFErTkw7ik8T9VnO9Ft4UY8MaOmV+X5xEvfsv+P34P7NrunotkPGC9P9yfFZvWQm/+Z+bu2bd0wdZDxdMjJazXlH0CXxjCBS3pQIKpjXvjJ6OtRcbYNcepShgmqOJQhJt2+rQqYMBoppSQZpI6N300m9WCa07b+2Cquezb+Tr1tFjyCDpFOMzCX/hz9SL5qUcqdTnDQKWcKzhpfm4qc8w+1jY0D7bfbEte19LUxKbou1X5HR0Tw/NVCHlkiSkVO6rR/n21mEym1emQLNVShS/odFxTHykRo6l6l36Fbf1knqzpnxfNPDznVD375OPIUkr7fOzJRvkyB245wMVMm9LPJu9roN/uPWb0bZaYUApA5qOZ/igvWuXApaj72j5/d+4uR1zkk+aB4wIqYN3I1rlmGD4tY1YlxZr/ruoPiuq0PpCS7mrwMefSQJWiSAD6tYxYPde6fRVeJjBWIBJPEB2RjuceRP3XllhNdV3ZTqjdwmpSAYFLGeQ5hwkII8ABSx5nNjLRQScKWApsjIROLYPzHeBCgXSPl8JgyY710V+TXnpFNTb1kG15y8o7t7Js7sQqkRYk65ND+hjqlv13fyPChs3WTylbaZHPzuly/Ozxxtfd4eAZftD7ZsyHdG3RJVC49uefg2D4ldb5a9pG1AWC8v1YtarPOgqblxF4NvSiStDQCDSpi13aD/UG5fAb/HX5jHaLgOQOeg5h+bwtM6iyIQoNmHb0iZ8A0NMNYinyn+uVuD8Bfu/uIODDejR1YDGjQqWz2PCze2YbXHjUyqxFB5YkZ2XS8w5oL80b8e4pThjkSNqeVRvNPOXFwPtLQKWKdG5aT9GhTXABCcVZLipT0ez2IXIsght/qp0R/QPLvznkrA3brMSF1dJ10loVQPqP2stphybo8Tto1KfrzttwajOVdE6QBL3bRM9ixyC5ys9Wuzy+h2YrkbqVemdKUIyRWimZRO8BXdTK9vSgGoPUsCy9zlLAct13z7r02LxxDUpqXhuOes6x/2BU1m3zYasieqDBk6sOO06D+XNPNEib529EYMf1KF+PeecvjLNb/tgp7omFH9FP2D+vKSAJW/v2IsEnEGAApYzKHKOAhNwpoAljAj430goY6WcIxljPoSuTu5V4hTJt6HesT47Ibudm0tLx7QKNY77tUFE/x4oeU8LQGU/sH7BQiWOnZB+6Pa5T4+WzQp201lgsG4a6A4Ba/yNbZibcsrs8bulWmFELpV55GIR+a66xf2BRIuTCeVUQdhQvj/CbbMgy520GPULfOVBKxE47Z2fYChbQTYBzdoF0Pzxg7l/Vs8hyLp/hOzxntjRNjeYyca09+bAUDrKbPLxE0qsWatAYpL94gDlowzo10cP8W9H2iVtMtpe/t1KkO2zui/KXi+Lli306NMr+zOqMBUIxXhvEbDWpcZiuEV1qeqaMGyOfsARpLn2tU0eXkFdAtsrDHSaMJSeCOz70DpvU4uJOmhKSCbt+0SF9BvSNfTmA8vRvmYE3islndZYcvcsRl/fah7Uwj8Sf0T1dgoDb5rk6LcqJJ2TWNV7Roewatbvr0OiOvFlqU/NITqUbuLYe9CbmBTGVgpYhaGX99g0Y1jsPIg8d6a2J2YQolQWb34AVS/8ggyL6AFfqSxq8vn9D9XIyKV+UmQZA154zvni8pmsO+gct8SqOu/00u0xKDj7ITYFLNdd95yZBGwJUMDiNeFWAs4WsPzmfwH1FumYr8i9I3LwWDZRNVB1cBuU29ZBfWIvoM9bXIoPrIXtmnuxL7ArRHL2spEGPP+sLtecVtNmqJCYKP3QffpJHWIqFI8fuu4QsD65vR/Tb0v5esaENcT48KYFvq5F0uu+V/+EqDxoamoosLz8fXZLJxd4IR8e6D/zLaiO7DR7mPHEeOha2a+WZA+DZuUcaP78xfxSQfJoeRpe/y8nQHVUqiBlsi/t40UwhEihXuLvIo/Hv9tV2LxVYVVRydIncWqqRzcDRKJauU2UAxdlwU2t8sXK6Lq5Gzq006P7f5XsjmfeQrcr0ok5RyoQinm9RcASp6NqXJprdUpqR8xAxKiC5eK020/kXWp2aQHEv03NFXmlDkxVI/WaZEL1gTpEtsi+Foz5mt5SAQbpe+jRp35GiL8a+ysOMZ8gfevmDvyUfMI8yTNh9TApvEWh/PfGwSfmKHHL4rRarUf1iKgv/S7QZQA7J9rkHWP+q1y3mgKWa98FQ+LXYatFXs73I1rjiZDa5kVFwY7msQvN/19KFYDDMUNca1QRz277O9ty+aFDdKhVU/73oiOmj7vxDxalnDEPEd+POyoMhDi9SgHLEZLsSwKFI0ABq3D8OLqQBJwtYKl2bYT/Tx+arbLMv6M6dxTK7eug2vs3lGk5kylbuqIPi4CuZRfo2vVCrLYivv3B+rRV/z46NGua8wtSlO997wPpybhCAUyaoC10FZRCYi6y4e4QsGYnn8AEi2o7jfwi0DVQ/mkfWzjHshKxJvWS1Z8nlWoBkciaTR4B24IK2k79kfnQC/IGA/D740eo184398+8/0loezo3ybZsY5zU0e/7KVDvlSr7maZNnbk2u9KDnZaSosDqdQocPmL/dT8/AzrdA7RtJa/S0r/p8Rgcv8ZqpYeWDEG/FkHo1CH7hn156nk8lyDZ2SmgPOaVk1eBUIz3FgFL2GobfuyM9/k3d47ivVuSUFlGGYADFZ1/83hpnRKXN1rkfKmjR50nsvfw7lXg4HTpe+hW0F08+3j2+8ky15dtefhZkZ1wn4/kyXHkbXtmkQoJeySxT4QGihBBU0s8rsTxnyXWgZEGNHnZ+Sc8HLHZk/tSwHLt7ojk7CJJu6l1C6yA2RaVNXdkxOPBq9LnfFP/MlgRdZ9rjSri2b/9XoW4KzlPKYuTySOfdt17M1aXgtaxi628NQmIFLCK+CLgcsWaAAWsYr397nfe2QKW4mY8At+STlwZgoKh7TYQqu3roLx+JV+Htc07Q9emJ3R1rcMOFy9R4dAR6csyKNCAF8fq4e9nLWLZlvctU9qA0c+77ss0X4eKuIM7BKzVqRfxVMJfLvO0R2AMfirb1WXz++LEqhP74f+5VFBBV7k2MsbPkO2qZvG30GyUfiRmDX4OWZ2z8zV5a9PMnQrNv6utzBf5+dK++DNfly7HKbBshRLXEuyHFZYKNxirFdaqmX+ocue4pThlkd+q3rF6mBzRCm1aZY/9JHEfpicdMtvkSAVCMcibBKwFKWfw8o1/zL629i+H36PuzXc/8urQJPY3JOjSzF3eLtUCI10gft+9DBycYfGwRGVAy8k6qDTAjYMKnPpVeuhyKDoO7/XLvvaeDqmLdyJaGv87+sLPVq7srjAI5dXWoUiFguElg8+vVOLqVkmgqtxbj/IdpffShRVKXPlHer1cGz2q3p//e81L3He6mRSwnI7UakIRytYxTqr0G6hQ40ylYeY+C++ewYvXpc81UXVTVN/0pfbLryqcPpPz+3DEcB0qxbjm9JWJn22BDvGQYmfFQagSUbjTu760P/SFBFxNgAKWqwlz/jwJOFvAEosFvjoQipQk2eR1VepC36Y7tC27wOAfZHecOAkx7QsVsqSoELRuqUfve61/xG7fqcTqtdIP3Qb1DBhUjBK9ukPA2p2RgPuvrpK93450rKgKxrro/ghRFrD8myOL+VBfRXoaAl/sZ+VR6tfrZXuYIxT44bEQlQi9uWl+/xaaDdZPbkUxiLRPrP+Wm4+iQuH+g0ps2KiAqMJkr1Wtokff+wyIKJX7D3jbmxu1Vo15KUPQvnG2GPJUwiastjiB+Fnp9hjyX44POfy9ScC6pc9Ag0vSST/h37GKjyBMKa/why2P+Smn8cqNf81/DlVqsCdmMEooXPP5sXuKClnJFnmZhupRuqEel9YrcXmD9D20qsFR/NR+u9Eukctvb8xg7Mu4bgyVNjVXnRSTc824u484ySZOtJladBc9KvWUvtvFaTZxqs3UbEMM3W2/p61PAcv1O9Lq8iJc1t41LzS/bE/cE5idS/HDW3sx485h82svhTXCy+FNXG9UEa7w+1IVDh62/h6sXs2Ax4a6/oHxdX06Gl9aYOXtm+HNMaVq8Qu/LsIt51IkYEWAAhYvCLcScIWA5f/tO1AdkG4i7DloiCgLbctu0LbrBfHfcto/21RYt8H6C3P0SB3KREo3i0uXKY03mabWs7se7doUnye17hCwLmjvoN1l6WmknL2U22dt+X6o71dKbnf2syAQMHkElPFSKGb6q19AX7WOLEZ+v3wG9TYpBCLz0ZehbVu4kzGyFnZhJ82fc6FZOdtqBZG8XSRxd6SlZyiweUt2jqzcmhDXu3YywD/AvpBV6/R8pGgyzMOfyWqBSTWyQ2TFk33xhN/UROiJCEGR27xJwBI+9bv6J/ZmXDe790Xpe/BgcFW57lr1a3f5d1zQJpv/NjasIV4rRD6+/Iw4v0KJqxYng0o3NqDmwzqcnKvEzcPS99BPHbdjVd2j5ulWRt2HvZnXMenmLvPf7g2qiB8iu+S3pE++Hr9NiXPL7J+w0qYCuyZbJswHWk7SQm3/WZdP8nHUKQpYjhJzvP8bN7djjkVVWcuTlSMT/saK1AtO+Uxz3LKiGSEeFIsHxpbtuWd0iCrn2tNXpvXeT9yDr5KOmJcXDz1uN/HuQjNFs3NchQScQ4AClnM4cpYCEnCFgKXZsAia32flsMig8YeuRWfoWnaFrlbjAlksTmEl3pZErMqV9XjyMUmg+upbFeKvSa8/8age4lREcWnuELBMbJP1WUg3aJEGLdL1euN/i38yDXqk6rVIF3836JCu1/33mvhvLdLE3/7rax4HLe4ProaHSmRXl2FznIDfnI+h3i6dusoa/DyyOsur8ub34wdQ795kXjTzyTegbeHdN9fqv/+A328zrUDqK1RF+pvfOg4XwM1bCmO1wpOn7efHCgw0oFsXA1rYqYD6xNZDWB+zz7xupKEE9lcZZPx/27Cyk5WGIVhhfQOfl8HeJmCJmxBxM2JqfYIq49vITg7vyZ+pF/BMwt/mcQFQYXfFwSil9Hd4LrkDks8rcPgbSchU+RvQ6l0d9n+mQppFuOmah/bih1L7zdM+F1oPItHzH3fPm/8mThA8H1Zf7tI+1e/6AQVOz5c4lm5kQM1Hsk9y3DikxKl50nssqDzQeKzFUWyfIuEcZyhgOYdjXrNsSLuMx69tMHepoQnF39HZYfa2ue2WR/VGM/9I1xtVhCucPafEjp1A3FUFRIRE3dp6DBlcdL+1k/SZaBm70KpYh6HZc0VIgEuRQPEmQAGreO+/2713hYClOnsU/p+OM/umq9UIutY9oWt2D4SIVZh25qwScyx+zIq5HhqkR7062V+cE9+1vtF741UdxI1kcWnuFLCKC2Nv8VO9ZSX85n9uNlfkl8scMUGW+f6zJkO1X8rhkfHMJOiatJc11lM7qbevg9+cT6zM01evj/SXpxXKZPGZtHKVArcsKp9aTihKive9T49KFaXPoS/mZeGjdvOs1v0msiNqqsPR5cof5r9Hq0tgV4VsYUtu8zYByzafTAmFGqcs8snI9fveK8txOPOWufuIkDp4N6KV3OEF7rdrsgraVOmhSd0n9Tj2o7WoefuNc3j6tiQIx6iDoTAAl3Qp5nWXRN2LVv7lCmyHNw9MPKHA8Z8kAatkLQPqPpktYJ1dqsS1HRLPqA56VOlTdDfK3siVApbrdy3VoEWNi3OtFjLlsKtzaR7u6LPMrx2sOASllQGuN8pNK9xNVUCE2DtSkdcZpn6RdAgfJUoPgihgOYMq5yABeQQoYMnjxF4uIuAKAUuYGvDuCOhadIGuVXfoSzn3ydPc+Uqcsjj1EBxswMtjdUhIAL7+ThKwQkMMeOVF18fju2hrCjQtBawCYfPJQcrLZxHw/kizb/rSUUiXGS7n/9XbUB3eYR6bOep9aOtnJ5721qY6tB3+X0+0Ml/XoDUynn+v0C7p9MDOXUr8tVmBjAz7+bHq1TWgVw89QkMNmPmtGourbsGpGqfMa9fRhGN0yYZ4/nrBKxCKybxNwBI2t768GLFaScyZW7YbOjtQyXRzWhweuSadNlRDgV0xg1BW5fo4szOLlUjYLQksoVX1uHNO+n91sAEN38pAvYvzkQ7730ei9+lKwxDgwEm7Ql+0HjRBSqwCh76UBKzgigY0HJXNav9nSqQlSDyFQFiyFgWsvLaPAlbRXNxD4tdha7pUnOiDiDboG1QJ9WOl/Ez+UOFcZamwUdFYVjxWESKiOIWVqM80OkwBq3jsO730DAIUsDxjH4qtFa4SsFwJVIQQilBCy9bpHh1KhSuwxCKPRq0aegx9uHj90KWA5corz8vm1usROK4vFFnZP+5EEwnLReLy/Jr/5+OhOiE92cwY+xF0tZvmN8yjX1ee3I+A6VJlRmGstnknZI5402l2iyfR69crsM8iD5/t5OKzat9+JS6qbmNJv9+tXm4XUA7/pseb//ZsaD1MLOVYYlpvFLCm3NqNr+9IOaIeC6kFcTMotw2OX2PFbXBwNUwr3UHu8EL1SzymwPHZuedDC6tqQL1ndXgm4S/8mXrR7lp1NeFYH92/UHZ482ARbinCLk0toLQBTV/VITMZ2DPF8lR1doimqnAHub0ZlSzbKWDJwlToTt8nH7PKY9czKAZjSzY2hhCaWj1NuLEQDZtrCPyQfAwT/8slSAHLNYw5KwnYI0ABi9eFWwl4o4AlgG3YpMCWfyxyj6iAGtX1OHFSelLbsYMOXTsXn/BBwYUCllvfTh63uP9nL0J1Rkp0mvHcu9A1zF8YsB0nwuxEuJ03N+XFkwj48AUrF7TteyNz6ItOd+tqvAJ/rlLi0mX7p7FMC67pvgpxUdITfFtDppZp73AeOG8UsHZmxGPAValoQHlVCeyOkRc6eSDjBu67utIK3eboAaiuCXX6vtqbUK8Fdk1SQa+1v9fl2uhR9X49lqeex3MJ0uk6y7mGBdfER6XbFom9nrhIVjKw20Ko0gQDLd7W4vp+BU4vkL7nQ2IMaPBC8TpVXZD9ooBVEGqOj7EX/vxBRFuMubHFPFnvoEr4LrKz45NzhGwCIqH+kJAa6BUVI3sMO5IACRSOAAWswvHj6EIS8FYBKysLmDZDZUwemVt7eJAedf7LjVVITF4znAKW12xVkRiqWfwtNBsXm9fK6jUUWf2eyHftgA9HQXlRCm9Lf30m9JVq5jvOkzsoEuIQOMna96yuA5E18FmXmX3osBKr1ylw9679z6lLFS5hfZd1ua6/POo+NHOgAqGYyBsFLPGYoc7FuUg2SMm5V0f1QUP/0vnuzYiETViTKlXbdEc1v5PzlLh5yH4yfyFeCRFLFKqofelXZBlyngr+LKKd8QasuDaRP2f769Ynrdp+pMOZxSok7JbeOxU661Hx3uJ1qrog1wQFrIJQK9iY5rELjQUZTK1NQDlstzhF+3xoPbzp4CnaglnCUabfvyRBAiTgegIUsFzPmCvkQcBbBSzh0qHDCixemnvoxoujdQgP5wksvgGKLwH1/i3wmyXleNLVaYqMMR/lCyTgvWegvCJVSMt46zvooivnO86TOyhSkhD46kArE7P6PoGs3kNdarYQ27dsVeCf7Sro7BweWdx/IZLC7ti1QeRFCnIwL5I3CljC+bE3tmBxyjkzh5fCGuHl8CZ57o3tCQjReXX5vmjoF+HSPbWd/MZ+BU5ZnBSyfL3eMzqEVcv+HrIV20z9/op+ADU1+Yf2FqlTRbzYjrfUsMh7jdZTtMawwgyL4gh1n9KhZI3i9Z1ekG2ggFUQagUbI07/zEk+mevgj0u3xdBg7374UzAyRT+KAlbRM+eKxZcABaziu/ce4bk3C1gC4Pc/qXApNufpBv8AA958rfiFGvAElke8rTzGCOWtBAS8KQk0BrUftA+MQFaX7HLfubWAd4ZDee2y+eX0d3+Gvky0x/hVUEOCnutuNTRr8HPI6pw3i4KuZTvu9m0F1m5Q4ugx68+rU3WPYWvzbTmWcSSMznKwtwpYf969iGeu/2V2pZ5fKawr3y9P/C/e+AcLU86Y+7QLiMLCcj2dtWWy59GmA7veUQGGnN9FIhROhMSJ9vvdsxhzfavVvAFQ4SyTPGP3+ypk3ZH4NXheh8NfWT+gavuRdEJP9uYUw44UsIpu09elxmJ4wsZcF/ytXA+0DyhfdAYV45UoYBXjzafrRU6AAlaRI+eClgS8XcC6fkOJGV/lDN2oXMmAJx+ngMWrnQQCxg+G8k6iFQhd+UrQDn0Ruqr17AIKfHMoFLcSzK+lvz/P6dVE3bEztgJW5qMvQ9v23iI15cJFBVasUuL69eyb9YAwLWbfPxcpFuFz4u+dA6Mxt6y14CbHUG8VsNIMWtSxCbHbFzM410qC13SpaBm7CFpIJ3Lml+2BewLdc7N47EcVbp+0FrDUgQa0fEf6HhJ7XN/Gx/YBUfjNDaKbnGupKPvsn6pC2jWJX1R7Pa7+I323h1QxoMHI4vedXpA9oIBVEGoFGyM+t2pdnAedxeeQ5Uw7KgxEjPo/BbtgS3CUTAIUsGSCYjcScAIBClhOgMgpCk7A2wUs4fnK1UrssihjLv7WuqUevYthrgyewCr4e8FXR2pWzIZm1Vy77mnb9ETWgGdgCLZOeB342iAokm+bx6R9vAiGkJJej0iEEIpQQlPLfPotaJt2dItfO3cpsfFvBYICgdRhOzEzSUq2LwwqSAVCMc5bBSxh+7D49fgrPc68H/+LaI3HQ2rb3Z9JN3dBVAEzNRE2KMIH3dWu7VTi7BLrhyn2RJcnrm3A+jTpdOPYsIZ4Ldy7K3w6g/mRr1W4c0ESsPzDDVbhgzE9DIjpSgFLDmsKWHIoOa/Pw9fWYkvaVbsTxlXOP+ek8ywp3jNRwCre+0/vi5YABayi5c3VbAj4goCVnq7AtBlKpKVJP34H9NejcaPil+yVAhbf4vYIKM8cht+cz6C8LokDpn6GoGBo7x+BrPb3AYrs91DgS/dDkXbXPFXq1KVAoPc/RQ6c9DgUCVLVv4wX3oeuXku3XTTiM+vgYQUqN0tBs9iFVnZMK9Meg0tUd9g2bxaw5iafxPib280+dwyMwq9lc4YEJuoy0OLyIojTD6b2fWRn9Aqq5DAvZw3IugvsfleEvEnfQ2Vb6VFtgPX30GVtCm7rMxGm8kOYwg+hSj9nmeDV8xz/WYnE4/YT4QvH6j+rQ2hV5r+Ss8kUsORQcl6f7+4cxTu3dueYsJo6FFsqFE2IuvO88d6ZKGB5797Rcu8jQAHL+/bMpyz2BQFLbMjZc0okJQMR4QaElwRCQ4vnD10KWD719nS6M5o/f4Fm5Ry78+oq1UTWI2Ohr1gTgWPugyIrUxKwvl7vdFvcMaFm3jSr3F7ah0Z7THL6j27tRYIuDZX8QhGjDjGGEJYsgLjhzQKWCAtsaiPknaw0DME2ieynJR3Ep4n7zZdQdU0oNke7/0ZR5GxKvigJWFX66xHVtvg9SCnIe/v0QiWu781dwGL+K/lUKWDJZ+WMnvaKSYh5uwZWwJyy3ZyxBOeQQYAClgxI7EICTiJAActJIDlNwQj4ioBVMO99bxQFLN/bU2d7pLwWC83caVCdOWx36qwOfaDZutLqtVQfEbCczdIT5/NmAUvw7H1lBQ5m3jSj/aZMR/QtUcX8/+kGrVHkStJLAutnEe0wJKSG27cj46YCukxAFQCoA8W/i+eDlIJsxPnlSlz9176AVbKGHnWfohAolysFLLmknNeveexCXNWlWk04PKQ2pkS0dt4inClPAhSweIGQQNERoIBVdKy5kh0CFLB867KggOVb++lKb9Tb1kCz5Fso7qbkvYxag9QZq1xpCud2IgFvF7Cm3z6AT24fMBMZUKIqZpS5x/z/s5Ln8gAcAAAgAElEQVSOYnKiFK5TVhWIXRUGQa3I/fSOE/FyKhcRiF2vROwG+3tY8V49KnSmgCUXPQUsuaSc1+/1m9vxS/JJqwnfKdUST4fWdd4inIkCFq8BEvAQAhSwPGQjiqsZFLB8a+cpYPnWfrraG5HQXLPwK6h3b8p1KX1gENKnLnO1KZzfSQS8XcA6mnkLPa4sN9MIUahxtNJQqKCA1qBHy8uLcE2XZn6dN4lOunDcPM2Vf5S4sMK+gNVglA4hFXmaTe4WUcCSS8p5/dalxmJ4wkarCWdHdkW3oBjnLcKZKGDxGiABDyFAActDNqK4mkEBy7d2ngKWb+1nUXmjOnkQfnM+huJWQo4lRfVBUYWQzTsIeLuAJSi3vrwYsVrpZOCSqHvRyr8cFt49gxev/2PeiHClH3bHDEagTY4s79gpWmlJIGGvAmcWiiT41k3pZ0Crd3Wm+hKEJoMABSwZkJzcJdWgRY2L1tV+RV4+kZ+PrWgIMISwaDhzFRIQBChg8TpwKwEKWG7F7/TFKWA5HWmxmVCRlQH1n3OhWbvA7LNB4w9t/+HI6vpgseHg7Y76goD19s2d+DH5uHkrng6pi3ciWqLD5SU4p71j/vsr4U3wYlgjb98y2g8YKxCKSoS2rWRtA+oO15GRAwQoYDkAy4ldj2Tegp9CaawsGqb0o7DuRLZypqKAJYcS+5CAcwhQwHIOR85SQAIUsAoIzkOHUcDy0I3xIrOUV85DM+dTGKIqI2vA0xAnsNi8h4AvCFj/pF/FQ/FrzdBj1MEQoYIjEqRQ1wCosL/iQ8abRTbvJ3DnvAJHvsl5AqvyfXqUv4f5rxzZYQpYjtBiX18hQAHLV3aSfngDAQpY3rBLPmwjBSzf2lwKWL61n/SGBBwl4AsClvC59qV5SNZnmd2PUgVZVfl6NrQeJpZq4Sge9vdQAqnXgANT1TmsazRGixLRHmq0h5pFActDN4ZmuZQABSyX4uXkJGBFgAIWLwi3EqCA5Vb8Tl+cApbTkXJCEvAqAr4iYD1/fTOW3T1vl70aCuyKGYSyqiCv2hsamzuBjCQF9v7P+gSWKtCAVu8wfNDR64YClqPE2N8XCFDA8oVdpA/eQoAClrfslI/aSQHLtzaWApZv7Se9IQFHCfiKgLUs5Tyev7HZrvsPh9TApxHtHEXD/h5MQJ8J7Hjb+gRWRH09aj3K8EFHt40ClqPE2N8XCFDA8oVdpA/eQoAClrfslI/aSQHLtzaWApZv7Se9IQFHCfiKgCXCB+td+hU6GKwQiDTf2ysMRAV1sKNo2N/DCWwbL05gKcxWVu2vR7m2FLAc3TYKWI4SY39fIEAByxd2kT54CwEKWN6yUz5qJwUs39pYCli+tZ/0hgQcJeArApbwWyRyFwndLVufEpXxbZlOjmJhfy8gcGmdAnfjFci4pUBGItBwlAGBkRSwHN06CliOEmN/XyBAAcsXdpE+eAsBCljeslM+aicFLN/aWApYvrWf9IYEHCXgSwLWz8kn8ObNHVYI1kX3Qz1NKUexsD8JFBsCFLCKzVbTUQsCFLB4OZBA0RGggFV0rLmSHQIUsHzrsqCA5Vv7SW9IwFECviRgJejS8G3SESTpM3Bbn4lyqiBMiWjtKBL2J4FiRYACVrHabjr7HwEKWLwUSKDoCFDAKjrWxWKlpau3YvHKzThzIQ46nQ6VKpTD/fe2xyMPdINKJbKHWDcKWL51WVDA8q39pDck4CgBXxKwHPWd/UmABAAKWLwKiiMBCljFcdfps7sIUMByF3kfXPeN/32H5ev+hUatQpMGNaBRq3Hw2Fmk3E1D+5YNMPODcVCrrMtUU8DyrQuBApZv7Se9IQFHCVDAcpQY+5OAbxGggOVb+0lv5BGggCWPE3uRgDMIUMByBkXOYRSuhIBVtWIUZn36KqIis3OEpKalY9zEL/Hv7iMY/eQAjHysnxUtCli+dfFQwPKt/aQ3JOAoAQpYjhJjfxLwLQIUsHxrP+mNPAIUsORxYi8ScAYBCljOoMg5cP/wt3D6/GXMm/kWGterbkUkMSkZXQe9BI1Gjc1LPkeAv5/5dQpYvnXxUMDyrf2kNyTgKAEKWI4SY38S8C0CFLB8az/pjTwCFLDkcWIvEnAGAQpYzqBYzOe4En8D3Ye8gorRkVg972O7NF56ZybW/r0bM94fiy7tmlDA8tFrhgKWj24s3SIBmQQoYMkExW4k4KMEKGD56MbSrTwJUMDiBUICRUeAAlbRsfbZlTZu3Ycxb3+BPt3b4KM3n7Xr5+xFa/HxzPl4emgfjHt6IAUsH70aKGD56MbSLRKQSYAClkxQ7EYCPkqAApaPbizdooDFa4AEPIQABSwP2QhvNuPn39bgk68X4NlH+2LMiAfturJh616MfXsGenZqganvjDL3ycjSe7PrtN2GgL8mu9Ik95WXBgkUTwJqlQIqpQJanR46frwXz4uAXhdrAkoFoFEroTcYkKU1FGsWdL74EDD9/i0+HtNTEnAfAQpY7mPvMyt/+eNSfD1nGV4Z+RCGD+ll16+d+4/jyRc/QutmdfHDZ6/5jO90hARIgARIgARIgARIgARIgARIgARIwPUEKGC5nrHPr/DZNwvx44JVeGP0UAx7sLtdf/cfOY1hL7yPJvVrYO6Xb/o8EzpIAiRAAiRAAiRAAiRAAiRAAiRAAiTgPAIUsJzHstjO5NAJrKZ18cNUnsAqthcLHScBEiABEiABEiABEiABEiABEiCBAhCggFUAaBxiTWDOorX4aOZ8WTmwunVohs/fG22e4OadTOL0IQIRoX5Gb7ivPrSpdIUEHCAQHKCCv58KKWla5sJzgBu7koCvEBB58MJKaKDVGZB0N8tX3KIfJJAnAdPvX2IiARJwPQEKWK5n7PMrbN5+EM+/MU1WFcInh/TGyyMHm5lcuZnm83yKk4OsQlicdpu+kkBOAqxCyKuCBIo3AVYhLN77X1y9N/3+La7+028SKEoCFLCKkraPrnXjVhI6DhiLitGRWD3vY7tevvTOTKz9ezc+nfgcenVpRQHLR68FClg+urF0iwRkEqCAJRMUu5GAjxKggOWjG0u38iRAAYsXCAkUHQEKWEXH2qdXEgnaRaL2eTPfQuN61a18TUxKRtdBLxlLKm9Z+gVCg4MoYPno1UABy0c3lm6RgEwCFLBkgmI3EvBRAhSwfHRj6RYFLF4DJOAhBChgechGeLsZW3cewsjxU1G1YhRmffoqoiJLGV1KTUvHi5Nm4p9dhzF0QDdMGDPMylWGEHr7zlvbTwHLt/aT3pCAowQoYDlKjP1JwLcIUMDyrf2kN/II8ASWPE7sRQLOIEAByxkUOYeRwKff/IafFqyGRqNGk/rV4afR4OCxs0hOSUXdmpUx+/M3EBToTwHLh68XClg+vLl0jQRkEKCAJQMSu5CADxOggOXDm0vXciVAAYsXBwkUHQEKWEXHulisJPJczf19PU6evQSdTo/oqDLo3aUVhg/pBX8/TQ4GPIHlW5cFBSzf2k96QwKOEqCA5Sgx9icB3yJAAcu39pPeyCNAAUseJ/YiAWcQoIDlDIqco8AEKGAVGJ1HDqSA5ZHbQqNIoMgIUMAqMtRciAQ8kgAFLI/cFhrlYgIUsFwMmNOTgAUBCli8HNxKgAKWW/E7fXEKWE5HyglJwKsIUMDyqu2isSTgdAIUsJyOlBN6AQEKWF6wSTTRZwhQwPKZrfRORyhgeee+5WY1BSzf2k96QwKOEqCA5Sgx9icB3yJAAcu39pPeyCNAAUseJ/YiAWcQoIDlDIqcgwRIgARIgARIgARIgARIgARIgARIgARIwGUEKGC5DC0nJgESIAESIAESIAESIAESIAESIAESIAEScAYBCljOoMg5SIAESIAESIAESIAESIAESIAESIAESIAEXEaAApbL0HJiEiABEiABEiABEiABEiABEiABEiABEiABZxCggOUMipyDBEiABEiABEiABEiABEiABEiABEiABEjAZQQoYLkMLScmARIgARIgARIgARIgARIgARIgARIgARJwBgEKWM6gyDlIgARIgARIgARIgARIgARIgARIgARIgARcRoAClsvQcmISIAESIAESIAESIAESIAESIAESIAESIAFnEKCA5QyKnIMESIAESIAESIAESIAESIAESIAESIAESMBlBChguQwtJyYB3yFw+Pg5/Lb8L+w+cALXbiRCo1ahSsUo9O7SGkMHdINGo87h7C+L1+HDL3/NE8LqeR+hYnRZ3wFFT0jARwmcu3QVv6/cjB37juHy1etIS89AWEgJ1KtVGQP7dEK3Ds1y9XzPwZP4+bc1OHD0DFJS01C2dDi6tm+KZx/rZ5yDjQRIwPMJ3E5Kwe+rtmDrzkM4ff4yklNSERjgj2qVyuPezi0xpH8X+Plpcjgy+q0vsOmffbk6GFm6JP5aPN3zAdBCEiABEiABjyBAAcsjtoFGkIBnEhA/UN+bNgd/btxhNLBGlQqIKV8Gt+/cxbFTF5CekYlGdavh+89eQ1Cgv5UTn3//O2bNXWEUuoJLBNp1cPq7L6BcmVKe6TytIgESMBJ4//Nf8OvSjcb/jooshepVoqFRqxF75brxRla0h/p3wcQXH8tBbPHKzZj06U/GvwuxKyI8DKfPxeJqwi3jXL9+NRHiBpaNBEjAcwksW/sv3ps2G2npmQgNDkLtGhURGlwCN24l4fCJc9Dp9Khfqwp+mj4eQYEBVo4Me+F97D9yGg1qVwEUihxORoSHYub/xnmu87SMBEiABEjAowhQwPKo7aAxJOBZBO6kpGLwM++gRtUKeOmZQUYxytTir9/Cc+On4tS5y3j20b4YM+JBK+Pf+fRnLFr5NxZ8PREN6lT1LMdoDQmQgGwCQrw6eOwMhj/UC7WrV7Qat2PvMYyaMN0oZv88/XW0aFzb/HrslQT0efQNqNUqfPPRS+bXDAYDvvxpKb6Zsxytm9bFD1Nfk20LO5IACRQ9gcMnzmP6rEV44qF70bZ5fahUSrMRcfE38Myrn+JCbDxGPXE/nn/ifisDew8bj/iEW9i37ruiN5wrkgAJkAAJ+BwBClg+t6V0iAScSyDpzl2EhdoP89m1/wSGv/ghqlaMwoo5H1gtbAobWL/gU5QvV9q5RnE2EiABjyEweepsLFz+F55/vD9GDX/AbNf/vpiLeUs2YNzTA/H00D5W9goR6+Hn3oW4MZ438y00rlfdY/yhISRAAo4RWL1pJ15592s0b1QLsz9/w2pw6z7PIyQ4COK3ABsJkAAJkAAJFJYABazCEuR4EijGBJKS76Jt31FGgWvb8plWJExhA+Kpq7+dvBjFGBtdJwGfIjD124X4Yf4qvPrcEOMJDVPrPuQVXIm/gU2LpqFsmfAcPs//YyOmTP8Fjw3qifGjHvYpJnSGBIoTga07D2Pk+M/QsU0jfPXBi2bXs7Q6NO42wngKW5zGZiMBEiABEiCBwhKggFVYghxPAsWYwKW4a+g1dDzq1KiExd9NtiIhwgZEfoxdq74pxoToOgn4NgERZjxgxNvGECHxGWAKMRR/b9PneaNwJQQse+346YsY+PQk4+krcQqLjQRIwPsIiNOUY96eYUzUPmHMMGNhF1O7fvM2Oj04Dp3bNsGX/xvrfc7RYhIgARIgAY8jQAHL47aEBpGA9xAQlcU++XqBMTxIhAlZNhE2IPJkPDH4XmPC5vT0DGMy9+pVKqBLuyYoXSrMexylpSRAAmYCIt9Vwo1E/Lv7iLG64NWEm3h55EN4fFBPc5+jJy9g8LPvoGmDGvhlxpt26ZlOcIaHheCfZTNImARIwEsIaHU6XL+ZhKMnz2P2wrXYd/gUenZqgU/efs4qP9aJM5fw4FMTjcVe2jSvh5u37kCMLRkWbEz63rldE57Q9pI9p5kkQAIk4CkEKGB5yk7QDhLwMgKJScno+9gEpKalY/W8j61ChMQT2TZ9RxnLbNtrGrUKzz1+vzH5OxsJkIB3EDCFClpaK25an3u8v7FCqWXbuf84nnzxI9zTuhG+/lAKKbLsIz4n6ncebrzhPbTxR++AQCtJoBgTMIUKWiIQ1UVfGP6A8b1u246cPI8hI9+FeK/ba6VKhmDK+KeMoYdsJEACJEACJCCHAAUsOZTYhwRIwIqAyGsh8l2ICmRvjB6KYQ92z0FIhA6cOR+HyhWjIH6kiiaqFW3YsgffzVuJ1LQMu8mdiZoESMAzCaxcvx0btu6FTqeDOD0l3t/i36JIw9inHkSfbm3Mhm/deQgjx09F1w5N8cV7Y3J1qFHXEcYTGQc3/gC1SuWZjtMqEiABIwFxokpUD9Ub9Libmo6LsfHGE9YiSfuQ/l3wwpMP5Hgfnzwba3zQVTG6rDFfZkZGFs5ciMOSVVuweOVmo4D907TX0axhTVImARIgARIggXwJUMDKFxE7kAAJWBLQ6w149b2vseavXXigVwdMGT/CYUCm0xkiubsIHQoKDHB4Dg4gARJwLwHxWfD39gOY9MmPuHU7GTPeH2sMDxaNJ7DcuzdcnQSKioDIZTf5s5+NFUUdLcjw5Y9L8fWcZWjaoCZ+mTGhqEzmOiRAAiRAAl5MgAKWF28eTSeBoiYgblgnfPgdVqzbhi7tm2La5FEFPjUhkjeLH74/TH0NrZvWLWpXuB4JkICTCPyz6zCefe0z1KxaAUt/nGKc1ZT7Rk4OrLCQEti2wrqKqZNM4zQkQAJFQOB2Ugq6D3kZIj/elqVfQOS1k9NEmgGRbkC0/eu/h0gvwEYCJEACJEACeRGggMXrgwRIQBYBnU6PCR98h5UbtqNbh2b4dNLzhfqxOfbtGcZwpM/fG22cj40ESMA7CQhhu3H3EVBAgb3rZhlFbREy1KLXSFlVCBvUroIF30zyTudpNQmQgJGAyHknTl7+PP11tGhcWzaVtn1HGUORhYgtxGw2EiABEiABEqCAxWuABEigUAREjprX3vsWa//eZcxz8/4bTxX45JXJkGEvvI/9R05j3sy30Lhe9ULZx8EkQALuI5CZmYUmPZ6GQqHAwQ0/mKuQ9Xt8As5evIJNi6ZZFXkwWTr/j42YMv0XDO7XGZNeetx9DnBlEiCBQhMYOmoKDhw9Y8xn1bKJPAErIzMLLXo9C6VSif3rvjN+hrCRAAmQAAmQAAUsXgMkQAIFJiAStr88eSY2bt2HgX06YtJLT0CpLNyPzEtx19DnsTcQ4O+Hf5d9CY1GXWD7OJAESMC9BNZv2YNxE79E7eoV8fv375qN+fz73zFr7opcizUMGTnZmDfnm49eQodWDd3rBFcnARIoMAFRtKX7kFeMBR62Lp2BkmHBsub6Y80/ePPD79G+ZQN8+/HLssawEwmQAAmQQPEmwBDC4r3/9J4E8iQgTlaMm/QlNm8/iEcH9sDrLzwii9jf2w4Yqwx2btcEgQF+VmNEiIFI+Hrx8jW89OxgjHi4t6w52YkESKDoCVy7nojZC9egb4+2qFOjUg4DRCXSV979GolJyfhgwtPo16Oduc/NxDu495HXoNfrjSKVKazIYDDgy5+WGquZibxZS354jycvin5ruSIJyCbw8cz5aNO8Pto2r2c+YWkaLL7Lx0/5xihG2xZ2mbdkPWpWjUGzhrWsHnyJlARCvPrwy3nGvFlzvpiAJvVryLaHHUmABEiABIovAQpYxXfv6TkJ5Etg+neL8d28lcZ+lWPK5dm/TbN6eGvco8Y+cxatxUcz5xtPVlWvHI3I0iWNpbMvXUnAlfgbxj6PPNAVE8YM441rvrvADiTgPgLitGSvoeONBpQtE258P4eGlEB6eiZOnYtFXPwN43v42Uf7YvSTA3IYKk5uvvTOTIgw5Hq1KqN0qTCcOncZV6/dNOa7EZXHqlWOdp+DXJkESCBfAp0HjkPCjdsICQ4yis7ifSxy38VeSTAWbBBNnKKcNvkFq4dWo9/8HJv+3Y/gEoGoUaUCSoYG4/adFFyIjTeK3qIS8eRXhhsFcjYSIAESIAESkEOAApYcSuxDAsWUgMhPI/LUyGld2jXBjPfHGruKH6bz/9iEbbuP4HzsVYhKQyqVCmVKhRmfsoqcN80a1pQzLfuQAAm4kYA4KSFCBNdt3oMz5y/j1u1k3Em5a7zxLF+uNJo2qInBfTvZPZ1lMvvYqQv49pcV2HvoFFLupqJ0REnjze7IR/vZzY3lRne5NAmQgB0C+w6fxor123Do2FmIk5W3k5KNeauEkFW/dlX06d4G4jeAbTt7Ic74W2DvoZNGsTstPcOYOkB8doiHXo880A0VoyPJnARIgARIgARkE6CAJRsVO5IACZAACZAACZAACZAACZAACZAACZAACbiDAAUsd1DnmiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAArIJUMCSjYodSYAESIAESIAESIAESIAESIAESIAESIAE3EGAApY7qHNNEiABEiABEiABEiABEiABEiABEiABEiAB2QQoYMlGxY4kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALuIEAByx3UuSYJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIBsAhSwZKNiRxIgARIgARIgARIgARIgARIgARIgARIgAXcQoIDlDupckwRIgARIgARIgARIgARIgARIgARIgARIQDYBCliyUbEjCZAACZAACZAACZAACZAACZAACZAACZCAOwhQwHIHda5JAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQgmwAFLNmo2JEESIAESIAESIAESIAESIAESIAESIAESMAdBChguYM61yQBEiABEiABEiABEiABEiABEiABEiABEpBNgAKWbFTsSAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4A4CFLDcQZ1rkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJyCZAAUs2KnYkARIgARIgARIgARIgARIgARIgARIgARJwBwEKWO6gzjVJgARIgARIgARIgARIgARIgARIgARIgARkE6CAJRsVO5IACZAACZAACZAACZAACZAACZAACZAACbiDAAUsd1DnmiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAArIJUMCSjYodSYAESIAESIAESIAESIAESIAESIAESIAE3EGAApY7qHNNEiABEiABEiABEiABEiABEiABEiABEiAB2QQoYMlGxY4kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALuIEAByx3UuSYJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIBsAhSwZKNiRxIgARIgARIgARIgARIgARIgARIgARIgAXcQoIDlDupckwRIgARIgARIgARIgARIgARIgARIgARIQDYBCliyUbEjCZAACZAACZAACZAACZAACZAACZAACZCAOwhQwHIHda5JAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQgmwAFLNmo2JEESIAESIAESIAESIAESIAESIAESIAESMAdBChguYM61yQBEiABEiABEiABEiABEiABEiABEiABEpBNgAKWbFTsSAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4A4CFLDcQZ1rkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJyCZAAUs2KnYkARIgARIgARIgARIgARIgARIgARIgARJwBwEKWO6gzjVJgARIgARIgARIgARIgARIgARIgARIgARkE6CAJRsVO5IACZAACZAACZAACZAACZAACZAACZAACbiDAAUsd1DnmiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAArIJUMCSjYodSYAESIAESIAESIAESIAESIAESIAESIAE3EGAApY7qHNNEiABEiABEiABEiABEiABEiABEiABEiAB2QQoYMlGxY4kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALuIEAByx3UuSYJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIBsAhSwZKNiRxIgARIgARIgARIgARIgARIgARIgARIgAXcQoIDlDupckwRIgARIgARIgARIgARIgARIgARIgARIQDYBCliyUbEjCZAACZAACZAACZAACZAACZAACZAACZCAOwhQwHIHda5JAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQgmwAFLNmo2JEESIAESIAESMDVBOKv38LqjTuxbc9RnDoXi9tJKdBoVChftjQ6tGqIJx/ujYjw0FzNWL1pJ5au3opjpy4iKTkFer3Bbt+w0BLYtnxmjtf2HzmNX5duwN5Dp3Ar8Q6CAgNQq3oM+vVoZ/xHpVK6GgHnJwESIAESIAESIAESsEOAAhYvCxIgARIgARIgAY8gIMSrnkNehVanM9ojxKPwsGDcTLyD9IxM49/KRJTEgm8molyZUlY2C6HqtSnfQAhYotWuXhHRUaWRcD0Rx05fhE6nN/5drVIhskw4alatgJn/G2c1x7RZi/D9r3+a+4WXDEFySqp57dZN6+KLKWNQIijAI3jRCBIgARIgARIgARIoTgQoYBWn3aavJEACJEACJODhBF7/3yxUiYlCtw5NUbVS+f+3d+/RXo1pHMCf0A2jhtxbWRjGYNBgyK1BDIoGURNCRC4jReWyahC5RKVyHyG3xiXCNKORIcslZhBWjLtIisKUS6XM2ntWjTqnlFNHb+9n/3l+e7/7eT7P+eu79n531KhRI7799tt4/Omx0f2i62L6F1/FwfvvHhd2P26+Tu64b1RcdOWtUbtWzbjm0i6xU+NfzPv9tTfHx4ndrohPpn4eZ53aNo5qtW8FhZvv+lv0uXpoeX3Xk9vE7/bbPerWqVUGX48//WL06DO4fBqs+d47x2U9Oi7nisojQIAAAQIECKx4AgKsFW+mOiJAgAABAiukwA23PxT9b7gnGqxZLx4fduV8PR5yXI/491vvR4cjWsTpHVpV6H/o8EejV78hseF6DWLk0Mvn+714wqtZ6zNi5sxZcUHX9nFo8z0qXP/wY89Gl/OuLv9+758uKJ/wchfxMSAAAA4DSURBVBAgQIAAAQIECFSfgACr+qzdiQABAgQIEKiCQLEvVbvTepcrjB11Y/k6YHEUT2hts3f7cr+rqy/uHE2bbFvhLuNefzcOO+G88u9PDh8U9eutPu+cwUNHxBXX3hUbNVw3Rtx26UIrbHpIp/IprpPatYxT2x9chU5cSoAAAQIECBAgsKQCAqwlFXM+AQIECBAg8KMIvD1+YhzY7uzy3s/99dpyj6ziKPbM2q7Z8WWQdWPfblHsVbXg8eY7E6LlseeWfx5934D5NoLv2L1vPDHmpWjVommcf+axC+2tCM+KEK3Z7tvHlb3+8KMYuCkBAgQIECBAIFcBAVauk9c3AQIECBBYDgWK1wAf+vvTUXwN8P0PJ5ebqM+YOatCpd8NsIof92vbrTz/jI6HR/s2B1Q4/6FHno7uF14XP633k3ji/gHl3lpzjwOO7B7vfTBpsTV+3XiLuKnfWYt9vhMJECBAgAABAgSqLiDAqrqhFQgQIECAAIEqChRPT1088Pa4fdgj5UrFPlfbbrVp+bXB2rVqRZE3TZ7yWTw48qny9wUDrOtufTAG3HhvrLH6qjFk4Dmx2cYN51U06eNP45jTL4nxEyZVukfW3FcD12lQvwy4vu/Y6ucbR69u7b/vNL8TIECAAAECBAgsRQEB1lLEtBQBAgQIECDwwwRuvWdkXDLojvLJqJ5djo5WzZvGSiv9/ympYtWx496Ktif3qjTAKjZgP+6My+L5l9+IlVdeKXZqvGW5YXuxZ9WYF8bFl1/NiF122Dqu6t0patWqOV+Rc5/eOu24Q+PEow78YQ24igABAgQIECBAYJkKCLCWKa/FCRAgQIAAgcURKPanKvaparFPk7j03BMrveTJ516JE7r+7wuCCz6BVfxt1qxvol2ni+OlcW/FaqvWia9nzIzV6taJLTZrFAftu2u0/O1uFUKx4rr2nS+NMS+8Gs333jku69Fxccp1DgECBAgQIECAQDULCLCqGdztCBAgQIAAgYoCO+7fMb786uvoelKbOKb1fpUSXX3L8LjqpvsWGmD16jckhg5/dJFrVLbwtUMeiIGDh5WvH466u1+sWre2EREgQIAAAQIECCxnAgKs5WwgyiFAgAABAjkKNDu8S0ycPDVat9wrenZuV4Hg4ymfxcHte8Snn0+rNMCa8NEnsW+bM6Ph+mvHw3f2WSLCYu192pxZPsG1sPsv0YJOJkCAAAECBAgQWOoCAqylTmpBAgQIECBAYEkFevYZHPf+ZXTUrLlK9P3jybHXbr8ql/hm9ux48tlXoveA22L2nDkxcdKUSgOs4vXD4jXEOrVrxVW9T49tttxk3l5XNaJGuS/Woo65e3AV5xT37tC2eRSbtRfXTf/iq/ho8tTyNcNHn3w+LjnnhFh7rfpL2qLzCRAgQIAAAQIEqiAgwKoCnksJECBAgACBpSNQfCmwzUnnx+RPPisXLPawKr4IWDwdNWPmrGi04bpxc/+zolWHnjH1s2mV7oF1yjn947GnXqy0oGLj9o02XDf22WP7OKb1/uX6Cx6Dh46IftffHXPmfFv+VGwoXwRqxQbx3z1G3d23/DqigwABAgQIECBAoPoEBFjVZ+1OBAgQIECAwCIEii8GFvtRjX5mbBSBVhE6NVy/Qey92/bR/vcHlHtTFZu4F5u5L7iJ+xvvfBBD7h4Zw0aM/l7jTTfaIO68pmelIdb4CZPi9mGPxDPPj4sPP5oSX8+YEXVq144N1lsrttvqZ7HPHjvErjtuXYZbDgIECBAgQIAAgeoTEGBVn7U7ESBAgAABAstA4IkxL0enHgOibt3acWbH1rHrjr+MtdeqNy9kKl5DnPrptHjqn6/E+X1vKZ+oOr1Dq+hwRItlUI0lCRAgQIAAAQIEloWAAGtZqFqTAAECBAgQqBaB2bPnRLPWXcpXDwdeeNq8vbMWdvML+98ad94/KvbcpXEM6t2pWmp0EwIECBAgQIAAgaoLCLCqbmgFAgQIECBA4EcSeGf8xGjR7uzy7v96+PpyE/dFHYMG3xfXDBlevgrY/4JTf6Sq3ZYAAQIECBAgQGBJBQRYSyrmfAIECBAgQGC5EXjvg0lxwJHdy3oeH3ZlNFiz3kJrKzaDP/T4nlGEXp1POCyOb9t8uelDIQQIECBAgAABAosWEGD5DyFAgAABAgSSFjjo6HPirfc+jCY7bBU9Ox8djTZcZ75+iq8KPv/y63H5tX+Ol199O9ZpUD/uH3xR1FtjtaT7VjwBAgQIECBAICcBAVZO09YrAQIECBBYAQVee3N8nNjtiii+YlgcGzdav9zEfZWVV4lp07+Idz+YFNOmf1n+tvkmDaPveaeU5zgIECBAgAABAgTSERBgpTMrlRIgQIAAAQILEfjP9C/jrgf+EaOfGRtvvzexDKxq1IhYtW6d2GC9BrHl5hvFnrs2jt802W7e1wlhEiBAgAABAgQIpCMgwEpnViolQIAAAQIECBAgQIAAAQIECGQpIMDKcuyaJkCAAAECBAgQIECAAAECBAikIyDASmdWKiVAgAABAgQIECBAgAABAgQIZCkgwMpy7JomQIAAAQIECBAgQIAAAQIECKQjIMBKZ1YqJUCAAAECBAgQIECAAAECBAhkKSDAynLsmiZAgAABAgQIECBAgAABAgQIpCMgwEpnViolQIAAAQIECBAgQIAAAQIECGQpIMDKcuyaJkCAAAECBAgQIECAAAECBAikIyDASmdWKiVAgAABAgQIECBAgAABAgQIZCkgwMpy7JomQIAAAQIECBAgQIAAAQIECKQjIMBKZ1YqJUCAAAECBAgQIECAAAECBAhkKSDAynLsmiZAgAABAgQIECBAgAABAgQIpCMgwEpnViolQIAAAQIECBAgQIAAAQIECGQpIMDKcuyaJkCAAAECBAgQIECAAAECBAikIyDASmdWKiVAgAABAgQIECBAgAABAgQIZCkgwMpy7JomQIAAAQIECBAgQIAAAQIECKQjIMBKZ1YqJUCAAAECBAgQIECAAAECBAhkKSDAynLsmiZAgAABAgQIECBAgAABAgQIpCMgwEpnViolQIAAAQIECBAgQIAAAQIECGQpIMDKcuyaJkCAAAECBAgQIECAAAECBAikIyDASmdWKiVAgAABAgQIECBAgAABAgQIZCkgwMpy7JomQIAAAQIECBAgQIAAAQIECKQjIMBKZ1YqJUCAAAECBAgQIECAAAECBAhkKSDAynLsmiZAgAABAgQIECBAgAABAgQIpCMgwEpnViolQIAAAQIECBAgQIAAAQIECGQpIMDKcuyaJkCAAAECBAgQIECAAAECBAikIyDASmdWKiVAgAABAgQIECBAgAABAgQIZCkgwMpy7JomQIAAAQIECBAgQIAAAQIECKQjIMBKZ1YqJUCAAAECBAgQIECAAAECBAhkKSDAynLsmiZAgAABAgQIECBAgAABAgQIpCMgwEpnViolQIAAAQIECBAgQIAAAQIECGQpIMDKcuyaJkCAAAECBAgQIECAAAECBAikIyDASmdWKiVAgAABAgQIECBAgAABAgQIZCkgwMpy7JomQIAAAQIECBAgQIAAAQIECKQjIMBKZ1YqJUCAAAECBAgQIECAAAECBAhkKSDAynLsmiZAgAABAgQIECBAgAABAgQIpCMgwEpnViolQIAAAQIECBAgQIAAAQIECGQpIMDKcuyaJkCAAAECBAgQIECAAAECBAikIyDASmdWKiVAgAABAgQIECBAgAABAgQIZCkgwMpy7JomQIAAAQIECBAgQIAAAQIECKQjIMBKZ1YqJUCAAAECBAgQIECAAAECBAhkKSDAynLsmiZAgAABAgQIECBAgAABAgQIpCMgwEpnViolQIAAAQIECBAgQIAAAQIECGQpIMDKcuyaJkCAAAECBAgQIECAAAECBAikIyDASmdWKiVAgAABAgQIECBAgAABAgQIZCkgwMpy7JomQIAAAQIECBAgQIAAAQIECKQjIMBKZ1YqJUCAAAECBAgQIECAAAECBAhkKSDAynLsmiZAgAABAgQIECBAgAABAgQIpCMgwEpnViolQIAAAQIECBAgQIAAAQIECGQpIMDKcuyaJkCAAAECBAgQIECAAAECBAikIyDASmdWKiVAgAABAgQIECBAgAABAgQIZCkgwMpy7JomQIAAAQIECBAgQIAAAQIECKQjIMBKZ1YqJUCAAAECBAgQIECAAAECBAhkKSDAynLsmiZAgAABAgQIECBAgAABAgQIpCMgwEpnViolQIAAAQIECBAgQIAAAQIECGQpIMDKcuyaJkCAAAECBAgQIECAAAECBAikIyDASmdWKiVAgAABAgQIECBAgAABAgQIZCkgwMpy7JomQIAAAQIECBAgQIAAAQIECKQjIMBKZ1YqJUCAAAECBAgQIECAAAECBAhkKSDAynLsmiZAgAABAgQIECBAgAABAgQIpCMgwEpnViolQIAAAQIECBAgQIAAAQIECGQpIMDKcuyaJkCAAAECBAgQIECAAAECBAikIyDASmdWKiVAgAABAgQIECBAgAABAgQIZCkgwMpy7JomQIAAAQIECBAgQIAAAQIECKQjIMBKZ1YqJUCAAAECBAgQIECAAAECBAhkKSDAynLsmiZAgAABAgQIECBAgAABAgQIpCMgwEpnViolQIAAAQIECBAgQIAAAQIECGQpIMDKcuyaJkCAAAECBAgQIECAAAECBAikIyDASmdWKiVAgAABAgQIECBAgAABAgQIZCkgwMpy7JomQIAAAQIECBAgQIAAAQIECKQj8F/eNzOS0fiu9wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdB3QUVd8G8Gd30xNCIKRAEnpRekcpSlcQlV4EFLE3RCzYQAFRURREsb4qoiBIE0VRpIMI0ntvKRACCaTX3X3PHcwWUnY22c3Ozj5zznfeTzJz597f/xKyT+7c0RiNRiN4UIACFKAABShAAQpQgAIUoAAFKEABClBAoQIaBlgKrQy7RQEKUIACFKAABShAAQpQgAIUoAAFKCAJMMDiRKAABShAAQpQgAIUoAAFKEABClCAAhRQtAADLEWXh52jAAUoQAEKUIACFKAABShAAQpQgAIUYIDFOUABClCAAhSgAAUoQAEKUIACFKAABSigaAEGWIouDztHAQpQgAIUoAAFKEABClCAAhSgAAUowACLc4ACFKAABShAAQpQgAIUoAAFKEABClBA0QIMsBRdHnaOAhSgAAUoQAEKUIACFKAABShAAQpQgAEW5wAFKEABClCAAhSgAAUoQAEKUIACFKCAogUYYCm6POwcBShAAQpQgAIUoAAFKEABClCAAhSgAAMszgEKUIACFKAABShAAQpQgAIUoAAFKEABRQswwFJ0edg5ClCAAhSgAAUoQAEKUIACFKAABShAAQZYnAMUoAAFKEABClCAAhSgAAUoQAEKUIACihZggKXo8rBzFKAABShAAQpQgAIUoAAFKEABClCAAgywOAcoQAEKUIACFKAABShAAQpQgAIUoAAFFC3AAEvR5WHnKEABClCAAhSgAAUoQAEKUIACFKAABRhgcQ5QgAIUoAAFKEABClCAAhSgAAUoQAEKKFqAAZaiy8POUYACFKAABShAAQpQgAIUoAAFKEABCjDA4hygAAUoQAEKUIACFKAABShAAQpQgAIUULQAAyxFl4edowAFKEABClCAAhSgAAUoQAEKUIACFGCAxTlAAQpQgAIUoAAFKEABClCAAhSgAAUooGgBBliKLg87RwEKUIACFKAABShAAQpQgAIUoAAFKMAAi3OAAhSgAAUoQAEKUIACFKAABShAAQpQQNECDLAUXR52jgIUoAAFKEABClCAAhSgAAUoQAEKUIABFucABShAAQpQgAIUoAAFKEABClCAAhSggKIFGGApujzsHAUoQAEKUIACFKAABShAAQpQgAIUoAADLM4BClCAAhSgAAUoQAEKUIACFKAABShAAUULMMBSdHnYOQpQgAIUoAAFKEABClCAAhSgAAUoQAEGWJwDFKAABShAAQpQgAIUoAAFKEABClCAAooWYICl6PKwcxSgAAUoQAEKUIACFKAABShAAQpQgAIMsDgHKEABClCAAhSgAAUoQAEKUIACFKAABRQtwABL0eVh5yhAAQpQgAIUoAAFKEABClCAAhSgAAUYYHEOUIACFKAABShAAQpQgAIUoAAFKEABCihagAGWosvDzlGAAhSgAAUoQAEKUIACFKAABShAAQowwOIcoAAFKEABClCAAhSgAAUoQAEKUIACFFC0AAMsRZeHnaMABShAAQpQgAIUoAAFKEABClCAAhRggMU5QAEKUIACFKAABShAAQpQgAIUoAAFKKBoAQZYii4PO0cBClCAAhSgAAUoQAEKUIACFKAABSjAAItzgAIUoAAFKEABClCAAhSgAAUoQAEKUEDRAgywFF0edo4CFKAABShAAQpQgAIUoAAFKEABClCAARbnAAUoQAEKUIACFKAABShAAQpQgAIUoICiBRhgKbo87BwFKEABClCAAhSgAAUoQAEKUIACFKAAAyzOAQpQgAIUoAAFKEABClCAAhSgAAUoQAFFCzDAUnR52DkKUIACFKAABShAAQpQgAIUoAAFKEABBlicAxSgAAUoQAEKUIACFKAABShAAQpQgAKKFmCApejysHMUoAAFKEABClCAAhSgAAUoQAEKUIACDLA4ByhAAQpQgAIUoAAFKEABClCAAhSgAAUULcAAS9HlYecoQAEKUIACFKAABShAAQpQgAIUoAAFGGBxDlCAAhSgAAUoQAEKUIACFKAABShAAQooWoABlqLLw85RgAIUoAAFKEABClCAAhSgAAUoQAEKMMDiHKAABShAAQpQgAIUoAAFKEABClCAAhRQtAADLEWXh52jAAUoQAEKUIACFKAABShAAQpQgAIUYIDFOUABClCAAhSgAAUoQAEKUIACFKAABSigaAEGWIouDztHAQpQgAIUoAAFKEABClCAAhSgAAUowACLc4ACFKAABShAAQpQgAIUoAAFKEABClBA0QIMsBRdHnaOAhSgAAUoQAEKUIACFKAABShAAQpQgAEW5wAFKEABClCAAhSgAAUoQAEKUIACFKCAogUYYCm6POwcBShAAQpQgAIUoAAFKEABClCAAhSgAAMszgEKUIACFKAABShAAQpQgAIUoAAFKEABRQswwFJ0edg5ClCAAhSgAAUoQAEKUIACFKAABShAAQZYnAMUoAAFKEABClCAAhSgAAUoQAEKUIACihZggKXo8rBzFKAABShAAQpQgAIUoAAFKEABClCAAgywOAcoQAEKUIACFKAABShAAQpQgAIUoAAFFC3AAEvR5WHnKEABClCAAhSgAAUoQAEKUIACFKAABRhgcQ5QgAIUoAAFKEABClCAAhSgAAUoQAEKKFqAAZaiy8POUYACFKAABShAAQpQgAIUoAAFKEABCjDA4hygAAUoQAEKUIACFKAABShAAQpQgAIUULQAAyxFl4edowAFKEABClCAAhSgAAUoQAEKUIACFGCAxTlAAQpQgAIUoAAFKEABClCAAhSgAAUooGgBBliKLg87RwEKUIACFKAABShAAQpQgAIUoAAFKMAAi3OAAhSgAAUoQAEKUIACFKAABShAAQpQQNECDLAUXR52jgIUoAAFKEABClCAAhSgAAUoQAEKUIABFucABShAAQpQgAIUoAAFKEABClCAAhSggKIFGGApujzsHAUoQAEKUIACFKAABShAAQpQgAIUoAADLM4BClCAAhSgAAUoQAEKUIACFKAABShAAUULMMBSdHnYOQpQgAIUoAAFKEABClCAAhSgAAUoQAEGWJwDFKAABShAAQpQgAIUoAAFKEABClCAAooWYICl6PKwcxSgAAUoQAEKUIACFKAABShAAQpQgAIMsDgHKEABClCAAhSgAAUoQAEKUIACFKAABRQtwABL0eVh5yhAAQpQgAIUoAAFKEABClCAAhSgAAUYYHEOUIACFKAABShAAQpQgAIUoAAFKEABCihagAGWosvDzlGAAhSgAAUoQAEKUIACFKAABShAAQowwOIcoAAFKEABClCAAhSgAAUoQAEKUIACFFC0AAMsRZeHnaMABShAAQpQgAIUoAAFKEABClCAAhRggMU5QAEKUIACFKAABShAAQpQgAIUoAAFKKBoAQZYii4PO0cBClCAAhSgAAUoQAEKUIACFKAABSjAAItzgAIUoAAFKEABClCAAhSgAAUoQAEKUEDRAgywFF0edo4CFKAABShAAQpQgAIUoAAFKEABClCAARbnAAUoQAEKUIACFKAABShAAQpQgAIUoICiBRhgKbo87BwFKEABClCAAhSgAAUoQAEKUIACFKAAAyzOAQpQgAIUoAAFKEABClCAAhSgAAUoQAFFCzDAUnR52DkKUIACFKAABShAAQpQgAIUoAAFKEABBlicAxSgAAUoQAEKUIACFKAABShAAQpQgAKKFmCApejysHMUoAAFKEABClCAAhSgAAUoQAEKUIACDLA4ByhAAQpQgAIUoAAFKEABClCAAhSgAAUULcAAS9HlYecoQAEKUIACFKAABShAAQpQgAIUoAAFGGBxDlCAAhSgAAUoQAEKUIACFKAABShAAQooWoABlqLLw85RgAIUoAAFKEABClCAAhSgAAUoQAEKMMDiHKAABShAAQpQgAIUoAAFKEABClCAAhRQtAADLEWXh52jAAUoQAEKUIACFKAABShAAQpQgAIUYIDFOUABClCAAhSgAAUoQAEKUIACFKAABSigaAEGWIouDztHAQpQgAIUoAAFKEABClCAAhSgAAUowACLc4ACFKAABShAAQpQgAIUoAAFKEABClBA0QIMsBRdHnaOAhSgAAUoQAEKUIACFKAABShAAQpQgAEW5wAFKEABClCAAhSgAAUoQAEKUIACFKCAogUYYCm6POwcBShAAQpQgAIUoAAFKEABClCAAhSgAAMszgEKUIACFKAABShAAQpQgAIUoAAFKEABRQswwFJ0edg5ClCAAhSgAAUoQAEKUIACFKAABShAAQZYnAMUoAAFKEABClCAAhSgAAUoQAEKUIACihZggKXo8rBzFKAABShAAQpQgAIUoAAFKEABClCAAgywOAcoQAEKUIACFKAABShAAQpQgAIUoAAFFC3AAEvR5WHnKEABClCAAhSgAAUoQAEKUIACFKAABRhgcQ5QgAIUoAAFKEABClCAAhSgAAUoQAEKKFqAAZaiy8POUYACFKAABShAAQpQgAIUoAAFKEABCjDA4hygAAUoQAEKUIACFKAABShAAQpQgAIUULQAAyxFl4edowAFKEABClCAAhSgAAUoQAEKUIACFGCAxTlAAQpQgAIUoAAFKEABClCAAhSgAAUooGgBBliKLg87RwEKUIACFKAABShAAQpQgAIUoAAFKMAAi3OAAhSgAAUoQAEKUIACFKAABShAAQpQQNECDLAUXR52jgIUoAAFKEABClCAAhSgAAUoQAEKUIABFueASwUuJGe79P68ufsIhAb7wtdbi+S0XOTmG9yn4+wpBSjgUAHxfUB8PxDfB8T3Ax4UoIDnCoSH+MFLp0HStRwU6I2eC8GRu1SgRqi/S+/Pm1PAkwQYYHlStRU4VgZYCiyKQrvEAEuhhWG3KFDBAgywKhict6OAggUYYCm4OB7UNQZYHlRsDtXlAgywXF4Cz+4AAyzPrr89o2eAZY8Wz6WAegUYYKm3thwZBewVYIBlrxjPd4YAAyxnqLJNChQvwACLM8OlAgywXMrvVjdngOVW5WJnKeA0AQZYTqNlwxRwOwEGWG5XMlV2mAGWKsvKQSlUgAGWQgvjKd1igOUplS7/OBlgld+QLVBADQIMsNRQRY6BAo4RYIDlGEe2Uj4BBljl8+PVFLBHgAGWPVo81+ECDLAcTqraBhlgqba0HBgF7BJggGUXF0+mgKoFGGCpurxuMzgGWG5TKnZUBQIMsFRQRHceAgMsd65exfadAVbFevNuFFCqAAMspVaG/aJAxQswwKp4c96xqAADLM4KClScAAOsirPmnYoRYIDFaSFXgAGWXCmeRwF1CzDAUnd9OToK2CPAAMseLZ7rLAEGWM6SZbsUKCrAAIuzwqUCDLBcyu9WN2eA5VblYmcp4DQBBlhOo2XDFHA7AQZYblcyVXaYAZYqy8pBKVSAAZZCC+Mp3WKA5SmVLv84GWCV35AtUEANAgyw1FBFjoECjhFggOUYR7ZSPgEGWOXz49UUsEeAAZY9WjzX4QIMsBxOqtoGGWCptrQcGAXsEmCAZRcXT6aAqgUYYKm6vG4zOAZYblMqdlQFAgywVFBEdx4CAyx3rl7F9p0BVsV6824UUKoAAyylVob9okDFCzDAqnhz3rGoAAMszgoKVJwAA6yKs+adihFggMVpIVeAAZZcKZ5HAXULMMBSd305OgrYI8AAyx4tnussAQZYzpJluxQoKsAAi7PCpQIMsFzK71Y3Z4DlVuViZyngNAEGWE6jZcMUcDsBBlhuVzJVdpgBlirLykEpVIABlkIL4yndYoDlKZUu/zgZYJXfkC1QQA0CDLDUUEWOgQKOEWCA5RhHtlI+AQZY5fPj1RSwR4ABlj1aPNfhAgywHE6q2gYZYKm2tBwYBewSYIBlFxdPpoCqBRhgqbq8bjM4BlhuU6oiHb1r9Ms4F5eIV8eNwsiBPd13IB7UcwZYHlRsJQ6VAZYSq6LMPjHAUmZd2CsKVLQAA6yKFuf9KKBcAQZYyq2NJ/WMAZb7VpsBlvvVjgGW+9VMVT1mgKWqcjp1MAywnMrLxingNgIMsNymVOwoBZwuwADL6cS8gQwBBlgykBR6CgMshRamlG4xwHK/mqmqxwywVFVOpw6GAZZTedk4BdxGgAGW25SKHaWA0wUYYDmdmDeQIcAASwaSQk9hgKXQwjDAcr/CeEqPGWB5SqXLP04GWOU3ZAsUUIMAAyw1VJFjoIBjBBhgOcaRrZRPgAFW+fxceTUDLFfql+3eXIFVNjde5SABBlgOgvSAZhhgeUCRFTjEq/pcpBnzkGrIQ5RXIEK1fgrspWd1iQGWZ9Wbo6VAaQIMsDg/lCDAAEsJVShbHxhglc3NlVcxwHKlPu8NBlicBHIFGGDJleJ5jhJ44NJarM2ONzX3SdhtGBBY11HNs50yCqg1wFqYcQIncq+he0AMbvOvXkYdXkYBzxJggOVZ9VbqaCsiwNp76CQWrliL3QdOIOVqGgL8/dCofgzu6d1J+j+dTmviue/Jadh/5DT6dO+AmZOfKJVt9ldL8dWCVYgMq4q/Fn8ArVZjOt9oNOK3tdvx859bcexkLNIzshBSOQitmjbAfQN6on2rmxxeksPHz2HRyvXYtf84LidfhUajQURYVdSpWR29b2uLu3t3LHLPy8nX8P3SNfh75yHEX7yM3Lx8hIYEo3XzBhjSr1up/ZQTYDmi/W2/zEXl4ECpfl/+8CsOHj2D1PRMdOnQHJ/PmOBwRzU3yABLzdV1g7ExwHKDIimkiwywFFIID+rGwMTV2JFzyTTiaVU7YGzwzR4koMyhqjHAWp5xGs9c2WICD9R4obN/dfQIiEEP/2hE6gKUWQz2igIuFmCA5eIC8PaSgLMDrFlfLsH/Fv4m3ctLp0OVkEpSmJSTmyf92S2tG2POW+MQGHB9lfiK1Vvw+oyv4ePjjU3LP0JwUPH/hoiAqtfwF3DxUjIeHXU3nn14kKmiWdk5eOb1Odi++4j0Z36+PqgUFICr19JRoNdLfzZ2eF88//hQh8wC0ZcPvvgJ3y5aXWJ7Iqh759VHrL7+1+ZdeHn6lyYLXx9veHt7ISMz23TeoLtuw+QJD0h2Nx62AixHtf/Ld29j575jeGv29xBjLTxGDuyJV8eNcoihpzTCAMtTKq3QcTLAUmhhFNgtBlgKLIrKu9Q7YSUO5181jfKFKq3wXOUWKh+18oentgBrReYZPH15c6nwjbxD0DMgGj0CotHBN1L5RWIPKVBBAgywKgiatylVwJkB1ryf/sD7ny6CCGZefHI4+t/ZBf5+PtDrDdj0zz5Mev8bXEvNwF09bsF7kx6X+pmdk4fbB45DZlYOJj13P4bf273Y/ovVQPePe1v62m/fv4vaMeZ/X55+9SNs2LYXNSKrYfJzD6Bj2ybSKq+s7Fz8+PM6zP5qCQwGI958YQyG9Ota7hnyxfe/Ys7Xy6R2BvTpAhHs1KtVAwV6A+IuJOGfXYfRtmUjNG1Ux3SvPQdP4IFn35H60a1jKzzz0EA0qhcjfT3lWjqW/74Zn3yzHPkFeozo3wOvjx9dpJ+lBViObP+pMf3x6Xcr0bRRbTw9diCa3VQXIiT08tIhLDSk3H6e1AADLE+qtgLHygBLgUVRaJcYYCm0MCruVsf4ZThfkG4a4cOVGmNKaHsVj9g9hqamAGtV1jk8lrTRLvhKGi908Y/CnQG10DWgBvdls0uPJ6tNgAGW2irqnuNxVoCVfDUNPYc9j7y8fEx9cSzESqIbjz83/osJb34q/fGy/03FTfVrSv//1FnzsXjleinwWfzFG8XCTvlgHn76dSNaNK6HhZ9OMp0jgisRYHl76aQ269WOKnL9tFnzpUf9QqsEY+3iD6TVXmU9kq5cQ69hz0srux4bfTfGPWReCVZam/eMeQ2nzyVI4dXH08dJjxuW5rPos8lodrP1VhClBViObF/0q1O7ppj79nhphRiPsgswwCq7Ha90gAADLAcgekgTDLA8pNAKGmaL2EW4Ysgx9WhYYH18GNZZQT30zK6oJcD6MysWY5PWWxVRhFONvKtiV16S7OK28AlFN/8o9AqoiZa+1WRfxxMpoAYBBlhqqKL7j8FZAdY3i37HB5//hFrREfj9hxklQt0+8FlcSUnFE/ffi6fHDpDOO3ryPAY/cj24WvntdNSvYx1CiVVJtw8YJ+3D9MbzYzD0bvMqqscnfogtOw5gcL/bMeWFB4u979nYi+h3/yvS176ZNREdWpV9i4XC1VdVKlfChqWzZAU8YnXU6Geurx4Tj+eJ1VolHSOenIYDR05Le4Xd+AhiSQGWo9sXq+bWLPoAVUMquf+Ed/EIGGC5uACefnsGWJ4+A+SPnwGWfCue6RiBuufnI9doMDXWyz8a8yJ6OqZxtlJmATUEWBtzEjAy8S8rA7Hv1bLqfdDMJxTZxgJszbmIdVnxWJ8dj4SCTFleoVpfdPWPkvbO6u4fjUrasv9GXNYNeRIFXCzAAMvFBeDtJQFnBVhygiRxf/EYoHgcsGeXNvho2jOmqgx59E0cOXEOY4beKT1+aHkUrrK6cZ8s8Theh7uekB5vm/H6Y+jX89ZiqywCsNa9H5Ye33t13EiMHNirzLPh0RdnShuwiw3a3331UVntiI3QP/rfMukRx78WzSz1msJzI8KqYP2SWVbnlhRgObp9y0c8ZQ2QJ5UowACLk8OlAgywXMrvVjdngOVW5XL7zhqMRsSc/85qHO39wrEisq/bj83dB2BvgGXIB879rkVuCpBzVYPcVOCWKdc3oHXFsTX7IkZd+gv5MIejfhodlkTeida+YcV26XjeNazLjsfarDjszk1CAcwbwJY0Bh00aOMbdj3MCohGY+8qrhgu70kBpwowwHIqr1s3vnGLFus3mN/Md+stBvTpbf6+68jBOSvA6jtqIs7Hm18mY6vP4q2A38562XTaT79swJQPv5Me81u/dJbVJubPT/kUf2z4F3d2a48P3njSdI14417XQeNt3crq6089OABPPnCvXddYnlw4TvHooHiEUM4x+f1vsOy3zbi1bRP8b+aLpV6yZtMuPPfGJ9I5+9Z+LT0aWXiUFGA5uv3nHh2Ch++7S87QeI4NAQZYnCIuFWCA5VJ+t7o5Ayy3Kpfbd/aqPgdN4xZZjUNspL0+qr/bj83dB2BvgJWTosGeGdZvHmr6mB7BdW2HQI62+jfnEoZfWoNcozlA89XosCiiN9r7Rci6XbohHxtz4qXVWRuyEqwecy2tAfEmQ/GoYc+AGNzmXwMBGu7BIQucJylagAGWosvj0s6tXa/F5q3mAKtdawPu7udeAVbho4Hh1UIgHq+zdTRpVAfTXhprOk1s4i42cxebun88/Vl079RK+ppYXdWl/zjpzX2fz5iALh2am66xfDRQbOouNo+3dQy7pxuGlbBRvK1rxdcLx/ny0/dh9ODeci7BC1M/w+r1O9C9c2t8/Na4Uq/ZsuMgHp/4gXTO3ys/QUjlINP5JQVYzm5f1iB5UrECDLA4MVwqwADLpfxudXMGWG5VLrfvbFxBBm6JX2o1jkidP3bHDHP7sbn7AOwNsDLiNTjwsXWAVfMOA6K7O+eDTEm+e3IvY0jiH8ixCK+8ocUPEb3Q2b96mcoiIrgDeVewLjsB6zLjsD/vioy1WYC3RosOvuH/PWoYg/rewWW6Py+igKsFGGC5ugLKvf/vf2ix/V9zgNWimRGDBjhn9a2zVmDded9L0hv47FmZdGNFXp/xNVas3oIeXVpjzrTrQc+va7bh5be/RLWqlaVH6sTbBQuPxMsp6DFkgvSf33/8Glo3a+D0It8x4kXEX7yM8Y8MxiMj+8m63/SPvsfCFevsX4H11/+s9tgqKcBydvuyBsmTGGBxDihPgAGW8mqi1B4xwFJqZdTZryN5Keh14RerwYnHvE7XKvoKZnUKKHdU9gZY105ocORr6wArpJERjcc654NMcXIHc5MxMHE1sowFpi+LR/y+i+gprYpy1JFiyMX6rOuPGm7KSUCaeH5SxlFTF4QeAdFSoNXJPxI+sPaS0QRPoYBLBBhguYTdLW7686867Nlrfitd45sMGD7UOb+4cFaANfa5Gdix9yjKs3/S/iOncd+T06TH5jb//DGCgwJQuLfWg8P74IXHrX8xJ/a2at/3cenNh2++MAZD+pk3d3dW4R949h3s2n8cA/p0wVsTH5J1m8IN7uXsgfXVglWY/dVShIWGYOOy2VbtlxRgObt9WYPkSQywOAeUJ8AAS3k1UWqPGGAptTLq7NfOnCT0T/y9yODO1BoN8cgXD9cJ2BtgXdmrwYlF1jXT+hjRYYoeGvMvnZ02IBFeiZVX6UZzmKSFBl+Hd0PvgOuvO3fGoYcRu3KTpDBLhFrH8q/Juo0fdOjoHymFWT39oxHtZX7UQlYDPIkCFSjAAKsCsd3sVkuW6XDwsDnAql/PiPtHOucXF84KsD6f/ws+/ma5FDqtWzILAf6+ZapC/wdfx8mz8VI4JB65u63/OBTo9cW+nVDc4KEJ72H7niOyVjeVqUM3XCTCJREyFbcirKT2T59LwD1jXpO+XNxbFi2vG/nUW9h3+BT69uiA9yc9YdVkSQGWs9t3hJuntsFHCD218goZNwMshRTCDbrBAMsNiqSiLooP/KOT1hYZ0Z7ooYjwClDRSN1vKPYGWInbtDizsmhS1WJcAQIdt/ipWMijeVcx4OLvVuGV+Dj1eVhX9AusXaH4ifosKcwSe2eJNxxargYrrSMNvIPR3T9GCrTEY4deFZH6VagMb+bOAgyw3Ll6zu37gkVaHD9h/t5fq6YRD41xrwBLbKjea/gLyM8vkPaYmvzc/WVCW7D8L7w9ZwG6dmyJ3re3w6vvfIUmjWrjpy/eLLa9vzbvwvjJ1zc9nzn5CfTp3qFM95V7kdioXmzkLg57Njsf8eQ0HDhyWhrXJ9OfhUZjDiwL771+6x488/oc6T/nzX4Z7VreJCvAEic5u325PjzPWoABFmeES+fsaoIAACAASURBVAUYYLmU361uzgDLrcrl9p39NfMsHr+8qcg4NkT1R0PvELcfnzsPwN4AK26tFnF/FQ2w6txtQPXOznmcRPieyk/FvRd/wzVDnhX3x9W6YGBQPZeWIN9owLacRKwTgVZ2PM4VpMvqT5DGC539a0gbwffwj0a4zl/WdTyJAs4SYIDlLFn3b3fe9zqcOWsONKpXB554xPwYtyNH6KwVWKKP3y9dg3c/WSh1V6yeeuS+uyA2axf7VmVkZiMxKUV6zHD933vw7quPSo/J3XikpmdKbxb00mnRvtXN2LhtH14dNwojB/YskeHZSR9j7Zbd0Go1GDO0Dwb3ux21oiNgNBpxNTUDCRcvY8uOAzh+Og4fTXum3Jwz5v6I+Uv+lNoZM+xOjBrYC9UjQqHXG5CUfA279x9HWkYW7hvQw3SvU2cTMPjRN6SAr2eXNlL4JTaeF4fYqP7nP/7GzM8WITcvH/f07oR3Xn2kSD9LWoEl/Tvu5PbLjeahDTDA8tDCK2XYDLCUUgnl94MBlvJrpKYeLkw/gReTtxUZ0s+RfdHOL1xNQ3W7sdgbYJ39VYuLFm+iKhxwaDMDGo1yToB1Nj8N91z8DWJPKsvjg9BOGF7J+Rvi2lvUswVpWJ99fe+s7dmXkAd5Lk28q6C7fzR6BMagjW8YxKORPChQkQIMsCpS273u9eXXOsQnmL8nhYYa8exT7rUCq1Bc7Mc068slMBiuvz1XrDTy9vaS9qmyPNYt+RCRYVWLLdTE6V9g1V//SF8T+2FtXPaR1dv4brxIvKFQbAAv3vRXeHjprj+OLx4/LDxiaoTjj4XvlXtyiDbfnDlP2nC+8PDx8ZbCKRGaiUO8RVG8TdHy+HfvMUx4cy6upl7/RYx4w6B4c2JySpqpn2IF2fSXHy72jYqlBViiPWe3X244D2yAAZYHFl1JQ2aApaRqKLsvDLCUXR+19e7L1MOYcnVnkWF9F95DWn3Cw3UC9gZYJxfpcNliI1/TD+L+RrR/0/EfZsQbLO+++Bsu67OtkJQaXt1YSfFo4ZbsC9KjhiLUuqjPklXsEK0PbveLQs/AGHT1j0JVbdn2apF1M55Egf8EGGBxKpQkMPdzL1xKMn81ONiIF8Y7/nu+uIMzV2AVjiA24RIWLF8r7U11ITEZObm58PP1RY3IULRsUh+9bmuLTu2aFvsYnWhDbJIuNksXh+UbCW3NILG6a/nvm7H34ElcSUmVQqGgQH/UjIpA+5Y3oV+vjmhYN9pWM7K/LgKjJas2XL/f1TR4e3lJe2M1b1wXQ+/uhjbNGxZpS4RXS1dtgnj0Mf7CZWTl5CI0JBgtm9bHoLtuQ8e2TUu8v60AS1zo7PZl4/BESYABFieCSwUYYLmU361uzgDLrcrl9p2ddW0fZl7bV2QcH1XrgsEufvzL7XHLOQB7A6yj3+hw9XjxK4NavaCHf9j13+w64rhQkCmtvLox9Hmn6i24P9h63w1H3K8i2jiaf9X0ZsPduZchNoe3dYgHNlv4VpP2zRIrtJr7hHJtli00fr1MAgywysTmERfN+liHq1fN3/v9/YFXXnS/RwgdVSzxSF2Hu56QVnGJVUxiNRMPCrijAAMsd6yaivrMAEtFxXTyUBhgORmYzVsJTE3ZiS/SDhdRmVq1Ax4KvplaLhSwN8A6+IkO6XHFB1j1B+sR3s52ICNnuCK8GpC4GvEFGVanv1m1PR4JbiynCcWfk27Ix4aceKzNjMPG7AQk3/CIZEkDCNP6oVtAlBRoiVValbTeih8rO+geAgyw3KNOrujlex96IcPi27GXFzD5Vc8NsJb9thmT3/8GVSpXwoZls6XHCHlQwB0FGGC5Y9VU1GcGWCoqppOHwgDLycBs3kpg4pVt+CHjRBGV50NaYkJIS2q5UMDeAGvP+zrkXCk+wAprY0SDoeV/pCRJny09NnhjeCXmipgzajxE7Lc/94q0b5Z41PBAXrKMtVmAFzRo4xsuPYrbPSAKN3lXUSMPx1RBAgywKgjaDW/z1jteuGGLKEyd7LkB1rDHpuDQ8bN4YMgdeOmpEQ6vqFjh9eiLH9jVrnh74MP33WXXNTyZAgywOAdcKsAAy6X8bnVzBlhuVS637+yTlzdhZebZIuN4OPhmTKnq3NdJuz2ekwdgb4C1Y4oXStrGyS/UiNYvlS/AStbnSI8N3vgmv4eDG2NK1fZO1lBO88mGHOmNhusy47EpJwFitZaco4YuEN39r6/O6uJfHf4aLzmX8RwKSAIMsDgRShKYPLXo95LXJxbAxwnb81XEHljlqfT6v/fimdc+kt5cuGr+u6gZ5fiX0Yg3BN7a70m7ujmw722Y9tJYu67hyRRggMU54FIBBlgu5XermzPAcqtyuX1n709ah3VZcUXGIfa/Evtg8XCdgL0B1raJpQci7V7Xw7tS2R4jvKrPxb2Jv+N0fqoVyOhKjfBu6K2uQ3LxnQuMBuzKS8K6zDiszY7HiRt8SuqeD7S4xT9CCrN6+Eejjlewi0fC2ytdgAGW0ivkmv7l5wPT3in6vf+lCQUICnJ8n5QWYIm39ok3FYpj/dY9eOWdr5CRmY37BvTAa8+OdjwAW6RABQowwKpAbN6qqEB5AyzxQ/GpvGtINeYhzZCLzv410MS7+NfH0t+9BRhguXf93K33Ay+uxo7cS0W63cs/GvMierrbcFTVX3sCLH2WBjummPf50Pkb4V8NyLDYE6vRfXqEtrAvwIotSMeyzDNYnH4S4q2DlscDlRrhbQ8Or4qbbAkFmViTFYsN2QnYmn0RuZC36q2WVyX09I9Gd/FmQ78aqprHHIxjBBhgOcZRba1kZQHvziwaYD33jB5Vqtj3/V6OjdICrFFPT0fchSRkZedCPNonjmY318W3s16Gv5+PnCHxHAooVoABlmJL4xkdK2+ANTl5B75OP2rCmhbaAWMrcYNlNc4eBlhqrKpyx3RHwi84lJ9SpIMdfCOwvHof5XbcA3pmT4CVk6zBnvfMAZZvVSNCmxhxYYt4T971I7KjAXXvNdiUE4/Ercw8g6Xpp7Ezz+Ld7BZX3hfUAO9X62SzLU8/YWPOBazNjMW6rATE6tNlcfhBh07+1dHNPwq9A2oiyitQ1nU8Sd0CDLDUXd+yju5aqgYfflR0k/KnHi9AhOOfnoPSAqyX3/4SW3ccREZmFmpEVkO/Xh3x0Ii+8PXhCzTKOqd4nXIEGGAppxYe2ZPyBlgfXduP967tNdmNq9wcE6u09khLtQ+aAZbaK6ys8XWMX4bzBUU/WDf0DsGGqP7K6qyH9caeACsjVoMDc80fYgJjjIjpZsSx+eYAK6A60HJ88Rv7ikfhxL5OSzJOYV1WPPJQctA1ILAu5lTrAu1/j214WFnKPNzT+WlYnx0nbQa/IzcJ+UbbYaK4WUPvytJjhj0CaqKdbxi8NOaalrkzvNDtBBhguV3JKqTDl69o8PGnRQOsRx/SIzpK/SuwKgSZN6GAiwQYYLkInre9LlDeAGthxgm8eGWbiXNEUAPM5G+/VTm9GGCpsqyKHVTz2B+RbMgt0r9wnT/2xgxTbL89oWP2BFjXjmtx5BtzsFG5oQENRxiwc4rFoyUaIzpM0UNnsbHvntzLWJ5xGssyTyPNxmbklbU+EHtevVKljSfwO3WMWcYCbM6+gPVZ8dIjh5cN1x99sXUEabxwm38UugdES283DNP62bqEX1eJAAMslRTSwcNIuKDBF/8rGmCNuV+PurUZYDmYm81RoEIFGGBVKDdvdqNAeQOsP7Ji8VDSelOzvf1j8G1ED0KrUIABlgqLquAh1T0/H7nFrAQRm0yfrX2/gnuu/q7ZE2Al7dHg1GLzh5hqLY1oOEKPvR/okJ10fYNbcdz8oB7Z9TOwJPM0lqafwpmCtFIhxTzoFRCDIZXqo5tfFFf/OGnaHc5PwfrsBKzLiMOevMvQw/YHT1HVpj5V0V1anRWNVr5h0MJcayd1lc26SIABlovgFX7bs+c0+HZ+0QBr5HA9GjW0/X3E3uEp7RFCe/vP8yngTgIMsNypWirsa3kDrF25Sbj34u8mmda+Yfi1+l0qlOKQGGBxDlSUgMFoRMz570q83elao+GnKfqDcUX1z9PvY0+AdWGrFud+Lbrf1ZnlWiTuMP/59rYn8WG7TTbjkTa+YRgSVB/9A+uikpZ7iVTkXEw15GFDdrz0KOfG7ASkFLNCsrj+VNH6oKt/lPSoodg/K0TLDYwrsm7OvhcDLGcLu2f7J05q8MOPRf+dHjpIj6ZNGGC5Z1XZawpcF2CAxZngUoHyBlhn89PQOWG5aQzijUXboge5dEy8uXMEGGA5x5WtFhW4qs9B07hFJdLsiR6KCK8A0rlIwJ4AK3aNFvHrzEFVTE8DqvcswJZ/U+G7PMw0gmORlzBpwK/FjijaKxCDAutheHAD1NRVctGoeVtLAQOM2Jd7Rdo3a312PA7lpdgMH8X1YiaIFVk9AmKk/bPESi0e7i3AAMu96+es3h86osVPS4vuizfgHj1atWSA5Sx3tkuBihBggFURyrxHiQLlDbDSDXm4KXahqf1AjRdO1BpFcRUKMMBSYVEVOqS4ggzcEr+0xN6JTdzFZu48XCNgT4B15mctEv8xf4g50uMM5tz0N/TpWnw1f6RpAHqNAaMf/g75Xnrpz8SeSncF1MaQSg1wi18EH0BzTall31XslSVWZq3LisOW7ASkG4vflP/GBsWedt39xOqsGHTxr8FVdbLFlXMiAyzl1EJJPdm3X4PlK4uuwLqrjwEd2sl7UYQ94+EjhPZo8VwKlE+AAVb5/Hh1OQXKG2CJ29c69x0KLH73eq7W/fDm24jKWRnlXc4AS3k1UWuPjuSloNeFX0oc3s+RfdHOzwnv4VYrqIPHZU+AdWABkHHAvGH7nB4bsKXhaalHn34/HGEZQabevXnvKlSrp8GQoAboG1gLvuBjog4uXYU0J94c+W9ukhRmrcuOw8n80vczK+yUeIthO99w0+os8ZZDHsoXYICl/Bq5oof/7tRi1eqiK7B69zSgc0cGWK6oCe9JAUcJMMBylCTbKZOAIwKsdnFLcEGfabr/jujBiPYyfygpU8d4keIEGGApriSq7dDOnCT0TzTvrXfjQOdF9EAv/xjVjl/pA7MVYGUa87Eq6zyWpJ9CjyWt0CI+yjSk6Xf9gX0146X/Hre2K7qcrG/6WmivPDTqWfQDj9I92L/SBS4UZOKv7DjpccNt2YnIwfVVdrYO8ejo9Y3gY9DZLxJ+Gos3V9q6mF+vMAEGWBVG7VY32rpNizVri34/73q7Ad1vZ4DlVsVkZylwgwADLE4Jlwo4IsDqc+FXHMhLNo3j9xp3o4VPqEvHxZs7XoABluNN2WLxAuuz4jE6aW2JPLOrdZY28ubhGoHiAizxdrrN2RewNOMU/siMNYUU7y7tj3qXq5k6+srAlTgVcRmhWl88fbIjmq6pZ/paSEMjGj8kL9xwzch51/IK5EGPrdkXpccNxd/zWH2GrCbFarxb/SLQIzAGPQOiuReaLLWKOYkBVsU4u9td1m/SYuOmogFWp1sNuKMXAyx3qyf7SwFLAQZYnA8uFXBEgDX60lppE9fCY354D+k3pjzUJcAAS131VPJofs08i8cvbyqxi1OqtsfDwY2VPARV980ywNp05SKWpp/Cz5lnIPZBuvGY+8MwhKebN15fOvZv3BlTA939o5CXpMW+D82rarQ+RnSYogefQFf19LEa3Mn8VKzPjpMCrR25SRCPH8o56noFm1ZndfSLgHj8kIdrBBhgucZd6Xf98y8t/rbY/7Cwv+3bGtCvr7y/5/aMkXtg2aPFcylQPgEGWOXz49XlFHBEgPXslS1YmnF9TxNxzKrWCUODGpSzZ7xcaQIMsJRWEfX2Z2H6CbyYvK3EAU4IaYnnQ1qqF0DhI0vV5OLXvLP47soxHMm9Vmpvv/vf/QjI9zGd0/6NAli+QPLfN3UoyNaYvt7imQIERiscgN1zioB49FSs4lubGYf1OQlI0mfLuk+Axgtd/Kub9s6K1PENpbLgHHQSAywHQaqsmV9/02Ln7qLBcssWRgy81/ErbRlgqWwCcTiKFmCApejyqL9zjgiwpqfsxKdph01Yk6q2w+PBTdSP52EjZIDlYQV34XC/Tj+Cycn/ltiDRyo1xpuh7V3YQ8+7dZaxAL9nnseSjJPYmpNoEyDKKxCD/Ouiy3sdLM41ouMM6w8ux77TIuWI+UNO7bsNqNHZ8b+dt9lhnqA4gUN5KViXff3NhrtzL8vuX2PvKugWIN5sGI0OvpGyr+OJZRNggFU2N7VfJd5AKN5EeOPRpLEBwwY7/ns8Ayy1zyiOT0kCDLCUVA0P7IsjAqzP0g7hrZRdJr3HgptgctV2Hqip7iEzwFJ3fZU0ulmp+zHz6l5Tl8RmzvEF5hdFDA6qi4+q3aakLquyLwYYsSX74vV9rbJiIUKs0o5AjRfuCqwlvUXwVr9IFKQDO98yPyIoVl6JFViWx4VNWpz73RxghTY1oNFox3+4UWWBPGhQ1wx52PBfmLUhOwHiv+UcwVpv3O4nwqwYdA+IQqjWT85lPMcOAQZYdmB50KmLl2hx+GjRFVgNGxgxagRXYHnQVOBQVSjAAEuFRXWnITkiwFqScQrjr2w1DXtwYD18FNbFnRjYVxkCDLBkIPEUhwhMS9mJzy1WdXbwjcCO3Eumtnv5R2NeRE+H3IuNFBUQ+xItSj+B5ZlnbD7GJT6edPavLoVWfQNqWr0pLjtJg70f6Ew38KtmROsXrT+4pMdpcPAT8zle/ka0f9PxH25YZ/UIiGB1T95lrMuIk1ZoHc6/KmtwYi1Ic59Qae+sngExaOFbDUXXh8hqiidZCDDA4nQoTuD7hTqcPFX0b1idWkY8+IDjv8dzBRbnIQUqToABVsVZ807FCDgiwLrxjWFd/aOwIKIXvVUmwABLZQVV8HBeurINCzJOmHo4MLCuFKYUHu19w7Giel8Fj8D9unbFkINlGaewNP00jsgIBBr7VcHIKg1xl1dthOn8ix1w2lkNDn1uDqeCahrR/CnrDy5iz+7tk3QwFpg/6LR+QQ+/MKP7IbLHLhEQe2WJIGttVhy2Zl9Aho2VgoWdFG/CFD+viNVZ4n8ra817tblkIG56UwZYblo4J3f7m+90OHe+aIAVVcOIxx5mgOVkfjZPAacKMMByKi8btyXgiADrQO4V9Lm4ynSrpj6h+LPG3bZuza+7mQADLDcrmBt396nLm/Bz5lnTCMYFN8OctIOm/27oXRkboga48QiV0fUcYwFWZ8VKbxHcknMRepQeGlXV+qJ/YF3cV6UheoTVQG6+AclpuSUORuxtJfa4KjxCbjKi8YNFP7gc/kqHVIvf1NcbpEdEewZYypgl7tUL8RbD7bmXpLcaircbnspPkzUAHTRo7ROGnoHiUcNoiH20eMgTYIAlz8nTzvr8Kx0uXCwaYIWHAU8/Ufrj6GWx4gqssqg5/prYhEvoM3JikYZ9fLwRHBSA2jGR6Ni2KYbe0xVVKpvfUFx4wcS3vsCqtf/g/UlPoG8Pyz00i+/rui17MG7SHPS6rS1mT3261AEdOn4Wwx6bgsYNa2PJl29anVt439IaCK0SjM0r5jgezQ1bZIDlhkVTU5cdEWBdKMhEu/glJpbqugDsihmqJiaOBQADLE6DihK4/9JaaUVF4fF+tY548Yr5rYQROn/siRlWUd1R1X3E41fbchKlfa3EpuyZNlareGu06OkfjSFB9dHDPxpeGi18vbXS9wNbAVbSTg1OLTWvwAprbUSDYUUDrLi1WsT9ZQ66wtoY0WCo439Dr6pCcjCyBOILMvBXVpy0OuufnEvIhbx5Jd5k2M0/SnrUULzhMFDjLet+nngSAyxPrLrtMc+Zq8OV5KIBVkiIERPGyft7aPsu5jMYYNmj5bxzCwMsfz8ftG7W0HSj3Lx8JF25itiEJOnPKlcKxFczX0STRrWLDZJcFWCJgK24YE10MiQ4CJ+8/azz8NyoZQZYblQsNXbVEQFWvtGA2ufnm3i8oMH52g+okcujx8QAy6PLX6GDH3hxtdWeVwsjeuO+S2us+pBQe0yF9sndb3amIBU/pp/EiowzuKjPsjmcVr7VpNBKrLi68dEquQHWjRu0i7cLircM3nikntbg8JcWe2VVNaL1RMd/wLE5aJ6gagGx4vDvnEQpzFqfHW/1YojSBi5C3A6+4dc3gvePQX3vYFU72Ts4Blj2innG+TNn65CWVjTACgwEJj7PFVhqnQWFAZYIgn77/t0iw7yQeAWTZ36Lf3Ydxs0NamHpV1MUFWDJDc7UWj+542KAJVeK5zlFwBEBluhYo/MLkGHMN/XxaM37EMz9JJxSM7mNZsZpcHG7BuKpoPpDy/9WLwZYcuV5XnkF7kj4BYfyU0zNrI26Fz0TVlo1e6b2aPjCHHqU955qvD7FkIvlmaelRwQP5pk9SxprlFcgBgbUxfDgBqjtVfKHdLkBVuwfWsRvMK+sqtnbgOgeRb8XGfKB7ZN1gMH8YaftawXwYU6gxmmpmDGdyE+VVnquy4rDzpxLKLDxCG1hx2vqgqTHDHsEREsvMPDx8O9DDLAUM6UV1ZF33vdCdnbRLnn7AJNeZoClqGI5sDO2Aixxq5Rr6bhtwDgYjUZsXfmx1YonVz9CyABL3mRggCXPiWc5ScBRAVanhGU4l59u6uWWqIGoy99SOqlqpTebn6nBoS+0yL5k/jDYbpIe3kHl21OGAZZLyumRN+0YvwznC8zfT/6JGYR+F35Dsj7H5LE7ZijEYz48rAXEI1J/ZMZKjwhuzr5g80N5oMYLfQNrSW8R7OgXKeutbHIDrNPLtbi0wxxg1e1vQOStxYfpB+bqkBFr/p7VcKQe1ZqX73sW54ayBeYv0CI/31zz0ffp4eOifdTTDfnYnJOAdZli76x4XDaYv9eUpugHHTr6R0qrs8SjttFeQcpGd0LvGGA5AVUFTU592wsFJeRUUyczwFJBiYsdgpwAS1zYvu/jyMzKwfolsxARZt5zkAGWe8wMBlgWdXrmtY/QqF5NPD1W3ua8eXn5GP3M22h2c128Pn60e1RcYb10VIB1z8XfsDv3sml0P0f2RTu/cIWN1nO6s+c9HXIs9h6oeYcB0d3LtwqLAZbnzB9Xj7RF7CKIt+IVHodiRkB8jzlTYN6QeX3UvWjEjZYlIhHzbM+5hKXpJ/Fb1jmk29jXSkRKnfyqS6HVXYE14afxsqvkcgOs4z9okXzQHGA1vE+Pai2KD6XO/abFhc3mc0XQJQIvHuoVmDLdC3qLJ0WfH69H5WDXh5aiBwfzkqUgSzxuuD/3CuTORPF4oXjMUOydJR47FHvGqf1ggKX2Cts/PqMReGNayf+uvP5KAXwcvK1cRe2Btf+QEefi5H5HsN9OaVe0bKpFrZiij4KW1E85Adaly1fRfchz0j5Yf//yCTQac/sMsJQ2A4rvDwMsC5cmXcfgltaN8fWHL8munliCKCb+puUfyb6GJ5oFHBVgjU1ahz+z4kwN/y+8O/oE1CS1iwQubtPi7ErzD84+IUa0mahHeX6WZoDlomJ64G3rnp+PXKP5B8QztUZjcOJq7Mm9YtJYEdkH7f0iPFDHPORzBWlYlHYSy7POIKEg06ZFA+9gKbQaGlQfYTp/m+eXdILcAOvQlzqknTb/YNr4YT1CGhQfUFw9qsXReebvWYHVgRbjHf9b+jIPmhc6XGDyVOsPuOOe0qNaqOsDrBsHKh7F3ZCVID1quDEnAamGPFkWQRovdPavIYVZ4gUI4eX4Oyfrhi46iQGWi+AVfNvcPGD6uyUHWC+/UIAABy+grqgAa/5iPTZv85wAa/QwHW7vKD+ItxVgZWRm44Wpn2HLjgN4ddxIjBzYy2omM8BS8F9si64xwCpngNV10HhcvZaO/eu+do+Ky+jl9j1H8Ouabdhz8KT0xga9Xo+walXQpnlDPDDkDmnTu5KOFau3YOmqTTh1LkG6rlZ0JPrf2Rn3DegJna7oNyBHBVgvJW/DgvQTpm69G3orRldqJGO0PMUZAgU5wK63dDBYPJ5x0wMGVG1c9n90GWA5o1Js80YBg9GImPPfmf5YxB/xtcdg1KW/sCE7wfTn8yJ6oJd/jMcBXjPkmfa12p+XbHP8VbW+uDewDoZUaoAWPqE2z5dzgtwAa99sL2RdNLfY4pkCBEYXfwd9LrBjsvUHng5TC6DzldMjnuNuAgV6YOp063o//nABatRQ9kjEWzx35SZhXZbYOyseR/Ovyu5wY+8qUpDVIzAGbXzDoJX1wK7s5l12IgMsl9Er9sbp6cD7s0oOsCY8q0dIZceG1QywnDMdyhpgBfj7oVO7pqZO6Q0GpFxNw9GT51ErOgJjhvXBvXd0KtJpVwdYdWtWR9UqxW/AOfze7ujTvYNzoN2sVQZYFgWzdwXWgSOnMeLJaQipHIS/V37iZqUv2t1rqRkY/8Yn2LnvmLSqrF7tGoiuHga93oCTZ+KReDkFWq0G77z6KPr1vLVIA6+8/RV+WfM3vL10aNWsAby9vLD/yGmItLtz+2aY+854eOmsNz12VIA14+oezEk9YOrTiyEtMT6kpdvXxJ0HcHqZFpf+NYeWIY2MaDy27G/2YoDlzrPBffp+VZ+DpnGLTB2uovXFoZoj8NTlTfg586zpz2dX6yy9Jc8TjjzosSYrTtqMfUPOBRRYrE4rbvzirWnig7JYaSX+19GPMckNsHa9rUNeqnkFVpuX9fCtUvKHln0feiHrknlEN43Ro+rNjv2Q4wnzxR3GmJcLvDXD+gPu2Af0qF3LveqdpM/G2uw46VHDrdkXkWnj8d3C2og3e3b1i5L2zuoWEAURNLvrwQDLXSvnvH4np2jw0Sclv2TlmSfFL+Yd+3edAZZz6lnWAKuk3nh7e6H3bW1xZ7f26N65teICrNIUX3h8GB4c3sc50G7WqkcHWCfPxuPkGfNv0xLeYAAAIABJREFU1F+c9hnq14nCY6PuKbWMBfoCnD53AYtWrpfCmR5dWmPOtHFuVvqi3RVvY5j03jcIrxaCYfd0t9rUToRY3y35Ax98/hMC/H2lRyZFul14iOBKBFgiOf5y5ouoHl5V+lJWdg7GT/4Ef+88hGfGDsTj91vbOirA+jrtKCan7DD158FKN+Gt0FvcvibuPICsRGCf1W/AjLj+AbJso2KAVTY3XmWfQFxBBm6JX2q6qKZXEP6JHozXkrdjXvox059PqdoeDwc3tq9xNzt7R67Y1+oUVmWdQ5p4VZ+No6VPNQypVB8DAutCfEB21iE3wNo+yQuWT1vZWlF1eoUWl7abQ/eo2w2o1bfsq0adNX62W36BrCzg3ZnWAdaoEXo0LOER0/Lf0fktiGD5n5xLUpgl9s+y3LOvtLuLGd/Ct5oUZnX3j0Zzn1C3WpvFAMv5c8vd7pB4Cfj0i5JXYDljtWVFBVjcA6v02VjSI4Tic2xqeiYOHj2D/y1cJT1lJFYzzZz8hFWDrl6BxbcQyvtu49EB1qfzfsbceT/LkyrhLBHmLJg7CQ3rlvBcQrlaV97F/e5/BWdjL+LbWS+jfaubTB3s/+DrEIHggrmvo2UT61UJV1PT0WPIBIjUWwRffr7mDzaOCrBWZpzFk1c2mfpzd2BtfB7WVXmAHtajG9/sVeM2A2rfVbYPhAywPGzyuGi4R/JS0OvCL6a7N/apir9q3IP3ru3FR9f2m/58QkhLPK/CVZ6x+nQsFvtaZZxBrD7DZhVq6AIxMKguRlRqgNpexS97t9mInSfICbAMBcD21yw/wBjRcUbpK0Cv7NXgxCLzb+0r1TKi2ZNlXzVq57B4egUKFPeI0dBBejRt4thVGRU4pCK3En+X14pHDTPjsC0nEXkyt4IP0/qha4BYnRWNrn7RqKR18G7XDkZhgOVgUBU0FxenwVfflrwCyxmrLSsqwFJBeZw6BFt7YImbF+j1GPbYFBw7FYsZrz9m9VSRvQHW+q178Mzrc9DrtraYPfXpUsd26PhZ6b5NGtXGT1+8Wa7gzKmIbtC4RwdY+fkF2Ln/GDZu24+N2/YiIfGK9IhbYKB5ZVFxNdRqtNJjgyKoeWhEX9SpWd0NSu2YLg5/YqqUXou/eOIvoDguJF5Br+EvoGZUOFYveK/YG014cy7+3LgTH09/Ft07tTKd46gAS/xwNiTxD1O7Hf0isCSSyywdU/Wyt5K0R4NTi80/RHgFGNH2NT209r10TOoAA6yy14FXyhfYlZeEey/8brqgvW84VlTviy/TDmNKyk7Tnz9U6WZMDVXXXgSzUvdj5tW9NrH8NV64O7AWBgc1QCe/SJvnO/oEOQFWXpoGu6abv/d4VwLavV76pux5acAuy32RtEbcMlUPhX9+dzSvR7R39ZoGs+ZYf8Dtf48erVuqJ8CyLGS2sQB/5yRKq7PWZMXikj5bdp07+EZIYVb3gGjcrMA3rzLAkl1Kjznx9BkNvvuh5ABr9H16NKjv2L/rDLCUMb3kBFiip18tWIXZXy3FgD5d8NbEh0ydtzfA2r77CB56/j106dAMn894vlQEsUXPmPHvokOrm/HNrIlW59p7X2Vou64XHh1gWbIXrhJq1bSBXW8hdF3pKv7OIjke8cRUVKtaGX8sfB++/72Ddt2WPRg3aQ769boVM157rNiOfbfkT7w390c8MrIfxj8y2OEB1vG8a+h+wbyarqF3ZWyIGlDxSLyjlYBYBSE+RBZkmfehqT9Uj/A29v/gwACLk6siBMRbvkYm/mW6VXf/KHwf0Qs/ZZ7Cc5e3mv58UGBdzAm7rSK6VGH3ePbKZizNOFPi/Tr7RWJYpYboG1ATfpoypNAOGomcACvzIrB/trmP/uFGtHre9mqq3e/qkHvV/P2qyaN6VK5n//crBw2VzThJIPmKBh99av0B9647DejQvmwrhJ3UTac1eyz/qmkjePGosNxDrLjs+t+bDbv410CAC78PFPaZAZbc6nnOeceOa7Fwcclvrhs2xIAmNzv27zoDLGXML7kB1ryf/sD7ny7C7be2wKfvPFfmAOvipWT0HPa8tP3O+iWzpD2kSzq+X7oG736yEEPv7oo3nh9jdRoDLPvmDwMsC683Zn6L+AuXGWBZmKRnZOHCpWSsXr8DC1eshZeXDrOmPC2lx4XHvMV/4P3PFuGx0Xdj3EODip2Ba7fsxrOTPsYdXdvhwzefMp3jqBVYl/XZaBm32NRuqM4PB2KG2/e3gWc7ReD871okbDL/IBFU04jmT9n+IHljZxhgOaU8bPQGgV8zz+Lxy+bHke8JrIPPwm7HH1mxeChpvelssV/M/PAeqvIT4xPjtDzqewdjSFADDAmqhwidg987XkY9OQFW6mkNDn9p8ThgbSOaPWH7+87JxTpc3mP+AbRmbwOiezj2g04Zh83LHChQ3B45PbsbcFtnz6t1uiEfG3Ouv9VwQ1YCrhhyZEn7QItb/MXqLLF3VhTqelWWdZ2jT2KA5WhR92/vwEENlq4oeQXWwP56tGzu2F9MMMBSxryRG2A9+cosbPpnP+4fcgcmPjXC1PmyBEkDH5qE46fjpEUcYjFHcUd2Th4GPTwJ5+MvSSu1xIoty6Ms91WGuGt6wQDLwj0vLx95+QUICvR3TTUUdNfCRwULuyRWW40c2AsPDL1DWoFleXzyzQp8Nn8lSns7wo69RzH2uRm4pU1jfP3BS6bLc/Md98Oi34EvrPqV07z41WAKYvaIrmSlGLHuNes6d52kRaUaJf+WojgYby8NtBoN8gsMMDj25w6PqAMHKU/gu5TjeCx+o+nksVVvwqfRt2Nr5kX0PG3eG6tTYCTW1btXXqNuctZdZ1ZhXYb5xSbf1+yJISH1FNd7rQbw9tLCYDQiv6D4bwYX9xqx60vz953IFhq0e7zk38gXDjJ2qxH7F5ivC7tZg1vG2b5OcUjsUKkCsfFGzJht/e9Sn54a9LuTtd6VdRlrMmLxW+o57M6+Insm1fUJRt9KNTGiakO08Q+TfV15T/Tx0kIsesgrMMDInw3Ky6mK67ftMGLBkpI/XwwfpEWXW+37GdQWjPjFCg/XC9gKsMRn/W8X/4E5Xy+DVqvBsv9Ns9rHuixB0ubt+/HEy7OkPZ5FGCYeSxT7PhceZ2Iv4s2Z32L3gRPo2LYpvpr5QhGostzX9dqu6wEDLAv7vYdO4lxcInrf3g6BAaXvgyUu27LjgLShebdOrRBTI9x1VXTCncVzwcIiLz8fySlpOHE2HuIvfYvG9fDqs6PQtFEd013Fmwm/WfQ7XnlmJEYN6lVsb4TtqKenQzyi+cMnrzmhx0DY/m9xpcD8m8NLLcYg3IthpFOw7Wx06+wCJB4y/2RZp4sWbR4o+bdjdjbP0yngMIFZl/ZjQvw2U3sTIlrgg+iOOJCdjBZHfjL9+c1+ITjSxPxbO4d1wIUNdTi6DP9mJZl6sLXRAHQKqvg9rhxBcHazAbvnm1dc1e6kRdsHbX/PSb8I/DnJ/MZFsV/fgE+9oBGpGQ/VCJw6a8S7s633ROt5uxbDB9qeI6pBkDEQ8TPV76nn8VvqeaxJi8M1fZ7Nq5r7h2J/46E2z+MJFHCWwNpNBixaXvKK26H9dejdjYGTs/xd2W5hgCVesnZLa/ObosUvvNLSM3HsVByysnOg02nx+vj7pcf5LI/CICm6ehiCKwUWO5QqlYPw5fvWIdSPP6/DOx8vgHjbobh3vVo14Ovrg6QrVxGbcP3nKrGIY/aUp1EpqOhq9sL71o6JRJXKlYq9b0hwED55+1lX8irm3gywLEoxcfoXWPXXP3h01N149uHiH4WzrNz8JX9ixtwfMWbonXjxSXU/riaWPi76eR1mfbUEvj4+WDX/HUSEVZE47FqB1bqx1SOayWm2fxiS+7el87llOJZ/zfzhq/ZA3KTADUfljkdN5yUf1uDA1+YRab2N6DQF8LKdE5suCg70hrdOg7Ss/BJXXajJjGNxjcDMlL14N3mP6eYvh7bGC1Vb4aI+C83O/Gj68wgvfxyuc59rOumku974PXRLrQG42aeqk+5W9mbFaszgAG/k641IyzSHTZYtxq7T4PRv5j+J6WZE/bvl3XPLa0BBtjmwavOcEcEx8q7lWe4hcOacBl9Y/Jsket2hrRED1bWo0uHFEC/MWZcRhzUZcTiaf7XE9k/UHYWqOl+H37+4BkOCfKDTAtcy8qB33KL+Cuk7b+IcgQ2bNfjDvJVlkZvc0QPo3tWxy/VCg81vWHfOqNiqHIHCAKu4c8XTRJHhVdGu5U3SU0UN60YXOa0wSCrtXqFVgrF5xZwip5w+l4AFK9bh371HIfbG0uv1qBJSSVr00a9XR+lNhWLVV3FHee4rx0Vt5zDAsqjovQ++hlNnE/D9x6+hdbMGNmt9+vwF3PPAq9JfgBXfvGXzfDWcMOvLJfjfwt+kv/ivjhspDakwyJOzB1bPLm3w0bRnTBSO2gNLNDgkcTW25Zg3I10a2Qe3+kWogd3tx2A0ALtn6JB3zfyNu87dBlS3Y78R7oHl9tPALQbwVspOfJZ22NTXN6q2w6PBTSDe4lX//A+mP/eFDmdqj3aLMcntZPv4JUgoyDSdvj1mMGJ0QXIvr7Dz5OyBde43LS5sNv+GveadBkR3k/fp9th8LVIOm6+t3c+AGl3kXVthCLxRuQROntLg+4XWq62aNzVi8EDb+6SV68YquvhCQSbWZot9s+KxOfsCcmC2mxt2G/oH1q2Q0XIPrAphdqubrF2vweat5r/fvn5G5OaYf/7s0lmPXt0dG2BxDyy3miLsrJsLMMCyKOCt/Z5EWkYW/l75CUIq2/6hPTcvH617PyKdK67xhEM8v3v/uLel9Hre7JelIYtN8MRmeHLeQjh2eF88/7h5abkjA6zHkzbi16xzpjJ8Fn477gkwP+roCfVR8hjj12sR+6f5Q6FfqBGtX5L/YYEBlpKrq56+vXRlGxZknDANaGa1ThgRdP0XGlHn5lkNVARYIshSy9E4diFSDeZVsYdiRqBKBa2isMdQToB1aqkOSTvNH1jqDtAj8hZ5H1gubNHi3Crz96rQpgY0Gs0Ay54aKf3c4ye0WLDI+hGiRg0NGDmcdS5L7aal7MTnFsH/sMD6+DCsc1masvsaBlh2k6n+gt//0GL7vxbfw6sakZxi/vegQzsD7urj2L/rDLBUP604QAUJMMCyKEbLng8hv0CPA+u+kZ6NlXOIAEs877p/3Q1r0eVc7IbnbNt1CI+8MBNtWzTCdx+9Io3gSkoqbh/4LGpGhWP1gveKHdWEN+fiz407MXPyE+jTvYPpHEcGWK8lb8e89GOmtqdW7YCHgs1vS3RDblV1OT8T2PmWDjCU7RX1DLBUNR0UO5gnL2/Cysyzpv59Wu123Bt0PQhvEbcYV/TZpq/tjhmKSIW8mc8RoNHn5sEy4jldazT8NMoL6OQEWDeuomo0yoDQZvI+sGTEAwc+Nm/A6uVvRPs35YftjqgF23CuwKEjWvy01PrnvLp1jBgzmnUui/zG7ASMvGR+ZitU64cDNStmaw0GWGWpmLqvWblKi917LFbgRhsRG2/+2bN1SwP63yPv3wO5Ugyw5ErxPAqUX4ABloVh10HjcTn5GtYsmomoyGo2dVPTM9Hx7qdQ0rOwNhtwwxPenvMDFixfi9GDe+Plp837v4gN2sVG7Qvmvo6WTepbjexqajp6DJkgvTFKPDMcbLF5nSMDrFnX9mHmtX2me4+r3BwTq7R2Q2X1dvnEQh2u7Df/EBHa3IBGI+X9EMEAS73zQkkjuz9prfQ6+cJjfngP6TXx4rgtfgVOF6Savrauxr24yef6XoDufuQY9ah3/nvTMMTf0vjaYxQ5LDkB1qEvdEg7U7awXDzyvH2SDsYC8/WtXtDDP0zeCi5ForFTVgIHDmmwdLl1OBsdZcSjDzHAKstUyTXq0eD8D9BbROCbogagvrf1W6vL0rataxhg2RLyvK8vWa7FwUPmAOummww4dsz8382aGDFkkGP/rjPA8rx5xhG7ToABloX9M6/PwfqtezD+kcF4ZGQ/m1VZvHI9ps6ajy4dmuHzGc/bPF/pJ2z99yCOn47DXT1vQWSY9ca9BXo9xHjf/WQhdDodVn47HbWizftLiTcyPj7xQ9StWR1fznwR1cOvXy/e9PDcG3Mh2h45sCdeHTfKisGRAdb89ON4JfkfU/sjKzXEe6Edlc7uUf0THyjFB0vToTWi7at6+BT/wg0rGwZYHjVVXDbYgYmrscNiL73lkX3Q4b+99O6++Bv25F429c3yay7rsINunKzPRvO4xabWQrS+OFxTmW9ZlBNg7fvQC1nmLRHRYnwBAqvLxzryPx2unTQHWPUG6RHRngGWfEFln7lnnwY//2IdYIWHA08/bv1mQmWPQlm9G5r4B/7OSTR1alrVDhhbAavgGWApax4ooTc/Ltbi6HFzYNWmtcFqRZYzHhdmgKWEyrMPniLAAMui0uIRN/Gom5+vDz6Z/ixubdukxHmw5+BJPPHyh8jIzMb0lx9G/zsr5ll/Z07Mpas24Y2Z30q3qFOzuhRQ+fv5Sq8dPXT8LFLTMhHg74f3Jj2Gbh1bFenKzM8X49tFq+Ht7YVWTevDx9sb+4+cRnpGFho3rC09ciheLWp5ODLA+j3rPB5J2mBq/s6Amvg6vLszydh2GQT2fqhD9iXzB8OYXgbE9LS9CosBVhmweYndAr0u/IIjeSmm69bUuAdN/nsT3+hLa7E+27w669vwHuj93+osu2+ksAvO56ejY8IyU69q6AKxM2aIwnp5vTtyAqydb3khP93c/Tav6uFbWX4AFb9Oi9g15g9AYa2NaDDMsb+xVySuh3Rq524tfv3N+hHCkBAjJoxjjcs6BT5OPYB3r5rf4NrbPwbfRvQoa3Oyr2OAJZvKY0787gctTp8x//2+vbMemyw2da9bx4AxDt7XkAGWx0wvDlQBAgywLIpgNBrx8PPvY/ueI9Kfdu/UCt06tULtmOpS8CI2bT8Xl4hN/+zDmk27IM5vdlMdLJg7SfaeWQqoeYldEEHTyj//xubt+xF3IQkp19KRnZOLoAB/1IqJRKe2TTH0nm4IrxZSYhsiBPxh2V84fjpW2hssqnoY+nbvgAeH94F4femNhyMDrH9zLmFA4mrTLdr6hmNl9b5KJvfIviX+o8WZn80/WHgHGdH2NT00NradY4DlkdOlwgfdMX4ZzheYk49tUYNQy/v6EsGnL2/Giswzpj7NrtYZQ4KsH5mu8A476IYitBPhXeHR0DsEG6L6O6h1xzYjJ8DaNlGsrrHYtHdaAXR2vOU89bQGh7+0eItVVSPaTGS44dhKuq61f3ZosdripSKiJwEBwMsvcAVWWauyPy8ZfS/8arrcX+OFYzXvg5etf9zLesP/rmOAVU5AFV7+1Tc6xFnsedX3TgPExu6FR3S0EY+Odez3cwZYKpxIHJJiBRhg3VAa8RZCsQrrn13m16iXVL1mN9eVVmpVq+r8Z/wVO4PK2TFHBlhn8lPRJWGFqUd1vCtha9SgcvaQlztaQJ8H7JyqgyHf/OFSvOFLvOmrtIMBlqMrwfaKE2gWtwgp+hzTlw7GDEdVnZ/03ze+KOLNqu3xSHBjVUDuzElC/8TfTWNp7VsNv1a3/Si9KwZvK8DS5wI7Jps3YdfojLj1bfs+rBjyge2TrV860fa1AvgEu2LEvKejBbZu02LNWuvfmnh5A5NfYYBVVmvxS93GcT8izeJNpj9H9kU7v/CyNinrOgZYspg86qS5n+twKcn8M+bggXqrPe8iwo146nH7/k2wBcgAy5YQv04BxwkwwCrGUvwjvGbTTvz060bsP3wK2Tnm14p7e+nQpFEdDOx7G+69sxO8dMp7Q5PjpofzW3JkgJVqyEXj2B9Nna6k8caxWiOdPwjewW6B08u1uLTD/OGhcgMjmjxc+g8TDLDsZuYFZRCoe34+csUu3v8dZ2qNhu9/b+J7/9pezL623/S150Ja4oWQlmW4i/Iu2ZAdj1GX1po61sWvBhZF9lZeR2U8Qph7VYPd75r/bfYJvr7K097j4Kc6pJ83fwhqOEKPai3lP4Zo7/14fsUJbNyixfoNRZf9Tp3MAKs8VXjs8gasyjxvauL5kJaY4OTvkQywylMxdV47+2MdUq6av3c/MMoA8Vhh4VG1ihHjn7H/34TStBhgqXMucVTKFGCAZaMu4jG4lGtp0l5Xfn6+qFYlWNrjiYdjBBwZYIkeRZ2bZ9Wxc7Xuh7eTl687RsKzWslKBPbNsvx7ZESrF/XwL+XlnwywPGuOuGK04k2pMee/M936xjfxfZl6GFOu7jR9XWxQLDYqVsOxKvMcHru80TQUJe8haGsFVmYCsH+O+ftLQCTQ8jn7g4nzv2uRsMn8oSfyVgPq9re9X58a5oPax7BuoxabNhcNsF57uQC+djxqqnYne8f3Q/pxTLR4mU4733D87OStHBhg2Vsl9Z//3oc6ZGSYAyyx2kqsyio8goKMeGkCAyz1zwSOUK0CDLDUWlk3GZejA6w2cYuRqM82jX5n9BDU8Ap0Ew3P6ubBz3RIP2f+AaN6FwPq9Cv5wyEDLM+aH64Y7VV9DprGLTLduorWF4cs3sT3U8ZJPHflb9PXBwXWw5ywLq7oqsPvuTjjJCZYjG1wYD18pNCx2QqwUk9pcPgr84eVynWNaPKY/R9WUo5qcGyeuZ2yBmEOLxYbLLeAeHxQPEZ44/HicwWoJOOtuOXugEobuFCQiXbxS0yj00Ej7YMVoC26B6qjCBhgOUpSPe1Mn6FDbq7550sRVolQq/Dw9TXiNQfvacgVWOqZPxyJ8gUYYCm/RqruoaMDrN4XfsFhizeIra7eD819S1nWo2pdZQ/u8j4NTv5o/oFC52tEu8l6aEtY4MgAS9n1dGjvjMDJJVpE3WZEQGTFPbIVW5COW+PNb+Kr6RWEf6IHm4b2Z1YsxiatN/13j4AYzA93/lu2HGpbQmNfpx3F5JQdpq8+UKkR3g69tSJubfc9bAVYyfs1OL7Q/L1F7K8n9tmz97hxLy1xfYepBdBZv0zX3mZ5vgIExAbuYiP3G49nn9IjNLTivucogMLhXeiUsAznLF4BOi+iB3r5xzj8PoUNMsByGq3bNjx5qvUPkuLR4OL+zJEDZIDlSE22RYHSBRhgleBz7FQs1m7ejZNn45GWkYno6uGY9tJYq7MvJ1+D3mBARLUq0GjMST8nnXwBRwdYIxPXYOP/2TsL6KauP45/k9RbqJc6bsXdhgwb7u5MYIMNhutwh8FguA4Y7gx3d3eHKnUq1PNe/uem/7yXpGkbb9Lee87OGemV3/39bl7e+7yfpIZxAuzwbIEmNj7qC0R7Gk0DEga4O0cEcTL/3SnVjYFHLdUPDxRgGc00eboQST/1ZrcQMY+FsPeRoPJvDIx1eX2V8QXNQo9w+w+wdMZZn47cv2+nhaPL51Pcv2taeeCIt26VTsOZZHyUe9jzsrBFMQvjZwpfGf8U87/c5/Y2zLEipjjXzNOzkN3iuQEs5UqnRWpLULKr5h5YZP3Hf1kg6TMvSfmBDJwDKOAwyYOhgVDHTghx515WgPXLEDG8PDWYiHbNooFJMTexLfE19/n3hcpjtqvhQq0pwKKHUF4DYjEwax4PsCwsgGmTxZg51wKM3M/AtCliWOgxjTEFWPQcUg0YTwMUYCnpOik5FTP//AfHz99S+EvZkn44uGm2wmc/jF6EWw9eYP3isWhQq6LxrJaPVtI3wBoRdRUHkt5zGspPZe7zkdm5rQSeFCL0Ev8Q4eCbCSxUNQqw8uMJUNwTgVev/xUi9jl/Jkp0ZuBZ1zjAQLkSX20bDxzy5AHVy/RYNA87ygldytIRl30662QY5bxaPRxKYZnbNzrNqc1gAq8IxJK18U7VMNKpijZTGXxMbgAr+LwQwWf4M+TThEXR1pp7YJGNfDgsBAFisubTmEXRNtrNZXDF0AXU1sDh/0R48DDri8cfBzHw9zfO9UZtYc2s4/GkQAyJuqjX62ROKqAAy8wOiIHFTU4BFizmAZatLTBpnBjzF1kghS8wjEnjxbDNLDCsl0YBll7USCehGlBLAxRgyamJJGz/aexi3H74Uvqpm4sj/H2K4MHTN1AFsHYcPIt5K3agW7vGmDl2sFoKp50UNaBvgEUSLJMHQlmb6lITvxSmcNFUz116nAD35iu+AqsygpF63ig3CrBM1Yr6k+vVNkV4RWYW2UpQYzwLCzvDP1ReSA5B/0i+El9TW19sL9Kc22AYk4RawXx+F3eRLR759dRJASvin2DhlwfcHC1t/bCliPHDEqfE3MI/ia84OWa61MaPhQN02puhBucGsD4dEyLsKg+dirWVwLuRdh5YMU8EeL1DLvmvvwSVh2s3l6H0QefVXAMHD4vw6ElWgDWgL4NSJQ1/rdFcYvMZEc+mIyBop4LAj/16wk1ka5BNUIBlELWa7aTx8QL8uZy/ZhcuLMHY3xksWSZCQiL/nR8zioFjIf191ynAMtsjQwU3Qw1QgCVntIMnruCPRZvh5OiAaaMG4LsmtaV/rdBkkEqA9e5jKDoOnoLSxX1xeMscMzR/3ousb4C1Kv4p5smFwRB4RSAWbaargZdbhPjyin/Y9KjJolT3rB4OFGCZrg31IdmrrULEvsga0kPmzu5M6GNd+Tn+S/qIn6Mucx91sC+ONe6NuX8ns2KUDvpXYdnQYoN0EmNx3EP8FfeYm6OOTREc9Gyt05zaDB4ZfRX7v/Leq3+6NkCvQqW1mcrgY3IDWG/3ChF1nz9L5HpCzpA2LSNRIA11lm/15oohoMWItVGnyYzZc0CE58+zAqxePVgElNPurJjM5kxAkHZhx/AwPZqTZJlbA/RwMMz1hAIsEzC4CYkQFS3A36v5a7abqwQjhjNYvlKEmFj+O08+I3/TV6MAS1+apPNQDeSuAQqw5HQ0cOR83Hti7SucAAAgAElEQVT8Gn/PGYGm31Tn/pIdwEr8moy67YbB3s4Gd06szV3btEcWDegbYO1OfIsxMXyVsO4OpUDCCGkzXQ18eSXAyy38zYZAlJnM3ULJtZsCLNO1oS6SsQzwcrMQ8e9UwyvZ3JV/E8PBV5eVch+7M/ENxsXc4Dr2KVQGi13rKwz0+fSPwr/f+feDbXaVB3JfEnNi72FNwjOuZzlLZ5yXy7ulxhR66fJT5AWcSA7i5lrr3hjt7YvrZW59T5IbwFKG4uUGsHCpoD2UeLBQhFS5Bx9S0ZBUNqTNfDWwa48QL19nveZ06cSgamVqW10tS7xKiXeprHW2L4GV7o10nVbleAqwDKJWs500LAxYu5F/w+DtJcHPPzFYvd4C4eH8tvSd744CLLM9MlRwM9QABVhyRqvXbhjSM8RSGCUS8Tc22QEsMrRay58gFovx9MIWMzR/3ousb4B1LjkYAyPPcxtTDgHK+x1TCVRp4P4CEdK+8G/Girdn4fWN4gMnBVj58+w835AVXpFwQQtbIDWGPxOkGmHVUYYN3VLORzXEsQKmO9dSUHzV4D2IYlK4z+759YCXyE5r40yNuYUtcqF7ZC4yp7Fb74gzuJLCF8DY7tEcTe0MTAy13GRuAOvpahESA/mzU/EXBoWLaQ8l3u0VIlLOo8v/Owl8mxr2LGqpGjpMTQ1s3ynC23dZPbDatWVRu4b2sFPN5fN9t5up4egWzhe8cBXa4Il/L4PsmwIsg6jVbCf9FCjA5q38S9FiRSX4fiCDjVtECArmv/P6zndHAZbZHhkquBlqgAIsOaNVbf4DnBwL4dKBvxRMmR3AEjMMqjb/UeqBdfv4GjM0f96LrG+A9TAtGu0+H+M2VtnKFSe92+f9RqkEOWqAJHInCd1lzcZVgurjFR8QKcDKX4eIySCeVyIkfFB8iLR0kKDizwwykoBnaxTjtIq1Y+Hd0HAPl0vjHuHPuEecokc7VcUYp6oKim8cegjvMuK5z857d0Q5K2etjUM8vojnF3f2BSK8L9pf6/m0Hdj+83E8SIvihh/ybI3aNkW0nc6g43IDWA8Wi5AazZ+rqqPFsNNhKxF3BHh/gH8gciwtQYUfKcAyqJENPPk/20X48DErwPquBYsG9Qx3jTHwtkxmerGERenAf5EOXpdnvTsgwMpF7zJSgKV3lZr1hARME0Ata6VLSdC/D4Ot/4rwXu5+Y2A/BiX16ElLAZZZHxsqvJlpgAIsOYN92+13xH5JxK3ja2BrY8X9JTuA9ej5O/QdPofmwNLh0OsbYAWLv6JuyH5OIm+RPe76dddBQjrUGBogsEKaZ4blHyjIAyJ5UJQ1CrCMYQnjrMGkAS82KXrJkJUJvKo0jIGNa6Ycb3aJEP2IPxNCq0ywaVXIMHLOir2LdQl8EYhpzjUx1FGxCESHz8dxXw70kHxVJG+Vtk25ciqZJ6ToQAgEWR+utV1DnXFNQw/jdUYc1/WMdwdUMMDDpjqy5NYnN4B1Z5YFxEn8LDWniGFVOLdZs/97apQAD5bIhTlbSFB3NgNBzlGv2i9IRxpcAxv/ESEoKOt37NvGLMh/tOmugf4R53AhJYSbiHizEq9WfTcKsPStUfOe7/lLIfbsk4uiKc+iZ3cWymHDvXuwKK/HfHcUYJn3uaHSm5cGKMCSs9fYWWtw8sJt/DFqAHp1bMr9JTuANXzyX7h04xH6d2uJib/2MS/Lm4i0+gZYGRIWxQK3cbuzgACBxQaayG6pGDlp4O0uEaLkYAXJWUNy18gaBVj54/wQePV8vQhfQxQfHq0KZ3peyeAV2S0BmyS8lE3n+7pWkaBsH8N4v4yPuYEdct5Qi1zroW+hsgqKHxB5DueT+YeyLR7N0NLOT2vjDI26iGNJgQrjH/r2gIeF9mGJ2ghTJ2QfQuSoz3WfrihmaSBSqI2AcmNyA1g3JhDYxJ+ZegvE0JUH3pkhgjiFn7Pyrwwc/LQPS9RRBXS4jhpYv1GEkLCsAIt4XxEvLNp014BySPa3tj74t0gL3SdWmoECLL2r1KwnfPhYgENH+BcOVatI0KUjg/0HRXjyjP/Od+vCoHJF/V3DKcAy62NDhTczDVCAJWewh8/eot+vc2FtZYkpI/uja9vMhJPKACs5JRWLVu3GvmOXpLmyjm2bD38f7d/Am9mZ0au4+gZYRDhSJYxUC5O1V/59UEjIe9TpdQN0Mr1pIPGTAE/XyFX7EkhQcwrvbUMBlt5UnWcTiVOBFxuywitrJwkqEHilIhLv83UhPh5VdHWpMISBowFK3Q+LuowjSR85/ax2a4yODoqJzH+LuoKDSR+4PrpW1xoYcQ7n5LwUyMSXfDqhtKWTUe1UIWgX4tg0bk1Dlr3XdWM5ASxxCnBnBh96Si79dWfzvwfarv16uxAxz/hzWKwtC+9GFHRoq8+8HrdqnQUiIrJKUasGi/ZtqV31YZ9X6V/QLOwIN5UVhHhbtB8s9Oy6SAGWPqyVf+a4c0+IYyf4a3XtmizatWFx5JgI9x/wAKtDWwY1a1CAlX8sn7mToNAItO47Icu2rKwsUdjBDsX8PFG/ZkX06NAEzo5ZX9JNmLMOx87dVBhvaSFC4UL2KFnMG00bVEf39k1gY53zcyVxcDl16Q4ePXuHmC/xEDMsXBwLIaBsMTRvWAPtmtdTyLdNFoxPTMI3HX+Vrn3j6CoUclD9IvO3qStw4doD1KtZARuXjMvWhG36TUBgSAQ2L5uAOtXKS/uRaLPI6DhpsTpStC6ndujkVUxduAm/fd8FPw/oYFJHhQIsJXMsXbcXm3adkH5a1LcIalctLwVVHm5O6NWxGd59CsHV209BKhCSNvbnnhjcy/glz03qFOkgjCEAVr2Q/QgSf+WkuubTBcUtdYgf0WF/dKhmGni4VISUCP4Gw7c5C///vw2nAEszXZpab3Ey8Gy9CMmfFb0eCLyqOIyBtaNqiSUS4PFfIiSH8+OsXSSoNpaBUI536mO/yt5V2zyaoZmSd5Vy0nVdw2J6hp/GtdTPCuIf8WqDmtYe+tiS2nP4fvoH8rfyulZXVHthLTrmBLBI4v8Hi/iDYe0sQY2Junvsfb4mxMf/+IciZQ9RLbZBh+ShBv5eLUKUXJ40mSikAiGpREibfjRQOWg3YthUbrJ9nq1Q38ZTP5P/fxYKsPSqTrOf7PpNIU6f5a/VMq/Kk6eFuHmb/7z1dyzq1dEfrKYeWKZxdGQAi6QCql6pDCdUWnoGIqO/ICg0UvqZYyF7bFgyDhXKFlMQXAawShX3gZtz5o1pekYGwqO+ICw8Wvpvwge2LJuIIu5Z37pGx8Zj1PRVePA0M7cpyZPt4+kGCwsL6frk76SV8PfCijkjUNzfS2H9Xj/PxNNXH6VwiUAm5ZaRIUb9DsORnJIGC5EI1478rRJ0RUR9QdPuo6Sg7eZ/q0AAHmkygEX+f/Efv6BNszrZGo4CLNM402pL8c/eU1i+8QDS0zOyHWNpaSGFV/266t8dWm1B80FHQwCs9p+P4UFa5kWGtLx4GMwHpsmTLYTfFuLDQf4Gg+REIl5Y5IUtBVh5YhK9LErg1dO1inCSTExAFAkbzA5eyRb/GgI8+Vsxobt/Sxa+zfR380nW6hJ+ErdTebcMVfmtFsc9xF9xjzm9/O5UBeOcqmmtp06fT+BuWuYNlaxt9WiG5jqEJWoqTJqEQYnA7dwwggpDig3SdBqj9c8JYH0NFuDJSh5g2fsAVUbo7oGVFAo8XsGfQQtbCWrPoKDDaEbX80LL/hbhi1zlW9n0AeVY9Oqh3+uKnkU3q+lGRl3F/qT3nMwjHCtjgnPWhzJdNkUBli7ay39jL14Wgvwna00as2jamMW5C0JcucZ/3uxbFo31WBSGAizTOEsygEU8rY5vX5BFKAKhpi3Zgpv3nqN86aLYv2GmQh8ZwFIFd95/CsWYmWvw9mMImtSvilXzflcYS5xbegydIYVkJYv5YNwvPaVeUgQ0ydrr98FYsemANAURgWh71k2Hnzf/wpLwh/X//oe+XVpg8oi+WeS/ducpho7/Ey5OhRAbl5gthPrvzA1MnLce39SuhHWLxnDzEIBF5ExJTYeTowP+2zpfOpeqRgGWaZxpjaSI+ZKAI6ev4c7DV1J3xKTkVNjaWMO7iCtqVysvDS90dzVuiIdGGzCTzoYAWMohOZs8mqKVnb+ZaKRgi8mkA3dnicBm8N42ZfqycKvMUoBlpkdDWk1wXVZ4ZeOWCa/UTchOqsCRanCyJhBlJnS31uNluEXYUbxIj+XWUJXIfEPCC8yIvcP1GVyoHOa41tXaOq3D/sOT9BiF8cvdGqKbQ0mt59R04BcmFRWDd3PDCgut8NLfdPM65gSw4l4L8GKzXMXAUhJU+El30CRhgdvTFfOxVRvDwNZDfyEomtqN9tdeA0uWiZCQmDUHFqlKRqqT0aYfDez7+g6/R1/jJqtq5Yrjeq4MTQGWfmyVX2Yh3lfEC0vWWjZn8U19FpevCnH+Iv95o4Ysmn+rP1hNAZZpnKDcABaRkoCfRp1HQCKRSD2Y5EMJcwJYZOz7wDB0GDgZQqEA14+ukoYlyhoJtyPQJ6BMMfzz10Sp95WqRtb9Y9Fmad8qASWxc/UfXDfCHQaPWgDiAXZky9wsw+cu346dh85j2MCOWL31CFo3rYMl037J0k8my7hhvTCoRyvu7wRguTgVRqliPtJQyVbf1saf04eplJMCLNM401QKE9SAIQDWmOjr2P31LbdbVYmYTVAVVKT/a+DDYSHC5W4+HEtIUGEoQwGWGZ6Q9ETg2VoRUpVCdQi8ItUGLe3V3xTJbUQSujOp/EOnU1kWAd/r7wa0fsgBBIoTOaFu+HRFUaVE5soPZF3sS+Bv98x8ido05ep/ZI5ZLnXwQ+HMfAXGaMrVW71Edrjn18MYS2u1Rk4AixSCIAUhZM21sgRl++oHSBAwRgCZrJXozMCzLgVYWhkxjwctWGKB5MxMEArN30+CHwfr57zk8RZNYvloJgVVgvcoyPLCvw8c9ZiXlAIskzC1yQhB8l+RPFiy1q41i9q1WNy4JcSpM/znJHyQhBHqq1GApS9N6jaPOgCLrFC7zc9S55QL+5YphALmBrDI2AYdf0Vc/Fcc2DgL5UplOkiER8WiZa+xYBhWCp4IgMqpEQ+oVn3GSUMKNy0dj7rVA6TdSYhgvfbDpB5SVw6tgKuzYgocsgYJD7xyeAW+6z3u/xBuJUieLvnWotdYacjjoc1zUKaEL/cnArCsLC2xZ+10dBg0GcRhZ8XsEWjWMKtnLAVYup1FOjofa8AQAGv+l/tYGf+U09p4p2oY6VQlH2sxf20tOUKAR0sVL8T1F4opwDIzM2ckCvB0rTALvLLzlKDiUBYWdpo/+EfeE+KdXHlsopJyA1m4BOjnJrRS8G7EMny+lqd+veAiUnyDdiY5GIMjz3PWaGbni20ezbW2jjI0IxONcaqK0U5VtZ5T04Ev02PRPOwoN6y0pSMu+XTWdBqj9c8JYIXfEOLDEf4hxbMeixKd9HM+Qi+KEHiKB1ju1VmU7qmfuY2mPLqQVAPzFlogla9ZwGmlSBFg+FDdQ06pmnkNKEP69e7foq19Ub2piAIsvakyX0x08IgIjx7z12lSgZBUIrx3X4Cjx/l7y5rVWXRop7/rt7EAVsa9a2A+vM4XtlJnE5Y1G0BUopw6XaV91AFYsvxQJITv+tGVEMiVKVYHYNVtN0wahndm9xJpfivS9hy5gFnLtqFmlbLYunySWvIuWbsHW3afRI8O32L66IHcmJ8n/CnNt60cxvjuYyg6Dp6CGpXLYNuKyRg3ew1OnL+NDUvGShPTy1rI5ygp3HJzccTlg8sVZCEASyxmcPXw3zh96S5Gz1gl7Xd06zxpSKN8owBLLTPSTgVRA4YAWMqlm4knA/FooM18NHBvngjp8fwNSPWJDHyKWoE8uMYkpCEtQ383HeajFfORlNju6Toh0mIUQ3TsvSWo+BMLkRbwSrb7J6tE+BrEz2vlJEF1ktA9Mz+lTq1E4DakkVix/7cPRfvDWqAIU0mOLJIrS9ZqWLvjqFdbrdetEbwH4UyKwnhjX7Pup0Wiw+fM4iWkGSLMR2sFqRiYE8AKPidC8Fm5QhBNGfh/pzksVSVvwkeB1KNQ1vSVIF6fuqFzqaeBWfMsIFbBqVxdJBj5K/XAUk+L6vUiIdck9FrW+juUwQK3+uoNVqMXBVhqKKkAddmzX4jnL/iXGD26sagYwOLxUwEOHOKv35UrStCti/6+68YCWMnrFyH9HP/CKb+b1m7IOFg176j2NnMDWF+TUjB21hpcvf1EmmOK5JqSb7kBrOevP0nzXJG8UZcOLOcqCU5ZsBGHT12TVusjVfvUaaSSIKkoSLy4iDeXrJFc3ItX70a3do0xc+xg7vMNO47hrw37MWpId/zYp60UXhGI1btTM0z9vT/X78DxK5i2eDPataiHhVOGKohCABbx7rp1bLX089+nrcTZK/fQ8bsGmDfpJ4W+FGCpY0Uj9yFudQ+evUWtKuU410GSlE3XJhQKpQST0EzacteAIQDWwaT3+C3qKrd4R/viWO3eOHdhaA+T0cDTNSIkfuIfQkkOmxLVKcAyGQPlIEjqF+D5WhHS4hThlZ1XZs4rC9UpAdTeWtJn4PFyESCRgxTfsvBvpRvUZCUS+AVu5eTILpG5cmn4UpaOuKyDt1KFoF2IYxVdQbrZl8Ry94Zq60TXjpdTQtEn4iw3TQMbL+z1/E7XaQ02PieA9fGIEJ9v8A8vxdqx8NZTol4JA9ycKgJY/uzVnCKGFS1yazBbG2riabMUi0LI1nFwAMaPph5Y+tT7+eRgDJDzWi1mWQjXfbrqbQkKsPSmynwx0b+7RHjzlr9G9+vNoExpCV6+EmLXXv63oXw5Fr31WLCBAizDHB9tAZadrQ0a1OK9khiWReyXBLx8GyitIjioZ2sptFFuOQGsD0GfMWLqCnwM+ozJI/qhbxfe+54kVicJ1meP/x5d2qiXVuLVuyB0/XGaFIYRjyhZe/MhBJ2/nypN7n5q5yLu836/zsXDZ2+5EEXiBfZNx9+kzOH8vqVcP9keCJBS3iMBWATi3T25TtqfhDCSUML4hCSsXTgGDetU4uahAMswZ1qnWZv3GI3PkbHS8pXHts2XzlWhif6qLnkVccWQfu3Ro30TneTM74MNAbCupIShd8QZs3kYy+821mZ/JIcNyWUjayW7MghoTgGWNro05hgCr56tFiE9QRFeOfhKEPCT7vBKtpdP/wkRJldNSCCUoOpoBrbu2u9WOZG5s9Aaz/x7Z5nwM5OMmsF7uc/dRbZ45NdT64VLBf2LFFbxgbm5rS+2FtE+LFFTYY4nBWJI1EVu2Hd2ftjs0UzTaYzWPyeApXztKNWDgUcN/XhgkQ0qw/XSvRm4V9Xf/EZTYgFeiGGBmXNUAywrK2DqRAqw9Hk8ktkMlAvaCQb89+Sub3d4W2iQBDEHgSjA0qe1zH+uzVtF+BTI34MMHsCgeDEJ3r0XYNsO3gNL3wUbKMAyzNnRFmBlJ42lpQVaNqopTV7e9JuseZ9k8Id4RXm4OUunISF34ZExIACLjB8+qBN+6ttOYQkZXCIJ1UlidXWazFvMysoSD89sUBjSuMtIKVw6u3sJvD3dpIDpm06/wsvDVRq6KGvfj1qI2w9fYt/6GdLk8aQ16fo7omLicHH/X/BwU6x0JKtCeO/Uem4OWcVCT3cXaSihLPk8BVjqWNHIfdr2n4hPweFSYxOjk6ZPgCXbztyJP6JTq2+MvDvzWc4QAOt5eixayuVzKWfpjPM+6rufmo/28q+kgaeFCL3AvynzbcaiWjdLGkJowiZPjclM2K4MrwoVlSDgBwYia/0Jz6QBDxaJkPGVv0kl65DE8Nq2IHEi6oUc4Ib7Wzjgpm+3LNMR2ESgk3wLLab9yw+fT/9kWaOWtQcOe7XRdisaj9v79S1GRV/nxnW1L4kVRvQA01TgnACWcqL18gMZOAfoDzAFnRIiRK6SVZE6LEp20c37T9P90/66aSAjHZi9QDXAIjPPmkYBlm4azjq6a/hJ3EqN4P6gz+I6FGDp21rmPd/aDSKEfebvDYb+yMDHW4KgIAE2/sMDLH0XbDAWwKI5sHI+n9mFEJLk6vGJSXj68gM27jyGB0/fqqzgJwNYqlYhXl0E8Hh5uGT5sz49sMjkE+auw7GzNzFnwg/o3LohZJCJeH0R7y9Z277/DBas3IlfBnTEr993lkK29gMmoWQxHxz9J2sVQ1UAi8w1bNIyXL75WOp4M31M5j0tBVgmeC0kh/jN+2ApwJKRRkI6dW2kNCaZZ+PO4zh18U6WuFZd589v4w0BsCLEyagewntIuIls8VgHD4n8pnNz2E/EHQHeH+BvNNyrSVB3iAUFWCZqvJSoTHglD5SIqFJ49RMDkR7yUylvPfqRAG/kqs2Rv+viDfMiPRYt5MB3gJULznp3UKlxZej01r8f7ITZPxBnZ7Z0CYvigduy/LmMpRMu+nQymrW3JLzE1Njb3Hr9C5XFAtd6Rltf04VyAlhPVorwNZh/eCFQk5xDfbUvrwR4uYW/NtkVAarSkDN9qdco8ySnAAsWZ/99nTpJDCsDXLOMsjkTXWR53GMsinvISdfOvhjWuesnQoECLBM1eh6J9fdqEaLkKh//NoyBu5sEnz8Dazbw33svT+CXIfqD1cYCWHmkVrNZNrccWGQjYoZBz6EzQUL4Fk4dinbN+fsdVSGE5Nm+z/A5ePLiPSYM740B3bOmWJi6cJMU+MhAkjoKu3jjIX6dvFwlKyD5tEherfYt62PB5CFcwvb1i8cqhEbKErbL8mjJksn379YSE3/tk0WM7AAWSWxPQglJeOHmZRNQp1p5HDl9HZPnb5Dm9CK5vUypCSTEKrTpXQOkDGatNj9LKxsouwXqfTEzntAQAIscaV+5XDZEPSFFBypUmTBjlRUI0ePfCvB8I/+QWKiYBE0mUIBlisYn8OrpahHEyYphg4VLSFD+e8PAK5kenq0TIuED76lHKhvWmKidt9ed1Ah0lkvOXtvGA4c8VXtBVQveg0i5xOt3/brDW6R5OEwimy4NrVFuHiJbPDQidP87/gkWfHnAifFL4YqY6lLTFI+bVKacABbxzEuVKx5QbSwJLdXfbQ7x/rs9XTEHW51ZYr16GJqs4vOJYImJwOJl2QOsiWPFsLPLJ5s1kW08SItC+8/HOWkKC63wwq+3Xu7LKMAyESObiBh/LhchXq4I0OiRDJwcJYiJFmD5av6+Ut8FGyjAMo0DoA7AIpLKEqIT7ybi5SRr2eXAIsnbe/48E7Y21ji+fUGW0Ly9Ry9i5tKtqF2tHLYsm6iWMpau24tNu06gZ8emmDZqgMKYyOg4ENhEqhye3rUYjTqPQGpaOm4cXSUNY5RvHQZNwftPodKKg8Qb6+SF21izYBQa1a2SRY7sABbpuP/YZUxfsgW+Xu44vGUuLt14KE14TwGWWubMP51I/CohmfdP83Gm+Wd3+tmJIQAWkUw5MfITv55wFdnqR2g6i8E1kBItwMPF/I2GlaME3y2gAMvgitdwgeRw4Nm6rPDKsRSL8oNZaOGUpJEEJGzx4RIRJHJJtb0asCjeQfOQrgvJIegfeY5bv6mtL7Znk4eqSeghvM3gPXbPeXdAeausLuW5bSaaSUGV4D1ZullBiI/FFG9mcptLl78TeEUglqyNc6qK352q6jKlQcfmBLDuzLCAWK6oY+1pYugp1Q63p0fLLZAcxm+x3EAWLgGanzmDKolOnq0G4uIFWEoKQWTTRo1g4OykP+hJTQGQF4ulg3YgRcJ7vJz0aofK1pkl6HVpFGDpor38N3b+YgukyP0GyIB0fIIAf/7Ff+8LF5Jg7Cjt0w4oa44CLNM4S+oCLFmlv8b1qmD1/FGc8DklcZ+x5B/sO3YJ3zWphaUzhitsmACnFj3HSL27SG5tkmM7p5aWnoFWfcaBjCPAi4Av5dZh4GS8DwzDxiXj8OPYxWjWsDpWzB6RpR+pTEiAHMm/tXjNbsTEJuDmsdWws82auyMngEUm/mHMIty6/wL9urZAvRoVMHzyXxRgmcbRNo4UScmpqNP2F5Qt6adQGtM4q5vPKoYCWI1CDuG9mH/AvODTEWUtM5Px0Wb6GpCwwM1Jim8Y2q0SwsZahJiENKRl0IfFvLZiUhjwbL0ITIqi55VTORblBrAQZv98qFfRlXMSQSBBlZEM7HO+d8giw9Gkj/gl6jL3eXv7YlibTYhLx88ncC8tkut7wLMV6tp4aryvUHESaofsUznunX8/2BqaAP5/5T9ib2NzwktOjunOtTDEsYLG+zHWgOwAFvEnvzlR8bpRb4EYAsUjqrOYypUOvRuxKNaWXpN0VqyRJoiOEWDFquwvUL/+LIaHh5GEKUDL/BR5ASeSg7gdT3Kujl8dK+usAQqwdFZhvppg1nwLiDP4Lf0xSQxLS0A5dNjWBpg0noYQ5ivjA1AXYMlyPpFwQBIWKGs5Aay4+K9o02+CNJfWukVj8E1tvmIfGS8LI6wcUBKbl06ArY1Vtuqdu3w7dh46j+qVSmP731NU9pu3Ygd2HDwrDXE8du5mthUOH794jz7DZktzbpPQw5pVymLr8kkq58wNYIWGR6PT4ClISU3HiB+6YPnGAxRgmdOXhFQoPHH+ljTZW3hULFJS00CSt5HEbZXLl0SbZnWzuA8q749QWKFACKFQz3fP5qTIXGQ1FMDqEn4St+UShu7zbIX6Wjxg5iNVm91W7s0TIV3ODbzpTBFcfIQUYJmAJRODgRcbRGDSssKr8gNYCIwEr4gqSAE/EjYmf1bsfSSoMkKzN6s7E99gXMwNTrt9CpXBYtf6KrVNSsKT0vCyttmjKb6z89fYMu8z4tEo9JDKcff9esBTZJw4plHR17D36ztODrJvsn9TbdkBLHEScGcWD7AsbIDaM/X3gCLTR/QTAd7IVROVI8QAACAASURBVLMq5CdBpV81O2+mqtuCIFdkJLBybfYhhD/9wMDPh3pg6fssbEt8jUkxN7lpG9h4Ya9n1lwymq5LAZamGsvf/afJ/QaQncqKMogZYNZcud8HETBtiv5+H6gHlmmcq9wAVnp6BrbsOYUVmw5In88PbJyNMiV8OeFzAlik0+4jFzB72Tb4+3hIw+ys5RImJn5NRo+hMxAUGonypYti/LDeqFW1rEKodGBIhBQKnb50B06ODti7boY0TFBVu3TjkdQDioAwApRIiKCbi2OWriwrQZOuI5Gckvp/8NQVQ/u3VzlnbgCLDNpx8BzmrfhXujfiKUZDCE3jbOcoBTnYf67bKzVeTunBRCKhNInbyB+7wdLCiE9rZqBDTUQ0FMAaEnkRx5MDOVHWujdGe/vimohG++axBpTL1dcbIYRPZeqBlcdmAYFXz9eLwKYrwiuXCizK9jUuvJLpQjmxNvm8ZBcGReqo/xC6Pv45Zn65y6n3p8IBmOFSW6W6R0RdxYGk99zflrk1QA+H0hqbRrliqvwE5707opyVcbxGla+Xa9wbo4MJXy+zA1ipUQI8WML/Htu4SFB9gv7BUkYycHemHAARSlB3FgMhTfyt8XcgLwaEhQFrN2YPsAb2Z1CyuPrXjrzYgzmu+TEjAd+EHuREJ6HSr4r2hbWObzwowDLH02AYmdPTgDkL+e82YQukKIOsTZ9tAfnMzzOmiiHk02jqJBQFWDqpT2+DZQCLhM/VrR7AzctKJEhITMKrd8FS0EOe46f+PkBadU++5QawCCzqPmS6NAH8sIEdMXxwZ4XxpJDb79NW4uGzt9LPnR0LwdfbXcoKwqO+ICw8Wvp5yaLeWDFnBIr5Ze+9T+Ss1264NCyxYtni2LNuerZ6knl/kQ6710xDpfIlVPZVB2AR/jFgxHw8ePpGOgcFWHo7noaZiBjstykrQKoCkObqXBjVK5WRklFra0skp6QhJCwKdx+/kua2Iq1l45pYNvNXwwhUAGY1FMAib/nI2z5Zm+NSB4MLly8AGs0/W3y7W4SohzwkqdJPiNJNKMDKSwsnfAJebMoKr1yrsCjTi4VATzeC2uzx5T9CfHnJCyCyyUzobqFm6rulcY/wZ9wjbunRTlUxJps8UPoKuVNObCy/74OerVHHpog2qtB4TJ+IM7icwid12ubRDM3s/DSex1gDsgNYiYECaUEBWXPwlaDyb/oHWGT+B4tFSJWrdEWqbTqVotDDWGdAl3WCQwTYsDn7F499erIoV5aGhOqi4+zG1gzei89MMvfnnUVaoLGtj05LUYClk/ry1eCvX4FFS3mA5eAAjJerEjt3gQXS0vktT5kohnX2UV4a6YYCLI3UZbDOMoClagHiUeTp4YJaVcuhb5cWCp5Xsv65ASzS79Hzd+g7fI40mfqRLXNR1DfrvRphCacu3JGCrNi4BDCsBM6ODqhQtjhaNKqBts3qSSFabq3/b/OkIImAMgLMsmsXrj3Ab1NXoJCDHa4fWZnt3OoALLIG8RTr/P1U6oGVm4FM4e/Hzt7EhLnrpJR08sj+6NqmkcoDQLy0iIfWsg37wDCsNGla66Z1TGELZieDoQAWeRAlD6Sy9rtTFYxzqmZ2+inIAgedESLkPH9xL91agCpdLWgIYR4divj3ArzcLAQrVvS8ksKr3qze8wxpus20uMxQQgnDy+dRS4JS3dQDGMT7inhhydo055oY6lhRpRhL4h5hmR6uLzdTw9Et/JTKNbZ4NENLI0EkfeX00tRm2vbPDmDFvhTg1T88mHAqK0HA9+rZX1NZ3u0TIfIef9b8mrPwa0Ghh6Z6zIv+Hz8JsGVb9gCrW2cGlStRGGkI24yPuYEdiZlv9Un7uXBF/KFjxVMKsAxhKfOcM/aLAH/9zX+3nZ0lGCX3EoPALQK5ZG3cKDEKFdLPXinA0o8e6SxUA+poQCDJKU5OnRnyUZ8fRi/CrQcvMHlEP/Tt0jzXnW3bdxoLV+1C/ZoVsWHJ2Fz70w5ZNWAogLU18RUmx9ziFuzvUAYL3FTns6F2MU0NRNwR4P0B/kbEt5YAdYdSgJUX1iLw6sUmoQIcInK4V2dRqkfewyuZTkIuCBF0WvGNVuXfxHDg0xtkqz7lB6tFrvXQt1BZlf03JLzAjNg73N8GFSqHua51NTbNxZQQ9IvgKx/KT/CX2zfo7lBK4zm1GdA87Ahepn/hhp72ao+K1q7aTGWUMdkBrMj7Arzby18z3KpKUKa3YQBW5F0B3u3n13IsJUGFnwyzllGUWoAWef9BgK3/Zg+wOrRlULMGBViGOBL/JX3Cz1GXuKkrWLngjHcHnZaiAEsn9eWrweERwOp1vAdWEQ9g+M98CCGBWwRyydrvvzFwcdbPd50CrHx1lOhmTFwDFGDJGah+++H4mpyCW9LSkza5mo6EFNZvPwz29rZSdz3aNNeAoQCW8k1Sazt/bPRoqrmAdESeaSD+nQDPN/APGS4lBWg6iQIsYxsk7q0AL7dkhVcetVmU7GI68IrohWWAh0tESIvlb1DtPDOrEuYW3jgs6jKOJH3k1LvarTE6OqjOm7fv6zv8Hn2N69vZvgRWujfS2DSnkoPwQ+QFleOMWQmwbsh+BIv519LXfLqguGVhjfdjrAHZAaywq0J8OsYDTK/6LIp3NIxXVEq0AA8X89cngYUEdWfnfs6MpSO6TvYaeP1GgB27swdYrVqyqF/XMOemoNslnk1HQNBOBTW88O8DR6H2cVwUYBX0U8XvXzk82NdHgiE/8C8WVq21QARfQBjDhorhqadIfQqw6DmkGjCeBijAktN1lWY/SCsCkCz/6rZm3Ucj5ks8Hp3bpO4Q2k9OA4YCWMqhObWsPXDYqw3VvRlpgOSXIXlmZM3GCWi3xJKGEBrRhl9ISNY2ISSsYtgggVeluprmAx7xFiNJ5uVbsfYsvL/JWd4BkedwPjmEG5ZTHqizKcEYFHGe69vU1hfbi+TutatsuiNfP2JY9GWVFjVm2HOl4N2IZVI5OR759YS7SM3kYUY8j7KlsgNYymHHhg7ruzNDBHEK/90glQhJRULaTFsDL14KsXtf9rlHmjVh0biRaV7fTFuz6knXOuw/PEmP4TqvcmuETg6qEw6rMyMFWOpoqWD0ef9RgK3b+d//EsUlGNSfB1jrN4kQEspfs/VZcZQCrIJxxuguTUMDFGDJ2YEkNiNlKokHlrqtXrthUm+t8/uWqjuE9jMCwHqbEYcmoYe5lYg3AfEqoM18NCBhgZuTFCtFdV1vgdiv6UjLoA8XhrYkgVcvtwkBJXjlWY9FiU6mrf83O0WIfszfpAqtJKg+noFVDrkuuoSfxO3UCE6tOSVRv5Magc7hJ7m+1a3d8Z9XW41NsvfrW4yKvq5y3OBC5TBHi7BEjYUAUCJwG9LIF+7/7a1/P9gJs6/Sps0a+hyTHcB6f0iIiFs8mCjegYVXA8Od1dc7RIh5wp+zYm1YeDc23Hr61GFBnuvJUwH2H8reA6thAxYtmlE7GuqMzP9yHyvjn3LT93IojT/dGmi9HAVYWqsu3w18/UaIHbv534CyZVj07cV/l0nuO5IDT9b0WXGUAqx8d5zohkxYAxRgyRln3Ow1OHH+No5tm4/i/l65mu19YBg6DJyMdi3qYeGUobn2px2yasBQHlhfmFRUDN7NLVhYaIWX/n2oCcxMA/fmiZAez99stJpriTTbNAqwDGzHmGcCvN6RFV55N2JRrK3pP9ilJ2YmdGfT+bPjVkWCMn2yz1HUIuwoXqTHcpoleVlIfhZV7XXGFzQNPcL9qaSFI674KpZSVsdEpFIqqZiqqnWxL4G/tQhLVGdd+T6ktLRf4FaFYaHFBmk6jVH7ZwewXu8UIUYOXJbuxcC9muE8oj7fEOLjEf5hySWARbmBpv/9MKqxTHCxR48FOHgke4BVpxaLtq2pHQ1lumupn9Ez/DQ3vZfIDvf8emi9HAVYWqsu3w18+kyAfQf573alChJ078r/7u/YJcTrt/w1u28vBmXL6Oc3ggKsfHec6IZMWAMUYMkZ5+mrj+j9yyw0b1gDy2YOh0CgGDajcNPPSvDb1OW4fPMxdq+dhoplVedKMWHbm4RohgJYpDaBr9JD2aeiA2CZWyIck9AKFUKmgWdrRUj4yH8PG462gIUv9cAy5AmJfiTAG/IGU6J4/TMXeCXTTdg1IT79pxgmVGEIA8eSqm9W64ccQKA4kVPtDZ+uKGqp2mUrnElGjeC9XF83kS0e+/XU2Cyk6iGpfqiqNbPzxTYPzcMSNRXiC5uGikG7uGGFBJZ4VbSvptMYtX92AIvkzCO582St/PcMnMvq5+FE1QaTwoDHy3lPNQtbCWrPoIncjXoYtFjswUMhDitdG+SnqV6FRScD5U7TQtx8NyRNwqBc4A6kg4eEV306o4Slo1Z7pQBLK7Xly0EPHglx+Cj/u1+9GotO7flztveACM+e878RPboxqBign98ICrDy5ZGimzJRDVCApWSYHQfPYd6Kf1G7Wjn07/YdqlcsLc2LJWuxcYm4/+Q1tu49jYfP3mLC8N4Y0P07EzWv6YtlKIBFdl4teA8imRROCeQNH3nTR5v5aODtHhGiHvA3GzUGiFC4agb1wDKQCaXwahe5+VOEV34tJfBrZl4P5iQi7vFyEZLD+b1Yu0hQbSwDoQrnC+U8UE/9esFFpLqYRworRqmgfxWsoI3X0t/xT7DgywOV1tQ2LFHToxEqTkLtkH3cME+RLe5rAeM0XVeX/tkBrMcrLJAUys9s6JxU5Izdnq7o6Vd1tBh2ekoKrIuO6NjsNXD7rhDHT/IPuQ4OEnz9yl8nKgRI0LObeV3vzM3efSLO4HJKGCc2qeJKqrlq0yjA0kZr+XPMzdtCnJSrRFy3Nos2rXiAdfioCA8e8d/1Tu0ZVNeTly4FWPnzTNFdmaYGCiTAqt9heBZrCAVCWFiIYGdrjc+RsUhPz+D6WFtZgvyXmp6R5fM2zeqiaoVS6NausWla2MSlMiTAUg4JMvXS8CZuqjwRTzkpc7k2Qng1F1OAZQBrRN4X4N3erPCqaBsGPo3184bSAGLnOOXXEODJ34q5nPy/Y+HbNGt4kHIeqA9F+8NakH2YUfFP2xQ8CLTJG7Uk7hGWxT1SuQdtwxI11bG+wiE1XVeX/tkBrPsLREiTK5FefRwDGzfDnt2XW0T48op/ICrRhYVnHRp+pot9DT32xi0hTp3hAZa7hwRRkbwNS5di0b8PtaEh7bA24Rlmx97jlvjOzg+bPZpptSQFWFqpLV8OunJNiHMX+O92o29YNJf7vSfgmgBsWWvbikWd2vr5rlOAlS+PFN2UiWqgQAKsCk30n9/j+aV/TNTEpi2WIQEWybFAci3I2o4iLdDE1se0FUKlU9BA5F0B3u3nIYJfHSFK9aQAS9/HJOK2AO8PZoVXxTsy8KpvWACg770oz0fODzlHsiYQZSZ0t3bieyrngSK9Q3LJA6Xs4XnXrzu8RfYabWdu7D2sTnimcoy2YYkaCQDgfloUOnw+zg2rYuWKE97tNZ3GqP2zA1i3/7AAk86LUnuGGBYGLqYYclGIoFNyMKSqBKV7U+8dox4IDRe7ek2Esxf4a0JRPwkCg+WS8ReV4PuB1IYaqlWj7s/TY9Ey7Cg3xlZggbf+fXNM3ZHdAhRgaaT6fN353EUhrlzlr8dNv2XRpCEPqM6cE+LaDf7vpFgDKdqgj0YBlj60SOegGlBPAwUSYJFE7fpubZrV0feUBWI+QwKs4VGXcTjpI6fH5W4N0c2hZIHQa37ZZNw7AV5s4AGWa0kBKg9nqAeWHg2cCa+yehrlB3hF1CROAYhnDpPKP6A6lWUR8D1/06pc9MFZaI1n/r1z1PK3oYfxJiOO63POuwPKZ5P0PbuJ/oi9jc0JL7NdR5uwRE2PxtWUMPSKOMMNa2Djib2erTSdxqj9VQEsiQS4OVHe206C+gsNDyESPwnwdA3//bFykqDmJMOva1SF57PFLl4R4eIl/npQriyLV6/5h1pvLwl+/ona0NBmLx+0EwksT5yPerVBDWsPjZelAEtjleXbASR8kIQRylqrlizq1+V/6y9dFuLCZf7vTRqxaNqEAqx8eyDoxvKtBgokwMq31jTDjRkSYE2PvY2Ncg+H05xrYqhjRTPUUsEVOTVGIK0mJ2s2jkC96SwFWHo6Ep9vCPAxSzUuCUp2YVGkjnl7XsmrSBWkKz+IhXP5zBvXIHEi6oUc4Ib4Wzjgpm+3HLXc6fMJ3E2L5Prs92yFejaeGllmfMwN7Eh8k+2YN/59YS+01GhOTTufTA7Cj5EXuGEtbH3xTxHDJ4/XVE75/qoAVnoCcG+uXEJ1e6D2NLEuy6g1VsIAN6eKAJYHIjWniGFVWK3htFMeaODseQGuXud/V6pVYfHwsZwXnRuL34bp56E2D7ZnNkv+GnUFh5I+cPKOdaqKUU5VNZafAiyNVZZvBxw9JsS9B/x3uUNbBjVr8Pcy128Icfoc/3cCtwjk0kejHlj60CKdg2pAPQ1QgKWenmgvA2nAkABrRfwTLJRLkDyscEVMcalpoJ3QaQ2hAZIk+eYkxRxGTZawSGf0c8NhCJnNZc7QywIEnlD2vJKgVA8WHnI3fOayn9zkfLxChKRQHjJYOWaGEgotgBfpsSA582QtwMoFZ7075DjlwIhzOJcSwvXZ5NEUrez8cxND4e8jo65if9L7bMfc9e0ObwvNwhI1EgDAvq/v8Hv0NW5YZ/sSWOneSNNpjNpfFcBKjgAeLeWvFST3FcmBZYz2bJ0ICR/kcij1YuCup8TAxpC/oK1B8l+RPFiyRh5i5f9duLAEY383ztkpaLqX3+/er28xKvo691EdmyI46NlaY5VQgKWxyvLtgP0HRXjyjL8Wd+vCoHJFHmDduSfEsRP8d79WDRbt2+rnfpICrHx7rOjGTFADFGCZoFEKkkiGBFg7E99gXMwNTp09HEphmds3BUm9+WKv9+aJkB7P35DUmSSByIk+XOhi3JDzIgSdUaw0CORfeEV0lfQ5syohJPy+fb9l4d+KxZ3UCHQOP8mptJa1Bw57tclRxcrwaalbA/R0KK2RWYZGXcKxpE/ZjiEQjcA0Q7Z/El9hSswtbon+DmWwwK2+IZfUeW5VAIsAJAKSZM3BXyINNzZGCzwtRKhc4mCSxJ0kc6fNNDWgnMi5eVMJzsnlxLK1lWCSkeCnaWrIOFJFMymoEryHW0wEAV7594Gdhl6nFGAZx17msMquPUK8lAsH7t2DRfly/LX44WMBDsl5nVepLEHXTvr5naAAyxxOCJUxv2iAAqz8Ykkz3YchAdaZ5GAMjjzPaaaZnS+2eZh2aIyZmtGgYit7N1QZKoF9Cf3ccBhUcBOd/NNxIcKu8G8gpWIKJCjTi4Vb1fwTNqhK/R+PCPFZLoGrQChBtbEMbtiGoH/kOW5IU1tfbM8ljG5a7G1skgtRnu5cC0McK2hkdWUvLuXB2oQlaiQAgFXxTzHvy31u2M+FK+IPE/dUVQWwYp8L8Wobf66dykkQMNg414m41wK82MzDM1sPCaqNMc7amtqb9geOHBPivnyYUTsWJPRIvs0yQvgptQXQOPQQ3mXEc6rY6tEMze38NFINBVgaqStfd976rwjv5bxhB/ZjULIEf1/z7IUQe/fz3/UK5Vn07K6flw0UYOXro0U3Z2IaoABLziC9fpmltXl2r5mm9diCPNCQAOthWhTamVl1rYJ8FrLb+9s9IkQ94L1mynSTwK0WfTjU5qyohFdCCcr2ZeEq52avzdzmMIZJy0zoLk7mz1PhEiw+9n+PnyMvc1voaFccqz0a57ilpfGP8eeXh1yf3x0rY5xzdY3U0DviNK6k8JVS7QQWSJbweZs2ezTFdxqGJWokAIDFXx7gr/gn3LCxztUwyrGKptMYtb8qgKVcsdS9ugSlexrnOkHO1e3pit59taaLYWlnVLXQxdTUwMEjQjySy3nVpSMrhVqM3HGZPkUMUdbaFmquQLupq4E/Ym5jcyJfyOLHQgGY6Vpb3eHSfhRgaaSufN15wxYRguUqiv44mIG/Hw+w3rwV4N9d/Be7dCkJ+vfRz+8EBVj5+mjRzZmYBijAkjNIhSaDtDbP80v/aD22IA80JMAKzEhE/VA+MbOPhT3u+HYvyOo2y70HnRUiRC7pZtFmEvi01M8Nh1kqREuhPxwWIvymkueVUILyA0gy8/zteSWvsqhHAryVu4Elf4vqHIJhnqe4bn0KlcFi15zD6DYmvMD02DvcmEGFymGua12NrNPl80ncTovgxhS3KIyP4gTu30vdv0FP+1IazalpZ314kmm6pq79VQEs4lVIAK2seX/Dolh7/bxZV0fexysskBTK9yw3gIVLBeOtr46MtE+mBvYdEOHpcx5i9+jK4L/jIqSk8hqaOE4MO1uqMUNr4GxKMAZF8J7yZSydcNGnk0bLUoClkbrydedV6ywQwf+k4pchYnjJ1Vb5FCjA5q08wCpWVILvB+rnfpICrHx9tOjmTEwDFGDJGWTtNj6Jryo7paalIyLqCx48fYOQz1Gwt7PB9DGDULaEH0oV9zEx05qHOIYEWF8lGSgbuINThAUECCw20DwUQ6XkNKDsWeFRDSjVy/DVxfKTCd4dECLyjiK8IuFz5CG7IMErmU2frhYhMZB/gM2wz8D3vXYi1SpD2uWnwgGY4ZKzF4A+kp+3CfsPj9NjuKNW19oTt9LCuX9Pd6mFIYU1C0vU9NyOjr6OPV/fcsMWudZD30JlNZ3GqP1VAazAk0KEXuLPuH9LFr7NjAeQPv4nxOdrcgCtIYti7Yy3vlENYOaL7donxMuXvK1InpzjpwRISOCvCWN+Z+BYuOCA/bwyaTKbgXJBO8GA1/Vjv55wE6lPDynAyivrmd66y1eKEBPLf49HDmfg6sqfrdAwAdZt5AGWt5cEP/9EAZbpWZJKRDWQswYowNLyhJy8cBuTF2xE5fIlsGXZRAiFygmRtZy4gA0zJMAiqiz6aSvEcjdGxihLX8BMaPDtxr8X4Pl6/oajcFGg4jAKsNRRvEQCvD+oAl6JJCg/mIVT6YL5gJYSRSrWiSBh+ev28crP8E+DzGTmo52qYkwu5dzPJQdjoFyOPXXyZinbrFnoYbzKiOM+JqGLR5I/cv8e6VgZ4zUMS1TnXMj3UU4kv8qtETo5lNB0GqP2VwWw3h8QIkIO0pboxMKznvEAUsxTIV7/y0MRBz8JKv+qnwcjoyq3ACz27y4h3rzlbdW/D4uTpwWIjuGvB78NY+DuVjCvj8Y+Ap0+n8DdtEhu2b/cvkF3B/U9TynAMrbFTHe9xUtFSPzKf4/HjRKjUCFe3qhoAf5ezd9Pku84+a7ro1EPLH1okc5BNaCeBijAUk9PKnvtOHgW81bswKxx36NrW9MuO67DNg061NAAq3bIPoSKk7g93PDpiqKWcr9mBt0dnVwfGkiNFeDBQv6Gw6owUHMKBVi56ZbAq3d7hYiSS1ZMxghEEgT8wMKxZMF+OFP22GEELMZ3P4Qg1y+Y5lwTQx0r5qjiu6mR6BR+gutT3dod/3m1zc0sCn9vEHIAn8SJ3GfE22p9wnPu39qEJWokAIB+EWdxMYWPfdMmibKma+raXxXAer1diJhnPJQo04eBWxXjnfGMZODuTAt+a0IJ6s5ioGFBNV1VQ8eroYGt/wrx/gN/Vgb1Z3HmnABhn/kH359/FMPbW43JaBedNbA07hH+jHvEzdPVviRWuDdUe14KsNRWVb7vOG+hBVLT+G1OniCGjTX/77g4AZau4O8nnRwlGD2SAqx8fzDoBvOdBijA0sGkiV+TUb/DcFSvVAZbl0/SYaaCO9TQAEs5ROeoV1vUsHYvuAo3w51LWODmJLkHQwD15oshUErnZIZbM5jIBF692SVEjFyiYrKY0EKC8t9TeEV0wWQADxeLkB7PP7S+d4/CxG5HoE4Y3ZuMOHwbepizYQmLwrjq20Ujm9YM3ovPTDI35g+XWpgde5f7dyf74ljlnnMyeY0WVNFZ2fvBGJUPdZVZFcB6vk6EeLnqUxV+ZOBoZA/DB4tFSI3mz1OFnxg4ljIeRNNVrwVl/KZ/RAgM4u30/SAGFy4KQfLjyNrgAQyKF6O2M8aZuJcWiY6f+ZcBrkIbPPHvpfbSFGCprap833H6bAuQ+x9Zm/mHGAK5AJnkZGDBEv5+0s4OmDhWPy9EqQdWvj9edIMmpAEKsHQ0RuMuIyFmGFw/slLHmQrmcEMDrAGR53A+OYRT7haPZmipYYnmgmkZ09r1vfkipMfxdyHVxzKwcacPF6qsRIDfm90q4JUV8bxiULiYadk2L6WJfS7Eq22KJHRNkyvo1tALHR2K5yhahDgZ1UP2cn1cRTZ44qf+QxcZWCloF2JZ/nXxSvfG+DWKr4bYxMYbOzxbGlRFLcKO4kV6LLfGKa92qGTtZtA1dZ1cFcB6/JcFkviCjqjymxj2vrqupNn4d/tFIDn7ZM2vOQu/FsYLY9RM2oLbe/0mEUJCeTv99AODS1eEePuW/6xfbwZljAxAC6pFxBJWmgcrRa4C63nvjihn5ayWSijAUktN+b6TmAFmzeXhFKkiSqqJyreMdGD2Ar6PpSXwxyQKsPLz4QgKjcTR09dx++ELfAwKR8LXJNjaWMPd1QneRVzRoHYlfFu/Gvx9PBTU8G233xEZzad4IH+0trKEi3NhBJQpinbN66Nl45oqVadqrHLHVt/Wxp/Th3EfT5izDsfO3czRFK7OhXHl0AquT1BoBFr3nSD998Rf+6B/t5zvFyfP34Ajp69j+9+Tpc435twowNLRevXbD0dScioen9+k40wFc7ihAdao6GvY+/Udp1xSWYxUGKPNvDTwbJ0ICXLeFQHfM3AqSwGWshUlDPB6hxAEzMg3oZUEFYYwKORnXnY3hrQvNgsR95rXV5JVGoSjwtHMJefCHGkSBiUCtyuIGFpMs0q20blhRwAAIABJREFUZQL/RZLcQ9s+z1boHs5XQ6xm7YZjXu0Mqob6IQcQKBfGeNWnM0pYOhp0TV0nVwWw7s0VIV0uCXeNiQysnY17jYi6L8DbvXL5+kpKUHGIfsJTdNUZHc9rYM16C3zmayXgl5/EuHJDhOdKlQkrVjDu+SnINvo+8jxOJwdzKpjuXAtDHNUrYEEBVkE+Ofzek1OABYt5OGVrA0wanxVOTZul6NE/axoFWPnxBGVkiLFyyyFs2nUCkv+75Xl5uMCxsAO+JqUgMiYO6emZhXvq16yIDUvGKqhBBqEI6LGyzDwzyalpINAoLv6r9N9Nv6mOpTOGw9KC/90nn8vGVipXHBYWiudNtki9GgEYPrgzt6YMYBXz84Szo+pUN06FHbBy3khujDzAsrG2wuEtc+DnrQji5DdFAVZ+POla7CksPBoteo2FMhHVYqoCO8TQAGtu7D2sTnjGXyCcq2OEY+UCq29z3Th5KCQPh7JWogsLzzrUs0HengRevdwmRNwrRXglspYg4CcKr7I7+2lxwO1FAlgw/A2IoHoS6vWUS5yRzeCSgduRShT//6ZpkQifT/8ozHzVtzMahhziz7kWYYmafscrB+9GDJPKDXvg2wNFLOw0ncao/VUBrJuTRZAw/DWiziwxRLmbUK9yp8YI8GCR3DmyyMyDJVC8t9XrmnQyzTVAkjiTZM6y9usvYly/KcLDR/xnnTowqF6VAizNtavdiC0JLzE19jY3uJmdL7Z5NFdrMgqw1FJTvu8UnyDAn3/JvUAoJMHYUVlfIMyeb4GMTG4hbX9MFMPSSnf10BBC3XWorxkImBo8aiEePX8nhUFD+rVD2+b1pM/r8u3l20BcvP4QdWsEZPFIkkGoyweXw82Ff6lHYNi1O88wesYqJKekYtywXhjUo5XCvNmNzWl/MoC1+I9f0KZZHbVUIQNYtjZWSElNR+1q5bB56QQI5ONm5WaiAEsttebvTuTQjpm5BlduPUbDOpWxduHo/L1hA+3O0ABrXfwzzPpyj5P+x8LlMdNFvQuDgbZMp9VCA8FnhQg+x4MZnyYsiramAEumSpaBNBQuC7yyzfQAsafJiHM8dbMPv0GzmwEKfSr/JoZDLiFo1YP3IIJJ4cbd9e0Obwt7tU+4MsAi5eOrBO/hxjsLrfHMv7fa82nTUVcIp82auo5RBlhMOnD7D/m3nBLUX5g3nk9354iQkciDkErDGRTypyBEV5vrc/zylSLExPI2Gjmcwa27AtyWq2LZphWLurXpb4w+9Z7TXO8z4tEolIf3VhDibdF+sFAj2SUFWMaykmmvQ6qIrljFAyxXVwnId1u5kRxYJBeWrE0YI4a9+j/b2SqBAizTOR8zlvyDfccuoYS/Fzb8OQ6e7i4aC5cbhNp95AJmL9uG8qWLYv+GmQrz5zZWlTC6AKweHb7FrfsvpN5h00YNQM+OTVXulwIsjY+BeQxYvHp3roIyLIuIqFjce/wasXGZ1aP+njsSTRtUy3Us7ZBVA4YGWPu+vsPv0de4hY2RFJnaWf8aiLwnwLt9/I0JqS5GqozRBrBi4OUWIeLfKXle2UpQ6WcGdp5US7lpoEHgAYzd3hpFEvm3c3aeElQZyeRYLIAkcSfJ3GXtrHcHBFipd6OUJMlAmcAd3NhCAgu89O8L38CtCuJqGpaY217l/85KJPAz4nqayJZTX2WAlRYvwP15/PWBFJqtNVU/YSGayvxmpwjRj3k4UqwtC+9GFIRoqkdD9l/ylwgJcuGmY0YyuHNPgKvX+Wto86YsGn1D7WZIOyjPrVzUQt2CEhRgGdNKprtWWBiwdiP/IsPLC9LwYOW2dLkIcXLFW0aPYODkpPtLBgqwTONsPHv9ET2HzpSG9R3aPAfF/b20Eiw3CPXuYyg6Dp6CQg52uHVstcIauY1VJZAuAKtz64Yg/w0YMQ92tjY4unUeSLikcqMAS6ujYPqDKjTRLH8J2RFxGyTug7RppwFDA6yLKSHoF3GOE66hjTd2GzgpsnaaoKNy0gCpLkaqjMmag78ElVW8WStoWiTw6sUmxfxgRAcWdhJUHErhlbrnoVLwbngFOWPG0bYKQ4q3Z+GVw0Ns5/ATuJMayY1R94GLDIhhUlBZzttKlgReOS/WK/8+KCTUQ3yDCmXEs2kICNrF/cVeYIE3Rfupq7Y866cMsEjydpLEXdZsPSSoNiZvAHf4TSE+HOZBiHN5FuUHURCSZ4dFxcKLllrga2YKE2kbP1qMew+F0kqEsta4IYtm31K7GdNuY6KvY/fXt9ySI52qYLxT7i+HKcAyppVMdy1SRXTzVv4+sai/BD8Myvo7oCqE2EMPxcmNBbD+i/+E+0lRpmsIPUvW3qkYatipb6CZS7di79GLUqAzZ8IPWkuTG4R69S4IXX+cBq8irji350+FdXIbq0ooXQDWd01qY+mMYZjz13bsOnwe39SuhHWLxmRZhgIsrY+DaQ8cOHJ+rgKSuFJ7OxuQJGutmtRGpfIlch1DO2SvAUMDrKdp0Wj1+RgnAPGOIF4StJmXBtJiBbi/0DQ8LExFc0wG8HJzVnhl6SBBxZ8Z2Kr/e28qW8ozOUoEbkOahMWoM01R/z1/TSfJ76uPZ2ClOp8mBkWcw9kUvsrpJo+maGXnr9Y+wsRJqBWyj+vrLbLHXb/uqBW8D2FMEvf5bd9u8LVwUGtOTTspy1BEZIsHfj01ncbo/ZUBVvx7AZ6vl8t9UjzzO5AXTRmmWdhKUHtG3siSF/s3hzXnLbJAKp/2TZro+eEjIU6d4QFWvTosWn9HAZYx7Xnk60cMi+arsFa3dsN/ahSxoADLmFYy3bXevhNg+07+d6B0KQn6q/DUX7tBhLDPvJfs0B8Z+HibjwfW0MDLWB/9wnQNoWfJ1hVtjCFuiikeclqi/YBJ+BD0GStmj0CzhtW1liY3CPXPnlNYvGY3WjSqib9m/aqwTm5jVQmlC8AiyeT/njNCmpOr4+CpIDm6CbwjEE++UYCl9XGgA6kGFDVgaIBFHgTJA6GseYhs8dAMHtDoOVHUgIQFbk5SrORRb744x/Cu/KxDJi3T8yoxkL8JI/sl8KrSMAY2rvl59/rdm3wYnVOyLVbs7A7bDN7jya2qBGV6qwYQI6OvYv/X95xAS90aoKdDabUE/JARj4ZyOV9K/D9he4uwo3iRHsvNcca7PSpYGcagbzPi0CT0MLeWTAa1NpCHnZQBVsxTIV7/y8MHlwAW5QbmHXy49YcIbDr/3aw6Wgy7InmoMLq0ggZUJXF+8kyAI8f4h98a1SXo2I6CR2MenXg2HQFBOxWWfOvfF3ZCyxzFoADLmFYy3bVevBRi9z7+dyCgHItePbL+DhAvLeKtJWuDBzAoXowCLFO1rKYAq2rzH5AhZnB8+wKps4m2LScIdfX2E/w+bSUYhsHO1X8goEwxhWVkY6sElITl/ysYKssxY8wghfBGGcAiebtclJLNy8b26tgUrZvyeZxlSdwb16uC1fNHSbvdvPccP45djMIOdtJQQndXJ25pCrC0PQ10HNWAkgYMDbAyJCyKBW5TWDWk6MBsKzRQA5muBh4tskByDC9ftbHEy0j3mw7T3bFqycSpwIsNInwNUYRXVoUzvU4ovNLMol+YVFQM5vMfdn9SDT2u11CYpOIvYhRWvD+R/n167G1sTHjJ9Z3mXBNDHSuqJQCBVARWyZrMO7Rb+CncTA3nPt/j+R2+sdEuh0NugjxMi0Y7OQ/VStauOOXVPrdhef53ZYAVfkuAD4d4+OBRS4JS3fIOPpCcdF/kqoGW6MzCs27eAbU8N5iJCTB9tgX+X1VdKtmMqWI8ey7AfrkzVKmCBN275t0ZMjGVGU2clmFH8VwO4G/0aIrWuXi1UoBlNPOY9EKPnghw8DD/O1C1sgRdOmX9DhMvLeKtJWv9ejMoU1r3e0ljhRBSD6zsj6GYYVClWWbYoHL1QNmoPxZtxsETV7JMQkAUAU6yJoNQpEKhlWUmRE9LS8fH4M+IjI6Di1MhzJ88RBqup9xkY3P6wuxZNx0VyxbnusgAVk5jxv7cE4N7tea6yABWo7pVsGZBJsAiTbZHmWeW7HMKsEz6EkaFMycNGBpgEV2UD9qJBDadU8szv15wFtmYk5qorABeb7REzFv+JiPgewZOZXW/6TAn5RJ49WytCMly7u9EfmsnCSoQeOVsTrsxDVmDxImoF3KAE8ZfWAir9vRAajR/g2vjJkHV0QyE/L2xtP/SuEf4M+4RN3aEY2VMcFbPZV0ZHlWzcsMx73b4MfICTiYHcXOud/8Wbe2LGkRZ11LD0DP8DDd3PRtPkDxept6UAVbIRSGCTvFv3knSdJI8Pa9a6GUhAk/w8uTkxZdXMhbkdafNUvTmnTVNjNdvhNixm7dZ2TIs+vbKuzNUUO0zJ/Ye1iQ847Y/oFBZzHetl6M6KMAqqKdFcd937gtx7Dj/Ha5Zg0UHFb8De/YJ8fwl369HNxYVA3T/rhsLYNEcWDmf92otf0J6egZO7lgIf5+srs8bdx7HpRv8fdvr98HS0LvsAJaq1SoHlMSWZRNgY606P6mxQwiVAVbi12R0GDRZCtoW//EL2jTL9NqiACufXCvDo2LVKq3JshKcvHgb568+QFRMHJydHFC/ZkV0ad0QVlY5uzbnE1UZbBvGAFjfhB7Ex4wEbg+XfDqhtCXvUmmwzdGJ9aqBoEOWCLnFA6uC5tUgTgaerVcNryoOY2DtqFd1F5jJVHlCHUjvgGdrFB9y/Vux8FVK6rwp4SWmxd7mdDWwUFnMy+VhS9b5Vmo4uoaf4sbWtSmCA56toZzIeLFrffQpVMYg9jiVHIQfIi9wcze39cXWIs0NspY+J1UGWJ+OCxF2hX8gUWUrfa6f21wktPfpavmcfRLUmkq9eXLTmzH+np4BzJnPf7ctLIFpk8R4/1GArdt5m5GQIhJaRJtxNXAlJQy9I3ioXtyyMK75dKEAy7hmMMvVrt8Q4vQ5/negfl0WrVpmBVMHDovw+An/gqpzRwbVquj+MtRYAMssjWNEoVv1GY/gsEisXTgGDetk9Y5SFqXXL7Pw9OWHbAGWvCdXdGw82vSbgOSUNOxZOx0VyqpwzQeQ1wCL7JFAuuGT/4KTowP+2zpf6jE2deEmHDp5Fdv/nozqlQxzX2ksUwskEnlHamMtm/frPH31Eb1+nikFUesXj8k2pIy4I478428FWiuTvmRRb2xaOl4hvjTvd2ZeEhgDYHX6fAJ307SrFGZe2szf0kZfscKb4/zNiE9jFkXb6P7WzBy0lpEEPFsnQkqEYtigtUtm2CCFV9pb8U5qBDqHn+QmqGXtgcNebfBunwiR93h9Cy0kqDaOgbUc+yb5r0geLFnrZF8cq9wbqyXMpZRQ9I04y/VtYuuDHUVaYFbsXaxLeM59PtWlJn4prF5YoloLy3U6kPQeI6K0k1/TtfTZXxlgvdsvQuRd3lYlOjPwrKv7A4m2MksY4NY0ESRiXqYaExlYO+edTNruJb+NI8nbSRJ3WbOxBiZPECMkVID1m3iA5esjwZAfKMAytv3TJAzKBe5AOvjf9ru+3eFtYZ+tKNQDy9hWMs31Ll0W4sJlHmA1acSiaZOs94j/HRfi7n2+X7s2LGrX1P1ekgIs0zgXE+auw7GzNzGw+3cYP7x3rkJpArDIZFv3ncaiVbuk4X+71kyDUKh4X076mALAInLIwhJbfVsbf04fBlmFRgqwcj0Wptth+cYDWP/vf1COD1WW+K8N+7FhR2YVOwKsiNtgfMJXXL3zFBkZYlStUAr/rpxCcyppaWpjACziYUA8DWRtrXsTtLdXTc213AYdZgQNJL+wwqOt/E2GaxUJyqqoMGMEUYy6BIFXxJtDPqSNCEDC2gi8yq5CnlGFNOPFLiSHoH/kOW4HTW19sb1IcxC9P1gkApPK35woJwc/lxyMgZHnubHf2vrg3yIt1NLG6eQgfC/n/fSdnR82ezTD8rjHWBT3kJvjV8dKmOSsmJNLrQXU6LQt8TUmxdzkevYtVAaLXOurMTJvuygDrFdbhYh9IRf+1Y+FayXdH0h02eXzdSLEf+DPTumeDNyrU4Cli071MfbrV2DRUh5g2dsDE8aIERkJrFzLf+7hDvz6i1gfS9I5NNRAr/AzuJoa9j/2rgI6qqMLfysJcSEkIY5rcHeKu7u1QLEKBUqB8lOgQFtapKVIKcXdneJFi7tbgCiBEOK+8p/ZdN+83ewmu1nJbjJzTs8peTN37nx33ts337vCjcrLC5URWHoCXEi7nzglxMVL9HegXRsZmjbO+TtAqo1eukL7tW8jQxMN/fSFiRFY+iJmmv5KzyNnJwcc2/KLwgMpt6YvgUUcW3qNnImQ15GYMWEoBvZonUO8pRBY8QnJilDC2LhERVXGW/efYf3OY8wDyzRbzzxSP5kwH9fvPMGsSR+jX7ePNE5KQgw7DPxGUc2AZP4nG1UgyH4hJTGzH3/1E0ic6dIfvkKrJrXMo3ghm8UcBNbU95ewOfkZh9wPHg3xiXOlQoZk4V+OPNoWl3+lLyPOAXJU+6JwfyHPTMrOeaVOXtl7yxE8Rgob7R+lC/+GMNIKD6a8wrgYWrqdkNuE5CYt+qoQL/fSF13yt8rDpXCvlE1E3Mh4h+5v/uY00bXsOxmgPm83x9L4w7MFNiQ9wfTYK5zMoU4VML+EaUilFQn38UPcTW6u0a5VMcu9npGQNZ0YdQLr/h8iJL2mZFHV0VK4li1YsijshBARp+ne8a4vQ9neBUuqmc4i1iM5IVGARb9RTysXZzkmT5QiPl6Axb/Tv7u5yTFpfOH+fbFUqy1PuI8fec8l5bNRm76MwLJUS5pXryNHhbh6nT5zO3eUoUG9nM/cf84KcZYXct6qhQwtWxj+bGYElnntrW02EljWd/RsPH4eCpKAfem8r+BgX0yrcvoSWETQtdtPMHzifBCS7PDGn1CiuGoOD0shsIiux89ex6TZyxU6tm9ZH1v2nmQElmVs1fxp0bL3BEU+q51/ztYaw7pgxXYFU1k60Af71s6DjVg1gy/xzCIeWp1bN8Qv343NnyJFfJQ5CCzizUC8GpRtoltNTHarWcSRt77l22cVw2leHhkbZ6DejML7hTwjIZu8yvig6p5MyKtqY6UQO1ifDS1R461Jz/BN7CVONZJvinzxJ40E2N9bKkJKJLWBrasctadIIRQDz7Pi0TJyPze2jNgFF/xzz9ei7Lwr+QUmvL/Ije3rVA6/lWiKA8mv8Nl7zYSasfFbEH8bv/GejZPcauJrK3g2qhNYtxeJkPaO2qjGBAkcTVO4UWcTxD8X4NFq+s5g7yVHra8ZIaIzgCbqGPtBgCXLqF2Ku8sx4UspUlOB+QupB5aDAzBtcuH9fTERvEYRez/jPTrwqqO6CG3xOHCQVtmMwDIK7FYvZN9BEW7fob8DPbpJUbtmzg8ZxEuLeGspG/HSIt5ahjZGYBmKoPHGk+p8A8bOQUJSCsoE+uCLET3RsnEtFFPLW00cVAaOm6Mgu7QlcddWzXDS7BU4fvYaurRthJ//N0ZFeUsisIhiE2Yuw8nzNxTrz8jMYgSW8baa+SXVbPupIgTw/L7f4eHukkMBsqk/6j0BcQlJmDd1JHp2bJajz4tXkeg+/H+KKgek2gFr+iNgDgJrbeJjfMdLtKxLVRv9V8JGmBoBD5diOPSZFOC9jzScJ4GwENZRUJBXK0TIiFclrxx85AgezcgrY+61VQkP8X3cdU7kKJcqmF28PvfvlDfAXYXHBrWFXysZgtrL8E6SiloRO7m+HiI73AsYoJN6m5KeYhovfE/paaWeG6u5vS+2ebfTSaa+nWZ/uIa/Eh9xw2a618UYV9Pk29JXt9z6qxNY1+eJkZVER9SZTvLCFawHliwLuPKdCJDTfVNvlgQ2jHg25lbQW1bMewGW8hLse5aQ48vPpNCW3F3vCdgAoyCgXj36mE8XVCtWQqNsRmAZBXKrF7JjjwgPH9Lnbb/eUgRXzfk7cPWaEEd4VWuJlxbx1jK0MQLLUASNOz404i0mzlqmiJgijTihlArwgYuzAyQSqYLcioiKAQkJJE1fAotEaXUZOg1p6ZlY++tUNKhVmVuAksCqVqk0xGLVgkDKTo3qVMHnw3tyY5T5qkoFlIS7q7NGMNxcnLDsx6+4a4So6zh4KtSrEKoPJsnnSShhQmKK4hLLgWXcvWZWadVbj4BUKsPFA0s1bhTCVBLG0tHBTkFyaSqVSTZt3Q6jFa6J14/+aVb9C8tk5iCw1EN1OjsEYZWX5rDRwoJrYVwHIbCIB1ZqLF0d8Wggng2FqaXHAQ+J55UaeeXkL0eVUVKI7QrTagt+LYvj72BRPC2prMkL6eV+IaIv0y+2AqEctSZLISguRZnQTSqLiCz1iU6LIsQRIZCUTUmc3c54jy4874Math7427erTjL17TQ59l9sS3rODZvv0QhDnSvqK8bs/dUJrEtTVQnGBnMlEGmubm1WXe/9LkIyz3uv0jAZilc1/KBk1kUUssneRAN/rKIHipIlgc9GZ3tazZorVnhdKtucmcwDq6DMT8K6ybubsv3PvQ4+c9VcUYwRWAVlJcuad9M2EZ4/pwTW4AFSVKyQ8/3w1h0B9h+kXpi1asrRs5vh3rGMwLKs/UC0IeGEpy7cxMlzN3D3UQg+xCcqCCfiieTq4gh/H0/UqFIOdapXQKO6VVU8tHTxolJGYikitdbMhY1N9m+LcmxuiCgTqyv7KAms3MYQhxvCSSibrgQW6X/oxCVM+3GVYigjsCxvr+qsUfOe4xVJzfasnoNK5QJzjBszZREuXruv8LwiHliaGmFta7QeqahAcP+fdTrPzTpSBMxBYP2b/gb9oo9zkzaw88bekh2ZGawMAUJgXflNhpin9IWk8ggp3CsWHgIrPTY7bDAzUdXzipBXJK+PSHsYv5VZ03LUJd5XxAtL2TR5IUkzgJvzRZCkUru4lJEheIwMZUM3IZ2UnfuvPQ0aDCdB3m6ByxLu4ae4W9w4ZbL2l1mJaBa5l/t7kNgZl/x7mwSwsTFncSjlNSd7mWdz9HQsY5K5jCmUT2C9i8nA1ZmUkBCI5Gj0o+GHEWPo++qwEG8uUOLTp5kMpbswAssY2OZXRo5qg75yjP40e7/Mmy9GZiaV/L9pEhSzACI0v2u15nHbkp5hMi+0u5mdL7aX1OyJyggsa7a08XRft0GEV6H0N3r4MClKl8r5fvjggQA791ICi3hpEW8tQxsjsAxFkI1nCOiOgEBO6Mki2EZNXohLNx5g7LBu+HKEas6SOw9fYPDn8xSoqLsU8qEirniNu32u8M66eTyb1WRNPwTMQWA9zYpDq8gDnGJlxa4470/dNvXTmPUuKAQIgXVvkxyhl+gBsEwPGUo2KhwHQkJekWqDWcmq5JVzkBxVRjLyylT7bkrsJWxJokUefvFohMEavJBibgnwfIdqHsQKg6RoX3w7oqVpnHrX/PvCL5eS78qOxOuLeH8pG8k9Rby/4qTpCA7fzv3dTVgMDwPzLgWdH3yGvTuF06kR3ND13q3R1j4gP6LMOoZPYEWFZirIRWWzdZGj7v8MP4wYY0GxD4R4uokSWISIrv6lZehmjPVZo4zXoQKs3UD3S1CgHCM/ybbJgsUiJPGev99MlMBZcySHNS7dqnSOkqSgXsQuel9DiCdBg1FMoPoMJh0YgWVVpjWZsn+uFiEyir4/EWLa3zfnEffpMwG2bKf7qEJ5GYYMNPw9khFYJjMtE8wQyIFAkSWwdh0+i9kL18PB3g4rf56kcB8kjcTKfj79N7x5G4uGtatgzeIpWrfNg6ev0H/M9yjpWRyndy1m2ysfCJiDwHovTUON8B1mORDmAwI2REcECIEVcgx4dIAeAP1ayBDUyfAXDx1VMFm3tJhszyt18sqljBzEy0yUt0OPyXQr7ILVQ1VWlGiB7k6lNS6bEIxJvC+8Nk5yfDfkAO4L3nP9T/h2Q1Xb4nnCRqpskWpbyjbdvQ4+d62mcHn3D92gMj4i6GOuAm6egvXo0Cv6KK6mv+VG7CzZHk3sCjj7uQ768wmssEcZuLuUemCR5O0kibsltKxU4Pr3vPwXAjkazpUWyrx9loC3Ljq8fCXA+k308FqmtByfDM3+TSHJ3UmSd2X76nMpPDyK5DdeXaA0eZ+mkXvxKiuRm2e7dzs0s/fNMS8jsExuCquYgOS2IznulO2LcRJ4eeZUPeSVABt4zwDipUW8tQxtjMAyFEE2niGgOwJFlsAiCdx7fzoTIaFRCrRIHCw5OERGZx9ECLG1a9VskGRq2tr2A/9g7q8bUbdGRWxY8q3uqLOeHALmILDMeSBkpjUdAoTAir4OXF9LXzQ8qstRcbDhLx6m0zpvyanRwIM/VcPTyChCXhHPK1LtjjXTIaDuhbTRqzVaO2j2QiJE453FIshl9CX5Ru0Q/NzgDKfgrpId0NhO+++GsuPMD1exJvExN25O8QYY6ZKdBLRS6BYkybO4a48CB8JVaPz40XZRB/Ew8wM3D8m1RXJuWXrjE1gvb2biIa/an2sZOaqOsZxnwu2FIqTF0P1S9VMpXMszUqSg9tiz5wJs3sb3vpBjyMDs/bJilRjR0VSzcaMl8Mn7Vi6opRT6eafHXsaGpKfcOj9zCcb/itfNsW5GYBX6raDTAhcvESE+gT5rJ42Xws0t57M2PFKAv9bQZ4C/nxyjRxr+m8EILJ3MxDoxBIyCQJElsAh6EW9iMG7qYrwMe6MCpqeHGxbP/gy1q2V7ZWlrY6cuxoWr9zBiQCd8PbafUQxS1ISYg8AimFYP345YaToH782AfigpYuWgrGm/EQIr6ZUAZ3+h3hVOAXJU/8LwF4+CwoGQV/dXiiBNUw0bdC0nQ+XhMkZemcEwPaP/xrX0d9xMJD8eyZOnrYX+LUTkORoWJhPI8U3fvQjziFMMWe3VCh0dcuZVVJc39f0lbE6moYs/ezTCkP8+B4aSAAAgAElEQVRCFxtE7EKEJLtaDGmX/HojyMb4sUxNI/fgFa9833m/nihr42oG1A2bgk9gPb2QiWdb6WHEI1iGikMtxyszZI8Ib6/R+9u/jQyBbS1HP8MsYX2jHz8RYttOev9WrijDwP7Z9li9ToSwcGqrTz+RIjCQkY0FZeVjqWEY+e4fbvpgWw8c11DQghFYBWUhy5p3/kIxUlOpTlO/lsDRMaeO0W+BFX/SL4PeXsDnYw332mUElmXtB6ZN4UagSBNYxLTEE+vs5Tt4+iK7zGb5Mv5o2bimSiUCTVuAVDD8ZMJPSM/IwpxvhqNy+aDCvVNMtDpzEVitIvfjaVY8t4oTvl1R1Qo8DUwEu1WKJQSWNFGIv6dSzxQbJ6Ded4a/eBQEIClRwINVOckrt0oykGplwpypPgpCzUI/Z9uog3jE80LKKwRQmgXcmq8a7hniGYNpfbLz7C3yaIIBzuXzxO2r9xewOzmE6/dbiabo61RO8e/2UYfwIJOW2zzq0wXVtZSQz3OiXDrUDN+BGF7+Lmsh9vkE1sPjWSBVIpXNu74cZY2QkNcQXPlj390S4AUvd5qleYgZa53WIie3BM4bt4jwIoQSWMMGS1GuLCOwCsq2qbIslA/bojL9o8BBcBWqZtZnBFZBWciy5p37kxhZ9PUQ302TwEZDEYYPcQL8tpS+YLm7yzHRCLkJGYFlWfuBaVO4ESjyBFbhNq/lr85cBFa/6GP4N53GBmz1bosW9n6WDxDTkEOAEFjk4Lp7VCYgp4eMhvMkVpdTJikcePSXCNIMVc8rQl5VHiaDhjy1bCeYCIFGEbsRJknmpOvi7aSenJsM/qPlefxT+Rk0VTHUpLp6BcCVni3Q1TE79xapmkqqpyqbttwvhkJSLmwz0mSUAH4SOAjOaodDQ+cwxXg+gXV3XxbCTlACy6+lDEEdLcfDKSNOoJJkXiCWo+EcKbvHTbExdJB5+64A+w7Qw2uN6nL07pHtxbt9pxCPntC9NKCvDFUqW85e0mF5ha5LtzdHcDMjhlvXH54t0O2/56Tyj4zAKnRmz9eCZs5RzbcwZ6bmj5tJScCCX2lfJydgyiTDP4QyAitfZmODGAL5QoARWPmCjQ0yFgLmIrDUEzX/7tkMvR3LGmsZTI4ZEFASWIenZiI9lhI/tb6Wwt7Ler6SJ74GHq0RQZapSl4VrypDxcGMvDLDVlKZolr4dnzghRffC+gPD5F9nmo8+FOIxJf0sJtim4HPhuzAp16VMNW9dp7jP3l7CifTNFcAHP3uDI6khnIyVnq2RFfHUnnK1KeDTC5HgFqy+MhSn+gjosD68gmsm1uyEHWR2qFUZxl8m1sW6XB9nghZSfR+r/a5FM4sNK1A9s/NWwIcOEwJrDq15ejeJZvA2rNfhLv3qJ169ZCiZnXr+W0pEEBNPOmC+Nv4Lf4uN8sg5wpY4NFYZVZGYJnYCFYgPjMTmDefklLE84p4YGlqGZnAD7y+trbADC199Vk6I7D0QYv1ZQgYhgAjsAzDj402EAFzEVjffbiKtbyEybPc62G0a1UDtWfDzYmAksA6NT8T8S/oIaPycCncK1nHIUNBXv0lgkyiSl551JChwgAZBPQcbk5oi/RcpUM3IlNOCY+XQUM1lmpXByk9Fri9SAS5lNryZJUnyOgSgx89GuWJ6cC3J3A+LbuICGnbvNuh+X8Vtr6JvYStSTQ/1nyPRhj6X36sPAXr2CFJlolKYVu53g5CMZ4HDtFxdMF24xNYV/6SIOYWtUG5PlJ41bOs58GzbSK8v0N1JJVTSQVV1syPwNXrQhw5Sh+09evJ0OU/j71DR4S4fpNe69JJhvp1mZ3MbyU6I6mSSqqlKpuPyAE3AlRzzjICqyAtZBlzJycDvyzmVaN1BEgOLE1NJgNmz6N9BQLgeyOkomAElmXsBaZF0UCAEVhFw84Wu0pzEVhL4u/il/jbHA5fuFbDt+51LBYXplhOBJQE1r+rMvGGlxS5TA8ZSjay/ENGQogAj9cKNZNXA2UgL1GsmRcBdS8kYoIIPbyQwk8JEX6SHnjlkOPokOuYVy1vDyxyKCOHM2XjJ4+f9+EG/kh8wF371r02vnCtblRw3khTUTd8JyfTS2SP2wH9jTqHqYTxCawLSySIf0JvHpI/jngzWlKLviLEy310n7hXlqHyJ5aloyXhZUpdLl0W4hjvnm3UUIaO7bJtcfykEP9epnZq31aGJlbw22JKvApatkQuUxDtaXJKRlzw64UyNi702eVmB7FIgHfx6ZBILYu8Lmj8isr8cXEC/MrPa+Umx8Tx2gv8zPlBDAnv8szpEogNrPjMCKyistvYOi0BAUZgWYIVirAO5iKwtiQ/w5T3lzikBziWwyLPpkUYeetbupLAurE7E6+P0QMrCRciYUOW3OKfC/B4nVDFW4fo61lbhnL9GHlVULaLk2YgOHwbN31xYTHcDxyoszokfdSlhXII42y4MbEeSejyjX2ehGTnqMO4k/meG/e3b1fU+K+wxIqEB/gh7gZ37XPXYEx3z1k+XmdFNXQMyUpE88i93JXSYhdc9O9liEizjeUTWGd+kiA5jD4PgsdI4VLGsg6xqW+BOzzvAKGtHA3nWm/1VLMZ2gQTnb8oxKl/KEnVrIkMbVtn/36cOSdU/KdsLVvI0Ip5ypnACvqJVA+3XliiCQY60UIZzANLPzwLY++374DlKykD5eUFfJFLZcGffhEjjRYmx7RvJHDIO3NArtAxAqsw7iy2JktFgBFYlmqZIqKXuQis46lhGMErx9zW3h/rvdsUEZQLxzKVBNbDfzLweCs9ZHhUz84dZalNQV6tFUIuU3Wx8qovQ9lejLwqSLuFS5PRMHw3p0KgyAmXA/ropdL1x/HIWl9CZUzpbjL4NMl9T7aJPIDHWXHcuH98e6CirZvi3+qE+yCn8lhQooleeuXV+W5mLDpFHeK6VbMtjmO+3fIaZhHX+QTWye8kSH9P762akyRw8LYINVWUuPKdat67mhMlcChpeXoWdo3OnhPiHz5J1VyGVi2z71XifUW8sJSNeF8RLyzWChaB+R9uYmnifU4JkmNwPM8jlRFYBWsfS5g9PFKAv9bQ3Hb+fnKMHqn9I8HCX0VI5OUl/HqCFK4uhn34YASWJewEpkNRQYARWEXF0ha6TnMRWNfT36FH9N8cCrVsS+CwbxcLRYWppQkBJYEVcjsDt5fTQ4aTvxzVjVAC2RSoxz0W4MlGzeRVud7sYGQKzPWR+TDzA9pFHeSGVLEtjpN6kjgvshJwYG0CGr0sw8khHjZ1pklh46hdm6aRe/AqK4nrcNGvF0r/FxZzKOUVxsac4651cQzCn54f6bO0PPuSKoek2qGyNbTzxp6SHfMcZwkd+ATW0a+lkKRSrer+TwJbGl1kCeoqdHi8Xoi4x/S5ZS2hzxYDoJEUId5XxAtL2Vp/JEOLZtnP4ms3hTh8hF6rW0eGbhbu3WskWCxaDAmnJmHVykbyl5I8psrGCCyLNp9ZlHv5WoD1GymBVbqUHMOHaSewliwTIfYD/fAx/nMpSngwAsssxmKTMASMgAAjsIwAIhORfwTMRWC9zEpEM164TIDYCVf89fO0yP8q2UhjIKAksKJCM3BpLj1kiB2B+lrKJRtj3vzKiH0gwNMtQkDN84rk6yKHV9YKHoFr6W/Rk5cguF4xL+z36aSXYjHSNLR8ehDLNvdHMSkNYfCsKUf5gdpfoEn+KZKHStmuB/SFryib8SLJ3UmSd2VrYueDnSXb66VXXp1PpIZj+LvTXLfWDv7Y6GUdXql8AuvQOJIbhx5EGs2X5Bm+mRc2prgedV6I1zxypEQNOSoMYmGEpsA6N5m55bm6c0+AvfvpIZhUICSVCFkrWARIQQtS2ELZ+juVx2KeRyojsArWPpYw+9NnAmzZTu/dCuVlGDJQ+3vWH6vEeBNNNR83SgIfH8NWwjywDMOPjWYI6IMAI7D0QYv1NToC5iKwEmWZqMyruCWGAKGlPjb6ephA0yGgJLBiEzNw5msBIKeH1obzJBDSNESmU0JHyQryarNQRUcy1Brydem4xELR7Z/UCAx9d4pbSyt7f2zSM7RYLpfDP3QDut2pjqGX66vgEjxOApdSmqGqFr4dH6Q0Ccf9gAEoLrJTdL6X8R4d3xzmBgbbeuC4b1ejYr43JQRfxlzgZHZzLI0/PFsYdQ5TCVMSWMnxMhybTAkGoS3QcK7mylOm0kVXuUlhAtxfTg9YNs5y1JvByBFd8TNWvyPHhLh6jX4A6dRBhob1sw+6j54IsX0nvVa5kgwD+7GPDcbCPr9yjqSEYnTMGW54B4dArPFqxf2bEVj5RbbwjHvwQICde+nzNbiqHP16a3++rl4vQhgvd+LIT6QICmQeWIVnR7CVFHYEiiyB1Wvkd+jRoSk6t2kED3cLjDco7Dvvv/WZi8Ai0wW93gAJ6A8UKRlPSsezZh0I8Amsy/MESOe5f1tS3pv3dwR4tj0neeXfSorA9oa9IFmHpaxHy4MprzCOF6rX1bEUVnq21HsB5cI2I0MixeLtveGXkJ3HijS7EnLUnCSFkL5Xc9cqhG5GCq+y1rPAwXD8j4UNzUpC48g9XF9TeIxuSnqKabGXuTkGOVfAAo/Geq+9IAYoCay4SBlOz6KHlGLu2aGbltjkUuDKTBHkEkq815kqRbHi7JlgTnsdOizE9VuUpOraWYZ6dbJJqhchAmzcQm/WsmXk+HiIZe4nc2JW0HNdTH+D/rxw50Z2JbG7ZAdOLUZgFbSFCn7+W7cF2H+I3ru1a8rRo5v2e3fDZhFCXtJn8bDBUpQra9izmHlgFfw+YBoUHQSKLIFVteUnCiuLREI0b1AD3Ts0QctGNWFjwwgNc25/cxJY6iE7l/17I1DsbM7lsrkMQIBPYN1cLkBiCH35qDxcCvdKhr18GKAaN/TdTQFeKL7gqyZsD+okhV+LgtfPGGssTDLUQ1PyS+Iony0Vor3wwz7VROhBHWXw+y9JNB+7gNcbIOMR6mFBwyASZB+s42UZqBpGqyO6CG3xOHCQUaFfmfgAc3l5ZUa5VMHs4qoeZEad0IjClARW9HMpLv5MPWQc/YAa4y3TA4ss/8Eqkcpzq1x/Kbxqs+eCEbdGnqL2HhDhzl36fO7ZTYpaNbNtEBYuwOp19BAcECDHqOGMwMoTVBN3eJARi/ZvaMEJ9VyFjMAysQGsQPyVa0L8fYwS0w3qy9C5g3bvyW07hXj8hPYf0E+GKpUM87ZkBJYVbBSmYqFBoMgSWH9tOYwDx//Fq7A3nDFdXRzRuXVDdO/QFMEVSxcaI1vyQsxJYHV4cwj3M2I5OA75dEbtYp6WDA/TjYcAn8B6uE2Ad9fpIcQSEiIz8sr6tuuqhIf4Pu46p3h+SZzWkQfw5L+Kgl+cboEWz2iJd6FYjlrfSFGMOmZBIpchKHQjN696SLMyLJGPaETQxxAIVIlRQxBfGH8Hv8bf4URMcKuBb9xqGSLSbGOVBFb4HSmuLqOHDtdyclQdZbmEQ/hJIcJP0UOTd305yuYS5mI2QIvQRLv3inDvAb2P+vSSonpwNoFFcuKQ3DjK5u0NfD7GcgnRomK2cEkyGkbQarEkVyDJGahsjMAqKjtB+zpJYQZSoEHZmjWRoW1r7YSU+nOgd08palQz7GMCI7DYPmQImA+BIktgKSG+//gl9h+7iKP/XEVCUgqHfNlSfujRoQm6tm0MTw/eycN8tikSM5mTwBr89iTOpkVyuG7wao02DgFFAufCsEg+gRVyFAjjlTsv6NxSb68KELI3p+dV6e5S+DQ27KWoMNjOUtewOP4OFvFInEluNfG1W0291e0VfRRX098qxjmnFcOa7YMhSKcv08WrylBpGH2ZTpFloULYFm4eR4EYz4KGqMxbJWwrEmSZ3N8eBAyA+385svRWUMOA2R+u4a/ER9yVGcXrYpxLsDFEm1yGksAK+VeK2+sorh415KhowYnRE14I8PAv6uFj7ylHLV4OL5MDxybA9l1CPOJVg+zfV4aqlbP3EKlKRqqTKVtxdzkmWGiF26JkSvUcpurPS0ZgFaXdoHmtp88Ice4Cr7poSxlaNNdOYB08LMQNlVBiKerVMexdjRFYbB8yBMyHQJEnsJRQZ2Zm4cylOzhw/CIuXrsPqTT7wScUCtCkXjC6t2+KVk1ro5itBWWKNt8+MdlM5iSwvoq5gN0pIdxaFnk0wQBn6ilhskUywUZBgE9gRVyV4/kOetDwqCZDxSGGuX/nV8k3lwR4dSBnkqOyvaTwbmDYC1F+dWLjdEOAeF8RLyxlm+leF2Nc9Sdxhr89jRNp4ZycDaHd4fC3qncnP8yVJG8nSdy5g7LIDiSJO781jtiDUEkS96eLfr1Q2sZ4+RqnxF7ClqRnnPyfPBphmHNF3YAr4F5KAuvJcSke7KL3vXdDGcr2LJjngC6QyLKy82DxK5PWmyWBjYMuo1kfYyCwZZsQT5/Tg+7gATJUrJC9Z5KSgAW/Ug8sJydgyiTmgWUM3A2V4fd6vYoIvkcqI7AMRdf6xx89IcTlK/S+7tBWhsaNtP8WHD0uxOWrvP7tZGjc0LDfDkZgWf8+YiuwHgQYgaXBVrFxiTh86jIOHLuIpyH0UOLs5ICOH9VHj47NUKNKWeuxsgVrak4Ca86H6/gzkR5Wv3WvjS9cq1swOkw1PgJ8AivmmRwPVlLSyMlPjurjzR86pJm8kqNsLxkjr6xg+6qTOL94NMLgfJA4E99fxM7kF9yKFxZvjMprKiM1moYq2brKUXuKFKRuRJQ0BfXCd3H9fUQOuBHQTwWxjlGHcC+Thjwf8e2CmrYljIbqZzHncCDlFSdvqWcz9HK0jt81JYF1f58ET49Qkti/tQyB7Qw7hBgNYC2C7i0TITmc7ouKQ2XwCLZsnU2NiTnl55a8OTMDmPczJbBsbYEZ0xiBZU77aJuL5AQkuQGV7V5Af3iI7BX/ZASWJVioYHXIrTiDJs1OnRHiPM9jq9VHMrRsZthzmBFYBbsH2OxFCwFGYOVh7ycvwhQhhkdOXcaHePo1PMjfW1HFsFv7JijpWbxo7RojrtacBNaKhPv4Ie4mp31+890YcflMlB4I8AmsxPdy3PyRElhiR6D+TPMeNCLPCRD6t7rnlRzl+sngZaAruh6wsK4GIEAqEJJKhMq2okQLdHfSP/+hejjed8XrYkhiMO4tJfuDkhVKguVlViKaRe7l5iWeVcTDit8GRJ/AhfQo7k9bvduihb2fAatVHTrs3WmcTqUfaNZ6tUJ7h0CjyTelICWBdWOzBK/PUgKrVBcZfA08hJhSbyL79WEhongHJ59mMpTuYtjBydQ6Fyb56zaI8CqU3pPDh0lRuhTdQzPnqBbymWPm35XChLUx19Ikcg9eZ9F38At+PVHGxlUxBSOwjIm0dcras0+Eu/fpfd2rhxQ1q2v3gCfhhiTsUNmaN5WhTSvDnsOMwLKMvRMW+RYdB09FqYCSOLJpfq5KRUa/R7sBkxHg64VjW3/Jte+Wvafw4++b0al1Ayz4bpzWvsvX7cOKDQd0AqNh7SpYs3gK13fqvD8VDjS5NQ93F5zf9zvXZffhc5i1cB36dW2JWV9nF6grCo0RWDpaWSKV4sLVe9h/9CLOXb6DLEm2twdJqtugdmWsWUQ3oI4iWTcA5iSwdiY/x8T3/3K493Isg6WezZkdrAQBPoGVkSXDpWkiQE5fWBrOk0Bopgjf8FMihJ9UT6gtR4WBMpT4r6KVlcBapNUc9u4UTqdGcBjkNy/eb/F3sICXS2u8a3VMda+NkH1CvOWFNQiE2TmPXjl/QJuog9y8lW3dccq3u4otxsScxeGU19zf8kuuaTNwn+hjuJwezV3eUbI9mtr5WMV+UBJYl/+UIPI6PaSU6ye1ePL4w0MhnmykB6eC8h61CkObQMlVa0WIiKDPblJlkFQbVLa5P4mRlUUnnvGtBCxzhAkMoafITlGHcJfnkcovwsMILD3BLITd9a0qSMIHSRihsjVqIEPH9ozAKgxbw1QEVs8RM/DsZQRsbMQ4u/s3uLk6aYSLEEq7j5zLFcqQ11FITUtH+5b1sHj251xfJYFFyDd3V2eNMtxcnLDsx6+4a4zAKgy71kxrSEhMwZHTVxQhhg+eZn+9f3hWNT7fTKqYZJo37z5g275Tilxg4VExIOSdj1dxNG9YA58O6owSxbO/emlq+45eALmZXryOhFQqRZB/SYWn2qCebSAS0R8L5VhzEljE24B4HShbc3tfbPNuZxIMmVDjI6BOYN36RYT0WHoQqTlJAgdv48+rLvH1ESGizqvtZYEcFQYw8sr06Bt3hp7Rf+Na+jtO6N6SHdHATv9NtC7xMWZ8uMrJIbmkSE4pSRpA9qkkle5TlzIySIa/Q+eow1z/mrYeOOLbVWVx095fwqZk0+WoUq/KauwQReNaSlWaksA6t1iCmEeUfKj8sRTuVSw771xWKnD9e56Xj0COhnOlZiPfTWkXa5C98i8Rot7Q+3HspxL4+lLN5y8UIzWV/nvq1xI4OlrDygq3jgPfnsD5NOqRutm7DT6y91csmhFYhdv2uqwut9BgTeNv3BTg4BHqQV+nthzduxiWhoJ5YOliKdP3MQWBdfdRCAZ9NheVywfh8fNQTPl8ID7u2z5fiyGRXf3HfA+xWIR9a+ch0M+Lk6MksIiHF/H00qUxAksXlFifHAiEhEYpvLK+Hquav8QaoZLJ5Fiz7QiI+yPxMCOkVfkyAQoiitywJISyuJszNvw+HWUCc36p//bHv3DwxL+wEYtQq1p52IjFIDd9ckoamtavhuU/TYBYpBpyZU4Ci3y9I1/xlK2KbXGc9O1mjaYqkjqrE1ikmhep6qVslT6Ronhl0x5eX+4XIvqyGnkllKPiYJLHxrRzF0mjm3jRbaMO4lHmB26WE75dUdXWQ+9Z96aE4MuYC9y47o6lscKzheLfMTcFeL5T9bkn7PsBvUvQEEJCmhHyjN9+iruJZQn36YuNe20Qzy5jtaaRe/EqK5ETd9avB8rbWEfFXSWBdWquBPGh9L6r9pkUzkGWfx/eXiRC2jv67KryqRRu5S1fb2PtvYKUs2ylGO8oZ43Px0rgTc8PWPy7CPHx1DYTx0vh7sZsU5A2I3OPjTmLQzyP1OUlmqOHUxmFWozAKmjrFPz8q9eJEMbLLfjpJ1IEBmq/b+89EGD3Xvq7XD1Yjj69GIFV8JY0XANTEFgzfl4D4qCx8ffpGPn1Lwjw8cShjT/prSw5Ww8Y+z0IifXtl4MxpHdbFRmMwNIdUhZCqDtWRaLnhJnL8Cr8Db79YjAa1qnCrTktPROzF63D4ZOXUbtaeWxa+j8VPAhxRQgsQmytWviNgvwijbhIEpn/Xn+AL0f0wthhqoSROQmsSEkK6kfQxMneInvcCuhfJOxaGBapTmC92CXEuxuUTCrTQ4aSuVSdMRSDlweFiP43pxdhpWEyFK9qmOu5obqx8flDoFHEboRJkrnBl/x6I8hGs9t2bjOoe3e2tPfDFm/6YnJ/hQhJvLw7cicJhg3YgnSb7FilFva+2KrmDaqes2+sSzBIbi1jtVrhO/BOmsaJux7QF74i63A1URJYf0/LQup7ikjtb6SwK2H5ZEPIXiHe8ipg+beWIrCd5ettrL1XkHKWLBMh9gMlqL76TAoP3p7RRHBl3lENFw9gtjK7CdU9Un/0aIiPnSsxAsvslrDMCVesEiOaRsRj3GgJfEpq1/XxEyFI2KGyVa4ow8D+hr3HMQ8sy9gbxiawiBNGy95fgRRyO7P7N3w543f8c/EWNi2djtrVKui16BXr92P5+v2KcRt//1aRhojfGIGlO5yMwNIdqyLRkxBVIqEAthqSPpBrTbt/gfSMTJzbu0QllLDH8Bl4/ioCW5bPQM2q5VSwiktIQuu+kxRxw2ScXTFb7ro5CawsuQylQjeq6BZZqugkvLP2DaxOYEWcFiLsBH0B8W0uQ6nOhr2AaMJILgfIgfPdNVXyiuQzIuSVu4m9vqzdbpasf7Xw7fggTedU5Fe20kfvmxnv0O3N39yQWrYlcNi3C/fvtBiAeN3wc7Ydqn4fG5tkhx22sw/AOu/WKlNuSXqKKbE0mecAp/JYVKKJPmrl2rdC6GakyGnhg8eBg+AipM9mo01kAkFKAmv/l1mKME1lI4UcSEEHS28xdwR4vo1+/XctI0fVMYZ9/bf0NVuKfouXiBCfQA8Nk8ZL4cbzsFq1RoSISHp9xAApotaoelDWmyFBPnhuS4HAKvVQ90id4lYLX7nVUKyFeWBZpUmNqvRvy0X4wEspoU5Mq08W8lIAEnaobGXLyPHxEMOeweYisN7clSPutfHfdY1qECMK86kphHuQes5Z7RMYm8Datv805v22CSMHdsKkMf1w8vwNhWNGt3ZN8NP0UTqv9GlIOPqNnv1f6OBcBPrlTFfBCCyd4QQjsHTHivUEoExit3/dPJQvnZ1/ICr6PdoOmKyI4z26RXMVh0mzl+P42etY+sNXaNWkFoelOQksMqn6oe1B4EC4C4sx21oBAuoEVswtAZ7voC8gpBQ9KUlvzEbIqxc7hYi5pUZeieSoPFzGwn6MCXYByCoduhGZcrpnXgYNRTGBemXJvBV7kZWAFpH7uI6lbZxx0a+3ykD13GlSgQyTBuxBlFsCujqWwkrPlir9SQJ3kshd2To6BGK1V6u8ldGxh99r1byN4UEfQ6j2NVBHUWbvRgis4s622DNKtfJoo/kSWMMSMhOBGz/QPFgCsRwN50iRj61nduytfcIFi0VISqaHoW8mSuDMc7pcv0mEl6/o9cHtpIjdp/pMqPGVBI68vFnWjok16K/ukTrGpSpmFq+nUJ0RWNZgQdPquPBXERKT6H379UQpXJ21e7WGhQmwej29r0khB1LQwZBmLgLr5kYpXp037ruuIes29djaQ0Uo0yJn9IO2eY1NYPX+dKYi5I+EDJIoIwHZzPAAACAASURBVBIGSDyy0tIycHbvErg4OeQJAcklTfJeETnTvhiEoX00519mBFaeUHIdGIGlO1asJ4BWfSfibUwcrv29Eo4OdgpMTl+4hfHf/Y4ubRvh5/+N0YjThl3H8cvybRg1uAsmjOrD9TE3gdU4Yg9CJbQU83m/nij7XylmZmDLRkCdwEp6LcD9P+gLiKOfHDXGG/YCwkcgN/KqykgZXMuykB/L3jG5ayeTyxEQuoH+GAKIyKdH5ntpGmqE7+BkEVKckOP8Js0Cbs0XIYt3eH7q/RYzeh1CH6eyWFKimUr/i+lv0D/6OPe3xnYlsatkB6NAnizPQsXQLZwsO4EIIUFDjSLbHEIIgeUkKIZDE2m5OLEdUP97VULLHLrkd46b80XIiKMHLmvJ35Xf9VrKuJ8WiJHG89qb9o0EDvZUuy3bhXj6jB6W+jSQI/kf1a//lUdI4V6RPf/NadPcPFIZgWVOS1jmXD/+IkY6dabGt1MksM8+omhsb6KBP1bRjwglSwKfjTbs94MRWKbZG/klsIrZ2qBKhVK5KpWZlYWHT18jwNcLx7bmdMC4//glBoybgxpVymLriu84WT/+vgVb9p7E9PFDMLhXmzwXvmLDAUV+aRI6uGHJtxAKNXuUKQksQpQVd3fRKHdA91bo2IomeGdJ3POEn3Uo6giQm7zfmNk5buT1O45hwR/bMWZoV4wfqep1oMTs1IWb+Oq7pTlKhpqbwOr65ghuZcRwpsxv1bGivhcKYv3qBFZGggA3f6QEltgBqD/LsBcQ5bqIU86z7ULE3lX96iMUy1F5BCOvCsL+xp6ThA6SEEJl00Q66TqnXC6HP48MI+M0hSe/vyfEsy2qe2r5R+cQUFeA+SUaq0z3ICMW7d+YpujEW0kqakfs5OYrIbLHXSvKB0gILNvUYjg+gxJYdh5y1J5iPAJbV9vnt9/z7SLE3KYvsUGdZPBrUXS+qucXN0PHzftJjEy6bTBjqgS2PCdsktiZJHhWtu5VZMi4rnrPlusjhVc9RmAZagt9xufmkcoILH2QLJx9Z80Vg3x0VLZZ/5NArWaUysJj3wuwZAV9fyzuIceEzw37/WAElmn2Vn4JLH200UZgfffLWuz9+zxmT/4EfbtQL3lS2KzPqFmoUMZfUUkwt6ZL6KByvJLAyk3e5LH9MXwALfrDCCx9LM36FjkEyAFt5KRfcPX2YyyZ+yXaNKvDYbBs7T78sfEA1G8qPkhk3IiJPysSw69ZNIW7lJTKe5M0A6oDwk/i7+RQbqZNfq3R3aW0GWZmUxiKgH0xMcQiAVIzJJBKs99Ujn8FgPfS0mYRILIxbCZCXt1ZC7y7pypHZAvU+Qxwzy58xJqVI/A6KxHVX1AShyRvv18u/0UdfJ6uR4qMEqgRFYbBhWwatXZ9KfDhOf1jol067nx+Dz8E1VfpGZqVhGovqFdXgI0THpYbYBTUX2TGo3bIbk5WGVsX3ClrPZV0RSIB0sJFODOf4u0aCDScbBR4zCIk/F/gETUvPKsCtTU7MJtFn6IyyeT/AVIeT7hwHlQOujv2AleuUzS6BQGZj1TRKd8FKKM5AqSowGj2dZ5NiUS3sKPcvM0cfXAksLPi3452YoVHQ0q6BKSaNmtFCwGpFJg8g66ZhJEv/jF3DOITge95ReRcXYDZ3xqGm7ODgS+fOk7PcmDlDpSxQgiVydvJM+X8vt/h5Mhz1QXQa+R3IOTUthXfoXqVshqVIqGDA8bOASG8cgsdVA5mIYQ63gQAy4GlO1RFu6eSpCLEFSGw+G3Ryp1Yu/1vjSVBlf1uP3iOIV/8gFrB5bF5mWoFQ3MiOyr0LFa/f8xNuSKwOcaRkwNrVonA0elZSOGVRG/3vRgufrone1RftEwqx5WVUkTdVn0JFhUDWkwWoXhp3ePwrRLQIqT03bRY1HxECazq9h64WyX/JE7AvY2IyErhEHxdbQiCbHNWNEyOkePojEwIpHQvxdSNwbixqkl1EqSZcLuzhpPnJBQjqZbuCUNzM+XN1BjUfUwJrJr2HrhtwNoLYtuQl/h/l1ICyztYgGYTaEhIQeikz5xJb4Dj3/FCIIsBPZab5wCkj56Fre+nX6l+NFu9RBXzHfukOHmWMlxdPQXIeq36e1C2lRC1BumfK6+wYWnO9dxKjUEd3jOrhr0H7ljZM8uceBWluVLTgPHT6H1tbw8snZ/7szQlFfjqW/3GFCVMrXmtxiKwth/4B3N/VS38pQmXXp2aY+6UERohI84d5Pxcu1p5bFgyXWvoICOw9N9xLAeW/pgVuRFb953GD0s2KVwlNy+bweW+UgKhlwdW7SpYs7jgPLDmvLuBhbF3OBt+61kb35aoXeRsao0L1uSBdWM5EPuUrqb2aMAzOH+rk0mB238B79W+thPyqt4XgGtQ/uSyUZaJwOXUaLQPPcwp19DeGydKdc23so1e7cHD9Dhu/MUyPVG9mIdGeet3v4HPeR/umhxyNJosAPEi4jeXx6tV/p1QaWSOssv5UfhCyht0DjvCDW3k4I3jQflfe350MGQM8cCKuSnE9bU05MOnLlB9mCFSzT/29DRAkkrnbTwVcPYzvx5FZUaJBPiGpjGBWAQsUIv+OHoCOHGGItKB5NGJVUXIuwZQc2RRQc0y1qnuMcv3SGUeWJZho4LSIj/eVBIp8A3Pa4uEGxJvTEOauTywDNGxKIw1FoGlTN5O8miJRJo/Xj948gp2xWxwbu/vOc7Gz15GoN/oWRAKhSCFzzRVHVS3B/PA0n2HMgJLC1aZmVm4/fAFXryKQEJSKjzcnNG/u/EqQOluooLtuevwWcxeuF5x4238/Vt4erjlUGjjruP4efk2nXJgqXtwmTsH1l+JjzD7wzVuDR87V8SPHo0KFmQ2u04IqOfAIoNC9ojw9hr1uCrdXQafxvrnkSHk1eO1QiS8UP2REtnLETxayipO6WQh6+p0OjUcw96d5pRuZe+PTd55J+PUtsre0UdxJf0td3lnyfZoYkdJKv64+TG3UPHPSvBOokk6HUrKUWOCVKWKXnDYNsTJMrih9wL6w0Ok6saeH9RPpYbjYyOuPT86GDKG5MD6cNUGd3fwCKzGMpD735rak41CfHhInzlleshQspF1rcGa8E7PAH78mXrpFbMF/jdNNW/ihX+FOHma2qSdTA5hmqpXr3OQHCTpPmvmQyBBloEqYdu4CZ0ENngaNFjxb5YDy3x2sMSZ8pvPSj1v1uwZEggNcLI3Vw4sS7SBJelkDALr/pNXGDD2e5Qt5YeD63/QuryxUxfjwtV7mDXpY/Tr9hHXjx86OPXzgRjWt71OEDECSyeYFJ0YgaUBK0LaLF2zF7FxidzVimUDsHfNXJXeJCk5iX/9fd54hXdSYWtK98lSASWx7tdp8CqRk7wiaz53+S4++/ZXnaoQjhjQCV+PpWE65iaw9qW8xBcx5zlTdXEMwp+e9KFT2GxYmNajicAKPy1E+An6xuHbTIZSXfQ7AJK0RY/X5SSvxA5yBI+RwqFkYUKRrUWJwMGUVxgXc44DpKtjKaz0pEk69UVqxLvTOJ4azg37y+sjdHLQ7LY368NVXH4cj9kHs3O4KFuZ7jKU5BGwTSP34FUWrZp6wa8nyhihaur+5Jf4/D19Dhq6dn2xMrQ/IbDenBbjyRF6rwe0kSGgrX73vqF6GDo+6rwQr4/Q51eJGnJUGMSIEUNx1TY+NRWYv5ASWA4OwLTJqgTW1WtCHDlGbdI+VQ6BXJXAKlZcjjpTmZ1MZSdtcv1er1e5FBH0scIjlRFY5raEZc335g3wx1/6VxT8Yb4YGZl0LdOnSmDHK+ig7yoZgaUvYqbpbwwCa+aCtdhz5Dymjx+Mwb3aalX0zKXb+GL6EkW1w12rZnP9Vm48iKVr9yrS5mz8Pe/QQeVARmDpvicYgaWG1cKVO7BuO00USRJDkgRumggsUhKTlMb8dFBnTBzdV3fUraDnpt0nMH/ZVgUxt3rRFHhoKedJlvL+QwJa9PoKgX5eOLolZxlS0mfS7OU4fvY6Fs4cp1L+09wE1oW0KAx4e4KzQEM7b+wpSas5WIFpiqyKmggsUsWLVPNSNo9gGSoO1f0QK80inlciJL5UPaAQ8op8Ybf3LLJwF/qFq5dlH+RcAQs8VCsB6gPCxPcXsTP5BTdkoUdjDHSuoFHEtPeXsCn5GSYfb40GL2kRCaGtHHWmSWHjmD2sc9Qh3Mmk8UsHfTqjTjHDN+XmpKeYGnuZ022AU3ksKtFEn+UWaF9CYIUeEOPlOXqvl+4mg08T3e/9Al3Af5Mnhwtwbxl9ftk4y1FvBiNGTGWbhCQBFv1K8XZxlmPyRFW8b98RYN/B7D42MqB1Wk5tBEI5Gv2UfztlZgIPHglB5nJylKNvb5lBnh+mwsvS5FYN24Z4nkfq/YABKC6yYwSWpRnKzPqEhQmwej29rwMD5Ph0eN7354LFIiQl03e/byZK4JwzbaXOq2EEls5QmbSjoQRWSmo6Wvb+ClKpDGf3LoGLk4NWfQk/0G7A13jz7oOCwCJE1vNXEeg7Kjt0kFQoDPL31nm9jMDSGSrmgcWHSlkpj5BW/bp+hCG928Lf1ws124zUSGDdexSCgZ/NVVQfIFUICksjBB4h8oIrlsaqBZPh6vLfaSqXBZIE7SRR+5blM1CzajmVnnEJSWjddxJk8uxKDvyHgbkJrEeZH9A26iCnXzkbV5zz61lYTFeo16GJwEp6LcD9P+iLi6MfUGO86hd1baAQ8urRXyIkhaqSVzZOcgSPZeRVod5MAFYlPMT3cbTc2CiXKphdXLUSoD4YEFlEprJ9V7wuxrpoTsg24f1F7Ep+AY9kRyzZ2hfFpPTrsWctOcoPyH75Hvz2JM6mRXIyN3m1QSsHw7191df+qUtlfF+8gT7LLdC+hMB6vlWMiBuUsCo/UArPmtZVgYxUPL3ynQhyCX0G1Z4qhV1x61pHgW4GPSaPSxDg1yX098LdTY6J41UPug8fC7FjV7YHlrMUaJKueYL6syUQ5yOaNzJKgD9XqyaAr1aVkFh5H7j1WGqh7No4Yg9CJXyP1F4oY+PCCKxCaW3dFxXyUogNm6nXZLkyMgwbkvfHjN+WivAhjj57ybOAPBPy2xiBlV/kjDvOUAJr58Ez+H7xBvTs2Azzpuad7FCZqJ2EEJJQwrFTF+HC1fuKqoV55b0iubW2/zGTA0BJYJHIJ3dXzWyqm4sTlv1ISrBnt92Hz2HWwnWK/j7emvOukn5L5nwB35IljAt2AUpjHlg88ElI4KkLNxUhbiTUTdmqtvxEI4FFQgyb9xwPN1cn/HtgWQGa0XhTr9p8CEtW70HtahWw8udJOZLSaZuJxACTWOAygT5YtfAb+HgVV3RNTUvHxFnLcfHafQzu1QbTxw9REWFuAuudJBW1ImjlMTdhMTwMHGg8AJkkkyGgicDKTBTgxg/0MCByABrMypvAkmYAj9bkJK9sXbLJKzvtvwEmWx8TbF4EFsXfweJ4WtBhkltNfO1WM99KLIm/i1/ib3Pjv3StjmnumgtEkNBFEsJIWvfb1THkiipxFjxOApdSwGcx53Dgv36k7zLP5ujpWCbfOioHknWT9SvbV241MMWtlsFyzSWAEFgP/xLh3WN62Kg8Qgr3ivk/fJhLd/V5yDoSXtBDVLl+UnjVsb51FBR++sz7PlaI35fTg65nCRm+/Ez1oPv8hRCbtmb3KSEB6tIUdCpT1fpaCnsv/e1074EQu/fmTLTDSKy8Ldkx6hDu8TxSD/t0Qa1iJRiBlTd0hbrH4ydCbNtJ76nKlWQY2C9vAmv5ShHevqPP3s/HSuGdj3taCS4jsCxjmxlKYPUZNQuPn4cqHFOIg0peLSY2Hq37TYJdMVuc3bMEIyb9jPuPX+Y1THGdOMzc/2cd11dJYOU2mEREEWcQZVMSWHlNeGjjT4ozemFpjMDiWZKEwcUnJOPy4RVwsKeB0NoILLlcjpptPlVIuHualju31s1x6cYDjJq8UKE+YXGL2WovQ+vkYI8df85SWaoy/NLGRoxaweVga2ODu49CkJScqnCr3LDkWxVcyWBzE1jEZv6hG1T0VuZRsFa7FRW9NRFYZO2XpokAXo6ShvMkEOZSQVmSnu15lRyh6nmlIK8+k8LOvaggWrTXqe4xNdO9Lsa45rOEJYD1SU/wv9grHKhDnStivpYCEcPfnsaJtOx8WSKpAFv3DIUw1pYba1dCjpqTpPhf/GVsTKJlNn/waIhPnCsZbLg5H67jz0TqLfY/9zr4zLWawXLNJYAQWLd/EyE+jBII1b+QwilAf0LBXDprmyf8lBDhJ+nhy7u+HGWZN45JzBL9FljxJy9Xjjfw2RjVDx6vQwVYuyH7o4h/FhDMy5HDV6rKKCncyum/3/69LMRxnr1VZFaSoV8fFk6ozfgDok/gQnoUd3mLd1u0tPdjBJZJ7hbrEXrnngB799MPmTWqydG7Z94ejavWiBARSd8DR42QIsBf/3taiRQjsKxnzzBNrR8BRmDxbFij9Ui4uznj7J7fVCyrjcAincgYsViEm8dXWf1uIDmqSK4qXRpxjbx65I8cXYmMzXtO4mlImCJ+2M/HE51aNcDwAR01EmLmJrCIwuqVvW7794OXWHuMsy54sD6mR0AbgXVrgQjp7+lLSI0JEjhq+chAStY/WCVC6hu1pLxuclQlnleMvDK9IS1khm9iL2Fr0jNOm589GmGIc8V8a6deIKKbY2n84dlCo7xBb0/gXBo9iG3L7ALxGtVqAUGdZNhc/QZ+T7jHyfjGrSYmGOAlphQ09f0lbE6ma//RoyE+NgIxlm/w9BxICKwr84RI+0AH1v5GCkL8WVtLCBHg4Sp6+CJrIGthzfgIREQJsIoXvufnK8eYT1WxjooCVq7OJrnKZQLlsjTrQcJ8Sbivvu3oCSEuX9Fe6qxKJRn695WpVCPVd47C2n9MzFkcTnnNLY88X8lzliVxL6wW121d128KcYhXDKNebRm66lDMZ/0mEV6+ou+CnwyVokxp/e9ppZaMwNLNXqwXQ8AYCDACi4dik+5fICMjE9f+/lPh1qds2gis1+HR6Dx0Gvx9PHF82wJj2KPIySgIAqtl5D48z0rgsD7p2w1VbLNDHlmzXAS0EVgPV4uQ8Jzer5U/kcG9ck73cUJe3V8pQtrbnBWlSNhgMVfLXTvTzPgI8MP4iPQVJVqguxNNqK7vjP+kRmDou1PcsBb2vtjq3U6jmN7RR3El/S13bU/JDvDY7wdSlEDZhGI5Ho57hJkSmmzd0DxdStmkEish3JRtSYlm6OOUt6u8vpiYqj8hsM5/KwQJBVa2/OYkMpWOusqVZQFXZooAGbV9vVkS2LBvKrpCqHO/sAgBVq+lZGFQgBwj1ZI9x34QYMl/ifWDMwB/LRHppTrL4Ns87zAldeV27RHh/kPV3yD1PjWqy9C7h/6ydQbCSjuqE+8/eTTCMOeKjMCyUnsaS+3LV4U4epySwo0bytChXd73z9YdQjx5SscNHihDxfJ5j9OmNyOwjGVRJochkDcCjMDiYfTp5AW4fOMh/vzlazStT8MptBFYC1Zsx/qdx9C1XWPMnz46b7RZjxwIFASBpX543O7dDs3sfZl1LBwBbQRWyB4R3l6jBwJN1ciyUoAHf2omr0i1QVsDKs9YOGxMPS0IDHt3CqdTI7irG7xao41DQL7xupkRg25vjnDja9p64IhvV43yukQdxu3M99w1ksslWFICN+eLIMukezm1YiI+bkVz9vVzKodfSzTNt47KgZ+8PYWTaXTta7xaoYNDoMFyzSXAVizE2a/5XixyNP7Zer2W7i0XITmM2p1UUiUVVVkzLgIhrwTYsIkSWKVLyTF8mOq+SUgUYNFv2X3qpgMltGwrn2YylNbBy0N9BWvWixDKs3WfXjKcPQeQ/Fz8Vi1Yhr692B7gY/Jj3E0sT7jP/YnkGCS5BpkHlnHvE2uTdva8EP+cpfdPi2YytP4o73tn514RHjygz92+vaSoFsw8sKzN/kzfookAI7B4dj988jKm/vCnIkv/yvkTUbaUn+KqJgLr8KnLmPbDKpCcSut+nYb6tQzPS1IUt2BBEFhjYs7gcEooB7exEiMXRfuZc83aCKyIf4QI4319Uz9YZCYBD1aqhhkSvUmoDvG8YuSVOa1oOXP1jP4b19LfcQrtLdkRDex0L3esvpKQrAQ0j9zH/bm0jTMu+vXWuGBSCZVURFU2pRdo9CUhXh5QPcjO7nYED/3eKLq2dwjAWq/WBoPYN/oYLqVHc3J2lGyHpnZWROKnCXFpNsVJ7AjUn5l38QaDgTORgNdHhIg6T9fj21SGUl3zPoCZSJ1CK/b5CwE2baUEVvlycgwdpMpQpaUDP/2SHULYJFUOZ15+RT4wJWrIUUFtrC7A/bZMhA8f6KH5y7FSODgBa9YJNJJYfXqycEIlroS8IiSWso1zCcaM4nUZgaXLxivEfU6cEuLiJfr8bNNKhuZN835+7j8owq079F7s3kWKOrUZgVWItwpbWiFCgBFYPGMSMop4YV25+Qg2YhG6d2iK+rUqY8rclSAlLedOGYkXryNx/Ow1RR/SOrVugAXfjStEW8K8SykIAmt67GVs4CVGnl28PkhoDmuWjYA2AivmjgDPt9FDCfFcIB4MpBHy6v4KETJ4Bwbyd3tvOYLHSGHjaNlrZtqZDgF1EumEb1dUtc1/+cn30jTUCN/BKewuLIYHWiqcNo3ci1dZiVzfC37Z5eDlcuDubyKkRtOX6rfOiZgwcDckIhka2nljT8mOBoOiXs3rkE9n1C7mabBccwmQxApx7Rd6YLH2vFFxj4V4vJ6ux9FPjhrjrdejzFz7QN95Hj8VYtsOinOlijIM6q960CX34Ky52QRW6xRAWz0QlzLZvyH6trk/iZHFy6s1bbIEDg5ASqqAkVh5gLk56SmmxtKQ6kHOFbDAozEjsPTdhIWs/5FjQly9Ru/rTh1kaFg/bwIrv+O0wcdCCAvZxmLLsWgEGIGlZp7UtHRMmfsnzlyi5dC1WbBNszr4ecYYRelM1vKHQEEQWOol5HMrd5+/VbFRpkBAG4GV9FqA+39QAsvRD6gxXoKMhGzPK03kVbWxUrC8/aawkvXIbBSxG2GSZE7hS369EWST/1hSTRVOI0t9ohGQeuG7ECVN4a5d9+8LX+JGBCA5Ari3lOxnSmLtqnsLO+vdQiUbd5z2624wyM0j9iFEQvMAnvHrgQo2bgbLNZeAtDAhbi+nBxanQDmqf64/mWAuffOah+TyujqTVseDQI4G30shosWQ8xLBruuAwIOHAuzcQ38rqlaRoX+fnAfd738QQy4B2qVqF5of0jQ9A/jxZ2pnoRCYPYN6DhIS6681QnyIU82RRcIJmScWcCjlNcbGnOWM0tkhCKu8PmIElg57vzB3Ufek6tFVito6FFjIr+cWI7AK825ia7MWBBiBpcVShMDaceAMbt57BkJqKZutrQ1qB5fHwJ6tQQgs1gxDoCAILFKW/lveV7yBzuWx0KOJYQtho02OgDYCKytJgOvz6KFE7CBHza9kuL9SiAy1g4CjrxzBo2QQOeTfTdzkC2UTmAWBauHb8UFKn+33AvrDQ2Rv0NwVQjcjhZx8/2tPAgfBWZjzA0f18O2IzWXukL1CvL2qGkr4xeCdELpLcCOgn0E6ksF1wncgWprGyeETaAYLN4OApGci3F9DD/mkaAMp3mDN7c6vqp53VT+VwdWAhMLWjIWpdL9zT4C9++lvRY1qcvTumZP4JCGEwlQBmqXR3wmRrRxSXn46oZ0cDb/XjzSNeS/A0hV0fjc3OSapedolJwuweh0jsTTtgQtpURjw9gR3qYmdD3aWbM8ILFPdMFYil5DShJxWtn69pAjWIZdVjtxZzWVo3TL/vyPMA8tKNgxTs1AgwAisPMwok8kRG5eA5JQ02NsXg4e7qyK8kDXjIFAQBNaRlFCMjjnDLaCtvT/We7cxzoKYFJMhoI3AIhNemsrzXgBg4ywHIbb4zdH/P/LKjpFXJjOSFQn2f70e/J3wMmgoigkMe7are1Zd8e+DALFTDlQqhm5BspzGET0NGgwnAQ1WkqYJcPMXISSpdA/f84vEwh4n8SJwiMEoq8//MHAg3ITW4+7z4ZYIT3ZQbDzryFC+X/4PHgYDagQBL/cLEX2Zkpb+raQIbM+eVUaAlhNx67YA+w/Re7x2TTl6dMtJQi38TQSbOCHqpVP8nYPkSApV/U1pOE8CobYYQw2Kv3wtwPqNdH5/fzlGj8g5vzYSq3YNGbp3K7o5se5lvEfHN4c5ZINtPXDctysjsIx5k1ihrM3bhHj2nFdNcIAUFSvk/ez895IQx0/RcY0aydCxbf5/RxiBZYWbh6lstQgwAstqTVc4FC8IAutq+lv0ij7KAUhyv5AcMKxZNgK5EVi3FuRM0s5fjZO/HFVHs5Acy7aw+bTLlMtQOnQjNyE5lkZoCffTRyv1vFrHfboiuFjOvFpBrzdAwqPPQoOGQSxQ9bh6d12AF7tVCbVF7U5jd6vmEAhUD9L66Ej6+r1erzIkPOhjCA2Uqa8OhvR/e0GEkMMUg/xWhDNEB2OPfX9HgGe8XH75zbFkbL0Kk7xrN4Q4/De9z+rVkaFr55wH1t+Xi1DsrQDVMujqSdL2xNdAZgLdd7W+kcK+RN4HZaWUu/cF2LOP3tNVKsswoK/mAzMjsXLuvNCsJDSO3MNdIB8HyEcCVoWwMN2l+q9l3UYRXr2m9+Unw6QoUyrv+/LaTSEOH6HPg7p1ZOim4Xmgq0aMwNIVKdaPIWA4AozA4mG4Ze8p+Hh7oFWTWnojm5mZhZDQKIjFIgT5eYOEGrKWNwIFQWCpVwsLEjvjkr/mamF5r4D1MBcCuRFYj1aLEP9c86GefDmvMpKRV+aykzXMQ0IHSQihsuWWcF2f9fSJPobLKtX92qOpnU8OEeoEkrZcWaQAAd/rI84+FXWm1qFi1QAAIABJREFUSlDS3kEftVT6psokKB+2mfubnUCEkKCh+ZZXEAMjjokQdobe74HtZPBvnf8v5wWxBvU5MxOBGz9QT1KBWI6Gc6Qw0CnQEpZmMTpcvirEUV7F2kYNZOjYPue+WfmXCHahQlTIoodg3+ZSJL4SIjmc7juSxJ0Qjbq2fy8LcfwkPTA3qC9D5w7a9y0jsVSRjZdloGrYNu6PLkJbPA4cxAgsXTdgIe23arUIEVH0vhw1UooAv7zvy9t3Bdh3gBLKNavL0auHfmHBfEgZgVVINxhblkUiwAgsnlmqtvwElcoFYs/qOXoZa9fhs1iwYjtSUrPzqTg7OWD0kC4YMaCTXnKKYueCILDiZBkI5r0EOQrEeBZkeFhOUbSfOdecG4GlKWcQ0Y0cLqqMkOoV5mHONbG5CgaBMEkSGkXk/JJvqDYj3/2DY6lhnJhVnh+hs2NQrgSSg1CM51rCAkk1QpIbid/sm6aiVtf8Fw55J0lFrYidnEgPkR3uBQwwdOlmHf9qrwhvrtIDS9meMng3tG4CiwB4c75IJW9ftc+kIAQ8a8ZB4OIlIUjiZmVr2liGdm1y7pu1G0RweCZAIE1nhzLdZIgPAT48pOMrDpHCo5ru9jl6QojLV+j4Nq1kaN40933LSCxqe02FMiKCPoa3uz3EIgHexadDItXdHsbZVUxKQSOw7A8x3sVQLT4fK4G3V95aPXwsxI5d9H7MzSMyb2kAI7B0QYn1YQgYBwFGYPFwJASWq7MjTu/6FcfPXsPDp68glclRNsgXnVo3gLtrzgpVV28/xoiJP3NShEIBSN4s0iaM6oNRg7sYx1KFVEpBEFgESnUPiNdBw2CjFsJTSCG32mXlRmBFnhEh9JiqB5ZrORmqjrL+Q63VGsyCFX+Y+QHtog5yGlaxLY6Tvt0M1njS+3+xI/k5J4eUeCel3vktTpqOYD28v37d8RoNbpVTkVHraxnsvfK3t19mJaJZ5F5OXqDYCZf9+xi8dnMKeL5ZiJj7PCJhsBQe1a3/4Pp8pxAxN+m6gjrJ4dci/x4B5rSJNcx17rwQp89SfFs0k6H1Rznvo83bRHC6D3hJ6W9KpSEyxL0A3vIIKEJqlWyi+32onmy6V3cpatbIe98yEovuriphW5Egy+T+8CBwICoWd2UEljXcgCbScfHvIsTH03t14pdSuLvnfV89ey4AudeVrXw5OYYOyv/zlhFYJjIwE8sQ0IAAI7DUCCzyT08PN8TExqvA5eRoj4UzP0OzBtVU/v7F9CUgFQubNaiOn6aPUnhfHTpxCbMXrodQJMTxrQvgVcJ6ypOb+y4pKAKrdvgOvOVV4brq3wf+GpItmxsPNp92BHIjsORS4MMjAd5eFyDhuRAuZWSoPFwGoWpudwYvQ0CBwLX0t+jJy4NXr5gX9vsY7jH7fdx1rEp4yKE8o3hdjHMJVkE9SpoCkuxd2XxEDrlWFhwRfga91zSBexoNGyReOcQ7Jz/tQUYs2r85xA01FnmXH13yO+bRKrHCG0bZqn4qhWv5vA8s+Z3PXOPeXhMgZA+vSl0lOaoMz5+dzaWzNc1z+owQ5y5QAotUHGvRPCcBtWOPCC43BHDlXar2uRTxzwQI54UA+rWQIaiT7gQW8ex6zUsEP2ywFOXK6rZvCYm1aq1Q5aBOsC9qid0bRexGmCSZ23b/+vVGfU9PRmBZ041oZF1/XiRGSgoVOmWSBE45a6fkmJXci+SeVLZSQXKM+Dj/z1tGYBnZsEwcQyAXBBiBxQOHeGApm7enOyqXD4KtjRhPQ8IRGvEW9na22Ld2HgJ8qW9q0+5fIi4hCbv/+l7RX9lWrN+P5ev3Y/LY/hg+oCPbhFoQKCgCSz3Z8hHfLqhpW4LZyYIRyI3A4qtNqg+SKoSsMQS0IXA6NRzD3p3mLrey98cmI1QiXRJ/F7/E3+bkfulaHdPca6uo8SorEU15HlClbZxx0U97Dr4vYs4j+p4ck060VpFDqu6R6nv6tivp0egdfYwbZizyTl89DOl/9zcxUt5QCTW+ksLR1/rv+fT3ApCCFMomtJOj4ff5P1AZgnFhHEvCB0kYobKR8EESRqje9h0Uwe1fAfh1OetOzyawXuym4/WtfrlkmQixH6iniK6hTkr9EhMFWL1eM4nVo7v+zwJrtHGHN4dwPyOWU/1v365o6+XHCCxrNKaRdJ47X4ws6pSHGdMksNUhyj4qCli5mn7l9PWRY+yo/D9vGYFlJIMyMQwBHRBgBBYPJCWBNaR3W0weNwA24uwXSRJ3v27HUSxauRMDe7TGjAnZCW/J34M/Gq74/+tH/4SDPX3diY1LRPOe4xUeWyt//loHUxTNLgVFYA18ewLn06I40Dd4tUYbh4CiaQQrWbWuBJaVLIepWYAIHEx5hXEx5zgNujqWwkrPlgZrtCHpCabHXuHkDHWuiPkejVTkPsmMQ+uoA9zfKtm447Rfd61z/y/2CtYnPcGsA50QHOXL9RM7yFF7ihRie/3UPpUajo955N1H9n7Y7N1WPyEF3JskOydJz5WtzjQpiukQMlLAaus0/bXZIkjSKMlRY4IEjjnrAOgki3VSRYAkcCeJ3JWNJHAnidzV25G/hXA/x68KKkej+VLEPxbgMc9jg3j9Ee8/XdvseWLIeNNN+0YCBz3vX20klraKirrqZi39+kcfx8V0yl5v826HPj5lGIFlLQY0gZ4z56i62s+ZyUtel8t8Me8FWLqCfjDwLCHHl/n0bCbTMALLBMZlIhkCWhBgBBYPGEJgkXC/E9sXceQVH7cew2cgMysLf2/OznklkUpRo/VIxf8/OLMuR2nzDoOmQCaT4cT2hWwDakGgoAisL2POY2/KS06rxSWaoL9TeWYnC0aAEVgWbBwrU21L0lNMib3MaT3QuTwWejQxeBX7k1/i8/fnOTndHEvjD88WKnLvZsaiUxQN4ath6wHiRaCtLYi/jd/i78Ir0RlLtvWFWEYP1iRxOUlgrk9TJ++6OAbhT8+P9BHxf/auAzyKog2/t3uppBICIY3QCb333hGQDtIFpQgWVFCK0n6kKKKgiApIB6migCJSld57r2lASA/pt7v/Mwm3s3cpt3e5yyW5/Z6H5yF3M9/M987M3c57X7F621PTWQiS/ERN5mrASt1lrD5D0ydwZwOD6Ot0jSv04uGTg5eQ6SPYbs89+xick+QY6/Eaj8YNs5+fg3tYOB+nJKLgALSYq0FSGHDlO3pZdi4D1P1I3mU5NQ2Yv4j2ZRhg9mfy+uqvmC2TWONeHMHepCciJD96t8FbfsEKgWWjx5p4XhEPLK3Y2QGfT5N3ruLiVViylBJY7u4CPv5APiGtD7lCYNnoJlTMtgoCCoElgZ0QWCSX1Y+LPspxMaYvWIm/jpzFpQMrM9+XElg3jq7N1ufNSQszE8ET7yxFckbAWgTW7JizWJlwU5zUdM8GmOium99MWbPChYBCYBWu9SjKsyF5qki+Kq2McauO2SUb59ukIylhGPb8oKintZMviIeAVPTzbzV2LI3ffHLPvyWd6xtnG6DfhXoSdQJqv8fBxV/+1Dcn3sWU6JNiB0LcEwK/qAjJ33z6c+kv7gKaLzL90lHY7I74j8HjvZTA8qojoGo+EgsXNvusOZ/df7C4eJkSU717cqhfL3vo6b+7GahP0TXg3IFW0zWZXn/E+08rameg8Sx5l2V9bw8PDwEfvW/6vrVVEuuT6JPYlHhXXAPi4fpxQB2FwLLmwbLi2CT3FcmBpRVnZ2DqZHlnMjkZWLiY9nVyAqZNkdc3J5MVAsuKG0EZ2uYQUAgsyZLX7zwGDetUxc9fTc5xI0z53woc+u8iLr4isDIyNKjb6e3MtjkRWGOnLMapCzdw7fAam9tYcg22FoH1ffxVLIi9KE5zrHsNzPJsJHfaSjsrIKAQWFYAvZgO+XXcZSyJuyxa96FHXUz2qJtvay+mvUDPp/tEPTl5V5HQZRLCrJWcSC7pRLa9vIcPo05kvqTmGKzeMgTOiY70gd1HQJ1JHFS6RThztUWfvHvLLRhzSzbJt+0FpSA9ToXzC+iv5nauQCMTPVkKas7GjPMyDLgq8fIh+fwafWY60WHM2MW97Y5dLK5epwelXx8OdWplJ7BObGegOk8JrAxvAW0mcxAE4NRUsveojqbzNWDodswVwoePVVi7njYMCBAwJp8J+m2RxPoi5jx+SLgu4jzNsz7mlmusEFjF/fDmYl9snArfLJMUvnAX8JFML6r0DGDeAgkhbQfMlOm9ldN0FALLRjehYrZVEFAILAnsPUdMQ2z8y8yQP2k+K9IkQ8Oh+7BPERkdh/2bv4SPd0k8fR6NjoOy8lsRUsvB3k5nEQeNm4OHIRGKB1YeW9taBNaWxLuYLPFC6F+iIpZ6t7LKIVQGlYeAQmDJw0lpZRgB/WqBMz0bYpy7brVAw1qyt3iYEY9W4b+JbwTZuYJUyZLKPymhePM5TSDfyckfa/NIIP93cghGRx4WVYx6Vhev/dZQR2eF3jx8mskLJfwm7jIWS8i7991r41O9RPOm2F5QfZIigCtLJb+alxZQ7+PiQ/AIPHBmFgs+nZIkJNeZo1fRT1JfUHskt3G27mBw4yYlpgb241CzRnZcz2xmwV2h+KeUFdBhUtYeOzdPjYxEOoLc/GtXrqmw8zd60a4ezOONAfLObF642RqJpf/j4wS3mlhaoaVCYFn7cFlp/MhI4Psf6feBsXmsTM2flZO5CoFlpU2gDGuTCCgElmTZF36/GRt2HEDXdo0x6+M34eaSVbY8LT0DC7/bhG17jmb+XT6wLMYO64H/zlzFn4fOZL62c9VcVKsUKGoj3lkkibtXSXfsXb/AJjeXHKOtRWDpXyLbOvlhUxFLZCwH3+LURiGwitNqWtcWEkJHQum0ssirGYa5Vs33pKK5FNQO3Srq8WAccCNwsI7ePUmPMf5F1ncJkR4lgvBTHgnkz6Q+R99nf4ntSdXAhQd6IEZyEWfsBZCLtF0JwybMizmPFXoeDO+61zbcsZC0iLuvws2VlAhwKy+g5vjiQ2ARmG+uYhF3jxIolQdy8G6gEFj53YKbfmVw5y4lsIYM4lGtanYS6dwvLDLuUPzjA4Bu72aFFl1ZpkZSOJ1JrYkcXAMNrw2pfkiqIGqlSWMe3bvmn8Ai+giJ9fNqBgmJum6YxTGx+4bEO5gqyV841LUK1lZsrxBY+T0cRbR/WIQKP6+i3wd+vgLGGVFYwdQKhjnBpRBYRXQTKdMukggoBJZk2Z5GxqD3qBl4mZSS6YFFiCoHe3s8eByO+MQksCyDb+e+h88Wrsr8mwjxuipbxgtVKwZg8cwJYJisB4jd+49jxsJV6N21Jb6YmhVmqEh2BKxFYOmH+tS098LfeSRSVtbO+ggoBJb116C4zIBUICTJzLXyQ6k26OVSPt/mkcq0/k/W6egJD3pT5+8dLx/gg6j/xNcMeX/qVy2sYueB/SV649JXLHgNvbB61xdQeZBhIodc/sglUCtfeDXFm67V8m17QSmIusrg7iZKBJSszqPaSPMQAQVlg6Fxwg4xCDlAbSzdSECl/obX1pBeW39/w2YW9+7TMzN8CIfKlbKTT+dXsEh/TNtFluPRe0LWHru1hkXsbfpetRE8StYwvP/+OsDg1Gm6ph3b82jd0nA/uWsWG6/C6l+yk1hNG/N4zUxEmdy5WLLdnqRHGC+pIEuKUPxWuZtCYFkS9EKs+9FjFdZIQnPLlxMwaqT8z0qSA4vkwtLKJx9p4OJimsEKgWUabkovBQFTEFAILD3ULl2/h4/n/IDnL2J13iHeWAumj0Xb5nXxMOQpVm/eh+SUVIwY0AW374dg3rcbUKNqEJo1qIGEl8n47c9/M8MO1y+bjga1q5iyNjbRx1oEVogmEc3CdooYl2WdcT5goE1gXlSNVAisorpyhW/ew58fxOGUMHFi60p3QEfnALNMtOqTTXgpZIi6bgUOgRtjL/69MfEOPpV4EAxzqYJFpZrnOvZTLhkNQ7eJ75dhnXAxYBDCjjAI2U8vxKRBzXc0cAvK2wz9CqzflmqJAS6VzGJ7QSh5dobBw13Fm9yJf6DCjZ+pV4FjKQH1p8i/lBXEOhTFMchFl1x4tfLmCA4VgrITWGe/VkMTSS0MDRIw6J0s/O/vYBF5juqQG767bSeL6zdov769ONStY9hzyxicbYHE0s8h2NKxLI5U66UQWMZslGLU9s5dFTb9Sj8rK1cWMHyw/M/KJctYxMXRc/nh+xw8PUw7lwqBVYw2lmJKoUdAIbByWCISMnj8zDXceRgKnuNRzr8MOrRqkC0vlrYrqUY4ZvJXOHvpto62IX06YMYHwwv9JrDmBK1FYCXzGlQO2SiaroYKT4JGWhMKZWwDCCgElrJFzIVAn2d/4mwqvaHu8umGJo5lzKK+cdh2hGuyPHSJnPbvjwA1/Ul3dcItzIzJCj0nYiiJegqvQSXJZ5U9GDwKGgGeAy4vYZEaRR++CdFB8kGpdHktHbtGRx7C38mh4msrS7fDa87lzGJ7QSjRJ+58W/MI6m4+T5aCsMHQGHwGcHomC/B0bRvN0sAuK6uBIiYisGoNi5BQiunbb3IIzCH878xcNTh6hHG3nIA3J2RdiolnHPGQ04p/Bx6BnQ3vv1/WsXj8hI49chiHihVMuyjnZX5xJ7GupEfjtYg9IgS1HLxwMXiAQmCZeCaKejdCChNyWCs1aggY1E8+gfXdDyxIhVCtvDteg9KlTUNFIbBMw03ppSBgCgIKgWUKajn0ISTWjr3HcP7KHTAqFTq0qo8ubfNflt1M0yu0aqxFYBFAyj1eBw3oA+TNwMFwZxwKLVa2PjGFwLL1HWA++ztF/IGb6TGiwgO+PVHD3sssA+jr/rtsT9R0oLp/iL+GL2IviGORJMQzSuomZdefiN/jtTov3Q8cBidGjYTHwPUVNIFt5ufaazz82uR+oR747G+cSH0q6ttSpjNIJcSiIo/3Moj4jxIIgV15+LczTCAUFfu087z2A4tECeFRdRgPr1rFz86CXJcfV7KIeEovqyRXDsmZI5WcKg1eLAe8OyErB9azUwwe7jbeA3Dp9yyiY+jYE8drUMbEi7IhzIozifU4IxEtwqn3fKDaBQ9qDlMILEObopi+f/GyCrv/oARWvboC+rwun8D6aRWL8Ah6Lse+zcFf7zNBLnQKgSUXKaWdgkD+EVAIrHxiGBoRiZ37/sWkMf3zqck2u1uTwGoatgOhmpci8P/59UEFO3fbXIgiYLVCYBWBRSoiU2wWtgMhkrN/0q8fytm5mmX2A57tx8nUZ6KurT5dQMJctKJfBfBDj7qY7FE3z7HrhW5FJJcitrkQMBA+bJY7zt1fGURdohdqxg5o8CkHO9ecvTu6R+zB5fRoUdcfZbujgYO3WWwvCCX3tzGIvEDtrdSfR+lGxY/YefyXChFH6cWsbAse5V8vfnYWxJ7RjvHDT2o8e05HnDBOAx89x8v0eBXOz6e4pwG45Cvgow+yLsUxNxjcXk/3n2c1HsGjDK/L7Hlq8JJmU6do4OxkOevNQWJxKSqkRgGsE6B2Jv/M7zFmLAKxfBpqhmwRu7kz9oiqPVohsIwFspi0P3OWwT5JKH3jRjx6dDN8HrXm63tGjhrBoXwOYcVy4FIILDkoKW0UBMyDgEJgmYAjqTB48L8LmR5Xpy/ezNRw46juL+QmqLXJLtYksPQvcr/5dENjM4UR2eRiWthohcCyMMA2pJ5cgMhFSCtXAwbBi9zSzCBvRx7GX8khoiZSYZBUGtTKwtiL+C7+qvj3VM/6eM9AFcC24b/hXka82OewXy9UtfPM/DsjUYWLXzLg0umvyCVr8qg2POeH+Dbhv+F+LrrMYL7FVRDygJAIWiF2EnuLm8TdYXDzF2pnCT8Bdd6X71lQ3PAwhz1Ll7OIjqbn5P2JHEp56ZIyL0NVuPo9JbASGOCyFzB1cpYHlv77ctYlNQ2Yv4h6SjIMMPuzLH2WlPySWJHnGdzfLtmD/gLqvGfdPZhToYz0OuNgp2YQGZcKDWd9ks2Sa6ro1kXgvxMM/pGE9LZszqNzR/nfBxu3sLgrqfg6bDCHKpVN20MKgaXsTgWBgkNAIbCMwJpUI9yx71/8/vdxxCfQBAk+3iVxaPsSIzQpTbUIWJPAGhF5CIeKcC4YW9tFCoFlaytuOXv9H6+VBA8DD8sNh4OKXlrzM/LHUSfw68t7ooovvZphqGtV8e/ZMWexMiHrhw8is0s2xhi36nkO2evpnzifRnN26ZPtT48zeLRHN/FVjbEc3CtmfxAnCeFJYnitnPHvD39Jjq782F4Qfa+tYJEoScRdYxwHdwvkEioIW/Iag0sDzsxiAeEV4aIS0GQOB1aJcjd5ab5ZxiJWmrD5PQ6enrpnRL/KZSQDXHUFZk7PIpzSYlW4sJB+VhDHzUYGyCiSY4fk2tGKh4eAjwqIjMwPiXVvG4sXFyjhp2IFNJtvXQKLYBgcshkJfLqIZ2StUfC2d1QILJNPRtHteOgog2P/0u++9m14tM0jhF7f0q3bGdy4RfsP7MehZg2FwCq6O0KZua0goBBYBlY6JTUd+4+cyfS2unzjvk7rZg1rYHCvDpmVCVk2j6y5trKbTLDTmgTWR1EnsFVy0Vzg1QwjJBdNE8xRulgQAYXAsiC4NqQ6XeBR/sl60WJyPQsLetNsCMyNOYefEm6I+mZ4NsAE91ri31OjT2FD4h3xbzmfO/pk+5rSHdBZUjVR4IErS1kkP6OXTYeSWQndGd0UWdkuf9cDB8OzCOX+u/Q1i5RIamedSRqUoBGaZlvHwqDo8rdqJNN0Zag+moNHVdMuV4XBHmvP4aslLBJf0r0z+UMObnqhthHHGTyWkMGhauCGAzDncw1UKmQWTzg9XXqoBDRbyGW+l5s8eKTCug2UwAoIEDBmVMERQYTE+nkVg6Qk3Um2bMGhc4fc99OFRSzSJHm7iH31JnNw8rbuHtRP/3AneAiqOLsrBJa1D5gVxt9/gMHJ0/T+1aUjjxbN5Xtg7fqdxeUr5qkOqnhgWWEDKEPaLAIKgZXL0t+8+xjb9x7DvoOnkJScKrZyc3FG726tMLh3ewT6madqlc3uPgDWJLDmx17A8vhrIvxTPOpikoFcNLa8Vta2XSGwrL0CxWP8GC4VtUJ/FY0h5A0hccwlS+Ou4Mu4S6K6d91rYZpnA/HvD6OOY9tL+mPIN6VaYKBL5TyH/+DFf9iR9EBs822plhjgUkmnz8sw4Op3umxVQEceAZ10H+b1vc9Cy43MLDxSVOTc/9TIoKkL0WA6Bwd3616oLYXdw98ZPDtJL2d+7XmU6yL/cmapeRVVvQsXq5FMnQ8zwwKd9So7Pt7HIELi0XHPDnhgD8yYqoGDfZblZ+eooZHoaThDA3u33FG5ck2Fnb9RAqt6MI83BhTsOsbEqLByjXwSKz0BOP+FHvsNoOpwHl5WDtntErEH1yV5/M5U6YfGrqUVAquoHsx8zPuPfQzOS3Ii9ujOo3ED+Wdrzz4G56T9u/EgebRMEYXAMgU1pY+CgGkIKASWBLfEl8nYd+g0tu85itv3aQ4ThlGB57MekC/8/TMctU8xpmGu9JIgYE0C6+f4G5gTe06czSjXapjn1VRZn0KKgEJgFdKFKWLTCtEkolkYrWIVoHbBaX/zFeFYn3gH06JPiagMd6mChaWai39PeHEMvyc9Ev/+oVQb9HIpnyeKM2POYHXCLbFNbmGHD3ayeH5WN+SHeGE5viqCmMJrUClko6jHXsXgUbkRRWoFT35KiABqY9MvNNm8zIqUQXlMNvqKCnc2U+LDrYKAmuMKznOnuOCotWPeQjXSaeSZDimlbXN3M4soiUfGVXsgwg6Y8qEGrq/qPFxeokayJBl8nfc0KOGfO1rHTzI4cJASkU0a8+je1bRLcn7WxBgSK+qSCnd/zR5WTQhxQoxbU/Qrqf5dqQc6uwcoBJY1F8VKY+/azeLyVYkHVW8OdWvL/0Hj738YnDgl8eDqxKNFM9P2t0JgWWkTKMPaJAIKgQXg4rV72LH3KP4+eg6pafTppnqVILzeuXlmiGDXIZ9kbhAlWbt5z4k1CaydSQ/w/ov/RIN6lgjCj95tzWugos1sCCgEltmgtGlFN9Jj0DniDxGD6vYl8Y/v62bD5PeXjzAh6liunyujIw/hb0nuvV9Kt0cX58A8x/867jKWxF0W2+RWuVCTgsz8PFwqfaB3q8Cj5risB/IoLgV1QreKesztfWY2EHNRxKWSvFCSZNh2QNN5lk+GbWm7ctOfzQuGEdBsHgczpWuzlllWG3fuF2poJPwfyWul1nMy0s+xds4BiFYDH0zk4PUq4fuNVSziJYmfq73JoWRw7pfmvw4wOCUJc+rYnkfrlqZdkvMLnlwS68EuBs/PZE+N4VWLR9Vh1pm71vaxkUewL/mJCMWvQZ0wyKuSQmDld3MUwf6/bmNw8zbdp8SzkXg4ypXDRxkclXhctmvDg/wzRRQCyxTUlD4KAqYhYLMEVmx8In7/+wR27j2GhyE0yUTZMl7o0bEZenZujorlfDNRTU5JRaNu4zP/rxBYpm203HpZk8A6lhKOIc//EafW3NEH2326mtdARZvZEFAILLNBadOKzqY+R59nf4kYNHIojd1lXzMbJkdTwjFU8rnS2skXW8p0FvWT90gbrWwq0wltnfzyHH9Vwk3MijkrtsnLW5R4YBFPLKmQCye5eD7OSESLcMt5n5kNxFwUpcaocHERtc3JE6g3tfgSWASGi1+ySJVUzqv1DgdXE8u8W3p9Crv+mXN12aq5M7PvHf28T8edgJcM8M5YDcr6ZFl4byuLFxcpSVyxH4cyjXMnsLbtZHH9hnny7JgDYzkklr6XmXZcx1IC6k+xrhfglOiT2Jx4V4RiRUBrjC9dQyGwzLE5ipiO9ZtY3H9Az9bwIRwqV5LvgaXvHUm8r7rohd3LhUQhsOQipbRTEMiShwX/AAAgAElEQVQ/AjZLYNXt+BYyXv0UV7qUB9q1qI/X2jdBg9pVoNLLB6IQWPnfaLlpsCaBdSM9Gp0j9ohTq2LngSN+vS1nrKI5XwgoBFa+4FM6v0KAVB4lSdG10s7JDxvLdDIbPpfSotDj6V5RXx17L/zp21P8u/+z/TiV+kz8e4dPVzRzfHUzzmUW21/ex6So4+K7fUtUwHferXOd85VlLJLC6UO9nYuA+lM53BZ0P/OC7T1x0LeX2Wy3tCL9PF9ufirUfD/D0sNaVb9+JbjArjz825nmIWBVQ6w8OMcBcyQ5nUjdnVl61QMFATg1nQV4enYOOGf9+fabHAIDsy7GT/5kEH6Men0EduLhn0dY3eq1LJ6EUJ0jh3GoaOXKmbmRWKSCW6tGPM7NyZ7/KtN4lYCm87IXhyjI5Z0Xcx4rEq6LQy4o2wRTfesrBFZBLkIhGWvVWhYhkrM1eiSHoHLyCawz5xjs+4ueZZL/qkc30z5fFQKrkGwKZRo2gYDNElg12mZVnSL5rLq1b4LWTeugZeNacHbKXqNaIbAsdxasSWCRUvKkpLxWSrKOuBbwhuWMVTTnCwGFwMoXfErnVwj8kfQI77zIPcQvv0A9zEhAq/BdopogO1ec8Osn/t3z6V5cTIsS/95TtjvqO3jnOezB5FCMlJBuHZz9sb50x1z7JD3NqkoIgV6afVvziOzwVMf7rIGDN/4o2z2/JhdY/7i7KtxcTT2wvKqoUPWt4k1gRZ5T4f4OarNnNQHBBVjBrsAW18IDpacB8xZRUsbeDvhsmq4HVkYicG4ebUN21qESWROTenboVyos05RHxT65X3qXfs8iWlLNb+J4DcqUtrDBMtTnRmJ1DgaY87krMJTzS8bQ+WryXfxVLIy9KOr4pEw9LPJvqhBY+UK1aHZe8bMaT+nvQRj/tga+WcEzsuTiZRV2/0E/X+vWEdC3l2kehgqBJQtypZGCgFkQsFkC69ipK5l5r46dvgKOy3rwIGRWh5b18XqXFmjWoAZY8hOdEkJolo2WmxJrElgZAo+gJ+t1phZWbmQ2DzyLAqAol42AQmDJhkppmAcCmxLv4BNJkvXBrpWx2KuF2TDTr3LowTjghqTKYaeIP3AzPUYc74Dv66hhXzLP8c+lRqL3sz/FNnKIp0d7GDw9LslhoxKQNiEcw/j9op42Tr7YLAlvNBsIFlIUdVmFu1voZaNsPRXKv1G8CayUFypcWkxtZuwFNJnDQZU9PZGFUC8eapNTgIVfUXLKyQmYNkWXwEoKA65IKnkmqgSccM4igaW5dfST65eswaPaiNwJrNnz1OAlb0+dooGzU+HAlZBYP69mkJxCye6qaUD5PCJzKw/k4N1AvpeLuS3VL5Qxxqs6fg5qoxBY5ga6COjTJ4ffn8ih1KtcdXKmT0J7SYivVmrUEDCon0JgycFOaaMgYE0EbJbA0oL+IjoOv/31H3bu+xdhT1+Ia+Ht5YEenZqhV5cW8PMppeTAstAutSaBRUyqHrIZ8TxN3H85YBC82ULyZGkhzIuqWoXAKqorV7jmrV99dIxbdZCqfuYSQRDg/2SdjrrwoCyPXyKtwnbhoSZB/Ps/vz6oYOee5/B3M+LQLny32KaSnTuO+fXJsw+XnpU/KSORXkwzAlIwpMcmsV9353L4uXQ7c5lucT3PTjF4uFsSutVSBf+exZvAIqCe+x+LjJd0HetO4uBc1noEgsUX2gIDJCYCX31DCSxXFwFTPtK9qMbeYnBrLd1fUYyA805ZuPfpxaFenSzMEx6rcH0FvfS6BAqoPTHnS29qKjD/S0nhAQaYrRe6aAFzjVL5IorB6jUqkcRqmgJ4SAg3pzICUp5LvTk5BHW33v7T96Id4FER2yp2Vggso1a9eDRe/A2LBMl33MeTOLi7yd+bd+6qsElSbbNyZQHDBysEVvHYHYoVxRkBmyewtItLLh2nLtzAjr3HcPj4RTE/Fnm/cnl/3HsUltlUSeJu3uNgbQJL/zJ50Pd1BBvwhjAvAoo2uQgoBJZcpJR2eSEgt6JfflCs+mQTXgqUWLkZOBjuTFZ4euOw7QjXJInqz/oPgJ/6VZxSLoM+1ySjfhgNdy7FOuFKwCCDU9T3WCIdvm9/FMeq3s/sO9ClEr4p1dKgHks0yMgA7OyM0xx2kEHIP5RgqNRFhdLtiz+BdWcjg+hr1O7yvXiUbW5anhbjEC8+rePiVVhCwmpfiYeHgI/e172o6hOkYWrg+qusEj2782jUIAvzlCgVLn1Fddl7CGg4LedLb1Q0g2XL6dp5ugv48APTLsiWXA1CYv2yVoXUZBU60Y+nzCErDeBxfzu1wb0KjxpvWW//6Rfg6ejqj3+q9FQILEtukEKqe8FXLFIk3oPTP+Hg6CifwHr8mMEv6yWfrUE8RuXhTZkXDEoIYSHdJMq0iiUCCoGVw7LGxCXi9/3HsWPfMTwOlQRXA+jXvTXe6NUe1asEFcsNUdBGWZvA6vPsT5xNjRTN3urTGS0djQigL2jAbHg8hcCy4cU3o+lzYs+BeGFpZaZnQ4xzr2nGEYAmYdsRJiGpTvn3Q6DaNXOMOqFbEcWliOMRIooQUnlJmsChwpMNOk2kXl159b3+E4OEh/QBPcExFROHbkWqfQbyqmZoVkD0lB35lwWv4dGhvfyLBlGhHxZZvS8DjybUg9aSc7ambhIKSmzXildtAVWHFj4SxJoYGRo7OkqFpT9I8qeVFPDBu7oYhuxnEHaE4nzfDrhvn6W5c0ceLV+RhjwHnJ5OvapUjIBmC3JejwePVFi3gY4bECBgTCHNYUZIrF0/MahFHUSRpBLg1BZgjlAPLHtXAQ0/s97+u5wehe4RtFBGA2dvnA/urxBYhg5BMXyfFGYgBRrE7/MZGqh1i/DmaXVouAorJXkV/X0FjH3btL2tEFjFcIMpJhVaBBQCy8DSnLt8O9Mr68C/55GeTn/prVWtPAb1ap+ZAJ7kzlLENASsTWCNiTyMP5NDxMn/UKoNermUN80YpZdFEVAILIvCazPK9UuwL/JqhmGuVc1qf+eIP3BDkudqf9keqOVQKnOMak82IVHinXU7cAhcGcPfIRWfbECqQB+s7wUOgzOTS6UwiTWp0cjMoSRIKqv9XfMmVrU6iffca2OqZ32z2p6XMpIHaOduBteuM6hUUcAII0mYe1tZvLgoCaUbzsC5ZvEnsJLCgSvL6FqrnQQ0nm3aJavAFruQDfQ8Elj+I8WwdGng3fG6iZ7099d1eyDslZcgqc7Xvg31OjozUw0ujRrZeKYGOTlSXrmmws7fJDl2gnkMGmA97yVDy3J7N4uYU/SMab3QuiQLUEmKQjSepYHa2ZA2y7z/KCMBLSWFMio6uOF+zaEKgWUZuAutVlI1dNb/JESyCpjzeR7J23KwRM7nglwAFAJLLlJKOwWB/COgEFgyMYxPTMKeAyexfe9R3H8ULvZyc3FGr64tMfXdITI1Kc2kCFibwJoafQobEu+IU5pbsgnecgtWFqkQIqAQWIVwUYrglEgFQpJDRSuWIK0HPtuPE6nUe1fq2UkKR5ACElp5XG4E7GRk5G4QuhXPJJ5b5wIGwJfNO/RQO4a+Z4kAAZMH7sKQSuUzSayCEBIyuOlXBg8fZXm4ONgLmDHVOBLm1hoWsbfp5brROAZ2FYo/gUW2y5lZLPh0anu9KRycShnnwVYQ61xYx4iIAH5cRS+7vmUFjB+ju/9urGQRf59ifN4BiHrVpXlTHl0703N78SsWqVG0bZ1JGpQom9364ycZHDhIvbqaNObRvWvhJbCu/8Qi4SG166o9EGEH6OfFqjGWg3tF6+y/WC4VNUN/FcEuyToguu5ohcAqrIfPQvPSzy9HfAlmTDWOwIqJVeHb7yRVXj0EfKgXWix3+gqBJRcppZ2CQP4RUAgsEzC8fON+plfW/iNnkJKa9fCs5MYyAUgA1iawFsddxjdxl8XJv+9eG58WoEeCaajZZi+FwLLNdTe31cOfH8ThlKychkTWle6Ajs4BZh1G37PzJ++26FEiK+zc7/FanbHkhgK2D9+NOxlxYt9/fF9HdZn5+nhNVkL39Hh6MX3g/QIZY55htLvlCfuXL1VYt5HB80g6PjGEXBQ8PeRfgq99zyIxlOpo/jEDlC7+BBbB6uYvLOLuUNsr9edQupF87My6wYugsrAwFX7+RRLK5y9gzGhdAkuflDrhCCS+6tK4IY8er1Hi6cZPLOIlRE/1tzh4VMm+Hn/9zeDUGUpgde4goGUL44jbgoKbOHienslC0NB9dswJSGGAmmmAv4QbsGYetpwKZQgN3lEIrILaKIVkHPK98uUSSTEFFwGf6BVmMDTVpGQVFkmqvLqUEPDJx6adT4XAMoS28r6CgPkQUAisfGD5MikF+w6ewva9x7Bj5Zx8aLLdrtYmsNYk3MJnMWfEBRjqWgVfejW33QUpxJYrBFYhXpwiNDX9vHe7fLqhiWMZs1owOfoEtiTeE3V+6dUMQ12rIoXXoFLIRvF1J0aN+4HDZI2tP+8dPl3RzNFHVl/SKOYmg9vr6EWavBb72jN0b5MV2mgpIUms165X6VSK0o41oC+HWjXlkzD6BEPbzxmku9gGgRV2mEHI33T9SjcUUGmAaRctS611Ydb76LEKa9bTy275cgJGjdTF7/RnLPgMSt4ccgIyXkFep5aAfn1o+7ubWURdoW0rD+Tg3SD7Xt62k8X1G7Rd314c6r6qZljY8Ep4pML1HylGbAkBR5yQWZ2wXDoQLKmX4NOER4W+1vMk0w/Fjqv7FtISeWg4+Z8nhQ1/ZT7GIRAVrcKy5XnntTOkMS0d+GIh9cy0twM+m2acF5d2DIXAMoS28r6CgPkQUAgs82GpaDIBAWsTWHuSHmH8i2PizLs4B+CX0h1MsETpYmkEFALL0gjbhv5OEX/gpiQ/1QHfnqhh72VW4/8Xcx4/JlwXdc7wbIAJ7rUQy6ehZsgW8XUPxgE3AgfLGnvU80M4kBIqtl1duj26OgfK6qtttPXHWAQ88hb78A48mnwqwK6EZS59T0JU2LiFQVqarueVdgL6YVmGjDk7h4Ummerq8iWLREGSiMiQgiL8fsJjFa6voJc1x1IC6k9RCCy5S3r/AYP1myQVLCvyGDGUEjBcigpnZkuyPzPAfkltheBqPAYPlIT+7mUQ8R/VV+41AX5tsq/H6rUsyDnQyshhPCpWsB7xkxde4UdYPNlP51qqtgD3TjxWr2XgnMSgcSr9nBBKCmjxqfX2n36hjEe1hsE52U4hsOQeiGLQjnj0LpcQrj5lBEwYZ/yenDlXN5fk3JkKgVUMtodiQjFHQCGwivkCF3bzrE1gnUx9hgHP9oswNXDwxh9luxd22GxyfgqBZZPLbnajm4XtQIjmpaj3pF8/lLPLqhBoLlkWfxWLYi+K6ia618J0zwZ4yiWjYeg28fWyrDPOBwyUNeykqOPY/vK+2HZJqRYY5FJZVl9to7fv/Ythv7SBPU8v6t4NeFSWXMyNUphH4xs3Vdi+iwVJ3J6blAsU8Nab8i8cJz/VvWj0XMEiOsE2CCyCob79jT7nYOdiGfLRXPugsOi5c5fJzMGmlaqVeQwdTDfni4sM7m2l7zPuAv6UhNJVrCBg5DC6VyP+ZfB4H21ftgWP8q9n3+xLv2cRHUNJIZI4niSQL4xyczWDuLvUpgq9efg04zNDfzeuYdEshs6aOGPZ9+XRrIl1yDj9QhkXgwfAL91FIbAK48ay0JxCQlVYtSb/FT7nfqGGRvI19Pk0DexeFW8wZuqKB5YxaCltFQTyh4BCYOUPP6V3PhGwNoF1NyMO7cJ3i1YE2bnihF+/fFqldLcEAgqBZQlUbU8n8YAinlBauRowCF6sxNXCDJCsT7yDadGnRE3DXKpgUanmeJyRiBbhO036vJkdcxYrE26KfWd5NsJY9xpGzbbn070IOuGPweca6vSr+Y4Gblkpuswix0+wOHAou9dVaW8BkS/o6+SSQC4LciQjGTg3R1KJzwHo9q1tEVjXVrBIfEzxqzKUA/GSUcQwArduMdiynZIz1avxeENC3OoncHepK2DHPYp1gF7OrBeXVLj3qyR8qTaPqhKPLu2M5s5XQyPZ4tM/4eDoWPjWLKdCAXU/1MD5VZQyIbFuL2FgJ6lESPJjte1mHRJLv1DGoSqvoybnpRBYho9CsWnx4CGTmVtRK8SzkXg4GisLvmKRkkLP+jRSIMPJ+DOqEFjGIq+0VxAwHQGFwDIdO6WnGRCwNoEVw6WilqSajYvKDnfKDTWDZYoKcyOgEFjmRtQ29fk/Xgvpo+nDcsPhoJKEDpkBFlLlkFQ71ApJ4E4Sud/JiEX78N/F16vaeeCwX29ZI5JiE6TohFZMKThByPoHqfFYumUAyiS6ibpIOFq9jznIKIaY51xJWfO9fzI4d0E31xbpVK0qj4H9+MyEuWmSanrvjudQurThy0JKlAqXvqLr5OwFdJhnWwSWfjXJss15kGTaihhG4Op1FXbsovundk0B/ftmuV2kxQMX5pP36CXWd6gGv+ymhGmZMsDEcZSJiruvws2VVJ9rkIBa7+h6E+pXSWMYYPZn8ghbwxaZt0VSGHDlO2ovYy+g6f907bn0PYsUSRGFCw7ACzUyk9uTJPcFKfqFMnZU6IJWKl+FwCrIRbDyWLduM9iyjX7XBFflMXiQ8ftw8TesTo7Gjz/g4O5u+DtJ33yFwLLyhlCGtykEFALLppa78BlrbQIrp2o2csvaFz40i/eMFAKreK9vQViXJnCo8GSDOBS5roYFvWn2oY+lhGPI839Eva0cffGrT2dcTYtCt6d7xddr23vhL9+essbXLzgx0rUq5ns1k9VX26hR6HZEcEmoEV4Ws//QDZUOeo2HbxvjH/61uomXyeatDEiuIX1p1CCrgptKBWzYzOLefUoU9O7JoX49w5eFxBAVrkkS9noEqtBqGmNTIYSxd1S4Jamk5+wL1P2gcBIiRm3MAmh88bIKu/+ghFO9ugL6vJ5F0IQdYUDIQa04eQsIHM2DhP9ppaSngEnvUUInJVKFS19LcpJ5Caj/iS7h8yJKhe9+oG1IxU1SebMwCsnn9XgvxcAzmEfwm7qfB4/+YPD0BG1z1x54+CrUqqBJLP1CGSvLtcXr6vIKgVUYN5eF5nTlmgo7f8uZlDZmyKXLWURH0++k9yZw8C5l+DtJfwyFwDIGdaWtgkD+EFAIrPzhp/TOJwLWJrDI9OuGbsULLkW05Kz/APipS+TTMqW7uRFQCCxzI2p7+vQ9Lo1Jom4MWpfTo9A9IjtRdS41Er2f/SmqauRQGrvLviZL9a6kB3jvxX9i294lymO5dxtZfbWNaoRsQdyr8MlJB9qjxYMKYn9GLaD+VA72JqQDI6XIN2xiEPE0e9hgt848mjWlF+HDRxkc/Zdeghs24PF6d8PEWextFW5J8p2UDlahyfu2RWBxacCZWSygDeNSCWgyhwPrYNQ2sMnGxCtwjyRnVaP6PHr2yNp3FxaySIulezeoOw/Xejy++oZ6JLm4AJ98RMlCTQpwdjZ9X8UIaLZAl5x68EiFdRvyn6OnIBbszgYG0dfpucyJ0H5+RoUHEi+2CBa46khnV5Akln6hjC/9m2GkQzWFwCqIzVJIxjh3QYU9++j5alBfQK8exhPEK35W4+kzatT4tzXw9TXeSIXAMh4zpYeCgKkIKASWqcgp/cyCwLlrqbh0RYUe3QxfYMwyYA5KOkb8jlvpseI7f5XtgdoOli0tbylbirNehcAqzqtbMLY9yUhEc0kOqgC1C0779zf74I8yEtAyfJeot5zaFSf9++G/lAi88fyA+LrWM0vOBA4lh2JE5CGxaTsnP2ws00lOV7GNNHzSI9kJq7cMAS8J5/OqxaOqkTlESILq9RsYxMZnJ68GD+ARHKz72X73HpNZmVArvmUFjB9j+NLx4qIK97bSy4p/Iwb1RqtsygOLYHZlmRpJ4XTZg0dx8KxmvLeAURunGDQ+c5bBPomXVZNGPLp345EYqsI1iacVVAIafcZBsAfmLaQElb29gM+m6u7TU9NYCDzd903maMBKCJ2r1xjs+I3u9RrBPAYNsN6zTl7LeHY2C40kD1Ctdzm4BujuK30vyJcscFxiL9HfvSuPJo0tb6N+oYxpPvUxqUQdhcAqBmdVrgmnzzL4U3KmSUGBbl2M33ur17B4IgmNfXsUh0C9vS9nTgqBJQclpY2CgHkQUAgs8+CoaDERgbc/ILVskPmlY61qNgOf/Y0TqU9FCzaU7oj2zv4mWqR0sxQCCoFlKWRtR++N9BiQ6lVaCbb3xEHfXmYHIJZLRU1Jbj2tp9fB5FCMlJBQHZ38sa5MR1njX0iLxOtPqfdWPftS2OvbQ1Zf0ihV4FBRL3zybOhonbAh0q7GWA7uFeURIuERKqzfxOgkwCU6SALcYW/wCMjhEkC8tUgeLK2QvEAzp2nAGEhDFnGcweM9koS97RhUH2h7BJZ+GJd/Ox6BXY2/tMneOMWk4YlTDP7+h+6fFs14dOnE4+FuBs9O0dc9qgqoPjqLqJo5V7fq5dyZuuGaFxexSJVUGKw3mQMJP9TK8ZMMDhykugmxQwiewib64ZAqdVb+K/2ceFw6cOZzKSYCjnhCJ6cdsa0gPLH0C2WM966BOW6NFQKrsG0uC87n2L8MDh2l56t1Kx4d2xl/vtZtZPHgISWihw/hULmSvO9AqXkKgWXBxVZUKwjoIaAQWDlsidj4RIQ9jUJaWjrc3UrAz8cbzk6Kj74lTo+WwCIXno8ncbA3oXRtfuc14cUx/J70SFTzbamWGOBSKb9qlf5mRkAhsMwMqA2qO5P6HH2f/SVabkwInzFw5ZRbL6zcSOxLfoJxL46KqnqUKIefvNvJUv0gIx6tw38T25a3c8Nxv76y+pJG0VwKaoduFdsTUu26/2BcWcoi+Rl9eHcomZXQndG9u2cb59YdBtt2MOD0nKc83AW8OYIHyRmUmyz+lkVCAh1zzFscAvzyvjCE/MMgTEIGBPdgUKm77RFYUVcZ3N1EL205JQ+XvSlsqOHR/xgcPqJ72W3fmse5uSy4VEllx8EcStXN2otzF6ihyfqNLVM+n6qBnT39W78qZI1xHNwr0H38198MTp2hY3Zsz6N1S+Mv2JZepmenVXgoySXkXklAjVy8IvXDLf2Gcdj4J4O0NF0PTEuTWL+/fIQJUbRQxiDPSlhWspVCYFl6sxQi/f8cYvCfJCebqeeLJIInCeG18sYAHtX1PIflmK0QWHJQUtooCJgHAYXAeoVjfEISNu36B3v+OYWQ8Oc66NqpWTSsWw2jBnVDi0Y1zYO8oiUTAS2BRf7fpjWPDm0L/uFuZswZrE64Ja7IZyUb4h03ZZ0L2xZVCKzCtiJFbz7mCMOTa3W1J5uQKNDb783AwTiYEob3JXms+pWoiGXerWSpjOJSUEdCQJVkHXEt4A1ZfUmjEE0imoXtFNuTPH8k39/LMOCqpPoYaRDQiUdAx9w/i8+eZzKrDeoLCQccPpRHCee8yahftzO4eYv2lxN2pO8pU2cQi8C2sLkQwoxk4NwcCbtIci/N42DmQpqy91VRaaife619Gx61vACS+0krpPJe45kcmFc/pC1crEZyMrXw0481KCFJj3lnI4Poa7R/lTc4lJIUJNi2k8X1G5TY6dOLQ706xnt2WBrje7+yeHGJzjOwEw//XM7/rbUMYiVnl9ic7gOsWV+wJNbRlHAMlRTK6Ozmjw3enRQCy9KbpRDpJ+GDJIxQK6ZGcpBE8CQhvFb69uZQt7bx51QhsArR5lCmUuwRUAgsAAeOncfsxWsQn5gEhlGheuUgBAX6wMnBAdGx8XgS9hwPnkRkboaBr7fDzA9HQEXKKSmSbwSkBJadHTIr9LiUMP6LIz8TWRp3BV/GXRJVjHeric9LNsyPSqWvBRBQCCwLgGpjKv9IeoR3XtBf7XuWCMKP3m0tgkKTsO0I0ySJuk/69cPx1Ah8En1KfG2oaxV86dVc1vg5eXWFG1FB8WZ6DDpJwier2nngsF/vzLHv72AReY5+p6nYLC8sRy/dqQkCsP8fBqdOZyevKlXkMWQQD7UBzy2ikfxqTn491wq5LJBLQ15ydzOLqCt0jo1Gs/BpZHsEFsHo4lcsUqMoFjXHcXCTeP7I2lA21oiE8pGQPq106sDD+z4Qc5O+VqaxgIr96D5csoxFXBzF+cP3OHhKPAsf/c7gqUQnSf7u25oSv6vXsngSQvuPHMahYiFcp3PzWGQk0nnqe5JJtwqp1kiqNmpFG8JKCjjkRGL1fp1H/brm/2HyUloUekgqujZy9sbesj0UAsuGzvXuPSwuSohXksCdJHI3Vv7Yy+D8Rbqne3bnQSrnGisKgWUsYkp7BQHTEbB5AmvbnqOY8/XaTEKKeFiNHNgFpUq6Z0P09v0QfLl8C85cupVJYA3q1d501JWeIgKfzk1DdDT94mjcMKvcekHKpsQ7OpfK/i4VsbSUPK+IgpynrY+lEFi2vgPyb7/+WR/sWhmLvVrkX3EOGrpE7MH19GjxHVIc4nzaC3wec0Z8bbRbMP5Xsons8SuHbEQyT/Pw3A4cAldGEtOUhyb9Coj1Hbyxp2z3zB6kohoJDZKGUrlV4FFznO5n8ZbtDG5JvC+0w8mtJKht/+gxk3nZ1Yp3KR7vTcj7c//mKhZx9+glu8X7apQMFmzOA4tgpk84Bnbh4d++YL83ZW/aQtJQP5yvG8Frn0onCXvN8RzcytML8Hc/sngRSffce+M5eJem7xMihxA6WiHkFSGxtPLtdyxiJNUN332HQ2lJjqzCAA2pvkjOviiMgKZzqRea/hyjLqlw91fa3rMaj+BRWTaTnHhriSeWpDAEef31Hjwa1jfv/nyYkYBWkkIZlRzccMK/n0JgFYZNVUBz2L6TxTWJh+OAfhxq1TCewMr22aBXOVeuOQqBJRcppZ2CQP4RsGkC6/KN+9WXBboAACAASURBVBjx/nw4OTrg61kT0LJxrTwRTU/PQPcR0zLzYf2+5ov8o69owIH/0jLzqGiFOLZNIr9yehj/JWQqnH8nh2B05GGxuynVvUwdW+knHwFLEFjqM4egengdCKgMrkIweN/y8iektCxyCPwcfwNzYs+J8x7jVh2zSza2iB36xSF+LdMZ1zNiMC/mvDgeCVUmIctypWHoNjzlaEzTGf/+8Fe7yOquH3LT2skXW8p0Fvs+P6PCg126mdSrDufhVZNHWqoK6zYzCAvL7nncuYOAli0MVxGUTjJDA/xvvq6r1ufTNbDLw3vryjIWSeF0/HbT1HAJtE0CK/K8Cve307WSJh6XtRlssBEJeSWhr1p5rbIA/rIk95ungAZ6VQZ/Xs0iTLLnxozmEOBPn03018G7roDKg+lZmD1PDV7C20ydooGzU+ECX7+6p6GcasnPgMvf0IPqoIdbQXlixXCpqCUplOHFOuBm0BCFwCpc28uis9m0hcGde/RMEw/galWNJ0oPHmHw739UD0llQlKaGCsKgWUsYkp7BQHTEbBpAqv/mFm4de8JFs98B93ay/sVfMK0b3Dm4i1c+Ptn01FXeooIRESn4MeVLMhDj1Zq1BAwSOLGb2m49Kt71XLwwv6yPS09rKLfSATMTWCxD2/B4av3dWaRMeAdZLSXnxjbSBOU5lZG4Ou4y1gSd1mcxYcedTHZo65FZjU28khm0natkFDFBxlx+Eoy/iSPOpjiUU/2+CQEkIQCauWAb0/UsNeL88tF296kxzoJ5Ls5B2JVaV1PYn2SyN5dQIUxPDZsU+l4ypIhSPXAAX051Khu2o8Ny5aziIqWhFcN51BR4v2ib8aFRSzSJBXfun5hB7uSvE16YJHwQRJGqBWSu6nJnOxV42RvLBto+PteFhcu0v3WzR4QYqnhJOcbyf0mlbUbWDx8RPu8OZxDBckejbujws1f6Dq4VRRQc2wWgZWaCsz/khI95LzM/ky3imFhgP3BThbPz1Ib/dryKNct98u7wAOnprOAQPs0+Z8GrMQRtCBIrJxCqp9XHKUQWIVhUxXQHNasZ/Hoce7nU+40/j3O4OBhSYGHljxIQnhjRSGwjEVMaa8gYDoCNktgkVDA0R8uQtvmdbF8/qRMBJNTUpGckgaXEk5wdMgelkHyYA2dOA9lS5fEb7/My+wTHZuAsVMWo1J5PyyaMc70lbDRnoTACglVYdUa3V/+x4/hQBICF4Q8ykhAS4krelnWGecDBhbE0MoYRiBgTgKLiX0Bh/nvQPUyXmcGmnqtkT72cyNmpTQtSggQ7yvihaWVmZ4NMc7dMgUbpkSfxObEu+JYi7yaIVyThGXxV8XXPvWsj/fda8uGsP+z/TiV+kxsv82nC1o4lpXVf+vLe/go6oTYNqdQ6aSnwJVvyWcxvRSEOgm4weh6Xjk4CBj6Bo+gcqZ/Ru/azeLyVaqX5CRq1SL3S8OZmWpwadTU17+1g+BgmwQWQUE/b1Gd9zUo4SdrK9hkI+l+K8EDrVJ0Yaj/qQaOJXVf2/Qrgzt36cV28CAewRIPj6zzQkkqJ28B9SZnEVgvolT47gdJqJ2HkJnjs7DJpcUsUl7Qcxg8ioNntbzP9eUlaiRLah3VmsDBVe+zgJBYv6xlkS6p4khsN2dOrKpPNuGlpFDGg/LD4CjISMJX2BZBmY9JCBjykJSrlFQKJWGEWmnamMdrXRUCSy5+SjsFAWsgYLME1hdLN2Dzb4fw3bz30b5l/Uzsl6/5DT+s+z3z/2qWRYkSjnAt4ZxJaKWkpiE0IhIsy2b2adWEXjreGD8H124/wuHt36CMt6c11rHIjkkILCLrNrJ48FBSBcdfwNujC+ZhL5FPR7WQzSKGaqjwJGhkkcW0uE7cXASWKiMNDl++DybsYTaoeHcvpC78tbhCaPN25UQqDXOtahFcvog5hx8SKFk2w7MhIrlkrEy4KY43y7MRxrrXkD3+W5GHsT85RGy/snQ7vOZcTlZ/UmmVVFzVypuu1fCFV9NsffUTU5PH+ONOQPKr53s3VwFvjhBQysv4B3zpYKR6FKkipRVStpyUL89JSPL4U1N1L6b9VqqRrrHNEEKC0Z1NLKIlBGD5njzKtszfmsjaSEW0kbQiYJU0oILEGYrkvSL5r/Rlxy4WV6/T55L+fTnUrknJnYyXwLn/0X3JOgJN5mQpfvBIhXUbKIEVECBgzKiCeaaRu0TZKlqqsjz5WIe8NegXVKjQh4NP0+ykFwm/XLveciRW47DtmT8KaOVC4ED4MM5yzVfaFXEEvv9RjchIasSEcRr4lDHeKOKZSTw0tUISwZOE8MaK4oFlLGJKewUB0xGwWQJrwNjZuP84HGf3rYDdq8QbxJPqxLnrsFOzyNBk//Aq518G333xASqW89VB/PtffsOK9b9jwfQxeL2zZRICm77EhbunlsB6HqnC8h91vbBGDOVQqaLpv/AbY3m5x+ugAR3LmOTIxoyjtDUdAXMRWA4rZoK9SivB6c8o5YtNEEqWNn2iSs9CiwCpQEgqEWrlh1Jt0MvFMnnPlsdfw/zYC+JYE91rIpHPwPrEO+JrC7yaYYQRBBrxoCKeVFr5yqs5hrhWkYU38fxaFHtRbPuuey1M82yQrS/xcjozjwUkiZhjGeCME+BTRsCIoTxcXPL/uRwapsJKSfiVu7uAjz/I+dKQkUg8jihRoHYCen9nh7QM2/XAItXvCNmoFa9aPKoOUwis3A7Dlq0Mbt1hQL7m26YAjpItTCoPkgqE+qIfdtizO4dGDWg7Qqyens7qJIJvOl8DhkWmdyHx+tJKjWAeg3IhaGUdYAs0ir7O4M4GuoeIBx/x5DMkYYcZhEg8Vnya86jQK+e9lxuJ1b8Pj9q18rdf9UOqDwf0QlVW+RHZ0PoVl/e/+Y5FrKRIAsmfW1JSJVSunYSkJmS1VkgieJIQ3lhRCCxjEVPaKwiYjoDNEljNekyAu5sL9m/+UkSv0xuT4ebijJ2r5iIjQ4PEpBTExifiweMIHDt1GXv/OYWGdavix4UfiaQX6Xzy/HWMmbwYIwd0wScTB5u+GjbYU0tgEdO37WJxXfJrJ6nWQ6r2FIQ0Ct2OCI7+knfcry/K27kVxNDKGDIRMAeBZffXJtj9sTbPEdPf/gyaBm1kzkppVpQQGP78IA6nhIlTXle6Azo6B1jEhI2Jd/BpNCVKh7lUQQYEHQJqSakWGORSWfb4c2PO4SeJVxdJAE8SwcuRBbEX8H38NbHpJx718IFHnWxd/zmkwv2jLOqk6771zI9Hz3d42NnJGc1wG54D5sxXg5AAWvl0MocSztmJhJRIFS59TS8YTl4Cui+yt2kCKykCuLJUSuoJaDy7YL4vDa9u4WuxcQuLu/dU8OKARql0fiq1gMYzc/Y6+usAg1OnKcHTtROP5s10SZfz81mkx1MvrfqfcHD0EnD8JIMDB/MflmRJJB/tYfD0OJ1j2RY8yr9umFSKvcXg1lraz62CgJrjct97OZFYpGBPv975I7EGPNuPk5KQ6l2+3dDE3gQXHEuCrOi2GAJfLlHj5Uuq/pOPNHCRV9NEZ06E2CYEt1aqVuEzQ+SNFYXAMhYxpb2CgOkI2CyBVav9KNStUQkbvpshotew61g0a1Aj08sqJ/nvzFW8M/UbTBzVG++M6CU2eRoZg44DP0KHVvWx7H+6SaFNXxrb6CklsGLjVCBlp6UXGn2XfUuh0i1iD65KSt7/XvY1NHRQvHAshbcpevNLYKkvH4f9T3N0hubKlgNfsQbsjv8pvp7Rrg8yBk4wZYpKn0KOQJ9nf+JsKo052OXTDU0cLXPh2ZP8COMjj4mI9HQOAqtSYbfEA2x5qdbo7VJBNmpL467gy7hLYvv33GtjqmdWCLwhmRF9GmsTb4vN5pZsgrfcgsW/CaG0fReDG7eyHuSbpACekmd4tXNWlTZD4UWG5iF9f8VKNZ4+pa8MfYND1SrZCazExypcW0EJLNdAoMtM2/bAIsm0z8xiwUs85Uj+JZKHKS9hnoeCL2MZ0taYtS/ottqE7LVTAV8J11KqjoAqQ3ImXw4dYXDMQHWyq9+zeBlKCaxa73AglfxITh2SW0crJCl060IW4nllmRpJ4XQliAcf8eQzJKkxKlxcRM8j6ySgiQHy1BIk1tuRh/GXJKR6jU97dHYMNDR95f1igsC8BWqdHGuffaqBvYHw15xMJ+lLSBoTrZBCDaRgg7GiEFjGIqa0VxAwHQGbJbDqdx6D4MrlsGn5ZyJ69TqPQYuGNfH9/JwJLNKQVC5MSk7FX5sWif1S09LRoMtYNK1fHauXfGL6athgTymBRczfs4/BuQv0oc/TXcAH73KZLvmWFH3PjNWl26Ors/IgZEnMjdWdHwKLiXgEhwXvQqWhbiVCCRekTlsB9sk92K+cK06HK1cFaVOXGzs9pX0RQCA/VfyMNe+/lKd44/nfYrfWTmXhrLLTyWFl7OfMusTbmB59WtQ53LUqFno1kzW1SVHHsf3lfbGt1PsrLV2FjZsZPAmhF3FnHmiZAtBPY8CnGY8KvQ1fcGVNiHze72Vw7iIdoW1rHu3bZtcfc5PB7XW0XclqAtpPtm0PLILxrTUsYm/TNavUn0PpRrkTWOoLx2C/ah4EBycI/hXB1WqCjC5vyF2uIt1u9VoWYU9UaJ8MSB8ngkdz8KyaM2b61claNufRuaPu/iT7kuxPrVQZyqNUbR5bd7K4cYOuTZ9eHOrVyX/orbkWITNUeJZuNcFGszSwk5lC6vRnLPgMal/DGRrYG3BaNzeJ9XHUCfwqCan+xrslBpaoZC6IFD2FHIGZc3XzIs6daTj8NSeT9AtJ+fsLGGtCDl6FwCrkG0aZXrFCwGYJrHb9J2VWGvxrEw0h7DFiGpKSU3Bw6xKwrPSxna75uE++BqlgePmfVeKLJNywbqe30aReMH755tNitUEsbYw+gfUySYWvv2XBSX78INVASFUQS4r+5Y5UDLNUcmdL2lGcdZtKYJFKg44LJkAVI8n2CSDto6/BVa4NJiEGjp8O0oEuZekeCPaOxRlOm7StWdgOhGhozMFJv34oZ+dqESyIRyfx7NRKbXsveLGOOJJCXR42lumIdk7+ssff/fIhJkb9K7bvWSIIP3q3ldV/TORh/CnxViD9SP+EBBXWbWLwQlKJjChkGKB7oIAMySWcJBCqM4lDCXmFDw3O6+IlFXbvoXRC5UoChufgDRN5XoX722m7MvWBVhNs2wOLgBt2hEGIJBG+dwMBlQfm7jnguPhDMA+ui+vCe3ghdYFtFK34eRUL/okKtSWhseoSAhp9xkGV8+MezpxlsE+Cb5NGPLp3030WebCLwXOJpxUJwSOheIQwkxLCI4dxqFih8BBYhPgkBKhWHEsJqD9FvtfJ1eUsXkoI7+pvcfDIwXtS/0PAnCSWfkj1bK9GGOMqvyiGwQ8opUGhRYBUtyQeWFpRq4GZ000jsJ4+A1b8THWVKQNMHGe8LoXAKrTbRZlYMUTAZgmstz7+Emcu3sLZP3+Es1OWz+mSn7Zh9ZY/MXFUH0wYSUMEtesen5CEbsM+gb2dHY7u/FbcDi+i49C23yR0btMQ38x5txhuE8uZpE9gkZEOHmHwr8Rt38lJwMeTONibKfdKTtbMizmPFQn0wT63/DCWQ0LRbAgBUwgslUYD+8UfgH1yV0d9+qB3oWlLz7jTjKE6BFfqh4vBV8meH8jQHJX3CzcCNUO2IJZPEyd5NWAQvFgni0w6RJOIZmE7Rd2BrCv87Uro5GzZ7tMVzR19ZI9/JCUMw54fFNu3dvLFljKdZfUf/PwA/k2JENsS8qxmYgB+2cAgKYl6UpAG9vYChg3mEeAr4NJXujl+SvgJqP0eB5LDJr/y7Dnww0/04uBgL2DG1OyX6IhjDB7/SVkG/5YCmr6peGDph1aS3EskB1NOwjx9Ase5b2d7K3nFP/ldxiLR/4ef1Qh8BJSU8E++rXkEdc/9x7GLl1XY/QcleerWEdC3ly6+oQcZhP4j2ZvteAR25TPTIcRIEky/O16D0oUoKwEhPgkBqhWSxJ4ks5crD3ayeH6WfggEvcbDt428HxrNRWLph1RP8qiNKR7yQqrl2qm0K5wIJCcDCxfT7w4nJ2DaFONJJ2JdVLQKy5bTc+5VMivyw1hRCCxjEVPaKwiYjoDNElg/rN2N5Wt3Z+a7at+iXiaCMXGJ6D1qBqJjE9CwTlW80as9Av3KwN5enZnIfeWmvbh9PwSDerXHzA9HiKhfvHYPw9/7AkP6dMCMD4abvho22DMnAov8skK8sFJS6MNRbqEl5oKMkFeExNLKaLdg/K9kE3OpV/SYAQFTCCz7NQugPntYZ3RN005IH6kb6mu/ej7U54+I7dJ7jYamq1KQwQzLVqhU+D9eK6k1CjwoNxyOKsvEJ8fz6ageslm0352xR0U7d1xMeyG+9kfZ7mjg4C0bo0tpUejxdK/Yvo69F/707Smrf8+n+3TGXs53x/VtPkiX5FAiikqUEDB6OA/v0lneIjE3GNxer+uiUqEvD58m8i6reU2O5Dv83wI1NJJ7x4fvcfDUqySlf9kO6iKg4QCFwBI44PRMFoKGflfmFgZmv3EJ1Cf+yrYcyYt3AiWKf8GSH5exqBWugpR3rfuxBs55kErXb6iwbaekkmB1HoP66+7752dUeCCpYKb1gps9Tw1e0nTqFA2cLcOVyzr/+o1ITjlCgGql0iAOpevL9xAjyd9JEnitGPL+0x+fkFhr1pGK3/QdYxO764dUj3Krhnklm5qEh9KpaCEQF6fCkmX0bOZVxdaQZfGJKnz9jSTHoouAKR8pBJYh3JT3FQSsiYDNElh3HoSi71ufo23zulg+f5K4BjfvPsbE6d8iMioux3WpVN4P65dOh7tbCfF9Qmx9u3IHFs0Yhx6d5OUjseaiF6axcyKwyPxOnmKwX/KrJql8NXkSB+KNZQkhuWFIGKFWXi9RHiu8lUp0lsDaVJ3GEljqw7tgv32FznBcUFWkf/wtBOJvLhH10d9hv/V78RWuZhOkTZxn6lSVfoUQgTSBQ4UnG8SZkatbWNCbFp2p32PdipfV7TxxMyNWHPOgXy8E28kv+/4wIwGtwneJ/YPsXHHCr58sGzqE/47bkrH77u0Lz5iSOn29vQWMHMrDzU33c/bmLwzi7tDLKuuY5eljR78GZc0hp0ar1rIIkYQiDezHoWYN3fEf7mLwTBKmVbmPgDrdFQKL4Hn9JxYJDykRUXUIBy+9XEuqlGQ4TukPFZeRbQlSZ60G71P88z1u/UKNgARqPqndUP+jvD02SNVCUr1QKzmFuMbeVOHWOtqGhNFVGMph/pf0O4aE487+zDTvEJMPVh4d+Yws4hM83TekQIODHnGc19jxD1S48TO1u4QfUOd942x8EqrC+g3ZSayB/XnUCDZMkOuHVPdxLY/vvZTnNkvsmcKmM/IF8P0Kesa8Swl4b4LxpBOxKyUVWCA5r44OwPRPjdvLRI/igVXYdokyn+KMgM0SWGRR35y0EOcu38aG76ajfq0q4jonvEzG1t8P4+jJywh7+gKCIMC/rDfat6yPoX07wcnRXmzL8wK6D5+K0IhIHNq2BGW85V9GivPGkmtbbgQWqYj19TIWiYn0AatxIx499PJPyB3HULvDyWEYHklDc1o4+mCbT1dD3ZT3CxABYwgs9s4VOCydAmlJS96tJNI+/xmCi3u2WTNP7sJx4UTxdaGEK1IWU6KgAM1UhrIQAjFcKmqF0nw/HowDbgRa1ssuOGQTEsht8ZV4M454waeKf//n3wcV1Nn3Y24Q5MeGJmHbEaZJElUP2DUQbi+p5025QAHDhvAgYXz6khYHXPyShcDRz2NjPS5ys+mvfxicOkXJseZNeXTtrHt5vbOJQfRV2qb6MB7V2zogLYNHdAINCbXQ1inUakMOMAg7RLHxac6jQi9d/Oz+2Q67XT/naEfqh1+Dr1K7UNtojskdns7CUbJ/fTrxqKCXkF1/nMdPVPhFQk4FlRMweqTuJfllGHD1O3qRJvnhfIdx+O4HSu54egj48H3TLtfmsF1fhz75ZOealQvMGNEkA2fnULtVrICm83LPJ5ab7vyQWPoh1e2d/bChdCdjzFDaFlEEwiNU+GkVPWO+ZQWMH2PcHtaaruGAuV9I9rIKmPO5QmAV0a2hTNtGELBpAuv6nUd4Y/xc+JbxwpYVM+HlabwbPSG65n6zXsl/ZeKByY3AIuouXWHw2++6oSvkIZA8DJpbrqfHoEvEH6LaanYeOOTX29zDKPrygYBcAksV/RSO88ZBlZoijiawdkj7dBn4gFwqFPE8nD7oqVOlMHXWL+B9zFduPilZBVLtJriq4V+W8wGT0jUXBEK4RDQLpTmpAtQuOO3f36J4NQvdgRCOJo3XH+ys/wD4qY1zY9L36gqX6UVWM2QzYnmawXro1mFwTMsqVFCnNo9+BqoLhh1kECLxiiX9ar6jgVtQ/iDUD9MiRNpbb+peRK7/zCLhASXP6owVULmx4oFFkI+7q8LN1fQi51wWqDtJcvkSBDjOGAomloauSlcsbczn4Oq3zt8iFvLeiU9UuCYhlMgTRK1PObiVzPtZIuKpCj+upNiW9RHwzljdvZmeoML5L2gbcpxLDeexdgN9dgn0F/C2CVXNLAWr/ln2riug8mDjL//n5qmRkUhnWW8yBydv45/PHoeosH4jqxNKTLQO7M+hZvXc9V1Oi0J3SUg1CccmYdmKFH8E9MnlnL43jEHBHBUNFQ8sYxBX2ioI5A8BmyawCHTaXFgVy/li+YJJCPCVn2Xz9MWbGP/pEqhUKmz7aRYql5dfTSp/y1Z8eudFYJH8KCSxYnQMvbiQ0BISYmJuidAkoVHYdlFtKdYJVwJ0K9OZe0xFn3EIyCGwSKiMw8KJYCLDdJSnvz0DmgZ5V2tz/GYKmLuXxX7pIyZD06yLcZPMpTUhr1avUSEqmkFJTwFNmwqoX4eHPXXmNMs4ipLcEbiRHoPOEpI62N4TB32zF+swJ4ZdIvbgenp0riovBwyCt5FJ5Ks92YREgXp13QwcDHcmqxBJbpKRAZQPWwtBkgBo5KZRUHMs2rTk0KG94Usn8Yq9tJhFmuTzmFQuq/ex8V4X0nmSz/el30sIADXw+TSNTpL4y0vVSKb559FwEo+gmooHFsGRSwPOzGIhLq5KQJM5HNhXW4K5dhqOP3ye695If+M9aNq8bs5tX+h06VcKfM4A3WZp4Gig0Gy25M5eAj6YqPv8QZ5TTk0l+1d7uAQ4DebxmyT5OwmHGzSg8PxwcWMVi/h79MPA1Jx2N1ayiL8vCV8dxsOrlml2muKJ9TAjHq3CfxP3W0U7N/zr17fQ7T9lQuZHQE54rzGjfrFQjTRJhdLpnxj+fNDXrxBYxiCutFUQyB8CNk9gEfjmfbsBW3YfygwNfGtIdwzp3VEnx5U+xIkvk7F++9/4aeMecByPOZNHoX8PJe7elK2YF4FF9N2+w2DzVl0vrInjOZR5lWDYlDFz6pMh8Ah6sl7nrbByIzPJSUUKBwJyCCyHZVPB3rqgM+GMLm8go/dbBo2w+30N7PbTpNsZLV9DxtAPDfYz1IAUI1j5SxZ5JZUO7Xi0aWXaw76hMZX3syNwJvU5+j6jSawbOZTG7rKvWRSqQc/+xvHUp7mOcStwCNwY41hM/VDAU/79EKh2zXWMly9VWLMZWNh5DW0jAG9vfBu9evKoX1f+HtQPPSIKSRU3Us0tP/LFQhZpkmTyE8drUEbyW9L5+bqVEJtOF+BfQfHA0mJ+ZRmLpHD6XRU8ioNntSxS0v776VDfOJfr8mT0GIGM7sW3+AwhXs/NZcGlUnwuOQBjP9eA5NbMS+ITVJkFZbTi5ipg8ofZf0DT90TiO/M4cIJ+3jdtzOO1rvk7I/k5X9K+Ag+c/lw38T8hoZ1MeKZ6vIdBxHFqZ0BHHgGdTLfTWBIrmktB7dCtonmlWEdcCXjDXFApegoxAtkKLOSTJP5qCYvEl/Qzgpxzct6NEYXAMgYtpa2CQP4QUAisV/j9+vthfP3jNiSnpMLOTo3GdauhdnBF+Pt6w9nJMfN1Up3wys37OH3hJpKSU2GnZjHr4zfRp1ur/K2CDfc2RGARaFb9wiIkjH6xlA/iMWqE6Q9JucGt79lwNWAQvIz0jrDhpbS46YYILJLjheR6kYqmRiOkvztf1tzU18/CfvkMsS3nWw5pn6+S1Te3Rmmpqv+zdx1QUVxt9M7MsrA0EQSliIq9915ijxqNvcVeYtRYYhJNTOw1xfhHjZqqsccaNRpjjYm9xt4LIKKIIoICy+7M/Oct7r7ZZYHZhqjzneM5svPqfW9m3rvzvfthyXIW9+5nJkKJ1wvxflEsdxDYm3IHfR/sNVXWRBOKlQVdq5fyXvzf2PYsKssO3i7SF2rGnNjMCQ3iRUa8yYz2V3BbVHQvYDVb/EMWy1YyeJCmxaoeK01p1Olq7OJ6o2Rx25+jlnpUrEpEtU95qLPm0HLqEpavYnHjJsWhY3sBVSvTth2dqILk9CMazhBQsJDigWUE1pJICG0soEhrAWx8LDwm9TPDn69UF9y5I6bf9I3aIb3nqBzH6GVN8PAci2ur6Nwivov7PIGpk3PWuElLYzDrK0pgeXiI+Gxc5me2pYdgcnUBh67QOls2F9GgXt541j+9w+Cc1ONRI6LWFPva9uAEgxsbKD4BFQSU7mP7M0U6t6KiGSyzcpyQeLBZCrsb9GmjlplNTblHql/W+ay0OwOBM2dZbJJIjFSpLKCThfafLVh9+x2HBIl38QcjeYO3vC2mEFi2oKWkVRBwDAGFwJLgF/8oEcvW78TmHQfx+InkYL8FxhzHolXjWhjWrz2KhQc7NgKveW45BBYhrwiJJbV+vQUUj3BsoWQJfYO7G3FbIuiwL7Q9StsQIew1H0qXdp8saqtVUMPdjTWINhPxZqkZNmqT+5uLy6Oa3gAAIABJREFUthcMg3b8QojunrLaRjSzNGPMj9Kk/m8rRA/7Yp+np8MgAEx0VKxZ0yYiGje0b+Mgq0NKIjMEtjy9jeEP/zH91s6rKL4PzP5YqaMQjnt0GKuSr2VZjD2brW73/8KhtPumMn8r2BINNSGZ6iC6MqtWswbPpmTvZKzrRD0VCsILp4t2tat76cnA6S84CHo6rwMqiSjdy/65vHcfg38O0md8rRoC2rbJuMcFPXD0c2nUUBFN5ooghLYi4p4xhI8usLgq0VzyKSqi4jAebusXw20fDUYhFAiGvsMgqH+mEVb1VRsifcgku+bCy5Dp8lIWjyVkUpQKuOwOTJuUM4FF+idHG+fyUg6Pr9D74WEJ4KTE8ZLoyxGdubxgsf+wiPyTkmv+5QWUsfODYPIdBuclZBg5UlxtrP3PASM+tyNZLF2emdi3RmKVilqJZyIdy2vhveDF5uBalxcGQmmDQwgcO8Fi+w46R6TvDHsKXvg9h7gH9B4e/h6PQgUVAsseLJU8CgK5gYBCYFlBmUQWvHj1Ni5fj0Js3CM8S0mFu7sa+fP5oETRUNSsUtrglaWY4wjIIbBILSvXsLh2nb6sggJFjBjm+EJJ2oO3723HKS0Vul1X6E3U91AISsdH2bES/v6HBfn31pssOrbhrBJY6mVfQXV0t6kiQeOJ9PGLIQRm3thn1xqPaYPA3os2JdGO/AJ8ueo2d4BoDi1ZzuGu5FiPZSGN3xDQ9I28samxuYMvYYZVyVcx7hH1POnpUxJzAuq7tCczE05iUdIFq3V4MBxuFrH96NaQB39jewr16iIkHCHjpHbxEoMNmzjwz6dXgt9j/P42FbAv5eaHvx0IUhF7gEXkNvMNZvl3BeQrYd98tjwqLo0opUtmcGKGRCPLU0TDGQqBJR1v3TPGcExOavWmpEDzeTcwqTTypK7bcAhhxeE+9yNTUr5ERWg/muvS++BFFW4NlyMaIMU9Q2dNjk2doTLdRyT9pM/1UJlDjRsbWDw4Qe+He4WAs5JvoP168ygeYdtmWE7b7ElzZTmLhIu0rcXeFhBc3777lvBGR8zIZaDuTD0YKd9sTyMB3LrNYsVqFrxkmceyQI+uAspIAqHUvLMesTyd4yfCuiLExsAYdjZRyfYCETh4mMWuPXQe168r4E0Hjq/+uIRDjOSkx7sDeBQubNs9q3hgvcAJoVT92iGgEFiv3ZDnrQ7LJbDiHzBY8L35qpGIuRNRd2fZwAd7sTPljqm4xYFv4G2vYs4qXinHDgQsI81UqcigUwceYOiCm42/C49J/c1K1w4cD75mU5trVK/4BqrDf5ny6dr0hq6d+RGcnAol5BWJqET0PKSmUsEsylLjRjyaNnbe/M2pXa/79R+eXMC0xydNMLzrWw5T/Gu5FJbvnpzD7Menrdbhx7rjYnhPm+sf++gwVku8ur4MqIvePqVN5Rw6wmHnbvO5FxcYh22t/zClqaougG0hbW2uW5rhv7kcUuPM68lXSkChmiL8y4k2bWKfPmPw1Tfmz3ejhwypg9RlNE2ggDrjoXhgWYzef3NYpMbTDV2VegdR4C8q3i66qZH25TowiY9AiHqjCQXDkDZFoo/m0KzIW5nvH2JxayvF5Bkj4oAnA41GxHiZnkKzv+ZAdAyNRo4QkqOEUoveySBmH52jd/MB5yX82MjhAgIL2EcSORvR41M56FMkET1H8fAKtf89dOpL88AOlUbx8HagPGl/CYlFPl7qLbjGnt0ElC2TgWeL2K24JDlSvTvkbZRT+zsbNqW8PIbA3/9y+Hs/nceOerSTqKFkvhmtfx8BEcVsu2cVAiuPTRKlOa80AgqB9UoPb97vnFwCi/SEnHcn596Nlj+fiDGjneeFZXncZ7p/bQz0LZv3QXxFW5iSwmDBYhbPnplvkgMLiOjVUzDpE6h//QqqYxLvq0KFkUa0q8jnWhtNdWgH1CupNwJfphq0o7+UXQpZaJOvxuQIhNTIQoiEUt9/gG5y5EZ/k125kjBbBL5JPIO5iTTK5Bi/KvjYr4pLUVuRfBWfSry+pJUV4jQ4ZUek0xkJJ7FY4tX1Wf7qeD9fRUPR2/5kcfxk5nmvqnMHP5Taaaq+gUcw1hZyLMJmchSD84ssXFGe10BO8BSoJCCwGmR7Zc35H4ekZHqvvzeYR2iIiOTbDM5LPl74FBFRY7TigWU5cW9sZPHgOB374uoNKPZwoSmZrmFb6N4ZDSY5EZpxkuOjGm+kzKWR3Fx6Q+Ry4Zbi9tfcGNxSi/DyEvHJR/LWDnO+5ZCUROflR6N55MtnTvjcP8Li1maKfYwauCA5xWaN9MplKAzVpcQxOCMhgzm1iNrT5eGQVXsvL2fxWOLRVbKbgMDqtm38s8OCkAqEXLA0I4nV5f5fOCI5Ur2hUCvU9Sj0IuBV6sxFBMhHGvKxxmhvthBRv679c3nVbyyuXqPz7J3u5p5+crqmEFhyUFLSKAg4BwGFwHIOjkopdiJgC4GVmMhg7nzzDdNbrQXUrumcxdJXj09j3pNzpp58kK8SxuavZmfPlGyOIkA0MCyJIGOZarWIbp1FlPGLyaR9lT7oc+hr2KdtxN6Lgse0waamiyo1Uuf9IZsMsxSjJgUVCRdBjpAcPsphzz66EWrUgEfzpvZ/+XYU39ct/9SEE/gx6aKp25P8a+A93wouhWFbSiTee7Dfah1FVD44HNbZ5voXPbmAmRJPsvfzVcA4nxpYu8F8AW4smCzqhfqRGPzgb1NdrTzD8UuQ7R6Klo29vo5D/KnsI7Wq84koUJV4ZgFEIycrW7OOxWWJVpHx2W6p75S/jIAqQxQPLEscH5xicGOdRFBbdxxVUz8xJUub9DOE4CIGnUDP4S3Nsqcu2AGRuIi+QpbyADjzDe0TmXn7NYCWhYGAIkSUHJu/kDWLIGvNm8pyjj7ggNPPVSY4Dpj8ubzjinLa40gaS6LNr5SIcoPk4ZBVvdG7WMTspRv/4IYCirV1zprMWOfNWyQYhRUSq7sALiIBfj5uCHDzgO6ZCA/h1ZrHjoz3q5z3j+0sTpyic4JoJhIdLHtt/UYO5y/Sd1mXTjwqVbBtfaYQWPair+RTELAdAYXAsh0zJYcTEbCFwCLV7tjJ4sgx+tIiRwE++oCH2gmanb8kXcakhGOm3vX2LoUvC9RzYm+VouQisP9fFvv25+xBNcZ9NkIjd5mKFYj31eQlcquxmk7zwdtgtKmma6mffQ+xcPFsyyRaQ6vWmEdSIxlCQ0UM7MsbwrX/e5DFnn20Tw3rC2jRzP4Fl0OdfA0z53T0zhWQ/Jsai55xdH5K67BXh2p58lWMl3h1ddeUQqmtDTMFC2AYgJBAZFG//ukNfPDwoKn6Ll7FMS/Q8ei5RGPo5kbGTFMnOxy9QkQEVhMRVF2EytN8c2B5f1SuJKJzBx5xJ1jc3EDvG+LdUaGXQmBZ4pz2mDGI6xuNFVPRNLmN4U+hZGWkfTjHdE3zaXcwT2gky9TZayD6WY9k6Yr7IjfKjNzOIPZfiscjTsQJj4wNaoC/iNEj5BE33/9kHojD6Bko7cPTaAbnFtK6njDAkeexQ/L7iRgzSl5drsbl2moOD8/STXqRViJCmzjWtkfnGFxdRfvuV1JAucHOf69lp4nVqLYaKo7Bg8Q06HnbSAdXY66U7xoENm7mcPYcncud2vOoUtn+sd/8B4fT/9Hy2rflUb2abeUpBJZrxlopVUHAGgIKgaXMixeKgK0EFjlW9s23HHSSD5pNGoto0sixRRgBwTJKWWvPcPzsBC+FFwrwS1i5pe4V6UKJCAEaDxbnL9EOBehj8Wl8bzCgiwztuxPBV2vkUK/dF34O7sJxUxnpPUdD3yh7vaDV61hckXiPkMyEvBrQh4danVHUwcMcdu2hC6T69Xi82dy2BZJDHXvNMw+N348/nkWaUFhU4A2093atxt057UO0vrfNKvIV3QPwV3A7m0flj2e3MTSeRlMsFVsUDfc0z1QOOWZbumTGRnJp0mVMkJDzfX1KY3ZAXZvrzioDn8aAbGTjTjOGI385GUO8YEoICKohIqB8hl6W5VGhwEARI4fxuLufRZQk2hTx8CjTUSGwrGFMxO6J6L3Raj8dAh/hOrRDJoOv2sD0u2bGe2Du3jL9nTZ+EYTwkjkN20tzXRRgEP7XS46fn1MDsc8/dAUGiRg5VN6agUSSJe8kow3qzxu8aqWmfczglIQ8TCPeXl4ZKcILixg8QF5drgbYcn5UGMrDt5hj76CUOODMXOr15OYD1JzgGo+zrDyxhg9UoVplhcBy9fzJS+X/to7FJcmai4j7lytrP3H6518sjkqOYLdpLaCOjac7FAIrL80QpS2vOgIKgfWqj3Ae75+tBBbpjqV3DvFu+fgD3iDM6ogdTLuH7vepTkxN9yBsDs74gq1Y7iBACMrvFrMgos5G8/YiEScFFC6kxq69wJYdGZuBnomzUD2Val/pAsOhm/aLww1V7VgF9dZfTeXwtZtD258exZFWIIrA2vXmCylyPbiQCLLRMZJX5DdnR81xuKOvWQF94vZgX2qMqdfLgpqhuWdhl6IQpUtGvbs0+p+0shruQdhix/PF0qsr5F4IWu+mzylPjYg+vQSDfpTRFjw5hy8kYvLDfSvgc/8aLul7eiKD+P9YPPgPmUTerVVIdHgCKorwqwQsWMdK6Ghg4md6xO5icfcf6oFVuKWAEq0UAssalpYeNqXSvkNh971I/WKt2TFo93mfgLtCgwtoR8wCX76mS+bDiyj08VUGl5dQryCGE7HTnYHw/LUSXAgYNkQeybJyDYdr1+n7qFcPHqVLma81BB44+pn5ccWdxAOLAcqXFdC9q/0ba2fhl/aIwemvJBIMrIi6M3gw1mXsZFdLyMKjEziIPMWo1mQ9VM890GQXJDMhIbqXr2ZBMDcakbscNUSFoGCt4oElE8eXPdmK1Ryu36BzrndPHqVK2r8H2L2XxYFD9D3TvKmARg1su28VAutln1VK+18mBBQC62UarVewrfYQWOk6GLywpJGBiA4WOS7jiF1Jf4xmsVtMRRRz88XB0E6OFKnktQEBQgYtXcEiUiKATo5BESKIfMUO8HWHuxuLI6fSsWNFLMbE9jHzvlpdYCrK92+AksUdmwfs1TPw+HasqeViYDBSpy3P1BPS3g2/szh/wfyoY1CgiHcHCHC3iFR16DCLnZKwz/XqCGjV0rG22gDva5+04/0/cTztgQmHjYVaoY6LxX4TBS3KR6+xir29Qupn0x+hTSyNKBjwKAAdtnc01EGOKw3oK8DPz3wh/+Xj05gv0fcb51cVo/0qu3xOPItlEH+aQfwZxswzKKuKtZyIGJZ4yrAgEeMG9OXBn2Tx4ATdqER0EFCkkUJgWcPw/iHg1lZKpASl/4MyLaOgb/2OWXL1ktlQndhn+k3bfxz42i1cPh9yqwJLIs+rjIiNkqiwYaEihsjUflq7kcNFiTZOVtGPj01VgU+hPfzbE9AyQJ1aAtq0evHPeaJVRzTrjOYbIaLCe87xDDv7rQrP7tG+lx/CI19x+8mEnObJjZssVv5mTmIRrbE+74iIKOacPuXUBuX6i0Xgl185REXT98LAfjyKFrF/zll+GH+joYBmTWy7bxUC68XOCaX21wsBhcB6vcY7z/XWHgKLdOLYCRbbJcdKCNHxwUjesIGz1+L5VFS5s5Yu8Fg1LoebL/ztLVvJlzMC+w+w2Pe3ORnUrLGANxplLCKMBNajJC20382C55m9pkLjVOH4OnCZ4W9HwykzunRoRrc1iB0bLfXrjRC9fU1/Z0VeFQgQ8O5A0ao34OEjLP7aTftXt46A1gqBlfPEcFIKy3Dru0Laobw6wEmlWy9GFEWERWXMS0tr5lkYy4Oa2Vz/1tPPMMx/vSmf91MfdN/UHWFhIvr0FKzOvYkJx7Ak6bIpzxT/WnjXt5zNdTuS4cl1FvH/AQ/PsRB0OZf0hAVIE32TRZCIh0Yr3ZtHSDXG8DzQ6gSQ54FiGQho9xzDqd31TXC4iY9RazIgevmYQaRevxiqfZtMv+k6DYGuhSQy4UsMKDnOenwa8QiinSjQQcBKybOXbHTJhleO/b6Vw39n6Pzr0I5HtaqZ1xn/zeXMPA4PaYBkFgadQ6J3+KLtxnoWDyQRSsOa8gh/0/71krQ/19ayeHiavtuKtRcQXM+1fbZGYrEc0LuHgBIOfsR60WOl1J8zAot/UuGehDQdOliPkJCc82WVwhnrM4XAsh9/JaeCgK0IKASWrYgp6Z2KgL0EliAA8xZweEzUUp9bxfIiunaWtyi11glrm83IIn3hRgRbFHMpAtF3GJAvahLOCEWLChjQRwAhJ4kZCayEG7fBft7XjGD61W8aLmioKHWpkgK6dRHsFvf3mD0cbPR1U5+1700BX4VuDDdvYXH6rPm88M8v4t1BArwsxKmNhRw+yuKvXRICq7aA1m+6dpHv0kF7yQqvG7MB0fqnplYfCu2MokSwxcVWLno1ngjpmWp5y7MIfgxqYlPtJHT4vlN6rOyxwpRPna7GzP96o3sXAcQLwZqNeXgQ657eMF2aE1APPX1K2VS3sxKLeiDhMou4E0DiVdufreXfFRBUVvHAsjYe7l+NwoGHX0LP0HldbSyfKfqj6q81UG+hwS50LbpB1+ldZw3xCy2HkDSErDEaiYKZv4eAZSvpzVE8IiMyrBzb/heLY1JtnFaCwavK0i7+zIKQtEY76cHgISeiY3seVR0Ql5bTRjlpTn/NIe0hXS8RoXUiuO4Mu/sPh6g/adlBtQSU6OycsrNrn0JiOWP0Xs4y5i3k8OgRnXMjh/MIzCbKbU69PH6Kxbbt9P6tWU1AOxujaSoEVk4oK9cVBJyHgEJg2YFleroOHMeB42xffNtR3SudxV4Ci4By7jyDDb+b79jeH8qjYJD9XxUr3vkNCTyRYM2wE4W7IoR7rsb6So/Ei+tcdrpXnhIyyEhgPZ47BczRPaYGJ+Uvjuman83IL3IxIEAwHCkgxJKtpl77HVT76XFS6QbPMnwzKZvUMXiAAG/vrOsi0TNJFE2j5ZWjJbZi87KmrxC9Bo8F6q1zrnB3BHAal3fHkjgzVtjJKwILAuUFHOB5YMMmFhcvE40oEUv6mmu93QnvB5bNWjx9yIO/sT0lytTX7wPfQDsv1wrYywFWn8IYoqKRY4bJkuMg2eWtPEoP/6Ks4oFlARJ75wY8Zg3DGc1MPHSj0XOLd+ZRsJb5c0l1aAfUK+eaStDXbYn0vvTYtJyxy6tpLvzAIekWvRfCmghIjRCx6je6VihZkngryiOw5GrjXF/LGeax0S6ogRg3GIgyQpi9SNOlACem0qOlYETUmc6DdUL0ZtKvhMsMrvxK8fUOF1HpfXn4OooLIbFW/caCPCONpnhiOYpq3s8/51sOSUn0fvtoNI98+ey/z86cY7BpM53DlSuK6NzRtjmsEFh5f94oLXx1EFAILMlY3nuQgLVb9qFXp+YIDPDLNMoXrt7G9LnLcel6JBiGwRt1q2DC6D4oGJj/1ZkRudwTRwgs0tTvFnN4EE9fYrZ8WbXW1SZ3N+OaLtF06a/gtqjo/mqFF8/lIc62upx0r6SZCYHl9ugekkb3MPO+0g6bhite9bFuPQNtuvkm3l0toltX0WZdLNXxfVAvnW2qni9RAdqP/gfLSDUkAdEbGjIwe/KKpCNf8cnXfKM5Q7ctL41lXm9LWOSvZgLhN4v0gYejCsYyOt3q3h84r32UKeU7PqXwdQAlGrIqSpvGYNlqFjExdG6v6LEc6Wrq1XUhvCfys+5ZtqZX3G7sT71rur4iqDmaeobJaH3uJSGR3OJOsri6F/ASsybjqn/KwzdIOUJoOTLq5V9DdWQXotXdcc1jqOlyUHUBJbqZe8Nw547AffEk+nyrUAva92fm3mC7qCbLaICkGuKBdiuewW8Sr6xyZQT0sMAkqyZZHm1v1FBAcyvaOJE7GMTupxvg62oGN91IABI9ggJd1GGZxT46z+CqxAPNK0xE5ZG2bc6zq4oEbjg5m/adBGaoPd155efUzfj7Hlj0i14hsXIC6hW6PvtrFVJTaYc+/VgPTwcCB5CPQyQgj9FseUYY8ygE1is0wZSu5HkEFAJLMkSrNu3GrPmr0KFVA8z8dLDZ4MXci0fHgRORkkq9c0iCYuHB2PjzNLirnfQpK89PGec20FECi0QhIdFIpNa/j4CIYva5r3e9/xcOp903FbeyYHM00eStjZ5zR+DFlvbPARZ7LXSvmrwhgPyzNEJg8YtnIP3gLtMlIaw40j7/3vB3wmMyFxg8emTuGUmOIDZtLOKNhvIX1MyjOGgm9DbVI6rU2NZ5B/7517xsXx8iBizA1zfnL3+Wum21agpo62DggRc7ei9P7VqRR0QUPXZH6JGYov1zpQMksimJcGppA3zKYEZAnWzbkJjIYNmqzHN6Xae1SPZONuUlwSZI0ImsrP29P3FSSwXsNxVqjdoeBXOl/7ZWsuhHFVJjgWC9iGA94G5BZtWepoent+KBJcWVeZoEzdjOhp8SuXI46bXQdNnDX0S1T8yffVzkFbh/OZI+R8NLIW08zWPrmOWV9Hf2sLgj0bryKSyi4gge5y8wWL+JrhMqVBDRrZO894Hco9+xB1lE/kHfD1Eq4LI78OlYPTxd7+iZ7RDc2sLi/mHatuCGAorZeDwqpzEmkQgFHSWeyZwjcy83LMjPA1euAfN/0ptHJ+SAvu/Yvx7MjbY7ow7m6ROwsZF0veKTH0JwuDOKdkoZbrvWQfTQABoviF6+4Ms5HgF32kwV9JJbeOJ4PUhEcnvNci9RoriIvr3kPSOMdSoElr3oK/kUBGxHQCGwJJi9N+4bHDx+HvOnj0KzhtXM0Px42mLs2HcMJYqFYspH/aHT8ZjyzVJExcTh89F98E5H28V4bR+uVy+HowQWQeTnJRyiJd4JJArciGG2vXiMyA6N348/ntGFwLcFGqCrd4lXD/g80CNrulfhYSIGDeBNulfSZvo/i0Pax5RUIte0788AX6G2KRmJULnxdxaXr2Q+3murLpbHJ93BJiWYyp5fYBGi3cqa/vbyEjFksID8Mt3Wj59kse1PicZCdQHt3rKPaM0Dw/dSNYEcCybHg43mx7rjYnjPXOnDe/H7sU3yTDE9a3wrYKJ/1gv5e3EMli1nkZJq7o2k0YjY020zrojUq2t7SFtUUWftKdo8dgsupz829Tc3BOztBXfLNg6nnh/FIj1vUk5EiF5EwgUi/i6i3pe8IRqpIuJOESYbRLfffzL8IIDFfp8dEBi1KUGNz/VQS/hN5tF9aCb0MV0X/YOQOnOVvUOWZ/Kd+oID8cIyGolYWaiugDNnGWzaQgmsKpVFdGovb41w8hSDrdtp3urVRLRvmznvo7MMrko+psVxwFlPYMoE/QvHxzJKYJm+AvzLO/fdc34RZxZsoUw/Af7lnFtHVkASAkvFMTh4Mh3LVzNmJFZGdMJXm8Ry27sBbht+MMHDl6oM7Zg5L3zekQawNy/AY84Ys7akfr0Bonc+u9tHPPcnT6dHYslHyqkTHbvPIqMYLFlG7/Mi4aIhArYtphBYtqClpFUQcAwBhcCS4Ne61yeIvhuHI9sWwdeb+qLej09Ai+4fgWVY/LF8NsJDgwy5Tp69in6jZ6N21bJY8r9PHBuJ1zS3Mwis2HsMvv/J3AuLfF0lX1lttQmPjmJp8hVTNrLBHOpbwdZilPQ5IGBN94pszEcOF+DtZX3cfFd8Bf3h3aaShbAIpH1OF23SKg8c5LDnb8YhXSz3n6aBO33AVOxWn+H41zsjUhchr94dIMDfhi/MJ06xIPpZRrNHJFSZWPYhEKVLRr27G02ZC6u8cTSsi32F2Zjrk4eHsfLptUy5RvtVxji/qlZLu3mLxerfWOgs1uR++UT07ytguHYnDqTFmvKuLtgCb2hCs2zZixKwtxEqQ3JCXhESy2ilSoro3ZM3RC4kou/+FQSFwJICKwjwmNAb7ON4068nw1YiMYnOh9K9eARUos9VJi0VmjFvm9KLHIfU7/6yZ7jyTB4SqZKQKFKrPYUHpxEhl4Sy1hlLrc2svLeSIhlcWEzrf8wC14JFjBll2ybY2YCSqIzHJpvjUmsyD1UWwUbsrf/mJhZxx+j7rUgrEaFNcqfvRgLrQWIarlxjsHINCxLox2ivOomlXjIbqhP76P2czx+pX9CI2vaOqTPyqVd9C9XB7WZFpY2bD6EY/Rhoaz1pWmDWl5TAUquBCZ86RmDFxgLf/0zLDA4Ghr1rW5kKgWXrSCrpFQTsR0AhsCTY1Wz9HgAGJ3ZkHEky2o8r/8C8nzei/Zv1MWs8jdRDotbVaPUePDXuOLB5gf2j8BrndAaBReD7bR2LSxKvG+IVM3okD9ZGnf3/JZ7BnMQzphEZ7lsBn2fjJfEaD53dXbeme0UKG9BXQLGi1r/YsvGx8Jjc31z7avgM8BWp95Vlg27dZrGG6GKl2aeLpdqzEeqN9Flw1uMNrMg/BZ6ajGODtpBXpG2ObKLsBlvJaEDgYnoCWsZuNaFRVp0fe0La5wo6sx6fwsIn5zPV9Un+ahiVr1Km30+fYbHlDzYT+RoSLKJPr4wol5ZeXYsD38Db2YiyWwanOFu4OwrkgoC9PQDfuw8s/pFuJIiO3eefmm+EFQ8siix39jDcv59Mf2AYXG3zB+4coMFHiBcS8UaSmmZEKzAS5evUuZshal7egCU3N3KIO06f9QEVBJTuk9FnR/QHr1xlsXotXUiULimgV8/M76nUhwz++5oSRSkMEFmaBPfIHRInq3vt8SUGlyWeJZogEVU/cn6b7h1mcXsLxalAZRGl3nF+Pdb6KSWw9LwIMmZE8+x1IbE8pg4Cez/aDJrUb7dAdHdAFMqeh7dlHoGHZmwXMCk0+i9Joh34Kfia9p9aSU4Gvv4ffUd4ewPjPrSNbLJsavxDBgskBHiBABGjbAxEoBBYzpg3LqbLAAAgAElEQVQ0ShkKAvIQUAgsCU5Vmg+Cr48X/v19vhl6b/X5FJF37mP1oomoXK642bXm3T9C/MNEnN1rHhVKHvxKKmcRWA8fsZi/0JytattGQK0atrmwL0++ivGPjpgGppt3CfyvQANloJyIAPGO2r3PnFRq3JBH0yZZe8xZfmHMzvtK2tTHiRlfY+MlQv/G682ainijQdYL7Ks7rqDqVqoT84zxxRfFNmPwABGBBWybV6TOU/9lEBNGq1ZVQId2tpfjxKF4bYo6lhaHTvd3mPpb0z0Im4Pb5Er/CXlFSCxLm5y/JobkK2/28559DP49aO4tQRKULCGgR1fBpPFh6dU1O6Au+vqUzrI/EVHLoRXpXLsR3hsaVhKVLFeQkF/J1JkqM0HmMaN5s6O6CoFFsXSf9wm4K6dNP/BVGuBB0ym4+DOdR17BQOUPzDd4ROOPaP0ZLXXqrxCDsvbikz96uZ9S4IHjUzgIkiAe0iNsljpW9evyeLOFPA/t25Esli6nz23ykYV8bLE0Ph04NpHeUyTF3RoCund9sc/4qD9Z3P2Htr9gbQHFOzm/TU9uMrj4I51zngWBKg6SCnJnkiWBRfJdvspijYR4JL+pVEDvnq/WcUImPQ2aD942+7hH+uqol5Nc7LNLZxkswphW17YfdG+Zy0HYUl9CAoNvv6NzLb+f456OT54w+GYeLZNENCSRDW0xhcCyBS0lrYKAYwgoBJYEv+bdPsSDR4k4seMHkyj7sf8uY+CYLw1i7duW06hkxmxNu45BQmIyzuz+2bGReE1zO4vAIvBt2cbi1GlzEoscuQkNBQqHiQgLFRFeOPtF618p0Rj0gLpiN9OEYXnB5q/p6Di/20SrjGiWSS0nrQGr3lcjZoIvX0tWAw26WJtZXL6c2R2vdCkBXTsJIC7oUjt9lsXWzSK+uP8mWNBFTPSY1ShQyr6QUqTMzZIv1NWqCOjwtvM3ErJAySOJ7vMpWJF0BW97RaC0OnPkV2c1c19qDPrE7TEV18QjFCsLtXBW8dmWs+rpNYx7eDhTGkvSiczRs+cyz1FCwhMyXmqzH5/CdxKvrvH5q2NEvopZtiM08leza3dzScDeXoAtdQ0JCVC+LMVAIbAykDU8Gyf1M4M57YOvoY+ogqMTOcAogM+IqD2VBycJVOnx5QiwkVdNebUffwu+uDmhau/45Xa+h2cZXJPoT3EeIsgxOeb57XTwEIdde+lHk4YNeLRoKo/AuhvL4AcJGRgaKuK9QdY3toc/U0HyusCTBgJav+CPFOcWcngaTftesiePwCry+m7LOOpTgONTJaQ4I6LODB65wZNbI7BI218HEou7eRHucz7INFTpfcdCX7elLUPo9LTqX2ZBdfLvTOWSdpH22WtxDxgs/J6uIwsGiXh/qG1kk2XdRNbiizm0TCJpMX6sbWUqBJa9I6rkUxCwHQGFwJJgNmbyd9j1z0lMHzcQndo0gk6nR59Rs3D+8i18OuId9Oli/jLQputAjh3mz+eDfzbNsx19JQecSWA9fZrxBUVyKsIqwiEhIgqHiggNAUKDRQQG0cXc8bQ4dJR4alRWB+DPkHbKSDkBgdRUBgt/YJGURBfT5Dje+0MF+Phk431lsQgSi5VB6jjbj+wePMxh1x5zzy/SrcBAEb16CPDPn9GGc+dZbPg9Y+fz/sORKKa7YOp9+sDPoK/ZxC40zpxlsUlKYFUW0KH960dg8RCxO+UOViZdxT9pd0EQGONXBR/7VbELVzmZtjy9jeEP/zElbedVFN8HNpaT1eE0JCgECQ5had8E1EcPn5LQpjNY/RsD4ulhaW+2EFC/buY5sujJecyUeHURnb6sBOETBS3KR68xFe3LqnE5/B2H++XKAnbsYnHkKMWjQT0eLZvTZ4RCYGWgr177HVT7t5iGgkQeS5uU4Q1+dgGHZ5LgJmUHCMhfRkICLpwA7sIxU17te1PAV6nvymF1WdmXlrAGfTSjFaovIELycWD/vxz27afPfhKVtnEjeZvTB/EMvpNoW5H1wsgsNssHpnDgJEEXhKYiGrwprx5XgEN0445OMPe0rDmBh1s271tH2nFiBgddMsW5yhgenoWcT5ZZtjErAoukIwFd1qwzf7a+Sp5Y5P4nzwFL073ZA7oOgxwZTofyMrp0eHzYEYw+PVM5QokKSPvof3aXHxPD4EfJh1DygfrdgY7dZ3o9MG0WvVfcVMDEz2w7lqgQWHYPqZJRQcBmBBQCSwLZgWPnMPSTuXBTcWhUtzKiYx7g+u0YFPDPhx2rvjJoXUnN6J1VvVIpLJ//mc3gKxngVAKL4LlzD4NDhzMfwckOa7VaNHhoEVKLKZKE3iwVew5VeeF4WIZwt2KOIbBiNYvrN8wXkv16CygekTWJY837SvjwK6SVtC5+nVMLiS7Wb+sZpFnqYrmL6N5FhFYrYu0GOn/eSvoBTZ7R6HX6xu2R3n1ETtVYvU68a4iXjdGqVBbQ6TUisGL1zwzeVr89u4EHfKoZRmXc8mNvqOs0qVYlX8U4ydHgnj4lMScgdzbrB1Jj0SNuV6Y58V1gI7QQi+PXFSzIJtnSunXhUaGc9c2fLf25q3+GWjHrTcUHc544WbibXXM4tzKdv8hg/UZ6HxYtImJgP7pBUQgsgBwd8vi4Cxid1jQs6T1HQd8o44PL7T9Y3DtInzchjXkUbU3nk3rFN1AdpsLt6e+Mhr5h29waYqfVo3vK4MR083d+5dE8vEJoX3fvZXDgEE3TspmIBvXlbXgTnzCYKzla5Ocn4sMshNn/nsHBXULgeDQTUa2lvHqcBoikoKSbLC78SOeAe34R1S305JxZ76WfWSRelxCJ9QRE5MI7LjsCi/QvKxKrX28exAP8ZTbL+9jYF75yPWiHTn1hXeNO7IX7ki+s1i/mC0DqF3RdZWsjyTqOvDeNFlFMQP/nene2liVNP2maOdk7bZJCYDmCp5JXQcCVCCgElgW60/63HGu30CNkhLRaNHsMalYpk2kcJn61BJv+/BcjBnbEsL6u23y5cgK86LKd6YFF+kKICbJYvRPD4H5c5k1hTv1NV2uxoscKUzK1wOGge1+QYwOK2Y/AoSMcdu42H49GDXg0z+EYh3rJLKhOUBd0rlR5pI+bD63Ofs+lx08YrF7Dgrih52SV9YfQJ36CKRlfpBS0ny7MKZvV668rgUWO5RLiar8kap41gA6FdUJRla9d2OaU6ceki5iacMKUbIhveUz2r5lTNqdcP5/+CK1i/8hU1lz3ZohaUxTEc1Rq7h4k6p6AItkcd/7zWRTejaf3RRvPIvgpyLpn4DXdEzS5+7upipJuvtgf2skpfXNVIQmPGXy7wJyUIBsUslEhphBYMHheST0vBI0ntF+shaj2MGCUcJHFFYl2k08RERWHUzLFbfMvcNtJN5G69gOga5W3PfMMYz99MLjYKNPUu9l4CW6fLmb6WxMoourH5qQRefeQd5DRWrcUULeOvHeI5dEi4jX8aRZHi/6aoYJvMr0r8jUVUP5NefW44l66s5vFnT10ox9YTUTJ7q4j1B6cYHBD8gGI4UTU+JyHm4tjA+REYBFsrZFYxMum70tOYnnMHAo25mam6SMUKoy0yUtcMa1klem+aCK480ezTJs6fztENwvtBlklA1evsVj1G53XZUsL6Nnd8ftsxmwViOSE0SaM10PtJrNRABQPLPlYKSkVBBxFQCGwrCB45ORFnDx3FV6eHmjVuBZCChWwivPS33Yg6WkK3unYDIEBrtNvcXSQHcm/YsMuzFm8FoEF/LBn7Tc5FvX7jgPYsO0f3Ii8C57nUSSsEDq0aoB3OjYHx2U+IuNsAkvaQJ0OIPoVd+6wuBMrgrgdW24WrXVoSe9fILKUsOqzph/UOjeDhlbhwuToIfHYAohwpGI5I3DnDoOfllroXhUWMSiH6ExsXAw8pgwwq8B70nw8CS/vEIFFCiRzY9MWDhcvZU9ivdctASXndTZrQ+r8bRDdzL0xc0YBOHeBxYZN9B6oVFFAl46OL7rk1J3baWL0T7Ei+SrWJl9HvJAmq/rx+athhJWofLIy55Dom8QzmCuJLurqI4vS5kTrk1E3hnp1Gq+9tb8lCkWHm7WcCMf27ZVzkICDabHofp96ddXzKIT1hVpZReG0Nh7t7tEw5lXUAdj+EhyLnvUVl8lT8p3uAsqUFhQCC4DH1IFg798xjbmuSSfoug2jf6cAJ6SaRKyIOtN4sM83ZG77NsFt/WJJ/o7QdRvujNvNZWWwSQnw+KS7WfmHAzciRetv+q1IGwGhb5g/V7fvYHHsBH32vtVaQO2a8p69lkeLyPGzSVkcLdo0nUMhCSEd0EhE6bdcRxjlBPSFHzkk3aTvuOKdeRSs5bp1i8gDJ2ebHyMMaSSg6FvysM6pP1ldl0NgkbyvIonlOSxrLceUxbvthdShfMyzZGg+Nv9IIqrUZscJH360BJ4lCttVz7kLDDZsomvKihUytEwdta++4fD0Gb1fPvmYN0T9lWsKgSUXKSWdgoDjCCgEluMYvpIlPEtJw8SvfsHO/RleC8EFA3IksMbP+glbdx0yHMGsWrEk3FQqnL10E0+fpaJBrYpYOPsDqDhzIsOVBJa1gSH6S3fvMYi+QwgtFjF3mUyaWb91Xo1nXimm7N1+7w6fZJ9MxXl4ZBw9DC/MZJBbYZnFwF/JyWFDp6zpXhHcRg7LXveKVKH+ZSZUJ6l2EFO8LPLN/gmPkrQOE1jGLlhGpzL+TqZpn3cyPD40k/qCib9n6nXamDkQSlW2AYWMpJbHopy16LK5IS7MsC0l0uBtdTDtvs21VFEXwPYQ1xxhmpZwAj8kXTS1iXhfES+s3LBkQYcy0asyVdVmV1sE3y9k+j24kIg+vQR4e+W8YL6oS0DLu1tNeSu4+WNn6NtWu3Mo7T663adHxRp4FMLaLMiu3MBDbh3WopWSvN0686hehUGAr7vhOUCeB6+bcZdPwX3+p2bdTpu2DEJgiNlv/33DIVXiaVp+CI98xTPmF3d8L9yX0iM++hpvIH0Q9TbNi5iqjuyCevnXpqY9ZYvjqLckgA4jwqDx5G3e+q3bWJyUBHgh0V9JFFi5Jvdo0bJJKpSUTMegOiJKdHwxBBYhk45O4iDq6Ya82sc8PAJzfr7IxcVauvuHWdySaD2yahE1PuOh0jhSavZ55RJYpJSLl1msXW/+MdXgidWHz9br1XWtt79kNuoaPL54P8sCiAcW8cTKbXM7sA1uq6kusFC4BO4nahCSfN7UlCV+M9Bjdm27mnb6PxabJRGdq1cT0L6t/Ps5q0rnzueQmEjvF8votzk1ViGwckJIua4g4DwEFAJLguWVG9Hw1HggPDRIFsJE5P3QiQsoGJgfZUsWkZXnZUh04/ZdjJ60AJF37mNgjzZYu3UffH28siWwCHFFCKyI8GD8OGcsgoMyvoimpKbhg0nfGXAaObAThvY132TlNoFldcEVxxiIrJg7wJ1YBj/W/h0J/gmmpG13tEPB+IKyhq5AgICwMCDseeRDsil9nc2a7hUhhkqWsL7YYLQpYCOvgb11EW5bzSOnuU+YB02l6k4lsMjYEPFsootFyDajSduo/vVLqI7RCHZEGJUIpNpqFy4yWCfR9alQXjRsxl92I95Wy5KvYF3yDTzMwdvKAxzaeRdFL5/SyM964I27m8y6f6ZwdwRyzt/pjH10GKuTr5nq+jKgLnr7lM4V6EVRRFjUskx1SZ8rJYoL6NlNgJvM4wp39E9RJ2aDqczstPp2pERjsCSyaktNYSwt2CxX+u5oJUTInQi6W1qXDiJaNVG/tgSW+ocpUJ05ZIJFX64G0kdmjpJ8cyOLuOMUv/CWAsKaZTx7uSv/wX3eOFMZfOnK0H4wx9Ehc2l+9ZLZUJ2gEg/X3Ich2p3qufmVFlHOipgzCZ5BgmgYjWgPEg1CuTbzC84QbMFon3/Kw11t/m7XpjFYMpNDZYlmdUBlEaXfeTHP+ORoBucX0g+GKo2IWlNc3xZBD5ycyUGfQvEq3FxA4Rby8ZY7LsZ0thBYJI81Eot41pHjhEVfIk0somFHNLCyMu2waeAr1bUVTofTu3/zIbgblKy6VHEInt2IQs3UnaayN/uORNWP2psFUZJb8dHjLP78i97PdWoJaNPK8fm1YDGHeIkeJQnWIA3ylFP7FAIrJ4SU6woCzkNAIbAkWJZv3B91qpXDL3Ppoi47qMnGpEar9xAWEogtS2c6b1ReYEkPE56gda9x0Ol5TP14ANq/WR9Vmg9CgYDsjxB2GDDBIHi/auEEVClfwqwHj58ko1nXD+HmpjJEa/Rwp+fe8wKBZQl3j/u7cECi19P2SHMUvF7UrlEhX/ZCgkWEhRFii0FYiAhyTOh1sENHWOzcbb75bFBPQMvmdKFBjsCwt6+AibwE7sZFsLG3rUIjFK8Ar2mLDEeHnOmBZayMeOYRsi3+IWPQHyKEgtHcDm6H26pvTX/zFetAO3y6zUNoSWCVLy+i+0tKYOlFATtSowyRBImHT04zuqxbfvTyKYUu3iXgYzzDBKBBzCbc1ieZsJzmXxuDfMvajG1OGUgUQBIN0GgLCzRCB++InLI57TqJAkiiAUqtw7aOCEgIQLXKAtq/LYDJWZLNlD1JSEfZ6NWmv70ZN1wt0stqe9c/vYEPHh40XevkFYEFgY2c1jdXF3T6DIvNWzOTWN07cmhUH6+dBxaT8ACaz83HOv39mdBXqJVpKOJPM7i+lpIYfiVFlBucQWKQZ63H9CH0uRZSBNqJEm8mVw+sHeVrxnUFk5xoyCmCxb/eG6FjqXxDqR48ClTN/DRat4nDhQv0BuvaiUfFCjk9tWgDv5qrwtOn9O+xY/TwsXDKJu+OVfM51JLc5r4RIiq853rSyBqUd/9hEfUnvW8CKgoo3dvxTb6cYYv9l0Xkdlo355HhhcXZfvJeTnWwlcAihRISa90GFqJkGrxsnljq3xZA9Q/1xLUES9dpCHQtcjcIEZvwAB4Wz6cZQetRI3UHWiVTTa4DXp3gOfh9lJVERpU12AD2H2Cx7286vxo1ENC8qeNz+4efOYPsiNGGDOINpyvkmkJgyUVKSacg4DgCCoElwdBWAotkbdHjYyQ+ScaJHT84Php5pASie0VIqIplI0BIugpNBmR7hDD2/kMDDsRzjURrtGYfTlloOI64YOZoNK1PI8jlRQJrVPwBbHxGRTG/DqiHNkJp3Ht+9PBODIvYewyINoY9RkRgiZZWkcKMQRw+LFS+54U99b2IPJZhjkkbioc8w8AGl8BGXgZz4wK425fBpEh2Bdk0VDv2W/hVqeYyAstYdWQ0k+kLLHv3FjxmvGdqnejlg9Q55p5DcjC+dJl4etFFV/myArp3dXzRJaduZ6Uhek7Lk65g3dMbeGRByFjW4cmo8LZnUfT2LY2q7oFWm/Dl49OY/+Sc6Vpdj0LY4ILjbX3i9mBfaoypnmVBzdDcM3eOVhC9tWo3NiJBI1F3BtB5cxd0qZEPJJiBPRYaae6hGFOkHxgrLBjxjvvsERXT7eNTGl8E5P5XeXv6aMxz7jyLDb9nJrHavsmiVu3MYdodqSuv57UUXxcCgpE2Y7nVZmsfMzj1BSWwyHGu2lN5MCzAJD2G5hPqvSR650Pq19SrL6/hYPkcfqiqjTOe9Agk6VutSVTjS9r+NetZXL5M5w/xdrRl4/ztdxwSEujG9oMRPPz9zTe2JDLahmUsGkgCrHoUEFEtC8F3V+N7aSmHxCu0zcXeFhBcP3feN7wOODmDAy+J9mtNm8xZGNhDYJG6iQamNOow+Y14wRqE3bMJouGsdjtajvtXowzrKKPxZaoaPCuNpq/7JtL7fuxoNTbld9u9Hm6bfjTlue1RCQvzz0PV1H3olUg//F12r4WY7rNRv67tc9IyqigJBmTve1TauSXLWURG0ucEiXxLIuDKNYXAkouUkk5BwHEEFAJLgqGtBFZ6ug612w43kDxnduftL5f2ThU9z6Nys0HZElh7D5zGqInz0bZFXXz5Od3oS+tctn4nvlq4Bu/2aosP3u1iupQXCaypj0/gxydUL+eT/NUwykJcWhCAuHgGd2NIxEMg5i7w8JH51zy5mJM9Z1CgaCCziDh84VARgYGiTR4ZcuvKjXQkEuSCxSw8Ht9FEd1FhKdfQjH9RQTrbwMEOBtNKFUFaWO+NmjeuMoDK9smCQI0H3YAo6U7k7QpSyAUtI0AsSSwypUR0KOb7XjYCJ/DyYm31faUKKxMvoLDaXE5lkf0mAhp1dG7OLwZ87DUlpnPax+i1b1tZj9fKNwT+Z38qb7DvT9xQvvAVM/GQq1Qx4PqT+XYKTsTPEthsGwFix9qbMHDgIdmpfz6rBtalPe0s2TA0qvrXOHuCLBy/HLhk/OY9fiUqZ5hvhUwwb+G3fW+qIyXr2Zo11g+Qpx1fORF9cuWehl9Ojw+7Q7mGSX+dZ3eha4FJaIsyzsxw1xUu9JIPbzDiAuTCM/hLc2Spyzahbz64nHbvQ5um34ytfe8x2TEqRub/g6qpkOJ7tbdGFes4XD9Or3WqweP0qXkb0wX/qBCnOTRN2yIHsEWj48z5xhs/Z1DcyqfCVYN1Jlu55cuWyaGRVpRAI5N5iBIjj1WHq2Hl7lEmgM15Jw1Zg+LaIkHtsozIyIhm/0rIeeCraSwl8AiRVnzxCKR5/r3tc37xq6GO5jJUsA9vd9YqJdRjTi+WDlox1EtKgerk5XdMirihnwf4qhnO8M6cNQjqtf1QBWOfW8uxdt2aFft2MniyDFKNLVqKaCezKii2XVi5RoO1xx4TigElqwpoiRSEHAKAgqBJYHRFgKLiJzPnLcCW3YeQvEiIdi6bJZTBiSvFSKHwPp17V/4evFveK9PO4waZB6xzdifPQdOYfTEBXizcU3MnUJfYnmRwLLc8A32LYup/jmLTaanEyKLxR2DnpZocEWWRjSxZWyJK3tomGAgs8JCGYSHizZFQ7GlLmeklWpX3TtwCYGJl6ERzT1O5NZDREeJ6KdYpDSEYuXAR2QcKXthBBYJ3T7/E3CXT5u6kN53HPR1s47+Y62vlhGQiAcA8QTIqxapT8LypKsgR9AScvC28mJUaO9VDL19y6CyOsCmLtW6sx53+WemPF8F1DVoZDnTWsRuxaV0qmu3K6QdytvYTlvbE/+QxYrVjEEUdkfzHYgNuWtWxH9h3RCksp/AanB3I27r6D12ILQjItzyZWqmpZfbx35VQKIwvox28xaLlWvYTIE3iCA3EeZ+1U11dDfUy6iXMwlDnzZ7LUQvC9VyCRDX1nB4eIaSN0XbCghpmIGV5uPOYJ7RI7zEA4t4YuVFkz6D9fDAPz5/QJQQ5JVanIN383JWm75sJQsyd4zWv09GgA659vNSDtF3KIaDB/IIDzMnwA4e5rBrD4OWzwCpr2Dt6XpwVDVBbpUOpXsWC5ydR5kiqeedQwXbkFmfCpycZU6iucoLzBECi3TpwiUG6zaYBxgiJFa/3rzBWz4vGnsvCh7TBpuaJvj6G8gqzYQ+pt/IcyF1zu+51nwiCUGio0ptYsGtSGV94CU8wdS4DmbXFtXbC3Iv2mpEwJ0IuRvN1qAMWdVHPpAQQtNo3bvwKF9O/vgrBJatI6mkVxCwH4HXmsBatWkPVv9OxZmJaDnRZyr0XIA8K1j1eh73HySAkDvEPhrazSB2/iqaHALruyW/Y/HyLfh4aHcM6NHaKgzH/ruMgWO+RJ3q5fDLN1Rj7FFS3jv+sTrpGkbFHTD1o5NPBH4s1MSu4X38JIPMiroDRMfAQGrZe/TQL1+Gh1aRcAbhoUQoXgTngq+ZtnSUWT0fzNVzYO7esiUbTavxhhBRBkyJCkDRMhBKlAM01jdjvl5ucOMYJKXooNPLX1TY1zDzXOzWZWC2UiFuoWEbiP1sc82/eJnBcipbhHJlRfR7xxmtc14Z6aKArU9vYVniFRyR4W1Vxb0A+vmVQRef4tDk4G2VVSsnPTyGRY8vmC438wzD2tA3ndcpANUi1yFaQvacKNoVxdx8nVqHtLCoaAZLlgNpz/Vw9jXai9tFzfXdbkb0Rj4HPM1aRG/Bf1rq1bWzcDtU98gcgOSz+CP4MfGSqXnTC9TGsPwVXNZ3VxbMnjuGx1fv4u+T3kgSvHHXrTQSuQKGKiuWF9Gre551IHIKLOz0oWCiaDACOc+h2MPA1Q2UfAmsJKJC/4zmsBP7g7kXbWqbMG0JxBD79B6d0sEsCmHS08EOb2W6GuPWFlc0H5n+9hDuoV6NNRB7j7Fawg+/MLhFJfDw3iARETZ08+dfGVynqgIY2FdE6ZLmVf3xJ3DwCINGKYCn5PVUezzg6eLIf5adjjkIXN9ExzygrIhK77pyhKyXfWs7ELWXtkPtI6LuJIA154ocbpiftxocCyQ+TQdvOx9iqJ9ECV611uCYaDJCYr07EJnISocb7IQCmKN7wP5MP5yLlepAGDUL7LBWYHR0XS3873eIPrlDSjO//wJ2O424e9GjHpbmz9AHLllcxLvH2oDVpZl6P7/4Wrw/3rq8QHYQrV7H4CzViEfPriKqVHIc1HWbGJyiJzDRtaOIGtXklxvgm8tMtfymKSkVBF45BF5rAuvwyQtYuHQzzl66aTgGaI91fqsRJn/YHxx5e76CJofA+ub7dVjy258YP7IXene27pXy34Xr6D1iJqpWKImV332ep5Ha/iQKbW/8aWpjM59Q7CllPUS9rR0hx19iYkXcihJxK1LE7SgB93I+lWW1GpYFwkIYRBRhEFGU/GNRMDD3NnBCTCSSPuxtEwRcibJQlaoIVakK4CJKgS1EzrLkfdOfPY6nMz80NZQtXAy+36ywqeFnL4hY8BM9TlK5PIORQ14wA/m8Bze0T7DwwQUsf3QVCby52LhlJ31ZN/QKKIVhgeVRUWObt5U1wA49vY8GV+lXYhYMEqsMhI8T3RYKnFmCR5J+PajcH4Euiuv+33kRP5SMPtsAACAASURBVCzVQy+RtjpU+yCulL5i1v20akPgzti/k3vz+h/YlUR1vXaUfAutfMMzQTwo8m8seUTr/qlIYwwu4HyhfJtuBjsTP50xBvpzJ0y5//IZiD3e1OOgSkUGwwaowNkPq50tc302/sYlJH9GRddJjb5zloMNzz4YQVKsiF2T6HPHzRNoPz8j3OXTKSOhv0R3bN6T5kFVobrrO2NjDZbP35N+PyBRKGUqJSLtVxT3/hP5vrfubTJrrt7wzjXaZ2NUhnemXFv0ix6nz9H8wwaqUL2yef7vl+px8oyI2qlAfgmJ0nicCgVKya9LbpuyS3f0ez1iTtL2VuzMoXTr3F+japNFbB+nh6Cjra3ej0OxhrnfFjm4Hj0p4JeVvBmJRWIOfTRCZVhn5SVLXTYf2u3rTE3y6NwfHt0HI/njfuCjKdvqPXUhVGUr50rTk0Z0hfDgnqmulfkn4YxHE/jlA6aNd4N+0gAIUddN1xcH/A9jF9QEiQBpi5F1FFlPGe39wSpUrej4+Kxaz+Pvg/TmfacLh6Z5dK7agpeSVkHgVUTgtSawjAOa+OQpNu88iK8X/YaihQvhnY7Nsx1rlmXg5+uNyuWKI6RQxtffV9XkEFg2eWBZRHnU6uz8XOZCwE+mPkCD63QhXMHDHydLuS6Si1YL3I4GIqNFREYKhv8/pSeqbOpp1UrA4L65s3vT794E3a80Op9lQx+4hSOgSml4lCsHrlhZMCWtH++Q20E3FQOWYaDTCxDs45vlVpU5XVoKUgdRDwCSQPPzX4BG/hGwC5dELF5C53v5sgyGD3pxC3mtyGNj4i38nHARh5/lzKLW8gzCIP9y6OZXHBonCpmQjwdFL69AHDlz8tyWhjdFTz8LFwf7Rw+acz+YRUpMrDgYHg6QR1k1Ze8/Ijb9kfmZdqvZCfwdetYsW1ol63qBcrvZJ2oP1j+hG5Vfw5uhhx+NAMufPgT+6nn09X+KzcE0ZNry8OaGMXwZLXVoOyD5ianpp3zfwhovc0/I0iWAoYM4EO+JV8nSF00Hf2i3qUts6Ypwn7RQVhf/+oiHTqLN1GQyB+9CgHb+ZAjH/jaV4T5iMti6zWSVmZuJ0lctAv/nb4YqU5lCOOSzxqz6+sk9oRHvw+PrFWBCimRq2hdzBdyJpS+NT8ewKBwqf8O7fI2AY6do/j49WNSpYZ5/7kIBN2+LqJIGFJKQ19UGswitLr8uZ+BqOd71x7Lwj8jdNhj7cWG9gNv7KHYaf6DZdBYM67z2qFWsQbotXS+YkU/2YHnitIhla8zLISTWqKEcimb+PmBPFU7Jo50xCsLlM/TeHTMTbI2Gme5p9aCx4Jq2c0qd2RUi3riEtMlDTUm0jAemFtwMnnPH2FGc4fSAdt5ECMf/MaVZl28sWk5qi+BCts2F+T8IuHqdzqmRQ1iUcQJJ/Ps2AXv203I7vMWiRRP5bSMarYopCCgI5A4CCoElwbnjwAnw9/PFL3PpEbfcGYa8W4scAmv5+p34cuEaWRpYzRtWx7zpI00dNmpguX85AkzKMzApyUC6Fqnz/nhhoNzRP0WdGBqNKZDT4Ezh7rnanseJjCHqYWQUEBvLIDpG/ku0RVMRDe2MbGZLJ9U/ToXqv4OmLDFupXDJvR6i3cohSl0Ond7RoHQp5xGUL1IDi3SShJwnoeeNph35Bfhy8r0VbtxksXwVXeCULCGgzzvOw0fu2N3UJeHXpMuGSJtPhOyP8BJvq85exdHXtyxKWdFXkltnTunGPzqC5clXTcnaeIbjp6CmOWWTdZ0QdRFR1FuO3EkxRZ+foZJVgrxE23ewOHYi8wK2SmUB9xufxUyJkDohz24WoZ5D8mowT2WJ2cyAOujvU8aUSDPyLRDR765dG2NPRKjp99yMwGhPv7LKYxk1j6TTl62NL8TZSHxi/nwsHCaib28B7urcZrqd2WNaFpOcCM04848o6e9OgL7aG7IqvPwri8cSbZfinXkUrCVCvfY7qPZvMZWR3v196Bub69TIqsDFiaTP3pvu/XHbvZ+pxnz686iZMsrwt67rMOiadsrUmgXfc4h/QOfIiGG8IXCKXNv2J4vjJ+m93baNgFo1zJ/d3y7gkPCYQVktUESi2y7VHJNbnyPpUuMZ/DeHfsRiVCLqTOPhAr5eVjPTk2CIhCnyFP9SPXgUqCof/5wqclQDy7L8s+dYbNxs/ixXq0WDXhORbsgLZggsk0q/dKbOXAXRPwhufyyD258rTU3UNesCXRfHPpbI6a/b2oVw27/ZlPSUpgXW+H2Gt98SUKN6xr2i+v0nqHdRr7G93r2Qf/BAlClt2zropyUc7kjWxEMG8giz0KST02bLNPv2M9j/L713Gjfi0bSx/PFWNLDsQV3JoyBgHwIKgSXBjRwpvB19H706Ze+BZR/UL2cuOQTWP0fOYvj4/8mKQki0wohmmNGMBJYhGpLkGGfKvO2A+sWcJ9eJAopGmYclzypEfW6OKtHPiiEC8XcJqQUQkeisrGd3AWVtXBTY2hfNRx3BpNBoWPMCFuOOOmMD7YrIYC+awFKv+haqg9vpwvCt3tC1pRupnPC7fpPFCgmBVaK4gL69bFu45VRHVtfTwWPL00isTLqKk+k0Gl9W6WuqgwyRBN/2Lgo1XO/RdyA1Fj3idpmaQwgeEo3QGZ5eCXwaKt7J8N4g5se642J4T3uhzJRPpwc2bGRBouRZmnEBvCr5KsY9OmK6nI9V41K4YwJoluLs4/yqYrRfxlERJi0FmjHtDf9v3asFjoZRbazcisDoNICfF8RdOA73hebHz5nQorg3+mcsWcYiIcGcxAouKKJ/XwEajfwNiLPb7KzyyIaUbEyNJvr4IXX2b5B7VjL2XxaR2+n8DKwmomR3Hm7bV8BtG33X6Vv1RHp7cxFmZ/XB3nIsybsD3uugZaluTtnUrxGqyzjyz5epBu3oLzNV9e13nNn8+GAkD//88ucFEWcnIu1Ge7OFiPp1JW5WAKbNUhn0LSPSgVKSI3Ohbwgo0iZ3nvOkfXHHGdzcSNuaL0JE+ffM22rvWNib7+ZGFnHH6fzTFBRRZQzvtICXziawSD+zIrEG9hMQEix/7tiLGXmvkGeav78IEtRHasyDWGgm07WHqPFC6twM8og7vhfuS78wJecr1IL2/QwdKpeZwEM9pgtU6XQ9+Ev+2XCrWQtdOtK5rzqwDerVNCriGY/GiO82EfXr2nZ/LPyeQ5yEkH5/KI+CQY6PiTEQgxGnBvV4tGwuv1yFwHLZDFMKVhDIhIBCYCmTIlsE5BBYDxOe4I1OoxEeGoQdq2iEJGnBH05ZiJ37T2DOpGFo3ZRG9DMSWJmiIX21HmSR/qKsZPRKpAj0M+r5wj3gz3m8qOZYrVebziAmhjF8iTr9H8y8EMiCZ8hg57zUrVXO3LkJzSypu7gGEwpthwjGsLgb+q7zF8wvmsDiju6CuzREdRabpawmCYmCRaJhGa1EhGDwEnGlXdM9wfLn3lZJUiESK5X6sWp08SqBvr5lUNyFAufW+suLAspGr8Yzkd5zPwc1RWtPx89sROmSUe/uRlO1hVXeOBrWxSmwp6Qwhqh4hFi2tI7tBVStnDG+255F4r34/aYkBTkNTjvo1fl90gVMTzhpKnNIvvKYnL+m4W/mURw0EzL06Rr2b4MLBfOb0u0MbocK7o5rlzkFQBsKUe1cA/XmJeY51GqQjx3PUhj8upw129SQhIEFBAzoK8LbW/4mxIYm5U5SQYDm0+4gRI7RdG/1ga5tX9n1J0czOL+Qkhru/iKqf8JD9e82qNfQDaW+fmuk96Zaf7IrcGFC7thuuP+asa5I5CrhpBdtL8OJeONxG6jwXBiaZZH6vy0Q1ebv6rnzOLP348cf8PD1lT8niFcG8c4wWpPGIpo0ou+4NC2DWV9m4BuqAypKHFuNZKELITIr+vo6DvGnaFsLNxdQuIVr3zM59S3tMXCa4CPSdpXpK8C/vHPa5QoCi/TpzFkWm7aYf5hwd8/wxAoNkT9/csLH2vV9fzPYfyBjTnl5iYZ3iZFM4U79A/efZ5iy8aWrQvtBxj3CRl2FxxcjTNfEAsFInW7+Qdae9mSXJ/HASYSsHm9Kksr44LsKmzDkXcBNcpSbu3Ia7vM+MaW7oyqNQ60WGby0bDGjt6Mxz5hRPPL7OT4exMuSeFsarVZNAW1by2+bQmDZMopKWgUBxxBQCCzH8Hvlc8shsAgIRKCdCLWvWjgBVcpTHRZy7fGTZDTr+iEEUcS/v8+HrzfVDTIRWBN6GzZdRkudthxiYPALw7duzAZE6+nXpL9DO6CU24sj1HIC4t59BsStWhrhMF8+QiQJ8JKGRMqpIJnXVXs3Qb1hsSn1Jfe6WOI/y3BkZ/gwAfnzOb6YsGzKiyawmLgYaKYMoAtDlTrjqCtR05dhuUVgpYl6bEnJ8LY6rY3PsWW13Quij29ptPUsCjdGXl9yLNSOBGMeHsS6pzdMOTt5RWBBYCM7SjLPcjE9AS1jt5p+LKvOjz0hGd5Jjhg55ksISUvPH3LUpGc3EcUj6ML3YFosut+nHmbhKm8ccZBEW5N8DR8/OmzqQjfvEvhfgQaGv9moa/D44n3D/6sOaY/I/DSy54Hg9ohwp4SWIxjkZl71LzOhOklJQGPdKXN/N0QuTUtjsGwVi7sWZCLxtBnQVwB5Hr6Mxp3+F+4/TadNZzmkzl4D0Vf+GIo8cHQSB1FPCYQan+uhuXkQ7j9ONZXNV6oL7bBpeQom4k1CvEqIXfIYi1g1jfhcoLKIStf7g71PIymS9pN+SO2ruRyePqV9H/cRD28v+fPh0BEWO3fTZyPxviJeWEYj3tALFmVcL6AHakjiYOQrIaK8Cz7oZDVIp77koJV4I5K6SRtetF1fyyH+NB0DrxARlUc750OXqwgsgtmLILHIu+V/8809n4kn1gcjMvBy2/wL3HZSr2Jd867Qdc4I8ECOjZPj41JLXbAdoso1JxpSUxncnfIVKiXR99tR77cROn4UAvzN5x3z8B40EynxnsL44Ne6mw2EoC3m6P2cVV2WY02O/3dqL79tCoFlyygqaRUEHENAIbAs8ON5AVt2HjR4C92MisWzZ6kG4iUnO7adbuZzSvsyXZdLYB04dg5DP5mLiPBg/DhnLIKD/A3dTElNw5jJC3Hw+HnD0czPRplHrTMSWJb6QmkTfoAQmn10JVfi2O7edrPN/6bgVqjtXsiVVTpc9pWrLFavNScgQkJEDBnAOz1stfviSeDO0SNRW31H4F+vznDl0cUXTWCRAdKM7QLmKRWRtmWe3rrN4NcVdFEaUYx8yXXOAp607YruMZYlXcHGpzfNPJmsTSx/1h3dvUugp0/pXPe2ymqi70uNQZ+4PabLRH/rcngvh++LE9oH6HCPRhUlhN2m4NYOlUuO8xI9M7J4lxr5Uj6wj4BAi+MM59MfoUPsn/Dl1MjHuqGCOgDfBcrTL8qqoX+lRGPQg32my608w/HLc90w7vJpuM/P+NJdakQnxHtpTOkuPi4Mv6p5T6g7pwHxmDoQ7P07mZJpJ/4M/rlwd7oOWLGSQ9Qd83EhHliD+guZNlQ51ZkXrrvP/RjcdRoAQF+zCdIHfmZz0y7+xOHJDYkOUU8eQT7n4TFnjKksvlg5aMdRDyebK3FBBo9PuoFNegwebvjXZwt4hs7lsgN5BJ1fDLe91MNS16gtdD1Hm7Vk9lcqpD530iIXPh2rhyctJsdWHz/FYpvkCGbNagLataUbW+mz3UcA6tN4FPAsCFT5UCKKlWNt9icgelMnZ0rOm7EZ+lfs/9m7DvAoqq797mwPSSCETui99yIiIk0UUXrvXZAqKL2DNBGkSJMivQuCCkhRkd6l9xI6oaRtn/mfs8vOndlskt1kU/z+Pc/j831kbz1zZ+bed85533QgaGB4AZydSe8/tgZL9rAhU5HE99eJeSQlASzq+8K/Dk4s6VGAIrEIGE+JdMKVqzncvhP3Y9KYEVZ7RJNm3gioLrPoW3OPUbBWqi26STeyHbhX7OOVafRS2HLnT8yNXv9O/li32opOx5pBK7BFf6PVXOT+wL1oT8DncqXyGUV34ovBXtyMACZPU8EsiXIc+bUVOq3Xw49T4eIlBTZJ0m9LleTR5oPHEEKze9S4H8DyyE3+Qn4P+MQDfgBL4kaeF9Bv5Bz8dUyuFuWJpy8dWulJsf9cGU8BLJrYrEUbsWLDb1CrVahQujA0ajXOX76FqOhYlCyaH6vmjkCAXv6WEUncZw2G8tZF0T+mYXNgK1gqzfzV5ekf2GdgEvWLstZG4wy+3wD4eoIHDnE49Jd841O2DC/jIfBFn+qBTaA2MwLR2VmWIU+NAmjkRbi1t+NIDwCWdtE4KM+zqBdLu4GwvPeJR1O5fZfSnBiAVSA/bYCTB2AZBCt+jrljj7Y6Z36R4Djo2FBDlwPtg4qhUUA+qNIw2srdQM2CzZ5GaKRwkbe2Jns9fKAP88i/8RXaH/sAnZ45IjjIPtDnxprs8k20Nx3cuOkAim0uly40lEfXjoJXqUne9Ota9ojxCVo++V38c3VddmzN4QDmVKcPQbPMwXuSa0hrGCQkKvc3n4Zy2LzkdJ0mdV0PPs5BmPtPhbWkI3WSjK7L2g0cSDRBasSFRSCWN+TdaTJRSafKR/egndRDNgzTsLmwFfRe0fXBPg4P/mA+yfEOj8I17kM3jkWV8llywpjC6Ube+JREM+jjFtkTVR1cDBgjVldlEFBltA2qawyspR+JyJoIraU26RsVLBJeqjHDrVB7EZBy7oIC235mz+5yZQS0zr4bfMkq4DOFQvq7mgfqSgAsZQBQbVzqAFgvzipwfQMbZ1AeAWXeRu144/eUKnttDYeIf9kaDC4ooPRbfi4C3bkrpyDkKgBrde+ezykNYJE/CMTasj1uOqGvQSziUlzv8iHSeT16drUhTx4BrpQbxvHLwWfPI142+nhB/hSfkb3GwFoh+dHMruviz785PP/1MDq9Hif+FKvPBsyW33/SevS84Z6xvfV3WZagx/gCntL52ZsaO1FOCjZhjNUnfGrXriuwVnL/VMz7FG3PdwVsPPjiFWArWRnW2vFHb/sBrJR6cvjb9Xsgrgf8AJbEJ5t2HsSE2Q6iVEqDq12jPHJmCwXnQYrQx3UZr9P/0kLzBsCieVPk2pqt+3Dt1n1QNFvunFnxcZ1q6NrmI2jd6Jo7ASzNvJFQXT7JXrguh5LU9unQiH+wPuqG2K2rwldqj8eb/ujwdu26fKPVoB6PmjU8D4VOqL9X524h92LGfxXDZcTCMtvxeU/fR3pJx5EeACz1vs1Qb1siDstarR7MXRinQ0J+u3NXgRUSACt/PgHdOicNwKJoq5WRV7E9+haiJbxR7vrPwunQKrAQOgYXR15VkDdLKdXLfv78T+yMYUqP7YOKYkZojWSNY0f0HfR9waS7CYgmQDopRhwZpDboGpSbL6+ADm14aHXJjybwdFwJpUaq/twJzYZ5oDs+9Gt5FNur6WuR1h8IPJ2jsxx3/wZ03/R1W83SfjAsNVlaGRWy8Q5i/UsS5T36O12frh1TJmrC2zl5Ul69bi7Uf+8Si/JhBWEctdiTqnHKvL6pwOWlDNwIyAFU6PMGpGbmNEGrh2EOS7dNUkc+rKTevwXqLY75ntVPR4S6qth6rlo88r/lztEPbAyFmYVYGcctB5+DHejHTVLJ7tnxo62eZn7b+7t8hcOGzeyd+nHoIdS56Ei95LOH4WFwRRx4URk3NeVB/D8fxhIbJIs0qj7V6vMoaHduvrWdw9NjbJxSH/nwsiS5qdgnwLnv5OBDuTonkWXXaHvqG5mg1sA0Zgn4rEw5NbEOUwPAojGcOcfh550pB2IR+P7dPCUiI92rTpP6ZfXCz6Eb0SbBe1azYT5UfzJ1UcunXWD5KPnRzNLrcPcuhxWrOXR6OQZljEyN2tygDaxNu8d7yVyjx1aHjMd7g99FNqbLkODlJiCaAGmnqZTA2FG+AYhdPzJ+GdUXOaOvyMbjChZKf/QDWIndqf7f/R7wnQf8AJbElx37T8WZf6+j1acfYNwQz9XFfHc5/v+1JAJYSyZBdfYv0QHeSISnhNe+eXUa89/8KzY9OFN5DM1UPiW68nmbpF6zaAkXR6WwY3seRQolD8Qi4vgzUzaj7jN2iLoY8B5Cxo5LEd4rqXPSA4BFUYJaScoNnzUXjBOZOlhCF/PuPQWWr2IHSAI9unfxHMCiaKvtMbft0VbnzREJrhva/r6nz4kOQcXwoT5vuou2im/wv8TcRR8J2TkRy5MaoULhfkPvyc3jqgDYNqgIZoW+60lVWRlXJTLnj6VK8GjZjE+VA6p0QA+tMagavln8U05lAE7lcSi8OlXr3mjVyD+Iqb4GmSy4P2cTrBVqwtyLfTX32hmpXEF15HdoVn/rtldLw3awfMaiiJyFCGSkiIl/L8oPnJSC07G9Dfnzph7YmBR3KQwxoPQ5hYXlypg7D4O1eoOkNAfScCAeLPDsXqo20YqgQfJoF8P3u+0gQnow52HXrMiIvwK3Agr2/Cz/pRUBb8U1tQvHQPnvMXHIlhZ9YKnbXPy3a8TGxLHeHXhv3qKUYdb3AONXyPuKfXCT+uq+uhhuB86C1cZ454gwn4jzU9rOzVYhllGJokQXHiElkvfO9/WYL69Q4vVVtgZDgu6g0kO58qUtf3GYvvY8SjS1ACzyRXwgVo+ufLKV8PYf5EBRTfEZpa42yXcEtN6dxhcqDePQ72RVnB8wnH+0VqkDczdGsp7caxodo7BzvgmxMZj8pLGsucTSFenDCo3Pab8G9USO7m1Q3EPV7NhYYNosBmDp9cCIYd7dz/HN/8FDBZb+6LjPP4pcirox6+IUNQ35FrYiZd024Qewkruy/PX9HvDcA34AS+Krdz7pi8joWBzaOgdZQ9MvYbfnlzf9lxQBrJ9mQXV0jzhgc8cvYa3RMM0msOTNJUyQbFA7BhXDtFA5MWyaDc6Djt+8UeCHJRxiJRw9FADXu7stDj+PB82JRdZt4lDjyEiUNB0X/3b//f7I0uZTb5pJUtn0AGDRYVI/wIUg1UPFzPsPFFi2QgJg5RHQvWviANYFc4QdtPo55nai3FZZOR3aBBZBh+BiCFOxA1SSHJ4GlQy81Z5GaLHHDjlsa46GqK5LOv/c4jcXMfEV4wvpGVwS4zOzSA5PprlpixIXL8cF0d6vaUPdOil/MHU3xmjBgmL3WKqGnlPhZl4Hx6B64wKoD/2Mh0F6lO7bTKyeMyoWlxdut//bMPknCKFpJ5Thid+dZVwjCqR1Kd3I3PmreJujiLnjJ+WHQqUSaNeaR5HC6etwL52E+sA2qDczbk1BnwHG6ZuSBS79O1+JKAk/WInONuRc3RrcawaIU/odpeGlB3Omjd7VtMFNXW9xSBlyA+UGsEOr6q9foFn/vfi7rXgFmAY6VNlI2GTiVHbgpWzaMSO9O/DeD1dg2XLHszuT7TlGP2OgsDs/nQj4AZGq4uJP5Sv+jqCquWErUCLF3GqJBU5OkEc3EUCp9AE3kC8HHf0QuPC9fJzVo7sikL8r64ZUNklt0xNLTQCLxuMOxKIU5S6deOTMnrT3gTvi9hzZBTx5yt47YWEC+uVYBfUv7KOZpXYTWFo7BDucprx2Dto5w8R/83mLwDhioSeu9KgM7WNoP1M19le0ejOT3Xc588E0dlmCbUijKqngMX0jRLcaghrVPXsW097227lsH0VqoqQq6gt7/kyBeYuUKGw+iz4R7tVYXfnGpP36ASxfXAV/G34PeOYBP4Al8VPZut3saW4nf0taiL5nLveXknpABLA2LYDq4M/iT+YWn8Nalx28Uttr22Juof/zv8VuPw7Ii6VvCZJTeyxJ7Y+IpkmZkJfsC+hl3683D9pseWvHTnD47XcFJj9pJCPsNI5ZCj5XyvODpQcAi3ymm/4FuLvXRPeZeo+HrXziET2uABZxWRCnhTuLESzYHn0ba6Ku4V/zywQvFR3Na+ly2VME6wfkgVKSuuLtNU4P5bs+3Y+9BkbW3SO4BCZkTnqK9revz2H263Pi1LyJpjSRst06DuHhcvCKAsI+a8yjYnnPNt0p5dfcd+Xci+H5Otuj1TTLp0J18iCuhQajeg/2hbxIRCROLPvFPhzrB01gbiU/+KTUOJPbrvbbwVDeZByJ0vb4ouVhHMwOUe762n9AgT8Py1W9iBmgdUseJTz88p/cOXhVXxCgG9sZ3IvHYjVL/VawNOvpVTOuhe/u5vBIwpGY+30exc71BveAqX8av54PPn+xZPXji8rKK6eh/X64vakjGVYhVplXbDZ/Yx65arJ7jwiribhaNI6D4bsdEDQ6GI3A1BkMMCGyZyJ99sYePwF+WOJoo17UT2gYvSLB6uf0k/FCzd4JZWPHIZv1LxAIaStWHnyxCuBLVLKnH/rKXl7icPUnBtRSimj5wd7N01djSaydi0uUiLzFnqnZLH+hrMElIlShgHH4AhD4kpilNoBF44kPxOrWOWmRWK7E7SQ80aMLjznz2XOLwNfJISNlAjrmTkNhfedDmYsUr19AP6Kt+DdBqYZhPhMyScyfCf1OapykyknWO2IIipjPisXNn3WDtSHr1107ynP/QLt4vPjTTU0FnGowC5++TQdObGzPX1D0F/NJllABA/r5BsB6+UqBpXOi8OWLbgjmX7kdirnl57DWcX828QNYiV09/+9+D/jOA34AS+LL95sNREysAad+Zxw3vnO1vyV3HnACWOqdK6D+jYXrWj7pDEsjuWJhanrwL8MjtH3KZIGr6rJhew45z0pqjiepfZ2/4FDPkVreMAf3Eic/zyXYBX0FXLRUiTDjZQyIYIdeQR8IA8nYp4KlFwBLs/kHqA5sE2fs6cHyQbgDUHRaWG4BvbrLN17nzS+wOvIadsTcQWwi3FY5lAFoE1jYTsqeS5UhFa5A6nSxOfomBr1gnBpZlXqcPYOb9wAAIABJREFUy9M6yZ2Pf3kCSyMvi/XHZK6MPsGlE22PeEhWrFYgIsIlBU0FtGmVPqJ3yj7YgAgb4/4hP5G/6OBPAMDpnKGo14lFspZ/EoGDqxzE74JaCyNFD+q8U4BK1HEpUEA/4BMoLCa3LQtZc8Iw8adEez16nMNve+TXkoDI5k14kNBFejLlpRPQzh/FhkSH+clrwCczMurlZQ5XVzEfBOYVUIX/CkqJopnp84mwlU37aGP1tqVQ79uEKK4wjgculfjCQd6udgkw1Y3vBu4pA76d84iOBmbMZgBWhgzA1196B+xERCgwd4Hj2T3yWRtktkny9NwsnKu6wQjXsKjk4oa5CLOwD3TOKnymLHZyaL54JdhKVoIQlPTI/zu7ODyWpJ8RSX/BJulrXTvn7crHRgRlNWI6IoB/KPMmH5oTpnHLEo06TAsAiwbqKxDrylUO6zfJn02tWvAoXZLHlBlK0IcUp02LaQlVJBNsMYxcBCFPoTirUP/Fx1DYmHKBYeo6CCEeEk3F8zAkblXiWCUL5F9j3JOmMvJ049R14BPpQ/HwNvSTWTTlS2V2bKi23mNF5kePgEXL2P2cMyfweU/v7uf4nvX0rHgz6isZKOda1vJhG1iauOf48gNY6ekt6h/L/7oH/ACW5Ar3H/09Dhw+g9/WTkfe3J7Jpv6vL5CUnp8IYO3dBPV2tkm11G8JSzOH+lBamCtBckFVMP4OS7uIsOT4QPrFzNmON8qExHu1YBGH168VqBO9Dh9HsetE0s0UUp0all4ALNWZv6FZOlGcsjsOCnf+CH+owJK3/Ar0e1guAb162Owk7Fujb2Jt5DVcsrj/6udsj6KrSEWPUgTr6MP+89FW7vwUzVvsaYQ8WJTg7lyfoLwmS5KW2bCII1gXdV2sOz30HTs3WEL2+KkCP63hEBMjj7wK0AvonIw0kSRNIIFK74Vvw21rpFjiz9xNUVidEdpp/aC8dx1/5suOJm3qib/XfPIav6zaLf7b0qI3LHVb+HpYPm1P8fIZ9KMYATERjStMEpk3ALE/7POoT3cHTqpI5MhVK6efw752wWgoL7I0bQKUCJBJrsVJM+ME1Co6A5oTTM0yOTxbyR2ftL5uSh9w4bdwTdcPDzRsjRKnE3E7uRqlW1LapdMstT6Bpe1AvIlU4Ns5kpSjIAFDB3sXsREVBcz8ToUC5gvoFzFQ1rXxmw0YOz+7PdI5l+UWCpnPoWTGTLj3pq5YLr9pNQqblifqHlvBEuAr14a10gcQgkMSLS8tcGGeEtGSSNFi7WwILed9pLVXnSaj8Pm5SsQ8Ys/XHOZ9KCV8F+fettZqDHPbAQn2lFYAFg0quSCWO+L2ggV4dOnoWOMrVytx+47DTwF8JCY+ZSp4gkoDwzz2PJc6yfkOcP7NNGimPfovqUb7v/k/KGF+i4nVitmKTyPni83ZCpWGyYWLy11f9CGCPkhIbXLxAxgy0LN7MrlcognNn9uzBbqf5Rk4fJ7CsghVojYhihN35gewkrq6/PX8HvDeA34AS+Kzf05eRK9hs9DmszoYM7iT99701/DaA04Ay5XDwrn59LpBH1V4ao1FxfBNYmsZOQ0u55WkKPion9RohsiMV6/lcPO2/Atfw/o8aryT+KFt3UYOV6856vaMGIpi5tPisN0pgKXUnNILgMW9iYBuOFMBovl6coAOf6TAkmXsICWUeIaY2pexM/YuiKA9IculzIC2wUXRMbCoPcLmf93aPd2LPw2PxGl+kbEMRoRUStK0iRSeyOGdtiBLLTQJLBhvW7duc1i3gQOJIUgtNJRH5/YCMmVKP4fCxo934YyJfY3fkfNjVNZmg350RyginuDXwrnRvjlTXGwQq8bGeSztkM8UCjqAp2dTnj8C7SKWXmQrUg7ck7tQRL0Rh22YuQVCYEaPpnHhX0dUqquSZP06At6r6dkhyqOOkliI0gZ1Y+T7D9OA6bCVqJjEFuXVXIm+yxX/GVlPzBULWZv0gPnDpEc8+mKQishX0H/dCgI4O3m7hWORSUXb88hSNu57S3nlDLTfM0VYilYzTlmLiJcKzJWkYWUOETCov3fX2WQGpkxToc3raahsYFyd1lJV8KbHVHwjSVGk1NQ+9Wy4vZ0963MEnUGpl2NBxPyeGl1vW5V6sFWomWiUpJ2gf4wSEBggVHmUFZpgT3tL/XIvryhwdaUkDFzgUa3SegQ8PQO6llIz9f8GtpKV4x1kWgJYNKjkgFh/HOTwlyRyjtbPwC9sCHn7nvl9L4cjb5Uli5lOoedLxm1ly1cUpuEL3PpFs+IbqE4cEH8zt/4C1toM/PLmihPIRhH4T5+x9TXwRR/ksTAqBXOb/rC+7xkXqu7r1uAiGTXC9Kyr0W98Do+UQa/fUGDNerZuihQW0LGdd/ezu7lTGrVu6ueyny5rq6Fwj0+hWcA+0tI9b/5iqlv3+QEsb1aVv6zfA8nzgB/AcvHfjAXrsWrzHnRp3RA92jVCSMb0LTufvMuf9rWdAJby+D5oVzpIV8lsVerC1M3Bf5EWJggCwu7J1eWc/DJpMZ7k9mk2E4eH0r6Zdxqlz3Rol7AyIZEfEwkyGSfYMPXJR1BBEpY+fgUEH/J4JDTP9AJg0Rh1o9qDe/lMHK7xq+/BJ0LQS6Hv81YJuFHoBq4WuYJXIQlHW6mgQN2AMHu0UG19bnD/cW4rb9bw6qhrGB5xVKySW5kBJ/K09KYJsWzHp3/ggCFc/PeqbHVRLyCP27boILLjl7jgBpHndm7HQ6tLP+AVTaDD0304aGBpN8656Qd9BoUpFptK5UfvTxgXT1N9Pvz4jTzKwdxtJKxVPkiSb1Ojknr3aqh3sRRBIi1W374I3JfwNg2fDz6f57xNV65x2LiZk/ED0lyqV+XxccPEQf2UnLd6y2IQ0bHT+Cw5YZyUeIqkp2O6tY3D0+PsY0b+AhdQ+DyLKrLUbQZLC/lBztO2fVVOeWI/tCum4YWqBs4FTBGbVeoEVBnrPv1dYTVDN6iJLG3KOHYpnqoLyDhzsmYR0L+v9wfeKeMtGP+0CdRgqpCmnmPwOE8tzP+BpTSFhAjoUk/AlZXMxyHFBJToZgP36A646+ft/ymvX4AihkVPxuc7irKxlakGvmod2EpXg6BSxyn6+oYClyUfR3RZBFQc5v0cfXX9PG3n3OgIxFpYtkOOgg9RuI0K2ok9oIiNFpshcNo4fiWEDO6FSdIawKKBnjjFYdev8o+ExDWaECcWEbcTuCrlKa1Zg0eDeuwZdO6CAtt+dgA2H0SvRaMoRpJurfkxzO0Hu3W3U4nW+SOBSwQyJcV27FLi9Bm2dwy1PsKI5ywqlpAnw4yt8V4f1z61MwdCeZul9S8LmYb6QyqD7s3E7OJlDpu2MD+XLMGjTcvkPbMVZiN0tOYiWGpwJBeCmVlX4auODxA0i9FmUESWcSQT15CO1w9gJXb1/L/7PeA7D/gBLIkv9xw6iVv3HmHN1r14ExkDpZJDoXy5kD1rZui0CctKz5n4he+uyv+jlkQA68JRaH8YK87cVykTyXFlqfvr8ZpnvCun87QC8Q79V402S6RMaJTwKZAy4ee9bAgNjbtxcPJeOTdXBcz/ol8EC+VP7eiN9ARgaX6cCtWpg+JSsLT6HJYP4k8xPWV+hqVPruE3813YVAkfLPKoAtEuqKj9vyyc7r+63JI17lc2E0o/WC9r40Duz1BM7V1aDTXQ5PGvOGliYGN8qoYHDipw6O+4xHClSvBo0YwHKdelN/vi+V/YHnNbHNb3Wd9D8wyF4FRv+7FCEQxtwBQXOwQWxezDV6Dew6KuvJWsT20faBaPh+rcP2K3lL6hvnAUivNHxL+Z+kyArVwNr4Z2+w6HNes5u0qd1KpU4u0phQTwp7ZReg1Fd0oP78mJnHA3/ufnFLghiWDIlPUFKt9i4LC1ah2Yu45I7anL+tP8NAOqo/twQT8Oz9QsgjB7dR6FmsZ/WKVICdXFE+y53KIP7pdqLhKw0w85cgB9e3nPmfP7qD1o9nKW2LYQEATDt9tw67YCq9awh0PevALa1LPhwjwGagXkAsoPjNsnF34byhvnoLh8Wjbu+JxPfHW2CrVgq1JHFpF3fy+H8P3sUJ+tsoDCLdM/gBU5Yj4u8oPE6So4AZVG2BBwU56mTwWs5WvC3NuF6P1tzfQAYNFQ4gOxenQVkDVL3HXrjrh9cH8b1BKM8slTYOFix1rq8GoCyhsPsfXdfhAsNeWqyM4fVWcPQ7NkgliWIvooktNbc8ej2l63ChXusEhea8kqMPd3H5Xkrj/NqhlQHWNp39uCByJ/t09R3ANBjXPnFdi2g91v5coKaN4keWvdKXoiHesPod/hlqY8RvV8ipCJLOI+oX2vH8DydnX5y/s9kHQP+AEsie9K1e6SZE9eOiRXg0pyQ//PKooA1tUz0M6VhP97oCyV0q6qFb4dt6wsTWVvrsYopQlN6W5TtH1SwvtxpVKWPhOSUUCfXnJlQinvlXNAH8b8hPqRTH3JVrUuTF1TL0ouPQFYpJip2cRC920V34OpJwNgyWdRvAWbY25ideRVXLewdeTuAqsUHBro86B9cDG8r8v1/yjWKv7l3uzJbzhuZF9Eh2Uqj0GZvOfwqP9oJy5LlBxd72MCaCml7N+L8q/nNLJ337Hhw/qJfxVO0Zs2gcZHRRzDyqirYolJmauhO59VVKD6vlpJjKtdQfy9d3ApjFMXgZ5SYHm26Td9+R1shRMntk+LeerHdITixROxa+Pw+dAe3wfFwR3i38wt+8Jap6nXwyN1yRWrlbCwoFJ7G2VK82jRNPVBLNXhX6FZ+504DzvR/qwtdjU9X5k5Ejg1hYErCo5Hndf1oHjLOWcrUQmmAdN81V2S2tEPawFrtBV/Bf0MQcHGWqafDUF5478fVYd2QLNRwstTrAJutZzplnvQ24G9GDwQeY0saiT2vaZAu76QRshQm6VK8mjaQMCpKRL1uCCgyuiEQTNFTBSUpw9BeeIAlLfcK25Kx8wHZ4atUm17ZNb5PSUReZshrgReEYiVno147HSDPsWRDKthUDI1xpw1eRRozEO7cjqUx/+QTcHcaRis7zSIM630AmDRwNyBWMSd2N0FxLp8lcMGV+L25jaULiW/bpTqPGGqyv64Hv6sA7LYWMSt8et54PMXd3uZuYd3oJvMeGSFTKEweJku/vwFh4WLONgk2BsBccMed5AppJq6fAVbtfoeLzeKqKXIWqf9FdACpDzuCaXFiZMcdr3NCqD69MGhsYcKhm73Xkf3QPMTA6apzP4M7fFbcA978S+/MCHnKCaEQn+LXbgX7r5w+AEsj5eAv6DfA8n2gB/AkrhwwrdJB6HGfZl08CvZV/E/3IATwOLuXoVuOgtv5vMWhXGE+9z+1Jqu6wF6Xfb6eF+fO7W6T7F+zpzl8PMvbpQJu9hEDgIp75VzIGOVgxEcfk4cF0VCEKFlall6ArC4e9egm8aiLoUMQTDMchAInzA9xZrIa9gVcw8mJPxlMJ8qCO2DiqJtUFFk5rSp5cr/RD+kHEgKgk4rpcmMvbk849iQTrB6+BY8sLJ0lH9yN0d+tSM1nIDa9RsVoGgcV0tvxN7uLtqM12cx9/V58aehmcrjy5iM4sFlas2ymPluGfH3LzOVx5BM5aFdPg3Kk/vFv9vK14QpnuiGtFwslNqhH9iYDUGhgOH73dAd2g7FVonoR72WsDRPmujHo8cEYnEypS/qkKIBWrfkoYy7NFLMJbqJ3cE9vi+27wmBdVIGc3qaEqZXDPCoGt0HwbyDz4YPKwTjqEVJadYndZwH73D1p7iqZ+lR2hABlYYn/DzlXj2HbqSEq5LjcHXwTixbx1Ra8+UV0L2LdxEb3NNw6MZ3lc3v2ZAVCCwShr//4bBPEv30TjUeDRvwODqcACynjwW8M83mcVQfpacrTx4Ad2I/lI8Yf587B/PgcCj4N/BgWQKUPkhphOnZlDcvQvvtYDxW18cl/UhxqJxKQKWRNmi4WGgn9QBdU6cRkGsa92McNc70BGDZ9wBu0gmlIBYB5qRqSUq3TiN16B7d3K/LhUtUePnYaKdwEM3+LPwVgooBvNLrTSm1+v7y6CzDnB0QtJ5lERDtxMLFSryUPCcoYn9Qo8vI9oNEiVqlgXHWZo/bpTESMEkApdMuad/Fv/Un4lMPgKjDRzjs/YM9lN99h8eH9ZOWQsg9C4d2ch+Zwu0jfXHMyTgfvMIBQFO6cd5pTUEAs9MMpN7rRjHUD2Cl5yeOf2z/ax7wA1j/a1f0PzYfEcB6fM+eg+40PnseGMcnrtqTktPt9ewgdsfeE7twpuekZJ+p1TZ9waIvWVKrWIFHk8a8281X5XJWtN7nIss8eQ2E0NRT60xPABaRVtDBmjaJZG90aqz6ehzW2h4lGm3F8Rzy3c+H6s9LYGbLbP5oq3gW/TObARUebJT9ejysBcJU7nlQ4rt3St9fj1eSVOALeVojVKlHdLQDuHj+XJ4rRqmCJGFewoN0htS6X+PrZ8mbS5jw6qT4c4/gEpj0Qgfdd0PtfxtZpxJ+qMK+0I8LqYJeGUuBUpd0U5iUOZ2sifA6MQn01J4vd+Nf6GYPYe+FnPlgHLsMujMHwS1lKSvWyu/D3H10kof37LkCK1ZxiImVr4XChXi0b5M66aPczYvQfSvnszFOXAU+a64kzyu+ijc2KPH8LJtrUeMC5DU7eLeE4MwwTJffdz4fQAINqv/YAvXWxTgZsABvVCXFknka8MhTN/GDqm5cF3DPWJTKvaYTMO9YLbGdggUEdOnoHYCl3rYU6n1M1CVcXRTmUQuQIzvw2x4ORyWcYsRfRDxGJyerYGFnXlQeZYMm2HtQiQBN7vheqE8eBClyutorZRmczvC9+GeN4jXeqf+7Pc2QorTSq6n+3AnNhnkgAO5I4FoYuRziUMM+4JG3IQ/l7SvQzpQrENoKlIBp2FxZBEx6A7BoIgmBWOcvAH8dZvsvIm7v14d3m2ZIbVHKXOSJ8+j7kj0f+Fz5YRzDQHx311k/thMUzx+LPxmHLwCfr6hHS2Lteg7Xbsj3iPQsLH1hAdT7mdqntdL7MPfw7tlL/FfEg+W0J8r82FZtuUf35YE/ORz6k42r9vs86ryf+HPBddIKqwWaqZ9D+Zjt8UnhdmmRVbgekVUs3qeHFQWX9QAnKWccvQR87gJx/OgHsDxaWv5Cfg/4xAN+AMsnbvQ3klQPOAEsxavn0Eu+nAoZQ2GYlrbqWCMijuKnKKay4jz8JXWu6a2eK/8Cja9ied6uqCO1rFkFfFH7NDJ8z9RvCLgyTF6TqlNKVwAWEbnPHopjxsdYWa4wdhbLC5MqYZKkfIpgZD9VAkVvFoXWpAX5tf/n3h2kUtXh6aCzjx/9gvPmCHEkYzJXRp9g71Ldwu6ufJsc5WjmVr6OiHquwqq1HCKj5IAFke52ascjd27vD5pp4a5N0Tcw+AXjh2oRWAjzHyigfct9MuCjalhdtrA4tOmh79hFAcgIGCKAyGmUgkepeOnJXFPCrFXqwNxtBLR3L0E5nXHn2AqWdBxqk2EUabB8FSeLiqDm8ucT0KGtDZqEaTCT0bOjqubHyVCd+lNsx1asAkyDmLBJsjuQNPDkmEKmkpfV8hfKGRi/kCeqqr4cj7Qt7bwRMF8Jxz9BUg48R1SO1gOhSUrtphRvp0WU/QTfPGey90UK8+jYzosDL32s+KqljHCdOHtKD2iMsNwCNm5R4tJl9hyh1NOyZXicm6tCLBNSRdn+VgSyTDnv3ScIUN6+ZI/KUp3+SxzPXU173NSxj385zAdQ2jjJDvDYipQFX7UurBVrQdCzKDTvO/d9Dc3aOVAd3m1vOFz9Ca7q2TXiNAKqjLZBqQVcwUMqb2nWE5b6rcRBpUcAiwZ3/ASH3b/L91MUiRVrkL933q1hw4f14n/nHDvBIWrLNnwWxbISrNXqw9zlqwQvjGbhaKj+PS6WMXX5GrZq9RK9mNTfry7jpsjCjxrYHPdCNKNESAr/oOLNS+iHM6VTCzSYUfx3DB6Y+H5o7x8KHD7C9lqU4k+p/t6a63OC6hPH2uJz7+PefXZ9une1odiWoeCus+wDSrGmVGtX8wNY3l4Ff3m/B5LuAT+AlXTf+Wv6wAMigGU0QD+YpQfRlxDDnJ0+6CHpTXz7+hxmv2YvrX4Zy2BkSNyXVtJ7SNuaRpMCPyzi8OpN/GzFahV9GbQh+z8rQao2TqPUQUohTE1LLwBWJG/GhugbWPf4BG5oE2Z61oDDxxnyoUNQcRSOziFTw8oSKmBAP+83Xqnp87TqS2GIheq3NZib2Yop+VnKQyVtVuzM6Z601t1YTYINBe8xrg26WocVXe3k3Waz/NqRbHnnjjwyh/w3wCua757Y++j2jEml19eHYe1NC9RrZtvd0f3TmthWIp/omgVZaqFJYEH7v5Uuwhn0zDV+sz5dHXRpHup/fhPHb2naE5YGraCNegHlV23Fv/OZs9kjyJJrUVEK/LiKw0uJWiu1mSsnRe3w0KWQCiVJypO0vNSScjD0dP6GZwqc/ZYdAlVCFGpHsfcvpUNTWnRamH7AJ7jNtcMdbSex+4wFBZTq7dmzUnX5JDTzWEqaOTAUI4OYqiNFVrZt7TmA5Xqf0KDGZN+JVp0CUKiggGUrlCBuSadRdBdFeV1ZrsSra+zvJTrbEFLSd88W1aWT4I7/gQuXG+KlsorYf3HDHIRZGD+c8wdbmep2tVG+fE0I6hRGYz1YOBRZRRFWZDxU+Dv7blgMbFx5G/AIextxR6mEykcsUobqmEYvhS13fnv99Apg0djcRWJJ3RMYKMCVuN3VfbfvKmCcOwOVjXvZs7BVX1g+SJj3jyIZKaLRaZaP2sPyacJ0J5RSveRHuTIiPf96drdBc+M8tHMc0b1kBIoaZjOw2IPLLhbRD/oUxIPmtInZtmDIuIwijUV8bZHSI/nUaY0+4lGtiuf3M9VTXjwO7QJ51Jjl3Y9g6TAEP61V4uYtdt92bGdDqb+mQHWSifaQyAWJXbiaH8DyZgX4y/o9kDwP+AGsePxnNltw9tJN3LwTjjdRsQjNFITWn8V9YCXP/f7aTgCLPOFUznJ6JS2/AtMYVkVdxciIY+JFah1YBLOzMEn6/4Wr9yKCw+KlCjsXkDtr9hmP8uV4aGd/CeWNC2KR+F7gKemTtAawjhqfYk3UVfwacw9mJLxhKqIORvugYqA1E8w5NuV0KJ4znx0aQ0N5DOzn3cYrJf2bntqmtUZr7mZIEKr0kvNenc3TGtmUeo+GG2EzoKwkDTFI0KLV6o5x6lIkRYe2PAICfHfA9GiAySx0zPgEzZ/8LrZSVZcNu89HQfWzQ2q9dYva2FuI8fatylYX9QLyiOV1Y7uAe87SrSwtesNSt0UyR+W76tpp/aC8d11s0NR/GmwlK0Gr5qDsUVfWka/eF5RGuPInDk+fyZ+J2bMJ6NKJR4YUWCNEaEzExk4TMmeDwQeAXEJX4sR4JaySSJB3ojojg+Dg3zKOXwE+e3LChZK2BpTXzkEzZxgOB26CiWNpPEVa2ZC1kuf3pn5AIygsjvRusplZV+GpKq/9/5cpJaBlc8/AMCqvWTwBqnOHxbbO6OphXcgoe2ppsaI8vvteCVL4dVr/vo5UsJtblHh2kv29UDMbslfzfA6eeFDggePjlOAl7+/q0V0RyMfPm0U8UrYK78JWtb79Xkors6fgm41i97da/Io7e9lzXakTUJmisNSwp29JKSaoki1XPpjGOJ5z6RnAovFRiimlmrqzVi1sKJ0IsGkyKmAY1hO5rHfEJoxDvwNfKOFoZAL/nR8zqKK1Qi2Ye42J95JTZNjCxfIoVIoY69uHR3CQYG9L9kGh5sewtJenPXu6nnSTe4N7yBR0F4R+j8aDSyFLaMJ7om07OJw7z3zp3KN62i/3OsLOrSZVeqVnnWnUIpBoxvrNHK5cYe23bcWj7MWFUO/fKnYR33vSD2B5ehX85fweSL4H/ACWGx9u3nUI837chohXkeKvxQrlwbYfJ8lKDxwzD9duPcD3kwegaMHU3+wl//KnfQtSAEs/8BMozCZxUIbvdkDQeUY4mRIz2RVzF72fM8niugF58FM2+aEpJfpN7TZv3uLw09q4m6tyZXk0b8LbeZ70Az+VqZYZpm+CEBySqkNNCwDr9dtoq7WR13Dbyp4H7iautdrQOKgQ2mUqgWrauNxgfgDL8+UiVXms0a0RrmTNJFaeGlodnYPcKy+59nDPEoUaD9nGMzA6CK23ySNdihfn0bIZD4o2/K/ZFfNL1HvEIlWLqjPh8NGnUO93fHX/uF19HM2TTZzW5hwNUUPHuGZcU/T4TFkckUxEypLWZueZawSFlam3UVo5pZcTgKUa1hrCqxfiKO0cXpnZXJMzfKNRgZVrODx6JAexQjML6NrZcZjzmdls0I9oA0XUa7FJc5NusH7IIsx81pekoas/cXh5iV3nEoZZyG1xpHQZB38LvmjZlOg2wTYpXSz6wHWczsCUGBUqAVXHOtLJPDXt/FFQXmICEL8E9cGfgY77nj7I0KHXE6NUKUqZksr2Lg6ZiRu6ymjRzIaypQVMnKqCZIli5Nc26LQC7u3h8PAA82+e+jzy1POsX0/GRmViwoHz89iDi1MLeK/BDihP7AfngZKhEJgRtsq17XxZlIabWqZ49hD6cSwSiHjXoidvxOmpSlglPHT5G/HIVcvhM/W+zVBvWyIbIoHtBCakdwCLBu0OxMqfn0e3TomvCXoG6vp/LCqFUnv3Ru9C1twJ3xRxOAQT4c1atYbDrdvyZz9FnhYsQPtAK3RDm8mipoyDZoIv5r0yMI1fu3g8lOdY+vuGjMNRrHt9FCuSsD9cU3ZJaKNUicR9aF84/NuPsZJ7g0jwzSMW2QFRMlIkPn+B+YD2wJUfr4P65x/FtWeJRzTED2Cl1hPE34/fA4AfwHJZBbMWbcSKDSxlgeMU4HnrU6V7AAAgAElEQVQB7gCsBSu2Y+GqHejRrhEG92rpX09J8IAMwPq6FRSRr8RWSPKXpH/TylyjG8prQrE7l0QRK60GlgL9HjnK4fd97KVNaVSUOqhWA8orp6H9frjYK58tDMYJK1JgFAk3mZoA1j/GJ3Ylwd8M92Chz9wJWInnr9H5/C20vXgbmr5TwBd1v6GLeKnAXEkEFvl4UH/PIwFS3eFp2KFm7XdQHf7VPgJXJb2aupzYmONDj0Z3yRyBBo9+EcuGvApBs1+ai/8mCW5SG1QknAnqUV9pUeiRLQZVHmwWu86u1OPiwftQHXWkmrzf+SNcyMGInH/L+QnKarOI5SkCQvdVK9mhhMjQiRQ9rc016kKarkIAlmZaf9huXhaHaRo6B7ZCpXw2bLMFWL1GiXuS9DBqPGNGAd0686CUU1+Y6sQBaFZ8IzYlKNUwTt+Y4il8j/7icHc3e+bnsOxFaYNjHKYeo2GrlPprQDf1c1x53hyPNUzdNmtFAUVae/ecVB3YDs3mhaJPb2gqYnHot/Z/V6oo4LNPPGvPSSjvbOgNF4rJ2TdDgAKNG9lQqqSAaTMlABIHjB/tAFyfHOFwewfzb/ZqPAo18/Cg7eHCenSYw12JonBICR4lujj6ICVDSnsizizuEYvcia9pITQHrARmVasPPqcjWi2lTHn2sMjTR33YSlaGqf83CD/I4b6Ee0kVINjJ7zlysSBA+91QWSS4fa0O+x6hFStApVTg2WsjrDbf3JcpMXcpiEXvnC8+j5+4Xdo/d+cKdDMYmf1zZRhu9FyJ8uUSniuB4nYA9q3Rs8Uw3/FedbWDf3Kg/6RWtzaP998CiAQ2EegkthWYEaTGl9SXp3rrEqj/YO+ufYGdoGjWGTXeSfgeWb1OiRs32Qub+AmLFvHsmrtGutJczK2/gLX2Z+K8du7icOoM88MnjXjUMP8OzU8zxTK2qnVh6sr2xM4f/ABWStw1/jb9HnDvAT+AJfHL8bNX0G3wdBBo1arxB+jQvD7CcmVD+Xrd3QJYFy7fQtu+k1C2ZCGsXxh/WK5/8cXvASmA5aoeRCqEpEaYVnbD8hq1H7L8/jyqQBwLSz/pNb72y5btHC78y4FU2D7vZUO2rI5NgWbHcqh+Z4S61pqNYG7PCJR9PY742ktpAOslb8KGqBtYG3UNd60S+Sg3A9IrVGicIR+6Hj6N6nscUQv2zdBn3WBt6D5y4tUrBb6bx1II6QA8eIBnB6nU8nF66Uc3vT+4u1ftw7mYLQTvdf1YHBoHBS7kaYMQD0Iy/ol+ilYv2AeJ7E+z45M9DhCapO5rVPftgTK1/WfgrSh8n3HTEefao19vQPmvI/W5Uq/GuB0SLA7r79xNUVAtZ8JWb18G9V6mOmfLXxymr+el9lTi9EeHb81ypjRIpLlEnktGAJZu2WRYjkl4SbqPsh/AfWk2G7B2AweKUpUapRFSJJbzGZmcPkmNi1S5nGat3gDmzkwwIzltJ1Q3OlyBC5Lnkc72GDVj2jmeYy6HupQag7RdSunRfNkKfwXtgE3BUslK9bQhY2HPDqjO9hRPw6Ef31VsnpTuRufYDbNCh6qVHaC1J6Yb3xXc03Cx6N7Aztgb5IgcalifR+HCPOb/wACskBAHnxFZxEUO11azdSMFlzzp25My1D714zRpxJK0PikZKo/vg+rUQSginibaNJ+rgIP8nTizfBTVKO1UvWsV1LvZc4sI2YmY3WYCTk6Wp0QWbMIjx1tQg3sTAe34rlAYGXcSKacGz1oNVVBgugewyAdOEOvdd3h8WN+zdaj66xdo1jOlyXO62rj10Rh81CDx+q5cU4YJqyBkkyub3r3LYflP8mdcoYI8OrVnH3c0SydBdeYv8TI6o98SXUzxFHCdE6Xm3qg3Ao0bJTyn5auUuHuPAVhdO9lQIH/izwfl3avQEggosLLWUlVg/oK9Y2iov+3lcPQY8wXd5+8FHwNFdTpN+i6STs8PYCV1Nfjr+T3gvQf8AJbEZ5QS+Mffp/Fln1bo1oYdmErV7uIWwKIUw1pNByBTxkD8s2O+997314AMwPqmL7j7N0SvGEcsBJ+3SJp56ZXNiNIPmBKiCgrcy985zcaTGh3/uEKJihUFVCjHNhHaGQOhvMMOWOaeo2GtmPpf51MCwKKtzGHDY6yJuobfDfdhTSTaqqQ6BB2Ci6F5YGEEKlRQHfkdmtWOL/tkttLVYOo32e2lev1GgdlzJQBWRsEj1Z3UuO7prQ9XfpQyfT5DeMZAcZjERUf8YgkZcRmN3fMQGyow4tuwh2H4cH9DeJV2kN6c4zKe3HdXyv4Svu08Mty4aP9bsX7N8CyQgQFnwlohu0qelk2cILoRbWRtkKJfaqYUuXMxpWyo97Dnr6V+S1ia9bIXJQAr4OclMO1iwBv9RmVSwlzTVqgPUqzs3IG3E7wn1bjw29BN6S2rbhz5A/g8TDkyqW0nVo8edcfGKCFY2WHwvajm0AovYfm4AyyNU/ddpzp5AC9/OomLAeygqAl2qA8mJUJSN6YTuBePRTcsD5mCy7oaeKc6qaklfvBX3r0G7fQvZG6cnG0TXisd3Fx16wjIk1sAqfk6LV8eAaRaRhZ1T4F/F7LnfWCYgLI+jrh15TEr84UNQXkSXo+UWkjgsPLkARkPUHzrxZIMnqP42tQsHg+VJH1Myql5fy+H8P3Mp9pMAip+ZYPirStp3NrlLGKR+lC99yEC+4/5TwBYNN6TpzkQRYNGndhd6vjdlXtqd1Bv3CndyqP0Q+3MQXb1SqeZ+02BtXRV8d+RkQ7eK6kyYqaMAj7vxdufcWQEGOqGtbDTSTgtuftz5ZUz0H7/tdjeHXUp/F71e/szNSFbtFQJIpp3Wp+etkSfwQSOayf3AvfquViPzxQK0+hlEDKwfQX9uP+AAn8eZvdt3Q8EfFDghuw5TQCvcYw8nZXq+gEsz9azv5TfA77wgB/Aknjx/WYD8fpNNI7uWogAPcstjw/AEgQB5es55IvP72f50b64MP9f2pACWK5E4abBs2ArWi7NXEHXN+zeKln/N/J2QIA9nv1/00iZkPg7nKYwxUI/iIVX098NM7eAuDNS23wJYFG01bqo61gbeR33bQlHWwUoVPgsQ367kmB5SfoVzT9OmlOGYBhmMc4lqY/evFHgWwmARZvEIR7IRifXz6ozf6YJ4JjUcdOhkw6fUhtbuwLmVWMcLfX0YViVPX45cBIn+GmtAqcz3cGhWkylr9CDAlhToDbyhiUddEjqvFKqXvkHG/HcxiISLm08ilx3HeS4uYe0RqyE3OtavvYIVMQ9NWmWfwMCEJyWGNlvSs1F2i4pyZGinNNM3UbYuXrICMAKPLwDhpUsKoEUuSyt+qbY0Lbv4HBWQh5MHWk0Ajp14JO8ngj8JhDcabaCJewpUalll5Yp8eYGOwyWjp2EHNYDsNZqDHNblrKUGuPRrJqJCxfq46Wqsthd2Ac88jZMHGxyNz71xgVQH2IR1Ef1jbE10xDUfNeGBnUTv//V6+ZC/fcusemIHBXxjYJ9rKB2smdV2DlznEZk3ETKTWZ6pcDpaewgrMkooPJI30XcuipJEldY9Uk2KLygr7MrGR7da1ckVVgY/6irP5MLVri25wouShUFrQbgFEVhSYBVVxJ/zdLJoPea1DIMmYxXxaun6xTCpN5Hum/6gbvPxCyWZJ6FB5kqYsSwxNeT6zPGlYCcFAfDH8pz6F1BIdWxfdCsmiEOn0jPSeghOeb6no9WZMTcYtsT/ag3byGH5y/YIneKJiQ0Fu0PY+1rXGqmId/CViQuz9/fh5XYd0AC6te04cPKETKVWCEokyN90sX8AFZyVoS/rt8D3nnAD2BJ/FWubneEZArCoa1zZF6MD8CiQlRHpVLi9J64aLx3l+L/Z2kZgLVwjJj6Yt8A9p0Ekn5OS6vwYCOeSQ6HR8OaI68qbeTF08IPrpLktpz5YBrrUP5JbUsugEVHlj+Nj7Am8ir2GcITjbYqo8mMDkHF0DSwIDK4OfQ7568f2hSKmGjRHfGlvr6JVODbOexAQ0TQQwcnvgFNjp+dvBXGscvA53SQlKZ3cydbfzJXFjToyHiv1OBwJW876N2AyQ8eKLBmAweDQYGrRa/in+pMQayZpgjm5frfUhJ9/+F23LS8ES/rkfWHUOL+Q7tOZujX7WWX+2F+9xLq3IObIP4hqRkmr4EQGleMILXWj+7r1uAiX7L7SrKGCcAKvnoMMbNYtI61fE2Ye49LseFR5glJuFP0hNRUKtgVLIno2BujZ4ZueGtZVIMUpPOmraSWDf+Dw30J92Fu8w6UMM6BtUJNmHulnC/djVcxvC/+4RfLOHUqfm2FjlG4eTVN13fXK2U2TMm2EbVr8ahTO+FrRQqG2q9bgjPEin1erj0ay68xEZdqVXgEBwP7JNFC71Tj8dGHjrZ5G3BsJPvYpeAEVJ+atGgydxN/ckyB29vZ+4TSLCndMilG4BW9K4gvS3WRkd8727KVqAjTgOlJaTpOHXcfxVwVRImbjTjanKYLFVBhGPOdPaJmUk9wr5mIgyIgEOYJP8ISmMQF45PZpUwjrgrdY7PvQCwXjC8H2uycfAmZK/m95d2PYOkwxF6FlBEppVFqxPlUtZL8/tDMGwHV5VNiMUvjLrB8LH+3JGXmrvMalWM3RozRJKghQh8B6WOg04YMsCFTAnyErqmKVI/GTnNwZ65k+9Wq8mjUkPdIJd0PYCVlFfjr+D2QNA/4ASyJ39797AuYTGac+HWxnQfLafEBWHcfPEGjjsMRljMr9qxnBH9JuxT/P2tJASziO6HQdqeZu42A9e0X97TyTv1HO3HZzA5Rv+RshIpaJu+dVuNKrX5V25dCs3cT27ikcJRDQvNKKoD1gjfao63ovwdWBjS564vSAptkKGhPEyyj8UxAQDN/JOhLtrhuO30F6zv14zQfHa3AjNnswBEUJGBYCgJYipfPoJvcCwpDDKzV68Pc+avUWjbJ6kf921qod7K0OEGrt5OMu6bD/ZD1fXyaoYCsr8tXOGzYzDbk/5a8gBOV2YGsZ3BJjM/M0ieSNdB0Uvmzx7/ilOmZOJpf1+7FO+HPEalRId9gpriYQaHC9Xwd4h21awSspU4zWFrKQa3UmrIiJgr6oc3E7gSVBoZ5jGuOAKxMz+8gaoQjAprMlq8oTMMXpPgQXVNMqEOSmv/0EwElPVXDorSgPzaDiIydFt9X/ZSc0JvbClxaLElzs95B9dhusBUuA9OXs1Oya1nbxNH0ZNofuKlzpIiSBeYRUPaLpAEyVJ9AGf2AT2T9zMyyEmU/zIv3aibcLkUjUlSieG0CAnGs3WZs3a0T/0Zp9lotcOwEe940qCegZg3W9vEJKtgYBoYqY6xQyzOWkuzjGxuUeH6W7VPz1ucR5gOVQwJWlacPQr15kRxc9VFEPKWzUVqb0/iwQjCOWiTzgyUGODVFCcHG5le0vQ1ZyjKwRnntHLRz5FxxfKnKMH4hTy9MsoOTUZFAOu7+TTslhuL+dSjCb4Mn4KgOe6Z52jz38DZ0k1ma8SsuG6Zkd6ROE3BeNBHVPuJD1Eo4evlCpWEc+h2uXOGwXvKupPbKlHYo8krNrsQ5TM79apz0E/gsOT2dQrzlXCPxvs36I1oOzI8sofEDzNNmKmXpjsOH2hAQ4B7EUz68C+3knrL+bYVKwzSUqZy6Du70WQ47JMIIFSvwaNKYt5PhS5ViSWiDD5aDpX4AK9lLwt+A3wMee8APYElc1WPoTBw9dQmLZ3yJmlXLiL/EB2DNXLgBKzf9jsYNamDaSLbx8tj7/oIyDiyp8hi5xtx2IKy15BvQ1HZZmyd78bfxkdjtyux1UV+fdsTyqT1/19B1U+9xsJWvmdrDsPfnDYBF25lDhod2bqs/Yh/AioS/UpbXZLGDVk0yFAARtHtj6l/XQP0LSzW1vvsRzG+/cErbcQWwAgMFfDUk6Qe0BMdIctEzB4B4XOzGKWGcshbE+5DeTbNkElRnJWSxzXrZ5dO/qlcZSysVE4ffOEN+LMrKSLvdyZSfKXcGZ8udEesMzlQeQzMlTfY7vfqt07P92B/7QBze+q2H0PDmQzwK0qNUX3ZgIoXCM3kYoOU6nzgqU2otjDM2Q9AxDq3U8kEc5dO8RUBpTE4jACuzLQpvejcR/5aaANA/RznskUQuOQdRsRyPRh/zdvXWBE0QoBvVXsbJYvmoPSyfuo8KSCm/8xbg2FglwDOgoHbkx+Cyhaaq0qxq/zac+q06YpVM/U5K3p3U+WvnjYBSEjmyK6g3tE1bgQi0EzICRgggcRqlVJ4tPwgbJQf+UgRWKhS4dJn5rnkT3s5t5LRzs1WIlXCmlxtkRYbkn/vtzRPZuSVK8qG1tw0ZCyaeGumpL7ULRkEpicbi8xaFcUTyAWLXiBhbtXowdWFcSM7x3f6Zw5OjDBzUZxdQweV9SUqTpDgptdQWIFAYCKy6YU/xU9D/PrghI/4X19A7DWDu5L04g+qf36BZw8Dki9p3sTKzg2ezXh0BtRIBY10FDeg5GT58C35YwsFsZusna1YBfXo4lKelpjq0A5qNjOOXz1cURh99KNDO/RrKq+z9vCrTBJTtVhPFEgDlJk5VweoQ+rTb2JFWUBSsq9mjKCf1Avf8ofgTfQwzjfsRRPwfn/17SYHNWxmoX6aUgJbNbfaPgdxDpubpjqvQD2B5+nTxl/N7IPke8ANYEh/u2ncUX09ZjFw5smDRtMEolD+3/Vd3ANauP45i+JQlIJ6kFd8NR9UKxZN/Nf4ftiCNwKJDKoU7O83SvBcs9VKGlNdTV3/x/C9sj3HwyZDNCq2BtkFFPa3+ny5HGzP9EBf+q1nbUlzePT6neQJgERfQ2ujrWB91HeHWmAT9H8Sp0SxDQXQJLomiLsps3lw45bXz0M4ZKlax5coH05i4aZbR0cCM2WynFRgIfDVEshPzptNEylIEE0UySS25qkE+HF6CTbkqf5EinnLfFhx9cRWftmW8VzqF0p5GqIbSbWoXdXKn4VEcyMYIbMdkrow+waVTayqp0s+A539ja8wtsa8fdh1Bm0t3cD1zMKr1dCgukhVQB+Nw7oQjAHRjO4N7zgB7S4s+sNRtnirzkHai3r8F6i2LxT9ZazSEueOX4r8JwKLnwetWcjDdNRUpJQd+4hRnX3euRuksbVvxyJkjfjBBefE4tAtGy6oap20AnzH1AeYLC5SIvs8OsuVjRyFUewGGWXJgICV9aZq9EKefMs4thYJHlXE8VMnETtUHt0O9iQGfNzQV8KD9LFSvGj+ARZGr+lHy9CgCT6+Zi2H1Ona9ixTmYTIpcP8B812XjjYULMCu+6WlSry5yX4v2c2GTMWSDzK58muB0hMn2sAlBpx6cRFdI3+oqunzibCVfceLVuIWVa+fC/VfjFvMlZPJWcMcCZz6Rg6uFu9iQ+YSEo5OAim++RwUwec0Qa2BafRi8NnCkjVOd5UpMtQOVt27DsW9a1A+uAlFxBOP+kmquqtmw3yo/twh9rEnsBv2BXW0/5tAVBIkScxcU/XmltyBB6+YOi2RyfftbUPmzHHXpquID/EMEt+gL8x1LewK/hy6Ji1QIx6AmdK4x02So1UTx7rfQ6lXfwu1hF+Qxksp5pRqnpBducZh/UZ2nxcryqN9Gx7a74eDPqw4zdR/GmwlK8ma8gNYvlgV/jb8HvDMA34AS+InAqMoCuvY6ctQq5T4rGFNVK1QAl9NWoT8eXJg0lfdcfPuQ+w5dMJehuzjutUwc0zapFl4donTdykZgLV7NdS7fhIHnFCeemrNavzLE1gayRT4hodURP+McYkfU2s8qdlPnNBzN6H+qTme+AAsHgIOUrRV5DXsN4TDlki0VSVtVnu01acB+aHzMtrK7abWZABJVUvNMHsHBL1c7S0mBpj+Ldt8BQQAw4f6HsBS3jgP7WwGqDnHRWlYFPYuBPgohyUFLr67tB/DnJ1Q3vgXyoWjUbh/c7yWCGz8mKUuXu7Oh6vX4gIJ9esI2Fnib3vqqNOmh75j5zX7X7IxL49jeeQVcUpT95/G56eu4myOUNTp3FD8exltKH7PyQAtdz6I87U9czZ75F5qm2blNKiO72fvApdDkxPAetOvJYTnTGnOOHEV+KxyifiUHPvtOxw2b1WAFC+lxnFAvQ8EvFvDPecRqW+RCpfTrBXeg7nX2JQcarxt3/uVw8M/JUp6pg0oYlqM1AQDHwzZjQdq9rEktHAMivVkQjpJdQz39AF047vJqv/T+RdUqM5SAV3bpmhaiqp1mpP38d59BX5cySIz8uUVEBkJvHrNrn3/vjZkzcJAgBsblXh+hv1euKUN2SonH8CiNqltpwXlE1Cmr++jeTU/ToXqFKN14HPmhXFs8gSL7JHBt9nziri1iGPLnd3cosSzk8x/GXIJKOcifMKF34JuSh9ZdV9Ei1G6GHfvGogfkLt7DQr6X4mKnbdrUlBrYfieAXee1ndVEVweMhWXdQ4QMXOogEH9Er/uugndwD1hUboLQufhjoZ9yCGAhoAaVyNwTj/aAZY5zTB9E4TgEE+Hn2A5V36uIwGf4kGdgWjcyD0oZzIDU6axPRQBb6NHxN1Dqc78Dc3SibK+LTUbwdKepa7GN7BbtxVYtYbdWwRIEzDt+k4ydx4Ga/UGsmb8AJZPloW/Eb8HPPKAH8BycVOswYivJi3GwSNnE3VgvfcqYfro3tBpNYmW9Rdw7wEZgLV/K9RbGBdCWnKwOEf7/ZsLmP6KHTT+Fzl04lubFAFBkRBOS+sIHlcAi6KtVlO0VeR1PLIlHG2VkdOgeYZC6BJcAoXU7Mujr+5LIsCmja7T3H2di40Fps1KWQCL+Cq0k3uDexPhdmqWJt1h+bCNr6bt83bo67buG6YkRzwbxLdBpvu6FQa9WxSryxYW+y33uAgq73tfNg4CD1o2s6FUSQF9nh/CLzF3xd8XZKmFJoEFfT7utGzw29fnMPs1S3f66p9/MeLwBfydN7ssYu0dXQ5sycEALXdjVpiN0A1vY+dNc5q51xiQKmFqGhE0Kx+x6+aqGOUEsCLH9QN/5Ty773zE0+PNXGNjFdiyXYGbt+KCqARytG7Bg9KFnUYpLbqx8lRB45ezwRdmtAXe9J/csq8uK3BllYQM3HoZVWL7IbUiwhRXz+P48mKwKhiwXrwzj8wlE48s8WTu/JCOCDSwKJkrDSch32fxi8PoR3eAIoLl/TkjTh49VmDRUuanXDkF0N+kNuorG7Q6dq1dwUFSVCRlxeTara1KPD3B+s5dm0e+j5Lfruu43CnCmrsMh7UaI7P3di70sYc4DZ1Gam6U1ubODC+As7OUgCBJlexlQ8ZCchAw5O9tMK37QdaE5eMOsDTu7NHwuJfPoAi/ZQesFPeug3twSyYg4VEjLoVs+YuBC78j4xFLijAG8bhJFSInZduCN0oWqTlmhDXRlGXNkglQnWViJhszfY2Tese7QCo84DpP9e8boN7BAEtfkvlTX65p61e1lXGw8gx07uAelIuKAmZ+l3AUO4Fuukm9ZGuMgFfTiIUgEDExo4jKZSvYfR6WW0Cv7jY7jYEsQ6RpT1gatJI15wewEvOu/3e/B3znAT+AFY8vCcDauOMgTl+4DgK1nKbRqFGxdBG0bVoXBGD5LXkekAJYqr93Q7OOKUDGxyWUvB69q03RG8MijoiVmmYoiPlZU/cw592IfVdaN7WPfSPnNF+kDyRndARgqdQKbHxyEyteXrVHXSUWbVVVmw0dgoqjcWA+aMA2JckZh7u6mg3zoPpzp/iTu81zrAGYNpNtvvR6YMQw30ZguXK3uI5VCMwI4zfrIah8mGviQ2eqjvwOkv12GqWr0LojU29bioO3/kbrlnXE39UWNTps6AhOcIAHWq1gD/fPn89xwOn49A8cMISL5Vdlq4t6Af9bHHbLIi9j3EtGVN/r9DVM/+MUfischnbNGbhXNyAPfsqW+MGT/Kzex4Qbkpr6ktRlobBaoB/QCKB8kbdmmPsLBA2LmnECWNFzJsB6ZB97RnUeBpvLV/GkjsPbesdPcPh9Hweby9mLAI0WTQQxwkGzaQFUB38Wm/dFVIu3Y5WWt5mA42MlanmCDbWjPoJlxFzweYskp2mP6r75cT8uXWcKoyrOiCpTVFDExQM9as+10IMp81EsnKVgPS31CYK+GOi2LVfuNUGphHHmVgj6DHgRweH7BWxQgRkERMfIASzXdKZHf3O4u4vVyVmDR4HPkg80EahjeM76LtHVhpDiyY/scucU9bq5UP/NIof4TFlgmrQagjvioUSukOLZI+jHMVCJooEN3yacqnp9nRIvzrO5BhcSULqX/CbLllELw7jPYbvB0sWJn4y4mlzXMAEcyntvydUf3ISSiNajmYqrt4uMUhaJiF7IWwR8/mL2/vgcee28k9pZg6C8xcbk7R6Ke3IfugndxSHROpxW8BdEvGT+6NnVhjx5Er72mp+XQ7VnvdjOwQxtsDu4NwiE7dndBmU895oryTpxe9K+3FemeHAL+qksei5CmQs/FF0DUhZ0ZzTvufPZPi4kRMDg/pKyNht00/qCC2e0HxR5bh6xEETt4Ik9fgL8sIQ9D3Nkp/RKq/2dSO9Gp1nrNIPZReTED2B54mF/Gb8HfOMBP4CViB95XkDEqzeIjjFAr9ciNCSjPb3Qb77xgAzAOv0nNMsc5JRk1kq1Ye7BZNJ906N3reyNfYCuz1gqSy19LqzPLg8b9q7F/0ZpVxUwGrVhzg4IWnlaXGrN5oktFltNt7Dq1VU8JImiBCyE06BFhsLokrE48qt8H23lrmtX1Sp3XyqNRgWmzmDPDr1ewIhhiYf/e+pj9cFtUG+Sf4UmNUTluSOyiBpL+8Gw1PzY02ZTtZx68w9QH9gm9ilNI6YUCG5SDxQa0ALRWgbANdz7EXI/yQ1SdezcgUe2rGwz3+TxrzgpUejbmqMhqutypDV4pewAACAASURBVOqcUrqzzdE3MegF+7re6uIdLN59BJtL5kevxu+K3X+WoQAWZpVHq7kbG/c6AroR8ig94iEjICs1zJV7RwjNAcPk1bKuRQBrzSJYd7J0L8tn3WFpmHYRhs+fKbBxK4dnEnDBOXBSs/rkgxgEjm0DzsCk6dLD/XjuOxViJVQ+lWKGIKBv6zgcLylx/a+P+hcvrBXEpnMXuY98PXyXBnrkh5Ood2Gk2L4pKBtsM9ynxZLyID3LxT1IhVqgCESyyCgFZn0X/94vJJOAwS4HbwJeCIBxWmgZHsU6JA/AssQCJydIeIAUAqpNsEGZeHBJki4fF/kS2lEdZZFE5jb9YX1fnjbvSeOuETeeRPTQujxn9zsDbcoOsCLQQVFrt2yZdOBePsWbIR3lkTdZc8P6WVc7X5WDaP2G7F3oyZhdy9BzUCCgKk9hUKoiHxZ/RK8r+GdxE7WT0Bhc9xXWklWwJtd0XLzEfPFpIx6VKyWypv7Zj4A108SuLmlrYEPuyejXh0dwkHvwi3t0xx7JJDV31AhJ8aGzDqk16gfJeVaH5jyI+Hitnj5TYMEidj/Ru/6Lz9keSvXzMmj2OBQanWZpNxCW9zwXg3r5UoE5EpAsc4iAQf1tUJ48AK1EmdRa+QOYu7PnCvXnB7CSsxr8df0e8M4DfgBL4q9nL14jWxb3oczeudVf2lMPyACsiyegWcAAK2upKjB/MdXTplKk3GnTc3z6mMm3l9Rkxr5c3m/cUmRwKdhonI1m/uKgQ2xqGkVXkYIgKQmSomBi235KkeoQVBSNAvJD7avP9x5OmFJOKPXEaRQtQlEjUjOagKnT2cGDMo9HDfdNBJZbHpCwgjCOWgz1zz9CvWeDOBQ+a24YJ670cGapW0w79ysor7L0bdf0NWFCfwyqkhlbShYQB1b8Wgk0v1sDndrLU7WoQP1HO3HZ/FIsuzdXY5TSpD5Rdkp6cZ/hAbo8ZSB7g1sPsXHLIawoVxhDGlYTu24fVBQzQmt4NBTN8qlQnWTcN5RC6DzIe9RAMgqpju6D5qcZYgvSKDznH50AVsxv22BZwRS66KBCB5a0NIrA+n0vh+Mn44Y11BV24qMnTMKd1wfARJwyHqS2pOScXBXfCppWIKxtrmSlinkyXtuLSJyYEQxBwkVYrsdrZCjiO56+jWus6PqPPGqEeJwo8k1qitho6L5uLQdq+k8FgQZkrhG0rvPLm1dAjy7yDxKRtxW4uFjCVZVfQBnJgdsTH7mWibjI4dpqtrYy5AbKDfDNeyS+8bgCA0KGYBi/Wef1ulW78pzWawFL896JuuHqKg4vL7M5hxTnUaIr2xEQgKVSKhDx6w4oV85MtD1PCxBYxectDCHfW8AqD0tf96QNV05Ba7V6MLtRXIyvLfXWxVD/IaFxaNgWf2Tugf0HmS+qVOTR+JOEd0d7l9xAk7MsNf+5MgzPh65C/vzx13O95tby78Lce7wn0/aqjH5YC1kE3NRs69C+fzYZl5yzwQfhCixdHje9j34nTkHiFpSarVwNmPpM8Go8rkB1UKCAYUNscdq3FSsH06BZsrb9AJZXrvYX9nsgWR7wA1gS95Wp0xXvVimDph+9hzrvVoBa7UabNVnu9ld29YAUwOKuX4DuO6Y0ZStcGqYv2WY/Lbx3zxKFGg+3il0nJkWfFmNMiT5JNpk2X06zNGgNS9MeKdFVnDYfWWPsoNWG6Bt4amNcGe46D+W0aBlYGJ2DiyOvKihVxhdfJ/qhzUCRa04zjFwEIU8h8d9xCEg1wGgfAFh23qKJPWS8LXQgNo5bBopeofQIiqhRSLSnTT3HwFYx/aXC6r9sCjpIOs04fjn47I6UvzPnODxbvwuqHFvQuSkbe6BZj3/zt4JGI0/noTrVw7fggZW190/u5sivTtt14utFesL4FE2f/CY2W/Xhc+xZsxfzqpbA2A8YOXKvjKUwLsRxGE/MKAVDN0VysKR0nClrE5QfT6zN/2PvuuOcqLromZnUXXZZdum9d2lSFVFBQASlg3RRERtI770jvShSPjpIkyZVRYr03nuR3tvusqkz8/1essmbTJJN3Sa5//Bj88p9d14m887ce463n6tWz4LCIQvPmcvGBmAlHNwD42T6FpwvXRmG70Z7O1WytiME7yvXMNDp6L7s9fgzZDffpPfVWk1gapb6IjBPTzO4tExSmmM+ijIfXoaptiPHS7AD9njlFVw5XsI+bBh7D+XGZg3qNISQudbRPihqOErj3qST09oUe36H6tfp9jZEEVI/ZjlASPVgrWiVK6BJHS1VSkTLpo4AluEpg2OSrFt1tIg3+waWdXvjdxb391IAI/vbAgp+4un1TmAhJZx46oGtHTIHjZ90hLlea58GVs8eZuE9spnBy5Lf+LsMTk+n+5OoLVYdRUE7G4D16IUe3IxBIAI0vpjIKSHkLgAhX1ErWEXKAHPmt5QBBmLspZPQTO1N91SeQtAPoDyvnsbWTOkN9jLlNyS/2+czvItlK1yDOK7G23eAxa4/9Bj9oL79Y5FhoZu5xf36RBGaAa3BvnhCr1UyPTOof+wK7gYl9Z8TPQGVOpRHsaLOmWHXbzBYuISuvUB+ER3b89ZnnGGfg3kVS2NNSl0Hz/VZtIYwxoz90flFI3P3OrSj6G8iKRPVD3UUNAgBWJ52dOjzUASCF4EQgCWJZan3KLFqxohwNKhdzQJmlSjiXe108C7L6zOSA4AlJ3BOZdU7chVeCSYUveVYbnA3vyMB73/xamlGdgIrJVH+fgz4Ut4dfv2JB8m2+jPhNpbEXsQe/b0ks63IcfBtkm0VWQz1tPmgSOFsK3frU88eDu4kLeUytuoKcw2q+mY0AqMkCjpKFTA4CACWeuF4cIf+cnCLpLaTFHebqZZNgWLvFvpwl7co9P1/8udSJVsf5uVTaPvR8i/CsaKbttlygPxjB4O9+zhohTj0ftoCxbo2hF7ygmFDjo9QUe188C1961c8Fwx2n0/naYkYTptsa0iNgS+bXuD9u5RTqejTlzg0bxPGVi+DH9+mxODdo8qhV1Q5r13UTOoO9upZe3tTCoEtmsm9wF6RELN3GgK+wjsOftsALN3VSzAMoBwx5NCpH0x5SrxebDI1JBxJa9YyIGBWIcMJfPOsh8NMT/suhjZ/jmSa3fthTXEMjoySAASiHu9UXQBTk07eD+JHyzPDHiFOR8sFC+Y9iOzfVfRjJPddFizikOfcGnwS97O9EV+sHAzdHDN1NGO/A3uLKpaaP2wFY0NHBcPhoxTg3WBFrsiwBRNwcJCEX0wBVBsdWLbUqekcXt2loGjxdgKiSycvgEUCp9i6HKqNC+hvCMkeHL3cwg/mrWkHtwfzRKIaOmCWpRTPk4lm4MBA93GUAlh8bBw0wz5zy2tFwCoxVwHw+YoC+Ypa/hVy5Ae4wMAqV2tgYp9D25eCwNLfNE9rJp9rezRyKHnUjViMF5qcmCQpZSU/g4MHuN5Tt28z+N8iDoIADHnYDJECFXfRD5lrXbcLY6+cgWYyvVeJai30E9f6xXvmaZ3q+ePAHaEZxL9FdkfGRg3wVjXnPU3UhpevpOBtsSIC2nzKw5K5fYkCfYT/zNBnul9l7ySDdvhoyV5jgOGDzSCqlNo+zelywiKQMInSHZAPQgCWp6sd+jwUgeBFIARgSWK59e9D2PjHfuw7cga85CmlWKE8FiCLAFqZMv633t4Hbyv5N5IUwGIe3YV2KAWHxMw5oEtUIPNv9OD0yvfvIphB3wadzdsKmdhkIpwIjssBjcK8ioe2V2M6BstBN20jCBlmsO2OOR5LY63ZVo8FKpbgap6snBafZymOltoiyCqmDhdXUuuXS0LzlWvB0LGfvYvRBIwaSx+MCI/6EBcS0L7EmEicE6lzqbkSP7DIYQ9u70CMre8+AUJR7wENX/zyp62cQJm8BU/o8zNWr2Vx7gJ9aG3zfAQm1zNjU1FaAuQuuyj3vwsl31zgWr520DDBP6j4s95g9XloTkCFO5R0PWu8Dpd+WotBNSvgp0o0u2VwdEV8HUml0z3NLy8jthxixq2EqEleANDp0DZ8IcSsEsIbQtavZEFEHfTPX0DfmfKbkMO0bjIF8zytMaU+P3CIRbYVw1Fav8c+5QVVFSzNNdaB4D2l/HE1z7HhBhgSKBjxZv6FUH9Dy6KD7Zv+GXBcUlJNUpyqtD4Jrlxw1RjnzOdgvHELfZ5IXjyxLHRTNtiFAdiHd6AZ1tFhiYR3jWSwSo1kZkg0fRw+q/OBgOpvOR+6Dw1WgDfSppWHm6GgegQ+hdVCuD/UUZWv0lAzlCnwc8iYjNAMbGM5yNvMl8xsojxIFAjtxjDQTd/slaCIYAYOSgEsDqg2xnUGlpkXwZ0/BvWMfhbARcxZAHxeClaJOfInCxDj7kKSZynyTGUz3bAFELPl9njdCdBn+c1ONOm9bfSPHAx6CmL+8C2PmMyOGUtEHXXmLNYuNPD10x4obKTl+YavhoIvX92lH3LuLnPVOjB2oJlkHp33oYFy0yIoN1MeQ0Iw/7hmJzT4yPm7dPoMUXylv9+lS4tok2E5lOvmOcxoqt8OpgY0dj64Y2lKMi0lGiIYMtAMBSsi7FtH/lvdjK0OeykEYPka6VD7UAT8j0AIwHIRu6fPY2EFs/bh3CUq5a3gOLz3VjkLmFW9yhsg/w9ZYBFwALBkbziIYppuAq3/D2wm/3tXvrMad82UOHx3rsYorMzo/4BpvKfixB6o5oy0e8kXLAVDb6oOGaj7ZlEAIcdfGn8Re3T3HQAG+dgEtqihyYk2EcXQKnthhKsUeBprgMGU/G+cfV0nSYMn6fA2E7LkhH7EIvv/SQXfiDESAIuD5cHIX2Oe3odmxFcgJYT2OZOQi1bNGQHFiX+oP2mAY066duWONVCumW3/k6FSXcxh++LmLcfSwGLGY8iYfSY6N6AE5bnYMBzO61juZBB5FLxJyb/JKHf+g9mT8nWSJ+/nPy5Ht7qVsagcVZEbF1MN7SKK+bTd5CpUpubfwFSziU9j+NKYlKxo+reydyEKX+SQKzcbgEXuAwkd6zh8B1JTbMLdWl0R4/8vejwuqCtburxZQUD9DwX4IezmS3iTbHvtl2d4eINmMRaK2oRs/T8M2vjygW7/Fo/bhynnaDR/FMUnBh9Q/2Uuh3v3GQx82BKZhEf0/vL1cBCOHGLKNb9AuYNSBfBFysDQg6qh2joREnfCkePKmjTiUa6Mc9nT8Qkc9E9on/I9eWiz+qcY+PwigwsL6HOnJrOICkEUAvF0sYnSLlHctRl5qWUYvQRCZLSnruCun4d6AuWn43Pmt5R4eWOiABzoLyWuB94a5x7AImOy929CyJH61RPqqb3AXZJklHYeBr4c/e1yt37Fib1QzaH8TXzRsjB0t3IukTI6Uk5nsxZNeZQuRfcUAV8WLObw703apknsFLz1SqKU3OgLmOq6FryQl/Ibuo4HIdxPDlMc/BOqRZTz8LTmHex7czg6tHUutT12nMGGTXT/1yp0GfX2OnKo8YXfgKEn5UX0x2fCVUo4S23Wv48ZWg2g6fcp2JeSLLYxyx3K6kMAlj/RDvUJRcC/CIQALA9xu3HrPn7/cz9+//MA7j2g9eCZozPi4zpvWcCsQvmCp5jj32VMv70cACyTAdqukrfpChV0M5wPLym92o/u/Y5TRvqj9V9UMpPGlPCAED4Qm0mV4AKJPcm2WhR3EavjrnrMtiJcYy3DC6NdZHHkVFizAkjGBTm4plUAi/io7VLfgQSYALAEiCVm5oERktR0gn8PDQDA0oz+GoS83WaE98pASjKyWzmj5EbKY0iZjNQMg+d5LS8dyLX3pi8h7iYE3jb7K8d32IZmDl1VKhGtWojIu7AVCn5WC0IiPw1ptD3HxyitpgTtT3kdytymikRRrBrn8lJwxBuf0kubQjeXQC/SB/47k1fihw+r4LeStERkZpYaaBzuXjHL1VrlJMRiTDboRtG35cGOD3f2ENQ/DbIPyxcqDUMvZx5EKYD1qkdrkAwam7ki6A62n76Op9wwH8ptVMb+KZcDY7MudxgmOprsbQHZ/AQ3fPVJ3v7xlge4sptmhmRWnkDRUcHNhrLfq0Tg2FATjAaazVciejkyScqtAl2Prf/MXxR49Aho8nIq3kqQ8DpWrw9Tm26WZnL+QmOHPjBXre3kwvSfODx56hrA+qwdj4IFnIEpQuJOyNxtVuorHhkL+Qdg3drG4o6EwDtbZRGFZLxbwYqbu3G0g9qBZPTajJTJk3J5T6b8ZxNIZo+9X6WaMH7e31M36+cisL+fIyftW+OTBrC8Gzj5W6lWzIRit2TfNewI04eeucOUGxZAuY3eI0wSwvutf7I4cIBmJdeoLuCDmvSl3l87Wez5x1FE4ut8a1D4IKUNIPub7HO5KWRiSsn9Ipm7fg7qCdbvIbF7ykJYUHiuk6In+Yxksm7dTtf1ecaFKHmRviQkWWoEFBUyZQnowk6YzCEunn5ne3bnkTFChPyZi9AwECVKm4UArIDCHuocioBPEQgBWF6GSxRFnDh7Bb//sR/bdx/By1iakfNGiYJYMWuIlyOFmkkjIAWwyN/DvnF8aEyYRQ+0qRW59o/+wo4EekCaneU9NAh3zR2QWj4Gc17N8M/BPrhtH5K89SNv//wxkm21VXfTUia4T//AY7bVe9pcaBtRDB+E5QEnkc0mc6cHAEs9sTu4a5Q3iCjg2N7yk6pkwqFiM4K9DBvkXwaWPGOAjElS/Emqf1KmntrbgSvCXKUWjJ/RMkd/rnGw+mjGfmuRObfZLzGTcVVV3v7/8HARn7cTkCWrCAIItI64j78K0tKyH6LKok8UbS8XYMitCMeh3BIOi2A5ngbGefP2SjyQCB6c/XktetapjO2FKSCxIGst1AlzDW66WwIp+yEZUYTE2WbGr4bC7Kb0JNBQEJCHXFubuTscSwGs+FHdLApRNjN0GQe+5JuBuhLU/tpeTR0Ihu+//x1m/tvUoQyITEg4o2vXFPFWVZ7QuKSo6S4/wYn/0ZI5BeJRebyftW4ePH95lcG5uTSTghN1eOuDTeDrSErXg7T6aTM5PH3GoKT+AD5/Tgn/heisFmECl6WyE1a7VNizZXO5cq3Lt7xL5bTLyzk8OUUvZpFPeWQp7x+AdWYWh7h/6ViFW/LIWsG/sfwNr+Lw31AtGOvQXTdqMcSYpLnclL9Og3LPJns/U+NOMNXxXiRgf18ZgEUysBJDIeXAIiWEacmcgLuK74NwVHoy1cwBUJw7Qu9rn/cHX6mm5f8nTjFYt4F+f4oUEdGulfUFxtVrLBYvcwSvShYX0Kb0EUtZpc2IwqIrZWlybck1tpnp/cYwtaAKhp789vVzNvaZRf3TZjomDIOzb7Y8G0neT1k+3v0P66DA2JMZhBz3qCiAqU13mKp/5KsLTu1t9wzbB12/45E5RoRqxgAoztNrYvxuNMylrVm0xEIAVsChDw0QioDXEQgBWF6HijY0mXkcPnEBv23eje27rDezc7vSpiy9H8tL0S5yAMuJ/2TSOp9VRIK9gO5P9mJV/FX7sGNiqqJDRPFgT5MmxpM/TBCn/AERb5njsDj2oiVuTyUk2q4WmYMLw6cZilhI2bNz7sk80gOApVw7B4QLy2am2s1havKV5b9yFStyQCXkoL6a/A0p6W+uXBPGjp7fZtu4QaRz6seugBBFM5d89SdY7eXg9dCs6/CKs5YYZckiokMbAZGR1sMJ+/guVv42Et0+rGqfvigTjp35KEB1zvgUde7RTMISqkz4K2fDYLmbpsapeXc9LpkoN83e+ZvQt3YV7MtD30Svyl4Xb2t8JwyX72m+QEkY+tBMimAGgpQukxJm+/enTTeYqlP1LNvfpQBW3MzRUBzYbu9jbNcT5reSr/TN1/UqDu2AauE4ezdSFqkfvwpxfAasXMM6lciShvnyimjZTECGDCl3GGcMCTg0GDAzkXZfAyl3SypOV5cJeHSacirmNG5Bod7FkiUbdPI0Di9eMlCJBox54Lgv9EPmQbl2Lkjmn33PvV0PpraOZPu2z+YvcizLkq5xQB8zNC7wvhubWNyXZMPkry8gZw3fS+AthPBDOECgANab/XioM6XcHrF//0Z2AicRefHm94dk2ZBsG5sZuowFX9J7wn5LBpZkqdXGmmHTb0nLABZ77Sw0E7vb1y3kLAD94DkebyPa3s0ciOj1Q+fbs6sfPAR+nk0BvcgIEb2685by1hmzWAdgPEtmAV93EqCKewTtwDbUD20Y9JNpZhj5gDEZoOnZBITvzH6d+s7wiwzd4wIlDUjlBZnbZuS3/4uuERbQSGp//c1ij0SBc3hcG4TH36O+BimjnMSWxNhm33xlRo7sgGrRBCgO/uH2tyYEYPly1UNtQxEILAIhAMvH+N1/9Azbdx62ZGGdPk/Ld0IAlo+BTGwuB7As0r3PH9sHs0i3RwdXVttXT0c/O4qfY2lWTY+ocujpg5qXr/OlZns5KThfrCwM3ay8C56MZFttTriJpXEXcUD/MMlsK5JdVZNkW0UWx/vaXE7ZVq7mSg8AFndqP9S/DLW7Ly+BGjLC8S3yiCG+AViEf0E9shOYV3H2OYSsuWEYOMtOSOzpOqlHfgnu3k17M9P7TWBq8Y2nbsn6uZxEOZbNhBHZrAo/5DDftrUAtUpGUju1J4o0LA1pqso/uRqjYCI/3SH9QzR5sNXuN1EpJGqF/0Vrcn8rDhnoE/eW5X+if50qOJWZghFbcn6MsirfgUpyPyb3ZamRN/fkDX6wTTPkMws4aTN380gBrNhlc6DcQssag1XyHKy1qcd3AffvRfp9k5SuEVB73wEOf/3NWJTCpKbWiGjZVEThQr6DHf76frXnQTxSUGLnQh/rka264z3L37Ft/QgQc2gIA1GgGSQVmCHQjEueLHZpOdBXT3uiqJFm65GyLOVfjjybht7TwBcs6XKZS3/lcPmKc2pcUtm0d3ezuLmFZsTkeEdAgQa+X9OX1xicm0NjpowQUWmQM09QoNfHm/7c6QNQy6oOPJWja3/42IGrztcXJwcGKCCpkkbV0WawiVszLQNYTqI4XrwUJL/zhG/JZoQeQDedZq+Rv8ufJfr24rFkGWvhe7OZSgl825kHKU8mpu1a3wGc0o9f6cBfJn/+E2JyQD9qsTdbIqA25JlGCojOiPkJ1dsXQ7Gijr/5pHyQlBESUws6jH7o+Hvuz8tWV44T4Yc7d2gcv+zII28eEYr186DaTmkJTLJy0BCAFdA2CHUORcCnCIQALC/CFRufgO27DmPj9v04fobKLGvUKtR+t6KFB6tKear25MWQoSaJEZADWOoRX4K7Tw/X5A1pahNxzn55FiOeH7Vfsw4RxTAmptp/8hoql02Bcu8Wetj65DOY6tG3dq4W/a85FotjL2F1/FU885BtRcq4WkUURZsMRZGF803NLD0AWEz8S5A3p/YHTxmPW6AAlnpyT3BXTjtcBsOgueBzeV/SqjjyN1TzaQkIeTjWj/0VYnjqKaxeWvoPyu8bYV/XZVUFzImZhLJlBDRt5Pqwp9i/DU3Mp7AvbzZ7v36ZKqBLxjKW//+VcBsdHlF5bgKULs3mzGvzX/gid3y4A3/oaNnvsrW7MeSDyrgWSb9jgYhPEKVLcrixmfnNd2H8knJVBSOGRIyAHHKlRg5tZH/KTQpgvdy2AaollHA7ORWzfF0ne/MyNOMceedc/aaRQ+eqNSyePXcGRypXFPBhnZQheH/cfymuCFStL0vJVyjSIbiKu4+OMbi6igIxauExqtbYCNPHHXwNr1ftx03gkKCzxvXdV6vxcezPbvsJ2XJDP2yB289XreFw9rzzNSIAQbfvXYNJj48zuLKSrjdzWRFFW/sOPN3ZweLWHxQIy1JORJHEsjGvAhHkRkSwhAiX2Ix/oyoM31LxF+l07JP7IIIQ9t/F8AjoJlpfUHhrRIWQqBHarOooM1il9X9pGcAi/mn6fwoi5GAzTzx9TlyABUvA0Hu6Q6hmzeZw/yHdi7lyirh7z3FvftpcQMkS9PdTzuEkp4cg/IMO2Yj12sD0iUS909uL5WM7AoYSUNRmy6MGIXvj91G1suNv/4ZNLI4dt34H8hnPo8tTem8VchWEfhAVgfHRBYfmC5ewuH6Dftc6tBVQqKAA5c61UK6aZW9rfrchjJ9+b/9/CMAKJOqhvqEI+BaBEIDlJl4mkxl7Dp62ELjvOnAS5P82K1eqsAW0qlezCsLDkocjwrfLmH5bOwFYsoei5HrT70vE1sRfww9PqHpbg/B8mJ3lfV+GSDdtNUM6gH1MU7L1vaZAKFTayX+TKGATybaKvYSDBkro6mqhCjAWTivCbUU4rvyldkkPAJblYVUWQ+kelsszkxJCb7lu5PxAZC5CQuyqxMrThiOlBMwzqsglf5PoqX+wPidZJ7+tZ5HzwELUjqeKgbvCmiOufmfUqum+PIaUPC1e1h/9alLeq7K8BlsKWd9cb4i/gW+f7La7SnjrCH/df9G6PfkHq+NpRvBPWw5gRM1KeKih2TNH87QAKdf1xwg3GeEok1qws2NJlhLJVrIZESMgZTOuTApgvTh0AOrpfe3N+OLlYfiBqlr5s95g9VHN6A/Fefrygy9SFoYerjNaTSZg81YWx0868tcQX1KK4N04ejyOxg60L18TYUSFQc7+BBKfc1MT8PI+zQwsYFiEXMM/hJDR9+xAb/wYNVYBo8naMpv5Fno/dg+UkXJvUvbtztZt5HDipPMvWN68Ir78zDUoJef7ylhQRKnOvgNY5+ZxeCnJ/irYRED2Kr5ncnkTM2/asFfPQDPJsdTSXfaaPGOLL1YOhm4TvJnG3ubgYAUEWtmGqiPMYBOx1bQOYJH7k5Snz/jVYJjL13C7fkLeTkjcbSYHSsjf127gcFLCrSYfrFoVAfXqOu4P+YsIU6sfYKphFU5ylSlGwFwC6ia3EfVhokJss20Rj5za3QAAIABJREFUnyP2/TZoUM/R/zVrOZw+a/3+VUv4HU1fUrXBYPJ5LlvB4tJlet9r1VJAiWKC5SUOiaH9upSvAXItbRYCsJJ7p4TGD0WARiAEYMl2AyFq30iI2ncexss4SlybJSYKDeu+bQGu8uehRKehzRRYBJwArGl9wF08YR80OeV7vfV8l+4u2jykZPJVNdnwW/Z63nZPF+0ImKHYvATK/dvs/rpKWyfZVgtfXsSaV1fxXPo06WKVebkMaJ2xGFplKILMbOBAb3oBsAjfDeG9sZmp2dcw1Wpq+e+wUQqHUqGhg8zgvDgfyiXIyVjm8u/A+JV/ZTdO6nIZMoIoJqakkQM7eVAkbzo7Ph+IUvr99umvvNcXuVp+4NGd58snoPRbjopDJ/K0RFZOi6Vxl9D3KX2r2yqiCCbGeJYv9zhpGmww7OlhzI07b/dszI5jGP1uebxS0M11MW9rRLCUd8jXZRAeF8LnYt/XElUsX8dy1d6J7DiJLC8pgPX80hVoRnxhH9JTFk0wfPVmDNWcEVCcoC8+SB9PB1fShhyc1qxnXBK816klgBxMvQW9vfFT2kY5cxD23hoCnqFAZ8WBZqgo3uTrkA7tDS+BY2NINhIFgarkmQTu+x8CGjepzkQ4gwho2Gy8viW45xS8l/bV/bgaYoSVd8+VEYDx0BHnG3apUqTc0zUolfAQODmZAsmazCIq9PYNwBIF4OBgDqKZxi25+Ml8uRBOAG3BUjD0nuo0BCnxVf5O1eL8KVuXA1hVRpjBpRMAS7l6FpR/04wz00dtk8w4VM0eBsVJSk7uitdv/wEW2/50/fCQM4eITl/wTs8WzteBErTL779C7kLQD/zFl+3gd1vF7o1QrZhh739EWxdHK/RFh7aO35PlK1lcvGRdc+OX0/B2wnr6e+QBfPbFuVVrOZxNBMpIv2ZNeJQpLYK7fArqKb3sQ/GF34ChJwXRQgCWL1EOtQ1FILAIhAAsSfzqtuqNO/cp/5JSqUDNt8tbQKu3KpYG581JM7Dr8dr1lgNYTj/cnYfCXI5ycqRGgM4YnuDD+5R/oLAyI0g5zn/B2BdPwG1ZBvLwIje+xJswdB0HI3hsemXNtpLy7Lhav4JhUVdLsq2K4x1tDr+zrVyNnV4ALKeDuOQt3fDRCvCSZ7IhA81Q0OoSl1uKKMBpRn3lkDFFuCkMg2ZD1PhWhmmbwELW2r+1gzKa9G1scu/t+HjGopT0ILEEYsCjVojmaSaffsAsCHkKe3SDPFDWf/InjuXMbG87PENZfJm5POSlv50iS2JYNFUM8jh4Omow9eUpTHhOgf/e+89gwltvOKzgbv7ASkHk/G5k7+nHrYCo9i+rSx5eJ5Wyhp/D9GErl1dBCmA9e/wC2m6f2NuJKg100yh5f2pcRtW80VAc2+UwNZ8zHwhPkDdGvh+/rmJxW8LDYutnIXhvLiBDePDJu1WLJ+LMyZp4qqTfE1KmRsrVgmF3txpwc1e4fago8xm88aUOfIkKwRje5Rjysu2xRSY5qOHZOvFlqsHwDS1jdjXYnztY/LPPGTRwle1i629OAA4PpwAWAV0I+OKLxd9mcHom/aFQaEVUHuYbCObLfN62Ze9cAylLk5orFVDV7OFQnNxrb2Zs3wfmar6Vcx8aqgCvpzNVHmaGIvHnL61nYBGRCfLdsu8JDy+ftIPagXkq+T0cOBtC7oIOcb7+L4OFi50fHrRaEd99LYAQu8tNcWw3VPNGUT9KVoSxi5VOQE5PYGr6FUwfpIxqL3f+KNQzqAjNdVUZ/Fp4Krp3cdzjC5dwuH7DCuJ++/QHFDRSOoVgqs+u/53D8RMULP6kPo+Kb4oWdW6i0m0z+cuSEIDl7Z0j1C4UgcAjEAKwJDEs9Z71Ab9EkXwW0KrBB9WQMZI+bAUe7tAI8gg4ZWAtHA/u0F+SB53eMFerk6qBu8e/QqXbVFkuilXjXF7XB6tUddSHyZm4F1BsXQ7FP5vBmCV5+ZIxLrToiP+VKYQ1r67hpYdsq/yKCLSJKIZPI4og2pbX74M/3jRNLwAWc/satGPoQz3hlrLxfcgBLG9I3OWgrqhQwNB3Jsgb0kBMSTLuNlGCVjEmG3QjFsNJuzqQSVz0ffTYCl7FxlofEJ3IWBkGuumbISoSCU6Sml8UMWfFAAyvVszeqqqOw28l2mHii5OY8uKk/e/do8qh139UfGFB7AUMekaV1NqcvoZlZej+CGMUuJKvbWBXUhBgIVl/ep/en5t9A3OtJoGNm9hbzqmj/3YkhDeoyqR0EimA9TTWgLAejQFdvL2Jp0yaoDjsahBBsBwQ5ZlXQpacMPSZDjFDRp+m3rPXSvAutzCtiMYNRRQrGtwSMqLId2e3Ctc0NKMtWxUBhZoEZ57jQ3TQGyjXXnHFPESP6uAgxOBTgLxoLAWwOA4Y0WCPg9CGbQjD18PBl30ryRF37+Www8X1qFtbxNvV3ANKB/pzECXqgVXHmMF6eHEhdeTebhb/Sojgo0sJKN4+ONfEixAm2cSy34/RUm0+Z34YBs916KMd0h7MY3rf0PebCSEfvWd748PhYQqYdbRlpaFmKBOx87QOYLHXL0AzoavdeSFbHuiHuS6PZhLioe1JX5CKHAf91E0gv/tS0+kYjJ3gvIk+ayegYAHXe4O9fRWaMVSwRYzOCt3oZRbhJLlQh37McgiZHLObvblO/rRhHt6BdlhHe9eXbGaMzLYa8uejufM5O6g/+kE9qEWKaOrGroAYJDXlLdtYHDxMgeqPPhSsfFyvYhHWy5pNT4y8vNFNpUqOIQDLn6sf6hOKgH8RCAFYkriNm7ncAlwVK5THv2iGevkcAacMrBUzQNKJbWZs+T3M7zX0edxgdiB8T/lvOiqx3MnXAUxy1XEE03nZWEx8LBTbfrXE2BVwZVCwWFe2BBZUfxOHNUm/4VUyLOpp86FtZDG8rUn+str0AmCRkMsVl8hDInlYHDlWAVI6Z7MhA8yQPZc6XDHl3s1QLnMsyTC1+Bam9wPPACScF4RcVipfbew0COYK7ybbDrx5i8HSX1kYDPRQnt90Dt8/oUSoSXEfuXLswbaFeFMqiCeKOJu3Naa9PIW5sbSsbnB0RXwd6cznlmyLTcGB1726ju8f77HPWOPmA+zJR7+TWVgNTualqlb+uqbYtR6qlT/RB/iY7NCNotxl/o5r+c50qe9wTyLCAkIUzayTji0HsDQjvwJ774a9CSl9CRTg9WctqsU/QnGAlpuTMQh4ZSRcgpHR/gxpIWZetZrF85fOQFaVSgLq1g4ewbtyx294tW4/joZPs/salg0o18O3jCFXC427xeDMT/TAzYpGvFXrdwh1k+/33WgERo2jB3+1WsSgbvEOGXvEVwIselNCTQ615HArt2ZNBJQp7R5QOjaeg+EZvX6khJCUEnprFxexeHaezpu/gYCc76QNAIt9eBuaYTQrhaxJ+jtCfl+0Xa08SzbzRy3u8AgFzJTVA5UGm6HMYB0xrQNYjF4HbXeaJUp8dhcDQqGhntbHHishbxHo+7sWHliwmMWNf+m+IJyR71Z3/9zGmIwWJUKpkZdFhFJAuXaO/c9JcfV5u2d9bRf2jWNGXv/s2/FtFw4xiQqKZLyfZ3OWrO1M/CMMfNTSPoX0JaGv87pq/+cOBv/so/eq2jVFvJMYV7mflpdtSmtpfgjACkb0Q2OEIuBdBEIAlndxCrVKpgjIASwnmdpGX8BUN/CDV6Dul7i1HLGSLKTjuVsgmyI4pTOB+uZNf0aXAMUfK6H4e62DlLWt76XMGfG/iiWxqnRBvPTwZriQIhJtIouiZYaiiAqAU8cbv6Vt0hOA5UTa+uVAmN98zwnAGjzADKUblXr2/k2ox3zrcKj3pszFl7gSRR2irGOz5OS9OHOOwerfnDdXfc3veP+GhIzVR4U75ul91L62EueyUu6aiVwRHAsDfo27Yl/b+JhqFiGB/6Lt1N1FWwlPX8HnsbieSUKUrYjE3tyBZ0oxBh3URFFLl2APo7HTEJgrvBNQWIlwBBE/sJmnA4kcwFL9NBCKs4ft/YkaGlFFS0kjSohEGVNqQuYcVvAqQIJyAsRsIQTvp5zBk8wxAlo0E5E9m/eAiLu4KA7/DW7BROyK2AqRod9VabaLvzG9Me8R7l/Jae+ezbQThUeWhxieiEL4O3AS/RISGIybSNdBMtf69eahntob3CWanUmI2wmBuyc7foLF+t+dr0FSWS9kzDM/c4i7SQGs0l/ziCzg/fU6PIyDOVFJkYxXposZGZKfW9tTOOyfy9WLhSy5oB+x0PK5nL/R1xcUtkmOjFTARJMsUWmQGcrEZL60DmCRNciFU/SD50DIWcApxso/VzuASaa368HU1pEsX9qJ6Evdu8fg4UMGlSt5BjW1g9qCefrQPoR+4GyoFo0He+e6/W/+isN4vWFcNJT7NSHzQtTpkAdFCtM1TZ3J4dkzBiX0h/DF8372UfiiZUEUFYNlu//hsGMn/b4SUNAmKEMy1UjGms3ICxwxxvqyKARgBesKhMYJRcBzBF5bAGvNJmvKM8m48pfbyszzWL/VWtffrEHyZS14vozpt4UcwFJuWwHlhv/RH9K6n8LUiJYzpNZKa9xZi2vmWPv0O3I1RHFlptRyx+t5iTS9Yud6C3hFUtOlpldwWFsiH+ZXKIZj2T1nBzQOL4B2kcVQRZ382VauFpieACxCWEsIU21mUxEi2QDkMGqzgf3MULvh1SZcC4RzwWYknd8waA7EsOAd+Ah5P3mwlpqh20Twxcp6vce8abh3H4c/djhnkJQqIaCNaRpU/9CsS38UEWds+xHjime1u1LrOY8MuQpjQwLNypmV9V18EuZ8YPDG/7Te5oThMRrc32x3U23mYZCQq72hisa2nI4ZAP6uibypJ4csm/GFSsPQa4q/w1n6KY7/A9Vcyj/kSUlQDmApl09z4PEzftoF5neDs15vFiafn/QhJbmGnlOCWoZz4QKLtRsYGIyO3yVCz1mntpXgPRAjSmkEfD8aNh0vFJRDrXgHAdEl/R9b4IGjA00wi5Sz7408KxHxPS3HCcRvd31fxjGYNIUCWIQXqFd3Huzju2CeP6H31pwFIGbwzFR/+gyDNeucQfgu3/LIkkRG1aUlLJ6epcBX0TY8MpfxDsCSk8CzKhFVhvNgvBD/SI6YuhqTffkUmn6OLxptxOPO4gzvwfglVbr01scjoxQwxdHWFQfyUEVaY5geACw5yG78vD/MlWo6LV+uFGhs1RXmGh97GyaP7eTE+4RQXvqsQgbQTVoX1OcMj04RKgEZqDw/02jka1jV4Z42YTKHuHgGNeOX46M4WqZKMtJJZnqwTE6QL+W4U4/7DtzNy/apDL2ngy9YwvL/EIAVrCsQGicUAc8ReG0BLBvf1fE/5kKtcuZa4XkB9dtZEf5ty11Lcifo9KhUz8p1c26X9W1TyHyLgFMG1q4NUK2caR/ElXywbzMEp3Wj+1twxECVi37NVgc1tPRtcnBmCd4oJG1fsed3KLb+6kDUTWYg2VbzyhfFqlIFEKtOmmeoqDIj2kQWQ4vwwohMwWwrV5FITwAWd/4Y1DPoG0Ihb1Ho+/+E0eMUMEgArAF9zdAkKilJ1+yqdNCdRHmgu0aummgj7w90XNJfFIFNW1gcOeZ82qr+Fo86H4iQq9sRImWSaeaLXT22De/GUNJb0reyOisOS76zS7J9gJraNJS24MsCPbS9anqJd++uc9uqiiYb1gZJOZUIP2j6O3IAEk42Pr//2W3KjQuh3LrM7r+pZhOYmlOuFvnCnACs7SugXE9ffBjrtoS50ZdBjLD7oYh6lrTs3bLvo7NawatoCqoGy5nYOAZEjYtkXciNcN80ayL6TfBOsjA0ozvjivpL3FRTYDtnDQH56/sPYD3f/wIXNtByUKXwAlW+uQOhoLT2N1gRouM8f85gygwKOGWKEtG9q//k50QBjcRebgP6mKFJQmj3+gYWD/bTfgU+FpCjunfxfHCAxfX1tG9UURElv/B/DcGPsnVEObAtRMVAP3YFnMQZ/MyqPzqagzGRN5HM9+YAHuqM6QfAUqybC9Ufq+g97sNWMDV0LL0kH2qGdQT78I69naHvDPD5g/c9kSsiCtowh4zaYGd5e7vfCFUCee6x2YbI72F4rzEa1KPfE9vzU+vnI1FB/7e9rSuVRm/nddWOPK/8vpl+5ypWEPBJA6sf6p8HgztzkF4fyfNKCMAKJOqhvqEI+BaBEIDlBsAi2VVla1kzf9yBUyEAy7fN5qq1E4B14E8QHhGbmavWgbFD78AnCnCELx/9ja0Jt+yjzMzyLkhGUlo0wmdACNrZ2Gd293RKBdaUzI9FZQo5KLa5879leGF8GlkEldXZ0swS0xOA5YrzgiijjZ6aAXqJklL/PmZoXRx85OUGpgbtYarfLlmuBXfvJtQjHQ/7pKxArnrk6+RmMyyHvavXHA98hDqufj0BlStaHwgJYa00O1A3aqkle8UXI4Dt2+fm4kaU++y0tTnqoUoa2s++rM9T2yeCHmVvrXDbrJY2NxZn+8DTMF5/Ls8SMFd8H8YvBnjdX95QfigwdugDc1X3KmVyAEtxaAcIEGv/3ahUEyTDIblNXoJL5iO8XSQjzVZWkhw+CAJACMV37WYsILHUiApZ8yYiChfyDiCR9rVl0jxRVMHJMBrPiDwi3vjef9Dk8rjbePKc/l7mVW1H7pG1kiM0DmM+fsJgxs8UwMocI6Lrd/6v49oNBouWOGZgsSwwbFDSHGF3/mZxazu9D+Z6T0A+ycE8qUBcXs7hySkKVuatKyB3Td+vbXIHm3kVB83ANiBlxjYjIDR3/B+w187a/2b8bjTMpX1Xgz06hoNRwgP3Zj8e6kzpCMA69BdUC8fb40AEA4hwgNRI7KSKquQz3fRNEJUu3nL5eUFdvRyTDkWy4wjdQUqb8o9VUK6jWVV7wxrjbIUuaN+Gfl+HjlRY7ne9HnVEdv5fu4uBvkCRr/XkaQZr19PveZnSIpo1sfqhXDoZyn1b6R5v0w2m6lZesRCAldK7JjTf6xyBEIAVArBSdf87AVgn9kI1h/6om8tXh/GroanqI5m835P9WBJP04aHRVdGp8iSqe6X1AHl3i3gtix1qM8/nyUK8yoUxZoS+RDnrlYtcZDiyigLR1CzDIURwXqhAJfCq09PABYJjXpkJ3D3JA9ZPSZh1PoK0EmUlPr1NiOMVtVYIqo4+CdUiyiIS96QGsasgKiRNQxi/OXlDaS0IRAA4FUCgyXLWNy7Lyt14oDWLQU7r4Vc/YisUTeFlhP6ssTxe2dhem73Mfoj58copYrxZch001YUReS+ucitv5+EF8CsLMErc2dvXYZm7HcO8+lHL/M740jOK6IfNBtCLkfZeOlkcgCLu3IK6sm97E34wm/A0JPyqiXHhVSumQ3ljjUOQxOidmPvqSDcVylhhOB95WoWL1wQvBM+nHp1BBDlPV+MkBSbocWuiE2w16mxIqqO4OHPzwJRjjs8lAEknFoVa+6Eqm5gvGnerOnBQ0L8TEkGs2cDvu3sPyH97bsM5v7PMaDRmUR065I0KPboCIOra2i/LG+KKNLCOyDtyCgOpjgJf1ZnHpEFvSs/9CZGwWxDsihJNqXNxPBIwGxyALWSEmdIypdj4zgYnkuI8Pvy0CQSfKeHEkK5AiARd9CPcLxnc9fPQT2hG72P5cwHw+B5wbxE4K6chnpyT5djimot9BNWBxUw89Z5xYk9UM0ZaW9+Xl0F6wqNRffE7xZ5ITZijPW7PPH++w7DBhvkO3+BxYrVFHAuUVxAqxZW0Fi5YQGU25bb5zd93AGkDJNYCMDy9mqH2oUiEHgEQgBWCMAKfBcFMIIcwOLOH4V6Bn1zHsxypgDcxI8vTmDai1P2IbpkLIN+mSoEMmRw+goCFEf+hmLTYrBPrDLVJNtqdcn8WFi2ME7kSPrArmUUaBiW31ImWEGdMpLJ/i48vQFYqmVToNi7xb5c4ycdMepceyRQ/mv062VGmFQLQBAsik6Eo8VmpnqtYfqESkz7G7+k+rGXT0EzhQIAYBjoxxAVON8Bn2fPGSxc7HyoJgTK7doIyJWTHr7YMweh+XkwfWAvWAKEU8IfO3X1ID5SXHTbdV+upshvY/31Z4K03EcUUfTKPLxyUQ5P3G4VUQQTY94O6grUk7qDu0ozK0wfNIepqWcibLkTctl4svcsyk4K9yC6HMBiHt2DdqiEBD5RHj6oC5YM5jLzKjKTlbA9S67kmtbluIRT77f1LC5cdC5ty5JZwKctAPKvtxbWozGgi8fBsHmIVxSydyvZiUdUYd+Bk4fLLuPaafqyJ4NwHWVHZ4WoSqLmzltnPbS7c4/BnHkUOCL3ns5fegccuRr60SNg5i+Oqhv58or44rOkx3x+icGF+dSPqCIiSnrhh/4pg+M/SgAzVkS1UbwUCwxSpIIzDMkg0gxsDaJw68rINSeZyP7Y8fEc9G6UHNMDgMWYTdB2+chh6boZWxzuc4q/10G1mioO8pVrwdCRUhH4Ezen++3Lp9DK+MpsbQJ9cRWIf+zNy9CMoy9FHinyYkLWRRg60AyS5ZigA8ZNUCCX8Qq6P6W/M0LWXNAPDy6Fy5WrDJYsp9+7QgVFdGhr/Y4TTlnVKqrEa3qnAUytf7B8FgKwAtkBob6hCPgWgRCAFQKwfNsxQW7tBGBdPw/1BOuPATG+QAkY+vh3oA2mq/NjL2Dws0P2IZPjQOiTv6IIxfE9UPy+0M6XcDJ7NBaWLYLfSuRDvAduq1LKTGgbWRxNMhRCBsaNDJ5PDiV/4/QGYCkObIdqMVXGMb9RBSMSxjkAWH17mhEeTmOnOLoLqv+Ntv+ByDPrx61MEUJVklFDMmvsD7PvNYSx5fc+XdjbtxksXcFCJ1HMIgMQ7pmO7QVERTkegBXbfoVqw3w6Z/WPYGzT3ac5pY3Ln5+NR2Guyy1O52mJGC75stj8djoIHZmXT1Hp5grcjZRsJsm4JFuUZI0G07gTe6GWZMta3t7/uMpnYIK9dBKaqbRMXMxVELpBs5N0VQ5ggecR9v2HtA/LIWHmVhAwLNgmV8ol44sZMsLQZ1qKg1fStZ06zeL3LQyMLgje69YRULWydyCWZmhHsI/u4KKmK+6oGtunyPOBgDy1vRtD6tfpgfcQb85r/1PhXLuRtWtwwVR31/jWLQbzFtKDaN48Ir7s6D+A9fwFgynTHTOwSpUS0bJp0mO+ugecmkZ/Z8OyA+W6e84Ee3yMwZVVEhL6giJKd/bf/2B/F1yNJwdhpG2EIm9A38O/zMjjEzjon0gysHrx0GRJPyWEJA7aIe3BPLa+aCSm7zcTQj7KHahaNAGKg3/YPzc2/RrmD4IvdEDKFKWlnrYJDd+OAv9GlZTYJk5zEKVsbY+G9r8LYNEnxw788C2PmMwiXr5kMGkah4oJ2/HpS1rezJerDkPn4FZp/HuTwfxFkvtGXhFfJoLU3LHdUM8bZfdTWgoaArBSZeuEJn1NIxACsEIAVqpufScAS8bHw+fMD8NgWhefWs5ufHUD3zy2KlcSq63NjYVB5JTxZV3cqf1QbFxgKU97pUrMtipXBKeyJa0kGE6yrcILWICrsumwlCq9AVjkEEgOgzYTwyMwPOdGxEteTvfpYUYGCW2TvOzQVKspTM2sQhHJbdzJfVDPHkb9Vapg/GYk+BLeZRpeuMRi1WoWvOyMmzu3iHatBBBuHrmp5o+B4shO+sAeoHrcsOOLMTfa9SH7Wr520EjKmJI7nik5Pnv/JmrdWYvzWVwro3aLKoveUeWD7pJmcHt75icZnChBEUUoX0y5cx2Uq2jWAeG+IhxYSZkTgEUOh32ag4l7Ye+mH78SpKQvmCYvkSJjW8CrHpMh5KAgTTDn9GWsFy8YrFgTGMG7elIPcFfP4KHiPZwJowfDjIVFlOrkG3iiP3sHx5fkp0sQeVT5+g64gimTpSbnrCqQnwDpvq1BGv9Xr4Dxkxxf+EgVytxdK6KeR1T0bKYIByoP8QxgkbJDUn5os1w1BeSr6zuI6MseCkZbOYejbcxARHnkAFb5njy0WdMXgKX+ZSjI85vNjJ/1hbkK5SbUjOoM9u51++eGHpPAFykTjEviMIZ6Qldw1y84/I08n+gmrg36XL4MqO3V1EF0aFTWVWjQNhpFi4iw8dk1iJ2F915JyPAlJXy+zJVU23v3gF/m0e9rjuzAN19Zv6+Ez40Iz9iML1DS8vKCWAjACtYVCI0TioDnCIQArBCA5XmXJGMLOYDFPH0I7SBrPTkxouJEuFVS2/bp76PFg+12NyqoM+P3HA1S1C2ifKIkpYK3rlhKAxeULYy1JfK5LRuyOUfAKlIi2Ci8AMKZtMdt5W0Q0xuARdal7d0MTPxL+xJ/yrcIN4z0oNu7uxkREdaPudMHoJ41xCEc+nErIGT0vYzP25jK28kVkMjnpnptYPrksySHPHyUtagNyq14MQEtm7nn4ZEDdnpSglWotL/u49CTy2gSTw8ItoHIEfBO/qTX4PekaaAje/UMmt7bgv15XZPfD4quiG8i/Y+ruyXKwSdCvk9I+H0xedaBqVlnmGo1S3IIVwCWk7x5n+mWDN5gmVKmdEjGFcMywNhjCvhcEpAmWBP6OQ4heN+5i8GefZxLgveWzUQQtUJ3ppozAooT/8CECOyOpHx0jMLKg+ULBnx74nHcfkwz/2JUZ1FsZPAU1TyFSF4KVKSwiHat/QewjCZg1FhHAKvOBwKqv5U0qESIpw/0IxkdFIyqOsYM1gM/mRy0IeqDRIUwrZtCJsZj8zcQtbgTkzjoHtH4lethRlji7S49lBCSGCg3zIdy26/2y2eq3RymJtZyOMZkhLarlQzcZoQPMjm4LwnHJuHalJqpRgOYWtHqh9TYY+rxXcD9S2kAZsVMQdGPy4CAxDZQ6atnvVDUcMzunqHzMPDlgpvRKRd/iIkR8UOi+IP8xaQKOe35AAAgAElEQVQQkwP6UYst/oQArNTYNaE5X9cIhACsEICVqnvfCcB6FQ9tL/oGXwzPAN1E9/LwKeX8JdNz1Ly7wT5dXkUGHMid9CErWL5xl09BseF/0N29ilUlC2Bh2UI44yHbKoJRoFGGQvgssjiKK11nZQTLv5QaJz0CWHJ1tfXZ+mEvW9cesl7deURGWA8k8hI+KbdCSsVYcfhvqBaMdZqOcNEZvxgE8n2UGjmYbfuDxYFDzuAVKVmqV1dIsoqLEEY7PLBPWhdQuSQhMy99ZT5eqBxPhlGsGufytkqpMKb4PIqTe/H5o53YXDSPy7nHxlRD+whaqhIsBy2cN31bOpSjENENIr7hrWlGfw32zjV6IOk2AXyxckl2dwVgqWYPB4mDzYxfDYa5fA1v3UiyHSFrJ6TtDns/PAMM3SclSTYflMn9HOTWHSvBe5yEANw2VJVKAj50Q/Cu+nU6FHusPEX7wpdCx9FsKaJESBQJvTJ9Ao4MEWBiouzNS1Q7g0yNggcqevKDZIX+upLemwigTkQkArEhIxwBrCaNeJQr4zkmR0dzMMZSAEaqoufKH1MCcGS4ZC5GRJXhPLjgCdIFEgaPfTUjvgB7nyo3kw6BqMWdnKxAwkM6bdluZoQnaiWkFwBLcXQniIKrzYgaI1FlJCbngHJF8u4x6F42cAXGE+VUPoCXR15OnWQzubrtqoy9wbz7oUW12FbWN+xhY2QQJJm2IxaBxCqYRkQxJk+TlO5GiCDPasTkCtOE5oFwNhILAVjBvAqhsUIRSDoCrz2A1eKT98ERhkCZkYPQig1/W/7aqpFruWezmcfqTbssbc7tCi6J4OuyceUAFlm3/FCbMMvxTVFqxOYpr0OZ2yvtU4exClzJSzPFksMnkuKt2DgfJ+NuY0HZIlhXIh8SlEnzVZVXZ0bbiOJoGJ4fhKD9v2TpEcCSS0Mfz/gRlodRvp+e3XhkjBTBXTgO9fS+DpeLZLKQjJaUNiIKoFwyGYzJ4DC1kCkLjF8Ph5C3iOXvPA+sXMPi4iXn+2eDjwRUrpj0QZGUSpCSCZsFK9uy78U1WKpxJBHOzYXjUJ7mKR3KFJtPsX8bejzZh2VlKOm2dPLpWd5B03DXnwXqpHLtHCj/XE2vY6HSIJl03poTiDlxLUg5S1LmCsAiZYgkI8xmpubfwFSzibduuG2n3LkWhLRdaqI2HIZuE+zfhYAnSaYB9AYGv61lcOmK9wTvys1LLJm+xM5p+uK+inKL5f9IQM53vQOA4tYexplDb9lXphBfoeJYtceso2CG4uw5Bqt+owfRUiWtGaGB2KhxChDifJt1aMejUAHPANbpGRzi71AA643veETkdd/vyWkGl5dR3zPkElGmq//ZY4Gs2Z++8pJ0MkYganGnpirwitJHoWxXM8ITsdX0AmBxd/+FelQnezilGavKvZuhXDbV/hkB3wkInxzmRBeQzKIX3q6BKFiSMm2b7cjQBlfKfYH2bXiQbMp1S+NAACybiUq1ZU8F24jQzriJ9PlZqwH696ElvyRTjmTM2Uw3dQNEdVgIwAr2hQiNF4pAEhF47QGsYO2OEIDlXyRdAVjaLvXBmOmPQ1oAsFzJ1P+brz2UjPPBwL9I0F5Eblm/ZRHWsM8spOznstI32K7GjmSVlsNp+8gSKKrMGOj0abZ/egSw5JLVj1T58WPMAnuMe3XjERkpQv3jD+BunKcPr1VqwfhZcNWHfLmw7L0bUP08FOxTyYkhcQBSZhBX+WMsXc6CZHnIjchNE9lpTybP9uJLV4HhO0qO6qm/u893x91E66eUV4u0K8Er8VehNv4Omeb7qbavxLDY4/ipkuvslvlZa6JuWPJwNLHPH0MzoLVDjPT9foKQr6jHuHEyzkMhKjP0Y2mJjbsBXAJYf62G8rc59i4EvCIgViCm2LUBqpUzHYYgSmqEm8ab9QUydzD7njhlLfE1mZxH/aiegKqV6PeVZF+RLCxi95T1cF5L+ciiSwoo3sHzd5v0vT7gMB7wFMDKke08CvTwvCeCue7TZ1msWUt/o8uWEdC0kXf+u/Pjx8kc4uPpfa/rdwIyx3ge88JCFs8vSLLB2guILuW+3/UNLB7sp+1zvCOgQAPP8wQzfoGOpdi1HsgYDSEmO8QsuSFqpZK7vo1+cpoCCfdon7JdzAjPbf1/egGwiK9OgH0i+KFcPg3KfygYY2r0BUx1P/UtSD60JplETEKcRXEUnBJCdtfZuz4MGXBTQmBPSsptdlLzHrYUHIJuXXiLyurRJSfR+VlP++fJKfIkzbTkOFjUEG1GaE4I3YnN9CMWWgQ8QhlYAW+B0AChCHgdgdcWwOrwg3OZjNdRc9Fw0bT+gXR/bfu6BLBkvEG6CWssRLmpbWVur8BTXm9342DuZsijcCypCsRH8nbuxN4VWBL2CuuK54POQ7ZVJVVWC7dVwwz5oYIHMo1AHEsjfdMjgOWK12JQ9t+hZ6z7pscPPKIfn4ZmUg+HKOuHzk/1B0pG9wqq+WPBnaXqmzYnT0V9iCVax4wxjUZE+zYCcufynI1AxpFn7pCHdfLQHqjxooAS1xfhFUcPmZVfGLGuHJXeDnSOtNafxHJa/AWMrlHWpWsrs9dFdU1ivU0yOC8v/TBXfB/GLwZ4nIk78jfU8+lvMf9GVRi+HemxnysAS3F8N1RzKQBqLv8OjF85csp5HFjSgBwmyaFSakRp0fjD+KBya/niUyBtnz1nsIoQvN93Bp2LFCbAjoiwMKJu+w9Uc0dYpkpgcmN/xBL7tAqtiMrDvMgCunQBB/9XDAKjsvct0/YJMryR9MuYQNbnqu/xkyzWb6QgUIXyAhp9nDog0PW1LB5ISq0LNhKQvZp7X+QZR8U9AF7Bjl1aG+/UdA6v7tK9W+Z7HhkSy1nTE4AlL6009J0BPn9xqMd/D+7fS/awG7qMA1/yzbR2GZLVHzlB+i1lMUzP/AtGDDGDqKw+WfYbPo6lgh+mt+vB1Nbx2SlYDv6zl4NaI4I812g1DMg90mZyEnwbd2cIwApW9EPjhCLgOQKvLYDlOTShFikRAZcA1uB2YJ48sE+vG7EYYpbkO3x5u85ad9fjoonW3m/J+XFQ1PziH93EuhPrsCCGwaXMSQN1EawSzcMLo31kcRT5D2dbubom6RHAIuvQjPvOwm9hs3nR43BRbZWq7t6FR/bFfcBdPG7/nC9fHYavgisL7e0ed9XOorz2+yLIGaHvKQpgfvQ4vOCyIiqjiM/IASuTd+AVmUc9cwC4c0foA/vn/cBXcl2u7av/P9zYjDXMY3u3D248wOJ3ekJUpF8Rg6RioFo8EYsMN9CrdiWXzYJ1r3LnA3vnOjSjaTkoIT4j4huk7DQpI7xShF/KZua6rWBs9LnHy+0KwOKunYN6Yjd7XyF/Mej7OmZPeRw4sQEpyVQtmeTQnJSrGLtPSJfglW0hRCH0r78Z7D/gTPAeHiaieVMRhU0noZlCsxx2ZdwEsxhuj4WUPNtdPJ9O3oJLDz+xf6zhnqHCmEhvwx+0dnJxiUpvCvi4fuoAWLf/ZHH7Lwqm5a4lIG8d177wBuDQUA4QKWBTaagZSv8TmIIW09QaKKkSzPQEYKnnjgB3/B97GI1te8BcrS60XT8CQ+ryE00XIB9kal2nQOZlXjyBtj/lqtQxYRicfTO6fsfj+g0GGZb/iIo6KqZkbPEdzO83CmRKv/oSsR0iumMzQ6fB4CvUCGVg+RXNUKdQBPyLQAjA8i9uoV5BioBLAGtUZzASKWHdgF8g5kke/hZfltHywTbs1VNgbUm2D1BTm5jD7stAiW2PPDqP5Td2Y1U2rcfeVdRZ0S6yOBqHF/TY9r/aIL0CWKrVP0PxN+Xm+TNDe2yP6Gi5TL0bX0S2nx3LnAyD54HPmS9NXUbu0kkoZg0HZ3DkltIx4dhSaBhqfFMe5ADsi2n7fQrm5VN7F/2gORByFfBlCLdt9+rv49e9C5H/yTPkexmPCvefoVjjH8CXpSVNQZkojQxCHqg3mu7h809ck6fvydUEhZTJCyAQ8IiASDYz1W4BUxPK9+IqVOppfR3AW+MXA2Gu+J7HqLoCsNhnj6AZSMtExYzR0I2jvIUeB01s4ErIgIBXhh/GBaSQ6e38KdHu5i0GK1azePXKORurdol/Ufdv6/2J2OmoMXgkVLP/v2ATAdmruAeBmPhYnB92C885SsSfr9xt5GqV8i+hiLjE1u0UNCJqZkRYIjXswUEG19fRTOlslUUUauo6m+35eQYXFtG22qwiyvf0IvMtNRaWQnOe/olD/C0Jh9i3PCLyWX9z0hOARfjlCM+c/T5ZqwnMVetAO/pr+9/EqBjoxq5IocimrWnkFCKDs25E07ZhIMqAJZd3Ri7zVfrM0H0ihKKus46Tc1WqZVOg2LvFPoWx5fcwv9cwBGAlZ9BDY4ciIItACMAKbYlUjYArAEt+ENL3nAKhcPAl4H1d+DePd2Pjqxv2bpMzv42WGayE1t5arGDEmiensOTJaVwOS7rsL1pg0SyqODpEFkd+RfIePr31PzXbpVcAS3F0N1T/o6VNV1QVMDvGmt0xMuMAaC/SN3l8qcowfG9VJUpLRkpx9qx/jM+eDkROM1WMsz+Ef9gapo87AC4EMVytg5GpjZKMnYSZ27zu701sVKtnQfH3WntTc5XaMH5G+Xy8GSO9tFFP+AE78RzNm9d06fKRPM2Rk6NZNMmxLu7EXqjnDLcPTcrt9D+uAuGMcmfaHo1ASlVtph82H0I2z1wsrgAskiEY9m0dh6kse4oQmHhpFvBq4TiHbENRoYKh2/j/DHhlj7WewW/rnAnew4RYjHjY0B6xW9oWuKykIHuWciKKtHIPpggbN+Dg3iag8qMi3uxvhjrKGSzz8rL43WzvfhZ/SLKeqr8loM4HqQNgEf4rwoNls6jiIkp2dB3Hm1tY3N1N22arIqBQk9Tx2+/gB7njmZ85xN2ke6j01zwiE8nz0xOAJS3RJSHiS1SwZB6rFlPuJ29LqYMc4jQxnGb4F2AfUPXKqTG/oEzDItC/ElBnVT0oRMpFRRTK5crIKbEI5aZFUG5eap/KVK81TJ90DAFYKRH80ByhCCRGIARghbZCqkbAJYAlLy36bjT40pVT1U8y+eBnhzA/9oLdjwGZ3sR3Gd/wyq9DhodY9vQsNulvwcC6f5BnRBFvmdRok7MK6ocXgCIZSOK9cjgNNkqvABb74ik0/SkZqwkqDMi+Fdn4W+j1mGY6kJAbek8FX7BUmor+nzsY/LPPCgIoRCOav5yIN3XOyqB8kTIwdh7mUUGOjMNeJmVKVI1RzFUQukGzg7pu9soZaCZTfgwCqOgmr0OKyqAFdUXuB9MM+xzH2QTUbk8V46Stz+dthYysOnm9EQRLBhT74ol9HmPzb2GuSVWjpA7Iy0VEhQK6aZu9AjFdAlikXHdAaxBSeZvpRi6GmNm7zB/FiT1WDi2RZhIS8Mr4/WjwxWg2UfIGMeVHP3qcxdZtLEz0XIgJ9963409xbCEcyjDP7pgyQkSlQW4ALFHEgwFrcV1oaW8fFfUAJftnTvmFAdi9h8WOXRQIevcdAbXeTx0giCgQkjI4mxEFPaKk58rk2UYEMCTA4etsZ2ZxiPtXAmB15hFZMP1lYLEPbkMznJZJC1ExEMq/A8XO9fbLa6rfDqYG7V/Ly63+aZAD7+aSqKHQ1KiBaN2/qPUn5cjUh2WGMMmz4EdyBFGxeyNUK2bYhza/XQ+kFDTEgZUc0Q6NGYqA6wiEAKzQzkjVCLgCsMghghDy2szYaRDMFd5NVT/J5NNenMKPL07Y/fgqYykMzeSac4Y0ItlWK+OvYOnLC7jKO5ZeyReTWWfEp6ZItClZH3kVSUvIp3ogUsmB9ApgkXBZDvbPHtkjNynzPNSKX4py+l32v/FFysLQY2IqRdd5WoEHVq9lcU6inGVr9UXejShxaIpTJ8J5REAsTwptcnU3czKpLmr6tgAb+9zup6HreMsb7/+aaXs3wzWVgEqdKO+QdI2383UAyyR/Boxy5zooV1GSXSFzDuhHLnYZbu78MahnUKVNvmAJGHpb1e88mTsASz2hG7jrtIzRRq7raTwLeDXHmTz+dSFSfvqMwa8rWTx6bN0jgx41QxRvLe8VwWBnzF8QTBQIerMfD7ULvjvF+SM4vCA/9CwFDQt/8gpZ305m8NTNBd6xk8Xuf6jftd4T8G6N1AGwDC8ZHBtDASxVhIiKLoBAwQQcHMIBAv2+Vhxohuo1T8I+O5tD7HUak1Jf8chYKP0BWGSrypUIhZwFQJR/bWb4ZgT4MrRs19P967/0uXLVLCh30szpLRGdcKvspyin242qx6ziEsSe5K6MsIGpk63OndwH9exhdl9sGXMhAOu/tBNDa0nrEQgBWGn9Cv3H/XMJYC2ZBEKiazMLyeXb9VI9EkvjLqHvU1ru1TS8EKZnecfJrwP6h1gWdxGbX/0LI9y/NSXZVu/efYK2qnyoU74hOGXqPOSnemC9dCA9A1iqeaOhOEbBqt3hzfDuK0peTUKQlsAVg5HB0uUsCFeO1DgWaNaER6mSIthbl6GaNdQh48Zy4FUoYG7+HUw1Gri9sqqlk6HYt9X+uanxlzDVoVkbXm4Jj81Uy6ZCsXczneedBjC1/sFjv3TVILF07qlWjcJdmzm5rmE4XMvXLkWWxBj10PRpAcags89n6DwUfDlnbi7F9l+hWj/f3s5c/SMY23T3yk93ABYp1SUluzYzdOwHvnLSwgCEjFc9ezhAENtEI3vY9M0ImEu6f0HhlaPpqBFZ/vYdLA4cZNHj8ZcOpcIbM/2OMJ4q7hb5lEeW8s6/bfopc3H8AS03ZBkzKg0HuFT6aSPlg6SM0GakfJCUEaaGkcS+A/0IgGW7p4qoNo6nlZaJTr24yuD8XAp0EaCQAIavu52bzeGlFMDqxCNj4fQJYGlGfQX2LgWs5NfWIoARnfW1vOQkE0216if72g9pP8KOAr3QUDcPpW4st//9drmWiOn8ZarEyEkwJG9R6Pv/FMrASpWrEZr0dY1ACMB6Xa98Glm3KwBL/gbG1PwbmGo2SXWPtyXcwheP/rb78a42J5Zns3KuvBCMWBF/BctiL+G6OTZJX7PG69D64h20z1wW2d9uCEIQHDLPEUjPAJY8M0W+Wj5fURj60Yc2z9FIvhaxsQwWLWPxODEbwzaTWi2ifWsBeRKly8nfCWGzat4IcJdOOTmUVFaV+seu4G7QclxDl7HgS1YM+qK4C8ehnt7XPq4YEQXdj6uDPk9qDsgkxEPbs7EFKo/uS0nMbT5l5rQ4lSf44KC7NSvXzoHyTxpjoVBpkEwouan+NwaKozvtfzZ+2gXmd11nkMn7ugOw5HObGn0BU11avisfxwJezRri5NvrnAFBQGvl1L4orDtmj8uajIsQJea1/5+QuBMyd6mRDNN/Rx7FHRW9hlmLPEfhL1Mvo5gQuBMid5sRAndC5J5admSkAiZJMrarzCq5WmGWCiKKtAwBWOfmcnh5lb5QKfkFj6ii6RPAkt/7pPtRDI+EbuJvqbVFU31exdnDUP000O7HVVU5/BIzBV2NA5BX8gL5et3+yN7INedjci+CfXIfmsG0xJOAjQR0DGVgJXfkQ+OHIkAjEAKwQrshVSPgEsDauBDKrcvsfpkadICpfttU9ZNMfszwCJ/cp8ojb6iiMTi6MpbGXsLGBPdv02yO17xxDx0u3EG9gtUt0r+i+jXWxPbjaqZnAIv99xI04793u2rD18PThELe40cM5i9xVieLyiiifVsRmWNcHP4EAYqN86Ha7qz4xufMD+O3IyDGOPIQaX/4GCRbx2a6sb9CjEoGnhyBh7ZHY4eMoLQiCuHHV8BlF+bhHWiHWbnU8nZrjji1yqFdfkUE9uVuGqzpPI5DOKgsaoASLin9wNkQcjsqqMrJeg09p4D3UqzDHYBF1D6J6qfNSBagqZXrjDtS7qacNQSMWcJDxHKwZIy9puU7trhxc8dBfXyHPY5rI8YgkqElTaoYERX7OIIq3PqFOLD/U5gZmqlV6kseGYukHnfT75tZHDlGAawGHwmoXDH1AKyTUxVIuE+/QoQDi3BhSe3sHA6x1yhQQ5QKiWLh627n53F4cYXGpcTnPDIVS58AlmLrMqg2LnR5SfkSb8LQddxre7kJgTv5bbDZMy4bxmRdgcFPWiKjidIwXGo/F3mq5U+VOJHfDG0XWhUichx0M7eFAKxUuRqhSV/XCIQArNf1yqeRdbsEsP5YCeU6Shpr+qA5TE2/SnWPr5ti8c5dWpvvjUM54hLQ9sw1tL9wB9kq1YO5dguI2hBw5U3s5G3SM4AFnoe22ydgzEanpfM58sEweK5Etcuf6ATe5/oNFstXMjAaHcsGc2QT0a6tgAzhSR+iuDMHoZo/Boyelo8Rrwh5uqnTYJhLWcuxmEd3oR36md1hMSwDdJPWBb4ANyOoFk2A4uAf9k9NtZrA1IyWOSXbxCk0MHv9AjQTulpme+ObRrgT6ag2WFIVjT9zepfZFCyX5aV85orvw/jFAPvwjNkEbdf6DiCXbtrvSSoWSn1zB2BxJ/daywETjS9dBYbvqAKo7e/cpZNQzewvA69YGDoPe+3BKxIj5ZpZUO6gv3WbIzpBybQGhYIA5hMB1d5OBIN4HrF9p+IsR7MdVWod3hyudCqRC9Ye82ac9RtZEAVVmzVqKKBC2dQDsC7M5/D8kgSE6cgjU3GJaABv5b8SzbRNhV48NFlCANb5+RxeSGJX/DMe0SXSJ4Al51CS7mVSSk9K6l9nk3OEDc62CSMfOlISnO+7A/nzp953WdvtYzAG+hIuYeJvyJk32+t82UJrD0UgRSMQArBSNNyhyeQRcAVgKfb8DtWvlMzXXL0+jG26pXrwCCl7iVu0Bt+dQ5wgotaNe/js5FXUvv0EYo2PYa7byit1tlRfZBp2IF0DWITIfXIPEGU8uRk79oe5cuqkwtt8OX2GxW/rWWnSjOWjggUEtPlUgFLp3cZgH9+zpP+zD+84dSClXERqmju93wFkEIqWgb77JO8m8KOVvExMjM4K3Wia4enHkGmqC3vmIDQ/D7b4VOOzejiTLdrBv8qarFiX/aMU9Zm9cx2a0Z3pnCwH/aglICT/xOQZiUQpkCgGemvuACz25mVoxn1nH0bIXQj6gb84DGsFrwY6gsksC+OXA2EuX8NbF/7T7eT8ZEdimuIG/z2iJefFE2ogopiAZo1FRJ7fhfPLtXiifMsel1zvGJGvgRTySvmQ/baOw6kzFAxq0ohHuTKpBwZdXcPh0RH32VVxtxic+YnyXym0IioPC5UPkp1zfgGHFxcl4N9nAjKVsG7IrFEaKDgGj17oYeZT7/p6u8PlL3Gk/YxfDIK5YuqLFnm7luRoJxe9WZWxN1q8nGCf6p6iEOL7zUbuXKl3rbVD2oN5TNMp9UPmIXvp4skRjtCYoQiEIuAiAiEAK7QtUjUCrgAs7sjfUM8fa/eLHO7JIT8tWK5/Xad9E99yxr5Ch9PX0O70NZDMK9P7jWGu1xqEdydkgUcgvQNYyvX/g3L7CodAGDPlgnmM+z0VeNQ8j7DrHw5/73RWqCOZCp98LID18QxKCLyViyc5KInavOCLlYWYPT8UuzfQ7/e7DWH81H15pecVeG5hyX6TEIvr+/8MIW8Rzx3TQQvFob+gWjje4uknrWrhn7zZHbx+X5MLS7PXTvGVaCZ2B3vtrH1eY50WMDfuZPk/EelQLaGgpbn8OzB+5cxF5c5pdwAWE/8SRJHRZmJ4BHQTaSYRd+U0VDP6gzE5ZkKmBRA5xS9QEhOSjEWSuWgzU6Wa2KYbhP+3dx9QTpRrGMefJJstgPRelSKigKAiYBfBAiggSJEqil0UxIIKNiwogiIoNpAqRUAUwd4bFhSx0XvvgpTdTXLPFy6bzRbYsJsymf+cc8/1sDNf+b2z2eTJzDcpmR7qsCpBWpIkFS7kU7/UQfp596OSIxC+NLg7XYWivA71tLed+vOvwAtYx/Ye1T0teh9613zo1IbPAuOpeqlXlS8JpIIbvnRqzbzAz0vV86p2t+hdZRJL5+Tfbzq1K9MTcU/p4VXJ06wZYBlXcwVq1tch8+/mqa3m6a123pJGDJBraWBdzb+SmurUQ4EHKP2S0kKl7r9XZaP4+pI0rJ9cmf6+Heo3TOWaNrFz2Zg7AhEVIMCKKDedZRXIMcDKsrCuWY/ELKobC1ujFRO10RX4RtRcbXXZivXquWiFmq/cKKfPp7TzW8vTspu8xUvFwpDjZgxWD7BcfyxQ0uiHguqx5cq7dULLy6NSI69Xevc9pxYuyp5QXdLMpwvPy983/+7PZsk94+Vjzi21+91KPye8BlmfApl2+bVKa3N43Sirb5mde7Q9X+/VDiy2bebWuvCJeqXMRRGfZsKv3yjx1cDtfL6Uwjr49FT/bYKJU0cFhZhpV/ZUWsu8r3OYW4BlJpn19pMDI+f6H5RhwrSkF+6XI+1QkEVqz3uV3iTyAV/ECxJCh1lfqzx1ztDmy56RuQXuyLbbKf2QIpVJX6cuu9/V0pTAlW9Fyh1S/f6BfUPoukB3nTLNqX+WBF7funTyqk7t6AVCm79zauWcwHjKN/WqetvAeP4e59SufwI/P+kqryocuU2zQGWs19g/E5za+WfApnZ3r0rVtW6AlfzUrXKuXRZUCF9yig6MeNd6xSngEZsvNzI/iTxNiXIr8KXD+0VvVoOBHVSiePTCaPO3zfyNO7KZK3jLXhr9p6UXcCloDoGYFSDAitnS2GNgOQZYSxfJfANzZPOcfLrMtxvR3BJ+/Uqu9ybokkvraFH5Uqq6Z5//Sqsei5ar7H+H74NPb3qZ0lp1l68U98GHo1ZWD7DM0+KWPv2mEvdsUmnPRrmUru0DJ0XlMvi0NGnyVKfMuleZN3O11dVtvKpfr2A+5PlDg5cfluO/3J/MeejekfKcVCccp0xGm8AO9XgAACAASURBVAkLv1Tia4G1kLzlKuvgI+PC2mekGnfPGSf3B4dvbe57RWNNrF8zqOvORWrpudLnRmo4Qf2kPNRdjh2bA2/yO92u9IvaKOvVWaE+9e9oAVby4J4yt7Ie2UydzfmXOPL+oKvwzM8jEZ5GBT6fnbpWL1FSpodOeCtV13/3vKIFD7sk3+GrNc1Hx48LSa3/HaUkx2Xa6wpc0Vi9jVflzymY15D8TGXiFJeWZXpyXfdrPapVM3ofenf84dSSiYHXXHMFkbmSyO/pld/Xm2kNwpwWec+Ph5WPNW7G78h2clevSte3boCVOP4ZJfzwcVBJPLXq61D/8N1Ob5X6myvVzRXruW2vl3hGbR5sqMLByz1GdHqJU19UwpeBsDGt4y0q0yH7U4AjOig6Q8BGAgRYNip2LE41pwAr6/oo5lYfc8tPNDbzSN+Ed8fJuW65v/tRZ9dRne27dcnK/9/77nDILFCcfmUPectkeZxQNAYcx31aPcAypXn1DZfWbwjcrtent0dVKkf2A9W+fQ5NmOzU5i3Btw0mJvrUrYtXJ1Yr2PE49+yQ+5VH5Vr1d45n54Hn3/Uv9B7OzVx1k9y/bdCi3WbNCm+FauHsNiJtJ05+XgnfvO/va/BFDfVi41OD+u1zwql6pNTZERlL1k7cn8+Se3rgKjxvqQo6OGSCUvq2DroS6sCQSSEF/0cLsLLefpLWro8S5k0ivArhDHBs36yUQd0zjvAVK6kDT0/TopEJ+m9DoKHfktN13Y7b9GvhVwL7yqvEtlKjptEPsMZNcGnV6sDrXK8eHlU/sWBf30Jg1d41Di1+KXBl2glVfKp3++ErXf/bJC16PiGjOWeiT40f9cgR4i3coYzHSvsumeTUjsWZAqxrPSp9ujUXcTfu7iwPKzL/lt7saqVeEz8PGDne8yvh5y+U+MYTuR7+eNnp6vtgCbmDH7h7vN0d13Hu9yfKPTewbqNZfL/MDXccV1schAACoQsQYIVuxhEFKJBjgLVlvZL//1h401U0rpYwC/0mzBmb64du/5uNhucr/cpe8lYIvmWnAHloKpNAPARYr41zad26wAeqG67zqGqVyH2g2r7DqTcnOPTv3uDwqugJPvXs6lWZsuEbS9bbxvy/22Uq6uBj4yNynie9PFhmQfcjW1qb3kq7vEtE+g5nJ4mvPi5zhajZRjQ5TY9d2CCou77F6uu+EmeEcwi5tu04tF/J93UOCo/SOt4q9/TAFxLm1sIDw98JaXxHC7DMemBmXbCjbamd71D6hZF9MmNIE4zyzibwNSFj5m3/yx9r5btObf420y1wJy5V0pKFWpPUOWPXzS7pt2SpZg2vOrb3KTk5fK8px2J6fZxLazO/3vbyqGrV6I3n0E6HfhkaCLASi/t01sDDAdam75xalen2QvN0wjrX5e827mP5WOnnS6a4tGNR4O/WyZ09Kt3QugFWwp8/KXFU4Mmsphapve5XeuNLrFSWsIzVuXapkp8K3JIc9DrkPEGDy72rxwanh6XvvDbq/mae3JNHZOye3uRSle6f93Uc89oP+yGAQM4CBFicGVEVyDHA2r1DyQMDb4jNWlIHnwpe/DpcgzaLMibMeVOuZYEFJLP2ZdbkSruql8xtFWyRE4iHAOv1N11am2kh5Ot7eVQtQh+oTHA2YYpThw4Fh1dlyvh0XXevihQJ/wc784CGxInDM66+SW9wrlJveiQiJ5G5XcPctnFki+aVnQU54aTnB8i15PDr1dgGtXT3ZcFXWz1Q4kzdVqxeQXYZUlvuWa/K/fGMjGPM1XaZF9Q/nlvEjxZgueeMlfuDt3IdownQzAM22I4ukPXBBweGzdaOlUX1z6RAgFXMtVT708oqzRl4UMnCJIe2Jhx+LSlc2KfO13gj9hqXdUZjXnNp46bA691NN3hUqWL4X+dyk/V6pB8eCFxl5XD61PSpwyHVkslO7fg9YFvtCq8qXRT9q9hi5fdk6RSXtmcKsGp18qjMGdYNsJw7t8o8bS/zFi9XBef3nDHLLaTcnfNr9PLEBnqj/AgNGhjdACvr043TT22k0o8EAq38GnA8AggcXYAAizMkqgI5BVjmW/uUu9oEfeAxtxmFczO3CCa884YS/vo5127S656t9NY95a12cjiHQtu5CMRDgPXGmy6tyRRg9e7pKfBb9nLi+/Mvh96e5ZIny+eh6id51aWTT0mJkftQ59y4SokvPSznjk3+hbvNAt6R2BwH/lNK/7ZBXYV661okxhlqH8lDbpJzw0r/YbPqVNX1V50f1MSTpZqo5wnRe7x3Th/UMg8w7aK2SuuU87ftuVkcNcD65n25Jz+f46Fp19yitGZXh0psy/2TH+rh/x09sh18eKxSi1bVj4/mvjh7urz6pHD2e97ObepRi2Y+OSO8rvtLryRo85ZA+W69KV3lo7xEpfFL3x8I1c5+2KOEQj79+LhL6fsC/17vVo9OKODbua18Ii+d6tT2XwPnVq1OXpU5w7prYJlauOdNkjyBq+wi9bfQCueB+Vtt/mZn3b4ufLU+Ln+H7h8Q5QBr9T9KGhq4ZdBbuYZKDo/M1eRWqB9jRCDcAgRY4Ram/aMK5BRgmQOyPknK3L4Qjs18mDaLIGe+tShrP54adZV+9Y3yVA/vQtPhmF88tRkPAdbY8S6tXhP4kHJdD49OCvOaLN9859JHnwRfdWXOi3p1vWrf1iuzcHukN8eB/Uoc+6TSm14qzxkXRKz7pJH3y/X3Lxn9pbW/SWnNO0Ss/3B0lDKwsxy7d/ib/uzE8mrfKfgWlBdKn68ORWqEo+s8t5n4+hAl/PJljvunduuv9HNDe3rT0QIs1+IFSnop+GmfpmPCqzyXy79j8tA75Fz9T8ZBB/sNk/fk07XwWZcObs/+emJ2LN3Ip6/3KSikP9JA2TI+macAlioZubD8hdEu7dgRGGvf2zwqXSpy/eck/utzLh3YGhhTg37pcrgc+nVYIN1zJPjU5DGPHBEO/EI7QyK797JpLm1bGHCr2cGjso2sewVWZPWs11tOT2k0s5hRbICWVGyp/n2je3utY8cWpTwUeHKur2hJlXg9vF+0W6+KjBiB8AkQYIXPlpbzIJBbgJXt9oUCXujZuXmdEt4bL/N0stw282Q0s8aVeYQ4W/QF4iHAiuSiwj6fNHeeUz/9kj2huuh8j5pdHN0PcuaMMreShXsB98xnrjvL1TneGnV1cIC1L/tPuaOVHOmHHzH+a/lSatbz8qBf1tfLNtMVhaK7Tl/Wp9plHqB5QIe5nTOU7WgBlnPbBiU9dVvQt/fxst5ZKEb53TfrmnGpNw5SesMLtPxtl7b+lHOAVf8OjwpX8um7H1z6+DOHzC1zQb9/CdIVl3t11v+vnMnvGI91/IiRLu3aHRhrvzs8KlEiuq97f77m0p5MT0Y89QaPUnfL73pkK1bdp9Nuiu4H9GPZRvrny6a7tO2XQC1rtPeo3NkEWJGuQ6T6y+1Lj5GlXtbBSqfo9luiewWWccj6RXvx6d9Eiod+ELC9AAGW7U+B6ALkFmAl399Z5ullR7aDQ6fJW7RkvgdrHq+e8P4EJSz4NNe2vFVq+te48tRtnO/+aKDgBOIhwHpzoksrV2V6KlZ3j6qfVPAfqNLTpSnTnFq+Iji8cjjkv+qqfj17rq3i2LtbKfdeE3RSFtRrS8Gd6XlvyZF6UCl3XplxwMqypXXmdZcFNTC13KU6P6Vi3hsN055Jz94l18o/s7V+PFfXHi3AOtKBc8Ufci7+QY5CRZV2accwzSp+m3VPGi73t/MzJpjapa/SL7hSW392aPmM7JcGpZTxqeGAQOiyZatDk6c6tTtTgHSksdq1vGrfLvwLvD873KW9mW7LG9DPI/PAimhuy6Y5tW1h8K1wu5c7gsKZys29qtrCnq/RudUma3BavZ1H5ZsQYEXzXA5n37mtZfhA+Q9UtlKibrwh+gGvWafLrNd1ZCPACucZQdsIBAsQYHFGRFUg1wDr4V5ybg08r/vgI2PlLVfluMfq3L1drvfGy/3Dx8r2tfD/W/VUPPHwFVcNzj3ufjgwfALxGGD17OZRjeoF+4HqwAGHxk9yBi1ebKriTpCu7exVjer2/mCU/Fw/OZf/ke2DefjO3PC17Ni5VSmZFgLeUaGSava4KKjD9yq00hlJZcI3iDy27Fr4lZJeezxob2+FajILF4e65SXACrVN9g8WSHxnrBI+DCyGn9aqm9Ja99TBHQ4tfCZ7gFWtpVeVLgx+bUlLk97/wKmFmdYuOtJLJBZ4f3pYgvbvD8zLrJtTqFB0K716nkMbvwz4VWvp05YfpIM7A19snNbHo2I1C/bvQnRnnf/eV8x0acuPAaPq7bwq38Taa2DlXyV+W0j4dr4SJw0PmuB2VyU9XXaSf9kFs/xCtLfkh6+Tc+v6jGEQYEW7IvRvJwECLDtVOwbnmmuA9dRtMo/SPbIdz20m5lhzFVfC/ClK+DL3e9O95Sor/cqeSj8z+INfDHLZekjxEGCNn+TSipWBN+E9unpUs0bBfVDZucuh8ROdQbfNmJPGfFjs0c2rCuUKri+rnozuz2fLPf2ljOGbW4QP9R1qyek4169Q8hM3B+ZStZZKdwl+CuHnldrqZHfgKXHRnGjKQ93l2LE5YwjpjZoptffAkIdEgBUyWcgHZP09SbugtdK63CnX0kVa8NqJSnWWytSmT40GeeQuknM3S5Y69fY7Dh06mP3Ww/PO8aj5xeFZ4H3I0wlKPXx3rX978P50JSWGTFGgB2z61qlV7wauwCpV36cdvwe7NH0iXY7AwwoLtH+rNrZillNbFgTcqrf1qnxTAiyr1vNY4zavM0kjBgTttij5Ak0s8ahOruVVty7R/yIuafjdci37PWOMBFjHqio/R6DgBAiwCs6Slo5DILcAy/zhMn/AjmyH+g2Tedx6XjfHvj1K+OAtuT+dmesh3lIVlN6qu9Kbtshrs+wXRYF4CLAmTnFpWab1T7pf61GtAvqmfcNGhyZMdspcgZV5K1XKq+u6+1S0KOGVccnpqXgHnpstX6FcPn1H8Zw/VteuJb8p6fl7MnYzYVyNtqdrjzfwqf3nKteogqvwsZqKyM8Tvv9Yrl+/kq9QYflSTpC3wbny1G4Qct8EWCGThXxAws+fK/GNJzOOS29wnlJveliJrw3R339doC2JzQIf3Gp5deoNR/9AuW+fQ29Nd2rd+uwhllngvWsXr0oUL9jXqMeeSFB6pgs1Bj+QroQoB0MmrFoyOXAFltMtedMC5SlS1af6t0X/6pKQT5gwH7DyHac2fx8IsE5q41WFcwiwwsweteZz+jv94QnX6eMiPVT3NJ86to/+70jWdboIsKJ2utCxDQUIsGxY9Fiacq4B1kuD5Fr8QyDAuuUxeeo3PebQzf3oCR9NU8Ln78isD5PT5i1ZVp4ruiqt6WWSi8f8HBM1RnaIhwBr0lsuLV0W+ADXrYtHJ9fK/4e2v5c4Nf1tZ+YncvurVq2qT906e5WUnP8+YuQ0KJBhJGe5wjO1xz3+JyJabUv4+QslvvFEIGQ46yKlXv+g1aYR8ngJsEImC/mArOGoeeDBoZsfVcp9HXVAZbXXWVMeRxHtv+haFTmzgk6oduzXGPNgiW++denTLxzyZsm73G6p1eVendGw4K6sGPxYcFr12ODoL/y8d5VDi8fk/r6j0oUemdsK2YIFdi91au/qgEuJOlKRKqyBFc/nSaHbLlPmF4rxxR/V4pQL1LCBT+2uioEAa9ooJXwxJxDks4h7PJ+OzC3GBAiwYqwgdhtObgFW4tinlPDTZ4EAq/dAeRoFvvHN6uQ4tF8Jn85SwkfT/U82yzG4KlpS6Vdcq/SL2tiNOS7mGw8B1sS3XFqWKcDq2tmj2ifn78PKjz87/U8bzLqdVsera672yklGm83G/dF0uWe/lvHvJhw/dMtjlvs9SfjqPSW+NTIQYF3YRqmdb7fcPEIdMAFWqGKh7+/asFpJQ/pkHGhutfc0uVRmceUjm7dCVR0c/EbIjW/afPhqrHAu8O7xSI8+EQiwXE7p4YeiH2Ad2ObQr8Nyf1Gu08urEnUKLsQLuTgWPKBs8WQluBzauvug0j35+3tqwenH7ZDdH8/Qht83adf6fUrx7dPMYndrl6ucGjfyqtUV0f8dcX84Ve53Aq9/XIEVt6ciE4tBAQKsGCyKnYaUW4DlnvKC3F/PzaBI63qX0s5rlY3GXGXl/nyOXB9PleO/wNNAMu/oK1JM6Zd3VtolHexEG3dzjYcAa/JbTi1ZFgibunb2qvbJx/9G7IOPnPruh+zh1fnnedSiGW/kc/slcG7boOTBvYJ+fOD5d+VLSrHU7417/mS5330z8DrZuofSWnW31ByOZ7AEWMejFtoxWZ/Y6U0pJKUU8d+Ce2RL7XT7cX8hZBZ4f2+eU78tyv76Zdbs69LJq6qVj/81LPWQNGRoIMBKdEsPDYx+gOVJlRYMyv0+xsaPpcuVFFqt7L43AVb8ngGLFjs0c3Zw4HveOV5d2vz43zcVlFbCdx8oceJzGc0RYBWULO0gcGwBAqxjG7FHGAVyDbBmvir3JzMCH8yu7qO0FoFHoTvSU5Xw1Vz/Au1mvaucNrOmTXqLTkpv1la+xOQwzoKmIyEQDwHWlGlO/bMk8IHNfEirUzv0N2Lm6oK3Zzn159/BH/4cDqnNlV6d0SD0NiNRw1jqI/nxPnJuXB34MH79Q0o/68JYGuIxx5I4fbT/dumMQOGaW5XerN0xj7P6DgRYEaigz6dCt+Z+W63PnaSDQ6fLZ4KtfGx//+3UrDkOHUoNXhvLvJade45Hl1zsk7l6KtRt/wHp6WcDQVFKijTwnugHWGYePwxKUKZl6jKmVqi81KBfbIwxVO9o7k+AFU398Pa9foNDr74RHGA1u8iriy6I/nsc5+IflPzSoAwAAqzwngu0jkBmAQIszoeoCuQaYL0/Ue65EzLGltaym9Ku7ClHerpc381XwvzJcu7ekePYfckpSm/WXunNr8n3m+uo4tB5kEA8BFhvTXPKrFd1ZOvS0as6p4T2Rsw8yWv8FKfWZ1kM2Z0gde7oVa2aobVn19PMPXe83O9Pypi+Ca9Sr3/IUhxJY5+W66dPM8Z86Lr75Tn7EkvN4XgGS4B1PGqhH5NyT4dcvyBKP6+lUrv2C73RHI74d69DJtzfuDH7Au/myamdO4W+wPvevdKzIwIB1glFfLqnf/TXzTHTX/isSwe3Z5+reaqeeboeW2gCBFiheVlp76xBtBn75S28Ouf/T6CM5lyca5Yq+enbCLCiWQT6tq0AAZZtSx8bE881wPpsltwzXg4EWBe1la9KDbnnTZJjx5acg6vEZKVd3EaeSztb8olisVGR2B1FPARYU6c79dc/gQCr8zVenRrCeidmzZjxkx3asSP4koRCKT717OGV+bDHljcBx/oVSnni5oydfe5EHRz+jnwJ7rw1EAN7JY16QK4/fwoEWLc/Kc9pjWJgZOEdAgFWeH2PtJ782A1yblqTY2eHBr0uT8VqBTYQs6j7V9+49PmXDpnF3jNv/gXerwjtylLzWjl8ZODKjeLFfOp/Z2wEWH+84tK/K7MHWCdf61Hp03kND/WkIsAKVcxa+z/xtCvoCs0rW3nV6MzoB72OXduU8sC1BFjWOp0YbZwIEGDFSSGtOo3cAqys95Yfa35pl7RX+uVdZNa7YotPgXgIsKa97dKffwU+uIQSYG3a4tCEiU79tz/4g0/pUl517+ZTiWJ88An1zE8e1EPO7ZsCAdBtQ+Sp2zjUZqK2f9LQ2+VavSSj/4MDX5K3aq2ojSdSHRNgRUY6acQAuZYuytaZ58RTdOi+F8MyCHNl6fRZOS/wfuopXrW9yqfkPDxVdedOh54fFQiwSpXy6s7bov+h16AtmeLSjkXZA6yzHkxXYtGwsMZ1owRYcV1e/y2E5lbCI1uHdl7Vrxcbv8uFbmlBgBXfpx+zi1EBAqwYLYxdhpVrgPXLl0p8fcgxGdIvuFLpLbvKW6zUMfdlB2sLxEOANf1tl/7IFGB16uDRaaceO3havsLpf2qXWfg482YWOe52rTdPH+isXf3wjD5h9mtK/Gh6RuPpTS5Vas97wtNZAbbqXL9Sjv175R73tJy7t2e0fGDIJPlKlSvAnmKzKQKsyNTF/A1O+OXLbJ2l9rpP6Y2bh20QBw859O5cp/74M3vIc8IJPnVs71W1qkd/3dy61aFRYwIBVrmyPt12c2xcgbVqrlObvg6+ija5tE9n3BMb4wtbYcPUMAFWmGBjpFmz1qe5JTg5SUpOlqpU8alwoWO/b4rE8FMGXC3Hf3v9XbEGViTE6QOBwwIEWJwJURXILcByLV6gpJdyWY/G6VJakxbyXNlT3uKlozp+Oo+cQFwEWDNdQR/KOl7tUd26R38jtvA3p+a858x2W80ptb3q1MErV+5PZI9ccSzak3PV30p+pm/G6M1TCA8Mny05YwPVPGXVuW65HCawWrdczvUr/AvPO9JScxQ/YG6BTCls0WrkfdgEWHm3ys+eidNGKeGLOUFNmDUmDz77tnwJiflpOk/HLvrdqbnzcl7g/bxzPWp2Ue4LvG/cKI15PbAGVsUKPt3cJzYCog1fOrVmXnCAVfYsn2peExvjy1NxYmgnAqwYKobNhpL5NmsCLJsVn+lGVYAAK6r8dJ5bgOVc8YeSh2VfINZ865veuoe8pSuAZzOBeAiwZsx0aXGmqwo6tPOofr3cA6xPP3Poy2+yhynnNPHqshZemSd1seVPIHlgl6CrmA7d+Yw8pzTMX6PHcbRz51aZdbmcG1bKuXqJHBtXB93emJcm97/8cV52s/w+BFiRKaF73mS533szqLO0SzoorcNNkRmAJLOW1dS3Q1/gfd06h14bF3jtrFzZpxt7x0ZAtG2hQ8umBb+um/DKhFhsoQsQYIVuxhEFI5D0/AC5lhy+zZoAq2BMaQWBvAgQYOVFiX3CJpBrgLVhpZKHBN4kp59xodKv6iVvucphGwsNx7ZAPARYb89y6fc/AqlT+3YenZ5DgOX1SDPnOLX4j+zPj2/d0quzz4qN9R9i+4zJ2+jc00bL/cU7GTunX9RGqZ1uz9vBx7mXc+2yw1dSmbDK/PfapXIcPHCcrR0+zFOrvg71fy5fbVjlYAKsyFTK/c08uSePCOrs4GPj5S1TMTID+H8vZoF3s7i7WeQ96wLviWaB95ZeNTw9+DVx1WqHxk0IhEQnVfPpup6xEWDtWe7Qn68FB1jm9kFzGyFb6AIEWKGbcUTBCCSOfUoJP33mb4wAq2BMaQWBvAgQYOVFiX3CJpBrgLVto5IH91R6w/MOX3FV8aSwjYGGrSEQDwHWrHdc+u33QIB1dVuPGtQP/tByKNWhSVOcWrM2+PIqc6tgxw5e1alNeFWQZ6xr2e9KGn53RpPeoiV1cOi0AunChFImnHJuWHH4FsANq/2BVX42nztJ3irV5atcU74qNeWtXEOeE2vnp0nLHUuAFZmSuTasluuzmXLs2CTn9i3ylKui1DuejEznOfSydr1D02aY9XCyX3pa5xSv2rXxKTnp8Ovp8hUOTZgcCIlqVPepZ7fYCLDS9jq09hOHDu2UDu2SvOkOnXl/bIwtasXNR8cEWPnA49B8CbjfHiP3pzMJsPKlyMEIhC5AgBW6GUcUoEBuAZb54OfYut4WT9QqQM64bioeAqyZ77i0KFOA1a6NRw0zPTZ93z6Hxk10atu24A9oKSk+9ejqVaWKfEMfjpM8ZUB7Of77N6PpQ/eMlKd6nZC6Mk8zNGtUOdat8IdUjo2rZG4LzM9mnqrqrVJDnio1paony1upurzlq+Snybg4lgArLsp4XJMwC7zPnuPQ3/9kvzrVLPDe6RqvzMMtlix1avLUwD61a3nVtQvh/3Ghx/hBBFgxXqA4Hp77o+lyz36NACuOa8zUYlOAACs262KbUeUWYNkGgInmWSAeAqxZc1z6LdPj09td5VHDBodDqW1bHRo/2al/s1xdUKK4Tz27e1WyBOFVnk+WEHdMnDxCCd/MyzjqaOv8ONLTD4dTR8Iq8/8bVsh5YH+IvQbvbm7LMldT+arWkq9yDX9wxdNVcyYlwMrXqRYXBy9c5NS8eU6lZnkyq5ncBed5VL6cNH1m4Aqs0+p4/eEWW/wJEGDFX02tMqOE7z9S4oRnCbCsUjDGGTcCBFhxU8rYmMjs+V/r7blfavnqDfJ4PKpWubzaXn6erm3XXC5X9m9MCbBio25WGEU8BFjvvOuUeargka1tG6/OON2rVaudmjI1+9O2KlXyqXsXrwrFyCOjrXCeHM8YXX/+qKRRD2Yc6itZVgeemCzH/n2H16hav9x/C6B5GqBr8zrJLFJ2nJsvIUG+8tXkNbf/Va3p/39fpRoyT3djy5sAAVbenOJ9r527HJpuFnjflP2WQrdbSssUbtWv51WHdgRY8XhOEGDFY1WtMafM7x1YA8saNWOU8SFAgBUfdYyJWQx88jW9+9G3cie41LBeLbkTErTorxXa998BnXd2PY1+6i4lmIV8Mm0EWDFROksMIi4CrPecWvhrIMBqc6VX7gRp1hynzELFmbdTanvVsb1XCYEnwVuiTlYdZHL/NkFXUZnb9xz79uRrOiaUMuGUp+rJ8lWtcfgWQHM7IFu+BAiw8sUXVwd7vNKnnzv07XfZF3jPPFFzpau54pUt/gQIsOKvplaZkXP9SiU/cfiBUwRYVqka44wHAQKseKhiDMzBBFcmwKpetYJeHXaPKpQt6R/V/gMHddfgUfr2pz90R++rdXOPqwiwYqBeVhxCPARY78516ueFgQCrYkWfNm7MfvVA40ZetbqCqwUieZ4mjXtarh8/Pe4uvcVL+RdWP3IboP8WwNIVjrs9DsxdgACLsyOrwOo1Ds2YlfMC72bfRmd6dWUrXlPj8cwhwIrHqlpjTo7d25UysAsBljXKxSjjSIAAK46KGc2ptL3ukBdTZQAAIABJREFUIS1btV6TRz+kBqcFX2Gwa89eXXJNf7ndCfpy1gtKTkrMGCpXYEWzatbqOx4CrPfmOvVTpgArpwpcfqlX5zThg1akz07Xou+UNObhPHXrLVdZXvMUwKq1Dt8KaG4DLFI0T8eyU/4FCLDybxiPLRw86NDM2Q4tWZZ9uYImZ3vV8nJeV+Ox7gRY8VhV68zJ/dkseUuWU7lLmltn0IwUAYsLEGBZvICxMPyNm7erRecBqlqprOZPfibHIfV/ZLQ+/OInvfjEnWp2bkMCrFgonMXGEBcB1vtO/fRL9g9XphRmibiO13hVpzYfsqJxajrS05Tcv60caakZ3fvcifJWOskfVskfVNWQt3J1+dxJ0Rgiff5fgACLU+FoAr8sdGreB06lpUtOp3TWGV41u8jHWoJxetoQYMVpYS02rYqlWMfSYiVjuBYWIMCycPFiZeiffr1QfQeNVOsWTTX0wcP3gmfdxs/4UM+Mfkt9urbWXX06EGDFSvEsNI54CLDmznfqx5+yB1hJyT51v/bw49/Zoifgfu9NKfWQ/1ZAX5Wa8lSsFr3B0HOuAgRYnBzHEtix06yL5dC5TX0qVYrX1WN5WfnnBFhWrl78jJ0AK35qyUxiX4AAK/ZrFPMjfHPaB3r25am6qfuV6nt9+xzH+8nXv+jOQS/qsosaafgjtxFgxXxVY2+A8RBgvT/fqQVZAqzixXzq0c2n0qW48ir2zjpGFIsCBFixWBXGhEB0BAiwouNOr8ECBFicEQhEToAAK3LWcdvTqLGz9fKEORpwcydd1/mKHOe54Ne/1bvfUDU581S98dy9cWvBxBA4msB/+6XPv/Hqs688+nevVKWSQ/1vTdAJRXBDAAEEEEAAAQQQQAABBBA4mgABFudHvgWeGzNdY6fO08A7uqpb+xY5tvfrH8vU7fYn1LBuLU0a9WC++6QBBKwusOAXrxrUcyrTMw2sPiXGjwACCCCAAAIIIIAAAgiETYAAK2y09mk4pCuwzjhVbwznCiz7nB3MFAEEEEAAAQQQQAABBBBAAIH8CxBg5d/Q9i1MmPGhho5+K09rYDU//0y98PgdtjcDAAEEEEAAAQQQQAABBBBAAAEE8i5AgJV3K/bMReDL7xfp1oEj8vQUwt6dW+rumztmtLRxxwFcEciTQDws4p6nibITAggcVYBF3DlBEEDgiACLuHMuxIIAi7jHQhUYg10ECLDsUukwznP7zj268Oo7VbVSWc2f/EyOPfV/ZLQ+/OInDRt8i65o1pgAK4z1iNemCbDitbLMC4HQBAiwQvNibwTiWYAAK56ra525EWBZp1aM1PoCBFjWr2FMzMAs0G4Wap88+iE1OK1m0Jh27dmrS67pL6/Pp69mj1TRIoUIsGKiatYaBAGWterFaBEIlwABVrhkaRcB6wkQYFmvZvE4YgKseKwqc4pVAQKsWK2Mxcb19YLfdfN9w1W9agW9OuweVShb0j+D/QcOqt/Do/XNj4vV9ermeqBvt6CZcQuhxQodxeESYEURn64RiCEBAqwYKgZDQSDKAgRYUS4A3fsFCLA4ERCInAABVuSs476nYWOmadzU+XK7E9Swbk0lut1a9NcK7d23X6eefKLGvzBQhVKSCLDi/kwIzwQJsMLjSqsIWE2AAMtqFWO8CIRPgAArfLa0nHcBAqy8W7EnAvkVIMDKryDHBwmYda4mzfxYS1aslcfjVaUKZdSyWWNd1/kKJSW6s2lxBRYnUF4FCLDyKsV+CMS3AAFWfNeX2SEQigABViha7BsuAQKscMnSLgLZBQiwOCuiKkCAFVV+S3VOgGWpcjFYBMImQIAVNloaRsByAgRYlitZXA6YACsuy8qkYlSAACtGC2OXYRFg2aXS+Z8nAVb+DWkBgXgQIMCKhyoyBwQKRoAAq2AcaSV/AgRY+fPjaARCESDACkWLfQtcgACrwEnjtkECrLgtLRNDICQBAqyQuNgZgbgWIMCK6/JaZnIEWJYpFQONAwECrDgoopWnQIBl5epFduwEWJH1pjcEYlWAACtWK8O4EIi8AAFW5M3pMbsAARZnBQKREyDAipw1PeUgQIDFaZFXAQKsvEqxHwLxLUCAFd/1ZXYIhCJAgBWKFvuGS4AAK1yytItAdgECLM6KqAoQYEWV31KdE2BZqlwMFoGwCRBghY2WhhGwnAABluVKFpcDJsCKy7IyqRgVIMCK0cLYZVgEWHapdP7nSYCVf0NaQCAeBAiw4qGKzAGBghEgwCoYR1rJnwABVv78OBqBUAQIsELRYt8CFyDAKnDSuG2QACtuS8vEEAhJgAArJC52RiCuBQiw4rq8lpkcAZZlSsVA40CAACsOimjlKRBgWbl6kR07AVZkvekNgVgVIMCK1cowLgQiL0CAFXlzeswuQIDFWYFA5AQIsCJnTU85CBBgcVrkVYAAK69S7IdAfAsQYMV3fZkdAqEIEGCFosW+4RIgwAqXLO0ikF2AAIuzIqoCBFhR5bdU5wRYlioXg0UgbAIEWGGjpWEELCdAgGW5ksXlgAmw4rKsTCpGBQiwYrQwDAsBBBBAAAEEEEAAAQQQQAABBBBA4LAAARZnAgIIIIAAAggggAACCCCAAAIIIIBATAsQYMV0eRgcAggggAACCCCAAAIIIIAAAggggAABFucAAggggAACCCCAAAIIIIAAAggggEBMCxBgxXR5GBwCCCCAAAIIIIAAAggggAACCCCAAAEW5wACCCCAAAIIIIAAAggggAACCCCAQEwLEGDFdHkYHAIIIIAAAggggAACCCCAAAIIIIAAARbnAAIIIIAAAggggAACCCCAAAIIIIBATAsQYMV0eRgcAggggAACCCCAAAIIIIAAAggggAABFucAAghEVWDT1p16a/Yn+ubHxVq3cZvSPR5VKFtSFzQ5XTdc20qlSxbLNr5/lq9V+xsGH3Xcjw64Th1aXxjVudE5AgjkXWD3nn2aOe8rfb3gdy1btV579+1XSnKSalSrqMsvPlud2zRTYqI7xwY3bt6uMRPf1Xc//aHtO/eoWNEiOrvhKbqp21WqeVKlvA+CPRFAICYEflj4l9776DstXLxMW7fvksfjUZnSJXRm/ZPV85rLVKdWNd4bxESlGAQCCCAQWQECrMh60xsCCPxfwOv16Y233tfocbOVln44tKpVvYr/Terfy9Zo5+69Kln8BI0f+YCqV60Q5Pb9z3/qhgHPqkyp4ipftmSOpjd2u1LNzm2INwIIWEBgzoff6vER43XgYKqKFimkU2pVVdEihf1h1OJ/Vsrj8apu7ZM07vn7VCglOWhG5vWi551P6b/9B1WlYllVr1ZBm7fu1JIV6/yB10tP3qWmZ51mAQWGiAACJsi+6+FR+um3f+RwOFTjxIqqXKGM/zVg2cr12rxtp5xOh5564Ea1bt6U9wacMggggIDNBAiwbFZwpotALAncNXiUVq3bpIG3d1WTM0/NGJr5EPvIc+M09+PvdUa9Wpr44oNBw37/0x907+Nj1P+mjrq+S8tYmhJjQQCB4xBY/M8qPf/qDPXqdLnOOauuXC5nRisbNm/XjfcM0+p1m3Vbr7a6tVfbjJ+ZD7VX9hyoNeu36J5bOvuPP7J99cMi3fHgSBUunKwPpzyrE4oUOo6RcQgCCERSwOfzadAzY1W2dHF1uqqZypUpEfT7Pn7GB3puzHQVSknSl7NeCAq0eW8QyUrRFwIIIBAdAQKs6LjTKwIISP6rLVxOR463BZmfndfmdh08lOp/k5r5VsKJb3+kp0dN0RP336C2l5+HJQIIxLnA/M8WaMBjL+us02tr/AsDM2b78Vc/ywTh5gqr14fdk01h2JhpGjd1vu7q00F9uraOcyWmh4A9BFr3GKhVazdp3Ij7/bcKH9l4b2CP+jNLBBCwtwABlr3rz+wRiGmBdr0f0tKV6/XOuCGqdVLljLG+8PpMvTrpPY0ZerfOb1wvpufA4BBAIP8CXy9YrJvve04XNj1dLz3VL6PBB59+Xe988I2GPniTWrcIvp3I7LRi9QZd1etBnVKzqma+/lj+B0ILCCAQdYHOtzymxX+v1PRXHtFptU/kvUHUK8IAEEAAgcgJEGBFzpqeEEAgRIFm1/TTlm279OO8MSpcKLDuzSPD3tSMuV/o7dcezXEh1xC7YXcEEIhhAXNLUd9BL+qzbxbqgb7d1PXq5hmjvfr6Qf61ruZPfkZVK5XNcRaNW93iXx9r4Yev5roIfAxPn6EhgEAmgT+WrFKXWx7zX5X9wZRnlZTpwQ68N+BUQQABBOJfgAAr/mvMDBGwpMCfS1ar402P6PRTa2jKS4OC5nDHQyP9H2Zv7nGV9u47oP/2H/B/MK1asazOb1yfp45ZsuIMGoGAgHka6bYde/TnklUaP/1DLVy8VJdd1EjPDrolaH2sRlfcpP0HDum3T96QO8GVI+GRKznfffMJ1TiRJxJyniFgNQHzRNKNW3bI3Eo8ZfYnSkhwacSjt6txwzq8N7BaMRkvAgggkE8BAqx8AnI4AggUvIC54uL6/s9owa9/64XH71Dz888M6uT2B17Q59/9mmvHl198th6/t3e2p5UV/EhpEQEEClLgyK2Cmds0twjdfl07XdDk9KCuzJNM6zW7TinJifr5g1dzHUaPvk/ql9+X+h8GYR4KwYYAAtYQOHKr4JHRmqutul7dQj07Xha0LuaRn/PewBp1ZZQIIIBAfgQIsPKjx7EIIBAWgVFjZ+vlCXP8wZUJsLJuqalpWvDrP6pSsYz/SUVut1vbd+7RgoV/6eXxc7R+0zad26iuXn12QFjGR6MIIBAegX+Wr9WYCe/K6/P6b/tbs26zNm3d6X+CYOc2zXR773ZKcB2+0so84OHMy25U0SKF9P3cl3Id0A0DntX3P//pX+TdLPbOhgAC1hB4/rW3/U8fTU1L046d/2rpqvUyf//NldkP3NlNdWufFDQR3htYo66MEgEEEMiPAAFWfvQ4FgEEClxgyuxP9cQLE3Vy9cqaNOqhoLWv8tLZjl3/qk2vB7Vrz169MfxeNTnj1Lwcxj4IIBCjAn8vW6NHn3tTi/9ZpR7XXKb7buviH6m5UrPuxaFcgfWAzqh3cozOkmEhgMCxBMzTiae+86lGvDZDSYmJmjvhKZUrU+JYh/l/znuDPDGxEwIIIBDzAgRYMV8iBoiAfQTMwuxmEdaqlcppwsiBKlOq+HFN/pnRb2n8jA/9a2Td0fvq42qDgxBAIHYEdu/Zpxad7/ZfdfXV7JEqUewE/+DMAu37/juQpzWwZo8d4g/G2RBAwNoCI16dodenvO+/nfCBvl3zPBneG+SZih0RQACBmBUgwIrZ0jAwBOwlMHXOZ3p8xASdWKW8xo24339r4PFuk2d9rCdHTg75ze3x9sdxCCAQfoHe/Yb618V78/n71ajBKf4OzYMezAMfjvUUQhNy/TT/FRVKSQr/QOkBAQTCKmDWtDNr25nXAfN6kNeN9wZ5lWI/BBBAIHYFCLBitzaMDAHbCEx8+yM9PWqK/+qI15+7V6VKFM3X3F94faZenfSe7urTQX26ts5XWxyMAAKxIdD1tiH67c/l/oD77IaHAywTepvwe+iDN6l1i6bZBrpi9QZd1etBnVS1gv92IzYEELC+wHc//6E+A4bprNNra/wLA/M8Id4b5JmKHRFAAIGYFSDAitnSMDAE7CEwbup8DRszzb8Yq1l0vVjRwvmaeFq6R216PaA167forZcGqf6pNfLVHgcjgED0Bbbt2K0WnQfI4/Ho69kvqnixIv5BmcXZzSLt55xVV68Ny/7QBvPaYl5jenduqbtv7hj9iTACBBDIt8CTIydp8qxP1L3Dpbr/9mvz1B7vDfLExE4IIIBAzAsQYMV8iRggAvErYK6SMt+ImoWVxwztn6cF29du2KpPv/5FV156TrbHaK/dsEXmje3XCxbr/Mb1NGbo3fGLx8wQiCMBszZN07Pq6pyzTpPL5QyamQmj7xsyxr+Ie7srzteQ+64P+nnnWx7T4r9X6p5bOqtXp8szfvbVD4vU96GRcjid+mDyM3le7DmOWJkKApYT+ObHxVqyYp1aNW+i8mVKBo0/3ePRtDmf+a/YdrlcmjPuCVWrXM6/D+8NLFdqBowAAggclwAB1nGxcRACCORX4MgtAKadCuVKKSnRnWuTRQqlaNorD/t//s/ytWp/w2A5HA7/G9fKFcr4/3vj5u1atW6TvF6fzqhXS6Of6qeiRQrld5gcjwACERC4uMNd2rp9t04oUsh/K3HpksX8v8vrNm71/86b7fzG9TXi0duVkpwYNCKzj7m90DxlrErFsqperYK2bNvlP868Njz9wI053l4YgWnRBQIIhCjw9twv9fCwcf6jzK2/5u98SnKS/t37n/5Yskp7/v1PhVKS9cygm3TxOQ0zWue9QYjQ7I4AAghYVIAAy6KFY9gIWF3gwy9+Uv9HRudpGkUKp2jB+y/7901LS9fsD77RZ9/84v+WdtfuvfL55L+lqE6tqmrd/Bxd0axxtqs48tQROyGAQFQEFi5epvc+/k6//7XCH0Tt3rNXTqfTH2TVPaW6P4Bqdm7gw2rWQZpjXh4/R198/5u279itIoULqWG9Wrrh2lY6nduIo1JTOkXgeAT27tuvOR9+K3MFpQmnd+7eqwMHD8l8kVWtSnmde1Zddbzq4mwPeuG9wfFocwwCCCBgPQECLOvVjBEjgAACCCCAAAIIIIAAAggggAACthIgwLJVuZksAggggAACCCCAAAIIIIAAAgggYD0BAizr1YwRI4AAAggggAACCCCAAAIIIIAAArYSIMCyVbmZLAIIIIAAAggggAACCCCAAAIIIGA9AQIs69WMESOAAAIIIIAAAggggAACCCCAAAK2EiDAslW5mSwCCCCAAAIIIIAAAggggAACCCBgPQECLOvVjBEjgAACCCCAAAIIIIAAAggggAACthIgwLJVuZksAggggAACCCCAAAIIIIAAAgggYD0BAizr1YwRI4AAAggggAACCCCAAAIIIIAAArYSIMCyVbmZLAIIIIAAAggggAACCCCAAAIIIGA9AQIs69WMESOAAAIIIIAAAggggAACCCCAAAK2EiDAslW5mSwCCCCAAAIIIIAAAggggAACCCBgPQECLOvVjBEjgAACCCCAAAIIIIAAAggggAACthIgwLJVuZksAggggAACCCCAAAIIIIAAAgggYD0BAizr1YwRI4AAAggggAACCCCAAAIIIIAAArYSIMCyVbmZLAIIIIAAAggggAACCCCAAAIIIGA9AQIs69WMESOAAAIIIIAAAggggAACCCCAAAK2EiDAslW5mSwCCCCAAAIIIIAAAggggAACCCBgPQECLOvVjBEjgAACCCCAAAIIIIAAAggggAACthIgwLJVuZksAggggAACCCCAAAIIIIAAAgggYD0BAizr1YwRI4AAAggggAACCCCAAAIIIIAAArYSIMCyVbmZLAIIIIAAAggggAACCCCAAAIIIGA9AQIs69WMESOAAAIIIIAAAggggAACCCCAAAK2EiDAslW5mSwCCCCAAAIIIIAAAggggAACCCBgPQECLOvVjBEjgAACCCCAAAIIIIAAAggggAACthIgwLJVuZksAggggAACCCCAAAIIIIAAAgggYD0BAizr1YwRI4AAAggggAACCCCAAAIIIIAAArYSIMCyVbmZLAIIIIAAAggggAACCCCAAAIIIGA9AQIs69WMESOAAAIIIIAAAggggAACCCCAAAK2EiDAslW5mSwCCCCAAAIIIIAAAggggAACCCBgPQECLOvVjBEjgAACCCCAAAIIIIAAAggggAACthIgwLJVuZksAggggAACCCCAAAIIIIAAAgggYD0BAizr1YwRI4AAAggggAACCCCAAAIIIIAAArYSIMCyVbmZLAIIIIAAAggggAACCCCAAAIIIGA9AQIs69WMESOAAAIIIIAAAggggAACCCCAAAK2EiDAslW5mSwCCCCAAAIIIIAAAggggAACCCBgPQECLOvVjBEjgAACCCCAAAIIIIAAAggggAACthIgwLJVuZksAggggAACCCCAAAIIIIAAAgggYD0BAizr1YwRI4AAAggggAACCCCAAAIIIIAAArYSIMCyVbmZLAIIIIAAAggggAACCCCAAAIIIGA9AQIs69WMESOAAAIIIIAAAggggAACCCCAAAK2EiDAslW5mSwCCCCAAAIIIIAAAggggAACCCBgPQECLOvVjBEjgAACCCAQtwKbt+3U/E8X6Luf/9TSleu0e88+ud0uVSxXWuc3rq/eXVqqVImiuc5//mcLNHv+1/pr6Rrt2btPXq8vx32LFS2s794dne1nv/6xTFNmf6Jffl+qnbv+VaGUZNWuWUVXXXqu/38ulzNu7ZkYAggggAACCCAQywIEWLFcHcaGAAIIIICAjQRMeHVZ53uU7vH4Z23CoxLFimjHrn918FCq/9/KlCquqWMGq3yZkkEyJqi6d8gYmQDLbKfUrKpKFUpr67Zd+mvZGnk8Xv+/J7hcKlumhE6uXlmjn7wrqI0Rr87Q61Pez9ivRPETtHff/oy+m5xxqkYO6avChZJtVBWmigACCCCAAAIIxIYAAVZs1IFRIIAAAggggICk+598VSdVqaDm55+h6tUqyuFwyOfz6cvvF+m+J17Rvv8OqN0V52vIfdcHeU2Z/ameeGGikhLdenlofzVuWCfj5/8sX6ub7n1O23fu0f23X6vuHS7NZv3m9A/07EtT/cffc2tntb38fKUkJ/qDry+//02Dnh3rvxqs1SVN9Mygm6kVAggggAACCCCAQIQFCLAiDE53CCCAAAIIIHB8Aq9NnqvnX3tbpUsW05ezXghq5OrrB2nJinXq07W17urTIVsHU+d8psdHTFCl8qX10dRhQT83V3g173S3UlPT9Ng9vdW+1QXZjv/wix/V/5GX/P8+8/XH/Fd4sSGAAAIIIIAAAghEToAAK3LW9IQAAggggAAC+RAw61L16Pukv4VFn77hvx3QbOYKrfqX9Pavd/XSU/10YdPTs/Xy19LVuubGR/z//u2cUSperEjGPmOnztNzY6arWuVymjdpaK4jvPDqO/1Xcd3So41u790uHzPhUAQQQAABBBBAAIFQBQiwQhVjfwQQQAABBBCIisDKtZt0ZY+B/r5/mj/Gv0aW2cyaWQ2a3+APst4Yfq/MWlVZt+WrNqjNdQ/6//mr2SODFoK/+b7h+nrB7+rQ+kI9OuC6XOdmwjMTojU//0y98PgdUTGgUwQQQAABBBBAwK4CBFh2rTzzRgABBBBAIAYFzG2Acz/+XuZpgOs2bvUvon4oNS3bSDMHWOaHl197r3//u2/uqN6dW2bbf+4n3+u+Ia+oRLET9PU7I/1rax3ZWna7T2vWb8mzxtkNT9G4EffneX92RAABBBBAAAEEEMi/AAFW/g1pAQEEEEAAAQTyKWCunnrqxcmaPOsTf0tmnavTT6vhf9pgUmKiTN60dcduvffRd/6fZw2wXpn4nka+MVNFixTShBcfUK2TKmeMaMu2Xep119Nau2FLjmtkHbk1sGzp4v6A61jbabVP0uP39j7WbvwcAQQQQAABBBBAoAAFCLAKEJOmEEAAAQQQQOD4BCa+/ZGeHjXFf2XU4P491aHVhXI6A1dJmVYX/bVC1976eI4BllmA/fq7n9HCxcvkcjnVuOGp/gXbzZpVC379S/sPHNI5Z9XV6CfvVGKiO2iQR67e6nt9e93U/crjmwBHIYAAAggggAACCIRVgAArrLw0jgACCCCAAAJ5ETDrU5l1qlq3aKqhD96U4yHf/vSHbrzn8BMEs16BZf4tLS1dPe58Sr//tUKFCyXr4KFUFU5J1im1quqqS89Vm8vOyxaKmeN69xuqBb/+rVaXNNEzg27Oy3DZBwEEEEAAAQQQQCDCAgRYEQanOwQQQAABBBDILtDoipu1/8BB3XNLZ/XqdHmORC+Nn6PR42bnGmA9PmKCps757Kht5NTwmAnv6sWxs/y3H346Y4QKpSRRIgQQQAABBBBAAIEYEyDAirGCMBwEEEAAAQTsKNC8Y39t2rpTndo00+B+PbIRbNuxW+16D9KuPXtzDLA2bN6uSzsPUOUKZfThW8+GRGjabtF5gP8Krtz6D6lBdkYAAQQQQAABBBAocAECrAInpUEEEEAAAQQQCFVg8LNjNfP9r+R2J2j4w7eq2Xln+JtI93j07Y9/6MmRk+TxerVpy44cAyxz+6G5DTE5KVGjn7xL9U+tnrHWlUMO/7pYR9uOrMFl9jF997m2lcxi7ea4ff8d0OatO/23GX727UI9/cCNKlOqeKhTZH8EEEAAAQQQQACBfAgQYOUDj0MRQAABBBBAoGAEzJMCO9/yqLZu3+1v0KxhZZ4IaK6OOpSapqqVyunN5+9Xhz6DtXP33hzXwLrtgef1xXe/5Tggs3B7tUrl1OKCM9Wr0xX+9rNuY6fO04hXZ8jr9fl/ZBaUN4GaWSA+8/bpjOH+pyOyIYAAAggggAACCEROgAArctb0hAACCCCAAAJHETBPDDTrUX31wyKZQMuETpUrlNYl552p3l1a+temMou4m8Xcsy7ivmzVek2Y8ZFmzfvqmMY1qlXUWy8PzjHEWrthiybP+kQ/LPxLGzfv0MFDh5SclKSK5UupwWk11eKCs3Ruo7r+cIsNAQQQQAABBBBAIHICBFiRs6YnBBBAAAEEEAiDwNcLFuvOQSOVkpKkATd30rmN6qlMqWIZIZO5DXHnrr367uc/9Ojw8f4rqu7q00F9urYOw2hoEgEEEEAAAQQQQCAcAgRY4VClTQQQQAABBBCIiIDH41XzTv39tx6+OKRvxtpZuXU+5PmJeuudT3XxOQ016sk7IzJGOkEAAQQQQAABBBDIvwABVv4NaQEBBBBAAAEEoiSwau0mte4x0N/7Lx++6l/E/WjbqLGz9fKEOf4aue4iAAAIxElEQVRbAZ9/7PYojZpuEUAAAQQQQAABBEIVIMAKVYz9EUAAAQQQQCBmBNas36KW3e7zj+fLWS+odMliuY7NLAbf/obBMqFXvxuv0Q3XtoqZeTAQBBBAAAEEEEAAgaMLEGBxhiCAAAIIIICApQWu6vmAVqzZqKZnnabB/XqqaqWyQfMxTxVcuHipho2ZpsV/r1TZ0sX1ztgnVKxoYUvPm8EjgAACCCCAAAJ2EiDAslO1mSsCCCCAAAJxKPDP8rW66d7nZJ5iaLaTqlbwL+Ke4ErQ3n3/afX6Ldq7b7//ZydXr6zhj9zm34cNAQQQQAABBBBAwDoCBFjWqRUjRQABBBBAAIFcBP7dt1/T3/1cX/2wSCvXbPIHVg6HVCglWRXLl9apJ1fTxec21EVNG2Q8nRBMBBBAAAEEEEAAAesIEGBZp1aMFAEEEEAAAQQQQAABBBBAAAEEELClAAGWLcvOpBFAAAEEEEAAAQQQQAABBBBAAAHrCBBgWadWjBQBBBBAAAEEEEAAAQQQQAABBBCwpQABli3LzqQRQAABBBBAAAEEEEAAAQQQQAAB6wgQYFmnVowUAQQQQAABBBBAAAEEEEAAAQQQsKUAAZYty86kEUAAAQQQQAABBBBAAAEEEEAAAesIEGBZp1aMFAEEEEAAAQQQQAABBBBAAAEEELClAAGWLcvOpBFAAAEEEEAAAQQQQAABBBBAAAHrCBBgWadWjBQBBBBAAAEEEEAAAQQQQAABBBCwpQABli3LzqQRQAABBBBAAAEEEEAAAQQQQAAB6wgQYFmnVowUAQQQQAABBBBAAAEEEEAAAQQQsKUAAZYty86kEUAAAQQQQAABBBBAAAEEEEAAAesIEGBZp1aMFAEEEEAAAQQQQAABBBBAAAEEELClAAGWLcvOpBFAAAEEEEAAAQQQQAABBBBAAAHrCBBgWadWjBQBBBBAAAEEEEAAAQQQQAABBBCwpQABli3LzqQRQAABBBBAAAEEEEAAAQQQQAAB6wgQYFmnVowUAQQQQAABBBBAAAEEEEAAAQQQsKUAAZYty86kEUAAAQQQQAABBBBAAAEEEEAAAesIEGBZp1aMFAEEEEAAAQQQQAABBBBAAAEEELClAAGWLcvOpBFAAAEEEEAAAQQQQAABBBBAAAHrCBBgWadWjBQBBBBAAAEEEEAAAQQQQAABBBCwpQABli3LzqQRQAABBBBAAAEEEEAAAQQQQAAB6wgQYFmnVowUAQQQQAABBBBAAAEEEEAAAQQQsKUAAZYty86kEUAAAQQQQAABBBBAAAEEEEAAAesIEGBZp1aMFAEEEEAAAQQQQAABBBBAAAEEELClAAGWLcvOpBFAAAEEEEAAAQQQQAABBBBAAAHrCBBgWadWjBQBBBBAAAEEEEAAAQQQQAABBBCwpQABli3LzqQRQAABBBBAAAEEEEAAAQQQQAAB6wgQYFmnVowUAQQQQAABBBBAAAEEEEAAAQQQsKUAAZYty86kEUAAAQQQQAABBBBAAAEEEEAAAesIEGBZp1aMFAEEEEAAAQQQQAABBBBAAAEEELClAAGWLcvOpBFAAAEEEEAAAQQQQAABBBBAAAHrCBBgWadWjBQBBBBAAAEEEEAAAQQQQAABBBCwpQABli3LzqQRQAABBBBAAAEEEEAAAQQQQAAB6wgQYFmnVowUAQQQQAABBBBAAAEEEEAAAQQQsKUAAZYty86kEUAAAQQQQAABBBBAAAEEEEAAAesIEGBZp1aMFAEEEEAAAQQQQAABBBBAAAEEELClAAGWLcvOpBFAAAEEEEAAAQQQQAABBBBAAAHrCBBgWadWjBQBBBBAAAEEEEAAAQQQQAABBBCwpQABli3LzqQRQAABBBBAAAEEEEAAAQQQQAAB6wgQYFmnVowUAQQQQAABBBBAAAEEEEAAAQQQsKUAAZYty86kEUAAAQQQQAABBBBAAAEEEEAAAesIEGBZp1aMFAEEEEAAAQQQQAABBBBAAAEEELClAAGWLcvOpBFAAAEEEEAAAQQQQAABBBBAAAHrCBBgWadWjBQBBBBAAAEEEEAAAQQQQAABBBCwpQABli3LzqQRQAABBBBAAAEEEEAAAQQQQAAB6wgQYFmnVowUAQQQQAABBBBAAAEEEEAAAQQQsKUAAZYty86kEUAAAQQQQAABBBBAAAEEEEAAAesIEGBZp1aMFAEEEEAAAQQQQAABBBBAAAEEELClAAGWLcvOpBFAAAEEEEAAAQQQQAABBBBAAAHrCBBgWadWjBQBBBBAAAEEEEAAAQQQQAABBBCwpQABli3LzqQRQAABBBBAAAEEEEAAAQQQQAAB6wgQYFmnVowUAQQQQAABBBBAAAEEEEAAAQQQsKUAAZYty86kEUAAAQQQQAABBBBAAAEEEEAAAesIEGBZp1aMFAEEEEAAAQQQQAABBBBAAAEEELClAAGWLcvOpBFAAAEEEEAAAQQQQAABBBBAAAHrCBBgWadWjBQBBBBAAAEEEEAAAQQQQAABBBCwpQABli3LzqQRQAABBBBAAAEEEEAAAQQQQAAB6wgQYFmnVowUAQQQQAABBBBAAAEEEEAAAQQQsKUAAZYty86kEUAAAQQQQAABBBBAAAEEEEAAAesIEGBZp1aMFAEEEEAAAQQQQAABBBBAAAEEELClAAGWLcvOpBFAAAEEEEAAAQQQQAABBBBAAAHrCBBgWadWjBQBBBBAAAEEEEAAAQQQQAABBBCwpQABli3LzqQRQAABBBBAAAEEEEAAAQQQQAAB6wgQYFmnVowUAQQQQAABBBBAAAEEEEAAAQQQsKUAAZYty86kEUAAAQQQQAABBBBAAAEEEEAAAesIEGBZp1aMFAEEEEAAAQQQQAABBBBAAAEEELClAAGWLcvOpBFAAAEEEEAAAQQQQAABBBBAAAHrCBBgWadWjBQBBBBAAAEEEEAAAQQQQAABBBCwpQABli3LzqQRQAABBBBAAAEEEEAAAQQQQAAB6wj8DzlcwhgzPvhJAAAAAElFTkSuQmCC", "text/plain": [ "" ] @@ -5335,7 +5621,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdB5QU1bqG4a+7J5FzlJyjAioqZgUVxRxAMWDGnEVRAROKoqBiRExczIp6zJhzBpQcBck5zTCpu+/aNfRAw4SumQ7VNW+tdZYeZtcOz19673xn1y5PMBgMigsBBBBAAAEEEEAAAQQQQAABBBBAAAGHCngIsBxaGaaFAAIIIIAAAggggAACCCCAAAIIIGAJEGDxICCAAAIIIIAAAggggAACCCCAAAIIOFqAAMvR5WFyCCCAAAIIIIAAAggggAACCCCAAAIEWDwDCCCAAAIIIIAAAggggAACCCCAAAKOFiDAcnR5mBwCCCCAAAIIIIAAAggggAACCCCAAAEWzwACCCCAAAIIIIAAAggggAACCCCAgKMFCLAcXR4mhwACCCCAAAIIIIAAAggggAACCCBAgMUzgAACCCCAAAIIIIAAAggggAACCCDgaAECLEeXh8khgAACCCCAAAIIIIAAAggggAACCBBg8QwggAACCCCAAAIIIIAAAggggAACCDhagADL0eVhcggggAACCCCAAAIIIIAAAggggAACBFg8AwgggAACCCCAAAIIIIAAAggggAACjhYgwHJ0eZgcAggggAACCCCAAAIIIIAAAggggAABFs8AAggggAACCCCAAAIIIIAAAggggICjBQiwHF0eJocAAggggAACCCCAAAIIIIAAAgggQIDFM4AAAggggAACCCCAAAIIIIAAAggg4GgBAixHl4fJIYAAAggggAACCCCAAAIIIIAAAggQYPEMIIAAAggggAACCCCAAAIIIIAAAgg4WoAAy9HlYXIIIIAAAggggAACCCCAAAIIIIAAAgRYPAMIIIAAAggggAACCCCAAAIIIIAAAo4WIMBydHmYHAIIIIAAAggggAACCCCAAAIIIIAAARbPAAIIIIAAAggggAACCCCAAAIIIICAowUIsBxdHiaHAAIIIIAAAggggAACCCCAAAIIIECAxTOAAAIIIIAAAggggAACCCCAAAIIIOBoAQIsR5eHySGAAAIIIIAAAggggAACCCCAAAIIEGDxDCCAAAIIIIAAAggggAACCCCAAAIIOFqAAMvR5WFyCCCAAAIIIIAAAggggAACCCCAAAIEWDwDCCCAAAIIIIAAAggggAACCCCAAAKOFiDAcnR5mBwCCCCAAAIIIIAAAggggAACCCCAAAEWzwACCCCAAAIIIIAAAggggAACCCCAgKMFCLAcXR4mhwACCCCAAAIIIIAAAggggAACCCBAgMUzgAACCCCAAAIIIIAAAggggAACCCDgaAECLEeXh8khgAACCCCAAAIIIIAAAggggAACCBBg8QwggAACCCCAAAIIIIAAAggggAACCDhagADL0eVhcggggAACCCCAAAIIIIAAAggggAACBFg8AwgggAACCCCAAAIIIIAAAggggAACjhYgwHJ0eZgcAggggAACCCCAAAIIIIAAAggggAABFs8AAggggAACCCCAAAIIIIAAAggggICjBQiwHF0eJocAAggggAACCCCAAAIIIIAAAgggQIDFM4AAAggggAACCCCAAAIIIIAAAggg4GgBAixHl4fJIYAAAggggAACCCCAAAIIIIAAAggQYPEMIIAAAggggAACCCCAAAIIIIAAAgg4WoAAy9HlYXIIIIAAAggggAACCCCAAAIIIIAAAgRYPAMIIIAAAggggAACCCCAAAIIIIAAAo4WIMBydHmYHAIIIIAAAggggAACCCCAAAIIIIAAARbPAAIIIIAAAggggAACCCCAAAIIIICAowUIsBxdHiaHAAIIIIAAAggggAACCCCAAAIIIECAxTOAAAIIIIAAAggggAACCCCAAAIIIOBoAQIsR5eHySGAAAIIIIAAAggggAACCCCAAAIIEGDxDCCAAAIIIIAAAggggAACCCCAAAIIOFqAAMvR5WFyCCCAAAIIIIAAAggggAACCCCAAAIEWDwDCCCAAAIIIIAAAggggAACCCCAAAKOFiDAcnR5mBwCCCCAAAIIIIAAAggggAACCCCAAAEWzwACCCCAAAIIIIAAAggggAACCCCAgKMFCLAcXR4mhwACCCCAAAIIIIAAAggggAACCCBAgMUzgAACCCCAAAIIIIAAAggggAACCCDgaAECLEeXh8khgAACCCCAAAIIIIAAAggggAACCBBg8QwggAACCCCAAAIIIIAAAggggAACCDhagADL0eVhcggggAACCCCAAAIIIIAAAggggAACBFg8AwgggAACCCCAAAIIIIAAAggggAACjhYgwHJ0eZgcAggggAACCCCAAAIIIIAAAggggAABFs8AAggggAACCCCAAAIIIIAAAggggICjBQiwHF0eJocAAggggAACCCCAAAIIIIAAAgggQIDFM4AAAggggAACCCCAAAIIIIAAAggg4GgBAixHl4fJIYAAAggggAACCCCAAAIIIIAAAggQYPEMIIAAAggggAACCCCAAAIIIIAAAgg4WoAAy9HlYXIIIIAAAggggAACCCCAAAIIIIAAAgRYPAMIIIAAAggggAACCCCAAAIIIIAAAo4WIMBydHmYHAIIIIAAAggggAACCCCAAAIIIIAAARbPAAIIIIAAAggggAACCCCAAAIIIICAowUIsBxdHiaHAAIIIIAAAggggAACCCCAAAIIIECAxTOAAAIIIIAAAggggAACCCCAAAIIIOBoAQIsR5eHySGAAAIIIIAAAggggAACCCCAAAIIEGDxDCCAAAIIIIAAAggggAACCCCAAAIIOFqAAMvR5WFyCCCAAAIIIIAAAggggAACCCCAAAIEWDwDCCCAAAIIIIAAAggggAACCCCAAAKOFiDAcnR5mBwCCCCAAAIIIIAAAggggAACCCCAAAEWzwACCCCAAAIIIIAAAggggAACCCCAgKMFCLAcXR4mhwACCCCAAAIIIIAAAggggAACCCBAgMUzgAACCCCAAAIIIIAAAggggAACCCDgaAECLEeXh8khgAACCCCAAAIIIIAAAggggAACCBBg8QwggAACCCCAAAIIIIAAAggggAACCDhagADL0eVhcggggAACCCCAAAIIIIAAAggggAACBFg8AwgggAACCCCAAAIIIIAAAggggAACjhYgwHJ0eZgcAggggAACCCCAAAIIIIAAAggggAABFs8AAggggAACCCCAAAIIIIAAAggggICjBQiwHF0eJocAAggggAACCCCAAAIIIIAAAgggQIDFM4AAAggggAACCCCAAAIIIIAAAggg4GgBAixHl4fJIYAAAggggAACCCCAAAIIIIAAAggQYPEMIIAAAggggAACCCCAAAIIIIAAAgg4WoAAy9HlYXIIIIAAAggggAACCCCAAAIIIIAAAgRYPAMIIIAAAggggAACCCCAAAIIIIAAAo4WIMBydHmYHAIIIIAAAggggAACCCCAAAIIIIAAARbPAAIIIIAAAggggAACCCCAAAIIIICAowUIsBxdHiaHAAIIIIAAAggggAACCCCAAAIIIECAxTOAAAIIIIAAAggggAACCCCAAAIIIOBoAQIsR5eHySGAAAIIIIAAAggggAACCCCAAAIIEGDxDCCAAAIIIIAAAggggAACCCCAAAIIOFqAAMvR5WFyCCCAAAIIIIAAAggggAACCCCAAAIEWDwDCCCAAAIIIIAAAggggAACCCCAAAKOFiDAcnR5mBwCCCCAAAIIIIAAAggggAACCCCAAAEWzwACCCCAAAIIIIAAAggggAACCCCAgKMFCLAcXR4mhwACCCCAAAIIIIAAAggggAACCCBAgMUzgAACCCCAAAIIIIAAAggggAACCCDgaAECLEeXh8khgAACCCCAAAIIIIAAAggggAACCBBg8QwggAACCCCAAAIIIIAAAggggAACCDhagADL0eVhcggggAACCCCAAAIIIIAAAggggAACBFg8AwgggAACCCCAAAIIIIAAAggggAACjhYgwHJ0eZgcAggggAACCCCAAAIIIIAAAggggAABFs8AAggggAACCCCAAAIIIIAAAggggICjBQiwHF0eJocAAggggAACCCCAAAIIIIAAAgggQIDFM4AAAggggAACCCCAAAIIIIAAAggg4GgBAixHl4fJIYAAAggggAACCCCAAAIIIIAAAggQYPEMIIAAAggggAACCCCAAAIIIIAAAgg4WoAAy9HlYXIIIIAAAggggAACCCCAAAIIIIAAAgRYPAMIIIAAAggggAACCCCAAAIIIIAAAo4WIMBydHmYHAIIIIAAAggggAACCCCAAAIIIIAAARbPAAIIIIAAAggggAACCCCAAAIIIICAowUIsBxdHiaHAAIIIIAAAggggAACCCCAAAIIIECAxTOQUIEV67cndHwGj65A4zqVrA6pa3Rd6Q2BZBGoWSVVlTNStGlbrrJy/MkybeaJAAJREkhL8apujXTl5ge0bnNOlHqlGwScLRD6/3+dPUtmh4A7BAiw3FHHpF0FQUfSlq7IiRNguauerAYBuwIEWHbFaI+AuwQIsNxVT1YTmQABVmROtEIgGgIEWNFQpI8yCxBglZnOkTcSYDmyLEwKgbgJEGDFjZqBEHCkAAGWI8vCpGIsQIAVY2C6R2AXAQIsHoeEChBgJZQ/6oMTYEWdlA4RSCoBAqykKheTRSDqAgRYUSelwyQQIMBKgiIxRdcIEGC5ppTJuRACrOSsW3GzJsByVz1ZDQJ2BQiw7IrRHgF3CRBguauerCYyAQKsyJxohUA0BAiwoqFIH2UWIMAqM50jbyTAcmRZmBQCcRMgwIobNQMh4EgBAixHloVJxViAACvGwHSPwC4CBFg8DgkVIMBKKH/UByfAijopHSKQVAIEWElVLiaLQNQFCLCiTkqHSSBAgJUERWKKrhEgwHJNKZNzIQRYyVm34mZNgOWuerIaBOwKEGDZFaM9Au4SIMByVz1ZTWQCBFiROdEKgWgIEGBFQ5E+yixAgFVmOkfeSIDlyLIwKQTiJkCAFTdqBkLAkQIEWI4sC5OKsQABVoyB6R6BXQQIsHgcEipAgJVQ/qgPToAVdVI6RCCpBAiwkqpcTBaBqAsQYEWdlA6TQIAAKwmKxBRdI0CA5ZpSJudCCLCSs27FzZoAy131ZDUI2BUgwLIrRnsE3CVAgOWuerKayAQIsCJzohUC0RAgwIqGIn2UWYAAq8x0jryRAMuRZWFSCMRNgAArbtQMhIAjBQiwHFkWJhVjAQKsGAPTPQK7CBBg8TgkVIAAK6H8UR+cACvqpHSIQFIJEGAlVbmYLAJRFyDAijopHSaBAAFWEhSJKbpGgADLNaVMzoUQYCVn3YqbNQGWu+rJahCwK0CAZVeM9gi4S4AAy131ZDWRCRBgReZEKwSiIUCAFQ1Fh/axaOlKvfPht/rlr1latnKttmfnqEa1KurcvoXO6HeEeh+6b7Ez/2P6XL30xqeaNnOBtmVtV4O6tXT0IT10+fknWX0Ud03+5Hu9/eG3WvDvcvn9fjVv0lCnHHeIzjm1t3w+7x63EWA59OEp47QIsMoIx20IuESAAMslhWQZCJRRgACrjHDcltQCBFhJXT4mn2QCBFhJVrBIp3v/YxP16uQvreaN6tdWm5Z7KTUlRf+tWKv5i5dZf97/5KM07Ibz9+jSBFDDR79o/bkJu+rUqqH5i/7TyjUbrL5efWqY6tetucd9t48crw8+/1GpKT5179rWGm/6rIXalrldh/TsqicfuF4pPl/YfQRYkVY0OdoRYCVHnZglArESIMCKlSz9IpAcAgRYyVEnZhldAQKs6HrGs7cTzrtN//63SkOvPVcDT+sdz6EZq4wCBFhlhHP6bSa8mj5rgS7s31cd2jQLm+4vf87SVUPHKjsnVy+NvU37d+tQ+PP/VqxRv/NuV0qKT8+MurHwZ8FgUONenKxnXvlAB/bopAmP3hrWpwmuTIDVqlkjPTf6FivoMlfW9mxdP2ycfvx9hq656DQNPv8kAiynPzzlmB8BVjnwuBUBFwgQYLmgiCwBgXIIEGCVA49bk1aAACtpSycCrOSrHQFW8tUsKjO++9GX9eYHX+vKC07WVReeWtjnyMf/T5Pe/ULXX3qGLh3YL2wsE2KdfcU9+mfOYk168k5169ym8OenXHintbNr9z83DTZu3qqjz7xRqakp+vbdx5SRnlZ4HzuwolJOx3RCgOWYUjARBBIiQICVEHYGRcAxAgRYjikFE4mjAAFWHLGjPBQBVpRB49AdAVYckJ04xKPPvqkJr32sW64YoEH9jyucYp8BN2vFqnX66q0xalCv1h5Tf+29L3Xf2Ik6/8xjNeSqs62fm/bmvmZ71dcnkx4qcrk3jnhSn33zu564/zoddXB3AiwnPhRRmBMBVhQQ6QKBJBYgwEri4jF1BKIgQIAVBUS6SDoBAqykK1nhhAmwkq92BFjJV7Nyz3jLtiyddvFdWrVmg94ef3fhK4bmzw/qd6UVXJkAq6hr9vwlOuPS4dbuK7Pbylxffv+Xrr3rcfXrc5BG3XF5kfe9/NZneujJ16xdXWZ3V+hiB1a5y+moDgiwHFUOJoNA3AUIsOJOzoAIOEqAAMtR5WAyOwQ8OVnyzZ8hz9yp8s2bLv+hJyjvkBOi5kOAFTXKuHdEgBV38nIPSIBVbsLk6MCcd7Vm3UbrLCrzdcGVa9brpsH9dcGZxxYuYObcf3XW5SPUo2tbTXzijiIXtnlrpnqdeJVq1aimH95/wmpj+nv46dd1+Xkn6tqLTy/yvi++/1PX3fWEjj1ifz064ioCrOR4bGzPkgDLNhk3IOAqAQIsV5WTxSBgW4AAyzYZN8RAwJOXI++CmfLOnSrvvOnyLZknBfyFI+Xvd6RyLx4atZEJsKJGGfeOCLDiTl7uAQmwyk3o7A5CrwruOksTIl1xwclq27JJ2OR/nTpbF90wSocduI+efvCGIhdmzsHqcuSF8vm8+vvLF6w2416YrKdfeV83D+6vCwf0LfK+UN8H7ttJEx7ZeQD81qw8ZwMyO1sC1SqnWu2pqy02GiPgGoGMNJ9SU7zKzvUrLz/gmnWxEAQQiEzA5/WockaK/IGgsrLzI7uJVgiUVyAvV8FFsxScNVWaNVXBxbOl/BKevxq15Hvs3fKOWnh/6P//jVqHRXQ0dcZ8vTr5C/359zxt2LhFlStlqH2bpjrpmIOt/5jfzULXOVfea30Jvu9RB2j0sCtKnNbY8W9r/KQP1bBebU154xF5vZ7C9ub3vo+++EXvffaD5sxfqq3bslSzRlV179JW55zaWz277/wQWLTWbjZUvP7+V/pj+lytXb9RHo9HDerVVstmjXTMYfvpxGN67THU2vWbNPHtz62NGstWrlVObp7q1KyuHnu31Zn9jixxnpEEWNHo/6cPnlSN6lWs+j33f//TP7MXyWwMOfSAva0Pp3FFLkCAFblVUrb8cMrPMruf/H6/9Q/JgsXLrb82blhX111yuvr1PqhwXd//+rcGD3lURx/aQ4/fe22x693n6IuV7/dr+pcTlOLz6ZFn3tQLr3+s268ZqHNP71PkfeZfuudefb/1L7z/G1f07q6kBGbSCCCAAAIIIIAAAgggED8Bv1/+BbOUN/Mv5c/4S/nz/pFyc22NX/3x1+VtGP4/5tvqII6Nxzz3lp5/9SNrRPO7V62a1awwybxhYy7zhfjH77tWVSpnWP998iff685RE5SWlmp9QKt61cpFztYEVOYc45Wr1+uyc0+0fjcMXeZL8tfc+bjM1+vNZT7CVa1qZW3ctNX6PdBcFw04XjcNPisqEmYujzz7pl58/ZNi+zNB3QNDLw37+ZTv/tBt9z9XaJGelmp9OGxb5vbCdqefcJiG3XiBZbf7VVqAFa3+P3h5pH6fNsc6S9qsNXQNPK23hl57blQMK0onBFgVpdI71hkIBPXNz9M0/OEXtGHT1rBD1eOyA6tHJ014lB1Ybn3s2IHl1sqyLgQiE2AHVmROtELArQLswHJrZRO8rkBAWjJfwdlTFZj9l4LzZsiTszOgiGR2wfTK8nToKm/HHvJ06CY1ayN5d+5aiqSP4trEcgfWS29+qoefel0mmLnlygE65bhDVSkjTX5/QN/+PE13PfyCNm3ephOOPlAP3TXYmuL27Fwdftq1yszK1l03nK8BJx9V5NTNbqDzrx1p/eyjiQ+qRdOGhe2uHvqYvv5pqrXpYdgNF6jXfp2tXV5Z23NkPuo1dvxbMr9Xjrh5kM7sd0R5+Kx7n534Pz0+4R3r70/te6hMsNO6eWPl+wP6b8Ua/fzHTO3Xrb26tG9ZONZf/8zTBdc9YM3jyF7ddc3Fp6l966bWz83vue9+/J3GvfCu8vL9OvuUo3Xn9eftMc+SAqxo9n/VoFP01Mvvq0v7Frr6otPUtUMrmZAwJcWnenVqltuvInVAgFWRqr3LWn/47R9dfusjateqiSa/cJ/1kzkLlur0S4ZFdAZWjWpV9NP/nrTue+WtzzTqydciOgOr96H76rF7rymcCYe4u+sB5Awsd9WT1SBgV4AzsOyK0R4BdwlwBpa76pmw1QSD8i5fLN+8afLOmSrPgr/l3Z5lazrB1HQF2nRWoH13BdrtI3/zdpJ3zx04tjotpnGszsBav3GLeve/Sbm5ebrnlotkdhLtfn32zW+6ccRT1h+/8/w9hR/numfMK3rj/a+swOeNZ4cXOfO7H3lJb/7vG+3TqbVefequwjYmuDIBVmqKz+qzdYu99rj/3jGvWK/61alVXV+88Yi126us15p1m9Sn/03Wzq6SzlTevf+TBt2hhf8ut8KrJ+6/1nrdsCSf158epq4dW4U1KSnAimb/ZtCD9++iJ0deb+0Q4yq7AAFW2e2S+k6TVHfrc7E88ujPz5+ztlSaFHj/voMj+gph1w4t9fozBf8y/Pbn6bry9jERfYVw962mBFhJ/RjtMXkCLHfVk9UgYFeAAMuuGO0RcJcAAZa76hnP1XhXLt1x6Po060uBnsyttoYPpqQp0KqjFVj52++jYPMOCqbEJyiIVYBljmgxR7U0b9JAH//fqGI9Dj/tOq3bsFlXnH+yrr7oVKtd6Mvx5u/ff/F+tWkZHkKZXUmHn3qtdbTM8JsG6awTd+6iMkfKmKNlzuh3uO6++cIix128dKX6nX+79bMXxgzRAd072qrXro1Du6/MR8K+fntMRAGP2R113jUFu8fM63lmt1Zx19lX3qu/Zy20zgrb/RXE4gKsaPdvds19/vojql2zWpmduLFAgACrgj4JJsnvfsylVlI9/YsJhQf/nXTBUC1cskJfvTXGCrJ2v8yWUfPu7lknHanhN15g/dj8C9P8i7PZXvX1yaSHihS9ccST+uyb362DBM2BgqGLAMtdDyABlrvqyWoQsCtAgGVXjPYIuEuAAMtd9Yzlarxrl8s3d7o8c6bKO3+6vFs22hou6PMp0KKjtbvK2mXVqqOCqWm2+ohW41gFWJEESWYN5jVA8zrg7m+6nHnZCM2a968GnXWc9frhrldol9Xu52SZTQ4HnHCFtbFh1J2Xh52XvOv9JgDrccwl1ut7Q68dqIGnFX0OciTGl90y2jqA3RzQ/uDQyyK5xToI/bHn37FecZzy+ugS7wm1Nb/bmt9xd72KC7Ci3f+ur3hGtEAaFStAgFVBHw5zIN31w8ZZ20zN1tDQZf5FYP6Bvf7SM3TpwH576AwYfLf+mbPY+lqC+WpC6DIHtJuD2ic9eae6dW4Tdt/GzVt19Jk3KhAM6rvJj4cdJEiA5a4HkADLXfVkNQjYFSDAsitGewTcJUCA5a56RnM1ng1rCl8J9M6dJu+mdfa693rlb9auYHdVu+7W64HBtIJDyxN9xSrAOv7cIVqybHXEyzNfBXxxzG2F7d/84Gvd/ejL1mt+X709JuwQ85vufkqffv2bjjuypx4ZfmXhPeaLe0ecfn3EY5qGV114qq684GRb9+zaOLTOay8+3XqFMJJr2MMv6J2PvtNB+3XW86NvKfGWz7/9QzcMH2e1mfbFBOvVyNBVXIAV7f5vuOxMXXLOCZEsjTalCBBgufARWb12o15+81Mrxe7YtvkeKzRfk7j5nqdlgiWzjdJspwxd5l3r4865VYFAwAqp9u9W8HlU87WEcS9O1jOvfGCdm/XuhHvD3jMOfcGwVbNGem70LWpUv7Z1n0nvbxj+pMyZW0V9ZYEAy10PIAGWu+rJahCwK0CAZVeM9gi4S4AAy131LM9qvFs2yDtnWsFrgXOny7t+pb3uPB4FmrSWv103BTp0U6DN3gpmVLLXR5xaxyrACr0aWL9uTZnX60q7OrdvqXtvvaiwmTnE3Rzmbg51f+L+63TUwd0Lfz879JRrrS/37b4pYddXA82h7ubw+NKu/icdqf7FHBRf2r3m56F13nb1OTrvjGMiucX6XfaTr37VUYf00BP3XVviPd//+o8GD3nEavPj++NUs0bVwvbFBVix7j+iRdKoSAECLBc+GEuXr1bfgUOslZmtkm1a7KXq1aooOztX8xb9p+Wr1lnhk0m4r7notD0Evvz+L5lX/sxBep3bt1Dd2jU0b9Ey6xOr5vD2iU8MLfIwv9HPvGF9+tQcTNe9SxulpaZq+qyF1mdeO7VroZcfu12VK6WHjUeA5a4HkADLXfVkNQjYFSDAsitGewTcJUCA5a562lmNZ9tma4eVZ445w2qavKuX2bndautv3EIBE1i172a9GhisvDNosN1ZHG+IVYBlNhWYL/DZ2Zm0+7LvHDVBkz/5Xkcf2kOP31sQ9Pzv859028jnrN/xzCt15uuCoWvV2g3WmzPmmvjEHdbHvWJ9HXv2LVq2cm2xbwAVNf79j03Uq5O/tL8Da8rzYWdsFRdgxbr/WJu6uX8CLBdW13xW1bwiaLZLLli8zPqM6JZtmVaCbt4T7tG1nXVQX1G7s0Ic5n1pc6CeeZ96W2aW6tapab0yOPi8k4o8Gyt0nznn6v/emaK5C5danxyjVMgAACAASURBVHfdq1E9HX/UAbpwQN8iE3wCLHc9gARY7qonq0HArgABll0x2iPgLgECLHfVs6TVeLK2yTtvuqzXAedNlW/FEtuLDzRoIn/7bgq27yZ/u+4KVq1uuw8n3BCrAOuiG0bp16mzVZ7zk8xmgnOuvNd6be67956wjnIJna1lfj+7eXD/MEJztlXP4wdbXz4ccfMgndlv5+HusbK+4LoH9Mf0uTq176G6b8jFEQ0TOuA+kjOwxk/6UGPHv616dWrqm3fGhvVfXIAV6/4jWiSNihQgwOLBSKgAAVZC+aM+OAFW1EnpEIGkEiDASqpyMVkEoi5AgBV1Usd06MnJknf+P9ZrgdYOq2ULzRkjtuYXqNtIfnPoeofuVmgVqF5w5EiyX7EKsMzRLU+88K4VOn351pg93mSJ1O2UC+/U/MXLrHDIvHJ32CnXWm/aFPV1QtPnxTc+pF/+mhXR7qZI51BSOxMumZCpqB1hxd238N/lOmnQHdaPi1tH6N6BV92naTMX6PijD9DDd10R1mVxAVas+4+GW0XtgwCrolbeIesmwHJIIaI0DQKsKEHSDQJJKkCAlaSFY9oIREmAACtKkA7oxpObLe/CWTvOsJom39L5UsBva2aB2vULvhJoDl0351jVqmfr/mRpHKsAyxyo3mfAzcrLy7fOmBp2w/llIpn07hSNfHySjujVTcccvr+GPjDeOibmzWdHFNlf6GNf5oe7f0G+TBMo5SZzUL05yN1cdg47P/vKe/X3rIXWusbdf13Y+cyhIb/64S9dc+fj1n99aexthec7h35eXIBlfh7r/mNhWRH6JMCqCFV28BoJsBxcnDJMjQCrDGjcgoCLBAiwXFRMloJAGQQIsMqA5pBbPPm58i6abQVWvrnT5VkyR578fFuzMzuqAuYrge27F+y0qtfY1v3J2jhWAZbxmPj253pw3KsWjdk9dek5J8gc1m7OrdqWuV2r1mywXjP86se/9ODQy6zX5Ha/Nm/NtL4smOLzqmf3jvrmp2kaeu251ge2iruuu+sJffH9n/J6PRp0Vl+d0e9wNW/SwPqw18bN27R85VqZj3jNXfifHrv3mnKXbtSTr+mVtz6z+hnU/zide1ofNWpQxzqSZs36Tfpz+lxt2Zalc049unCsBYuX64zLhlsBX+9D97XCL3PwvLnMh8Te+/RHjX76deXk5lkfLTMfL9v9KinAinX/5UaroB0QYFXQwjtl2QRYTqlEdOZBgBUdR3pBIFkFCLCStXLMG4HoCBBgRccxLr34/fItmVNwhpX5UuDC2TIhlp0rWLWG/G3NK4Hm0PVuCjRsaud217SNZYBlkMx5TGOee0uBQMErm+ZjXOajWeacql2vL996VA3rFf1a5pD7n9WHU362mpvzsL5557Gwr/HtXgzzhUJzALz50l/oSvH5rL81rx+GrqaN6+vTVx8qdy1NnyNGv2QdOB+60tJSrXDKhGbmMl9RNF9T3PX6beoc6+NjGzdvtf7YfGHQnPu8fsOWwnn2PeoA3X/bJUWex1xSgGX6i3X/5YargB0QYFXAojtpyQRYTqpG+edCgFV+Q3pAIJkFCLCSuXrMHYHyCxBgld8wZj0E/PItXVBw8Pqcv+RdOFPmNUE7l/kqYKDt3tZXAs3h64FGLUyaYqcLV7aNdYBl0MxX5ie9+4V1NtWKVeuVnZOjjPR0NW5YR906t1Gfw/bTwft3KfI1OnO/OSTdHJZurl2/SFhaQczurnc//k5T/5mvdRs2W6FQ1SqV1GyvBurZrYP69emldq2alNZNxD83gdFbH35dMN7GLUpNSbHOxtq7UyuddeKR2nfvdnv0ZcKrtz/81vqI2bIVa5WVnaM6NaurW5c2Ov2Ew9Rrvy7Fjl9agGVujHX/EePQ0BIgwOJBSKgAAVZC+aM+OAFW1EnpEIGkEiDASqpyMVkEoi5AgBV10rJ3GAzKu3yRfNYOq2nyLPhb3u1ZtvoLpleSv23XHV8J7KZAk9aS12urj4rQOB4BVnkdzSt1B5xwhbWLy+xiMruZuBBIRgECrGSsmovmTIDlomJKIsByVz1ZDQJ2BQiw7IrRHgF3CRBgJbae3pVLdrwSOE2++dPlySx4rSrSK5iarkCbzgq0724dvu5v3k7yFrw2xlW8QDIEWO989J2GPfyCatWopq/fGWu9RsiFQDIKEGAlY9VcNGcCLBcVkwDLXcVkNQiUQYAAqwxo3IKAiwQIsOJbTO+aZfLNmy7PnKkFf926ydYEgilpCrTqaAVWfnP4evMOCqak2OqDxjv/B1wnW/S//G7NmLtYF5x5rG696uyoT9Xs8Lrslkds9Wu+HnjJOSfYuofGCBBg8QwkVIAAK6H8UR+cHVhRJ6VDBJJKgAArqcrFZBGIugABVtRJwzr0bFgjnzlw3frPdHk3rbM1YNDnU6BFR2t3lbXLqlVHBVPTbPVB4z0FnL4D66sfp+qaOx6zvlz44SsPqtle9aNeRvOFwIP6XWmr39OOP0z33nqRrXtojAABFs9AQgUIsBLKH/XBCbCiTkqHCCSVAAFWUpWLySIQdQECrOiSejetLzx03dphtX6VvQG8XvmbtSvYXdWuu/V6YDAtw14ftC5VwGkBlvlqn/lSobm++uEv3f7AeG3L3K5zTj1ad1x3XqnroQECThYgwHJydSrA3Aiw3FVkAix31ZPVIGBXgADLrhjtEXCXAAFW+erp2bbZOnTdM3daweHra5bZ69DjsQ5a97frpkCHbgqYA9jTK9vrg9a2BZwWYJ179f36b8UaZW3PkXm1z1xdO7bSi2NuU6UMdtzZLjA3OEqAAMtR5ah4kyHAclfNCbDcVU9Wg4BdAQIsu2K0R8BdAgRY9urpydom37xp8s6ZJs/8afKtWGKvA0n+xi0UMIFV+27Wq4HBylVt98EN5RNwWoB128jn9MOv/2hbZpYaN6yrfn166eKzj1d6Wmr5FsrdCDhAgADLAUWoyFMgwHJX9Qmw3FVPVoOAXQECLLtitEfAXQIEWCXX05O9Xd4Ff8trDl03O6yWL5KCQVsPQaBBE/nbd1OwfTf523VXsGp1W/fTOPoCTguwor9CekTAOQIEWM6pRYWcCQGWu8pOgOWuerIaBOwKEGDZFaM9Au4SIMAKr6cnN1veBTPlmVcQWPmWzpcCAVtFD9RtJL85dL1Ddyu0ClSvbet+GsdegAAr9saMgEBIgACLZyGhAgRYCeWP+uAEWFEnpUMEkkqAACupysVkEYi6QEUPsDz5ufIumm3tsPLOmy7vv7Pl8fttOQdq1y/4SqA5dN2cY1Wrnq37aRx/AQKs+JszYsUVIMCquLV3xMoJsBxRhqhNggArapR0hEBSChBgJWXZmDQCUROoaAGWJz9f3iVzdnwpcKoVXpkQy85ldlQFzFcC23cv2GlVr7Gd22nrAAECLAcUgSlUGAECrApTamculADLmXUp66wIsMoqx30IuEOAAMsddWQVCJRVwPUBVsBvvQbomztdnrlT5V04U+Y1QTtXsGoN+duaVwLNoevdFGjY1M7ttHWgAAGWA4vClFwrQIDl2tImx8IIsJKjTpHOkgArUinaIeBOAQIsd9aVVSEQqYDrAqxg0Dpo3WfCqjnTrAPYzUHsdi7zVcBA272trwSaw9cDjVpIHo+dLmjrcAECLIcXiOm5SoAAy1XlTL7FEGAlX81KmjEBlrvqyWoQsCtAgGVXjPYIuEvADQGWb8USeeZNk3fuVPnmT5cnc5utIgUzKsnfpuuOrwR2U6BJa8nrtdUHjZNLgAAruerFbJNbgAArueuX9LMnwEr6EoYtgADLXfVkNQjYFSDAsitGewTcJZCMAZZ39X/yzTOvBE6zvhTo2bbZVlGCqekKtOmsQPvu1uHr/ubtJK/PVh80Tm4BAqzkrh+zTy4BAqzkqpfrZkuA5a6SEmC5q56sBgG7AgRYdsVoj4C7BJIhwPKsX2UFVWaHlfWlwE3rbRUhmJKmQKuOVmDlN4evN++gYEqKrT5o7C4BAix31ZPVOFuAAMvZ9XH97Aiw3FViAix31ZPVIGBXgADLrhjtEXCXgBMDLBNQeXcEVr550+RZv9oWetDnU6BFR2t3lbXLqnVHmRCLC4GQAAEWzwIC8RMgwIqfNSMVIUCA5a7HggDLXfVkNQjYFSDAsitGewTcJeCEAMu8AmgOXffMmWa9Guhds8westcrf7N2Bbur2nW3Xg8MpmXY64PWFUqAAKtClZvFJliAACvBBajowxNguesJIMByVz1ZDQJ2BQiw7IrRHgF3CSQiwPJkbrUOWze7rKxzrFYusYfq8VgHrfvbdVOgQzcF2nZVML2yvT5oXaEFCLAqdPlZfJwFCLDiDM5w4QIEWO56Igiw3FVPVoOAXQECLLtitEfAXQLxCLA82dvl3RFYmZ1W3mWLbCP6G7dQwARW7btZrwYGK1e13Qc3IBASIMDiWUAgfgIEWPGzZqQiBAiw3PVYEGC5q56sBgG7AgRYdsVoj4C7BGIRYHlys+VdMEOeuVOtVwJ9S+dLgYAtuECDJvK376Zg+27yt+uuYNXqtu6nMQIlCRBg8XwgED8BAqz4WTMSAZbrnwECLNeXmAUiUKIAARYPCAIVWyAaAZYnL1feRbPlnfNXwVcCl8yRx++3BRuo20h+c+h6h+5WaBWoXtvW/TRGwI4AAZYdLdoiUD4BAqzy+XF3OQXYgVVOQIfdToDlsIIwHQTiLECAFWdwhkPAYQJlCbA8+fnyLJkj39zp8s6ZKu+iWfL482ytLFC7fsFXAs2h6+Ycq1r1bN1PYwTKI0CAVR696N27dPlq9R04ZI8O09JSVb1qZbVo2lC99uuis046QrVqVNuj3ZD7ntWHX/ysh++6QscffUCpE/vy+7907V2Pq89h+2nsPVeX2H7G3MXqf/nd6tSuhd56bkRY29C4JXVQp1Z1fTf58VLnVBEauDLAmrNgqSpXylCzvepHVMO8vHz9+PsMNahXSx3bNo/oHhpFR4AAKzqOTumFAMsplWAeCCRGgAArMe6MioBTBCIKsAJ+6zVAc+i615xhtWCmPHk5tpZgdlQFzFcC23e3Xg00O664EEiUAAFWouTDxw0FWJUy0tSja7vCH+bk5mnNuo1aunyN9Wc1qlXR+NG3qHP7FkUGSYkKsEzAVlSwZiZZs3pVjRt5nTOgEzwLVwZYnY8YpAN7dNKER2+NiDcYDGq/4y5Xk8b19P6L90d0D42iI0CAFR1Hp/RCgOWUSjAPBBIjQICVGHdGRcApAkUGWIGAvMsXyTdvmjxzpsq34B+Zg9jtXMGqNeRva14JNAevd5c504oLAacIEGA5oxKhAMsEQR9NfHCPSa1YtU7DRr+on/+YaW1aeXv83Y4KsCINzpyhnbhZEGDtsO8z4GZt2rxVv3/ybOKqUQFHJsByV9EJsNxVT1aDgF0BAiy7YrRHwF0CoQArZ/FCbf7rN2uXlTl43ZO1zdZCzVcBA2333vGVwO7y7xW+U8JWZzRGIMYCBFgxBo6w+9ICLNPNhk1bddip18psYPnh/SfCdjwl+hVCAqzICk2AJSk3N08H9LvSepCnTXk+MjlaRUWAACsqjI7phADLMaVgIggkRIAAKyHsDIqAYwTSZ/6ilJdHK7h1s605BdMryd+mi4Iduhccvt5s5+s/tjqiMQIJECDASgB6EUNGEmCZ23oeP1iZWdn66q0x1hFCoYsAyxl1LG0WFT7AMg/v/Y9N1Puf/ajWzRvrg5dHlmbGz6MoQIAVRUwHdEWA5YAiMAUEEihAgJVAfIZGINECmVtUadggebK2ljqTYFqGAq07FbwO2L6b/M3aSl5fqffRAAEnCsQrwJo+I6h//ws4kSAmc+rWxavmTT0R9x1JgLV67UYddeYN1jlYP34wTh7Pzv4JsCKmTmhDVwRYk979Qq9O/qIQ8t//VikjPU0N65f8ydz8fL9Wrdmg/B2f5r1p8Fm6aMDxCS1IRRucAMtdFSfAclc9WQ0CdgUIsOyK0R4B9wikPTNcKdN/KnJBwZQ0BVp13BFY7aNA8w4KpqS4Z/GsxJUCfgW1xp+llflZWmX+E8jSirxtWuXP0grz3/1ZquxJ0ay9B8Rl/a+84dd3P1WcAOu8/j4d3ssbsW1pAda2zO26+Z6n9f2vf2votQM18LQ+YX0TYEVMndCGrgiwfvpjhp588T1Nn7XQeg2wLNfpJxym4TcOks8X+T8kZRmHe8IFCLDc9UQQYLmrnqwGAbsCBFh2xWiPgDsEUv78VmnP3xe2GH/rLgXnWHXoIX/7fdyxUFbhGoHsYL5W+DO1Kn97QUDlz9TK/EyttAKrgr+u829XaXFRFU+KtvW4NC4uBFglM4cCrMqVMnTw/l0KG/sDAW3YuEWz5y9R8yYNNKh/X5187MF7dJboAKtVs0aqXat6kYsccPJR6nvUAXF5zpw+iCsCrBDyps3b9N5nP+jhp16X+frAOaf2LtHf6/VYn6Tcp1NrNW5Y1+m1cuX8CLDcVVYCLHfVk9UgYFeAAMuuGO0RcIHA1o2qNOLisFcHPfUbK/PO8VJqmgsWyBKSTWBDIMfaHWWCKOuveQXhlLVzyoRW/ixtCeRFbVnBfa+IWl8ldUSAFVmAVVyr1NQUHXPYfjruyJ466pAejguwSlrdzYP768IBfePynDl9EFcFWCHsUy+6U7VrVteER291un+Fnx8BlrseAQIsd9WT1SBgV4AAy64Y7RFIfoH0cUPlm/n7zoV4PEq/5xltrNsq+RfHChwlkB8MaI1/u1buCKGs3VJ5O0Kq/B2v+vkzlVvqvqnoLiteARZnYEUWYJmNLB9NfLCwsd8f0Oatmfpn9iI9/+qH+uuf+dZuptHDwoPHRO/A4iuEkf1z6coAy7xSuHjpKg08reQdWJER0SqWAgRYsdSNf98EWPE3Z0QEnCRAgOWkajAXBGIv4Pvlc6W//HDYQOmnnCvfWZdp3eac2E+AESqEgAmtxm36W69um6/twfy4rTldPjXwVVbDlErWX62/T62ihr5d/ntKJbWtW/RrX3GbKANZAqWdgWXamLOv+19+t+YsWKpRd16ufr0PKtSzG2B99cNfuubOx9XnsP009p6rS6zCjLmLrXE7t2+hN58dEdbW7rgVvdyuDLAqelGTaf0EWMlUrdLnSoBVuhEtEHCzAAGWm6vL2hAIF/BsWq+Muy+SJzur8AfBhs1U89GXlScfARYPTLkF/s3fosc3/q03MheUu6/dO2jkq6xGKVVU31dJDXcEUw3M33uryPy1QUpl1fRG9gpsvL5CGHUEl3UYSYBlljx+0ocaO/5tndr3UN035OIyB1i//DlLF9/0kA49oKueGXVTiZq/T5ujQdc/qAO6d9QLY4YQYJXj2XNlgPW/z3/ST3/M1MDTe6tL+5al8pivGP7y50zrQLd9925XansaRE+AACt6lk7oiQDLCVVgDggkToAAK3H2jIxAvAXSx9wi37xpO8Mrr1f+O59R3S6dlJsfIMCKd0FcNN68vM0au3Ga/pe12NbLgOZTXHV3BFJWCFW4Y8rsnioIpcyf1fFmyBNFLwKsKGKWo6tIA6yX3vzUOjP78IP20VMP3FDmAGvl6vXq3f8m1a9bU1+9NUYeT/FP1cS3P9eD417VWSceoeE3DSLAKkedXRlgXXn7GH3783TdcuUADTrruFJ5TOB128jndOIxvfTg0MtKbU+D6AkQYEXP0gk9EWA5oQrMAYHECRBgJc6ekRGIp0DKDx8rbdKYsCHz+p0vz8kXqG6NdAKseBbDRWP9lbNWj2+arinblxW7qpYp1dUzvb4apphX+wp2S5m/t8IqX+WEaBBgJYR9j0EjDbBCWcH5Zx6rIVedXeYAy9x42sV3ae7C/zTqjsvVr8/O1xF3ndz27FydfsldWrJstbVTy+zY2vXiFUJ7z48rA6y+A2/V0uVr9O6Ee9W+ddNSRVau2aDeZ91ofVbz4/8bVWp7GkRPgAArepZO6IkAywlVYA4IJE6AACtx9oyMQLwErFcHhw+SJze7cMjAXq2UPfRppaWlEGDFqxAuGuf77Sv12Obp+jl7VbGrapNaXVfV3FunVW6lFI/Za+WciwDLGbUoLcDKzc3Ti298qscnvCOv16N3nr9X7Vo1KVeA9d0v03XFbWOUkZ5mhWHmtUTztcPQtWjpSo0Y/aL+/Hueeu3XReNH37wHFgGWvefHlQHWfsddJpN0/v7Js6pcKb1UEXOYW7fel1htf/v4mVLb0yB6AgRY0bN0Qk8EWE6oAnNAIHECBFiJs2dkBOIlsMerg74UZd/xrIKNmiktxUuAFa9CJPk4QUmfZS21dlxNz11f7Gr2Tquja2rsreOqNJM3qi/+RQ+QACt6luXpKRRgmd/pD+zRqbCrQDCoLVszNWfBf8rani2fz6s7rz/fep1v1ysUJDVpVE/Vq1Upciq1alTVcw+Hh1CvvfelHnhikszXDs3YrZs3Vnp6mtas22htqjHXgft20ti7r1a1qnvuEgyNa76eWKtGtSLHrVm9qsaNvK48PK6515UBVo9jLlVObp6mTXk+LAEtqWrd+lxivbc69fPxriluMiyEACsZqhT5HAmwIreiJQJuFCDAcmNVWRMCOwVSvv1Aaa8/EUaSd9qlyutzlvVnBFg8LaUJ+BXU+5mL9cSm6TJnXRV3HZjeUNfW3FuHV2pcWpcJ/zkBVsJLYE0gFGAVNZv0tFQ1rF9b+3froIGn9QnbeRVqHwqSSlpNnVrV9d3kx/dosvDf5Zo0+Uv9NnW2zNlYfr9ftWpWs87j7tenl/WlQrPrq6irPOM6Qz6+s3BlgHXcObfqvxVr9M7z96hDm2alii5ftU7HDLhZjRrU0RdvPFJqexpET4AAK3qWTuiJAMsJVWAOCCROgAArcfaMjECsBTzrVytjxIXy5OcVDuVv3k45Q8ZJOw4vJsCKdRWSt/9c+fXm1gV6ctMMLfVvLXYhvSs10XU191GP9HpJs1gCrKQpFRN1gYArA6w7R03Q5E++12nHH6Z7b72o1DI9/PTreumNT3XC0QfqobsGl9qeBtETIMCKnqUTeiLAckIVmAMCiRMgwEqcPSMjEFOBYFDpo2+Qb9HMwmGCKanKHva8gvV27pAhwIppFZKy86xgviZunaNnNs/UGv/2Itfgk0cnVmmh62p2U7vUGkm3TgKspCsZE05iAVcGWDPmLlb/y++2ynL5eSfqigtOUWqKb48ymbOvXnz9E40d/7b1sxfH3Kae3TskcTmTb+oEWMlXs5JmTIDlrnqyGgTsChBg2RWjPQLJIZDy5btKe/vpsMnm9r9a+UecHPZnBFjJUc94zHJLIFcTts7W85tnalMgt8ghUz1enVmlta6ptbea+Yo++ycecy3vGARY5RXkfgQiF3BlgGWWH9pVZf7eHIZ2yAFd1bJpI+tgteycXOszlt//+rfWbSh49zrS3VqR09IyEgECrEiUkqcNAVby1IqZIhALAQKsWKjSJwKJFfCsXaGMey4Jf3WwXTfl3PDwHhMjwEpsrZww+tpAtp7d9I8mbp2rbcH8IqdU2ZOic6u11xU1uqi+r5ITpl2uORBglYuPmxGwJeDaACsYDOrZif/T0y+/L7PTqqTrgjOP1Y2Dz1KKb89dWrY0aWxbgADLNpmjbyDAcnR5mBwCMRcgwIo5MQMgEF8B8+rgqKvlWzKvcNxgWoay735JwZp1CLDiWw1Hj7Y8P1PjNv+tN7YuUI6K/t2rpjdNF1XrqEtrdFZ1b5qj12NncgRYdrRoi0D5BFwbYIVYVq/dqPc+/UF//j1Xy1auVWZWtjLS06yvEHTv0lan9j1UzZs0KJ8id5dZgACrzHSOvJEAy5FlYVIIxE2AACtu1AyEQFwEUqe8qdR3w7/QnXvujco/uG+R47MDKy5lcdQgC/O26PHN0/TetsXKV7DIuTXwVdLlNTrrvGodZHZfue0iwHJbRVmPkwVcH2A5GZ+5SQRY7noKCLDcVU9Wg4BdAQIsu2K0R8C5Ap6VS5Vx/+Xy+He+BubvvL9yrh5Z7KQJsJxbz2jPbF0gWw9u+ENvbFugQDGdN0+ppqtqdtWZVVsrTe5904UAK9pPF/0hULwAARZPR0IFCLASyh/1wQmwok5KhwgklQABVlKVi8kiULxAIKCMkVfIu3xRYZtgRmVtv+clqVotAqwK/OyY1wOf3TxTj2/6W9uLOePKfEnw+prddHKVlhVCigCrQpSZRTpEoEIEWDm5edah7Vu2ZiojI01d2leMf5k65BkrcRoEWMlQpcjnSIAVuRUtEXCjAAGWG6vKmiqiQMonk5T2wUthS8+98Hbl9zyqRA52YLn7aXkvc5FGbvxT5ryroq590+vpmpp7q0+lpu6G2G11BFgVqtwsNsECrg6w5i1apideeFff/zJdefkFhwm2b91U7064N4x93AuTtXrdRl13yemqW7tGgktSsYYnwHJXvQmw3FVPVoOAXQECLLtitEfAeQLWq4P3XSpPYOeLYfn79FLu4LtLnSwBVqlESdngz5w1Gr7hN03NWVfk/FunVNcDdXvp4IyGSbm+8k6aAKu8gtyPQOQCrg2wpnz3h2659xnl5YV/vrWoAOu+sRP12ntf6pYrBmhQ/+Mi16NluQUIsMpN6KgOCLAcVQ4mg0DcBQiw4k7OgAhEV8DvV8YDV4a/Oli1praPmCBVqV7qWARYpRIlVYNl+ds0csOfej9rcZHzruFN0821uuuCah3kkyep1hbNyRJgRVOTvhAoWcCVAdbS5at18oV3Kjc3T21bNtE5px6tZk0a6OIbHypyB9aPv8/QZbeM1kH7ddbzo2/hmYmjAAFWHLHjMBQBVhyQGQIBBwsQYDm4OEwNgQgEUj98Wakf/V9Yy+yr7legS88I7pYIsCJicnyjrGC+Ht84Xc9tmSVz5tXulwmrzq3WTrfW2lc1vWmOX0+sJ0iAFWth+kdg60T6RwAAIABJREFUp4ArA6y7H3lJb/7vG/Xrc5AeuP0yeb0F/4tA5yMGFRlgrVyzQb3PulH169bU12+P5fmIowABVhyx4zAUAVYckBkCAQcLEGA5uDhMDYFSBDzLFloHt3uCwcKW/p5HK+fC2yK2I8CKmMqRDQMKWl8VHLXhT60NZBc5xwPTG2pU3V5qk1r6jjxHLjIGkyLAigEqXSJQjIArA6xjz75Fy1autcIoE0qFruICrHy/X916X6KUFJ+mTXmehyWOAgRYccSOw1AEWHFAZggEHCxAgOXg4jA1BEoSyM9Txv2Xy7vqv8JWgRq1lT38BalSlYjtCLAipnJcw19yVun2dT9rXt7mIufWPKWahtfeX8dWbua4uSd6QgRYia4A41ckAVcGWN36XKIa1aro23cfC6tlcQGWadT9mEsV8Ac0/csJFan+CV8rAVbCSxDVCRBgRZWTzhBIOgECrKQrGRNGwBJIfW+CUj97PUwj+/qHFGjf3ZYQAZYtLkc0Xpy/RXev/01Tti8rcj5VPSm6rmY3XVa9k1I8XkfM2WmTIMByWkWYj5sFXBlg9Tx+sFJ8Pv30vycjCrDWbdisw0+7zvoC4e6hl5uL74S1EWA5oQrRmwMBVvQs6QmBZBQgwErGqjHnii7g/Xeu0h+6JuzVwfxDjlfuwBts0xBg2SZL2A2bArl6dONUvbxtrvKDO784GZqQiar6V22j22rvp7rejITNMxkGJsBKhioxR7cIuDLAOuvyEZo591+99+J91iHuoau4HVivTv5S9z82UYcftI+eesD+/7F2y8OQiHUQYCVCPXZjEmDFzpaeEUgGAQKsZKgSc0RgFwHz6uDdF8u7bmXhHwZq11f2sOel9Eq2qQiwbJMl5IYXt8zWw5umanMgt8jx90+rr/vqHqguabUTMr9kG5QAK9kqxnyTWcCVAdb4SR9q7Pi3dUD3jnp61I1KT0u1alRUgLVo6Uqde9V92rw1UyNvv1QnH3twMtcz6eZOgJV0JStxwgRY7qonq0HArgABll0x2iOQWIHUd55R6hfvFE7CHN+ec/MYBVp3KdPECLDKxBbXmx7bNF0PbZpa5Jh7pVTRnbX300mVW8Z1Tsk+GAFWsleQ+SeTgCsDrKztOTpp0FCtXL1ezfZqoKsuPEU9u3XUkWdcb32F8J3n79GSZav12Te/a8JrHykzK9v68zefG2G9esgVPwECrPhZx2MkAqx4KDMGAs4VIMBybm2YGQK7C3gXzlD66BtU8K3ugiv/qFOVe+aVZcYiwCozXVxufGvbQl2/7vs9xsqQT9fU2ltX1OiidPG7kN1iEGDZFaM9AmUXcGWAZTgWL12pS256WKvWbgjT8Xo98nq8Ml8eDF1NGtXTC2OGaK+GdcsuyZ1lEiDAKhObY28iwHJsaZgYAnERIMCKCzODIFB+gbxcZYy4UN4Nawr7CtRtVPDqYGpamfsnwCozXcxv/CZ7hQau+nyPcU6t0lJ31d5fDXyVYz4Htw5AgOXWyrIuJwq4NsAy2Fu2ZemZl9/XOx9/p22Z2/fwz0hP0+knHG7t0DJfLeSKvwABVvzNYzkiAVYsdekbAecLEGA5v0bMEAEjkPbGOKV8834hRtDjUc6tTyjQon25gAiwysUXs5v/yV2v01Z+oqxgftgYL9Y/WsdUbhqzcStKxwRYFaXSrNMJAq4OsELAZrfV7PlLtXT5amVmbleljHQ1blhXXTu0VNqO87GcUIyKOAcCLHdVnQDLXfVkNQjYFSDAsitGewTiL2BeHcwYHf7RorxjByjvlIvLPRkCrHITRr2D5fmZOnbF+9q424HtT9Q7TKdVaRX18SpihwRYzqz60uVr9MFnP+rXqbO0eOkqbdmWaeUA9erUVOMGdXRwz646sld3NdurftgCzLFDa9ZtCvszc6Z27VrV1aldc/Xr3UvHHL5fkYsu6t7dGx53ZE89Mnznq9pD7ntWH37xc4mIdWpV13eTHy9sY3KNvgOHWP/9tqvP0XlnHFPi/UMfGK/3P/tRE58Yqh5d2zmzYBHOqkIEWBFa0CwBAgRYCUCP4ZAEWDHEpWsEkkCAACsJisQUK7ZAznZl3HNJ+KuDDZsq+45npZSCjx6V5yLAKo9e9O/d6M/RCSs/1JL8rWGd31Kzm66v2S36A1bQHgmwnFX4vLx8jXtxsia89rGCQfNpCqlR/dqqUb2q9VbWmvWblJubZ/15r/26aPzom8MWEAqhTNCTlppi/SwrO8faDLNp8zbrvx91SA89OuIqpaaEnxkXutdslElJKbh39+ugfTvpqgtPLfzjUIDVomlD1apRrch7alavqnEjryv82a4Blnmr7L0X71PTxuFB3K4dEWA56xllNkksQICVxMUrYuoEWO6qJ6tBwK4AAZZdMdojEF+BtEljlPLDx4WDBr1eZd/+lIJNWkdlIgRYUWGMSic58uuk5R9pRl74ecBnV22j0XUPicoYdFIgQIDlnCfBBFMX3jBK02YusMKgy87tpxN6HySzg2nXa/b8Jfr6x6k6cN9Oe+xICoVQ3777mOrWrrHz35fBoH74bYZuHPGksrZn65YrB2jQWceF9VvcvSUJhQKsh++6QscffUBEmKEAq1JGmrZn56pn9w564dEh8nh2/SzHzq4IsCJipRECpQsQYJVulEwtCLCSqVrMFYHoCxBgRd+UHhGIloB37lRljL01rLu8fucr74TzojWECLCiRlmujvwK6vxVU2QObt/1OiKjsSY27CNv2LcnyzUUNxNgOeoZGDH6Jb314Tdq1ayRxj9yixrWq217fqWFUK+//5XuHfOKOrZtrrfH353QAOusk47UL3/OsnaHDbvhfPU/+agi10uAZfsxiN0NX/80Vd/8NE3HHL6/Dt6/izXQpHe/KPeAPp/XOti9a8dWMl8p5IqNAAFWbFwT1SsBVqLkGRcBZwgQYDmjDswCgT0Etmcq4+6L5N28czdOYK9Wyh76tOT1Rg4WlNbP8GrZ1x51PD+gtJoFr+eELgKsyClj2fKatd/p3cxFYUN0S6urdxv3VbrCX3mK5TwqSt/swHJGpWfMXaz+l99tvdY3+YX71LJZozJNrLQAa8Hi5Tr5wjtUrWpl/fLhU2FjlHZvURMqzw6sU/seKvOf868dqcqVMvTByyOt1yV3vwiwyvQoxOamnscPVmZWtrUtMHSwWecjBkV1MLOVb+Rtlyp1xzuwUe28gndGgOWuB4AAy131ZDUI2BUgwLIrRnsE4iOQ9srDSvn588LBgr4U69yrYKNmkU1gR3C1dIpH21cXvKLSoGdQrU/3h91PgBUZZyxbjd00TQ9vmhY2ROuU6vqwcT9V96bFcugK23e8Aqy8P36Qf9HcCuOcut/B8rXqEPF67370Zb35wddWoHPfkLJ/lKK0EGrOgqU6/ZJhatSgjr5445GEBljHHtFTj464UveNnajX3vtSh/TsqmcfuokAK+KnJgENbxg+TlO++1OnHHdI4YN6wnm3lXsm5sC39Ru3WAe9mevSgf10/aVnlLtfOggXIMBy1xNBgOWuerIaBOwKEGDZFaM9ArEX8M74TRlP3hE2UN5plyqvz1mlD15EcFV4kyeofW/zK73mzm4IsEonjWULs+vK7L7a9arnzdBne52kBr7KsRy6QvcdrwAr67mHlPvFBxXGuvJltyit98kRr/fE82/XoqUr9fi91+roQ3tEfN/uDUsLsF5641M9/PTr6nPYfhp7z9Vht5d2b1GTKs8OLHOY/BP3XWudyXXyhXdqxap1ViZiQrxdL3ZglflxiM2NJmwq7sCy8oxo+jWvIz7wxCTt1bCuPn99dHm6494iBAiw3PVYEGC5q56sBgG7AgRYdsVoj0CMBbZnqtKwQfJs2/lJeH/zdsoZMk4q5rDf0IzWTvPqvykeZa8r+lBg067dOX7V3Wfna4QEWDGuZwnd/5i9Smev+kzm/KvQVdWTog8a9VP7tF1SxsRN0bUjE2DFprR2A6xuvS9WXr5fH018UOaLfmW9Sgqhvv/1b10/bJz8fr9efeoudWrXosgAa59OrYt9e2vETYPCXm8MBVjm3K7aux02H+p8wMlHqe9ROw94Dx3ifvhB++ipB26wmv38x0xdcvPDql61svUqYb06O/+5J8Aq69OQpPcdcMIVys7O1fQvJyTpCpw7bQIs59amLDMjwCqLGvcg4B4BAiz31JKVuEMg7YUHlPL7V4WLCaakKnvY8wrWa1z0Aq0dVx4tneItfFVwj4Y+qWHPgJoeHVRqNc7AiveTstS/VWvzt2t1/natCWzXhkCO8gN+jd8yS1nB/LDpvNPoOB2YXvZf5OO9tmQdjwArNpWzE2Dl+/3a5+iC1wZ3/3pgaHZ3PfSC3v04fIei+ZkJokzgFLpCAZb5QmFaaqr1xzk5uVr830qtWbdJtWtW0wNDL7Ne19v9Ct1bksgbzw5Xl/YtC5uEAqyS7rl5cH9dOKBvYZNQgHXYgfvo6QcLAixzhdYY2pkV+nMCrNg8o47ttddJVykQCO5xSJtjJ5xEEyPASqJiRTBVAqwIkGiCgIsFCLBcXFyWlnQCvmk/Kv3ZEWHzzu1/tfKPKOKVnAiDq/r7BtSsd1BpNcKDq9Ag7MAq22OyNZCnNf7t1n9W+zML/pqftePPCv662r9dmwO5EQ1g9sy9UP9oHVO5aUTtaVQ+gXgFWJyBVXKduh9zqXJz8/TJpFFqtleDPRo//+pH1sffQtfchf9Zr94VF2AVNdrenVrrxTFDlJFe9Hly8X6FcPcAa+u2LJ00aKgVtD181xUyZ3mbiwCrfP+Mx/1uvz+gRUtXaNWajdqenaPKldKt0/lbNmssr7f4bdFmouaA+MFDHlGblk00/MYL4j53tw9IgOWuChNguauerAYBuwIEWHbFaI9AjAQytxS8Opi1tXAAf6vOyrllbPiAEQRXHq9Ur3tATfsElV6r6OCKACuyOk7LWae3ty2wwihrF5UVWmUpW+GH4UfWW/Gt7q9zoAZVi/zw6/KOV9Hvj1eAVdGdS1v/cefcqv9WrNEzo27SoQfsuTtq9/sHXHGP/pm9qNgAa9edXOs2bNbx5w5R1vYcvfHMcHVuH/7qYKjvRAdYZh4mpLtq6FjVrFFV/3v5AWvH2J2jJmjyJ99r4hND1aNru9IoHf1zT9Ac9OTSa+Xq9Xpm4gf6+MtfrXR196tqlUo6ofdBGnzeSapfl3fDE/EYEGAlQj12YxJgxc6WnhFIBgECrGSoEnN0q4B37Qp5/p0j34IZ8s6ZKu+aZYVLDaZXUs7wCQrUqlfwZxEEV/JIdbsH1OyYoDJKCa4IsEp/qjb6c3Tk8slaG9jzd5LS7468xRXVu+jO2vtFfkMFafnvEo8+/dyrM08LqE6d6P76S4DljIdoyP3P6sMpP+uCM4/VrVedXeqk7ARYprOX3/pMDz35mvX632tPDytyI4wTAiwz19Briccd2VOPDL9SoS80EmCV+lgkrsFPf8zQdXeNKzK42n1W1apWtk7v378b/0tFvCtGgBVv8diOR4AVW196R8DpAgRYTq8Q83OLgCcvR95/58i7cLa8i2bKu2iWPJlbil1e7nk3Kb/XcZEHV3sH1ezYgDJs/qLPK4TFP2EDVn2m77NXlusRrO5NVSNfFTXyVVajlMpqnFqt8O8bmj/zVVENb9GvNpVr4CS+ec0ajz6d4tGChV5rFR07BHT2WYGorogAK6qcZe4stPPI/G7/6aSHrB1IJV12AyxzztZpFw/Twn+X687rz9PZpxy9R/dOCbA2bd5mvUq4fuMW66uMf/0zTy+9+Sk7sMr8dMX4xpVrNujE82/T9uxcNW1cX+edcYx6du9gfUkwPS3NCrWWrVyrH3+fof97Z4rWrt+kKpUz9OErD7ITK8a12b17Aqw4g8d4OAKsGAPTPQIOFyDAcniBmF7SCnjWr5R30Wz5Fs2ywirvskVSILLXzvyd91fOVSNLP5xdUp2uBa8KVm5Qth0qBFhFP2JPbv5HIzf+WeLzV9ebYYVSVkBlwqmUqrJCqRTz3ytpr5SqSpcvaZ/heE9882aPvvjao7//8Wr3940GX+pX40Zle8aLWgcBVryrW/R45sWyMy8bodnzl8gcwP7EfddZRwcVd9kNsEw/v02dowtveFAmJPvwlQdUt3aNsO6dEmCZSX32ze+6ccST1hyPPaKnJr07hQDLGY/qnrO4/7GJenXyl9b7neNH31zsIWvmTnPQ2aW3jLbefz339D66/ZqBTl2WK+dFgOWushJguauerAYBuwIEWHbFaI/AngKevNyC3VWLzQ6rGQW7q7Zttk0VaNBEgZadtKr9lVryU/XivyooqXbnglcFKzcs3y/1BFh7lun3nDU6ZeXHYT84ulITnV61tRqnVFHDlMpq6it5p4jt4lfgG7Zv9+i7H6Qffy4+7Dumd1CH9IosAI6EkgArEqX4tDFf5xsw+B5t3pqpVs0a6eqLTtURvborPa3ga4KhKy/fr7OvuMcKu4o7xL24rxneOOIpffbNb+rX5yCNuuNyxwZYZmLXDxunKd/9Ya0/JzePACs+j6H9UfoOvFVLl6/RO8/fow5tmpXawZwFS3X6JcPUvEkDffx/o0ptT4PoCRBgRc/SCT0RYDmhCswBgcQJEGAlzp6Rk1fAs35Vwc6qhbPkXTxb3mULI95dFVq1OeMq0KKdFVgFW3eRv2UnZW6ppjn/51X2uuI/WFSrY0FwVaVx+YKr0DwIsMKfwy2BXB25/D2t8mcV/sDsqvp6r1NUnVf9ovoPbX6+9MuvPn37o5STXfQz36Z1QMf1Cap+/eg876EFEGBFtZTl7mzJstW6Yfg4ma8Mmis1xacWTRuperXKys/3W+HWshVrZV4JNJfdAGvV2g3qd17B214vjBmiA7p3LJxzaAdW1w4tlZKSUuRaDtq3k6668NTCn4XOq2rRtKFq1ahW5D01q1fVuJHXFf7MBHV9Bw7R7l8h3P1mc/i8eZVw85ZM60ecgVXuxys2HZhPaKalpujXj56OeIBeJ12l7Oxc/fX5+IjvoWH5BQiwym/opB4IsJxUDeaCQPwFCLDib86IySVgdld5ls6Tb9FseXacXeXdstH2IgJ1GynQqqMCrTor0LqzAo1bSN6dO07ysqRpj/qUt7XoX+RrtAuo+bFBVW0S3V/kCbDCSzlw1ef6JntF4R+myKMPGp+gfdLq2q45NxQtYF4PnDrdq6++9mhLMc/7XnsF1feYgJo1je7zHpoRAZbznk7zOuEX3/+pKd/+oemzFmrDpi1W4GR2ItWoXkVNGtXTPp3aaN+92+mg/TqH7dCK5DXA8ZM+1Njxb6tls0aaPOFepaYWhFWhe0sSCR2sHmoTCrBKuqdOrer6bvLjtgMsc8P/Pv9Jt418jgDLeY/pzhnt33ewdabVN+/s9qngEiZ91Jk3KDMr21bo5WSDZJkbAVayVCqyeRJgReZEKwTcKkCA5dbKsq6yCnjWr5Zv8Sx5rN1V5uyqhfLs+F/9I+0zmJqmYLN28pvAqnUXK7AKVg0/d2X3vv55xqeti/cMr2q2LdhxVbVZbH6RJ8DaWYlntszQvRv+CCvNXbX30+DqXSItPe1KEZg7z6vPv/Ro7dqig9p6dQPqfVTBwe2xvAiwYqlL3wiEC3iCJp502WUOb5u38D/9+vHTJZ5/FVq2SWMPPOEKdWzbTK8/M9xlGs5eDgGWs+tjd3YEWHbFaI+AuwQIsNxVT1ZjT8CTnyvvknnWYeue0GHrWzbY60RSoHZ9BVp2VLB1JwVadpa/aRvJF/nh3f9+5NGK78LbV29V8FXB6i1i+//2E2AVlHt67jqdtOIj5Wun9xEZjTWp4TG2nwduCBfIzPJoxgyPZsz0aMl/RQdX1aoFddThQe3bI7bBVWhmBFg8pQjET8CVAdYLr3+sR555Uw8OvUwnHtOrVM3Jn3yvO0dN0C1XDNCg/seV2p4G0RMgwIqepRN6IsByQhWYAwKJEyDASpw9I8dfwLNhTfjuqv8W2N9dlZKiQNO2BYFVm85WYBWoWafMi1k/w6O5E8PDq0oNgtr7Gr984WcYl3mMkm4kwJI49yq6j5bZarFsmUfzFkjzF3i1YmXxZ7pVqhTUYYcEdcD+ARVz/FB0J7ejNwKsmLDSKQJFCrgywMrNzdMZl43Q2nUb9di916pn9w7Flv+H3/6xPi/ZsF5tvT3+bqXt9oUCnpvYChBgxdY33r0TYMVbnPEQcJYAAZaz6sFsoidg7a5aOr/gi4DW7qrZ8m5eb3uAQPXaCrTqpGCrTgqYHVbN2iqYkma7n6JuyFwp/fOkT4G8nb/g+zKC6naDX+k1ozJEqZ0QYEm7n3vllfRh436ce1Xq07OzgdllNXe+R/Pne7RgUfGHsofuMBsUex3k12G9pPSM2O4yLGoZBFg2iktTBMopkNQB1qR3v9hj+V6vRykpPutAdnOwWnZOrvUlwh5d26ph/TrWAW3mz1auXq8//56n+YuXWX/28mO3q2vHVuXk5Ha7AgRYdsWc3Z4Ay9n1YXYIxFqAACvWwvQfLwHvhjXWFwF3nl21QB7zmTM7l9enQJNWVmBl/uM3wVWdhnZ6iLht/nZp2lifcjftsjvFE1SnSwKq2SZ+v9BX9ADr+S2zNHzDb2F1u71WD11dY++Ia1kRGxbuspovzV9Y8i6rXX28XqlH94COOiKoqlXi95zvXiMCrIr41LLmRAkkdYDV+YhBUXWrX7emvn478oPfozp4Be2MAMtdhSfAclc9WQ0CdgUIsOyK0d4JAgW7qxZYh6wXBlab7O+uClapviOsMl8G7KhAiw4KpqbHfInBgDRrglebF5i9PjuvFicE1Piw+JwBFBq1IgdYM/M26JjlH4TVgHOvin/87e6y2rWn5s2CatdG6tIloFo1ExdcheZEgBXzf80xAAKFAkkdYJ1w3m1RL+VHEx+Mep90WLwAAZa7ng4CLHfVk9UgYFeAAMuuGO0TIeDduHaXsGq2vP/Nt7+7yuNRoFGLgl1VrTsrYL4QWL9JIpajpZ96tezr8PCqzt4BtR8Y3/DKLL4iBlgfZy7Rm9vma8r2ZWH1b+CrpC8bn6JavtiHmAl58MoxaMAvjXwoRbl5kXVSvVpQbdoE1b6N1LJVUBnpiQ+tdp05AVZkdaQVAtEQSOoAKxoA9JFYAQKsxPpHe3QCrGiL0h8CySVAgJVc9aoIs/Xk5xWxu2qd7aUHK1WR3/oyoDlo3XwdsKOCGZVs9xPtGzbO9mj2S+GHtldpHFTXq/zypkR7tNL7qygB1ry8zXpt6zy9u22h1gWyi4SZ3KiveqY3KB2tAraYM9erV98ID113Z2jVMqA2rT1q2yagBvWdFVjtPlcCrAr4ELPkhAkQYCWMnoGNAAGWu54DAix31ZPVIGBXgADLrhjtoy3g3bRe3sUzd74KuMR8GTDCbR67TCbQsGlBUNWmixVWBRo2kzzFf/0s2uuIpL+sNdLfT/gUyN05r5QqQXW73q+06pH0EP02bg6wtgbyNDlzkV7fOk/Tc0t+xfTWmt11Xc19og/skh7fesenf2aG//NUs0bBLqu2baTWrQJKpu9qEWC55MFkGUkhQICVFGVy7yT/n73zgG+q+uL4770k3RsKtGWUFihQNgqigAwVQQRFliLIEAVRXCCCyhIHgsoQRGQ7QNmKf3CATBkqU/beo3TvJnnv/7mvTdo0aZukGS+v534+fFqSO879nRvo+/accwlgKcu3BLCU5U/aDSlgqwIEsGxVjPqXRwEpuuoqq11VpNh6coLNU4revhCi4yDExEsRVlJaoK+/zfO4coA+N79oe26SadF2FnkVWMOVlpiupUSAtSP7hpQiuCHzYpnCNvGqhKcD62FQYFyZfStqB5Y2+PEMNYreiTDwGUGKtPLURgDLUz1HdnuiAgSwPNFrCrKZAJaCnAmAAJay/Em7IQVsVYAAlq2KUX9bFODTksCfOw7uwgnw7M+Vs/ZFV4VHSjWrxJhGEqwSIqMBdp2ZhzR2Y9vJZTxSTpnaHPOEgGpt3AsBlAKwrujS8UP6WazOPI/rusxST0Yl3htP+sdiQFAc6mmCPeQUuc/Mo8c4rFlfmPYaFCRizGt69xnkgJUJYDlARJqCFLBSAUUCrF37j1m5ffNu7Vo3tnssDbRdAQJYtmsm5xEEsOTsHbKNFHC+AgSwnK9xRVmB0+nAXyt6M+BJ8El3bN6+qPGCUCsO+tiGEGNYsfV4iAFuyq+z2XrLA67+zuPqH6bwKryFgLr93AuvmLWeDLCyRR1+ybyMlelnsT/3FkqruqQCh46+UegfWBcP+9aAmvMcAOqgY2j3NN+t5HH6bKFe7dsJeKij+8+u3Rsq8gvc8sxBY0kBUsA6BRQJsOI7DLZu9xZ6Hd++zO6xNNB2BQhg2a6ZnEcQwJKzd8g2UsD5ChDAcr7GSl1Biq46fwLchePgL5zMj67S5dm8XTGsCvRS7aqCYuvVYwGVaZFzmyeV0YCU0zxOLDGFJf7VRTR9RR4RLJ4IsP7OvYMf0s/g58xLyBB1pXo7Vh2E/oH10CcgFuEq9xfxl9HRtMqU7GwO0z9VQSjCq14ZoUe4zIu0l7U5isAqSyF6nxRwnAKKBFiNOw0pVSFBMP2dilqlQkytCETXqIbPp7zsOHVppjIVIIBVpkQe1YEAlke5i4wlBRyuAAEsh0uqyAnzo6vOg794Qiq2rmJf7YmuUmkg1KoDoXY8RJYKyKBVUJgiNdOmc7jyO4fb+03hlSaQFW0XoAmQxy1tngKwEvTZ+DHjHFaln8UFXVqpZyaAU+Nx/9roH1QX93hVUeT5ctWm/j3IYeOmQqBctQowakTp0NBVtpVnHQJY5VGPxpICtimgSIBVlgRarQ637ybj36NnsOyHzbh87TY+eW8EHmrXsqyh9L6DFSCA5WBB3TwdASw3O4CWJwXcrAABLDc7QKbLc+kpUJ3/r6CIDxN9AAAgAElEQVR21Unwl8/YFV0lBFfKr10VWxBdVbMuRLVGprt2jFn6bA5XtwE396ggWgiyavKKHgHV5QGv2I7lDLByoZdSBNemn8P2nBtlOqi1d1WpIHt3/1rw5dRl9qcOZSuwdIUKFy8VXjzwUCcB7dt6dvog2zUBrLJ9Tz1IAUcpUCEBVlHxGMwaPnYmjpw4jw1LpqFW9aqO0pbmsUIBAlhWiORBXQhgeZCzyFRSwAkKEMBygqieNqVeb4yuYimBUnRV4m3bd8GrIFSPzb8RMLahlBYoVqo4P6MJWuDmbhWubgeEnCI3DRZRsk5fPaq0lA+8kiPAYursy7mNNeln8UvWJaSXkSIYqfKX0gNZbaua6kDbzy2NKFGBjEwOn3xqms775qt6BAfL6wzb40ICWPaoRmNIAfsUqPAAi8l2/PQl9H1xMvr26IhJbzxnn5I0yi4FCGDZJZtsBxHAkq1ryDBSwCUKEMByicyyWoRFV/HnWd2q41BdOAnuyhlwWjtqVwUEQ2CwKiYe+pgGEKLrgxVgr3BND9zaz+PqVg7aDMvgyj9KRHR3PYJj5KeOXCKwLuhS8UP6OazPvFDmLYJe4PGoXy30C6qL9j4R4GFZd/mp7VkW7d3PY/OvhSmw1aNEvDBMHrXbyqskAazyKkjjSQHrFSCABUAURbTqNhKVQoOw5ftPrFePepZbAQJY5ZZQVhMQwJKVO8gYUsDlChDAcrnkrl1QKIiuYkXWDcAq8ZbtNvA8hIjoIjcDNoAQHmX7PEoaIQIJh3hc+Y1DbrJlgOJbRUCtLkBYI/mmXLkTYCUJuVifeR5r0s/jaF5imaejsVeYVJC9l38MgvgKCEvLVMixHRYuVuHa9cKz3bWLgDat5XuWbdk9ASxb1KK+pED5FCCAVaBf5z5vICk1HYd++7p8itJomxQggGWTXLLvTABL9i4iA0kBpypAAMup8rp8ci4jVYquYjcDsugqqXaVNtdmO0S/AOijG0A03AxYOw6it5/N8yh1QNIJHpe3cMi+bRlceQWLqPmIiCotBcg9OMjVAIvVtfo16wpWp5/Dzuwb0KH0dLSqKl8JWPULrIe6mmClHinZ7Ss1lcOns03TB996U48Af89PH2RiE8CS3ZEjgxSsAAEsADq9Hi0eGQ4vjRr/bFmoYHfLb2sEsOTnk/JYRACrPOrRWFLA8xUggOXBPpSiqy6Av3Ci4M9J8Ik37dqQEFEzv2aVodh6RE275lH6oLSLwMWfVcgsEpVSdM9qPxE1Oouodp8AT6kh7gqAZWtdKz9Oja5+NdE7oC7a+lajFEE3fLB27ubxx7bC9MGY2iIGD1RG+iABLDccKFqyQitAAAvAz7/9hbc/XIg6taOwcekHFfpAuHrzBLBcrbhz1yOA5Vx9aXZSQO4KEMCSu4cK7ZOiqy6cKIyuunTavugqH1+pXpVUvyo2Ph9c+fp7jhBusDTrFodLmziknC18oC9qBstmi2yrR1QHQOXtWREqzgRYttS1Yso+4BOBPgF10dW/JhjEouY+BeYtUOP2ncL1e3bXo2ULzzrbpalHEVjuO1u0csVTQJEAKys7p0xP6vUCbickY8e+I1iw4iewMUP6d8WYEf3KHEsdHKcAASzHaSmHmQhgycELZAMp4D4FCGC5T/tSV2bRVdcvFkRWsYLrJ8HftTO6KjwKQiwrtt5QuiGQ1bICbxnEyFQNt5mVk8jh8mYeicdKKBKuAiJaCaj+sAiNh6ZWORpg2VrXKk4Tgt4BdaSbBMNVvm7zNS1cqEBSModZcwvTB9k/FxPe0sFLQWXHCGDJ48RfuX4bXQeMMzPGy0uDoAA/RNeohvvvaYS+PTogNNj8ltFx077Cpj/2mozXqFUICvRHbHQkOj3QAn0e7wAf79IP7/a/DmPL9gM4/N85JCanQqcXEBYciIZx0XioXUt0f6gNVCrT/zdT0zPRtufL0tp//TQPgQGW0+xfeXcOtu0+iDb3xGPRzLElCt/t2XG4fO02lnw+Dq2bN5D6dez9Gu7cTUGnti0wd9roUp22fvMuvDt9MV4Z2gsjBvWQh4MLrFAkwIrvMNhmkVkB93WL30flMMqHt1m8cgwggFUO8WQ4lACWDJ1CJpECLlSAAJYLxS5lKS4jTSqynp8OyGpXnQaXV/Yv94pPKWq8IUTHSdFV+X/iIQYEyWOTHmSFNp3D5V85JPzLQ7RUs5oDKjcXUOsREd6hnh2V4giAZWtdq3DeB0/4x6B3YB008grzoJNRMUz9408eO3cVPqzH1RMwoL8yircbPEgASx5n2QCwfH280KJxPaNRuXla3LmbjCvX88MAgwP98fXMsYiPizYx3ACwWFZW5dB8JpCn1eJWQjJu3Lor/b1W9apY+vnbqBoearbpu0mpeH3SPBw8dkZ6z9/PB1HVKkOtVkvrs/dZi6kZgTnTRqN2zQiTOfqPmIJjpy5KcIlBpuJNq9Xh/h6jkJWdC7VKhd0b51oEXSxIp1Of1yXQtvfneWAAjzUDwGLfz3hvJLp1bl2i4whgufhM2wKweJ7DA/c2woTRA1EzqoqLLaXlCGAp6wwQwFKWP2k3pICtChDAslUxB/Rn0VU3LplGVyXcsGtisVLV/KiqmHgIMQ0gVI8FeNPCy3ZNXEEH6bI4XPsTuLlHBbGEcj+hDQREdwPYDYNKaPYCLFvrWvlAhUf9WV2rOmjvGwmV3KvbK8G5du5h5iwV0tIKow779NKjcSPPBrXFpSCAZefhcPAwA8BikVa/fPOx2ewMQk2cuRR7/zmOBnVrYc3XU0z6GACWJbhz/tJ1vDnlS5y9eA0d7m+GeR++ZjI2PSMLfV+cLEGy2OgojB3ZT4qSYqDJ0E6fv4o5i9eCRWgxiPbDV5NQI7KQP8xetBYLv/0ZA3o9jAmjB5jZv/vAMbz41qcICwlEUkp6iRDKUB6pbavG+OqTN43zMIDF7MzOyUNIcAB+Xv6RNJelRgDLwYezrOkOHDpVVhdwXD4VrVW9mvSVmnsUIIDlHt2dtSoBLGcpS/OSAp6hAAEs5/tJiq66eEK6HZC/eBI8q11lT3SVSgOhZt2CdMB46Os0ghgY4vwNVIAVBC1wY5cK17cD+lzL6YKBtUREd9cjUGH17W0FWLbUtWJK3udTDX0C66C7Xy34c/lRBdTkq8C1GxwWLip8gGfP8u+M00GtsJJkBLDkcQbLAljMSgZ+2j85GqIoShFMRVMJSwNYbOz5yzfQ47kJYAEwe36aJ6UlGhpLt2PQp2G9aCyb9XaJfIGt+94nS6S+TRvG4vv57xnnYAxjyOsfl1iX+4PZ3+D79Vvx0nM9MX/5RnTt1BozJ440E99gy9iX+mNw30dNAFZYSBDqREdJqZKPdmyFTye9RABLHseXrPAUBQhgeYqnrLOTAJZ1OlEvUkCpChDAcrBnBUGKrlIVFFuX0gETrtu1iBBSCULteIixBemANepAVBMAsEvMEgaJOuD2fh5Xt3LQZloGV37VRER3ExESp4yIq+JSWAOwbK1rVUcThN6BddHXPxZVVZbrwjjSjzSX4xTY/BuPvfsK0wcbx4vo85Rybh80KEUAy3FnpjwzWQOw2Pytuo1AZlYOtq3+3CQVsCyAxcY+0PNlpKRmYO2iqahfJ/83ELcSkvBI/zFgNbbZhXAsBbG0xiKgHn1mrJRSuPizt3Bfi4ZSd5Yi2Obxl6QIqZ3r54CVOCra2BosPXDnhjno8vTYAgj3BVidrqLt4f5jpJTH9UumoV5MdeNbLALLS6PBDwsmocfgCUhMTsOc90ejczvzdEWKwCrPSaSxilaAAJay3EsAS1n+pN2QArYqQADLVsVM+3OZ6UWiq06Av3QGXG62zZOKKpWU/ifVrGLAqnZDCGFUJsFmIa0dIAIJB3lc+Z1DbrJlcMVqW9V8VER4UwFKznYrCWAZ6lqtST+PHdnXoUPpKWSVeG/0lOpaxaKpV2VrPUH9ZKSAKAIzPlMhowjMZbWvWA0spTVXAayfUy/h38wEpclX4n4eD4lGS79wq/drDcAy1IdiKXx7fvoCHEvLKmjWAKz7ur8kpeH9tmqmVN+KtR82bsPUz1fgnqZxWD57vFX2zlzwA5au2oy+PTpi0hvPGceMGPcpdu0/ZpYeeO7idfQc8g5aNqmHFXMmYOz7X+J/W/fj65ljpML0hnbtZoIEt1hd7x3rZpvYwgCWTqfHrg1z8ev2v/HG5HlSv5+WfyilNBZtBLCscqNrOwmCKIX/UXOvAgSw3Ku/o1cngOVoRWk+UsCzFCCAZYO/WHTVTUN0VUGx9TvXbJigsCtL/TMUWdezGwJr1YOoVtAVX3ap4ppBScd5XN4CZN+xfBOjOkBEzc4iqrUWgApQTqw4wEoXtJiVchgr0k8ji4WoldGe8K+NJwNi8ZBvYdRAWWPofXkqcPESh6UrCg89qyPNbh9UYlk9VwGsFy/vwMK7J+TpcCdY9VWtB/FC5fzoJGtaWQArIzMbY6Z+iV37j0o1plitqaKtLIB1/PQlqc4Vqxu1fe1s402C73y8CBu27JZu62O39lnT2E2C7EZBFsXForkMbdmPWzBj/ir07v4gpowZYnz96+82YdbXa/D6C33w/DOPSfCKQaynn+iMd18baOy39pedmDhjCbo/3AbT33nRxBQGsFh0175N86XXX5v4BX7f+Q96dnkAH44fbtKXAJY1XrSzj06vx5Y/D0jXWvr5epc6C8t5nbNoLbbu/lfKf2V5q23uaYRXhj5pdguAnebQMBsVIIBlo2Ay704AS+YOIvNIAScrQACrZIG5zAyoLp4AJ9WuYtFVp+2KrgLPQ4iMLii0Hi/VsBIqm95k5GQ30/QA0i4CF39WIfO65V+G8j4iqj8IRLbTg69AmZoGgJWp1WHmtcOYlXIEKUJeiWeGqXevdxWprlUP/xgEcAorjlSBPy0/beLxz8FCsNuyhYie3ZWXPshcTADLOQfdXoDl5+sjXdJmaHpBQFJyGk6evSzdIji4X1cJ2hRvpQGsC1duYvS7c3Dxyk1MGP0sBvR6yDicFVZnBdbff2soenVrb5UYp85dwVPPT5RgGIuIMrQzF67hyaHvSsXdt3z/ifH1Z1/+AIf+O2tMUWRRYG17viJFUG1d/Zmxn2EPDEgV3yMDWAzi/b35K6k/S2FkqYSpaZlYMP1NtGvd2DgPASyr3Ghfpx17j+Cl8Z8jokoYfv/hU5MwwKIzshzPp0dOxfWCKzCLvseumGRXabZoXNc+I2iU3QoQwLJbOlkOJIAlS7eQUaSAyxQggFUgNYuuunXZtHbVbTujq/wDoK/dEGJsvFTDSqgdB9GLLp9x2aEutlDmDQ6X/sch9azliCtOBUQ8oEeNjoDKT1k3rVmjOQNYf+ivYvy1fbikTS9xSLQ6EL0D66CPfyyqqwOsmZr6eJACggB8PFOFnJxCwPvcQD1iayvzM0EAyzmH016AVZI1Go0aj7S/Rype3qmted0nA/xhUVFVKodK07CUu1t3EsEAFhs/avATGD6gu8kSBrjECqqzwurWNEO0mJeXBod++9pkyIO9XpXg0u+rZiKyWmUJMLV94mVEVKkkpS4a2tDXp2P/oZNYvXCyVDyetQ5PvYaExBT8uWYWqlQ2vZjFcAvhP1sWGucw3FhYLTxMSiU0XG5HAMsaL9rZ5/3PV2DVxm146rH2mDp2aImzvPreXPyx618pbbDP4x3RLD5WKsD2w09/4tLVW2BO+3nFR2VGcdlpJg0rQQECWMo6GgSwlOVP2g0pYKsCFRVgSdFVl04WRlddPGVfdBXHQV+tppQOKAGrmHgIVSmVytZz6Iz+OYn54CrpP8vgitW1qnKPgFqPiNAEKfMhvSxd9+fextSkAzicm2ixaxCvMda1useLarKVpacnv3/6DIfvVhWmDwb4ixj7hl66BV6JzVUAi2pglX56SkohZMXVU9MzcezkBSz6fhMOHjtr8QY/A8CytAqL6mKAhwXNFG+OjMBic4/74Cts+n0vpo0bhie7toMBMrGoLxb9ZWjfrPkNH3/xPUYO6omXhz4pQbbHB41HbHQUflr2gZmdlgAW68SCgVhQUN/HO2DSm4OlcQSwnPgvVf8RU3Ds1EXpCsmSiCd7n/VjrXg4HQujY7msl6/dlhzGHKeUlpWdizWbtkvgjhV+Y7cthIUGSgXmhvTraiS1lvb7z5HTWPbDFhw+fg4ZWdmoWjkUndu2wIuDepgVeSs6nh32NZt24Nyl69Dr9ahVvRqeeLQtnnnyIWOecNH+BLCUctry90EAS1n+pN2QArYqUCEAliBAdfOKlAZoTAe0N7rKxxdC7Qb5RdZjG0nfi750y5qt586Z/fNSOVz5jcOdf3mUVHc8rJGA6K4ifCpXTHB1QZeK9xP/wW/ZVy26giG/XgExGBfSEpFq00LBzvQdze0+BdauV+HIsUJa1aa1gK5dlFe83aCwqwCW+zzqGSuXVQOL7YKVH+r34hSwFL7p776I7g+1MW7OUgqhKIp4ZtQ0HD1xHuNGPY1BfbqYifHu9MUS8DGAJGvU+vOvQ3h5wmyzGlhsLKunxepqPf7I/fh4wgvGgu0LZ4wxSY00FGw31NEyFJMf2PsRvP3yM2ZmlASwWGF7lkrIuMiSz8ehdfMG2PjrHkz46Guppher7SWnxonMKx7c7u8xSgqrY0Q0tlakxZ0YqvSzCv2sUn/xZjgk7Vo3wYLpb3iwGoWmb//rsFTAjaVOBgb4IT4uGr7e3jh/+TquXL8jwaRP3h0hhVAWbwxATZq5VHqZjasUGoyzF67i5p0kiTp/P3+iWUgi6zv+w6/x0297pKs8mzeuC41ajSMnzksfhratGmPeR69BrTKtYEoASxHHzbgJAljK8ifthhSwVQElAiwuO7NI7aqT4C+eBJdj+82ATEuhSnUIsQ0gssiq2vHQR9aCYkMSbD08Muuvy+JwdSuHW3t5iCWU7QmuI6BWVxEB1T36R2m7lU8UcjAj+RBWpp8p8VbBDj6RmBjWCnFepqksdi9KA2WvgE4HfDBdDX2Rz83wYXrUiFLu54QAljyOpTUAi1lqKIjOoptYlJOhlVQDixVv7zdiCnx9vPHLNx+bPQf/+NOfmPLZcrRqXh9LP3/bKjE+++pHLF75P/Tr2QkTXx9kMubO3RQw2MRuOfx15Qy0f3I0cnLz8NdP86Q0xqKtx+B3cP7SdenGQRaNtXnbfnz58etof19TMztKAliso+H5v3pEODYs/QDb/zokFbwngGWVO23r1LTzMImkMocGB5n/VoeFC7Jc0Lw8rdk1k4aVWF2sR/qPQdXwUGxb/bltBsi093frfse8pRvwxot90fPRthJUYo3xyu/Xb8WHc76VclxZ3bCi12ZevXEH3QeOh1qtkmDevc3qG8d9sXQ9Fqz4Cfe1aIjFn71lsnMGrhjAiqkZgYUzxxrDK7Oyc6QbDvb8/Z/FDwABLJkeIDvNIoBlp3A0jBRQiAKKA1jaPPi+1QdcTpbNHmJ1qoTouPwIqzosuqohRP9Am+ehAa5VQJ8H3Nilwo3tgD7Pcr6Tf5SI6O56BMe41ja5rJYj6rAg7TjmpxxDZgk3Czb1CcPE0Fa4z7uaXMwmO1ykwH/HOfy4tvAX1kFBIsa8pszi7QZJCWC56HCVsYy1AMtw09+DbZpi/kevG2ctrYj75JnLsHrTdnTpcC8+mzzKxBIGnB7u96bEJDat+KjMy+Fy87R49JmxYOMY8GLgq3jr8dwEnL98A4tmjsXzY2agc7sWmPP+aLN+7GZCBuRYNtqML1chMSkNezfNt1gWqTSAxSYe9uYn2PfvCTz71MNo0zIeoybMIoDljKPd7OHnodXqLBYqY+ut3LAV02Z9U2qRdzaezWOpiJozbHbVnAzeFYVTRdd97tWPwNIEP530kkkUFgNb3637A68N721WoI7BL1YIn6VkfjfvXTSLr2Oc8okh7+LsxWtmr7MOyanp6NznDYkYMzrMiuYbGgEsV50G16xDAMs1OtMqpIBcFVAawNLs2QzNt4W3+5Smu1ipKvQxDQtuB2wAoWY9ubqpwtulTeegy2Z/RIj6QkiVeQNS1BWLvrLUWIpgrUcFVGqs3EiS0g6HABE/ZJzDjOSDuK23HIVYQx2Aj2q0Ru+gOkhMza3wZ60iCrDyRx4nTxXWimvfVsBDnZSbPsh8TABLHifdWoBlqPnE0gFZWqChlQawWO3sbs+Ok2ppffXJm1J2UdFmSCNs0jAWSz4bB1+fwufd4up8MPsbKaCEXSD3zdx3LIr34ZzvwAJSWIrjpj/2lnjDIct2eual96WSPSyrjJUKWj57vMU5ywJYLKjniSHvIDsnD6OH9cLsRWsJYDnjaD/cfwxu3LqLFXMmoGUT0x8WGXB5Yui7Uv2nF559HK8+/5RFEwwAi6XVHd26xBlmym5Ow4ei+DWgBj1ZJBqLSCveDECw6Aee6c/G1Yyqgs3fFV73WXTsG5Pn4dftf2PuB6+i0wPNCWDJ7kQ4xiACWI7RkWYhBTxVAaUBLJ9pL4K/fsGiO/QsDTC2IcSYhtDHNoIYSClSrji3LJ0vHz5x0GeL0OVw0OWI0Et/55CXLRi/17LXc/L7aQveLykdsDTbvYJF1HxYRHhLAVwJNdxdsXd3rvFn9nW8n/Q3TmtTLJoRwnvh1ZCmeCE0HpEhvsjTCbhLAMudLnPL2ikpHD6bY1ou5OWRelQJVzb0JYDlluNmtmhZAItlZC39YQvmLF4rXey2dtH7qBdTeFFKaQCLLcYujmMXyLFnXpZm5+2lMdqQnpEl1dVmpXoa1K2Ft156Gvc2iwNX5OYCVnObQaFftx9ASHAAfvxqspQmaKmxckAsAoqBMAaUWBBI5bBgs66CIKLDU6+CZT3lg6en8OLAx+0CWGwQC2RhAS1sbyxSjFIInXC235wyH1v+PICeXR6QCrQXbYbq+QxMMbBS0gFh11Sy6yrZ7QJ/b17gBCvlN6XhA/rFh6+i4/35QCktIwttur9UairlybOX0Xv4JCn6ikVhsbZ110GMfm8Ouj/cBtPfedHiZpev/hWfzFspRXWx6C5Dowgs+Z2N8lhEAKs86tFYUsDzFVASwFJdOAnvGYXh+mJAMHSP9peKreujzcP9Pd978t/B5f9xuL7D9OHYmVarfETU6AxE3K8HZ1p2xJnLymru03kpmJC4D/tyb1m0yxsqDAuqj9EhzRDIa+Cl5lE52JsAlqy86BpjLl3hsPIHHtnZhRGM4eEiXhmp7PRBpi4BLNecsbJWMQAsP19vqeSNoQmiiLT0TJw6d1UCPYwNvPvaILPL28oCWAwW9XlhklQA/qXnemLUkCdNTGJMgZXOOfTfWen10OBAVI8Ml0r53EpIloJuWGN1u+dMG43oGiWnWDM723QfJaUlNoqrjR++mlTi9g3RX6zDqi8nonEDy/ntZUVgsfEsAGjQ6I9w8NgZaT0CWGWdOjve37X/GEaM+1Qaya6PfOLRdkx5bNtzEDMX/CjVvip6JaSlJf49egaDRn+ImlFVsfm76XZY4VlDGE1lKX3ZObnYtuZzY5ohK1DHyHFp4YwsbPL+x0dJH8jdG+dKG2e3FbKcW0Z7GfW11NhNiK++N9csb5gAlmednbKsJYBVlkL0PimgbAWUBLC8l3wM1d9bjQ7TN2mD3JFTle1Ame5Onwuc/o5HymnXhD/xGiCirR7VOwAMYlXEdkOXiY+S/8X6zAsWL19knngqIBbjQ1uiqqrw5kwCWBXxtABHj/FYt5GHUCxTsHNHAQ+2U3b6IPM4ASx5nHsDwLJkDYsoqlYlTKrvPKDXwyaRV4b+ZQEs1u/w8XMYMGqaVBpn49IPUKt6VbPl2A2DW7YdkEBWUkoa9IKI0OAAxMfVxsPtW+Kxzm0kiFZWG/jKhxJIYqCMAbOS2rbdB/HKu3Oki9v2bPyixLmtAVhsDRYp9uTQdykCqywHled9Fv3DooAstdo1I7By/nuSQ0tqrDD53CXroKRbCEvTc/6yDZi3bIP04Z0weoCx6/5DJzH09enSrQXs9gJLjVHZRh2HSB8MQ7rlF0vW48sVGzFmRD8M6d/V4jjD3Pe1bIjFnxYWgE9MyyuP62mszBSoFJSf701+lZljyBxSwEUKBPio4O2lQka2DrlaD35oyUgF/8ZT4Io8jQmvT4cYf6+LlKRlDArkJnE48jWQedtxmjBApfYVofHloPITofYBNH7sNcA7kENkG0ATUDHBVbqQh88SD2Nh6gnklpBv2ckvClPCW6OBl3mpCbWKQ7C/Bjq9iNRMreOcRjPJUgF2l/3/fgV27jGvG9ewvogBfQF1YZaVLPfgCKMMP/86Yi6agxQgBUpXgBMZkfDwxq6V/GD2t9iwZRdYaJ+hPdSuJd57fZDFfNGiW+7PCpOfvIDXX+iD5595zMPVKN38v/75DyPGfYZq4WFYu2iqCdjbtf+o9F5JtxwYZjbc/Hhk62KoVSp8uuBHLFn1P4x/ZYB0a4Glxgj0sy9/gOaN6uLbLywXq1O08LQ5UoAUIAVIAY9RIGf9N8hZ+ZXRXr5qJALn/GBSy8JjNuPBht49I2LPPB20meab8A4CvPwYeOIk+OTly0HjX+Q13/zvvfw5aHwL+3nTRZAWT4RWFDA/4T+8f+MfJLKQNwutmW8lzKrZFg8GRHrwqSLTHaVAXh7w5VIdjp0wf5Ts3oXHE91cl+7rqD3RPKQAKSB/BRQBsAwyJyan4dyl69Jf69aujrCQsn9K0esFfP71aoiCCFaY3FLhcvm70ToLj544L12PyYrJsRsP4mJrmAx0SQRWi4ZY/FlhBJZH/4beOtkrVC9vTX44LPm1QrmdNksKGBVg0RcqnoNOL0DvoQFYoiAg99U+EJMSjPvSDHgZ6m59ydMuVODKXwKOfCuieP5aUHWg9SgePiGWbwp0oYmKWWpd6gW8e3M/LuSlWdxTtCYQUyNaoU9IHZSlOs8BGjUPVvZXKPoAACAASURBVHNGq/P435ErxseO3khqGjB3oR43i5VGU6uBwU/zaN60rJPiaIvcO5/h51/3WkGrkwIVQwFFAayK4TL7dvnf6YsY9sYn0On00tWf7IrN4o0VpHvq+YlW1cAKDvTHXz/Pk6ZYsfpXTJ+30qoaWCwqbvb7rxiXphpY9vlTrqOoBpZcPUN2kQKuUUAJNbBUR/fC+8uJRsFEtQbZn6wGfP1dI2IFX0UUgIs/8bi117w+SGhDAXHPCGApgNTKr8Ch3AS8k7gPR/ISLU4WynvhtdBmGBxQH2orr1+kGljl94vcZ7h5i8OKb3lkZplCKn8/EYOeFRBRreKBS6qBJfdTS/YpSQECWEryZgl7YZFXw8fOhCAImP/R61LxOkuN3XZwb9cRVt1C2Lh+baxakH8bwo69R/DS+M+tuoVwaP9ueHNE4W+xCWAp6wASwFKWP2k3pICtCigBYHnPHQ/ViX+MW9fd/yjyBr5pqxTU3w4FdFnAqRUqpF00j96o8Qi7EVD5t5nZIZvNQ67qMzAl8QA2Z10pcezLwY3xcnAT6WZBWxoBLFvU8ry+J0/z+HEND32xj2J4FRGDBwgIDKx48Ip5kQCW551lsthzFSCA5bm+s8ryg8fO4sW3PpWKrrPIq6YNY0sd1+O5CTh/+Qa2rf7cYjrlyg1bMW3WN+jboyMmvfGcNBe7MvTBXq+iZlQVbP7uE4vzvzF5Hn7d/jdmThyJrp1aG/sQwLLKjR7TiQCWx7iKDCUFnKKApwMsLuEGfCY+Z5ImlT1xEcSIWk7RiyYtVCDrDnByiQq5yabwiteIqPe0gLD4ivlg7Mgzki5o8WnyISzLOAVW86p4YzFvvQNi8XaxmwVtsYEAli1qeVbfHbtU2PqnOVyuW0dA/z4CNLaxTs/afBnWEsBSlDtpMzJXgACWzB1UHvMOHDqFl8Z/Bm9vLyyaORYN6pb9A/jsRWux8Nuf8drw3hg+oLvZ8v1HTMGxUxexYPob0q2NhsYKtLNC7d/NexfN4uuYjEtOTUfnPm9I9RB2rp+DoCI3QhLAKo+H5TeWAJb8fEIWkQKuVMDTAZZm7QJo/lhrlEyIro+ccXNdKWGFXCvlLIdTK3gIeaYPx5pAEfHP6+FXrULK4rBN60QByzNO4bPkw0gRLN/+3NEnCpMqtUJdTXC51iWAVS75ZDmYRVutWcfj+EnztN62D+jxcCcRXMUqeWXmJwJYsjy6ZJRCFSCApVDH7v3nOEZNmIWgQH8s/nQsYqOjrNopK4T/6DNvSemGDFIZ0g3ZZZVfLF2PBSt+Qr2Y6li3+H2T25gMNxjG1IzAwpljEVElTFqPpSW+Pmkedh84hgG9HsKE0c+a2EEAyyq3eEwnAlge4yoylBRwigIeDbC0efB9qw+4nCyjNrmD34K+teXbdZ0iYAWc9PoOFS5v5syKtQdUF9FgiB6agAooigO3/FvWVUxOOoDLunSLs8ZrQjGl0n1o41PVIasSwHKIjLKZJCuLw4rvedy4USwyUgX0eVKP+IYUGcmcRQBLNkeWDKkAChDAUqCTMzKz0e7J0cjL0yI0OBDBQaUXnp37watg4MnQtu46CJbyp9PrER8XjcphwThz4Rpu3k4EK97+zdwJFoHYzAU/YOmqzdBo1GjeqA68NBocOXEe6RlZaFgvGstnj4efrzcBLAWeOcOWCGAp2Lm0NVLACgU8GWCp92yG17efGXcp+gci+6NVgMbLip1TF1sVEHTAudU87h42j+qo1FhA3f4CeLWts1J/gwLHtUkYd/cvHMq9a1GUqipfjA+9R0oZdGTwDAEs5ZzBhLs8ln/LIS3N9IT4+ooYNEBAVCTBq+I//yrH+7QTUkC+ChDAkq9v7LaMpey17Vl4019ZE61dNBX169Q06XbizCV89c3P+PfoGWRkZqFypRApZXDEwB4Wa2MZBrM6V9+u/R2nz1+BXi8gKiIc3Tq1xpD+XeHtZZ4cTxFYZXnHs94ngOVZ/iJrSQFHK+DJAMtnyjDwtwqLWmsf7gttr+GOlojmA6DNAE4uVSHjWjF0wgG1uoiI6kjF2u09KLf1WZiW9A/WZ16AJbzgy6kxIigeo0Iag33v6EYAy9GKume+8xd4rPyBR57WdP3KlQQ896yI4GCCV0WVoQgs95xTWrViKkAAq2L6XTa7JoAlG1c4xBACWA6RkSYhBTxWAU8FWPyFk/CZMdqoO3s0y/ngO4hhVTzWF3I1PON6PrzSphdLSfISETdAQGh9ejC2x3dZog5zk49gYdoJ5MAcADK1n/SPwYSwlohQlR6Zb8/6hjEEsMqjnjzG7jvAY/OvPMRiH0VWrL1fbwFeFJRq5igCWPI4u2RFxVDA4wEWS3dr36YpNGpVxfCYwnZJAEtZDiWApSx/0m5IAVsV8FSA5b1sOlT7/zBuV9e4NfJemmbr9ql/GQokHedw+nseos4UXnkFi2jIirUTL7T5DAkQsTLjLGYkHUSCkGNx/L1eVTC1cms08apk8/y2DiCAZati8ukvCMDGn3kcOmKe1nv/fQK6PCxU+GLtJXmLAJZ8zjFZonwFPB5gxXcYjJDgADzWuQ2e7NrWqpv2lO9Wz9khASzP8ZU1lhLAskYl6kMKKFcBjwRYGWnwHd8fnK4wVyZ31AfQN2qlXEe5YWdXfuNwbav5LxsDa4mo/5weGucFBblht65Zcl/uLbx99y+c1aZZXLCmKgDvVLoH3f2iXWMQAAJYLpPaoQvl5HL4biWPy1eKRUbyQK+eApo0Fhy6ntImI4ClNI/SfuSsgMcDrPu6vyQVCTe0urWr44mubdH9oTZS8XFq8laAAJa8/WOrdQSwbFWM+pMCylLAEwGW5tdV0GxYbHSEEBoupQ9SqIFjzqY+DzizkkfyCfOojsrNBNTtK4CjIHqbxD6rTcXkxP3YnnPD4rhATo3RIc3wfHADeMG14hLAssmVsuicnMph+QoeScmm8MrHR8SzzwioWZ3SestyFAGsshSi90kBxyng8QArN0+LbbsPYuOvu7Hn7/8gCPn/yKpUPB64tzGeeLQtOt7fDF4WCog7TkaayV4FCGDZq5w8xxHAkqdfyCpSwFUKeBzAEkX4vDMAfHKCUSJWuJ0VcKdWfgVyU4ATS1TIvm1erD36MQGR7SiqwxaVE4UcTE86iFUZZ6G3UKJdBQ79A+ri7bCWCONNb322ZZ3y9CWAVR71XD/2yjUO337PIyfH9DPKirUPfFZEKBVrt8opBLCskok6kQIOUcDjAVZRFRISU/Dz739hw5Y9OH/puvGtoAA/dOt8nwSzGjeIcYhwNIljFCCA5Rgd5TILASy5eILsIAXco4CnASzV0b3w/nKiUSxRrUH2J6sBX8pnK+8JSrsEnFqugi7LvFh7/UECQupSVIe1Gh/JS8Su7BuYlXIE2aLO4rD2vhGYEtYa9TQh1k7rlH4EsJwiq1MmPXqMx7qNPFjtq6ItpraAZ/pRsXZbRCeAZYta1JcUKJ8CigJYRaU4fvqSFJX1y9Z9SEnNML4VUzMCPR9ti8cfvh9Vw0PLpx6NLrcCBLDKLaGsJiCAJSt3kDGkgMsV8DSA5f3FBKiO/23USXffI8h7bqzLdVPaggmHOJz9kQcEU3jlHSqiwVAq1l6Wv2/qM7E9+wa2Z13H7pwbSBHyShxSRxOEiWGt0Nm3elnTuuR9Algukblci1y4yOPoMeDgYfO03jatBXTtQpGRtgpMAMtWxag/KWC/AooFWAZJtDo9duw9jI1bdmPnvqPQ6fOvFuY4DvffEy/BrM5tW8DHm+6Etf8Y2T+SAJb92slxJAEsOXqFbCIFXKeAJwEsLumOlD5YFLHkjPsCQnSc6wRT2koicHETj5u7zR+Mg2qLqD9ID7Wf0jZd/v1kiTrszr4pRVntyrleYlH2oisF814YG9IcQ4IalN8AB85AAMuBYjpoqswsDqfPsD/A+Qsc8vKKpfRKz0VAzx4CWjQleGWP7ASw7FGNxpAC9imgeIBVVJbk1HT88sc+bNiyGyfPXja+FeDvi0c7tkLPLm3RonFd+5SkUXYpQADLLtlkO4gAlmxdQ4aRAi5RwJMAlmbNV9BsXWPURahRBzkTvnSJTkpcRJcDnP6GR+o5c3gV3lJAnd4COPO3lChFmXsSIOJYXiJ2FERZ/ZuXAJ1oHThQczwGB9THmNDmCOQ1Za7l6g4EsFytuPl6ogjcuJEPrM6c43HjpjmwKjqKFWtnKYPRtSit117vEcCyVzkaRwrYrkCFAlhF5Tlz4ZoUlbXpj724m5RqfOv49mW2q0gj7FaAAJbd0slyIAEsWbqFjCIFXKaAxwAsbR583+oDLqfwFuO8gW9Cd/+jLtNKSQtl3wVOLlEhJ9H0QZkBq9qPC6h2v3VwRkmaFN/LbX0Wfsu6mh9plXMDqaWkBVrSoZY6EB18IzE8OB611UGylYoAlntck5PLSdFVJ08BZ89xyM4uHVoZrIyKFNGnl4CwMIJX5fEcAazyqEdjSQHbFKiwAMsgk14vYM/fx6TC79v2HMTh3xfZpiD1LpcCBLDKJZ/sBhPAkp1LyCBSwKUKeArAUv+1BV7ffGrURvTxyy/erqFyArYemNQLwKllKuhzTR+YVd4i6g/WI7iC3p3D0gL/yrmFHVnXsSP7Os7r0mySlt0i2NYnEu39ItHeJxJRas+4WIAAlk1uLlfnOwkczpzlpUirq9c4s2LsliZXqQBWpL1+HNAgTkRAAIGrcjmhYDABLEeoSHOQAtYpUOEBVlGZ0jKywG4spOY6BQhguU5rV6xEAMsVKtMapIB8FfAUgOXz4UjwV88ZhdR27g1t7xflK6xMLbu1h8eFn3mg2DOwT6X8Yu2+lWVquBPMMqQF7sy5ie2Z1/FP3h2r0wKZOT5QoZVvFbTziUJ730jEe4WZ1GdzgslOmZIAllNklSZlZXxZAfb81EAOKSnWRVkxSFWvrogGcUBMjACN2nk2VtSZCWDJw/NXrt9G1wHjEF2jGn755uNSjbp+6y4e6T8GNSKrYMv3n5Ta97t1f+DDOd+iW+fWmPHeyBL7zlu6HvOXb7RKjPtaNMTiz94y9h037SspM6y0Vik0CDvXzzF2WbNpBybNXIq+j3fApDcHW7WuEjoRwFKCFz14DwSwPNh5FkwngKUsf9JuSAFbFfAEgMVfOgWf6a8Yt8bYS84H30EMq2Lrditsf1EPnFvLI+Ff86JWwXUExA0UoPZRvjwsLXBb9nUpyordFphsQ1ogU66xVyW09Y1Ae98otPKpAi+oPF40AliOdWFqKofTZ/PrWV28xEOns27+yAgRcXFAXF0B7HtqzlWAAJZz9bV2dmcBrCeHvgtWfkijUWP7mlkICQ6waBIDSmt+2VGquecv3UBWdg66dLgXn00eZQawGHwLDQ60OEdIUAC++PBVAliiyEr9USMF3KMAASz36O6sVQlgOUtZmpcU8AwFPAFgeS2fAfW+34yC6uPvRe7LH3qGwDKwUpsJnFquQvpl8+gPVusqpocAjwwdskLb7IK0wO1Z17Ez5zrOaW1LC6ypCkR7Bqz8ItHOJxJBvPJSVglgWXGQSukiCPnpgKcKCrAn3LEuyopFVbHoKhZlVa+eiAB/erwrnydsG00Ayza9nNXbGQDryInzeOal99Ggbi3pEri3Rj2N5/p0sWsLp85dQb8Xp0CtVmH9kmmoGVX4izNDBBaL8GKRXtY0isCyRiXqQwo4WAECWA4W1M3TEcByswNoeVLAzQrIHmBlpMF3fH9wOq1RqdyRU6Fv0sbNynnG8lm3gBNLVMhLLfZQzYuo85SAKvco66E5Py0wCTtzbtiVFhjKe+GBgjpWHXyiPKaOVXlOIwEs29VjBdfPSFFWHM5eAHJzrINWQUEi4uqKUj0rVteK1bei5h4FCGC5R/fiqzoDYL07fTHWb96FFXMmYNibn6BGRDh+XvGRzRvW6vToP2IKGMQa/8oAPPvUwyZzEMCyXlJKIbReK+rpBAUIYDlBVDdOSQDLjeLT0qSADBSQO8DS/P4jNOu+NiolhIZL6YPgrHtglIHEbjMh+RSH09/yELTFirX7imgwWI+gaLeZ5vCFj+Ql4suUY9JtgSk2pAUyQ9r6VMODvtXxgG8EmnpVcrhtcp+QAJZ1Hrpxk8PZc/n1rK7f4GBtPkxUlIj69YC4egKqVVUWMLZOOXn2IoAlD784GmBlZGajw1OvIjDAD3+umYVX3p2DbbsP4pu5E9CicT2bNj1/2QbMW7ZBGrdiznhwxX7uIIBlvZwEsKzXino6QQECWE4Q1Y1TEsByo/i0NCkgAwVkDbBEET7vDACfnGBUKu+JodB1eVoGysnbhGvbVLjyqznk8w3PL9buEyZv+22xbkn6SUxN+htaUShzGKtjxYqtt/NlNwVGSUXYvRVQx6rMjZfSgQCWZXHytMD584UF2DMyrIPmXhogNlaQ6lnVryfCz5egVXnOp7PGugpg3TwiIvlS2f82OWufrp43ohmP0FrWfVaYbY4GWCs3bMW0Wd9g2NPd8MaLffH7zn/w2sQv0OORB/DRhOFWy3H6/FX0fWFyQerg+6gZVdVsLAEsq+UEASzrtaKeTlCAAJYTRHXjlASw3Cg+LU0KyEABOQMs1bH98J7/rlElkeeRPX01EBAkA+XkaYKgBc7+wCPxmHmx9pA4AXEDBKi85Wm7rValC1q8dncXtmRdKXVopMofnXyj0M4vEm19IhGiwDpWtmpXtD8BrEI1EhM56bZAFmV16QoPQW+dsiEh+amBcfWAmGgBPKUGWiecG3u5CmD9u0KPizsrDsBqMVCFmAfN//8pydWOBlhPPT9RSvljKYMxNSPA0gBZRFZ2di62r5uNoAC/Mk+dTq+X6l6xed5++RkM7P2IxTEEsMqU0tiBAJb1WlFPJyhAAMsJorpxSgJYbhSfliYFZKCAnAGW97x3oPrvgFElfavOyB3ytgxUk6cJeWnAyaUqZN4w/+13ZHs9oruJiinWfkKbjOdu/YEb+kwzZzBA9YAPuykwUoq0qqW2fDuUPL3oeqsqMsBigOri5YIoq7MckpKtixxhmUQ1ovKBFUsNrFKFoqxcf3LLtyIBrPLpV9JoewGWt5cGDeuVnteep9Xi+OlLqBFZBVu+/8TMhGMnL6D/yKlo2jAW389/z/j+h3O+w3frfseE0c9iQK+Hytz4/OUbMW/peil1cPns8eB5y/8uGAAWA2VhoZZ/sda/Zyd07VRY4J2KuJcpP3UgBRyvAAEsx2vqzhkJYLlTfVqbFHC/AnIFWFzSHSl9sOiPjbljZ0Mf09D9osnQgvSr+fBKl2n6gzanElGnj4Dw5sp5wF6YdhxTkv626IXPw9uir38dGXpIviZVNIDFUgHzC7AD5y/wYKmC1jRvLxF1YvMLsNerK8KXUgOtkU22fQhgOcc19gIsW6wpCWC998kSrPvfTkweMxh9uncwTsluIuw9fBLqxVSXbhIsrVmTOmgYbwBYpc03ZkQ/DOnf1diFAJYtnvagvixc74+d/+LsxWtIy8hE9YgqeP+toSY7SEhMgV4QULVyqFlBNQ/aqkeaSgDLI91WotEEsJTlT9oNKWCrAnIFWKxwOyvgbmhCtZrImbTY1u1ViP53j3I4u4qHqDeFV2q//HpXgTWUIQNLGRyVsANbs6+ZbaimKgBLq3VGfU2oMjbrwl1UFICVk8Ph2+95XLlmXZQVcwFLDWR1rFikVWxMxUkDc+Hxc9tSrgJYVAOrdBc7KoXQULxdEETsXD8HAf6+Jgv3GvYeGJxaOf89NGkYa9EoljrYf8RUMOBVWupgcYA1472R6Na5MMqqtB0TwHLbR945C2dm5WDKp8vwy9Z9JgvExdbAusXvm7w27I1PsO/gCSycMQYP3NvIOQbRrBYVIIClrINBAEtZ/qTdkAK2KiBLgKXNg+/4/uAy043byRvwOnRtu9m6PWX3F4FLmznc2GFecMe3qoiGQ/XwDlGGBKWlDD7iWwNzqzyIAE6tjM26eBcVAWDpdMDiZSrp9sDSGksNrFnDkBooIrwyQSsXH0eXLecqgOWyDXnoQo4CWKs2bsP7n68oU4Ve3dqbBcYYBn25YiO+WMJSB+ti+ewJJaYOEsAqU2azDoqsgaXXCxg+Zgb2HzopbbhyWLBU7f/gsTOwBLBYHivLZ+3d/UFMGTPEdhVphN0KEMCyWzpZDiSAJUu3kFGkgMsUkCPAUu/9DV4rZhg1EH38kP3JakDj5TJd5L6QPhc4/R2PlNPmxXJDGwqo97QAlULkKumWQQ3HY2LYvRga2EDu7pK1fUoHWKIIfPM9j3PnLReW9vYRUS8WiIsTEVdHBPs7NeUrQABLHj52FMAyFG9ndbRUKsuf9f9OXYSPtwY71s2Bv5+PiQBnLlxD3xcmged5bFg6zeKtg8UVoyLu1p8hRQIslq/K8lZDggMw8fVB6NKhlaRIfIfBFgHWuYvX0XPIO6hbu7p0yKi5TgECWK7T2hUrEcByhcq0BikgXwXkCLB8Ph4F/vIZo2i6Tr2Q12ekfEV0sWU5ScDJJSpkJ5hHk0R11KPWo8p4AC8tZTBK7Y8lVTqjkVeYi9VX3nJKB1g/beLxz0HTB9rKlQTUqws0qC+iVk1lfF6UdzKduyMCWM7V19rZHQGwjp26iP4jpiA2Ogo/LfugxKVHjPsMu/YfxaQ3nkPfHh0Lf8Yokjo4btTTGNSni1XmE8CySiapkyIB1nOvfoR/jpzG3Gmj0altC6MaJQGs9Iws3Nf9JYmeHvjfAuvVo57lVoAAVrkllNUEBLBk5Q4yhhRwuQJyA1jclbPw/eglow7s0TJn6nKI4ZEu10aOC6ZdAk4uU0GfXaxYu1pE3X4CKjdRxsN4aSmDHX2i8GWVDgjkNXJ0kcfZpGSAtX0Xj21/msKr6lEihg3WQ2WeeetxviOD7VeAAJb92jlypCMA1sQZS7D2l52YMHoABvR6uETz/vzrEF6eMFu67XD1wsnGfgtW/IS5S9aheaO6WDGn7NRBw0ACWNafBEUCrDbdX0KeVifBqKJhfyUBLCZX80eGQ6fT4di2pdarRz3LrQABrHJLKKsJCGDJyh1kDCngcgXkBrBY6iBLITQ0fYOWyB39sct1keOCd/7hcG4tDwjFirX7i2g4TI+AKDlabbtNi9NPYGLiAYsD3wu7FyOC4m2flEaUqIBSAdaRozzWbjCFV2GhIl58XqAbBOnzAAJY8jgE5QVYrIZ2h6deBStHtH3dbAQF+JW4MVbg/ZH+b+LmnSQJYDGQxS6N6zM8P3WQ3VBYq3pVq4UhgGW1VMqMwGr20DCEBAdi+9pZJkqUBLDYLQHNHnpeisDa/8uX1qtHPcutAAGscksoqwkIYMnKHWQMKeByBWQFsLIz4ftWH3C6wnvtc1+cDH2zB1yui5wWFAXg4k88bu01r+vhHymiwRA9vILkZLHttuRBj1Xp57Ag9T9c1hUW7zfMVE3lh8VVOqGZd2XbJ6cRpSqgRIB14SKP5d/yYPWvDC3AX8QLwwTpZkFqpAABLHmcgfICrB9/+hNTPluOJ7u2w7Rxw8rclKFQO0shZKmEI8Z9il37j0m3FrL626U1FmSz6suJxi4GgBVdoxpCgwMtDg0JCsAXH75qfM9wCyHrH1G1UonLzZ76MiKrKef/O0VGYHXs/RqSktOx75cv4etTWHW0JIB1+Pg5DBg1jWpglfkxdXwHAliO19SdMxLAcqf6tDYp4H4F5ASwNL//CM26r42iiEGhyP5oFcBbLsjqfvWcb4EuCzi1QoW0i+b1rlix9rhnBHhyJl2KkIel6SexNPUEEoVci4J28InEF+EPIlTl7XzBK+AKSgNYN29xWLRUBW0hB4dGA7wwTI+qVQheVcAjbnHLBLDkcRLKC7B6D5+Ek2cvY+X899CkYWyZm0pITEHnvm/Ax9sL29fOxtA3puPYyQtljmMdeJ4zyfwyAKzSBlcKDcLO9XPMAFZZC/684iPE1Iwoq5vHvK9IgDVm6pfYvG0/3nt9EPr37GR0RkkAa9SEWdj+12EM7P0I3n75GY9xnhIMJYClBC8W7oEAlrL8SbshBWxVQDYASxTh884A8MkJxi3k9RgMXdcBtm5JMf2z7uQXa89NNodXNR4RUaOz3mP3elOfifkp/2FVxllkiTqL+1CBw5jQ5ngluAnMFfDYrcvOcCUBrJRUDl8u5JFdpEYcxwGDBgiIjRFkpz0Z5D4FCGC5T3taueIpoEiAdei/s3j25Q/g7aXBO68OxFOPtZc8WxxgZWXn4JN5q7B603apVtamFR+VGe5X8Y6Ic3dMAMu5+rp6dgJYrlac1iMF5KWAXACW6r8D8J73jlEckeeRPX01EODhuXF2ujvlLIdTK3gIeabohteIqPe0gLB4z4wkOaVNxryUY1iXWfpvvBtqQjGtcmu09q5mp4I0zFoFlAKwsrI4fLWIR3KK6WemV08BzZoSvLL2PFSUfgSwKoqnaZ9yUECRAIsJ+9lXP2Lxyv9JGrMCaq2aNZBAVZXKIejfszPOXbom5aiyGwhZGzOiH4b07yoHn1QoGwhgKcvdBLCU5U/aDSlgqwJyAFj8tQvw+uZT8FfOGM3X3dsReUMn2LodRfS/sVOFS//jgGKMShMoIv55Pfw8kOnsyr6J+WlHsTP7Zok+UoNDV79aGB7cEC29qyjCl56wCSUALJ0O+HqxCjdvm8KrTh0FdGhH8MoTzqGrbSSA5WrFab2KrIBiARZz6rIft2D2orXIyyuSuF7M2xqNWoJXzz5V8jWZFfmAOHvvBLCcrbBr5yeA5Vq9aTVSQG4KuBNg8WlJUG9YAvXeX81kyR3zOfSxjeQml1PtEXTAudU87h42r/kVUD2/WLsmwKkmOHzyg7kJeCdxH47mJZY4dyCvwcDAOAwNaoAIlb/DbaAJS1fA0wGWIADfruRx7rzp56ZlCwE9uxO8ovNvWQECWHQySAHXBzVBYwAAIABJREFUKaBogMVkTExOw8Zfd+PAoVNghd3Y9Zi+Pt6IrFoJrZo3kNILwyuFuE5xWslEAQJYyjoQBLCU5U/aDSlgqwLuAFicNg/qP1ZD/esP4HKzzUwWqtVEzqTFtm7Fo/trM4CTS1XIuGZe7alSYwF1+wvg1Z6zxWR9Lj5I/keqcVVSsmNdTRCGBcWjb2AdeEPlOZtTmKWeDrDWrOdx9JgpvKpbR8CzTwtg9a+okQKWFCCAReeCFHCdAooHWK6TklayRwECWPaoJt8xBLDk6xuyjBRwhQKuBljqA9ugXv81+JS7FrcnRNSEdtBY6KPru2L7slgj43o+vNKmF3va5oDoR0VEdvCcYu0MVq3MOIMPk/5BspBnpi/b4YM+kRge0gjsdkFq7lfAkwHWtu08tu80hVcR1UQ8P1QPjQcBX/efgopnAQGsiudz2rH7FCCA5T7taWUABLCUdQwIYCnLn7QbUsBWBVwFsPjz/8Hrx/ngr5y1DK6CQqHrORS6+x5hd1Xbug2P7Z94jMfZH3gIxSon8F5A/WcFhMR5TgrUcW0S3r67Fyxt0FLr518Ho0KaIFZTMQvzy/WQeirA+vcQj40/m/5bERYq4oXnBfj5euYlB3I9I0q0iwCWEr1Ke5KrAooEWPf3GIXmjepi3oev2aR7RmY2Vm7YiiPHz0OtVqFxgxj07v4gggOphoJNQtrQmQCWDWJ5QFcCWB7gJDKRFHCiAs4GWFzibWjWLoT60E6LuxDVXtA99BR0jz4N0dvXiTuFVBSd1ZkStBxE6Wv+3/UFX0Utl/++TpRu/8v/HmCv61m/PAGCjpPG5Y9nfcT8fnn5c7J+hnkNY9nXEvPoLOzYK1hEQ1as3UPqmKcLWkxP/hcr0k9Db2GjNdQB+LRyWzzg44HV5517ImUxuycCLFbv6pvveYhFOBWDViOGCwgJIXgli4MlcyMIYMncQWSeohRQJMCK7zAYUdUq47dVMyVnpaRmQC8ICAsJBFdCAjuDV0+PnIoLV0xvtKkaHopls95GzaiqinK8XDZDAEsunnCMHQSwHKMjzUIKeKoCzgJYXE421P/7BuptG8AxQlSs6eGPvOYdkffIIOj8K0FkIKgAJElgSJsPg4ygSXqPvS4UgCNTACUaxhYAJkErQtRzYFlsEqTK9YxiOEHRIuoPEqD294yH8HWZFzA18QAShBwzH3uBx8vBjfFKaBN4UY0r2f4T4WkA6/p1DouWqaAvklmr0QDDBusRGeEZnxvZHoYKZBgBrArkbNqq2xVQLMBSq1QYM7IfVqz5DTdu5dfGCA0OlCKqRg1+Auz2waJt7pJ1WLDiJ3h5afBUt/YICQrA5j/349LVW6hfpybWfD2lRPjldi96sAEEsDzYeRZMJ4ClLH/SbkgBWxWwB2Bl3eJw51B+ZJIhSik/YolBKBFITIGQlARBUEPgNNDDGyK8oOe8IXA+tppYYfpXaSmgTl/PSBk8r03DGwm78U/eHYv+YdFWMyo/gFrqwArjP0/dqCcBrMQkDgsX88jONgXSA58RwAq3UyMFrFWAAJa1SlE/UqD8CigWYJUmTbvWTfDlx6+bAKmeQ97BuYvX8eH44ejZ5QFpeE5uHgaN/hDHT1/CgulvgI2j5lgFCGA5Vk93z0YAy90eoPVJAfcqYA/AOvcjjzv/Vpw6VY70EO8jQqUGeA3Aq0XwGg6cGghvKiKirfwfwLNFHWYmH8KitBPQWUgXrKryxeRKrdDDr7YjZaO5nKiAHABWSgqH9HQgPYNDWgaQni4iLa3gtXRI3+fmWY6ifKKngBZN5f/ZcaILaWo7FCCAZYdoNIQUsFMBRQOsymHBGPlcTzRpEAMvjQanzl3BvGUbcOX6bRNQxbRr9vDz0Gp12L52FsIrhRjl3H/oJIa+Ph19unfA5DGD7ZSZhpWkAAEsZZ0NAljK8ifthhSwVQFbARZL6TswRQV9CQ+Ttq7vrv4qH1ECRyoGkjQieDUHnoElLxGcqgAwSZAJ+cCJvS715/P7F7zHvufYWCOQKuivgdRfer2gv7v26qh1f8m6hEmJB3BTn2U2pQocBgfWx7iwFvDnNI5akuZxgQLOBFgZDEgxMJWeD6PS0kSkpZu+llUsmsqWLXfsIKJje8+5pdOWvVFf5ypAAMu5+tLspEBRBRQLsFQqHqsXTkFcbA0Tj99KSEL3gW+jSYNYLPl8nPSeXi+gSeeh0vdHty4BG2togiCizeMvoVb1qvjxq8l0ehysAAEsBwvq5ukIYLnZAbQ8KeBmBWwFWHcPcTizSlV+q7l8OMRJ8Cj/ewZ7DNFJha9zEjwy9GGvq7z4gv4F0UzSPIVz5AOpAoDkVTCnNH8+hKJmmwKXdekYe3cP9uTcsjiwsVcYPg9vhwaaUNsmpt6yUMAegMVS+CQgxcCUFDHFSXDK+Fo6kJHJQXBiYFSzpgJ69XTiArLwDhnhLAUIYDlLWZqXFDBXQLEAq0nDWKyc/55Fn780/nMcPn4Of/00T3pfp9ejaedh0vfHty8zG9P3xcm4djPB2J8OkuMUIIDlOC3lMBMBLDl4gWwgBdyngK0A68QSHimnC39pVEW7HaH6Y1CJeeDFXPDQgkcuUL06hM49wUVUy0+TY+CpAFSp6Ip79znchpXzoMfs5COYn/of8mAOCoJ5L0wIbYkBgXHwjBL5Nmy+AnUtCrBu3s2V0vUkMFUAqAxgyhBFlZzqem97eYkIChQRFAQEBgKVKnHo0I4iryrQMXX4VglgOVxSmpAUKFEBRQKsxp2GoNMDLTD7/VcsbnzyzGVYt3mnFG1lDcB6fswM/HPkNA7/voiOkoMVIIDlYEHdPB0BLDc7gJYnBdysgC0AS5sB/D1NBYiFD7D3pz8DP7HwNmChWg3onhoBXaNWbt4ZLV8eBbbn3MDbd//CVV2GxWn6BMRiUmgrhKq8y7MMjXWRAoK+IFqKQamMfDiVmiaCpfhlpHPIzOSQkspqybrIoIJleJ4BKVGCUuxrUAAQHMwhMCAfVuVDKxHslkFqpIAjFSCA5Ug1aS5SoHQFFAmwHuj5MiKrVsbqhZZT/hiQOnriPA78b4GkTkZmNlo/NlL63lIE1pDXP8bBo2dxZOtiOk8OVoAAloMFdfN0BLDc7ABanhRwswLWAizu8hncXn4C5zJ7Gy0O1p3AvVmjpL+L/kHQdh8EXfvuAO+AFEM361JRl2dRVxPu7sXKjHMWJYhVB+GzKm1xj1eViiqRrPYtipDgE6szJRU9z8ivMyWl9BWpPVWeOlP2btjXV0RgACQAFRRogFEcAgvAFINW/n4iONcHdNm7JRqnIAUIYCnImbQV2SugSID1wtiZ2PP3f1g2623c26y+iRNOn7+K3sMngtW2GjuyPwb3e1Tqy8awtmPdbLDi70XbYwPfRlp6JnZtmCt7h3qagQSwPM1jpdtLAEtZ/qTdkAK2KlAWwOKTE6DesAjqA9twwG8B0tRxxiXqZ89GlLgJugefgO6xZyH6+tu6PPWXkQJXdOkYcnsrTmlTLFr1Tug9eCm4kYwsVrYpWVkFQKognc9YZ4pBKqnmVD68YhDLlU2lyo+WCmZRU1JKn4hgA5SSvubDKtaPGikgVwUIYMnVM2SXEhVQJMD639b9GPv+l/Dx9sKgPl3QLL4OvL01OH76Er7+bhPSM7LAamSxKKzqEeG4m5SKnNw8yb8fjh+Onl0eMPr6yvU76DrgLdzTNA7LZ49X4hlw654IYLlVfocvTgDL4ZLShKSARylQEsDi8nKg3rIK6j9Wg9PmIYuLwF+B3xfuTdSjbfTHQN9BECpHeNSeyVhzBX7LuopXEnYgg10zWax18auBaWH3IVJNgNIRZyc3j6Xw5afxlVRnigEqvYvrk7NIKBYRxSKjGICSvgZz+Wl8hhS/QIBFVlEjBTxdAQJYnu5Bst+TFFAkwGIOeHPKfGz584BFX7RsUg+LP30LH3/xPVZt3Cb16fRAcwQHBWD7X4cx9a2huP+eeCm18O0PF2LvP8cxZkQ/DOnf1ZN86xG2EsDyCDdZbSQBLKuloo6kgCIVMANYogj1vt+g3rAEfFqScc/nvIbhks+zxr+H1UxF/VEENJRwKCYnHsDX6SfMthKtDsT7lVqjk291JWzT6XvQF6kzJcGpDA6pqWKRm/ryb+vLy3N9zpyXhkVLCQUgqiBqisGpAKBSKIdakV7w9ReQnO7iIlhO9wotQApYVoAAFp0MUsB1CigWYLEUQQan1mzajrMXr0kh0Szaqle3dhjSrys0mvy7r6/fuovs7FzUqR2FMxeuod+IKcjL05p4ILxSCDat+AgB/r6u80wFWYkAlrIcTQBLWf6k3ZACtipQFGDlHDsIrx/ng79+wWQaFm+xO+BH5PLhxtfrPaNH5aYUiWGr3nLqn6DPxuDbW3E4766ZWY/51cKs8Hbw4/J/9qrITRBY7dXCW/kkOJVWAKYKbupjtaeys10PplgR9AD/giLoQflpfUGBXH5B9IIb+9j3Pt4lf1aL3kJ4N5UAVkU+6xVp7wSwKpK3aa/uVkCxAKuosKIoQi8IUFuRQL9j7xFMmrkUCYn5NRtio6Mwc+JI1Iuh3xg647ASwHKGqu6bkwCW+7SnlUkBOSjAAJZP6h2kLZkNHNpj0aRk73vwr/cM43u8l4hWE/Xg6WYwObjQLhv25d7CC7f/RKJgCiw0HI+JYfdiaGADu+b1tEGsuDmrJWUsep7B/i4inb3Gvk93T50ppqOPT2E6nzGFL4il9BUWRvf3L38RdAJYnnZqyV5HKEAAyxEq0hykgHUKVAiAZZ0U7IeLLAQG+EGvF3Dl+m3wPI9a1ataO5z62aEAASw7RJPxEAJYMnYOmUYKOFkBLjsT/lu+hbB1PcDynyw03X0P45TX67h1uDCiObyliLp9Lfd3ssk0fTkVYHE4s1KP4LPkQyheYqmayg/Lqz6ERl5h5VzF/cNzck3rTDFAlSrdzgekZXDIKPgquOEYs0s6pbpSAQVF0ANEBAezqKn8FD8DoFK7KPiNAJb7zytZ4HoFCGC5XnNaseIqQAALwMFjZ7Bm0w6pZtbB376uuKfBDTsngOUG0Z24JAEsJ4pLU5MCclVAr4dm509Q/7ICXGaGRSv1MfHIe/oV6CNicWCyCkKRuj3xw/UIrkPpg3J1b0l2pQh5GHHnT+zKuWnWpZ1PBBZU6YgQ3svTtmViL+Owa9er8N8J16fzMUP8fA2pe/nRUwxMBRcURDek9bE+cmoEsOTkDbLFVQoQwHKV0rQOKQBUWICVnJqOjb/ukcDVxSuFP3wd376MzoULFSCA5UKxXbAUASwXiExLkAIyUkB1dC806xaCv33NolXsRkFdrxega95Wev/uUR5nvuONfdX+Iu59Tw92Yxk1z1HgcO5dDLuzDbf0WSZGM8+ODW2BV4KbwNNdmpbG4Zvvedy+4/idsDKsgUEiAgOAYPZVqjGVf0NfYBCkaCr2PYuu8rRGAMvTPEb2OkIBAliOUJHmIAWsU6BCASxWC2vvv8exZtNObNv9L7S6wljv+nVqol/PTuj7eAfrlKNeDlGAAJZDZJTNJASwZOMKMoQUcKoC3I1L8Fo1F6qzRy2v4xsAbbdnoOvwJMQiuUsnl/FIPlkIsCLbC4h+rHjymVNNp8nLqcDi9BOYmvQPdKKp3yrx3lhYtSPu865WzhXcP/zCRR4/rOFsLqTOQCyrI1W0rlRgAZgy1p0KzK9HpdRGAEupnqV9laYAASw6H6SA6xSoEADrzt0UrN+8C2t/2SHdOmho7CbCLg/ei/5PdELzRnVdpzqtZFSAAJayDgMBLGX5k3ZDChRXgEtPgXrDYmj2/grpet/ijVfB++GeyO0+CFlqf5N3ddnA31NVEIXCiJamr+ngH0E6e4ICGaIOr9zZgd+yr5qZe49XFSyq2hHhKs+/rXn3Xyr89od51JWXFwNThbfxBQWxulOcdDufFDlVUAzdE3zpTBsJYDlTXZpbrgoQwJKrZ8guJSqgWIDFCrHv2HdEglY79x2BIJj+oP36C33w1GPtEcruCKbmNgUIYLlNeqcsTADLKbLSpKSA2xXgtHlQb10L9ZaV4HKzLdqji78XfgNfgV9MDFIy8pCVa1rR+tZeHhc2FEZf+YaLaD7GDVWv3a6m5xlwVpuKIbe34qIuzcz4kUHxGB92D1QenjSo1QFr1vE4earwjBo226C+gN69BLDUP2qlK0AAi05IRVSAAFZF9Drt2V0KKA5gXbuZgLW/7JQirhISU4y6MlD1ULuWWL1pu/Qa1bpy15EzXZcAljz84CgrCGA5SkmahxSQjwLqv7dJUVd80h2LRgkRtZDXdxSE+s0R4q+Bn4/aIsA6Ok+FjCuFkS21ugmIepDSB+XjacuWrM+8iDEJu5EDU9gYyGvwZXgHdPSNkvsWyrQvJYXDNyt5JCSYRl7xPNDlIQFt7qNzWqaIBR0IYFmrFPVTkgIEsJTkTdqL3BVQBMDSanX4Y9e/WPPLDuz794RRcy8vDTre3xw9HrkfbVs3Rl6eFvd2HUEAS0ankgCWjJzhAFMIYDlARJqCFJCJAvzFk9D8OB+qS6csWiQGBEPXcwi093cF2JM+UCLAykkEDn5SNHxFRMsJengHy2SzZIaZAnnQY8L/2TsP8CiqLY7/Z7ZkN71TAqF3pGPHBioooiIiRRR99i4KKvbeuyhWVOwKNix0sCGgAtKlk4SWXnezZeZ9dzbZzZJNsmV2d2b27PfxAcnMvef+zuXx/HHuuUWr8GnVzkbf62lIxYetzkTOUcdE1YiR9bv69EsOtVZvecVu95twiYCOudrtVxWOfJHACgdVGlPpBEhgKT1DFJ+WCKheYD0961N8t+h3lJW7ru7mOA5DB/TAeWeeiLNOHYrEBE8/hhqLlQSWwnYvCSyFJSTEcEhghQiQXicCCiDAFR+G4eu3of97pW9xpTPAPmIsnCMnQzR59zxqqgIrbzGPvCWeo1kpnUX0uZaODyog3T5D2O+sxBWHlmKb3VPJXv/g5MTueCzzOBihwivyjlrtr7/psGQ516idW7scEZMuEZCYSPIq0D1KAitQYvS8FgiQwNJCFmkNaiGgeoHV57SpEmtTnBFTLxmJiRcMR2a673/SJYGlvG1JAkt5OQklIhJYodCjd4lAdAlwVgt0P38Mw5L54Jx2n8E4Bp8K+4VXQ8xo5fP7TQmsv5/WobbEU+HSdZwT2UNJDkQ3475nX1STh5sLV4I1bW/4MUGH57JOxoUJnZQYdkAxNdfv6rihAkaeLUDXuBVWQHPE6sMksGI187G9bhJYsZ1/Wn1kCaheYI2/9iFs3r7XTa1rpxycOWwIzjvrRHRo5/1/sElgRXZz+TMbCSx/KKnnGRJY6skVRUoE3AQEAYY/foL+2zngqsp9gnF27An7+BsgdOrVLDhfAqtyH4eNr3uqdThexLEPOaGLoxwoiYBDFPBE6d94s2Jzo7A66ZMxp9VwdDOo/8xnU/2u9Hpg7PlO9O1DYjWUfUkCKxR69K5aCZDAUmvmKG41ElC9wGLQt+3cjy+/X4EFS1ahqtpzO1K/3l1wwdknYeQZxyElKQEksJS3RUlgKS8noUREAisUevQuEYg8AX7bOhi/mAX+4D6fkwvp2bBf8D84h57hV3C+BNaur3kc/tNTzpLRT0CPydQU2y+gEXqo0GnB1MNLsd5W1GjGc+M74KWsYYjn1H8FX1P9rtJSRVw6QUBWNsmrULccCaxQCdL7aiRAAkuNWaOY1UpAEwKrHr7FasPPy1fjqwUrsX6zp+mowaDHaScMkHpiTX/0DelxuoVQGVuWBJYy8iBXFCSw5CJJ4xCB8BLgD+VB/9Ub0G9e63MiMc4Mx8gJcAwfB9Fg9DuYowWW4ATWPqKDs0GD7J6XC0jvTQLLb6hhfvDP2kO45vByFAu1XjMZOB4PpR+LqUk9wxxBZIb/7XcdFi9r3O+qU0cBE8eLMJlIXsmRCRJYclCkMdRGgASW2jJG8aqZgKYEVsNE7NpbgC8XrJQavJdXVDfK0ZLPn0ebVhlqzp0mYieBpYk0uhdBAktb+aTVaI8AV10Jw/fvQ//rDwCzS0d/OA6OE86Wqq7EpNSAARwtsEo289j2oaf6SmcSMfQBJ3j19/8OmI3SXmC65uXyDXi+dB2O1onsdsH3soejrzFdaWEHHE9z/a5OOsGJs0aI4LwvIAx4DnrBQ4AEFu2GWCRAAisWs05rjhYBzQqseqA2mx2LfvlLqspau95zFTi7rfDUE/pjwvln4KShx4Dn6f+9RGMTksCKBvXwzUkCK3xsaWQiEAoBzuGAfsXX0P/4MThL43/UYWM7u/WDbcLNENt2DHqqowXW9rk8ijd5BFar4wV0uZCqr4IGLNOLZYIN1x1Zjl+tBxuNOMzUBm9nn4Ek3iDTbNEbpql+V6xB+/iLBPTqRXtR7uyQwJKbKI2nBgIksNSQJYpRKwQ0L7AaJmpf/mFJZH3z868oKat0f6tt60yMP+80jD3nFGSkJWslt6pYBwksVaTJ7yBJYPmNih4kAhEjoF/3G/Tz3wJf1FhWsCCEVu1gH3sNnP1OCDmmhgKrssKJNQ/pIAqefyA65nonkjrSUa2QQQcxwD5HJQ45q1HqtGFm8Socdnp6htYPNyNtEG5N6RfE6Mp7pal+V8lJIi6dJKB1K9qH4cgaCaxwUKUxlU6ABJbSM0TxaYlATAms+sTZHU4s++0fSWat+nszRNH1f2IMeh3WL3lXS/lV/FpIYCk+RQEFSAIrIFz0MBEIKwFu338wfvE6dLsb3yrHJhYTEuE49zLYTxkD6OQ509dQYO35RcCu+Z5x49JFDL7Lx7HFsFKIncFrRAeYpNpnr8ReRyX22iuw31GBvfYqFDiq4EDTwiaDj8NbrU7H8XGtNQHstz90WLy0cb+rdjkiLp0oID6e5FW4Ek0CK1xkaVwlEyCBpeTsUGxaIxCTAqthEgsOFWHeDyvx9U+/4khRGTV3j/AOJ4EVYeBhno4EVpgB0/BEwA8CfHkx9F+/A/3qJT6fFnU6OE45H47zLoNoTvBjRP8faSiw1rwMVOzxVF+1GyEg90w6suU/zcZPHnFasNdRgX32KuyzV0i/3u+okmTV0U3Y/Z3nuLhWeDP7NGTpzP6+otjnmut3dewQAaNGCmDHB+kTPgIksMLHlkZWLgESWMrNDUWmPQIxL7DqU+p0Clj55waccdJA7WVZwSsigaXg5AQRGgmsIKDRK0RAJgKczQr9ws+hX/wlOLv3jXLuv+v6nQD7RddAyG4n06zew9QLrEP5Nvz2kHdvyUEzHDDR3Sl+cV9bewSbaoulaipWVSWJKnsVrJC3gu2GlL64N22IXzEp/aGm+l2xCwMuPE9A/34kTyORQxJYkaBMcyiNAAkspWWE4tEyARJYWs6uCtZGAksFSQogRBJYAcCiR4mAXAREEfo/l0D/7btg1Ve+PkJOZ9jG3wChe3+5ZvU5Tr3AWjffjl0/eh5JbC+i303yypewLiSKg/9rK8aoA9+HJYJO+mS0NySgvS4J5yR2wGmmnLDME+lBm+p3FW8WcdmlAtq2oSODkcoJCaxIkaZ5lESABJaSskGxaJ0ACSytZ1jh6yOBpfAEBRgeCawAgdHjRCBEAvyuTTB++ir4gt2+xVVyOhwXXAnH8WcBXPhv260XWD/cZYOl2DNfpzEC2pxEFTD+pJvJKyaxgvm01yeinT4RubpE5BqTJFElCSt9Itro5D0uGkx84Xjn91U8Fi3hUdfO1D0Fk1as31ViIsmrcHBvakwSWJGkTXMphQAJLKVkguKIBQIksGIhywpeIwksBScniNBIYAUBjV4hAkEQYDcK6ue9Cf36332+LRqMcIy4GI6zL4EYF7neRkxg1R7UYenjDk9cnIhjH3RCH7kwgiCqjFfmVGzFfSWrmwymlc6MDvokl6TSJ6K9IVn6uZ0hAbm6JGUsIkJROJ3AF/N4bN3WuKlV394iLrrQKdfdBBFakTamIYGljTzSKgIjQAIrMF70NBEIhQAJrFDo0bshEyCBFTJCRQ1AAktR6aBgNEiAs1RD/8Nc6Fd+C87RQBI1WKvj2DPguOAqCGlZESfABNZ/X3PYudRTbZXWU0SvK+j4YEvJYA3aT86fh2rRk9eR8bm4LKmnVEXVWZ/S0hAx8/2KCg5zP+Fx+Ih3VSHPAyPPFnD8UKr2i9ZmIIEVLfI0bzQJkMCKJn2aO9YIkMCKtYwrbL0ksBSWkBDDIYEVIkB6nQg0RUBwQv/LAhgWfACuutLnU87OfaQ+V2KH7lHjmGLWY8ldgN3iCaH7BCcyB9IxrpaScm3hCiyo3ut+zAgef7S/SLNH/1ri0dT39+7n8OnnPCwWb3llNouYeImAjrm014JlK8d7JLDkoEhjqI0ACSy1ZYziVTMBElhqzp4GYieBpYEkNlgCCSxt5ZNWoxwC+iXzYJw322dAYkZr2MdeBcegU6MesG2PAX/N9ggE3iji2Aec4A1RD03RAaywHsDkQ4u8YrwnbRBuSumn6LgjHdyqP3n8vLhxv6usLBGXTxaQnEzyKtI5OXo+EljRzgDNHw0CJLCiQZ3mjFUCJLBiNfMKWTcJLIUkQqYwSGDJBJKGIQJHETA98j/wB/d7fZX1tnKcOwX2My9WBC9nLYf/PtChdJcnnKzBArqNp+NczSXIBidOzJuHg84a92Nd9MlYlnMB9Fzj/k6KSHaEg2D9ruZ9rcOmLY0vIujVU8C4sQIM+ggHRdP5JEACizZGLBIggRWLWac1R4sACaxokad5JQIksLS1EUhgaSuftBplEOD3/QfTUzd6BWMfNhqOMVMhJiqjL1LNYQ5bP+BR2+DmQRZwn6sEpHQjgdXcTnq69B+8Uv6v1yPftTkHg+OylbEBoxxFU/2u2KWaI04XMexk6q8W5RR5TU8CS0nZoFgiRYAEVqRI0zxEANC0wHr4+feRnZXMECD+AAAgAElEQVSG6y87353rWXO+RlFJOR68YyrlXwEESGApIAkyhkACS0aYNBQRqCNg+PglGH77wc3D2aM/am97TjF8Sjby+O8LHoLNOyRjioghM0kuNJeoXfYKnFHwNRzwHH2blNQdz2acqJj8RjuQZ1/UobLSu/LKaBQx4WIRXbuQHI12fo6enwSW0jJC8USCAAmsSFCmOYiAi4CmBVaf06aiS8ccfPf+4+58nzvlbuzNO4TNK96nPaAAAiSwFJAEGUMggSUjTBqKCDACdhvMd14EzmZ186idehecx42IOh9RAPb9xOHAL7pGsSR3ENH9UieMyVEPU9EBjDn4A/6uLXTHmMYb8Ue7cUjmjYqOO1LB7cvj8O4c7/2VlSlg8kQR6WnU7ypSeQhkHhJYgdCiZ7VCgASWVjJJ61ADARJYasiShmMkgaWt5JLA0lY+aTXRJ6D7cxHiPnjWHYhoNMHy3DzAEF3BYa8Gtn2oQ+Xexj2JupzOo+NoJywOqr5qbgd9XrUD04p+93rk5cxhGJfYJfobTyER/LyIxx9/evqAde0sYMIlAox0KYBCMtQ4DBJYik0NBRZGAiSwwgiXhiYCRxEggUVbIqoESGBFFb/sk5PAkh0pDRjjBEwv3gH+P09/JNb7yj7p1qhSqcoHtn2gg63CW15xOhH9JnPodooBZVU21NSSwGoqUeWCDSfmf4WyBucuTzS1wpetR0U1t0qb/IVXdCgr8+yzSy4W0KcXHRtUWp4axkMCS8nZodjCRYAEVrjI0rhEoDEBEli0K6JKgARWVPHLPjkJLNmR0oAxTIArPgTzfVO8CFjveg1Cxx5Ro3J4NY9d3/LAUW4qLlVEz8udyOlmQLxJTwKriQwttxTgh+q9WGM9jF2OCq+n/mh3ETrok6KWW6VNfOQI8Npsz9WCvA64d4YDBqq+UlqqvOIhgaXo9FBwYSJAAitMYGlYIuCDAAks2hZRJUACK6r4ZZ+cBJbsSGnAGCZg/OY96Bd+6iYgtGoH60NzokJEcAC7vuJRuM5znKs+kOQuAnpOEaA3A6kJJLCOTtDCmv34sWYvFlbvR6Xo8Jm/aSn9cUfawKjkVqmTrvyVx9Llnv3WrZuIKROpqk+p+aqPiwSW0jNE8YWDAAmscFClMYmAbwIksGhnRJUACayo4pd9chJYsiOlAWOVgCDANHMi+PISNwHbuOvhGD424kRqy4Gtc3SoOdi431XOaU50GCkCdd8igQVYRAeWWfKxoGofllryUN2EtKpPZK4uESvbXwgjGjfDj3iyFTThm+/oUHDAs+fGnOvEkMHUuF1BKfIZCgkspWeI4gsHARJY4aBKYxIBElgSAbqFUFl/FEhgKSsfoUZDAitUgvQ+EXAR4Df+CdPr97txiLzO1bzdnBBRROU7OWz/mIejxlte8QYR3ScLSO/lLRRiVWBVCnYsqsnDguo9WGTJ8ytHbXUJGJPQEZcm90AnPV3X2BBaVRWHZ17wFnp33+lEfDwJLL82VxQfIoEVRfg0ddQIkMCKGnqaOAYJUAVWDCZdSUsmgaWkbIQeCwms0BnSCESAEYh782Ho1v/mhuEcNAy1Vz8QUTgFy3XYt5ADjnIGpkwRvaY6Yc5qHE4sCSzWiP1ny34sqNqDX60HYRdbbi7e1ZCMc8wdcG5iJ/Q1pkc0n2qabM1fPBb86Dk+2C5HxDX/o+ODasghCSw1ZIlilJsACSy5idJ4RKBpAiSwaHdElQAJrKjil31yEliyI6UBY5FAVTnMd10CTvD8B3vtTY/D2efYiNBw2oD/PuZRuq1xv6v0PgK6TRCgM/oOResCq0iw4qfqfVIj9lXWQ3Acbfd8YOljSJOE1aj4DuhuSIlIDtU+yYcf67Bzl6fqb8QZAk45uWVBqPZ1ayF+ElhayCKtIVACJLACJUbPE4HgCZDACp4dvSkDARJYMkBU0BAksBSUDApFtQQMi7+EYf5b7viFlHRYn/wM4Br3oJJ7kZZCYOv7OliLjpqLAzqMEpFzavNVMFoTWIecNch3VmFDbRF+qNqH1bWH/UI+MC4T58R3xOiEDsilmwX9Ylb/kN0OPPaUHmKDyr+bb3AiK5OODwYEMkoPk8CKEniaNqoESGBFFT9NHmMESGDFWMKVtlwSWErLSGjxkMAKjR+9TQQYAdNDV4A/nO+GYR81GfYxU8MOp3gThx2f8RDs3vJKHy+ix2QBKV1bFghqFFiHnTXY46jAHnsldtvLscdegb32Sux1VEoN2f35sFq1Y+Na49zEDjg3vgNa6eL9eY2e8UFg0yYOX8z39L9KTRUx7RY6PqiWzUICSy2ZojjlJEACS06aNBYRaJ4ACSzaIVElQAIrqvhln5wEluxIacAYI8Dv3grTs7d4rdry2FyIGa3DRoK1btr3E4cDvzS+BS++jYheVzgR5+fJN6UKLFZJtbdOUu2xl2OXvQJ59krstFegFsHLkVPMbTA6wXU8MJ2PC1uOYmngL+fpsHGzR6KedIKAs8+k44Nq2QMksNSSKYpTTgIksOSkSWMRgRgWWAWHimDQ65GdmeqmcLiwFA6nEzmtM2lvKIAACSwFJEHGEEhgyQiThopJAsaPX4T+tx/daxe6D4D19mfDxsJeDWz7UIfKvY2PJ2YNFNBlnABe7//00RRYR1dSsSoqqZoqgEqqllYaBx2YtDo3oRNGxuciiTe09Ap9PwACggA8+YwOtTbPfrxqqhO5uS1X/wUwDT0aRgIksMIIl4ZWLAESWIpNDQWmQQKarsDSYL40tyQSWNpKKQksbeWTVhNhAnYbzHdeBM5mdU9cO/UuOI8bEZZAqvKBbR/oYKs4Sl7pgC7nC2h1XOBVL+EWWKySap+jArvZcT9bGfY4KrFfhkqq5gB30CdJNwaOTuyIEeb2iOcCMHphyZx2B921m8MHH3kqAc1mEXff6YxE+zftQo3wykhgRRg4TacIAiSwFJEGCiJGCJDAipFEK3WZJLCUmpng4iKBFRw3eosIMAL6VQth/PA5NwzRaILluXmAoYkr/0LAdng1j93f8hCPOj1nSBLRa6oTie2CG1wOgcUqqdhxPyap2HE/1puKVVLtc1Sixs+eVIFErwOHHF0COhmT0Emfgs7GZHTSJ6OTIRntdYnQc41vYwxkfHrWfwILfuSx5i8P70EDRVxwXvBHPP2fmZ6UiwAJLLlI0jhqIkACS03ZoljVTkBTAmv+j7/go3mLMW70aZh04fBmc/Pdot/x/uc/45zhx+OqSeeqPY+qjZ8ElmpT5zNwEljayietJrIETM/fDn7nJvek9mGjYZ90q6xBCA5g11c8Ctc1ljJJHUX0nOKEITH4Kf0VWJGWVGy1bfUJbjHV2cAEVQo66pPRUU+SKviMy/vmMy/oUFXlqQicPEFAj+6BVwLKGxWNFggBEliB0KJntUKABJZWMknrUAMBTQmssvIqnDnhDphNcVj8+fOIMzbdm+KCK+7Djj35mPfOI+jZNVcNudJkjCSwtJVWEljayietJnIEuOJDMN83xWtC692zIHToLlsQteWuI4PVBY37XbU5WUDHcwWEWmzUUGDtranCHke5VyXV3rqeVOGopGKraqNLQEdDYl0lVQo66ZMkUcV+NoS6ONkyQQP5InDgADD7Hc/xTIMemHmXA7rGdwsQQAUTIIGl4ORQaGEjQAIrbGhpYCLQiICmBBZb3XOzP8ecz37Cg9Mux/gxp/tM+T8b/8OUm5/AkP498MHL99C2iCIBElhRhB+GqUlghQEqDRkTBAzfvAvDws/caxVatYP1oTmyrb18J4ftH/Nw1HjLK14vout4AZn95WmS/S8KMfPwamyxlqL26POJMq0mW2eWKqk6G5LQ2ZCKLoZkdDAkoachTaYZaJhoEFi6nMfKXz2Vgb16CJh4CVVfRSMXocxJAisUevSuWgmQwFJr5ihuNRLQnMAqLq3AmZfcgezMNPww9ynodI2PSUx/9A38uHQ1Xn70ZowYNliNedNMzCSwNJNKaSEksLSVT1pNhAgIAswzLgZXXeGe0DbuejiGj5UlgILlOuxbyAFHOaq4dBG9LncivrUs02C5pQD/O7IUtWLo0iGLN6FzXeVUJ2MKOhlclVSd9UkwURN1eRKmsFFmzdbj8BFPUBeOcWLgAHnEqsKWqulwSGBpOr20uCYIkMCirUEEIkdAcwKLoXvqtU8w96tFeP7BGzDy9GO9aJaUVeKMcbchMyMVCz951qfgihx+mokElrb2AAksbeWTVhMZArp/VyHujQfck4m8ztW83ZwQUgBOG/DfxzxKtzX+h5zUbgK6XypAbwppCvfLX1fvxk2FvwQ0WDofJzVKZ3KqiyEVHQ1J6KBPRndDCswkqQJiqfaHS8s5vPiy91lBdvtgfDwJLLXllgSW2jJG8cpBgASWHBRpDCLgHwFNCqwjRWU4a+Kd6NoxB1+9/bAXibc/XoCX3v4Kd153Ca6YMMo/SvRU2AiQwAob2qgMTAIrKthpUpUTiJv9IHQb/nCvwjloGGqv9ggtf5ZnLeJQc4SDpZBDzWERtaWAtYSDraxxv6vcs0S0Gy7fzW4fVW7HXcWrfIaZyhvRxZCCDvokdGaVVPokqXF6V2MqEklS+ZPamHjmj1U8fl7sEa0dO4i48nL59mhMQFTIIklgKSQRFEZECZDAiihumizGCWhSYLGcPvrih/js22V4+7k7ceKQvlKaBUHE2ZOmo6S0Asu+ehEpSaH963aM7x1Zlk8CSxaMihmEBJZiUkGBqIVAVbnr+KDoqTSpvelxOPt4Vw+z5bCKKssRDtYjHKqPiJKwshayrzWusPK1fN4kouckEak9Qj/iVz/+K+X/4unSfxpNNzNzEC6L74UkvunLVNSSIooz/ATe+0CHvfs8snXkmQJOPEG+fRr+FdAM9QRIYNFeiEUCJLBiMeu05mgR0KzAOnikBKMmTcfgfj3w7gszJL4r/liPG2e+JDV3Z03e6RN9AiSwop8DOSMggSUnTRorFggYFn8Bw/y33UsVUtJROfNz1BzhYWFy6jBQU+QSV7byxtVU/jIyt3L1uzJl+PtGy889WLwG71Ru8XqQRfhK+5NxaXwP1NRSBU3LFOmJmhoOTz3nfXzw9ludSEuh44Nq3B0ksNSYNYo5VAIksEIlSO8TAf8JaFZgMQQPPjcHXy1Yic/ffBB9e3TCdXc9j19Xb8R37z+OLh1z/KdET4aNAAmssKGNysAksKKCnSZVIQF2QZ+1mIfz1VdRUxGPal0uqvhc1Bi7wOk0yrqijH6CdNOgTqZiKKYV7iz8DZ9V7/SKk9WBzWk3HJe16o6yKhsJLFmzqN3B1m/gMP9bj8DKzgJuut6h3QVrfGUksDSeYFqeTwIksGhjEIHIEdC0wMo/WIhzLr0Lw08ehDuuuwQjJ83A8YN7453npkeOMM3ULAESWNraICSwtJVPWk3oBJxW1pfKVUFVUyhKP1uOAJYSHpCzQIkD4lJFmLNEmLOBeOmHCFMWYEiUr5LFIQq4sfAXLKjZ6wXHCB5vtzoD4zI7Id6kJ4EV+taJmRE+/ZzH1u2eY7CnDBMw4nQ6PqjWDUACS62Zo7hDIUACKxR69C4RCIyApgUWQ3HvU+/g24W/Y8SwwVj8y1+Y9cRtOO3EAYFRoqfDRoAEVtjQRmVgElhRwU6TKoAAO97nklRMVgE1TFId4WCvDP7Yn69lsZZSkqTKAsytgPgsQRJW5kwR4e6JboMTVx5ahuXWAq/Q4jk9Pml9FobGZSM1wUACSwH7US0hOJ3AE0/rYW9QcHXNVU60ayufdFULC63ESQJLK5mkdQRCgARWILToWSIQGgHNC6z9BYdx7pS7pQbuuTnZ+GHu0+B5ef+DIrQUxPbbJLC0lX8SWNrKJ63Gm4DoACzFribqNey2vyOi+9eCTV5ahiRWSSW6KqmyIFVSMXHFqqwQhb/CakQHLj20GKtrD3stNI034rPWI9HXmC59nQSWvPtA66Nt287jk8891VeJiSJmTJOzNFHrBJW3PhJYyssJRRR+AiSwws+YZiAC9QQ0L7DYQu967E0sWLIKd980CVPGnUXZVxABElgKSoYMoZDAkgEiDRF1Ak4Lk1OApZBVVblu+5Nu/yvhABkLQzjRDrNQgERhP8w4AOPEsYhvrQNruM7L2wYrJKalzlpMOrwI/9qKvcbJ1pnxdZtR6KhPdn+dBFZIqGPu5W++0+Gf9R4jO2SwgDHn0vFBNW8EElhqzh7FHiwBEljBkqP3iEDgBGJCYB0pKsO6TTsw7LhjEG82BU6J3ggbARJYYUMblYFJYEUFO00aDAERqC1j/alcPapq2G1/TFIVAvYqeUucdPEi4jMhVVSZszmpN1XKd48hYe9KcHD9x7p92GjYJ90azErC+s5hZw0uOvgz9jgqvObpqE/Cl61Hoq0+wevrJLDCmg5NDS6KkG4ftFg8f96mTHKiW1cZLbGmiKljMSSw1JEnilJeAiSw5OVJoxGB5gjEhMCiLaBcAiSwlJubYCIjgRUMNXonnATYbX9uSXWEh+Uw+73ra4Jdxpnrm6gzSZUFJLRix/5cDdUNCd7/Qc4dyoP54Su9JrfePQtCh+4yBhT6UPudlRh38GcUOKq9ButpSMVXrUchTRfXaBISWKFzj5UR9u3n8O77ntsHDXpg5l0O6DxfihUUmlonCSxNpZMW4ycBElh+gqLHiIAMBEhgyQCRhgieAAms4Nkp8U0SWErMSmzE5KhpcNufVE3lklS1pfIe+2NH+1xN1EXEt+Lcvw6kibph/tswLP7CnRihVTtYH5qjqET9Zy/HxQd/QpFg9YprqDEbH7U5C4lNdIwngaWoNCo6mIWLefy+ytP/qk8fEZdcRP2vFJ00P4IjgeUHJHpEcwRIYGkupbQgBRMggaXg5MRCaCSwtJVlEljayqfiViMC1rK6Jurspj9WTcX6UxUCTGDJ+TEkswbqdbf91TVSZ0cAjSkhHm8SBJhnXAyu2nMkz3bx9XCcMVbO8EMai/W6uuTQz6g4qkTtVHMbvN9qBIxoukSGBFZI6GPq5Rde0aGszPPndtxYJ/r1DfHPV0wRVOZiSWApMy8UVXgJkMAKL18anQg0JEACi/ZDVAmQwIoqftknJ4ElO9KYHJB5k/pjf+zIXw07+ld37I8dCZTrw+kAU6armor9SMjmYGI3/7Em6ga5ZvEeR/fvKsS98YD7iyKvg+W5eYDZu5dUeGZveVR2yyC7bZDdOtjwc358J7ySNQx6zlMx42s0ElgtM47FJ1ifq/IKSMKqrAIoLxPx+ypvEXrvDCfiTCSw1L4/SGCpPYMUfzAESGAFQ43eIQLBESCBFRw3eksmAiSwZAKpkGFIYCkkESoJgzVLZ03TWfN0qYl6IWCtP/Yn4xr08XWVVA2P/WWLMKWLgLyFWy1GzeQVk1j1H8egU2C7+v4W34vEA0ss+bj88JJGU12Z1AuPZhznVwgksPzCpLmHKis5lJcDZdIPHmVlIkrLgLIKDuVlgM3W/B+0zp0ETJ1Ctw9qYWOQwNJCFmkNgRIggRUoMXqeCARPgARW8OzoTRkIkMCSAaKChiCBpaBkKCQUUYDUh4od9WOiynJEdP26EHA2uH0s5HBZE/V0EfFS43TPbX/xrQCdQqo6uMoy6fhgw0/tzU/C2XtIyMsPdID9jkqstxXhX2sR/qktwobaIljRuLxtRtog3JrSz+/hSWD5jUpVD5aUclL1FKuiKi/nUFoqSr8uLeVQ2uAYYLCLOneUgOOGksAKlp+S3iOBpaRsUCyRIkACK1KkaR4iAJDAol0QVQIksKKKX/bJSWDJjlQ1Awo2VkFV359KdMmqQg6WIg4+vEjQ69IZXdVU0lG/bM4jrDJFNNOaKej5AnpRFMGXlwDFB8EfOQiusABc0QFwRYfAFx4AV1XuNZyQkg7rk58BXHjLwEqdtfjHVoh11kKsqy3EOlsRylnCWvg8mXECLkvq0dJjXt8ngRUQLkU8bHcAZSXsaB8nVVCVlokoL+PrqqmAqioOYphP9s2Y5kRiYpgnUQRt7QdBAkv7OaYVNiZAAot2BRGIHAESWJFjHdWZVq/biumPvIHi0gos+uw55LTObDaevzZsx/uf/4z1m3eiqsaCVplpGH7yIFx72RikJDXdq+Xrn37FVwtWYufeAjidTnRo1xoXjDwZky4cAZ2uce8UElhR3RayT04CS3akih5w93c8WI8qJqps5fJKmPom6qyCypQJxGdBqqwKuYm6DET5w/ngiw4CkqA6BPZ7rpgJq0PgHC2LofoQ7OdMhv28qTJE5D3Efmclfqreh7+shdhgK0KBozrgOV7POhXnJ3QK+D0SWAEjC/sL1TWsespVOcWO+bGjfdJxv7p+VKw/Vbg/iQkiUlKA1BQRqansB4fUVNfv09NEGMLUcy7c66LxGxMggUW7IhYJkMCKxazTmqNFgARWtMhHaF5RFPHOJz/glXfnQRBc/7rZksBiAurB51xXuvfp0REZaSnYsTsPB4+UoE12Oj55/QFkZ6Y2WsE9T7yN7xb9DoNeh4HHdINBr8eGLbtQVW3Bycceg1lP3ga9zrtpKwmsCG2ECE1DAitCoBUwTVU+8O+r+pAiqW+i7rrtz1VR5aqsCl8TdX8D5qwW6DavBlfIxBSronL9zJcW+jtEi89ZHvsQYkabFp/z54HfrYewrCYPC2vysMfhueHQn3frn2mji8eguCxMSeqJYebg4iKBFQjx0J9llVHldZVT5ZKQYrKKVVC5+lGVl/NgFVbh/LACwuRkEanJQEqqiLQUEWlpnJewOuqv/nCGQ2NHmQAJrCgngKaPCgESWFHBTpPGKAFNCiyH04nqGmuzlUK//LkB6zbtlGTL6ScNRK9uHTS3Bcorq3HPE29h5aoNOH5QbwiigDXrtjUrsPIOHMHoKfdAr9dh9tPTMHRAT4kLE2Gvzfkasz/8Thrr3RdmePFi4ooJrM65bfDWc9Ml0cU+NRYrbnvgNfy+dhNuvnIsrrtsjNd7JLC0te1IYGkrn82t5sAKHfb+5F/lBmuiHp8NmCRJBcS3BswZIuIylHtkyPDjRzB8/0FYEiqkZEDoMxS2KXcEPT47AvizZT+WV+djhSUflUfdGtjSwHHQoZ8xA4NNWRhkysKQuGy00sW39FqL3yeB1SKigB5wOlnFFGuK7qqako73SZLKVU1VUclBCHPrKFY8zcSUVD2VAklO1VdSpSS75BXf/OWUAa2ZHlY3ARJY6s4fRR8cARJYwXGjt4hAMAQ0KbD++GsTbrnvFdx05VhMHT/SiwsTMdMfnY2flq32+vod143HlRPOCYahYt+ZcN3D2LhtDyaPHYEZN07E9Xe9CMamuQqsJ175CB/PX4Lbrh6HqyePbsRu4vWPSGN+POs+DOjT1f39C664Dzv25Df6OnugtLwSwy+eBoNBj5XzX4Ypzuh+jwSWYrdPUIGRwAoKmypf2vSWDhW7GggsDtKtflID9Qa3/Smpibq/oDl7LUz3TABXXeXvK17PCamZEDNaQ8zIdlVYZbSCkN5K+r2Q3S6oMdlL/9nLsKQmH4uq90s9rZzwXwDm6pIw2JSJwXHZGGTKRh9DGvSc/NaBBFZg6WXH98oqXMf53Mf7Gtzex47/hftjNIpIYcf5klnlFDvWx473CZKsYj+oN1W4M6Ct8UlgaSuftBr/CJDA8o8TPUUE5CCgSYH16Isf4rNvl+H2ay7GVZPO9eLU8HjcCUP6wG53gPV7Yp8v33oIvbt3lIOrIsb48+8tOHikGBeOGibFc/mtT0prbU5gnTnhThw4VIRlX76IVllpjdbx6TdL8dhLc3HZxWfjrhsnSt9nz7P3cnOy8dPHz/hc+7SHZmHhirV49fFbccZJA93PkMBSxFaRLQgSWLKhVPRAgh348z7P8UFWYTV4ugBdvP9CRckLNCybD8OXbzQZopieXSekmJRiosrzs5AZ3NG7piZbYS3A0up8LLbkIc/hv1DroE/Cmeb2ODm+jXQsMIM3RQQ5CSwPZna8jzVAZ9VTTFKxxuisgood7WNH/dgxP5st/IIq3sx6TgEpUv8pIE36NVy9qJIBs1kbf24jssFpkhYJkMBqERE9oEECJLA0mFRakmIJaFJgXXzNQ9jy31589/7j6NIxxw3f6RQwcvIMSbhMv34Cpl7iqs56+Z15eOuj7zFu9Kl4+M4rFJusUAO79KbHsW7TjiYFVkVVDU4YfYMkrpjA8vXZumMfxl39oFR9xaqw2Gfpr//glvtfwegzT8DT917r870PvlyIZ2Z9KlV1sequ+g8JrFCzqqz3SWApKx/hiqZsO4ct73n62ZkyRQya7gzXdBEfl1Vf8WXF7nkdp46Bc/CpENJZRVXrsMZTLFixuCYfi2v241fLAVT7eTSQHQk8wdQKwxPaY0R8O7CKq2h8YklgCU6XiKpvhl5WyuSU6yY/1o+qnB3vC/MfC9Z/ilVI1VdLpaYJSJMqqFySKj1NAPWfisafhNidkwRW7OY+lldOAiuWs09rjzQBTQqsU8feipKyCqxb/I5X03DW9+r6u19Ex/at8f0HT4LnXf/yWVJWiVMuvAWd2Nc/fDLSOYjYfC0JrM3b92L8tQ9h0DHdMPfVe33GxfpqnXjejUhLScJv374qPcNuK3z2jc9w7ZTzcMv/LvL53pJf/8at97+Ks08bihceupEEVsSyHtmJSGBFlne0Ztu7gMeBXz3Hz1qfIKDzBWFuxBOhxep//wnGj15wzybq9LA8+SmQ1PjiCrlC2mQrwRJLnnQ08F9bsd8HA1mV1RnmHAyPby/JKxMXWlN9OdajJYFltwOlpUxI1VVRlYsoY/2oWAVVuau6Ktwf1ltKapAu9aBq0H+qroKKfc/HBb/hDovGJwJNEiCBRZsjFgmQwIrFrNOao0VAkwKr3/ArJcHC+i01/Ex76HUsXLEG9902BRMvGO71vZPPvxnW2lr89d2uRxMAACAASURBVPNb0cpF2OdtSWCtXrcVV97+NE45vj/eeOp2n/GwHmJ9T78COh2Pf5e+Jz3z2ntf440Pv8Wd112CKyaM8vle/djHD+6Nd5/3NICnCqywpz2iE5DAiijuqE224SU9qg96pu95mYD0PhoQWIIA0/1TwJcccS/Ofspo2CfeGhbW9xevxvfVe1AoWP0e/1RzG0lYnW7OQWd9it/vRepBNQmsqmpX3ym3oKq7uU/qR1UBWK3hF1QGA+szJdQd6YNUPZXC+k+xnlQpQFKiCFZlRR8ioBYCJLDUkimKU04CJLDkpEljEYHmCWhSYB17znVgvSfW/jTbvfqy8iqcNu42cBwnia3kRO/bls6eOB0HDhdh47I5mt0zLQmsX1f/i+vuegHDhw3CK4/e0iSH/sP/B3bT44al70oVbs/P/gLvffYj7rl5Mi696Eyf77Gji2z+gX274aPXfFd3aRY8LYwIaIiAtULEgmkOrxVdMEsPfZz6/yvbvmoZql98wLM2jkPya1+Cz5L/2ODrhZtw4/5fW9wZnY3JGJWSK/04IykHZj76VVYtBq2AB9jNfKVlQHGpiOIS9qPhr0UUlwIO720clqjjzUBGOoeMdCCT/ZzGfu36Pfs5MSEs09KgRIAIEAEiQASIABHQJAFNCix2DI4dh1vw4ZPolOtqqPv6+99g1vvfYPSIE/D0fY37NB0/+gY4nU6s/elNTSaaLaolgRWRCqxBvfHuC54KLM3CpoURAY0S2L9awJq3PY190jtzOGOmNqRKxR1TIOTtcWfOePJZiL+lgdCSKaclzlp02fgRypw2nyOOSGqHc1JyMTIlF71MjS/TkCkMzQzD/sHq4CERe/aL2LPP9XN+gQhnBIoCk5PqBRWHTCalGgiqrEwORoNmMNNCiAARIAJEgAgQASIQdQKaFFj1R9qOH9QbM26ciF17D+Dep9+BzWbHZ288gGN6dfYCf/BICUaMn4bOuW1iugfWtp37cdFVD/jVAyslKQF/fD9L4vjhlwvx9KxP/eqBNWLYYLz86M1u/nSEMOr/GyBrAHSEUFacihxsxxc6FP7tqbZqN0JA7pkRMAVhpqHbvBZxr810z8LuZbM+PAdidjvZZ763+E+8X7nNPS5rwD4xqRtOj2+Hk0ytYVZAL6tgFx2JI4TsiF/BASC/gP3gcfAgB5s92Iibfk/qP5Ukem7sk27x41wN01NFpKWI4D13GcgfAI1IBFRIgI4QqjBpFHLIBOgIYcgIaQAi4DcBTQqs0vJKjLl8ptScveHngpEn4/G7r2oE56N5i/Hkqx83e4ue30QV/GBLFVg1FiuGjrrOr1sIj+nZCZ/NflBa7cpVG3DDPS/6dQvhlRPOwR3XjSeBpeB9EkpoJLBCoaeOd9c8ooOj2iOw+l7nRHInpnvU/TG9eAf4//51L8J5zPGoveFR2Re1w16O0wu+9mrUPi11AO5IHSD7XNEYUG6BZbFwyC/gkH+AQ36+iIICDjUWeY6rstv5UiUp5ZJUaWkcUpNFpNQ1TE9Jpv5T0dhDNKe6CZDAUnf+KPrgCJDACo4bvUUEgiGgSYHFQOzYk4+Hn/8ArPeS2WTEhaOGYfr1E2D0Uc8/4bqHsXHbHrz2xK04/cSBwXBUxTstCSy2CCb+du07gGVfviiJrKM/n36zFI+9NBfjx5yOB6ddLn27qKQc7ObH3Jxs/PTxMz5ZTHtoFhauWIvnHrgeo844jgSWKnZM4EGSwAqcmZresBzhsO55T8kJbxBx3MNOcCqvQuH2/QfzU57bUVlOLHfPgtihu+zpufDgj1hT62kSn60zY3X7cTBC5RDrSIUisNitfwVMVBXwyMsXcfAQu/0veFllNDIZxRqjM0nFZBWH1FQBaSmQhFViovrFq+wblAYkAiESIIEVIkB6XZUESGCpMm0UtEoJaFZg1eeDNRtnjcab+zidAkSILT6n0hy7w/ZHYL38zjy89dH3uO3qcbh68uhGS66XfbOfnoZhx/VrNPbHs+7DgD5dvd5jFXHDL54GQRTxy9eveDXQpyOEat9V3vGTwNJWPo9ezcHfeOz5nnd/Oa2XgF5T1X98MO71+6Hb+Kd7XUK3/rBOe072ZH5TtRs3Fv3iNe4bWadiTEIn2eeK1oD+CizWn+rwYXYUkENBPpB3kENRISddwBLMh/3bVJs2Itq2FdEuR0ROGyA9PcjBggmA3iECREAiQAKLNkIsEiCBFYtZpzVHi4DmBZY/YEVRhMVaKwksXxVa/oyhhmf8EVjFpRUYOWkGBEEAk1RDB/SUlsYYvTbna8z+8Dt079wO8999VLrRsf5Tf4Mh6yP21nPT0SY7XfoWO5Z4+4Oz8NuajZg8dgRm3nKpFyoSWGrYOf7HSALLf1ZqfHLrHB6l2zwCq9MYAW1OUrfA4g7sgenRa9Cwzqf25ifh7D0kpBRZRQf2OCqRZ69CvrMKpQ4rPqnagUPOGve4x8W1wvw2o0KaR2kv+xJYTEoVl/AokHpWuaqsWHWV03MXQEDL0OuBNq1FtG3DZBXQti2QmSGgwV9JAY1HDxMBIiAfARJY8rGkkdRDgASWenJFkaqfgCYF1nHnXo9jB/TEq4/f6leG7HYHhoy8Fv16d8bcV+/16x01PuSPwGLrWvrrP2BH/lj1Wp8eHZGZnoL/dufj4OFisObtc1+diS4dcxoheG7255jz2U8wGPQY2LcrjAYDNmzZhcqqGvTu3hEfvHwP4s1xJLDUuHn8jJkElp+gVPiY6ARWP6iDYPeonoF3OGHOVneVS9x7T0G3dqk7I0KbjrA+8HaLGaoRHdjrqMQhRzX2OCpw0M5+rsRBR7X09XLB9w2DDQdenHM+ehu0dcsgE1i1tXps2m7H7n1OqWcVE1a1tcEdBdTxQKvWrKJKRE4OkNNWRFamCNZgnT5EgAgojwAJLOXlhCIKPwESWOFnTDMQgXoCmhRYfU6bCnYD4bsvzPA70+yIG6vCqr9Zz+8XVfSgvwKLLWnLf3vx5tzv8fe//6GqugaZGanSkcHrpozx2RurHgPrc8Wa4m/ftR/saGZOmyycc8ZxuGLCKMT56D9GFVgq2kB+hEoCyw9IKn2kYg+HTbM9x7H1CSKOfSDIEhqFMOCKD8N0/xRwDc6t1V59P5yDTpEEVJ6jCvmOKuRJoqpGElXs592OClQKoV17NzmxO57JPFEhJIIPw1rLSZKKNVkvKBBx4ACPCu/7U/wenEmpVlki2kjHACFVWLVqJYJJLPoQASKgDgIksNSRJ4pSXgIksOTlSaMRgeYIkMCqo3PC6BtQY6nFhqXv0o6JIAESWBGEHYGpSGBFAHKUpti/mEf+Eo9JyBosott49QqsMsGGQwvewoFd/yAvOQH7UhOwLzMT+7t2Q56zKmRB1VyaEjk91rQfjxTeGKVsBjctO/JXcJDDAelGQEjSqqQkuMoqdtwvM6uusqot0K6tiNatRbTQsjK4wOktIkAEIkaABFbEUNNECiJAAktByaBQNE+ABBaAL75bjodf+EDq27Tkixc0n3QlLZAElpKyEXosJLBCZ6jUEf6dpUPVfo+s6DbRiawByj0+WCLU1lVQVbqqqOysksr1g/2+WnREBHWOPgHtdIlop09AB30S2hoSMTAuEz1VcHSw1sZh0yYOeQXAwYOuvlXBfrIyBbRujbqeVa7+VQZ9sKPRe0SACCiVAAkspWaG4gonARJY4aRLYxMBbwKaEFgr/liPlavWu1f2xfcrkJ2ZitNOGNBsvu0OJ3btO4B/t+ySnptw/hm4//bLaI9EkAAJrAjCjsBUJLAiADkKUzhtwOr72fFBj8A49iEH9OYoBFM3ZbFgRb6jGvmsUbqjGnl29rPruF+BozoigsrA8WirS0D7OknV3pgkyar2hgTk6BLRVp8A3qs9fPR4BTPz6jU8fvg58PN7WRmuxuqsoor1rmrbVoBRXcVmweCid4gAEaBbCGkPxCgBElgxmnhadlQIaEJgfblgBR5/+SOwZuzBfrp2ysEHL92D1JTEYIeg94IgQAIrCGgKfoUEloKTE0JoJZt5bPvQIzLi2wADbgv+f2/9CaWICSpWNeVkN/nViypX9RQTV6yJerg/JujQzlBfQcXEVJJUSdXOkIj2ukRk6+JVrKdapvfuHB325TVfdZWSUncbYFsObduK6NNNh/RUPcqqbKipVe8R05bp0BNEgAj4IkAVWLQvYpEACaxYzDqtOVoENCGwGLwaixV//LUZCxavwuJf/kJ6ahIG9+vRLFee55CSnCjdmDfytGNh9NFkPFqJiZV5SWBpK9MksLSVz/rV7P6Gx6FVHoHV9hQBHc8VQl4sq5T6q/aIJKX22+uO+tUJqlqEX37E2x3ILatC+2or2vY+Ge3iUqXqqfa6JOQYEpHFm0Jeo1oHqKrm8Mzznqb9bB2JiaJ0C2BODidVVrXLEWE2ex8jZbcQxptIYKk17xQ3EQiVAAmsUAnS+2okQAJLjVmjmNVKQDMCqz4BrAprxCV3oGvHnIBuIVRrAtUeNwkstWfQO34SWOrPZ81hDrUlHKzFgKUIsBQDlfs5CFZPJU7vqwSkdgteYDFx9WLZenxZtRMOhK+PVjJvkCqlWMWU62hfItrz8ejy+mPIPXQYaZZaKWH20ZfDfu6l6k+ejCv4cw2PHxscHxzUX8AF57eccxJYMiaBhiICKiRAAkuFSaOQQyZAAitkhDQAEfCbgOYEFlv53K8WYceefDwy/Uq/QdCD0SFAAis63MM1KwmscJGVb1zBxsQUE1QcrEUcLEUirHXCylbuX5Pu4x9zgDcEHtMhZw1eKtuAuZXbA3/ZxxvpfBw6GJLQWheP9vokSVB10iejlT4enfRJMHONu4TrV3wL4+evuUcT40ywPPEpEE/HxxsifnuODnkNjg+OPkfAsUNIYMmycWkQIqBhAiSwNJxcWlqTBEhg0eYgApEjoEmBFTl8NFOoBEhghUpQWe+TwFJGPhw1TE5BklSWEpekqpWkFWCv9k9SNbWS5C4i+l4T2PE+1s/q5dIN+KhyO2xoWYKwuVmUWToz2uld/aZyDAnI1bMeVOxGv0R0MCTCCO8jbi3SdzphuncS+PIS96P2ERfDftE1Lb4aSw/4Oj54z3Rno+OCvphQBVYs7RRaKxFoTIAEFu2KWCRAAisWs05rjhYBEljRIk/zSgRIYGlrI5DAilw+WbVUbQlQI4kpUaqmYkf/ago5sCqrcHyMqSJyzxSR7UclDpuf3RT4WtlGfFCxDU31tGJN0YfGZaOD3tV3ytV/Kh6d9SmyL0H35yLEffCse1xRp4flyU+BpFTZ51LzgH+s4vHzYk/Ps04dRVxxmX/SkgSWmjNPsROB0AmQwAqdIY2gPgIksNSXM4pYvQQ0LbCcTgGbt+/Brn0HUF1jhSC0/C//l118tnqzqcLISWCpMGnNhEwCS758igJgK+NgkY76sWoq1w/p98UcwnEJH8cDTFKZM0SYMgFzJmDKqPuRLsDHiTyfCy4TbHi9/F/MqdjW5G2BbXTxuDW1PyYmdoOeTRzujyjC9OAV4AsL3DM5Tj4Htsm3h3tm1Y3/1rs65Bd4KvXOO9eJoYP961VGAkt16aaAiYCsBEhgyYqTBlMJARJYKkkUhakJApoVWKvXbcX9T7+LgkNFASVq84r3A3qeHg6NAAms0Pgp7W0SWIFlhEkoawnvkVN1TdOZoKot4xCWi/h0gClNhKmBpHKJKhFxqSK4AE/lNVxxpWDH7PKNeLdiCyqbMGzsZr9b0vpjSmIPGCIhruoC1K3/HXFvPuQOV+Q4WB+dCzGjVWBJ0/jTZeUcXnjZswk4Drj7Tv+ODzI0JLA0vkFoeUSgBQIksGiLxCIBElixmHVac7QIaFJg7dl/EBdd9QBqbXaJq9FoQOusNPB8y//K/8Pcp6KVi5iclwSWttJOAqtxPhs2Ta8t5lDDmqZL1VQcbBUcwnEJH5NQpgzBXT0lCSrphwhTquhqMCXjp1q04+2KLXizfBMqBNf/7h79YQ3Xb0jthyuSesDkbymXjDGanrwB/P4d7hEdQ06H7X8zZZxBG0P9/gePhUs8f1d26Szi8kv9Oz5IAksbe4BWQQRCIUACKxR69K5aCZDAUmvmKG41EtCkwHrg2fcw74df0CY7HQ9PvxInDukDjv0zMn0UR4AEluJSElJAsSqwwtk0vamEsFsAXVVUriN/5kyuTliJMKbIL6l8xWERHXivYiveKN+I0iYabyXzBlyfcgz+l9wLCVwQVxeGtCNdL/Pb18H00gyvkSz3vwWxbScZRtfWEG+9o0P+Ac/fl+ePdmLwIP+OD5LA0tZeoNUQgWAIkMAKhhq9o3YCJLDUnkGKX00ENCmwzp44HfkHCzH76WkYdlw/NeUj5mIlgaWtlGtWYImQqqVY03TWg8pSyKqoXEf/LCWAYA2PINfFsaN+9X2oBJizmKRisgowJPkvFeTeZVbRgQ8qt2FW2UYUC7U+h0/k9LgquTeuSzkGScy2RfET9/Jd0G37xx2B45jjYLvhsShGpMypQz0+SAJLmXmlqIhAJAmQwIokbZpLKQRIYCklExRHLBDQpMAacOZVcDicWLfobRgM+ljIo2rXSAJLtanzGbiaBdbRTdMtRXALq3A1TWcQdea6humsmspdSeX6miEhepLKV4LtooC5VdvxSukGFApWn3sgntNjanJP3JjSD6m8MeobnNv3H8xP3egVh/XOlyB06RP12JQWwG9/8FjU4Phgt64ipkzy//ggCSylZZTiIQKRJ0ACK/LMacboEyCBFf0cUASxQ0CTAmvoqGuh1+mwasHrsZNJla6UBJZKE9dE2EoXWFFpmg5AH+8SUtJxP+moX91Nfxmu7yn94xAFfFK1A6+UbcBBZ43PcOOgw5SkHrg1rT9YvyulfOLefBi69b+5wxG69oX1jheVEp6i4pj9tg4HDnqqCS8Y48SgAYHtT2rirqiUUjBEIOIESGBFHDlNqAACJLAUkAQKIWYIaFJgXXDFfdi1rwBrf3oTprjoVwDEzG4KYqEksIKApuBXlCCwmm2aXh6eo34sJexIn1k67ifWHfWra6KeJUKn0v8ZYuLqy+pdeKlsPfId1T53HrtJcFJiN9yWOgDZOrOidid3JB+mB6/w6llfe+PjcPY9VlFxKiEYX8cHZ97lRJyRBJYS8kMxEAG1ECCBpZZMUZxyEiCBJSdNGosINE9AkwLr1ffmY/aH3+HlR2/GiGGDaQ8omAAJLAUnJ4jQIiWwotE0neFgzdGlxukZkCQVa54u3eyXISLKbZ6CyFbzryyx5OP+otXY76xs8sHxiV1wZ+og5OgTZJ9fjgGNHz4L/apF7qGENh1hfeBtOYbW3Bi//MZjyTLP7YPdu4m4dGJgxwcZFKrA0tzWoAURgYAIkMAKCBc9rBECJLA0kkhahioIaFJgVVTVYMzlMxFnNODDV2aiVVaaKpIRi0GSwNJW1mUTWEc3TS8SYS0Kf9N0VqoTl1ovpSA1S3c1UWdH/0RwOm3lq+FqygQbllsKsLRmP1ZaDqCkiebsTHFcmNAZd6YPRK4uSbFAuLJimO6dBE4Q3DHa/ncfHENOVWzM0Qzsjbf0OHjIE8HY850Y0D+w6isSWNHMIM1NBJRBgASWMvJAUUSWAAmsyPKm2WKbgCYFFkvpjj35uPzWJyEIIs4/+yQMHdATrbLSYYpr/jasbp3axfaOiPDqSWBFGHiYpwtEYLmbphdxrtv8ItQ0neMBY1p9w/SGkgowpwuAhiXV0enfYCvGCksBltTk4Z/awhZ3x5j4TrgzbSC6GJJbfDbaDxi/mAX98m/cYQjp2bA+OhfgPVVG0Y5RKfMffXyQIbpnRuDHB0lgKSWjFAcRiB4BEljRY08zR48ACazosaeZY4+AJgXWmKn3Yn/+IdgdgR9/2Lzi/djbBVFcMQmsKMIPw9TNCSx7JYe8pRysRYClmENtSfj6UbGlmTJdPajMWa4qKlc1lUtcxeqnUrBjhTUfS2vysaKmoMmbBI/mMzI+F3elDUZ3Q4o60NVUwXz3JeDsNne8tsm3w3HyOeqIP8JRrvyVx9LlHrHXo5uAyRM9lWuBhENHCAOhRc8SAe0RIIGlvZzSilomQAKrZUb0BBGQi4AmBVaf06YGzYcEVtDognqRBFZQ2BT7UnMCa/c3PA6tkq/6hdN7jva5jvix2/1cX2PHAL06dyuWWPgD22wvwfKaAiypzsNa2xG/J0zjjTjbnIsrUnqjrzHd7/eU8KDhu/dh+OljdyhCSjqsj30E6JuvwFVC7NGIYdabehw+7Jl57AVODOgXnOglgRWNDNKcREA5BEhgKScXFEnkCJDAihxrmokIaFJgFZWUB53ZzHSVVBgEvUJlvUgCS1n5CDWapgSWrZzDX08EfjaPNUaXqqZYo/RMEfENJBVrqE6fxgSqRTt+sRzA0po8LLMU4LDT4jemXoY0nGluhzMTcjEwLkudDtBqgXnmRHAWz62J9ouuhX3EOL85xNKDxSUcXn7N82czlOODjBsJrFjaPbRWItCYAAks2hWxSIAEVixmndYcLQKaFFjRgknzBk6ABFbgzJT8RlMCa9d8HodX+66+4o2AOVuEKY0d92PH/jhJVpkzAEMSSSp/8v2fvQxLpQbseVhbewQO1mDMj08cdDjJ3BpnxufirPj2aK2L9+MtZT9iWPwFDPM9Nw2K5gRYnvocMMYpO/AoRbfiFx7LVnj+bPbsIWDSJf7tH18hk8CKUiJpWiKgEAIksBSSCAojogRIYEUUN00W4wRIYMX4Boj28klgRTsD8s7vS2DVlnL4+ynv6qvcs0SkdhMQxyRVAkmqQLNQIzrwm+WgJKyWWwtQ4PBUG7U0ViudGcNZlVV8Lk4xt4GJncXUysdhh/meieCqPFW49nOnwD76Mq2sUPZ1vDZbjyMNTpaOu9CJfscE/2eSBJbsKaIBiYCqCJDAUlW6KFiZCJDAkgkkDUME/CBAAssPSPRI+AiQwAof22iM7Etg7fxShyN/eRq2x6WLGDTdCXYbIH0CI7DdVoZnyv7BzzX7A3qxnzEDZyXk4gxzO/Q3ZgT0rpoe1v+6AMZPXnaHLBqMruqr+EQ1LSNisfo6Pnjv3Q4YQnCaJLAilj6aiAgokgAJLEWmhYIKMwESWGEGTMMTgQYENC2wLFYbvlqwAot/+Qs79xSgvLIaPbq0x/x3H/XaBMt++wfVNVaMOGUIzCYjbZAIEiCBFUHYEZjqaIFlLQb+eVYHiB6B1e0SJ7IGBV/hEYFlKG6KPGcVnin5B99U74Y/h7viOT1OMbfFiPj20tHADN6kuDXJHpAgwHT/FPAlnnIi+4iLYL/oOtmn0sqAy1fyYD/qP717Cpgw3p8d1jQBElha2R20DiIQHAESWMFxo7fUTYAElrrzR9Gri4BmBdaufQdw08yXsb+gwdVKgE+BdcfDr+Pn5WvwxD1X4/yzT1JXBlUeLQkslSfwqPCPFlg7PtOhcB1VXwWb5WLBipdKN+C9yq0tDtFGF4+R8bkYkZCL00xtW3xeaw/o1yyDcc6T7mWJPA/r459ATNVuxVmoOXzpNR1KSjx/PsePdaJv39DkMgmsULNC7xMBdRMggaXu/FH0wREggRUcN3qLCARDQJMCq7KqBhdeeR8OHimB0WjA8JMHoUO7Vpj94Xc+BdYPS//EjEdn46xTh+DFh28KhiO9EyQBElhBglPoaw0Flq/qq+6TnMjsH9p/ICt06bKGVSU68GbZRrxZsRnVosPn2KxuZpAxG2cmtMeZ5vboYUyVNQa1DWZ65GrwB/e6w3acNAq2S6epbRkRi5f1vWL9r+o/ej1wz4zQjg+ysUhgRSyFNBERUCQBEliKTAsFFWYCJLDCDJiGJwINCGhSYL3+/jeY9f436N29I1557Ba0yU6XltzntKk+BVbegSMYOWkG2rfNxs+fPEMbJIIESGBFEHYEpmoosLZ/okPxBk91hzlLxMA7nRGIQt1TsGqrl0rXo1io9bmQDD4Od6QNxPkJnZHKrnCkD/iNf8L0+v1uEiLHwfroXIgZrYhOEwTYzYPsBsL6T5/eAi4ZF9rxQRJYtN2IABEggUV7IBYJkMCKxazTmqNFQJMCa+z/7sf2XXn46u2H0atbB8//QW9CYFlrbRh89jUwxRnx98K3opWLmJyXBJa20l7/F/jOrRasf967E3SPKQIy+ob+H8jaIuZaDatJm1+1G8+W/YM8R5XPJSbzBtyY0g9XJffS1s2BMiQ07tlbodu9xT2SY/CpsF11nwwja3eIRscHxwno2zv0P59UgaXdPUMrIwL+ECCB5Q8lekZrBEhgaS2jtB4lE9CkwBoy8hoY9HqsWvC6F/umKrDYQ4POuhp2hwMbl81Rcr40FxsJLG2ltP4v8OUv1aJ4k6e6I76NiAG3UfWVr2wvteTjyZK/sdVe6nMzmKDDlck9cXNqfyRTxVUjRvyOjTC94H1U0HL/WxDbdtLWHy4ZV3PoMPD6m/IfH2QhksCSMVE0FBFQIQESWCpMGoUcMgESWCEjpAGIgN8ENCmwmIxKSozHyvme69QZkaYEVo2lFkNHXYvUlET8/u1rfsOjB0MnQAIrdIZKGoH9BV6WJ2LJw959m3pd7kRab+p91TBX62oL8XDxWqy1eW7Na/h9PThMSOwmHRfM1pmVlGZFxRL32r3QbV7jjsnZZyhqb3pCMTE6HIBT4CA42c+AINT9zH7vdP1e+uEEHNLPnPScyJ6Tvi82+b70rAg42YsBfPILOOzc5RHMffuIGH+RPIKZBFYAiaBHiYAGCZDA0mBSaUktEiCB1SIieoAIyEZAkwLrnEvvwr78w5LAykxPccNqSmAt/fUf3HL/KxjYtxs+eu1e2eDSQC0TIIHVMiM1PcH+Av/9VQcObvDIKqq+8s7gDns5niz9Cwtr8nymlnUNOy++E+7JGIRcXZKa0h9yrHa7R+BI9FJH5AAAIABJREFUoocJHCZonBxEpwiH6BI9kghyAobDe9FtzlVe824+/wWUtenves79ft24dbLHI4g4SR45vEQSE0iit3Byup6rn5dJI8EpSnHVxykJpzoBZffddz9kPuEaYOJ4Ab16BibBmoqFBFa4skTjEgF1ECCBpY48UZTyEiCBJS9PGo0INEdAkwLriVc+wsfzl2Dy2BGYeculzQosVn014fpHsGtvAW67ehyunjyadkwECZDAiiDsCEwVX2NqVH3V+0onUntQ9dUBR7XU4+qrql1oShWcZmqL+zOGoqchrcVs2WysOsdVreOWNZJEYVKFyRVPtY9YV9XjLWuYpDnq/TpZVC9rWGWPq2qoQQVRnRRqOCcTQG6Bw2Kqn7thBVFdnO6xJcHkejbYz+TSRzDQutz9er6+O17KejPY4WLyPaMBuHu6A+wWQjk+JLDkoEhjEAH1EiCBpd7cUeTBEyCBFTw7epMIBEpAkwLr4OFinDvlbtTa7Bh95gm449pLkJ2Z2ugI4T8bd+Dxl+di2879SElOwM+fPIvkxPhAGdLzIRAggRUCPAW+unuuAYc2eWRVYjsR/W4OwVBEYY379nOw2V2VNUzSNDzC5ZYv9d+rE0BOp9BA2nBS1ZD0rhOo4GuxMHsDfsvaAgfvW121Kc/EiK3Ho21xtqvaSKyrCmKSRxqLA6tOoo+HQKqzCPcdudgLybvpT2Jr3PGEKQACx/QVcPFYeaqv2LQksAKAT48SAQ0SIIGlwaTSklokQAKrRUT0ABGQjYAmBRajs+TXvzHtoVlg/2HJPh3atZKOFSYmmNG3Zyfs3FOAopJy6XsGgx6zn5qG4wf3lg0sDeQfARJY/nFSw1OVecDG17zLOHpf7URqV3VUX5WWc/hqHo+8fHaIL/SPU+fAxt6b8G+fDbAbfduntNJUDF4/FB3yPLelhj5zbIwwwLocl5Y+4l7sYX0uns36QLGLZxVOOl4ErwN4HtDpAB0H1+/Zr3nX1+t/rdOJ4L2+z4HnRek96f0Gz7Ov69nX9Lz0dU4aX3TP435eJ0LHs3Fc87Ofs7JEJCfJ92eUBJZityAFRgQiQoAEVkQw0yQKI0ACS2EJoXA0TUCzAotlbePW3Xj4hQ+wdce+JpPYo0t7PDz9ShzTk26sisZOJ4EVDerhmXPz2zqU7/TIn+ROIvpep47qq9Vrefy8iA/pOFs9VYETsL37Nqw75h9Y4q0+YSdWJWDQhiHoursrOFEeYRaerEZnVHasjZdki7fccUkZl4A5o+A1DDwy3x3gxrYXYnX3myTpo9NxrvfrBFC9rGGixy2PmOyRvu+SSmwub4lUN1ed6DHoANSJIpcg8ogojyByjVEvkAwyHcuLThaCm5UEVnDc6C0ioBUCJLC0kklaRyAESGAFQoueJQKhEdC0wKpHs3HbHqxdvxX784+gqsYCsykObVtn4LiBvTDomO6hEaS3QyJAAiskfIp52Vf11TE3OZDUXjEh+gykspLDl/N57N0ng0TigN0dduPvgWtRkVTpcz6zxYT+mwah1/ae4AXPLXCBUuK4OkkiCZ6jRI0kcFzyxUsAMUmjE8HeleSLJG3qqnrqRRH7ev37dRVCrKrHVQl0VPVPfdWQj6oeaZ56IaQD9A0qiVzjN6giaiCqAuFgevpm8Hu3uV+xXXEPHMeeEcgQ9GwYCJDACgNUGpIIqIgACSwVJYtClY0ACSzZUNJARKBFAjEhsFqkQA9EjQAJrKihl3XiTbN1qNjjkUAp3UT0uUrZ1Vcb/uWx4CcOtbWN5VXHDkzWuKp19HWyRar8aaIqaEtiAb5I+xv74op9co0XDLjI2RfjHcfAzOndAoeNzTWqFHJJpYbHyjwiSpSt2basGyDSgzkdMN8yGhxrMlb3sTz6IcTMNpGOhOY7igAJLNoSRCC2CZDAiu38x+rqSWDFauZp3dEgoEmBxY4Njj3nFDoWGI0dFeCcJLACBKbAx8t2ctjyNjtf5fkoufqquobDvK857NzVuAIqOVnE+IsE5Lb3ryfQv7ZiPFKyFqush5rMzNSknrgzdSDSdHEKzJ46Q+J3b4Xp2VvcwYsJybA8N0+di9FY1CSwNJZQWg4RCJAACawAgdHjmiBAAksTaaRFqISAJgVWn9OmSvi7dMzB2FHDpJsIM9NTVJKS2AqTBJb68/3vqzpUNWh83voYDp0vVeaVeTt28vjqaw4WS+Oqq0EDBZwzUgDrv9TSp0iw4rGStfiqahd8qS4dOFyc0AXT0wehtY5uNm2JZ6Df1y+dD+NXb7hfc/Y7AbXXexq6BzoePS8fARJY8rGkkYiAGgmQwFJj1ijmUAmQwAqVIL1PBPwnoEmBdd5l92D3/oNuCjodj1OO648LRw3DKSf0h4Gd26GPIgiQwFJEGoIOomw7hy3vef95GvGgHjVNNC8PeqIQX6y1cfj+Bw7/bmxcdZWYIOKiC0V06ey6sbS5jw1OvFmxBa+WbkC16PD56Kj4XNyXPgQd9cktDUffD5KA8d3HoP9rpftt2/lXwjFyYpCj0WtyEiCBJSdNGosIqI8ACSz15YwiDp0ACazQGdIIRMBfApoUWGzxm7bvwXcL/8BPy/5ESZmnoXJaShLOO+tESWZ179zOX070XJgIkMAKE9gIDbv+JR1qDnqqmdoO5HDijXooKa979/L4Yj6HqqrGVVc9ugu46AIRJlPLRwZ/qNmLR0v+Qp6jyifdY+Oy8WjG8ehrTI8Q/didxnzvZHAlR9wArLc9C6HHgNgFoqCVk8BSUDIoFCIQBQIksKIAnaaMOgESWFFPAQUQQwQ0K7Dqc+hwOvH7mk34btHvWP77OtTaPEebenfvKImsc0ccj5SkhBhKu3KWqiTRoRwq6oikdAuHrR94V1+d9ageyW04RQgsuwP4eSGPtX83rroym0WMPkfAMX1aFldb7KW4v2g1/qz13eequyEFD2Yci9NMOepInNqjrCpH/PRx7lWIHAfLS98DRuoxpoTUksBSQhYoBiIQPQIksKLHnmaOHgESWNFjTzPHHgHNC6yGKa2usWLRyrVYsHgVVq/bClF0/cerwaDHGScNkmTWsOOOib1dEMUVk8CKIvwQpz66+iqjn4DTb3FJhGjnNb+AwxfzeJSVNa666txJwLixItjRweY+JUItnij5C59X7YCvw4VZvAkz0gdhQmI38Gg8T4h46fUmCOjW/464Nx/yCKyczrDc9ybxUggBElgKSQSFQQSiRIAEVpTA07RRJUACK6r4afIYIxBTAqthbo8UleGn5auxcPkabNiyy/2tzSvej7EtEN3lRlt0RHf16p29eBOP7XMbVDZxIgZMc6JrL3NUBZbTCSxZxuGPP3Wo89NuyKw5+8izBQwZ1HyvK4co4J3KrXipdB0qffS5ioMO1yT3xi1p/RHP6dWbRJVGbvj6HRgWfe6O3nHyObBNvl2lq9Fe2CSwtJdTWhERCIQACaxAaNGzWiFAAksrmaR1qIFAzAoslhy7w4nV/2zB/B9/wcIVa6V8kcCK7LYlgRVZ3nLNtu45HSyFnqqjrAEiuk10ov4v8Gjk9dBhDp9/xaG4uPGRwZwcERPGCUhJ8V11tcFWjDXWQ/jDcghb7CXId1T7RHVhQifMTBuCtno6cizXXgp0HNMLd4LfscH9mm3KHXCcODLQYej5MBEggRUmsDQsEVAJARJYKkkUhSkrARJYsuKkwYhAswRiTmAJgog167fihyV/Yskvf6GiqsYNaHC/7vjwlZm0ZSJIIBqiI4LL0+RUxRs4bP+kQe8rTsSg6U6YMhAVgcUqrVb+psOKlRyEo4qrdDwwYriAE48XwDU45be69hDW1BZileUA1loLUdPEjYL1CRxqzMbDmcehvzFDkzlVzaIEAebbzgNnt7lDtj7wDoQ2HVSzBK0HSgJL6xmm9RGB5gmQwKIdEosESGDFYtZpzdEiEDMCa8eefOlWwh+WrsLhwlI37zbZ6Rhz9km4YOQw5OZk/7+9+4CPosz/OP7dTQ+BIB1CF9QTC0URRM9TQdHDCiqWs6D+xY6ooHj23hAV7BWP0zsLFk4UxS6KIAgqKkoRQu8kpGf3/3omZJMlATbJZmdm57Ov173IJTPz/J73b1D4+swzdvXBs+MSYLmr9cGA9MPYHVZf9Qqq6+ml1kRivQJr48ayva5WVnoTYrloyxZBnXFaUBlNiqyQ6tuCVfq2YK3mFq5Tocrq3d2nfUKGxjTtpRPSO+3uUH4eAwHf8kVKu2d4aKRgarryH3knBiMzRKQCBFiRSnEcAvEpQIAVn31lVrsWIMDiDkEgdgJxHWCZfa7en/6t9QbC3xYtD6kmJyep/+Flm7b36dlNfj8bMMfulgsfiQDLLvnajbturk+/vxa++qrXDaVKaVx2vVgFWGbV1bcz/Zo23S+z71XlT0lKkZr9bZVyuqzU90Vr9X3huhpPtlNiI53VcC9dlrlfjc/lhPoTSPxyipL//WhogNK/9FLhVffV34BcucYCBFg1JuMEBOJKgAArrtrJZCIUIMCKEIrDEIiCQFwGWO98+LXe+2iGvv1+QehNg8Zq/306WaHV8Uf3UcOM9CjwcYm6ChBg1VUwdueb1VdzHkxQ4caKwLdl76D2HFyRIMUiwNqyxafX3/RrWXZFHdlZ2cpus0xrs1ZrXaONNUbZKylT/VJb66DUFtavzRPKNqPn4yyB5IkPKvGbaaGiiv9+jooHneesIj1eDQGWx28Apu95AQIsz98CngQgwPJk25m0TQJxGWB1+9v5Ic5mTTI1aEBfnXrc4dqzY5ZNzAy7MwECLPfcG2tn+/TH6xWrr3wJQfUcVbH6ysykvgOsOXP9ev9Dn7YFi7W87XL92fZPLc9aruLk4oghE31+7Z/cRIektFSftFbqk9JKDf1JEZ/PgfYJpN42TP41FatpCy+/W6X79bavIEauIkCAxU2BgLcFCLC83X+vzp4Ay6udZ952CMRlgHXg0RfqiEMPtFZbHX7IAUpMqPTIkx3KjLlTAQIsd9wcZvXV9/clqGhLxaqnVn0D6nxy+K7p9RVg/bzAp7e+KtS8xkv1Z9ulWtlmZcRwqUpQz9RmVlDVO7WVDk5trlRfYsTnc6BDBPK3KX3kyWHF5I19W0rjjZAO6ZBVBgGWk7pBLQjEXoAAK/bmjGi/AAGW/T2gAu8IxGWAtXFzjpo0buidLrp4pgRY7mjempk+LXorfPVVrxtLlbzDb7NoB1ifr9is5xYu0/xGy7S+6fqIsDL9yeqd0kKHpLXWISktdEByU5lVV3zcLZDw8yyljK94S2ygRVsV3P6iuycVh9UTYMVhU5kSAjUQIMCqARaHxo0AAVbctJKJuEDA9QHWshVrLOZ2bVrI56vdZuzBYFDLV661rtM+q6UL2hY/JRJgOb+XgRJpzgPhq6/aHBZQxxPCV1+ZmUQjwJpRsFrvbVqmKVuXaWNKbkRA+ybtoWPS22lggw7aP7lpROdwkLsEkqZMVNL/XgkVXXLIABWdP8pdk/BAtQRYHmgyU0RgFwIEWNweXhQgwPJi15mzXQKuD7DK97uaM+1ZpSRX3ccmEAjq1ofK/iv9naOGVeucl1+gg48rezX7z5+9ZFcvPDkuAZbz2776G78Wv12xgsmXGNRBY0qVVM2TW3UJsKbnZ+uKtZ9razCy/awOS22lAQ3a67i0DspK5DEy599JdavQrL4yq7DKP0VnXqWSv55Qt4tydtQFCLCiTsoFEXCVAAGWq9pFsVESIMCKEiSXQSACgbgPsEpKS2X2xNpVOEWAFcGdUk+HEGDVE2yULmtWX31/b4KKcytWN7b5a0Ad/1519ZUZsrYB1oqiPB2Z/ba2+Yt2WnlqSbKOSMnSiU3a6ei0dmy8HqUeu+UyadecJF9BXqjcghufUKB9V7eU75k6CbA802omikC1AgRY3BheFCDA8mLXmbNdAgRYkgiw7Lr9JAIs++wjGXnlV34tfa9i9ZU/KSiz91V1q69qG2D98HNQFxb9T6v3qLrHVca2Btp7fXud2a6DTuvUgr2sImlaHB7jX71cqbdXrKANJiUrf9x7kp+9zZzWbgIsp3WEehCIrQABVmy9Gc0ZAgRYzugDVXhDgACLAMvWO50Ay1b+XQ4eKJZm35OgkryK1Vdtjwyo/cDqV1/VNMDKXuHTlPf9erv1d/pxvx/Daukxr4f23dBBZ/Zqou4HBFTL7e2ci0tlNRJI+HaaUl5+MHROoOv+Khg5tkbX4ODYCBBgxcaZURBwqgABllM7Q131KUCAVZ+6XBuBcAECLAIsW39PEGDZyr/LwVd+7tfS98NXXx10U6kS03Z+WiSPEG7c5NOH03z65Te/srOy9eHRH4RdsNsff9HNqYeqb59SJSY614fKYieQ9OqjSvpiSmjA4gGnq/jUi2NXACNFLECAFTEVByIQlwIEWHHZVia1GwECLG4RBGInQIBFgBW7u62akQiwbOXf6eDVrb5q1z+gdgN2vvrKXGxXAVZenk+ffObT7Dl+BQJSXnqe3jzxDRUlV+x71aagsT5uf5Iy02v3RlFnalJVXQVS77lU/uV/hC5TeMmtKu1+WF0vy/n1IECAVQ+oXBIBFwkQYLmoWZQaNQECrKhRciEEditAgEWAtdubpD4PIMCqT93aXzv7U7+WfVCx+iohNSiz+iohedfXrC7AKimRZnyboC+/kgqLyoKpgC+g9457V+ubVex7lepL1MdZJ6pTYqPaF86Z8SdQVKi0ESfIFwyG5pb34BtSRmb8zTUOZkSAFQdNZAoI1EGAAKsOeJzqWgECLNe2jsJdKECARYBl621LgGUrf7WDlxZJs+9OUGlBxSqo9scG1PaoXa++MherHGCZvGHefL8+/sSnrTnhK6pm9fxO8/ebHzb+E82P0EkNOjkPhIpsFfAvnK/UR64N1RBo0kIFd0+ytSYG37kAARZ3BwLeFiDA8nb/vTp7Aiyvdp552yEQNwHWAzcPV2JCQhXDYDCoa29/wvr+2Nsur9a4qKhYN9zzjPWznz97yY4+eHZMAizntT77Y7+WfVSx+ioxvezNg7tbfVU5wJoxp0DvTfVr3dqqjwJWt+/V0IyuerhZP+dhUJHtAknT/qOkyc+F6ijpdYSKLvqn7XVRQPUCBFjcGQh4W4AAy9v99+rsCbC82nnmbYdA3ARY0cIjwIqWZGTXIcCKzClWR5XkS9/fF776qsPxAWUdsfvVV6ZGX0ma/jO5RD/9UvG4V+XafU3y9erxr2ubv2LfK/PI4PS2JylFVQPoWM2bcZwrkPL0bUr44etQgUWDh6uk/2DnFuzxygiwPH4DMH3PCxBgef4W8CQAAZYn286kbRIgwNoBngArtnciAVZsvXc32rJpfmVPD199ddCYUvmTdn3mqtU+zZzp05x5FedWPsMsjuzXr0SPdX1f3xevDf3IhFYfZJ2gvZIa7640fu5RgbTrBsu3bWto9oXXP6rSzvt6VMP50ybAcn6PqBCB+hQgwKpPXa7tVAECLKd2hrriUcD1AVY8NsVLcyLAck63zeors/dVoLjisb+OgwJqc3j1q69KA9LPC3z65lu/Vqys/q2BPp/Uo3tA/Y8KanzR93p8S/i+Vw837aehDbs6B4FKHCXg27hWaTedHaop6E9Q/mNTpIRER9VJMRUCBFjcDQh4W4AAy9v99+rsCbC82nnmbYcAAZYd6owZEiDAcs7N8OdUv1Z8VrGCKimjbO8r/w5ZQV6eT7Pm+DXzOyk3t/rgysyqa5eABh4jNW8W0IyC1Tp99Qeq/GDhSemd9ESLI5wDQCWOE0ic/bmSn78rVFeg494qGD3ecXVSEAEW9wACCJQJEGBxJ3hRgADLi11nznYJEGDZJc+4lgABljNuhOJt0ux7EhQsqQikOp8cUKu+FauvNmz06asZPuvNgiUlO6+7XZZPxx5TovbtyuKqdYECHZn9ljYFwve9+ijrRKX5WEnjjDvAmVUkvfmUkj5+M1RcyZEnq+j06l/G4cwZeK8qVmB5r+fMGIHKAgRY3A9eFCDA8mLXmbNdAgRYdskzLgGWg+6BpVP8Wvllxeqr5Mygeo4qW331y69+fTdbWrS4+v2tyqdhVlqdODBJfQ/2h4LJgII6deVUzSqq2PcqyefXtDYnsu+Vg/rv1FJSHrxaCYsXhMoruuBGlfQ+yqnlUpckAixuAwS8LUCA5e3+e3X2BFhe7TzztkOAAMsOdcYMCbACy/6boSin7M2DlVdfdTy5VNlJPn0zU9qwYefBldnjau+9Azq0t9SxY0Dl/wIv7+v9m+bosR32vbq3aV+d23Bv+ydOBc4WKC1R2lWD5AuUhurMv3Oigs1aO7tuj1dHgOXxG4Dpe16AAMvzt4AnAQiwPNl2Jm2TAAGWTfAMWyZAgGX/nbDkXb9WfV0RUgVSgvqigVRQuPP9rVJTg+rVI6A+vaXMzIqdrSoHWNXtezUwvb2eb8EKGvu77vwK/Et/U+r9V4QKDTZopPyHKh4ndP4MvFkhAZY3+86sESgXIMDiXvCiAAGWF7vOnO0SIMCyS55xCbAccA9Yq6/uTVCwtCKsmp8srUyqvjjzmGCfQ6TuBwaUVM32VeX/Ap+3blOVfa/aJWbo46yTlcG+Vw7ovPNLSPz0bSX/d0Ko0NID+qrw0jucX7jHKyTA8vgNwPQ9L0CA5flbwJMABFiebDuTtkmAAMsmeIYtE2AFln13QmlA+v7FBJUsrAiv8nzSF2mSdlh8tVfXgPoeIu3ZuWJT9+oqN/8CN/te9fnxrSr7Xv2vzSB1S2pi34QZ2VUCyS/cq8RZn4RqLjppmEoGnumqOXixWAIsL3adOSNQIUCAxd3gRQECLC92nTnbJUCAZZc84xJg2XQPFBT49N1sv+Z+K/Va51PlHa7mJUurtq++SkkOqkf3oA7tE1TjxhWPCe6qbPMv8FtXztIdq2aHHXZbk966uNG+Ns2YYd0okHbzufKtXxUqvWDEgwrs3d2NU/FUzQRYnmo3k0WgigABFjeFFwUIsLzYdeZslwABll3yjEuAFeN7YP0Gv76aIc3/0a+SElnBVdtiqVNxUGlBn3J90ldpUpOmQfU5JKie3QNK3smjhDsr/bfkjTp64buqHHcdlZalV1oOiPFsGc7VArlblH79kNAUgj6f8se9JyWnuHpaXiieAMsLXWaOCOxcgACLu8OLAgRYXuw6c7ZLgADLLnnGJcCKwT0QDEp/LPJrxrfSosU7f5tg2xKpSeugDhwQVJc9AzJvF6zpZ12gQEevmKwNpYWhU1snpOuTrJPVyJ9c08txvIcFEuZ/o5Qnb6kIsLI6K/+fT3tYxD1TJ8ByT6+oFIH6ECDAqg9Vrul0AQIsp3eI+uJJgAArnrrpwrmwB1b9NK24RJo7169vZvq0YePO06ikJKn7AQEd2jeopk0ie0ywuorNmaesfD9s36tE+fRO67+re0qz+pkkV41bgeR3XlDiB6+G5ldy2PEqOvuauJ1vPE2MACueuslcEKi5AAFWzc04w/0CBFju7yEzcI8AAZZ7ehWXlRJgRbetOTk+a7XV7Ll+FRbsPLjaIzOo3r2D6tUzqNSU2gdX5dWP3fyDHt78Q9hkxuzRS5dn7h/dCXK1uBfwr1uhpBfuU8LSX0NzLTrvepX0OSbu5x4PEyTAiocuMgcEai9AgFV7O850rwABlnt7R+XuEyDAcl/P4qpiAqzotHNZtk/ffOPTgl/9Mo8N7uzTsWPZ2wT32at2jwlWd91ZhWt16qr3Vfn9hIelttJrrQbu+DLD6EyWq8SFgG9brvzZi+RfuUi+7CXyrVwi/8o/5SsqqDK/glueU6B1h7iYd7xPggAr3jvM/BDYtQABFneIFwUIsLzYdeZslwABll3yjGsJEGDV/kYIlEo/LfBrxkyfVq7c+WqrxETpgP0D1tsEWzSv+2qryhWvKc3TsSveldn/qvyTldRAH7Q+UU38bLhd++7G15n+PxfKv3KJfCuWyr9ikfwrlsiXszmiSQZT05T/yLsRHctB9gsQYNnfAypAwE4BAiw79RnbLgECLLvkGdeLAgRYXuy6g+ZMgFXzZuTn+/Td937N/E7KNa8O3MmnUaOgDjlIOviggFJToxtcmSGzS3I1ePVUZZdsC1Vgton/fO+T1bmwcc0nxhnuFggGZR7/869Yaq2m8q1YbH1tvrfLZYG7mXXpX3qp8Kr73G3joeoJsDzUbKaKQDUCBFjcFl4UIMDyYteZs10CBFh2yTOuJUCAVbMbYdp0n776OmGXJ7VvG1TfPgF12zf6oVX5wMtKcnTKqqlaXZoXVsvtbQ7WLa0Poq81a6vrjvZt3WStoipbVbVIvlXLlLD0t6jMI5jWQIFWHRRo00Fq01GBfXqp1HzNxxUCBFiuaBNFIlBvAgRY9UbLhR0sQIDl4OZQWtwJEGDFXUvdNSECrMj6tW6tT6+96de6ddWvuErwS/vvH1C/vkG1bFF/wZWpdlHxVg1ZPVVrS/PDij8+vYP+95fjCSYja6krjvIVF1asqMo2gZVZVbVEvtwtda7fPBoYMAFVqw5SVicFWndUsHUHBRo3rfO1uYB9AgRY9tkzMgJOECDAckIXqCHWAgRYsRZnPC8LEGB5ufsOmDsB1q6bYDZk/+LrBH36mU+Byrukbz8tIyOo3gdLvQ8KKD2tfoMrM+TC4s0avGqqNgYKwwofmN5ez7Q4Uu2aphNgOeD31Y4l+PJypfwc+baZ/+XKZ77Oy7W+DuzwfZWWhk73r/qzzmFVMDlVgdbtFWzTQcHWnRTI6qxgq3YKNGnhQClKqqsAAVZdBTkfAXcLEGC5u39UXzsBAqzauXEWArURIMCqjRrnRE2AAGvnlOs3+PXmZJ9WVLNBuwmuBh4T1AH7VZNqRa074Rf6uXijTlv1gbYEisJ+cFJ6Jz3e4q9KkE/l/wKnr9Fvgi8/T8ozwVN5+JQjX36uZMKpbVutX62AygoD+35KAAAgAElEQVSkzPe3f523rU57UEU6k2BSStkKKhNUtelkfV3auoOCTVtGegmOiwMBAqw4aCJTQKAOAgRYdcDjVNcKEGC5tnUU7kIBAiwXNi2eSiboqNpNs+rq25l+TZvur7wYJnRg504BDTk1qIwG9b/iqnzQeUXrdcaqD5QTLAkreEhGZ41r9leVP9hIgLXr352+gnwrbDLBk7USKi9Hsr7OKQuhtn9tfd8EUtb/TBC1TdUuwbPhHwbBpGQFW7YLBVUBE1KZRwGbtpJ8O3+pgA2lMqQNAgRYNqAzJAIOEiDAclAzKCVmAgRYMaNmIAREgMVNYKsAAVY4/5YtPr3+pl/LsqsGASnJQQ08NqhePWK36spUN7torc5aNU3bdhNemWO9EGDVOoQyIZVLPsGMTAXTGyqY0VDBJq0UzOqogFlVZR79a9HWJbOgTDsECLDsUGdMBJwjQIDlnF5QSewECLBiZ81ICBBgcQ/YKkCAVcE/e45fH3zoV1Fx1ZZ07BDU4JMDysyM3aorU8U3BWt0zuppKlDFvkjm+2dldNUDzfqFVl6VV+yWAMtXmF+26smseDKrnax9obZ/nVv2mJ71aF7543rlK6HM9wLhFrb+BtrF4OZtfsH0RlKDDAXTzf8aWb+qQUOpQSMFza9pGdavVlhl/SxDwZSyfcz4IFAbAQKs2qhxDgLxI0CAFT+9ZCaRCxBgRW7FkQjUVYAAq66CnF8nAQIsKXebT2+85dPiJf4qlklJ0jH9Azrk4NiuujKFfJG/Suet+UhFCh/7gob76K6mfarteywDLCuEsjYn3/4IngmZQo/jlYdQ4eFUKLSqtFF5nW7gej7ZbIBeFj6ZcKmRZH1dFjgpoyKQCqY1LPtZeRiV1kDyV72f6rlcLo+ACLC4CRDwtgABlrf779XZE2B5tfPM2w4BAiw71BkzJOD1AGvefL+mfOBTYUHVRwazsoI6fUhAe8R41ZVpzvT8bA1b+4lKgpGHV+a8mgZYvqKC0NvwgpXejGc2Irf2irI2KDeroco2LLc2KS8PrUrC9+Ny6m+rYEJCxUqn7QFTWRBVFkiVBVHlK6AayoRR1uoo873ERKdOi7oQqFaAAIsbAwFvCxBgebv/Xp09AZZXO8+87RAgwLJDnTE9H2Bty/NZbxj8Y1HVVTIm7+h/VECH9gnYsif2B3nLdMnaT1Wi8McVhzfqppubHFzl7vUVF27fkDxXTZOKFMzdqk1rNlpvw1Pu1rI34pmvrbfkmVVSlb4ureZ5SSf+/vD5ZD2SZ1Y6mRDKeixv+0qo7aujykKn7d+v/HheSpoTZ0RNCNSLAAFWvbByUQRcI0CA5ZpWUWgUBQiwoojJpRDYjQABFreIrQJeXIG18He/3nrbp7z8qquu2rQOavApQTVvFttHBn0lRdbqpndyFuvy4p9VukNpo1YU6/rfN5SFUdajetsfzTNflxTZeg/VZHDrkbxQuGT2gcooW+kUekSvPJwKfzwvmJbOI3k1geZYzwoQYHm29UwcAUuAAIsbwYsCBFhe7DpztkuAAMsueca1BLwWYM35wa+336266sqfIB15RFB/7Vda61VXvpLiShuSV6xyMqufrL2frMfvtj+CF7ZBeY58xUV6bb9Ouuz4vgr6wtOrOz+doyu++8Uxd6z1WF355uOVV0SZrzPK94mqHE5tD6h4JM8xPaSQ+BUgwIrf3jIzBCIRIMCKRIlj4k2AACveOsp8nCxAgOXk7nigNi8FWN/O8uv9qVXDq5Ytgjrt1IBatAjKZ/Z1Cr35rnLYtH0/KPOGvNBeUTmq2DeqLISq7WfigV004tjeVcKrBz6apYvnLKztZXd+nnkkL73skbzqHr2r2BfKPLJX9lhe+UqpII/kRb8fXBGBKAkQYEUJkssg4FIBAiyXNo6y6yRAgFUnPk5GoEYCBFg14uLgaAvEZYBVWhpa6WRtOp6fq1/m5mrxT9uUXpqjtOAWpQVylR7IUauGOWqcXBZUWccWF0abeLfXe7bnXho1oOreVpGEVyZMCj2Sl95QqXs0li+jobYlpElmk/JKe0VVPK5nNipvoFovNdvtjDgAAQTsEiDAskuecRFwhgABljP6QBWxFSDAiq03o3lbgADL2/23ffaODbBMCGW99a5s5ZP52nob3vZAyvq1/Ovt4ZPK35JXVGC7a6QFjO/9F918ZM+ww30K6uGFOTpnc+L2N+RlSOWP6plNyhuU7Q9lrYoyO85X+tT0LYSR1slxCCDgDgECLHf0iSoRqC8BAqz6kuW6ThYgwHJyd6gt3gQIsOKtoy6bT70GWAGzEio3bN8nE0iVbUKeK5nH8fJyVBY8lR0XenyvMN9dkuWP5KVv33y8/A155o151gbl5lG9RgqmlX/dUI8krNYD+b/tEF5J45odriEZe9Zq/gRYtWLjJATiRoAAK25ayUQQqJUAAVat2DjJ5QIEWC5vIOW7SoAAy1Xtir9ioxVg+TdvkH/FYvmWL5Jv+R/yZy+Sf90KKRh0FVrokbztK5zM43nloZMabN+g3Ppe2d5RZY/lNVIwNb1Gj+TduXGWntr6c1TDK3MxAixX3W4Ui0DUBQiwok7KBRFwlQABlqvaRbFREiDAihIkl0EgAgECrAiQOKT+BGocYAUCSli9XL7sRfJlbw+qTGiVu6X+iqzhlYMJScpPaKitgYbK8zdSgS9Deb6GKklpqH0PzlBq07INya1VUdbb9LY/lmdWR+3wSF4Nh47o8I/zs3Xemo+rHDu++RE6pUGniK6xs4MIsOrEx8kIuF6AAMv1LWQCCNRJgACrTnyc7FIBAiyXNo6yXSlAgOXKtsVP0bsKsHyF+VZQ5d++qiohe7F8K5fKV1L7t+1FLOf3WxuNB83qJrPKyQqatq+AMuFTRsUjeWYllM9aEZWh0tSGeuXNNP2xKPxtg5mZQV14fkCNM+1ZEbY5UKQntszXC1t/VX6wpArDUy2O0AnpdQuvzEUJsCK+wzgQgbgUIMCKy7YyKQQiFiDAipiKA+NIgAArjprJVBwvQIDl+BbFd4HlAZZv41olmHBq2UL5/1wo34ql8m9YVefJh70lz4ROJmjavidU2CN51t5RDba/UW/7MTUcvbhEmvSqX4uXhIdXTZoEdeF5ATVsGPvwamugSBO2/KiXtv6i3GqCq0T59HSLIzUwvX0NZ1v94QRYUWHkIgi4VoAAy7Wto3AEoiJAgBUVRi7iMgECLJc1jHJdLUCA5er2ub/4NZ9/puTn75avoO6bpgdat1eg7Z4Ktutq/Rpo10XBjEYRIxUVS0WFPuUX+FRYGFRRkflaKiiQCgvNr0EVWD+TCgrLvlda6gtdPydX2rix4v+bH7RuGdT55waUlhbb8GpjoFDjN8/XxJzfql1xZWpr4EuUeWzwmPR2ERvt7kACrN0J8XME4luAACu++8vsENidAAHW7oT4eTwKEGDFY1eZk1MFCLCc2hmP1LV61hylPnhVjWZrVlUFsjor2M6EVV1UmrWn8pt2Un4guSJcKvCpoDCowkKfCgtMEBVQYZGvLIwyoZT5vgmhzNdFJozyKRCoURm7PbhtVlDnnhNQakrswivzqOCEzfP0Us5vyqtmxZUpurE/WRdldtNFDfdVQ3/SbudRkwMIsGqixbEIxJ8AAVb89ZQZIVATAQKsmmhxbLwIEGDFSyeZhxsECLDc0KU4rnHlyo1KH3HiTmdYkNZUmxt11oaMLlqbvpdWJ++ptb4sawVUeQhlVko57dO5U0BnnxlQUmJsKjPB1fjN8/TyLoKrZv5UXZK5n85vtI/SffVTGAFWbPrNKAg4VYAAy6mdoS4EYiNAgBUbZ0ZxlgABlrP6QTXxLUCAFd/9dfzsLrq6WDesPVtNSldrbWI7rUzqolVJXbUisYtWJu2pXH9jx89hxwL32TugoUMC8ifErvTe2a9rRcm2agds7k/VlXscoHMa7q0U1W9RBFix6zkjIeBEAQIsJ3aFmhCInQABVuysGck5AgRYzukFlcS/AAFW/PfY0TM0AVbzkmxtTmihYl+y7bWmJAeVkiqlpEipKebXoFJTfEpOCSot1fzMbz0SWPHz8mPKzklJDcZs1VVlrKe2/qQ7N84O82ub2EBXZB6gMzO6KtEXvrF8fUETYNWXLNdFwB0CBFju6BNVIlBfAgRY9SXLdZ0sQIDl5O5QW7wJEGDFW0ddNp9LRhartLTuRZtH9UzIlGpCphRflZDJCp1SfUpL3X5cik8mrLJCKut7JrCK3V5VdZ9x+BUKVapey/6jTYEidUpsZK24GpzeOWbBVXk1BFjR7izXQ8BdAgRY7uoX1SIQbQECrGiLcj03CBBguaFL1BgvAgRY8dJJl85jxE1FVoCVmlwWJJWtbApagZIJm8yqp+Rkv7USyvpZqvlf2c+t8ClZSk93b/AUzba9tW2xzG5gpzToHM3L1uhaBFg14uJgBOJOgAAr7lrKhBCokQABVo24ODhOBAiw4qSRTMMVAgRYrmhT/Ba5ckN+/E7OgzMjwPJg05kyApUECLC4HRDwtgABlrf779XZE2B5tfPM2w4BAiw71BkzJECAFV83AwFWfPWT2SBQUwECrJqKcTwC8SVAgBVf/WQ2kQkQYEXmxFEIREOAACsailyj1gIEWLWmc+SJBFiObAtFIRAzAQKsmFEzEAKOFCDAcmRbKKqeBQiw6hmYyyNQSYAAi9vBVgECLFv5oz44AVbUSbkgAq4SIMByVbsoFoGoCxBgRZ2UC7pAgADLBU2ixLgRIMCKm1Y6YyKTp36pN6Z8rj+WrlBpaak6tG2lkwceprNO6a+EBH+VIgmwnNG3aFVBgBUtSa6DgDsFCLDc2TeqRiBaAgRY0ZLkOm4SIMByU7eo1e0CBFhu76CD6r/xnmf17rSvlZSYoB77d1VSYqLmLVik3G35Oqz3/ppw7wglJiSEVUyA5aAGRqEUAqwoIHIJBFwsQIDl4uZROgJRECDAigIil3CdAAGW61pGwS4WIMBycfOcVLoJrkyA1bl9az3z0PVq3aKJVV5efoFG3DJeX8/6SVcOO1XDzz2RAMtJjYtyLQRYUQblcgi4TIAAy2UNo1wEoixAgBVlUC7nCgECLFe0iSLjRIAAK04aafc0Tr7gn/p9SbYmTfinunfrElbOpi05Ovq0kUpKStTnbz2q1JTk0M9ZgWV356I7PgFWdD25GgJuEyDAclvHqBeB6AoQYEXXk6u5Q4AAyx19osr4ECDAio8+2jqLlavXa8DQ69Q+q4WmTnqg2lpG3jZBH342S4/ffbWO6teDAMvWjtXf4ARY9WfLlRFwgwABlhu6RI0I1J8AAVb92XJl5woQYDm3N1QWfwIEWPHX05jPaPqXc3TVzY9p0IC+uv+mS6od/+XXP9QDE17VxWcP0oiLhxBgxbxLsRmQACs2zoyCgFMFCLCc2hnqQiA2AgRYsXFmFGcJEGA5qx9UE98CBFjx3d+YzO6l/3ygB598TZf84wRddeHgasf8+MvvdfXNj+vYvx2ssbddHjqmsDgQkxoZJDYCKUllb5qkr7HxZhQEnCaQmOBTgt+nktKASvnHu9PaQz0I1LuA3yclJfoVCAZVXBKs9/EYAAEnCJT/+dcJtVADAvEuQIAV7x2OwfzGvzBZT058R9cNP0MXDD2u2hFnzv1Fw665X3167avnHx4Vg6oYAgEEEEAAAQQQQAABBBBAAAEE4kWAACteOmnjPB5+6r964bX3deOVZ+ucwQOqrWTuT7/rnCvuVo/9uupf42+ysVqGRgABBBBAAAEEEEAAAQQQQAABtwkQYLmtYw6st0YrsHruq+fHsgLLgW2kJAQQQAABBBBAAAEEEEAAAQQcK0CA5djWuKewia9/qPsnvBrRHlj9D++lR++8MjS5DVuL3DNRKt2tQNNGydYx9HW3VByAQFwKZKQmKCU5Qbn5JeyFF5cdZlII7FrA7IOX2SBJJaVBbdlWDBcCnhAo//OvJybLJBGwWYAAy+YGxMPwn38zT5fd+EhEbyEcNvR4XTv89NC0V27IjwcC5rBdgLcQcisg4G0B3kLo7f4zewR4CyH3gBcFeAuhF7vOnO0SIMCySz6Oxl2/cYuOOPVqtc9qoamTHqh2ZiNvm6APP5ulh265VMcddQgBVhz1v/JUCLDitLFMC4EIBQiwIoTiMATiVIAAK04by7R2KUCAxQ2CQOwECLBiZx3XI5kN2s1G7ZMm/FPdu3UJm+umLTk6+rSR1iuVv5j8mBplpBNgxendQIAVp41lWghEKECAFSEUhyEQpwIEWHHaWKZFgMU9gIBDBAiwHNIIt5fx5cz5Gj56rDq3b61nHrperVs0saaUl1+ga26doK+++1Fnn9pfY646J2yqPELo9s6H10+AFV/9ZDYI1FSAAKumYhyPQHwJEGDFVz+ZTWQCrMCKzImjEIiGAAFWNBS5hiXw0FP/0YuvTVVSUqJ67NdFyUlJmrdgkXJy87TvXh318qM3Kj0tBS0EEEAAAQQQQAABBBBAAAEEEECgRgIEWDXi4uDdCZh9rv715kf6bdEylZYGlNW6uY4/6hBdMPQ4pSQn7e50fo4AAggggAACCCCAAAIIIIAAAghUESDA4qZAAAEEEEAAAQQQQAABBBBAAAEEEHC0AAGWo9tDcQgggAACCCCAAAIIIIAAAggggAACBFjcAwgggAACCCCAAAIIIIAAAggggAACjhYgwHJ0eygOAQQQQAABBBBAAAEEEEAAAQQQQIAAi3sAAQQQQAABBBBAAAEEEEAAAQQQQMDRAgRYjm4PxSGAAAIIIIAAAggggAACCCCAAAIIEGBxDyCAAAIIIIAAAggggAACCCCAAAIIOFqAAMvR7aE4BJwh8OMvi/Wfdz/VrB9+1Zr1m5SUmKBO7Vvr+KP66OxT+yspKbFKoa+8MU33jf/3LicwddL9ap/V0hmTpAoEENipwOJlq/TmlM/17ZwFyl61TvkFhcps2EDd9u6oIYP+pv6H99rpubPn/aaX/vOBfvj5D+Xm5atlsz109GE9dcm5J1rX4IMAAs4X2LwlV2++/4W+nDlfvy/JVk5untJSU7RnhzYaeGRvDT3pKCUnJ1WZyJX/fEyffDVnpxNs0ayxPn1jnPMBqBABBBBAwBECBFiOaANFIOBMAfMH1Dsfmaj/Tf/WKrBrp7Zq16a5Nm/dpgULl6qgsEgH7runnnt4lNLTUsIm8ehzb+qZf71nBV0ZDdKqneC4O65Qq+ZNnDl5qkIAAUvg7kdf0b8nT7e+bt2iibp0ylJSYqKWr1xn/UXWfM446Sjdcs25VcTemPK5bn3oRev7Juxqukemfl+8XKvWbrSu9e8nbpH5CywfBBBwrsA7H36tOx95WfkFRWqUka59urZXo4wGWr9xi378dbFKSwPab+9OenHcaKWnpYZN5Jwr7tbcn37X/vt0kny+KpNsukcjTbhnhHMnT2UIIIAAAo4SIMByVDsoBgFnCWzNzdPp/3ebunZuq5H/d5oVRpV/Vq/bqEtHj9XCxdm65B8n6KoLB4cVf9tDL+n1KZ/ptSdv0f5/6eysiVENAghELGDCq3kL/tAFZxynfbq0Dzvv2+8X6PIx46ww+6VxN+jg7vuEfr585VoN+seNSkxM0FP3jwz9LBgMavyLk/XUxHfVp+e+en7sqIhr4UAEEIi9wI+/LtG4Z17X+WcM1KEH7aeEBH+oiBWr1+v/rn9IS5ev1uXnn6zLzj85rMDjzxmt1Ws3as60Z2NfOCMigAACCMSdAAFW3LWUCSEQXYEtW7cps1H1j/l8N/dXXXDNfercvrXem3hv2MDljw189NpDatOqWXSL4moIIOAYgdvHvqz/vvupLjvvJF1+wSmhuu557F+a9NbHGnHxEF189qCwek2Ideald8j8xXjShH+qe7cujpkPhSCAQM0Epn4yU9fd8aQOOnBvvfzojWEn9xl0mRpmpMv8WYAPAggggAACdRUgwKqrIOcj4GGBLTnbdOgJl1sB14x3J4RJlD82YP6ra0o1+2J4mI2pIxBXAmOf/q+ef/V9XX/pUGuFRvlnwNDrtHL1en3y+iNq2XyPKnN+9e3pumvcKzr3tGM1+vIz48qEySDgJYEvZ/6o4aMf1hF9D9QT914TmnpxSam697/QWoVtVmPzQQABBBBAoK4CBFh1FeR8BDwssGzFGh139mj9pWsHvfHs7WES5rEBsz/Gd+8/5WEhpo5AfAuYx4xPvfBm6xEh88+A8kcMzff7DrrMCq5MgFXd55ff/9SQi2+1Vl+ZVVh8EEDAfQJmNeVVNz9ubdQ+5qpzrBe7lH/Wbdisvw0eoSMP7aHx91ztvslRMQIIIICA4wQIsBzXEgpCwD0C5s1iDz75mvV4kHlMqPLHPDZg9sk4//SB1obNBQWF1mbuXTq11VH9eqhZk0z3TJRKEUAgJGD2u1q7fpO+nvWT9XbBVWs36NrhZ+i8044NHfPzb0t1+iW3qef+XfXK4zdVq1e+gnOPzIb66p3HEUYAAZcIlJSWat2GLfr5tyV6+b8fas6PC3Xs3w7WgzdfGrY/1q9/LNPgi26xXvbS96Bu2rBxq8y5jTMzrE3fj+zXgxXaLuk5ZSKAAAJOESDAckonqAMBlwls2pKjE84do7z8Ak2d9EDYI0Lmv8j2PeFy6zXb1X2SEhN06XknW5u/80EAAXcIlD8qWLla85fWS887yXpDaeXPzLm/aNg19+uvfQ7Uk/dVPFJU+Rjzz4n9jrzA+gvv/OkvuAOBKhHwsED5o4KVCczbRa+44BTr9/qOn59+W6Khw++Q+b1e3adJ44a6a/RF1qOHfBBAAAEEEIhEgAArEiWOQQCBMAGzr4XZ78K8gezGK8/WOYMHVBEyjw78sWSFOrZvLfOHVPMxbyv6+IvZenbSFOXlF1a7uTPUCCDgTIEpH32jj7/8XqWlpTKrp8zvb/OreUnD1RcN1qD+fUOFfzlzvoaPHqujD++px+68aqcTOvDoC60VGfOmP6/EhARnTpyqEEDAEjArqszbQwPBgLblFejP5autFdZmk/ahJx2lK4adUuX38W+Lllv/oat9Vktrv8zCwmL9sXSF3nr/C70x5XMrwH7xkRvU64C9UEYAAQQQQGC3AgRYuyXiAAQQqCwQCAR1/Z1P6oNPv9Mpxx2uu0ZfWGOg8tUZZnN38+hQelpqja/BCQggYK+A+WfBZ9/8oFsffEEbN+fo8buvth4PNh9WYNnbG0ZHIFYCZi+72x9+yXqjaE1fyDD+hcl6cuI76rn/Xnrl8TGxKplxEEAAAQRcLECA5eLmUToCsRYwf2Edc9+zem/aDB11WE89cvvltV41YTZvNn/wfX7sKPXpuW+sp8J4CCAQJYGvvvtRl4x6WHt1bqvJL9xlXbV875tI9sDKbNhAM94Lf4tplErjMgggEAOBzVtyNWDotTL7430x+TGZfe0i+ZhtBsx2A+Yz96PnZLYX4IMAAggggMCuBAiwuD8QQCAigdLSgMbc+6ymfPyN+h/eSw/delmd/rB59c2PW48jPXrnldb1+CCAgDsFTLDdfcCF8smn76c9Y4Xa5pGhg48bHtFbCPffp5Nee+pWd06eqhFAwBIwe96ZlZcvjbtBB3ffJ2KVQ0+43HoU2YTYJszmgwACCCCAAAEW9wACCNRJwOxRM+rOp/XhZ99Z+9zcfeNFtV55VV7IOVfcrbk//a5JE/6p7t261Kk+TkYAAfsEioqK1eOYi+Xz+TTv4+dDbyE78bwxWvTnSn3y+iNhL3kor/TVt6frrnGv6PQTj9StI8+zbwKMjAACdRY4+/K79MPPf1j7WfXuEVmAVVhUrIOPu0R+v19zpz1r/TOEDwIIIIAAAgRY3AMIIFBrAbNh+7W3T9D0L+doyKAjdOvI8+X31+0PmctWrNGgc29Uakqyvn5nvJKSEmtdHycigIC9Ah99MVsjbhmvfbq015vP3REq5tHn3tQz/3pvpy9rGDr8dmvfnKfuH6nDDznA3kkwOgII1FrAvLRlwNDrrBc8fDn5cTXOzIjoWm9/8JVuuu85HdZ7fz39wLURncNBCCCAAALeFuARQm/3n9kjsEsBs7JixK3j9fk38/SPIcfohivOikjssxk/WG8ZPLJfD6WlJoedYx4xMBu+/pm9RiMvOV0Xnnl8RNfkIAQQiL3AmnWb9PJ/P9AJxxyqv3TtUKUA8ybS6+54Upu25OjeMRfrxGP6hY7ZsGmrBp41SoFAwAqpyh8rCgaDGv/iZOttZmbfrLeev5OVF7FvLSMiELHAAxNeVd+D9tOhB3ULrbAsP9n8u3z0XU9ZYfSOL3aZ9NZH2qtzO/U6YO+w//BltiQw4dV94ydZ+2ZNfGyMeuzXNeJ6OBABBBBAwLsCBFje7T0zR2C3AuOefUPPTppiHdexXatdHt+3Vzf9c8Q/rGMmvv6h7p/wqrWyqkvHLLVo1th6dfaylWu1cvV665izTjlaY646h7+47rYLHICAfQJmteRxZ4+2CmjZfA/r93Ojhg1UUFCkhYuXa8Xq9dbv4Uv+cYKuHHZqlULNys2Rt02QeQy5294d1axJphYuztaqNRus/W7Mm8f27Jhl3wQZGQEEditw5JARWrt+sxpmpFuhs/l9bPa+W75yrfXCBvMxqygfuf2KsP9odeVNj+qTr+cqo0GaunZqq8aNMrR5a66WLl9thd7mTcS3X3eBFZDzQQABBBBAIBIBAqxIlDgGAY8KmP1pzD41kXyO6tdDj999tXWo+YPpq29/ohmzftKS5atk3jSUkJCg5k0yrf/Kava86XXAXpFclmMQQMBGAbNSwjwiOO3z2fpjSbY2bs7R1txt1l8827Rqpp7776XTT/hbtauzystesHCpnn7lPX0/f6Fyt+WpWdPG1l92h//jxGr3xrJxugyNAALVCMz58Xe999EMzV+wSGZl5eYtOda+VSbI2m+fzho0oK/MnwF2/CxauhLmnyUAABV8SURBVML6s8D383+zwu78gkJr6wDzzw7zH73OOqW/2me1wBwBBBBAAIGIBQiwIqbiQAQQQAABBBBAAAEEEEAAAQQQQAABOwQIsOxQZ0wEEEAAAQQQQAABBBBAAAEEEEAAgYgFCLAipuJABBBAAAEEEEAAAQQQQAABBBBAAAE7BAiw7FBnTAQQQAABBBBAAAEEEEAAAQQQQACBiAUIsCKm4kAEEEAAAQQQQAABBBBAAAEEEEAAATsECLDsUGdMBBBAAAEEEEAAAQQQQAABBBBAAIGIBQiwIqbiQAQQQAABBBBAAAEEEEAAAQQQQAABOwQIsOxQZ0wEEEAAAQQQQAABBBBAAAEEEEAAgYgFCLAipuJABBBAAAEEEEAAAQQQQAABBBBAAAE7BAiw7FBnTAQQQAABBBBAAAEEEEAAAQQQQACBiAUIsCKm4kAEEEAAAQQQQAABBBBAAAEEEEAAATsECLDsUGdMBBBAAAEEEEAAAQQQQAABBBBAAIGIBQiwIqbiQAQQQAABBBBAAAEEEEAAAQQQQAABOwQIsOxQZ0wEEEAAAQQQQAABBBBAAAEEEEAAgYgFCLAipuJABBBAAAEEEEAAAQQQQAABBBBAAAE7BAiw7FBnTAQQQAABBBBAAAEEEEAAAQQQQACBiAUIsCKm4kAEEEAAAQQQQAABBBBAAAEEEEAAATsECLDsUGdMBBBAAAEEEEAAAQQQQAABBBBAAIGIBQiwIqbiQAQQQAABBBBAAAEEEEAAAQQQQAABOwQIsOxQZ0wEEEAAAQQQQAABBBBAAAEEEEAAgYgFCLAipuJABBBAAAEEEEAAAQQQQAABBBBAAAE7BAiw7FBnTAQQQAABBBBAAAEEEEAAAQQQQACBiAUIsCKm4kAEEEAAAQQQQAABBBBAAAEEEEAAATsECLDsUGdMBBBAAAEEEEAAAQQQQAABBBBAAIGIBQiwIqbiQAQQQAABBBBAAAEEEEAAAQQQQAABOwQIsOxQZ0wEEEAAAQQQQAABBBBAAAEEEEAAgYgFCLAipuJABBBAAAEEEEAAAQQQQAABBBBAAAE7BAiw7FBnTAQQQAABBBBAAAEEEEAAAQQQQACBiAUIsCKm4kAEEEAAAQQQQAABBBBAAAEEEEAAATsECLDsUGdMBBBAAAEEEEAAAQQQQAABBBBAAIGIBQiwIqbiQAQQQAABBBBAAAEEEEAAAQQQQAABOwQIsOxQZ0wEEEAAAQQQQAABBBBAAAEEEEAAgYgFCLAipuJABBBAAAEEEEAAAQQQQAABBBBAAAE7BAiw7FBnTAQQQAABBBBAAAEEEEAAAQQQQACBiAUIsCKm4kAEEEAAAQQQQAABBBBAAAEEEEAAATsECLDsUGdMBBBAAAEEEEAAAQQQQAABBBBAAIGIBQiwIqbiQAQQQAABBBBAAAEEEEAAAQQQQAABOwQIsOxQZ0wEEEAAAQQQQAABBBBAAAEEEEAAgYgFCLAipuJABBBAAAEEEEAAAQQQQAABBBBAAAE7BAiw7FBnTAQQQAABBBBAAAEEEEAAAQQQQACBiAUIsCKm4kAEEEAAAQQQQAABBBBAAAEEEEAAATsECLDsUGdMBBBAAAEEEEAAAQQQQAABBBBAAIGIBQiwIqbiQAQQQAABBBCob4HV6zZq6vSZmjH7Zy1cvFybt+QqKSlBbVo20+GHHKBhZx6vpns02mkZUz+ZqclTv9SChX9qS06uAoFgtcdmNmqgGe9OqPKzuT/9rn9P/ljfz1+ojZu2Kj0tVXt3aacTj+ln/S8hwV/fBFwfAQQQQAABBBBAoBoBAixuCwQQQAABBBBwhIAJr44der1KSkutekx4tEdmhjZs2qqCwiLre82bNtZrT92iVs2bhNVsgqpRdz0lE2CZzz5d2iurdTOtXbdJC37/U6WlAev7iQkJatF8D+3Vua0m3DMi7BqPPPO6nvv3/0LH7dG4oXJy80Jj9+m5rx676yo1SE91hBdFIIAAAggggAACXhIgwPJSt5krAggggAACDhe44Z5n1Klda/U/vKc6d2gjn8+nYDCoz7+Zp9F3P63cbfk65bjDddfoC8Nm8u/J03X3o68oJTlJT94/Uof0+Evo57/+sUyXjHpY6zdu0Q1XnKV/DDmmisJL//1ADz7xmnX+9ZcN1ckDD1daarIVfH3+zQ+6+cEXrNVgfz+6jx64ebjDFSkPAQQQQAABBBCIPwECrPjrKTNCAAEEEEAgLgWenTRF4559Q82aZOrztx4Nm+OpF96s3xYt18VnD9KIi4dUmf9r73yiOx+ZqKxWzTTttYfCfm5WePU/41oVFRXrjuuHafDf/1rl/A8/+04jb3vC+v6bz91hrfDigwACCCCAAAIIIBA7AQKs2FkzEgIIIIAAAgjUQcDsS3XuVfdYV5g3/XnrcUDzMSu0Djh6mLXf1RP3XqMj+h5YZZQFC5fqtP+7zfr+1++MV+PMjNAxL7z2vh5+6r/q0Lal3v/X/Tut8IhTr7ZWcV167km6YtgpdZgJpyKAAAIIIIAAAgjUVIAAq6ZiHI8AAggggAACtggsXrZKJ5x7ozX2rKlPWXtkmY/ZM6t7/4usIOv5saNk9qra8fPHkhU66YKbrG9/MfmxsI3gh48eqy9nzteQQUfo9usu2OncTHhmQrT+h/fSo3deaYsBgyKAAAIIIIAAAl4VIMDyaueZNwIIIIAAAg4UMI8BTvnoG5m3AS5fudbaRL2wqLhKpZUDLPPDgWeNso6/dvjpGjb0+CrHT/n4G42+62ntkdlQX779mLW3Vvnn+HNG68/sNRFr9O6xj1585IaIj+dABBBAAAEEEEAAgboLEGDV3ZArIIAAAggggEAdBczqqXsfn6RJb31sXcnsc3Vgtz2ttw2mJCfL5E1rN2zWe9NmWD/fMcB6+pX39Njzb6pRRromPj5GXTu1DVW0Zt0mnT/iPi1bsabaPbLKHw1s0ayxFXDt7tNt7066c9Sw3R3GzxFAAAEEEEAAAQSiKECAFUVMLoUAAggggAACtRN45Y1pum/8v62VUbeMPE9D/n6E/P6KVVLmqvMWLNJZl91ZbYBlNmC/8NoHNOfH35WQ4NchPfa1Nmw3e1bNnLtAefmFOvSg/TThnquVnJwUVmT56q2rLhysS/5xQu0mwFkIIIAAAggggAAC9SpAgFWvvFwcAQQQQAABBCIRMPtTmX2qBg3oq/tvuqTaU76e9ZP+7/qyNwjuuALLfK+4uETnXn2v5i9YpAbpqSooLFKDtFTt07W9Tjymn0469rAqoZg5b9g192vm3F/096P76IGbh0dSLscggAACCCCAAAIIxFiAACvG4AyHAAIIIIAAAlUFDj5uuPLyC3T9pUN1/hkDqyV64uV3NOHFyTsNsO58ZKJee+eTXV6jugs/NfFdPf7CW9bjh9Nff0TpaSm0CAEEEEAAAQQQQMBhAgRYDmsI5SCAAAIIIOBFgf6nj9SqtRt1xklH6ZZrzq1CsG7DZp0y7GZt2pJTbYC1YvV6HTP0OrVt3VwfvvpgjQjNtQcMvc5awbWz8Wt0QQ5GAAEEEEAAAQQQiLoAAVbUSbkgAggggAACCNRU4JYHX9Cb//tCSUmJGnvrZTrqsJ7WJUpKS/X1dz/pnsf+pdJAQKvWbKg2wDKPH5rHEFNTkjXhnhE6YN/Oob2ufPJZ+2Lt6lO+B5c5xox98Vl/l9ms3ZyXuy1fq9dutB4z/OTrObpvzP+pedPGNZ0ixyOAAAIIIIAAAgjUQYAAqw54nIoAAggggAAC0REwbwoceuntWrt+s3VBs4eVeSOgWR1VWFSs9lkt9dK4GzTk4lu0cXNOtXtgXT5mnD6b8UO1BZmN2ztktdSAv/bS+WccZ11/x88Lr72vR555XYFA0PqR2VDeBGpmg/jKn+mvj7XejsgHAQQQQAABBBBAIHYCBFixs2YkBBBAAAEEENiFgHljoNmP6otv58kEWiZ0atu6mY4+rJeGnXm8tTeV2cTdbOa+4ybuvy/J1sTXp+mt97/YrfGeHdro1SdvqTbEWrZijSa99bG+nbNAK1dvUEFhoVJTUtSmVVN179ZFA/56kPodvJ8VbvFBAAEEEEAAAQQQiJ0AAVbsrBkJAQQQQAABBOpB4MuZP+rqmx9TWlqKrht+hvodvL+aN80MhUzmMcSNm3I0Y/ZPun3sy9aKqhEXD9HFZw+qh2q4JAIIIIAAAggggEB9CBBg1Ycq10QAAQQQQACBmAiUlgbU/4yR1qOHj991VWjvrJ0Nfte4V/Tq29N15KE9NP6eq2NSI4MggAACCCCAAAII1F2AAKvuhlwBAQQQQAABBGwSWLJslQade6M1+vcfPmNt4r6rz/gXJuvJie9YjwKOu+MKm6pmWAQQQAABBBBAAIGaChBg1VSM4xFAAAEEEEDAMQJ/Zq/R8eeMtur5/K1H1axJ5k5rM5vBD77oFpnQ65r/O00XnfV3x8yDQhBAAAEEEEAAAQR2LUCAxR2CAAIIIIAAAq4WOPG8MVr050r1PaibbrnmPLXPahE2H/NWwTk/LtRDT/1HP/6yWC2aNdbbL9ytzEYNXD1vikcAAQQQQAABBLwkQIDlpW4zVwQQQAABBOJQ4Nc/lumSUQ/LvMXQfDq1b21t4p6YkKic3G1amr1GObl51s/26txWY2+73DqGDwIIIIAAAggggIB7BAiw3NMrKkUAAQQQQACBnQhszc3Tf9/9VF98O0+L/1xlBVY+n5Selqo2rZpp37066Mh+PfS3vt1DbycEEwEEEEAAAQQQQMA9AgRY7ukVlSKAAAIIIIAAAggggAACCCCAAAKeFCDA8mTbmTQCCCCAAAIIIIAAAggggAACCCDgHgECLPf0ikoRQAABBBBAAAEEEEAAAQQQQAABTwoQYHmy7UwaAQQQQAABBBBAAAEEEEAAAQQQcI8AAZZ7ekWlCCCAAAIIIIAAAggggAACCCCAgCcFCLA82XYmjQACCCCAAAIIIIAAAggggAACCLhHgADLPb2iUgQQQAABBBBAAAEEEEAAAQQQQMCTAgRYnmw7k0YAAQQQQAABBBBAAAEEEEAAAQTcI0CA5Z5eUSkCCCCAAAIIIIAAAggggAACCCDgSQECLE+2nUkjgAACCCCAAAIIIIAAAggggAAC7hEgwHJPr6gUAQQQQAABBBBAAAEEEEAAAQQQ8KQAAZYn286kEUAAAQQQQAABBBBAAAEEEEAAAfcIEGC5p1dUigACCCCAAAIIIIAAAggggAACCHhSgADLk21n0ggggAACCCCAAAIIIIAAAggggIB7BAiw3NMrKkUAAQQQQAABBBBAAAEEEEAAAQQ8KUCA5cm2M2kEEEAAAQQQQAABBBBAAAEEEEDAPQIEWO7pFZUigAACCCCAAAIIIIAAAggggAACnhQgwPJk25k0AggggAACCCCAAAIIIIAAAggg4B4BAiz39IpKEUAAAQQQQAABBBBAAAEEEEAAAU8KEGB5su1MGgEEEEAAAQQQQAABBBBAAAEEEHCPAAGWe3pFpQgggAACCCCAAAIIIIAAAggggIAnBQiwPNl2Jo0AAggggAACCCCAAAIIIIAAAgi4R4AAyz29olIEEEAAAQQQQAABBBBAAAEEEEDAkwIEWJ5sO5NGAAEEEEAAAQQQQAABBBBAAAEE3CNAgOWeXlEpAggggAACCCCAAAIIIIAAAggg4EkBAixPtp1JI4AAAggggAACCCCAAAIIIIAAAu4RIMByT6+oFAEEEEAAAQQQQAABBBBAAAEEEPCkAAGWJ9vOpBFAAAEEEEAAAQQQQAABBBBAAAH3CBBguadXVIoAAggggAACCCCAAAIIIIAAAgh4UoAAy5NtZ9IIIIAAAggggAACCCCAAAIIIICAewQIsNzTKypFAAEEEEAAAQQQQAABBBBAAAEEPClAgOXJtjNpBBBAAAEEEEAAAQQQQAABBBBAwD0CBFju6RWVIoAAAggggAACCCCAAAIIIIAAAp4UIMDyZNuZNAIIIIAAAggggAACCCCAAAIIIOAeAQIs9/SKShFAAAEEEEAAAQQQQAABBBBAAAFPChBgebLtTBoBBBBAAAEEEEAAAQQQQAABBBBwjwABlnt6RaUIIIAAAggggAACCCCAAAIIIICAJwUIsDzZdiaNAAIIIIAAAggggAACCCCAAAIIuEeAAMs9vaJSBBBAAAEEEEAAAQQQQAABBBBAwJMCBFiebDuTRgABBBBAAAEEEEAAAQQQQAABBNwjQIDlnl5RKQIIIIAAAggggAACCCCAAAIIIOBJAQIsT7adSSOAAAIIIIAAAggggAACCCCAAALuESDAck+vqBQBBBBAAAEEEEAAAQQQQAABBBDwpAABlifbzqQRQAABBBBAAAEEEEAAAQQQQAAB9wgQYLmnV1SKAAIIIIAAAggggAACCCCAAAIIeFKAAMuTbWfSCCCAAAIIIIAAAggggAACCCCAgHsECLDc0ysqRQABBBBAAAEEEEAAAQQQQAABBDwpQIDlybYzaQQQQAABBBBAAAEEEEAAAQQQQMA9AgRY7ukVlSKAAAIIIIAAAggggAACCCCAAAKeFCDA8mTbmTQCCCCAAAIIIIAAAggggAACCCDgHgECLPf0ikoRQAABBBBAAAEEEEAAAQQQQAABTwoQYHmy7UwaAQQQQAABBBBAAAEEEEAAAQQQcI8AAZZ7ekWlCCCAAAIIIIAAAggggAACCCCAgCcFCLA82XYmjQACCCCAAAIIIIAAAggggAACCLhHgADLPb2iUgQQQAABBBBAAAEEEEAAAQQQQMCTAgRYnmw7k0YAAQQQQAABBBBAAAEEEEAAAQTcI0CA5Z5eUSkCCCCAAAIIIIAAAggggAACCCDgSQECLE+2nUkjgAACCCCAAAIIIIAAAggggAAC7hEgwHJPr6gUAQQQQAABBBBAAAEEEEAAAQQQ8KQAAZYn286kEUAAAQQQQAABBBBAAAEEEEAAAfcIEGC5p1dUigACCCCAAAIIIIAAAggggAACCHhSgADLk21n0ggggAACCCCAAAIIIIAAAggggIB7BAiw3NMrKkUAAQQQQAABBBBAAAEEEEAAAQQ8KUCA5cm2M2kEEEAAAQQQQAABBBBAAAEEEEDAPQIEWO7pFZUigAACCCCAAAIIIIAAAggggAACnhQgwPJk25k0AggggAACCCCAAAIIIIAAAggg4B4BAiz39IpKEUAAAQQQQAABBBBAAAEEEEAAAU8KEGB5su1MGgEEEEAAAQQQQAABBBBAAAEEEHCPAAGWe3pFpQgggAACCCCAAAIIIIAAAggggIAnBQiwPNl2Jo0AAggggAACCCCAAAIIIIAAAgi4R+D/AaFyf8VwcN67AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdB3RUxR7H8d+WNHrv0rEgKCBFERtFBREEpSgWRFCwoKJYELGioiBdkWZB7Agqz0axgCKCBbGhAorU0FtI29135mICIQnZJLvZu7vfe8477z1y79yZz3/gyM+ZuQ6fz+cTFwIIIIAAAggggAACCCCAAAIIIIAAAjYVcBBg2bQydAsBBBBAAAEEEEAAAQQQQAABBBBAwBIgwGIiIIAAAggggAACCCCAAAIIIIAAAgjYWoAAy9bloXMIIIAAAggggAACCCCAAAIIIIAAAgRYzAEEEEAAAQQQQAABBBBAAAEEEEAAAVsLEGDZujx0DgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFuXh84hgAACCCCAAAIIIIAAAggggAACCBBgMQcQQAABBBBAAAEEEEAAAQQQQAABBGwtQIBl6/LQOQQQQAABBBBAAAEEEEAAAQQQQAABAizmAAIIIIAAAggggAACCCCAAAIIIICArQUIsGxdHjqHAAIIIIAAAggggAACCCCAAAIIIECAxRxAAAEEEEAAAQQQQAABBBBAAAEEELC1AAGWrctD5xBAAAEEEEAAAQQQQAABBBBAAAEECLCYAwgggAACCCCAAAIIIIAAAggggAACthYgwLJ1eegcAggggAACCCCAAAIIIIAAAggggAABFnMAAQQQQAABBBBAAAEEEEAAAQQQQMDWAgRYti4PnUMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDiCAAAIIIIAAAggggAACCCCAAAII2FqAAMvW5aFzCCCAAAIIIIAAAggggAACCCCAAAIEWMwBBBBAAAEEEEAAAQQQQAABBBBAAAFbCxBg2bo8dA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbl4fOIYAAAggggAACCCCAAAIIIIAAAggQYDEHEEAAAQQQQAABBBBAAAEEEEAAAQRsLUCAZevy0DkEEEAAAQQQQAABBBBAAAEEEEAAAQIs5gACCCCAAAIIIIAAAggggAACCCCAgK0FCLBsXR46hwACCCCAAAIIIIAAAggggAACCCBAgMUcQAABBBBAAAEEEEAAAQQQQAABBBCwtQABlq3LQ+cQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXnoHAIIIIAAAggggAACCCCAAAIIIIAAARZzAAEEEEAAAQQQQAABBBBAAAEEEEDA1gIEWLYuD51DAAEEEEAAAQQQQAABBBBAAAEEECDAYg4ggAACCCCAAAIIIIAAAggggAACCNhagADL1uWhcwgggAACCCCAAAIIIIAAAggggAACBFjMAQQQQAABBBBAAAEEEEAAAQQQQAABWwsQYNm6PHQOAQQQQAABBBBAAAEEEEAAAQQQQIAAizmAAAIIIIAAAggggAACCCCAAAIIIGBrAQIsW5eHziGAAAIIIIAAAggggAACCCCAAAIIEGAxBxBAAAEEEEAAAQQQQAABBBBAAAEEbC1AgGXr8tA5BBBAAAEEEEAAAQQQQAABBBBAAAECLOYAAggggAACCCCAAAIIIIAAAggggICtBQiwbF0eOocAAggggAACCCCAAAIIIIAAAgggQIDFHEAAAQQQQAABBBBAAAEEEEAAAQQQsLUAAZaty0PnEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV56BwCCCCAAAIIIIAAAggggAACCCCAAAEWcwABBBBAAAEEEEAAAQQQQAABBBBAwNYCBFi2Lg+dQwABBBBAAAEEEEAAAQQQQAABBBAgwGIOIIAAAggggAACCCCAAAIIIIAAAgjYWoAAy9bloXMIIIAAAggggAACCCCAAAIIIIAAAgRYzAEEEEAAAQQQQAABBBBAAAEEEEAAAVsLEGDZujx0DgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFuXh84hgAACCCCAAAIIIIAAAggggAACCBBgMQcQQAABBBBAAAEEEEAAAQQQQAABBGwtQIBl6/LQOQQQQAABBBBAAAEEEEAAAQQQQAABAizmAAIIIIAAAggggAACCCCAAAIIIICArQUIsGxdHjqHAAIIIIAAAggggAACCCCAAAIIIECAxRxAAAEEEEAAAQQQQAABBBBAAAEEELC1AAGWrctD5xBAAAEEEEAAAQQQQAABBBBAAAEECLCYAwgggAACCCCAAAIIIIAAAggggAACthYgwLJ1eegcAggggAACCCCAAAIIIIAAAggggAABFnMAAQQQQAABBBBAAAEEEEAAAQQQQMDWAgRYti4PnUMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDiCAAAIIIIAAAggggAACCCCAAAII2FqAAMvW5aFzCCCAAAIIIIAAAggggAACCCCAAAIEWMwBBBBAAAEEEEAAAQQQQAABBBBAAAFbCxBg2bo8dA4BBBBAAAEEEEAAAQQQQAABBBBAgACLOYAAAggggAACCCCAAAIIIIAAAgggYGsBAixbl4fOIYAAAggggAACCCCAAAIIIIAAAggQYDEHEEAAAQQQQAABBBBAAAEEEEAAAQRsLUCAZevy0DkEEEAAAQQQQAABBBBAAAEEEEAAAQIs5gACCCCAAAIIIIAAAggggAACCCCAgK0FCLBsXR46hwACCCCAAAIIIIAAAggggAACCCBAgMUcQAABBBBAAAEEEEAAAQQQQAABBBCwtQABlq3LQ+cQQAABBBBAAAEEEEAAAQQQQAABBAiwmAMIIIAAAggggAACCCCAAAIIIIAAArYWIMCydXnoHAIIIIAAAggggAACCCCAAAIIIIAAARZzAAEEEEAAAQQQQAABBBBAAAEEEEDA1gIEWLYuD51DAAEEEEAAAQQQQAABBBBAAAEEECDAYg4ggAACCCCAAAIIIIAAAggggAACCNhagADL1uWhcwgggAACCCCAAAIIIIAAAggggAACBFjMAQQQQAABBBBAAAEEEEAAAQQQQAABWwsQYNm6PHQOAQQQQAABBBBAAAEEEEAAAQQQQIAAizmAAAIIIIAAAggggAACCCCAAAIIIGBrAQIsW5eHziGAAAIIIIAAAggggAACCCCAAAIIEGAxBxBAAAEEEEAAAQQQQAABBBBAAAEEbC1AgGXr8tA5BBBAAAEEEEAAAQQQQAABBBBAAAECLOYAAggggAACCCCAAAIIIIAAAggggICtBQiwbF0eOocAAggggAACCCCAAAIIIIAAAgggQIDFHEAAAQQQQAABBBBAAAEEEEAAAQQQsLUAAZaty0PnEEAAAQQQQAABBBBAAAEEEEAAAQQIsJgDCCCAAAIIIIAAAggggAACCCCAAAK2FiDAsnV56BwCCCCAAAIIIIAAAggggAACCCCAAAEWcwABBBBAAAEEEEAAAQQQQAABBBBAwNYCBFi2Lg+dQwABBBBAAAEEEEAAAQQQQAABBBAgwGIOIIAAAggggAACCCCAAAIIIIAAAgjYWoAAy9bloXMIIIAAAggggAACCCCAAAIIIIAAAgRYzAEEEEAAAQQQQAABBBBAAAEEEEAAAVsLEGDZujx0DgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFuXh84hgAACCCCAAAIIIIAAAggggAACCBBgMQcQQAABBBBAAAEEEEAAAQQQQAABBGwtQIBl6/LQOQQQQAABBBBAAAEEEEAAAQQQQAABAizmAAIIIIAAAggggAACCCCAAAIIIICArQUIsGxdHjqHAAIIIIAAAggggAACCCCAAAIIIECAxRxAAAEEEEAAAQQQQAABBBBAAAEEELC1AAGWrctD5xBAAAEEEEAAAQQQQAABBBBAAAEECLCYAwgggAACCCCAAAIIIIAAAggggAACthYgwLJ1eegcAggggAACCCCAAAIIIIAAAggggAABFnMAAQQQQAABBBBAAAEEEEAAAQQQQMDWAgRYti4PnUMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDiCAAAIIIIAAAggggAACCCCAAAII2FqAAMvW5aFzCCCAAAIIIIAAAggggAACCCCAAAIEWBE8B9Zt2KI587/QN9//qo1btutQcopKlyyuU0+qrSs6n6/255yR6+hXrlqjl978WD/+8pcOJB1S5Qpl1a5NM910bRerjdyuuR8t0Tvzv9Bff2+Sx+NRrRpVdNnFbXRVt/ZyuZwRrM3QEEAAAQQQQAABBBBAAAEEEEAgWAIEWMGSDXG7I8fP0mtzF1m9qFqpnOrXqa4Yt1v/bt6uP9dvtH69V9e2GnHntdl6agKoh0a/aP26CbvKly2tP9f9qy2Ju6y2XntuhCpVKJPtufufmKb3P/1KMW6XmjZuYL1v1a9rdeDgIbVp2ViTn7xDbpcrxDK8HgEEEEAAAQQQQAABBBBAAAEEwk2AACvcKuZnf014terXv3R9r446uX7NLE99892vumXYOCWnpOqlcfepRZOTM3/+7+ZEdb7mfrndLk0ZNSTzZz6fT5NenKspr7yvM5s11Ixn78nSpgmuTIBVt2ZVTR091Aq6zJV0KFl3jJikr1b8rNv6ddfAa7v4OQJuQwABBBBAAAEEEEAAAQQQQAABBA4LEGBF6Ux45NmX9db7n+nm67rqluu7ZSo8MeFVzX53oe4YcIUG9OmcRceEWFcOelSrf1+v2ZOHq8mp9TN/ftn1w62VXcf+urlh9979atdjiGJi3Pri3fGKj4uNUnWGjQACCCCAAAIIIIAAAggggAACBREgwCqIWgQ88+wLb2nG6x9q6KDe6tvr4swRdeh9tzZv3aHFb49V5Ypls4309XmL9Pi4Wbq2x0W695YrrZ+b+81zNatX0kezn85RZ8jDk/XJ5ys0ceTtant208x7Nu88FAGaDKEoBMqXilNcjFM796UoJc1bFK/kHQggYEMB8+eA+fPA/Dlg/jzgQgCB6BWoVCZebpdDiXuSle7xRS8EIw+pQLXyCSF9Py9HIJoECLCiqdr/jXXfgSR1v+FBbU3cpXemPZK5xdD8+lmdb7aCKxNg5XT99uc/umLAQ9bqK7PaylyLlnyvwQ9OUOcOZ2nUAzfl+NzLb3+ipye/bq3qMqu7Mi4CrCicgAUcMgFWAeF4DIEIEyDAirCCMhwECiFAgFUIPB4NmAABVsAoaQiBPAUIsPIkiowbzHlXiTt2W2dRma8LbkncqbsG9tJ1PS7KHOAva/5Wz5seVrPGDTRr4gM5Dnzv/oNqfektKlu6pJa+N9G6x7T3zPNv6KZrLtXgGy7P8bmFS77T7Q9O1EXnt9CzD99CgBUZ06pIR0GAVaTcvAwB2woQYNm2NHQMgSIXIMAqcnJemIMAARbTAoGiEyDAKjrrkLwpY6vg0S83IdKg67qqQZ0aWfq0/Iff1O/OUTr3zNP1/FN35thfcw5Wowuul8vl1E+LZlr3TJo5V8+/8p7uHthL1/fumONzGW2feUZDzRhz5AD4/UlpIXHhpeEnkBDntrYJJKWky8M2gfArID1GIEACLpdDxeLc1nahQynpAWqVZhBAIBwFise75XQ6dDA5XV4vWwjDsYaR0OeSxWIiYRiMAYGwECDACosyFbyT8xcsk1n95PF4ZFZP/bV+k/Xf1apU0O39L1fn9mdlNr5k+U8aeO+zandOM014bHCuLz293Q1K93i0atEMuV0ujZnylma+8aHuv62Prr68Q47P/fDzn7r61pFq2qiBXp2U8+qugo+SJxFAAAEEEEAAAQQQQAABBBBAIJIFCLAiubo5jM3826nPl/2oh56ZqV179mc5VL1IVmA1a6gZz7ICK8qmXUCGywqsgDDSCAJhL8AKrLAvIQNAIGACrMAKGCUNFUKAFViFwONRBPIpQICVT7BIuX3pt6t10z1jdGLdGpo783FrWL//tUGX9x/h1xlYpUsW19cfTLaee+XtTzRq8ut+nYHV/pwzNP6x2zIZOcQ9UmZU8MfBGVjBN+YNCISDAGdghUOV6CMCRSPAGVhF48xbji/AGVjMEASKToAAq+isbfUmsxKrSYcb5JBD33061doKmHQoWS06DvTrK4SNT66jN6Y8ZI3pi2WrdPP9Y/36CmG/3p1018CeBFi2mg3h0RkCrPCoE71EINgCBFjBFqZ9BMJHgAArfGoVyT0lwIrk6jI2uwkQYNmtIkXUn9TUNDW9cIAcDodWLZxhHcpuri7XDdPafzZr8dtjrSDr2Ov1eYv0+LhZ6tnlAj005Drrxzt27dV53W9XzeqV9NHsp3McwZCHJ+uTz1do9IhB6ti2FQFWEdU5kl5DgBVJ1WQsCBRcgACr4HY8iUCkCRBgRVpFw3M8BFjhWTd6HZ4CBFjhWbdC93rBlyt1x4hJOrl+Tc2Z/mhme+Onz9HUVz/QHQOu0IA+nbO9p/fAR7T69/WaMmqIzml1WubPzQHt5qD22ZOHq8mp9bM8t3vvfrXrMURen09fzp2gUiWKEWAVuoLR1wABVvTVnBEjkJMAARbzAgEEMgQIsJgLdhAgwLJDFehDtAgQYEVgpbdt362X3/pYl17YWqc0qJVthN9896vufvR5mWDpyWED1OXCszPv2bl7ny6+6h55vV4rpGrR5GTrZz6fT5NenKspr7xvnZv17ozHrNVbGVfGFwzr1qyqqaOHqmqlctaPzLbEOx+aLHPmVp/u7TVs8NVZ+sMZWBE4AYM0JAKsIMHSLAJhJkCAFWYFo7sIBFGAACuIuDTttwABlt9U3IhAoQUIsApNaL8GNmzapo597rU6ZrYB1q9dXaVKFldycqr+WPevNm3dYYVPN11zqW7r1z3bABYt+V5my1+6x6NTT6qtCuVK6491G7Vl206Zw9tnTRymerWrZ3tu9JQ39eIbHykmxq2mjeorNiZGq35dq/0HktTwxNp6efz9KpYQR4BlvykTFj0iwAqLMtFJBIIuQIAVdGJegEDYCBBghU2pIrqjBFgRXV4GZzMBAiybFSQQ3fF4vDJbBD/9YqX+Wr9Ru/bs174DBxUXG6NqVSqoWeMT1fPS83NcnZXx/l//+FsvzPpA3/30hw4cTFKF8mWsLYMDr+mS49lYGc+Zc65enbNAa9ZukOlH9aoV1altK13fu6P1/mMvVmAFouLR0QYBVnTUmVEikJcAAVZeQvwcgegRIMCKnlrbeaQEWHauDn2LNAECrEiraJiNhwArzAoWwu4SYIUQn1cjYCMBAiwbFYOuIBBiAQKsEBeA11sCBFhMBASKToAAq+iseVMOAgRYTAt/BQiw/JXiPgQiW4AAK7Lry+gQyI8AAVZ+tLg3WAIEWMGSpV0EsgsQYDErQipAgBVS/rB6OQFWWJWLziIQNAECrKDR0jACYSdAgBV2JYvIDhNghW9ZL7nmPv3971brQ2Pmg2Nc9hcgwLJ/jSK6hwRYEV3egA6OACugnDSGQNgKEGCFbenoOAIBFyDACjgpDRZAgACrAGg2eYQAyyaFyEc3CLDygcWtgRcgwAq8aaS2SIAVqZVlXAjkT4AAK39e3I1AJAsQYEVydcNnbARY4VOrY3tKgBV+tSPACr+aRVSPCbAiqpxBHQwBVlB5aRyBsBEgwAqbUtFRBIIuQIAVdGJe4IcAAZYfSDa9hQDLpoU5TrcIsMKvZhHVYwKsiCpnUAdDgBVUXhpHIGwECLDCplR0FIGgCxBgBZ2YF/ghQIDlB5JNbyHAsmlhCLDCrzDR0mMCrGipdOHHSYBVeENaQCASBAiwIqGKjAGBwgtM3Ldap5cqp97l6ytxT7LSPb7CN0oLCBRAgACrAGg2eYQAyyaFyEc3WIGVDyxuDbwAAVbgTSO1RQKsSK0s40IgfwIEWPnz4m4EIlFglzdFjTe8bg2takwx9SpeX0PLNIvEoTKmMBAoigDrh5//1GtzF+q7n/7Qrt37VCwhXifVP0FdLjzb+o/L5cyUuurmx7Tq17Xq2LaVRo8YdFzBcdPe0bTZ81WlYjkteHOMnE5H5v0+n0//W/iN5n2yVL//uUH7DySpTOkSatqoga7q1l4tm54c8Or8suZvvfHeYq1ctUbbd+6Ww+FQ5YrlVKdmVV14bnNdemHrbO/cvnOPZr3zqb5a8bM2btmulNQ0lS9TSs1Oa6AenS84bj/9CbAC0f7X709W6VLFrfpNffUDrf5tnfbuP6hzWp2mKaOGBNwxkhskwIrk6obB2AiwwqBINukiAZZNCkE3EAixAAFWiAvA6xGwgcBze1dr5O7vMntSJ6aUllbvboOe0YVoFAh2gDV26tua/tr/LFq3y6WyZUpaYVJySqr1a2c2a6gJjw9W8WLx1v+f+9ESDR81Q7GxMfri3fEqVaJYjmUxAVWH3ndry7aduvHqS3V7/8sz70s6lKzbhk/QN9/9av1afFysSpYopt179ivd47F+rV/vTrprYM+AlNz0ZcwLb+nFNz7KtT0T1D05bECWny/4cqXuGzk10yIuNkYxMW4dOHgo877LLzlXI4ZcZ9kde+UVYAWq/fdffkIrfvxdj4+bJTPWjKtP9/YaNvjqgBhGSyMEWNFSaZuOkwDLpoWxYbcIsGxYFLqEQAgECLBCgM4rEbCRgPnLX8uN72iz52Bmrx4p31L9Sza0US/pSjQJBDPAeumtj/XMc2/IBDNDb+6tyy4+RwnxsfJ4vPpi2Y968JmZ2rP3gC5pd6aefnCgxX4oOVXndR+sg0nJevDOa9W7a9scy2FWA107+AnrZ/+b9ZRqn1Al875bh43XZ1//oGpVKmjEndepdfNTrVVeSYdS9Pq8RRo37W15vT49fHdf9eh8fqHL/cKsDzRhxhyrnW4dz5EJdurVqqZ0j1f/bk7UspW/qHmTk9TopDqZ7/p+9R+67vYnrX5c0Lqpbruhu06qd4L181179uvdD7/UpJnvKi3doysva6fhd1yTrZ/HC7AC2f4tfS/Tcy+/p0Yn1dat/bqr8cl1ZUJCt9uliuXLFNovmhogwIqmattwrARYNiyKTbtEgGXTwtAtBIpYgACriMF5HQI2E/jy0GZdue3TzF7FOpz6pdaVKqYYm/WU7kSLQLACrJ2796l9r7uUmpqmR4f2k1lJdOz1yeffasjDz1m/PGf6ozq5fk3rfz869hW9+d5iK/B584WHcizFI2Ne0lsffK7TG9bTa889mHmPCa5MgBXjdllt1qtdPdvzj419xdrqV75sKS18c4y12qugV+KOPerQ6y5rZddN11yqwTccWQl2vDa79H1Aa//eZIVXE0cOtrYbHs/njedHqPEpdbPccrwAK5Dtm5ee3aKRJj9xh7VCjKvgAgRYBbfjyQAIEGAFADFKmiDAipJCM0wE8hAgwGKKIBDdAjcmfqb/Jf2TiXB1uRM1puzZHOIe3dMipKMPVoA1840PNWbKW6pVo7I+fHVUrmM8r/vt2rFrrwZd21W39utm3ffbn//oigGHg6v3Xhyp+nWyhlBmVdJ53QZb5zA9dFdf9bz0yCqqgfc+qyXLf9IVnc/TI3dfn+N712/Yos7X3m/9bObYe9Wq6SkFrkHG6quypUvqs3fG+hXwmNVR19x2ePWY2Z5nVmvldl1582P66de11llhx25BzC3ACnT7ZtXcp2+MUbkyJQvsxIOHBQiwmAkhFSDACil/WL2cACusykVnEQiaAAFW0GhpGAHbC+z2JOv0f9+UR0fOkFl6Ujc1SC9DgGX76kVuB4MVYPkTJBlVsw3QbAdsf84ZGv/YbZnQPW58WL/+8bf69rzY2n549JWxyurYc7LMdrxWlwyytreNGn6TOrc/K8fCmQCs2YX9re17wwb3UZ/uHQpc4BuHjrYOYDcHtD817Ea/2jEHoY+fPsfa4rjgjdHHfSbj3soVy2rx22Oz3JtbgBXo9o/e4unXALkpVwECLCZHSAUIsELKH1YvJ8AKq3LRWQSCJkCAFTRaGkbA9gIT9v6kUbu/z+xn/djS+rPxVUrck0yAZfvqRW4HgxVgdbr6Xv2zcZvfcOargC+OvS/z/rfe/0yPPPuytc1v8Ttjsxxiftcjz+njz77VxRe01JiHbs58xnxx7/zL7/D7nebGW67vppuv65qvZ46+OWOcZuug2ULozzXimZma878vdVbzUzV99NDjPvLpFyt150OTrHt+XDjD2hqZceUWYAW6/Ttv7KH+V13iz9C4Jw8BAiymSEgFCLBCyh9WLyfACqty0VkEgiZAgBU0WhpGwNYCOR3ePr762Rpc5TQCLFtXLvI7F6wAK2NrYKUKZWS21+V1nXpSHT12T7/M28wh7uYwd3Oo+8SRt6vt2U2tn5nVVedcNtj6ct+UUUN0TqvTMp85emugOdTdHB6f19WrywXqlctB8Xk9a36eMc77br1K11xxoT+P6O5Hn9dHi5erbZtmmvj44OM+s2T5ag28d4x1z1fvTVKZ0iUy788twAp2+34NkptyFCDAYmKEVIAAK6T8YfVyAqywKhedRSBoAgRYQaOlYQRsLbA4aaOuSVyY2cdYObW58XUqHxtPgGXrykV+54IVYF181T3WF/jyszLpWO3ho2Zo7kdL1O6cZprw2OGg54NPv9Z9T0xVhXKlrS115uuCGdfW7bvUrscQ6//OmviAmjVuEPQCXnTlUG3csl13DLhCA/p09ut9I8fP0mtzF+V/BdaC6VnO2MotwAp2+34NkpsIsJgD9hMgwLJfTezaIwIsu1aGfiFQtAIEWEXrzdsQsItAv8RF+iTp38zu9CrRQK/Wbye3y0GAZZciRWk/ghVg9btzlJb/8JsKc37Sql/X6qqbH7O2zX05b6JKlSimjLO1ru/dUXcP7JWlauZsq5adBjkC+PgAACAASURBVFpfPnz47r7q0fnI4e7BKu91tz+plavWqFvHc/T4vTf49ZqMA+79OQNr2uz5GjftHVUsX0afzxmXpf3cAqxgt+/XILmJAIs5YD8BAiz71cSuPSLAsmtl6BcCRStAgFW03rwNATsIJHoOqdm/bx51dLs0v2pnXVS5BgGWHQoU5X0IVoA15ZX3NXHmu1botOjtsSqWEFcg6cuuH64/12+0wiGz5e7cywYr3ePJ8euE5gU3DHla33z/q1+rmwrUoWMeMuGSCZlyWhGWW/tr/96kLn0fsH6c01cWj36uzy2P68df/lKndq30zIOD/Aqwgt1+INyitQ22EEZr5W0ybgIsmxQiDLpBgBUGRaKLCBSBAAFWESDzCgRsJvDsnh81Zs+Pmb06KaaMFle/TJXKxBNg2axW0didYAVY5kD1Dr3vVlpaunXG1Ig7ry0Q7+x3F+iJCbN1fusmuvC8Fhr25DSdelJtvfXCwzm2t+DLlbpjxOFDz0ePGKSObVsV6L3+PmQOqjcHuZsrP4edX3nzY/rp17XWuCaNvF0OhyPbKxcv/V63DZ9g/fpL4+5TiyYn+xVgmZuC3b6/PtyXVYAAixkRUgECrJDyh9XLCbDCqlx0FoGgCRBgBY2WhhGwpYDX51OzjW9pu+dQZv+eKn+Wril5EgGWLSsWfZ0KVoBlJGe986memvSahWpWTw246hKZw9rNuVUHDh7S1sRd1jbDxV99r6eG3Whtkzv22rv/oPVlQbfLqZZNT9HnX/+oYYOvVp/u7XMt1u0PTtTCJd/J6XSob8+OuqLzeapVo7LMxxR27z2gTVu2a8nyn7Rm7b8a/9hthS76qMmv65W3P7Ha6dvrYl3dvYOqVi4vj8erxJ179N2qNdp3IElXdWuX+a6/1m/SFTc+ZAV87c85wwq/zMHz5jIH1c/7+CuNfv4NpaSmqcuFZ+vJYQOy9TO3LYTmxmC3X2i0KG2AACtKC2+XYRNg2aUS9u8HAZb9a0QPESgKAQKsolDmHQjYR2DBoX/Vd9uizA4lONz66YReKuaMIcCyT5miuifBDLAMrDmPaezUt+X1+ixns9IoJsZtnVN19LXo7WdVpWK5HGtx78gXNH/BMutn5jysz+eMz/I1vmMfMl8oNAfAmy/9ZVxul8v6n2b7YcZ1QrVK+vi1pwtdf9Pmw6Nfsg6cz7hiY2OscMqEZuYyX1E0X1M8+vr2h9815OHJ2r13v/XL5guD5suJO3fty+ynWUE28r7+OX5R8XgBlmkv2O0XGi4KGyDAisKi22nIBFh2qoa9+0KAZe/60DsEikqAAKuopHkPAvYQuDZxoRYlbczszNUlTtSoCq2t/88WQnvUKNp7EewAy/hu2LRNs99daJ1NtXnrTiWnpCg+Lk7VqpRXk1Prq8O5zXV2i0Y5bqMzz5tD0s1h6eY6+ouEedXOrO5698Mv9cPqP7Vj114rFCpRPEE1q1dWyyYnq3OH1jqxbo28mvH75yYwenv+Z4fft3ufYtxu62ys0xrWVc9LL9AZp52YrS0TXr0z/wuZrY8bN29XUnKKypcppSaN6uvyS85V6+aNcn1/XgGWeTDY7fuNw42WAAEWEyGkAgRYIeUPq5cTYIVVuegsAkETIMAKGi0NI2A7gU3pB9Vy49tZ+rWgelc1jClLgGW7akVXhxxJB+Q4sEdKTVGV03MPSOyiYrbUtbpkkLWKy6xiMquZuBAIRwECrHCsWgT1mQArgooZ5KEQYAUZmOYRCBMBAqwwKRTdRCAAAn22fqrPkzdnttQ0roL19cGMixVYAUCmiRwFHKnJcn/1oRxbN0oH9h0Oqw7slePAXjn37c58xlu6vMpNe8/2inP+96VGPDNTZUuX1GdzxlnbCLkQCEcBAqxwrFoE9ZkAK4KKGeShEGAFGZjmEQgTAQKsMCkU3USgkAJP7/lB4/esytLKmPJnq3fJBgRYhbTl8eMLxCyaI/dHr8lxcJ9fVGXeWurXfaG8qddNj+jnNet1XY+LdM8tVwa8K2aF141Dx+SrXfP1wP5XXZKvZ7gZAQIs5kBIBQiwQsofVi8nwAqrctFZBIImQIAVNFoaRsA2AguT/tV1iUcObjcdaxZXUfOqdJTL4STAsk2lIqsjMZ/Nlevj17OssPJnhHYPsBZ/9YNue2C89eXC+a88pZrVK/kzrHzdY74QeFbnm/P1TPdO5+qxe/rl6xluRoAAizkQUgECrJDyh9XLCbDCqlx0FoGgCRBgBY2WhhGwhcDfafvUYfP7SvKlZ/anvDNei6t3VQVXQpY+soXQFiUL+064l30i9/xX5NyV6PdYfO5Y+UqVka9UOZV/errfzxXFjearfeZLheZavPR73f/kNB04eEhXdWunB26/pii6wDsQCJoAAVbQaGnYHwECLH+UuMcIEGAxDxBAwAgQYDEPEIhcgUPedF205QOtTdubOUinHJpXtZPOiKuYbeAEWJE7F4piZO5lC+T+6FU5tx85Z+3o9/piYpV+bhepygnyliwjlSwjn/WfsvLFHwlTi+IrhPnxuPrWkfp3c6KSDqXIbO0zV+NT6urFsfcpIT42P01xLwK2EyDAsl1JoqtDBFjRVe/CjJYAqzB6PItA5AgQYEVOLRkJAscK9E9crI+SNmT55ZHlz1TfkifniEWAxRzKt4DPJ/cPS+We/5KcW7LOtYy2zOqq9HM7K73jVfKVKJ3nK+wWYN33xFQtXb5aBw4mqVqVCurcobVuuLKT4mJj8hwLNyBgdwECLLtXKML7R4AV4QUO4PAIsAKISVMIhLEAAVYYF4+uI3Acgef3/azHd63McsdlxetocsXzcn2KAIsplR8B18/LFfPei3JuXJvjYz6XS+mtO8pzydUyXxf097JbgOVvv7kPgXAUIMAKx6pFUJ8JsCKomEEeCgFWkIFpHoEwESDACpNC0U0E8iHwTfJWXbH1Y/mOeubkmDL6sNqlinO4CLDyYcmt2QVcv/8g9/svyrX+t5x5nE6lt2irtC7Xy1cu/wecE2Ax6xAoOgECrKKz5k05CBBgMS38FSDA8leK+xCIbAECrMiuL6OLPoGt6Ulqt3me9nhTMwdf0hGjRdW7qrq7xHFBWIEVffMlPyN2rftN7nenyrX251wfS296rtK7Xi9v5Rr5aTrLvQRYBabjQQTyLUCAlW8yHgikAAFWIDUjuy0CrMiuL6NDwF8BAix/pbgPAfsLpPm86rxlvn5O3ZXZWfPttNcrX6hzEqrlOQACrDyJovIG579/yT1vhty/Zt2SejRGeqOWSu/WX95qdQptRIBVaEIaQMBvAQIsv6m4MRgCBFjBUI3MNgmwIrOujAqB/AoQYOVXjPsRsK/AnTuW6q0Df2Xp4H1lm+m20qf51WkCLL+YouYm55Z/FPPeTLlWfZ3rmD31GimtxyB5a50YMBcCrIBR0hACeQoQYOVJxA3BFCDACqZuZLVNgBVZ9WQ0CBRUgACroHI8h4C9BF7dv0b37lyWpVPtEmrolcrt/e4oAZbfVBF9o3P7Jrnfe0nu7z7PPbiqc4rSu/aT56QmAbcgwAo4KQ0ikKsAARaTI6QCBFgh5Q+rlxNghVW56CwCQRMgwAoaLQ0jUGQCq1N2WlsH0486tr1eTGl9VLWzijtj/O4HAZbfVBF5o2NXomI+eEnubxdJXm+OY/TWqGsdzu5pfGbQDAiwgkZLwwhkEyDAYlKEVIAAK6T8YfVyAqywKhedRSBoAgRYQaOlYQSKRGC3J8U6tH2b51Dm+4o53FpQrYtqx5TKVx8IsPLFFVE3x7z1vGI+ezfXMXkrVFX6Zf2Ufsb5QR83AVbQiXkBApkCBFhMhpAKEGCFlD+sXk6AFVblorMIBE2AACtotDSMQNAFPD6vemz9RMtTtmV518uV2ql9sRPy/X4CrHyThf8DXo9ip4+U+4clOY7FV76K0i65Vumt2kpOV5GMlwCrSJh5CQKWAAEWEyGkAgRYIeUPq5cTYIVVuegsAkETIMAKGi0NIxB0gYd3fatp+37N8h5zYLs5uL0gFwFWQdTC+BmvV7HTH88xvPKWLq/0Tn3kad1RPre7SAdJgFWk3LwsygUIsKJ8AoR6+ARYoa5A+LyfACt8akVPEQimAAFWMHVpG4HgCXx48B8N2P5Zlhe0ia+q1ytfKKfDUaAXE2AViC1sH4p9+Wm5v1mQpf++4qWU3vFKpbW7ImTjIsAKGT0vjkIBAqwoLLqdhkyAZadq2LsvBFj2rg+9Q6CoBAiwikqa9yAQOIG/0vbqos3vK9nnyWy0mqu4FlXvqlLO2AK/iACrwHTh9aDPp9gXn5J7xeKs4VX5ykq5Z4K8pcqFdDwEWCHl5+VRJkCAFWUFt9twCbDsVhH79ocAy761oWcIFKUAAVZRavMuBAovsM+bqos3f6B/0vdnNhYrpz6sdqlOiS1bqBcQYBWKLzweNuHVrDFyL/ske3h111h5y1YM+TgIsEJeAjoQRQIEWFFUbDsOlQDLjlWxZ58IsOxZF3qFQFELEGAVtTjvQ6DgAj6fT723faqlyVuyNDKpwrnqVqJuwRv+70kCrEIT2r6B2FdGZwuvvGUqKNWsvLJBeGUACbBsP43oYAQJEGBFUDHDcSgEWOFYtdD0mQArNO68FQG7CRBg2a0i9AeB3AXG7PlRz+75McsNfUuerJHlzwwIGwFWQBht20jM6+MV8+X8LP3zliprbRs0Xxu0y0WAZZdK0I9oECDAioYq23iMBFg2Lo7NukaAZbOC0B0EQiRAgBUieF6LQD4FlhzabK2+OvpqFldR86p0lMvhzGdrOd9OgBUQRls2EvPOFMUsmpMtvEq9e6y8Favbqs8EWPYox4ZN29Sxz73ZOhMbG6NSJYqp9glV1Lp5I/Xscr7Kli6Z7b57H39B8xcu0zMPDlKndq3yHNSiJd9r8IMT1OHc5hr36K3Hvf/nNevV66ZH1PDE2np76sNZ7s147/EaKF+2lL6cOyHPPkXDDREZYP3+1wYVS4hXzeqV/KphWlq6vlrxsypXLKtTGtTy6xluCowAAVZgHKOhFQKsaKgyY0QgbwECrLyNuAOBUAv8nbbPOvdqvy8tsyvlnfFaXL2rKrgSAtY9AqyAUYasIcehg3L++5ecG9fKseEPOf9dJ+fm9dn6Y742mDJ0nLyVTwhZX3N7MQGWPUqSEWAlxMeqWeMTMzuVkpqmxB27tWFTovVrpUsW17TRQ3XqSbVzDJJCFWCZgC2nYM10skypEpr0xO32gA5xLyIywDr1/L46s1lDzXj2Hr94zf785hffpBrVKuq9F0f69Qw3BUaAACswjtHQCgFWNFSZMSKQtwABVt5G3IFAKAUOedN10ZYPtDZtb2Y3nHJoXtVOOiMusAduE2CFstL5f7dzV6Icm9YdDqw2/Hk4tNq5Lc+GfCVKK8Uc2F7FfuGV6TwBVp4lLJIbMgIsEwT9b9ZT2d65eesOjRj9opat/MVatPLOtEdsFWD5G5wVCaaNX0KA9V9xOvS+W3v27teKj16wcbkir2sEWJFX02CNiAArWLK0i0B4CRBghVe96G30CfRPXKyPkjZkGbg588qcfRXoiwAr0KKBbc+xf4/ci+bI+c8aK7RyHDzyJUp/3+QrVkIpdz0rb7U6/j5S5PcRYBU5eY4vzCvAMg/t2rNf53YbLLOAZel7E7OseAr1FkICLP/mEQGWpNTUNLXqfLM1kX9cMN0/Oe4KiAABVkAYo6IRAqyoKDODRCBPAQKsPIm4AYGQCUzd+4se2b0iy/svK15HkyueF5Q+EWAFhTUgjcZ8/IbcH74qR1pKgdrz1qgn85/09pfLW73wX6wsUCf8fIgAy0+oIN/mT4BlutCy00AdTErW4rfHWkcIZVwEWEEuUICaj/oAy0zekeNn6b1PvlK9WtX0/stPBIiWZvwRIMDyR4l7jAABFvMAAQSMAAEW8wABewp8k7xVPbZ+Iq98mR08OaaMPqx2qeIcrqB0mgArKKyFatT93eeKeXeaHLsOnzeU1+UrXlLeGnXlrXmifNXryluttrwn1M/rMVv9vKgCrFU/+/T3v15bjT2YnWnSyKlaJzj8foU/Ada27bvVtsed1jlYX70/SQ7HkfYJsPymDumNERFgzX53oV6buzAT8u9/tyo+LlZVKpU7Lm56ukdbE3cp3eOx7rtrYE/1690ppAUJ5MuTDqXonfmfa+GS7/TX+k1W0lyubEk1P/0kXd+ro/UVhJyuMzvfrP0HknLtSuf2Z2nU8Jty/Pncj5bonflf6K+/N8nj8ahWjSq67OI2uqpbe7lc2b84Q4AVyIpHdlsEWJFdX0aHgL8CBFj+SnEfAkUnsDU9Se02z9Meb2rmS0s6YrSoeldVd5cIWkcIsIJGm++GnRvXKeb1CXKt+yXXZ83XA82qKl/Nw6urfGaVVZkK+X6X3R4oqgDrlTc9+vLr6Amwrunl0nmt/f9iaV4B1oGDh3T3o89ryfKfNGxwH/Xp3iHLVCLAstvvrJz7ExEB1tcrf9bkF+dp1a9rrW2ABbkuv+RcPTSkb44hS0HaC/Uzn3/9o0Y8M1M7d+9TyRLFrK8sJMTFae0/m6wvMJgw6enhA3XxBS2zdDUt3aMm7W9QsYQ41aud8ydqz2nZWLdc3y3bEO9/Ypre//Qrxbhdatq4gWLcbqsm5g+LNi0ba/KTd8jtyvpv4AiwQj1Twuf9BFjhUyt6ikAwBQiwgqlL2wgUTKDT5g+0KnVnloffqHyRzkmoWrAG/XyKAMtPqCDeZs65Miuu3N98muNbvBWrKa37jfKe2ly+mLgg9iR0TRNgBce+oAFWsYR4nd2iUWanPF6vdu3ep9/+/Ee1alRW314d1fWis7N1OtQBVt2aVVWubKkcMXt3bauObVsFBzrMWo2IACvDfM/eA5r3yVI989wbMl8fMKt+jnc5nQ7rk5SnN6ynalXCP/0/eqyz311ghXpDbuqprhe3sUIlc5mA77W5i/TEhFdVvFi8Frw5xlpCmXFt37lH519+h85p1VhTRt3l93Q2wZUJsMxvvKmjh6rqf6vfkg4l644Rk/TVip91W7/uGnhtlyxtEmD5TRz1NxJgRf0UAAABS4AAi4mAQGgFdnqTtfzQNq1MSdTy5G36MXVHtg4NK3uGbindOOgdJcAKOnGuL3Ckp8q98F25P35NjpRD2e7zJRRXeudrlXZeV+mYf4Edul4H580EWMFxLWiAlVtvYmLcuvDc5tYCjrZtmmW7LdQB1vEU7x7YS9f37hgc6DBrNaICrAz7bv2Gq1yZUprx7D1hVo7Adnfv/oNZwqmjW7/u9ie1ctUajXno5iyrsH7/a4Mu7z/C2vY38r7+fnfosuuH68/1GzV78nA1OTXrvvXde/erXY8hMn9ofPHueGt7Z8ZFgOU3cdTfSIAV9VMAAAQIsJgDCIRA4Pe03VqRnKiVKdv0XfIOrU/fd9xeXFyspmZUalskPSXAKhLmbC9xf//F4XOudm7L3gGnU2lnd1J6134y51tFw1VUARZnYB1/NuW2hdDj8cr8vXj1b+s0/bX5+n71n9ZqptEjBmVpMNQBFl8h9O9Pi4gMsMyWwvUbtqpP9+OvwPKPKDLvemLCbJlVWsMGX53FadnKX9T/7md0w5WdrNVb/lybt+5Qh953q2b1Svpo9tM5PjLk4cn65PMVmjjydrU9uykBlj+w3JNFgACLCYEAAkaAFVjMAwSCJ5Aqj35I2a4Vydv1bfLhVVZ7jzrXKq8313KX1IJqXVTcGZPXrQH5OQFWQBj9biSvc648DU5Teu/B8lSr5XebkXBjUQVYkWAVzDHkdQaWebc5+7rXTY/ILNowZzqbs50zrvwGWIuXfq/bhk9Qh3Oba9yjtx53aD+vWW+91xzr89YLDxcqOAumYTi0HZEBVjjAh7qPGb9BJz1xuy5ofSRQ+t+ib3TPY1N0zy1X6roeF/nVzUVLvtfgByeoc4ezNOqBnA93f/ntT/T05Nc1oE9n3THgCgIsv2S56WgBAizmAwIIEGAxBxAIrIDZDmiCKrPCKrftgP68sYa7uFrEVdKQsk1U113an0cCcg8BVkAY82wk85yr5QvMeSTZ7veVr6K0y29SetM2ebYViTcQYNmjqv4EWKan02bP17hp76hbx3P0+L03FDjA+ua7X3XDXU/7dfTOih9/V987nlKrpqdo5th7CbAKMWUiMsD64NOv9fXKX9Tn8vZqdFKdPHnMVwy/+e4X60C3M047Mc/7w/2GlNQ0a0vfoeQULX5nbJZthrPe+VRPTXrNCqMqli+jvfsOynxdtFL5smre5CTrN93Rnxs1Fi+9+bGeef4N3XTNpRp8w+U58pgvId7+4ERddH4LPfvwLQRY4T6JQtB/AqwQoPNKBGwowAosGxaFLoWFgIkd/kzba20FzAit/k7fn+++u+VQw9hyah5XSa0SKqtVXGVVdCXku51APECAFQjF3NvI85yruASlX3yV0tt3l8995IiQ4PbKfq0TYNmjJv4GWC+99bF1ZvZ5Z52u5568s8AB1pZtO9W+112qVKGMFr89NtvfkY9Wyfg7ds9Lz9dDd/UlwCrElInIAOvm+8fqi2WrNPTm3urb8+I8eUzgdd8TU3Xpha311LAb87w/3G947qV5mvzSPOvToeYTokdfGSulchvjyfVrWudmmUPyM65JM+fq+Vfe0/EOl1v+w2/qd+conXlGQ80Yc+Rssv1JaeHOSf+LSCAhzi23y6GklHR5PAX72mgRdZXXIIBAEAVcLoeKxbmV7vHpUEp6EN9E0wiEt0CKz6OVZmVVUqKWJW21/nuPNyXfgyrpiFGLYhXVulhVnVmsilrEV1SC053vdoLxQPF4t8xHmQ4mp8vr5Z8NAmq84nN53pwi7cjhnCtJjtYXytl7kFSqTEBfG46NlSxWNFtmw9GmKPvsb4CVkRVc2+Mi3XvLlQUOsMyD3W94UGvW/mvtQjILQHK6DiWn6vL+D+qfjdusj6SZj6UdfeV362JRmtrxXREZYHXsc482bErUuzMe00n1TsjTfUviLrXvOcT6rOaHr47K8/5wvsGcDzbw3mdVpWI5zZn+qEqWKJZtOGaJo/l182XGYglx2n8gyTr07sU3P9K3P/xurcyaN/NxlSldwnp2zJS3NPOND3X/bX109eUdcuT54ec/dfWtI9W0UQO9OumBcCak7wgggAACCCCAgO0Etqcf0tIDW/XVgS1aemCLvk/aoTSfN9/9rBlbQm1KVNXZJaro7BJV1TihnJxy5LsdHghPAc/ffylpxhh51qzOcQCu+g1VrP8QueqeHJ4DpNcRK5BXgJWamqYX3/xYE2bMsYLvOdMf04l1a2R6FCRI+vKbVRp031jrI2UmDDPbEs2HyzKudRu26OHRL+q7n/5Q6+aNNG303dn8C/LeiC2iHwOLyACr+cU3yiSdKz56wQpg8rrMYW5N2ve37v32wyl53R62P//p17XWPl2zBXDWxAf8CveOHqz5gsOAu5+RWU018Nouuq1fd+vH+VqB1axhlq9DsgIrbKdTkXecFVhFTs4LEbClACuwbFkWOhUCgd9T92h50lYtS9qmb5K2al1a/rcDuuRQo/hyOjOhss4qXkVnJVRRVXf2f7kZguH59UpWYPnF5N9N+/bI+9YL8n31SY7nXKlseTl7DpTjLD6SdSwoK7D8m2LBvisjwDJ/pz+zWcPM13l9Pu3bf1C///Wvkg4ly+Vyavgd18ps5zv6ygiSalStqFIli+fY3bKlS2jqM1lDqNfnLdKTE2fL/F3ZvLterWqKi4tV4o7d1qIac5ldSOMeuTXHxSMZ7zU7nMqWzvnLnWVKlZA5u5pLisgAq9mFA2TOefpxwfQsCejxCt6kQ38r2Pnh02kROS/Mlw9uGPK00tM9euHpu9T89JMKNM7Pvv5Btw4br2aNT9SsicOsNl55+xONmvy6X2dgtT/nDI1/7LbMd2/eeahA/eCh6BPgDKzoqzkjRiAnAc7AYl5Eo8CxXwf8LsVsB0zNN0UJh1vN4iuqRXwVtYitpOZmO6DDHtsB8z0YSZyBVRC1rM/kec6VO1bp7a9Qescr5YuNL/wLI7AFzsCyR1EzAqwc/9khNkZVKpVTiyYnW8foHL3yKuP+jCDpeKMpX7aUvpw7Idsta//epNlzF+nbH36TORvL4/GobJmS1nncnTu0tr5UaFZ95XQV5r32kC/aXkRkgHXxVffo382J1hY5c2ZTXtemrTt0Ye+7VbVyeS18c0xet4fdz83KqwFDR8vr9VoH1ZnfuAW9/li3Ud36Dbd+08+d+bjVjDlvzOwl9ucrhP16d9JdA3tmvp4Aq6CViL7nCLCir+aMGAECLOZAtAqYrwOaLwNah62nJOqn1J1KL8B2wGquw18HbBFfSS0TKuuUmLIRtR2QAKtwv0Pc33+hmHenybEz53Ou0pueq/QeA+UtW7FwL4rwpwmwIrzADM9WAhEZYA0fNUNzP1qi7p3O1WP39MsT3HxBz3xJ75J2Z+rpBwfmeX843fD96j910z1jrKWSZuXV6Q3rFar7y1b+ov53P5NlD++OXXt1XvfbVbN6JX00++kc2x/y8GR98vkKjR4xSB3btiLAKlQVovNhAqzorDujRuBYAVZgMSciUeCPAHwd0GwHPDmmjFrEV1bL+MpWcFXNnfM2mEgxJMAqWCWdG9cp5vUJcq37JccGvNXrKu3K2+Sp16hgL4iypwiwoqzgDDekAhEZYJntcr1uesSCvemaSzXoussU43ZlgzZnX734xkcaN+0d62cvjr1PLZsWfHVSSCuZw8vNges33/+stQd3+uihOqVBrUJ38YGnpmvex0t154091P+qSzLbMwe0m4PaZ08erian1s/ynt1796tdjyEy+4/NkstSRx0czwqsQpckahogwIqaUjNQBI4rQIDFBAl3gUBtByzucKtpXAW1jKtsbQk8I76Cijui62toO6I3twAAIABJREFUBFj5+93g3L1drsXvKmbh4b/7HHv5ipdU+mU3KK3NkX/Gz98bovNuAqzorDujDo1ARAZYhjJjVZX53+YwtDatGqvOCVWtg9WSU1Ktz1guWf6TzOohc/m7Wis0Zcr/W81KqVuGjbMOoJsxZqjq1a7uVyMmzLv0wtbW4XNHX/sOJGnqqx9YgV+FcqU1/5UnsxxCZyzN1w3r1qyqqaOHqmqlctbj5qC8Ox+arKXfrlaf7u01bPDVWdolwPKrLNwkiQCLaYAAAkaAAIt5EG4CgdoOWMVV7HBYlVDJWl3VMLaczKqraL4IsPyrvmNXotwfvir38gVypKdnD65cLqWf303pna+VLz7Bv0a5K1OAAIvJgEDRCURsgOXz+fTCrA/0/Mvvyay0Ot51XY+LNGRgT7ld2VdpFV0pAvemAwcP6Zxug2U+FWrCu9Kljr98fOLI263gyVytLhkk83ylCmVUt2Y1JcTHaduO3Vq/YbP1ZcfKFcta52jldLbY6ClvWgGX+XRo00b1FRsTo1W/rtX+A0lqeGJtvTz+/mxfhSTAClzdI70lAqxIrzDjQ8A/AQIs/5y4K3QCgdgO6JR0ckxZ6+wq68D1uIqq4S4RukHZ9M0EWMcvjHP7Jrk/nC33t4slb85/H/I0aqW0XrfIW+Hw3wW48i9AgJV/M55AoKACERtgZYBs277b2vL23U9rtHHLdh1MSlZ8XKz1FYKmjRqoW8dzVKtG5YL62fI5s2WvTdcjX/rLq5NHH3a/ZPlqvf/pUv38+3oZu7T0dJUolqC6taqpbZtm1udGSx61BfDYts05V6/OWaA1azdYnxKtXrWiOrVtpet7d1RcbPZl7QRYeVWHn2cIEGAxFxBAwAgQYDEP7CRweDvgjswD1wv6dcBi/20HtA5cT6ii5nGVZL4YyHV8AQKsnH2cW/6R+3+z5P7ui1wBPVVrKb3HzfKc0oxpVkgBAqxCAvI4AvkQiPgAKx8W3BoCAQKsEKCH6SsJsMK0cHQbgQALEGAFGJTm8iVw7HbA1ak7lVaArwNWdiWoRVxltUyopOZxldWI7YD5qkPGzQRYWdmcm9fL/cErcv+4NPfgqlpteS65WuYLg3JE9xbUY5H+/sehr5c7VLe2dGZLr99zkgDLbypuRKDQAgRYhSakgcIIEGAVRi+6niXAiq56M1oEchMgwGJuFKVAoLYDnvjf1wFbxVdW8/hKOsHFdsBA1JEA67Ci89+/FPP+S3L9vDxXVvNlwfRLrlF60zaBoI+YNsxJM6t/dmrZNw5t2XY40Ctbxqc7bvP4ne8RYEXMdGAgYSAQFQFWSmqadWj7vv0HFR8fq0Yn1QmD0kRHFwmwoqPOgRglAVYgFGkDgfAXIMAK/xradQQZ2wFXJidqefI2FXQ7YILDrSbW1wErqWVCZZ0RW0klndH1dcCiqnG0B1iO1GTFvPSM3D98mSu5p1otpV96vTxNzi6qsoTFe5IOObR8hVMrVkgHDmZfiXbNVR41qO/zaywEWH4xcRMCARGI6ADrj3UbNXHmu1ryzSqlpR8+uPCkeifo3RmPZcGbNHOudVD57f0vt76wx1V0AgRYRWcd7m8iwAr3CtJ/BAIjQIAVGEdakQK1HbCStR3wcFhl/rtRbPmo/zpgUc2vaA6wnHt2KHbiMJltgzldnlonWiuuPI3PLKpyhMV7tm5z6KtlDq36yXwqIferWVOvLrvUv22EBFhhUXo6GSECERtgLfhypYY+NkVpaVk/FZtTgPX4uFl6fd4iDR3UW317XRwhpQ2PYRBghUed7NBLAiw7VIE+IBB6AQKs0NcgXHsQiO2AZp2GtR3QBFbm64DxFVXTXTJcScK+39EaYDk3rVPc+Hvl2L8nWw09tU+Wp/O1Sj+1RdjXN1AD8Pmk39c49fU3Dv2z4fjnftWt49WZLaWTTvSyhTBQBaAdBAIoEJEB1oZN29T1+uFKTU1Tgzo1dFW3dqpZo7JuGPJ0jiuwvlrxs24cOlpnNT9V00cPDSAvTeUlQICVlxA/zxAgwGIuIICAESDAYh74I3D0dsBvk7dpZUqi9nhT/Xk0yz3xcqlJXEW1iKv43wqrymwHzLdi4R5I2e2Qu5jkisu+nSsaAyzXT8sUO32kHGkpWWC9VWsq/YqBSm9IcJUBk5Lq0PffO/TNcod27809uIqJkZqc5tVZZ0oVyvu36upofFZgFe73OE8jkB+BiAywHhnzkt764HN17nCWnrz/Rjmdh//AOvX8vjkGWFsSd6l9zyGqVKGMPntnXH78uLeQAgRYhQSMoscJsKKo2AwVgeMIEGAxPXISCNR2wIrOeOuQ9Zbxh7cDNo4tL7fj+FuNqEhwBda86tLO1Q7FlfWpeHWfTmh7+L/NFW0BVsyCtxUzd5pklhQddXlOOUOpN42QL65YcIsRRq3v3OnQcy+4dMxmnCwjKFvap7PO8qnJ6T7F5xCQ+jtcAix/pbgPgcILRGSAddGVQ7Vxy3YrjDKhVMaVW4CV7vGoSfv+crtd+nHB9MKr0oLfAgRYflNF/Y0EWFE/BQBAwBIgwGIiGIE/0/ZqRco2mdVVK5IT9Xf6/nzDmH+92SCmtJr/tx2wZXwl1WI7YL4dg/nAzp8cWve+U2n7j6yeaTTIo1K1oyzA8noU+8pouZcvzMadfn5Xpfa4WXIStB6N88USlxZ9lvOqq/p1vTqzlXRig/yvtsppvhNgBfNPAdpGIKtARAZYTTr0V+mSxfXFu+OzjDa3AMvc1PTCAfJ6vFq1aAZzpAgFCLCKEDvMX0WAFeYFpPsIBEiAACtAkGHUTKC2A8ZZ2wErqMV/K6xaxrEd0I7TIHWPQ1u+kbYtdyo9KXsA0ephj1wJ0RNgOQ4dVOyUh+T6Y9Uxf4tzKO2qO5TWppMdyxjyPk2e4tK2xCPzJzZGatrEnG/lU/ny/n1d0N9BEGD5K8V9CBReICIDrJadBsrtcunrDyb7FWDt2LVX53W/3foC4bGhV+GJaeF4AgRYzA9/BQiw/JXiPgQiW4AAK7Lra0YXqO2AFTK3A1ZSi7jKOo3tgLadPD6vtPtXp7Ysl/b+6ZRyyRdiSkothh/5QFOkbyF07thy+EuDiRuz1M4Xl6DUG0fI07C5bWsayo7t2uXQuEmuLF144B6P4uIDG1xlvIAAK5TV5t3RJhCRAVbPmx7WL2v+1rwXH7cOcc+4cluB9drcRRo5fpbOO+t0PffkndE2B0I6XgKskPKH1csJsMKqXHQWgaAJEGAFjTZkDZvtgOaQ9eXJWwu1HbB+TCk1j6v832HrlVTHXSpkY+LF/gnktdrq6FacsVKNC3yq0daT+cuRHGC51v+m2EnD5Eg6kAXTW66SUm99Qt6qtfxDjsK7vlzq1MLFR7ZUmq2CV18ZmO2COXESYEXhJGPIIROIyABr2uz5GjftHbVqeoqeHzVEcWbNaC6HuK/bsEVX3/K49u4/qCfuH6CuF50dsmJE44sJsKKx6gUbMwFWwdx4CoFIEyDACu+KBmo7YKyc1nbAjAPXzXbA0ibh4LK9QMZqq63fSHv+yn21VcZAStbyqUorn8qf5pXz8D/SR3yA5V75mWJeflqO9COrzcygvTUbKOW2J+UrUdr2dQ5lB5+f5taWLUd60K2LR02bBGf1lXkLAVYoq827o00gIgOspEMp6tJ3mLZs26ma1SvrlusvU8smp+iCK+6wvkI4Z/qj+mfjNn3y+QrNeP1/OpiUbP36W1MftrYechWdAAFW0VmH+5sIsMK9gvQfgcAIEGAFxrGoWtntSdHyjMPWUxK1OnWn0kyCkc+rvDPOCqtaxFdRi/iKOj2mgmL4OmA+FUN7u7Xaapm0baVT6QdyPlw7o4cxxX2qeIZXVc6U4o9zXlEkrsCK+eAlxXw4O1ux0pu0UVq/++WLIag93kzes9ehZ8cf+fucwyENu9ejuFgCrND+CcDbEQiMQEQGWIZm/YYt6n/XM9q6fVcWKafTIafDKfPlwYyrRtWKmjn2XlWvUiEwqrTitwABlt9UUX8jAVbUTwEAELAECLDsPREytgN+m7xV3xbw64BmhPXcpdQirpJaJFRRy/iKqutmxYm9K59z73yew2dbbV0u7TFnWx3vckilG3hVtaVUtqFXDj/+nXIkBViO9DTFzHhC7h+XZlNKu/gqpXW9PhynQJH3eenXTn268Mhcq1fXp+uuPvL3vmB0iBVYwVClTQRyFojYAMsMd9+BJE15+T3N+fBLHTh4KJtAfFysLr/kPGuFlvlqIVfRCxBgFb15uL6RACtcK0e/EQisAAFWYD0L01ogtwOeFmu+DlhRLeNNYFVZZdgOWJjShPzZlN0OK7TatiLv1VZxZX2q1EKq3Nyr2NL5WyUTKQGW48BexU4eLtffv2epnc/tVtp19yi9+QUhr2m4dGDqdJc2bj6ywq/LJR41PyN/8yq/YyXAyq8Y9yNQcIGIDrAyWMxqq9/+3KANm7bp4MFDSoiPU7UqFdT45DqK/e98rIIT8mRhBAiwCqMXXc8SYEVXvRktArkJEGCFbm4EajtgWWes9VXAFvHmP5V0elx5xcqP5TahGzpv9kPArLba9d9qK+tLgse7XFL5hl5VbimVaeCVjr+jMNeWIiHAcm75xzqs3bkrMWt4VayEdVi7p84pfuhzixE4cMChp5/N+mfJ/UM9SkggwIqGGWL+rt+xz73Zhmr+vl+qRDHVPqGKWjdvpJ5dzlfZ0iWz3Xfv4y9o/sJlWX49xu1SqZLFVa92NbU9u5l6XHq+zCKY412ff/2jPv78W/3481/auXuv0j1elStdUg1Pqq3255yhzu3PksuV9c9Icx53m663Ws1+/f5klSxRLMdX3DZ8ghYv/V5nNT9V00cPzbUbna6+1zoyyewyM+eCm8scp5S4Y4/atmmmiY8PPu4Y5n60RMNHzdBt/bpr4LVdbDV9oiLAspU4nckiQIDFhPBXgADLXynuQyCyBQiwiq6+R28HXJG8XevT9xXo5XUztwNWtoIr87VArsgSOLTVoZ+nOZWWx9lW8RUOH8heqblP7mKFDxXCPcByrVml2OcflCMl604Rb6UaSr3tCXkrVI2siRLk0Xz9jVMff3okGKhT26frrw3u9kEzJFZgBbmwfjafEWAlxMeqWeMTM59KSU1T4o7d2rDpcEhsdl5NGz1Up55UO0vLGQFW/TrVVaHs4W3rqWlp2rp9tzZv3WH9/1o1KuvFsfepcsWy2Xq1Y9de3fnQZH2/+g/rZ8WLxVtHFLndbuv95ufmqluzqiY8Plh1amb9/d174CNa/ft6K1wyIdOxV1paulp3uUXmvG9zbvfS9ybmGHRt275bbXvcaQVtyz6YnLlgJyPAMu0+8+AgdWrXKldZAiw/Jx23RZ8AAVb01bygIybAKqgczyEQWQIEWMGpZ6C2A5qD1U+LLX/4/Kr4ymoVV1llXXHB6TSt2kLAkyKtGu9S8s6cl1GZLwdWOM2ryq18Ml8UDOQVzgFW7Cdvyj1vejYOT4PTlTroEfkSON4kv3Nl+osubfj3yDzs3NGrli3y/9GI/L6XACu/YsG5PyPAMiut/jfrqWwvMSHUiNEvatnKX3RKg1p6Z9ojWe7JCLByCnfW/r1Jdz3yvP5cv1Hnt26iyU/ckeXZ/QeS1POmh62QrF7t6ho6qJe1SuroD8StWfuvJsyYI7NCy4Rob77wkE6oVimznfHT52jqqx+oT/cOGja4T7b+L/12tW66Z4zKlSmpXXv25xpCffDp17rvialq07KxXnj6rsx2TIBl+nkoOVVlSpfQBy8/abWV00WAFZw5SqsRIECAFQFFLKIhEGAVETSvQcDmAgRYgSlQoLYDmrOqmsdVss6tMl8JbBpXge2AgSlR2LTy20tO7f4t+5bB4jV8qtLSpwpNvXIF6cN54RZgOQ4dlPuL9+T6bJ6c+3Znq3Ha2R2VdvWQsKm9nTqa0/bBe4Z4VKJEYEPTnMZMgGWPmZBXgGV6aYKfc7sNls/ns1YwHb2V8HgBlnl27T+b1eW6YTIfhfvq/cnWtsSMy2y3M6FPwxNr66Vx91mrr3K6zHsffHqmde/pDevptecezLzt2x9+1/V3PiWzAuy9F0dme3zk+Fl6be4i3XxdVz338nvq2LaVRo8YlO2+jL4Mvbm3+va8OEuAVa5MKdWvXd3aKnnxBS015qGbCbCKevp+9vUPVop54XktdHaLRtbrZ7+7sNDdMPtSTTLa+JS6Ml8p5AqOAAFWcFwjsVUCrEisKmNCIP8CBFj5NzNPBGo7YG13SevcKhNYme2ADWL4OmDBKhIZT235yqn172cNr8yXBOt29imhSvCDg3AJsBw7typm4TtyffWRHGmpORY/7YqblNbuisiYGCEYxfJvnfrfx0fmYs2aPvXvG/ztg2aoBFghKHgOr/QnwDKPtew0UAeTkrX47bFZtgLmFWCZZ8/ueqv27D2gOdMf1cn1a1q92Lp9ly7sfbc8Hq8VPJkA6niXWQF18VVDrS2FM569R2c2a2jdbrYInnXpzdYKqS/nTlD5slm325t3mO2BX86boIuuHPpfCDdJ5pyuo68Ove+2tjzOnfm4TqxbI/NHZgVWbEyM3pzykLr0Haadu/dpwmOD1e6c7NsVWYEVxDmdMQFNgU2hzXXq+X0D+kazP/SJ+wYoJsYd0HZpTCLAYhb4K0CA5a8U9yEQ2QIEWHnXN1DbAd0OpxrHlrOCqlb/Hbhe3pnzv1XOu1fcEWkCBzZKP012Sd4jW7biy/t0+u0eFdWuUbsHWM5//pDbbBVctVTy5ryVzRcTp9QBw+VpfGakTZEiHc/Ml136+58jc7HjRV6d1Sr42weLMsBKW7lUnnVritQ1lC+LaX62XHVP9rsL/gRYGedDmYUqX70/SQ7HkTnjT4B1ZuebrW14n74x2jrfylxvvrdYj459Rc1PP0kvj7/fr/6OnvKmXnzjI/XscoEeGnJd5jMD7x2jJctXZ9se+Nf6Tep6/QM647QT9cqEYRr62PP6cNFyTRt9t3Uwfca1cct2K9yqUK60vnh3fJa+mAArPd2jJfMm6pPPV2jIw5Ot+95/+Qlr4c7RFwGWX2Us2E13PjRJC778Tpdd3EaP33uD1cgl19xXsMaOesos7zOp5IGDhw9VHNCns+4YwL8VKTTsMQ0QYAVaNHLbI8CK3NoyMgTyI0CAlV0rUNsBSztjdUZcRbWKr6IW8RXVNK4i2wHzMzmj6N60g9KqcS6l7jvylz9njE+nDfao2JEjXYIuYscAy5GaLCu4mjdTrnW/HNfAW6+RUnvfKm+NekG3iuQXHDrk0JPPZF2FUlTbB41rUa3ASpr6tFIXvh/JpcwytmI3DlVs+65+jzevAMv8vf7uR5/XkuU/WWdMmbOmjr7yCrB+WfO3dc6VOTfq8znjM78k+MBT0zXv46XW1/rMV/v8ucyXBM0XBc0qLrOaK+N66a2P9cxzb+iKzufpkbuvz/z1abPna9y0d3TnjT3U/6pLrPDKhFhXXtZOw++4JvO+Of/7UiOemanOHc7SqAduytIVE2CZ1V3fzH/O+vU7RpgcZaW6XnS2nrh/QJZ7CbD8qWIh7jFh09HpaSGayvKoaddsR3xy4mwrYTVJK1dgBQiwAusZya0RYEVydRkbAv4LEGAFbjtgTVdJtUyoqJYmsIqrpAYxZZTzMdz+14c7I1/A55V+mebSvnVZZ8uJV3tUoXHwtw0eLWyXAMuZuFGuX76Vc/VyOf9YLYcnLdeJ4HPFyNPiAqVf2FPeqrUif8IUwQi//c6p+f87sn2wRnWfbryhaLYPmuERYAWnyAUNsIolxGceLWR65vF6tWv3Pv325z/WVwT79upohTbHXscLsNZt2KLBwydo/YYtGjb4avXp3j7zcXOwujlg/bF7+ql7p3P9wvj9rw26vP8IKwwzK6Iyrj/WbVS3fsOtw90/fu3pzF+/+taR+uHnPzO3KJpVYG263matoFr09rOZ92WMwQRSx47RBFgmxFvx0QvW/WYLo9lKuHffQU0ZdZfOadU4sx0CLL/KaN+bWl0ySMnJqVq1aIZ9OxmmPSPACtPChaDbBFghQOeVCNhQINoCrEBuB2wUY7YDHj6/qmVCZVVgO6ANZ7j9u7ThU6c2Lsp67lXlM72q161otmvZJcBy/7pCjp9XyLX6Gzl3bMmzcL6SZZTetpvS21wiXwnOjssTLB83vDTLpXXrjwSqF7b3qk3ropuPBFj5KFY+bi1ogJXbK8xxQBee29w6vLxtm+znPmWEP2ZVVKUKZa1mzJa7rYk7ZQIs8/wtfS+zdmYdfWWES+ZAdXOwuj9Xxmqx2NgY/fDptCyPnNf9ditcWvDGaFWrUsEKmNpcdquqViqfZUFNvztHafkPv+ntqQ9bh8eb6/zL79D2nXv02TvjVKlCmSztZnyFcOXHUzN/PeOLhVUqlrO2EmYcPk+A5U8VbXxP6y63yOv1ZS63s3FXw65rBFhhV7KQdZgAK2T0vBgBWwlEeoCVsR1wRfI2fZuSqNWpO5Vmlrzk8yrljNEZsZWsoMqcYdUsvoLilHWLTT6b5HYEtOcPh36dYcKrI2FB8eo+Nb7FI2cIpldRrsBy7kqU8+flcplVVmt+lCMtxa8Z4al9sjwmuGp2nuQKAZJfvQzfm8z2wadGu+Q7avHfkNs9KlO66FYDFlWAxRlYx5+nuW0hNIer791/UKt/W6fpr83X96v/zPELfhkBVk5vMau6TMBTtVK5bD8O5Aos0/i9I1/Q/AXLrOORunU8Rxkhk1n1ZVZ/ZVyz3vlUT016TYOu7apb+3WzQrZLr71f9WpX1/svZf+KYU4Blmnr5vvH6otlq9Tz0vP10F2HzxInwArxn4lm0q7bsFlbE3frUHKKiiXEWZOvTs1q1mcwj3eZLxSYw9Tq16mR5YC1EA8pYl5PgBUxpQz6QAiwgk7MCxAIC4FIDLD2eVM1YtdyrUhO1N/p/2fvPKCjqLo4/p+ZTU8ghd6L9N4NolIFFAsdRBFUBESKCh+CdBSkCAIiCIKKIqJ0QVC6NOkdpPcaEkp6dmfmO2+SzWaTTbK72TKze985HiD7yr3/+0Dy4977Yu2KQ0ldMOqn968qhMo+qf96TIMUcJQCyY+BYzMEiEmmvzvrAmXUGiLCz00JRc4GWMK5Ywq04k8fhHDnmtVSSiXKQazWEGLd5yCVqmD1OppouwKHj3BYu94EBosWBfr3Mdi+UR5WuApg5cFEr1iaWw8sJoJBFNG173iwEr4po/qiXcvIdG0slRCylkKvD/gMJ85cwvAB3dGzc+ssWo6askgBPkaQZI3Y2/cexQcjZ2XpgcXWsn5arK/Wyy80xhcj30tv2L5g2lCz0khjw3ZjHy1jM/k3O72ATz54PYsZ2QEs1tielRKy8sLFM4ejUZ0qWPvXHoycvFDp6cV6e6lpcDKLioeOO/eiMf+ndUqTs4TEpCxeBgcF4KWWkej35itZUuw8VBLVuUUAS3UhUa1BBLBUGxoyjBRwqQKeCLAWPzmL0TH7rdZRBw7VfMNR368QGgWwFwKLUDmg1erRRHsUkETg5FwB8bcy/sOvjGrvSchf3n3fSjgaYPGPoxVYxXpZCWcPg0tOfcwptyH7B0CsUg9S9UYQqzeCnI8Acm6aOerzn34RcOGi6V62aCbh+Wdtz1rNiz0EsPKinuPWWgOw2GnGhugsu8n4CBz7enY9sFjz9q79xiPA3w8bfvoiCzf4bd12jJ/xIxrWqYzvZ1r3mNyMb3/DomV/ouurzTHmw55mItx/8AgMNrEe3H8tm4bn2g9CUnIK9q6bq5QxZhyv9PoUl67eUl4cZNlYG7ftx7wvPsRzT9fKImx2AItNXLF+J8ZO/x4lihbEmu8/x469R5WG9wSwHHc/c91p76FTGDz6a4vgKvPikOBAzPlsEBrUtv6ZzlwNoAlWKUAAyyqZaBIAAlh0DUgBUoAp4IkAq9mt1Tivf5xtgEM4Her6F0QD/yJoxMoB/QrAnzP/SyzdDlLAmQpcXsPj7j7zvlelWkko0dK1oCCzj3kGWJIE4cqZVGDFmrDfvGy1jGLR0pCqN1SglVSuGmQd/Z60WjwHTUxO4TBpinn54OAPRESEuxaqEsByUEDzuI21AMv40t/zkbXwzeQP00/NqYn7uOk/4Pf1O9C6aQPMGDcgC3Bq1fVjJbtr/ZLJKFuqaI6eJKfo0eb1YWCgigEvBr4yj1feGolL127ju+nD8O7QaWjxbF3Mnjgoyzz2MiEDcqz/1rR5vyI65gn2rf9GqTjLPHICWGzuOx9Pxb+Hz+CNjq0QWa8aBoz8igBWHu+k1cvv3I/Byz0/UZ6JZB38WRoduxiMYvr5+ipQi6Xc7Tl4Cj+v3Kw0OmMNy9YvyUpUrT6UJtqlAAEsu2TzykUEsLwy7OQ0KZBFAU8DWKxs8LW7f5r5WUIXlNZsvQga+BdCJZ9Q8PQ+IP1ucJMCD05yOP+zee+m/BUkVH1HAufmZyvtAVhc3GMI6VlWh8AlxFmlrOzjB6lynbQsq4aQwgtZtY4mOU+BY8c5rFprupuFCgEf9HNt+SDzjgCW82Jsy87WAixjzydWDsjKAo0jJ4D16HEcXnxjuNJL69upH6NJQ9OLfWy9sYywZtXyWDxjOAL8fbM1/fNZP+GX1VtRt0YF/DTnU4vzJs1eiqWrNisljuu37Mv2hcPjZy7h9fcn4rU2TZTSw/q1KuHHWSMs7pkbwLp19wFe6/2pwlAGvdMBs75bSQDLlguYl7mmS1ERC6cPhb9f9heIPUHZZ9h0pakbo40jBvbIy9G01kYFCGDZKJgXTyeA5cXBJ9dJgQwKeBrAGvzgH6yIM2V9vB1SBRMjrHvFiC4GKeBsBRIfAMe/EiDpTaTKLzS175UuwNmn576/VQBLliFcOw+eZVixJuzXzsOs43cOx0gFi0M0ZllVrAlZ55O7UTTDZQr8vIxDtwXhAAAgAElEQVTH+QumzMBmz0tg/7l6EMByteKWz8sNYKWk6PH98k2YvWil0gd75XcTUbFcCasAFpv069ptmDhzCUoVL6SU2fn5mv48YEyhS99xuH7rPqpUKI3/vd8dDWpXApeB8l+7eU+BQn/tOIDQ/MH47dtxSoKNpbFj7zElA4qBMAaUWIlggfCszQbZQ3NNOw5WEnRSwVNH9H3zZbsAFlu0dNUWTJr9s+IbyxSjEkIX3e22Pf6nXJ6V301QGqPlNlgTt47vjkHpEoXx589TcptOnztQAQJYDhTTw7cigOXhASb3SAErFfAkgMWat9e6/itSYPqGa0mhFmgRWNJKNWgaKeA8BcQU4MRsAYlRJnjFCTJqDhQRlHOFjPOMyrRzdgCLS4yHcCatl9Xpg2BZV9YMWfCBVLEmpBqNYKj5NOQIlThqjfFeNoeVD06eJoD1ZzMOln3FsrBcPQhguVpxy+cZARYrn3u6btX0SZIs40lsPP67eEMBPYLAY9SQnsqrexlHThlYbB6DRZ3fG6s0gH//rVcxoHd7s/UPYh5jyJivcfTUBeXrYflDUKJYQfjoBNyNeojbdx8oXy9fuhhmfzYIZUoWyVY4ZmdkuwFKWWL1SmWx/Nux2c41Zn+xCb/OG4MaVcpZnJtbBhZbxNqj9xw0GUdOnlf2IIDlortd54U+8PXRYf+GeVaf2PiVAUhKSsGRvxdavYYm5l0BAlh519BbdiCA5S2RJj9JgZwV8CSAtfDJGYyLOZDucEEhAEdLdDH7F1u6D6SAOxR4dI7H1T85JNw1rxEs30lC4Qauz3DJToPMAEt3eCeEnesgXDhhtWxSaAFItRpDrNYAUqXakH39rV5LE92nwPGTHFauNpUPhofLGPJBBprlQtMIYLlQ7ByOMgIsS1NYRlGRQuFKz+seHVqZZV4Z5+cGsNi8Y6cvoseAz5Rm6mu//1xJgMk82AuDm7YdUEBWzKMnECUZYfmDUa1SWbR6rh5eahGpQLTcxpsDJykgiYEyBsyyG9t2H8HAUbPB+nrvWft1tntbA7DYGSxTrP3boygDK7cAOfLzBm37KT2tdqz8yuptm3f+EPEJSTZBL6s3p4nZKkAAiy6HtQoQwLJWKZpHCni2Ap4EsJrcXIkrhtj0gA0LrY0hobU9O4DknaoVSLjD4fIfHJ5cyvrNVaH6Ep7qrB54xYRkAEtIjkfM+lXgtq0BH3M/V31lQYBUvrqpl1XR0rmuoQnqU2DZch5nz5nu6XPPSmjZzD33kwCW+u4HWeS5CnAyyxPzsNH5vXE4f+kG9v85L8f+V0a3Wb3o0y/1R5UKpfDr/OzT8zxMJlW4QwBLFWHQhBEEsDQRJjKSFHC6Ap4CsPYn3UOHuxvT9WJ5LkdKdkUhQQWNhZweRTpAbQron3C4upFD1FEesPCdQWCR1NJBXkUP7fFRtxCyay30OzcAKSk5SioH54ehZiTkag0hVqsH2S9QbSEge2xQQG8APp+iMysf7N/HgKJuqvgkgGVD8GgqKZBHBTwSYC3+9U98Of83fDHyPbz8QuNcJVq9cZfycsCw/t3Qq2ubXOfTBMcpQADLcVp6+k4EsDw9wuQfKWCdAp4CsAZG/YNV8abm7W0CS2FRoebWiUCzSAEHKSClADe2cbi13fyVwYzbBxSWUaW3BP8wdfybt3D2CHTbV0M4+W+OKojlqkCqEZlaGljyKQcpRtuoQYFTpzn8ttJ0Z/Pnl/HxYPeUDzI9CGCp4VaQDd6igEcCLPbCQKf3xiHqwUPMmjgIDetUzjaeuw+cxEfj5qJIwXCsWDgevhleE/CWS+BOPwlguVN9bZ1NAEtb8SJrSQFnKeAJAMtS8/afCrVE80DTa0jO0o/2JQWYArIE3D/A4/rfHPTx5n2ujAr5hsoo01pGgToSYHmKy8TkDCnQ7d8KfttKCLevZXuurNNBrNcUhhYdCVq5LDquP2j5Ch6nz5jKB5s0lvBCS/eUDxLAcn386UTvVkDTAIs985h5sCcxdTpBacj+1cIVSEpOUV4irFujAooUilCehGRfu3MvGodPnMeFKzeVr/04a0S2Hfu9+4o413sCWM7V15N2J4DlSdEkX0gB+xXwBIC14PFpjH94MF2EYkIQDpToRM3b7b8WtNIGBR6eZQ3agcT7lpsI8/4ySjYHij0jgnNzySD/JAbC9jXQ7doALv5J9uAqJD8Mz7aDoVl7sHJBGp6rACsfnDxVB4PB5ON774goUdx9GYKUgeW59408U58CmgZY1Zr2cqiihQqEYvsK6xu/O/RwL92MAJaXBt4Otwlg2SEaLSEFPFABTwBYmZu3/y+0DgaH1vLAaJFLalIg4S5waZWA2GvZpFMJQJFGEkq3kiEEug8GMM34Gxeh2/w7hCM7wYnZl4bxJcvDv10XPK7xHPTupm1qCrYH23LmLI9ffzfB16AgGcM/dl/5IJOaAJYHXzhyTXUKaBpgvfTmJw4XdMNPXzh8T9owewUIYNHtsFYBAljWKkXzSAHPVkDrAGtf0l10urspPUjUvN2z76savGMN2q9s5PDgSPbPtodXl1C2nQw/d/a5kkToju+BsGUVhMuns5eO4yBWb6SUCUY0eho6gcP9R0kwiO6FbmqItTfY8PtKASdPmyBsZCMJbVu7r3yQAJY33DryUU0KaBpgqUlIssU+BQhg2aebN64igOWNUSefSYGsCmgdYA2I2ok18VfSHWsbWArfUfN2uupOUEBM5nBzO3D7HwFyNgkqwSVllHtNRLAb269xifHQ7f4Tuh1rwMXcz1YJ2S8A4tMvwNCyI6QCqc/NFQr1J4DlhLuj1i1ZMh57fTBj+eC7vUSUKuVeeEkZWGq9MWSXJypAAMsTo6ohnwhgaShYbjaVAJabA0DHkwIqUUDLAOuhmIRaN5ZDhOmbrZ8Lt0SzADfSA5XElcxwnAIMVt1La9BuSLBcLugfIaPMizJY5pU7h271QvhsXwNOn5KtGVJ4IYhNX4OhyUuQAwLN5hHAcmf0XH/2f+d4/LLcvHzwfx+J4Nz8yAABLNffBTrRexUggOW9sVeF5wSwVBEGTRhBAEsTYSIjSQGnK6BlgDX/ySlMjDmUrhE1b3f6dfG6A2LO8Li6AUh6YLlcUBcoo2QrWel1xQnulUe3ZSV8V87P1gixfHWIzTvAUPsZgLfsDwEs98bQ1aevWiPg2AkTrWrYQEK7tu6FsEwDAliuvgl0njcrQADLm6OvAt8JYKkgCBoxgQCWRgJFZpICTlZAywCLmrc7+XJ48fbxt4HLa7Jv0M76mxd7VkSJZoDg595yKxYm4fIZ+E0bbDFihobNYWjRCVKpCrlGlABWrhJ5zARJAiZNFZCSYgJYvXuKKFvG/feZAJbHXDNyRAMKeCTA2rX/pN3SP9uoht1raaHtChDAsl0zb11BAMtbI09+kwLmCmgVYO1JuoMud/9Kd4Z9C3ayZDeECf4UYlLAbgVSHnG4yhq0H8umQTsHFKwroUwbGT753P+NPnOUi3sMv8/7gX/0IN1vOSgfDE1ehNi8PaR84VbrQQDLaqk0P/H8BQ4/LzOlDQYEyPhkqPvLB5mwBLA0f73IAQ0p4JEAq1rTXnaH4PSOH+xeSwttV4AAlu2aeesKAljeGnnymxTwDIDVP2on1mVo3v5iYCkspObtdL3tVIA1aL+xFbizO/sG7fnKpjZoDyxi5yHOWCbL8Js5DMKF46bdOQ7JH88AKxm0dRDAslUx7c5fs07AkWOm7Kv6dSW80s795YMEsLR7p8hybSrgkQCrRvPeOUZDksz/BUonCChXuijKlCyCmeM/0GYkNWo1ASyNBs4NZhPAcoPodCQpoEIFtJiBZal5+9LCrdA0oLgKFSaT1KwAa9B+dz+PG5s5ZNegPbCIjDIvyQitqI5v7jPq6bN+CXw2/GQmsb7dW9C/9IZdshPAsks2zS1i5YNTvhSQmGgCWG+9IaJ8OXVkFVIGluauFBmsYQU8EmDlFg+93oB7Dx7i8Inz+GH5Rly7eQ9TR/dDy2fr5baUPnewAgSwHCyoB29HAMuDg0uukQI2KKBFgPXN45P4/OHhdC+pebsNAaep6QrEnOZx9U8OSQ8sP7nGSgRLt5ZRqJ4EuPlVNkthE84fh9/MoWYfiRVrIXnINNj7jBwBLO/4DXLpMocffzaVD/r6yhj5PzG73v4uF4UAlsslpwO9WAGvBFgZ481gVp9h03H8zCWsWfwZSpco7MXXwfWuE8ByveZaPZEAllYjR3aTAo5VQGsAS5ZlNLy5ArfF+HQhPgmri4H5azpWGNrNYxVgDdovrRIQd8MylRJ8ZRRvltqknfdRpwys35XfZ++Bi49NN1AOCUXSmEWQg/PZbTQBLLul09TCdet5HDpi6vNWp7aM9q+IqvGBAJZqQkGGeIECXg+wWIxPn7uKLn3HocsrzTD2o7e8IOzqcZEAlnpioXZLCGCpPUJkHyngGgW0BrB2Jd5Gt3t/p4tDzdtdc0884RSlQfufPB4ctwyuOB4o3EhCqVYydEHqKKWyqLsown/qQPDXL5g+zkPfq4xnEMDyhJuesw+yDHwx3bx8sEc3EZUqqufOE8Dy/HtIHqpHAQJYAJR/HX2xPyLC8mHTL1PVEx0vsIQAlhcE2UEuEsBykJC0DSmgcQW0BrD6Ru3A+vir6aq/FFgaCwo103gUyHxnKiAmpTVo35N9g/bwahLKviTDL0I938Rnp4nv7/Og27bK7OOU196GoXX3PMtIACvPEqp+g8tXOfywxLx8cMQwEYLpS273gQCW20NABniRAgSw0oLdovNHiHkci6N/L/Si8LvfVQJY7o+BViwggKWVSJGdpIBzFdASwLLUvP2Xwq3wPDVvd+4l0ejurEH7vX95XN+SfYP2oOKpLwuGlNKGk8KJffCbN8bMWEPV+kgZONkhDhDAcoiMqt5k/Z88DhwylQ/WqiGjY3v1lA8y8QhgqfoKkXEepgABLAAGUUTdF/rA10eHQ5sWeEyIExKTsWL9DmzZdRgXr9xCfEISwsNCUL9WJfTu2hZVK5bJ1tdDx8/hh+WbcOz0RcQlJKJwgTC0aFIXfXu+gvwhQdmuW71xF1as34mLV29BFEWULlEEr7Vpgtfbt4QgmP7nY9yAAJbHXDenO0IAy+kS0wGkgCYU0BLA+vrxCUx+eCRdV2rerokr5hYjY06lNWiPtlwu6Bcmo8yLEiJqqj/jyiggH3ULfp/3B5ecmK6pFBqB5NHfQQ4MdojOBLAcIqNqN2Hlg1NnCIiPN/2+6N5FQpXK6nphkwCWaq8QGeaBChDAAvDH33vxyaQFeKpscaz9/nOPCPOOvccwZtpiRD98gpDgQFSrVAYBfn64dO0Wrt+6r8CkqaP6oU2zhln8ZQBq7PTvla+zdRFh+XHh8g3cuR+DooXC8cs3Y1CoQGiWdSMmLcS6v/fARyegTo0K8NHplOb4cfGJaNKwBuZOHgJdpnxfAlgecd1c4gQBLJfITIeQAqpXQCsAy1Lz9hFhdfEBNW9X/R1zpYFxN4HLa3Jo0B4oo1QLGUUjJUBFJVO5acTpU+A7+X0Id66ZTU0eNgtiuaq5Lbf6cwJYVkulmYkPH3N4GMMh5iFw7x6w/6DpH8B9fYBRIwyq84UAlupCQgZ5sAIeCbASEpNyDZkoSrgX9RA7/z2O+UvWga3p3a0thvbrmutaLUxYumoz5n6/Bh/17YJX2zRRoBIb7C/Uv6zeikmzf0ZQoD82L//SLKPqxu37aPfmCOh0AuZP+QgNaldOX/f196sVrZ6uWxWLZvzPTAYGrhjAKleqKBZMH6aALjaYrkPGfI09B09h4Nsd0K/nK2brCGBp4Tapw0YCWOqIA1lBCrhbAa0ArJ2Jt/D6vc3pcgngcLxkV4QJ/u6WkM5XgQJKg/YNPB6cyKZBuwAUfUZEyRaA4K+drCvh3DHwh7ZDd3gnuETTy5tMcn2nvtC36ORQ9QlgOVROl20W9YBHTAwUSMV+jI4BHj7kEB1j+feD0bDqVWV06aSu8kFmGwEsl10dmw5iSRvr/tqD/UfP4Mr1u3gSF48Afz8UjAhFscIReKZhDTRrXAelihcy27dZpyG4/+CR2df8fH0QHpYPVSuWRruWjfHC8/Ut2mJpbeaJLIHky7Hvp395+GffYv2WfTn6xnp1/7N6dvqc67fuoW2P4cqvP/ngdbzZ6YUc14+cvBBr/9qDn+aMRN0aFW3SUW2TPRJgVWvay2ad2aVYtWgiCoTnt3mtWhc8jo3PttzvrcGTwcoE2W+ejFlYDGwtXbUFQ/p0Qp8e7cxcY/Cre/8JOPnfFSydOwq1qz2V/vlrvUfhwpWbWb7OJjx8HAvWY8zHR4edq2bB3883fR0BLLXeHvXZRQBLfTEhi0gBdyigFYDV5/42/JlwPV2idkGl8W1Bat7ujjvjzDPFFMAQz0FMAgyJrHcVYGA/T+CgT5CUr4kJHAyJMkSD6Zvz2CvZf6NeoI6E0q1lsLJBLQz+2nkIB7dDOLQd/ONoiyaLNSOR3H+Cw90hgOVwSR2+YUIih5OnOPx3DoiK4vAkNmdIlZMBXTtLqFZFXeWDzF4CWA6/NnnaUK83gCVeLFr2p5K8wQZLrsifL1ipDLof/QgpKXrl643rV8fC6UPNzjNCKAZ6WIshNhKSksGg0aPHccqvmzepixnjBqQniRg3MK6tUbksdLrUtZlHZL2qGNC7ffqXjQCrTMkiCMsfYnFNaL5gfD1pcPpnGQEW+956zfefoWQxcxCXcSMCWHm6Us5fbAvA4nkOzzSojpGD3sxCX51vqftOmDR7KViW1shBb6BHh5bphrTqNhS37z7Att9nonDBsCwGLluzFZ999RN6dm6N4QNSX49h89k6Rq83LrX8iuNH4+birx0HMefzwWj+TJ30fQlgue8OaO1kAlhaixjZSwo4RwEtACzWvL3GjV+RET8sK/wCngso5hxRaFenKRB1jEfsVQanAH0CIDJIlcgAVSqkcuTIV05G2ZclBBVTP7ji792AcGCbAq5Yr6uchqP7XmU8iwCWI2+g4/Zi0OrUaQ6nzgDXrvFIYwh5OoAXgE+HG5DGE/K0l6MXE8BytKL278fAVO8Ppyh9nBkMeu+NdnipZSRYskrGcfbCNWzfcxRP16uaJSPJCKFY4kXG5BYGw3YfOAX2fS2rMhr2fjf06tLGbN/s1ubkkRFgTRvdHy+2aGSV80aAFeDvi8SkFDSsUxmLZwwHx1n+/xIBLKtkdd+kA0f/y/VwFltWQseajLMfvW0Yf6MwkstSJ9l4EpeAyHbvK+CKASxLg/1m79RnrJJ9xbKw2Ni66wgGjZ6Ndq0iMeXTvhbX/fj7X5g6d5mS1cWyu4yDAJa33Tz7/SWAZb92tJIU8CQFtACwZj8+gSnUvN0jrt2RaQKSHjgWVGUWJqCQhDIvAmEqzCzJaCv/KBrCwW0QDmwFf/OSVfEVK9WCvmM/SCVNWftWLbRyEgEsK4VywbS4+FRodeY/4OrVrA83WWtCYICM8AggIlxGgQIcIsIkhIUBBQvKYD2w1DgIYKknKuOm/4Df1+9Q2tos/HIYihRMbWtjy8gNQv26dhsmzlyCKhVKY8XC8WZb57bWkh15AVhdXmmGfw+fUbLDxnzYE11fbW7RVQJYttwAmqs6BZJT9EpJX2JSMratmJleZnj63FV06TsOdWtUwE9zPrVoNytLbPzyAIVo7147R5nDXiucNu9X9H3zZQx6p6PFdewlxMGj56B10wZKuqVxEMBS3fVQrUEEsFQbGjKMFHCpAmoHWJaat48Mq4cB+Wu4VCc6LO8KsNK//eOd1zldFyyjVEsZRViDdpUOLj4OuqM7wbNsqwsncreS4yA+VQNi/aYQ6z4HOdi5rTkIYOUeEmfOYNDq9JlUcHX9Bmd1plVAgIyIcCAiQkZEBIfwMEn5dYECgJ+v+jMQM2tKAMuZt8z6vU+du4KufccrZX2rF3+GsqWKWr84w8zcINTFK7fwau9PlYfS/l3/jVsBVvu2z4L913PQJAQG+GPdj5PSe1FnNIwAll1XgRapRYFvfliDuT+sQY8OrTByUI90s/YfPYu3P5yC556uhXlffGjRXPYX8+rNeiuvGJ7YuliZ8/Xi1Zi3ZK3SAJ81wrc0jHuzNM1FX5oawMcmpNYf0yAFclMgwE8HncAhIdkAUdTeX25y848+JwVIAesUEAQOgX46GEQZicnqe41qc/wNdLz+V7ozrHn7pQo9EK7zvmxv6yKq3lkPzgCH5+duHycAPgEyfAIBnyAOPkHs5xx8AmX4BvFpv0b615TPgmQoV8K5yV25G29pxp3rwLULEPdtBo7vt26PCjXAN2wKrsHzQGiEdWscMCvIXwfWDiQ+yQBJor8bOEDSXLeIjeNw9ARw/ISMy+aPTGa7tmplGbVrcChUEChcEPD3sD8OQwJdkxr2x+OrOBwflWuMPGXCy6FlUC+woNXujJ/xI35bt10BOp8Nf8fqdZkn5gaw/rt4HR3fHYOihSOwZfmXZstzW2vJqLxkYLVu2hAzxr2vtPhhrX6aNKyBb6d+nOUYAlh2Xwf1LGT/k2P/w/O2sffQKfQbPkNJp1z53QSFHBvHrv0nlM9aPFsXsycOylaaWi3egUEUcXzrIugEAV/O/w2Lf/0TIwb2wBsdW1lcd/TUBbzxweeoU70Cfv7acnaXt8WC/CUFSAFSgBTwPAXaX9qENY+upDvWOaw8fiuX8+tAnqeCZ3h0eq2Is3+YsqNK1OdRoh4H32AOvoGAbxAH3yBAF6Btf+VHMdAf2w/9sX9hOHEAclysVQ4JFarBN7I5fJu0BOdCaGWVcTTJoQo8fgIcOibh0FEJF6/IuWZasd7V1atwqF+bR50aPPz8HGqO127W99pOLGBk3UvGt6Wfx3sFqlrt7cs9R+Dy9TvK97Hs+1l7R24Qylh91Oq5+vhqwgdmx+S21pJNeQFYrJn8nM8GKT25Xu09SulNzeAdg3gZBwEse2+DE9YxkLJp+wE0f6YuAgNy/tMx5lEsZn+3Elt3Hwb7eb7gQETWr46Bb7e3O8XQCS45bcsTZy7hnY+nKs3dWIlgpfIlzc5ySQZW3apYNIMysJwWZA/emDKwPDi45BopYIMCas7AumdIQMULv5g1b19Xqi2aBhW3wUOaqhYFDs0Fos+ZrKnZEyhq+eV0tZhstR3yueOQGaw6uR+4bl0/K2XzMpXAN2oGrmEzICL7F6+sNiSPEykDK48C5rCcvRZ47CRw7ISMK1ZkWvn4AJUrpmZaVa8C+JoeHXeekSrZ2VUZWASwcg547ZbvQG8QseGnL8Be9LN35AShWMLHkDFfQxRF/PLNaFStWMYiwKpVtTx8snlxYNzHvczYgxFgsb5d4ZmazRs37/Zqc7Rtbmrwbmzi/nxkLXwzObVyat+h03h36DSFcbBSwoIRoem2EcCy9zY4Yd3Ofcfx/oiZSq3n5uVfZtt5P/rhE3TvPwG37j7IYgV7enLh9GFK7ydPHawm+J2PpsJgEJW0wvq1KmVx1ZgOaU0PrPwhQdj7x1xljyW//4Upc5dZ1QOr5bP1MGviwPSzqQeWp944x/tFPbAcryntSApoUQE198Ca9eg4pj46mi5rMSEIB0p0yvbvJlrU35ts3j9GgJhsytavO1yEf7g2y9T4Rw8gnD4I7vQB8P8dAZ+YYHUopRLlINZvBkOD5pDD3Q+tMhpOPbCsDqNVE+Pi2MuBHE6d4nD9Zu6VKuz786cqSKhRVUbFiuptsm6V83mY5KoeWASwsg8SS2phVUJsZH490Lhq9NTFWPXnP1k2YSCKASfjMAIs1vrGl5FZAMnJKbhy4w7uP3iE8NAQTB75nlKul3kY1+Z0nZZ/OxbVK5VNn2IEWDmtydyqxwiwMrf+MfpozMwy7kkAKw+/wR29lL0AwF4C6PjSc5gw7O1st2cNxFkjcVY22PnlZqhdrTwePY7D8nXbcfXGXaWk7o8lk3PN4nK0/a7Yj2Ve9Rk2HZIkKYS2Qe3KFo9lqYcN2vaz6hXCGpXL4tf5Y1P/kEiDiNa8Qvh2txfxcb8u6ecTwHLFDfCMMwhgeUYcyQtSIK8KqBVgsR6RdW7+higxMd3FT8Pq4X1q3p7XkLtlfcI94NgMXfrZukAZDceKbrHF3kOFs0fAnz4I/uxBCLetSKHJcBB7NVCs3QRi/echFSphrwlOX0cAK+8Sx8amQavTHG5YA618gIpPSaheTUbFCjLSvr/PuyEa3sFVAIt6YOV8Seq80AcpKXpsXDoFpYoXzjL5u182YMfeY+lfP3fphlJ6lx3AsnRazarl8f3M4WAJMJaGq0sIMwOs2LgEvNJrpALapo3ujxdbpGZtEcBS0R8w3fqNx8n/rmD6mP5maXUZTWSfs3lsTBrRB6+2fib947j4ROXlvWs372Hsx73Q5eWmKvIu76YcOXkBff/3pdJ0nWVeZaTLlnZ/5a2RuHTtNrb9PlMBWZkHaw7HmsSxJzvHfvSW8vGDmMd4vsNglCpeCBuXTrVo9Efj5uKvHQezxIkAVt5j7C07EMDylkiTn6RAzgqoFWBtTbiBnve3phvPmrcfL9kVYYKHdSv2kgt6/yCHiytMLxCGVZFQpZd6XwtkYeGi70E4fQDCqQPgzx8Hl2yCqbmFjb0WKFapC6lqA4jVGzr99cDc7LH2cwJY1iplPk+BVqc5nDzD4aYV0MqXQasKchq0ksB6XNEwKeAqgEWa56xAm9f/hxu372P+lI/xbKPcX/7t1n8CTp69nC3AypjJxb7fffGN4UhITMby+WNRrZJ56aDRMncDLGYHg3QDRn6F0PzB+OPHyUrG2Kgpi7B64y78NGck6taoqOmrxMnsnww1PBq/MgCPn8QrdZ7lSxez6MmwifPw59b9aFy/OhZOH5plzppNu/HpF9/h2UY1MX/KRxpWw9z0A0f/w/sjZsDPzxffTR+GKhVK5+qy8t8AACAASURBVOrbrO9WYsHPf2BIn07o06NdlvlGYMh0YnoZB2vQzhq1L507CrWrPWW27uHjWLTo/BEkWcY/q2crdbnGQQAr15DQhDQFCGDRVSAFSAGmgFoBVu97W/F34o30IL0cVAbzC3rWP4p50w28tFLAvQOmEqpSbSSUaKYugMUZUiAwUHXqIIQzB8Hfu2l9iHgBYrmqkKo1gFi1HqSSFQAu95Ix6w9wzUwCWNbrbDO08pVRqQLSoZVg4rnWH+olMwlgqSPQwz//Fus378NbnVvjfwO652qULQCLbfbj739h6txlSvnfsnljLD4IpwaAxWw1liW2adYQX459H8YXGglg5XotnD/B+CLe3nVzkT9fUJYDH8fGo2nHIUo6IYNXDGJlHqwv1gvdhuZYOud8Txx7AmvixshrvpAgLPpyGMqXsa6BLOsVxug1KzdkkMpYbsg459ffr8b8JetQsVwJrFo00aynh/EFQ9Z8bsH0YUpPMjZYWuaHY+di94GT6NGhJUYOesPMUQJYjo27J+9GAMuTo0u+kQLWK6BGgHVfTETdG8vNmrcvL9IaTfyLWu8YzVSVAsdm6pBw12RStb4i8pdz/7/58vduQDhzCNypAxAunACnT7FaNzmiCAxV60Ni/1WpA9nP9A+KVm+isokEsHIOyJMnpvLAm7dyB5R+vqm9rKpXSy0TJGhl3YUngGWdTs6eZcw8CgkOxKalU5UMpJyGrQCL9dnq8M4YXLp6C6OGvInur7XIsr1aABZrlcRKCdn39uxVxiMnz+OH3zZRBpazL6E1+9du9S70egO2r/gKhQqYOu0b1xpL3nJq8s7Ws318fX1w9O+F1hyr6jmsLPLZ9oMUaBeWP8Qi2MvowJzPB4OBJ+PYuusIWMkf+03K0iMLhOfH+cs3cedeNFjzdkZuLQGx6fOX4/tfNyovLtSp/pTS9O74mUtgtbjshYYfZ43I0mOMAJaqr5KqjCOApapwkDGkgNsUUCPAmvHoGL58ZOqrwZq3HyzZ2W0a0cF5U0DUA/tHC4Cc9g0/J6PRRBFCai9flw5WBsifO6Y0YOdPHwIffcfq82Vff0gVa0Gs1gASy7JScS8rq53KNJEAVlblGLQ6eToVXN2yBlr5yahcSUb1qsBT5Qla2XMXCWDZo5rj17CEi87vjcPZC9fAGrDP+Wxwjv2tbQVYzGJW4dT7wy/AINn6JZOV75MzDrUALGYTa9/DvqdnNrZu2hBLV20mgOX4a2f7jq26DcXtuw+wZPZI1KtpXs/JLvFrb4/CxSu38N4bL2Pwux0tHmAEWKxP1Imti203QmUrWMlek1dNL/3lZt7K7yag8lOlzKadOX8V3/70Bw6fOI+4+AQUiAhVSgb7vfmKxd5YxsXsN8rPKzfj3KXrEEUJxYsWxIvNG6F3t7bwYwX0mQYBrNyiQ58bFSCARXeBFCAFmAJqA1isPL5upubto8Lro3++rBnfFEFtKPDoIoczC031UoFFgdpDDC4znjVc588cAM96WV06Bc5g/dlS8XIwVKsPuWpDSOWrQfbwZkUEsFKvZSq04nHqNHDrthWZVv4yqhihVTkJPJUH5un3NwGsPMnn0MXsdb5u/SaAVWGxBI0P3m6Ppo3rZPk+VG8Q0b3/BAV2ZdfEPbvXDD8a9w3+2nEAlh4wUxPAYsIOGfM1Nv9zSPE/OUVPAMuht83OzT4e/w02bT+gNGZnDdozDtaojDUsY2CKNRcvXqSAxVOMTcgDA/xxcON8Oy2hZfYoQADLHtW8cw0BLO+MO3lNCmRWQG0Aa0vCDbxFzds96qLe3Mbj+l98uk9FGkko18F5/a+4xAQI/x0BxxqwnzkE/mGU1Xpqtfm61Q7mMtGbAdajx6wRO49TZ4DbVkArfyO0qgaUKydBMF1xR4XDa/chgKWu0LPH2T4c+zXYK4Ns+OgElClZFPlCAmEwiArcunk7Sqk2YsNWgHU3Kgbt3vwEiUkpWDxzOBrVqZIugBFg1ahcFrps/gEhsl5VDOjdPn2NsV9VmZJFlOopSyM0XzC+njQ4/SMG6tr2GI7MrxBmXss4ByslZD3D2aAeWCq4q7v2n0S/4V8qljDC+lqbZwFZxrY9RzB9/m9KGR17WZC9MJjdYFlGPQdNUp7bZM9u0nCdAgSwXKe11k8igKX1CJL9pIBjFFAbwHrr3hZsSTQ1z34lqCzmFXzeMc7SLm5R4OwPPB6eNX13/1RnEYXqO77/FWu6rvvtG+jOHLTJT6l8dYjVG0CqXBdimco2rfW0yd4KsPbsE/DX5twzrQIC0jKtqgFlyxK0ctb9J4DlLGXt35dVYm3ZdRibdx5SWtrEPHqiACeWicT6ZpcoWhC1qj6lVHBF1q9mlqFlTRbVwqXr8dXCFShbqihWL5qotNBhw7g2J8uNjdWNc4wAK6c1EWH5lMfQjMNagMXm//H3XnwyaYGylACW/XfKoSsHjZ4N1rfJ0mCXatk3o5U61ewGa0w+Z/Eqj3uF0KEiO2kzAlhOEtYDtyWA5YFBJZdIATsUUBPAstS8/bcirfEMNW+3I7LqWXJgvABDggkO1PlYREAhxwEs9nqgbv1P0G35HVxaBkBO3nti83VHRdsbAdYfG3gcPJx9+hTLtKrKygOrp/a0ouF8BQhgOV9jOoEUMCrAyQxPanwkJafg81k/Y82mXZAkkzstn62H0R/2zNJcLbO7xgZuH77XGe++/pLG1dCW+QSwtBUvd1pLAMud6tPZpIB6FFATwJr+6BhmZmjeXlYXgt0lLPfbVI+CZElOCiRFczgy1dQQSPCT0WhCapmJI4Zw7hh8f5oOLvpettt5Q/N1R2jJ9vAmgKXXA8uW87h4OSu8CgyQUbWKjGpVgbJlJPBUHuioK2bVPgSwrJKJJpECDlHAIwCWUQn2TOTFq7eUX1YoWwLhoZZrSDMqxxqNz1z4O2RJRs/OrXNsUO4QxWkTMwUIYNGFsFYBAljWKkXzSAHPVkBNAKvOjeVgWVjGMSa8PvpS83ZNX8CoYxwuLDMBrNBKMqq+nXeAxT+JSS0XPLzToj5SifKpzderNIBYqZamNXSl8d4CsBISOSz5mcftO+ZlgyzbqmsnGeXLUaaVK+9d5rMIYLlTfTrb2xTwKIDlbcHzBH8JYHlCFF3jAwEs1+hMp5ACaldADQBrY8I1TIg+iOtinJlcp0p2R5jgp3YJyb4cFLiylsedvab0lZItJZRslQc4IMvQ7VwH3brF4BMTspwsRxRGyptDIVaqTXGxQwFvAFjR0Rx++JnH48fm8Co0VEbvnhLCQjVfTGNH5NW1hACWuuJB1ni2AgSwPDu+qveOAJbqQ6QaAwlgqSYUZAgp4FYF3AmwrhieYPSD/dielJrtnXG8FlQWc6l5u1vvhiMOPzFHQNxNEyhg2VcsC8uewd+6DN8fp4G/cTEruNLpYGjZBYaXekDW+dqzPa3xghLCazc4/PwLj+Rkc3hVqqSMHt0ksCbtNNyvAAEs98eALPAeBQhgeU+sVekpASxVhkWVRhHAUmVYyChSwOUKuANgxckGTI85goWxZ7L1d22xF1Hft5DL9aADHaeAJAL7RwmQJRMsaDjeAJ2/bWdwKUnQrfkePjvXAFLW7C3xqRrQ9xwKqWAx2zam2VkU8OQMrLNneSxfyWe5QtWryej0mgjeVOlKN8PNChDAcnMA6HivUoAAlleFW33OEsBSX0zUahEBLLVGhuwiBVyrgCsBFsttWBF3CZ/HHESUlGTRUfbi4BcRkSjnk8+1QtBpDlcg9iqHk/NMVCCgoIw6Q23rf6U7uhu63+aCf/Qgi31ycH7oO/WDoVFLh9vurRt6KsDavUfA31vNs65YjFs0l/F8E9vupLfeDVf6TQDLlWrTWd6uAAEsb78BbvafAJabA6Ch4wlgaShYZCop4EQFXAWwTqfE4OMHe3AyJdqiN2V0IRgf0QgtA0o40Vva2pUK3P6Hx9UNpv5XBevJqNDFOljAx9yHz88zIJw9bNFkfZMXYWjfB3JgsCtd8vizPBFgHTnOY81a82cEWbZV1w4SqlTJQz82j78N7nOQAJb7tKeTvU8BAljeF3NVeUwAS1XhULUxBLBUHR4yjhRwmQLOBlgxUjI+jz6I5fEXYam7TBCnw5DQ2ngvX1XoOHqr3mWBd8FB55byiD5himm5DhKKNMoFGEgifLashG79EnD65CxWSkVLQd9zGMQylV3ggfcd4WkA69JlHkuW8pAz/OETGCDjjdcllChO/a7UesMJYKk1MmSXJypAAMsTo6ohnwhgaShYbjaVAJabA0DHkwIqUcBZAMsgS/g+9iy+fHQMsZI+i7esmKdjcDmMDm+IAryNTZFUoh2ZkbMChyYJSMnw0lutwQYE5dCmSrj6H3yWTAN/53qWjWVffxhe7gl98w6gZkXOu3meBLDu3+ewYJGAlAx//AgCMPB9EeFhBK+cd4vyvjMBrLxrSDuQAtYqQADLWqVonlMUIIDlFFk9clMCWB4ZVnKKFLBZAWcArH1JdzHswR5cMcRatKeGbwSmRkSipl8Bm+2lBdpQQB8PHJygSzeW18loNFGEpSQ7LiEOulUL4LNno0XnxJqR0HcfDCk0QhvOa9hKTwFYcXEc5i/k8STW1PeK44A3ukuo8BSVDar9ihLAUnuEyD5PUkDzAGvrriN4LrIWfHT0FIcWLyYBLC1GzT02E8Byj+50KimgNgUcCbBuGuIwNuYANiVkzaBhfhfk/TEioj66BD2FrO2U1aYM2ZMXBaJP8Tj3k6l8MH85GdX6Zu1/JZw9At/Fk8DFPc5ynBRaAPoeQyBWb5QXU2itDQp4AsDSG4AF3wm4d9/8T5lX2kmoX5fglQ3XwW1TCWC5TXo62AsV0DzAqta0F0LzB+OlFpFo37YJqlQo7YVh1K7LBLC0GztXW04Ay9WK03mkgDoVcATASpQNmPPoBOY/Po1kZIUUrLfVuyFV8HFYHQRypqwcdSpCVjlCAda8nTVxN44SzSSUamMOD3w2/QqftYssHqdv1RmGl3tB9vF1hDm0h5UKaB1gsV5XS3/lcf6CeT+9yEgJbVsRvLLyGrh9GgEst4eADPAiBTQPsJ5u9z5i4xLSQ1ahbAm81rYJ2rWMRIHw/F4USm26SgBLm3Fzh9UEsNyhOp1JCqhPgbwCrLXxVzAx5iDuiKa/O2T08hn/opgW0RilfULU5zxZ5DQFTs4XEHvFlAFTpZeEsLQX37jEBCXrSji1P8v5YplKSpN2qSj9A6rTgpPDxloHWBs389i3zxxeVa4soXtnCayEkIY2FCCApY04kZWeoYDmAVZyih7bdh/B2r92Y8/BU5Ck1CaHgsDjmQY18FqbJmjWuDZ8fX08I2Ie5gUBLA8LqBPdIYDlRHFpa1JAQwrYC7DOpTzE/6L34VDyfYveltPlw/iIhmgeUEJDapCpeVFAH8fh/kEedw8CydHmtKDBGAN8ggDh9jX4zB8DPup2lqP0Hd4Dy7yi4T4FtAywjhznsWatObxiLw2+00sEa95OQzsKEMDSTqzIUu0roHmAlTEEUdGP8MfmvVizaQ8uXb2V/lG+4EC82OJpBWbVqFJO+1HzIA8IYHlQMJ3sCgEsJwtM25MCGlHAVoD1SErBlIeHsTT2PERkfckrmNNhSFgd9AmpAlY6SMPzFYg5zeP+ISDmjOV4+4XJqPeJCN3hHfD5cRo4fYqZKFJAIPR9xkKsUtfzxVK5h1oFWJcu81iylAcrITQO9tJg33clBATQi4Mqv3ZZzCOApbWIkb1aVsCjAFbGQJw+d1XJytqw9V88ehyX/lG5UkXxapsmeLlVYxQuGKbl2HmE7QSwPCKMLnGCAJZLZKZDSAHVK2AtwJIg46fYc5j68AgYxMo8WL5N5+Dy+DS8AQrw/qr3mwzMmwIsw+rOfiDqCA99hpfeLO1apLEBlZLnwWf7qiwfi8XKIGXA55DDC+XNIFrtEAW0CLCiHvDKi4N6vUmCwAAZ/fpICA0leOWQi+HiTQhguVhwOs6rFfBYgGWMqt4gYue+Y1i7aTf++fcEDGJqs1aO49C4fjUFZrVoUhf+ftR00x2/EwhguUN1bZ5JAEubcSOrSQFHK2ANwDqYdE8pFzyvf2Tx+Bq+EZgaEYmafgUcbR7tpyIFZBGIPs7jzgHOrL+VJRMFfxkF68ooWvMJwlaOBn/pVJZphgbNoO85FLKO/s6oljBrDWDFxXEKvHqSAaLqdMC7vUUUK0rwSi33ylY7CGDZqhjNJwXsV8DjAVZGaR4+jsWGLf9izabdOHvhWvpHwUEBaNOsIV5t3QR1a1SwX01aabMCBLBslsxrFxDA8trQk+OkgJkCOQGs+2IixkYfwLqEKxZVK8j7KxlXnYLLg/oje+7Fir/F4d5BDvePcpCSco50SFkZRRvKiKglQXftLHy+HQf+SYyZOLLgA0P3gdA/09ZzRdOoZ1oCWHoDsOA7Affum9/JN1+XUOEpenFQo1dQMZsAlpajR7ZrTQGvAlgZg3P+8k0lK2v9ln14EPM4/aPTO37QWgw1bS8BLE2Hz6XGE8Byqdx0GCmgWgUsAawUiJj3+DTmPDqBRNmQxXYfjld6XH0YVgeBnE61vpFh9isgJnGIOsLh7gEOCXdyhlY+QTIK1pNQ5GnAPyI160W3Yw18VswHl5apb7RECi+ElH7jIZV8yn7jaKXTFFAbwIqN5RCfAMTHc4iPh/LzxMTUO3b9BofLV8z7rrVtLSGyEcErp10QF21MAMtFQtMxpACrpJPljO0DvU8TUZSw5+BJpfH7tj1HcGzzd94nghs9JoDlRvE1djQBLI0FjMwlBZykQGaAtSnhOsZHH8B10dTvMuPRLQNKYGJEI5TShTjJItrWnQo8ucTj7gEg+iQPVjKY7eCA0KckFGkEhFWVwKW98sbpk5VG7brDO7MsFSvXQcp7YyEHBLnTRTo7BwWcCbDYd0jxCRwSFBDFgJSsgKk49qPy6zRQlZD69aRcsv0yu1GvroRX2xG88oQLTgDLE6JIPmhFAa8HWBkD9SQuAezFQhquU4AAluu01vpJBLC0HkGynxRwjAJGgHU67iHevbod/ybfs7hxWV0IvoiIRJOAYo45mHZRjQKsCfv9Q6ngKjkm52wr3/wyCtWXUKQh4JupQTYfdRs+88ZAuGNqK6E4yXHQt+0Bfbueys9pqFcBWwFWQiKHuDgggWVIJciIi+egfC2WQag0YJX29cRE58W+SiUJ3bsSvFLvzbLNMgJYtunlrNnXb91D2x7DUaZkEWz46Yscj7l19wFe6DYUJYsVwqZfpuY4d+mqLZg0+2e82KIRpo3un+3cud+vxjc/rrXKvafrVsWiGf9Lnzv8s2+VyrCcRkRYPvyzenb6lBXrd2Ls9O/R5eWmGPtxL6vO9YRJBLA8IYoa9oEAloaD52LTCWC5WHA6jhRQqQJ6nYhZT45jzv2TMCBr0+MQTocPw2rjnZCq0HHm5ToqdYnMskIBWQIenuVx7wDw8BwPC6FP34WFPaxKarZVaEUJlhqeCSf/he/iSeCSEs1OlwICoe8zFmKVulZYRVPcrUCQrz+SEjlcu5uM2FiWEZUKoeLiUrOiFEiVwCEx7etqqDspWkTGu2+L8KFqZndfH4edTwDLYVLmaSNnAaz2b48Caz/k46PDjhVfITR/sEU7GVBasSFrNm/GyZeu3kZCYhJaN22AGeMGZAFYDL6F5becMR6aLxhfTxpMAMvbSwjz9LuEFudZAQJYeZbQazYggOU1oSZHSQGLCjBUtTzuIiY/PIQHYlKWOSxXomvQU/g0ogHCeT9S0UMUSIrmcHc/cP8wD0NczhkxfhEyijQACjWQ4BNs+UU3LjEBur9/hc+mZVkUkkpVQHLfcZDDC3mIetpzIyk5rWQvHqngKQFKlhQDUgmstxT7dVxqn6mEBA6SSpKY/PxkBAUBrJAjMFhWfgwOkhEUzKX+GAQEBXEICpQRECBTYp/2rmaOFhPAUkdAnQGwjp+5hNffn4gqFUorj8D9b0B3vNW5tV0O/3fxOrr2HQ+dTsDqxZ+hVHHT/2uMGVgsw4tlelkzKAPLGpVoDingYAUIYDlYUA/ejgCWBweXXCMFclHgRPIDfPxgD87oH1qcWce3AKYUaIxqvuGkpQcoIOmB6BM87h7kEHslZ2jFellF1EgtEcxXPnuawd+7CWHLCuj2bwHre5V56Bu3UV4alHW+HqCgelxI0af2iWJ9pBiQUsBTHIfY+DQgFWfsL5U6T1QJkOIFBqOM4CkNTgXJCA7mFQgVHAwEsh8ZmAqWIVCyp3ounRssIYDlBtEtHOkMgDVqyiKs3rgLS2aPxDsfT0XJogXxx5LJNjusN4jo1m88GMQaMbAH3ujYymwPAljWS0olhNZrRTOdoAABLCeI6qFbEsDy0MCSW6RADgo8kJIwMeYAVsZdtlgxVlgIwKdhDdAxuBzp6AEKxN3kcO8Ah6jjHKRcGmIHFJZRpJGMQnVlCAGWs62YJLojuyDsXAvh/PFsFUp5axgMT7/gAQo63wX2SGMsy4CKT82AMpXsSWaNzVm2FMucMmR9FNT5RmZzAst8YtlQgYFpWVHBLEsqY4aUKYvKzz/7O+U2B+hg1SpAAEsdoXE0wIqLT0TTjoMREhyI7Su+wsBRs7Ft9xH8NGck6taoaJPT3/ywBnN/WKOsWzJ7BLhM/RUJYFkvJwEs67WimU5QgACWE0T10C0JYHloYMktUsCCAgZZwsLYs/jq4VHEyVm/A/bjeAwsUBN9A6sjkKNGMlq+RGIih/tHOdzbzyHhbs7ZVrwPUKAW620lI7hU9oCBS4iDbs9G6HauBRdtuck/00wKL4SUAZ9BKlZWyxLmyXaW8aT0ijK+qKf0imLwSVYypZSfp4Eq1vicZVSpZbAeUiH5gPzBHHz9RQQFpJbvhbBSPaVkDwgOlhEUyH5OZXtqiZsn2uEqgHXnuIyHV1WSpuiCQBatzSOstPWPKTgaYC1bsxWfffUT3un+Ij7q2wWb/zmEIWO+xisvPIPJI/tYrcC5SzfQ5b1xaaWDE1GqeOEsawlgWS0nCGBZrxXNdIICBLCcIKqHbkkAy0MDS26RApkU2J14G8Oi9+K6Ic6iNm0CS2FuuWdRnA9G9JOspWAkqAYUkIHHl1hDdg7RpzjIYs42B5WQUaShjAJ1JAg5VPjxd65B2LoSugPbLJYJGk8Ri5WG1KwDDI1aQvbxrJJB1hNKyYxK7xXFSvVSe0gpL+6xPlJGYJUAJCdb/82hs28WS0hg5XmBrH+UAp4YiGLleqlZUulfV+CUDF8fwNZXCJ3tA+3vnQq4CmAdXiLiyj/eA7Dqvimg3PPW1+c6GmB1fHeMUvLHSgbLlSoKVgbIMrISE5OxY9Us5GPN7nIZBlFU+l6xfT754HW82clyti8BrNyUNH1OAMt6rWimExQggOUEUT10SwJYHhpYcosUSFPguiEWo6P3Y0viTYualNWF4IuISLTIVwLsz4NkvUQAS2O3Rx/L4d7B1JcEkx/mDE4EfxkF66aWCQYWyaGcSxKhO74PwvY1EC5kXybIumaLNZ6GoXkHiJVqa0Y59moee1WPvaKXmgmV+roey5BiX1dK+divE1JBVWKieoAUE9nP19hHKrWpeaDS6FxGUAiX1mPKCKmAAH/bs6QIYGnmKnu0oQSwnBNeewGWn68PqlYsk6NRKXo9Tp+7ipLFCmHTL1OzzD159jK69Z+AWlXL45dvRqd/Pmn2UixdtRkjB72BHh1a5ur4Nz+uxdzvVyulgz/OGgGet/xntBFgMVAWHpbP4r7dXm2Ots1NDd6piXuu8tMEUsDxChDAcrymnrojASxPjSz55e0KJMoGzHx0DAuenIFezvovyyG8Dz4OrY3eIVWg43j4+fAEsDR0aVh21cOzPO4eAB6d52GxmVkGf0LKpmVb1ZLAGrRnN1iZoM+uDeD/WQc+5n628+SAIBgat4HYvINSMujuwYAUg0wMPiUkpGZFGftIKXAqLrV3FPuMgarEJA5sjVoGz6dmP7HEA/ZjUDDLmmIZU2kgKsjU3DwkWAZrhu7MQQDLmerS3tYqQADLWqVsm2cvwLLllOwA1uipi7Hqz38wbmgvdG7XNH1L9hJhpz5jUbFcCeUlwZyGNaWDxvVGgJXTfkP7dUXvbm3TpxDAsiXSGprL0vW2/HMYF67cxJO4eJQoWggT//e2mQdR0Y8gShIKFwjL0lBNQ65q0lQCWJoMm1uMJoDlFtnpUFLAqQqsjr+MiTEHcU9MzHIOKxroGlwBI8PrI5z3S/+cAJZTQ+KwzZOiOdz9F4g6wkMfl3NWkE+QjIL1JBR5GvCPyJnWsDJB3ZYVEA6yMsGUbO2VCpdIzbaKfAGyj+n+OMxBOzda8jOPi5etL4mx8xiblrHm5qx0L4j1jkp7YS+IAam0V/YCGbBKa3bur7Lm5gSwbAo1TXaSAq4CWNQDK+cAOqqE0Ni8XZJk/LN6NoJZg70Mo8M7o8Hg1LJvRqNm1fIWjWKlg936TQADXjmVDmYGWNNG98eLLUxZVjl5TADLSb+h3bVtfEISxn/5AzZs/dfMhErlS2LVoolmX3vno6n498gZLJg2FM80qO4uk73yXAJYXhl2u5wmgGWXbLSIFFClAqdTYjD8wV4cTXlg0b46vgUwpUBjVPMNz/I5ASxVhlQxStIDD07wSkP22Gu5lLJxQOhTrCE7EFY152wro8c+u/+Ez9KZOQpgqN4QYrMOEKvWU51Qp05x+G2Vk1OS2MuLOlO5XkYIFaJAqdTm5kHBpiwqllWl1UEAS6uR8yy7XQWwPEs1x3vjKID169ptmDhzSa4GdnjxuSyJMcZF85asxdeLWelgBfw4a2S2pYMEsHKVOcsEj+yBJYoS+gydhv1HzyoOFwjPr3T7P3LyPCwBLFbHyupZO7V7HuOH9rZdRVphtwIEsOyWzusWEsDyupCTO7AL5wAAIABJREFUwx6owCMpBZNiDmFZ3HlYakNbRAjEqPD6aB9ULlvvCWCp72LE3+BwhzVkP85BzKUpuG9+GYXqSyjSEPANtb42Trd/C3x/mGLRedkvAIbI1hBbdIBUoKj6BAKQkgLMnCMoZYG2DtbcPDBARmBwWv8oY6ZUWh+p9L5SrJwvKLXvlLcMAljeEml1+0kASx3xcRTAMjZvZ320BMEy4T/13xX4+/lg56rZCAr0NxPg/OWb6PLeWPA8jzXff2bx1cHMilETd+vvkEcCLFavyupWQ/MHY8yHPdG6aUNFkWpNe1kEWBev3MKrvT9FhbIllEtGw3UKEMByndZaP4kAltYjSPZ7swIiZPwY+x+mPTyCJyxNJ9PwBY+++aphcFgtBHC6HKUigKWOmyQmcog6wuHOfg6J93KGMhwPhFVJzbYKrSgBNjIc3eEd8F00CZmbQUkFi8PQ/DWIka3BIJaax7oNPA4dNn0jxF7QM/aQSn9hL+3FPeXrgWkv77FsqUDbm5urWQtH2kYAy5Fq0l72KkAAy17lHLvOEQDr5H9X0K3feJQvUxzrfvg8WwP7DZ+BXftPYOxHb6HLK83S52UsHRw+oDt6dm5tlZMEsKySSZnkkQDrrcGTcej4Ocz5bBCaN6mbrkZ2ACs2LgFPt3tfoacH/pxvvXo0M88KEMDKs4ReswEBLK8JNTnqYQrsS7qL4dH7cEn/2KJnbQJLYXx4Q5TQBVvlOQEsq2TKMklMYSV+HCTjjwZZKflTvsZ+ZL9O4SAZUksBU79u+bl2fRKHu3tyrzvzC2OvCELJuPIJsS8rSDi2B37fjjPzR/bxRcrbIyHWfsY+MVy86vYdDvMXmpcOPv+chBZNLevrYvM0fRwBLE2Hz2OMJ4CljlA6AmCNmbYYKzf8g5GDeqBHh1bZOrZ971F8MHKW8trh7wtM/4+av2Qd5ixehTrVK2DJ7NxLB40HEMCy/g55JMCKbPc+UvQGBUZlTPvLDmAxueq80AcGgwEnt31vvXo0M88KEMDKs4ReswEBLK8JNTnqIQrcEeMxJvoA/ky4ZtGj8j75MSUiEpH+RWzy2CMAlgiIDBCZwSI59dfpEIkBplS4JKYBJTFFSv2aFeuUNco8DhBtkjhPk9nLgRHVGbiSka983gCN7tQB+M4bA0gmB2SdL5KHTIFUXhs9SyUJmLtAQNR9U9pZWH4Zgz4QITi/HVaeYqmFxQSwtBAlz7eRAJY6YpxXgMV6aDftOBisHdGOVbOQjz23ms1gDd5f6PYx7tyPUQAWA1ns0bjOfVJLB9kLhaVLFLZaGAJYVkvlmRlYtVu+g9D8Idix8iszJbIDWCzVr3bLd5UMrP0b5lmvHs3MswIEsPIsoddsQADLa0JNjmpcgWSI+PrhCXzz+BSSLJCTfLwPhobVQa+QKhBsrSUD4AyAZZ6JZMxASvvRkJq1JKZDo7TsJAOQDpSMsEjJbjKBIyXbKfO6rBWUGo94qvn+BWQUfUZGoToyhAD7sq0yCiGcPQLfbz4FZzCkf1nW6ZDywWSIlWprRrNde3hs3mqerfb2WyLKlM67RpoRwYmGEsByori0tdUKEMCyWiqnTswrwPpt3XaMn/Ej2rd9Fp8NfydXW42N2lkJISsl7Df8S+zaf1J5tZD1385psCSbX9k/0KQNI8AqU7IIwvKHWFwami8YX08anP6Z8RVCNr9o4Yhsj5s14QMUK1IgV3+0MsEjM7CadRqCmIex+HfDPAT4+6bHIjuAdez0RfQY8Bn1wHLDrSWA5QbRNXokASyNBo7M9ioFNiRcxYSYg7hpiM/iN/sWvntwRYwMr49Q3vT/ZlsFsgdg3d7FI+p4WvmcESilZTvJJj5iqyleP5+1KytYm/W2khFcynFARrhwAr6zR4AzpJg05gWkDJgIQ9UGmtH9yRMOX30tIAODQ+1aMjq86sKUOM2oZZ+hBLDs041WOVYBAliO1dPe3fIKsDr1GYuzF65h2TejUbNq+VzNiIp+hBZdPoK/ny92rJyFtz+agpNnL+e6jk3gec6s8ssIsHJaHBGWD/+snp0FYOV24B9LJqNcKXU+cJKb7ZY+90iANXTCPGzcth+jP+yJbq82zxVgDRj5FXbsPYY3O72ATz543R4daY2dChDAslM4L1xGAMsLg04ua0aBi/rHGP5gL/5NvmfR5jq+BTClQGNU8w3Ps0/2AKyDEwTo7Xj9Lc/GqmQD3gfgfWSwHxl04tl/PoCg/Cinfs2HS52T9jnnI0Pw5ZVfC7oMa5U5bC4QXEqCYD+LtKiOcPksfL8aBk6fnAFe8UjuOw5izUiVKGqdGUt+5nHxsin7KiBAxkcDJfj5Ow72WWeJ584igOW5sdWSZwSwtBQtslXrCngkwDp66gLe+OBz+Pn64NPBb6LjS88pccqcgZWQmISpc3/F7+t3KL2y1i+ZnGu6n9YDrjb7CWCpLSLqtYcAlnpjQ5Z5rwKxkh5THx5RXhhkLw1mHkWFQIwKr4/Xgso5TCRbAVbMKR7//ZR7w3GHGZjDRrx/KiASGFBSoBCXBo/SwJHy9bT/fNPmsPm+PDg2Pw08GdcqYCrj1xmgElLhlAKo/LQFSvjr5+E3Yyi45ESTihyHlD6jYKiT+nc5rYxTpzn8ttK8yVX7V0XUqaWtmKhdbwJYao+Qd9hHAMs74kxeqkMBjwRYTNoZ3/6GRcv+VFRmDdQa1q6igKpCBULR7dUWuHj1plKjyl4gZGNov67o3a2tOqLiRVYQwPKiYOfRVQJYeRSQlpMCDlSAfQv+S9x5fBFzGDFShkyZtDP8IKBf/moYGFoTASy9x4HDVoB19nseD/8zAazsspFSM5JszUYyZTOlZzKlA6rUz1gmE9ubRs4K8Lcuw/fLD8Enpv69zDhSeo+AoaEpm14LOqakADPnCIjPkPVXupSMd3pR6aCj40cAy9GK0n72KEAAyx7VaA0pYJ8CHguwmBw//LYJs75biZSU7Dum+vjoFHj1Rsfsn8m0T1paZY0CBLCsUYnmMAUIYNE9IAXUocCR5CilXPCM/qFFg9oElsL48IYooQt2isG2AKyUJ8ChSQIgm16AqzvcAP+8VzI6xTdv3ZS/cx1+Xw4GFx9nDq/e/BiGxm00J8sfG3gcPGyCpgIP5dXBsFDKvnJ0MAlgOVpR2s8eBQhg2aMarSEF7FPAowEWkyT64ROs/Ws3Dhz9D6yxG3seM8DfD8UKR6BhnSpKeWHBiFD71KNVeVaAAFaeJfSaDQhgeU2oyVGVKnBfTMSEmANYHX/FooXlffJjSkQkIv2LONUDWwDWzW08rv9lAgn5y8mo1peyYJwaIBs356LvwP+LgeDiHpvDq+6DYHjuZRt3c//023c4zF9oXjrYvJmEps9K7jfOAy0ggOWBQdWgSwSwNBg0MlmzCng8wNJsZLzEcAJYXhJoB7hJAMsBItIWpIAdChhkCd8+OY1Zj44j3sKTffl5XwwNq4O3QipDgCnTyY6jrFpiC8A6/IWA5Icmmyp0FVGwLmXBWCW0CybxMffhO30I+IdRZqfpO/eHvnkHF1jg2CMkCZi7QEDUfdOdiwiX8cH7IlgWFg3HK0AAy/Ga0o62K0AAy3bNaAUpYK8CBLDsVY7WOUQBAlgOkdErNiGA5RVhJidVpsCWxJsYG70fVw2xWSxj34/3CKmET8LqIZR38FN0OehgLcB6fJnD6W9NmTCsR1XDsSL1o1LJHeMfR8Nv2hBw0XfN4VW7ntC/9KZKrLTNjN17efy9xZxUvfe2iBIlCJrapqT1swlgWa8VzXSeAgSwnKct7UwKZFbAIwFW41cGoE71Cpg7aYhNEY+LT8SyNVtx/PQl6HQCalQph07tnkf+kCCb9qHJ1itAAMt6rbx9JgEsb78B5L8rFbisf4JPovdhT9Idi8fW9yuEqRGRqOQb5kqzlLOsBVgXlguIOmLKhCncSEL5DlTG5fKAWTiQvTbo+90k8FG3zD5Nad0VhtfeVYOJNtvw5AmHr74WYDCYljaoK+HldnTnbBbThgUEsGwQi6Y6TQECWE6TljYmBbIo4JEAq1rTXihepAD+/nW64vCjx3EQJQnhoSHgOMvlDQxede8/AZevm/9lvXDBMPzw1ScoVbwwXR8nKEAAywmieuiWBLA8NLDklqoUSJAN+PLhUXwXexasdDDzKCYEYXREfbwSWNZtdlsDsMQU4MB4AbLB9P/8mh+ICC5JmTDuChwX+wi6fzeD//cvCLevZTFD/1w76LsPdpd5eT53yc88Ll42ZV8FB8kYPECCnz/duTyLm8MGBLCcqS7tba0CBLCsVYrmkQJ5V8BjAZZOEDC0f1csWfE3bt99oCgVlj9Eyaga0Os1sNcHM445i1dh/pJ18PX1QccXn0NovmBs3L4fV2/cReWnSmHFwvHZwq+8h8F7dyCA5b2xt9VzAli2KkbzSQHbFDiREo037v6NaCnZ4sLB+WticFgt+MG8QbVtp+R9tjUA6+6/PC6vNsEE/wIy6g6j5u15V9+2HTh9CoQjuyDs/xvC2SPZLmbN2lO6D7JtcxXNPnWaw28rzX9fdOkgonp1glfODhMBLGcrTPtbowABLGtUojmkgGMU8FiAlZM8zzaqiXlffGgGpF7t/SkuXrmFSSP64NXWzyjLk5JT0HPQJJw+dxXzp3wEto6GYxUggOVYPT15NwJYnhxd8k0NCgyM+ger4i9nMeXFwNIYG94AJXTBajDTqhLCE7MFxN0yZV+VaSehGL0C57L48RdPQrfvbwhHdoJLSszxXEOD5kjp/QmQTYa8y4y286CUFGDmHAHx8ab7Vr6chLfeoNJBOyW1aRkBLJvkoslOUoAAlpOEpW1JAQsKeDTAKhCeH/3fehU1q5SDr48P/rt4HXN/WIPrt+6ZgSqmS+1W70KvN2DHyq9QMCI0Xar9R8/i7Q+noHO7phg3tJdmLxHzY9iEeYh++EQprWQlltmNp9u9j9i4hGw/b9cyElNG9bX4+eqNu7Bi/U5cvHoLoiiidIkieK1NE7zeviUEC0/wEMDS7JVyueEEsFwuOR3oRQrEyQbUurYMSTBlKZXX5cOUAs8g0l9dJfS5ZWAlRgFHp5uyrDleRoMxInQBXhRQN7jKRd+Dbu8m6PZvydKYPbM5UkAgxDrPQWzcGlL56m6w1nFHrv+Tx4FDpmw/nQ4Y8oGIfPko+8pxKme/EwEsV6hMZ+SmAAGs3BSiz0kBxyngsQCLwZLfF4xHpfIlzdS6GxWDdm9+gppVymPxzOHKZ6IooWaLt5Wfn9i62Ay0SJKMyJffR+kShfHbt+Mcp7yLdpJlGd/9sgGzF60E84WNnACW3iCidst3EBjgh/Jlilu08tmGNTCgd/ssn42YtBDr/t4DH52AOjUqwEenw/Ezl8D6izVpWANzJw8BK+3MOAhguegieMAxBLA8IIjkgmoVWB5/ER9F7U63r6wuH3aX6KBKe3MDWFf+4HFntwkoRNSQUImyYZwSS5ZdpTu0Hfy/myFcOpXzGTwPQ+W6kCJfgFj7Gcg6171c6RTnAdy+w2H+QvO/17RuJeGZSMq+cpbmmfclgOUqpemcnBQggEX3gxRwnQIeC7BqVi2PZd+Mtqjk+yNm4tjpi9i7bq7yuUEUUavFO8rPT+/4IcuaLn3H4eadqPT5rgtP3k56HBuPEZMWYOe+43i6blVIsoQDR//LEWBFRT9C045D8GyjGpg/5WOrDWDgigGscqWKYsH0YShaKFxZm5CYhCFjvsaeg6cw8O0O6NfzFQJYVqtKEzMqQACL7gMp4DwFOt7diH+T7qUfMCy0NoaE1nbegXnYOSeAJYnAwQkCxCRTOVeV3iLCKlM2TB4kN18qSdCdPQx+318Qju8DZ0jJcWuxWBlIT78Aw9OtIIeYMtwdZo+bNpIkYO4CAVH3TXetYEEZA/qK4E381E3Wec+xBLC8J9Zq9pQAlpqjQ7Z5mgIeCbBqNO+N5s/UxayJAy3Ga9z0H7Bq4z9KthUbuQGsd4dOw6Hj53Bs83eain+3fuNx8r8r6NGhJf43oDv6D5+JvYdO5QiwWJllx3fHKGV/n39i/VPWr/Uehf+zdx7gUVRfG39ndjebnkAaoYTQBOlVuiLSwS7Nrn8LdkWxN/SzV1QUu2JFiiggRUCKFEWq0lsSIJDe6+7OfM+dTXazJGHb7O7M7JnnyZPN7r3nnvOeC+Iv5557+PhJfDf7afTs0t5Bp4KiElwycbrUOH/9olkINdp/60oVWKraUgF1lgBWQOWnxTWsQIapBANPLXSI8J+WE5Gsj1Bk1OcCWHm7ORz83l4RY4gS0fcpi1rbKylKf/50BnSblkO3bQ344oJz+iZGxoD1trIMHAWhleO/CRQVlBfObNrCY+XvjqRq2u0WNE8mWOqFrG5PJYDltmQ0wQcKEMDygahkkhRoRAFNAqzBl9+L5knxmP9Jw0f+GJDas+8o/v5tjiQLO+LWf/xd0uuGKrBueehV7NhzGLvXfK6qjbR1+z6czs7DlWOHSn7f9MArEog71xHCLf/sBdPnf1PHYfqdk1yKl93yOHLKI0hpkYjl373e4Jzpz8/GynXb8P5LD2D44F62MQSwXJKYBgEggEXbgBTwjQJvF+7CW4W7bMYHhTbD/GZjfLOYDFbPBbD2faZD4WF7RUyL4QJaj6bjXO7KzuecApefI/Wy4jLToDuwE/yp+g3+z7Zr7jUUlgEjYek+0N0lVTW+uJjDux/oYDbb3R5wgYBxY2iv+TuRBLD8rTit15ACBLBoX5AC/lNAkwDrjhlvSkfWvnr3cfTr2clBzYNHT+Ca25+V+kHNuGsKbp48RhrL5rCHVQix5u91n/E3PI7ikjJsXPy+/zLjg5Wuv/cl7Pzv8DkB1rI1W/Hoi3Okiq2bJo52yYs1G3fg/mfew4SRA/HaUw03d/96/kq8PvsH3H7dBDx4+zUEsFxSlgbVVYAAFu0HUsA3Cgw4uQAnzKU24+/ED8akyA6+WUwGq40BrOpi4J+XWPWVHWD1fsyMUOuJdnpqFGBH/rjcLHD5WeDzzgB5WWAN2KWvgizwRfmA6HoVkaXN+VZo1W84xDBlVu3Jnfy53/I4csxefRUZIeLB+ywIUX9bL7ml8rk9Alg+l5gWcEEBAlguiERDSAGZFNAkwPptzV+Y8eJH0lG1GyeOlo60GY0G7D2Yhk+/WyrdsMd6ZLEqrJbJCcjNL0JllbWHw8tP3I7LRw+2yZtxKhtjr3sUfXt0xNeznpBJ9sCYcQVgfbNgFV794HsJRrHbGIuKy6SjF4lxTdC3Z0f073U+uLOuuv5q3gq88dGPuPOGS3H//65uMLjVG7fjgWfex+hh/fD28/fYxlAFVmD2ghpXJYClxqyRz0pXYGvlGVx9ZoXNTSOnw7+tpiCCNyjW9cYA1onVPE7UOdIV01ZElzvttyoqNiA/OcblnYZhyVzplkBvHyG6qXSDIANXQpLjZTne2lb6/P/28fhpgePRwWsnC+jUkaqvApE7AliBUJ3WPFsBAli0J0gB/ymgSYDF5Ht45odY8cffDSrZp/t5+PytRyVQ8+Mva6Ux7FhbTHQk1m3ehRcevRWD+naRjhY+/vInYMfqHpk2GbdMGeu/zPhgJVcAVm2lVGPLd2qfgreeuxuprZrZhnzwxc/4aO4v59Tor537cetDr2FAn86S9rVPSbnJB5GSSS0qEGbUQ6/jUF5lhsXienWAFrWgmEgBuRS4J3MDvik6ZDM3Jbo9PmkxTC7zPrGj03EIN+phtoioqLKe4WIFQ+ueAVgVVu3T/Xog+QKfuKAuo3nZEBZ/BXHTKoB1uffwEY1h4PteCH7IaKBTTwRjYzH2u86X3hBRUmqv8uveWcQtN9h/9lBemuahAhGhevA8h7JKs+22bQ9N0TRSwGMFosKV+0sfj4OiiaSAQhXQLMBiRwQZnFqwdJ3UXJz945ZVW101bihumTxWaijOnlNnclFRUYX2bVrg0LGTmDxtJqqrHaEKq0RaOvcVREaEKTSNrrnlCsBilrbtOoCoyHA0bxaP8DCjVLH27/5j+HLecukWQ6bH4i/+D7ExkdLCb835CV/8+BueuO86XH/1yAadYUcX2fq9unbAtx885ZrDNIoUIAVIAVLAZwpUCmbE7/4SZYK9kc/q8y7FJVEtfbamrwxn7xOx4W17HLoQ4LJZeugMwQsWxPwcVCz4EtWrf3VfdmMo+IRm0pcuIRm6dp0QMngEEGJ035YGZlRUAhs2C9j0l4DMM/ZfoLAjgy8/bUCsY+cJDURMIZACpAApQAqQAspUQLMAq67coijCwq591tlvJmosHeu37MZzb36JnLxCaUi71BZ489m7cF5b9f2D/uwYXQVYjWljsQi4/ZE3wKqppt14Ge679SppqFsVWL074/O3qQJLmX8dKNsrqsBSdn7IO/UpMK/oCG7PXGdzPFkfjgPtp9Y7Jq60yBqqwNrzFXB6h93TVoOBzpOV5rmf/CnIg/DrNxD/+KXRBUVjOLj4RHDxzYD4ZuASksHFJwFx7OckICrWT84qe5miIg5/bBSweRsHk7XThMNz9WUchgykiuBAZpEqsAKpPq1dqwBVYNFeIAX8p0BQACxX5WSVRqzyiIGajFNZ4HkerVsmuTpd8eO8BVgswD8278S9T85C727n4Zv3n5Rinjt/JV6b/YNLPbBGDO2DWS/eZ9OKemApftsoxkHqgaWYVJAjGlFgatYqbKjItEVzf0x3PNakt+KjO7sHlrkC2PaCDqJQ51jXvRZEtgousMCVFEL/23fQb1wGztLw8XwhLhnm8TfA3H84wDv/pZ7iN4OPHDyVyeHPzTz27eca7Wef3EzEtNstwXiS0keqe2aWemB5phvNklcB6oElr55kjRQ4lwIEsADs+PcQFixdL/XM2rHqU83uGDkAFjtmeeWtT0sVaT9/8X+SVqxq7e4n3nHpFsJbp4zDw9MmEcDS7C7zXWAEsHynLVkOPgVOm8vQ9+R8h8C3tLgaKYYoxYtxNsA6vZnH8V/sTbVD40X0nuF5ryfFC3CWg1xpEfQrfoB+wxJwDZUJsR5hTRNhHnc9TANGAS5Uo6tNAzn8Za0mDhzgsWkLh4yTjR89jYoSMWgA0K8P3Tooh+7e2iCA5a2CNF8OBQhgyaEi2SAFXFMgaAFWQVEJflm5SQJXxzNO29Tau+4r15RT4Sg5ABZraH/bI29gUN+u+PTNRyQV2C2OF131AFJaJGL5d683qMz052dj5bpt0nHMscP7E8BS4f4JtMsEsAKdAVpfSwp8ULQHrxTYz9z1NiZgSfJ4VYR4NsDa9Y4O5WfswCF1goDmQ7V/IxxXVgL9yh+gX78EXHVlg7kTYuNhGXsdzIPGQNRbe3/S46iAyQRs38Vj8xYOhYWNg6uERBFDB4ro1k2AzvESQpI0gAoQwAqg+LS0TQECWLQZSAH/KRBUAIv1wtqyfS8WLN2AtX9uh8ls/w0tu11v8uXDMelSZd++5M3WkANgPfXqZ1i84k88dMdE3Hat/X92am1/N/tp9OzS3sFNBgsvmTgdgihiw8/vIToynACWN4kM0rkEsII08RS2TxQYcHIBTphLbbZfiRuIG6M6+mQtuY3WBVgZ+6qw+307mOF4Ef2etUCv7jtXzikZV14K/ap50K/7BVxVRcPgKropzGOnwjJkPEQ93Y7VkEglJRy2/AVs28GjqrJxcJXaWsTQwSI6tNc+FJX7z6o/7BHA8ofKtIYzBQhgOVOIPicF5FMgKABWdm4hfl6+EQuXrZduHax92E2Eoy/qhylXDJdux9P64wrAevfTBbh01CC0a93cQY7i0nJ88u0SfPnjcsQ3jZFuZWT9wmqfjX/twbTH3kbblGR88uYMJCc2lT4qr6jEQ8/Nxp9//4vrrhqBJ++/3sEu9cDS+q6TLz4CWPJpSZaCW4EdVTm49PQymwh6cNiTMhUxfIgqhKkLsLbNNeHMFns5TFw3AR2v1yZo4CrKoV/9E/RrF4GrbBhciZExMI+ZAvNFl0HUqyOfgdp0cz7VIfN0w+CK44DOnQRcOFQE63VFj3IVIICl3NwEk2cEsIIp2xRroBXQLMBijdjXb90tQasNW3dDEBz/AcIqiK4efyGaxCi/34dcm8QVgNV//F0oLatAYnws2qY0R1ioEVm5BTiekYmKymokJTTBh688BFaxdvbz5px5EuBiYLBX1/YIMRiwe99RsOb4nc9LxdeznkB4mOMV3ASw5Mqu9u0QwNJ+jilC/yjwRN4WzC05aFtsQkQqPk5QT/VxLcAqL7dg5aMWWOpUz5x/qwVNOmoLOHBV5dCv+Rn61fPBVZQ1uEnEiCiYR02BedhlEENC/bORVL7Ksy/UP1LJ2oP16SVgyCARsbHa2kcqT1ej7hPA0mpm1RUXASx15Yu8VbcCmgNYJ0/nYOGyDVLFVU5eoS07DFSxG/DmL7VeGa7lXleNbUlXANbGv/7Fr6v+xH8HjiMrpwAmsxmR4WFo27o5hg/pLR2xrFt5dfZarM/Vtwt/x8GjGdJtji2SEzBueH/cMmUsjCH1jzEQwFL3XyD+9J4Alj/VprW0qoBJFND9xI8oFqptIX6deAlGhLdSTci1AOvoZgt2fmGvtjJEiej7lHZuhWN9rfRrF0O/eh64Mvtxz7qJEsMjYR45EeaLr4BotFdFqyaZAXKUVV6xCqzaJzxMRL++AgYOANhretSjAAEs9eRKy54SwNJydik2pSmgCYBlMpmxeuN2LFi2Hlu377NpHBJiwMWDeuGyUYMwpH83VFeb0G/stKAFWErbfMwfAlhKzIoyfSKApcy8kFfqUmBpWRruzLH+Ioc9TXkjdrWaDB2nnq7UtQDrjzfMyDtohw0thgtoPVr9xwc5UxX0636FfuWP4MqKG9xgQlg4LBdfBfOIiRDDCFy5+6fwnx08fl1q3/NdOouYfE3w3Fzprl5KHk8AS8nZCR5Oa9joAAAgAElEQVTfCGAFT64p0sAroHqA9drsH/Drqk0oLLL+dpLjOPTr2RGXjhyEURf1Q2SEvZMr68dEACvwm66uBwSwlJUPJXtDAEvJ2SHf1KLATVmrsbripM3dO2K64Lkm/dTivuQnA1ih1SFY/rjZwe/ej5kRam2/qMqHM1dLNwpK4KrEXkFeNxjRGCZVW5lHTgKrvqLHMwV+WarD9h32/lejRrBjg+qHn56poe5ZBLDUnT+teE8ASyuZpDjUoIDqAVaXYTdLOocaQ3Dz5DGYesUlUpPxhh4CWMrbkgSwlJcTpXpEAEupmSG/1KJAnqUSPU/MgwB71dL6FleivaHh/2YqNS4GsM6s1WP/UjtwiGkrosud6qyg4cwm6P5cBv3yH8AX5zcou2gwSv2tzKOngvW7osc7BT76RI/TZ+w2br7BgrZt6Oigd6oGZjYBrMDoTqs6KkAAi3YEKeA/BVQPsCbd+Tz2HkyzKda+TQuMHNpXukmvdcskByUJYPlvY7m6EgEsV5WicQSwaA+QAt4p8EnRXsws2GYz0jUkDiubX+qd0QDMDtHz2PoCj8oi++IdJluQ0FtdAIIzm6HbvBz65d+DL7TfkFxXUtEQAvPQCTCPvRbshkF6vFdAsAAzX9ZDrLNdnnrUAmOouvaP90powwIBLG3kUe1REMBSewbJfzUpoHqAxcQ+cCQD85esw9LVW6Qb9Gqf7p3b4YrRgzFmeH/EREWAAJbytiYBLOXlRKkeEcBSambIL7UocOGpn3HUZKc+M5tegNuiO6vFfZufpUd12POJ/fgXbxBxwXMW8PXvCVFmbBYLDFtWQrf8O/D52Q36KOoMsAwZB/PYqRBi4pQZh0q9OpnJ4ZPP7A3c45qKeOBedVbvqTQFsrpNAEtWOcmYhwoQwPJQOJpGCniggCYAVm3cFZXVWPHHX1iwdD127T1ik8Ng0GPYwJ5ST6wZL34kvR+MtxB6sD98PoUAls8l1swCBLA0k0oKJAAK7K3Ow6jMJbaVeXBS8/Y4XWgAvPFuycPf65Cz2w6wkvoLaHeVCvoXCRbo/1oNw7JvweXVOb9WRw5Rp4N50FhYxl0HITbeO6FodoMK/L2dx9Jl9gbuXbuImHQ1ASy1bhcCWGrNnLb8JoClrXxSNMpWQFMAq67UR9NOYf7S9VKD96LisnpZWD3vLSQn0W81A709CWAFOgPqWZ8AlnpyRZ4qT4Hn8//Gp8X2W3pHhbXCl0mXKM9RJx6ZK4BtL+ggCnaA1f1eCyJbKfj4lyBAv20t9Mu+AZ+T2XCEvA7mASNhGn8DxKaJqsuLmhxevESHHTvt+2f0SAGDB6oAgKpJZD/6SgDLj2LTUo0qQACLNgcp4D8FNAuwaiWsrjZh1YZ/pKqsbbsO2JRltxVeNLAHplw+HIP7dQPP2/8x4z/5aSUCWLQHXFWAAJarStE4UsBRAYsoSM3b84Uq2wefJl6MceGtVSdV5kYeaUvt1TOh8SJ6z1Bu9Yxu/w4Y5r0PPst+8+PZopsvGA7zpTdDiE9WXT7U6PCHn+hxpm4D9xstaJuqYACqRpH96DMBLD+KTUsRwKI9QAooQAHNA6y6GqefzJJA1uIVG5FfWGL7qHmzeEy6dBiuGnch4ppEKyAtweMCAazgybW3kRLA8lZBmh+sCvxecQI3Z62xhR/Nh2BPqykwcHYQpBZtdryhQ2Wu/RdOqRMENB+qjOoZrqwUuuP7wB3dC/74XvBph8BV2ftyOmjMcTD3HQbzpTdBSGihFvlV72dDDdyfedIMg171oQVtAASwgjb1igqcKrAUlQ5yRuMKBBXAqs2lyWzB2j93SDBry/a9EGuuojHoddi1+nONp1xZ4RHAUlY+lOwNASwlZ4d8U7ICd2T/gWXl6TYXb47qhJfiBijZ5QZ9KznB4d8P7M23GX/r96wZ+rDAhKLLTAd/bK8VWKUfAH86wyVHzL0vgnnCjRCSU1waT4PkU+DkKQ6ffE4N3OVTNPCWCGAFPgfkAUAAi3YBKeA/BYISYNWV99SZXCxcth4/L9+I7NxCau7uv70nrUQAy8+Cq3g5AlgqTh65HjAFioRqdM/4AWbYj0gtaz4BPUPU1yD86EIeWX/bq8aSe3NoM9nkF225ygrwx/eDr6mw0h3fD66ifn/Nczlj7jkY5stugZCsvqObfhHZD4v8vY3H0uX2PdSti4iJ1MDdD8r7bgkCWL7Tliy7rgABLNe1opGkgLcKBD3AqhXQYhGwfutuDB/cy1tNab4bChDAckOsIB9KACvINwCF75ECX5UcwFN5W21z2xlisKHFlR7ZCuQkwQT8PVMHwWQ/Ptj/Xh66VtU+cYvPOgH+2AFwafvAH/kPusw0j9YRmreB0L4rzEPGQWjV3iMbNEk+BRb/qsOOXfY9NGakgEHUwF0+gQNgiQBWAESnJespQACLNgUp4D8FCGD5T2taqQEFCGDRtnBVAQJYripF40gBuwLjM5dgV3We7Y0nm/TBPTHdVCdR9nYOR36yH/0KjQFGvMIjv8R7gMWZqsCnHQB/bD94dhzw2D5wZcVuayRGRMKSej7Edl0gtO0CIfU8iMZwt+3QBN8p8OHHepzJstu/9SYLUltTA3ffKe57ywSwfK8xreBcAQJYzjWiEaSAXAoQwJJLSbLjkQIEsDySLSgnEcAKyrRT0F4ocMRUhItO/exggTVvj9OFemE1MFP/+1iH4mP2yplO43l0mMAhr9h+s6KrnnF5Z6A7tg/80X3SkUD+5DGAdfd25+E4WJqlQGjb2Qqs2nSG0KyVOxZorJ8VoAbufhbcT8sRwPKT0LTMORUggEUbhBTwnwIEsPynNa3UgAIEsGhbuKoAASxXlaJxpIBVgZcLtmN20b82OS4Ka47vk0apTp7KfGDHa47XxI19VQ99jOgUYHHmavAZh61VVQxYMXBVnO+2BkJYOMTUThDadbXCqjbnQwyj6iq3hQzghBMnOXz6hb2KLz5OxP33uAkuA+g/Ld2wAgSwaGcoQQECWErIAvkQLAoQwAqWTCs0TgJYCk2MAt0igKXApJBLilWA3a7b/cSPyBfsFUofJFyIKyPaKtbnxhzLWMHj5B/2xtux7UWMeDwEVSahQYClO7YX/M4/rb2r0g54FK+Q1BJC2/MhsqOAbbrA0iLVIzs0STkK/LWNx7I6Ddx7dBNx9ZUEsJSTIc88IYDlmW40S14FCGDJqydZIwXOpQABLNofAVWAAFZA5VfV4gSwVJUucjbACqyvOIVrs363eRHO6fFvylSEcvYKlAC76NLyogBse1EHc7n9+GDnawV0Hm50AFis6bpu6+/Qb/sD7IigO49oDIOQ2lGqrGLHAS3se0SkOyZorAoUWPSLDrt212ngPkrAoAGCCjwnF8+lAAEs2h9KUIAAlhKyQD4EiwIEsIIl0wqNkwCWQhOjQLcIYCkwKeSSYhW4N2cDfi47ZvNvalQHvBk3WLH+NuZYwQEe+7+0V1/xIcCFLwqIjzOiKjsbJat/A79tLfhT9lidBSnEJ0vVVdJxwLadIbRs52wKfa4BBT6Yo0d2tj2Q/91sQesUauCu9tQSwFJ7BrXhPwEsbeSRolCHAgSw1JEnzXpJAEuzqZU9MAJYsktKBjWqQJlgQrcTP6JKtB+PWtRsLPqHJqkq4qIjPI4s4FBVYK+aSepbha4tV8Hwzx8w79vpNB7RYJSqqyy1xwHbdoEYGe10Hg3QlgImM/B/r+gh1vAqjgOefsIMg2NrNW0FHSTREMAKkkQrPEwCWApPELmnKQUIYGkqneoLhgCW+nIWKI8JYAVKeVpXbQp8X3IIM/I229xupY/E1pbXqCYMSyWHY79yyNlur7yqdb6f+UHElO8+ZyyiPgSWfhfBPGgshPbdVBM3Oeo7BTJOcPjsS/vx2YR4EffdTf2vfKe4/ywTwPKf1rRS4woQwKLdQQr4TwFNA6yZb32FxIQmuOvGy22Kzv7yZ+TmF+G5h2/2n8q0UqMKEMCizeGqAgSwXFWKxgW7Alee+Q1/V9rPSj0c2xPTY3uqQpb8/3gcXcTBVGavuqp1PMpyAP3L7mo0Dst5PWAZNBaWnoPA+lrRQwrUKrD1bx6/rbAD0R7dRVx9BQEsLewQAlhayKL6YyCApf4cUgTqUUDTAKvLsJvRLrUFfv3qJVtGxt/wONJOnMHedV+pJ0sa9pQAloaTK3NoBLBkFpTMaVKBDFMJBp5a6BDbPy0nIlkfoeh4TaXA4fk8Cg/Ur7oCRKRUzUP76i/AiyaHOISEFrAMHAnLwDEQYuMUHSM5FzgFFi7WYfceOxQdN0bAgAuogXvgMiLfygSw5NOSLHmuAAEsz7WjmaSAuwoQwHJXMRovqwIEsGSVU9PGCGBpOr0UnAcKZFsqcNxchGOmEqRXF+OouRiHTAU4Yiq2WRtgbIaFyWM8sO6/KdnbeBxfyoEdHTz7iTBmo2vek4gSjjp8FHLJpeAGj0FB8nn+c5RWUq0CH3ykR3aO3f3bbrEgpRU1cFdtQus4TgBLC1lUfwwEsNSfQ4pAPQoQwFJPrjTpKQEsTabVJ0ERwPKJrGRU4QowSJVmLq6BVEUSpMowl+BwdREq4fwI1DsJQzApor0io6wsAA7/qENJWn1wxelEtAldijan3wUHe6UM628l3vUsmg4dhiqTgLziKkXGRk4pRwFq4K6cXPjCEwJYvlCVbLqrAAEsdxWj8aSA5woQwPJcO5opgwIEsGQQMUhMEMAKkkQHYZg5QiWOm4qQZi7BsaoiHDeXIM1UjOPmYpSJZo8VMXI6/NtqCiJ4g8c2fDJRBDI36pC+kkND4UW3rEKX7CcQket4y6AYFYuqe1+CoV0nsL8PCGD5JDuaM5qRweGzr+wN3JMSgXumef7nSnMCqTwgAlgqT6BG3CeApZFEUhiqUIAAlirSpF0nCWBpN7dyR0YAS25FyZ4SFNhelY3LTv8muysJfCgmR3XAE036yG7bG4Nlp4HD83QoP12/6ooPFdFu4BmkrJ4Grsx+DJKtJySnoPr+1yDExsNo4AlgeZOEIJu75S8ey1fae6v17CHiqsudVy8GmUyqDZcAlmpTpynHCWBpKp0UjMIVIICl8ARp3T0CWFrPsHzxEcCST0uypBwFvi89hBm5mz1yqClvRDt9DFqHRKKtIRZtDFForY/GeYYYhHF6j2z6ahKrtMpYzeHUBh0aOvkY20lAx67bEDn3WXDmagc32O2C1Xe/ANEYLr1PAMtXWdKm3UWLddhVp4H7+LEC+vejBu5ayTYBLK1kUt1xEMBSd/7Ie3UpQABLXfnSnLcEsDSXUp8FRADLZ9KS4QAq8EzeX/iiZH+jHkTzBrTRR6OtIRptQ2LRRh+FVH0UOoQ0QaTCIFVjQZRkWHtdVebVr7rSR4pof4WIpDPzYFj0ST0T5v4jUH3jIwBvPwJGACuAG1aFS7//oQ45ufa9d/v/LGjVghq4qzCVDbpMAEsrmVR3HASw1J0/8l5dChDAUle+NOctASzNpdRnARHA8pm0ZDiACkw8sxybK7MkD+L5UFwW0QY9jPFSNVUbQwxYlZVaH6EaSFvO48xm+/GturEk9hXQZrwFoYvegWHT8nphmq66A6aRE+u9TwBLrTvC/3431MD9uSfNdXmo/52iFWVVgACWrHKSMQ8VIIDloXA0jRTwQAECWB6IRlPkU4AAlnxaat0SASytZzg44+uS8T0KGempeda3uBLtDTGqF6PwEIcj83lUF9evujI2FdFhkgUxLSoRMud56PZvd4iX3TRYfcczsHQb0KAOBLBUvz38FkBaOocvvq7TwD0JuOdOauDutwT4YSECWH4QmZZwqgABLKcS0QBSQDYFCGDJJiUZ8kQBAlieqBaccwhgBWfetRx1trkcvU7+ZAvRAB7HWt8AnqsPfdSig6Wcw9FfOeTubKDqigOaD7Wg9RgRfFkBjLMeA5953BFeRUSj6v5XIKSc12jIBLDUshsC7+fmrTxWrLLvxd69RFxxKTVwD3xm5POAAJZ8WpIlzxUggOW5djSTFHBXAQJY7ipG42VVgACWrHJq2hgBLE2nNyiD21iRiSlZq2yxdwlpilXNL1OtFrm7ORxbzMNcXh/AhTcT0WGyBRHNAf50OkLeewx8YZ5DrEJiS1Q98BrEponn1IAAlmq3iN8dX7BIhz3/2ffjhHECLuhLDdz9nggfLkgAy4fikmmXFSCA5bJUNJAU8FoBAlheS0gGvFGAAJY36gXXXAJYwZXvYIj20+J9eD7/b1uoV0e0w3sJQ1UXenUxcPgnHkWH61ddcTqg9SgRyRdaoCvNB79/BwzfzwJXXekQp3TT4LSZEMMinMZPAMupRDSgRoH3ZuuQW+fygDtus6Blc2rgrqUNQgBLS9lUbywEsNSbO/JcfQpoGmCdOpMLg16PxPhYW2aycgpgtljQolm8+rKlQY8JYGkwqT4KiQCWj4QlswFT4OHcTfix9LBt/aea9MHdMd0C5o87C5uKOVTkA2WZHNKX86jTxstmJibVjPN67kZ4xp/QHdwB/nRGg0uwmwZN1z8MUa93yQUCWC7JFPSDWAP3F1+27yl2MpcauGtvWxDA0l5O1RgRASw1Zo18VqsCmgZYak1KMPlNACuYsu1drASwvNOPZitPgQmZS7GzOtfm2NzES3BJeCvFOCoKQFU+h/JsDhU5HMqzRFRkcyjPAYTKxvt06XTV6BC+EC1PfeI0FtPl/4NpzBSn4+oOIIDlllxBO/jsBu7JzYC77qAG7lrbEASwtJZRdcZDAEudeSOv1akAASx15k0zXhPA0kwqfR4IASyfS0wL+FmB9unfokK0/w/1tpYT0Vzv/Aid3G4KJkhgSoJT2aINWFVkud9MPsH0J86vfAchYv453WTVVqZbn4K51xC3wyGA5bZkQTlh8xYeK363H2vt01vE5ROogbvWNgMBLK1lVJ3xEMBSZ97Ia3UqoCmAtei3Dfh24e+4ZsIwXHvlJefMyK+rNuGreSsw7pIBuO3a8erMnga8JoClgST6KQQCWH4SmpbxiwIZ5hIMPLnQtlYYp8eR1tf7dG3WXL08ywqryrMhfVXmcKgqcB9Une1oiJCHTlXvIdG04ZwxWNp0hnB+Lwh9LoaleWuP4iWA5ZFsQTfp7Abul463oF8f6n+ltY1AAEtrGVVnPASw1Jk38lqdCmgKYBUWlWLklIcRFmrE7/PegjHE0GhWrrjlaRw+fhILP3sBndqnqDN7GvCaAJYGkuinEAhg+UloWsYvCqwqP4FbstfY1uprTMQvyeNkWbuygENlLaSqA6wsFd6DKuYgJ1YjQjiJcCEdkUIGIoR0xJm3QS+W1vPf0jwVQqfeEM7vDaFDd4jGMK9jJIDltYRBYWDWBzrk5dv3/LTbzGjePChCD6ogCWAFVboVGywBLMWmhhzToAKaAlgsP2/OmYcvf1yO56bfhEmXXdxgynb8ewg33Pcy+vboiK9nPaHBtKonJAJY6slVoD0lgBXoDND6cirwXtEevFaww2byhsjz8Gr8IJeXEC3W6inWj6o8m0dFlrWiivWqqnMq0WV7DQ00cGUINx9HhKUWVGVI0CpMOAOg4UoWsWkiLB17ScDKcn4fiJExXvnQ0GQCWK5JypqYiyL74qTvLGXSzwAEwZ5Cgb0n2D+zzrF+LkhzrZOkeXXt1Npjc2vNSbbkAaWuRdnwKIsAfP2t462YLzxL/a+80VSpcwlgKTUzweUXAazgyjdFG1gFNAew8gqKMXLyw0iMb4Jl37wKna7+td4zXvwIv635C7NevA8jhvYJbAaCfHUCWEG+AdwInwCWG2LRUMUrcE/OeiwuO27z8/+a9sct0efX89tSyXpTMThV00SdQatsTmqu3ghDcjt2Y7QZ4cY8RFQfRWT+TkRWHkK4kIEQsdCpLTEiEpbzekHsxIBVLwgJLZzO8XZAoAFWaSmHY2kcMjKArGwrHHL4YgHWQCEJDtXAH/aiLlCSYFDNWNu4WnDEAFMNFJLGSYDJuhb72UKtnNzaRs2bi5h2G4nmlmgqGUwASyWJ0ribBLA0nmAKT1EKaA5gMXVf/eB7fLNgFd567m6MufgCB8HzC0sw/JoHER8Xi5Xfv9Eg4FJUhjTuDAEsjSdYxvAIYMkoJpkKuAIjMn/B/uoCmx/zwyegS1GitaJKOvZnhVbmUnmqWTgdEBovIjxRRFhsFaJMRxGeux3RaWugyz/hsh6iIQRC+64QOvWBpVMvCC3bAXz9XxS5bNCDgf4GWPn5HNIyOKSlAxknOLCf6VGXAv36CLh0fA0VVJfr5K0TBQhg0RZRggIEsJSQBfIhWBTQJMDKzi3EqKmPoH1qCyz4dKZDLj/9bine/XQBHpk2GbdMGRsseVZsnASwFJsaxTlGAEtxKSGH3FRAOvaXx6MsW8TMwzvRPD8GLQpipa8wc+M9G91ZRhcqIiwRCE8QEZbEScAqvGk1wvP2gDu4Hfr9O8CfPFpzRswFyzwPS8p5EBis6tQHQrvOEPXy+OrC6g0O8TXAys62Aqtjx4C0dA7lMvUO8zRemue9ApdfKqBPLwJY3iupPAsEsJSXk2D0iABWMGadYg6UApoEWEzMF9+Zix9/WYtP33wEg/p2lfQVBBGjr52B/IJirF3wDmKi/H9deaASrdR1CWApNTPK84sAlvJyQh41rICl2nrTn3TbX5aI8hzWVB2oyOcBmU4xhcQwUCUiLAGISIIErdjPhkjruTS+OB/6Lb+DO7gDuv32Xluu5ExIToFwXk9YOveVvouh3jded2VdV8fIDbBOZbLqKg7pGUB6BocKjQErvR7gOPYlSt/BATz7mb2s+dn6ufWr9jOx9nXduTwHTqwzjhXf1bFV147Vtmi1VzNGGnvWWlZHAMkUx9X4JNoK+ySfpE1ttyPZYD/XxsC+88x3e4y1n7GxfXoDsTF0A6Grf8bUNI4AlpqypV1fCWBpN7cUmfIU0CzAOp2dj7HXzkCf7h3x+duPSsqv27wL9zz5rtTcnTV5pyfwChDACnwO1OIBASy1ZCp4/DSV1kKq2gbqVnBVXSTTETMdEBYnWOFUgoiIRA6hSaJUXcWHnFtn48czodv1p0vJEGLjIEiN1/tYbwuMburSvEAN8hZgsWOA6ek8jqWJyDjBw2RyL5L4OAHt2gJtUoFwxvYkolMHCtWAFma1FrTYgJEEYqyQphYo2SCS9SMb4LHBnho77DMrVLJCGvbF4BQ9pEAwK0AAK5izr5zYCWApJxfkifYV0CzAYql77s0vsWDpesz7+Dl07dgG0x57Cxv/+he/fvUS2qX6vtGs9reP9xESwPJew2CxQAArWDKtsDhFSA3TpSbqUlWVaP2eA1hkqtQxh1gQk8Rbj/slcNbKqkQgNE6QqkrcffiMwwh95e5Gp7GKKqnCigErBq6SU9xdIqDj3QFYZjPrW8UjLV2UjgWePMmDvefOk5Agok2qiDatRbRtA4SFUSWPO/rRWFLAlwoQwPKlumTbVQUIYLmqFI0jBbxXQNMA6+TpHIy7/jFcMqQ3Hp42GWOufRQD+nTGZ2/O8F45siCLAgSwZJExKIwQwAqKNAcsSNEMVEg3/NU2Ueel15W5HFjvKjkeQ5SI8CQRWyJOYkv0SZxqUoRTsYV4KqUnpkR1kGMJyYbxvceh27/dwZ6lQw8InXtLwMrSpv5th7It7gdD5wJYVdXsdkB2S6CI9AwemZkcBDdbHyUlikhlsCoVSE0VCVj5Iae0BCngqQIEsDxVjubJqQABLDnVJFukwLkV0DTAYqE/9epn+GXlJowY2ge/b/gHs19+EMMG9aR9oRAFCGApJBEqcIMAlgqSpAIXzeXW6il21K/sDINW1tdVhex8lvcBsIopY1MB4ayCKtF67K+2VxVrsM6ewacWIs1UYltsWfMJ6BkS7/3i7AjakX8R+tZ0B1sV//cNxLhmsthXgpG6AOtkVjXS0jgcTwfS0zmcyeYgupFHdgyvFlixI4FtU0UYa/KkhFjJB1KAFDi3AgSwaIcoQQECWErIAvkQLApoHmBlnMrC+Bselxq4p7RIxLJvXgPPGknQowgFCGApIg2qcIIAlirSpAwn2bG/Qgaq2JE/oCzLWl1VkQUwgCXHw3pQsb5UDE6FJ1pv+5N6VcUJgK7xFapFC9qkf+Mw4HjrGxDCnWOSGw4bX70HuvRDthmW3kNRdfuzblhQ9tDSUg4nTvDIPKXDwSMCzmS75y8DVs2SrBVWDFixCqtQoxvEy73laDQpQAr4WAECWD4WmMy7pAABLJdkokGkgCwKaB5gMZUe+7+PsXT1Fjx+77W44ZpRsghHRuRRgACWPDoGgxUCWMGQZfdiZMf+KvNqGqmz439ZovX2vxwOgpuNuRtbmd3qZ2uinsSqqiA1UQ+J9Qx67K7Ow7jMJbblWuujsLnl1e4F3sho3Z4tMH5UB1ZxHCqf+wJCUktZ7AfCSH4BJ/WuSkuDdFNgIauUc+NhwCq5GYNVAlJTOQlcGUM8y50by9JQUoAU8JMCBLD8JDQtc04FCGDRBiEF/KdAUACs7NxC7PzvMIb274bwsFD/qUsrOVWAAJZTiWhAjQIEsIJ3K1gqrZVUDEyV1YFUDF7JceyP3fZmbMoqqUSpqio8ibN+TwR0Mjfsnld6GNNzN9mSOTq8Fb5IvESW5Ia+eAf4zOM2W+aBo1B9ozp7Ph46zGPRYg7lHjTKb96cNVsX0KY1h9YpAkKc3Ngoi/hkhBQgBQKiAAGsgMhOi56lAAEs2hKkgP8UCAqA5T85aSV3FSCA5a5iwTueAFZw5J5VVeXt5VB8nFVUWaGVqcS9qpvGlOL01mN/4QlAeDP2WpCqq8Kb+a8iZ2bBNnxStNfm4v0x3fFYk95eJ1e/7Q+EfPGyzY6o06HqxW8gNEnw2ra/DRSXcHj/Ix5Vlc7zzvNA82QRqakC2qZagZXB4G+PaT1SgBQIlAIEsAKlPK1bVwECWGccv6oAACAASURBVLQfSAH/KUAAy39aB3Slv3bux4wXPkJeQTFW/fgmWjQ7d8Pgf3YfxFfzVmDX3iMoLa9AUnwT6TbHO2+8DDFREY3G8vPyjViwdD2OpJ2CxWJB65bNcMWYIbj2yhHQ6erfB08AK6DbQlWLE8BSVbrccpbd8lewn0fObg4F+70//qcPt1ZPSU3Uk2A7Amhkx/6cMxG3fHd38LVZq7C+ItM27aOEi3BZRBt3zTiOFywIffYW8Hmnbe+bh12O6sn3emc3ALMtAvDpFzrp9sCGHgasWrUU0aWjDm3bcGgSXwWDPgCO0pKkACmgCAUIYCkiDUHvBAGsoN8CJIAfFSCA5UexA7GUKIr47PtleO/zhVIje/Y4A1gMQD335pfS2C4dUxHXJAaHj53A6ex8JCc2xfcfPovE+Nh64Tzx8qf4ddUmGPQ69OrWAQa9Hrv3HUVpWQWGXNANs195EHqdY6NiAliB2BXqXJMAljrzdi6v8/fyyN0DsO+e9KwyNrEe+WNVVBKoSmI/AwxgKfXpc2IezlgqbO6tbXE5OhqaeOWufuMyhHz/rs2GqA9B5as/QoyI8spuICavXM1h02bH/060bmWtsGqTyiGllYCIMB7s74Mqk4C84qpAuElrkgKkgEIUIIClkEQEuRsEsIJ8A1D4flWAAJZf5fbvYkUlZXji5U+wfstuDOjdGYIo4O+dB84JsE5kZmPCDU9Ar9dhzmvT0a9nJ8lpBsI++PJnzJn7q2Tr87cfdQiGgSsGsNqmJOOTN2dIoIs95RWVePDZD7Bp23+479arMO3GyxzmEcDy755Q82oEsNScvRrfWaXVIVZpBRTs42Cpcl4OxS7nkyAVO/aXKCAsiX23vseOBKrpKbBUoeuJH2wus+gzWt8EnnUa9/DhzGaEPjkVXEmhzYJ5zFRUX36rhxYDN+3IUR5zv3Os1G3fTsAN1wqoK5HRQAArcFmilUkBZSlAAEtZ+QhWbwhgBWvmKe5AKEAAKxCq+2nNKdNm4t8Dx3HdVSPw6D1Tcddj72DzP/+dE2C9/N63+G7Rajx4+zW4/boJDp4yiDX1rhckm9/Nfho9u7S3fX7FLU/j8PGT9d5nAwqKSnDJxOkwGPRYv2gWQo32jroEsPy0GTSwDAEs9Sax4EBNpdW/HCzVzmFNRAsRCd2BuG4CjHHKraZyNyNbK8/g6jMrbNPOD2mC1c0vd9eMw3j96oUIWTjH9p4QFo6ql76HGNb4UW+vFvTR5Ib6XkVFibjvLgGhoY57gACWj5JAZkkBFSpAAEuFSdOgywSwNJhUCkmxChDAUmxqvHds6/Z9OJ2dhyvHDpWM3fTAK2C9rc51hHDklEeQeSYXa+e/g6SE+sdafli8Bv/37je4ceJoPHbPVMkuG8/mpbRIxPLvXm/Q8enPz8bKddvw/ksPYPjgXrYxBLC8z3OwWCCApZ5MiwJQdIRH7i4gj1VauXCTXERzEfHdgfieAtjRQC0+X5ccwJN5W22hXRHRBrMTLvI4VK6qAqFPXQeurMRmg1VesQosNT2iCHz8uWPfK9br6vZbLWjRvP5eIIClpuySr6SAbxUggOVbfcm6awoQwHJNJxpFCsihAAEsOVRUiY3r730JO/873CjAKi4tx8AJd0vgigGshp79h9Nxze3PSdVXrAqLPWs27sD9z7yHCSMH4rWn7mxw3tfzV+L12T9IVV2suqv2IYClks2jADcJYCkgCedwQYJWR3nk7rbeImgpd15pxW7/i+8BJPTSLrTiTFVAVRW46ko8XrYbX1tO2VR8ojIOD5REgK+uAqorgdrvVdbXbE7te1x1NTvM7ZiBsmLoMtNs74lRsah86VuIBqOyN8tZ3v2+hsfGTY5HB0eNEDBkkNBgHASwVJVecpYU8KkCBLB8Ki8Zd1EBAlguCkXDSAEZFCCAJYOIajHhDGDtPZiGSXc+j97dOuCb959qMCzWV2vQpfegSUwU/vzlfWkMu63wjY9+xJ03XIr7/3d1g/NWb9yOB555H6OH9cPbz99DAEstm0ZBfhLAUlAyal0RrdCK9bTK/4+D2QVoxRqtM2iVyCqtAnw8kCsvBcegkYnBomrAVAmYqq3vMYgkvV8DkRiIqqyoA5Rq5knj2JxKoKrC+roWQLE5dZ6x143E1paJtnd+WLgOY47YgZa3Ga6ech/MFzn2GfTWpq/nH0/j8eXc+n2vbryuYXjF/CGA5euskH1SQD0KEMBST6607CkBLC1nl2JTmgIEsJSWER/64wxg/bVzP2596DVcOKAHPnr1oQY9YX2wul58C3Q6HnvWfCGN+eCLn/HR3F/wyLTJuGXK2Abn1doe0KczPn/L3gC+pNzkw4jJtJYUCDPqoddxKK8yw2LR5hEzVeRLBAqOcsjcLiJ7t4jqUueVVhGJIpJ6Ay368QhP8H3uxJPHIP6xBGL6oRrgVA2xulKCVCKDUgwwBeBp8dBklIfYO8/v+ngxWheWyeNJXCJ0b82Tx5afrJSUcnj1bRHl9ksZERMt4rGHOISFNu6ETsch3KiH2SKiosrsJ29pGVKAFFCiAhGhevA8h7JKs+22bSX6ST5pW4GocIO2A6ToSAEFKaBJgGW2WFBWXomYqMab2G7Yuhs7/zsCg16Hiwf3wvkdWisoLb5xxRnA2vjXHkx77G1cMrQ33nvx/kad6HHJ/8A03r3mc+h1Orw15yd88eNveOK+63D91SMbnMeOLrL1e3XtgG8/aLi6yzdRk1VSgBTwWgERyD0s4sQ2ASe3C6gqdm4xMhFo2Y9Hq348Ylo6h1zOLZ57hFheCtOm1aha/Sssxw95a072+ZlRYehy91U2u+HVZpx6x0PgFBICzhgGzhgKhIaDCw1F6GXXwTBgmOx++8og63v12iwzjhy3A03W9+qJh/Rok+L7/eKruMguKUAKkAKkAClACpACpIDvFNAkwGI37d3/9Hu499arcPOkMQ7qsQqiGS/OwfK1fzm8//C0Sbh1yjjfKa0Ay84All8qsHp3xudvUwWWAraD6lygCiw/p0wECtOA09tFZO0CqoqdQ4WwOBFJvYDmvTlEtfSTv/t2wLLhN2DrGj8t6MYy4VEQjUYJNq1pnYRrhnW0Te5bYsLqA1WAMRRcaAQQGgouxAjRGAYwOBUWDhhCpNcIZe+FSsBKDA13wwHlDl2+Clj1h6N/l48DhlnvHDnnQxVYzhSiz0mB4FGAKrCCJ9dKjpQqsJScHfJNawpoEmC9+M5c/PjLWjx0x0Tcdu14h5wtWLoez735pfTewL5dYDKZpZv52DP/k+fR+bxUreXYFo8zgHXgSAauvu1Zl3pgseq2zUtmS7bnzl+J12b/4FIPrBFD+2DWi/fZfKIm7prdbrIHRj2wZJe0QYOlGRxydnPI+5dDdZFzaMVuDIzrJiC+JxDZwvfHA5nTfEEOdFtWQb95Bbi8Mx4LI4aEAgwahRitsMhQA5BCQqwgSfrMCpRgNALGcOtYYzgQagRCwiCwKihmp3a8MQxieGQ9nz4u+g8vFPxje39qVAe8GTfYY9/VPNGTvld146UeWGrOPvlOCsirAPXAkldPsuaZAtQDyzPdaBYp4IkCmgRYE+94HvsOpeHXr15Cu9QWNl0sFgFjrnsUmWdyMeOuKbh5srU6a9ZnC/HJt0twzYSLMPORWzzRURVznAGs8opK9Bs7zaVbCLt1aoMf5zwnxb1+y27c/cQ7Lt1CyKrcWLVb7UMASxVbRxFOEsDyXRpKT3DI3c0hl0GrQufQKiSGQSsRCT1FRLbyD7Ri0eu3rZXAlW7/dqdiCPHJsAweB6FjD4gMMkmAKlS6oU+MqA+YnBr0csCDuX9ifukRm5WZTS/AbdGdvbSqvumlZRze/5BHRYV9n0VFibjvLgGhoa7tJQJY6ss7eUwK+EoBAli+UpbsuqMAASx31KKxpIB3CmgSYF101QPILyzGzt8/k3o01T6s79Vdj7+D1FbNsOTrV6Smj+zJLyzBhVfejzbs/bmveKeogmc7A1jM9ctuehJH0zOxdv47Esg6+/lh8Rr837vfYNJlF+O56TdJH+fmF4FpntIiEcu/e71BBaY/Pxsr123Dm8/ehbHD+9vGEMBS8IZRmGsEsORNSOkpDnm7gdw9PKoKnEMrQ3QNtOohIqq1a6BBDo/50+nQbfwN+r9Xgys7d/MtBqYsfYfDMmAULKn243py+OGtjbGZS7CnOs9mZl6zURgS2txbs6qb/8VcHmlpjrcO3vk/C1q4Ub1HAEt1aSeHSQGfKUAAy2fSkmE3FCCA5YZYNJQU8FIBTQKs7pfciiYxUVi/aJaDPNOf/xAr1/2Npx+8AVOvuMThsyGX34fKqir8s+ITLyVV7nRXAFZtNdqDt1+D26+bUC+YKdNm4t8DxzHntekY2r+77fNa29/Nfho9u7R3mFdQVIJLJk6HIIrY8PN7iI6093AhgKXc/aI0zwhgeZ+Rskx2PBDI2+0atNJHiojvLiK+h4hoBq2ccy7vnayxoDu4G4ZFn4DPcN6Q3dK1PywDRsDcR5lNzEtFM3qk/4BKWGz67EmZgjj+HFftyaakfwyVlHAoLgaKijkUlwDFxSIKC3nreyVAUSPHUceNETDgAsEtJwlguSUXDSYFNK0AASxNp1c1wRHAUk2qyFENKKBJgHXBuGlgNxxtWz7HlqLColIMu+ZBcBwnga26EIUNGj11BjKzcvHvWmt/LC0+rgCsvIJijLn2UQiCIEGqfj07SVKw5vcffPkz5sz9Fee1bYlFn78oaVn71N5g2DYlGZ+8OQPJiU2lj9ixxIeem40///4X1101Ak/ef72DtASwtLjTfBMTASzPdC0/wyFnF5C3h0dlnnMCZYgQ0ZQdD2TQqo1/oVVthLq0gwh5+2FwpqpGgxZatoVl4GiY+4+EGBHlmTh+mLWlMgv35azHaUu5bbVYPgR7U671w+ryLFFcF04VAyUlIgoKeZQ4gVPOVj+/k4Cpk9yDV8wmASxnytLnpEDwKEAAK3hyreRICWApOTvkm9YU0CTAmnTn89h7MA1L576CNinJUs4+/GoxZn+1GBNGDMRrT99ZL48DJtwNi8WCbcs/1lqObfG4ArDY4DUbd4Ad+TNbLOjSMRXxTWNw6NhJnM7KA2ve/s37Tzr0Fqtd4M058/Dlj8thMOjRq2t7hBgM2L3vKEpKy6Xm+F/PegLhYUYCWJrdYb4NjACW6/pWMGglHQ/kUJnreFyrISv6cBFNuzJoBcS0E/xaaXW2P7rMdIS89SC48tJ6rjJQZR4wGpZBoyA0b+O6IAEYWQULXsr7B1+U7MfZBy4HhzbDT80cb8gNgIvSL3pKSq2VU8XFHIoYkCqyv2aVVKyySnCfMTkNJzZWxD3TBBhD3D+OSgDLqbw0gBQIGgUIYAVNqhUdKAEsRaeHnNOYApoEWB988TM+mvsLBvTujEfvmYqjaZl46rXPUF1two8fPYtu57d1SOPp7HyMmDQdrHoo2Htg1QrDmuB//M0SbN9zCKVl5YiPi5WODE674bIGe2PVzmN9rr5d+DsOHs0Aa5rfIjkB44b3xy1TxsIYYqj3x4cqsDT2N4oPwyGAdW5xK3NZpRWP3N0iKrKdQytduIi4zqJ0eyCDVpzzKT7MrtU0l3caxtcfAF9c4LCWufdFEAaNhrlLP5/7IMcCe6pycVfOeqSZS+qZ6xEShw8SLkJbQ7QcS53ThgSlGJCSjvSxo33sWB+HIlZRJb3vvCJPLifDw0TExADR0dbv/fqISEp0H14xfwhgyZUVskMKqF8BAljqz6EWIiCApYUsUgxqUUCTAIv1XGLNyFlz9rrPFWOG4KXHb6uXGwZcXnn/u3PeoqeWhKrNTwJYastY4PwlgFVf+6o8K7Ri1VYVWc5hhC5URNMu7PbAGmhlv+MicImtWZkrKYTxtfvB55128MU06S6YLr4q4P654oBZFPBWwU7MLv4PlrPqrvTg8GCTnrg/pjt0XjYTYxVRpTWVU6xqisGpQva9iPWbssIpVlnFKqz88ZwNp2KiOMTEMFAlIjoaiIkSwcu41whg+SOrtAYpoA4FCGCpI09a95IAltYzTPEpSQFNAiwm8OHjJzHzra+x87/DCAsNwZVjh2LGXVMQ0kAVUG1j8g9efgAXD+qlpPxo3hcCWJpPsWwBEsCySsluDMxl0GoXwPpbOXt0RhFNGLTqATTpIAAyggRna7v6OVdZgZDX74PudLojvBo1GaYr6//SwVW7/hx3sLoA03LW45CpsN6ybfRRmJMwDF2NcU5dYnCqtiE6q5xiTdFZFZW1ksp63M/fcEqCUNFWGBUbw1mrqKKBaAapokXUuezXaXxyDCCAJYeKZIMU0IYCBLC0kUe1R0EAS+0ZJP/VpIBmAVZtElgfJ72Tf12zo24iRKfj1JRYtfhKAEstmQq8n8EMsBi0YjcHskordpOgs0cXIqIJOx7IoNV5Aji9sxmB+5wzVSPknRnQHd/n4IS578Wo/t+TgXPMxZXZfz0+KvoPbxTuhEl0bBbFMnVr1Pl4Kq4vjNBJvaQkCCUd6bPezGftOVVTOVVsrazyV+VUWJiI6CjYKqUkOBVlPeLHwBSroPI3nHJFdgJYrqhEY0iB4FCAAFZw5FnpURLAUnqGyD8tKaB5gOVKstgNexWVVRLAaqhCyxUbNMYzBQhgeaZbMM4KNoBVXWQ9Hpi3Gyg95Rxa8QagyfnW2wObnC+AU2ClVb19a7HAOPtJ6PbvcPjI0rU/qu6aCVnPnfngD80Jcyluz/4D/1bn1bPexBKO204OQ1J2M2uD9CKgrMx/cCo0tKZKqqZaKiaGs1VRMTjFmqgrEU65kiYCWK6oRGNIgeBQgABWcORZ6VESwFJ6hsg/LSmgSYDVf/xduKBnJ7z/0gMu5cpkMqPvmDvRvXNbfPP+Uy7NoUHyKEAASx4dg8FKMAAsUzG7PdD6VXbCNWgV21GQelo1ZdBKwZVW9faoKCLk0xeg3/mnI7xq0xnV09+EqK9/6UOg9rmFHeuTmqCzI32sYorHYn4v5if8AxNvrudW+6PtMejvQTCYQnzisjHU3ltKqpaqhVNSNRX7EmBQ015wUyUCWG4KRsNJAQ0rQABLw8lVUWgEsFSULHJV9QpoEmB1GXazdAPh528/6nKCLpk4XarC2rxktstzaKD3ChDA8l7DYLGgVYBlKuGQWwOtSjOcQytWWRXbiUErEU3PF8Eqr9T4GL6fBcPGpY7wKrk1qh99H2JomN9CYnCqtreU9Vgfj6IiEUW1N/cVO1ZOlYWVYd3QdTjTzLHZPHPYWGXEhZsuRMrJ1h77bzTWwKm6PadYr6kodoMfEBurbTjlinAEsFxRicaQAsGhAAGs4Miz0qMkgKX0DJF/WlKAAFZNNgdOuBvlFVXYveZzLeVX8bEQwFJ8ihTjoJYAlqmUQ+4e1oydQ0m6i9DqPAHxPYG4zgJ43xT2+C3XhqVzYVj2jcN6Qlwyqh57D2JUrGx+CBagqNTeZ4pVTtngFOs/VQOnXF3wcPtD2Np3K6pDqutNaXGqJS7adBHCKhuHbyEh1qbn1qboQExsTc8p1hC95lhfA/eMuOpe0IwjgBU0qaZASQGnChDAcioRDfCDAgSw/CAyLUEK1ChAAAvAT7/+gZlvf43kxKZY/dPbtDn8qAABLD+KrfKl1A6wzOVWYJWzh0NJGgeIThLCKq3a1xwP7CpAp2JoxWefBJ9zGlxmGpB9CoY/lznCq+gmqHr0PYhxzVzepRKcqrmVj93UZ+0zJVoboks/A6VlzuGgKwtWGCuwYch6nGxxst5wg8mAAdsGoGt6R+nongSnpGop1meKQxSrmooSERUDhBqdJd0Vb2gMASzaA6QAKVCrAAEs2gtKUIAAlhKyQD4EiwKaAFjrNu/C+i27bDn7ack6JMbHYtjAnufMo8lswdH0TOzZd1QaN+Xy4XjmoRuDJfeKiJMAliLSoAon1AiwGLTK28N6WgHFx3mXoFVMOyu0iusiQheqHuDBlRaByzoBPuskuDMZ1u9ZJ8DlngZnsTS6x8SwCFQ/MguW5vZjdw5wqqgGThWLNf2n5IVTzjZ/est0bBy8AVXGqnpDu4iJeD3sInSKjQRrmk6PfxQggOUfnWkVUkANChDAUkOWtO8jASzt55giVI4CmgBY85euw0uzvgVrxu7p075NC3z97hOIjYn01ATN80ABAlgeiBakU9QCsCys0upfdkQQKDrqHFpxPBDdTkB8DyC+m7KhFWc2gc86ZQVT2VZQxWWfAs9+Li91e2cKuhD8PfJdZIR0tFZOSbAKKCuXp3LKFYdYs3NWLRUTU7cxOic1Q18bfhAvVG9q0MwzTfthWnQXV5agMTIrQABLZkHJHCmgYgUIYKk4eRpynQCWhpJJoSheAU0ALKZyeUUlNv+zF0t/34LfN/yDprFR6NO94zkTwPPsWvFI9OraHmOGXYAQaj7i9w1LAMvvkqt2QSUDLEulFVrl7bZCK1FwIjMHRLcVkNADiOsmQh+uoOodUQRfkAOutoIq66QEqNgxQC4/GxDl8VUAj8+bvoaDxr4+25P6GjglASrWZyrKeqxPel3zXlhY4/GMzVyCPdV5Dv51MsTiw4Rh6BgiX68unwmgUcMEsDSaWAqLFPBAAQJYHohGU2RXgACW7JKSQVKgUQU0A7BqI2RVWCMmP4z2qS3cuoWQ9khgFCCAFRjd1biq0gAWg1Z5/1mPB0qVVo2fkrPKzQFRqSISeoiI76EwaMXcM5uh37IC+pXzwOWdkW2LCNAhV98c2boUZBlSkKNvjWxda2TrU1DJh3u8jk5nBVKsUspaPcUgVQ2cqrm1L9wLMHjIVIiLTy128O/emG54okkfj32mifIoQABLHh3JCimgBQUIYGkhi+qPgQCW+nNIEahHAc0BLCb9NwtW4fDxk3hhxq3qyUSQekoAK0gT70HYSgBYDFrl77VCq8IjLkArAFGtRcT3FBHfXYQhUp7qJQ/ka/y3GKYq8OuXQbfqJ+hLHKuN3FmnigtFjj5FAlNZDFJJoCoFufoWsHB6d0xBxwNRtVVTNcf7auFU7VG/CC/glCvOvJS/DR8W77UNHRbaHN81G+XKVBrjYwUIYPlYYDJPCqhIAQJYKkqWhl0lgKXh5FJoilNAkwBLcSqTQ40qQACLNoerCgQKYFmqgYK9vBVaHeIhOqu0AhCZIiKhFlpFBRZasf7phYWc7WY+dnMfu62vsqAc7Y4uRu+cBYiwFLmaBpRyMcgypEqQygqsrNVUBbpEl2zwOiAmsqbfVIwogarYaA7RrJIq2vp+ZESANRMF9DwxD/mCvXH77PgLcUVkW5dipEG+VYAAlm/1JeukgJoUIIClpmxp11cCWNrNLUWmPAUIYCkvJ0HlEQGsoEq3V8H6E2AJ1UD+PtaInUPBAdegVUQr6/FA9mWI9g+AMZutjc+Liq3NzyU4VVjntr4SoKLCsSF6hFCEC8vmY1DZzwgTyxvNSb6uGbJYNZWuNXIMVkh1Rp+KCj6q0Tk8a0jPIFQUg1HstYAY1nMqqrZROsAqpzj/9Wj3aM+tKT+BG7PX2OaGcXr8lzIVoZzOI3s0SV4FCGDJqydZIwXUrAABLDVnTzu+E8DSTi4pEuUroGmAZbEI2HvwOI6mZ6KsvBKC4KyzMnDjxNHKz5qGPCSApaFk+jgUXwMswQQU7GfHA2uglQuXmka0YP2sgISeAkJi5IVW7FLVoiLeCqaKgeJia+WU7XUxUFnpOgmKshRgWNn3GFC+FEaxssFssWOAf4WPx7qIqSjWxTmMYXAqivWckmAU6zslICamBk6xnlPRQESE8uGUK9t0Ws46LClLsw29Luo8vB43yJWpNMYPChDA8oPItAQpoBIFCGCpJFEad5MAlsYTTOEpSgHNAqy/du7HM699jlNnct0SfO+6r9waT4O9U4AAlnf6BdNsXwAs0Qzk7+eRuxtSpRWDWM6e8GRWZQXE9xRgbOIZtGJwqrDQCqeKSxigqoFTRVZQxd5zB06dy+dYSzaGl36HC8qXQ4+GA6zgorCt6RXYn3I1QppGS0f5pOboDFTVHuuL1AaccpbfIqEa3TN+gBn23C5uNg79Ql07IunMPn3uvQIEsLzXkCyQAlpRgACWVjKp7jgIYKk7f+S9uhTQJMA6nnEaV9/2LKqqrf+zFhJiQLOEJuBZCYGTZ9k3rzobQp/LqAABLBnF1LgpuQAW62FVIEErDvn7OZegVVgS62kFJPTyHFpVVnH4bQWHw0c4lJW5XjnlaVqjhXyMLf4U/SpWNGrCHB6DyosmQjfqMoihYZ4upal535QcxON5W2wxtdJHYmvLazQVo9qDIYCl9gyS/6SAfAoQwJJPS7LkuQIEsDzXjmaSAu4qoEmA9ewbX2Dhsg1ITmyKmTNuxaC+XcApvemKu5nTyHgCWBpJpB/C8AZgsUqrgoM8cvcABfs4WKqdA6SwRAHxPTkkskqrOM8qrWplSc/g8NNCHiUlztd1R0r21xo7tidVS0VZG6DHxojokP4LWm75HLrqhntciXFJMI2aDMug0RD1Ie4sqfmxl55ehh1VObY4H43thQdie2g+bjUFSABLTdkiX0kB3ypAAMu3+pJ11xQggOWaTjSKFJBDAU0CrNFTZ+Dk6RzMeW06hvbvLodOZMNHChDA8pGwGjTrNsBilVaHeOQwaLWXg6XKOTwKjRcQLzViB1jVlRzP8lU8tmx1Xv3Z0Fq1cIo1Rme9p2JjOWtjdNYgXfrZ0Uf+1DEYvnkLuvRDDbouJLaEedx1MPcfIUdomrORYSrBwFMLHeLa3nISmunDNRermgMigKXm7JHvpIC8ChDAkldPsuaZAgSwPNONZpECniigSYDVc+RtMJst2LnqUxgMek90oTl+UoAAlp+E1sAyrgAsdjyw6AiPnN1APoNWLjQ5D40TEdddkI4IhjeTB1oxuXOyOfy0iEdWdsPgSr3H1gAAIABJREFULLKmciq6pnKKNUSX4FSMtUl6EzeawnOVFdD/8gUM6xY3DK5SzoNp7LWw9BysgZ3guxBeK9iB94r22BYYEpqMec3oYg/fKe6ZZQJYnulGs0gBLSpAAEuLWVVfTASw1Jcz8li9CmgSYPUbeyf0Oh22LP1QvZkJEs8JYAVJomUI0xnAOvozj9ydrlVasRsDWT+r+O4Au0lQzkcUga1/81j1Ow/LWRefsiN/gwdaMOJiEbxOnlX1O/+E/qcPwBfm1TMohoTCPOFGmC65CrItKI/birMiiiL6npyPMxb7sctZ8UNxTWQ7xfka7A4RwAr2HUDxkwJ2BQhg0W5QggIEsJSQBfIhWBTQJMC64pancTT9FLYt/xihRurvouTNTABLydlRlm/nAli5uzgc+uHcRIjdGBjXjR0RBCJbygutapUqLeUwbwEP1vPq7If1prrmagEpMq3N52fD8O3b0O3f3mCiLD0GwTTlfgixccpKpEK92ViRiSlZq2zehXF6/JcyFaGcTKRRoXGr0S0CWGrMGvlMCvhGAQJYvtGVrLqnAAEs9/Si0aSANwpoEmC9/8UizJn7K2a9eB9GDO3jjT4018cKEMDyscAaMt8YwBIFYMcbOlTl14dGrNIqrhvraSUiMsU30KpW4v37eSxawqGqgWOLPboLuHScgBA5eLpggWH1QuiXzgVnqqqXYaFJAkzXT4elc18NZd/3odyfsxELy47aFpoc2QFvx9ORS98r7/4KBLDc14xmkAJaVYAAllYzq664CGCpK1/krboV0CTAKi4tx2U3PQljiAFz33sSSQlN1J0lDXtPAEvDyZU5tMYAVu4OHofmOTZJTx5sbcYe1dq30IqFWF0NLPmNx+499Ru1G0NFXHWpiPPPP+ssoYfa6NIOwDD3DfCnM+pZEHU6mEZcA8v4GyEa5CBlHjqpwmllggndTvyIKtZEreZZ2GwMBoQ2U2E02neZAJb2c0wRkgKuKkAAy1WlaJwvFSCA5Ut1yTYp4KiAJgEWC/Hw8ZO46YFXIAgiLh89GP16dkJSQlOEGg3n3AMd2rSkPeJHBQhg+VFslS/VEMBqqPoq6QIB7a6WBxg5kyzjJIcFC3kUFtWv/mrbRsA1V4qIjPQeonHlpdAv+gSGTcsbdMnSpjNMN82AkER/fznLWUOfzys9jOm5m2wftdJHYmvLazwxRXP8oAABLD+ITEuQAipRgACWShKlcTcJYGk8wRSeohTQJMC67OankHHyDExm+2/TXVV977qvXB1K42RQgACWDCIGiYmGAFb2Ng5HFth7FHE6Eb0ftcAY61tRWHP2tX9w+HOzDqxpe91HrwdGjRQwoJ88EE3/1xoYFnwErrSoXlBiZAxMV90J88CRvg1Y49avPrMcWyuzbFE+HNsT02N7ajxq9YZHAEu9uSPPSQG5FSCAJbeiZM8TBQhgeaIazSEFPFNAkwCry7CbPVMDAAEsj6XzaCIBLI9kC8pJZwMsVn21/VUdqutUPzUbKKDtFfKAo8ZEzsvn8NN8Hqez6lddJSeJmDRRQFxT76uu+JxMGOa+Cd2Rfxt0xTR4LMxX3QExPDIo94NcQZ82l0m3D9Z9trechGb6cLmWIDsyK0AAS2ZByRwpoGIFCGCpOHkacp0AloaSSaEoXgFNAqzc/PqVCq5mIr5pjKtDaZwMChDAkkHEIDFxNsA6s5XDsZ8dq6/6PGFBSJTvBPl7G48Vv/Mwmx3X4DhgyCALhl8sQle/FZZbDnFmE/TLv4d+5TxwFlO9uUJyCkw3zoAltZNbdmlwwwq8XbgLbxXusn04MLQZFjQbQ3IpWAECWApODrlGCvhZAQJYfhaclmtQAQJYtDFIAf8poEmA5T/5aCVvFSCA5a2CwTO/LsCqqBCw43XH6qvkIQLaXOqb6qvSMg6LFnM4crQ+nYqNEXHN1QJSWnpfdaU7vEequuJzT9dLrGgMg/nSm2C6+AqAt4O74NkBvol0wMkFOGEutRl/J34wJkV28M1iZFUWBQhgySIjGSEFNKEAASxNpFH1QRDAUn0KKQAVKUAAS0XJ0qKrBLC0mFXfxFQXYKWvB479YodJnF5E3yctMETIv/bBQzwW/cKhoqL+kcFePQSMHysgxMtL/1h/K8NPH0K/bW2DAZh7DYF50r0QYuPkDzCILW6tPIOrz6ywKWDkdPiv1RSE8+e+7COIJVNE6ASwFJEGcoIUUIQCBLAUkYagd4IAVtBvARLAjwoQwPKj2LRUfQUIYNGucFWBWoCVk1+FzS9wMJXagVLzoQJSJ8hbfWUyActW8Nixs37VVViYiKsuF9HxPC/XFEUY/lwG/c+fgasoqyeFGJeE6hsegaUjNRR3dZ+4M+7h3E34sfSwbco1ke0wK36oOyZobAAUIIAVANFpSVJAoQoQwFJoYoLMLQJYQZZwCjegCmgaYFVUVmPB0nX4fcM/OHL8FIpKytCxXSss+vxFB9HX/rkDZeWVGHFhX4SFellKEdB0qm9xAljqy1mgPK4FWLuWVuPIYju88kX11alMDvMW8CgsrF911b6dgKuuEBEZ4d2RQf50Ogxz34Au7WB9cKXXwzxiIszjr4eop7+TfLHnKkULumX8gHLR3tDsp2ajMTg02RfLkU0ZFSCAJaOYZIoUULkCBLBUnkCNuE8ASyOJpDBUoYBmAdbR9Ezc++QsZJyyX43OMtIQwHp45odY8cffePmJ23H56MGqSJxWnCSApZVM+j4OBrD04LDkYRPM5Xaw1GKYgNZjvayEqnFfEID1f+qwfgMH9rruY9ADo0cJuKCvd2tx1ZXQL/kahrU/A4KlnnCW9t1guvERCAnNfS9qEK+wqOwo7svZaFMgSRcGdvsgxzry06NoBQhgKTo95Bwp4FcFCGD5VW5arBEFCGDR1iAF/KeAJgFWSWk5rrz1aZzOzkdIiAGXDOmN1i2TMGfurw0CrGVrtuLRF+dg1EV98c7Me/2nPq0EAli0CVxVgAGs9LXAnvl26MMbRPR9ygJ9mKtWGh9XUGitusrMrA8wkpNETJooIK6p+1VXfM4p8FmnwGWdAMpLoNuyCnxBTj1HxP9n7z7AoyjXNo7fu5tOCb0TFAUREQVUQA4WBAtiw8ZRjwUbdsVe8NgVxYKK8tl7ORbsCAqiqIgoiiCgCCiE3hJSN8nufNdMGksSskm2zc5/r8sLvmTmnef9PQNfuM877zRqquLTLlPJQUMaPhlGqFVg1Prpml24tuK4q5vtp+ub9an1PA6IvgABVvR7QAUIxIoAAVasdMLZdRBgObv/zD6yAnEZYD310gea9NIH6tl9Nz1+z5Vq36aFpbrPYedWG2CtXrtRR59xgzp3aKPP33gwsh1w+NUIsBx+A9Rh+unJSZpxq19FO2wV1ekIvzKObNiKKPMNg1986dIvC6rudWWWd9hgn4YcvuvgyrV9m1yb1sizfrWMjZlyr/1b7k1r5d6QGdQMiwePUMmJ58tIaxzU8RzUMIF1JXk6IPOdgEHmdDxZGYlNGjYwZ0dEgAArIsxcBAFbCBBg2aJNcV8kAVbct5gJxpBAXAZYI88fpz+Wr9a7z96pvbt1qeCuKcAq9Bap31EXKSU5ST9PeyaG2hP/pRBgxX+PQzXDrd8naemHlWGVJ8VQv5vqv/qqpET6bo5H38x2qbhyG6SKcps1M3TayX516lgaXrmKvXJtyLRCKfNX14ZVpb+agVVBfr2m6e+wu4rOuV7+jG71Op+T6ifwRPZvemDb/IqTD0ppoynthtdvMM6KuAABVsTJuSACMStAgBWzrXFUYQRYjmo3k42yQFwGWAccfZESExI055OnAnhrCrDMg/oeeaGKS0q0cOaLUW6Jsy5PgOWsftd3tr4i6ed7E1RSWDlC52F+dR5av9VXvy1y6YsZbmVnBz4u6DL8auFbr4O7/KP+Gavl2bRa7o2r5dqwRu6szfUtv8p5RkqqSo4/T8WHniC5q1/5FbKLMVAVgQGZ72p1SW7F1ye0PFj/btIdKZsIEGDZpFGUiUAEBAiwIoDMJWoVIMCqlYgDEAiZQFwGWGYY1aRxmr5+f2JQAVZ+gVcHHnOxmqU31ncfPhkyXAaqXYAAq3YjjpAyv3Rr1ReVQY+5+src+8pTxxf0rV3n0idT3crMrAyujsp5QR1Klqt1yWq1KVkdUm7zkUB/284y2naS0S5DRptOMtp2lq9D5crQkF6QwWoV+Nm7Scev+7TiuGSXR4s6j1KaO7HWczkgNgQIsGKjD1SBQCwIEGDFQheogQCLewCByAnEZYA1/Kwb9U/mBivAatUivUKzphVYM2bP15XjHlefXt302pO3Rk6fK7GJO/dArQIlBdLPD3jkK6wMnTKO9qvT4cGvvtq+3aXpX7r026LA1U5Dcl/X8Jznaq1hVwcYHo+MVu2tYMpfHlS17VQaXDWu/PunQRfh5JAJ3LRljl7N+aNivJGNuuqJ1oeEbHwGCr8AAVb4jbkCAnYRIMCyS6fiu04CrPjuL7OLLYG4DLDue/w1vf7+lzpz5FDdcuVZuwywzNVXoy65S8v/XqOrLzxFF545IrY6FOfVsAIrzhscgumtmu5W5ozK4CkhzVC/m4NbfVVcLH3zrcva68rc82rHT0bRUl255ZKgKzSaNLNCKX+bjpIZTnXcXf5W7ayv8bGHQLHhV+/Vb2m7v6ii4DfbHqlDUjvYYwJUaQkQYHEjIIBAuQABFvdCLAgQYMVCF6jBKQJxGWCt27BFx/7nJnmLijVi2EBde/HpatOqWZW3EM5fuEz3TnxVS/9apfSmjfT5Gw+paeM0p/Q+JuZJgBUTbYjZIszVVz/d65G/uHL11R4jDLUd7NtlzYYhLfjNrekzXMrNDdznyvoHsL9AN2adr6bedVXG8XfaQ/7WHUof+TNXVLXpKH+HLjKS+bshZm+UIAv7OO9vjdk0q+Lotp5U/dzpNLlcVe+RIIfksCgIEGBFAZ1LIhCjAgRYMdoYh5VFgOWwhjPdqArEZYBlin45+2eNvWOSfL7Sx4y6dGprPVbYuFGqevXYXX+tXKPNW7Ot7yUmJmjyA2M1oF/PqDbDiRcnwHJi14Of8z9T3Vozq3L1VVIjacDtfpWo5scHV6126eNP3dqwsfpQolVLvy7yj1eLxdMDCvFeOV6+vfsGXxxH2k7g7I1fakZ+ZkXdV6T31k3N6bndGkmAZbeOUS8C4RMgwAqfLSMHL0CAFbwVRyLQUIG4DbBMmIVLVujOR17WkmX/1Oi01x6ddef1o7Vvj90basn59RAgwKoHmkNOKc6TfrrPI6OkMoja73SPWvQvlre4aoCVleXS59NdWry0+rf6paYaGnKooYGer5Xy3F0BiiWHnaCi0y93iKwzp7nFV6j9V78tv4wKgDkdT1ZGYhNngth41gRYNm4epSMQYgECrBCDMly9BAiw6sXGSQjUSyCuA6xykYVLV2rer0u0KnOjcvMLlJqSrA7tWqp/n73Vd19enV6vOydEJxFghQgyDof5+xO31s6uDKOSm0rHPpigbflFAQGWt8ilr7+R5vzgUdmCywANt0fqf6BfQw4xlJq/Qcl3XSCXt6DiGH+bTvKOe0ZGAm+hi8PbqGJK/5e9SHdt+6ni/+6X3FoftT82nqcct3MjwIrb1jIxBOosQIBVZzJOCIMAAVYYUBkSgRoEHBFg0f3YFSDAit3eRLOy6lZf9TrdrR7DPNqy3WsFWOY+Vz//4taMmS7l5Vf/uGCPHn4dc6Sh5s0Mye9X8kNXyfP30oqpGQkJKrrpafk67hbN6XLtCAgcsmaKlheXPjZufh5oOVD/abJXBK7MJUItQIAValHGQ8C+AgRY9u1dPFVOgBVP3WQusS4QlwGW+djgyOGH8FhgrN99kgiwbNCkKJS48mO31n1bufoqsbGhI+/3KDW1NMD64y9DH3/m1qZN1QdXbdsYOu5YvzI6Vz4ulvjJK0r89NWA2RSddplKDj8xCjPkkpEUWOjdrKPXfVJxyWSXR4s6j1Kam1V3kexDqK5FgBUqScZBwP4CBFj272E8zIAAKx66yBzsIhCXAdY+h51r+e+xW0eNPGaw9SbCVi3S7dITR9VJgOWodgc1WZ9Xmnd34JsHu470a59hicrKcuu1/xVpyZ/VB1eNzaDrCEP79fZrxxfLeVYusVZfWcu2yj6+Hn3kverBoGriIHsL3L51rp7fvqRiEsc32l1Ptz7U3pNycPUEWA5uPlNHYCcBAixuiVgQIMCKhS5Qg1ME4jLAOu7sm7Vi1bqKHno8bh3Sfz+ddMxgHTJwPyUmeJzS35ifJwFWzLco4gWu+dqjfz6rDKgSmxrqfa1f33+foG++N6rd5yoxQRp0sE+DBxlK3GlRjauwQMl3nS/3tk0VczEaNVXhHS/IaEywHfEGR/iCxYZfvVe/pe3+ooorv9Z2qA5P7RThSrhcqAQIsEIlyTgI2F+AAMv+PYyHGRBgxUMXmYNdBOIywDLxF/2xUh9N+15TZ/6grVk5Ff1ont5Exx15sBVmde/KP2CifaMSYEW7A7F1fcMnzbvXo5K8ygArqbeh6WukwsLqV12Zq62OGmrIXH1V3SfpmTuV8Mu3Ad/yXjlevr37xtbkqSYsAtPyV2n0xpkVY7dwJ2tB51Fy77hELyxXZtBwCRBghUuWcRGwnwABlv16Fo8VE2DFY1eZU6wKxG2AVQ5e4vPpux8X6aPp3+mr736Rt6i4ohc9u+9mBVnHDh2g9CaNYrVHcV0XAVZct7fOk9v0q0vL3qxcIemXoa/SXCquJrvK6GRo+DF+dWhffXBlXtzzw3Qlv/xQQB0lQ05S0amX1rk2TrCnwPkbZ+rz/FUVxV/atJdubXGAPSdD1ZYAARY3AgIIlAsQYHEvxIIAAVYsdIEanCIQ9wHWjo3Myy/U9K/n6ZMv5mjuL0tklO2Hk5iYoCGD+lph1uD++zql9zXOc8CIS5WTm1/j90cMHajxt11c7fenTJ2tdz/5Wn/9vUY+n09dOrXTiUf/S2ecNFTmo5w7fwiwHH+7BQD8/LBH3o2VaVVmgrQoOdDIfKPgUcMM9dzbv0s815Z1SrnrIrmKCiuO83XooqKbn5aRwObdTrjzsv1F6r3qTZWoMuT8uuNJ2jORR0ft3H8CLDt3j9oRCK0AAVZoPRmtfgIEWPVz4ywE6iPgqABrR6CNm7M09au5mvbVj1qweHnFt36f9VJ9HOPmnOISn/Yfer7SUpOtTfCr+ww+aF9ddt5JVb51833PWivdzD3G+uzbTYkJCZZtbl6B/nXQvpp0/9VK8ATuP0aAFTe3ToMmsmq1S/Omu9T+z8CQc3aqlFf2pdRUacSRHvXpU6wS/67DK/l8SnngMrkzK/9sGwlJ8t42Wf62nRtUKyfbR+CF7Us0buvcioL3T2qpTzscZ58JUGm1AgRY3BgIIFAuQIDFvRALAgRYsdAFanCKgGMDLLPBZlgzd/5ivf/ZN5o2a57Vc6cHWJu2ZOmwk6+2VqJNHn9t0H8OzODKDLC6ZrTXMxOuV/s2Laxz8wsKdfXtT+q7eYt0xeiRGnP28QFjEmAFTRx3B5oZ1OKlLn03x601a1zqUyi19VVOc4tHmpciNW1iaEB/6cjDEtSsiVtbtnvlLd51gJX04QtK+PzNALOi0y9XyWEnxJ0jE6pZ4Ji1H+u3oi0VB9zXcoDOadIDMpsLEGDZvIGUj0AIBQiwQojJUPUWIMCqNx0nIlBnAccFWH6/oR9/XaJPv/xBX37zk7bv8Khcv97d9crjt9QZMZ5OWPrXKp18we3WY3/33nRB0FM78bzbtGxlpl6fdJv232fPgPO2ZefoiFPHynxU8+v3JyolOani+wRYQRPHzYFFRdLP892aM9elrOzSxwWT/dJhBdKOW12taCf1HubXPj39Mp8+bdk02dr7prYAy7PsNyU/Ehi++nr0kfeqB+PGkInULvBXcbYOXTOl4sAEufRbxr+V7q78+6f2UTgiFgUIsGKxK9SEQHQECLCi485VAwUIsLgjEIicgGMCLDNcMd9K+OmMOdqwaVuFsLlS6PijBunEowcro2ObyMnH6JXm/PS7LrjuIZ3/7+Eae/FpQVW5dv1mDRt1neU39fXqQ4Kxd0yyVrk9ce9VGjKoDwFWULLxddD27S7NmSv9NN8trzdwV/YeXmm3ksr5epoYOuhWn3Z8UVwwAZYrL1fJd42We3vln3GjUVMV3vGCjMbsexRfd9SuZ3P31p80efuiioNGNOqi/2t9uJMI4nauBFhx21omhkCdBQiw6kzGCWEQIMAKAypDIlCDQFwHWOY+V5/N+MHal+mP5asrCJKSEjV0cOmm7QP67iO3u5pXnDn0lvl0xg+64e7JuuGyf+ucU48KSmHG7Pm6ctzjGjFsoMbfWv3m7i+/M00PTnpTF545QldfeAoBVlCy8XHQuvUuffudW78vcam6ras8hnR4vpSww3S7nuhXu4GBjwkGE2AlTbpVCYt+DIDzXjlevr37xgcms9ilwMqS7Zrn3aifCzbqw7wVyjEqU9HX2g7T4anV7+sHq70ECLDs1S+qRSCcAgRY4dRl7GAFCLCCleI4BBouEJcB1ofTvtPHX3yvH35eXPGmQZNq3x67W6HV8CMGqEnjtIbrxeEIr747XQ88+YYVRrVu2UzZ2/OsVTBtWjbXAfvvpf599pZrx2Uxkl56+3M99PRbuvg/x+nK80+uVuXL2T/rqnFP6KjDDtQjd1xGgBWH986OUzJf8PnHn259N8elf1bVHBA3bmRoYCuXPIsrz3YnGTpwnE+enZ70qi3ASvj2MyW9/miAbPERI1V8yiVxru3c6f3s3aifvBv1Y6H53wZt9XurxWjlTtGCjFHOhYqzmRNgxVlDmQ4CDRAgwGoAHqeGTIAAK2SUDIRArQJxGWDtc9i5FRNv1SLdCmNGHjO4xrfq1arkoAPKV0rVNOUee2bo4f9eqt06t6s45MkXpujpVz7UdWNO13mjjqn21Lm/LNHoa8ZrQL+eev7hGyqOyckvdpBu/E+1qFiaN1+aNdvQ5i01B1ft2kiHDZb67id9d5fkza602f0IqXs1e62nJicoweNSvrdEPp8RiLl+tXzjLpCKiyq/3nE3ee58RkpIjH94B8xwu79Ic/I3aE7+es3N36D5hZtUYOyw6/8uDK5oua/ubdPfAUrOmKLH41JacoJKfIYKvDs8e+yM6TNLBBDYQaBRSoL1JEVeYYnMfW75IBANgSZp/KwZDXeu6UyBuAyw9jvifB168H7WaqvB/XsrweNxZnfrOet5vy61Vqh1aNdKaanJysnN18IlK/Ti21P14y9LrZVZH7xwj5qlN7au8PDk/+mFtz7TzVecqbNOHlbtVX9ZtExnXX6v+vTqpteevLWelXFarArk5Epffu3TrG/9ysuvucqee7l05OEe9dq7NNxa87OhOU9X/gPU5ZaOeSBBaS3q8FhvSbG23zha/tUrKy+cmKSmD70kd4eMWCWjrloElnmz9V3uOv2Qu0Hf5K7VksKsOpu1S0jV4CYd9EDHAeqa3LTO53MCAggggAACCCCAAAIIxI5AXAZYW7Ny1KJZk9hRjpNKfD6/LrzuIZmrqcacfbyuGD3SmlmdVmD17annH2EFVpzcElq/UZr5tTR/geSrYTGMmR+bK62GHCqZK692/Mx9TMpaUfmV9n2l3pULKAOOrWkFlv+tp2V8/r+AY11nXy33kGqWccULfJzNo9jwa0HhZv1QsFE/5K3TDwUbtNFXWOdZ7p7YRAentdOgRu2tX7smElrVGdEGJ7ACywZNokQEIiTACqwIQXOZXQqwAosbBIHICdg+wFq1ZoOl1blDmyp7MwXLaBiGVq/daB2e0bFtsKc58rivvv9Fl98yUX337a5Xn7jFMnjlnWkaP+nNoPbAGjq4nybefUWF3dotBY50tPukly136/s50vIV7hqnkppq6IC+fg3sLzVuXHVZf95aacHEHbdul/a7qkSNOlQ/ZHV7YHmW/abkR64NOKGk10EquuxeuxPHVf3Z/iJl+b3Wf/n+yqRzSfFWfZL7t371bpZXwT0OuCPM3onNNTClnQ5IaaNBqe1l7nXFJ/4F2AMr/nvMDBEIVoA9sIKV4rhwCrAHVjh1GRuBQAHbB1jl+13Nn/6skpOqPn9sPg//3wkvWrO++4bR1fY/v6BQBx4zxvre77Ne4h7ZhcCfKzJ10ujb1L1rJ0154R7ryK/nLNClNz8a1FsIR48armvHnEaAZcO7zFxhtWBR6cbsmzbW/Ihfi+aGDh5gqE8fvxID86mAWf/5pkebf60cp0kXQ/teWnOIsXOA5crLVfJdo+Xevq1iXH/T5vLe/oKMRqWPt/IJnUCJ4Ve2UaQsnxlGFSrLDKXM3xuF2lZSGk6Z/23zmb8WqTS0KrR+DXyfZP1qSnC51Tuppfont9GA1Pbqn9xWTdzsOVE/TXufRYBl7/5RPQKhFCDACqUmY9VXgACrvnKch0DdBeI+wCrx+WTuibWrcIoAK/gbZ85Pv+uC6x7SwQf00rMTrrNO3Lw1W4eOvEoZHdto6usPVjvY2DsmadqseZpw+yU6ZkjlZsqswArePlpHFhS49ONPbs39UcrNqzm46tLZ0MEDDfXYy2+9uXJXn+Jcad69HslfeWD3M/1q1bvmqGPnACtp0q1KWPRjwGW8Yx+Wr1vvaFHZ4roFRklZ2FQaQGWboZMVPhUpu6TQepOfGURZXzfDKCu08irPiOxm2SnyqG9KKw1M7WCFVQektFay2M/QFjdZmIskwAozMMMjYCMBAiwbNSuOSyXAiuPmMrWYEyDAkkSAFfx9eesDz+mDz7/VNRedqgvOOLbiRHODdnOj9tcn3ab999kzYMBt2Tk64tSx8huGvpnyuJo2Tqv4PgFW8PaRPnLrVpe+nePSrwvcKqkhu3C7pZ49DA3+l1/t2wX/9p9/prq1Zlbl44dJTQ03qGo4AAAgAElEQVT1u9kncxP3mj47Bli+L6Yo6e0nAw4tPuIUFZ9ycaSZona9HH+xsgyvFS6Vr4Qq/bVI20oKlV0WPpWuiCr7z1dUr0f1IjHJdHeSDqxYXdXGWm1lrrrig8DOAgRY3BMIIFAuQIDFvRALAgRYsdAFanCKAAEWAVbAvf7Ys+/quCMP1h5dAjci2p6br2de+1gvvjVVrVqk65NX7rfeVFj+mT33N4258RF1zWivZyZcr/ZtWljfMsPBa/47Sd/+uFBnjhyqW648K+B6BFix91fN3/+49N33Lv2xrObwIDnJUN++hgYNMNS0afDBlTlbX5E0726P/EWVq692G+5Xh0N3/aBZeYC19c+/5LrjIrlKiirwfB26qOjmp2Uk2O+RstIVT4Vlj+aVroQqDZxKg6ht5d8zvMq2Ht/zWquk7PZp40lVM3eSmrtT1MyTpGauZDXzJCsjsYn6p7SVuZ8VHwSCESDACkaJYxBwhgABljP6HOuzJMCK9Q5RXzwJEGARYAXcz/2PvUS5eQVq06qZumZ0UGpKsjZs3qaVq9aqoLBIbVs311P3X6Mee2ZU+XMwYfLbVsCVmJigPr32VFJiohYsXq6c3Hz17L6bXp54s9JSkwmwYvRvkD+XufXlTJfWb6j5+b8mTcz9raR+ff1KSa5bcFU+7fVz3FrxQWU45k40dOA4nzyBt0YVJSvAcvm07brz5Fr7d8X3jYQkeW+bLH/bzlGTNd+iV/oYXtnjeD5v2X5RXiuEKn0Mr3S/KOtXn1fbDK9y/cWqn2J0ptrElaBmnhSlu5JKQygzjHKbv09Wc4/5++TSkMoKqFKUbh2TpBTXLjZDi85UuKqNBQiwbNw8SkcgxAIEWCEGZbh6CRBg1YuNkxColwABFgFWwI0ze+5CfTT9Wy1aulIbNm1TcUmJGqelqmuXDhryr7467bjDAlZe7XzXmftcvfbeF/pj+Sr5fH51bN9aw4f013mjjql2k31WYNXrz21IT8rOdumTqS798WfNK646dDA0aKBf++xtyHxssL4fw5DmP+iRd2tlSNZ+kF+7H1/7Nt9mgOV/daK8n78XcPmiM65SyeAR9S0p4Lw8o7gsaCp7LK9is3JzP6iyjcvLVkdZj+6V/d7cV8ouH49caupOLA2fKlZCla6MMh/ja56QbIVPpQFVWUhl/d7cgaqWzc3sgkCdthYgwLJ1+ygegZAKEGCFlJPB6ilAgFVPOE5DoB4CBFgEWPW4bUJ3CgFW6CzrM9Ks2R7N/KrmUGLvHn7rjYJdMkKzTmjrEpeWvrTjRtyG+t7gU0rL2qtvvmqhvPePDTiwpNdBKrrs3oCv+WVou7/Y2oS8dEWUueKpMnyy3phXsRKqSNllv99mFMl8055dPklylwZOHnPVU9l/ZauiKr62w0qo5lYYlawm7iRiKLs0mTqrFSDA4sZAAIFyAQIs7oVYECDAioUuUINTBAiwCLCieq8TYEWHf8VKtz761CVzo/adPx6P1K+P33qjYIvmoQmuyq/x+7MeZf9Vec0WPf3qcU71oZEZJpmhkrnSKTt3q/LfmqAsf7G2pSZrW0qStjZpqi0HDFKWq/zxvdL9oXL8RbJPDCU1sh7LM1c9lT6KZ4ZMZjBlPZbnTikLqHZcCVUaRKXyWF50/vBw1agLEGBFvQUUgEDMCBBgxUwrHF0IAZaj28/kIywQNwHWg+PGKMH8l/dOH8MwdO2dT1lffeSOy6rlLSoq1k33PWN97/dZL0W4Bc6+HAFWZPufk+PSZ9Pc+n1x9auuOnYwdOLxfrVtE7rgyny8zgyWtmzwafvE0s39yz/zz1isVR037/CWPHN1VGlolWejx/LMpyrNlU0Ve0CZK6IqVkaZj+WlWJuWl+4JVb5aKlnNXUm8aS+yfwS4WhwIEGDFQROZAgIhEiDAChEkwzRIgACrQXycjECdBOImwKrTrHdxMAFWqCSDG4cAKzinhh7l90tz5rr11Sy3ioqrjtYozdCRwwzt39svVzXZlhlnmSubsoyyvaF23JDcfEzP2g9qxzfplb1Nz+dV+XqoS786RIcv7V5x8b9bbtH1p01p6NRCen6Cy22FSqV7Q5XuA2WFTq6U0r2hyjYpNzcyL38kz/xaUx7LC2kfGAyBXQkQYHF/IIBAuQABFvdCLAgQYMVCF6jBKQIEWDt1mgArsrc+AVb4vVdluvThRy5t2uyW4TbkTSqUN6lI3pRCFSUVqVOPQnXc26tcFSjLX6Rt5UFUeVjlL7T2lPI14H15TfNTNPnVfyvRX7lK8skhs/T1Xn+FBcB8vK50A/LylVClvzdDp+ae1Iq34+28kXkjV2JY6mFQBBAInQABVugsGQkBuwsQYNm9g/FRPwFWfPSRWdhDwPYBlj2YqbImAQKs+t0bRfKVrnoqWwm1zfzVXCFlrYYyV0J5taW4SCs2FWlzsVfeZK+8SV4VJ1Wz/Kp+JdTprNPm9dWpP/WtOCc7tUAXnf2G/O6aH1U0F4I1LSpW8zyvmhd6le4tUnNviZr1Gqgmqc1LH8uz9o4yQ6qyPaLMgMqdrERXA16VWKeZcTACCERagAAr0uJcD4HYFSDAit3eOKkyAiwndZu5RluAACvaHXD49Z0eYOVUvC2vNHyy/rMexyuqCKLMPaFKH9HzKtt6o55XhfLZ5s5J8Xk0+eUz1MibXFHzb4NWaO2gdVYIZb1Jr3xfqLLNy81QqvXbTytp9qcB80y76AblHHSUvMV22qbdNq2iUARsIUCAZYs2USQCEREgwIoIMxepRYAAi1sEgcgJEGBFzporVSMQDwGWX4ayrZVQleFTRRBlhk8lhWXhVFlItUMYVdKAx/IifUOlyGOteLLekGc+jrfDm/Oae1JKH9mr2Li8bMNyV7IKfk7SX+9WPjro8hg64DafEtNqnkHCrA+V9PaTAQe4Dxispjfcry3bvQRYkW4+10MghgQIsGKoGZSCQJQFCLCi3AAubwkQYHEjIBA5AQKsyFlzJZsGWHlGsZYVZWtZcbb+LN6mZUVZ2uArsFZCbTO8MldR2enT2NwfqoZH79LNx/LKVkQ1NzcwL1sZ1c6zi7Splsn/MsGjgk2VO8O3PcjQHidXv4LMvSFTia89Is9fCwNG9TdrqUbjX1Fy83QCLDvdbNSKQBgECLDCgMqQCNhUgADLpo2Ls7IJsOKsoUwnpgUIsGK6PfFfXCytwDIfz/vDDKjMoMqbpb+Ks/RncbbW+vJirhEeudTISFRqSYqSCpPkzk1RQkGykouSlew1f01VsjdJTZWkQ/sk6aDuZW/WcyfLPDdSn+xlLv3+XOXqK/O6+19borQ2gRW4SoqVMPV1JUx/W66Skirlecc+rGb9DpT5D1dWYEWqe1wHgdgUIMCKzb5QFQLRECDAioY619xZgACLewKByAkQYEXOmitVIxCNAGu9L19/FmXrr5Is/VlU+p8ZVm3xe6PSo9bulNLH8cpWO6WbG5K7ktWibH8o8+tGVoryN6Uod22SsjKTlbs+pdZaD+zn17AjDKWk1LxReq2DNPCAJS96tG1pZWDWrJuhnhcErr7yLFugxFcfkXvT2mqvVnzKGBUfcbJaNk0mwGpgPzgdgXgQIMCKhy4yBwRCI0CAFRpHRmmYAAFWw/w4G4G6CBBg1UWLY0MuEK4Ay4xsVpfklD32l61l3m1aVmI+BpgVlkf+GlU8lhe4D5T5drzmntTS/aGs/8w355X/PlmproQqpnn5Lq1e7dLqNYZWr3ZrzVqXiuvwlGLHDoZOPN6vtm2iF1yZkyrcIs1/0Fx9VRlg7T3ap+Z7ldblystV4rtPK+GH6dXeV77d91bxf66Tv32G9X0CrJD/8WNABGwpQIBly7ZRNAJhESDACgsrg9ZRgACrjmAcjkADBAiwGoDHqQ0XCFWA9WVBphYVbbH2p/qrKFuLirc2vLgdRujgaaTuienaM7GZuic3056J6WphhVHJMldQNeRjBlSr17iUuVpWcLUtu36P+LVu5dfBA6V+fWLjDX3L33drw1x3BU1qa0P7X+uTyyUlzJ1hhVeu3OwqdEZqI5WMvFDFg4bLOrjsQ4DVkLuMcxGIHwECrPjpJTNBoKECBFgNFeT8UAgQYIVCkTEQCE6AACs4J44Kk0CoAqzD1kyxVls15GPuDdU5obG6JzZTt6R0dU9srm5JzdQtMV1p1ayUqs+1cnNdWp3p0qrVhjIz3VqzzqVqtnyqdejkFEOdOxjqnOFSp46GMjoaMr8WK5/ifOnn+zzyF1cGUF1H+tVhjzVKfPVhef5cUG2pJf0OU/Hpl8lo0qzK9wmwYqW71IFAdAUIsKLrz9URiCUBAqxY6oZzayHAcm7vmXnkBQiwIm/OFXcQCFWAdcHGmZqavyoo20SXW7snNCkNqBLTrRVV3RKbaY9Ec8vzwA3HgxqwhoN8Pmndepcy17i0apX5q5RVj9VV5iKkVq0NdTaDqgypc0epVUv/jouTGlJmWM7N/MqtVZ9Xrr5KSDU08KA3lfT5y3IVF1W5ptGijYrOHCtfz3411kOAFZZWMSgCthMgwLJdyygYgbAJEGCFjZaB6yBAgFUHLA5FoIECBFgNBOT0hgmEKsB6YNt8PZH9W0Ax5v5SeyY2tR732yu5hbolpFtB1W6JTcLyJr7t283VVdKqzNJVVuvWuuSrx9N8qalG6aqqzqWrqzp1MpScFDurq2rruOGT5t3rUUle5eqrLgkfqdvWR6ue6vaoaOjJ8o04W0Zi8i6HJsCqTZ7vI+AMAQIsZ/SZWSIQjAABVjBKHBNuAQKscAszPgKVAgRY3A1RFQhVgDWrcI0+ylmp7snNS/eqSkpXhqdJ2OZmrq4yH/+zNls3965a41JOTt33rjJXV5mbrZshVUYnqXMnQy1b2iesqg7YV+jS35+5Ava/OiTnZCUZgfuS+TO6q+ic6+TvsHtQfSLACoqJgxCIewECrLhvMRNEIGgBAqygqTgwjAIEWGHEZWgEdhIgwOKWiKpAqAKscE/C3Fg901xdZT0K6LIeDfTXY3VVWqphhVTW6qpO5korvxITw1195MdPmD9b/v+9oVWFR6nElaqehRMqivCnpqnkxAtUMnhEwCbttVVJgFWbEN9HwBkCBFjO6DOzRCAYAQKsYJQ4JtwCBFjhFmZ8BCoFCLC4G6IqEIsBVnGJtNZ8M2CmW6tXG9YjgXk7PA4XLJjbLbVrW7m6ygysWjS39+qq2ubu3rZJCW88poRFP1Z7aEmfQ1T87yuq3aS9trEJsGoT4vsIOEOAAMsZfWaWCAQjQIAVjBLHhFuAACvcwoyPAAEW90CMCMRCgLV1W9mjgGtkPRK4YWP9Vlc1amQ+Bmios7W6yq+OHQwlJsQIdLjL8PuVOOsDJXz0klzegipXC2aT9tpKJMCqTYjvI+AMAQIsZ/SZWSIQjAABVjBKHBNuAQKscAszPgIEWNwDMSIQ6QCrqEhas9ZtbbJurq4yf80vqPveVebqqvbtyjZbzzBXWUnN0+N7dVVNt4w7c7mSXn5Q7swVVQ9xe1Q85CSVHH9urZu013ZLEmDVJsT3EXCGAAGWM/rMLBEIRoAAKxgljgm3AAFWuIUZHwECLO6BGBEId4C1eYu7dO8qc6P1TJc2bnLJqEfO1KSJoc4dzdVVUufOhjq2N+TxxAhiFMtI/OglJU59vdoKfLvtpeL/XBv0Ju21TYMAqzYhvo+AMwQIsJzRZ2aJQDACBFjBKHFMuAUIsMItzPgIEGBxD8SIQDgCrB9+dOvPZbI2Wy8srPvqKpOmkxVWlW643qmj1Myhq6t2dZskTH1DSR+9WOUQIyVVxSecr5JDj6/TJu213ZIEWLUJ8X0EnCFAgOWMPjNLBIIRIMAKRoljwi1AgBVuYcZHgACLeyBGBEIZYG3a6NJ7H7q1dl3dQqv0dHN1VenKKjOwMh8NZHXVrm+QhLkzlPTSA1UOKtn/XyoZdbn86S1DfocRYIWclAERsKUAAZYt20bRCIRFgAArLKwMWkcBAqw6gnE4Ag0Q4C2EDcDj1IYLhCrAmjXbo5lf1R5cmcGU+fhf585+ZXRyWaFV48b1eKaw4VO37QiexT8p+YmbA+o3EpJUdOFt8vUeGLZ5EWCFjZaBEbCVAAGWrdpFsQiEVYAAK6y8DB6kAAFWkFAchkAIBAiwQoDIEPUXaGiAtX6DS+9NcVtvDqzuY26sboZUncy9qzoaameurnLXv16nn+le/ZeSJ1wjV1FhJYXLJe+YO8MaXpkXI8By+t3H/BEoFSDA4k5AAIFyAQIs7oVYECDAioUuUINTBAiwnNLpGJ1nQwKsGTNd+vrb6ndS338/v44aZqhRGqurQtV619aNSrlvjFx5OQFDFv3nWpUcfHSoLlPjOARYYSfmAgjYQoAAyxZtokgEIiJAgBURZi5SiwABFrcIApETIMCKnDVXqkagPgGWuerqnffd2rSp6qqrtFRDJ59kqNuefrxDKODK3a7k8ZfLvXldwKjFx56l4hHnhPBKNQ9FgBURZi6CQMwLEGDFfIsoEIGICRBgRYyaC+1CgACL2wOByAkQYEXOmis1MMDy+aSZs1z6bo5H/mryqX33MTRiuF+pqay6CuXN5vIWWI8NujOXBwxrrroyV19F6kOAFSlproNAbAsQYMV2f6gOgUgKEGBFUptr1SRAgMW9gUDkBAiwImfNlRoQYJlvFnznfZe2bKm6gZW56urE4w312ItVVyG/yfw+JT9+ozx/LAgMr3oeoKLL7pXckdtQjAAr5N1lQARsKUCAZcu2UTQCYREgwAoLK4PWUYAAq45gHI5AAwQIsBqAx6kNF6jtEcKSkspVV0Y1C6v26u7XyBMMVl01vBXVjpD04v1K+HFmwPd8u+2lorGPyEhMCtNVqx+WACui3FwMgZgVIMCK2dZQGAIRFyDAijg5F6xGgACL2wKByAkQYEXOmitVI7CrACtzjUvvvu/W1m3V73U14li/evXkccFw3ViJH72oxKlvBAzvb9tJ3huekJHWOFyXrXFcAqyIk3NBBGJSgAArJttCUQhERYAAKyrsXHQnAQIsbgkEIidAgBU5a64UZIBlrrr6YqZbP8x1q6ZVV+Yjg7xhMHy3VML3nyvp1YcDw6v0liq6aZL8zVqG78K7GJkAKyrsXBSBmBMgwIq5llAQAlETIMCKGj0X3kGAAIvbAYHICRBgRc6aKwURYK1a7dL7H1S/6srcnP3YY/zq3YtVV+G8mTy/zVHy5P9qx/TQSG0k741PylyBFa0PAVa05LkuArElQIAVW/2gGgSiKUCAFU19rl0uQIDFvYBA5AQIsCJnzZV2EWAVl0jTv3Br7rzqNwXfcw+/Rp5oqHEjwqtw3kieFYuV9Oj1cpUUVVzG3Ouq6OqH5OvaM5yXrnVsAqxaiTgAAUcIEGA5os1MEoGgBAiwgmLioDALEGCFGZjhEdhBgACL2yGqAuYeWOaqq3enuJWVVXWvq5QUQ8cebWi/3rxhsC6Ncnnzpdztcudky5WbLeWav2ZZX3PlZJV9rfz3WXIV5NU4vPfSu+Xbd0BdLh+WYwmwwsLKoAjYToAAy3Yto2AEwiZAgBU2WgaugwABVh2wOBSBBgoQYDUQkNMbJvDMq179+NMuVl2dYKhxY1ZdmSGUKydbyt8u93YzgMqS8rZLZb+v+L4VVG0PWEHVkA4V/edalRx8dEOGCNm5BFgho2QgBGwtQIBl6/ZRPAIhFSDACikng9VTgACrnnCchkA9BAiw6oHGKaETuOCq4iqDJSVKw4/2q2+f+Fx15SoptlZBla6K2i7lZsltBlLby1ZK5ZWGVWZIZYVRZlBV3W72oWtDtSMVH3eOioefFearBD88AVbwVhyJQDwLEGDFc3eZGwJ1EyDAqpsXR4dHgAArPK6MikB1AgRY3BdRFdg5wOq6u18nn2ioSRP7rLpy5eXKlbutNGjKyZa77JE9lT+qV/Y1V1629X1XUWFUzXe+uNGoiYzG6VLjZvI3aWb93ui4u0oOOyGm6iTAiql2UAwCURMgwIoaPRdGIOYECLBiriWOLIgAy5FtZ9JREiDAihI8ly0VuPXeIm3Y6FJigjT8GL/6RXvVlc9Xuhoqz9wfqmzfKPNXM4wqC6hK95Iq3VvKba6g8vtip51ut4y0JlYQZQZSVjDVJL00lDK/1tT8Wun3/ObXGzWV3NU/whk7kyqthAAr1jpCPQhER4AAKzruXBWBWBQgwIrFrjivJgIs5/WcGUdPgAArevZcWdK83wr1xUyXTjzeULP00K+6chUWSHlZ1mbmVuiUs916NM8wH9sr3+C87JE961G+gvzY6ovbI3OFlBk2yVod1az017KVUlZIZQVUZb+agZSr6mb4sTWp+lVDgFU/N85CIN4ECLDiraPMB4H6CxBg1d+OM0MnQIAVOktGQqA2AQKs2oT4flgFzLcQBv3x++XKzyl7i15WWRiVLZmP5lmbmWfLfEyvYn8pM6zyVd1jK+jrheFAw2MGUubjeukyylZDWaukmpqrokqDKL/1+7JH+dIax20gVVdeAqy6inE8AvEpQIAVn31lVgjUR4AAqz5qnBNqAQKsUIsyHgI1CxBgcXdEVaCmAMu9daMS5n0l1+/z5MreIlee+QhfblRrreni/vSWpeGTuRKqfJVU0+ZS46YVj+5Zj/A1bi6jUeOYnIMdiiLAskOXqBGB8AsQYIXfmCsgYBcBAiy7dCq+6yTAiu/+MrvYEiDAiq1+OK6aHQMscwWV56dZ8sz7Sp4Vv0fFwkhIsoKo0tVQ5aFU850e26sMqozUtKjU6cSLEmA5sevMGYGqAgRY3BUIIFAuQIDFvRALAgRYsdAFanCKAAGWUzodo/PcMcBKfP8ZJX7xTkgrNRLNQKr08Tx/xYbmzeVqUraJednb90pXTzWXkZIa0uszWOgECLBCZ8lICNhZgADLzt2jdgRCK0CAFVpPRqufAAFW/dw4C4H6CBBg1UeNc0ImsGOA5f57qVLGX7HLsY3k1NIwquzNeqVv2DM3Nm9e9mvpyilr03NzBZV5PJ+4ECDAios2MgkEGixAgNVgQgZAIG4ECLDippW2nggBlq3bR/E2EyDAslnD4q3cnffASrn1TJn7X5kfI7WRfAcdId+Bh8vfrLWMlm3jbfrMpw4CBFh1wOJQBOJYgAArjpvL1BCoowABVh3BODwsAgRYYWFlUASqFSDA4saIqsDOAVbiB8/LtTFTvgFHytd7YFRr4+KxJUCAFVv9oBoEoiVAgBUtea6LQOwJEGDFXk+cWBEBlhO7zpyjJUCAFS15rmsJ1PQWQngQ2FmAAIt7AgEETAECLO4DBBAoFyDA4l6IBQECrFjoAjU4RYAAyymdjtF5EmDFaGNisCwCrBhsCiUhEAUBAqwooHNJBGJUgAArRhvjsLIIsBzWcKYbVQECrKjyc3ECLO6BYAUIsIKV4jgE4luAACu++8vsEKiLAAFWXbQ4NlwCBFjhkmVcBKoKEGBxV4RUYMrU2Xr3k6/1199r5PP51KVTO5149L90xklD5fG4q1yLACuk/HE9GAFWXLeXySEQtAABVtBUHIhA3AsQYMV9i20xQQIsW7SJIuNEgAArThoZC9O4+b5n9dH075SY4FGffbspMSFBCxYvV25egf510L6adP/VSvB4AkolwIqFztmjBgIse/SJKhEItwABVriFGR8B+wgQYNmnV/FcKQFWPHeXucWaAAFWrHXEpvWYwZUZYHXNaK9nJlyv9m1aWDPJLyjU1bc/qe/mLdIVo0dqzNnHE2DZtMfRLpsAK9od4PoIxIYAAVZs9IEqEIgFAQKsWOgCNRBgcQ8gEDkBAqzIWcf1lU487zYtW5mp1yfdpv332TNgrtuyc3TEqWOVmJigr9+fqJTkpIrvswIrrm+LkE6OACuknAyGgG0FCLBs2zoKRyDkAgRYISdlwHoIEGDVA41TEKinAAFWPeE4rVJg7frNGjbqOmV0bKOprz9YLc3YOyZp2qx5euLeqzRkUB8CLG6gOgsQYNWZjBMQiEsBAqy4bCuTQqBeAgRY9WLjpBALEGCFGJThENiFAAEWt0eDBWbMnq8rxz2uEcMGavytF1c73svvTNODk97UhWeO0NUXnkKA1WB15w1AgOW8njNjBKoTIMDivkAAgXIBAizuhVgQIMCKhS5Qg1MECLCc0ukwzvOltz/XQ0+/pYv/c5yuPP/kaq/05eyfddW4J3TUYQfqkTsuqzgmJ784jJUxdDwJpCYnKMHjUr63RD6fEU9TYy4IIFAHAY/HpbTkBJX4DBV4S+pwJocigEC8CTRKSZDb7VJeYYn8fn42iLf+2mU+TdIS7VIqdSJgewECLNu3MPoTePKFKXr6lQ913ZjTdd6oY6otaO4vSzT6mvEa0K+nnn/4hugXTQUIIIAAAggggAACCCCAAAIIIGAbAQIs27Qqdgt9ePL/9MJbn+nmK87UWScPq7bQXxYt01mX36s+vbrptSdvjd3JUBkCCCCAAAIIIIAAAggggAACCMScAAFWzLXEfgXVaQVW3556/hFWYNmvy1SMAAIIIIAAAggggAACCCCAQPQECLCiZx83V37lnWkaP+nNoPbAGjq4nybefUXF3NkDK25ug7BPhD2wwk7MBRCwhQB7YNmiTRSJQEQE2AMrIsxcpBYB9sDiFkEgcgIEWJGzjtsrfT1ngS69+dGg3kI4etRwXTvmtAqLtVsK4taFiYVWgLcQhtaT0RCwqwBvIbRr56gbgdAL8BbC0JsyYt0FeAth3c04A4H6ChBg1VeO8yoENm/N1qEjr1JGxzaa+vqD1cqMvWOSps2apwm3X6JjhvQnwOL+qbMAAVadyTgBgbgUIMCKy7YyKQTqJUCAVS82TgqxAAFWiEEZDoFdCBBgcXuERMDcoN3cqP31Sbdp/332DBhzW3aOjjh1rPyGoW+mPK6mjdMIsEKi7qxBCLCc1W9mi0BNAkcUKnAAACAASURBVARY3BsIIFAuQIDFvRALAgRYsdAFanCKAAGWUzod5nnOnvubxtz4iLpmtNczE65X+zYtrCvmFxTqmv9O0rc/LtSZI4fqlivPCqiERwjD3Jg4Gp4AK46ayVQQaIAAAVYD8DgVgTgTIMCKs4badDoEWDZtHGXbUoAAy5Zti82iJ0x+Wy++NVWJiQnq02tPJSUmasHi5crJzVfP7rvp5Yk3Ky01mQArNtsX81URYMV8iygQgYgIEGBFhJmLIGALAQIsW7Qp7oskwIr7FjPBGBIgwIqhZsRDKeY+V6+994X+WL5KPp9fHdu31vAh/XXeqGOUnJQYD1NkDggggAACCCCAAAIIIIAAAgggEGEBAqwIg3M5BBBAAAEEEEAAAQQQQAABBBBAAIG6CRBg1c2LoxFAAAEEEEAAAQQQQAABBBBAAAEEIixAgBVhcC6HAAIIIIAAAggggAACCCCAAAIIIFA3AQKsunlxNAIIIIAAAggggAACCCCAAAIIIIBAhAUIsCIMzuUQQAABBBBAAAEEEEAAAQQQQAABBOomQIBVNy+ORgABBBBAAAEEEEAAAQQQQAABBBCIsAABVoTBuRwCCCCAAAIIIIAAAggggAACCCCAQN0ECLDq5sXRCCCAAAIIIIAAAggggAACCCCAAAIRFiDAijA4l0MAgUCBdRu36s0pX+rbHxdq9dpNKvH51L5NCx0yYD9dcMaxatUivQrZ0r9W6eQLbt8l5Z3XnadTRhwKNwII2EQgKztX7332jWbP/U3LVmYqJzdfqSnJ2qNLBx19+EEadcIQJSUlVjubtes3a/KrH+n7eYu0eWu20ps21kF9eujis47Xnrt3tIkAZSKAQLnAD/MX6+Pp32v+wmXauHmbfD6fWrdqrn69u+ucU4/S3t268LMBtwsCCCDgQAECLAc2nSkjEAsCfr+h59/8VJNenKLiktLQqlvXztYPqUuW/aOtWTlq0ayJXn78FnXNaB9Q8pyfftcF1z2k1i2bqV2bFtVO56KzjtOQQX1iYarUgAACtQh8OO073f3oyyooLFLTxmnq0S1DTRs3ssKohUtXyOfzq9deu+vFx25UWmpKwGjm3xfnXHW/8vIL1blDG3Xt0l7rN27VH8tXW4HXU/ddrYEH7EMPEEDABgJmkH31f5/UvF+XyuVyaY/dOqhT+9bW3wHLVmRq/aatcrtduv+WizRi6EB+NrBBTykRAQQQCKUAAVYoNRkLAQTqJHD17U9q5ep1uvnyMzWgX8+Kc81/xN7x8Iv65Is56rtvN736xK0B43464wfdcPdkjb34NJ3/7+F1uiYHI4BA7AksXLpSjz3zjs49/WgdfEAveTzuiiLXrN+si66foL9Xr9dl556oS889seJ75j9qjzvnZv2TuUHXXzLKOr/8880PC3TFrY+rUaMUTXvjITVpnBZ7E6ciBBAIEDAMQ+MefEFtWjXT6ccPUdvWzQP+vL/8zud6ePL/lJaarK/fnxgQaPOzATcTAgggEP8CBFjx32NmiEDMCphBlcftqvaxIPN7/zrhchV6i6wfUnd8lPDVd6frgSff0L03XaATj/5XzM6PwhBAIDQCU2fO1XV3Pa0D9ttLL0+8uWLQL775SWYQbq6wem7C9VUuNmHy23rxram6+sJTdOGZI0JTDKMggEBUBUacfbNWrlqnFx+9yXpUuPzDzwZRbQsXRwABBCIiQIAVEWYuggAC9RE4afRt+nNFpj548R51271TxRATn3tPz7z2sSaPv1aD++9bn6E5BwEEbCQwe+5CjbnxYR06cD89df81FZXf+sBz+uDzbzX+1os1Yljg40TmQcv/XqPjz71VPfbM0HvP3WWjGVMqAgjUJDDqkru0cMkK/e//7tA+e+3GzwbcKggggICDBAiwHNRspoqA3QSGnHqNNmzaph8/m6xGaZX73twx4SW988ksvfvsndVu5Gq3eVIvAgjULGA+UnTluCc089v5uuXKs3TmyKEVB488f5y119XU1x9URsc21Q7S/9hLrP2x5k97psZN4PFHAAF7CCz6Y6X+fcld1qrsz994SMk7vNiBnw3s0UOqRAABBBoiQIDVED3ORQCBsAn8/sffOu3iO7Rfzz30xlPjAq5zxW2PW/+YHXP28crJLVBefoH1D9OMDm00uH9v3joWtq4wMAKRETDfRrppS7Z+/2OlXv7fNM1f+KeOOuxAPTTukoD9sQ485mLlF3j165fPKzHBU21x5Ss5P3rpXu2xG28kjEwHuQoCoRMw30i6dsMWmY8SvzHlSyUkePTonZerf5+9+dkgdMyMhAACCNhCgADLFm2iSAScJWCuuDh/7IOa+8sSTbz7Cg0d3C8A4PJbJuqr73+pEeXoww/S3TeMrvK2MmcpMlsE7CdQ/qjgjpWbjwhdft5JOmTAfgETMt9kuu+Q85SakqSfPn+mxsmefeV9+vm3P62XQZgvheCDAAL2ECh/VLC8WnO11Zkjh+mc044K2Bez/Pv8bGCPvlIlAggg0BABAqyG6HEuAgiEReDJF6bo6Vc+tIIrM8Da+VNUVKy5vyxV5w6trTcVJSYmavPWbM2dv1hPv/yhMtdt0qADe+mZh64LS30MigAC4RFY+tcqTX7lI/kNv/XY3z+r12vdxq3WGwRHnTBEl48+SQme0pVW5gse+h11kZo2TtOcT56qsaALrntIc3763drk3dzsnQ8CCNhD4LFn37XePlpUXKwtW7frz5WZMv//v7ky+5arzlKvvXYPmAg/G9ijr1SJAAIINESAAKshepyLAAIhF3hjygzdO/FVde/aSa89eVvA3lfBXGzLtu064dxbtS07R88/coMG9O0ZzGkcgwACMSqwZNk/uvPhl7Rw6UqdfepRuvGyf1uVmis1ex1elxVYt6jvvt1jdJaUhQACtQmYbyd+64MZevTZd5SclKRPXrlfbVs3r+006/v8bBAUEwchgAACMS9AgBXzLaJABJwjYG7Mbm7CmtGxrV55/Ga1btmsXpN/cNKbevmdadYeWVeMHlmvMTgJAQRiRyArO1fDRl1rrbr6Zsrjap7exCrO3KA9N68gqD2wprxwjxWM80EAAXsLPPrMO3rujU+txwlvufLMoCfDzwZBU3EgAgggELMCBFgx2xoKQ8BZAm99OFN3P/qKduvcTi8+epP1aGB9P6+//4Xue/z1Ov9wW9/rcR4CCIRfYPQ146198V567CYduH8P64Lmix7MFz7U9hZCM+SaN/X/lJaaHP5CuQICCIRVwNzTztzbzvx7wPz7INgPPxsEK8VxCCCAQOwKEGDFbm+oDAHHCLz67nQ98OQb1uqI5x6+QS2bN23Q3Cc+956eee1jXX3hKbrwzBENGouTEUAgNgTOvOwe/fr7X1bAfVCf0gDLDL3N8Hv8rRdrxLCBVQpd/vcaHX/urdo9o731uBEfBBCwv8D3Py3ShddN0AH77aWXJ94c9IT42SBoKg5EAAEEYlaAACtmW0NhCDhD4MW3pmrC5LetzVjNTdfTmzZq0MSLS3w64dxb9E/mBr351Dj17rlHg8bjZAQQiL7Api1ZGjbqOvl8Ps2e8oSapTe2ijI3Zzc3aT/4gF56dkLVlzaYf7eYf8eMHjVc1445LfoToQIEEGiwwH2Pv6bX3/9S/znlSN10+RlBjcfPBkExcRACCCAQ8wIEWDHfIgpEIH4FzFVS5v8iam6sPHn82KA2bF+1ZqNmzP5Zxx15cJXXaK9as0HmD7az5y7U4P77avL4a+MXj5khEEcC5t40Aw/opYMP2EcejztgZmYYfeM9k61N3E86ZrDuufH8gO+PuuQuLVyyQtdfMkrnnn50xfe++WGBrrztcbncbn3++oNBb/YcR6xMBQHbCXz740L9sXy1jh06QO1atwiov8Tn09sfzrRWbHs8Hn344r3q0qmtdQw/G9iu1RSMAAII1EuAAKtebJyEAAINFSh/BMAcp33blkpOSqxxyMZpqXr7//5rfX/pX6t08gW3y+VyWT+4dmrf2vr92vWbtXL1Ovn9hvru202T7r9GTRunNbRMzkcAgQgIHH7K1dq4OUtNGqdZjxK3apFu/VlevXaj9Wfe/Azu31uP3nm5UlOSAioyjzEfLzTfMta5Qxt17dJeGzZts84z/2544JaLqn28MALT4hIIIFBHgXc/+Vr/nfCidZb56K/5/+dTU5K1PSdPi/5YqezteUpLTdGD4y7W4Qf3qRidnw3qCM3hCCCAgE0FCLBs2jjKRsDuAtNmzdPYOyYFNY3GjVI199OnrWOLi0s05fNvNfPbn63/lXZbVo4MQ9YjRXt3y9CIoQfrmCH9q6ziCOpCHIQAAlERmL9wmT7+4nv9tni5FURlZefI7XZbQVavHl2tAGrIoMp/rO5cpHnO0y9/qFlzftXmLVlq3ChNffbtpgvOOFb78RhxVHrKRRGoj0BObr4+nPadzBWUZji9NStHBYVemf9DVpfO7TTogF467fjDq7zohZ8N6qPNOQgggID9BAiw7NczKkYAAQQQQAABBBBAAAEEEEAAAQQcJUCA5ah2M1kEEEAAAQQQQAABBBBAAAEEEEDAfgIEWPbrGRUjgAACCCCAAAIIIIAAAggggAACjhIgwHJUu5ksAggggAACCCCAAAIIIIAAAgggYD8BAiz79YyKEUAAAQQQQAABBBBAAAEEEEAAAUcJEGA5qt1MFgEEEEAAAQQQQAABBBBAAAEEELCfAAGW/XpGxQgggAACCCCAAAIIIIAAAggggICjBAiwHNVuJosAAggggAACCCCAAAIIIIAAAgjYT4AAy349o2IEEEAAAQQQQAABBBBAAAEEEEDAUQIEWI5qN5NFAAEEEEAAAQQQQAABBBBAAAEE7CdAgGW/nlExAggggAACCCCAAAIIIIAAAggg4CgBAixHtZvJIoAAAggggAACCCCAAAIIIIAAAvYTIMCyX8+oGAEEEEAAAQQQQAABBBBAAAEEEHCUAAGWo9rNZBFAAAEEEEAAAQQQQAABBBBAAAH7CRBg2a9nVIwAAggggAACCCCAAAIIIIAAAgg4SoAAy1HtZrIIIIAAAggggAACCCCAAAIIIICA/QQIsOzXMypGAAEEEEAAAQQQQAABBBBAAAEEHCVAgOWodjNZBBBAAAEEEEAAAQQQQAABBBBAwH4CBFj26xkVI4AAAggggAACCCCAAAIIIIAAAo4SIMByVLuZLAIIIIAAAggggAACCCCAAAIIIGA/AQIs+/WMihFAAAEEEEAAAQQQQAABBBBAAAFHCRBgOardTBYBBBBAAAEEEEAAAQQQQAABBBCwnwABlv16RsUIIIAAAggggAACCCCAAAIIIICAowQIsBzVbiaLAAIIIIAAAggggAACCCCAAAII2E+AAMt+PaNiBBBAAAEEEEAAAQQQQAABBBBAwFECBFiOajeTRQABBBBAAAEEEEAAAQQQQAABBOwnQIBlv55RMQIIIIAAAggggAACCCCAAAIIIOAoAQIsR7WbySKAAAIIIIAAAggggAACCCCAAAL2EyDAsl/PqBgBBBBAAAEEEEAAAQQQQAABBBBwlAABlqPazWQRQAABBBBAAAEEEEAAAQQQQAAB+wkQYNmvZ1SMAAIIIIAAAggggAACCCCAAAIIOEqAAMtR7WayCCCAAAIIIIAAAggggAACCCCAgP0ECLDs1zMqRgABBBBAAAEEEEAAAQQQQAABBBwlQIDlqHYzWQQQQAABBBBAAAEEEEAAAQQQQMB+AgRY9usZFSOAAAIIIIAAAggggAACCCCAAAKOEiDAclS7mSwCCCCAAAIIIIAAAggggAACCCBgPwECLPv1jIoRQAABBBBAAAEEEEAAAQQQQAABRwkQYDmq3UwWAQQQQAABBBBAAAEEEEAAAQQQsJ8AAZb9ekbFCCCAAAIIIIAAAggggAACCCCAgKMECLAc1W4miwACCCCAAAIIIIAAAggggAACCNhPgADLfj2jYgQQQAABBBBAAAEEEEAAAQQQQMBRAgRYjmo3k0UAAQQQQAABBBBAAAEEEEAAAQTsJ0CAZb+eUTECCCCAAAJxK7B+01ZNnTFX3//0u/5csVpZ2blKTPSoQ9tWGty/t0b/e7haNm9a4/ynzpyrKVNna/Gf/yg7J1d+v1HtselNG+n7jyZV+d4vi5bpjSlf6uff/tTWbduVlpqivfbsrOOPHGT95/G449aeiSGAAAIIIIAAArEsQIAVy92hNgQQQAABBBwkYIZXR426XiU+nzVrMzxqnt5YW7ZtV6G3yPpa65bN9Nbk29WudYsAGTOouuGeyTIDLPPTY88MdWzfShs3bdPiZf/I5/NbX0/weNSmdXN179pJk+67OmCMR595R8+98WnFcc2bNVFObn7FtQf07anH77lSjdJSHNQVpooAAggggAACCMSGAAFWbPSBKhBAAAEEEEBA0k33PaPdO7fX0MF91bVLB7lcLhmGoa/nLNCN9/6fcvMKdNIxg3XPjecHeL0xZYbunfiqkpMS9fT4serfZ++K7y/9a5UuvuFhbd6arZsuP0P/OeXIKtYv/e9zPfTUW9b51186SicePVipKUlW8PX1nF817qEXrNVgxx4xQA+OG0OvEEAAAQQQQAABBCIsQIAVYXAuhwACCCCAAAL1E3j29U/02LPvqlWLdH39/sSAQUaeP05/LF+tC88coasvPKXKBd76cKbufvQVdWzXStPfmhDwfXOF19DTr1VRUbHuun60Tj72kCrnT5v1o8be8ZT19feeu8ta4cUHAQQQQAABBBBAIHICBFiRs+ZKCCCAAAIIINAAAXNfqrOvvM8aYcGM563HAc2PuUKr9xGjrf2unrr/Gh06cL8qV1n859869aI7rK9/9+GTapbeuOKYF976TA9P/p+6dGqrz14bX2OFh468ylrFdcnZJ+jy0Sc1YCacigACCCCAAAIIIFBXAQKsuopxPAIIIIAAAghERWDFqnU67uybrWvPmzrZ2iPL/Jh7Zu0/9AIryHr+kRtk7lW18+evlWt0wnm3Wl/+ZsrjARvBj7nxEc2e+5tOGXGo7rzuvBrnZoZnZog2dHA/Tbz7iqgYcFEEEEAAAQQQQMCpAgRYTu0880YAAQQQQCAGBczHAD/5Yo7MtwGuXrvR2kTdW1RcpdIdAyzzm0efcYN1/LVjTtPoUcOrHP/Jl3N04z3/p+bpTTT7g8etvbXKP8PPulH/ZG4IWuOgPj304qM3BX08ByKAAAIIIIAAAgg0XIAAq+GGjIAAAggggAACDRQwV0/d/8Trev39L62RzH2u9ttnD+ttg8lJSTLzpo1bsvTx9O+t7+8cYP3fqx/r8effU9PGaXrliVvUbfdOFRVt2LRN5179gFat2VDtHlnljwa2adXMCrhq++yz1+66+4bRtR3G9xFAAAEEEEAAAQRCKECAFUJMhkIAAQQQQACB+gm8+u50PfDkG9bKqNvHnqNTjj1UbnflKilz1AWLl+uMS++uNsAyN2A//9oHNX/hMnk8bvXv09PasN3cs2ruL4uVX+DVwQf00qT7rlJSUmJAkeWrt648/2Rd/J/j6jcBzkIAAQQQQAABBBAIqwABVlh5GRwBBBBAAAEEghEw96cy96kaMWygxt96cbWnfDdvkS66vvQNgjuvwDK/VlxcorOvul+/LV6uRmkpKvQWqVFqinp0y9DxRw7SCUf9q0ooZp43+prxmvvLEh17xAA9OG5MMOVyDAIIIIAAAggggECEBQiwIgzO5RBAAAEEEECgqsCBx4xRfkGhrr9klM49/ehqiZ56+UNNenFKjQHW3Y++orc+nLnLMaobePIrH+mJF963Hj+c8c6jSktNpkUIIIAAAggggAACMSZAgBVjDaEcBBBAAAEEnCgw9LSxWrdxq04/YYhuv+bsKgSbtmTppNHjtC07p9oAa836zTpy1HXq1L61pr35UJ0IzbGHjbrOWsFV0/XrNCAHI4AAAggggAACCIRcgAAr5KQMiAACCCCAAAJ1Fbj9oRf03qffKDExQY/891IN+Vdfa4gSn0/f/bhI9z3+mnx+v9Zt2FJtgGU+fmg+hpiSnKRJ912t3j27Vux15ZLL2hdrV5/yPbjMY8xrX3jGsTI3azfPy80r0PqNW63HDGd+N18P3HKRWrdsVtcpcjwCCCCAAAIIIIBAAwQIsBqAx6kIIIAAAgggEBoB802Boy65Uxs3Z1kDmntYmW8ENFdHeYuKldGxrV567CadcuHt2pqVU+0eWJfd8phmff9rtQWZG7d36dhWww7pp3NPP8Yaf+fPC299pkefeUd+v2F9y9xQ3gzUzA3id/zMeOcR6+2IfBBAAAEEEEAAAQQiJ0CAFTlrroQAAggggAACuxAw3xho7kf1zQ8LZAZaZujUqX0rHfGvfhr97+HW3lTmJu7mZu47b+K+bGWmXnlnut7/7Jtajffo0kFvPn17tSHWqjUb9Pr7X+qH+Yu1dv0WFXq9SklOVod2LbX/Pntq2CEHaNCBvaxwiw8CCCCAAAIIIIBA5AQIsCJnzZUQQAABBBBAIAwCs+cu1FXjHldqarKuG3O6Bh24r1q3TK8ImczHELduy9H3Py3SnY+8bK2ouvrCU3ThmSPCUA1DIoAAAggggAACCIRDgAArHKqMiQACCCCAAAIREfD5/Bp6+ljr0cMn7rmyYu+smi5+z2Ov6s0PZujwg/voyfuuikiNXAQBBBBAAAEEEECg4QIEWA03ZAQEEEAAAQQQiJLAylXrNOLsm62r/zztGWsT9119nnxhip5+5UPrUcDH7ro8SlVzWQQQQAABBBBAAIG6ChBg1VWM4xFAAAEEEEAgZgT+ydyg4WfdaNXz9fsT1apFeo21mZvBn3zB7TJDr2suOlUXnHFszMyDQhBAAAEEEEAAAQR2LUCAxR2CAAIIIIAAArYWOP6cW7T8n7UaeMA+uv2ac5TRsU3AfMy3Cs5f+KcmTH5bC5esUJtWzfTBC/cqvWkjW8+b4hFAAAEEEEAAAScJEGA5qdvMFQEEEEAAgTgUWPrXKl18w8My32JofnbPaG9t4p7gSVBObp7+ztygnNx863vdu3bSI3dcZh3DBwEEEEAAAQQQQMA+AgRY9ukVlSKAAAIIIIBADQLbc/P1v4++0jc/LNCKf9ZZgZXLJaWlpqhDu1bq2b2LDh/UR4cN3L/i7YRgIoAAAggggAACCNhHgADLPr2iUgQQQAABBBBAAAEEEEAAAQQQQMCRAgRYjmw7k0YAAQQQQAABBBBAAAEEEEAAAQTsI0CAZZ9eUSkCCCCAAAIIIIAAAggggAACCCDgSAECLEe2nUkjgAACCCCAAAIIIIAAAggggAAC9hEgwLJPr6gUAQQQQAABBBBAAAEEEEAAAQQQcKQAAZYj286kEUAAAQQQQAABBBBAAAEEEEAAAfsIEGDZp1dUigACCCCAAAIIIIAAAggggAACCDhSgADLkW1n0ggggAACCCCAAAIIIIAAAggggIB9BAiw7NMrKkUAAQQQQAABBBBAAAEEEEAAAQQcKUCA5ci2M2kEEEAAAQQQQAABBBBAAAEEEEDAPgIEWPbpFZUigAACCCCAAAIIIIAAAggggAACjhQgwHJk25k0AggggAACCCCAAAIIIIAAAgggYB8BAiz79IpKEUAAAQQQQAABBBBAAAEEEEAAAUcKEGA5su1MGgEEEEAAAQQQQAABBBBAAAEEELCPAAGWfXpFpQgggAACCCCAAAIIIIAAAggggIAjBQiwHNl2Jo0AAggggAACCCCAAAIIIIAAAgjYR4AAyz69olIEEEAAAQQQQAABBBBAAAEEEEDAkQIEWI5sO5NGAAEEEEAAAQQQQAABBBBAAAEE7CNAgGWfXlEpAggggAACCCCAAAIIIIAAAggg4EgBAixHtp1JI4AAAggggAACCCCAAAIIIIAAAvYRIMCyT6+oFAEEEEAAAQQQQAABBBBAAAEEEHCkAAGWI9vOpBFAAAEEEEAAAQQQQAABBBBAAAH7CBBg2adXVIoAAggggAACCCCAAAIIIIAAAgg4UoAAy5FtZ9IIIIAAAggggAACCCCAAAIIIICAfQQIsOzTKypFAAEEEEAAAQQQQAABBBBAAAEEHClAgOXItjNpBBBAAAEEEEAAAQQQQAABBBBAwD4CBFj26RWVIoAAAggggAACCCCAAAIIIIAAAo4UIMByZNuZNAIIIIAAAggggAACCCCAAAIIIGAfAQIs+/SKShFAAAEEEEAAAQQQQAABBBBAAAFHChBgObLtTBoBBBBAAAEEEEAAAQQQQAABBBCwjwABln16RaUIIIAAAggggAACCCCAAAIIIICAIwUIsBzZdiaNAAIIIIAAAggggAACCCCAAAII2EeAAMs+vaJSBBBAAAEEEEAAAQQQQAABBBBAwJECBFiObDuTRgABBBBAAAEEEEAAAQQQQAABBOwjQIBln15RKQIIIIAAAggggAACCCCAAAIIIOBIAQIsR7adSSOAAAIIIIAAAggggAACCCCAAAL2ESDAsk+vqBQBBBBAAAEEEEAAAQQQQAABBBBwpAABliPbzqQRQAABBBBAAAEEEEAAAQQQQAAB+wgQYNmnV1SKAAIIIIAAAggggAACCCCAAAIIOFKAAMuRbWfSCCCAAAIIIIAAAggggAACCCCAgH0ECLDs0ysqRQABBBBAAAEEEEAAAQQQQAABBBwpQIDlyLYzaQQQQAABBBBAAAEEEEAAAQQQQMA+AgRY9ukVlSKAAAIIIIAAAggggAACCCCAAAKOFCDAcmTbmTQCCCCAAAIIIIAAAggggAACCCBgHwECLPv0ikoRQAABBBBAAAEEEEAAAQQQQAABRwoQYDmy7UwaAQQQQAABBBBAAAEEEEAAAQQQsI8AAZZ9ekWlCCCAAAIIIIAAAggggAACCCCAgCMFCLAc2XYmjQACCCCAAAIIIIAAAggggAACCNhHDIM6qgAAAnBJREFUgADLPr2iUgQQQAABBBBAAAEEEEAAAQQQQMCRAgRYjmw7k0YAAQQQQAABBBBAAAEEEEAAAQTsI0CAZZ9eUSkCCCCAAAIIIIAAAggggAACCCDgSAECLEe2nUkjgAACCCCAAAIIIIAAAggggAAC9hEgwLJPr6gUAQQQQAABBBBAAAEEEEAAAQQQcKQAAZYj286kEUAAAQQQQAABBBBAAAEEEEAAAfsIEGDZp1dUigACCCCAAAIIIIAAAggggAACCDhSgADLkW1n0ggggAACCCCAAAIIIIAAAggggIB9BAiw7NMrKkUAAQQQQAABBBBAAAEEEEAAAQQcKUCA5ci2M2kEEEAAAQQQQAABBBBAAAEEEEDAPgIEWPbpFZUigAACCCCAAAIIIIAAAggggAACjhQgwHJk25k0AggggAACCCCAAAIIIIAAAgggYB8BAiz79IpKEUAAAQQQQAABBBBAAAEEEEAAAUcKEGA5su1MGgEEEEAAAQQQQAABBBBAAAEEELCPAAGWfXpFpQgggAACCCCAAAIIIIAAAggggIAjBQiwHNl2Jo0AAggggAACCCCAAAIIIIAAAgjYR4AAyz69olIEEEAAAQQQQAABBBBAAAEEEEDAkQIEWI5sO5NGAAEEEEAAAQQQQAABBBBAAAEE7CNAgGWfXlEpAggggAACCCCAAAIIIIAAAggg4EgBAixHtp1JI4AAAggggAACCCCAAAIIIIAAAvYRIMCyT6+oFAEEEEAAAQQQQAABBBBAAAEEEHCkAAGWI9vOpBFAAIH/b4cOSAAAAAAE/X/djkAnaMCAAQMGDBgwYMCAAQOfgQDbWLZMkq6hUQAAAABJRU5ErkJggg==", "text/plain": [ "" ] @@ -5345,7 +5631,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdCZxN9f/H8fes9j2EkiUpW0hEyR6iRIU2WSpbiYjs+xYhW5Ys5adESGlRSIu0obIlRGRJZB/rzPwf3+M/c41Z3Dsz995zz32dx6PHj7nfc873+/x8x8+8fc/3hMTGxsaKAwEEEEAAAQQQQAABBBBAAAEEEEAAAZsKhBBg2bQydAsBBBBAAAEEEEAAAQQQQAABBBBAwBIgwGIiIIAAAggggAACCCCAAAIIIIAAAgjYWoAAy9bloXMIIIAAAggggAACCCCAAAIIIIAAAgRYzAEEEEAAAQQQQAABBBBAAAEEEEAAAVsLEGDZujx0DgEEEEAAAQQQQAABBBBAAAEEEECAAIs5gAACCCCAAAIIIIAAAggggAACCCBgawECLFuXh84hgAACCCCAAAIIIIAAAggggAACCBBgMQcQQAABBBBAAAEEEEAAAQQQQAABBGwtQIBl6/LQOQQQQAABBBBAAAEEEEAAAQQQQAABAizmAAIIIIAAAggggAACCCCAAAIIIICArQUIsGxdHjqHAAIIIIAAAggggAACCCCAAAIIIECAxRxAAAEEEEAAAQQQQAABBBBAAAEEELC1AAGWrctD5xBAAAEEEEAAAQQQQAABBBBAAAEECLCYAwgggAACCCCAAAIIIIAAAggggAACthYgwLJ1eegcAggggAACCCCAAAIIIIAAAggggAABFnMAAQQQQAABBBBAAAEEEEAAAQQQQMDWAgRYti4PnUMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDiCAAAIIIIAAAggggAACCCCAAAII2FqAAMvW5aFzCCCAAAIIIIAAAggggAACCCCAAAIEWMwBBBBAAAEEEEAAAQQQQAABBBBAAAFbCwRFgBUdHaOjx07q7LnziomJUcaMGZQ7ZzZliIywdXHoHAIIIIAAAggggAACCCCAAAIIIICA5MgA6+A/R7Vm3S/66ZfftWX7Hh3454hiYmIT1TtvnpwqdctNuqNcSdW6u4KKFS7AnEAAAQQQQAABBBBAAAEEEEAAAQQQsJmAowKsn3/drrcWrdCXazcqNjZxYHUt+yoVblOblverepWy12rK5wgggAACCCCAAAIIIIAAAggggAACPhJwRIC1d/8/6jPyTW3cvCOeLSwsVLfdbFZX3aIbCuZTzuxZlStHVmXIEKEzUef179Fj2rv/sDZv361fNu/Q2XMX4s8tdUsRjer7nIrfVNBHZeA2CCCAAAIIIIAAAggggAACCCCAAALJCQR8gLVo+RqNnvxOfABlVk81f7C27qpYSpkzZXCr8hcuXNS69Vu1YNlqffPDb9bqrYwZItWr82Nq/mAtt65BIwQQQAABBBBAAAEEEEAAAQQQQAAB7wgEfIBVumZrS6b5AzXV9rH7dWPBfGmS2n/oiGa/+4ne+/BLK8jasmZumq7HyQgggAACCCCAAAIIIIAAAggggAACaRMI+ADrwdZ9NbhHa1UoUyJtEledven33Ro4ZraWzBqartflYggggAACCCCAAAIIIIAAAggggAACngkEfIB18VK0IsLDPBu1m60vRUcrPMw713azCzRDAAEEEEAAAQQQQAABBBBAAAEEgl4g4AOsoK8gAAgggAACCCCAAAIIIIAAAggggIDDBRwfYJkN2jdu2amdu//WiVNRypMzm1o0qe3wsjI8BBBAAAEEEEAAAQQQQAABBBBAwDkCjg6wzBsKJ81aoqPHTsZXrGTxGxPta/Vi/0navmufJg7roluK3eCc6jISBBBAAAEEEEAAAQQQQAABBBBAwAECjg2wxk57T3MWfBpfotDQEMXExCqpAGvKnKWa+tYyPfN4I3V77lEHlJUhIIAAAggggAACCCCAAAIIIIAAAs4RcGSA9cPGbWrbbbRMaNX8gVp68uF6uqFgPpWv2y7JAOu3rbv0WKehKlequN6d2t851WUkCCCAAAIIIIAAAggggAACCCCAgAMEHBlgmUcCV36zXt07NFfblvfHl6l0zdZJBljmEcN7m3ZRzhxZtXbZZAeUlSEggAACCCCAAAIIIIAAAggggAACzhFwZIBVo9mLOn7itNYtn6rMmTJcM8CKjY1V+brPWO1+XTXLOdVlJAgggAACCCCAAAIIIIAAAggggIADBBwZYN1ep51y5cymNYsnJChRciuwTCNzTnh4mNavmOGAsjIEBBBAAAEEEEAAAQQQQAABBBBAwDkCjgyw7m7yvM6fv6AfP5lu7YMVdyQXYO3Zd0iNnnpFNxTIqxXvjnFOdRkJAggggAACCCCAAAIIIIAAAggg4AABRwZYz/QYo3U/b9H0V7vrnsplrxlgjZm6QHMXfqYH7qumUX2ec0BZGQICCCCAAAIIIIAAAggggAACCCDgHAFHBljLv1inXsOnq+D112naqG4qXqSQVbGkVmAtX7lOrwyfIbMP1pzxr6hyhVudU11GggACCCCAAAIIIIAAAggggAACCDhAwJEBlgmjzCqs79dvVUR4mJo0uEeVK9ymnkOnqciN12toz3bauWe/Vqz50WpjjvvrVNGY/h0dUFKGgAACCCCAAAIIIIAAAggggAACCDhLwJEBlilR1Nlz6jl0ur78buM1K1a3+h0a3a+9MmaIvGZbGiCAAAIIIIAAAggggAACCCCAAAII+FbAsQFWHKMJsN5b9qXW//aHFWrFHZGREapYpoQea1pHJsDiQAABBBBAAAEEEEAAAQQQQAABBBCwp4DjA6w49piYWB09dkKnz5xVpkwZlCdXDuvxQg4EEEAAAQQQQAABBBBAAAEEEEAAAXsLBE2AZe8y0DsEEEAAAQQQQAABBBBAAAEEEEAAgeQEHBlgdR0wWbcUu0GdWj/kceV/2bJTv27dpfCwMJW7rZjK3lbM42twAgIIIIAAAggggAACCCCAAAIIIIBA+gk4MsAqXbO1ihYuoOVvj3Rbyjxi2HvEDC1fuS7BOdWrlNO4QZ2UOVNGt69FQwQQQAABBBBAAAEEEEAAAQQQQACB9BNwbICVKWOk3p7YR/OXrNTm7bsVEx2j4kUKqfmDNVWtUplEgos//loDxsy2vm7a5cyeRb9u2aVL0dFqWLuKxg7omH7qXAkBBBBAAAEEEEAAAQQQQAABBBBAwG0BxwZYRiAkJESxsbGJMJ5v21QdWzVJ8PWnXhiuDZt2qN1j9+ul9s2tz3bvPainXxypo8dOavGbQ3TrzYXdhqUhAggggAACCCCAAAIIIIAAAggggED6CDg6wDJE9WtWVrlSxRQZEaHfd/6lD1es1cVL0Xrr9d6qdHvJeMU7G3ZQ1Nlz+nT+qypcKF/81z/6/Du9MmJGgmArfei5CgIIIIAAAggggAACCCCAAAIIIICAOwKODrDMY3/m8b8rjw2b/tBTL4xQ/Zp3atygztZHZv+rsrXbWL/+5Ys3FRERHn/K2XMXVPWBTtaG7uaRRA4EEEAAAQQQQAABBBBAAAEEEEAAAd8KODbAKn5TQX341ogkNVt3HaW//j6kL9+fYH1u9rm6vU4769db1sxNdE6TNn11/MRpfbXkdd9Wh7shgAACCCCAAAIIIIAAAggggAACCMixAVad6hU1cWiXJEs8cOwcffDpt/p11Sy3Aqy23Ubr1627tH7FDKYMAggggAACCCCAAAIIIIAAAggggICPBRwZYFW+v4NKFi+seZOSfuTvhb6v64eN2/TjJ9Ms7nPnL+iO+s9Zv05qBdYzPcbohw1btWn1HB+Xh9shgAACCCCAAAIIIIAAAggggAACCDgywGrZYbD++PNvLX97pApef12CKv93/JTuf7KXTp85q7kTXrE2ct+x+2891Kaf1e775VOVLWvmBOc0a9dfB/45an3GgQACCCCAAAIIIIAAAggggAACCCDgWwFHBlizF3yi16YtVPEihdT7+cd1e+mbFREept937tXw1+dp0++7lSNbFl24eFENalXRpt//1M7d+y35Wa/11F13lIqvwolTZ1Sj2YsqUfQGLZoxyLfV4W4IIIAAAggggAACCCCAAAIIIIAAAs7cA8u8ObBF+0Ha9deB+BKHhoZYbxs0R55c2bXgjQHqOnCytmzfY33thgJ5Vej662QCq+mvdtd1uXNYXx8zdYHmLvxMrVs00MsdWzJlEEAAAQQQQAABBBBAAAEEEEAAAQR8LODIFVjG0DwqOHT8W/ri6/WKjb0cXJmjaqXSGtyjjRVWmb2vPvvyR0WdPa/7a1exNmrv1Hu8MmaI1C3Fb9Sp01HavfegtXrro7dH6saC+XxcHm6HAAIIIIAAAggggAACCCCAAAIIIODYACuutCdOnrH2uIqOidFNN+TX9Xlzp1j1SbOXaPq8j+JDr4iIcA1/5Rk1qnMXswUBBBBAAAEEEEAAAQQQQAABBBBAwA8Cjg+wUmNq9sPasOkPhYSG6J7K5VQgX8qhV2ruwTkIIIAAAggggAACCCCAAAIIIIAAAu4JEGBJMntmffblD3p/+VeaP+Xy2wg5EEAAAQQQQAABBBBAAAEEEEAAAQTsIRDUAdbWP/Zo0fKv9PHKdToTdc6qyJY1c+1RGXqBAAIIIIAAAggggAACCCCAAAIIIGAJBF2AZTZm/3jV91r00Rr9vnNv/DQwG7XXq1FJY/p3ZGoggAACCCCAAAIIIIAAAggggAACCNhIIGgCrA2bduj95Wu0Ys1P1tsH444C+fOo+QM19XCjGsqTK7uNSkNXEEAAAQQQQAABBBBAAAEEEEAAAQSMgKMDrGMnTmnZirXW3la79x5MUPF7KpdViya1VbNqeYWGhjAbEEAAAQQQQAABBBBAAAEEEEAAAQRsKuC4ACs2Nlbfr99q7W21+tv1ungpOp6+WOEC+vP/gyz2urLpjKRbCCCAAAIIIIAAAggggAACCCCAwFUCjgmwDh85rqWffqPFH3+l/YeOxA8zb56calTnLj1wXzUVLpRPdzbsYH1GgMX3AgIIIIAAAggggAACCCCAAAIIIBAYAgEfYK1eu9EKrb7+/lfFxMRa6pkyRqruvZX0QL1qqnpH6fhHBKPOniPACox5SS8RQAABBBBAAAEEEEAAAQQQQACBeIGAD7BK12xtDSZjhkjVuaeiat9TUTWqlrdCrKsPAixmPgIIIIAAAggggAACCCCAAAIIIBB4AgEfYJWv94wuXrxkyd9QIK/uvauctfrqzttvTbQ5OwFW4E1QeowAAggggAACCCCAAAIIIIAAAggEfIB14uQZLVvxrfWmwV1/HYiv6PV5c6txvap6sP7dKn5TQevrBFhMeAQQQAABBBBAAAEEEEAAAQQQQCDwBAI+wLqSfOPmHVr00RqtWPOTzp2/EP9RmZJFrSCrVrXyqteyh/V1NnEPvMlKjxFAAAEEEEAAAQQQQAABBBBAIDgFHBVgxZXw1OkoLV+5zlqV9fvOvfGVDQsLVXR0jPX7zV/OUUhISHBWnVEjgAACCCCAAAIIIIAAAggggAACASTgyADrSv/N23dbq7I+WfWD9Qhh3FG4UH61aFJLTRtUV47sWQKoZHQVAQQQQAABBBBAAAEEEEAAAQQQCC4BxwdYceU04ZUJsd5fvkabft8dX+XIyAg1qFlZLR+qrdtLFQ+u6jNaBBBAAAEEEEAAAQQQQAABBBBAIAAEgibAurIW23fts1ZlmccMzeOGccetNxfW4jeHBEDZ6CICCCCAAAIIIIAAAggggAACCCAQPAJBGWDFldds9G42fDersjZs2mF9mc3dg2fyM1IEEEAAAQQQQAABBBBAAAEEEAgMgaAOsK4s0Z97D1qrsnp1fiwwKkcvEUAAAQQQQAABBBBAAAEEEEAAgSARIMAKkkIzTAQQQAABBBBAAAEEEEAAAQQQQCBQBQiwArVy9BsBBBBAAAEEEEAAAQQQQAABBBAIEgECrCApNMNEAAEEEEAAAQQQQAABBBBAAAEEAlWAACtQK0e/EUAAAQQQQAABBBBAAAEEEEAAgSARIMAKkkIzTAQQQAABBBBAAAEEEEAAAQQQQCBQBQiwArVy9BsBBBBAAAEEEEAAAQQQQAABBBAIEgECrCApNMNEAAEEEEAAAQQQQAABBBBAAAEEAlWAACtQK0e/EUAAAQQQQAABBBBAAAEEEEAAgSARcHSAdezEKf198IjOn7+gHNmzqND1eZU5U4YgKS3DRAABBBBAAAEEEEAAAQQQQAABBJwh4LgA68TJM5q/5At99MU67d3/T4IqRYSHqVL5W9WmRUPdfWcZZ1SQUSCAAAIIIIAAAggggAACCCCAAAIOF3BUgPX5Vz9r0Ng5OnHqjEJDQ1SqRBEVKXy9MmXIoKPHTuivv//Rrr8OWCVt/mAtDejWSiEhIQ4vMcNDAAEEEEAAAQQQQAABBBBAAAEEAlvAMQHWwo/WaPBrc61Ayqywerp5fV2XO0ei6vy+c69enfKufti4zQqwWjSpHdgVpPcIIIAAAggggAACCCCAAAIIIICAwwUcEWD9smWnWnUZoUwZM+i1gZ10T+WyKZbtwoWLatSqt7Uf1rI5wx1eYoaHAAIIIIAAAggggAACCCCAAAIIBLaAIwKsR54dqG07/tLYAR3VsHYVtyrSqfd4/bBhm9avmOFWexohgAACCCCAAAIIIIAAAggggAACCPhHIOADLPMoYNtuo1WzWnlNGdHVUow6e05RZ88ra5ZMypghMpGs2Qfric7DVCBfbi2dPcz6/Oixk3ru5bG6uWghje7b3j/V4K4IIIAAAggggAACCCCAAAIIIIAAAokEAj7AGv76PL2zdJUmDeui2vdUtAY4Zc5STX1rmfXr8LAwZcmSUdmyZLYCrbPnzmvfgcMKCwuzzqlepVw8SssOg7Xp991avWi88ufNxXRBAAEEEEAAAQQQQAABBBBAAAEEELCBQMAHWI8+N0g79+zXjx+/oYiIcIvUrKRa+9NmRYSH6eKl6ETMN92QX5OGv6jiNxVM8Nnk2Uv1xtvLNLLPs3rwvrttUB66gAACCCCAAAIIIIAAAggggAACCCAQ8AFW1cadlCN7Vn32zqvx1azXsoeyZ82sxW8O0cWLl3TqzFkdO3FKu/Yc0FfrftHyL9apUvmSmjbqpfjQy5z83c+b9WyPsXr60frq2fkxZgcCCCCAAAIIIIAAAggggAACCCCAgA0EAj7AKlu7jcqXvlnzJvWN56zU4DlVvaO0tcoqqeObH35Tx1fGq3Obh9SxVZP4JgcP/6e6zV9SneoVNXFoFxuUhy4ggAACCCCAAAIIIIAAAggggAACCAR8gFXxvmd1W4mbNH9Kv/hqVrjvWd1dqYwmj0g6wDINzZsLz0Sd06fzR8efd+78Bd1R/zndVbGUZo3ryexAAAEEEEAAAQQQQAABBBBAAAEEELCBQMAHWLUe6Wq9afDT+a5HCBu36q0zUWe18r1xCgsLTZK5fc/XZN5g+MsXb8Z/bh43LF/vGVWpcJtmj+9lg/LQBQQQQAABBBBAAAEEEEAAAQQQQACBgA+w2nV/VT9s2KYfP5mmzJkyWBUdN32hZr37iTq3aapOT7seEYwr94mTZ9TwyZ6KjIjQmsUT4mfBv0ePq+bDXXVfjUoaP/h5ZgcCCCCAAAIIIIAAAggggAACCCCAgA0EAj7Amjr3A02Z+4G131XtuytYpP8dP6WH2vTV0WMnVen2kmrZpLYKF8qvyMhwayP3mfOX6/ede9WiSW0N6NYqvgwbNu3QUy8M1+NN66jvi0/ZoDx0AQEEEEAAAQQQQAABBBBAAAEEEEAg4AOs7bv2qVm7/qpZrbymjOgaX9Gtf+xR5z4TdPjI8SSrfHPRQnr79T7KkT1L/Ocm2Jow832N7ttejetVZXYggAACCCCAAAIIIIAAAggggAACCNhAIOADLGPYuuso/fTL75o3qY8qlr0lnvXk6Si9t2y11nz3i/4++K9iY2N1Q4G8qn1PRT3RrJ4yZYyMbxsTE6tGT72ifQcOa9XCccqfN5cNykMXEEAAAQQQQAABBBBAAAEEEEAAAQQcEWBt3r5bLTsMUcH8efTuGwOUJ1d2jytrgq4h499m/yuP5TgBAQQQQAABBBBAAAEEEEAAAQQQ8K6AIwIsQxS3F1bxmwpqysiuurFgPrflvt+wVR16jVNISIgWTh+oEkVvcPtcGiKAAAIIIIAAAggggAACCCCAAAIIeFfAMQGWYRo2YZ7e/WCV9Whgu8cb6fGH6ibY4+pqylOno/T2ohWa/r+PFB0do8E92uiRxjW8K87VEUAAAQQQQAABBBBAAAEEEEAAAQQ8EnBUgGVGvmDZar02baGizp5TRES4Kpe/VeVuK64bCuZV5kwZra+btxP+unWnvl+/VWeizikiPEwDu7dW04bVPcKjMQIIIIAAAggggAACCCCAAAIIIICA9wUcF2AZsn+PHtdbi1bog0+/1bETp5JVDAsLVYOaldXx6SYqWriA97W5AwIIIIAAAggggAACCCCAAAIIIICAxwKODLDiFMybBbds361tO/7SgX+O6kzUWWXIEKlcObLp5iKFdGf5ktaqLA4EEEAAAQQQQAABBBBAAAEEEEAAAfsKODrAsi87PUMAAQQQQAABBBBAAAEEEEAAAQQQcFeAAMtdKdohgAACCCCAAAIIIIAAAggggAACCPhFgADLL+zcFAEEEEAAAQQQQAABBBBAAAEEEEDAXQECLHelaIcAAggggAACCCCAAAIIIIAAAggg4BcBAiy/sHNTBBBAAAEEEEAAAQQQQAABBBBAAAF3BQiw3JWiHQIIIIAAAggggAACCCCAAAIIIICAXwQIsPzCzk0RQAABBBBAAAEEEEAAAQQQQAABBNwVIMByV4p2CCCAAAIIIIAAAggggAACCCCAAAJ+ESDAkhQbG6uz584rPCxMkZERfikEN0UAAQQQQAABBBBAAAEEEEAAAQQQSFrAkQFWlUYdVbn8rZo0/EW36n7x4iVVatBe5UoV07xJfd06h0YIIIAAAggggAACCCCAAAIIIIAAAr4RcGSAVbpma91VsZRmjevptmKdR1+yVmF999EUt8+hIQIIIIAAAggggAACCCCAAAIIIICA9wUIsP7fuGrjToo6e16/rprlfXXuEC9w4OhZNBwkUDBPJms01NVBRWUoCHggkDNLhDJnDNfx0xcUdT7agzNpigACThCIDA/VdTky6MKlGB05cd4JQ2IMCFxTIO7vv9dsSAMEEEizAAGWpIUffqnB495SgXy5tXLhuDSjcgH3BQg63LcKhJYEWIFQJfqIgPcECLC8Z8uVEQgEAQKsQKgSfUxvAQKs9BbleggkL+CIAGvNd7/oq3W/xI9y4UdrlO+6nKpZtXyKtb94KVq7/jqg37bustq1bFJb/bu1Yr74UIAAy4fYPrgVAZYPkLkFAjYWIMCycXHoGgI+ECDA8gEyt7CdAAGW7UpChxws4IgAa9HyNRr++v9kNmNP7XFz0UJ6a0Jv5cyRNbWX4LxUCBBgpQLNxqcQYNm4OHQNAR8IEGD5AJlbIGBjAQIsGxeHrnlNgADLa7RcGIFEAo4IsMyoos6e03c/b9HyL9bpi69/Vu6c2XRHuZIpljw0NEQ5smdVhTI3q0HNyoqMjGCK+FiAAMvH4F6+HQGWl4G5PAI2FyDAsnmB6B4CXhYgwPIyMJe3pQABli3LQqccKuCYACuuPmYVVt0W3XVzkUIevYXQofW1/bAIsGxfIo86SIDlEReNEXCcAAGW40rKgBDwSIAAyyMuGjtEgADLIYVkGAEh4LgAy6jPe/9z7dj9t4a83DYgihDMnSTAclb1CbCcVU9Gg4CnAgRYnorRHgFnCRBgOauejMY9AQIs95xohUB6CDgywEoPGK7hGwECLN84++ouBFi+kuY+CNhTgADLnnWhVwj4SoAAy1fS3MdOAgRYdqoGfXG6AAGW0yts8/ERYNm8QB52jwDLQzCaI+AwAQIshxWU4SDgoQABlodgNHeEAAGWI8rIIAJEwNEBVnR0jLZs361dfx3QmahziomJuWZZWj1a/5ptaJB+AgRY6WdphysRYNmhCvQBAf8JEGD5z547I2AHAQIsO1SBPvhagADL1+LcL5gFHBtg/bBxm/qPnqX9h454VN8ta+Z61J7GaRMgwEqbn93OJsCyW0XoDwK+FSDA8q03d0PAbgIEWHarCP3xhQABli+UuQcClwUcGWDt3ntQDz8zQOcvXLQGGRkZoevz5lJoaOg16/7xvFHXbEOD9BMgwEo/SztciQDLDlWgDwj4T4AAy3/23BkBOwgQYNmhCvTB1wIEWL4W537BLODIAGvAmNla/PHXKpAvtwa/3FbVKpVWSEhIMNfZtmMnwLJtaVLVMQKsVLFxEgKOESDAckwpGQgCqRIgwEoVGycFuAABVoAXkO4HlIAjA6z6j72svw/+q2mjX1L1KuUCqiDB1lkCLGdVnADLWfVkNAh4KkCA5akY7RFwlgABlrPqyWjcEyDAcs+JVgikh4AjA6zy9Z7RpUvR2vj5TEVEhKeHE9fwkgABlpdg/XRZAiw/wXNbBGwiQIBlk0LQDQT8JECA5Sd4butXAQIsv/Jz8yATcGSAdWfD9goPC9O65VODrJyBN1wCrMCrWUo9JsByVj0ZDQKeChBgeSpGewScJUCA5ax6Mhr3BAiw3HOyY6tGT72iPfsOqU+XJ/VEs7p27CJ9ukrAkQHWQ236addf+/XTp9OVMUMkRbexAAGWjYuTiq4RYKUCjVMQcJAAAZaDislQEEiFAAFWKtA4JeAFCLACt4QEWIFXO0cGWJNmL9G0tz/U60NfUN3qdwReVYKoxwRYzio2AZaz6sloEPBUgADLUzHaI+AsAQIsZ9WT0bgnQIDlnpMdWxFg2bEqKffJkQHWydNRevDpPsoQGaG3J/ZR/ry5Aq8yQdJjAixnFZoAy1n1ZDQIeCpAgOWpGO0RcJYAAZaz6slo3BMgwHLPyY6tCLDsWJUgDLDMkHfs/ltPv/MwomcAACAASURBVDhSMTGxalL/bt1Z/lblz5tbGTNEpChSougNgVfFAO4xAVYAFy+JrhNgOauejAYBTwUIsDwVoz0CzhIgwHJWPRmNewIEWO452bEVAZYdqxKEAdaDrftq79+HdPFStMcV2bJmrsfncELqBQiwUm9nxzMJsOxYFfqEQOoFoqJCdO68dO6clD27lDVLbIoXI8BKvTVnIuAEAQIsJ1SRMXgqQIDlqZh92hNg2acW7vbEkY8Qlq7Z2t3xJ2pHgJVqulSdSICVKjbbnkSAZdvS0DEEPBZYtDhMm7aExJ9Xv16s7q6a8j8MEWB5zMwJCDhKgADLUeVkMG4K+CLA2rh5h95ZulLrf/tD/x07qcyZMqrkzTfqwfvutv4LCwuN7+3jnYbq16271LB2FY0d0DHFUUyY+b5mzl+u6/Pm1hfvvabQUNf/78fGxurjld/rgxXf6vcde3XqdJRy5siqCmVK6PGmdVW5wq1uCrnfbMv2PVqwbLV+/nW7/j16TCEhIdZTVEULF9B991bSA/dVS3Sxf48e17z3P9fanzbr74P/6vyFi8qTM7sqliuhRxvXSrGf7gRY6XH97z6cohzZs1j1m/G/j7Rp2586ceqMqlcpp2mjX3IfiJZyZIB15L8TqS7tdblzpPpcTvRcgADLczM7n0GAZefq0DcEPBN4971Qbdvu+gtx+dtj1awJAZZnirRGILgECLCCq96M9rKAtwOs8TMW6c13PrbuFR4Wplw5s1lh0rnzF6yv3VWxlCYO66IsmTNav1/66TfqN3qWIiMj9NWS15U9a+YkS2UCqnote+jgP0f13JMP6MVnHo5vF3X2nF7oN1Hfr99qfS1jhkhly5pZx46f0qXoy38XaNvyfnXv0DxdpoHpy2vTF2rOgk+TvZ4J6kb2eTbB5198/bNeGT4j3sLsgR0REa7TZ87Gt3u40b0a8NLTlt3Vx7UCrPS6/odvjdBPv/yuYRPmyYw17niiWV316fJkuhgGy0UcGWAFS/GcME4CLCdU0TUGAixn1ZPRBLfAvHfCtGOn619iCxaIVYdnCbCCe1YwegRSFiDAYoYEo4A3A6y5Cz/TmKkLrJeTvdyppR5qUF2ZMkYqOjpGX637Rf3HzNbxE6fVqM5derV/B4v/7LkLqtGsi85EnVP/bq3UskntJMtiVgO16jLC+uzjeaNU5Mbr49s93+d1ffndRhW8/joN6Pa0qlUqba3yijp7Xu9+sEoTZi6y9poe1KO1Hm1cM81lnz7vI02ctdi6TtOG1WWCneI3FdSl6BjtO3BY637eokrlS6pMyaLx99qw6Y/4Pa9rVaugF9o1U8niN1qf/3f8lJZ88rUmz15ibSv02EN11K/rUx4FWOl5/c6tH9LUt5apTMkier5tM5W9tZhMSBgeHqa8eXKm2S+YLkCAFUzVtuFYCbBsWJQ0dIkAKw14nIqAzQTmvB2m3XtcAVZomDSo76UUe8kjhDYrIt1BwMcCBFg+Bud2thDwVoB19NhJ1W3RXRcuXNSQl9vKrCS6+lix5ke9NGiq9eXFbw7RrTcXtn49ZPzbem/ZaivweW/6wCSdBr82Vws/WqPbSxXXO1P7x7cxwZUJsCLCw6xrFi9SKNH5Q8e/bT3qlydXdq187zVrtVdqj8NHjqtei+7Wyq72Tz2gLu1cK8FSuqbZ93rXnv0y4dWk4V2sxw1T8lnwxgCVva1YgiYprcBKz+ubm959ZxlNGdHVWiHGkXoBAqzU23FmOggQYKUDoo0uQYBlo2LQFQTSKDBjdpj+/jvhXwa7vRCtXLmS38idACuN6JyOQIALEGAFeAHpfqoEvBVgzV7wiV6btlA33ZBfn/xvdLJ9q9HsRZktdDq2aqLn2za12m3b8ZceefZycLVsznDdXDRhCGVWJdVo2sXah2lg99Zq/oBrFVWHXuP0zQ+/6ZHGNTS4R5sk77t770E1btXb+mz2+F6qUuG2VNmZk+JWX+XKkU1fvj/erYDHrI566oXLq8fM43lmtVZyx2Odhuq3rbusvcKufgQxuQArva9vVs19vuA15c6ZLdVOnHhZwNEBllk++f7yNTLPru7cvd/6BjXLCpfMGpqg/qu/3WAtsax7byVrSSaH7wQIsHxn7Ys7EWD5Qpl7IOAbgTdmhOvgoYT3eqJltEreQoDlmwpwFwQCT4AAK/BqRo/TLuCtAMudIMn03jwGaB4HrFv9Dr0+9IX4AT363CBt/WOPWjdvYD1+eOURt8rq6n2yzGOBVRp1tB5vG92vvRrXrZokkAnAKt73jPUYYZ8uT+iJZvVSDfncy2OtDdjNBu2j+jzn1nXMRuivv7nYesTxiwVjUzwnrm3+vLm0etH4BG2TC7DS+/pXPuLp1gBplKyAYwOsXX8dsJY+7t3/T4LBJxVgdR88VZ99+aNG9H5WTerfzXTxoQABlg+xfXArAiwfIHMLBHwkMGlqmP49knAFVr06Map+d0yyPWAFlo+Kw20QsKkAAZZNC0O3vCrgrQDr/id76a+/E/4sm9JAzFsB54x/Jb7Jwg+/1OBxb1mP+a1+f3yCTczjfv5tUKuyXhvYKf4c88a9mg939circ5um6vR0E4/OubJx3DjNo4PmEUJ3jgFjZmvxx1+raqXSenPsyyme8vlXP6vbwMlWm19WzrIejYw7kguw0vv63Z57VM883sidodHmGgKODLDMWxmatu2ng4f/s57HrXNPRWvp5bS3P0xyBdbHq75Xz6HTdF+NSho/+HkmjQ8FCLB8iO2DWxFg+QCZWyDgI4Hxk8J07FjCAKt8uVg1eyj5jdwJsHxUHG6DgE0FCLBsWhi65VUBbwVYcY8G5rsup8zjddc6SpcsqqE928Y3M08Ymc3czVNJk4a/qNp3V7A+M6urqj/UxXpz37TRL6l6lXLx51z5aKDZ1N1sHn+to8WDtdQimY3ir3Wu+TxunK88/7ieeuQ+d05RjyFv6NPVP6j2PRU1aViXFM/55odN6tDrNavN2mWTlTNH1vj2yQVY3r6+W4OkUZICjgywps79QFPmfqBStxSxXilaIF9ua/Cla7ZOMsAybzZo8HhP3Vgwnz5751Wmig8FCLB8iO2DWxFg+QCZWyDgI4Ex48J06nTCAKtAAanjs8lv5E6A5aPicBsEbCpAgGXTwtAtrwp4K8AyP5+an1M9WZl09UD7jZ6lpZ9+ozrVK2ri0MtBz0eff6dXRszQdblzWI/UmbcLxh2H/v1PdR59yfrtvEl9VbFsCa/amYvXf+xl/X3wX3V99hE9+0Rjt+43/PV5emfpKs9XYH3xZoI9tpILsLx9fbcGSaPgCbCateuv7bv26f2Zg3VbiZviB55cgGXS5zvqP6eMGSK1fsUMx0yVF/pNlNnfK7nDpPlfvj8hyY9//nW75r73mX7ZslOno84q/3W5rJVs7Vs9qBzZsiR7TfMH5PvLv9LOPfsVHR2tm264Xg81uEePN62b4A/HuAsQYDlmulkDIcByVj0ZTXALjBwTrrNnExpc602EBFjBPWcYPQIEWMyBYBTwVoDVttto/bBxm9Kyf9KvW3fp8U5Drcfmvv5gkrJnzay4vbXatGyoHh1aJCiZ2duq8v0drDcfDurRWo82dm3u7q3aPv3iSJmfPZs2rK5hvdq5dZu4De7d2QNr5vzlmjDzfeXNk1NrFif82Te5AMvb13drkDQKngCrUoPnFBEernXLL79SNO5ILsAyn1e871ldvHRJm1bPccxUefL54dq4eYfK3lpUSuK1ouZ5aPMqz6sPE0ANHHvZoXTJIsqTK4d2/LnPeiTTrGZ7Z+oAmfDr6qP3iJn68PO11h+QFcqWsGpg/tA8feas7qlcVlNGdk3w7LU5nwDLMdPNGggBlrPqyWiCW2DoqHBdvJDY4MXO0cqTJ+mN3AmwgnvOMHoECLCYA8Eo4K0Ay2x/M2n2Eit0WrVovDJnypAq3ofa9NOO3X9b4ZB55O7eh7roUnR0km8nNDdo99Kr+n7DVrdWN6WqQ1edZMIlEzIltSIsuevv2rNfD7bua32c1FsWrzzvic7DrEUZ99epojH9Oya4ZHIBlrevnx5uwXoNRz5CaMKobFkz66slryeoa3IBVtTZ87qzYXvreVjzXKxTDrMh3qHD/2nD5zPdHpJZptr4qd4KDw+znom+s/yt1rmxsbGaPGeptY/YXRVLada4ngmuaYIrE2AVK1xAM8a+HP/YpnnGuuuAydabJV5o20wdWj2Y4DwCLLdLExANCbACokx0EgG3BAYODVdsEjnVYy1idFvJpDdyJ8Byi5ZGCDhWgADLsaVlYCkIeCvAMhuq12vZQxcvXrL2mBrQrVWq6jB/yRcaMXG+alYrr/tq3Kk+I2daixQWTh+U5PW++Ppn6+c3c4wd0FENa1dJ1X3dPclsVG9+bjWHJ5udP9ZpqH7bussa1+ThLyokiQUb5mkk81SSOeZOeCX+Z9u4viUXYJnPvX19d31ol1DAkQFW3JsMTIBlkty4I7kAa9U3G9Sl/0RVKFNC/5t8Ocl1wnFX405WkHetV4teOdYRE/+n+UtWJvkMsgmxHus4RJt+3635U/qpfOmb40+NS/av/rppcOzEKetZ6oiIcCtUNI9qxh0EWE6Yaa4xEGA5q56MJrgFBgwJTxKgTq0Y1ahOgBXcs4PRI5C0AAEWMyMYBbwVYBnLee9/rlGT37FYzeqpZx9vJLNZu9m3yjzlYhYrmMcMV6/doFF9nrMek7v6OHHqjPVmwfCwUFWucJvWfPeL+nR5Uk80q5tsuV7sP0krv1mv0NAQtW7eUI80rmG9FM38PHjsxGntP/ivvvnhN2vbnteHvpDmso+e8q7eXrTCuk7rFg30ZLN6KpA/j6KjY3T46HGt/3W7Tp6O0uNN68Tfa+fu/XrkuYFWwFe3+h1W+GU2njeHWUTxwWdrNfaNBTp/4aIevO9ujezzbKJ+phRgefv6aUYL0gs4MsCKC2HMN6X55ow7kgqwzOqrlh2HyCwT9GTjOLvPF/P8cvm67VT2tmJa8MYAt7trUv4Dh45YG/rlz5sr0XnvfrBKwybMU6tH66tX58esz017c17hQvn06fykN8F/adAUrVjzU4I3YFjnHr1qgxW3e0pDOwoQYNmxKvQJAc8FLlyQho1KOsAqVyZWjzRL+k2ErMDy3JozEHCSAAGWk6rJWNwV8GaAZfpg9mMaP2ORYmIuL4s2K43MwgCzT9WVx6pF43R93ssvL7v66DV8upZ/sc76stnuZc3i1xO8je/q9maPaLMBvHnTX9wRHhZm/dI8fhh3pNdL0Mw1B42da204H3dERkZY4ZQJzcxh3qJo3qZ45fHjxt9lfs40CybMYZ6oMm9OPPrfyfh+mhVkw195Jsk3KqYUYJnrefv67s4x2rkEHBlgHfznqMxkNGlr43pV1b19C2vPpqsDrA2bdsi8YeD3nXuVI3sWffbOGOsZYyccZsmpSdprVaugySMSfqMnNz6Taldt3MkKrkyAldSxbcdfeuTZgdbqK7PayhxxK9iM9ei+7ZM8761FK/TqlHetN0uYoDDuIMBywmxzjYEAy1n1ZDTBKxAVJY0am3SAlT+/1Ll90m8iJMAK3jnDyBEwAgRYzINgFPB2gGVM9+7/x3pKxuxNdeDQUZ07f14ZM2RQwevzWD+X1bu3ku6+s0ySj9GZ880m6WazdHNc+UbCa9XLrO5a8snX2rhph478d8IKhbJmyaTChfKrcvlb1bheNd1S7IZrXcbtz01gtGj5l5fvd+yktaeyeaKqXKliav5ALd1R7pZE1zLhldnD2Tz6+PeBfxV17rzy5Myu8mVu1sON7lW1SmWSvf+1Aixzorev7zYODS0BRwZYZmBmyaNJY82yQ3OYJY/m+VrzDVfm1qIySwLNN6E5TII9bdRLuuuOUo6ZFiaUe/iZAbq9VHFrA764FNqk0mVKFlWtuyskSqG3bN+j5u0HWa9LNa9NTeowS1CrPdBZuXJk07fLJllNzNsKx7yxQO2fesB6zWtSh6mHWYpav+adGjeoc3wTAizHTDlrIARYzqonowlegZOnQjR2/OV/ab36MG8iHNjnUlLvBhEBVvDOGUaOgBEgwGIeBKOALwKstLqaR+qqNOporeIyq5jMaiYOBAJRwLEBlinGpm1/avC4t2RWDSV3lCx+owa/3Pbym/ocdGzevlstOwyJX3J59dBy58ymYb2eUY2qt8d/ZBJ287rWe++6XW+M6pakhlnCWaZWG+u5699WzbbaTJ69VG+8vcx6Dat5HWtSR9y1TUg467WEG8A7iJ2hIIAAAo4Q+Peo1HtIwkcTrhzY8L4Ryp/PEUNlEAgggAACCDheYPHHX2vAmNnWIoQvF0+wHiPkQCAQBRwdYMUVxGw6/tMv27T378M6HXVWmTJeXm5ZpcJtqlg28TLEQCxkUn02m+qZtN0s8TSPSJ4/f1E79+y3loGaZZYmhJoz/pX4pZhmI74OvcZdc1np7XXaWctHf101S+ZZ6NemLbSeze79whN68uF6SfJt3LxDTz4/3HEb5TtlrjAOBBBA4EqBA4diNWBk0o8Jmnad2oWrYrkQ0BBAAAEEEEAgAARatB8ss8Dh6Ufrq+f/72Ocnt02P3M+9/JrHl3SvD3wmccbeXQOjREIigCLMicWiFs1ZQK8eZP6WA18sgKrYinNGudagcUjhM6anTxC6Kx6MprgFTh4UHpjZtJ7YBmVOjVjVOPexG8i5BHC4J0zjBwBI8AjhMyDYBSw+yOEq9du1At9X7cWLyx/e5T14q30PuL2Uvbkus3uv1dDe7b15BTaIuDMPbDMY4PmG8JpjwWm53w9ZTZsf+DyXlQbv3jTWkYat2+WO3tg5ciWRd99NMU637zy1Lz61J09sMwrTq981SoBVnpW1f/XIsDyfw3oAQLpIbBvX4hmzkn+8YIyZWLVPIk3ERJgpYc+10AgcAUIsAK3dvQ89QJ2C7DMli/mTYXmWP3tBvUeOVOnz5zV403rqO+LT6V+oJyJgA0EHLkCy7xt0BzFixRSs4bVrTcRmrcXcCQUMJuxm03ZTRBlAimz9PPOhh3ceguhCQcXTBtoXfCrdb+qU+/xlvO13kLYtuX96t6heXxHCLCcNSsJsJxVT0YTvAJ79oRq9tuh8QAZMsbq/DnXI4P588WqcwfXa7TjGhJgBe+cYeQIGAECLOZBMArYLcAy27bsO3BYUWfPWz/fmaPsbcWsrWMyZYwMxhIxZgcJODLAeqBVb/2592B8mcxyyXur3K6mDavr3qq3s2mdpPMXLurOhu0VGhqqjZ/PjE/pH3y6j3b9dUCrF423gqyrj3c/WKVhE+ap+YO1NPClp62PzdscazR70VqO+un8V5P89jBvhFyx5ieNHdBRDWtXIcBy0B8iVw6FAMuhhWVYQSewY1eo5s13BVjFisboz92u3xuQIQMS75FFgBV0U4UBI5BAgACLCRGMAnYLsF4ZMUPf/rBJp89EqeD116lxvWpq99j9id5AH4y1YsyBL+DIAMuUxWxS9+GK7/Tp6u/13/FT8ZUyb1544L5qVph1S7EbAr+CqRzBB599q76j3tQ9lctq+qvd46/y+puLNeN/H6nrs4/o2ScaJ7p6yw6DZTbFnzb6JVWvUi7+c5P0m43a50/pp/Klb05w3rETp1Tn0ZcUExurr5dOVPasmQmwUlk3u59GgGX3CtE/BNwT2LY9VO++5wqsbrs1RocOhejYcdcqrBc6RSvvdbEJLkiA5Z4vrRBwqgABllMry7hSErBbgEW1EHCygGMDrLiimbflrf1xsz78fK2+XLvRWnkUd5S6pYgVZDWqe5f1CJ2TjvlLvtAtxW7UHeVKKjTU9QNHdHSMTHg1avJ8nTt/QW9P7GO9GTDuOHrspBo83lMxMTFWSHVn+Vutj8yz1JPnLNW0tz+0gr8ls4bGr9oyn8e9wbBY4QKaMfZlFciX2zrPLFvtNnCKvv1xk55oVld9ujyZgJlHCJ006yQCLGfVk9EEr8DmLSFauNi1B1a5MjE6d176Y4cr1Gr+SIzKlEq4kTsBVvDOGUaOgBEgwGIeBKMAAVYwVp0x+0vA8QHWlbBnos7p869+0vIv1llv3DOhjDkiIsJV++6KVphVvUpZf9UiXe9r3jRh3jiRNUsmlSh6g3Jmz6rjJ09rz75DMiuiMkRGaHCPNtZqtKuPVd9skHnkz4R/pUsWsfYP++PPv3Xwn6NW0GfeWmj2F7v6GDvtPc1Z8KnlWaHMzYqMiNCvW3fJbBhvwsK3Xu+tzJkyEGCla6XtdTECLHvVg94gkFqBX34N1ZJlrrCqwu0xypJF+vY719dq1YiR+e/KgwArteKch4AzBAiwnFFHRuGZAAGWZ160RiAtAkEVYF0JdfjIcX365Q9a8eWPVsgSd2xZMzctnrY5d9ee/Xr3g9Va/9t27T90RGfPnVfGDJHWc9BV7yitx5vWTfEVqlv/2KPp8z7S+t/+sJ6fvi5PTuuRwQ5PPZjk3lhxAzf7XP1v8RfavmuvzGqvQgXy6v7aVdSmZcMkn7tmBZZtpky6dIQAK10YuQgCfhf4eUOoPlzuCqvuvCNGN94YqyUfuFZllS4VoxaPEGD5vVh0AAEbCRBg2agYdMVnAgRYPqPmRggoaAMsU/uLl6L1w4atWvLJ19YG4+ZwSoAVKHObACtQKuVePwmw3HOiFQJ2F1j3Q6g+XeEKsKpWidHtZWM07c3w+K6b/a/MPlhXHqzAsntl6R8C3hUgwPKuL1e3pwABlj3rQq+cKRB0AVZMTKx+/GWbPl75vVZ+/bNOno6Kr+wd5W6x9oTi8J0AAZbvrH1xJwIsXyhzDwS8L2AeFfx8pSvAuqdajOrUitHg4a4AKyREGtTvksz/xh0EWN6vDXdAwM4CBFh2rg5985YAAZa3ZLkuAokFgibA2rH7b+uthB+vWqd//j0WL2E2G3+w/t16qEH1FB+pY/J4R4AAyzuu/roqAZa/5LkvAukrsOarUK3+yhVg1awRo9o1YjRhUpj+O+ZKrJ7vcEn58hFgpa8+V0MgcAUIsAK3dvQ89QIEWKm340wEPBVwdIBl9rn6ZNX31hsIt+/aF28TGRmhutUvb9p+V8XSCd7S5ykg7dMmQICVNj+7nU2AZbeK0B8EUiewcnWovv7WFWDVrR2je++J0fwFodr+xxVvInw4WmVKX34hijlYgZU6b85CwCkCBFhOqSTj8ESAAMsTLdoikDYBRwZYy1as1UdffKfv12+Nf9OgYSp7a1ErtLq/zl3KljVz2uQ4O10ECLDShdE2FyHAsk0p6AgCaRL49ItQrVvnCqoa1ItRtaoxujrYqnlvjGrXdG3kToCVJnZORiDgBQiwAr6EDCAVAgRYqUDjFARSKeDIAKt0zdbxHNflzqHG9aqqWcPqKl6kUCqZOM1bAgRY3pL1z3UJsPzjzl0RSG+B5Z+E6sefXQFW4/tjVLlSjH7dFKLFS11vIix1W4xaPkqAld7+XA+BQBUgwArUytHvtAgQYKVFj3MR8EzAkQHW7XXaqUa1263VVtWrlFN4mOsv257x0NrbAgRY3hb27fUJsHzrzd0Q8JbABx+GacMvrr2uHnowWhXLx+rgIemNGa6N3K/LE6sunV1vImQFlrcqwnURCAwBAqzAqBO9TF8BAqz09eRqCKQk4MgA67/jp5Q7ZzYqHwACBFgBUCQPukiA5QEWTRGwscD7S8L022ZXgPVIs2iVKxOr6GhpyIhwxf7/tlfmDYQD+lxS3L8TEWDZuKh0DQEfCBBg+QCZW9hOgADLdiWhQw4WCPgAa+/+f6zy3Fgwn0KufJe3B0WLjY3VvgOHrTMKF8rvwZk0TasAAVZaBe11PgGWvepBbxBIrcCCRaHaus31CKF5TNA8LmiOCVPC9N9RV7jVqf0lXf///9dJgJVacc5DwBkCBFjOqCOj8EyAAMszL1ojkBaBgA+w4va72vD5TGWIjEhkERMTq4Fj51hfH9qzbZJWUWfP6c6GHazPtqyZmxZPzvVQgADLQzCbNyfAsnmB6B4CbgrMezdMO3a4QqonH4vWLSUuL7t6971QbdvuCrceaRqtcmUvf0aA5SYwzRBwqAABlkMLy7BSFCDAYoIg4DsBxwdYl6KjZfbESimcIsDy3YS7+k4EWP6z98adCbC8oco1EfC9wNx5YfpztyvAav1UtIoVvRxSrfwyVF9/4wqw7q0eo7q1Lq/OIsDyfa24IwJ2EiDAslM16IuvBAiwfCXNfRCQCLAkEWD571uBAMt/9t64MwGWN1S5JgK+F3hzbpj27nUFWM+0jlbhwpcDrN82hej9K95EeFvJGD3WggDL91XijgjYT4AAy341oUfeFyDA8r6xO3cwWws1fKJXoqaRkRHKnjWzitx4vapVKqPmD9ZUrhyJ98vuNWy6lq9cpzH9O+r+OlWuectV32xQl/4TVe/eSpow5PkU22/evlst2g9WqVuKaNGMQQnaxt03pQvkyZVdXy+deM0+BUMDAiwCLL/OcwIsv/Kn+80JsNKdlAsi4BeBaTPDdOCgK8Dq8MwlFSx4uSuH/pGmTne9iTB3nlh1/f83EbICyy/l4qYI2EaAAMs2paAjPhQgwPIhdgq3iguwMmWMVMWyt8S3PH/hog4fOaa9+y/veZ0jWxbNHPuySpcskmSQ5K8AywRsSQVrppM5s2fV5BEv2gPaz70gwCLA8usUJMDyK3+635wAK91JuSACfhGYMi1c/1z+e551dO5wSfnzXf51Sm8iJMDyS7m4KQK2ESDAsk0p6IgPBQiwfIidwq3iAiwTBH08b1SilgcOHdGAsXO07uctuq3ETXp/5mBbBVjuBmf20PZfLwiwCLD8N/skEWD5lT/db06Ale6kXBABvwhc/abBFztHK0+ey48QmmPilDAdueJNhB2fu6QC17MHll+KxU0RsJEAAZaNikFXfCZAgOUz6hRvdK0AUqViYAAAIABJREFUy5z83/FTurdpF8XGxurbZZMSrHjy9yOEBFjuzSMCLAIs92aKl1oRYHkJ1k+XJcDyEzy3RSCdBcZOCNPJk65HCLt3jVaO7K4Aa8GiUG3d5trI/eGm0bq9bCybuKdzHbgcAoEmQIAVaBWjv+khQICVHoppv4Y7AZa5S+X7O+hM1DmtXjRe+fPmir8xAVbaa+CLKxBgEWD5Yp4lew8CLL/yp/vNCbDSnZQLIuAXgdGvhevMGdete3W/pCxZXL9fvSZUa76+4k2E98Sobu0YAiy/VIubImAfAQIs+9SCnvhOwFcB1q+bY7Vn3+WXpgTDUb5MqG660fWPadcaszsB1j//HlPtR7tZ+2Ct/XCyQkJc1yfAupawPT53TID1av8OCg8LS6Rqlgd2HzzV+vq4QZ2TVL9w4aJeGTHD+mzLmrn2qEyQ9IIAy1mFJsByVj0ZTfAKDB8VrvMXXOPv+8olZYh0/X7zlhAtXOz6/9ySt8ToiZYEWME7Yxg5ApcFCLCYCcEo4KsA6+33ovX1d8ETYD3VIkw1qrn+sexac+taAdbpM2fVY8gb+uaH39SnyxN6olm9BJckwLqWsD0+d0yAlV6cBFjpJenedQiw3HMKlFYEWIFSKfqJQMoCg4eHW5u1xx0D+17Slf9GdPiwNHnaFW8izBWrri9EswKLiYVAkAsQYAX5BAjS4RNgeafwqQ2wMmfKqLvvLBPfqeiYGP137KS27fhLN92QX61bNFST+ncn6rS/A6xihQsod67sSWK2bFJbDWtX8Q50gF2VAOuqghFg+XYGE2D51tvbdyPA8rYw10fANwIDhrjCKXPHIQMuJbhxbKw0aFi4zP9eGXLlyR6hzBnDdfz0BUWdvyIB8023uQsCCPhZgADLzwXg9n4RIMDyDntqA6zkehMREa777q2kBrUqq/Y9FW0XYKWk2KNDC7Vp2dA70AF21YAPsALMm+5eJUCA5awpQYDlrHoymuAUuHhRGjrSFWCFR0gDeicMsIzMpKlh+veIa++IDs9cUqkSBFjBOWsYNQKXBQiwmAnBKOCrAIs9sFKeXck9QhgdHaMTp85o07Y/9eY7y7Vh0w5rNdPYAR0TXNDfK7B4C6F7f3oQYLnnRCsvCRBgeQnWT5clwPITPLdFIB0Fzp6TRr7qCrAyZZR690wcYL33fqi2bHXtTdHsoWjVrBrOCqx0rAWXQiDQBAiwAq1i9Dc9BHwVYKVHX518jWvtgWXGfik6Wi3aD9bvO/dqdL/2aly3ajyJpwHW6m836IV+E1Xv3kqaMOT5FGk3b99t3bd0ySJaOH1QmoIzJ9fQnbERYLmjRBuvCRBgeY3WLxcmwPILOzdFIF0FTp+WXh3nCrCyZpV6vpQ4wPryq1CZ/+KOe6rFqHmTMAKsdK0GF0MgsAQIsAKrXvQ2fQQIsNLHMa1XcSfAMveYOX+5Jsx8X00bVtewXu1SHWB9v36r2nV/VdWrlNW00d1T7P5Pv/yu1l1HqUqF2zR7fC8CrDQUmwArDXicmnYBAqy0G9rpCgRYdqoGfUEgdQLHj4do3ETXGwZz5ozVS10S72e1eWuoFr7vCrBKlIjVC8+EEmCljp2zEHCEAAGWI8rIIDwUIMDyEMxLzd0NsOYu/Exjpi5Qjaq3a+rIbqkOsA7+c1R1W3RXvutyavWi8QoJcW2rcPUQ573/uUZNfkfNH6ipgd1bE2ClYQ4QYKUBj1PTLkCAlXZDO12BAMtO1aAvCKRO4MjREE2c4gqwrssTqy6dEwdYZv8rsw9W3GGCriG9CbBSp85ZCDhDgADLGXVkFJ4JEGB55uWt1u4GWJ16j9dX635Vq0frq1fnx1IdYJkTm7Xrr+279ml03/ZqXM/1OOKVYzx77oIefqa//vr7H2ulllmxdeXh6aOL3vILlOsSYAVKpRzaTwIsZxWWAMtZ9WQ0wSlw6B9p6nTXI4T580ud2yd+hDCpNxGOGxGi7Fl4C2FwzhxGjQCbuDMHglOAAMsedb9WgHXhwkXNee8zTZy1WKGhIVr85lDdUuyGNAVYX3//qzq+Ml4ZM0RaYZh5LNG87TDu+HPvQQ0aO0frf/tD1SqV0cyxPRJhEWB5Nn8IsDzzonU6CxBgpTOony9HgOXnAnB7BNJB4O/9IZoxy7Wy6oZCsXquXeIVWOZWk6eF6/Bh1027Px+i20oQYKVDGbgEAgEpwAqsgCwbnU6jAAFWGgHT6fS4ACtzpgy6q2Kp+KvGxMbq5Kkz+n3nPkWdPaewsFD169rKepzvyiMuSLqhQF5lz5YlyV7lypFVM8YkDKHe/WCVRk6aL/O2Q3Pv4jcVVIYMkTp85Jj27r/8l6S77iilCYOfV7asmZMNsIrceL1y5ciW5H1zZs+qySNeTCepwL4MAVZg1y/ge0+AFfAlTDAAAixn1ZPRBKfAnr9CNPstV4BV5KZYtX066QBr4eIwbd7i2vPhiUelWvdE6PjpC4o6n/Q5wanKqBEIDgECrOCoM6NMKECAZY8ZERdgJdWbDJERuj5fbt1Z/lY90axegpVXce3jAqyURpMnV3Z9vXRioia79uzX/KWr9OPGbTJ7Y0VHRytXzmwqU7KoGterZr2p0Kz6SupIy33tIe/bXhBg+dabu10lQIDlrClBgOWsejKa4BTY9WeI3vqfK8AqXixWTz+ZdBi15utQrV7j2si99r3S4w8TYAXnzGHUCPAIIXMgOAUIsIKz7ozaPwIEWP5x567/L0CA5aypQIDlrHoymuAU2P5HqOYvcIVSJW+J0RMtY5LE2LotVAsWudreVlLq3okAKzhnDqNGgACLORCcAgRYwVl3Ru0fAQIs/7hzVwIsR84BAixHlpVBBZmAeSTQPBoYd5QuHasWDye9AuvokRC9fsWbCHPllMYMJsAKsinDcBGIF+ARQiZDMAoQYAVj1RmzvwQIsPwlz30tAVZgOWsiEGA5q56MJjgFfvktREs+cAVY5cvFqtlDSQdY5k2Eg0eEK+aKj6eMidDZC+yBFZyzh1EHuwABVrDPgOAcPwFWcNadUftHgADLP+7c9f8FCLCcNRUIsJxVT0YTnALrN4Ro2XJXgHVHxVg1aZz8huxTpofrn39cVn1eClfuPBfZxD04pw+jDnIBAqwgnwBBOnwCrCAtPMP2iwABll/YuWmcAAGWs+YCAZaz6sloglPghx9D9fFnrn2tqlSOUaMGSe+BZYTeXxKm3za73qzT+rEwlSlziQArOKcPow5yAQKsIJ8AQTp8AqwgLTzD9osAAZZf2LkpAZYz5wABljPryqiCS2Dtd6FasdIVYN1dNUb16yUfYH31TahWfelqX69WqOrXjSbACq5pw2gRsAQIsJgIwShAgBWMVWfM/hIgwPKXPPe1BFiB5ayJQIDlrHoymuAUWPNNqFZfEUjVqB6jOrWSD7C2bQ/Vu++5AqxSJUPUtlUMAVZwTh9GHeQCBFhBPgGCdPgEWEFaeIbtF4GAD7DGTV+YrnAvtW+ertfjYikLEGA5a4YQYDmrnowmOAXMaiqzqiruqF0rRjWrJx9gHT0aotenuPbMyplD6tczlgArOKcPow5yAQKsIJ8AQTp8AqwgLTzD9otAwAdYpWu2Tle4LWvmpuv1uBgBVjDNAQKsYKo2Y3WqwIovQrV2nSvAMo8PmscIUzoGDU/4JsIRg2J16cpXEzoVi3EhgEACAQIsJkQwChBgBWPVGbO/BAI+wGr4RE/t3X9YNxctpLK3FtP5Cxd04cIlxcSk/Jft5MAnDX/RX7UIyvuyAstZZSfAclY9GU1wCpgN3M1G7nGH2cDdbOSe0vHGjHAdPORq0fm5WOW/Pvk3FwanLKNGwPkCBFjOrzEjTCxAgMWsQMB3AgEfYG3ftU+PdRyimNhYzR7XSxXLlvCdHndKswABVpoJbXUBAixblYPOIJAqgWXLw7R+g+utgk0aR+uOirEpXmvx0jD9usl1ziMPxapcOQKsVBWAkxAIYAECrAAuHl1PtQABVqrpOBEBjwUCPsAyI/7w87XqPWKmcufMpoXTB6lA/jweQ3CCfwQIsPzj7q27EmB5S5brIuA7gcUfhOnX31xhVLOHolW+XMoB1tffhmrlateqrerVYlWvLgGW76rGnRCwhwABlj3qQC98K0CA5Vtv7hbcAo4IsEwJB497Sws//FIli9+o/03up8yZMgR3ZQNk9ARYAVIoN7tJgOUmFM0QsLHAe4vDtGWLK8Bq/nC0ypROOcDa/keo5i9wBVgliktPPXHJxqOkawgg4A0BAixvqHJNuwsQYNm9QvTPSQKOCbAuXrykJ58frs3bd2toz7Zqdv+9TqqTY8dCgOWs0hJgOauejCY4Bd55L1S/b3eFUY+3iNGtJVPeA+u/YyGaMMn1JsLs2aQe3QiwgnMGMepgFiDACubqB+/YCbCCt/aM3PcCjgmwDN3Bf45qw+YdalTnLt9LcsdUCRBgpYrNticRYNm2NHQMAbcF3p4fpp27XCuwWj0RrZuLp7wCy1z86jcR9ut9SZERbt+Whggg4AABAiwHFJEheCxAgOUxGScgkGoBRwVYqVbgRL8JEGD5jd4rNybA8gorF0XApwKz3wrTnr9cAVbbp6NV5KZrB1jTZobpwEHXee1aR+umwtc+z6eD42YIIOBVAQIsr/JycZsKEGDZtDB0y5ECBFiOLGvgDIoAK3Bq5U5PCbDcUaINAvYWmDErTH/vdwVRz7aL1o2Frh1EXb35+wONYnTnHSk/emhvCXqHAAKeChBgeSpGeycIEGA5oYqMIVAECLACpVIO7ScBlrMKS4DlrHoymuAUmDojXIcOucbe8blLKnD9tS2+/S5Un6907Z1VpXKMGjUgwLq2HC0QcI4AAZZzaslI3BcgwHLfipYIpFWAACutgpyfJgECrDTx2e5kAizblYQOIeCxwMQpYTpy1LUCq0vnaF2X59orsP7YEaL/vevayL1okVi1aRXt8f05AQEEAleAACtwa0fPUy9AgJV6O85EwFMBAixPxWifrgIEWOnK6feLEWD5vQR0AIE0C4yfGKZjx10BVrcu0cqV89oB1vHjIRo30RVgZcki9erOmwjTXBAugEAACRBgBVCx6Gq6CRBgpRslF0LgmgIEWNckooE3BQiwvKnr+2sTYPnenDsikN4CY8aF6dRpV4D1crdLypbNvbsMGxWuCxdcbXu/HK1Mma4dfrl3dVohgIDdBQiw7F4h+ucNAQIsb6im/Zp79x/WhyvW6oeNW7V77yGdPH1GmTJmUN48OVUwfx7dXbmsalWroMKF8iW4Wa1HuurwkeMJvpYhMkK5c2VXqVtuUuO61XRfjUpJdjCpc69u2KBWZb02sFP8l3sNm67lK9elOOA8ubLr66UT49vs3f+PGj7Ry/r9K88/rqceuS/F8/uMnKllK9Zq3qQ+qlj2lrTj+vEKBFh+xOfWEgGWs2YBAZaz6sloglNg5KvhOnvuihCq5yVlyuiexaw54fprn6uteYTQPErIgQACwSFAgBUcdWaUCQUIsOw1Iy5evKTJc5Zq1rufKDb28t9BCuTLrRzZs+r0mbM6fPS4Lly4aH29WqUymjm2R4IBxIVQJuiJjAi3Pos6d14mNDp+4rT1+9r3VNS4QZ0VEe5aeW6+Hndu2VuLKjz88rlXH1XvKKXObZrGfzkuwCpy4/XKlSPpfzHMmT2rJo94Mf6cKwOsjBki9cGcYbqxYMIg7sr7EmDZa47SmwAWIMAK4OIl0XUCLGfVk9EEp8DQkeG6ePnvddbRr/clRUa4Z/HxJxH64WdXYNW4YYwq38lG7u7p0QqBwBcgwAr8GjICzwUIsDw389YZJphq0220ftmy0wqDnnuysRrVrSqzgunKY9uOv/Tl2o26645SiVYkxYVQXy15XdflzhF/mgnDvv1xs14aNEVRZ8/p5U4t1bp5gwTXTe7clMYbF2CN6d9R99ep4hZNXICVKWOkzp67oMoVbtXscb0UEuJaQU+A5RYljRDwTIAAyzMvu7cmwLJ7hegfAtcWGDAk4b8YDhng/j5W69dHaNnHrgCrcqUYNb6fAOva6rRAwBkCBFjOqCOj8EyAAMszL2+2HjR2rhYtX6NihQto5msv6/q8uT2+3bVCqAXLVmvo+Ld1W4mb9P7MwX4NsJo/WEvfr99qrQ4b0K2VWjSpneR4WYHl8TTgBASSFiDActbMIMByVj0ZTfAJREdLg4e7AqywMGlgX/cDrIN/R+iN2a4Aq8hNsWr7NG8iDL6ZxIiDVYAAK1grH9zjJsCyR/03b9+tFu0HW4/1LZ09TEULF0hVx64VYO3cvV9N2vRVtqyZ9f3yqX4NsJo2rC7zX6suI5Q5U0Z9+NYI63HJqw8CrFRNBU5CILEAAZazZgUBlrPqyWiCT+DCeWnYaFeAFRkp9XvF/QAr9mKEBo50BVhmA3ezkTsHAggEhwABVnDUmVEmFPBVgHXx528V/ef2oOGPqHS3word6vZ4B497Sws//NIKdIb1auf2eVc3vFaA9fvOvXr4mQEqkD+PVr73ml8DrPo1K2vcoE4aNmGe3v1gle6pXFbTX+1OgJXq6vv5xEZPvSKzGdqUEV3je9Kh12vad+BffTxvlJ97x+2NAAGWs+YBAZaz6slogk8gKkoaNdYVYGXOLL3Sw/0AK2eWCPXoH5vgTYQ9X7qkrFmDz5IRIxCMAgRYwVh1xuyrACtqxqu6sPLDoAHP/NzLiqzbxO3xPtCqt/7ce1ATh3ZRneoV3T7P0wBr7nufacwbC1Tv3kqaMOR5vwZYZjP5ScO6WHtyNWnTTwcOHbHCOxPiXXmwAivV08G3J5au2VrFixTSh3OHx9/YhFp79h3SljVzfdsZ7pakAAGWsyYGAZaz6slogk/gxMkQvTbB9Uad7Nlj1aOr+yuoTIA1Yar051+uVVitW0WrGG8iDL7JxIiDUoAAKyjLHvSDJsDyzhTwNMAqX7edLl6KthaqmEUsqT1SWoH1zQ+/qeuAyYqOjtY7U/ur1C1Fkgywbi9VXBH//wbDq/sxqHvrBI83xm3ibvbtyn3VZvNx57ZsUlsNa7s2eI/bxL1G1ds1dWQ3q9m6n7fomR5jlD1rZutRwrx5csbfmgArtbPBx+cRYCUGN6/+fKhtP/179Lh6dGihNi0bJlmVn3/dLpMumzc4nI46q/zX5VKdeyqqfasHlSNblmQrufTTb/T+8q+0c89+6xv7phuu10MN7tHjTesqLCw00XkEWD7+pvDy7QiwvAzM5RHwssDR/0L0+mRXgJUnd6xefN6zAGvh0hB9+71r4/ZGDWJUpTIbuXu5dFweAVsIEGDZogx0wscCBFjeAfckwLoUHa3b61x+bPDqtwfG9a7/q7O15JOvE3XWBFEmcIo74gIs84bCyIjLr2E+f/6Cdu87qMNHjit3zmwa2ec563G9q4+4c1MSeW/6QJUpWTS+SVyAldI5V//cHhdg3XvX7Xpj1OUAyxxxY4xbmRX3dQIs78zRdL8qAVZi0hf6vq7VazdaHyQXYJkAauDYOVab0iWLKE+uHNrx5z4dPPyftSncO1MHKN91rkQ37i69R8zUh5+vtTbOq1C2hCLCw/Xr1l06feas9Q0+ZWRXhZsdga84CLDSfdr79YIEWH7l5+YIpFng8GFp8jTXI4T58knPd/DsEcK160L13geu0KvSHTF6sBEBVpqLwwUQCAABAqwAKBJdTHcBXwVY7IGVcukq3PesLly4qE/nj1bhQvkTNX7znY+15rtf4r++fdc+69G75AKspO5WrlRxzRnfSxkzRCbZmWvtn5XUSXEB1pj+HXV/Hdcqq5RGm1yAdep0lB5s3ccK2q68HgFWun/be+eCBFgJXeNe+dmozl36eNX3SQZY+w4cVuOneis8PEzTRr+kO8tf3jgvNjZWk+cs1bS3P9RdFUtp1rieCS5ugisTYJmljzPGvhz/9gPzh4JZZrn2p816oW0zdWj1IAGWd6a7La5KgGWLMtAJBFItcOCANO1NV4BVsECsOjzr2Qqs3XvCNP4NV+h1U+FYtWvt/jVS3XlORAABvwsQYPm9BHTADwK+CrD8MLSAumWDx3vK/Cw7bXR3Va+SeHXU1YNp2XGINm37M9kA68qVXEf+O6H7n+ylqLPn9d60gdYij6QOfwdYpk8mpOvcZ4Jy5siqj94aaa0Y6zd6lsyTUvMm9VHFsrcEVF2v7mxIrEkmHHoQYLkKu2vPfj363CDdXrq4mjW8V6+MmJFkgDVi4v80f8lKdX32ET37ROMEM8NMlcfMN/rvuzV/Sj+VL31z/OcPtemnHbv/TvR10+DYiVOq8+hL1nPA5g+CKxNrVmA565uPAMtZ9WQ0wSewd1+I3pzjWilb+MZYPdPG/fDJ7IF1/ny4Xh5wMR7PrL7v39v9VVzBp86IEXCOAAGWc2rJSNwXIMBy38qbLXsNn67lX6zT04/WV8/Oj13zVp4EWOZiby1aoVenvGs9/vfuGwMUGhqS6B52CLBMp+JWdTWoVVmvDeykuDc0EmBdc1r4twEB1mX/8xcuqkX7wTr0739aOmuotRrKPCKY1COE9Vr2sN5esHrReOXPmytRAc3rOc1rOls9Wl+9/v8PBtPenFe4UD59Ov/VJIv+0qApWrHmJ00a/qJq310hvg0Bln+/R9L77gRY6S3K9RDwrcCu3SF6a54rwCpWNFatn/IswMqcMVwde1zURVeGpZe7XVK2bL4dC3dDAAHfCxBg+d6cO/pfgADL/zUwPYhbeZQta2Z9Nv9VawVSSoenAZbZZ6tZuwEyC0P6dX1Kjz1Ux7YBltn32jxKePTYSeutjBs2/aG5Cz9jBZY9pmryvSDAumwz/PV5emfpKit9NSnswg+/tFLYqwOsk6ejVLVxJyu4MgFWUse2HX/pkWcHWquvzCosc6z6ZoO69J+oxvWqanTf9kmeF5dYm1VdZnVX3EGAZffvIs/6R4DlmRetEbCbwB87QvS/d10BVokSsXrqMc8DrGHjLmrPX67RPf1ktIoXc+yCb7uVkf4g4DcBAiy/0XNjPwoQYPkR/4pbm6eFzBNH5udVswH7pGEvKnOmDMl2ztMAy1zox42/q023UTIh2fK3R+q63DkSXN8uK7BMp8ziEbOIxPSxfs3Kmr/kCwIse0xVAqyU6hCXRDdtWF3Del1+M8N7y1ZryPi3EwVYW7bvUfP2g1SxbAnNm9Q3ycueOHVG1R7orFw5sunbZZOsNuZthWPeWKD2Tz2gLu0eTvK8ld+s14v9J6l+zTs1blBnAiy7f/Oksn8EWKmE4zQEbCKw9fdQLVjoemNsqVtj1LK5+xuwm0cIzQqsmfMu6oef/4+9qwBv6mrDb6xCaUuFUgOKu6wM1+Hw467DhrsPxvCx4e5uwx0Gw92GDnda2qKFUuqN/M+5Xe5tqkmbpLfpd55nzyD3nE/e76Skbz4RnGrUQI3KFfWXIxI4yAxCgBAwEAEisAwEjLZbBAJEYIknjKy5eYd+U8F+Z2W9mQf1bIlaVb6DtVXcNEHtilWquNY4jOxKrol7ctMMR0xehr/PXk8yeUNMBBbzlfWiPnH+Buc/q8qiEkLx3NUkLcnqGVis2RzrTeVgnw27V0/lGejkCKxrtx+h5/CZSDiOMz64jNku+UMPyGRS/HtqHfdoybp9WL7pQLJTDdkerWzGhq+dKzSA/xYRr8ZE5PeJzEsdAftscf84UFxTx4p2EAJiRODmHWDLDsGycmWBLu31t9TGSgaFXIqjp5XYc0DIuKpUHmjfSn85tJMQIAQyJwIyqYQjsVVqDSKiqPdd5owiWW0oAtrPv4aeo/2mQcAv4D2GT1oCNmWQLYVcBp/cHtzvxEqliiO3AoI+gpUEsmUogcXa8jTp+jMio2Kwbv5YVPyuGO+IlsAqVTQf5HJhKE58TyuXK46BPVryL2n7VfnkdueSRJJaORyyY8mMofyj5KYQJjzL+ABWSvg1NJx7RASWae6c0aRmZQKLEU29R8/BjTuPuTdl8cLCpITkCKwL1/5Fv7HzUKe6L1crm9wqU6cX94a/e2ot5DIZ5q7YiXXb/8K4wZ3RpXW9JI/dvv8MXQb9hu9KFsKWJUlndxkt8CSIECAECAFCIE0IXLymxoY/hZLBahWl6N5JKCnUV+ijpxrMXSr88lognwTjhiX9QU5fmbSPECAECAFCgBAgBAgBfRBgvwuzCqAT527g7sMX+BwSyhFOLBPJ0cEO3h45UaZ4QZQrXRiVvy+hk6GlTxbV6q2HsWD1buTL48H1mGbDytjSnk3JRm1jde0eLYGV0hkXJwec37fIYAKLHTh0/DI3wI0ILH1uTgbvycoEFiOUGLE0un8HdG/fUCcSGZqB5Vsca+dRBlYGvzVMpp4ysEwGLQkmBMyCwKVrwO79gqqqFYE2LfRXrc3Aev9JhV+mCSWDCitg1hT95dBOQoAQyJwIUAZW5owbWZ0+BCgDK3340WlCwBAEJBpGT1roqtt+JPLl9sDqOaN4D1mJnH/QB5zcMddCvQZYL6vOA6ehfNliWDV7JCQS3RGfyRFYj5/7o/VPE/XqgeVob4fLh5ZyGG7a9TdmLt2mVw+sutXLYeG0wTz21MTdsq4h9cCyrHiSN1kPgctXpTh2XOiBVbmSGo3q69+7StsDKyQsBuMmS3QmEY4croKjvcV+5Mh6l4U8JgSSQIB6YNG1yIoIUA+srBh18jmjELBoAiujQM1ovX3HzMXF6/dQIK8nHOztEpnDamHfBH2Ap7srcrk6cc9ZWV9EZBTKN+qn1xRCVte7fcUk7uy5K3cxYNx8vaYQ9uzQGCP7tSMCK6MviYn0E4FlImBJLCFgJgTOX5Ti5GmBwKpRTY26tdNGYC1eCfj5C1+g/NhZhYIFiMAyUyhJDSGQIQgQgZUhsJPSDEaACKwMDgCpz1IIEIFlgeHuNvR33Lj7xCDPHpzdwO1v1m08XvgF4fSu+RyRlXDvGfDMAAAgAElEQVRt238K0xdsRrtmP2DSiG7cY0aI1Ww1FHm83HB066wk9bIRnmyU55yJ/dGodkUisAyKTubZTARW5okVWUoIJIXAmXNSsP+064eaarD/9F3xM7C279Xgxk1BVsN6alSprL8sfXXSPkKAEBAPAkRgiScWZIn5ECACy3xYkyZCIEsQWKzheERkNOztbBOV02XFK5BcCSHDYuGaPVi15RCG9W6D3p2bJIKnQ78puPf4FVbMHIHqFUvzz1mDdtaofevSCShboqDOuS9fv6FO2xFQazRc8zmH7NmIwLLQi0cEloUGltzKMgicOCXFhUsC6VSvjhrVq+pPOsUnsM5c0ODIMUGW73catGgqNIjPMqCSo4RAFkKACKwsFGxylUeACCy6DISA+RDIEgTWorV7sHLzIa73EuvBlNVXSgRW8JdQNOw0Bmq1miOpypctysHFWqUtWb8PKzYdROH83ti7dpoOGaidYJg/jwdWzRkNDzdn7hwrSxw+aSlX0ti5VV2MH9JFB37qgWVZt5EILMuKJ3mT9RA4+rcUV64JpFOjBmpUrpg2Auv+EzU2bBImGHp7adCnFxFYWe9WkcfpReBuTDBsJXI4ShVwkFpxfxbrIgJLrJEhu0yJABFYpkSXZBMCughYPIH1LSwCrJl7WHgkvi9TBBsXjsvydyAlAouBc+rCLbCSP5a5VqKID1ydHfH0ZQDevg8Ga96+efF4FPDxSoTjnBU7sH77UW6M6HclC8JKoeDGlrIYFC/sw2GfzdaaCCwLvoFEYFlwcMm1LIHAoSNS/BOv7K/J/9SoUC5tBNaHYBVmzRN+0VYogF/HKbMEjuQkIWAsBL6pY1HUf6uOuOvebeElT9zj1Fg60yOHCKz0oEdnMysCRGBl1siR3ZkRAYsnsJZtPICl6/dxhMuL14HYs2YqihbMkxljZTSbUyOwmKKHT19zWWs3/32KsPAIuLrk4EoG+3VtlmRvLK1xrM/Vlj0n8OSFP1QqNbw8cqJx7Yro0aERrK0UiXygDCyjhVUUgojAEkUYyAhCIM0I7Dsow+07QuP1ls1U+K6s/o3X45cQRkSr8PtsGSIjBXkjhqqQw1F/eWl2hA4SAhaCwNEIf/z04bSON3vdG6GiTS5RekgElijDQkaZGAEisEwMMIknBOIhYNEEVnhEFOq1Hwl3N2dMG9ML7fpORstG1TF9bC+6BCJBgAgskQTCSGYQgWUkIEkMIZBBCOzaI8O9BwLh1LaVCqVK6k84JSSw1m2U4bWfIK9LRxUKF9JfXgbBQGoJAdEgMD74CjZ+0x3MszhndbSyKyAaG+MbQgSWKMNCRpkYASKwTAwwiScEsgqBtXrrYSxYvRuzfu2H/9WphPZ9p+DpqwCc3jUPTo72dBFEgAARWCIIghFNIALLiGCSKEIgAxDYvlOKh4+FHlgd2qlRvGjaSghZBtbhv6S4fkOQ16CeGlVpEmEGRJZUZlYEqgfsxUtlqI75Pzv5YrCjMEhHTL4RgSWmaJAt5kKACCxzIU16CAHAYjOwIqNiuOwru2w2+GvLTMhkUuw7egETZq7F0J9ao0+XphR/ESBABJYIgmBEE4jAMiKYJIoQyAAEtmyT4emztGdMJczAuv6PFIePCgRW2TIatGpOjdwzILSkMhMi8EkdhTL+2xNZ3tW+CP5wqSxKj4jAEmVYyCgTI0AElokBJvGEQDwELJbA2rDjGGYv345fh/+IDs1rcy5HRcegVuthsLWxwokdcyGXCdOR6FZkDAJEYGUM7qbSSgSWqZAluYSAeRBYv0mGV68FAqv7jyrk99G/5C8hgcVkMZna5eWpQd+fiMAyTzRJS2ZHYGfYMwz/dCmRG3WyeWOTW11RukcElijDQkaZGAEisEwMMIknBCydwGJEVYOOo6HRaDiiKn7z8N8Xb+WajM+Z2B+Naleky5DBCBCBlcEBMLJ6IrCMDCiJIwTMjMCa9TL4vxEIrJ96qJAnd9oJLNbAnTVy1y6aRGjmgJK6TI3A4I/nsTf8ZSIfiiqccMqruSh9IwJLlGEho0yMABFYJgaYxBMClk5gMYKKEVXDerdB785NdAL+0v8tmv44DmVLFMTWpRPoMmQwAkRgZXAAjKyeCCwjA0riCAEzI7BitQxBbwUCq99PSnh66m9EwgwsdnLmXDnCwwUZw4eo4JRDf1JMf+20kxCwLARY+SArI0y4bCDDC5+uonSWCCxRhoWMMjECRGCZGGASTwhYMoEVG6tE/Y6jwCYQnto5D/bZsyUKePdhf+CfO4+xY+UklCySjy5EBiJABFYGgm8C1URgmQBUEkkImBGBJcvl+PBRUDiovxJuOfU3ICkCK2FZYucOKhQpTASW/qjSzqyIwOOYL6gTdCBZ1x/l6QQHqZXooCECS3QhIYPMgAARWGYAmVQQAv8hYHE9sLYfOI1p8zehZ4fGGNmvXZKBPnbmOkZOWYam9avgj/F96DJkIAJEYGUg+CZQTQSWCUAlkYSAGRFYuESG4M9CBtbQQSq4OOtPNiVFYB05JsW160Ij9/p11ahWRf/JhmZ0n1QRAqJBYHXoQ0z+fD1Ze056NkMxK2fR2Ks1hAgs0YWEDDIDAkRgmQFkUkEIWCKBFatUoVHnMfj0+StO7pgLV2fHJAPN9tVtNwJfQ8Nwcue8ZPfRLTE9AkRgmR5jc2ogAsucaJMuQsD4CMyZL0PoN4HAGjlcBUf79BFY/9yU4tARgcAqU1qD1i2okbvxo0cSLQmB7u9P4kRkQLIubXWvh1o2XqJzmQgs0YWEDDIDAkRgmQFkUkEIWCKBtfvwOUyasx5tm9TC5FHdUwzygtW7sXrrYQzs3gIDuregC5FBCBCBlUHAm0gtEVgmApbEEgJmQuCPOXJERAjKfh6lRLbElfjJWpNUBpafvwRrNwiN3D09NOjXmwgsM4WU1GRSBAr5bUGERslb/521K25Hf+L/PtOlMrrYFxGdd0RgiS4kZJAZECACywwgkwpCwBIJLNb3KiY2Ftmz2UKhkKcYZJaFFRYeAYVcjux2tnQhMggBIrAyCHgTqSUCy0TAklhCwEwITP9DjpgYQdmEsUpYWeuvPCkCKyYWmP678G+yVAZM/kX4xVx/6bSTEMgaCNyI+YDmQX/xzrpKbdDVvgjmf73LvzbYoRR+di4nOkCIwBJdSMggMyBABJYZQCYVhIAlElgU1cyHABFYmS9mKVlMBJZlxZO8yXoITJkuhypee6pJE5SQCdV/qQKSFIHFDs2eJ8O3MKE0cdhgFZyd9C9NTFUxbSAELAgBRlTN+XKb96hN9vyoaO2O0cGX+dda2eXH4pw1ROc1EViiCwkZZAYEiMAyA8ikghAgAovugBgQIAJLDFEwng1EYBkPS5JECGQEAhOn6mYvT51oWKZUcgTWhs0yvHwlEFid2qtRtAg1cs+IGJNO8SPQ8t1fuB71gTd0gWs1uMls0en9Cf61ija5sNe9keicIQJLdCEhg8yAABFYZgCZVBACRGDRHRADAkRgiSEKxrOBCCzjYUmSCAFzI5Cw1E+hAH4dZxwC6+jfUly5JqRy1a2tRo1qRGCZO8akT/wIsL5Xxfy2QgkhQ/Fung4IUUWjZuA+3gFvuR2uebcVnUNEYIkuJGSQGRAgAssMIOuhwj/wPRp1Hptop5WVAg7Zs8EntzuqfF8S7ZrVgpOjfaJ9Y6evxOGTV3ReV8hlcLC3QwEfT9Su6ou2TWvBxtoqRWvOXr6DY2ev48795wj+8hVKlRrOjvYoXsQHdauXQ5O6lSFLkN7+9Vs4qjUfxMm9fHAp7LMn3YB08IRFOH3xFip/XwJr5oxO1o7GXcbCL+A91s0fi4rfFeP2/dBmGD58CkHtar5YPH1Iij7sO3oBE2auxeCerdDvx2Z6oG++LRKNRkM5/ObDmzQlQIAILMu6EkRgWVY8yZushUBEJPDHbCEDy9YWGDfaOATWjZsSHDwiNHIvXVKDNq2okXvWumHkrT4InIx4g24fTvFbCyoccc6rJaI0ShTw28K/LocEr326Qchr1Ee66fcQgWV6jEmD+BAgAkscMdESWLY2VvAtVZg3KjomFh8+fYF/YFxmq6O9HVbPGY0SRXx0DNcSWAXzecHVyZF7xvprv/v4BUHv4oZo5PXOhfXzf0aunE6JnP70+SuGT1qKW/eecs/sstnAy90Vcrmc08+es5U/jwcWTR+CfHk8dGR06DcF9x6/4sglRjIlXLGxSlRpNhARkdGQy2S4eGBxkkTX+49fULvtcI5ou3JoKRiBx5aWwGJ/nv1rfzSuUzHZwBGBJY47TVaIEAEisEQYlHSYRARWOsCjo4RABiPw7Rswe75AYNln12D0CMNIpuRKCP3fSLBmvUBgubsDA/oYRo5lMDyknhAwCwKTP1/H6tCHvK4e9kUx3aUS9/eS/tvwRR3NP/snd1t4yuzMYpe+SojA0hcp2mdJCBCBJY5oagkslml1ZPMfiYxiJNTEOetx5cYDFCuUF7tXT9HZoyWwkiJ3XrwOxMgpy/HsVQBqVSmLpTOG6Zz9FhaBdn0ncyRZAR8vjO7fnsuSYkSTdj158QaL1u4By9BiJNqOlZOQ29ONf75wzR6s2nIInVvVw/ghnRPZf/H6PfQdMxfOOezxOeRbsiTUoeOX8fOMVahWoRRWzhrJy2EEFrMzMioGORyz49DG3zlZSS0isMRxp8kKESJABJYIg5IOk4jASgd4dJQQyGAEvoRIMH+R8EHLKYcGw4cYh8CiSYQZHFxSn2kQqBt0AI9ivvD2rnWrjYbZ8nB/bxB0CPdjgvlnBzwa43tr4ZcfMThJBJYYokA2mBsBIrDMjXjS+lIjsNgpRvzUaDkErAiNZTDFLyVMicBiZ1/4BaFZt/GQSiW4dHApV5aoXazcjpE+xQv7YMOCn7nsq6QW0/vrrHXc3jLFC+DPZb/y267ffowew/8AywA7sP63RMd/W7gZf+47hQHdmmPZxgNoVLsi5kzsn2if1pbRAzqge7uG/HNGYDnncEBBHy+uVLLhDxUwd9KAJO0kAkscd5qsECECRGCJMCjpMIkIrHSAR0cJgQxG4OMnCRYvEwisnK4aDB5gHAKLuTZnvgyh34SCpyEDVXB1oS4GGRx2Ui8iBD6po1DGfztvEXu3PM3bBdkkcZmRPT+cwt8Rb/jny1xronn2fCLyACACS1ThIGPMhAARWGYCOhU1+hBYTESFxv0QHhGF07vm65QCpkZgsbNVmw9CyNcw7FkzFUULxn258O7jZ9TvMAoqlZojnhgBldJiGVANO43mSgrXzhuDSr7Fue2sRLBy0wFchtT5fYvg4uSgI4bpYOWB5/cvQoOOo/8j4ZaA9emKv+p1GMWVPO5bNx2F83vzjxiBZaVQYMeKSWjWfTyCv4Ri0bQhqFM9cbkiEVjiuNNkhQgRIAJLhEFJh0lEYKUDPDpKCGQwAm/fActXCSWEHu5AfwPL/JIrIWSubdwiw4uXAoHVsZ0axYpSI/cMDjupFxEC+8JfYtDH87xFvtauOOTRhP/7r5+vYV3oI/7vE5y/R3+HkiLygAgsUQWDjDEbAuYisA59fY2b4R/N5ldGK2qawwflsuXU2wx9CCxtfyhWwnfp4BJIJMLnEn0IrEpNBnBleMe3z+H6W7G148BpTJ2/Cd+XKYKNC8fpZe+cFTuwfvtRtGv2AyaN6Maf6Td2Li5cu5eoPPD5q0A07/ELypUujE2LxmP0tOX469Q1rJ4zimtMr10Bbz9y5JarsyPO7V2oYwsjsJRKFS7sX4y/z/6DEZOXcvsObpzBlTTGX0Rg6RVG2pQVESACy7KiTgSWZcWTvMlaCLwJlGD1WuFbPG8vDfr0Ml4G1tHjUly5KkwirP2DGrWqE4GVtW4ZeZsSAiM+XcKOsGf8liGOpTHWSfhmfHnofUz/fIN/Hr8/lliQpQwssUSC7DAnAuYisPr6ncOqT0KPPHP6mBG6VuatiT6ucdlJ+qzUCKyw8EiMmrocF679y/WYYr2m4q/UCKwHT15zfa5Y36izexbykwR/+WMN9h+7yE3rY1P79FlskiCbKMiyuFg2l3Zt2HkMs5dtR5smNTFlVA/+9dVbD2PB6t0Y3qctfur0P468YiRWxxZ1MGFYV37fniPnMXH2OjSpVxkzf+mrYwojsFh219XDy7jXh01cghPnb6B5g6qYMa63zl4isPSJIu3JkggQgWVZYScCy7LiSd5kLQRevZZg/SaBwMqXV4Me3YxHYN28JcGBw4L8UiU0aNvaMPlZKyLkbVZDgJUPsjJC7drp3gBVbYQpVQfDX6H/x3P88/q2ubE+Vx1RwUQElqjCQcaYCQEisEwDdFoJrGy2NqhaXshKUqnV+PwlFI+e+XFTBLu3b8SRNglXSgTWS/+3GDJhEV75v8X4IV3QuVVd/jhrrM4arE8b0xOtGtfQC4zHz/3R+qeJHBnGMqK06+nLALTsOYFr7n7sz1n8610G/Ybb95/xJYosC6xa88FcBtWpXfP4fVofGCGV0EdGYDES75+jK7n9rISRlRJ+DQ3HipkjUb1iKV4OEVh6hdG4m1gNKmNC/z57HezChYdHQq1JvdfGtSPLjWsISUsRASKwLOuCEIFlWfEkb7IWAs+eS7D5T4FgKlRQg66dDCOYUiohfBMgwep18SYR5gIG9KVJhFnrlpG3ySHwMjYU1QP38o+tIMWzvF0glwhZizejP6DZ27/4PSWsnHHcs5moQCUCS1ThIGPMhAARWKYBOq0EVnLWKBRy1K/xPde8vHa1xH2ftOQPy4pyc3XixLCSu3cfgjk+gZ0f2L0FencWSrvZHi25xBqqs8bq+ixttpiVlQK3j6/WOVKz1VCOXDqxfQ483V05gqlai0HwcHPhShe1q+fwmbh2+xF2rZrMNY9nq1brYfgYHIIzuxfAzTWHjlztFMIbx1bxr2snFrrndOZKCbXN54nA0ieKRtyjVmswcPwCnL9612CpD85uMPgMHUg7AkRgpR07MZ4kAkuMUSGbCAH9EHj8RIo/dwi/LBctokan9oaV+KVEYCU1iXDSeCXitZ/Qz1DaRQhYIAKbvj3BuOArvGc1bT3xZ676Op6+VUXg+zc7+ddySK3xIE9HUaFBBJaowkHGmAkBcxFY1AMr5YAmV0LIElu+fgvHvUcvsebPw7h171mSE/y0BFZSWlhWFyN4PNycEz02ZgYWEz72t5U4fOIKpo/thZaNqkNLMrGsL5b9pV2bdx/HH0v+RP8fm2NQz5Ycydb0x3Eo4OOFgxsSTzFMisBisgaMm49zV+6iXdNamDSyOyeeCCwz/fDQqtl1+Cwmz4kjonxLFUaNSqU5xlIqFT6YJ2dS4zr6saZmdsli1RGBZVmhJQLLsuJJ3mQtBO4/kGDnHiFDqmQJDdoZWOKXEoHF0JyzQIbQUJpEmLVuFnmrDwK9P5zGXxH+/NakGrSzOgKf1xuhhFBR8CJvF9j8N6VQHz2m3kMElqkRJvliRMBcBJYYfReTTan1wGK2KlUqtO87BayEb+aEvmhStzLvQlIlhBqNBp0GTse/D19g7MCO+LFtg0QuT5i5liN8tESSPpicuXwbg8YvTNQDi51lVWSsr1bT+lXwx/g+fMP2VbNH6ZRGahu2a/toaZvJd21THz8P6pTIjOQILNbYnpUSsvLCdfPHouJ3xXDg70sY//tqrqcX6+0lpiXRsKhY2Oo29HfcuPsEXVrXw7jBnS3MO8tyhwgsy4onEViWFU/yJmshcPuuBPsOCARW2TIatGpuvBJChiYrUWSlitrVoa0axYsZluWVtaJC3mYFBNgH8eL+WxGqjuXdPebRBKWs4yZcxV+VAnbjjTKMf+msVwsUUuiWiWQkZkRgZST6pDujECACK6OQ19WrD4HFTmgborPsJpblpF3J9cBizdvb95sCWxtrHNn8R6LSvJ0Hz2DKvI2o8F1RrJ//s15gzFu5E2u3/YX2zWtj4vAfdc58+BQCRjaxKYd/b5uNGi2HICo6BpcPLuXKGOOvZt1/wYvXgdzEQZaNdfT0NSz/YzhqVCqTyI7kCCy2cffhc5g0Zz28PXJi//rfcPbyba7hPRFYeoUz/ZsqNxmA0LAILsiODrojIdMvnSQYEwEisIyJZsbLIgIr42NAFhACaUXgxk0JDh4RCKzvfdVo1sQwcim1DKy/T0hx6Uq8SYQ11ahV0zAdafWPzhECYkXgTswn/C/oMG+eg1SBh3k6Q6B6BctbvzuKq1Hv+Re25qqHWrZeonGNCCzRhIIMMSMCRGCZEewUVOlLYGkn/dWsXAbLfh+eKoHFNrDqLlbl1aBWecybPDAR4VSv/Uguu+vwpt+RL48wfCMpc6NjYtGw02gwoooRXoz4SriadRuPF35BWDNnNH4aNRt1qvti0bQhifaxyYSMkGP9t2Yv347gz6G4cngZstlaJ9qbEoHFNvcaOQtXbz7kkoAqlyvBtWQiAstMd7t0nZ6wz54Nlw4sMZNGUpNWBIjASity4jxHBJY440JWEQL6IHD1uhR/HRPIpUoV1Gjc0DByKTUC6/YdCfYdFEiyEiU0aG9gmaI+vtAeQiAzIbDk67/4/cst3uQmdj5YmbNWki4M+XgBe8Jf8M9muVRGZ/sionGXCCzRhIIMMSMCRGCZEWwjEFjank+sHJCVBWpXSlMIQ76GoXGXsVwvrZWzRqJaBWFiHzuvLSMsXbwA1s0bC1sbq2Qt/W3hZvy57xR8SxXC5sW/JLlvxqKt2Lr3BFfiePjklWQnHN59+AKdBkxDi4bVuNLD78sUwcaF45KUmRqBFfjuE1r0+AWRUTEY0qsVFq7ZQwSWua42S7NjDCjLwKIlbgSIwBJ3fAy1jggsQxGj/YSAeBC4eFmK4ycFAqtaFTXq1zUugRUQJMGqNQKB5ZYTGNSfJhGK5xaQJRmBQPt3f+Ni1Fte9UyXyuiSDCk188stLPr6L793aI4yGJPju4wwO0mdRGCJJhRkiBkRIALLjGCng8CKiYnF+h3HsGjtHkilEuxZMw2F83vrRWCxTdsPnMa0+ZuQx8uNK7OztlLwZ7+FRaBd38nwD/yAYoXyYsyAjihftggk8SbV+AW850ihv89eRw7H7Ni5cjJXJpjUOnv5DpcBxYgwRiixEkFXZ8dEW9nwulqthyIiMuo/4qk1+nZtmiYCix3auvckZizawvnGMsUoA8tMd5sFmwX99K75yJUzbgQmLXEiQASWOOOSVquIwEorcnSOEMh4BM6dl+LUWYHAqllDjTq1jEtgJZxEyD7XTZ5AkwgzPvpkQUYhEAMVirzeihgI77XLXq2RV2GfpEmbvz3Bz/GmFbbNXhALXKtllPmJ9BKBJZpQkCFmRIAILDOCnYIqbQkhK5+r5Fuc36nWaBD6LRyPn7/hiB6ZTIoJw37kpu7FXyllYLF9jCxq22cS1wB+QLfmGNijpc75T5+/YtjEJbh9/xn3upOjPbw9c0Ihl+Hdxy8IeveJe71AXk8smj4EPrndk/WG2Vm5yUAuKadkkXzYsXJSsnu12V9sw/blE1GqWP4k96aWgcUOsfboPw75HbfuPeVkEIFlprvNxkCy1MAeHRphVL/2ZtJKatKCABFYaUFNvGeIwBJvbMgyQiA1BE6ekeL8BYHAqvODGjWrG5fAYjbMWyRDSIjQ3YdlYLFMLFqEQFZE4EJkEDq8P8677iW3w3XvtslCcSriDX78cIp/XtXGHTvdG4oGOiKwRBMKMsSMCBCBZUawU1ClJbCS2sIyitzdnFG+bFF0blVPJ/NKuz81Aovtu/PgOToPnM41Uz+w/jfk9c6VSB2bMHjs9HWOyPocEgqVWgMnx+woUSQf6tUoh//VqcyRaKmtroNncEQSI8oYYZbcOn3xFgZPWMS3UEpOtj4EFtPBMsVa9pxAGVipBcjYz6cv2Ixt+09xKXTd2jakZu7GBthI8ojAMhKQIhFDBJZIAkFmEAJpQODYcSkuXxU+UDWsp0aVysYnsDZvk+HZM4HAatdahZIlLG4gchoiQEeyIgIzvtzE0q/3eNc72RfGbJcqyULxOOYL6gQd4J/7KOxxyau1aKAjAks0oSBDzIgAEVhmBJtUZXkEJBqWJ5ZJF0vRS2qxmlZrKyucu3oHX0PDIZfJUMDHE26uTrCxTr6hGpO1YOqgTIpG5jSbCKzMGbfkrCYCy7LiSd5kLQSOHJXi2j8CgfW/RmpULG98Aov12WL9trSLTSGsTZMIs9ZlI295BBoFHcK/McH835fnrIlmdvmSRShKo0QBvy38czkkeO3TLcmJhRkBMxFYGYE66cxoBIjAyugIkP6shECmJrBK1Opu9Fg9OLvB6DJJYPIIEIFlWbeDCCzLimdW9kb28iGgjIWqcJksA8OBwzLcvCVkRjVvokI5X8O+40ptCiED8/ZdCfYdiDeJsJga7dsaRpRlmaCQoxaNQKg6BsX9/0T8d9mjPJ3gIE35y9Zi/n+CndWu297t4CbPJgqsiMASRRjICDMjQASWmQEndVkagUxNYE2Za3yyadJI45NiWfqGpeI8EViWdTuIwLKseGZVb2QPb8JqxSRIYqOhcckFZYW6UNZvD42NrUVDsmefDHfvCQRW65YqlCllfAIrKAhYsUbOY5nTVYPBA1QWjS05RwgkhcBf4X7o/fEM/6iEwgnHvZLvc6LdWDfwAB7FfuHP/eXZBGWskp5kZW7kExJYz2NDseLrPfgrv8FP+Q35FQ7YlquBuc0ifYSASREgAsuk8JJwQkAHgUxNYFEsMz8CRGBl/hjG94AILMuKZ1b0Rnb3MqxWT4VEpUuoRA2bDXWRshYNyY7dUjx4KJT2tWujRsnihmVG6ZOBxaCd8ptAYNEkQou+VuRcCgiwaYJsqqB29XcogQnO5VPF7Mf3J3EqMoDftzrnD2hslzfVc+bYkJDAWhx6D398vqmjeqt7fdSy8TSHOaSDEDALAkRgmQVmUkIIcDzEdNEAACAASURBVAgQgUUXIUMRIAIrQ+E3unIisIwOKQk0IwLya6dgteGPJDXG/PQLlOV0xy2b0TSzqNq6TYonzwQCq3MHFYoUNn4GFnNm/mIZvnwRsr0G9lMil5tZ3CQlhIBoEKgWuAevYr/x9mzJVRc/2Hqnat+44CvYFI/4muRUHn0cS6R6zhwbEhJYnd+fwNnIQB3VPnJ7nPduBZloOneZAxnSYckIEIFlydEl38SGgEUSWJt2/Q2PXC6oV+N7vfCOiYnFwjV7UDCfF1o2qq7XGdpkHASIwDIOjmKRQgSWWCJBdhiKgPzyMVhtnpvssZi2A6Cs3dJQsZlq/8YtMrx4KZBK3bqoUCC/aQishGRZu1YqlCxpmK5MBS4ZSwgkQCBQGY4KAbv4V1kz9mc+XWAFoT9ccqAt+fovfv9yi3/8k0MxTHGuKAqM4xNYH75GoZjfVoRplIlsm+FSCd3si4rCZjKCEEgvAkRgpRdBOk8I6I+ARRJYrLl7Jd/iWDtvjN5IVG4yAPbZs+H49jl6n6GN6UeACKz0YygmCURgiSkaZIu+CChO74Vi1/IUt8c26oTYZj30FZkp963bKMNrP4HA6tlNBZ+8hpFK+pQQMnBOnJLiwiUh26tmdTXq/GBYuWKmBJmMJgT+Q2Dbt6cYFXyZx6OSTS7scW+kFz77wl9i0Mfz/N5G2fJgjVttvc6aelN8AuvshyA0eHsoSZWOUitc824Le6nC1CaRfELA5AgQgWVyiEkBIcAjQATWf1DUbT8SwV9Ccfv4aroeZkSACCwzgm0GVURgmQFkUmFUBBQH1kNx7M9EMlUFSkL24j7/emzVRojtMsKousUmbNUaGQKCBAKrz08qeHuahsC6868Ee/cLmSbFiqrRsR0RWGK7E2SP6RAY+PEc9oe/4hWMzlEWw3Lo12fvetR7tHx3lD9b2soFRz2bms5YAyTHJ7BmvbmDXz9fS/Z0P4eS+NVZv2oJA0ygrYSA2REgAsvskJPCLIwAEVgAPgaHoHbb4bCxtsI/R1dm4etgfteJwDI/5qbUSASWKdEl2UZFQKOBYvsiKM4f1hUrkSCm+8/QWFnDeuVk/pmqdGVE959qVBPEJmzZSjnevResGtBXCfdchlmpbwbW27fA8tVCI3cXZw2GDqJJhIahTbszMwKl/Lfhszqad+GQx//ga51TL5eClOEoH6/8MKfUBnfydNDrrKk3xSew2j47joMRAknnKbNDkCpcx4Srudsgtyy7qc0i+YSASREgAsuk8JJwQkAHAYsgsCIioxARKXwIqNlqKHxLFcb8KQNTDHesUoUXrwMxf9UuPH7uD99ShbB58S90RcyIABFYZgTbDKrSQ2Ct/fYQckjhILWGo1SB2no0sjWDS6TCEhHQaGC1/g/I/zmt651Uhug+E6EqUwWyFw9gPWeYQGDlK4boMYssEQ3ep4VLZQgOFjKwhg5QwcXVNBlYSU0inDheCVnq7X8sOgbkXNZA4ElMCGoH7eedzS6R40neLgY57/V6g87+QJ/uBp031eb4BFbu+5vwQRXJq9rp3hADP5zFR3UU/9r/suXFKrcfTGUOySUEzIIAEVhmgZmUEAIcAhZBYC1dvw/LNh5Id0gXTx+C2tV80y2HBOiPABFY+mOVGXamlcAK18SisN9WHRcvebeCj9whM7hNNmYmBFQqWK2dAfltoX8MM18jUyC2/xQoS8SNsJd8CILtpG68ZxpXD0RO25SZPDXY1nkLZQj5KhBYI4aqkMPRNAQWM27BUhk+xyPM+vdRwsPdYLPpACGQ6RBYHfoAkz//w9vdIFturHOrY5AfrAE8awSvXWL5N1NLYD2JCEHRR9t4+6whw0ufrtge9hwjP13U8XW/R2OUt6YxpAZdANosKgSIwBJVOMgYC0fAIggsv4D32Hf0As5duYOnLwMMDpm3R04M7tkKTepVNvgsHUgfAkRgpQ8/sZ1OK4F1M/ojmr09ovuB1r0xytvQB1qxxTgz2yNRxkCxfDLkD4VfHDnyysoG0YNnQF2wFO+eJCoCtsObCwSWtQ0iFyTdjDgzYxLf9lnz5AgLE14ZM0KJ7AZW9uhbQsi0bNshxaMnQiP3Nq1UKE2TCC3lOpEfKSDQ9f1JnI4UPq9Oda6IXg7FDMKs+du/cCP6A39mh3t9VLPxNEiGKTZrCay1Hx7jpzdneBWVbdyx270hGCVeO3AfnsZ+5Z+VVDjjb69mpjCHZBICZkGACCyzwExKCAEOAYsgsOLH8sGT12jXdzJKFy+AqaNTnhgllUjg6JAdrs6OdB0yCAEisDIIeBOpTSuBtfXbE4wJvqJj1Tq32miQLY+JLCWxWQ0BSXQkrBePhzReY3aGgcbGFtHD50Cdp3AiSGwHNYSE1br9tyIXH4VGLvRtsjQMZ8ySI0qo7MH4MUrY2BjmpSEE1skzUpy/IBBYNaqpUbc2NXI3DHHandkQUGrUKOS3BTEQ7voZrxYorMhhkCsDPp7DgXhN4Oe5VkX77IUMkmGKzVoCq9frM1gX/JhXMcSxNMY6xVU5XI1+h9Zvj+moX+haHW2yFzCFSSSTEDA5AkRgmRxiUkAI8AhYHIHFPOs3di5iY1VYO28MhVrkCBCBJfIAGWheWgksNqVoXegjHW2zXaqgk31iUsFAk2g7IQBJZASsF4yC1P+ZDhoaO/s48sorf5Io2f7SGZLPQoZD5LTN0Lhabo3b1BlyKJUCFKwnlaF8nSEE1r/3JNi9T2h6VbSIGp3aE4FFb1nLRuBa1Hu0ijdB0FVqg7tpaMD+2+cbWBYqTEodmaMsRug5xdCUCGsJrCL3t+FpdAivamuueqhl68X/vfv7kzgRLwstl8wWrKG7FagRninjQ7JNgwARWKbBlaQSAkkhYJEEln/gB26yYLnS9Muv2K89EVhij5Bh9qWVwGr77hguR73TUfazky8GO5Y2zADaTQgkQEASFgrr+aMgDRImYbEtakcXxIyYA7Wbd7KY2fwxEFK/p/zzqDGLoM5nWJlPZgrIxKm62WVTJ8Zjs/R0xBACi008ZJMPtYsmEeoJMm3L1AjMCbmD+SF3eB/a2BXAwpzVDfZpw7fH+CX4Kn+uQ/ZCmOta1WA5xj7ACCxpdsDlzjpeNMuzfJS3C1izeu16rQxFjYB9UHFFhXFrVI6yGC4CEs7YmJA8y0eACCzLjzF5KB4ELJLAEg+8ZElqCBCBlRpCmet5Wgms4v5/4qs6RsfZPo4lMMkprqE2LUIgLQhIQ4JhNW8kpB8DdY6rnd0QPXI+NM4p91izWjYB8nvX+LPR/adCVdoyeyUqVcDU34RfLuUyYOIvpiWwWHUmy/rSxOsTP+kXmkSYlrtOZzIPAgl7Vy1wrYa22Qsa7MCJyDfo/v4Uf666jSe2u9c3WI6xDzAC66ImCC1fCCWCJa1c8Ldn00SqEmZf20rkuJa7DVykBtYuG9sJkkcIGIgAEVgGAkbbCYF0IJDpCSyVSo3gL6HI6eIIiUSYnpQOTOioGREgAsuMYJtBVVoIrPfKCPgG7ExkXVq/lTaDm6QiEyAgCX4L63mjII1XAsjMVuf0QsyIuVDncEnVC6vNcyG/LPwSFtNlBJRVG6V6LjNuiIoGZswUCCwba2D8WNMSWAynhUtlCI4/ibC3Eh4emRFBspkQSB2BCI0Sxfy2Qhkv64iVD7IyQkPXg5jPqB90kD+WX+6AC96tDBVj9P2MwPr9203Me3+Xl93ToRimOVdMpIt9cVXxzU580wg/a9plL4j5rtWMbhcJJARMiQARWKZEl2QTAroIZHoCq8fwP3D99mPUqFQGy/8YznlXpdnANMf58sGlaT5LBw1HgAgswzET84m0EFjnIgPR6f2JRG79YOuFLbnqidldsk2kCEg/BMB69jBIwoQpV8xUtWc+rueVJruDXpYr9q+F4u/t/N6YZj2gbNRJr7OZbRObPsimEGoXmz7IphAaugwpIWSyt++U4uFjoZF7qxYqlC0dLyXLUANoPyEgYgQSZk0VVDjinFfLNFkcoo5GCf9t/Fk5JPDz6ZYmWcY8xAis/wUdxvUIoX/gipy10NTOJ0k1q74+wJQvwmRY9lX0Mc9mKGnlbEyzSBYhYFIEiMAyKbwknBDQQSDTE1hVmg7E12/hyJXTCad3zeecK1Gre5rD/ODshjSfpYOGI0AEluGYiflEWgishB9etf6VsXLBX0mUHIjZf7It4xGQBr7kel5Jwr/pGKPOUwjRw+ZAY5tNbyPlJ/fAas8Kfr+ydkvEtB2g9/nMtPHrVwnmLhSaJzs6ajByqDCBUV9fDCWwTp2V4tx5gcCqXlWNenWokbu+eNO+zIXApM/XsCbewJIe9kUx3aVSmp0o8HozoiC8T+/l7gBnmeHZXGk2IImDGrkGPs836WSZPcjTCTmkVkmqYVMZqwbuQYAynH/ua50Thzz+Z0yzSBYhYFIEiMAyKbwknBDQQSDTE1i37j3D1ZsPULNyWZQoEvftzl+nhJ4lhsa7cZ3EKc6GyqD9+iNABJb+WGWGnWkhsIZ/uoidYc8Tuectt8M177aZwW2yUSQIyF4+gtXisZBERepYpC5QEtGDZ0BjbWuQpbLrp2C9/g/+jPL7HxDTa7xBMjLL5k/BEixaKhBYaW2obiiBdf++BDv3CnoLF1KjS0cisDLLvSE7DUOgduB+PIkVJvOtdauNhtnyGCYk3u5agfvwLFbIND3m0QSlrF3TLM8YB6/FvkerwKO8KB+FPS55tU5R9F8Rfuj94YzOnvRiYwxfSAYhoC8CRGDpixTtIwTSj0CmJ7DSDwFJyEgEiMDKSPSNrzstBFajoEP4NyY4kTG2Ujme5+lifCNJokUiIHt8G6zpuiRWdxiAsnh5xPafDI086W//UwJD9ugmrBf9zG9RFSmL6GGzLRK/hBMB3XMBA/qavoTw/Qdg6QqhdNEphwbDhxie+WWRQSGnLAqBT+oolPEXSpJZqdzTvF2QLd5kPkMd7vz+BM5GCkMqxED6LAq9i5mfb/Ou6NvTqunbI7gV/ZE/x77EYsSXXCJkaBqKD+0nBMyFABFY5kI6ZT3+ge/RqPNY+OR2x5HNwheQSZ0KfPcJ9TuMQm5PNxz7c1aKgrfuPYkZi7aAJbrM/rV/snuXrt+HZRsP6AVGJd/iWDtvDL937PSVOHzySopnXZwccH7fIn7P7sPnMGnOerRrWguTRqa9Ak0vg0W0iQgsEQUjK5pCBJZlRd1QAksNDfL7bUasJumMi9d5f4SCPrxa1iUxgTfyB/9AsfxXSNhYu3iLTQyM7jMJkAkZPoaolwS8gO1v/fgjak8fRP262hARmWZvYJAEK9cIOHl5atD3J8OJJEMzsNgEwsnTaRJhprkoZGiaEdgT/gJDPl7gz/tau+KQR5M0y2MHxwRfxtZvT3kZU50ropdDsXTJTO/hTu+P41xkEC9mjksVdLQvnKrY+zGf0SBeU3p2gE0iZhOJaRECYkeACCxxRMhUBFbLnhPw9GUAFAo5zu5egByO2ZN0mBFKu4+cSxGMF6+DEBEZhQa1ymPeZKFvt5bAYuSbk6N9kjJyOGTHkhlD+WdEYInj3hnFiv91/RlVy5dCtQolUb5sMdjaGP7Nu1EMISGpIkAEVqoQZaoNhhJYL2O/onrgvmR9vO7dFl5yu0yFARlrXgTkt87Bau3vgFqXbFGWr42Y7mMBadq/vZd8DYbtzx14hzT2ORA5a5d5HTSTNj9/CdZuEAisvHk06NXd9AQWc2/xMhk+fhKmCDPijBFotAgBS0Jg2KeL2BWvXH6IY2mMdfJNl4sLQ+5iVoiQ7dTXoQQmOpdPl8z0HGZfShX024JojfCz44JXS+RXOOolduinC9gd9oLfay+R41rudnBMpn+WXkJpEyFgBgSIwDIDyHqoMAWBdffhC3QaMA3FCuXFo2d+GDOwI7q1baCHNYm3PH7uj/Z9p0Aul2HfuunI4+XGb9ISWCzDS9+WRkRgpSkM4jwUv4m7Qi6Db6nCqFqhFKqWL4kiBXJDIhE+KIvTg6xjFRFYlhVrQwmsI+F+6PNRt+9FfESOejRB6Qzu52FZEbIsb+SXj8Fq89xETsXWaILYDkOA9P6s12iQbUB9HfkRy46nX64Iw/DipQQbtwgEVoH8GnTrYh4Ca8cuKR48ijeJsLkKZcsQgSXCa0ImpQMBVj7Iygi1a6d7A1S18UiHRHCEGCPGtKuJnQ9W5qyVLpnpOfxv9Cc0enuYF8Eat7MG7vqu96oIVHqzGzEQsrJ7OhTDNGfqT6svhrQvYxAgAitjcE+o1RQE1oSZa7Hv6AVsWjQevUbOQm6PnDi06XeDHY5VqtCh3xQwEmvc4M7o0lp30joRWPpDapElhEvW7cPVWw9x79FLKBOUlLDa0SrlS6Lq9yVR+fsScHXW71sh/SGlnYYgQASWIWiJf6+hBNbckDuYF3InWce25qqHWrZe4necLDQ7AtL3AbCZ3CMxedWgA2Jb9DKaPbaj20ASJjRJjpy9G5rslvfvxpOnEmzdnv5m6oaWELJAnT4nxdlzAoFVtbIaDeqJq5G79M1zaNzzQKOgjG6jvbmykKAXsV9RI162sRWkeJa3S7r7O12Oeoe2747xSBqjLDE9YVkd+hCTP1/nRTTOlger3WobJHJOyB3Mj/e5QAYJznu3hI/cwSA5tJkQMCcCRGCZE+3kdRmbwAoLj0St1kNhnz0bzuxegMETFuH0xVvYvHg8lyBjyFq2YT+WbtjPndu0aFyihBoisPRH0yIJLK37rL70xt0nuHbrEUdoMcYz4SpaMA+XmcUytHxLFuJqW2mZDwEisMyHtTk0GUpg9flwBkci/JI1bUnOGmhpl98cppOOTIaA7MV9WM8ZrmN1bMveiK3fzqieWE/9CbK3wh2N/nUNVJ55japDDMJYBhTLhNKuEsXUaN/WcBIpLQTW/QcS7NwTnzzToEtHw7O/TIGj9N0bKLbMA7tvbKlzekHjkQfqvIWh9i4Q9+ecRLKbAntLkrnx22OMD77Ku1TLxhNb3XWzO9Pi7xtVGJexpF3usmy4mdu4PwMNsSvhv+lTXSqgl31xQ0QgSqNElYA9eK8SpsnWs/XGhlx1DZJDmwkBcyJgLgLr7V0Nvrw2/N9mc2JhTF0eZaVwyqt/5ZSxCaxt+09h+oLN6NWxMUb0bYcT529g2MQlaFa/Kn4f31tvV5+8eIN2fSb/Vzo4DXm8ciU6SwSW3nDCogmshDCEfA3D9TuPOTLr2q2HeP3mnc4W1ivrxrFV+qMn8p0v/d9iz+FznL8Bbz8iMioajvZ2KFHEB22a1ELd6uWS9YARfxt2HMOdB88RFhGJXK5OqFPNF31/bMbJSG6xFEtWj/v8dSBUKhXyerujRcNq6NSyLmSyxL1oiMAS+SUy0LzUCKxvryR4e02CMH8JCndQo7F0D14oQ3kt31u54UbMB/7vU1wq4CcDP/waaDJtz6QIyB7egPXicbz1ppoQaL1gFGRP7vJ6oofNgapImUyKWvJm370nwZ59AolUppQGrVsaTiKlhcD68BFYslz48iiHowYjhhqu29hBURzaCMVfW1IVy7Ky1LkLQO2eF/DKF/dn74LQ2FL/vlTByyIben04jWMRwpeoE5y/R3+Hkun2XqlRw8dvE7QFt+zXPDb8JKMm95Xw/xMhamES7F+eTVHGysVgP3eEPcOIT5d0zu3xaIhK1u4Gy6IDhIA5EDAXgXVzkwqvzmcdAsu3qwz5a+rfy9TYBFbrnyZyCTCsZDB/Hg+wMkCWkRUZGY2zexfCIXu2VK8XqwZjfa+YnJ8HdULXNkl/eUEEVqpQ8huyFIGVEJYPn0Jw8PglbN9/Cm8/fOYePzi7QX/0RLzzt4Wb8ee+U5yFHm7OKJjPCwq5HG+CPuLZqwDu9fbNa2Pi8B8TeaFtCMceMLLLxckRz16+4TBisv5cNhFurjkSnRs3YzWHJ+s79l2pQpw+1viOpV9Wq1AKS38fBnmCaWBEYIn4EqXBtJQIrEcbpPgSr88NE7+twk3sLSc0oB3sUAqLQ+/xmoc4lMJY5+SJ1jSYSEcsBAHZrfOwXj2N90ZVthqi+04yundWa6dDfkOYKBPTYxyUFQwriTG6USYQeOu2BPsPCQSW73catGhqOImUFgIrqUmEE8YpYaUwgaN6iJQ+vwerTXMh/Riox+7kt6hzuELNCC2vfNB4FwA880PlnjvNUzHTZQwdzjAEGLlU2G8LIjRK3oZjHk1Qykj9HX3f7NDJVrrs1Rp5FUlPsDIlCC9jQ1E9cC+vwkYi48okpdA/e0J7mGFWO3AfnsYK5duFFY447dUyDdJM6TXJJgTiECACyzQ3Ia0ElrWVAsUL+6RoVExsLB48eY3cnm449uesRHtZK6IO/aeiTPEC+HPZr/zzGYu2YuveExg/pAs6t0o9M3TZxgNYun4fVzq4ceE4SKVJ/0zUEliMKHN2SrpkukPz2mhUW+gJSE3cTXPvRCc1OiYWV28+xNnLt3Hu6l28//iFt5GVD945sUZ0NqfFIEZe3X34HD3aNwIrk4y/mP8Dxy9AVHQMNiz4GeXLFuUfvwn6gCZdx3EpjitmjuCfaTQaLFm/Dys2HUQl3+JYO2+MjkxGXDECi73pVs0ZzRFdbLEyTpZqeemf+xjcsxX6/dhM5xwRWGmJrnjPpERg3ZolQ1Rw4h/aj9zfYV79U3BwkGFgjlIYG3yFd7CzfWHMcqkiXofJsgxDQH71BKw2Ch84lBXrxk0dNPJS7FgKxdn9vNTYdv0R+0MrI2vJeHHX/5Hi8FHhW84K5dVo0sjwb3nTQmAx75eskOODkHyJPr1U8PYybyN3SXgY5HtXQnFZ6ClkisioPH2g8coPDZetVRAaTx8wsouWZSJwK/ojmr49wjvnIFXgYZ7ORiNimgQdxu2YT7z83e4NUdnG/JlKCbOm6mT3xibX1H+5Sy7qV6PfofVb3ffibJcq6GRvWN8Zy7xV5JXYECACyzQRSSuBZYg1yRFYv85ah71/ncfkUd3RtokwHINNImzTexIK5/fmJgmmtPQpHdSe1xJYKckb1a89enRoJPy8P3wOk+asR7umtTBpZHdD3M7Ue7NEBtbX0HCcu3oHpy7cwqV/7iEySkhvZql/NSqVQe1qvqhesRSy2dpk6oDqa/yUeRux8+AZDOjWHAN7tOSPzVi0BVv3nsSw3m3Qu3MTHXGMxOrYfyruPX6FrUsnoGyJgvzzFj0mcJldCV9nG758/YY6bUdw/cXO7V0IG2uhCS4RWPpGLHPsS4nAuvarHCrhrafjUJhVNC42vo/KZZzw04fT/LOG2fJgrYENYDMHUmRlehGQnzsIq+2LeTHc5MGOQ9MrNtF5VkLGSsm0S9mgI2Ja9DS6nowWePmKFMdOCARWlUpqNKxvPgKL9cBivbC0q0UzFXzLmo/Akv9zGoqdy3Qa9mtt0Ti7IabzCKiK+UL66S2kgS8hCXwFScBL7s/Sj0HpDp/GLjvUngW4bC145xcytxTW6ZZNAjIWgYUhdzErRMg0NvakwL4fz+BwuNCnb6FrdbTJXsDsTrOSP0Ziadev7t+jn036yiR7vD+F45FveJkuUmtcy90WthLqV2v2AJPCFBEwF4FFPbBSvojGKiHUNm9XqzU4v28RstvZ6ihu1etXMHJq27JfUbp40j9vWelgh35TwQivlEoHtYKphFD/HzIWS2AFvfuE05du49TFm7j571OoVMIHcfeczvih6ndcT6fy3xVNVNamP3yZd+e8lTuxdttfGN2/A7q3b8g7Uq/DKHDY7ZqPXDmdEjmobWb3Y9sGGDuwI/ec7Wfn8ni54ejWxCmYbM+IyUvx99l/sPi3oahd9TteLhFYmfcOJWV5SgTW5bF6fOCsEIa25bbzostbu2G/R2PLAom8MQoCiuM7oNgnZMzG1m2L2NZ9jCI7vhD5hSOw+nMB/5KyaiPEdBlhdD0ZLfD8RSlOnhYIrBrV1Khb23wE1tnzUpw+m34CzVAcJcHvYbV1HmSPbiU+KpVy2XbK5t2hSYFIksRGQ8qRWa8gYeQW+3PQK0giwgw1R3e/RAK1qwfULFvLOz80nvmg9s4HtasnIDG8LCt9xmT8aVaBFx4kgcxWArmtBors5iM40+N9u3fHcClK6Lk606UyutgXSY9InbNTvvyDVV8f8K+NyfEdhuYwf5++aoF78SpW6Gl5rEATlFKlL7PwtTIUNQL2QcV3+QKGOJbGWCdfo+FHgggBYyBgLgLLGLZasgxjEVjbD5zGtPmbUoWqVeMamDYm6S81l286gCXrWOlgIWxcOD7Z0kGtEiKwUoWb32CRBJa24Vp8GFgZXc3KcZlWJYvk0x8hC9wZGhYBxhy/+/AZu1dP4UsM2euVmwzgiCtGYCW1tGmTLPuKZVuxxTLbhvy6CE3qVcbMX/omeW7jrr8xa+k2LquLZXdpFxFYlnXBkiOwYr5KcGOG0F9Hnk2Dy6Weo8K1QokA8HP+jPn1zyDQ6QsKyB258dm0CIGECCgOb4TiiNBgO/Z/XRHbJHFPv/QiJ7t7GdYrhN5aqlKVED1A6L2VXvliOc/II0YiaVftWmrUqmE+AuvhIym2x5uCWKigBl07Gd6DS2881SooTu2F/NBGMAIq4VJ750dMtzHcpMG0LunnD5AEvYI0gGVrvYA06CWk7wMBdfr80ljZQO2ZF2rPfNDkLvAfsVUAmmzZ02pqpjgX8kSKh+uEO2rtpEG5n9OHpakdj4EKhV5vgTIeAWPsHlVrQh9i0ufrvCtdshfGTFfzlt6zxu2sgbt2ySFBcOleCAsV+n6lFeuJn69hbegj/rgVpLiauw1yyVJvnpxWnXSOEDAUASKwDEXMNPuNRWBpuQTWRyupIWTM+vuPX8HGWoFzexfBLptuBdfTlwFo12cSpFIp9q+fnuTUwYQIEIGl/52wSAKrRK24GtCcLjnQp0tTNKpdAU6O5m9oqX8YQbEUjgAAIABJREFUTL+T9bv68OkL14uKTRd8+yEYI/u1R7e2DXjlrJFdu76TOaZ48+JfkjTq67dwVGk6kMPz4oG48h0mb/by7ejbtSmG9Gqd5LmTF25i6K+L0aBWecybPJDfQwSW6WNvTg3JEVhhgRL8u0ggsLK5a9CjzZ9wDnDAiON14BSh+0E0WqbExmrX8E/Jl3iQJy7TjxYhEB8BxZ4VUJzcw78U26o3YusZf3y87OVDWM8WShPVPkUQNXaJxQXj+EkpLl4WyIH6ddWoVsV8BNanYAkWLRV+RjjYazBquGnICWnACyjW/wFZ0OtEcdRY20LZrDtia7UApPpPPtL3QkiUsZC88+cytuIytV7G/flbiL4ikt2ndnSJaxjP/ccmIeaDJlceaOR6ZL+mW7vpBbzcL8W7K/FiItWg8gyVqJPRzkUGotP7Ezw4XnI7XPdua1Swjkb465Te/2DrhS256hlVR2rCjoT7oc/HM/y2CtnccKFQS3z6mpgcTk1Wwudf1TGo+GYnvsVrgt/CLh+W5qxpqCjaTwiYDAEisEwGrUGCjUFgsVY5HfpNQQEfLxzc8Fuy+vuNnYcL1/7FpBHd0K7ZD/y++KWDrFqJVS3ps4jA0geluD0WSWBVaNwP4RFRPAoF8nqiUrkS+KFK2SxXMqgtFYx/JRiJ1L9bcxTK561zU67dfoSew2dyPcGW/zE8yVvE+mCV/KEHx0b/e2odt4elR7I0yYSN5eIL0MquVK441s4VGsATgaX/mzUz7EyOwPryWIJH64VfTu0KqtC43nrOJbtoKww5WQu+/rrDBtiz6z6vMbC7NxS6peeZAQqy0cQIWG1dAPlFoTFyTMehUNbQ7dtnDBMkH9/CdqKQ2aVxyYXI6ULmlzF0iEHGX8ekuHpdIAcaN1KjUnnzEVgMg4lTdYmW8WNVsLE2XpmYJDoS8gMboDi3H1An9k1ZsgKUnYZB7ZTT7CGRhH+D1P8ZR2hxxBYjtd76Q6KKTZctGpkM6lzeXNN4MFLrv6mIGeFjuhwBcOM3GWJCdUsnv/9FCaukhzWlqm7WPBlUKoC1PrWxAdq3VcMph/HuGzNg+ucbWB56n7eFNSBnjciNuf6N/oRGbw/zIgsrcuCMVwtjqkhV1uTP17E69CG/b2SuMpjhXskoBBYTykokWalk/PW3ZzOUtIobGESLEMhoBIjAyugIxOk3BoE1cfY67DlyHuOHdEbnVsl/GXDm8m0MGr+Qm3a4a9VkHgA28Gzxur34rmQhbFqUeumg9iARWPrfIYsksGLYpMFbD3Hi/E2cuXSbayKuXY72dlz/q7o1yqHq9yVhlVFzuvWPUbp2Hj5xBSz7SaVSgWVPPX8VyP3f090VQ39qjSZ1K/PyGYvM2OQ61X2xaNqQZPWWqdMLjF2+e2ot1z9s7oqdWLf9L4wb3BldWif9Rr99/xm6DPqNezNvWZJ0dle6HKXDokbg9SU1bqwXsimsfaPRrOJm3uZSts7Y974t7u5QQZ2g4oCViVTuI4drIeNnQ4gaNDIuRQQiFk9FzIXj/J5sgybAqobQz89o8EVFIOTH+oI4mQw5tp0zmnixCNq8Q4VzlwVSp2t7GWpWMe97bvJMJQKCBAJh3DA5CuQzTq+n2FuXEbFqNjSfPyaCXJLDBdl6DIWicm2xhCPODrUK6iB/qPxecP8p/Z9z/9cExxvXmEaLJXb2kOXJD1negpDlKRD3X94CgLU4B9mEvQeO/ZKYzKvzixxOabgj7J6x+xZ/jRkiR+ECxrlvWrm+D3fhdqQwIXB7/npo7yQMwElj+HSOfVRGwu3uBv41W4kMEb7G7weYkq3fP9qNmxHCe2tfgYZokcN47TpiNWoUur8VfjFCX7lKdrlwpajlTYQ1xp0gGYRAVkUgvQQWS4Cp1Xoo1zv77N6FYMPekluswXv9DiPx9sNnjsBiRBYbaNa2d1zpIJtQmNc7l96hIAJLb6gsMwMrvvvsct389wlH4py6cJO7ZNrFJg7WqFQa9Wt+j+oVyyCbreVP+2F4nL1yB5Nmr8PnkG86TdXNkoHlWxxr5wkZWPpfVdqZmRF4ckyNe7sFAiusymf0KLOXd6mTcyFszVcXXwM12LbgC1y/JCj5lQDFm0hRrKkMEvP+Tp2ZYbdo28Nnj0PsPxd4H+1G/gZFRdOUlIR0rAkuVeO/lWPTCcDGstIC121V4fJ1gcDq2VmGKhXM+2ZbtVGF67cEG7p1kKF65fTZoPn6BRFr5yH2qlDeFP+NYVW3OWy79IckM/WPigiH0o+RWc+h8o8jt1RvXgJRkel+z0tzefJkliwPI7fyQ+qRO8Obxj8/pcadbYlLSisPkMPL13DS6fgZNXbu15U3oJccvqUNl5Uc6CGqaDjdictU164vZXsih8z4nzUVN1fo9Nn6XLYnnEygJylfozQq2N1ahfg5jcFle8LZyPr3hbxCqxfHdEwwBSGY7jcRCRA1AqrXzxG5YSHsRs8AI/JpWRYC6SWwdh48gynzNqJlo+qYPrZXquBoG7WzEkJWSthv7FxcuHaPm1qYxytl8opVM21fPpHXoSWwfHK7J9v6KIdDdiyZIbS12H34HCbNWc/t98jlkqy9C6cO4pJXLGVZZAZWSsFhfZ60ZNYLP2H0NcvEqla+JEfoZIV18fo99B0zF4Xze3MMMVuPn/uDNa3TpwcWy2S7fGgpd27Trr8xc+k2vXpg1a1eDgunDeYhphJCy7ptyZUQvj4iRVC8BtEPq7/GpJIneefHOflikGNp7u/tA46j+Mn8qPeoaCJwsufWoEgXFaxzWBZu5I3hCFgvGqszOS56yEyoiplmMpXthC5g0+q0K3L6JmhcPAw3WsQndu6V4f594Zf3dq1UKFnS8HKqHHYKZLORIyQsBhHRhvWwOntBitNnBMKqckU1GjUwvIxRC7Pi0lHI9qyANDIiEfJq99yI7ToKqvzFRRwVw0yTfgyEJMiPK0WMax7/EtJPbw0TksxulU8RaNzzck3j2VREtXdBaOzM1zSelaCzUvSEK18zNTyqGn5HNv8pw7PnuvKaN1GhnK/hdz45gA+Fv0a/j2f5x8WtnHHCs5lR4pFQSPWAvXipFCYAHvdshhJmKq+7EBmEDu+FbNhCVo54WqoTYpRqo5UQav1t+vYIbkULmV7ecjtc8G4FKwgtCkwCMAm1CASkb/1hPXcoJOFhUHn6IGb4HGiyOxrFNyohNAqM6RaSXgKrTe9JYAPLti37FaWLpz7E5WNwCOq0GwEbayuc3bMQPUfMxL1HL/XyQyqV4N7puHYqbGkJrJQOuzg54Py+RfwWLYGVmsJDm35H/jyW87k1yxFY8QP89n0wjp25jm37TyHwXVyK94OzQhp2apchMz9nmVhl6/WCBBLcPL6KKwWMiIxC+Ub99JpCWKpoPmz/bzLXuSt3MWDcfL2mEPbs0Bgj+wmNlonAysy3KLHtyRFYz3bI8PGW8MvCX3XvYH2hG7yAjW51UDdbbu7vfT6cwZEIP5R/lRcDT9eEXYyVjiKZjQYF26nhUsJ4v2hYVhSyhjfWs4ZC9krouRI9eqHJyAjrmYMhe/2YBzZ69CKo8hezKKC37ZDi0ROBPOrYXo1iRQwnBtJDYD16LMW2nYINBfJr0K2LfiSY5PMHyF4/gvTpPUhfPYLU/2my8YllTdobdbao+CXnDJuwKH0T1yye9daSBL2OI7ii05+tpXZw4nprcdMQvdn/faDOk3iybHqBZmXl1ybKoFElJrC8aqqRt7Fh91SlBqbPkIP9P/6qV0eN6mkgw5Lzb+yny9gSJtzDvg4lMNG5fHrhSPJ8h3fHcSFK+FJ2Q646qGcb92+qqdeckDuYH3KHV9PVoTA2FapjEgLrfsxnNAg6qONS/C/ATO0ryc+8CEiC38F61hBIQ7/wTqhzeiL6lxVgwzvSu4jASi+CdJ4Q0B+BLEdgvf/4BddvPwIrl2Olhf6Bur0ksgqBxfqEfVe/NyQSCe6eXMuPCG3WbTxYZtrpXfM5IivhYmTf9AWbuWkLLFWSrU+fv6Jmq6HI4+WGo1tnJXn7Rkxeir/P/oM5E/ujUe2K/B4isPR/s2aGnckRWA/XyRDyRPjlY36j07jsI3xDcc27Dbzlcd/m/xx8BZu/PeH+7BJmhwWnm8MmMHENulsFNQo0V0NiGQO2MkN4RWWjzfS+kAYKdyhqwkouM8QUy3r5RMj+vcKLju4/FarSQv9AU+g0t8yEGSldO6lQqKDhJHF6CKyEkwjts2swekTSBJbs9RNIXz2A5Nl9SF88gDRUaA+QHHaqwmUQ23kY1G66A0zMjbUY9Ek/f4D0rR8kb55BEvCK+7M06JVRTGOEltojLzRsCqJ3QS7TQePslmbZIU8leLg26Qwb17IaFO6oH8mpNeDVawnWb0osr2plNRrUM4wMS8mpKgF74KcUerBuyVUXP9ia5u6N/HQJ28Oe8ebMcKmEbvaJs5jTHIQUDrZ79zcuRQmZfkvcqmNg7pImIbCYGcM+XcSusOe8RbYSOa7lbgMXqTj7t5kCc5JpGALs3werWcMgDdbNSI1t0AGxLVIvE9NHGxFY+qBEewgB4yBg8QRW8JdQjrDSklZ+AUIZCIOQpe+VLJqfa+hepXxJrnwuK6wT529g2MQlKFowD/asmcq7vHDNHqzacgjDerdB786JJ3qxsaJsvOiKmSNQvWJcyRdbrEE7a9S+dekElC2h26CUNdGv03YE1BoNl/YYvyEeEViWdduSI7DuLpIjPFDw9ZdWB/E0Vxx5nE0ix7O8XfiHs0JuY2HIXf7vox2+Q6t/yiLgjAxI8Pu0jasGRbuqkM3deDhevCxDtSqG/UJkPO0kSV8E2GRANiFQuyKnbIDGzUvf4wbts9o8F/LLQu+VmE7DoKz+P4NkiH3z+k1SvHotZD/17KaCT17zElgMoym/yeO3G8MvY1SwUX2D9OV/RNXLh5C+fgKWWaTv0tjZI7ZNPygrxWvGr+/hLLRPolRC8s4vbgIiKz8M+m8a4reQdKOgsbWDhhFb3vmh4SYh5ucmIuqT+fDqsBRvLyTdC80hvwYl+xr28/rkaQnOX0xMYPmWVaNFM+MQWIHKcFQI2MXjJocEz3y6mKzUbW7IHcyLlwU10LEUxjuVS3fcUhOg1KhR2G8roiHE4IZPW5RzcTUZgfVeFYFKb3YjJl7XrS7ZC2Omq3GnO6bmOz3PHAhIwkJhPXsopB8CdAyOrd4EsZ2M1zaGCKzMcR/ISstAwCIJrFMXbuHa7YdclhWbupdwebm7osp/hFWlcsVTnDCQGcPMssw27jyGpvWroFihvIlcuHrzIUZNXc5NZ/x9fG80q1+V38MIv4adxkCtVnMkVfmycd/gaTQaLFm/D2w0KOubtXftNC57S7u0EwxZfe2qOaPh4RY32piVJQ6ftBSs51bnVnUxfohAVLDnRGBlxhuWvM3JEVg3ZsgQ81W4L4M67cR7x7h+Hd9bu+GAR2Ne6NrQR5j4+Rr/954OxTDNuSJCXwFPtsoQ+023jEQiA3yaqOFRJf2/eNy+I8G+gzIULqRGx3ZqyKithmgvqM3YdjqlAFEzd0DtYJqR6or9a6H4ezuPRWzznoht2FG02KTFsFXrZAgIEN5bvXuqkNvb/ATWslVyIOA18sY8gE/MfZS2fQDrz2/S4hJU+YpBXbAklPXbG63PSZoMyeSHJOHfuLJDrgzxzQsu85GRXMZYGpdc/5FZ8Ygtd93St9tzZYj8kHRzdRsXDXzHGEZgrVwjQ2BQYnlFi6jRqX36/x1huGz99gRjgoWszUo2ubDHvZExIEtSxvZvzzAy+BL/rIVdPizNaZqhFvENuB39CU3eHuZfcpPZ4kG+jnB1tDYZgcWUJSTsWDRPe7VEYYVx+hmZLFAk2KwISKIiYT1vBKRvhIw9ZoCyfG3E9BxnVFuIwDIqnCSMEEgRAYsksErU6q7jtF02G1T8rhiXYVW1fMlUpwJk9jujbWDH/GBlgAV9vOBgb4eoqBg8ffmG6/fFyKe+XZticM/EI4gZAchK/pQqFUoU8YGrsyOevgwA6xnGmrdvXjweBXwSZzrMWbED67cfhUIhx3clC8JKocDdhy/wLSyCGy26ceG4RJMeicDK7LdN1/7kCKzLY3Xr/Lr+tBFRiriR6F2zF8Yf8b453R/2EgM/necFN7fLh2X/fRBXRkjwbKcEXx4l/jbeqZgahdppIP8/e9cBHUXVhb+Z2d30hEAqaYTeexEF6UVBUEBAOii2X0VRAVFQBBtIs6FSpCOISBeQDhJ675BCKiQkJKTv7sz85+2yOzObTbYmJHHuORzNznv33Xffm9l939z7XXfbD91ksEI1hfkLaeTl6w824aE8Ro1koVJWrjWqLLNxe7efhMcnf/4W8K7Flzt2ZN6KfZug2rjIqELb5XmoB//PEZXlru+iXxVIuSuY9carWgTbEdloawqhjqMp9jromKugoi+DvXENLhoh7cpaRxEiXq5WI3C1GoOr2QBcRF3wCil/nrW65HZWeIBjQd9LEoFasXri+AwpLYMVmoo04ZUq8MEROm6tAv8mOH6oaDS4oRN5gdH+S63VwxQUUPhytvk3E+HhPF4ZYxsYVtzAb6QdwtZcISXzwyrN8W6V5lbbaWtDUyL1Ni4B2Cx6MWSrPmvb/5p1BTMenDI27+cRiaXBXUodwMrntWiX8AfSOSES8wmXIPwZ3Nta0+V2ldwDlEYN1fwPJVyZZMps43YofGMGQDv3DaUMYFXyDSVPr1x5oFICWE26jkWjepE6sIr8I1UECEn5f0VYlgNJEdxz6DRuxyYiIzMbD3Ny4aJS6kpotmxSF4Of62w2Osvgo6s34/DLqm04c/EmcnLz4Fetii5l8PWR/cxyYxn6EZ6r1X/+gxvR8SB2hAT749mu7TB26DO68U1FBrAq1640B2CxhZSOgNcgWgWLl8YLVTdMuTqO5Kdg6L3dxvYdXYPxe1AviaNSjtGI3VIUxFJ68ag/nINXpO0g1va/aZw8JdVZvTqPMSM4uLrarq9yrWz5m437Gz0kRuUt+qfUjGRO7YPLsq+FPdy6E9Qvf1Jq4z0Oxd8vYpCWJkSlvP0mB38/26NRLAFYOu6l2Kugbl8BE3NFH8nD2QgaUBRYAnDUbAReB1o1AiHjrUhyQZ0Owt3jQyvhTat0/18ZhEQ8UIm39WmIJFIrKRZ0cpzdpPFJyr645va+0TVVVTeQqa0JjhN+T7SdzkLhYd0z+uo1Gr//YT4dkex3su+dIU3j10nAlW3BfdDSxd9h1eQlTkEGoHADFK4wzjtW+xAdEjcZ9YcoPHAy9EWHx7Ok4OXU/diVF29s9kW1J/Cqb8NSB7DIgH/kROPd+0ckJq4K7I6upcQzZskX8vVy5AGWhcuPUyWViol1bJ1mUL/zFXiF899MygBWOVp/2ZRK74FKCWA9zMmrdGmBlXUnygBW5VpZcwBWQTqFs6I33g+8cvHqiHXGiW8KfgbtXAKNf1/VPECPpC3GvxspfbEnpH8RR+XdpXB9FY2C+2YqU3VhEdHbugMNUXz3HoWffjEPcvv78xg7koOnp/X6Kteqlr/ZUIUFcHv3OaNhvEqF/IU7Ss1Q5vpZuCycbNTP1W2OgvfmlNp4j0Px/O8YPMgU7qX3JrDw9bF9z0sArDw16MRoMDGXQd2+CpoAVpn6ir+2COFJ4iLr6wArfYRVQ/CujleNssUGZ7cNiZNWPD4V+iKqKzycPUz50MfzoO+n6FIPqaRYPb8WAbfupxB+ghJtvOD2OdKUHY1t6hX8hATVs8ijaxg/a+s2De6hDPjQWvpKiCE1QVITzcnWHTROnzEPYHl68Jj0vo1gqplBTL/DPCkFboh4Hh1ZlLv/0ojZKthfpR6HhuM4HQdVzbhVEtVJNaTZCI6MW1zfxvFr8YBTGy/vDemPZm7VygTAIoP2StqKyxqhgEMthTcOhxbNLCiNucs6y6kHOA6qJTOhOHdUYiAbURfqiXPBq0qH7F8GsMrpfpDNqpQeqJQAVqVcqUo6KRnAct7CpnEFeMAWPlYOCHMAVnYchUuLBHDodkAaPhooAFRXw4fBhxZSfVLZfLRIWG90TBDjjjNhg806itcC0ZtppJpETpHGnmE86g5j4WoFLdLPSxgkm+FEMQxapQqPl0dz8LHjQO+8FZY1GTxAZWfCbZIQXUDSx/LnbCw1B5FIErdZrxn1c8E1UDB9camN9zgUz5nHIDtHALA+fE8LLy/bLKFyc+CVfA2KmGsouHYBfIxtZOuG0dKZYNxRNUKsqjHSfBpj1OQwUnHFNmPKcWvTZxwx9cB/kL9Hlz5KIrQIqJUQrU9BJCBXXo5u9XjQOOC1HRwlgJVP5IzBTZe3kKFsbVzh5rlT4ccKfFPkAufmDj6YkMZHAiG1wIXU0BHIz/vVCw8emOfTIv0+n259OmJxW+yXh5fxecZp4+Ve7mFYFtDNKTvy1joGaecF+z1DeTR9Ww+6NYv/Hfe5AuM4pQ2Kxmiz0DHxL+N4HpQCNyNGQKWgywzAOlF4FwNShAIbxJiyrMDolEWVlTjVA6qVs6GIkkZkk4hd9QcLwLvrq12XhsgAVml4VdYpe8C8B2QAS94Zj9UDMoDlmPuTtbl46d5uJGpyUQAWNRRe+Dd0oGNKHehtDsDKuELj+krh8HkmIh5fP7tHN0px4JRpdIKlN8kZl2jc+oMCSVcUC+PCo9YgDn5Ni3/Lf+YcjS3bpIdjv2oc7qdLPyMRWGNH8XalVTng0nLblc2ncPc4jaCnWDBlTDVE3U+B27RRRt/wVQOQ/8WaUvMVlZUBtylDhPFKGTArtYmUoPjrOYyR/400m0qq/1lInaVT4nXpgPTty/roqnvSKk/WzINXKMCF1wEXqU8HZGs3xuff+0EjwhE++pCFm5vt0WDWjP842pwpTEW/lJ2SobcH90ELJ6SYPY75OHtM+kGaDtTKupyLC+eEVGEXLhUdc4bgquskJKsEQvQGBfMQot5mlRkZTCDuKmoiRVkTKYraSHONRDLCwFP65/3HU1i4qBzbayPu/oMDBUIBoVlV22GsdwOr7LPU6OwcEnUsfDe5VOXRarIewHo2eRtIaqpBCAcW4cIqLVmXcwsf3BeI47u6hWBVYI8yBbDI3EzTGKvSLjgWOghetPPTxErLl7Je53hAueEnKA8IoCrRylULRuHk78B7VXHOIMVokQGsUnWvrFz2gMQDMoAlb4jH6gEZwHLM/Q+4QjSOF9LxFBSNOxHCwd4x7bb3Ngdg3T1BI2aT8IP7QP2b+KmLnqS9s1sI1gRKuYzI5/XurEEOryd5J3I9fBi8RFFa5iwrzARurGaQk1D07XpAaw41n+dg+nuWEPrO/Y5GYYHQp0YNDuNGcdi0hcb5C1IQy8WV110LDnLsgGO7Z8tfj7x7wPl5Ch1pfsjTKFMgixxuXWe9anRKqUdE8Tzc3+wpWYS8n/YAokqs5W+FbLNo5tcKaIRMIEybooVSBExKyNZvXwITdw0k4spWIYcIkgKoSwWs1VAHXpmSrf+8mEFyinBPjhvNokZE5bnnTAtVEB+uC+yJp90qFo+XrWtva/s7O2kkHRKewUENs1C33jHcOeGHO8ltjOpqFK5C7cJltqo3ttdAhXuKCNxV1kTdLpFwqR0JLiQSvLevzTq1PIc6d1ZDDYFL60DI86irdPzwrM0HTn4m5UojLw/azdSjva+k7sffIj6qH/yfxgseNW2eg7Ud3r1/FH/kCNXdpvi2xNs+TcscwIrTPsTTiX+BhfCMeM27EaZXFfaItXOS21VcDyi3r4RyhzSNlvP110VecVVLD8g1eEwGsCru3pEtr3gekAGsirdmlcpiGcByfDlNo5VuRgyHB/V43jyaA7AS99KI/0c4hGxufgFr2uurFr3h3QifmPmR+WTin7ijFSqRRYUNRDhjOZ+J54D4PRSSDjIk/0Qi5E11/ZEsPERnxK3baZw+K9hGspQmvMXCt4q+846/aZwwSU9UKoHRI1iEh1WeA7U9uzDrFoUrS4TUUAOQFdyBLQIU2qO/pD50zDW4znnH2ISrUQ8Fk39w9jASfSRlkaQuGiT/6/XgfazITy3Gqn8L7mJX7h085AvxkNWgh0cYhnnWLdU5lKT805kKCR3RrLeS9VFVt6/oo6wcIVuv1VhPtk6AKyvI1v/czODCRQHA6vssh7atnUOu/dgcLBr4x6xL+PLBGYkpSwO6ord7eHkwr9zYcH6BAnkpgjn1RnKo1pjTRX7G/CU8twNq30eDmvtAJUWDTowFlRIPSitCY+2cka6yZWhNXTVEPozwa0WCrx5RYnVL05S2QMYNZ8OE6E07TdF1y7xN4eriolyNT3yhBa0ApqefwNLsa8YhPvZtjTd9GjsyZIl9n0r8E3Gi7+m/gp9BW5fAMgewiJGfpZ/E4uyrEnuPhw1CGFN6KWOl5lhZsc0eUB7YBOUGoVIwUUDu38LJ34PzC7ZZnz0dZADLHq/JfWQP2OcBGcCyz29yLyd5QAawHHdku8Q/kKjNNSo6EvICaip9HFdshwZzAFbsZhopUcJhY8VTJ7C96SWd9gV+HfCiZ+0iI/VN3o5zaoHseWtwH7SyIb3mYQyF62toaEWcPoZBavTlUL0jh6RkCr+IABhyvdPTHLp1lh6Ujxxl8M9+k9REGhj+EofatSrPodrW5b5/lsbN9UV5iXRAVmcg+MnSA7JMSdXZes1R+G7pkqq7fj4edEqc0U35H/+sI422V2ZlnMaih5eN3UnlLFJB67EIy2LJp7GI0FxBhPoyaqgvowpnH9k6XacRXOo3QWFEA+SF1reLbP3oMRp79gp7q20bDn2fqTz32uT7x7A656Zkqef7PYXBnnUey/KXx0E12RROzZKCNe0+Z0HSwjNv0Li6TNgfPrU5NBov2h8cp0tnpZNjdNxaOo4twq+Vker4VGlaB8JyIbXAh5JIrZr6aK1PEvbkAAAgAElEQVRqQTrdszPPYWHmBeM4gzxqYaG/QELviAFJhxjc2Vk0wrjNJyxIBd5fsi7j8wcC99Zor3r4slp7R4Ystm8mp0aj+LXG6wpQiI4YCRIFXpYcWAYDsjg12iVsQDYhxnwkz7qHY3FA11KZv6y0/HhAcXwPVCuk3/+8mwfUHywEWz2izAyVAawyc7U8kOwByACWvAkeqwdkAMtx9z+Xsh1nC4XD5sag3mjvqv8xXdZiDsC6sYZBuiia4vuuB3G4nj7tYFdwXzRx8Sti5qjUfdiXl2D8fEVAN3R3D7NpOto86ACWzOtFQRafOhyOFFJIThcOA97ePN57mwVjphjhmbM0tmyX6iHRWkMGcmjQoPIcrG1xMEntISk+xUlpAlnMxSi4LJpuHJpt8gQK35xpi/k2t3Wd/yHom+eN/Qrf+Rpsg1Y26zF0mJoehRXZN4z9CV/L9fDhduuzpSOVm62Proq+AjrmKui466DE+YNWKiPcIlytBo8qAzbSVYCr4uUCd1cFMnPUyCu0r6LbjZsU1vwu3IiRETzGjrZPl5VTKdNmw+/9g4P5AkcSGXxm1XYY5ySepDKdTCkNlnqKwu2Nwh7wrsmj8Wv6PZCbBFz4Tkilc/Pn0eKDkvdHYjKFlb8WIlh7G9U1MQjhb6NVtRhwCXFQsvkOz0JXKbN6JHo/0xSnvQS7i3tJY8+AN1bRSL9c9Jnb7F0tPIKBbblxeD3toFF1d7dQrCglUNx0LMK1RTi3iDwOAIuMu/jhVXyWcVLi2m3BfdDShpdf9qyL3OfxeUBx9oiu4qA4fJhXuuiqDbI16pWpYTKAVabulgf7j3tABrD+4xvgcU9fBrAcXwFTAtNF/p3QzyPSccU2aLh2jQbH8+jRUV+eWLyuV35hkBUjAEWz+v6NC2FJID/DYyJGQfmIPFc83Hv3j2KDiFtjnt9TGGJndAIpOx67gwZvcr4pBHDBFch4dNYYPpRDvbrFg1Fkjuv/pMGZNOnfl0Orlv89ECtuG43ko5Yrw5UGkMWc2geXZV8bt4y2dReoX55qw461valq6RdQnBYOh4XjpoBtY39lMdM9Tiw6GfoiQhQethtnoYeRbP3WJX06oD1k64wSXERtcDUfka2TtEAzpLhVPJQOA1gPMinM/04AAdzdgSkfOF4dzumOtVMh4euJ1mZJek/2bYl3fJraqbHydTN98RHem0NoF/1zlgQcn/xcALBoJY8nZpUMYB06QmPfAeF51agRjyEDWWzfSSH6eCqCtdEI1sagRdVb8MuLBX0/WXIotsbDeUoFQt8bDF7EjXdj9SFU8w3RR2mRdEQSsRUYCtBm3pRYGOT0VwzUmUUjsBqOZ1GlNo+zhWl4LmWHUUtDVVX8U72fNabb3GZaxgkseyikK77l0wQf+eoB/ccFYBH+saeS/pREpDdWVsXukNLxgc1Okzs41QPM1TNw+fFjgBPufVIURP3212DrNnPqWNYokwEsa7wkt5E94BwPyACWc/woa7HTAzKAZafjRN0+So/CSlEkx2dV22K8d0PHFdug4fufaGRk0JjyngKR4SSySXijfW4eg/x7wo/uDwdvQly1DNRS+OBw6AtmRzFNr/rYtxXe9Glig0XSpnl3KVxbTqPQTPn0GAUPriGPUcMtg1C3o2msWUeDNWnavSuPpztUnggRaxx9cw2D+6LIOt9GHPKSKbM+JvqcCWQpjuyAau0Co5nap56BesREa8y2u41qw49QHNhs7K8e+Dq03e2v+Pla2kFszxVSEonixQFd8Ky7YykPOrL1mOugY6+Aun0ZTOw1UHn2ka2ztRqBr9moWLJ1c850BoBF9H72hUJ8LkFlqURImPNqxK2A1oSkTwwA2L1JK1HHE58yYEXFNZpNIPyFAu9g1McKiLLF0G4GC6aEqpm/rWAQe0f4Hurfl0Wrljz2H6Rx8LAAbHXuxKFrJw66+ygpVp9+mBCtT0FMiinxXtpZOwTDB3Y2rkLd9CycWLK9yKrwjBJ8cJgOzNKBWtXJfyPBeRfPqafNo3ByhnnQq94IFtWa8LinzUPLxA3G8XxoFa6GDyuVXdEreRsuiyoeiqOkHxeARSa6Ky9eV5VQLM6MgisVZ8pKbfYAE3MFqvmTpFx3NI3C12eARGQ/DpEBrMfhdXnM/6oHKiWAlZObjwtXo/FUG/Pkldk5efhl9Tacv3wbCgWDbh1a4qUXukFhLnfov7ozymjeMoDluKPnZ57Ht5lCatOb3o3xcdXWjiu2UsO1GzTWPeJC8vQAZkxRIlcjAFjkTbmIoguvjVqLDI889PWIwC/+XcyO8lPWJXwhIjl+w7sxPnFwTpwGiNlMI/V00agh1yAeDUezcLWCkzs+gcKK1Qw0QpFE3RzateHQpxLx9Fha/ks/M8iOFQ6EjV/j4BXBIe0sjYR9xQNZSg/CkcUjqH3RqpCWxjRcV+z9E6o/fzY213Z9AeoX37S2u13tFH+vgWrrcmNfTa+h0Dz/sl26SKdRqXuxLy9R0p9U8CKVvGwRKiMV5Me8o2TrKUwkYlWNcUfVCJl+jTD6/UBbzDC2dRaARfjpCE+dQcaOYhFZo+IXTkhj89E8YX0R347xqo8vqj2eg5ddC12KnbLjKFxaJCoQ4cGj7XTpC4KzsxkUiFLAm0/Uwr2YLcuywMyvFJLo2fcnsPDx4RF1gsbfu4XvBEvPcfpBmh7UImBWYozuvwyJaORYTO7eGr+2EtKWxp+5gdl7BU4qSy7TkcaH1ABXvRb4sEfk8SE1dKTxGdcoXF9uHsAiFXbJ89QcOBodMQKulLRyoSU7LF3P4bVocGe1qM4icCNiBDwfjfM4ASxi+8CUXTheeNc4DUKkTwjdVbA96s2SL+TrZe8BUlDE5dt3QRVKU3/V4z6Cts3j4zyTAayy3wvyiP9dD1RKAGvHvuOYNPNnDO7XBZ9OHC1Z3dy8Agx+7TPEJQhfbqRBt44t8d1MoarVf3dLlO3MZQDLcX+vyb6BSelRRkWDPGthoZ9zSGOtsW7RLwxSRBFWYSEUxozWQKnQZ2BETSE/GoWD6IuvL9H9+UGV5nivSnOzQ6zPuYWJ9/81XhvsWRvz/TpYY06JbRISKGxbzKBxIWD6k55W8ag9iINfM8uHZHKwXr6KRmGhNJ2jZXMOz/ezHMnl8ETKgYKzcxgU3Bfm3+J9Fm4Bj3zHAvdO00jYT5lNeSHmKz0fAVlP2A5kKXeuhnLbCqMXNM8Mg6bf2FL1SpGoryd7Qz3yfbvHfPHuLhwrkH4PPe1WHesCexavk2XBJNx+FF11Vc9jlWkH2bqrG7jIBuAiG4Kr3QSp3g2xcKlQrcvfn8fbb9gXUegsAGvTFhrnLwjAAgGHCbhQ0cU0zcswn7J+bpdnP8bvoZG4T1h7/1Y86gyW7sfLvzAgxToM0nAciyr1zD+7b0XTWLVG0Fe1Ko9339Lru3iJxkZRRcOmjTkMGmDbPqO0WlB349Gp4BhuKoRU19WbDqHPLSlIbbPfKQpcQAhiXMch7oH5Fz5hPTiEddfbbFrBd39If9RT+to8bEkdCH8b4XEzSAOVL/ZW72/8+3EDWDc1Weia9JckxvH9Ks0xsZjfG051jqysVD1A30uAy5wJIDyOYtG8NAGap/uW6tiWlMsAliUPyddlDzjPA5USwPrg80X4e/8JzPhgLAb17STx1oLFG7F4zXa4u7li/PA+0Gi0+G3938gvUOP7We+gawfb3n47byn+m5pkAMvxdd+bl4DRqfuMiiwegh0f0qjhxi19Sp2pNKjP4aXBHDTZwKlZAlSU41KIseNW6ZqXlC5lOqdu7mFYGWA/35DBvp9+YXD3HgU3DmheCPiYOaf4teRQe4BlUCU1TQ9i5ZhUOmzUkMeQQfYd/p24NKWu6vgnDDiNcIBsO0MLhZ4CzSgkxYdEvOmArKyi3C2kIQGyQrvwCGxn2ecGxcrNS6Hc/btxHBIJRSKiSlOcTRzfJ3kbzotScIjtJRG5mysTbu18SYU0tlZDI2DFhdaUdCUANAGiDVI9mMfr4+3bw84CsP6NorH7H1ElwtYc+j5rG7BgrX/Kst3W3Fi8kXaoyJDPuIdjiVwxTeeXi98zyEkUnhd1X2Lh11wKTt1axyDtvNCm1kAWgW3NA1i79tA4dtz8XjIFt2rX5DBqhO377D5XgGbxwjOJWHbL73l4JsaCTrwNiqQjJsaAToy2a7udc/sS6UrzFQVDwm+jZs8scKF1MCjrsAQYXxXQHV3dQ+0as7hOppUWTasdPm4Ai9htyjHoRinwb+gABDLuTvWFrKzsPEDfT4FqzgTQDx9IBtW8MB6anoPLzpBiRpIBrMe+BLIB/yEPVEoAq9+YjxEdl4R9f8xDkL+QE5SXX4DOA98FicJa8u2HaN+6kW6pt+05hilf/oruHVth4cy3/0PL//inKgNYjq/BBXU6nk3eZlRUX+mLfSHC21DHRyheg2n0lbhlp44c2jfgcH6+AGAl+WTi3WEbdc2OhAxATaW3WeVnCtPQT0RG29LFD9uCHXu7dvwkjZ27hEMMxQMD63HIOU/DhI4GLlV51BvOwtPC7/6sLApLV9DINCHWrVGDw8hhnC4KrTIKWwicmC5MjqJ5tP+qeMCDAFn3TtJIOEBB89A8kKXw5BFmJZClXP8jlAdFfFRD3oK2c+nueSbmGlzmCFG6pMJR4eQf7F7eLkmbcVOTWaT/sZCBiFB6FflctfJbKKJ2WzUeSyKrajYEX7sR2NpNQFKTShISmbj4NwHACgvjMX7s4wWwbt6isHqdYFONCB7jKkElwh+zLuFLUXq0YV06ulbH70ElRN9ZtfIVv5E2Hzj5mThql0fbz1go3KRzIxVQSSVUg4ijkEy98OPPCtxLFT4dOphDw/p6kIpUJ/x1iePg7R85t/Hu/aPGQUr6ziJcWnTKHV0KIp0cByoxGiQ1sSQ55PkXNHQVs02C1PvRuEBfhfX1Fzpjfd0QY7vZdG0MD3c8elk88KC7uxAlih790e9pPO8pgOLlAcBK5wrQLmEj8kVEaS961gbhw5Kl4nmAfpgBl9nvgEq/JzHe0VR+Z3pCBrCc6U1Zl+yBkj1QKQGs9n3fRH6hGuf2LAYlqgazaedhTJu9DE+0bIil8yYZPVOo1qDtM6/D368K9q6fK++ZMvSADGA57uwUNg+tEwTi1qqMKy6FlW40CrHatNS9uZkMfJJDriiK4lrwXUx/fruu8mBcxKhiJx+nydZVEzJIhMILx0LtJ8zOy6cwbyENtVqUclKfAznIZEVTuLmWhsYkkorQZdTozaN6R1acAVnE5pxcCsuWU7ifLo1EC6nOY8woDi4qyymJju+CstVQkEbh7LfCoc+1Go+WkywDHqQS5N0TNBL3U9BklwxkEU4XqhjKElMwhxC4EyL30hQqLQVu04U9y1cNQP4Xa+we8onEjUjQFiVX/9m/E54zU0XU5cdPwFw+UWQ8UglQSrZeF7xCaZNdMXEUlq8UnE24pgjnlD3irAiszCxyzwo2ubnxOiL3ii6mRTcM83EGSF/RfUPsTztH4dbvwrp7hfFo8ijdTzy/FFJddqvwzCXRVyQKy1TI83n2XOmD5JOPtFA9ukUyHlBY8L1wvUoVHhPfsX2fTUg7go25QnQVqShJKktaK1RBPqikaF2Ulh7YigGdFKfj+cmnAvGvlxDdZaqzquY0WuZ/qPv4i45N8e2TQsGTiccu45Oz0dD2fAnaLv3BK12sNclsO1Lpr+6dNSiE4KNzYUMQwAgIY3kAsIjx8zLPY66IH5R8trt6PzRWWUF26ZCX5M7O9ACV81CXNkinStNxNR37QjNsgjOHckiXDGA55D65s+wBmzxQKQGspt3GwdfHC4c2LZQ4Y9Q7X+LMxZu6KCsSbSUWEpmVlZ2rA71kKTsPyACW474m8EhY3HJJENGdiFFQUEVT+xwfTdDw82IGySkCCFGnNofshzTuit50h3BAExHPZlTNGMzrtR/NVNWws/pzxZqTzalRP36t8bonpcSNiOF2m//nZhoXLgr+IPUa3nubhbe3HlwiFZ5urqOQebOoz3zqcKg7lNeluhUn+fkUVqyhkSwinSZtgwN5jB7Jwd29coFYhLydkLgbxLsGj8Y2cialHKOR8A+l8705UXrpI7KCniqazqNaMguKM0Ialnr8J9C2lKaL271ZiulIqQvgNkHYs7xShfzvhJL1to7XNOF3pLMFRboVV7CARH+RKDCDaAa8Crb5U+D8q9s6dJH2pmlU5F4mEYT2iLMALDL2rK8ZCeg86X0Wnh4V+14aeW8v9ucX5UWqo/TBwRDzVVntWYeK2ufmehr3z4ojq3iEdS8KKGVcoXF9pdCuSj0ODccV3bMXL9PYuEloFxrC49WXBX0FhRS+/EZ4lrm48Ph4su0AFkkfJGmEBtkQ1AtPuQY7vAx0WjIyTubi6uEGRl0KLgdaWuCs82JvoV3uq7rrK5rVwru9hWIAgy/H4pcdx3TXCNiteXaEQ9GqptHRoQoPnAh9UTLP8gJgqcHiiYSNuMcKP0JauvhjW3Afh9dFVlA2HiDArsu8iaATbksG1LbrBvWYKWVjhJWjyACWlY6Sm8kecIIHKiWA1aH/28jNL8DZ3b8aI7AIaXufkVN0wNaBPxdAqZC+kesx9APcS8vAxX3LnOBWWYW1HpABLGs9VXI708PwqdAXUV3h4RzlZrTcjqaxUkSKS5q89QaLUH9XfPaNBgWF+k4RaqCBqFrf7kbXsOTpfzHEsw7m+T1Von017qyEhhcOJCRii0Ru2SqkauASUXoU6d+9K4enOxQ97KQcpRG7k4bo5bJuOIU7j7ovcahSt/jDs1oDrFzFIF7E3UL6VvXl8cpYDp4lAGC2zulxt79/ngB+wjO0WlMO9YbbDniQypB3j9NIOkgVjYB7NEkDkBX4hBCR5fLjx2AunzS6oeDNmeDKoHS221u9QZGSZo8kf/4W8K72carUiV+NPE4gfDbofMo1CBuCehdZYhL9RaLADFLw6TJwQWFO2QrXrtNYt0G4twwcdvYodyaA9etSBolJAsA5ZiSLmpEVG8DqnPQXbmmyirg2mHHH6bDHz+Niz5o7s8/Jzxloc4U1b/I/Fl7hRdc8J4HCxR+EZ5B7END8vaL306YtDM5fEPSR1PZuXaTPqumfS3O9Z0zTQhS8b3F6tzSZ6JwkpDSrQONWxAinvUS6s4tC0gFhrn6NWdy/LALd6AfooBkFKjcH+yKDMWiwUIntqfh72L5ur2QOXNUAaPuMhLZdD8DG6tuLHl7GrAyhsuJAj1r4zl9aNKa8AFhk0qapneQzwjVHOOdkKd8eoDRqqOZ/CCb2qsRQtnE7FL4xA6DLV1VJGcAq3/tJtq5yeaBSAlgvT5yN42ev4rf5U9C2RX3dik3+4hds/ycKY4b0xodvSNOrOI5H696vwkWlRNT2nyrXCpfz2cgAlnMWqEfSFlzVCMSWO6v3RTOVn3OUm9Fiyn3VqAGHIS9yIF/g12/xmPujVleBsLYaqC0CsP5ofRYb2pzFZ1XbYLy3noOuOGmZsF7y5vRM2GAE2UjAynHAD4toSXofSRF5939ssb99cpOB66sYFGYUjQwK7sAhkhBJF/O7iWAbq9fRiI6RAm0k0mvcKA6k+lVlkOQjNOK2C3MMfopD5KPqiztz76CpSzWEKoQIAUtz1gFZUQwSD+ij4cwJAbJCu/IIasfBdeEHYG5dMDYrnPgt2DrNLA3j8HXXT0aBThdApPxZK8FXsy/KIiRuuVl7SCl6UpLeVNwmPg8qP9f4cf7cv8C7W+/jkiZ/6TKFPzYJm7pJIx4vmknHssaBzgSwNm9lcFZE1P1MLw7t29kOlFpjd1m1qX1ntYSXxzCuN63EtXD7o0zLyv7SHIcQtxMCd4Mwrnr+K3NgkvohcPoLAXgiHFltPysKYH3zLYNc0TOF8KgRPjWxfDNXgVzh1sKkiVp42nBrLcu+hmnpQnpvJ7dgrA3s5TRXXVlMI+u28LytM5jDLRHgTAZ68hutjkcr+t4NdHAVolUiMnNw/pctZm0h0Zua50aDbSMAXpaMHntvH/bkJxibzfZ7EsM960q6lScAixjWK2krLmsyjDaGM56IChtkaary9cfsAdUPU6G4ckpiBVu/BQonzH7MlpkfXgawyuWyyEZVUg9USgBrw7aDmDF3uY7AfezQZ3SE7uQzpVKBv9fMRnCANP/9RnQCBrw8DQ3qRGDj4hmVdKnL57RkAMs56zL87h4cLEg2Klse2A093JwTnWFq4a3bFFatlSI4JPoqwJ/XAVhENu8qxPa/aTQqAMJE2RhLOxzDriZX8XtgL3R0K/ngbwrK7Qnph0ZK27grjkXR2CXi4CK2jR3FIbJGyYdgAqhE/0Uj7UzRiC/3YB71R7JwrWZ+7VgO+PMvBpevSIEYwuEzbjSHwICKD2LF7aCRfFhUlr5nIVY3P4XNuTF4wKlRjXbB2qBeNnONEL+nHGOQdLBkICtSux6hqctA83p0tGDKj+AipIco59xZUi2u37wNOu668cPCDxeCrdnQ5qEKeC1q3VldbL+joQMQqRAKHFBaDdzeflbSPm+RUMbeZgNMOpAIFRKpYpDmzXgM6G97GhXp70wAy/T+bd2SQ7++FRfAyuAK0SR+XbHLlVRjjKNLWaH7J+6jEb9HeK74NeNRd5j5fUhekERNZQBOeM62m6kFoxJckJpGXmAIIJdSCUydrAVj8lj/7kcG99MFPW+9oUWAv/WuHJe6D7vzBFBnWtU2eN3CCxrrtQPHP2XAFQj2tZzC4uzX0u/gJ2ZpQSuBPF6LOibPlrTjOWCO7gTFit4miQxgq0eAfW4MtM0tE5w3jl+re8YbhKS9kvRXsZQ3AOtE4T0MSPlbYuOnVdvgVSeukS3rKbe14AGOg2rJTCjOCUURSA82oi7UE+eCV5mUOy4nDpUBrHKyELIZ/wkPVEoAS6NlMfKtWbh0PVayiB+9PRwjBvYosrALFm/E4jXbMXxAD0x957/9BrSsd70MYDnH4xPTjmJ9rvDW1dxbUeeMBJim9ZBqToQMnYjhC5ys6+ZtNPgoGoGi88e8nvsQVSsW58OHwp8u+UfIS/d243C+EO1iDeglnmNODoUFP0iJ2xs34jHYhsiS+xco3N5IgxORv5MxyEGh5gscAlqZP0yTw9WW7TTOnpOelFQqHmNHcggJqdggFiFZJmTLBknpl4B3QqQV8kjZ8p8DOqO7m+0l3HVA1lEGSYeLB7JUXBpqFq5Fdc0OqKcvAhcc4awtXqwel5+mgbl03Hi98LXPdDxUtsoDthCNE4oHMn70fxrPewhVvajMdLh9JEQO896+yP9GKNxg6/im7U+dobFth7BXW7fi0K+PfUCRMwEsU7A8PIyk49oHrDnqI2f0N60Ya6ozOmIEXKlKWrrUCgdeWsQgO07EqziYhX+r4p+Vp79ioBZVgG35AQtXf6F91Akaf+8W9nXdOjxGvFR0/5AUc5JqbhBzUVolmV//zmpki6rd2fOypTj9pgUzSFRauxksTn/JQJ0l2NxqCgsXX/3cG8WvRaYIZCIk60HZuWC2r4Qyag/Amb+HuPC60PQfC7Zha7Pm3NY8RKekTcZrvrQKl8OHFWlb3gAsYuDLqfuxKy/eaKsXrURUyCD4Mo6R2luxreUmNnpAtXI2FFHSFzRscATUHyxwWtSxjSZZ1VwGsKxyk9xI9oBTPFApASzimbz8AixeswOnL9yAh7srBjz7NHp2Mv+lTNILk1Lu45N3R6J+bTkv3ik7y0olMoBlpaMsNPvqwRn8kHXJ2Op93xaY6OP8lKroGAorVpuPviKDiwEskr63f4YC7iKe6k/77UB89XTciCz6o9d0im+mHsKWPAGENj3UW/Lchk0MLl8WfuArFNBVl7KVi6ogA7ixmkGuiIvHMDbhfqo9iENxv4H37qdw+KjUX8QOQpBtKQrM0vwe5/Urixlk3RZ8e/LFK5jjF2XWJEfAVFb9CMg6ArDFpBYSICuslwoBnT1Q2md/1ep5UPwrvMlXD5sAbce+Ni9FojYH7RI3FtuPRAaQCAGDUAnRcPvydePfXHANFEx3XsER04M+SdMj6Xr2iDMBrKxsCnPnC/cPiaCZ9lHRNDF77HwcfXbkxeHV1IPFDm0NsP847C6LMbX5wMnPyFoLz5U207RQlpDKd+knBtl3RJVlx7OoUlsAsFatY3DrlnC9d08OTz5RdF+v+Z3GDVEBj5cGcyA8cNbImcJU9EvZaWxahVbhihlQxxpd5tqYVmUkPIwNX2Zx4TsFcpOEHk3f1sLz0buCnklbcEVEKUBIywl5OREqPQXKbSugOLkfujx/M8JGNoBm4KvgajWWXF2bcxMf3tcTwhPp6RaG3wK7FdFQHgGseG022icKlY2J0eO8GmBmtXb2Lo3crxQ8oNzwE5QH/pJo5qoFo3Dyd7oiBOVZZACrPK+ObFtl80ClBbAq20JV1vnIAJZzVnbpw2uYniFwcIz0rIuv/Z50jnKRFtPoqwb1OLw0RPihLwawSLfTpIrYA+EA8d7QjeAK3bA5vDdCqpcchTQt4wSWPRSqrn1etR1e9hYqMZU0OXPE7b26c3jqSesOJaa6eRa4s5tC8qGi5FfkrXe9Eazx8GDa98RJGjt2SSOxaBoYMpBDgwb22eP0hbVR4bm5DPJThXVdO+ow/vK4WayWN30a42Nf8y8QrBmaLaCQ8i+ti8gi/29OVD48QrvwCGzDlRqQpdq8DIrdQuQU4Y8hVb1slZuaTHQRkT6b9m/nGohNQc8YP2aun4XLwsnGv7k6zVAw8Vtbhy22/dFjNPbsFfZohyc59Oxu3950JoBFDJ75lQIaUebTB++x8PaqmBGMPz+8jJkiAmzTBTkaMgCRSiF11GkLXAEU3b9I4eYaESl7daD5hJLByhtraKSLqsvWHsIioKV+b5BU7i+/ke6dt17XIiCgqDP+2o9eP8AAACAASURBVMrgnIhrrX9fFq0e6bHkugWZ5zEn87yxWV+PGvjFv7OlblZfj91GgxQXMUhoNw7hPTlcWcIgSwTONRzHoko9/dzH3NuLf0SVLn/274TnPCIlY9L3EqHY8hsU5w4XawvboCU0L4wHF1Zb1+adtCP4Mzfa2H5a1dZ43VsKcpGL5RHAInZ9lnESix8KhOAMKBwOfQE1ROnaVi+M3NDpHlCSCMEdqyR6OV9/XeQVKTxQ3kUGsMr7Csn2VSYPyAAWKS3M88gvKISCYaBSKSvT+pb7ucgAlnOWyPTNfi/3MCwLKPpm1JHRYmIpLF8lBXDeeJVFcJBwmDQFsE5MU4BE0Rhk3JhVCI+rha6X2+OtN0quzLcw6yJmPzhr7PueTzN84NvC4hRIdsQPP0uJ26tV4/D2GxwIcOSIZEVTuLmWLlIxjxRHDO/JI6QzKw4gMA51/gKNTVuKDj6gP4fmzewDChyZh6N9T36mAImYMMi0lzfhukogyTWn/wWPSPzg38mhoQl4lXyURvKePLCU+SqbpQlkKfZvguqPRcY5aDv3h3rIWzbP6aI6Hc8kbzP2C2DckCoq9e5OKXRVzAyiOHUAqmVfGv9mW3ZE4fjpNo9bXIeDh2jsPyTsz86dOHTtZN++dDaAtfg3Bgmi9K7RI1jUqlkxAayP049jebbAoWa6Hs5MPXPa5igjRbc3Mkg9JYDToV04hPcueQ/GbqeRckTYt6Q96Uck7g6FZSuE7ysPdx6TPzCfOrf7Hxr/Rgl6CHhLQFxrZNDdXYgquGtsOsfvSQwzITW3Rk9xbUzTKuuTYiCNONxcy4CkuBukzlAW/i3098Un6cfxm2ifTa/aGq+ZAZpIWzo5FsrNyySp0aa2sE3bQ/P8y2inPYV4Nsd4eUdwXzR3KVosprwCWA85NdonbpSkV/ZwC8XywO6OLJHc1wkeUB7YBOUG4buVqOQ9fVA4+XtwfvYVSnGCWTapkAEsm9wlN5Y94JAHKiWA1a7PG2jbvD6+/2KCVc7RaLRo3fs1NG1YE6u+/9iqPnIj53hABrCc48eThffwgoiktIWLH7YH257aVJI1ptFX9epyGD5U+iNfkkLIAsenCnwuPHgMfn0pOkZ1RN3b9RAUyGP8yyyUxVC+rMq+gSnpQlraaK96+LJae4sOM40mIR1eGcciPNQ5h15NLnBzHY2sW0UBKe+aHOoO46DyKmrmtWs01v9Jg6RWiqVPbw7t2lp3WLI4+TJoQABC8bpSNI9Bry2VjLwkoAveSj2MAkgPjO1cArEisDsI/4jdQghe3xqIO6oXEa8aWCKQFdaVR0Br50VkkbQb1W9fGU3XtuoE9Suf2DwVU1LhJ1yCEK3JRBon5NuKyZEVBzZDteFH4ziap/tC85J132/WGLd3P43DoiiP7l05PN3Bvj3pbABry3YGZ85aTgOzZp6Pu41pBTdTezYFPwNyj/wX5eTnDLS5wjo3fo2FtwWgkhSSIAUlDBLUnkPN5/X7dt9BGodEhSaaN+Ux4HnzABbZ++QeMIi1EYj5vBakqqRYosIGIpwx8wVgx6LyHHBiGgNOWzStMnYLjZRjgs01nuNQ/dE9+/PDK5iZIVRve9mrAT63kCpH37kJ5ZalYK4JL43EJt/zdEP9/w0wfuQKBtE1RpqdVXkFsIixphUjyWc7qz+HZqpiqrLYsW5yF9s8oDi+B6oVcySdeDcPqD9YCFJgoKKIDGBVlJWS7awMHqiUAFajzmPwRMuGWDpvktVr1O3FiboorGPbhEOC1Z3lhnZ7QAaw7HadpKMpv0OowgMnQl90jnIAMXEUlq8sOfqKDCYGsAofUDgjqpT0wC0Pr45Zi347+8P/vp6Pg4Bgw4ZwZsuk78y9g/FpB4xz6OMegV8DupQ4J0LcPv87BhpR5kmzJjwGvuB84ufkIzTi/qZhgtFA4c6DlDn3bVAUMIuNo7FqLQ2tSWbM0x1YdO/qHIDNaYtejKKCDApnvxH2Au3DYuCw34ytSfU8UkXvXGEaRtz7R/K2mzSqq/TBmsCeqK4wH0Fl0f68bLi/rz9IaSlPxLqPQKLbYLAmRPsGPaoqPAiQFdiaA4pmgFocTtzAWal8BwuSMPyuQFLb1S0ENCjsFaX9fOf3NAZ66oncldtXQLlDOChr+oyApu9om2wvqfHf/9CIEkWg9O7B4cn25QPAMuXnIqldJMWrIoppZVXTyLtVgd3R1Y6iBxXRF2Kbc1OACwuENxm0kke7z1mQyNaSJP0ChRuiiri+DTg0GKPft6YvXAh4RUAsc3L6DIWtO4SHQ8sWPJ5/zvIeI5V/SQVgg4QpPHE8dJDTlsPULyovHq0/0duVsJdGgqjCbkhXDhGPeOu25MbizbRDRjt6u4djaUBXq+yioy9D+ddSMNGXJe031w/H2P4djZ91UFTD+tDnzOoszwAWMbhD4ibEah8abTflHLTKUXIjp3hAcfaIruKgmI+NV7roqg2yNeo5ZYyyUiIDWGXlaXkc2QOADGA92gXt+76JvPxCXNgnjSSQN0npekAGsJzj3wJei1omb4KdWZKdpGKQlAyD1K3DYcRLRQ+4YgArJ5HCxe+FQ8Gdahn4YPAmjF47BgqtcFjp1JFDt0dpH2JvnCi8iwEpu4wfkSiVP4N7l+iw9X/QuHJNOPWQqn8TJ3BwdysdcCg3Gbi+ikFhRlFepuD2HMhbccoENElKovDbKml1RDKpli049O9rHsxzzi5xjhZSJYyktRiEDSnE0H4CbwUBY1YF6qu9xmizMPTuHiRpcyWDkwqUq4N6orGqqs1GUQ/S4DZVKALA+1RD9vT1On6slH8ZiIpvSXQ7A8iik2LhOutVo14uKBwFn9r+nWEKzj7rHoEGLlUx98E5o24xwbBy3UIoD283XlMP/h+0XZ632XfFddi+k8bJ08J90/dZDm0J4GeHODsCy7RwRGgoj1fHWQYX7DC91LvUvbMauaJqdR1dg3GkQKi0+pN/J/Q34SoqdaPKwQBJh2jc2SnsP5IiR1LlLInps8gjBGj2jhZqDTDrK2lo76T3WXh6mP8euHqNxu9/COObcjsWZ8esjFNY9PCK8fIwzzqY42d7VdLi9N87SSH6T+FZW7Uhh/qj9X65G0UjZrMo+qwdh5oD9NdMieWbqqrh7+rmwabixiaRWIqty8DE3dA1mdS9NRa3EgCFD6OuYBIdoeMANCXXLu8A1ubcGPwvTeD+CmLccSZssKXtJl93sgeYq2fg8uPHkqqYvEIB9dtfg63r/CJETja/iDoZwCptD8v6ZQ8IHpABLAAbth7AjHkrEBxQFXs3zJP3Rxl6QAawnOds08PR5bCh8GVcHR4gMZHCr8ssR1+RgcQA1oPrFK79JvS7GJKEFS8cwejdQ5CcLAV8hgxi0aih9HBxQ/MAXZO2GO2vq6yCAyHFH9pjYmksXyV9ZU8qqZGKaqUpnAaI3kQj7WzRcAG3QB71R7Jw0wecGeVeKuFnoZGfL/VD40b6aDHGQa6u0pxv+iUaN1YLBmbWzcT4bkJFvVe8G2BGVaGyUzpXgJdSdkuqYhH73CgFfgvoho5utvFb0PcS4PrZOOMUuYBQFMzQR4Bp8ygkHgTuHmNA1sWcENJ9XWphK9sjsqiHD+A2WTjo8B7eyP9WWtnKGt9vzInGhPtHjE0HedbEc+6RGJ26z/gZqRpGqocRUS2eCcVZ4cClHjcV2jYlRyNaY4ehzeatDM6KSKyf78eiZXP7QF9nA1jZ2cCc+QIY4YxKhFqew6LsKwhhPDDAQx/lVtqSxanRMH6tcRiSgjXQsxbW5AjFD5zNn1Tac3KW/iu/MMiKEZ6FNV9gEfSE5f1nGuVLKhaSyoVXr9P4fYPwjArwB956o3hC+Ng4Cr+JIowjwnm8PMYySNojeSuuqgXuv0X+ndDPiQBkzCYad0+IOL56ciAk7kRMSe+rNeZQb6T+WrI2F20S/zAuT1XGFZfChtq1XMzFKCi3LsfTPevjSoCvUcef6/eha9xd8EoVCBegttdL4D30qZPlHcAiL/wa3VknSXEnRTNI8QxZysYDTMwVqOZPAqUVkaTSNApfnwG2yRNlY4STR5EBLCc7VFYne6AED1QKAOvgsfM4FCVUgdmw7SAC/Kqgc/vmJS6+Rssi+k4yLl7VV1UZ2r8rpr03St4wZegBGcBynrM7JG1CrEYIi99XvT/qq4QfnPaORH7Ykx/4Bqlbh8eIl8z/uBcDWKmnKdz+QwCwjtSJxvXnbuMHr+5Y9CuNhw8FnQSwITxV4sqE99l8NEtYbxy3GuOKi8X8CCe8TAt+ZJCZKegM8Ofx5musw8Tt1vqNEOre3kiDM0llI3RPNftzCGgjBdIyMigsWU6DpD2KpVZNfXQb42C6m7V229qO8K4Q/hWDRDdPxpT2Qhn5L6s9gdFe9SVqCVcM4f8RR5uQBqQK1Gy/pzDUU1/lyhqh42/B9as3jU1JhayCqVLyVx2QdYBEKTgfyHJ/Qx9dZpC8RUIqoDX2kzYrs2/gIxG/20iveroCBc3ifzeqUFA0YiNG6lILXeZ9AObWBeO1wgmzwda3XNDAWns2bmJw8bKwDwcNYNG0sWUAwZx+ZwNYZAzTSoTvv8vCx9s++06rUzEx9SiitQ/xkW9LvOXT1Fo3OdTusjoDvZK3GnWQVNrO7qH4NUuI4Jnu2xqv+RSt6ubQwOW8MynycWI6A/DC/ms1VQsXH8uGk+qwUVPJg9LQl0f7L1ns2C2NKCQvMcjLjOLkXirw488CSOrvx+PtN0sGsAgheAMRIEl0XwsfBm9aZdlwK1tc+I5BbpLgF3GlQVJQ5MqvwpcE4QsjvGFEyJ0RFrdc91+DREeMgCtVDOGkBXtyeC0axK0CR+ltoXkOyfM2wEUr+IhXuUIzZjK0LTqUewCLzIGkWJJUS4NYy7Fp5dLJzUrwAB1/U/edRhWKKsEAUI/9CNq21qW6lkcHywBWeVwV2abK6oFKAWD9sf0gvli4GoSM3V6pHRmCFQs+QhUfT3tVyP3s8IAMYNnhtGK6DEj5G4Qc2iC/B/ayObrFVLUt0VekrxjAMk0L2dH0MryfycXkqq2Qmkbh58WMhAuKpPmZViYMiVsuMam4tMiDR2jsPyANW3rtFSkg5jxP6zX9lRuDRZmXkMWrkcUWoo97DXzBdMCN1dJDh2Fckv5RezAHhZtgSVYWhaUraAnwRq4SwvlRI1mUx6Ko8btoJIp8fbT9DSxsLkQTrQ/qhQ6u5qOq3k87it9zbxdZind9muJD35ZWLRF9+xJc5040tmVrN0Hh++YjZzU5BMiicPc4DVHmlmQcXURWNx7+LYume5ozyG3Si6CyM42XCr5ZD87btlRIU5Ll17wbYXrVNmiVsAF32Tyj7n0h/VFf6QuXma+ASb4jjDntV3DVI63ylzWNSPoUSaMyyNAXOTRsYF/kYmkAWEuWM4iPFw7yI4exqFPbNgDrPleA6fdPYEuecGg1+N0aHznaZldePF5O3W9U080tFM1d/SVpo+/7tsBEn4qXOuOIbzKu0Li+Uth7bgE8WrxvOfrJMObpWQzU2cLeaDmZxc/raGSkC5+RFy7kxUtxYhrl5+kJTJpY8u/JbXmxeD1V4JlqpPTFnpD+jrhC0pe8lDnxCQOeE+bR9jOt8fvDlB/LPRBoLrK5XeIfSBSlbh8JfQE1FVaggmZmYMrZ1zztIQ4sE6qoGrpoug2CZtBrFQLA2p0Xj3Gi+9GPdsWFcPui1Jy26P8BRXRKPFzmTgCVK1SzJNPWDJsATUfnFh4qa3fKAFZZe1we77/sgUoBYJEFzMsvwLHTV7D9nyj8c/g0qlbxQqumJRMA0jQFH29PtGhcG707t4WqPJ4WK/nulAEs5y3wG6mHsFV0OBOTQNs7yvJVDGJiRaW6a/Mgh8fiRAxgkepQpEqUQda2O42evX3Qz11/8L5+g8ba9VLQybQyYaP4tRIS8Cvhw1DF5A03AYEWfM+AFZ23WzTn8UI/6w9B9vjnzdRDksOwD63C1fBhIFEBd3ZRSD5cNIRK5cOj3ggWXuHCiDm5hCCf1oF6YgkO5DF2NAdXV9sO6vbMxZY+JKqORNcZZFWXKGytL0SRnAx9ESElELTPeXAWC7IuFhny62rtQSKRLIni6imovp9qbKZt1Abqt74ssZsOyNr/CMgqZlsQICu0G48AC0CWy8zxYJLjjOMV2AEmLci6gDkivqv3fJrpIrDGpe7D7rwEo+65fh100WmukweDfvhAGPPr38H5OK9q1qp1DG7dsv7AX5KzSwPA2radxilRim6v7hyeetJ6gG159nV88+AMHprklb7oWQsL/ARiakt7z5HrS7Kv4tP0k0YVY7zqo4bSC5+JqsWVJaDmyFyc2ZekX98TpckFd+QQ2df6tb34HYMcUZRSjZEcft4kfK/QNDB1srbElwEsC8z4Qhqd9Pn0kgGsD+//i7U5t4yueN27EaZVbeM012QnULj0g/Ad4lqVBwHnDKJ+CJwW2az0Atp8ItjszBda32ScwXcPLxnHfsWrIb68dh/MjlWgM+8Lz+JO/aAe+naFALCI0fXvrEa26M3GhqDeeMo1yGlrKCuSeoBKT4HL7AmS7zLSQjPgVWh6OK/o0OPyuwxgPS7Py+P+Fz1QaQAsw+KRKKzuQ95H7RohNlUh/C8ufnmYswxgOW8VyOGIHJIM8knVNnjDu5HdA5iLviLkyYREuTgRA1i31jNIOyscihd1Poxp3RuCcFkZ5NARGvtMIqfElQk7JW3CbVFa5OGQAail9JYMT0AwAoYZxMWVx3tvlx5xu2GcpxL/RJw2W2pLYE90cquu+4ykeNxcS4OAJxKhgPAePEK7ssbMl0K1HsRKMuEG86vGYdxoHp6e5QfEurqMQeYNYU5f9dmNs+EC6GJN8YANubfxXtrRIttoc/CzaOMSUOKeVZw7DNWvM4VDU4uOUL863ap9rsmmkLiPwt2TtA5oNCe6iKzuPPxbmI/IclnwIZgbQsp64TvfgG1gXfSYYbwvMk7hJxH588e+rfGmT2MszLqI2Q+EMvajvOrhq2rt4Yy0xZIcZApUjxnJomakfXuuNACs4ydp7Nwl3OPWAtTXNA9AgIZzhcIhW+wHEgW1MrC7VXvH0UbT009gafY1yfOZgPEf3P/X+JmzScAdtbks+p/+goFalE7e8BUWVUqIljK1iURvkSgugyjac9h+Ufi7RgSPcaMtv8wgpO+E/N0gBPRydSneA08kbkSCVogiWRPUE51d9c9+Z8jdYzRiRKna1ZryqDdclLLHA1FTxKAbjye/Ea6/lXYIf4lS5AxguD22mYJhSwK64Bn3CCiO/wPVitnCs7h9D6hHTaowANa794/gjxw9hQiR/+L9Z89+sKcPnZkO1bfvgU4XilYQPZpeQ6F5/mV7VJa7PjKAVe6WRDaoEnug0gFYZK1WbdyDW7GJ+PxDgei3Eq9hhZ6aDGA5b/l+yrqMLx6cNioc79UQn1Vra/cAK1YzIBXADFKrJo/RI0o+CIgBrPNLgbybwg/sb57Zgy2di/IbmFYOJOM93ZFD9y4cTH84mwIct27TWLVWGsXVtw+HtoSguxQlm9OgfvyaIiMM96yL2X5PGj/X5AI319HIulWUld2rhv5AonqEx5EMaDKXuDhpW29vHi+P5eDrYx+g4Gw3nF+gQJ7oN+ikQX8h1j9dN0x9ZRXsK4FoX2yLaQl6co1UJyRpOAGMKM/SZAKKqN1QrfzW+Kn2iZ5Qj/7QpmkSICthH4V7dgBZqqVfQHH6oHG8wjGTwbazDQT5JP04fsu+btQxq2o7jPVuAFOfNFf5YYdPJ7h/MMDYlnd1R/58obiBTRMvprFpit4rY1iEh9u330oDwIqOpbBilRCNElqdx6uvFP8sIpw9JGpkmQgwMjd1nX+rl03aiml03a8BncGBl6ShPe8RiR/9OzljSSuEjvw0Cue+FdaVYni0+5wFbQNVEwF5CNhjkMww4LjAq45unTl0etry98G8hQwys4Tvu/feZuHra/4eiGez0T5BWrzhdsQIXWEKZ8mtDQzSzgj21OjDobrJPE5MV4AtFEYUpxh+nXEG34uipkhqKklRtUdqxa2SEJ5fDB+KarQrFKcPQbV0lvAsbtUJ6lc+qTAAlmlqJAGUSZS3LM71AJXzEC5zJoBOTZQoJimDJHWwsogMYFWWlZTnURE8UCkBrIrgeNlGvQdkAMt5O8G0spkjhyFz0Vfjx7IICyv5UCsGsP5dwINKURon+OvgA1jeyny6zs9LmCKVCV8cyGKh/z78nRdv1LE0oCt6uwv5d/MXMnggOnRUD+bx+njLb9sd9fq/BXcx+O6uImqq0i64FP5Skc9JOmHcLgowMY1x41F3CAffBoJf126gcf26FMQi/GAvj+bgH2AfqODofMX9T81UQCOirxg/ag0yPfRkrM+6R2BxgPXV8UgFtkn3j0nMa+Hih+3BxYMKioNboFr/g3Boevo5qF96x64pqrMoJOyncO8UXWRtDApdqj6KyGquj8hS/fETFPv/Mo6nGfgaNN0H2TS+KRfYPP8OGOJRGw/YQjROWCfRleLaDa4zhJcxvF8w8meutGk8S41/WcJIov/IPUTuJXukNAAskmY7e64AdKhUPD6ZYv4+J9xE09NPIpWVEgSTuZA0X1IN0CDhjBeiwgbaM02b+/RI2oKrGiENdGf155DO5mPkvb1GXd3dQrGijCLCbJ5AKXRIPkIjbrvwrKtSn0fDsbY9v5MO0rjzt6Aj0Y3HZVoAfl57mUVIiOW9TDgZk1OEfiXdA2tzbuJD0XOrvWsQNgb1dqqHzs1lkJ8q2NPoVRY+taTzOPsNg4IMoU2LD1m4+enbrMq+gSmiQhFDPWpjrn8Hm20knHyEm88gXrQS18OH6/4kFQpdFgnRr2zjdij836wKA2CROZjSFKwJ6oHOriE2+0nuYN4DVEE+XL59F3RSjKSBtnUX3Bs4FedE1W+rVKHQsrllsLm8+loGsMrrysh2VUYPVEoAa9ueYzo+rOEDu6NxPctEt2s27cXxM1cwZsgzaNW0bmVc53I7JxnAct7SHM5PwUv3dhsVOvKjeuUaBrejRWXNI3mQtCJLIgawDn3BQ/lQALC2jD+Gb2qbjwgjlfh++lVakY9UJkwddRibOfNl5vcfonHwUNkStxvmbxrtJvbLH0G98aQZHo2cROgI3knpd1MJfIJDzX56gITngT82Mbh8RdqOpEaOG8UhOMjyYczSOtl7ndgWNUWo+sWDx+DXlxpTIf/n0xhTfVvbpJ6kUK0TccmQzi951sG3fk+Z1aPc/TuUm5car2l6DIZmwHibxjRtrAOySETW6ZKBrPDuPILurYHLtmXC+D2HQPPCKzaNb8pX95N/J/T30H9XmZIv72UbotW3Hxv1czXqo2Dy9zaNZ6kxqcBGKrEZ5H+vaxFYciZnsSpLA8Aig301h0F+vnBPTHyHRZUqwr0Qr83WgaGmlS4NhhLOqXeqNEVL0WHcg1LgZsQIS+5xynVTvh0SxXJbk6WLMjVIO5dAbAp+xinjVQQlV5cyyLwprGlkfw7BNnCbkTmmnaNw63cB3LzLAOdd9bNXKoFPpmjxqHheiS4xTaMdNZxFbRPAyKDgtdSD2J4n8OBN9m2Jd5xYzZLVACemSSsztpulBSN8nepMufgDg5wEwX9N/kf4FfX3xP78RAk42sE1COvtANlMX9Y0U1UDAV+J0DfOwXXBJKNf2XrNUfjunAoFYJFnBnmRYpCy4MXL47UgVSzJPw04NFLaVgSkItzbxEZKo4Zq/odgYgVqC/K5Duh8YwbOXVTgr63CvVutGo8J/7P8O7O8zl8GsMrrysh2VUYPVEoA682P5uNQ1AV8+OZQjBls+a0YAbymfPkrnuv5JL6e+mplXOdyOycZwHLe0txQZ6Jr8majwloKbxwOFVKPrB0p5S6FRaLy3KSfJe4rg24xgHX0Ixo0JwBMFz+4iNf9GxZrRso9Cr8ulpKxX2h9CqcbXjD2+ci3Fd7yaQJzxO2tW3LoZwP5r7X+MNfO9AAjblNSOW6S7nF7I410EUeLoa9bII/6I1m4+etBLML5c4JEBomEHMhIGme4hUg4R+ZWUt/CLApnvhR+cOZ7FGLUqFXGLvP9O2CwR22bh++bsr0ITxFJxSQpmaai3LYCyp2rjR9r+o6Cps9Im8c014GAiwTISiWE4cX8jnb1yEGt+98jSLMXFDho2/eEepRtKYyj7+3F3nwhnYJE3ZDoG929lnoAO/KEioPf5gfi5e+EKouGKAenTPiRkgU/MpKqbeQQQQ4T9khpAVjLVjCIu2OeaH5+1gV8KyLFF9tNDtxz/J8yHhJrxq1CoWhxreFss8cP4j7koNogfq3xI3dKgVsRI3QRWSQyyyCNlVWxO6Sfo8OVav+oAqHSrYKiLHLWFWcMpwVOTGfAs+YjiKydBOEavCL6vsqkgeOPMpAb1Ofw0mDrIjo2/Cl9aTDoBRZNm5i/B5rEr0MGJ+TubQvug5Yu/taabLHdwxgKl38RnrPFVWa89huDB9cF/zUYzcK3od5mZ/0eMI3kGuhRE9/5P60bg4m5qksNMwgb2QCFk76rUACWKUDnRSlwvRRB7XOFaeibssPoM29aiWuPItosboyK1IBl4fLjVDDXBE5HYj5bpxnU73wFXqHEnr00jorSfwnnHOGeq6giA1gVdeVkuyuiByolgPXM8EmIT0rFpqUzUa9WmMV1SUnNQPfBExERGoidq7+x2F5u4DwPXIkpQEw0hVYtrfuR6byRK58m8oOa/LA2iDjU35bZEh4mwi1lkMgaHMaOsm59DF/g8Un5OPmpwAeipTlop8ej66NDenH2XL1G4/c/hLGvNLyC462jjM1f9W6ET6u2wco1NG5HC+1Iit27b5ddxb72CRsRz0rLQBuMJDxO5y2U4047SyP6LxqibCZdd0KhQipwBbXX3mCWlAAAIABJREFU+/vQEQb7DhSN2Bo+lAMhuy9rIW/7yVt/gyQHZGLCwI3Gv7dUfxatVbaH7pB0r55JW5DGFUimtDX4WbQyIXVXblwE5b5NxnalUcGo4AGFxL0UyDrxxbjZnU1EpHoV/Os+hPotgVTemjUh6afk4GQQcdSeaXTfyBw3fPfjEmNbewAzSzbNXcjoQGGDfPAuC8K9Zo+UFoC1fSeNkyRC7pH07M6DapmEyfePIVb7sIip5CA6qWorjPNqILnWOmEDUtg842dnwgYjiHG3Z6pW97miyUDPpK3G9nWVPjgQ8gJI1Fj7RIFLKVLhjaN2vHSw2hAHG5KCGqSwhlhiaoyEC4pWXLU01IMbFK4tE6WFevNo/bHt0RcF9ymcnSMC1Sng0KPl7Pssh7atrXtOmu6vPr05tGtbtO9ldQZ6JQtr6UkpcMPJgEfyIRpxO4W97t+SR50hRX1jWiil9ossAlrr71tzPI32gLWfpZ/EYlFxmEm+LTHhUbQZlRANty9fNy41F1oLBR//XKEALGJ8s/jfcV/03fNbQDf0dLd8drC0x81dX597GxNNCphEhQ5EuMLLHnXlsw/HQbVkJhTnpIVa2Ii6UE+cC16lD5Fcs47GDRN+0OlTtVA4j0quTP0jA1hl6m55sP+4ByolgNW696vIL1Dj1N+/wN2thDIyjxZfy7Jo3v0VXduTO3/+j2+Jsp3+KxP0ZX9IlSBSLUgWxzwQErfcocOFI9FXZGDDF3j09QIJOW+qVzbaTuFQXeFhcYL7DtI4dFj/4z265m0c7CAQZg/wqIk3Mzpj3XppZFL/vixatSyb/ZPJqXW8GWIhYCE5MBiEpAGRdKCSpCAduL6KQZ6Id8XQvkp9TseNpXAHzpylsUXEE1PoUgC1ixodeuejR10veNMqiz51VoOMqzSurxB8fz4iAV88K6StGsh97RnvTGEq+qXslHQ1R+quWjMfiqNCO/WwCdB2LB0ibgJkJfyjB7JQzPZyo+8h9EV/+BGOrKJc/WZdYRpxtj24D1o8iuA4WpCCIXcFnzbJp3D4O1HEmRNSJk2N+mauArm5wqeT39fCw/KtanZupQVgkWjEHY+4jvLdCnCzexRO+woVxMTG9HOPxOfV2sLfTDGAXklbcVkjsHzvCelX6ik8JNqORN0ZpItrCFYH9dAdmsnh2SDWgN/23FvO6rMz9w7Gpx2QqNtf/XnUUwmVZa0dK3YrjZR/hRuGgPY1n7cObBKPQaqJRk0VTrzkNt1NACwKunQkayMJxd87RH+XTpzun6n8/PAKZmacMn7cyz0MywK6WTttq9rdWMsg/YLl1ErCH0Z4xAwS8SyHEJHNpmmrhJ+R8DTaIiPv/YP9+UnGLj8HdMJz7vp0Z+peItw+G2u8xgWEoGDG8goHYE1LPyEp+OAIf6gl35K9Q/aQWAxVHS31rSjXVStnQxH1j8RcNjgC6g8WgHf3NH6+4HsGGSaUCu+9w8JXlBpeUeZM7JQBrIq0WrKtFd0DlRLAatlzPArVGpz/ZwmUSuug/OY9XgFFUTi3Z3FFX9MKZb8BwCLgAwEhZHHMA6bRBba+2Vu9jsZN0RuxyAgeY60oQW6w2vAFfuhkBtJ+Fd4oRgfex8iJ1h9y1vxO48ZNGknVk7Cru8ARQ8qUt/j9GTwUlV0vK+J2wxwP5Sdj2L09xoUiKUq1lT74M1cgKSVRHzOrtbO8mCwQ97f0EGLopPTSVyn0jgQuXaGwcRODv7vtRFL1ZKPeEfmt8E2DJpbHcVKLuydoxGwSDkx7G1zHL531b1mdEYlgDam7atlXUJzab5yRPVUAbXVHQTqFBBKRda54IMvVj0d4Nx7VrACyuiVtxnVNptGMfSH9UV/pq/ubkIw3NAFIH3wjVLwkfFuankNsnUKJ7b/4WoFCgdscH0/RwsVOXLS0AKzYOAq/rWRwtf5VnG5xChqlABgbJhfOeOJrvyfRya16sfMdene3hCdrXWAvPO0W7FR/mioj1RDJIdkgIzzr4hu/J1HAa1HrjgBOkip2pJpdeZV5WRcw1yRV85eAzujrXsNmk0nUFImeMog4/c1WZSdnKKAVgupwwA1wqcKDRBJaK1EnaPy9W3i2kegrEoVlKsPv7tFVCzUIec6bRvlZO2Zx7UzJ2cXcVuI+iQf+z95VgDd1ffFfXpJ6KfWWCu4U96HDZbjr2MaAbfiGjDFkDB9sMGCMDRvuDHcb7k7Rugt1S977fzcluS+vSZOXpt3KP+f79o3mXTn33Pvk/u45v8Mg5DjVmYBXBMRSy4fhBxDIe84cK/URalq5ilLvg7C9CFKkaOrwAV/J2zjYTqdJS7iSrshYsKPYAVg3sqLRk8dFR0J8H5UeaJJnoSHjDok6hXOZFBAk5ceVCMBUl3qGqhaL6/JdqyE/R5OcEKVZV29kTV0BzpF+AyqVwJwf8+7PRn6ihJ9v0RxGmtugFgDL3Ba1tGexgH4LvJcAVsdBUxAaEYO9f8xFlQo0Y5k+M4RHxaH9gK/h7emK0zt/sqyXIrSAGsCytuYwY6rxH5tFqGKx6qpzxCHcz47X6HzAu7PRHCW6vK8IaXiZMsafiqtf4JtPhsFuF/VAelU2CkNHuxlty5wcYN16KR4r4nGgC+X1KpXihk77e2i1M2aUEt6eRffBsyLpARYlUl6HoY6VVaGRI2LOaPTylNrijp/xIAMhMn6+nYEiXRAuKAF8P1TCry2Hmy8U6GlNN7ukM/tUe/yeOACtmhfNvRN6ikHoabph2l3/DnY1yLVFbSs3HClVcE8oXaTuhAuLcGIRIVmvSPYrtWSNmg1lbd2E70YvOCMLqoCs40DsAzJPut2tbNxY+LeFyiOLeIHokiahexGipJtCIdAsvH76r+OoF5F7X2cPnQxFU8PcjkYOSVWMbCTIhkItc783nYeksACsGykJ+OzFP4h3od5T/DFOdKqFr53rGBz2l7EXcCDtjabcKvcW6GFfzmC9ghSYk3ATv/O8Lr51rocvnXKBZ6HXrClhXgXRTUxdIT8bqcsPKTO2rawk4PZ8unmVSDk0mqsEY9x5Y55u7v0sQ3ok/fmqDVChAYvuIjgRHzxisIcHztcMYNGnZ953X/mgv5DJ41C74NMLFeQljB26wXKKDODGbJ4hJBwa/6gEoyNKM/qGBK/20gseDThU6ENvZKH3lDCLr0FldKzPV6WHwIbEuhNJS4bd17wsnnaOSP9pX7EDsMhQhId/pgKzhmzaMGw3whU8d1fi7ffOI9NQ3f/6dfnhzZAfoZyYRF/W2V3lecW6aFMLRMdIsOq3vIt6UH8WVSob/835X7KJBcD6L82GRZf33QLvJYD13aI/sf/YJfTq3AI/TKHpx/VN5pI1O7Bx53F0adMYi2fSeP73ffL/C+NTA1hEl369lahRveiAiP/C+M2tw8fRp3GKRw691r0Vutobdzqu9npS6+Trw+HzT8UBI+oX+JI9L1H2eGnN8IIDojBwiPEAFqlIOHkWb0nHxi47Ne3YpzpgwL4Bmr8bNWDRpVPRfux8GnMWx9NDNDosdm2Cfg4VUSV4q9bG5oBXZzSwMZ4PKjsFeL6NQfLrvMCIgx+Hpz1eYJLiYp4l0+FUR/T2LVUkdni1l0H0DarfuhaXcbL6U5VOPe3L4dd35L4FWdcKjkXPqGO4kxWr1cwy92bob18B1r9MhfQZBRCzxi2EsmrRnl5zE7/Aa8kARMtb5Qtk+bUD3GvlBbJqhe5EnDJDM767vv3gQeJF38no2PM4lEaznC05dROf3cnNlJU1Zi6UNZsUxMR56n4/Vxs5+C8BWCQ0d0HiLRAyaV13OgnVJckDShvJITMz4TrWJ+euWSJzXBrisxL6k0uYw9CfxZzFMd4zY7VbS3R3yA3DIt52xOtOLU/8B8JJZJiXOXQ0po2W4ftVmRP5QsK6V4q876OuMnh9gD5HnCpwqD5S3LuGr8OTDVK85ZGZ37UGWvYX9z3x/IUEW7bTDTXJQEgyEfLlcmYk+vHCe90YG9w3wHdojF35ZchhBsnOqBZ7H6DWON2AcsJjBs82Uzs6V2VR9WN6l0yLu4K/eBn2Zrs0xEgRa/15zlu0DqcHSN5SO9zy60fVzc6G3fgu9G+5FdJXHCmWANbshBtYl0yz5XW288c6jw/FTl++5dO4HFQKpt606sL/9dBhY4wgP7cP8l1rtIpyDk7ImroSrFteD9cHDyXYsz8vgNW1C4uG9Yr2m86Y8RlTxgJgGWMlSxmLBcxjgfcSwHoU+Ab9R81RWWjU0I8wZngPyGV5H5SE+2rDjmP4eV0uCfGG5dPQsE4V81jW0opRFuADWJUrshg8sHi+uIwabBEUIoTGW3gfrD+4NMInJbRJjHWpocv7ihC3EwJ3MaJ+gc/Y+Ax1/imvqZrQNAZdu4tPFR0UweGD7E2adkhWwxFbckFpQtw+cTwLa6uiBT2FJ7UnvD9CDWtXfBF7AQd5nh1ko0A2DGIl/JwUwcfzuu5kWSnwa+sLuFaOeo+QtssGlcWHF9ugbi0WPbqLmy+xuj3dyCDxKd0wLep0CrfK5GbMm1yyNiaVrC22SZ3lCTdQm7ADWsS6MgmD/V6d0OSXHyB9QwGIrG9+gbJc4QIQQiVtZw6FJC4K6Yw/XlqPQIwKyNItqtDCthzc6tC5qRS8BWkc3ZQGlh4MB4lc08Ca5EeYl3BL8/egh6+w6ug11d+Z36wAW87wPS1mIvgAFom6n/lt0XpghV+QIiWEU4WUZb4Fao5hYefFYX/aG8yJv56H3J+MzTbDBhOsGuGr8rlAkLGy/O09LH17T1N8fMlamFLSsOeWse3rKtch4hAe8Txj+ckJGoTuRoSSemTc9O1rFFdgQfQxpW4Ox6Jc8OY8ICIJoT5a6iNRTQqfI2W6sijV3PRnV+AuBvG36XPpqZUEg75VwNbW+HdDeIQEa/+g34mlSnEY/Zk2gEU8b4kHrlr62JfHL+7NRY3dUOGws1KEnKDPf4+GLCr01m2blGAJHq6mOjv6cyDhhmoReguLfSeRgxpyYKOWD2y8scurg9YQ7Ma00/o7fc2pYglg3c2KA+EmVAt53zz2H6QKjTeXkEOZj3gZCPnt3vHtB0/eIYa5+iyKdmTXTsJq0xKtrjhbe2R//QuUpehBJr/A2XMSnL+Ud1/WuhWH1i1MB7OLYrz6+rAAWP+m9S19/79Z4L0EsMgkqr2qyL+dnRzRrFEAyvp5q4jaM7OyERwWjUvXHyAuIfc00Vhvrf+3BVLY4+UDWBIJMP0bJWxsjP/oLGz9ilv7ZGNGNmhqGetUE9Oc6xocBiFFfxpINwCmeF+RTtQv8IkrnuCDBxU1/Uo6JqFJa9NYocsFbUEW6IZ62LaPIVfI0LO7EnVqFe1aEZIuk4/cN6WHgoEER9KC8TmP4Lggp6qpYRIEbmGQJSA4JQY9VfUZNja/imxp7kceAfUG7h4EmywbVKrIYlA/Vme4icFFYESB+yulSAujm6tpfQ7ilXuup9Qqtxbo4WC+UCzysU88sYhHllqIx8PlXZfg8SrXG4lIxozfwPlSsNSIYRS4iM2isWCCnmnaSfxkDYICKyH+oX4Wd1t3VhUK6labyxM2FlJmOKS8eEOhp0e1mLe4vCE39XrGnE3gPPRzPIkdXGYmMH8x3aTZ2ADfTilaAOvKVO1NonX5HPz40XFcz4rOOxwOqPyiChreaYDOzeRo0Uwc8LE5JRDT42kI6lCHSirerMKU6iHb8ZbN0nTB36wSDxfi6aKWcz49UEluPF9gYerNb/txdgLa87Lvqa+Zwn13baZMKwNr7UlK2BUgDPz2dimy7tHnUkxJDj2mi9sExydI8AsvwyohkiaE0nzpGnEYd7PjND/97NYMfR0qmHUKiEcV8axSS/k+LDwb6F7jGbEM7i6lZckzps7XtOzetFcYF3tJ01YXu9L43aO10fquSnqI+Ym3NeVJuPxCV23vT9sJH0GSRbPHZiz/G3IHe7g5WSNbwSIuia57ozv+lwoKweQV7s3R295875adqS8wKe6yztFt9miDNoWU+bAwzSm7c0mVcRAc/Rbj5NaqbIPKMpX1dk2yTZOs00JpUJfFRyJCfwtzbGLbtgBYYi1mKW+xgOkWeG8BLI7jsPavQ1iz6SCIp1V+MrxvB0wa3Q8yqfhU0Kab3lKTWOC7+TmI4u1ROnVg0aSRuA2JxZLUAsLNWX+Hiljmlj8/UEysBL+u0V77w4coUb6ceHCIvMCzORbTFr5A01cUzPDpl4XS9Uy7vxqF7UYYjzOi377+qFbSAYTss6jldHoohvO4rupYueHwO94nQshcPXi7VhjhIe8uqPsuu5xYXZVZwMs9DOIf5P3IC3d6i6UdTyPMJXfj2/BWQwQ8qan6N+EsGzqIhZH5K0SpdetHKbJ5BPqjh25HvEOu98gx766oaS0uTNRQ5yRsbBoPbCDl68ck4eimo5Czuc8JcwM6hnQi1/PycM2CsnYzpEdLEHJSgoRH+oEsa3cWi2qfx5Xyr8FJAGsJg9elh2l1KyT3ZjgW4ct2wUahRPqy/YAtzeRkjL75lUlNBRYvowCSgwMwZVLRAVhCLxK1rgu6nMAd/1At1f0UJVHnZEu4x7mrfq8VwKF3T3HPARKaSUI01SJ2Uy/W3sK5lEGCoDLDNXDlR5GHcSeLgiJ/e3dBPROfGWJ1E1N+f9prfBWbN4SZtHHbrx+8pDQENr92376U4Mk6+i6wKsGh/gxxcyhs/9g6KZxeUgBL4Qm0ELmGMzKBBTwglyQxIMkM1JLOKUA8J/lvRRI+SEB1c8qteVJkp9Cx1BqvgL0evJq8Fm/wwn/JFDSaRXW+lhmF3lHHNerVtnLFERHecpPjLmNH6gtNfV0hiLbf9IEklYaVZizeDbmzS7EEsBYk3savSQ81421r64tNnm3NNr1zE25irSADobpx4gVKvEGLk0if3Ib1qhkAS+9fTiZD9tiFUFbKfywrV0sRy0vioB434b8iPFjFUSwAVnGcNYvOxdUC7y2ApZ6Q6NhEHDj+D24/CERYZCzS0jNhY20FLw8X1KlRET07NUdp3/zT3RfXyS0Oeu8+nIUTp+hmr6gzyhUHG4nR8WR6qBaZuDHkoDt2MXjyrODeV0RP8gK/mx6Hvxemo3oE5T2o9pkSJSuKB8RIm0Ji+h5He2BOfxe4uRb9R87ypPtYysvCNdyxMubzTqRHxZzH4XTKXTSmRHV859JAzBTmKRt7m8Hj/SyscrS9VHKkSvzV5AaOBTyGU5IT+hzsq6nrU4rDx8PMG15JDlivTiMbz9zNFQcOAz9fD6U0d15J9jSSRc3coovU/ZO7z/HTydxU9hkLd4JzEh+eWhA9rbYsg+wyzY6ZPWg8FM0pgX161Dsgi+dJIewvtGQi9jS8i2cVwvCw9KA86jQP24fXimTN78e3nESj8FiQEB1zytu3EixbQQGFkiU5TBJ4nojpTyyJe8QlBkGH8wJ+kU5JGD9wtwrks4EUU1zqoENiANZvorp6ewFjPhcHtl3LikLvSLqpb2zthb3e5iXF59srMPstPoygPELlZCVwybeXpsjA6BO4mEEZyHd4dkDzQs6KKGY+1WUXJtzGymS6uee3sYeE9toY9x0VdIRBxEU6354NOZTvXTAAa+18KQKSKOgj9+LQYKL4NoVccHNmKkA8w4kIw+kIcTshcDen5KQCN3/gkdszuQTuEj14uPCZTJ7KTRYqNTqHKlPRODSXIoOIWK/gXpHHtLwgt3i2Q2tbH60h28wYDCYhRvNbxo9bIffwKpYA1pOcRLQLP6g1vqf+g1CCMTElq2BxCEn1+ZcLG0g35zolbUlfP4bV8imQKHjpaxkGWaPnQBnQON/uyNkTSRzCc9rSlDfV+9/c4zOlPQuAZYrVLHUsFjDNAu89gGWaWSy1isoCL0IzsWiptmcOcdsn7vsWEW8BIcdCNSsXnCrVTW9DuryvCHEtIbA1RcgLfHN8IOIXOsMv0VnTRH6nyIb6GRJ9CucyaNrp8WHtMaWZ+UKoDPXPvz48+jRO80jyf3L9AAMcaajk32lvMCb2gqaKj8weN3wpsCSmL3XZt2w2Pnx4CF+faIsy8XlToN/2D8HKtufx4bkO8Iihm0gP91wQy8HetLkU6pqTAtycRzdXSTYZ+GxELiGth9QWd0VkXRRjB32k7r8eu4bBD14hY/lBcDbGeX+I6Te/slYH10N2fLumSE7XYcjpMjRPlbSIXCCLzxsmLBTpkoRWnRzgGsBpZS0k3i7E60UtC87cwqjnschYRJMamGM88XES/MLj0XF15TCex6Mjtg+xANbDrUDKA93A59qWlyCtn44Frk3gKbVDRoYEC5bQ9wXJzDZ7hjgA61l2ItpE0E0qCdcjYXuFJacyQvFxNM1Q2sK2FLZ7ttd0JyR4X+fRGp3tdPPGFJaOxrQ7IvoMTmZoe8Rp1qZrEwxz1B8uxG//3jIZ0nle15WHsnCtYfphRFy8BH+ukKI5jWKDtTOHetPEA1gLl8qQnk61JZ6IxCORyLfxV7EpJVBzcYRjFcxzzX+jboxd+WUSnjB4tomiVQ7+HGoauBdvzJFBwdO5wUwF5O90Js/OMsGbNV5jBIsLKj0MJPTdGKkZugPxSmrYf3x6oawg46LN7E/ARNN1kTnrT8h8yxRLAIvY5IOwvQhS0Ayxwne8MXbTV0ZXBkJ1WX+ZA6769ilI80VWlwl7DeulEyDJoolISOfZn0yHooFh4nvieUU8sHRJSScOk8aLv3eLbPD5dGQBsP4Ls2DR4f/FAhYA6/9lpv+j44yIz8CmLQxe8TKvtWimRNsPzbPp/o8Ou9DUilSmoX7obk37hoCFnbsZPObxEBT09Iu8wKeEXUWVhTVQIpOGVtSfoYCViZnGx8ddxJ5UupFf7twC/ZzMx7UkZjJqh+zQIpQ+W6oHKltRvhoSZlIjeDuyeGnWT5TqhhpWpnsIbU99AeKFJGMZDLnSEJ0f1uCxJeVqn2iXjiO1n8PtvjaJuqsLh4+HsnByKvj9lBYB3P+FAg3Brgn4ut8+Vf+F7cUSo8xA+/CDeci8z2w+gSrfUyBJzFwWpKzs7H5Y7V6taULRshuyB4zV2yQBsggx/1sez5ywsK0nB/92ZDOfC2T9kfIEs+JvaIr1f/Qaa+5FI+O7tQVRPU9dYTpzL08OX4wyfQMhBsBan/IULivKwCPZUeeYOHslGk/jIOU5QCxeJkVqKvW2mTBWCRdn49d3PJuJmiE7NP2J9UoRa/wNyU/xXcJ1TbUhDpWwiMe5NTHuEnalvtJc/8WtOfo4mI93R6y++soLN/b8ciMdq2G2q+GEFUIPI0g4NJqr1JpfsfreuMng6FEG7XkgDhgOTeZTTyRj21y5mkFsHAV3xn7Bwt0tF1xrGb4PL3OoR+QGjzZob2bOopCTDMLO0P69P2BRtlv+4N6dJVJV8gO11JmshK0HvR/qhe5ClJIa56pvb/gbkbGTZP+sEqKdMS+8zMd5TGmz4AswITTMMHPaKsjKVym2ANZPiXexLOm+ZpytbEphqxcFnI1dS8Jy5NugYvCWfKs/8x8MR4Ym8zC1r8KsR8BK6yXjIUmjIB/pL2fgeOS0oF7I+enw9BmD7bv0g6gFyYJbmGM31LYFwDJkIct1iwXMZwELgGU+W1paMsECBMC690CCfQd4mXQcOXw9QfzHpwndv3dVyIlr6eDNmnGRz9rQMh/nATxIAV3eV0MHKVGxgvGbQaEByQu844vD+GyRdqaipovEeUnw2xWmt/7euT5GOdUo8rmLVKaDZCBUC5/Ana8MydpEwk3U8pVTAKY71zNZ3wFRJ3EpM0JTf35Ca1Q9VA6K9LyZCmM9FLidpu3N4uDA4bOPWbi4mD6vpPO3zxk8+ZN+dN71C8X8ridUeg10rIilrvlzrZlsgHcVVaTukceg4OVB80rNwIlqI8zOQ2NIV9nNc7BaP19TTFG3BbJHzjRUDYSc//HxHChf6OfNUQNZLytGoVcUDVOsGJ+Mq5fCkDVhscF+xBQIC5fg9z/p87egILYxANa9rDgQ4CYqJQt/bhiSr7p+7Tj4taWA2sa/pHj9hq79gf1ZVK1svAcPuQt8gzYa9YwUY0d9ZYW8N0Kum+/ir2FDCk0IMM+lEUYYkTnWHLoZ2wbJQEg8efQJCSsj4WWGJOYWg5e76TPEsSyHgNGmg6Wkv607GAQ+Z9AmDeBv/Rt8r4RcpPfpug1ShIbStfXpx0qU9udU2VBr8UBPUuJ56SGwM3PI9OM/GSQ9p/apNIDVyl6qy76P1kiRHER1rjFGiRJl6LOeZL0jz061kCyCJJugIRF6c1eQO+GCT8881YgnjvTVY83vWZOXQ1qlZrEFsIIUyfggLPdghghJrvHQfyCcChhGeD87Dp0jaJbDyvKSkEoYPMlOED03huausK4zcZGwWjoRTFK8VhfZPT6BosNAo7s9f4nB2XP6AazpUxSwNS+1nNG6FaSgBcAqiPUsdS0WEGeB9xrAysjMxp7D53Hq4i28fBOOpJQ0VC7vh31//qBlpbP/3FFxY7VtUR+2NuaJdRc3Df+/pQmApVAAPy6Sgc+1P2KYEmV5H2H/vxYSP/IaIduQyFJeAhLaRTyxhLJzrxSPH9MPX29PDmMK4HlB2icv8CrXdmHeH7wPXTsWTWcZv8EU6inMhPSlUw1861xfvGEKWEPIL1bfygMHS3XO0+r+tDf4ihdGWFrmiCu+vU3qPYHNQkCItofRVb/e8Ep3xPNtDJJ5novqDrLsOFzjJMjgfR+SdPKfDGfhyTuZF6tQzE0JXu6hQMe5ys+x+sNcUmfC80X4vgpbtsTcwdR0msae9EcIrwnxdVEKE3gXNj9P0XTJVgxA5qRlRqlAMut98+AWBlyvh9qhvnrrWHtymF/7LK6XfaPigSISdCEc8uEzjOrH2EJBwRItXqkypclaMR1UyA/ASmaz8UPCTWx7RwxdN9iM22FIAAAgAElEQVQf049S74Yw7wRULG+LjH/o80oi41B/ulITFnX0OINrN+jibtOaRcvm4p4v1UO2gYTmquWx/yCULOAGVZ+9R8acw9H0YM3lVe4t0MOeepAKuaW+da6HL50CjJ2+Iin3IDsenSIOafoiwA3xKFGLv9QR5LlkSAL/YhDPS3Dg34GF74fi5o7fh5IF5i+SIScH+CCdg6P6RiEE/2MVsNd/e+lUdet2BoEv6NpSg6O7U19hQhzN5kcSc5AEHeaW67OkUGbq96bS1R8JOSShh2oRhmSOibmAv9PfaK4b6+G3L+01xvJI+zva+eNPj7zhYdYrpkH6lGYqzBq3ENKABsUWwCKGaht+EE9zEjU2W+TaBEOMDJHVtyaEa6ibXVnYSqTYmfZSU2WWSwN8XgTvUVPWLfM2HlaLx4JJpGAoaSe7fT8oeo4U1eSefVI8eJT3AE7dyNgvlHB3K9iBmyiFzFTYAmCZyZCWZiwWMMIC7y2A9So4Al99+wtCwrXTcOsCsCbPWY3j525g/vSR6N6hcL0IjJiT/6siBMAisu8gg3v36UdY3dosehhwnf+/MpSIwX4YfgCBvLTsx727IkCQHU439xWLCuVN30wQFW1LMqh9Zj9+2kU3MzbuHOp+bfqGeFvKc3wTf0VjgaLw9tFl7iVv7+LntzS0QB8HSioJIwzZBuK1oJaTpbqhuglhhFtSAjGVl4WPtEHaUgkHbDseDb8L3pBy2qeZHMPhvlyCKJ4zlpUVh2GDWfj7mfZhGHqGQehJ2s/+uvewrdEtlSpkY0M2OIUtkthIfHN1NbbW1A6xIvw7hCepqIQJfwObeZ9rumM9/ZA5e71R3Z/LCMOQ6NOqspWiPTD6VlP4hejP3khCNXc3uIsbZd5g/9MMNOg8xqh+jC1EwrdJGLdaKpRjMWyI6c8BfQAW2cD9kHAD8WyWpq/+N+qiz+26mr+9m7Hwa8fizkIpFBl0g+PRgEOFPrnPkDt3GRw4RPUNqMGiby9x+goJ8olnCfEwKQwhwA8BgNRywKszGth4aP5emfQACxPvaP4e61QT05ypTQpDJ7Ft7kl9hfE8AIcQTh/hgXKkPV3hZfx+yOPw+vdSsDm8DHvjFLDX5gQXpRrxliJeU0TqZwDvov1Uf1cZzsKlmrh1sf8gg7u875Ae3VnUrcWqgBwC6KhlnFNNTDXzHGXGS3BnMY/fTZZL4G5IXu2VIvoGtWm5nkp4NabP+B8SbuG35EeaZr4pWRsTSmqHmuvqY1HiHaxIoocFY0rUwHcueQ+O8mRkHT0H0nrNijWA9cvb+1j89q7GLE1tvLDbq2CJHuYl3MQaXgbCr53roITECt/zwot725fHCvfmhqa8yK9LUpNVYYNMTJhW3znNuyJn0HjR+qz5XYrIKP0AltrzUXTD/3IFC4D1L0+Apfv/Kwu8lwBWSmo6en7yHSJjEmBlJUebZnVVmQZ/2/y3Tg+sI2euYcoPv6F9y/pYPuer/6sF8G8PVg1gvXotwaYtvNTacmDaNwrIzJ/U7N8ecqH3Lww52+TRBm0FXB279knxiHcCZg7vKzKwF9aJ+OrMTcw6RD2TSpTjUKMAnl3C7E/tbf2wwbNNodtR2MHQ6NM4yyNw/9mtGfo6VNCph5DsnaTHJqFDYqV/1An8k0kzlJGNLdngqiVMkYqBd89h8om28EjJyyMUJgWe2kDDyEXuJ5Ki2hSg8vUBBlFXKXDwZ7MrOB7wRKUKIcEmZNiFLZLw15DNH4POg9vhVilt0GeZezP0t9c9H+bWS5LyFrZTKDk/Z++IjKU07CS//o6kBePz2HOaIp3s/PFzZhsEHZcg+ZX+sAoCZEkq3MWAni21yN4LOjYSfkXCsNRSuRKLwQPEbfz5OggBrFc5yZgU+w9uZdNMZery3x3qhFphFMGoNEgJt1ocIv9h8IYHUhGupNoTlLDzAkJCJPhjI31XeHoCX44SF6LcPfIobmVRffZ7dUJDI7PoibV3QOgOJPCIsG/69UUpqb2mGSFHVmGQg4vVWVheuPn+xrkOCKj1hscJdaZUd1Sxook7hG0kv5Hg0W903mT2HBp+bxigyU/3cxcYkP+I1MgCfHnLoFwPFl5NxK3j4ycZXLlG74X2bVk0a8qqwgdJGKFajA3DE2P3uPsSPN9G7eNUjkN1I96bwccYhJ+nOgu92tYnP8VMHkgyyLESlrg2NajaqNjzOJxGM+qSOqSuUKz+/BGyW+c1P2ePmA6madtiDWBFKNLQIIxyiRKo5a7/AFUWR1NlWMxpnEmnANBv7q1UnvH8MPHCTihhiu6SzAwVYTsTTgFc0o6ifmsVabsm5aWIxoXZPsuXY7V4cPv1VqJGddMO2kSoYfaiFgDL7Ca1NGixgF4LvJcA1uqNB7Bq4wFUq1QGK+aNg7dHLoFy9VYf6wSwQiNi0HHQFPiV8sDxbeblF7GsvfwtoAawSDpdko0wnXfq3reXEgGE0NgioiwwLvYS9qZRUmDhh2dCggS/rJJqpTAePECJypUKbut9ypfYcTYCE07TUAPXABaVC+DRcTMzBj2ijmpsUN/aAwe984buiTKSCYUJoS0htlXLWZ/uqCzXvWHbnfoSE+L+0ZQtKyuBf3zFpVwnIU41Q7ZDqckhBVVGQ5LZkC8Do0/iRnIMxpxrgaav8pLbE6qsu9ZAyru9EcMA/XuzqFpV3OZOGP7zU/szuFY+NzQlpMxwFVdIYYv09RPVSXCsvQ0+GNFF9X+1EE6yw95dEGCVN1Oj2fXiONh9oU3sm776pFEf88K1wT91T34DBB+XIoXHaSPU3c6LkL1zcKnOmgXIevSEwa49dANcvRqL/n3ErQ2+jmoAKzolAz9E38La5Ccg3HxCKS8rgYW/9wGyeJ63U5WwceFAihNvlKxEuqZKVuJQ7VMlsnOAeQvoyQbJRDjrW4WofdQnMWdwIp1mTvvD40MQINHckskpUJ5H3CyDBEFlhmvdKcL1QEBxAo7/l2RI1Cmcy6SZYInH5faU51oZWde6t0JX+zJ61Q45ziCMx3vjXpdDxf4FA7D+2CBFyDvOqgrZQAX6eIZvaxb+HcWt44v/MDh9lq5HAl75t4jXylppBQYvSg8xOpOfsfMYdIRBxEXat09LFqU7G9Y/4gKDoKM84vfmLMp2pfVOpIfgk5izGjVa2pbCNl4WTH36tYv4W4ufaZ9XJzTSAfJa/fUTZFeOa5rJHjIJTMsuxRrAIoMRek7OdWmETwvATdcobDfCFGla3w+ETL8C7/lAZvGNiCyRxq4tU8tJcrJhtfwbSN/kHlSpRVmjEbLGzAHIw1ekJCZJsPwXWo9kSa5ShcOt23QNd2zPomljw2tfZNeFXtwCYBW6iS0dWCygscB7CWD1+nQmAl+FYs+6Oahakaaj1gdgZWZlo16Hz2FjbYXbJ363LI8itIAawCJdnjjF4DLPw4OQiRNScYuIs8C8hFtYwwsZEJIGC/kHzOV9RbSck3oDYWclGHGZhnORU3ByGm6qvM5JQvPw/ZrqJI03SeddlBKuSANJga0WG0jxoswQMHpAGxJGWC14qxb4lB/gpWssf6UEYhovfLCGlStOlPooT9FDaW8w+h3nVutnlfDppaawVmi7LpK76IWVBEFyClL26s6idi3j5+XBKilSQyig8F2PQwj0joafzAHXiij9N+FaIZwrRIgHVufB7ZHDUJ08pbY46dO9SEjdiQcW8cRSS8aCHeBKGgbPNqcEYjpvXoc6VMJCXlY60h7hNgs+KUEKj6xcOPF23jwgqwA3gzCJRu2aHHr1MP25SwCsS9mR+PTNOZD7Rijk3hnvXAsjMgPwcBml3ZbZcWg4i/ZLuJIIaMqX6p8r4VSew5JlUqTwMhGO/0IJVxGcKV/HX8b2FJo5bbFrEwwuIMeNrikIzEnEh+EHNZfKyB1x2UebK4rwYxGeLLUQII0Aav8laRC6GxFKOpcXfXpia8pzrOWFRAnfM0L976+QIY1iYKg0QAm3OqYfmhAgk/Bfse8eYb45QA1KawZTALKbtyU4dIRuruvV5RDb4iFmJdBsoMYCQGLn79FaKZJf02dZpcFKuNU0bJ/Y2xK82EV1Fo77UVY8OkRS/jJ9ZOxCfcsGbUY2L2HGPb/+cNfBpWm181fIztM1nt3/KzBtexZ7AIuEXZLwS7UU5OBMmASBHPa8KTNMdejTLHyflicj4VYjHGv/uiiVsF71LaRPaXgz0UlZsRayxy0AJzMtW+KLlwz+2kaf64RzkfDdqj0pSR8EOCbej8VNLABWcZsxi77F2QLvJYBVv+PnkMtkuHqYpjknk6QPwCLX6rYfiRyFAg/PbijO81nsdOcDWCR9NUljrRaJBJgyWQl7O8MfccVu4IWo8Lrkx5idcFPTw8eOVfCja2PV37q8r0hIWRURWbzyU71v7HH4n/VB7zs0XM6vbS6vjamSxGajWsg2TXWSDeiJ/yBTmzOpnjCMsaG1B/Yb8AIbHHUS53nZAyc718Ekp1pG998/6jj+yYzSlM+P3JlP3O+Z5IjlZ3pAHm2dp684KXDfGlDT0HTpyKJRQ+Pm5vZCbY+YLwfvREyJFJgrzbgxhpHeuwzrtbM1Rdd3aY/JNbQ/9vWR6xvTvpgyhAOLcGGpJfPbNWD9DIcwrk1+hLm8jREh7SXkvbrk7eK12CfvgypRnnpVsy9FsvS988gSM4B3ZW/fkeDgYe1Ne/eupgNY3yZdwabE5zo1IWtloXtT+EkdEHNbgpe8jbdzFRZVR2ivRSFoSjI0klDCzdukIGHnahnQj0W1KsatY1JnfuItrEqivEAkSyjJFmpuISHHJPRYLc1svLBTwKVzKSMSA6Jzs3kSaWHrje2e2llcza2XmPbSuBxUCt6qVYXwXW1PfYGv4y5rfu9tXw4r3FvobDonFbj5Ax9U59BwthKyvLlFjFbtWSCDbTvp90I5Ww6V4uiaMDYEj9/h46cMdvKyJFatwuJ4y5NanmaFlbDi2gwpWAXVv95UJayNyByb8FSCZ7yQWufKHKp+Qu/fRGUWaoTSRCC2Ehlels4/86cwhM5eIlNlXdQl8n3rID9Fs/Pm9PwMks4Diz2AFalMQ/1QemhFxn7Lry+8eeG/xi7W+9nx6MxLglBJ7oRz7zI6Ckn2F7o2wdBCANON1VVVjmVh9ccPkN2lXuTkZ2XpSsie9BM4K9NDKckhNTmsVkuDeiy8vIBDR+hvtWtx6NXd9HeQqLGasbAFwDKjMS1NWSxgwALvJYBFwChHBztc2PeL1vD1AVjpGVlo0GkUSjo54PLBXy2LpggtwAewSLerf5chiu7ZUVxdiYvQhHm6IhmHyEeRWvgn+nv3S3H/If1IdndjMfYL4zd+hsZVNWQrBp5thLZPq2iKmsJFIuzHh5f2nlwzRBhsSE+x14WZwj5zrIY5rg3zbYZkFyLcP2qpKnfGaZ/uRnUtBO1IJZLli2T70iVzEm7id543RDOrUlhwsyOiruTlVCIU2vdtgIR3mEXzZkq0+9AwSHx1uhQcywMNPv8TSimHTxyr4gfXRkaNq6CFpDfOwHrDQk0zigYfYly3FqrNNF/4oG1B+9RX3/rnKZAGUqLfrK/mQ1ldNxDFb+PnpPtYkkjrTXSqBULoq0tsZn+CFp1rQppdA/2u10HlGANAFgktFElcff0mgyPH6Dpp1IBFl06mPROEIXPqMRGuF7JGutrREDMhp5p/exa+bbT7TQ0HHqzQ9iYkZO63EyS4ep2XibAVi5YtjNdZCPLnByIWZP0Ive0GOlTAUkF44L2sOHSJPKzpprAy3Jk6jjtZsfgo8oimejW5M075dMeNrGj0jDym+b2OtRsOe3fV2Y0QrHTw41Dzq4JtUMmaJWtXLU2qsnC6Rf+2ceNQ9xtxfbwJkmDDZgrmEu+Qha02IY2XcfGkTzdUl+fSUphL0qOBe8voOpfacGg0xzjdU0IkeLiKF5Lly6HmWO26FYO3aGWNJAdA5CBInxDeRcK/qJZaVq44qsP7l1yXH94M+ZG/NGVzugyFpMfHxR7AIgPqEXEUN3ncfd+71MeoEjVET/ve1NcYF5ebsZdIZ7vSWOfRWvXv1UmP8GMi9fQa7FAJiwUeuaI7LGAFq82LIbt6SqsVpXdpZH/9Mzg7hwK1vv9vKe7eo98RnTqwcC4JLTC6fDkOw4cYt/4LpIyZK1sALDMb1NKcxQL5WOC9BLA6D5mK4LBoFYDl5kIzC+kDsM5cuoNxM1egTo2K2PKreVOUW1Zf/hYQAlhXrjI4zjud8fYCxnwujqD3/93m17Oi0CuSclKoPVJ0eV8N7MeCnDKbQ9RhdlOOtUWDILpRJfxXhAerIFI7ZAdieSS69wpIqCpWl0HRJ3Ahg5Kp/+reEj3ty+bbjC4QivBgET4sQ7I19TmmxNHMizWtXHFMzwaCtPUyJxktw7VJxC/79kLJ1054vp2BghBh8YRwzr2Rc6qwQpJ5noQS9uzG6uURUqQDN+bQDVaaVRY+/jR300K8+whgVBQiu3QYVtvowYSiWWdkD56IrpGHcTcrTkuFFW4t0NshLyeYufS0+nM+ZLdo6FfWx1OgbNTOYPNC758ZzvXxhZPuTZHt170xrkVVbKmZ69lVO8QXE+40h32kNg8av1PikeXfnoOzkRxnl68wOHGabvw/aMKig4kek1cyo9A3ij57iF4E4JziXBeOjHbIyf0VUqSF03VZ7TMlSlbMC6QGbpMi/j4tR8i/mU4s/j5GN+2E8JcQ/xorwg1lH4dy+MVNt/eQsW3qKkc2pmSDqhZih/G8JAzk9xc5SWjFC5GuLC+Jsz49CtKtWesKPa162ZfDSvcWSGCzEBBCPXvI/D7zH6yzb0JOTkjK1VJQr1zSzopVUsTF0zb792CRtJWuY0bOofE849cEaTMqGli9lj7ncipFY3NjGn7nwljjof9As9qXNCYMAxR6UeXXYWacBHeW0HuBeG0R7y2+tArfhxc8wn1DIJwQeM3Pu05+cifk+//QdJfTrh8k/Ua9FwCWMMFCfkBefnMkfA4QT2zikU3kQkYEBkWf1FQ3tQ9zLUr5rtWQn6OUDaRd1tUbWVNXgHMseKKW3/+UIoz33CdAlbU1QH5Xi5cn8IXIxBzmGn9B2rEAWAWxnqWuxQLiLPBeAljzV2zB1n2nMbhXW3w7jro96wKwiPfVgDFz8SooHBNG9sHIwbpPEMWZ1VLaWAsIAay0dAkW/6RNME48hIinkEWMs8BrRRKah9EPEH+pA6769cHeA1Lcf6DtffXVGP2ghXG90VLqcJl5+z5C5WjqKUIyEJJMhAWRNuEH8CyH8g2dLdUDla0K/jFlrE4khJEAUmq55NsT5WQUHNfXzsDoE7jIA76mudTD2BKGQ5WE4YP5gRzqvoWnxQQUIfWyU4DALbqJwZMY4J41kMFABWT268NCqiMRntBDIMw5ERMH7FV1vdWrvSqMsChEfnoP5HvXarrKadMLOX3GIEaZgbbhBxDPEv8yKgT0I+BfYYjV7jWQnaWgYU6vz5HTjmYm1NfnzPjrWJ/yVHN5nksjjNBFDvyOKH59nUqY3J56dnWxK43FiW1UHFlpYfqJ8+19cjmyDAFZ5y8xOMsj127ZnEWb1qY9b1ckPcCiRMqZQkJhSEiMUFglQEKmVOjpO2k4RwGZjsiUzATg7hJt7z+nxhx28jxJPTyAr0Ybf9BxLiMcQ6Kph0FhhcEKw4N0garCUCWSpIEka/ivyKz4G/gjhZI480OZicdtMi+xha6DBQKW35gthTKTznXAl0o4+pv+TkhNy/1O4Mt30xW49b0U4HmJNpylgMzOeEsmp0iwdDlt93GDu7hW9bamgW52ZbHGo6XxDRpZ8vVBRstblngiEo9EY0SRCdyYxfPesgIa/aB9LwgPYDZ6tkE7Wz+9zX8ffx1/8p5RJOvkBD3h74T/ivBgqUXRqjsweNx7AWCRzJMkAyVfrvr2BiFfFyPCrMS/ebTER3a5B2DCEE9rSPG6zFAxzZutrNCbjjTMOrurPK9YFw+z9EMScBD+OrVMnqhUJe1YxiN2t7cHpk42/nluFsXM0IgFwDKDES1NWCxgpAXeSwArMjoeXYZOQ1Z2Drq2a4LJo/rDw61kHg6sOw9f4Mdf/sKzlyFwKmGP49uWoISDiK8dI41sKabfAkIAi5TcvFWKl6/ox25xJXT8t+Y9mc1GVR5nFMnOdtdxeJ7MgwP6sqhmpJeGMWNZmfQACxPvYOXWfvBKpl5GJIyDhHMURIhXB/HuUEthpDHXp19wTgqahueCNUQICfUrIz8whUTs1a1ccLJUt3xNQbIPEk4rvsV0ZR8UNrIz9QUm8ThpiLfAff8BGqL5sLNShJzIC3iQz8Sn1kC4DCDprIcMZCEVJBdKesng8TqKbD3wCccP3XLDh6749EZpubgPelPXgvzIFsgPb9JUz+k0GDndPlb9TUKdekYd08p4V5ik7rLj22F1cD3VpV0/5PQaaXBok+MuYwcv5HGpa1MM1JGenhDEE6L4296uaDuso6ZdX5k9rr8DOBKfMgghQFZEPkBWKQ5lP2L1gshnzjO4wMt+1kZkOB5/wITviQDZatFHjp4SLMHD1XSR2XqwqDNZ/4Y96IgEERdpeYkVcEYGZL8bNuFLnP2d8ZkI72XHoUsEDdsz5OFocFL1FOgacRh3s6ln4F6vjmhs46VVOonNQjWeJ9O/wfGX3/hIKBkJKVMLH/z4KPIw7vA8H/d4dUQTwfjSQiW4/yudO6kth0azxXlGCfW7c0+CA3/TNn19OXz+iVLliUQ8ktRSZ6IStl7Gv3uUSmDOjxQMOtzhMKI96XtnkWsTDCkEfqIHv0qR+i6bItG96sesQeCZb5MrU7XDbJsu0t78C5MW6AXN3zVKwF0C8qpljXtLdNPjcSy7fAxWW5ZpyiqadgRGfPNeAFhkUMJvj6nOdTFO4EVp6PnQOGwPQhWpmmKnS3VDVSsahlo/dBcilel6rxtq3xzX5ef2Qb5rjVZTnIMTsqauBOvmbY4uIASIreQAAZ7JgcZs3n1HOpsz0/jnuVmUM0MjFgDLDEa0NGGxgJEWeC8BLDL205duY9LsVVAqcz+KS/t6qsIKHextUaNKWbx8E464hCTVNblcht8WTkLjetWMNJulmLksoAvAIhxNhKtJLY6OHL6eoBSVJt1c+hXXdkoHb9bayC96NATP71D3BuLRZk7vK2KnL2Mv4EDaG2z+Yzhsc2i4kNhTcF02HxV7HofTgjSXfnNviY8MhPCZa+74Wf5Im2SDRjZqxogpYJQwfCPA2hXHvfNmHxT2nw0lqgdv1+I6IdnMCAeaWlJCcr2xspPyAh6RUuCRNeDjx2HYUCXIx6VaYu9I8GInvScvVnqJlW3Oq7IohZQZbowpzFJGSBic3eMTKDrQkB4hYEg6JZxCB7w7q3Q1p+TZuDVuj+zh3xjsYkzsBfydRsnfV7m1QA8doY5MZBBs5o5EDsPA6+v+YCUUQCShWvyQvIQnDEJP6QeyJDIOdSYpYaPDGU2Y/ZWED5IwQlOkcvAWkAycatGXeTPiEoOgw3Q87vU4VOynH9QgXiZ3FkqhyKBzGGUH8KhUMPYLJdyNBMpDFCloEkZBaT4oaMq49dWpFboTccoMzWVdQDQLDn5BFJQlVgktkwvK/hekduhOxPLGwAesJ8T9g92pLzVq6gJ4Qk8xCOWFqLrW4lC5gNmFd++V4uFjuhZatWDxYSsWj9dKkcQj9686QgnnKsYDWGQgPyyUIScbUMgU+GvAJrAMrV8YYD3ZvF//TtvDsMFMBeQiqIZuzpMhJ4WulvozlLAqQfVe/vYelr69pykwpkQNfOdSX+/yahK2ByE8wOWE90eoYa3bk1V24yysNizQtKWo3woYNfO9AbCE7+OqVs44Xco4LktiFF0ZCF+VHgo573ku9ND62a0Z+joYTghirueD7NpJWG1aotUcZ2uP7K9/gbIUzeRe0P5I4o1NW3jAcykOn3+W+9xfsFiGjEzawzcTFXAsmnOxgg5LU98CYJnNlJaGLBYwaIH3FsAiI3/49DXmLNuEpy+C9Rqicnk/zPnmEwRUyZ/PxqAlLQVMsoAuAEuhABYu0XYz/ngoi3JlTdtUmaRYMa/UNGwvghX0i7b3wd4omeSsGVX/viyqm9H7ijTcJvwgnuUkYveaz7SsJzwNNsW038ZfxaaUQE3VouRdmpdwC2uSKY/N507VMcvZMFm3WlnhCW5+2QRJnX5Rx3HZyOyDQltOjbuCLak0A1wbO19s9mirVYyE8rzYLUHCo7yxghkSDvdsJCDhZ8MGs7B7lwE0/IIUwUfphvFgrQfY0vQGKsqdcP5dNiVT5lVsHasdKyG78LemGknZrgpZ4QkhzicE+nwZ4VgF895l4hTbp77y0gdXYb3me81lZfWGyPrqR4PNCzcrGzzaoL1d3nAe5vkD2CyfrGqv5fBOeOBFT+y3eLZFa1vfPH3FP2QQckqCjOi8YJ29L4daAnJn0oCQDFtMZkq+AoE5ifgw/KDmJweJHIGldXMiBW6VIp4XzmxMoofIywze/K29Zi/ZSpD2DmAQ41GaxuagUgjNrGfLyPDSP//MbAYnVlBASGgvgwRBZYbrhFHLB/+FTI4CeEQXotO/LQSAr87z5iWb7qDSwzRqqb1u1T+MLFENs120k1sIM0lW6MfCo17B3uULlkiRwQMzPx2hRGk/Di92Moi9Q9dIhd4sPIzMsqoew0+/SJGUJEGoTwhOtqHcRIUV2km8J+/zwqesnDjU/1ach9rdZVKte772RCXseJ5nu1JfYCLPO5d4UxGvKl2iBAd/HqBKyrwpMxRWELjlvqssvX8F1r/Nos/Bmk3AjZ1X7ACswBcMKlfMuy4JdQDheiN2UQvhlyxjBJclKS/MQFhe5oSLvj21TL/k7V38/Pa+5rfPSlTFHJeiSYwiu3NJlXEQJNb3nXBya1W2QWWZyiPXsWsAACAASURBVGZ9BF27yeAoL2EI4d7s1T3X5iQDOclErpYxo5Tw9hQHPptVWRMaswBYJhjNUsViARMt8F4DWGqbPHz2BjfvPUVIWAxS0zNga2ONUl6uaFSnKuoGVDLRdP/9aoTfa8/h8ypvNOJxlpaeCRdnR9SvVRkj+ndCtUqUaFs4mlv3A7Fx53Hce/xSZTNPN2e0aVYXo4Z1g5OjfgLh/ccuYc/hC3gZFA6lUonSvl7o0bEZBvVsC6kOch1dABbRZd9BKe7xSF+La1rdf2uVdI88iltZMZruO53sjFJRuTxFheF9RbwISgdtgnOaA37bPEDTr7wEhwYzxH2M67IZOT0mp8hqmVyyNiaVrF0k5hUCSvo8ZvQpszHlGWbEX9Nczo+k1RSPLX6/wtAo8jl4268/SBY4ocTcYPByrw7CKwCBVhIkebD4bAQLBwcObw4xiPyHlt34wTUcqfkIHez8sN6jTZHMA+nEavMSyK7STWX20MlQhazwRMGxqlBCElLIF2OI98UMhAl6BptFYzVVWP+KyJy+2mAT/aJO4DIvJGunV3s008EhJr1zCdbr5qram9ChITbVrqhpe0rJOhhfspbevhIeMgjWAWSV7sjBp7X2/fj3YQa3eJv+bl2UqF9P/MZha0ogpsRf1ejUzt4XG921wVP1xdsLpchKpCBbrfFKEPJ5QyKsFyPlcMcmt53WLVnVf8ZKmeDNKu8ItRBghu8VYWw7+sq9zElCSx45u5/MAdd8++gsLvTUuu/XH2467tmC6iS2/tXMKPThkfILn11H04MxMoYmMhAC5soMCa7P1gY+GsxUQu5geK716RoZBaz5nYJ7cjnw7VSFirsv+JgE4edpf37tOPi1Fff+UWdCvl7vGh5VpwcXgxwrYYlrU7EmNFhe+Bx2qcGiylDj1zHp4NHvDJJf0edzjc9ZlChP2xBmFaxn7Y6/vbvo1E0IRHtL7XDLr5/ecUif3ob1imma68qq9cBNWlxsAKzA5wzOnpcgMkqCTz9WorQObjZCsk7I1tVCvj3IN4gxQjwUiaeiWvhZodW/HUsPwWcxZzVlGtt4Yq9XJ2OaL1AZ6ZPbsF41A6oYvnfCyWTIHrsQykr63y+mdvr3EQa3btN12r4tC0IRQoRk/yRZQNUyZKASlXQk9TC176KoZwGwisLKlj4sFsi1wP8FgPX/ONnnr9zD90vWIz4xGY4OdqheuQxsra3xKjgcIeExKjBp8Xej0bG19mkpsRUBoGYt3aAyG6nn6uyEF69DERmTAG8PF2xb/b2KU0wo0+evw98nL0Muk6JOQEXIZTLcf/IKqWkZaNYwAKsWTIBMQK6jD8B6/UaCjX/RD1ESzjTtGwVk//6hdLFYTp/HnMORdOp52OpSa5R/U16lO8nWRbJ2mVOeZiegbcTfKBfrhkV7aAYtsiklm9OCijAbEMl6R7ywikLKB/2FTNAxXPLphXJyw5kE1bqR8Js6oTuN4rQShiuYws0jJLz/umRtTNTzsZ0RyyBwiwTpUXk9duKkHILcJBj6qRKxhxnE8Txmlrc/iyvlX8NQKIq554cAOgTYUUvWZ99BWS+vJwEh320TdgDk/2qxAoO/S3VBgJlI3SVxUbCdScl22ZJuyFxAs7LpG7uQN+hv786oZ52XIJefcXFj7QqY2IGeyBsLHD7dyIDwZPGl5jglHHzo/S9M7tCrhxK1a4p/PkyM+we7eOFkM9zq4QuHvAkLSEbMG3N4fFZSoMl84wh7CTD3bIv2eG7YAAlSoHo1Fv37GL/xF/LOGMMzJ2Y9n8sIw5Do05oqTW28sFtP6PEH4XsRxIsB+8enF8qKeMaI0UtM2U0pz/AtD3wnYU0kvEktQrCjjNwRl316a66TZ8bzrXSuzfE+uHyVAQl7VUulirm8fUSirjJ4fYBe86jPokJf49cEaYN8d5Dvj30f7UWic6Kmn/x4oMTYVFj25R4GMTepzrpAZkPtk7DweF5Sg8qDlXDl3cNvcpLRjJelNj9QSgimfGDjDcI5qU+kLx/B+qeJmsvK8tXBTVvxnwewiMfVufMSRETSd1/9eiy6dcm7XoT8kmVkjrjsS9d5fvPzY8ItrOZ5cBP+LMKjxZcwRSoahe3R/GQrkeFlafN6hAp1lL5+DKvlUyBR0OQ0YBhkjZ4DZUDhfFut3yRFUDC19+ABLCpXyrW3MCy4Rzcl6tYW/x4ydK8U5nULgFWY1rW0bbGAtgUsANZ7uiK27juFVRsOYNKofujesZkKVCLCcRy27T8DkqnR3s4Gp3b+pOVRFRoRg65Dp0Mmk+K3RZPQoHYVTb1fN+zHb5v/RuO61fDnsilaliPAFQGwyvl74/el36iALiLpGZmY8P2vuHzzEcZ+0gujh2kTWOsDsEjdJculSEmhL7s+vVjUrCHuY/Q9nV6DwxJmOmt0qzFqPKmh8r4iWR3NLQfT3uCL2AuoG+KH6Ufox27JihyqveM4KEifh9LfYHTMBU0ThZUNSqjjG0UymoXRTHMlGDme6kkVn9/4ekUew/WsaE2R2S4NMLJE9TxVhN5e37k0wBgd5fLrS+jxZQy/jzALlrp9QpId6Ag0KMEhk5fxbla3I3jiE4mlbh9goAP1DCrIHBtT1/rXGZA+vqEpmvXFPCgDdIda3MqOQfeIo1rNekntcMqnOwjBfUFFolDAdiw9JeekUmT8etxgs23DD+JpDt0Yn/HpjipyGt6rbkB+dAvkh3K5kR54uqDlx7QvMo7b+XhFqNvISQXuLJWCeMKoxdadQ60JSqgj1HbtkeLRE3rd1PBicp+Q+0Uth/27oA7jnsceBFAjwJpaHEtzCPjCeJBbGJJGXhGX7XI9S8U82zpG/I2H2QkaPU6U6oYaPGJlgxNpoMCWlEBM5XmkDbCvgJ/cKfjDry7U5aRPN1SX05DRgupian1h6PZMlwYYLXge+QRt1Go+nMff9WKXFLG36dryacWidKeCvX82bWHw6jVdP507sWjcILfNhMcMnm2m10pW4lDtU+PXFmmD3A+3Xmdiaz8aYkp+f+g/0CzPDeFc3PtZhnTKka96X5L3phh5tZ9B9DU67nLdWXi982xRt5PfPPH7Wp30CD8m3tL8NMyxMhboyCSqLsAEP4fNwi815YknKjvzt/8sgPU0MBe4itIRZm1ry2H6N3nXSwqbgyq8kGMy2NM+3VFVx3NbOG8jos/gZEao5ufV7i3RXQd/pzDT8RXf3igtMtuhsWuGCXsN66UTIMmi/HykbvYn06Fo8KGxzYgut3CJFOm8d9GEsUq4OOeu9WMnGFy9Ttdwuw85NG8m7t4VrZCZK1gALDMb1NKcxQL5WMACYL3HyyMpJU1vuN/w8QtAwgR/mvWFlhcWAba27juNCSP7YOTgrlrWIeDXwDFzQUIyt676DrWrU5LJHiO+w4s3YXl+Jw0kJqWgTd9JKrL8C/t+gY21labd/ACsk6cZ/HOFx2dRnvDyFK8X2r+1vFYmP8TCBJr+O+BRABreaYS+vZQIqCHu49iYMZC+SJ8tAyviq7PUI8atLotK/Qu2YSH9kwyEhEtKLc1svLDTSCJ1Y/TXV0YNzBW03/UpT0FARbXUt/LAwVKdtbqNZzNRU5Cy+5pfH/hJRbD5AiBZKGuH7EQWz2tsu2cHtLDNP5MQARae75BopbvXZ5exg3YjyikJ+7w7oZG1Z0FMLKquzU8TwbykYT2ZE5eCzSfUYWvqc0yJu6LVhxgSfkPK2U7oprUJSP9pH2CXP/OskJ9O30bFatcqyM4d0KjgPFWbT4pkmHRjaGIGfboKN/WknHczVpWZkMi2nQyeBdLn7KD+LKpUFnfPClPBk3YjKg0Hp04TyFOOZMIkGTHVwtfFkL3J9dQQCQiIxZcH1kCkXFwmwsFRJ3E+k4YFGXOPGKOfusyihNtYkfxQU2WSUy1Mdq6js4nekcdxLYtmu9vv3QkNi/C+0jcuoV5bvdqjlSDcVQhcnvPpiUpyJ1WTN+dKkZNGAayA0Uo4ljX9/UOyBM5bIMO73DyqPvjk/WnhEtxfwctu6ZmbvECMHDrC4FBYNI50OKKpRoAKAliYW9gc4Np32m7lJEMjydQoRkgm0rAzvNDJ9hz82miPu3bIDsTyPFL1eRxOjv0HO3gcgnNdG+JTR/0JjpioENjM+VSjLuvpB3bexv8cgPXiJYMzxOMqn4ytZBB8ryD+HAiBqHElAjDVpZ7BaRI+7/UdWAyMPoGLGRTJXOfeGp3tzUegrlaUiQ6F9ZLxkKTxWP8J2fzA8chpof3Nb3BwIgqkp0uwcCldo4wUmD2Det6Sb33yza+Wxg1ZdO4o7j0kQp1CKWoBsArFrJZGLRbQaYFiD2Cdu3IXJFyufcsG+KBBDdUgCQBTUCEhdoTrKaBqOfh65z1FLmj7/3b9+Su2gnhpfTtuCAb3ojwl7QZ8jYioOJzdvRye7nm9ArYfOIN5P/+FYX07YOqXudm/SHlSz9/HA8e2LtY5NJIR8sT5m1j543h8+AH9iM8PwCKEjoTYkS9TJivhYC/u4+7ftvW/0f+OlBeYHH9Z03X51+XR91lLUR4KYvRWE1N3v1sTQ67RsFTv5izKdi34R8iT7AS0i6Dk3WIzAYkZC7/s7IQbWJf8RPOTqSFzJIyQZPPiyz2//nDn8dyYI3xQ3f7Y2IvYl/Za011X+zJY697KoBmykwFCsJ3C46LQVWnoZxuRKVfgjm8/eMrsDLZrrgI2C74AE/JC01zmtF/Bls6faFYXqfunJapirhlIcm1nDoMkjm46MmetB+uVl5CdP35hVjd9NrRavwCym5QXpfXEj3HPKkfT1CaPNmirg/xdl61fbJcilp+yDxyqf87CqTyHzVsZvOTx5wwfwqJ8OXH37Mn0UIyIOaPpuq6dG874dUd6Vl7w4PEfUiS9oKBGpUFKuNUS90wP3Mog/gF9N2RKgIu2wJdfsipPLGPkq9iL2M+7R1a4N0dv+9wwa3MI8UglALhalrt9gH56vBWHxZzBmXTqpSFmbs2hq742CIE74eVTy03fvigl0+bAHBZzGmfSwzRl1nm0Rme70kgLB+6voOAMI+fQaK4SvORrolV/E8RgA8/DimQo/mYiXWMkCpNk5FOL1AZoNMe48FR1nTPnJFgX8QqXPrgo+vkpdkDkOftwDd3U27hxqKvDA8hQu4SfkPAUqoV4XxEvLL50iTiEe9nxmp/2enVEYxuvPE33iDyKmzz+zM0ebdAmn+eMJCEGtjMouM66eIBdtP0/A2A9f5HLccUPFczPngHVOfTtnfe5tS/tFcbG0vD1UlJ73PTrm+/UGJOBUN3A3ISbWJv8WNPeWKeamCYINTS0DgxdZ+IiYbV0Ipgkug5IHWE2X0PtmHI9OFSCPzfQte7pweHL0dTO9x8w2MsL/61RjUO/PuLAZ1P0MmcdC4BlTmta2rJYIH8LFHsAq2Hn0SpyclfnEri4f4VqtNVbmTcFdec2jTB/2kiVB9H7IlPnrcXh01fx6/zxaN00F1BKTk1Hk65fqIArAmDpEpLRsc/IWSrvK+KFReTMpTsYN3MFurZrgkUzRumst2n3CSxetV3l1UW8u9SSH4BFyqz5Xaoi11RLx/YsmjY2boPyvsyVKeM4FBuO0WmnNFW9I0thvWMH1CwE7yvSSaOw3QhTpGHIlYbofr+mpt/SnTn4tCz4R0i0Ih11w3Zp2iWk5Hf9+ptiGlF1ekUdw/VMGvr3m3tLfKTD/d+YRj+KPKJFLD7HpSE+K0FPtoXZCmc418MXTnk5hIzpS+ixJpMwKnsZGzpHPGSIp4wuyZDnYNhnm0A4pd6UoRnJjNGroGVsZn8CcoKslsxZf4L18s+32cIkdbdePA7SN0+pPpOXg62Qe5CiTyoHb0UqR4GoZ/6D4MhQr1R1PUKMTAiS1TJx0lfYKKehh2KIhEnmybvLGGQn0Tm1KsmhzkQWm3YyWrwkn3ysRBkdRMb5jWl+4m2sSqLeRmM9AjDXuaFOAOv691Ios6ge9aYpYf0ujMTY9ZGZKMGdhdpeWCTxQMOBClSvZhwY9n3CdfyZTOeOZM8jWfTMJcL7nfBfER4sXSIEu1a7tUR3h383M3KMIh11eM9cO4kML3Tw8ghBfrLpJpvv8HNSBB+n8+xcnUXVYQV7d586K8Glf+i887OYqe16Zar2d1rjHxTQcXvpneZrNxjMjbqD+zVp0pCvnAIw3dmwt43YtRN1mcFrXmZNAuQSQFesxN2T4Pl2ahdd7Qh5MfUBtgGhO5CgpNyBhvjYJClvYTuFAjmcgxOUy/f96wCWiuPqQv4eVwTsrhkgAQEt1UJoWqd/o4CV4JFMsopWDtkG8j5Ry5FSXVHbyk3vdD3IikOnyMOa64TXjthTlxAwnYDqamll64Otnu3ELgW95Zm38bBaPBZMonZyk+z2/aDoOdJs/ehr6PYdBgcP8xINVOdUfKxqIWHBJDxYLYRMn5DqFyexAFjFabYsuhZ3CxR7AGvirF9x6uJtVaa7eVNz3Zi7DKUZUUydIBIuRwjQCQE5ESHwYmq7/4V6Wdk5qpC+jMwsnN2zXBNm+DgwCP1GzUbdgIr4a+UMnaqSsMSmH30JZydH/HNwpaoMyVa4ZM0OjBr6EcZ9qpvYkmRCHD9zJTq0aoBlsylfgiEA68pVBsd5hK2ensCXo8SdqP4XbF7UOqw6k4j55WlKe9cUJ9yv0RMS3ZhEgdRL5xSoGLxF1caXZ1uiVSDlRDJHynTSLtmS+vK4VsgwwnhcKwUagJ7KJLNixaAtWgTuV3x6o7Q8/xAxfbqsTXqEuTxukYY2HtjvlRtGWNDsg7r6VIOK6mvfO9fHKKf8wRV+OyRU6/56BhIeZwW5HlkiCeMG70aAtSuOe39UGKbX26bt9AGQvKWnxxnzt4FzNuwhW1ik7tZrvof0Ac28l/X5LCjr6OY5Ug9KyEUTUmY4pMh7Y9rMHw0m9JXGFhumfI9JEvo38Yog3hHGStJLBo/XaXu0utdjcS5FgrBw2v/IT5Xw45G8G9N+z6ijuJFJs55uL9sOHa388wBYGTEM7v5EdZDbc2jwvWmbFGFmTPJWULbh0Lq9ce398vY+Fr+9qxmeLnJlY8aur0zd0J2IVlKOmau+veGvh9NmSvwVbE15rmlqsWsTDHY0bwp7sWO5lBGBAdE042dda3cc0pG5Tsj11cehPH5xa46Hv0mR8oauqwq9WXg0LBiA9ds6qZYnTe+eStQK0AYshZkq63zNwtbd+H7vPZBgbPwFvC5LPVgLaz6e72AQd5feDySsl4TUipW3Lxg8+YPH/VWRRbXPtNvRBzRqPfMJSPPuXU5+J88lckih6/mkrifJzIDtRMptylnbQPnrkX8NwCLepCRUMJz3TBPak3j/fNiSQ9WquTZaulyKZB7fqr5EFkIQcFSJ6vjepYHe6dqT+grj46jXVn7JN17kvEWrcBoybirfpi5lJKnJqrBBJoZ6SpJyOc27ImfQeLHLzaTyQo4rYdbYqGhg9VoKPru6cBj/lXHPcpMUKoRKFgCrEIxqadJiAT0WKPYAFhkXAZskhbAzJ+2ScMQFK7fCx8sNJ3csfS8W0uqNB7Bq4wEM7tUO346jrt/X7z7FJxMXoUXjWlizkGaV4Q+a2KRG6xGqLIYPzqxXXfp1/X6s2XwQX4/ujxEDdKf+VbfduF41/PkTJYDPysn/Yy01FZg2RwmO9406c4oUXnmTdr0Xc2OOQSSnAJOWpmBL722a5hw5a8TWMq9norrxq+lRaP0yFyz79kgH1AmhIVQNv2DgGWAe1Mzz8QYkKWk4S1T1j1FSWnAybn02f5qZiDrPqdeXk9QK0dVHmDxFoTmpqPiUEgMTqwRVG6oKwVsb/xjjw2mq7Xq27rhcUfdJrbEKLI25h++iKO9WRSsnPKwywNjqqnI5GRzO/swiOwRQSjhcrPQC++rdV/FftVaUx7G6NPxYVMMmFs4c2Rlceqqmts3aI5A4GAco3kiPQZtXB0HCOtTiLbPDncr94GziOsr+YzGU5+gJu3zEJMja0iycwmFmckqUfPiH5mcrCYPkAN2n35lje4NLoKflL5b8joZxNJEBCT8NrS7OA+7RLhZvzmlv+IO9gaeUex3TJzHwLWX8PUs8EsiYFLw8myEBQ0EynfG5isigQ69xuLeJ2t+zpgQNx2iDasYuDbI2T0xlwXNmQ5oXMGCWtmeWvvbWxT/B2HC6ufzUpSpW+bYwtvt8yxGbOD5cp7EIsWZKwEgQT0hdMjXyKn6JfaC5tMi7Cca7U09WsyglspGVcQ/xTQTljxvhUgVrfPNm/LyYFoH2rw5pWm9o54Gzfj1wbCKbe/LwTtrOZ2DrbPy6EqqbkQF8PVN7Q7twthSOAorAy0tZJLyiHTcZx8CtqvH9Pn7KoWPEfsS603vveLmuaOXgI9KChoufna1EGnXwRdNJDFwrGq+ruoekEA4XF9D7qoSvBC1naK+1FbEPMCWSgu0jXathpU9zLSWvp0ej5UsKolS2KYn7lQx7OmcM1r5v7LddhFzGgOU45CiM84g0bK38SzwJBI6cUCIoRH85H2+gS3spagkcm/8+xuLEGapn1coSfDUy77269+0rDA6hFCXEEzwkn2cwef+S97BapnjUwVyvvJm/yXVyYOb2aD3SWXpA+7rqEJSSa4fsirZTRjqy5n4JNoQefpA2mCZtYP3l9yiUU00dSq78ncWz59TGnw6RoG5tamPy3Tp9Dr2/bayBn3407lku2iaFVMFabtq7rJDUsTRrscB7bYH3AsAq7Blq1GUMMjOzcf/Mn4XdVaG3f+XWI4yeugxe7i7Y+8dcODpQ/ppL1x+orrVpXhcrfhinV5dabT6FQqlU2UMmleKn33Zh/Y6jmD52MIb01u3yfPfRCwz56kfUqVERW37V7d2lr8Off1Pg0VP64uvwIYO+3YvXi63QJ5bXwdbdSpy7zOLPIX+A79iRXXcU5AUhINEziLWxjzE6JNf1feGeHigfS13q28yQwbms+A9yXV1VfLQVL7PoTvt5jUGoaJ1LFlwY8lf8cwwLorw+bR19capSwTyOGjzdg1vpdGP0q39zfOleA62fH8T5FEoovcinMaZ46SZ8NnascYpMeN7fAD5E/E/lnvjAQXcYU37tXtrL4rv4u7hYj2YArP2gDuZ4N0S3jkX30fa2f3NyYqFRteS2c4BMbqxJwF+r6kotHLxxtnL3fL0M9HWQueN3ZO7brLls0/cTkP/0SYIyC673coF/IgQ4S6itu/zbQa0ABd3MlNh8AjZPtmgBcAQo8rMynuSfkEafnJ2DVN6mWcEAl2wkyJLk2nXeDLmoA4LradFo/Ixm6iwlt0N4zeE6TXB3qxKvztEVWaOnFFW6mL5+buxmEXJCG9To+KMcDkbkFdib+Bp9Xp/Q6NmzZFnsK9/R6LWUX8HnWW9R+dF2TRF/KwcEBwzVW2V2xE3MiaSZ32aXaoBZ3vX/x951QEdRfe9vZzcd0nsChN67gEjvVRCQ3lWaUhSpCoiKiAgComBXQIo06U16772XEFJISCGE9GR35n9uwu6bnd3Nzm42/ID/3nM8HrKv3vemvG/u/T6bjMXaRoY9OIjfElmK5YISjfChvyGoFpebgaDL+WqZZMU5B9zEuzj+I9u7xYOAdl/Kv06NjfnMBR4//8XWOiRIgc+nGNI6nPpFg6jTbI/Ve0eJUm/I32PhDwRUif4T2c7ZumHcrz4AYY7ygHK5/lZnApvGsFRiqtdtiQOUhtnEZpvMfAxsn8TacvECOn2r72/pfu/oURLby3XSa3t50i0MjmC8e108wrC5nPGPkuKKT/q3BHLZxyXPv/fDIAfP7CysK3DtpoDNOzUIjzANlBEg36WDEnVqGH8XeRgnYMbXbL/S9/D5XzrAXbLkmbw67/6dKbB9WNAztcvdHdia8kA3sb9Lt0J/7womJ9rw5kacFCGa28p1RCePQhC55+Qg9Yux0NxmwifUuUOdN+A26WuAmNSfk02ckYvkFNYZXbt0DWuNHuvDPtS/Hn7+zgGU0mk3uwfsHrB7QOoBO4AlY0+80eUD8LyAk9uWyCj94ha5fP0e3v14bl60GqUIViyrTzb8XCKw6lTB79+xCKykp+ylx5TnLlwG1qxjDzpXVwEzpjy3D0cv7oIaGVlqqgJfzwdIrWnV2yuR6cpSWM6H9UJJE+lvT+8rQCS7xUItn+7k+BP4PSWf6Pyn5X3gk84O1A2nA84W8tuYGkH7qK04K0pT2lmiM+o5yzipWj6lvBqfJJzAL08Ygfs4rxqY7ms6XUBON4uTL+PzxDO6oo1dAvFrUCtUCV8pDlbAxdJ9ECohS5bTvrTMoNi92JHGXqD7upfH4gDrokx63t2PAwIjpW52tDnKhZdDvboCenR9DtejOhfKke3YFBUKaH5lAKNc/4yJO4zVqYwInuqN8KyCr/waym1CV06xdyO4NT+wl/DmXcEPMJ2SEZObhpoRjMw/SOWGK6WNRMVlZUA5WqQIpVJB89MedIjaijOia2BZUGt0KmbZASctBjgzX/8gl6AUcM45/2+TxwvwNtTvMOmbpclXMT2RRfq97VEG68q1Q1qmGtII2zPfKZAmymKpNRLwqmB9hIZaA+yeBLgKbD7eVQXUZKJoJsd9LDMWXaN36H5v6BKIraH6B3qLN8SzCgczYvB2DFNNNdf2kuSrmCHy4fte1fCFbwNru7dJPen9dkNwezRzMx6FFHZ3uR6v295zQ5B8moFLoU0FlDcdmChrvBs2K3CaYXxo0khAZyN4490tQNRBth/KdABKtZG/x2KSNKj5+C92jfMKJFQ0DUrLGryRQk/uKnBB9ErpFgDUnyx/nOImCZg+NFn/mm7xnX5bF7IT0CZSXwjlSCn9KN+vEs9iQfIlXdOjvapjpq/xiCFx/8qxXYEMpmqnWLwZHgE+UGsEpKTrgxLW+kta7849BfbsFxAZafoDWWAALJR9MgAAIABJREFU0KYVUK2yeb8uWkJE76yXNzsCjRsa1hsedwAbU1l66XseVTDH3/iz47X76xChZh/dKDKxhrOPSRdMij+OP1IYaDzFpw4meFv5IUujAbdoChTXGY8idSxUqAl+/FyLPvwUds1ycoDpX7J1IoBw9kwBnARXnjVXgVSROOLkjwR4exe29+dX38fdCvT5+Q3P3pPdA6+UB/5fAVjE/ZSZmQ1XFyc4Osr7GkgE8SMnz0e50qH4bLzxr8ovw464eus+3h0/F2q1Bj/P/Riv1TTk17h5NxI93pshiwOLFBqPb/0xb+rL1+3GNz+ulsWB1bpJXSz6cozOZeY4sKggBSHM+VaFHNF70OABGpQtY/6l5GVYG1uOcftODqfO5L8VbOr0L5J8GF/QlqBOqOvE+IKykxWIOazA42uKPHJn72o8Kg20nH/j7bhdOJGVLwG/bul7etNp+JUaChtpHwx5tBf/ZbLT75/+rdBWpgqbNT7uGrsDZ0VqTL/4tUCnQspax6jTUT96nd5wJnvVwTfJ53V/I1JYIoe1he3NiMJgkTocEa9fK9UPRMhsqZEKJKlBaq3L9q7wS8rfT9VIuam7pmizEdJT4TpBdOByKYaM7/61dBp5JLzd4nbqEepTIz/4NUM3Cwn6VWcPwvH3r3RjIP4r4sEyZXdzU9Asho25jModR0INU0VJ2ZAUDrXGe/oi6+vVmP74FP4QEY9by9sUtU+JqD36B7+rjkC0AzDxIzWKWxBsIuWF+TbwDUwIqYknaTl6HFiCGjjxqf6+I1U6pVPh7uPLv1Gi3GP9uVQbpYF7WMHt3s59ghYizplyDh44FNLN4v1krMLK1FuYlMTStd52K4tFfvrpWuJ60vIDilXAN75v2GQs1jZCvIbEb6i1ghRHpQp361YOAZ6ytSY+Js/ylj9bxGOft1CJp0/ZOg/sp0H5coZrHHuMw30RMXrA6zzKdpPf99mnSej6mKVEeqS643r1wqVzG1uDmENKPNjB5uP/Go9yPeWPU9omXVui5cLrs9TgRK+5UiVcZyhxL0w/KnBEwgFsS2cfPL71eQP9ipuOGNKOQcpNqJm7Bj5hochR80hMYZFs1u5FcT0i+z5wUIHI6IKAKwEtiOOqknx/HjvBYbeIbzU0RMDwdw05mKSKq36cMy6U7GPAYihVIKQ5RJQaVGAU/KrU25iYxNJ2O7iWxG/+LS13G8/D8bcvobrAaAmoEU2pCsgZPx+Co7PlbRaiBnEs/vI7C6Xy9hHw4QeGvl36iwqx+a+SeTZsqAYlShTu+VCIYVtc1c6BZbHL7BXsHrDaA680gEVpbrsOnMa2/47j8o1wpDxN1zmKSMhrVCmDLm0boW2zeuA426Q5Wb0SRViRIq+GTZwHnuex5OuPUK9WJaO9ZWRmoV6HkbJUCKtXKo01P+Uf1A6duIT3py6QpUL4Tp+O+HhkL13/cgAsKrxxsxIXL7E1IuJWInC1G/NAWpoC8xYpwT9zy56WuxEVyhTbfvdvifauTLFNKnOu4ATUn0kHSsu8WjlyJZ7yuXDNccSy39mhm5SfSAHKVvZxwlGsSb+ra26+b2P0KVbOVs0btFPuwd/IFJ0ITof2RIgNoqLaxWzB1VwGBEk7nuZdD6Pcq9psXlIy6bm+b6B/MfOHEukAykas0CO0H7hmEBxz2BfHCuV59OvFF1lWAvc4Hs5iufZnoI41jorXZKJ1zCYk8exw5QQltgR3QjVH+Z98uVsX4bxwom4IpECY9bFxBVcqdDXnMdo9ZFEQ1Ry8sTuEESBrG+IibsL5Gwb08yXKIeuTpZCSAjd3DsbKwLYWu4BowC7/oES6iOiYrtSjLsBHU9RwseB8UytyDRJ4plp2rGw3vOEZaABgpUYocGUpO8S4+Auo/XHh7+F/r+bgc5mDh+is6hYsoOa4gttO4rNQI3KNznek0HmlZF+LfWmswjePz+H7p0yV8SOPmpjgZTqSYkvGfYyKZ/xmb7mVxo9+hnxTNhmcjEYeqtNRTwS0e3KOuFayn8ma4xIPY31aflRK6GNPLPiHKQ0rlAIIqOQsx8x1/SUmKfD9j2zvUOTG9Klqo+lFiZc53F7JQju8KvGoPFQ+kLEj4wGGxR/Q9R3yMASnGraxOTh/awWHpKtsnGXe4hHYUP44pYtxdrZST2XUmLqnVEDiZsn+eSmfWmsTsxnXc5nS6cagDmjgZD7K2fmzIeDiY3TtaGYtg0+FsjYFsMLvc9hPwFWUbYEr7aDT0hWYO18/X+3DMRp4G4kgrxS5EqkU9vbM1gd2QENJNLj0Xl9KVRzHQ42LHGnbuZKThPYPGXhaQlUMJ0PZtSTj0s0r4rh8LlQnmAo1/U0TVAo5ExZCcJWfci63P3Pl6N2d3uG1Vqkij369Dff6ilVK3LnL1rdPLx5VLAAhzY2jqH+3A1hF7WF7+3YPMA+8sgBW7KMkjJ2+GNdvR5hd7xpVymLRF2Pg7+tptuzLVuD8lTsYMWl+Huk6RV7VrFK2wCl0GfwJ7j14iP3rFuQBWVJbvWkfZi1cgV5dWugi0hIfp6BZ93EoGeKPnSvnGm1//MwfsfvgGcybMQodWrLUCLkAVniEAn8tZw9Ayov/dLIaqkK8FL9sa2luvDt2cSAJcK2danYYV0sxZavZPq9jcHF98PLcN0pki6IXyvfSwK+u/C9ecZoM1I3KJzoPeuKB71czOW1nbwF1Jhf+gKqdz1ePz2LJU8bl8IlXXXzgIWFjNeckmb/fyHmM1iKgIY/XpSQTPJDZjNFiUvUzaSFbAWXadklpjfrUWg1HH+wMtozLS3qg9VY4Y+CG/iDQVGxhYTwG9uPhUATXJRcXCefPWW4YH1ACWTMZn5Sla3I+OyEvEkssi04A5Z7grqADuxzjHkbA+UtGwm5uTKeyHqF73E5d0/Wc/LEpKF+JUmzKK6fgtGSa7k+aynWRPXYObuUmo2UMUxctzL7MSgIufKeEoGZrmMwBrT9Xw0ne9BGlTsPr0et14yQQMLHqUBRzdjAAsB4e5hCxnd2f6D5D95vC2p69HK4e4fA6w9DymqzQVwPfWqbvZfRLiYi/9IjWo8KGGNGDtHyEYxIOY2M6SzOa79MIfYozdVZpi9JISUsVJi0fYcE19mdEY2A8I6tu4ByAjYGmuZDE97Q3L1bHoBPsGe9VSUDloYVb59NnOWzbIVLrKyVg6GDjbaZGKnBFBHa5BgO1xsn/kLIk5Qq+SmZpV5VuVcbmRg1QzMbn/rNfK5HzhF17NUZrUKwQ0SaXvleBPkrp7vNj1AaUAI1jNuB+LsvR2hvcBZVFgH3piOXIEbEmXizRGyQWYc6cvxoJLpqRhKun/wLf6lVsAmARcEURVw+KCLgSz+3P5Urcj2Br0rIZj+bNDIGWjxKPYm0a+5hmLGJyQ/o9jE1gIhFtXELxV0DBoif0LCr9YLkeb+WNkv3gLvN5RHNxWLsEDgf0I5N5nyBkT/4eQvH/zRmH7tFHj7Prt0kjHm1aGfr13y1KXLjI/N+5I4/6r1kP6prbt7b+3Q5g2dqj9vbsHjDtgVcSwMrMykH3d6cjMuZRHsl4i0a186KOSEnQ2ckRFGkUFZuA42eu4ujp/K+kZUoGYd2vn+f9/qrY6Qs38f7U7+Dk5Ijf5k1E5fLmuVIW/bYBv/y9FR8OexvD+humMfUZ+Tmu3LyPn74ZjyYNGKErEbQTUfvKH6ehVlX9qJjklFS06jk+T5Hm8L/fw11EHC8XwCKCR0ohII4nrZmSOn5V1s+SeWRkKjD3OxZ9RXVTe57GWhembPWhZ01M9NSPAojeyyFSFDbvWUFAFSNh86bGcjAzBv0f5X/pqxQbgC83MWCkWEkBNYyEiVsyL3HZn55exZePGQmKOQlra/uhev+k3cH4xGO6Jpq7hGBlgHGBAkv7ua9+isbRjPRaXL+Wow+2Wwgumes/+hnIID7K7wvpikoO8omOjmbFonccI7wm4GWZayf8vozDE9EhjMYSEixg8AAezs7ygVBzc6DfuQe34TznA11RvmR5ZE0tHC/hitRbmCJK9aLGKeJgXVB7WaTuitQncJnEQFuYSWsUXy/UVzOXYKwKMIygUp3YA8fl3+rmqq7XEjnvTM1Tqiof8bdeJNyJ0B4oqbIg50/k7NjjHO5v1iciKdWRR4iRQ5uxNfo3PRyjE/IFHMjecA7Ef2XfhKuzygDAurVSiaTLIm6ibjwCXy/84eTiZQU2blKiVhYQKMI0nLwE1J6oKTAisGrkajwRReFdKdEH3koLws9MbNy3YnfgjCj9+J/AtmjsHGxym5/MikOPOMaZ9bpzADYUABjJuV4KU2bp06uYJbrXDixeEXN8THPEbUuPwIiEg3ldTt/SATViGFdW6S48ghoVbp1Xr+Vw4ybbp61a8GjWxHib2SkKnJvNPnZR0Gz9GfIBrCmJx7EijX34qX+2Pn5pXhV+vra7n+WmAWe+ZCg/RT83mFXwXjW3ntd/U+LJHXZ9VX5HA6+K+mPuFbcbx7IY0dMy/1Zo/SwNX5reXkyhwq1SA8x1m/e709yxUN5n3E2aKd/Dp06dQgFY9yPyI64eFMBxFRQgoHlzAZUrFm5/aSd57rwCm7exvePlKeCjsYZA6YHMaAx4xABeD84xL3pTKYK/v04+hx9SWBQmfWyjj27mTJqq/09gOzR2DjJXLe93h23L4bB9hV5Z3ssvL/KK9/7fSXevXM3h1h12/XbrqkHtmobX0979HA4fZeWaN+XRsrlt1laWAwtZyA5gFdKB9up2D1jggVcSwPp15TYs/HV9ntIeRR2VK21a/vjKjXCM/nQRKIpo/IheeLev4ddwC/z5whQ9cfYaPvhkIdyLu+H3+RNRNkyeBHRS8lO07zcpL92QQCptuqEgCPjhz3/x0/ItqFAmFBt//zKPDF5rWgVDAgJ/mTcRQf75aTgEFn702Y95QGH/7q3xyVj9FyK5ABa19d8+DkeOiULuSwsYMrBwX3ZfmAUr5EB27uZw4hTzjYeHAO+h1zDt8Uldy/2Klce3vo30eqIojPNzReEyCgH1Z2igYuKUBY7s56dX8cWzg0798DBM3M2+MHpV5lF5iO1ePqTpUz2LlcVCX9O8MoVx6adJJ/FX6k1dE+M8amCSV53CNKlXt3XMZtwQpWpof5zuXQ8jbZg+qG2376PdOJzJDi5Di1fCLJ/XZc/n79RbmCwCenq7lcN3fo1BaRd/LecQn6AfieXrw+OdIQKKudnu0MfdvgTnBRN0Y+bLV0fW+O9kz8FUwQmJx7A6TZ/Ufbh7VXzmLYOwXxDg+r4+AJW5eCcEE6GhuzIi8W48U/kyxXHi8N9aOGz8VTdkdYu3kNMrH7zrHrsTp7KZjOAv/s3RyTXMKj+Q2MPOaSp4iy5TSvmq+aEGrjLOO9OSTuJPyXUyO7SBUQDr3BwliHdPazXHqOFmhWiEdKKxscDSX1Vw4YEmmYAYjgvrxCO4qel7UNPojbgnIlk+FNId5RzcrfKluBJFpVJ0qtZOlOiBkkrTIOO13MdoG8NSS6s7emNXsGFqaaEHJrOBDxOPYF0ai6j52qchBhU35M3UNqflE1NpOCz/bTAceAYC1J6ggYuf9fcB+ng1a44KuSIOzOHvaRAabLxNKn9iCvXP9lrD2WooZKqZSe+VrQ+2wRctQ1GqpPVzkLo9+aYCN/5kA3ILEVDTCFAic7nyit1erUSiKHqlfG8N/Oroj3l8wlH8I0rDJ1CSwEky6UeKmo4+2CHzY4rTwolQ3rqoG67m43nwafC6VQBWRASHfc8ZuNIOnMjGZ89VgRfdMka8p8n7KCM1LXWC9u/0IYI+SGjtnfh92J3BKBy+922KHsXKmF1S6RrRc4ieR+bM4cBGOKxdqldMKOaB7MmLwfvKA8DM9WHt7wsXK/FYdO83df1SBgFlEmitbh0BXTu/PO/4dgDL2h1ir2f3gOUeeCUBrLeHfYYbdx7k8T01a1jTrFcOHL+A0Z8sQtWKYVj780yz5V/0AmnpmWjSbSxycnJBXF8e7m4FDnnxV+PyItC0tu/IeVDKH3GIkU98vT1wOzwalJZJ5O0rFn9iFBCb99M/+HPNTjg4qFC7Wjk4Ojjg0vV7SE3LQJUKYVi2aGoegb7YLAGwEhI5LF6iHy0w8SMNihe33Yvli762xsZHIML8hco85UGtvfUmj0cV7+M9EZdHK5dQLDcSwn75eyXSRFw4ZbryCHxDHvA0IO4/HMjKz1toc60Shh9urBtDQH0BZXvY7uVjX2Y0Bom+erZ0CcEKG0VFSf3a6eE2XMxJ1P35D/+WaCfiDyvsPvku5RLmJ18waOZMaE8E24BnS9rwtowIjIjPj5Agc+cccMOClMiZSafxaypTZBSnb2bnKLBsBQciahUbcYcMGcjD09M216dBWl3V+sgezQjUC7MmnWO34UI2W29q60e/pnjLzfyBw2VyLyieMt6YzK9XQ/D0NTocSiuj9DKtdXcrg8V+hqqQDv/+Boc9TK0w983ByO2YD/5/lnQav4nW4n33qvhUDthmZEQkjPHtV6o84Eec9ekamH+gNnfol/K5rQhoje6+pQ0ArNx04MwXrAdOJaDBlxooJCpU1qwhiXx8MTu/7Uo5QJgI6CCC+DpTNHAwAch3i92B06JIKbmcP+bGKeUaigkbUmCVB+pUvBG9QVcmTFUcx8zw5ZgbQ2F+7/hwKy7lMAGQDUHt8bpTYIFN0pzrPCiJqTsYoOvoLuC1Twv3DJA+952cBXw6qeA2z36lRI6I8L3ORA2cZUZQNYzagEgNS7PrtrU7Rrf1BPH22Mqi/uMQtZdt/oAGPMp2L1z7RFxPBPZaC+vMI1gSpTYv+QIWpIhUBj2qY+qzqCD6YEMfbrRGghYkbCHHnH6cBuVVpkSqGT0LPk2bWwRgRUQqsP8Ah4gHBXNcNW8qoErlwvmqoDmtXsfhxg3mx4YNeHRoZ9jf5MTj+FsUqaf9qKNtu1H0BkSo2T6itH1K3zdnf6TewPQk5ks566A6uQeOy1jELvUhuLghZ8IiaILNZ16YG1Nhf58huvdTW9OmqOFoJNnl2g0O/6xjvq9YgUf/PkW31oWdl7S+HcCytUft7dk9YNoDrySARUTkGo0GZ3b+nMf9ZM40Gh4NOo0Ex3E4veMnc8Vf+N8pZa9xV0YAbG7AG377ApXKMXJvKk/cYT+v2Ipzl28jLT0Dvj6eeSmDIwd2McqNpe2DeK7+3vAfbt2LBPk1JMgPHVs2wNA+HeBkRPnREgCL+vjpVyUexrIXnLateTSWCbaY88PL+vvO/zicOKEffUXkoxdy40FKelozxX0k5aYpHiag+ijzhw4iQa4d+Q80z1hk3j5bG73PsBD50BY8Sra33csHAQwENGitKNLtqG1K0yr9YIUeN9KZEj0RrCwYCLZk/0i5jKhubUdfbLOR+qB0LMStUS1qtR7x7Pd+TdDDrWBOPG07g+L3YZ/oa7JUkTFXDaxYxYG+noutWDEB7w3h4e1deBBLdfYQHH+fpWteXacpcoZNt8TtJssm8lloFb0J9H+tkWLjzpA3zaZaOs8aDi7mvq5e1pQfwZcyTpIvTVk0pTbnuGI+VMdZSllOv3FQN8lP6d6Yfg9jRNwqjZyDsDawnVV+yMgA5sxTISgXqJmj30RIcx6lOpi+frOhQbmIFXp8LZRyFFrMxQDASr7B4cZfbG/IvcfIndSiH5RIeqyAgwA0y9AH44Ib8wh70/g8KBqOouK09qt/C3R0LdyBLyI3FY1iGBgVpHTF2RJMuMTYnKQKccQ7RPxD/ysLe7AcpKKmNSJwN8cL1zB6PdocqIH2V6vo6hEpOZGTF8auXlNg7QYWrUTqw6RCXJBd+UGJVBFnUtXhGniUNX8PomcZ8UBpn2nUx5BVQ9GjA1Cntvn6cud5/U8lntxk7zHl3tbAv17h2pfSAYS05FFKArxIVe7EALpU4XSCZy185FlL1pQcf5sF1TkmQsAPnw7v1u1kAVjEbbVvf8HAVVBgvqqgLUFEUxO7foPDGhGI4uYqYNLHhgq70og1Srmk60Sl4PKuHbqGxGZOgVBbVsqTWN7BAwcLUEdVnT+SpzgICj18ZoKDU57aoCbMdNSkrIW1QSFSFSR1Qa25uwuY8KHx65fAyz+WsWudIt8oAu5lMTuA9bKslH2cr4IHXkkAq3bbYfB0d8OB9Qtlr1HrXuPx+Ekqzu9haRuyK9sLWu0BSwEsSpOjdDmt+fnyGPN+4V6QrR78C1CRuK/mLVCCohC09mYnDerVFRClScPrUYxgOVDpinNGDlL5fBz6KRd1P1HDyaPgCVIUCEWDaG38seZoeJnxn9GhkQ6PtjLpfCglh1JzbG2kwkRqTLo9xjnjYsk+tu4GzWI24m7uU127M7xfwwj3ajbvR9vgF4/P4Oen13TtN3QOxPrA9rL6axK9EeGiVKsDIW+hgoM+ISypX65ay+G2iOuCGndxyY/EokNIYYwAHQJ2tKZu2BY5g5gCYGHaprrnsuPRRQT40t9IBYpSuQo6vDstmgzlzfO67ikqTFO1vtHhSK8ZU6mKTktnQHn5BGtz2Axo6uSny0o51Ih/5XoBCnEF+SXlaX70JlnNLCBI76wgoNooDdxNZCcey4pDLxFvUwUHDxwI6QZPNwcDAOvBbg4x+9l9O6gJj9KdbXdvWPUPh5u38tsvnQtUFIFxxC9EXFjORsQlJyUex0pRFMW3vm+gnxUKnWIfn8h6hLfFRP2O/tgUXDA1AYGBZSIYd42rQoU7MvmHCrvvpfUp+oiikCy9/1E0bu9fmsInnQH9lQdr4FWlcNf9/kMcDh4SRcS8zqND24L3jlThr3wfDfxkAFDSZ4xLpjP6rRuAdm14NCqEQqDUx6e/UEKdLkqn/VANt0JmecWd4BC+ifkpsAGPMpKoriOZsejziHEZUlQdRdeRiaOp6d8/+TfDm66lZW0viv6hKCCtaYZMgk/HLgUCWHnA1QGFwUcPcYfPE7jS9kvPMUojpOhUrRFgSsCp1KQKrMsCWqO1S2iekqP4HcKSd5UMQY3yD/7W6+peqQFwVhgqoyivn4PTj59CJz1NkVcqFXLGzIGmgvnsE1mLW8hCV64qsG6jPABaqjZaENhVyGEVSXU7gFUkbrU3aveAUQ+8kgBWh/6TEZ+YnBeBxXGmw5F1D1sNj/odRyIowAfbln9t3yrP0QOWAljpGflSx6KPTRg1XI2ggrMbnuOMnm9Xu//jcEwUfUURLx9/qAEFHkoPRTQyU6ks135WIiWcXStyiJzbxmzGNRGP068H34bnDQZqVOijga+MQ4Ncj0lf7NwUKtwugkMe8SERL5LWTKVeyh23qXIEXlHkhdaqOXrrSZoXtn1p/Xu5T9E0Rp88/mhod5RWmef8kaZEhYcNBCnOSY2uS3pZpagJsTk4IC9qomQhVLZUBzbBce2PumbVzbsip/dom7pJyvVFjZsD+hz/+BqqM4zXKnvwRGheNyRmp7a+T7mMb5IZ2DXWvTomexsS+zp9OxbKcEaKnPXRfPAVmGhGhQd/I11gqPWx0O4Ik7GOUmdR1BJFL5EpKXopS4Ajz9bO0VNA7Y81UBpJ91iYcgnfitJgtRx7xgCsa78qkSKSR6/YTwMfIyS+1i6mmPxXIQBtNAK4bDYPn+o8Kg4wBD3mPD6HxU8Z0fIU77oY4144ZVPiGCIeG63JSQGispamHVrrK3P19mREYWj8Pl2xxs6B+EcG0D3n7hU0/ZWJhAgKAa9/YXzvmBuD+HdKKaLUIq0RJw5x4xRk0nQ6Oc8zak8K8PjH++PNXV1gSjXNknloyxIPHPHBac1W6bSJlxW4vZK161ONR8WB+ns+XJ2CJtFMoS5U5YZTofkiFA2j1iNSk6Yb138hXVFFptCHw+pFcDjMoqM1/cfBp2tPowAWAVf7DyhAJO2mjICrls0FUArZ/8I2bVXi/AV2/6hVU0D3roaRQJTqRyl/0mv93/T7GJ3AItIsfYcgkRf6UKG1bUGdUNvJT88VyvBrcFwwCQq1CK3nOGSP/Bya6vL5LYvav/sOcjh02HxKJo0jOwf4ao4o1ZwDZk6TL8BQ1HMx174dwDLnIfvvdg/YzgOvJID19eKVeWlsfy2coiMhL8hlJ89dx7sfz8Xgnu0w6YO+tvOuvSWzHrAUwKIG/16txG2R2k7Dhjw6tPnfvOiYnWARFjAWfdW5E4/6dZkvKkeuwlOeveBcKtEbvkZkseNOKhD+L3v5NSc9fic3Bc1j2Iswvept3T0EmeHs5aPqMA08yhXu67vUfdLUFrlh+ZYsg5TbgtIoKJ3iVTBKKT0r4vx5370aPvV+rcCphec+RRMR8BWicsPpZ4ceYxUJxNq8jcP5C/oHFAJV+/flUa6sddeqavdqOG76Q9dlbtveyO32ns2XRUqiSx0M96iKz7yMk7o7rlsK1X4GDOZ2H4bcNsZTxqTKVJO96mCsBwOmtJNx+WwwFPEPdXPLmvEr+CAWCtUzbheOZ8Xpfv/RtynekkEQLHVWfDzww0/smi1THKjAms0rHlCfR9kehmtG6qOkqqi173wboXex8kYjsE7NUEIjApTqTtGAVAJtZZevKrBe9JW/ri8Pvwf6+6/GWDWKSbRMfkm5hs+Tz+iG8Z57ZXzu3aBQw/r2yQUsfMJ4hmh9aZ3NWZXIVUgR3atvlOwHd+75qyJLQdZ33CvjSxk+2bw/AX67WRjRo1LJ6Pa+deqYYl99/6MSFJmhtWHvalAipOC9E3OIw4Mdooi/N3iU7mr+viNN8S0bXhbNj7bIA8xsRSaddJUDRYhpzVbptCn3FLj2C3uGu5cRUG2EPuiSJahRVhTdo4ICEWGDkQsNSosiAGls98MGwtHIRwpj+9hh/c9w2MeivfmeI+Ddc6AegBUdrcDeAwqE3zcNXAUH5acK/q+AK+3cwiNInIT5ktgvPpmkNlA0PZMVj7fiGE2DM5TKcvBIAAAgAElEQVS4VqovFj65jMUpTAF6lHs1TDPznBX7dWTCQWxNj9D9SSqiwEWHw2neh1Bksw9gVJiUakmx9kUyKQCtzRAwNcaZs/RJ9KdMVMPV5UWakemx2AGsl2Od7KN8NTzwSgJYCUlP0HnQVAQH+OCPBZPziMxNGakPDv1wDh4lJmP7ijnw89FPi3k1lvnFnYU1AJY0JNnVJZ+jgDNPd/biOsKKke3Zy+HocTbpvOircRooRYExzWL+xd3cFF3re4K7oKqjYS6NOgOgtAYI7KBQZ5IaziY4R798fBY/Pb2qa5dknqes7IjMeNumRUjd8lrUWsSK1L2KgvS8fexWXMlmBMZ/BbRCG5cSVqzQi1fln7Q7GC+KLvPmnHCpZB9wIsUu6aj3ZkRhsF5ERhBI2tucHTisxIGD+pFYdI327sGjshUkvA5b/oLDzpW6bnM7D0ZuJ3ky7+bGKv6d+MK6xe3E+ewEvWq/+bdAByP8SAbAWuueyO0x3GiXUp6Zz73r4z13xhmkreQ6vhuQyaIhMueug1CcPZuk119BAFtBc3/4EPjpNwZg0QGyrZ8ASkcSW+V3NfCqoA8aVHzwN9JEUWCHQ7qhrIOHAYBF94QL89lNSeUqoP5ntuU1kfKskIBACx5If8j2X7GSAmp8oN+vVNnUFKm+JftnXMIRrE9nCn5zfRqifwEKftq260Wtw0NNuq6rori3yZnHBwmHsCmdcbp949MQA2SM/9hvuVDcYSfN/U2uYVrnwnHwkDAJEfSLI66nTVXDCJ2m3tQSLyhwew3bc95VeVQaZB7A+urxWSwRPddqXa6NuhfrokolHn16ma8vx78PdnKIOciur4I42uS0py2THgtcWsiuZdcAoNZ4w+iVapGrkcxns31WoieeanLQ6iFLm5fD2yYem8PWZXDYwdLe+C5D4D3gvTwA6+K1nJcGuNLOifYbRfpTxL/Wer3No1oVwz0gTSOk58S6tLt6CoQLfBuhV7Hyspfzh5TL+FoUqduveAV86/NGXn3uURScvh0HRTojiKe/5/Ydh9ym+TyJL5ItXqJEQiLz4zuDNQgrZRqAXrBYiWSRYuHoUWr46wefvUjT0xuLHcB6YZfGPrBX0AMvNYB15360wZJwCgVUKhVuh0dhyle/wMnJAV3bNUbtauUR5O8NR0cHZGfnIDY+KY+gfMue43lqfb/Nn4g61Y0T776C6/7CTMkaAIv4nuZ8q89RMLCfBuVtHO3zwjjJyECyshSY+50+91XnDjzq19N/wZJGavwd0BotXIxr10uJZUNb8ShphGuECG5rR65BkugleKFvY5T6rhLU7PyFetPUcCj8B3i92bd9uAXXch7r/rYrqDOqOxlXfLNm/Qi8KBv5tx6BOwE8vpyzNc29cHVyoEHVB6tB6Zha+82/JToUoLAojVIZVLwi6IuwHDt3nsuLxpJa9648atW07EAojXTK6TES6ta250CjsRojdXdRqLAtuJMBqbvq2E44/v2dborqBm2QM2SSUfdMSDqG1al3dL/RoYQOJ3omCHB9Xz8FMWPJHkDBDgFb0u9jlChF5XXnAGwI7CBnSfTKREYp8Nuf7KBPKZ7vDNDgwndKZD9m/ancBNSZoIHqmZrfzZxkvQOvF+eIq894uKQphPFnFbi7jvXhVZlH5SGWrb25iRkDOsYPVOO6KLqM2qjQn4dvDdb3gcxoDBApmzZzCcaqAOPpn+bGoP29e9xOEBGz1lYHtEVTl2Cz1VvEbMLt3Ce6csZ45sw2YoMCbR5uwXXRPXZTYEfUc/YvsGVeDZycoQQ0bM982mcTDtQu3IE67hGw5GcGynh45H+kMWdPwxW4+jPbc8VCBdQYY77e8PgD2J7xQNd802PNUP5e+bwDNx28bWHSdFq5/Fzm+s55Cpz9ivmKnr30DJZau4dbcVWkMLk5qCPiNZkYJlIsbuQciLUy0ka1bat2rYbjZhYdy3fohyctRmHjdjVu3jY98ryIK0oVLG/b+4E5X8n5XUrPULkij769Dcf55eMz+EnELdnZNQzXcpNwP5cBTNuDO6OWo/z3lEOZMej36D/dMLUCPFxiLBznfQQuhX1go0I5b70DdbsXL3uE54HPv9IHoKdM0MDV1TSA9eufSkSJBBgGD9SgbGnbRevKWXtry9gBLGs9Z69n94DlHnipAayqzQuWprbEHSGBvnkg1zfTRlhSzV62kB6wBsCiLjdtUeL8RfayXKOagLe72+YFs5BTei7V/9vH4YhIMttY9BUNhHgYiI9Bawt9m6BnMePKcwkXFLgj+mrt5C2g7mRDnx7OjEVfEREstX2rZH9cnkogj3ZNBDScY6jcU1jn9Hu0G4cyY3XNrA5oh6YuhWS/FQ2KpONJQl5rAUoXnP8fqoEV1l/G6ktTJFu6hGBFQBuTXU1NOoHlqbd0v3/hUx/vFjeMGjLVwJVr+eld4igKKtumpYAmjeVfs44rF0B1lKVriJX5isJPFIH1Zux2vaaNkboT2TqRrmtNU+U1ZI8xzqUojW5Z4tcMXd30iZIVTxLhMpUdRgQ3d2TOY6Ta1E+kOhUNo9nfrOWDu3dfgWUr2EG/TGki3NcgLRq4TNxYoohMryo8Kg/OP8CtSruNiYnHdXNu61ICfwa0yvu3FMC6t5HDo1MMxCzZjkdoS9sfWLVKhNpBjXxPjad7OTy+xvqmtEUidOeeTflyThI6iK53U0qtluyvBtHrEC1C8uXyzNFeE0f9bQ/qjFo2BOflzkHKxXWzZH+z3HxP7ihw/Te2j5Lc0jFy0GpcKdkXFOVprV2+osB6UWo7faSij1XmLOuxAue/EaWAFRfw2jTz9do/3IIrIvCu867OCIgPhL8/MHqkbbh4Tn2mhCZLFOk8QQNnv8If0On+emKKmOhbwBvfGM5Zqry51L8ZonLTMDv5nM6tA4tXxByZHymoEqVQ0wcGrV0J7o5lgmkl7BcZuNLOQRrVSdHDlEboKMnqlb4zEDck8Y+K7W6pAaAPIHLtCZ+DqpGrdMWpzQjPjnCcOwZcsn5kcE7bXlB3Gya36edajiKvKAJLa66uwJQJBV9Ha9ZyuH6T3bPpvZ7e718GswNYL8Mq2cf4qnjADmBJVvLawb9elbV9KeZhLYB1P0KBP0UcBZQ2N3Wi4cvFS+EECwdJ0VekPChWyenUnkeD+oaHQuJ3oQgarU3xqoMxRjh36Hc+Fzg1UwlBLQIGx2hAX6/FNibhMDamh+v+1MOtLOY7N8GZWewFjSI16n9mmxd+cd+jEw7jX1Hfi/2aoLubcUDOQrfmFSeghgAbrbVxCcVfAa2taeqFrXMxJxGdHjLCXVptAun8jXCj0SR6xe3GsSwGGi73b4VWrpalVN66w2H1Pxzoi6zYGtTj0amDPDDD8ffZUJ09oKue/c4UaOrlgyZFZVJOHOqngVMA1ge116VdchG34PwNI5PnS5RD1ifsMCce25BHe/FfJosc/sO/JdpJot8UMeFwmcU+pPABJZA1k0U3aNurFLkSqXTRPrODIW+hvEQZ0pxfiEuQOAW1Vr68gIF98w9fkXs4RO/Tj54r31sDvzoCxiUeAaXfae0Tr7r4wCOf/FwKYF36XoV0RpWFouDGo35Xr+VwQ3Tw6dZVg0ohAi7M0wfixOqo0eo0NIhm3D3BSjecKZFPam2NUQQn8fRp75h0bRFPn0phPr+9T9weHMlivGdrAtqiiYzILWvGaaoOpZtT2rnW5KaS3d/GIfYIm+O+yrfwU/Mj+DewA+o7B1g9xL0HOBwWtUtKgKQIaM4EDXDiE7GyroCGszVQGOpO6DVFSpBi8KHPur5wy3RD8WICJo43D4CZG1dWggLnaT8+M6WzgAafF75dbXunZqigYdmBqD9TDZWEP0hKPD7Nux5u5yRjbdpd3biI74/SkuWa6sh2OK5iqt8nXTphvecEg+oEXBE5e4UXMOLK2FwXL+GQkMj2dZdOGrxW1xBMkab/itsyxxlpysdSuoRDm8+hxs2besVzm3RGbr9xcpfpuZcjIIoAKa3JiWTctoPD6bOsTvs2PN6woQJoUTrBDmAVpXftbds9oO+BlxrAIv4qW5uvt4etm7S3V4AHrAWw6GvjvIVKpKYysKVbFw1q13o5vtQUZlOIFbeoHVPRV/Tb0qdXMevxWV135gh5b61SIukS86lU7j5dyEX1B2v0XvIpRea1lGBcXMAALBf/fPUyW9uMx6fw+1Om+jPTuz6GGeEQsrbfjxOPYU0aS/Ei8nYicX/VrFXMJtwUpSsVNE/pi/TRkO4o7WBeuVDqM1KdWrGKA6UAi41SCbt14cUZckbdTVFOFO2ktTy1pZr5vCBFacZI3Ue6V8P0Z6S8iqRHcJnGuLgETx9kfr3G6JB6x+3GUREYaAyk4G5dgPNCloKoKVcN2R8vMGhPCngs8m2Ct01EV5ryj/SAIeb6IRDg0vdKZMSx+4HSSUDtCRq0TN2glyKzMbADGjwDKsQAVmqaBqem6wNI9T9XQ1UEGbn7DnA4JAI7Gr/Bo21rHuGbOcSJuAJVLgLqTNHkjSGDV6N8JOPucVBweYCTtSaNjLMkgvO9+P3YmRGp69pcaq+1Yyyo3rb0CIxIOKgrIjelkjjOxPyH89vuw8my9zHP5w30labIWjDwVf9wuHmLHWZJCY4U4eTYmS9VyGU0cjAnHJCsyUK1KHbdKtVKDFk1VNfVFzMK/0Em4aICd0SAMYmcEKBrK6OoM4o+0xpdqy6S6K6fn17FF6J3gqHFK+VFnYnFPSz5SBHzUIHINXvR6s4cXb/nnVtjldenun8HBwto2ezlAa60Az98lAO9b2nNFAAzJ/m8Hmm7eD1buoRihRUfwQY/2ou9oo8dP+44jn5XWDS9+rUWeaTtZh+cttpcVrRz8AiH/QeY/+rV4fFm54IB6IOHOewXccTJBa2tGJ7Nq9gBLJu71N6g3QMmPfBSA1j2dX35PWAtgEUzlwI5pcMEDB1ku5fBF9G7xqKvOrTj0bCB8ZcCilaiqCWtvekahp/8m5ucGqXb3FzOXjiI+6bedJYKuC7tHj5MPKKrrz2gPbmrwPVfC1ZAsoU/pQpZ4zxqYJIMhS+5fb8Tv0+PfPXvgDZo4SKRLpPb2Atc7q/Um/g06SQ7YJiIPJGqVlGFmDDrU7djYhT4ayWHbFEKDbVZuRIPIsklpUJT5rRwEpS3Luh+zh47B5rKdZ+LlzvHbsOF7ES9vn7yb4Y3XUtDoVbDZQzjnxKUSmT+sMvouLrEbsc5ETn81qBOqCORR1edPQTH32fp6mtqNUL2iJkG7UkVDd8tXhlf+FimoCdN0ZKmYmfEEzG0EoKI28iltAad2/+pN57wsIGgNBcyMYAVd5PH1Z/YfaGogG3qVyruoY0my80Azs/RV0EMbsojrFP+PbNsxApkiVJ+LE33ETviRNYjvB23U/en1xz9sTm4o6w9+lHiEawVRbV979sUPaxQlpTVmYlCC1IuYV4yu8ZGuFfFDG/j6pvaJrJTgHOz2ccLjYLH4HeXI9tBjVHuVUERPtaaNC10xHsahATLA7CkkX/VR2lAin+m7FJOIjqKIlO9nnii+5a3dcWnTVbD0fpsyLx2IrZyeHiU3eRCmvEo1dF8RJlc/135QYlUEX9Q9fc1KC4hzN6WEYER8QykbOdaAmez4vU4LY+H9kApVcEElgRc7TugwN17HKpnHsbgJ5/phnnFqSmWeX+OUiWAJo35lybiSurnp08VeR9KxTbhQw3c3fX30c3cZLSKYST44vJyriFj60vXIV2PWht15iZm789P89RUa4DsUZ/DQBZR7kZ5TuWIOoAUYrVW0LuqtszZcwps2c58XquGgO5vvRzv9XYA6zltLHs3dg8QYY0gSJlJ7H6xe+D5eaAwAFZiEofvf9Q/8U74SAP34vJecJ/fLG3X0/4DChw8IiKnLSZgUgGpDcey4tArjh2mKf1pY5BpsmdeA5yeqQSfw146qg7XwKNsvk97x+3C0aw43YTe96iGT71eQ+JFBW6Lviz71OBRsb/tXsy1Ha5Mu41JIu4dS7k6ClqJBD4LpCgktv+VlL3tdozxlp7yOagV+Y8kks6QT0z6Yl7OwR2HQroXaniP4hX4cxmHjEx9hcJyZfNJch1MUIU4fzMGXARLocia+D34MpULNRa5lYnkuG3MZtAe0ZqY1N3lwy56kuYZ8zYCboYHwDYxm3E9N1nXxr6Qroak8Ac3w/GfH3Rl1I07Iqf/RwZD3ZnxAO+JiJfrOfpjk0ywRNvYhUsc/t3M7qF1avF4q4v+dfvwCIcICRH/n41OYEeN/NRkAuAIiNOaGMC6u0dAxA7Wvl9dAeV7Fc1hJD5egR9EYJmXh4CPnhF+k+obqb9pTcEJqDtVA0d3QMpZdTq0Jyjtxxpbm34XHyUc1VXt5lYaP/g1k9WUNLVrts/rGFy8kqy6tipEwAYBHFpb4NcYvdzKFdh83EkFwkU8VTcC4zCjW36KMoEjf/hbl+ZLkZqkQCi26VPVcHCQN9sbf3FIvsHWvEJ/DXxrmH432JJxH6PiD+kaLxtXEs33MEL/8eM08PQo3LvFlaVKpEaw+17FATx8qtvuOSkVYiGxBBJNEJuU26+kshgiNaJQNTMfKQi42n9QgTt3mW8rZZ/Ce4+n6Lq5714fGDcfVSsLSEwR5TTKW7oXqhSJXJDYhdbatRHQqKHhPaxZzEbczX1qMHY515CxCe9Je4ChiSxlvmFUPHas+g+a8jWRM/ZrCCqZF8L/0Js//arEw1jmu8EDeJQtU/B+J7qBlavZ3qLyVE9qlD5fnHuxfGAHsP6Hm83e9f87D9gBrP93S/5iTbgwABbNRPqAbNtKQONGRXNA+l947skTBW7eUeD2bYBSsEhtS2zmvmjdyk1GS9GXwTCH4jgWUrBy2931SsSfYS8dAfV5lO3BI06TAUonE7/CHwzphvIOHog9yuH+VvbSEdiQR5m3bPdirp3z9vQHGJ7AXupIPY9SbWxh/6TdwfjEY7qm6jr5YYvoYG6LPl6kNqRcZp3dwvCzn350njSlqLVLKJZZkQ4hnffjxwr8sYzDU1EKMJUpGSpg4AAeTo6GB0XnL4eBe8gO15nTfoYQUua5uZQOft3iduopVBLQsS/4LfjPfBeKBMYTRpxVxF0ltUYxGxAhUqc6EtIdZSTpmA7blsNh+wpdVXX7vsjp+o5BW1L+JmcocSdsgI6bS45jzpzjsHW7KMWjLo83n0UmieuTohspu2ktR6nG+N4b8MgjNS+Fl1J5tSYGsC78ASRdZvXKdOMR+Lrt7wvavmd8YRzwIKqwc98okSvab741BVTop0H72K24ks1UvXYEv4majj5y3GdQZv6Ti/juyUXd30d7VMdUL3lRgtI0pKledTDaBF+hVYOTUYn4r4gHS2vbgjqjthkieYrYFRPlr65/Fhvr5vugjModR0KtA7xj4xRY+gv7WOPpKWD8WPnP9nv/cnh0UpT+1ZlHcBPTe2/Rk0uY+4RFn9V7UAU1DrEU5VHDNQgKtB7AEnjkpdPyIo5Jc2mNMpZMr8idtUoknGPXW7m3NfCvpz/m2GfPcVNtl3PwwKGQbgY/03rs3a8PXGkLlcm+hPcff6irI1SoAa9ZS5Cj5l96AOvsOQ5bRPfIwAAB748w3IfSa1/rDHqHoHcJi4zn8ejv2ajTlClGu+SqEbXhAnLGz4fgWAQ52BYNUF5hAqDFlAHGotekLRFA+rNIEMLfT8DoUfr+JrB5auIJnAzt+UKBWHYAS96+sJeye8AWHnglAawjp65Y7ZsmDfKJaO32fDxQWADr5BkOO0Rf1v18eYx5v+gOSM/DK+H3Ody+A9y5p0BCgn6Uirj/Ym75EQamIlaobDKfjWqRq3XViEz4gRmOl5Q7ClwTvUAoXQTUn6HBD6mXQYcsrVV19Mae4C55/3ywm0OMiCuiRBseJVrbfh1OZsWhhziizDkAxL9jCyPuFwJstDbJszbGeda0RdMvZBvHs+LQU+RL2hsXSvTWUw2TpmwSsS8R/NrCCLz6a7kCFEkptqAAAYMH8gZS28QzRXxTWsv8cjkEX9spUMqZkzFS9ybOQdjw93Y43GPcbFkfzQdfoYZBk7Wj/smTrNfauRK9EKh01SvnuGYxVIe26P6W8/YoqFsZBwGkRO7/BXdBFUdvOVPJK3PyNIcdu5j/G77Oo0Nbw+s25ynyyNA12ex+dM83EVPf3pSXkkzgp9bEANaRz4HsZFan5lg13IowI1dKuixOOZOqrNJ4a4xVY7hqDw5lMvL0Ff6t0dKVHRxlOxPAR4lH9ciwScmNokTl2OIU/fvrWI8amGzD9GhzY8gVeJR5sBzi1b9TagBcC1BPywNlZijB57I1nvz2vwj3ywcElVDgftigvP9bapcuc9iwie3NiuV59O8r/5kSvZ9D5G5WX8rnKB2PlP+w873XEXCsmq7YkIE8ypSW37+0/fRYSscVCZ245T9XbWkUKUkRk1qj9ERKUxQbwVlhEcug1vsUxUqIFUXprwRcUeQ3RcaYslrFbmDAnfd1PwulKsLr299fCQArM1OBr7/VTyMkQIWAFbFFqJ+iUfRGAxfdLtUfbgrLIoUcl8+F6sR/CBvXEynOTPbwqE97lC4eaMstU2RtJacosGCRSAnUUcC0Keb3uzRt081VwOQJ+fVIJIN4UJc9U0Um4RASEHlRzA5gvSgrYR/H/wcPvJIAVtXm1nO02FUIn++2LyyARZxQ9HIhToQl+fTg4Oc7j8L0lpamAKmB3bwDhIcrkCNK3yuoXbnqLFJZdHMvVOTLM18qoU5nh45KQzTo4b4Rt0Vf5z/3qY/3ilfJG+K9DUo8Ol30kRYUok+h+lqr4OCBA0a+FluzHlIwYHdwF1SzAAywps//dZ3G0RtxX83SHmZ618Mwd6Y+JSUwn+v7BvoXq2CzYWdk5EdixUuAWm8vAe8N5fMECrTmMqknFKlPdP/O/GYtBHcvm41FbkMTEo9htYjon+qNDX+Cz9dt1zWRPWw6NHWaGjQp3WO3Sg1AMQlA4PjbLKjOsVSm7CGToWlgXAlzQNx/OJDFJP4sTVeRkhQ3bcyjdUvjh/T48wrc/Uf/ILfutfP4pEcF+HEsIkALYMXH5eDwNHZP4FQCGnypgQxBPrlLYVBuzToO10VpY1Jhj0uLlEh/yMZUrKSAX3sd0FNVXezXFN3drIvsk6ZYrwxsg+bO8hC7Zak38YmIl+6d4pXxpYWcZlY7DsCtnCdo+XCTrglKLTtRgnFAGWs75Z4C10RRUsSZOG7oP3opaUdCu6GMynJxnD17ORwVke83acSjTSv5AFL8OQXurmX71aeGgIr9TR+ge8btxPEsBpAPv9MWmhMlddPu2V2D6tWsj8Ci5yM9J7XmVUlA5aHmD/SWrGn0AQ6RIkDaFMdWw6gNiNSkGm36ffeq+NS7nizgivjISFWwoms4KEJWa0JwGLwW/v1KAFg0J0ppEwN4pu6T0hRxaxQIHdYugcOBfCXQbr1b4mAY+0ij5V20ZE8UVJbS8A5nxWBPRiTeda+KGlZGnhrrQ6pwS3uFPiiYM6KxmPmVfiTt59PViOcz8lLmKRJaaxR1fKpkT/iKnj/m2i/K3+0AVlF619623QP6HnglAazqLZlyjLEF53n9lxCVUokypYIQViIQCz5ncuj2zVL0HigsgEUj/Hs1RSyJogga8KDUuhfVCCCKiqYvmsDt2xyIE0iuUQoDfYmuWBEgSWqFjKqvR69HlJpxXBwN7Y7SqoJV5O5v4RB7TETmXiML3RoxtS4a7+WSfeDz7MXh5jIOj6+LvpYP5OFTzfZr8JjPRnVRRJk354QrJfvKdZ/JcqezH6FbLCNfpgP5xZJ9Ct3ui97AkpSr+CqZqVRKOa7eergDZ3LiddNYH9gBDZ+pzdlqbtk5FInFgVIHxEZEue8O5UFcRmQu4zpDkcP4VDIXbIHgLNGIt9WgzLTT8eFWXMphaWdU/K/NR9D1Zr6KXE6fMVA3y49OFJsUTDZGiO+8YCK42ywNLXv0bGiqGo96+zb5PBamXNZ1Mbh4Rcz2aSjbCwcOcaD/tNaiGQ/6z5Sd/FMN/iYDq3gIqDVGg2KigCUtgHXnRC4u/c5aIgJtItIuSiP1KlKx0ppUwSr1AXBlif7h6EK3m5gdyHirpCCuJeOVAgPEF0fXlBxbn3YP40QCGb2KlcUC3yZyqtqkzOb0+3g/gQGnrVxCsdxMuvCDHRxiRPvHr46Amc124mAWi2j7078V2roaptOaG/SK1UrcucPuCUTkTITOck0qLEJk5kRqbsrqR69DjDpd9/PMOz0QdYIB5J068GhQz/pn2r2NHB6dYnuTIpQpUtmWJgXJKH2Q0gil1iN2F05mMy5L8e/THRqh+JGKuHXbdMRVSEi+qmD5cvnjVyTGwmW6SL3TNxCeS9a/MgDW1asKrN0oEqkpLoD4VqX2Y8oVzE7OJ1ona+4cjJWBjEfN3FpL08dnNK+NxQ3yPxKSWZKSbK4v6Vi9OEdsDe5s9t3QXLva34+d4LD7P7aHSD2UVETl2NffqpDJApXRfEwMPko9gEQRB6W2HWvES+SMwZoydgDLGq/Z69g9YJ0HXkkAy5wrcnPVeJSYjHOXb+Ovf3biQfQjzJ0+Eq2bvDihqObm8Kr8bgsA69p1Bf5Zz14uxCHHL5qfEhI5/PKHwkCFzdQ4VSqgbGkelSsBFSoIoLRBS+3N2O16X62IxJ3I3Auy1EgFrvzIfKpR8hj4zjLkqvJfQFq6hGBFQBtdE5d/VCItkh02qo3UwL205WOVMzc5IICcdsRl5jw+h8VPWepxz2JlsfA5Hh4tHa+tyhsjrifVNFJPI6sRuVpPncpYypstxpKrBlb/w+UpWonN1UXAkEE8iHfEdRTbb1QmY+l/tujaqjYoDbB1zCY93xBHyd4Vu1El4QlyOw1EbmfRge5ZL3L2rvOs4eBimFx61nSvHWMAACAASURBVJQfwJcynoa2JyMKQ+P36eZAfEXEWyTX/tuvwJGj7Dpv21pA4zdMHzJ+f3QTwUvKwiOLAYdO3gJqj9dAy6erBbDOrslBxF52TyD+oTAzEupyx22q3LUbHP5Zx/YQHbAH9tMHCaTk3lleWRjcayV4Lv9+Nca9OqZ4W/cuIF3fe6UGwLmAFDzxPHZRFET8ft2fOrqWwq/+LQrrEtn1pfdArUBHQQ1cXKhCBqN+Q/m+Gnxf4iT+SGXptKRCSGqElhqlH1EaktZGjdCA0ovlWlaCAufniVKYPAW8NtX03pau3fL7Q3FIJJjSqoWAZk3kHcCNjfHS90qkx+hHNXtXlj8fOfOWqggTgTsRuUttbMJhbEgPN9pkp92dEfjIeJoa3YdbtxQMVAUVKY/hMqU3a8/dC56/bX1lACzicZozT6kXHf/eUA1KltBfvxQ+B5RK6ME5wp1z0kvHN7d+Dgc2wmHtUr1i6+pUwfA2tXV/sxQQK6hPacQhlaWIMRLkCJCktZsbu7HfN23mcP4Suxebe7aI21i8VKmjz7hS7QpO1zlV4BCK6r3E0nnbASxLPWYvb/eA9R74fwlgid1FYNawifNw6fo9bPpjFkqFFnywt97V9prGPGALAItCjmfPVSEnl/UwoK8GFcrb9uXQFit4/SaHNWtNf9mkPjw8BFQoJ6BSReRxbij1s3YsHgYdiuhwpDW5Yehnv1Ii5yl74V7QZj+Ol8t/6V3i1wxd3Urr2jw/V4msJFa2zgQNnCUcERYP3ESFmpFr9L7EUQQWRWIVxtrFbMHV3Me6Jn4mXh9XxutTmLZf9LrS/dHbrRy+82sMSi+glDetERcOceIUlWl4YO16Djdu6l8fjo4C3u2dhrJzWUST4OSMzIVbi2oosto9lx2PLrE79MqGJafhwPKdcKvXFrn9xun9RsqPlSNX6f7myTniWsl+Bn3RQZAOhFrL/GolBO98QFFqjzQZqBO1VvdnJygRHjZQ1vip0M7dHE6IokLMiUIMjz+A6JtqTNuuzzsX9AaP0l3zD8paAGv/3Fw8vs2GYk4FTvagCygYnwD8sJRFWNG99ONnSoQ6fybm83lBYPer3xsfx67q1/OKUIospcpaarGadLwWtU5XzdIozqNZsegdt1tXv5lLEFYFtLN0GFaXl94HzKVS5qZRqrk4mk1A/ZkarFLfwtSkE7px9C1WDvN8G1s0LnqWz/paP1Lus0/VFj0LNTlEmi5qgxPQcLbGaNRyuDoFTaLz07bIgpVuWBTdG7tEESQNCxHZTe8op6YpIfBsz9WbroZDMYvcYrbw0/sKXBUpcZqKOvvm8Tl8L/pgI26437oBcMnUJwkPpYir5gJIKdaYKTLT4TL+Ld1PgrMrvJbveWUALJrYhk1KXBIJUtQzIXhhdpGMFFCd3APHZd/q/SK4uOHmhK/xRg4Db2wVcU4dVYlcBQLcpEYRo5uDOoOeT4WxX35XIloE2PbrzaNSRXkRh38uV+J2jBqH3ziEiFKMl9TUeKy9Zxdmfsbq2gEsW3vU3p7dA6Y98P8ewCLXXLsVgV4jZqJXlxb4bPxg+355jh6wBYBFw920lcP5C+zgW72qgJ49rP9aWlQukJIma/sJDRVQqQJQvjxv0VdmOeOcknQCRD6tNVIMI+Uwc0ZcGsSpobUzYRGY22Ev3BQqXCnVF3RY1hodFOjAoLX6M9VQFVF2l1Qp60DIW6jg4GluOiZ/T+KzUCNyje53OmLcKNn/hVK3sXpyMiruzYjCYFEUjyM4XCvVDzdzkkHRe1ojcnAiCS9q27yNw7nz+iCWtyIJnzxkfDzEfUUcWP9rM0bq3iwiDutuZyN3+Gd6w3uoSUc9EcARqHTBuRKiqIVnpaWRZpmLdxQomS4FdHcFdUZ1M8px2oFt28Hh9Fnm6y6debxWx/Qho1rkKiTzORh+qDHaXK+kN7+qwzXwKCvoAKx/P8jRI323teKaqbWXKhFOm6KGo+QsFr6JQ9wJNu9UpyyMHLgaOQ4atHctid+tUDaVCkzUdvTFtmD50XDE7SK+3uo4+eVFQzwvkypkmttH8WcVuLuOPQOKlRBQY7QGR7MeonfcHt2w6zn5Y1NQR4umIVUi8/EWMG605c/z0zNVUItSkV77VA1HIxmd+zKiMEh0D3zdOQAz4jvpkcjXrMGjh5XKuqlRClz5QX40mEXOEhXOjFfgwnzWj7OvgDoTDf1m7L5FzTjkOmDQavYOLE0VNDkuXgPXD9qznzkOnmsOv1IA1r1wDsv+ZvcMFxcBU4341tK1U50/AsffvoSYyFVwcMpTG8wNq4AKD1YiU1Drmj1boheCChkhRamylDJryqo4eGFLcCe4yIweNdbOV3OVepkGH47RgLgt5diPO1LxY8hepHgwRVRtvUHFK6Kyo7ceSE6/nQjtgZKq4nKaL7IydgCryFxrb9juAQMP2AEs0HNDQP2Oo+Dj5Y5dq+bat8lz9ICtAKwHUQr8/id7caOoJVIucXaS98B8XlPetYfDcZG0Nx0W27QSQC9DRWWLUi5jrkg98AOPavjE6zWz3UlVk9Qcj6HvLEc3rzC9L+r0dfnkJ+xLt0IJNJzNXrjMdmRhASl/h5yUyIK6WJt+Fx8lMA6c+k7++NfCA5eFU3jhiteNWos4TYZuXBSBQhFXoxMO6/72pmtYnuLc87Dd/ylw7ISIgDk3BlMTWfQXqQ+SCuGLYMZI3T+8GY+J7SfpDY/I8ok0X2tlVe44HCpRF8xIhevH7G+CoxMyF20rcJpDHu3Ff5nRujLzfBuhb7HyslyzaQuH8xfZoax7Vx61ahoHsKI0aXg9an1eu065Kixa8zZ80lgIiUNxAbUnaODr4wD1YyX2zGD3AJWrgPqfWQ5AyJqEpNDin5RIEPEKjnhXAzqIiy03Azg3W1897986F7Gqwdm89Gq6p1hqG9PDMUZ0vXRxLY2l/s1kN3MnNwXNY1gUUCUHT+wLYVEtshuyomCWoEbZB/ochxTJJ/5IIW321kolkkQRKaGteZRsw0MaFejDOeGyhTyFFy5x+Hcz25eVKvHo10te9IZ4nBe/UyGD8bKjRh5fm+Gz9q/Um/hURKBPUWMjnjTFilUFp6PKdXXccQ7hovkQP2TFgZbPx1x/ROF1+gv2LCaco8Fn+s9i4txceikGv5ZnIKO2Xb8EP3TZ2TXvemlVQMSVsXG4jm4PaNg17rnqIHLAITGF8RaaG/+L/vvc+UqkicRtKD1ZywNmzdiV18/B6cdPAXqJemaCSoWcMXOgqZCvgNwldjvOiYjLVwS0RksX61RStX1IU8+NjZ3UddcEWhcBSsJEc7/TTx34QvQ8KMhXlC3wQewRZClFKRX0zIES8/wa6QQ2GkVvQISaCRH0cCuD7/0MhVOsWRdr69gBLGs9Z69n94DlHrADWM981qrneDxOScWFPb9a7kV7Das9YCsAiwYwf5ESKSLOjLe68qhj4jBm9YALWZH4WYinRWvduvKoXcRjXJl6C5NEKR1vFyuLRTL5nc7N55Adz8a7tPlhjGpRBm84M46M7GQFzs0RffX1BOpMLToAa1j8fuwQpUT+4tcCndxKWb0yIxIOYFv6A139SZ61Mc4z/+Xx/4tJycBrOvqguWsoFj25pHPBWI8amOxV57m5hPhn9h3IT7kJyr2HjxPf0/XNh5RG1rRfnttYCuqIpL27R27COYGpOVL53/xboIMr25dXs5PQLpalPRqLaFM8iobLTCZCQqmDlEJYkM1/chHfPWGk7/2LV8BcH3kpcOs3crh8lV3fvXpoUK2qcTB9Q/o9jE04ohtKz8dV0GttQ71UPL/aAuq9yyH+LIezf7FDmXcVHpUG2/7AbswvxIdIvIhae6sLjzq1DPuWKrblKNUY3X8tvD0ccDi0m8V7a+GTi/hWtA6j3Kthmrf5DwXajh6q01FPFBVhjYKZxYN+VuFydiI6xDKgtLRDcRwN6WGyORIiOT1TCU0W8zMRpFPKGlnpiOXIAfO5MbXNgsYq/dDTrLEGrVpa/pHn+h9KPLkl4p0axMO7quFemPn4NH59mp9CSkbPgB7ptUBpUFqTq6JmbF531iqRcI6No2R7HqEtbH890LqcmEJj1vYloOGc/LRJAq72H1Lgxg0OyZ7J2Nhlg8FQq8eVxSKfZnlCMZYapRBSKqHWPP7ahVxH11cKwNqxiwNF0WutMJH+yvBrcFwwCQq1KHSd45A98nNoqr+u6+OTpBNYJoqgn+BZCx951rJ0efTKL0i5hHnJF3R/G1CsAu6pn+JElj6xf2uXUCwzI+RgbCDh9zn8tYL5KcBfwAcjC/6AoYGArx+fxdKn1wya9M0phvWl26C8A1Mz3Zh+D2NEzyPq7YAFohmFcqCJynYAqyi8am/T7gHjHrADWADUGg3qtB0GRwcVzu56MQ5F/182rC0BrH37FTgkIiQOC+PxziDLX8SK0vc//65EjIgXgMZH4yxK25cZjUGP9uq6sIQIdMeuZHge8NPVvVUiDkNH++oNNy1agcuL2Yu+Z0kFqnyg//XMlvOTpkRStBBxIFhrxPNEfE9a2xPSBVUdvK1t7qWsF61OQ4Po/OgarVVw8MDtXBbC/71vU/QoVua5zu/sOQ5btnMIy7mK0UljdH2n+FeBw+eLnutYCuosIeUR2kRvRIIby5ul9IsdwZ116a1nsuPxlogzq56jPzYF66dWKcOvw+lbxp3FlyyPrKlLCpzn/sxoDBRd3ySFvjP4TVm+Wb2OyzvQaq1vbx6VTfCUSA9SH3vVRo/jtRBzUP9Le93hHJJvAeGH2H2tZDseoS2L9j6nncPBI0rsfwZ80t9qVOPR5U0ejg76LqFL/tw3SuSmMmDhUIW7WNXmhFXKphMSj2J12l1dJ3N8GmJgcePk+8YWR8o5Z4ojTdbCWlhoQ1o4xiayaEtzaZSpDxS4skQU8eycz3+lVcXt8HArLotUOikVklIi5drylfqCDkQHQGCBpXZvgxKkzKc14mkjvjapvRO/D7szonR/Jo7HJtllsFCU9uftLeBDK9IYqVFpJFjVYRp4lLN8PnLmTxFYIjFFlBmpwaGzCr0PZ7kOuVjed5lBc5O86mCcRw053RiUkXL3efyyGbnFvF4pAOthrAI//cr2PYnsTJmoNri3mHMgFx0Op3kfQpEtym8l9dp3pkJdr6Ve9TVpd/FxIosQN3dtmuubfpfy3c33bYw33UqhZ+wuA3XdfsXK41vfRnKa1ZUh8IpALK1VqyKglxE1TO3vpC49In4/jmeJwiWf/VgyqgRGJjTD4O76nHj0c8uYTbiV+0TXTyfXUvjlOQpfSJ1iB7As2ib2wnYPFMoDdgALwNY9xzFl9i8oVzoEm//8qlAOtVe2zAO2BLCSHiuwSPTCSSMhAl8i8n1R7Jv5SqSLQtDphZhejIvSLuUkoeNDFvlR2dELe4O7yupy8K1DGPFHK72y9aZr4FCMjfnJbQ7Xf2cvK4HVFCgzsOgArG+Sz+P7lMu6MRUmYupU1iN0j9upa8uadBdZjnwJCvV9tAeHMx+aHOmWoI6o62ScTLwop0cRQpdXn8fwxxN13dx2rIvbb32Dli2K9tqRPS9BwPVZ/dCxfxvkcuxaKKUqjt3BXfL41A5lxqDfI6ac2NQlGKsD9CXWlZdPwGnpDF23mqr1kD16doHDIGlx4sHSGvV+v9QgqBQFi0VQeUqRunOXlRvUnzdJ1Nzm4RZcz2Hk8qsC2qCZSwguLlQiI5aBBMR951QcSI9nw642nIe7CQJo2T6WWZAAOQLmxEYp5dWq8qhVAyhbhgEYiRc43F6jX3ZSz39x5LU3dTEsMrtFr7jdOJbFJPmW+7dCK9cScquDh4ASEQxUoFFFhQ2RXb8wBWflRT5c1TVhLtoyao8CUfvYQd63hgAi6dfaBwmHsCmdKWl+59sIvWWmtVIb8xYo8VQELFL0BkVxWGrR+5SI3CNSwmyuQVgHw3akB2EC3Crz/vj6W1FksbOATyZZngZLPNknxWTyABp8roHS2fL5yJn/hfkcMkVR00ddFEh7prAprr+iz3LkOOqTeC/1a4YuInEWOf1py7hMHwRFItv/7ovXQu3zf+xdd3wU1fc9O7vZ9IQkpJPQe++C9N6b9CqICohg4yvFAogCioIIKopIR0CqdOm9995LQgkpJKRnd+b3uRt238xka3YTDL+9/yjZV++0986795yQVwrAornO+kmJ+AR2T3XvxutAcmuNe/JAd0ihSGHpb1Q3q89oZDXKyZknj44sovLEsSI9rO3OaLnXov7GA02y4Tc9312CNkOXsnhbI40mft+3CsZaGX1tjOe1XRser9Ux7iMCuoc82YVHIgoDGpiCV6DmuVqoeqEqikYIeGtwzmdvS+o9vB2zRzLHneGdUd7Fzy7/5LayE8DKreec9ZwesN0DrySAlZqWbtETWi2PJ08TsO/oOfy6eCOozuDebfHJsJykuhYbcxbItQccCWDRIH6br0TUQ7a4aN6UR+OG1i8ucj0RKyqSytqkKTJlpc80UFreZ1rRuukitDCoJVIq81e64UJEb4tt3tc+R70Ha/DNmk4oHcOAi+IdeYQ2YD6Vk/lG1uNQpEtOdRuLHVpZYH7SZXwZf9xQ+i2f8pjsX9fK2tJiUxNOYU7iBcMfe3qVwkwbFbNy1fF/sNI/KXcw7Ok+kyO7GNEbfkqpOlV+TSNm2yEU2zDR0N1F1wZY6P8ValTn0bkDb1RZLL/Gpu+HIhAWFvPHR22k9yJxiSwPaaWL8Bgas9swrNYeEVgQJAWHVYe2Qr30B0MZbZ3myBg81uJU6PkWbwA2hXZAdSuI3Ent6c5d9r58c6AWJYrl3FgnCxqUv7fUkBRGr6wrRfvDS6FCagxwbpYSgpa1Ix9w3SkaKGURUBYnlcsCT2MV+EkUHSRvxttbQJXKPGpVBwICBJz5QYm0J2zsl8IeoetILxRW2qZCISdB3x3eGWVt3EiVvLcE6QLbqN2M7A93LmfkQS5dY7IaRfBRJJ/e5hZuhC5moi0p4pYib/VWqocWQbXYfUMprZTaqrcRPpUwwcp0SrkCIUV1fTHeNgVCfb8UfUVRWHoLrCagdJ+cG+ESd5cgA+zv9H3049zwpURlEZj0ucbmd03SbQUuzrNMrO6oa3p6thLpoijv425AvEzJOKKIgMXN1uI2EiTdbg/tiEquAbkaittXb4N7yBTjfGYshias2CsHYO3dx2H3PjE3moABfa0DNrnYR1DP+BBcYpzEx5ldhkDTuo9Rv1OKevF7i0UJuSQy0xc+uVQJJEL4UiK+O/mBB3HYdXi4GSQ6IrbJAXXwlrd58Z+nsRx+nseJqdAQFirg3aHG1T9JTODz+GPIEqRrdB+o0XBHS4Q8DtUNwZyIQ4voDbiSxe7j5h5FsDioRa7uYXsrOQEsez3orO/0gPUeeCUBrIpNbD+1JAL3tX98hcL+LMfaejc6S+bWA44GsI4d57B5G1tckOoJqZ/8Fyw+XiFJSfD0FPDpx3k/NtpWRNxdCP32grYdd62I0NBvQtqdr4jBh+oZXOgVKaDKe2zc0fs43NvCfF6mFYfCzfMOwJJzH3TxLI65gdaTJYvvBXlUya+BjdExlyfQ/4V7zJ4x0EK50oMVknRKfXsEVBCPzcsy5bGdcF043dD9abcWWO43QfdvAiO6d335ILX7lHehiL6NkW1fw7IqJSWuet+nMkq7FpJwSHX1LIE5MtJZl+1/wWX9H4a6Wc27Iav7cItul6dAfRPwGgZ5S1UCjTUyf4ES90VAxNAhWkQaIbmmyDyK0NObPIrz4X4OdzcbR+LdgwRUz4f3nHh+ch4sUw6kzVXVMAHCfunYfQYkoVIlD4t+1xegd2uxu4ugMbxlgVtF+8PNRhWvqg9WIlbL0orORfSyGUizetCigqRIRspketsZ1kmn9GXMSNWP+K8YzxJQ+3MNXBifPzYk38GIWAaGGwNrTY3z/gMF5osEWQoH8Bj1Xu6eb+K/Ih4svfmUEFDpXek394kmFTWimKIpkUUTgT0ZRWClpTGgjoRhPD1si5x6uI/DXdH3sXA1AWWMgGi5uW7iOjFPFdizj4P6tALBoimecQWevMBA6X5v2kTQcVyR6iKpL4rtTrEBUIvUhW0Zk9u098Ddu26o4v3Nb9AWK/fKAVgJzxSYOVuKCFpzX3DP4qD+9n1wCU8lbs1s1ROarm+bdbV8nbIypBUauIXZcnkMZYnnqvvjbSbf5fTDfc1zXdQ+Kc6KbW5gI3TxNE0j8Ms8JR6JDgOoLqmHEgAltkxo8cnTQ1iTcjvHHCq5+OPXQi3x5/dMUVCtFvDZWONr5T1pUegvSqGnBil1v6paSnWRK2fZWMkJYNnoMGdxpwfs8MD/ewCL4xR4vXYljB81AJHh+Z8eY8e1eyWqOhrASk9X6BadRGaqt3eGalEkzLZFZ14499YdBRYtcQwprK3jq3b/LzzlWWTiqYieCLEgxVw/ag3uaZ7DJ9UN8xf1g0KUVFNzvAauL7Deu5s4PDwgIjbtroR37bxTHjqQ9gi9n2w3uKCxeyiWB9uulhOjTUP1Byslrrwa2U+X7vX/1SbHn8A8IySqNV0DsTG0/Utzi+rAJqiXM86rIx4dsMb3Y8N4ypTm0acnD0oVe1nmOnsslFdO6bpvMaA1ToVJF9DEPbc3naVoEm8b8beJzeXveXDZxbjIMjsPgaaN8ZN5cb2fki5gWnx232S9PUvh+8AGFl1BfC7E66K3YUM1CDOyL5KT/pKU+dQABmrT+/biL0oQN5LcKDKHInTy2wh4OH9RgTNnFZI5GhtHEe8nqPQ4mP3kr0G9MYAVWZi6Oo+0Kaj1gMnSB3JuOBtpOcpVPhZSqSS1Sr3lhzQ8RdeVlSkQRptJXXx6VoEbK9iD5hEKVPtAKtpBEREUGaG30i4+2BsuU9w0cUOcOKXAP5tZ+xXK8+jdI3cAFikQEv+U3twCBNSQpQGeyohBJxE3XWW1P7aFddJVmTVXifg4dk+/P0KLwMK2rSWuLVci7hxro1gHHmEOjAqPjeN0nG+Xrih0655KGUAR0eW4qAa44tnAlTh9llQXSX1Rb2FKT5yIyH1qmtvMj8FdZ6n9XhN/Al+m6isHYJG/iNw/ShTlZi5FjsorkpN0aYNcDItypL9nNeyArL6M89DUO/KjpwexMoXx633pXxvv+FTM1St1wfMr+DzumKGuKfW+i5nxeOPRFtD7QWxE6k7k7nLbtZfDPtlBQPu2POrWlj67pGY79PFuXMxi6ej6tt70LoevA17T3cfy6MeJEzTgTHzfuz7aguMZLGe9vlswVofYriSbK4eKKjkBLHs96Kzv9ID1HnglAazjZ9hH2ZQrKCzd08MNRYuE6P7rtJfjAUcDWDSLZSs4XLvBAJW6dXi0b5O7BbAjvUIbqXUb2Re4YnkevXK5MLd1XC2jN+CyKMx6S1hHkNKcKTud8RQdH202/PzFxraoHB1u+HfRNgLCm2ZvSm+s5PD0NPN37SFKuJTNOwDrUlY8WkVvNIxFvOGwxS+0IKSFod7qugZjbWj+L3psGXNel72ZlYTG0WtzdNPDqyRmWalcmRdjdPl3NVzWMoGNw77dsdbjPUlXFDk0cIDWZkJdR43XdcE0KE/s0jX3xMsdDYd1x1Ol6ffOUO8KmBRQR9K9etF3UB1lkU6ZfT+ApqFl4HBf2kP0FUdIufiBuEAs2ZxfVIgRBQSMHK5BkBGu7X6Pd0jAN4ocowgysZEa6ZnvlRDpIeh+LtmNR3Ddl/v+jYtT4NQZ4Ox5DiTxLrfztY7gf/sYIEe/BzQTULa1dcCb/H1J71Z6x9pqbR5uxAURz1h+8LmcyXiKDqJ3PYk37Ak3rcJ4fSWHWNH7PqyxFsXaSUGddEGDkjaAYmI/UQQ1RVLrrUkjHs2a5O7+IZXEY19Kd731p0s35GtTbuP9p4zAvp1HUfz+gghaDlQMfVOLyEjbACwSCsiIN67WaOv9IS6vA672KnSKm+IDu9KZAkpmsf686gJVuuVUBf458SK+TjhpaLKBWwhWhrTJ9ZBc50yA8hJL7fcaNwN85TqvJIAl53kqEi7gnbeMvysU6Wk6wnYuWhptpKnVVEfabk1Oqhx06upZHHNyGXUuB8O+CqiLId7ljV53Eh7p9Wi7JL2WIhRXhrZGbREfJh2CzJsvPTguVlTAkEFSn9ABzvCYPUiSfSRI8ISI4mleepPz4BmL5NKXPZbxBN0eMS5T+vvqkDYStexc39g2VHQCWDY4y1nU6QE7PfBKAlh2+sRZPR89kBcA1sVLCqwS8V64ugkY94kWIm7lfJwh60rOnVCvHo+2LXO3MLd1AvIN6MLg5mjpbppg+NPYw1iazNIB3r/1GhrtqGTo1iNEQLUPsxcnROBORO56azBaBT7MMg+drXPQl3+sTUVNEadXqNIDJyN62tzcOzF7sDn1nqHeeL+aeM+3ss3tvGoVujzcghOZIgZuAJ/61QARO78sc9m8BC6bFhu6f96sP358NATPnknBiNBgAYMH8XDLI4Jkc/N3+fsXuOxi4N/RvkPQNsI0kDvKpzI+9a8padJ17gQoL7JNYMa7E6GtZlkBKpHPRIX7yyVtWZPCRqIXJH6hN1ObBIrQEZ/Em4oMenqKw41V0nS8ah9o4RFq26Y/r+4z2ujfvM3h7FkFrlxTQPNiX3/wtYNo9CgArS6zjVw6BFyhdOmqClSvxsNLJFwhH9/6lNt4zwQIYstc3ni0DUczmJT9utC2qOMqigyzpTEry65IvoFPYg8ZSnfwKIZ5QU1M1j4+SQlNKrtnKCWPUvPkJk9LPFSkG4qpfCyOSs7L1vMNLSrlQoFQ3xERqIszoep8oYXKU8TXlXgO3yecMYxrhG8lTPCrpfv3khVK3LjB5tq3F49yJlQ6jU1Mm6rAsUlSAO21KRrYE+RLwNWevQpclAFX+v6LZSlQLpPNj/gqQfUbBgAAIABJREFUibdSbhSBTOAlgQlJQgaKKL3Q2iPS4vUxVcD1t0lQnmEHQp4fTYFQq9ErCWBRdOe0GVLAhqgqiLJCbIqsTKhnjoHyzmXJ37WV6iJj+CSYDCmSOVmuYGtLRKP8erWK3oBLosPMNaFt8JpriMnrLlexpoLeChXWhLXTqTXTO5Q4Bym1Um/0/R01QvrOlEfx6stGqLxA69FyMr5AeXSwJfC4z5Pt2J/GRARI9ZTEGPLTnABWfnrb2df/dw84Aaz/73fAS55/XgBYvBb45lsViAxWb/168yhbJn/AIlMuXf+PEqfPsI9829Y86uVTZMKHsQewKvmWYWiUukQpTKas/P1lklOy+T7N4TudnY5Rveof83AP4nFuthIponD65p+rkOaVdwAWke0S6a7YzKW8mJpjmXtLkSIKj98R3km3IPv/bqtSbuJDUWQa+ePXoMbo6CG9/vnpJ5e1v8PlX8ZTk9V1KBJe740FCxWgDZ3YiDNnyJsCvESb1PwYa07+qu5Y2KYp/hd72Gj34/xqYqQMMJXzyKR/PBN8KQYcm5tH3ajViBLxGFmjGik/5f74Qy18vaWbsKtZCWguSgezlB4XvVUFNzcOrmE8XIK0cJVt6vLjWljTR2YmcOEip0sxXFf4JG6Xvo45y3rCPYulEN90EXBTrdAFSRQvxqN6VaBCBR4uMl51EoIgQQi9vetTEV/417ZmGJIyg57sxE4RmfrS4JZo6s4iX21u0IoKX8Ydx/znbIP9iV91fOhb1WhNes/T+15vSrWAul8ZjzyRbyhNpR7JO/r2BxWSmUAaRg7TIMgOdge5Kh8dvNABjN5Gx+7H38ksOmZ6QD309y6r+3nNeiXOnWff7C6dtKhRzXowNvEGh0vz2ftJfPBjxaWRFKH33N59wIVLnCTiSlwoMkJAvTAgcTcbc2ANHqV75f3ax/XPaVAez45AJfMY+RlQv9UrCWDR/JYsV+LGTeZnihKkaEGDabVwnTseyiunJddRW7oqMkdNhaCynqogRchCmXvLJO0QTxtFQ9lq4XcXSqpYQwi/Jvk2RsWyKEVqgBSb/wnrgPPbfXHilPQb3KcXj/IvgN4kPhMjYvZhT3p0jqFSKiJFkhmjbZCDx5StQFkLpuxcZizaPdwk+XlxcAs0N5LuaKvPrC3vBLCs9ZSznNMD9nvg/y2AxfMCiP/KaS/XA3kBYNGMNmzicEqU5pCf6XqmPLpoKYdbt9mHnjh7ypfL+4UljUeutmduk7I19R6GiqSJfTk1Lkf2xZWFHBKusPEXacojsg2Pk98okZnInqV2013wDIyIOC/usHL3luK5CHy6XrQfPBXWLwiPZzxBV1HIebDSHacjnAqkdK0o/Yc408i/tECOdPHEguDmKKF6eQIX6hWzodr/j+FWyuw1EpomnUGcdwuXcDk4jgoVEvDWIB6+vtZvNu29T1WHt0G95Hu2f3mhIEjRLRTlIjdjqk7unw+AIpZF4KRPXAA+2HSkpLhNeUShudQQfb1p3ymRKiKpHjdGC3d3qc+WJV+XgHBtPSIxP6iZSXcV8nSBh5sKz5IzkZphXQqevb63t/6cmCuYmnoM3U5WQ58T2dE3ZDT6fR5ApmipQOBV5Uo8qlQGShTPfn/LI1an+NfFYB/jaTnmxvre031Yn3LHUCQ/gGM50PR7YFO08yxqdJgPdnF4sEMkklKRR7mBxr9hxLNDqU96s4a3hyJbiMNSbJO/yJn+Zsv1vvS7EokioKHcm1r4l2f3uDzi9K/g1mjonq1+tnUHhyNH2Xxbt+Txej3rv9lyfwXVFlCqu23PBIm/UKrg+Yum5YrDwwU0byKgVEke8VcUuLqQ+dCvrIDyQ2zr0xb/6suql82E6uAWQ1WPd8YATTq+sgDW+Qsc/l5nQjCI56Ge/xVUoog03fukaBlkfvQ9BLXttCUNo9bitogfb1Noe1R3NZLvbebiybnpIpVeOBLR3arLLU9jpEohghea/d0Z7mlMsZXejT26ZT8j1N+Qx7twXytCpF/0Ziniff1GDqfPMv92aMujjoxPSz5wuZhJRRc/7LAild4qB1hRyAlgWeEkZxGnBxzkgQIPYGm0WmzbcxzNXq8BD3dXs26Jf/Ycs+evwa6Dp0D/7+PlgXq1KuH9IV1RPDJ7weK0/PVAXgFY9x4o8IdIyYhmNWGsFq7q/NvQyj3541wOcaJokeHvaBEqOgnOS8/LFx8DvMtimoiEWdy3fBGgJ5uOPa/A9WVsYaz2FVBrvBaHP5WGI3Sf74K8uq76cdZ7sAb3tc8Nwz4a0R0RSpEMlgVnfpNwEnMTLxpK9fEqhRmFLZNe5+U1+i+1fSMrEQRcBinZwvRlji8HN9TAMdDUa6UbEkXS0Gn4vfvSAwlK+Ro8UEBgYes3nPbMkbtwFG4/f25oQlu+JjJGTdP9u8OjTTiTEStpfkbh19HHq7Tkb+4fdIIig4G/qTPWAJ6W066oETmnTXevEvixcCOzU5oyTYlMETrz2ThNDg4xeYSKJSCiIAJY61LuYOTTfXDRKHVRWP6pnga/RamAiyaWFj4+AqpW5jGvzHYc0TKCfmujjeQXRw6EGbtH7LlHjdUlIQtKJ9PbvvBuKOVi/J67QET9d9lzVqIbjxATUcREEE5E4Xrr61Vax3Njzu7eV2CBCHwJDBTw/nD7wJcbq5R4esr0mOXzPxLxBiKV2Qpo+w8qsVMUzdTwdS1aNrd+DXF1EYf4y2wTXqIrj5DXrHsfUWrvnn0KEFBiyoj3r1lTwQCkUrnn9xW4MJd9p72KCKiSD0rM6tW/QLWbpVC7DxoFRevuryyAlaUBpn6rMqQhk+99vAU0aSyg/sVpUB35V3LZtKFFkfnJLAge1q9TxA1QFNOGVAZuW6s0K25jdfItfBB7wPCnNh6R+MPMYYT8vqNU2x8Sz0n+7JdQCB22d4Q60xXe3gLeH8HDzVWAsagtqkjrCjoAqe9mOm2Ryu3arcC+g+w+btxQi+ZNzT9717OeoWn0esn4fgtqgvYexRz92jTanhPAyhc3OztxekDngQIPYO07cg4jxs1EaJA//l35PRQU62/E4hKS0Gf4ZEQ/lm4iqKibqxq/zxiDGpWlmwnnPZL3HshLoGPmj0okiCKDunTkUaO6dYvHvJj55G+ki52xY7TwkEU75EW/1Obm1Lt4J2avxYXLMz4TFWVcOhvC2qGWOggU8HT0CxUE0X6i4lBekiKhcgO6zMl7AEsOCNgqmywntTcXdZBX18TZrvUekPOrZLz9ObQ1pODMsr84XBNxsVHrFE00sB+P8HxQIeXuXoPb9JGGSfERJZE+/lfdvwkgIO4RvRLo624h+MK/DiqpWcqqQpMF9/fbSZyS+vMOq0h+qdLB9Efo9Zipc1oi46Y6X0yWgs/Gol1ej1qDuxoGFls6+S+IABZxp1AkElmTa6Xx3u7GhusgQMAhdwWSTeMI+LvzaiT6Jhrq7A7rgrLqQtbf4C9KfhV/Ar+KVECJ5J/I/vPKjHGnmUrH1qQBxyfShpKtscRqtPIxytVirRHJOH6Sw6YtzNGVKgjoaWPEknwc97ZziN4tihxuziOyVfY6wBLZ/MnTHDZuYnVr1eDRqYP1a4iTU5TIfM78RUASAUrmjCKu9uxX4Nx58xFXLZpKVQX1babHKnBaFMXm6i+g5qf2gYDGxvvsGoeHh4ASnQS4FRag3rAAqm0rDEXder8DrlP/VxbAoon+vZbLERnXOeknNEyRCqHwAaHI+HQ2BG/b3wl6h8oPKKwBhOXXbWLccfxuZbqwqXt0fNwRLHp+TfJz0NMgtP23Hd7uy+lSreUKl/rC1V0L6wCzYAsK2FT+2AkOm7eyZ4DW7rSGt2RyoM+a76ClNq393QlgWespZzmnB+z3QIEHsL6auRh/bdiNN9o3wuQxQ0x6ZPTnP2HngVO6tMEeHZuiWsWSeJaYjJUb9+Dug8cICfTHP4unWozist/lzhbEHshLAGvXHgX2HWAnOEUjBbz1puMXctZcUUrToXQdvVEayufj7UuNsKZffRl5yhwtJDaFdsjRxJ9JV/BZPJNYLqryxuEibxjKXV/BIVYU1u1XjkfCVbbI8AwC2n6T9wDWwCc7QeSierOFK4bABDp1F9vVyH5GeRhs8bGzbN55wHXOeCgvnTB0kPHe19BWkir40Y+r13I6XiOxqV2A/n21IFWkvDRFfAzcJ/QzdCH4+CNtOrvPzmfGIVabhnpuISDVJbkpEp7CfXxfVt+7ENK+XW31kIlrpLwMfL5RtD88jPSlb9QSgBXHp6PK/b8MY6CUUuJeMWcFEcAiyfjWD7OVTRUCMGdVTwTFsygkj0gBiVWAM+cAAhjk9sfA+ZI/fX1yAOpVdUHZ0pY3XOKKcqLjMX7V8YEJPiqrbwwzBeXfhQoufvjXRMpN7HkO15exZ8s9UED1T0x/Tx9pU1DrAbt/LXGn0TAJvCIQS28UXdSkoX3f7MdHOdwWpXoF1hRQumd2m9cyn6HZQxaxIf/eXbrCYeVqNp4K5Xj07mndNc1KBk58xZ5zBSeg7hStSd5uXapgLiKu5JdXkw4c/5L1q1QDdb9y7FpD4IEzM5RIj1OAaJgoqqyk4i+4b/ndMBy3bgPBdR/6SgNYt+9wuhR2vbV6vhCtkhdJLkmGRwCECbPB+9tB5EapzDKl2dwonfZ4vBWH058YxvdnUHO08rAuRV08qX439mOvi1RVsVJyESwoVw/Dnu4FqbLKbbB3OUwJeM3q19blKxz+Ej179C7t18fys3dbk4iGUesk/fwU2AjdZKq5Vg/EhoJOAMsGZzmLOj1gpwcKPIDVe9gkXLh6BzO+GI62zeoadQf9TuXIvhn3Njq3ZmHsySlp6PnuRNyLeoIvP34TPTuaVt+x09fO6kY8kJcAFqmizBQRzlL3n3yo1YV557c9fAj8Op8tKgMCBIx+z76FuS1zuKtJwutR7FQwXOWJ40V65Gii/cNNOJvJohQ/9quOj0QbKAKrrvxp+mQ4oKQCTcep8jyFUE5KP6twQ/TwKmmVS+SqW6TAQ0o8TvvvesD1+w+hvMlSPtM/+gF86ZyKkaQyR/x3p89I71ElB93ilzhi8soUGg3c328raT71F2kaibm+ufs34DZ1hKEIH1oU6V9IgRFLY5dHS60NbYO6JhSmSORiylT2TnJxAT4fJ93obk+9jyExuw3d1nENwrpQaZSYfEwFEcB6qElB7SgGtjR+VBwj1zeXTK3CWzwKleHx4IECZ84pcOGyAhnpCqS5p2F5D0aw7Jrhiv4rs0E+irCtUllA9WqCVenivyddwsR4BtQO96mIz3JBBm/pPtH/vvj5NYyLO2IoTjL2RKpszG6u5hAjApdMqduJ65a8uwTpOiaxbLNEGL1gkRJ37zGA0BJxszXzlH+zfEvzoMhhsh2pDzA4hhGPN3IPxYrg1oZmb91RYNESdvBUvCipnFr33Sa+SOKN1JtnhICqI3PWpXUKpQpSxBW9v4wZHb41bSxNFTQ3d3laf/3pjgWw6D6g+0FsNerugP+/Uw1/cu3QC8q+773SABZNNimJDkoV8DiwDh0T50h8kqzwxdzCPyGtUBE0aiigdg0eStt513Vt2hItaerekHOHHivSHUVUtqU0Jicr8OMcDv803I4H4ewQ0VSfdOjxfWAD0LvFFiNKgD9E6cRhoQKGvW3dsydfH9rC9WXLGOVlnQCWPd5z1nV6wDYPFHgAq36n95CYlIKNi75ByaJhRmc/5qtfsGXXMdSvVQm/z/gkR5n12w5iwrT5aFi3Cn6d/pFtHnSWtssDeQlg0cB++0OJKJFCXg6lGLtGb33ly1c5/CWSly9ZQsCg/tZ9jK3vxXRJS6kSVPNWVhIaRUtD38V8IFSGFB5PfKWEVkT8LO41rJoC9UfmPYAlT7X53L82hvlUtMpVcrJrS2SiVjXqLJSnHnD7Zji4BzcNfaSPnQu+qGkVzX93KXDgkHSnwHHAG121qFwx7wBs9w86Q5GRahinLRxWyiun4Dp7rKEuX6YK0j9kpPDWOFiePmGOryo1DZj2HQOw3N2BcWOkG135czbCpyImWABUCiKAZUzZdOeet5BwlYEp7sECqn2gheLFvl2rBa5cVWD9rVj8UoUJDATEBaDL5q45LldgkIAaVYGqVXiTCplycL2/VxlML1zfmkufqzLydKCx/jXxvk9OYJgaPz5ZCU0K80eFt7QoVMb8s9Q6eiMuZsUbxmYp/ZQI3InIXW+j3tOicIB9z2tKNHButug+F0WOyQFDub8fPQZ++Y3VDQ4C3htmHRh0fweHqF0M5Ampx6NEFwag64Er4rjiTeDqBFw1ayLo0rJsMXnqYs3xWrg6SNBCmwmcmia9FwKqCKgYsQHqFT8ahqlu2QWqwR+98gAWTVh1dAeIp1FsaQovHXj1WMX4l4iXsVEDAZSKqsoZhGvxEtd+sBoPtSmGchQtSVGT1liUJhl1o/42FPXhXHAlkkUMW9MGldGDzFqlBltabkVMEIvokrcRofLCoqAWuUqnjotT4EcRlxsdPNMBtDUmnyvVsaS8bU27lso4ASxLHnL+7vSA4zxQ4AGsqs3fAhG5H944F74+jHhV76LE5ylo8sYHyMzM0oFXBGLJjXixWvX+BMGBfti9eqbjvOtsyaIH8hrAkufR+/kK+HC0dR9Bi4O3ocCRYxy2bhfn8wvo0jF/x1H23lIki5T7LkX2RSFObZjF9PhTmJ10wfDv2uogrA/LGW1xa40ST44b55or3pBDzUHKPI/A+iXpEqaIIhVG+FbCBD+mHmbu0shPIXeFd0Y5KxeBNlxyZ1EHesDtyzfBxTAZ7vQvF4APMZ/6cOw4h83bckYLdu7Ao2YN2zaE1k7F/ctBUMQwMm+KoKJIKmtMeWIXXBdkk76Taas3QMY7X1pT1VBmXtJFTI4/afi3uYia58+B72ayXZS3l4AxH0nfSXKFNmtSTgoigEUOK31vKVJF78eLngNw5Xs1ILB3HSnIkZKc2Dak3MGIp/sMfyp2rxia72th8roRTWfJEjyqVRVQoZwg2cj+k3oHw2JYW+aun003honC3R9vw5F0pnpp6vqmPALOzRKlwykF1J2sBWdhEy5XVfyxcEN0NxEpK78fOSXw5XgNTNCaWj19eSof5yLgtSnZ9/lncUfx5/OrhrbkByGJSQp8P4sB4caeEVMDufyHEs+u57x3CLjaSxFXeQBc6cdydqYKqeyyoupoDTyNn+9a7Ud9wQc7OTz4l71XKTWy+hgtPK/vgKsIxFE3agPVsPGvPIClOn1ApzgoDp/TcK6YV3gW7ijLGfWvp6eARq8LqF3LNiDrzSc78a+IOsHc8yTveFvqfbwliqat7xaM1SHSiGFLN8Phoxy2iVRIM9WZ2NdtE+6rGUitb4MI4iky3puzXh1a3H9mBjBlOnvB0AHUxM+sA4+pHTk4H6L0wKmInpamaNfvTgDLLvc5Kzs9YJMHCjyAVa3lUGRlabDn71kIKpyTIHHF+l2YMmuJWZJ3qk/tqNUuOLOD5fDb5Eln4Vx5IK8BrPR0BabNUEpOON9+S4uIcPtOdW2d7NZ/ORw5IuL2aMyjSeO82USbGluD6LW4k5Vk+HlXWGeUU2ef3pE3aj1YhcdaFj0yNaAeBnqXzdFc4i0FLv1mPA6+XHsOlbrmPYD11/Mb+DjukGFsvbxK4wcLCldUmDZrtGnTWwDnivORfWy9nM7y+ewB97G9oUiMM/SaNnUFhEKFLY7i7DkOazfkBLGaNxPQuIHjAWTX70ZDefuyYVzpH84AX6aqxXFSAVLwIiUvvWU17ICsvqOtqqsvdDj9MXqI7u/iLt44GM447MSNyVOs/QoJ+HAU84lG4FHy3hJodG+HbLsY0Qd+SvNqvwUVwKobtRpRGhbdcKTIG8ja4Isnx9n9o/IUUGucFuI92ZzE85iacNrgoz7Kimh6sS4uXFSAuA/NGaniVqwgoFo1AcUiBexMfYBBopS2Fu5FQIqGeWUk2EHCHXo7GN4NxY0oEEbv43BPRK7uV1ZA+SGWn58Zz85i5rOzhvZH+lbGOL+aRqdz67YCi5ay70pIMDDiXes3rOZ8dHicEuDZtag7SQOlGzDgyU7sFgECvwU2RXtPBjjL02wJVJs4wboxHftSCW26SP1wqBZHLytw1gJw1byJgGI2RlzJ535pnhKJt1nfFd/WwreU/WseAgMp+orPYm2HNuRRvAMP5al9cJ0/xTAUl9eawmXUpFcawFJePgXXuROyQ9NfmKBSIfP9aUgqUg37Dypw8iQHUiw0Zl6eAhq8LqCOlUCW/Hka4lMeX/kbp06R9/fdszOY9YwpCL7tUwET/XPySJp6jp7Gcpg7jxNPFZTW98aQFHR6uNmgCq2EAmP9aoIOFe21iVNUkrX72E808PCwrlUSTKl7fzUoulZvNF+ad16ZE8DKK88623V6IKcHCjyA1bL3J3j4OBaLZ49HzSrSlBJBENBlyGe4eSca7/TviNFDjS/k9QCWUsnh/K4FzvskHz2Q1wAWTWX5Sg5Xr7FNCC0WOrTLX/CIyCiJlFJvXTtpdbwo+WndHm/FMRGB54rgVmjknn0seyj9EXqKFMxUCg4XInrDRxShZVigCdlphOJ0Ev1v1XorUaoFl+cRWHLukpbuRbDQio3eNwmnMDeRRZn18S6NGQHmpd3z8xo5+zLuAfePukCRxsCF1O/XAh7ZUveW7AoRMa/JmaZTtzaP9m0d+x5w/fVLKM8dNgwpY+hn0NY0zikkH7fLxoVw2cq4lLLa9UdWx0GWpif53ViqsCmBgqexCvz0MwMMAguTBDpb7J/MiEHnR1sM7ZsDw8SDKKgAVtuH/4CI9vW2OawDKmYWzrFhj2jJI6IFu2/Gxh7GkuTrhnqT/OtgqE8FaHng+nUOZ88B126YThPTV6ToYNe6D/F1yFZDW0T4/3dI3vDzxWhSUT1qlaEvFwWHu0UHGr3f5IBI8Y48iAPLkq1Pvo33YvcbirX1iMT8oGZGq8mjlCnVt8cblkEyS2Og309PVyJdRL5f7SMNPIKBhlFrcVvDDnW2h3ZEJdcASZMTv1ZJNu2fjdVAzQKXjXZPfVGfehM4Af96KMCb4bhyBHCl7+/aMg5xIhXDMn21KFzV/vXGrTWcBNBVugqg9ERSH+YuHIXbz58b5qyqUQ/qT6a/sgCW8vYlqGf+DwoNA4DBccgYNgnayoysnFJi9x8Ejp9UIivL+N3q6UFAFlCnthYk8GPK5FFUddyCsC7EPCehvi159Naswg3Qw6uUNY+P7l32629KPIlhwCVxJr43TAt/PwHEIUjvT1Js/S24KYhX1BE26ycl4hNYnyOHaRBkAxf+pIQT+C3xkmEofpwapyJ7gXi58sKcAFZeeNXZptMDxj1Q4AGsjyf9jG17juuI2YmgXWzrth7AZ9P/AAFTW5d9i/AQ4yf2sfGJaNxtNDzc3XBia7bsudPyxwP5AWDJlYRc3QSM+9i0GlBezHzefCWiH7IP8ZsDtShRzP4FpS1jHR6zDxtT7xiqiJVZPnp6ECtTGMdQO4+i+D2oqcnm72zi8OhAzsiWuu8oEVEn7wGsUxkx6CTaXNd0DcTG0PYW3dEiegOuZCUYys0Paoq2HtaleFls3FkgzzzgMaKVJEUjde520GbBWrt5i9MB2RrZSXi1qjy6duLtTlPSj0O9bCZUBxnok9lrJDRNOls1TPWyWVAd3Gwom9ljBDTNcnIpWWqsUdRa3BJtyleFtMHrbjk3FHJ+n9AQYPg7zEHydEQSSaCUEEtWUAGs/o//xZ50lqa6LKQlmriFI2onh/uilClKQas5VguXF9zH/R7vwN50lja6MLg5WrpL01tpE3vuogJnzyrw8JHpqKx4/3is68B4CCu6+GNHeCdLLs/V74fSH6OnKFqvijoAW8M65miLOI+OfaGUpFKS+iCpEFoysbojlTUnab9hkxKnTjPfNGvKo0lDyyCZpTHQ7xfnKZEkikjS83eF310oqX6zaP8cCqEzZiqR9JyN66PRWhSywCcVd06Ba8vZJjmeA4675xwpKaM2a2x/xJW85VvrODw5yt6PJTrzCKlvny/TYrOVB8UptcXa8whrlN0ud+0s3GaNMQxFVbEG1BNmvZIAFhd1G64zPoAiI03i+swh46CpbRygpXfAgcPA8RMcMjONvwNI9IGArLp1jANZ0ZoU1BGJTXgqVLhetL81jwDk/Fk7wzujvJXUCTv3cNgvW+91bK9F7ZrsHXA96xl8OTWClVaGSFkx6vl/KnH/gWjdPECLEsUtv3f0TcfzGajzYDXSRKnhecl56gSwrLioziJODzjIAwUewDpw7AKGfZpNdDtySFd0adNQt9HZfeg0Zvy6Ssd9RcqCpDBoyk6dv46Bo75BZHgwti6b7iDXOpuxxgP5AWBRdPfU75U6xSi99enFo3xZ+xZ01sxPX+bbH1RITmY1Ro/UIsDf+g+xLX2ZKvtl/DHMT7pi+HmCLsy7si7EuvK9FUgRfeQXBDVDa49Ik90mP1Dg/Jycp1iNPlYhqLwizyOwKBWSUiL1VszFG4dMpErpy8Tx6ahy/y9DHQp1v1a0X44NiyN87WzDgR7IyoTHKBE4qVIh9ScWpWJtT9HRCvy5JOfmoXw5Hr3e4E3K21vbPpVz+WcRXLYsNVSxJYrK9bdJUJ45aKibOXgcNHWMb4bMjWnk0/1Yl8Ikzk0t2B9EK/D7H+wZLhIu4J23WMTL0Jjd2Jp639DV9IB66G8kpVg+loIKYI16egBrUm4ZpqOPUOCzgJNTpRGnwXV4lHwj+/vROHodbmYlGurtCOuIimppFI/YR0ROfPI0dBxIpOgltiTvRKzuytQQfZN8MfF6d120Lilo2ssHJe5rftJlfBl/3PCn7p4l8WNgToAy/jKHq4sYGKL2EVBrgnWRUZnQovjdJZJ37p1iA0HvXrn9tkCJqKi8+UbOOi8ZAAAgAElEQVRfX6FE7FkpH1VW9WQJGODHueKikXTyn+ep8FjEUz38bQ1CQ00/gc8SFTi5iIOHSDzmrgq4Ksq8JeCqVXMeRYrkzRpATiBPEYMUOWiPkfowKTrqzcVbQE1Kp33xCuFuX4Hbd6PYtS5VAa6Tf33lACzuyQNQqrgi5bnEnVl9RiOrUQeLLiZai4OHAeJozDADZL1eD6hbVwu1jEKq/P1lSKKX0gs7EN4VJVx8zfabxGei/P3lhjIUYX+n6ABwRp5DeUMEuNMBrFghs1QJHgP723c/WXQUAHnmQrcuWlSrYtszMz3hNGYnnjd0R5xcpyN6wUORCxZ9C4N2AljWXFVnGacHHOOBAg9gkRtGfT4buw4wDgqxa4pHhmLFz5/D28v0qcCvizfipwVrnSqEjrmnbGolPwAsGtDGTRxOnmaLrwrlePTumfcfYOqbwq8nTZF+LL/8TAOl9QEkNvnUVGE5V4ueA4E2u7Tp1Rup01yI6ANa5JizU9OVyBClZVDZVpNU8AnPewArkc9AhfsrRGNW6yTazdny59cxJo6ld+Vleo5DLpizEZ0HFMmJcB/T3eANwdMbaTOkapnWuopSIBYs4iRKZ1SXOGcG9OXNpm9Y04dq7waoVzIpdU2D9sjs94E1VeH2w0fgbrD01oxR06Atb5wvyFyDlDJBqRN66+BZFPMCc0ZT3rmrwJ+LGYBVvKiAwYMYMFHp/nIkiPiRxJx55vovqADWxPjj+D2J8Zd94VcL777gcYk5ocDNv0WAvUKALgqpMFDy7hKki3hWLkf2gS9nnieM/EcbQooMPHNWgSvXFCBVwzT3NCzvwdJI3VPd0ffvbKUwIn6uWllAzRpAYGH7v13/izuMZc9Z6qP+QEN+beXRPHI1PUs3N3ErPhJxK5ri2fpqqkqSYjX6PS0C7FQg1I+N+LuIx0tvBOY8aPBQwhdXXV0Ym8JyAhD0jNCzojdSDyYVYbkRcLXvgAJnznKomQIEiC7ROTXwyAXIa+BKP6ZHBznc+UekgFifB0Vh5dae3wMu/Cxdw5TprUXh6swPiqhbcP96mKELZWRJuE7785UCsLj4GKi/HQVOxMdIE87sPASaNrZxadKB6qGjwBECskSHq+Jr5E4RWTIgq9fj7TiY/shQ7JfAxujkWdzspT2Y/hC9Hu8wlKmo9seOMMuRnRSxTGnmxJeoNzc3AaNH8qC0x7y2zVs5kBCT3lq35PF6Pdvu4+d8FmpHrQL9V28fFKqKMYWqO3z4TgDL4S51Nuj0gEkPvBIAVnpGJr7+cSnWbzsAXkQy0KJhTXz+4UAU9jd/OtF7+GRcuHIbH77TA0P7Wk5Dct5PjvNAfgFY9+8rMH8h24BQ9tHYT7Sgj3Fem1wO2MsL+N9H1hHBOnJsfyffwujYA4Ymu3gWx9zAxpCnwAz2LocpAYzDwdQY5Ke8VK7jDy5w9UGeR2BRX/L0j+hipqMsqfzbMXuwJfWeYTqf+dfGcJ+KjnSxs6088IAiPgbuE5jcN+8XiPRv2GmyrV3Gx9O7IGf0S3iYgDcH8iBi7dya6uQ+qP9gRMbaaq8j492JVjXnNuktcI9ZxFP6+F/AR1jHUSLu4HjGE3R9xCLUIpXeOBKRk//xxk0FlojSnEqXEjCgbzaAdV/zHPWi1hia9VKocM3KVJWCCmDNSbyAqQmnDHMWE44LPHB2lhJpT9hGrlA5AcGDUiRRnd4KFa5a6SfxNaNIDCJ9P3GBx5TGLK1NpVFh0PKc77WQYAHVqwqoWlUApR3lxjo/3IKTmTGGqkuDW6Kpe3iOpk5+rURmEpt3+Td5+JW3fhPZ+/F2HBBtuJcEt0Az9yKSfhITFfj+R9H32QaydGvm/ugQhzsb2UY4uI6AE62v4eNYFvGo/x7K21u5mgPREOitZzctKlViPifgav8BBU6fZTxnLVMgYdm5VVpA0zZ5F3ElH/PTswrcWMH8SfxXxIOVWzv3oxIpIgoEzzABVWVqzoqYaLh/ye5VLiQcbj+seGUALO5ZHNQzPgQXx8Aj8mdmq57QdJXSl9jiZ3r2if/t8BGAorOMGQFZ9esBr9Xh8V3ycZAKs97e862E8RYUmH9LuoRJItXmXp6l8ENgA4vD/GcThxOig1+qkJ/ZC3sPcNi9hz179V/j0aaV9e8e/QR/SrqAafHs3U6plycieupSHh1pTgDLkd50tuX0gHkPvBIAln6KcQlJuHk3m8OidPEi8C9kmeRXq+Ux8/fVEHgBA3u0RnBgtiqb0/LHA/kFYNFsvpupxHMRl0XH9jxq17T9Y2irZ27dUWDRElGqTpiAd4bmfjFpa//68vvSHqLvE3YKRxFIvwY1QVVRWh2V3RLWAVXVlhXe0p5yODMje3GhVAsg7tt2X2UvCPLjutZ4sBJPtIyD4kxELwQpjRCNvHBAmXtLJWmSu8I7o5yVHBC59bmznv0e4B7dg9vkoYaG+OAIpE+0T2yDNsx/LOLwTHSyTB0EBQoYMoiHRy5Pl7nr5+A28xPDWLUlKiBjzI9WOcH9fz2geP7MUNZapUV548aI3OcFNUEHj2KSoiRsQbxgeitXlkffXtnvQ3lUZlO3cCwNaWnVPAoqgLUi+QY+iWXKpn28SmFGYbbJS7zJ4dLv0qhU97cS0EHNgL4KLn74N9w6zjNTzpQD828tZve+vA4dxJQswaNGNQHlygpQ2sBNXO7eUjwXpY0fL9ID4SpPSRfpsQqc/k7a6GtfaWDLvm9C3FEsfH7V0O6X/rXxjuzgQA6myvnYrLrxzBSKv8Th6mJ27QqV5fFPlxOYncQiHkf7VsH//GrkaEW+ie/Qlked2ryOF2vv/hfAlehz7sUr0CBNFJnkJqDepPz93ife4HBpPpuvb2keFYfmbq3z9CyHGyuk932lYVr4yLiIFM/i4D6ut8F/Cr/CcJ+79pUAsBTJSbq0QS4mSnJ/5EYp1tRtSkAWpRUeOoIcEcL6OnTgqmh+C3MC9hqaaeweiuXBrc0+IqOe7scaUVr5VwF1McS7vNk6N25xWLJMet2rVRXQrXP+3cvEiUfceHqrUklA9262908cWLUfrJJEFNPhJR1iOtKcAJYjvelsy+kB8x54pQAs58UueB7ID6BD75Xde2nByT6GkUUEDLVCCtxer545x2HdBrYQqFRBQM/utn+E7R3H1awENI/eYGimlIsP+nmXlZzMlVD54ECRblZ3RaeyroUA1YsNv/4Dnh/XVU7Ibo6U9GjGY7zxaJthXiFKD5yK6Gn1PJ0FX54HuLvX4DZ9pGEAfGQZpI+ba/eAUlIVWLiYkygrUaPETTd4IA8fH9sjW+RgmxAUhrRJiyyPVRCgI6oXWdpPWyCoZAQollvSlWgavQ7XRbxM9Lflwa3Q+IXqKP1bLm4hVn0bG3cES55fM/RGG3va4FtjBRXAkit8tfaIwIKg5pIpX/qDQ+J19i7XBGWgzxuM48lYHWt8Ji4j57j59nx/3LzgpksxNGfElVO5Mg/aZBaNMH/vkmpYbREZtKkIu8eHONwWRS75luJR8W3bgJAFz6/g87hjhqH39yqD6YXrS6Zy+CiHbTuYX6tW4fFGF9v6MeeblAcKnBNxNnqECPi9/26sT2GiJjMDG6CnZ86Ix127Fdh3kK0batXkdcxBJ04ZT7EP1wCVM9hoCpXmUSGX4JGt946+PH2XKWpKbx6hAqp9kLs1B/G/ZYqAfv8KPMoNMnJtUp7D4xO2dlB4eMF9/pYCD2Ap0tN0hO1cNOMVJL9qajUFkbY7lJiOIrqyiOhdiYOHgNS0nBFZiT6J+LsL48krxKlxyQJ9QvPo9biaxQ5H1oa2QV0zSoFEOD/7Zw4pKaKIU18B7w23L0LZ1vv5xk0OS5az54zA+kG55N6a//wyvoxjnH+kRHgsojsCzRx62jpeJ4Blq8ec5Z0eyL0HCjyAlZGZBVc5y2Hu/SGpmaUhJRAbjjQd1O//p2byA+jQ+5Py+GfOll7PD0dp4VfI9o2qLddo7z4Ou0X8G7kNg7alT2NlSZGlsog3isgsw5WekoXNWP+aeN+ncq67yk8Aq9fjbTiY/tgw1tUhbVDfiNoaFfg64SR+TrxoKNvXqzS+K/x6rufprJh/HuCun4XbTKZuxZepgvQPs4U77DVK2Vi0lJMohFKbXl4Chr7Jw99GoYUcfF1uHkibyUBjU+OlyCuKwNKb4OqBtFmW65lqj8AnAqHE5q5Q4e+QNqjmmh1deeacAus2sPeh+HS9ZfQGXBapdZp7tuRjKKgA1omMGHQRKZvWVgdhfZhUoj71cXYqoViJbU6zvdhXNlvB9S3v8pgcUNeu25JUxkhtTG+nI3rCj/fA5cscTp8D7t61TJ5I0vbVqgHVq/DwNaKYR6qJlDqutxqugfjHiIrr5T+UeHadbWLFqnPWTlIe+fuaawjWhLaRVF+7QYmz51g/LZvzaPi64wAsSoGkVEi9kVDaV++sx5mMWMPf1oa2RV3X4BzTOnyEwzaRCqW5eRcvxqOmUoHk82wuRZryiGzjuLlY4/eMBAVOTWPzVfsKqDXedgCLeMOIP8xgIu63HOPIIbbhAo/Fuwo0gKXIyoR65hgo7zBuPJq3tlJdZAyfBIcof5i4oFkaBmTRYYvYFvVdCI2K0VAcCeqFSA/T0efyqM6rkf1A6z9TRpG5FKErNjrspUPf/LSHD4Ff5zPutaBAYOTw3NNvyKP2KQqNotEcZU4Ay1GedLbj9IBlDxR4AKttv08x6ZPBqFO9nOXZ2lCClAknzvgT/yyeakMtZ1FbPZCfABaN7fcFSjwQKR01bSKgaSPbF3a2zHP9Rk7Hj6G3dm15vFY7fxe0+r7lCxn5PIylkdgy1/wEsEbE7MOGVHaC/ktQY3TyME5mKo/W+iOoGdqYUVm0Zc7OsnnrAeX5I3D95QtDJ5rKdZE5gvFM2ds7nXgv/4vD7TvSBTtxCw0ayCM02IZFu9FIqq0QVOYVj4j7ijiw9CYUDkHaVyyyJzdz/D7hDH5IPCepSqf160Lbo4yLL06f4bBeRPRMkSWd2vNIEbJQ5h4jEqcGbhbtb7VaZ0EFsG5rEtEwap3BXyVVPthvJBqVyNyJ1F1v8R4pGNlvFbJUWkwKqIOh3hVyc7kMdZpFr8c1UbTE/vBuKOniY/idOJfOnqNvCnKkwBrrmKKxSMWwUkUe6heUL/OSLmJy/ElDcXm6JP3Aa4BjXyghaNlcq32ogUeIbdMjMI5AOb0V5tywLbwjQpUsXZFUzqJFHEv9+/AoU9px30gizD8ylgAdNpdhw5cgDixU6mRED8mY9OMlX68VRVAbmz2psjVpLCAyQsCFOUo8f8D6KTuAR0Alx83FGu/TtTs6gb1zFEoB9b6xbZ2TlQqcnqaENoPNJbguj5LdTM/FY7g0zdhj+f6CC2BptXCdOx7KK1KBKG3pqsgcNTXX0bHWXD9xGSJSp2g/4lnTA1n/tNmImCDGX9duf2v0LhKGBvUBVxmv64XMOLR5+I+hyUilF45EMFEU+XjOX+Dw9zrpt/D1elq0bmnDd9DWSZooT5QfRP2hN/omjx1j230sbnrp82v4VHawY++aV9y+E8By0IV3NuP0gBUeKPAAVsUm2aSRXdo0wNv9OqBYhI2rK5mTbt9/hD+Wb8b6bdnknpf2MkJVK/zpLGKjB/IbwKKFwD+b2ceZoq8oCisvjSI8bt1mfeYnCaZ8XnJFKPHvjlDly08A67O4o/hTxK0yxb8uBvvk5HV4rE1FzQerJK64XrQfPBW5S8/Ky3vF2XZOD6hO7oX6j68NP2hqNkbm0M8c7qoVqzhcEcnEUwdE6D6gP2/TybP7p72gSIo3jC/t62UQ/IPMjpfUB0mFUG98sbJI/5SpGeZ2svJnhNohnjjiubt/yhubt7H3EhEEt2vDQx4xU1UdgC1hHa0eQkEFsBL5TFQQSc2bSs3JSoYuuoXPYhv75XVPYl2Ns3AEMN7x0Wacznhq8Lc5TsJ7DxQgnhiKziIg1pJVqijo+LLm+u7DquRbhuIT/WvjbRkvVcI1Ba4sYJtHlaeAOl/k7ltZ4u4SZIiUGqlj4lUb5FsOLd0jMOlrlSRF8sPRWvgZiRyzND9zv5/8RonMRHbNRvVZjUeFEg1VTImAXL/BYamMA0pfidRLWzTNBq7IiOz/6AQlBJ71U3O8Fq4Onos1fjj6uQoiEVHUnayB0rI4pqFpUjEkNUO9cS4Cao7VwsXLdO/uH3SCIoPxUnos2IbYjAKYxcDzUM//CqozjOSfZq0tWgaZH30PQe1mzSVweJnjJzjsPaDAv+UP43L5K4b2a5yriernqoOSUWrX1qLR6wARv5PJuf3aexTFb0E5VWmpbFJSdupgZia7fwMDBbw/PHfPvSMc8MVk6eHP5C9yH4FF45FHuPbxKo0ZDorGdwJYjrjizjacHrDOAwUewNq44xCmzFqClNR03Yzr1aqIXp2aol7NivDyNB1SK3ZPaloGDh6/gJUbduPo6exQYQ93N0wY3V8HjDkt7zyQ3wAWpQxNm6EELzpEHDpYa1iA5sVMf5yjRFy86OR3qAZhYXnRk+U22z38B+cy44wWJFUaUqexx/ITwJqZeA4zEs4YhvuRb1V87JdTGlm+gKvvFozVIW3tmaazbj56QHVoK9RLfzD0qKnXGpkDGVG6o4ZCURqr1ypx8ZI0XYOCpwb05UHpQdaY29fDwEUxcCB97FzwRcuYrao8exCu8yaxOTowyuz9p/uxVkTgS50Q1934qI44soN9IxvU59GqBa+L2qLoLb3ZmmZRUAEsmq+1yqYP/uXwYCfb3GeoNBg2YAXWlGiNSmp/a24Tk2X6PNmO/WlM6WxVSBu8biI1Wt8I8WNdvqrAmbMK3WEJ3cvmbFOH9Xjiz9LnVgS3RiP3UEkVOYARVFtAqVxyN8pTUsUdBSk8EHauDMpfrwCPVA9dVtbECfZtUo3N/fxcJZLvs2d7UqfNuBie7Wfig9wXbpz78cEDBX7/UwrClCieDVwVkaVUpUQB535iG257QD+7biIAcu6qmp9q4WplSnR6PHDmOykQF9mKR5Hm5t+BciEK9182IA4e9k4l3+urF38L1ZF/Jf1qQ4si85NZEDzMIHj5MFJ61qdfvoW53kxRuuj9omixl0W/qdUC6tamNFxgSsoRyUHfp341MMoInyG9M/5crMTde+wZoWdx+NtaBAflf/SV3pXTZqiQmsoc+/EHWvjmgp9S38Lq5Fv4QKTGTX8/WKQbiqtYlGtuL6MTwMqt55z1nB6w3QMFHsCiKT98HIvPv1uAo6dYnrpCoUDZkhGoUbk0ioQFoZCPF/x8veCiUiEtPQMxcc9wP+oJLl67g/NXbiOLEs5fWI3KZfDNuKGICDN/am67u5015B7IbwCL+l+xksMVUX6/PnUmr67OxCkqCWA29hMNPF7Smu7NJzvxb5pUSUc/b0u8CNb4Jz8BrEXPr2J83FHDsAZ5l8U3AfVyDPOtmN0ggma9kfIMKdA4rWB4QLV7HdSrfzYMVtOkMzJ7MVJ3R86CFvEbNnG69Dqxkdpbrzd4lC9vGcRynT0WyitMsjt9xFfgK79mdpiqA5ugXs7UCjWvtULmIMb7Ze8cBz3ZiZ2y575Ypj8arekIl6zsSMTGjXg0b8JDDqD8HNgYnT2Np+YaG1dBBrBIkTWWzz4MIzsb2RuBXM5oC21mdhSWRkRyvL3SZXzYrxgocsseGxqzG1tF7ytbo7qSU7JTDM+cFfA01jhf1sK+f0KrYlEVv8f3RtPy7oaoDRo/qQ+SCqHeyvTjUbiK5fvf2NyJyP3bhNN4zpsPE4uILoK6sWXxY+cIe1xotO61ZRzizjN//NRsL/a/4C5r5h6OJcHGVTbjYhX48edsAMsUcKXv8PFRBW6vY2CXXzke5Qfnzmf2OuDcbBVSskW5dVblfS28rOQwuraUQ9wF5isC4mqN08IMbZKuD/cJ/aCIZ6ltbj+uQry6YCl7u6z6GS57WCoxzYsPCEXGp7MheBey97I4pL48LdArxRO91vTJ0TZFZO3sshE33Nk1WRTcAi3ci+Qoa4zrjQ406GDjZdqcX1WIYcPHu0O1CA+zD1BrGLUWtzVJhml19SyOOYGN7Z6mE8Cy24XOBpwesNoDrwSApZ/thSu38efKbfh3/wnwvO0vuCb1q2Fwr7aoVbWs1Q50FrTPAy8DwLp8hcNfq9nijDgDxn2szRM+zpQUYPr3ohNZFfDFeMefLlt7Ff4XdxjLnl/PUbyTZ3H84sAPeH5c139S7mDY032GuXTwLIZ5gU0kc9NCQNl7y0AyynrbFdYZ5QrYotra6/sqllNtWwH1hgWGqWW17o2sLowvKi/mLFcs1ffRrTOpvJlf0Lv+OQ3K47sMw8oc8DE09aWk1fIxq7Yug3ojS1fPatEDWW+847CpUfpWz4fbcTJTtBOgdMKYYLTf0R4cz6F5Ux4NG2pR6u5SSbqXrRwhBRnAahK9DjdE6o3m3hW3j2rxeB3LyeIVPGp+wsM9myM/1/ZB7EGsTs4mhSf7sXBDdPcqmav2iFeKyNHPX1SAlMXIkrySsLobS6lWaVQYtPxNEEhLvFPVqwDFgnmcmS5K3VEIqPOlFirrgtqNjjVL4LEp9S6WJl0HqcKaM1KJpdSe/j5lQf/vCLuzicOjA+y7r0/7pLaH+JTHV/7GyZxJCW7V3wq0bC5Y3DjfWqPEk+MM9ItoySOixcsBAC7PV+LZDTaW8kO08CtreV2cHA2cny1N26LIO4rAs2TE40d8fnpz/3Yx4rylkX2W2niZv7tsWgyXzVLuQd43AJn/mw3eQhp4fo5bI/Aofm8xxHfW+1v6IzU2J9guJ3w/UaQHwlSMf47GTUD33HkceFGmYASpdA/WOlpk0WY3LVyixO077D7u11uLsmUs34vmOpKvHaksRWBSJKY95gSw7PGes67TA7Z54JUCsPRTj41PxL4j53Di3FVcuXEPD6JjQGqFYiN1wdDgwihfuqgOsGpSryrCQuxcedrme2dpip6LY3wJ+eUQ+khP/V6JjHT2Uezdg0cFK6IrbB2jXEWlcICAUe+9PD4BY8TONKdlIS3RxC3c1unlKJ+fEVhH0p+g++OthjEYSw2UlwlWuuN0RC+75+lsIP88QOAVgVh6y+z0JjRt++X5AE6d5nTRWHJr34ZH3TqmN6Uua36Fy841hmoEthHoZs7Uq3+Bavdam+rY6oBkQYPuj7bgQibj56I29OknbVry8KsVBxI80BvxZZ2x8XkpyADWG4+2ScAVUssj1TxjdjY9DtdmqRGRwCJM/CvwKDfIPsDi87hjoIglvU0NqIeB3vYdqtE379qNbOL3XelR2N6EKRAGxwSjwzYpx1kJCCgjii7zLiagsgN5cO5rnmNx0lWsSr6JOJ4RqRvzM3FlEZBlr+jGw/0c7or4Lylibn7Dw7ouJwfUwVt2ku9TO2dnqZDKsj9RfrAWfuXs22zb+pzry19foUTsWbbGKd1Li8AalsciT7V0DxZQ7QMtFJbFL+E2dQS4+zcMQ3ab8hviA6yP3sztXB1Rz2XPWris+kXSlODli4xPZoIPdnxEoL1jbhW9AZdESrF/BbeG57Vw7NuvAClukyV5P8fqrisNXblmuOKX+33RqAHjyNLywK+/KfEkht0rLi7A+yO0KPQSuNvkflmzTolzF9jYOnfQoqYV97El/8rFMtp6RGJ+UDNL1cz+7gSw7HKfs7LTAzZ54JUEsIx5ICk5FWlpGRAgwN3VFT7eHqA0Q6e9XA+8DACLZrxxM4eTp9iKrHxZHkSu7mi7fJXDX6tYPyVLCBjU/+UBWMZUWAI4V5yPzBl+nhtf5CeAdS3zGZo9XG8YJimr7QnvKhn21/En8HPSJcPf+nmVwbeF6+dmas46L8kDlD5IaYR6y+w+HJrmxvlqHD3EC5cU+HutMgenUMPXtbqIDGPmsv0vuKz/w/BTVvNuyOo+3OzQXBdMg/KEKGqr/0fQvO54nrYEbQaIJPyOKH2CBlbmRhlMK9QAN8pdkag0kaonqXvaYgUZwHo7Zg+2pN4zTPe3oCZo71HM6PS3pNzD3FM3MGGzNLqu8ggNvIva4jFp2Wnxp/BT0gXDHyf41cII30q5b1BU82ZWEvo92oEoPtnw13LXyuH1Y1KuzxrpQJDoM8WXBar20MLb2zIAYutAR22IwpGgS3gYKkJ+jDRChw+9KSrLu2yOCBJr+ow9p8D15Sy970Sxu/i27U5dVVNpVda0qy9DICERuENg68o6EzV2Ra3Z0r+87J2NHB4dYmuPYh14hDU0v8aJu8jh2hIpUlVhiBaFrIjcov5dv/8QypsXDUNx/XIOEkLsA1/t8YG1dVVHd0C96DtJccHdE5mf/AhtmB0Ps7UDyEW5j54exMoUFqn5uX9tDHtBjUApxET2ftrrHnY1yb7HycIehqHtznZwUQG1a/Fo2EDAkaMK7BeR9VO5Lp20OrGH/4Jt/5fDoSPsnqQ0d0p3t9d2pUVh4BPmG2pvW1hHVFYH5LppJ4CVa9c5Kzo9YLMH/t8AWDZ7xlkhXzzwsgAsY8Ss48ZoJRwgjnDA0eMctoiUvmrW4NG5g/0f39yOjbigiBNKbG/7VMBE/zq5bVJSLz8BrBhNKqpHsVSYwkp3nJNFizSP3oCrolNKW/lkHOIUZyN2eYAI3InIXW+ZfT+ApmF7u9q0pTIpE5JCodxq1+TRsX3OZ1l1ZDvUi2cYimtrN0fGkLFmu3T9aRyUl08aymQMnwxtlZx8braM21TZJ9pUdHi4GQ+1KZIi3dMrgw9IkRC+T/Kvg6E+FWzqtiADWGNjD2NJMkuxNhf9NC/xIiYnnMTEDe1R8SFLk/IME1B1dO4PKX5KPI9pCacNPifCZSJettcOpD3CWzG7kCJKp6Y2+8a8Bv99FQ0phhCAFqmAOInssDuQxGVzQFWpAlSuyOs2wY4wvQJhimcKrpa+jIfVriOGN9nyOVsAACAASURBVB2ZTU9iY7dwDPApixYeEVDCuoPI53cVuPALA7BuBcZibPfsA5Dd4Z1R1sU+riZ5+65+2ap9L8uidnK4/y97b4U341G0tem1Bykonv5WiYwE5k+fEgIqvWv9HOT8f65jZyChaNWX5QKr+lWdPqBTHBSfUggurjq1QW2x/y74tiDpCj6PP2aYI/EUEl+h2D66dgYrXc8Z/lTpUmXUPWU8VVZfqFxZHn3z4DDXqothpNDhoxy27WD3MZHTt2/rmDW0XNSoqXs4lprgwrNm/E4AyxovOcs4PeAYDzgBLMf40dlKLj2gB7C4xDgQ10B+2g+zlXj2ItSa+u3QjkedWo75MOrnsXUHhyNHRadHTQU0bmj9gtDR/jibEYv2jzZJmt0R3gkVXexTztI3mJ8AFvVpTjXskTYFtR6slsz1RtH+8FA4aOfl6IvjbM+oB9QLvoHqxB7Db5lvjYemlnEZ8LxyISm7LV3BgRSgxFapooCeb0j/qLp0Auo54w3FtOVrIGPUdLNDk6feZIyZDW2J8nk1HdzVJKH13c1IVplP39oa1hFVbDyRLsgA1ncJpzEr8bzB72P8quMDX+MbcH2qX5H4Qvh+5RvgREBKmd5aFK6euwiGhc+vYoJInMJWFUhjN828pIuYHM8AUn0ZUt5aHdoaoUpPXL/B4dx5BaLPKVBHdFtkEsAjpczRgVeVKvKoWiUb1MqtkTovqfTqjVKXPh+nwb9pD7Ao8Sr2pItYyI10QvxYh4p0g5sV73QCZoh4X2/PPNLw9qBlun/eKtrfqjbMzfPhQQ53/2Hf+oDKPMr2z71vcutTfb3HRzjcXs/GE1KXR4lupsdD0VoUtWUwRXbqoIfxDFrj7+p5E6E6e8jwm+tHXyOhtGMOx+z1h7H6qssnoP6Jvav1ZTJGfwttuZyKxnkxhty2eSIjBl0ebTFUN6akKRfvaHKwCUreNq007eUp4P0RvMMPcnM7R6p3/iKHv9eKsiXK8+jTwzHP1cH0R+j1eLtkeOtD26G2a+4EvJwAlj1X2lnX6QHbPOAEsGzzl7O0gz0Qs+YvKI/9C+Xda0ibsQ6CZ/5JFO/drwSRNeuNJLHfGeJYcGnlag6XrrCP7xtdaNHvmI9vbi4FkZlT6PT9rGTcy0rSkZvPDmyUm6aM1slvAKvi/eV4xtMWK9suR/aF7wsVsOXJ1zEmNpvjhIyk6EmS3mkFywOuv3wB5fkjhkHnZXSSOc9ERSuwaBkn4c6j8mVL8+jXhz3T3P3rcJv6nqEpPrwE0j+bZ9bpbhP6gROpd6VPXgg+0H5OOnOdztqSiFmlNiFLbVwZzhVK3C42wOabpSADWMQ9RcCU3syBR4Of7MKOtAe6oiP2NELTq2UM9Vy8BdQk1TaGl1jtx7+Tb2G0SOa9l2cp/BAoTfGzujEAH8YewKrkWzmqNHELw69BTeEtk5a7tZHDE1HqWbQKuMC46nO04+MjoFoVHtWrAgEBtoF2pAZMqsB6k3+DH2tTsTz5Bv56fh3RGmnEoL7OvKAm6GAizVM8WEELHBlPFyT7m090Er3fXYBAFzeH8CLe+EuJp2fYeqJoOx7hjV/etz72vALXl7EbMKASj7IDjI9Hkw6cJlXNF0T/5J/AmgJK97RtPaReMBWqEyzC23XkF0io2NCW2zXfynI3L4AixhRZbP1AnWcMmwRt1f8+zUC6oEHJe0sl/pIDsbUerMIjbaqhzG/pXXF7t59JddIBfXmULvXy7lljF//2HQ4LRWmtRSMEvDXYtvvS3E0l5z2s6xqMtaG5S993Alj59vg6O3J6AE4Ay3kTvFQPPOvJFuaZfUZD06hDvo2HiC5nzpbuMD4cpYVfIdsW4eYGPG++EqQEpbfBA7UoXsxx7eebs6zsKL8BrEZRa3FLxOdzsEg3UFQBGaVKUsqk3r7wr4V3fRzDJWOlO5zFHOABt5ljwF0/a2gp/YNvwZd9OafjRHS7cDGHlFRp2lJkEQEDB2hBsuUERBEgpTfB1x9p0xiRrjGXuL/fFgoNU8pM/X4t4OHtAO+ZbmLZCg77E59ia4st0KpybgiMiSJYM6CCDGCtT7mN957uN0zTnLx6y+gNuPwiPdkn1Q1/LOsHaOwHMORp3gTOEEhjq8Xy6RjyZBdOZTzNUXWET0VM8K9ttMmzP6iQ+oT9lF6Zx+lYBZKSLKfqhYcLqF5VQNVKAkjd15Lt289h114GYNWoLqBLR+Ob073p0ViadA1bRe90ar+9R1H8FmRdROaJKSpkPWejeq/fShQP9Mj1hlU8v9PfKZEey3xU8R0tfEta9oElH+X298RbClz6ja1vzKUD3tvCIXofuw4KlYCan2qhtlGUTZ7urX77Uzyr0SK3U8izelzUbbjO+ACKDGmqauaQcdDUto/IO88GbaThhlFrcVu0/tkQ1g611NnRQ/F8BirfZ+In4gOJK1c47N6nkBC3EzE6EaT/1ywmBpjzK4ua9/cT8MH7jhvnqYwYdBJFstH8V4a0RgM329UznQDWf+3ucY7nVfaAE8B6la9uAZibGMDiS1dF+keMOyY/hv/7n0oQH5beiBySSCIdZd/+oEIy48vVfXjpA/yqWn4DWJ0fbsHJzBiDO8ULuLL3loKU1/RGBO9E9O60guUBt+kjwd29Zhh0OkmaF8+79DpL3klIVOCPP7kcG/rQYAGDB/FwV2WBACmxpf68A6b0yBXpaf/H3nVAR1F14W9mdtMDBBJCCIQaOqFJ71UQpEkHAVFEQHrvHelVEBSlS5MmTZCq/iCd0Am9JNQQElJ3d2b+8zbuvN1N2d1kdlOYe44Hs/Peffd9b9r75ha4Dmtt2v6HPy2Zke7j6zdxuP+AQWj+UPzRhOYYMygenKM8xuSuYvM4WZnA+ivuObq+pCEldV38sDXfx8liUOLxJpN8Usfv9ET4cSepLecsovJYHmo32yA0D2up7+qHX32TtyElzYRY6/niTxPvC0Pb733qgxBzyYk2Gjg/wzjEWkS1qTw4F4B4QlwOBsjmV0tvq8nqIZ5nJUsIqBQEBAYK4FKoYLd9J4frN+jzl1TCrFUz9efv2YQXaP/8D2lcsjG/VqgL3Bm1RaCvLuMQHUrHm9R2H8oHemCJd/q8hHgtcHaiaWh69Zk6cJZNsmhzWhvEvgCuLKY2ueYVUWlE0o2/Jgq4OJeDaES+FmgoIKC57e9BTtu+h+okrWKq7jUEkTUc91HSGqzYl0/hPH8ImBgjJhOAtusQaB34AdUaWy21GfDqFPbGPpSazcpTA709S+n/PhUXhm4vabXRCk55cDC/abVR4gF58hSD2LjEqoPkA0xmk9hYYM4Ceh6zLDB1ooUbkI2T+PzlnzgeR8OVSdg8CZ+3VRQCy1bElPYKAmlHQCGw0o6d0lMGBIwJLKIufu42CDnkycdkjXkXLrH4fT99u/bKKWJYOhLwmo85ebrpS+30yfI+eK2ZoyPbOJrA6vPqGA7HJobxEDEkaT8d/wIdX9BNTn7OHecLdnQkFMpYMiHgPP0rcM9pZbiESWsyvDJU1HsGazcwCA833Zn7eAv4oqcI78mtwcbR0I24+TsheiTvzsCEv4TrxB4SWiQXYPycrTKhl7Kan9dxePwkcTP/oMgDnKhLQ39InriN+ZqghrMNCXD+GyorE1g3tG/RLPR3CbQyai/86d8mCYiRggZlnvwq/U7wuu3XQ59jSRdDCRK/OgKKfGobEWCep5B4VBBi3lo5EvsUA1+fQqxZsva8nCvW+TYB2cimJC/PMbi/k3rteBQQEWTm7aDRAtdvsrh8mZHOn9Rsc3ERUaG8iEoVReT3M/148/0PHF69pnj16iGgWFHLeFV5uh0kvNAgJHk1SWJtSW5vYPH2Br1mlzQ5jlrVcqaY58ySPsPxd/cY3PyJ4ubiLaLyKPm8RKy1w7gdIaYuzKLvH2oPoOqkpO8fd7dxeH2JroHKVUSV8Tw4ysVaPbxq909wOkILqzh16493dR1TMdYaI5nwF3CeNxhsVIRJc13br6D5uLM1KjJVm5WR1zErgua26+oRiAXetfU2mh/r5hGI+f8dM59EdAwDkv8qs4r5e/TEcTpZyTbz+z7BYW3exmjmVtAmSBQCyya4lMYKAulCQCGw0gWf0jm9CLyd+K1JeJCm4wDoGrVLr1qr+8fHM5izgINg9M78ZW8ehQLS/zAPD2ewdAV9qfX0EDFqeMa+1FoNTBobOprAGvXmf/ocKQYhL2/kJW7W2/NYGXVD+v1zz5KYk8c+Vd3SCJXSzUoEXCd0B2OUHypuxkaI3rYTK1YOZ3Wz2FgGv6xnTTbgpDPJCTT+TQ+owsMkXfGTf4LgVzhZ3ezjELjMMc6ZVQTxE3+02o60NvxxDYdnRuHNvn1uI9wtAg1dC6Cuq+3hEwY7sjKBRUgRQo4YxI9zw4WCnZJAbL7hIZ6dxMPzxb8MHuym93yGFVFpFA8XG77J3NVGokHobmnMUupcOObf1qplXhwZjAURl5O0reTsjbW+TeDDuqSq584mFuHXjHJSNRYQ0CxlQikyksHlYBaXrsCkIEpKg/j4kBBDoGIFAe5uIqbOVBkXf8OIYTxyelp+9k4JP4c1729Kw7RwC8CavJZDvx7sZfHiNJ3fxprn0KypV4oeaVaBDiD0JIvHh6hen0oiArtk7LNeFIEzY0296WrNNbXJ3EuLzLdoWwH5LHjBpYSLev8GqA9slA6r2/dCZFNKzluLpz3ase/C4bRgGNjw5ybqNc06Qdeurz2GtLtOcy+rcurcOOyf6M1LSOw9MdQ7a3aeGuj1n3eW3Q2TeYAFizmQj0YGGTKQtznfniWTvn51Agdi6YeylD5epKZHIbAsoawcVxCQD4EsT2C9ffceuXPZN1eIfHBnnKazl29h1PQfEB4RhSNbF8A/n3eqxlwIvoN12/7AlRv3EB0bB19vLzSuUxn9erZGTk+zkkRGmnYf+hu/7T+Fe49CwfM8ChXIh7bN66BbuybgkokjeLVnB5x+XSppIJW3SAUuR8qW7Sxu3aYvnx9VFtC6leWvwJZsfPiIxdoNKSeotdQ/Kx53NIH1XcRFfB95TYJqrFdlDMoZhEahe3BH+076/Ze8jfCxW0BWhPSDt9l1VAcw0ZESDnHzdkD0zJUpcIlPYLBpM4snz0zzAw2KGIRC8dclG+OHzYdQomKyNnPXz8F5xQR6DyxZEQlD59t9fitWcSY5UL79hkfevJbJA0uGZWUCSysKKPx4gzRFNcPiUaGeSaZM8jB99Yp6rDVyLYCNvk0gCsDlBRziw+n5kFry7OSwDNPFoOozWj21gModZwuk7j2aAB79X5008UY16Cbhgou964LMJTUhtp+dzEHQUtvL9+fhaWXORuLNd+Uqg6vXWGiTrwtgMrx/ftEkPyTJmTVhtHWkz4WEV2hjlLdGxbC4EdANHhaqET47weLJHxSHA0HX0b5DblRJY9Uxw4TubGQRfp3qJV53xPsuo+XsFBX4eGpFtSk6qIxCWq+v5hD1gK63Sx4RlUbysHCqpDgt9Z/bod71k3Rc1aorolr2yWgYwERH6cMG2VfPTGzR1m0FbbchGW5fWg2IEjQobeQJSq6D+wE9QP4lJDghww2yJ98nqOqStup6abVPrn6r1nAIM/rY8tUXPAIKpv9ZZWzfPW0UGobugvFV+4NPfbS2wrPToEchsORacUWPgoBlBLI8gVWh8ZeoVyMIbZrXQf2aFaFWpaHsj2WcsmwLURSx5tcDWPbzTghC4g3fEoFFCKgpC9bq25YtWRh5vHLi7oOneP7qLfzy5savKycjr3fSDeS42T/h9yP/069BpfKBUKtUCL55H9ExcahTrTxWfDcUKs50fZ4/eQ3X0Z/B2AUqftZmCLkd96A1r4Rky4t0aicG+TK9ey99qS1bRkTnDta9oGfVE87RBNaPkTcwLeK8BFffHGXwTc5yJl4UHBjcKdQdrlaUWs+quGdnu90GtwSMKkXFLt0POKVSFs3BYJB8QFu2srj3gF7rvSImo3z835Ilmi8nQPdR8om4SRVW53XzpLa6KvWh+Wqi3WexbAWLN0YhkEO+5ZEnd/o3BVmZwCKgBz7ZhFiBhlrdDugGz/8qmxoWxfy+09OzJL77z8Mz4jaDW2tNn3PlB+jgWci6JY0UElDGKPlyLtYZNwK6ptj5JR+Lni+O4rr2rUkbct+blPsj9M1R1qqBox4yuL6K2s25JOa/YiznbjfRT2oR3LzN4vIV4L7RNWHJCLIhJRtTa6Xik614LVB2ZrlPXbR3L5ZqdxIqR0LmDHKm6AP0/MoHPpyrtcMm246EjiZEpI34S9fAFjpfmmdKphJyytUn8RpP7jwt1VNA7rJpJ95I/iuSB8sg6qbtENl+gD2naFE3yTFIErazoQ9Mz9OPGoIkbbf5BLc4omMbmFcaPOz3KUo5eaHI4w0mZMy9Qj2y7DvQ5q0s7oTQ52vnjgLKlk77eZrSCg1+/Td2xtCKrQGcJ/5XsD3Y/yqXWlpZhcCyhJByXEFAPgSyPIFVtkFvCY1cOT3QsnENvcdPmRLJh2vIB13m1xT5PgbjZv+IU2eCUaNyGQiigHOXb6dKYD0Ne4VWn4+DSsVh1dzhqFoxMSEkIcK+X7sbqzb8rtf186LRJgAQ4ooQWEUD/PDjglF6ootIbFw8hk7+Hv87fx2D+rTHNz1NkxWHhcfBefk4cDdpHL+2fV9omyYN27An4rPmcUiIpy+gXToKKJPOB+TJvzkcP0F11q7J4+Om6d8g2hOH9Op2NIG1M/oBBr+hVcM+cy+Kqi6+GBt+RpoKqSZDqsookgUREAS4DTRdu1gHJDhPC1LbfuNw42bi9f7Zu0WoGbdPUqPpNBC6hsmHgamP/gb1ztVSW1391tB0GZQWE2zqs2gZZxL2NWIIj5w5039/yuoEVo1nv+GpjlbeOO3/GQqpTb28p7w9izVRtyS8J3hVwYCc5aW/zT1b3POLqGBlbkUBIgo+Wi/pItu2p4Xpe47xIgdr3ujJK1Jx0Fg8GRV+ytvYplDQx4dZhB6nm8Q8QSJKdreeUEru5CNhP8HBLK5cFfH6TeoeYLZ6PpMPF4RINEgz14JY69s41Wvg2V0tnqyhZNVd39foNdzLpuvGvHGSxPeMiBqzeJBE9hkt177n8N6oSE35ATw8C4nJegp6BIgIGpi+9Vad/gNOGxdK01bVb4GoLsMzDAZGq4HT4lHgHtJwU2IMX646EvpPQ6ZYpHSi0/vlUfwZRz3LFuapjRJOufDp8wOS5iLqHPjHP/PkIrN1ynv3s7h4id4/WjYXUL2a/ATWE9171Hm2Czzoc3Cxd2108gi0ymSFwLIKJqWRgoAsCGR5Aot4+Oz54x/8cfwsoqJpUs/iRfzR9uM6+LRZLXjn/jArj3X5Zhqu3X6I7u2bYPTArug/ZjFOX7ieKoE1e9kmbN51FEP7dkDf7qbVYwiJ1bX/dL3OzSsmomLZ4tJJ2PaLibj78FmS30mDiMj3aNxxONRqFU7tWgoXZ5odlBBY5i89QkAg4setlOUEt1bJ/oMszl2gD8hSJQV065y+B+Se30luEKrzkxYCalRNn05r55NR7RxNYJHS6t1f0IptDV384cSyJqE0k70+Qr+c5TIKEmXcdCDAxMfCdRhNoi06uyFuCa1ylQ7Vdum6Zx+LS5dZfPx+LZpG01C059V6IOcXvZIdU73nZ6gP06Tt2pafQ9sqadia3AbPXcghxijh+JiRvD4vUXolqxNYn4TtQ7AmXIJhn19LVHb2MYHFvHiEeaiJPrfQEg4Q6QeMEt15eAdZh2+xxxsRL1Iy4X6hz+HCmDIi+2Mf4dvXf4GEPRpLcXUOrPdtgsKq5IsGpLS+wctUiKGFuFC8A4+8Va2z15pz5lloYohhcDCDBE1Sty5bN6WXEl6bbNKtCSO8EBYBzVK6lpEesWgxKQ3Zyo0mbO7J5OYHVByaOYq13FzL4d1tinXp3gK8SgswT9ZPphM0WAcPf2tWMuU2qvMn4PTLbKkBV7Mh3vccnz6lae3N83BeMR7crUsmGvjACtAM/g6iKhOW3EvDXBdGXMaiyGCpZx/P0noCy/gjXiv3wljtk7wHcBqGdHgX8iGYfBA2SL06PJo0ku/eZDyh0eGnsfl9iPQTyYN4tmBHEI9WS6IQWJYQUo4rCMiHQJYnsAxQaDRanDh9GbsP/YP/nb8mhcuxLIPaVcujXYs6aFirEpwyY51Y+dbTRNO/F2/i+atwtGuRWCK615DvQHJbpRZC2LTLSIS9eIPjOxbD1yfpl8kte45h5pKN6NnxY4wZmBjWQNqTfgH+eXFoMw2FMTZm+NQVOHzyPJbPGoJGtStJhwiBRVy8XUa2A8PTF3ZHhxE+fcbgp1+Mku8ywDiSfNcl7Q/JdRs5PHhIH3pdOwsoXVIhsOQ83a9qwtEijHq6kCSm93VRiDOqwHXSvx0C1R8miS0n1hmhi3n3Bq7jaPiUmDM34uZsywhTrB7zwCEW3Mm9aB9Fc/n969YSTJ9hKF826f3EadMiqP53SNKv6fwtdA2SVr6z2gArG86ep0K8kePO+NE6uKSe49sqzVmdwPr85VEcN/JoWJ+3MZqYVaNqGvY7bmpoyF5yJNfd7RxeX6T3f2evxITu1njmVHi6DW/4OAnvqwU7I89/YW7kDJodcUFfZcxcGrn6Y1XeBnBnbNucJ/EiQmLFOlK5Tm4hj3kSDkRCDO/eZ6XsAb0/51G0iG3P26pPdyCMj5FMXOpdFx08Ug4j3BP1AHlnlZDaixBRa47tYZLGmDz9k8XTo/RDlW81EcU+S58nk1yYm5+DhJTMU0FMUi2T/FayW/pt5q6egfMPkyXzuSp18P6rKXJNx3o9ggCnNTOguvyPSR++UAlohi+E6CTDjc56a+za8nDsE/QxysdX1SkvSjl7YeP7O9K4Y7wqY3DOILvaYU/l586z2G9UJKFyRRFtW6f/fE3O5ud8DGo82wmd0YcBEh5OwsQtiUJgWUJIOa4gIB8C2YbAMobkzdtI7P/zjN4zi3gFGSSHhxuaN6qOds3rIKhM6rkS5IM482jq8e0sXL5+N0UCi3iw1Ww1QE9cEQIrObl19zE69J2i974iXlhEjv19CYMnLUOrpjUxd0K/ZPut33EY81Zs0Xt1Ee8ugxACi4jzykngrv0r/a5p3Ru6Ft0dCt7ipRwiIumGw9YvwubGLv2eQ/hbqq9/Xx380l7cy6FYpHUwR3tghepiUM0o4bG53dYkQE7rXJV+9keAeRUK1yk0fEr08UPcdOrZZH8L0jZCyOa/UfGf6VLn6861sS73TLRpJaBKZVMSm2z4yMbPIKnly0qbNcn3mj5bBZKvyCCTx+ugMi5alsbBsjqBNfTN39gRTfOgLPGui45mpEjZJ7/inaCRELoa0AV5zCr8aaKAi3M5iDr6DCjcSkD+upY/YpAwloe6KEn/mYKfgeRjiRG1GPjqlEnIkKHRoBzlMTZ3lTSt2qtLDO4Z5YZy9wMqOMCLKDYu0SPr0hUGvXoI8PCwjcCaZUbkNXUtgHW+TVLEYHnUNZRYUBqeCZTAqDKeh3M6QmfNvZyKtheQr7rlNU7TQtnY6dEBBmF/0Q9zhVuK4BNEE8ItLZUyUzKDu3URzsvGSoe5ch/h/cDvbLQ6/c2dNsyD6gz1zCYaeb9C0IxcAtHNDqxs+k1OswbzdyA3RoWSTrlwOeGNpJMUmCCFJrKq3LzFYusOShKXCBTRo6t9CCyCkXmV07ycKy4X7GwRPoXAsgiR0kBBQDYEsiWBZYwOIVyIV9bBY//qQ9kMUiTAD20+rq0PMcznY0ONa9mgd7wiSwTWjTuP0KnfVFQuH4iNy2lVLGNLSV6tWp8OhFdOT/yzd7n+EKlWOP+Hrej3+acY/OVnyU7s6N8XMWTScnzcoCoWTaUl4w0EFnfuGJzXzpH6Cv6OKSVvbOzJUyyOn6IPSVIlqd9XaX9IkhLhgtF77NiROrgZVQBy/Blg/xEdTWART6vijzelODHj5Mr2n70ygtwIsE/vwWV2f3pfKFAM8RNWyT2M7PrYkGC4LB4p6X2kLoPvvVfo/27UQESDevS+QqpjcQ9ojpb4ofMglKReqrIb95/CydNN2arpk+UJe8rqBNa0t+fxYxTNrTQ590fol4OGIEeLOpQ0u+eEppCjyjyvlMpVROWxPFQWHECah/2Oa0YeXkf928CDVaPXi6Mm1VUN58aqvPXxqVuRNJ8qIVs4vLlCiTb/+gIKfZI5SJjUJmXugUva3g7oDk82eQ+0Ea//QZW1QSgcTt/5yg/k4RlgG3FmbNO56Rx0RqG4FQbp4J5JuIKwkxweHaLrmreKgDdXWQhGVSIJoUqIVTmEu39DnzDdIGxgOUQPT/5jqBzjJadDvX0l1Cd2mxwS8vghYcyyTFO9Vu65mxPq5vovFewEXy7rvnw+ecpgjVFhDPIhmHwQtpeQnIIVntCwfjLO1NxVLRbEUAgse62IoldBICkC2Z7AMkxZq+Px97/B2HP4H/x1JhjkbyIMw6BGlTL6xO9N6lYxyc+U3U4YSwTW2cu30GfYXNSrUQE/zBmW7PRJHqxyDb8Ax7G4euwXfZvvf9mNHzbsxchvOuOLLi2S7WfQTbD+eSFNAB8elfgVm0mIBTO0PUjSTYMIM9ZB9Atw2DJEvmcw2ywCcuxwwMvL9pfb6Bhgxhz64kg8G2ZNsV2PwyYv00B5ciTmEzGsq0xqU1VT4O46xCN5ovHX/M3QzL2gI8zItmMwL55CzJcxGDL3b4L97lt6TyheFuLYROI8Mwvz/AnYSdRzLJzzw3d5f5VMrlVdROuWiQWw2Im9QDCW7nvTfobon3YywhpcyONvwlSj+xMHzJoqz/3Jw4WDsxOH6DgdErTybIytmZNcbZZFXMX0N7Sy6RCvIEzyriqpv6WJQN3Hu6S/i6tz4t/C1KvY2A4+ATgzC9BGU6wLNhBR3LSWYCpRQgAAIABJREFUSRLTWz89gNPxL6TfJ3tXxfdvg/HWyOuLHCT5WX71b4byznnSNf1/JgLaWGpjpYFArmLynA/pMsyKzlUebsdjHf04uSJffXT2pPk5jVUQXOvtCkKVx/S9otwXgE/5tM01IZLB6WmmRjZclDZdVkzV5iYvzjG4ZboPN9HBOQG1JotQycRtME/vgZ32tTQGW7gEtBMd98GB3bcBzN51JnMUc3lDnLACopdpHjubwczEHTqEHsLJ2LBkLfThXHCrqGOjGeSGKvwtMG8xvT95egITR9v3Opv55gKWRNDcYnk4Z1wp0iXVSo6G91+556/oUxBQEEiKwAdDYBlP/V1kNA4cIyGG/8PNkEfSIXc3F5w76LiHraNPSEsE1t9nr+KbMYvQuG5lLJsxOEXzKjT+EjqeR/Cxn6HiOCxctR2/bD2IcYO6o8dnTZPtR0IXyfiVygVi0/fJe3fFLJwA7dlTUn+XDr3h0ukrh8I0Z4kO9x7SB2PLZizatbS9nNDjpyJmLKBfiPx8gRnjbctL4tCJZ+HBAq5uxFOSxMVMSNLNqEpfwY2VIS4qC+Njq+nCi2fQ3bgM3c3L0N68AjH8FTxn/ACuJK2yZqvOtLbXBZ9D9CxaxUoVVBUeEx37RT8ttovRUYjs84nUNYFxxYR8B01UVa3M4uueHKL6tIAYQzfgOVfvAePlnZZhre4TFw8MGkPdMFxdgOVzlfsTAXDNm1vo+/ikhGWfPKXwc+GG0t973z1E2/t/SH9/nKMg/gg0LXhivBAPTgq4tIkS7CQXe/NZKrh7p5wUuNW9gzgQ+TjV9azq5oP9gS2RV0Wr6ll9Ahg1fPtQxPFZ9FlFSI2236vAsJaTFqdlPLn7jAv9F3NeXJbUtsgRgIOBLZMdpuDVDfjkaCU0vZlYXZlIxS4cijdJvUJiSjaHXhJxZiXFLncRBo0mZJ7nTdhlEadXpOypEtSRQ4mP0zb35DARwp4gamg36RCbPwA5llDiXu61N9aXcHA74tbRvIPkGJMjFzynrwSxIzvLqGdnsODllWSn2CxHARwO/DRLT5/kzes33MhtEMBPS9T6D0D2kkheA/+r6xEj0OtnZv5qmOCXtjBte9mp6FUQ+FAR+CAJLOPFvvcwVO+Vte/IaZDcWTdOmn69yU4nhiUCyyEeWJXL4OdF1APL+As9/+9xaJZPlSBnfP3hsmiLQ5fgn39FbPmNeg3kzAHMmsTZ/KC8ck3ET+upntIlGXzbV74XRYeCYsNgzurEOTrS86Lm3Z24HEfzPRjMbeRRAAeLJr+RsWFK2b6pGPYYwq0r0N26AuFWMPAuKZaqTzpB3Z16QjkKFP7cKWiWTpKG46rWg9PQmY4aPl3jxHWvZ9J/UsCfiNOabm7LlRLR+0Qjk3aum04lumbZUaLeA+OmUVIlhyfw3RTbifrkTFRxDDiWgY4XwGc9Byzsi3yIjo+PSFNrmaMQdhZuLv294s11jAj7n/T3l7lLY0UB07U2xkUURJyYKiDmNf3VvwqDyl+l/Dzo+fgotkfSPFzmOPf0KonvC9SDE5P+Z8qdAyJC9tOFyleBQdVv0q/Xjqevierg+DeoHrKT3iPA4EW5L5KEEfIQ4X71R3S4UAmdz9NNaLGmDMq0T9t8b+0RcO8w/eBVuD6D8l3SpsseeL29L+J/C5K/CF1zA42ms2A5+e414puXiB/Skb7D5ckLl2W/2WNqJjr5vw5Bs9o01xbj5gHnKSvBFChs9/EzeoCt7+6h95NjyZoxwqcCZvnVyGgT0z3+8Ak8EhKomjlTOXjaOZ3ZzJcXMfPlBWnQnJwTQkp1B/k3OTG8/6Z7sooCBQEFAYsIfPAElgEhnhdw+sJ11K2edSt1WFptSwTW7XtP8NlXk63KgZXT0x2n9yXmdNmw4zDmrthiVQ4sEqa5dMYgyVRDDizyAwkfdBnRziSMkOS7EQo4LuF+fDyDOQs4k9xVX/TkUaSwbe7KZ86yOHSYvshWqSyiTau059OytLaZ5bijc2CReXd/cQQn45O6z1uTsyCz4OZIO9jQB2DvXgMbchVcyCUwMUm918ztEXPnRdyszY40Uz+W6uwxOK2jufF01ZtA03uMw+1Iy4Au47qAfRcudX089Ff8uDcfEuLphtFDeIepL9tJbURXd8Qt2pOW4WzqExnJYOFSSljlzClixBB57k9ZPQfW+YRXaPucestVcfbB736UCJ8afg4/vac5y8Z7VcHAnKl7J0bcZHBrvSlBGDRYBw//5Jdt9JvT2BxNS7kbt5L7vnZ1BYfoJ/ScLNpOQL4aWYt5rPl0J57w1ItxkU8ddHY3DSO8p41C/dBdaHirBAacpISjdwURJdJYge/GTxwi71HsAjvx8Kli27uCTReujY3jXjO4vCB5YrpEVx7eFeW1lYl5D9eR7amVnjkRO8++BJbq8l9w+nGGCTKkyqBmyDzwRUvbiFjWbG44t5OzfqVPfbRxt29IuiNQW7KCw9tweq0N6KdDPl/7jhwr6lDt6XZEGIVuD8kZhNFelZMdWMmBZd/1ULQrCBgjoBBYH9D5YInAio2LR9UW31hVhbB8qSLYuiqxPPKpM8EYMG6xVVUI+3T5BCO+6SShbkxgkR+dfp4F1QUavqFt1hnado4NIyTVTkjVE4NUriSi7ae2be4O/cnizBmqo3EDAfXrZa1NQVoujYwgsAa9/gu7Yh4kMfeUfzuQ/DQftIgi2NCH4O4GgyGE1d2rYGJodTNbsIkfuwJCIVqC3pa+aW2r+msfnLbQsBBt3VbQdhuSVnUO7ecy+xuwT6kXTfyY5XjpUQa/rGMQ81++oXzahxj5po9kl5g3P+Kmrbe7nW/CGSxbQTe2eXKLGPKtbfe4lIzM6gTWA20k6obSJNBF1J74x58WJ/nq1XEcin0iTX+Fdz209Shqcc2ur+YQ9cCIvAwQETQwecynRZzHj5E0kTxRnpN1wi++jVDDOZ/FsaxtoIsDzk0l5wG1q8p4HZyz2G1zbsQlLIu8Kk27gas/NvuapjM4GvsUvV4dQ9Azf0zaR3N15igiotw3aTv3z07hwBsR0hWH6+Bm5021tWtL2uligHNmxRrI7+75RVSQibA22VAkxMN1qFG4mpMzYpfut8Vkm9pyNy/CecUEQKDrJ6pU0AyaA75EBZt0ZeXGAkSUeLwZpKiNuZz0b4tAda6sPD297T+v4/DYiGjv1YNHsaLyErDJgbQy8hpmRVyUDpEqj+cKdIQX55ykuUJgZfnTTJlAFkJAIbCy0GKl11RLBBbR37rXeNx/HIbjOxbriSxz2bLnGGYu2YhOrRtiyvBe+sMk9LJ++yEI8M+LQ5vNsqD/p2D41BU4fPI8FkzujxaNqktqzQksUk6elJU3iJgnH+Jmbkzv1G3qf+sOiy3bKPnkpAbGjrKtxLw5Cda+LY+KQfZ/2No0UTs0zggCa+rbc/gpinpEkGnl49xwsSAlSu0w1Uyrknt0B+y9q2DvBIMlhFVCnM22ih45IarUYI3CCbUfd4G27Zc260pPB/XRHVDv/FFSoW3SAdrP+qVHpcP6knLypKy8QRIGzgRfrjoiIhmsXc/i3TsGxTRX0D+cFszQFCoD3dildrfxxUtg5Woazki+ZJMv2nJIViewIoQElHtCQ9dzsE64FUDz+jR/vg/XEqhn3V6/T/CRc16L0MW+AK4sNg0hLdVTQO6yST9svBe02Pj+Dn6KuoFXfByKq3NgU75mKMjJGzPzJphByK+UyHT1EVFpZNrIHIsA2LHBLc1bNAn7XRqB5D+8GtAVuVga6vNL1C1MensWBSJyYfFWmnTfObeIKmNsn7O5dxOrElF9Bg8ZojplQ0oUgTNjTQlKorz8AB08C8k2jIkit/6mxGHsD3/aZSDu/nU4LR1j4rFPBkroPx18UE27jJmZlbZ+fgAXE4zilIkHM8PiYaHPwRoR1Jl5DqnZtu03Fjdu0vdyR71TJ4BH9Sc78FqIl8z7OmdZTPGihT0MBxQCK6ueXYrdWREBhcDKiquWRputIbCWrtmJHzftw9C+HdC3e9LEtF2+mYZrtx9i1dzhJuGWBt2bV0xExbKmrvsRke/RuONwCKKIv3YvQw4PWvLGnMBidDq4jGxvsumOH70MQhHHuYKTj3nfLeRMQn06tedRrpz1BNTqNRxCw+hX7bSEIaZxmTO0W0YQWN9HXsN3Rl/ICAC9PUthVp6sn/fB4mIKPLgnd/UhgUzIFbD3r4ONi7XYzbwBCRHkA8tDKFERAvnXxx+q8yfg9MtsqWlGhBGq92+A+gAlsLUtP4e2VU+b55cRHZzXzQV39qg0tKbHcOhqJ3p+RMcwek8s/2en8Pm76VKbux414TFxBkhInz2F3JvIPcog/vlF9PvK9k18cjZmdQKLzMn/kWkuzNDCtKJkuSe/moSUXC7YGXk56xKph2xj8eYS3YRZQ57sjnmAZm4F4c7In2T/3nYWry5Se/zqCCjyadb0FCbhgSSUyiALvGujq0eg9Lch9NNFq8bGNYkf3wxSa67t5O2bKwxCttBryLOIiPJp9OSy57V+bhoHnVGFydxlBJTqZb81dh3SEoyGVpPWe2A5JfVWSc+c2WcP4LxgaJKPM5o+46CrappTMD3jZKW+E8P/xdr3t01Mruzsg31G4c9ZaT7mth74g8XZc/Re1ayJgDq17HceG4+/7v1tTAj/18Sk5O77CoGVlc8wxfashoBCYGW1FUuHvdYQWOERUWjebTQEQdCTVFUrJlbrEUUR36/djVUbfkeJogWw6+cZYIwSDRsqGBYN8MOPC0bBL29ufT8Sljhsygr8c+4aurdvgvGDe5jMwJzAIged1s2D6iz9aqdt3B7aDv3TMXPbu+4/xOLcefqwDAwU8XlX6zd48xapEG2UWmjYIB5eXvbdlNo+S/l7ZASBten9HYwJP2MymfV5G6OJW0H5J5jRGnke3OPbYENIDqsrYB/cTJOHleDtByEwCEKJCuADgyDmSRr3wmgT4DK8LQipbJC4iash+lsOl5ILJuJ9RbywDKJt3xfaplnDs07922qoj9H8L5o2faBr3lWaC8m3d2nB72gSSkMkz7m2wMECo/BVbwG5c9vvfkFCMUhIhkEKBYj4srf197fU1jc7EFgVnm7DG556Ll4q0Am+KjfEizoUe7xJmr4KDB4V7mW1f4MmCrg4l4Ooox83irQR4OegjZj5up2bzkEXQ20p04dHrpL2O+/kui8kp2fhuytY9I5WYqvnmh9bfJtJTXu/PIo/457p/16/pifctNQ7q+pEHdSetln3aB+LsH/oO0L+ugIKt3LMhtoWS7XvGbwLYRBxD4i6z6Dc1wJcvO23xiQHFsmFJT0z5v8G4tErl7Avn8J5/hCTMYhubdch0NZLuRqoXONnVj1b3odgZPhpE/M+9yiBOd61MqvJNtl16m8Wx07Q661mTQEtmjrmetOJAmo8+w3PefpxsKdnSXyXx9TTTyGwbFpSpbGCQLoQUAisdMGXtTpbQ2CRGR37+xJIyJ+O51G2ZGF4586JkAfP8PxlOEjy9o3Lx6NY4aTZZxes2oa1Ww9BrVahUrnicFKrEXzzPt5Hx6JMicJYv3Qc3FxNv8QlR2Bx188l5jX4T0TPXIibu93ulbmMV/NpKIOffqYbPMLVjR7Bw93N8osfqbw1baZpqMiUiTpwmac4kd1O3IwgsA7HPkGfV8dN5nSvUA+4MpmnnHlaAWd0WjCPbutzV7EhwWDv3wQhlmwVwbcA+MAKEEsEgS9VGeSaskacV04Cd41+eXS0B5R6y1Ko/6I5VDRdBkFXv7U1pmd4G/WRbVDvXiPZoWvUHpqOpkQ8u28jXA5ukNqccO+CAzn6wdVVRJ9eAnzzWr7fpGWi9x8wWL+J3t9ILhGSU0QOyQ4EVqPQPbijfSfBcTx/W5R0yoU7mndoFEaT7BdT5cBfBYySVlsB4JM/WDwz2oipXEVUHstD5WJFZxmbxIQCwcvoPZLhRFSfzoPNorfN+9oo1AvdZYLQ9YJdpVw1DUN3I0QbqT++aOtnKBhBUyRUGKSDewHbwL32A4f3jyj5RxLBk4TwH7q4jOtqEnoeN/tXiF4+ssDCvn0Fp3mDwUbSEF6i2PzjgCyDZTEl1zThaB62z8Tqed610N3DsXkr7QXbpcsM9uyjz6ygciI6tJfnmWWNzVuj72HEm39Mmp4t0AEFVDSsWyGwrEFSaaMgIA8CCoElD45ZQou1BBaZzM2QR1i9cR8uXg1BdEwsvPPk0ocMfvN562RzYxkAIHmuNu38E3fuPwGp7Ojv54NPGlXHF11awJkkkzKT5AgskpDTdVQHMLHUhSl++CJ9aJMjZfFSTp+vxiAtPhZQs7rlLz7h4QyWGiVI9vQQMWq44x60jsTIfKyMILDeCRqcjHuGZ7oYPNJGgeSsmZw7aX6CjMTF2rEZnQbs/VuJ3lWkUuDDWyC/2Sp8/sIQS1TQXzN8iUoQPXLYqkLfnvv3CJzXz5f6Cn6FET/5pzTpSksn8zC8hF6jwNegXhVp0emoPqozh+G0YYE0HAltISEuxuK07XuoTu6Vftrv2Q8nPbro/3ZyEtGzu4CAgvJviu+EMNi8lW4GSgQK6NHV8r3NGuyyA4HV8cUhnI5/KU33t3wtUNPFF0fjnqHXSxoW2sAlPzbns+181MUDl+Zw0MXRZ4t/AwGFWsiDvzVrRNoQEo2QaQYhnlfEAysrS+PQPbhtRDzO966Fbv9t4Is92oh4JM5v4r4WqPCMfoQr3VuAV2nr8RcF4OwkDoKRJ13l0Txc8sh/rWa19XCZ8gXYV4mebkTip/wCIV/6vaFJRVenBcPAhj83gUTTrBN07fpmNZjsYq956PMBv1ao6Oxtl7EcrTTkLoNNRiG7pDI4Sc3hSKn9bCce6ah3YRf34ljoU0cyQSGwHLkaylgfOgIKgfWhnwEZPP9kCSyyedu0CKr/HZKs09X7FJqugx1q7cm/WBw/aRQi4Cfim76WH5j3HzJYv5FuDgv4i/j6S8v9HDo5Ow2WEQSWnabiELWMVgP23nW9d5W+QuDj2yYhe1YZwTAQ/IvqPayEEkEQSlaE6OpuVVdLjZj4OLiOaAsIdHMXP/UXCL7p35BYGpscd149DdwV+tUzoe9k8JXrWtM1w9uYe5LyJSshYahpkQvzqqtbc47FBbePJduJ12b3rgKKF7N+c23NxG/cYrFtB723lS0toHNHecbIDgRWv1cnsT/2kQTl6rwN0MqtMNZG3cLEt2el34l3A/FysFVenGbxYC/Fn1ElJhJ3ShvPbOvw+vbmVRFJ7iuSAysry5LIYMyPuCxNoY5LPmzL11yfCL/S023S70NONECd2zRXZ9G2AvLVtH7uMc+B4CXUVY1zEVF92ofxjLd0fiSpvjr+BwgFTfOiWtJhfpyJjtKHDRoTY6RNVqpKa+uc09L+UsJrJBB29T8hpHt2kbAwYNUaes35eIsYNMCx19yemAcY+PovE0j/LtAORVWJIbIKgZVdzjZlHlkBAYXAygqrlI1tTInA4m5fgvPSMdLMRTcPxM3/DWApMWRvWKLeM1iw2HS8QQME+Hin/qJ7+QqD3b/TfuXKiuj0mWMftPbGJiX9CoGVOvKMJh7cvWvAf4QV+zgEDG/jucFy4AOKSzmshOJBEF2sSyKdlvPCefk4cDcvSF01rb+ArgWtypYWndb2MR874dvZ4MtmDe869vEduMz5Vpqq4F8E8RNpRUVywHnJaHB36Ib75EezsD/UlBBhWaDzZwJK2+AhYgnf4GsMdu6m96gK5UV81s7G8zCFQbIDgTU2/Iy+CqBBSEEIUhhixtsLWBV1Xfp9dK5KGJKrgiW4kxwne8zLCzjEh1MvLJ9KIgK7yLMGlgziNcDZyRwg0vErj+Th4pO1PYge6aJQ+xkNIySzux7QDSGaCLR7QT+IDbpYB/XOJeb3JFKgoYCA5tYTWK/OM7j3G71+cgWKKCNTEQRLa5fZjzvPHwzuwS3JzISRS8AXK5tms8lHFJKwnQ19YKJD91HDRI9Wo1ysaR5E6ZjpETB/H3d1BcaNsr34QnomKkAECUU2LhbR2r0IfvCpr1erEFjpQVfpqyBgGwLZnsDSaLS4fOMe7j18hsj3sciTyxOd23yYVUpsOzUc0zolAiu5MMKEwXPAl67iGMP+G4UkOiYJjw1St7aApo1Tf9E9eYrF8VP063rtmgI+dlCySYeCk8xgCoFlCgp5+Wbv/Ze/6u5VfcVAY28ma9ZLVKkgBJRMrA5IqgQWLwvRyXEJc1T/HITT5sWSqUJAIOLHrbTG9HS3IRsX7v4NSU/8iMUQipdLt15HKCD5WlwmdJeGEnN4JebyMxLXmf3AGG3M4scsx+H7pfH3/5IS9e3bCKhYwfpNdmpzNM8nUrmSiLafykOeZAcCa/67y1jyLliCcESuihieqyL6vT6B/TGPpd+X+dTFZ+7F0nQ6vb3B4vYG08SIFYfp4JYvTeps6hR+ncWdjXRspxwiPpogz/rbZIgdGjcL3Ysb2ghJ85w8NeHCcBhqlL9m+L3aqPknrWzsU1lEYGfr539/F4uXZyl+/o0EFPpYnmvTDpA4VKU5KZ8wZK4+72JahHgoOy0eBe7hTZPufLnqSOg/zaEfNNNiv9JHPgREEZgywzRB39QJOkd+09ZP5lDsE3xllnP1lH97FFfnUAgs+ZZb0aQgYBGBbE1g7dh/Est/3gVSWc8gJYsV1FfQM5Yhk5bjzv2nWDZzsL7CniKOQyBFAouEEW5ZBtVfNCklKUFPStE7Ui5cZPD7AaNS2Z4iRg7lU/3ot+d3DpeuUNKrZXMB1at9GC+3HzqBxcTFJCZbN3hYPbtPSnjadMqKKicIRUpDCCyXSFgVKwPyW0YJqSjlOrqDCfEWN3NTspUL5bYxSTjKuJUgBFpWEFK90XVQCxNTY1ceMfEYcB3bBYxRQuK46Rsg+vjpy4WTsuHmIte9hFRYJZVWDVKtqoBWMuVgyg4E1s9RtzDZKFSQeF8RL6xPwvYhWEMTSO/O1wLV0hGmc3UFh2ijDyQ5iooo1896IiWt18H9nSxeGpWk960hoFi77PGM+j7yGr6LuChBU8vFF9Vd/LDYqELh5Dd1UX5HSalNjmIiyn1tPe7ByzjEhNJnfKmeAnKXzR74pfWcMvQzL/yR0H86+CDTam1WjcHzcF4xHtytSybNSai8ZvB3EFVJc6papVdplGURmLNAhVhaCBDDh/DIldO29ys5Jt8kdC9uGZHkzVwLYq1vY4XAkgNcRYeCgJUIZFsCy1ARz4ADyzIQBBHJEVgr1u7GyvV78VW3lhj2dUcroVOayYFAagQWG3IVLotHSMNkRBihRgPMnqcycZrp3ZNH0cIpPzTXbeTw4CF9ue3WWUCpkh/Gy+2HRmAxMdHgQq6AIYQVIa7CHtp8WRBvKqFoaQglKoAPDIJYuFSmezl3WTxKn1jeINr2faFt2snmudrawXVKLzCvwqRucVPXQvTNOh8ZXIe3BSE1DRI3b4dJBUi3/k1NIIlbvBeii5v+tyvBLHYZ5UkyNKxTm0ezxul7aT99hsUff1ICq1YNAc2byXOPyg4E1p7oBxj4huY6MYSJBD3dinA+Xlqz8wU7Ij+X9nxz0aHAVaNKgERx6V48vMqkb30tXWcXZnHQRBkRML0E5C4jz/pbGtvex8N0Maj6bIfJMPVd/XAqjib/Xso3Qv4fi0ptXLxFVB5lHYEl8MDZiRxEgeJHvNeIF5sigNPPM6G6cEqCQvPlBOg+amAbNIIApzUzoLpsWvWNL1QCmuELHeqBbJvhSmt7IrBytQovaG0NfW5ZkmPW0XIi7hl6GBXzIOMf9W+DxvnyO9oUZTwFgQ8WgWxJYJ29fAt9hs0FIa06fdoQPT5rigL586Jiky+TJbCu3ryPrgNmIKhMMWxZOemDPRkyYuKpEVjEc8V1TCcw72k584QBM8GXr+5QU7f9xuLGTbrZq1hBRPs2Kb/sLv2eQ/hb+nLb/2sd/BwQFuJQUFIYLLsTWCSZLMlZRDysGBIS+JyGE1mLP8lXxRctB/xHWPGFS2T6UAjVqd/htHW5NEW+SGkkjF5m7ZTT3M51TGcwUW+l/nHfbYWYK0+a9Tm6o8uU3mBfhUrDxk/6CUL+wol/x0XDbXg76RgJFY1bTvP0kAO3SLL1nWySqFMSStiutZDm9C9//cPi6HF6T6tXR0CTRvIQGNmBwPon/jk6vzgsrQ1JBr7OtwmKP95kcgqFFu6d7lMqZAuHN0Yeu6SSXaWRPJikDnjpHosoiH0JXFlkFIrDiKg+nQeXcU6esszLWEnzsN9xTUPvG+YD7MjREpjrJ/3MqkXUmGkdgfX+KYNr31OvbJW7iGqTresr+0QzoUKnDfOhOnNEskzz+QjoajW3yVKnDfOgOvOnSR/erxA0I5eAfMhU5MNEYP0mDvcfZI6Pw23DDuK85pW0EIQkP1mm7Ye5MMqsFQQyAIFsSWCRkMCjf1/EiG86oU+XTyRYyzbonSyBRUIM67UbjFw5PfC/vd9nwDJ8uEOmSmCRMMIdP0B1nCZl5as3QUJvmtzdEcjdCWGxeatRvhA1MHaUDirTcHzJlKkzTT22SFs3++XYdgQEVo+R3QgsQp6SggJMyFVwd4PBvqTlwa0FhbxwC8VJ/qog8MWDEisykczcWUjYqLdwGdPZxOL4udsg5Mht11m4DmsDJp7GDMQt2iNbhUW7Gv6fcueFw8Ddo0m/44fOg1Cykv4o8SwjHmYGIcQcIejM5d59Fr9uY6Ezy1dbupSATh0EkEqFtgqprkqqrBqkUQMBDeopBJYBj5vaCDQN3SvhU0bthRV566Nh6B7pt0IqT5wu8Jmt0Cdpr4kCLn5n6tFTtJ2AfDXkWQ/zAcP+YvHoAF17W8Pn0j1hByhYEXkNs43CCM2HPFugA55MygkYeVFVm6KDKtH5MVV5cYbFgz0UP69oU4TCAAAgAElEQVTSAkr3ts9aWbIlMx43T/2g6TIIuvqtrTZVvX0l1Cd2m7QX8vghYcwyE+9VqxUqDbMNAjv3cAi+SgmsT1vyqFrF8R5YBNCzCS/R/rnpByexSv9sg7UyEQWBzI5AtiSw6rcfgneR0TizfyXcXJ2lNUiJwBJFERWbfKVvF3zs58y+ZtnKPksEFvvgFlzmD5bmLDq7In7BLhBvBUeJIADfLeCQEE8fnB3a8Qgqn/TBGRMDzF1IbSNmTh7v2EopjsIluXGyOoHFvgsH+5+HFXv3KtjXNHzNWlxFj5zgA8tDDAwCyddBqs+l2VXG2kEd0M48obqm00DoGtr3i6PbgGYmOcRiVxzOUuSf8+pp4K7QMBhNn/HQVW2oXy3ze5tQsBjix69KdiVDQxms3chCo6H3INKwWFEBPboK4GwsznrkKIt/TtNNeLMmAurUkmcTnh08sF7wsajylCbc9+VcMT9PLfR8dUxan9ouftie72NZrrzHB1mEGhX+IF49VcbaxyvqxhoOkXfpeVToEwH+9eVZe1nAkEFJcmGEBrUcGDwp3AuX5nOIf0NxsDaB/t3tHF5fpP0CmgkoYKGwiwxTyjIq1Dt/hPooDeG0JdxcvX8D1Ac2msxVyJkHmtHLIOTOm2UwUAy1DwLmz61G9QU0yMB7V9eXR/BXHH1HVAgs+6y7olVBIDkEsiWBVaHxl/DK5YmTO5eYzDklAos0In1UKg4XD5uWOVdOG/siYInAIqO7jO8GNuK1ZEhCvyngK9axr2Fm2g8cYnH2PN3wBRYX8Xm3pGEDYWHAqjWUwPLxFjFowIcTXpDVCCwm/Dm4u9fA3rkC7u5VMOFGCRasPMOIF1JihcAKEAKDIPgVsrJn1mqmOrYLTr/9IBlNPMrihy203yQ0GrgNaUn1q9SIXX7QfuPZQbP616VQ/71f0qzpOAC6Rolhg9zVM3D+YbJ0jFTqIhW7UpKXrxj8sp5FXJwpiRVQQMTnPQQ4O1n/JfrQYRZnjKqotfhYQM3q8pAY2YHAImvg/2idyVKQanZjw89Iv3VxL46FPvI8h3TxwKU5HHRGa0tIEUKOyCmCDjg7mYPI03OowlAd3Gk0nZzDZaiulmH7cMUo4b7BmCLqHPjHvz1urOYQaRSOVLoPD6+Slq8hEn5JwjANUqYPj1xW9MtQMBw4uHr/eqgP0FBbbaue0Lb83KIF6hO7oN5Ony+kA/kYlDByMQTfghb7Kw2yPwLmuRurVhHwaUt575G2oBiseYNPwujzXSGwbEFPaasgkD4EsiWBVbvNt0hI0ODcwdX6PFgGSYnAevT0BVp+PhYF/HxweMv89CGq9LYJAWsILPWun6D+k34N131UH5ovJ9o0TnobPwtl8OPP1M2BYYDRI3i4u5m+8N68zWLrdstEV3rtyaz9MzuBxb56piesmJArYAlxZUSMWoup4OWjJ6zEEhX1nlZC3qyTVNzaOSbXLrkwwjjiDenumR61KfYl4Zuuo2lRDdE9B+IW7LTLWPZSar6Z0zXvCk2bPvrhVKf/gNNGSgDqPmoIzZfjUzXl7VsGa9axiI42JbHy+ojo00uAm9n9KCVl+/azOH+J3qfkDMXILgRWqceb8F6k3rM9PUtiw/s7EqSjvCphaM4Ksp06z//H4uHvdE0YlYgqY0hycNmGwNtbDG6v+zDyN62Kuo4Zby8kAa+Bqz82+zbF3a0cXl+m11Gxz3j4VkudwOK1wNlJHCDSftWm6qD6QFIEWHMmqg5vgdOeX6Sm2o+7QNv2y1S7qv49Aqf1pu/eoqs7NCOXgs+fPT8IWYOl0sYUgavXGPy2m96/SBh9104ZR2AR6754eQxH4p7qDVUILOWMVRBwHALZksD6auR8nLlwA6vnjUCdauUlNFMisOav3Ip12//Ap81qYc74rx2HvjISrCGw2MchcJkzUEJLVDshfuEuiGoaHuoIKBcv5RARSV9cmzcVUKum6cOTeDUQ7waDfFRZQOtWGfuAdQQ2hjEyG4HFvniqz13F3AkGe+8a2Mhwm+Eg+TcSPawqgi9RDmKebOiuYCUq5Dok16NBNN2GQFe3lZW9bWtGvOFcJ/aQOpEQkvhZm21TksGtzZPf62q3gKbHcL1V6iPboN69RrJQ16ANNJ2/tWhxZCSDn9ezePfOlMTK7SXiqy8EeHhY9iLZtZfDlWDav10bHpUqWO5n0TgA2YXAqvVsJx7r3ktTruCUB8FGHj3LfeqhvTutZGcNNqm1EQXg0jwOCRF0XfJ+JKJ4R/k8eB/sZfHCKHQ0b1URxTvIpz+9GMjZP6Uwwt6epTArTw08PsQi9CR9VhdsIqBg09Sf1VEPGFxfTTfQzrkTSUZFKAKq47vhtGMlva81bAsSbp6SqC79ra84SIr2GIS825Fqg3zhkgq0CgISAg8eMVi3gV5/BQqI+LpPxl5/t7URaBy6F9/mLI/lxeXxyFWWXEFAQcAyAtmSwNr/5xmMmbUa+fN5Y9WcYShW2F+PRHIE1v6jZzB21o8gebDWLh6LapVKWUZNaSEbAtYQWGQwl8m9TPIRpak0czqtPvk3i+Mn6AtvvnzAgK9N81sd+pPFmTNGyZEbCmhQVyGw0gm91d250EdgSLL1/5KuM9GRVvc1NBR8C4AvnuhhJZSqaPdE5TYbmIEdzEkXvnQVJAyeYxeL2OeP4DK9r6SbhGbGT6aEj10GlVkpd+kvOP80Q9LKB9VEQv/p+r/NPUu1rXpB25ISdqmZEh3D4Jd1DN6Em2Zwz5FDxJdfCPDKmToZtX0Xh+vXKVHSqT2PcuUUAssY85Zh+3FF8ybFZdjl1wLVnX1lPWPCr7O4s9FoTRkRFYfycJOpiu3FuRwSjCrkluguwDso+z6f2oQdxAWjSmFksabkroqvc5TVE3mE0DOINWSeeQL8PEEiSnbP2A20rCegDMpU/xyE0+bFkiZj0t5cPXfzIpxXTAAEiiHJb6oZNAd8Cfm8G2WYlqIiEyDw+g2D5SspgeWVS8SwwRl//b0TNMjFOsHwATcTQKWYoCCQ7RHIlgQWIaOIF9a/F29CreLQpnkdVKtUGqNnrELhgvkwY/SXuPcoFIdPntO3IfJJ4+qYP0mpIOHoM95aAkv9+zqoD1HvC75CLSR8M82h5ka9Z7BgsWm25EEDBPh40w3A1h0sbt6iL8Xt2/KoGCTPxtChk03jYA71wBJFsKEPwd298l+VwGtgYqJstpyU5yYJ10kOK75kRX3eDUWSR8DcK4pUU4xbuAeii/wxNOyj23CZO0gyRChUAvFjV2SppSFEqsviEXQOhUshfsxy/d9Jys13HQJdPeu92eLjGazfxCI0zNQTi4Q19+ktmtyXzEHbso3FrTv0PtW1s4DSJeUhMrKLB1bPV0dxLDblqqOkkl0BlYfs5+PVFRyin9A1zVFURLl+6d+kxb1hcHm+8fNLRLWpfLYOf/sp6iamvj1nskY/522E5m4BeHuDxe0N9BrIVUJEmS9TxznkVw5vjDwXC7cUkF+m6p2yn0gZpJA7dwzOa+lHDV3VRtD0GZfEGu7BDTgtHg1Gp6HHWFb/XseXr5FB1ivDZmYEYuOAOfNpjllSzHnqxMxTJEkhsDLz2aPYlt0QyJYEFlmk2Lh4jJ6xGidOX7a4Zk3qVsHcif3g4uxksa3SQF4ErCWwCFHhMpOGd4och/gFu+2ycU5thr+s5/DoMd1ckMpdpIKXQVav4Uw2lH168ShcSCGwZDlrBAHss3v6ZOuEGCAhgUxstG2qGUZfFZBUBxRLkCqBFSG6y78Jtc2orNXaZdY3YJ/dl4zWfD4CulrNZZ8ESazvsmQUJX8CKyB++ALZx7GnQvblU7hMTcx5RUT0zoe4GYlVtpxXTAR3/ax0LKHvJPCV69lkjlYHbPyVxaNHpp5Yzi4iencX4O+f/L1n468c7t6j9zFSkIIUppBDsguBNezN39geTc9zc2xCC/eWA64kOqJDgavLTKvsWptgPDWDnp9m8dDI48izsIjy/dNPjNkFBJmUvuRjUdmomiRRezx/W5R0yoXoZ8DV5RRnN1+g4vDUN8MkxDM+3Civaj8eOYvKc93INOUMV0OqrpLqqwbhK9ZGQr+pJnaxzx6AVLVlEuJMfidEFyG8FFEQSAmBqTNVIJXBDTJ+jA4ujs0mkuLiKASWct4qCDgOgWxLYBkgJATWtr0ncPFqiJ7UMoiTkxqVywWia7vGIASWIhmDgLUEFrHOPIwwodco8DWaOdTwi5cY7N1Pv2K7uYoYM5IHSepOZN4iFaKNOBXi3kzcnD8UkdUDS+DBPbmrJ6tI0nXu/nUw8aYvvBZxZVnwBYsnVgfU/1cBoqubxW5Kg5QRUB/cBPW+9VIDXfnq0AyYKTtkSar0lauOhIHyjyO74cYKY97DbWR76RfR2QVxS/bp/ybeZcTLzCDxwxbovQBtFRJ98+t2FiF3TUkslQr4vJuAIoWTelat3cDh4SO6Ef+iJ48iheW5T2UXAmvm2/P4IepGsssRwHngTMEOti6V1e3NPX1cfRNDCRnTJbZaH2l4cy2Hd7fpmpMKh6TSYXaXLdF34c6qUEjlqfeYy8O66KesfQ+cn0kJLM4FqD4tZQJLFwecm2pKLFafqQOnzu4I2jY/7sZ5OH9Pi1HwZT5CwqDvJCWE1HeePwRMDM0vp1+PrkOgtcED1TarlNbZBYGFSzmQPJAGGTKARx5veZ5d6cVIIbDSi6DSX0HAegSyPYFlgEIQRIRHRCI6Jg6urs7I45VTH16oSMYiYAuBRUozk6peBuHLVUPCwFkOnYBGA8yeZ/oFqFcPHsWKiuAFYJrRCzExbMpEHbh0bDocOjkZBksXgcXz4B7fBhtyDSypEvjgZpIvtJZMJJ55JNSMDwwCSEggyWXllLhhUUQeBJJ4FalUiJ+/S3ZvSNX5E3D6ZbZkdEZUH5UDMbf+TU3UxC0/BJLnxXVSTzBvnkvH4if9BCF/4TQNSfIf7yB5rW6YhhOSEAsSHlgy0JSo+PEXDs+e0bZ9+/AoWECeTUB2IbBWRF7D7IiLya5HTZd8+C2f/F6HhsHi30If7icKtlXJS+nkEXTA2ckcRJ7qCxrEw0OmNU/TSZvBncg1c2Y8BxhhXH2GDlwKjvjvQhjcNKpE7JpXRKUR2duDLS1LRKr7uixKLFRBRCheDvEjEnNisW9fwWne4CTFVEhlVlKhVREFAUsI/LiGwzOjsPnMFOWgEFiWVk85riAgHwIfDIElH2SKJjkRsIXAYl+HwmWyUdgGyb8zb6fDQ8C2/8bh+k26EahYQUD7NgLeRjBYspySojk8RYwc9mG94NpCYDE6LdiHt0BeeBMJq1tgtAk2nV4ip4ZQpFSid1WJChCKlQWpUqmIfRFwmfYl2BdPpEES+owFX7WxrIOq/ncITpsWSTpTSwYs68AyK3Md1wXMO1r9Mm7GBojefnAd1gZMfKw0Wtzc7RBzeKVr9AOHWJw9n5QxJ/cncp8yyA8/cnj+gt7DBvTjkc9XIbCMwd/yPgQjw08nux4dPYpjibd9K049OsCCJA03iMpdRJWxfIoES2onzru7DG6uoc8moqva5A/r2ZQcPhfnmFZ9rDSSh6tP8tfB02Msnh6h6+FTWURgZwVDc1zNq0YLAYGIH7cS7LtwOC0YBjackvakr7ZhO2g7DUjXfU/p/OEg8Os2FreN8jd27sCjbBnbnl1xcQxcXW3rYw3CCoFlDUpKGwUBeRDIlgTW5l1H4eebB41qV7IZJY1Gi/uPw6BScSjk7wsSaqiI/RCwhcAiVrjM/gbsU6P8O92HQVfnE/sZmIzmOyEMNm+lmwGOAyaM0eHxUwbrN2auEr8OBQaQqrAkt64kWSt7/1YiWUVIq4e3TBO4WmEsKa8tFC0NgVQIDCyvJ69ElUJYWQGdrE1ICCEJJTQIX7EOEvpNkXUM1fFdcNrxg6RTZ6Ecu6yDy6jMZXZ/sE/vSRrjRy+DWLA4XAeZ3rdiVx6BFIucjvGPn2Rw8q+k3sVtWgmoUjmRxCKVnEhFJ4MMGsDDR6YwjOzigXUk9im+eHUs2ZUYnqsiRuSqmI5VstxVFw9cmsNBF0fXqWATAQWb2h7293A/i+d/G5EvlUQEdlHIl2s/cHhvFEpbti+PnCnkgiMJ30nid4MUaS3Ar7bta2F55bN2C/b5E7hM/5I+G/wKQTN8kT5skH1lWhRBW7cVtN2GZO0JK9Y7FIHf97O4cIlehy0+FlCzuvXX4bXrDPYfYtGutYhSMhUuMQCgEFgOPRWUwT5wBLIlgVW2QW+UKh6AnWsSy5VbKzv2n8T8lVsRE5uYK8vTww1f92iFPl0cS5BYa292aGcrgaU+sh3q3T/Rl6PSlZEweK5DoSAJJL9bwCEhnm4sSLVBUQB2/043jqQsPSlP/yGJsQcW8aZi793QE1YcIazuX7cZCuJNRUIQCGHFE8KqWDmbdSgd5EeADX0Al5n9JMWERIxfuFPWcE31H1uh3vuzNIa2eVdo29CE6PLPyj4anZaPg+rmBUl5woAZEAMC4TK2C8XPPQfiFuyUzYCLl1js3Z/UE6tBPR6NGohYvJxDRAS9fw0bxMPLS54v0tmFwLqQ8Aptnh9Mdk0WeddGZ49A2dYrJUVh/7B4tI+uI6tO9MJS21h34vJCDnGv6HoT8sqnkjzrbXcQ7DjAnV85hBtVFQzsxMOnSvK4XJjFQRNFMSw/kIdngIKh+fKYV6olVX3F3L5gn4SYNNVVbQhNH5ory47LrKjORggcP8nipJFnar06Apo0so7Aio1lsHQFC+KBRYR4brVuKcjmjaUQWNnoRFOmkukRyLYEVk5PdxzbsRiHT57DjTsPwQsiihXKj08aV4dXTs8kC3P28i30GUaJEJZlQPJmERnatwP6dre+vHmmX/VMZKCtBBbJoeAyoTudQQaFER78g8W/5+jGonhRAYUKMTh2gr7g1q7F4+MmH84LLqOJh8/LO9DevILYqxdBQgkY3jYCT3R115NU+nDAwCDwAcUBVslVl4kuWckU1wndwbx9RYmZNFTRS21eTnt+gerwFqmJpvUX0LXolhmhSNUm53VzwZ09SufRfRj4QiXhOvsb6TfBtyDip/4i69yuBLPYZVR1zqC8elUBN24xiI6m96rRw3l4eMhzr8ouBNYDbRTqhu5Kdk225/sYtV38ZF2v5JSRBP0kF1aCEdnoW01Esc+sv68mRAIXZxsnHxdRbSoPlavdzc/0AzzazyLMyDOtYDMBBZNJbK+NBs7PMMKQEVFjFq88mpJZYSYqAq5jOqW69jwpyNF/mvJsz/RXSOYz8PxFFvsO0HfvyhUFtG1tHYH1224WV6+ZftgZ+A0P37zyPPsUAivznS+KRdkXgWxLYJEl88mTC6/D35msnoe7KxZMHoC61cub/P7t+KUgFQvrVg/Cd+P76r2v9h05jakL1oHlWBz+dT7yeufKvmdCBs3MVgKLmOky91uwj+7QDWGXQdDVb+3QGYQ9Z7DqJ1NipWQJAXdC6MOxVQsB1apa92B1qPEyDUYqArJ3g8GGBIO9exUcCZMyrm9sxTiiew69Z5VYIgh8YAUI/kVlCaOyYmilSToRUO9eA/WRbZIW3UcNoPlyQjq10u5O21dAdWIPvc479oeuEa3oJ9tAdlak3vkj1Ed30Hm0/gJi4ZJwXjZW+o0vVhYJI5fIbsmduyy2bGMtXpZjR+ngJhOhkV0IrHdCAso+oQSq8eKcKfAZAlRJP4TJvoAAwq+xuLPJaNPFiNDnavK2brQX/zJ4sJs+qzz8RQQNtp4As26UrNmKkFeExDKIb3UBxdonfWa/vcni9nrazt0fqDA45YqFWRMNeawmef1Ifr+UhDznNYO/g6hS0nPIg/iHpeXmbRZbt9NrMbC4iM+7Wb6f3X/AYr3xfRRAg3oCGjWQ7x1dIbA+rHNRmW3GIpCtCSwCra+PF0oHFoKTWoU795/i8bOXcHVxwu5fZqJg/rwS+nXaDEJE5Hv89tM0fXuDrFy3ByvW7cHIbzrjiy4tMna1suHoaSGw1Ed/g3rnagkN4yo3joRo+UoWr9+kXGKwe9ek1b8caZ/cYzFxMYlkVUgwuLtXwT67D5BSTjaIkMMLQnGScD0IYvEg8P5pq7pmw5BKUzshQEhkQiYbhIR7xi/aI9vGhCRwJ4ncDaLpMRwkkXtWE/Wf26HeRcOedY3aQShc2qTCIl+hFhK+mWaXqZEX901bWKTmDDlpvA5qYyeddFiSXQgsAkGBR+tgfocjfmuPCvWEinFcedmrKzhEP6Eec14lRZTuY3nTRuZgnrupQGMBAc3k27Sl41TJ8K5vrrII2UzX0auUgNJfJMXmyREWz44ZEV02esFl+EQdaYDAw21g8hU6+UIloBm+UNZQc0dOTRkr4xEg1XNJFV2D+OUT0f/r1O+FpHr4shUcot7Te6iPj4hB/a27h1o7a4XAshYppZ2CQPoRyNYEVo/PmmJk/y5QqxJvdqIoYu22Q1i4aju6tm2MiUM/l34v1/AL/f+fP7Qabq7OErLhEVGo126w3mNr1dwR6Udc0WCCQFoILFLNxmUczR9DFMZ/txVCrjwORffU3yyOnUh5E9P/ax388jnUJFkHY2Legwu5DObudUpY2TgCWRN9hcBi5SAGVgCfn5LDNqpSmmdCBEg4LwnrNQjJ78SXryGLpU5rZkF18aSkS/PVBOiqNJBFtyOVqM4ehdM6Gp6u+6ihvlqm07bvJTO0dT6Btvswu5kVGspg7UYWGg19gTcebPpk+bxJshOBVfHpNrzm40zWJT/njvMFO9ptrZJTHB0KXF1myjCW/ZpHzmKpf0AgeRnPTuYgaI1yN/Xn4VnYtg8PDp2sAwd7/4TBtRV0M+yWH6g4JOm1cPNnDu9CKIbF2vPwra5gmNJSufVvmuQQn78wNCMWQ3SzMYGbA88HZajMjwDJ3UhyOBrE00PEqOGpE1H79rM4b5T4nWGAb77m4SdT5V2DLQqBlfnPH8XC7INAtiWwSLjfka0LJfLKeMnafjERGq0WBzclbip0PI8KjROrplw/sRYMubsZSfNuoyEIAo5sXZB9Vj6TzCQtBBYx3YWUYzZKCq7t2B9aB4cXka85CxannJ9JzrAcRywXEx0FLiQYzJ1LYO9dBxf2yOZh2XwFoCpRDtGFykIoWhZCvoI261A6ZB0E1L+tgvoYTT6uq9EUml6jZZmA88pJ4K79K+mSkxyTxUArlahunofTcpqsmC9ZUU9gqQ9uljRoP+4CbVtauctK1TY1e/mKwboNLGJiTZ9vLAtMnagQWMmB2Th0L25rI0wOVXfxxa58jvcEvLOZQ/hVunauviIqDuWRmiNY5H0GN340qpjrkpj/yuwVx6bzKDs11rxjcOE7io/KHaiWDJl7dgoH3qhoCwkfJGGEiiSPgOu0PmBePJUOCj75kTBqKURPJQ2Hcs6kDwGSF3DqLFMyf9okXYr3tMdPGPy8zvQ9vU4tAc2ayO+FqhBY6Vtbpff/27sPKCeqBYzjX5KtgBQBqYJ0EKlWFBUpVhRBFGxIUUFRQVBAFFBBBEFAKWIXFMWKKIqgKIiKiFKkKL333rawm+SdO7zN7rKLJFuTyX/Oeee9t3tn5t7fnbDJl1sQCETAtgGWWctq4vBemVr0f/FNzfzpDy2ZfXJaR9oAa+Xc9zKc07HnMGsheDM6iyNnBbIaYEXMnZ5uBIPnvJpK6Ds2Zyvnx9XemeTSps0ZRzVERkoDnsq5D4V+VCXgIo6jh+T8d3HqlMDd6be49ueCnpLl/r+GVX15atRX6SrlrdOy2q/+3JMywSPgWrdC0S+njhzyRscqftS0HFmcN2bUE9YaaylHQs8R1jMWaodz6zrFDH3IV20zEsFMe478eYbvZydu66bk5rfletP2H3Do3UnOdFMpzq/pUfs7cu7NvJ1GYN2x6zv9mrArXb/cVrCKXi15Za731ak3SDhwckF3ryfNboL/sWueOX/zTKe2z00dJVy8rkc17s65vs5zhBy+oZkBv6Cf+XCbatpoaLIcaT7vJhxwaPHw1B84nCcXcM/DGaQ53Orcv1yUUyq6baXi536npDUrdOKx4fKcnbpkR+7XgDvYWeCF4S4lJqbZhKS3W4UKZhwRmZQsjZvg0sFDqWXPPturno/k7NTBFGsCLDs/dbQt2ARsGWA1vPYBXVSvht4Y8USm3k8Ofk1z5i/W4v8HWElJyarf4n6rbGYB1oNPjtSCv1Zq+Y/vBlv/hXx9shp0ZLbTTcILU/L8TdLiJQ59+XXGUVjnlJQeeSi4Aiwz9dK5eolv0XXn3h0BPz+eMhXkrlZX3ur15K7RQGaL7LRHyh/wrPZrwBXihPwV8HoV06+dnEdSR6kkPjJU7toXZ7teMcO6WztZphwmoDZBdagdzkP7FPPUnb5qm9eMWQPOtXi+72eJHfvIfWnGaTe50Vaz++B77ztVoYJXjRt5Zd7Q5+RhpwCr6965mnE8/UjUHkXrqU/RBjlJ5ve1Ns5wameaXfMiz/Lqwr5uOU+zHvbSVyIUl+af+apt3Trn4pztb78rH6QF/xzi0ok0a+M07ONWTPFUo/3LHFr9YZpF8Ct4Vbd77nwADlKigKsVFeFUiSLROpHs0b7DiQGfzwkI/JfAK+Nd2r8/NZQ63XIds7536tcF6Zf56NrFrXLlcuffQAIsnlsE8k7AlgHWzR2e0sHDx6wpf2nXszKsSclu3XRPX+3Zf0jfffiSSpc8Wzt371fzdifXtzKhVnRU+neD7bo+pw1bdjACKxeey+wEHdFjnpRr9VJfrcwUHDMVJy8PszjkiyMiMiyQ7O/OKLlZV+e+ndbugCmLrjv27w74dmZXQE/VOvJYgVV9eQv+985bBFgBE4f8CVFTxypi3le+diQ3vlEncmA9p5jnusi5a4vvugkD35SnTGgu+n/qmjAmBDYbIaQciY++KPf5F4X8s2AaYKcAq4CkTVkAACAASURBVP/+BZp0NHXHW9O+kcUv151nVc+XvkpOkP4a6pI7zeiDCtd5VL5pxlFVScekRYPTT7W5eECyIlmCKF3f/T3OpWNbUz8MX9DVrcKVUz/gbvrGqR0/p34ILnO5R5VaMYrtv14ABFj58s9D2Nz01JkPZhdC85477bFz18mdwtPuM9ToUo9uuC73XrsEWGHzCNLQIBCwZYA1bNyHev+z2br+mks0qHdHFS5UwKJOPJGkYWOn6JOvTy4MXKlCGT14T0vNX/i3vp2z0PrZ5289r5pVK6SGIknJ1iLuxc8uohmTXwyCLrNXFbITYEX+OlORH4zygXjKV1HC0xPzHOiTL1xasSL9NMKLG3p0c8vc+0OZWSOdOzf7RldZa1kdPRSwhadCdbmr1z258Hq1evLGnnzt+HsQYPkrZZ9yrrXLFD0qdbSrGWEUP+KzbDcw9pl7lDZ0zY8RltluxP8vENu7tRxxx3yXM2vBpH19Jjw1QZ4K1XLqdvl6HTsFWCMPLdXoQ6lfkhjYqaWu1ZWxZfPNeMd8pzbNSA1UnJFeXdjfrchT/qne86dD6z5NHTlUsIxUr2dwjQrON8Q0N179vlP7V6R6VrvTrZL1Uz8Mr3jdpSMbUv++V23n1jkNc2cERzB45EQdCLByQpFrnE7gk89dWrEy9TXZppVb9eulvibdHmnC6y7t3ZtapmgRrx7t7s6x3XYzqxsBFs8sAnknYMsAa+eeA7q109M6djzeGoFlgqroqCit37Rdh48el8vl1JjnH9Uzw96y/r85zKirMqWKq0aVczVy4MNyOk/+w/fld7/o6WFv6dbrG+uFfienGXLknEB2AizH8WOK7XOb5EkNihKef09mXaa8PNasdeiDj9JPI2x2jUdXX5m7AZZz5xZrFIdjzbKTI62OHAio2V6XS1ZgVa2OVL2+3FVryxsdWGB16g0JsALqAnsU9noV+2QbmddjypET61XFPnGbHMeP+K5pQrFTp6yGCmDMoE5y7jn9GnPxQz6Qt3ipUGnOf9bTTgHWu0f+0TMHTn65lXL8Uq6NKkUWzre+MosYm7WwEg+mfjgrdZlHVVqn/3tjpr2Z6W8pR7mrPap4Y+7+Tco3lGzceONXTu38NTXAMkbGKuX4/WmXPMmpjg16uxV7DgHWf5ETYGXjgeTUMwrMnOXUgoWpr9kWzTy68orU1+zceU79OC/91MEundyqeG7uvm4JsM7YdRRAIMcEbBlgGZ0lK9aq93MTtHtv+h2EzGisF/s/qCaX19eGLTv19offKC4+QR1uv07/rtuiIWPeV+0a56nRhbV15Ficpn37szXtcPKr/XVh3fyZNpBjvR2EF8pOgGWaEz2uv1wrF/laltSyg5JuujfPWzp8pCvd7l5tW3tUt07Oflhwbd8kx9plcq75W2bUi+PY4YDa6XVFynteDWsNKzMl0GMCq8jogK5xpsIEWGcSsufvo6aMVsQv3/oal3z1LTrR/tFsNbbAozdKyUm+a8S98o0UFZWta+bXyWahe7Pg/emO+DFfyxsdk1/Vy9H72inAmn5sox7eN8/nY2KMTRU7KCKfV/De97dDa6ak+dLE4VWDJ9yKLXGyqmbazB/Ppt85r/aDbhWpkrsf4HL0Qcqji22f59TmbzOfIhi/x6ElL6c6OyNOLuDO8d8CBFg8Ibkp8MuvLs2ek2bjhTRTA/fuc2rshPTh1cUXenTzTTn7fjyz9hFg5Wavc20E0gvYNsAyzTRTBn9ZuFyrN2yVx+1RxfKl1OzKCzOsi5VCYnYjfOCJEfpjyb/plO5q3UxP98j7UCQcHtbsBlgRC2YpavJIH5XZrjnh+Ul5TvfPaqdOJErFinlVtKhU+KxsflDweuXcvuFkUGUFVn/LcfxoQO3yRkbJU7mWNRXQmhJYuZa8EbkbABBgBdRFtilsQmQTJqccnsLFlDDsY512b+sztdzjUYHu16WWcjgUN2H2mc4K2t9Hv/GcXEt+ybR+3ogIxY+dGbR1D7RidgqwfknYoXa7Up+70q5Y/XVuu0BJcqX8sldcOr4j9UNcsVoe1ep48kPa0c0OLZ+QJniJ9OrS59k5L7OO2LfEoTVTU63Oru1RzQ4nHff85dC6T1J/V6SyV7W7EmCd6YEmwDqTEL/PjsDSZU59MT01pKpT26vbbzv5upz4lks70vy7WLiwV4897M6T774IsLLTq5yLQGACtg6wAqM4WdqEWJ/NmKc/l62W0+FQsysb6roml2TlUpzjh0B2AyxHQrxinmgthzv1TWX8M6/LW66yH3cPoiIej5zb1llBlXP1MjnXr0i3Zo4/NfVGx54MrKrXl6daHXkq1pT5cJyXBwFWXmoH0b08bsX2ai1HYryvUolPjJG7Su2sVTL+mAr0au071xtTQPGjp2ftWkFwVuRHryjy5xmZ1sRsL2/W97LLYacA65g3Wb8n7NIRzwkddicqxhmhOwsFx1plRzdLyyek//e9zsPJOquitOV7p7b9kPoBL224ZZfnLKfaYda3MutcpRyFzvWq7iMn309smO7Urt9SHcte5dF5eTCSI6fall/XIcDKL/nwuO/adQ69n2Zn0EoVvep0n1u/LXDqu+/Tj77qeK9HlSvl/ugrI0+AFR7PH60MDgECLEnxCSf03U8LreBqyvhngqNnwqQW2Q2wDFP0awPl+nuBTyzphruUdEun4Bb0uOXavEbOtcvlWLNULhNYJaR++Pen8p7YAvJUuUDe/wdWbrMItDP9Wlz+XCcnyxBg5aRmaF0ratIIRfyeOlolqVkbJbV9KEuNcBzar9inUncU9RY+W/HDP87StYLhpMgZkxX5zfuZB1gVqsks4m6Xw04BVrD3yeoPnNq/PPUDW8GyXtXr4dapO+tVbu1R6cvy5kNcsJudWr+E/Q4tfin172bUWV5d9MzJAGv5OJeOptmhsPrdbpWom83R1aEGlIX6EmBlAY1T/BbYtdthLdKecpQs4dE9d3s1drxLyWn2qWhQ36vWt+TdiEkCLL+7kIIIZFsgrAOsVWs26dMZ8/TNDwt0PC7Bwlw5971so3IB/wVyIsByLZqj6HeG+W7qKVZSCUM/9L8SeVHSbQKrf+Vcs1zONUvk3PBPutEq/lTBW7CQPFVPrl/lrlpHZtdFOdN/2+TPdXKzDAFWbuoG97VNiGzC5JTDe/Y5is/iyCLH7m2KfTY1hPacU04Jz4Xuv80RP3+tqI9ezbQD3edfpMRH7bPDLQFW3r1OzULufw1L/6WFWcx9/bT0fxcu6u9WVBGCl8x6xuuWFvRPO5LNq0bD3JJXMgu4ez2p0zQv7OtW9Nk4nukJJ8A6kxC/z47AseMOvZRmbbqYGK9Kl/Zq06bUf/cKFTJTBz0yv8urgwArr6S5DwJS2AVYR4/F6Zs5v+vTr+dai7anHJERLrW4+iKNGJC1EQM8TFkTyIkAy5GUqJjebeRIOuGrREK/cfJUrJG1SuXAWY7kJDk3/mONsHKuWXoysEpKDOjKZsc134Lr1evKU+a8rK8pFNCds16YACvrdqF+pnnmY3rdesrrcLw8FQPf/MK5Za1iXnzYR+I5t4oS+k8MWSLX4vmKfvP5zAOsi5spsXO/kG3bqRUnwMrbrjx1F71T7x5b0qMGTzD66r96ZdHzLiUdTw2qTOCXdFwy64ylHBEFvLpkUN6N5sjbpyhn70aAlbOeXC29gNmkYtDg/14e4547PapeLW//3SPA4klFIO8EwibAWrx8rT6bMVez5i5SQmJq0FGmVHHdcXMT3XbT1SpeLP+2xs67Lg+uO+VEgGVadOoiyUnNb1fSbQ/mWWMdySfkXP/PydFVJrTa+K/MzwI5PEWKW4ute6vXldssvF763EBOD4qyBFhB0Q35Vomot4cq4s+ffPdPuq69km7tEnB9nOtWKOblx33nmbW0zJpaoXqYfxNiRvXKtPrJTdvoxO32+eKEACtvn9KkOGnxMJfciakBTNoalGnsUaWb8/aDXN4KZP9uy16N0PHtqdep87Bbx3dKG6alBlhFa3h1fmcCLH+0CbD8UaJMdgReGhWhY8cyv0LdC7xq2ybvX6sEWNnpUc5FIDABWwdYBw8f1fRZv1prW23csjOdTONL6qhdq6Zq0qi+nM7M3/gFRknprAjkVIDlWvyzot8c7KtCbk8jNKOpnOtWnhxdZQKrzSawSjP53g8MM8XKN8LKLLpespwfZwV3EQKs4O6f3K7dqSONsjqN0LXyD0WPezo1wArxaXbO3VsV82znTPlP3NJJyTfcldtdk2fXJ8DKM2rfjXb87NSmbzKfTl6rs1vFauTdNJq8b3327/jPe04d/CfVr8Y9Hh1a49DuP1LfG5Zv5lGFawkC/dEmwPJHiTLZERj/eoR27854hdhYr3o+4pH577w+CLDyWpz7hbOA7QIsr9er3/9aZa1t9eMvfykpOTWFr1yhjDb8P8hiravgeOxzKsDKbBphtnZBO4XHcSJBrnXLpdVL5TKB1ZY16XY+9EfTU7KsNcLK+k/NhvIULe7PaSFVhgArpLorxyub2esw/umJ8pr12gI4Tg3C3PUbK7HroACuEGRF446qQO82mQdYd/VQ8pUtg6zCWa8OAVbW7bJ6psctLRnhklkTK+3hcHl16fNuOfN2M9qsNiPfztvwpVO7FqQGWGbE2u4/nYpL871nrY4emd0cOc4sQIB1ZiNKZE9g8hSX1q3POPjgjrYeXXB+/rxOCbCy16ecjUAgArYJsPbsO6RpM+fr82/mafuufT6DksWL6qZml+nmay9XhXLn6OIbulm/I8AK5DHJvbI5FWCZGp46fSn5mlt14o7uWaq82RHQuXaZnGuWybn2b7m2rpM8gf1R9JQqb00FtKYE1mwo71lFs1SXUDqJACuUeit36pphOu9N9yip5X0B3cz1+2xFTxrhOyf50hY60bFPQNcItsKxj1yfaehtgjkT0NnlIMDKn57c/7dDq6ekX9C9aHWPzu8S2N+t/Kl9/t51+08ubf4u9cNw6UaedIGWqd3FA9yKLJT3ozryVyZrdyfAypobZ/kv8MV0p5YuSz/qtFZNj+68I//+vSPA8r//KIlAdgVCPsD68dclVmj18+/L5PGcfHMRGxOl5lddpJtbXK5GF9b2TRGMi08gwMruE5PD5+dkgJVhF7Sziip++Cd+LXzuiD8u5+qlcq75Wy4TXG3fIJmVIgM43GXPk7d6PXmsNazqy1so/NZUI8AK4IGxadGIP35U1Lupu+qZzQcSBr4ZUGsj5n2lqKljfeckXdVSSXf2COgawVY49qn2chzan6FaCb1GyVOtTrBVN8v1IcDKMl22T1w2zqXjW1ODmMq3eFT6ivz7QJftBuXRBfYudmrtx6kfhqOLedONZjM7OJqF3Tn8EyDA8s+JUlkXmD3HoV9+TQ3szW6Dj3X3qFDBwN63Z70GGc8kwMpJTa6FwH8LhHyAVbtJR6uFMdFRata4oZo2bqirG9W3QqxTDwKs4Hs55GSAZdaginmijRyJ8b6GJjw+Qp7q9TM03HH8qFxWYHVyhJVzx8bAcBwOecpXSbNLYD15YwsGdg0blibAsmGnBtgkaxqh2Y0wzZpwCc++I08p/zcliPz+E0V+kRp65fWmDAE22a/iZldFs7viqUfCoLflKV3Br2uEQiECrPzrpROHHdbueRGxJ//jysMt5POv1dm/8+F1Tq18M/M1xMzVi9X2qFYHgkB/pQmw/JWiXHYEtu9waNt2h3bukKpVl2rn8xRfAqzs9CbnIhCYQMgHWPVb3K+kpJOLZ5cvU1JXXVbXGn11cb2aGRZnJ8AK7OHIi9I5GWCZ+kZNGqGI32f7qp7c+CaduLunHMcOy7V6iRxrlsllAqudWwJrntMld4Vq1kgJjxllVbWuvDGxgV0jDEoTYIVBJ/vRxOgJA+Ra/ruvZKALlUfOmKTIbz7wnZ90071KatnBjzsHb5Hocf3lWrkoQwXjR3wmb6EiwVvxAGtGgBUgGMXzXSB+r0NLRqaffpm2UhWu86h8UwIsfzuKAMtfKcrZSYAAy069SVuCXSDkA6zDR45r+qxfrJ0G12/e4fMuXfJstWzRSLdcd4WqVCxr/ZwAK/gex5wOsFyr/lT02KfSNdRTpkLggZUkd+Xa1nRAT7V68lS7QN7I6OADDLIaEWAFWYfkU3Uifv9eUZNe8t3dU6GaEp6a4HdtIj9/XZE/fJYaYLXtqqRmbf0+PxgLGg/jcuoR91rGnwVj/f2tEwGWv1KUCxYB9wlp4YDTr3R/fhe3ilbPv6lJweLkbz0IsPyVopydBAiw7NSbtCXYBUI+wEoLvGTFWn369VzNmrtICYknfL+6oEYlK8i65vL6atH+CevnLOIeHI9mTgdY8rgV+2RbOeKOBdRAb0SUPJVq/X+EVX15qtSS+RlHYAIEWIF52bW02QQhtvet6TY+iB/ygbzFS/nV5MgPX1Hk/Bm+sifu7KHkq0J7pz4zJdJMjUx7mI0d4l/61C+TUClEgBUqPUU90wr8MShCyQmZm1zybLI1JZPDPwECLP+cKGUvAQIse/UnrQluAVsFWCnUR4/FacYPC6xRWf+uS50q5nI55XafHAa+4qd35XBk3II1uLvLfrXL8QBLUuSU0Yr85dv/xDKjqTxVzv//dMA61lpWHNkXIMDKvqFdrhA1tr8iVqVOmUu67UGZtaz8OaLeG6aIhXNSA6yO/ZR8aTN/Tg3aMpE/fKrIz99IVz8zOjRh4NtBW+esVIwAKytqnJPfAktHRShud8ZaxBT3qmEfFnAPpH8IsALRoqxdBAiw7NKTtCMUBGwZYKWFX7F6ozUq69s5C60phClHhXKl1K7VNWp9/ZUqUpjFt/PrYc2NAMv172JFv9I3XZPMelXuKhdI1epZYZX7vOqS8/RrXuSXR6jflwAr1Hsw5+ofMf8bRX04xndBd6VaSuzzql83iH79WbmW/uorm/jgILkbNPbr3GAt5Pp9tqInjUgfYFWrI7MLoZ0OAiw79Wb4tGXVOy4dWp3xS80S9byqfhcBViBPAgFWIFqUtYsAAZZdepJ2hIKA7QOslE4w4ZUJsT6bMVfL/03dcS4qKlLXN7lE7W9tqnrnVwmFPrNVHXMjwDJAMQPvk7fUuSdHWFmBVQ1buQVrYwiwgrVn8r5eZuMEM5037ZHw4kfyFC1xxspEv9pPrn/+Sg2wHhsud62GZzwvmAu4Vv2l6LH90lUxucGVOvHgwGCudsB1I8AKmIwTgkBg/ecu7f4jY4B13o0elb2aBdwD6SICrEC0KGsXAQIsu/Qk7QgFgbAJsNJ2xur1W61RWWaaoZlumHLUrFpBn7/1fCj0m23qmFsBlm2AQqwhBFgh1mG5XN2Y0U/KuWap7y4nbn9YyU1bn/Gu0SN6yLVhVWqA1Xu03FUvOON5wVzAuWWtYl58OH2A9f9dUoO53oHWjQArUDHKB4PA1u+d2vqDM0NVLujqVuHKLOAeSB8RYAWiRVm7CBBg2aUnaUcoCIRlgJXSMWahd7PguxmVtXj5WuvHLO6et48tAVbeeuf23Qiwcls4tK4fMXe6oj4e56u0x88pczEvdJNz23rfefH9J8p7bmiPkHUc2qfYp+5M14FJN9ytpFs6hlannqG2BFi26s6waYwZfWVGYaU7HF5dOtgtV2TYMORIQwmwcoSRi4SYAAFWiHUY1Q1pgbAOsNL23IYtO61RWX27p/+AEdK9GwKVJ8AKgU4KoIoEWAFghUFR55EDiunbLkNLPUWKy3359XJfdbM8RYtn+H3MwI5y7t3u+3nC85PkKVk25MUKPNQiXRtOtOuu5Ca3hny70jaAAMtW3Rk2jTm42qF/3kkfYBUoJdXvlRw2BjnVUAKsnJLkOqEkQIAVSr1FXUNdgAAr1HswxOtPgBXiHXhK9Qmw7NWfOdGa6JE95Vq/MvNLOZ1KrttI7qtukbtmA+n/O8PG9msnx+EDvnPih02Vt0jGoCsn6peX1yjQu40Ud9R3y8TO/eS+OLR3VzzVjwArL58o7pVTAnG7pKWjI9JdruSFXlW7gwXcAzUmwApUjPJ2ECDAskMv0oZQESDACpWesmk9CbDs1bEEWPbqz5xojXPrOkXM/FARS+b/5+XMCCv31Tcr+bLrFPPM3XIkxKcGWGOmyxtdICeqk6/XiHm2k5y7t6UGWDZYnJ4AK18fKW6eQwLJ8dIfz6YPsCq38qj05SzgHigxAVagYpS3gwABlh16kTaEigABVqj0lE3rSYBlr44lwLJXf+Zka5yH98s172tF/PKNHEcPBXTpuNe+D6h8sBY2C7k7ElI3DvGcW03e2NAP5tJ6MwIrWJ8+6nUmgd+fiZAnKbVU3UfdKlSeBdzP5Hbq7wmwAhWjvB0ECLDs0Iu0IVQECLBCpadsWk8CLHt1LAGWvfozt1oTseRnuX76Sq61y854C29ktOJfnXHGchQIDgECrODoB2qRNYGkYw4lxzvkjveqUAXCq6woEmBlRY1zQl2AACvUe5D6h5IAAVYo9ZYN60qAZa9OJcCyV3/mdmvMdLqIn76Ua+HsdFMG097XW6iI4kd8lttV4fo5JECAlUOQXAaBEBUgwArRjqPa2RIgwMoWHycjEJAAAVZAXBTOaQECrJwWzd/rEWDlr3+o3t2RGK+IP+ZYUwyd2zeka4a3eCnFD/kgVJsWdvUmwAq7LqfBCKQTIMDigQhHAQKscOx12pxfAgRY+SXPfS0BAix7PQgEWPbqz/xojWv9CrnmfSXXkvlyJCfLU+Y8JQx8Mz+qwj2zIECAlQU0TkHARgIEWDbqTJritwABlt9UFEQg2wIEWNkm5ALZESDAyo5e8J1LgBV8fRKqNTILvUf8+q0cWzfoxAPPhGozwq7eBFhh1+U0GIF0AgRYPBDhKECAFY69TpvzS8DWAdbBw0e1bec+JSaeUJHCBVWudEkViI3OL+uwuO+0mfP12Yx5Wrdpu9xutyqWL61br2+su1o3l8vlzGBAgGWvx4IAy179SWsQCFSAACtQMcojYC8BAix79Set8U+AAMs/J0ohkBMCtguwDh85rilffK+vv1+gLdt3pzOKjHDpovo11andDbri4gtywo9rpBF4auib+mr2rzLODepUU2REhJatWq9jx+PV+JI6Gv9iT0W4XOnMCLDs9QgRYNmrP2kNAoEKEGAFKkZ5BOwlQIBlr/6kNf4JEGD550QpBHJCwFYB1ux5f+rZke/q8NHjcjodOr/aeTqvQmnFRkdr/8HD2rxtt9Zv3mG53XHLNRr4eAc5HI6ccAz7a5jgygRYlSuU0Rsjn1SZc862TOLiE9Rz4Dj9umiFHu3cRt063EKAZeOnhQDLxp1L0xDwQ4AAyw8kiiBgYwECLBt3Lk07rQABFg8HAnknYJsA65Ov5+q5l9+zAikzwuq+O65TibOLZJD8d90WvTT+Iy1c8o8VYLVr1TTvtG18p1s7PaO1G7dpyvhnVL921XQtNVM5m93eS5GREZr3xSuKiY7y/Z4RWPZ6KAiw7NWftAaBQAUIsAIVozwC9hIgwLJXf9Ia/wQIsPxzohQCOSFgiwBr6cp16vDYUMXGROvlQQ9b09X+6zhxIkk3dXjKWg9r+rsv5IRjWF9jx659atH+CVUod45mTnkpU4tez47XrLmLNPaFHmp6RQMCLJs+MQRYNu1YmoWAnwIEWH5CUQwBmwoQYNm0Y2nWfwoQYPGAIJB3ArYIsNo+MEj/rN2skQMf0g1NL/VL7+GnRmvh4n/016w3/CpPodMLzJm/WI8NeFUtWzTS8Ke7Zlpw0qezrJFvD9zdUj0faEuAZdMHigDLph1LsxDwU4AAy08oiiFgUwECLJt2LM0iwOIZQCBIBEI+wDJTATs/PlxNLq+v8UN7Wqxm3aW4+EQVKhibbrpairlZB+vu7kOsdZqmvTPE+vH+g0f04JMjVbVSudOGMEHSZ0FXjfc+/k4jXpuqrvferMe63JZp/X6Y/5d6DBir65pcrFHPdveVSUzyBF17qFDWBaIjT+40Sb9m3ZAzEQhlgQiXQy6nQ8luj9z88x7KXUndEciSgNMhRUY45fF6lZTszdI1OAmBUBNIef8bavWmvgiEokDIB1gvvPK+Ppw2R2OHPKamjRtafTD+3WmaMGm69b/NrncFC8borIIFrEArPiFRW3fskcvlss658tK6vn5r3+05Lf93o378dLRKlSwWiv2ZL3Ue9840vTZ5up7o1k6d2t+QaR1SgsbLLjxfb7/cJ1/qyU0RQAABBBBAAAEEEEAAAQQQQCA0BUI+wLr9wWe1btN2/fHNa9Yi4eYwI6nMrneRES4lJbsz9EzF8qWstZiqVCyb7ncpQcyL/R/QLddeEZo9mg+1fnniJ3pn6rd66tG7dc9tLTKtwZIVa3XPIy+owQXV9MG4p/OhltwSAQQQQAABBBBAAAEEEEAAAQRCVSDkA6xGLR9WkcKF9N2HqYuHmwXFCxcqoM/fel5JSck6ejxeZie89Zt2aN6CpZrx/QJdVL+GJg47uTNeyvHbnyv0wBMjdd/t16lP9ztDtU/zvN4BjcBqeL7eHsUIrDzvJG6IAAIIIIAAAggggAACCCCAQAgLhHyAVadpJ9WvXVXvj00d1XPR9Q+q0YW1rVFWmR3zF/6th/qNVvdOt+qhDq18RXbuOaDmd/RSsysb6tXBj4Vwt+Zt1Sd/OkvDx3/k1xpYza+8UK8MftRXwf1HTuRtZblbrgoULxxlXZ9+zVVmLo5A0AoUinEpOsqlY/HJrIUXtL1ExRDIPQGzDl6RgpFKdnt1+HhS7t2IKyMQRAIp73+DqEpUBQHbCoR8gNXw2gdUq1pFTRn/jK+TGlz7gK646AKNG5p5gGUKmp0Lj8claOaU4b7zEhJP6MLrHtRljBIK6IGft2CZzK6O/uxC2Ln9jerd7Q7f9Xfsjw/oXhQObgF2IQzu/qF2COS2ALsQ5rYw10cguAXY5VhzJQAAIABJREFUhTC4+4fa5Y5Ayvvf3Lk6V0UAgbQCIR9gXdO2p7XT4MwpqVMIW3Z4Ssfj4vXDx6Pkcp3cFe3Uo2ufl2UWFl/6/Vu+X5nphvVb3K9LG9TSO6P78qT4KbDvwGFd3aaHKpQ7J10/pD2917PjNWvuIo0c+JBuaHopAZaftqFWjAAr1HqM+iKQswIEWDnrydUQCDUBAqxQ6zHqmxMCBFg5ocg1EPBPIOQDrC69X9LCxf/oj28nqkBstNXqUa9/orc/+lbdO7XWw/elThFMITl85LhuuKePoiIjNffzMT6pvfsPqcltPXXt1Rdp9HOP+CdIKUvALNBuFmo3I+HMlM60h1l/rNntvawtlX+e9qq1PlnKwQgsez1ABFj26k9ag0CgAgRYgYpRHgF7CRBg2as/aY1/AgRY/jlRCoGcEAj5AGvCe19q/HtfWutdNb2igWVy4NBR3drpae0/eEQX1auh9q2aqkK5UoqKirAWcn9zygz9u26L2rVqqoGPd/A5Ll6+Vvc++oLuat1MT/e4Nyd8w+YaZl2xbn1HqXKFMnpj5JMqc87ZVtvj4hP0+KDx+uWP5bq7TXP1f+yedCYEWPZ6RAiw7NWftAaBQAUIsAIVozwC9hIgwLJXf9Ia/wQIsPxzohQCOSEQ8gHW6vVb1abLADW5vL7GD+3pM1m1ZpO69x+jPfsOZepUtVI5TX6lv4oULuj7vQm2xrz5mYY/3dVaz4kjMIGREz/Wu1NnWjs7NrigqjXCbdmq9Tp6LE7nVz9Pk155yjdKLuXKBFiBGQd7aQKsYO8h6odA7goQYOWuL1dHINgFCLCCvYeoX24IEGDlhirXRCBzgZAPsEyzOvYcpkVL/9X7Y/urYZ3qvpYeORanj6f/qLm/LdW2nXvl9XpVvkxJNW3cUHe3aaHYmJM7ppnD4/Hqpnv7aeuOPZrzySiVKlmMZyYLAmadqw8+/16r12+R2+1RuTIldWPTS9Wp/Q2KjorMcEUCrCwgB/EpBFhB3DlUDYE8ECDAygNkboFAEAsQYAVx51C1XBMgwMo1Wi6MQAYBWwRYK1ZvVPtuz6tsqeL66LWBKl6scMBdbYKu50dPZv2rgOWydwIBVvb8gu1sAqxg6xHqg0DeChBg5a03d0Mg2AQIsIKtR6hPXggQYOWFMvdA4KSALQIs05CUtbCqVCyr8S/21Lllz/G7j39fvMpav8nhcOiT1wepWqXyfp9LQQQQQAABBBBAAAEEEEAAAQQQQACB3BWwTYBlmIaMeV8ffTnHmhrY5a6bdNetzdOtcXUqpVmbafKns/T6B19b092ee6KT2ra8OnfFuToCCCCAAAIIIIAAAggggAACCCCAQEACtgqwTMunTv9RL0/8xNr9ziwmfkn9mqpbq4rKly2pArEx1s/N7oTLVq3T73+t0vG4BEVGuDSod0e1vuHKgPAojAACCCCAAAIIIIAAAggggAACCCCQ+wK2C7AM2d79hzTp01n6cuYvOnj46GkVXS6nrm9yiR66r5UqVSiT+9rcAQEEEEAAAQQQQAABBBBAAAEEEEAgYAFbBlgpCmZnwZWrN+qftZu1Y/d+HY+LV3R0lIoVOUtVzyuni+vXsEZlcSCAAAIIIIAAAggggAACCCCAAAIIBK+ArQOs4GWnZggggAACCCCAAAIIIIAAAggggAAC/goQYPkrRTkEEEAAAQQQQAABBBBAAAEEEEAAgXwRIMDKF3ZuigACCCCAAAIIIIAAAggggAACCCDgrwABlr9SlEMAAQQQQAABBBBAAAEEEEAAAQQQyBcBAqx8YeemCISWwPJ/Nujjr37SoqX/ave+g4qMcFk7d97Y9DLd3aa5IiMjMjTo/c9ma9i4D/+zoTOnDFeFcqVCC4PaIhCGAhu27NTnM+bp98WrtG3nXsUnJKrIWQVVu8Z5atuyiZpfeeFpVf5ctlrvffydlq5cp2Nx8SpVopiaNW6orh1usa7BgQACwS9w6PAxff7tz5q/8G+t3bhNR4/FKTYmWlUqltX111yi9q2aKioqMkNDHn3mVf34y+LTNvCcEkX102djgh+AGiKAAAIIBIUAAVZQdAOVQCA4Bcwb1MGjJ+ubOb9bFaxWqbzOLVtSh44c16o1m5SQeEL1zq+it17uowKx0eka8cpbn+uND762gq5CBWMzbeCY5x9R6ZJnB2fjqRUCCFgCL7zyvj6cNsf632XOOVtVK5VTZESEtu7Ya32QNUe7Vk018PEOGcQ+mzFPg0a+a/3chF3FixXR2g1btXPPAetaH04YKPMBlgMBBIJXYPqsXzV49CTFJ5xQ4UIFVLNaBRUuVFD7DhzW8n83yO326IIalfTumL4Zdve+55EXtGTFWtWpWUlyODI0snixwho/tGfwNp6aIYAAAggElQABVlB1B5VBILgEjhyL0x0PPqtqlcur14O3W2FUyrFr7wE91HeU1mzYpq733qzHutyWrvLPjnxPn86Yq6mvDVSdWpWDq2HUBgEE/BYw4dWyVevUqd0Nqlm1Qrrzfv9rlbr3H2OF2e+N6aeL69f0/X7rjj1qee9TiohwaeLwXr7feb1ejXt3miZO/kqXNTxfb4/q43ddKIgAAnkvsPzfjRrzxqfq2O56XX7RBXK5nL5KbN+1Tw8+OVKbtu5S94636uGOt6ar4I339NWuPQe0ePabeV9x7ogAAgggYDsBAizbdSkNQiBnBQ4fOa4ihTOf5vPHkn/V6fFhqlyhjL6e/GK6G6dMG/h+6kiVLV0iZyvF1RBAIGgEnhs1SZ989ZMevq+Vundq7avX0Fc/0JQvflDPB9rqgbtbpquvCbHufOh5mQ/GU8Y/o/q1qwZNe6gIAggEJjDzx4V64vnXdFG9Gpr0ylPpTr6s5cM6q1ABmfcCHAgggAACCGRXgAAru4Kcj0AYCxw+elyX39zdCrh++2p8OomUaQPmW9foTNbFCGM2mo6ArQRGvf6J3v7oWz35UHtrhEbK0aL9E9qxa59+/HS0SpUslqHNH305R0PGvK8Ot1+nvt3vtJUJjUEgnATmL1yubn1f1tWN6mnCi4/7mp6U7Fb95l2sUdhmNDYHAggggAAC2RUI6wDrxIkkuVyudEOhswvK+QiEk8CW7bt1w919VataRX325nPpmm6mDZj1Mf74dmI4kdBWBMJKwEwzbtNlgDVFyPwbkDLF0Py8UcuHreDKBFiZHf+s3ay2DwyyRl+ZUVgcCCAQegJmNOVjA8ZaC7X3f+wea2OXlGPv/kNqcltPXXN5A40b2iP0GkeNEUAAAQSCTsCWAZZZHPbj6T9af0RLFs+4OOyK1Rs1eNRkrVq7SQ6HQ1c3qq9netyb6TfEQddjVAiBIBIwO4uNeG2qNT3ITBNKe5hpA2adjI53XG8t2JyQkGgt5l61Unk1vaKBSpxdJIhaQlUQQMBfAbPe1Z59B/XrohXW7oI79+xX727tdN/t1/kusXL1Jt3R9Vk1rFNN7499OtNLp4zgLFbkLP0yfay/t6ccAgjks0Cy2629+w9r5eqNmvTJLC1evkbXNblYIwY8lO5L4X/XbdFt9w+0NntpdFFt7T9wRObcokUKWYu+X3NFA0Zo53NfcnsEEEAg1ARsGWBN+eJ7DX11im69vrFe6Hd/uj4x23+37jxAcfEJ6X5uFqf+/K3n+UMaak8w9c03gYOHj+rmDv2t19LMKS+lC4DNN7KNbu5ubbOd2REZ4dJD991qLf7OgQACoSGQMlUwbW3Nh9aH7mtl7VCa9li45B91fny4rrqsnl4bljqlKG0Z8+/EBdd0sj7w/j3nndBAoJYIhLFAylTBtARmd9FHOrW2XuunHuYL4/bdnpd5rWd2nF30LA3pe7819ZADAQQQQAABfwRsGWB17fOyfvljuV4d/JiaXdkwnYNZZNIsNmm2AX+2d0clJbn17MvvavO23Xq6x726q3Uzf9wog0BYC5h1Lcx6F2YHsqcevVv33NYig4eZOrBu43adV6GMzJtUc5jdin74+U+9OWWG4uITM13cOaxhaTwCQSww4/sF+mH+X3K73TKjp8zr2/y32aShx/23qWXzRr7az1/4t7r1HWX9DTZ/i0931GvWxRqRsWzO24pwuYK49VQNAQTMiCqze6jH69HxuARt3rrLGmFtFmlv36qpHuncOsPrePX6rdYXXRXKlbLWy0xMTNK6Tdv1xbc/67MZ86wA+93R/XRh3eoAI4AAAgggcEYBWwZYZk0eszbPghkTVLhQAR/Crr0H1KJdbzkdTmvHtArlzrF+9+ey1bqvx4u6tEEtvTO67xnRKIBAOAt4PF49Ofg1fffTH2p9w5Ua0rdLwBwpozPM4u5m6lCB2JiAr8EJCCCQvwLm34K5C5Zq0Ih3dODQUY19oYc1PdgcjMDK377h7gjklYBZy+65l9+zdhQNdEOGce9M02uTp6thnep6f2z/vKoy90EAAQQQCGEBWwZYF9/QVZJDi2amXzz6jQ++1itvfa5W112hoU894Os2M7T5ouu7qkBstOZ/yTocIfw8U/VcFjAfWPsPe1Nfz/5NTRs31Ojnumd51IRZvNm88X17VB9d1vD8XK45l0cAgdwSMCOezcjn6pXLa9o7Q6zbpKx9488aWEXOKqjfvk6/i2lu1ZXrIoBAzgscOnxMLdr3llkf7+dpr8qsa+fPYZYZMMsNmGPJ92/JLC/AgQACCCCAwH8J2DLAMlv2Fj6roPVHNO1x0739tGnrLn04YYC1oGTao3m73tq775A1jYEDAQQyCrjdHvV/8U3N+GGBml95oUYOejhbbzZ7DBhrTUd6ZfCj1vU4EEAgNAVMsF2/RRc55NBfs9+wQm0zZejiG7r5tQthnZqVNHXioNBsPLVGAAFLwKx5Z0Zevjemny6uX9Nvlctv7m5NRTYhtgmzORBAAAEEEAi7AKv5Hb20Z/8hLZr5um9R9pTpDGax9hmTX8xg0vT2x60pEEu/f4snBgEEThEwa9T0Gfy6Zs39w1rn5oWn7s/yyKuUS9/zyAtasmKtpox/RvVrV8UcAQRCVODEiSQ1uPYBa1ffZT+87duF7Jb7+mv95h368dPRme7y+9GXczRkzPu645ZrNKjXfSHaeqqNAAJG4O7uQ7R05TprPatLGvgXYCWeSJKZNeF0OrVk9pvWvyEcCCCAAAIIhF2A9figcZo9708N7tNZbW68SklJybr3saFa/s8G9XvkLt3b9tp0Jil/QM2Q53lfvMITgwACaQTMgu29nxuvOfMXq23LqzWoV0c5ndl7k2nWqGvZ4SnFREfp1+njFBkZgTkCCISowPc//6meA8epZtUK1m6+KYeZsm+m7vd8oK0euLtlhta17/actW7OxOG9dOWldUO09VQbAQTMpi0t2j9hbfAwf9pYFS1SyC+UL7/7RU8Pe0uNL6mj11/q7dc5FEIAAQQQCG8BW04hTNn9yMylv6pRPW3ZtkdrN25TibOLaOaUl6y1rtIeKaOzzA4ok19lEcnwfknQ+rQCZmRFz0HjNG/BMiv4NQGwP8fc35Zauwxec0UDxcZEZXi9mQVfzc6fvbreoS533ujPJSmDAAL5ILB770FN+uQ73Xzt5apVrWKGGpidSM3uvgcPH9WL/R/QLdde4Suz/+ARXX9XH3k8HiukSplWZNadHPfuNGs3M7Nu1hdvD2bkRT70LbdEwF+Bl8Z/pEYXXaDLL6rtG2GZcq75W953yEQrjD51Y5cpX3yv6pXP1YV1a6T74sssSWDCq2HjpljrZpn33g0uqOZvdSiHAAIIIBDGArYMsEx/Pj96sj6e/qOva01oNeHFxzOdlz/gpXes7XzN9r8PdWgVxo8DTUcgvcCYNz/Tm1NmWD8879zS/8nT6MLaeqbnvVaZyZ/O0vDxH1kjq6qeV07nlChqbZ29Zcce7di1zypzV+tm6v/YPXxw5aFDIIgFzGhJs7OvOUqVLGa9ns0akwkJJ7Rmw1Zt37XPeg13vfdmPdq5TYaWmJGbvZ4dLzMNuXaN86wvktZs2Kadu/db692YnceqnFcuiAWoGgIIXNO2p/bsO6SzChWwQmfzOjZr323dscfasMEcZhTl6OceSfel1aNPv6Iff12iQgVjVa1SeRUtXEiHjhyz1qM1obfZifi5JzpZATkHAggggAAC/gjYNsAyjV/w50r9+fdqFSwQo+ubXKKypUtkavLu1Jk6cizO+kBdsnhRf9wog0BYCJj1acw6Nf4cTa9ooLEv9LCKmjemH335o35btEIbt+6U2WnI5XKp5NlFrG9ZzZo3ZsQjBwIIBLeAGSlhpgiaafnrNm6z1oo8cuy49cHT/E1tWKe67ri5Saajs1JatmrNJr3+/tf66+81OnY8TiWKF7U+7Ha795ZM18YKbhFqh0D4CSxevlZff/+b/l61XmZk5aHDR611q0yQdUHNymrZopHMe4BTj/WbtlvvBf76e7UVdscnJFpLB5h/O8yXXne1bq4K5c4JP1BajAACCCCQZQFbB1hZVuFEBBBAAAEEEEAAAQQQQAABBBBAAIGgEbBlgGWmL5UpVVwtrrrIL2izzo9ZbLZqpXLW/H0OBBBAAAEEEEAAAQQQQAABBBBAAIHgEbBlgFW7SUdd1vB8vT2qj9/SjVo+bM3tnz11pN/nUBABBBBAAAEEEEAAAQQQQAABBBBAIPcFCLD+b9y8XW9rXv+S2W/mvjp3QAABBBBAAAEEEEAAAQQQQAABBBDwW4AAS9Le/YfU9PbHrYUlF8183W88CiKAAAIIIIAAAggggAACCCCAAAII5L6ALQKsuPgExcUn+rSubtPD2hlp9HPd/1MwKdkts0PK6Dc+tbYBblinmt4f+3Tuq3MHBBBAAAEEEEAAAQQQQAABBBBAAAG/BWwRYI1/d5omTJrud6NPV3DskMfUtHHDbF+HCyCAAAIIIIAAAggggAACCCCAAAII5JyALQKszdt2a9rM+Zq3YKnWbNgWsE75MiX1aOc2atmiUcDncgICCCCAAAIIIIAAAggggAACCCCAQO4K2CLASku0cvUm3dH1WdU9v4qef7LTf+o5HQ4VKVxIJc4ukrvKXB0BBBBAAAEEEEAAAQQQQAABBBBAIMsCtguwjES3vi8rKcmtt0f1yTIMJyKAAAIIIIAAAggggAACCCCAAAIIBIeALQOsLdv3WDsLXli3enAoUwsEEEAAAQQQQAABBBBAAAEEEEAAgSwL2DLAyrIGJyKAAAIIIIAAAggggAACCCCAAAIIBJ0AAVbQdQkVQgABBBBAAAEEEEAAAQQQQAABBBBIK2DbAMvt9mj6rF80a+4ird+8Q8ePx8vj9Z6x9xd+89oZy1AAAQQQQAABBBBAAAEEEEAAAQQQQCDvBGwZYHk8XnXvP0Y//74sYMmVc98L+BxOQAABBBBAAAEEEEAAAQQQQAABBBDIPQFbBliffPWTnhs1yVKrX7uqmlxeX2XOKS6n03lGyRubXXrGMhRAAAEEEEAAAQQQQAABBBBAAAEEEMg7AVsGWPc+OlSLl6/RHbdco0G97ss7Te6EAAIIIIAAAggggAACCCCAAAIIIJDjArYMsBq1fFhHjsVp7udjVLJ40RxH44IIIIAAAggggAACCCCAAAIIIIAAAnknYMsAq26zzoqOitSima/nnSR3QgABBBBAAAEEEEAAAQQQQAABBBDIFQFbBlhXt+mh43Hx+vO7N3IFjYsigAACCCCAAAIIIIAAAggggAACCOSdgC0DrEefeVU//rJYM6cMV4VypfJOkzshgAACCCCAAAIIIIAAAggggAACCOS4gC0DrF8XrdCDT45U+1ZNNeDxDjmOxgURQAABBBBAAAEEEEAAAQQQQAABBPJOwJYBluF7afxHmvTpLHVsd73uv+smFStyVt6pcicEEEAAAQQQQAABBBBAAAEEEEAAgRwTsGWANWvuIq3fvEMffD5bh48cl8vlVJWKZVWq5NmKiY76T7wxzz+SY7hcCAEEEEAAAQQQQAABBBBAAAEEEEAg+wK2DLBqN+mYZZmVc9/L8rmciAACCCCAAAIIIIAAAggggAACCCCQ8wK2DLCeeznrIdSg3lkPv3K+e7giAggggAACCCCAAAIIIIAAAggggIAtAyy6FQEEEEAAAQQQQAABBBBAAAEEEEDAPgIEWPbpS1qCAAIIIIAAAggggAACCCCAAAII2FKAAMuW3UqjEEAAAQQQQAABBBBAAAEEEEAAAfsI2D7AOnEiSUtWrtO6jdt0+Gicihc9S+1aNbVPD9ISBBBAAAEEEEAAAQQQQAABBBBAwOYCtg6wPp0xV2Pf/kL7Dx7xdWONKufqi7cHp+vWHgPGavX6rXp1yGOqXrm8zbuc5iGAAAIIIIAAAggggAACCCCAAAKhJWDbAGvkxI/17tSZvt5wOh3yeLzKLMAa/+40TZg0XfffdZMef/D20OpBaosAAggggAACCCCAAAIIIIAAAgjYXMCWAdbCJf+o8+PDZUKrO26+Rvfc1kLly56j+s27ZBpg/b1qve58eLDqnl9FH00YYPMup3kIIIAAAggggAACCCCAAAIIIIBAaAnYMsAyUwJ/mP+Xene7Q53b3+jrkdpNOmYaYJkphle1fkxFixTSr9PHhVYPUlsEEEAAAQQQQAABBBBAAAEEEEDA5gK2DLCubtNDhw4f04IZE1QgNvqMAZbX61X95vdb5ZbNedvmXU7zEEAAAQQQQAABBBBAAAEEEEAAgdASsGWAVa9ZFxUrepbmfj4mXW+cbgSWKWTOiYhw6a9Zb4RWD1JbBBBAAAEEEEAAAQQQQAABBBBAwOYCtgywrmj1iBITT+iPb1+31sFKOU4XYG3auks33dtP5cuU1KyPRti8y2keAggggAACCCCAAAIIIIAAAgggEFoCtgyw7n9ihBb8uVKvv9RbjS+pc8YAa8SEqXrvk+9087WXa1j/B0OrB6ktAggggAACCCCAAAIIIIAAAgggYHMBWwZYM75foL4vvK6ypUto4rDHVeW8clY3ZjYCa8YPC9TvhTdk1sF6d3Q/XdKgps27nOYhgAACCCCAAAIIIIAAAggggAACoSVgywDLhFFmFNbvf61SZIRLra5vrEsa1FKfwRN13rmlNbhPF63btF2z5v5hlTHHjc0u1YgBD4VW71FbBBBAAAEEEEAAAQQQQAABBBBAIAwEbBlgmX6Li09Qn8Gv66fflpyxG5tfeaGGP9NVMdFRZyxLAQQQQAABBBBAAAEEEEAAAQQQQACBvBWwbYCVwmgCrI+n/6S//l5jhVopR1RUpBpeUE13tm4mE2BxIIAAAggggAACCCCAAAIIIIAAAggEp4DtA6wUdo/Hq/0HD+vY8XjFxkareLEi1vRCDgQQQAABBBAIHoFdew9o5pyF+u3PlVqzYasOHT6myEiXypYqoSsvravOd96o4sUKn7bCM39cqGkz52vVms06fPSYzN//zI4ihQvqt6/GZ/jVkhVr9eG0H6wvvg4cPKICsTGqUfVc3XLtFdZ/XC5n8GBREwQQQAABBBBAIIwEbBlg7dl3SOeUKBpG3UhTEUAAAQQQCH0BE15d1/5JJbvdVmNMeFSsSCHtP3hECYknrJ+VLF5UUycOVOmSZ6drsAmq+gyZKBNgmaNm1QoqV6aE9uw9qFVrN8vt9lg/j3C5dE7JYqpeubzGD+2Z7hqj3/hUb334ja9csaJn6eixON+9L2t4vl4d8pgKFogJfWxagAACCCCAAAIIhJiALQOsOk076YqL66j1DVeq6RUNFBkZEWLdQnURQAABBBAIT4F+Q99QpXPLqPmVDVW5Ylk5HA5rp+B5C5ZZOwybkdTm7/uQvl3SAX04bY5eeOV9RUdF6rXhvXRpg1q+3/+7bou69nlZ+w4cVr9H7tK9ba/NgPveJ99pxISp1vlPPtxet15/pWJjoqzga96CpRow4h1rNNhNzS7TSwO6hWfn0GoEEEAAAQQQQCAfBWwZYNVu0tFHWuSsgmrZopH1ZrdWtYr5SM2tEUAAAQQQQCA7Am9OmaExb36mEmcX0bwvXkl3qTZdBmj1+q164O6W6vlA2wy3mTr9Rw0ePVnlSpfQ7Kkj0/3ejPBq3q63TpxI0vNPdtZtN12V4Xyzc3GvZydYP//8reetEV4cCCCAAAIIIIAAAnknYMsAy0wf+Gr2b/p10XLflAFDWqPKuVaQZQKtYkXOyjtl7oQAAggggAAC2RYw61J1eGyodZ1lc962pgOaw4zQqtuss7Xe1YQXH9fVjepluNeqNZt0+4PPWj//dfo4FS1SyFfmnanf6uWJn6hi+VL69oPhp63n1W16WKO4HurQSo90bp3t9nABBBBAAAEEEEAAAf8FbBlgpTTffKN6Msz6VStXb/KpmDe8TS6vb4VZjS+t43sD7D8bJRFAAAEEEEAgrwU2bNmpmzs8Zd120cyJ1hpZ5jBrZtVvfr8VZL09qo/MWlWnHus2blerTk9bP/552qvpFoLv1neU5i/8W21bXq3nnuh02maZ8MyEaGb34lcGP5rXzed+CCCAAAIIIIBAWAvYOsBK27Mbt+zU19//pq+/X6Adu/b5fmWmIdx87eVWmFWlYtmwfhhoPAIIIIAAAvktYKYBzvh+gcxugFt37LEWUU88kZShWmkDLPPL6+/qY5Xv3e0OdW5/Y4byM35YoL5DXrdGYM//8lVrba2U48Z7+mrztt1+N/2SBjX17uh+fpenIAIIIIAAAggggED2BcImwEqhMt/OmjfFX8/+TbPmLdLhI8d9inVqVdbU1wZmX5UrIIAAAggggEBAAubv84tjp2jKFz9Y55kvmOrVrmLtNhgdFSWTN+3Zf8j6+22OUwOs19//Wq++/bkKFyqgyWP7q1ql8r777957UB17DtOW7bszXSMrZWqg2cHYnyUGateopMF9OgfUPgojgAACCCCAAAIIZE8g7AKstFxJyW79seQfff7NPM2au8j61cq572VPlLOpPy1CAAAN7klEQVQRQAABBBBAIGCB9z+brWHjPrRGRg3sdZ/a3nS1nM7UUVLmgstWrdddDw/ONMAyC7B36f2SFi9fK5fLqUsbnG8t2G7WrFq4ZJXi4hN1+UUXaPzQHoqKikxXv5TRW491uU1d77054LpzAgIIIIAAAggggEDuC4RtgLVzzwHN+ukPaxTW36vW+6QJsHL/oeMOCCCAAAIInCpg1qcy61SZjVaGP901U6BfF63Qg0+e3EHw1BFY5mdJScnq0ONF6+96wQIxSkg8oYKxMapZrYJuufYKtbqucYZQzJzX+fHhWrjkH93U7DK9NKAbnYMAAggggAACCCAQhAJhFWAdORYnsw32V7N+0+Lla3zdERMdpRZXX2Stg3Vpg1pB2E1UCQEEEEAAAXsLXHxDN8XFJ+jJh9qrY7vrM23shEnTNf7daacNsAaPnqyp03/8z2tkduGJk7/S2He+sKYfzvl0tArERtsbm9YhgAACCCCAAAIhKGD7AMt8G/vz739bC7jPXbDU+nY25ahfu6oVWt3Q9FLrm1oOBBBAAAEEEMgfgeZ39JIZHd2uVVMNfLxDhkrs3X9IrTsP0MHDRzMNsLbv2qdr2z+h8mVKatZHIwJqhLl2i/ZPWO8RTnf/gC5IYQQQQAABBBBAAIEcF7BtgGUWav/KLNT+0x86fDR1ofaSxYuq1XVXWMHVeeeWznFQLogAAggggAACgQsMHPGOPv/mZ0VGRmjUoIfVtHFD6yLJbrd+/WOFhr76gdwej3bu3p9pgGWmH5ppiGZU9fihPVX3/Mq+ta4ccljrYv3XkbIGlylj7v3AXTfJLNZuzjt2PF679hywphn++OtiDev/oMz7CQ4EEEAAAQQQQACBvBOwZYB13Z1PatvOvT5F82a46RUNrNDKLOB6pjexecfPnRBAAAEEEEDACJidAts/9Jz27DtkgZiR0WZHQDM6KvFEkiqUK6X3xvRT2wcG6sCho5mugdW9/xjN/W1ppqBm4faK5UqpxVUXqmO7GzIdef3O1G81+o1P5fF4rWuYBeXNewizQHzaY86no6zdETkQQAABBBBAAAEE8k7AlgFW7SYdLcFa1SpaoVXL5o1UpHDBvFPlTggggAACCCAQsIDZMdCsR/Xz78usQMuETuXLlFCzxheq8503WmtTmUXczWLupy7ivnbjNk3+dLa++PbnM963SsWy+ui1gZmGWFu279aUL37Q74tXaceu/UpITFRMdLTKli4us/RAi6su0hUXX2CFWxwIIIAAAggggAACeSdgywDLbMNtgqsaVc7NO0nuhAACCCCAAAL5IjB/4XL1GPCqYmOj9US3drri4joqWbyIL2Qy0xAPHDyq3/5coedGTbJGVPV8oK0euLtlvtSXmyKAAAIIIIAAAggELmDLACtwBs5AAAEEEEAAgVAUcLs9at6ulzX1cOyQx3xrZ52uLUPGvK+Pvpyjay5voHFDe4Rik6kzAggggAACCCAQlgIhH2D1HfK61XFD+t2vyAhXpp24a+8B6+enW6/CfBM74KV3rDLDn+kalg8CjUYAAQQQQCAUBTZu2amWHZ6yqv7XrDesRdz/6xj3zjS9Nnm6NRVwzPOPhGKTqTMCCCCAAAIIIBCWAiEfYKWsd7V49puKjorM0Ilm2kC9Zl2sn6+c+16mnRwXn6CLb+j2n2XC8umg0QgggAACCAS5wOZtu3XjPX2tWs774hWVOLvIaWtsFoO/7f6BMqHX4w/ervvvuinIW0f1EEAAAQQQQAABBFIECLAkEWDxgkAAAQQQQCB0BW65r7/Wb96hRhfV1sDH71OFcueka4zZVXDx8jUaOfFjLf9ng84pUVRfvvMCG7yEbpdTcwQQQAABBBAIQwECLAKsMHzsaTICCCCAgJ0E/l23RV37vCyzi6E5KlUoYy3iHuGK0NFjx7Vp224dPRZn/a565fIa9Wx3qwwHAggggAACCCCAQOgIEGARYIXO00pNEUAAAQQQOI3AkWNx+uSrn/Tz78u0YfNOK7ByOKQCsTEqW7qEzq9eUddc0UBNGtX37U4IJgIIIIAAAggggEDoCBBgEWCFztNKTRFAAAEEEEAAAQQQQAABBBBAICwFCLAIsMLywafRCCCAAAIIIIAAAggggAACCCAQOgIEWARYofO0UlMEEEAAAQQQQAABBBBAAAEEEAhLAQIsAqywfPBpNAIIIIAAAggggAACCCCAAAIIhI6AbQKsKhXLylqtNZNj/abt1k+rnFcu0997PR5t2LLT+t3Kue+FTu9RUwQQQAABBBBAAAEEEEAAAQQQQCAMBGwTYOVUXxFg5ZQk10EAAQQQQAABBBBAAAEEEEAAAQRyRiDkA6zx707LGYn/X6V7p9Y5ej0uhgACCCCAAAIIIIAAAggggAACCCCQPYGQD7Cy13zORgABBBBAAAEEEEAAAQQQQAABBBAIdgECrGDvIeqHAAIIIIAAAggggAACCCCAAAIIhLkAAVaYPwA0HwEEEEAAAQQQQAABBBBAAAEEEAh2AQKsYO8h6ocAAggggAACCCCAAAIIIIAAAgiEuQABVpg/ADQfAQQQQAABBBBAAAEEEEAAAQQQCHYBAqxg7yHqhwACCCCAAAIIIIAAAggggAACCIS5AAFWmD8ANB8BBBBAAAEEEEAAAQQQQAABBBAIdgECrGDvIeqHAAIIIIAAAggggAACCCCAAAIIhLkAAVaYPwA0HwEEEEAAAQQQQAABBBBAAAEEEAh2AQKsYO8h6ocAAggggAACCCCAAAIIIIAAAgiEuQABVpg/ADQfAQQQQAABBBBAAAEEEEAAAQQQCHYBAqxg7yHqhwACCCCAAAIIIIAAAggggAACCIS5AAFWmD8ANB8BBBBAAAEEEEAAAQQQQAABBBAIdgECrGDvIeqHAAIIIIAAAggggAACCCCAAAIIhLkAAVaYPwA0HwEEEEAAAQQQQAABBBBAAAEEEAh2AQKsYO8h6ocAAggggAACCCCAAAIIIIAAAgiEuQABVpg/ADQfAQQQQAABBBBAAAEEEEAAAQQQCHYBAqxg7yHqhwACCCCAAAIIIIAAAggggAACCIS5AAFWmD8ANB8BBBBAAAEEEEAAAQQQQAABBBAIdgECrGDvIeqHAAIIIIAAAggggAACCCCAAAIIhLkAAVaYPwA0HwEEEEAAAQQQQAABBBBAAAEEEAh2AQKsYO8h6ocAAggggAACCCCAAAIIIIAAAgiEuQABVpg/ADQfAQQQQAABBBBAAAEEEEAAAQQQCHYBAqxg7yHqhwACCCCAAAIIIIAAAggggAACCIS5AAFWmD8ANB8BBBBAAAEEEEAAAQQQQAABBBAIdgECrGDvIeqHAAIIIIAAAggggAACCCCAAAIIhLkAAVaYPwA0HwEEEEAAAQQQQAABBBBAAAEEEAh2AQKsYO8h6ocAAggggAACCCCAAAIIIIAAAgiEuQABVpg/ADQfAQQQQAABBBBAAAEEEEAAAQQQCHYBAqxg7yHqhwACCCCAAAIIIIAAAggggAACCIS5AAFWmD8ANB8BBBBAAAEEEEAAAQQQQAABBBAIdgECrGDvIeqHAAIIIIAAAggggAACCCCAAAIIhLkAAVaYPwA0HwEEEEAAAQQQQAABBBBAAAEEEAh2AQKsYO8h6ocAAggggAACCCCAAAIIIIAAAgiEuQABVpg/ADQfAQQQQAABBBBAAAEEEEAAAQQQCHYBAqxg7yHqhwACCCCAAAIIIIAAAggggAACCIS5AAFWmD8ANB8BBBBAAAEEEEAAAQQQQAABBBAIdgECrGDvIeqHAAIIIIAAAggggAACCCCAAAIIhLkAAVaYPwA0HwEEEEAAAQQQQAABBBBAAAEEEAh2AQKsYO8h6ocAAggggAACCCCAAAIIIIAAAgiEuQABVpg/ADQfAQQQQAABBBBAAAEEEEAAAQQQCHYBAqxg7yHqhwACCCCAAAIIIIAAAggggAACCIS5AAFWmD8ANB8BBBBAAAEEEEAAAQQQQAABBBAIdgECrGDvIeqHAAIIIIAAAggggAACCCCAAAIIhLkAAVaYPwA0HwEEEEAAAQQQQAABBBBAAAEEEAh2AQKsYO8h6ocAAggggAACCCCAAAIIIIAAAgiEuQABVpg/ADQfAQQQQAABBBBAAAEEEEAAAQQQCHYBAqxg7yHqhwACCCCAAAIIIIAAAggggAACCIS5AAFWmD8ANB8BBBBAAAEEEEAAAQQQQAABBBAIdgECrGDvIeqHAAIIIIAAAggggAACCCCAAAIIhLkAAVaYPwA0HwEEEEAAAQQQQAABBBBAAAEEEAh2AQKsYO8h6ocAAggggAACCCCAAAIIIIAAAgiEuQABVpg/ADQfAQQQQAABBBBAAAEEEEAAAQQQCHYBAqxg7yHqhwACCCCAAAIIIIAAAggggAACCIS5AAFWmD8ANB8BBBBAAAEEEEAAAQQQQAABBBAIdgECrGDvIeqHAAIIIIAAAggggAACCCCAAAIIhLkAAVaYPwA0HwEEEEAAAQQQQAABBBBAAAEEEAh2AQKsYO8h6ocAAggggAACCCCAAAIIIIAAAgiEuQABVpg/ADQfAQQQQAABBBBAAAEEEEAAAQQQCHYBAqxg7yHqhwACCCCAAAIIIIAAAggggAACCIS5AAFWmD8ANB8BBBBAAAEEEEAAAQQQQAABBBAIdgECrGDvIeqHAAIIIIAAAggggAACCCCAAAIIhLkAAVaYPwA0HwEEEEAAAQQQQAABBBBAAAEEEAh2gf8BEvrdNnijPP4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdB3RT1R8H8G+SpotR9t7I3mXJEmTInipLQZayN7IEZA/ZUxBZIspGBBSQUVCWyiyrArI3yCh0J/mf+/pv0tAU0jRp3nv5vnM8xzb33Xfv5/fooV/uu09jMplM4EEBClCAAhSgAAUoQAEKUIACFKAABShAAZkKaBhgybQyHBYFKEABClCAAhSgAAUoQAEKUIACFKCAJMAAizcCBShAAQpQgAIUoAAFKEABClCAAhSggKwFGGDJujwcHAUoQAEKUIACFKAABShAAQpQgAIUoAADLN4DFKAABShAAQpQgAIUoAAFKEABClCAArIWYIAl6/JwcBSgAAUoQAEKUIACFKAABShAAQpQgAIMsHgPUIACFKAABShAAQpQgAIUoAAFKEABCshagAGWrMvDwVGAAhSgAAUoQAEKUIACFKAABShAAQowwOI9QAEKUIACFKAABShAAQpQgAIUoAAFKCBrAQZYsi4PB0cBClCAAhSgAAUoQAEKUIACFKAABSjAAIv3AAUoQAEKUIACFKAABShAAQpQgAIUoICsBRhgybo8HBwFKEABClCAAhSgAAUoQAEKUIACFKAAAyzeAxSgAAUoQAEKUIACFKAABShAAQpQgAKyFmCAJevycHAUoAAFKEABClCAAhSgAAUoQAEKUIACDLB4D1CAAhSgAAUoQAEKUIACFKAABShAAQrIWoABlqzLw8FRgAIUoAAFKEABClCAAhSgAAUoQAEKMMDiPUABClCAAhSgAAUoQAEKUIACFKAABSggawEGWLIuDwdHAQpQgAIUoAAFKEABClCAAhSgAAUowACL9wAFKEABClCAAhSgAAUoQAEKUIACFKCArAUYYMm6PBwcBShAAQpQgAIUoAAFKEABClCAAhSgAAMs3gMUoAAFKEABClCAAhSgAAUoQAEKUIACshbwiADLYDDi8ZPnCI+IhNFohK+vDzKkSwMfb72si8PBUYACFKAABShAAQpQgAIUoAAFKEABCgCqDLDu3n+MoCOn8NepizgXcg137j+C0WhKUO/MGdOheOG8KF+6CN6tVg4F8mTnPUEBClCAAhSgAAUoQAEKUIACFKAABSggMwFVBVh/nw7Bqg27sP/QSZhMCQOrN9lXLlcMnds2Qo3Kpd7UlJ9TgAIUoAAFKEABClCAAhSgAAUoQAEKpJCAKgKsG7fvY+SUb3Hy7CUzm06nRbG3xOqqwsiVIwvSpU2N9AGp4eOjx8uwSDx8/AQ3bj/A2ZCrOHX2EsIjosznFi+cD1O/+AwF8+ZIoTLwMhSgAAUoQAEKUIACFKAABShAAQpQgAKJCSg+wNqwPQjTFvxgDqDE6qnWzWrj7cDi8PfzsavyUVHROHL8PNZu3Yffj52RVm/5+nhjWO92aN3sXbv6YCMKUIACFKAABShAAQpQgAIUoAAFKEAB1wgoPsAqUauTJNO6aS10adcIuXNkSZbU7XuPsPzHX7Du5/1SkHUuaGWy+uPJFKAABShAAQpQgAIUoAAFKEABClCAAskTUHyA1azTFxg3pBPKlSyUPIlXzg6+eBVfTl+OzcsmOLVfdkYBClCAAhSgAAUoQAEKUIACFKAABSiQNAHFB1jRMQbovXRJm7WdrWMMBnjpXNO3nUNgMwpQgAIUoAAFKEABClCAAhSgAAUo4PECig+wPL6CBKAABShAAQpQgAIUoAAFKEABClCAAioXUH2AJTZoP3nuMi5fvYVnoWHImC4N2jSvrfKycnoUoAAFKEABClCAAhSgAAUoQAEKUEA9AqoOsMQbCucv24zHT56bK1akYO4E+1r1Hz0fIVduYt7EfihcIJd6qsuZUIACFKAABShAAQpQgAIUoAAFKEABFQioNsCasXgdVqz91VwirVYDo9EEWwHWwhVbsGjVVnRr3xgDP/tQBWXlFChAAQpQgAIUoAAFKEABClCAAhSggHoEVBlgHTt5AV0GToMIrVo3fRcfv18PuXJkQdm6XW0GWGfOX0G7XhNQunhB/LhotHqqy5lQgAIUoAAFKEABClCAAhSgAAUoQAEVCKgywBKPBO75/TgG92iNLm0bmctUolYnmwGWeMTwnZb9kC4gNQ5tXaCCsnIKFKAABShAAQpQgAIUoAAFKEABClBAPQKqDLBqtuqPp89e4Mj2RfD383ljgGUymVC2bjep3em9y9RTXc6EAhSgAAUoQAEKUIACFKAABShAAQqoQECVAVaZOl2RPl0aBG2aY1WixFZgiUbiHC8vHY7v+kYFZeUUKEABClCAAhSgAAUoQAEKUIACFKCAegRUGWBVa94HkZFR+POXJdI+WHFHYgHWtZv30LjDcOTKnhm7fpyunupyJhSgAAUoQAEKUIACFKAABShAAQpQQAUCqgywug2ZjiN/n8OSrwajeqVSbwywpi9ai5Xrd6Lpe1UxdeRnKigrp0ABClCAAhSgAAUoQAEKUIACFKAABdQjoMoAa/tvRzBs0hLkyJYJi6cORMF8OaWK2VqBtX3PEQyf9A3EPlgrZg9HpXJF1VNdzoQCFKAABShAAQpQgAIUoAAFKEABCqhAQJUBlgijxCqso8fPQ++lQ/MG1VGpXDEMnbAY+XJnw4ShXXH52m3sCvpTaiOORnUqY/roniooKadAAQpQgAIUoAAFKEABClCAAhSgAAXUJaDKAEuUKCw8AkMnLMH+wyffWLG6Ncpj2qju8PXxfmNbNqAABShAAQpQgAIUoAAFKEABClCAAhRIWQHVBlhxjCLAWrd1P46f+UcKteIOb289AksWQruWdSACLB4UoAAFKEABClCAAhSgAAUoQAEKUIAC8hRQfYAVx240mvD4yTO8eBkOPz8fZEwfID1eyIMCFKAABShAAQpQgAIUoAAFKEABClBA3gIeE2DJuwwcHQUoQAEKUIACFKAABShAAQpQgAIUoEBiAqoMsAaMWYDCBXKhV6cWSa78qXOXcfr8FXjpdChdrABKFSuQ5D54AgUoQAEKUIACFKAABShAAQpQgAIUoIDzBFQZYJWo1Qn582TH9u+m2C0lHjEcMfkbbN9zxOqcGpVLY9bYXvD387W7LzakAAUoQAEKUIACFKAABShAAQpQgAIUcJ6AagMsP19vfDdvJNZs3oOzIVdhNBhRMF9OtG5WC1UrlEwguGnHQYyZvlz6vmiXLm0qnD53BTEGAxrWrowZY3o6T509UYACFKAABShAAQpQgAIUoAAFKEABCtgtoNoASwhoNBqYTKYEGH26tETPjs2tvt+h7yScCL6Eru0aYVD31tJnV2/cxSf9p+Dxk+fY9O14FH0rj92wbEgBClCAAhSgAAUoQAEKUIACFKAABSjgHAFVB1iCqH6tSihdvAC89XpcvHwdP+86hOgYA1bNHYEKZYqYFSs27IGw8Aj8uuYr5MmZxfz9bbsPY/jkb6yCLefQsxcKUIACFKAABShAAQpQgAIUoAAFKEABewRUHWCJx/7E43/xjxPB/6BD38moX6siZo3tLX0k9r8qVbuz9P+nfvsWer2X+ZTwiChUadpL2tBdPJLIgwIUoAAFKEABClCAAhSgAAUoQAEKUCBlBVQbYBXMmwM/r5psU7PTgKm4fuse9m+cI30u9rkqU6er9P/nglYmOKd55y/w9NkLHNg8N2Wrw6tRgAIUoAAFKEABClCAAhSgAAUoQAEKQLUBVp0agZg3oZ/NEn85YwV++vUPnN67zK4Aq8vAaTh9/gqO7/qGtwwFKEABClCAAhSgAAUoQAEKUIACFKBACguoMsCq1KgHihTMg9XzbT/y1/eLuTh28gL+/GWxxB0RGYXy9T+T/t/WCqxuQ6bj2InzCN63IoXLw8tRgAIUoAAFKEABClCAAhSgAAUoQAEKqDLAattjHP759xa2fzcFObJlsqryf09D0ejjYXjxMhwr5wyXNnK/dPUWWnQeJbU7un0R0qT2tzqnVdfRuHP/sfQZDwpQgAIUoAAFKEABClCAAhSgAAUoQIGUFVBlgLV87S+YuXg9CubLiRF92qNMibeg99Lh4uUbmDR3NYIvXkVAmlSIio5Gg3crI/jiv7h89bYkv2zmULxdvri5Cs9CX6Jmq/4olD8XNnwzNmWrw6tRgAIUoAAFKEABClCAAhSgAAUoQAEKqHMPLPHmwDbdx+LK9TvmEmu1Gultg+LImD4t1n49BgO+XIBzIdek7+XKnhk5s2WCCKyWfDUYmTIESN+fvmgtVq7fiU5tGuDznm15y1CAAhSgAAUoQAEKUIACFKAABShAAQqksIAqV2AJQ/Go4ITZq/DbweMwmWKDK3FUqVAC44Z0lsIqsffVzv1/Iiw8Eo1qV5Y2au81YjZ8fbxRuGBuhL4Iw9Ubd6XVW9u+m4LcObKkcHl4OQpQgAIUoAAFKEABClCAAhSgAAUoQAHVBlhxpX32/KW0x5XBaETeXFmRLXOG11Z9/vLNWLJ6mzn00uu9MGl4NzSu8zbvFgpQgAIUoAAFKEABClCAAhSgAAUoQAE3CKg+wHLEVOyHdSL4H2i0GlSvVBrZs7w+9HLkGjyHAhSgAAUoQAEKUIACFKAABShAAQpQwD4BBlgAxJ5ZO/cfw8btB7BmYezbCHlQgAIUoAAFKEABClCAAhSgAAUoQAEKyEPAowOs8/9cw4btB7BjzxG8DIuQKnIuaKU8KsNRUIACFKAABShAAQpQgAIUoAAFKEABCkgCHhdgiY3Zd+w9ig3bgnDx8g3zbSA2aq9XswKmj+7JW4MCFKAABShAAQpQgAIUoAAFKEABClBARgIeE2CdCL6EjduDsCvoL+ntg3FH9qwZ0bppLbzfuCYypk8ro9JwKBSgAAUoQAEKUIACFKAABShAAQpQgAJCQNUB1pNnodi665C0t9XVG3etKl69Uim0aV4btaqUhVar4d1AAQpQgAIUoAAFKEABClCAAhSgAAUoIFMB1QVYJpMJR4+fl/a22vfHcUTHGMz0BfJkx7//D7K415VM70gOiwIUoAAFKEABClCAAhSgAAUoQAEKvCKgmgDrwaOn2PLr79i04wBu33tknmbmjOnQuM7baPpeVeTJmQUVG/aQPmOAxT8LFKAABShAAQpQgAIUoAAFKEABClBAGQKKD7D2HTophVYHj56G0WiS1P18vVH3nQpoWq8qqpQvYX5EMCw8ggGWMu5LjpICFKAABShAAQpQgAIUoAAFKEABCpgFFB9glajVSZqMr4836lQPRO3qgahZpawUYr16MMDinU8BClCAAhSgAAUoQAEKUIACFKAABZQnoPgAq2y9boiOjpHkc2XPjHfeLi2tvqpYpmiCzdkZYCnvBuWIKUABClCAAhSgAAUoQAEKUIACFKCA4gOsZ89fYuuuP6Q3DV65fsdc0WyZM6BJvSpoVr8aCubNIX2fARZveApQgAIUoAAFKEABClCAAhSgAAUooDwBxQdY8clPnr2EDduCsCvoL0RERpk/KlkkvxRkvVu1LOq1HSJ9n5u4K+9m5YgpQAEKUIACFKAABShAAQpQgAIU8EwBVQVYcSUMfRGG7XuOSKuyLl6+Ya6sTqeFwWCUvj67fwU0Go1nVp2zpgAFKEABClCAAhSgAAUoQAEKUIACChJQZYAV3/9syFVpVdYve49JjxDGHXlyZkWb5u+iZYMaCEibSkEl41ApQAEKUIACFKAABShAAQpQgAIUoIBnCag+wIorpwivRIi1cXsQgi9eNVfZ21uPBrUqoW2L2ihTvKBnVZ+zpQAFKEABClCAAhSgAAUoQAEKUIACChDwmAArfi1CrtyUVmWJxwzF44ZxR9G38mDTt+MVUDYOkQIUoAAFKEABClCAAhSgAAUoQAEKeI6ARwZYceUVG72LDd/FqqwTwZekb3Nzd8+5+TlTClCAAhSgAAUoQAEKUIACFKAABZQh4NEBVvwS/XvjrrQqa1jvdsqoHEdJAQpQgAIUoAAFKEABClCAAhSgAAU8RIABlocUmtOkAAUoQAEKUIACFKAABShAAQpQgAJKFWCApdTKcdwUoAAFKEABClCAAhSgAAUoQAEKUMBDBBhgeUihOU0KUIACFKAABShAAQpQgAIUoAAFKKBUAQZYSq0cx00BClCAAhSgAAUoQAEKUIACFKAABTxEgAGWhxSa06QABShAAQpQgAIUoAAFKEABClCAAkoVYICl1Mpx3BSgAAUoQAEKUIACFKAABShAAQpQwEMEGGB5SKE5TQpQgAIUoAAFKEABClCAAhSgAAUooFQBBlhKrRzHTQEKUIACFKAABShAAQpQgAIUoAAFPERA1QHWk2ehuHX3ESIjoxCQNhVyZssMfz8fDyktp0kBClCAAhSgAAUoQAEKUIACFKAABdQhoLoA69nzl1iz+Tds++0Ibty+b1UlvZcOFcoWRec2DVGtYkl1VJCzoAAFKEABClCAAhSgAAUoQAEKUIACKhdQVYC1+8DfGDtjBZ6FvoRWq0HxQvmQL082+Pn44PGTZ7h+6z6uXL8jlbR1s3cxZmBHaDQalZeY06MABShAAQpQgAIUoAAFKEABClCAAsoWUE2AtX5bEMbNXCkFUmKF1Set6yNThoAE1bl4+Qa+Wvgjjp28IAVYbZrXVnYFOXoKUIACFKAABShAAQpQgAIUoAAFKKByAVUEWKfOXUbHfpPh5+uDmV/2QvVKpV5btqioaDTuOELaD2vrikkqLzGnRwEKUIACFKAABShAAQpQgAIUoAAFlC2gigDrg0+/xIVL1zFjTE80rF3Zror0GjEbx05cwPFd39jVno0oQAEKUIACFKAABShAAQpQgAIUoAAF3COg+ABLPArYZeA01KpaFgsnD5AUw8IjEBYeidSp/ODr451AVuyD9VHvicieJQO2LJ8off74yXN89vkMvJU/J6Z90d091eBVKUABClCAAhSgAAUoQAEKUIACFKAABRIIKD7AmjR3NX7YshfzJ/ZD7eqB0gQXrtiCRau2Sv/vpdMhVSpfpEnlLwVa4RGRuHnnAXQ6nXROjcqlzShte4xD8MWr2LdhNrJmTs/bhQIUoAAFKEABClCAAhSgAAUoQAEKUEAGAooPsD78bCwuX7uNP3d8Db3eSyIVK6kO/XUWei8domMMCZjz5sqK+ZP6o2DeHFafLVi+BV9/txVTRn6KZu9Vk0F5OAQKUIACFKAABShAAQpQgAIUoAAFKEABxQdYVZr0QkDa1Nj5w1fmatZrOwRpU/tj07fjER0dg9CX4XjyLBRXrt3BgSOnsP23I6hQtggWTx1kDr3EyYf/PotPh8zAJx/Wx9De7Xh3UIACFKAABShAAQpQgAIUoAAFKEABCshAQPEBVqnanVG2xFtYPf8LM2eFBp+hSvkS0iorW8fvx86g5/DZ6N25BXp2bG5ucvfBf6jbehDq1AjEvAn9ZFAeDoECFKAABShAAQpQgAIUoAAFKEABClBA8QFW4HufolihvFizcJS5muXe+xTVKpTEgsm2AyzRULy58GVYBH5dM818XkRkFMrX/wxvBxbHsllDeXdQgAIUoAAFKEABClCAAhSgAAUoQAEKyEBA8QHWux8MkN40+OsayyOETTqOwMuwcOxZNws6ndYmc/ehMyHeYHjqt2/Nn4vHDcvW64bK5Yph+exhMigPh0ABClCAAhSgAAUoQAEKUIACFKAABSig+ACr6+CvcOzEBfz5y2L4+/lIFZ21ZD2W/fgLenduiV6fWB4RjCv3s+cv0fDjofDW6xG0aY75Lnj4+ClqvT8A79WsgNnj+vDuoAAFKEABClCAAhSgAAUoQAEKUIACFJCBgOIDrEUrf8LClT9J+13VrlZOIv3vaShadP4Cj588R4UyRdC2eW3kyZkV3t5e0kbuS9dsx8XLN9CmeW2MGdjRXIYTwZfQoe8ktG9ZB1/07yCD8nAIFKAABShAAQpQgAIUoAAFKEABClCAAooPsEKu3ESrrqNRq2pZLJw8wFzR8/9cQ++Rc/Dg0VObVX4rf058N3ckAtKmMn8ugq05Szdi2hfd0aReFd4dFKAABShAAQpQgAIUoAAFKEABClCAAjIQUHyAJQw7DZiKv05dxOr5IxFYqrCZ9fmLMKzbug9Bh0/h1t2HMJlMyJU9M2pXD8RHrerBz9fb3NZoNKFxh+G4eecB9q6fhayZ08ugPBwCBShAAQpQgAIUoAAFKEABClCAAhSggCoCrLMhV9G2x3jkyJoRP349BhnTp01yZUXQNX72d9z/KslyPIECFKAABShAAQpQgAIUoAAFKEABCrhWQBUBliCK2wurYN4cWDhlAHLnyGK33NET59Fj2CxoNBqsX/IlCuXPZfe5bEgBClCAAhSgAAUoQAEKUIACFKAABSjgWgHVBFiCaeKc1fjxp73So4Fd2zdG+xZ1rfa4epUy9EUYvtuwC0u+3waDwYhxQzrjgyY1XSvO3ilAAQpQgAIUoAAFKEABClCAAhSgAAWSJKCqAEvMfO3WfZi5eD3CwiOg13uhUtmiKF2sIHLlyAx/P1/p++LthKfPX8bR4+fxMiwCei8dvhzcCS0b1kgSHhtTgAIUoAAFKEABClCAAhSgAAUoQAEKuF5AdQGWIHv4+ClWbdiFn379A0+ehSaqqNNp0aBWJfT8pDny58nuem1egQIUoAAFKEABClCAAhSgAAUoQAEKUCDJAqoMsOIUxJsFz4VcxYVL13Hn/mO8DAuHj4830gekwVv5cqJi2SLSqiweFKAABShAAQpQgAIUoAAFKEABClCAAvIVUHWAJV92jowCFKAABShAAQpQgAIUoAAFKEABClDAXgEGWPZKsR0FKEABClCAAhSgAAUoQAEKUIACFKCAWwQYYLmFnRelAAUoQAEKUIACFKAABShAAQpQgAIUsFeAAZa9UmxHAQpQgAIUoAAFKEABClCAAhSgAAUo4BYBBlhuYedFKUABClCAAhSgAAUoQAEKUIACFKAABewVYIBlrxTbUYACFKAABShAAQpQgAIUoAAFKEABCrhFgAGWW9h5UQpQgAIUoAAFKEABClCAAhSgAAUoQAF7BRhg2SvFdhSgAAUoQAEKUIACFKAABShAAQpQgAJuEWCABcBkMiE8IhJeOh28vfVuKQQvSgEKUIACFKAABShAAQpQgAIUoAAFKGBbQJUBVuXGPVGpbFHMn9TfrrpHR8egQoPuKF28AFbP/8Kuc9iIAhSgAAUoQAEKUIACFKAABShAAQpQIGUEVBlglajVCW8HFseyWUPtVqzz4SBpFdbhbQvtPocNKUABClCAAhSgAAUoQAEKUIACFKAABVwvwADr/8ZVmvRCWHgkTu9d5np1XsEscOdxODUoYJdAxrQ+8NFr8fh5JCKjjXadw0YUoID6BMTPAfHzQPwcED8PeFCAAp4rkCWdL7x0Gjx4GoEYg8lzIThztwrkyOjn1uvz4hTwJAEGWADW/7wf42atQvYsGbBn/SxPqr/b58oAy+0lUMwAGGApplQcKAVcKsAAy6W87JwCihJggKWocql2sAywVFtaTkyGAqoIsIIOn8KBI6fMvOu3BSFLpnSoVaXsa8mjYwy4cv0Ozpy/IrVr27w2Rg/sKMMyqXdIDLDUW1tnz4wBlrNF2R8FlCnAAEuZdeOoKeAKAQZYrlBln0kVYICVVDG2p4DjAqoIsDZsD8Kkud9DbMbu6PFW/pxYNWcE0gWkdrQLnueAAAMsB9A89BQGWB5aeE6bAq8IMMDiLUEBCsQJMMDivSAHAQZYcqgCx+ApAqoIsESxwsIjcPjvc9j+2xH8dvBvZEiXBuVLF3ltHbVaDQLSpka5km+hQa1K8PbWe0rdZTNPBliyKYXsB8IAS/Yl4gApkCICDLBShJkXoYAiBBhgKaJMqh8kAyzVl5gTlJGAagKsOFOxCqtum8F4K1/OJL2FUEY18aihMMDyqHIna7IMsJLFx5MpoBoBBliqKSUnQoFkCzDASjYhO3CCAAMsJyCyCwrYKaC6AEvMe/XG3bh09RbGf97FTgY2c5cAAyx3ySvvugywlFczjpgCrhBggOUKVfZJAWUKMMBSZt3UNmoGWGqrKOcjZwFVBlhyBufYrAUYYPGOsFeAAZa9UmxHAXULMMBSd305OwokRYABVlK02NZVAgywXCXLfimQUIABFu8KtwowwHIrv6IuzgBLUeXiYCngMgEGWC6jZccUUJwAAyzFlUyVA2aApcqyclIyFVB1gGUwGHEu5CquXL+Dl2ERMBqNbyxDxw/rv7ENGzhPgAGW8yzV3hMDLLVXmPOjgH0CDLDsc2IrCniCAAMsT6iy/OfIAEv+NeII1SOg2gDr2MkLGD1tGW7fe5Skap0LWpmk9mycPAEGWMnz86SzGWB5UrU5VwokLsAAi3cHBSgQJ8AAi/eCHAQYYMmhChyDpwioMsC6euMu3u82BpFR0VIdvb31yJY5PbRa7RvrumP11De2YQPnCTDAcp6l2ntigKX2CnN+FLBPgAGWfU5sRQFPEGCA5QlVlv8cGWDJv0YcoXoEVBlgjZm+HJt2HET2LBkw7vMuqFqhBDQajXqqpqKZMMBSUTFdPBUGWC4GZvcUUIgAAyyFFIrDpEAKCDDASgFkXuKNAgyw3kjEBhRwmoAqA6z67T7HrbsPsXjaINSoXNppWOzI+QIMsJxvqtYeGWCptbKcFwWSJsAAK2lebE0BNQswwFJzdZUzNwZYyqkVR6p8AVUGWGXrdUNMjAEndy+FXu+l/CqpeAYMsFRcXCdPjQGWk0HZHQUUKsAAS6GF47Ap4AIBBlguQGWXSRZggJVkMp5AAYcFVBlgVWzYHV46HY5sX+QwDE9MGQEGWCnjrIarMMBSQxU5BwokX4ABVvIN2QMF1CLAAEstlVT2PBhgKbd+jTsMx7Wb9zCy38f4qFVd5U7Eg0auygCrRedRuHL9Nv76dQl8fbw9qJzKmyoDLOXVzF0jZoDlLnlelwLyEmCAJa96cDQUcKcAAyx36vPacQIMsJA8gNAAACAASURBVJR7LzDAUl7tVBlgzV++GYu/+xlzJ/RF3RrllVcVDxoxAywPKnYyp8oAK5mAPJ0CKhFggKWSQnIaFHCCAAMsJyCyi2QLMMBKNqHbOmCA5TZ6hy+sygDr+YswNPtkJHy89fhu3khkzZzeYSCe6FoBBliu9VVT7wyw1FRNzoUCjgswwHLcjmdSQG0CDLDUVlFlzocBljLrJkbNAEt5tVNlgCXKcOnqLXzSfwqMRhOa16+GimWLImvmDPD10b+2SoXy51JeFRU8YgZYCi5eCg+dAVYKg/NyFJCpAAMsmRaGw6KAGwQYYLkBnZdMIMAAS7k3BQMs5dVOlQFWs05f4Mate4iOMSS5IueCVib5HJ7guAADLMftPO1MBlieVnHON7kCmudPoAl/CU1YKAz5iyW3O9mczwBLNqXgQCjgdgEGWG4vAQcAgAGWcm8DBljKq50qA6wStTo5XAkGWA7TOXQiAyyH2DzyJAZYHll2TtpBAb/BLaEJe2E+O3ziapgyZnOwN3mdxgBLXvXgaCjgTgEGWO7U57XjBFIiwDp59hJ+2LIHx8/8g/+ePIe/ny+KvJUbzd6rJv2n02nNBWnfawJOn7+ChrUrY8aYnq8t1JylG7F0zXZky5wBv62bCa1WY25vMpmwY89R/LTrD1y8dAOhL8KQLiA1ypUshPYt66JSuaJOvwnOhVzD2q378PfpEDx8/AQajUZ6iip/nux4750KaPpe1QTXfPj4KVZv3I1Df53FrbsPERkVjYzp0iKwdCF82OTd147TngDLGf0f/nkhAtKmkur3zffbEHzhXzwLfYkalUtj8bRBTndUc4eqDLAe/ffM4ZplyhDg8Lk8MekCDLCSbuapZzDA8tTKc96OCPgNaApNZIT51IjP58FYQB2rsBhgOXJH8BwKqFOAAZY666q0Wbk6wJr9zQZ8+8MOicVLp0P6dGmkMCkiMkr63tuBxTFvYj+k8veVvt7y6+8YNW0ZvL31OLB5LtKm9rdJKgKqem2H4O79x/js46bo3+19c7uw8Aj0HTUPR4+fl77n6+ONNKn98eRpKGIMsU85dWnbCIN7tHZKucRYZi5ZjxVrf020PxHUTRn5qdXnvx38G8MnfWO2EHtg6/VeePEy3Nzu/cbvYMygTyS7V483BVjO6v/nVZPx16mLmDhnNcRc446PWtXFyH4fO8XQUzpRZYDlKcVTwzwZYKmhiikzBwZYKePMq6hDwL9vQyAmxjyZyJ7jYShdRRWTY4ClijJyEhRwigADLKcwspNkCrgywFq5fiemL1orvZzs815t0aJBDfj5esNgMOLAkVMYPX05nj57gcZ13sZXo3tIMwmPiELNVv3wMiwCowd2RNvmtW3OUKwG6thvsvTZjtVTkS+3ZaV2n5Fzsf/wSeTIlgljBn6CqhVKSKu8wsIj8eNPezFn6QZpr+mxQzrhwya1kikILFm9DfOWbZL6admwBkSwUzBvDsQYjLh55wGO/H0OFcoWQcki+c3XOhH8j3nP63erlkPfrq1QpGBu6fP/noZi8y8HsWD5ZmlboXYt6mDUgA4Jxvm6AMuZ/ffu1AKLVm1FySL50KdLK5QqWgAiJPTy0iFzxnTJ9vOkDhhgqbjaIjXf98eJRGeYJVM67N84x+bnYtnmynU7cercZbwIC0fWTOlRp3ogundshoA0qRLtUyT+G7cfwOVrt2EwGJA3Vza0aFBdWmYaf2lrXAcMsFR8Azp5agywnAzK7lQt4N+zntX8oj4aiJjqjVQxZwZYqigjJ0EBpwgwwHIKIztJpoCrAqzHT56jbpvBiIqKxvjPu0CsJHr12BX0JwaNXSR9e9O341H0rTzS/4+f/R3Wbd0nBT7rlnxpc4bjZq7E+m1BKFO8IH5YNNrcRgRXIsDSe+mkPgvmy5ng/Amzv5Me9cuYPi32rJsprfZy9Hjw6CnqtRksrezq3qEp+nW1rAR7XZ9i3+sr125DhFfzJ/WTHjd8nc/ar8egVLECVk1eF2A5s39x0WoVS2Lh5AHSCjEejgswwHLcTvZnftxnEsTz0qWK5gds/IEWP3DEH6JXDxFAfTljhfTtEkXyIWP6AFz69ybuPvgP2bNkwA+LxkCEX68eIyYvxc+7D0k/7MqVKgS9l5f0/LVYwlm9UiksnDIgwdJNBliyv41kM0AGWLIpBQcidwGDAf59GliNMqpZZ8Q0bC/3kds1PgZYdjGxEQU8QoABlkeUWfaTdFWAtXztL5i5eD3y5sqKX76flqhDzVb9IbbQ6dmxOfp0aSm1u3DpOj74NDa42rpiEt7Kbx1CiVVJNVv2k/Zh+nJwJ7RuallF1WPYLPx+7Aw+aFIT44Z0tnndqzfuoknHEdJny2cPQ+Vyjm9TELf6Kn1AGuzfONuugEesjurQN3b1mHg8T6zWSuxo12sCzpy/Iu0V9uojiIkFWM7uX6ya2712JjKkSyP7+1nuA1R1gCWWT27cHgTx7Orlq7elP6BiWeHmZROs6iJWKYkllnXfqSAtyVTL0ejjYbj34D+c2L3U7imJJZpNOoyQljOKDeUqlo3dnE88q7tgxRYs/u5n6TnrZbOGWvUpgisRYBXIkx3fzPhcCrrEIZZGDhizQNpUr2+XVujRsZnVeQyw7C6NxzdkgOXxtwAB7BWIioR//yZWrWNqt0LUh6/fyNXe7t3djgGWuyvA61NAPgIMsORTC08eiasCLHuCJOEuHgMUjwPWrVEecyf0NZfiw8/G4vw/19CpdQPp8cP4R9wqq1f3yRKPBVZu3FP6HW7aqO5oUtf29gMiAAt8r5v0GOHIfh/ho1bWK7+Tcj989vkM6XdFsUH71JGf2XWq2Ah97rebpEccf1s747XnxLXNmjk99m2YbdU2sQDL2f3Hf8TTrgmyUaICqg2wrly/Iy19vHH7vtXkbQVYg8ctws79f2LyiE/RvH411dwubzfpJW2296Y/1PEnPHne91izeQ8GfPoBPv3I+hcgEWK16zkewRevYs3CUShb4i3zqS06j8Klq7cSfF80ePIsFHU+HCSl6WIjQbEJYNzBAEs1t5vLJ8IAy+XEvIBaBMJfwH9Q7L/Axh0xFWsjqkvsv5Qq/WCApfQKcvwUcJ4AAyznWbInxwVcFWCJxQjXb1n/Lvu6UYq3Aq6YPdzcZP3P+zFu1irpMb99G2dbPQkT9/tvg3crYeaXvczniDfu1Xo/4RM6r7tu784t0euT5g4Dxs1TPDooHiG05xgzfTk27TiIKhVK4NsZn7/2lN0H/sbALxdIbU7tWSY9LRR3JBZgObv/gZ99iG7tG9szNbZ5g4AqAyzxVoaWXUZJj7yJVFns3SSWXorVQ7YCrB17j2LohMV4r2YFzB7XRxU3jUjFy9btKj3nK573tfcQb6K4c++RlE6LlPrVQ2zaJ96e0PHD+hjWu530sWgvzsuTMwt+XfOVzUsNGrsQu4L+wvxJ/VG7WjlzGwZY9laG7Rhg8R6ggH0CmtCn8Bv6oVVjQ9FARPZP/PED+3qWRysGWPKoA0dBATkIMMCSQxU4BlcFWHGPBoqtW8TjdW86ShTJjwlDu5ibiSeMxGbu4qmk+L+DidVVNVr0k97cJ564qVG5tPmc+I8Gik3dxebxbzraNHsXbRLZKP5N54rP4+Y5vE97dPjgPXtOwZDxX+PXfcdQu3og5k/s99pzfj8WjB7DZkptDm1dgHQBqc3tEwuwXN2/XZNkI5sCqgywFq38CQtX/oTihfNJrxSNe5ytRK1ONgMs8dhcg/ZDkTtHFuz8wXYAo7T7Jy49F5vaLZjc367hP38RhipNeknB1avLK+M6iHueWqy+EquwxLH39xPoN3oemtSrgmlfdLd5rVUbduGrhT9Kq7rE6q64gwGWXaVhIwAMsHgbUMA+Ac3Tx/AbYf2ogClnAYSPWmJfBzJvxQBL5gXi8CiQggIMsFIQm5dKVMBVAZb4/VT8npqUlUmvDnLUtGUQL9mqUyMQ8ybEBj3bdh/G8MnfIFOGAOl3vvgv2rr38D/pyRlxrJ7/BQJLFXJ55eu3+xy37j60+QRQYhefNHc1ftiyN+krsH771mqPrcQCLFf373JUFV9AlQFWq66jEXLlJjYuHYdihfKay5dYgCXS5/L1P5MebTu+6xtVlPvi5Rt4v9sY6a0SYmnl4/+eS292EImzeBvFu9XKJUjUz4VcQ+vuY6UfVOIHlq1D7CNWtWlv6V8B/tg6X2oi3lY4/eu1r31rxJ7fj6P/6PmoX6siZo3tzQBLFXdZyk6CAVbKevNqyhXQPL4Pv1EfW03AFJAB4VPXKXdS8UbOAEsVZeQkKOAUAQZYTmFkJ8kUcFWA1WXgNBw7eQHJ2T9JvFCrfa8J0mNzB3+aj7Sp/RG3t1bntg0xpEcbq9mLp3gqNeohvflw7JBO+LCJZXP3ZDIlevon/afg79MhaNmwBiYO62rXZeI2uLdnD6yla7ZjztKNyJwxHYI2zbHqP7EAy9X92zVJNrIpoMoAq0KDz6Q34B3ZHvtK0bgjsQBLfB743qeIjolB8L7Yt+8p/TgbchVte4yXNl+3dYg3IEwc1g01q5Qxfyx+QIoflO+8XQZfTx1o8zzRX8l3O0tJ/Zm9y6U2C5ZvwdffbZV+AIofhLaOuL7fLl8cy2ZabwCvdGuOnwIUoICcBIx3b+J5/9hHvOMf6db9bvONtHIaO8dCAQpQgAIUoECsgNj+Zv7yzVLotHfDbPj7+ThEE7dXsQiHxCN377ToJy1ssPV2QnGBroO+wtET5+1a3eTQgF45SYRLImSytSIssf6vXLuNZp1iF1wkNo+4cz/qPRGnzl1GozqVMX209QttEguwXN2/M9w8tQ9VBlgijBKbl4sNw+MfiQVYYeGRqNiwu7Q6STwXq5ZDrEITzzjnyZkVAWlTITIyGpev3cbmXw5i4/YDUgglNvorX7qwNGXxulSRyMdfYmrLokydrtIPvdN7l0mbAYrXu4qUekTfj/Dx+7bfQHHy7CV83GcSypUshO8X2F7dpRZ3zoMCFKCAOwWMt67i+aAOCYYQsGwHNGkC3Dk0XpsCFKAABShAATsFxJYwYp/h6OgYaY+pMQM72nmmdbM1m3/D5HlrUKtqWbxXsyJGTlmKEkXyYf2SsTb7++3g39Jb5MUxY0xPNKxd2aHr2nuS2KhebOQujqRsdt6u1wScOX9FmteCSf2h0WgSXHLfHyfQd9Q86fsr5wxHxbJFrdokFmCJRq7u314ftrMWUGWAFfcmAxFgiSQ37kgswIrbw8mTwpW4VVOBpQpj9fyRElGKrMAKLI5lsywrsLgHFn8k2SvARwjtlWI7TxfQ3rwM38nW/8IoTCLGfAtjdstj9Up14iOESq0cx00B5wvwEULnm7LHpAu46hFCMZLVG3dj6oIfpEGJ1VOftm8MsVm7WIjw4mU47j34T/odbt+hE5g68jPpMblXD7EFjHizoJdOi0rliiHo8CmM7PcxPmpVN9HJiq1fxBYwWq0GnVo3xAdNakovRRNP4zx59gK37z6UFj+IBRNzJ/RNOtorZ0xb+CO+27BL+m6nNg3wcat6yJ41IwwGIx48forjp0Mg9mtu37KO+czLV2/jg8++lAK+ujXKS+GX2HheHGIRx087D2HG12sRGRWNZu9Vw5SRnyYY5+sCLFf3n2w0D+1AlQHW5HnfY83mPdIfSvGHM+6wFWCJ1Vdte46HWCYoNhcXm4x7wiHe1FilaexeVCfFZnZeOsTtm2XPHlgBaVLh8LaF0vnih434oSNeeyo2GbR1xO2BJX64xP8hxwDLE+4258yRAZZzHNmL+gW010LgOy3hG3UjBs6AsbDlsXGlSjDAUmrlOG4KOF+AAZbzTdlj0gVcGWCJ0YgnXWZ/swFGY+zWMGKlkV7vJe1TFf/Yu2EWsmXOYHMCwyYtwfbfjkifid/7gjbNtXob36sniT2ixQbw4k1/cYd48kYc4kmcuMNZL0ETfY6dsVLacD7u8PbWS+FU3JY44k324m2K8Y8/T16EeNv9k2eh0rfFE1XizYlx+z+L74kVZJOGd7P5RsXXBVjiXFf3n/S7jWeoMsC6e/8xxM0o0lbxZrzB3dtAvH701QDrRPAliDcMiOBGPGK384fp0jPGnnKIzdhFIi+CKBFIiaS6YsMedr2FsFTR/Fi7+EuJ6sCR0+g1YrZdbyHs0rYRBvdobSZmgOUpd1vy58kAK/mG7MEzBHRXzsFnxoAEk438dDQMge8oHoEBluJLyAlQwGkCDLCcRsmOkiHg6gBLDO3G7fvSAg2xN9Wde48RERkJXx8f5MiWEeLt8PXeqYBqFUvafIxOnC82SRebpYvjTdvFxKcQq7vE9jMngy/h0X/PpPAqdSo/aYuaSmWLokm9qihcIFcy9KxPFYHRhu37Y6/35Lm0r7V4oqp08QJo3fRd89Y38c8S4ZXYHkc8+njrzkOERUQiY7q0KFvyLbzf+B1UrVAy0fG9KcASJ7q6f6fheUhHqgywRO3Eih+Rxoplh+IQSx7F87XiD1zJovkhlgSKP4TiEAn24qmDIDYY95RDhHti3y+tVouTu5eaf9g1+2Qkrly/I71SNWvm9Ak4fvxpLybOWY3Wzd7Fl4M+kT4XjjVb9UeenFnw65qvbBKKWuwK+ivBc9QMsDzljkv+PBlgJd+QPXiGgPafU/Cd/XmCyUa17YuYms0Uj8AAS/El5AQo4DQBBlhOo2RHyRBIiQArGcOTThULFSo37imt4hKrmMRqJh4UUKKAagMsUYzgC/9i3KxVuHDpeqK1KVIwN8Z93gViRZEnHT/t/ANfTP0W1SuVwpKvBpunPvfbTfjm+22JPk7Ztsc4BF+8isXTBqFG5dLm88QG7WKj9jULR0n/ChD/EKl1nQ8HwWgy4eCWeVar3BhgedJdl7y5MsBKnh/P9hwB3YXj8Jk3PMGEoxt3QHQTxzaAlZMeAyw5VYNjoYB7BRhgudefV48VUEKAtWnHQYyZvhzpA9Jg/6Y50mOEPCigRAFVB1hxBRGBy1+nLuDGrQd4ERYOP9/Y5ZaVyxWD2MRcjYd420ThArlRvnQRafO9uEOsSBPh1dQFayCebf5u3kjpzYBxx+Mnz9Gg/VAYjUYppIp7U4N49njBii3S61zFMtHNyyZYLVGNe4NhgTzZ8c2Mz5E9S+zz1yLtH/jlQvzxZ3CCPcnE5wyw1Hj3uWZODLBc48pe1SegDT4K30WjEwZY7zRBdDvrvSOUOHsGWEqsGsdMAdcIMMByjSt7TZqAEgKsNt3H4WzIVXzyYX0M7d0uaRO0o7X4ne+zz2fa0dLSRLw9sFv7xkk6h40p4BEBlieWue8Xc7Hv0EnpkclC+XMhXdrUePr8Ba7dvCc9xys2txs3pDOavlc1AY94K6N45E884yxesSqeO/7n31sQe4uJvbLEWwsL5suZ4LwZi9dhxdpfpUcyy5V8C956PU6fvwKxYXzxwvmwau4I+Pv5WJ3HAMsT707H5swAyzE3pZ5liAJ03kodvXvHrTt1CD42Xo1tKFcdkZ/F7l2o5IMBlpKrx7FTwLkCDLCc68neHBOQe4AlficUvxuKNxdu/26qtO2Lsw/xhsAqTXolqdtWjd7BhKFdknQOG1NAlQGWeGxQ/IHwtMcC49/O4q2KP/60D8fPhOD2vUcIjxAb/XkjR7ZMqFK+BNq3rPvaH17n/7mGJau34fiZf/DiZRgyZUwnPTLYo0Mzm3tjxV1b7HP1/abfEHLlhrT/WM7smdGodmV0btvQ5psfGGDxh5C9Agyw7JVSfjujATi/VIccNY3IUCz2jTs87Bfw+vsAvJdNTHCC8a2SiBg82/6OZNqSAZZMC8NhUcANAgyw3IDOSyYQkFuAJZ6cEW8qFMe+P05gxJSlePEyHO1b1sEX/TuwghRQtIAqAyzxtkFxiFVCrRrWkN6OJ1YR8ZCfAAMs+dVEriNigCXXyjh3XCYT8M8PWjw+o4V/NhPKDrS8qtm5V1Jvb7o/98JnxdSEAVbW3IgYu1zxE2eApfgScgIUcJoAAyynUbKjZAjILcASexPfvPMAYeGR0nYu4ihVrABWzB4OP18ub09GqXmqDARUGWA17TgC/964a+YVyyXfqVwGLRvWwDtVynDTOhnceHFDYIAlo2LIfCgMsGReICcN79oOLe4c1Jp7K9TOgMxluQorKbxeh3fCe7WNfSj80yBs5uakdCXLtgywZFkWDooCbhFggOUWdl70FQG5BVjDJ3+DP44FS0/RiKdvmtSriq7tGtl8GobFpIDSBFQZYIkiiE3qft51GL/uO4r/noaa6yLevCD2fRJhltiMnId7BRhguddfSVdngKWkajk21ruHtbi61RJeiV580ptQfjhXYSVF1Ov37fD+Ya7NU8IW7Qb+/1hBUvqUU1sGWHKqBsdCAfcKMMByrz+vHisgtwCLdaGAmgVUG2DFFU1sRH7oz7P4efch7D90EpFR0eZ6io3FRZDVuO7b0ubkPFJegAFWypsr9YoMsJRaOfvG/V+wFhe/tw6v4s4s2NKIrG8b7euIreAVtBXe6xbYlAifshamdBkVrcQAS9Hl4+Ap4FQBBlhO5WRnDgowwHIQjqdRwAEB1QdY8U1ehkVg94G/sP23Izh28gLEBnfiEG/Nq10tUAqzalQu5QAjT3FUgAGWo3Kedx4DLPXWPPQGcHaxDiZD7Iajrx761LGrsLR69Ro4c2ZeezbBe9Ni2wHWyMUw5S7ozMuleF8MsFKcnBekgGwFGGDJtjQeNTAGWB5Vbk7WzQIeFWDFt37w6Cl+3X8Mu/b/idPnr5g/Ohe00s0l8azLM8DyrHonZ7YMsJKjJ99zwx9ocWahBoYIS3il0QGmV54azNvIhJw1+SihPZXU714H/ZZvbTaN7DcVhmLl7elGtm0YYMm2NBwYBVJcgAFWipPzgjYEGGDxtqBAygl4bIAliKNjDDh24jw2/3IQu4L+ktQZYKXczSeuxAArZb2VfDUGWEqunu2xR7/Q4NRcLaKfW6+8KtrBiGf/AncPWR4p1PnGrsLy8lOfg7NnpP/le+i3rbIdYHUeDkOlOs6+ZIr2xwArRbl5MQrIWoABlqzL4zGDY4DlMaXmRGUg4HEBltFowp+nLmDHnqPYc/BvPH8RZi5D+dKF8d28kTIoi+cMgQGW59Q6uTNlgJVcQXmdHxMBnP1ah7B71uFVgVYGZKtsQnQYcHyyDsZoy+c5axmRtyH3wnpTJfXbV0G/43ubzaLe74GYuu+/qQtZf84AS9bl4eAokKICDLBSlJsXS0SAARZvDQqknIDHBFiXrt6S3kq4Y+8R3H/4xCycPUsGNKtfDS0a1ECenFlSTp5XkgQYYPFGsFeAAZa9UvJvZzQA55fq8PyqdXiVs6YReRtZAqobu7W4tdeyCkvjFbsKyzuN/OfozhHqf1oG/a61NocQXb8tolt0defwkn1tBljJJmQHFFCNAAMs1ZRS0RNhgKXo8nHwChNQdYAl9rn6Ze9R6Q2EIVdumkvj7a1H3Rqxm7a/HVgCWq3tjYMVVktFDpcBliLL5pZBM8ByC7vTLyrenfHPD1o8PmP9xsGMpY0o8pH16ipDVOwqrJhwy89o8TZC8VZCHokL6DcugX7vRpsNYqo2QFSHwYrmY4Cl6PJx8BRwqgADLKdysjMHBRhgOQjH0yjggIAqA6ytuw5h22+HcfT4efObBoVNqaL5pdCqUZ23kSa1vwNcPMXZAgywnC2q3v4YYKmjttd/0eL2AevwKm1+E4p/aoBWl3COdw5oce2XeO01JgQONcA3gzo8XDEL73UL4BW01WbXhpKVEdl7oisum2J9MsBKMWpeiAKyF2CAJfsSecQAGWB5RJk5SZkIqDLAKlGrk5k3U4YANKlXBa0a1kDBfDllws5hxAkwwOK9YK8AAyx7peTb7t4xDf7dbJ1S+WczoWRPA7x8bY9bPG4oVmGJDd/jjsxlTSjUjm8kTKzS+h/mQv/7dpsfG/MVQcSwBfK9SewYGQMsO5DYhAIeIsAAy0MKLfNpMsCSeYE4PFUJqDLAKlOnK2pWLSOttqpRuTS8dDb+WV9VZVTuZBhgKbd2KT1yBlgpLe7c6z0+q0HI91rAZAmivNOaULrfm/e0uv+nBlc2Wf8cLzMgBqmyO3eMaunN+/tZ8Dr0q83pmDJmRfhE2xu8K2X+DLCUUimOkwKuF2CA5XpjXuHNAgyw3mzEFhRwloAqA6z/noYiQzru8uusm8SV/TDAcqWuuvpmgKXceobeAM4u1sFksIRXOj8TSvUywN+Od2eYjMCJr3SIfGI5P31RI4p15l5Ytu4Kn5XToDu2x3aApdMhfMFO5d5MABhgKbp8HDwFnCrAAMupnOzMQQEGWA7C8TQKOCCg+ADrxu370rRz58gCjcaxzdhNJhNu3nkg9ZMnZ1YHGHmKowIMsByV87zzGGAps+ZhD4DgRToY4m3ErtGZULKHAWny2D+nR2c0+GeN9Sqs0n1jkDqX/X14SkvvZZPg9XdQotMNn7MNJp9EntlUABIDLAUUiUOkQAoJMMBKIWhe5rUCDLB4g1Ag5QQUH2DF7Xd1YvdS+HjrE8gZjSZ8OWOF9P0JQ7vYlA0Lj0DFhj2kz84FrUw5fV4JDLB4E9grwADLXin5tIsKBc7M0yHqefx/XDChSAcjMpY0JXmgp2brEHbP0leafCaU6sm9sF6F9FkyDrpTfyQeYE1YDVOmbEn2l8sJDLDkUgmOgwLuF2CA5f4acAQAAyzeBRRIOQHVB1gxBgPEnlivC6cYYKXcDffqlRhguc9eaVdmgKWsihmigOCF1oGTmEH+ZgZkr5b08Eqc+/QfDc4vs16FVayzAemLOtafskTtH63PotHQBR9N9ISIYfNhzFfU/g5l1pIBlswKwuFQwI0CDLDciM9LmwUYYPFmoEDKCTDAAsAAK+VuOAZY7rNW+pUZYCmnguLNgReWa/HsgGkFAwAAIABJREFUstZq0DlqGJGvSfL2rQr+WofQa5ZVWOIthmUHchVWfGjv+SPhdf6vRG+YyN4TYShZWTk31CsjZYCl2NJx4BRwugADLKeTskMHBBhgOYDmglPE1kINPxqWoGdvbz3SpvZHvtzZULVCSbRuVgvpAxLulz1s4hJs33ME00f3RKM6b/570t7fT6Df6Hmo904FzBnf57UzOhtyFW26j0Pxwvmw4ZuxVm3jrvu6DjKmT4uDW+a5QE15XTLAYoDl1ruWK7Dcyq+oizPAUk65QtZo8fiMdXiVoYRRenTQwa0KzZN/cQs4M9/LCqNwWwMyleMqrDgUnzmfQxdyymxkTJcJ2qePzF9HdRyCmCr1lXNDMcBSbK04cAq4WoABlquF2b89Agyw7FFyfZu4AMvP1xuBpQqbLxgZFY0Hj57gxu3YPa8D0qTC0hmfo0SRfDaDJHcFWCJgsxWsiUGmS5saCyb3dz2iAq7AAIsBlltvUwZYbuVX1MUZYCmjXNd/0eL2AevwKm1+E4p3M0BrnTs5PKGLq7T477zlGj7pTQgcaoDG+rIO96/0E31nDIT2ylnzNAz5i0F39YL565gW3RBVv41ip8kVWIotHQdOAacLMMByOik7dECAAZYDaC44JS7AEkHQjtVTE1zhzr1HGDNjBY78fQ7FCuXFxqXjZBVg2RucuYBOUV0ywGKA5dYblgGWW/kVdXEGWPIv171jGvy72XqPKr/MJpTqY4CXE196F/4QODlTB5gsjxIWaGVEtsrJezxR/sL2jdDnq37WgVW56vA6adnUPbrO+4j+IPbFJUo8GGApsWocMwVcI8AAyzWu7DVpAgywkublqtZvCrDEdf97Gop3WvaDyWTCH1vnW614cvcjhAyw7LszGGAxwLLvTnFRKwZYLoJVYbcMsORd1MdnNQj5XmsVKnmnjQ2vfAKcP/ZL63R4eMISYOlTm1B+uAHahC+jdf7FZd6j75Re0N64ZB5ldK0W0Af9ZP46plJtRHUeIfNZJD48BliKLR0HTgGnCzDAcjopO3RAgAGWA2guOMWeAEtctlKjHngZFoF9G2Yja+b05pEwwHJBUVzQJQMsBlguuK3s75IBlv1Wnt6SAZZ874DQG8DZxTqYDJZASecTG175Z3HNuCOfASem6mAyWq6Zt5EROWtyFZbPhE+hu3PNEmC1/BT6LUvNXxuKBSKy3zTXFCYFemWAlQLIvAQFFCLAAEshhVL5MFMqwDp91oRrNz3n7zllS2qRN7fl73lvuo3sCbDuP3yC2h8OlPbBOvTzAmjibc7KAOtNwvL4XDUB1leje8BLZ/3oiiAWywMHj1skac8a29umelRUNIZP/kb67FzQSnlUxkNGwQDLQwrthGkywHICogu6CH8EnFmggyHc8hcMjdaE4p8aEFDABReM1+XVrVrcPWzZ+ErnG7sKy8vPtdeVe+++YztDe/+WeZiRXUbAZ/kU89fGXAUQ8cUSuU8j0fExwFJs6ThwCjhdgAGW00nZoQMCKRVgfbfOgIOHPSfA6tBGh5pV7d/g9E0B1ouX4Rgy/mv8fuwMRvb7CB+1qmdVbQZYDtz8bjhFNQGWs+wYYDlL0r5+GGDZ58RWAAMs+d0FUaFA8AIdIp/G/9cxEwq3NyJTGde/FTA6DDg+WQdjtOX6ud41Ik8Dz/nLna27wndUR2gf37UEWINmwGfWEEuAlS4jIqasld8NZeeIGGDZCcVmFPAAAQZYHlBkBUyRAZZriuRogOXv54tqFUuaB2UwGvHfk+e4cOk68ubKik5tGqJ5/WoJBu3uAKtAnuzIkD6tTcy2zWujYe3KroFWWK8MsF4pGAOslL2DGWClrLeSr8YAS17VM0QBwQt1CLtnvbQ7XyMjcqTgY3w3dmtxa6/lX+c0XrGrsLzTyMsrJUfjO7I9tE8emi8ZPnE1/EZ1sBpC2Ne/peSQnHotBlhO5WRnFFC0AAMsRZdPNYNngOWaUjoaYCU2Gr3eC++9UwEN3q2E2tUDZRdgvU5xSI826Ny2oWugFdar4gMshXlzuK8IMMDiLWGvAAMse6Vc385oAC4s1+LZZetl3dmqGlGgecqufhJBmliFFRPvEcZsVYwo0CJlx+F6dfuv4Df0Q2hCn1oCrOkb4TvqY2giI8zfC5uxGUilzJSPAZb99wJbUkDtAgyw1F5hZcwvpQIs7oH1+vshsUcIDQYjnoW+RPCFf/HtD9txIviStJppxpieVh26ewUW30Jo3593Blj2ObGViwQYYLkIVoXdMsCST1FD1mjx+Ix1eJWhhBFFOhgRby/MFBvwnYNaXNsRbzwaE8qPcM3bD1NsUsm4kN+QltC8fGEJsGZuge+UntA8umf+XsTY5TBmzZ2Mq7jvVAZY7rPnlSkgNwEGWHKriGeOJ6UCLM/UtX/Wb9oDS/QUYzCgTfdxuHj5BqaN6o4mdauYL5DUAGvfHyfQd9Q81HunAuaM7/PagZ4NuSpdt0SRfFi/ZGyygjP7RdTZkgGWOuuqmFkxwFJMqdw+UAZYbi+BNIAbO7W4td86vEqd24SSPQzQerlnjMZo4PhUHaJfWB5nzFzOhEJtDe4ZkJuv6jegqdVqq/DZP8Nn7lBor120BFiDZsFYqJSbR+rY5RlgOebGsyigRgEGWGqsqvLmxABLHjWzJ8ASI126ZjvmLN2Ilg1rYOKwrg4HWEePn0fXwV+hRuVSWDxt8GsR/jp1EZ0GTEXlcsWwfPYwBljJuGUYYCUDj6cmX4ABVvINPaUHBljur/S9Yxr8u9n6ba9+mU0o1csAL3/3ju/+MQ2uxB+bxoRygw3wy+zecbnj6v59GwIxMeZLh83/BT7fjIcu+Kj5e5GfjoEhsIY7hpfsazLASjYhO6CAagQYYKmmlIqeCAMseZTP3gBr5fqdmL5oLWpWKYNFUwY6HGDdvf8YddsMRpZM6bBvw2xoXvMYwuqNuzF1wQ9o3bQWvhzciQFWMm4ZBljJwOOpyRdggJV8Q0/pgQGWeyv95KIGF1ZqAZNllZM+tQml+8njUT2TETjxlQ6RTyzjS1/MiGKdPG8vLP+e1q+FFhu2e38/C16HfjXfRFHt+iHmnabuvakcvDoDLAfheBoFVCjAAEuFRVXglBhgyaNo9gZYvUbMxoEjp9Hxw/oY1rudwwGWOLFV19EIuXIT077ojib1LI8jxhcJj4jC+91G4/qt+9JKLbFiK/6R1EcX5aHtvlEwwHKfPa8MgAEWbwN7BRhg2Svl/HahN4BzS3QwxljCIZ2PCSV7GpAqu/Ov52iPj09rEPKD9Qqx0n1jkDqXoz0q8DyDAf59GlgGrtUhbOFOeP+0HF67fjR/P7pxB0Q36ajACQIMsBRZNg6aAi4RYIDlElZ2mkQBBlhJBHNR8zcFWFFR0VixbifmLdsErVaDTd9OQOEClr8kOhIkHTx6Gj2Hz4avj7cUhonHEsXbDuOOf2/cxdgZK3D8zD+oWqEkls4YkmD2jlzXRYSK6JYBliLKpN5BMsBSb22dPTMGWM4Wta+/8EfAmQU6GOK95U+jNaH4pwYEFLCvj5RsdWq2DmH3LEFbmnwmlOrpQXthRUXCv38TM7nJ2wfhc7fDa88meG9abP6+WH0lVmEp8WCApcSqccwUcI0AAyzXuLLXpAkwwEqal6taxwVY/n4+eDuwuPkyRpMJz0Nf4uLlmwgLj4BOp8WoAR2lx/niH3FBUq7smZE2TSqbw0wfkBrfTLcOoX78aS+mzF8D8bZDce2CeXPAx8cbDx49wY3bD6R+3i5fHHPG9UGa1An33Ii7br7c2ZA+wPYbotOlTY0Fk/u7ik5R/TLAUlS51DdYBljqq6mrZsQAy1WyifcbFQoEL9Ah8qklEBKtC7c3IFMZU8oPyI4rPg3R4Pxy61VYxboYkL6IPMdrx5SS1iT8BfwHtbQEWH6pED7rJ+j+3AufFVPN3xf7X4l9sJR4MMBSYtU4Zgq4RoABlmtc2WvSBBhgJc3LVa3jAixb/ft465EtSwZULFsUH7WqZ7XyKq59XJD0uvFlTJ8WB7fMS9DkyrXbWLNlL/48eQFibyyDwYD06dKgZJH8aFKvqvSmQrHqy9aRnOu6ylLO/TLAknN1PGBsDLA8oMhOmiIDLCdB2tmNIQoIXmi9mkmcmrehETlryXtfqeCvdQi9ZvlLgn82E8oO9IxVWJrQp/Ab+qElwEodgPDpG6G7cBw+84abv28sXBoRA2faeTfIqxkDLHnVg6OhgDsFGGC5U5/XjhNggMV7gQIpJ8AAK+WseSUbAgyweFvYK8AAy16p5LczGoALy7V4dllr1VnWSkYUfF/e4ZUY8ItbwJn5lv0HxPfkvGos+RWz9KB5+hh+I9paAqyAjAifuhaam1fgN7mHJcDKlgcRXy5z5qVTrC8GWClGzQtRQPYCDLBkXyKPGCADLI8oMycpEwEGWDIphKcOgwGWp1Y+6fNmgJV0M0fPCFmjxeMz1uFVhhJGFPnYCI31tx29hMvPu7hKi//OWwbrk96EwKEGxYzfUSDN4/vwG/WxJcDKkAXhk9ZA8/QR/EZY3rRjSpUW4TM2OXoZt57HAMut/Lw4BWQlwABLVuXw2MEwwPLY0nPibhBggOUGdF7SIsAAi3eDvQIMsOyVSl67Gzu1uLXfOqVKnduEkj0M0FovakrehVx8dvhD4ORMHWCyPEpYoKUB2d5W915Ymvu34De2s1nXmCUnIsatBEwm+Pd6z0o9bNFuQGN7PwYXlydZ3TPAShYfT6aAqgQYYKmqnIqdDAMsxZaOA1egAAMsBRZNTUNmgKWmarp2LgywXOsrer93TIN/N1tvgO6b0YTSfQzwSvjSFNcPKJlXuLROh4cnLAGNPrUJ5YcboNUns2MZn669ew2+4z+1BFjZ8yJizLfS135DWkHzMtT8mXi00BSQUcazsT00BliKKxkHTAGXCTDAchktO06CAAOsJGCxKQWSKcAAK5mAPD15AgywkufnSWczwHJttZ9c1ODCSq3ViiUR+JTqY4Bvetde21W9Rz4DTkzVwWS0hFh5GxmRs6b89/Fy1ER78zJ8J/e0BFi5CyJi5GLpa9+xXaC9f9MSYH2xGKZcBR29lNvOY4DlNnpemAKyE2CAJbuSeOSAGGB5ZNk5aTcJMMByEzwvGyvAAIt3gr0CDLDslUp6u9AbwLklOhhjLEGPVm9Cqd4GpMqe9P7kdMbVrVrcPWx5JFLnG7sKy8tPTqN03li010LgO62PJcDKWxgRwxfGBlizBkF7Kdj8WWS/qTAUK++8i6dQTwywUgial6GAAgQYYCmgSB4wRAZYHlBkTlE2AgywZFMKzxwIAyzPrLsjs2aA5Yjam88JfwScWaCDIdwSXmm0JhTrYkS6QsrfLyo6DDg+WQdjtGV+OWsbkbe+Oldh6a6cg8+MAebCGwqWQOSQOdLXPkvHQ3fid0uA1WU4DBXrvPkmkVkLBlgyKwiH47DA8+capE2r/J+zDgM44UQGWE5AZBfJFmCAlWxCdkABuwUUH2DNWrLe7sna03BQ99b2NGMbJwkwwHISpAd0wwDL+UWOCgWCF+gQ+dR6I+/C7Q3IVEY9v1Td2K3Frb2WVVgaLxMqfGGAXoH7er3pLtD+cwq+sz83NzMWKoOIQTOkr71/nAevg9vMn0V90BMxdVq9qUvZfc4AS3Yl4YDsFAgP1+D4SS2u/GvClX+1SJvGhH59DPBW8b58dtI43IwBlsN0PNGJAgywnIjJrijwBgHFB1glanVyapHPBa10an/s7PUCDLB4h9grwADLXin72hmigOCFOoTdsw6vcr9nRO466lqdJOb69yQdDBGWuWarakSB5uqap6i87sJx+Mwbbr4JxCOC4lFBcei3fwf9jtXmz2Lqt0NUiy723TAyasUAS0bF4FCSJPDPJQ2+/9H6RRkVyhvRrLH6fhYlCSYZjRlgJQOPpzpNgAGW0yjZEQXeKKD4AKvhR0Nx4/YDvJU/J0oVLYDIqChERcXAaHTsLwPzJ/V/IxobOE+AAZbzLNXeEwMs51XYZATOL9Pi2WXLqiTRe9ZKRhR837Gfnc4bnWt6unNQi2s74q3C0poQONwAnwDXXM9dvWqDj8J30WhLSFWqMqJ6TZS+9jrwM7zXzrd8Vq0hoj4e5K6hOnxdBlgO0/FENwucDtZg0xbrAEsMqVMHIwrkV+fPXleTM8BytTD7t0eAAZY9SmxDAecIKD7ACrlyE+16jofRZMLyWcMQWKqQc2TYS4oIMMBKEWZVXIQBlvPKeGmdFg9PWIdX6YoYUayTERrrbzvvom7uyRgNHJ+qQ/QLyyqszIEmFGpjcPPInHt53alD8Fky1typoUxVRPYYJ32tO3EQPksnWD4rXQWRPcc7dwAp0BsDrBRA5iVcInDsTy127Ez4QzZ1ahMG9OWjhI6gM8ByRI3nOFuAAZazRdkfBRIXUHyAJab28+5DGDF5KTKkS4P1S8Yie9aMrLlCBBhgKaRQMhgmAyznFOHV/aBEr6lymFCylwE6le/Dcv+YBlc2x1v9oDGh3GAD/DI7x1YOvXj9fQDey2JXXIkjpnxNRHUbJf2/9p8z8J092BJg5S+GyKHz5DDsJI2BAVaSuNhYRgJBB7XYF2T7XwkqBhrRtAlXYSW1XAywkirG9q4QYIDlClX2SQHbAqoIsMTUxs1ahfU/70eRgrnx/YJR8PfzYc0VIMAASwFFkskQGWAlvxD3jmnwb/wAB4BvRhNK9TZAnyr5/cu9B/Ho5ImvdIh8YlmFlb5Y7MoztRy6P/fCZ0XsnlfiEG8ZjOwSuyeW9t4N+I7rav7MlCk7wid8p7ipM8BSXMk44P8L/LpbiyNHE1/mykcJk36rMMBKuhnPcL4AAyznm7JHCiQmoJoAKzo6Bh/3mYSzIVcxYWgXtGr0DquuAAEGWAookkyGyAAreYV4clGDCyu1gMkS3nj5m1C6nwG+6ZPXt5LOfnxag5AfrPegKd03BqlzKWkWiY/V6/BOeK+eaW4QU6U+ojoOif365XP4D3nfEmD5+CF8zs+KmzgDLMWVjAP+v8CWrVqcPJ14gBUQYELfngZ4e5PMXgEGWPZKsZ0rBRhguVKXfVPAWkA1AZaY1t37j3Hi7CU0rvM266wQAQZYCimUDIbJAMvxIry4DZxdpIMxxhJeafUmlOxpQOqcjver1DNPzbZ++2KafCaU6qmOvbC8ft8O7x/mWgKs6o0Q9dFA89f+PetZlS18/q8weXkpqpQMsBRVLg42nsAP67S4GGIJsGpUM+D3Q9aBevlAI5rzUUK77xsGWHZTsaELBRhguRCXXVPgFQFVBVisrvIEGGApr2buGjEDLMfkwx8BwQt1iAmzhFfQmFC8qxHpCpkc61ThZz0N0eD8cutfGot3MSBdEeV7eAVthfe6BZYAq1ZzRLXpY/7ab1gbaJ7/Z/46fOL3MGXMqqiKMsBSVLk42HgCy1bqcP2G5Wdxl08MuBCiSfBYIR8ltP+2YYBlvxVbuk6AAZbrbNkzBV4VYIDFe8KtAgyw3MqvqIszwEp6uaJfAmfm6RD5NF54BeCt1gZkKa/8sCbpIpYzgr/WIfSaxcU/mwllByp/FZbXnk3w3rTYPNHoOq0Q/UFP89e+k3pAe+uK+euIYQtgzFckOZQpfi4DrBQn5wWdJLDgax0ePLT83Ondw4CMGUyYv0iHJ/F+TvOthPaDM8Cy34otXSfAAMt1tuyZAgyweA/ISoABlqzKIevBMMBKWnkMUcDZr3V4ecc6vMpdz4jcddWzaXnSVCytX9wCzsy3fnSuSHsDMpZRdrCn370O+i3fWgKs99ogumU389c+84ZDd+G4JcDqNQHGUsp67J4BlqN3Pc9zt8CM2To8D7X8TB7c3wCx79XtOxos+fbVRwlNaN5E+aG6q80ZYLlamP3bI8AAyx4ltqGAcwS4Ass5juzFQQEGWA7CeeBpDLDsL7p42975ZVo8u2y9WXDmQCMKtWF4FSd5cZUW/523GPmkNyFwqAGaxPdYtr8Ibmqp/+V76LetsgRYDT9CdLNOlgBr+VTo/tpr/lps8C42elfSwQBLSdXiWOMLTJjihehoy3dGDYuB9/9fmr1ztxaHX3lDIR8lfPP9wwDrzUZs4XoBBliuN+YVKBAnwACL94JbBRhguZVfURdngGV/uS6t0+LhCesUJl0RI4p1Mio6nLFfwL6W4Q+BkzN1Vm9mLNjKgKyVlbsKS799FfQ7vrcEWE06IrpxB/PX+o1fQ793s+Xzlt0Q/V4b+8Bk0ooBlkwKwWEkScBkAr6cYL3qc/yYGHMfBgMwbyEfJUwSKgAGWEkVY3tXCDDAcoUq+6SAbQEGWLwz3CrAAMut/Iq6OAMs+8p1Y7cWt/Zah1epcphQspcBOr19fXhSq0vrdHh4wvJIjz61CeWHG6BVqJX+p2XQ71prLmFUiy6Iqd/O/LXXrh/h/dNyS4BV5wNEf9BdUSVngKWocnGw/xcIDQWmz7YEWP7+wPAhlgBLNLP1KGFgWRNaNOOjhIndSAyw+EdMDgIMsORQBeDG7fto+NGwBIPx9tYjbWp/5MudDVUrlETrZrWQPiBNgnbDJi7B9j1HrL6v99IhbZpUKJgvB2pXC8SHTWvB18f7tRMOOnwKO4P+xKmzl/H4yTPEGIzIEJAGxYvkQ90a5dGkbhXodNZ/V38W+hLVm8e+dOfwzwuRJrW/zWv0HTUP+/44gSoVSuDbGZ8nOo5GHw/D9Vv3sXz2MFQuV0xq9+4HA/Dg0VPUrh6I+RP7vXYOW379HaOmLUPfLq3Qo2MzeRT4/6NggCWrcrh+ME+fvUCLLqPw8PFTDOnRBp3bNrR50b9Ph2Dlup04de4yXoSFI2um9KhTPRDdOzZDQJpUiQ5U3Owbtx/A5Wu3YTAYkDdXNrRoUB3tW9ZN8AdVdMIAy/U1V8sVGGC9uZIPjmtweb31Pio+6Uwo3c8AfeJ/bN/csYpbRD7D/9i7Cignri78ZSZZY9HFrVDcHUoLlCItFKe4Fffi7u7u7u5QKO4FCsW1aHHXsmyym8zMf97sn5nMbrKb7EYm2ffO4Rw2ee+++777ZjLvmyu4OIGFwMskVpZqPNKX885QS92WhdAd3iJZzFi3PYyV60t/a0/thd+aadLfXKlKCG8Z/WFPzSanBJaarUN1s4XAm7caMVm7uYWECOjeJToxtf8gg1NnlAcbGkpoe19RAotec2pAgBJYarCCTGAFBvihaIGcklLhEUa8fvsBj5+9Fj8jZ9nFU/oiX64sCsXNBFb2rBmQMnlS8bsIoxEv33zA85dvxb+/ypgGy6cPQJpUyaMt+u37T+g5fC4uXrsjfpcoKAAZ0qaEVqsV5yffk/Z15nSYNaYbsmZOp5DRqONIXPvnX5FcIiRT1GY0mvBtzS4I04dDy7L4c+dsq0TXqzcfUKF+T5FoO/P7XBACjzQzgUX+P3loJ/xcsZRNw1ECSx17mmoB4LfBM3Hk1CURC1sEFiGghk9ZLvYhF3ZI8qS4++AJXrx+j3SpU2DdvGFInTJZNDwHjluMXQdOgTDVRQrkgE6rxZWb9xH6RY8yJQtg7vge4sVm2SiBRbelvQhQAitmpD78o8GtFYwiHE4bJKBAFw6BKe1FOWH2+3cngxen5QOjNlBAsUEc2JhfsKkSLL+Nc6A9tlPSLaJBF5h+qC39zV49A//5w6S/ubzFEf7beFWuxZZSlMDyKnNRZf+PwOMnGixZLj8DZcwgoH2b6ASWrVDCbl14BPh7b3izqzYCJbBchSyV6wgClMByBC3X9TV7YBFPqz2rJ0SbiJBQw6Ysx5nzN5Anx1fYsnikoo+ZwLJG7tx/+Ay9R87H3X+fovy3hTF3XA/F2M+hYWjQYYRIkmXLkgF9OzUUvaQsz7637z/BrKVbQTy0CIm2ceFwZEqfWpIzc8lWLFrzO5rWrYxB3ZpG0//Pc9fQod9UpEiWGO8/frZJQv1+4DQGjFsknr8XTuotySEEFtFTb4hAsqTB+H3leFGWtUYJLNftUyrZAQQ27DyC0dNXoVrFb7Dn8F9WCawnz1+jevOB0GpZLJjYCyUK5xZnEAQBc5Zvx4JVu/BN0bxYOq2fYmZCXBECizDKi6b0FYku0sL0BvQYNgen/r5u1QWRElgOGDCBd6UElu0NEPoMuD6PBW+SvYgYbWTYYHCGBL5x7Fi+MQy4MI4Fb5Txy1iRR+Yfvc8LS7duJnQnd0urjmjcHaZy1aW/mX9vIWCS7DbOZ8oOw6D5dqCkni6UwFKPLagm9iNw+44GazfIBFaO7AKaN7EeGkhCCRctZUHyZplbkcIC6tBQwmiAUwLL/j1Ie7oOAUpguQ5bRyTHRmARWYT4KVenm3i2JR5MlqGEMRFYZOz9R89R89dBYBgNTu2aK4YlmhsJtyOkT96cWbBixgDR+8paI/MOnbRM7FsobzasmzdU6nbu0j9o1XMCiAfYzuVjow0fO3M11m0/jM6/1sK8lTtRtUIpTBnWKVo/sy59OzdCywZVpO8JgZUiWRJkz5JBDJWs8kNJTB3e2aqelMByZOfRvi5BgLDG9duPQKF82VC3ajmRlbXmgTVu1hqs3XYIPdrVQ7um8qGHKEUuuMadRomujWvnDkHhfNklXWu3GiIy0lE/Jx0+fPqMivV7QafT4vi2mYq4YUpgucTcPimUEljWzap/C1yby8IUJpMv0Ahiwvbkuenbensvhqi5wxhdpBeWznoKAnvFur0fCQ8kYYLmFtGsF0zfyaHimrcvEDi0hfS9kCwE+vFyziy3KxyHCSmBFQfQ6BCPI3D5qgbbdsgEVsH8AurVtZ3b6sAhBn9aeIaSBdBQwuhmpASWx7c2VQAAJbDUsQ3sIbCIpiV/7ogvYQYc2TxdEQoYG4FFxn5XqytISp6tS0Yhd/bM4sJfvnmPHxv1AcfxIvFECKiYGvGAqtKkrxhSSJxCiHMIaSREsHSNzqKK6zWaAAAgAElEQVSH1IntsxCSPIlCDJmDhAee2DELPzXu+38Sbo4Y/WTZKjfqI4Y8bl82Bjm/zih9RQgsP50OGxcMR82Wg/Duw3+YNbobKpaNHq5ICSx17OkEqwWJ+23YYaR4cW1fOlr0hiIhgtYILPOGj3pBm8Fbv+MwxsxYjRb1f0L/LpGJgckFQsZlzpAae9dOsopzrxFzsf/Y35g9tjsqfFdE6kMJrAS7LR1eOCWwokNm/AJcncUi/KMFeQUgewMOqYtR8sqRTWbSAxcmsOAMMpbpvuORtaZ3eWH5r5gI9uwhaenhLfuBK1VZ+ltj0COwp5yMU2BZ6OfscwQqj/elBJbHTUAViAMCZ84y2LtfDlUuWYJH9aq27y8klHDeQgZv3spjgoMF0FBCJfiUwIrDZqRDnI6Auwgs4/k/wT247XT91SpQV/w7sF9HRgPZ0+whsMz5oUgI36ldc6DRyM999hBY31TvLIbhHdgwRcxvRdrGnUcwavoqFC+UCytnDrRHVUxZsBHLN+xFg5o/YHivX6UxHftPxcmz16KFB9779xlqtRqMYgVzYtWsQeg7ej7+OHwWi6f0ERPTm9vTF29EcitliqSi44hlIwSWycTh5I7Z4rmcnM9Jv10rx0XLcU0JLLvM6PxO1ZoPEKsNWMaokk3x5Pkbq3GxztdAHRLN7obERZC4Cm7adRQjp62MRmD9FxqG0tU7i0w0IbCstVt3H6Feu+Gi9xXxtiLt8MmL6DZ0FqpXLo2Jg61Xs1q5eT8mzV0venUR7y5zowSWOvaIN2hBCSyllbgI4Pp8Fl+eK8krbw19U8MefH6CwcM98mFRwwgoOoCDf2QeT69ofkvHQnv+mKRrRJvBMBUvr9A9sGsVaMjp+P8tbOo2IMh6DgQ1LpoSWGq0CtUpNgSOHmdA/pnb9+V4VCwfM0H+8pUG8xcpQwkLFxJQtxatSmjGkRJYse08+r07EHAXgRW2aBIiDu1yx5JUMUdQ+77wq1TLbl1iI7BIXuY+o+bj5NmrYo4pkmvKssVGYN24/VDMc0XyRh3bOlMqUDZ4whLs2PenWK2PVO2zp5FKgqSiIPHiIt5c5rZi0z5MnrcB9ap/j5F9WkmfL167GzMWb0HP9vXRtkk1kbwiJFbj2hUxpEdzqd/WPScwbPIyq+dyQmAR766/ds8T+5M0PwdPnEetn77DuIHtFGpTAsseK7qgT77yLcUkartWyDGkhNR6+OQlbhxb4YIZ1SeSJInrMmgG6lQtizH924gKmlniqB5Y5ouyaIEcWD17sNXFkBKf39boIsYLk7hh0ki1wsnzN6BD8xro1uYXq+MOnbyA7kNn46fyJTBtRBepDyWw1Ldn1KoRJbBkywg8cHMpg0/3lJWqUhXlkaOhd3kMqWm/8cZILyxjqEwKpiomIEcD7zks+i8cCfbynxKs4e2HgytSRgFz4JBm0Lx7JX1mGL4MfNpMajJFjLpQAstrTEUVtUCAeF8RLyxzq1KZx7elY79fHzrC4MSfynt98yY8cmSPfWxCMAAlsBKCldW/RkpgucZGcSWwggID8F0J2SuJ43m8//AfiCMGqSLYsmFVkbSJ2mIisB48foFuQ2bh38cvMKhbMzStW0kaThKrkwTro/u1Rt2fy9kFxj/3HuOXtsNEMox4RJnbnQdPUaf1EDG5+751cmRTs65jcen6XSlEkXiBlan1m+hBdXizXF3avAZCSEVdIyGwCIn3996F4nQkhJGEEn767wsWTOyNsqUKSHpQAssuMzq/U0InsMimJLmpkiQOwpbFoxAU6C+CbIvAOnvpFlr3nIhy3xTC/Ak9rRqE5MHK/0MrkXG+eniZ2GfOsu2Yv2qnzaqGpI9Z9jfF8mLpVDkBPCWwnL/vfVUiJbBky97dyODNReWBJml2Hnnb8NAoP/bV7eCydb06q8H9bRa5BDQCivTmEJjKZVM6VbD/vKFgr/0lyQzvNApcwdKKOQImdgXzUA5BCO89HVx2+UHPqQq5QBglsFwAKhXpcgS27mBx5apMjpOE7CQxe2zNWihhoiAB3X+jVQkJdpTAim0H0e/dgQAlsFyDclwJLFvakHzMP5YrLkYkVSgTPe+TmfwhXlGpUyYXxZCQu5ev34EQWGR8l5a1o+WJNpNLJKE6SaxuTzN7i/n56XDpwGLFkO/rdhfJpYMbpiB92pQiwVSmdlekSx0ihi6aGzm3kzP25kUjxOTxpJX/pQfevPuIo1tmIHXKZAq55iqE5/ctkj43VyxMmyqFGEpoTj5PCSx7rOiCPgmZwCJEU7u+U3D+8j9idQPzpiYw2yKwiDtlx/7TxERuJKGbrVaoYhuYOA5XDi8VS4NOXbAJyzb8gYG/NUWzX5SumGYZhDEmF3eR/DmwZo517y4XbAEqkiLgcwjc3Mnh5u/KN+/JMgPl+2uh9VeGE/rc4t2wIIEXsHeQCWFv5cnSF9Hg2y5aN8we/ylCx/aC6co5SVDwoKnQFlY+TH2Z0A/Gi6elPon6jIWu5Pfxn5xKoAhQBGwiMHuRCVduyIRVl7ZaFClg3z37yTMBoyabFFUJS5dg0KaZMnEvhZ8iQBHwbQRoDqyY7WsrhJAkVydRRNduPcCSdbtx8dpdqxX8zASWtVmIVxcheNKlThHta2d6YBHh/ccuxO6DZ8ToKRJFZSaZiNcX8f4yt9VbDmDCnHXo1KIWurauI5JsNVoMjBaBZu5vjcAi33UeOB3Hz1xBgxrlMbx3S7E7JbA8dC9JyAQWIZQIsdS3UyO0bCiXzySm8KgHVtG8YrUF2igCFAHHEXh4msf5ZcpwtqAUQMWhWvgntu8g5PisCW/E0795/LVQiXOFISxSZFG/e1voqG4wXb8oE1jDZkKbv5jCiGHzxyPi6B7ps6B2feBXuXbCMzRdMUXAjQhMmGHCvX9lAqtfNy1yZrP/vr19D4c9B5QvL7p30KJAXvtluHG5dCqKAEWAIuB2BGLLgUUUIk4YpLgZCeGbOKQDqleSvdSthRASp5AmXcbg6s37YgEzUsgsahsycalI+JiJJHsWfvT0JXQdNDNaDiwyluTTInm1avz4LSYMai8lbF80uY8iNNKcsN2cR8t8xm9e70cM6Nokmhq2CCyS2J6EEpLwwmXT+6NUkTzYuf8UBo1fLOb0Irm91NQ0ArGKj7aESmCRXFZNu4xGicJ5sGhyb0V1hZgILHMsrj05sEjlhtO/zxV3zqrN+zFx7nq7cmBVKlsMM0f/Ju04GkLooxefC5aV0EMIP/yjwa0VDCDIhxU2UEDBrhwCI4ug0OZEBC5PZxH2UsY6cRYBBTqpPxeW/9SeYO9dl5Aw9J4OPkp4oG7HUuj2b5D6GKv/CmM1+Y2eE2F0iSgaQugSWKlQFyMwex6LN2/le0qXjiakSW3/pBwPzFugrEpIQwlpCKH9O4j2dCUC7gohdOUafEG2PQQWWac5Ibpljmjyua0cWORs3bDjSAQG+IuF4KKG5pkLpJUskhvLpw+wC8ppCzdh6fo/0LBWBQzr2UIx5vXbjyBkE6lyuH/9ZJSr0w2G8Aic3jVXDGO0bDVbDsb9h8/EioPEG2vvkbNiKiCSEihqs0VgkX5bdh/H8CnLkTFdKuxYPhbHTl8SE95TAssuczqvU0IlsMxujNm+So8kiRNFA5TE1D55/lqMqU3z//heEtYXpjegRNWOdlUhLJA7KzYsGC7KJi6HxPXQniqErRv9jN4dG0g6UQLLefvd1yUlZAIr9BlwfR4L3iQffhitgHwdOCTO7OuW98z6Pt7W4OYyZXhO3jYckuVU9zufgIm/gXn4j0xg9ZsFPmseBYi6Q1ug2xqZwJM0U/laiGjY1TNAx2FWSmDFATQ6xOMITJ7G4rNFgYjePTkkTezY/cRqVcKCAurWVj+57ioD0BxYrkKWynUEAUpgOYKW6/raS2CZK/19X7oQ5o2X8z7HlMR9xJQV2Lz7WLSCZGQ1hHCq3LC36N21e9V4ZM2cLsZFhkcYUaVJX3EcIbwI8RW11fx1EO4/eo4lU/qibZ/JNlP8kMqEhJAj+bdIUbV37//Dmd3zpNzXlnJjIrBIvza9J+GvCzfFlECli+UTC8FRAst1+9Wq5IRKYP3afTzOX5ET9NoDu7kqo/liObJ5ukhkRW3rdxzGmBmr0aDmDxje61fxa0KIkWRzmTOkxt61crUEy7G9RszF/mN/ixeXZXI7SmDZYx3ahyCQUAks/Vvg2lwWpjCLMBGNgDwteSTP7djhh+4kxxC4Np/F54cy7kFpBRTuqe6DYsD4zmAe35UWahg4D3zmHIqFs2cPwX/FROkzU7HvEdF2iGPgeLA3JbA8CD6dOs4IjByjBfGiMrehA0zQ+Tku7vBRBsdP0qqEZuQogeX4HqIjnI8AJbCcj2lcJNpLYJlzPpFwQBIWaG4xEVgfP4Xi52b9xVxaCyf1RpmScsU+Mt4cRlgwbzYsm9YfgQG2b/BjZ67Guu2HEVPU07hZa7F220ExxHH3oTM2KxxeuXkfTTqPRu0qZcTQw+KFcmHlzIFW4YuNwHr28i1qtxoMvSEC3drUxcwlWymBFZeNGJ8xCZXAig0zWzmwyDiyURet+R092tWLVmGBfN+o40hc++dfLJjYC2VLFZSmMldfWDt3CArny65Q4cOnz6hYvxd4QcCJ7bOQJDhI+p4SWLFZi35vRiAhEljGL8DVWSzCPypznHxdl0PaUpS8cvXVEfoUuDpb6aqdsymHlAXVi33A6HZgnj+UoDEMWQQ+Q1YFVOzN8/CfLT/c8DkKwdBLrmrjalzjK58SWPFFkI53NwJGIzB6vPJeMmqYKU5q0FBCJWyUwIrTNqKDnIwAJbCcDGgcxcVGYEVEGLF84z7MWroVDKPB1iWjkfPrjHYRWKTThp1HMHr6KtFpg4TZ+fvppLGfQ8PQoMMIPH72GnlyfIV+nRujROFcilQ+j56+Es/a+4+dQ7Kkwdi0cIQYJmitHTt9WfSAIkQYIZRIiGDKFEmjdeV5AeV/6S5GUkUST7+IaX2stdgILDJm7bZDGDdrjbg24ilGPbDiuBnjOowSWNaRi4nAevfhP1Rp0g88z4skVYnCkS6NJFXanOXbsWDVLvFC37Z0tOKCNFcw/DpzOiya0leq0EAupp7D5+LPc9cQtXICkUsJrLju7oQ3LqERWJwxMmzwy3MleZXxBx6ZqygT+Sa83eC+FZO8Yx9uyd4O/skFFO3HQaPSfO4BI1qDefVEAsgwfBn4tJkUgDFP7iFgXCfpMz7dVzAMW+I+UOM5EyWw4gkgHe52BP77rMGU6XJIcnAw0K9X3AgsojwJJVywmAVv8VNQqICAX+qo20PUFcBTAssVqFKZjiJACSxHEXNNfzOBFRToj2+K5pWfcwQB/33+gn/uPRGJHpZlMKRHC7HqnmWLyQOL9CNkUf32w8UE8J1/rYUureooxpOopB7D5uDS9UhP+ORJEyNj+lTQaVm8fPMBz19GlrgmaX5mjemGLJnS2gSC6Fm6ehcxLDF/rqzYuDAydY+1Zvb+It9tmD8MBfJ8bbWfPQQWOfO36DYeF6/dEWVQAss1e9WmVEpgWYcmJgKLjDh88iJIyB+5YPLlyiKyvXcePMWLV+9Akrevnj1ILM8ZtU1ZsBHLN+wVk8sVyZ8dfjodiFsjYaTz5swiujOSG4plowSWmy8KL54uIRFYAg8xYfvH20qWJKQgj1xNKXnlzm2sfwNcmsoqkudn+4VDmpLq9MIKGNICzLsXEkT6MWsghKRRQMb89x4B/RtKnwnBSaGfvMWdsMZrLkpgxQs+OtgDCLx+DcxZIHtgpQwR0K1L/MimI8cYHDvh/FBCv8VjAIGDEBgMBAXDVKUJhESJPYCafVNSAss+nGgv1yJACSzX4muvdDOBZa0/8ShKmzqF6JzRtG5lheeVuX9sBBbpd/nGPTTtMkY87+5cPhZfZVQ+Y5E+pMLgviPnRCLr/cf/wPECkicNRr5cWVG5XDFUq1haJNFia81/GycSSYQoI4SZrXbkz4v4bcgsJA4Owqmdc2zKtofAInMQT7E6rYdQD6zYDOSK7ymBZR3V2AgsMurmnYdYuPp3XLh6B6FfwpAyJJkYMtixeU2rubHMM5E8V2u2HsTt+4/BcTwypEuFnyuUQqtGVRVulub+lMByxc73TZkJicC6u5HBm4vKH7ak2Xnkac2DUeYV901jq2xVdzeyeHNR9oTzSyKg6ABOlbYIGNQEzIc3EoKG8evBJ4vunh7UqbIC5bD5B1WGum11KIHlNaaiiv4fgUePNVi6Qr55Z8okoF2r+BFYrgglJN6bxIvTsoX3nw0uS/QEw2oxLiWw1GKJhK0HJbAStv3p6t2LgEYgfmI+2io17I2smdJh8ZQ+0gpb95yIx89f49DGqT66au9aFiWwvMtentQ2oRBYTw4yeHJISV6R5OEFunBg45Dw15M285W5wz8BFyewEHiZxMpSjUf6curzhgvsVx+azx8l6PUTN0FIEr0gR1DvukDY51j7qdGGlMBSo1WoTjEhcPsOg7Ub5Pt6jhwCmjeOH4FF5rMWSlgwv4B6deMmW3dwE3TbFisJrE6jwBUsrVoDUwJLtaZJUIpRAitBmZsu1sMI+DSB5WFs6fR2IEAJLDtAol1EBBICgfX6ggb3NildrPyTCSjQlYOfeiM4EsQOfbCTwcvT8gFUGyig2CD1kYpRiamwKdsAK+E/0XJlWUn2rlbDUgJLrZahetlC4NIVDbbvlO/tzsxXdfQ4A/LPsjVvwiNHdscJ9oCpPcHcu66QFdG0J0xlflatcSmBpVrTJCjFKIGVoMxNF+thBCiB5WEDJPTpKYGV0HeA/ev3dQLr410Nbi5lFLmW2EABBbtyCLReoMR+8GjPeCNgDAPOj2UhmGQvrIyVeGSu7PghMd7KxCAgsEcNaMINUg/99F0QAgKjjYh6UDX0mAQ+VxFXquY02ZTAchqUVJCbEDj9F4N9B2SSqVRJHtWcVIyDhBIuWMTi1Wv53pQoiOTY4hEYaH+QhUYfhsBe0XOsRNRsBVPVJm5CyvFpKIHlOGZ0hPMRoASW8zGlEikCthBIEAQWSUYepg9H4kSBisp5dFt4HgFKYHneBt6igS8TWKHPgOvzWfBG+QCiYQXk78ghcWZvsZDv6/loP4NnR+RDKKOL9MLSBaln7UG/VQVMcnWzsNl/AFq5zLNZU/9FI8Fe+lNSPKL1IJhK/KCehcSgCSWwvMJMVEkLBKImXC9fjkeF8s4jv9+8ZTB3AaOoSlggn4D6v9gfSsiePQj/FZOi2c1UoQ4i6ndWrT0pgaVa0yQoxSiBlaDMTRfrYQQSBIE1a+lWMSH5zNG/oVLZYh6GnE5viQAlsOh+sBcBXyWwDB+Aq7NYmMJk8goaAbma8QjJb//bc3txpP3ijoBJD1yYwIIzyLZKV4ZH1hrOO4jGXbvIkfYmZ9etnwndid0ygVW/M8hB1RsaJbC8wUpUR0sE9uxjcPacTH5X/YlH6VLOvW+QioSEKLNsjoQS+i8eBfbiyegEVvHyiGgzWLUGpQSWak2ToBSjBFaCMjddrIcR8HkC63NoGEgy99AvehQvlAsrZw70MOR0ekpg0T0QFwR8kcAyfgGuzWVheGdBXgH4ui6HtKUoeRWXfeLqMc+OM3j0h3xI1DCRFQn9k7p6ZjvkcxyCulaROzIswubuszpQt3sVdHtWS98ZqzaBsWYrOybxfBdKYHneBlQDxxDYup3FlWvyfb5OLQ5FCjn3Hk9KMs1bGMdQQp5DYI9a0BjDoy2My1UY4T0mO7ZgN/amBJYbwaZT2USAElh0c1AE3IeAzxNY81buxNzl25EtSwbcf/gMW5eMQu7sNCbHfVss5pmoB5ZaLKF+PXyNwOKMwPV5LL48V5JXGb7n8dXPzn0zr37reo+GvDHSC8sYKtstVTEBORrYH6rjstVGhCOoe3VJvODnD/1M2cvKcl7tsZ3w2zhH+ogkaSbJmr2hUQLLG6xEdbREYPV6FnfvyveMpo145Mrp/Pu8tVDC/PkENIgllJC9eR7+s62/4OXTZ4FhqLIyoZqsSwksNVkj4epCCayEa3u6cvcj4NME1pcwAyo37I20qVNgdL82aNBhBOpULYsx/du4H2k6o1UEKIFFN4a9CPgSgSXwwK0VDD7eVoZ7hBTkkbMJD42S07IXItrPTQi8/EuDB9stqkVqBBTpzSEwlZsUsDWNPhRBveQwQCEwEfTTdljtzV44Dv8lY6TvuIKlEd5plIcXYN/0lMCyDyfaSz0ILF7O4skT+cbepiWHrzI71wPLvNpjJxkcOar8bWncgEee3LYJM0JmE1LbWhMSJ4N+0mb1gBlFE0pgqdY0CUoxSmAlKHPTxXoYAZ8msBav3Y0Zi7dg0tCOqFbxGzTsMBJ3/n2KI5unIXlSWpPew3tPnJ4SWGqwgnfo4EsE1t2NDN5cVB4wkmQVkLcdB8aCF/EOyyQ8LQkBeXESi/AP8oE0RT4euVs436PCEXQ1nz8isF99aUhMB0/mzhUETO8jE1hf50F431mOTOexvpTA8hj0dOI4IjBrLou3FqHiXTuakDp1HIXFMsxaKCGpRtijq+2qhAEDGoH59M6m5LB5B6DWNyuUwHLNPqJSHUOAEliO4UV7UwTig4DPElh6Q4TofZUoKAB/rJkIlmWwfe9JDJm4FN3b/oL2zWrEBzc61kkIUALLSUAmADG+QmA9PcTg8UEleRWUVkD+Thy0AQnAkD6yxLdXNLizTsk2FvzNhOCMnlsgOYCSg6i58clCYBi/wapCzMsnCBjZWu6bKgMMo1Z4TnkHZqYElgNg0a6qQGDiVBZfvsiEd79eHIKDXeOBRRZMQglnz1P+zuTLK6BhveihzsyzBwgY00HCiXhuQuChMeilz/STt0AIVkOiv+jmpASWKra4KpW4eo3B3xfk645U5ixZwjUvmiiBpcotQJXyUQR8lsBasXEfJs/fgKE9W6BRrQqi+QzhESj/Sw8EBvjh4Map0LLU1cHT+5oSWJ62gPfM7wsE1usLGtzbpLzv+CURULAbBz/qFOo9m/H/ml6eziLspfxwnDiLgAKdPJcLS/PuFQKHNJMPoiFpoB+zxiqumtBPCOxbT+4bEAT9dOshRGozDCWw1GYRqk9sCAwbpVV0GTrQBJ0utlHx+/7EnwwOHYk9lFC3bx10O5dLk5lKVADz6A6Y109lAmvIQggZvo6fQi4aTQksFwHrA2IPHGLw52n5GihWVECt6q75jaYElg9sGLoEr0HAJwksQlT91LgvBEEQiSp/P/kpYfzstViz9SCmDOuEqhVKeY2hfFVRSmD5qmWdvy5vJ7A+3tXg5lIGEGTCg/UXUKArhyAXhZI43wpUoiUCH25rcGuZkpDM15ZD0hyu86yIyQKaV08ROEKuJMinzgDDSBteVYKAoM4/KsTpZ++FoFUetNVocUpgqdEqVCdbCBgjgNET5OuKZYDhQ0wuB8zeUEL/ib+BffiPpE9E28Fgj+0Ee++69Fl494ngchd1uc5xmYASWHFBLWGM2bWHwfkLMoFlT0GDuCJDCay4IkfHUQQcR8AnCSxCUBGiqke7emjXVK7IROB58PgFarQYiML5smPt3CGOI0ZHOBUBSmA5FU6fFubNBFboM+D6fBa8USavNKyAvITsUOdLbZ/eS85c3LX5LD4/lO1KwkEL93TNG97Y9GZePETAqHZSNz7dVzAMW2JzWOCAhtB8ei99bxi7FnwK9bOplMCKbSfQ79WEwKfPGkydLhPdiYMF9O3lnnuEWJVwIQPeYro8uXg0bhgZRhXVExMMA/2U7fBbNRns5T9lUqvVQJhKRkYzqK1RAkttFlGPPpu3srh2Q/59zpFdQPMmrrn2KIGlHrtTTXwfAZ8jsIxGE35s3AekAuHhTdOQODgomhVb9piAvy//g40LhyN/rqy+b2UVr5ASWCo2jspU81YCy/ABuDqLhSnMsrSggFzNeYTk94ynjspM69XqhD4Frs5Wei3lasYjpIBr8mzEBJbmyX0EjusoE1iZssEwaIFtAmtMB2iePZAJrAFzwH+VS/X2oASW6k1EFbRA4OUrYN5C+R6RKqWA3zq75hBtDfiTpxgcPKwMJWzwCwfijaL98w/4rZ0uDeNyFUZ4j8nQrZ8J3YndMoFVrxNMFeuq0q6UwFKlWVSh1Jr1LO7clZ+9MmUS0K6Va649SmCpwuRUiQSCgM8RWBt2HsHo6avQutHP6N2xgVUz7jt6Dr1HzkONH7/FhEHtE4ip1blMSmCp0y5q1MobCSzjF+DaXBYGi+pTBNusNTmk+46SV2rcZ3HR6dYKBh9uyQfEgJQCivTmoFGeGeMi2qExzMPbCJjYVSawvsoJw4C5NmX4z+wP9p+L0vfhXcaCy1/SoTk90ZkSWJ5Anc4ZVwQePtJg2UrZAytzZgFtW7rmEG1NRxJKuHApi+fP5YO8uSphsuVDwF77Syaq6neCqUJd6Havgm7Paulz00+NEVFbLvoQVyxcMY4SWK5A1TdkLl7O4skTed+Typ+kAqgrGiWwXIEqlUkRsI6ATxFYRhOHqk374e37Tzi0cSpSprBeMYX0q9SgFz79F4pDm6bZ7Ec3jesRoASW6zH2lRm8jcDijMD1eSy+WBwaiC3SleWRtbr7vXN8ZR+ocR36N8Clqawiv1n2ehxSl3AvScnevwH/KT0kiLhs+RDeZ4ZNyPyWjYf27yPy4bVFX5hKK/NiqRFvSmCp0SpUJ1sI3LrNYP1Gmc3OlYNH08bu/Q14/0GDWfNYRShh/pzh+PVUdWhM8oFeP2YVhJB00J74HX7rZ8kE1ndVEdGslyqNTAksVZpFFUrNma/F6zeyKkmTCujd3TXkMSWwVGFyqkQCQcCnCKwtu49j+JTlqF+9PEb0aRmjCWcs3oLFa3ejS8va6NyydgIxt/qWSQks9dlErRp5E4El8ADxyvl4W+mCk+dxbqsAACAASURBVCIfL4YOaiyjCdUKONXLIQTubmTx5qJsWFJdsugADowbi90ydy4jYHpfSW8+RyEYek2xTWBtng/tkW3S98a67WCsbN1z2SEwXNyZElguBpiKdyoCly5rsH2XfCMoVFDAL7Vdc4iOSXFSjY1UZTO3vPpTaP1RzgXLp8sCw7DF4tfsxZPwXzxK6svlL4XwLmOciouzhFECy1lI+p6cKdNZ/PdZ/l0OCAAG9aMeWL5nabqihIaATxFYJO9VhNGI4KBA6HQxV1IiXlihX8Kg02oRnCgwodldNeulBJZqTKF6RbyJwLq/lcGrc0ryKknWyKTtjPqLvKl+L6hRwfBPwMUJLARefljOUp1H+rLu87Rgb12A/6wB8qEzTzGEd5tgEy7t3nXw27VcJrAq1YfxF/WH1VMCS41XANXJFgKnzzDYd1D+PShdikfVn9x3XzDrFTWUsN7HKfhGv0e+/n9qBGPtNuLfzN1rCJgme1zxWXLB0H+OKo1MCSxVmkUVSo2ZoEVEhKwKeXk4ciglsFRhHKoERSAeCPgUgRUPHOhQDyFACSwPAe+F03oLgfX0MIPHB5TkVWAqAQW6ctAGeCHwVGW7EXiwk8HL07LttYECig3iwPrZLSJeHZlrfyFg3lBJhqlAKUR0tu01ETWBs6lUZUS07BcvHdwxmBJY7kCZzuEsBA4fZXD8pHxf+OF7HuSfJ5plKOHIV7WRiP8kqRHedya4r/NGElgvnyBgpJzzSghJA/2YNZ5QOdY5KYEVK0QJsgMhbIePjv7GcMgAE/xc8JtMQwgT5Daji/YQApTA8hDwdNpIBCiBRXeCvQh4A4H1+oIG9zYpY8ZIKBkhr/ytp+Szd/m0nxcgEPEZuEC8sEwWVY8q8chU2T2HVfbyKfgvHCEhxRX+DuEd5L+jQshePQP/+cPk/vlKILzrONUjTQks1ZuIKmiBwO69DM79LRNYxPuKeGF5qp06zeDmH3fQ/V0nSQVjQBIYp22BFN8e9hlBveWqgwLLQj9nn6dUjnFeSmCp0iweVypMD0yYHJ3A6tvThMSJna8eJbCcjymVSBGwhQAlsOje8CgClMDyKPxeNbnaCayPdzW4uZRRJPJm/SPJq6DUXgU1VTYeCDzaz+DZEfmwyugivbB0QfEQaudQ7fnj8Fsqe1yZin2PiLZyjpuoYpgHtxAwuZv0MZ85BwwD59k5m+e6UQLLc9jTmR1HYMs2Flevy6R23docChd0b4EHS62JZ8r1UStR6qXsUXUxuAoyjuiD4ESyXoFdq0DDybm69NN3Qghww43MQYgpgeUgYAmk+4ePGkyfFT0J5W+dOaRK6fzrjxJY6txYj5+9xq79p3D20k38+/gl/gv9gsAAf6QKSYb0aULwXckC+OHbIsicQfmg/kO9Hnj99qNiUf5+OqRIngR5c36F6pW+xY/fF7e6aGtjo3as8kNJTB3eWfq4/5iF2H3oTIwghiRPghPb5eIaj5+9QtWm/cUxA7o2QfN6MRfhGTR+MXbuP4XVswehaIGc6jSYnVpRAstOoGg31yBACSzX4OqLUtVMYIU+A67PZ8Eb5UOKhhGQtx2HpF/7ojXommwhYNJHemFxBnkvpC/DI0sN13tcsOcOw3+5nPOKK1ER4a3lnFhRdda8eYHAYS1kAit5KhjGrVO9cSmBpXoTUQUtEFi9jsXde/L9oGkjDrlyOv8A7QjoulEdoXtxXxqyIvlIGPKVQYum8n0qYGBjMB/fSn30o1ZBSJXOkWnc0pcSWG6B2esmefESmL8ougdW+zYcMmZw/vVHCSx1bRGj0YQ5y7dj6fo/IBDWnlQBT50CSZMEI/SLHq/ffUREhFH8/Nvi+bF4Sh/FAswkFCF6/P6fVzvMEA5CGn38FCr2rVCmKKaN6AKdVkmUmscWyJ0VWq31xLeli+VFl1Z1pDnNBFaWTGmRPKl1F8FkSYIxZ1x3aYwlgRXg74cdy8cgU3rbb8wpgaWuPUq18WIEKIHlxcZzs+pqJbAMH4Crs1iYwixLCwrI2YRHykLOf0hyM+x0ujgg8Ow4g0d/yF5YhMwkFQldHUaqPbMffqvkqoOm0j8hooXyocxyORpDGAJ71pI+UnOYkKXelMCKw6akQzyGwKKlLJ4+k38f2rbikDmT534bmI/vEDCwkYSHSaPFsDS/I0ITgHp1ORTMH6lbwPjOYB7flfpZ5sjyGJhWJqYElpqsoR5d/n2owfJV0T2wfm3GIdvXzr/+KIGlHtsTYqpVz4m4fOOeSAa1b1Yd1SqVBvFgsmy37j7C0VOX8E2xvNE8kswk1PFtM5EyhZwDhJBhf567jl4j5iJMb0Dfzo3QskEVq+RX1LExIWQmsCYP7YSfK5ayC0wzgRUY4Ae9IQIli+TGsmn9obFR6pwSWHbBSjtRBGJHgBJYsWNEe0QioEYCyxQGXJ3DwvDOkrwCslTjkb6c6z1u6N5QJwK8MdILyxgq74vUxQVkry+H47hCc+3J3fBbN1M+mJb5GRFNe8Y4VbQwoWk7IAQmcoV6TpNJCSynQUkFuQGBmXNYvHsv3wtcFcJk71K0x3bCb6NcUfCWXyksDYn03AwMFPBbZ14MJfSfMxjsjXOS2PCOI8EV+tbeadzWjxJYboPaqyb65zaDdRuVBXXIAhrV55E3j/OfzyiBpZ7tMWLKCmzefQxfZ06HxVP7Im2qFA4rZ4vAMgvasPMIRk9fhTw5vsKWxSMV8mMba02Z+BBYDWr+gL8u3BS9w4b1bIGGtSpYXS8lsBzeBnQARcA6ApTAojvDXgTURmBxRuDGQhahT5TkVdpveXxdy/kPR/biRPupA4GXf2nwYLvF21+NgCK9OQSmcp1+UQ+mpvK1ENGwa8wE1uCm0Lx/LfXRj1wBIXUG1ynpBMmUwHICiFSE2xCYMEWLsDB5OlclkbZ3Qf6zBoC9dUHqvj1ZT5wKrCn9nT0bL4YS+q2cDO1fB6TPI5r0gKlsNXuncVs/SmC5DWqvmujyVQ227YjugVWnJocihakHllcZ0wFlr9/+Fw07jBTD+rYvG4OsmeMW9hwbCXXv32eo1WowEgcH4a/dytyhsY11NoFVp2pZkH8tuo1DUGAAdq0cJ4ZLRm2UwHJgI9GuFIGYEKAEFt0f9iKgJgJL4IFbKxh8vK18u5ciH49czXmpkJO9a6P9fA8BskcuTmIR/kEmOEPyR+4PVzXtoa3w27pAEm+sWBfGenKlMWvzBkzoAubRHemr8D4zwGXL5yoVnSKXElhOgZEKcRMCw0Ypc6CMHGry2G+EJsIQGTbMy/ehUw02YftJJbP+Sx0Oxe8ugu7gJvl+UuNXGH9u5ibU7J+GElj2Y5WQev51jsEf+6J7YLmqCqi7PLB+//QQF768STCmrJEsC4oF2f/mb+S0ldi066hI6Izp3ybOOMVGQv1z7zF+aTsM6dKE4NDGqYp5YhvrbALrp/IlMW1EZ4yZsRrrdxxGmZIFsHBSb0pgxdn6dCBFIBYEKIFFt4i9CKiJwLq/lcGrc8oHo+BMAvJ35MBYz9do7zJpPx9C4O0VDe6sU74BLvibCcEZXbNI3YGN0G1fIh84f2wIY522MU7mN28ItNfOygRWhxHgCn/nGgWdJJUSWE4CkopxOQIR4cCYifKPgk4HDB1ocvm8tiZgL56A/+LR0tek8qh+wDwsXc7i8VOZbPf3EzCwwEYE714o9bXHo9MTC6MElidQV/+cx08wOHwsOoFVsTyP712Q4sFdBFaHR8ex6O1N9RvASRou/Op7tE+Z125pNVoMxIPHLzBrdDdULFvU7nFRO8ZGQq3YuA+T529A5XLFMWOU0tM9trHOJrBIMvnZY7qJOblqtRqC5y/fiuQdIfEsG/XAivN2oAMpAkoEKIFFd4S9CKiFwHp6hMHj/cqHosBUAgp05qBVX4Vxe+Gl/VyEwOXpLMJeygfDpNkF5GvnmlxYuj/WQPf7SpnAqtoUxpotYyawVk0BSf5ubhFNusNUtrqL0HCOWEpgOQdHKsX1CHz6pMHUmTKJnSSxgD49XXP927MavxWToD17UL5HVGsOY/UW+PhRg5lzWXAWqlVNvA8V70yUCazi3yOizRB7pnFrH0pguRVur5ls/0EGp85EJ7C+K83jp8rO94SmBJZrtoajBFbhSm1gNHHYs3oCSEW/uLaYSKiTZ6+ix7A54DgO6+YNRd6cWRTTmMcWypsNuv9XMIyqx4jeLRXhjeYcWCRvV4ooyebNYxvVqoCqFeQE7+Yk7t+XLoR54yPznZ45fwNt+0xGkuAgMZQwVUgyaWpKYMV1N7hxHMfx2LHvT+w/dk5kYr980YP/fxnNmNQ4u2e+G7WkU1ECi+4BexFQA4H1+oIG9zYpPWp0wQIKdnN9hTl7caL91IXAh9sa3Fqm3DP5O5qQJKvz9dTtXgndnjXy4bT6rzBWiznkh3hsEc8tczOqNEzIEi1KYDl/71CJrkHgxUtg/iLZAyt1aqBrRw95YAkCAnvVgsaglxZrGDAH/Fe5xL+jhlzlMpxDuw/9pb58jkIw9JKrnLoGMcelUgLLccwSwoidu1lcuKjMUUrWXbwoj5rVKYHlLXvAEQLLxHEoVDEybNBWBcChk5Zh2x8noi2fEFGEcDI3MwlFKhT6EddZAOHhEfj3yQu8fvsRKZIlxvhB7cVwvajNPDYmjDcuHI78ueQHQTOBFdOYPh0bolWjqlIXM4FV7ptCmD9BLthjXqPZM8s8gBJYKt/1PC+gy6AZOPHXFYc1vXFshcNj6IC4I0AJrLhjl9BGeprA+nhXg5tLGUCQH4hYfwH5O3FIFLcckQnNhAl2vdfms/j8UN43iTIIKNTN+V4Yuh1Lodu/QcI5onZrmH5qHCPuuoObodu2SOqj1jAhy0VQAivBXkpet/B/H2qwfJVMYH+VWUCbls6/9u0Bhrl3HQFT5UMOnzQEhgny/YK847UMJUxvvIdeb9tJovl0X8EwTA5RtmdOd/ShBJY7UPa+OTZuYXDjZnQPrPz5BTSo6/xr0F0eWDQHVsx7sciP7RARYcTetROROUOaaJ2XrNuDY6cvS5/fvv9EDL2zRWBZm61g3mxYPr0/Avz9rCrj7hDCqATW59Aw1Gw5SCTaJg/thJ8rRnptUQJL5fcxUjqTlNAkrWiBnCj3TUGkSx0Chol+I4u6FLORVb5En1GPElg+Y0qXL8STBNaXF8C1uSx4o0xCaBgBedtxSPq1y5dOJ/ByBEKfAldnK5OjkWTuJKm7M5tuy0LoDm+RRBrrtoexcv0Yp2DPHoT/ikkygVW8PCLaDHamWk6XRQksp0NKBboIgZv/MNiwSX72zJ2LR5OGzr3u7VVdt22xIim7qUw1RDTtoRhuGUqYxPQWw97I9w8hURLop2y1dzq39aMEltug9qqJVq5hcf9BdA+snDkENGvsvQSWVxnBA8pWadIPT56/xoKJvVG2VHTvqKgqNeo0CtduPbBJYFl6cr19/wk/N+uPMH04Ni4Yjny5lKGDZtmeJrCIHoSkI848yZIG4/eV40WPsSETl2L73pNYPXuQyI94c9MIgh1xdV62wl+7j8f5K7fR7JfKGPhbUy/TPmGpSwmshGXv+KzWUwSW4QNwbQ4LY6jyQShnEw4pCzm/FHN8MKJj1YsAqVr54ZZ8kA1IKaBIbw6a2N+r2L0ov01zoT26Q+of0aALTD/UjpnAuvE3/OcMkvpwuQojvMdku+f0REdKYHkCdTpnXBC4eEmDHb/LHliFCwmoW8v5h2d7dAsY0RrMqydS1/DOY8AVkPOpmL84e47Bnn0MNBAw+UUFheiweQfgsRKKNhZJCSx7rJ/w+ixayuLps+gEVubMAtq6wAvSXR5YCc+Sjq24/9iF2H3wDH6t/xP6dYnZA51IdoTAIv1Xbt6PSXPXi+F/6+cPA8NE32NqILCIruawxCo/lMTU4Z1hrtBICSzH9pTbepeu3hn/hYbh9K65SJokkdvmpRM5jgAlsBzHLKGO8ASBZQoDrs5hYXin/IH6qiqPDOU98xY9odrf29etfwNcmsoqQlCz1+OQuoTzSFDdupnQndwtE1iNu8NULuaE7MzjuwgY31kaw6fPAsPQxaqGmxJYqjYPVc4CgVOnGew/JLPUpb/hUfVH9/92aN69QOCQFpJmgs4fhmnbIWgjc7tEbUuWRVYlHPWqJoL4z9LX+gkbICQNUZWNKYGlKnOoRplZc1m8jfLsRpRLmwbo3MH5eegogaUO05s9jxIHB2Hf2kmiB1JMzVECi+TZqttmGO4/fIYhPZqjce2K0cSrhcD6+ClUDCV89+E/sSrjxWt3sGLTPuqBpY6tGl2LghVbg2zcUzvnqFVFqtf/EaAEFt0K9iLgbgKLMwI3FrIIfaIkr9KU5JHtF/cfQOzFifZTLwJ3N7B4c0neT35JBBQdwIFR5niP8wJ0q6dCd3qfND6ieW+Yvq0Sozzm0zsEDGgkH2wTJ4N+0uY462BroNEIkENxokQCcuQAsmcDUqWM23VECSynm4cKdBECh44yOHFSJrAqlOdRvlzc9n18VNQd3grdlgWSCFPh7xDRYYRNkSSUcPZ8Ft2ft0Ra0yOpn2HoIvDpXVCBIh6Li0pgMY/uQBMuJ6rnchaKh3Q61FsRmDRNi9DQ6NonSyqgV3fne0FSAksdO4UEltVvPwK37j4CScA+e0x3BAX621TOUQKLCDp36R+06jlB5Bp2rxqPlCmSKuSrhcAiSu0/9jd6jZgr6vhT+ZJYu+0gJbDUsVWja1GuTjcQhpR4YNGmbgQogaVu+6hJO3cSWAIPkJCvj7eV8V0p8vHI1Yx3atiXmjCmurgWgfBPwMUJLAReJrGyVOeRvqxzDrR+KyZCe/aQTGC1GghTSWUIkLUVBnWqrPg4bP5BpwOxZRuDq9eV11P3rhxCUjjugUYJLKebhwp0EQK7/2Bw7ry876tX5VGyhHOud0dU9p/eB+wdubBRxK99YfrmxxhF/H2BQcZVvZEtQk54fLP6JGSpVsSRqV3eNyqBFditGjTGCGne8G4TweUp6nI96ATqQmDUOC1MVhytAgMFDOxLCSx1Wcu52pDqfI06jsKnz1/wdeZ06Nq6Dsp/WwT+fkqPU6OJQ+NOo0Syy1YSd1vVDHuNmIf9x86heuXSmDi4g2oJLKJYj2FzcPDEeXH94RFGSmA5d7s5TxpJWkZcCI9sno40qZI7TzCV5HQEKIHldEh9VqA7Caz7Wxm8Oqc8bAdnEpC/IwdGmYvbZ/GmC3MNAg92MHh5Rt5b2kABxQZxYK0Xs3FICb+lY6E9f0wmsNoMhql4+VhlBPWqA+jlV9XEA0tInCzWcfZ2OH+Bwa490ZN9NW/CI0d2xw/zlMCyF3naz9MIbN7K4toNmbCuV5dHQScXb4htjRp9GAL71AF4+VrTT94CIVjpNWBNzvPBY5D9/XHpq40hg1C+fwUkTuw48RybnnH93pLAEq6fh/+sAQpRxop1YazXKa7i6TgvRWDYKNsPa6OG0RBCLzWr3Wo/evoKPYfPAakySJpOyyJLpnRIkjgIJhMnkltPn78RHV5Ic5TAevnmPao3HwC9IQLLpvdHqSJ5JN3MHlgFcmeFVmt9H5YulhddWtWRxpjzVWXJlBbJkya2us5kSYIxZ1x36TtC1FVt2h9RqxBGHUySz5NQwk//fRG/ojmw7N5G7u14/MwVdB44Ha0aVUWfjg3dOzmdzSEEKIHlEFwJurO7CKynRxk83qc8bAeECCjYlYM2KEGbgC7eCQhEfAYuEC8sk3yozVSZR6ZKjhM5UdXxXzgS7OU/pY/D2w8HV6RMrFoHDG8F5vVTqR/JgUVyYTmjvXqtwfxFrOXZWRL7cxUe35R0fN2UwHKGZagMdyCwai2Le/fla51UPyNV0NzZ2HOH4b98gjQllzUPwvvNsksFYeUcJPprp9R3V5JOeJKvHlq1cPy6tWvCOHSyJLA0mxZCd0gZAs2nzQzD8KVxkEyHeCsCYWHAhCm2CayhA0zQOeGlkSU+NIRQfbuFhBMeOnkBB4+fx5Wb9/H+438i4UQ8kUiO7IzpUqFQ3uwoVjAnShfPp/DQsicMcPHa3ZixeAuyZk6H7UtHQ6eL3HPmsTEhYk6sbu5jJrBiGhOSPAlObJfv3fYSWETm7wdOY8C4RaJ4SmCpb69KGo2ZsRrrdxxGh+Y18Gv9KjSZu0ptRQkslRpGhWq5g8B6e0WDO+uUCYl0wQIKdOUQQJ05VbgrvFMlQpASotTcGF2kF5YungSp/7yhYK/9JckN7zQKXMHSsYLkP7Un2HvXpX6GHpPB5yoc67jYOhgMGsxbyODjp+hVeshYQl4REsvRRgksRxGj/T2FwKIlLJ4+l/d/u9YcMmV0L4Hlt3QMtOdlL6qIWq1hqhJ7dS6CmW7PGuh2r5TgO5KoMf5I0h61a3IoWti967BlQ0sCSzeyPTTPHkTrahi3DnzyVJ7aBnReNyPw7p0GM+faTi7Zt6cJia07ucRZU0pgxRk6OpAi4DACGoHQk17aSEyntUZKWvr7+eH4X5dFdzktyyJblvRInTI5AvxjptxnjOrqpWh4p9qUwPJOu3lCa1cTWB/vanBrGaPIT0SIhQJdOCRK54kV0zl9FQGTPtILizPIB9t0ZXlkre44mWOJkf/sgWBvnpc+Cu86Dly+ErHCGNVzK8LO0MPYBK9cw+D+g+ihg+ZxxBOFeKQ42iiB5ShitL+nEJgxl8V7i0po3bpwSBnixsdunkNg7zrQGOSk5oYhi8BnsC8Ru/bkbvitmynBdy6wCjYl6w9/PwHduvCqCCU0E1hvHr+Erk89q6aOaNIdprIxV2T11B6h8zofgefPgQVLbHtgde/MISSlc69DSmA5345UIkXAFgJeTWDlK9/S6Za9cWyF02VSgbYRoAQW3R32IuBKAuvLC+DaXBa80cJTRCMgbxseydwc7mEvHrSfdyPw7DiDR3/I5I6GiaxI6B97WhqbC/ef0RfsbTnhsr2eVLp1M6E7uVuSG9GwK0zla8UL4D9PszhwSOl5lT6dgOcv5M9CQnh07+I4aUcJrHiZhg52IwITJrMI08t7vn8fDomCnHtwjmk57D8X4T+zv9SFTxoCw4QNdiNAQpIJwW1ut/xLYWmKyHDE7Nl4tGjq+PVr9+R2djQTWG/3/Q7tsolWR3GFv0N4DFUX7ZyKdvMSBB78y2DFatsvTzq240B+j5zZKIHlTDSpLIpAzAh4NYE1cqrzyabhvZ1PitFNSAksugfij4CrCCzDB+DaHBbGUOVhO3sDDqmLOfcBJ/4oUAm+ggBvjPTCstx3qUsIyF7PcY8kMyYBU3uCsQwF7D0dfPb8sUJGQoRIqJC5GX9uBmONX2MdZ6vDkycaLF2pzHuVKiWP9m14jJ2ofCsel2S6lMCKs2noQDcjEDWR9MihJmisR9S6RDO/TXOhPbpDkm36oTYiGnSxey72/g34T+kh9X+izYWZqRZIf9euwaFoEc/+TpoJrPdTh4M5e9jq2gS/AOin7wAY22FldoNCO6oegZv/MNiwyTaB1bI5h6+zOnffUgJL9duCKuhDCHg1geVDdkiwS6EeWAnW9A4v3BUElikMuDqHhcEixIMolulHHpkqev7NssMg0QFehcDLswwebLN4yNYIKNqPQ0CKuC3Df3I3sA9uSYPD+88BlyVXrMK0x3fBb8NsmcAqWx3GJnKlm1gFWHQIC9NgznwGoV/kUzrJa9qlI4cUKQRMmqZFqFzwED27cUiezLGDBCWwHLEI7espBAzhwDgLwpZUcB8y0PnVz2JaX+CQZtC8eyXfE3pMBudAfjvm7QsEDG0hjf/slxojQzZKf+t0QI+unEdDCc0E1oe2NaD574NNOAx9poPPFjuh76n9Qud1HgIXL2uwY5dtsrJRAx55czv3GY8SWM6zH5VEEYgNAUpgxYYQ/d6lCFACy6Xw+pRwZxNYvAm4voBF6BPl6/A0JXlk+8W5DzY+ZQi6GKchIPDAxUkswj9YhNUV4JGrWdz2X8D4zmAe35X0MwycBz5zjlj1JQmeSaJnc4truA3JqLl8FYuHj5TXVMP6PPLliVzTkuUsHltcc78245Dta0pgxWok2sHrEPj4UYNps+RDdJIkAvr0iLuHpaMAMM/+RcCY9tIwISAQ+qnbHfJC0hjCENhTDicWGBaDMh6C0ShrkzUL79GqhITA0jy5j8/95AgKITARTEXLQXdqr6So8adGMNZu4yiMtL8XInD6Lwb7Dtj2wKpbi0PhQo797sQGAyWwYkOIfk8RcB4CPklgrdq8H+nShKByueJ2IRURYcTMJVuRPWsG1Kla1q4xtJNzEKAElnNwTAhSnElgEeLg9hoG728oH3CS5eKRpyUPje3nnoQANV2jGxF4e1mDO+uVb4oL9TDFqXBAwOh2YJ4/lAksO5M1M3cuI2B6X5nAypYP4X1mOIzCoaMMTpxUXjylSvKoZlFpcNtOFpevyARX9Wo8ShZzjLCjHlgOm4YO8AACL14C8xfJIbNp0wCdO7jPA0u7bz38di6TVm4q9j0i2g5xGInArlWg4WTi7UyLndh6MIlCTq3qHIoVdS4hYK+ihMDi9qyHfs08ea1FyoEr8QP8F8n5u/hM2WEYNN9esbSfFyNw9DgD8s9WI9VvSRVcZzZKYDkTTSqLIhAzAj5JYJHk7t8UzYul0/rZbf/S1TsjcXAQDmyYYvcY2jH+CFACK/4YJhQJziSw7m9l8Oqc8uEmUXoB+TtzYHUJBVG6TrUgcHk6i7CXMqmTNIeAfG0d99QIGNEazKsnMoE1fBn4tJliXSbz4iECRrWT+vGpM8Aw0rEck3fvM1i9VnlNZcwgoH0b5TqOn2Rx+Ki81u9Kc/ipsmMHX0pgxWpS2kEFCDx8yGDZKvmayJKFR+sWzj00x7RM/0ndwP5rEVLcagC4khUdRiZgcFMw719L4/QjV2DFgUyKCqN+pCphljlYPgAAIABJREFUZx7Ey8zdjRBYhrE9YLp+QZo6okkPcCUrILBXbYCXMddP3gIhOB6VMty9ODpfnBDYu5/BmbO2CaxKFQSUK+P4b2xMylACK06mooMoAnFCgBJY/4etUsPeePfhP1w6sDhOQNJBcUOAElhxwy0hjnIWgfX0KIPH+5QPNgEhAgp04aBLlBCRpWv2NAIf/tHg1nKlF1b+jiYksa/SvaR+4NDm0Lx9KR80R6+CkDJdrMvTfP6IwH71pX4k/EY/TU78HJuA/z5rMHs+g3CDTEz5Bwj4rROPJImVB9qr1zTYsl1ea+5cPJo0dOxQTwms2CxCv1cDAjduMdi4Wf6tyZOLR2MH93pc16EJ/YTAvvXk4QwD/ZTtEAKDHBYZMKELmEd3pHHhvafjY5oCmEGKn6gglDB1IgahrasAJlkZw9i14FOkRtTCFuG/9gX3zY8OY0AHeBcCO3YyuHhFvvZIxdt37+S/v/uWw0+VnEu2UgLLu/YI1da7EaAEFoA37z6iQv2eCPD3w997F3q3Rb1M+61/hOP8BaBtKwGBgc79MfEyKKi6sSDgDALr7RUN7qxTEgXaIAEFu3EISE5NQBHwHALX5rP4/FAmgBJlEFCom2NviAMGNgbz8a1MYI1fDyFZytgXJQgI6qw81Oln74WgVVYMtCVowRIWz58r8141b8ojR7boxNSz5xosXCJfg6lTCejaybF1UgIrdpPSHp5H4MIlBjt/lw/NRQvzqF3TMbI2rqvQntoLvzXTpOF8zoIw9JwaJ3F+84ZAe+2sTGB1GA6ucBmRICBEgWWrXYNH0SLuWaN53pBHl6GfIIdA82kywTAiMnRSu3cd/HYtl1Q0Ff8BEW0GxQkHOsh7ECAVCEklQnP7OiuPB//Kf5coxqNGNefuU0pgec/+oJp6PwI+QWCF6Q0I04dL1vi+bncULZAT00fGXCrYaOJw/+EzTF+0Gf/ce4yiBXJg9ezB3m9VL1pB2+6Rb8yqV+VRsoRzf0y8CAaqqh0IxJfA+nhXg1vLGAi8fNBmdALyd+IQnMEOBWgXioALEQh9ClydrSSMcrfgkSKf/fdF4kVFvKnMTT9xE4Qk9jGzgf0bKCp46cetg5A8Vawr3rOXwdm/lYfY78vyqPiDdb3D9MCEyfI6WRYYPtixvECUwIrVLLSDChD48zSDA4fka+Pbb3hU+dH+6zk+S/BfMBzsldOSCGPd9jBWlr0sHZHtt2oKtGf2S0MimnSHqWx18e/lqxj8+1BeoyeqEib9fTGMf2yS9DOVr4WIhl3Fv4nnGPEgMzc+MAiGqTsAjZJwdwQP2lf9CKxYzSgIqyKFeFyy8MgqmJ9HvbrOvRYpgaX+fUE19B0EfILAmrt8O+at3Blvq8we0w0VyhSNtxwqwH4EzARWxowC2rd27C28/bPQnr6AQHwIrC8vgGtzWfBGi4dWjYC8bXgky0E9/3xhf/jCGm6tYPDhlnwYDEgpoEhvzu6iAkG96wJhnyUowqZuA4IS2wUNqVZGqpaZm2HAXPBf5YxxbNQQKdI5y1cCWrXgYjwfjp3AIjxCvhZ79+SQNEqoYUwTUwLLLpPSTh5G4NARBif+lK/nCj/wKF/WuYdma0vUmIwI6FUHGqP8Ylc/ZhWEkNjDia3J0+1YCt3+DdJXxuotYKzWXPz782cNZs1lFNezu6sSBo9tD/6pfO8K7zQKXMHSkr4klJKEVEr3tv6zwWfJ7eHdQad3JQILFrN4/kL+jSlfjsOxE7Lnb84cPJo1du61SAksV1qUyqYIKBHwCQLr0dNX2L73JI6fuYw7D546bOOM6VLht9Z1Ub2y/IPnsBA6IE4ImAksMrhnNw7Jk1EyIU5AJoBBcSWwwj8BV2exMIYq37hmb8AhdTG63xLA1vGaJerfAJemsoAg79UcDTiksnOfBvaoAU24QVqvfvouCAGBdq3ff0Y/sLcvSX3Du44Dl6+EzbHv32swdwELo4XzVHAiEg7IIygo5uuKhBCSUEJzI4RX1iz2X4uUwLLLpLSThxH4fTeDvy/KBJa7PM3Za2fhP0+uNmgZUhcXSLSHtsJv6wJpqOn7moho9Jv096XLGmzfpQzNr1GNQwk771tx0ck8Jmr+PjAs9NO2Q/CX73v+KyaCPXtImoaQb4SEo813ESD52chvlLnVqsErwnm/yiygTUvnvjSnBJbv7ie6MvUh4BMEliWsN24/RIMOI1AwbzaM6tsqRsQZjQZJkwQjZQpakcRTW9OSwKrwPY/y3zv3jYin1kXndT4CcSGwTGHAtXks9G+U5FWmSjwyVaZ7zflWohLji8DdDSzeXJL3q18SAUUHcORcFmsL+q0qYJIZpbDZfwBa+8pq+i0dB+35ozKB1bIfuFKVrc5JEjcvWMzgzVv5cM4wQJtfOWTKFDsRtXkri2s3LA4X1TkUKxr7OLMylMCKdSvQDipAYONWFjcs9nm9OhwKFrB/n8d1CX5rZ0D75x6ZsKncAMa6cpVRR+Wyfx+G/7IJ0jBT0XKIaDdUIWbVWgb37rs/lJCENpIQR3OzlutLe+4I/JaPl/pwWfMgvN8sR2Gg/b0IgYlTWHwJk39jWjTlQfaouaVNI6BzB0pgeZFJqaoUAQUCPkdgkdV17D8VRiOHpdP6UXOrHAFLAitZMgG9HExarPLlUfWciICjBBZvAq4vYBH6RElepSrKI4ebKkE5cflUVAJBgHgMXhiv9MLKWoNHujKxE65BnZSEU9j8g3aj5rd5HrRHtsuH3hhy5kRNkEsG/ViJR5lvY9eR9D18lMHxk/Jhoux3PCpXtG8sGU8JLLvNSjt6EIGVa1jcfyD//jRvwiFHdtcTWAEDGoH59E5auaHXNPA5CsQZCfbWBfjPGiCTRDkKgMi0bKFfNJg52/2hhFGJ94iarWCq2kR50NF/QWCv2orPSJVVUm2VNt9EYNgoZT7Jbl14MdTV3Fxx3qAeWL65l+iq1ImATxJYj5+9FisLFisYc/4OdZokYWllSWCRlXdoyyFDetc/4CUslH1jtY4QWAIP3F7D4P0NZXLpZLl45GnJ251TyDeQo6vwNgQe7GDw8oy8d7WBAooN4sD6xbASjkNQ1ypyB4ZF2Nx9di9du3ct/HatkPobbXhtXLzEYIdFZTUyIHcuHk0cIIUvX2GwzaJ6Wb48PBrWpwSW3caiHb0CgajVOTu04ZAhg2ufb5hHtxEwITKBOWkkhFg/bWe8kpZrnt5H4NiOkkxbIYlXrjLYukP5m1uzGo/ixey/th01LCGmNPov0jBbufsCJnYF8/C21C+izWCYipd3dDra30sQiEpgDejDYcIU2Y05KFDAgL7UA8tLzEnVpAhEQ8AnCSxqZ+9BYPzMCMUbym9K8vi5iusedrwHGappVAQcIbDub2Xw6pzyQTpRegH5O3Ng7YuoogagCHgMgYjPwIUJLAST7L2RuTKPjJViuDdGhCOoe2RlMPHg6ucP/czddq9Be3IP/NbNkPqbSv+IiBZyaXryxavXGixYxIKzUCNZUpL3ioNfTORaFC0eP9ZgyQr5MJEuLdCpvf2VCKkHlt1mpR09iMCM2Szef5Cv4W5dOKQMcS2Bpdu9Cro9q6VVc6UqIbxl/3ihoPn0HoEDGsr3lkSJoZ+yzapMa6GEv3XiQDxenN2iVhhEYCKETd1ulazT7V4J3Z41Md7fnK0flecZBD5/BiZPlz2wEiUC+vUyYfho+TNShHLkUPt/c+xZCfXAsgcl2oci4BwEvJ7A4jge7z78h1QhSaGhZXGdsyvcKGXPEQO275QPMomCBPTtxYHkU6GNImCJgL0E1rPjDB79odxA/skEFOzGQUcjBuim8hIEHu9j8PSoRY4pXaQXli7IxgL0oQjqVUc+ZAYmAgmTsbexV07Df8Fw+eCbvyTCu4yV/o6IAObMZ/Hxk3wgJ/fpTu05pEnt2OE06gGDZYHhg+0/TFACy16r0n6eRGD8JC30ck0FDOhjQpCt69dJigaM6wTmyT1JWni7oeCKloufdEFAUOcfFTLC5h2wShRZCyXMnFFAWxdUmdbuXw+/HcskvfgS5WFoPdjqWtkHN+E/ubt8fwxOCv3kLfHDhY5WJQJv35HKmPK5IkWIgB5dOIwaq4XJwulqyEAT/Jz4QpMSWKrcDlQpH0XA6wmsVj0n4Nylf1Dum0KYP6GnaKZva3aJs7lO75ob57F0oOMIPHyhx/jJWnAWPyrNGnPImcOxA5HjM9MR3oaAPQTW2ysa3FmnzHatDRJQoAuHwJTetmKqb0JGwKSP9MLiDDJhlL4sjyzVrXthRa3GJSROBv2kzXZDGPWAx2fOCcNA+fdw7XoGt+8qieH4VBobOVZ53ydvyIOD7VPXVwksg2DCv6bPyKNLbh8QtJeqEYgaxkQ8Plz5npX5+A4BAxvJmDAM9NN3QvALiDdOgX3rQRP6SZKjH78BQrIQq3IvX9Vg2w7l73D1n3mULO5c7/qA6X3B3Lks6WD6tQ8ivvnJ+loFAQG9a4PRh8lrGLQAQqZs8caGClAXAk+fabBoqbz/SFoSkp5kwhQtwmTzi15Z9v7m2LNCSmDZgxLtQxFwDgJeT2B9W6MLPn3+gjSpkuPI5ukiKvnKt4wzOjeOyTlA4iyEDrQbgefv9IhakapgfgH16jo3Nt1uhWhH1SIQG4H16QFwczELgbfwENFGhg0GZ1DtsqhiKkZg/IcLOG94I2nYO3lhfBuQ1m0aR/Um1DCRXlh+iaOroPn4DoEWh1chaQj0EzbYravm9XMEDv9V6s+nSA3D2LXi36fOMNh/UEle5c3No1GDuB9I5y7U4tUrWb22rThktqOCIRnhiwTWUf0z9H93Gs9Mkfl8CvilQA5dMuT1D0FeXXLk9kuGNKyL3Xfs3i20Y2wIEM8r4oFlbv5+wOAB9nsZxibf2vfaE7/Db71cXY/LUwzh3eTqgXGRaR4TMKodmBcPJRGGQfPBZ8puU6SrQwk1pggEdq8J8PKzonHKFhgT2a4q7rdkDLQXjks6G2u3gfEnC8IvPgDRsapB4N59DVatlQmsr7MKaNmcg6tDeimBpZotQBVJAAh4PYF18dpd/HXhBr4vXRj5cmURTfbH4bNxNt3PFUvFeazaBj54/AJbdx/HXxdv4umLN9AbwpE0cSIRp3rVy6NS2WI2VT5/5TZWbNyHyzfuITRMjzQpk6NimaLo0KKmKMNW2773JLbsPo57D5+B4zh8lTEtalcpgyZ1KoFlo8cFEgLrzl0N1qyXf2xIOMng/iZolUVE1AYv1cfNCMREYOnfMLg6WwMuXFlxME8rHslzx/2Q7eYl0ulUhkCNF7txMfytpNXw5CXQPmk+t2kpmIC/x7Mwhcr7OnUJHtnrRd/TmnevEDikmaSbEJIG+jFyzpfYlNYYwhDYs5Y8nmWhn7MPT55osHQlC95iylQpeXRsx0MXj/CLqJUM69TiUKSQfZ63vkRgveUNGPz2L+wOk8kBW7ZKzvghj19y5NalQF7/FKKnFiG2AjT0xzK2/e3u7z980GD6bPm5huSK69XdtS/m/OcMBnvjnLTUiIZdYSovX9PxwSCqt1N413Hg8pWwKdLVoYTstbPwnzdEmp/JmAWGYUtg4mzfQ7Sn98Fv9VRpDJ+jEAy9psQHFjpWhQhcv6HBpq3ytZc3D49G9XnMX6TFi5eywh3bmpA+vfMWQAks52FJJVEEYkPA6wms2BaYUL8fO3M11m0/LC4/XeoUyJ41A3RaLZ48f4O7/z4VP29YqwKG9WwRDSJCQA2fslz8nJBdIcmT4u6DJ3jx+r0oa928YUidMlm0cQPHLcauA6eg07IoUiCHON+Vm/cR+kWPMiUL4H/sXQV0FFcX/nZmLUIUgru7BrcfKxQpLoXS4u5SXEsp7tYWL4XiWihOseIe3J0QI7I+85+3YfftbjbJbnY32YS55/TQ7Dy57743M+99c+93l80cCjFBp0yEAFjkYDRzLguVSahM65Y6lCtj22HmS53jL23cSQFY784xeGKS1YzYpmBbDlmDBfDqS1snzhxvtVfb8UIbY2ySgFcExEpNeX+BweOd5uB/hVE6yDObPx9F71/BY0o3ejgLygnlVPs8ij0GNobIJJ47bMZeLFnrDXIYNYhEDAzoq0NAgGPP58NHGZw5R8dVtzaHenVtu18zAoBFrPdH9H3MiLiMaE6T4iVFLJhHnEkPbBFAiwBbxaT+yCf2gTmcn+IuhIopsMCbN8DK3ymwmC0b0N+ORAX2dilSKyEf0QoiLfXyUs7cAi6RMD9725eungHx5ZPGaqofRkNXpWGSzdy8LcL2nRahhE04VHbCe1m6bTnEx3cZ+5d93R7RLXsnCWCREEgSCmkUEmI5fzd4mYe95hDKu7EFrlwVYc9+uu4qlOPRsoUOa9ezePqcPhV/6KpDgXyOvcdMzSAAWO6xKF68fo8mnX9EvtzZcGBj0h6or999RKOOI5E7RxAO/Tk7yQFs2nkUPy/+A8TRZc7EfomWXbZ2F5av32OTMapWKIHV80cby/740yrsP3o+ybqB/j74dxf1tDWc2ds3r4vJI1IegWaTwm5USACw3GgynKkKAa9uhDxCtw5NUKxQHrOm/7sSggHjFkKpUmPdwjEILlfMeP3lmw9o9t1YiMUsVs4abrzG8zyWrt2FlRv2wvKGI5UJcEUArAJ5suPXuaP0QBeROIUSQyctxdlLtzGoe2v07drCTBcCYBE5cIjBBZOscYUK8uja2bVfK51pb6Et11sgKQDr+SERXp8wyWpWjUP+lrYdhl2vudBDerVAked/IJa4QX2WFp75sSKoTqoP58osFqpwuvEOLMOjqMXzkYT3kDAfg3DZiUfCb3bpKh/fGUz4B2OdDeX+wM335vG3HdpxKFnc8Xvr8hUR9h6g96w9oePpHcC6r47EqLCzuKKi4al2TZQNheVgUVTqh2LES0vmj5LSQJSSBsCXsSNdpA39CEWsW+DJUxHWbaTrO38+Ht26um5Pw14/A9mqqUZl+JwFoJiwymnTI926DOITNCmEpnVvaBq2S7Z9y1BC8g1zyADHsxLKp3QH8/6lsX/vsXMRnr9ckgAWKezxUx+IXj8x1lP1nQpd2erJjkMokH4scPYcg3+O0o8j1apxaNKQw6YtDO4/oL936sCheFHH32UGywgAlnusEVcBWK26T8CDJ68gkYhxcvtC+PlaJ+0kgNL2AzRU2ZpVHj97oz8ff1U3GPOnUN5uA4BFwDd/XytcEQD8fLyx9GeakEIAsNxj3TlFi6bfjUGN4NKoWbkUgssVh4dc2LBZGnbq/PXYuvcE+n//DQZ0o5mrCLpMUOahvdqiV2eakp3UJyBWp37TcOveU2xaNgHlSlL+g5bdJug9uyx/J/UioqJRv91w/U1/auciyAkZxGcxAFiWpIuE6JRkI/T2ct7XEacsLqGRNLNAUgDWw80sQq/TA37h9jpkqSisnTSbrAzQsYbnkO/5BrORVJIFYU/2r1N9dB+vi/DAJMyaKFB2qBZe2akqopeP4fFzX+MPXO6CUI5baZeu8pkDwLx4YKyzJGAZnstKGP+uEsyhaRPnbPifPBNh3QZ6wM+Vg0fvnrYd8NMzgPVzxGUsi7ptdV6qyLJiXpYayM1645E2CnfVEQhRheGuOhJ3NRF4pzNhILZrZmnhLIwcJWSfwxCl8d5aRSV+kIiE1L8pNKnVagnCmBzkjEtON+mGORCfP2wspmnyLTQtqEdmcvWTuy4+uAnSvdSjU9OwPTStKWCeWH3ivblkOQOFgr6fHc1KSEB2ArYbhWHht/EIPsRyyQJYkp2/QXJkK7VTrWbQfEsPg8nZQbju/hY4doLBqdP0eVavDoe6dTjs2MXixi26Dp0d6SEAWO6xNlwBYJFoom/7T0fxwnlx9+FzjB7QCd+3SyRhRDJmuPfoBTr0map3FNm15ifkyRlkrGEAsIiHl62URgKA5R7rzilamJK4k3C2CqWLoEbl0qgRXApFC+aGyJVpYJwyAtc3Mn/VVqze/DdG9euIHzo0NnbYsONIvHn3UU+IT4jxLWXz7mP4aeFGdG33FX4c0El/mZQn9chNeHCTdRfM4VOW4Z+Tl7BkxhDUq1He2KwBwCI/zF/MIjKSvlwaN+JQvapzDkuut6jQg6stkBSAdXsVi09P6Nop2UsH30ICgOXqOcnI7b/QRqPaqx1mQ8wp9sLFXMl7HbjCLtcXsIh7R9e4X2EeJUwAH+bZfchnDTR2zeUtAuUY+7LqypaNB3ubcuis8f8JIfIa+jZzZOfRu7sOjHlEUIqHGhklwvxFtDEPD2DsKNtIrtMjgHVW8RYjw86ahaQajEe4rSYFVkZ7r8RJsUlZEmp4RxOGu6oIhKjD9aDWA3WkmZdgSiaEhQgFJJlQXBKI4jL/eJ4tqb8eSBMkZRa4dEWEfSYehhUr8PimmW0Ard098rw+NE4U+8lYVfnjEnD5qHe93W1aVBCf+RvSTfGJkohoqzaC+vtRNjV767YI2yxCCZs25lClcsr2d+KzByH9Y76xb7ZkRWSavAgfIpXJAljM/euQL6R6c36ZoZy52aZxCIXShwUsIzqafMWhWhUO+/9mcPEyBbYcWYPWLCEAWO6xPlwBYE2YtRqE43nD4nHoMWI2cmfPgn0bZto9YI1Wh459p4KAWGMHdUaXNuZh2AKAZbtJM2QI4dI1u/TE5bfuPoHWhM+DmIXEjlYPLoUalUqhWqWSyByQeMYS282Yvkp+iolD6x4T8e5DOLb/NtUYYkh+r9asv1lGR8uREeS5ba/Jeu8r4m1F5Njpqxg8cTGaNayGWeP7WDXG+m3/YPayzXqvLuLdZRBTAOvkvwyOn6QvF3Jg6tvLRRu+9DVlgrbk3vWR6bOPhX1SQaUx3/henc1CGUYP9+VH6uCRRQCwhIWTcgtcVYWi+dsDZg2Qg/7zvF3T5CNIxD0R7q41R49K9dXCJ3+8iuzjO5DNHWrUV1ewJFQjF9plAEsvjm2+I3HBsylkch6D+nHwyeTce2rydDF4kybH/aiDXJZ8H+kJwArnVJgU9h92xT61OhdtvQtgckAVBDAyu+bKUJhYi4CtxFuLAFp3VeH6/3+m/YSUwQNUjUwiMYpKiJcWyYYY761VQhKATIwD7P0pGmX6q3T6LIMjx+h+pkY1Dl81dHRGrNvB8t7nvXygmGsOvjtqQfbmechWTKLPl5LBIETutsrmvxjcvU/t4UgooWU2QVmnvvBo1cUmAItkLfQY1hKEM8wgyilrwGXNbetQhHJuboEdu1ncuEn3g61a6FC+HK+/H8l9aZD6/+NQp5bz7kkBwHKPheFsAIvwONdtMwSZvD1xYvtCDJqwGMfPXMXGJeP0DjL2yPJ1u7Fs3W59vQ2LxybYSwoAlu3WzJAAlmH4JL6UZNO7cPWuHtAiiKelEH4o4plFPLQqlCqsD3PLiEL4rj58jNBzUZHsgm8/hGFE3w5mLpB37j9D+z5TUKF0YWxcMt6qGaKiY1G9+QB9bO6ZPUv0ZUh7c1ZsQZ/vmmNwjzZW6x09fQVDJi5JEO9rCmB9ihZh7gLzA9qwwTr4+yV/oMmIcyaMydwCSQFY58ayAEc3LFWma8EKkcPCEnLAAkcUL/HD+/hEGKZyNVd7ZBV7OtByyqveWsEi+hld5145eZQdHA/yMw+ug2QKM0hKMmyJd/wG6VEaXvO3dw8cz9QFXTtzKFTQeRt9g45LlrMI/UjHQ0IISShhcpJeAKzNMQ8xPfwSojh1giHlF2fCrMDqqOFhEgea3MDtuK6GLj70kABbBNTShOOeOgJhnMqOVqwXzcF6ffbS8kMJKcmGGICCEh+IhTBEo8EskxQ0qMehdk3n30OkQ8nu1ZD8s8XYt7ZGE6i7DHd4nk0bYJ7chXzOYPp8yVMYyrHLbe7DaaGExNuMkNUrYo19e8xcA1nBIrYBWIAeiCOAnEHU7fpBW6+1zWMRCrq3Bf78i8E9E7C0U3sOxYtx+PcMg6PHKYBVszqHRg2cd0+mFoD19gaPiGfO09u9ZxPIXo6Bf17bU5I4G8AyRB716PQ1hvdpjyP/XtZzO7doVAMzxyUfRm2w7/3HL9G+95TPoYPTkSdn1gSmFwAs21djhgawLM0QGRWDi9fv6cGsC1dD8OylST5VQu4ol+LyoV9tt146KGkIFTRVlZDG9fv+GxTOn8tsBBeu3UX3YbNQu2pZrPhlmNXRER6sUv/rBpZlcPPYGn0Z4vG2YsMejOzbAd06NrFaz9B21YolsHoezbhgCmCRir+tZfVp2w1Cvo6QrySCCBZIDMDSxACXplPgWSwHKk+1LRRJsKpggcQssDn6AUaGnUtweX/2Zigvy5wmhot5BdxcYv6RpVhXDgElObB3r0C2eIxRL13xilANTjoDj+UgHi3ZhjIh9B142qsNIr7uD3L4doX8sZnBg4f0QNGutQ6lS6V/AOuJ5hNGfDyDiypKiG+wH+GaGuhTGkP8yqYJ71SoToEQdQTuacL1YYj3VJF4oImE2kF/LTKuQmLf+GyI0oDPPFv+yMamDdjrivVqT5t79zO4fJWu7WZNOVSu6Jr7SD6tJ5i3z43qqfpNg65MNXvUTbas6ONbeEykWatTEnp3+7YIWy1CCb9uzKGqHaGElqHSvLcvMv22H2JWZDOAJf53H6SbaRYvXYlKUA2yPxwoWaMJBdLEAmvWs3hmJdvghUsMDhyk92RwRQ7NmzrvnkwtAOvKBh2e/us8vdNkkuzotMJ3LArUsZ2j0dkAVpuek/QOMCRkkCQqI2GAxCNLoVDh5M5F8PFO/h1HosEI7xVpZ8zAb/Fd20ZWLSAAWLYvjC8KwLI0y4ePkfrseVt2H8PbD+H6y3dO2pd23HZTp03J/UfOg3g/6XQ6EO+pR09f6//NkS0zhvRsg2YN6Cbn9IWb6PvjfNSvVQGLp9MvbZaal63fQx+aeePYaohZFvNWbsWaLX9bjefbt856AAAgAElEQVQ11L12+yG6DJyB8qUK44+l1r27SNkTZzhs2kbDBv19gTnThHCFtFk96aPXyBc8jk6jgJVPThEaTc2YnpTpY0YyhpYz313FuNcXEgxmR8Gv0NqvQJoN8uxiLd7epCCPd1bgq+liaK+fR+wv9OOAuEI1eI+ZY7OeN27zOLfoADpFUdDrUZb6qLh0KlxFG7llpw5HT9GNeMuvWTT7yvaNqs2DS6WCKl6HGW+vYNa7a1DzCQ8YNb2zY03euigs90sljWzrRgceD5SRuKkIw824MNwi/yrC8FwdY1sDSZQKYGUo7RGI0h4BKONJ/g1EGY9AeDIZ+xm9Yo0WV27Q+7TP9yyCKzh/bXMf3uDTwPZ0BsRi+G04AoidvG9SKhDZ1YSvhWXhtznpTFvWlsWy37W4dovaRSwGZoyXIDA+cXWyoty5HsotNLuqtGYjeA6moY3JNkASEoV9QFQ/E48rsQR+6/8BJILbti32c/cyU2dr8fI1XWMTR4qRN7cI5y9xWP0HPV9UqcigV1cnkTqmolEEACtpYxsALJlUghJF8iVZWK3RgEQf5c4RhEN/JuRwJlREHftNQ9kSBfHn8onGtn5evAmbdh7BuMFd0Ll1g2Rnf/n6PVi2dpc+dHD9orFgGOseZQYAiwBlAf4+Vtvt+E09NKlXxXhNIHFP1vwZo4BKrcF/V0Jw8tw1nPrvBt6HRhgHRsIHrx/5PWMMNJFRcByPk+evY/KcNQiPjDYjVU8VD6wKJbB6Pj1kWaoZpwCGjdNAZ7L3HzNEjEIFbHcfzdATKAwugQWIO/XZJRTAylZKhJpDM/bhSFgGrrfAsJdnsfDDzQQdLcpdE4ODSrtegUR6iH7H45+JWsDEUSm4O4sckrOInTOWvs8q14bXSNs4aj6EAlNna5D/0yX0jKDPZ1GJSvCdYh+Plj2GOX6aw5/b6YGiemUG3TunvwMFGfOJ6Nfo8ewEnqqjE5iAgDhzclVH98zOI9W2x84pLRvDaXAjLh7M0oNacWG4rQxHlC5hSKQ9fZC3eX6pz2dAK0APaBFgq7DcFwwyxrt+3jIt7j6gN+nw/mKUKOr8san+3grFOupNJKlYA14/zrJnOmwuG9mlHqCmc++77hBEnvYR/cfGAeOma0D+NUih/CL8OERsE1AeM2UQtCHXjHU9B06EtLb92cA+Df0W3BtKK+I9bh7E5eih0GajuEFB9bF9iFtF51xctjK8x1OSezdQMVVVGDNVg4/xPgl6+XmiBEGZgeu3eCz9ne4Vy5YUYVDv9LdXFACspJeTAcCyZ9ElBmBNnL0GO//+F1NG/oB2zeoamzTwQRcpkEufSTApsSV00FDfAGAl1Z5ltJMAYNkz0+msbNSnWJz677qebPzspVtQKOkLmLj+kZC5ejUroFaV0vD0kKez0aVM3TMXb6HP6HkwvfmIayNxlbSFA8s3kxfO7YvPcLVh2z+YtWyzTRxYDWpVxKLpg4xKW4YQkgubtjC4/4B+qaxUkUMLJ7r5psxiQq20tkBiIYTvzjN4spuul6yVeRRsI5D/p/V8pff+B4aeskq83d+nJMYHBKfp8B5uZhF6nR6GpT48Kjc8Afna6Ua9tBXrQN0zPtFGUkLynCxfxSD0I4Oc6gcYFkYTcXA580M5wXVh9Q8fibDxTwpY5cnNo2e35O9dd+LAitCpMCXiArbHPLFq5lZe+TEtsGqKSdqTm7+0uP5SF6PPfnhHHY4QVTgeaiJxTxPpFFXKSgNRVOoXH4YoDUApaSD8mPTnGbPiNzHevqUm6dNTh5w28LvZa0TZwlFg7183VlN/OxTaWk3tbcam8h4Tv4PoI6XeUE5eAy6b/eTnd+8x2LzV3BvNkCkuKUVEKgU8hrcCIWI3iGL2NmTJnc2uEEJSV7ptOcTHd9HnZb1WULfrb5Md3K2QZPsKSI7tNKrFyzygmL8bYJzv8eduY7emz8zZYigoRz/GjNTC0xN4+kyEtRvo+yZfXh7dv0/+fWPrmFMrhFDgwEp6RpwVQmggbyeOH//uWgxvLw+zjkkyNAJObV4+EWVKFLSqFIlW6th3GgjglVTooKGyEEJo690GZNgQwjfvPuL42Ws4duYKrtx8AJ2JS0+2LAH4X43yqF+zAoLLF9OHwX1pQm7Icg17QAQRrhz+VW8DQnof3KSvTVkISxfLjy0rJ+vNdur8DfQfu8CmLITdO36NEX2pu7s1AOv2HRG27qBzIpfzGDPCeenbv7S5zijjTQzAenGIwasTdKOWuyGH3E4k5swo9hPGYZ8FOr47jNPKNwkqtfTKj2VZ6tjXmJNLK8MBknkTPAWxCpa9i/yn6QFMV7k+VN0oJ1ZiKmzfxeDmrfj7x0/7ARNCO9CDkI8/FLMoqbuTh4GwMBEWLaPPem9vYPTw5Pnr0grA0vIc7mjCcVn1AZcVofp/3+gombSpffKIvTE3sIbLSNqdPReOtqfhOTzQRuKuKgJ31fGk8SGqCIRyJifJFHaSmZHHk8ZL/FFCHqD/l2RGlMJ9924LFrOIiKT355CBOgQGJM/vZo+JRIo4eIwkgA51WVfM2Q7CC+UKkc8aBObZPWPTyuHzwRVOmTfqXztY3LlD7WNLVkLLTIgGgD3IT243gMXeuQiZCZ0FyUJIshGmR5EtHQf2ziUz1QnBPpencHocjsM6W2a3nTpRq/fue/MGWPk79bjKlg3o3zv5942tCqUWgGWrPl9qOWcBWFv2HMf0BRuSNWPrr2tj+ujuVssRfmjCE00cQ9YvGpdo6KChsgBgJWtuY4EMCWAZCNdMzUCyDdapFu9pVaro57zjttspw5VUqzUo36iXPoXnjaOr9aTsRFp8Pw6Pn7/B8W0L9ECWpRiyMbRv8T9MHv69/vLH8CjUaT0EeXIG4eCmhDHEpMzwKcvwz8lLmDupn1nsrjUAi3xc+3m2GGoN7f3bDhyKFf1ySAsz3IJzwoASA7Ae/sUi9CrdCBdqq0NQsHMPCk5QX2ginVmg4es9CNHQEHOD+lVkWbEzu/VkFak5ROJ1SLwPDSKWqFEr7BuwiAcMtNW+grrryCRVunJVhD37KQjA8lrMemfCcwMgbvlh2BTbk4LBk3P31Bli8Ca366RxWhBenKQktQAs4l11iYBVqve4rAzFBdV7m0Y51LcMRvlXsKlsRi9EMjDeVofjjjoM91QRuK+JxHX1R6cMu4DYB0WkfiglC0RJSYDecyuvOJNT2na0EbKHUZp6gYzSwtP8A76jXUB86QSka2iYMJe3CJRj4j3jXSGW2ftUvSZBV6FWirpSKERYuJQB+dcgeXLx6NFNl+jjRvrXUohP7jGW1zRoB02b3kgJgCXSqiEf2hIiHd1oKn/+E5x/lhSNJy0reYzvDFG4ecII4k2mrdcqLdVKk77VKuCnWfQFIpEAE8fGg1SWH0z8/XkMG5T+PLDSxLDpqFNnAVgGLIHwaBnOyJZmuH3vKeQyCU7tXAwvT/MIrgdPXqF978lgGAa71/5kNeugZXsCgGX7QsuQAFbJuj/oLZAl0A+9uzRHk3qV4e/rHpsa26fGtSUNaUAJsLfj92nGzhb9vgO//rEPQ3u1Ra/OzRIo0bHvVNy69xQrZw1HrSpljNcJQTshat+0bALKlSxkVi8iKhr12w0Hx8e7YZpmbLAGYJHKu/exuHqNbmxKluDQoa0AYLl2Vbh364kBWHdWsYh6QtdKiR46+BURACz3nk33167cy79AMrZZCvGsOZ+rbZoPgFAtXfmFBa818cJSrkF+9Ua9btqaX0Pd2Xo2WXL9/QcRVv7KmvEN+vnyGPe8ORiTFPWu9OggeixcwiI8go6hX28tsmdL2ryuALA48Hpw5YryAy59BqyeaRPyWSWlWQVZFswPrIHCUvciaU/zxWqhAHk6P9VG6TMgkkyIdzXEaysCL7TRptRuKVLbSyRGUZIJUUKyIfrrsyGWkAQiE+NkUvMktCOALPECMRWDF0iKBpVIJenqnyG+fMJ4VdPse2iadnFmF2ZtSf+YD/HZg8bf1J0GQ1u7eYr7sxZK2LgRh+pVre/15JO7gfnwytgfybJKsq2mBMAijciWjAUbctlkPEOgrZ1w35viAaZCRZFWA49BXyfoSVuhNtS9KOl0KqjiFl1ERYswbwH9KJPJm8eo4fEgVUwMMHs+vS9JWCEJL3SWCB5YzrKkY+04A8Ai51xy3i2YLyf2rpuRqEIk8RlJgEYcOohjh0FMQwd/HNAJXdvZxtMnAFi2z32GBLAqf90XsXH001fBvDlQtWJJ/K96uS8iZJAQ06/fegjNG1VH8cJ5E6wGQmI/ctoKEGBp5rheaNGohrFMWMQnNP52NDiO04NUweXiSWd5nsfStbuwcsNePW/WztXT9d5bBjFkMCSZE36dOwrZg+JTypCwxGGTl4FwbpFMDSRjg6kkBmBZxqqTUP5xo7WQpj8qDNvvxjQuKT53COIDG8HlKQI+bxHoSlUGl8t6XHdaqJoYgHV1DgvlR7oWyw3XwjNrWmgo9JmRLJDzWeIZaV/ni/9IktZiGT7L8jGoFd0RYsRCW+cbqDsOtKoi4WFeuoJFZBS9b8gztl9vHfIu+8HskJhSnhtbbbP+DxaPTQDoDu04lCye9McKZwBY0ZwGV9QkFJB4WH3ANVUoYnj7DzOBjAyV5EFo7JUX7b3MP97YagOhXLwFFLxWD2QRQOu+KkLvuXVPEwHixeWoZGM9UUzih5KyABSTkv8IsJXQy9zRfuL3PcAvc+hBWS4Dxv1o/9pKThePoS1AeKEMopywClxO12VIlexZA8mhzcb+NM26QtP0u+TUTPL61p0sbt82DyUc1F+HAH/zj1BM+AfIx3c2aytuxRH93ykFsCQndkKydYWxTV3Z6lD1nerQeFK7MvPyEeQ/90vQLefjD6ULw79Te5y29vfhA7B0Jb33smTmQdYTEY0GmD6TXiNHGAIsO0sEAMtZlnSsHWcAWJPmrMGOA/9i3ODO6Nza3CvdVLsT565h4LhF+myH236dYrxEzspL1uxE+VKFsWFx8qGDhooCgGX73GdIAIuEx/13NQRH/r2CE2ev6YEagxDyccJ/1aB2RdSoVApSaep9lbN9WhwraZqBgYQBFsqXEz6ZvKBUqvHgyUu8fvdRDz71+a45BnU3SSX8uVtCdk9C/giCXLJoPmQO8AVxhXz7PgzEfhuXjNOj0pYyd+VfWLvlIEg2x/KlCkEqkeBGyGNEx8Tpb26SOtTTQ2ZWLTEAi3zBnLuQRXQ03di0bK5DhfKCZ41jq8N6bZFGBdmErmA+0dQt5Msm+cLpLpIYgPXfBDE4k3DTqtO1SIecv+5iZkEPAOE6JUq/3JKoLa7n7oAsrJPjgVJgeZ1ShMu/MNCZhuGotqCIahU09dtA07av1VY3bWZw/6E5wW/zphyCK3KQzR0G9vFtYz3liPngCqWM58aWIe3/m8HFy1SXhvU51KrhfADrxn413seoERWrRpRWg6lfHYS9Pr0sRCgq8dMDVsHyrKgoy+I2IWu22Dq9lnmni4sHttQRCCGhiOpIPNJGgfBuOSJiEYOCYh+UIB5b0gAjz1YOsZcjzSIsXIRFS6kXiL8fj2GDnReqRJRjH96AbD4NESahbyQEzpVCwvdIGJ9BtHVaQN2RJuVJSd8khHDxMgaxcXSvlyMHjz49zEMJJWcPQvIHzaynLVEJ6kEz9V2mFMBi3r+EfArlrtGTny/cm5JhpFkd8aXjkK6Jt4OlKH7aAD4we5rplhYdv3gpwu9r6b2XKyeP3j3ovWfJj2VLyLqt4xAALFst5dpyjgJYxAGmbpsheu7skzsXmUUNWWpO+KQbdRyBtx/C9QAWOes+fPoK7XrFhw6SDIV5c9n+RV0AsGxfGxkSwDIdPllcV27ex9HTV3Ds9BX9IjMIyThYu2oZNKpTCbWqlE0ArthuRvcqSW46EiJ4+NRlPHr6CuGR0fgUEwuZVIIc2TKjQukiaN+8rlXvLMNIQh48w6qN+/QE+DGxccgc6KcPGez7XQur3FiGeoTn6o8dR3D/8Qv9zZ8zexZ8Xa8KunVsou/fUhIDsEi5w0cZnDlHDzb58/Ho1tW5m0D3mrm000ZyYCMk+83JCvks2aGYljyBYWppbQ3A0sWJcGEq3awwch5VpwprJLXmJKP280ATif+93p3o8A5mb4YyssxuMfzXp1g8/5se/kS8GrViv4WoQQNoWvVMoOPZcwz+OWoOXpUoxqFj+3gwQLZqCtjrZ431VD0nQFfRdaT1584zOHSE6lOxAo9vmiV9DyfngaXktXqeJcJbdUn5HjFPGYzY1cjMFnMaH8XF/M+SnEMfRoKK0iBU8ghCJVkQyssyw0uU8T56ucVCtlMJQqj/WPNJz1MXD2rFA1xvdXF2tpSwOJn34pJ4QIv+FwBPUTLkbJ+bev1GhFW/0/dS9uxAv17O8/Qg3VhmnnMGmGRpCQKMKz8CBKsXewLyOwQsoZxbuvI1oeodn8zHEXn4iMHGP82fSY0bcqhejQKUst+mgb162tiNpnVvaBq20/+dUgCL1JWP7QQmknKyKYfNAVeknCPDSdW6kr1rITloHbhUdx0FbTXz516qKpcGnT14KMIfm+m9V6ggj66d6fvkl7lixJk8In4coYWXY3i1cZQCgJUGE26lS0cBrK17T2Dq/PVo1aQWfvqxR7KDMhC1G7ih+/44D6cv3NJnLcyTM2nwinBrbVkxydiHAcDKlztbotRHfj7eWPrzEGOd7ftPYfLctfry2bMGJqrvomkD9RhARpEMD2BZTtSd+8+MYBYhKzcI8cSqGVwKS2bQRZFRJtmdx5EUgEXSui9Zbr6pGT1CB28vwQvLmXMqio6EfHwXEC8sM2EYxC35G2DcI9OTNQAr7p0I1034DjyCOJQf4dhXeWfaVmgrfVrgnPId2r07lKjya4Lq4SvPPG4xOBL1dvkXFhoTb9Wc6n0o9L/30LQwD3V8+VKE1etZ06RlyJKZQ99eHAjZLRHppoUQnzlgHJu6w0Bo637jsrHeu8/gz79MPlTk5dEtmdTmlgDWK22MPgzwijI+MyDhVdKasCl1vFgRba6UNxvD3ezvMKnlfuNvBAIsKPFBJT1gRbyrglBY4gsKDbrMBELDTrQACQ0N0YThrjoSIap4fq376gjEpiA81FQtsg5ys9760EMSihifDTFAv2YYi1VCQmJJaKxBCuTn8cN3zv2w4jHhO4jC3hn7UA38GbqSwU60JBB6hcHDrfTezBQUjSqPWhj70BUqBdWIBU7pc/tOFjcTCyXkeXiMaAWRKTffhFXgP4dLOgJgWT7vNI06WAX+nTJIFzQiWzUV7PUzVlvW1mgCdZfhLujVfZu8dVuEbTvpvVeqJI/2bei9t2AJiwgTzkVnZgcVACz3WBeOAlhte03G3YfPsXn5RJQpkTyNSmhYJOq3Hw65TIqTOxah+/BZuHX3iU3GYBgRbh1fayxrALCSqhzo76PnkzaIAcBKrsN9G2aC0PxkFPniACzTiSMhcYdOXATJrEfC6ojcOZk470lGmXR3GkdSABbRc8UqFm/f0yPEVw151Kjm3I2gO9kjLXSRbloA8Zm/rXZNPLCIJ5Y7iDUAK/yuCPfW0c2KX2EeJXq65/oIucvg7TsepUsCQUECCOsOayoxHfbFPkXf0FOJqjgjsCp+yBTPD+gO8u4/Bk92mYD9vA6Vq+yCuE1Lo3pxcSIsW8WYhWWTbH/9+3DIHEhBX8nedZAc3GSsR0ihCTm0q8TyQ4WvL48RQxK/h0nY2D0uAnf4MJz+9BbnY9/hvRWyfVN9Z+xsgSLvgxIMYWOXU8iXU47gz4CVrxB77KppTtN2ydP2pTbayK91V0W8tcJBSPp1DtLGy8Dqgc7iss/eWpJAiJ7548g2b+OYCacb4XZzljBvn0M+jXpX8hIZlPN3gRc71zvQMtOph58aNV5QMmIuKBeUU+nhy5HxKZUiLCKhhLF0v5c7F49e3XVgnt6FfPZgY/O8ty9IcgmDOAJgEW9T4nVqEML7qRy/0pGhpGpd+dQeYN69sNonlzU3lFPWpKo+ad3Z5asM9u6n78JKFTm0aErvPcszBeF9zJ7NOfsxAcBK69kX+v+SLPDFAViE4Pzitbu4cO2uPrTwxWvz1LMCgJW6yz85AOvseQb/mISXZA3iMaCvewIUqWs55/RmuRG2bFU1eBZ0xd0jHbw1AOvdBQZPdtLNSlAwj0Jt3W99xMTG83yQTToRQlDbvCmPggWcd6hxzooQWiEWWBd9D+PD/kvUGAN9S2Osf0W3MRahAro2JQ5KlY9RpyxZX6Dw8BzGv9dtZPDkqblHK/kyTb5Qm0oCnpvazUGyjblSJk0zD82aNomGW33klLhMMgMq3+s9rC6pzd/Zyekl04ix8ffvIbLiS5W5LI8i37rf8yK5MQnXnWeBG+qPem8t4qV1Rx2mJ453Bmm8VC1FYHgAAsMDUc7XHx0r+aKELAAE8HJUJIe3QrLrN2Mz2vK1oe7t/IxzNxeziHlNASWxnEfdD/WM/fKe3lDM2+XocIz1Hzxk8Mdmi1DCRhzqRGwEAdYNoq3WEOquo41/OwJgiVRx8Bhq7mGqmLUVvI9rCP6dZqzPDXn2S5xgmhRRzNkB3pu+F5zdv7u1d+Yci8NH6ZolH7zJh2+DrF7H4vkLer379zrkyysAWO42j4I+ggWSs0CGB7BIVj0CWBlAq+ev3pvZhLjvlSpWQE/oXj24FCqULpyczYTrTrRAcgBWTIwIs+ebb/gG9dUhi+DB4pRZkC0bD/b2xUTbUndyn7TS1gCsF4cZvDpGN7y5GnDI09D9QKE/tzK4d898Y96wHo9aNYXDs1MWspMbmRtxDQuibhhbzSn2wmttrPHvNl4FsDhLbSf36lhzEauO4+4Tc76TskO18MoOHD8hwsnT5s/RysEcmjVJeK+IL5+EdDVNG60rVxOqPo7z3CQ1OpKw49MnEXiGR7hfOEq0fYe77Ds9YPVCF2O3YaRgUEaaGZXkWVD1eX54bclmvQ2GR8UxOsh87e5CqJCBLRDKKUG8tO5pwvXhqIRf64E6Cio49rwmb4B8Yh99GGJxWYA+C2IxqR/yin3sClWVzR0K9vEd4wy4guuI0wEXJrDgOfMg2vqf/memq2LJQfDEldNJsn0Xg5u36LuSZYFp7EDIntPxqrqPgS64vrFHRwAs0oh8wQgwD26a2HMktNVsS3vvpGGnqBnm/SvIp3Qz1uUz+QE+ARC9puFLqj5ToCtHM42nqKN0VOnIcRFOn6Hvugb1eNQ22WdZJjDp3JFD0SLO2TMKHljpaKEIqqZ7C2RIAItk0btwLUTvZfXo6esEk5QzW2ZU/wxYVa1YIskMA+l+ht18AMkBWET9dRtZPHlKN1E1q3No1MA5Lxw3N49L1WMf3IBsAc1iRDrT5cgL9s1zY7+EJJWQpbqDWAOwHm5lEXqFro2CbXTIWtk5X9OcNebbIQy2bjcHr0jb9etyqFNbWMfOsrMz2xkTdh4bo+8bm2zsmQeH4miYRnV5VmzL1sSZXTrclmTrcly+2AyxbAFjW35FeXjW47Fmg/n6y5GdR28SmmPFGcTyucAVLAXlSOfw3FgOkni6XFF9wO8XQ/FQ+gGhmUOhkdhPdp2V9dBzVgXL48nWS0sDIRHFj/nZPgZvziS8/wy65KzDIe/Xwn3o8ALM4A1w4PWk8XpQSxmOe5pIPb8W4V9z9I1DyOGLSPz0hPHES4sQyJeU+sPHSkirKOYTPEa1MbO2Yu5O8F6ZnDoD0S9FuGWSSdHQeE2+G+TRNPkByXxIMiA6S5QqERYtoVkJ5Vwcfnrf1Hy8Fl5FjgJY0n/+gnj378Y+tBXrQt1zvLOG5LJ22BvnIFtJPy7oCpcBnzM/iBetQTT120LTto/LdHC3hi2z2jZtwqFKMH2+W3KttW6pQ7kyjt7B8VYQACx3Ww2CPhnZAhkSwCpZ15y41stTjirli+s9rGoEl0o2K0BGnnB3G5stANb1GyLs3ENPWj6ZeIwYap5i2d3GlR70kU3rCfYtBau43IWgbdQe0tU0y5C2XE2oXex9YautrAFYd35jEPWIHk5L9ODg56SvabbqlVQ5kiJ84VIG5F9LqVeXQ10BwHKGmZ3eRo8Px80Aq1H+5TEn4pqxn/xiH5zJ1drp/TrSoOTPRfh0PhTXPH8xa+a6L/DOBBOSyXkM6seBPEetCfPmGeTTexkvOYtHhfT2SBOlJ1m/rHiPy+oPekDA3qODGCKUlAWgtm8OPWBVlPNHLjHlG7IcE0nyQJI9GCSgFIfw2yYeHnIewRN0YJxLH+TIVAp105EFYnmNHsgy8GqRTIi34iKhYNUOj4IAs8UlhkyIgfE8W1cuwWv9HGPbuoIloRq50OG+LBt4d54B4cCylCpeE5DpLc1SqhyzDFzeIk7t3zQrYSnFafwQSbN0kX2KctwKs/4cBbCYl48g/7kffeZ5eEI5bzcgcu8UDpJDWyDZs9qot6Z2M/CFyphliuTyFYXyx6VOnR93biw5gGrfAQaXrtB1TbyQiTeyM0QAsJxhRaENwQK2WSBDAlil63VDyaL59WAV+Y9kERATP2RB3M4CtgBYajUwc44YOhPv/W5ddcifz96jj9sNP80UYi8cgWzdbLP+VaMWgWcYyGcNMv5OsvwoJqxKMz1NO7YGYF2by0IRSjeZ5YZp4ZlItFBaDMJyM2WqQ706HOrWcc7GKS3GlpH7bPnmbzOupY1ZG+C790fNhvw6n/mHkrS2h/SP+RCfPYhLnosRJS5tVCeKAc57UO26duZQqGDi645kJfUYHZ+eXi+emRA3b6fdwyMH+2uqj7iiCsUlxXtcVYemiFvIn5F+9q6KzwxYXhYIX6kU5Hmg0nAI+2SRPdVEU12cCBemmr/7q0zT4do8Buoo+tzI/w2H7NWFe9HuSRYqWLXAlq0MLr5UIMI/HOH+4fAu9RFvPAN/P4kAACAASURBVMPxRPPJLDtmSswn5ngUCotCidBIlPwYhWKFKqNQ5eZJgrgp6efhXyxCryYEcMoFLkfmp9uMTaoGzICuVOWUdJFknZ27WVy/KUKrqAWoEbfXWNZalkBHASzSuMeothDFRNFxjVoEXYESTh+XMxuUrZsF9gJ9L6nb9QdXsTbkYzrSbhgWioV7wUukzuzabdvauJnFw4d03VqGCB4+yuDMOQpgNajHoXZN5zz7BQDLbZeFoFgGtECGBLA+xcQJYYHpZLHaAmCRoWzdyeK2SYrlCuV5tGzuGB9FOjGR09UUadSQTewKJirM2DbhSCBcCWQDRzZyBuHFUiiWHHC6DvY0SLKnHT4iQo/vJJBJGP2BlRxcifw3gQWnoZuVylO0EJsc1u3px9llrRHSmvbxvzocyH+CuJ8Far7aiafaT0bFTudqhUav90HBU1em27k7wZ+VuY3yhsPMJ6YILnqbg85XZECoGPqNOtmwJyk8D8/+5lxaccsPJ+uN8EIbjcsErNKTrX/Qh1jZm+FNxAN+kf4opMqCb0uTcMAsKCBOSFBFngO2AFgfb4jw4E8KYHnn4lFmkA5v/mXw7AA9xMgCeFQYLXj1us1iTueKrN3A4ukz+l76vosOBQvw0PIcHmijPntrhemzIoZoIvAhmSyatpgjEyNBMTHh1iIeWwH6cETyr7coZfxU1+axUHxICGCVyL4dOe4vM6rkCv4t0rghlHDQsy7IrHtj7E85ZDa4YuXNTOIMAEu6YQ7E5w8b23V19lVb5jS5MvKZA8C8eGAsphr8C3TFK8JjfGeIwmmyC+XQ2eCKmtssubbT6/Xf17F4kQRJ+6nTDI6doM9+m96JNhpDALBsNJRQTLCAEyyQIQEsJ9hFaCKVLGArgHX/gQibttCDiFQCjButtcrhkkqqp9tuxP9shnS3SWplhoFi2nrwgfGuSx7DWkCkVBjHp/jlL/C+AWk23oP/MDh/gUHLpgyaNWKNAJZWAVycQjfnjIRH1Z/cA9RUKeNDB2PjEg9BIN5XxAtLEPezQLEXmxDNaYyK3c3zLZq/PaAPgTPI4RzNUVIa6DbKE+J1QsBO5LrHDHyUVDfqRjLTPy0cn5LelqgY4oFFPLEMopi5BbwfHasaOtxQhekBq8ufAStCfG2vZBKJUV6eBUXVQXj5Tw4EhWaBRCOFvz+PYYMSv5dtBbAe72Dw/iI9rBj4rnQq4NJ0c/C7WFcOASWF+9HeORTKJ7TA8l/FePeO/t63pxY5aELQBBU+cWp99sN7mgiEqMIQQkjjNVFmgHlK7ZxL7IViJAyR/Ef4taQBKCjxAZsEbbxOQwjcrQNfRfKcQJ7b04zqaFr3gqZh+5Sql2S951c/ovhvnYxltJDgROcDqFHT/L3qDADLMnlFegi98xjUBCIt/aii+PlP8P5ZIFv7C9iLx+gcNesKTdPvXDJH7tbospVivDdJVNu/jxbZslItL1xkcOAQfSdUrsShmZM4EAUAy91Wg6BPRraAAGBl5NlNB2OzFcAiQ/llDos4Ey6hju04lCguHDjsmWZRbDTkEzqbAVTaut9A3WGgsRn5zP5gXjw0/k34NQjPRlqIZRbKAT3FyJNXrffAinsHXF9AN9nyzDwqjHIPAGv3HgZXb5jzhxQuxIFwexikbi0d6v1PCINNi3WVVJ8ankO+5xuMRQjn0vN836Pju8M4raSeAOuD6qOBZ263UV+2airY62f0+sQyuXHem46B/Ja7JYfc1Wx7XhIOLMKFZZDn4xbhQqAnLis+6LmryGGb2MleySfOpM8MGCzLikryID1xNQMRNBpg+kzzA/O0SYmTudsKYF2dzUIZRg+7JXrq4Fc4/p57upfB27P0fvQpwKNUH/d4fthrV6G8e1lg/mIWkZF03Q0booO/r33PelL6mfaTPgNiiCpcz7N1L/wpnstE4D4nKEjpqEmWzsIS38/ZEAPjvbUkfsjKeuqbjHoswp1frdNu5CtwHYWuDzN27UqScPG/+yHdvMjY111ZFawO+AWDB3DIHEifP84AsESKWHgMb2lmUsX83eA9vFJqZpfWY8I/QD6+s7EPXuahDxUkIj69H9I/qd2IVxbxzvoSxJDR1jDW4UN08DO5927cZLDDhNutbBkObVra/y6zZksBwPoSVpgwRnexgABguctMfKF62ANgHTjI4MIleuAoXpRDpw7OefF8KeaX/rXULEMNL/eA8qdNZhmMpL9Nh/jqv0aTqH4YDV2Vhmlior8PMfjPxIOCZOse0IdHYKAOEfdFuLuGbrJ9C/Eo2SvtD6CPnzBY/4c5eFWjmg5yOXFdp4eaOrV0qC8AWGmyrpLq9I02FsGvKMdLdtYTl3O3x7CPZ7A15pGx6szAauiaqajb6C9bPhHsrf+M+uzx2QYvZDb+LfXhUWGM9cyDpoMgYU4PN0zBZU0ELuYIxMVcWfDKx/5DnBwsysoyo+JnwCpYFpRkyOWsuayZx+KQgToEBlg/9NsCYKkigCu/mIBiDI+q03VgPv+kDAOuzmEBnt6TZYdo4ZWEp4zbTLagiFtbYMYvLFRquq7GjSbPf/sALGsDJNxG6thIhGTxx50gP9xo2BQhXmLcU4cjgnOcNJ7wzRWTBqDp1dIoeiqvVRvnzP8UxW90N17TVWkA1Q8/umQ+ZKumgL1OCeP3+AzAaa+2yJGDR9+e9F3vDACLDEA2ezDYp3eNY1F3Gwtt5XouGZujjbIhlyFbMtbYDCHSJ4T6RCwTceipIBbtA5jEs7E6qo+71J8xi4VKlfi9d/c+g81/UTsUK8rhWyedIwQAy11WgaDHl2ABAcD6EmbZjcdoD4D1+rUIq1abfxV01sbQjU3kNNWYD68gn9oD4Cjop2nZA5qvTAg/AUh2r4bkny3GfonruaZZV6fpYWtDlt5Xhnoke1rfXhxiQ4DHO+h6yFKRR+H2aQtgkYQDi5ez+PTJJOuZP4+hg3Q4fYbFkeP099o1dWhQz/FDja32FMrZZoFb6jA0frPPWLi0NACHcrTAnIirWBh10/j7EN8yGO1fwbZGU6EUOcyQQ41B1votQC6unFmgUIFvOGRLgqx8dXQIJoVdTJG2BOirJAtCsAfhrgpCWSkFz2xp8Lc1LF6+ovdHUmTztgBYHy6J8Gi7SfZaKx5W9zYwCL9DDzOZy/Eo0iltnyG22Eoo494WmDTNdm9CW0dimSmPfHxSzNsFA4/CO10c7qsjcUcdjhB1GO6pI/VeWymREYfqo+rT/Farqgu8QdEXfVEwPFp/XVeiElSDZqakm6Tr8Dw8hraASE1Dk+dkXov3knz6eo0a8KhZPf5edRaAJdm/AZIDG416aas0hPqH0c4fmxNaFB/fCek2mo3RUle97VSUCkI5Zim4vO7zwcUJJrDaRHL33tNnDNZuoM/8fPk4dO/qnA/hAoDlqlkV2hUskNACAoAlrIo0tYA9ABZR1NI1v3lTDsEVnfPySVNDpELnll8zOd9AqKZvSJCdRnzmb0g3LTBqpKtcH6puY1JBQ/MuLD3uTK9mDeLRLD+P18fpRiRXfQ55GqXtWth7gMFlkxTNROc+PXTImZOHK8lDU31yMnCHJ5Wv0fndEeMI68pzYFO2RtgU8wCjP54z/t7euyAWZK7lNpZQTx8FvzfXjfqsCJiPIN9y8DUJoZN486hIvLAk1tUeEXoGW2Kpl1lSgysnzYyKsiyo7JEVxLvKEH6UUoPs2M3ixk0KYH3dmEPVytbvZ1sArIebWYRep+3lacghVwPz9j49EeH2KpOPIgyP4PE6SLxTOgqh3pdugbg44Je5FMDykANjRyceDmurvQiwQgAWg2iD60HdnXrgJNYOIYknwFY8qBWhJ45/q4tLstsVGzoic6z1m+BGrtf4qflBff0Kbz6imIJHkeCvUUIaiFLSAPgyzsl2xz6+A9ncoUY9lVJfTAjcbfybYYHB/XUI8OedBmAxT+9CPnuwsQ/e2xeKOdttnaJULSfdtBDiMzTBjrpld2i/onxhlh656nb9oK3XOlV1TO3OFEpg5mx678mkwPgx5vfemzfAyt9pmezZgX69HL8/yVgFACu1Z1zo70u2gABgfcmz7wZjtxfAOnmKwfFTFLTIk4dHzx+EL+bJTSX7JASyOUPMihFQioBTlsLcvw75wlHGn3UFikM1anFyXTj1OvG+mruIBZfE1FaX8fAJpwfUAq05ZKuSdgDW85cirF5r7iFYpTKHpo3jdfr3DIOjJoCbM7PfONX4X3hj22MeY8jH00YrtPMuiIWZa+GE4jW6vKfAVi15dmzJ9pVbWOs9yRY2Yxjyq28Z9VmfZxEa9yqJ2wsY8FoTIOcrDrkSyUTY7f0xHFa8TDCmAC2PYJ88qCTLqg8JrCIzYcV1kgUsn+3VqnBo8lXKASxC0q6JoeMu3U+HTPkSejxeX8gi7i0tZyB6d9KwhGa+MAt8DBNh8TL6HiAAC/HAdVQsM86pu4+DNvh/KWqWJKgI0YTpuezuqyLxQB2J25pwPWm8j0KO1eu6JNru08xhGN1uV6LXszByjPAvj+8cDK+29IZSVWmMmeGjQfYGBiGhhOQDUVZ/OcSsCB8ildDqHPBq5nnIR7QEo6AAn3LscnB5CqfIzq6sJJ8/HMxD+rwnWaRJNmmDSA7/Bcmu3+k+rnxNqHpPdqVKad424Z0jH7kN4uPDY+RQ83vP8v4kYeokXN0ZIgBYzrCi0IZgAdssIABYttlJKOUiC9gLYEVEirDA5AVF1Bo+WAc/Pwc2LS4amzs1K/+5H0gIgkG43IWgHEfdz011JemXSRpmg/CZ/KCYTTmBUmNc+w8yuGjCd+bry6NYYQYXLtN5rqjkkUVnQtDcnYNf0bQBsDRaYOkyFhFRVB9CHDqovw6Sz94uZ86yOHyMXq9VU4eGQghhaiwnu/pY+ekOpodfMtbp61MSEwOC9RnC6r/eY/y9kMQHp3Km/RdtEra6bCWLLo8GIK+G8re86rEEAZWK4flBEV6fpJt6Vka8sDiIPRM+M1u8PYArqlDjGKeevIZmD14iT/EaUH83wi472lv41h0RtpmEBBcpzKFLp5QBWIoPDK7Nox86iFNI1enWv7KHXmfwcDMty3ryCB6XuJeaveMSyn9ZFrCkOrDka0qJNZjIMMjHmoT6k8zBc3eB94gnXXeWvNBG4/EdDWR/BhmbDPWOQZYY6o310SsG/bpSigFrfQexHriWu4NDasnmDAb7xISPqsd4PAish3UbzXmcGtXn0bqpxDkAFgDTbK5kAOpvukPbmHo2OTQoJ1a2zBSrnLIGXFaaVMTSg4338tavmYws5EMOeRcaJCgLj4H9zMGpmFgRZs+jZbw8efw4UgCwMvK6EMaWMS0gAFgZc17TzajsBbDIwH5dw+KVCVdKvf9xqFsrbYCL9GBoy/TQRGfVqEXQFSiRqPqeA74y48pSLD6QINTQVWO3xn31TTMODWpLsGgFh0dP4w/eNeJ4ZHITAuaD/zA4f8F8Y92jmw55c1OQ4Mw5BoeP0jI1q3NoZBHS5CqbCu3abgECXhEQyyATAoLRz6ckIjk1Sr740/i7p0iMh3kT91SwvUfHSm7azOD+QwZDQ3sjl5ZmDzV4DmgVhMychU6ZvJdR9Vc78Fwbz21D5Mqve1EgIhq6UlWgGvCTY4omU/vVaxF+NeE4DAzkMWSA9YNFciGEb88xeLqH3mv+xXgU72a9LV4HXJrBQhtr4s2ZDFeYSw0hNJ6uLfDwkQgb/6QH5IIFeHzfxbEDcoKsckXLQTV0jkvs9OKwCK+OUf2zVuHw3uLd1u+HZfjoIUuy/0WZa6Gtd8EU6Ui4mwiHk6kQvi/e0xu797G4eo3eqySUcNIoMXJld4IHFsngd/4wpBuobbnCpaEcPj9F43BVJVHMJ3iMakObZxjELfnbyIemv6DTxXOIaSm5v2LqOvBBOV2lVpq3++y5CGvW07WbJzePnhbPfbUG+Mkk462YrJ/xQghhmk+eoIBgATstkCEBrJhYBW6EPEaN4FJWzREdE4dVf+zD9duPIBazqF+zAjq1qg8xaz1tsJ02FYrbYYGUAFjEM4d46BiEeF8RLyxBElpApNVCPuUHiMLeGy/qSleFqv/0JM0ln9IdzHsaSqQYtxJ87pRtRu2dl30HGFwy4ZEibuBkfrP4yaDVMJgySw3iiVc/FjCl8qk8SQux/cnS7FUvQXlryQUqVeDQopk5qGoJYNWoxuGrhgLw6vAEOLmBoR9PY1vMY2OrpgexQs//0IfZGORens7IlBihlJP1stbcufMMDh2JfxaOCO2G7NpnxmLKCb+CyxlPxPz6JIPnJs9MkTieC0uaybzVYi82gYQXGeT5wm3wUanB5SsK5Y9LXToiS+4gkQiYOtH6wSI5AMuSnD1fUw45aid+r1naRxbAo8JoHYgOgggWsMcCt26LsG0n3UuWLMmjQxvH9ifS5RMgvnXBqIYr+YzurGYQ9YDur4p8q8MDE0COKPE/WTd8inmLm1n9cSvIH7cafI37rAY31GFGHUtK/HE45zf2mM5Ylr12BrJfpxr/5vIUgXJsfIY9AkAsXMKahRLmzC7ClB/FCI1yMIQQgCgmCh6j2lK9ibfb/N3gZR4pGosrKjGPbkM+bxi1T/a8UE6i4YKGC5ZhhsSLVlu9sStUcos27z9gsGkLXbuFC/P4zkpSjsnTxeBNHJDJe8YZz3ohhNAtloGgxBdigQwJYB049h9GT1+J9i3+h8nDvzebytg4Jdr3mYJnL9+Z/V6/VgUsnk7JG7+Q+U/zYaYEwFIqRZg5hzV7AfXtqUUOIf15gvmUHN0OyY5VZpsx5eTV4IJyJTn3smXjwd6m2cgId4KufE2Xrxdr3FctmupQqSKPQB8ZyMH1/hM1li4H6kTS0yUPHiXGcfD3Td1QUp0OWLKcRXgE1SVTpnjPEakFl+3Z8wz++Qw2EEMKAJbLl1OKOuj8/ghOKl4b624Iqo/6nvGhGTVf78RTzSfjtaM5WqC4NCBF/Tha6c3beI8lQ1LR0aHfI0j7wtiscvIacNni9SaYFPHCMuWEInxxhDfOIGpeh/zPaQYu8oCNmB3vccYHZoXipz8cVTnZ+jN+YaFS03tp2GAd/K2EhycFYJGDyYWJLDgNbafsYC28knA80KkAwpllWqfY9xwCSggAc7KTJhQws4DlB7bgChyaW3zMsMdkJAuffEQrkI9RBlH8tAF8YHZ7mrG57IVJLHQqeu9UHK3DrV8ZqE3et9X8J8HrOeUJVA6bhw8FC6PCy63Qgb6Dt2VrjOrybDb3bShoSVCuafItNC26Gdt58pRJEErYqimL4MpqxziwPvcg/7kvmJf0I4aqz2Toyrl+/2OrocSnD0D650JjcbI3s8ZvJd2zBuJDm43lCHjl6lBwW8fginLXb4qwczcFj8uU4tG2dULweOYcMRQ0QSPGjNTC0wnRuAKA5YpZFdoULGDdAhkSwBo5bQUOHr+AqSO7oW2zOmYjX/jbdvy2aT88PeTo1bkpNBot1v51EAqlGkt+Gox6Nd0nLfqXsGhTAmARuxjCZgw2qlaVQ5M0zkDnbvMlUsRBPq4jREr6ptbUbgZNJ3Myd2t6S7cug/gEzfijad0LmobtbR6i4r0Isa9FiHnLQ5qJQY7atn2BtsziZ/C+YhgYAaywTyrcvihC6Ba6yY4V8biTC+jbi4NclnogFgGkCDBlKj98x6FA/oQH37PnGPxjEkJYvSqHxsKatXlNpVbBr97sw20TT4K/czRHWWmgvvv27w7hrJJ+/NgY1AD1PJMGg12hd1ycCMtWMYiOpvfAuNBvEaB9Sw+5JMNoZnrIJWFAj3ear1VyOJUFxt8vJDNZpZdbjfWzxsTh3rJ4zhSeZaFYesgVQzFrc+VvLAgwZxASekVCsCwlKQAr5rUIN014EgnXV+XJyT9/nuxh8O4ctY9PAR6l+iRfz+VGETpIVxY4eZrB8RN0HTmarIO9cQ6ylZR8m0vE28YZRlKFi3BllglfniePKpN1uLGY1b/PDVIp53L43aW8mKqeE6CrWAeDQ09jRywFfhp55MbarAkTxSSnq3zct2AiKBcfAci4ImXMqu3Zz+LKVaoTCaAY3J+Dv7/joLNk92pI/qE8X9qaX0PdmXo8Jae/q69Ltq+A5NhOYzeaJp2hafFDgm7JR0jyMdIg5MOlcupaV6uXZu1fuMSAZK82CMlQTjKVW4plNnOSZIEkW3BUBADLUQsK9QUL2G6BDAlgtfhhPB4/e41j2+YjWxb6dTxOoUTdNkNBvLB+nzsK1SqV1Ftq3+FzGPPzr2hQqyIWTR9ku/WEkg5bIKUA1u07Imw1IfwlRIyjhutAgA5B4i0g2b4KkmM0BTRxgVf+tBEkNXRyIjmxC5Kty+kGqVYzaL5NHvgiFSIfiRDyG90Ee2YHyg1NnmMgKio+g4ypa7fB+4q0a/DAIgDW+zs8Qkz4csIY4JIHkDcPj25dU2cdvH0vwspfzfUtV5ZH62+sH3pNw73IeKpV49BECCFMbimm+nUC4pimmb+Uqx1yfI5NHRJ6GttNDmizA6uhs4PZtuwdILk/1m5gQfg+TGVGdHvIYkwOfTO3gPOLB96I8BxwdTYLlYm3YOayPEiIEJE76jA0erPPWL5EaATOrvnb+Ldi8X7wkqR5b+wdi2V58kwnz3aDkMMHOYQYhAl9DahUkPhkQkDWAKglniDPA1OxDAcMLMOhaOfkD7XKsHj7ACaeW0O08BI8ex2d1i+q/qHDDM79RzcihOeQ8B2mVCQb50FyjoLHmq86QtOyR0qbS7Lex+siPNhM391+hXmU6KlDyO8sIh+aZPTMvwNZb9CQYnXHQdDWaYE76nA0erPXrI9zOdsgr8QiVjkJLZjQN5BPopETZN+iWGjeJqluLZQwW1Ye/Xo7HvrLPrwJ2XyatIILCIJyxiaX2DwljUqXjIM4hCYaUXcfC21wvQRNiVRx8BhqHsZJEvKQxDwZUU6dZnDMBvB42Sox3lNWDfTrrUV2+x0FE5hQALAy4qoSxuSuFsiQAFa1Zv2hUKlx7fBvEJkENu/8+19MnL0GVSuUwOr5o41zolJrULlJX2TJ7Iejf81z17nKkHqlFMAi3vS/zBHrNzEG6dpZh0IFHf+KkhEMLQp7C48JXc2GovmmOzQ2ZtNhb1+AbNkEY31d8QpQDZ5lk2kIWfSFyeZ8ctVnJQ9g7d3P4PJVEw+Iz9xXBlDSFMB6eR54tI2Wfc0Ct+Tx6pUvy6HVNyk/MNgySB0HLF/JIPQj1YGAqEMHcpDJra/BBACW4DVoi6lTvUzeZ+uhNQmDeZa3KySi+Hn+JeIqlkTdNOo0zK8cRvqVS1Udj59icPKUOVJPQJ72p9pAFB1p1EUxZ3sCsPrjDVECPptyQ3XwzM7jX8UbdHp/2Fi/9utw7PnjIG2PgN+BTtjlJ2GtoycY/Huajs0yzFb663SIr/1rbEH6bT9E1jLPBBnyO4PIh7SNgq05ECJqW+TuOgYRd2ndzBU4FOlgW11b2hfKuK8F1FEiPNkjgswfkAcCnkGAbyH75373XhZXr1Ow55tmOlSskPJ9CeFjIrxMBlGNWgxdgeIuMeTTfQzenqHrP1d9HfI04vFgM4OP1+nvxYucRM7LlKNK83UXaJrHg06t3x3EBSVFB7r7FMf0gCo26ys+tRfSLUvo3qNMNaj6TbNa31ooobOS+ugJ0FXUe105aTW47HlsHocrC3pM6GLGa6ocvxJcLuscpfIZfcC8ekLXT58p0JWr4Ur10qxtS4/4hvU51KqR8B5evY7F8xf0Hu3+vQ758qb8HjUMWACw0mzqhY6/QAtkSACrTP3u8PfNhFM7F5lNadfBP+PKzQd6LyvibWUqxDMrKjpWD3oJknoWSCmARTS03CiWK8OjdUsh5IPYRrr6J4gvnzJOJOcbCBUJKZJYEDMlMtXMuxeQT6Vfee3lwLk6h4XyI90glBmgg3eexDcI1ryvLDf+pgDW40MikGxJBnks5vFQRv8m5Ojk8OsqIV/5yNc+U+nSiUORwon3SbIUkmyFBqlWhUOTr1yno6vGnpHbjeJUKPGCcoZkEklwL29n45DXR9/DuLD/jH938C6M+ZlT7zDw7BmDNRvM113WIB79eungPbo1EEczCMbN2wl4JvR8uDafBQnxNYhfEQ4lenDYFfsEA0MpONTqeTjWbKEAlnL0YnD5XXNwNuhy7boIu/ZS8Lt4UQ6dTAAkj5/6QPSaHsbETdrhU4veZkvy/HgxTHj2UWGUDvLMth1OPj1hcHuVBTg4QQdJJtvqZ+R7I6OPzTJzJSPnUXWq/fuJzVsZ3L1H11CHdhxKFk/Zc555ehfy2ZSblffyAQGmncI4bWVCby1nEW3i2Vn8Bw7+xTk83cvg7VkTULj4TeS/QD2ytTWbQt15qL7Fg3Ev0PPDcWPrchGLG7k7wtvGZBeyFZPA3jxvrK/uMBDauomTwe/bz+CSyYcv8sFrQF8OWTKnzOaGjmWrpoC9ftaoh6ZNH2gamJC7p9ENIdJq4DHoa7PeFUv+Bi82TWlDLxMwkICCBtHUbw1N235ppL1ru7X8CNqsKYfKJh68ht43bmbx0MSjsHNHHYoWcfwZLwBYrp1foXXBAqYWyJAAVs1vBiFWocTVf341emAR0vam343RA1sndiyEhORONZGGHUfifWg4bh5bI6yQVLSAIwDWk2cirNtA51EqAcaM0kIsTsUBuGFXzIuHkM/sb6aZuusoaKs1sl1bTgfPAebZauKWHTJP05xEayRrEfH2MEj+bzhkTyKMwpLPwpT7ytCGKYAVskWE9xdp+8/9edw1IX8mdTp34lA0CUDJdmOYlyShg6t+o+TZ5GqpUjzaWyELNa1pCWBVrczh68aObbJTOgahnnULPNFEodbreN4nIvklmXAmJ01XfkTxEj+8P2a8XtsjBzZnteO+csDwn6JFWLaSgUJB1z3xtRodnAAAIABJREFU9hvQmwPJxGrpMaBYsBe8PGHmrIh7Itxda/7+K9VXi62BIZgcThM39HwaiTlbDxg1Jl4QujLVHBhB8lXJV3HyddwgQUHAwL7Ue9Nj4NcQ6ajbLVu1HqK/H2ssH/VYhDu/0voSbx7BE+0DIa4vZBFnwsOV638c8gj3afKTl85L3FnFIuqJeVhu1Z+1YOxMTr1mvXl47/ff6VAwf8oOxwlIuKs1AnmXu0JIiLE++YGW2iB4ohYSb+DlMQYvD1MAK3fxZyh6gZKqE48eVZ8perU4nkflV9vMwrAnBlRCXx/rWcHNxqLTwWN4SxDieoOYJqOwNm7ihb98pRjhEfQqAfX793EslFB8ej+kf9KP4LriFaEa/IsrTG9Xm8zzB5D/MsBYJ7mPi+JLJyBd87OxvGlGR7s6TgeFLUPQ27bSoUzphPfeth0sbpmEqrdppUNZK+XsHbIAYNlrMaG8YIGUWyBDAlg9hs/Gf1dDsHbBGFQuX0xvnR9nrML+I+fxQ4fGGNWvo5nFOI5Hpca9IZNKcH4/5f1JuVmFmrZawBEAi3DBzF3ImhEZJ/bCslWfjFBONmcw2Cd3jUPRZc8L1YRfYS9BmCWRqmLKWvBZbSOsfvMvg2cH6IY3S0UehdtbP0ja4n1FBmMKYF1fJULEfbrRzt2Ww8YTIpAMlQYhQGafnjqQzayzxFrooIdHfOgg+Tcp+e8ig78PUZtUqcyhqXAwdtbUOKWdi6r3aPWWeh0FS4OwOwf92n1bHY6vTDheikh8cSJnK4f6/u3THUwJp3wmHbwKYX4W84xXZN39ttqc4Jx02rUzh0IF40FQz0FNAJNMZXFLDiIxNP/WChbRz+i94pWTxz/fXcIik/DIMc9i8eNfNJGDustwaGs0cWisyVWOjgbmLKBfIAgx8+Tx8QCWKPIjPMZ2MmuCLV4O0YPnGH97cZjBq2O2PXcS0+XDVREe/UVRC7EHj4rjdGBtc15NbojCdTe0gCYOuDTVnP+MqFnhRx3kAfa9P5avEuOdk/h15D/1BvP6qdFirsyGF/sWuLGQ3ntSXx6VxsW/s99dYPDEJAFEtiIfUepyO7rHKFACqlEU7FkdHYJJYRQMzyn2wsVctHxiS4B5eAvy+cONlzn/LFD+HJ8JNSmJjpBhzhLz/UX9uhzq1E75ByJCIk/2QAbhWQmUC3eDF6ftg4C9eAyytRRI05WsDNXAGYmah4kKg3yMyZlHJIJiEeEzTNtxJDenKbm+8U8WDx/R91qXTjoUKZzw/rX02mv2NYfKlVK+Vgy6CgBWSmZNqCNYIGUWyJAA1tZ9JzF13jo9gXu3jk30hO7kN4lEjIObZiN7kHna8/uPX6J1j4koXjgvtv9G4/pTZlKhlj0WMABYpoSZ5NBlK9/S4aMMzphkjiIvK/LS+lKFuLwT13dTUQ2dC13RsnabRLZgJNgHN+jmedAv0JUwD71NrNFPT0S4vcqEyD0rUG64dR6s3ftYXL1GNx3WvK9IP6YA1oVZDOJMDgllB2sRxolAvn5zJvsQLy8eA/pw8Pa27xCS2LhO/cvg2EnzEKP2bXQoVTL59i9cZHDAFMAK5tC0ieObJrsnVqiQqAUOxD5H79ATxuuNPfNgdRAlxw3TKVDm5V/G6yQ85nHe7xyy6PzI65gXed3YRi15DmzJZu7VRUJPiQefqRBuD8LxYRDPfg3NrsetOJKoXjGvgJtLzF1VL7S6g7nZaOjO7Bda9NpMx0qIowmBtKtl6gwxdCaP8BHDdP9n7zqgo6i68DczW4FACL0jvTfpXamKIqAC0kR6R0CQ3kGQDgKCIEjvXcoPKEWk9xo6hBo6Idk6M/95CTNvdrPZnd1sQoh7z/FIdl65774p733v3u8iTZAY/S4i7ySlMFlyInL4QvknZ2AuXzMeGb3kHxJ54Pg4DvZI+k7K00hA5gQMSU5omwbad28B4s17Q5EURipdvBuPIC+5ccih2uvX9N7p24uP9pD0Vpjn4TAOoeHLpD4hMyek5gkhzjZIV0xAwdYx75dn51mELqPvn3T5IlH61GeyGkKGbDCPXiz/bRLsKBm2CpGKWN5fM9TA5yk/cKu6dstiaHdQsnRb1U9hU5H9L2OwAavWC9h3SJHwwQ+hhIbR7cE+vCvrbO0xHvai5RLC/Krb1G5eBO1OCurZan0F21ed3dY3Dm0N5hnNnmvp/TP4QqVV9/m+FJy/kMM9RbbMDt/xyJkj9rOnlivL23EHACxvLRYoH7CA7xZIlgCWzc6jdY+xOH+FnlwREw3q2RKtvnRc5JPfp/+2Dr8t34aWTepgcC/HBYPvpg3UVGMBCcDyZvOlbJeQaM+aQxdWhLN/4A+8R28YNbq9d2UEHsbh3zqQe3o6nXM3Rt2yqdAcot4onrgolG2RKJ+jQxUbZEZEhTE8OCeaBlfeV40+51GmdOxFhxLAOjiYhZ1GGUAKdTh7jsX6TbE5gjp14KGNZ2hp+BMGc+Y5AmT58wlo3UIdCOWc4rl8OQGfBQCsJPWYLYkIxaBnFMRplaoAJqav7KBjztt/gFeQvF/J2QJBrO+n2aOfH8e81xflPvJp02C/wqsr9CqL5asc7+ns2UV0/E4RIsPzSNFDEfLLcYj6hWYuc2XkS4s4vLxCN9qv0kaiQ3PK/7XwoQ5NltCU64nFneLswSIR7DqH9ESPyZgCUVM3R/+TtyImeYRAx1R2qB069QnQZDPd+4vFXQVfnT5ERJkB8QtJSlI3ekAZBwtc/p1z8OiVLhIAhwA53sjYnxyTywz+0Q6DD8k7NX9vgm7NbLnr+HzL1eh/Yz2Lx8foe4aEzZLwWSLOB1JBOeyocJGupUVDCpimxTyHkox8fgy/vb4k//2hPgO2ZGngVhXDxB5gb4fKZSwdh4MvU82j+gTA4nkGQ8Za8fIVff6J93WXTjw4H7NTa9fNhXbvBrl/wsVF1kHvUvTzRoE784+sgrVlH9irOnJiOetHPLaI55YktgatYfvMMcnPuxyTv/qeNYfDEwX3Kgk/J2HozuJ8EFm9qoDaH3v3nLvSOQBg+WsmA+0ELODZAskSwCLDjjKZ8dvyP3HibChSpjCgyafVUbdGWZcWIeGF9x8+xdDvW6NQvqSRZcTz1CWPEhKAZezdAIzVKg8qasafgE7dptB5w0N4hQi/0H9NNPs2Q7eaprYmRK/mkb9DyKgu7M/ZXpqdK0E4OORFj5fkn6encDCF08VksS48UjtxgTgT8cflfUV0kACs8KcWHBioWJGyIir/RF02nL3ySF1Crt6yueAz9y3x6vr1Nw6PFOTXer2I3j0EpEqp7nT92HEW23ZQvYnLOnFdD0jSsYCzN1Tv4JIYEOx4Ul353nrcsVOy9L+zNUIBre9pyQc8+xfLI67KRlB6dT1/HgOaKrOtkvutWxen+85qQYre1CNC1Omjw0TciXPIECk7s9bfOFjgRnS1jc/SoeaCmXITfLlasLQbmOCT5UyCLQHa2vXzod2zNlb/plk7IGo0cOb2IsTthMDdFyEhZSfGchB5+v4q/C2PtEXUPeu+9Bmo824swFuAY6Mc51rSxFvPO0JrMGKM40nJ6OGeM/C6Grl+xo/grpySL1m/6QV79c8TzEhnZmgQ9YA2X6Qjj+B8Mfc78XY+M5WOy5hBRJUb1DOVlJGeQ6mFB/bIaC4s5ROzNUsDlNFncDkGJuoNjP0cw7FNUzZCTJHK45gJgKXhGBw/Z8G8hY5o1cc1BNSs4dt3lrt0AvpZlGNPyJgN5lHU08yjYglQgCTXIUl2JLH0mwY+n3t+sVh8XgVLw/L9zwmg3bttctJUDhFv6Du73/c80qSO/c6ORefgJ2/4AID1buc/0Pt/ywLJFsD6b03j+ztaGcD6oQmYSEUGrckbgJTqjs5JCCEBLSTJnlUE8bj5LwljioJhWEswkW/kYZNTOXI656uQLIYkm6EkhMA5rnTWrvq4tprDk1N0MZH7MwFZq9GFpDfeV6R9CcAKu27F0Qm0XcJRQrhKJCGbiBWrWRDPFaU4h1x5Yxfne4zUJRkvSeZLtXLsJIttCl6wsh8KaNjAt4W12j4D5byzwOBnh/FHBPUAIOnfSRp4pXz5aAeOKNLEr8hUBzWM2bzrSFG625P92Bzp6C18Kec3SCXqMWceC+JlKgnxMO3QlkcO57AI0xuk6Es3f6IxJUxTKX9VXMpdXcnh6Rn6LD0OikCvFmsgsCL2R+VFiVk0fX1ikRg7h3dIp+PO2cmkMZlG/QExY1bc3sbigSIzKAn5IwCEr0I4fwj3jyRp8ogo2vm/9V3x1XbvU70nZxhcW+maqT17LQE566q/h968AX5WAj1GYFB/7wEsQmJu7PMFlPHw5p9WQQhOlyCmFXjgyBAOEOm7oPwoOzSGmO5sEcDxsRTA0qQAakR9Ceb1c1kf07jlEEMc3V06hv+F7VEUbGmY8gPMzVDD5Ri4k/uhX6BYb3xQGJYBFEB3N3AJwAp/acambQzIYZEk8clKyNitMHzfyCFxBOHkItxc70RIch2SgVDBk2CavhmiPoVbddiHt2EY3VEuQ3i8TDO2es2L+k7G7EWnYyZoYKPn4Bj6ox06F96PZ84y2LCZPvMlS4j40g8ZzAMAlheTFSgasEA8LRAAsACIogiT2QINx0FHUtkFJNEsIANYA5uDefWMLoZ+WgkxOL0qPd5EMvh5iuMCtE8vHml94J1Q1WESLKTdtBDaXavoAkWrh3ncMohBvnuGsHdCYZhA3eWFLLlhHv6b6tGTtNsk/bYk6UuJKKDgJyMLCLKQkMSd9xUpIwFY109YceZXRb08Ioo5bSxtduDX+Y6bf9LGV00ElPAyJIR4wcycy4Es8iXJ84GAtm/5QdQa5PhJFlsVAFa5MgI+/0z95khtP4Fyvlug85O/sS3yjtyAK96WHk8OYGPkTbnMlHRV0Dwov8+dtgnfg71R9xzq7836BS7vTI/TCnCJFCBhDgTQcRYm4iWMAyhJMnnuTT/H9lZyrmd+Dpz62XHjuqDaIewqdhnnmbLIPoEC4EL2vDAP+dXncaqtePwkg61/0vd50SICmn0lwDC6A9iHdG6k9sz9pkHIVwzOHiS+hH8pdTQ/e2sb0HdNyd52pMyqdiSBcu+DBUKXsnh2wXWMWabyIvJ+qR60fPqMwczZ9N5NF0K8dNXXl+zlfHgk5MgH8+C5CWZOktCB8MdJQjysSv/geCh0eKCS5F7ER6k7grsX461JxDxwNoRcBRx0PGZ+jMaPKA0BeZIImXtWTcpYY3GmLLA1aAXbZ9+qGrMSwDJbxOg58Fcoof6XIeAuUkJ6a/OesNdoqEovfxcinlfEA0sSte95Ut45S62r+fK3vonZnrP3IznsGTXMNXh86QqLVWvoM1+4oIBvmsV/LRYAsBJzxgN9/dctkCwBrAoNuqJ8qUKYNa63qvm12ewoW78zShTJg6WzhqiqEyjkHwvIANbwNmCePJQbNY1eAjFDFtWdLF7K4eYtutEgLuPEdfy/IOzLZ9APawNyWiiJPzgOiFeXse8XdLFETu1m/anapBF3GJyfQxfFypCe5y8YzPiFA1l0SNKoIY8ypeL2aJIArIt7Lbi8Mm5gTGqPeHjNnc8iykTvC3Ia2/5bFx4scYyK6EeIQe8/oG0QjLtXDx6pg9R7X5HmnTfmZcsIaBgAsFTfT4lR0Nm7am3m+qhsyOzQ9bjnJzDn9QX5t37BpdA3uJTP6jV5tANHFR5dpKHRUXVxZ51jOHvePAK+beX6nca8fAbjIEqwLqZJB9MECmi7U+7mJhaPDtPn6aXRhG6tVuFO2rowDm1Fn//UITBNpKTuPg/YQ0XyHifvc0myZAa6drIjRfd6Dp4H0nVLh6GwFK6BY6OUoVsiyo/gQTxF4iOXF3HRoYmSZCgjIn8z7wGJ+OgQqJtwFhDswLERHAQ7nWNlb2kLCSj8nfp1RNg9Br/9Tu9dX73BE5uz6ME/LG5vVWTvdHGfHx2lAR9FrVMl8wgYrx6QfzB3GwOheMVYk1Xn/mZcsr2Qf++auhiGhsSm83DOeqwmNE5qVAlg2XkRd8MYLFjkeKj5UQ0B5D9vRfPXRujW0uzkfPGKsHQb420zfilPuK8IB5YkQoESMPeZoqpt/Zxh4M4fkctav+wCe+0vVdV9HwpFRQETJivCXA3AoAGuASznb8wHuUV81yb+7/UAgPU+3CkBHZOLBZIlgFW0ZltULFMEC6cOUD1Ptb7uG+2F9e9WSpqpunKgoM8WkLMQjukI7sFtuhgavhBCFvV8ZMRTYeMWumAhWX9I9p//gugWT4Tm6B66qEmdFpaxSyFqfWCOdTKY0Sm00zxhFYQ06sIYBBtwREnkDqDCaB6cXox23/bG+4qoJQFYpzfYcGM7VTRrTR65P3ENJhHgacHvHHjFutVgENG1s4C0aURo/t0J9sppiJmyQ8yQDXyx8g6cGyTzG8kAp5QvPuPxoZeZzUj9EycZbFF4lpA2SFsBSToWqHF/I67bXskKueK3WvT6MoY+PyqXaRFUAJPSORK9ezOiOg+24JKVhuKQutWPVEP+qwXlZoLTiOjWWQC5d12Jc8YyMV1mmMYuVaWG7Q2D4z+xgGITv6HiaUxuXBy+JtdQ1XEchV6+ZDB1Jn2Xcxwwsst9BzBNWdXarDvC0zXBFUWWtJTZRJT0w/v/1XUWF39zfP7LDeWh9RK8jo89AnUTzgLPL7G48kfcDN8ps4so2VP9O/rqNQbLFOGI+fKKaNNSfX1ppMa+jcCYIul6aNAcCDl99/L0ZMGrq1g8PU3tkOcLAZkrO4I9pyezMD1RcDjmmYfUZyhIbv22P+wVHbOnkn6JtyrxWpUkJaPB2RzNYWQp2MA+DoNhZDu5DMm0SDIuqhVnAIvUIxl/SeZfScjhVZeOPDJn8u7giQ2/B8OI76huWh1MM9Uf5Kkdg5py2p2roN1Ms67aqn8G2zfqDuq1u9dCu2G+3I29dFVYO41Q0+17UYYcik6fpW4PcO8Bg/kLaNmsWcToeyO+EgCw4mvBQP2ABdRbIABgvbVVpc+6Icpkwdm99OOg3oyBkr5aQAawJnQHd4cSGZsHzYaQ09Ed3V0fhP/9p0mO6dc7tuORI7t3ixVfx/Gu6rFh12EY39Whe2vrfrBXVmQki4dy+ok9wCmyApn7TYWQr7jqFs9O14CQRUtStBMPPgSxvK8aN+RR2o33FakvAVj/LrTiwWF6Yv7BFwKyOC22lQpevMRg9TrH09iQEBHdG95Gmp/oopnUsdZtCnvjGK4IspGeOYeDXXGIR1Iyk9TMvsjJUww2b6N6BAAsX6yYsHWK3l2Jl4JF7uR8juYI4d4Swbz9dWfUXbQP/0su85ExG5Zlip3dVq2mzqTwpF7ps2VQ5myZ6CbIxqtrJx4ko1Zcwj65D8PwtvJlkrjBPIpmEPSky+ntVpj2U3cls86G6oMZBA1uCMZskqubJm+EmNIzqbKn/jxdJ0TYSu/MYZ8fQ5r5P7qsZqvXHFeEjnis4KvKWl1Abj/xy52ezMH0hL5vsn0sIFc97z05PI05cD3xLXBtNYsnpyjIEVJMwHNFOKEujYiyg9W/789dYLBuA33HFysmomkT9fWJBbhr56Cf2o8+y6lDYE5gz8dTkziYFdnbinfnEZTT8X1DQgxJqKEkpQpuQPrjs+S/7Y06wFqvWaxJtIsCyoStwTOBpg0el64i2gYVkstq9m2CbjU9PLaXqgJr55GqbwhXABb5bjuHEmZIL0QnwPA2KyHxRGWePZb1sXw/CXxB371uVQ/MqaBu8QRojiqyCTbtBttHjsT3cbXN3bwE/SQKdokpU8M0eb2vqiS5eg8fAnN/o6Bo5sxAt06uPbCcQ31D0on4vrt3z6krAwQArCR3WwQUSsYWCABYANZs+Rujpv6BLBlDsGfN1GQ83UlvaDKANaUvuOvn6QLhh2ng87rPrOI8mjXrOVy4qCAhLSfgs0+S90ZDP+0HcFfPyqbgs+aCZdgCv020buF4aE78LbdnbTMA9krqN+vX13EIP07nJNenAo6+YHDmnHruK6lzCcD6e4oVzy7T+oXaCAgp6n6e/9rPYt9+x5P2Aa87I2MkBU1JP4T8mmwWiPcaCUEgoQiSkNDBHl15EO8+X+TUaQabttLNDQmXJGGTAUkaFiBciNnv/OGgzL1c34IhZBoKOWt9hk8fbJV/KaRNi73ZaKitt6MpHrYKz3m6uSP1C1wrgGqHq0c3Rd5h5cu5v78JNxThiJLE2/fAvy8fI3JKBqS00syv2WoIKHj0WxAPBEnMIxdByORbVlNv7EI2nmSTIUn/EhuRaZdrQmfyPjryeJDDBrxwOx5pC/r2nDrrGX6CwfW19LnVGEWUHcpD4UDizdACZZOQBY4O48Bb6X1WtIOAiwscvxOVJ6onYSceP8TzR5JyHwr43EsgVbt+HrR71slt2Kp9BlsLdV42vpjWbiZhlHTjz7AiKozlwTrx2hNPNeKxJknREv8gyz/DqJ61voTtqy4uVZj16hwmvKAZFXNqUuHfbF/K71bn8DYyXjJuteIKwCJ1XYUS+kIvoVs5E5oD9J1vq/M1bE06qVXPb+X0Tge9ll4TwReOOehQI8aeDRyoJsghh69ZqtX0l5hlbt5msHgJvWlz5xLR7lvX66uICGDSNHrPp0oFDOir/jmPa1wBACsxZzzQ13/dAskCwNr37xnsP3xGnss1W/chY/pg1Kzk/oTEZudx484DnLsUQ0TZ/IuPMaxPm//6PZGo45cBrJkDwV0+Kfdt6TUBJOuVNxJ6lcHyVQrOJYOIgT/w0R4MyVHY80dgmEMXkGSMlh7jwBct77fharcsgnbHCrpI/aQlbA2pp4enjgi3DuHYkSSokIh19xgH74omX/AoVdLzZlMCsHYOt+GNIt13iZ48UqnwtFu9lsXFyzG61H/9O2pHug6xsn7TG/+mbOiQMZDUafCJgAoegAR39jh1hsEmRZgr8TgjnmcBSRoWeMRH4cOwNbIyGTgjzuSI7VEQbo9C6Xu0XBpWh0s5W/g8iDx3lsAiOgJU2R5kQ/09n6BIIQHNm3oG4ZmwGzCOp5tHIUdemAerJ1zfGnkbO//3Ai2PlJPHwWhEVE49CMbbNFyS8K0Q3pWElqUrOVy7RoGFvul/Qdbzrr0FTAVr4tBDRSgMK6LiGP8BTIQn6cR4DvZIqk+eJgIyV/A8Lwltp0D7vlvgZSiDSwq+KgJMlhvB4/gYDew0eg/lhtmhVel0uO8Ai7/20e+dlEHTGy2NQ1uDefZIrhIXt5Q3bbor+/Iag0uKcKq4wm9vrOfw+Bh9BvKXPI9cB3vJTfPlasHSbqDLrl7wFpQJWw0r6DOzOFMt1DHmAHge0SGTVgrim8cth+CU0dDdGOICsEgdQgFAqAAk8SWUkDt3GCQLqiRCtg9gHkrD8fw1F57aMfb8BIzCJdw0fgVELzIiGqb2BXuNHhRbW/WFvconnrp9L65fvsJipYKYvWABAS2bu35Hk0yFJGOhJBotMHxQAMB6LyY6oGTAAm8tkCwArLXb9mHcjGUgZOy+Sr4PsuGP6YMQnEblSsXXjgL1HCwgA1hzh4MsEiSxdB0NvkQlr6310yQOJgVpt9QA8ZopXFBEkSIicjmnoPe6lyRQQRCiOSNI6JAkfP6SsPSd7FflNId3QbeEtmkv+xGs7Qer7uNNGINzv1BQ0a4XsUdDF8HeZGmSAKzNvWywKchkyw6xQ5fas0pk3Ue8qti7V9H7aVcwcA2a2TLmxAjDH7DaaJvknmnvY+ig1Mrpsyw2bqYL6TKlBDRqGNgEe565xClx0foMdRWeVYV1abEna2zPKuKplevOEvCK++d6zlYOnC5qNRZEETmcvL5I3eBXwej8TxN06SRATWJc9nYoDBMVGUNzF4T5x1/UqoElEaEY/vgY5ixrjmCTUa6XNegoitynm1JLx+Hgy1RT3a6vBbfvZHFEwV8zAD8i40OaCUzZ7oOMrXDJTDNzBeUWUbyrf4Hhe3tY3N1Nn119iIgyA3g4Oef5OtxAvXdggRvrWTxW3GMZy4nI9xWPM1M1iKLRYij5vR0pVeaT2fE/FoeP0Pukfl0BlSuqf8fH4oIi2YSnboRIdtgJJGF7WYT9j+qcqaKAvI1j63xnB4v7CnAuV8m7yH+QZgkkB47k4DEuGfjsMJZGhMqXqxgyY03m+mCvnoVh2g/y7yR5D0ni4424A7DItuCXORxevKTrDhKO3b2L+ncEYzFFg2wQqF1Mk9ZBTJXGGzXjVZZ9Hg7DkJbUTl7yhJGKzgeS9kr1YG1DbR8vBd9x5TNnWWxQrK9KlRTQ5Iu4n73ho5VJP4DRw33fP0pDD3hgveObIND9f8oCyQLAIjMWZTLj3xMXsW33Yew+cAIhwUH4sAQlwXU1qyzLIE3qVChdLB/q1ywPnZqdwn/q9kj4wUoAVqxQtU7DYC8dE0LjjWzbweLYcfcuVylTiChYUETRwkCeDwQQkuD3TbT/bId2+TQHtc3D5kPI+oFfh8LeuADD5D5ym3zuQrD8SHkvPHUm8MDRoRxEgS4e96SgfNFqva9IPwTA0rIMNnRWLDRYEZXGq99IRr20gB3eCSE26sJlYYzQi5Tnh/T1W8gkhOpjMiVpNECvbr6HDko2IqT1hLxeEuJ1RsaflIRsoJhXlFBcyJ7XgdQ+Kenqb132m+6jxePdcrNVDVmwOnM9l91UuLcW9xRuGgeyNUZerfebmRe8GcXCYmcL1Ng5nAj+FoSzRY0485sIeYvB/IPj+8FdO9NensHkl2dQ92JhdDxQRVFUQJWIljCKMR4hhDCYEAcntDiHYg1/1Rqpo2goo7L/C0Ej8IipKf+Uo7aAHHXU2U3tOAhgfmIsB5FXhC635RFS2LPnqNo+AuUSzwKEX+34KA52xWFX4e94pC0k4uJvHF5dp/NcpD2P4ALq5tk5OUmjz3mUKa2uLhm9du/0Y4oEAAAgAElEQVQ6aNfNkw3hLReULxZ0Dg0kIB4B85zlwX4Wt7fTtVXWks9R5CDNYidkzwPzEKq7c/07tghUvu/oRbk/W2MUOrQPutUUbLdV/RS2lnTNoWZM7gAsUt9VKGGN6gJq1VT/ntBP7w8ulEZ6xEVar0ZfX8pwl09BP5PyAHq7FiN9cpdOQD9rkNy9t1yJvuidWHWcE+5UKC+gQf245/ennzUwKSL3B/a3IwU9u/FJ7QCA5ZPZApUCFvDJAskGwJJGT7ywajfrh3y5s3mVhdAn6wUqxdsCMoD1xyRojvxPbs/67QDYK6rnWpIqPnnKYvtO4MZNdXGDWi1QuKCAwoVE5M8nQkcpYOI9toRqgLja64e1AfuapqYm2X/Igsrfwr56BsPA5nKzvhB/np3JIfI+3RAc1wPPNEBIWhHfe5HhiQBYtucsdg6hrlH6tCI+HKgeBNKunAHtgW0OZloRPAT5bGdQPpJmFrqkr4DfQ2JOkz+pK6CSF6focc3B2XMs1ivCKT2dEPp7LtW0RxICkMQA8vu0YVvYPqGnvmraeF/LrI+8gV5PDsrqN0r5AWZnqOFyOI0ebsdxS7h8bXXmuqhqyOr10O/aI1DpnuvQuCs5WyCIVfdCciZ+5guWhOV79d6YQ58dwaKIK2AFBjNXNEWmiCB5LJmte1HMPDb6b9vnbWH7NOHvh+s3WCxZTt/hkx9+FKdtD6RaDysbIl8v1plH6jzqQQO1k+YcQpUmn4iifshcpbb/QDn/WeD1TQYX5tHDBFYnovyImLDTa6s5PDlFv1f5mvLI+KG6+2nlahaXQ+l9+00zIXp9oVb0TlygxDuGeMkkpBwb7RgeW6qvHSkyxe4x/CSD62uozTIUNaPkYRp+RrITkyzF7qT14z34y0SB6Kap8uGXf0Kh3UXr2b5oB1v9b7wasicAizTm7B1HfuvWWX1WwthZ/KrD2smRwsErpb0srP17I7Rr5si1yPqYrJO9EcYSBeP3jl7Fpp/XQgwK9qaZJFl23wEOf+2jz22NajxqfRT3czttBocXrxRh6r3if0gZALCS5K0RUCqZWiDZAVhknpau+x+u3bqH0f0dM4wl0zl8r4clAVjOwIKt5fewVW3g89gsZgZXrjK4dAW4fp2F2ujS/PmEaM+sQoVEpDCqW7T6rKSPFbVb/4B2+zK5tqjRwTJ2CcgCMiHEmfjTNHUzRCPNWOapz5sbWDxScFBc1QI3dcCXjQSULKF+cU8ArNc3GOyfTD2wvAkXcj59JHqfMdTEsrQjkMV+E/2e0DAkcm1ihqXQ58qGTu3VA2TubOEMYJGxExskFXHOZEf0EjJkhXm0I7F5UtHX33rMf3URo14cl5vtmLoIRoa45pPr9mQ/NkfekstOS18FTVN5n+Z+yeFXGJRlo8uh/J2tEQpo1W0suCunoZ9BNzP2ImVh7fmTahN1fbIfW96Op+q1POi952OHuhXftEMq4RbsNRrC2ryn6nZ9Lfj8OYPpb0OP09kfYNATRehMytTRbpHEUzCSzYnDqej9yXAx/FdMAnjVRoUDZ6Y4hp2U6mdHioy+jvLd1GMf3PK7p+67GYnvvd7eyuLBPxRoSl9SRIEWMe/523+yeHCAXsv1iYBsKj11Fi7mcOcu3RS3b8sjl1M2v7i0ZiLfwPiDY0a5hAYXLK8YnByvAPI0IiqQ58fF+d+LKwwuL6JliVda2ROO74moudSD1dU4D5ge4JvH9KCSA4Pzh8OR5YDi8NLLRDGkHzUAFqEQ+GUuh+cv6PxkyCCip8pwY+7+bejHxmQoJiL6EMLn+x0LaJdPh/Yfeshma9QeJAOrt2IY1xnsvZtyNWunEbCXruptM0mu/K7dDA4dpvdnvToCqlSKe301+1cOj8PpvUBCSt1l+lUz4ACApcZKgTIBC/jHAskSwPKPaQKtJIYFZABr3a/Q7qWeCLamXWH7qInfVLgSyuLyFeByKAOz2TGrWFydEN6jIoXFaO8sXzPP+W0Abxty9ogiPxMPGW+I1b3VST+mA7gHd+Rq5iG/goSWqRVC/Eq8FyR5xAFhWUX07uEdMEQArEcngOMLaT3lxsOdPmRzoB/dzsFrzZQiA8YHLYKJTRldtcuzPshnpSECh1I0QvZBPVWHcXmyx7kLLNZtoDuDpAZgaXeugHbzoljDICGjJFwhucv4Fycx+xUluB2Ytgx6pnFNWD7m+Qn8+vqCbJIBwaXRO7ikVya6eYvFhF3h+LO+o0eg1MjyTHVQ05hNVZuai8eh+4Vy0/HFK8LSbYyquqRQ00e7cMj8UC6/Zn0bMOHU+yu97QhKmQZFh3UnlteBxFFSyHIMHZ4rQmfyFAZrt4G5ex33tF/givF7WW+yqSYhXwkllxZyeHlVsQH+UET+pgnXn7/HoTm5D7oF46KzrAo58kEsUQnWerETFfi736TW3vExHGxv6DwWaCkg/dvDlAcHWdzepgiVqyog9+fqDhoIQBL+xLdNseboXugWUw4pPk9hWPq7zrzpL3s+u8AidCkdK/FcJB6MriQijMF5BZ8lIXuveKchmKg3cnHTpPUQU7knpKx+fyNu2F7JdfqHPsXgTbvkv73NrEcqqgGwSLmwMAa/KUA48lvNajw+duOpo7SF4cdmYF/TEHtL/+ng8xT113S4bUc/tR+Ip60kli6jwJes7HXfJFxTs2+zXM/2cRPYvu7qdTtJrcKmrSxOnab3MuEXJTyjccnCRRzuKLJMd/iOR8548uMGAKykdlcE9EnOFkiWANbW//0bzYfV8svaKFbQMyfQ8g17cOTkRbRt9gk+LFEgOc93khubDGBt/h3anSvpR9XH0yU1A7x1m4JZrxQuxO7qZslECOCBIgUFZMj47jyztEunQPvvTllVQiJqHrsEol69R5QaGynLkOw7SoJ9a8ehsJdxHVrlqu37lxjc+YMCWIRtKn1L77yvSLsEwLq1G7iwgS6ws1YXkFtFmnLdvJHQnDnkoJ6531SsPlcS5y/ELHqKmg/huxdD5TI8p4d10mqIxhiAK75y7gKDdRuoHYoXE/B1E3Ubo/j2raa+fkxHcA9uxyqaWF43anRMyDJ9nx7C6jfX5C4mp6uMb4Jcfw8WvL6EEc8pqXjrVAUwIb36zUREBINffmVxNe09/K823bwpx+euf2c7OGfJspeqCmtnRWY+D4ar/WAzLltpSPL2N18hcqmj91fZyJ4IysPC0ndKQk6D3Pa8BRzuP2BQNXIDGr2mvHv2CrXBmiLAnjuKc8ZRCNdSrsRcnwrIViPhnikCXhEQSxZWRLkhvOosdYliODedEBJoQgYtiRCcHuaf6Hf3XeuXGP2/uQecm0U96YjXXvlRPLi3POlPTzO4qshmnK6kiIJvvbM86Td5GofXERTA+uF7HqlTq1sv6OaPgeb0AbkLXz1sPOmovH53J4t7fyvAOjffU/NzBqcm0ntfFyyiqrkN2HAaEmgevhBClpxuVVgRcRX9n/0rlwm22HBl1jro+Zjn1jx8AYQsubwZhmoAizTq7KlDfuvamQdZ43kS3dIp0CjWXwl9eKjUx9j/KzBvKPBnHvk7hEw5PKkc67rm5H7oFsSEhBMRchaAedBsr9tJahVWrWFx6Qq9l5t/LaBI4bi/BUtXsLh2nZZv3UIAicCIjwQArPhYL1A3YAHvLJAsAaxug6Zh/+Gz6N+tOdo2re/RIgTwGjh+Pj6vWxkTBnfyWD5QwH8WkAGsP5dBu42GgtgatILtM5rhxn89Orb04CGDS5eBy1cYEP4sNUK4m8iHsUhhIHs2z4seNW2qKUO8oKJd2AkD7VuxtugNe7WEJVXWrpsL7d4NtM9G7WCvp56jYs1aDllPMFBa15vU5FLHBMC6tEbEjb/pIoOcjGet6n7RwR3dDf3inx1MbKvbDLbGHaJ/W/A7h7v3GDCigCHhzRAsPJXL2pp0gq3O12qmx2OZ8xcZrFV4oiUlAMtV+KA0IALgmX9eB5Gw2SdjaRO+F3ujwuQRymneXYz5z8g76PTkb/lKrRQ5sCRjLdXWke65m7lv4u/qf7ms1y+4FPoGl1LVpubEfugW0k2J/cMasHagYKynRkqHrUY4TxMZnMjRFE/nByHiNt2MB/GhKJdqHMjGKTGEeLIQj5bGr2agStQm+kw2bAvNi8fAwR3YH7QFdobydZXoaUeq7Amr3enJHEwKL5vstQTkrBu/jU/CahzTumbnSug2O84deaZNs3YkRvdJpg9n0CakqIBCbej8vbrB4OJ8CtS480pyHtTYnzQO2WuHDbKD8Gx6FIGP5iZibBa5qHnofAjZPB/AemzbTQFnwvoCLXmkL+F6TcNbgKPD6TeA0PPVCO4J7jr1RDX3mQShgPt3lkXkUSZsNV4KVlmzWduPoNX5G9F/R01eD5AwYS9ErQcWaTI6lPBXDiRMWRKSLKNnN8/PMHdyP/TvAPxh3ryGsT8lzAfLImrWdoD1PlY6lhc/w8A0YxtErTq+RS+mJVGL/rGMdeC+bdNSQL68cc8pWYuRNZkkTb/kUaxo/NbzAQArUac80Nl/3ALJEsD6pOUA3L0fjg0Lx6BgXs8nFA/Dn6N2077IlT0Tti+b+B+/JRJ3+DKAtXsNtBt+kzu31WkKWxPKN5AYWhFuhEuX2WhA656CdNxd36lSiShSiIQZArlzC+DUYWA+DUf/y2BwFylHj5AhG8wjF/q0iPFGAeJurswSZK/yCayt+qpqgoCCs+awqGgCghVrCSnjk6pG3hYiANaJXwU8PEsXGQVbCUhXPO5FClms6Ud+B8ZMN+d81tywDP4VUvpJk4nB7HksXr9mUD1yDRq+niurFe2hMG45yIIxvnL+AoO1Cg+sYsVENG2SNMKPCHis/ZPyqjmP1ddwhfjaLDHrN3iwFWesz+Qut2ZpgDL6DC5VOGV5gs8fUj6SIroQ7M7aUJW6O3azOHw45n4KzR+KfypR4nhlAy2CCmBSOnVeXdyxvdAvUoQfla8Fy3cDVelDCmW7vdih7K1crWG9zzl4qpACJfnRSDmZhiqq7sDHgiSzVPYVP6Kg9YTcwskKQ1Am/R282XEUR1PNl3/njDFE3Iy6CHEfNQKcQ6I1RhFlh8YQgCdVIZ4bhsEtHQASSVfT9K0Q9Yakqrrf9To1iYP5qYKkvRmPjGXoN8UUzuD0FAoMGNKLKNPf83uanCuNGON4E4wersiY62Yk3OWT0M+kz6saQnR/GObocA68hdriwx956EPi3sQfHuyYibNGnpHQntkvq2JtPwT2sjQjaFw6Tnp5GtNfnpUv53/2CscWbItey0TNph7masfoDYBF2iSencTDUynVqwqo/bF7EIsxRcLYt5FDPdPUTX7z0o5rvOz1CzBMoZkZiYca8VTzVYzDWoN5GpNZloil1wTwhT/0tbkkUU/y2JWU6dieRw43B8xbtrE4cYqu6z5vIKDch55BTHeDDQBYSeJWCCjxH7FAsgSwytbvBJPZiuM75iGFUe9xKu08j1K1O0SXPbb9V4/lAwX8ZwEJwNLs3wLdKkWYSI0vYG3ew38dednSmzeEAJ6J5s0iIYeCiu+awSCiIOFgKYTokx9VJ68q9XImaY5edHQfC75YBZUt+F7Mmfzcmwxnq9exuHiJRWELkEuxlidp7km6e2+EAFgHfxLw8i5dYBfvwSPIDW+Bc1Yn0p8r13vi7TF/AQfW+gajnnwJjqenw5bOI8GXquKNqi7LXrjAYI0SwCoqgpz6JQUxjPwO7GMaCiKmywTm2WNZNXvparB2Gp4UVE0wHcrfW4v79ki5/cPZv0RODfXuUXb8kI9C2bA18k9pWT0u5PTslRh6lcXyVXTRfL7IeRwre9TlmAj/FeHBUiMkg6vuj0l0virVA8lgpkZeChYUvUvDyIIYLa7kiiFNv7SIw8srdIObkr+JkpPdhwip6dObMvY+rZHaTDdb09LPR5vyFxGx5zGuGzrLTaUrJqBga+/eKd7oIZUV7MCJsRzsJmqXPI15ZK4Yv9N7X3RRW0e7Yga0B11zrRGAXgh5z5jo1Q7cqVzUY+DMVAXIxIioQMIHFctEuwk4NpKWIdcqjPYMREVEAJOm0XopUgADf/Bcj6ioW/ULNPsVvEQfNYataTcfR6muGvEiJN6EknB6ERVGu/8enRjHwfqa3vcVCy9AqqPL5TaszXrAXtMxy50rbZ7yJpQJWwMe9JnZuGovqkcyMI9Zom4AilLeAlik6q7dLA69PUggfxPgu2snz1kJ9ZO+B3fzoty7pd0g8OUcyey9HoCHCtpDO6BdNpW+3+PJRahbPBGao3vk9myftoLt84SPePC3XZTtzfiFwzOFV12v7jzSp4v7new8/3VrC6haOX7fjwCAlZAzHGg7YAFHCyRLAKtM3Y6wWG04s3sBtFp1x6Kl6nQAwzA4/T/qBRS4WRLeAjKA9e9OEH4BSWxVPoFNpZdPQmtJMhqGXmNwUcpoaPPcI4m2yp9XiPbMIqCWMZ4ZDQ1jO4O9TzPH8PlLwtJ3smdF/FDCObxMDMkIE/FK8iCS9xUpltUGlKCYENIWElD4O+8WCwTA2tWfh5VyxqLsEB66ODhGtH9vgHYN9aYieti+6Q1bddchl9dusNi5m0Gf4BnQKTYTfIGSsPSJv60vXGSwRhFCWLSoiGZJAMByzq5E7ET4wQxTHL3sTFM2QkyRytO0v7fXc93+A3bFhupazlZIEYdbjSiKyH7HMTvjnVxtoHGVvuutRV6+jAmJsyreH+c/PIVjRU+5tFlBbTD+yuZ42h+XcbX/bId2+TT6/qz2GWwtequai5u2V6h2n2ZCzK0NwqFsMeEqkQ+Bs9Mdv6EFvniN9JUTjnPPWekUXR1BvCGZ/0RJ9iTyv9ThmYYC+Hm+EJA5nhsQVQYjZNC7WYTtoUCkMYOIUv0S3vtLrX7KciTroGFM3NQI3ibl8EWHpFLn3l4Wd/9H5y04v4giHWKDNocHcRAFBVAz3u4xWuvJUwaz5lBAKF2I+kQlxqGtHA4MLN9PAl9QXfiwr7Z9corBtdVU37TEk/w79wDWmekaRNFcD/iwzBak3ad473iRUKb304NY9yYmbJBI3Rv3seLMM1j6UaBG7dh8AbB4Hpg5m8OLl46hhN06C5JztsvutTuWQ7uFeqzaK9SCta16b1e1Y1KW066bB+3edfT9/mlL2D5v60tT0XViAWJlaoBwm77PMnGKBpH0/An9+9gR5Pr8KXqY+w6w+GsffRdUryag9kferUmd7RUAsN7nOyig+/tmgWQJYNVvMQBhD8KxfsFoFMrn+bT4/qOnqNv8B2TJlA57VicOQe37dqMklL4ygHX8L+h+p2nf7eU/hvW7QQnVbbza9SWjYZ4PYsAsEm4YFOTdSb3m8G7oljhyOJkHz43OIpVY4ryJ9JQum+i1eh2Hi5diFoepBKAqjeKDJqWI8sO98z5Km1KHP3soFxgiKk1wvWlkH96FYXR7B/PYi5aDtcd4tyYj4ILhxT0YRnznUM48ZB6E7HniZe6Ll1msXksXTEWLiGj2lXc2iJcCcVTWOiVQkDLYEfsRO0pia9kHtqqfJoQK77zNN6INBe9QUFYDBndyuz+RJh5YxBNLkn+yNcEH2ri5W5zTdpN6kd8exiqRnuYrDZGa1eFyzhaqbBMrzNcLD9YTlnB88XC73A8JmyThk5JcH3Ic4fZK8t/61DaUGcTADVanSmc1hdhHYTCMaicXfc2GYHSm9chluYQitnwQGcrbUrofD2MiJdiwvQFOjHcMp/IlLFqNDeJbRj9jAIgHb1ziS9a3+Or0ruqfnalB5H3ae54mAjJXiL1pPTmBg+UFBTbKDOBhcOPNQVp0znCXPbuITu08v9+dAUbRYIRp2pYEN9GtzSwe/ku/R8QjmnhGuxNnzqwS5f5Fxr1D6Dei6qcg3wk1ctH6HHUfKMYpijj+72Nkbek9GOQLgEV0dBVKWK0Kjzq14l6jsXeuwjChuzxEkkjHNImCS2rG7m0Z3azB0Fyi9BHWdoNgj4fXF/v0IQzD2jioQQ6thHzFvVUtyZSXstZKCnkK3z1yjMX2nfT+r1BOQINPAgBWkpnQgCIBC3iwQLIEsIZOXIiNOw6iyafVMWYAXfzGZYtJc1dh8eqdaFCrIn4e1iVw0ySiBSQAiztzCPp5I+We7aWrwtpJfRatRFTZoStfMhpmyyqiaGGgcGEB5JTWnTA2K/TD2oBwOUmSGCd+zjoZh7YG84yG8XjKgBMeTrKsKTgmRKC+RQR4Bd/GYB76NOrBPKNFj70K0EuXRkTZwa43CIZxncHeox5r0dkaRywE+b8acV4w2ivWhfXb/mqqxlnm8mUWKxUAVpFCApo3jd+CKV4Kva1sGNoG7DN6rE6AYwIga3evhXYD5Rji8xaD5Qd62u6PvhO6Dfbu1Whg3NJzAkhYZFxy2xaBKvfXy5dzaFLhSPav3KrX8OGfOGl5IpdZk7keqhiyuKzjnOKbFKrzsYithQ9iecTVOPu5nrMVjCrIlbR/bYB2LfU2tNX6CravaHidu4HsirqLduGUSL6OMTsWZ6otVxEmj8eR8CEAQ5/nPI0EZK6U8Peuc3bFW9rimJ1+JnJan6OILUTWUYuXKDcxcb0Dr6/lEH6Cvs/S5BNRtKNnwCKh73ll+5oLx6CbTQEGck3IlN0hXNjafjDsZT9KTLXeSV/mF8CpCUpvQhEZ24owCSLMZgZmE4OKFXkQp/1zszm8uUvntnhXHkG53X+rSEYzktlMEkIjQIikPQnJvkwOEeTvu5cJGDy1H9d15zGqAWCvruDw9Cy1S6FKl5B9FwVz+BKVYOk6WrVKTS8vwSEjtVHbcDvGlY9JruKN+ApgkT527WFw6F9HPqwuHXlkzRL3fMfKCDhoDoSc+b1R2auyzh56/vCa1M8eCu4CDV8ndBSEluJ9FW8BrDNnWWzYTJ/XUiUFNPnC8/Pqzj4BD6z39e4J6P0+WiBZAlgXQm+hWedR0fPRufXn6PptI2g1sbN1EO6rRat2YPpvMacni6YNRPnShd7HeXxvdZY9sC4dBwEN5EWcCm+ZpDZoXzIakuw3hQuRrIZwuWDS7lwB7eZFDkM1j18BIa1rcumEsonzKb61+zjYi5WPszvnlMZpg0XU1gARdxSL3zYCSAYo1fJYh3+n0vKpcooo0T32hlG7aSG0u1Y5NEs8r4gHllrhLp2EfpbjSTA5ZVULgLnqhyQIWJXEACz27jUYfnLkWjFN3QzRmALsy6cwDHLkdTKNXQIxnWuQRq1tE6ucdvtyaLfGhHpYBswE/0HhOLs+aQlHQ4UXUmldemzL6j67Z+cn+7At8rbc5oz01fBVqryx+jh7jsX6TY5JAPLmidncdnu6H1sib8Wp175sjZBfG+zRZNr/rYF2Iw1/t9ZrBnsjdRtB57T2zVPlx5T0lPONpFy/drE07usot402lYgPB/Jg1WRY86h93AW0e9ZCu56CqGeD62Op8UfktQL5FaGYma27kWda4oIwUeHAmSmO4ZWl+tmRIgnRSTlz29kr1gH0RhDOSUmszbrDXlNdqGo8pvKdV31wgMXtP+lzSACpdU8ZZVJfdO9iR6aMwJUlLJ5fpGU9JQshgztzjsGGTXSdWaKYiK9UJOnQT+0H7to5Oh9vDxAS0mACDxwd6hgmWX6UHRoPXP43N7N4pPDa+qDSfeTd1UpWlc9TGJb+M1Wrvvd/89GmAPWiJFjW8VzfIK2SlExFa/EBsHwJJSSHIprjFPS3fdEOtvqeORBVDCVWEZKZ0tjL8VtkmkmyBnrm93XXH7nnyL2nFPPwhRCyeI5a8WUcCVnnzRvgZwW3nRr+OWeP+MKFBHwTzwPFAICVkLMcaDtgAUcLJEsAiwxR8qoi/06bJghVKxTHBzmyRBO1my1W3Ln3GAePnsPT56+iLaLWWytwA/nXAhKAxV49A8M06uFCUjGTlMzvqxAyyctXvMtomCaNiMIFCZglImcOEZwpIhpAUKbWttVrDlsjx9C4xLCRbvk0aP6hYUbWpt1h/8j1pkfJfSXpRhbyqW8xePAP3RR4m37eFKrD6d8pgJWuhICCTifchFxVP7kPlLsSe/XPYf2ml9dmcvZMsn3WBrYGrb1uR6pw6QoLAuxJ4o8Fk8/KvK1IMn9qd1MycucTdP30AeBCafhRfG0QX33V1Cecbbp5ox044zxlUdxtCkPbx3vl5usac2BRplpuuxv1/Djmv6bhf0PSlkW3NMUc6pBnYc6vLHgFTktCiHt2FUCSPrR5vAd7TZQ837nDVZnqoZrRM2Co3b4M2q2Uk8vmBRfN7FfnMf7FSbnr7mmKYXDasvLfJAMpv/8ADqVaBUERspezvoDs8eQM8TSfzu+d57XbY8LlVigbCYQobFrENAFpx3WAGOQZ7PPUpzfXnUOqMpYVke/rpOGF5ZwYReS0sIxdCu6fbQ4ZR8k7jTzXyV3Oz+UQcZseoOT8VMD8/Y7AcotmAgoVFHBjI4vHR+g1NfxqziFJ5csJ+MxTSBLPw/h9QzB2ShBpGrvMrbeoP+Yp8h5wdhYFX/VpYwBpT0J43wj/myTZy79EoT2N5b/F9Flg8oKEnYDjFT5MjZtpaei1q/eoJ73iA2CRtkko4fyFnAOYWa2KgDq1XB+wcUd3Q7+Y0jrw+YrB0i9hvJNjhSymywRyj/hDDD91B/FSlsReqS6sbeLnae4Pvbxt49lTBjO85J+7cZPBH8sUXsUfiGjb2vMz4E63AIDl7cwFygcs4LsFki2ARUh25y3dirl/bAbxtHIn335dD327NIWGi+2l5btpAzXVWEAOIbx9BfqJPeUq3p7kqenrXZXxJaNhCqOIVrZpKBC2lS4OU6aGmSxuDcZEH4pzOJntoyawNe3qUo+Va9ho8E4S4n31fU8eT88wuLaKPmPBBKxTwREitfPisA6XN9EFZZZqAj74jP7NWEzQj+nsEA5HwmUsQ3716bSSZO0i2bskEXYvICEAACAASURBVFKHwDxxtc+2JzYhtpGkcEEB3zTzwgPN557jrmgY3ALsCxoG58ytoTmyG7o/6EJdSJ/FpyxRCaC6yyad71OpkCf+ruURoRjw7LDc5jdB+TE5nfvMk/NfXcSoF5SX5NugghifjnJFWa3AnHkcniu4dFgW6NSehqc0ebgDRy0022NuTRBu2yNkPaZlqIqmKT1z3RHwioBY8ngbtgUBsdTIyOfH8NvrS3LRYSFl0SU1BeIkL9Br+g64o6dtcoaYTa8mAV9H+uk/gAs9K+tm7Tgc+yJrANtYKKGHahFNIA6dCCHrB2qG7LcyL0im2kX0ncZwMWHN2sSNZow1HsYUBcOw1mAiX9N74i0Ar9m3CbrVs+XfSdY4kj0uOYstCjg+iswTBbCK9LVj6jxHD7r6dQVUrijg3h4WdxVATbaPBeSq5/5d/fd+FuQ/SWpUE1DLA8AbfeAy6Xv6jQlOD/NPNCNoQs3JoyMsbm6kuqYrIaJgS8+b90eHWdxUeJNmLmtFsb/qyWqKeiNM09Xzd5HDpoVprPixDvWOTscacCpHU7cJMZztEl8Ai7S3ey+Lg4eoTUhWQvKuJpQPzsK8eQUSRqgUyXPZ33PGHf8LeiU/rB+jEzSn/4Fufky0iiTmn1ZBCE7n72EkaHv3CAC5gL6HSfgnCQN1J/fux4CWkpB57uwioYM3igcALG+sFSgbsED8LJBsASzJLI+fvMCmnf/g5LlQ3Hv4BJFRZhj0OmTOGILSxfKj8SfVkCt73Nwo8TNvoLYnC0gAFhN2A8bxlH9MyJ4XJM4/uQnJaHjlKoNLocD16yxscWQ0zGC/h/5PvgULumi+Vb0H0jRpBINePW+Uv+zHnToI/W+U2yIuvgSX3leNeZQoLiJW2m5DTApztfJghxa399Gx5/5MQNZq1D7O3hokbZR5yFyfN7WM1QzDgKYgwJgklrY/gq9A+YHU6k7KXQ5lsXI1XSCTk35y4v+uhL11GYafqWeaqNXBPGWDA9jHWKJg+OFrBw8Bc/+ZEPLEHY73LsbDPg+HduF4h/TmSj08eY7NeHkWP7+knmY905TAwLRl3A5la+QtdHmyXy7j7LW1fCWL0GuOHh6EJJaQxUpS9/5mXLS9cGjjf6Yw+e/+aUvj+zQlPZrUOWzW2qgd7PXUhbT0enIQ6yNpNrDp6avi61QUNNMc3AbdihmwIyUOBq0Cz1B0hnhgEU+shBLigUpCWSUxDfkVz9/kcwCNjMI9VHnTGg9a/ITgatRzLKF0UrYriiSMkIt+t0mSvbaAnB7IsBNaNxJ2ScIvJYnmABy3DKLOAO74Xuh/nyBfs5etAWv79zsDmSd7OgM2KbOJyNFawPRZjoeWFcoLaFBfwOOjDG5soNcylhORz0PCjR27WBw+Sp/3+nUEVPbAE6fZtRK6TZT/ii9XC5Z23pOYexq/8/Xr6ziEH6f3bO4GArJW9/wcPzvLIHSFItNiMQGljtYFozgkNs3aAZGkYVYhxmFtYHoZjoI9vsQbPY1H/iVDdTROqT5pij8ALDKEOfNYkDWMJOTwrVd33mVWQhJ6T0LwJbF0HA6+TDUVo/auiHbLImh3rJAr2Wp/CduXfuLqFQQYh7dxyIBpq/01bF/GnbXUO+0Tp7SzN9UHuUV818b92jJW1tB0Inq7oKTwZgQBAMsbawXKBiwQPwskewArfuYJ1E5oC8ghhOGOmd+I54x5pCP3U0Lrktjt2+3A9RssLl0BQq8yMJnogvK750NQ1PKvrNIzLgt+yrgiOpV3ntxCNAl8wYIiUqVMHDCLvX8ThrGUFFrInAPmEXThLSm6YjULkqVRuQAk3lfkNJPIkSEcBLuCyH0gDxK+oEZurtTi0RlatkBLHulLxPztiifC1qQTbHW+VtN0nGUIiTnx6pGEELWaB83xqU1iF2IfSQoWENCyuedNg0+dqaikXfcrtHspcXlciRN0v4+H5vjfcov2Gg1hbU69JVV0laBFNId3QbtmNhizIs2lU4+edB7+/CgWvr4s1xoZUh4dUxdxq7dz9r7i+nTYmeXz6DpkI0s2tEpxRdpfKWw97vLU44qE781+dUGu1jJVAfycvrJH+2nXz4N2jyLN+ledQYjc1UjLx7uxz0RTsy3JWAu1UuSQqyoTbNzStcANQ0f5GqOJ8cLSuUlXrkYHV2VIAgtjL5oNkZQxzfwTt/5nAOEzkiS7dQsKmadhS9aBqDmoFlTunX1VK1a9R0cY3NxIN/Uao4iyQ3mo4N73mw7Khpjn4TAOcfS+s7YZAHulOtHFuMunoJ/5o1yFL1wGJBNhcpaLCzi8uqYIH6wngCsiYO58R6Alf34Rrb/h8eIyi8uLFd+xQiIIybk7Wb+Jw9lztI/GDXmULuX+26b7ZTA0F6kXp63l97BVdbznE2JezkzVIIo6fqJYZx6p83j+Dr+6weDifHqvkzpl7zRz8OL1JgTS2LNB9OHI8JqlMasCfd8W0abF7myUc8+TDfwBYJE+Hj1mMHe+Yyhh1coC6taO/Z12zt5rq/IJbK36elLV6+vEQ4p4Sklibd0P9sr1vW4nrgraA9ugXUk9zYkXnXnC6nfi6e/roJz5rNQkyHkdwWDyNHovp0oFDOhr91WF6HoBACte5gtUDljAKwsEACyvzBUo7G8LyADWiycg4UySiCEZYRpH09r7u9+k1p4gAHfuxnBmRZ0+j2/DaFgB0XVR2nG4aHDcyBJQKEf2GM6swoVFpPUio5+34yeeOMbvHReUUXN3OzTzkCz+5jmeaH/11vtKKnhxHodXN+kiXw05rlT30mwtXt6li+zi3XgE5Yr5m71+HoYpdPHIZ8kFy/AF3g4zVnlXm0FL/+ng8xT1um0CUi5XhFAWyC+g1TfvDsBy9m6xdhoGe+nqscZF0ncrEyyIKVPBNHmj1+P3dwUm4iV0SyY7ZFKKqw9PWU27PnEkU1fjAXDfHony9yi4mZ4z4myOZiDJHEhoAnmmJQlJK6J7Fx5aJ9LzEndX4plgkcvNTF8dvZ4ekP/+2JgNSzPFAA/uRLtmLrR/b5CLkJAwEhqmRuo/3IrzFprl9M+sn6GULr1clbt5CfpJvaP/5qHFP2nWwSZSzhqSjZBkJfS3cPdvQz+WgmUkcQVJYHF2pgaRFG9D8aiRyGTfjz+DOuNN9ab4XBFW7G+dXLUn2IETYznYFQcQeb/kkam8Z0AgIfTTzR8DzWl6Dwk58sE8mGaoZMOuwzCehn8nV29nyba8BTg6ggNE+t0p/YMdj6MY/P6H4/cqQ3oRPbvxeHOPwTmFd1bKbEDJXu43t84elyQ8nISJuxNjn4YOwDs5FCKHQwkpvA04OkxhD0ZEhTE8OBUJGSIfAmenU9DPmFFEJWtnB08k88DZEHIV8DgEJvINjD/E8GfdDzKieNfGEKWTLgCbMn+KcgZ1GRH8BWARXfb8xeKAgqszrlBC9sYFGAjf5lsREij8Uz+6A7iHd+R+fF1/uL0P+38FEhYpiT8O/zzeAH4scPIUg83b6LNMgGMCILsTqwUYO5Hey+TbPGxQAMDy47QEmgpYIEEtEACwEtS8gcY9WUAOIYx4CeMA6i1DyHhNP9PNoad2ktN1srkgmwxJbmuL4Jf0lLMkrrFmyiiiWlUBJPtRQgiZHwIaSGIetxxCCF1gLl/FIvSqglcjRETvHo6LCJIFSuk9ka2GgFyfqtv8nhyngYVSuqDsIB664JixEu8T4oUiib1qA1hbOoKAvtpEP28UuDP0BNRepjqsHYd53dzVayyWraT2eZcAFnv9AgxT6OLbVfigPECBh/HHZg4LXEvnkeBLueeI8tpAXlTgzh2GbsnPIJsgZ+ELlQZfvaEDtweftxgsP8RNstv00U4cMj+Sm1qVqS6qGbO61cguCsh1Z4lDmcsZvsX83zR4/ZpulolHEOHjyJgh9nOZ7XZMlkRJtmf9HJ8+oLx3hbVpsUeFJwLhaiOcbZJYW/SGvZr7LIpS2XJha/GAj5TrHsn+FXJoaJgg8/gejCO/k6+HBbdCqKBIJMGIKDOAhyHEiwlUUdQ5bJkk9njTeRKOOXEZ1Xj9ObR4g4MpmmBzmp7RoDB5thJT7v6Pxb299Nk2ZhBR+gf14dH+0pW7eRn6SY4JKyx9J4PPT8NQmWePYRxKM8cl1MbbX2OKbztPTjK4toZubgnoUrofj2vXWSxd4eglSfoaPdwOyysGJ8fTOrqgGK86d7JgEYe7YfS5b9+WR66ccX+LnYHExDoYeH2TwQXFQVOKTEAplZ4n1tfAiXF0069JCVQL+RHcxWOyaSxdR4MkA/Ek7P1bMIyloWptm9XD5twUOG+QIhfmZ1SXWdSfABbRe9Ycx1DCdOkE9O7u9E4h38U+jUCoBiQxD50PIZsfefgEHil6fgrlaYhp+maI+hSezOvVdeckICTk2DRhNVzGTnrVcuIU/vcIi53/o89ypQoCPvHAWUc0Gz7a0QOTPPvxkYAHVnysF6gbsIB3FkjWAJbJbMW6bfuw+8AJXL91H68iIlEwbw5sWDjGwUp//XMqmhurdvWyMBpoSl/vTBko7YsFZADLHAVjH+oxQD7Q5EP9XxNnfhIy/sfd5uLs64K4eAW4f58ukF3ZRqsB+vTmEyS0kGyMyAZJXqz1mQSyqSTiyvvq6yY8ijuBac4cGmnyiSjqgWyTtC/ywOHBysWGiEoTaGiibuF4aE7QMDdryz6wV/3UL7cPe/UcDNMU6aYZBtHgXdoMXrV/9RqDZSvppqhAfhGtvkn8TS5RmmSW0+yjz5f9wxqwdoibB0e3di40f1EPH75UVVg6j/Bq/P4oTMIEtatmQHOUZgyU2iWhD3YSOle1AdjHYTCMbCd3KWbMCtMomqXPWZeP729CqI2Cs7uzNkQRnWdE5sOw1XjE09DFPke/xuvQNA7NN/uahPy6BlScAazLOVug8F3Kd5KG1eFSTuqZGpcNdcumQnNoh3zZ2qov7FU+UWXy3LeXwKbg2ruWsxVSKOPfTG+Qoi/NNCboU+JQ5q2wKMjpM5QSkd/P97IzPxB5nh+W7IfQpXSjksp+AxWjOkSP86y+BpaGjIzO7ti7h4CUKRIGyHdlVNsb4Pg4DhAUJOHteJBEFYkphnFdwN6jfGbOWUWJLuQZIp4/8nOj0YDwFiVXIaGAJCRQEomQ/fwFBmsVPFfS9R/68EiVQsSRwUrSd8fvjStbzZrDgfDqSNKtsx2Z3dCrav7aCN1aGo5ODgTIwUBCy4P9LG5vp/bwJnMm4Xw7PNDxO1yj8ARoj/7P63cPd/E49L8MlusdqVwZn1Sj4A+x5LHsXyMrQck8iL8BLFehhFUqCajnxG2nnz8KnCK8z9akI2x1mnpSV/V19tFdGEbRw4KEOtglB0GGQc1AwrYl8XeooupB+1Dwr30s9inCymvWEPBxDc+HGOMnamCmDtAY2N+OFPFIShIAsHyYvECVgAV8tECyBbBu3HmAHoNn4O59RaA/4BLA6jdqDnb+fQzjB3XEF/XenVeBj3P4XleTACyQk6buirh+lkPU7J3v9di8VZ6x26Ef2grsKxrOYy9bE9b2Q+SmIiIYXCKZr64AN2/FPj0mBcuUFtDoc88fb2/10y+aAO4YBQ6Um2Rn76sM6QX07BZbB/MzBqd+piAOyWSmhsjd8pzByYlxn4gbRrQFG07jikjIDAmd8ZcYRrUD+4iSa5NFKlmseiOE72zJcjpn+fMJaN3C//PkUSdRhPHHpg7edJZOI8CXrhpnVfZOKAwTaKYykeNg/nkdxBSJl26Nu3oW2t9/cng+JIVJSKet/WDqERgVgRT9msjj8ZQdq0TYKjzj6Un66exNkVHj+ZT7swfbcNpKScYb7GqAzI+zyP2WLSOgYRwhbS94C4qF0YxjaVkdLuRsgbx3lsJMENu3cj1nKxg9ECrpF08Ed3SPXEdtsoEowY78d2n2Qi1Y3M7dJtZ9YOxR34Go+W6HXbi6xvGwh4RlGb3DdN3eqrqlU6D5l34DyPMWGtkcJBOaJDkta1DAEhMed1NXHHPSzYz+d768Atq0TNxn69pqDk9OUQAjOL+IIvHMauXxWVYUIPNP7gNZWBbmkb9DyJAt9nz2/ATkeyOJafpWiHqDN929F2VJuNyxERxEns5LyZ52pMwOnDzFYvO22N/Q9t/xyJVDxLHRGtipYyLKDbVD64br7eepHEjGYUn69+ERFBQ3gEmSohAvQ0msX3aBvfaXCW7X0OUcnim4uvI0FpC5ovpn5egIDRSvSlQuswgp9lFPVOsX7WCv7zmBBHm2yTMuib1CHdSoUxCXFEktCA8h4SP0JP4GsEh/e/9msP+gY4hpp3Y8smenc6r5ZztI8hhJ+IKlYfmeZu31pLen68Tzm3iASyIUKAFzH2ozT/W9ua5bMxuavzfRvjISHtrfIROYetNYIpfdvpPFkWP0Wf60voCK5T3f01NncHj5ij6zfXvzCI4HFUcAwErkiQ9095+2QLIEsCLeRKFxu6F4GP4cOp0WtaqWic40+OuSLS4BrD/3HsGAMb+ibo2ymDYqeaeTTmp3uwxgATEAlkA3btEAFmEt/4+IdvcaaDf8Jo82GiQYtRhiuswuLSBlNDx1Brh123Eh3qOr65Cl+JhSu20JtH8upQvOet+AZDsjnD+//uY4T+68To6O4sBHKYjcB/DQp3PvqRBxh8H5OQrCzZwiSrzNGMOYImHs28jBbqaZ2wHWNcDniw0IUTjhW5Ikmuj05zXRWb3UyrUbLJYmAQCLvXoGhmn96VhI9sGpmz1mjnIG8bwJU1NrI1flyKkwIdNXeozJ86DVwd64PWw1G8daaDuDLnFlxxJFEdnvOHpn3cv1LRgFH0tc+ncM/wvbo+7Kl2se/Ah5b+WN/jtLJhFdO8ftYXfXHoFK9yiJPgnbI+F71e5twE07jZU9kK0x8modvbqc9dEtHAfNiX3yzwT0JuC3Jwmzv0HFe5T8PZsmZbTXg7PEygY4dhlOL8mKqEdKwIZwYYkwpPeP1xEJcSWhrpJYuozCiT1VYQqnz3XpqIFIZz8aXeQplxUTMlLeROeMj55sEd/rxBZnFKTApL1SfXmkyOQfe7jTjxBh64e2cTz8qPkFCBeaKzEOag7mJT0ocQ4Hj68tkkr95+dZXFlG7xeSMIQkHSDiHHYk6fxlIwElSwg4PZWD6TG9v0v14ZEic9xzOWqcBopkfNF8Os6cd0q7EP4nZQi0Wu6o+Nr25ATOwXuyZG8eKbOqv0fJARQ5iJKkfOU/kXon/TbaP24M69fdPKqp2bEcui00hJpkTV1b+yN0e0ozu6ZkNDibo7lHAD8hACwygFlzOTxRZBhNFxLDZSglimCduFvJmsM0dRPI+sAfotmxArotNJmRrdpnsLWI4SP0t7Avn8Ew+BuAuNm9FbXhoP7Wxdv2Nm5mcfosfc6bfCGgVEnPANYvczmEK+a3RxceGTOqfxac9QwAWN7OXKB8wAK+WyBZAlhzFm/C7MWbUKRAbswc2wtZMsaEghSt2dYlgBX2IBz1WwxAjqwZsXOF/05PfJ+W/05NJYBFSMIJWbgkpmmbIRo8e0EkB2sxkREwDG3pQOiqNp0xOUifOtPx9Dd/PhGtW/g3PI07uhv6xfT5kMLOlq7kcE2R4Sku7ytpni4tYPHymoILSpFNMK65fHqOwdXlFMAKKSagUOuYBQobehqG6QPkqkLuQjD/OMuvtwXZIBoGNnPYcHgL4Fy7zmCpIgV5vrwi2rT07xypGbQzX5K93Mewthvksapm50roNitSvuctCssP0z3Wi08B9u5V6BaMA/vkQaxmSEZIa4chLj1MSGHDkJZgn4fT98noJRAzUO8o6cJT3oSSYavlciGcAedzNFeltnP2wnIny6HExZLQaQECIge/5Whz1dhF63PUfbBFvlRYlxZ7sn6Bpo924ZD5ofz76sx1UdXgno/LmaeNhHeSME9Pcsb6FA0eUO4sZSZFZV3nlPHmH3/Bc0thXPo9NkicJp+ALJWBkKKeNxDu9Iv2Enz9Qi7yut9iHPstl0OVjyI+BSfGhHDyDIcfM1MvNI4DuncRkD5d/PTwZEPl9QvzWby+oQjPKicg31cJ338sDhuDEeaxK0B4lVyJc6ghyaxKnqfkJldXcHh6loItWasJyP3WI9I57Egae83qAj6uKcD5O1WkvYDgAq7n0mYDxvyknk+HePOSAwFJRI0Ophlb/Xro4mou7ZEMjo2m31GGAyqN94735/xsDhF3FR5tNY4gw1b6/bCX/QjW9jQ0MK57imS+IxnwJCFgq7VGw+jEGA95ug4cFVIeHTxkhE0oAIuEEpLDOWVCDudQQsPojmAf3pbH4U/QJ5bX+9fdQADChBJnKgY+XzFY+sXNHZlQenjb7srVLC4rsl83/1pAkTjC9pVt/7aIQ5iCt65DWx453fDWedIrAGB5slDgesAC/rNAsgSwmrQfhtAbYVj32ygUzk8XvHEBWGaLFR/W6wSDXoeTu+b7z7rvuKUokyWaA2zPwZPRHGCE5yskbRDKliyI75p9Eg3wxSUnzoZi8eqdOHPxOt5EmZApfdpoT7bObRoiTVDcnAQbdxzEum37cf32ffA8j1zZM6NR/apo0bg2OC72ZscBwHLKhGKatA6ETPK/IM5ZxERjymieJfJ/NXLmHIMNmxy9oNq1EZA7t/82T8psZEQnIWcB3Go3J1bmwaZNeBRzQyR/ZweD+/uorlmr88jdwP2pFyF+JwTwkmSpIuCDhjFj0+5eG+2hI4m9RkNYm/dUYzavymi3LIZ2B/XwINmiSNYotXLjJoM/ltFx580j4ttWiQ9gGfs1BhNFyc/VLrgJGERAIaWYxi6BmC42KKTWJu7KEW8/4vXnSmyN2sNWzz3IpJ/YA9ztULm6pf9M8HkKx2ruivUFaj2gfGAFtMH4Oxv16HOn4+xXFzD+xQm5SJErRVHpWCW0bC6gYBybXanwMfNjNH5EuYfK6TNiU5ZP8f3Tf7D2DU3iMC19FTRN5R5c0M8ZBu78ETrW7mPBF6vgcRr2RoWhTTgNC65pzIblLrIekiyUJBulJNYe42EvWi7aK5J4R/6fveuAjqL63t/ObEsIEAgtEKo06R1BEQVFmoIgCiJdeu9Feu+9gyAdAZGm+FNBsYDSO9J7J9SQbJuZ/7kbdt/M7G62ZBPKf+85niPZV++8Ke97936fO6Nol2wVYU9P4sP8O9V2p3p6ue0OnP1WJhKRX4PSx2sAFsbbMirnNjyysWcmEed3bCekGhfxg/84nFqqfM+VHypAl8a/+Xu9cLICBPIZBzeDxsrIXKzEBVf9E4/NGKb3BX/6MFsv3SZAeL2MP92+FGX/HcpDMLP1KVeu3f4/Dnv+df0mKVlcQsOPBftau3tQlvL9qYjMZd2/T588ASZNYwBWRATQLwlidHX6nPB6WZi7jU9xnz48w+Hk1zIOOVkks6+dqznFilQ7h+ybWDq9UKgUzD0meW3OMH8Y+CO72TOl3TCQWuzcR8cw5sEB59+j+XB7VCiXRERsSgFYNAh3QGf7LwXkeBa1RuIxJCLjMFJ/9RT56NUpqgLGcZ1BhzgOM6fwfUr8eQRuy83cbyaEvK7vTX/nkpLlly7ncfESu89bNBPwWl7vz1w6UKSDRYcRJylxkwZqIQArUM+F6oU84L8HXkkAq1zNdtBptdizjRFkkms8AVj0W5kabWG12XBsJwvX9d+dL06N33cfxtBJSxD74DHSRoSjaKE8CDMYcP7ydVy5fscOJk0c3AE133XlFyAAatjkRD9QvagM6XH2wlV7SiZFs62eOxRZMkW6THbg2EXY8vPf0Gl5lC5ewH4Njpw8j7inCXirQnHMGdcDWjoWl5kcwHKJmCAAR6Zy9+J4N7gj0cTeAnE4aWT5B5ZPOsJWnXH4+NKjOtw9c2YJFBLtQyaUL81D8+g+wgZ85iwrGcOwsPwPig8Ab9FXVPn+cQ7/yYiY0+aVULxD0kDOxS0cbv7NPrzz1BGR/e3EzYR+0ShoDzLZ+JQiH6WNYtjAJoo0V3PXcRCKlPPJf2oAK19eCS2bpS6AxZ86AMPMAewaUirk5I1e0wcdFYxT+4A7e8RZ31q3Oax1mvk0f38KqYmmHXXFHPlgbT0IQnZlJI67tl1AHQ9RSX+ZbuKzW/9zNlHZmA3rs8n4+JIY+Ig9F7EwmqW85L6SB8PM1VzIft01oQaP3g3LgZVZ38eEBwcx89FRZ5V+kaXRPZKpyLmd66yB4E8yIM3cZSyEouW9upyAMgLMHNYwzWuYmbmKSz01x5bjHiPw6sRiHiLDkNz2SRv/HFUkhEf7tjngLp+BcXxntk6jsuJoidW4e4A9A16vyyHm1yaQ7rDovGNfLMWyHcqDmcpviKhZI3hAvjenHpzEwyQj885ZQ0LO6il3n6sJ/OmdaRqxLMl7Wr94NLQH2Lq1tB4EW3nfFN+8zf9F+f3haU4RIahLK6G8TElw01YeBw+5gq85c0po20rApR81uLGLfa/kqSUh+zvur+OdO8Ds+QzAyhQloduzFHd3/tAvmwTtP4z43PphC1hrM2XIlPLhtR08rvzM5pytsoh89fy7N86t53BnvwzYq3YLuTcxzisxex6YhjAqBE9zofub7nOHmfrNhJj3dcSJVpS8ulbBA7g4SzXUCs/l0S0pCWAJIjB3vlKVMENk4vWlz1n1OzWYqp5haq66sash+Ske4+9aMszoD/6/g85qqSUu4O845eXnLdTiJhMRRocvbciedNCyvfq33/E4cYLdD+6Eh/wZVwjA8sdbobIhDyTPA68kgEVgFIE2uzbOUHjHE4BFkUrla7VHZPoI/L15dvI8+oLUXrXxF8xZugm92n+KejXfsoNKZMT3svr7HRg7cyXShBvxy7dTFBFVlE5Zt9lAaLU85k/ohfKlCjvrzV76vZ1H7I0yRfD1VJayRQUIuCIAK1+uaCyc3NeZthmfYEKPn5p1hQAAIABJREFUobPx977j6Nq6ATo0Z+pHVE8BYA1vBe72NfZBQwS0WXO+IB5NuWHoF46E9hAjcxWjomEa7T7yJKlRXLrEYcly5Ynyxx8JKF3Kt02jLzMM61ZXcdI/JOsWJHCM2fbThgKKFU26P1IvIx4Oh3FaCW+MSXqDR8pjscdlaYdNBGR6Ni8jcb/EspQr05CFELMHUcpa5hj9knHQ7tvp/AtFoVA0ii924aIG36xg834eAJZuxRToZMTYtorVYWnJAC1v81BHDgS6Vr31w588AMMs5bisNT+HtV4rb1Wdv+tWToVOpsxnbdId1rfrutTfHHdRwbvyYZo8mJ/ZO3/U6TMcpuy8gx9qsjSY7I8z4Z9ideEm2NSl3y1PL6LjXQYiOPpd/uQ0BsbucZZvFlEQ4zNVTnLehul9wJ9mwKK5x2QIhZIGvajB+Y+PY9R9Bnx5Ik1WRxlYP24La41EtS0Cr+4c4HBzj0bBGeRuwGlzS4h+S0RUUQmUvuTJtAd+t6eOOoyig/56NBlWGUl21b5a6Fd0hHRGxpPVazK+PVYGR48rgYnWLQTkyR2852BSF4NI5i9sYs8qbZiEcoMFeOHh93ldywtyNy7COKqdoq7lWSRLUg3q18yE9o+tziIUMUKRI6+SnVvP485+tg6yVhTxWgMG1ny7gcOJk64RWI7oqRt/crgkI3mndZvXgzjK5SsafP0NW9AOEMyTP13eWb2nQsxfPMXdf3Ipj4f/MZ/k/0xAljL+3RcUCU0R0Q7L/U4cCmz50PlvX5XyjAMbg3iXHCbnYRsUuwfLnrDo2YrGrNiYzbOqakoCWDQ+d6mElSqJqPVMlVD9XWQa+Y3H1HZfL7I64pn4Nu1ppils/KmDMMzsr+glGPNJyWFPm8XjgUwVt3tnAVFeeFVpPJu38TggE974sI6A8mX9ux/k8woBWCl5lUNthzyg9MArCWDV/qI/Ll+7bQewMmVkKWieAKwdfx5EtyEzUbpYAayczRTfXvbF8ujJU4/pfi26jwOlCU4Z1kkRhUXA1qqNv6JH20/Qtqlys0fgV5OOI3Hsv4tYNWcwShVlKm/1Ww3G2YvXXP5OPnzw6AmqN+oFnU5rvyaUqukwBYClkgA3DV4Airh4lY2/eAqGid2UG5C2Q2Er4xoF4YsfVq7hcEbGLxURIaFXN0Y66ksbSZUxjm4P7voFZ5GZUfNwRZ8IcvoSfeWoSDwcxMfhsNK9BYQlQZ55dDaPOBlXQbEOAtLllUDcYWF9ZGpzOj0SZv6Q3Gl6rM9dPQfj2I7Kj7sRSyFmifHa5/mLGiyTAVh580ho1TzlIjPcDUhNHGz2MdXM0ZYmIR5hvZQbXU+peV4dkkQBdfogAU8EQPljus1LoftptbOKpyiHxY9PYtj9vc5yrdIWxuioN5Ls6uFDDYgANtbwGOsarHOWzawJw+HcLEoxqUZWPTmNfjKgqknaApgc9SZ+jb+KFrK0vurhObE8S/Ukx2Oc3BPceRmQ02cahNeKeXXXmPv7MfcxqzcgQxl0TV/CpZ46TZfS0yhNTW2PL3C48Tfw4CQHKYnADoqGyVYJyFZRhC7CdcNAqbqUsuuwJ2+0xL8nWzj/reElfDxXh7hpQyDulZHXf/kV4oq9i9nzODx+zJ4v9Bzs2lFEmJ+pjF4d6KaAYAEOjOVhS5ABBZ8IyFI+8I2Rp3GogUu65uY+3jlrdFu/ge5Hlg6dUpGUgfgvGHVo7e2jd4zsGpAiJClDOkydPiTvd+ggGx4e0+DMWgZKRZWQUMgDZyGB2aTE67ACBSQ0a+L+2U4qw8YByvRnemdJOqWqZzD8oG7D5b3bR0BYZv/W5fVdHC7/KEvnryKi6A/K51P8vF+8Dj+84/uKMvI6l61PUPk6E7iggj9n/whF9Yl8tmpLaQCL+vttF2f/T26OVELDnMHgjyeKSZAFAxBWA0lCnkIw90+dA3bjmPbgrrHvPOtbdWBt2sPrNX1eBcZN0iIhkQrRbv1725DGB/aN7b9w2CNTtf3gfRHEcRaohQCsQD0XqhfygP8eeCUBLAcI07TBexjUjYVluwOwKPqqcceROH/pulvQxn+Xvhw1xs5cBYrSIv+Qnxz2fuM+uHHrHnaun4asmTO4TGbNph0YPX0Fmjf6AP07J4aNU3mqlytHFmxf5Z4Ev9fwOfjf7/swa0x3VHuztLNdOYBFQA4BOg4z9Z0J0Q1nzcvhYd9GaZjUDfwFNmcxZ36YBiXKwgdisfc1mDmHlwvJoPo7Iqo+S7cLpE15HcOC4eAP/+3808rIITgcVs3+b1+irxwVTy3l8cCPk+D9o3lYnsiUC/sLMGSU7GlThlmMQFbIVwTmvsrIy+TOWV1ffc185dy6cEmDb5azDVFqA1j88b0wzGEAvV1J0Y/0QYcf1OlHgYBL3q4JpTlSaobDLJ/3gK1KHW/VFL+TaqH+W/bB70nBSZ2y1zeyFHpElvLYF2X6ErHv7TsaiBoRS78gqXFW/HLu5tBqvCtgLnx0AiMeMF4pR/STmty9iD4jfsmujFxVD844oSu4S/+xZ2f/WSAxA2/W697f+DburLPYpKjK+DxtQZdqahVOoUJ1mFt5jtyzPtHg1h7g1l4O9P8ejQcyFReR/U0JETLyXHXK4uWKk3H2VFlnMxkKSKjeX4+4xVNh+3kjWycNO8D2XkNcu6YBEfTKBLVQqICIpk0C35x486X898vbOVz/na0BAglK9wkuWM0f3QPDvKGKYdG7g94h3ky783vo1zOKhWDy9njrOzV+f3hOg5MyZVxOL6HiCAHy21JN4CwfV5cONhjiNDixgD2v0+WTUMyDquihIxp8v5mVdfBouZurdt9v0C9hUbupRZStjnzmDRIqjvR/Td7Zp8G5DWyumctIKLGvnv0wyWEJE9ZBSuf6/ej4XfPwXmI6/jOjslRHbi1u/4pfE1hEvqf0ZqqTGgAWpRLOX5j43HcYpRJ27STA+JfyXWMrXhGWTqOTtdS1OzdCv559C9oqvg9LS2XmQ7I6SKIyv28HDEsYJ5uk1cI0bu0Ly0k7bJRW8awfMcTmE3XG77s47JSBkvSdTN/LgVoIwArUc6F6IQ/474FXEsC6eTsWdZoNgNliRd33K6F3+8/snE1qAOvgsbMYM2MF/jt3BenTpcFPqychXcT/D9W7/qMXYNuvezB7bHe8WzkRUHocF49KdTvZgSsCsNzZqbOX8UnbYfboK4rCInNEsJGvJ3zleipPZZat/x8mzlljj+qi6C6HKSKwpvUFd4YRy5p6ToJY0PNG0v/l/mLV4A/+AcOiUYpBEfhCIExybMsPHPbLuGJ0WqBndwERQSAS1n23ELpf1zuHtz1ta+yIaOZX9BVVvvILh2u/uidlV8+dNqF7BtAHs+PDUUKlsYI9BUktM217tz4snzLunOT40VNd7f7fof+apTdJOgNME9eDOMGSMiIZJbJRh+XNLaFVC/83EIHOSc27YqtUA5bmff1uTr1xtgsOTNzgM4+W1w5FEWG96kNjZkeqpsELIebwLy2UP7ALhsVsE+GJy6Nv7G6sfsK4WMZHVUKztIU8DlOddrC60SokhLGx/hvzCWK07tXf5I1OeXgYUx+y513PyFLoE1kKDwQTil1d6ywayRlwIhfb7LkbmItKoI+qcupN4pIs1fCBG64Z/ti/MMxNfN6T+Uo6LQnA/RMa3NjN4cnFJIAsABE5JES/KSFTKRHGKcrDjMPF1+Pe5UzO/vPVkVDmYz3i1i+DbT3j27G+/ymsDRIJpXf8zmGXLNWJ/hbslGpPi8QaB+wbwwMim3ORNgIiC/oX7eJxEYoCjMNbK9Q5hYrvwdxSmfrjqT6/dwdI4cxhtnLvwNLm1Yk+pxROSuV0GIEsBT5TPmvnzNfiNhMpVbjq889E5M4g4dAU9rw2ZpJQpq/75zWRwRMpvMMqVhBRp6b7jbBafc/2QRNY6jNFQq/PxwALqJV80+eXULSt/++fB6c4EJG7wzIUklD6Sgtwt686/+btec1dPg3j+C7O8u4O7tTchDw0OJjzU2TiXd+zqQFg0WDv3uMwZz6nUCWs9IaI2qWuImxYS+d8JF4H0/RNIHXJQE2/ajq0f7FoclojtFZSxUQRxkGfg6IFnc+Imk1gqZfy69Tf+ZGGx+jxjH9OqwOGDvRNWXP3Pxx++pmt5UoVRdT6IARg+XsNQuVDHngeHnglASxyJCnvUdSPQMcmAHLHZLWnFUakCUOxwnntqnz37j+y/0apbfPH98IbZZMHHDyPCxhInwTsUUpfgsmMnRumOdMMT5y+hE/bD0eZ4gWwYpb7j1lKS6z8YWdkSJ8Wf22eZe+e1AonzVuL9s0+RLc2Dd0Oia5H9yGz8ME75TF1OAMYFBFYs78Cf4Kl8pg7j4FQzJVkPpA5v2h1NDYbjMNbQhN72zk0oUwVmNsqT9QDGXfcUw2mzeBhlb3Dy5UV8VGdwF/MjnFo/9gG/RoW4bQ3rCbWRfbHp5+IKFbE9/bVH8HEjUMKUe7M8lCD/ePYRkKfFig3OHFy6ogwc8t+ECoqUxMC8WGSdQQBYQMbQ/PkobOYtUE7WN9vlGS1S5c1WLJMRgqcWwJx86SG2ddbnwYKUMjcZQyEogHcX6KAsD4NoUl46hy6uf1wEEAUDNNcv4Cw0QwIp0ixhOlb/G6aO3sMxqm92P2V73VQuqPaWt3egZ8T2OYrKcLgI0c5fCfjN6K2fmqwCdcj7jmb3ZStNsobs3gdL0VfURSWw4ZmKIf26RPT/nJdWgYBDOzwFtVlHNUW3A0m5U4kykSm7M0+vPkDDprvOottjq6NcgbXsatJ1QOJFI2/rcHNvzW4e4hLkvRdGy4hR9wG5H66Dnop0a+/Zf4VgpndO2V7iMhbzID4X7fBspABMfLIMAK+KVLu5i0GIul0QJeOAihyIqXt7Boedw+zviMLSSjSOjj3u/a3TdCvm+OcAm2YzaNXQIyM8mla/Il9MMwexO6NwmVg7j7Bp7ovQ6F9o3gFX1rh5iIyFlW+n6bO4PHwkXtQlUj/K5QSsXcY2xjzeqDiKPcbY7VS3Ttvi6jmIZJDfa+m1neOmrsqxzsictfy/Z3tuO4k3EDqow4j4LmC0APcGSY8YeoxEWIhFmmvXjPqQxBPEUtvX/8e562J3+lk3dKXQP8MrmqZqQVg0Rh+/4OzKxPKjVIJX5tFnF7sPUCqkgT0B2r07qJ3mMPMHUZAKJk0F2Kgfbmrp47StEdsT1oPOrB7kezxEw0mT5OtRy8KoPKxk4gDiTk4jPhi6ZAjUAtFYAXquVC9kAf898ArC2CRK46duoARU5eBooY8WaHXcmJE39YoXti/033/Xf3i1Jj7zSbM+WYTmjZ4H4O6NXUO7N9Dp9C65wS8/UZJzBvf0+2AiQer2Lut7CqGR3cssZeZveR7zFu+GX06fIZWjd0TbTraJpDw6yksDFoBYC0YAf4wU8QytxsGofRbL47jgjgSdXi4xPMwjfgGUlS2oPTy+58cdv7GPrJIiZBUc6IyJm/jplbcuaAvgfWFpqFrJ/8+hImMmTYZDuN0wBuj3W8O4q5ocHQOK5s2p4TiXRI/MuynhA/YBtw0dDHEaO8Kdcl1svanNdBvTlz/ZHbloTGrAM5z6pgawMqdS0KbloF/LPkzB5eoqfAIJEzaAHBJMGkn0QGl5lGKnsOEUm/B3H6YP0PyWFb75zboVzOQlFQeSe3RX+NuXYVxBDsxljJFI2GUqziCGsTxBEDR6TupUT07E7EPJ21aCSea/IJfTFecw5uXuSo+SuP9faKO/JoQVQlfPIv8euv6d7hoZSk5f+b4GPl0jM9R7Qt7NI48AmLYEojZvAtgvHn9O1xS9NMA+XTpXFytuX8HYV+xd4UUGYWEcSxKzJ9rI5g1uHOAwCzAdC/pVMvM1l3IIJ7AGUMn9qwwSqg6VkJUOgMS9u+GeSJ7nwiFSsPcg6WxP3jGVWa1shFGZ5PQoW3w1Fk9zf3pDQ2OzFDeX6X7iAjL7N+zUt0+8dAZBzeFJj7O+ZO1VlNYP2IRIN6uhy8RMN7aeFF/J65E4kx0GKcH3nADPKl5c+TzcURQ7flKC0n2WqJ3FL2r1PbDTxz+3cvWMgFgpH7pcu3M8QjrIeMQ1GiQMG0TJEPKR/4fX8Dj8QUG2LkD9Xy5puZYDQ5MZP41ZJBQKWq4Ugm41UDYKiRSC7gz9UGY7a3asDR1/eak9GZKc3ZYJKfHwZyfwaBSgEhNAMtTKmHfTNOh/5MdtHjiCfTFx1QmrF8jxSGZycdnuq/teyunsZrtXG3y50wg6tje+knu73fvaTBLBqgSeTuRuPtix09yWLeB3bdFCoto/Gngz+cQgOWL10NlQh4IjgdeaQDL4SIiHd93+BSuXLuDuPgEhBkNyJ4tChVLv44yxV35PoLj2hezld37j6ND/6nIljkjvls80q7W6LA//z1q/616lTKYOUpJLC6fTcnqbWATBBzZ8TW0PI8p89dhydofMbBrU3zR0H30y6HjZ/FFlzFJEuXHzxwJy19MWjq821Do36rxYjoyOaOKf4pHXT6BFMc2qIbajRDW0j+S6qSGQBu2ASOtePSYlSpRVINu7diJciBTuHTwOiLHM5Lqh3wm3Ov/PcqVSjo9yF1f2/pYYWJBTKgxQot0OVzbubZfxD/z2QdJ9tIaVO6shfToAR61ZepH0OsRufzXJEGkQObsro4U9xiP2tUDbGxnnKbPGOgqVPXYxdkLEibMYLuh/Pk0GNA9edfD1/mo7y19tboI7+C7+qC6H+HcSTwZJFM/43mkX7wNmjRMkdLXsanLxc8ZA8uu7c4/Gxu1Bv3nt8U/xcOWH7BqPI/INUz1z/HDa8dW4YKF3Shni32O/AYlWGQ2AyMmWnGHHbDblQYH9dJikvQX5txlROiTYyqhd1bvqc+NL/yCbx+cc45vTd730ThjIn9RtTOb8duTG87fdhT8CNXS5vDogsddGkG8w5Q4081eDy5LtFeXpT+0GI9FtoYflGqNSN7NCbvNhoefy5QZPfjSa4eqAndOSTi3U8CNQ74D6477n5oSLp3Dk34MuOFi8iDd1JWKXv7+V8TS1coNzYc1OdSrFRh4688cd02y4e5pNre8VTiUbZG8fhOWzYT5B8YXpEkXifRzNgAGo89Do7VCa8ZhmqgsSD+PcYn53NALWPDYBgGnf2Kb0JhyGrzRwfU527aHVcGbI59K8SIadG+vxY8DrIiX3fO1xumQJrPrpBevEPDPftZn66Y8KldwBWet+//C04nsucvnKYC0E5emihc3drRCdqujziQdwjzTVHkckzUB2NyVPTO0BuCDMrNg/h9bP2Etu8FQO1Gl1J2Zvl0M03dMpMHTM94sCog+ugwPBLOzmfm53kb7zEVTxWeeOrl5Gxg23qpIJWyS/x+U/ZPxcXIxeZFu6oqAxik9eYRHbWScjxyHyNW/BXzgFNAgAJjWLoJp4zL2nMiQCennfgfwyXuGBToed/UuXJIwdhr7rsqbW4Ovevn2XXXiPwnT5rG6rxfUoHdn3+oGcw6htkIeCHnAfw/8vwCw/HfLq1nj6MnzaNN7IjQajT1FkKLP5JYqEVhliuDrqe6JKOPnj4dlJ5Okpw02bbRfNUtYORfmLUwdDWHh9g2IJsI18iE5c9+9V8SSVcqN28AeWryW13+wyTGOqbPNaPnH++DAPtYjV+4EgUf+2t+zbLh5hG3uyrXkkect14/+Mz+LOLqOzeO1ahxKf87DdnAP4sYzDidt4RKIGMmIif0dj7/l1etVW6QUIoZ7Vgk6d0HCeDmAlVeDAT1S4WOJwIeWNQAii3hmEYOnQVuivL9TVpR/3OVTiHcYyBL+ZR/oa9RPVptU+XG3xhBvMfLe5Iz1YZOqALGuP7PI5T8DRmW0Q9pDixAnso/YR6XaIB3lC8ls1kIbjpxQgixNGvKo/jaH8bcOYuB1pkDVI0sJTMvpPZ2y9tkfsP0xi9zalr826qRPjB5sfnEHVtxnvFzL8lRD8yjPvFyPOnwM6T6LREw//3toMrrZacvmZBEFGA4tVMxTKqtU2JT/+LB5DcAU7/xT+qXbgwJYUoMEZJ//XcCFP0SYZaC7u8VUqjGP/O8lPiekh/fxqB0juCcAlcaltvlLbdh/mF0/ikilZ2G+PIE/C31Z6ATM7Z7D1hanBepO0UKfJrB+xbu38LjbZ4o1HdB70hQP+/V0GIH/9Bx/BezHflbE32cTqdiOR04VmEQHPB37yMLyVPOOzgqMGqTDzrE23L/A1s07/bXIVMD12s1YYMOxk6xc17ZalCzmWi5hxRyYt65x9hbsgytPl+/xDQk/D2XrUB8BfDTdTSiZj9d/w5dK39WusQaWDexZYvy4GYxN3POhUhfx88bB8hvjdwpv1w/699wLVYy4uR/DbzCxi0KGSJwq2tj+Hfs8bdvPIjb9wN4tBjEBY+7WhRzVIlCYwGF/zfbfUcQNlUWdugHm/W0zkPLS44d41KE+YGNrJ7zLEOjflh0MBdJwEOscPyVh+nw2viKFNOjVybfvKhfwK5cGX/X2rW4QpxBqKuSBkAcC8EAIwArAaS9jleOnL6JNr4mw2QQsmNgb5Uq6boaIzL7hl0N94sBKnzYNdm9N5OBYvv5/mDBnjU8cWO9VKYsZo7o6XShPIVSnJQVDivhFu1bcw1gYKP1Dtqkm0mEiH04Jm7uAx63b7EOP0mc6tvMtvFo9nitXNVi8lMeAO18gk3Dd+bNp6CKI0d75dtTtXdvB48rPbGzZKonIV981fPviVg43/2LA1mt1gaxVbND9sAK6bSwlzFq9AayfeN6AB9u/3M0rMI5so2jWNPRriNG53HZFymgLl7CTy5wxEtoGiRMnqbnxh/6CYeEIZxEpmemDjoZ0P66Ebis7nQ2GAqQm7jHC+sp49CjFZupmrwT5nuYfNvgLBc9cwohlkLJkdxY3Q0C+S8pT8ut5lKlY/+zj8ON2JbBa9HURnzVKXKvfP72ALnf/cLZZNzwPFmSRRSt5GFyDm9vxr5lx4H0fXQsVDFntpcffP4BZjxn/yYCMZdE1XXGPl1mdbuJNBYwauiMkoPTVb51tZuXD7Ok5Hn05tDk0d1mUV0qltDxY8hdunMiER9pEPjC1le4lIDJGY08hNFsEJHyhjHpMmLXdRVDAZNJg9jwOxJfisMhIyc6HpQ98H+/TI+XAeB6kAOewXDUkxFQP7Bms5vyjZ41pyGL4JLmlGm1Y11ogbjyHJcz6ERIxIL/EFn9Lg8MyPhyaCintkeKe3J7GazBhsoxXUQdYZJgMBZgM+8qGU8s5PDjB7v1CX4iIKu76jlq8hMeVa+waf9lKQK6crlGFarVQ4rwk7suUtjsHOJxbx+aRsYiIwi0CT5XaO4qHLY7Nt+J7/0PajTJRgDdrwfIF4x9Uz4/414iHzWHmTqMhFK/o1g2xogklrijTlddk/QBvh7EI09RMIZQPkjj2btxkfuj8qDfyxh90FglEPZcqa//8AfrV053tEJUGUWo8D1OTyQvZ88A8hAlnPI8xyfs8flKDdTJVTPm72dvYiBZg1lyZ2EMm0W86DHkfoRRCbx4P/R7yQPA8EAKwgufLF7Ylirxq23cyRFHE3HE9Ub6Ue3n1+AQTytfq4JMKIXGGrZ2f+ELdtecIOg2cZld89KZC2LpxbfTuwMAaOYCl27gIul9YakRKAjvP62Lpl4yDdh876ZaissI0/JvgKbipJnbpEocly5Wb7wb1BZQq4XvKjqNJUtAjJb0vY/uhsEX28dlxJIQSlfx26YP/NDi1VEa+mVNCiWfcVvLGTq/iEHtUxlPwhYjI4iIMc4eAP/YP+whuPQBC+ep+jyM5FQzT+4I/zZTkklL2u3pVA5Jud1hMjIR2qQBg6RePhvYAS52zvVUHlqY9kjNte10irDXKpNDpbwmjl0OK8p665qlzNVcXKQ+SolWg5rJh7D0NJFvvsOu2p6hwjalqxmjT4N8YllpFm5OFX/OKVJGMGSR07iCACMHJ/jXfQoObPznbLGvIjC3RsvQPD4OvcX0zTlgfOH/9NUc9vK5LzOlZ8eQ0BsTucf7WIm0hjI3yfI+F924AxLOU5PgpG4HwpNM5T1of4P3rjMesiC4Dfskh4+dRjdswqRv4C6ecfzX1ngZR5stAr5G6nv7rsdDu/w1xXD5c0X+MW8aaEMXEU3FdhITyQwQYdFwigGUVEd/pY2hkalkJo1eCnqtqU3PQ0e+lSkpoUC8wMMnX+d7czeHiZvb80qaRUG6QAIrG8sfI93QN5GbuNRlCgZL+NOMsG0b8NjK/EYefmNH/aJGAOk+hSmp128jCEoq0cr2+xI02bSZ7FhOpv8msQQITE0WfngLu7dAo1Azz1hMRXdkV+Jk5h8e9WAZkdOlgQxaVKzVWC8J6fASIbDwJkzdCCkLatTd3nv+ew+1/2BrMWUNEzuqBA1iHp2oRz7B3lK65H1HrWDS0UPwNmDspFZblYySRDhLrcJhp0DyQMIQn637vD2yIY+UHZSiLzukZoP+8ACy7KuECznlJq8Z9iw+fzHdOI1BuSN2GedDtYCmZ/nLceVsP/vyuib2FsCHNIc+3NXcZC6Fo8iK4/RlDUmX3HdBg6w8ygY8yEurV9e2Z/uiJBlNkgHfaCAl9e/lW192YQgBWsK5qqJ2QB7x74KUHsH7bfQi/7z6MGlXL483yiRuTVRt/9T5zLyWIpJyijIq/ng8x0UmnYiS7sxRs4OCxs2jfb4qddJ0ir0oWeS3J3j5qMQjnL9/AzvXT7ECW2tZs2oHR01fg04/exbBeLew/k5pj1QbdkStHFmxfxQh05XVJEfJ/v+/D5KEdUasaO2lTAFhbl4GiOhxmrdsC1jpfpKB3Urdp7spZkNy93CytB8FW/t0UHcjKNTzOnGUf1xEREnp1E6D1YwN17XriRp6swcPpqJzANr6BEnvaEoC9w9kgNJwkssjzAAAgAElEQVSEiqMFF15xInAnIneHle4sIiyXiLC+n0ATxxSKUioiJKmL40KOTvLZE751uym5el2DRc98SG3G5JDQrk3gH0u+LBo7EWvvBqDNk8NMPSZBLOSdo8mX9g1TeoI/x/ifrHWawVq3uS9V3ZbRbfoauv+x0/bkgm2GeUNB18hhamGIQ+Z7qHuTpS2X0Edhe/ZEXjWK2pk1j8MTWdQO8V516iAicya2+SMSdCJDd1g0H479Ob1HVFa6tgFXbIyIe3eOhsitSwSdfkm4ipa3dzjbfC8sBsuyvufRr7Qx1pjZ7jth2havUWt/JNxAk9uMc/BNYzTWZfOcGuLNlwFfdFVF47jO4K6w9Mn4DpNwM64Mbu7WICIHUPBzJYD1dGAb0LPVub77zoSY73W3w/n5Vw5/7VYC+k0biyhUMPDNvLd5CxbYBStEC3uG5f9EQJby/h0iGMd0AHftvLM7oVhFmDuP9ta95zWjBhEGzoWYq0DA7b0IFdXAiic/37ytwbwFbNMbnVWChoMimoYENvgzGhAo5rCYd0Xkqum6ViZO1SKO3cp28CtdWuX15f87CMOM/s62xKw5YRrOhEBS0n9HZvJ4ep2tvyJtBEQW9G/9ycd3YgGPRzJC+GK1LyDbWhaNLOYpDFP/RJVqd2ZXsX3KcoUTJq6HlDbSY3lSayXVVoepAf3nBWDReHb9yWHHM8GcbNZL6HOvlXOckt5oJ+n3VyzFJULtORzOyS8GRXBTJLfDhEKlYO4xKSWXrM9t0/OcnusOe7OSiA/e9+15brYAY8azb1CKxh080L2YkC8DCgFYvngpVCbkgeB44KUHsCrU7oCn8SZEZUiHP75PlEgv+o7vajy+uLF29YoYO6AtdDo/dvy+NJzCZfYe+g+dBk6FwaDH4sl98XoB7+psMxZ/h4Urt6JH20/Qtqkr/1TjDiNApPjzJ/RClYolnDMggnYial81ZzBKFVWepD149ATVG/WCKEn2a5RORhwvB7DUym62D5rAUj8A8uYU9mugzasjGAKRog+k79j7GtAJMcnKO+y9aiLefsu3lzzVWbqMx8XLiR/Abz9dh48ez3O2ZXunHijdMxBTp9eU7C4gTXblh/X+cTwsD9nHd6XBEjjhDsIGNmYfijo9EmYyTo1AxhJQHUlKVEKUyWcTgENAjtrkICD9FpNdQrsvUxbA0u7fBf3XbJNrTx+cvDGglCN3/lErBpKKZsLowIhrqX0X6fAWfSG8EbiQg37VNGj/+tE5dEvjrrBVZVwrv8ZfRYs7DCiqFhaDFVnfs98ry1dxOH9BCXY0rC+iZAnlfWOTROS+rFQ3vJa7hVeOlmJX1uCByMiJj+b8DFF8mH2sx82x+ODmVue4i+oz4ufs7jliqFB411oKnpL4WdvhDaFWpz6SciIpKHoy/cqp0P7N+KUsTbrD9nbwOQpdwLhRKyBlSlRnJfVSisKSR2DFjesL/jjjICM1TIp8cGekILZwMY+bt9jzxGiU0K2TCAL2U8ou/6jB9V0MMAnLKoFSIX017Z6foV8u2zBynB38EDN7Jvb31rZxWl9wZ1j0qLnbeAivl/VW7YX9Xa2ORwOtMEyANtz1ul6+osHX37DrQYqwEWmBEyfYuvi4noAcFg3OyVTKspQTkf9Z6rDcEUNHKr8Nhwy0OSM0HeUo3Z3S3h1m85JmF0xH7+6vHF/F4QL4sMDX++mVPGKPMV8VqnMPOdewyFWKgKRISPc3oYDwLjXZTxyP+Nnbk3wnbX16CR3u/u6sUyMsJ5ZmZdHWzxPAoncFUTXcvpPoj8G3GyFSZMz/pl5TIRbwnP7tzkek+ErKrw4zPWdwmbt8BsbxnRVDNQ1ZCDG7d7XdYK5jd239upPDHzKKierviKj6tu/ftup7d8QQWyAZ2fahhQCslL7aofZDHmAeeOkBrJ7DZuOXPw6gfs23MLp/4glQnWaBq2s5XCNJEmIfPEbc08RTbQJzCNR5WWzP/hPoPGg60qVNg6+n9MVreXz70KU51/y8nz3dkEAqR7oh+WP20u8xf/kWFMwXg41fj1Js0BwKhvlyRWPh5L6IzpLR7ipKS+w5bA7+2nsMTRu8h0HdlBFVCgBrx0boNzBgJLU5jVLy2qojdagvc98ZIN6g1LAt2zjsP8g24wa9hF7dRYT58BFLaYOUPuiwoqa/0OrBEOe/haIVYO4yJqBpnF7BIfY4G1e+jwVke4N9WNPH4Z4B1Df7WK46SYR4+G9QRIjDxIKlYOr5fE4Etap1SyfJCePWuij1XLuhsW+eHZYju4T2KQxgGRaMAH+YnZza3v4QliaeFUb9vYgac3xihJeM0y3gdS2KCOv+ITQ2Fi2WMHwppKwx/g7LWZ44uhRRnXW+AEV2Omztk7PoHctk2htF5Mf0TG9h1x8cdvyuBK/KJpGaUPzqWtwXTM529+VshOx8miTHHXPpG8i3kBdyN3PKw8cKCSgh46fKyBtxLCcDbNUNh3dUqr/Gz/vFq88WPz6JYff3Osu1SlsYo6Pe8FhPv3kJ6JDBYZ6AWq8dJ1FA8/gBwvrLotc4DvFz/udSQw5gPZk7TgmsqUBKdWVKHyNAX7ZkQQBG6xZCwBsXb3M2PwIIrIfInmNFvxSQvoB3EIHuB8Pg5uBk6X4EwhIYmxzTLxoF7UHG3ZYa0cDJGa+3utd/53BZxlWXPp+Eou3dg4RnznJYuYbd3wULiMiWFYqN8DtviyidRcKpZbJUw0ISXlelfVNw6yhZFAdFaQ4b7BrF4QIYtuwHoaJ71WZvc/Xn9ydXNDg2h83BmElCmb6+g6fu+lKnJOarZUK+b2s5i0o8j4TZLK1a3obmHqWksQMeSlul9NWk7ID5Dj66yQ4iihui8FM0UyB+ngAWjVueStjo4SRUTGBjtdVsAks93w9iNTYrwrrWVrjjReCnUx8u2cpVhaXNYH+WYoqU3badw9597F6uXVPEGxV8B7AoAosisRw2sJ8NYb4LuirmFAKwUuQShxoNecCtB156AItmReBKSiiSULuUjjhu1irkyJYJP6+d/FIsIwLdqnzcDRaLFRnSp0X6dElvpGaN6Q4Cnhy248+DoJQ/myCgaKE8yJQxPc5cuIabt2PtaZUrZg1yC4hNnv8tlq7dbo9UK10sP/Q6HY6cPI8ncfEoUjAPls0YiPAwpUS7AsD6Yxv0a2Y4x2GtUhfWz7u/FD5PcpCiAOPwNuDuMuJzoWRlmDswYu2UnmTcUw2mzeBhlX1XVywvok4t7y/6BV/zuC5PP0hzHq3PfekcspglBqYRgUmBX/uNw5Wf2MdH1goSXmvIPq7NjzQ4MFZGthsBvDlShLhxqRKYeK8RrA3bpbQb3T9ETQkw9msEStdzmLllfwgVlSlf129osEAGYGWPltChbfI2EklN2J4+2LOeAlwy9ZwCsSCLnAyGw9TpBYHet+pTXuKGsUeLJcO0u7ZAv5alsqhTEmc/OopxDxjpbsd0xfDF4wpYuoJTRCxmzZJ4rTyph9e4sQUnLEz6jDiwiAvLk5klAfkus2gMgjWuqcjjc11aBkEGcV3O3RxaynNSm6CKaOAposH95lFedcKDg5j56KjzT30iS6FnpOfUUu3OjdCvD07kpSe/UDoqpaU6TMyWC6ZhX7sUlwNYj1ctVD4LajWF9aOko7D3HeCw9QelLynthNJPUsrOrOZx7wgDsDIUlvC6G34mdf/qyB3JGAbT6NWQ0kQka6i6NTOg+4Olz77soilHZ/OIu8r864mvipx29LgGGzay90rxohLy5RWxeRv7W8niEj4oL+LoLPa3NDmAkt2U4JRPPDqCYOe/UoDzssjCZF1IL5XVHGyZSkko2CR57x0111hMdRGFttRQvGs8pTGr73Eh3+sw903MnvBkN2xPUV7GVZiJD8MRmeDE8wawaNwUBUTRQMUTdqHFw+HsGZarACiCyldzeQ8mFc3ma6NBKMcd+wfGuezgktD+hFHEeZkYHfu87LvveRyRRQNS5GTpkt4PBhzjnTyNV4h79OouIDK97/Xl8w4BWM9rFYT6/f/ogVcCwErpC1exTkeYTBYc2eH6IZ3SfQfSPqXsvVXP99PZ7xaPROH8SuW0k2cuYcGKrThw9AzinsYjU1SkPWWwQ7OP3HJjOcZJPFcrv/sFp89fgSCIyBGdGbWrVUSrxrVgcCP3pACwVGkStjdqwNKCEYMG4osXoY72j63Qr5F9oFH6x7CvQcBPatrvf3DYKYsqIRXqbp0FRGX0/LK+cEmDb2TRVzTezxuYUGYOO22FhygJX+b26KwGJ2SgjnqDoD49jsylQekeAjBtIPgTLHrE0uYr2Mp5V37zZUyBlFEraIox+WD6aoGiqRs3gPmLWSpHSgNY/N4dMCxlylD2yLAJ64KWPuiYHH9kNwzPBB3ob1JYGpgmbvBbmEC783vo17MPfRIGMHccGcjlcNbhD/4JwyLWhrrN4ff3YtHjk87y/SLKI35pCSQksI0wPbZIrY5U6zxZi9u/4teEa86fF2R+B3XTeFbmpGgtitpyWAbOgOO5miiaJ14t4tdy2F85GiCvLp3rECxmhHdnqXyS3oCEGQyY8DTmAfd2Y0Uc45oaF1UJzdO6qtM66mv37oR+6Thnc7ayVWH5Mrgn8No9/4N+OTso8rQG5ADWo20bFM9XX1OzVq3hcPosA7E4HujYVgCBlSlhT28AR2bIU7kklOotIDwJ3nTi+DMOaqoAx4MlbqLb8g1021nkS3L561LCZ762aXkC7B+tTJMrN9gGvQcdA4pGpqhkh5UrI6JoUQnLVshUYnNKaN5AVBygEEVdeVV01e07wJz5rO/MmSR07aQEiLgLp2CUEfCL6TLauRJTw85+y+PuQfY8y1NXRPYqyQNqb/7N4eIW2cFTRRFFDzQBJ0t7Sxi5HFJmV0EP/sAuGBaztHZfFPboMDnmMlO8Jb/JAf0XAcCiaHE67Iu9ZsKo23XBgfk4YdIGSBHpfbrc6vd2ciLcferQ10JElzC8Nbg77D0XjEhQX7v3VI4iKSmi0mGffyaicCHf1/esuTzu3pMpSXawIWuAWhYhACu5VzNUP+QB3z0QArB88FXljzpDFCX8s833UxQfmg0VAaAAsA7ugn4R+7BJiQ1SajvdnmI1uLmCbNxWtR4sjQPjjErO+Ekxfcp0HiQh7rDXC4lo8pnnl706+orIq7t2EmEc0FiR0uJJ+cvbeNVE7tBIeGMMI3KPPcbh9Er2cRJdUoPCLQRwPRooCdxHLYeYKXD1O2/j9PY7RdcZhyqjPsx9p0PIV9RZVQ1gRUfThjlwwlBvY9KtmgadjP/J+u7HsH6qFBHw1oavv4f1+Riap4zF2NJ+GGweeIg8telQn3P8bqv/JSwffObrENyW4y+cgGESU1xUn/Z3vfsHNj5l6lb1T1RF1AElkbUvJN+kGEjKgQ4bnrEC2qbznB582foElWXE7zm1EfgnRpmi/smtn7DHdMvZ5vpsNVHZ6HrarTElIKwn48ey85xN+d6r39re2Ykf4684y3kD3Uhtk1Q3HSYULAlzz+BGJatJ/K3vN4K1gWtkpRzAevjnbwoA1VasAiydvac0E0g5YzaHeBlYGRUlonN70Rt9mFffeipwbB6PJ5fY8zdrBRGvNfT8/NUvmwTtP4xoP7kcc/Jx6X7bCN06WUTdc3ovBexMWUU1oBKRS0KJzp6jjNTEz5XfEFGxgqRQJoyIAPr2tKlS2CVUGq9MNVWrW+bKKeFLVWSd7pf10G1kaqq28tVgaT0wGFP32sahyTwS7rI1V7yjgLR5kgfS3jukwZm1DOyLKi6ixPVO4C+xZ6C530wIeV3FFHS/fQ/dOvYtbX2nPqyfKfmV3E2q7NVvcUtgQhV7YhoilzYRoXwRACwax/0HGsycy6Pj7W7Iaz3mnIal5QDYKvqmkKzbvBS6n1Y761qrfwLrJ+29XufUKEDPInomOUzS6mEatwZShJuDldQYEGDnsiNOO4e1ai4grx/rm8SJiJ/UYXTv0j0ciIUArEC8FqoT8kBgHvh/BWCZLVYkJJjtaWx6N9FA7lxIBPEd+k9B/rwxTtW9wFwdquXOA3IAS80TFYwIjOftdfUpt2Sg9I8VPp/GBXv8Bw9rsGkL+/Ck9tu2EpDTzQv7wkUNvpGdSFPZJp+KeL2wCOPknuDOM/U5c4/JEAoFJud+cCIPk0yCvHgXAWmfjefGXxwubWUA1mvvcsj91k1wfWUE7j5u2IPtS3V7hjmDFWTSttJvw9KOhdzfvAXMW8hO6rNlAzq1SxkAS/PkIcL6MVJdGmvA3FQ+OI4iDCnS0GG20m/B0m6YDzVZETVxrbnXFAgFkpfuyN29AeNQxnmlBgBIhY/U+Bz2wa81EXODRUb6qmg04+ERTHx4yNlO+3RFMTSjZ5lxSjektEOHFdFnxC8qknY1uDYzcxU0TOOqIquJe4ywvg2dbdFJP534e7MGt7bjX9NtZzFPAJmjAHfjIoyjGJgkROeGeehib9349bt+4ShoDzFeJmvTnrC+peSDoQYVANbRIzBMYBHH/ohjnDvP2cn65eZrarVfE3tWmPj+iPfPYRpeQrnBAnThrq1xV8/BOLaj4gdL26GwlakSSNcudfh9O2FYIouoK/8uiAfrZTS1Kl7u2iJyVPUMDBK/HfHcOaxaVRHvVBUxbJRWkTo8dJANB8dqYXvKvEIRWM/EQu1/PHWaw5pvWVuFCoho2kTZt2HuEPDH/nE2QtQIlGqd0iZYgX8HyyLTVAdEgfavjpwmvrEytoFKMYWOI0HfcGojII8APYdZP24Law3vqq11b2zDIQsjR9+YrRYqGrPam3lRACwaC4GjwqY1qPWEPRsfF60ObRffuHn1C0dAK1P8szTrDVtlGel9oBctSPXUh5fWD1vAWvv5qYXPXaDFLfYaQ8d2NkT7kdW4fBWPc+cZgNXscwEF8ocArCAtl1AzIQ+kmAdeaQCLOJx++m0vtv2yG0dPXcCjx+wrhLihShTJh49qvIkaVcuD49gDLMW8HWrYxQMKAOvUARhmspc8KSKRMtLLatzDWBiGNFfwXpCqIqkrPi+jMPfZ83nclZ3IRmeT0LGd62m1OvoqW1YJnZ6R4qojAyyf94CtSp2ApnV6NY9YGTdMvvoisj3jorn0A4cbso1GsQY8soTtBDePcUwIhcvA3H1CQH0HsxKvWr/EEUHktGKGRC4kNYCVNSvQuX3KAFhEXE4E5g6j6DTTyGVBTx90tM9fOAnDJMZXRyS+9jTCcN94ekjF0ThQdl8Qv8aMbZB0+mRdIo0pHmE96znbUJMLv39jC07KuKvqb/0YUQ+i7OVjYiS0aSmASJm92fq4c+hxj5Hlf5gmD+Zn9pzSSsARAUgOK2/Igk3RSqBm3IMDmP2IneIPyFAGXdO7Anqah7FKRc7IqEQRAS9W9fr3OGd95Cy1M0c9FNJl8FhL8+g+wgawiDhfgTJv45D/bhzTAdy1884/mXpMgljIlZdLDmDdv3QVBH46TEqXEQl+pGdt/x+HPf8qL3LzpiLyv+Z7Goqvc5RE4ACpqj5m3xu5aoggDiG1GSZ2A3/xlPPPFM1CUS3BMkrBNsz+irX/kr5vrfHAvhFKoY8yA2wwel7KUF/zmu+LqFxJxPRZvD2KxmFdOthwY5UW8SwQ0s6BRanuDjt0WIPvZYdCJUtIaFhf+T5VK2uahi6CGO05xThY1/jhOQ1OLmIHVuHZgVLdk//OeXodODKTAWPhWYEKmcaDUoAd5umbwLBkPPh9TPnV7COZvTpidG6mqqgXkaiC9yIBWPSNtWnmOTT9j4HPJi4NTNO+h17vfZ9hHNEG3C0WGWvuPQ1C/mLBWhLJbkf3yzroNi5iz9vwCJjGr4WkU/LbJrsjHxuYOoPHw0fMrz27CciQRLq/utlvN3A4cZI9/z9tKKBY0RCA5aP7Q8VCHnhuHnhlASwiHO82ZBaIy8mblSjyGmaM7IosmSK9FQ39HmQPyAEs7txxGOUEvvmLwdR7WpB7TL3mSPac5M8dJqaPgplIL5O5KU/uDC5d4rBkuXLD1qiBgOLF2Ev7/AUNlq1URmpRqiGlHJLpflgJ3TYGkFhrfAbrx4zY3Z8xEkBFQJXDMpeVUODTxA2AGtwq34ZHuv/mQ7NdFmL/QWNY6ycqkD5vM45oDe7WVecwrO9/CuKsIaNTQjotdBipXnVKCQBLFGEc2Bjc4wfOviwNO8D2HovSSQk/UaosF3uT9dmkO2xv+xZlwB/8A4ZFo9i9kqsgTAPnBGWYYV1qKsmFp26y83SRlbn6LW7L0lIab2iCNPFp7OqclCobkca3D9m/TDfx2S22eStnyILNKkBKPpkd8VfR/A7bxFULi8GKrErS/2+e/IevYlnURou0hTA2yjWiQRN7G2GD2Ql4khL2skEUu7IGD0QmPECkyESO7NEkCeGdaih+jp/7c1BB0bAutaGhsJFnljB2NaRnALC8YwWAdf8pwrrKOPlI/daPcZEa4byFPO7IQP1wuv6dRaQJ9+36+7NQ1VGl2jQSyn8lQCN73PKksrqAgfTUvmnQPFB0WbBMTRbtT+RasMYQjHZu79Xg/HcyovVooGSPpEEaikKmaGSH1asrgFRG6Z1H7z6HUfqw7Q8NKOLIYaRCmKEQWxe793D46Rf2/qpUUUStDxggqbl2HmFjOjjrE/l+wmTvKb7B8I03kZRA+1CLq1BEWuViC6D7HwPOLR+1hK0WA5YdfbmoMXafADqE8mZD7/+Lrx8zQHdIxnLokC4R2HmRACwaD4GgkYM/QYT40DmtX9+ag8pNCyY9TVFAOCkQijL+rOmbIRnchGh6c1gK/U4p68YBn0FjZumcpIhKfFjPw8ZO0MLEXmMY0NeG8CReY+oxbtrK4+Ah12dBIHMJpRAG4rVQnZAHAvPAKwlgJZgsaNBmCK5cvw0tz+PdN0ujfKnCdiVBo0GP+AQTrt68i937juOvvYkn3KTCt37RCPvvIUs9DygArMtnYBzPuBDEIG5iU29GiT3xNy7DMLotSWQ6u/b1pDE1xrpiNY+z59hLmwiqe3Rm3FNJRV/Z57dvB+gk1WFCmSowtx0a0NAfndfgxELZKXFWoFSvxA2ImjOmah8ttGt7QHPyAPNr26Gg/l8E0/65DfrVTEnTnjI6cR0kvdEFwCKi0M4dkn8arp43f+gvkDKgwyReBxORyIal7EewWi1NyFfEnrboi+k2zINuB1MctL1bH5ZPvfOi+NI2SbaTdLvDEoYvhZQ1xq5eqyYGbrWiNXhwaNVMRJ48vkfgXLA+QpXrbFOaQ5sGe2OUKZzysW6Ou4hO93Y5/+QuYut/8VfQ+s5OZ5kaYTmxNKsrj4rmznWEDWP8a2KWHDCN+CZJ17ib+7XcLbyq+Yb1/UTBPZcw/ltI6TP6chm8ltE8vIcwWRQerduE2UyOXt6AHMCKfWxGWJ8G0DxlhPcJFBGQPjGSzhe7F8th9nwOoixw5rV8Ilp84fsa8KUfKiNYgH2jeIgW9vwlwJ6AezKNzQbjsBbQyAixhfLVYW7tWwqSr+PQ3LuJsCHNncXFjFnsEaMvm51awuPBaebLnO+JyPl+0tft2/UcTpxyjbrYuo3DvoPs7wREZbqkUZCg5/9EQJby7L2uTkd8t6oI+s9h2t83g0Q+HJaa1AiUrkppqw4jhV9S+k2uiTbgn6+UggRvv78O+u/mO5v29Aw3DmulIAK3C9pkU4oIuRvfvMfHMfr+fudPX6Z7HSMyVrT/+0UDsGhMjyZNQPSFX53j/SmiFfJ0a5okvxJFXlEElsPswisTWbplcq9bsOpTBBZFYjnHSUqJI5eDBH1S29RpvyOG2Cj43Wfb/jOHPf+wcX/wnog3Kwf23A8BWD67PVQw5IFke+CVBLAWrdqG6Ys2IFvmjFgwsTfy55XFe6tcduzUBXT5agbu3X+EXu0/RZsmrnwbyfZyqAGPHlAAWDcuwTgqMVqFjELsKdT+ZTTD1D7gzx5xDj0l+GKS45e7dzSYvYBX8H04ZOSJD4B4AeSmVnbhLp6CcWI3dq1yvgbTIPbx6s/Y3PF0VBwlgNcBB8bzMMtSOmqO0cHa7wNoElg6cEIqyZH7MieNxQRjv0+Vp5Ofd4etSl2o1aqyZAEoRSXYRkTbRLjtMNtbtWFp2jPY3bi0x927CaNsQ0wFEkaTzLZ3cn3jhK7gLv3nbDOYqpKGSd3AX2An9xTVKeYvhgeCCcVkSoB6ix7N1jZHtXdEvPO2fx+wCaIN+a+sdI6fh8aukqXx8CW96slp9Ivd4yz/edqCmBRVWeHTo+Z7qHWTqQkW00fhf9k/dPX7zUswjvTvuXlPSEDJq0wFzZ0KorsFYxz5Jbibl50/JQxeAClHvqCsLe7MYVB0hsOoXWrfnakBLJo/d5NFW5NsvZhLScbvbZD/7OXw40/KDVjdOiIqlPVvLXjrh36/uI3DzT9ZX2GZJZTuk4ieaXdshH4DI1cnIM88egXESN8BOV/G4JJe66N6pS9tp1YZwQzsHcFDEtiOlaKv0nh55HjivVGTu1esIKKYCFzfxa5VrpoiYt5la2Lbdg579ylBL4rCcpj+69HQ7mdgtbVhe1jfUwo2pJS/9o/lYZGlV5XsbkOa7MHp7Z8hWogW1lalD3cizSoWRWsrVxWWNq4qpWHd6ipUNRNkEbFJjWxT3AV0vsf48eqE58bCLO/aq7yIABb37w4Yv2GHfBd1RbHqtVno0kmAJwpe/vBfMCxgh09iwRIw9ZwSnAsWxFZIHTWs/2eQI/50remap6ZR5BVFYDnvNR0weKB/31Q7d3H4XXZ/07ufvgECsRCAFYjXQnVCHgjMA68kgPVJ22E4dfYy5o7riaqVvBNL/7b7ELoMmoGihfJgnSpsPzC3hmr56gE5gKW5exNhQ9mJMEkw2091XjJTc4vQ8Emti1S7XiTbtJXDwUPsw9ugl9Cru4jlqzlcl6myyPcdiQkAACAASURBVLmvHONXk4STGk3CrB8Cnp47paSI3BL2DOIBkW1O6o+6i7jujPBVDAuHaermgPtNiYrq00kxW06Yhi3BnTvEP8Y+trJkBrp09O9jy9t41aTlVN40dDHE6NzeqgbldzVYZK3TDNa67J5224kgILxbHcXHcMKYVZAyBqhlrerEMH8Y+CO7nX81tx0Coczb2P7fY3xpZFFf6R+lR/9jDUH8R/6c4DoaLnplDR7KUvIOxnyKrFr3UW8LHh3HyAcsmoAUC0m5UG5qkCmKN+JoTiZe4LwXr55H2FiWoiT6ACaftj5AtevsvsmvS49dOT72ugaMU/uAkwHzxD3nS/qP14YJuPnzB+hXT3cWFUq/BbMHIQA1gGWY0R/8fwfZNe40GkLxxOgMf2zZSg7nL7BnIs8D3Tr7x6niS3/mR4lcWJDYs61IWwEZop/AOPhzUJqOw2w1m8BSr7UvzfpdJrzj+4o6CbN+hKTV+d3O86pw97AGZ9ewwxZDpISyAz2rDzrGuXAJj2vXZMpjLQXkyiXZo7IoOsthBQpIqB4j4dI2mRJuZRF567EN7oaNPI4eZ201qC+gVAkW5WTs/xm4x/edbZr6z4aYp1CKu8waR5F+7H3DaSXQwZAmSEEyBybwMN9n8y738RFELmOKr2LBUjD1ZIp1NGEX0FRnQMJMBtIn5RQ1b2AZQyZsjU5MUX8RASw6ZAvrVd85JQrGHxK9FcXKheOjOu4BEu321dBvWeqsQ0T/RPj/Ipp++WQF55mQPQ/MQ1L3wPnRIw2mzGD3f7q0Evr09H7/y/3pLQXYH9+HACx/vBUqG/JA8jzwSgJY5Wt1gCAI2Ld9AXgfGHgFQUTFOh3AcRz2/hhYFEnyLsP/39oKAEtNRpw+CpQK8lKZKMIwuh14WZSCUKwizJ1Hv3DTiHuqARFg2mQYSs4YCVdlH/Y0aFJUImUltYX1/Eix0aJQdwp5D8TOruVxV8ZDkOdDEZlKiNg/Rna6lgao1fhPPJ3GUhWFIuVg7sqUtALpO9h1uAd3YSRSaXn6aNdxuJWlAmbNlXF9ZZbQtaN/H1vexkqpKpSy4jDhtaIw92GggLf6yf2dlAhJkdBhatU/d+3z547DIOe+i4yCyQcScl/Hql81Hdq/GLhq+awLbhStj2Gb72DLe+zv2WOz4o8ite38V4HYezc245SF8Y79kL0uSukzuW1qysPDmPqQRcn1iiyF3pFKsnJK88t9eTkEsPFQVJdWtQPlLp2GcUIXZz+0OaZNclK223QLjW795CxCal6k6uXN9ItGQXuQRUFYWg2ErUI1b9V8+l0N/FqT4LZzAbC+mQD+X5auY/miF2xvep+PemD0TJw9l0N8AtuYZ4+W0KFtcO9T6vf0Kg6xR9nzILKwhFJpZkL72yZ2/0Skh2nMSnsKckoYRVFoZOCKJ86xlOg7GG2qU+RIeZAUCL3Z7HlKzrOuHQRkziLh5m0N5i1gG+LMmSU0qSTijAwkiyoholBT1gepWJKapcOafS6iQP7E3zV3biBsmEwFlQ56ZmxNlVSr+yc5/LeMjSttHgnFg/i+OTqLR5zsW6F4wyvIupTN1V0EvTpFTswSA9MIBtgkdd2u2J6g0rXvnEWi+XDsz5l4mPUiAlg0LuO4zuCunHGOeUXkUBwJexetm7tPUTcsHQ9+L+NGtDTqBFs17wcL3tZ7SvzO3b4K43AlsO5JdCMl+qc2ibeQ7mWHZcksoYufa/zgYQ6btrD7pExpEfU/9P4McTenEICVUlc61G7IA64eeCUBrNI12iIyXRr8tsH3jdt7n/bC/YdPcPDn1D1B+P++KOUAFp4+QXifBswl4WkRP4VFSLwMvtL+vR36lVPZUDkOdo6HLDEv5PDV4dPqQbqLvnKUMY7rBO7KWWcVU9+ZEPO9HtA8b/3N4YLsIyJTGRHZ35RAH8kOS5dDgyoFFsK8RUbgXutzWD9qFVCfKVnJsGgk+IN/OrsQilXAtc/GYtZcNp9MUZI9uiNYZk9f7POJIj3D0noQbOUT0yxSwzTxcTD2+0RBmk4AGgFpnkytamQr8zYsbYcEbbhqbi5zjaaYcq0NDqS7iJ1VGcfUu1xurMwVuK+a3f4VOxOuOce9OEs11Ap3z+0y/P5eLHp80ll2aIZyaJ/eVWmq0rUNuGKLc5bbnaMhchNjssz48ydgmMwiH3wBLbc+vYQOd393tlI7PBcWZfEOROnXzoJ21xZnvWBusNSRckmBUGoAywX8Soa0O4ERBErIrcqbIt53oxSYnEX65IoGx+bIU7UlVH7aDOHCdebfZKi7+jI24+h24K5fZM/wIBPF+zKGQMsQD9PeYTxEGwMbi3cWkDaXdwCaojYoesNhvboJIB5Is0mDMRPZNaEIvB5NBJyQgVpqIGjh1zyuySKWv2wlOHmOSJWPIlUclprKyld+5nBthyxyrIqIvHUD25i7u0Zq7rHCnzxCzBJZxFFEeiRM2qCoyp0+BOP0fs6/iQVKwtSL+SeptWCTRDugLzcHb9+LCmDptnwD3XbGK7c3rCbWRfZHZHrJbSqh+puKVLhpzbyoZpgzGPzxf9n6Lloe5i5jU224l69o8PU37H7NmVNC21b+fVMdP6HBOpkIRNHXRXzWKLD7JARgpdqlD3UU8gBeSQCrVtP+uHPvgT0Ci+O8s/lRBFaF2h0QnTUK25a/WNEcr/oaVQBYFgvCu9dxTlnS02ll4Glpqe07jdUC46DPFSTHtrfqwNKUbS5Te0ze+rNaYY/Cehrv/j4hFaZCBd2/zNXRGOZWAyBUcCWZ9jYG+v3JZQ2OycCdsCwicn0A0Am7w7IU06DM416wHZelCrUfDqHUm750kapl1Iqa1PmNXiswdQ0DMqOiJHQPIoBFwAIBDA6T0qRFwoT1AO3CUtHUQIS3NAhSWyPVNYcFWzFRHRV2Oro2FqEvThY+iT0VWGph87SFMM6Nyp+vrusXuxurnrDT9lEZK6J1OveAbt/Y3VgtKzsxqhKapnVNK2p4azv+Md12DmFDtpqoZMymGJKaO8pd6o56DsufnMZAGQdXs4iCGJ9JycHlbt66H1aAAEGHWYMIIKv5tRxcZe7GoQawtL9+pySQfvtDWJowjj5fr6Gj3LYfOezdrwSx2rUWEBPjHRzxp6+js3nEXWXP3hjzFhQ2JyrvitG5YBqyOKgqj+qxuaSEvuAbZvn475/g8J9MTVcXIaH8EN82r+MmapFgYq3JlcvGTdIigWVwomtzEWfnsbVgzCShTF/Wz4w5PGJj2TXs2klA5kyJ60SdZmWt2wLWOkwx1J+14m/Zk4t5PJSpJxZsLCBT6eCt37Pf8gpyeyKIz7tUqaSqVgOlKEnDNxOcU7GVrwZL64E+T414+yi12mH7cjZCdj7NCxuBpT5ciOMiMTxrothH+TIiPlQBiqSmSiIODnvRIyK5s8dgnNpLcf1MQxZCzJ7X52uanIKnz2iwai37vimQX0Kzz317Bjj6JTEjEjVy2Gv5JLT4wr82HHVDAFZyrmaobsgD/nnglQSwxs1ahZXf/YJvpg+wqw96s38OnESb3hPRotEH6Ne5ibfiod+D6AEFgAVAzckRP++XIPaWsk2pN3eSzpCY/hFgWl3Kjpa1fuAQh81bXYkxorNK6Nje84tct+lrhWw2cR0R51EgJlqBfwbLVY2APLUkXNrONga5q2hQ4Lc6QLyMwH3sakgZMgfSZYrXMY5pD+7aBWc/cRXrYfgVBmZGRYno3jmwkz53gzeObAPu5hXnT9baX8D6IUvpSPEJP+uAIs8oAs1hUlgamCZugKRVXl/H72oFOVO/mRDzBhbJ526OamLck4bKWJJxDA6WPIhDJRkY6i6Nzx+fTX94GJNkaYEd0xXD4Izl3DZB0U8UBeWwuZmqol6E60d/l7t/4PunbA3NylwFDdK8pmiTP3UAhplMoc6XKI9pDw9jsmys3SNLol9kaa/T1f6xDfo1TFkymAIBYV1qQ0OKDs8sKYVDFwBr32/QL2En/wRqm9sP9zofTwVoDzl3AQdSJ3RYunSUniLCaAgeCBB7jMPplcpn7zuPP4IWT2DuNRlCgZTlTVRHigZTPCFg5/tY8cy3HO7JFAOzVRaRT8ZNlVQzQ0cqn0UjhzLQYP5iHjdusPdO66YCbshUcqndyhNY+QmTlQdA/XoLiEiTuEYofZDSCB1m6jkZYipxYf47gocgO5gq21+AIWPw1i7xgt2QCRHkri0h/7aPVSqlSjVQ3f/Wgr4bHGZ9/1NYGzABCm+XvubNrThmjnUW2xJdB2UNmV9YAItoBIy964NLiHeOeUqmxbipS3yGt/9SQI7sz9RH799BGFEPPDNSME6YzqJdvfnmef2uTpMUKr4Hc8v+qTKco8c5bNjInp/Fi0po1NA/8OnqVQ0WLWUAVkwOCe3a+NeGY7IhACtVLnuok5AH7B54JQGsu7EPUbf5QGTPGoUl0/ojQ3plyoX82pP6YKse43H73gP8sGI8MkcFxuETWk+BecAFwCIyZyuTtomnCCy9PrDGU7EWkZobv/pCkb5F4AGBCC+DqTlBaMyeuK8c89H+9SP0qxKjBchsFd+HpSVLD/B33oen8Yi/xTYOEbkkxF1h/y5c7QliNn3EPvDcpCj422dKluf/+RmGZYzEVtQZMDTjRpi4RGLvYAJY6igcYiE3jV8LMV3GlJyi27bpBNmeRihTijS3Hwah1Fsu5dXCDeB4xM/8IahRY+pT8Cu6wpiZaR7+fuNv/FeQqROOjXoDLdJ6P/Dw5NBv486i1z0WSVY/TV7MyexelUmdbrg8S3VUD8/p0vSY+/sx9/Fx598HZSiLzumLK8pxx/6BcS5LufSFc29w7D9Y+oSpPo7IWAFfpivida3wh/6CYSFTyRJKVIK5IwMrvTbgoYAm9jbCBrNnpbfNmxrA4s4cgXFaH2frQr7XYe7LuNgCGdet2xrMlaWOURvFikr41M8Nkre+94/jYXnInnP5zYuRs8BZmDuP8VY12b/rVs+A7k9Gok38cLZ36iW73dRo4N9hPASTLH2wg4C0eb0DNAROjhzLACzC1YcOYoDUug08jp9k7TasL8K0UQNBxosmB4M8gWGap09A4LzTON4OSEi6lP+eMcdqcECWCqkNl1BhWGCbck/X8sbvvOKAKfvbAgofIJVSBswnfDUfUgwD3PXr5ig43iyfdIStusxHXhZOq9s78HPCVWephZnfRZ00uV9cAIui8FS8gT+kbYffIhIPyqu/K6FqlcTrwp/cD8MsFo0m5i4I04A5qXErJasP9TuB3uGmMauCrprqbpAUJUvRsg4rX1bEhx4I8j1NUs2jRbx3gXKThgCsZC2lUOWQB/zywEsNYJ29yPhGHLPmNBpotVqcuXAVA8YshMGgQ70P3kLpYgUQnSUj9HodzGYLbt6JxYGjZ7Dl592wWKxYPKUvyhQv6JfzQoWT7wE1gBXW+2MQj47DfJVYTv5IkteCbtV06GRE0WL6KJhHLQNFYb0MdvY8hxUy3pfobBI6tkv6g5c/cwQG2aaR5mmt1xrWmoFFMZ5bz+GOKm1H7rtSb/6HTNs7Ov9kK1YBllTY5CXn+oX1/URxIr01XSfsStPI3mTGjBJ6dAnOpkK/cBS0hxi5tq10FVj+j73rAI+i2sL/zGxN6IEAoYQuvfciVSlKE0SK9F6lSu+9CYICgiBFqjTpUkQFHr1JE5Qeek8gW2fmfTdh985Mtu8mJrjn+/zeI3vvufeemZ2d+99z/r8bJbv3Zw2+9FWvngP14V30WpWsArODjBjViV+h+YGWbQt5i8I4mIKivoyt7MM8ewD9KKqE+IINx+TM63Gg+n7ciqSbre8y1cDHobl8HvIPw320erTX3t8VMXqTB7tw0vTY3pYQqJP2SlsWfQWjn1OOkY6pC2JSWEVZM+7Po9AupNfaWrIqzN3HulxHzye/Y9sbyn30Tab30TQ0j9u1c9cvQjtrgL0dn7swTF/SjCy3Dpw04K6cgXYePbUXchaAcbjzzVsCAEtBKOyJeIAncz1ylMUv++QZUs0/EVC8aOAyJx/++A9uXKDAqUZ4hvKDoyFkTghoejJnb9ooOXosDTvA0oBmgXjjKynbvrzG4vJSel28AWgIUf+M2TTjgmRLkawpm+07wODQEfp5jfd5ZPqLRcxNyWFKWwEZigowW4BJUykYplYDo4fHg2HkeUyeyzbj8xSBaYjnvKz+xPPpeQbXJGVRaQsIKNI5cPcsmdujkyyub5SIkpQRUPT+QHBXz9unbuo3HXyh0vZ/axZPgOos5YY0dxsNa6n3PV7qiGdHsSLmqr29DXhPrhxYcfeBggftH01JLAqL/43Ll1eIU70lpj64GeoNC+1rs1b8AOb2vh8IehzUADTUje0I9jHdj1lqN4elefcAeHbt4vARDnsP0O9l1So8PqztHsSWeo2OYTBrjoRrNY2Iwf19ey8LAliJfsmDAwQjYI9AigawitToELBLmS1LxjiQa/qoxH/oBmzS74CjBACWUhVp6lqI6RwreSWX5ZMf7jg1FonqnLntIFgr10suU0yUeZBMG83s/uBu0RdKMpC5zxRYi5TzesyHR1nc2Opc47tc0e1I+z9KkE+4RAinSHI2JYH4SzYjJoevh8iwSJ9exIC+vr0oSddMJNp1w1rK7j8iX064kP4tU3KAiRwXX0YYkko2JaJYSDiqbOZtSYlH67NYEdKPKtLx4DA0634cbb0dl1WUX2pTlnqoqOCX8sj/20Z/W16ixj2qIJdTlQpHszd36OKD+9tw2fzc/tneiEYookmYLbcn9g46P6ZE83VDcmBZuJxnTnXqd2iWUpVTa5nqMHcZ5XLqLR7+giPGB/Y2azN/iPf1EW6Xyz68C914qjwlZsoKwwQ5sbJbJw4aKPnbrGVrgJSzOTMlgMUYY6EfQDOHyP1m+IaqLPoyJ9KHPNKXreBAyIJtptXElxKmTevdRsnRHIjwgmpkFxxilkNgqNJgvs94hJf237+7dasObIZmo2TTXKMxSBZWcrfrm1g8OiHhRywnIl9zz56lT58xmCchz8+QXkR/yXP41GkG23bSDW2JYiJKMSLI75PNstcRkPMDIY4InhDC2yxNahGDB8TPQ6kI60pVM9DxvrWdxf3DkvnWFpDzw8ACWEoOsjgVTWECVKeoOISSF1M7sx+4GzTr1TRoDvh8CcUrnMVj/qs/Me0FLfvukaYoRmcom6wzsJjXr0AOsmwmgMXozDtgYvXQaESMGvb2flGq5TbpBGtd3w4DA30/ufOnOrQDmjX0IINkGcb93uv07rr69fne/SwO/4/e53VqCXi/qnf3udEITJkhUbvWAKOGSaS5vZhhEMDyIljBpsEI+BmBIIClCOCl35b7GdJgd28ikADAGt0OzFO6sSKbI7JJSs6mWTAKqgsSJZaskTCNWpwkUtn/dlzIy5l2YjcQEMVmpPzHNHwBhMzeKS/G3GVw4RvnhONVM02B7jrlRCOlS6SEKTkbE/0C+uGtAIFurpanH4+LuveRPp2IAf0823S5WqN6xwqod/5IX5AJ+fMYyjPyb8VHN7wl2JeUr4SQalvfbyibjm5KD7B3r9v/5qzU0J81/HaIRe21H0ErUtbmnz7YhqkVduOmJdru+vdsTZFPndbnoQyCFfnu0OvAgcHtyHZgmIQCCRWjNuKuG3VBMpHz5mdocJ8CfMU1YdgdIY8hkV0n8us2I0IKZOPoyurc/xlXzC/sTfZGNEQRTZj7tcfGIGQQLfkRtSEwzP3ZfT83LTQ/LYTqV6o4646/TQlgEff6PvVk6pexszYDoc7pAzyd9OvXDOYtYGGUlKsRnpSunXhSqeuXqbevgHrXj7iq6427GrrJDckqoqSPWQDeTIg7vg/a5TPsXaxla8LceYQ3LpK8LQEVT47nYJWU9BXqyCN9Qc8Av/v3gUXf0w1r1ixAz250w3r9JoMVq+TKZg0LCbixhf4tQxEBBdsJePiIcKVRX+HhQJ8e8b50k3uAjZI823pNAl+sQpLE68JCDjG36M1ZqIOA9IW829i7m2j0TQYXF0ky2XKIKBs+T14i2KwHrHWa2V0RjifmOc08NUxcCTGj5+93G19fxxdPaQZX49DcWJCperIGsOLuBYXa57L0k3BZFy8+06enFeGZEEeGTkjRbWbqMR58CffCGu6uU1J8zlgt0A1vJcs2NzfuBKuP2fieznnbThanTlMA6+MGAsqX9e4+J8+TsROdc+J5OhfSLghgeROtYNtgBPyLQIoGsAh/VaAtYwbfNzCBnst/wZ8SwEqgRDV6CYQI38t6EjuGjsroTANmgU8iotbEXp8n/tm7/0A7vZ+MgFkIywrT6EUgG1xPjWA8x0ZygOh4V1jT2AicOcbuzjDjp2RPkE8mS1SXiPqSza5rSmBh2Nw42XYi3+6X8Tx0I1qBjaZghLllX1irU64wv/z70VlZnqTkJSKqnfovPpZljhlmboKYKo0fo8q73rrF4odVLIY+aoOMPCVTfjN6GQpbDyFaoHx7F3O2QnrWv5LfgrdXI0akROTnc3yGjFzCU+iid9bihWCyT/ZCjpbIwNEMHNsHj62xKBW1wd4uE6fHuRyfyRapLFGxVqoLczvKB+UomKXursdjiZrXqRwtkJXz7LuqBIoM83c7Jej39EIqDwFMHb4EX+EDp90dAlhj2oFwqtnMOGYJhKyB+e24eo3F6nXy7NBaNQXUqObdZkm6IALuake1jXtuGpmMOJxqPcDQMYp055E2j2egjKdxVrbjLp6A9lua6eaJAICvYwWqX/QNBhcl3GSsJp7fiXWsEZFg2Ju3GPywkgIvuSJFdGpPn8MvXjKYM08CzKQCejbncUGStaXLIKL0UB5KX5E5RXTuwIMxkYzAJvTZxjAwzNnq1e+hr/ESBeD4aA6Clf6OlhtthVqe/Oqre/r7+4TB2Vk0TiQm5YuvhGYbPQRWZp2F9K4nO8yJJVmSXqjkkqxRkj1qs/K6cGzJ0iDZA1jqzUug3kef40dCGmFL2vhS7MYf8yhTWoT+y09BuFTtz6+xyyBkSfwyYr9vhLcOCBBPAHmbianSwkgqKFTqQA2RwM+GzRwuXqT3efNPeBQv6v0zc9I0Fcz0VQAjhlqh8+FVIAhgJdqlDjoORiBBBFI0gBW8nik/AgkArKm9wN75m/6ID/sGQmRCefnksnLthC7gHty2T4cvXBamvpTTJ7nMM7HnoTr9GzTfy0mHrYXLwdxnslcy8OfnqfDmXsLZqrQCajyhpVNi2jAYpq1L7GUFxD85hSen8VKbmXE5TBlzYuAX/gFYKoX6Wpzy5ayNEDUJwZCALMYLJ+zTB9CNptxTpKth0kqIYfEn7uzVs9DNpRwf5CSenMgHygjXzfwFLAwGBr2f9kFuyyW765gBs5BTc1Y21L1c/pek17y3FdcsdBOyJ+vHKKZNWAKd/dZySF+zb0S2hZZJmH0oiiIib68EL2lNsrpUEqBDWb5hrfoRzG2o2qWjeGa7Jc80vhnZFhoH4zvqqx/eEowks84weTXEDOF+XTYlh4pxyDwIeZwrUToCsLSzB4D7hxLem76YDr4g5d/xa4IAtm7ncOYs3SyxLOLUqiKyer9hInNRAtt/pp2GxyLN0CEZMyRzJjGNvXUVuum0ZFDImR/G4QsSc0i/fSvL4zKWEFGgtefPUSUYWSC/gM9byeNMMjIkjAAYOdiK0+PlCFmFiVZcvcFi3QYKOr5XQECblgKUwgpCjrwwjljk99o9cfDmPnD+a0lJVFoRZUd4Hh9PxiBtrG+AExI1R04DVKm7TS7sIgHTCThDQBqbiaFpYJi1ydPh4trdsESj2j2aqZlDlQrHsjdP9gCW8reOUAlMyvxT3JpKlxTRtNYL6IfQTDWwLGLn7wIhRE8pxrx5Dd3wz0AOpmxmbt0f1mofJdoSVq3h8Pc/9JncpiWP9wp4/zwmHFiEC8tmg/rzSJvGez9BACvRLnXQcTACCSIQBLCCN8W/GoEEANasAWCvSzYhg+eAz+s5R0JSLkZ1/AA0y2npDhnbNPp78BGRSTmNZDMWISAlRKRSI4TuhNjdU7u+icOjEwkzsEJSv0ble7R0KlDqZ57Oy992hPiaEGDb7KS+HvZEfolBfgJYOsX3hSiIJScOG+30PjKONGlpmHrPGqh//sEeE2uF2jB3cF365ul14AVg6XIOUVHx91L752NQzERLT271GIZSaamaVWZOjzOKzCZPx5K2a/1oL3430EyvZeG1UDckp8yVSeSR5/Yq+9/IDKNcgGfKcsOj2Zshp4qWxin5oyw1msDyWW+n038pmFDkzlr756kZNf6K9Jy4WzelJ0jWpc0I4EGAD38spKc828owawvEUOcpI44ALM2SSVCd+d0+DXPH4bCWr+XPtGR9CWE3UWt9KVEMJFmU/XrxIEp23hh75xqI/LzUnjaZiXO/lpX8SUTpL3noPKjs9GZsaVulwAEBIgkgmZzt5EQOltf0N+K9zwWEFfMc6Dt/gcEmSTlgsSIiPlUoS86dz+H5CzoGKQuMWsHB+FSietiLx9/P44FNm5UsIeKTxjxUW5ZAs5dm3Lj7TgYy3o+OM7i+mc4prKiA99p6Hh9P50IAvqPDyDg0JlVaHoZ+sWNFVPbeDegmUY5ZISI3jKMXezpcXDurKMQB+jazlWlnTq+HimPw+KURVt574MGrSfjYWP9FQxDOO5tNz7QKT1TZkSmjiP51z8vFMQgNxZjvfRzp3+umfAcUMmWDcULi0bLs+voSit1YBSujhZnRInd+DVKl18SLJ2ne/kdUP9Xat38jn2kAcsCnedtOrcUP6/R49FIHKzRxKtG2sk5vIxkEsLyNWLB9MAK+RyAIYPkeu2DPAERACWARJSqiSGUz0xczwBcsFYCRAuuCnDJpx7QH+/Kp3bGlcj1Y2g4K7EApzJt27hBwV8/JZm3uOgbW0tU8k6HpzAAAIABJREFUWsnDY4yMa8TWKX2aWygT1ZHGOoWoZdkmrFSkIn+fnW8Leg7yva6DvX8TuondZHE1JrOyA9VvP8eRGduMlJYaJ8VvQDTfjIDq0kn7Z4EsfVSSu37yai4qx1KuplNte+CDCFqOSgjUCZG6vzb42RGsjaEZpJPDKqJDaqowR/w/4w0ofne9fShStkjKF51Z04e7cMLoXLFQ/etmqH+iRNzuFKBuWF6h2r0t9uFyqVPjSDbJ6b+bIGjmD4fq8il63fpOAcm29NWUmXqE6N8wm87PkV9HAJZ6wwKoD9J+lmbdYKlDMz58nZ+03/0HDBYv5SBI8ABS/kPKgLwx7YwvwN28bO/C5y4E05fzcG4uh9gHFBDIUklAniaBBx9sAzNGA/QD6H1P+AsNc7d5s5Qkbfs6CvhzPkULGU5E+fE8OC+qlE6cZrFjJ82aKldaQMOP5TFe8SOH6zekmR2kLg94dpH2y/OJgOs88Mt++rdKFQXU/1CAdmZ/cDdoxqc3v4H+BlR5CBRZX0C2GolzD5EMLJKJZbMKbf9C6m+pUjCf6z2YhsY//1WXT0Izn/KrxWVo953i9XIJ+E5AeJuRkuoiYemTPYBFlGKJYqzNtqbph8OhTeP+OaH6DoSsm23/jCgzEoXGlGbs88fQjZQfhpi6jwNfMp7vK9B2eNIufHgvsKrFtjmSZyHiwC4Cfr0FwUJSgVCEOLMggBXoKxz0F4yA8wi8kwDWoeOUCNHbi1+tQjFvuwTb+xGBBADWgtHgLhyzezT1mgi+mFw23o/hAtZV88t6qLbSEzLyA2eauBJC2kQ8Lg/Y7BPPEfMmBrqpPcE8o+puokoD0/BvQE5c3dmbKOC8ZINiax+hPYLCT6iymq9Kh+7GT8zPNUNbQRVNAc/fwjqi/KTWPg+pXj0H6sO77P3590rA1N/5y5XPA/nRkXkdLS+NIFmKQ+aCSMrrBzUFE/va7t04chGE7Hn9GC2+6z/XWaxcLecrasauQKV79CT4l09boWUe2qa6PgJrMn/o99izX57DVy8pgNsnbTEMT19G5ve2JQaV79HSGVdqhaRjrye/4+c3N+0+vs34PpqkymP/t3rvBqi3LLH/21z3M1ibdHG6llOmx2j8gN43pbWZsD2r52UeJOuUZJ/azNzuS1grOeerchdUAmISMNNmNjDHVT+HANYv66DeSsULLLWbwdJcXrrrbi6efP77IRYHDsrvL1I2RsrHPDHV2cPQLB4va2oc9i2EyAJ4eo7BtbU0e4ZViygzgofaM3oyT4ZP0EaZ/Ra7kApl+OQwETvd2cMiShJ7G5m6N0MS1TICcNusSiUBdT+QX7vtO1icPEPb1K8rIHs0cFfSj4CLN9ICfxyi7WrVEFCzkgH6fh/LpmSYuRGEEygp7NxcFWIpFRyKdOORNm/iZCWdnc3B8JgCfSU7PETGeRSMl2b0qf63B5pVEpDGA64+R/FSKrjuzvox6mTOnuwBLGWm7BVNeSwNmx63xC+zzkf4GYmIRf02sDTyv6Q9Ke435RiaZVNAqA28eZ77Os9TI1fi/ec0m9lXP970M3y93SlFQxDA8iaSwbbBCPgXgXcSwCpSw/cHf1CF0L8bytveSgBL8/0kqE5LykC6jQY5jUpORjblulGfgzEZ7NOyNGwPUh4VNIBkBmmn9QVjoaekYlgWGIcvdFkWRGJHiNyPj+IgCvIywtyWVchrWGYPb1JuCAJ1TcUdGxC6kwIND7T5kHYuzZzxZhzG8Aa6oS1kfBOJedLpzdyUbZUnz5b3PwZfqxl042hGXaAyPwgB84LvWJhM9P7R60V8WWo7Um+iJ7WrmzZGnwI0+61ZaF7My+RZlqCrWKyJuYYhz/5nb+LI7yXzM3woURYsrMmAfS6yvyY+P4VF0bT8dFSGsuiZhpZVq/eshfpn+t2wNGgDS0Pnv4G/xN5Bp8e/2udYR58dKzLX8fgSqzd9B/X+jfTZ90k3WD7wPdNJ9dtWaNZ/a/dnrVAH5g5DXc7HEYClOrYPmhUSRb1yNWHulDiKeqQ89fYd+TOqby8BmTK6B7H0hLj92UO6Xonyn8gDp6dxMEdT3znrCche071fjy+goqFu6GcyFVnj1HUQ0iXPg5gzM+VlfPk+4xFe2jtw5sBBBr8foiBh7ZoiqleTZ9AdOcrhl330GlQoJ6BiDuDqKgpWpc4l4nYuESdOSlTQ6guolO4stF9REQWixmscR0ulfb1OnvTjLfEE7lIhlAqTrF5lqHkyjq0NIdMnpPo2K9LRiKxf17f/mxzsGebtjPu3etdqqLdLCN7dPKeczaPd4/04EBtl//iH8Nr4PCJ/sgewyHeefPdtZoYWI7LuifvnEPFLZH4oyUbuPAJEETQlmrJUlKzBdmgV6PVcGvwVyr3ZHWi3Lv0ZJq0CeZ91ZEEAK0kvRXCw/3gE3kkAq1gtujFydH0FQf7Co+I45InMilw5smDOeEpo+h+/N5Jk+QkArJUzoDpKT4DN7b+EtaLvp/uJsQjNum+g+p2WIwlp0sdlXyUH4uzEWK8vPgkIScBIqfHvlYSp/0y37v78hsPru/LNYWHDDERY3r6oZAhHbDLnaXG0yNjHr5FmbEtoQIE9y6c9Yan1iduYKBsQrjHCN2EzIV3GOMWf5GjK8klRHxqXIaRe+7V9uqRMmJQL+2sLF3N48FB+73RoKyB/9GFoF421u5/XuC7GFqTk6t3SFsHY9L6XwdkcHzRE4fNHVHGysi4LfspST7as48ZH+OQhfem2KWk5W/vS6CsY8/y4/eNOaQphYgZK9k2Un4gClM3Iyb2lvnNOKyXI9lmq/Pgqo+clHsqMLwJeWT6Rl7J6cx1JiSkpNbXP34PyYEcAFnf5NLTzKYcaUYJ1Ve7hzRyVbV+9YjB/IQuzmd5roaEiunUWkD6dc0BFfWAj1Bu/k7kzTl4NQUKCf+93Frd3UVBEFSqi3EgeHnLse70s7cQu4O5TIRLjqO8gZKMZfl47TKQOsY+Ac19JyMYYERVI+aCXamG79rA4doLGt0E9ARXLywHCy1dYrPtJQs6eX0CzD0QQAM1mJDvubingwiWpCpqAMndWyYGaJKQWiLnF4MJCOkd9uIhSg7wrb/Xm8hFAT1pWWaAVjxzLGsgOVgxztkHU6aFe8zXUh3bQ73nrL2CpJs9U82TsoU//hx9fX7M3nRJWEUNylEz2ABaZsFKsYnGGWbimLYOxz1sitYlmrQcqG9mTeCZGG+28YeCunKa/78UrwdRzQsCHuv3FSBQyn7D7JVn+Yijlh3Q5IM8DvAUMb0X0SwEWgxUcrGBhQYjaCjVLPieKovSgmvgjpd4kS9iRBQGsgF/ioMNgBJxG4J0EsNxdb4vFikdPX+D0n9ewfP1u3I56hBmje6BONXmphzs/wc/9j4ASwCKbWvUfkpecNv1hqep5eYv/M3LtgX1yD7ox8uwGc9tBsFaWb1ITex4pwT8p51H/IlcKJGANAW1c2Y2tLB4elZfolHozBGF8PO+OWKoqDN0oGJESYkHmSFTx/hy7HHXeULCBvGwZJ/4IUe9djZDyRdjSuDMs9Vomy1DE8cUN/RSsIZa+aGYIB+HLsBkBXPwtmdi2k8Wp0/L7plZNETWq8eBu/QXt9L728UY3qo1vCtFT1BHpy6B3Wv/Lx/8yv0Dt+xSMya1OjcMKfqn9sXfR/jEtwaulz45VLjKgdsXeRtfHtCSjfkhOfB9OycmV3zNL066wfNjC6b0w/9WfmPaC8gz2SlMUIzNIycNd30aqY3uhWUGBaHLAQA4afLUEnFpdRsJapoZLdw4BrHu3oJ3Uld5jWXKAcMIlll28zGDDRrlKGCF179ZJQKpUCUEskrmrHdNW9j2w1G0JS5POsinyJoAQlQsWCozk/4xHJi8zjTxdt3bOYHDXztubk0MGctiQ3CzqAIs7e+n3O11+EYW7eA/ObPmZxdnz1E+TxgJKl5ADWA8eMVj4Hb22JLOOZNgdGyW/LrcKCvjrLvXVro2AIjuHyHg8STYhySpMCrt/iMWtHXQ+5J4h905i2fVNLB5JwMDcjQXk3v05CK+dzYyEWiFjVigzcQmgQcRYvLW5L89hpqRMu2/a4vgqd+UUAWApefp+C/kUe9N0xpSH8vdHkrUWx7uUQo376yy0X8t/E0gWIslGDJQRdWHT0O6IsFyn95qPgiK7f2Fx9Li8ZLhShfhngjf3bRDACtTVDfoJRsB9BP6TAJY0LATM6jpkFs5fvo6tyyYhMntm91ELtghYBBJkYP20EKpfKReAuXlPWGt7n6ESsAkqHGm/Gwfu3BH7X+NUVsYtA5E9DpoiAoKAOFJ+Jam7mw3q45MM/lFsDCu+7oBUQnyWgNC0E4wfOie9Tq7X4fVr4OtZFox88hlCBEogbq3bCuYmnis1cpdPQTt/OF0my8EwfQPEVGmS69Kh+fErqI44T/U39ZoEvhjNKvJ2IZeusFgvyZgg/XNFiujYjgfDAMzTB9CPbmd326NpDawvkM3+b5KBRDKR/LVXggmFJQp/RCXrTq72Mrc/v76JXk9pmXSj0NxYmKm606HPmp7i4wcU1C+pCcPOCKrISTJ6SGaPzSzNusNSp7lTf+Oen8CSaEogPjpDWfSQlCS6iwF74Rh0CyRKY0XKwdTHezJm2zj60W3BPKUldcZh30CIfM/lNBwBWEzMS+i/pKWMoi4EhjkUTHS3Ll8+J5k8JKNHapkyiejaUYBOJwexNOvmg/Dg2IxwIhkn/+gwc/fGzywe/o/6DckqomT/xAEitIvHgzt72D4vc+eRsJZ1DSD6Eit/+5yfp8Kbe9QLIVHP8naT6Y1vkllFMqxs1qK5gKKF5QCWychg8gwKYHEcMHakFX9+y+G1pHT0dgRw5RUdvWsHCwrM/BiM1Wz/o4FkZ2fM6s0UfW57bQ2Hp+cp8JmnsYAslROv/PT2Lyzu/UpjmaOOgPxneoO99Zd9DabBc8HnLQLd1F5g71CBCxvvm7eLXf/6bwx8St/Bmofmxdr8H6QIAEvJ9/dQFYm1aUdgwDOqziiGZYZhEj3k8jY+yaW9dmJXcPdv2adDDnnJYW+g7MULBulGNUOoQL+AhqlrIaajmdWejvXrbyx++4PexzWrCyD/EVO+u5hbfwGrk8zBIIDlacSD7YIR8D8C/3kAi4Tw0tVbaNF9HFo0qomxA+WbDf9DHPTgKgIJMrAUWTvmxp1grZc8wAruxmVoZ34hW46p92TwRcsHL7KTCBCuJu3knmCf0RNZkVPDNHQehBz5HPYyPGRwdo48s6FmTANwYnwqtzBgOowFSqe4mBMAa8ZXKlR9vQlNYqgyHyG5j9vIpknv0ZqUJ4LWcrVg7iQBtDzykrSN2GvnoZtDeWGUo9vKTHyZ1ZOnLBYtZmGx0t6pU4vo3V1ASEg8iMBYrdD3pdwszVvUxIHcEfYOK8Jro05IDl+GT9An7+1VMBIyo7d2MUdLpOd09n//GHMVQ59RNarWqQtgZlhlp2M/5GNR5u4G++fhnB5nc3xm/7dmw7dQHdxq/7e5RW9YazZx6q/fk0PY9IaeWs/NWBWfpnL8XXTkhL11FbrptNReyJkfxuELfIudwCOktyL74G3JkSuHjgAsiCJCesmJ+A3zd0NUScrOfJuly177D7IyIm/SOCKCgKcCtJr4+y8uc3dcJ0jlC11thEzPGZyeLn8GFuvBI3Vu7/iePFmuZvVcqA7H8xQRC6QaqCfje9LG9IKJ4waTWrkxPNSh3sdDqTDYtjWP/PkS+pk6UwWDpHpo8AAeT/YzeHSMbnSj0gEXLXRWgxtfRJZFNNNTSJMBxulUcdSTtfrTRskRVrwvj1TZvY+Rp3N4cITFzW00HgQsK3R/lExtz8bNqB/2GZhXz+2ufQUb/jDcR6tHe+1+quiy4LeCTVIEgEUmrRRN2Jm6Oz6KoWXF1iLlQERqUrqpTvwKzQ9T6TLiDtrWB0zM4OF9Hnkm0t8OcpcbFuxF3ImVl3bkf6xcTbSSgPpvhR3U236Aevcau0fLx+1h+cgx320QwPIy8MHmwQj4EYEggEVKkkQR5Rv0RFj6NNizxn8eFj+ux3+uawIAa/dqqLdJiT4/ByFITw5GSpBIKZLNAsXbkxzWlphzYB/ehXZabxmXAOFsMo1c5PRl5t5BDpxOhEovIvSHMQgzU2Js/uutMGlCE3PKieI7NhaYNit+Mz3icStk4GnWiaVqA1jaDHA7LvP8MfRKmeoh88DncczJ4NZhEjYg8ybzV5qQNSeMY6h6nDdTsliAbxdxeP6CvrSSZMhunXlEZJVv3HQDG9vLt2q0r4fzWShR9c6Ij1FS4/3JraO5vh+1Bdet9FR4b0RDFNHQsb57dRETXsSXwxJzx79Ffp8ib68ED7qe25HtoGLiN47ell23ebQPvxloKsvK8Nqo7QV4p5RKJ/xNhMfJF2MfRcnI/AmfoHE6Beuc+XQIYBGOmRGtwb54Yu9mK1/yZW7e9HFUvkoyANu14UHwM61CXZePiIRpNFWxdTTWlZUsXlyi4IAvinuerEH98w9Q75Fs0DzgIPPEbyDbPDjM4uZ2Gos0uUQU7elbRtripRyi7tHnRdeOPHLkSAjyLFrC4f4D2q5zBx7aewxIibvNHmuAM2q60nFl1yPV9kX2PyTl4QIfy+D4eDnIV3m6BNUP5AV56+vJORZ/r6XxCCsuoihmydRxye8a+X0LlNrl35aXqHGPAva51WlwrUjrFANgKfmhXnJhSMc/s18dS+3msDSnGVmJcNmSzKXyN9+dQq43E4v68wkKLKQqzjHqjODm+cYDeuo0g2076XendCkRTRrGP18IPyPhabSZtXpjmFs65koOAljeXMFg22AE/ItAEMB6G7/anw7E81cxOLuXqoT5F9pgb08ikADA2rcB6s30Glg+aAHLJ5TXxBOfidFGdeo3aJZOpq4ZBqZRS0A2IkFzHwFl6jzpwed6D+ZBc11mSJCSA1J6YDM2UxZYpq6GyZJ4ZRHuV+NbCymAVSr2ANq8kpDcMwyMY5dCyOw6C0jJd+QP+OPbKnzvpdm6DKpfEr5g+lNasG4Di8t/yUu4iOS9jb9COlv92PZgHt+P+1PRnk1wLw0FQY9nb47sKqpK6PsqgZYP9+KQMX4cYsrsrlkvz2GOhMNlYLqSGJTONedQ+aifcM/6xu5TOt8EJQ6fD4S1Cs02U66l3oPtuGCiGyZvwTtlNpvIcTB8E6+m5a1xfx6N4xixGZ+vKEyDqFqkM39OAaypvcHeoQTPxkFzIOSjio3ezs/T9qIIbNzMyQi9Sd+8eQS0L3cWIXPl2YemgbPA5y/h0j1RdyMqb9RElP6Shy7AAoGq/Zug2SQBXWo0hvmz5CVmQ4jJCUG5zXJ9LCCimm+/AfMXcHjylPrq3cOKzOEJL8X6TRwuSQjamzbmkTc1ZNfkNQMcltAXTs80QpZ9ZG7VD9b3abmvp/eTL+1eXmNweSm9X1JlE1G8n28gn6fjv7zK4PIyOmbaPCJKZVkC1R76nCcZK9bKdaEfQcEGMW0YDNPk/JiejmkQrMh3h5bYkTJtY8nuKQbAUn7flOs2txkAa9UGnoYjWbcjmcEkQ9hmRG3YOG19HKm/v3b3tyt4b30/u5snqd5D6EwKNHnj/+JFBhs20/u4SGEBnzWPf76oTv0OzVL6rsaXrgZTV/qbJR0nCGB5E/Vg22AE/ItAEMACYOV5lP6wKzRqFU7tWexfRIO9vYqAEsBS/uBZk8HLNNmw6cZ1APOMqsRYK34Ic/shXq31v95YvWMl1DtXycJgrfoRzG36Ow2N6tBOaNbMtX+urlgDxi6jUyaAZQCmzaTlTIOfdUIW80372vgSlWHqMd5pLAivim5YSzBvKH+W2Q1YkZzuOfbBHegmyAmryfx8XcPxkyx27paDV+/lF9CmleONrXb2AHD/XIwLSabBrWDlaN9bke2gfpvR5G/MBjw9jA2v/7G7mRpWCe1SU04nJQcVUT8kWViurPGDXThlotlrW7M0QDld/K5bu3w6uONU+dDUYSh4F6TR5e7+hPs8BcOOZW+OHF6Cd/r+jWQZlYavtoKoS3pr6n0/Qb2Z/uZaK9WFuZ3zUlObf2cAljLTydRlFPgyzvnFvJ2vq/aCAKxZz+La3/S+YiBiRHRHpH9DVf54LzjDzs3lECvJAiIlWoTXKJDGHdsLrZSUP5mVJFtigZNxmUUUdCo7ygqNh2JjyljNmsshOpr6GvgFj3RpE2Zg7TvA4tARei1rVBdQvZKA46PpM5z02hsCiAygUQOTnzUE8+a1fUjjqMUQsuUO5OVy6ktJcp+lkoA8TQJ7rygHfx0F/DmfxiMkC1C2xE/Q/ERLisk7HCGx10lENITIAiAcWL5awdurESPS2s1HxToiXKPD45dGWPnEK5n0db7SfuyD29BN6OLUFQHwCZD/LhhjMcW/s8TS7wQ5kCYH0/7anc2HUHAfVTaMylQZGSY4f39yNd61vxn8uJYCWPnyxmfPEmOvnYNuDn3XJwci5GDEkQUBLH+varB/MAKeRyAIYAHYvvd/GDZlMfLlzoaff5Bk2Xgex2BLHyOQAMD63x5oVs22e7NUqQ/L5wN99B6YbupfN0P900K7M8JZZJq4AqQMLmjeRUDJ30R620oMHHlSSm/rP++F1zWavRMAVhGcRccH8nvblUSz6vgBaJZPo/dhaCoYp66DqPZSR967SxbQ1jpFhgxxTpTihCze8U+R0h5SCkRAA5tlSC+iV3ceGifiTZrFE6E6+wdeadXI1Z++QKdi1Lga2SZg65zx8iy+fklV3fqlLY6h6Sln2+BnR7A2hpIZzwirhDYSgMvRRHo++R3b3lCwc0HG6micKn5jrFk6BapTVKXQ3HUUrKWdgza5bq2EBTRwf+f8HCGsdzxRutHt5EpjE1ZAyEQ5xTwNprL80dqkC0iZiTtzBmCpV8+FWsrn9FkfkA10UhlRZiccS7duM8htvoDysbtQziDPTjOO+R5CVs8yd5+cZfD3OrqxYtUiyo3mwQXwK6/MjrUWLgtzXwl3TVIFz8k4D4+xuLGFAkmh2USU8COzaMp0FYwmOtiwIVaEOEgIUZYVlSwu4pMmfBwXF+Hkstn/dEA0B+TV3kLPWx0lz+c0MMzalGTRu7KcxQsJOX2+T3mEl01cMEfJTaZJLaJi/QPQfE/fo61lqoMvVwvaRVQ52FqyCszdx/kcm5r3tuKa5aW9/+n3PkXpVBlTBIBFJq0b2UamwisNhGH2FoghgckG9jnAAeyo3r4C6l00Y86fknPptKJWbEOBY/Ptf/onV0NEDKUZWd4s4c5dBt//QJ+z2bMTNdm3ANbDu9CNpyI7REmRKCo6siCA5U3Ug22DEfAvAu8kgBVrMLqNCs8LePTkBX4/dh6LVm4D6dOxZX0M7uH+5dmt82ADjyOgBLC4k79Cu4y+PFsr1Ia5wzCP/QW6ITk50o1pKztVtdRvA0ujDoEe6j/hjzHFQjutDwgvltRMQ+aCz5MwC0UJeKQa8zVe5SyaIgEs8liaOoMCBTodMF43GNyV0/ZQ8HmLwjTY8emedkY/cDev2NsSpTmiOJeSTH1wC4iUuM3E0FQwzNri1RKMRgbzF7KIiaGbSJJM1auHACJ378wIjwXhs7iePjXKdmtkb5ZLnRpHsjXzag6uGq+KuYphEpJ2QpBOiNJt1uPJb9j+hqozEQVCokToyiY8P4nvoi/Zm0iVAzWLJ0B19pD9M5LFR7L5HFmsYEV+SfmNGixu5aLqjJ4GQTuzH7gb9F40DfkafJ7Cnna3tyNS60Ry3WbmbmNhLUVj5cyhUwBr148gGyabWeq2hKVJwqw/ryfqYQcm+gXY/+3Dm1/2IINR/owjLizvfwxLK7kQiCvXRAvg5GQO1jf0Xo+sLyBbjcBl1nC3rkIrI+UvAONw37NjPAyVx80uLeHw6h+6/px1BWSv5fv6x05UEb5/u40fbXXI+3zjJoPlq+imNmcOEV068lACRRc1QJQaqMdtQ50o+uzmi1eCqSfNEPF4wT42PDFBfp+UHGhFSCKLagtm4JgkIw0QUa3zGWglgh2kVJYv8z6ICqfNrNUbxYkF+GqtH+3F7wZapr09TwN8nD4yxQBYSqDdFgejNh2EuT/5GpZk2Y95/Qq64a1lypzk4E1I518t9IN5y5D3Ci1V/atYJ+Ts5Zvg06PHhEuTvpuFZwL69IznjyN7AP2gpvbYEnCRgIyOLAhgJctbMDipdzQC7ySAVaSG9+ACIXDfvHQiMmZI+45e6uS5rAQZWGcPQ7OYpgGTzQzZ1Dgzg2jFcdNjHIm9h8PGh/gsdX50SF0wYItVStTHSZ9PXBWQGv6ATTKFOWKf3Id2Sg8wRirxROJqGrEQQvpMstUoiV/TrdiLZxYuRQJYRiMwRQpgaYFRbf+GbmI32ZrJpodsfqSm5AIjnxkmrYQYljTy7IG6xcjLrPrIHhDgStSngpghHHxu7wjoV/zI4voNeelgsyYCShR3valVvxWIOJYtE+p/TtXqymgzYVvWjwK1ROyPvYv2jw/Y/VXVZcX6LHXt//780T4c9JJEfUn0ZZDSQ5t1SVMI4zNUiPunMqvR1HsS+KLxnyntrvU1KkZttP85ggvFyRyfer32BGN2Hwe+ZBWv/SQgXR+9GEKE+5IrpwDW4Z0gm0ObJVWpN+HyUv1vD7jzVGxCGQwzo8HhZutQsbZ3tW9RB1nc2UPvd00aEWWG8WDkfN1ex97WgX36ACSjzmZiWGYYJtGMCZ8dB6AjbwKOj+Xia/TeWqnBVujlPxMej2Q2A5Om0Y2qSg2MGe6Y6PzFCwZz5ks4pVIBXw604vYvLO79Kik/VgN/aYBu5sko8IyW8hIibkLInRRmesXg9BRJpp5KRIWJPAJUFe1yCUdHcBB5en0q9biJ0BmSjJUsOcCXrAq1lBercSdY/FCXHvT0CNa9plmsC3MKwKkdAAAgAElEQVS8jx7hRVIMgMWdOwLtdwkz0O6lLoH0M2YlxS2TpGNoZw0Adz2+fJ+Yq98oTyf2ZOpMRN6hapSXKg1G7nb0d9ZTP6Tdy1cMvvqafn/SpBExuD/lj/NUgCAIYHkT9WDbYAT8i8B/HsBiWQZVyhXFiH5tkTObAyZP/+Ib7O0mAgkArEsnoflmhL2XtWh5mHs7L+tcE3MNQ57RTYNys+jPBWCePYB+lDw7gZyek1P0oPkXAe7yaWjnyzPrhJz5YRxOs3PY29egm9bbPhCTOTvSzl+HZ9GmFAlgmczAZMnmiZS6jRpmhWbZVKhO/mpfp6MUdc2KmVAdoy9r7r4X/l2d5Nv7j8Ms9ks2j2SmpUuKaNLIPVmx+vAuqFfPwY4COdC26fv2RdYNyYFl4bUDtuhL5uf48P42u7+8qrT4Izs9wW3yYBdOSvistmSpj/I616kSO97cQvcnv9l9fhQSicXhNeP+rZk/AqrLJ+nmoN908IVoyaJ0YefMT/HR/R32PxXThmFPVu9JptWrZkP9P1oa56oM2FlgGYsZ+n5y4NAwbydEtZMaUIkjZwCWkhQ+Mcvh2Cf3wB7eBdWxfWCjX7i8fy5oq+GPVJ/ipqYYGn4koFwZzzOICAcUAScECwUJ8rfikalkYMrDGEMs9ANpmSUhWjbMpfdvwL4YPjh6cprB3xvoxlIfLqLUIPffdWdDxcQAM+dQACvVW1DKWXtlttaYEVa8usTg6ho6p2cscFIPjH/WHKFmKo5gGvpNnFBJUtiziyyurqKgGiFTL9Ld9zh5M+dTUzmYX9J7s3Tvl8gwVZKxEpoafPGKUB3dZ3dL+EMJuOyrKYUwRmUpi4nZyqUYAIsc3ukH0CxgWxyOhjZC8Zl9HWYE+hqr5NBPs+4bqH7/2T4VoixuafC5X1N7NXoYsj6l2esX601FnsZlffKZIDteC4wYSoFt3fBWYF8+tfs2TlmT4LCVfBgEsHwKf7BTMAI+ReCdBLBOnP3LbTAYBggN0SEye5a4/w3avxMBJYDFXj0H3VwJYWKBkjAOmOl0ci94I4repWo2LBhcztkKqVn3myB3KybKI0SBxGZCpmwwjlsKsAE6+nY3gXf8c6JUpPl5mWyVhC/D3GVU3N9Uf2yHZu08++dcxVpIPXBCigWwzCZg0nS6eSKkv6OGW+NejLSjPgdDCHTempTYnGwwdUOag+Epaa2x10QIxSq+43eIfHl3CU/Fck5W/pM5XESPrjw4D76SNnBjWcn8GFS3vN15m9QFMCPMccmdLwFWPpN0DIfrkW3trurc/xlXzBTw2BvRCEU0GVwOdcb0BA0f7LS3KaXJiB0R8UC6du4QcFfP0Zfr/jMhvOdY1fBA7F20k2SH1dBnw+rMH3i9TKWipC8bEubeDegn0RJYMV0YDFM9UyZzBmCxt/6SkUWL2fLAMOo7r9fnrANjNoI78we4w7tlGQWO2gsZs+JN2QZYdO0jPDKklzVp/gmP4kU9B6Cub2Hx6BgFKEKyiigpyRDwd4HKDAPD/F0QSXrSv2zKcr1stQRE1vUc/FNO/9lTBl8voA+LsAwivujjHOiZO5/DcwnfVZ8eVqQGg7OzqQ/yVD6jfYCRTyQqeyoNDF9vB1h5pmhihfP2bhb3fqNjRbwvINdHvsfJm3men6fCm3u0R7HePDJPrSNzQQB17soZ+99MLkB2T8ZeHXMVX0rKtDtmKIhluWumGACLrFH31UCwf1+QLXdr6j4o0r8JskV4/mzwJF7/dhuSnSrltg1Eea1pcBeZOMbFFt8hT808Pi2VlBQTsFpqE8ZIAKwpPcHepcIsRICACBEoLQhg+RT+YKdgBHyKwDsJYPkUiWCnfyUCCTiwblwB4VexGZ+7MExffu1ybk0f7sIJI1XoInwzhHfGH1Nm/xBfpl4Twf/HQAN/YuhJXxuxtrStpUUvWGo2hTLLQ/N5b4Q0apVyASxF+QpJNBk9LP4lSb1xEdQHKOEv4YcwTVgZl42iVGojG2PjxJWehPedafP6DYMFi1iQ/7UZAQD79OSRLp1nL/s2rp8ZVYpiatUSdj9KkvVABC3nrRXgQed1KWcrpGPjmbdJCR8p5bPZ0ezNkFPluqzsAR+Lsnc32Ptk4fQ4nSOer1E7eyC4f+hGyBmfHGn70+t/0P/pYbufZqF5MS9TNa+XrD64GeoNVNiCfF/J99YbU507DM13tFycf68ETP09K59xCmC9eAJSlmgzMXU6GGb4zylD+L7YI7ugOvUbCIjlyqxlaoCv9hH4tyDis2cMFi9jYTDQe5ccoLVuKYCoZnpixmfAmRlyJb6i3XmkyePZve9uDN3Qz8BGP7c3CwRHjbsx3X1O8PoTY+XlaSX6WhGa3V1P55/fvw8s+p5uVLNmBXp2dVxCSLwQQv7rN+h1a9NSQIF8Ao6Nks/rKf5Ay2hKdUAAGwLSJJVdXMwh+jqdZ4E2AjK6KakO1Nwuf8/h5d907EIdBGRd3lyWlUgoAkj5uM28ETJwNM9fY6PQ9jEt1/wgdXbsLdAwRQFY6l/WQb11qWx5izPMQr7GpVCxvGfPhUBdw8T2w967AZ3ksIJQRZAsJn+M7fsJdFaqyHyp12bkLuZdebZ0/InTVLCY6V9GDrNC+/YcXJnlbO4zBdYi5RJMPwhg+XNFg32DEfAuAkEAy7t4BVsHOAIJMrCUP3TZ88I4cpHLUb97dRETXpyyt6kfkhPfh9fya6a6WQPASmr2CRGpaaBnmyu/Bv6PdSabQe30fmDvU4U1EgJT/5lQb1wINuqGPSLaUfOhL14qxQJY5OWIvCTZTK0GRr/lX2FeR0NHsrBMlBfM8kk3WD74FLpR7cA+e2DvZ2nWDZY63vMWpdRbi5yOLvmBQ1QU3SSRtZDN5HsFPH/RZ54/hn5kGwypUxbfl6GlPRMyVEDnNN7xcLmLZdV7m3HTEm1vtj+iEQq9zbIqcmctXgpUBu1CjpbIwLnOAhZFEdlvU3Jy4jgqsj0YhokD/GWE6i5KlxZFX8TE5/RZ2TVNYYzLQLPR3K3L9jlRPSTqhzYjoI25y0hPu8e1U+/dAPWWJfS+rtogTpHUE3MGYJG+nvKVuBuHiXkJ1fF94I7sTiA6oewrZM0JvtrHsFb4wKGC2MNHROWKhdlM72GSyNuhjYBcuTy7h6/8wOLFXzTLJkMRAQXbedbX3Vq1E7uAu3/b3szoIReZO7/+fP70TwbXVtNMJ206EWWG82Af3QXzioJtfAEKRrsb78YtBstXUp+5I0V0bO88A2v7DhYnz9CY168roFIFAefncXhzj15LLb8Z1d5QknIi8kLEXpLKjo/hwJvofAhHmjZ9YMBNd2v4ey2HJ+fo2Pma88j5SzcQ0MKZEeEOwoPoq10xP0cdSZl2YV16XCrSMkUBWGzUdegm95CFYGL4RuQokQEtPkma8k9f4+9LvwRZnrM2Qwz1DXByVH5+deR+5Mju+z0/8ysOMa/pfTxoAI+0qeP9aVbO8KgENghg+XJnBPsEI+BbBP6zAJYgiCD8V0H7dyOQAMB6dBe6cXICUONYeZmZcsZR1teoICEmJiU7V3K2hsZHllsljwoZj3AzEY6moAU+Asyzh9BN6Rmn9mIzovQi/Tf5u37pL9CmDk2xAJbZAkya6pxAWHkiK+hDYG35BTQ/UFVOUaWBcdp6v17+A38FE9fj3v0sDv9PXopTqaKA+h96v3knL9EdG1fF1oKR9kkvyFgdjVO5Jw73ZpUtHu7BEeNDe5dV4XVQKyQ+dST7reWS3CzgbmR7sCQlx42RDCySiWWzk9k/RYQqFEqlTuPI7yBkd1xKMfn5KSyIpmS6w9KXRt+0xd0NneBzohxIFARtRrKNCOjsjSXg0fICmHUFYOlJua0028NLxSvVxRNgj+wGyRBzZSQ7ko/LtvoYfB73AOidKAY/rOAgqRSGWgV06sB7VDL06jqDS4sltbKMiNJDeOj8E/OKW6L2q8Hg/j5vXy7JhCMZcf+mXVvD4el5+r3IWk1AnrpGaEe3A/uKck15w7/211UWa9bTZwnJgGvTyvlzhDx3yPPHZiQzpkE9Af/8xOHxKTq3LOb1KGqkB22mAbPgDbDmT5wNj+UljapQEeXHJB0AcnM7iweHaYwiGwjIc36IrGRQuj7yvSFcd/4YOQAgBwE2S8Oq8apUlxQFYJG5a35Zj6fGUPx6LDVimTT4S1cO6dKKGPhF0l0/f66DN32103qDu32NPmP8KCNV8tM+5zIjZtxqZMroO4A171sOT5/R73TfXrzdn2rLEmj20gxoS9OusHzYIsHygwCWN3dEsG0wAv5FIMUDWFaex56DJ1CrSmmE6ONLNJzZ85cxmPf9Jhw4fBrk/6dJFYJKZYuib6emyJ0zZal5+XfZk09vJYBly5KwzZColBkmr3Y7YSWvzNLwWqgXktNtP0cNdGM6gBD02sxavhbMHYf75CvYybMIcNfOy6S3lb2ELDkQOns1yMY1pZK4WyzARCmApQIIKbDNyKmidlRbWSmPMg7WyvVgbjvIs6C+A63+uc5i5Wo5eBWRVUTXzjw4H+hl9AOboGGTSjiSk5KmE4VAIv4QSPviySFsfHPd7nJGWCW0Sf0ejCKPvLdX2f+uYVjcjJQLRTibR6MHO3Ha9MT+8c9ZG6CsNhzaiV3B3b9l/7tp9PfgIyhAJ/U38OkRrJeod80Mq4zWqRNyebiLBcmYlKpn8hG5YBpNs6nc9SefJyh97DEefAnPuMhcAVjKeBiHfwshp+s1EiU+9tAOqI4fkIEjjtYh5MgXVyJIfhdEbYgnS7W3Iffzj2tZCBLMRKsT0a2DgEzh7jdf5+ZyiH0gAXUqC8jd2HsgVzlpUsopBezMXUfBWrq6V2sLZGPBGl8+KFjpWov15JHh7w1Qb14sG0oMywLDJPqdcjWPc38y2LyVgoCEh4zwkTmzi5dZbNhIHzQF8gv4vJWA+4dY3NpB/57FvB9FjVRsxlMxgkDE7PEZBv+sp2tKV1BE4Y5JB4BEHWBxZ6+cf6vAo0lQnTzocHmBKoEnz1HyPLXZm1Jd8Dqah5V3/z0KRNwD5YMXgIlTVLJnwrDBPEJCUtY63MVD/eNXUB/ZbW9mbdIF5rrxZfDeGlE0JMqGNrulLgzd5HlI8zZjylt/pP3i7zlE3afPG/KOkSNb/DUg9A6E5sFmllqfwPJpzwTDBAEsXyIf7BOMgG8RSPEA1u9Hz6PX8DnIGp4B+9bPjiupcGTPXkSjVc8JuPeQKknY2um0GiyZNQSliwUzbHy7jXzvlQDAin4B/VB6suEph8nMl2cx9yU9QSYcWIQLy1tT/fYzNOu/sXcTOQ6mSatBOImClrgRUO3fBM0mx+WifLnaSNV/bIoGsKw8MGEyzcAixONjR8r5V1SHdkKzZq7TQP+XMgFfvmTw7WIWJiN9puv1Inr3EHx+UdWN7YjKDUvgasZ09hj/mq0x3lPLSbb9vdOnvTiD+a/+tLsZkK4kBqcriWe8AcXvrrf/nZQOkhJCT4yoEBI1QpstylQdDUNzx2WskrIqm5GMVQL4OrL2j/ZjvyHK/tGy8Fqo6wPQz7x6Bv0wOm9Pn9PSOemHfSYrBTOOWQIhay5PQhH3HAhLo41TIyWAttS084aBu0LVqUw9J4CQBiuNsZjAnf4jrkRQyiHmaAIkG1IoVxvW6g0hRPiXrXf5Cov1G1mZGEFoiIhuXQSkd8PnplTlY9Uiyo3mwbk+u3MbU83qOVAd3mVvZ27ZF9bqCVXS3DoKUIPnVxj8tZyCMiq9iPJfxkA/siWIgpvSTB2Ggq8gJw53NJUTJ1ns2E3BlrJlBDRyQXau5MwiGR4kM0OZDRfK30ClN53jhiTZeKYhVHwkQCFx6ubGzyweSjJUc3wgIEcd/0FNT+f98DiLG5tpTMPLiiiMb6D6dbNDF3y+ojANmuOpe6ftqkVtxg0rLdO+XKQlwoz6FAdgkQUuXsohSlKS+tmnAooUSrpr6PfF8MCB6o8d0KylfLZSwR4PusuaEC5CzVIKGF/Qvo+cM0bDAwFbp0MtX8Xhxk36rtH+cx5533IMcsf3Q7ucctpZy9aEuTNVS7c5DQJY3l7JYPtgBHyPQIoHsCbOWYl1P/+KZh+9jwlDaOmZMiRfjJ6P/YdOx5UNftqwJkoWyYuXr15j/baDuHX3IbJkyoDtK6e6zeLyPdTBno4ikADAMsVC318i6a3TwzDHvaT3RdMz1H2w3T5EKkYdp0bIMZ6naZAXY92oNmDeUGJI84ctYG3aNXjxkigCpFxOdeLXBKOR0640TVqlaACLlA6NlwJYLDB2VEICYd34Tg45dzwRNEiiy5Towwg8sHAJh0eP5QcSndp5zhnkaJIk66dA/QJ4LlGe/TPHZwjj9AFd04qYvzDi2TG7z5ap8mN2xiq4ZYlBlXuUrD+nKhWOZm/u0djjnp/AkujL9rZj05dDt7RFoB/VFqQM12aGST9CDKMZZlLnDR/swBkTPcSxZXF5NAFFI3+4phjFc564jl24z+NpuAKwNCtmQHWM+rK06Q9L1Y/svrlbf4E7tBPc6d9lnHOOBufzFAH/fkPwpatCVPuJEkkGOHuexZaf5b9NadKI6N5ZQGoXWQQk4eTkZA5WiZgBKdnKVt2/zS4hkyYlzDZLag4nZeyVJXqZKwgoyC6RzVHah3CQGcfICbEdXc9DR1jsO0DjXrWygA9dgD0EPJ8cR54fb7ZDB2sscGK8RLVMFFA7pg4YiHFZJSS7JKnswjccYu5KSNQ78khfMOmyd55dYHH1RxrT9AUFFI9Yk4Cg3BYPX/jyHMWyxcNfcMRIuSH35W+I4kLGFAlg7d7L4qhEZbRyRQH1fCiRT6p7zpdxyHNXO72vvWucqveE5b64igNHNT9REZEjIU1QanZvn3zZOq3bwOKyhGNQCiISBU3tvKF2/85K5oMAll+XINg5GAGvIpDiAayWPcbjwl83MWtMT9SvVcHh4snnpB2xKcO7onHdKvZ2r98Y0KL7ONyOeoSxgzqgRcMaXgUw2Ni/CCgBLOLN141Rqbvr8Zinp7PelgYpX+LF0DQwTlwFUe9dmYh/EQn21k3tBfbO37JAmAbPQbpSZVI2gCUA4yfRTQ9RWB/nAMByxMFGgkHKWEnZ0n/Btu1kceq0fINfs7oA8p8/pl4yCeF1sgG2TF0RiMoVT4YeSNsbexcdHx+wu6yuj8CazB/ikvkZPrxPgfbCmgzYF+FZpsviV5cw/sVJu08bAbtueCuwLyko5UpBjoBnBESz2aFsTZFHndanpesHfyID+w0zN4KojXliSgJjb8rAiH9XAJZq6/dx3DI2szRsD+v7DaE6ttcjQnby3LdW/AA8ybbKlM2T5fjU5tgJFrv2yO/xsAwiunYSXJYPKUu2NGniyc29OKtJMN8EJTI+qEr6FAQHnUQBODmBg1Wi2lik9UtkXdTU5RDm7mNhLek663r/ryz+kPA11a4hoPr7rp8pU2eqYJAkfQ0ewMdlgP42XAWNpGvF152RSrgBc+/JsBb1XhjBl/gRoP84UUQU6POr/HgrVK41IXwZymmf6BsMLn5HQb5UOUWULr0LmpWORW8stZvB0lxOXu7LhL54eggbX9My7R9y1UQDLleKBLAuXmKwYRONYfbsIrp1SroyUF/i720fR8TrhrnbIGp9ODxavxghv1F12X0ZuqHKZP+EbTb/zOGchHOvSUMepUvFA8FKFUVSok9K9ZUWBLC8vSuC7YMR8D0CKR7AqtyoN15Fv8G2FVOQNzLCYSSGTFyIXQeOo3LZolgya3CCNlv3HMbIad+jWoXiWDR9oO/RDPb0OgKBBLDGPj+O76Ov2OfQKU0hTMzgGNRUTpRsALWj24OxUh1d82d9YK1Bs8G8Xlywg08RYJ8/hnZKT8BsjJOiF4qUj7sOpGQoJXNgEd6bcRIAi2Am40c7lnDXzuwP7sYle/wIMEAAgv+CXSIlVj/JN/a5iFpYO96OO/kahxebv0XR0qH27pl4BufytvfVndN+F0xPUe/BDvvnBdTpcDBbExwzPkSzh3vsfy+vC8eWLA08Gn/7m1vo8eQ3e9uPQyPxXaaa0A1tIZOsN8zcBDFVGoc+C95ejRjRYv/sUs5WSMf6llmkm9AZ7IM7dl/GEQtB+KE8MdWZ36FZMsnelC9UGqZ+tETDnQ9XAJb64BaoNyyg3x2t3m2mFWlMnjVxSoJlko77SQmokHlkDhfRpZMArcZxFo0lFjg1iYPIU9CiQCseGUv6nnWjOr4fGmmJzL/I+/jyHwaXl9DNPKsRUbXgHGgOU+CX8CiJEblAwH6bEZEVUmLtynbuYXH8REJVQVd9Fi3hcF/CO9a5A4/InCK2j1IhjH6VUDR2MrJY98Pw1c9Jduj1Ogr4cz49FNFmEFFmaNICH7GPgHNf0TnoMoooX/8oNN86ViW1NO8OS23Psk5dXZfpL85gnqRMe2JEeXTTF0mRAFZ0DINZcyT3PAuMHmH1iefR3bPz3/w8AV/jwNng83svIiIumobQ8/SAaFu24agzyr/DPXKYQA4VbEYy4EgmHDGiSKv/kgJkzkrmgwDWv3l3Bcf+r0UgxQNYJWp3BiFy/9+2b5E2Dd2Y2C7kq5g3qNGsP8xmSxx4RUAspRFerA9bDkbmTOnx60/+1+b/124if9brCMDS928k23AYvt4OUeP+SPF/xof4VLI5DOf0OJvDM5JIZdmJP+nN/sQj2Dc+AgTEEjKEy8KR0gEsUQTGTqQv+q4ALO7GZXA7fwSIzHRoagjvlXSbXfAu3DtPnrJYtJiFRYLrkZKq3t1dZ6V4uvZrB9egZm4KUhcyiNhfqKOn3T1up+S6Isqo1yPbYn/sXbSXZGbVDsmOleHuuXvIwKdNj9HoAeUpKq3NhO1ZP4J+cFMwb6iCp7MNtFnkkVtCIE983svVweM1KRsqletIGZdp4Byn4Jm0v3rPWqh/puqyBKAmBwaemssMLAU45sqnkDYMfKUPYa3aACQL7N8wR9mGRA6eALYqSZWadG7XN7F4JNlshWQVUbK/78AFUV6UAg7WwmVh7kvVT5MyLje2snh4VMKpVPgNih/7WDYFc5dRELNEQjtJXt5v6jsNfOEyTqebIMuiEY/SboC/9Zs4XLpEwcKmjXmUKiFi9SgVcksArEjTOuTNtA9EBTSpjMSJxMtmYSVEvNfa9/vAl3mThM6TkoMZTgdU6nQZummOS7rMXUaClBH6aytjrmL4Mwpgds9YGBPSVkiRABaJxay5HKKjJSTiHXnkyOE7KO1vfBOjf4Ly7ha9YKnpOrPS4TymD0HIrXP2jzbmn40GA70HwqS+Dxxk8fsh+l2qVV1ADUnGtyeVIUEAKzHumqDPYAQcRyDFA1glP+gCi8WKgxvnIlxCzGtb7tqtBzBp7iqXJO+kP/Gj0ahxdq93SkrBG8u/CDgEsBQy6J6WpvCiEEeQTCSWbbY768cors3ocpLK9GDS2JNyBP9WHuztbQTeNQCLrH/CGMcZWN7G5l1oT1Qav13E4fkL+hJPyiy7deZBlAcDYUdOb0OLsOd2V9VemLGuVLdAuE7gI+etFeBB5/1XztY4EBuF3k//sLdtFJobCzN5lvFz3/oG5aJo2URWLgSncrSAp4D/Az4WZe9SKXBvAH5HASKqTKT0TGokA8s0YLbbDBR/NzKuACz2nwvQzXadSU1I3a1V6jskd0+Um8GFUwJsb9zM4YIEJCHN8+YR8HlrwWEWRuxj4NxskrEhV+lLncu37wl38wq0M/rZZ8lHFoBp2LdJHYq48U5O5GB5TddVNMs6ZLlGQSEhe14YR8aLfWgXjpFlYRHOMtMQ5yIYrnhunC2WcGYR7iybkU1tpQoClk9WoQTFwhFmOYli5Y/A3NJzINbfACu5wnI1EBDhZ5m1t3Mi9+/RYfJ7sfKX9xEyqo1DVyYfs26UzvYZ7qLDI5qF81HaSCzLWCvFAlhKoLTeBwIqV/KvZN7ba5nY7dUHN0O9gXJXWSvUhrnDMK+H5UZ2gvY5FS5ZW+IHNO6R3Ws/0g5HjrL4ZR/9nit5yPTKfcn0DRDTyMVfggCWX5cg2DkYAa8ikOIBrA9aDsb9h0+xct4IlCkul8oWRRFNOo3CPzfvodvnDfFFl2YOg2MDsDiOxZ8H6KmwV5EMNvYpAo4ALN2I1mBfULl44+TVCbJxnA024OlhbHj9j/3jfmmLY2j60i7npswkSGoVIZ8C9x/slNIBLHLJxkyQp1QEASx6Iys3l+STQL/Eb72yB731lPD8k3sxmF+FEssG8mtVOWoTblsp3xQpITxhfIShkqyBNqkLYEZYZY+GJb9n2W+vkLWNimyP0H4NACsFQmPn74aj1B0l/1YhTXrsj/CjRFrgoVkwGqpLlJeLTI7PXQjmAbMgupCE0s7sB+4GLfc29poIoVhFj+JAGrkCsJhHUdCPS5hVRzKsrFXrg69cD0KaDB6PlRQNSXnxmvUsrv0tL50tVEhAy+aCw9LZK8s4vLhKgZ6wogLea+vbhpd5fA/6sTQbT8wQDsPk1UmxdNkYMXcYXPhWUkrFCajxoi5Y0Pvb1GcK+CLl4voRrkTCmSg148CvIOQv5nDuSqWxdm145MvrGvQ7dZrBtp10TiWLi3FcfEvmcqhqpMNohGeo0PIc+CQsQSWle6SEz2ZFu/NI81Y5LSkv3vHxKvCxdMRyw0xIO6KewykYxi+HGO4/t5xSuKeEPgx7IxqlWADr6HEWu3+h33+iQkiIxN8lY6/9Cd2cQfYlEdVZoj7rrWn7NgRnpV++VVW2otnnCStwvPF78jSD7ZLveZnSIhp/TLMZdRO7gr1PVYANIxZBzJFXNkQQwPIm4sG2wQj4F4EUD2ANGr8Aew6eiCNmJwTtUtuy+xBGTV8KAkztXj0D2bI4zsR5+vwVqn/yBUL0OpzcHX+yF7SkiYBDAGtsR7CPqdS7K1l45Sx/ib2DTj4ppRwAACAASURBVI+pip2Ne8bZargLx6FdMEr+Ajx8AQifRtCSVwTeRQCLcGAFmD88eV00D2dz4hSLHbvkm/f38gto0yqwL/Df3zyIscxt+6y6XX2IsXW9PwH2ZFnNHu7GMSPdXa7J/AGuWF5g4vNTdPy0RUDUBD01kkFFMqlsdjLHp8jXp4msuzM1vz8M99Hq0V572yq6rNiQpa6nQztsx1gt0Hw9FNw/F2Sf8wVLxZFZiyq1w376wc3AvIm2f2YY9wPEzJ6foLsEsIyx0A+IB+ZElQp88SrgqzYAmVNy/rIRldIVP3K4dVsuKFCyhIBPGif8Hrz6m8Gl7ymwAiaezF3rGY++/LrExiBk0Cf2vxFiZUKwnNR2ayeL+39Iygd151D88QD7NPi8RUEEPaSmmzME7DVaTsQXLguTk/LHxUs5RN2TlGl14kHKNV3ZjZsslq+ic8qZQ0SDujwWL2bwYSwDKXt+hSEvwWVMlSRh4y3A8dEcIL5dDyOiwkQenOOvXKLO6cxMDsanNK4l+luRcXpjELVRpcV+sydeztFPU5Zph3FaXM7VOsUCWOS+JPenzfR6EcOHJG05qJ+XxG13xmyE/ouGtB3DwDBvV9xz2lNjJM930kcAhzX19uGTxv7F6sJFBj9tpvEvWkREi2bUp3buEHBX6XPG1G8a+ELycuUggOXpVQy2C0bA/wikeADr0PEL6DF0dlwk+nRqiib1qgGiiF+PnMGsRRviuK+IsiBRGHRmp/+8hnb9piBntszYvdpzIln/wx/04BDAmtQ9TvXDZsbRiyFE5PYoWITnpdCdNTASvfG3djx7c2RXOX6p1E7sAu4+3dBay9aEufMIj8YKNkraCLwLABbhwCIlFzYLAljAo8cMFi7mQLJQbJYurYg+PXloNIG9x6Y9OIT5JqpcNfLENfRqMSWwg7z11ufJH9jyhj7HZodVQRT/BnNe0pfgQelKYmC6kh6P3/DBDpwxUcXBbVk/QrX+rWX9nQFYZC5kTjbzpnzR1QQZkwGauV+CyKRLzVqqKszdxiboyhjeQD/QM9DN2biuACzSh2Tl8OVqwlrxQ4+VET2+CInYkJTRLl3B4f59OYhVsbyABvUSglhnZ3EwPKFts1YVkLuhb6CvJxwvibj0ONenp3IwvZSUD8ZOQBbrQfuwxmHfQoiUZ9qTTSXZXEqNkLk7OoSav4DDEwnQ0qeHFeFyqsUES3zxisGcryUqe6lENG8q4Pell1HGGILXHM3CKNKVR9p8vpVxehvbV9cZXFpM5xWSBSg54N8pSb+wkEPMLXrdinTjkXlFe7BP7smWJYakgmH2Fm+X6rS9skz7Xp72gESRMWADJYEjXgAmTlHJfgcHfsGD/Ba+S6Yb00F2X5iGzgefq6DHSySH27qxNMP2KReB3xuuQv26vj33bANf+5vBj2vp9yl/PhFtJXxymmVToTpJD8cdqUIHASyPL2OwYTACfkcgxQNYJAL9Rs/DgUNnHAYjd86sWLtgNFKnCnEarEUrt2H+ss1BFUK/byfvHTgEsKb3BSvZDBm/nAchdyGPnXd5/Ct2x1J1rJHpy6BX2oQlBapDO6BZ87Xdr8hxMJL09n+JzNfjBf5HG76LANa4UVYQnqf/qhmNDBZ8x+LlK7r54VigB9kAhQf+xX3Q40NYF0sBrK93H0PzHgsTJTNn8otTWPDqov3SDklfCi95E5ZEX7b/jWRfdUtbxOPL3+3xQeyMpYD7d+mroMUwWkIlarQwfE3VD6WOv4++jLHPT9j/1DF1QUwK87xsz9UkCSilndEX7EPKS0LaE0U/c+eRsviSZ7tuOi3bFMMjYBgvL410FxB3AJa7/sn5c/KdWPIDiycSYIrMt3YNAdXfl2/SHp9k8M9GScmdWkS50Tw4H4QlicoWUduymWHqOojpwpIsVG8eAOfnSkQuYEWN6I/AIZ5oii9ZBabu4xzORzel5//ZuwroKo4u/L3dZwkBAoEIwR2KuxZvocWLFi9eWuyH4u5eKFrcoXgpXqjg7lBcAnEhxJ7t7n/mhbez7yUhz5JAePccDif7Zu7M3Jmd3fn23u+CCaDUASmVJZneSMY3k/xvCIfsVgAElqHf37Tm8WbLVuTT+yJY2UTUV7A5jzx1HTtIW2tw4qlGPNZM4l1VQNF2jnmhWNu2Zbn/NjKIvEf7Qojk8xwnYcJ0ryN1eL8C0ExcY28zSerVfLUbLw00gcWF/N8gH5PVafrTW9GaDSxevqTrs31bDmXLOP85mN7jkranXDMd8qv/iJd0nQfD8LnEKyuVzjEPbkAtAayfKsriXtuf0bC+Y/fdi5cyrN1A91JCoN+3F72flLtWQH5qr9g7fdt+0DehmQnJDy4AKyNXlqvtT80CmQLA0mh1mLF4C/YfPQ2ep5t947qVMWFYd+TK+X6f+k4Dp+L2/acY1q89+nz79ae2BjJ0vMkCWAtHgHl0U+yXZtg88MWt91LYHfsEQ8JPi/VN2bqkAyWuzOpxXSGLjaYPpMbfQP/NgAy1h6vxlC2QGQCsydPNv7BOGp/5UmXbsoY3bmHw5Kk5gte6BYdKFdPmpb1HyJ/4M4GGJ2/b8w/q91sEkhbb2bL+7X2Mj7woqu3iURy8TMD2mEfitXletfBtVnOPkvf1Y3LkJXMAzKMchk4YRau4eSB+YfIeDpZp50d4VsAwG7y/UrMP2UtVc4ck8brQ124GfVdKqs5eOgnV+tmiOu6zatD+MCM19Wa/Z2YAiww0No6EEzF4I/FGItdbfM2jamV6UOMNwJWZLAxx9NBrL5G3emofMEEUHE0YtxJCXnOOF5smycbCL08wePWnJKOe/jwqJrzzhpbJYKQSSCHMlL15DqqV5t5+minrwXubh6XOmC2HVkK8PuYnA9xST3CMn38xTy5BPOLKHBkNNxTGIzV9Z8hdWUCxDukDIj3YyiDiFrVX4bY8fKs7doi3ccrE4gREJWCqSQq35lHg5gSQeZEKV7IStEOcF+XQNvgILkrCtPf5N0M1hY+9w8jweoREnJCJmyQlz8sM76gDHVAc2wHF/rWiBpJMQyd5PqSm2vL5cUNdH+EdJjhMeB8cAixfRQF04plJPDRNIj+2Hcr9lCNZ36QD9G3NaWtcAFZqs+f63WUB51kgUwBYJnNERL3F4+eJLsvFCuVFTs/Uv8RwHI9Fq3dB4AV0b/8lfHKbZ5VwnqldmpKzQHIAlmrpWLASYmDtoBngylSz2oAxvA6lX24HL8kAdi1vB/jIqRee4o+NUBzaIuoU1G7QzNyRavYsqzvhKuh0C2QGAGvKdDlIqIBJJo0zOIMOxOm2Tg+F/55h8Ocpc/CqXFneGJ6TVtI88A9c19EQvOObj6HsdzPB+1sXomxLv47Gv0RvCR9fA7U/srAK/BFHiWBJBkISymetrIq+g6lRlEOrv1tRzJ48he5jWT2RMJdmKpTqHRV+DltiH4qXZnnVRPesJaxt2qpyTHQElMSDVpKEg1Q0fNkZutbfGXVY7r2Ghm2ga29OxJ1aY5kdwCLjj46WYdVaBrGSjHzkeru2HMpJvDICTjAIkAA/ymyJXFgyGz071QuGgXlMPQY1Q+eCL1Extalw2u+WhOSlE+Yij/6IUb+h5pfQdR+RcluCYAwrkoascVUbQfudOb+dpSeVtSHclkB7wbwc+l5pgVjmM1zPMk/sVxZ/oPzg9AnjuzqbhVaSsbX8jwZksZ5GzmnzRhS9OMLg9d90weVrzKNI6ALIzxw2a8dQvQl0PX9yWtuDwv7B/rhnor7lPp+jlVthp+lPb0X3/2Ow/TdqR5J9d0Df9AFE02us7P2rUC2h9yUJ9SUhv9aK4sRvUOylxO//urcD03WAwx+9ot7IsGgJ9cAinpnEQ9Mk8rNHoNyyUPw7ubXsArCsnUVXOZcFHLdApgKwHDeHS0N6WyBZAGvVZLA3zopd0fafBK5CHZu61jH4GM5ogsQ60sMaCZMwel/pteLvum8GwNA4+SyVNjXsKpxmFsgMAJYrC2Hi8rB01yfXvHML6N+Xg8J6Pleb11qNV7sRIAk5ub7yAPx6TgDxDHC23NJFoFngQVFtSYUn/ORZ8FcC5YXZ7N0YDd2tP3X+HvcMA8No+EVLRR5snE4P0CTki4R+JSd9Q0/hsCS0emXu+miRpaCzhw1ZRBDUs380824ljZhCLpRrZ0J+hfIa6Tr+AEN927IhfgoAFrFZWDiDNetlSEgw58T6tiOPkiUSgV59PHBlOguBo2VICJdXedu8GFWWz90+49Mto54mCrg2W3LjCxzqxbSBAjEgof3aaZvB58j93rXKXj4J1Trq2UcI+xOmbYbgleiRQ/jFps2ibSiVAsaPtg4c+P0QgytXKbBQSPgPg4IHQivLidNZ94j9krECaky3HTy09SbUxwKXp0nCLRkBNWakfbsp9TPwHwbPJUk4fGvxKMGsh+Iw/UhI6kqBbFvHnFz56ZFXsOItBV3H56yCgdnKOEN1huggnpdzF5gT3E8ca0guqWyG9M8ZjcriY+H2vzaiKnJ/EyJ3a7kUFLtXQHGShvL9kbU//Hp1AMnY6oiQ0O2Zc6nt1WoBY3+i+wNz+wLUyyeITZBMqCQjqlRcAJYjM+Cq67KAbRb46AEsrU4PlTJt0q7oDeQw5Xi2FNum5NMqnRyAlYQssfdYEHJ1W8QyfKe+mz+2+iRyVSi2LITibOKXXSK8lx800zfZot5VNgMskBkArKkz5TBIPtBPGGOAIm22rwyYIeuaJC/py1cyxjApk5At/Pv+HHLmtO3QbV2LtFSB5xthkHhmBizaCWW3n2zeX6xpN4zXoMJLCiZlZ5QopvDEFW2oWH2fbzNUU1sf8nJZE4rWwdSroSqbA8dnLhX1Ef6+hOmbk+2eZbjNLt+mqKX2tWYoNpdhXz+HcuEwkMOKVPTfDgFz9gjYF9QTTDt4DrhStgGInwqARWwXHCLDmvUMdDp6vzAs0LMLj4IFEw9tliFcHvkElPvBOnDGND+KrYugkHjM6DsPgf7z5jbPvT0ViPcO8eIxSQ79dVROSAw71TdqB327/lapVU8kxOGBYll93eYga45ITAwwbxEFfTw8gJ+GW+ctdeYcg+MSL7e6cXvQ6m3iffd31t9hkFFv/4r/4+CWBvx9UgNE/SfD/fUSYvn8AsoNsm2+rTKolYVCr8rw+Dfan1zlBZTOsxfKnXRvIqp0nX6EoV5LK7WmXmzt2/uYKAnT7p2tFKbmrJ56xQ+4BPECIt5AJvmuB4eCBdL2uZje5nAb1wWySPoc1IxfBd7fOs855ZoZkF/9W+zyNs/xKNu3PooUdsxGJLkOSbJjEpIdmnhomoR5+RDqWYPEv5PzHHMBWOm9klztfcoW+OgBrGZdRmHKiF6oVtH6LBbWTDjJTDh5/noc3DTLmuKuMnZaIFkAa/MCyM8dFTWS0AESQmCLhBjiUenVb/ThAxnu5e8Mz6BAqKabx63r+o6HoVI9W9S7ymaABTIjgJXZvq5asyzWrmfxIsDco6Rze97hL6iptR3H61H85VaxmJzjETZ/O/TtBkDfKG28L/2fbzDrVkF5Vjw3xIjXTvq3QkmF9WHrrw1xqPaKhgj6y9S4M5vyiRCOIM3k9cmaot7rfXisp5x/p/xboYQNbadmX8vf2ecPoFw4HDK9hHQoGSUJ07eIXjLWtvEpAVjEJs9fyrBOQjBMrpHM8+Rwm9dfQHwocGOBueti2YEcsha0/lBHeGkIP41J9C17Qt+si7VT4lC5W0tZxEr2hBKaJcin2wdBoYJm5jYIHtms0k8AOALESUUzawd4Ty+ERzBYskzCsZVTwBArQb579xns2JVYVyXEY3D4QPgYEhPFXHOfj0h5ZbHJ4t9yIABOWopl2KhfbR6FWjrmgeJIfy0BNZKJsXzlU1Cunm6mVtd/Egw2etO/r1+H41+gbyj15myWpQDW5LbtY6cj406Lurv2Mrh9h67TLxoLqFMr48BJZ46RhEhmySKg6OFJkEuiLGx5x1ctGA728W2xWyu8FqHx92Xhn8fxe45kgdRLMO3xYwww+UcwkaFQj6P7IdlTyN4iFReA5czV4tLlssD7LfDRA1if1e9pHGHrpnXQt0tzFMzn2Bflpy+DsHbbIew/esao9+7f5gcQ14JyrgWSBbB2LoX87wNiQ/Z+tfsq8CBu6iJEPUtz10PHdashv3dZvEbS95I0vi758C2QGQAsEsJCQllM8ql5YB0/KcOZs+ZerelFVBvAxaJGwG7R9vmjY3Fz5QHovugAQxtzUNtZd4NlyKKl3ot52yGv3MOm5ixBsag5FJTj8hSAdkLyWb7KvtyOSJ6GTd/K3wlejBUM1jb1zrww8/g2VItHQ2ZIGcSKX3HC5hY+NQCLGOjRYwabt5kTW6lUAvr04o0ZO++tYfHmEQWGvcryKNHVelBDcXI3FLtXiXOhb9AG+g62cZPZPJHEKyeGhECag291Y9pCJUTBHhBNPaojmLeRdBwN20LffiBeB8qwag3de2zhFwoKlmHFr4l1e0WNw2caSk7+UPU9XqpoNrK8DXjkb2q93e2xGfG+IqCRSYp15JC7kuMHeHv6QurEBMhweym1rbsfUPnra1At/J+ZSvKuRd65nCU3deH4KpBmXa2g9MKhPNZntHNWP5yp59JlBn9IvBFJqDAJGf7Y5fxFBkeOJe5fzTQb0SiKnq1ICDkJJbdGLL0s5+TehG+H5oGXE7y35y5kzTgHfxrOwcOD3lfuA2nGUdJXy2eXC8CyZgZdZVwWcI4FPnoA6/fjZzH9582Ii9cYLVKzymfo2LIBalb+DB5Z3KyyUnyCFmcu3cbOA6dw4Vpi2l93NzXGDelqBMZcknYWSA7AIi/R5GXaJCTTB8n4YassfnMTc99cF6u14D2xad4y8xeqkYvBFS5tq2pX+QywQGYAsKbPkkMnAbCkX/gywKTp2mRyB3B/fwH9e6fP1+Wr2jC0DDokjrlSYDhObj4GZxMLS43aOugwLktCBi0NfidfJ+RgbQORKgXsRAiXIKq6t2wv/GIT/+bzFYVm7Iok8yoIAvK+2Gh2/VWBHpCROIk0Fvb+NZDEHOCTzjPvmx+aSdSDzNqufIoAFrHNnXsy/LbbHAB2dxPQtzcPNgy4t07ymyyRzF31/iTMosnl549BuWm++HdyJOjWzo8t5YLOMnj2OwXmshvuoWr8IAhZPKCZsQ2Cyrr3OFOb8j/3QLlnpdgFQaGEZvZOPA3NhvWbaDsk/PK77tYBA1qNDDPmsmj6dh0ax5mH6J7wmAoZU1dsL0dJHqV6WafXFjtJy16cyILT0nu30ggO6twZB2BpImW4NoeuPWVWAdV6PwXJbCkVzYyt4HN62zvsJPWCuXhUDqCe9t6sG67n6+g0/RmhSAqWkvbJ/T16ZPo8I9NqvCSzIsmwaJJSmnPoHTWO7jWFS0M7crFVzbsPamr2LBnncxhDRirhkcXx9b94GYOICNrPwYN45PKi97Lb8NaQJcSJ/UyYtxuCB91gXQCWVVPoKuSygFMs8NEDWMQKgcHhmDBvHS5cTQSfiJAX8xJF8qFS2WLIm8cbntk8kCO7BxRyORI0WoRGvMHLVyG48+AZbt1/Cr3Eb7RS2eKYOaYP8uVx3oPWKbOVCZUkC2D9vgGKI9SrwJ6vsMRUD/Vv0OD1ftFqagOHF4t+g5JPfCAZKn4OXT9KypgJzZuphpQpAKzZrBmXzfjRBiiVmWqakh3MmzcyLFvFQCs5dLm5CRjUn0e2bI6/eFpjwePxAegVelIs+sWT19i5+28YSleF7kdzMlZr9FlThhCuE+L1lCSgQA8wNoJIXwcexA2JZ+mJTUdRJSjR05QrVAran5YkaS6cS0D5gJ3i9RyMCnfyd7ZmCE4pI7/2T5JwImN/y9eCdgDNomhtY58qgEXsc+06g/0HzT2xSMasft/xePyrDAmh9De/OjwKtbAOTJHfuQTlMnqoTMv7QjrPd1YxePuU9rm4ZiXy63bazZck02mgHvstZHE0VFff9FvcKtkb23fSdmz1bPl90ll0Cp1stkTvqmthT/YZqEXxZKhyCKhsJTm8tetdWo5kHiQZCE3CqgVUn5KxAAenAy5OMPeiqz3xDdxGULJu0l97vC1N49THyiBXC5BJuf6TAeZfFOgOua0pOO2ZiDSsYxnKNmwwhxye6fOcdPaw/jnN4uRf5h9KsnMRmBDaTmyKhAonLKGedCn1gYBHBEQySYLMHRN8D2HqROu47FIb28o1LAIDaV/79+HMQhPVk3uBCXklqtFMWgfeN5/4twvASs3Crt9dFnCeBTIFgGUyx+37T7F+51Gc+PcyeN72zb5+rQro1bEZqpR3bmpx501X5tOULIB1dAcUB+hXeX3TztC3SkzBbqtUC9iF1xz9YrJj99/48kliFjDN1I3gc+exVaWrfAZZIDMAWDNmy6GVRFONHWWAWpVBBk2nZonjzYrVLEJCzV9iifeDiYQ6PbqyLeYhRkbQ0J+uNx/jl6MXwectDM04GjrlzL5MjbyMVW/vJqtSJWPwtEB3m5uzzCa4cd+/aPkwwKiHK1IG2hHmHEDk+gN9FBq+pmHZRRXZ8Y+/+eHS5o7YWIHwGio3LzCrpW/cDvpvrCPollb8lAEsYocLlxgcPmoOYpEQmrblBQT8Qa8zSgFVx3Ngrdhj2Kf3oZo3WDQzV6A4tKPNPZZtnPJUi5MMipenEDCG7g21YzoZQSDirWOvKI5ug+IA5YIjXlyXu+7Eb4cp2Xr5sgK+aWMd8MO8fgp2xmAoBBqCG8bmxeJcq6CVuePLBAEQ6BiqTzOATaMPExE3ZXiwjQJYhG/qs77WjcNee1pT7/xY80yY1acYYKNzaYrNhF9j8PSgDASX8q8H+NbgwLyzb9WAXQiUvONdytse/vIs1nT5gy2zfiOLZy/oemrbmkOFcrafaTJ6gMdOyHD2fPKJsCYHt4aHQDkZCXcj4XB8nzBBL8y8+kLYfFjktwkTxzkHwFq/icWz59TuPbpyZuTwlvxb2mHzwRUvL3bZBWBl9Ipztf8pWSBTAVimiQuPjMY/52/i8s3/cP/RCwS8DgXJVigVkl3QzycXShUrYASs6tcsjzy+uT6luf8gxposgPXnbij2SLg4GrWFvt1Au/o7I/IKlkvSLHe79RhLjlyEoUFr6DrQjCJ2KXdVSlcLZAoAaw5r5oX0KXhgET4PwushlQb1BTT4PH0PXUuib2FO1DWxG0Mv3MGkf25CyJ4TCbOpd5IzF/Xqt/cwOfJSsipzsmrcztfJ5uZI1i2Sfcsks05ewYArD4x/8sUrQDNsXhKd5zTBaB9ME2NUV/tgr28zm9t2tALhNiQhXnzZauDLVje+/Aty20/6nzqARebhxCkZTp8xPxz6+gioHAxw8fQQRjywiCdWaiILeQW3yb3EYoKXDwjBflpKyGUGT3bTvcGDe4IacX2g7TkKXPXGdjct08ZDPaoTZFrqGvW00ndYHtRN1FmtKo/mzaywS1wMVDP6g4kKE+smyLLg51yrESH3M15r4yEgIYTavMwADtkKpQ3g8PyQDIH/0nn3r8+hQLO0acuWCbgyk4UumtqAeKERINIRIfoe7ZYh+qH580ORTUDVcYnPDxIWTsLDTXLA7ytUUX3c0RN/npLhX8m9be1adcTWzq77PvCKtNUnchRKaumzUdtrNLhqjd7bDfb+VaiWjBbLPFZWxJYCC0C4qpwh235j8N9/dK117sCjVEm6R6h+nQL2eiI/MhFd73EwVKkv/u0CsJwxCy4dLgtYZ4FMCWAlN/S3sfFISNBCgAA3lQrZsrqnC/+HddOQ9qUuXr+PkVNXICLqLY7vmA//VMC6KzcfYMPOo7hx9zFi4xPgkysHGtWphP7dWyJ71pS/bu07chq7//gHj5+/BsdxKJDX18gj9m2bxmBZ85cQMurkACz5vweh3E7DYKSpsG211HVtGJpLeG9yxWvwcPVhaKZvhZCFfo21Va+rfPpbIDMAWDPnyqFJpOszypifDHCzjQIp/Q3vQIt37zPY+S57l0kNSQneqzsHGyPnHOhFYtWJERexNoYCPzNPXsXAK/8Zf4tffpzEnTvchqWCI/Ev0EeSJUv6ewF5VpzLa3v2w5Vv72JaJE1E8cOl+5j2VyIwx5WqDO3g2UnGcSj+OfqF0tTjzdzzY413Q6ePN70UugCsREv/fojBlavmz9XKKgG5I+laVmZL5MJKNaoqLgbuI9qKU0i8lhJ+/j1Np/T+OhZRD2hfC2s2oGCOk9BMXAswSd8XbOmMYt8aKI5TYFqv8MAkr93QyRLd0erU4vFF41QALJ6DauEIsE/uULsIwK9eC/BIVcl4jXjQfpNPAPGMMknhVjx8a6UOjtkyHlPZO6tYvH1K2yrZnUfOz9KmLVv6d+NnOeKDaI2yP3DIms9OAEsAgi8weHFYBk6XdF9m5ECNGYleN4QqwjOrAl4KNfRxAtS8eSijLWP4UMo+eCjD1h0UpPT1Bb7v5xwvo/QY46EjDC5afLQi7bb/hsOuPYnjavZ2DRrFSahCGrWDvt37vXHZC8eh2kg/0FxTN8axImOtziaa2tj3HmBxQ3Ift2nJoWIFuobJuYScT0yia/89DA2pJ7MLwErNwq7fXRZwngU+GQDLeSb7uDQR8t412w5hydo9YlhlagAWAaAmzU90v/+sREF45ciOR08DEBQaCT/vnNi2fCK8c3kmMcSYmatBSPWJd1vFssWMfGM37z1BbFwC6lQri2WzhkLOmn8xThbAsiCTNdT8ArruI+0zfOxblAnYjig3GkNxIECJKnW/tU+fq1aGWSAzAFiz5hIOPmrC0SMNcLeNozjD7G9rw5GRMixbyZqlpSZEqz8M5OHubufBxtZOSMoPCvsH+yV8VL8ePIv2954bSyTM+Q1CthwOaE++6jVtGFpIAHRpqdLKnDiRp6XNbR6IfYbvw/8R67W9/wJrf0/8fDgeogAAIABJREFUKsyVqQ7tIPPU9eT6xpj/MDbiglinq0dxzMlVy+a2P5QKLgArcSYEAdi9l8XtuxLASgAaxAuQScLyinfhkMuKECTLLFsJvxyGIFekybRzWuDSZBYCLwm9i/0OigHfgS9bw+E2ZbHRUI/pBJmBHvwPZB2E0x6J3DsNG/CoX/f9wI9i+2Io/jXn5jmctQ9OeXQR+0e4idqXFfBSEtLpU01AkW+c4xUiNYTAE64pFrxB4uk0lhD1p/9+ajlBd1eziH4sAdZ6cshZyvZ+aSKAh9tZxAak/EFBxgI1Z9J59fZUQ87KEPpGAwNne5sOLzYnK9DqZJgh4Tkj31ZIxmL5B47Nkf3owB+MkadPKuTbdddveRQpzOOX5SzCwmUol/A3ur+h/IcpeQ9L9ciPbYdy/zrx0l9ZOuFGyX4gXFXOkENHGVy8RPve7EseNavTPUJxaDMUf2wSmzI07QydhN7EBWA5YxZcOlwWsM4CLgDLOjt9lKWiY+IwZuavxnDKGpVKgxd4XLr+33s9sAICQ9G82xjI5SxWzhmOqhUSUx4TIGzp+n1Yuel3o661C38yswkBrgiAVTi/H36dP9IIdBGJT9Bg6MSlOHv5Dn78ri0GdDc/sCULYF3+C8p1lFTZUKUedL3H2zUH5AV0lDoE6ysWF+v38yiJSbkcf0G2q0OuSnZbIFMAWPPkSJAQ/mZWAEuvB1auZhAWLuHjYYDePTjks/ervN0rJ7Fih+BjOKuhLgJ7d55Cg+eJfyeMXwXBv7CDLSStHsTFo4okS5a0hL1hfJc0IWgTfERUVSMgFEe2nTD+zVWoDW1/c6Jpcn3RmxuY/+aGWGdw9nIYlSPRg+RjFBeARWeN5CTZvI3BEwkRehkNkFdypvPIL6DcoNQPeW4/tYcs5o2oPGHWDgieXmmyRMJuyPBoO/2gpeaDUdNnRrIcbvZ2QLlzKUjYqkneMjkx03sHDDIFvmrKo0a1lAEs+fkTUG6aa9b0HVVtbMhpDhD7+QEd63D4bwMdC/E8Ih5Izpb4YODGIopiyLMIqDbR+e3Y0++H21iES7xXinXgkLuyDWCSALz+l8XL4zIIqTgbEW/CmrMyL4BF7L94KYsIiSdlj24ciqRRWKo9821Zh4BXew8wuHnLHLwioFv3bynf5f6DLK5dlyGnIRBjwygQLLhlQcJCmnQpuT5Z3s8EkH5d9hv07Oace+DPvxj8e5r2v2F9HvU/p3uE/PQfUG6j2RINtZtB13W42FUXgOWMleTS4bKAdRZwAVjW2emjLNVpwBTc/u8ZurRtjJ8GdcbAUYtw7sqd9wJYM5dswda9f2Jo33bo26W52bgJiNV54FSjzq3LxqPCZ0XF31v3Go9Hz14luU4KREXHoFH74VAo5Phn72KoVZTzJDkAi715DqqVk0TdXLma0A6cavMcMKGvoJ7SGycL+KBdBxou489mwaV87W3W56qQsRbIlADWCAPc3TPWrmnR+o7fGNyTcEmQNpo24VGrZsaFujR6fQD/6aPE4Z5efxhlQhP/JmF3JPzO2UL2zLwvNiartpF7Xmzytp3nJ8AQixqvdos680XH4tbKxEN6SmD/+IgLWB+TGC5JZErOauiTrbSzh5tu+lwAlrmpiZMRISAOeJXotZKVB2pLgHJyrdwPHDxSAY/J85IJfikqTxi3EkLeImkyrw+WRyPiBQXHCmi3Id+wCuAL0I9NjjbMREdAPbYLQDJJvJPd2YfjgnsLWIYHSdtintyBatEIyDhaT+dTAJNlq8QQRFP5woUEfNuSB+GAMgmjAGpMd37IV+hVBo9/owdsEjpIQgg/BHm2n0HQedq3gl/zyCM5/L+vjyRz5qMdMsS+Tup1JXcXULC5YDZuoqvWnMwNYFmGszWqz6OelfZM7/VAQPTd+1jckXiCkj4oFUD3bhzy56VAJgGvCIhFZFpwC7gJsXS/mboJQu5EXrnkxJKDarPnJBgqfY6O7Z1zD5w5x+D4n3QN167J48smVDd74wxUq6jXGFe2BrTfTxO76gKw0nvludr7lC3gArAy8exfuHoPQaERaNOsrnGUPYbMAuG2el8IYZNOIxAYHI5TuxbBJ3fSkJrt+09i+s+b0b39lxg1KDENOylP6uX398aRreZfLE3mHT55GY79fRm/zBiChrUrilZPFsC6dxWqXyhRI1eqErSD59g8U6oVE8HeOg9OJkOhIe0Ro6KhEMfztMRnykQvMZd8HBbIDADWnPks4iQEy6NHcnB3s+Er9UcwVVeuMfhdkgmNdJkQoRJC1IyU8gE7Ec7RU/39pXvhG5f4t67naBiqv59A1t6+Ew8s4ollKa2yFMLy3PVsVmsQeBR4QcMYWJ5H2LztxoAxMgYyFksZGPYPfpeETy7N/TnaZHG+x5nNg7GzggvASmo4nQ5Yt5FFYFAiCFBVA3hJHBO8ygko0eX9ngqq+cPM+J60Q+eDK0GzbNk5XUmq8Qbg0jgePOjHrMq+y6AaZntGytT6pNw4D/ILx8VikayP0QvLkqDZVEAWGQr1jP6QxdODteDuAc3YFZiwLGmWtM9K8cYD9IXxLHg9BWAqjuTglsu5e/uTvQxCLtIDdv4veeRtmLH7qsluAX8yCDhB++Zfj0eBr1LpGwe8PCnDq79ZIJmlmasCj8KtBBAQ69wo8/i5zA5gWT5HK1Xk0brFhzHXlvfcb7tZ3LlnDj4qlYTrkod/HvN7ICJChsXLEgGsARHDUFRHPYN1fSfCUCnxvJKckCypJFuqSZZ5LUGO6p85zS6ET5DwCpqkSmUeLb+WAFhP70I1b6j4O1ewJLSjfhH/dgFYqe3Grt9dFnCeBVwAlvNs+cFr6vrDDFy/8yhFAIsQ3dds/r0RuCIAVnJCsjq26zvJ6H1FvLCInDx9DYMnLEHzJjUxZ1zyL6Abdx3D3GXbjV5dxLvLJMkBWOTrp3r+MPqQKFYO2uHm6ddTMzbz+DbUC6hrb58WtbGndEGx2nDPCvifZ4XU1Lh+/4AskCkArAVyxMVRo/403AAPjw/IyA52JSRUhhW/siBfZE3imZ3wXnFQ2p5szsHe0OrJeUJFztkqsgQR8lh9I7ovOa1hwMiBRbiwLKVL1uKY62UfD1XFgJ0ITQaM09dqCn23/yVpyzJ8crvPF/jcLY8zh5muulwAVvLmjo+XYfU6xhh6lJsDKkv49iBLJHNXZU95qpSrJkN+46xYILUDpb2THvVvKO4foutPyUei+tBIcP70GW2vbst6TEgA1JO/M7u81XMcyvVtgCKFzQ/XMr0WqrmDwbx6alZeO2y+MWPmol9YREWZH9QrVxLQqjkHS3L1Et14eJVxLuBwcwmLOImXUuk+HDyLORcks9fuwecZPN1PD//eVQUUbZcyYBr7Cni0g0VCWFKvK4WHgKLteeQoSceWBMCabYBpA89sHFhkDkLDgKUrKGhH6GPHjzEgmVxI9k6Zw/U4Hti52zxzH1GqVgvo1YOHn0/ya3P6bBY6nQxfv12JBnGSRAtNv4W+Fc2EatlBt/FdIYsIES/P9N6GEnV80EziJeXIoG7dkRk5BU1SpoyADm3pGmbCg6Ce0F38XfDyRcL0zeLfLgDLEeu76rosYJsFXACWbfb6qEunBmDdffAcHfpPRqWyxbD5l3HJjpXwatVqMQg5smfFmQOJXx5ItsJ5K3agf7cWGNw7+axaf56+iiETfsGX9ati4eRBou5kAawXD6GeTctwBYpDO3qZTbZXzxoE5uVDsc6eLxujTwUf8W97CZRt6oSrsFMtkBkArLkL5YilH/aRmQAsjUaG5asYvJGkUicv2wP6cfDxzthDVgSXgHIB9EU5Bwc8nS/JgNSkPfRt+zl1vZqU9Q/7C3/EvUiiu3+2zzAxZ1W72vwq8CBu6iLEuic3HUGloEiklLG1ceAB3NfR8MnjeVrgM2XacBvZNSAbK7kArJQNFhMjw6q1DN5Gy/B5AiDNl+BXl0eh5imDKootC6E4S/nV9N8OMa4pZ8uT2Q8REkVDWP2zXUCBcVWc3YyoT7l6OuTXaOKDYHkBRI9ei3z+5vuS8tdpkF//16wf+g7fQ98gMdPYhs0snj4zB1xM2QyfHmAQfI4COPka88jnpIM1aZtEQV4cb056X22KAfIPJIstycL4YBs9/OcoxaNUz6RrjdcDL44yCDrLAMk8Frwr8yjUQgBr4Zl8brTcrDwhcSdk7kQyI4BFxjVrHouEBLre+n7HIZ8kHC/NbhgrFJP1uHUng0ePzTmviEd57x48cr/nmb9lO4OHjxhUTPgTXd7MEFszlK4K3Y+U/9ayG5ZJJkb4/QVLniorup5iEcvsj8WLCejamQJYMm0C3IZSHl9BrkTCL4dEfS4AyxHru+q6LGCbBVwAlm32+qhLpwZgXbx+H98Nm4PPa5THitnUA0o6aOLJUKZBL7Asg1snE7OBLF23Dys2HcCIAR3Rq1OzZG1k0l2jcmmsXUAJ4JMFsF4/g3o6PUzyfgWhmbjaatvLL52Ccv0sWp5hEDXxV5RI+Ad60Beqi3nbIa88E7m/WG2hj7NgZgSwRg4zIGvWj3M+LHu9cYs5kTT5nXgmEA+FjJYH+ig0fE3JnIsbWFxcQMPwuOqNoe05Kk26OTnyEla/vZdEN/EAJZ6g9kjv0FM4Gk+5ijbv+xfNHwbAUL8VdB1/SKLS0mPrSr4O8GM/XvI1F4D1/lUT9UaGX9cwyBktw2c6SVm5gOqTOLApeEMq9q2B4rjEI6JFD+i/6mrPEk25jk6Hi+MBTkbXX7kmd+DRODFhTFoIG/gCqml9zFSHdZ6ELJ/XEa/Jj2yD8vfE7MsmMVSuB10fmkDm4B8MLl8zP7A3acSjbm0eIRdleCLx3nA2P1XMSxluvwu9Iv1T5xJQaaRzyKudYfPoJzLc/VVCZF9AQNnvzfv39lmi15X2TVKvK2X2RK+rlDzKzo+VQ5CoqzHDAOadg1JmBbCId9Pde3S9NW7I4/M6zvXqs2fuCTUcAaGkiSOIHpJl+LueAnJ5vb+P/55h8OcpBj765xgZTj2u3kfkTpJLkCQTJomXZcVE399hmSnQnvGY6jx/ITOGYZskf34BfXqar2G3H5qaceMR4nnSbyIuAMsR67vquixgmwU+egAr8k0McnpmkhOgbXNnc+nUAKzTF29hwKiFaFS3EpZMG5yi/vKNesPAcbh5ci3kLIsFK3/Duh2HMebHLuj6TZNk65HQRdJ+xTLFsGVp8t5dpop88Cu8HdxJ1MP45EG2X36zbrwGA6IHtYMQFS6WV33RBm59/ocWjw/jj2jqCbEgby0M93E+v4d1HXWV+hQt8L8JekS/pSNfME2B7Nk+fksc+ZPHnoPmL3o1qjDo042+DFqO8k5CJE7HBuHvmNdYlv9z5EpDV4K/YwLR4CEFsOrJPLB/9iqxS/JyVeExPvmwaUdnZ1HITQx/dS6JmkX5amOodzm71A8OOINfQm+LdeeeuIy+1x5C1bwj3Lr/mESn7OoKs2tC5YF2teuq9PFYIDBIwOyfDagRAQnTFJCzLoOGPZK/L7W/b0PCluX02flVe7j1HOLUQb/adgkXTlEeTDli0GpVdshIjFQayuVe/0OxuItiC0L+4sgxP/EjnOH6BcTOGmHWOluwGLLOWAUoKNp39CSP3b+b73PdOrKoV4tB5FMBp2ZSYvEsuYFmsyjvpqNDe3ySx43ttO381RlU65u2NrOlz9GvBJyYTMfv4Q00nZk4foMGuLmTw7PTyQMbhesxKN+BBatKucW9A/Qg3GkmabtCAUKWn5nlr9M8tu6mc16mlAxDB5hzgaX3+HV6YPFKAx48Nv8w5ZkdGDVEgdxWOPaSuvN+MUAm8JgR/BWU0IrDyL5yP2Q5cyUZFvfiMWJG9hSvB7MFMd97Pb7rwqJWNXNQ2V6bBLwWMGUuXWR588gw2YJ77e2gduDDgsUmsi3ZAcY3KTeevX1w1XNZwGUB6yzw0QNYBEz5vEY5tGpaB/VqVoBC/uE80K2bgvQrlRqAlS4eWJVKY+1C6oGV3OiFyDBED0h02Sciy5EL2Ve9P72uqazlCziUKmRfuQ8yj2xYHX4P/V7QMII6Hr44XYK2k34z4WrpU7WAJYA1f6oC5MXvY5YnzwTMXmwASaNtEj8fYNJPCpAU2kQ4CLgeH45/YwLxb2wgzsQEIYKjL63DvMthYb7aaWaGnVGP0enpCVF/O6U3Vk+jgBWbvwiyzk8+W6Cjnfot6jE6Sto26VtdoD765Cpll/q5wdcx6vUFse7gi/cw5e/rULXqArcu5uBUFKdFzhuJB3Ui2RgFoiuae6PY1QlXpQ/eAs9eCtgzx4CC9FaDRgZUGM6iTKmkhz7dX4cQv4J6LyvrfgH3Hyc6dZwXBv+DV/GU+y2f/yNUn5L2GTHnDr6OfsHm4K7HuIVgcvvi7ejegIYmeJBl80S2eRuM7x5SuXJDwMr15tkFB/RkUaUiA4NWwP5B5r+1XiaHXJXU28geg15ay+HleQoAle/Eolhj5xzc7emPZR1NNPDH//TiZYU70GqJAiF3eVxex4H8binuXkDV71jkLpH6OPYO1IOEH5qkzXJFip6EzhjPh6AjMFjAxFl0TZEE3kvnKiBzzpKyeYgEvFqwzADyzJeKVw7gp8EKeFmZF0mvB74fqTe+M/wQPggF9dRDOcuoOVBUTvouYLhxAbEzKcj8UFUFv+ach0G95ahYzjkGCY8ARk+li4yMa85kc5Q0Zmw/cI9pf7NOXQ62pH0fomyeAFcFlwVcFhAt8NEDWJ/Vp4i8Z3YPfN2oBlo3rYPSxZ1PBvqxr5vUAKz/Hr/EN30mWsWBlT1rFpw7mMhLtWnXMcxZtt0qDqzGdStj8TT6EplcCCHJ/uP2PwosCVmyImH+3lTNL4uLgWpCVzAJNOOXvnVv6L9M9OaK4DUo93KHmZ7b+TsjJ/Oez36ptuoqkF4WyAwhhPMXsXgbQ1+2/jeUQ/ZsGR9iZ+8cxsbJsHwlA/K/SUjq7O/7c3iUJQiXtGE4nxCIK5owxAnvTyt/NV8H+KZRWNu6mPuYEEG9L3qpCmLhVMq9wWfLAc0cK708bTTWVW0oWgYdTlJrpXc9tHAvZKO2xOL7455iUBjl6ml37zlWHzwL/VddoG9Bn4mk7DPDW9R5RffPAvKsOJc3ea5CuzqTAZVcIYTWG/3pPRbBG80PeDfdZfi6t8EsvT3RyN6+ANXyCaLy1DhprO9FYklCqH5xQXboZfSkW7pDJDwrp70b6sSpcgyMGIYikqxnXKFSkMVGgwkLNBuKduRicIWTgmqBgcDKNeYeMD26ciIZ/LW5LDQR1NblfuDgkc85+/v1+QwSwijQU24QB4/8ztFt6zymVN6SaD1XOQHht5IHF/zq8CjQlLfai+riBBacjuqqMc0A5p1zXGYNISR2TsKD1ZtLwt3mrPl7nx6S5XTjFhYBr8zn09NTQJ9ePLJltW0trlydmDG1dfRi1ImnH6jJ84s8xyxFfv4YlJvmi5cvuzXFTs9R6NWdQ6GCtrWd0jjj44HZ8+n97aYGxvxk/t5iym5u0qHtPxlchUTAzRVCmB4r0dWGywKJFvjoAayb955g/9EzOHrqIkgWPZMULeSP1l/WQYsvaiFXzo/cxcFJqzU1ACs+QYOqzQZYlYWwbMlC2LFykrFn/5y/ie/HLLIqC+F3nb7C/wZ0EEeULICl1cBtaAuxjKBUImExJUpMyRzKXcshP7VP/JnP7gXttE0QJCEArQMP47IuVCwzP1dtdPYo5iQLu9SkpQUyBYD1M4u3byUA1hAO2bM75+UrLW2fnG7y9XT1ehavXslgkBsQ4h2CYO8gcGWCcJuhmYKs7Vdnj6KYn4ty0lhbz5pyc6OuYXH0LbHoCM8KGDdmpFnV+OXHkRaftgMNcaj6aleSbm71bYL6an9rup+kzEVtCNoGUbLtWgEhOLTtT+ib94D+a3POoiu6ULQKpABaJVVuHPT72q52P5RKLgDLtpm4skYO3SNaJ4oBrmdPPHj6SjKFsU/vQTWPhgzy+YtDM8a2BCrv61n8ut9x40FbsQgr06DqdLnIZWTbqKwvrdUBM2bLUVxzGf2i3u8Bruv+Eww1k6dC0GpkmDHX3Mt/QB8D8rxLqPhgM4OIOxRkKtyGg28Nx/d3EoJ3aZIEOJMJqDGDA/OBBRxcnCQHJ818mcwUqb0EFOvEIWt+6+ePlLw4UQ6J0y6qTzGAfUdgn5kBLEseLBPnmm3Wc6y0RivDhs0MAgPNwSsvLx69ewpG7itb5fBRBhcuMagWdxgd3s4Tq3PlakI7cGoSdYrDW6A4SL2kT2XpgsPZ+mBgXwP8/GxtPfny5J1m0jR6nxFPtykTzAEs5ZaFkEsSXeg6D4bh88TzigvAcs48uLS4LGCNBT56AMs0SJ1Oj7/OXce+I2dw9vJt8HzihsowMtSuWhZtmtVBg1oVoSTuAZ+opAZgEbO07DEWT14E4tSuRUYgy1K27z+J6T9vRoeWDTBpeA/jz+GR0ajXdgjy+3vjyNa5yVp3+ORlOPb3ZcyfOBDNGlYXyyQHYJEfLbONxK+g4T/JNSCLCIZ6Uk8zckVtj5HganxhVnzV2zuYGnlFvNbYLS82+jT+RFfExzXszABgLVzMmmXpGzGUQ7aP0AMrhtdj1eUQ/BkegiCfIITnopxzjqyqM3nbopDc+d4YP4Wfw9ZYmpV0jldN9J06zuh9YZKE2TshZLcyBsLGQfo/35CkxoE8X6GK0ttGTYnFA7hY1AjYLdYtGBWL678egNTj1PTj8fgA9Ao9KZZt4pYXGz7yPc8FYNm2bOICZbi52BztOOcGGLII6Nubh1fOd+9LwQFQT/lOVC7k8kXCNJom3rZWzUvLDAa8HHMcAQzN4pU7fwiKDbKCNMeRhgGQzIzzFiWOf2hYP+Q1SNA8iW79582h7/x+zq85C0gmQEDtBqjVQNdOPDw8Eu0XcJJFwHF6yPetyaNwa8dJt6MfM7i7mgJjWfIIKD/kwyFwN5nw6lwWWokHmuW05anPoUATATI7aJwuTmLBkfjXd1J9CgdWnWj3zAxgXb7K4OAhOvfFivLo9q3ja8raW4pkQSTgVVCwOXhFMgv36s7DXZrm1FqlAO7ek2HnbhZ59I8xPLyvWJPP6Q3NDJoh2PSDYvtiKP79Qyy3N9tgnMvSBsMGc8jhaTuAllJXp86UwyDBrCaMNUAhWa+K39dDcWSbWF3/dTfom3c3/u0CsGxYAK6iLgs4aIFMA2BJ7UAAlT9OnDd6Zj169kr8KZuHO5o2rI42TeugXOkiDpru46tuDYC1eM0e/LrlIIb2bYe+XZKmz+40YApu//cMK+cMR93qNO7bpHvrsvGo8FlRM+NERcegUfvh4AUB/+5bAjIPJkkJwHL78WvIDDR9UmoAlmX6az5fUWjGmhMXkzZfGWJR/RU9+CnA4H7+b+FmSmfz8U3rJ9PjzAhgDR/Mgbjgf+gSzmtwThOECwnBuKAJwUP9m+QyoL93GLkZNaqpfVDDzRc11L4opciBeq/24omBsto3dy+IVd71nW6O70JP4lh8gKh3tXcDtFkwHWzgc/GaZvwq8P6Fnd42UVgpYCdCOMqxQ66dyNMSpZX2AWYGgUeBFzSLIsvzCJu3HYZ2A6BvZB4euC3mIUZGUBL5jh7FsDBX2vGNpYkBLZS6ACzbrXx3FYvop/QQGsQCN9Uwgi/9e/NGT1BZXCzcRkjC99VuSFj0u+2NJVNDfv1fXNhWATqGrvkSXXl4lU37w3hYuAy/LE8EsMpqTqNHVFJeL65oWWj/t9ChsUbeZfDfJgo2ZCskoMwAx4GmV38xeHmU6vWpxqPIN2lvN1uNcWsZi9iXSUMG3XwEFOvAwcMBruuLU+TgaJAFqk4ygPBsEcnMAFZoKLB0JUVQyDf4caMNaeEsnGS64xNkWLuBQViY+ZwSr00CXrm52f/uIgWV5wc1MGubUIYQ6hCpKFdNhvzGWfHShhzTcEddB6NHGODuxIS6cxfKERtLW7bMFC3/+wCUO5eKBYj3FfHCIuICsGzdMVzlXRaw3wKZEsCSmuP+oxdGr6zDJy+AACkmKZTfD62+rG0MMfTNbd8hwn6zZ0xNawCsiKi3aPrtT+B53ghSVa2QmNpaEAQsXb8PKzf9juKF82Lv2mmQSZgkTRkMC+f3w6/zR8LPO9GmJCxx2KRlOHPpNrq0bYyxg83DW1IEsIa3hiwhTjSUNFWtpfXYZ/ehmmueNVE7dD64EslnGGz0+gD+00eJalbmrocWWezjosmYmfw0W80UANYSFm8kKcSd/fXQWSvjpSEGF7QhuBAfbPz/hYHunda24S/PguoqH9R080V1lS+KKJJ6Vh2Of4G+oX+ZqfwzTyuUUib1/rS23eTKtQw6hKvaMPGnfb7NUHflfLAPbojXtIPngCtVyZFmUqz7deBB3NBFmP1+IW875JN72N1e+YCdCJeAYg+W7oFn8z4w1G9lpvOX6FuYHXVNvPZ9tjIYl7OK3e1+CBVdAJbtsxB1n8H9DeZk2f+4y5AgE4wger/evDEUyFbvZ2t7olvwC66EDjMrLuUxslaPPeVevZbh17XUA21MVE94aWhGYj5HbmjHroDg4RjdhCZKhmuzaTusSkD1qY4DWP9tZhApCU0s2p6Hd5UPD8Ai64usM6nkbcQh/xf2Ax0mXZemsDDEUyCl2kQO8neha5kZwCLjt+TB6tebQ15/x236vnuJ8Fqu3SBDRIT5fObJI6BnNx5qlePtz39HqTAkbADyGR7QZ/GQueBK0kyl5AfVnB/APqdlluRajpeKUsYQP2eS2v+8jEWkxItwyPccvHLRscqv/QPl6uliXw0V60DXL5FOxQVg2bM7u+q4LGCfBTI9gGUyi97A4fSFm9h/7Az+PX8T5G8iBISpUbm0kfidEIyrSZqPTCrWAFhk6CdPXwMJ+TNwHD4rUdDIIfbw6SvoY2WdAAAgAElEQVQEhUSAkLdv/mUsihRMyt0yf+VOrN9xBAqFHBXLFIVSoQDhKIuJjTeS6m9cPAbubuaE6SkCWKM7QhYdKc5EwqztEDyTptY1PtjmDQb79L5YlitTDdpBlKDZcjrnvbmOn9/cFC+3zlIIy3LXy6SznnmGlRkArEVLWERJAawfOeTI4fiLoKOzTDyqiGcV8bAi/ErB0k/dViovLM+G6mof1FT7obraG3mtBGeaBR7ELQm4U88tD7b5mIf+WtmFFIvVfr0Hz/UUhDvt3wYlNy+H/PIp+tKcTMixo+2a6vcNPYXD8S/N1N3J1wk5TCQudjTUNOggbmspKPbXxiMo3bAbDHXNPWcnR17C6rc0a9KEnFUwIFsZO1r8cKq4ACzb54LwuxCScW0kBQGeKYAH7155cucW0LcXjxwTvjEPrX3Ps9faXsgiQvB66l94rqYfsLyKxqFE3/RJoPL0GQmDosBS0yzH0PjxbGP3BVYB7aglIF7bzpAL41nwemrjyqM5qBzc46/MZKGLpjrLDzUgi5N4f5wxZpOOx7tYhF5J7Ke7X6LXVZZ3/GCOtnN5mhx6iWdM1fEGKN456WR2AGvnLgZ3JcDgF4151KmVdgAmAa9+XcuYfWwj85cvrwCStEDppGPSb3tY3LkrQ/s381A9gfI0JhcK7zamE2Rv6PNueu4diHP3wYTR708OY+u6M5HLm+r178PBPw99R2Me3oB6EeXP5Ip8Bu2In43FXQCWrdZ2lXdZwH4LfDIAltREb6JjcegkCTE8i3sPaQhJFnc1Lh1eab81P/Ca1gJYZBjELqs2H8TVWw8RGxePXF6expDBAd1aJsuNZRo64bnasucEHjx5CY7j4e+XG181rI5enZpBlQz/WIoA1oRukIUHixZNmLoJQu6kb2zstdNQrZYQPspk0ExeB947ZV/129pwNA2isfQeMgXu5e8MVpZ6KucPfIozdfcyA4D18y8sIqPoQWTID5zIP5Nek8dBwB1dJC5qgnFRE2L8P4qn4bpW9UMAcr7JCd9gHzTM5Yd+lb3hxbxj1LVKAS10SROCNsGUkJz8QjykSLihs6TEi62IFWh6bBI27LV3LRQnaXY+fdu+0DehCSac1TbRMzHyIta+pSA7uRZQoAcYBz4dW4ZFbtn7D5rU6AhDraZmXR8cdhp74p6I137OVQftPZxzWHemjWzR5QKwbLEWLRt8jsHTA/Q5R45+p9wB/t2WRLwrhgT0ABtKw20Txq+C4GBoreL3Dbj875eIZ/OJnSnakYN3pfQB7+/9x2DHb3TcpYvr0et2V8giQ6HrMw6Gys4LW7YMoyvVg0OO0vaPk4A2BLwxCSMXUH0ahw/xdeX5IQZBZxnkbyIgz+ccZE4kmb88XQ7JNwhUGWeA8p1Tb2YHsC5eZnDoiJQHS0C3bx337EtuFyFZktesTwpeFSwgoFsXzowPyr5diNY6f5HBkWMMasYdwDdvE0EgIoYq9aDrPZ4WFAS4f08/ahEwfpTfn8iSlcHI4c61w/pNLJ49p+9oPbtxKFxIAmAFvYB6ah+xb4J3HiRMSSSXdwFYjq4IV32XBay3wCcJYEnN8/jZa6NX1sHj54xk5Hf/Tkq2a705XSVttUBKAJZ6Sm8wwdRjQTNxNXi/gmbqCSmsenJPkK+74oOvzlfQdTEPU0iuTxUDdiJUEn6zxacxGrg5QNBg68Bd5W22QGYAsBYvZREh8YAYMoiDl5f9hxtrjKgXeFzTheGSNhQX4oNwRRuKWMG2r5ZyyFCE84LyPz/4hvrBN8QXSp0S5KWWpLF2AIcxDqFj8DGc0QSJwymn9MKRPDQTqTXjTKkMGX9BCV8UGcuLgj2gOL4Tin1rxGr6xt9A/80AR5pKse6Kt3cwXZI8QiVj8LRAIvGrvTIu4gI2xPwnVp974jK6l2sDrrp5UoouISfwd8Jrsdwm70Zo5E6BBHvbz8h6LgDLPuvzeuDyTBacJBTrvlKGFwq6Bw2P/RF5Yu6IDWiGzgNfooJ9DZJaPA9+zEhcwGIzHVISbvuVW1fz+k0Z9h2gaEqFcgI65DwAWdgrp9/zT/YxCLlAwYYCTQX4N7D/kG0Z+pm1kICyTuDVss5ytpWK+o+BOifg5u1876DLM1joJRl8q47noMia+UncyQykFw8WoTdYt5ExSzRD2i9SmEfXzjxYJwKSRO/rQBlWrWFRQHsPP0YOEhcb7+0PzRR6FpNFR8BtdCfx9xiZJ6b47kPuXAJ+/N7+eyu51b1tJ4P/HtD7t1MHHqVLStZz3Fu4j6A8k4LKHQk/HzCqcgFYtu0XrtIuCzhigU8ewDIZj3gLnbtyx4yY3BHDuupaZ4EUAaxZ34N5STMFacYsB5+/mJlSxV/7oPhtuXhNUCihmb4FQrbU+XMsPSK6eRTH7Fy1rOu0q1SGWCAzAFiW/AqDB3HI5WQAK0Ew4LImDBcI6bomBDe04dDCtpc8JRhUVOVGDUK6rvZDsXhvrFmlgl6CexG+nB8G2p+FSLqIbmrD8ZXEK5L8ts67Ib50tzHXejIr87UhDtVe7RJ/8WPdcSVfB8gvnIByI82aaqjWELpeY9Jkbe+PfYpB4f+Kur1YNW7loy/k9jS6NPoWZkm4rYZeuIsxxZvDUMk8HNoy1PBQnuaooEw+HNuefmREHReAZb/VXxxm8PofekDTKwScVMiAd04HPaImoKzmjNiAru9EGCrVtbtB9s5FBK5+gCdqmt3QsyiH0n3TFriXdvjiJQaHJCTo1aryaNFYA/LO4GwJPs/g6X5qX69yAkp0sW3/lfbpxTEGr09RfX51eRRq7nyAyNl2cLY+yzDKymM5qLJ/GgAWsWUSHqw+HPJKQtsctTehNiCeV4RcXSok62GXjjwYJ4NXpA3iSUWy/rEGLWYGm3sOE1CIgENEmIDHUM8cKHbrtbwoFuVejbx5BfT7zv57Kzmb7d3P4sYtaoO2rThUKG++V1nyBCYsOWTcS1wAlqOr0FXfZQHrLeACsKy3latkGlggJQBLNX8o2Cd3xRY1/1sEvijlbZElxEM9oYsxa5JJSCpbktLWGrmoDUbboKNiUR/WDdfydbSmqqtMBlkgMwBYSTywLAhC7TFtDK/HBW2wkb/qvCYYNy3Iwq3RqQaLam7eRrCqhtrbSLou3ld6YOVqBmHh9BDFMEDvHhzy5XPeIZSQuRNSd5OUVHjipH9ra7r/3jKEX4vwbJnE5N3F3r0M1dKx4nWuZCVoh8xxuL3kFFzShqBNEA2TLCjPirN5zbMF2trwvrhn+CHsH7Fah7vPsMS/CbgKdcxUVX+1C68MNCHGxbztrOYns7VP6VXeBWDZb2ljSNoMlsYNAniZB7gXnaizw5u5qJZA16qu8xAYPk+akdjaHqhWTMSVJ70Qw9IPUIXb8vCtnn4gzL9nGPwpAYHq1ubRpFHatP/2mQx3VtLTvltuARVH2H/IvreGxZtH9EBdvDOHXBWct+9aO48ZXe7KLBY6CX+klFsss4cQEtunJQ9WeASDdRtkINxXUilZkkfHdjzYNGTXWLeRxfMXMowI7QVfTpIVeNgC8MUTM52zt86D7CMmua+qjrU5Z6NYUeeHUv5xhMGly3TAXzXlUaOa+V5BvMGIV5hJEsiHcy8fF4CV0ZuEq/1PygIuAOuTmu4Pb7ApAlg//wT2wXWxw9rBs8GVqiz+rdi7GooTv4l/k+xBmpnbbPqiWvrlNkRLuH8O+n2NSqrcH56RXD0yWiBTAFjLWERIMtzY44EVzmtwNiEIlwnpuiYE9yUZNa1dKtkZJaqpvFHdzQ81VT6ooErZI4dwxxAOGal82ZhHbSeTyD41RKPuq31m7fyS+3O0zVLY2mElW+5Uwit0C/lT/K2hmz82+zRJ8lWXz1MQmgmrHWorpcrEK+6GhHDdnWFR3kEvKEsQvvbLUOzxrAuuXE2zbhR+vtnMA+9xga5wk1FOnTQZcBordQFYjhn44XYW4TfoYTVLfgFnWCAkVIav365Cg7gdYgP6Fj2g/8o8e7C1rTPRERDGDsVZj+2SKgKqTuKgSHSuSBc5cZLB6bN0D2vckMfnddIGwOJ0wMUJkvtLJqDGdA6MnbfcxYksOC2dq0o/cVA72Ws3XSbBwUauzmahlfBHVhrFQZ3z0/HAsuTBKl5MQNfO9gOjpukg4NWadTLEJ5iDV2U+E9CuDQfysSothQDLBGDu/GYmKiecEJvStR8IQ8O2xr/lp/+AchsNQb7o9hV2eY4E6WOHbxy3gXR8pv6YrjVswKN+XfO9gniDEa8wk2hG/QK+YEkXgJWWC8Wl22UBCwu4ACzXkshQC6QIYC0bDxJ6YBLtwKniwYx5EwHV+C6QcfTBpes6HIbazWway9DwM9gVSx9CA7OVwfiPPL28TQb4yApnBgBryTIW4RIAi/A3EB6H98lLQwwuaENwIT4xQ+BzA82mZ+0U5mbUqKH2RQ03X2NYYAlFDlPE0HtVXL4qw8FD5rEDJYrx6NI5bQ5/w8PPYmcsDR0m4X7n87aDwgHGYqKP6DVJO48iWJyrLmRvwuE2prN4XcjqiYS5NNTQWttmVDmSVZFkVzRJwahYXFDVAFe6ingtnjeg2Mst4t8KMHhe0DHurYwar7RdF4Dl2CzEBQI3F5sjKiX6c9hymEHZlzvRPGaV2MDTYt/Ad7h93HDyI9sQdDQWj9Tfi/qyFRJQJp05nP44zODSFXoS/7opj+oWXhWOWdS8tiXYUu5HAzzsoNhMCJfh+jy6/7IqAdWnOvfA7sxxp6Wua3NYaCT8kZVGclC/e3Z+Ch5YIaHAspX0niU5kcaNNjjEPxkWKsPajUwS8Kp8OR5tW/EO6bZ2LTx4KMPWHSw+j92FljGUEsRQvQl0PX8yqlH8sQmKQ5tFlSc8uuNY1l6oUolHSyeH0xKgmwDeJiHZHknWR7Pnz9KxIB7cJjGdT1whhNbOuqucywKOW8AFYDluQ5cGByyQEoClXD0N8muUM4ZkJCGZSYgo182C/PIpsVXOrwC043+FrZ+KjsW/xHehVI8/mwWX8rV3YDSuqmlpgcwAYP2ynEVYOP3S+cNAA7wtnP4e6t8YPatIdkDyfzAXb7NZ88k9UF1tCgn0QSH5u3RNNmgi3hgrfmUJB7MontkJ75Xz0mhbdifQEIear3bDAArqzfCqgZ5ZS9rQc/Oiy6JvY2bUVfHigGxlMIEA1RaZjUiB+OXHkS5v7XaPhlY0CDwKSMjpWZ7HK30lM8LtAEMsarzaLVbKw2bB5Uywx7kALMcXEAlzI+FuJslVXoBfCx4XFxxFy5D54vWr6saI7jwmSRhNqj0QBLiN74qrmvF4Iy8rFi/YnEceC4+GVHU5WMCS16ZNKw4VLXhtHGzCrPr9DQwI+bpJirbj4F3V9rC/sBsyPNpOASzPEgJKO5nzx5njTktd1+ax0EienSQsk4RnEvkUACwyTkserP59OPjbyYMVFCLD+o0MNBpzz6tKFXm0ap4+4BUZk1Ynw4zZLAprb+D7SJqASeoRrdy6CPIzh8XltSfbMJzP0hLJgUuOrkECdBPA2yRVKvNo+bU5gKXcOA/yC8fFMiRxlKHOVy4PLEeN76rvsoANFnABWDYYy1XU+RZI0QNrwxywF2nYj7bHSHA1vjASu6tn0a+5xgfgDzPBfVbV5s7pBA6lXm6DRqBfNE/5tzJ6p7jkw7NAZgCwlq6QIzSM2vb7AXqEeEbi0juwioBWUZKwVmtnoagim5G3qqabL2qpfeHDOhafQ15ql68yz0ZEeDAG9OPg4237QczacZBykyMvYfXbe2KVXIwaF/O1h9rOnOxToi7j12jKp0e8LIm3JRG3n9pDFvNGbCth1nYInh8PwXm5B2sQoaJf5e8YyiNH0YrieG7owvF14B/i32VVXjjq55zsjrbMqbPLugAsxy0acYfBg82S+CBGAOEV4u+eh9dmCd+MsjrWes1Gm1Y8Kpa33vOS/e8amMXT8U/WA2agcJXxBiizOt5/WzSkmlnMFmVWlH15nMEriRdHnjo8Craw3namJp4fZBB4hs5R3kY88n9hux4ruvzBF3EBWMCOXQzuSYDRL5vwqF3T9vVAsv9t2MQYwSOpVK/K4+tmtutzdPEQz/S34YTIXRJFIZMhYclhCHI5lMvHQ36bRmSs85yOe2610agBj3pOBsNv3pZhzz4KGpf9TEB7izBFSwoTXcueMDTr4gKwHF0IrvouC9hgAReAZYOxXEWdb4EUPbAsvrjovh0CQ93mUM0bDPbpfbEjXLHy0A6nX4tt7WGf0FM4Ev9SrPaTZ0UM8SxvqxpX+XSwQGYAsBb/yuAeH4pg3xAEeQciKk8I4iFJ7WeFHclxppQiB6qrfVHz3b8crMqKmtYX2biFwZOn5uQXLb/mUKVy2oJXpIdRnBZVX+0C4Y0yyegclfBj9kRCV1tlcNhp7Il7Ilb7OVcdtPcoavxbPb0fmNfPxN80Y1eAz5f428cgza4tx62cFKw8hjIoU5CGEJ6MD0D30JPiUOq7+WOrT5OPYWjv7aMLwHJ8CgUeIKCAVhKW5V+PR+ESt0GSqJjkpaIEluRaaXRMJITOpUtZd8BVrp2OoJvZ8cCNelVk8RdQfnD6h8Ct38Ti2XN6WO/ZjUPhQmm3l4XfkuHhVnoIzlZEQJl+to/79nIWMS9ov0v14JCjdNr12/FVlXYari9gkRBKbVHxfxzc3n1M+VQ8sCyzaRYrJqCbjTxYL1/JsGkzC53efK5q1+TwZZOMWVv7f2dx7YYMo0O7Ihf3mj6P33FLWXJO/ZxrJV4pShjBNgK6OVMePGSwdQd990nOxooTu6DY+6vYrKFBa+g6DHIBWM6cCJculwVSsYALwHItkQy1QEoAluK3FVD8tVfsm77DQPBefmaZSMgbtXb8anB5Ctg9BsKBRbiwTJJZPBTsNsgHXPFjBLAICHNZE4YLmiBjOODV+HAYWNsOMnIZA5I5r4bKGzXc/FBN5YOsjCLNZurMOQbH/zQHr8qV5dGujXNfFN83gAVvbmDhmxtikawyhTG8Nxtje9r7b0OO45+EQFHXFp/GaOCWSEijWjwKxFPEJNofZoD7rFqa2dbZinufXYSj/tRjdIOsNJoUoP233N++yVIES3LXdXY30l2fC8ByjsmDzjB4dlCSXVQpoHr/F8gyo5fYQCTrh5ne24x/E0Lnrp15FC3y/r1AlhAH9chvcF05G5EKCqjm/5JH3obpt4+YBrFyNYvAIAp+9OvNIa9/2h3WE8JkuD5fwl3lJqD6ZNv2fQIwXhjHQuBpv6tOMEDh4Zy5/9i03FgoR3wI7XWF4Qa4+yT+/akAWI7yYD1/zmDTNgYGi29mjRoIqFfXtvXpzPVz9ZoMB/5g0TVqCipo/hZVmzKguo3qANnbKPH6VO9deMvmQtvWHCqUc+59TIBuAnibpEB+Ab17mtuGRIeoNtCMxYTehNCcuDiwnLkqXLpcFni/BVwAlmuFZKgFUgKw5PvXQHlsp9g3favvwJ47BiaMfp0x1PwSuu4jHOp/DK9D6ZfbwUs4d67l7QAfuWMhWA51ylU5WQt8DABWDK/HeWM4YOK/u7pIMz4na6ZWBRaV1LlRQ+VjJF2vosoNdTpljQsIIKSu5rxXuXPx+L4/D9acy92aodhdJp7XG72w3kjCKQdlL4uxOWgmUmuVfxH4u3EeTHLUrznKvsu6qFo3G+xl6qGk6z4ShppfWKs6w8tNODYL60r4if2YJS+G7nlri3+vfHsH0yKviH/3zVYak3N+PABdSgZ2AVjOWXokY97laSx4SShRoaZxKPJbc7GBBJk7JvgeEv8m+0CvHhzy50354Cj/cw+YPRvxd9aDgCT0t+IIA9wyINHvYovsr9Ykz3DEwkbwaTwLgaPgU5VxBihtoCKMew3cXCIh7fYUUGVMxoEMjtjDGXVvLJIjPphqKj/UgCzvtr5PBcAio7fkwRrQx4A8eVK3MAGviGc1Z4EfE68r4n2VkUJ4QQk/aIPYrfg6Zo3YFcIrpft2KNy/p89kQQB+ynMKAmTo0olDieLOBbCCgoAVq+l95+MDDOpvjvix969CtWS02E++WHlohs93AVgZuYhcbX9yFsj0AJZOp8f1u4/x+NkrRMfEw8szKzq2avjJTfSHOuAUPbAOb4Hi4Eax24KXL2QR9O1FUCihnbYJfHYvh4fWIfgYzmqCRD1Tc1ZH72ylHNbrUuBcC3yIAFY4r8E54l2VEIyLmhA80L+RQKHWjd9DJkcV4l3l7mcErSoqc4F4XaW3xMfLsHQFg9g4euhSyIFBAzjkfJeuPD37RHirCH+VSVSy/7N3HtBRVF0c/+9MNrtphBDS6L1L7wIqRVFBekd6RxGUJkUFURAQRem99/pJEUFAakIvoYTeQxICCenZ3dnvvA3Z2U02ZDfZnvvO4Wh237x33+++mZ35z3338Qgp0hF+vJtJZtR6vBnPVUnaY1gSc5bMnBW2DIAtB0gvinYDofiws0nt27Lywh3fY1rNkloTRkhLYlzhtM0uWPnp5TkseB2q/Ts3SzFtOc6MfZOAZT5vPNjL4dkx8XojK6BGowdN9XYpHVPoCNvzQFtcXdUY0FdAYIDhh0f51P6IeFER19zEhzy23Ist+7JFmTWHR1y8eF37ZpQK3l7mffDNOK4rf/CIfyr2yZKvsyTsxpaIEAnu7hDfGvhWEVD+c+tHrxlrr6XrXfrdBYnibRqqfaWExxvhJi8JWJnyYDUX8G7Dt88Llg5g3YbM4pWld+M0ZU5Mm8GjRNwFDHopvpRWFS8HxZCpkH/bVdtUDFcQ0wLSfrP79VahRHHjzylj7Hn5SoLf/xTPO5/8aozKsOyZe3Yf8h8HaZvTbCT13TISsIwBTHWIgJkIOLWAtXXPUfy5fAeiX73W4ipfuih2LP9RD99Xk/9E2N3H+GPaCJQrlYO9js3kjLzYTJYC1j+bId0pvonJyEbxSU8oWvc2C7KVr29g0ksxQSRLgr01sKVZ2qZGzEfAHgSsR8o4BKdEICTxuea/D5RxJg9QlixDYFQAAiMK4YuGfni/UAFweo+LJjeZ6wPYwykLm3+gk2+FNdqlk4DKRua8ybURGRpQqAXNjoThOrsw9vIqj+m+DUzqqvCDVXr1HxTvBekbgVB6cAtYQtb0omjWHoqOQ01q35aV/7dqDIa+X1lrQgeXQvijiPi2+usXJ7E5/rb2+1m+DdHdq5wtTTZL3yRgmQWjppGUWOD8dB5Qi2JLVWE6/OPFXbYu9NmEDQferNd607WbmxqD+gnw9dV/gOTvXtPk0LrkNg0vpGI0YOGmAop/ZBsBZtp0F72cPxPHKyEzfTWySdDvbOMReVZkWvwTASzHmLHl7nYeEWdyfryx/ThKPRaNxqLS0ku1EUp4FE77Ky8JWBnzYJUrK2iW9WZVbt3mwDYx0N1NmNVlOw3Wqmn8fLT0PFm3kcfjsHj8GPGZXlcpY/+AbOYI7WfpOfnYB8MGKxGof1nKtZmJicCM2WIElpsb8O0Y/QgsSWw03MaLoprawwtJs3eQgJVr+tQAETCegNMKWLMXbcbKTfu1JDhOAkFQw5CANX/lTixYvRsDun+KUYM6GU+PauaaQJZLCA/vhOvWBQbbV3t6I/mndVC7ynPdP2sgQpmImk+2iHMFElwp2gU+vHnaN4uR1AhsIWDdUsRoIqvSlgRG4LmOmGKsSwJ4N80OgfXdAvBwT2Eob4s5i4wN/ze2r5zWO3SEw7Hj+lFf9eoKYG9obVk2xd3GN9En9c7Nk4Xbo5jUuG3MYoQUVH60UXs8y6F1o1h37d98yEHIVs3U/q2s/QFS+0+w5ZBN6vvsn8PQtrW4JLChiy+2FhF3GewdcQiHkp5o21zh3xQfuRczqQ97rEwClnm9EraBR/RlUSzJz91E7RhRyE2etAQhz0vjr7361whPTzUG9xfg7S2KWK5rZkNy+giOeu2BWiLm6qv2pRIeNng/yMT5738UH0gZuanfmbZxRk5os90D2S6C6cWvhhpluxofgZYx4qjyIBW8S5s32iQn47LVMZf/4JGgE9FW9UslPN/Mp7wkYJmSB+vGTQ6bt+mLV2wzhnafCahuwo6i1vD50eMcDh/hMDGyC3xUkdouFa37QPqX+BLqmqwhVhb4SfP911+pkF/n2mMOOzNeLxivKZMzXC/Uar1ljazfxAX/oFBBSj1iDh9QG0TAGAJOKWCFXLyBfqN+AROtOrf+AD07tECRQv6o3ry/QQHryvW76DbsR1StVBobF0w2hhvVMROBLAWs43vhuuF3g72k70hoJhM0zXz87C9cSY3WNvlbwXfR2bOsObugtnJJwNICFsuDFpr6EiFvxCr231c6OZiMNb8Y74l6bgGoLw9Cfbk/SriIiU8yJhO2BwHrzl0Oa9brP5gWCmLRFSpwVsx7ZYivoFbjvac7cU8pRtG29yiFP/2aGOWOO4pYzfHppaQ0H04Ubq/9m79+DrI/v9X+rSpfHSkjZxnVtj1UevZTH9Tp8b44Pt4DJ4qKL2Fah+/BhZQX2u93BX6COnJ/ezA9VzaQgJUrfJkOTngGXJ6rL/LUix8ALyFt987kUbMglKuO9IdM3Qby51djUH8Bnh5qSFKSIP+mAyIlDXHV/QdtNVl+NWrZKH9Tcgrw8y86uaRcgUnjLS9gxd6V4NoS8QLK8jWxvE3GFJUCCJmsHxVXb5oSvOX27jDGLJvWufInj/gnOlGCX6jgWTRN0MtLAhYbrzF5sK5ek2DbDl5v6S/bhIHtJFqxgm1fTBmaSPceSLBqDY++Lyeicsop8Te5RHnwD8K0f59y/ww7vNN2Np0wVgm5Bd4zT/3JBUodrXnSt0q4Zjj33MZ2giQuRmtX0vRNCCptA4XepmcldU4EbEfAKQUstiTw0PHz+GZIZ/Tr+omWbuX3+xgUsNgSwybtRiC/tydO7p5nO2/kwZ6zFLBC/oXrqhmZiKSvNQVc3mwAACAASURBVDc3qrkxlzEz5qK22Y/ci2KFfzNzd0Pt5YKAuQUstkTtYmoUQlIiEZwYjnMpkYhXG/eAoTuMstJ8byKsgtBIHvjWHE0ZBazBA1QoXMh2b9Vfx0nw50IOKcnig4FMrsaXQwXks3COGGOnwt6EhxgUdUSv+rHC7VBa6p1tEyxyrsPzv7X16sj8sStI/E3IKpdFtg3bSQXpmPbwHy4uueAhwaMS4tLqd59uxwOFuMz1eOF2KGUENzsZXpZmkIBlfg9dXcAjTmcJcWDqIVRJTot0SB34HZQ103av3Pc3h+Az+oK3n58aA/sK8Dq3B9L1vyNUPhnPXcVco0GNBZRsZZuH5tjXEvz6uygkeXmqMeZr4yOhckpamQicmaIjCkrUaPCzCsakN4x7IMHVhaLNtswfltPxm/u4q/N4xD0Wf6feGa6CV7G8KWBt2sLh+k3xHGzZQkDDBuL5xcSrrdv13z4x8ap7FwFsyaE9FrYz4o/TXdA8bg0+iluZpYl/e/XDIc/PNd+zyCgWIWXuwpYQsqWE6WXs10p4Ztj9U/bjAPDPHmrrJE9chMBqVcxtCrVHBIhAFgScUsB6r/1XiImNx+k9C+DuJtMOPSsBS61Wo3rzAZp6l/9dTpPFigSyFLAuHIfr0qmZLEkd/hOUVcy/i1aY4hWaPt2t7U8KTrPUyI3TfyttRTTUVQYCuRWwktRKnE2OQjBLup4cgUspL5AC0x5k2C1jJWkB1JMHoIFbIBrIg5CfMz6ZyuJlPJ4+09nOfYAKRWwkYAkqYMkK/e3lGfJePQSUKW1fN7nNnu7CTYX4trO5WxGsDmie7TmyJ+EBBkeJ23J/7F4My/zFB2v2BpW9SU0vao98SJq9Pdt27aWC28jPUGbQJ3jpLr6Gvlq0Kwq8Wf5c4eF6xKkVWnOvFeuG/Jz4m2gv4zDVDhKwTCWWff0XVzjc0onElKhVaBzfEa7qGCh6jISi0afaRnbs5nDpcoaozUJqfBU5BJLH9zTLBwWJOM/eGaqCVwnbCPXpO5ylG1/QV40Rw0277mdPz3CNcz/xSH0tXu91d857W5vPjnN4sEdn+WEtNcp2to7NOR2rpY+7Mp9H/CMdAWuYCl5vEnjntQgsJiAzITm9lC8roMebPFjsvGTnp27hOaBndwGlS9nX73rGOcNe8OW/H4x+r7Jexr/ZeyzOun+syWHHctlZorAk7iyZe3ph1wt23dAtst/HgA+7pP0o5cvpCGicJvJTIQJEwPIEnFLAqtasP3zye+Hodv0laFkJWAwzO8bFhcf5A0ssT5160BLIUsAKPQPX+RP1SKnKVUPKqNkWo1f38VY8VSVo21/q/wE+cS9usf6oYdMImCpgxQkKnNYsB0zbITA0NRpKE/cIZLsBVnP1TROs5IGoKw8E2zUwp2XJMh5PdAWs/ioUKWybB7u9+zmEnNW/0W3SWEDzD+zvJvd40jN0jRCTSjP++4JaoZqs4FtdsTruJiZEB2vrfO5ZDjMKNtQ7xn1oC72/ExcezKl7rXacRJECl92rIP13Gxr3+QShAWJetX8KtUZlV1+kqlUo+XCtnk1PS/Sxmo2W7IgELPPTVQtpydx1BZcSyRtQJnUpFG36QdGym7ZTlidm0zYON26I149Cirv4+sUAvOAb4JLHz9q6Lm5q1PleZZFICWMoPH4qwdLlYjQKe2EwaIB1xKAbK3i8ChMfhMt2UcGvZvbX+1sbeLzQyUlWqo2AwGx2mjOGhSPXYRFpLDItveiKonlNwHoeASxYrLMsVpom5ly4yGG3jvDJWLm4AL26CyhRwv5+1zPOx71/c7h5+hUmR3bMcqou85mJm/I6mrx733xlmfN44RIXhIubnsNQqgfXFdPhcvaw1s7UPuPg/4mYf9KRzzWynQg4AgGnFLDebfMFUlJScWbfYk0erPSSlYD14PFzfPr5eBQJ8sOBjY6T/8QRJlh2NmYlYPFhlyH7XdxOl7WTPGEhhKJlsmsyx99Pe3kOC3W2nO/oURpz/eiNSo6BmvnA7ASsF0IyTiWHIyQpLel6mCLGRLkKkINHTXlB1NckXQ9CbbkfZDBfIigW8fREJ4/H4P4qFLaBgHXtBofNW/XFq1IlBfSx423a24bvw9kUMblrxuWAhqbbrzGXMCdGfEs6Kn91jM5fXa+qfFxncK9faT9LnrEJgrevmWev+Zrj7obCddVMcC/S9pTv0vF9/FP6zXZcAFb7N0Nz96Ka3RtrPxY3p/Dn3XCxaBfzGWLDlkjAsgz8jJE/vDoRTeLaQ2jWCoqOQzJ1unYDh9t30q4j7WJ/x7uJu3FdPhbPXD/W1g2oJ6B0e9s9PN+7z2HVWvFax6JQeve0jj0P93F4+p+OyNdEQIlPs+/7wkweydGG8z1ZxvP232roIh6v74tMqgxWIV+pvLmEkHlrxiweiUkijxrVBFzMEBUplbKIahWKv1lqae9eDr0uwZZtPH6IaAdPQYy41rX714LLEC4tDX8/Nb4YahkBa8UaDg8eiOdtv94qlHgT7Zdui3TrQkgP79Capmg/CH5de9k7YrKPCDgNAacUsAaMnoXT565h8cxv0KjuO1pnZSVgzVqwCau2/I3WHzbEjAmDnMa5jjCQrAQsZjsX8QTck7uQPLgJuMqhaC3mdrHE2M6nROKz8H3apj0lUlwv1g28MUkrLGEQtalHIKOA9UgZh5DkSAQnhSM4JQIPlGKuH2PReUlcUFuWthyQJV6vLi0IFnVlqZJRwBrYV4WibxLRWqrPjO2+fCnB/EU8FDrR9ywB8xdDBbi7Zx8dYC07M/ZzOeUFPgnfo/fxuoDm+MAt68Sp30afxpo4MQHsT7710cergl4b8mmDwT29p/2M5bIQipS21TCz7FcTdbVzOaRHxKT0rPI3H9bFihrihhPTfRugl1d5XEuNxofP/tK2V9HVB4cKtbG7ceXEIBKwckIt+2NUKcDZaTyEVPHBuELSXATWjAeLMMhYWN6alWt4RDxOxeSIDpCrk/Cf104oJeLGFZUGqJC/rO2uK9dvcNikI9azBNbdOmcvImVPK/saUZckuL1RfAGSv5walfq//aFbmQyc+V6MrpFwatSbZvsNNbIfrWVrXFvMI/aezgvpwSp452EBK2MerIz0Za5q9Okl2DTHpqkzIiZWgjlzefSPHoeKqWcMHv59wC4kcN4oVkyNAX0sI2Ct38Qh7JZ4H9iti4CK5fWvGa4HNsNl1zKtjYrmHeE3aKSpQ6b6RIAI5JCAUwpYew6exrifFqNQYEEsmjEKpUukvZ02JGDtOXQa439aApYHa+Vv41G3hv7DTQ650mFGEnibgGVkE2arxuZAlcebECOkaNvcFPAhGrsVMlsf1FDOCUTKEhGc9BwHXz3GqcQIPFfpZNk0stkCnAx13+SvqicLQGXXAuBggSygWdizdCWPxzqJaAf0VaGYFQUshQJYtJRD1Avx5owld+3f2/pCmpEu06s2IPIw9ic+0n5WQZof/xZum2VTgyKPYG+imGh1kd/7aO1RQq++7I/x4G+c136WMmwaVO/Uy4l5FjuGvxsK6epZ4KKeZepj9gd18VNdUcAa4V0V43xq4ljSM3TTWXb5rjwIWwI/spiN1myYBCzL0b6/h0P4cfH64CY8Q71ic5H6ZVpC94wlJVWC07MP4pPHv+AlXwMXPOZoq3CuatSbYlzickuN6OIlCXb+TxSRqlVVo0Nbyzz4ZhxD4nPg0m86S7281Kg96e19x4RJcH2FaK9nETWqfmkdey3lA3O0G7qEx+u74m91pYEq5C+TdyOwMubB0mUsl6vRt7eAoADbCcc59fnMOTyaPFuOpgnrMzUhgMe4oINQQ4KyZdX4vJtlzovtO3lcvirOtfZtVaheVZ+ly8n9cF0nXutUdZvBd/SUnA6bjiMCRMBEAk4pYDEhgkVhBZ+/DqkLjzYtG6FujYoY++MilCgaiB/H9sedB09x4OgZTR1WPmlWD7MmDzURH1XPLQF7ErDYWMa9OIV18be0w2LRGixqg4p1CQhQIzT1JUI0OawicCY5Ai91hEVjrQnk3VFfHoD68kDUkweinI13YFu2gscjnSWE1o7A2raDw5VQ/Qizj1qo8W4Dy9wIGusnY+vdVcTivac79ZaGLvJ7D609Shpsov3z/Zr8Z+llW2BLTS4z3SJb9Qv4kEPaj1I//wbKhi2NNcmi9bRRV0d3QW8/9De9Kpu0xvqPW2BkTIjWjo6epTG3YGPsTLiHL6KOaT//zKMkFvq9Z1F7rdU4CViWI50SC5z/mQkoOvmGPBbA67uso9OlM0dBej8UN2Uj8ETWTmucspAaTSyUp8ZYAiFnOLDcOumlXh0Bn35snQgsllcseBIPtUpkWfd7JVzcs7b+ySEOjw6K9gY2EFCqrXXsNZapLepdW8oj9o5OBNYAFbzfRPbltRxYjH9kpATzFmVOb+DmpkbfXgICHVC8YuPavI0Hf/4/9IrJLAa95APws/8mzfSr+o6Aju0sc15kzA/a6mMBdevo98VdDYZ8wWTtqaCqWAu+U+ba4tSgPolAniTglAIW82RiUjLG/rgYR05dzNaxzRvXwi+TBkPOtrWgYlUC9iZgHUl6gp4R4sOsM+WNsapjTexMoRZwMTUKISmRCE4Mx7mUSMSrTd9hpriLF+rLAlDfPVDz32IuXiZaYtnqy1fxeKizk1L/vioUt1IE1vkLmRO8li8noEdXy9wEWorkqBcnsCX+jrb5oi6eOFm4vcGlvk2e7MRdZay27tHCbVFWml/PNOmOpZAeFHNFpbbtB+VHYsJqS40ju3bfFnUl+PhB0Wcc2MYWJ5KfoctzMcF9eqTVstfX8f1LcRlGX68KmOYkYjwJWNnNntx9H7YsGdG3xX3j80tuoNIMMcpPt3Uu4jHkP/TTfHTMcztSuQLary/IgOot1WjU0HYC+bETPA4dFoWPJo1UaN7UepEpl353QWJaujpN0Y0cMuSlG6s4vNJJjs92H/SrZT17czdzLHf09WU8Ym7rRGD1V4EtyWQlLwpYbNzTZ/FI0smD5eGeFnnF8kM5amGRZSF/hePbFz0zDeGBtBLmFZyv+dySQvTBwxIcPyGKgy2aqtG4kf41jHt4C/IZw7U2qguXgs9vaxwVO9lNBByOgNMKWOmeYALW5t1HcP7KLY2olV5cXaWoWaUsurVrBiZgUbENAXsTsNjOXe882oR4na3n9wS1Qo1sdjuzDT3H7TVZrcSZ5CgEs6TryZG4mBKFFJj2kMNuZctKvTXRVezfu25BKMjJ7RpKRgHLUHJQSwwgIlKCRUt4qHS0qvzeaUlQXR1Mt3+mTECDJ9v0dpSc5dsQ3b3KZUJX6dEGxAqp2s9Di3aFD68/R6QHt0K6Q9x9Vtm0HVI7DbOEG4xqM7uoK0WTVlC2HwS1zE3T3j1FLBo/FfNilZTmw4nC7fHLqwv4I/aKtk+WvJ4lsXeGQgKWZb0YdyMeV1fpC73VvlLCw8Bqeum2xZrdMGP5SjjrkfZwyQq7mh9yB9QSoF0bASzJtC3KP4c4nDglRjQ1byqgSSPr2XJ7M4+oC6LwUqKVgEKNs+7/zFQeygSxfvWvlXAPsAU5++qTLatkyyvTS8V+KviUz9sCVkKiBGFhEty8BURGSTSbE/jkd1zxivmW7dLMdmv+ObwlXCGm82DfXZE3wRqftMgsdg6zc9kS5dgJDocOi9eMRg0FfNg8QwTWy0jIJ/bQdq/O5wOfZWLOSUvYRW0SASIgEnB6ASt9qIKgRvSrWMQnJMHNTQZfH2/N8kIqtiVgbwIWozEs6j/sTrivBfOld1WM96lpW1AO3nucoMDp5OfaJYGhqdF6AoQxw+MhQXX3gqgj9UMdWaBmKZg351jqy4rVPB48FG/C+/ZSoWQJy95wpqYC8xbyYAlS0wvLezV0kAoB/pbt2xi/5qTO9y9DsOz1De2hTLg8V7QzpDoJ+FlUX4mH+m9EnxTvDYlEP+eZy5nDcF05XduWsvYHSO0/ISdm5fqYjDsM6jYo5C+YFnVVXl+EShKUKPNonbYqO08eleidaTn0z7710TtDAvtcG2yjBkjAsjz40G9u4bVLJW1HfjXUKNs180sGt9HtIUmIw23ZYDyUddXWf86rcUmedq6xU65LRwGVKlrmgfNtNP7ay+HsefFhlC0fZNEb1irPjnF4sFfs37+2GmU6GX5Zkxojwbnp4n0p56JG/Z9Me7FjrXFZu58bK3m8uqkjYPVVwadC3hawrO0Da/THXrJNm+6CQZGjUDpV3EGY9X3CvS12eX+lMaNFMwGN37XMeRxylgNbRphe6tQS0NrA7qHuQ1voIcm/5YQ1EFEfRIAIsPsKNUsYRYUI2IiAPQpY/0u4j6FR/2mJlJF647/CYl4PG6FyqG5fCMk4nRyO4KQIBCc/R5giRi9vkTGDYWIE2xWQ7Q7Idgn8qGBR+MpkiH6dghSFZW5cjLErN3VWruZx38oC1vqNHMJu6+e9av2pCnUceFnKK1UK6jzZiiSdZabf+dTGYO8qWveEqxJR+7G4NDCr5cAsgTtL5J5ehLLVkPz17Ny42eRjs426atwKyg5i1FXGDio/2qi3+URosW4Y++Ik9ukkvDeUwN5kQ+3kABKwLO+I12PmIJQbK3YkUaPOJBWk4spCTa4a2bJpmjonPDcimRPzy4W6AU90LjtMNO/ZTUCZ0ta9dhuTkNmSNGNuSXB9uShKeRRWo9oIw6JU9FUOYetEaGyXvcqDScBi/rmxksOrmyKbir1V8KlEApYl566t2maR6lVDF+K9hK16Juz1GoAjnmlRT0xQYsKSJcqlKxLs2CWes1WrqNGxvQHx/uu2kCQlaE0gAcsS3qA2iYBhAk4pYK3fcQhBAb5o+m4Nk/2emqrA3YfP4OLCo3jhALClhlQsR8AeBSwW0VDx0QYoIP44HivcDqVtnADccl7IfcuPVHEISYpEcFI4glMi8EAZZ3KjbhIX1JIVRH23INSXBaKWvCBcId5E+OaTgT24OrSAtYbH/QfiW+Q+vVQoZcEIrJOnORzQSQjMnFKpgoCuVtpG3uRJYMIBs2Mu4bcY8Q1tfs4VZ4t0gjuXds0OTYnGR+FiSH8l1wI4WOizTD1Int6D27TB2s+FwGJI/n65CZbkrqqxua7e1kvzp7txQ/FKW+Xfwm0wITpYL4H91sCWaJghgX3uLLfd0SRgWZ697Lt+OJX0K1I4P21nRT4QUKyl+LuYvoNnPFcawZ7ilvISXo3Afmqs3sxB0Hnu43mgdw8BJUpY5sHTEJX1mziE3RKFj26dBVSsYL3+FXHA2WniToSMTf1phndmfLiPw9P/RFsLvyeg+CfWs9XysyrnPWTMDVaht4ACldLY5NUcWDmnad9HshxUCf8cRvfYn/UM3eg9Hufd03bS7dRehXeqWCb+4mYYhw2bxfOwfFkBPbplPg/l3/cFF/lEayMJWPY9r8g65yLglAJW5ff7oEKZYti+bKpJ3tq65yhmLdiEhMS0XFlenu4Y1LMV+nX9xKR2qLLxBOxRwGLWfx5xCIeTxB+mb31q4gvvqsYPzMlr3lLEvlkOmLZL4HNVoskj9uKkqMsSrmtyWAWgqqsvXHSWgGVs0BkFrN6fq1C6pGVuwh4/lmD5ah6Czn2XX0EBQwYKkDqBLp8oKDRRWDE6Oa5YjieW64mVo0lP0SPioHYaNZYXwqbADzPNU0lcDNzGdtJ+rvbwQtLsHSbPZ1MPyDbqqtGnUHYcrM119bb2e0Ucwr8616u1Ac0x5eVZ3FGICewPF26D8lIfU820y/okYFneLbJZI/DkSVXclg/RdubipkatCSrwroAkOgJuk9ISLd+V9cF9WW/xQa6CGpX6qjSRnxs2cXobaEpdgH59VChcyDLXvYxkVmZ4aWDJa25WXgn5gYdKJ9l2jW9UcDOwfPvaYh6x98QXHOV6CChYlQQsxvXmGg4vr4miQoVeAgpUJgHL8lcC6/fArhuH1jzEmBdpm0Okl8U+s3BbXlvzZ89uKpR7swuluS1kLxnZdSO9lCiuBstXmrHIfx0F7k6oeN2jJYTmdgW1RwSyJOC0Apa3lwf+3fobDhw9g2th96ES1ChdvBA+aVYPPt6ZdyYLuXgD/Ub9ogXFcRKwvFmsjBzYEQN7tKJpZAEC9ipgrY8Lw9jo09oR13AtiD2F8uYcEKBGaOpLbf6qM8kReCnoJ9c0ZmqwPEV15WnLAevJA1BR6gNOZ6v27NpwBgFr1Voe9+7rRGB9rkIpCwhYiYkSzFvIIV4nGTB7cBw+RIUCBazz4JidP83x/ZLYa5jy6qy2KRbFx6KwfHgZtsXfxVcvjmu/a+9RCn/6NTHYbcZcFokLReHLHHZmbOOtua4K+EPx+WioKhgfQTzuxSmsi7+l7WZmwYaY/vI8Xumcp5eLdkFBPi3xu6MXErAs70HZwu+gvnIJx7x2QJCIGx+UaisgsIEA6V+rIN23XmNIsPsKxLuU1BpVpqMK/nXSrjNXQiXYtkM/36hMrsagPgL8rJCDb9FSHs/CxWvuoAEqFLGSeJYO5NpSHrF3RBvKd1fBt1rm63DwRB6CUqxXa7wKMh/nuV7nZtaGreUQHaoTFfO5AN8qJGDlhqm9HsvuX2bMzpzIfVbBVYiQFteYPbCvCkUttIPzs2fAomVi1GRgIDBsUOZdsV2X/AiXi8e0GCkCy15nFNnljAScVsBizvLzzY+o6Bg9v3l6uGH2d8PQuN47ep9/MWEu2I6FjetVxfQJAzXRV3/9cwo/zF4FjudwYMMs+BfU35XHGSeEtcdkrwLWK1UyqjzepIfjQpHOCHBxtzYiq/fHkl9fTI1CSEokghPDcS4lEvE6uYaMNagQ74F6cn80cAtCPVkgykjzGXuowXrOIGCtXsfh7j3xJpztGlS6lPnfsK9ay+Heff28V106CahsgyTKuXJ6Ngezucp2JGT5rtLLwHyV8EOBulgcG4qpr85l+txQk/LxXcHFRmu/Sv55AwQfcemUucagibrasQzSo7sMNqlgua7YDoNy04SmubFXMPPVBW2bX3lXBftMtzwt0cdcw7B5OyRgWd4FrqtnwSX4H4TJvsBjWQdth7ICatQcq4LbhK7gYqKRJAnASS+d30qWK+s7FaQ6P5VnznHYs0//euThocag/pbfNW3uPB7RL0VRaMRwAQV9zX/NfZtH7u/hEH5cZ2lgUwHFP9K3ISlSgou/ikKfi4cadb+j/FfpXFluMJYjLL3oRqfREkLLXw+s3cPc+Rzcnt+BUuKKZIknkiQeSOHE30W2g7K/n2XE3ZevJPj9T/FcLOCjxsgvM5+Lrpv+hMt//9OiIQHL2rOE+svLBJxawGKODfDzQcWyxeEqdUHY3cd4+CQCbnJX7FwxDUUL+Wt936jNl3gVG4dtS6do6qeXBat2Yf6qXRg9pAv6dv04L88Vi4zdXgUsNtg24fs04k16caZdvHSdmaxW4kxyFEJY0vXkSFxMiUKKZhN000pJl3yoL/dHfXmQJvF6UV4n269pTRms7RwCFo+7OktEevVQoUxp896E/XuEw386D0sMZt06Alp9bN2HNjO43KgmNsbdwujoU9q6LpDgdJGOWPn6Bha8FsP737YMWP7zEHCP72rbSB4/H0Lxckb1b2wlc+S6yqqvLQl3MCpK3AGpmVsRvSWFBTgZrhbrZqypdl+PBCzLu0i6fQmkh7YiURKEU57rAJ3l3ZXfu4agv77QGPHAtRvuyAdpDcoq8fh/xzj8e1RfxMqXT43B/QV4eZn3GqhLZ+YcF8THi5+MGaWEV+YgfIsCjTovwe0t4gOxT0UBFfvoX48jz0twR7dOBQEV+zrnNTsnsMM28Ii+bDiKjQSsnBC172N27OZxScffGa39ZpQK3ha6brDrBbtupBd3d2D86MwRWNK9ayHdI+50TAKWfc8pss65CDi1gNWzQwuMHtoVUpe0Gwe24eLKzfvx66It6Na2GSaN/Fz7eZUP+mr+/+z+xXB3k2m9HP3qNZq0G6GJ2Fr0yzfO5X07GI09C1hLXl/T5JFJL03cgrAxIC2BpCOXOEGB4JTnCE56jjMpkbiQEpWj4bAlgA3kgZp/TLDy5cRlJjlqMJuDnEHAWrOex5274k34591VKFvGfA9vd+5yWLNe/yGxUJAag/qpwOmv4rGEi2zW5ntPd+CO4rW2/26eZcBWgG9OuKP97De/RujsUcagjbI/vwV/XYzWSh72I4R36ptlPNnmunr3Yyg7DTUq11VWBp1IDkeX5we0Xwfx7npRaeWk3jjiRDupkoBllqn51kakBzZBuittM4PLblMQJRWX3+aX3UXtqAGa7854LMBrvqK2rZJtBAQ1NCy87PubQ/AZ/euTbwE1BvYT4O5uvuug7sB+nOECRar4yaRxSriKt3iWBwkg4Slw+Q/xgZgtC2TLA3XLvV0cnp8W2RRtIaBocxKw0hnd2sDjhY6gUa6rCgVr0C6EVpnANujk3HkJ/rc365sWS57HCgXw43SdjRckwJTJmQUsl+N74LphrpYOCVg2mCjUZZ4l4LQCFlvu98+mX7Xila6H2/adhFSFAvvWpeW8UqpUqNasv+b/Q4+shEQiPmCyz1p2HwtBEPDPJuturZ4XZqU9C1iPlHFo8GS7nhtuFusBlnzckUq0kIyQpAicTn6u+ae7W5kp46jm6qsRq+q7BWp2CbQ2B+cQsDgwkSm9fN5DQFkzbSsfGyvB/MUckpPF65dMpsbwIQLye1vm4dCU+WPJuvsTH2JA5BG9LtiSVV1Ra01Ac7DIJEMlfblU+nepPb+G8t3cR9y+NerK2xeK3mOhqlgz12juKl6jydOsE8/XkwVgR1Dux5NrQ83UAAlYZgL5lmZcTuyD6/rfNDViuHdwzvMPvdr14gfAVf0Sx730513tSUq4viXCadf/OFy4lFlk79tbgMzV/Nep76aKD6JsAFO/y/wgamma2IBfMgAAIABJREFUghIInsQDavHaXO9HpSYZfnq5Mo9H/GPx+4r9VPApb34elh6rpdq/vZFH1CWRT9muKviRgGUp3DZvNzKK5fHMWsCy9HnMNsGRu0ngJleD5exjOUQzFv7SCcgWT9F+TAKWzacNGZCHCDitgMVyWS365WuDrpwwfSn2HzmDi/8s1XyvK2BdO7oq0zF9Rs7QJIJn0VlUzEvAngUsNtJmT3fjps729H/4NUYHj9LmhWDm1h6p4hCSFIngpHAEp0TggTLO5B5cwaGGzA/1ZP6o7xaEunJ/sATZtizOIGCt3cDjtk4yX3PtpKMSgKXL9ZMVM1/16iGgjJkEMlv63pi+mz3dhZsK/ZyHusftCWqFGrKCBpuS7lgK6cEt2u9SP+sL5cfdjenWYJ1so64atoSy0zCTc11lZVCSoESZR+uytPdj92JY5t80x+OxtwNJwLK8R/hLJyFb/IO2o9O+G5CgCNL+HaQ4gHzKMIS5jdB+5llMjarD3778XK0GNm3jcOOGvohVtIgafXup4GLGn5mkZGD6TJ3IJ1dg4njrC1gMEMtvxfJcpZcqg1XIVypNoBJUQMgkHmpB/L7uFCVcLBvUbPlJZMYebm/mEXVB5FOmiwr+NSkCy4yI7a6paTN4pKbqBxQwI93cgG/H2OY81oXE370G2eyR2o9IwLK7KUQGOTEBpxSwan44ELWrlceSWaMNum7Mjwvx7/ELuPBGwFIolKjeIi0c3pCANWjMbJw+fw1XD6904qlgm6HZu4A1M+Yi5sZc1sL5xL0YltrZg+AtReybHQKfIyQ5Qm/pkLFedZe4oJbMTxNd1UAeoBGvXGFfa86cQcBat5HHrdviDZm5BCxDS3OaNBLQvGneWYJyLOkZukX8k+WUDy7SEUVdDOdlczm0Ha7bF2mPVX7QFqmdhxt7+ujVs1bUVUbjKj3agFhBZ62UToWenuXwS8GGORqPPR5EApblvcK2h2fbxKeX54V6IDQ+7T4pvXiq7iKeF1/olPhUQKEm2V9zmOC+boP+hhasTbahRc/uAnh9bSvHg2VRqb/OFX/H8nmpMXqU6fkdc2yAzoEZl8Cl7+bIqsQ/leDKH6KdLFF+rXG2sdMcY7VEG7e3cIg6L06Msl0E+NWkXQgtwdpe2sz4wi/dLp/8aowaYfvzQxL5DG7f99biIgHLXmYO2ZEXCDilgNW617d4FRuvWfKnm8+KOVShVOHTnuMQGR2DvzfMRKBfAYRHRKN5l7T8VkzUkrnqLxHrMngK7j16RhFYFjgj7F3AupryAi3D92hHLpfwuFGsO1wlthF3BKgRmvryjWAVgTPJEXgppJjsGW/OFXXeRFfVl/mjqqwgeGR+02VywxY8wBkErLUbedzWEbB6dFWhfLncLRMJu8Vh/Sb9J74SxdOiGTKshragd+yj6bbh+3BWZ+MFXaseFO8FqU4iat3v+LP/QrZihvYjZa33kDpgkkmDyi7qStmwJRRmjLrKaFzGaFHd70d4V8U4n9wvVTQJiAUrk4BlQbhvmuaeP4Z8Sj/xnPAtjFPSFUhN1Fn3lsGMmuOVkPsYZ5tSCaxcw+PxE/3fnYoVBXTtKJjl2hUZCcxbJEZg+RVU48thtnnwfXKEw6O/xet0QF0BpTukCTAs9xXLgZVefKupUb67bew0znvWr3VnK4/IczoRWB1V8K9DEVjW94T1ejS08QPrPTAQGDbI9hFYkuREuI1qowVCApb15gb1RAScUsCaMW8D1m77By0/qIvvv+mDfJ5p+zmnpCow48/12PLXUc3fJYsFYVDPVjgecgX7/g3RfLZ92VRUKFNMOzNYdBZL4u5bwBt71kynGWNmAvYuYLHh1ni8GZGqJO3IV/o3w4fuRc1MwnBzCrWAi6lROJMcidNJ4ZpdEePVpv9w+3Fy1JUHpOWvkgeCJWC3b7kqMw9nELDWb+QQdlt8UOnRVUD5ctlHLGQ12V6+lGDBYh6pCrGGp4caXwy1XFJkq0z8HHZyOeUFPtERnNObcedccLtYzyxb5W9egGzuOO33QrmqSB71q9FW2CrqStfAnhEHcSTpqUGbpxSoiwH5Khk9HnuvSAKW5T0kiY+F25iO2o7Ubh64HzQS9140N9i5RxBQbaRpv00pqRIsW8EhQmdpHWu8ejUB7dvk/LqYbiATx5auEF82FSmsxqD+thGGXt2U4MZK0Rbd5ZZsh0K2U2F6MTaSzfKzwH56uLONR+RZkVHpDioE1CUBy348ZH5L7t6XYPXazC+LS7IXdL1tcx5nHKXbFy0hUaXZQgKW+ecAtUgEsiLglAJWeORLtO07EfEJSZoILCZUyVxdcffBU8TGJYDnOfw+9UtMmrFM8zcrLOoqKMAX5UsXxezvhoHj0n4od/19AhNnLEPblo3w03j98HmaVrkn4AgC1ncvQ7D89Q3tYLt4lsWcgu/mfvAGWkhWK3E2OQrByeEITo7ExZQopMD0H+rCLh5giZsbuAWiniwQpaX5LGKvNRt1CgFrEwcWMZVeuncRUKF8zh7U2D3TgsUcol6I7bGIqwF9VChaNHdRXdb0q7n76h95GH8nPtJrtriLF04V6ZBlV1z4Q8initd3IaAIkn/Ifsm4JupqxzJIj+4y2LYm6qrjELCHf0uXMdGnsCHulsFu5vk1QTuPUpY2wWrtk4BlHdTuQ1vodaSEG4557YAgyZycie2Yx3bOM7UkJjKRiUP0S/1XKvXrCvikpent6fbPdnxlO7+ml1Il1ejzuem/p6aOyVD9lFgJzv8s2sJJ1ag/Lc2Wt+XHMkffztDG3e08Is7oCFjtVQioRwKWM/g2qzGwKE22GyDLm6db2D0Tu3eyhyKf1AtcdLjGFBKw7MEjZENeIeCUApbmhiD0Nr6ZsgARUa/0fMmisaZPGIT3G1bHvUfhWL5hLxKTktGr00e4eecRpv2+FpXLl0CDWpXxOj4RO/cd0yw7XPPHBNSqWi6vzAurjdMRBKzglOfoEP63lglbfne9WM4TPOvCjRMUYO2fTnquWfp0ISUqR+zLSb01OazedSuM2nI/FOUN5/rJUeN2cpAzCFgbNnO4GSYKTt26CKiYQwFr204OV67qLx38sLmARllsYW8nbrS4GSwn3AdPd+r1w86N/wV9mmXfkrgYuI3tJH7v5onEOfptZDzYHqKudG36LfYyZr+6aHCMmwI+QmM3MQG3xZ1g4Q5IwLIw4DfNu3/THkjU3wTkpmwEnsjaZTKARV+xKKyclLg4CRYv5/D6tb6I1ewDAe81zvmD6rUbHDZvFa+RlSoI6No55+3lZGy6x4T8wEOVJI6x5hgVpN5qhEzW2aFQoka9H1XgHWuz49yiyfb4ezs4PA8RfVmqvYDAepQDK1twDl5h4RIXhD/XH0S1qmp0aGsbITojTvkvX4J7cFPzMQlYDj7ZyHyHIuC0AhbzAlsyeCLkKsLuPYagElC8SACaNa6VKS9WusfYboQDR8/CmYtpF6P00r1dM0z86nOHcqyjGOsIAhZjWfnRBsToJEjeHtQS9WWBJmOOFpIRkhSB08nPcTI5HGFv2TXtbY1XkRZAPXkA6rj5o5GsEHx4mcm2ONoBziBgbdzM4YaugNVZQMUKpj9Qnb8gwe49+qH1LAFy756mt+Vo88AYe0e9OI4t8Xe1Vft7VcRU33pZH6pWw33Yh3rfJ/25H2oDW6Jlm+uq/odQdPnCbDsMGjNeVmdzwh18HXXCYPWDhdugktTI5ETGdmjDeiRgWQe+/Ps+4CL1l6UmckVwynOtngEyHzVqjc/dA+WrGAmWLOOQkKgvYrX+VECdWjm7rl24JMGu/4nXyerV1GjfJnd25oZ86GIer++J46vQS4CLmxrs8/TiHqhGdRslms/N2Cx9LMsRxnKFpZfS7QQE1CcBy9Lcbd3+nv0czpzVf1FXr66AT3MZnWmucckWfgf+ymlNcyRgmYsqtUMEsifg1AJW9sPPXIOJWNv2/Idzl8PASSRo1rgmPnq/bk6aomOMIOAoAlbGB+IBXpUwxTf7efFIGYfglAicTYrA2ZQI3Fa8NoJK5irVXH3RUB6IBm5BqCsLgBeX917POoWAtYXDjZvizRiLBmBRAaYUli9m0RIebCev9JLfW41hgwXI5Xl36aAuw2fKBBxLDkcV1wKaf8YUt/FdIYmN1lZN+mk91AX89Q61t6grXeOOJYWjW8QBg0O9ULQzAvi0XJDOUEjAso4XZTNHgL8vLp9P7/Wy+zREuYjL6Au9r0KJj3N/7YmKlGDJKg4pyfoiVsf2KlStYnr7p0M47D8gXm9t/eB7bzeH56dEe4p+qNZEWj3YK47Xv46AMh1N+02wzmywbS8Z2enu4uifXw4XXoLImGQoVabPE9uOjHp/G4EroRJs26H/su69JgKavW8f54jrujlwOblfMwQSsGguEwHrESABC0BScir+PhKiEa7Wzzdt5ynruco5e3IUAYvl1GG5ddKLP++Gi0W7ZHIKW74Ukvxcu0tguCrRZMfJwKO6rCDqs6Tr8iDUlftBLhF3UjK5QSc5wBkErE1bOFzXFbA6CahU0fgbsdRUYN5CHjGx4gMPxwFDB6kQ4E837rmZ6vLpw8A9uq1tInncPAglymv+zjbqqkELKDp/afWoK93x3lLE4IOnhnNx3S/+uc12Ts2NT7I6lgQsS1DN3KZs/iTwoWkb3OiWpMofIb7dGDBNVCoHeDfzXXuePpNgxSoeCp188Cy3X3e24UVZ46+VzN6Mu5g1aSSgeVPT2jAn6YizHO5uEwWsAlXSdluM1lkKXqaDAP+6trPRnOO1VlskYFmLtPX7iYmRYM4f+gLWR80FvGsnqRKk/1sJ6f4NGjAkYFl/flCPeZdAnhawrt96gK17/sPeQ6eRkJismQXXjq7Ku7PBBiN3FAGLoSn9YC2SdRKq7y/UWkPsTEqEJofVmeQIvBRSTKboIXHR5K1iYhVbFsiSr1PJTMAZBCyWj4XlZUkv3ToJYNvGG1s2bOFwU0cAY8d91kpA7ZrGt2FsX3mtnmzeRPDXzmiHnTJ0KlRVG+BtUVdqr/xQ9B4LZeU6NseVJChR5tG6THZ4SaS4WbyHze0zpwEkYJmTZtZtua6eBZfgfzJVSD83LGXF3XscVq/TXzbE+urbS0DJEsZf6w4ckuDkKfHh98PmajRqaLslhAmPJbg8T7RH7quGWgBSXokvJKqNUMKjsKXIOme7JGA5p1/TRzVzDo/4ePEcafuZgJrVjb8OWJKOy5FdcN0yX9MFCViWJE1tEwF9AnlOwIqLT8Tef4Ox9a+jmqTt6UXqwqPFe7Uxa/JQmiNWJOBIApah3c1ygoolga8r80c9tyA0kAVooq2oZE/AGQSsLdt4hF4Xb8S6dBJQ2UgB63Qwh/3/6D/UVX1HQMd29nEjl70H7btGxof11C5fQBL5FNIjhpO5K+u3gKLTMKjd7WfDhAoP1yFOrRO6AqCEixdOvmUHRvv2imHrSMCyjtek2xZD+u82vc6EfAWQPH0jwEI/LVjYUuuNW/T7kEqBfr1UKFzYuIivv/ZyOHtebCM3+bTMMVRBAQRPyjqaWsIDDX7WP3/N0a+zt0EClnN7+N/DEkS8kMBNBsjlQO0aavjZScS5y7n/4Lp8GglYzj0FaXR2SCDPCFgXrt7Gtj1HceDoWSSnpGpdERTgi86t30eHT9+Dr08+O3SRc5vkSALW1vg7GPnCcJLkt3nJj5OjvjwQ9d0CNcsCy0t9oJ/hw7l9bK7ROYOAtXk7j2vXRO937qBClcrZP4w9fizB8tU8BB2tyq+ggCEDBbCHOiq5JyDdtRzSA5uybUjt6Z0WdVUl+xx42TZm5gpsCSFbSqhbasoK4q+gVmbuybbNkYBlHf6uBzbDZdcyvc4ULbtD0aavVQwwlP9GJldjUB/BqAdYljuHtZFe2rdVoXrV7K+3lhzchVk8kl8YvgPwLKZG1eG2ixCz5Lgt2TYJWJakS22/jQB/+zJkc0aTgEXThAhYmYBTC1ivYuOw+8BJTW6r+4/C9dA2qvsOurRpivcbVAfHkZxg5Xmn7c6RBKxYIRWVHqWtdX9bKeLioVkGWIctB5QHopzUO7tD6HsjCDiDgLVlO49QXQGrvQpVsklOnJgowbyFHOITxOuU1AUYPkSFAgVs+zBmhNscpor0yA5Ityx8q73Kes2h6DzcrqKudA3u8fwfHE1+pjeGFm5FsCqgucP4wRhDScAyhlLu60hP7od03Ry9hgxtbpD7nrJugUVQsUgq3eLhrsagAQJ88r/9+rd+I4ew2+Kx3bsIqFDethGrYWs5RIcajl4LaiSgZGvb2mdJX1qqbRKwLEWW2s2OAPf8MeRT+mmq0RLC7GjR90TAfAScTsBSq9UIPn9dk9vq8InzUCjFt1mligXh3hshi3JdmW8S5aYlRxKw2Dg7Pz+Ak8n6YmgZaT7Uk7EdAgM1OwU6025fufGtuY91CgFrB49QnYiATu1VeOctApZaDaxcw+PBQ32R3ZSlh+b2g7O253L+KFyX/WRwePYcdaVr8Ojok9gYJyaiZ9918SyLOQXFHeOcwX8kYFnHi/yzh+D/3QZJdDi4FxFQBRRB6pfTrdO5Ti9H/+Nw+D990SdfPjUG9xfg5ZW1iLVitf61s08vFUqVsK3o/+QQh0cHDQtYZbuq4FfDtvZZ3blm6JAELDNApCZyRECSEA+30e1IwMoRPTqICOScgNMIWJEvYrBz/3Fs3/sfnj5/oSXi55sfnzarj9YfNkSxwv6o8/EQzXckYOV80pjzSEcTsFbF3cTG17dQVx6AhmxJoCwQPrzMnEiorSwIOIOAtXU7j6s6EVgd26lQ9Z2sH1gOH+Vw9Jj+w07d2gJafUJv6c19ovC3LkP2W9pSAN2irNsUii5f2m3Ula6tc2Iv49dXF/XsH+ZdBRN9apsbl03bIwHLpvht0vm+vzkEn9G/FvoWUGNgPwHu7oavoQuXuiBc533TkAFKFCpkE/O1nb68xuHmGsMCVo3RKrj5kYBlqodIwDKVGNU3JwHuyV2oCwQgqKifOZultogAEXgLAYcXsA6fvKgRrY4FX4YgpP3wu8ld0bxJbbRu0RANalXWLhFMTEomAcvOTgdHE7DsDF+eMscZBKyMOVk6tFOhWhYC1oMHHFZkeNAJ8Fdj6EAVOP1dpfPUPLDUYLnwh5BPHaBt3p52GDR2zBvibmFM9Cm96pML1MaQfFWMbcIh6pGA5RBuMruRO3ZzuHRZX/xh18QB/QTIXDMLP3Pn8Yh+KUavfjVMBd+CthWIkl9KcOGXzBdwXqZGvamU/yonk4YErJxQo2PMTaCQr5u5m6T2iAARyIKAwwtYld/voxmaXOaKZo1qommjmnivQXWNiJWxkIBlf+cBCVj25xN7tcgZBKztO3lcvpp9UuHXcRLMX8QhKUmsy5IXDx8kIH82eV/s1X92b1fCa7iP7qAx05GirnS5Hk16ih4RB/VQ/16wETp5lrF7/KYYSAKWKbScpy5bUr1pG4cbN/RFrKJF1OjbSwWXDBv8zZzjgvh4cfxjRinh5WV7HsGTeAgK/WXh3mXVqDyABKyceIcErJxQo2PMTYAELHMTpfaIQNYEHF7Aqt5iABSKtG2HiwT5oUn9qproqzrVKmRKzk4Clv2dCiRg2Z9P7NUiZxCwduzicenK2wUslQAsXc7jWbj+A06vHgLKlKalg5acn/Jvu0HZ82soK9exZDcWaztM8QpNn+7Wa3+NfzM0cy9qsT5t0TAJWLagbh99suvjug0c7t7TF7FKlxLQs7sAXufjqdNdoFSIdk8ar4Rr5nebVh/Y1QU84jLkNSzygYBiLen6nhNnkICVE2p0jLkJkIBlbqLUHhFwYgEr9nUCdh84odlp8O5DcfelQL8CaNWiAT776F2ULp6W9IAELPs7FUjAsj+f2KtFziBgbd/F47KOgNWujQo1qukvadl/gMPpEP2HsyaNBDRvSg83lp6bkpREqGXulu7GYu2/FlJRMcNOqXsLtUJ114IW69MWDZOAZQvq9tOnUpm2ucXjJ/oif8WKArp2FCCRACxa6/sfxZAs9tmUyWkvO21d7u7gEJHhGl+hl4AClekanxPfkICVE2p0jLkJkIBlbqLUHhFwYgFLd2gXQ29j619HceDoWSSnpGq/qlK+pEbI+qBhdbTompakl5K428dpQQKWffjBEaxwBgFrx24ely7rRGC1UaG6joAVdovD+k364lWRImoM7KvSPJRRIQLZESj/cB3i1eKDekiRjiji4pndYQ71PQlYDuUuixibkirBshUcIiL1L4zVqwlo30ZAYhIwY5YoYMllwIRx9iFgPT/N4d4u/et8nclKSJ3rNLWI3w01SgKW1VBTR28hQAIWTQ8iYD0CDr+E0BCquPhE7Dl0WhOVdfPOI20VnuegYvHnAEKPrISEngitN9Oy6IkELJu7wGEMcEYBq91nKtSonhaB9fKlBAsW80jVWfLi6aHGsCEC2H+pEAEikEaABCyaCYxAYqIES1dweona2ef16wp4t4Eav84Vk6V7e6vxzVf2kWOKLR9kywjTi6u3GrUn2IdtjjizSMByRK85n80kYDmfT2lE9kvAKQUsXdyhYfc1UVn7/g3RLCFML8UKB6BLmw/QrmVjeOfzsF8PObllJGA5uYPNODxnELB2/Y/DhUvim/d2bQTUqCaApfFbvJRHZJR+NEH/PioUL0bilRmnETXlBARIwHICJ5ppCK9fS7B0JYfYWP1r5ztVBFwNFa+1/n5qfDGURCIzYberZkjAsit35FljSMDKs66ngduAgNMLWOlMmXjFRKxte47i6s374psvVylavl8XXds2RbVKpW3ggrzdJQlYedv/pozeKQSsv3hcuCg+aLVppUKtmmps28nhylX9JSUs5xXLfUWFCBABfQIkYNGM0CXwKkaCJcs4JCRmvc66SGE1BvUnAcsZZw4JWM7oVccbEwlYjuczsthxCeQZAUvXRWF3H2uistgyQ7bcML1UKFMM25dNdVxvOqDlJGA5oNNsZLJzCFgcLlwUhao2rQVIoMauv8TlJAwv21Grd08Sr2w01ahbOydAApadO8gG5kVFSrBkFYeUZMMiVulSavTuSQKWDVxj8S5JwLI4YurACAIkYBkBiaoQATMRyJMCVjo7luidJXxnUVkXrt7WfEzJ3c00s4xshgQsI0FRNTiDgLV7D4fzF0QBq14dASFn9SOv8nurMWywALmclg7StCcChgiQgEXzwhCBp88kWLGK1yzJzlgqsR0KO9FLAWecOSRgOaNXHW9MJGA5ns/IYsclkKcFLF233XsUronKGje8m+N60w4s37n/uCZ5/p0HT6FSqVC8SCDatmyE7u2agyXRz1hIwLIDpzmICc4gYP1vD4dzOgKWIfRDBqpQKIjEKweZlmSmDQiQgGUD6A7S5b37HFatzXyvUbOagLZtSMByEDeaZCYJWCbhosoWIkACloXAUrNEwAABErBoWpiNwLc/L8X//jkJqQuPGu+UhdTFBZev30V8QhIa1X0H86ePhAuvv1SKBCyz4Xf6hpxBwPprL4ez5zM/XKU7r/WnAurUoocsp5/MNMBcESABK1f4nP7gGzc5bNyif51t0VSNxo1oCaEzOp8ELGf0quONiQQsx/MZWey4BEjAclzf2ZXlTLhiAlapYkFYMnsMgvwLaOxjyfNHfjcPJ8+G4st+7TGk12d6dpOAZVdutGtjnF3AqlRBQNfOJF7Z9SQk4+yCAAlYduEGuzbi4mUO/x2XoHpVoHpVAfnzU1SrXTssF8aRgJULeHSo2QiQgGU2lNQQEciWAAlY2SKiCsYQaNt3Em7ff4L18yeheuUyeoe8io1Ds05fQyp1wX875kIuc9V+TwKWMXSpDiPgDALWnn0czpzLHIFVwEeN4UNUkErJ10SACGRHgASs7AjR90Qg7xAgASvv+NqeR0oClj17h2xzNgIkYDmbR20wnmfPX6BF19EoVtgf+9fPNGjB1z/M1yTM//Onr9D03RokYNnAT47epVMIWPs5nMmQtF3qAgwbooJvAYoQcPQ5SvZbhwAJWNbhTL0QAUcgQAKWI3jJ+W0kAcv5fUwjtB8CJGDZjy8c1pJ/j1/AiMl/oFWLBvhl4mCD41i99QBmzt+IgT1aYeTAjiRgOay3bWe4MwhYe/dzmXYd7NJJQOWKtHTQdjOLenY0AiRgOZrHyF4iYDkCJGBZji21bDwBErCMZ0U1iUBuCZCAlVuCdDxWbf4bsxZuwuDPW2NE/w4GiRw6fh5fTf4TH71fB3N+GE4CFs0bkwk4g4CVkirBjRsSXLkK3HvAoVYNASxxOxUiQASMJ0AClvGsqCYRcHYCJGA5u4cdY3wkYDmGn8hK5yBAApZz+NGmo5i3YicWrtmN0UO6oG/Xjw3aEnLxBvqN+gX1a1XC8l/H2tRe6pwI2AOB+ASApYOjvFf24A2ygQgQASJABIgAESACRIAIEAF7J0AClr17yAHs+3XRFqzYtA/fftkDPTu0MGjxxdDb6PnFT6hRpSzWzZvoAKMiE4kAESACRIAIEAEiQASIABEgAkSACBABeyHg1AIW2/3uSfgLpKSkwjufBwoH+sHdTWYv7J3GDpMisGpWwvI5FIHlNM6ngRABIkAEiAARIAJEgAgQASJABIgAEbACAacTsGJfJ2D9joP46+BpPHoaoYdQ6sKjdvUK6NvlY7xbp4oV8OaNLtZsPYBf5m80KgdW88a1MPfHL/MGGBolESACRIAIEAEiQASIABEgAkSACBABImAWAk4lYP3z3zn8MHslYuMSwHESVCpbAiWKBcJNJkP0q1g8fBKBuw+facB1/uwDfDeqFyQSiVlA5uVG/jt9GcO+/c2oXQj7df0E3wzprMX1LDopL6OjsZtAwBmSuJswXKpKBIhAFgQoiTtNDSJABNIJUBJ3mgv2QICSuNuDF8iGvELAaQTxPU2EAAAgAElEQVSsLX8dxZRfV2kEKRZh1bvzRyhYwDuTH2/eeYSZ8zeCJRVnAlaXNk3ziq8tNs4XL2PxXvuvUKywP/avn2mwn69/mI8DR89i9ndD8XHTeiRgWcwbztswCVjO61saGREwhQAJWKbQorpEwLkJkIDl3P51lNGRgOUoniI7nYGAUwhYl67dQa8RP8NNLsOv3w9Do7rvvNU3qakKfNrrW00+rN0rf3IGP9p8DCxBO0vUvn7+JFSvXEbPHpaLrFmnryGo1Ti28w/k83QnAcvmHnM8A0jAcjyfkcVEwBIESMCyBFVqkwg4JgESsBzTb85mNQlYzuZRGo89E3AKAavjwO9x4/bDTNE9bwPPlryFXLiB8weW2LN/HMa24yFXMGTcHJQqFoQls8cgyL+AxvbEpGSM+n4+Tpy5ih7tm2PCiJ56Y6IlhA7jYpsbSgKWzV1ABhABuyBAApZduIGMIAJ2QYAELLtwQ543ggSsPD8FCIAVCTi8gMWWAvYb9Qveb1gd838eqRVNEpNS4OnhBrnMNRNOlgerx/BpGpFl54ppmu+jX73GoDGzUaZkYfwycbAVXeA8Xc1etBkrN+2HVOqCGlXKwFUqxeXrdxEXn4hK5Upg9dy0qDfdQgKW8/jf0iMhAcvShKl9IuAYBEjAcgw/kZVEwBoESMCyBmXqIzsCJGBlR4i+JwLmI+DwAtZPc9diw85/8ee0EWjaqKaGzPyVO7Fg9W7N/7vwPDw85PDycNcIWknJKXj8LBI8z2uOaVyvqpZm1yFTcPXmfRze+hsC/HzMRzkPtcTyXK3bfhBhdx9BpRJQOMgPnzSth75dP4bMVZqJBAlYeWhy5HKoJGDlEiAdTgSchAAJWE7iSBoGETADARKwzACRmsg1ARKwco2QGiACRhNweAGr06AfcOfBU5zZu1AT+cMKi6Q6eTYUUhceCqUqE4ziRQLw509foXTxQnrfzVuxEwvX7Mb0CQPx2YfvGg2RKuacAAlYOWeX144kASuveZzGSwQMEyABi2YGESAC6QRIwKK5YA8ESMCyBy+QDXmFgMMLWA1aDYN3Pk/8vUHc/a5F19GaROHbl02FQqFEXEISWCLxuw+e4b/Tl7Dn4GnUrl4ei2Z8rRW9mMNPnQvFwNGz0bvTRxg7vFtemQM2HScJWDbF71Cdk4DlUO4iY4mAxQiQgGUxtNQwEXA4AiRgOZzLnNJgErCc0q00KDsl4PAC1jtN+2p2vVv750Qt4totB6FBrcqaKCtDhSUcHzr+Nwzv2xZDe7XRVgmPfInmnb9Gs8Y18cePI+zUZc5lFglYzuVPS46GBCxL0qW2iYDjECABy3F8RZYSAUsTIAHL0oSpfWMIkIBlDCWqQwTMQ8DhBayaHw5ExbLFsX7+JC2RGh8OxLu1q2Dez4YFLFaR7VyYkJiM/et/0R6XnJKKWh8NQv2albB8zljzEKZW3kqABCyaIMYSIAHLWFJUjwg4NwESsJzbvzQ6ImAKARKwTKFFdS1FgAQsS5GldolAZgIOL2B90HGkZqfB/evFJYSten2LhMQkHNo8BzzPGfT74LG/gu1geOngMu33bLlh9RYDUK9GRaz4bRzNFysQIAHLCpCdpAsSsJzEkTQMIpBLAiRg5RIgHU4EnIgACVhO5EwHHgoJWA7sPDLd4Qg4vIDV/5uZCLlwA2f2LYK7m0zjgDmLt2D5xn0Y3rcdhvUWlwimeyf2dQI+7jkWrlIpjm7/Xeu0qOgYvN9hJD58rzZ+m/KFwznTEQ0mAcsRvWYbm0nAsg136pUI2BsBErDszSNkDxGwHQESsGzHnnoWCZCARbOBCFiPgMMLWAtW7cL8Vbs0+a6avltDQ+5lTBza9p2I6FevUbtaeXRt0xTFCgfA1dVFk8h96fo9uHnnEbq0aYrvRvXS0r5w9TY+//IndG/XDBO/+tx6XsjDPZGAlYedb+LQScAyERhVJwJOSoAELCd1LA2LCOSAAAlYOYBGh5idAAlYZkdKDRKBLAk4vIAVdvcx2vefjPcbVsf8n0dqB3r91gMMn/A7Il/EGBx8mZKFsWbuBHjn89B+z4St35duwy8TB6NViwY0baxAgAQsK0B2ki5IwHISR9IwiEAuCZCAlUuAdDgRcCICJGA5kTMdeCgkYDmw88h0hyPg8AIWI95n5AycvXQTa/+cgJrvlNM64XV8IjbvPoyjpy7hSXgU1Go1igT5oWmjmujRvgXc5K7auoKgxqefj8fjZ5H4d8scBPj5OJwzHdFgErAc0Wu2sZkELNtwp16JgL0RIAHL3jxC9hAB2xEgAct27KlnkQAJWDQbiID1CDiFgBUadh9dh0xFoQBfbFz4HXx98plMkAldU39bQ/mvTCaXuwNIwModv7x0NAlYecnbNFYikDUBErBodhABIpBOgAQsmgv2QIAELHvwAtmQVwg4hYDFnJWeC6t08UKYP30kihbyN9qHwReuY8i4OZBIJNiy+HuULVnE6GOpIhEgAkSACBABIkAEiAARIAJEgAgQASJABIiAZQk4jYDFME37fS027vpXszSwf/dP0b1tc70cVxlRxsUnYs3WA1i87i+oVAKmjO6Ljq3esyxxap0IEAEiQASIABEgAkSACBABIkAEiAARIAJEwCQCTiVgsZFv2n0Yvy7agsSkZEilLqhbvQKqViyNIoX84O4m13zOdie8fP0Ogs9fR0JiMqQuPL7/pg/afdzYJHhUmQgQASJABIgAESACRIAIEAEiQASIABEgAkTA8gScTsBiyKKiY7B66wHs2n8Cr2LjsqTI8xxavl8XQ3u3QcliQZanTT0QASJABIgAESACRIAIEAEiQASIABEgAkSACJhMwCkFrHQKbGfBa2H3ceP2QzyLiEZCYhJkMlf4eHuhTInCqFO9vCYqiwoRIAJEgAgQASJABIgAESACRIAIEAEiQASIgP0ScGoBy36xk2VEgAgQASJABIgAESACRIAIEAEiQASIABEgAsYSIAHLWFJUjwgQASJABIgAESACRIAIEAEiQASIABEgAkTAJgRIwLIJduqUCBABIkAEiAARIAJEgAgQASJABIgAESACRMBYAiRgGUuK6hEBIkAEiAARIAJEgAgQASJABIgAESACRIAI2IQACVg2wU6dEgEikE4gPPIlNu48hBNnruLxsygoVSoE+RdAk/rVMKD7pyhYwDsTrJt3HqHDgO/eCnHK6L7o2Oo9Ak0EiICDEIiJjcf2fcdwPOQKbt9/grj4RLjJZShdvBBaflAXXds0haur1OBonj1/gUVr/4dTZ0Px4mUsvPN5om6NChjc8zOUKVnYQQiQmUSACKQTCL5wHX/9cwoXrt5G5ItXUKlU8Cvog1pVy6F3p49QsWxxujeg6UIEiAARyIMESMDKg06nIRMBeyDAdgldvnEv5q/cCYUyTbQqW6qo5iaV7Rz6MiYOBfJ7YfUfE1CqWJCeyafPXcOA0bPg55sfgf4FDA5nUM/WaPpuDXsYKtlABIhANgR2HziJH39bjaTkVOTzdEeFssWQz9NDI0ZdvXkPKpWAKuVLYuXv4zLtHsyuF72/mo6ExGQULeSPUsWD8DzyJcLuPtYIXgt+HokGtSuTD4gAEXAAAkzIHvn9PJy9dBMSiQSlSxRCkSA/zTXg9r0neB71EhwnwfQJg9CqeQO6N3AAn5KJRIAIEAFzEiABy5w0qS0iQARMIjDyu3m4/zgc337RA/VrVdIeyx5if/h1JfYcPI2a75TF2j8n6rW7999gjP1xEb4e3Bn9u31iUp9UmQgQAfsjcPXmffy+ZCv6dGmJhrWrgOc5rZFPn7/AoDGz8eDxcwzv0xbD+rTVfscealv3/hYPn0RgzNCumuPTy7Hgy/hy4h/w8JDjwIZZ8PJ0t7+Bk0VEgAjoEVCr1Zg8cwX8C+ZHl8+aIsDPR+98X731b/y6aAvc3WT4b8dcPUGb7g1oMhEBIkAEnJ8ACVjO72MaIRGwWwJMqOI5icFlQey7Rm2+QHJKquYmVXcp4dpt/2DGvA34afwAtG3ZyG7HR4YRASJgHgL7D4dg9NSFqF2tPFbP/Vbb6MFj58CEcBZhtWz2mEydzV60GSs37cfIgR0xsEcr8xhDrRABImBTAq16fYv7j8Kx8rfxmqXC6YXuDWzqFuqcCBABImAVAiRgWQUzdUIEiEBOCLTrNwm37j3BrpXTULZkEW0Tc5dtx5J1f2HRL9+gcb13ctI0HUMEiIADETgechVDxv2K9xpUw4Lpo7SWT5yxDLv+PoFfJg5Gqxb6y4lYpbsPnuKzPhNRoUwxbF821YFGTKYSASKQFYGuQ6fi6o172LL4B1QuX4LuDWiqEAEiQATyEIE8LWClpirA87zeUoU85HsaKhGwewJNO41CRNQrnNm3CB7ucq29P8xeha17jmLb0ikGE7na/cDIQCJABIwmwJYUjZj8Jw6fuIAJI3qiR/vm2mPb95+syXW1f/1MFCvsb7DNep8O1eTHunBgSZZJ4I02hioSASJgUwKhYffRbehUTVT23xtmQaazsQPdG9jUNdQ5ESACRMAqBJxSwGK7mm3efVhzk8uSPGcs7MfvxzlrcP32A02CyPcaVMekrz7XW2dvFfrUCREgAlkSuBb2AJ0H/4BqlUpjw4LJevW+nPSH5mF2SK/PEBefhITEJM2DabFC/mhcryrtOkbzigg4OAG2G2lUdCyuhd3H6i0HcOHqLXz0fh3MmjxU76VTnY8HIzEpBZcOLYfUhTc46vRIzv+t+gmlS9COhA4+Ncj8PEiA7Uj6LCIabCnxhp2H4OLC47cpX6BejYp0b5AH5wMNmQgQgbxNwCkFrPU7DuLnP9ZrcuOwHDm65Ul4FNr1m4zEpP+3dydgPpX9H8c/ZsyMsQ0hO0W0WEJKSHYJ5U9CepLGWonsUrSQsu9rWduUoimlUcoSEhGiEtmzM/ZlmvG/7rtn5jFm5DdmjPM7532u67mu55rfWe779b3NnD6/c+77bIKf31wor3294OJvcrw9NOg9AtdPwDxx0brrYK1c+6tG9X9OtarclaAxHfuM0nfL1162gXWr36P+PcMTrVZ2/XrElRFAwBeBuFcFL97XvCLU8alGuv/eOxOcwqxkWqrGUwrNEKzVX02+7Olbdhqon9ZvtotBmEUh2BBAwD8E4l4VjGutuUd/vHFtPdn0gQTzYsZ9zr2Bf9SVViKAAAIpEXBlgNW+5zB9/+MGje7fSTWrlEvgYyaBNd/g3HJzfr3SrZWio2PsamdmBaMXOz+hFo1qpsSTYxFAIBUExk6dqwkzI2xwZQKsSzfz+u/Ktb+pYL5cdqWioKAgHTpyTCvXbNKEGREyQXXlu0tq8pDuqdAaToEAAmkl8NuWnZo48zPFXoi1r/3t2LVP5qlqs4Jg84Y11DG8kdIH/vOklVng4a4H2ilr5oxaMW/8ZZvYpvsQrVi90U7ybiZ7Z0MAAf8QGPnWx3b10fPR0Tp85Lg2b9st8/ffPJndp/N/VPLWmxN0hHsD/6grrUQAAQRSIuDKAOvBx3tp55799obW3NjGbfsOHlHtZt0UkC5An898I36+jNXrfteTnd+wjyJPHdErJZ4ciwACKRR4f+5CvT7qHRUvUkDvjn0pwdxXvpz68NHjatjqRR09dkJThvfUveXu8OUw9kEAAYcK/PrHDr06bLo2/LZNLR99QL2efcy21DypWbJ6cp7A6qNypYo7tJc0CwEEriRgViee9elCjXhrtkKCgzVv5hs+T//BvcGVdPkcAQQQ8A8BVwZYZk4MKZ1WzZ+YoApm1TKzelnDBypr4Att4z8zN8Hl67ZXxtAQLf10jH9UjlYi4EIBMzG7mYS1UP7cmjn6hSTnsPOl24PHfaAZsyPtHFnPhTf25RD2QQABBwtEHTup2s272aeulswdrexhWWxrzQTtJ0+d8WkOrLlTB9hgnA0BBPxbYMTk2Xr7/S/s64R9Oj3uc2e4N/CZih0RQAABxwq4MsAqU6u1smbJZG9yL97qP9HbPopsJoQ2jx9fvNVq1k0HD0Vp3cIpji0WDUPAzQKzIr5V/xEzdVPBPJo2ord9NfBqt7h58JJ7c3u11+M4BBC49gLhXQbZefGmj+ytu8vcZi9oFnowCz5caRVCE3Ktmj/JflHFhgAC/i1g5rQzc9uZ3wPm94GvG/cGvkqxHwIIIOBcAVcGWLWadtWBw1H2ZjVuUnZz02tufs1k7eaR40u3Go920ZGoE/r567edWy1ahoBLBd75eIHeHPu+fTri7WE9lSN71hT11DxpaZ64fL5tE7V9vEGKzsXBCCDgDIHHnx2gnzdusQH3PWX/CbBM6G3C70EvtleD2hUTNXTr9j16uNWLl/3b74ye0QoEEEiOwPLVv6ht96Eqf+etmjHqBZ8P5d7AZyp2RAABBBwr4MoAq8vLY7Vg8Wq7ClnjevcrOvpvPdFpoDb8+qd6d2yhJ5rUSVCQc+ejZV47NK8kLJ4zyrHFomEIuFFg2qz5GjrxQzsZq5l0PSxrphR1M/rvGDVs1ccuzPDB+L4qfcnTlik6OQcjgMB1ETh4OEq1m3dXTEyMls4do2xhmW07zOTsZpL2SuVL6q2hiRdtML9bzO+Y8Ob11K1D0+vSdi6KAAKpKzBw9Lt6b8439n7e3Nf7snFv4IsS+yCAAALOF3BlgLV05Xp16DVcQekDdX/FO7Vz9wH9sW23XXLXvGZw6SsEcU9n3VW6uGaO7uP8qtFCBFwiEDcvnZlYeeKgrj5N2L5zzwEtXPqTHqpTKdEy2mbxBnNju3TlBlWpUEoTB3VziRTdQMDdAmZumorlS6pS+RIKDAxI0FkTRvcaMNFO4t7owSoa0Kt1gs+bP/2a/YKqx9PN1apZ3fjPlvywTp1eGq10AQH66r3BPk/27G5peoeAswXMKuK/b92l+rXuVZ5cNyRo7N8xMfow4lv7xHZgYKAipr2uwgVy2324N3B2XWkdAgggkFoCrgywDM5rI2baP3Jxmwmtxr/RJX7ejIsB+w6eqjlfLrHLcz/dsmFq2XIeBBD4F4G4VwDMLnlz54h/3TepQzJnDNWHk162H/22ZaceadNP6dKlszeuBfLmsv//r32HtG3XXsXGXlC5UsU07o0uCVYhpRgIIOBcgepNnteBQ1HKkjmjfZXYfOFk/i3v+uuA/TdvtioVSmvEqx0VmiE4QUfMPub1QrPKWMF8N6pI4bzaf/CoPc78bnizT7skXy90rgYtQ8C7Ah/PW6yXh06zAGbaD/N3PjRDiI6fOKVfft+mY8dPKWNoBg3u217VK5WNh+LewLtjhp4jgIC3BFwbYJkymlcLVq//3T7VUbfaPcqXJ2eS1TWvFxw/eVotGtW86lXPvDVs6C0CKReIXLRKXV8Z59OJMmcK1covJth9zSvBc7/6Xt9+/5P9lvZo1AlduCD7StHtxQqpQa1KerBGhURPcfh0IXZCAIHrIrBmwx/6/OvlWr9pqw2ioo6dUEBAgA2ySt5WxAZQNSr/7z9WL22kOWbCjAgtWvGzDh2OUuZMGVW2VDG1aVE/0aIt16WDXBQBBHwSOHHytCIil8k8QWnCaTM/7Zmz52S+yCpcMI8qly+ppg9XT7TQC/cGPvGyEwIIIOD3Aq4OsPy+OnQAAQQQQAABBBBAAAEEEEAAAQQQQECuDLBmzo60ryTVvr+8TyU+fz5aZmWSW27Ob+fXYEMAAQQQQAABBBBAAAEEEEAAAQQQcI6AKwOsEtVa6d5yd2jK8J4+S1ds8Iyde2PBrKE+H8OOCCCAAAIIIIAAAggggAACCCCAAALXXoAA67/GtZp1s/NurF3w1rVX5woIIIAAAggggAACCCCAAAIIIIAAAj4LEGBJOng4SjUe7aIMIcFaNX+Sz3jsiAACCCCAAAIIIIAAAggggAACCCBw7QVcEWCdPnNWp8+ci9eq2rizypUqrhGvPvuvgtF/x2jr9j0aMXm2XW67XKliemfMi9denSsggAACCCCAAAIIIIAAAggggAACCPgs4IoAa9y0uRo/I8LnTl9uxzEDOqnGfeVSfB5OgAACCCCAAAIIIIAAAggggAACCCCQegKuCLB27N6vufOXavGKn7X5z93J1imQN5eeC2+sBrUrJvtYDkAAAQQQQAABBBBAAAEEEEAAAQQQuLYCrgiwLiba+Pt2NW3/ikrfUVSv9XjqX/UC0qVTWNbMynlD2LVV5uwIIIAAAggggAACCCCAAAIIIIAAAlct4LoAy0h06DVM0dExmjK851XDcCACCCCAAAIIIIAAAggggAACCCCAgDMEXBlg7dxzwK4seFfp4s5QphUIIIAAAggggAACCCCAAAIIIIAAAlct4MoA66o1OBABBBBAAAEEEEAAAQQQQAABBBBAwHECBFiOKwkNQgABBBBAAAEEEEAAAQQQQAABBBC4WMC1AVZMTKwiIr9X5KJV2rrjL506dUaxFy5csforv5hwxX3YAQEEEEAAAQQQQAABBBBAAAEEEEAg7QRcGWDFxl7Qs31GaskP65ItuXHR9GQfwwEIIIAAAggggAACCCCAAAIIIIAAAtdOwJUB1keffadXh8+wamVK3KJqlcoo7405FBAQcEXJejUrXHEfdkAAAQQQQAABBBBAAAEEEEAAAQQQSDsBVwZYTzw3UGs2bFbTh6vr5a5Ppp0mV0IAAQQQQAABBBBAAAEEEEAAAQQQSHUBVwZYFRs8o+MnT2vRJyOVK0e2VEfjhAgggAACCCCAAAIIIIAAAggggAACaSfgygCrdM1whQQHadX8SWknyZUQQAABBBBAAAEEEEAAAQQQQAABBK6JgCsDrKqNO+vU6TNa/dXka4LGSRFAAAEEEEAAAQQQQAABBBBAAAEE0k7AlQHWcy+N1rffr9H89wapUP7caafJlRBAAAEEEEAAAQQQQAABBBBAAAEEUl3AlQHWslW/qF2PoWresIb6dmmZ6micEAEEEEAAAQQQQAABBBBAAAEEEEAg7QRcGWAZvsHjPtCM2ZFq1ayu2rSor+xhWdJOlSshgAACCCCAAAIIIIAAAggggAACCKSagCsDrMhFq7R1x19695MFOnb8lAIDA1S0cD7lznWDMoQE/yveyNc6phouJ0IAAQQQQAABBBBAAAEEEEAAAQQQSLmAKwOsEtVaXbXMxkXTr/pYDkQAAQQQQAABBBBAAAEEEEAAAQQQSH0BVwZYrw67+hDq5W5XH36lfnk4IwIIIIAAAggggAACCCCAAAIIIICAKwMsyooAAggggAACCCCAAAIIIIAAAggg4B4BAiz31JKeIIAAAggggAACCCCAAAIIIIAAAq4UIMByZVnpFAIIIIAAAggggAACCCCAAAIIIOAeAdcHWOfPR2vtxi3asm23jp04rRzZsqhZwxruqSA9QQABBBBAAAEEEEAAAQQQQAABBFwu4OoAa/a8RRozZY4OHz0eX8ZbixbUnCn9E5S1c98x+n3rLo0e0EnFixRwecnpHgIIIIAAAggggAACCCCAAAIIIOBfAq4NsIZO/FDTZs2Pr0ZAQDrFxl5QUgHWuGlzNX5GhNq0qK8u7R71rwrSWgQQQAABBBBAAAEEEEAAAQQQQMDlAq4MsFau/VXhXQbJhFZNH6qu/zxSWwXy3agytVonGWCt37RVjz3TX6XvKKoPxvd1ecnpHgIIIIAAAggggAACCCCAAAIIIOBfAq4MsMwrgd8s/UndOjRVePN68RUpUa1VkgGWecXw/kadlC0ss5ZFjPWvCtJaBBBAAAEEEEAAAQQQQAABBBBAwOUCrgywqjburKhjJ7Vi3nhlDA25YoB14cIFlanVxu63buEUl5ec7iGAAAIIIIAAAggggAACCCCAAAL+JeDKAOvOmq2VPVsWLfpkZIJqXO4JLLOTOSZ9+kD9FDnZvypIaxFAAAEEEEAAAQQQQAABBBBAAAGXC7gywKrcsKPOnTuvH7+cZOfBitsuF2Bt37VP9Z/orQJ5cynygyEuLzndQwABBBBAAAEEEEAAAQQQQAABBPxLwJUBVpvuQ7Ri9UZNGtxN991T6ooB1pDxszT9o6/0UJ1KerNPO/+qIK1FAAEEEEAAAQQQQAABBBBAAAEEXC7gygBr3tcr1Ov1ScqXJ6cmvtlFRW/Kb8uY1BNY875Zod6vT5aZB2vaiN66p+xtLi853UMAAQQQQAABBBBAAAEEEEAAAQT8S8CVAZYJo8xTWD/8tElB6QPVsO59uqfs7erZf6JuKphH/Xu21pbtexS56Ee7j9nq1aygIX2f9q/q0VoEEEAAAQQQQAABBBBAAAEEEEDAAwKuDLBM3U6fOaue/Sfpu+Vrr1jGWlXu0qCX2itDSPAV92UHBBBAAAEEEEAAAQQQQAABBBBAAIG0FXBtgBXHaAKsDyO+00/rN9tQK24LDg5SuZLF9FijmjIBFhsCCCCAAAIIIIAAAggggAACCCCAgDMFXB9gxbHHxl7Q4aPHdPLUGYWGhihH9jD7eiEbAggggAACCDhHYN/BI5q/cKWWr96ozX/uUtSxkwoKClS+3DlVpUJphT9WTzmyZ71sg+d/u1Jz5y/Vps07dOzESZm//0ltYVkzafln4xJ9tPaXP/T+3G/sF19Hjh5XxtAMuvWWgnq4TmX7v8DAAOdg0RIEEEAAAQQQQMBDAq4MsA4citKNObN5qIx0FQEEEEAAAf8XMOHVA8176O+YGNsZEx5lD8usw0eP6+y58/ZnuXJk06yJ/ZQn1w0JOmyCqp4DJsoEWGa77ZZCyp83pw4cPKpNf+xQTEys/Xn6wEDdmCu7ihcpoHEDn09wjhGTZ+vt97+I3y97tiw6cfJ0/LXvLXeHRg/opEwZM/g/Nj1AAAEEEEAAAQT8TMCVAVapGk+p8t2l1OjBKqpRuayCgtL7WVloLgIIIIAAAt4U6D1wsm4umFe1qpRTkcL5lC5dOrtS8OIV6+wKw+ZJavP3fUCv1gmA3hTcvTAAABEaSURBVJ+7UK+PekchwUGaMKirKpS9Pf7z37bsVPuew3ToyDH17thCTzSpkwh3+kdfacj4Wfb4Hs801//VraLQDME2+Fq84mf1HTLVPg1Wv+a9Gty3gzeLQ68RQAABBBBAAIHrKODKAKtEtVbxpGFZMqlB7Yr2Zvf2YoWvIzWXRgABBBBAAIGUCLz13jyNfOtj5bwhTIvnjEpwqsat++r3rbvU9vEGer5tk0SXmRXxrfqPmKn8eXJqwayhCT43T3jVatZN589H67Ue4Xqk/v2JjjcrF3d9Zbz9+Sdvv2af8GJDAAEEEEAAAQQQSDsBVwZY5vWBzxYs17JVG+JfGTCktxYtaIMsE2hlD8uSdspcCQEEEEAAAQRSLGDmpWrZaaA9z7qFU+zrgGYzT2iVrhlu57sa/0YXVa14Z6Jrbdq8XY+2e8X+fFnEWGULyxy/z9RZX2rYxI9UuEBuffnuoMu2s2rjzvYprqdbNlTH8EYp7g8nQAABBBBAAAEEEPBdwJUBVlz3zTeq/4RZy7Tx9+3xKuaGt1qlMjbMuq9CqfgbYN/Z2BMBBBBAAAEE0lrgz5179VDLF+xlV82faOfIMpuZM6tMrTY2yJoyvKfMXFWXblu27VHDp160P14yd3SCieA79BqupSvXq0mDqnq1+1OX7ZYJz0yIZlYvHtX/ubTuPtdDAAEEEEAAAQQ8LeDqAOviym7buVeff71cn3+9Qn/tOxT/kXkN4aE6lWyYVbRwPk8PBjqPAAIIIIDA9RYwrwHO+3qFzGqAu/46YCdRP3c+OlGzLg6wzId1W/S0+3fr0FThzesl2n/eNyvUa8Ak+wT20k9H27m14rZ6/+mlHbv3+9z1e8repmkjevu8PzsigAACCCCAAAIIpFzAMwFWHJX5dtbcFH++YLkiF6/SseOn4hVL3V5Esyb0S7kqZ0AAAQQQQACBZAmYv89vjHlP7835xh5nvmC6s0RRu9pgSHCwTN504HCU/ftttksDrEnvfK7RUz5R1swZNXNMHxW7uUD89fcfPKpWz7+pnXv2JzlHVtyrgWYFY1+mGChx683q3zM8Wf1jZwQQQAABBBBAAIGUCXguwLqYK/rvGP249ld98sViRS5aZT/auGh6ykQ5GgEEEEAAAQSSLfDOxwv05tj37ZNR/bo+qSb1qyog4H9PSZkTrtu0VS2e6Z9kgGUmYG/dbbDWbPhDgYEBqlD2Djthu5mzauXaTTp95pwqlS+pcQM7Kzg4KEH74p7e6tT6EbV/4qFkt50DEEAAAQQQQAABBK69gGcDrL0Hjijyux/tU1jrN22NlybAuvaDjisggAACCCBwqYCZn8rMU2UWWhn0YvskgZat+kXtevyzguClT2CZn0VH/62Wnd+wf9czZcygs+fOK1NoBt1WrJAerlNZDR+4L1EoZo4L7zJIK9f+qvo179Xgvh0oDgIIIIAAAggggIADBTwVYB0/eVpmGezPIpdrzYbN8eXIEBKs2lXL23mwKpS93YFlokkIIIAAAgi4W+DuBzvo9Jmz6vF0c7VqVjfJzo6fEaFx0+ZeNsDqP2KmZkV8+6/nSOrEE2d+pjFT59jXDxfOHqGMoSHuxqZ3CCCAAAIIIICAHwq4PsAy38Yu+WG9ncB90Yqf7bezcVuZErfY0OrBGhXsN7VsCCCAAAIIIHB9BGo17SrzdHSzhjXUr0vLRI04eDhKjcL76uixE0kGWHv2HVKd5t1VIG8uRX4wJFmdMOeu3by7vUe43PWTdUJ2RgABBBBAAAEEEEh1AdcGWGai9s/MRO3f/ahjJ/43UXuuHNnU8IHKNri6qWCeVAflhAgggAACCCCQfIF+Q6bqky+WKCgovYa//Ixq3FfOnuTvmBgt+/EXDRz9rmJiY7V3/+EkAyzz+qF5DdE8VT1u4PMqfUeR+Lmu0imdnRfr37a4ObjMPubabVvUl5ms3Rx38tQZ7TtwxL5m+O2yNXqzTzuZ+wk2BBBAAAEEEEAAgbQTcGWA9cBjPbR778F4RXMzXKNyWRtamQlcr3QTm3b8XAkBBBBAAAEEjIBZKbD506/qwKEoC2KejDYrApqno86dj1ah/Lk1fWRvNWnbT0eiTiQ5B9azfUZq0fKfkwQ1E7cXzp9bte+/S62aPZjkk9dTZ32pEZNnKzb2gj2HmVDe3EOYCeIv3hbOHm5XR2RDAAEEEEAAAQQQSDsBVwZYJaq1soK3FytsQ6sGtSoqLGumtFPlSggggAACCCCQbAGzYqCZj2rJD+tsoGVCpwJ5c6rmfXcp/LF6dm4qM4m7mcz90knc/9i2WzNnL9CcL5dc8bpFC+fTBxP6JRli7dyzX+/N+UY/rNmkv/Yd1tlz55QhJET58uSQmXqg9v3lVfnukjbcYkMAAQQQQAABBBBIOwFXBlhmGW4TXN1atGDaSXIlBBBAAAEEELguAktXblDnvqMVGhqi7h2aqfLdpZQrR1h8yGReQzxy9ISWr/5Frw6fYZ+oer5tE7V9vMF1aS8XRQABBBBAAAEEEEi+gCsDrOQzcAQCCCCAAAII+KNATEysajXral89HDOgU/zcWZfry4CR7+iDTxeqeqWyGjuwsz92mTYjgAACCCCAAAKeFPD7AKvXgEm2cAN6t1FQ+sAki7jv4BH788vNV2G+ie07eKrdZ9BL7T05EOg0AggggAAC/iiwbedeNWj5gm36T5GT7STu/7aNnTpXE2ZG2FcBR77W0R+7TJsRQAABBBBAAAFPCvh9gBU339WaBW8pJDgoURHNawN31mxtf75x0fQki3z6zFnd/WCHf93Hk6ODTiOAAAIIIOBwgR2796vef3rZVi6eM0o5bwi7bIvNZPCPtOknE3p1afeo2rSo7/De0TwEEEAAAQQQQACBOAECLEkEWPyDQAABBBBAwH8FHn6yj7bu+EsVy5dQvy5PqlD+GxN0xqwquGbDZg2d+KE2/PqnbsyZTZ9OfZ0FXvy35LQcAQQQQAABBDwoQIBFgOXBYU+XEUAAAQTcJPDblp1q33OYzCqGZru5UF47iXv6wPQ6cfKUtu/erxMnT9vPihcpoOGvPGv3YUMAAQQQQAABBBDwHwECLAIs/xmttBQBBBBAAIHLCBw/eVofffadlvywTn/u2GsDq3TppIyhGZQvT07dUbywqlcuq2oVy8SvTggmAggggAACCCCAgP8IEGARYPnPaKWlCCCAAAIIIIAAAggggAACCCDgSQECLAIsTw58Oo0AAggggAACCCCAAAIIIIAAAv4jQIBFgOU/o5WWIoAAAggggAACCCCAAAIIIICAJwUIsAiwPDnw6TQCCCCAAAIIIIAAAggggAACCPiPgGsCrKKF88nO1prEtnX7HvvTojflT/LzC7Gx+nPnXvvZxkXT/ad6tBQBBBBAAAEEEEAAAQQQQAABBBDwgIBrAqzUqhUBVmpJch4EEEAAAQQQQAABBBBAAAEEEEAgdQT8PsAaN21u6kj89yzPPtUoVc/HyRBAAAEEEEAAAQQQQAABBBBAAAEEUibg9wFWyrrP0QgggAACCCCAAAIIIIAAAggggAACThcgwHJ6hWgfAggggAACCCCAAAIIIIAAAggg4HEBAiyPDwC6jwACCCCAAAIIIIAAAggggAACCDhdgADL6RWifQgggAACCCCAAAIIIIAAAggggIDHBQiwPD4A6D4CCCCAAAIIIIAAAggggAACCCDgdAECLKdXiPYhgAACCCCAAAIIIIAAAggggAACHhcgwPL4AKD7CCCAAAIIIIAAAggggAACCCCAgNMFCLCcXiHahwACCCCAAAIIIIAAAggggAACCHhcgADL4wOA7iOAAAIIIIAAAggggAACCCCAAAJOFyDAcnqFaB8CCCCAAAIIIIAAAggggAACCCDgcQECLI8PALqPAAIIIIAAAggggAACCCCAAAIIOF2AAMvpFaJ9CCCAAAIIIIAAAggggAACCCCAgMcFCLA8PgDoPgIIIIAAAggggAACCCCAAAIIIOB0AQIsp1eI9iGAAAIIIIAAAggggAACCCCAAAIeFyDA8vgAoPsIIIAAAggggAACCCCAAAIIIICA0wUIsJxeIdqHAAIIIIAAAggggAACCCCAAAIIeFyAAMvjA4DuI4AAAggggAACCCCAAAIIIIAAAk4XIMByeoVoHwIIIIAAAggggAACCCCAAAIIIOBxAQIsjw8Auo8AAggggAACCCCAAAIIIIAAAgg4XYAAy+kVon0IIIAAAggggAACCCCAAAIIIICAxwUIsDw+AOg+AggggAACCCCAAAIIIIAAAggg4HQBAiynV4j2IYAAAggggAACCCCAAAIIIIAAAh4XIMDy+ACg+wgggAACCCCAAAIIIIAAAggggIDTBQiwnF4h2ocAAggggAACCCCAAAIIIIAAAgh4XIAAy+MDgO4jgAACCCCAAAIIIIAAAggggAACThcgwHJ6hWgfAggggAACCCCAAAIIIIAAAggg4HEBAiyPDwC6jwACCCCAAAIIIIAAAggggAACCDhdgADL6RWifQgggAACCCCAAAIIIIAAAggggIDHBQiwPD4A6D4CCCCAAAIIIIAAAggggAACCCDgdAECLKdXiPYhgAACCCCAAAIIIIAAAggggAACHhcgwPL4AKD7CCCAAAIIIIAAAggggAACCCCAgNMFCLCcXiHahwACCCCAAAIIIIAAAggggAACCHhcgADL4wOA7iOAAAIIIIAAAggggAACCCCAAAJOFyDAcnqFaB8CCCCAAAIIIIAAAggggAACCCDgcQECLI8PALqPAAIIIIAAAggggAACCCCAAAIIOF2AAMvpFaJ9CCCAAAIIIIAAAggggAACCCCAgMcFCLA8PgDoPgIIIIAAAggggAACCCCAAAIIIOB0AQIsp1eI9iGAAAIIIIAAAggggAACCCCAAAIeFyDA8vgAoPsIIIAAAggggAACCCCAAAIIIICA0wUIsJxeIdqHAAIIIIAAAggggAACCCCAAAIIeFyAAMvjA4DuI4AAAggggAACCCCAAAIIIIAAAk4XIMByeoVoHwIIIIAAAggggAACCCCAAAIIIOBxAQIsjw8Auo8AAggggAACCCCAAAIIIIAAAgg4XYAAy+kVon0IIIAAAggggAACCCCAAAIIIICAxwUIsDw+AOg+AggggAACCCCAAAIIIIAAAggg4HQBAiynV4j2IYAAAggggAACCCCAAAIIIIAAAh4XIMDy+ACg+wgggAACCCCAAAIIIIAAAggggIDTBQiwnF4h2ocAAggggAACCCCAAAIIIIAAAgh4XIAAy+MDgO4jgAACCCCAAAIIIIAAAggggAACThcgwHJ6hWgfAggggAACCCCAAAIIIIAAAggg4HEBAiyPDwC6jwACCCCAAAIIIIAAAggggAACCDhdgADL6RWifQgggAACCCCAAAIIIIAAAggggIDHBQiwPD4A6D4CCCCAAAIIIIAAAggggAACCCDgdAECLKdXiPYhgAACCCCAAAIIIIAAAggggAACHhcgwPL4AKD7CCCAAAIIIIAAAggggAACCCCAgNMFCLCcXiHahwACCCCAAAIIIIAAAggggAACCHhcgADL4wOA7iOAAAIIIIAAAggggAACCCCAAAJOFyDAcnqFaB8CCCCAAAIIIIAAAggggAACCCDgcQECLI8PALqPAAIIIIAAAggggAACCCCAAAIIOF2AAMvpFaJ9CCCAAAIIIIAAAggggAACCCCAgMcFCLA8PgDoPgIIIIAAAggggAACCCCAAAIIIOB0AQIsp1eI9iGAAAIIIIAAAggggAACCCCAAAIeFyDA8vgAoPsIIIAAAggggAACCCCAAAIIIICA0wX+Hxww6GLDoJE5AAAAAElFTkSuQmCC", "text/plain": [ "" ] @@ -5355,7 +5641,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdB3QVVbvG8SdAQpHeESmiiCKoIIqgINIURBCUIlho0nsXqdI7hN6bIEgTBLuIoCB+Cip2RRBFlN57yF17vCcmpJ2Uydkn5z9r3bU+yZ497/zeHdbiuTN7gsLDw8PFgQACCCCAAAIIIIAAAggggAACCCCAgKUCQQRYlnaGshBAAAEEEEAAAQQQQAABBBBAAAEEHAECLBYCAggggAACCCCAAAIIIIAAAggggIDVAgRYVreH4hBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACVgsQYFndHopDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCFgtQIBldXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgtQABltXtoTgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgNUCBFhWt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAJWCxBgWd0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWC1AgGV1eygOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIGC1AAGW1e2hOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICA1QIEWFa3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAAlYLEGBZ3R6KQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAghYLUCAZXV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAgggYLUAAZbV7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIDVAgRYVreH4hBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACVgsQYFndHopDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCFgtQIBldXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgtQABltXtoTgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgNUCBFhWt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAJWCxBgWd0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWC1AgGV1eygOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIGC1AAGW1e2hOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICA1QIEWFa3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAAlYLEGBZ3R6KQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAghYLUCAZXV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAgggYLUAAZbV7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIDVAgRYVreH4hBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACVgsQYFndHopDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCFgtQIBldXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgtQABltXtoTgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgNUCBFhWt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAJWCxBgWd0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWC1AgGV1eygOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIGC1AAGW1e2hOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICA1QIEWFa3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAAlYLEGBZ3R6KQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAghYLUCAZXV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAgggYLUAAZbV7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIDVAgRYVreH4hBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACVgsQYFndHopDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCFgtQIBldXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgtQABltXtoTgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgNUCBFhWt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAJWCxBgWd0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWC1AgGV1eygOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIGC1AAGW1e2hOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICA1QIEWFa3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAAlYLEGBZ3R6KQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAghYLUCAZXV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAgggYLUAAZbV7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIDVAgRYVreH4hBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACVgsQYFndHopDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCFgtQIBldXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgtQABltXtoTgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgNUCBFhWt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAJWCxBgWd0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWC1AgGV1eygOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIGC1AAGW1e2hOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICA1QIEWFa3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAAlYLEGBZ3R6KQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAghYLUCAZXV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNeBTgb+OXfDp9bk4AggggAACCCCAAAIIIJBYgRtzZUzsqZyHAAIJFCDASiAYw5NXgAAreT2ZDQEEEEAAAQQQQAABBFJOgAAr5ay5EgIEWKwBnwoQYPmUn4sjgAACCCCAAAIIIIBAEgQIsJKAx6kIJFCAACuBYAxPXgECrOT1ZDYEEEAAAQQQQAABBBBIOQECrJSz5koIEGCxBnwqQIDlU34ujgACCCCAAAIIIIAAAkkQIMBKAh6nIpBAAQKsBIIxPHkFCLCS15PZEEAAAQQQQAABBBBAIOUECLBSzporIUCAxRrwqQABlk/5uTgCCCCAAAIIIIAAAggkQYAAKwl4nIpAAgUIsBIIxvDkFSDASl5PZkMAAQQQQAABBBBAAIGUEyDASjlrroQAARZrwKcCBFg+5efiCCCAAAIIIIAAAgggkAQBAqwk4HEqAgkUIMBKIBjDk1eAACt5PZkNAQQQQAABBBBAAAEEUk6AACvlrLkSAgRYrAGfChBg+ZSfiyOAAAIIIIAAAggggEASBAiwkoDHqQgkUIAAK4FgDE9eAQKs5PVkNgQQQAABBBBAAAEEEEg5AQKslLPmSggQYLEGfCpAgOVTfi6OAAIIIIAAAggggAACSRAgwEoCHqcikEABAqwEgjE8eQUIsJLXk9kQQAABBBBAAAEEEEAg5QQIsFLOmishQIDFGvCpAAGWT/m5OAIIIIAAAggggAACCCRBgAArCXicikACBQiwEgjG8OQVIMBKXk9mQwABBBBAAAEEEEAAgZQTIMBKOevkvtLjz/XT/j/+Vv8uz6pZg+rJPT3zuSBAgOUCKlN6L0CA5b0VIxFAAAEEEEAAAQQQQMAuAQIsu/qRkGoIsBKiZcdYAiw7+hCwVRBgBWzruXEEEEAAAQQQQAABBPxegADLf1tIgOV/vSPA8r+epaqKCbBSVTu5GQQQQAABBBBAAAEEAkqAAMt/202A5X+9I8Dyv56lqooJsFJVO7kZBBBAAAEEEEAAAQQCSoAAy3/bTYDlf70jwPK/nqWqigmwUlU7uRkEEEAAAQQQQAABBAJKgADLf9tNgOV/vSPA8r+epaqKCbBSVTu5mRQQ2N43XQpchUskRqDimKuJOY1zEEAAAQQQQMCPBVIiwNr97S9avu4DffnNzzp+4rQyZcygErcWUt2aDzr/lzZtmgjBph2G6evv96pW1fIaP6h9nLKT567W3GUblT9PTr2/coLSpAmKGB8eHq5NH3ymN979RD/+ckBnzp5X9myZVaZUcTWtX133l7k92bv23U/7tWL9Zn3x9U86cuyEgoKClC9PTt1cuIBqVi6nJ2pWjHbNI8dOaunq9/Tp/77Vn4eO6NLlK8qVPavK3lVcDes8Emed3gRYyTH/9g3TlS3rDU7/5rz6pvb88JtOnTmnSuXv0qwxPZLdMTVPSICVmrvrB/dGgOUHTaJEqwQIsKxqR5RiCLDs7Q2VIYAAAggg4JaA2wHWpDmrNG/5Jqf8dGnTKkf2LE6YdPHSZefPHihbUqHDu+iGTBmc/1739jYNGDNfISHB+njtFGXNnCnGWzcBVY0mvXTon2Nq8+wT6tr6qYhx5y9cVOcBofrsy++dP8uQPkRZMmfSiZNndDUszPmzlk1qq2e7RsnCamqZMPt1LVzxdqzzmaBuVP8Xo/z8/a1fqN+IOREW6UOCFRycTmfPXYgY99TjlTWoxwuO3fVHfAFWcs2/YfFI/e+rHzV88lKZe/UczRpUV/8uzyaLYaBMQoAVKJ229D4JsCxtDGVZK0CAZW1rRIBlb2+oDAEEEEAAAbcE3AywFr3+jsbNWCETzPTu0ERPPlZJGTOEKCzsmj7e8ZUGjlugk6fO6vFqD2jswHbOLV64eFkPN+iic+cvamD359WkXtUYb908DfR8l5HOzzYtHa2ihfJHjOvUf4o+2r5bN+bPrUHdX1DFcnc6T3mdv3BJr73xoSbPXaVr18I1pFdzNaxTJcm0s5e+qdD5a5x56teqJBPs3FLkRl0Nu6Y//jqsHV98p3L3lFCpEjdHXGvXnp/1QtdRTh2PVCyjzq0aqMQthZyfHz95Rmvf2qppC9bqytUwPfNkNQ3o9lyCAqzknL9j8yc1Y/F6lSpRVJ1aNlDp24vJhITp0qVVnlzZk+wXSBMQYAVSty28VwIsC5tCSVYLEGDZ2x4CLHt7Q2UIIIAAAgi4JeBWgHXsxGlVb9xTly9f0Su9W8o8SXT98e6Wz9VjyAznj9fMe0W331rY+d+vTFqiles3O4HPytmDY7z1oRMW6fU3t+jukrdo+YyBEWNMcGUCrOB0aZ05bylaMNr5wyYtcV71y5Ujqz5YOcF52iuxx+GjJ1WjcU/nya62zz2hLq3+exIsrjnrNn9Ze/cfdMKrqSO6OK8bxuWzYuYglb6jWJQhcT2BlZzzm4s+eF8pTR/ZzXlCjCPxAgRYibfjzGQQIMBKBkSmCCgBAix7202AZW9vqAwBBBBAAAG3BNwKsBaseEsTZr2uIjfl01uvjom1/IcbdNXR46fU/vl66tSyvjPuh19+19Mv/htcrV84QrfeHDWEMk8lPVy/i7MP0+CezdXoif+eomrXd6K27fxGT9d5WEN7tYjxuvsOHFKd519yfrZgUl+VL3NHonk9T1/lyJZFH62e5FXAY56Oeq7zv0+PmdfzzNNasR3PdBimb77f6+wVdv0riLEFWMk9v3lq7r0VE5Qze5ZEO3HivwIEWKwEnwoQYPmUn4v7oQABlr1NI8CytzdUhgACCCCAgFsCbgVY3gRJ5p7Ma4DmdcDqle7VlGGdI26zYZsh+v7n/Wre6DHn9cPIh+cpq+v3yTKv45V/vL3zetuYAW1Vp3qFGNlMAFa2Zmvn9b3+XZqpWYMaieZt03u8swG72aB9dP82Xs1jNkKfMm+N84rj+yvGx3mOZ2y+PDm0edWkKGNjC7CSe/7Ir3h6dYMMilWAAIvF4VMBAiyf8nNxPxQgwLK3aQRY9vaGyhBAAAEEEHBLwK0Aq/azffX7n/94Xbb5KuDCSf0ixr++4SMNnbjYec1v8+pJUTYx7zl0ht756HM99sj9mjC4Q8Q55ot7VZ7q5vU1zcCOLeqrwwv1EnRO5MGe+zSvDppXCL05Bo1boDWbtqpCuTs1b3zvOE957+Mv1H3wNGfMVx/Md16N9ByxBVjJPX/3Ng3Vuunj3twaY+IRIMBiifhUgADLp/xc3A8FCLDsbRoBlr29oTIEEEAAAQTcEnArwPK8Gpg3d3aZ1+viO+4scbOG9WkZMcxs4m42czebuk8d0VVVHyzj/Mw8XVXpyS7Ol/tmjemhSuXvijgn8quBZlN3s3l8fEfjuo+ocSwbxcd3rvm55z77dWqq556u6c0p6vXKTL29eaeqPlRWU4d3ifOcbTv3qF3fCc6YT9dPU/ZsmSPGxxZguT2/VzfJoBgFCLBYGD4VIMDyKT8X90MBAix7m0aAZW9vqAwBBBBAAAG3BNwKsB5r2sf5Al9Cnky6/h4HjJmvdW9vU7VKZRU67N+g5833tqvfyDnKnTOb80qd+bqg5/j7yHFVa9jD+c+lU19W2dLF3WKLmPfRZ3rrz0NH1O3Fp/ViszpeXW/ElKVavu7DhD+B9f68KHtsxRZguT2/VzfJIAIs1oB9AgRY9vWEiuwWIMCytz8EWPb2hsoQQAABBBBwS8CtAKtl9zHaufsHJWX/pK+/36umHYY5r81tfWOqsmbOJM/eWi2a1FKvdo2jsJi9re6v3c758uGQXs3VsM5/m7u75fdC11H64uufVL9WJQ3v28qry3g2uPdmD6y5yzZq8tzVypMru7asmRxl/tgCLLfn9+omGUSAxRqwT4AAy76eUJHdAgRY9vaHAMve3lAZAggggAACbgm4FWDNWrJBUxesdUKnD1dNUqaM6RN1C0+2GKBf9v3phEPmlbvKT3bR1bCwGL9OaC7QqsdYfbbre6+ebkpUQdedZMIlEzLF9ERYbPPv3X9QdZu/7Pw4pq8sRj6vWcfh+uq7X1W7WnmNG9jeqwDL7fmTwy1Q5+AVwkDtvCX3TYBlSSMow28ECLDsbRUBlr29oTIEEEAAAQTcEnArwDIbqtdo0ktXrlx19pga1P35RN3CsrXva2ToMlWpeI9qPnyf+o+aqztLFNXrs4fEON/7W79Qt0H/bno+flB71apaPlHX9fYks1G92cjdHAnZ7PyZDsP0zfd7nfuaNqKrgoKCol1y8ye71HlAqPPniyb303333O5VgGUGuT2/tz6MiypAgMWK8KkAAZZP+bm4HwoQYNnbNAIse3tDZQgggAACCLgl4FaAZepduvo9jZ623CndPD31YtPHZTZrN/tWnT13QX8fPu68Zrj5010a3b+N85rc9cepM+ecLwumS5tG95e5Q1u2f6X+XZ5VswbVYyXpOnCqPtj2pdKkCVLzRrX0dJ2HVeSmfAoPD9eJU2d18NARbdv5jX7a+4emDOucZNox01/TklXvOvM0b/yYnm1QQwXy5VJY2DUdPnZSX379k06fPa+m9atFXOvXfQf1dJvBTsBXvdK9TvhlNp43h9mo/o13PtX4mSt06fIV1a35oEb1fzFanbG9QmgGuj1/ktECdAICrABtvC23TYBlSyeow18ECLDs7RQBlr29oTIEEEAAAQTcEnAzwDI1m/2YJs1ZpWvXwp1bME8aBQenc/apinx8uGqi8ufJGeNt9h0xWxvf3+H8zOyHtWXNlChf47v+JPOFQrMBvPnSn+dIlzat8z/N64eeo9CNefXO8rFJpjVzDhm/yNlw3nOEhAQ74ZQJzcxhvqJovqYY+fh894/qMWS6Tpw64/yx+cKg+XLiseOnI+o0T5CN6Nc6xi8qxhVgmfncnj/JcAE4AQFWADbdplsmwLKpG9TiDwIEWPZ2iQDL3t5QGQIIIIAAAm4JuB1gmboPHPxHy9Z+4OxN9dffx3Tx0iVlSJ9eN+bPpXvuvFU1KpfTg/eVivE1OnO+2STdbJZujshfJIzPxDzdtfatrdq95xcdPX7KCYUy35BRhQvm0/333K46NSrqtmI3xTeN1z83gdGqjR/9e70TpxWcLp2zN9ZdJYup0ROP6N67bos2lwmvVm/8WObVxz//OqLzFy8pV/asuqfUrXrq8cqqWK5UrNePL8AyJ7o9v9c4DHQECLBYCD4VIMDyKT8X90MBAix7m0aAZW9vqAwBBBBAAAG3BFIiwEpq7eaVuvKPt3ee4jJPMZmnmTgQ8EcBAix/7FoqqpkAKxU1k1tJEQECrBRhTtRFCLASxcZJCCCAAAII+LWAPwRYazZt1aBxC5QjWxZ9tGay8xohBwL+KECA5Y9dS0U1E2ClomZyKykiQICVIsyJuggBVqLYOAkBBBBAAAG/FvCHAKtx26H69qd9eqHho+rT8Zlk9zZPeLXpPSFB85qvB7Zu+niCzmEwAgRYrAGfChBg+ZSfi/uhAAGWvU0jwLK3N1SGAAIIIICAWwK2B1ibP92tzi9Pcb5cuHHJaBUumDfZKcwXAivU6ZCgeRvUrqxhfVom6BwGI0CAxRrwqQABlk/5ubgfChBg2ds0Aix7e0NlCCCAAAIIuCVgW4BlvtpnvlRojs2f7NJLo+bq7LkLalq/ml7u+pxbDMyLQIoIEGClCDMXiU2AAIu1gUDCBAiwEuaVkqMJsFJSm2shgAACCCBgh4BtAdaznUboj78O6/yFSzKv9pmj9B3FtHBSP2XMEGIHGlUgkEgBAqxEwnFa8ggQYCWPI7MEjgABlr29JsCytzdUhgACCCCAgFsCtgVY/UbO0Sc79+jsufO6MX9u1alRUa2eqa30IcFuETAvAikmQICVYtRcKCYBAizWBQIJEyDASphXSo4mwEpJba6FAAIIIICAHQK2BVh2qFAFAu4IEGC548qsXgoQYHkJxTAE/l+AAMvepUCAZW9vqAwBBBBAAAG3BAiw3JJlXgSiCxBgsSp8KkCA5VN+Lu6HAgRY9jaNAMve3lAZAggggAACbgkQYLkly7wIEGCxBiwTIMCyrCGUY70AAZa9LSLAsrc3VIYAAggggIBbAgRYbskyLwIEWKwBywQIsCxrCOVYL0CAZW+LCLDs7Q2VIYAAAggg4JYAAZZbssyLAAEWa8AyAQIsyxpCOdYLEGDZ2yICLHt7Q2UIIIAAAgi4JUCA5ZYs8yJAgMUasEyAAMuyhlCO9QIEWPa2iADL3t5QGQIIIIAAAm4JEGC5Jcu8CBBgsQYsEyDAsqwhlGO9AAGWvS0iwLK3N1SGAAIIIICAWwIEWG7JMi8CBFisAcsECLAsawjlWC9AgGVviwiw7O0NlSGAAAIIIOCWAAGWW7LMiwABFmvAMgECLMsaQjnWCxBg2dsiAix7e0NlCCCAAAIIuCVAgOWWLPMiQIDFGrBMgADLsoZQjvUCBFj2togAy97eUBkCCCCAAAJuCfhbgPX1t+Ha/8c1tzh0T6k0KlIoyLX5mTiwBYLCw8PDA5uAu/elAAGWL/W5tj8KEGDZ2zUCLHt7Q2UIIIAAAgi4JeBvAdaSlWHaut29AOu5xmn1cMU0bnEzb4ALEGAF+AKI6fYPHT6u19Z9oE8+36M//jqiq2FhKpA3pyo/cLdaN31cudoEfEUAACAASURBVHNmi3baj78e0FOtB8WpObRXCz1d5+EoYwiwWIAIJEyAACthXik5mgArJbW5FgIIIIAAAnYIEGBF7QMBlh3rMrVWQYCVWjubiPu6di1c81/bpOkL1+nK1X9Dq+LFCiksLEw//PK7jp88o5zZs2hxaH8VK1wgyhV2fPGdWvcapzy5sit/3pwxXr3Ns0+o6oNlCLAS0RtOQcAjQIBl71ogwLK3N1SGAAIIIICAWwIEWARYbq0t5o0uQIDFqogi0G3QNO3745Be6tRMD9xbMuJnFy5e1pAJC7Xx/R0qW7q4lk59Ocp5mz78TH2GzVKPto3U6pnaXqvyBJbXVAxEwBEgwLJ3IRBg2dsbKkMAAQQQQMAtAQIsAiy31hbzEmCxBuIRMEFV2jRBCgkJjjbS/Oyhep108dJlfbx2SpRXCZeufk+jpy3XiH6t9eRjD3ntTIDlNRUDESDAsnwNEGBZ3iDKQwABBBBAwAUBAiw7A6wDBw9rw7ufaufu77XvwN86ffacMmZI77wxdGO+XHrw/tJ6pGIZFS6YN8oNPPJ0Nx0+ejLKn6UPCVbOHFlV8rYiqlO9omo+XC7GlRTTudcPfOyR+zVhcIeIP+47fLY2frAjzpWZK0dWbV0XGjHmwMF/VKtZX+e/+3Vqqueerhnn+f1HzdX6dz/V0qn9Vbb0bS78FqTclDyBlXLWqeJK9VsO0M+//ak3Fg5X8ZtvirinKfPWaM6rb2rWmJ6qVL601/dKgOU1FQMRIMCyfA0QYFneIMpDAAEEEEDABQECLLsCrCtXrmrawnWa/9pb8nyvzmyNky1rZp09d0GHj53U5ctXnKIrliulueN7xRhgmaAnJDid87PzFy/JhEYnT511/rvqQ2U1cUhHBadLG+O5pW+/WenS/Xvu9UeFe0uqY4v6EX/sCbCKFsqvHNmyxHhO9qyZNW1k14ifRQ6wMqQPcf5tXujGqEFc5IkIsFz4xWdK/xCo2rC7/jlyQp+/NUs3ZMoQUfSQ8Yu0auMWrZ47VHcUL+L1zRBgeU3FQAQcAV4htHchEGDZ2xsqQwABBBBAwC0BAqyosr7cxN0EUy26j9FX3/3qhEFtnq2jx6tXkHmCKfJh9nf+6NPdzpY51z+R5HmK6vo3jkwY9snn36rHkOk6f+GiendoouaNHosyb2znxrX2PAHWuIHtVbtaea+WqSfAypghROYtqfvL3K4FE/sqKCgoxvMJsLxiZVBqE/jup/1q1HaI7i55i5bPGBjl9joPCNXmT3ap3fN1debsBZ07f8F5DbHwjXlVqfxduvXmgjFyEGCltlXC/bgtQIDltnDi5yfASrwdZyKAAAIIIOCvAgRY9gRYnocqzAfH5k7orfx5Yv64WFxrLb4QasX6zRo2aYnz0IZ5eCPyEd+5MV03KQFWo7qP6LMvv3eeDhvU/Xk1rleVAMtf/yKh7uQVMIlzqx5jtXP3D5oyrLOqV7o3ygU69Z+ij7bvjvWi5l3fYX1aKlPG/57aMoOPnb6cvIUyGwKpXOCjHjH/f1ZS+W37xe09MjHcL+qkSAQQQAABBBBIPoFcWUOSb7IUmGnJyjBt3X7NtSv56gmsb3/ap8Zthzqv9a1bMFw3Fy6QqHuML4T6dd9B1WvxsrJkzqTPNs7waYBVv1Ylmf97vstI59/ZGxaPlHld8vqDJ7AStRQ4yZ8Fpi1Yp5lL1jvBlQmwrj/M45o7d/+oQjfmUd7c2RUcHKyjx09p567vNXPxev156IgevK+U5oyL+o6xP5tQOwK+EFjd+t939jnsE3h6XvSPX9hXJRUhgAACCCCAQCALpNYAa+jExXp9w0dOoDO8b6tEtzi+AOvHXw/oqdaDVCBfLn2wcoJPA6xHq9yviUM6aPjkpXrtjQ/10P2lNXtsTwKsRHefE1OFwPJ1H2rElKW6rdhNenXagCh7X3lzg8dOnFa95i/rxKkzmj+xjx4oWzLitEtX3Ev/vamNMQj4m0CGb2b7W8kBU+/Fu9oGzL1yowgggAACCCDwr0D64DR+RZFaA6wnnn9Jvx04pNBhXVStUtlE9yS+AGvRync0buYK1ahcTpNf6eTTAMtsJj91eBdnT656LQbor7+POuGdCfEiHzyBlejlwIn+JmA2ZjfvEhcumE9LQl9yPjuamGPs9Ne0eNW7zh5ZnVs2iJiCPbASo8k5gSxQcP+iQL59q+/9YNHmVtdHcQgggAACCCCQ/ALsgRXV1FevEN5TvZWuXA3TpqWjZb7ol9gjrgBr285v1G3QNIWFhTl7Qpe8rWiMAZbZMzr4/79geH0dQ3o2j/J6o2cPLLNvV87rNpv3nNukXlXVqvrfBu+eTdwfrnC3Zozq7gzb8cV3at1rnLJmzuS8Shj53+0EWIldDZznVwKeDerMXwALJ/VzXg1M7LFs7fsaGbpMzRrUUP8uzQiwEgvJeQEvQIBl7xIgwLK3N1SGAAIIIICAWwIEWL4PsK6Ghenuav++Nnj91wM91Q0cu0Br39oabRmYIMoETp7DE2CZLxSGBP+7PcSlS5e1749DOnz0pHJmz6JR/ds4r+tdf3jOjWutrZw9WKVK3BwxxBNgxXVOr3aN1aJJrYghngCr8gN3a+bofwMsc3ju0fNklufPCbDc+u1nXmsElq5+T6OnLXdeG5w3oU+0T48mtNAp89ZozqtvqtuLT+vFZnUiTucJrIRKMj7QBQiw7F0BBFj29obKEEAAAQQQcEuAACuqrK+ewCpT80WZfZnfXjbGeXvo+mPe8k3asv2riD/+ae8fzqt3sQVYMa2Xu0reooWT+ipD+pg37o/v9cOY5kzKVwivD7DOnD2vus37O0HbuIHtVbvav09tEWC59dvPvFYILFzxtsbPWukkw2bT9WxZb0hSXeZRznrN++v3P//RazMGyvziew4CrCTRcnIAChBg2dt0Aix7e0NlCCCAAAIIuCVAgGVHgPVY0z7646/DmjWmpyqVj/501PX9b9L+Fe354bdYA6zIT3KZj5PVfravzl+4pJWzBuvOElFfHfTM7esAy9RhQrqO/Scre7bMenPxKOeJsQFj5mvd29u0dGp/lS19m1u/Cikyb1B4eDjf/U4Rav+4iHlKyjwtZRb2rDE9vNqw/cDBw/pw25d6omZF5c6ZLcqNmscbR4a+qm079zh/kZi/UCIfBFj+sS6o0h4BAix7enF9JQRY9vaGyhBAAAEEEHBLgADLjgCr74jZ2vj+Dr3Q8FH16fhMvO1OSIBlJjP7OZt9nc1DHq/NHKQ0aYKiXcOGAMsU5Xmq67FH7teEwR3k+UIjAVa8y4IB/iSw/Ytv9WKv8U7J5rOg6UNi/yR85kwZZd7fNYfnU6JBQUEqclM+3VQgj8z/Nl9BMO8KX7sWrrKli2v6qO7OpnIEWP60KqjVNgECLNs68l89BFj29obKEEAAAQQQcEuAAMuOAMvz5FGWzJn0zrKxzhNIcR0JDbDMPlsNWg3S3v0HNaDbc3rmyWrWBlgnT511XiU8duK081XGXXt+1qLX3+EJLLf+EmBe3wi8u+V/6jFkulcXz3xDRu3cNNMZe+XKVa175xNt/uRLmXeJT5w8I/Ncn/lL447ihVWnekXnqwlp00b/xCxPYHnFzSAEIgQIsOxdDARY9vaGyhBAAAEEEHBLgADLjgDLvFjWsM0Q/fDL7zIbsE8d3lWZMqaPte0JDbDMRJ/v/lEtuo+WCck2LhkV7e0jW57AMrV6/m1v3pB6tMr9Mh9V4wkst/4WYN6AESDACphWc6PJJECAlUyQLkxDgOUCKlMigAACCCBguQABlh0BlqnCbF/TpN0rOnXmnIoVLqBOLeurSsUy0d4sMns0P9P+FSfsim0T99i+ZthjyAy9u+Vz1alRQWNebhvl5m0KsExh3QZN0/tbv3Du/9LlKwRYlv9dQnl+IECA5QdNokSrBAiwrGpHlGIIsOztDZUhgAACCCDglgABlj0BlqnEfDis++BpzptB5ghOl1ZFCxVQ1iyZdPVqmBNu/fnXEZlXAs2R0ADr7yPHVee5frpw8bIWTOqr8mXuiADwBFilb79Z6dKli3HJVbi3pDq2qB/xM89+VUUL5VeObFliPCd71syaNrJrxM9MUFerWV9d/xXC6082m8+bVwlPnT7n/IgnsNz6W4B5A0aAACtgWs2NJpMAAVYyQbowDQGWC6hMiQACCCCAgOUCBFh2BVimGvM64QfbvtT7H3+hr7/fq+MnTzuBk3kSKVvWG5w9m+8ueavuves2VSh3Z5QntLx5imruso2aPHe1bi5cQOvmD1Nw8L9hlefcuJasZ2N1zxhPgBXXOblyZNXWdaEJDrDMCW++t139Rs4hwLL87xHK8xMBAiw/aRRlWiNAgGVNK6IVQoBlb2+oDAEEEEAAAbcECLDsC7Dc6jXz+l4gKNzEkxwI+EiAAMtH8FzWbwUIsOxtHQGWvb2hMgQQQAABBNwSIMAiwHJrbTFvdAECLFaFTwUIsHzKz8X9UIAAy96mEWDZ2xsqQwABBBBAwC0Bfwuwvv42XPv/uOYWh+4plUZFCgW5Nj8TB7YAAVZg99/nd0+A5fMWUICfCRBg2dswAix7e0NlCCCAAAIIuCXgbwGWWw7Mi0BKCBBgpYQy14hVgACLxYFAwgQIsBLmlZKjCbBSUptrIYAAAgggYIcAAZYdfaCKwBAgwAqMPlt7lwRY1raGwiwVIMCytDGSCLDs7Q2VIYAAAggg4JYAAZZbssyLQHQBAixWhU8FCLB8ys/F/VCAAMvephFg2dsbKkMAAQQQQMAtAQIst2SZFwECLNaAZQIEWJY1hHKsFyDAsrdFBFj29obKEEAAAQQQcEuAAMstWeZFgACLNWCZAAGWZQ2hHOsFCLDsbREBlr29oTIEEEAAAQTcEiDAckuWeREgwGINWCZAgGVZQyjHegECLHtbRIBlb2+oDAEEEEAAAbcECLDckmVeBAiwWAOWCRBgWdYQyrFegADL3hYRYNnbGypDAAEEEEDALQECLLdkmRcBAizWgGUCBFiWNYRyrBcgwLK3RQRY9vaGyhBAAAEEEHBLgADLLVnmRYAAizVgmQABlmUNoRzrBQiw7G0RAZa9vaEyBBBAAAEE3BIgwHJLlnkRIMBiDVgmQIBlWUMox3oBAix7W0SAZW9vqAwBBBBAAAG3BAiw3JJlXgQIsFgDlgkQYFnWEMqxXoAAy94WEWDZ2xsqQwABBBBAwC0BAiy3ZJkXAQIs1oBlAgRYljWEcqwXIMCyt0UEWPb2hsoQQAABBBBwS4AAyy1Z5kWAAIs1YJkAAZZlDaEc6wUIsOxtEQGWvb2hMgQQQAABBNwS8LcA68oXnyjst5/c4lBwuQeVttjtrs3PxIEtEBQeHh4e2ATcvS8FCLB8qc+1/VGAAMverhFg2dsbKkMAAQQQQMAtAX8LsM7PGavLH2xwi0OZ2vRWSPV6rs3PxIEtQIAV2P33+d0TYPm8BRTgZwIEWPY2jADL3t5QGQIIIIAAAm4JEGBFlSXAcmulMa8RIMBiHfhUgADLp/xc3A8FCLDsbRoBlr29oTIEEEAAAQTcEiDAIsBya20xb3QBAixWhU8FCLB8ys/F/VCAAMvephFg2dsbKkMAAQQQQMAtAQIsAiy31hbzEmCxBiwTIMCyrCGUY70AAZa9LSLAsrc3VIYAAggggIBbAgRYdgRYBw7+o1rN+kZrc0hIsLJmzqSihfKrYrlSalS3inJkyxJtXN/hs7Xxgx0aN7C9alcrH+9y+XDbLnUZGKoalctp8iud4hz/7U/71LjtUJW8rahWzRkSZaznunFNkCtHVm1dFxpvTYEwgCewAqHLFt8jAZbFzaE0KwUIsKxsi1MUAZa9vaEyBBBAAAEE3BIgwLIrwMqYIURlS98WUdSly1d0+OgJHTh42PmzbFlu0NzxvXVniaIxBkm+CrBMwBZTsGaKzJ41s6aN7OrWEvareQmw/Kpdqa9YAqzU11PuyF0BAix3fZMyOwFWUvQ4FwEEEEAAAf8UIMCyK8AyQdCmpaOjLaa//j6qQeMXascX3+mO4kW0eu5QqwIsb4Mz//wtSb6qCbCSz5KZEiFAgJUINE4JaAECLHvbT4Blb2+oDAEEEEAAAbcECLD8I8AyVR4/eUaV63dReHi4Plk/NcoTT75+hZAAy7vfUAIs75wY5ZIAAZZLsEybagUIsOxtLQGWvb2hMgQQQAABBNwSIMDynwDLVHp/7XY6d/6iNq+apHx5ckQUT4Dl1m9I8s5LgJW8nsyWQAECrASCMTzgBQiw7F0CBFj29obKEEAAAQQQcEuAAMt/Aqx/jpxQ1YbdnX2wPt0wTUFBQQRYbv1iuDQvAZZLsEzrnQABlndOjELAI0CAZe9aIMCytzdUhgACCCCAgFsCBFj+EWCdPXdBvV6ZqW07v1H/Ls3UrEGNKIXzBJZbvyHJOy8BVvJ6MlsCBQiwEgjG8IAXIMCydwkQYNnbGypDAAEEEEDALQECLLsCrEwZM+jB+0pFFBV27ZqOnzitH375XUVuyqfmjWup3qMPRlsOvg6wihUuoJw5ssa4TJvUq6paVcu7tYT9al4CLL9qV+orlgAr9fWUO3JXgADLXd+kzE6AlRQ9zkUAAQQQQMA/BQiw7AqwYltFwcHpVLNyOT32yP2q+lBZ6wKsuFZ/r3aN1aJJLf/8BUnmqgmwkhmU6RImQICVMC9GI0CAZe8aIMCytzdUhgACCCCAgFsCBFh2BVhFC+XXpqWjI4oKC7umU2fOac8Pv2ne8o3atecX52mm8YPaRync109g8RVC735DCbC8c2KUSwIEWC7BMm2qFSDAsre1BFj29obKEEAAAQQQcEuAAMvuACtydVfDwtS47VD9+OsBjRnQVnWqV4j4cUIDrM2f7FLnAaGqUbmcJr/SKc7l9e1P+5zr3lmiqF6fPSRJwZlb69hf5iXA8pdOpdI6CbBSaWO5LdcECLBco03yxARYSSZkAgQQQAABBPxOgADLfwIsU+ncZRs1ee5q1a9VScP7tkp0gPXZl9+rVc+xqlS+tGaN6Rnnuv3fVz+qebfRKl/mDi2Y1JcAKwm/5QRYScDj1KQLEGAl3ZAZAkuAAMvefhNg2dsbKkMAAQQQQMAtAQIs/wqwFr3+jsbNWKGHK9ytGaO6JzrAOvTPMVVv3FN5c2fX5lWTFBQUFOsSW7r6PY2etlyNnqiiwT2bE2Al4ZeRACsJeJyadAECrKQbMkNgCRBg2dtvAix7e0NlCCCAAAIIuCVAgOVfAVaHlybp4x1f6/mGj6pvx2cSHWCZExu0Gqif9v6hMS+3VZ0a/72OGFnkwsXLeqr1QP3+5z/Ok1rmia3IR0JfXXRrHfvLvARY/tKpVFonAVYqbSy35ZoAAZZrtEmemAAryYRMgAACCCCAgN8JEGD5R4B1+fIVLVz5jkLnr1GaNEFaM2+Ybit2U5ICrK2ffa32/SYpQ/oQJwwzryWarx16jt8OHNKQ8Qv15Tc/q2K5Upo7vle09U2AlbBfeQKshHkxOpkFCLCSGZTpUr0AAZa9LSbAsrc3VIYAAggggIBbAgRYdgVYmTKm1wNlS0YUdS08XKfPnNOPv/6h8xcuKm3aNBrQ7Xnndb7IhydIuqlAHmXNckOMyyVHtsyaMy5qCPXaGx9q1NRlMl87NNe+pciNSp8+RIePntCBg4edeR64t6QmD+2kLJkzxRpgma8n5siWJcbrZs+aWdNGdnVrCfvVvARYftWu1FcsAVbq6yl35K4AAZa7vkmZnQArKXqciwACCCCAgH8KEGDZFWDFtIrShwQrf96cuu+e29WsQY0oT155xnsCrLhWYa4cWbV1XWi0IXv3H9SydR/q890/yOyNFRYWphzZs6hUiZtVp0ZF50uF5qmvmI6kXNc/f2OSVjUBVtL8ODuJAgRYSQTk9IATIMCyt+UEWPb2hsoQQAABBBBwS4AAy44Ay63+Mq9dAgRYdvUj4KohwAq4lnPDSRQgwEoioIunE2C5iMvUCCCAAAIIWCpAgEWAZenSTJVlEWClyrb6z00RYPlPr6jUDgECLDv6EFMVBFj29obKEEAAAQQQcEvA3wKsK198orDffnKLQ8HlHlTaYre7Nj8TB7YAAVZg99/nd0+A5fMWUICfCRBg2dswAix7e0NlCCCAAAIIuCXgbwGWWw7Mi0BKCBBgpYQy14hVgACLxYFAwgQIsBLmlZKjCbBSUptrIYAAAgggYIcAAZYdfaCKwBAgwAqMPlt7lwRY1raGwiwVIMCytDGSCLDs7Q2VIYAAAggg4JYAAZZbssyLQHQBAixWhU8FCLB8ys/F/VCAAMvephFg2dsbKkMAAQQQQMAtAQIst2SZFwECLNaAZQIEWJY1hHKsFyDAsrdFBFj29obKEEAAAQQQcEuAAMstWeZFgACLNWCZAAGWZQ2hHOsFCLDsbREBlr29oTIEEEAAAQTcEiDAckuWeREgwGINWCZAgGVZQyjHegECLHtbRIBlb2+oDAEEEEAAAbcECLDckmVeBAiwWAOWCRBgWdYQyrFegADL3hYRYNnbGypDAAEEEEDALQECLLdkmRcBAizWgGUCBFiWNYRyrBcgwLK3RQRY9vaGyhBAAAEEEHBLgADLLVnmRYAAizVgmQABlmUNoRzrBQiw7G0RAZa9vaEyBBBAAAEE3BIgwHJLlnkRIMBiDXghcOjwcb227gN98vke/fHXEV0NC1OBvDlV+YG71brp48qdM1uss6x7e5tWb/xYv+4/qLCwMBW5Kb+efOwhNa1fXWnTpol2HgGWFw1hCAKRBAiw7F0OBFj29obKEEAAAQQQcEuAAMstWeZFgACLNRCHwLVr4Zr/2iZNX7hOV67+G1oVL1bICaJ++OV3HT95RjmzZ9Hi0P4qVrhAtJleGjlXG977VMHp0qpM6eIKTpdOX3+/V2fPXdBD95fW9FHdlC5t2ijnEWCxJBFImAABVsK8UnI0AVZKanMtBBBAAAEE7BAgwLKjD1QRGAJB4eHh4YFxq9ylNwLdBk3Tvj8O6aVOzfTAvSUjTrlw8bKGTFioje/vUNnSxbV06stRpjPBlQmwTLA1Z3xvJ/wyx/kLF2Xm/PR/36pzywZq93xdAixvGsEYBGIRIMCyd2kQYNnbGypDAAEEEEDALQECLLdkmReB6AIEWKyKKAImqEqbJkghIcHRZMzPHqrXSRcvXdbHa6dEeZXwyRYD9Mu+P7Vs+gDdc+etUc49ceqMqjXsoeDgdM55GdKHRPycJ7BYgAgkTIAAK2FeKTmaACsltbkWAggggAACdgj4W4D15qn9+vLcEdfwnsheVPdmyuPa/Ewc2AIEWIHd/wTfff2WA/Tzb3/qjYXDVfzmm5zz//r7qGo06aXCBfPq7WVjY5yzx5DpenfL/zR1RFdVfbAMAVaC5TkBgX8FCLDsXQkEWPb2hsoQQAABBBBwS8DfAqy2v3+sOUe/d4tDs4s8rDa5/3uTx7ULMXFAChBgBWTbE3/TVRt21z9HTujzt2bphkwZnIk+3LZLXQaGqk6NChrzctsYJ1+86l2Nnf6aXmxWR91efJoAK/Et4MwAFyDAsncBEGDZ2xsqQwABBBBAwC0BAqyosgRYbq005jUCBFisA68Fvvtpvxq1HaK7S96i5TMGRpy3aOU7Gjdzhdo+94S6tHoqxvk+2Palug6cqker3KeJQzoSYHmtzkAEogoQYNm7Igiw7O0NlSGAAAIIIOCWAAEWAZZba4t5owsQYLEqvBIwe/236jFWO3f/oCnDOqt6pXsjzpu2YJ1mLlmvXu0aq0WTWjHOZ85r2X2MszH8/Al9CLC8UmcQAtEFCLDsXRUEWPb2hsoQQAABBBBwS4AAiwDLrbXFvARYrIFECnhCKhNcmQAr8jFh1utasOItvdS5mZ59qkaMV9j97S96ttMIlSlVXK9Oi/oFw0SWxGkIBKRA0JczA/K+/eGmw+9t7w9lUiMCCCCAAAIIBLBAat0D68DBf1SrWd9onTUfJ8uaOZOKFsqviuVKqVHdKsqRLUu0cX2Hz9bGD3ZE+fPgdGmVNcsNuqXojar6YFk1fKJKlA+SxbSMtmz/Su9s+Vxfffurjp04path15QzWxaVLFHUeQikTvUKSps2TZRTT50553wszRzbN0xXlsyZYlyhnQeEavMnu1Sh3J2aN753rKu49rN99fuf/2jBpL4qX+YOZ9wjT3fT4aMnVfWhspo6vEucvwHr3t6mAWPmq3PLBmr3fF2rflt4AsuqdthZzPJ1H2rElKW6rdhNenXagIi9rzzVJugJrLIlNX/if09g2XnHVIWAvQIEWPb2hgDL3t5QGQIIIIAAAgj8K5DaA6yMGUJUtvRtEe2+dPmKDh89oQMHDzt/li3LDZo7vrfuLFE0ypLwBFi33lxQuXNkc352+coV/X3khPPRMnMUuSmfFk7qp3x5ckRbTkePn1L3wdO1a8/Pzs/MftEF8+dWunTpnOubn5ujWOECCh3eRTcXLhBljibthmrPj/uccMmETNcfV65cVcW6HXX+wiWlS5tWn6yfGmPQZfarNvtWZ0gfoh1vTpcJ8MzhCbDM/x43sL1qVysf668EARZ/W/itwKqNWzRk/CIVLphPS0JfUp5c2aPdy5JV72rM9Ne82gPr+ie4/jp2wW9tKBwBXwjwCqEv1L27Jq8QeufEKAQQQAABBFKTAK8QRu2mrzZx9zyBZZ602rR0dLQlZkKoQeMXascX3+mO4kW0eu7QKGM8AVZM4c7e/QfVc+hM/bLvT1WpeI+mj+wW5dwzZ887e0WbkOyWogXVu31j5ykpEzR5jp/2/qHQ+WtkntAyIdrK2YNV6Ma8ET+fMm+N5rz6ppo1qKH+XZpFq/+Tz/eobZ8Jypk9i46fPBNrCPXme9vVb+QcPXR/ac0e2zNiHhNgmTovXLys7Nky683Fo5y5YjoIsFLT31ABdC8rAi/1WAAAIABJREFU1m/WsElLnMctTdKcN3f08MpwfLzja3V4aZJXXyFs2aS2erZrFKFIgBVAC4pbTRYBAqxkYXRlEgIsV1iZFAEEEEAAAasFCLD8I8AyVZrgp3L9LjL7O5snmCK/ShhXgGXO3fv7X6r7Qn+lSROkTzdMd15L9BzmdTsT+pS8ragWTe4X7Y0lzzhz3YFjFzhjr/8w2ue7f1SL7qNlngBbv3BEtDVv3ogyb0Z1eKGeZixer1pVy2v8oOjbV3hq6d2hiZo3eixKgJUze1bdWrSg86rkY4/crwmDOxBgWf23C8V5LbB09XsaPW2589rgvAl9lCtH1ljPNY9DPtygqwoXzKu3l42NcVyPIdP17pb/Ob9k5pfNcxBged0SBiLgCBBg2bsQCLDs7Q2VIYAAAggg4JYAAZb/BFim0vtrt9O58xe1edWkKK8CxhdgmXMfrNdJJ0+d1Zp5r+j2Wws7N/73keOq2aSXwsKuOcGTCaDiOswTUI817e28Umi21nmgbElnuHlFsMITHZwnpLauC432729zDfN64NY3QvXoM73/P4SbJrNPV+SjRpNeziuP6xYMd/4t7znME1ghwcFaOWuw6jbvr2MnTit0WBdVqxT9dUWewHLrbwvmdUVg4Yq3NX7WSpUqcbPmjOulbFlviPc6ZoN2s1H7sukDdM+dt0YZf+LUGVVr2EPXwsOdX8bIaTUBVry0DEAgigABlr0LggDL3t5QGQIIIIAAAm4JEGD5T4Dl2R/KvML36YZpCgoKiijemwDrgTodnNfw3lsx3tnfyhwr12/WK5OWqNzdJbR4ykteLTPzb23zb+5GdR/R4B4vRJzTru8Ebdu5J9rrgb/uO6h6LV7WvXfdpiWh/dV72Ey99eFOzR3fy9mY3nP8eeiIE27lzplNH6+dEqUWE2BdvRqmbW9MdR4sMQ+YmHEbFo90XmmMfBBgedVGBtkgYN67Ne/fmo3vZo3pEevjj9fXum3nN2rXd6KzKd2c8b1VIG9OZ8j5CxedzezMO7vNGlRX/y7PRjmVAMuGrlODPwkQYNnbLQIse3tDZQgggAACCLglQIDlHwHW2XMX1OuVmTL/bjV7TJm9piIf8QVY3/2039nnyuwbtWXNlIgvCb48ep7eeOcT52t95qt93hzmS4Lmi4LmKS7zNJfnWPT6Oxo3Y4WervOwhvZqEfHnc5dt1OS5q9W9TUO1bvq4E16ZEOuZJ6tpQLfnIsat2bRVg8YtiHFrHxNgmae7Pts4wxnfbdA0vb/1C9V79EGNfOlFAixvGscYuwS2f/GtXuw13imqQL5cSv//XyyIqcrMmTI6G89FPjxJcnBwOpUpdavziOLX3+91UmrzPrBJpDNlTB/lHAIsu9YA1dgvQIBlb48IsOztDZUhgAACCCDglgABVlRZX2/iniljBj14339PJYVdu6bjJ07rh19+d74i2LxxLSe0uf6IK8D67cAhdRkQqn0HDjkPZJgHMzyH2VjdPKwxrE9LNahd2atl9uOvB/RU60FOGGaeiPIcP//2p+q3HOBs7v7O8v+25vG87eR5RdH8+/qhep2dJ6g+XDUx4nzPPZhA6vp7NAGWCfH+9/ZsZ7x5hdG8Snjq9DnNGtNTlcqXjpiHJ7C8aiODfC3geZTQmzoy35BROzfNjDbUzPHqmvf1094DznvABQvkUe2q5dWiSa0YAzECLG+0GYPAfwIEWPauBgIse3tDZQgggAACCLglQIBlV4AVW5/NQxY1K5dzNi+v+lD0fZ884Y95Kipv7hzONOaVu78PH5MJsMz5HZs/qReb1YlyCU+4dP1ez3GtN88XE0NCgrX7vblRhpq9pU249P6K8boxf24nYHroyU4qkDeX8+qi52jZfYx27v5Bq+YMcR4WMUeVp7rpyLGT+mj15GgfYPN8hfCLd+ZEzOH5YmH+PDmdVwlvyJTB+RkBllt/WzCv3wsQYPl9C7mBFBYgwEph8ARcjgArAVgMRQABBBBAIJUIEGDZFWAVLZRfm5aOjijKPFRx6sw57fnhN81bvlG79vwS4xf8PAFWTMvSPNVlAh7PNjmRxyTnE1hm3r4jZmvj+zs0vG8r1a9VSZ6Q6frteDwfXWv/fD11alnfCdmeeP4l3VK0oDYsiv4Vw5gCLHO9Di9N0sc7vlajJ6pocM/mBFip5O8lbsMlAQIsl2CZNtUKEGDZ21oCLHt7Q2UIIIAAAgi4JUCAZXeAFbm6q2Fhatx2qMwrfGMGtFWd6hUifhzTK4Th4eFq2nG4vvl+r/p2fEbPN3w02jIaMGa+88SSJ0jyZp19tH23OvWfEm0PLHOu2U/L7Kv1RM2KGt2/TcSG7ebjapFfjfRs2O7ZR8uzmfxzT9dUv05No5URW4BlNrY3rxKa1wsXTOqr8mXu0Pp3P1X/UXOdPb3M3l42HUHhpiscCPhIgADLR/Bc1m8FCLDsbR0Blr29oTIEEEAAAQTcEiDA8p8Ay1Tq2RDdPN1knnLyHLHtgWU2b2/cbqgyZkjvPNmVN3f2KDf8+oaPNHTiYt1f5nYtnNTPq2U2cfbrmv/aW2pcr6oGdX8+yjmHj56UCZvMVw7ffW2cKtfvoouXLmv7hunOa4yRj7rNX9be/QedLw6OnrZcb2/eqZmju6vyA3d7HWCZgas3fqzB4xfqpgJ59MbCEdqyfbez4T0BllftZFAgCRBgBVK3udfkECDASg5Fd+YgwHLHlVkRQAABBBCwWYAAy78CLM+X/h6ucLdmjOoeb4BlBgwZv0irNm7Ro1Xu08QhHaMFTjUa95R5umvjklG6uXCBOJfrpctX9FjT3jJBlQm8TPB1/VH3hf7a+/tfmje+t1r3GqdqlcoqdFiXaOPMlwlNIGf23xo3c4WOHT+tHRtnRPtwmjkxtiewPJO26jlWn335vZ59qoYq3HunOvafTIBl81881OYbAQIs37hzVf8VIMCyt3cEWPb2hsoQQAABBBBwS4AAy78CLM+eT+Z1QPNaoOeI6yuEJ0+dVe1n+zp7ac0e21MP3f/fF/vM+Z7XCO8qeYsWTOyrjBlCYl1uI6Ys1fJ1H6ps6eJaOvXlGMeNDF2mZWvfd15x3PjBjli/cPj193vVtMMwPfnYQ86rh+XuLqHFU16Kcc74AqyDfx/Vky1e1oWLl9WlVQNNmbeGAMutvzSY138FCLD8t3dU7hsBAizfuHtzVQIsb5QYgwACCCCAQOoSIMDyjwDr8uUrWrjyHYXOX6M0aYK0Zt4w3VbsJq8CLDNoxfrNGjZpiQoXzOu8Zpc+JDji3DNnz6tR2yE6cPCw7iheRH06PKP77imhoKCgiDG///mPEwq9u+VzZc+WWa/PHuK8JhjTsWX7V84TUCYIM4GSeUUwd85s0YZeuxauKk911fkLF/8/eHpKbZ97IlEBljlp2doPNDL0VefezJNivEKYuv6u4m6SQYAAKxkQmSKgBAiw7G03AZa9vaEyBBBAAAEE3BIgwLIrwMqUMb0eKFsyoqhr4eE6feacfvz1DyfoSZs2jQZ0e9756l7kI64nsMw4ExY1bDPY2QC+wwv11LFF/SjnHz1+St0GTdPub39x/jxHtiy66cY8Ck6XVn8fOaG//j7q/PktRW5U6PAuMl9LjO0wdVao09F5LbFUiZu1cvbgWMd6nv4yA1bMHKTSdxRLdIBltkd/vsso7drzszMHAZZbf2swr98KEGD5beso3EcCBFg+gvfisgRYXiAxBAEEEEAAgVQmQIAVtaGzizysNrn/C5BSqt0HDv6jWs36xng580RR/rw5dd89t6tZgxpRnrzynBBfgGXGffXdr2rWcbizmfr6hSNU5KZ80a5nvjD4zubPnSDr+MnTCrsWrhzZMuvOEjerRuV79Xi1Ck6IFt/xXOeRTpBkgjITmMV2bP5klzoPCFWWzJn06fppsc4d3yuEnvnNk2L1Ww7gCaz4GsTPA1OAACsw+85dJ16AACvxdm6fSYDltjDzI4AAAgggYJ8AAZYdAZZ9K4OK3BAICjfPiXEg4CMBAiwfwXNZvxUgwLK3dQRY9vaGyhBAAAEEEHBLgACLAMuttcW80QUIsFgVPhUgwPIpPxf3QwECLHubRoBlb2+oDAEEEEAAAbcE/C3AevPUfn157ohbHHoie1HdmymPa/MzcWALEGAFdv99fvcEWD5vAQX4mQABlr0NI8CytzdUhgACCCCAgFsC/hZgueXAvAikhAABVkooc41YBQiwWBwIJEyAACthXik5mgArJbW5FgIIIIAAAnYIEGDZ0QeqCAwBAqzA6LO1d0mAZW1rKMxSAQIsSxsjiQDL3t5QGQIIIIAAAm4JEGC5Jcu8CEQXIMBiVfhUgADLp/xc3A8FCLDsbRoBlr29oTIEEEAAAQTcEiDAckuWeREgwGINWCZAgGVZQyjHegECLHtbRIBlb2+oDAEEEEAAAbcECLDckmVeBAiwWAOWCRBgWdYQyrFegADL3hYRYNnbGypDAAEEEEDALQECLLdkmRcBAizWgGUCBFiWNYRyrBcgwLK3RQRY9vaGyhBAAAEEEHBLgADLLVnmRYAAizVgmQABlmUNoRzrBQiw7G0RAZa9vaEyBBBAAAEE3BIgwHJLlnkRIMBiDVgmQIBlWUMox3oBAix7W0SAZW9vqAwBBBBAAAG3BAiw3JJlXgQIsFgDlgkQYFnWEMqxXoAAy94WEWDZ2xsqQwABBBBAwC0BAiy3ZJkXAQIs1oBlAgRYljUkUjnb+6azt7gArqxh+3kBfPd23zoBlt39oToEEEAAAQTcECDAckOVORGIWSAoPDw8HBwEfCVAgOUr+fivS4AVv5EvRhBg+ULdu2sSYHnnxCgEEEAAAQRSkwABVmrqJvdiuwABlu0dSuX1EWDZ22ACLDt7Q4BlZ19MVQRY9vaGyhBAAAEEEHBLgADLLVnmRSC6AAEWq8KnAgRYPuWP8+IEWHb2hgDLzr4QYNnbFypDAAEEEEDATQF/C7AOfR2uE/uvuUZS4J40ylEkyLX5mTiwBQiwArv/Pr97AiyftyDWAgiw7OwNAZadfSHAsrcvVIYAAggggICbAv4WYH25JEz7troXYJV9Lq2KPZzGTXLmDmABAqwAbr4Nt06AZUMXYq6BAMvO3hBg2dkXAix7+0JlCCCAAAIIuClAgBVVlwDLzdXG3ARYrAGfChBg+ZQ/zosTYNnZGwIsO/tCgGVvX6gMAQQQQAABNwUIsAiw3FxfzB1VgACLFeFTAQIsn/ITYNnLH2tlBFj2No1N3O3tDZUhgAACCCDglgABFgGWW2uLeaMLEGCxKnwqQIDlU34CLHv5CbD8sDcEWH7YNEpGAAEEEEAgiQIEWHYEWAcO/qNazfqqaKH82rR0dJxdPfj3UdVs0kuFbsyrd5aPjXPssrUfaGToq6pdrbzGDWwf69jpC9dpxuL1Xq2mB8qW1PyJfSLG9h0+Wxs/2BHnublyZNXWdaERY1Zv/FiDxy9UoyeqaHDP5l5dNzUMIsCK1MUlq95VgXy5VKNyOa96e/nyFU2Zt0a33lxQ9WtV8uocBkUVIMCyd0XwCqGdveEJLDv7YqoiwLK3N1SGAAIIIICAWwIEWKk7wKrfcoB+/u1PBQen05bVk5U9W+YYl5IJlFZv+jjOZbZ3/186f+GiHq1ynyYO6RgtwDLhW45sWWKcI3vWzJo2sisBVnh4eLhbv8z+Nu+dVZrr+jQ0vnuoUKeDsmTOpPdWjI9vKD+PQYAAy95lQYBlZ28IsOzsCwGWvX2hMgQQQAABBNwUIMBKvQHW19/vVdMOw3RH8SL64Zff1afjM3qh4aOJWk4//npAjdsOVbp0abVuwXAVLpg3WoBlnvAyT3p5c/AEljdKqXxMYgKs6o176tiJ09r93txUruPO7RFgueOaHLMSYCWHYvLPQYCV/KbJNSNPYCWXJPMggAACCCDgPwIEWKk3wBowZr7Wvb1NS0L7q1XPsSpUII/eXDIqwYvzytUwNWk3VCbEeqlzMz37VI0oc3heISTAip+WVwgjGSU0wDpy7KSqNuyuDOlD9L+3Z8evzYhoAgRY9i4KAiw7e0OAZWdfTFUEWPb2hsoQQAABBBBwS4AAK3UGWGfPXVCVp7o6b1t9tHqyOg8I1eZPdmnp1P4qW/q2BC2nGYve0PRFbzjnLQl9SUFBQQRYCRL8b3BAB1jm/dPzFy5FaDzcoKuzqCYN/e991JhcTYK6d/9BTZqzyklRy5YurqVTX05kCwL7NAIse/tPgGVnbwiw7OwLAZa9faEyBBBAAAEE3BQgwEqdAdZrb3yo4ZOXqtUztdWjbSO9v/ULdRs0TXVrPqhR/V/0ekn9tPcPNWoz5P9fHRymwgXzRTuXJ7C85lRAB1gJ+VJAXKRTh3dR1YfKeq/OyAgBAix7FwMBlp29IcCysy8EWPb2hcoQQAABBBBwU4AAK3UGWE+1HuQ8rGJeGSxWuIDMQyzmiawLFy5py9opypo5U7zL6mpYmLPvlZmnX6emeu7pmjGeQ4AVL2XEgIAOsH7/8x/nndaPd3zlfFkgocdNBfKoc8sGqlOjQkJPZfz/CxBg2bsUCLDs7A0Blp19IcCyty9UhgACCCCAgJsCBFh2BVjpQ4JV8raicbb88pUr+u6n/Sp0Y169s3xstLF7fvhNTdq/ortL3qLlMwZG/Hxk6DItW/u++nd5Vs0aVI93Wc1YvF7moRnzltfiKS8pTZqorw56JvAEWCYoy5kja4zzNqlXVbWq/rfBO5u4x8ufugeYBdyo7RDdVfIWvdK7RZw3myYoSNmyZlbunNlSN0oK3B0BVgogJ/ISBFiJhHP5NAIsl4GTMD17YCUBj1MRQAABBBDwUwECLLsCrIQso9gCrIFjF2jtW1s1pFdzNaxTJWJK8yXCp18crNuK3eR8STCuw5tXB68PsOKar1e7xmrRpFbEEAKshHQ6lY5t13eCrlwJ0/yJfVLpHdp3WwRY9vXEUxEBlp29IcCysy+mKgIse3tDZQgggAACCLglQIBlV4BVtFB+bVo6Os52H/z7qGo26RXjE1iezduvXQvX1nWhynxDxihzNWg1UCacem3GQOfhl5gO8+pgk3avyARecb06eH2AxVcI4/8tDehXCK/nOXDwsMyXBe+9K2FfFYifmRGxCRBg2bs2CLDs7A0Blp19IcCyty9UhgACCCCAgJsCBFipK8BasX6zhk1aEu+SaVC7sob1aRnjuJlL1mvaAvPqYHEtntI/1lcHCbDiZY42gAAr4WackYwCBFjJiJnMUxFgJTNoMk1HgJVMkC5MwxNYLqAyJQIIIIAAApYLEGClrgDLs3m72Ucrbdo0Ma6+b3/cpwzpg/Xx2lDdkClDlDFmb+1GbQYrTZo0emPh8Bi/Onj9pGzi7v0vOQFWLFZhYdf095HjMo8QhoeHxyt6+62F4x3DgOgCBFj2rgoCLDt7Q4BlZ19MVQRY9vaGyhBAAAEEEHBLgAAr9QRYe37cpybthuqWogW1YdGIWJdMu74TtW3nNxrc4wU1qvtIxLjIrw727fiMnm/4qFfLjgDLKyZnEAHWdVZHj5/S+Fkr9eG2L3X+wiWvJb/bssjrsQz8T4AAy97VQIBlZ28IsOzsCwGWvX2hMgQQQAABBNwUIMBKPQHWoHELtGbTVvXv0kzNGtSIddl8tH23OvWf4nztcNWcIRHjZi3ZoKkL1qpMqeJaEhr/q4OeEwmwvP8NJcCKZHXqzDnnqwJ//X3Ue8H/H0mAlWAy5wQCrMS5pcRZBFgpoZzwaxBgJdwspc7gCayUkuY6CCCAAAII2CNAgJU6Aqxz5y+qylNdZd7E2rJ2irJmzhTrIjMbvNds0lOHDh93AiwTZP2y7081fPHfVwfNFwqL3JTP60VKgOU1FU9gRaYKnb9Gs5e+qZCQYL3Q8FFVqXiPCuTNFeu7r5HPzZ0zm/fqjIwQIMCydzEQYNnZGwIsO/tiqiLAsrc3VIYAAggggIBbAgRYqSPAen3DRxo6cbHq16qk4X1bxbtcPBu1m1cIzauE7fpO0Lade5yvFhYuGHd4ZfbWWjFzUMQ1PAGW+YJijmxZYrx29qyZNW1k14ifrd74sQaPX+iML5AvV6z1Tnmlk27Mnzve+/GXATyBFalTnk9i9u/yrJo1qO4vPfTrOgmw7G0fAZadvSHAsrMvBFj29oXKEEAAAQQQcFOAACt1BFjmTawffvldr80YqLtK3hLvkjly7KSqNeqhDOlDtGXNFLXsMUZ7fvgt3vPMgDRpgrRn88JoAVZcJ+fKkVVb14VGC7Diu+CbS0apWOEC8Q3zm58TYEVqVbnH2ujCxcv6/K1Z0b4m4Dcd9bNCCbDsbRgBlp29IcCysy8EWPb2hcoQQAABBBBwU4AAy44Ay80eM7c9AgRYkXpxT43Wypg+RDs2zrCnQ6m8EgIsextMgGVnbwiw7OwLAZa9faEyBBBAAAEE3BQgwCLAcnN9MXdUAQKsSB41m/TS4aMntOu9ec5jfRzuCxBguW+c2CsQYCVWzt3zCLDc9U3K7OyBlRQ9zkUAAQQQQMA/BfwtwDr0dbhO7L/mGnaBe9IoRxH+Le0acIBPTIAVaQGYTdDMZmjLZwzU3V689xrgaydZbp8AK1kYXZmk4P5FrszLpAikVgECrNTaWe4LAQQQQACB2AX8LcCilwj4swABVqTu/XbgkMxG7mVLFdec8b2ULm1af+6tX9ROgGVvmwiw7O0NldkpQIBlZ1+oCgEEEEAAATcFCLDc1GVuBKIKEGBdtyLe3fK5+o2cq9tvLazWzzyucneXULasN7BuXBIgwHIJNhmmJcBKBkSmCCgBAqyAajc3iwACCCCAgCNAgMVCQCDlBAiwIlkPn7xUe38/6Hz+0nyN0HOYT2OmTx8cZ1e2b5iecl1LRVciwLK3mQRY9vaGyuwUIMCysy9UhQACCCCAgJsCBFhu6jI3AlEFCLAiedxZpXmi18d3W9gvKDF4BFiJUUuZcwiwUsaZq6QeAQKs1NNL7gQBBBBAAAFvBQiwvJViHAJJFyDAimT41oc7Ey1au1r5RJ8byCcSYNnbfQIse3tDZXYKEGDZ2ReqQgABBBBAwE0BAiw3dZkbgagCBFisiDgFlq5+T+NnrlSe3Nn1wcoJsY798dcDeqr1oDjnGtqrhZ6u83CUMQRY9i5AAix7e0NldgoQYNnZF6pCAAEEEEDATQECLDd1mRsBAizWgBcC585f1MCx8/Xulv85owvkyxVngLXji+/Uutc45cmVXfnz5ozxCm2efUJVHyxDgOWFvw1DCLBs6AI1+JMAAZY/dYtaEUAAAQQQSB4BAqzkcWQWBLwR4Aksb5QCbMyv+w6q66Cp2v/H32rZpLZWbtisrFluiDPA2vThZ+ozbJZ6tG2kVs/U9lqMJ7C8pkrxgQRYKU7OBf1cgADLzxtI+QgggAACCCRCgAArEWicgkAiBQiwEgmXWk87evyUajXroytXw2Re+av36IO6p3or5c4V9yuE5lXD0dOWa0S/1nrysYe85iHA8poqxQcSYKU4ORf0cwECLD9vIOUjgAACCCCQCAECrESgcQoCiRQgwIoE16T9K4lklFbMjHv/p0RP7IMTTRh1z523qvQdxRQeHq5Sj7SI9xXCKfPWaM6rb2rWmJ6qVL6011UTYHlNleIDCbBSnJwL+rkAAZafN5DyEUAAAQQQSIQAAVYi0DgFgUQKEGBFgruzSvNEMkrfbVmU6HNtPvFqWJjurtYq3gBryPhFWrVxi1bPHao7ihfx+pYIsLymSvGBBFgpTs4F/VyAAMvPG0j5CCCAAAIIJEKAACsRaJyCQCIFCLAiwc1asiFOxouXLuufIye0a8/P+vPQEd2QKYMG92yuEsUK6dabCyayBXaf5m2A1XlAqDZ/skvtnq+rM2cv6Nz5CwoJCVbhG/OqUvm7YvUhwLK3/wRY9vaGyuwUIMCysy9UhQACCCCAgJsCBFhu6jI3AlEFCLASuSLe3rxT/UfP0113FNPCSf2UJk1QImey+zRvA6xO/afoo+27Y72Zxx65X8P6tFSmjBmijLl05ZrdAAFcXYZvZgfw3XPrCCRc4OJdbRN+EmcggAACCCCAgF8LpA9O49f1UzwC/iRAgJWEbi1b+75Ghi7TK71b6qnHKydhJntP9TbAunz5inbu/lGFbsyjvLmzKzg4WGZD+J27vtfMxeudJ9YevK+U5ozrZe/NUlkUgaAvZyKCAAIJEAi/t30CRjMUAQQQQAABBBBAAAEEEiJAgJUQrevGnjl7XhXrdlTZ0rdp8ZSXkjCTvad6G2DFdQfHTpxWveYv68SpM5o/sY8eKFsyYvix05ftvfkAryz3L/MDXIDbRyBhAkeLt0rYCYxGAAEEEEAAAb8XyJU1xO/vgRtAwF8ECLCS2KmHG3SVCXk+XT8tiTPZeXpyBFjmzsZOf02LV73r7JHVuWWDiJtlDyw7+26qYg8se3tDZXYKsAeWnX2hKgQQQAABBNwUYA8sN3WZG4GoAgRYSVwRFZ/oqHPnL+rrD1Pn0yrJFWB5Xrds1qCG+ndpRoCVxHWXEqcTYKWEMtdITQIEWKmpm9wLAggggAAC3gkQYHnnxKj/a+/O462a9z+OfxpOJSlSkciYIUIZonTRgEiRKTI0URmaNGgUqZRIc1KZihJCXZmnXAlJpmvqypBCSrdUGn+PtfzOuefUOZ219zprn/f67tf+53d/WsPn+3yv7XTe1l4bgYIQoMAKofjzylXWqEV323efsvb27NEhjqS7a0EVWKMmP22Tps2xLtdfate3bEKBpRt51mQUWDEIiRGlBCiwpOJgGAQQQAABBFIiQIGVEmZOgoAvQIGV5IWwYeMmu/WOCfb2e0usXu3jbeKwbkkeSXu3giiwtmzdZs1a9bHvf/rFnhjf346vfjgFlnbs/nQUWDEIiRGlBCiwpOJgGAQQQAABBFIiQIGVEmZOggAF1s6RYqJeAAAgAElEQVTXwD3jZ+R7WWzbvt1++W21fbjkK1v9xzp/+zGDO1v9ujXz3TeOGwQpsH5Y/qu9Nn+RXXhOHatQvlyOZf6w/BcbMnqazV/4qdWrXcMmDrs1x5/zDCzdq4ICSzcbJtMUoMDSzIWpEEAAAQQQiFKAAitKXY6NQE4B7sDK5nHsWa0Svj5aXX6e9bixRcL7xWWHIAXWl9/+YJe0G2BFihSxgw/czw6sXNH/395HLL/7cYVt377DatWoZuOGdrWyZUpTYMUkfAqsmATFmDICFFgyUTAIAggggAACKROgwEoZNSdCgI8QZr8Grus8NN9Lwitm9ixdyg45aH8776xTrcYxh+W7T5w3CFJgbdmy1Wa/+I69/s4i+2rpj7bmj3W2Y4fZ3uXK2DHVqlqThnWscf3aVqxY0V0ouANL9+qgwNLNhsk0BSiwNHNhKgQQQAABBKIUoMCKUpdjI5BTgDuwuCIKVYACq1D5d3tyCizdbJhMU4ACSzMXpkIAAQQQQCBKAQqsKHU5NgIUWFwDQgIUWEJh7DQKBZZuNkymKUCBpZkLUyGAAAIIIBClAAVWlLocGwEKLK4BIQEKLKEwKLB0w2CyWAhQYMUiJoZEAAEEEECgQAUosAqUk4MhsFsBPkKYzwXifcPeTyt+tfV/bvKffeU9oNx7UDmvghGgwCoYxyiOwh1YUahyTJcFKLBcTpe1IYAAAgggkLsABRZXBgKpE6DAysV68+Yt9uhTL9sTs1+zlb+t3mWLCuXL2RXN6lvrKxrbHqVKpC4tB89EgaUbKgWWbjZMpilAgaWZC1MhgAACCCAQpQAFVpS6HBuBnAIUWDtdEatWr7Ubeozwv00vv9dhVSvbpBE9rHKl8vltyp/nIUCBpXtpUGDpZsNkmgIUWJq5MBUCCCCAAAJRClBgRanLsRGgwMrzGti2bbtdeeOd9vlXy6z0HqWsZfOGdubpJ9ihB1W2PfYoaRs3/mXf/bjC3lqwxKY/86pt2LjJjjr8IHty0kArXqwY11YSAhRYSaClaBcKrBRBcxpnBCiwnImShSCAAAIIIBBYgAIrMBUbIhBagDuwshE+88Lb1n/4VKtUYW97dHQfO+iASnkCL1+5yq7rNMRW/Lra7uzRxi654B+hw0jHA1Bg6aZOgaWbDZNpClBgaebCVAgggAACCEQpQIEVpS7HRiCnAAVWNo923e+xBR9+biMGdLTG9Wvne6288e5iu7nPKKt7ynE26Z7u+W7PBrsKUGDpXhUUWLrZMJmmAAWWZi5MhQACCCCAQJQCFFhR6nJsBCiw8rwGzmh2i61dt94+mPeAlSqZ/8PZt27bZqc27mBl9tzD3p49mmsrCQEKrCTQUrQLBVaKoDmNMwIUWM5EyUIQQAABBBAILECBFZiKDREILcAdWNkIT2jQ1vYsXcrenTMuMGyDy7rZ72vW2sevTgm8Dxv+T4ACS/dqoMDSzYbJNAUosDRzYSoEEEAAAQSiFKDAilKXYyOQU4ACK5tHnQtvsj83bLJFL08K9FD27dt3WO0L/r4D642n7ufaSkKAAisJtBTtQoGVImhO44wABZYzUbIQBBBAAAEEAgtQYAWmYkMEQgtQYGUjvLbTEFv0ydf+86y851rl91q4+N/WpuswO61WdZtyX8/8NufPcxGgwNK9LCiwdLNhMk0BCizNXJgKAQQQQACBKAUosKLU5dgI5BSgwMrm8eisl2zYuCfsiEOr+N9CWG6vPfO8Xtb+90+7ptMQW7psuQ3tc701Pacu11YSAhRYSaClaBcKrBRBcxpnBCiwnImShSCAAAIIIBBYgAIrMBUbIhBagAIrG+GmvzZb0+v62PKVq6xypfJ2fcsmVq/28XbA/hWytvL+7K0FS+zB6XPs11V/WPUjD7HpY/taiRIZocNIxwNQYOmmToGlmw2TaQpQYGnmwlQIIIAAAghEKUCBFaUux0YgpwAF1k5XxNLvf7Z2tw73y6nMV0bxYlaqVEnbtOkv27J1W9Y/P/jA/WzKfb38sotXcgIUWMm5pWIvCqxUKHMOlwQosFxKk7UggAACCCAQTIACK5gTWyFQEAIUWLkorlm7zsZOnW3PvviOeXdl7fyqUL6cXXTeGdbxumZWqmSJgsghbY9BgaUbPQWWbjZMpilAgaWZC1MhgAACCCAQpQAFVpS6HBuBnAIUWLu5IjZv3mKff73Mlq9YZRs2brK9y+1llffb14498hArWrQI11IBCFBgFQBiRIegwIoIlsM6K0CB5Wy0LAwBBBBAAIE8BSiwuDgQSJ0ABVbqrDlTLgIUWLqXBQWWbjZMpilAgaWZC1MhgAACCCAQpQAFVpS6HBuBnAIUWNk8vDuuMjKKW5Ei3F2VqjcKBVaqpBM/DwVW4mbskd4CFFjpnT+rRwABBBBITwEKrPTMnVUXjgAFVjb3Bx6bY7Pmvmndbrjczm9QO99ERkycabPmvGl9O19tTc+pm+/2bLCrAAWW7lVBgaWbDZNpClBgaebybq/imoMxldUZthUFBBBAIPYCFFixj5AFxEiAAitbWNd1HmofLvnKBt/Wzn9Ie36v+Qs/sQ697rN6tY+3icO65bc5f56LAAWW7mVBgaWbDZNpClBgaeZCgaWZizcVBZZuNkyGAALBBSiwgluxJQJhBSiwsgk2vLybrfh1tc2bPtyqVqmUr+3qP9ZZvYtusQP2r2CvzBiR7/ZssKsABZbuVUGBpZsNk2kKUGBp5kKBpZkLBZZuLkyGAAKJCVBgJebF1giEEaDAyqZ3YqN2tmXLVvv4lcn+s7Dye+3YscNqNmpnRYsWtY9efjC/zfnzXAQosHQvCwos3WyYTFOAAkszFwoszVwosHRzYTIEEEhMgAIrMS+2RiCMAAVWNr1Tz+9gf27YZB/Me8BK71EyX1evwDqhYVsrWaKEfTBvYr7bs8GuAhRYulcFBZZuNkymKUCBpZkLBZZmLhRYurkwGQIIJCZAgZWYF1sjEEaAAiubXvO2/e2rpT/alHt72mknVc/X9fOvltnl7Qfa4QcfYM8/MiTf7dmAAitO1wAFVpzSYlYFAQoshRR2nYECSzMXCizdXJgMAQQSE6DASsyLrREII0CBlU3v3olP2tQZL1itGkfa1JG9LKN4sTxtt2/fYTf2Hmneg9xbNm9ofTpdHSaHtN2XO7B0o6fA0s2GyTQFKLA0c6HA0syFAks3FyZDAIHEBCiwEvNiawTCCFBgZdP75bc11rhlT/tr8xY7tebR1uumq+zoI6ru4vvtd8ttxMSZfnlVrFhRm/vo3YEe+h4mKFf3pcDSTZYCSzcbJtMUoMDSzIUCSzMXCizdXJgMAQQSE6DASsyLrREII0CBtZPeS2++b7feMcG851t5r/0rlrdDqu5vpfcoZX/9tdmW/bjSlq9clbXX7be2sssvPCtMBmm9LwWWbvwUWLrZMJmmAAWWZi4UWJq5UGDp5sJkCCCQmAAFVmJebI1AGAEKrFz0Pvj4Sxs08lFb+v3PedoesH8F69OppZ1dp2YY/7TflwJL9xKgwNLNhsk0BSiwNHOhwNLMhQJLNxcmQwCBxAQosBLzYmsEwghQYO1G76NPv7FFn3xly1essvUbNlqpkiWscqXyVrNGNatds7r/8UFe4QQosML5Rbk3BVaUuhzbRQEKLM1UKbA0c6HA0s2FyRBAIDEBCqzEvNgagTACFFhh9Ng3tAAFVmjCyA5AgRUZLQd2VIACSzNYCizNXCiwdHNhMgQQSEyAAisxL7ZGIIwABVYYPfYNLUCBFZowsgNQYEVGy4EdFaDA0gyWAkszFwos3VyYDAEEEhOgwErMi60RCCNAgRVGj31DC1BghSaM7AAUWJHRcmBHBSiwNIOlwNLMhQJLNxcmQwCBxAQosBLzYmsEwghQYIXRY9/QAk+12xL6GBwgGoHLOk6O5sAcFQFHBWZNaOfoylgWAtEI1Bm2NZoDc1QEEEAghQIUWCnE5lRpL0CBlfaXQOECUGAVrv/uzk6BpZsNk2kKUGBp5sJUugIUWLrZMBkCCAQXoMAKbsWWCIQVoMAKK8j+oQQosELxRbozBVakvBzcQQEKLAdDZUmRClBgRcrLwRFAIEUCFFgpguY0CJgZBRaXQaEKUGAVKv9uT06BpZsNk2kKUGBp5sJUugIUWLrZMBkCCAQXoMAKbsWWCIQVoMAKK8j+oQQosELxRbozBVakvBzcQQEKLAdDZUmRClBgRcrLwRFAIEUCFFgpguY0CHAHFtdAYQtQYBV2AnmfnwJLNxsm0xSgwNLMhal0BSiwdLNhMgQQCC5AgRXcii0RCCvAHVhhBdk/lAAFVii+SHemwIqUl4M7KECB5WCoLClSAQqsSHk5OAIIpEiAAitF0JwGAe7A4hoobAEKrMJOIO/zU2DpZsNkmgIUWJq5MJWuAAWWbjZMhgACwQUosIJbsSUCYQW4AyusIPuHEqDACsUX6c4UWJHycnAHBSiwHAyVJUUqQIEVKS8HRwCBFAlQYKUImtMgwB1YXAOFLUCBVdgJ5H1+CizdbJhMU4ACSzMXptIVoMDSzYbJEEAguAAFVnArtkQgrAB3YIUVZP9QAhRYofgi3ZkCK1JeDu6gAAWWg6GypEgFKLAi5eXgCCCQIgEKrBRBcxoEuAOLa6CwBSiwCjuBvM9PgaWbDZNpClBgaebCVLoCFFi62TAZAggEF6DACm7FlgiEFeAOrLCC7B9KgAIrFF+kO1NgRcrLwR0UoMByMFSWFKkABVakvBwcAQRSJECBlSJoToMAd2BxDRS2AAVWYSeQ9/kpsHSzYTJNAQoszVyYSleAAks3GyZDAIHgAhRYwa3YEoGwAtyBFVaQ/UMJUGCF4ot0ZwqsSHmTPviaYdOT3pcdoxV4tewb0Z6AoyPgmAAFlmOBshwE0lSAAitNg2fZhSJAgVUo7Jw0U4ACS/daoMDSzIYCSzMXbyoKLN1smExTgAJLMxemQgCBxAQosBLzYmsEwghQYIXRY9/QAhRYoQkjOwAFVmS0oQ5MgRWKL9KdKbAi5eXgDgpQYDkYKktCIA0FKLDSMHSWXGgCFFiFRs+JPQEKLN3rgAJLMxsKLM1cvKkosHSzYTJNAQoszVyYCgEEEhOgwErMi60RCCNAgRVGj31DC1BghSaM7AAUWJHRhjowBVYovkh3psCKlJeDOyhAgeVgqCwJgTQUoMBKw9BZcqEJUGAVGj0n9gQosHSvAwoszWwosDRz8aaiwNLNhsk0BSiwNHNhKgQQSEyAAisxL7ZGIIwABVYYvTTY97GnXrYRE2ZaxQp726sz7813xbPnzben5r5l3y5bbtu2bbODD9zfLjrvDLvq4oZWrFjRXfanwMqXtNA2oMAqNPrdnpgCSzMXCizdXJhMV4ACSzcbJkMAgeACFFjBrdgSgbACFFhhBR3d/88Nm6z/8Cn20psf+CusvN+++RZYvYc8aM+//C/LKF7MataoZhnFi9uSL5ba+j832hmn1rBxQ7tY8WLFcohRYOleQBRYmtlQYGnmQoGlmwuT6QpQYOlmw2QIIBBcgAIruBVbIhBWgAIrrKCD+3/73XLrPGCMLftxpbVpcb7NfP51K7vXnrstsLziyiuwDqta2SaN6GGVK5X3ZTZs3GRdBoy1f33wmd3Sprl1uLYpBVZMrhkKLM2gKLA0c6HA0s2FyXQFKLB0s2EyBBAILkCBFdyKLREIK0CBFVbQsf1XrV5rjVv2tC1bt9kd3Vtbs3Pr2okN21qFfXf/EcKLWvezb777yaaP62cnHntEDpU1a9dZg8u6WUZGcXvrmVFWqmSJrD/nDizdC4gCSzMbCizNXCiwdHNhMl0BCizdbJgMAQSCC1BgBbdiSwTCClBghRV0cH/vuVdeCVXjmMNsx44ddtzZrXf7EcKfV66yRi26W9UqlWze9OG5inQbOM7/OOKYwZ2tft2aFFgxuG4osDRDosDSzIUCSzcXJtMVoMDSzYbJEEAguAAFVnArtkQgrAAFVlhBx/ffum2bndCg7W4LrNfmf2Sd+o+2Jo1Ot2F92+cq8sisl2z4uCfs+pZNrMv1l1JgxeC6ocDSDIkCSzMXCizdXJhMV4ACSzcbJkMAgeACFFjBrdgSgbACFFhhBR3fP0iB9fDMF+2eCTOs/TUXWqe2l+Qq8ur8Rda5/xg796xT7L6BN1FgxeC6ocDSDIkCSzMXCizdXJhMV4ACSzcbJkMAgeACFFjBrdgSgbACFFhhBR3fP0iBNXbqbJvw6HPWvcMV1rpF41xFFi7+t7XpOsxOO6m6Tbm3JwVWDK4bCizNkCiwNHOhwNLNhcl0Bc4drTsbkyGAAAJBBfYqnRF0U7ZDAIGQAhRYIQFd3z1IgXXvxCdt6owXrPctLe3qSxrlSrL4s2/s6psHW83jqtm0sX0psGJw4VBgaYZEgaWZCwWWbi5Mpitw6WR+6dNNh8kQQAABBBDQE6DA0stEaqIgBVZCd2DVqm5T7uMOLKmQ8xiGAkszJQoszVy8qfbp1VJ3uDSebNaEdmm8eu2lcweWdj5MhwACwQS4AyuYE1shUBACFFgFoejwMYIUWI/OesmGjXsi0DOwGtY7yUYNuiVL7Kl2WxzWi/fSKLA086PA0syFAks3Fwos3Wx4BpZuNkyGAALBBXgGVnArtkQgrAAFVlhBx/cPUmC9tWCJ3dh7ZKBvIWzT4ny7tcPlFFgxuG4osDRDosDSzIUCSzcXCizdbCiwdLNhMgQQCC5AgRXcii0RCCtAgRVW0PH9gxRYq1avtTObd7aqVSrZvOnDcxXpNnCcvfTmBzZiQEdrXL82BVYMrhsKLM2QKLA0c6HA0s2FAks3Gwos3WyYDAEEggtQYAW3YksEwgpQYIUVdHz/IAWWR+A9oN17UPv0cf3sxGOPyKGyZu06a3BZN9u+Y4e9PXu0lS1TmgIrBtcNBZZmSBRYmrlQYOnmQoGlmw0Flm42TIYAAsEFKLCCW7ElAmEFKLDCCjq+f9ACa/7CT6xDr/vssKqVbdKIHla5UnlfZsPGTdb19nH2zvufWsvmDa1Pp6tziPEMLN0LiAJLMxsKLM1cKLB0c6HA0s2GAks3GyZDAIHgAhRYwa3YEoGwAhRYYQUd3z9ogeUxjJg40x6aMc8yMopbzeOOsBIZGbbki6W2bv0Gq37kIfbIqN5Weo+SFFgxuWYosDSDosDSzIUCSzcXCizdbCiwdLNhMgQQCC5AgRXcii0RCCtAgRVW0PH9EymwPArvOVfTnn7Fvlr6g23btt2qVK5o59evba1bNLaSJTJ20eIOLN0LiAJLMxsKLM1cKLB0c6HA0s2GAks3GyZDAIHgAhRYwa3YEoGwAhRYYQXZP5QABVYovkh3psCKlDfpg1NgJU0X+Y779GoZ+Tk4QeICFFiJm6VqDwqsVElzHgQQiFKAAitKXY6NQE4BCiyuiEIVoMAqVP7dnpwCSzMbCizNXLypKLA0s6HA0szFm4oCSzcbJkMAgeACFFjBrdgSgbACFFhhBdk/lAAFVii+SHemwIqUN+mDU2AlTRf5jhRYkRMndQIKrKTYUrITBVZKmDkJAghELECBFTEwh0cgmwAFFpdDoQpQYBUq/25PToGlmQ0FlmYu3lQUWJrZUGBp5uJNRYGlmw2TIYBAcAEKrOBWbIlAWAEKrLCC7B9KgAIrFF+kO1NgRcqb9MEpsJKmi3xHCqzIiZM6AQVWUmwp2YkCKyXMnAQBBCIWoMCKGJjDI5BNgAKLy6FQBSiwCpV/tyenwNLMhgJLMxdvKgoszWwosDRz8aaiwNLNhskQQCC4AAVWcCu2RCCsAAVWWEH2DyVAgRWKL9KdKbAi5U364BRYSdNFviMFVuTEnMAxAcpFzUApFjVzYSpdAQos3WyYzD0BCiz3Mo3ViiiwdOOiwNLMhgJLMxdvKgos3WyYTFOAAkszFwoszVyYSleAAks3GyZzT4ACy71MY7UiCizduCiwNLOhwNLMhQJLNxcm0xWgwNLMhgJLMxem0hWgwNLNhsncE6DAci/TWK2IAks3LgoszWwosDRzocDSzYXJdAUosDSzocDSzIWpdAUosHSzYTL3BCiw3Ms0ViuiwNKNiwJLMxsKLM1cKLB0c2EyXQEKLM1sKLA0c2EqXQEKLN1smMw9AQos9zKN1YoosHTjosDSzIYCSzMXCizdXJhMV4ACSzMbCizNXJhKV4ACSzcbJnNPgALLvUxjtSIKLN24KLA0s6HA0syFAks3FybTFaDA0syGAkszF6bSFaDA0s2GydwToMByL9NYrYgCSzcuCizNbCiwNHOhwNLNhcl0BSiwNLOhwNLMhal0BSiwdLNhMvcEKLDcyzRWK6LA0o2LAkszGwoszVwosHRzYTJdAQoszWwosDRzYSpdAQos3WyYzD0BCiz3Mo3ViiiwdOOiwNLMhgJLMxcKLN1cmExXgAJLMxsKLM1cmEpXgAJLNxsmc0+AAsu9TGO1Igos3bgosDSzocDSzIUCSzcXJtMVoMDSzIYCSzMXptIVoMDSzYbJ3BOgwHIv01itiAJLNy4KLM1sKLA0c6HA0s2FyXQFKLA0s6HA0syFqXQFKLB0s2Ey9wQosNzLNFYrosDSjYsCSzMbCizNXCiwdHNhMl0BCizNbCiwNHNhKl0BCizdbJjMPQEKLPcyjdWKKLB046LA0syGAkszFwos3VyYTFeAAkszGwoszVyYSleAAks3GyZzT4ACy71MY7WiIosmxGpehkWgsAUosAo7gbzPv0+vlrrDMRkCCCAQUGD5Ia0CbslmCCDgCVBgcR0gkDoBCqzUWXOmXAQosLgsEEhMgAIrMa9Ubk2BlUptzoUAAlEJUGBFJctxXRWgwHI1WdalKECBpZhKGs1EgZVGYbPUAhGgwCoQxkgOQoEVCSsHRQCBFAtQYKUYnNPFXoACK/YRsoAYCVBgxSgsF0elwHIxVdYUpQAFVpS64Y5NgRXOj70RQEBDgAJLIwemiI8ABVZ8smLS+AtQYMU/w1ivgAIr1vExfCEIUGAVAnrAU1JgBYRiMwQQkBagwJKOh+EEBSiwBENhJGcFKLCcjTYeC6PAikdOTKkjQIGlk8XOk1Bg6WbDZAggEFyAAiu4FVsi4AlQYHEdIJA6AQqs1FlzplwEKLC4LBBITIACKzGvVG5NgZVKbc6FAAJRCVBgRSXLcV0VoMByNVnWpShAgaWYShrNRIGVRmGz1AIRoMAqEMZIDkKBFQkrB0UAgRQLUGClGJzTxV6AAiv2EbKAGAlQYMUoLBdHpcByMVXWFKUABVaUuuGOTYEVzo+9EUBAQ4ACSyMHpoiPAAVWfLJi0vgLUGDFP8NYr4ACK9bxMXwhCFBgFQJ6wFNSYAWEYjMEEJAWoMCSjofhBAUosARDYSRnBSiwnI02HgujwIpHTkypI0CBpZPFzpNQYOlmw2QIIBBcgAIruBVbIuAJUGBxHSCQOgEKrNRZc6ZcBCiwuCwQSEyAAisxr1RuTYGVSm3OhQACUQlQYEUly3FdFaDAcjVZ1qUoQIGlmEoazUSBlUZhs9QCEaDAKhDGSA5CgRUJKwdFAIEUC1BgpRic08VegAIr9hGygBgJUGDFKCwXR6XAcjFV1hSlAAVWlLrhjk2BFc6PvRFAQEOAAksjB6aIjwAFVnyyYtL4C1BgxT/DWK+AAks3PooS3WyYTFOAAkszF6ZCAIHEBGZNaJfYDmydMoE6w7am7FycKLgABVZwK7ZEIKwABVZYQfYPJUCBFYov0p0psCLl5eAOClBgORgqS0IgDQUosHRDp8DSzIYCSzMXpnJTgALLzVxjsyoKLN2oKLB0s2EyTQEKLM1cmAoBBBIToMBKzCuVW1NgpVI7+LkosIJbsSUCYQUosMIKsn8oAQqsUHyR7kyBFSkvB3dQgALLwVBZEgJpKECBpRs6BZZmNhRYmrkwlZsCFFhu5hqbVVFg6UZFgaWbDZNpClBgaebCVAggkJgABVZiXqncmgIrldrBz0WBFdyKLREIK0CBFVaQ/UMJUGCF4ot0ZwqsSHk5uIMCFFgOhsqSEEhDAQos3dApsDSzocDSzIWp3BSgwHIz19isigJLNyoKLN1smExTgAJLMxemQgCBxAQosBLzSuXWFFip1A5+Lgqs4FZsiUBYAQqssILsH0qAAisUX6Q7U2BFysvBHRSgwHIwVJaEQBoKUGDphk6BpZkNBZZmLkzlpgAFlpu5xmZVFFi6UVFg6WbDZJoCFFiauTAVAggkJkCBlZhXKremwEqldvBzUWAFt2JLBMIKUGCFFWT/UAIUWKH4It2ZAitSXg7uoAAFloOhsiQE0lCAAks3dAoszWwosDRzYSo3BSiw3Mw1NquiwNKNigJLNxsm0xSgwNLMhakQQCAxAQqsxLxSuTUFViq1g5+LAiu4FVsiEFaAAiusIPuHEqDACsUX6c4UWJHycnAHBSiwHAyVJSGQhgIUWLqhU2BpZkOBpZkLU7kpQIHlZq6xWRUFlm5UFFi62TCZpgAFlmYuTIUAAokJUGAl5pXKrSmwUqkd/FwUWMGt2BKBsAIUWGEF2T+UAAVWKL5Id6bAipSXgzsoQIHlYKgsCYE0FKDA0g2dAkszGwoszVyYyk0BCiw3c43NqiiwdKOiwNLNhsk0BSiwNHNhKgQQSEyAAisxr1RuTYGVSu3g56LACm7FlgiEFaDACivI/qEEKLBC8UW6MwVWpLwc3EEBCiwHQ2VJCCCAgJDA8kNaCU3DKJkCFFhcCwikToACK3XWnCkXAQos3cuCAks3GybTFKDA0syFqRBAAAFXBCiwNJOkwNLMhancFKDAcjPX2KyKAks3Kgos3WyYTFOAAkszF6ZCAAEEXBGgwNJMkgJLMxemclOAAsvNXGOzKgos3agosHSzYTJNAQoszVyYCgEEEHBFgAJLM0kKLM1cmMpNAQosN3ONzaoosHSjosDSzYbJNAUosDRzYWMLI7UAACAASURBVCoEEEDAFQEKLM0kKbA0c2EqNwUosNzMNeWr+vLbH+ySdgN2e947ure2S5ucmWMbCqyURxX4hBRYganYEAFfgAKLCwEBBBBAIEoBCqwodZM/NgVW8nbsiUCiAhRYiYqxfa4CCz783Np1v8cq7ru37V+pfK7b3HD1hVa/bk0KrJhcQxRYMQmKMWUEKLBkomAQBBBAwEkBCizNWCmwNHNhKjcFKLDczDXlq/rna+9Zz0ETrVv7y63tlecHPj93YAWmSvmGFFgpJ+eEMRegwIp5gIyPAAIIiAtQYGkGRIGlmQtTuSlAgeVmrilf1WNPvWx3j33cBt/Wzi4674zA56fACkyV8g0psFJOzgljLkCBFfMAGR8BBBAQF6DA0gyIAkszF6ZyU4ACy81cU76qUZOftknT5tjEYbdavdo1Ap+fAiswVco3pMBKOTknjLkABVbMA2R8BBBAQFyAAkszIAoszVyYyk0BCiw3c035qgaOeNhmzX3TnnrwDjum2sGBz0+BFZgq5RtSYKWcnBPGXIACK+YBMj4CCCAgLkCBpRkQBZZmLkzlpgAFlpu5pnxVt/Qbba+/85F1uLaprVu/0f7csNFKlMiwqgdUsnq1j7cjDq2S60wUWCmPKvAJKbACU7EhAr4ABRYXAgIIIIBAlAIUWFHqJn9sCqzk7dgTgUQFKLASFWP7XAVu7jPK3nh3cZ465519qg3q2cZK71EqxzYUWLoXFAWWbjZMpilAgaWZC1MhgAACrgisqtbWlaU4tY59y5Zwaj0sBgFlAQos5XRiNNvmzVts4eIv7aADKlqlCntbRkaGrVq91hZ+9IVNeOQ5+2nFb1b3lONs0j3dKbBikisFVkyCYkwZAQosmSgYBAEEEHBSYMdJHZ1cF4tCAAEEggpQYAWVYrukBX5f819r1qqvrVm7zqbc19NOq1U961jcgZU0a+Q7UmBFTswJHBOgwHIsUJaDAAIIiAlsOr692ESM4wmUzCgKBAIIpEiAAitF0Ol+muHjnrBHZr3kPyPrljbNKbBicEFQYMUgJEaUEqDAkoqDYRBAAAHnBHgGlmakPANLMxemclOAAsvNXOVWNf2ZV2zI6OnWsnkj69OpJQWWXEK7DkSBFYOQGFFKgAJLKg6GQQABBJwToMDSjJQCSzMXpnJTgALLzVzlVjVq8tM2adoc63L9pXZ9yyYUWHIJUWDFIBJGFBegwBIPiPEQQACBmAtQYGkGSIGlmQtTuSlAgeVmrlKr2rJ1mzVr1ce+/+kXe2J8fzu++uEUWFIJ5T4Md2DFICRGlBKgwJKKg2EQQAAB5wQosDQjpcDSzIWp3BSgwHIz15Su6oflv9pr8xfZhefUsQrly+U49w/Lf7Eho6fZ/IWfWr3aNWzisFtz/DkPcU9pVAmdjAIrIS42RsAosLgIEEAAAQSiFKDAilI3+WNTYCVvx54IJCpAgZWoGNvvIvDltz/YJe0GWJEiRezgA/ezAytX9P/3zytX2Xc/rrDt23dYrRrVbNzQrla2TGkKrJhcQxRYMQmKMWUEKLBkomAQBBBAwEkBCizNWCmwNHNhKjcFKLDczDWlq9qyZavNfvEde/2dRfbV0h9tzR/rbMcOs73LlbFjqlW1Jg3rWOP6ta1YsV2/YpY7sFIaVUIno8BKiIuNEeAOLK4BBBBAAIFIBSiwIuVN+uAUWEnTsSMCCQtQYCVMxg4FKUCBVZCaBXssCqyC9eRo7gtwB5b7GbNCBBBAoDAFKLAKUz/vc1NgaebCVG4KUGC5mWtsVkWBpRsVBZZuNkymKUCBpZkLUyGAAAKuCFBgaSZJgaWZC1O5KUCB5WausVkVBZZuVBRYutkwmaYABZZmLkyFAAIIuCJAgaWZJAWWZi5M5aYABZabucZmVRRYulFRYOlmw2SaAhRYmrkwFQIIIOCKAAWWZpIUWJq5MJWbAhRYbuYam1VRYOlGRYGlmw2TaQpQYGnmwlQIIICAKwIUWJpJUmBp5sJUbgpQYLmZa2xWRYGlGxUFlm42TKYpQIGlmQtTIYAAAq4IUGBpJkmBpZkLU7kpQIHlZq6xWRUFlm5UFFi62TCZpgAFlmYuTKUrwM8ZzWz4d5lmLt5UFFia2VBgaebCVG4KUGC5mWtsVkWBpRsVv1joZsNkmgL80qeZC1PpCvBzRjMb/l2mmQsFlm4uFFi62TCZewIUWO5lGqsVUWDpxsUvFrrZMJmmAL/0aebCVLoC/JzRzIZ/l2nmQoGlmwsFlm42TOaeAAWWe5nGakUUWLpx8YuFbjZMpinAL32auTCVrgA/ZzSz4d9lmrlQYOnmQoGlmw2TuSdAgeVeprFaEQWWblz8YqGbDZNpCvBLn2YuTKUrwM8ZzWz4d5lmLhRYurlQYOlmw2TuCVBguZdprFZEgaUbF79Y6GbDZJoC/NKnmQtT6Qrwc0YzG/5dppkLBZZuLhRYutkwmXsCFFjuZRqrFVFg6cbFLxa62TCZpgC/9GnmwlS6Avyc0cyGf5dp5kKBpZsLBZZuNkzmngAFlnuZxmpFFFi6cfGLhW42TKYpwC99mrkwla4AP2c0s+HfZZq5UGDp5kKBpZsNk7knQIHlXqaxWhEFlm5c/GKhmw2TaQrwS59mLkylK8DPGc1s+HeZZi4UWLq5UGDpZsNk7glQYLmXaaxWRIGlGxe/WOhmw2SaAvzSp5kLU+kK8HNGMxv+XaaZCwWWbi4UWLrZMJl7AhRY7mUaqxVRYOnGxS8WutkwmaYAv/Rp5sJUugL8nNHMhn+XaeZCgaWbCwWWbjZM5p4ABZZ7mcZqRRRYunHxi4VuNkymKcAvfZq5MJWuAD9nNLPh32WauVBg6eZCgaWbDZO5J0CB5V6msVoRBZZuXPxioZsNk2kK8EufZi5MpSvAzxnNbPh3mWYuFFi6uVBg6WbDZO4JUGC5l2msVkSBpRsXv1joZsNkmgL80qeZC1PpCvBzRjMb/l2mmQsFlm4uFFi62TCZewIUWO5lGqsV/XH5GbGaN52G7V75jXRaLmtFILTAlGsnhz4GB0AgnQQosNIpbdZaEAIbJrxSEIfhGAUsQIFVwKAcDoHdCFBgcXkUqgAFVqHy7/bkFFi62TCZpgAFlmYuTKUrQIGlmw2TaQpQYGnmQoGlmQtTuSlAgeVmrrFZFQWWblQUWLrZMJmmAAWWZi5MpStAgaWbDZNpClBgaeZCgaWZC1O5KUCB5WausVkVBZZuVBRYutkwmaYABZZmLkylK0CBpZsNk2kKUGBp5kKBpZkLU7kpQIHlZq6xWRUFlm5UFFi62TCZpgAFlmYuTKUrQIGlmw2TaQpQYGnmQoGlmQtTuSlAgeVmrrFZFQWWblQUWLrZMJmmAAWWZi5MpStAgaWbDZNpClBgaeZCgaWZC1O5KUCB5WausVkVBZZuVBRYutkwmaYABZZmLkylK0CBpZsNk2kKUGBp5kKBpZkLU7kpQIHlZq6xWRUFlm5UFFi62TCZpgAFlmYuTKUrQIGlmw2TaQpQYGnmQoGlmQtTuSlAgeVmrrFZFQWWblQUWLrZMJmmAAWWZi5MpStAgaWbDZNpClBgaeZCgaWZC1O5KUCB5WausVkVBZZuVBRYutkwmaYABZZmLkylK0CBpZsNk2kKUGBp5kKBpZkLU7kpQIHlZq6xWRUFlm5UFFi62TCZpgAFlmYuTKUrQIGlmw2TaQpQYGnmQoGlmQtTuSlAgeVmrrFZFQWWblQUWLrZMJmmAAWWZi5MpStAgaWbDZNpClBgaeZCgaWZC1O5KUCB5WausVkVBZZuVBRYutkwmaYABZZmLkylK0CBpZsNk2kKUGBp5kKBpZkLU7kpQIHlZq6xWRUFlm5UFFi62TCZpgAFlmYuTKUrQIGlmw2TaQpQYGnmQoGlmQtTuSlAgeVmrrFZFQWWblQUWLrZMJmmAAWWZi5MpStAgaWbDZNpClBgaeZCgaWZC1O5KUCB5WausVkVBZZuVBRYutkwmaYABZZmLpQkmrkwla4AP/91s7lzwFbd4dJ4MgqsNA6fpadcgAIr5eScMLsABZbu9cBfYHWzYTJNAQoszVwosDRzYSpdAX7+62ZDgaWZDQWWZi5M5aYABZabucZmVRRYulHxF1jdbJhMU4ACSzMXCizNXJhKV4Cf/7rZUGBpZkOBpZkLU7kpQIHlZq6xWRUFlm5U/AVWNxsm0xSgwNLMhQJLMxem0hXg579uNhRYmtlQYGnmwlRuClBguZlrbFZFgaUbFX+B1c2GyTQFKLA0c6HA0syFqXQF+Pmvmw0FlmY2FFiauTCVmwIUWG7mGptVUWDpRsVfYHWzYTJNAQoszVwosDRzYSpdAX7+62ZDgaWZDQWWZi5M5aYABZabucZmVRRYulHxF1jdbJhMU4ACSzMXCizNXJhKV4Cf/7rZUGBpZkOBpZkLU7kpQIHlZq6xWRUFlm5U/AVWNxsm0xSgwNLMhQJLMxem0hXg579uNhRYmtlQYGnmwlRuClBguZlrbFZFgaUbFX+B1c2GyTQFKLA0c6HA0syFqXQF+Pmvmw0FlmY2FFiauTCVmwIUWG7mGptVUWDpRsVfYHWzYTJNAQoszVwosDRzYSpdAX7+62ZDgaWZDQWWZi5M5aYABZabucZmVRRYulHxF1jdbJhMU4ACSzMXCizNXJhKV4Cf/7rZUGBpZkOBpZkLU7kpQIHlZq6xWRUFlm5U/AVWNxsm0xSgwNLMhQJLMxem0hXg579uNhRYmtlQYGnmwlRuClBguZlrbFZFgaUbFX+B1c2GyTQFKLA0c6HA0syFqXQF+Pmvmw0FlmY2FFiauTCVmwIUWG7mGptVUWDpRsVfYHWzYTJNAQoszVwosDRzYSpdAX7+62ZDgaWZDQWWZi5M5aYABZabucZmVRRYulHxF1jdbJhMU2DEirM1B2MqBEQF+DkjGgxjyQrwH0o0o9lxUkfNwZgKAQcFKLAcDDVOS6LA0k2LXyx0s2EyTQEKLM1cmEpXgJ8zutkwmaYABZZmLhRYmrkwlZsCFFhu5hqbVVFg6UbFLxa62TCZpgAFlmYuTKUrwM8Z3WyYTFOAAkszFwoszVyYyk0BCiw3c43NqiiwdKPiFwvdbJhMU4ACSzMXptIV4OeMbjZMpilAgaWZCwWWZi5M5aYABZabucZmVRRYulHxi4VuNkymKUCBpZkLU+kK8HNGNxsm0xSgwNLMhQJLMxemclOAAsvNXAttVbPnzben5r5l3y5bbtu2bbODD9zfLjrvDLvq4oZWrFjRXeaiwCq0qPI9Mb9Y5EvEBgjkEKDA4oJAIDEBfs4k5sXWCFBgaV4DFFiauTCVmwIUWG7mWiir6j3kQXv+5X9ZRvFiVrNGNcsoXtyWfLHU1v+50c44tYaNG9rFihcrlmM2CqxCiSrQSfnFIhATGyGQJUCBxcWAQGIC/JxJzIutEaDA0rwGKLA0c2EqNwUosNzMNeWr8oorr8A6rGplmzSih1WuVN6fYcPGTdZlwFj71wef2S1tmluHa5tSYKU8neROyC8WybmxV/oKUGClb/asPDkBfs4k58Ze6StAgaWZPQWWZi5M5aYABZabuaZ8VRe17mfffPeTTR/Xz0489ogc51+zdp01uKybZWQUt7eeGWWlSpbI+nPuwEp5VIFPyC8WganYEAFfgAKLCwGBxAT4OZOYF1sjQIGleQ1QYGnmwlRuClBguZlrSlf188pV1qhFd6tapZLNmz4813N3GzjOXnrzAxszuLPVr1uTAiulCSV3Mn6xSM6NvdJXgAIrfbNn5ckJ8HMmOTf2Sl8BCizN7CmwNHNhKjcFKLDczDWlq3pt/kfWqf9oa9LodBvWt32u535k1ks2fNwTdn3LJtbl+kspsFKaUHIn4xeL5NzYK30FKLDSN3tWnpwAP2eSc2Ov9BWgwNLMngJLMxemclOAAsvNXFO6qodnvmj3TJhh7a+50Dq1vSTXc786f5F17j/Gzj3rFLtv4E0UWClNKLmT8YtFcm7slb4CFFjpmz0rT06AnzPJubFX+gpQYGlmT4GlmQtTuSlAgeVmrild1dips23Co89Z9w5XWOsWjXM998LF/7Y2XYfZaSdVtyn39qTASmlCyZ2MXyySc2Ov9BWgwErf7Fl5cgL8nEnOjb3SV4ACSzN7CizNXJjKTQEKLDdzTemq7p34pE2d8YL1vqWlXX1Jo1zPvfizb+zqmwdbzeOq2bSxfSmwUppQcifjF4vk3NgrfQUosNI3e1aenAA/Z5JzY6/0FaDA0syeAkszF6ZyU4ACy81cU7qqhO7AqlXdptz3vzuwUjooJ0MAAQQQQAABBBBAAAEEEEAAgVgKUGDFMjatoR+d9ZING/dEoGdgNax3ko0adIvWApgGAQQQQAABBBBAAAEEEEAAAQSkBSiwpOOJx3BvLVhiN/YeGehbCNu0ON9u7XB5PBbGlAgggAACCCCAAAIIIIAAAgggICFAgSURQ7yHWLV6rZ3ZvLNVrVLJ5k0fnutiug0cZy+9+YGNGNDRGtevHe8FMz0CCCCAAAIIIIAAAggggAACCKRUgAIrpdzunsx7QLv3oPbp4/rZiccekWOha9auswaXdbPtO3bY27NHW9kypd2FYGUIIIAAAggggAACCCCAAAIIIFDgAhRYBU6angecv/AT69DrPjusamWbNKKHVa5U3ofYsHGTdb19nL3z/qfWsnlD69Pp6vQEYtUIIIAAAggggAACCCCAAAIIIJC0AAVW0nTsuLPAiIkz7aEZ8ywjo7jVPO4IK5GRYUu+WGrr1m+w6kceYo+M6m2l9ygJHAIIIIAAAggggAACCCCAAAIIIJCQAAVWQlxsnJ+A95yraU+/Yl8t/cG2bdtuVSpXtPPr17bWLRpbyRIZ+e3OnyOAAAIIIIAAAggggAACCCCAAAK7CFBgcVEggAACCCCAAAIIIIAAAggggAACCEgLUGBJx+PmcD+vXGUTH3ve3v3gM/O+wbBc2TJ2as2jrf3VTe2IQ6u4uWhWlfYC27fvsFfe/tDmvrrAPvliqf2xdr3tWbqUHXPkwdaiWX1r9I+T8zRK9j3z4ZKv7OGZL9rHn39r6zdstP0q7GMNzqhl7a9tauX22jPtMwEgfgI7duzwn7foPVfxH6edYBPu7prrInjPxC9bJi5YgY8+/dqeffEd834OeH/X+uuvLbZ3uTL2wPBb7egjqu5yMt4zBevP0RBAAAEEohGgwIrGlaPmIfDvb7636zoPtT83bLKDDqhkhx1c2Vb+utq+WvqjlSiRYeOHdLHTTz4WPwScEvjPDyus110P2BdfL7OM4sXs2KMOtfL7lPWvfe+fea+WzRtZn04td1l3su+Zp+a+ZbePeMg/3rFHHWL77lPOvvnPj7bi19X+lyw8Pn6AVaqwt1POLMZ9gUdmvWTDxz3hLzSvAov3jPvXASvMW2DLlq3Wb/gUm/vKAitSpIhfVlWtsp8VLVrEVvzyu/XtfLX/XNLsL94zXFEIIIAAAnERoMCKS1IOzOk9E+vC63rb9z/9Yj06trBWV5yXtaq331tit/QdbXvuWcpeevwe26tMaQdWzBIQ+Fvg0y+/s9ZdhtpVFze0tldeYOXK/u/up8WffWM39BhhGzb+ZVPu7WmnnVQ9iy3Z98yPP/9qTa7pbcWLF7OJw7rZKSce7R/Tu3tl7EOzbeKjz9tptarblPt6EhECsRH48tsfrEXHO+2cf5xs/3ztvVwLLN4zsYmTQSMS6NR/tL02/yM78/QT/G9+PrByxd2eifdMREFwWAQQQACBSAQosCJh5aC5CXgfn+oyYKx/h9XkET122STzWwy7XH+pXd+yCYgIOCWw9r9/5iiusi9u3EOzbfwjz9kVzerbgK7XZv1Rsu+ZIaOn2fRnXrXc3kteiXVlxzv9Um36uH524rFHOOXMYtwU2Lhps112w+22Zu06v+i9pN2AXAss3jNu5s+qggnMe32hdb9zgp1V50Qbc1dn/66r/F68Z/IT4s8RQAABBJQEKLCU0nB8lr53T/afxzCsb3tr0uj0XVa7dNlya9qqr3+7+9OT73Rcg+Uh8D+BV+cvss79x/jPwbr/zpuz/iDZ90yjFt3Ne57J67NG2n4V99mF+olnX7O77n/Mrr3sXOt105VEgYC8gPdxWO9jsWMGd7YjDjnAGrfslWuBxXtGPkoGjFDgivZ32BffLLOXnxhhlffbN9CZeM8EYmIjBBBAAAERAQoskSDSYYzmbfv7z7qaN324Va1SKdcl176go/98rI9emuQ/E4sXAukgkPm8qusuO9d6ZiuUknnP/Hf9Bju9yY1+ceUVWLm9vOedXHr97f7dV95dWLwQUBbIvEPE+7KD/l2vte9+WGFNru2da4HFe0Y5SWaLUuCnFb/ZuVf2sNo1j7GpI3sFPhXvmcBUbIgAAgggICBAgSUQQrqMcErj9v5zfj5+dYr/IOvcXhe36Wdf/+cne/7hwXb4IXwjYbpcG+m+zht7j7S3FiyxSfd0t7qnHJfFkcx75vOvltnl7QdarRrV7LExfXOlXbvuT6tz4U22T7m97J3nxqQ7P+sXFvC+dKB5m35WscI+NmvSQCtZIsO8L0W4MI8Ci/eMcJiMFqnAS2++b90GjvcfwdDiovo2/uFn7V/vf2a/r1nrP1f05BOOsvbXNN3lGwh5z0QaCwdHAAEEEChgAQqsAgblcLkLbN++w2rUb217lCphH744KU+mazsNsUWffO3/4u39As4LAdcF3l/8pbXuercdediBNnvqXVnLTfY9s3Dxv61N12F5fkObdwLvOVjHnd3aihUrap+8NtV1YtYXUwHvPdCqy1D/eW0zJ97uv0e8V14FFu+ZmAbN2AUi4BVW4x5+1v9o+HMvvWOlS5W0uqfW8Etf7wsQvL9bZWQU95+NVa92Df+cvGcKhJ6DIIAAAgikUIACK4XY6XyqTX9ttpPOvcHKliltC+aOz5OiXfd7bMGHn/sPefce9s4LAZcFVv622n+g+po/1tm0cf3suKMOzVpusu+Z+Qs/sQ697rMG9WrZ6EGd8uQ7oUFb27ptmy15bYoVL5b7HZEu27M2fQHv2zLHTH3G/ya1ls0bZg2cV4HFe0Y/UyaMTmDomOk27elX/BO0btHY/xKP7P9un/vKAus1+AHbd5+y9vKMEVaqZAnjPRNdHhwZAQQQQCAaAQqsaFw56k4CmXd8BL8Dq4/VqnEkjgg4K+B9m9p1nYba0u9/trt6tbWLG9fLsdZk3zPcgeXsJZNWC1vyxVK75pbBdsapNWz80K451p5XgcV7Jq0uERa7k0D/4VPtmRfetjonH2cPjuieq0+HXvfa/IWf2qhBt1jDeidl3Y2b6N/N+DnD5YcAAgggUFgCFFiFJZ+G5/Ue0L7+z42BnoHlfZQq8+MiaUjFkh0X+GPtev9jg97z3rp3uML/r+W5vZJ5z3gfFbmk3YBAz8Aqt9ee9u6ccY5rs7y4CXg/J7wHS/+1eYs9+9Bd/rPasr929wws3jNxS5t5C0rA+2ZZ7xtmB3S91q5oVj/Xw06aNsdGTX7abm5zsXW8tpm/De+ZgkqA4yCAAAIIpEKAAisVypzDF/AeLO09YDq/byH0fnn5YN4DVnqPksgh4JzA6j/WWdtuw/zyqkfHFtbqivPyXGMy75kNGzfZKY07BPoWwhpHH2ozJt7unDELirfA5Mf/aSMnzbJKFfa2KvtX3GUx3seevG/S9D6SnvllH307X23HVDs4qZ8zvGfifb0w/d8CEx59zsZOnW19OrW0ls0b5cry+OzXbPCox/wHvXsfMUz272a8Z7jqEEAAAQQKS4ACq7Dk0/C8g0Y+ajOee92G9W1vTRqdvovA0mXLrWmrvnZo1co299GhaSjEkl0XWLV6rf+Ade9jg/27Xmst8viv5JkOyb5nml7Xxz/H67NG+kXWzi/vv9J7/7X+8qZn2+3drnOdnfXFTGDcQ7Nt/CPPJTT1QyNvs1NrHm28ZxJiY2OHBDKff3hBg9NseP8Oua7sngkz7OGZL1rvW1ra1Zf8XXLxnnHoImApCCCAQBoIUGClQcgqS/Qezu49pD2v5zOMmDjTHpoxz9q0ON9u7XC5ytjMgUCBCPzy2xr/Y4M//vyrDerZ1i4674x8j5vse8b7iIj3URHvv7B7/6V951eLDnf43+w2cVg3q1f7+HznYAMElAR29xFC3jNKSTFLKgU2b95iZ13SxX8w+5xHh1qV/SvkOL33pR0XXtvbflj+qz314B3+HYvei/dMKlPiXAgggAACYQUosMIKsn9CAi063mmf/vs/u3x06u33llinfqOtSNGi9uL04bneNZLQidgYASGBFb/8bq27DjPv/w7v397OPevUwNMl8575fc1/7byretr27dv9kuqUE4/2z+c95HrsQ7PN+3Y37xlzz0wZZEWKFAk8CxsioCCwuwLLm4/3jEJKzFAYAg8/+aLdM36GVTv0QBs/tIsd8P8l1rZt2+2+B540789POv5Ie3R0nxzj8Z4pjLQ4JwIIIIBAMgIUWMmosU/SAt7dJy1vusu8X7APOqCSHXZwZfPuTPEePO39In13nxty/Xhh0idkRwQEBLxr/uPPvzXvm572q1h+txPdcPWF1uzculnbJPueeW3+R9Zt4Djz/qv7sUcdYhXKl/Ofu+WVaN7D2x8b0yfr+UECRIyAQGCB/Aos3jOBKdnQMYHt23dY76GTbO4rCyyjeDE76fijbK8ype2zL/9jK35d7Rdaj9x/W1axlbl83jOOXQgsBwEEEHBYgALL4XBVl+aVVxMeec7eXPCxrfr9DyuzZ2mrWaOatbvqAjuh+uGqYzMXAkkLeM92857xFuTV66Yr7drLzs2xabLvmS++XmYPPDbHFn3yta3/c4NV2Hdv/yODHa5pyl2OQcJgG0mB/Aosb2jeM5LRMVSKBOa+usCefP4N/z8Obt6y1Q7Yb19rcMZJGOhZaQAAG5JJREFU/t+zypXdM9cpeM+kKBxOgwACCCAQSoACKxQfOyOAAAIIIIAAAggggAACCCCAAAIIRC1AgRW1MMdHAAEEEEAAAQQQQAABBBBAAAEEEAglQIEVio+dEUAAAQQQQAABBBBAAAEEEEAAAQSiFqDAilqY4yOAAAIIIIAAAggggAACCCCAAAIIhBKgwArFx84IIIAAAggggAACCCCAAAIIIIAAAlELUGBFLczxEUAAAQQQQAABBBBAAAEEEEAAAQRCCVBgheJjZwQQQAABBBBAAAEEEEAAAQQQQACBqAUosKIW5vgIIIAAAggggAACCCCAAAIIIIAAAqEEKLBC8bEzAggggAACCCCAAAIIIIAAAggggEDUAhRYUQtzfAQQQAABBBBAAAEEEEAAAQQQQACBUAIUWKH42BkBBBBAAAEEEEAAAQQQQAABBBBAIGoBCqyohTk+AggggAACCCCAAAIIIIAAAggggEAoAQqsUHzsjAACCCCAAAIIIIAAAggggAACCCAQtQAFVtTCHB8BBBBAAAEEEEAAAQQQQAABBBBAIJQABVYoPnZGAAEEEEAAAQQQQAABBBBAAAEEEIhagAIramGOjwACCCCAAAIIIIAAAggggAACCCAQSoACKxQfOyOAAAIIIIAAAggggAACCCCAAAIIRC1AgRW1MMdHAAEEEEAAAQQQQAABBBBAAAEEEAglQIEVio+dEUAAAQQQQAABBBBAAAEEEEAAAQSiFqDAilqY4yOAAAIIIIAAAggggAACCCCAAAIIhBKgwArFx84IIIAAAggggAACCCCAAAIIIIAAAlELUGBFLczxEUAAAQQQQAABBBBAAAEEEEAAAQRCCVBgheJjZwQQQAABBBBAAAEEEEAAAQQQQACBqAUosKIW5vgIIIAAAggggAACCCCAAAIIIIAAAqEEKLBC8bEzAggggAACCCCAAAIIIIAAAggggEDUAhRYUQtzfAQQQAABBBBAAAEEEEAAAQQQQACBUAIUWKH42BkBBBBAAAEEEEAAAQQQQAABBBBAIGoBCqyohTk+AggggAACCCCAAAIIIIAAAggggEAoAQqsUHzsjAACCCCAAAIIIIAAAggggAACCCAQtQAFVtTCHB8BBBBAAAEEEEAAAQQQQAABBBBAIJQABVYoPnZGAAEEEEAAAQQQQAABBBBAAAEEEIhagAIramGOjwACCCCAAAIIIIAAAggggAACCCAQSoACKxQfOyOAAAIIIIAAAggggAACCCCAAAIIRC1AgRW1MMdHAAEEEEAAAQQQQAABBBBAAAEEEAglQIEVio+dEUAAAQQQQAABBBBAAAEEEEAAAQSiFqDAilqY4yOAAAIIIIAAAggggAACCCCAAAIIhBKgwArFx84IIIAAAgggkIzA+j832oPT59qr8xfZ8pWrrERGcTvogEp2zaXn2EXnnZHMIdkHAQQQQAABBBBAwGEBCiyHw2VpCCCAAALpK9D37sn27Ivv2MRht1q92jWyIEZNftomTZtjY+7qZPXPqFUoQJv+2mxX3TjIvlr6o3/+8nvvZUWKFLHf1/zXhvfvYBc0OG23c417aLaNf+S5QLM3aXi6DevXPtC2bIQAAggggAACCCCgK0CBpZsNkyGAAAIIIJC0wGU3DLQvvl5mr88aaftV3CfrODf2HmlvLVhiL88YYVX2r5D08cPs+PDMF+2eCTOs9B4l/YLtpOOP9A+3avVa26tMaStZIoMCKw+B73/6xea+8q61btHYSu9RKkwM7IsAAggggAACCMRKgAIrVnExLAIIIIAAAvkLbN++w04+7wYrVbKEvTtnXI4dGlzWzdb9ucHef2Fi/geKaIvrOg+1D5d8ZVde1MD6dbkm4bNk3oF1+MEH2KwH79jt/kWLFrWM4sUSPofqDvc/+JT/0cu3nhllFcqXUx2TuRBAAAEEEEAAgQIXoMAqcFIOiAACCCCAQOEKLPtxpV1wzW12yolH28P335Y1zNp1f1qdC2+yWjWOtMfG9Cm0Ib0SbeVvq+32btfZ5U3PTniOrALrkCr2/MODE94/zjtc3Kafff2fnyiw4hwisyOAAAIIIIBAUgIUWEmxsRMCCCCAAAK6Ai+/9aF1vX2stWze0Pp0ujpr0PcXf2mtu95tV13cwPp2TvzOp4JY8Y4dO6xu05vNK9Pu6d/Rzm9QO+HDpmuB9flXy+zy9gN9L+7ASviyYQcEEEAAAQQQiLkABVbMA2R8BBBAAAEEdhbILHju6N7aLm1yZtYfP/bUy3b32Mdt53+eqKD3EPZZc970v0Hw22XLbf36jVZ2r9J2TLWDrXH92tb0nLpWrFjRHIf9+PNv7el/vm1vv7fEf9ZVbq85jw61w6pWznecZAqsoWOm27SnX/G/6fDFx4fv9hzzXl9o3e+cYEWLFrHXnhxplSrsnbW9V8D989X37NmX3rEvv/nB1q3fYHuXK2M1j6tmV13c0E6teXSux77j3oftyTlv2n0Db7JzzzrF3lv0hc147nXzXNb8sc72LF3Kqh12oF3YqI41P/8f/rkzXz/+/KsNHjXN5i/8JM+5e910pV172blZf/7uh5/ZU3Pftk/+vdT39j5GWXHfvf31/+O0E/wH+FeuVD5fazZAAAEEEEAAAQRUBCiwVJJgDgQQQAABBJIU8L5Z8Mtvf8ja++ulP/of0atxzGG2T7m9sv750mXLbfnKVTn+uVfOeIVW0NfS73+2G28baT+t+M3fxSuqypTew/67foN55Y73qnH0oTZuaFfbd5+yWYd9+MkXbf57fxcw3vOvtm7bZkccWsUq7PO/5zjddVu7QKVKMgWW942Hzdv2988/bWxfv3DK69XxtpF+0Vav9vE2cVi3rM02bNxkt/Qb7ZdP3st7xpj30HmvgPLW473atDjfbu1w+S6Hziywbmp9sf3550bzPDKP4ZVVGzb+lbXP2XVq2ui7OmWVWIs++drGP/ysbdj0l33yxVJ/O+9joCUyimft0+Ki+tboHyf7//+Q0dNs+jOv+v/bO7Z3DWzc9FeOc1zfsol1uf7SoLGzHQIIIIAAAgggUOgCFFiFHgEDIIAAAgggEE6gbbfh9t5Hf5cqib6C3JGUecw1a9f5JdCvq/6www+pYj1vbGGnnVTdihcrZt5dWW/8a7ENH/+E/+fe3VhPjO9vGdlKlszj1Gl6k639b+o/Qnjp9bfbv7/53n/ulvf8rdxeq/9YZ2dd0tm2bduedbdU5nY39xllb7y72A7Yv4IN6Hqd1Tn5WL/A88qnJ559ze5/cJZ5D9Af2L2VXdbkrByHzyywypXd0197i2b17brLz7WqVfbzt/PMxj70jH+Xmve6q1dbu7hxvRzH+Oa7n+yi1v38f5bXRwgXfPi5tet+j3/HVZ/O11jTc+r4RZv38j62+cHHX/o5eeWVd0cWLwQQQAABBBBAIC4CFFhxSYo5EUAAAQQQCCCQ+aB27+6rGRMGZO3h3SF1epMbrfqRh9isSX8/RynR16CRj/ofe9u/Ynl7ZuogK7fXnrscwvu4m1dyeaVOt/aXW9srz99lm4IssJ6Zcudul+GVa5kv764k7+4kb26vAMqtXPM+Zuh93HDnbbziyiuwvGLo6cl3+gXezq9MH+/Os1dn3mslSmRkbZJZYHn/oNUV51mPji1ynfuqGwfZki+W2hmn1rAHht+aY5sgBdaYqc/YxEeftwb1atnoQZ0SjZjtEUAAAQQQQAABWQEKLNloGAwBBBBAAIHEBd55/1Nr3/PeXR7U/q8PPrMbeozY7d1Huzvb5s1b7PQLb/LvtBrQ9Vq7oln9PDcfOWmWTX78n/7HAV998r7ICqwgOq/Nus8v3LyXd+fTmZd0ti1btvrljlfy7PzyHpLuPSx95wfgd+h1n/8MKu+ZYnl95PK7H1ZYk2t7+4ecOrKX1a55zC4FlnfHlleeZf9oZ/YZHpw+1+5/8CmrvN++fgmW/RWkwJo64wW7d+KTduRhB9qTk+7wCzdeCCCAAAIIIICACwIUWC6kyBoQQAABBBD4f4Hxjzxn3jOihvS+3pqdWzfLxbsrx7s7Z1DPNv5DwhN9Lf7sG7v65sH+bq/MGOF/jC6vV/Zt500fblWrVMqxaUHdgRVkDdkLLG/7bgPH2UtvfuA/L+r+O2/OcYjsBdRTD97hfwzSe3kfC6x9QUfznoE1rF97a9Lw9FxPvWXrNqt1Tjt/+z6dWlrL5o2ytsu8A8srlmZPvSvP0ee+ssB6DX7AypYpbQvmjs+xXZACy3vGWbNWfWzjps124rFHWNcbLrOTTzgqCBXbIIAAAggggAAC0gIUWNLxMBwCCCCAAAKJCXToda/NX/ip7fyNfjf2HmlvLVhizz50l1U79MDEDmpmmcWKd0fPx69O2e3+f6xdb3Wb/V0OPTiiu9U5+bhICizvY3zPP/x3qRb05d1F5d1N5X188O3Zo/2iKPM1esrT9sBjc+yoww+yZ6YMyvrnv/3+h511SZegp/C38x7WfuN1zbL2ySywdn4w/M4HfeG1hdZj0AQrs+cetvCfE3L8cZACy9vh/cVf+sfI/LbHQ6tW9stM79sh96u4T0LrYGMEEEAAAQQQQEBFgAJLJQnmQAABBBBAIAkB77lLy35cmbXnx59/63/Mz/v4WpEiRbL++ZIvvvXvyjm15tFWtEhR/59XKF/Ov6MoyOvJ59+wO+57xP/Wvfd2ujNo5/3/2rzFap1zvf+PR95xs51z5t/fjpf5Kqg7sJIpsLyHsze4vJt5pVT2h61736B4zpU97OeVq+y2m6+yay49J2ve7HdmHXLQ/lYy27Ot8rK7ounZOT5mmVlg5XbnV/ZjFESB5R3Pu1vMeyD8zOffMG9+7+V9I2Hjs2v7D3Df3R10Qa4HtkEAAQQQQAABBFItQIGVanHOhwACCCCAQAEKXHbDQPvi62VJHTG35yzldaCX3/rQut4+1n+mUiJ3YE26p7vVPUXnDixvfZnP6KpV40h7bEwff8kfffq1XXPLEP8bFd985v4cz6ha+dtqa3BZN3+7x8b0tVo1qiXsneoCK/uA3kPhZzz7ur3w2nu2dds227N0KXv4/tv8B/rzQgABBBBAAAEE4iJAgRWXpJgTAQQQQACBfARem/+Rdeo/epcHuGd+bM578Lr3APZkXp9++Z216HCHv2t+z8Dy7gJredPfz3l6YdowO/jA/XKcsjDvwPIG8e5Yu+Ca2/yZMp+RlVkwNax3ko0adEuOeb1nW516fgfzHmSf/a6tRBwLs8DKnPP7n36xW/qOsqXf/2w1jj7UZky8PZElsC0CCCCAAAIIIFCoAhRYhcrPyRFAAAEEECg4gcwHuN/Zo41dcsH/HtQ+adocGzX56aTLF29C78HkZ1/axX+uUr8u19iVFzXIc3DvW/S8b9PzPqLofePezq/CLrC8ebyCzSvaetzYwq6+pJH94+JO/rcUjhvSxc6qc+IuM7ftNtze++gLO/3kY23yiB4Jh1YQBdbSZcutaau+/rm9b3f0vuUx0ddHn35j19wy2P844aIXJ1mJAB+HTPQcbI8AAggggAACCEQhQIEVhSrHRAABBBBAoBAEOvcfY6/OX2RPPjDQjj3qfx8P6zJgrL3y9oc284Hb7bijDk16ssyP3u1fsbzNfuiuHA9Azzzoil9+t2at+9qfGzbZTa0ushtbXSRZYD019y27fcRDdnz1w+3m1hfbDT1G+IWbd0eW9zHCnV+en+fovUYM6GiN69dOyLEgCiyvPDyzeWf/vA8Mv9XOOLVGQjN4G3sPeG/d9W4rVqyoLX55sv9/eSGAAAIIIIAAAnEQoMCKQ0rMiAACCCCAQACB867qaT//sso+nPdAjjtrzr2yh6349fdd/nmAQ+bYxHs4fPO2/c37KJr3TYZ9O19tJ59wlP+weO/ZSv96/zO7a9Rj/oPQD6ta2WY+MNBK71EysgLr73Ps/mNwXhmV211GXsHm3XXlrencs06xl978wFq3aGzdO1yRJ0tmQejdvdTq8sZ2aZMz/Y9Heg+AX7N2vS1f8Zt5H9f8aumPu3wMsSAKLG8wL8ufVvzmP79qwt1d/dLNe3kfb/TW+fDMF+0/P/xsTRrWsROPPTxr7d6M3t1X/YdP8fOrf0YtG3NXp0QvAbZHAAEEEEAAAQQKTYACq9DoOTECCCCAAAIFJ+B969wpjTvYEYdWseceGpx14HXrN9hpTW60Iw870GZP/fu5VGFe3h1WnfqPyXpwfOk9Slm5vUr7BY5XBnkv71zj7+6W50fcCuojhEHW0aTh6Xl+0+JtQybZnJffzTrM848MscMPPiDPw3rr6zdsis17fWHWNpl3a3kFXubroAMq2YuPD89xnIIqsOa+ssB6DX7AP7ZXpO1faV//GwcvOu8M69Gxhf9RUe8jo97Lu7vKK7iKFStmq9f8NyufQ6tWtin39rT9Ku4ThJBtEEAAAQQQQAABCQEKLIkYGAIBBBBAAIFwApkPTm/S6HQb1rd91sE++PhLa9Xlbmt2bl0b0vv6cCf5/729u33mvfG+PffiO/afH1bYmj/WWdm9SttRR1S1xmfXtmbn1c31Y3iZJ1cpsBYu/re16TrMH6vGMYfZjAkDAvl4+z3zwtu2+NNv/GeCeeVVmT33sKpV9rNTTzzamjSq45d42V8FVWB5x/Qe1v/QzHn21dIfzHvAfKV997aO1zWzixvXs99+/8NmzXnTFiz6wr7/aaX/XK8dtsPKltnTn6lBvVp2aZOzrCTPvgqUNRshgAACCCCAgI4ABZZOFkyCAAIIIIAAAggggAACCCCAAAIIIJCLAAUWlwUCCCCAAAIIIIAAAggggAACCCCAgLQABZZ0PAyHAAIIIIAAAggggAACCCCAAAIIIECBxTWAAAIIIIAAAggggAACCCCAAAIIICAtQIElHQ/DIYAAAggggAACCCCAAAIIIIAAAghQYHENIIAAAggggAACCCCAAAIIIIAAAghIC1BgScfDcAgggAACCCCAAAIIIIAAAggggAACFFhcAwgggAACCCCAAAIIIIAAAggggAAC0gIUWNLxMBwCCCCAAAIIIIAAAggggAACCCCAAAUW1wACCCCAAAIIIIAAAggggAACCCCAgLQABZZ0PAyHAAIIIIAAAggggAACCCCAAAIIIECBxTWAAAIIIIAAAggggAACCCCAAAIIICAtQIElHQ/DIYAAAggggAACCCCAAAIIIIAAAghQYHENIIAAAggggAACCCCAAAIIIIAAAghIC1BgScfDcAgggAACCCCAAAIIIIAAAggggAACFFhcAwgggAACCCCAAAIIIIAAAggggAAC0gIUWNLxMBwCCCCAAAIIIIAAAggggAACCCCAAAUW1wACCCCAAAIIIIAAAggggAACCCCAgLQABZZ0PAyHAAIIIIAAAggggAACCCCAAAIIIECBxTWAAAIIIIAAAggggAACCCCAAAIIICAtQIElHQ/DIYAAAggggAACCCCAAAIIIIAAAghQYHENIIAAAggggAACCCCAAAIIIIAAAghIC1BgScfDcAgggAACCCCAAAIIIIAAAggggAACFFhcAwgggAACCCCAAAIIIIAAAggggAAC0gIUWNLxMBwCCCCAAAIIIIAAAggggAACCCCAAAUW1wACCCCAAAIIIIAAAggggAACCCCAgLQABZZ0PAyHAAIIIIAAAggggAACCCCAAAIIIECBxTWAAAIIIIAAAggggAACCCCAAAIIICAtQIElHQ/DIYAAAggggAACCCCAAAIIIIAAAghQYHENIIAAAggggAACCCCAAAIIIIAAAghIC1BgScfDcAgggAACCCCAAAIIIIAAAggggAACFFhcAwgggAACCCCAAAIIIIAAAggggAAC0gIUWNLxMBwCCCCAAAIIIIAAAggggAACCCCAAAUW1wACCCCAAAIIIIAAAggggAACCCCAgLQABZZ0PAyHAAIIIIAAAggggAACCCCAAAIIIECBxTWAAAIIIIAAAggggAACCCCAAAIIICAtQIElHQ/DIYAAAggggAACCCCAAAIIIIAAAghQYHENIIAAAggggAACCCCAAAIIIIAAAghIC1BgScfDcAgggAACCCCAAAIIIIAAAggggAACFFhcAwgggAACCCCAAAIIIIAAAggggAAC0gIUWNLxMBwCCCCAAAIIIIAAAggggAACCCCAAAUW1wACCCCAAAIIIIAAAggggAACCCCAgLQABZZ0PAyHAAIIIIAAAggggAACCCCAAAIIIECBxTWAAAIIIIAAAggggAACCCCAAAIIICAtQIElHQ/DIYAAAggggAACCCCAAAIIIIAAAghQYHENIIAAAggggAACCCCAAAIIIIAAAghIC1BgScfDcAgggAACCCCAAAIIIIAAAggggAACFFhcAwgggAACCCCAAAIIIIAAAggggAAC0gIUWNLxMBwCCCCAAAIIIIAAAggggAACCCCAAAUW1wACCCCAAAIIIIAAAggggAACCCCAgLQABZZ0PAyHAAIIIIAAAggggAACCCCAAAIIIECBxTWAAAIIIIAAAggggAACCCCAAAIIICAtQIElHQ/DIYAAAggggAACCCCAAAIIIIAAAghQYHENIIAAAggggAACCCCAAAIIIIAAAghIC1BgScfDcAgggAACCCCAAAIIIIAAAggggAACFFhcAwgggAACCCCAAAIIIIAAAggggAAC0gIUWNLxMBwCCCCAAAIIIIAAAggggAACCCCAAAUW1wACCCCAAAIIIIAAAggggAACCCCAgLQABZZ0PAyHAAIIIIAAAggggAACCCCAAAIIIECBxTWAAAIIIIAAAggggAACCCCAAAIIICAtQIElHQ/DIYAAAggggAACCCCAAAIIIIAAAghQYHENIIAAAggggAACCCCAAAIIIIAAAghIC1BgScfDcAgggAACCCCAAAIIIIAAAggggAACFFhcAwgggAACCCCAAAIIIIAAAggggAAC0gIUWNLxMBwCCCCAAAIIIIAAAggggAACCCCAAAUW1wACCCCAAAIIIIAAAggggAACCCCAgLQABZZ0PAyHAAIIIIAAAggggAACCCCAAAIIIECBxTWAAAIIIIAAAggggAACCCCAAAIIICAtQIElHQ/DIYAAAggggAACCCCAAAIIIIAAAghQYHENIIAAAggggAACCCCAAAIIIIAAAghIC1BgScfDcAgggAACCCCAAAIIIIAAAggggAACFFhcAwgggAACCCCAAAIIIIAAAggggAAC0gIUWNLxMBwCCCCAAAIIIIAAAggggAACCCCAAAUW1wACCCCAAAIIIIAAAggggAACCCCAgLQABZZ0PAyHAAIIIIAAAggggAACCCCAAAIIIECBxTWAAAIIIIAAAggggAACCCCAAAIIICAtQIElHQ/DIYAAAggggAACCCCAAAIIIIAAAgj8Hz+57qvJ6rpwAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAK8CAYAAAD/M0aOAAAgAElEQVR4XuzdB3QV1drG8SdAQpHeBBVEFFEEFUQRFEWKCqIIShEsNOnSm0iV3nvvIAjSBEFFFBEULjZU7IogioXee8i39vCdmJB2TpI5Z5+c/6z1rXUv2bPnnd+7w/p47syesKioqChxIIAAAggggAACCCCAAAIIIIAAAgggYKlAGAGWpZ2hLAQQQAABBBBAAAEEEEAAAQQQQAABR4AAi4WAAAIIIIAAAggggAACCCCAAAIIIGC1AAGW1e2hOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICA1QIEWFa3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAAlYLEGBZ3R6KQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAghYLUCAZXV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAgggYLUAAZbV7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIDVAgRYVreH4hBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACVgsQYFndHopDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCFgtQIBldXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgtQABltXtoTgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgNUCBFhWt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAJWCxBgWd0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWC1AgGV1eygOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIGC1AAGW1e2hOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICA1QIEWFa3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAAlYLEGBZ3R6KQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAghYLUCAZXV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAgggYLUAAZbV7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIDVAgRYVreH4hBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACVgsQYFndHopDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCFgtQIBldXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgtQABltXtoTgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgNUCBFhWt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAJWCxBgWd0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWC1AgGV1eygOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIGC1AAGW1e2hOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICA1QIEWFa3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAAlYLEGBZ3R6KQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAghYLUCAZXV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAgggYLUAAZbV7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIDVAgRYVreH4hBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACVgsQYFndHopDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCFgtQIBldXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgtQABltXtoTgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgNUCBFhWt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAJWCxBgWd0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWC1AgGV1eygOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIGC1AAGW1e2hOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICA1QIEWFa3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAAlYLEGBZ3R6KQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAghYLUCAZXV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAgggYLUAAZbV7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIDVAgRYVreH4hBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACVgsQYFndHopDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCFgtQIBldXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgtQABltXtoTgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgNUCBFhWt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAJWCxBgWd0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDSCAAAIIIIAAAggggAACCCCAAAIIWC1AgGV1eygOAQQQQAABBBBAAAEEEEAAAQQQQIAAizWAAAIIIIAAAggggAACCCCAAAIIIGC1AAGW1e2hOAQQQAABBBBAAAEEEEAAAQQQQAABAizWAAIIIIAAAggggAACCCCAAAIIIICA1QIEWFa3h+IQQAABBBBAAAEEEEAAAQQQQAABBAiwWAMIIIAAAggggAACCCCAAAIIIIAAAlYLEGBZ3R6KQwABBBBAAAEEEEAAAQQQQAABBBAgwGINIIAAAggggAACCCCAAAIIIIAAAghYLUCAZXV7KA4BBBBAAAEEEEAAAQQQQAABBBBAgACLNYAAAggggAACCCCAAAIIIIAAAgggYLUAAZbV7aE4BBBAAAEEEEAAAQQQQAABBBBAAAECLNYAAggggAACCCCAAAIIIIAAAggggIDVAgRYVreH4hBAAAEEEEAAAQQQQAABBBBAAAEECLBYAwgggAACCCCAAAIIIIAAAggggAACVgsQYFndHopDAAEEEEAAAQQQQAABBBBAAAEEECDAYg0ggAACCCCAAAIIIIAAAggggAACCFgtQIBldXsoDgEEEEAAAQQQQAABBBBAAAEEEECAAIs1gAACCCCAAAIIIIAAAggggAACCCBgtQABltXtoTgEEEAAAQQQQAABBBBAAAEEEEAAAQIs1gACCCCAAAIIIIAAAggggAACCCCAgNUCBFhWt4fiEEAAAQQQQAABBBBAAAEEEEAAAQQIsFgDCCCAAAIIIIAAAggggAACCCCAAAJWCxBgWd0eikMAAQQQQAABBBBAAAEEEEAAAQQQIMBiDQRU4K9DZwJ6fS6OAAIIIIAAAggggAACCCRX4Jo8mZN7KuchgICPAgRYPoIxPHUFCLBS15PZEEAAAQQQQAABBBBAwH8CBFj+s+ZKCBBgsQYCKkCAFVB+Lo4AAggggAACCCCAAAIpECDASgEepyLgowABlo9gDE9dAQKs1PVkNgQQQAABBBBAAAEEEPCfAAGW/6y5EgIEWKyBgAoQYAWUn4sjgAACCCCAAAIIIIBACgQIsFKAx6kI+ChAgOUjGMNTV4AAK3U9mQ0BBBBAAAEEEEAAAQT8J0CA5T9rroQAARZrIKACBFgB5efiCCCAAAIIIIAAAgggkAIBAqwU4HEqAj4KEGD5CMbw1BUgwEpdT2ZDAAEEEEAAAQQQQAAB/wkQYPnPmishQIDFGgioAAFWQPm5OAIIIIAAAggggAACCKRAgAArBXicioCPAgRYPoIxPHUFCLBS15PZEEAAAQQQQAABBBBAwH8CBFj+s+ZKCBBgsQYCKkCAFVB+Lo4AAggggAACCCCAAAIpECDASgEepyLgowABlo9gDE9dAQKs1PVkNgQQQAABBBBAAAEEEPCfAAGW/6y5EgIEWKyBgAoQYAWUn4sjgAACCCCAAAIIIIBACgQIsFKAx6kI+ChAgOUjGMNTV4AAK3U9mQ0BBBBAAAEEEEAAAQT8J0CA5T9rroQAARZrIKACBFgB5efiCCCAAAIIIIAAAgggkAIBAqwU4HEqAj4KEGD5CMbw1BUgwEpdT2ZDAAEEEEAAAQQQQAAB/wkQYPnPOrWv9NhzPbXnj3/Uq/2zalSnampPz3wuCBBguYDKlN4LEGB5b8VIBBBAAAEEEEAAAQQQsEuAAMuufvhSDQGWL1p2jCXAsqMPIVsFAVbItp4bRwABBBBAAAEEEEAg6AUIsIK3hQRYwdc7Aqzg61maqpgAK021k5tBAAEEEEAAAQQQQCCkBAiwgrfdBFjB1zsCrODrWZqqmAArTbWTm0EAAQQQQAABBBBAIKQECLCCt90EWMHXOwKs4OtZmqqYACtNtZObQQABBBBAAAEEEEAgpAQIsIK33QRYwdc7Aqzg61maqpgAK021k5vxg8DWHhn8cBUukRyBCsMvJuc0zkEAAQQQQACBIBbwR4C149tftHjV+/rim591+MhxZcmcScVvKqQnHr7P+b/06dNFCzZsM1Bff79L1SuX06i+rROVHTdzuWYuWqsC+XJrw9LRSpcuLHp8VFSU1r3/P725/mP9+MtenTh5WjlzZFXpksXUsHZV3VP6llTv2nc/7dGS1Rv1+dc/6cChIwoLC9PV+XLrhsIF9fADZfX4wxXiXPPAoaNauPw9ffLZt/rz7wM6d/6C8uTMrjK3F1Pdmg8lWqc3AVZqzL91zWTlyH6V078Zr72lnT/8pmMnTqliuds1bXjnVHdMyxMSYKXl7gbBvRFgBUGTKNEqAQIsq9oRqxgCLHt7Q2UIIIAAAgi4JeB2gDV2xjLNWrzOKT9D+vTKlTObEyadPXfe+bN7y5TQhEHtdVWWTM5/X/XOFvUePlsREeH6aOV4Zc+aJd5bNwFVtQZd9fe/h9Ti2cfVoflT0eNOnzmrl3pP0P+++N75s0wZI5QtaxYdOXpCFyMjnT9r2qCGurSqlyqsppbR09/Q3CXvJDifCeqG9nox1s83bP5cPQfPiLbIGBGu8PAMOnnqTPS4px57QH07v+DYXXkkFWCl1vxr5g/RZ1/9qEHjFsrcq+doVKeqerV/NlUMQ2USAqxQ6bSl90mAZWljKMtaAQIsa1sjAix7e0NlCCCAAAIIuCXgZoA17413NXLKEplgplubBnry0YrKnClCkZGX9NG2r9Rn5BwdPXZSj1W5VyP6tHJu8czZ83qwTnudOn1WfTo9rwa1Ksd76+ZpoOfbD3F+tm7hMBUpVCB6XLte4/Xh1h26pkBe9e30giqUvc15yuv0mXN6/c0PNG7mMl26FKX+XRurbs1KKaadvvAtTZi9wpmndvWKMsHOjddfo4uRl/THX/u17fPvVPbO4ipZ/Iboa32582e90GGoU8dDFUrrpWZ1VPzGQs7PDx89oZVvb9akOSt14WKknnmyinp3fM6nACs152/b+ElNmb9aJYsXUbumdVTqlqIyIWGGDOmVL0/OFPuF0gQEWKHUbQvvlQDLwqZQktUCBFj2tocAy97eUBkCCCCAAAJuCbgVYB06clxV63fR+fMX9Gq3pjJPEl15rN/0qTr3n+L88YpZr+qWmwo7//nVsQu0dPVGJ/BZOr1fvLc+YPQ8vfHWJt1R4kYtntIneowJrkyAFZ4hvTPnjUWujXP+wLELnFf98uTKrveXjnae9krusf/gUVWr38V5sqvlc4+rfbP/ngRLbM4nGr+iXXv2OeHVxMHtndcNE/NZMrWvSt1aNNaQxJ7ASs35zUXvu7ukJg/p6DwhxpF8AQKs5NtxZioIEGClAiJThJQAAZa97SbAsrc3VIYAAggggIBbAm4FWHOWvK3R097Q9dddrbdfG55g+Q/W6aCDh4+p9fO11K5pbWfcD7/8rqdfvBxcrZ47WDfdEDuEMk8lPVi7vbMPU78ujVXv8f+eomrVY4y2bP9GT9d8UAO6Non3urv3/q2az7/s/GzO2B4qV/rWZPN6nr7KlSObPlw+1quAxzwd9dxLl58eM6/nmae1EjqeaTNQ33y/y9kr7MpXEBMKsFJ7fvPU3HtLRit3zmzJduLEywIEWKyEgAoQYAWUn4sHoQABlr1NI8CytzdUhgACCCCAgFsCbgVY3gRJ5p7Ma4DmdcCqFe/S+IEvRd9m3Rb99f3Pe9S43qPO64cxD89TVlfuk2Vexyv3WGvn9bbhvVuqZtXy8bKZAKzMw82d1/d6tW+kRnWqJZu3RbdRzgbsZoP2Yb1aeDWP2Qh9/KwVziuOG5aMSvQcz9ir8+XSxmVjY41NKMBK7fljvuLp1Q0yKEEBAiwWR0AFCLACys/Fg1CAAMvephFg2dsbKkMAAQQQQMAtAbcCrBrP9tDvf/7rddnmq4Bzx/aMHv/Gmg81YMx85zW/jcvHxtrEvMuAKXr3w0/16EP3aHS/NtHnmC/uVXqqo9fXNAPbNqmtNi/U8umcmIM992leHTSvEHpz9B05RyvWbVb5srdp1qhuiZ7y3kefq1O/Sc6Yr96f7bwa6TkSCrBSe/5OLeqqecPHvLk1xiQhQIDFEgmoAAFWQPm5eBAKEGDZ2zQCLHt7Q2UIIIAAAgi4JeBWgOV5NTB/3pwyr9clddxW/AYN7N40epjZxN1s5m42dZ84uIMq31fa+Zl5uqrik+2dL/dNG95ZFcvdHn1OzFcDzabuZvP4pI76Tzyk+glsFJ/Uuebnnvvs2a6hnnv6YW9OUddXp+qdjdtV+f4ymjiofaLnbNm+U616jHbGfLJ6knLmyBo9PqEAy+35vbpJBsUrQIDFwgioAAFWQPm5eBAKEGDZ2zQCLHt7Q2UIIIAAAgi4JeBWgPVow+7OF/h8eTLpynvsPXy2Vr2zRVUqltGEgZeDnrfe26qeQ2Yob+4czit15uuCnuOfA4dVpW5n578unPiKypQq5hZb9LyPPNNNf/59QB1ffFovNqrp1fUGj1+oxas+8P0JrA2zYu2xlVCA5fb8Xt0kgwiwWAP2CRBg2dcTKrJbgADL3v4QYNnbGypDAAEEEEDALQG3AqymnYZr+44flJL9k77+fpcathnovDa3+c2Jyp41izx7azVpUF1dW9WPxWL2trqnRivny4f9uzZW3Zr/be7ult8LHYbq869/Uu3qFTWoRzOvLuPZ4N6bPbBmLlqrcTOXK1+enNq0Ylys+RMKsNye36ubZBABFmvAPgECLPt6QkV2CxBg2dsfAix7e0NlCCCAAAIIuCXgVoA1bcEaTZyz0gmdPlg2VlkyZ0zWLTzZpLd+2f2nEw6ZV+4eeLK9LkZGxvt1QnOBZp1H6H9ffu/V003JKuiKk0y4ZEKm+J4IS2j+XXv26YnGrzg/ju8rizHPa9R2kL767lfVqFJOI/u09irAcnv+1HAL1Tl4hTBUO2/JfRNgWdIIyggaAQIse1tFgGVvb6gMAQQQQAABtwTcCrDMhurVGnTVhQsXnT2m+nZ6Plm3sGjlBg2ZsEiVKtyphx+8W72GztRtxYvojen9451vw+bP1bHv5U3PR/VtreqVyyXrut6eZDaqNxu5m8OXzc6faTNQ33y/y7mvSYM7KCwsLM4lN378pV7qPcH583njeuruO2/xKsAyg9ye31sfxsUWIMBiRQRUgAAroPxcPAgFCLDsbRoBlr29oTIEEEAAAQTcEnArwDL1Llz+noZNWuyUbp6eerHhYzKbtZt9q06eOqN/9h92XjPc+MmXGtarhfOa3JXHsROnnC8LZkifTveUvlWbtn6lXu2fVaM6VRMk6dBnot7f8oXSpQtT43rV9XTNB3X9dVcrKipKR46d1L6/D2jL9m/0064/NH7gSymmHT75dS1Ytt6Zp3H9R/VsnWoqeHUeRUZe0v5DR/XF1z/p+MnTali7SvS1ft29T0+36OcEfFUr3uWEX2bjeXOYjerffPcTjZq6ROfOX9ATD9+nob1ejFNnQq8QmoFuz59itBCdgAArRBtvy20TYNnSCeoIFgECLHs7RYBlb2+oDAEEEEAAAbcE3AywTM1mP6axM5bp0qUo5xbMk0bh4RmcfapiHh8sG6MC+XLHe5s9Bk/X2g3bnJ+Z/bA2rRgf62t8V55kvlBoNoA3X/rzHBnSp3f+o3n90HMUuia/3l08IsW0Zs7+o+Y5G857joiIcCecMqGZOcxXFM3XFGMen+74UZ37T9aRYyecPzZfGDRfTjx0+Hh0neYJssE9m8f7RcXEAiwzn9vzpxguBCcgwArBptt0ywRYNnWDWoJBgADL3i4RYNnbGypDAAEEEEDALQG3AyxT9959/2rRyvedvan++ueQzp47p0wZM+qaAnl05203qdoDZXXf3SXjfY3OnG82STebpZsj5hcJkzIxT3etfHuzduz8RQcPH3NCoaxXZVbha6/WPXfeoprVKujmotclNY3XPzeB0bK1H16+3pHjCs+Qwdkb6/YSRVXv8Yd01+03x5nLhFfL134k8+rjn38d0Omz55QnZ3bdWfImPfXYA6pQtmSC108qwDInuj2/1zgMdAQIsFgIARUgwAooPxcPQgECLHubRoBlb2+oDAEEEEAAAbcE/BFgpbR280pducdaO09xmaeYzNNMHAgEowABVjB2LQ3VTICVhprJrfhFgADLL8zJuggBVrLYOAkBBBBAAIGgFgiGAGvFus3qO3KOcuXIpg9XjHNeI+RAIBgFCLCCsWtpqGYCrDTUTG7FLwIEWH5hTtZFCLCSxcZJCCCAAAIIBLVAMARY9VsO0Lc/7dYLdR9R97bPpLq3ecKrRbfRPs1rvh7YvOFjPp3DYAQIsFgDARUgwAooPxcPQgECLHubRoBlb2+oDAEEEEAAAbcEbA+wNn6yQy+9Mt75cuHaBcNU+Nr8qU5hvhBYvmYbn+atU+MBDeze1KdzGIwAARZrIKACBFgB5efiQShAgGVv0wiw7O0NlSGAAAIIIOCWgG0Blvlqn/lSoTk2fvylXh46UydPnVHD2lX0Sofn3GJgXgT8IkCA5RdmLpKQAAEWawMB3wQIsHzz8udoAix/anMtBBBAAAEE7BCwLcB6tt1g/fHXfp0+c07m1T5zlLq1qOaO7anMmSLsQKMKBJIpQICVTDhOSx0BAqzUcWSW0BEgwLK31wRY9vaGyhBAAAEEEHBLwLYAq+eQGfp4+06dPHVa1xTIq5rVKqjZMzWUMSLcLQLmRcBvAgRYfqPmQvEJEGCxLhDwTYAAyzcvf44mwPKnNtdCAAEEEEDADgHbAiw7VKgCAXcECLDccWVWLwUIsLyEYhgC/y9AgGXvUiDAsrc3VIYAAggggIBbAgRYbskyLwJxBQiwWBUBFSDACig/Fw9CAQIse5tGgGVvb6gMAQQQQAABtwQIsNySZV4ECLBYA5YJEGBZ1hDKsV6AAMveFhFg2dsbKkMAAQQQQMAtAQIst2SZFwECLNaAZQIEWJY1hHKsFyDAsrdFBFj29obKEEAAAQQQcEuAAMstWeZFgACLNWCZAAGWZQ2hHOsFCLDsbREBlr29oTIEEEAAAQTcEiDAckuWeREgwGINWCZAgGVZQyjHegECLHtbRIBlb2+oDAEEEEAAAbcECLDckmVeBAiwWAOWCRBgWdYQyrFegADL3hYRYNnbGypDAAEEEEDALQECLLdkmRcBAizWgGUCBFiWNYRyrBcgwLK3RQRY9vaGyhBAAAEEEHBLgADLLVnmRYAAizVgmQABlmUNoRzrBQiw7G0RAZa9vaEyBBBAAAEE3BIgwHJLlnkRIMBiDVgmQIBlWUMox3oBAix7W0SAZW9vqAwBBBBAAAG3BIItwPr62yjt+eOSWxy6s2Q6XV8ozLX5mTi0BcKioqKiQpuAuw+kAAFWIPW5djAKEGDZ2zUCLHt7Q2UIIIAAAgi4JRBsAdaCpZHavNW9AOu5+un1YIV0bnEzb4gLEGCF+AKI7/b/3n9Yr696Xx9/ulN//HVAFyMjVTB/bj1w7x1q3vAx5Q9l/TIAACAASURBVM2dI85pP/66V08175uo5oCuTfR0zQdjjSHAYgEi4JsAAZZvXv4cTYDlT22uhQACCCCAgB0CBFix+0CAZce6TKtVEGCl1c4m474uXYrS7NfXafLcVbpw8XJoVaxoIUVGRuqHX37X4aMnlDtnNs2f0EtFCxeMdYVtn3+n5l1HKl+enCqQP3e8V2/x7OOqfF9pAqxk9IZTEPAIEGDZuxYIsOztDZUhgAACCCDglgABFgGWW2uLeeMKEGCxKmIJdOw7Sbv/+Fsvt2uke+8qEf2zM2fPq//ouVq7YZvKlCqmhRNfiXXeug/+p+4Dp6lzy3pq9kwNr1V5AstrKgYi4AgQYNm7EAiw7O0NlSGAAAIIIOCWAAEWAZZba4t5CbBYA0kImKAqfbowRUSExxlpfnZ/rXY6e+68Plo5PtarhAuXv6dhkxZrcM/mevLR+712JsDymoqBCBBgWb4GCLAsbxDlIYAAAggg4IIAAZYdAdbeff+qeqMecTps/l2bPWsWFSlUQBXKllS9JyopV45sccb1GDRda9/fFuvPwzOkV/ZsV+nGIteo8n1lVPfxSsqUMSLRVbRp61d6d9On+urbX3XoyDFdjLyk3DmyqUTxIqpa8S7VrFpe6dPH3iPs2IlTzr+zzbF1zWRly5ol3mu81HuCNn78pcqXvU2zRnVLsI4az/bQ73/+qzlje6hc6VudcQ893VH7Dx5V5fvLaOKg9onew6p3tqj38Nl6qWkdtXr+CRd+a5I/JU9gJd8uJM+s3bS3fv7tT705d5CK3XBdtMH4WSs047W3NG14F1UsV8prGwIsr6kYiAABluVrgADL8gZRHgIIIIAAAi4IEGDZFWBlzhShMqVuji7q3PkL2n/wiPbu2+/8WY5sV2nmqG66rXiRWIV7AqybbrhWeXNd3vP5/IUL+ufAEf31z0Hnv19/3dWaO7anrs6XK85KOnj4mDr1m6wvd/7s/OyqLJl0bYG8ypAhg3N983NzmK14Jgxqrxuu2JKnQasB2vnjbidcMiHTlceFCxdV4Ym2On3mnDKkT6+PV0+MN+j698ARVa7byQnatr01OfrBFE+AZeYd2ae1alQpl+BvAwGWC39RMGVgBMwvg/ml+PTtac4vpefoP2qelq3dpOUzB+jWYtd7XRwBltdUDETAEeAVQnsXAgGWvb2hMgQQQAABBNwSIMCKLRuoTdw9T2CZJ63WLRwWp90mhOo7aq7M3s3m36vm360xD0+AFV+4s2vPPnUZMFW/7P5TlSrcqclDOsY698TJ06rXsr8Tkt1Y5Fp1a13feUrKBE2e46ddf2jC7BUyT2iZEG3p9H4qdE3+6J97HghpVKeaerVvFKd+84G1lt1HO3tSm72pEwqh3npvq3oOmaH77yml6SO6RM9jAixTp3mrKmeOrHpr/lBnrvgOAiy3/rZgXr8KfPfTHucX844SN2rxlD6xru15nNE8Ynji5BmdOn3GSXsLX5NfFcvdLpNkx3cQYPm1hVwsDQgQYNnbRAIse3tDZQgggAACCLglQIAVHAGWqdIEPw/Ubq+oqCjnCaaYrxImFmCZc3f9/peeeKGX0qUL0ydrJjuvJXoO87qdCX1K3FxE88b1jPWgR0wdc90+I+Y4Y6/8N/WnO35Uk07DnH83r547OM5yHTx+oRav+kBtXqilKfNXq3rlchrVt3WccZ5aurVpoMb1Ho0VYOXOmV03FbnWeVXy0Yfu0eh+bQiw3PqLgXkDK2B+2Zp1HqHtO37Q+IEvOe/vxjza9RqvD7fuSLBI8wsysHtTZcn831NbZvCh4+cDe2NcHYEgE/iwc1iQVRw65T40Jip0bpY7RQABBBBAAAFHIE/2xPdEso1pwdJIbd56ybWybH0Cy3PD99RopVOnz2rjsrGxXgVMKsAy599Xq52OHjupFbNe1S03FXam/OfAYT3coKsiIy85wVNCD254rm+egHq0YTfnlcLZY7rr3jKXP5xmXhEs/3gb5wmpzasmKE+u7LF6ZK5h3oTa/OYEPfJMt/8P4SbJ7NMV86jWoKvzyuOqOYN0c9H/tvwxT2BFhIdr6bR+eqJxLx06clwTBrZXlYpxX1fkCSzXfj2Y2F8Ck+as0tQFq53gygRYVx7nz1/Q9h0/qtA1+ZQ/b06Fh4c7v5Tbv/xeU+ev1p9/H9B9d5fUjJFd/VUy10EgTQosb34hTd5XWripp2fF/fhFWrgv7gEBBBBAAAEE0o5AKAdYnv2hzCt8n6yZpLCw//6HYW8CrHtrtnFew3tvyShnfytzLF29Ua+OXaCydxTX/PEve7VQRk1bqrlL3lG9Jx5Sv84vRJ/Tqsdobdm+M87rgb/u3qdaTV7RXbffrAUTeqnbwKl6+4Ptmjmqq7Mxvecw/+Y24Vbe3Dmcj67FPEyAdfFipLa8OVHrN32mzv0nO+PWzB/ivNIY8yDA8qqNDLJVwDyqaB5ZNAnua5N6J/hIZEL1m3S3VuNXdOTYiVgpsxl/7oJ76b+tntSFQEoE3modmZLTOddFgcenxv5fwFy8FFMjgAACCCCAgCUCGcNjf1HOkrISLCNUA6yTp86o66tTtWX7N84eU2avqZhHUgGWZzsds2/UphXjo78k+MqwWXrz3Y+dr/WZr/Z5c5gvCZoteMxTXOZpLs8x7413NXLKEj1d80EN6Nok+s9nLlqrcTOXq1OLumre8DEnvDIh1jNPVlHvjs9Fj1uxbrP6jpyjmtXKa/grLWOVYgIs83TX/9ZOcf68Y99J2rD5c9V65D4NefnFWGMJsLzpImOsFDAbs5sN2gtfe7UWTHhZ+fLkTFadIya/rvnL1sf5xWYPrGRxclIIC7AHlr3NZw8se3tDZQgggAACCLglwB5YsWUD/Qqh2bLGvPnjOSIvXdLhI8f1wy+/O18RbFy/uhPaXHkkFmD9tvdvte89Qbv3/q1e7Z9VozpVo083G6ubDdbNdjl1ajzg1TL78de9eqp5X2cTdfNElOf4+bc/Vbtpb2dz93cXj4j+82fbDdaOb3+JfkXRPAV2f62XnCeoPlg2Jnqc5x5MIHXlPZoAy4R4n70z3Rlv3pYyrxIeO35K04Z3UcVypaLnIcDyqo0Msk1gyeqNGjh2gcyXHMznQs2rgck9Fq3coCETFjlJd8yvKhBgJVeU80JVgADL3s4TYNnbGypDAAEEEEDALQECLLsCrIT6HB6eQQ8/UNbZvLzy/XH3ffKEP+apqPx5cznTmFfu/tl/SCbAMue3bfykXmxUM9YlPOGS2VDdbKzuzeH5YqL56NmO92bGOuXBOh2ccGnDklG6pkBeJ2C6/8l2Kpg/j/Pqoudo2mm4sz/1shn9nc3jzVHpqY46cOioPlw+Ls6/3T1fIfz83RnRc3i+WFggX27nVcKrslzer5oAy5suMsYqgYXL39OwSYud1wZnje4eZxM5X4v1fBa044tPx/qlJ8DyVZLxoS5AgGXvCiDAsrc3VIYAAggggIBbAgRYdgVY5uGLdQuHRRdlNlc/duKUdv7wm2YtXqsvd/4S7xf8PAFWfOvEPNVlAp6C+XPH+XFqPoFlJu8xeLrWbtimQT2aqXb1ivKETOapL/P0l+fw/Hu99fO11K5pbSdke/z5l3VjkWu1Zl7crxjGF2CZudq8PFYfbfta9R6vpH5dGhNgufUXBfO6J2A2lDMby5UsfoOz6XqO7LE3dfP1yhcuRqpW4176/c9/9fqUPrq9xI3RUxBg+arJ+FAXIMCydwUQYNnbGypDAAEEEEDALQECLLsDrJjVXYyMVP2WA2Re4Rveu6VqVi0f/eP4XiGMiopSw7aD9M33u9Sj7TN6vu4jcZZR7+GznSeWPEGSN+vsw6071K7X+Dh7YJlzzX5aZl+txx+uoGG9WkRv2G7+XR7z1UjPhu2efbQ8m8k/9/TD6tmuYZwyEgqwzMb25lVC83rhnLE9VK70rVq9/hP1GjrT2dPL7O1l0xEWZbrCgcD/C8x47S2Zp6XKlLpZ04Z39mrD9r379uuDLV84v2TmPdyYh3k8csiE15yvKZj3as37tTEPAiyWHgK+CRBg+eblz9EEWP7U5loIIIAAAgjYIUCAFTwBlqnUsyG6ebrJPOXkORLaA8ts3l6/1QBlzpTRebLrym113ljzoQaMma97St/ibLvjzTFm+hua/frbql+rsvp2ej7WKfsPHpUJm8xXDte/PlIP1G6vs+fOa+uayc5rjDGPJxq/ol179jlfHDRvT72zcbumDuukB+69I04ZCQVYZuDytR+p36i5uq5gPr05d7A2bd3hbHhPgOVNNxkTMIGtn3+rF7tefq+24NV5lDEi4U/CZ82SWUun93PGejahM58hNRvjmYVv/vNf/xzU7j/+1qVLUSpTqpgmD+2k7FmzxLo/AqyAtZsLB6kAAZa9jSPAsrc3VIYAAggggIBbAgRYwRVgeb7092D5OzRlaKckAywzwHzUzHzc7JFKd2tM/7ZxAqdq9bvIPN21dsFQ3VC4YKJL7dz5C3q0YTeZoMoEXib4uvJ44oVe2vX7X5o1qpuadx2pKhXLaMLA9nHGmS8TmkDO7L81cuoSHTp8XNvWTlGWzBl9CrDM4GZdRuh/X3yvZ5+qpvJ33aa2vcYRYLn1lwbzpo7A+k2fqXP/yV5NlvWqzNq+bqoz9sKFi1r17sfa+PEX+mnXHzpy9ITMc305c2TVrcUKq2bVCs57xunTx/3ELAGWV9wMQiBagADL3sVAgGVvb6gMAQQQQAABtwQIsIIrwPLs+WReBzSvBXqOxL5CePTYSdV4toezl9b0EV10/z3/fbHPnO95jdBslTNnTA9lzhSR4HIbPH6hFq/6wHnAY+HEV+IdZz5+Zj6CZl5xXPv+tgS/cPj197vUsM1APfno/c6rh2XvKK7541+Od87EnsAyJ+z756CebPKKzpw9r/bN6jhvZfEEllt/azBv0AoQYAVt6yg8QAIEWAGC9+KyBFheIDEEAQQQQACBNCZAgBUcAdb58xc0d+m7mjB7hdKlC9OKWQOdD5Z5E2CZMUtWb9TAsQtU+Nr8zmt2Md9WOnHytOq17C+ztc6txa5X9zbP6O47iztvJXkOsx+0CYXWb/rUedDjjen9ndcE4zs2bf3KeQLKBGEmUDKvCF65VY85z7zpVOmpDjp95uz/B09PqeVzjycrwDInLVr5vrP9j7k386QYAVYa+8uK20m5AAFWyg2ZIbQECLDs7TcBlr29oTIEEEAAAQTcEiDAsivAMq/P3VumRHRRl6KidPzEKf346x9O0GPeCurd8Xnnq3sxj8SewPKERXVb9HO2z2nzQi21bVI71vkHDx9Tx76TtOPbX5w/z5Ujm667Jp/CM6TXPweOONvrmOPG66/RhEHtZb6WmNBh6ixfs63zWqL5sJpn6574xnue/jI/WzK1r0rdWjTZAZbZHv359kP15c6fnTkIsNz6W4N5g1aAACtoW0fhARIgwAoQvBeXJcDyAokhCCCAAAIIpDEBAqzYDX2ufno9WCHu1jFut918PKx6ox7xXsY8UVQgf27dfectalSnWqwnrzwnJBVgmXFffferGrUd5GymvnruYGf/5ysP84XBdzd+6gRZh48eV+SlKOXKkVW3Fb9B1R64S49VKR/v1jpXzvPcS0OcIMkEZSYwS+jY+PGXeqn3BGXLmkWfrJ6U4NxJvULomd88KVa7aW+ewHJ7wTJ/cAoQYAVn36g6cAIEWIGzT+rKBFhJCfFzBBBAAAEE0p4AAZYdAVbaW1ncUXwCYVHmOTEOBAIkQIAVIHguG7QCBFj2to4Ay97eUBkCCCCAAAJuCRBgEWC5tbaYN64AARarIqACBFgB5efiQShAgGVv0wiw7O0NlSGAAAIIIOCWQLAFWF9/G6U9f1xyi0N3lkyn6wv9t3m5axdi4pAUIMAKybbbc9MEWPb0gkqCQ4AAy94+EWDZ2xsqQwABBBBAwC2BYAuw3HJgXgT8IUCA5Q9lrpGgAAEWiwMB3wQIsHzz8udoAix/anMtBBBAAAEE7BAgwLKjD1QRGgIEWKHRZ2vvkgDL2tZQmKUCBFiWNkYSAZa9vaEyBBBAAAEE3BIgwHJLlnkRiCtAgMWqCKgAAVZA+bl4EAoQYNnbNAIse3tDZQgggAACCLglQIDllizzIkCAxRqwTIAAy7KGUI71AgRY9raIAMve3lAZAggggAACbgkQYLkly7wIEGCxBiwTIMCyrCGUY70AAZa9LSLAsrc3VIYAAggggIBbAgRYbskyLwIEWKwBywQIsCxrCOVYL0CAZW+LCLDs7Q2VIYAAAggg4JYAAZZbssyLAAEWa8AyAQIsyxpCOdYLEGDZ2yICLHt7Q2UIIIAAAgi4JUCA5ZYs8yJAgMUasEyAAMuyhlCO9QIEWPa2iADL3t5QGQIIIIAAAm4JEGC5Jcu8CBBgsQYsEyDAsqwhlGO9AAGWvS0iwLK3N1SGAAIIIICAWwIEWG7JMi8CBFisAcsECLAsawjlWC9AgGVviwiw7O0NlSGAAAIIIOCWAAGWW7LMiwABFmvAMgECLMsaQjnWCxBg2dsiAix7e0NlCCCAAAIIuCVAgOWWLPMiQIDFGrBMgADLsoZQjvUCBFj2togAy97eUBkCCCCAAAJuCRBguSXLvAgQYLEGLBMgwLKsIZRjvQABlr0tIsCytzdUhgACCCCAgFsCwRZgXfj8Y0X+9pNbHAove5/SF73FtfmZOLQFwqKioqJCm4C7D6QAAVYg9bl2MAoQYNnbNQIse3tDZQgggAACCLglEGwB1ukZI3T+/TVucShLi26KqFrLtfmZOLQFCLBCu/8Bv3sCrIC3gAKCTIAAy96GEWDZ2xsqQwABBBBAwC0BAqzYsgRYbq005jUCBFisg4AKEGAFlJ+LB6EAAZa9TSPAsrc3VIYAAggggIBbAgRYBFhurS3mjStAgMWqCKgAAVZA+bl4EAoQYNnbNAIse3tDZQgggAACCLglQIBFgOXW2mJeAizWgGUCBFiWNYRyrBcgwLK3RQRY9vaGyhBAAAEEEHBLgADLzgBr7779WrP+E23f8b127/1Hx0+eUuZMGZUvT05dc3Ue3XdPKT1UobQKX5s/1g089HRH7T94NNafZYwIV+5c2VXi5utVs2oFPfxg2XiXU3znXjnw0Yfu0eh+baL/uMeg6Vr7/rZEl2eeXNm1edWE6DF79/2r6o16OP+9Z7uGeu7phxM9v9fQmVq9/hMtnNhLZUrd7Navgl/m5QksvzBzkYQECLBYGwj4JkCA5ZuXP0cTYPlTm2shgAACCCBghwABll0B1oULFzVp7irNfv1teb5XVzB/buXInlUnT53R/kNHdf78BafoCmVLauaorvEGWCboiQjP4Pzs9NlzMqHR0WMnnf9e+f4yGtO/rcIzpI/33FK33KAMGS6fe+VR/q4SatukdvQfewKsIoUKKFeObPGekzN7Vk0a0iH6ZzEDrEwZI/Tm3EEqdE3sIC7mRARYdvxdQRVpQIAAKw00kVvwqwABll+5fboYAZZPXAxGAAEEEEAgTQgQYMVuYyA3cTfBVJNOw/XVd786YVCLZ2vqsarlZZ5ginn88Mvv+vCTHbr3rhJxnkjyPEX10crxyps7R/RpJgz7+NNv1bn/ZJ0+c1bd2jRQ43qPxhtgXXluYgvdE2CN7NNaNaqU8+p3whNgZc4UoTNnz+ue0rdozpgeCgsLi/d8AiyvWBmEQNICBFhJGzECgZgCBFj2rgcCLHt7Q2UIIIAAAgi4JUCAZU+A1X/UPC1bu0lFCxfUzNHdVCBfbp/bnlCA5ZloyeqNGjh2gW4tdr2WzxwQ0ACr3hMP6X9ffO88Hda30/OqX6syAZbPHecEBHwQIMDyAYuhCEgiwLJ3GRBg2dsbKkMAAQQQQMAtAQIsOwKsb3/arfotBziv9a2aM0g3FC6YrJYnFWD9unufajV5RdmyZtH/1k4JaIBVu3pFmf97vv0QZcmcSWvmD5F5XfLKgyewkrUUOAmBuAIEWKwKBHwTIMDyzcufowmw/KnNtRBAAAEEELBDgADLjgBrwJj5emPNh06gM6hHs2QvjqQCrB9/3aunmvdVwavz6P2lowMaYD1S6R6N6d9Gg8Yt1OtvfqD77yml6SO6EGAlu/uciEASAgRYLBEEfBMgwPLNy5+jCbD8qc21EEAAAQQQsEOAAMuOAOvx51/Wb3v/1oSB7VWlYplkL46kAqx5S9/VyKlLVO2Bshr3aruABlhmM/mJg9o7e3LVatJbf/1z0AnvTIgX8+AJrGQvB05EILYAARYrAgHfBAiwfPPy52gCLH9qcy0EEEAAAQTsECDAsiPAurNqM124GKl1C4fJfNEvuUdiAdaW7d+oY99JioyM1OIpfVTi5iLxBlh3lLhR4f//BcMr6+jfpXGs1xs9m7ibfbtyX7HZvOfcBrUqq3rl/zZ492zi/mD5OzRlaCdn2LbPv1PzriOVPWsW51XCfHlyRl+aACu5q4HzELhCgACLJYGAbwIEWL55+XM0AZY/tbkWAggggAACdggQYAU+wLoYGak7qlx+bTChLwD2GTFHK9/eHGfRmCDKBE6ewxNgmS8URoSHO3987tx57f7jb+0/eFS5c2bT0F4tnNf1rjw85ya2MpdO76eSxW+IHuIJsBI7p2ur+mrSoHr0EE+A9cC9d2jqsMsBljk89+h5Msvz5wRYdvxdQRVpQIAAKw00kVvwqwABll+5fboYAZZPXAxGAAEEEEAgTQgQYMVuY5YW3RRRtZbfe1v64Rd1/vwFvbNouApfe3Wc689avE6btn4V/ec/7frDefUuoQArvhu4vcSNmju2hzJljIj3/pJ6/TC+kzwB1sg+rVWjyn9PWSUGmFCAdeLkaT3RuJcTtMWcjwDL78uRC6ZVAQKstNpZ7sstAQIst2RTPi8BVsoNmQEBBBBAAIFgEyDAsiPAerRhd/3x135NG95FFcvFfTrqynXVoPWr2vnDbwkGWDGf5Dp4+JhqPNtDp8+c09Jp/XRb8divDnrmDnSAZeowIV3bXuOUM0dWvTV/qPPEWO/hs7XqnS1aOLGXypS6Odh+xWLVGxYVFRUV1HdA8UEtQIAV1O2j+AAIEGAFAN3LSxJgeQnFMAQQQAABBNKQAAGWHQFWj8HTtXbDNr1Q9xF1b/tMkivMlwDLTDZ/2XqNmPy68/rf61P7Kl26sDjXsCHAMkV5nup69KF7NLpfG3m+0EiAleSyYAACiQsQYLFCEPBNgADLNy9/jibA8qc210IAAQQQQMAOAQIsOwIsz5NH2bJm0buLRjhPICV2+BpgmX226jTrq1179ql3x+f0zJNVrA2wjh476bxKeOjIceerjF/u/Fnz3niXJ7Ds+CuDKoJZgAArmLtH7YEQIMAKhLp31yTA8s6JUQgggAACCKQlAQIsOwIs82JZ3Rb99cMvv8tswD5xUAdlyZwxwaXma4BlJvp0x49q0mmYTEi2dsFQ5c2dI9b8tjyBZYpav+kzde4/2anxkUr3aNHKDQRYaekvHu4lMAIEWIFx56rBK0CAZW/vCLDs7Q2VIYAAAggg4JYAAZYdAZapwmxu3qDVqzp24pSKFi6odk1rq1KF0soYcflrgp7jwsVIPdP6VSfsSmgT94S+Zti5/xSt3/SpalYrr+GvtLQ2wDKFdew7SRs2f+7c/7nzFwiw3PpLgHlDR4AAK3R6zZ2mjgABVuo4ujELAZYbqsyJAAIIIICA3QIEWPYEWKaS3//8V536TZL5yqA5wjOkV5FCBZU9WxZdvBjphFt//nVA5pVAc/gaYP1z4LBqPtdTZ86e15yxPVSu9K3RAJ4nsErdcoMyZMgQ78Itf1cJtW1SO/pnnv2qihQqoFw5ssV7Ts7sWTVpSIfonyX0FcIrTzabz5tXCY8dP+X8iD2w7P67hOqCQIAAKwiaRIlWCRBgWdWOWMUQYNnbGypDAAEEEEDALQECLLsCLFONeZ3w/S1faMNHn+vr73fp8NHjTuBknkTKkf0qXVcwn+4ocZPuuv1mlS97W6wntLx5DXDmorUaN3O5bihcUKtmD1R4+OWwynNuYmvNs7G6Z4wnwErsnDy5smvzqgk+B1jmhLfe26qeQ2YQYLn1FwDzhpYAAVZo9Zu7TbkAAVbKDd2agQDLLVnmRQABBBBAwF4BAiz7Aix7VwuVpVQgLMrEkxwIBEiAACtA8Fw2aAUIsOxtHQGWvb2hMgQQQAABBNwSIMAiwHJrbTFvXAECLFZFQAUIsALKz8WDUIAAy96mEWDZ2xsqQwABBBBAwC2BYAuwLnz+sSJ/+8ktDoWXvU/pi97i2vxMHNoCBFih3f+A3z0BVsBbQAFBJkCAZW/DCLDs7Q2VIYAAAggg4JZAsAVYbjkwLwL+ECDA8ocy10hQgACLxYGAbwIEWL55+XM0AZY/tbkWAggggAACdggQYNnRB6oIDQECrNDos7V3SYBlbWsozFIBAixLGyOJAMve3lAZAggggAACbgkQYLkly7wIxBUgwGJVBFSAACug/Fw8CAUIsOxtGgGWvb2hMgQQQAABBNwSIMByS5Z5ESDAYg1YJkCAZVlDKMd6AQIse1tEgGVvb6gMAQQQQAABtwQIsNySZV4ECLBYA5YJEGBZ1hDKsV6AAMveFhFg2dsbKkMAAQQQQMAtAQIst2SZFwECLNaAZQIEWJY1hHKsFyDAsrdFBFj29obKEEAAAQQQcEuAAMstWeZFgACLNWCZAAGWZQ2hHOsFCLDsbREBlr29oTIEEEAAAQTcEiDAckuWeREgwGINWCZAgGVZQyjHegECLHtbRIBlb2+oDAEEEEAAAbcECLDckmVeBAiwWAOWCRBgWdYQyrFegADL3hYRYNnbGypDAAEEEEDALQECLLdkmRcBAizWgBcCf+8/rNdXva+PP92pP/46oIuRkSqYP7ceuPcONW/4mPLmzpHgLKve2aLlaz/S/VXu5AAAIABJREFUr3v2KTIyUtdfV0BPPnq/GtauqvTp08U5jwDLi4YwBIEYAgRY9i4HAix7e0NlCCCAAAIIuCVAgOWWLPMiQIDFGkhE4NKlKM1+fZ0mz12lCxcvh1bFihZygqgffvldh4+eUO6c2TR/Qi8VLVwwzkwvD5mpNe99ovAM6VW6VDGFZ8igr7/fpZOnzuj+e0pp8tCOypA+fazzCLBYkgj4JkCA5ZuXP0cTYPlTm2shgAACCCBghwABlh19oIrQEAiLioqKCo1b5S69EejYd5J2//G3Xm7XSPfeVSL6lDNnz6v/6Llau2GbypQqpoUTX4k1nQmuTIBlgq0Zo7o54Zc5Tp85KzPnJ599q5ea1lGr558gwPKmEYxBIAEBAix7lwYBlr29oTIEEEAAAQTcEiDAckuWeRGIK0CAxaqIJWCCqvTpwhQRER5Hxvzs/lrtdPbceX20cnysVwmfbNJbv+z+U4sm99adt90U69wjx06oSt3OCg/P4JyXKWNE9M95AosFiIBvAgRYvnn5czQBlj+1uRYCCCCAAAJ2CARbgPXWsT364tQB1/Aez1lEd2XJ59r8TBzaAgRYod1/n+++dtPe+vm3P/Xm3EEqdsN1zvl//XNQ1Rp0VeFr8+udRSPinbNz/8lav+kzTRzcQZXvK02A5bM8JyBwWYAAy96VQIBlb2+oDAEEEEAAAbcEgi3Aavn7R5px8Hu3ODT9+gfVIu9/b/K4diEmDkkBAqyQbHvyb7py3U7698ARffr2NF2VJZMz0QdbvlT7PhNUs1p5DX+lZbyTz1+2XiMmv64XG9VUxxefJsBKfgs4M8QFCLDsXQAEWPb2hsoQQAABBBBwS4AAK7YsAZZbK415jQABFuvAa4Hvftqjei37644SN2rxlD7R581b+q5GTl2ils89rvbNnop3vve3fKEOfSbqkUp3a0z/tgRYXqszEIHYAgRY9q4IAix7e0NlCCCAAAIIuCVAgEWA5dbaYt64AgRYrAqvBMxe/806j9D2HT9o/MCXVLXiXdHnTZqzSlMXrFbXVvXVpEH1eOcz5zXtNNzZGH726O4EWF6pMwiBuAIEWPauCgIse3tDZQgggAACCLglQIBFgOXW2mJeAizWQDIFPCGVCa5MgBXzGD3tDc1Z8rZefqmRnn2qWrxX2PHtL3q23WCVLllMr02K/QXDZJbEaQiEpMDy5hdC8r6D4aafnhX34xfBUDc1IoAAAggggEDoCKTVPbD27vtX1Rv1UJFCBbRu4bBEG7rvn4N6uEFXFbomv95dHP8ezp4JFq18X0MmvKYaVcppZJ/WCc47ee4qTZm/2quFdG+ZEpo95r+HOnoMmq61729L9Nw8ubJr86oJ0WOWr/1I/UbNVb3HK6lfl8ZeXTctDOIJrLTQRZfvYfGqDzR4/ELdXPQ6vTapd/TeV57L+vQE1hW/rC6XzvQIpDmBsC+mprl7Sis3FHVXwv9PTVq5R+4DAQQQQAABBIJbgABL8iXA8nzELDw8gzYtH6ecObLGuwBMoLR83UeJLo5de/7S6TNn42yr4wmwTPiWK0e2eOfImT2rJg3pQIAVZd4N40AgAYFlazep/6h5Knzt1Vow4WXly5MzzsgFy9Zr+OTXvdoD68onuP46dAZ7BBDwQeDaPfN8GM1QfwrsKxI6/+uXP125FgIIIIAAAjYL8Aph7O4EahN3N57A+vr7XWrYZqBuLXa9fvjld3Vv+4xeqPtIspbjj7/uVf2WA5QhQ3qtmjNIha/NHz2PJ8AyT3iZJ728OXgCyxslxoSUwJLVGzVw7ALnMcy5Y3sqf9644ZUB+Wjb12rz8livvkLYtEENdWlVL9qRACuklhQ3mwoCBFipgOjSFARYLsEyLQIIIIAAAhYLEGCl3QCr9/DZWvXOFi2Y0EvNuoxQoYL59NaCoT6vxgsXI9Wg1QCZECu+bXcIsLwn5RVC761CauTC5e9p2KTFzmuDs0Z3l3nnNqHj4OFjerBOBydFfmdR/O8Qd+4/Wes3faZRfVureuX/UmUCrJBaVtxsKggQYKUCoktTEGC5BMu0CCCAAAIIWCxAgJU2A6yTp86o0lMdlC1rFn24fJxe6j1BGz/+Ugsn9lKZUjf7tCKnzHtTk+e96Zxn3moKCwuLdT4BlvecBFjeW4XMyLlL3tGoaUtVsvgNmjGyq3JkvyrJezcbtJuN2hdN7q07b7sp1vgjx06oSt3OuhQV5Ww8lz1rluifE2AlScsABGIJEGDZuyAIsOztDZUhgAACCCDglgABVtoMsF5/8wMNGrdQzZ6poc4t62nD5s/Vse8kPfHwfRra60Wvl9NPu/5QvRb9///VwYHO1jxXHgRYXnOKAMt7q5AYOeO1tzR+1gonHZ42vHOcDdsTQtiy/Ru16jFGRQsX1IxR3VQwf25nqNmkrlO/yfr4051qVKeqerV/NtYUBFghsay4yVQUIMBKRcxUnooAK5VBmQ4BBBBAAIEgECDASpsB1lPN+zqv/JlXBs2/cc1rgOaJrDNnzmnTyvGxHspIaJlejIx09r0y8/Rs11DPPf1wvEMJsLz/RSfA8t4qzY/c+vm3erHrKOc+C16dRxkjEv4kfNYsmbV0er9YJuapLfP0lvlCQ+mSNykiPFxm47sTJ0+rxM1FNH/8y8qSOSMBVppfSdygmwIEWG7qpmxuAqyU+XE2AggggAACwShAgGVXgGX+DWv+7ZnYcf7CBX330x4Vuia/3l0cdwucnT/8pgatX9UdJW7U4il9oqcaMmGRFq3c4DyUYR7OSOqYMn+1Js9d5TwcYv4tnC5d7FcHPed7AiwTlOVOYOueBrUqx9qKh03ck9Ln52lewOxRZfaq8ubIelVmbV83Nc5QM8drKzbop117FRl5SdcWzKcalcupSYPq8QZiPIHljTZjEPhPgADL3tVAgGVvb6gMAQQQQAABtwQIsOwKsHzpc0IBVp8Rc7Ty7c3q37Wx6tasFD2l+RLh0y/2c/aJNl8STOzw5tXBKwOsxObr2qq+829qz0GA5UunGYtAKgkQYKUSJNOEjAABlr2tJsCytzdUhgACCCCAgFsCBFh2BVhFChXQuoXDEm33vn8O6uEGXeN9AsuzefulS5f3bzYPbsQ86jTrIxNOvT6lj24vcWO81zGvDjZo9apM4JXYq4NXBlgj+7RWjSr/ffAssZsgwHLrN5p5EUhEgACL5YGAbwIEWL55+XM0AZY/tbkWAggggAACdggQYKWtAGvJ6o0aOHZBkourTo0HNLB703jHTV2wWpPmmFcHi2n++F4JvjpIgJUkc5wB7IHluxlnpKIAAVYqYjJVSAgQYNnbZgIse3tDZQgggAACCLglQICVtgIsz+btZh+t9OnTxbtsvv1xtzJlDNdHKyfE+ejZz7/9qXot+ildunR6c+6geL86eOWkbOLu/W8nAZb3Vox0QYAAywVUpkzTAgRY9raXAMve3lAZAggggAACbgkQYKWdAGvnj7vVoNUA3VjkWq2ZNzjBJdOqxxht2f6N+nV+QfWeeCh6XMxXB3u0fUbP133Eq2VHgOUVkzOIAMt7K0a6IECA5QIqU6ZpAQIse9tLgGVvb6gMAQQQQAABtwQIsNJOgNV35BytWLdZvdo3UqM61RJcMh9u3aF2vcY7XztcNqN/9LhpC9Zo4pyVKl2ymBZMSPrVQc+JBFje/3YSYHlvxUgXBAiwXEBlyjQtQIBlb3sJsOztDZUhgAACCCDglgABVtoIsE6dPqtKT3VQZOQlbVo5XtmzZklwyZgN3h9u0EV/7z/sBFgmyPpl95+q++LlVwfNFwqvv+5qr5ccAZbXVDyB5T0VI90QIMByQ5U507IAAZa93SXAsrc3VIYAAggggIBbAgRYaSPAemPNhxowZr5qV6+oQT2aJblcPBu1m1cIzauErXqM1pbtO52vFha+NvHwyuyttWRq3+hreAIs8wXFXDmyxXvtnNmzatKQDtE/83yF0IwveHWeBOsd/2o7XVMgb5L3EywDeAIrWDqVRuskwEqjjeW2XBMgwHKNNsUTE2ClmJAJEEAAAQQQCDoBAqy0EWA9/WI//fDL73p9Sh/dXuLGJNfhgUNHVaVeZ2XKGKFNK8araefh2vnDb0meZwakSxemnRvnxgmwEjs5T67s2rxqQpwAK6kLvrVgqIoWLpjUsKD5OQFW0LQqbRZKgJU2+8pduSdAgOWebUpnJsBKqSDnI4AAAgggEHwCBFh2BFjBt3KoODkCBFjJUeOcVBMgwEo1SiYKEQECLHsbTYBlb2+oDAEEEEAAAbcECLAIsNxaW8wbV4AAi1URUAECrIDyc/EgFCDAsrdpBFj29obKEEAAAQQQcEsg2AKst47t0RenDrjFocdzFtFdWfK5Nj8Th7YAAVZo9z/gd0+AFfAWUECQCRBg2dswAix7e0NlCCCAAAIIuCUQbAGWWw7Mi4A/BAiw/KHMNRIUIMBicSDgmwABlm9e/hxNgOVPba6FAAIIIICAHQIEWHb0gSpCQ4AAKzT6bO1dEmBZ2xoKs1SAAMvSxkgiwLK3N1SGAAIIIICAWwIEWG7JMi8CcQUIsFgVARUgwAooPxcPQgECLHubRoBlb2+oDAEEEEAAAbcECLDckmVeBAiwWAOWCRBgWdYQyrFegADL3hYRYNnbGypDAAEEEEDALQECLLdkmRcBAizWgGUCBFiWNYRyrBcgwLK3RQRY9vaGyhBAAAEEEHBLgADLLVnmRYAAizVgmQABlmUNoRzrBQiw7G0RAZa9vaEyBBBAAAEE3BIgwHJLlnkRIMBiDVgmQIBlWUMox3oBAix7W0SAZW9vqAwBBBBAAAG3BAiw3JJlXgQIsFgDlgkQYFnWEMqxXoAAy94WEWDZ2xsqQwABBBBAwC0BAiy3ZJkXAQIs1oBlAgRYljWEcqwXIMCyt0UEWPb2hsoQQAABBBBwS4AAyy1Z5kWAAIs1YJkAAZZlDYlRztYeGewtLoQrq9t6Vgjfvd23ToBld3+oDgEEEEAAATcECLDcUGVOBOIXCIuKiooCB4FACRBgBUo+6esSYCVtFIgRBFiBUPfumgRY3jkxCgEEEEAAgbQkQICVlrrJvdguQIBle4fSeH0EWPY2mADLzt4QYNnZF1MVAZa9vaEyBBBAAAEE3BIgwHJLlnkRiCtAgMWqCKgAAVZA+RO9OAGWnb0hwLKzLwRY9vaFyhBAAAEEEHBTINgCrL+/jtKRPZdcIyl4Zzrluj7MtfmZOLQFCLBCu/8Bv3sCrIC3IMECCLDs7A0Blp19IcCyty9UhgACCCCAgJsCwRZgfbEgUrs3uxdglXkuvYo+mM5NcuYOYQECrBBuvg23ToBlQxfir4EAy87eEGDZ2RcCLHv7QmUIIIAAAgi4KUCAFVuXAMvN1cbcBFisgYAKEGAFlD/RixNg2dkbAiw7+0KAZW9fqAwBBBBAAAE3BQiwCLDcXF/MHVuAAIsVEVABAqyA8hNg2cufYGUEWPY2jU3c7e0NlSGAAAIIIOCWAAEWAZZba4t54woQYLEqAipAgBVQfgIse/kJsIKwNwRYQdg0SkYAAQQQQCCFAgRYdgRYe/f9q+qNesTpZkREuLJnzaIihQqoQtmSqvdEJeXKkS3OuB6Dpmvt+9s0sk9r1ahSLslV8cGWL9W+zwRVe6Csxr3aLtHx3/60W/VbDlCJm4to2Yz+scZ6rpvYBHlyZdfmVROSrCkUBhBgxejygmXrVfDqPM4i9OY4f/6Cxs9aoZtuuFa1q1f05hTGXCFAgGXvkuAVQjt7wxNYdvbFVEWAZW9vqAwBBBBAAAG3BAiw7AqwMmeKUJlSN0cXde78Be0/eER79+13/ixHtqs0c1Q33Va8SLxBUqACLBOwxResmSJzZs+qSUM6uLWEg2peAqwY7bqtUmPdW6aEZo/p7nUTy9dso2xZs+i9JaO8PoeB/wkQYNm7Ggiw7OwNAZadfSHAsrcvVIYAAggggICbAgRYdgVYJghat3BYnJb/9c9B9R01V9s+/063Frtey2cOsCrA8jY4c3MtB8PcBFgpDLCq1u+iQ0eOa8d7M4Oh39bVSIBlXUuiCyLAsrM3BFh29oUAy96+UBkCCCCAAAJuChBgBUeAZao8fPSEHqjdXlFRUfp49cRYTzwF+hVCAizvfksJsFIQYB04dFSV63ZSpowR+uyd6d6JMyqWAAGWvQuCAMvO3hBg2dkXAix7+0JlCCCAAAIIuClAgBU8AZap9J4arXTq9FltXDZWV+fLFV08AZabvyWpN3dIB1inz5zV6TPnojUfrNPBeV927IC2iQpfuBipXXv2aeyMZfrx170qU6qYFk58JfW6EkIzEWDZ22wCLDt7Q4BlZ18IsOztC5UhgAACCCDgpgABVvAEWP8eOOI8gGL2wfpkzSSFhYURYLn5y+HC3CEdYE2eu0pT5q9OMevEQe1V+f4yKZ4nFCcgwLK36wRYdvam6vGH7CyMqnR66gYUEEAAAQQQQCDEBAiwgiPAOnnqjLq+OlVbtn+jXu0bqVGdarEK5wms4PjFDekA6/c//9Wqd7boo21f6eff/vS5Y9cVzKeXmtZRzWrlfT6XEy4LEGDZuxIIsOzsDQGWnX0xVRFg2dsbKkMAAQQQQMAtAQIsuwKsLJkz6b67S0YXFXnpkg4fOa4ffvld1193tRrXr65aj9wXZzkEOsAqWrigcufKHu8ybVCrsqpXLufWEg6qeUM6wIrZqe9+2qN6Lfvr9hI36tVuTRJtYrqwMOXInlV5c+cIqmbbWCwBlo1duVwTAZadvSHAsrMvBFj29oXKEEAAAQQQcFOAAMuuACuhXoeHZ9DDD5TVow/dE+/bU4EOsBJbo11b1VeTBtXdXMZBMzcBVoxWteoxWhcuRGr2mO5B08BgL5QAy94OEmDZ2RsCLDv7QoBlb1+oDAEEEEAAATcFCLDsCrCKFCqgdQuHRRcVGXlJx06c0s4fftOsxWv15c5fnKeZRvVtHavwQAdYfIXQu99SAqwYTnv37Zf5suBdt9/snR6jUixAgJViQtcmIMByjTZFExNgpYjP1ZN5hdBVXiZHAAEEEEDASgECLLsDrJjVXYyMVP2WA5wPsQ3v3VI1q/63FZCvAdbGj7/US70nqNoDZTXu1XaJrs1vf9rtXPe24kX0xvT+KQrOrPwl8GNRBFh+xOZScQUIsOxdFQRYdvaGAMvOvpiqCLDs7Q2VIYAAAggg4JYAAVbwBFim0pmL1mrczOWqXb2iBvVoFl28rwHW/774Xs26jFDFcqU0bXiXRJfXZ1/9qMYdh6lc6Vs1Z2wPAqwU/DISYCWAZx41/OfAYZmvFURFRSVJfMtNhZMcwwACrGBaAwRYdnaLAMvOvhBg2dsXKkMAAQQQQMBNAQKs4Aqw5r3xrkZOWaIHy9+hKUM7JTvA+vvfQ6pav4vy582pjcvGKiwsLMFltnD5exo2abHqPV5J/bo0JsBKwS8kAdYVeAcPH9OoaUv1wZYvdPrMOa9pv9s0z+uxDPxPgCew7F0NBFh29oYAy86+EGDZ2xcqQwABBBBAwE0BAqzgCrDavDxWH237Ws/XfUQ92j6T7ADLnFinWR/9tOsPDX+lpWpW++91xJgiZ86e11PN++j3P/91ntQyT2zFPHx98svNtRwMcxNgxeiS2dzt6Rf76a9/DvrcOwIsn8mcEwiwkufmj7MIsPyh7Ps1CLB8N/PXGbxC6C9proMAAggggIA9AgRYwRFgnT9/QXOXvqsJs1coXbowrZg1UDcXvS5FAdbm/32t1j3HKlPGCCcMM68lmq8deo7f9v6t/qPm6otvflaFsiU1c1TXOAuXAMu332UCrBheZjFPX/iWIiLC9ULdR1Spwp0qmD+P0qdPl6Rq3tw5khzDgLgCBFj2rgoCLDt7Q4BlZ19MVQRY9vaGyhBAAAEEEHBLgADLrgArS+aMurdMieiiLkVF6fiJU/rx1z90+sxZ59/2vTs+77zOF/PwBEnXFcyn7Nmuine55MqRVTNGxg6hXn/zAw2duEhmCyJz7Ruvv0YZM0Zo/8EjMh+JM8e9d5XQuAHtlC1rlgQDLPP1xFw5ssV73ZzZs2rSkA5uLeGgmpcAK0a7PI8A9mr/rBrVqRpUjQzWYgmw7O0cAZadvSHAsrMvBFj29oXKEEAAAQQQcFOAAMuuACu+XmeMCFeB/Ll19523qFGdarGevPKM9wRYia2VPLmya/OqCXGG7NqzT4tWfaBPd/wgszdWZGSkcuXMppLFb1DNahWcLxWap77iO1JyXTfXta1zE2DF6EzZR1vIvKP66dvTdFWWTLb2LE3VRYBlbzsJsOzsDQGWnX0hwLK3L1SGAAIIIICAmwIEWHYEWG72mLntESDAitGLO6s1V+aMEdq2doo9HUrjlRBg2dtgAiw7e0OAZWdfCLDs7QuVIYAAAggg4KYAARYBlpvri7ljCxBgxfB4uEFX513VL9+bleAjfiyg1BUgwEpdz9ScjQArNTVTby4CrNSzTO2Z2AMrtUWZDwEEEEAAAfsFgi3A+vvrKB3Zc8k12IJ3plOu6+N/Xc61izJxyAgQYMVodb9Rc7V87UdaPKWP7ihxY8gsgkDeKAFWIPUTvzYBlp29IcCysy+mKgIse3tDZQgggAACCLglEGwBllsOzIuAPwQIsGIom89cmo3cy5QsphmjuipD+vT+6EFIX4MAy972E2DZ2RsCLDv7QoBlb1+oDAEEEEAAATcFCLDc1GVuBGILEGBdsSLWb/pUPYfM1C03FVbzZx5T2TuKK0f2+D+jyWJKuQABVsoN3ZqBAMst2ZTNS4CVMj83z+YJLDd1mRsBBBBAAAE7BQiw7OwLVaVNAQKsGH0dNG6hdv2+Tzt/+M35GqHnyJQxQhkzhie6AraumZw2V4jLd0WA5TJwCqYnwEoBnounEmC5iJvCqQmwUgjI6QgggAACCAShAAFWEDaNkoNWgAArRutuq9Q42Y38btO8ZJ8byicSYNnbfQIsO3tDgGVnX0xVBFj29obKEEAAAQQQcEuAAMstWeZFIK4AAVYMk7c/2J7sNVKjSrlknxvKJxJg2dt9Aiw7e0OAZWdfCLDs7QuVIYAAAggg4KYAAZabusyNQGwBAixWRKICC5e/p1FTlypf3px6f+noBMf++OtePdW8b6JzDejaRE/XfDDWGAIsexcgAZadvSHAsrMvBFj29oXKEEAAAQQQcFOAAMtNXeZGgACLNeCFwKnTZ9VnxGyt3/SZM7rg1XkSDbC2ff6dmncdqXx5cqpA/tzxXqHFs4+r8n2lCbC88LdhCAGWDV2IWwMBlp19IcCyty9UhgACCCCAgJsCBFhu6jI3AgRYrIEkBH7dvU8d+k7Unj/+UdMGNbR0zUZlz3ZVogHWug/+p+4Dp6lzy3pq9kwNr415AstrKr8PJMDyO7lXFyTA8oopIIPYAysg7FwUAQQQQACBgAoQYAWUn4uHmACvEIZYw5O63YOHj6l6o+66cDFS5pW/Wo/cpzurNlPePIm/QmheNRw2abEG92yuJx+9P6nLRP+cAMtrKr8PJMDyO7lXFyTA8oopIIMIsALCzkURQAABBBAIqAABVkD5uXiICRBgxWh4g9avJrv9S6Ymvv9TsicOwIkmjLrztptU6taiioqKUsmHmiT5CuH4WSs047W3NG14F1UsV8rrqgmwvKby+0ACLL+Te3VBAiyvmAIyiAArIOxcFAEEEEAAgYAKEGAFlJ+Lh5gAAVaMht9WqXGy2//dpnnJPtfmEy9GRuqOKs2SDLD6j5qnZWs3afnMAbq12PVe3xIBltdUfh9IgOV3cq8uSIDlFVNABhFgBYSdiyKAAAIIIBBQAQKsgPJz8RATIMCK0fBpC9Yk2v6z587r3wNH9OXOn/Xn3wd0VZZM6telsYoXLaSbbrg2TS4dbwOsl3pP0MaPv1Sr55/QiZNndOr0GUVEhKvwNflVsdztCfoQYNm7bAiw7OwNAZadfTFVEWDZ2xsqQwABBBBAwC0BAiy3ZJkXgbgCBFjJXBXvbNyuXsNm6fZbi2ru2J5Kly4smTPZfZq3AVa7XuP14dYdCd7Mow/do4HdmypL5kyxxpy7cMlugBCu7q3WkSF89/beOgGWvb3JvGizvcVRGQIIIIAAAgi4IpAxPJ0r8zIpAggQYKXqGli0coOGTFikV7s11VOPPZCqc9symbcB1vnzF7R9x48qdE0+5c+bU+Hh4TIbwm//8ntNnb/aeWLtvrtLasbIrrbcGnUkIbC8+QWMLBQgwLKwKf9fUs43Pra3OCpDAAEEEEAAAQQQQCDIBXgCKwUNPHHytCo80VZlSt2s+eNfTsFM9p7qbYCV2B0cOnJctRq/oiPHTmj2mO66t0yJ6OGHjp+39+ZDvLIPO6fNpwqDva0EWPZ2MHLWRnuLozIEEEAAAQQQcEUgT/YIV+ZlUgQQiCtAgJXCVfFgnQ4yIc8nqyelcCY7T0+NAMvc2YjJr2v+svXOHlkvNa0TfbPsgWVn301V7IFlZ28IsOzsi6mKPbDs7Q2VIYAAAggg4JYAe2C5Jcu8CBBgpfoaqPB4W506fVZffzA71ee2YcLUCrA8r1s2qlNNvdo3IsCyoblJ1ECAZWeTCLDs7Mv/tXffcXNU5d+A75AChN4CAQxFQASiFCHSFClCMPQWDb0GkAChSe9gQgApgRB6kw5SftKVpog0AUVaFOlNikAoIcn7mfVNTMiTZPaZZ3fPzl77z883OXPOfa777It+mZkVYKXbF5URIECAAIFaCgiwaqlrbgKTC7gDq8CJeOOt92K9/gfGPHPNHg/cdGaBmdK9tKMCrDMuuCFGXnFr7LfblrHbgH4CrHRbPrEyAVaaTRJgpdkXAVa6fVEZAQIECBCopYAAq5a65iYgwOqQMzD6s8/jgGPPjQf+9FSs2ec7MWLI4A6ZN7VJOiLAGvPV2Nhkx8PiX6+9HVdbCJwhAAAgAElEQVSdc2R8Z5lvCrBSa3Qb9Qiw0mySACvNvgiw0u2LyggQIECAQC0FBFi11DU3AQHWVM/AKedcPd3zMXbcuHj73ffjsaeej/c//Lgy/qwT9421V19hutc244A8AdYrr78T9z74eGz049Vi3rnnmGybr7z+dpx05hXx4CPPxJp9eseIIQdM9vfegZXuqRBgpdkbAVaafRFgpdsXlREgQIAAgVoKCLBqqWtuAgKsqZ6BZdfaserzsePWG8RBe/Wv+rpmuSBPgPXcS6/EFrseFZ06dYpFFp4/Fu45X+U/Z49Y/vPVN2PcuPGxYu8lY/jJ+8fss3YXYDVJ8wVYaTZKgJVmXwRY6fZFZQQIECBAoJYCAqxa6pqbgABrqmdgh31Pnu75yIKZWbrPFIt+Y4HYYK1Vove3F5/uNc08IE+ANWbMV3HTHQ/F7x56PJ4f9Wp88OHHMX58xJxzzBrfXrJX9Ft3tei7dp/o3HmGKSjcgZXu6RBgpdkbAVaafRFgpdsXlREgQIAAgVoKCLBqqWtuAgIsZyAhAQFWQs34WikCrDR7I8BKsy8CrHT7ojICBAgQIFBLAQFWLXXNTUCA5QwkJCDASqgZAqx0mzFJZQKsdNs0+ty70y1OZQQIECBAgEBNBARYNWE1KYE2BTqNH5897OVDoDECAqzGuOdZ1R1YeZTqP0aAVX/zvCsKsPJKGUeAAAECBMojIMAqTy/tJH0BAdZ0epT9wt5rb74Tn3z6eeXdV9kLyrMXlft0jIAAq2McazGLAKsWqsXnFGAVN6zVDAKsWsmalwABAgQIpCsgwEq3Nyorn4AAq42efvnlmLjs+rviqpvujbfefX+KEfPOPUdss8nasdM2fWPmmbqV71TUcUcCrDpiV7mUAKtKsDoNF2DVCbodywiw2oHmEgIECBAg0OQCAqwmb6Dym0pAgPW1dr33/kex+0HDKr+mN73P4r16xshhB0XPHnNPb6i/n4qAACvdoyHASrM3Aqw0+5JVJcBKtzcqI0CAAAECtRIQYNVK1rwEphQQYE1iMnbsuPjpXsfF355/ObrPPFMM2Hzd+OGq343FvtEzZp55xvjssy/in6++Gfc//FRceeM9Mfqzz+Nb3/xGXDvymOjSubPz1Q4BAVY70Op0yUIvX1KnlSxTjcAul+1azXBj6yhw3FFf1XE1SxEgQIAAAQIpCAiwUuiCGlpFQIA1Sadv/O0DceTQi6LHvHPGZWceFt9YsMdUz8Hrb70XOww6Kd585/047qCdY4uf/KBVzkyH7lOA1aGcHTqZAKtDOTtsMgFWh1F2+EQCrA4nNSEBAgQIEEheQICVfIsUWCIBAdYkzdz1wFPi4cf+FsOO2jP6rt1num3+/R+fjJ8fdkasvvJyMfKUA6c73oApBQRY6Z4KAVaavRFgpdmXrCoBVrq9URkBAgQIEKiVgACrVrLmJTClgABrEpM1NtknPvr4k3j09vNiphmn/3L2r8aOjVX6DoxZZ5k5HrjpTOerHQICrHag1ekSAVadoKtcRoBVJVgdhwuw6ohtKQIECBAgkIiAACuRRiijJQQEWJO0+bvr7BKzdJ8p/njr8NzNX2erwfHvDz6Kv9xzYe5rDPyfgAAr3dMgwEqzNwKsNPuSVSXASrc3KiNAgAABArUSEGDVSta8BKYUEGBNYrLaRnvHp6M/j8fvGpnrpezjxo2PPj/57x1Yv7/+V85XOwQEWO1Aq9MlAqw6QVe5jACrSrA6Dhdg1RHbUgQIECBAIBEBAVYijVBGSwgIsCZp8/aDTorHn36h8j6r7L1W0/s88uTfY+f9h8T3V1wmLjzt4OkN9/dtCAiw0j0WAqw0eyPASrMvWVUCrHR7ozICBAgQIFArAQFWrWTNS2BKAQHWJCaXXXdnDBl+VSyx2EKVXyGcY7ZZpnpmPvrPp7HdoJNi1Muvx8mH7RYb/3h156sdAgKsdqDV6RIBVp2gq1xGgFUlWB2HC7DqiG0pAgQIECCQiIAAK5FGKKMlBARYk7T58y++jI13OCxef+u96Nlj7thtQL9Ys893YsEF5p04Kvu7+x9+Ks6/8tZ4570PY5mlFo0rzz48unXr2hIHpqM3KcDqaNGOm0+A1XGWHTmTAKsjNTt2LgFWx3qajQABAgQINIOAAKsZuqTGsggIsL7WyVH/eiN2PWBoJZya8OnapXPMNNOM8fnnX8SYr8ZO/PNFFp4/LjztkErY5dM+AQFW+9zqcZUAqx7K1a8hwKrerF5XCLDqJW0dAgQIECCQjoAAK51eqKT8AgKsNnr8wUcfx9kX3RS/ueOhyO7K+vpn3rnniE03WCP23GGTmGnGbuU/JTXcoQCrhrgFpxZgFQSs0eUCrBrBdsC0AqwOQDQFAQIECBBoMgEBVpM1TLlNLSDAmkb7vvxyTPzthZfj9Tffi9GffR5zzjFb9Jx/nlh2qUVjhhk6NXXjUylegJVKJ6asQ4CVZm8EWGn2JatKgJVub1RGgAABAgRqJSDAqpWseQlMKSDAcioaKiDAaij/NBcXYKXZGwFWmn0RYKXbF5URIECAAIFaCgiwaqlrbgKTCwiwJvHI7rjq2rVLdOrk7qp6fVEEWPWSrn4dAVb1ZvW4QoBVD+X2reEOrPa5uYoAAQIECDSzgACrmbun9mYTEGBN0rHzLr81rrvtvhi8+9ax4Tp9ptvLYSOuietuvS8O33fb2PjHq093vAFTCgiw0j0VAqw0eyPASrMvWVUCrDR788dDuqRZmKpitSFfUSBAgEDTCwiwmr6FNtBEAgKsSZq1w74nx2NPPR8n/mLXykvap/d58JGnY+Ahp8Wafb4TI4YMnt5wf9+GgAAr3WMhwEqzNwKsNPsiwEq3LwKsdHsjwEq3NyojQCC/gAArv5WRBIoKCLAmEVx368Hx5jvvx+1XDo1eC/WYru37H34ca266Tyy4wLxx99XDpjvegCkFBFjpngoBVpq9EWCl2RcBVrp9EWCl2xsBVrq9URkBAvkFBFj5rYwkUFRAgDWJ4PLr7RpjxnwVf7n7gsq7sKb3GT9+fKyw3q4xwwwzxBN3nT+94f6+DQEBVrrHQoCVZm8EWGn2RYCVbl8EWOn2RoCVbm9URoBAfgEBVn4rIwkUFRBgTSK4yoYD49PRn8ejt58X3Weecbq2WYD13XV3iRm7dYtHbx8x3fEGTCkgwEr3VAiw0uyNACvNvgiw0u2LACvd3giw0u2NyggQyC8gwMpvZSSBogICrEkEN9/lyHh+1Ktx4akHx/dXWma6tn97/uXYeo9j4puLLBi3XHrSdMcbIMBqpjMgwEqzWwKsNPsiwEq3LwKsdHsjwEq3NyojQCC/gAArv5WRBIoKCLAmETx1xLVx0dW/jRV7LxUXnX5IdO3Seaq+48aNj70OPT2yF7kP2HzdOGzQtkV70ZLXuwMr3bYLsNLsjQArzb4IsNLtiwAr3d4IsNLtjcoIEMgvIMDKb2UkgaICAqxJBN9+94PoO+Dg+OLLMbHKCkvHIXv/LJZeotcUxi/98/UYNuKaSnjVufMMcdtlv8z10veizSrj9QKsdLsqwEqzNwKsNPsiwEq3LwKsdHsjwEq3NyojQCC/gAArv5WRBIoKCLC+JnjnfX+OA449N7L3W2WfBeabOxbttUB0n3mm+OKLL+PlV9+K1996b+JVRx+wY2y90VpF+9Cy1wuw0m29ACvN3giw0uyLACvdvgiw0u2NACvd3qiMAIH8AgKs/FZGEigqIMBqQ/DRvzwXx59+WYz61xtT9V1wgXnjsEED4kerrVC0By19vQAr3fYLsNLsjQArzb4IsNLtiwAr3d4IsNLtjcoIEMgvIMDKb2UkgaICAqxpCD7xzIvx+NPPx+tvvhefjP4sZpqxW/TsMXes0HvJ6LPCMpXHB32KCQiwivnV8moBVi112z+3AKv9drW+8rijvqr1EuZvh4AAqx1odbpEgFUnaMsQIFBTAQFWTXlNTmAyAQGWA9FQAQFWQ/mnubgAK83eCLDS7EtWlQArzd4IsNLsS1aVACvd3qiMAIH8AgKs/FZGEigqIMAqKuj6QgICrEJ8Nb1YgFVT3nZPLsBqN13NLxRg1Zy4XQsIsNrFVpeLBFh1YbYIAQI1FhBg1RjY9AQmERBgOQ4NFRBgNZR/mosLsNLsjQArzb5kVQmw0uyNACvNvmRVCbDS7Y3KCBDILyDAym9lJIGiAgKsooKuLyRw/a5jCl3v4toJrPufH9VucjO3W+DAnr9v97UurK3ABp/Wdn6zEyibgACrbB21HwKtKSDAas2+23VjBARYjXG36v8XEGClexQEWGn2RoCVZl+yqgRY6fZGZWkKCLDS7IuqCBCoTkCAVZ2X0QSKCAiwiui5trCAAKswYc0mEGDVjLbQxAKsQnw1vViAVVNek5dQQIBVwqbaEoEWFBBgtWDTbblhAgKshtFbOBMQYKV7DgRYafZGgJVmX7KqBFjp9kZlaQoIsNLsi6oIEKhOQIBVnZfRBIoICLCK6Lm2sIAAqzBhzSYQYNWMttDEAqxCfDW9WIBVU16Tl1BAgFXCptoSgRYUEGC1YNNtuWECAqyG0Vs4ExBgpXsOBFhp9kaAlWZfsqoEWOn2RmVpCgiw0uyLqggQqE5AgFWdl9EEiggIsIroubawgACrMGHNJhBg1Yy20MQCrEJ8Nb1YgFVTXpOXUECAVcKm2hKBFhQQYLVg0225YQICrIbRWzgTEGClew4EWGn2RoCVZl+yqgRY6fZGZWkKCLDS7IuqCBCoTkCAVZ2X0QSKCAiwiui5trCAAKswYc0mEGDVjLbQxAKsQnw1vViAVVNek5dQQIBVwqbaEoEWFBBgtWDTbblhAgKshtFbOBMQYKV7DgRYafZGgJVmX7KqBFjp9kZlaQoIsNLsi6oIEKhOQIBVnZfRBIoICLCK6Lm2sIAAqzBhzSYQYNWMttDEAqxCfDW9WIBVU16Tl1BAgFXCptoSgRYUEGC1YNNtuWECAqyG0Vs4ExBgpXsOBFhp9kaAlWZfsqoEWOn2RmVpCgiw0uyLqggQqE5AgFWdl9EEiggIsIroubawgACrMGHNJhBg1Yy20MQCrEJ8Nb1YgFVTXpOXUECAVcKm2hKBFhQQYLVg0225YQICrIbRWzgTEGClew4EWGn2RoCVZl+yqgRY6fZGZWkKCLDS7IuqCBCoTkCAVZ2X0QSKCAiwiui5trCAAKswYc0mEGDVjLbQxAKsQnw1vfjC7S+o6fwmJ1A2gdcX3bFsW7IfAgRaUECA1YJNt+WGCQiwGkZv4UxAgJXuORBgpdkbAVaafcmqEmCl2xuVpSkgwEqzL6oiQKA6AQFWdV5GEygiIMAqoufawgICrMKENZtAgFUz2kITC7AK8dX0YgFWTXlNXkIBAVYJm2pLBFpQQIDVgk235YYJCLAaRm/hTECAle45EGCl2RsBVpp9yaoSYKXbG5WlKSDASrMvqiJAoDoBAVZ1XkYTKCIgwCqi59rCAgKswoQ1m0CAVTPaQhMLsArx1fRiAVZNeU1eQgEBVgmbaksEWlBAgNWCTbflhgkIsBpGb+FMQICV7jkQYKXZGwFWmn3JqhJgpdsblaUpIMBKsy+qIkCgOgEBVnVeRhMoIiDAKqLXAtdefv1dMezca2K+eeeMe645dbo7vun2B+P62+6Pl15+PcaOHRuLLLxAbLrBGvGzzdaNzp1nmOJ6AdZ0SRs2QIDVMPppLizASrMvAqx0+6KydAUEWOn2RmUECOQXEGDltzKSQFEBAVZRwZJe/+noz+PIoRfGnfc9Wtlhz/nnmW6AdehJ58ctd/0hunbpHCv0XjK6dukSTz07Kj759LNYY5XeMfzk/aJL586TiQmw0j1AAqw0eyPASrMvAqx0+6KydAUEWOn2RmUECOQXEGDltzKSQFEBAVZRwRJe/9I/X499jzorXn71rdi5/4ZxzS2/i9lnm2WaAVYWXGUB1uK9esbIYQdFzx5zV2RGf/Z57HfU2fGHR/8a++y8eQzcfmMBVpOcGQFWmo0SYKXZFwFWun1RWboCAqx0e6MyAgTyCwiw8lsZSaCogACrqGDJrn/v/Y+i74CDY8xXY+PYA3eKTdZfPZZfd5eYd55pP0K46U5HxIv/fC2uHH5ELL/sEpOpfPDRx7HOVoOja9cucf+NZ8RMM3ab+PfuwEr3AAmw0uyNACvNvgiw0u2LytIVEGCl2xuVESCQX0CAld/KSAJFBQRYRQVLeH323qsshOr97cVj/PjxsdyPdprmI4RvvPVerNf/wOi1UI+4/cqhbYoMPmZ45XHEs07cN9ZefQUBVhOcGwFWmk0SYKXZFwFWun1RWboCAqx0e6MyAgTyCwiw8lsZSaCogACrqGDJr/9q7Nj47jq7TDPAuvfBJ2LQkWdGv/VWjSGH79GmyKXX3RlDh18Vuw3oF/vttqUAqwnOjQArzSYJsNLsiwAr3b6oLF0BAVa6vVEZAQL5BQRY+a2MJFBUQIBVVLDk1+cJsC655o445dyrY4/tNopBu2zRpsg9Dz4e+x55Vqy/1spx2jF7C7Ca4NwIsNJskgArzb4IsNLti8rSFRBgpdsblREgkF9AgJXfykgCRQUEWEUFS359ngDr7ItuinMvuzkOHLhN7NS/b5sijzz599h5/yHx/ZWWiQtPPViA1QTnRoCVZpMEWGn2RYCVbl9Ulq7Af769a7rFqYwAAQI5BWbr3jXnSMMIECgqIMAqKljy6/MEWKeOuDYuuvq3ceg+A2LbLdZrU+TJv74Y2/78xFhhuSXjirMPF2A1wbkRYKXZJAFWmn0RYKXbF5WlKzB+pT3TLU5lBAgQIECAQHICAqzkWpJWQXkCrKruwFpxmbjwNHdgpdXltqsRYKXZJQFWmn0RYKXbF5WlK+AOrHR7ozICBPILuAMrv5WRBIoKCLCKCpb8+jwB1mXX3RlDhl+V6x1Y6665Upxx/D4T1a7fdUzJBZt3ewKsNHsnwEqzLwKsdPuisnQFvAMr3d6ojACB/ALegZXfykgCRQUEWEUFS359ngDr/oefir0OPT3XrxDu3H/DOGDg1gKsJjg3Aqw0myTASrMvAqx0+6KydAUEWOn2RmUECOQXEGDltzKSQFEBAVZRwZJfnyfAeu/9j+KHm+8bvRbqEbdfObRNkcHHDI8773s0hh21Z/Rdu48AqwnOjQArzSYJsNLsiwAr3b6oLF0BAVa6vVEZAQL5BQRY+a2MJFBUQIBVVLDk1+cJsDKC7AXt2Yvarxx+RCy/7BKTqXzw0cexzlaDY9z48fHATWfG7LN2F2A1wbkRYKXZJAFWmn0RYKXbF5WlKyDASrc3KiNAIL+AACu/lZEEigoIsIoKlvz6vAHWg488HQMPOS0W79UzRg47KHr2mLsiM/qzz2P/o4fHQ39+JgZsvm4cNmjbycS8AyvdAyTASrM3Aqw0+yLASrcvKktXQICVbm9URoBAfgEBVn4rIwkUFRBgFRUs+fV5A6yMYdiIa+Liq2+Prl27xArLLRHdunaNp54dFR9/MjqWWWrRuPSMQ6P7zDMKsJrkzAiw0myUACvNvgiw0u2LytIVEGCl2xuVESCQX0CAld/KSAJFBQRYRQVLfn01AVZGkb3n6oob7o7nR70SY8eOi4V6zhcbrt0ndurfN2bs1nUKLXdgpXuABFhp9kaAlWZfBFjp9kVl6QoIsNLtjcoIEMgvIMDKb2UkgaICAqyigq4vJCDAKsRX04sFWDXlbffkAqx209X8wgu3v6Dma1iAQJkEBFhl6qa9EGhdAQFW6/bezusvIMCqv7kVJxEQYKV7HARYafZGgJVmX7KqBFjp9kZlaQoIsNLsi6oIEKhOQIBVnZfRBIoICLCK6Lm2sIAAqzBhzSYQYNWMttDEAqxCfDW9WIBVU16Tl1BAgFXCptoSgRYUEGC1YNNtuWECAqyG0Vs4ExBgpXsOBFhp9kaAlWZfsqoEWOn2RmVpCgiw0uyLqggQqE5AgFWdl9EEiggIsIroubawgACrMGHNJhBg1Yy20MQCrEJ8Nb1YgFVTXpOXUECAVcKm2hKBFhQQYLVg0225YQICrIbRWzgTEGClew4EWGn2RoCVZl+yqgRY6fZGZWkKCLDS7IuqCBCoTkCAVZ2X0QSKCAiwiui5trBAp8fPLTyHCWojsMtlu9ZmYrMSIECgjgKCxTpiV7nUdef650yVZHUZvtqQr+qyjkUIlEVAgFWWTtpHMwgIsJqhSyWuUYCVbnMFWOn2RmUECOQXEGDlt6r3SAFWvcXzrSfAyudkFIEJAgIsZ4FA/QQEWPWztlIbAgKsdI+FACvd3qiMAIH8AgKs/Fb1HinAqrd4vvUEWPmcjCIgwHIGCNRfQIBVf3MrTiIgwEr3OAiw0u2NyggQyC8gwMpvVe+RAqx6i+dbT4CVz8koAgIsZ4BA/QUEWPU3t6IAqynOgACrKdqkSAIEpiMgwEr3iAiw0uyNACvNvqgqXQGPEKbbG5WVT0CAVb6eNtWO3IGVbrsEWOn2RmUECOQXEGDlt6r3SAFWvcXzrSfAyudkFIEJAgIsZ4FA/QQEWPWztlIbAgKsdI+FACvd3qiMAIH8AgKs/Fb1HinAqrd4vvUEWPmcjCIgwHIGCNRfQIBVf3MrTiIgwEr3OAiw0u2NyggQyC8gwMpvVe+RAqx6i+dbT4CVz8koAgIsZ4BA/QUEWPU3t6IAqynOgACrKdqkSAIEpiMgwEr3iAiw0uyNACvNvqgqXQGPEKbbG5WVT0CAVb6eNtWO3IGVbrsEWOn2RmUECOQXEGDlt6r3SAFWvcXzrSfAyudkFIEJAgIsZ4FA/QQEWPWztlIbAgKsdI+FACvd3qiMAIH8AgKs/Fb1HinAqrd4vvUEWPmcjCIgwHIGCNRfQIBVf3MrTiIgwEr3OAiw0u2NyggQyC8gwMpvVe+RAqx6i+dbT4CVz8koAgIsZ4BA/QUEWPU3t6IAqynOgACrKdqkSAIEpiMgwEr3iAiw0uyNACvNvqgqXQGPEKbbG5WVT0CAVb6eNtWO3IGVbrsEWOn2RmUECOQXEGDlt6r3SAFWvcXzrSfAyudkFIEJAgIsZ4FA/QQEWPWztlIbAgKsdI+FACvd3qiMAIH8AgKs/Fb1HinAqrd4vvUEWPmcjCIgwHIGCNRfQIBVf3MrTiIgwEr3OAiw0u2NyggQyC8gwMpvVe+RAqx6i+dbT4CVz8koAgIsZ4BA/QUEWPU3t6IAqynOgACrKdqkSAIEpiMgwEr3iAiw0uyNACvNvqgqXQGPEKbbG5WVT0CAVb6eNtWO3IGVbrsEWOn2RmUECOQXEGDlt6r3SAFWvcXzrSfAyudkFIEJAgIsZ4FA/QQEWPWztlIbAgKsdI+FACvd3qiMAIH8AgKs/Fb1HinAqrd4vvUEWPmcjCIgwHIGCNRfQIBVf3MrTiIgwEr3OAiw0u2NyggQyC8gwMpvVe+RAqx6i+dbT4CVz8koAgIsZ4BA/QUEWPU3t6IAqynOgACrKdqkSAIEpiMgwEr3iAiw0uyNACvNvqgqXQGPEKbbG5WVT0CAVb6eNtWO3IGVbrsEWOn2RmUECOQXEGDlt6r3SAFWvcXzrSfAyudkFIEJAgIsZ4FA/QQEWPWztlIbAgKsdI+FACvd3qiMAIH8AgKs/Fb1HinAqrd4vvUEWPmcjCIgwHIGCNRfQIBVf3MrTiIgwEr3OAiw0u2NyggQyC8gwMpvVe+RAqx6i+dbT4CVz8koAgIsZ4BA/QUEWPU3t6IAqynOgACrKdqkSAIEpiMgwEr3iAiw0uyNACvNvqgqXQGPEKbbG5WVT0CAVb6eNtWO3IGVbrsEWOn2RmUECOQXEGDlt6r3SAFWvcXzrSfAyudkFIEJAgIsZ4FA/QQEWPWztlIbAgKsdI+FACvd3qiMAIH8AgKs/Fb1HinAqrd4vvUEWPmcjCIgwHIGCNRfQIBVf3MrTiIgwEr3OAiw0u2NyggQyC8gwMpvVe+RAqx6i+dbT4CVz8koAgIsZ4BA/QUEWPU3t6IAqynOgACrKdqkSAIECDStwAafNm3pCifQEAHhYkPYp7uoRwinS2QAgQ4TEGB1GKWJ2iPgDqz2qNXnGgFWfZytQoAAgVYVEGC1auftu70CAqz2ytX2OgFWbX3NTmBSAQGW89BQAQFWQ/mnubgAK93eqIwAAQJlEBBglaGL9lBPAQFWPbXzryXAym9lJIGiAgKsooKuLyQgwCrEV9OLBVg15TU5AQIEWl5AgNXyRwBAlQICrCrB6jRcgFUnaMsQiAgBlmPQUAEBVkP5p7m4ACvd3qiMAAECZRAQYJWhi/ZQTwEBVj21868lwMpvZSSBogICrKKCri8kIMAqxFfTiwVYNeU1OQECBFpeQIDV8kcAQJUCAqwqweo0XIBVJ2jLEHAHljPQaAEBVqM7MPX1BVjp9kZlBAgQKIOAAKsMXbSHegoIsOqpnX8tAVZ+KyMJFBVwB1ZRQdcXEhBgFeKr6cUCrJrympwAAQItLyDAavkjAKBKAQFWlWB1Gi7AqhO0ZQi4A8sZaLSAAKvRHZj6+gKsdHujMgIECJRBQIBVhi7aQz0FBFj11M6/lgArv5WRBIoKuAOrqKDrCwkIsArx1fRiAVZNeU1OgACBlhcQYLX8EQBQpYAAq0qwOg0XYNUJ2jIE3IHlDDRaQIDV6A5MfX0BVrq9URkBAgTKICDAKkMX7aGeAgKsemrnX0uAld/KSAJFBdyBVVTQ9YUEBFiF+Gp6sQCrprwmJ0CAQMsLCLBa/ggAqFJAgFUlWJ2GC7DqBG0ZAu7AcgYaLSDAanQHpr6+ACvd3qiMAAECZRAQYJWhi/ZQTwEBVj21868lwMpvZSSBogLuwCoq6PpCAgKsQnw1vViAVVNekxMgQKDlBQRYLX8EAFQpIMCqEqxOwwVYdYK2DAF3YDkDjRYQYDW6A1NfX4CVbm9URoAAgTIICKbYI9QAACAASURBVLDK0EV7qKeAAKue2vnXEmDltzKSQFEBd2AVFXR9IQEBViG+ml4swKopr8kJECDQ8gIXbn9ByxsAIFCNwOuL7ljNcGPrJCDAqhO0ZQi4A8sZaLSAAKvRHZj6+gKsdHujMgIECJRBQIBVhi7aQz0FBFj11M6/lgArv5WRBIoKuAOrqKDrCwkIsArx1fRiAVZNeU1OgACBlhcQYLX8EQBQpYAAq0qwOg0XYNUJ2jIE3IHlDDRaQIDV6A5MfX0BVrq9URkBAgTKICDAKkMX7aGeAgKsemrnX0uAld/KSAJFBdyBVVTQ9YUEBFiF+Gp6sQCrprwmJ0CAQMsLCLBa/ggAqFJAgFUlWJ2GC7DqBG0ZAu7AcgY6SuC5l16JLXY9aprTHXvgTrFlvx9ONkaA1VEd6Ph5BFgdb2pGAgQIEPifgADLaSBQnYAAqzqveo0WYNVL2joEItyB5RR0iMDDj/0tdj3wlJhvnjljgR5ztznn7ttuFGuvvoIAq0PEaz+JAKv2xlYgQIBAKwsIsFq5+/beHgEBVnvUan+NAKv2xlYgMEFAgOUsdIjA/937pzj4+BExeI+tY5efbph7Tndg5aaq+0ABVt3JLUiAAIGWEhBgtVS7bbYDBARYHYBYgykEWDVANSWBqQgIsByNDhG4/Pq74pdn/zpO/MWusekGa+SeU4CVm6ruAwVYdSe3IAECBFpKQIDVUu222Q4QEGB1AGINphBg1QDVlAQEWM5ALQXOuOCGGHnFrTFiyAGxZp/euZcSYOWmqvtAAVbdyS1IgACBlhIQYLVUu222AwQEWB2AWIMpBFg1QDUlAQGWM1BLgWOGXRLX3XZfXH/+sfHtJRfJvZQAKzdV3QcKsOpObkECBAi0lIAAq6XabbMdICDA6gDEGkwhwKoBqikJCLCcgVoK7HPEmfG7h56IgdtvHB9/8ll8Ovqz6Nata/RasEes2ec7scRiC7W5vACrll0pNrcAq5ifqwkQIEBg2gICLCeEQHUCAqzqvOo1WoBVL2nrEPArhM5ABwn8/LAz4vd/fHKqs23wo1Xi+IN3ju4zzzTZGAFWBzWgBtMIsGqAakoCBAgQmCggwHIYCFQn8N6Su1R3gdF1EZhn9m51WcciBAgIsJyBDhL48ssx8ciTz8U3Fpwvesw7Z3Tt2jXee/+jeOSJZ+PcS2+O1958N1ZfebkYecqBAqwOMq/1NAKsWgubnwABAq0tIMBq7f7bffUC41fas/qLXEGAAIESCfgVwhI1M9Wt/PuD/8QmOx4eH3z0cVx42sHx/RWXmVjqrvuOSbVsdREgQIAAAQI1FBj25o9qOLupCZRPYOYrHyjfpkqwoxm7zlCCXdgCgeYQEGA1R5+avsqhw6+KS6+7s/KOrH123lyA1fQdtQECBAgQIFBMQIBVzM/VrScw+ty7W2/TTbBj78BqgiYpsTQCAqzStDLtjVx5491x0plXxoDN14vDBg0QYKXdLtURIECAAIGaCwiwak5sgZIJCLDSbKgAK82+qKqcAgKscvY1uV2dccENMfKKW2O/3baM3Qb0E2Al1yEFESBAgACB+goIsOrrbbXmFxBgpdlDAVaafVFVOQUEWOXsa1K7GvPV2Nhkx8PiX6+9HVedc2R8Z5lvCrCS6pBiCBAgQIBA/QUEWPU3t2JzCwiw0uyfACvNvqiqnAICrHL2ta67euX1d+LeBx+PjX68Wsw79xyTrf3K62/HSWdeEQ8+8kys2ad3jBhywGR/7yXudW2VxQgQIECAQDICAqxkWqGQJhEQYKXZKAFWmn1RVTkFBFjl7Gtdd/XcS6/EFrseFZ06dYpFFp4/Fu45X+U/v/HWe/HPV9+McePGx4q9l4zhJ+8fs8/aXYBV1+5YjAABAgQIpCkgwEqzL6pKV0CAlWZvBFhp9kVV5RQQYJWzr3Xd1ZgxX8VNdzwUv3vo8Xh+1KvxwYcfx/jxEXPOMWt8e8le0W/d1aLv2n2ic+cpf2LWHVh1bZXFCBAgQIBAMgICrGRaoZAmERBgpdkoAVaafVFVOQUEWOXsa9PsSoDVNK1SKAECBAgQ6FABAVaHcpqsBQQEWGk2WYCVZl9UVU4BAVY5+9o0uxJgNU2rFEqAAAECBDpUQIDVoZwmawEBAVaaTRZgpdkXVZVTQIBVzr42za4EWE3TKoUSIECAAIEOFRBgdSinyVpAQICVZpMFWGn2RVXlFBBglbOvTbMrAVbTtEqhBAgQIECgQwUEWB3KabIWEBBgpdlkAVaafVFVOQUEWOXsa9PsSoDVNK1SKAECBAgQ6FABAVaHcpqsBQQEWGk2WYCVZl9UVU4BAVY5+9o0uxJgNU2rFEqAAAECBDpUQIDVoZwmawEBAVaaTRZgpdkXVZVTQIBVzr42za4EWE3TKoUSIECAAAECLSAgWEy3yQKsNHsjwEqzL6oqp4AAq5x9bZpdCbCaplUKJUCAAAECBFpAQICVbpMFWGn2RoCVZl9UVU4BAVY5+9o0uxJgNU2rFEqAAAECBAi0gIAAK90mC7DS7I0AK82+qKqcAgKscva1aXYlwGqaVimUAAECBAgQaAEBAVa6TRZgpdkbAVaafVFVOQUEWOXsa9PsSoDVNK1SKAECBAgQINACAgKsdJsswEqzNwKsNPuiqnIKCLDK2dem2ZUAq2lapVACBAgQIECgBQQEWOk2WYCVZm8EWGn2RVXlFBBglbOvTbMrAVbTtEqhBAgQIECAQAsICLDSbbIAK83eCLDS7IuqyikgwCpnX5tmVwKspmmVQgkQIECAAIEWEBBgpdtkAVaavRFgpdkXVZVTQIBVzr42za4EWE3TKoUSIECAAAECLSAgwEq3yQKsNHsjwEqzL6oqp4AAq5x9bZpdCbCaplUKJUCAAAECBFpAQICVbpMFWGn2RoCVZl9UVU4BAVY5+9o0uxJgNU2rFEqAAAECBAi0gIAAK90mC7DS7I0AK82+qKqcAgKscva1aXYlwGqaVimUAAECBAgQaAEBAVa6TRZgpdkbAVaafVFVOQUEWOXsa9PsSoDVNK1SKAECBAgQINACAgKsdJsswEqzNwKsNPuiqnIKCLDK2dem2ZUAq2lapVACBAgQIECgBQQEWOk2WYCVZm8EWGn2RVXlFBBglbOvTbMrAVbTtEqhBAgQIECAAAECDRQ47qivGri6pacmIMByNgjUT0CAVT9rK7UhIMByLAgQIECAAAECBAhMX0CANX2jRowQYDVC3ZqtKiDAatXOJ7JvAVYijVAGAQIECBAgQIBA0gICrDTbI8BKsy+qKqeAAKucfW2aXQmwmqZVCiVAgAABAgQIEGiggACrgfjTWFqAlWZfVFVOAQFWOfvaNLsSYDVNqxRKgAABAgQIECDQQAEBVgPxBVhp4quq5QQEWC3X8rQ2LMBKqx+qIUCAAAECBAgQSFNAgJVmX9yBlWZfVFVOAQFWOfvaNLsSYDVNqxRKgAABAgQIECDQQAEBVgPxp7G0ACvNvqiqnAICrHL2tWl2JcBqmlYplAABAgQIECBAoIECAqwG4guw0sRXVcsJCLBaruVpbViAlVY/VEOAAAECBAgQIJCmgAArzb64AyvNvqiqnAICrHL2tWl2JcBqmlYplAABAgQIECBAoIECAqwG4k9jaQFWmn1RVTkFBFjl7GvT7EqA1TStUigBAgQIECBAgEADBQRYDcQXYKWJr6qWExBgtVzL09qwACutfqiGAAECBAgQIEAgTQEBVpp9cQdWmn1RVTkFBFjl7GvT7EqA1TStUigBAgQIECBAgEADBQRYDcSfxtICrDT7oqpyCgiwytnXptmVAKtpWqVQAgQIECBAgACBBgoIsBqIL8BKE19VLScgwGq5lqe1YQFWWv1QDQECBAgQIECAQJoCAqw0++IOrDT7oqpyCgiwytnXptmVAKtpWqVQAgQIECBAgACBBgoIsBqIP42lBVhp9kVV5RQQYJWzr02zKwFW07RKoQQIECBAgAABAg0UEGA1EF+AlSa+qlpOQIDVci1Pa8MCrLT6oRoCBAgQIECAAIE0BQRYafbFHVhp9kVV5RQQYJWzr02zKwFW07RKoQQIECBAgAABAg0UEGA1EH8aSwuw0uyLqsopIMAqZ1+bZlcCrKZplUIJECBAgAABAgQaKCDAaiC+ACtNfFW1nIAAq+VantaGBVhp9UM1BAgQIECAAAECaQoIsNLsizuw0uyLqsopIMAqZ1+bZlcCrKZplUIJECBAgAABAgQaKCDAaiD+NJYWYKXZF1WVU0CAVc6+Ns2uBFhN0yqFEiBAgAABAgQINFBAgNVAfAFWmviqajkBAVbLtTytDQuw0uqHaggQIECAAAECBNIUEGCl2Rd3YKXZF1WVU0CAVc6+Ns2uBFhN0yqFEiBAgAABAgQINFBAgNVA/GksLcBKsy+qKqeAAKucfW2aXQmwmqZVCiVAgAABAgQIEGiggACrgfgCrDTxVdVyAgKslmt5WhsWYKXVD9UQIECAAAECBAikKSDASrMv7sBKsy+qKqeAAKucfW2aXQmwmqZVCiVAgAABAgQIEGiggACrgfjTWFqAlWZfVFVOAQFWOfvaNLsSYDVNqxRKgAABAgQIECDQQAEBVgPxBVhp4quq5QQEWC3X8rQ2LMBKqx+qIUCAAAECBAgQIEAgv8AFZ3TNP9hIAgQKCQiwCvG5uKiAAKuooOsJECBAgAABAgQIEGiUgACrUfLWbUUBAVYrdj2hPQuwEmqGUggQIECAAAECBAgQqEpAgFUVl8EECgkIsArxubiogACrqKDrCRAgQIAAAQIECBBolIAAq1Hy1m1FAQFWK3Y9oT0LsBJqhlIIECBAgAABAgQIEKhKQIBVFZfBBAoJCLAK8bn46wI33f5gXH/b/fHSy6/H2LFjY5GFF4hNN1gjfrbZutG58wxTgAmwnCECBAgQIECAAAECBJpVQIDVrJ1TdzMKCLCasWuJ1nzoSefHLXf9Ibp26Rwr9F4yunbpEk89Oyo++fSzWGOV3jH85P2iS+fOk1UvwEq0mcoiQIAAAQIECBAgQGC6AgKs6RIZQKDDBARYHUbZ2hNlwVUWYC3eq2eMHHZQ9OwxdwVk9Gefx35HnR1/ePSvsc/Om8fA7TcWYLX2UbF7AgQIECBAgAABAqUREGCVppU20gQCAqwmaFIzlLjpTkfEi/98La4cfkQsv+wSk5X8wUcfxzpbDY6uXbvE/TeeETPN2G3i37sDqxm6q0YCBAgQIECAAAECBNoSEGA5FwTqJyDAqp91aVd64633Yr3+B0avhXrE7VcObXOfg48ZHnfe92icdeK+sfbqKwiwSnsabIwAAQIECBAgQIBA6wgIsFqn13baeAEBVuN70PQV3PvgEzHoyDOj33qrxpDD92hzP5ded2cMHX5V7DagX+y325YCrKbvug0QIECAAAECBAgQICDAcgYI1E9AgFU/69KudMk1d8Qp514de2y3UQzaZYs293nPg4/HvkeeFeuvtXKcdszeAqzSngYbI0CAAAECBAgQINA6AgKs1um1nTZeQIDV+B40fQVnX3RTnHvZzXHgwG1ip/5929zPI0/+PXbef0h8f6Vl4sJTDxZgNX3XbYAAAQIECBAgQIAAAQGWM0CgfgICrPpZl3alU0dcGxdd/ds4dJ8Bse0W67W5zyf/+mJs+/MTY4Xllowrzj5cgFXa02BjBAgQIECAAAECBFpHQIDVOr2208YLCLAa34Omr6CqO7BWXCYuPO1/d2A1/eZtgAABAgQIECBAgAABAgQIEKi5gACr5sTlX+Cy6+6MIcOvyvUOrHXXXCnOOH6f8qPYIQECBAgQIECAAAECBAgQINBhAgKsDqNs3Ynuf/ip2OvQ03P9CuHO/TeMAwZu3bpYdk6AAAECBAgQIECAAAECBAhULSDAqprMBV8XeO/9j+KHm+8bvRbqEbdfObRNoMHHDI8773s0hh21Z/Rduw9EAgQIECBAgAABAgQIECBAgEBuAQFWbioDpyWQvaA9e1H7lcOPiOWXXWKyoR989HGss9XgGDd+fDxw05kx+6zdYRIgQIAAAQIECBAgQIAAAQIEcgsIsHJTGTgtgQcfeToGHnJaLN6rZ4wcdlD07DF3Zfjozz6P/Y8eHg/9+ZkYsPm6cdigbUESIECAAAECBAgQIECAAAECBKoSEGBVxWXwtASGjbgmLr769ujatUussNwS0a1r13jq2VHx8SejY5mlFo1Lzzg0us88I0QCBAgQIECAAAECBAgQIECAQFUCAqyquAyenkD2nqsrbrg7nh/1SowdOy4W6jlfbLh2n9ipf9+YsVvX6V3u7wkQIECAAAECBAgQIECAAAECUwgIsBwKAgQIECBAgAABAgQIECBAgACBpAUEWEm3p5zFvfHWezHi8lvij4/+NbJfMJxj9lljlRWWjj223TiWWGyhcm7arlpeYNy48XH3A4/Fbfc8HE8/Oyo+/OiTmKX7TPHtpRaJ/pusHev94HtTNWrvd+axp56PS665I/7yt5fik9GfxfzzzhXrrLFi7LH9xjHHbLO0fE8ANJ/A+PHjK+9bzN6r+IPvfzfO/eX+bW7Cd6b5eqvijhV44pkX4jd3PBTZPwey/671xRdjYs45Zo3zhh4QSy/Ra4rFfGc61t9sBAgQIFAbAQFWbVzNOhWBv7/4r9hh35Pj09GfxzcW7BGLL9Iz3nrn/Xh+1KvRrVvXOOek/WLV7y3Lj0CpBP7xyptxyAnnxbMvvBxdu3SOZb+1WMw91+yVs5/9WfYZsPl6cdigAVPsu73fmetvuz+OHnZxZb5lv7VozDPXHPHiP16NN995v/IjC78+56joMe+cpXK2mfILXHrdnTF0+FWVjU4twPKdKf85sMOpC4wZ81UcMfTCuO3uh6NTp06VsKrXQvPHDDN0ijff/nccvu+2lfeSTvrxnXGiCBAgQKBZBARYzdKpEtSZvRNrox0OjX+99nYctGf/2HGbDSbu6oE/PRX7HH5mzDLLTHHnr0+J2WbtXoId2wKB/wo889w/Y6f9To6fbbZu7PLTn8Qcs//v7qcn//pi7H7QsBj92Rdx4akHx/dXWmYiW3u/M6++8U702+7Q6NKlc4wYMjhWXn7pypzZ3StnX3xTjLjslvj+isvEhacdrEUEmkbguZdeif57Hhc//sH34v/u/VObAZbvTNO0U6E1Ehh05Jlx74NPxA9X/W7ll58X7jnfNFfynalRI0xLgAABAjUREGDVhNWkbQlkj0/td9TZlTusLhh20BRDJvyK4X67bRm7DegHkUCpBD76z6eTBVeTbm74xTfFOZfeHNtssnYctf/2E/+qvd+Zk868Iq688Z5o67uUhVg/3fO4Sqh25fAjYvlllyiVs82UU+Czz7+MrXY/Oj746ONK0LvFrke1GWD5zpSz/3aVT+D23z0SBx53bqy12vJx1gn7Vu66mt7Hd2Z6Qv6eAAECBFISEGCl1I2S13L4Ly+ovI9hyOF7RL/1Vp1it6Nefj023vHwyu3uN1xwXMk1bI/A/wTuefDx2PfIsyrvwfrVcT+f+Bft/c6s1//AyN5n8rvrTo/555trCuqrfnNvnPCry2P7rdaPQ/b+qVYQSF4gexw2eyz2rBP3jSUWXTD6DjikzQDLdyb5ViqwhgLb7HFsPPviy3HXVcOi5/zz5FrJdyYXk0EECBAgkIiAACuRRrRCGZvvcmTlXVe3Xzk0ei3Uo80t9/nJnpX3Yz1x58jKO7F8CLSCwIT3Ve2w1fpx8CSBUnu+M//5ZHSs2m+vSnCVBVhtfbL3nWy529GVu6+yu7B8CKQsMOEOkezHDo7cf/v45ytvRr/tD20zwPKdSbmTaqulwGtvvhvr//Sg6LPCt+Oi0w/JvZTvTG4qAwkQIEAgAQEBVgJNaJUSVu67R+U9P3+558LKi6zb+my28xHxwj9ei1suOTG+uahfJGyVs9Hq+9zr0NPj/oefipGnHBirr7zcRI72fGf+9vzLsfUex8SKvZeMy886vE3ajz7+NFbbaO+Ya47Z4qGbz2p1fvtPWCD70YHNdz4i5pt3rrhu5DExY7eukf0owkZTCbB8ZxJuptJqKnDnfX+OwcecU3kFQ/9N145zLvlN/OHPf41/f/BR5b2i3/vut2KP7Tae4hcIfWdq2haTEyBAgEAHCwiwOhjUdG0LjBs3PnqvvVPMPFO3eOyOkVNl2n7QSfH40y9U/od39j/AfQiUXeDPTz4XO+3/y1hq8YXjpotOmLjd9n5nHnny77Hz/kOm+gtt2QLZe7CW+9FO0bnzDPH0vReVndj+mlQg+w7suN/Jlfe1XTPi6Mp3JPtMLcDynWnSRiu7QwSywGr4Jb+pPBp+850PRfeZZozVV+ldCX2zH0DI/rtV165dKu/GWrNP78qavjMdQm8SAgQIEKijgACrjtitvNTnX3wZK62/e8w+a/d4+LZzpkqx64GnxMOP/a3ykvfsZe8+BMos8Na771deqP7Bhx/HFcOPiOW+tdjE7bb3O/PgI0/HwENOi3XWXDHOPH7QVPm+u84u8dXYsfHUvRdGl85t3xFZZnt7S18g+7XMsy66sfJLagM2X3diwVMLsHxn0u+pCmsncPJZV8YVN9xdWWCn/n0rP+Ix6f/fftvdD8chJ54X88w1e9x19bCYacZu4TtTu36YmQABAgRqIyDAqo2rWb8mMOGOj/x3YB0WK/ZeiiOB0gpkv6a2w6CTY9S/3ogTDtklNuu75mR7be93xh1YpT0yLbWxp54dFdvtc2KssUrvOOfk/Sfb+9QCLN+ZljoiNvs1gSOHXhQ3/vaBWO17y8X5ww5s02fgIafGg488E2ccv0+su+ZKE+/Grfa/m/nnjONHgAABAo0SEGA1Sr4F181e0P7Jp5/legdW9ijVhMdFWpDKlksu8OFHn1QeG8ze93bgwG0q/7a8rU97vjPZoyJb7HpUrndgzTHbLPHHW4eXXNv2mk0g++dE9mLpL74cE7+5+ITKu9om/UzrHVi+M83WbfV2lED2y7LZL8wetf/2sc0ma7c57cgrbo0zLrghfr7zZrHn9ptUxvjOdFQHzEOAAAEC9RAQYNVD2RoVgezF0tkLpqf3K4TZ/3h59PbzovvMM5IjUDqB9z/8OHYZPKQSXh20Z//YcZsNprrH9nxnRn/2eazcd2CuXyHsvfRicfWIo0tnbEPNLXDBr/8vTh95XfSYd85YaIH5pthM9thT9kua2SPpE37s4/B9t41vL7lIu/454zvT3OdF9f8VOPeym+Psi26KwwYNiAGbr9cmy69vujdOPOPyyoves0cM2/vfzXxnnDoCBAgQaJSAAKtR8i247vGnXxZX3/y7GHL4HtFvvVWnEBj18uux8Y6Hx2K9esZtl53cgkK2XHaB997/qPKC9eyxwSP33z76T+Xfkk9waO93ZuMdDqus8bvrTq8EWV//ZP+WPvu39Vtv/KM4evAOZWe3vyYTGH7xTXHOpTdXVfXFp/8iVllh6fCdqYrN4BIJTHj/4U/W+X4MPXJgmzs75dyr45Jr7ohD9xkQ227x35DLd6ZEh8BWCBAg0AICAqwWaHIqW8xezp69pH1q72cYNuKauPjq22Pn/hvGAQO3TqVsdRDoEIG33/2g8tjgq2+8E8cfvEtsusEa0523vd+Z7BGR7FGR7N+wZ/+m/euf/gOPrfyy24ghg2PNPt+Zbh0GEEhJYFqPEPrOpNQptdRT4Msvx8RaW+xXeTH7rZedHAstMO9ky2c/2rHR9ofGK6+/E9eff2zljsXs4ztTzy5ZiwABAgSKCgiwigq6viqB/nseF8/8/R9TPDr1wJ+eikFHnBmdZpgh7rhyaJt3jVS1kMEEEhJ48+1/x077D4ns/w49co9Yf61VclfXnu/Mvz/4T2zws4Nj3LhxlZBq5eWXrqyXveT67ItviuzX3bJ3zN144fHRqVOn3LUYSCAFgWkFWFl9vjMpdEkNjRC45No74pRzro4lF1s4zjl5v1jw/4dYY8eOi9POuzayv1/pO0vFZWceNll5vjON6JY1CRAgQKA9AgKs9qi5pt0C2d0nA/Y+IbL/gf2NBXvE4ov0jOzOlOzF09n/kP7lYbu3+Xhhuxd0IYEEBLIz/5e/vRTZLz3NP9/c06xo9203ik3WX33imPZ+Z+598IkYfMzwyP6t+7LfWjTmnXuOynu3shAte3n75WcdNvH9QQkQKYFAboHpBVi+M7kpDSyZwLhx4+PQk0fGbXc/HF27dI6VvvOtmG3W7vHX5/4Rb77zfiXQuvRXv5gYbE3Yvu9MyQ6C7RAgQKDEAgKsEjc31a1l4dW5l94c9z38l3jv3x/GrLN0jxV6Lxm7/uwn8d1lvplq2eoi0G6B7N1u2Tve8nwO2funsf1W6082tL3fmWdfeDnOu/zWePzpF+KTT0fHvPPMWXlkcOB2G7vLMU8zjElSYHoBVla070ySrVNUnQRuu+fhuPaW31f+5eCXY76KBeefJ9ZZY6XKf8+aY/ZZ2qzCd6ZOzbEMAQIECBQSEGAV4nMxAQIECBAgQIAAAQIECBAgQIBArQUEWLUWNj8BAgQIECBAgAABAgQIECBAgEAhAQFWIT4XEyBAgAABAgQIECBAgAABAgQI1FpAgFVrYfMTIECAAAECBAgQIECAAAECBAgUEhBgFeJzMQECBAgQIECAAAECBAgQIECAQK0FBFi1FjY/AQIECBAgQIAAAQIECBAgQIBAIQEBViE+FxMgQIAAAQIECBAgQIAAAQIECNRaQIBVa2HzEyBAgAABAgQIECBAgAABAgQIFBIQYBXiczEBAgQIECBAgAABAgQIECBAgECtBQRYtRY2PwECBAgQIECAAAECBAgQIECAQCEBAVYhPhcTIECAAAECBAgQIECAAAECBAjUWkCAVWth8xMgQIAAAQIECBAgQIAAAQIECBQSEGAV4nMxAQIECBAgQIAAAQIEtHRjogAAGZ5JREFUCBAgQIBArQUEWLUWNj8BAgQIECBAgAABAgQIECBAgEAhAQFWIT4XEyBAgAABAgQIECBAgAABAgQI1FpAgFVrYfMTIECAAAECBAgQIECAAAECBAgUEhBgFeJzMQECBAgQIECAAAECBAgQIECAQK0FBFi1FjY/AQIECBAgQIAAAQIECBAgQIBAIQEBViE+FxMgQIAAAQIECBAgQIAAAQIECNRaQIBVa2HzEyBAgAABAgQIECBAgAABAgQIFBIQYBXiczEBAgQIECBAgAABAgQIECBAgECtBQRYtRY2PwECBAgQIECAAAECBAgQIECAQCEBAVYhPhcTIECAAAECBAgQIECAAAECBAjUWkCAVWth8xMgQIAAAQIECBAgQIAAAQIECBQSEGAV4nMxAQIECBAgQIAAAQIECBAgQIBArQUEWLUWNj8BAgQIECBAgAABAgQIECBAgEAhAQFWIT4XEyBAgAABAgQIECBAgAABAgQI1FpAgFVrYfMTIECAAAECBAgQIECAAAECBAgUEhBgFeJzMQECBAgQIECAAAECBAgQIECAQK0FBFi1FjY/AQIECBAgQIAAAQIECBAgQIBAIQEBViE+FxMgQIAAAQIECBAgQIAAAQIECNRaQIBVa2HzEyBAgAABAgQIECBAgAABAgQIFBIQYBXiczEBAgQIECBAgAABAgQIECBAgECtBQRYtRY2PwECBAgQIECAAAECBAgQIECAQCEBAVYhPhcTIECAAAECBAgQIECAAAECBAjUWkCAVWth8xMgQIAAAQIECBAgQIAAAQIECBQSEGAV4nMxAQIECBAg0B6BTz79LM6/8ra458HH4/W33otuXbvENxbsEdtt+ePYdIM12jOlawgQIECAAAECBEosIMAqcXNtjQABAgRaV+DwX14Qv7njoRgx5IBYs0/viRBnXHBDjLzi1jjrhEGx9horNgTo8y++jJ/tdXw8P+rVyvpzzzlbdOrUKf79wX9i6JED4yfrfH+adQ2/+KY459Kbc9Xeb91VY8gRe+QaaxABAgQIECBAgEC6AgKsdHujMgIECBAg0G6BrXY/Jp594eX43XWnx/zzzTVxnr0OPT3uf/ipuOvqYbHQAvO2e/4iF15yzR1xyrlXR/eZZ6wEbCt9Z6nKdO+9/1HMNmv3mLFbVwHWVAT+9drbcdvdf4yd+veN7jPPVKQNriVAgAABAgQINJWAAKup2qVYAgQIECAwfYFx48bH9zbYPWaasVv88dbhk12wzlaD4+NPR8effzti+hPVaMQO+54cjz31fPx003XiiP22q3qVCXdgfXORBeO684+d5vUzzDBDdO3Sueo1Ur3gV+dfX3n08v4bz4h5554j1TLVRYAAAQIECBDocAEBVoeTmpAAAQIECDRW4OVX34qfbPeLWHn5peOSX/1iYjEfffxprLbR3rFi76Xi8rMOa1iRWYj21rvvx9GDd4itN/5R1XVMDLAWXShuueTEqq9v5gs22/mIeOEfrwmwmrmJaidAgAABAgTaJSDAahebiwgQIECAQLoCd93/WOx/9NkxYPN147BB204s9M9PPhc77f/L+Nlm68Th+1Z/51NH7Hj8+PGx+sY/jyxMO+XIPWPDdfpUPW2rBlh/e/7l2HqPYype7sCq+ti4gAABAgQIEGhyAQFWkzdQ+QQIECBA4OsCEwKeYw/cKbbs98OJf3359XfFL8/+dXz9z6sVzF7Cft2t91V+QfCll1+PTz75LGafrXt8e8lFou/afWLjH68enTvPMNm0f/nbS3HD/z0QD/zpqcq7rtr63HrZybF4r57TLac9AdbJZ10ZV9xwd+WXDu/49dBprnH77x6JA487N2aYoVPce+3p0WPeOSeOzwK4/7vnT/GbOx+K5158JT7+ZHTMOcesscJyS8bPNls3Vllh6TbnPvbUS+LaW++L047ZO9Zfa+X40+PPxtU3/y4ylw8+/Dhm6T5TLLn4wrHReqvF5hv+oLL2hM+rb7wTJ55xRTz4yNNTrfuQvX8a22+1/sS//+Njf43rb3sgnv77qIp39hjlfPPMWdn/D77/3coL/Hv2mHu61gYQIECAAAECBFIREGCl0gl1ECBAgACBdgpkvyz43EuvTLz6hVGvVh7R6/3txWOuOWab+OejXn49Xn/rvcn+PAtnskAr72fUv96IvX5xerz25ruVS7KgatbuM8d/PhkdWbiTfXovvVgMP3n/mGeu2SdOe8m1d8SDf/pvAJO9/+qrsWNjicUWinnn+t97nE74xa65QpX2BFjZLx5uvsuRlfWvOPvwSuA0tc+evzi9ErSt2ec7MWLI4InDRn/2eexzxJmV8Cn7ZO8Yy146nwVQ2X6yz879N4wDBm49xdQTAqy9d9osPv30s8g8JsyRhVWjP/ti4jU/Wm2FOPOEQRNDrMeffiHOueQ3MfrzL+LpZ0dVxmWPgXbr2mXiNf03XTvW+8H3Kv/vk868Iq688Z7Kf87mzs7AZ59/Mdkauw3oF/vttmXethtHgAABAgQIEGi4gACr4S1QAAECBAgQKCawy+Ch8acn/huqVPvJc0fShDk/+OjjSgj0znsfxjcXXSgO3qt/fH+lZaJL586R3ZX1+z88GUPPuary99ndWFedc2R0nSRkmTDPahvvHR/9p/6PEG6529Hx9xf/VXnvVvb+rbY+73/4cay1xb4xduy4iXdLTRj388POiN//8clYcIF546j9d4jVvrdsJcDLwqerfnNv/Or86yJ7gf4xB+4YW/Vba7LpJwRYc8w+S2Xv/TdZO3bYev3otdD8lXGZ2dkX31i5Sy37nHDILrFZ3zUnm+PFf74Wm+50ROXPpvYI4cOP/S12PfCUyh1Xh+27XWz849UqQVv2yR7bfPQvz1X6lIVX2R1ZPgQIECBAgACBZhEQYDVLp9RJgAABAgRyCEx4UXt299XV5x418YrsDqlV++0Vyyy1aFw38r/vUar2c/zpl1Uee1tgvrnjxouOjzlmm2WKKbLH3bKQKwt1Bu+xdezy0w2nGNORAdaNFx43zW1k4dqET3ZXUnZ3UlZ3FgC1Fa5ljxlmjxt+fUwWXGUBVhYM3XDBcZUA7+ufCT7ZnWf3XHNqdOvWdeKQCQFW9gc7brNBHLRn/zbr/tlex8dTz46KNVbpHecNPWCyMXkCrLMuujFGXHZLrLPminHm8YOqbbHxBAgQIECAAIFkBQRYybZGYQQIECBAoHqBh/78TOxx8KlTvKj9D4/+NXY/aNg07z6a1mpffjkmVt1o78qdVkftv31ss8naUx1++sjr4oJf/1/lccB7rj2tZgFWHp17rzutErhln+zOpx9usW+MGfNVJdzJQp6vf7KXpGcvS//6C/AHHnJa5R1U2TvFpvbI5T9feTP6bX9oZcqLTj8k+qzw7SkCrOyOrSw8m/TRzklrOP/K2+JX518fPeefpxKCTfrJE2BddPVv49QR18ZSiy8c1448thK4+RAgQIAAAQIEyiAgwCpDF+2BAAECBAj8f4FzLr05sndEnXTobrHJ+qtPdMnuysnuzjn+4J0rLwmv9vPkX1+MbX9+YuWyu68eVnmMbmqfScfefuXQ6LVQj8mGdtQdWHn2MGmAlY0ffMzwuPO+Ryvvi/rVcT+fbIpJA6jrzz+28hhk9skeC+zzkz0jewfWkCP2iH7rrtrm0mO+Ghsr/njXyvjDBg2IAZuvN3HchDuwsmDppotOmGrpt939cBxy4nkx+6zd4+HbzplsXJ4AK3vH2SY7Hhafff5lLL/sErH/7lvF9777rTxUxhAgQIAAAQIEkhYQYCXdHsURIECAAIHqBAYecmo8+Mgz8fVf9Nvr0NPj/oefit9cfEIsudjC1U0aEROCleyOnr/cc+E0r//wo09i9U3+Gw6dP+zAWO17y9UkwMoe47vlkv+Gank/2V1U2d1U2eODD9x0ZiUomvA588Ib4rzLb41vffMbceOFx0/883f//WGstcV+eZeojMte1r7XDptMvGZCgPX1F8N/fdLf3vtIHHT8uTHrLDPHI/937mR/nSfAyi7485PPVeaY8GuPi/XqWQkzs1+HnH++uarah8EECBAgQIAAgVQEBFipdEIdBAgQIECgHQLZe5defvWtiVf+5W8vVR7zyx5f69Sp08Q/f+rZlyp35ayywtIxQ6cZKn8+79xzVO4oyvO59pbfx7GnXVr51b0/fe3OoK9f/8WXY2LFH+9W+ePTj/15/PiH//11vAmfjroDqz0BVvZy9nW2HhxZKDXpy9azX1D88U8Pijfeei9+8fOfxXZb/nhivZPembXoNxaIGSd5t9XU7LbZ+EeTPWY5IcBq686vSefoiAArmy+7Wyx7Ifw1t/w+svqzT/aLhH1/1KfyAvdp3UGX5zwYQ4AAAQIECBCot4AAq97i1iNAgAABAh0osNXux8SzL7zcrhnbes/S1Ca66/7HYv+jz668U6maO7BGnnJgrL5yOndgZfub8I6uFXsvFZefdVhly08880Jst89JlV9UvO/GX032jqq33n0/1tlqcGXc5WcdHiv2XrJq73oHWJMWmL0U/urf/C5+e++f4quxY2OW7jPFJb/6ReWF/j4ECBAgQIAAgWYREGA1S6fUSYAAAQIEpiNw74NPxKAjz5ziBe4THpvLXryevYC9PZ9nnvtn9B94bOXS6b0DK7sLbMDe/33P02+vGBKLLDz/ZEs28g6srJDsjrWfbPeLSk0T3pE1IWBad82V4ozj95ms3uzdVqtsODCyF9lPetdWNY6NDLAm1Pmv196OfQ4/I0b9643ovfRicfWIo6vZgrEECBAgQIAAgYYKCLAaym9xAgQIECDQcQITXuB+3EE7xxY/+d+L2kdecWucccEN7Q5fsgqzF5P/aMv9Ku9VOmK/7eKnm64z1cKzX9HLfk0ve0Qx+8W9r38aHWBl9WQBWxa0HbRX/9h2i/XiB5sNqvxK4fCT9ou1Vlt+ipp3GTw0/vTEs7Hq95aNC4YdVHXTOiLAGvXy67HxjodX1s5+3TH7lcdqP08882Jst8+JlccJH79jZHTL8ThktWsYT4AAAQIECBCohYAAqxaq5iRAgAABAg0Q2PfIs+KeBx+Pa887Jpb91v8eD9vvqLPj7gcei2vOOzqW+9Zi7a5swqN3C8w3d9x08QmTvQB9wqRvvv3v2GSnw+PT0Z/H3jtuGnvtuGmSAdb1t90fRw+7OL6zzDfj5zttFrsfNKwSuGV3ZGWPEX79k/lljtln2FF7Rt+1+1Tl2BEBVhYe/nDzfSvrnjf0gFhjld5V1ZANzl7wvtP+v4zOnWeIJ++6oPJ/fQgQIECAAAECzSAgwGqGLqmRAAECBAjkENjgZwfHG2+/F4/dft5kd9as/9OD4s13/j3Fn+eYcrIh2cvhN9/lyMgeRct+yfDwfbeN7333W5WXxWfvVvrDn/8aJ5xxeeVF6Iv36hnXnHdMdJ95xpoFWP9dY9qPwWVhVFt3GWUBW3bXVban9ddaOe6879HYqX/fOHDgNlNlmRAQZncv7bh139iy3w8rj0dmL4D/4KNP4vU3343scc3nR706xWOIHRFgZYVlvXztzXcr768695f7V0K37JM93pjt85Jr7oh/vPJG9Ft3tVh+2W9O3HtWY3b31ZFDL6z0b+01VoyzThhU7REwngABAgQIECDQMAEBVsPoLUyAAAECBDpOIPvVuZX7DowlFlsobr74xIkTf/zJ6Ph+v71iqcUXjpsu+u97qYp8sjusBh151sQXx3efeaaYY7bulQAnC4OyT7bWOb8cPNVH3DrqEcI8++i37qpT/aXFX5w0Mm69648Tp7nl0pPim4ssONVps/0dMeTCuP13j0wcM+FurSzAm/D5xoI94o5fD51sno4KsG67++E45MTzKnNnQdoCPeap/OLgphusEQft2b/yqGj2yGj2ye6uygKuzp07x/sf/Gdifxbr1TMuPPXgmH++ufIQGkOAAAECBAgQSEJAgJVEGxRBgAABAgSKCUx4cXq/9VaNIYfvMXGyR//yXOy43y9jk/VXj5MO3a3YIv//6uxun9t//+e4+Y6H4h+vvBkffPhxzD5b9/jWEr2i74/6xCYbrN7mY3gTFk8lwHrkyb/HzvsPqZTV+9uLx9XnHpXLJ7vuxt8+EE8+82LlnWBZeDXrLDNHr4Xmj1WWXzr6rbdaJcSb9NNRAVY2Z/ay/ouvuT2eH/VKZC+Y7zHPnLHnDpvEZn3XjHf//WFcd+t98fDjz8a/Xnur8l6v8TE+Zp91lkpN66y5YmzZb62Y0buvcvXaIAIECBAgQCAdAQFWOr1QCQECBAgQIECAAAECBAgQIECAQBsCAizHggABAgQIECBAgAABAgQIECBAIGkBAVbS7VEcAQIECBAgQIAAAQIECBAgQICAAMsZIECAAAECBAgQIECAAAECBAgQSFpAgJV0exRHgAABAgQIECBAgAABAgQIECAgwHIGCBAgQIAAAQIECBAgQIAAAQIEkhYQYCXdHsURIECAAAECBAgQIECAAAECBAgIsJwBAgQIECBAgAABAgQIECBAgACBpAUEWEm3R3EECBAgQIAAAQIECBAgQIAAAQICLGeAAAECBAgQIECAAAECBAgQIEAgaQEBVtLtURwBAgQIECBAgAABAgQIECBAgIAAyxkgQIAAAQIECBAgQIAAAQIECBBIWkCAlXR7FEeAAAECBAgQIECAAAECBAgQICDAcgYIECBAgAABAgQIECBAgAABAgSSFhBgJd0exREgQIAAAQIECBAgQIAAAQIECAiwnAECBAgQIECAAAECBAgQIECAAIGkBQRYSbdHcQQIECBAgAABAgQIECBAgAABAgIsZ4AAAQIECBAgQIAAAQIECBAgQCBpAQFW0u1RHAECBAgQIECAAAECBAgQIECAgADLGSBAgAABAgQIECBAgAABAgQIEEhaQICVdHsUR4AAAQIECBAgQIAAAQIECBAgIMByBggQIECAAAECBAgQIECAAAECBJIWEGAl3R7FESBAgAABAgQIECBAgAABAgQICLCcAQIECBAgQIAAAQIECBAgQIAAgaQFBFhJt0dxBAgQIECAAAECBAgQIECAAAECAixngAABAgQIECBAgAABAgQIECBAIGkBAVbS7VEcAQIECBAgQIAAAQIECBAgQICAAMsZIECAAAECBAgQIECAAAECBAgQSFpAgJV0exRHgAABAgQIECBAgAABAgQIECAgwHIGCBAgQIAAAQIECBAgQIAAAQIEkhYQYCXdHsURIECAAAECBAgQIECAAAECBAgIsJwBAgQIECBAgAABAgQIECBAgACBpAUEWEm3R3EECBAgQIAAAQIECBAgQIAAAQICLGeAAAECBAgQIECAAAECBAgQIEAgaQEBVtLtURwBAgQIECBAgAABAgQIECBAgIAAyxkgQIAAAQIECBAgQIAAAQIECBBIWkCAlXR7FEeAAAECBAgQIECAAAECBAgQICDAcgYIECBAgAABAgQIECBAgAABAgSSFhBgJd0exREgQIAAAQIECBAgQIAAAQIECAiwnAECBAgQIECAAAECBAgQIECAAIGkBQRYSbdHcQQIECBAgAABAgQIECBAgAABAgIsZ4AAAQIECBAgQIAAAQIECBAgQCBpAQFW0u1RHAECBAgQIECAAAECBAgQIECAgADLGSBAgAABAgQIECBAgAABAgQIEEhaQICVdHsUR4AAAQIECBAgQIAAAQIECBAgIMByBggQIECAAAECBAgQIECAAAECBJIWEGAl3R7FESBAgAABAgQIECBAgAABAgQICLCcAQIECBAgQIAAAQIECBAgQIAAgaQFBFhJt0dxBAgQIECAAAECBAgQIECAAAECAixngAABAgQIECBAgAABAgQIECBAIGkBAVbS7VEcAQIECBAgQIAAAQIECBAgQICAAMsZIECAAAECBAgQIECAAAECBAgQSFpAgJV0exRHgAABAgQIECBAgAABAgQIECAgwHIGCBAgQIAAAQIECBAgQIAAAQIEkhYQYCXdHsURIECAAAECBAgQIECAAAECBAgIsJwBAgQIECBAgAABAgQIECBAgACBpAUEWEm3R3EECBAgQIAAAQIECBAgQIAAAQICLGeAAAECBAgQIECAAAECBAgQIEAgaQEBVtLtURwBAgQIECBAgAABAgQIECBAgIAAyxkgQIAAAQIECBAgQIAAAQIECBBIWkCAlXR7FEeAAAECBAgQIECAAAECBAgQICDAcgYIECBAgAABAgQIECBAgAABAgSSFhBgJd0exREgQIAAAQIECBAgQIAAAQIECAiwnAECBAgQIECAAAECBAgQIECAAIGkBQRYSbdHcQQIECBAgAABAgQIECBAgAABAgIsZ4AAAQIECBAgQIAAAQIECBAgQCBpAQFW0u1RHAECBAgQIECAAAECBAgQIECAgADLGSBAgAABAgQIECBAgAABAgQIEEhaQICVdHsUR4AAAQIECBAgQIAAAQIECBAgIMByBggQIECAAAECBAgQIECAAAECBJIWEGAl3R7FESBAgAABAgQIECBAgAABAgQICLCcAQIECBAgQIAAAQIECBAgQIAAgaQFBFhJt0dxBAgQIECAAAECBAgQIECAAAECAixngAABAgQIECBAgAABAgQIECBAIGkBAVbS7VEcAQIECBAgQIAAAQIECBAgQICAAMsZIECAAAECBAgQIECAAAECBAgQSFpAgJV0exRHgAABAgQIECBAgAABAgQIECDw/wCGeBirn2c19wAAAABJRU5ErkJggg==", "text/plain": [ "" ] @@ -5367,25 +5653,13 @@ "source": [ "V = Visualizer(\n", " age_col='age', dob_col='dob', static_covariates=['eye_color'], plot_by_age=True, n_age_buckets=50,\n", - " time_unit='1w', min_sub_to_plot_age_dist=10\n", + " time_unit='1w'\n", ")\n", "figs = ESD.describe(viz_config=V)\n", "for fig in figs:\n", " display(Image(fig.to_image(format=\"png\", width=600, height=350, scale=2))) " ] }, - { - "cell_type": "markdown", - "id": "e489bc1c-5317-4810-960b-11a16bef16d8", - "metadata": {}, - "source": [ - "### Automatic Task Cohort Extraction\n", - "Thanks to great work by Justin Xu, ESGPT will also soon support automatic, config-driven task cohort extraction and zero-shot labeler creation. See https://github.com/justin13601/ESGPTTaskQueryingPublic for more details!\n", - "\n", - "Task configs:\n", - "![Sample config](https://raw.githubusercontent.com/justin13601/ESGPTTaskQueryingPublic/master/TaskSchemaDefinition.svg)" - ] - }, { "cell_type": "markdown", "id": "4242860b-893b-4e52-a19f-3fc2c83e1c33", @@ -5423,7 +5697,7 @@ }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 85, "id": "87b63d60-24ad-4d32-8d0b-9f3da1c5f32c", "metadata": {}, "outputs": [ @@ -5554,7 +5828,7 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 86, "id": "9bb01fb4-071a-4aed-bb62-c827eabf95e4", "metadata": {}, "outputs": [ @@ -5562,116 +5836,101 @@ "name": "stdout", "output_type": "stream", "text": [ - "WARNING: For a conditionally_independent model, measurements_per_dep_graph_level is not used; got []. Setting to None.\n", - "WARNING: For a conditionally_independent model, do_full_block_in_seq_attention is not used; got False. Setting to None.\n", - "WARNING: For a conditionally_independent model, do_full_block_in_dep_graph_attention is not used; got True. Setting to None.\n", - "WARNING: For a conditionally_independent model, dep_graph_window_size is not used; got 2. Setting to None.\n", - "Saving config files...\n", - "Writing to /home/mmd/Projects/EventStreamGPT/sample_data/processed/PT_CI/pretrain/2023-12-13_21-26-22/config.json\n", - "WARNING: For a conditionally_independent model, do_full_block_in_seq_attention is not used; got False. Setting to None.\n", - "WARNING: For a conditionally_independent model, do_full_block_in_dep_graph_attention is not used; got True. Setting to None.\n", - "WARNING: For a conditionally_independent model, dep_graph_window_size is not used; got 2. Setting to None.\n", - "Epoch 0: 100%|██████████| 3/3 [00:01<00:00, 2.51it/s, v_num=0] \n", + "Epoch 0: 100%|██████████| 3/3 [00:02<00:00, 1.43it/s, v_num=0] \n", "Validation: | | 0/? [00:00= 4) from 80 to 80 rows and 80 to 80 subjects.\n", + "2024-05-16 13:22:57.670 | INFO | EventStream.data.pytorch_dataset:__init__:141 - Reading vocabulary\n", + "2024-05-16 13:22:57.671 | INFO | EventStream.data.pytorch_dataset:__init__:144 - Reading splits & patient shards\n", + "2024-05-16 13:22:57.672 | INFO | EventStream.data.pytorch_dataset:__init__:147 - Setting measurement configs\n", + "2024-05-16 13:22:57.705 | INFO | EventStream.data.pytorch_dataset:__init__:150 - Reading patient descriptors\n", + "2024-05-16 13:22:57.713 | INFO | EventStream.data.pytorch_dataset:__init__:154 - Restricting to subjects with at least 4 events\n", + "2024-05-16 13:22:57.713 | INFO | EventStream.data.pytorch_dataset:filter_to_min_seq_len:351 - Filtered data due to sequence length constraint (>= 4) from 10 to 10 rows and 10 to 10 subjects.\n", + "2024-05-16 13:22:57.716 | INFO | EventStream.transformer.lightning_modules.generative_modeling:train:599 - Saving config files...\n", + "2024-05-16 13:22:57.717 | INFO | EventStream.transformer.lightning_modules.generative_modeling:train:604 - Writing to /home/mmd/Projects/EventStreamGPT/sample_data/processed/PT_CI/pretrain/2024-05-16_13-22-57/config.json\n", + "2024-05-16 13:22:57.720 | WARNING | EventStream.transformer.config:__init__:636 - For a conditionally_independent model, do_full_block_in_seq_attention is not used; got False. Setting to None.\n", + "2024-05-16 13:22:57.720 | WARNING | EventStream.transformer.config:__init__:643 - For a conditionally_independent model, do_full_block_in_dep_graph_attention is not used; got True. Setting to None.\n", + "2024-05-16 13:22:57.720 | WARNING | EventStream.transformer.config:__init__:656 - For a conditionally_independent model, dep_graph_window_size is not used; got 2. Setting to None.\n", "You have turned on `Trainer(detect_anomaly=True)`. This will significantly slow down compute speed and is recommended only for model debugging.\n", "GPU available: False, used: False\n", "TPU available: False, using: 0 TPU cores\n", "IPU available: False, using: 0 IPUs\n", "HPU available: False, using: 0 HPUs\n", - "/home/mmd/mambaforge/envs/ESGPT_pl_0.18/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py:67: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `lightning.pytorch` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default\n", - "Missing logger folder: /home/mmd/Projects/EventStreamGPT/sample_data/processed/PT_CI/pretrain/2023-12-13_21-26-22/model_checkpoints/lightning_logs\n", + "/home/mmd/mambaforge/envs/ESGPT_polars_0p20/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py:75: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `lightning.pytorch` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default\n", + "Missing logger folder: /home/mmd/Projects/EventStreamGPT/sample_data/processed/PT_CI/pretrain/2024-05-16_13-22-57/model_checkpoints/lightning_logs\n", "\n", " | Name | Type | Params\n", "-------------------------------------------------------------------\n", "0 | tte_metrics | ModuleDict | 0 \n", "1 | metrics | ModuleDict | 0 \n", - "2 | model | CIPPTForGenerativeSequenceModeling | 24.0 K\n", + "2 | model | CIPPTForGenerativeSequenceModeling | 24.4 K\n", "-------------------------------------------------------------------\n", - "24.0 K Trainable params\n", + "24.3 K Trainable params\n", "16 Non-trainable params\n", - "24.0 K Total params\n", - "0.096 Total estimated model params size (MB)\n", - "/home/mmd/mambaforge/envs/ESGPT_pl_0.18/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:441: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=7` in the `DataLoader` to improve performance.\n", - "/home/mmd/mambaforge/envs/ESGPT_pl_0.18/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:441: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=7` in the `DataLoader` to improve performance.\n", + "24.4 K Total params\n", + "0.097 Total estimated model params size (MB)\n", + "/home/mmd/mambaforge/envs/ESGPT_polars_0p20/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:441: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=7` in the `DataLoader` to improve performance.\n", + "/home/mmd/mambaforge/envs/ESGPT_polars_0p20/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:441: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=7` in the `DataLoader` to improve performance.\n", "`Trainer.fit` stopped: `max_epochs=2` reached.\n", - "Removed shared tensor {'encoder.input_layer.time_embedding_layer.cos_div_term'} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading\n", - "/home/mmd/mambaforge/envs/ESGPT_pl_0.18/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:441: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=7` in the `DataLoader` to improve performance.\n", - "/home/mmd/mambaforge/envs/ESGPT_pl_0.18/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:441: The 'test_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=7` in the `DataLoader` to improve performance.\n", + "2024-05-16 13:23:03.817 | WARNING | EventStream.transformer.config:__init__:636 - For a conditionally_independent model, do_full_block_in_seq_attention is not used; got False. Setting to None.\n", + "2024-05-16 13:23:03.817 | WARNING | EventStream.transformer.config:__init__:643 - For a conditionally_independent model, do_full_block_in_dep_graph_attention is not used; got True. Setting to None.\n", + "2024-05-16 13:23:03.817 | WARNING | EventStream.transformer.config:__init__:656 - For a conditionally_independent model, dep_graph_window_size is not used; got 2. Setting to None.\n", + "2024-05-16 13:23:03.826 | INFO | EventStream.data.pytorch_dataset:__init__:141 - Reading vocabulary\n", + "2024-05-16 13:23:03.826 | INFO | EventStream.data.pytorch_dataset:__init__:144 - Reading splits & patient shards\n", + "2024-05-16 13:23:03.827 | INFO | EventStream.data.pytorch_dataset:__init__:147 - Setting measurement configs\n", + "2024-05-16 13:23:03.838 | INFO | EventStream.data.pytorch_dataset:__init__:150 - Reading patient descriptors\n", + "2024-05-16 13:23:03.842 | INFO | EventStream.data.pytorch_dataset:__init__:154 - Restricting to subjects with at least 4 events\n", + "2024-05-16 13:23:03.842 | INFO | EventStream.data.pytorch_dataset:filter_to_min_seq_len:351 - Filtered data due to sequence length constraint (>= 4) from 10 to 10 rows and 10 to 10 subjects.\n", + "/home/mmd/mambaforge/envs/ESGPT_polars_0p20/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:441: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=7` in the `DataLoader` to improve performance.\n", + "/home/mmd/mambaforge/envs/ESGPT_polars_0p20/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:441: The 'test_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=7` in the `DataLoader` to improve performance.\n", + "2024-05-16 13:23:04.377 | INFO | EventStream.transformer.lightning_modules.generative_modeling:train:708 - Saving final metrics...\n", "\n" ] } @@ -5702,14 +5961,6 @@ "source": [ "We can see that the model ran successfully, though of course on this synthetic data it does not learn any final validation metrics that indicate better than chance performance. With this, however, you have seen how to structure your own pre-training configuration file to run pre-training models yourself! Check back soon for more details on this process and for examples of other modeling tasks ESGPT supports, such as fine-tuning, hyperparameter tuning, and generation or zero-shot inference!" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "fda8913d-cf38-4eb8-8909-375eb8094064", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -5728,7 +5979,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.11.8" } }, "nbformat": 4, diff --git a/sample_data/generate_synthetic_data.py b/sample_data/generate_synthetic_data.py index 0b24b755..f951e018 100755 --- a/sample_data/generate_synthetic_data.py +++ b/sample_data/generate_synthetic_data.py @@ -1,12 +1,14 @@ #!/usr/bin/env python """Synthetic Data Generation -This notebook generates some simple synthetic data for us to use to demonstrate the ESGPT pipeline. We'll generate a few files: +This file generates some simple synthetic data for us to use to demonstrate the ESGPT pipeline. We'll generate +a few files: 1. ``subjects.csv``, which contains static data about each subject. 2. ``admission_vitals.csv``, which contains records of admissions, transfers, and vitals signs. 3. ``lab_tests.csv``, which contains records of lab test measurements. -This is all synthetic data designed solely for demonstrating this pipeline. It is not real data, derived from real data, or designed to mimic real data in any way other than plausible file structure. +This is all synthetic data designed solely for demonstrating this pipeline. It is not real data, derived from +real data, or designed to mimic real data in any way other than plausible file structure. """ import rootutils @@ -32,7 +34,7 @@ class GenerateConfig: seed: The random seed to use. out_dir: Where to store the synthetic data. """ - + n_subjects: int = 100 seed: int = 1 out_dir: str = "./sample_data/raw" @@ -44,10 +46,10 @@ def make_subjects_df(cfg: GenerateConfig) -> pl.DataFrame: BASE_BIRTH_DATE = datetime(1980, 1, 1) EYE_COLORS = ["BROWN", "BLUE", "HAZEL", "GREEN", "OTHER"] EYE_COLOR_P = [0.45, 0.27, 0.18, 0.09, 0.01] - + def yrs_to_dob(yrs: np.ndarray) -> list[str]: return [(BASE_BIRTH_DATE + timedelta(days=365 * x)).strftime("%m/%d/%Y") for x in yrs] - + size = (cfg.n_subjects,) subject_data = pl.DataFrame( { @@ -57,15 +59,15 @@ def yrs_to_dob(yrs: np.ndarray) -> list[str]: "height": list(np.random.uniform(low=152.4, high=182.88, size=size)), } ).sample(fraction=1, with_replacement=False, shuffle=True, seed=1) - + assert len(subject_data["MRN"].unique()) == cfg.n_subjects - + return subject_data def make_admissions_vitals_df(cfg: GenerateConfig, subject_data: pl.DataFrame) -> tuple[pl.DataFrame, dict[int, list[tuple[datetime, datetime]]]]: random.seed(cfg.seed) np.random.seed(cfg.seed) - + admit_vitals_data = { "MRN": [], "admit_date": [], @@ -75,34 +77,34 @@ def make_admissions_vitals_df(cfg: GenerateConfig, subject_data: pl.DataFrame) - "HR": [], "temp": [], } - + BASE_ADMIT_DATE = datetime(2010, 1, 1) - + hrs = 60 days = 24 * hrs months = 30 * days - + size = (cfg.n_subjects,) n_admissions_L = np.random.randint(low=1, high=4, size=size) admit_depts_L = np.random.choice(["PULMONARY", "CARDIAC", "ORTHOPEDIC"], size=size, replace=True) - + admissions_by_subject = {} - + for MRN, n_admissions, dept in zip(subject_data["MRN"], n_admissions_L, admit_depts_L): admit_gaps = np.random.uniform(low=1 * days, high=6 * months, size=(n_admissions,)) admit_lens = np.random.uniform(low=12 * hrs, high=14 * days, size=(n_admissions,)) - + running_end = BASE_ADMIT_DATE admissions_by_subject[MRN] = [] - + for gap, L in zip(admit_gaps, admit_lens): running_start = running_end + timedelta(minutes=gap) running_end = running_start + timedelta(minutes=L) - + admissions_by_subject[MRN].append((running_start, running_end)) - + vitals_time = running_start - + running_HR = np.random.uniform(low=60, high=180) running_temp = np.random.uniform(low=95, high=101) while vitals_time < running_end: @@ -111,25 +113,25 @@ def make_admissions_vitals_df(cfg: GenerateConfig, subject_data: pl.DataFrame) - admit_vitals_data["disch_date"].append(running_end.strftime("%m/%d/%Y, %H:%M:%S")) admit_vitals_data["department"].append(dept) admit_vitals_data["vitals_date"].append(vitals_time.strftime("%m/%d/%Y, %H:%M:%S")) - + running_HR += np.random.uniform(low=-10, high=10) if running_HR < 30: running_HR = 30 if running_HR > 300: running_HR = 300 - + running_temp += np.random.uniform(low=-0.4, high=0.4) if running_temp < 95: running_temp = 95 if running_temp > 104: running_temp = 104 - + admit_vitals_data["HR"].append(round(running_HR, 1)) admit_vitals_data["temp"].append(round(running_temp, 1)) - + if 7 < vitals_time.hour < 21: vitals_gap = 30 + np.random.uniform(low=-30, high=30) else: vitals_gap = 3 * hrs + np.random.uniform(low=-30, high=30) - + vitals_time += timedelta(minutes=vitals_gap) - + return pl.DataFrame(admit_vitals_data).sample( fraction=1, with_replacement=False, shuffle=True, seed=1 ), admissions_by_subject @@ -137,20 +139,20 @@ def make_admissions_vitals_df(cfg: GenerateConfig, subject_data: pl.DataFrame) - def make_labs_df(cfg: GenerateConfig, admissions_by_subject: dict[int, list[tuple[datetime, datetime]]]) -> pl.DataFrame: random.seed(cfg.seed) np.random.seed(cfg.seed) - + labs_data = { "MRN": [], "timestamp": [], "lab_name": [], "lab_value": [], } - + def lab_delta_fn(running_vals: dict[str, float], lab_to_meas: str) -> float: do_outlier = np.random.uniform() < 0.0001 - + if lab_to_meas not in ("GCS", "SOFA") and do_outlier: return 1e6 - + old_val = running_vals[lab_to_meas] if lab_to_meas == "SOFA": delta = np.random.randint(low=-2, high=2) @@ -178,18 +180,18 @@ def lab_delta_fn(running_vals: dict[str, float], lab_to_meas: str) -> float: new_val = old_val + delta if new_val < 0: new_val = 0 - + running_vals[lab_to_meas] = new_val return round(new_val, 2) - - + + hrs = 60 days = 24 * hrs months = 30 * days - + for MRN, admissions in admissions_by_subject.items(): lab_ps = np.random.dirichlet(alpha=[0.1 for _ in range(5)]) - + base_lab_gaps = { "potassium": np.random.uniform(low=1 * hrs, high=48 * hrs), "creatinine": np.random.uniform(low=1 * hrs, high=48 * hrs), @@ -197,7 +199,7 @@ def lab_delta_fn(running_vals: dict[str, float], lab_to_meas: str) -> float: "GCS": np.random.uniform(low=1 * hrs, high=48 * hrs), "SpO2": np.random.uniform(low=15, high=1 * hrs), } - + for st, end in admissions: running_lab_values = { "potassium": np.random.uniform(low=3, high=6), @@ -206,25 +208,25 @@ def lab_delta_fn(running_vals: dict[str, float], lab_to_meas: str) -> float: "GCS": np.random.randint(low=1, high=15), "SpO2": np.random.randint(low=70, high=100), } - + for lab in base_lab_gaps.keys(): gap = base_lab_gaps[lab] labs_time = st + timedelta(minutes=gap + np.random.uniform(low=-30, high=30)) - + while labs_time < end: labs_data["MRN"].append(MRN) labs_data["timestamp"].append(labs_time.strftime("%H:%M:%S-%Y-%m-%d")) labs_data["lab_name"].append(lab) - + labs_data["lab_value"].append(lab_delta_fn(running_lab_values, lab)) - + if 7 < labs_time.hour < 21: labs_gap = gap + np.random.uniform(low=-30, high=30) else: labs_gap = min(2 * gap, 12 * hrs) + np.random.uniform(low=-30, high=30) - + labs_time += timedelta(minutes=labs_gap) - + return pl.DataFrame(labs_data).sample(fraction=1, with_replacement=False, shuffle=True, seed=1) def make_medications_data( @@ -232,7 +234,7 @@ def make_medications_data( ) -> pl.DataFrame: random.seed(cfg.seed) np.random.seed(cfg.seed) - + medications_data = { "MRN": [], "timestamp": [], @@ -242,53 +244,53 @@ def make_medications_data( "duration": [], "generic_name": [], } - + hrs = 60 days = 24 * hrs months = 30 * days - + med_options = pl.DataFrame({ 'name': ['Motrin', 'Advil', 'Tylenol', 'Benadryl', 'motrin'], 'generic': ['Ibuprofen', 'Ibuprofen', 'Acetaminophen', 'Diphenydramine', 'Ibuprofen'], 'dose_range': [(400, 800), (400, 800), (325, 625), (25, 100), (400, 800)], 'frequency': [(1, 3), (1, 3), (1, 5), (1, 2), (1, 3)], - 'duration': [(1, 10), (1, 10), (1, 3), (1, 21), (3, 10)], + 'duration': [(1, 10), (1, 10), (1, 3), (1, 21), (3, 10)], }) - + for MRN, admissions in admissions_by_subject.items(): medication_ps = np.random.dirichlet(alpha=[0.1 for _ in range(len(med_options))]) - + for st, end in admissions: n_meds_taken = np.random.choice(5, 1, p=[0.4, 0.4, 0.1, 0.075, 0.025]) meds_taken = np.random.choice(med_options['name'].to_list(), n_meds_taken, p=medication_ps) - + for medication in meds_taken: med_record = med_options.filter(pl.col('name') == medication).to_dict() - + gap = np.random.uniform(low=2*days, high=14*days) medications_time = st + timedelta(minutes=gap + np.random.uniform(low=-30, high=30)) - + while medications_time < end: medications_data["MRN"].append(MRN) medications_data["timestamp"].append(medications_time.strftime("%H:%M:%S-%Y-%m-%d")) medications_data["name"].append(medication) medications_data["generic_name"].append(med_record['generic'][0]) - + dose = round((np.random.uniform(*med_record['dose_range'][0])/100))*100 duration = np.random.randint(*med_record['duration'][0]) frequency = np.random.randint(*med_record['frequency'][0]) - + medications_data["dose"].append(dose) medications_data["frequency"].append(f"{frequency}x/day") medications_data["duration"].append(f"{duration} days") - + end_time = medications_time + timedelta(days=duration) new_gap = np.random.uniform(low=2*days, high=14*days) - + medications_time = end_time + timedelta(minutes=new_gap) - + return pl.DataFrame(medications_data).sample(fraction=1, with_replacement=False, shuffle=True, seed=1) - + @hydra.main(version_base=None, config_name="generate_config") def main(cfg: GenerateConfig): n_subjects = cfg.n_subjects diff --git a/sample_data/pretrain_NA.yaml b/sample_data/pretrain_NA.yaml index 9b2cf411..a4074e66 100644 --- a/sample_data/pretrain_NA.yaml +++ b/sample_data/pretrain_NA.yaml @@ -30,7 +30,7 @@ config: intermediate_size: 256 measurements_per_dep_graph_level: - ["age"] - - ["event_type"] + - ["event_type", "medication"] - ["department", "HR", "temp", ["lab_name", "categorical_only"]] - [["lab_name", "numerical_only"]] optimization_config: diff --git a/scripts/build_dataset.py b/scripts/build_dataset.py index 9e59e6f1..ea165ab4 100755 --- a/scripts/build_dataset.py +++ b/scripts/build_dataset.py @@ -15,6 +15,7 @@ import hydra import inflect +from loguru import logger from omegaconf import DictConfig, OmegaConf from EventStream.data.config import ( @@ -30,6 +31,7 @@ InputDFType, TemporalityType, ) +from EventStream.logger import hydra_loguru_init inflect = inflect.engine() @@ -49,12 +51,16 @@ def add_to_container(key: str, val: Any, cont: dict[str, Any]): ValueError: If `key` is in `cont` with value not equal to `val`. Examples: + >>> import sys + >>> from loguru import logger + >>> logger.remove() + >>> _ = logger.add(sys.stdout, format="{message}") >>> cont = {'foo': "bar"} >>> add_to_container('biz', 3, cont) >>> cont {'foo': 'bar', 'biz': 3} >>> add_to_container('biz', 3, cont) - WARNING: biz is specified twice with value 3. + biz is specified twice with value 3. >>> cont {'foo': 'bar', 'biz': 3} >>> add_to_container('foo', 3, cont) @@ -65,7 +71,7 @@ def add_to_container(key: str, val: Any, cont: dict[str, Any]): if key in cont: if cont[key] == val: - print(f"WARNING: {key} is specified twice with value {val}.") + logger.warning(f"{key} is specified twice with value {val}.") else: raise ValueError(f"{key} is specified twice ({val} v. {cont[key]})") else: @@ -74,6 +80,8 @@ def add_to_container(key: str, val: Any, cont: dict[str, Any]): @hydra.main(version_base=None, config_path="../configs", config_name="dataset_base") def main(cfg: DictConfig): + hydra_loguru_init() + cfg = hydra.utils.instantiate(cfg, _convert_="all") cfg_fp = Path(cfg["save_dir"]) / "hydra_config.yaml" @@ -354,7 +362,7 @@ def build_schema( config_kwargs = {k: v for k, v in cfg.items() if k in valid_config_kwargs} if extra_kwargs: - print(f"Omitting {extra_kwargs} from config!") + logger.info(f"Omitting {extra_kwargs} from config!") config = DatasetConfig(measurement_configs=measurement_configs, **config_kwargs) diff --git a/scripts/convert_to_ESDS.py b/scripts/convert_to_ESDS.py new file mode 100755 index 00000000..39578853 --- /dev/null +++ b/scripts/convert_to_ESDS.py @@ -0,0 +1,76 @@ +#!/usr/bin/env python +"""Builds a dataset given a hydra config file.""" + +try: + import stackprinter + + stackprinter.set_excepthook(style="darkbg2") +except ImportError: + pass # no need to fail because of missing dev dependency + +import math +import shutil +from pathlib import Path + +import hydra +import numpy as np +import pyarrow.parquet +from loguru import logger +from tqdm.auto import tqdm + +from EventStream.data.dataset_polars import Dataset +from EventStream.logger import hydra_loguru_init +from EventStream.utils import hydra_dataclass + + +@hydra_dataclass +class ConversionConfig: + dataset_dir: str | Path + ESDS_save_dir: str | Path + do_overwrite: bool = False + ESDS_chunk_size: int = 20000 + + def __post_init__(self): + if type(self.dataset_dir) is str: + self.dataset_dir = Path(self.dataset_dir) + if type(self.ESDS_save_dir) is str: + self.ESDS_save_dir = Path(self.ESDS_save_dir) + + +@hydra.main(version_base=None, config_name="conversion_config") +def main(cfg: ConversionConfig): + hydra_loguru_init() + + if type(cfg) is not ConversionConfig: + cfg = hydra.utils.instantiate(cfg, _convert_="object") + + out_files = list(cfg.ESDS_save_dir.glob("*.parquet")) + if len(out_files) > 0 and not cfg.do_overwrite: + raise FileExistsError( + f"cfg.do_overwrite={cfg.do_overwrite} but found extant files at {cfg.ESDS_save_dir}" + ) + elif cfg.do_overwrite and cfg.ESDS_save_dir.is_dir(): + logger.info(f"Overwriting {cfg.ESDS_save_dir}") + shutil.rmtree(cfg.ESDS_save_dir) + + cfg.ESDS_save_dir.mkdir(parents=True, exist_ok=True) + + logger.info(f"Loading dataset from {cfg.dataset_dir}") + ESGPT_dataset = Dataset.load(cfg.dataset_dir) + + for sp, subjs in tqdm(list(ESGPT_dataset.split_subjects.items())): + n_chunks = int(math.ceil(len(subjs) / cfg.ESDS_chunk_size)) + logger.info(f"Splitting {sp} into {n_chunks} chunks") + chunks = np.array_split(list(subjs), n_chunks) + rng = tqdm(enumerate(chunks), total=len(chunks), leave=False, desc=f"Saving {sp}") + sp_dir = cfg.ESDS_save_dir / sp + sp_dir.mkdir(exist_ok=True, parents=False) + + for i, subjs_chunk in rng: + df = ESGPT_dataset.build_ESDS_representation(do_sort_outputs=True, subject_ids=list(subjs_chunk)) + arr_table = df.to_arrow().cast(ESGPT_dataset.ESDS_schema) + pyarrow.parquet.write_table(arr_table, sp_dir / f"{i}.parquet") + + +if __name__ == "__main__": + main() diff --git a/scripts/finetune.py b/scripts/finetune.py index 7aa1cca5..aa747cb5 100755 --- a/scripts/finetune.py +++ b/scripts/finetune.py @@ -15,6 +15,7 @@ import torch from omegaconf import OmegaConf +from EventStream.logger import hydra_loguru_init from EventStream.transformer.lightning_modules.fine_tuning import FinetuneConfig, train torch.set_float32_matmul_precision("high") @@ -22,6 +23,7 @@ @hydra.main(version_base=None, config_name="finetune_config") def main(cfg: FinetuneConfig): + hydra_loguru_init() if type(cfg) is not FinetuneConfig: cfg = hydra.utils.instantiate(cfg, _convert_="object") diff --git a/scripts/generate_trajectories.py b/scripts/generate_trajectories.py deleted file mode 100755 index 6b2729e3..00000000 --- a/scripts/generate_trajectories.py +++ /dev/null @@ -1,43 +0,0 @@ -#!/usr/bin/env python -"""Fine-tunes a model on a user-specified downstream task.""" - -try: - import stackprinter - - stackprinter.set_excepthook(style="darkbg2") -except ImportError: - pass # no need to fail because of missing dev dependency - -import copy -import os - -import hydra -import torch -from omegaconf import OmegaConf - -from EventStream.evaluation.general_generative_evaluation import ( - GenerateConfig, - generate_trajectories, -) - -torch.set_float32_matmul_precision("high") - - -@hydra.main(version_base=None, config_name="generate_config") -def main(cfg: GenerateConfig): - if type(cfg) is not GenerateConfig: - cfg = hydra.utils.instantiate(cfg, _convert_="object") - - if os.environ.get("LOCAL_RANK", "0") == "0": - cfg_fp = cfg.save_dir / "generate_config.yaml" - cfg_fp.parent.mkdir(exist_ok=True, parents=True) - - cfg_dict = copy.deepcopy(cfg) - cfg_dict.config = cfg_dict.config.to_dict() - OmegaConf.save(cfg_dict, cfg_fp) - - return generate_trajectories(cfg) - - -if __name__ == "__main__": - main() diff --git a/scripts/get_embeddings.py b/scripts/get_embeddings.py index 3f17fedf..fad912ce 100755 --- a/scripts/get_embeddings.py +++ b/scripts/get_embeddings.py @@ -11,6 +11,7 @@ import hydra import torch +from EventStream.logger import hydra_loguru_init from EventStream.transformer.lightning_modules.embedding import ( FinetuneConfig, get_embeddings, @@ -21,6 +22,7 @@ @hydra.main(version_base=None, config_name="finetune_config") def main(cfg: FinetuneConfig): + hydra_loguru_init() if type(cfg) is not FinetuneConfig: cfg = hydra.utils.instantiate(cfg, _convert_="object") return get_embeddings(cfg) diff --git a/scripts/launch_finetuning_wandb_hp_sweep.py b/scripts/launch_finetuning_wandb_hp_sweep.py index 8e4b58c5..9362b87c 100755 --- a/scripts/launch_finetuning_wandb_hp_sweep.py +++ b/scripts/launch_finetuning_wandb_hp_sweep.py @@ -15,6 +15,8 @@ import wandb from omegaconf import DictConfig +from EventStream.logger import hydra_loguru_init + # This is a (non-exhaustive) set of weights and biases sweep parameter keywords, which is used to indicate # when a configuration dictionary contains actual parameter choices, rather than further nested parameter # groups. @@ -73,6 +75,7 @@ def collapse_cfg(k: str, v: dict[str, Any]) -> dict[str, Any]: @hydra.main(version_base=None, config_path="../configs", config_name="finetuning_hyperparameter_sweep_base") def main(cfg: DictConfig): + hydra_loguru_init() cfg = hydra.utils.instantiate(cfg, _convert_="all") cfg["command"] = [ "${env}", diff --git a/scripts/launch_from_scratch_supervised_wandb_hp_sweep.py b/scripts/launch_from_scratch_supervised_wandb_hp_sweep.py index 10d1be2a..2aea5216 100755 --- a/scripts/launch_from_scratch_supervised_wandb_hp_sweep.py +++ b/scripts/launch_from_scratch_supervised_wandb_hp_sweep.py @@ -15,6 +15,8 @@ import wandb from omegaconf import DictConfig +from EventStream.logger import hydra_loguru_init + # This is a (non-exhaustive) set of weights and biases sweep parameter keywords, which is used to indicate # when a configuration dictionary contains actual parameter choices, rather than further nested parameter # groups. @@ -77,6 +79,7 @@ def collapse_cfg(k: str, v: dict[str, Any]) -> dict[str, Any]: config_name="from_scratch_supervised_hyperparameter_sweep_base", ) def main(cfg: DictConfig): + hydra_loguru_init() cfg = hydra.utils.instantiate(cfg, _convert_="all") cfg["command"] = [ "${env}", diff --git a/scripts/launch_pretraining_wandb_hp_sweep.py b/scripts/launch_pretraining_wandb_hp_sweep.py index e3b7949a..13a7ebd0 100755 --- a/scripts/launch_pretraining_wandb_hp_sweep.py +++ b/scripts/launch_pretraining_wandb_hp_sweep.py @@ -15,6 +15,8 @@ import wandb from omegaconf import DictConfig +from EventStream.logger import hydra_loguru_init + # This is a (non-exhaustive) set of weights and biases sweep parameter keywords, which is used to indicate # when a configuration dictionary contains actual parameter choices, rather than further nested parameter # groups. @@ -75,6 +77,7 @@ def collapse_cfg(k: str, v: dict[str, Any]) -> dict[str, Any]: @hydra.main(version_base=None, config_path="../configs", config_name="pretraining_hyperparameter_sweep_base") def main(cfg: DictConfig): + hydra_loguru_init() cfg = hydra.utils.instantiate(cfg, _convert_="all") cfg["command"] = [ "${env}", diff --git a/scripts/launch_sklearn_baseline_supervised_wandb_hp_sweep.py b/scripts/launch_sklearn_baseline_supervised_wandb_hp_sweep.py index dc0f0d8f..459557c0 100755 --- a/scripts/launch_sklearn_baseline_supervised_wandb_hp_sweep.py +++ b/scripts/launch_sklearn_baseline_supervised_wandb_hp_sweep.py @@ -15,6 +15,8 @@ import wandb from omegaconf import DictConfig +from EventStream.logger import hydra_loguru_init + # This is a (non-exhaustive) set of weights and biases sweep parameter keywords, which is used to indicate # when a configuration dictionary contains actual parameter choices, rather than further nested parameter # groups. @@ -77,6 +79,7 @@ def collapse_cfg(k: str, v: dict[str, Any]) -> dict[str, Any]: config_name="sklearn_baseline_hyperparameter_sweep_base", ) def main(cfg: DictConfig): + hydra_loguru_init() cfg = hydra.utils.instantiate(cfg, _convert_="all") cfg["command"] = [ "${env}", diff --git a/scripts/prepare_pretrain_subsets.py b/scripts/prepare_pretrain_subsets.py index 4885c527..019d379e 100755 --- a/scripts/prepare_pretrain_subsets.py +++ b/scripts/prepare_pretrain_subsets.py @@ -21,13 +21,16 @@ from pathlib import Path import hydra +from loguru import logger from omegaconf import DictConfig, OmegaConf from EventStream.data.config import SeqPaddingSide, SubsequenceSamplingStrategy +from EventStream.logger import hydra_loguru_init @hydra.main(version_base=None, config_path="../configs", config_name="pretrain_subsets_base") def main(cfg: DictConfig): + hydra_loguru_init() cfg = hydra.utils.instantiate(cfg, _convert_="all") # Validation @@ -57,7 +60,7 @@ def main(cfg: DictConfig): experiment_dir = cfg["experiment_dir"] if experiment_dir is None: experiment_dir = initial_config.experiment_dir - print(f"Setting experiment dir to {experiment_dir}!") + logger.info(f"Setting experiment dir to {experiment_dir}!") experiment_dir = Path(experiment_dir) @@ -249,7 +252,7 @@ def main(cfg: DictConfig): commands_path = runs_dir / f"{key}_commands.txt" with open(commands_path, "w") as f: f.write("\n".join(value)) - print(f"{key} Commands written to {commands_path}!") + logger.info(f"{key} Commands written to {commands_path}!") if __name__ == "__main__": diff --git a/scripts/pretrain.py b/scripts/pretrain.py index 25085af4..242432c0 100755 --- a/scripts/pretrain.py +++ b/scripts/pretrain.py @@ -16,6 +16,7 @@ import torch from omegaconf import OmegaConf +from EventStream.logger import hydra_loguru_init from EventStream.transformer.lightning_modules.generative_modeling import ( PretrainConfig, train, @@ -26,6 +27,7 @@ @hydra.main(version_base=None, config_name="pretrain_config") def main(cfg: PretrainConfig): + hydra_loguru_init() if type(cfg) is not PretrainConfig: cfg = hydra.utils.instantiate(cfg, _convert_="object") # TODO(mmd): This isn't the right return value for hyperparameter sweeps. diff --git a/scripts/sklearn_baseline.py b/scripts/sklearn_baseline.py index 6cc2fb25..122b0dbe 100755 --- a/scripts/sklearn_baseline.py +++ b/scripts/sklearn_baseline.py @@ -12,10 +12,12 @@ import hydra from EventStream.baseline.FT_task_baseline import SklearnConfig, wandb_train_sklearn +from EventStream.logger import hydra_loguru_init @hydra.main(version_base=None, config_name="sklearn_config") def main(cfg: SklearnConfig): + hydra_loguru_init() if type(cfg) is not SklearnConfig: cfg = hydra.utils.instantiate(cfg, _convert_="object") diff --git a/scripts/zeroshot.py b/scripts/zeroshot.py index 6c6b5219..624cd33e 100755 --- a/scripts/zeroshot.py +++ b/scripts/zeroshot.py @@ -12,6 +12,7 @@ import hydra import torch +from EventStream.logger import hydra_loguru_init from EventStream.transformer.lightning_modules.zero_shot_evaluator import ( FinetuneConfig, zero_shot_evaluation, @@ -22,6 +23,7 @@ @hydra.main(version_base=None, config_name="finetune_config") def main(cfg: FinetuneConfig): + hydra_loguru_init() if type(cfg) is not FinetuneConfig: cfg = hydra.utils.instantiate(cfg, _convert_="object") return zero_shot_evaluation(cfg) diff --git a/setup.py b/setup.py index cbab7959..801e3017 100644 --- a/setup.py +++ b/setup.py @@ -24,6 +24,6 @@ "scripts/pretrain.py", "scripts/finetune.py", "scripts/get_embeddings.py", - "scripts/launch_wandb_hp_sweep.py", + "scripts/launch_pretraining_wandb_hp_sweep.py", ], ) diff --git a/tests/data/preprocessing/__init__.py b/tests/data/preprocessing/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/tests/data/preprocessing/test_standard_scaler.py b/tests/data/preprocessing/test_standard_scaler.py deleted file mode 100644 index 3c1d1f06..00000000 --- a/tests/data/preprocessing/test_standard_scaler.py +++ /dev/null @@ -1,44 +0,0 @@ -import sys - -sys.path.append("../..") - -import unittest - -import numpy as np -import polars as pl - -from EventStream.data.preprocessing.standard_scaler import StandardScaler - -from ...utils import MLTypeEqualityCheckableMixin - - -class TestStandardScaler(MLTypeEqualityCheckableMixin, unittest.TestCase): - """Tests the StddevCutoffOutlierDetector class.""" - - def test_e2e(self): - M = StandardScaler() - - X = np.array([-1, 0, 1, -1, 1, 10]) - - mean = X.mean() - std = X.std(ddof=1) - - want_transformed = (X - mean) / std - want_params = {"mean_": mean, "std_": std} - - X_pl = pl.from_numpy(X) - col = pl.col("column_0") - - expr = M.fit_from_polars(col) - - want = {k: round(v, 4) for k, v in want_params.items()} - got = {k: round(v, 4) for k, v in X_pl.select(expr).item().items()} - self.assertEqual(want, got) - - with_params = X_pl.with_columns(expr.alias("params")) - - transformed_expr = M.predict_from_polars(col, pl.col("params")) - got_transformed = with_params.select(transformed_expr)[:, 0].to_numpy().round(4) - want_transformed = want_transformed.round(4) - - self.assertEqual(want_transformed, got_transformed) diff --git a/tests/data/preprocessing/test_stddev_cutoff.py b/tests/data/preprocessing/test_stddev_cutoff.py deleted file mode 100644 index 41414e5c..00000000 --- a/tests/data/preprocessing/test_stddev_cutoff.py +++ /dev/null @@ -1,46 +0,0 @@ -import sys - -sys.path.append("../..") - -import unittest - -import numpy as np -import polars as pl - -from EventStream.data.preprocessing.stddev_cutoff import StddevCutoffOutlierDetector - -from ...utils import MLTypeEqualityCheckableMixin - - -class TestStddevCutoffOutlierDetector(MLTypeEqualityCheckableMixin, unittest.TestCase): - """Tests the StddevCutoffOutlierDetector class.""" - - def test_gets_correct_thresh(self): - M = StddevCutoffOutlierDetector(2.1) - - X = np.array([-1, 0, 1, -1, 1, -1, 1, 10]) - mean = X.mean() - std = X.std(ddof=1) - - want_inliers = np.array([-1, 0, 1, -1, 1, -1, 1]) - - want = { - "thresh_small_": mean - 2.1 * std, - "thresh_large_": mean + 2.1 * std, - } - - X_pl = pl.from_numpy(X) - col = pl.col("column_0") - - expr = M.fit_from_polars(col) - - want = {k: round(v, 4) for k, v in want.items()} - got = {k: round(v, 4) for k, v in X_pl.select(expr).item().items()} - self.assertEqual(want, got) - - with_params = X_pl.with_columns(expr.alias("outlier_params")) - - outliers_expr = M.predict_from_polars(col, pl.col("outlier_params")) - got_inliers = X[~with_params.select(outliers_expr)[:, 0].to_numpy()] - - self.assertEqual(got_inliers, want_inliers) diff --git a/tests/data/test_config.py b/tests/data/test_config.py index 26a20b0a..1bece3cf 100644 --- a/tests/data/test_config.py +++ b/tests/data/test_config.py @@ -183,8 +183,10 @@ def test_add_missing_mandatory_metadata_cols(self): want_measurement_metadata = pd.DataFrame( { "value_type": [], - "outlier_model": pd.Series([], dtype=object), - "normalizer": pd.Series([], dtype=object), + "mean": pd.Series([], dtype=float), + "std": pd.Series([], dtype=float), + "thresh_small": pd.Series([], dtype=float), + "thresh_large": pd.Series([], dtype=float), }, index=pd.Index([]), ) @@ -199,7 +201,8 @@ def test_add_missing_mandatory_metadata_cols(self): config.add_missing_mandatory_metadata_cols() want_measurement_metadata = pd.Series( - [None, None, None], index=pd.Index(["value_type", "outlier_model", "normalizer"]) + [None, None, None, None, None], + index=pd.Index(["value_type", "mean", "std", "thresh_small", "thresh_large"]), ) self.assertEqual(want_measurement_metadata, config.measurement_metadata) @@ -249,22 +252,12 @@ def test_measurement_metadata_property(self): "config": dict( modality=DataModality.UNIVARIATE_REGRESSION, _measurement_metadata=pd.Series( - [{"mean": 2}, {"foo": "bar"}], - index=pd.Index(["outlier_model", "normalizer"]), + [2], + index=pd.Index(["mean"]), name="key", ), ), }, - { - "msg": "Should fail for malformed univariate cases.", - "config": dict( - modality=DataModality.UNIVARIATE_REGRESSION, - _measurement_metadata=pd.Series( - [{"mean": 2}, "'b' + 7"], index=pd.Index(["outlier_model", "normalizer"]) - ), - ), - "want_raise": ValueError, - }, { "msg": "Should work for properly formed multivariate cases.", "config": dict( @@ -273,26 +266,10 @@ def test_measurement_metadata_property(self): _measurement_metadata=pd.DataFrame( { "censor_lower_bound": [1, 0.2, 0.1], - "outlier_model": [{"mean": 2}, None, {"std": 3}], - }, - index=pd.Index(["foo", "bar", "baz"], name="key"), - ), - ), - }, - { - "msg": "Should fail for malformed multivariate cases.", - "config": dict( - modality=DataModality.MULTIVARIATE_REGRESSION, - values_column="val", - _measurement_metadata=pd.DataFrame( - { - "censor_lower_bound": [1, 0.2, 0.1], - "outlier_model": ["'a'+3", {"mean": 1}, {"std": 3}], }, index=pd.Index(["foo", "bar", "baz"], name="key"), ), ), - "want_raise": ValueError, }, ] @@ -340,8 +317,10 @@ def test_add_empty_metadata(self): want_metadata = pd.DataFrame( { "value_type": pd.Series([], dtype=str), - "outlier_model": pd.Series([], dtype=object), - "normalizer": pd.Series([], dtype=object), + "mean": pd.Series([], dtype=float), + "std": pd.Series([], dtype=float), + "thresh_small": pd.Series([], dtype=float), + "thresh_large": pd.Series([], dtype=float), }, index=pd.Index([], name="foo"), ) @@ -359,7 +338,8 @@ def test_add_empty_metadata(self): config.add_empty_metadata() want_metadata = pd.Series( - [None, None, None], index=pd.Index(["value_type", "outlier_model", "normalizer"]) + [None, None, None, None, None], + index=pd.Index(["value_type", "mean", "std", "thresh_small", "thresh_large"]), ) self.assertEqual(want_metadata, config.measurement_metadata) @@ -471,8 +451,7 @@ def test_validates_params(self): min_unique_numerical_observations=1e-6, ), dict( - outlier_detector_config={"cls": None}, - normalizer_config={"cls": None}, + outlier_detector_config={}, ), ] for kwargs in valid_kwargs: @@ -495,10 +474,7 @@ def test_validates_params(self): min_unique_numerical_observations=2.0, ), dict( - outlier_detector_config={"not_cls": None}, - ), - dict( - normalizer_config={"not_cls": None}, + outlier_detector_config="foo", ), ] for kwargs in invalid_kwargs: @@ -513,7 +489,7 @@ def test_to_and_from_dict(self): min_true_float_frequency=None, min_unique_numerical_observations=None, outlier_detector_config=None, - normalizer_config=None, + center_and_scale=True, save_dir=None, min_events_per_subject=None, agg_by_time_scale="1h", @@ -534,7 +510,6 @@ def test_to_and_from_dict(self): ), } nontrivial_outlier_config = {"cls": "outlier", "foo": "bar"} - nontrivial_normalizer_config = {"cls": "normalizer", "baz": "bam"} cases = [ { @@ -556,12 +531,10 @@ def test_to_and_from_dict(self): "msg": "Should work when sub-model configs are not None", "config": DatasetConfig( outlier_detector_config=nontrivial_outlier_config, - normalizer_config=nontrivial_normalizer_config, ), "want_dict": { **default_dict, "outlier_detector_config": nontrivial_outlier_config, - "normalizer_config": nontrivial_normalizer_config, }, }, ] @@ -600,7 +573,6 @@ def test_eq(self): min_true_float_frequency=0.75, min_unique_numerical_observations=0.25, outlier_detector_config={"cls": "outlier", "foo": "bar"}, - normalizer_config={"cls": "normalizer", "baz": "bam"}, ) config2 = DatasetConfig( measurement_configs={ @@ -627,7 +599,6 @@ def test_eq(self): min_true_float_frequency=0.75, min_unique_numerical_observations=0.25, outlier_detector_config={"cls": "outlier", "foo": "bar"}, - normalizer_config={"cls": "normalizer", "baz": "bam"}, ) self.assertTrue(config1 == config2) @@ -657,37 +628,6 @@ def test_eq(self): min_true_float_frequency=0.75, min_unique_numerical_observations=0.25, outlier_detector_config={"cls": "outlier", "foo": "bar"}, - normalizer_config={"cls": "normalizer", "baz": "bam"}, ) self.assertFalse(config1 == config3) - - config4 = DatasetConfig( - measurement_configs={ - "A_key": MeasurementConfig( - temporality=TemporalityType.DYNAMIC, - modality=DataModality.MULTI_LABEL_CLASSIFICATION, - ), - "B_key": MeasurementConfig( - temporality=TemporalityType.DYNAMIC, - modality=DataModality.MULTIVARIATE_REGRESSION, - values_column="B_val", - ), - "C": MeasurementConfig( - temporality=TemporalityType.STATIC, - modality=DataModality.SINGLE_LABEL_CLASSIFICATION, - ), - "D": MeasurementConfig( - temporality=TemporalityType.FUNCTIONAL_TIME_DEPENDENT, - functor=AgeFunctor("dob"), - ), - }, - min_valid_column_observations=10, - min_valid_vocab_element_observations=0.5, - min_true_float_frequency=0.75, - min_unique_numerical_observations=0.25, - outlier_detector_config={"cls": "outlier", "foo": "bar"}, - normalizer_config={"cls": "normalizer", "baz": 3}, - ) - - self.assertFalse(config1 == config4) diff --git a/tests/data/test_dataset_base.py b/tests/data/test_dataset_base.py index 58673a3a..a399f456 100644 --- a/tests/data/test_dataset_base.py +++ b/tests/data/test_dataset_base.py @@ -256,6 +256,25 @@ def test_split(self): self.assertEqual({}, self.E.functions_called) + def test_split_mandatory_ids(self): + self.E._reset_functions_called() + + all_subject_ids = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} + mandatory_set_IDs = {"set_1": {1, 2, 3, 4}, "set_2": {5, 6, 7}} + self.E.subject_ids = list(all_subject_ids) + + self.E.split(split_fracs=[1 / 3, 1 / 3], seed=1, mandatory_set_IDs=mandatory_set_IDs) + + split_subjects = self.E.split_subjects + + self.assertEqual({"train", "tuning", "held_out", "set_1", "set_2"}, set(split_subjects.keys())) + self.assertEqual(all_subject_ids, set().union(*split_subjects.values())) + self.assertEqual(mandatory_set_IDs["set_1"], split_subjects["set_1"]) + self.assertEqual(mandatory_set_IDs["set_2"], split_subjects["set_2"]) + self.assertEqual(len(split_subjects["train"]), 1) + self.assertEqual(len(split_subjects["tuning"]), 1) + self.assertEqual(len(split_subjects["held_out"]), 1) + def test_split_accessors(self): self.E.split_subjects = { "train": [1, 2, 3], @@ -472,8 +491,10 @@ def get_source_df(self, *args, **kwargs): empty_measurement_metadata = pd.DataFrame( { "value_type": pd.Series([], dtype=object), - "outlier_model": pd.Series([], dtype=object), - "normalizer": pd.Series([], dtype=object), + "mean": pd.Series([], dtype=float), + "std": pd.Series([], dtype=float), + "thresh_small": pd.Series([], dtype=float), + "thresh_large": pd.Series([], dtype=float), }, index=pd.Index([], name="numeric"), ) diff --git a/tests/data/test_dataset_polars.py b/tests/data/test_dataset_polars.py deleted file mode 100644 index fbc2fee1..00000000 --- a/tests/data/test_dataset_polars.py +++ /dev/null @@ -1,1746 +0,0 @@ -import sys - -sys.path.append("../..") - -import unittest -from datetime import datetime, timedelta -from pathlib import Path -from tempfile import TemporaryDirectory - -import numpy as np -import pandas as pd -import polars as pl - -from EventStream.data.config import DatasetConfig, MeasurementConfig -from EventStream.data.dataset_polars import Dataset -from EventStream.data.preprocessing import Preprocessor -from EventStream.data.time_dependent_functor import TimeDependentFunctor -from EventStream.data.types import ( - DataModality, - NumericDataModalitySubtype, - TemporalityType, -) -from EventStream.data.vocabulary import Vocabulary - -from ..utils import ConfigComparisonsMixin - - -class NormalizerMock(Preprocessor): - def __init__(self, *args, **kwargs): - pass - - @classmethod - def params_schema(self) -> dict[str, pl.DataType]: - return {"min": pl.Float64} - - def fit_from_polars(self, column: pl.Expr) -> pl.Expr: - return pl.struct([column.min().alias("min")]) - - @classmethod - def predict_from_polars(cls, column: pl.Expr, model: pl.Expr) -> pl.Expr: - return column - model.struct.field("min").round(0) - - -class OutlierDetectorMock(Preprocessor): - def __init__(self, *args, **kwargs): - pass - - @classmethod - def params_schema(self) -> dict[str, pl.DataType]: - return {"mean": pl.Float64} - - def fit_from_polars(self, column: pl.Expr) -> pl.Expr: - return pl.struct([column.mean().alias("mean")]) - - @classmethod - def predict_from_polars(cls, column: pl.Expr, model: pl.Expr) -> pl.Expr: - return ((column - model.struct.field("mean")) > 10).cast(pl.Boolean) - - -class ESDMock(Dataset): - PREPROCESSORS = { - "outlier": OutlierDetectorMock, - "normalizer": NormalizerMock, - } - - -DOB_COL = "dob" - - -class AgeFunctorMock(TimeDependentFunctor): - OUTPUT_MODALITY = DataModality.UNIVARIATE_REGRESSION - - def __init__(self): - self.link_static_cols = [DOB_COL] - - def update_from_prior_timepoint(self, *args, **kwargs): - return None - - def pl_expr(self): - return (pl.col("timestamp") - pl.col(DOB_COL)).dt.nanoseconds() / 1e9 / 60 / 60 / 24 / 365.25 - - -class TimeOfDayFunctorMock(TimeDependentFunctor): - OUTPUT_MODALITY = DataModality.SINGLE_LABEL_CLASSIFICATION - - def update_from_prior_timepoint(self, *args, **kwargs): - return None - - def pl_expr(self): - return ( - pl.when(pl.col("timestamp").dt.hour() < 6) - .then(pl.lit("EARLY_AM")) - .when(pl.col("timestamp").dt.hour() < 12) - .then(pl.lit("AM")) - .when(pl.col("timestamp").dt.hour() < 21) - .then(pl.lit("PM")) - .otherwise(pl.lit("LATE_PM")) - ) - - -MeasurementConfig.FUNCTORS["AgeFunctorMock"] = AgeFunctorMock -MeasurementConfig.FUNCTORS["TimeOfDayFunctorMock"] = TimeOfDayFunctorMock - -TEST_CONFIG = DatasetConfig( - min_valid_column_observations=1 / 9, - min_valid_vocab_element_observations=2, - min_true_float_frequency=1 / 2, - min_unique_numerical_observations=0.99, - outlier_detector_config={"cls": "outlier"}, - normalizer_config={"cls": "normalizer"}, - agg_by_time_scale=None, - measurement_configs={ - "pre_dropped": MeasurementConfig(temporality=TemporalityType.DYNAMIC, modality=DataModality.DROPPED), - "not_present_dropped": MeasurementConfig( - temporality=TemporalityType.DYNAMIC, - modality=DataModality.MULTI_LABEL_CLASSIFICATION, - ), - "dynamic_preset_vocab": MeasurementConfig( - temporality=TemporalityType.DYNAMIC, - modality=DataModality.MULTI_LABEL_CLASSIFICATION, - vocabulary=Vocabulary(["bar", "foo"], [1, 2]), - ), - "dynamic_dropped_insufficient_occurrences": MeasurementConfig( - temporality=TemporalityType.DYNAMIC, - modality=DataModality.MULTI_LABEL_CLASSIFICATION, - ), - "static": MeasurementConfig( - temporality=TemporalityType.STATIC, - modality=DataModality.SINGLE_LABEL_CLASSIFICATION, - ), - "time_dependent_age_lt_90": MeasurementConfig( - temporality=TemporalityType.FUNCTIONAL_TIME_DEPENDENT, - functor=AgeFunctorMock(), - _measurement_metadata=pd.Series( - [90.0, False], - index=pd.Index( - ["drop_upper_bound", "drop_upper_bound_inclusive"], - ), - name="time_dependent_age_lt_90", - ), - ), - "time_dependent_age_all": MeasurementConfig( - temporality=TemporalityType.FUNCTIONAL_TIME_DEPENDENT, - functor=AgeFunctorMock(), - ), - "time_dependent_time_of_day": MeasurementConfig( - temporality=TemporalityType.FUNCTIONAL_TIME_DEPENDENT, - functor=TimeOfDayFunctorMock(), - ), - "multivariate_regression_bounded_outliers": MeasurementConfig( - temporality=TemporalityType.DYNAMIC, - modality=DataModality.MULTIVARIATE_REGRESSION, - values_column="mrbo_vals", - _measurement_metadata=pd.DataFrame( - { - "drop_lower_bound": [-1.1, -10.1, None], - "drop_lower_bound_inclusive": [True, False, None], - "drop_upper_bound": [1.1, None, 10.1], - "drop_upper_bound_inclusive": [False, None, True], - "censor_lower_bound": [None, -5.1, -10.1], - "censor_upper_bound": [0.6, 10.1, None], - }, - index=pd.Index(["mrbo1", "mrbo2", "mrbo3"], name="multivariate_regression_bounded_outliers"), - ), - ), - "multivariate_regression_preset_value_type": MeasurementConfig( - temporality=TemporalityType.DYNAMIC, - modality=DataModality.MULTIVARIATE_REGRESSION, - values_column="pvt_vals", - _measurement_metadata=pd.DataFrame( - { - "value_type": [ - NumericDataModalitySubtype.CATEGORICAL_INTEGER, - NumericDataModalitySubtype.CATEGORICAL_FLOAT, - NumericDataModalitySubtype.INTEGER, - NumericDataModalitySubtype.FLOAT, - NumericDataModalitySubtype.DROPPED, - ], - }, - index=pd.Index( - ["pvt_cat_int", "pvt_cat_flt", "pvt_int", "pvt_flt", "pvt_drp"], - name="multivariate_regression_preset_value_type", - ), - ), - ), - "multivariate_regression_no_preset": MeasurementConfig( - temporality=TemporalityType.DYNAMIC, - modality=DataModality.MULTIVARIATE_REGRESSION, - values_column="mrnp_vals", - ), - }, -) - -TEST_SPLIT = {"train": {1, 2, 4, 5}, "held_out": {3}} - -in_event_times = { - 1: datetime(2010, 1, 1, 2), # MVR, Subj 1, Agg 1, EARLY_AM - 2: datetime(2010, 1, 1, 2), # MVR, Subj 1, Agg 2 - 3: datetime(2010, 1, 2, 13), # MVR, Subj 2, Agg 1, PM - 4: datetime(2010, 1, 2, 13), # MVR, Subj 2, Agg 2, - 5: datetime(2010, 1, 3, 3), # DDIC, Subj 1, EARLY_AM - 6: datetime(2010, 1, 4, 4), # DDIC, Subj 2, EARLY_AM - 7: datetime(2010, 1, 5, 14), # DPV, Subj 1, PM - 8: datetime(2010, 1, 8, 23), # DPV, Subj 1, LATE_PM - 9: datetime(2010, 1, 9, 22, 30), # DPV, Subj 1, LATE_PM - 10: datetime(2010, 1, 10, 3), # DPV, Subj 2, EARLY_AM, - 11: datetime(2010, 1, 11, 15), # DPV, Subj 2, PM - 12: datetime(2010, 1, 1, 23), # DPV, Subj 3, LATE_PM - 13: datetime(2010, 1, 2, 23), # DPV, Subj 3, LATE_PM - 14: datetime(2010, 1, 3, 22), # DPV, Subj 3, LATE_PM - 15: datetime(2010, 1, 4, 11), # DPV, Subj 3, AM -} - -in_event_subjects = { - 1: 1, - 2: 1, - 3: 2, - 4: 2, - 5: 1, - 6: 2, - 7: 1, - 8: 1, - 9: 1, - 10: 2, - 11: 2, - 12: 3, - 13: 3, - 14: 3, - 15: 3, -} - -want_event_agg_mapping = { - 1: (1, 2), - 2: (5,), - 3: (7,), - 4: (8,), - 5: (9,), - 6: (3, 4), - 7: (6,), - 8: (10,), - 9: (11,), - 10: (12,), - 11: (13,), - 12: (14,), - 13: (15,), -} - -want_event_times = {want_id: in_event_times[in_ids[0]] for want_id, in_ids in want_event_agg_mapping.items()} -want_event_TODs = { - k: "EARLY_AM" if v.hour < 6 else "UNK" if v.hour < 12 else "PM" if v.hour < 21 else "LATE_PM" - for k, v in want_event_times.items() -} - -subject_dobs = { - 1: datetime(2000, 1, 1), - 2: datetime(1900, 1, 1), - 3: datetime(1980, 1, 1), - 4: datetime(1990, 1, 1), - 5: datetime(2010, 1, 1), -} - -want_event_ts_ages = {} -for want_id, in_ids in want_event_agg_mapping.items(): - want_event_ts_ages[want_id] = ( - in_event_times[in_ids[0]] - subject_dobs[in_event_subjects[in_ids[0]]] - ) / timedelta(days=365.25) - -train_ages_lt_90 = [] -train_all_ages = [] - -for i, age in want_event_ts_ages.items(): - in_ids = want_event_agg_mapping[i] - subj = in_event_subjects[in_ids[0]] - if subj in TEST_SPLIT["train"]: - if age < 90: - train_ages_lt_90.append(age) - train_all_ages.append(age) - -train_ages_lt_90 = np.array(train_ages_lt_90) -train_all_ages = np.array(train_all_ages) - -outlier_mean_lt_90 = train_ages_lt_90.mean() -outlier_mean_all = train_all_ages.mean() - -inliers_lt_90 = train_ages_lt_90[train_ages_lt_90 - outlier_mean_lt_90 < 10] -inliers_all = train_all_ages[train_all_ages - outlier_mean_all < 10] - -normalizer_min_lt_90 = inliers_lt_90.min() -normalizer_min_all = inliers_all.min() - -want_events_ts_ages_lt_90_is_inlier = { - k: None if (v > 90) else bool(v - outlier_mean_lt_90 < 10) for k, v in want_event_ts_ages.items() -} -want_events_ts_ages_lt_90 = { - k: (v - normalizer_min_lt_90.round()) if (v < 90) and want_events_ts_ages_lt_90_is_inlier[k] else np.NaN - for k, v in want_event_ts_ages.items() -} -want_events_ts_ages_all_is_inlier = { - k: bool(v - outlier_mean_all < 10) for k, v in want_event_ts_ages.items() -} -want_events_ts_ages_all = { - k: (v - normalizer_min_all.round()) if want_events_ts_ages_all_is_inlier[k] else np.NaN - for k, v in want_event_ts_ages.items() -} - -IN_SUBJECTS_DF = pl.DataFrame( - data={ - "subject_id": [1, 2, 3, 4, 5], - "static": ["foo", "foo", "bar", "bar", "bar"], - DOB_COL: [subject_dobs[i] for i in range(1, 6)], - }, - schema={ - "subject_id": pl.Int64, - "static": pl.Utf8, - DOB_COL: pl.Datetime, - }, -) - -IN_EVENTS_DF = pl.DataFrame( - data={ - "event_id": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], - "event_type": [ - "MVR", - "MVR", - "MVR", - "MVR", - "DDIC", - "DDIC", - "DPV", - "DPV", - "DPV", - "DPV", - "DPV", - "DPV", - "DPV", - "DPV", - "DPV", - ], - "subject_id": [1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 3, 3, 3, 3], - "timestamp": [in_event_times[i] for i in range(1, 16)], - }, - schema={ - "event_id": pl.Float64, - "event_type": pl.Utf8, - "subject_id": pl.Int8, - "timestamp": pl.Datetime, - }, -) -np.random.seed(1) -input_order = np.random.permutation(15) - -IN_EVENTS_DF = IN_EVENTS_DF.sort(pl.lit(input_order)) - -IN_MEASUREMENTS_DF = pl.DataFrame( - data={ - "event_id": [ - *([1] * 4 + [2] * 4 + [3] * 4 + [4] * 5), - *([5] * 2 + [6] * 2), - 7, - 8, - 9, - 10, - 11, - 12, - 13, - 14, - 15, - ], - # Has pre-set vocab ['foo', 'bar'], occurs on 'DPV' events. - "dynamic_preset_vocab": [ - *([None] * 17), - *([None] * 4), - "foo", - "foo", - "bar", - "bar", - "bar", - "baz", - "baz", - "foo", - "foo", - ], - # Is dropped due to insufficient occurrences, occurs on 'DDIC' events. - "dynamic_dropped_insufficient_occurrences": [ - *([None] * 17), - "here", - None, - None, - None, - *([None] * 9), - ], - # Occurs on events MVR, values 'mrbo_vals'. - # Has pre-set keys with outlier/censor bounds as follows: - # Outlier, Censor - # mrbo1: [-1.1, 1.1), (X, 0.6] - # mrbo2: (-10.1, X), [-5.1, 10.1] - # mrbo3: (X, 10.1], [-10.1, X) - "multivariate_regression_bounded_outliers": [ - "mrbo1", - "mrbo3", - "mrbo2", - "mrbo1", - "mrbo2", - "mrbo1", - "mrbo3", - "mrbo2", - "mrbo3", - "mrbo2", - "mrbo1", - "mrbo3", - None, - None, - None, - None, - None, - *([None] * 4), - *([None] * 9), - ], - "mrbo_vals": [ - -1.2, - 0.1, - 0.1, - 0.7, - -10.1, - -1.1, - 10.1, - 10.2, - -11.1, - -4.9, - 0.1, - 11.1, - None, - None, - None, - None, - None, - *([None] * 4), - *([None] * 9), - ], - # Occurs on events MVR, values 'pvt_vals'. - # Has pre-set keys with value types as follows: - # Value Type - # pvt_cat_int: NumericDataModalitySubtype.CATEGORICAL_INTEGER, - # pvt_cat_flt: NumericDataModalitySubtype.CATEGORICAL_FLOAT, - # pvt_int: NumericDataModalitySubtype.INTEGER, - # pvt_flt: NumericDataModalitySubtype.FLOAT, - # pvt_drp: NumericDataModalitySubtype.DROPPED, - # Also has extra key not in the pre-set of 'pvt_added' - # Event IDs - # *([1]*4 + [2]*4 + [3]*4 + [4]*5), - # ... after agg - # *([1]*8 + [2]*9), - # *([3]*2 + [4]*2), - "multivariate_regression_preset_value_type": [ - # Event ID 1 - "pvt_int", - "pvt_cat_int", - "pvt_added", - "pvt_flt", - "pvt_cat_int", - "pvt_drp", - "pvt_cat_flt", - "pvt_cat_int", - # Event ID 2 - "pvt_cat_flt", - "pvt_int", - "pvt_cat_int", - "pvt_cat_flt", - "pvt_drp", - "pvt_cat_flt", - "pvt_flt", - "pvt_added", - None, - *([None] * 4), - *([None] * 9), - ], - "pvt_vals": [ - 1.0, - 2.0, - 1.0, - 2.0, - 1.0, - 2.0, - 1.0, - 2.0, - 1.0, - 2.0, - 1.0, - 2.0, - 1.0, - 2.0, - 1.0, - 2.0, - None, - *([None] * 4), - *([None] * 9), - ], - # Occurs on events MVR, values 'mrnp_vals'. - # Keys include: - # 'mrnp_flt', 'mrnp_int', 'mrnp_cat_int__EQ_1', 'mrnp_cat_int__EQ_2', 'mrnp_cat_int__EQ_3', - # 'mrnp_dropped' and 'mrnp_key_dropped' - # These should result in types float, int, categorical int, dropped, and 'mrnp_key_dropped' should be - # dropped wholesale. - # Event IDs - # *([1]*4 + [2]*4 + [3]*4 + [4]*5), - # ... after agg - # *([1]*8 + [2]*9), - # *([3]*2 + [4]*2), - "multivariate_regression_no_preset": [ - # Event ID 1 - "mrnp_dropped", - "mrnp_flt", - "mrnp_flt", - "mrnp_key_dropped", - "mrnp_int", - "mrnp_int", - "mrnp_cat_int", - "mrnp_cat_int", - # Event ID 2 - "mrnp_cat_int", - "mrnp_cat_int", - "mrnp_cat_int", - "mrnp_cat_int", - "mrnp_cat_int", - "mrnp_cat_int", - "mrnp_flt", - "mrnp_dropped", - "mrnp_int", - *([None] * 4), - *([None] * 9), - ], - "mrnp_vals": [ - 1.0, - 3.0, - 80.1, - 0.2, - 80.0, - 3.0, - 1.0, - 1.2, - 2.0, - 2.0, - 3.0, - 2.9, - 4.0, - 5.0, - 1.2, - 1.0, - 1.2, - *([None] * 4), - *([None] * 9), - ], - }, - schema={ - "event_id": pl.Int16, - "dynamic_preset_vocab": pl.Utf8, - "dynamic_dropped_insufficient_occurrences": pl.Utf8, - "multivariate_regression_bounded_outliers": pl.Utf8, - "mrbo_vals": pl.Float64, - "multivariate_regression_preset_value_type": pl.Categorical, - "pvt_vals": pl.Float32, - "multivariate_regression_no_preset": pl.Utf8, - "mrnp_vals": pl.Float64, - }, -) - -WANT_EVENT_TYPES = ["DPV", "MVR", "DDIC"] - -WANT_MEASUREMENTS_IDXMAP = { - "event_type": 1, - "dynamic_preset_vocab": 2, - "multivariate_regression_bounded_outliers": 3, - "multivariate_regression_no_preset": 4, - "multivariate_regression_preset_value_type": 5, - "static": 6, - "time_dependent_age_all": 7, - "time_dependent_age_lt_90": 8, - "time_dependent_time_of_day": 9, -} - -WANT_UNIFIED_VOCABULARY_OFFSETS = { - "event_type": 1, - "dynamic_preset_vocab": 4, - "multivariate_regression_bounded_outliers": 7, - "multivariate_regression_no_preset": 11, - "multivariate_regression_preset_value_type": 18, - "static": 27, - "time_dependent_age_all": 30, - "time_dependent_age_lt_90": 31, - "time_dependent_time_of_day": 32, -} - -WANT_INFERRED_MEASUREMENT_CONFIGS = { - "not_present_dropped": MeasurementConfig( - name="not_present_dropped", - temporality=TemporalityType.DYNAMIC, - modality=DataModality.DROPPED, - ), - "dynamic_preset_vocab": MeasurementConfig( - name="dynamic_preset_vocab", - temporality=TemporalityType.DYNAMIC, - modality=DataModality.MULTI_LABEL_CLASSIFICATION, - vocabulary=Vocabulary(["UNK", "foo", "bar"], [0, 2 / 3, 1 / 3]), - observation_rate_over_cases=5 / 9, - observation_rate_per_case=1.0, - ), - "dynamic_dropped_insufficient_occurrences": MeasurementConfig( - name="dynamic_dropped_insufficient_occurrences", - temporality=TemporalityType.DYNAMIC, - modality=DataModality.DROPPED, - observation_rate_over_cases=1 / 9, - observation_rate_per_case=1.0, - ), - "static": MeasurementConfig( - name="static", - temporality=TemporalityType.STATIC, - modality=DataModality.SINGLE_LABEL_CLASSIFICATION, - observation_rate_over_cases=1, - observation_rate_per_case=1.0, - vocabulary=Vocabulary(["UNK", "bar", "foo"], [0, 0.5, 0.5]), - ), - "time_dependent_age_lt_90": MeasurementConfig( - name="time_dependent_age_lt_90", - temporality=TemporalityType.FUNCTIONAL_TIME_DEPENDENT, - functor=AgeFunctorMock(), - _measurement_metadata=pd.Series( - [ - 90.0, - False, - NumericDataModalitySubtype.FLOAT, - {"mean": outlier_mean_lt_90}, - {"min": normalizer_min_lt_90}, - ], - index=pd.Index( - [ - "drop_upper_bound", - "drop_upper_bound_inclusive", - "value_type", - "outlier_model", - "normalizer", - ] - ), - name="time_dependent_age_lt_90", - ), - observation_rate_over_cases=1, - observation_rate_per_case=1, - vocabulary=None, - ), - "time_dependent_age_all": MeasurementConfig( - name="time_dependent_age_all", - temporality=TemporalityType.FUNCTIONAL_TIME_DEPENDENT, - functor=AgeFunctorMock(), - observation_rate_over_cases=1, - observation_rate_per_case=1, - vocabulary=None, - _measurement_metadata=pd.Series( - [ - NumericDataModalitySubtype.FLOAT, - {"mean": outlier_mean_all}, - {"min": normalizer_min_all}, - ], - index=pd.Index(["value_type", "outlier_model", "normalizer"]), - name="time_dependent_age_all", - ), - ), - "time_dependent_time_of_day": MeasurementConfig( - name="time_dependent_time_of_day", - temporality=TemporalityType.FUNCTIONAL_TIME_DEPENDENT, - functor=TimeOfDayFunctorMock(), - observation_rate_over_cases=1, - observation_rate_per_case=1, - vocabulary=Vocabulary(["UNK", "EARLY_AM", "PM", "LATE_PM"], [0, 4, 3, 2]), - ), - # Keys and Values: - # 'mrbo1': -1.2, -1.1, 0.1, 0.7, - # 'mrbo2': -10.1, -4.9, 0.1, 10.2, - # 'mrbo3': -11.1, 0.1, 10.1, 11.1, - # After dropping/censoring, becomes: - # 'mrbo1': np.NaN, np.NaN, 0.1, 0.6, - # 'mrbo2': -5.1, -4.9, 0.1, 10.1, - # 'mrbo3': -10.1, 0.1, np.NaN, np.NaN, - # Yields means / mins: - # 'mrbo1': 0.35 / 0.1, - # 'mrbo2': 0.05 / -5.1, - # 'mrbo3': -5 / -10.1, - "multivariate_regression_bounded_outliers": MeasurementConfig( - name="multivariate_regression_bounded_outliers", - temporality=TemporalityType.DYNAMIC, - modality=DataModality.MULTIVARIATE_REGRESSION, - values_column="mrbo_vals", - _measurement_metadata=pd.DataFrame( - { - "drop_lower_bound": [-1.1, -10.1, None], - "drop_lower_bound_inclusive": [True, False, None], - "drop_upper_bound": [1.1, None, 10.1], - "drop_upper_bound_inclusive": [False, None, True], - "censor_lower_bound": [None, -5.1, -10.1], - "censor_upper_bound": [0.6, 10.1, None], - "value_type": [ - NumericDataModalitySubtype.FLOAT, - NumericDataModalitySubtype.FLOAT, - NumericDataModalitySubtype.FLOAT, - ], - "outlier_model": [ - {"mean": 0.35}, - {"mean": 0.05}, - {"mean": -5}, - ], - "normalizer": [ - {"min": 0.1}, - {"min": -5.1}, - {"min": -10.1}, - ], - }, - index=pd.CategoricalIndex( - ["mrbo1", "mrbo2", "mrbo3"], name="multivariate_regression_bounded_outliers" - ), - ), - observation_rate_over_cases=2 / 9, - observation_rate_per_case=6, - vocabulary=Vocabulary(["UNK", "mrbo1", "mrbo2", "mrbo3"], [0, 1, 1, 1]), - ), - "multivariate_regression_preset_value_type": MeasurementConfig( - name="multivariate_regression_preset_value_type", - temporality=TemporalityType.DYNAMIC, - modality=DataModality.MULTIVARIATE_REGRESSION, - values_column="pvt_vals", - _measurement_metadata=pd.DataFrame( - { - "value_type": [ - NumericDataModalitySubtype.INTEGER, - NumericDataModalitySubtype.CATEGORICAL_FLOAT, - NumericDataModalitySubtype.CATEGORICAL_INTEGER, - NumericDataModalitySubtype.DROPPED, - NumericDataModalitySubtype.FLOAT, - NumericDataModalitySubtype.INTEGER, - ], - "outlier_model": [ - {"mean": 1.5}, - {"mean": None}, - {"mean": None}, - {"mean": None}, - {"mean": 1.5}, - {"mean": 1.5}, - ], - "normalizer": [ - {"min": 1}, - {"min": None}, - {"min": None}, - {"min": None}, - {"min": 1}, - {"min": 1}, - ], - }, - index=pd.CategoricalIndex( - ["pvt_added", "pvt_cat_flt", "pvt_cat_int", "pvt_drp", "pvt_flt", "pvt_int"], - name="multivariate_regression_preset_value_type", - ), - ), - observation_rate_over_cases=2 / 9, - observation_rate_per_case=8, - vocabulary=Vocabulary( - [ - "UNK", - "pvt_added", - "pvt_cat_flt__EQ_1.0", - "pvt_cat_flt__EQ_2.0", - "pvt_cat_int__EQ_1", - "pvt_cat_int__EQ_2", - "pvt_drp", - "pvt_flt", - "pvt_int", - ], - [0, 1, 1, 1, 1, 1, 1, 1, 1], - ), - ), - "multivariate_regression_no_preset": MeasurementConfig( - name="multivariate_regression_no_preset", - temporality=TemporalityType.DYNAMIC, - modality=DataModality.MULTIVARIATE_REGRESSION, - values_column="mrnp_vals", - observation_rate_over_cases=2 / 9, - observation_rate_per_case=17 / 2, - vocabulary=Vocabulary( - [ - "UNK", - "mrnp_flt", - "mrnp_int", - "mrnp_cat_int__EQ_3", - "mrnp_cat_int__EQ_1", - "mrnp_cat_int__EQ_2", - "mrnp_dropped", - ], - [3, 3, 3, 2, 2, 2, 2], - ), - _measurement_metadata=pd.DataFrame( - { - "value_type": [ - NumericDataModalitySubtype.FLOAT, - NumericDataModalitySubtype.INTEGER, - NumericDataModalitySubtype.CATEGORICAL_INTEGER, - NumericDataModalitySubtype.DROPPED, - NumericDataModalitySubtype.DROPPED, - ], - "outlier_model": [ - {"mean": 84.3 / 3}, - {"mean": 84 / 3}, - {"mean": None}, - {"mean": None}, - {"mean": None}, - ], - "normalizer": [ - {"min": 1.2}, - {"min": 1.0}, - {"min": None}, - {"min": None}, - {"min": None}, - ], - }, - index=pd.CategoricalIndex( - ["mrnp_flt", "mrnp_int", "mrnp_cat_int", "mrnp_dropped", "mrnp_key_dropped"], - name="multivariate_regression_no_preset", - ), - ), - ), -} - -WANT_UNIFIED_VOCABULARY_IDXMAP = { - "event_type": {k: i + 1 for i, k in enumerate(WANT_EVENT_TYPES)}, - **{ - kk: { - k: i + WANT_UNIFIED_VOCABULARY_OFFSETS[kk] - for i, k in enumerate(WANT_INFERRED_MEASUREMENT_CONFIGS[kk].vocabulary.vocabulary) - } - for kk in ( - "dynamic_preset_vocab", - "multivariate_regression_bounded_outliers", - "multivariate_regression_no_preset", - "multivariate_regression_preset_value_type", - "static", - "time_dependent_time_of_day", - ) - }, - "time_dependent_age_all": {"time_dependent_age_all": 30}, - "time_dependent_age_lt_90": {"time_dependent_age_lt_90": 31}, -} - -WANT_SUBJECTS_DF = pl.DataFrame( - data={ - "subject_id": [1, 2, 3, 4, 5], - "static": ["foo", "foo", "bar", "bar", "bar"], - DOB_COL: [subject_dobs[i] for i in range(1, 6)], - }, - schema={ - "subject_id": pl.UInt8, - "static": pl.Categorical, - DOB_COL: pl.Datetime, - }, -) - -WANT_EVENTS_DF = pl.DataFrame( - data={ - "event_id": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], - "event_type": [ - "MVR", - "DDIC", - "DPV", - "DPV", - "DPV", - "MVR", - "DDIC", - "DPV", - "DPV", - "DPV", - "DPV", - "DPV", - "DPV", - ], - "subject_id": [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3], - "timestamp": [want_event_times[i] for i in range(1, 14)], - "time_dependent_age_lt_90": [want_events_ts_ages_lt_90[i] for i in range(1, 14)], - "time_dependent_age_all": [want_events_ts_ages_all[i] for i in range(1, 14)], - "time_dependent_age_lt_90_is_inlier": [want_events_ts_ages_lt_90_is_inlier[i] for i in range(1, 14)], - "time_dependent_age_all_is_inlier": [want_events_ts_ages_all_is_inlier[i] for i in range(1, 14)], - "time_dependent_time_of_day": [want_event_TODs[i] for i in range(1, 14)], - }, - schema={ - "event_id": pl.UInt8, - "event_type": pl.Categorical, - "subject_id": pl.UInt8, - "timestamp": pl.Datetime, - "time_dependent_age_lt_90": pl.Float64, - "time_dependent_age_all": pl.Float64, - "time_dependent_age_lt_90_is_inlier": pl.Boolean, - "time_dependent_age_all_is_inlier": pl.Boolean, - "time_dependent_time_of_day": pl.Categorical, - }, -) - -WANT_MEASUREMENTS_DF = pl.DataFrame( - data={ - "measurement_id": list(range(30)), - "event_id": [ - *([0] * 8 + [5] * 9), - *([1] * 2 + [6] * 2), - 2, - 3, - 4, - 7, - 8, - 9, - 10, - 11, - 12, - ], - # Has pre-set vocab ['foo', 'bar'], occurs on 'DPV' events. - "dynamic_preset_vocab": [ - *([None] * 17), - *([None] * 4), - "foo", - "foo", - "bar", - "bar", - "bar", - "UNK", - "UNK", - "foo", - "foo", - ], - # Is dropped due to insufficient occurrences, occurs on 'DDIC' events. - "dynamic_dropped_insufficient_occurrences": [ - *([None] * 17), - "here", - None, - None, - None, - *([None] * 9), - ], - # Occurs on events MVR, values 'mrbo_vals'. - # Has pre-set keys with outlier/censor bounds as follows: - # Outlier, Censor - # mrbo1: [-1.1, 1.1), (X, 0.6] - # mrbo2: (-10.1, X), [-5.1, 10.1] - # mrbo3: (X, 10.1], [-10.1, X) - # Keys and Values: - # 'mrbo1': -1.2, -1.1, 0.1, 0.7, - # 'mrbo2': -10.1, -4.9, 0.1, 10.2, - # 'mrbo3': -11.1, 0.1, 10.1, 11.1, - # After dropping/censoring, becomes: - # 'mrbo1': np.NaN, np.NaN, 0.1, 0.6, - # 'mrbo2': -5.1, -4.9, 0.1, 10.1, - # 'mrbo3': -10.1, 0.1, np.NaN, np.NaN, - # Yields means / mins / mins.round(0): - # 'mrbo1': 0.35 / 0.1 / 0, - # 'mrbo2': 0.05 / -5.1 / -5, - # 'mrbo3': -5 / -10.1 / -10, - "multivariate_regression_bounded_outliers": [ - "mrbo1", - "mrbo3", - "mrbo2", - "mrbo1", - "mrbo2", - "mrbo1", - "mrbo3", - "mrbo2", - "mrbo3", - "mrbo2", - "mrbo1", - "mrbo3", - None, - None, - None, - None, - None, - *([None] * 4), - *([None] * 9), - ], - "mrbo_vals": [ - np.NaN, - 10.1, - 5.1, - 0.6, - -0.1, - np.NaN, - np.NaN, - np.NaN, - -0.1, - 0.1, - 0.1, - np.NaN, - None, - None, - None, - None, - None, - *([None] * 4), - *([None] * 9), - ], - "multivariate_regression_bounded_outliers_is_inlier": [ - None, - True, - True, - True, - True, - None, - None, - False, - True, - True, - True, - None, - None, - None, - None, - None, - None, - *([None] * 4), - *([None] * 9), - ], - # Occurs on events MVR, values 'pvt_vals'. - # Has pre-set keys with value types as follows: - # Value Type - # pvt_cat_int: NumericDataModalitySubtype.CATEGORICAL_INTEGER, - # pvt_cat_flt: NumericDataModalitySubtype.CATEGORICAL_FLOAT, - # pvt_int: NumericDataModalitySubtype.INTEGER, - # pvt_flt: NumericDataModalitySubtype.FLOAT, - # pvt_drp: NumericDataModalitySubtype.DROPPED, - # Also has extra key not in the pre-set of 'pvt_added' - "multivariate_regression_preset_value_type": [ - "pvt_int", - "pvt_cat_int__EQ_2", - "pvt_added", - "pvt_flt", - "pvt_cat_int__EQ_1", - "pvt_drp", - "pvt_cat_flt__EQ_1.0", - "pvt_cat_int__EQ_2", - "pvt_cat_flt__EQ_1.0", - "pvt_int", - "pvt_cat_int__EQ_1", - "pvt_cat_flt__EQ_2.0", - "pvt_drp", - "pvt_cat_flt__EQ_2.0", - "pvt_flt", - "pvt_added", - None, - *([None] * 4), - *([None] * 9), - ], - "pvt_vals": [ - 0, - np.NaN, - 0, - 1.0, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - 1, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - 0.0, - 1, - None, - *([None] * 4), - *([None] * 9), - ], - "multivariate_regression_preset_value_type_is_inlier": [ - True, - None, - True, - True, - None, - None, - None, - None, - None, - True, - None, - None, - None, - None, - True, - True, - None, - *([None] * 4), - *([None] * 9), - ], - # Occurs on events MVR, values 'mrnp_vals'. - # Keys include: - # 'mrnp_flt', 'mrnp_int', 'mrnp_cat_int__EQ_1', 'mrnp_cat_int__EQ_2', 'mrnp_cat_int__EQ_3', - # 'mrnp_dropped' and 'mrnp_key_dropped' - # These should result in types float, int, categorical int, dropped, and 'mrnp_key_dropped' should be - # dropped wholesale. - # Event IDs - # *([1]*4 + [2]*4 + [3]*4 + [4]*5), - # ... after agg - # *([1]*8 + [2]*9), - # *([3]*2 + [4]*2), - "multivariate_regression_no_preset": [ - "mrnp_dropped", - "mrnp_flt", - "mrnp_flt", - "UNK", - "mrnp_int", - "mrnp_int", - "mrnp_cat_int__EQ_1", - "mrnp_cat_int__EQ_1", - "mrnp_cat_int__EQ_2", - "mrnp_cat_int__EQ_2", - "mrnp_cat_int__EQ_3", - "mrnp_cat_int__EQ_3", - "UNK", - "UNK", - "mrnp_flt", - "mrnp_dropped", - "mrnp_int", - *([None] * 4), - *([None] * 9), - ], - "mrnp_vals": [ - np.NaN, - 2.0, - np.NaN, - np.NaN, - np.NaN, - 2.0, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - 0.2, - np.NaN, - 0.0, - *([None] * 4), - *([None] * 9), - ], - "multivariate_regression_no_preset_is_inlier": [ - None, - True, - False, - None, - False, - True, - None, - None, - None, - None, - None, - None, - None, - None, - True, - None, - True, - *([None] * 4), - *([None] * 9), - ], - }, - schema={ - "measurement_id": pl.UInt8, - "event_id": pl.UInt8, - "dynamic_preset_vocab": pl.Categorical, - "dynamic_dropped_insufficient_occurrences": pl.Categorical, - "multivariate_regression_bounded_outliers": pl.Categorical, - "mrbo_vals": pl.Float64, - "multivariate_regression_bounded_outliers_is_inlier": pl.Boolean, - "multivariate_regression_preset_value_type": pl.Categorical, - "pvt_vals": pl.Float64, - "multivariate_regression_preset_value_type_is_inlier": pl.Boolean, - "multivariate_regression_no_preset": pl.Categorical, - "mrnp_vals": pl.Float64, - "multivariate_regression_no_preset_is_inlier": pl.Boolean, - }, -) - -# Events: -# 'subject_id': [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3], -# Measurements Idxmap -# event_type, dynamic_preset_vocab, multivariate_regression_bounded_outliers, -# multivariate_regression_no_preset, multivariate_regression_preset_value_type, static, -# time_dependent_age_all, time_dependent_age_lt_90, time_dependent_time_of_day, - -start_times = [want_event_times[1], want_event_times[6], want_event_times[10], None, None] -WANT_DL_REP_DF = pl.DataFrame( - { - "subject_id": [1, 2, 3, 4, 5], - "start_time": start_times, - "time": [ - [(want_event_times[i] - start_times[0]) / timedelta(minutes=1) for i in range(1, 6)], - [(want_event_times[i] - start_times[1]) / timedelta(minutes=1) for i in range(6, 10)], - [(want_event_times[i] - start_times[2]) / timedelta(minutes=1) for i in range(10, 14)], - None, - None, - ], - "static_indices": [ - [WANT_UNIFIED_VOCABULARY_IDXMAP["static"]["foo"]], - [WANT_UNIFIED_VOCABULARY_IDXMAP["static"]["foo"]], - [WANT_UNIFIED_VOCABULARY_IDXMAP["static"]["bar"]], - [WANT_UNIFIED_VOCABULARY_IDXMAP["static"]["bar"]], - [WANT_UNIFIED_VOCABULARY_IDXMAP["static"]["bar"]], - ], - "static_measurement_indices": [ - [WANT_MEASUREMENTS_IDXMAP["static"]], - [WANT_MEASUREMENTS_IDXMAP["static"]], - [WANT_MEASUREMENTS_IDXMAP["static"]], - [WANT_MEASUREMENTS_IDXMAP["static"]], - [WANT_MEASUREMENTS_IDXMAP["static"]], - ], - "dynamic_indices": [ - [ - [ - WANT_UNIFIED_VOCABULARY_IDXMAP["event_type"]["MVR"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_all"]["time_dependent_age_all"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_lt_90"]["time_dependent_age_lt_90"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_time_of_day"][want_event_TODs[1]], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_bounded_outliers"]["mrbo1"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["mrnp_dropped"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"]["pvt_int"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_bounded_outliers"]["mrbo3"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["mrnp_flt"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"][ - "pvt_cat_int__EQ_2" - ], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_bounded_outliers"]["mrbo2"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["mrnp_flt"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"]["pvt_added"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_bounded_outliers"]["mrbo1"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["UNK"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"]["pvt_flt"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_bounded_outliers"]["mrbo2"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["mrnp_int"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"][ - "pvt_cat_int__EQ_1" - ], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_bounded_outliers"]["mrbo1"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["mrnp_int"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"]["pvt_drp"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_bounded_outliers"]["mrbo3"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["mrnp_cat_int__EQ_1"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"][ - "pvt_cat_flt__EQ_1.0" - ], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_bounded_outliers"]["mrbo2"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["mrnp_cat_int__EQ_1"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"][ - "pvt_cat_int__EQ_2" - ], - ], - [ - WANT_UNIFIED_VOCABULARY_IDXMAP["event_type"]["DDIC"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_all"]["time_dependent_age_all"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_lt_90"]["time_dependent_age_lt_90"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_time_of_day"][want_event_TODs[2]], - ], - [ - WANT_UNIFIED_VOCABULARY_IDXMAP["event_type"]["DPV"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_all"]["time_dependent_age_all"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_lt_90"]["time_dependent_age_lt_90"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_time_of_day"][want_event_TODs[3]], - WANT_UNIFIED_VOCABULARY_IDXMAP["dynamic_preset_vocab"]["foo"], - ], - [ - WANT_UNIFIED_VOCABULARY_IDXMAP["event_type"]["DPV"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_all"]["time_dependent_age_all"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_lt_90"]["time_dependent_age_lt_90"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_time_of_day"][want_event_TODs[4]], - WANT_UNIFIED_VOCABULARY_IDXMAP["dynamic_preset_vocab"]["foo"], - ], - [ - WANT_UNIFIED_VOCABULARY_IDXMAP["event_type"]["DPV"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_all"]["time_dependent_age_all"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_lt_90"]["time_dependent_age_lt_90"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_time_of_day"][want_event_TODs[5]], - WANT_UNIFIED_VOCABULARY_IDXMAP["dynamic_preset_vocab"]["bar"], - ], - ], - [ - [ - WANT_UNIFIED_VOCABULARY_IDXMAP["event_type"]["MVR"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_all"]["time_dependent_age_all"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_lt_90"]["time_dependent_age_lt_90"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_time_of_day"][want_event_TODs[6]], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_bounded_outliers"]["mrbo3"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["mrnp_cat_int__EQ_2"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"][ - "pvt_cat_flt__EQ_1.0" - ], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_bounded_outliers"]["mrbo2"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["mrnp_cat_int__EQ_2"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"]["pvt_int"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_bounded_outliers"]["mrbo1"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["mrnp_cat_int__EQ_3"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"][ - "pvt_cat_int__EQ_1" - ], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_bounded_outliers"]["mrbo3"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["mrnp_cat_int__EQ_3"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"][ - "pvt_cat_flt__EQ_2.0" - ], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["UNK"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"]["pvt_drp"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["UNK"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"][ - "pvt_cat_flt__EQ_2.0" - ], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["mrnp_flt"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"]["pvt_flt"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["mrnp_dropped"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_preset_value_type"]["pvt_added"], - WANT_UNIFIED_VOCABULARY_IDXMAP["multivariate_regression_no_preset"]["mrnp_int"], - ], - [ - WANT_UNIFIED_VOCABULARY_IDXMAP["event_type"]["DDIC"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_all"]["time_dependent_age_all"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_lt_90"]["time_dependent_age_lt_90"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_time_of_day"][want_event_TODs[7]], - ], - [ - WANT_UNIFIED_VOCABULARY_IDXMAP["event_type"]["DPV"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_all"]["time_dependent_age_all"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_lt_90"]["time_dependent_age_lt_90"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_time_of_day"][want_event_TODs[8]], - WANT_UNIFIED_VOCABULARY_IDXMAP["dynamic_preset_vocab"]["bar"], - ], - [ - WANT_UNIFIED_VOCABULARY_IDXMAP["event_type"]["DPV"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_all"]["time_dependent_age_all"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_lt_90"]["time_dependent_age_lt_90"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_time_of_day"][want_event_TODs[9]], - WANT_UNIFIED_VOCABULARY_IDXMAP["dynamic_preset_vocab"]["bar"], - ], - ], - [ - [ - WANT_UNIFIED_VOCABULARY_IDXMAP["event_type"]["DPV"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_all"]["time_dependent_age_all"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_lt_90"]["time_dependent_age_lt_90"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_time_of_day"][want_event_TODs[10]], - WANT_UNIFIED_VOCABULARY_IDXMAP["dynamic_preset_vocab"]["UNK"], - ], - [ - WANT_UNIFIED_VOCABULARY_IDXMAP["event_type"]["DPV"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_all"]["time_dependent_age_all"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_lt_90"]["time_dependent_age_lt_90"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_time_of_day"][want_event_TODs[11]], - WANT_UNIFIED_VOCABULARY_IDXMAP["dynamic_preset_vocab"]["UNK"], - ], - [ - WANT_UNIFIED_VOCABULARY_IDXMAP["event_type"]["DPV"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_all"]["time_dependent_age_all"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_lt_90"]["time_dependent_age_lt_90"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_time_of_day"][want_event_TODs[12]], - WANT_UNIFIED_VOCABULARY_IDXMAP["dynamic_preset_vocab"]["foo"], - ], - [ - WANT_UNIFIED_VOCABULARY_IDXMAP["event_type"]["DPV"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_all"]["time_dependent_age_all"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_age_lt_90"]["time_dependent_age_lt_90"], - WANT_UNIFIED_VOCABULARY_IDXMAP["time_dependent_time_of_day"][want_event_TODs[13]], - WANT_UNIFIED_VOCABULARY_IDXMAP["dynamic_preset_vocab"]["foo"], - ], - ], - None, - None, - ], - "dynamic_measurement_indices": [ - [ - [ - WANT_MEASUREMENTS_IDXMAP["event_type"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_all"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_lt_90"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_time_of_day"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_bounded_outliers"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_bounded_outliers"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_bounded_outliers"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_bounded_outliers"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_bounded_outliers"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_bounded_outliers"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_bounded_outliers"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_bounded_outliers"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - ], - [ - WANT_MEASUREMENTS_IDXMAP["event_type"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_all"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_lt_90"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_time_of_day"], - ], - [ - WANT_MEASUREMENTS_IDXMAP["event_type"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_all"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_lt_90"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_time_of_day"], - WANT_MEASUREMENTS_IDXMAP["dynamic_preset_vocab"], - ], - [ - WANT_MEASUREMENTS_IDXMAP["event_type"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_all"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_lt_90"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_time_of_day"], - WANT_MEASUREMENTS_IDXMAP["dynamic_preset_vocab"], - ], - [ - WANT_MEASUREMENTS_IDXMAP["event_type"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_all"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_lt_90"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_time_of_day"], - WANT_MEASUREMENTS_IDXMAP["dynamic_preset_vocab"], - ], - ], - [ - [ - WANT_MEASUREMENTS_IDXMAP["event_type"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_all"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_lt_90"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_time_of_day"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_bounded_outliers"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_bounded_outliers"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_bounded_outliers"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_bounded_outliers"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_preset_value_type"], - WANT_MEASUREMENTS_IDXMAP["multivariate_regression_no_preset"], - ], - [ - WANT_MEASUREMENTS_IDXMAP["event_type"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_all"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_lt_90"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_time_of_day"], - ], - [ - WANT_MEASUREMENTS_IDXMAP["event_type"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_all"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_lt_90"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_time_of_day"], - WANT_MEASUREMENTS_IDXMAP["dynamic_preset_vocab"], - ], - [ - WANT_MEASUREMENTS_IDXMAP["event_type"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_all"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_lt_90"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_time_of_day"], - WANT_MEASUREMENTS_IDXMAP["dynamic_preset_vocab"], - ], - ], - [ - [ - WANT_MEASUREMENTS_IDXMAP["event_type"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_all"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_lt_90"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_time_of_day"], - WANT_MEASUREMENTS_IDXMAP["dynamic_preset_vocab"], - ], - [ - WANT_MEASUREMENTS_IDXMAP["event_type"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_all"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_lt_90"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_time_of_day"], - WANT_MEASUREMENTS_IDXMAP["dynamic_preset_vocab"], - ], - [ - WANT_MEASUREMENTS_IDXMAP["event_type"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_all"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_lt_90"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_time_of_day"], - WANT_MEASUREMENTS_IDXMAP["dynamic_preset_vocab"], - ], - [ - WANT_MEASUREMENTS_IDXMAP["event_type"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_all"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_age_lt_90"], - WANT_MEASUREMENTS_IDXMAP["time_dependent_time_of_day"], - WANT_MEASUREMENTS_IDXMAP["dynamic_preset_vocab"], - ], - ], - None, - None, - ], - "dynamic_values": [ - [ - [ - None, - want_events_ts_ages_all[1], - want_events_ts_ages_lt_90[1], - None, - np.NaN, - np.NaN, - 0, - 10.1, - 2.0, - np.NaN, - 5.1, - np.NaN, - 0, - 0.6, - np.NaN, - 1.0, - -0.1, - np.NaN, - np.NaN, - np.NaN, - 2.0, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - ], - [ - None, - want_events_ts_ages_all[2], - want_events_ts_ages_lt_90[2], - None, - ], - [ - None, - want_events_ts_ages_all[3], - want_events_ts_ages_lt_90[3], - None, - None, - ], - [ - None, - want_events_ts_ages_all[4], - want_events_ts_ages_lt_90[4], - None, - None, - ], - [ - None, - want_events_ts_ages_all[5], - want_events_ts_ages_lt_90[5], - None, - None, - ], - ], - [ - [ - None, - want_events_ts_ages_all[6], - want_events_ts_ages_lt_90[6], - None, - -0.1, - np.NaN, - np.NaN, - 0.1, - np.NaN, - 1, - 0.1, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - np.NaN, - 0.2, - 0.0, - np.NaN, - 1, - 0.0, - ], - [ - None, - want_events_ts_ages_all[7], - want_events_ts_ages_lt_90[7], - None, - ], - [ - None, - want_events_ts_ages_all[8], - want_events_ts_ages_lt_90[8], - None, - None, - ], - [ - None, - want_events_ts_ages_all[9], - want_events_ts_ages_lt_90[9], - None, - None, - ], - ], - [ - [ - None, - want_events_ts_ages_all[10], - want_events_ts_ages_lt_90[10], - None, - None, - ], - [ - None, - want_events_ts_ages_all[11], - want_events_ts_ages_lt_90[11], - None, - None, - ], - [ - None, - want_events_ts_ages_all[12], - want_events_ts_ages_lt_90[12], - None, - None, - ], - [ - None, - want_events_ts_ages_all[13], - want_events_ts_ages_lt_90[13], - None, - None, - ], - ], - None, - None, - ], - }, - schema={ - "subject_id": pl.UInt8, - "start_time": pl.Datetime, - "time": pl.List(pl.Float64), - "static_indices": pl.List(pl.UInt8), - "static_measurement_indices": pl.List(pl.UInt8), - "dynamic_indices": pl.List(pl.List(pl.UInt8)), - "dynamic_measurement_indices": pl.List(pl.List(pl.UInt8)), - "dynamic_values": pl.List(pl.List(pl.Float64)), - }, -).with_columns( - pl.when(pl.col("dynamic_indices").list.lengths() == 0) - .then(pl.lit(None)) - .otherwise(pl.col("dynamic_indices")) - .alias("dynamic_indices"), - pl.when(pl.col("dynamic_measurement_indices").list.lengths() == 0) - .then(pl.lit(None)) - .otherwise(pl.col("dynamic_measurement_indices")) - .alias("dynamic_measurement_indices"), - pl.when(pl.col("dynamic_values").list.lengths() == 0) - .then(pl.lit(None)) - .otherwise(pl.col("dynamic_values")) - .alias("dynamic_values"), -) - - -class TestDatasetEndToEnd(ConfigComparisonsMixin, unittest.TestCase): - def test_end_to_end(self): - E = ESDMock( - config=TEST_CONFIG, - subjects_df=IN_SUBJECTS_DF, - events_df=IN_EVENTS_DF, - dynamic_measurements_df=IN_MEASUREMENTS_DF, - ) - - E.split_subjects = TEST_SPLIT - - E.preprocess() - - self.assertNestedDictEqual( - WANT_INFERRED_MEASUREMENT_CONFIGS, E.inferred_measurement_configs, check_like=True - ) - self.assertEqual(WANT_SUBJECTS_DF, E.subjects_df) - self.assertEqual(WANT_EVENTS_DF, E.events_df) - self.assertEqual(WANT_MEASUREMENTS_DF, E.dynamic_measurements_df) - - self.assertEqual(WANT_EVENT_TYPES, E.event_types) - self.assertEqual(WANT_MEASUREMENTS_IDXMAP, E.unified_measurements_idxmap) - self.assertEqual(WANT_UNIFIED_VOCABULARY_OFFSETS, E.unified_vocabulary_offsets) - self.assertNestedDictEqual(WANT_UNIFIED_VOCABULARY_IDXMAP, E.unified_vocabulary_idxmap) - - got_DL_rep = E.build_DL_cached_representation(do_sort_outputs=True) - self.assertEqual(WANT_DL_REP_DF.drop("dynamic_values"), got_DL_rep.drop("dynamic_values")) - - exploded_expr = pl.col("dynamic_values").list.explode().list.explode().alias("dynamic_values") - want_expl = WANT_DL_REP_DF.select(exploded_expr) - got_expl = got_DL_rep.select(exploded_expr) - - self.assertEqual(want_expl, got_expl) - - with self.subTest("Caching a flat representation should run"): - with TemporaryDirectory() as d: - save_dir = Path(d) / "save_dir" - E.config.save_dir = save_dir - E.cache_flat_representation() - - # To-do: Produce expected flat output. - - with self.subTest("Save/load should work"): - with TemporaryDirectory() as d: - save_dir = Path(d) / "save_dir" - E.config.save_dir = save_dir - E.save() - - got_E = Dataset.load(save_dir) - - self.assertEqual(WANT_MEASUREMENTS_DF, got_E.dynamic_measurements_df) - self.assertEqual(WANT_EVENTS_DF, got_E.events_df) - self.assertEqual(WANT_SUBJECTS_DF, got_E.subjects_df) - - got_inferred_measurement_configs = got_E.inferred_measurement_configs - for v in got_inferred_measurement_configs.values(): - v.uncache_measurement_metadata() - - self.assertNestedDictEqual( - WANT_INFERRED_MEASUREMENT_CONFIGS, got_inferred_measurement_configs - ) diff --git a/tests/data/test_pytorch_dataset.py b/tests/data/test_pytorch_dataset.py index 342f5e18..defa2eff 100644 --- a/tests/data/test_pytorch_dataset.py +++ b/tests/data/test_pytorch_dataset.py @@ -2,25 +2,18 @@ sys.path.append("../..") -import copy import json import unittest -from dataclasses import asdict from datetime import datetime, timedelta from pathlib import Path from tempfile import TemporaryDirectory import numpy as np import polars as pl -import torch +from nested_ragged_tensors.ragged_numpy import JointNestedRaggedTensorDict -from EventStream.data.config import ( - MeasurementConfig, - PytorchDatasetConfig, - VocabularyConfig, -) +from EventStream.data.config import PytorchDatasetConfig, VocabularyConfig from EventStream.data.pytorch_dataset import PytorchDataset -from EventStream.data.types import PytorchBatch from ..utils import MLTypeEqualityCheckableMixin @@ -60,6 +53,9 @@ datetime(2000, 2, 1), ] ] +subj_1_event_time_deltas = [ + subj_1_event_times[i] - subj_1_event_times[i - 1] for i in range(1, len(subj_1_event_times)) +] + [float("nan")] subj_2_event_times = [ (t - start_times[1]) / timedelta(minutes=1) for t in [ @@ -67,6 +63,9 @@ datetime(2000, 1, 2), ] ] +subj_2_event_time_deltas = [ + subj_2_event_times[i] - subj_2_event_times[i - 1] for i in range(1, len(subj_2_event_times)) +] + [float("nan")] subj_3_event_times = [ (t - start_times[2]) / timedelta(minutes=1) for t in [ @@ -75,12 +74,16 @@ datetime(2001, 1, 1, 14), ] ] +subj_3_event_time_deltas = [ + subj_3_event_times[i] - subj_3_event_times[i - 1] for i in range(1, len(subj_3_event_times)) +] + [float("nan")] DL_REP_DF = pl.DataFrame( { "subject_id": [1, 2, 3, 4, 5], "start_time": start_times, - "time": [subj_1_event_times, subj_2_event_times, subj_3_event_times, None, None], + "time": [subj_1_event_times, subj_2_event_times, subj_3_event_times, [], []], + "time_delta": [subj_1_event_time_deltas, subj_2_event_time_deltas, subj_3_event_time_deltas, [], []], # 'static': ['foo', 'foo', 'bar', 'bar', 'bar'], "static_indices": [ [ @@ -137,8 +140,8 @@ ], [UNIFIED_VOCABULARY_IDXMAP["event_type"]["ET1"]], ], - None, - None, + [], + [], ], "dynamic_measurement_indices": [ [ @@ -172,21 +175,22 @@ ], [MEASUREMENTS_IDXMAP["event_type"]], ], - None, - None, + [], + [], ], "dynamic_values": [ - [[None, None, None, None], [None, 0.1, 0.3, 1.2], [None, np.NaN], [None]], + [[None, None, None, None], [None, 0.1, 0.3, 1.2], [None, float("nan")], [None]], [[None], [None, 0.2]], [[None], [None, None], [None]], - None, - None, + [], + [], ], }, schema={ "subject_id": pl.UInt8, "start_time": pl.Datetime, "time": pl.List(pl.Float64), + "time_delta": pl.List(pl.Float32), "static_indices": pl.List(pl.UInt64), "static_measurement_indices": pl.List(pl.UInt64), "dynamic_indices": pl.List(pl.List(pl.UInt64)), @@ -237,7 +241,7 @@ [MEASUREMENTS_IDXMAP["event_type"], MEASUREMENTS_IDXMAP["multivariate_regression"]], [MEASUREMENTS_IDXMAP["event_type"]], ], - "dynamic_values": [[None, None, None, None], [None, 0.1, 0.3, 1.2], [None, np.NaN], [None]], + "dynamic_values": [[None, None, None, None], [None, 0.1, 0.3, 1.2], [None, float("nan")], [None]], } WANT_SUBJ_2_UNCUT = { @@ -278,7 +282,7 @@ [MEASUREMENTS_IDXMAP["event_type"], MEASUREMENTS_IDXMAP["single_label_classification"]], [MEASUREMENTS_IDXMAP["event_type"]], ], - "dynamic_values": [None, None, None], + "dynamic_values": [[None], [None, None], [None]], } TASK_DF = pl.DataFrame( @@ -308,42 +312,65 @@ def get_seeded_start_index(seed, curr_len, max_seq_len): class TestPytorchDataset(MLTypeEqualityCheckableMixin, unittest.TestCase): - def get_pyd( - self, - split: str = "fake_split", - task_df: pl.DataFrame | None = None, - task_df_name: str = "fake_task", - vocabulary_config: VocabularyConfig = VocabularyConfig(), - measurement_configs: dict[str, MeasurementConfig] | None = None, - **config_kwargs, - ): - with TemporaryDirectory() as d: - save_dir = Path(d) + def setUp(self): + self.dir_obj = TemporaryDirectory() + self.path = Path(self.dir_obj.name) + + self.split = "fake_split" + + shards_fp = self.path / "DL_shards.json" + shards = { + f"{self.split}/0": list(set(DL_REP_DF["subject_id"].to_list())), + } + shards_fp.write_text(json.dumps(shards)) + + DL_fp = self.path / "DL_reps" / f"{self.split}/0.parquet" + DL_fp.parent.mkdir(parents=True, exist_ok=True) + DL_REP_DF.write_parquet(DL_fp) - DL_fp = save_dir / "DL_reps" / f"{split}.parquet" - DL_fp.parent.mkdir(parents=True, exist_ok=True) - DL_REP_DF.write_parquet(DL_fp) + NRT_fp = self.path / "NRT_reps" / f"{self.split}/0.pt" + NRT_fp.parent.mkdir(parents=True, exist_ok=True) - config_kwargs = {"save_dir": save_dir, **config_kwargs} - if task_df is not None: - config_kwargs["task_df_name"] = task_df_name + jnrt_dict = { + k: DL_REP_DF[k].to_list() + for k in ["time_delta", "dynamic_indices", "dynamic_measurement_indices"] + } + jnrt_dict["dynamic_values"] = ( + DL_REP_DF["dynamic_values"] + .list.eval(pl.element().list.eval(pl.element().fill_null(float("nan")))) + .to_list() + ) + jnrt_dict = JointNestedRaggedTensorDict(jnrt_dict) + jnrt_dict.save(NRT_fp) + + self.valid_task_name = "fake_task" - raw_task_df_fp = save_dir / "task_dfs" / f"{task_df_name}.parquet" - raw_task_df_fp.parent.mkdir(parents=True, exist_ok=True) - task_df.write_parquet(raw_task_df_fp) + raw_task_df_fp = self.path / "task_dfs" / f"{self.valid_task_name}.parquet" + raw_task_df_fp.parent.mkdir(parents=True, exist_ok=True) + TASK_DF.write_parquet(raw_task_df_fp, use_pyarrow=True) - vocabulary_config.to_json_file(save_dir / "vocabulary_config.json") + VocabularyConfig().to_json_file(self.path / "vocabulary_config.json") - if measurement_configs is None: - measurement_configs = {} + measurement_configs = {} - inferred_measurement_config_fp = save_dir / "inferred_measurement_configs.json" - with open(inferred_measurement_config_fp, mode="w") as f: - json.dump({k: v.to_dict() for k, v in measurement_configs.items()}, f) + inferred_measurement_config_fp = self.path / "inferred_measurement_configs.json" + with open(inferred_measurement_config_fp, mode="w") as f: + json.dump({k: v.to_dict() for k, v in measurement_configs.items()}, f) - config = PytorchDatasetConfig(**config_kwargs) + def tearDown(self): + self.dir_obj.cleanup() - pyd = PytorchDataset(config=config, split=split) + def get_pyd( + self, + task_df_name: str | None = None, + **config_kwargs, + ): + config_kwargs = {"save_dir": self.path, **config_kwargs} + if task_df_name is not None: + config_kwargs["task_df_name"] = task_df_name + + config = PytorchDatasetConfig(**config_kwargs) + pyd = PytorchDataset(config=config, split=self.split) return config, pyd def test_normalize_task(self): @@ -391,440 +418,17 @@ def test_normalize_task(self): got_vals = pl.DataFrame({"c": C["vals"]}).select(got_normalizer).get_column("c") want_vals = pl.DataFrame({"c": C["want_vals"]}).get_column("c") - self.assertEqual(want_vals.to_pandas(), got_vals.to_pandas()) + self.assertTrue( + (got_vals == want_vals).all(), + f"want_vals:\n{want_vals.to_pandas()}\ngot_vals:\n{got_vals.to_pandas()}", + ) def test_get_item_should_collate(self): - config, pyd = self.get_pyd(max_seq_len=4, min_seq_len=2) + _, pyd = self.get_pyd(max_seq_len=4, min_seq_len=2) items = [pyd._seeded_getitem(i, seed=1) for i in range(3)] pyd.collate(items) - def test_get_item(self): - cases = [ - { - "msg": "Should not cut sequences when not necessary.", - "max_seq_len": 4, - "min_seq_len": 2, - "want_items": [WANT_SUBJ_1_UNCUT, WANT_SUBJ_2_UNCUT, WANT_SUBJ_3_UNCUT], - }, - { - "msg": "Should cut sequences to max sequence length.", - "max_seq_len": 3, - "min_seq_len": 2, - "want_items": [WANT_SUBJ_1_UNCUT, WANT_SUBJ_2_UNCUT, WANT_SUBJ_3_UNCUT], - "want_start_idx": [get_seeded_start_index(1, 4, 3), 0, 0], - }, - { - "msg": "Should drop sequences that are too short.", - "max_seq_len": 4, - "min_seq_len": 3, - "want_items": [WANT_SUBJ_1_UNCUT, WANT_SUBJ_3_UNCUT], - }, - { - "msg": "Should re-set cached data based on task df", - "max_seq_len": 4, - "min_seq_len": 2, - "task_df": TASK_DF, - "want_items": [ - { - "binary": True, - "multi_class_int": 0, - "multi_class_cat": 0, - "regression": 1.2, - **WANT_SUBJ_1_UNCUT, - "time_delta": [ - t if i < (2 - 1) else 1 for i, t in enumerate(WANT_SUBJ_1_UNCUT["time_delta"]) - ], - }, - { - "binary": False, - "multi_class_int": 1, - "multi_class_cat": 0, - "regression": 3.2, - **WANT_SUBJ_3_UNCUT, - "time_delta": [ - t if i < (3 - 1) else 1 for i, t in enumerate(WANT_SUBJ_3_UNCUT["time_delta"]) - ], - }, - ], - "want_start_idx": [0, 1], - "want_end_idx": [2, 3], - }, - ] - time_dep_cols = [ - "time_delta", - "dynamic_indices", - "dynamic_values", - "dynamic_measurement_indices", - ] - - for C in cases: - get_pyd_kwargs = {"max_seq_len": C["max_seq_len"], "min_seq_len": C["min_seq_len"]} - if "task_df" in C: - get_pyd_kwargs.update({"task_df": C["task_df"]}) - - with self.subTest(C["msg"]): - config, pyd = self.get_pyd(**get_pyd_kwargs) - - self.assertEqual(len(C["want_items"]), len(pyd)) - - for i, it in enumerate(C["want_items"]): - it = copy.deepcopy(it) - st = C["want_start_idx"][i] if "want_start_idx" in C else 0 - end = C["want_end_idx"][i] if "want_end_idx" in C else st + C["max_seq_len"] - - want_it = {} - for k, v in it.items(): - want_it[k] = v[st:end] if k in time_dep_cols else v - - got_it = pyd._seeded_getitem(i, seed=1) - - self.assertNestedDictEqual( - want_it, got_it, msg=f"Item {i} does not match:\n{want_it}\n{got_it}." - ) - - def test_dynamic_collate_fn(self): - """collate_fn should appropriately combine two batches of ragged tensors.""" - config, pyd = self.get_pyd(seq_padding_side="right", max_seq_len=10) - pyd.do_produce_static_data = False - - subj_1 = { - "time_delta": [0.0, 24 * 60.0, 2 * 24 * 60.0, 3 * 24 * 60.0], - "dynamic_indices": [ - [1, 4], - [2, 7, 7, 7, 8, 8], - [1, 5], - [1, 4], - ], - "dynamic_values": [ - [np.NaN, np.NaN], - [np.NaN, 1, 2, 3, 4, 5], - [np.NaN, np.NaN], - [np.NaN, np.NaN], - ], - "dynamic_measurement_indices": [ - [1, 2], - [1, 3, 3, 3, 3, 3], - [1, 2], - [1, 2], - ], - } - subj_2 = { - "time_delta": [0.0, 5, 10], - "dynamic_indices": [ - [1, 4, 3], - [2, 7, 7, 7], - [1, 5], - ], - "dynamic_values": [ - [np.NaN, np.NaN, np.NaN], - [np.NaN, 8, 9, 10], - [np.NaN, np.NaN], - ], - "dynamic_measurement_indices": [ - [1, 2, 2], - [1, 3, 3, 3], - [1, 2], - ], - } - - batches = [subj_1, subj_2] - out = pyd.collate(batches) - - want_out = PytorchBatch( - **{ - "event_mask": torch.BoolTensor([[True, True, True, True], [True, True, True, False]]), - "dynamic_values_mask": torch.BoolTensor( - [ - [ - [False, False, False, False, False, False], - [False, True, True, True, True, True], - [False, False, False, False, False, False], - [False, False, False, False, False, False], - ], - [ - [False, False, False, False, False, False], - [False, True, True, True, False, False], - [False, False, False, False, False, False], - [False, False, False, False, False, False], - ], - ] - ), - "time_delta": torch.Tensor([[0.0, 24 * 60.0, 2 * 24 * 60.0, 3 * 24 * 60.0], [0, 5, 10, 0]]), - "dynamic_indices": torch.LongTensor( - [ - [ - [1, 4, 0, 0, 0, 0], - [2, 7, 7, 7, 8, 8], - [1, 5, 0, 0, 0, 0], - [1, 4, 0, 0, 0, 0], - ], - [ - [1, 4, 3, 0, 0, 0], - [2, 7, 7, 7, 0, 0], - [1, 5, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0], - ], - ] - ), - "dynamic_measurement_indices": torch.LongTensor( - [ - [ - [1, 2, 0, 0, 0, 0], - [1, 3, 3, 3, 3, 3], - [1, 2, 0, 0, 0, 0], - [1, 2, 0, 0, 0, 0], - ], - [ - [1, 2, 2, 0, 0, 0], - [1, 3, 3, 3, 0, 0], - [1, 2, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0], - ], - ] - ), - "dynamic_values": torch.nan_to_num( - torch.Tensor( - [ - [ - [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN], - [np.NaN, 1, 2, 3, 4, 5], - [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN], - [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN], - ], - [ - [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN], - [np.NaN, 8, 9, 10, np.NaN, np.NaN], - [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN], - [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN], - ], - ] - ), - 0, - ), - } - ) - - self.assertNestedDictEqual(asdict(want_out), asdict(out)) - - config, pyd = self.get_pyd(seq_padding_side="left", max_seq_len=10) - pyd.do_produce_static_data = False - - out = pyd.collate(batches) - - want_out = PytorchBatch( - **{ - "event_mask": torch.BoolTensor([[True, True, True, True], [False, True, True, True]]), - "dynamic_values_mask": torch.BoolTensor( - [ - [ - [False, False, False, False, False, False], - [False, True, True, True, True, True], - [False, False, False, False, False, False], - [False, False, False, False, False, False], - ], - [ - [False, False, False, False, False, False], - [False, False, False, False, False, False], - [False, True, True, True, False, False], - [False, False, False, False, False, False], - ], - ] - ), - "time_delta": torch.Tensor([[0.0, 24 * 60.0, 2 * 24 * 60.0, 3 * 24 * 60.0], [0, 0, 5, 10]]), - "dynamic_indices": torch.LongTensor( - [ - [ - [1, 4, 0, 0, 0, 0], - [2, 7, 7, 7, 8, 8], - [1, 5, 0, 0, 0, 0], - [1, 4, 0, 0, 0, 0], - ], - [ - [0, 0, 0, 0, 0, 0], - [1, 4, 3, 0, 0, 0], - [2, 7, 7, 7, 0, 0], - [1, 5, 0, 0, 0, 0], - ], - ] - ), - "dynamic_measurement_indices": torch.LongTensor( - [ - [ - [1, 2, 0, 0, 0, 0], - [1, 3, 3, 3, 3, 3], - [1, 2, 0, 0, 0, 0], - [1, 2, 0, 0, 0, 0], - ], - [ - [0, 0, 0, 0, 0, 0], - [1, 2, 2, 0, 0, 0], - [1, 3, 3, 3, 0, 0], - [1, 2, 0, 0, 0, 0], - ], - ] - ), - "dynamic_values": torch.nan_to_num( - torch.Tensor( - [ - [ - [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN], - [np.NaN, 1, 2, 3, 4, 5], - [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN], - [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN], - ], - [ - [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN], - [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN], - [np.NaN, 8, 9, 10, np.NaN, np.NaN], - [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN], - ], - ] - ), - 0, - ), - } - ) - - self.assertNestedDictEqual(asdict(want_out), asdict(out)) - - def test_collate_fn(self): - config, pyd = self.get_pyd(max_seq_len=4) - pyd.do_produce_static_data = True - - want_subj_event_ages = [ - [ - 1.0, - 1 + 1 / 365 + 14 / (24 * 365), - 1 + 2 / 365 + 10 / (24 * 365), - 1 + 3 / 365 + 23 / (24 * 365), - ], - [2 + 15 / (24 * 365), 2 + 1 / 365 + 2 / (24 * 365)], - ] - subj_1 = { - "time_delta": [0.0, (24 + 14) * 60.0, (2 * 24 + 10) * 60.0, (3 * 24 + 23) * 60.0], - "static_indices": [16], - "static_measurement_indices": [6], - "dynamic_indices": [ - [1, 7, 9, 11], - [2, 4, 4, 4, 5, 5, 9, 12], - [1, 8, 9, 13], - [1, 7, 9, 14], - ], - "dynamic_values": [ - [np.NaN, np.NaN, want_subj_event_ages[0][0], np.NaN], - [np.NaN, 1.0, 2.0, 3.0, 4.0, 5.0, want_subj_event_ages[0][1], np.NaN], - [np.NaN, np.NaN, want_subj_event_ages[0][2], np.NaN], - [np.NaN, np.NaN, want_subj_event_ages[0][3], np.NaN], - ], - "dynamic_measurement_indices": [ - [1, 3, 4, 5], - [1, 2, 2, 2, 2, 2, 4, 5], - [1, 3, 4, 5], - [1, 3, 4, 5], - ], - } - subj_2 = { - "time_delta": [0.0, 11 * 60.0], - "static_indices": [17], - "static_measurement_indices": [6], - "dynamic_indices": [ - [1, 7, 9, 12], - [2, 4, 5, 9, 11], - ], - "dynamic_values": [ - [np.NaN, np.NaN, want_subj_event_ages[1][0], np.NaN], - [np.NaN, 1.0, 5.0, want_subj_event_ages[1][1], np.NaN], - ], - "dynamic_measurement_indices": [ - [1, 3, 4, 5], - [1, 2, 2, 4, 5], - ], - } - - batches = [subj_1, subj_2] - out = pyd.collate(batches) - - want_out = PytorchBatch( - **{ - "event_mask": torch.BoolTensor([[True, True, True, True], [True, True, False, False]]), - "dynamic_values_mask": torch.BoolTensor( - [ - [ - [False, False, True, False, False, False, False, False], - [False, True, True, True, True, True, True, False], - [False, False, True, False, False, False, False, False], - [False, False, True, False, False, False, False, False], - ], - [ - [False, False, True, False, False, False, False, False], - [False, True, True, True, False, False, False, False], - [False, False, False, False, False, False, False, False], - [False, False, False, False, False, False, False, False], - ], - ] - ), - "time_delta": torch.Tensor( - [ - [0.0, (24 + 14) * 60.0, (2 * 24 + 10) * 60.0, (3 * 24 + 23) * 60.0], - [0.0, 11 * 60.0, 0.0, 0.0], - ] - ), - "dynamic_indices": torch.LongTensor( - [ - [ - [1, 7, 9, 11, 0, 0, 0, 0], - [2, 4, 4, 4, 5, 5, 9, 12], - [1, 8, 9, 13, 0, 0, 0, 0], - [1, 7, 9, 14, 0, 0, 0, 0], - ], - [ - [1, 7, 9, 12, 0, 0, 0, 0], - [2, 4, 5, 9, 11, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0], - ], - ] - ), - "dynamic_measurement_indices": torch.LongTensor( - [ - [ - [1, 3, 4, 5, 0, 0, 0, 0], - [1, 2, 2, 2, 2, 2, 4, 5], - [1, 3, 4, 5, 0, 0, 0, 0], - [1, 3, 4, 5, 0, 0, 0, 0], - ], - [ - [1, 3, 4, 5, 0, 0, 0, 0], - [1, 2, 2, 4, 5, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0], - ], - ] - ), - "dynamic_values": torch.Tensor( - [ - [ - [0, 0, want_subj_event_ages[0][0], 0, 0, 0, 0, 0], - [0, 1.0, 2.0, 3.0, 4.0, 5.0, want_subj_event_ages[0][1], 0], - [0, 0, want_subj_event_ages[0][2], 0, 0, 0, 0, 0], - [0, 0, want_subj_event_ages[0][3], 0, 0, 0, 0, 0], - ], - [ - [0, 0, want_subj_event_ages[1][0], 0, 0, 0, 0, 0], - [0, 1.0, 5.0, want_subj_event_ages[1][1], 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0], - ], - ] - ), - "static_indices": torch.LongTensor([[16], [17]]), - "static_measurement_indices": torch.LongTensor([[6], [6]]), - } - ) - - self.assertNestedDictEqual(asdict(want_out), asdict(out)) - if __name__ == "__main__": unittest.main() diff --git a/tests/test_e2e_runs.py b/tests/test_e2e_runs.py index f7252b78..b56a6970 100644 --- a/tests/test_e2e_runs.py +++ b/tests/test_e2e_runs.py @@ -30,7 +30,14 @@ def setUp(self): self.dir_objs = {} self.paths = {} - for n in ("dataset", "pretraining/CI", "pretraining/NA", "from_scratch_finetuning", "sklearn"): + for n in ( + "dataset", + "esds", + "pretraining/CI", + "pretraining/NA", + "from_scratch_finetuning", + "sklearn", + ): self.dir_objs[n] = TemporaryDirectory() self.paths[n] = Path(self.dir_objs[n].name) @@ -38,8 +45,16 @@ def tearDown(self): for o in self.dir_objs.values(): o.cleanup() - def _test_command(self, command_parts: list[str], case_name: str): - with self.subTest(case_name): + def _test_command(self, command_parts: list[str], case_name: str, use_subtest: bool = True): + if use_subtest: + with self.subTest(case_name): + command_out = subprocess.run(" ".join(command_parts), shell=True, capture_output=True) + stderr = command_out.stderr.decode() + stdout = command_out.stdout.decode() + self.assertEqual( + command_out.returncode, 0, f"Command errored!\nstderr:\n{stderr}\nstdout:\n{stdout}" + ) + else: command_out = subprocess.run(" ".join(command_parts), shell=True, capture_output=True) stderr = command_out.stderr.decode() stdout = command_out.stdout.decode() @@ -55,7 +70,16 @@ def build_dataset(self): '"hydra.searchpath=[./configs]"', f"save_dir={self.paths['dataset']}", ] - self._test_command(command_parts, "Build Dataset") + self._test_command(command_parts, "Build Dataset", use_subtest=False) + + def build_ESDS_dataset(self): + command_parts = [ + "./scripts/convert_to_ESDS.py", + f"dataset_dir={self.paths['dataset']}", + f"ESDS_save_dir={self.paths['esds']}", + "ESDS_chunk_size=25", + ] + self._test_command(command_parts, "Build ESDS Dataset", use_subtest=True) def run_pretraining(self): cases = [ @@ -83,7 +107,7 @@ def run_pretraining(self): f"save_dir={case['save_dir'] / 'model'}", ] - self._test_command(command_parts, case_name) + self._test_command(command_parts, case_name, use_subtest=False) def run_finetuning(self): """Tests that fine-tuning can be run on a pre-trained model.""" @@ -115,9 +139,6 @@ def run_from_scratch_training(self): ] self._test_command(command_parts, f"From-scratch NN Training: {task}") - def run_generate_trajectories(self): - raise NotImplementedError("Not done yet!") - def run_get_embeddings(self): task = "multi_class_classification" # Get embeddings is not sensitive to task. for get_embeddings_from in ("pretraining/NA", "pretraining/CI"): @@ -177,18 +198,19 @@ def make_command( "feature_selector": ( ( "esd_flat_feature_loader", - {"window_sizes": ["1h", "1d", "FULL"], "feature_inclusion_frequency": 1e-3}, + { + "window_sizes": ["1h", "1d", "FULL", "-1h", "-FULL"], + "feature_inclusion_frequency": 1e-3, + }, ), ), - "model": ("random_forest_classifier",), + "model": (("random_forest_classifier", {"n_estimators": 2}),), } for task in cfg_options.pop("task"): for cfg in dict_product(cfg_options): cmd = make_command(cfg, task) self._test_command(cmd, f"Sklearn for {' '.join(cmd)}") - break - break def run_zeroshot(self): classification_labeler_path = root / "sample_data" / "sample_classification_labeler.py" @@ -231,6 +253,7 @@ def build_FT_task_df(self): def test_e2e(self): # Data self.build_dataset() + self.build_ESDS_dataset() self.build_FT_task_df() # Sklearn baselines