diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index 3827e33..5b633d8 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -10,10 +10,11 @@ on: permissions: contents: write + pull-requests: write jobs: test: - name: Python ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} + name: Python ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} runs-on: ${{ matrix.os }} strategy: fail-fast: false @@ -23,14 +24,15 @@ jobs: os: - ubuntu-latest arch: - - x86 - x64 + - x86 steps: - - uses: actions/checkout@v2 + # Updated to v4 + - uses: actions/checkout@v4 - name: Set up Python ${{ matrix.version }} - uses: actions/setup-python@v2 + uses: actions/setup-python@v4 with: python-version: ${{ matrix.version }} @@ -40,8 +42,13 @@ jobs: pip install coverage pip install pytest pytest-cov pip install -r requirements.txt - - - name: Run tests + + - name: Configure Coverage Parallel Mode + run: | + echo '[run]' > .coveragerc + echo 'parallel = True' >> .coveragerc + + - name: Run tests (Parallel Data Collection) run: | export RANK=0 export LOCAL_RANK=0 @@ -49,20 +56,76 @@ jobs: export MASTER_ADDR=localhost export MASTER_PORT=12345 export PYTHONPATH=MCintegration - pytest --cov --cov-report=xml --ignore=examples + + # 使用 coverage run 运行 pytest 以确保多进程/多核测试数据的收集 + coverage run -m pytest --ignore=examples + + # 【调试步骤】列出所有 .coverage 文件,检查文件是否被正确生成 + - name: Debug Coverage Files + run: ls -F .coverage* + + # Updated to v4 + - name: Upload coverage data artifact + uses: actions/upload-artifact@v4 + with: + name: coverage-data-${{ matrix.os }}-${{ matrix.arch }} + # 确保匹配所有以点开头的覆盖率文件和配置文件 + path: | + .coverage* + .coveragerc + # 移除了 match-dot-files: true,因为 actions/upload-artifact@v4 不支持此输入 + + codecov: + name: Codecov Merge & Upload + runs-on: ubuntu-latest + needs: test + + steps: + # Updated to v4 + - uses: actions/checkout@v4 + - name: Set up Python + uses: actions/setup-python@v4 + with: + python-version: '3.12' + + - name: Install coverage (for combining) + run: pip install coverage + + # Updated to v4 + - name: Download all coverage data artifacts + uses: actions/download-artifact@v4 + with: + path: coverage-artifacts + + # 合并所有数据文件并生成最终 XML 报告 + - name: Combine and Report + run: | + # 移动所有数据文件到根目录,以便 coverage combine 找到 + # find 命令现在可以安全运行,因为 download-artifact 应该已创建目录 + find coverage-artifacts -name ".coverage*" -exec mv {} . \; + + # 合并所有 .coverage.* 文件,解决跨 Job 和多进程数据丢失问题 + coverage combine + + # 生成最终的 XML 报告 + coverage xml + + # 上传最终的合并报告 - name: Upload coverage to Codecov uses: codecov/codecov-action@v4 with: token: ${{ secrets.CODECOV_TOKEN }} - + files: ./coverage.xml + docs: name: Documentation runs-on: ubuntu-latest - needs: test + needs: codecov steps: - - uses: actions/checkout@v2 + # Updated to v4 + - uses: actions/checkout@v4 - name: Install dependencies run: | diff --git a/README.md b/README.md index bccdd05..2e7618c 100644 --- a/README.md +++ b/README.md @@ -2,3 +2,144 @@ [![alpha](https://img.shields.io/badge/docs-alpha-blue.svg)](https://numericaleft.github.io/MCintegration.py/) [![Build Status](https://github.com/numericalEFT/MCIntegration.py/workflows/CI/badge.svg)](https://github.com/numericalEFT/MCIntegration.py/actions) [![codecov](https://codecov.io/gh/numericalEFT/MCintegration.py/graph/badge.svg?token=851N2CNOTN)](https://codecov.io/gh/numericalEFT/MCintegration.py) +A Python library for Monte Carlo integration with support for multi-CPU and GPU computations. + +## Overview + +MCintegration is a specialized library designed for numerical integration using Monte Carlo methods. It provides efficient implementations of various integration algorithms with focus on applications in computational physics and effective field theories (EFT). + +The library offers: +- Multiple Monte Carlo integration algorithms +- Support for multi-CPU parallelization +- GPU acceleration capabilities +- Integration with PyTorch for tensor-based computations + +## Installation + +```bash +pip install mcintegration +``` + +Or install from source: + +```bash +python setup.py install +``` + +## Usage + +### Example 1: Unit Circle Integration + +This example demonstrates different Monte Carlo methods for integrating functions over [-1,1]×[-1,1]: + +```python +from MCintegration import MonteCarlo, MarkovChainMonteCarlo, Vegas +import torch + +# Define integrand function +def unit_circle(x, f): + r2 = x[:, 0]**2 + x[:, 1]**2 + f[:, 0] = (r2 <= 1).float() + return f.mean(dim=-1) + +# Set up integration parameters +dim = 2 +bounds = [(-1, 1)] * dim +n_eval = 6400000 +batch_size = 10000 +n_therm = 100 + +# Create integrator instances +mc = MonteCarlo(f=unit_circle, bounds=bounds, batch_size=batch_size) +mcmc = MarkovChainMonteCarlo(f=unit_circle, bounds=bounds, batch_size=batch_size, nburnin=n_therm) + +# Perform integration +result_mc = mc(n_eval) +result_mcmc = mcmc(n_eval) +``` + +### Example 2: Singular Function Integration + +This example shows integration of a function with a singularity at x=0: + +```python +# Integrate log(x)/sqrt(x) which has a singularity at x=0 +def singular_func(x, f): + f[:, 0] = torch.log(x[:, 0]) / torch.sqrt(x[:, 0]) + return f[:, 0] + +# Set up integration parameters +dim = 1 +bounds = [(0, 1)] +n_eval = 6400000 +batch_size = 10000 +n_therm = 100 + +# Use VEGAS algorithm which adapts to the singular structure +vegas_map = Vegas(dim, ninc=1000) +vegas_map.adaptive_training(batch_size, singular_func) + +# Create integrator instances using the adapted vegas map +vegas_mc = MonteCarlo(f=singular_func, bounds=bounds, batch_size=batch_size, maps=vegas_map) +vegas_mcmc = MarkovChainMonteCarlo(f=singular_func, bounds=bounds, batch_size=batch_size, nburnin=n_therm, maps=vegas_map) + +# Perform integration +result_vegas = vegas_mc(n_eval) +result_vegas_mcmc = vegas_mcmc(n_eval) +``` + +### Example 3: Multiple Sharp Peak Integrands in Higher Dimensions + +This example demonstrates integration of a sharp Gaussian peak and its moments in 4D space: + +```python +# Define a sharp peak and its moments integrands +# This represents a Gaussian peak centered at (0.5, 0.5, 0.5, 0.5) +def sharp_integrands(x, f): + f[:, 0] = torch.sum((x - 0.5) ** 2, dim=-1) # Distance from center + f[:, 0] *= -200 # Scale by width parameter + f[:, 0].exp_() # Exponentiate to create Gaussian + f[:, 1] = f[:, 0] * x[:, 0] # First moment + f[:, 2] = f[:, 0] * x[:, 0] ** 2 # Second moment + return f.mean(dim=-1) + +# Set up 4D integration with sharp peak +dim = 4 +bounds = [(0, 1)] * dim +n_eval = 6400000 +batch_size = 10000 +n_therm = 100 + +# Use VEGAS algorithm which adapts to the peak structure +vegas_map = Vegas(dim, ninc=1000) +vegas_map.adaptive_training(batch_size, sharp_integrands, f_dim=3) + +# Create integrator instances using the adapted vegas map +vegas_mc = MonteCarlo(f=sharp_integrands, f_dim=3, bounds=bounds, batch_size=batch_size, maps=vegas_map) +vegas_mcmc = MarkovChainMonteCarlo(f=sharp_integrands, f_dim=3, bounds=bounds, batch_size=batch_size, nburnin=n_therm, maps=vegas_map) + +# Perform integration +result_vegas = vegas_mc(n_eval) +result_vegas_mcmc = vegas_mcmc(n_eval) +``` + +## Features + +- **Base integration methods**: Core Monte Carlo algorithms in `MCintegration/base.py` +- **Integrator implementations**: Various MC integration strategies in `MCintegration/integrators.py` +- **Variable transformations**: Coordinate mapping utilities in `MCintegration/maps.py` +- **Utility functions**: Helper functions for numerical computations in `MCintegration/utils.py` +- **Multi-CPU support**: Parallel processing capabilities demonstrated in `MCintegration/mc_multicpu_test.py` +- **GPU acceleration**: CUDA-enabled functions through PyTorch in the examples directory + + +## Requirements + +- Python 3.7+ +- NumPy +- PyTorch +- gvar + +## Acknowledgements and Related Packages +The development of `MCIntegration.py` has been greatly inspired and influenced by `vegas` package. We would like to express our appreciation to the following: +- [vegas](https://github.com/gplepage/vegas) A Python package offering Monte Carlo estimations of multidimensional integrals, with notable improvements on the original Vegas algorithm. It's been a valuable reference for us. Learn more from the vegas [documentation](https://vegas.readthedocs.io/). **Reference: G. P. Lepage, J. Comput. Phys. 27, 192 (1978) and G. P. Lepage, J. Comput. Phys. 439, 110386 (2021) [arXiv:2009.05112](https://arxiv.org/abs/2009.05112)**. \ No newline at end of file diff --git a/codecov.yml b/codecov.yml index 7cdebbd..ec6cea4 100644 --- a/codecov.yml +++ b/codecov.yml @@ -7,4 +7,4 @@ coverage: target: 80% project: default: - target: 95% + target: 95% \ No newline at end of file diff --git a/license.md b/license.md new file mode 100644 index 0000000..b964bdf --- /dev/null +++ b/license.md @@ -0,0 +1,7 @@ +Copyright (c) 2025: Pengcheng Hou, Tao Wang, Caiyu Fan, and Kun Chen. + +Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. \ No newline at end of file