-
Notifications
You must be signed in to change notification settings - Fork 141
Description
Hi Jonathan, I have trained a model with generated sample by:
python3 extraction/produce_windowed_h5_tsv.py /data/datasets/wikipedia/en_train.tsv /data/datasets/wikipedia/en_train.h5 /data/datasets/wikipedia/en_dev.h5 --window_size 10 --validation_start 1000000 --total_size 200500000
and
python3 learning/train_type.py my_config.json --cudnn --fused --hidden_sizes 200 200 --batch_size 256 --max_epochs 10000 --name TypeClassifier --weight_noise 1e-6 --save_dir my_great_model --anneal_rate 0.9999 --device cpu --faux_cudnn.
I test the ambiguration on the blog example(with only split):
The man saw a Jaguar speed on the high way.
The prey saw the jaguar cross the jungle.
The ranking score is based on #15 only considering the type classifier.
The result I get is :
The man saw a Jaguar speed on the high way.
Without type: Jaguar Cars: 0.61 Jaguar 0.29 SEPECAT Jaguar 0.019
With type: Jaguar Cars: 0.67 Jaguar 0.31 SEPECAT Jaguar 0.020
The prey saw the jaguar cross the jungle.
Without type: Jaguar Cars: 0.61 Jaguar 0.29 SEPECAT Jaguar 0.019
With type: Jaguar Cars: 0.67 Jaguar 0.31 SEPECAT Jaguar 0.021
Compared to the post, probabilities without type are very close to the report. The probabilities with type are little off. I don't know whether it comes from the underfitting of the classifier model or I pick the wrong hyper parameters.