Skip to content

alpha in equation and how to select parameters in training type classifier #53

@yifding

Description

@yifding

Hi Jonathan, I have trained a model with generated sample by:
python3 extraction/produce_windowed_h5_tsv.py /data/datasets/wikipedia/en_train.tsv /data/datasets/wikipedia/en_train.h5 /data/datasets/wikipedia/en_dev.h5 --window_size 10 --validation_start 1000000 --total_size 200500000
and
python3 learning/train_type.py my_config.json --cudnn --fused --hidden_sizes 200 200 --batch_size 256 --max_epochs 10000 --name TypeClassifier --weight_noise 1e-6 --save_dir my_great_model --anneal_rate 0.9999 --device cpu --faux_cudnn.

I test the ambiguration on the blog example(with only split):
The man saw a Jaguar speed on the high way.
The prey saw the jaguar cross the jungle.

The ranking score is based on #15 only considering the type classifier.
The result I get is :
The man saw a Jaguar speed on the high way.
Without type: Jaguar Cars: 0.61 Jaguar 0.29 SEPECAT Jaguar 0.019
With type: Jaguar Cars: 0.67 Jaguar 0.31 SEPECAT Jaguar 0.020

The prey saw the jaguar cross the jungle.
Without type: Jaguar Cars: 0.61 Jaguar 0.29 SEPECAT Jaguar 0.019
With type: Jaguar Cars: 0.67 Jaguar 0.31 SEPECAT Jaguar 0.021

Compared to the post, probabilities without type are very close to the report. The probabilities with type are little off. I don't know whether it comes from the underfitting of the classifier model or I pick the wrong hyper parameters.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions