Skip to content

Commit b6dee67

Browse files
committed
Adding Wolfe Chapter 33, Particle Physics
1 parent 39d42fb commit b6dee67

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

55 files changed

+4087
-4
lines changed
Lines changed: 68 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,68 @@
1+
## DESCRIPTION
2+
# originally written by Caroline Promnitz and Sara Hesse, Brock University, 2018
3+
# cleaned up, added solution and re-written to use NumberWithUnits
4+
## ENDDESCRIPTION
5+
6+
## DBsubject(Particle)
7+
## DBchapter(Particle Physics)
8+
## DBsection(Yukawa Particle)
9+
## Date(December 2021)
10+
## Institution(Keele University)
11+
## Author(Boyd Duffee)
12+
## TitleText1('College Physics')
13+
## AuthorText1('Wolfe et. al')
14+
## EditionText1('2015')
15+
## Section1('33.1')
16+
## Problem1('1')
17+
## MO(1)
18+
## KEYWORDS('mass','force','particle','Heisenburg','uncertainty')
19+
20+
DOCUMENT();
21+
loadMacros(
22+
'PGstandard.pl',
23+
'parserNumberWithUnits.pl',
24+
);
25+
26+
TEXT(beginproblem());
27+
Context()->flags->set(tolerance => 0.005, zeroLevel => 1E-40, zeroLevelTol => 1E-42);
28+
29+
$showPartialCorrectAnswers = 1;
30+
31+
$h = Real( 4.14E-24); # GeV/Hz
32+
$E = Real( random(1, 20, 1)*1E14 ); # GeV/c^2
33+
$time = NumberWithUnits( $h/(4*$PI * $E), 's');
34+
35+
ANS( $time->cmp );
36+
37+
38+
Context()->texStrings;
39+
BEGIN_TEXT
40+
41+
A virtual particle having an approximate mass of \($E \ \rm GeV/c^2\)
42+
may be associated with the unification of the strong and electroweak forces.
43+
For what length of time could this virtual particle exist
44+
(in temporary violation of the conservation of mass-energy as allowed by
45+
the Heisenberg uncertainty principle)?
46+
$PAR
47+
\( t = \) \{ans_rule(15)\}
48+
49+
END_TEXT
50+
51+
52+
BEGIN_HINT
53+
Recall the mass-energy equivalence.
54+
END_HINT
55+
56+
BEGIN_SOLUTION
57+
$PAR $BBOLD SOLUTION $EBOLD $PAR
58+
59+
\( \displaystyle \Delta t = \frac{h}{4 \pi \Delta E}
60+
= \frac{$h \ \rm GeV/Hz}{4 \pi \ ($E \ \rm GeV/c^2)}
61+
= $time
62+
\)
63+
64+
END_SOLUTION
65+
66+
67+
COMMENT('Uses NumberWithUnits');
68+
ENDDOCUMENT();
Lines changed: 66 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,66 @@
1+
## DESCRIPTION
2+
# originally written by Caroline Promnitz and Sara Hesse, Brock University, 2018
3+
# cleaned up, added solution and re-written to use NumberWithUnits
4+
## ENDDESCRIPTION
5+
6+
## DBsubject(Particle)
7+
## DBchapter(Particle Physics)
8+
## DBsection(Yukawa Particle)
9+
## Date(December 2021)
10+
## Institution(Keele University)
11+
## Author(Boyd Duffee)
12+
## TitleText1('College Physics')
13+
## AuthorText1('Wolfe et. al')
14+
## EditionText1('2015')
15+
## Section1('33.1')
16+
## Problem1('2')
17+
## MO(1)
18+
## KEYWORDS('particle','Heisenburg','uncertainty','mass')
19+
20+
DOCUMENT();
21+
loadMacros(
22+
'PGstandard.pl',
23+
'parserNumberWithUnits.pl',
24+
);
25+
26+
TEXT(beginproblem());
27+
Context()->flags->set(tolerance => 0.005, zeroLevel => 1E-32, zeroLevelTol => 1E-34);
28+
29+
$showPartialCorrectAnswers = 1;
30+
31+
$c = NumberWithUnits( 2.998E8, 'm*s^-1');
32+
$h = Real( 4.14E-24); # GeV/Hz
33+
$d = NumberWithUnits( random(1, 200, 1)*1E-31, 'm');
34+
$mass = Real( $h * $c->value / (4*$PI * $d->value) );
35+
36+
ANS( $mass->cmp );
37+
38+
39+
Context()->texStrings;
40+
BEGIN_TEXT
41+
42+
Calculate the mass in \(\rm GeV/c^2\) of a virtual carrier particle that has a range
43+
limited to \($d\) by the Heisenberg uncertainty principle.
44+
Such a particle might be involved in the unification of the strong and electroweak forces.
45+
$PAR
46+
\( m = \) \{ans_rule(20)\} \(\rm GeV/c^2\)
47+
48+
END_TEXT
49+
50+
51+
BEGIN_HINT
52+
In what way is time related to speed
53+
END_HINT
54+
55+
BEGIN_SOLUTION
56+
$PAR $BBOLD SOLUTION $EBOLD $PAR
57+
58+
\( \displaystyle m = \frac{h c}{4 \pi d}
59+
= \rm \frac{($h \ GeV/Hz)($c)}{4 \pi \ ($d)}
60+
= $mass \ GeV/c^2
61+
\)
62+
63+
END_SOLUTION
64+
65+
66+
ENDDOCUMENT();
Lines changed: 67 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,67 @@
1+
## DESCRIPTION
2+
# originally written by Caroline Promnitz, Brock University, 2018
3+
# cleaned up, added solution and re-written to use NumberWithUnits
4+
## ENDDESCRIPTION
5+
6+
## DBsubject(Particle)
7+
## DBchapter(Particle Physics)
8+
## DBsection(Yukawa Particle)
9+
## Date(December 2021)
10+
## Institution(Keele University)
11+
## Author(Boyd Duffee)
12+
## TitleText1('College Physics')
13+
## AuthorText1('Wolfe et. al')
14+
## EditionText1('2015')
15+
## Section1('33.1')
16+
## Problem1('3')
17+
## MO(1)
18+
## KEYWORDS('nuclear','mesons','mass')
19+
20+
DOCUMENT();
21+
loadMacros(
22+
'PGstandard.pl',
23+
'parserNumberWithUnits.pl',
24+
);
25+
26+
TEXT(beginproblem());
27+
Context()->flags->set(tolerance => 0.005, zeroLevel => 1E-30, zeroLevelTol => 1E-32);
28+
29+
$showPartialCorrectAnswers = 1;
30+
31+
$c = NumberWithUnits( 2.998E8, 'm*s^-1');
32+
$h = Real( 4.14E-24); # GeV/Hz
33+
34+
$mass = random(421, 500, 1); # MeV/c^2
35+
$d = Real( $h * $c/(4*$PI * $mass/1000) *1E15); # fm
36+
37+
ANS( $d->cmp );
38+
39+
40+
Context()->texStrings;
41+
BEGIN_TEXT
42+
43+
Another component of the strong nuclear force is transmitted by the exchange of
44+
virtual K-mesons. Taking K-mesons to have an average mass of \($mass \ \rm MeV/c^2\),
45+
what is the approximate range of this component of the strong force?
46+
$PAR
47+
\( d = \) \{ans_rule(20)\} \(\textrm{fm}\)
48+
49+
END_TEXT
50+
51+
52+
BEGIN_HINT
53+
Make appropriate unit conversions.
54+
END_HINT
55+
56+
BEGIN_SOLUTION
57+
$PAR $BBOLD SOLUTION $EBOLD $PAR
58+
59+
\( \displaystyle d = \frac{h c}{4 \pi m}
60+
= \rm \frac{($h \ GeV/Hz)($c)}{4 \pi \ ($mass \ Mev/c^2)}
61+
= $d \ fm
62+
\)
63+
64+
END_SOLUTION
65+
66+
67+
ENDDOCUMENT();
Lines changed: 61 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,61 @@
1+
## DESCRIPTION
2+
# originally written by Caroline Promnitz, Brock University, 2018
3+
# cleaned up, added solution and re-written to use NumberWithUnits
4+
## ENDDESCRIPTION
5+
6+
## DBsubject(Particle)
7+
## DBchapter(Particle Physics)
8+
## DBsection(Four Basic Forces)
9+
## Date(December 2021)
10+
## Institution(Keele University)
11+
## Author(Boyd Duffee)
12+
## TitleText1('College Physics')
13+
## AuthorText1('Wolfe et. al')
14+
## EditionText1('2015')
15+
## Section1('33.2')
16+
## Problem1('4')
17+
## MO(1)
18+
## Static(1)
19+
## KEYWORDS('electromagnetic','nuclear','force')
20+
21+
DOCUMENT();
22+
loadMacros(
23+
'PGstandard.pl',
24+
'parserNumberWithUnits.pl',
25+
);
26+
27+
TEXT(beginproblem());
28+
Context()->flags->set( tolerance => 0.005 );
29+
30+
$showPartialCorrectAnswers = 1;
31+
32+
$ratio = Real( 1E-11 );
33+
ANS( $ratio->cmp );
34+
35+
36+
Context()->texStrings;
37+
BEGIN_TEXT
38+
39+
Find the ratio of the strengths of the weak and electromagnetic forces under
40+
ordinary circumstances.
41+
$PAR
42+
\{ans_rule(20)\}
43+
44+
END_TEXT
45+
46+
47+
BEGIN_HINT
48+
Use OpenStax College Physics to find the values required to solve this problem.
49+
END_HINT
50+
51+
BEGIN_SOLUTION
52+
$PAR $BBOLD SOLUTION $EBOLD $PAR
53+
54+
Using the values in Table 33.1 of OpenStax College Physics (Wolfe 2015),
55+
$PAR
56+
ratio \( \displaystyle = \frac{10^{-13}}{10^{-2}} = $ratio \)
57+
58+
END_SOLUTION
59+
60+
61+
ENDDOCUMENT();
Lines changed: 73 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,73 @@
1+
## DESCRIPTION
2+
# originally written by Caroline Promnitz, Brock University, 2018
3+
# cleaned up, added solution and re-written to use NumberWithUnits
4+
## ENDDESCRIPTION
5+
6+
## DBsubject(Particle)
7+
## DBchapter(Particle Physics)
8+
## DBsection(Four Basic Forces)
9+
## Date(December 2021)
10+
## Institution(Keele University)
11+
## Author(Boyd Duffee)
12+
## TitleText1('College Physics')
13+
## AuthorText1('Wolfe et. al')
14+
## EditionText1('2015')
15+
## Section1('33.2')
16+
## Problem1('5')
17+
## MO(1)
18+
## Static(1)
19+
## KEYWORDS('nuclear','electromagnetic','weak','strong','force')
20+
21+
DOCUMENT();
22+
loadMacros(
23+
'PGstandard.pl',
24+
'parserNumberWithUnits.pl',
25+
);
26+
27+
TEXT(beginproblem());
28+
Context()->flags->set(tolerance => 0.005, zeroLevel => 1E-20, zeroLevelTol => 1E-22);
29+
30+
$showPartialCorrectAnswers = 1;
31+
32+
$em = Real( 1E-2 );
33+
$w = Real( 1E-13 );
34+
$SE = 1/$em;
35+
$SW = 1/$w;
36+
37+
ANS( $SW->cmp );
38+
ANS( $SE->cmp );
39+
40+
41+
Context()->texStrings;
42+
BEGIN_TEXT
43+
44+
The ratio of the strong to the weak force and the ratio of the strong force to the
45+
electromagnetic force become \(1\) under circumstances where they are unified. What
46+
are the ratios of the strong force to those two forces under normal circumstances?
47+
$PAR
48+
\(\textrm{Weak force}\) = \{ans_rule(40)\} \(\textrm{to 1}\)
49+
50+
$PAR
51+
\(\textrm{Electromagnetic force}\) = \{ans_rule(40)\} \(\textrm{to 1}\)
52+
53+
END_TEXT
54+
55+
56+
BEGIN_HINT
57+
Consider the relative strengths of the forces in question.
58+
END_HINT
59+
60+
BEGIN_SOLUTION
61+
$PAR $BBOLD SOLUTION $EBOLD $PAR
62+
63+
From the values in Table 33.1 of OpenStax College Physics,
64+
$PAR
65+
\(\textrm{Weak force} = \frac{1}{$w} = $SW \textrm{ to 1}\)
66+
67+
$PAR
68+
\(\textrm{Electromagnetic force} = \frac{1}{$em} = $SE \textrm{ to 1}\)
69+
70+
END_SOLUTION
71+
72+
73+
ENDDOCUMENT();

0 commit comments

Comments
 (0)