-
-
Notifications
You must be signed in to change notification settings - Fork 19.2k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
s = pd.Series([10, 20, 30], index=list('abc'), dtype=np.uint8)
s.loc['a':'b'] = [100, 200]
print(s.dtype)
>>>
int32
s = pd.Series([10, 20, 30], index=list('abc'), dtype=np.uint8)
s.loc[['a', 'b']] = [100, 200]
print(s.dtype)
>>>
int32
s = pd.Series([10, 20, 30], index=list('abc'), dtype=np.uint8)
s.iloc[0:2] = [100, 200]
print(s.dtype)
>>>
int32
s = pd.Series([10, 20, 30], index=list('abc'), dtype=np.uint8)
s.iloc[[0, 1]] = [100, 200]
print(s.dtype)
>>>
int32
s = pd.Series([10, 20, 30], index=list('abc'), dtype=np.uint8)
s.loc[:] = [100, 200, 300]
print(s.dtype)
>>>
int32Issue Description
Assigning with loc is supposed to always assign in-place. However, in all the given examples, the Series dtype is changed on the assingment, which should not be the case.
Expected Behavior
On each given assignment, the dtype must remains uint8
Installed Versions
INSTALLED VERSIONS
commit : 37ea63d
python : 3.11.2.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19044
machine : AMD64
processor : Intel64 Family 6 Model 140 Stepping 1, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : fr_FR.cp1252
pandas : 2.0.1
numpy : 1.23.5
pytz : 2022.7
dateutil : 2.8.2
setuptools : 65.6.3
pip : 23.0.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.1
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.10.0
pandas_datareader: None
bs4 : 4.12.0
bottleneck : 1.3.5
brotli :
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.7.1
numba : None
numexpr : 2.8.4
odfpy : None
openpyxl : 3.0.10
pandas_gbq : None
pyarrow : 10.0.1
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.10.0
snappy : None
sqlalchemy : None
tables : None
tabulate : 0.8.10
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : 2.2.0
pyqt5 : None