diff --git a/doc/source/user_guide/duplicates.rst b/doc/source/user_guide/duplicates.rst
index 7894789846ce8..9aef38d868374 100644
--- a/doc/source/user_guide/duplicates.rst
+++ b/doc/source/user_guide/duplicates.rst
@@ -109,8 +109,6 @@ with the same label.
Disallowing Duplicate Labels
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-.. versionadded:: 1.2.0
-
As noted above, handling duplicates is an important feature when reading in raw
data. That said, you may want to avoid introducing duplicates as part of a data
processing pipeline (from methods like :meth:`pandas.concat`,
diff --git a/doc/source/user_guide/groupby.rst b/doc/source/user_guide/groupby.rst
index 4ec34db6ed959..552f6a0699340 100644
--- a/doc/source/user_guide/groupby.rst
+++ b/doc/source/user_guide/groupby.rst
@@ -1264,8 +1264,6 @@ with
Numba accelerated routines
--------------------------
-.. versionadded:: 1.1
-
If `Numba `__ is installed as an optional dependency, the ``transform`` and
``aggregate`` methods support ``engine='numba'`` and ``engine_kwargs`` arguments.
See :ref:`enhancing performance with Numba ` for general usage of the arguments
diff --git a/doc/source/user_guide/io.rst b/doc/source/user_guide/io.rst
index 3f59ad2faae08..972fe9d05df09 100644
--- a/doc/source/user_guide/io.rst
+++ b/doc/source/user_guide/io.rst
@@ -158,12 +158,6 @@ dtype : Type name or dict of column -> type, default ``None``
and not interpret dtype. If converters are specified, they will be applied INSTEAD
of dtype conversion.
- .. versionadded:: 1.5.0
-
- Support for defaultdict was added. Specify a defaultdict as input where
- the default determines the dtype of the columns which are not explicitly
- listed.
-
dtype_backend : {"numpy_nullable", "pyarrow"}, defaults to NumPy backed DataFrames
Which dtype_backend to use, e.g. whether a DataFrame should have NumPy
arrays, nullable dtypes are used for all dtypes that have a nullable
@@ -177,12 +171,8 @@ dtype_backend : {"numpy_nullable", "pyarrow"}, defaults to NumPy backed DataFram
engine : {``'c'``, ``'python'``, ``'pyarrow'``}
Parser engine to use. The C and pyarrow engines are faster, while the python engine
is currently more feature-complete. Multithreading is currently only supported by
- the pyarrow engine.
-
- .. versionadded:: 1.4.0
-
- The "pyarrow" engine was added as an *experimental* engine, and some features
- are unsupported, or may not work correctly, with this engine.
+ the pyarrow engine.The "pyarrow" engine was added as an *experimental* engine,
+ and some features are unsupported, or may not work correctly, with this engine.
converters : dict, default ``None``
Dict of functions for converting values in certain columns. Keys can either be
integers or column labels.
@@ -357,8 +347,6 @@ on_bad_lines : {{'error', 'warn', 'skip'}}, default 'error'
- 'warn', print a warning when a bad line is encountered and skip that line.
- 'skip', skip bad lines without raising or warning when they are encountered.
- .. versionadded:: 1.3.0
-
.. _io.dtypes:
Specifying column data types
@@ -937,8 +925,6 @@ DD/MM/YYYY instead. For convenience, a ``dayfirst`` keyword is provided:
Writing CSVs to binary file objects
+++++++++++++++++++++++++++++++++++
-.. versionadded:: 1.2.0
-
``df.to_csv(..., mode="wb")`` allows writing a CSV to a file object
opened binary mode. In most cases, it is not necessary to specify
``mode`` as pandas will auto-detect whether the file object is
@@ -1124,8 +1110,6 @@ You can elect to skip bad lines:
data = "a,b,c\n1,2,3\n4,5,6,7\n8,9,10"
pd.read_csv(StringIO(data), on_bad_lines="skip")
-.. versionadded:: 1.4.0
-
Or pass a callable function to handle the bad line if ``engine="python"``.
The bad line will be a list of strings that was split by the ``sep``:
@@ -1553,8 +1537,6 @@ functions - the following example shows reading a CSV file:
df = pd.read_csv("https://download.bls.gov/pub/time.series/cu/cu.item", sep="\t")
-.. versionadded:: 1.3.0
-
A custom header can be sent alongside HTTP(s) requests by passing a dictionary
of header key value mappings to the ``storage_options`` keyword argument as shown below:
@@ -1606,8 +1588,6 @@ More sample configurations and documentation can be found at `S3Fs documentation
If you do *not* have S3 credentials, you can still access public
data by specifying an anonymous connection, such as
-.. versionadded:: 1.2.0
-
.. code-block:: python
pd.read_csv(
@@ -2541,8 +2521,6 @@ Links can be extracted from cells along with the text using ``extract_links="all
df[("GitHub", None)]
df[("GitHub", None)].str[1]
-.. versionadded:: 1.5.0
-
.. _io.html:
Writing to HTML files
@@ -2732,8 +2710,6 @@ parse HTML tables in the top-level pandas io function ``read_html``.
LaTeX
-----
-.. versionadded:: 1.3.0
-
Currently there are no methods to read from LaTeX, only output methods.
Writing to LaTeX files
@@ -2772,8 +2748,6 @@ XML
Reading XML
'''''''''''
-.. versionadded:: 1.3.0
-
The top-level :func:`~pandas.io.xml.read_xml` function can accept an XML
string/file/URL and will parse nodes and attributes into a pandas ``DataFrame``.
@@ -3099,8 +3073,6 @@ supports parsing such sizeable files using `lxml's iterparse`_ and `etree's iter
which are memory-efficient methods to iterate through an XML tree and extract specific elements and attributes.
without holding entire tree in memory.
-.. versionadded:: 1.5.0
-
.. _`lxml's iterparse`: https://lxml.de/3.2/parsing.html#iterparse-and-iterwalk
.. _`etree's iterparse`: https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.iterparse
@@ -3139,8 +3111,6 @@ of reading in Wikipedia's very large (12 GB+) latest article data dump.
Writing XML
'''''''''''
-.. versionadded:: 1.3.0
-
``DataFrame`` objects have an instance method ``to_xml`` which renders the
contents of the ``DataFrame`` as an XML document.
diff --git a/doc/source/user_guide/reshaping.rst b/doc/source/user_guide/reshaping.rst
index bc5a2d5ed5735..30dac01fa5985 100644
--- a/doc/source/user_guide/reshaping.rst
+++ b/doc/source/user_guide/reshaping.rst
@@ -478,8 +478,6 @@ The values can be cast to a different type using the ``dtype`` argument.
pd.get_dummies(df, dtype=np.float32).dtypes
-.. versionadded:: 1.5.0
-
:func:`~pandas.from_dummies` converts the output of :func:`~pandas.get_dummies` back into
a :class:`Series` of categorical values from indicator values.
diff --git a/doc/source/user_guide/text.rst b/doc/source/user_guide/text.rst
index 11d5ab86e76ef..ee284c85fdc88 100644
--- a/doc/source/user_guide/text.rst
+++ b/doc/source/user_guide/text.rst
@@ -335,8 +335,6 @@ regular expression object will raise a ``ValueError``.
``removeprefix`` and ``removesuffix`` have the same effect as ``str.removeprefix`` and ``str.removesuffix`` added in
`Python 3.9 `__:
-.. versionadded:: 1.4.0
-
.. ipython:: python
s = pd.Series(["str_foo", "str_bar", "no_prefix"])
diff --git a/doc/source/user_guide/timeseries.rst b/doc/source/user_guide/timeseries.rst
index 6a66c30cffbf0..72b40982abb0c 100644
--- a/doc/source/user_guide/timeseries.rst
+++ b/doc/source/user_guide/timeseries.rst
@@ -1964,8 +1964,6 @@ Note the use of ``'start'`` for ``origin`` on the last example. In that case, ``
Backward resample
~~~~~~~~~~~~~~~~~
-.. versionadded:: 1.3.0
-
Instead of adjusting the beginning of bins, sometimes we need to fix the end of the bins to make a backward resample with a given ``freq``. The backward resample sets ``closed`` to ``'right'`` by default since the last value should be considered as the edge point for the last bin.
We can set ``origin`` to ``'end'``. The value for a specific ``Timestamp`` index stands for the resample result from the current ``Timestamp`` minus ``freq`` to the current ``Timestamp`` with a right close.
diff --git a/doc/source/user_guide/visualization.rst b/doc/source/user_guide/visualization.rst
index 4b5cdca23103c..3687ca7448f34 100644
--- a/doc/source/user_guide/visualization.rst
+++ b/doc/source/user_guide/visualization.rst
@@ -649,8 +649,6 @@ each point:
If a categorical column is passed to ``c``, then a discrete colorbar will be produced:
-.. versionadded:: 1.3.0
-
.. ipython:: python
@savefig scatter_plot_categorical.png
diff --git a/doc/source/user_guide/window.rst b/doc/source/user_guide/window.rst
index 5b27442c80bb8..22eb1d4c026cf 100644
--- a/doc/source/user_guide/window.rst
+++ b/doc/source/user_guide/window.rst
@@ -76,9 +76,6 @@ which will first group the data by the specified keys and then perform a windowi
`__ is used
to compute the rolling sums to preserve accuracy as much as possible.
-
-.. versionadded:: 1.3.0
-
Some windowing operations also support the ``method='table'`` option in the constructor which
performs the windowing operation over an entire :class:`DataFrame` instead of a single column at a time.
This can provide a useful performance benefit for a :class:`DataFrame` with many columns
@@ -100,8 +97,6 @@ be calculated with :meth:`~Rolling.apply` by specifying a separate column of wei
df = pd.DataFrame([[1, 2, 0.6], [2, 3, 0.4], [3, 4, 0.2], [4, 5, 0.7]])
df.rolling(2, method="table", min_periods=0).apply(weighted_mean, raw=True, engine="numba") # noqa: E501
-.. versionadded:: 1.3
-
Some windowing operations also support an ``online`` method after constructing a windowing object
which returns a new object that supports passing in new :class:`DataFrame` or :class:`Series` objects
to continue the windowing calculation with the new values (i.e. online calculations).
@@ -182,8 +177,6 @@ By default the labels are set to the right edge of the window, but a
This can also be applied to datetime-like indices.
-.. versionadded:: 1.3.0
-
.. ipython:: python
df = pd.DataFrame(
@@ -363,11 +356,8 @@ Numba will be applied in potentially two routines:
The ``engine_kwargs`` argument is a dictionary of keyword arguments that will be passed into the
`numba.jit decorator `__.
These keyword arguments will be applied to *both* the passed function (if a standard Python function)
-and the apply for loop over each window.
-
-.. versionadded:: 1.3.0
-
-``mean``, ``median``, ``max``, ``min``, and ``sum`` also support the ``engine`` and ``engine_kwargs`` arguments.
+and the apply for loop over each window. ``mean``, ``median``, ``max``, ``min``, and ``sum``
+also support the ``engine`` and ``engine_kwargs`` arguments.
.. _window.cov_corr:
diff --git a/pandas/_testing/asserters.py b/pandas/_testing/asserters.py
index 3f95997bb84f4..160c362d0dbc1 100644
--- a/pandas/_testing/asserters.py
+++ b/pandas/_testing/asserters.py
@@ -931,14 +931,10 @@ def assert_series_equal(
assertion message.
check_index : bool, default True
Whether to check index equivalence. If False, then compare only values.
-
- .. versionadded:: 1.3.0
check_like : bool, default False
If True, ignore the order of the index. Must be False if check_index is False.
Note: same labels must be with the same data.
- .. versionadded:: 1.5.0
-
See Also
--------
testing.assert_index_equal : Check that two Indexes are equal.
diff --git a/pandas/core/algorithms.py b/pandas/core/algorithms.py
index b977e998b82a4..6bc3e04f576ec 100644
--- a/pandas/core/algorithms.py
+++ b/pandas/core/algorithms.py
@@ -698,8 +698,7 @@ def factorize(
NaN values will be encoded as non-negative integers and will not drop the
NaN from the uniques of the values.
- .. versionadded:: 1.5.0
- {size_hint}\
+ {size_hint}
Returns
-------
@@ -731,7 +730,7 @@ def factorize(
``pd.factorize(values)``. The results are identical for methods like
:meth:`Series.factorize`.
- >>> codes, uniques = pd.factorize(np.array(['b', 'b', 'a', 'c', 'b'], dtype="O"))
+ >>> codes, uniques = pd.factorize(np.array(["b", "b", "a", "c", "b"], dtype="O"))
>>> codes
array([0, 0, 1, 2, 0])
>>> uniques
@@ -740,8 +739,9 @@ def factorize(
With ``sort=True``, the `uniques` will be sorted, and `codes` will be
shuffled so that the relationship is the maintained.
- >>> codes, uniques = pd.factorize(np.array(['b', 'b', 'a', 'c', 'b'], dtype="O"),
- ... sort=True)
+ >>> codes, uniques = pd.factorize(
+ ... np.array(["b", "b", "a", "c", "b"], dtype="O"), sort=True
+ ... )
>>> codes
array([1, 1, 0, 2, 1])
>>> uniques
@@ -751,7 +751,7 @@ def factorize(
the `codes` with the sentinel value ``-1`` and missing values are not
included in `uniques`.
- >>> codes, uniques = pd.factorize(np.array(['b', None, 'a', 'c', 'b'], dtype="O"))
+ >>> codes, uniques = pd.factorize(np.array(["b", None, "a", "c", "b"], dtype="O"))
>>> codes
array([ 0, -1, 1, 2, 0])
>>> uniques
@@ -761,7 +761,7 @@ def factorize(
NumPy arrays). When factorizing pandas objects, the type of `uniques`
will differ. For Categoricals, a `Categorical` is returned.
- >>> cat = pd.Categorical(['a', 'a', 'c'], categories=['a', 'b', 'c'])
+ >>> cat = pd.Categorical(["a", "a", "c"], categories=["a", "b", "c"])
>>> codes, uniques = pd.factorize(cat)
>>> codes
array([0, 0, 1])
@@ -775,7 +775,7 @@ def factorize(
For all other pandas objects, an Index of the appropriate type is
returned.
- >>> cat = pd.Series(['a', 'a', 'c'])
+ >>> cat = pd.Series(["a", "a", "c"])
>>> codes, uniques = pd.factorize(cat)
>>> codes
array([0, 0, 1])
diff --git a/pandas/core/arrays/base.py b/pandas/core/arrays/base.py
index e091ecf18668d..c4c892258b025 100644
--- a/pandas/core/arrays/base.py
+++ b/pandas/core/arrays/base.py
@@ -1574,8 +1574,6 @@ def factorize(
NaN values will be encoded as non-negative integers and will not drop the
NaN from the uniques of the values.
- .. versionadded:: 1.5.0
-
Returns
-------
codes : ndarray
diff --git a/pandas/core/common.py b/pandas/core/common.py
index 72b15b6e1bf4e..4f1c8d1800c00 100644
--- a/pandas/core/common.py
+++ b/pandas/core/common.py
@@ -639,8 +639,6 @@ def fill_missing_names(names: Sequence[Hashable | None]) -> list[Hashable]:
"""
If a name is missing then replace it by level_n, where n is the count
- .. versionadded:: 1.4.0
-
Parameters
----------
names : list-like
diff --git a/pandas/core/frame.py b/pandas/core/frame.py
index 68ea6795d47dd..3a91621dd8f62 100644
--- a/pandas/core/frame.py
+++ b/pandas/core/frame.py
@@ -1843,9 +1843,7 @@ def from_dict(
(default). Otherwise if the keys should be rows, pass 'index'.
If 'tight', assume a dict with keys ['index', 'columns', 'data',
'index_names', 'column_names'].
-
- .. versionadded:: 1.4.0
- 'tight' as an allowed value for the ``orient`` argument
+ 'tight' as an allowed value for the ``orient`` argument
dtype : dtype, default None
Data type to force after DataFrame construction, otherwise infer.
@@ -2084,9 +2082,7 @@ def to_dict(
- 'records' : list like
[{column -> value}, ... , {column -> value}]
- 'index' : dict like {index -> {column -> value}}
-
- .. versionadded:: 1.4.0
- 'tight' as an allowed value for the ``orient`` argument
+ 'tight' as an allowed value for the ``orient`` argument
into : class, default dict
The collections.abc.MutableMapping subclass used for all Mappings
@@ -2680,8 +2676,6 @@ def to_stata(
to labels as values. Labels for a single variable must be 32,000
characters or smaller.
- .. versionadded:: 1.4.0
-
Raises
------
NotImplementedError
@@ -3088,8 +3082,6 @@ def to_orc(
"""
Write a DataFrame to the Optimized Row Columnar (ORC) format.
- .. versionadded:: 1.5.0
-
Parameters
----------
path : str, file-like object or None, default None
@@ -3463,8 +3455,6 @@ def to_xml(
"""
Render a DataFrame to an XML document.
- .. versionadded:: 1.3.0
-
Parameters
----------
path_or_buffer : str, path object, file-like object, or None, default None
@@ -6522,16 +6512,11 @@ def reset_index(
levels are named. If None then the index name is repeated.
allow_duplicates : bool, optional, default lib.no_default
Allow duplicate column labels to be created.
-
- .. versionadded:: 1.5.0
-
names : int, str or 1-dimensional list, default None
Using the given string, rename the DataFrame column which contains the
index data. If the DataFrame has a MultiIndex, this has to be a list
with length equal to the number of levels.
- .. versionadded:: 1.5.0
-
Returns
-------
DataFrame or None
@@ -7709,8 +7694,6 @@ def value_counts(
dropna : bool, default True
Do not include counts of rows that contain NA values.
- .. versionadded:: 1.3.0
-
Returns
-------
Series
@@ -9846,9 +9829,6 @@ def pivot(
sort : bool, default True
Specifies if the result should be sorted.
-
- .. versionadded:: 1.3.0
-
**kwargs : dict
Optional keyword arguments to pass to ``aggfunc``.
@@ -10202,9 +10182,6 @@ def explode(
be str or tuple, and all specified columns their list-like data
on same row of the frame must have matching length.
- .. versionadded:: 1.3.0
- Multi-column explode
-
ignore_index : bool, default False
If True, the resulting index will be labeled 0, 1, …, n - 1.
@@ -10820,8 +10797,6 @@ def apply(
``by_row=False`` (backward compatible).
If False, the funcs will be passed the whole Series at once.
- .. versionadded:: 2.1.0
-
engine : decorator or {'python', 'numba'}, optional
Choose the execution engine to use. If not provided the function
will be executed by the regular Python interpreter.
@@ -11236,8 +11211,6 @@ def join(
* "many_to_one" or "m:1": check if join keys are unique in right dataset.
* "many_to_many" or "m:m": allowed, but does not result in checks.
- .. versionadded:: 1.5.0
-
Returns
-------
DataFrame
@@ -11626,8 +11599,6 @@ def corr(
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
- .. versionadded:: 1.5.0
-
.. versionchanged:: 2.0.0
The default value of ``numeric_only`` is now ``False``.
@@ -11753,8 +11724,6 @@ def cov(
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
- .. versionadded:: 1.5.0
-
.. versionchanged:: 2.0.0
The default value of ``numeric_only`` is now ``False``.
@@ -11893,8 +11862,6 @@ def corrwith(
min_periods : int, optional
Minimum number of observations needed to have a valid result.
- .. versionadded:: 1.5.0
-
.. versionchanged:: 2.0.0
The default value of ``numeric_only`` is now ``False``.
@@ -13414,8 +13381,6 @@ def idxmin(
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
- .. versionadded:: 1.5.0
-
Returns
-------
Series
@@ -13519,8 +13484,6 @@ def idxmax(
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
- .. versionadded:: 1.5.0
-
Returns
-------
Series
diff --git a/pandas/core/generic.py b/pandas/core/generic.py
index b542ca1f431c3..1b66deb6ed696 100644
--- a/pandas/core/generic.py
+++ b/pandas/core/generic.py
@@ -2151,7 +2151,6 @@ def _repr_data_resource_(self):
@doc(
klass="object",
storage_options=_shared_docs["storage_options"],
- storage_options_versionadded="1.2.0",
encoding_parameter="",
verbose_parameter="",
extra_parameters=textwrap.dedent(
@@ -2237,8 +2236,6 @@ def to_excel(
Specifies the one-based bottommost row and rightmost column that
is to be frozen.
{storage_options}
-
- .. versionadded:: {storage_options_versionadded}
{extra_parameters}
See Also
--------
@@ -2878,8 +2875,6 @@ def to_sql(
`sqlite3 `__ or
`SQLAlchemy `__.
- .. versionadded:: 1.4.0
-
Raises
------
ValueError
@@ -5859,19 +5854,12 @@ def sample(
If int, array-like, or BitGenerator, seed for random number generator.
If np.random.RandomState or np.random.Generator, use as given.
Default ``None`` results in sampling with the current state of np.random.
-
- .. versionchanged:: 1.4.0
-
- np.random.Generator objects now accepted
-
axis : {0 or 'index', 1 or 'columns', None}, default None
Axis to sample. Accepts axis number or name. Default is stat axis
for given data type. For `Series` this parameter is unused and defaults to `None`.
ignore_index : bool, default False
If True, the resulting index will be labeled 0, 1, …, n - 1.
- .. versionadded:: 1.3.0
-
Returns
-------
Series or DataFrame
@@ -8967,8 +8955,6 @@ def resample(
- 'end': `origin` is the last value of the timeseries
- 'end_day': `origin` is the ceiling midnight of the last day
- .. versionadded:: 1.3.0
-
.. note::
Only takes effect for Tick-frequencies (i.e. fixed frequencies like
@@ -8980,12 +8966,6 @@ def resample(
Whether to include the group keys in the result index when using
``.apply()`` on the resampled object.
- .. versionadded:: 1.5.0
-
- Not specifying ``group_keys`` will retain values-dependent behavior
- from pandas 1.4 and earlier (see :ref:`pandas 1.5.0 Release notes
- ` for examples).
-
.. versionchanged:: 2.0.0
``group_keys`` now defaults to ``False``.
diff --git a/pandas/core/groupby/generic.py b/pandas/core/groupby/generic.py
index d279594617235..a61c7736bf33a 100644
--- a/pandas/core/groupby/generic.py
+++ b/pandas/core/groupby/generic.py
@@ -889,8 +889,6 @@ def value_counts(
"""
Return a Series or DataFrame containing counts of unique rows.
- .. versionadded:: 1.4.0
-
Parameters
----------
normalize : bool, default False
@@ -2606,8 +2604,6 @@ def idxmax(
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
- .. versionadded:: 1.5.0
-
Returns
-------
DataFrame
@@ -2680,8 +2676,6 @@ def idxmin(
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
- .. versionadded:: 1.5.0
-
Returns
-------
DataFrame
@@ -2752,8 +2746,6 @@ def value_counts(
"""
Return a Series or DataFrame containing counts of unique rows.
- .. versionadded:: 1.4.0
-
Parameters
----------
subset : list-like, optional
@@ -3329,8 +3321,6 @@ def corrwith(
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
- .. versionadded:: 1.5.0
-
.. versionchanged:: 2.0.0
The default value of ``numeric_only`` is now ``False``.
diff --git a/pandas/core/groupby/groupby.py b/pandas/core/groupby/groupby.py
index 910268ebdfb8a..c365fc8a9fbde 100644
--- a/pandas/core/groupby/groupby.py
+++ b/pandas/core/groupby/groupby.py
@@ -2195,8 +2195,6 @@ def mean(
* ``None`` : Defaults to ``'cython'`` or globally setting
``compute.use_numba``
- .. versionadded:: 1.4.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -2204,8 +2202,6 @@ def mean(
``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
``{{'nopython': True, 'nogil': False, 'parallel': False}}``
- .. versionadded:: 1.4.0
-
Returns
-------
pandas.Series or pandas.DataFrame
@@ -2397,8 +2393,6 @@ def std(
* ``None`` : Defaults to ``'cython'`` or globally setting
``compute.use_numba``
- .. versionadded:: 1.4.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -2406,13 +2400,9 @@ def std(
``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
``{{'nopython': True, 'nogil': False, 'parallel': False}}``
- .. versionadded:: 1.4.0
-
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
- .. versionadded:: 1.5.0
-
.. versionchanged:: 2.0.0
numeric_only now defaults to ``False``.
@@ -2515,8 +2505,6 @@ def var(
* ``None`` : Defaults to ``'cython'`` or globally setting
``compute.use_numba``
- .. versionadded:: 1.4.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -2524,13 +2512,9 @@ def var(
``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
``{{'nopython': True, 'nogil': False, 'parallel': False}}``
- .. versionadded:: 1.4.0
-
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
- .. versionadded:: 1.5.0
-
.. versionchanged:: 2.0.0
numeric_only now defaults to ``False``.
@@ -2746,8 +2730,6 @@ def sem(
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
- .. versionadded:: 1.5.0
-
.. versionchanged:: 2.0.0
numeric_only now defaults to ``False``.
@@ -4400,8 +4382,6 @@ def quantile(
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
- .. versionadded:: 1.5.0
-
.. versionchanged:: 2.0.0
numeric_only now defaults to ``False``.
diff --git a/pandas/core/groupby/grouper.py b/pandas/core/groupby/grouper.py
index a45ce1f385e4d..70e3d45a02305 100644
--- a/pandas/core/groupby/grouper.py
+++ b/pandas/core/groupby/grouper.py
@@ -113,8 +113,6 @@ class Grouper:
- 'end': `origin` is the last value of the timeseries
- 'end_day': `origin` is the ceiling midnight of the last day
- .. versionadded:: 1.3.0
-
offset : Timedelta or str, default is None
An offset timedelta added to the origin.
diff --git a/pandas/core/indexers/objects.py b/pandas/core/indexers/objects.py
index 2c2413c74f2fa..6fa973c1599c5 100644
--- a/pandas/core/indexers/objects.py
+++ b/pandas/core/indexers/objects.py
@@ -94,7 +94,6 @@ def get_window_bounds(
closed passed from the top level rolling API
step : int, default None
step passed from the top level rolling API
- .. versionadded:: 1.5
win_type : str, default None
win_type passed from the top level rolling API
@@ -134,7 +133,6 @@ def get_window_bounds(
closed passed from the top level rolling API
step : int, default None
step passed from the top level rolling API
- .. versionadded:: 1.5
win_type : str, default None
win_type passed from the top level rolling API
@@ -189,7 +187,6 @@ def get_window_bounds(
closed passed from the top level rolling API
step : int, default None
step passed from the top level rolling API
- .. versionadded:: 1.5
win_type : str, default None
win_type passed from the top level rolling API
@@ -316,7 +313,6 @@ def get_window_bounds(
closed passed from the top level rolling API
step : int, default None
step passed from the top level rolling API
- .. versionadded:: 1.5
win_type : str, default None
win_type passed from the top level rolling API
@@ -422,7 +418,6 @@ def get_window_bounds(
closed passed from the top level rolling API
step : int, default None
step passed from the top level rolling API
- .. versionadded:: 1.5
win_type : str, default None
win_type passed from the top level rolling API
@@ -509,7 +504,6 @@ def get_window_bounds(
closed passed from the top level rolling API
step : int, default None
step passed from the top level rolling API
- .. versionadded:: 1.5
win_type : str, default None
win_type passed from the top level rolling API
@@ -599,7 +593,6 @@ def get_window_bounds(
closed passed from the top level rolling API
step : int, default None
step passed from the top level rolling API
- .. versionadded:: 1.5
win_type : str, default None
win_type passed from the top level rolling API
@@ -681,7 +674,6 @@ def get_window_bounds(
closed passed from the top level rolling API
step : int, default None
step passed from the top level rolling API
- .. versionadded:: 1.5
win_type : str, default None
win_type passed from the top level rolling API
diff --git a/pandas/core/indexes/datetimes.py b/pandas/core/indexes/datetimes.py
index 6451e55f7fc4d..ba475989e547d 100644
--- a/pandas/core/indexes/datetimes.py
+++ b/pandas/core/indexes/datetimes.py
@@ -892,8 +892,6 @@ def date_range(
Name of the resulting DatetimeIndex.
inclusive : {"both", "neither", "left", "right"}, default "both"
Include boundaries; Whether to set each bound as closed or open.
-
- .. versionadded:: 1.4.0
unit : {'s', 'ms', 'us', 'ns'}, default 'ns'
Specify the desired resolution of the result.
@@ -1094,8 +1092,6 @@ def bdate_range(
are passed.
inclusive : {"both", "neither", "left", "right"}, default "both"
Include boundaries; Whether to set each bound as closed or open.
-
- .. versionadded:: 1.4.0
**kwargs
For compatibility. Has no effect on the result.
diff --git a/pandas/core/indexes/multi.py b/pandas/core/indexes/multi.py
index 1cc1928136da1..43e6469e078f0 100644
--- a/pandas/core/indexes/multi.py
+++ b/pandas/core/indexes/multi.py
@@ -1900,8 +1900,6 @@ def to_frame(
allow_duplicates : bool, optional default False
Allow duplicate column labels to be created.
- .. versionadded:: 1.5.0
-
Returns
-------
DataFrame
diff --git a/pandas/core/methods/to_dict.py b/pandas/core/methods/to_dict.py
index 75003675dc173..1c9ca5f4d0d3c 100644
--- a/pandas/core/methods/to_dict.py
+++ b/pandas/core/methods/to_dict.py
@@ -126,9 +126,6 @@ def to_dict(
[{column -> value}, ... , {column -> value}]
- 'index' : dict like {index -> {column -> value}}
- .. versionadded:: 1.4.0
- 'tight' as an allowed value for the ``orient`` argument
-
into : class, default dict
The collections.abc.MutableMapping subclass used for all Mappings
in the return value. Can be the actual class or an empty
diff --git a/pandas/core/resample.py b/pandas/core/resample.py
index 2694b581a6707..e7207a9ed0c21 100644
--- a/pandas/core/resample.py
+++ b/pandas/core/resample.py
@@ -1545,8 +1545,6 @@ def std(
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
- .. versionadded:: 1.5.0
-
.. versionchanged:: 2.0.0
numeric_only now defaults to ``False``.
@@ -1604,8 +1602,6 @@ def var(
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
- .. versionadded:: 1.5.0
-
.. versionchanged:: 2.0.0
numeric_only now defaults to ``False``.
@@ -1670,8 +1666,6 @@ def sem(
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
- .. versionadded:: 1.5.0
-
.. versionchanged:: 2.0.0
numeric_only now defaults to ``False``.
diff --git a/pandas/core/reshape/encoding.py b/pandas/core/reshape/encoding.py
index 5c5fed272b925..b761bcec0c584 100644
--- a/pandas/core/reshape/encoding.py
+++ b/pandas/core/reshape/encoding.py
@@ -377,8 +377,6 @@ def from_dummies(
Inverts the operation performed by :func:`~pandas.get_dummies`.
- .. versionadded:: 1.5.0
-
Parameters
----------
data : DataFrame
diff --git a/pandas/core/reshape/pivot.py b/pandas/core/reshape/pivot.py
index 04c584c226aed..eb64ce8d98118 100644
--- a/pandas/core/reshape/pivot.py
+++ b/pandas/core/reshape/pivot.py
@@ -124,13 +124,9 @@ def pivot_table(
sort : bool, default True
Specifies if the result should be sorted.
- .. versionadded:: 1.3.0
-
**kwargs : dict
Optional keyword arguments to pass to ``aggfunc``.
- .. versionadded:: 3.0.0
-
Returns
-------
DataFrame
diff --git a/pandas/core/series.py b/pandas/core/series.py
index fe71a3ab91933..d4dc74786d7a0 100644
--- a/pandas/core/series.py
+++ b/pandas/core/series.py
@@ -1307,8 +1307,6 @@ def reset_index(
allow_duplicates : bool, default False
Allow duplicate column labels to be created.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame or None
@@ -3031,8 +3029,6 @@ def compare(
result_names : tuple, default ('self', 'other')
Set the dataframes names in the comparison.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -5656,8 +5652,6 @@ def info(
This method prints information about a Series including
the index dtype, non-NA values and memory usage.
- .. versionadded:: 1.4.0
-
Parameters
----------
verbose : bool, optional
diff --git a/pandas/core/shared_docs.py b/pandas/core/shared_docs.py
index bf30c215596f2..4544729112444 100644
--- a/pandas/core/shared_docs.py
+++ b/pandas/core/shared_docs.py
@@ -79,8 +79,6 @@
result_names : tuple, default ('self', 'other')
Set the dataframes names in the comparison.
-
- .. versionadded:: 1.5.0
"""
_shared_docs["groupby"] = """
@@ -338,9 +336,7 @@
As an example, the following could be passed for faster compression and to create
a reproducible gzip archive:
``compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}``.
-
- .. versionadded:: 1.5.0
- Added support for `.tar` files."""
+ Added support for `.tar` files."""
_shared_docs["decompression_options"] = """compression : str or dict, default 'infer'
For on-the-fly decompression of on-disk data. If 'infer' and '%s' is
@@ -358,9 +354,7 @@
As an example, the following could be passed for Zstandard decompression using a
custom compression dictionary:
``compression={'method': 'zstd', 'dict_data': my_compression_dict}``.
-
- .. versionadded:: 1.5.0
- Added support for `.tar` files."""
+ Added support for `.tar` files."""
_shared_docs["replace"] = """
Replace values given in `to_replace` with `value`.
diff --git a/pandas/core/strings/accessor.py b/pandas/core/strings/accessor.py
index ff3a17e4d2d5b..3ed022a337057 100644
--- a/pandas/core/strings/accessor.py
+++ b/pandas/core/strings/accessor.py
@@ -848,8 +848,6 @@ def cat(
- If ``None`` and `pat` length is 1, treats `pat` as a literal string.
- If ``None`` and `pat` length is not 1, treats `pat` as a regular expression.
- Cannot be set to False if `pat` is a compiled regex
-
- .. versionadded:: 1.4.0
""",
"raises_split": """
Raises
diff --git a/pandas/core/window/doc.py b/pandas/core/window/doc.py
index 6dbc52a99e70c..716ab9b5a9f23 100644
--- a/pandas/core/window/doc.py
+++ b/pandas/core/window/doc.py
@@ -35,9 +35,7 @@ def create_section_header(header: str) -> str:
kwargs_numeric_only = dedent(
"""
numeric_only : bool, default False
- Include only float, int, boolean columns.
-
- .. versionadded:: 1.5.0\n
+ Include only float, int, boolean columns.\n
"""
).replace("\n", "", 1)
@@ -148,27 +146,19 @@ def create_section_header(header: str) -> str:
)
-def window_agg_numba_parameters(version: str = "1.3") -> str:
- return (
- dedent(
- """
+def window_agg_numba_parameters() -> str:
+ return dedent(
+ """
engine : str, default None
* ``'cython'`` : Runs the operation through C-extensions from cython.
* ``'numba'`` : Runs the operation through JIT compiled code from numba.
* ``None`` : Defaults to ``'cython'`` or globally setting ``compute.use_numba``
- .. versionadded:: {version}.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
and ``parallel`` dictionary keys. The values must either be ``True`` or
``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
``{{'nopython': True, 'nogil': False, 'parallel': False}}``
-
- .. versionadded:: {version}.0\n
"""
- )
- .replace("\n", "", 1)
- .replace("{version}", version)
)
diff --git a/pandas/core/window/ewm.py b/pandas/core/window/ewm.py
index 1ea05e24d0db5..0d6eb230714c0 100644
--- a/pandas/core/window/ewm.py
+++ b/pandas/core/window/ewm.py
@@ -215,8 +215,6 @@ class ExponentialMovingWindow(BaseWindow):
If 1-D array like, a sequence with the same shape as the observations.
method : str {'single', 'table'}, default 'single'
- .. versionadded:: 1.4.0
-
Execute the rolling operation per single column or row (``'single'``)
or over the entire object (``'table'``).
@@ -426,8 +424,6 @@ def online(
Return an ``OnlineExponentialMovingWindow`` object to calculate
exponentially moving window aggregations in an online method.
- .. versionadded:: 1.3.0
-
Parameters
----------
engine: str, default ``'numba'``
diff --git a/pandas/core/window/expanding.py b/pandas/core/window/expanding.py
index 2527a5dd508d8..2ef0b4676b06d 100644
--- a/pandas/core/window/expanding.py
+++ b/pandas/core/window/expanding.py
@@ -57,8 +57,6 @@ class Expanding(RollingAndExpandingMixin):
This argument is only implemented when specifying ``engine='numba'``
in the method call.
- .. versionadded:: 1.3.0
-
Returns
-------
pandas.api.typing.Expanding
@@ -215,8 +213,6 @@ def count(self, numeric_only: bool = False):
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -436,16 +432,12 @@ def sum(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
engine : str, default None
* ``'cython'`` : Runs the operation through C-extensions from cython.
* ``'numba'`` : Runs the operation through JIT compiled code from numba.
* ``None`` : Defaults to ``'cython'`` or globally setting
``compute.use_numba``
- .. versionadded:: 1.3.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -453,8 +445,6 @@ def sum(
``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
``{'nopython': True, 'nogil': False, 'parallel': False}``
- .. versionadded:: 1.3.0
-
Returns
-------
Series or DataFrame
@@ -502,16 +492,12 @@ def max(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
engine : str, default None
* ``'cython'`` : Runs the operation through C-extensions from cython.
* ``'numba'`` : Runs the operation through JIT compiled code from numba.
* ``None`` : Defaults to ``'cython'`` or globally setting
``compute.use_numba``
- .. versionadded:: 1.3.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -519,8 +505,6 @@ def max(
``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
``{'nopython': True, 'nogil': False, 'parallel': False}``
- .. versionadded:: 1.3.0
-
Returns
-------
Series or DataFrame
@@ -568,16 +552,12 @@ def min(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
engine : str, default None
* ``'cython'`` : Runs the operation through C-extensions from cython.
* ``'numba'`` : Runs the operation through JIT compiled code from numba.
* ``None`` : Defaults to ``'cython'`` or globally setting
``compute.use_numba``
- .. versionadded:: 1.3.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -585,8 +565,6 @@ def min(
``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
``{'nopython': True, 'nogil': False, 'parallel': False}``
- .. versionadded:: 1.3.0
-
Returns
-------
Series or DataFrame
@@ -634,16 +612,12 @@ def mean(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
engine : str, default None
* ``'cython'`` : Runs the operation through C-extensions from cython.
* ``'numba'`` : Runs the operation through JIT compiled code from numba.
* ``None`` : Defaults to ``'cython'`` or globally setting
``compute.use_numba``
- .. versionadded:: 1.3.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -651,8 +625,6 @@ def mean(
``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
``{'nopython': True, 'nogil': False, 'parallel': False}``
- .. versionadded:: 1.3.0
-
Returns
-------
Series or DataFrame
@@ -700,16 +672,12 @@ def median(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
engine : str, default None
* ``'cython'`` : Runs the operation through C-extensions from cython.
* ``'numba'`` : Runs the operation through JIT compiled code from numba.
* ``None`` : Defaults to ``'cython'`` or globally setting
``compute.use_numba``
- .. versionadded:: 1.3.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -717,8 +685,6 @@ def median(
``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
``{'nopython': True, 'nogil': False, 'parallel': False}``
- .. versionadded:: 1.3.0
-
Returns
-------
Series or DataFrame
@@ -771,16 +737,12 @@ def std(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
engine : str, default None
* ``'cython'`` : Runs the operation through C-extensions from cython.
* ``'numba'`` : Runs the operation through JIT compiled code from numba.
* ``None`` : Defaults to ``'cython'`` or globally setting
``compute.use_numba``
- .. versionadded:: 1.4.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -788,8 +750,6 @@ def std(
``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
``{'nopython': True, 'nogil': False, 'parallel': False}``
- .. versionadded:: 1.4.0
-
Returns
-------
Series or DataFrame
@@ -850,16 +810,12 @@ def var(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
engine : str, default None
* ``'cython'`` : Runs the operation through C-extensions from cython.
* ``'numba'`` : Runs the operation through JIT compiled code from numba.
* ``None`` : Defaults to ``'cython'`` or globally setting
``compute.use_numba``
- .. versionadded:: 1.4.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -867,8 +823,6 @@ def var(
``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
``{'nopython': True, 'nogil': False, 'parallel': False}``
- .. versionadded:: 1.4.0
-
Returns
-------
Series or DataFrame
@@ -923,8 +877,6 @@ def sem(self, ddof: int = 1, numeric_only: bool = False):
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -963,8 +915,6 @@ def skew(self, numeric_only: bool = False):
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -1004,8 +954,6 @@ def kurt(self, numeric_only: bool = False):
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -1054,8 +1002,6 @@ def first(self, numeric_only: bool = False):
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -1091,8 +1037,6 @@ def last(self, numeric_only: bool = False):
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -1149,8 +1093,6 @@ def quantile(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -1191,8 +1133,6 @@ def rank(
"""
Calculate the expanding rank.
- .. versionadded:: 1.4.0
-
Parameters
----------
method : {'average', 'min', 'max'}, default 'average'
@@ -1210,8 +1150,6 @@ def rank(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -1275,8 +1213,6 @@ def nunique(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -1333,8 +1269,6 @@ def cov(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -1394,8 +1328,6 @@ def corr(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
diff --git a/pandas/core/window/rolling.py b/pandas/core/window/rolling.py
index e6f84941f6b1a..5519f4d3bd7cc 100644
--- a/pandas/core/window/rolling.py
+++ b/pandas/core/window/rolling.py
@@ -934,12 +934,8 @@ class Window(BaseWindow):
``[::step]``. ``window`` must be an integer. Using a step argument other
than None or 1 will produce a result with a different shape than the input.
- .. versionadded:: 1.5.0
-
method : str {'single', 'table'}, default 'single'
- .. versionadded:: 1.3.0
-
Execute the rolling operation per single column or row (``'single'``)
or over the entire object (``'table'``).
@@ -1307,8 +1303,6 @@ def sum(self, numeric_only: bool = False, **kwargs):
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
**kwargs
Keyword arguments to configure the ``SciPy`` weighted window type.
@@ -1367,8 +1361,6 @@ def mean(self, numeric_only: bool = False, **kwargs):
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
**kwargs
Keyword arguments to configure the ``SciPy`` weighted window type.
@@ -1428,9 +1420,6 @@ def var(self, ddof: int = 1, numeric_only: bool = False, **kwargs):
is ``N - ddof``, where ``N`` represents the number of elements.
numeric_only : bool, default False
Include only float, int, boolean columns.
-
- .. versionadded:: 1.5.0
-
**kwargs
Keyword arguments to configure the ``SciPy`` weighted window type.
@@ -1483,9 +1472,6 @@ def std(self, ddof: int = 1, numeric_only: bool = False, **kwargs):
is ``N - ddof``, where ``N`` represents the number of elements.
numeric_only : bool, default False
Include only float, int, boolean columns.
-
- .. versionadded:: 1.5.0
-
**kwargs
Keyword arguments to configure the ``SciPy`` weighted window type.
@@ -2137,8 +2123,6 @@ def count(self, numeric_only: bool = False):
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -2374,16 +2358,12 @@ def sum(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
engine : str, default None
* ``'cython'`` : Runs the operation through C-extensions from cython.
* ``'numba'`` : Runs the operation through JIT compiled code from numba.
* ``None`` : Defaults to ``'cython'`` or
globally setting ``compute.use_numba``
- .. versionadded:: 1.3.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -2391,8 +2371,6 @@ def sum(
``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
``{'nopython': True, 'nogil': False, 'parallel': False}``.
- .. versionadded:: 1.3.0
-
Returns
-------
Series or DataFrame
@@ -2479,8 +2457,6 @@ def max(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
*args : iterable, optional
Positional arguments passed into ``func``.
@@ -2490,8 +2466,6 @@ def max(
* ``None`` : Defaults to ``'cython'`` or
globally setting ``compute.use_numba``
- .. versionadded:: 1.3.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -2501,8 +2475,6 @@ def max(
The default ``engine_kwargs`` for the ``'numba'`` engine is
``{'nopython': True, 'nogil': False, 'parallel': False}``.
- .. versionadded:: 1.3.0
-
**kwargs : mapping, optional
A dictionary of keyword arguments passed into ``func``.
@@ -2554,16 +2526,12 @@ def min(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
engine : str, default None
* ``'cython'`` : Runs the operation through C-extensions from cython.
* ``'numba'`` : Runs the operation through JIT compiled code from numba.
* ``None`` : Defaults to ``'cython'`` or
globally setting ``compute.use_numba``
- .. versionadded:: 1.3.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -2573,8 +2541,6 @@ def min(
The default ``engine_kwargs`` for the ``'numba'`` engine is
``{'nopython': True, 'nogil': False, 'parallel': False}``.
- .. versionadded:: 1.3.0
-
Returns
-------
Series or DataFrame
@@ -2626,16 +2592,12 @@ def mean(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
engine : str, default None
* ``'cython'`` : Runs the operation through C-extensions from cython.
* ``'numba'`` : Runs the operation through JIT compiled code from numba.
* ``None`` : Defaults to ``'cython'`` or
globally setting ``compute.use_numba``
- .. versionadded:: 1.3.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -2645,8 +2607,6 @@ def mean(
The default ``engine_kwargs`` for the ``'numba'`` engine is
``{'nopython': True, 'nogil': False, 'parallel': False}``.
- .. versionadded:: 1.3.0
-
Returns
-------
Series or DataFrame
@@ -2705,16 +2665,12 @@ def median(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
engine : str, default None
* ``'cython'`` : Runs the operation through C-extensions from cython.
* ``'numba'`` : Runs the operation through JIT compiled code from numba.
* ``None`` : Defaults to ``'cython'`` or
globally setting ``compute.use_numba``
- .. versionadded:: 1.3.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -2724,8 +2680,6 @@ def median(
The default ``engine_kwargs`` for the ``'numba'`` engine is
``{'nopython': True, 'nogil': False, 'parallel': False}``.
- .. versionadded:: 1.3.0
-
Returns
-------
Series or DataFrame
@@ -2782,16 +2736,12 @@ def std(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
engine : str, default None
* ``'cython'`` : Runs the operation through C-extensions from cython.
* ``'numba'`` : Runs the operation through JIT compiled code from numba.
* ``None`` : Defaults to ``'cython'`` or
globally setting ``compute.use_numba``
- .. versionadded:: 1.4.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -2801,8 +2751,6 @@ def std(
The default ``engine_kwargs`` for the ``'numba'`` engine is
``{'nopython': True, 'nogil': False, 'parallel': False}``.
- .. versionadded:: 1.4.0
-
Returns
-------
Series or DataFrame
@@ -2862,16 +2810,12 @@ def var(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
engine : str, default None
* ``'cython'`` : Runs the operation through C-extensions from cython.
* ``'numba'`` : Runs the operation through JIT compiled code from numba.
* ``None`` : Defaults to ``'cython'`` or
globally setting ``compute.use_numba``
- .. versionadded:: 1.4.0
-
engine_kwargs : dict, default None
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
* For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
@@ -2881,8 +2825,6 @@ def var(
The default ``engine_kwargs`` for the ``'numba'`` engine is
``{'nopython': True, 'nogil': False, 'parallel': False}``.
- .. versionadded:: 1.4.0
-
Returns
-------
Series or DataFrame
@@ -2932,8 +2874,6 @@ def skew(self, numeric_only: bool = False):
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -2979,8 +2919,6 @@ def sem(self, ddof: int = 1, numeric_only: bool = False):
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -3022,8 +2960,6 @@ def kurt(self, numeric_only: bool = False):
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -3072,8 +3008,6 @@ def first(self, numeric_only: bool = False):
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -3109,8 +3043,6 @@ def last(self, numeric_only: bool = False):
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -3168,8 +3100,6 @@ def quantile(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -3215,8 +3145,6 @@ def rank(
"""
Calculate the rolling rank.
- .. versionadded:: 1.4.0
-
Parameters
----------
method : {'average', 'min', 'max'}, default 'average'
@@ -3236,8 +3164,6 @@ def rank(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -3301,8 +3227,6 @@ def nunique(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -3364,8 +3288,6 @@ def cov(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
@@ -3427,8 +3349,6 @@ def corr(
numeric_only : bool, default False
Include only float, int, boolean columns.
- .. versionadded:: 1.5.0
-
Returns
-------
Series or DataFrame
diff --git a/pandas/io/excel/_base.py b/pandas/io/excel/_base.py
index 48028c54a1773..0732ba87de30c 100644
--- a/pandas/io/excel/_base.py
+++ b/pandas/io/excel/_base.py
@@ -259,9 +259,6 @@
Note that this parameter is only necessary for columns stored as TEXT in Excel,
any numeric columns will automatically be parsed, regardless of display
format.(e.g. use ',' for European data).
-
- .. versionadded:: 1.4.0
-
comment : str, default None
Comments out remainder of line. Pass a character or characters to this
argument to indicate comments in the input file. Any data between the
@@ -997,12 +994,6 @@ class ExcelWriter(Generic[_WorkbookT]):
* overlay: Write contents to the existing sheet without first removing,
but possibly over top of, the existing contents.
- .. versionadded:: 1.3.0
-
- .. versionchanged:: 1.4.0
-
- Added ``overlay`` option
-
engine_kwargs : dict, optional
Keyword arguments to be passed into the engine. These will be passed to
the following functions of the respective engines:
@@ -1012,8 +1003,6 @@ class ExcelWriter(Generic[_WorkbookT]):
* openpyxl (append mode): ``openpyxl.load_workbook(file, **engine_kwargs)``
* odf: ``odf.opendocument.OpenDocumentSpreadsheet(**engine_kwargs)``
- .. versionadded:: 1.3.0
-
See Also
--------
read_excel : Read an Excel sheet values (xlsx) file into DataFrame.
@@ -1500,25 +1489,20 @@ class ExcelFile:
- ``calamine`` supports Excel (.xls, .xlsx, .xlsm, .xlsb)
and OpenDocument (.ods) file formats.
- .. versionchanged:: 1.2.0
-
- The engine `xlrd `_
- now only supports old-style ``.xls`` files.
- When ``engine=None``, the following logic will be
- used to determine the engine:
-
- - If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),
- then `odf `_ will be used.
- - Otherwise if ``path_or_buffer`` is an xls format,
- ``xlrd`` will be used.
- - Otherwise if ``path_or_buffer`` is in xlsb format,
- `pyxlsb `_ will be used.
-
- .. versionadded:: 1.3.0
-
- - Otherwise if `openpyxl `_ is installed,
- then ``openpyxl`` will be used.
- - Otherwise if ``xlrd >= 2.0`` is installed, a ``ValueError`` will be raised.
+ The engine `xlrd `_
+ now only supports old-style ``.xls`` files.
+ When ``engine=None``, the following logic will be
+ used to determine the engine:
+
+ - If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),
+ then `odf `_ will be used.
+ - Otherwise if ``path_or_buffer`` is an xls format,
+ ``xlrd`` will be used.
+ - Otherwise if ``path_or_buffer`` is in xlsb format,
+ `pyxlsb `_ will be used.
+ - Otherwise if `openpyxl `_ is installed,
+ then ``openpyxl`` will be used.
+ - Otherwise if ``xlrd >= 2.0`` is installed, a ``ValueError`` will be raised.
.. warning::
diff --git a/pandas/io/formats/format.py b/pandas/io/formats/format.py
index d72b6cd89b940..cd1810a96d49e 100644
--- a/pandas/io/formats/format.py
+++ b/pandas/io/formats/format.py
@@ -358,8 +358,6 @@ def get_dataframe_repr_params() -> dict[str, Any]:
Supplying these parameters to DataFrame.to_string is equivalent to calling
``repr(DataFrame)``. This is useful if you want to adjust the repr output.
- .. versionadded:: 1.4.0
-
Example
-------
>>> import pandas as pd
@@ -391,8 +389,6 @@ def get_series_repr_params() -> dict[str, Any]:
Supplying these parameters to Series.to_string is equivalent to calling
``repr(series)``. This is useful if you want to adjust the series repr output.
- .. versionadded:: 1.4.0
-
Example
-------
>>> import pandas as pd
diff --git a/pandas/io/formats/info.py b/pandas/io/formats/info.py
index dac523898092a..fdad275714009 100644
--- a/pandas/io/formats/info.py
+++ b/pandas/io/formats/info.py
@@ -155,7 +155,6 @@
"show_counts_sub": show_counts_sub,
"examples_sub": frame_examples_sub,
"see_also_sub": frame_see_also_sub,
- "version_added_sub": "",
}
@@ -240,7 +239,6 @@
"show_counts_sub": show_counts_sub,
"examples_sub": series_examples_sub,
"see_also_sub": series_see_also_sub,
- "version_added_sub": "\n.. versionadded:: 1.4.0\n",
}
@@ -250,7 +248,6 @@
This method prints information about a {klass} including
the index dtype{type_sub}, non-NA values and memory usage.
- {version_added_sub}\
Parameters
----------
diff --git a/pandas/io/formats/style.py b/pandas/io/formats/style.py
index 9bf497af77855..592f67ca06d9b 100644
--- a/pandas/io/formats/style.py
+++ b/pandas/io/formats/style.py
@@ -157,15 +157,9 @@ class Styler(StylerRenderer):
decimal : str, optional
Character used as decimal separator for floats, complex and integers. If not
given uses ``pandas.options.styler.format.decimal``.
-
- .. versionadded:: 1.3.0
-
thousands : str, optional, default None
Character used as thousands separator for floats, complex and integers. If not
given uses ``pandas.options.styler.format.thousands``.
-
- .. versionadded:: 1.3.0
-
escape : str, optional
Use 'html' to replace the characters ``&``, ``<``, ``>``, ``'``, and ``"``
in cell display string with HTML-safe sequences.
@@ -177,14 +171,10 @@ class Styler(StylerRenderer):
which either are surrounded by two characters ``$`` or start with
the character ``\(`` and end with ``\)``.
If not given uses ``pandas.options.styler.format.escape``.
-
- .. versionadded:: 1.3.0
formatter : str, callable, dict, optional
Object to define how values are displayed. See ``Styler.format``. If not given
uses ``pandas.options.styler.format.formatter``.
- .. versionadded:: 1.4.0
-
Attributes
----------
index : data.index Index
@@ -304,8 +294,6 @@ def concat(self, other: Styler) -> Styler:
"""
Append another Styler to combine the output into a single table.
- .. versionadded:: 1.5.0
-
Parameters
----------
other : Styler
@@ -440,8 +428,6 @@ def set_tooltips(
These string based tooltips are only applicable to ``
`` HTML elements,
and cannot be used for column or index headers.
- .. versionadded:: 1.3.0
-
Parameters
----------
ttips : DataFrame
@@ -686,8 +672,6 @@ def to_latex(
r"""
Write Styler to a file, buffer or string in LaTeX format.
- .. versionadded:: 1.3.0
-
Parameters
----------
buf : str, path object, file-like object, or None, default None
@@ -734,8 +718,6 @@ def to_latex(
table.
- `"skip-last;index"`: as above with lines extending only the width of the
index entries.
-
- .. versionadded:: 1.4.0
label : str, optional
The LaTeX label included as: \\label{