Skip to content

Having issues getting training to converge - hyper parameter issue? #8

@dayvidwang

Description

@dayvidwang

I'm attempting to run the training script for the GPT-2 CALM on the ClubFloyd dataset, following the instructions from your EMNLP 2020 paper. I've set up my environment as recommended but am facing challenges with the training process.

Environment:

Python version: 3.6.15
Operating System: Ubuntu 20.04
GPU: Nvidia Titan RTX
Dependencies: torch==1.4, transformers==2.5.1, jericho, fasttext, wandb, importlib_metadata

Issue:

The training doesn't perform as expected (training overfits to training data while validation performance hardly improves or worsens), even after adjusting hyperparameters like batch size and GPU count.

Attempts:

Params Iteration Train Acc Val Acc Train Loss Val Loss
num GPU = 1
batch size = 1
1 0.14 0.15 2.38 2.35
2 0.18 0.14 2.01 2.35
3 0.22 0.15 1.80 2.43
4 0.26 0.14 1.63 2.56
5 0.30 0.14 1.50 2.71
num GPU = 3
batch size = 1
1 0.13 0.14 0.79 2.30
2 0.17 0.14 0.67 2.26
3 0.20 0.15 0.61 2.28
4 0.22 0.15 0.57 2.33
5 0.25 0.14 0.53 2.38
num GPU = 1
batch size = 15
1 0.10 0.13 0.18 2.32
2 0.13 0.13 0.15 2.28
3 0.15 0.14 0.14 2.27
4 0.17 0.14 0.13 2.27
5 0.18 0.14 0.13 2.31
num GPU = 3
batch size = 15
1 0.10 0.12 0.06 2.35
2 0.12 0.13 0.05 2.30
3 0.14 0.13 0.05 2.29
4 0.15 0.14 0.05 2.28
5 0.16 0.13 0.05 2.27
num GPU = 8
batch size = 12
1 0.09 0.11 0.03 2.41
2 0.12 0.12 0.03 2.34
3 0.13 0.13 0.02 2.31
4 0.14 0.13 0.02 2.29
5 0.14 0.14 0.02 2.29

Request:

Do you have any ideas on why these training runs might not be converging, whether it be hardware difference, hyperparameter difference, or something else?

Thank you for your time.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions