Skip to content

Inconsistence in SpatialMaxPooling and SpatialMaxUnpooling operations for torch.CudaTensor that leads to an error #486

@urmanbm

Description

@urmanbm

Using 'torch.FloatTensor' as dtype in following code snippet works just fine. Pool layer produces indices array of consistent size (1x5x5) with the input of unpooling layer.

dtype = 'torch.FloatTensor'
model = nn.Sequential()
layer = nn.SpatialMaxPooling(2,2,2,2)
model:add(layer)
model:add(nn.SpatialMaxUnpooling(layer))
model:type(dtype)

x = torch.randn(1,10,10):type(dtype)
model:forward(x)

However using 'torch.CudaTensor' produces error on executing model:forward(x).

dtype = 'torch.CudaTensor'
model = nn.Sequential()
layer = nn.SpatialMaxPooling(2,2,2,2)
model:add(layer)
model:add(nn.SpatialMaxUnpooling(layer))
model:type(dtype)

x = torch.randn(1,10,10):type(dtype)
model:forward(x)

Pooling layer instead produces indices of size 1x1x5x5 which is inconsistent with input of unpooling layer. That leads to following error.
torch/install/share/lua/5.1/nn/THNN.lua:110: indices and input shapes do not match: indices [1 x 1 x 5 x 5], input [1 x 5 x 5] at /tmp/luarocks_cunn-scm-1-3042/cunn/lib/THCUNN/generic/SpatialMaxUnpooling.cu:15

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions