Skip to content

About the single photon imaging #3

@zhangdan94

Description

@zhangdan94

Hello, when I reproduce your code of single photon imaging part, I don't quite understand the update part of x.

def inverse_step(u, v, K1, K, rho):
xtilde = v - u
x = np.copy(xtilde)
K0 = np.square(K) - K1

indices_0 = (K1 == 0)
x[indices_0] = xtilde[indices_0] - K0[indices_0] / rho

func = lambda y: K1 / (np.exp(y) - 1) - rho*y - K0 + rho*xtilde
indices_1 = np.logical_not(indices_0)

# binary search?
bmin = 1e-5 * np.ones_like(x, dtype=np.float64)
bmax = 100  * np.ones_like(x, dtype=np.float64)
bave = (bmin + bmax) / 2.0
for i in range(30):
    tmp = func(bave)
    indices_pos = np.logical_and(tmp > 0, indices_1)
    indices_neg = np.logical_and(tmp < 0, indices_1)
    indices_zero = np.logical_and(tmp == 0, indices_1)
    indices_0 = np.logical_or(indices_0, indices_zero)
    indices_1 = np.logical_not(indices_0)

    bmin[indices_pos] = bave[indices_pos]
    bmax[indices_neg] = bave[indices_neg]
    bave[indices_1] = (bmin[indices_1] + bmax[indices_1]) / 2.0

x[K1 != 0] = bave[K1 != 0]
return np.clip(x, 0.0, 1.0)

Does it use dichotomy to find the minimum value? What's its advantage over making the derivative equal to zero? Looking forward to your reply

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions