@@ -107,9 +107,9 @@ def __init__(self,
107107
108108 self .encoder_states = get_attention_states (self .encoder )
109109 self .encoder_mask = get_attention_mask (self .encoder )
110- self .dimension = self .encoder_states .get_shape ()[2 ].value
110+ self .model_dimension = self .encoder_states .get_shape ()[2 ].value
111111
112- if self .embedding_size != self .dimension :
112+ if self .embedding_size != self .model_dimension :
113113 raise ValueError ("Model dimension and input embedding size"
114114 "do not match" )
115115
@@ -120,12 +120,12 @@ def __init__(self,
120120
121121 @property
122122 def output_dimension (self ) -> int :
123- return self .dimension
123+ return self .model_dimension
124124
125125 def embed_inputs (self , inputs : tf .Tensor ) -> tf .Tensor :
126126 embedded = tf .nn .embedding_lookup (self .embedding_matrix , inputs )
127127 length = tf .shape (inputs )[1 ]
128- return embedded + position_signal (self .dimension , length )
128+ return embedded + position_signal (self .model_dimension , length )
129129
130130 @tensor
131131 def embedded_train_inputs (self ) -> tf .Tensor :
@@ -216,7 +216,8 @@ def layer(self, level: int, inputs: tf.Tensor,
216216
217217 # Feed-forward output projection + dropout
218218 ff_output = tf .layers .dense (
219- ff_hidden_drop , self .dimension , name = "ff_out_{}" .format (level ))
219+ ff_hidden_drop , self .model_dimension ,
220+ name = "ff_out_{}" .format (level ))
220221 ff_output = dropout (ff_output , self .dropout_keep_prob , self .train_mode )
221222
222223 # Residual connections + layer normalization
0 commit comments