Skip to content

[Bug]: Prefix not correctly propogated through Backend #27045

@Lucaskabela

Description

@Lucaskabela

Your current environment

The output of python collect_env.py
Collecting environment information...
==============================
        System Info
==============================
OS                           : CentOS Stream 9 (x86_64)
GCC version                  : (GCC) 11.5.0 20240719 (Red Hat 11.5.0-11)
Clang version                : 20.1.8 (CentOS 20.1.8-1.el9)
CMake version                : version 4.1.0
Libc version                 : glibc-2.34

==============================
       PyTorch Info
==============================
PyTorch version              : 2.10.0a0+gitc8c5187
Is debug build               : False
CUDA used to build PyTorch   : 12.9
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.11 | packaged by Anaconda, Inc. | (main, Jun  5 2025, 13:09:17) [GCC 11.2.0] (64-bit runtime)
Python platform              : Linux-6.9.0-0_fbk10_0_gc5fa564d33e3-x86_64-with-glibc2.34

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.9.86
CUDA_MODULE_LOADING set to   : 
GPU models and configuration : 
GPU 0: NVIDIA H100
GPU 1: NVIDIA H100
GPU 2: NVIDIA H100
GPU 3: NVIDIA H100
GPU 4: NVIDIA H100
GPU 5: NVIDIA H100
GPU 6: NVIDIA H100
GPU 7: NVIDIA H100

Nvidia driver version        : 535.183.06
cuDNN version                : Probably one of the following:
/usr/lib64/libcudnn.so.8.9.2
/usr/lib64/libcudnn.so.9.9.0
/usr/lib64/libcudnn_adv.so.9.9.0
/usr/lib64/libcudnn_adv_infer.so.8.9.2
/usr/lib64/libcudnn_adv_train.so.8.9.2
/usr/lib64/libcudnn_cnn.so.9.9.0
/usr/lib64/libcudnn_cnn_infer.so.8.9.2
/usr/lib64/libcudnn_cnn_train.so.8.9.2
/usr/lib64/libcudnn_engines_precompiled.so.9.9.0
/usr/lib64/libcudnn_engines_runtime_compiled.so.9.9.0
/usr/lib64/libcudnn_graph.so.9.9.0
/usr/lib64/libcudnn_heuristic.so.9.9.0
/usr/lib64/libcudnn_ops.so.9.9.0
/usr/lib64/libcudnn_ops_infer.so.8.9.2
/usr/lib64/libcudnn_ops_train.so.8.9.2
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        52 bits physical, 57 bits virtual
Byte Order:                           Little Endian
CPU(s):                               384
On-line CPU(s) list:                  0-383
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 9654 96-Core Processor
CPU family:                           25
Model:                                17
Thread(s) per core:                   2
Core(s) per socket:                   96
Socket(s):                            2
Stepping:                             1
Frequency boost:                      enabled
CPU(s) scaling MHz:                   84%
CPU max MHz:                          3707.8120
CPU min MHz:                          1500.0000
BogoMIPS:                             4792.60
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov succor smca fsrm flush_l1d debug_swap
Virtualization:                       AMD-V
L1d cache:                            6 MiB (192 instances)
L1i cache:                            6 MiB (192 instances)
L2 cache:                             192 MiB (192 instances)
L3 cache:                             768 MiB (24 instances)
NUMA node(s):                         2
NUMA node0 CPU(s):                    0-95,192-287
NUMA node1 CPU(s):                    96-191,288-383
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Vulnerable
Vulnerability Spec store bypass:      Vulnerable
Vulnerability Spectre v1:             Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2:             Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Not affected; BHI: Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

==============================
Versions of relevant libraries
==============================
[pip3] flake8==7.3.0
[pip3] flake8-bugbear==24.12.12
[pip3] flake8-comprehensions==3.16.0
[pip3] flake8-executable==2.1.3
[pip3] flake8-logging-format==2024.24.12
[pip3] flake8-pyi==25.5.0
[pip3] flake8_simplify==0.22.0
[pip3] flashinfer-python==0.4.0
[pip3] mypy==1.16.0
[pip3] mypy_extensions==1.1.0
[pip3] numpy==2.1.0
[pip3] nvidia-cudnn-frontend==1.15.0
[pip3] nvidia-cutlass-dsl==4.2.1
[pip3] nvidia-ml-py==13.580.82
[pip3] optree==0.13.0
[pip3] pytorch-triton==3.5.0+git7416ffcb
[pip3] pyzmq==27.1.0
[pip3] torch==2.10.0a0+gitc8c5187
[pip3] torchvision==0.25.0a0+f5c6c2e
[pip3] transformers==4.57.0
[pip3] triton==3.4.0
[conda] flashinfer-python         0.4.0                    pypi_0    pypi
[conda] mkl-include               2025.2.0                 pypi_0    pypi
[conda] mkl-static                2025.2.0                 pypi_0    pypi
[conda] numpy                     2.1.0                    pypi_0    pypi
[conda] nvidia-cudnn-frontend     1.15.0                   pypi_0    pypi
[conda] nvidia-cutlass-dsl        4.2.1                    pypi_0    pypi
[conda] nvidia-ml-py              13.580.82                pypi_0    pypi
[conda] optree                    0.13.0                   pypi_0    pypi
[conda] pytorch-triton            3.5.0+git7416ffcb          pypi_0    pypi
[conda] pyzmq                     27.1.0                   pypi_0    pypi
[conda] torch                     2.10.0a0+gitc8c5187          pypi_0    pypi
[conda] torchfix                  0.4.0                    pypi_0    pypi
[conda] torchvision               0.25.0a0+f5c6c2e           dev_0    <develop>
[conda] transformers              4.57.0                   pypi_0    pypi
[conda] triton                    3.4.0                    pypi_0    pypi

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
vLLM Version                 : 0.1.dev10334+g5bc26c438.d20251010 (git sha: 5bc26c438, date: 20251010)
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    NIC1    NIC2    NIC3    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV18    NV18    NV18    NV18    NV18    NV18    NV18    NODE    NODE    SYS     SYS     0-95,192-287    0               N/A
GPU1    NV18     X      NV18    NV18    NV18    NV18    NV18    NV18    PHB     PHB     SYS     SYS     0-95,192-287    0               N/A
GPU2    NV18    NV18     X      NV18    NV18    NV18    NV18    NV18    NODE    NODE    SYS     SYS     0-95,192-287    0               N/A
GPU3    NV18    NV18    NV18     X      NV18    NV18    NV18    NV18    NODE    NODE    SYS     SYS     0-95,192-287    0               N/A
GPU4    NV18    NV18    NV18    NV18     X      NV18    NV18    NV18    SYS     SYS     NODE    NODE    96-191,288-383  1               N/A
GPU5    NV18    NV18    NV18    NV18    NV18     X      NV18    NV18    SYS     SYS     NODE    NODE    96-191,288-383  1               N/A
GPU6    NV18    NV18    NV18    NV18    NV18    NV18     X      NV18    SYS     SYS     PHB     PHB     96-191,288-383  1               N/A
GPU7    NV18    NV18    NV18    NV18    NV18    NV18    NV18     X      SYS     SYS     NODE    NODE    96-191,288-383  1               N/A
NIC0    NODE    PHB     NODE    NODE    SYS     SYS     SYS     SYS      X      PIX     SYS     SYS
NIC1    NODE    PHB     NODE    NODE    SYS     SYS     SYS     SYS     PIX      X      SYS     SYS
NIC2    SYS     SYS     SYS     SYS     NODE    NODE    PHB     NODE    SYS     SYS      X      PIX
NIC3    SYS     SYS     SYS     SYS     NODE    NODE    PHB     NODE    SYS     SYS     PIX      X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3

==============================
     Environment Variables
==============================
CUDA_CACHE_PATH=/data/users/lucaskabela/.nv/ComputeCache
CUDA_VERSION=12.9
MAX_JOBS=382
CUDA_NVCC_EXECUTABLE=/usr/local/cuda-12.9/bin/nvcc
LD_LIBRARY_PATH=/usr/local/cuda-12.9/lib64:/home/lucaskabela/temp/OCR/resources/lm/video_asr_tools/tools/openfst/src
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
TORCHINDUCTOR_CACHE_DIR=/tmp/torchinductor_lucaskabela```

🐛 Describe the bug

While investigating an error with set_model_tag, I tried to use prefix around torch.compile to have modules written to different caching directories

However, prefix always is set to backbone in

self.prefix = prefix or model_tag

This is because looking at callsites of VllmBackend, outside of deserialize_compile_artificats, prefix is not passed

We should modify the callsites in order to forward prefix so that when initializing a model from cold start we respect this setting

return VllmBackend(vllm_config)

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions