This project implements a 15-class human action recognition system using transfer learning with EfficientNetB0. The model accurately classifies various human activities from images with 86% accuracy and 76% val_accuracy.
- Total images: 12,600
- Image dimensions: 224Γ224Γ3
- Training samples: 10,080 (80%)
- Test samples: 2,520 (20%)
EfficientNetB0 (base model) ββ GlobalAveragePooling2D() ββ BatchNormalization() ββ Dense(128, activation='relu', L2 regularization) ββ Dropout(0.5) ββ Dense(128, activation='relu') ββ Dropout(0.3) ββ Dense(15, activation='softmax')
- Optimizer: Adam (lr=1e-4)
- Loss: Categorical Crossentropy
- Batch Size: 32
- Base Model Frozen (except BatchNorm layers)
- Clone the repository:
git clone https://github.com/your-username/15-Class-CNN-Classifier.git - Install dependencies:
pip install -r requirements.txt - Download dataset from Kaggle and place in
Data/directory
python train.py --epochs 60 --batch_size 32######################################