/
├── DataAnalysis/
│ ├── notebooks/ # Jupyter notebooks
│ │ ├── archives/ # Archived notebooks
│ │ ├── model/ # Trained models or model notebooks
│ │ ├── datasets/ # Raw or processed data used in notebooks
│ │ ├── report_html/ # Data profiling or HTML reports
│ │ └── exploratoryEDA/ # Exploratory data analysis notebooks
│ ├── scripts/ # Python analysis scripts
│ ├── assets/ # Images, charts, or supporting files
│ ├── .gitignore
│ ├── cleanup.bat
│ ├── requirements.txt
│ └── README.md
| Feature | Description |
|---|---|
| Machine Learning | Scikit-learn pipelines & model evaluation |
| Machine Learning Lifecycle | Model training, evaluation, and deployment |
| Visualization | Plotly/Matplotlib/Seaborn dashboards |
| EDA | Automated Pandas Profiling reports |
| SQL Integration | Querying structured data |
import pandas as pd
from pandasql import sqldf
df = pd.read_csv("data.csv")
sqldf("SELECT * FROM df WHERE age > 30")# Clone with large file support
git clone https://github.com/yourusername/DataPortfolio.git --config core.longpaths=true
# Install analysis dependencies
pip install -r requirements.txt \
scikit-learn \
plotly \
pandasql \
jupyterlab# Start Jupyter Lab
jupyter lab --ip=0.0.0.0 --port=8888Typical notebook structure:
# % Title
## 1. Business Objective
## 2. Data Loading
## 3. Exploratory Analysis
## 4. Feature Engineering
## 5. Model Development
## 6. Insights & Recommendations
# 1. Explore data
jupyter lab DataAnalysis/notebooks/exploratory/data_profiling.ipynb
# Run cleanup script (Windows)
cleanup.bat
cleanup.sh