Skip to content

Commit 6960166

Browse files
committed
further update
1 parent 04f6055 commit 6960166

File tree

8 files changed

+673
-255
lines changed

8 files changed

+673
-255
lines changed

doc/pub/week6/html/week6-bs.html

Lines changed: 90 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -210,6 +210,22 @@
210210
2,
211211
None,
212212
'how-do-we-perform-measurements'),
213+
('Why do we measure on one qubit? First consideration',
214+
2,
215+
None,
216+
'why-do-we-measure-on-one-qubit-first-consideration'),
217+
('Why do we measure on one qubit? Second consideration',
218+
2,
219+
None,
220+
'why-do-we-measure-on-one-qubit-second-consideration'),
221+
('Why do we measure on one qubit? Third consideration',
222+
2,
223+
None,
224+
'why-do-we-measure-on-one-qubit-third-consideration'),
225+
('Why do we measure on one qubit? Fourth consideration',
226+
2,
227+
None,
228+
'why-do-we-measure-on-one-qubit-fourth-consideration'),
213229
('Explicit expressions', 2, None, 'explicit-expressions'),
214230
('Plans for the week of February March 1',
215231
2,
@@ -326,6 +342,10 @@
326342
<!-- navigation toc: --> <li><a href="#definitions" style="font-size: 80%;">Definitions</a></li>
327343
<!-- navigation toc: --> <li><a href="#the-hamiltonian-in-terms-of-pauli-boldsymbol-x-and-pauli-boldsymbol-z-matrices" style="font-size: 80%;">The Hamiltonian in terms of Pauli-\( \boldsymbol{X} \) and Pauli-\( \boldsymbol{Z} \) matrices</a></li>
328344
<!-- navigation toc: --> <li><a href="#how-do-we-perform-measurements" style="font-size: 80%;">How do we perform measurements?</a></li>
345+
<!-- navigation toc: --> <li><a href="#why-do-we-measure-on-one-qubit-first-consideration" style="font-size: 80%;">Why do we measure on one qubit? First consideration</a></li>
346+
<!-- navigation toc: --> <li><a href="#why-do-we-measure-on-one-qubit-second-consideration" style="font-size: 80%;">Why do we measure on one qubit? Second consideration</a></li>
347+
<!-- navigation toc: --> <li><a href="#why-do-we-measure-on-one-qubit-third-consideration" style="font-size: 80%;">Why do we measure on one qubit? Third consideration</a></li>
348+
<!-- navigation toc: --> <li><a href="#why-do-we-measure-on-one-qubit-fourth-consideration" style="font-size: 80%;">Why do we measure on one qubit? Fourth consideration</a></li>
329349
<!-- navigation toc: --> <li><a href="#explicit-expressions" style="font-size: 80%;">Explicit expressions</a></li>
330350
<!-- navigation toc: --> <li><a href="#plans-for-the-week-of-february-march-1" style="font-size: 80%;">Plans for the week of February March 1</a></li>
331351

@@ -2145,7 +2165,7 @@ <h2 id="the-hamiltonian-in-terms-of-pauli-boldsymbol-x-and-pauli-boldsymbol-z-ma
21452165
<h2 id="how-do-we-perform-measurements" class="anchor">How do we perform measurements? </h2>
21462166

21472167
<p>The above tensor products need to rewritten in terms of specific
2148-
transformations so that we can perform the measumrents in the basis of
2168+
transformations so that we can perform the measurements in the basis of
21492169
the Pauli-\( \boldsymbol{Z} \) matrices. As we discussed earlier, we need to find
21502170
a transformation of the form
21512171
</p>
@@ -2161,6 +2181,73 @@ <h2 id="how-do-we-perform-measurements" class="anchor">How do we perform measure
21612181

21622182
<p>The implementation of these measurements will be discussed next week.</p>
21632183

2184+
<!-- !split -->
2185+
<h2 id="why-do-we-measure-on-one-qubit-first-consideration" class="anchor">Why do we measure on one qubit? First consideration </h2>
2186+
2187+
<p>In quantum computing, measurements are typically performed on one
2188+
qubit at a time due to a combination of theoretical, practical, and
2189+
algorithmic considerations:
2190+
</p>
2191+
2192+
<div class="panel panel-default">
2193+
<div class="panel-body">
2194+
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
2195+
<ol>
2196+
<li> Adaptive Processing: Many quantum algorithms, such as quantum teleportation or error correction, require mid-circuit measurements. The outcomes determine subsequent operations, necessitating sequential measurements to adapt the circuit dynamically.</li>
2197+
<li> Partial Information Extraction: Algorithms often need only specific qubits' results (e.g., in Shor's algorithm), making full-system measurements unnecessary.</li>
2198+
</ol>
2199+
</div>
2200+
</div>
2201+
2202+
2203+
<!-- !split -->
2204+
<h2 id="why-do-we-measure-on-one-qubit-second-consideration" class="anchor">Why do we measure on one qubit? Second consideration </h2>
2205+
2206+
<div class="panel panel-default">
2207+
<div class="panel-body">
2208+
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
2209+
<ol>
2210+
<li> Collapse and Entanglement: Measuring a qubit collapses its state, potentially affecting entangled qubits. Sequential measurements allow controlled extraction of information while managing entanglement.</li>
2211+
<li> Measurement Basis: Most algorithms use the computational basis (individual qubit measurements). Joint measurements in entangled bases are possible but require complex setups and are not always needed.</li>
2212+
</ol>
2213+
</div>
2214+
</div>
2215+
2216+
2217+
<!-- !split -->
2218+
<h2 id="why-do-we-measure-on-one-qubit-third-consideration" class="anchor">Why do we measure on one qubit? Third consideration </h2>
2219+
2220+
<div class="panel panel-default">
2221+
<div class="panel-body">
2222+
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
2223+
<ol>
2224+
<li> Crosstalk and Noise: Simultaneous measurements risk disturbing neighboring qubits due to hardware imperfections, especially in noisy intermediate-scale quantum (NISQ) devices.</li>
2225+
<li> Readout Constraints: Physical implementations (e.g., superconducting qubits) may have limited readout bandwidth, forcing sequential measurements.</li>
2226+
</ol>
2227+
</div>
2228+
</div>
2229+
2230+
2231+
<!-- !split -->
2232+
<h2 id="why-do-we-measure-on-one-qubit-fourth-consideration" class="anchor">Why do we measure on one qubit? Fourth consideration </h2>
2233+
2234+
<div class="panel panel-default">
2235+
<div class="panel-body">
2236+
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
2237+
<ol>
2238+
<li> Qubit Reuse: Ancilla qubits (e.g., in error correction) are measured, reset, and reused, requiring sequential handling to avoid disrupting computational qubits.</li>
2239+
</ol>
2240+
</div>
2241+
</div>
2242+
2243+
<div class="panel panel-default">
2244+
<div class="panel-body">
2245+
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
2246+
<p>While joint measurements are theoretically possible, the dominant practice of measuring one qubit at a time stems from algorithmic adaptability, hardware limitations, and the need to minimize quantum state disturbance. This approach balances efficiency, practicality, and the constraints of current quantum systems.</p>
2247+
</div>
2248+
</div>
2249+
2250+
21642251
<!-- !split -->
21652252
<h2 id="explicit-expressions" class="anchor">Explicit expressions </h2>
21662253
<p>In order to perform our measurements, will then need the following operators \( \boldsymbol{U} \)</p>
@@ -2176,10 +2263,10 @@ <h2 id="explicit-expressions" class="anchor">Explicit expressions </h2>
21762263
<p>where we have </p>
21772264
$$
21782265
\text{CX}_{10} = \begin{bmatrix}
2179-
0 & 1 & 0 & 0 \\
21802266
1 & 0 & 0 & 0 \\
2267+
0 & 0 & 0 & 1 \\
21812268
0 & 0 & 1 & 0 \\
2182-
0 & 0 & 0 & 1
2269+
0 & 1 & 0 & 0
21832270
\end{bmatrix}.
21842271
$$
21852272

doc/pub/week6/html/week6-reveal.html

Lines changed: 65 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2188,7 +2188,7 @@ <h2 id="the-hamiltonian-in-terms-of-pauli-boldsymbol-x-and-pauli-boldsymbol-z-ma
21882188
<h2 id="how-do-we-perform-measurements">How do we perform measurements? </h2>
21892189

21902190
<p>The above tensor products need to rewritten in terms of specific
2191-
transformations so that we can perform the measumrents in the basis of
2191+
transformations so that we can perform the measurements in the basis of
21922192
the Pauli-\( \boldsymbol{Z} \) matrices. As we discussed earlier, we need to find
21932193
a transformation of the form
21942194
</p>
@@ -2207,6 +2207,68 @@ <h2 id="how-do-we-perform-measurements">How do we perform measurements? </h2>
22072207
<p>The implementation of these measurements will be discussed next week.</p>
22082208
</section>
22092209

2210+
<section>
2211+
<h2 id="why-do-we-measure-on-one-qubit-first-consideration">Why do we measure on one qubit? First consideration </h2>
2212+
2213+
<p>In quantum computing, measurements are typically performed on one
2214+
qubit at a time due to a combination of theoretical, practical, and
2215+
algorithmic considerations:
2216+
</p>
2217+
2218+
<div class="alert alert-block alert-block alert-text-normal">
2219+
<b>Algorithmic Requirements:</b>
2220+
<p>
2221+
<ol>
2222+
<p><li> Adaptive Processing: Many quantum algorithms, such as quantum teleportation or error correction, require mid-circuit measurements. The outcomes determine subsequent operations, necessitating sequential measurements to adapt the circuit dynamically.</li>
2223+
<p><li> Partial Information Extraction: Algorithms often need only specific qubits' results (e.g., in Shor's algorithm), making full-system measurements unnecessary.</li>
2224+
</ol>
2225+
</div>
2226+
</section>
2227+
2228+
<section>
2229+
<h2 id="why-do-we-measure-on-one-qubit-second-consideration">Why do we measure on one qubit? Second consideration </h2>
2230+
2231+
<div class="alert alert-block alert-block alert-text-normal">
2232+
<b>Quantum Mechanical Principles:</b>
2233+
<p>
2234+
<ol>
2235+
<p><li> Collapse and Entanglement: Measuring a qubit collapses its state, potentially affecting entangled qubits. Sequential measurements allow controlled extraction of information while managing entanglement.</li>
2236+
<p><li> Measurement Basis: Most algorithms use the computational basis (individual qubit measurements). Joint measurements in entangled bases are possible but require complex setups and are not always needed.</li>
2237+
</ol>
2238+
</div>
2239+
</section>
2240+
2241+
<section>
2242+
<h2 id="why-do-we-measure-on-one-qubit-third-consideration">Why do we measure on one qubit? Third consideration </h2>
2243+
2244+
<div class="alert alert-block alert-block alert-text-normal">
2245+
<b>Practical Hardware Limitations:</b>
2246+
<p>
2247+
<ol>
2248+
<p><li> Crosstalk and Noise: Simultaneous measurements risk disturbing neighboring qubits due to hardware imperfections, especially in noisy intermediate-scale quantum (NISQ) devices.</li>
2249+
<p><li> Readout Constraints: Physical implementations (e.g., superconducting qubits) may have limited readout bandwidth, forcing sequential measurements.</li>
2250+
</ol>
2251+
</div>
2252+
</section>
2253+
2254+
<section>
2255+
<h2 id="why-do-we-measure-on-one-qubit-fourth-consideration">Why do we measure on one qubit? Fourth consideration </h2>
2256+
2257+
<div class="alert alert-block alert-block alert-text-normal">
2258+
<b>Resource Management:</b>
2259+
<p>
2260+
<ol>
2261+
<p><li> Qubit Reuse: Ancilla qubits (e.g., in error correction) are measured, reset, and reused, requiring sequential handling to avoid disrupting computational qubits.</li>
2262+
</ol>
2263+
</div>
2264+
2265+
<div class="alert alert-block alert-block alert-text-normal">
2266+
<b>Conclusion:</b>
2267+
<p>
2268+
<p>While joint measurements are theoretically possible, the dominant practice of measuring one qubit at a time stems from algorithmic adaptability, hardware limitations, and the need to minimize quantum state disturbance. This approach balances efficiency, practicality, and the constraints of current quantum systems.</p>
2269+
</div>
2270+
</section>
2271+
22102272
<section>
22112273
<h2 id="explicit-expressions">Explicit expressions </h2>
22122274
<p>In order to perform our measurements, will then need the following operators \( \boldsymbol{U} \)</p>
@@ -2225,10 +2287,10 @@ <h2 id="explicit-expressions">Explicit expressions </h2>
22252287
<p>&nbsp;<br>
22262288
$$
22272289
\text{CX}_{10} = \begin{bmatrix}
2228-
0 & 1 & 0 & 0 \\
22292290
1 & 0 & 0 & 0 \\
2291+
0 & 0 & 0 & 1 \\
22302292
0 & 0 & 1 & 0 \\
2231-
0 & 0 & 0 & 1
2293+
0 & 1 & 0 & 0
22322294
\end{bmatrix}.
22332295
$$
22342296
<p>&nbsp;<br>

doc/pub/week6/html/week6-solarized.html

Lines changed: 81 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -237,6 +237,22 @@
237237
2,
238238
None,
239239
'how-do-we-perform-measurements'),
240+
('Why do we measure on one qubit? First consideration',
241+
2,
242+
None,
243+
'why-do-we-measure-on-one-qubit-first-consideration'),
244+
('Why do we measure on one qubit? Second consideration',
245+
2,
246+
None,
247+
'why-do-we-measure-on-one-qubit-second-consideration'),
248+
('Why do we measure on one qubit? Third consideration',
249+
2,
250+
None,
251+
'why-do-we-measure-on-one-qubit-third-consideration'),
252+
('Why do we measure on one qubit? Fourth consideration',
253+
2,
254+
None,
255+
'why-do-we-measure-on-one-qubit-fourth-consideration'),
240256
('Explicit expressions', 2, None, 'explicit-expressions'),
241257
('Plans for the week of February March 1',
242258
2,
@@ -2064,7 +2080,7 @@ <h2 id="the-hamiltonian-in-terms-of-pauli-boldsymbol-x-and-pauli-boldsymbol-z-ma
20642080
<h2 id="how-do-we-perform-measurements">How do we perform measurements? </h2>
20652081

20662082
<p>The above tensor products need to rewritten in terms of specific
2067-
transformations so that we can perform the measumrents in the basis of
2083+
transformations so that we can perform the measurements in the basis of
20682084
the Pauli-\( \boldsymbol{Z} \) matrices. As we discussed earlier, we need to find
20692085
a transformation of the form
20702086
</p>
@@ -2080,6 +2096,68 @@ <h2 id="how-do-we-perform-measurements">How do we perform measurements? </h2>
20802096

20812097
<p>The implementation of these measurements will be discussed next week.</p>
20822098

2099+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
2100+
<h2 id="why-do-we-measure-on-one-qubit-first-consideration">Why do we measure on one qubit? First consideration </h2>
2101+
2102+
<p>In quantum computing, measurements are typically performed on one
2103+
qubit at a time due to a combination of theoretical, practical, and
2104+
algorithmic considerations:
2105+
</p>
2106+
2107+
<div class="alert alert-block alert-block alert-text-normal">
2108+
<b>Algorithmic Requirements:</b>
2109+
<p>
2110+
<ol>
2111+
<li> Adaptive Processing: Many quantum algorithms, such as quantum teleportation or error correction, require mid-circuit measurements. The outcomes determine subsequent operations, necessitating sequential measurements to adapt the circuit dynamically.</li>
2112+
<li> Partial Information Extraction: Algorithms often need only specific qubits' results (e.g., in Shor's algorithm), making full-system measurements unnecessary.</li>
2113+
</ol>
2114+
</div>
2115+
2116+
2117+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
2118+
<h2 id="why-do-we-measure-on-one-qubit-second-consideration">Why do we measure on one qubit? Second consideration </h2>
2119+
2120+
<div class="alert alert-block alert-block alert-text-normal">
2121+
<b>Quantum Mechanical Principles:</b>
2122+
<p>
2123+
<ol>
2124+
<li> Collapse and Entanglement: Measuring a qubit collapses its state, potentially affecting entangled qubits. Sequential measurements allow controlled extraction of information while managing entanglement.</li>
2125+
<li> Measurement Basis: Most algorithms use the computational basis (individual qubit measurements). Joint measurements in entangled bases are possible but require complex setups and are not always needed.</li>
2126+
</ol>
2127+
</div>
2128+
2129+
2130+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
2131+
<h2 id="why-do-we-measure-on-one-qubit-third-consideration">Why do we measure on one qubit? Third consideration </h2>
2132+
2133+
<div class="alert alert-block alert-block alert-text-normal">
2134+
<b>Practical Hardware Limitations:</b>
2135+
<p>
2136+
<ol>
2137+
<li> Crosstalk and Noise: Simultaneous measurements risk disturbing neighboring qubits due to hardware imperfections, especially in noisy intermediate-scale quantum (NISQ) devices.</li>
2138+
<li> Readout Constraints: Physical implementations (e.g., superconducting qubits) may have limited readout bandwidth, forcing sequential measurements.</li>
2139+
</ol>
2140+
</div>
2141+
2142+
2143+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
2144+
<h2 id="why-do-we-measure-on-one-qubit-fourth-consideration">Why do we measure on one qubit? Fourth consideration </h2>
2145+
2146+
<div class="alert alert-block alert-block alert-text-normal">
2147+
<b>Resource Management:</b>
2148+
<p>
2149+
<ol>
2150+
<li> Qubit Reuse: Ancilla qubits (e.g., in error correction) are measured, reset, and reused, requiring sequential handling to avoid disrupting computational qubits.</li>
2151+
</ol>
2152+
</div>
2153+
2154+
<div class="alert alert-block alert-block alert-text-normal">
2155+
<b>Conclusion:</b>
2156+
<p>
2157+
<p>While joint measurements are theoretically possible, the dominant practice of measuring one qubit at a time stems from algorithmic adaptability, hardware limitations, and the need to minimize quantum state disturbance. This approach balances efficiency, practicality, and the constraints of current quantum systems.</p>
2158+
</div>
2159+
2160+
20832161
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
20842162
<h2 id="explicit-expressions">Explicit expressions </h2>
20852163
<p>In order to perform our measurements, will then need the following operators \( \boldsymbol{U} \)</p>
@@ -2095,10 +2173,10 @@ <h2 id="explicit-expressions">Explicit expressions </h2>
20952173
<p>where we have </p>
20962174
$$
20972175
\text{CX}_{10} = \begin{bmatrix}
2098-
0 & 1 & 0 & 0 \\
20992176
1 & 0 & 0 & 0 \\
2177+
0 & 0 & 0 & 1 \\
21002178
0 & 0 & 1 & 0 \\
2101-
0 & 0 & 0 & 1
2179+
0 & 1 & 0 & 0
21022180
\end{bmatrix}.
21032181
$$
21042182

0 commit comments

Comments
 (0)