TensorRT module in C/C++
Linux
- 
yaml-cpp git clone https://github.com/jbeder/yaml-cpp cd yaml-cpp mkdir build && cd build cmake .. -DYAML_BUILD_SHARED_LIBS=on 
- 
OpenCV with CUDA support (C++/Python) 
Windows
- 
Download dirent.h then put inside this folder: Visual-Studio-Installed-Path\201x\Community\VC\Tools\MSVC\xx.xx.xxxxx\include 
git clone https://github.com/CuteBoiz/TensorRT_Parser_Cpp.git
cd TensorRT_Parser_Cpp
mkdir build && cd build
cmake .. -DTRT:=/path/to/tensorrt #ex: cmake .. -DTRT:=/home/pi/Libraries/TensorRT-8.4.3.1
make./tensorrt_cpp convert /path/to/config.yaml_fileExamples
./tensorrt_cpp convert ../config/onnx_config.yaml
./tensorrt_cpp convert ../config/onnx_config_dynamic.yaml./tensorrt_cpp infer /path/to/trt_engine /path/to/data  (softmax) (gpuID)Data could be path to video/image/images folder
gpuID for select gpuID in multi-gpu system inference
Examples
./tensorrt_cpp infer  home/usrname/classifier.trt image.jpg 
./tensorrt_cpp infer  classifier.trt ./test_images 1
./tensorrt_cpp infer  classifier.trt video.mp4 softmax
./tensorrt_cpp infer  ../classifier.trt ../images/ softmax 6- Support
- Multiple inputs.
- Multiple outputs.
- Non-image input.
- Channel first and last input (CHW/HWC).
- 2D,3D,4D,5D tensor softmax.
- kINT/kBOOL/kFLOAT tensor.
 
- Additions
- Switch Primary GPU.
- Add CudaStream (Multiple GPU inference).