This system provides a real-time task tree visualization with WebSocket communication between a Python backend and Next.js frontend.
- Next.js 13+ application with React components
 - WebSocket client that connects to the Python backend
 - Real-time visualization of hierarchical task trees
 - Interactive UI with collapsible task details
 
- Python WebSocket server for broadcasting task updates
 - AI-powered task decomposition using DeepSeek API
 - Real-time task execution with status updates
 - Enhanced task attributes (atomic, commands, human instructions)
 
# Run the demo with sample data
.\start_demo.ps1This will:
- Start the Next.js frontend on 
http://localhost:3000 - Start the WebSocket server on 
ws://localhost:8000with sample data - Simulate task execution with status updates
 
# Terminal 1: Start the frontend
cd task-tree-visualizer
npm install
npm run dev
# Terminal 2: Start the AI daemon
cd v0x1
python 0x1daemon.pyEach task now supports:
chatresponse: AI-generated comments about the taskatomic: Boolean indicating if task is executablecommand: Shell command for atomic taskssubtasks: List of subtask descriptionshuman_needed: Boolean for human intervention requirementshuman_instructions: List of instructions for human users
- Collapsible details: Atomic tasks can be expanded to show commands and responses
 - Visual indicators: Color-coded status for execution states
 - Human intervention alerts: Special highlighting for tasks requiring human input
 - Real-time updates: Live WebSocket connection for instant status updates
 
task-tree-visualizer/          # Next.js Frontend
├── src/app/page.tsx          # Main visualization component
├── package.json              # Frontend dependencies
└── ...
v0x1/                         # Python Backend  
├── 0x1daemon.py             # Main AI daemon with WebSocket
├── websocketserver.py       # Standalone WebSocket server
├── test_websocket.py        # Demo script with sample data
├── task.txt                 # Input task description
└── ...
start_demo.ps1               # Quick start script
{
  "task": "Task name",
  "parent": true/false,
  "leaf": true/false, 
  "level": 0,
  "executionStarted": true/false,
  "executionSuccess": true/false,
  "subTasks": [...],
  "chatresponse": "AI response",
  "atomic": true/false,
  "command": "shell command",
  "subtasks": ["sub1", "sub2"],
  "human_needed": true/false,
  "human_instructions": ["instruction1", "instruction2"]
}- URL: 
ws://localhost:8000/ws - Protocol: JSON messages
 - Updates: Real-time tree state broadcasts
 
Edit v0x1/task.txt:
Create a simple HTML website with a contact form
Build a REST API with authentication, database integration, and documentation
Set up a React application with TypeScript, routing, and testing framework
- Ensure Node.js is installed: 
node --version - Install dependencies: 
npm install - Check port 3000 is available
 
- Install Python dependencies: 
pip install websockets openai python-dotenv - Set DeepSeek API key in 
.envfile - Check port 8000 is available
 
- Verify WebSocket server is running on port 8000
 - Check browser console for connection errors
 - Ensure firewall allows localhost connections
 
- Update the 
Nodeclass in both0x1daemon.pyandwebsocketserver.py - Modify the 
to_dict()method to include new attributes - Update the frontend 
Nodeinterface inpage.tsx - Add visualization for new attributes in the 
TaskNodecomponent 
- Edit 
systemPrompt.pyto modify AI behavior - Adjust the JSON response format in 
getSubTaskList() - Update task classification logic in 
fillTreeWithTasks() 
Create a .env file in the v0x1/ directory:
DEEPSEEK_API_KEY=your_api_key_here
Get your API key from DeepSeek Platform.