Glossary - https://decoding-data-science.github.io/aiglossary2025/#resources
Welcome to your AI Technical Training Repository! This repo contains all the notebooks, datasets, and resources you’ll use during the first 5 days of training.
We’ll be using Google Colab for everything — no software installation required.
Kahoot https://github.com/Decoding-Data-Science/nov25/tree/main/kahoot Slides https://github.com/Decoding-Data-Science/nov25/tree/main/Slides
-
Open Google Colab: 👉 https://colab.research.google.com
-
Open a Notebook: Click one of the links below to launch directly in Colab.
| Day | Topic | Open in Colab |
|---|---|---|
| Day 1 | Python & AI Foundations | |
| Day 2 | Exploratory Data Analysis | |
| Day 3 | Machine Learning Models | |
| Day 4 | Deep Learning Intro | |
| Day 5 | MLOps & Deployment Basics |
Replace
<your-org>/<your-repo>with your actual GitHub path (e.g.,decodingdatascience/ai-training).
ai-training/
│
├── data/ ← sample datasets
├── notebooks/ ← Day 1 – Day 5 notebooks
├── resources/ ← slides + cheat sheets
└── README.md
- Run cells top → bottom
- Practice sections are marked with
# Your Turn! - Save your own copy:
File → Save a copy in Drive
- If an error appears → Runtime → Restart and run all
- Keep your internet connection active for Colab
- Try to experiment with every example — learning by doing!
- Fork the repo
- Edit a notebook or add a resource
- Submit a pull request
All contributions welcome — even typo fixes and better examples!
This repository contains all training assets for the Nov 2025 cohort:
- Google Colab notebooks (Python → ML → DL → GenAI/RAG/Agents)
- Datasets under
/data - Slides under
/Slides - Kahoot quizzes under
/kahoot - Supporting PDFs and reference materials
Glossary / Resources: https://decoding-data-science.github.io/aiglossary2025/#resources
- Use Google Colab for delivery: https://colab.research.google.com
- Ask learners to open the notebook, then:
Runtime → Run all(or run top-to-bottom) - If anything breaks:
Runtime → Restart runtime → Run all
Repo shortcuts
- Slides: https://github.com/Decoding-Data-Science/nov25/tree/main/Slides
- Kahoot: https://github.com/Decoding-Data-Science/nov25/tree/main/kahoot
- Data: https://github.com/Decoding-Data-Science/nov25/tree/main/data
Use this as the default classroom flow. You can swap notebooks based on cohort pace.
| Day | Topic | Primary Notebook |
|---|---|---|
| Day 0 | Python Foundations | Open in Colab |
| Day 0 | Stats Foundations | Open in Colab |
| Day 1 | Exploratory Data Analysis (Power Plant) | Open in Colab |
| Day 2 | Regression (baseline ML) | Open in Colab |
| Day 3 | Classification (Logistic Regression) | Open in Colab |
| Day 4 | Trees + Unsupervised Learning | Decision Tree · Unsupervised |
| Day 5 | Deep Learning Intro | Open in Colab |
Alternative / dated versions (use only if needed)
- 18 Nov Stats: https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/18_nov_Day0_Stats.ipynb
- 19 Nov Unsupervised: https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/19_nov_unsupervised_learning.ipynb
- 20 Nov Logistic Regression: https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/20_nov_logistic_regression1.ipynb
- Weather API demo: https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/weather_api_nov2025.ipynb
- Weather LLM wrapper: https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/Weather_LLM_wrapper.ipynb
- Weather (updated variant): https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/new_20_nov_weather_api_nov2025.ipynb
- First RAG: https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/your_firstRAG_enec.ipynb
- Vector stores + Pinecone index demo: https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/ENEC_rag_vector_stores_pineconeindexdemo.ipynb
- LangChain chains + agent: https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/Langchain_chains_agent_15thov.ipynb
- CrewAI multi-agent (Level 1): https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/crewai_multiagent_level_1.ipynb
- ENEC ticketing (CrewAI scenario): https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/ENEC_ticket_crewai_new.ipynb
- Evaluation recipe: https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/1_evaluation_recipe.ipynb
- Power plant forecasting: https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/Predicting_Power_Plant_Output_Using_Weather_Data.ipynb
- Business questions (power plant): https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/business_quesitons_powerplant.ipynb
- First Python chatbot: https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/first_python_chatbot.ipynb
- Visual AI (clip project): https://colab.research.google.com/github/Decoding-Data-Science/nov25/blob/main/energy_plant_visual_ai_clip_project.ipynb
nov25/
├── Slides/ # slide decks used in sessions
├── kahoot/ # Kahoot quizzes + exports
├── data/ # datasets used by notebooks
├── generativeai/ # GenAI assets (if applicable)
├── *.ipynb # notebooks (core + add-ons)
├── *.pdf # reference PDFs / proposals
└── README.md
## 📞 Need Help?
If you’re stuck:
* Ask in the **training WhatsApp group** 📱
* Or tag your mentor/instructor in Colab comments