Skip to content

Decoding-Data-Science/nov25

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


🧠 AI Technical Training

Glossary - https://decoding-data-science.github.io/aiglossary2025/#resources

Welcome to your AI Technical Training Repository! This repo contains all the notebooks, datasets, and resources you’ll use during the first 5 days of training.

We’ll be using Google Colab for everything — no software installation required.

🚀 Quick Start

  1. Open Google Colab: 👉 https://colab.research.google.com

  2. Open a Notebook: Click one of the links below to launch directly in Colab.


📅 Training Schedule & Notebooks

Day Topic Open in Colab
Day 1 Python & AI Foundations Open in Colab
Day 2 Exploratory Data Analysis Open in Colab
Day 3 Machine Learning Models Open in Colab
Day 4 Deep Learning Intro Open in Colab
Day 5 MLOps & Deployment Basics Open in Colab

Replace <your-org>/<your-repo> with your actual GitHub path (e.g., decodingdatascience/ai-training).


📂 Folder Structure

ai-training/
│
├── data/             ←  sample datasets
├── notebooks/        ←  Day 1 – Day 5 notebooks
├── resources/        ←  slides + cheat sheets
└── README.md

🧩 How to Use the Notebooks

  • Run cells top → bottom
  • Practice sections are marked with # Your Turn!
  • Save your own copy: File → Save a copy in Drive

💡 Helpful Tips

  • If an error appears → Runtime → Restart and run all
  • Keep your internet connection active for Colab
  • Try to experiment with every example — learning by doing!

🤝 Contribute / Improve

  1. Fork the repo
  2. Edit a notebook or add a resource
  3. Submit a pull request

All contributions welcome — even typo fixes and better examples!


AI Technical Training (Nov 2025) — Trainer Cohort Repository

This repository contains all training assets for the Nov 2025 cohort:

  • Google Colab notebooks (Python → ML → DL → GenAI/RAG/Agents)
  • Datasets under /data
  • Slides under /Slides
  • Kahoot quizzes under /kahoot
  • Supporting PDFs and reference materials

Glossary / Resources: https://decoding-data-science.github.io/aiglossary2025/#resources


Quick Start (Trainers)

  1. Use Google Colab for delivery: https://colab.research.google.com
  2. Ask learners to open the notebook, then: Runtime → Run all (or run top-to-bottom)
  3. If anything breaks: Runtime → Restart runtime → Run all

Repo shortcuts


Core Training Schedule (Suggested: Days 0–5)

Use this as the default classroom flow. You can swap notebooks based on cohort pace.

Day Topic Primary Notebook
Day 0 Python Foundations Open in Colab
Day 0 Stats Foundations Open in Colab
Day 1 Exploratory Data Analysis (Power Plant) Open in Colab
Day 2 Regression (baseline ML) Open in Colab
Day 3 Classification (Logistic Regression) Open in Colab
Day 4 Trees + Unsupervised Learning Decision Tree · Unsupervised
Day 5 Deep Learning Intro Open in Colab

Alternative / dated versions (use only if needed)


GenAI / RAG / Agentic Modules (Add-on Track)

LLM + API Wrappers (Weather demo)

RAG (Vector Stores / Pinecone)

Agents (LangChain / CrewAI) + Industrial Support Ticketing

Evaluation (LLM / RAG recipes)


Projects & Demos (Optional)


Folder Structure

nov25/
├── Slides/                      # slide decks used in sessions
├── kahoot/                      # Kahoot quizzes + exports
├── data/                        # datasets used by notebooks
├── generativeai/                # GenAI assets (if applicable)
├── *.ipynb                      # notebooks (core + add-ons)
├── *.pdf                        # reference PDFs / proposals
└── README.md


## 📞 Need Help?

If you’re stuck:

* Ask in the **training WhatsApp group** 📱
* Or tag your mentor/instructor in Colab comments

About

Materials for training

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published