Skip to content

Analyzing X-ray reflectometry data using the Parratt recursion formalism with Nevot-Croce roughness corrections.

License

Notifications You must be signed in to change notification settings

EigenJames/XRR_Demo-code

Repository files navigation

X-ray Reflectometry (XRR) Fitting Demo

A comprehensive Python Jupyter notebook for analyzing X-ray reflectometry data using the Parratt recursion formalism with Nevot-Croce roughness corrections.

Overview

This project provides a complete pipeline for XRR data analysis including:

  • Forward modeling using Parratt recursion with Nevot-Croce roughness corrections
  • Parameter fitting with scipy optimization (least squares)
  • Uncertainty quantification using MCMC sampling (optional)
  • Comprehensive visualization of results and parameter distributions
  • Robustness testing with multiple initial guesses
  • Practical guidelines for laboratory implementation

Features

πŸ”¬ Scientific Capabilities

  • Multilayer stack modeling for thin film analysis
  • Interface roughness characterization
  • Electron density profile determination
  • Parameter correlation analysis
  • Uncertainty propagation and error estimation

πŸ“Š Analysis Tools

  • Automated data loading and preprocessing
  • Robust optimization algorithms
  • MCMC sampling for Bayesian parameter estimation
  • Comprehensive visualization suite
  • Quality metrics and fit assessment

🏭 Laboratory Integration

  • Modular design for easy customization
  • Batch processing capabilities
  • Automated report generation
  • Multiple export formats
  • Real-time analysis compatibility

Installation

Prerequisites

  • Python 3.7+
  • Jupyter Notebook or JupyterLab

Required Packages

pip install numpy scipy matplotlib pandas requests

Optional Packages (for MCMC analysis)

pip install emcee corner

Quick Start

# Clone or download the repository
# Navigate to the project directory
jupyter notebook XRR_fit_demo.ipynb

Usage

Basic Analysis

  1. Load your data: Replace the synthetic data generation with your experimental data files
  2. Adjust the model: Modify layer structure in parratt_reflectivity() to match your sample
  3. Set parameters: Define initial guesses and bounds for your system
  4. Run fitting: Execute the optimization and uncertainty analysis
  5. Analyze results: Use the visualization tools to interpret your data

Advanced Features

  • MCMC sampling: Enable for comprehensive uncertainty analysis
  • Robustness testing: Validate fitting stability across different initial conditions
  • Parameter correlations: Identify coupled parameters and physical constraints
  • Custom models: Extend the forward model for complex multilayer structures

File Structure

XRR_Demo-code/
β”œβ”€β”€ core/                       # Core forward modeling modules
β”‚   β”œβ”€β”€ __init__.py
β”‚   └── xrr_forward_model.py    # Parratt recursion implementation
β”œβ”€β”€ analysis/                   # Data analysis and processing
β”‚   β”œβ”€β”€ __init__.py
β”‚   └── xrr_eda.py              # Exploratory data analysis tools
β”œβ”€β”€ visualization/              # Interactive dashboards and plots
β”‚   β”œβ”€β”€ __init__.py
β”‚   └── xrr_dashboard.py        # Jupyter widget dashboard
β”œβ”€β”€ utils/                      # Utility scripts
β”‚   β”œβ”€β”€ __init__.py
β”‚   └── fix_noise.py            # Library patching utilities
β”œβ”€β”€ notebooks/                  # Jupyter notebooks
β”‚   β”œβ”€β”€ Demo_WorkFlow.ipynb     # Data exploration workflow
β”‚   β”œβ”€β”€ XRR_ForwardModel.ipynb  # Interactive forward model
β”‚   └── XRR_fit_demo.ipynb      # Fitting demonstration
β”œβ”€β”€ reflectometry-dataset/      # Reference dataset (submodule)
β”œβ”€β”€ .github/                    # GitHub configuration
β”‚   └── copilot-instructions.md
β”œβ”€β”€ LICENSE                     # MIT License
β”œβ”€β”€ README.md                   # This file
β”œβ”€β”€ requirements.txt            # Python dependencies
└── .gitignore                  # Git ignore rules
```XRR_Demo-code/
β”œβ”€β”€ XRR_fit_demo.ipynb          # Main analysis notebook
β”œβ”€β”€ README.md                   # This file
β”œβ”€β”€ requirements.txt            # Python dependencies
└── .github/
    └── copilot-instructions.md # Project guidelines

Notebook Sections

  1. Data Loading: Import experimental or synthetic XRR data
  2. Forward Model: Parratt recursion implementation with roughness corrections
  3. Parameter Fitting: Least squares optimization with uncertainty estimation
  4. Visualization: Comprehensive plots for data interpretation
  5. MCMC Analysis: Bayesian parameter estimation (optional)
  6. Robustness Testing: Validation with multiple initial guesses
  7. Practical Applications: Guidelines for laboratory implementation

Scientific Background

X-ray Reflectometry

XRR is a powerful technique for characterizing thin film multilayers by measuring specular reflection as a function of momentum transfer (q). The technique provides information about:

  • Layer thicknesses (typically 1-1000 nm)
  • Interface roughnesses (sub-nanometer sensitivity)
  • Electron density profiles (related to material composition)
  • Multilayer periodicity and structural quality

Parratt Recursion

The Parratt recursion is the standard method for calculating X-ray reflectivity from multilayer structures. It accounts for:

  • Multiple scattering between interfaces
  • Absorption effects in each layer
  • Phase relationships in the multilayer stack

Nevot-Croce Roughness

Interface roughness is modeled using the Nevot-Croce factor, which modifies Fresnel reflection coefficients based on the RMS roughness of each interface.

Laboratory Implementation

For ITRI and Industrial Applications

Data Integration

  • Instrument compatibility: Supports data from major XRR manufacturers (Rigaku, PANalytical, Bruker)
  • Format flexibility: Easily adaptable to different data formats and measurement protocols
  • Quality control: Automated data validation and outlier detection

Process Automation

  • Batch processing: Analyze multiple samples with consistent parameters
  • Real-time analysis: Integration with measurement software for live feedback
  • Report generation: Automated creation of standardized analysis reports

Quality Assurance

  • Reproducibility: Consistent analysis methodology across different users
  • Validation: Cross-comparison with complementary techniques
  • Documentation: Complete analysis history and parameter tracking

Example Results

The notebook demonstrates analysis of a Si/SiOβ‚‚/Si₃Nβ‚„ multilayer stack with:

  • Layer 1: SiOβ‚‚ (~25 Γ… thick, ~3.5 Γ… roughness)
  • Layer 2: Si₃Nβ‚„ (~150 Γ… thick, ~4.2 Γ… roughness)
  • Substrate: Si with typical electron density
  • Fitting accuracy: Parameter recovery within ~5% of true values
  • Uncertainty estimation: Proper error propagation using MCMC sampling

Contributing

Contributions are welcome! Areas for enhancement:

  • Additional layer models (gradients, magnetic layers)
  • Instrument resolution convolution
  • Alternative optimization algorithms
  • GUI development for user-friendly operation

License

This project is licensed under the MIT License - see the LICENSE file for details.

References

  1. Parratt, L. G. (1954). "Surface Studies of Solids by Total Reflection of X-Rays." Physical Review, 95(2), 359-369.
  2. NΓ©vot, L., & Croce, P. (1980). "CaractΓ©risation des surfaces par rΓ©flexion rasante de rayons X." Revue de Physique AppliquΓ©e, 15(3), 761-779.
  3. Als-Nielsen, J., & McMorrow, D. (2011). "Elements of Modern X-ray Physics." John Wiley & Sons.

Contact

For questions, suggestions, or collaboration opportunities related to XRR analysis and implementation at ITRI, please feel free to reach out.


Keywords: X-ray reflectometry, thin films, multilayers, Parratt recursion, parameter fitting, uncertainty quantification, materials characterization, Python, Jupyter

About

Analyzing X-ray reflectometry data using the Parratt recursion formalism with Nevot-Croce roughness corrections.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published