A comprehensive Python Jupyter notebook for analyzing X-ray reflectometry data using the Parratt recursion formalism with Nevot-Croce roughness corrections.
This project provides a complete pipeline for XRR data analysis including:
- Forward modeling using Parratt recursion with Nevot-Croce roughness corrections
- Parameter fitting with scipy optimization (least squares)
- Uncertainty quantification using MCMC sampling (optional)
- Comprehensive visualization of results and parameter distributions
- Robustness testing with multiple initial guesses
- Practical guidelines for laboratory implementation
- Multilayer stack modeling for thin film analysis
- Interface roughness characterization
- Electron density profile determination
- Parameter correlation analysis
- Uncertainty propagation and error estimation
- Automated data loading and preprocessing
- Robust optimization algorithms
- MCMC sampling for Bayesian parameter estimation
- Comprehensive visualization suite
- Quality metrics and fit assessment
- Modular design for easy customization
- Batch processing capabilities
- Automated report generation
- Multiple export formats
- Real-time analysis compatibility
- Python 3.7+
- Jupyter Notebook or JupyterLab
pip install numpy scipy matplotlib pandas requestspip install emcee corner# Clone or download the repository
# Navigate to the project directory
jupyter notebook XRR_fit_demo.ipynb- Load your data: Replace the synthetic data generation with your experimental data files
- Adjust the model: Modify layer structure in
parratt_reflectivity()to match your sample - Set parameters: Define initial guesses and bounds for your system
- Run fitting: Execute the optimization and uncertainty analysis
- Analyze results: Use the visualization tools to interpret your data
- MCMC sampling: Enable for comprehensive uncertainty analysis
- Robustness testing: Validate fitting stability across different initial conditions
- Parameter correlations: Identify coupled parameters and physical constraints
- Custom models: Extend the forward model for complex multilayer structures
XRR_Demo-code/
βββ core/ # Core forward modeling modules
β βββ __init__.py
β βββ xrr_forward_model.py # Parratt recursion implementation
βββ analysis/ # Data analysis and processing
β βββ __init__.py
β βββ xrr_eda.py # Exploratory data analysis tools
βββ visualization/ # Interactive dashboards and plots
β βββ __init__.py
β βββ xrr_dashboard.py # Jupyter widget dashboard
βββ utils/ # Utility scripts
β βββ __init__.py
β βββ fix_noise.py # Library patching utilities
βββ notebooks/ # Jupyter notebooks
β βββ Demo_WorkFlow.ipynb # Data exploration workflow
β βββ XRR_ForwardModel.ipynb # Interactive forward model
β βββ XRR_fit_demo.ipynb # Fitting demonstration
βββ reflectometry-dataset/ # Reference dataset (submodule)
βββ .github/ # GitHub configuration
β βββ copilot-instructions.md
βββ LICENSE # MIT License
βββ README.md # This file
βββ requirements.txt # Python dependencies
βββ .gitignore # Git ignore rules
```XRR_Demo-code/
βββ XRR_fit_demo.ipynb # Main analysis notebook
βββ README.md # This file
βββ requirements.txt # Python dependencies
βββ .github/
βββ copilot-instructions.md # Project guidelines
- Data Loading: Import experimental or synthetic XRR data
- Forward Model: Parratt recursion implementation with roughness corrections
- Parameter Fitting: Least squares optimization with uncertainty estimation
- Visualization: Comprehensive plots for data interpretation
- MCMC Analysis: Bayesian parameter estimation (optional)
- Robustness Testing: Validation with multiple initial guesses
- Practical Applications: Guidelines for laboratory implementation
XRR is a powerful technique for characterizing thin film multilayers by measuring specular reflection as a function of momentum transfer (q). The technique provides information about:
- Layer thicknesses (typically 1-1000 nm)
- Interface roughnesses (sub-nanometer sensitivity)
- Electron density profiles (related to material composition)
- Multilayer periodicity and structural quality
The Parratt recursion is the standard method for calculating X-ray reflectivity from multilayer structures. It accounts for:
- Multiple scattering between interfaces
- Absorption effects in each layer
- Phase relationships in the multilayer stack
Interface roughness is modeled using the Nevot-Croce factor, which modifies Fresnel reflection coefficients based on the RMS roughness of each interface.
- Instrument compatibility: Supports data from major XRR manufacturers (Rigaku, PANalytical, Bruker)
- Format flexibility: Easily adaptable to different data formats and measurement protocols
- Quality control: Automated data validation and outlier detection
- Batch processing: Analyze multiple samples with consistent parameters
- Real-time analysis: Integration with measurement software for live feedback
- Report generation: Automated creation of standardized analysis reports
- Reproducibility: Consistent analysis methodology across different users
- Validation: Cross-comparison with complementary techniques
- Documentation: Complete analysis history and parameter tracking
The notebook demonstrates analysis of a Si/SiOβ/SiβNβ multilayer stack with:
- Layer 1: SiOβ (~25 Γ thick, ~3.5 Γ roughness)
- Layer 2: SiβNβ (~150 Γ thick, ~4.2 Γ roughness)
- Substrate: Si with typical electron density
- Fitting accuracy: Parameter recovery within ~5% of true values
- Uncertainty estimation: Proper error propagation using MCMC sampling
Contributions are welcome! Areas for enhancement:
- Additional layer models (gradients, magnetic layers)
- Instrument resolution convolution
- Alternative optimization algorithms
- GUI development for user-friendly operation
This project is licensed under the MIT License - see the LICENSE file for details.
- Parratt, L. G. (1954). "Surface Studies of Solids by Total Reflection of X-Rays." Physical Review, 95(2), 359-369.
- NΓ©vot, L., & Croce, P. (1980). "CaractΓ©risation des surfaces par rΓ©flexion rasante de rayons X." Revue de Physique AppliquΓ©e, 15(3), 761-779.
- Als-Nielsen, J., & McMorrow, D. (2011). "Elements of Modern X-ray Physics." John Wiley & Sons.
For questions, suggestions, or collaboration opportunities related to XRR analysis and implementation at ITRI, please feel free to reach out.
Keywords: X-ray reflectometry, thin films, multilayers, Parratt recursion, parameter fitting, uncertainty quantification, materials characterization, Python, Jupyter