Skip to content

FraidoonOmarzai/Comprehensive_AI_ML_RESOURCES

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

96 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🌟 Comprehensive AI/ML ResourcesπŸ“š 🌟

Stars Badge Forks Badge License Badge Version

AI/ML Resources Logo

πŸš€ A Complete AI/ML Repository with in-depth coverage of Math, Python, Machine Learning, Deep Learning, NLP, Computer Vision, LLMs, Agentic AI, MLOps, and End To End Projects πŸš€


πŸ“‘ Table of Contents

Section Description
01. Math for AI and ML Math foundations for AI/ML like linear algebra, calculus, statistic and probability.
02. Python Python fundamentals, data structures, libraries, and more.
03. Machine Learning Core ML algorithms, models, techniques, and much more.
04. Deep Learning Dive into ANN, CNN, RNN, LSTM, and more.
05. NLP Natural Language Processing using ML and DL models, preprocessing techniques, tools in NLP, and more.
06. Computer Vision Introduction to CV, Object detection, GANs, image segmentation, and OpenCV.
07. Generative AI & LLMs Explore the world of Large Language Models and Generative AI.
08. Agentic AI Dive deep into Agentic AI and Automation.
09. MLOps Tools, courses, and resources for MLOps.
10. End-To-End Projects Comprehensive end-to-end projects.

01. Math for AI and ML πŸ“

  1. Linear Algebra

    • Introduction, System of Equations, Matrix Operations, Eigenvalues & Eigenvectors, and more.
  2. Calculus

    • Limits, Derivatives, Chain Rules, Partial Derivatives, etc.
  3. Probability

    • Introduction to Probability, Bayes Theorem, Permutations, Probability Distribution, etc.
  4. Statistics

    • Central Tendency, Hypothesis Testing, Plots (Box, QQ, Violin), and more.

02. Python 🐍

  1. Python Basics

    • Variables, Data Types, Lists, Functions, OOP, Error Handling, etc.
  2. Data Structures & Algorithms

    • Arrays, Sorting, Searching, Linked Lists, Trees, Graphs, and more.
  3. NumPy | Pandas | Matplotlib | Seaborn


03. Machine Learning πŸ€–

πŸ“‚ Topic πŸ“‘ Link to Notebook
1. Introduction To ML 🌐 Notebook
2. Linear Regression 🌐 Notebook
3. Logistic Regression 🌐 Notebook
4. Decision Tree 🌐 Notebook
5. SVM 🌐 Notebook
6. Naive Bayes 🌐 Notebook
7. KNN 🌐 Notebook
8. k-means Clustering 🌐 Notebook
9. Hierarchical Clustering 🌐 Notebook
10. DBSCAN 🌐 Notebook
11. PCA 🌐 Notebook
12. LDA 🌐 Notebook
13. Ensemble Learning 🌐 Notebook
14. Random Forest 🌐 Notebook
15. Gradient Boost 🌐 Notebook
16. XGBoost Regression 🌐 Notebook
17. XGBoost Classification 🌐 Notebook
18. Adaboost 🌐 Notebook
19. Regression Metrics 🌐 Notebook
20. Classification Metrics 🌐 Notebook
21. Lasso And Ridge Regression 🌐 Notebook
22. Hyperparameter Tuning & Cross Validation 🌐 Notebook
23. ML Project Life-cycle 🌐 Notebook

04. Deep Learning 🧠

πŸ“‚ Topic πŸ“‘ Link to Notebook
1. Introduction To DL 🌐 Notebook
2. ANN 🌐 Notebook
3. Activation Functions 🌐 Notebook
4. Loss Functions 🌐 Notebook
5. Optimization 🌐 Notebook
6. Vanishing Explodings 🌐 Notebook
7. Overfit And Uderfit 🌐 Notebook
8. CNN 🌐 Notebook
9. CNN Architectures 🌐 Notebook
10. RNN 🌐 Notebook
11. LSTM And GRU 🌐 Notebook
12. BRNN 🌐 Notebook
13. Tensorflow And PyTorch 🌐 Notebook

05. Natural Language Processing (NLP) πŸ’¬

πŸ“‚ Topic πŸ“‘ Link to Notebook
1. Introduction To NLP 🌐 Notebook
2. Word Embeddings 🌐 Notebook
3. Word2vec 🌐 Notebook
4. Seq2Seq 🌐 Notebook
5. Transformers 🌐 Notebook
6. DL Models In NLP 🌐 Notebook

06. Computer Vision (CV) πŸ‘οΈ

πŸ“‚ Topic πŸ“‘ Link to Notebook
1. Introduction To CV 🌐 Notebook
2. Object Detection 🌐 Notebook
3. OpenCV 🌐 Notebook
4. GAN 🌐 Notebook
5. Image Segmentation 🌐 Notebook

07. Generative AI & LLMs πŸ“

πŸ“‚ Topic πŸ“‘ Link to Notebook
1. Introduction to Generative AI & LLMs 🌐 Notebook
2. Retrieval-Augmented Generation (RAG) 🌐 Notebook
3. Revealing the training secret of DeepSeek 🌐 Notebook

08. Agentic AI 🦾

πŸ“‚ Topic πŸ“‘ Link to Notebook
1. Introduction to Agentic AI 🌐 Notebook

09. MLOps Resources βš™οΈ

  1. Github: Github |

  2. Docker: Docker Tutorial for Beginners (TechWorld with Nana) | End To End Machine Learning Project Implementation With Dockers (Krish Naik)

  3. MLFlow: MLflow in Machine Learning

  4. CI/CD: GitHub Actions Tutorial (TechWorld with Nana) | GitHub Actions (glich.stream)

  5. Kubernete: Kubernetes Tutorial for Beginners (TechWorld with Nana)

  6. AWS: AWS Cloud Practitioner (Udemy)

MLOps Courses:

Platform Links
βš™οΈ Coursera MLOps Specialization
βš™οΈ Udemy Machine Learning Specialty

10. End-To-End Projects πŸ₯·πŸ»

πŸ“‚ Topic πŸ“‘ Link to Github Repository
1. End-To-End ML Project (Liver Disease) πŸ”— Github
2. End-To-End NLP Project (Hate Speech Detection) πŸ”— Github
3. End-To-End DL/Computer Vision Project (Medical Image Analysis) πŸ”— Github
4. End-To-End LLM Project(Medical Chatbot) πŸ”— Github
5. End-To-End RAG Project (Corrective RAG) πŸ”— Github
6. End-To-End MLOps Project πŸ”— Github

🌟 Connect with Me


Repository created and maintained by Fraidoon Omarzai


If you find this repository helpful, don't forget to give it a ⭐!

Releases

No releases published

Packages

No packages published