This machine learning model will perform object detections by allowing a user to upload images and get back results in JSON or image format.
.
├── Dockerfile # For containerization of this application
├── README.md
├── main.py # The entry point of the program
├── model/ # The model files
│ └── best.pt # The trained custom model generated from YOLOv5
├── requirements.in # To generate requirements.txt
├── requirements.txt # Usage: pip install -r requirements.txt
├── segmentation.py # importing local YOLOv5 and scale image
└── yolov5 # YOLOv5 repo from https://github.com/ultralytics/yolov5Install the packages required for this project
pip install -r requirements.txt- Tech-stack
uvicorn main:app --reload --host 0.0.0.0 --port 8000docker build -t yolov5-fastapi .docker run -it --rm -p 8000:8000 yolov5-fastapiThe application will be available on http://localhost:8000/
Todo:
- Add dockerfile
- Add authentication to the api
- Add feature: store detected result into a database
- Add more tests