Skip to content

This repository implements an automated crawling tool for topics about "data mining" papers from the arXiv preprint website.

License

Notifications You must be signed in to change notification settings

JeremyChou28/Daily-Arxiv-Tools

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Daily Arxiv Tools

Keywords: Time Series, Spatio Temporal, Time Series Imputation, Irregular Time Series, Diffusion Model, Graph Neural Networks

The project automatically fetches the latest papers from arXiv based on keywords.

The subheadings in the README file represent the search keywords.

Only the most recent articles for each keyword are retained, up to a maximum of 100 papers.

You can click the 'Watch' button to receive daily email notifications.

Last update: 2025-12-03

📚 Content

Time Series

Title Date Abstract Comment
Forecasting in Offline Reinforcement Learning for Non-stationary Environments 2025-12-02
Show

Offline Reinforcement Learning (RL) provides a promising avenue for training policies from pre-collected datasets when gathering additional interaction data is infeasible. However, existing offline RL methods often assume stationarity or only consider synthetic perturbations at test time, assumptions that often fail in real-world scenarios characterized by abrupt, time-varying offsets. These offsets can lead to partial observability, causing agents to misperceive their true state and degrade performance. To overcome this challenge, we introduce Forecasting in Non-stationary Offline RL (FORL), a framework that unifies (i) conditional diffusion-based candidate state generation, trained without presupposing any specific pattern of future non-stationarity, and (ii) zero-shot time-series foundation models. FORL targets environments prone to unexpected, potentially non-Markovian offsets, requiring robust agent performance from the onset of each episode. Empirical evaluations on offline RL benchmarks, augmented with real-world time-series data to simulate realistic non-stationarity, demonstrate that FORL consistently improves performance compared to competitive baselines. By integrating zero-shot forecasting with the agent's experience, we aim to bridge the gap between offline RL and the complexities of real-world, non-stationary environments.

The T...

The Thirty-Ninth Annual Conference on Neural Information Processing Systems, NeurIPS 2025

A Comparative Study on How Data Normalization Affects Zero-Shot Generalization in Time Series Foundation Models 2025-12-02
Show

We investigate input normalization methods for Time-Series Foundation Models (TSFMs). While normalization is well-studied in dataset-specific time-series models, it remains overlooked in TSFMs where generalization is critical. Time-series data, unlike text or images, exhibits significant scale variation across domains and channels, coupled with non-stationarity, can undermine TSFM performance regardless of architectural complexity. Through systematic evaluation across four architecturally diverse TSFMs, we empirically establish REVIN as the most efficient approach, reducing zero-shot MASE by 89% relative to an un-normalized baseline and by 44% versus other normalization methods, while matching the best in-domain accuracy (0.84 MASE) without any dataset-level preprocessing -- yielding the highest accuracy-efficiency trade-off. Yet its effect utilization depends on architectural design choices and optimization objective, particularly with respect to training loss scale sensitivity and model type (probabilistic, point-forecast, or LLM-based models).

MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection 2025-12-02
Show

Anomaly detection is a fundamental task for time series analytics with important implications for the downstream performance of many applications. Despite increasing academic interest and the large number of methods proposed in the literature, recent benchmarks and evaluation studies demonstrated that no overall best anomaly detection methods exist when applied to very heterogeneous time series datasets. Therefore, the only scalable and viable solution to solve anomaly detection over very different time series collected from diverse domains is to propose a model selection method that will select, based on time series characteristics, the best anomaly detection methods to run. Existing AutoML solutions are, unfortunately, not directly applicable to time series anomaly detection, and no evaluation of time series-based approaches for model selection exists. Towards that direction, this paper studies the performance of time series classification methods used as model selection for anomaly detection. In total, we evaluate 234 model configurations derived from 16 base classifiers across more than 1980 time series, and we propose the first extensive experimental evaluation of time series classification as model selection for anomaly detection. Our results demonstrate that model selection methods outperform every single anomaly detection method while being in the same order of magnitude regarding execution time. This evaluation is the first step to demonstrate the accuracy and efficiency of time series classification algorithms for anomaly detection, and represents a strong baseline that can then be used to guide the model selection step in general AutoML pipelines. Preprint version of an article accepted at the VLDB Journal.

25 pa...

25 pages, 13 figures, VLDB Journal

Q-triplet characterization of atmospheric time series at Antofagasta: A missing values problem 2025-12-02
Show

Located in northern Chile (23.7°S, 70.4°W), Antofagasta has an exceptionally arid and stable climate characterized by minimal precipitation and consistent weather patterns. Nevertheless, despite these climate conditions being meaningful for several research and practical applications, our understanding of weather dynamics remains limited. The available meteorological data from 1969 to 2016 is analogical, which presents a significant challenge to analyze because these records are riddled with missing values, some measurements were taken at irregular measuring intervals, making it an interesting puzzle to grasp the Antofagasta's climate scenario. To overcome this issue, we present a comprehensive statistical analysis of atmospheric temperature, pressure, and humidity time series. Our analytical approach involves the q-triplet calculation method, serving as a powerful tool to identify distinctive behavior within systems under non-equilibrium states. Our results suggest that, in general, the q-triplet values satisfy the condition $q_\text{sens}<1<q_\text{stat}<q_\text{rel}$, a pattern that has been observed in previous studies.

5 pag...

5 pages, 1, table, 3 figures, International Workshop of Statistical Physics

Synthetic Data Generation with Lorenzetti for Time Series Anomaly Detection in High-Energy Physics Calorimeters 2025-12-02
Show

Anomaly detection in multivariate time series is crucial to ensure the quality of data coming from a physics experiment. Accurately identifying the moments when unexpected errors or defects occur is essential, yet challenging due to scarce labels, unknown anomaly types, and complex correlations across dimensions. To address the scarcity and unreliability of labelled data, we use the Lorenzetti Simulator to generate synthetic events with injected calorimeter anomalies. We then assess the sensitivity of several time series anomaly detection methods, including transformer-based and other deep learning models. The approach employed here is generic and applicable to different detector designs and defects.

4 pag...

4 pages, 2 figures, Submission to SciPost proceedings for EuCAIFCon 2025

TrackNetV5: Residual-Driven Spatio-Temporal Refinement and Motion Direction Decoupling for Fast Object Tracking 2025-12-02
Show

The TrackNet series has established a strong baseline for fast-moving small object tracking in sports. However, existing iterations face significant limitations: V1-V3 struggle with occlusions due to a reliance on purely visual cues, while TrackNetV4, despite introducing motion inputs, suffers from directional ambiguity as its absolute difference method discards motion polarity. To overcome these bottlenecks, we propose TrackNetV5, a robust architecture integrating two novel mechanisms. First, to recover lost directional priors, we introduce the Motion Direction Decoupling (MDD) module. Unlike V4, MDD decomposes temporal dynamics into signed polarity fields, explicitly encoding both movement occurrence and trajectory direction. Second, we propose the Residual-Driven Spatio-Temporal Refinement (R-STR) head. Operating on a coarse-to-fine paradigm, this Transformer-based module leverages factorized spatio-temporal contexts to estimate a corrective residual, effectively recovering occluded targets. Extensive experiments on the TrackNetV2 dataset demonstrate that TrackNetV5 achieves a new state-of-the-art F1-score of 0.9859 and an accuracy of 0.9733, significantly outperforming previous versions. Notably, this performance leap is achieved with a marginal 3.7% increase in FLOPs compared to V4, maintaining real-time inference capabilities while delivering superior tracking precision.

GeoMAE: Masking Representation Learning for Spatio-Temporal Graph Forecasting with Missing Values 2025-12-02
Show

The ubiquity of missing data in urban intelligence systems, attributable to adverse environmental conditions and equipment failures, poses a significant challenge to the efficacy of downstream applications, notably in the realms of traffic forecasting and energy consumption prediction. Therefore, it is imperative to develop a robust spatio-temporal learning methodology capable of extracting meaningful insights from incomplete datasets. Despite the existence of methodologies for spatio-temporal graph forecasting in the presence of missing values, unresolved issues persist. Primarily, the majority of extant research is predicated on time-series analysis, thereby neglecting the dynamic spatial correlations inherent in sensor networks. Additionally, the complexity of missing data patterns compounds the intricacy of the problem. Furthermore, the variability in maintenance conditions results in a significant fluctuation in the ratio and pattern of missing values, thereby challenging the generalizability of predictive models. In response to these challenges, this study introduces GeoMAE, a self-supervised spatio-temporal representation learning model. The model is comprised of three principal components: an input preprocessing module, an attention-based spatio-temporal forecasting network (STAFN), and an auxiliary learning task, which draws inspiration from Masking AutoEncoders to enhance the robustness of spatio-temporal representation learning. Empirical evaluations on real-world datasets demonstrate that GeoMAE significantly outperforms existing benchmarks, achieving up to 13.20% relative improvement over the best baseline models.

34 pages
Anomalous Change Point Detection Using Probabilistic Predictive Coding 2025-12-02
Show

Change point detection (CPD) and anomaly detection (AD) are essential techniques in various fields to identify abrupt changes or abnormal data instances. However, existing methods are often constrained to univariate data, face scalability challenges with large datasets due to computational demands, and experience reduced performance with high-dimensional or intricate data, as well as hidden anomalies. Furthermore, they often lack interpretability and adaptability to domain-specific knowledge, which limits their versatility across different fields. In this work, we propose a deep learning-based CPD/AD method called Probabilistic Predictive Coding (PPC) that jointly learns to encode sequential data to low-dimensional latent space representations and to predict the subsequent data representations as well as the corresponding prediction uncertainties. The model parameters are optimized with maximum likelihood estimation by comparing these predictions with the true encodings. At the time of application, the true and predicted encodings are used to determine the probability of conformance, an interpretable and meaningful anomaly score. Furthermore, our approach has linear time complexity, scalability issues are prevented, and the method can easily be adjusted to a wide range of data types and intricate applications. We demonstrate the effectiveness and adaptability of our proposed method across synthetic time series experiments, image data, and real-world magnetic resonance spectroscopic imaging data.

Submi...

Submitted to Machine Learning

XXLTraffic: Expanding and Extremely Long Traffic forecasting beyond test adaptation 2025-12-02
Show

Traffic forecasting is crucial for smart cities and intelligent transportation initiatives, where deep learning has made significant progress in modeling complex spatio-temporal patterns in recent years. However, current public datasets have limitations in reflecting the distribution shift nature of real-world scenarios, characterized by continuously evolving infrastructures, varying temporal distributions, and long temporal gaps due to sensor downtimes or changes in traffic patterns. These limitations inevitably restrict the practical applicability of existing traffic forecasting datasets. To bridge this gap, we present XXLTraffic, largest available public traffic dataset with the longest timespan collected from Los Angeles, USA, and New South Wales, Australia, curated to support research in extremely long forecasting beyond test adaptation. Our benchmark includes both typical time-series forecasting settings with hourly and daily aggregated data and novel configurations that introduce gaps and down-sample the training size to better simulate practical constraints. We anticipate the new XXLTraffic will provide a fresh perspective for the time-series and traffic forecasting communities. It would also offer a robust platform for developing and evaluating models designed to tackle the extremely long forecasting problems beyond test adaptation. Our dataset supplements existing spatio-temporal data resources and leads to new research directions in this domain.

Updat...

Updated version. SIGSPATIAL 2025 Best Paper

On Statistical Inference for High-Dimensional Binary Time Series 2025-12-02
Show

The analysis of non-real-valued data, such as binary time series, has attracted great interest in recent years. This manuscript proposes a post-selection estimator for estimating the coefficient matrices of a high-dimensional generalized binary vector autoregressive process and establishes a Gaussian approximation theorem for the proposed estimator. Furthermore, it introduces a second-order wild bootstrap algorithm to enable statistical inference on the coefficient matrices. Numerical studies and empirical applications demonstrate the good finite-sample performance of the proposed method.

55 pages, 6 figures
Adversarial Robustness of Traffic Classification under Resource Constraints: Input Structure Matters 2025-12-01
Show

Traffic classification (TC) plays a critical role in cybersecurity, particularly in IoT and embedded contexts, where inspection must often occur locally under tight hardware constraints. We use hardware-aware neural architecture search (HW-NAS) to derive lightweight TC models that are accurate, efficient, and deployable on edge platforms. Two input formats are considered: a flattened byte sequence and a 2D packet-wise time series; we examine how input structure affects adversarial vulnerability when using resource-constrained models. Robustness is assessed against white-box attacks, specifically Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD). On USTC-TFC2016, both HW-NAS models achieve over 99% clean-data accuracy while remaining within 65k parameters and 2M FLOPs. Yet under perturbations of strength 0.1, their robustness diverges: the flat model retains over 85% accuracy, while the time-series variant drops below 35%. Adversarial fine-tuning delivers robust gains, with flat-input accuracy exceeding 96% and the time-series variant recovering over 60 percentage points in robustness, all without compromising efficiency. The results underscore how input structure influences adversarial vulnerability, and show that even compact, resource-efficient models can attain strong robustness, supporting their practical deployment in secure edge-based TC.

Accep...

Accepted at the 2025 IEEE International Symposium on Networks, Computers and Communications (ISNCC)

Entropies associated with orbits of finite groups 2025-12-01
Show

For certain groups, parabolic subgroups appear as stabilizers of flags of sets or vector spaces. Quotients by these parabolic subgroups represent orbits of flags, and their cardinalities asymptotically reveal entropies (as rates of exponential or superexponential growth). The multiplicative "chain rules" that involve these cardinalities induce, asymptotically, additive analogues for entropies. Many traditional formulas in information theory correspond to quotients of symmetric groups, which are a particular kind of reflection group; in this case, the cardinalities of orbits are given by multinomial coefficients and are asymptotically related to Shannon entropy. One can treat similarly quotients of the general linear groups over a finite field; in this case, the cardinalities of orbits are given by $q$-multinomials and are asymptotically related to the Tsallis 2-entropy. In this contribution, we consider other finite reflection groups as well as the symplectic group as an example of a classical group over a finite field (groups of Lie type). In both cases, the groups are classified by Dynkin diagrams into infinite series of similar groups $A_n$, $B_n$, $C_n$, $D_n$ and a finite number of exceptional ones. The $A_n$ series consists of the symmetric groups (reflection case) and general linear groups (Lie case). Some of the other series, studied here from an information-theoretic perspective for the first time, are linked to new entropic functionals.

RealWebAssist: A Benchmark for Long-Horizon Web Assistance with Real-World Users 2025-12-01
Show

To achieve successful assistance with long-horizon web-based tasks, AI agents must be able to sequentially follow real-world user instructions over a long period. Unlike existing web-based agent benchmarks, sequential instruction following in the real world poses significant challenges beyond performing a single, clearly defined task. For instance, real-world human instructions can be ambiguous, require different levels of AI assistance, and may evolve over time, reflecting changes in the user's mental state. To address this gap, we introduce RealWebAssist, a novel benchmark designed to evaluate sequential instruction-following in realistic scenarios involving long-horizon interactions with the web, visual GUI grounding, and understanding ambiguous real-world user instructions. RealWebAssist includes a dataset of sequential instructions collected from real-world human users. Each user instructs a web-based assistant to perform a series of tasks on multiple websites. A successful agent must reason about the true intent behind each instruction, keep track of the mental state of the user, understand user-specific routines, and ground the intended tasks to actions on the correct GUI elements. Our experimental results show that state-of-the-art models struggle to understand and ground user instructions, posing critical challenges in following real-world user instructions for long-horizon web assistance.

Proje...

Project Website: https://scai.cs.jhu.edu/projects/RealWebAssist/ Code: https://github.com/SCAI-JHU/RealWebAssist

ICAD-LLM: One-for-All Anomaly Detection via In-Context Learning with Large Language Models 2025-12-01
Show

Anomaly detection (AD) is a fundamental task of critical importance across numerous domains. Current systems increasingly operate in rapidly evolving environments that generate diverse yet interconnected data modalities -- such as time series, system logs, and tabular records -- as exemplified by modern IT systems. Effective AD methods in such environments must therefore possess two critical capabilities: (1) the ability to handle heterogeneous data formats within a unified framework, allowing the model to process and detect multiple modalities in a consistent manner during anomalous events; (2) a strong generalization ability to quickly adapt to new scenarios without extensive retraining. However, most existing methods fall short of these requirements, as they typically focus on single modalities and lack the flexibility to generalize across domains. To address this gap, we introduce a novel paradigm: In-Context Anomaly Detection (ICAD), where anomalies are defined by their dissimilarity to a relevant reference set of normal samples. Under this paradigm, we propose ICAD-LLM, a unified AD framework leveraging Large Language Models' in-context learning abilities to process heterogeneous data within a single model. Extensive experiments demonstrate that ICAD-LLM achieves competitive performance with task-specific AD methods and exhibits strong generalization to previously unseen tasks, which substantially reduces deployment costs and enables rapid adaptation to new environments. To the best of our knowledge, ICAD-LLM is the first model capable of handling anomaly detection tasks across diverse domains and modalities.

ViT$^3$: Unlocking Test-Time Training in Vision 2025-12-01
Show

Test-Time Training (TTT) has recently emerged as a promising direction for efficient sequence modeling. TTT reformulates attention operation as an online learning problem, constructing a compact inner model from key-value pairs at test time. This reformulation opens a rich and flexible design space while achieving linear computational complexity. However, crafting a powerful visual TTT design remains challenging: fundamental choices for the inner module and inner training lack comprehensive understanding and practical guidelines. To bridge this critical gap, in this paper, we present a systematic empirical study of TTT designs for visual sequence modeling. From a series of experiments and analyses, we distill six practical insights that establish design principles for effective visual TTT and illuminate paths for future improvement. These findings culminate in the Vision Test-Time Training (ViT$^3$) model, a pure TTT architecture that achieves linear complexity and parallelizable computation. We evaluate ViT$^3$ across diverse visual tasks, including image classification, image generation, object detection, and semantic segmentation. Results show that ViT$^3$ consistently matches or outperforms advanced linear-complexity models (e.g., Mamba and linear attention variants) and effectively narrows the gap to highly optimized vision Transformers. We hope this study and the ViT$^3$ baseline can facilitate future work on visual TTT models. Code is available at https://github.com/LeapLabTHU/ViTTT.

TimePred: efficient and interpretable offline change point detection for high volume data - with application to industrial process monitoring 2025-12-01
Show

Change-point detection (CPD) in high-dimensional, large-volume time series is challenging for statistical consistency, scalability, and interpretability. We introduce TimePred, a self-supervised framework that reduces multivariate CPD to univariate mean-shift detection by predicting each sample's normalized time index. This enables efficient offline CPD using existing algorithms and supports the integration of XAI attribution methods for feature-level explanations. Our experiments show competitive CPD performance while reducing computational cost by up to two orders of magnitude. In an industrial manufacturing case study, we demonstrate improved detection accuracy and illustrate the practical value of interpretable change-point insights.

6 pages, 3 figures
A mixture of distributed lag non-linear models to account for spatially heterogeneous exposure-lag-response associations 2025-12-01
Show

Environmental exposures, such as air pollution and extreme temperatures, have complex effects on human health. These effects are often characterized by non-linear exposure-lag-response relationships and delayed impacts over time. Accurately capturing these dynamics is crucial for informing public health interventions. The Distributed Lag Non-Linear Model (DLNM) is a flexible statistical framework for estimating such effects in epidemiological research. However, standard DLNM implementations typically assume a homogeneous exposure-lag-response association across the study region, overlooking potential spatial heterogeneity, which can lead to biased risk estimates. To address this limitation, we introduce DLNM-Clust: a novel mixture of DLNMs that extends the traditional DLNM. Within a Bayesian framework, DLNM-Clust probabilistically assigns each geographic unit to one of $C$ latent spatial clusters, each of which is defined by a distinct DLNM specification. This approach allows capturing both common patterns and singular deviations in the exposure-lag-response surface. We demonstrate the method using municipality-level time-series data on the relationship between air pollution and the incidence of COVID-19 in Belgium. Our results emphasize the importance of spatially aware modeling strategies in environmental epidemiology, facilitating region-specific risk assessment and supporting the development of targeted public health initiatives.

22 pages, 8 figures
Signals, Concepts, and Laws: Toward Universal, Explainable Time-Series Forecasting 2025-12-01
Show

Accurate, explainable and physically credible forecasting remains a persistent challenge for multivariate time-series whose statistical properties vary across domains. We propose DORIC, a Domain-Universal, ODE-Regularized, Interpretable-Concept Transformer for Time-Series Forecasting that generates predictions through five self-supervised, domain-agnostic concepts while enforcing differentiable residuals grounded in first-principles constraints.

From Noise to Laws: Regularized Time-Series Forecasting via Denoised Dynamic Graphs 2025-12-01
Show

Long-horizon multivariate time-series forecasting is challenging because realistic predictions must (i) denoise heterogeneous signals, (ii) track time-varying cross-series dependencies, and (iii) remain stable and physically plausible over long rollout horizons. We present PRISM, which couples a score-based diffusion preconditioner with a dynamic, correlation-thresholded graph encoder and a forecast head regularized by generic physics penalties. We prove contraction of the induced horizon dynamics under mild conditions and derive Lipschitz bounds for graph blocks, explaining the model's robustness. On six standard benchmarks , PRISM achieves consistent SOTA with strong MSE and MAE gains.

Conformal Prediction for Time-series Forecasting with Change Points 2025-12-01
Show

Conformal prediction has been explored as a general and efficient way to provide uncertainty quantification for time series. However, current methods struggle to handle time series data with change points - sudden shifts in the underlying data-generating process. In this paper, we propose a novel Conformal Prediction for Time-series with Change points (CPTC) algorithm, addressing this gap by integrating a model to predict the underlying state with online conformal prediction to model uncertainties in non-stationary time series. We prove CPTC's validity and improved adaptivity in the time series setting under minimum assumptions, and demonstrate CPTC's practical effectiveness on 6 synthetic and real-world datasets, showing improved validity and adaptivity compared to state-of-the-art baselines.

A Self-explainable Model of Long Time Series by Extracting Informative Structured Causal Patterns 2025-12-01
Show

Explainability is essential for neural networks that model long time series, yet most existing explainable AI methods only produce point-wise importance scores and fail to capture temporal structures such as trends, cycles, and regime changes. This limitation weakens human interpretability and trust in long-horizon models. To address these issues, we identify four key requirements for interpretable time-series modeling: temporal continuity, pattern-centric explanation, causal disentanglement, and faithfulness to the model's inference process. We propose EXCAP, a unified framework that satisfies all four requirements. EXCAP combines an attention-based segmenter that extracts coherent temporal patterns, a causally structured decoder guided by a pre-trained causal graph, and a latent aggregation mechanism that enforces representation stability. Our theoretical analysis shows that EXCAP provides smooth and stable explanations over time and is robust to perturbations in causal masks. Extensive experiments on classification and forecasting benchmarks demonstrate that EXCAP achieves strong predictive accuracy while generating coherent and causally grounded explanations. These results show that EXCAP offers a principled and scalable approach to interpretable modeling of long time series with relevance to high-stakes domains such as healthcare and finance.

Appro...

Approximately 30 pages, 8 figures, and 5 tables. Preprint version. Includes theoretical analysis, model architecture, interpretability evaluation, and extensive benchmark experiments

Inferring Dynamic Hidden Graph Structure in Heterogeneous Correlated Time Series 2025-12-01
Show

Modeling heterogeneous correlated time series requires the ability to learn hidden dynamic relationships between component time series with possibly varying periodicities and generative processes. To address this challenge, we formulate and evaluate a windowed variance-correlation metric (WVC) designed to quantify time-varying correlations between signals. This method directly recovers hidden relationships in an specified time interval as a weighted adjacency matrix, consequently inferring hidden dynamic graph structure. On simulated data, our method captures correlations that other methods miss. The proposed method expands the ability to learn dynamic graph structure between significantly different signals within a single cohesive dynamical graph model.

4 pag...

4 pages, 1 figure, Presented at BayLearn 2025

Adaptive Nonlinear Vector Autoregression: Robust Forecasting for Noisy Chaotic Time Series 2025-12-01
Show

Nonlinear vector autoregression (NVAR) and reservoir computing (RC) have shown promise in forecasting chaotic dynamical systems, such as the Lorenz-63 model and El Nino-Southern Oscillation. However, their reliance on fixed nonlinear transformations - polynomial expansions in NVAR or random feature maps in RC - limits their adaptability to high noise or complex real-world data. Furthermore, these methods also exhibit poor scalability in high-dimensional settings due to costly matrix inversion during optimization. We propose a data-adaptive NVAR model that combines delay-embedded linear inputs with features generated by a shallow, trainable multilayer perceptron (MLP). Unlike standard NVAR and RC models, the MLP and linear readout are jointly trained using gradient-based optimization, enabling the model to learn data-driven nonlinearities, while preserving a simple readout structure and improving scalability. Initial experiments across multiple chaotic systems, tested under noise-free and synthetically noisy conditions, showed that the adaptive model outperformed in predictive accuracy the standard NVAR, a leaky echo state network (ESN) - the most common RC model - and a hybrid ESN, thereby showing robust forecasting under noisy conditions.

17 pa...

17 pages, 5 figures, 5 tables. New comparisons added: ESN and HESN. New datasets added to experiments: Mackey-Glass and Lorenz 96 with 100 variables

Revitalizing Canonical Pre-Alignment for Irregular Multivariate Time Series Forecasting 2025-12-01
Show

Irregular multivariate time series (IMTS), characterized by uneven sampling and inter-variate asynchrony, fuel many forecasting applications yet remain challenging to model efficiently. Canonical Pre-Alignment (CPA) has been widely adopted in IMTS modeling by padding zeros at every global timestamp, thereby alleviating inter-variate asynchrony and unifying the series length, but its dense zero-padding inflates the pre-aligned series length, especially when numerous variates are present, causing prohibitive compute overhead. Recent graph-based models with patching strategies sidestep CPA, but their local message passing struggles to capture global inter-variate correlations. Therefore, we posit that CPA should be retained, with the pre-aligned series properly handled by the model, enabling it to outperform state-of-the-art graph-based baselines that sidestep CPA. Technically, we propose KAFNet, a compact architecture grounded in CPA for IMTS forecasting that couples (1) Pre-Convolution module for sequence smoothing and sparsity mitigation, (2) Temporal Kernel Aggregation module for learnable compression and modeling of intra-series irregularity, and (3) Frequency Linear Attention blocks for the low-cost inter-series correlations modeling in the frequency domain. Experiments on multiple IMTS datasets show that KAFNet achieves state-of-the-art forecasting performance, with a 7.2$\times$ parameter reduction and a 8.4$\times$ training-inference acceleration.

Accep...

Accepted by AAAI 2026

An Interdisciplinary and Cross-Task Review on Missing Data Imputation 2025-12-01
Show

Missing data is a fundamental challenge in data science, significantly hindering analysis and decision-making across a wide range of disciplines, including healthcare, bioinformatics, social science, e-commerce, and industrial monitoring. Despite decades of research and numerous imputation methods, the literature remains fragmented across fields, creating a critical need for a comprehensive synthesis that connects statistical foundations with modern machine learning advances. This work systematically reviews core concepts-including missingness mechanisms, single versus multiple imputation, and different imputation goals-and examines problem characteristics across various domains. It provides a thorough categorization of imputation methods, spanning classical techniques (e.g., regression, the EM algorithm) to modern approaches like low-rank and high-rank matrix completion, deep learning models (autoencoders, GANs, diffusion models, graph neural networks), and large language models. Special attention is given to methods for complex data types, such as tensors, time series, streaming data, graph-structured data, categorical data, and multimodal data. Beyond methodology, we investigate the crucial integration of imputation with downstream tasks like classification, clustering, and anomaly detection, examining both sequential pipelines and joint optimization frameworks. The review also assesses theoretical guarantees, benchmarking resources, and evaluation metrics. Finally, we identify critical challenges and future directions, emphasizing model selection and hyperparameter optimization, the growing importance of privacy-preserving imputation via federated learning, and the pursuit of generalizable models that can adapt across domains and data types, thereby outlining a roadmap for future research.

A $1000\times$ Faster LLM-enhanced Algorithm For Path Planning in Large-scale Grid Maps 2025-12-01
Show

Path planning in grid maps, arising from various applications, has garnered significant attention. Existing methods, such as A*, Dijkstra, and their variants, work well for small-scale maps but fail to address large-scale ones due to high search time and memory consumption. Recently, Large Language Models (LLMs) have shown remarkable performance in path planning but still suffer from spatial illusion and poor planning performance. Among all the works, LLM-A* \cite{meng2024llm} leverages LLM to generate a series of waypoints and then uses A* to plan the paths between the neighboring waypoints. In this way, the complete path is constructed. However, LLM-A* still suffers from high computational time for large-scale maps. To fill this gap, we conducted a deep investigation into LLM-A* and found its bottleneck, resulting in limited performance. Accordingly, we design an innovative LLM-enhanced algorithm, abbr. as iLLM-A*. iLLM-A* includes 3 carefully designed mechanisms, including the optimization of A*, an incremental learning method for LLM to generate high-quality waypoints, and the selection of the appropriate waypoints for A* for path planning. Finally, a comprehensive evaluation on various grid maps shows that, compared with LLM-A*, iLLM-A* \textbf{1) achieves more than $1000\times$ speedup on average, and up to $2349.5\times$ speedup in the extreme case, 2) saves up to $58.6%$ of the memory cost, 3) achieves both obviously shorter path length and lower path length standard deviation.}

Deep sub-ensembles meets quantile regression: uncertainty-aware imputation for time series 2025-12-01
Show

Real-world time series data often exhibits substantial missing values, posing challenges for advanced analysis. A common approach to addressing this issue is imputation, where the primary challenge lies in determining the appropriate values to fill in. While previous deep learning methods have proven effective for time series imputation, they often produce overconfident imputations, which poses a potentially overlooked risk to the reliability of the intelligent system. Diffusion methods are proficient in estimating probability distributions but face challenges under a high missing rate and are, moreover, computationally expensive due to the nature of the generative model framework. In this paper, we propose Quantile Sub-Ensembles, a novel method that estimates uncertainty with ensembles of quantile-regression-based task networks and incorporate Quantile Sub-Ensembles into a non-generative time series imputation method. Our method not only produces accurate and reliable imputations, but also remains computationally efficient due to its non-generative framework. We conduct extensive experiments on five real-world datasets, and the results demonstrates superior performance in both deterministic and probabilistic imputation compared to baselines across most experimental settings. The code is available at https://github.com/yingliu-coder/QSE.

Publi...

Published in Machine Learning, 114, 268 (2025). DOI: 10.1007/s10994-025-06922-x

Gaussian Process State-Space Modeling and Particle Filtering for Time Series Decomposition and Nonlinear Signal Extraction 2025-12-01
Show

Gaussian-process state-space models (GP-SSMs) provide a flexible nonparametric alternative for modeling time-series dynamics that are nonlinear or difficult to specify parametrically. While the Kalman filter is effective for linear-Gaussian trend and seasonal components, many real-world systems require more expressive representations. GP-SSMs address this need by learning transition functions directly from data, while particle filtering enables Bayesian state estimation even when posterior distributions deviate from Gaussianity. This paper develops a particle-filtering framework for GP-SSM inference and compares its performance with the Kalman filter in trend extraction and seasonal adjustment. We further evaluate nonlinear signal-extraction tasks, demonstrating that GP-SSMs can recover latent states under sharp or asymmetric dynamics. The results highlight the utility of combining GP modeling with sequential Monte Carlo methods for complex time-series analysis.

18 pa...

18 pages, 5 tables, 16 figures

SCI: A Metacognitive Control for Signal Dynamics 2025-11-30
Show

Modern deep learning systems are typically deployed as open-loop function approximators: they map inputs to outputs in a single pass, without regulating how much computation or explanatory effort is spent on a given case. In safety-critical settings, this is brittle: easy and ambiguous inputs receive identical processing, and uncertainty is only read off retrospectively from raw probabilities. We introduce the Surgical Cognitive Interpreter (SCI), a lightweight closed-loop metacognitive control layer that wraps an existing stochastic model and turns prediction into an iterative process. SCI monitors a scalar interpretive state SP(t), here instantiated as a normalized entropy-based confidence signal, and adaptively decides whether to stop, continue sampling, or abstain. The goal is not to improve accuracy per se, but to regulate interpretive error ΔSP and expose a safety signal that tracks when the underlying model is likely to fail. We instantiate SCI around Monte Carlo dropout classifiers in three domains: vision (MNIST digits), medical time series (MIT-BIH arrhythmia), and industrial condition monitoring (rolling-element bearings). In all cases, the controller allocates more inference steps to misclassified inputs than to correct ones (up to about 3-4x on MNIST and bearings, and 1.4x on MIT-BIH). The resulting ΔSP acts as a usable safety signal for detecting misclassifications (AUROC 0.63 on MNIST, 0.70 on MIT-BIH, 0.86 on bearings). Code and reproducibility: https://github.com/vishal-1344/sci

v2: E...

v2: Extended theoretical analysis (Lyapunov-style stability), added metacognitive experiments across three domains, and released code and configuration files at https://github.com/vishal-1344/sci

FMTK: A Modular Toolkit for Composable Time Series Foundation Model Pipelines 2025-11-30
Show

Foundation models (FMs) have opened new avenues for machine learning applications due to their ability to adapt to new and unseen tasks with minimal or no further training. Time-series foundation models (TSFMs) -- FMs trained on time-series data -- have shown strong performance on classification, regression, and imputation tasks. Recent pipelines combine TSFMs with task-specific encoders, decoders, and adapters to improve performance; however, assembling such pipelines typically requires ad hoc, model-specific implementations that hinder modularity and reproducibility. We introduce FMTK, an open-source, lightweight and extensible toolkit for constructing and fine-tuning TSFM pipelines via standardized backbone and component abstractions. FMTK enables flexible composition across models and tasks, achieving correctness and performance with an average of seven lines of code. https://github.com/umassos/FMTK

TimeDistill: Efficient Long-Term Time Series Forecasting with MLP via Cross-Architecture Distillation 2025-11-30
Show

Transformer-based and CNN-based methods demonstrate strong performance in long-term time series forecasting. However, their high computational and storage requirements can hinder large-scale deployment. To address this limitation, we propose integrating lightweight MLP with advanced architectures using knowledge distillation (KD). Our preliminary study reveals different models can capture complementary patterns, particularly multi-scale and multi-period patterns in the temporal and frequency domains. Based on this observation, we introduce TimeDistill, a cross-architecture KD framework that transfers these patterns from teacher models (e.g., Transformers, CNNs) to MLP. Additionally, we provide a theoretical analysis, demonstrating that our KD approach can be interpreted as a specialized form of mixup data augmentation. TimeDistill improves MLP performance by up to 18.6%, surpassing teacher models on eight datasets. It also achieves up to 7X faster inference and requires 130X fewer parameters. Furthermore, we conduct extensive evaluations to highlight the versatility and effectiveness of TimeDistill.

Accep...

Accepted at KDD 2026, we release our code publicly at https://github.com/LingFengGold/TimeDistill

Evaluating Large Language Models on the 2026 Korean CSAT Mathematics Exam: Measuring Mathematical Ability in a Zero-Data-Leakage Setting 2025-11-30
Show

This study systematically evaluated the mathematical reasoning capabilities of Large Language Models (LLMs) using the 2026 Korean College Scholastic Ability Test (CSAT) Mathematics section, ensuring a completely contamination-free evaluation environment. To address data leakage issues in existing benchmarks, we digitized all 46 questions (22 common and 24 elective) within two hours of the exam's public release, eliminating any possibility of inclusion in model training data. We conducted comprehensive evaluations of 24 state-of-the-art LLMs across varying input modalities (Text-only, Image-only, Text+Figure) and prompt languages (Korean, English). The GPT-5 family models achieved perfect scores (100 points) under a limited set of language-modality configurations, while Grok 4, Qwen 3 235B, and Gemini 2.5 pro also scored above 97 points. Notably, gpt-oss-20B achieved 95.7 points despite its relatively small size, demonstrating high cost-effectiveness. Problem-specific analysis revealed Calculus as the weakest domain with significant performance degradation on 4-point high-difficulty problems. Text input consistently outperformed image input, while prompt language effects varied by model scale. In reasoning enhancement experiments with GPT-5 series, increased reasoning intensity improved performance (82.6->100 points) but quadrupled token usage and drastically reduced efficiency, suggesting that models with minimal reasoning may be more practical. This research contributes: (1) implementation of a completely unexposed evaluation environment, (2) a standardized digitization pipeline that converts human-targeted exam materials into LLM-ready evaluation data, and (3) a practical evaluation perspective integrating performance, cost, and time considerations. Detailed results and model comparisons are available at the 2026 Korean CSAT LLM Evaluation Leaderboard; https://isoft.cnu.ac.kr/csat2026/

52 pages
D-CTNet: A Dual-Branch Channel-Temporal Forecasting Network with Frequency-Domain Correction 2025-11-30
Show

Accurate Multivariate Time Series (MTS) forecasting is crucial for collaborative design of complex systems, Digital Twin building, and maintenance ahead of time. However, the collaborative industrial environment presents new challenges for MTS forecasting models: models should decouple complex inter-variable dependencies while addressing non-stationary distribution shift brought by environmental changes. To address these challenges and improve collaborative sensing reliability, we propose a Patch-Based Dual-Branch Channel-Temporal Forecasting Network (D-CTNet). Particularly, with a parallel dual-branch design incorporating linear temporal modeling layer and channel attention mechanism, our method explicitly decouples and jointly learns intra-channel temporal evolution patterns and dynamic multivariate correlations. Furthermore, a global patch attention fusion module goes beyond the local window scope to model long range dependencies. Most importantly, aiming at non-stationarity, a Frequency-Domain Stationarity Correction mechanism adaptively suppresses distribution shift impacts from environment change by spectrum alignment. Evaluations on seven benchmark datasets show that our model achieves better forecasting accuracy and robustness compared with state-of-the-art methods. Our work shows great promise as a new forecasting engine for industrial collaborative systems.

PARD: Accelerating LLM Inference with Low-Cost PARallel Draft Model Adaptation 2025-11-30
Show

The autoregressive nature of large language models (LLMs) fundamentally limits inference speed, as each forward pass generates only a single token and is often bottlenecked by memory bandwidth. Speculative decoding has emerged as a promising solution, adopting a draft-then-verify strategy to accelerate token generation. While the EAGLE series achieves strong acceleration, its requirement of training a separate draft head for each target model introduces substantial adaptation costs. In this work, we propose \textbf{PARD (PARallel Draft)}, a novel speculative decoding method featuring \textit{target-independence} and \textit{parallel token prediction}. Specifically, PARD enables a single draft model to be applied across an entire family of target models without requiring separate training for each variant, thereby minimizing adaptation costs. Meanwhile, PARD substantially accelerates inference by predicting multiple future tokens within a single forward pass of the draft phase. To further reduce the training adaptation cost of PARD, we propose a COnditional Drop-token (COD) mechanism based on the integrity of prefix key-value states, enabling autoregressive draft models to be adapted into parallel draft models at low-cost. Our experiments show that the proposed COD method improves draft model training efficiency by \textbf{3$\times$} compared with traditional masked prediction training. On the \texttt{vLLM} inference framework, PARD achieves up to \textbf{3.67$\times$} speedup on LLaMA3.1-8B, reaching \textbf{264.88} tokens per second, which is \textbf{1.15$\times$} faster than EAGLE-3. Our code is available at https://github.com/AMD-AIG-AIMA/PARD.

Submi...

Submitted for possible publication

ProtoTS: Learning Hierarchical Prototypes for Explainable Time Series Forecasting 2025-11-30
Show

While deep learning has achieved impressive performance in time series forecasting, it becomes increasingly crucial to understand its decision-making process for building trust in high-stakes scenarios. Existing interpretable models often provide only local and partial explanations, lacking the capability to reveal how heterogeneous and interacting input variables jointly shape the overall temporal patterns in the forecast curve. We propose ProtoTS, a novel interpretable forecasting framework that achieves both high accuracy and transparent decision-making through modeling prototypical temporal patterns. ProtoTS computes instance-prototype similarity based on a denoised representation that preserves abundant heterogeneous information. The prototypes are organized hierarchically to capture global temporal patterns with coarse prototypes while capturing finer-grained local variations with detailed prototypes, enabling expert steering and multi-level interpretability. Experiments on multiple realistic benchmarks, including a newly released LOF dataset, show that ProtoTS not only exceeds existing methods in forecast accuracy but also delivers expert-steerable interpretations for better model understanding and decision support.

Under submission
Evaluating Spatio-Temporal Forecasting Trade-offs Between Graph Neural Networks and Foundation Models 2025-11-30
Show

Modern IoT deployments for environmental sensing produce high volume spatiotemporal data to support downstream tasks such as forecasting, typically powered by machine learning models. While existing filtering and strategic deployment techniques optimize collected data volume at the edge, they overlook how variations in sampling frequencies and spatial coverage affect downstream model performance. In many forecasting models, incorporating data from additional sensors denoise predictions by providing broader spatial contexts. This interplay between sampling frequency, spatial coverage and different forecasting model architectures remain underexplored. This work presents a systematic study of forecasting models - classical models (VAR), neural networks (GRU, Transformer), spatio-temporal graph neural networks (STGNNs), and time series foundation models (TSFMs: Chronos Moirai, TimesFM) under varying spatial sensor nodes density and sampling intervals using real-world temperature data in a wireless sensor network. Our results show that STGNNs are effective when sensor deployments are sparse and sampling rate is moderate, leveraging spatial correlations via encoded graph structure to compensate for limited coverage. In contrast, TSFMs perform competitively at high frequencies but degrade when spatial coverage from neighboring sensors is reduced. Crucially, the multivariate TSFM Moirai outperforms all models by natively learning cross-sensor dependencies. These findings offer actionable insights for building efficient forecasting pipelines in spatio-temporal systems. All code for model configurations, training, dataset, and logs are open-sourced for reproducibility: https://github.com/UIUC-MONET-Projects/Benchmarking-Spatiotemporal-Forecast-Models

DPWMixer: Dual-Path Wavelet Mixer for Long-Term Time Series Forecasting 2025-11-30
Show

Long-term time series forecasting (LTSF) is a critical task in computational intelligence. While Transformer-based models effectively capture long-range dependencies, they often suffer from quadratic complexity and overfitting due to data sparsity. Conversely, efficient linear models struggle to depict complex non-linear local dynamics. Furthermore, existing multi-scale frameworks typically rely on average pooling, which acts as a non-ideal low-pass filter, leading to spectral aliasing and the irreversible loss of high-frequency transients. In response, this paper proposes DPWMixer, a computationally efficient Dual-Path architecture. The framework is built upon a Lossless Haar Wavelet Pyramid that replaces traditional pooling, utilizing orthogonal decomposition to explicitly disentangle trends and local fluctuations without information loss. To process these components, we design a Dual-Path Trend Mixer that integrates a global linear mapping for macro-trend anchoring and a flexible patch-based MLP-Mixer for micro-dynamic evolution. Finally, An adaptive multi-scale fusion module then integrates predictions from diverse scales, weighted by channel stationarity to optimize synthesis. Extensive experiments on eight public benchmarks demonstrate that our method achieves a consistent improvement over state-of-the-art baselines. The code is available at https://github.com/hit636/DPWMixer.

Maximum Likelihood Estimation of the Vector AutoRegressive To Anything (VARTA) model 2025-11-29
Show

The literature on multivariate time series is, largely, limited to either models based on the multivariate Gaussian distribution or models specifically developed for a given application. In this paper we develop a general approach which is based on an underlying, unobserved, Gaussian Vector Autoregressive (VAR) model. Using a transformation, we can capture the time dynamics as well as the distributional properties of a multivariate time series. The model is called the Vector AutoRegressive To Anyting (VARTA) model and was originally presented by Biller and Nelson (2003) who used it for the purpose of simulation. In this paper we derive a maximum likelihood estimator for the model and investigate its performance. We also provide diagnostic analysis and how to compute the predictive distribution. The proposed approach can provide better estimates about the forecasting distributions which can be of every kind not necessarily Gaussian distributions as for the standard VAR models.

23 pages, 4 figures
High-dimensional Autoregressive Modeling for Time Series with Hierarchical Structures 2025-11-29
Show

High-dimensional time series often exhibit hierarchical structures represented by tensors, while statistical methodologies that can effectively exploit the structural information remain limited. We propose a supervised factor modeling framework that accommodates general hierarchical structures by extracting low-dimensional features sequentially in the mode orders that respect the hierarchical structure. Our method can select a small collection of such orders to allow for impurities in the hierarchical structures, yielding interpretable loading matrices that preserve the hierarchical relationships. A practical estimation procedure is proposed, with a hyperparameter selection scheme that identifies a parsimonious set of action orders and interim ranks, thereby revealing the possibly latent hierarchical structures. Theoretically, non-asymptotic error bounds are derived for the proposed estimators in both regression and autoregressive settings. An application to the IPIP-NEO-120 personality panel illustrates superior forecasting performance and clearer structural interpretation compared with existing methods based on tensor decompositions and hierarchical factor analysis.

Privacy-Preserving Generative Modeling and Clinical Validation of Longitudinal Health Records for Chronic Disease 2025-11-29
Show

Data privacy is a critical challenge in modern medical workflows as the adoption of electronic patient records has grown rapidly. Stringent data protection regulations limit access to clinical records for training and integrating machine learning models that have shown promise in improving diagnostic accuracy and personalized care outcomes. Synthetic data offers a promising alternative; however, current generative models either struggle with time-series data or lack formal privacy guaranties. In this paper, we enhance a state-of-the-art time-series generative model to better handle longitudinal clinical data while incorporating quantifiable privacy safeguards. Using real data from chronic kidney disease and ICU patients, we evaluate our method through statistical tests, a Train-on-Synthetic-Test-on-Real (TSTR) setup, and expert clinical review. Our non-private model (Augmented TimeGAN) outperforms transformer- and flow-based models on statistical metrics in several datasets, while our private model (DP-TimeGAN) maintains a mean authenticity of 0.778 on the CKD dataset, outperforming existing state-of-the-art models on the privacy-utility frontier. Both models achieve performance comparable to real data in clinician evaluations, providing robust input data necessary for developing models for complex chronic conditions without compromising data privacy.

To ap...

To appear in Proceedings of Machine Learning Research Volume 297 - Proceedings of ML4H 2025

Time-Series at the Edge: Tiny Separable CNNs for Wearable Gait Detection and Optimal Sensor Placement 2025-11-29
Show

We study on-device time-series analysis for gait detection in Parkinson's disease (PD) from short windows of triaxial acceleration, targeting resource-constrained wearables and edge nodes. We compare magnitude thresholding to three 1D CNNs for time-series analysis: a literature baseline (separable convolutions) and two ultra-light models - one purely separable and one with residual connections. Using the BioStampRC21 dataset, 2 s windows at 30 Hz, and subject-independent leave-one-subject-out (LOSO) validation on 16 PwPD with chest-worn IMUs, our residual separable model (Model 2, 533 params) attains PR-AUC = 94.5%, F1 = 91.2%, MCC = 89.4%, matching or surpassing the baseline (5,552 params; PR-AUC = 93.7%, F1 = 90.5%, MCC = 88.5%) with approximately 10x fewer parameters. The smallest model (Model 1, 305 params) reaches PR-AUC = 94.0%, F1 = 91.0%, MCC = 89.1%. Thresholding obtains high recall (89.0%) but low precision (76.5%), yielding many false positives and high inter-subject variance. Sensor-position analysis (train-on-all) shows chest and thighs are most reliable; forearms degrade precision/recall due to non-gait arm motion; naive fusion of all sites does not outperform the best single site. Both compact CNNs execute within tight memory/latency budgets on STM32-class MCUs (sub-10 ms on low-power boards), enabling on-sensor gating of transmission/storage. Overall, ultra-light separable CNNs provide a superior accuracy-efficiency-generalization trade-off to fixed thresholds for wearable PD gait detection and underscore the value of tailored time-series models for edge deployment.

Enhancing Time Series Forecasting through Selective Representation Spaces: A Patch Perspective 2025-11-29
Show

Time Series Forecasting has made significant progress with the help of Patching technique, which partitions time series into multiple patches to effectively retain contextual semantic information into a representation space beneficial for modeling long-term dependencies. However, conventional patching partitions a time series into adjacent patches, which causes a fixed representation space, thus resulting in insufficiently expressful representations. In this paper, we pioneer the exploration of constructing a selective representation space to flexibly include the most informative patches for forecasting. Specifically, we propose the Selective Representation Space (SRS) module, which utilizes the learnable Selective Patching and Dynamic Reassembly techniques to adaptively select and shuffle the patches from the contextual time series, aiming at fully exploiting the information of contextual time series to enhance the forecasting performance of patch-based models. To demonstrate the effectiveness of SRS module, we propose a simple yet effective SRSNet consisting of SRS and an MLP head, which achieves state-of-the-art performance on real-world datasets from multiple domains. Furthermore, as a novel plug-and-play module, SRS can also enhance the performance of existing patch-based models. The resources are available at https://github.com/decisionintelligence/SRSNet.

Introducing AI-Driven IoT Energy Management Framework 2025-11-29
Show

Power consumption has become a critical aspect of modern life due to the consistent reliance on technological advancements. Reducing power consumption or following power usage predictions can lead to lower monthly costs and improved electrical reliability. The proposal of a holistic framework to establish a foundation for IoT systems with a focus on contextual decision making, proactive adaptation, and scalable structure. A structured process for IoT systems with accuracy and interconnected development would support reducing power consumption and support grid stability. This study presents the feasibility of this proposal through the application of each aspect of the framework. This system would have long term forecasting, short term forecasting, anomaly detection, and consideration of qualitative data with any energy management decisions taken. Performance was evaluated on Power Consumption Time Series data to display the direct application of the framework.

Accep...

Accepted in IEEE Smart World Congress 2025, Calgary, Canada

FiCoTS: Fine-to-Coarse LLM-Enhanced Hierarchical Cross-Modality Interaction for Time Series Forecasting 2025-11-29
Show

Time series forecasting is central to data analysis and web technologies. The recent success of Large Language Models (LLMs) offers significant potential for this field, especially from the cross-modality aspect. Most methods adopt an LLM-as-Predictor paradigm, using LLM as the forecasting backbone and designing modality alignment mechanisms to enable LLM to understand time series data. However, the semantic information in the two modalities of time series and text differs significantly, making it challenging for LLM to fully understand time series data. To mitigate this challenge, our work follows an LLM-as-Enhancer paradigm to fully utilize the advantage of LLM in text understanding, where LLM is only used to encode text modality to complement time series modality. Based on this paradigm, we propose FiCoTS, an LLM-enhanced fine-to-coarse framework for multimodal time series forecasting. Specifically, the framework facilitates progressive cross-modality interaction by three levels in a fine-to-coarse scheme: First, in the token-level modality alignment module, a dynamic heterogeneous graph is constructed to filter noise and align time series patches with text tokens; Second, in the feature-level modality interaction module, a global cross-attention mechanism is introduced to enable each time series variable to connect with relevant textual contexts; Third, in the decision-level modality fusion module, we design a gated network to adaptively fuse the results of the two modalities for robust predictions. These three modules work synergistically to let the two modalities interact comprehensively across three semantic levels, enabling textual information to effectively support temporal prediction. Extensive experiments on seven real-world benchmarks demonstrate that our model achieves state-of-the-art performance. The codes will be released publicly.

Ada-MoGE: Adaptive Mixture of Gaussian Expert Model for Time Series Forecasting 2025-11-29
Show

Multivariate time series forecasts are widely used, such as industrial, transportation and financial forecasts. However, the dominant frequencies in time series may shift with the evolving spectral distribution of the data. Traditional Mixture of Experts (MoE) models, which employ a fixed number of experts, struggle to adapt to these changes, resulting in frequency coverage imbalance issue. Specifically, too few experts can lead to the overlooking of critical information, while too many can introduce noise. To this end, we propose Ada-MoGE, an adaptive Gaussian Mixture of Experts model. Ada-MoGE integrates spectral intensity and frequency response to adaptively determine the number of experts, ensuring alignment with the input data's frequency distribution. This approach prevents both information loss due to an insufficient number of experts and noise contamination from an excess of experts. Additionally, to prevent noise introduction from direct band truncation, we employ Gaussian band-pass filtering to smoothly decompose the frequency domain features, further optimizing the feature representation. The experimental results show that our model achieves state-of-the-art performance on six public benchmarks with only 0.2 million parameters.

Self-Supervised Dynamical System Representations for Physiological Time-Series 2025-11-28
Show

The effectiveness of self-supervised learning (SSL) for physiological time series depends on the ability of a pretraining objective to preserve information about the underlying physiological state while filtering out unrelated noise. However, existing strategies are limited due to reliance on heuristic principles or poorly constrained generative tasks. To address this limitation, we propose a pretraining framework that exploits the information structure of a dynamical systems generative model across multiple time-series. This framework reveals our key insight that class identity can be efficiently captured by extracting information about the generative variables related to the system parameters shared across similar time series samples, while noise unique to individual samples should be discarded. Building on this insight, we propose PULSE, a cross-reconstruction-based pretraining objective for physiological time series datasets that explicitly extracts system information while discarding non-transferrable sample-specific ones. We establish theory that provides sufficient conditions for the system information to be recovered, and empirically validate it using a synthetic dynamical systems experiment. Furthermore, we apply our method to diverse real-world datasets, demonstrating that PULSE learns representations that can broadly distinguish semantic classes, increase label efficiency, and improve transfer learning.

AutocleanEEG ICVision: Automated ICA Artifact Classification Using Vision-Language AI 2025-11-28
Show

We introduce EEG Autoclean Vision Language AI (ICVision) a first-of-its-kind system that emulates expert-level EEG ICA component classification through AI-agent vision and natural language reasoning. Unlike conventional classifiers such as ICLabel, which rely on handcrafted features, ICVision directly interprets ICA dashboard visualizations topography, time series, power spectra, and ERP plots, using a multimodal large language model (GPT-4 Vision). This allows the AI to see and explain EEG components the way trained neurologists do, making it the first scientific implementation of AI-agent visual cognition in neurophysiology. ICVision classifies each component into one of six canonical categories (brain, eye, heart, muscle, channel noise, and other noise), returning both a confidence score and a human-like explanation. Evaluated on 3,168 ICA components from 124 EEG datasets, ICVision achieved k = 0.677 agreement with expert consensus, surpassing MNE ICLabel, while also preserving clinically relevant brain signals in ambiguous cases. Over 97% of its outputs were rated as interpretable and actionable by expert reviewers. As a core module of the open-source EEG Autoclean platform, ICVision signals a paradigm shift in scientific AI, where models do not just classify, but see, reason, and communicate. It opens the door to globally scalable, explainable, and reproducible EEG workflows, marking the emergence of AI agents capable of expert-level visual decision-making in brain science and beyond.

6 pages, 8 figures
Underactuated Robotic Hand with Grasp State Estimation Using Tendon-Based Proprioception 2025-11-28
Show

Anthropomorphic underactuated hands are valued for their structural simplicity and inherent adaptability. However, the uncertainty arising from interdependent joint motions makes it challenging to capture various grasp states during hand-object interaction without increasing structural complexity through multiple embedded sensors. This motivates the need for an approach that can extract rich grasp-state information from a single sensing source while preserving the simplicity of underactuation. This study proposes an anthropomorphic underactuated hand that achieves comprehensive grasp state estimation, using only tendon-based proprioception provided by series elastic actuators (SEAs). Our approach is enabled by the design of a compact SEA with high accuracy and reliability that can be seamlessly integrated into sensorless fingers. By coupling accurate proprioceptive measurements with potential energy-based modeling, the system estimates multiple key grasp state variables, including contact timing, joint angles, relative object stiffness, and external disturbances. Finger-level experimental validations and extensive hand-level grasp functionality demonstrations confirmed the effectiveness of the proposed approach. These results highlight tendon-based proprioception as a compact and robust sensing modality for practical manipulation without reliance on vision or tactile feedback.

11 pa...

11 pages, 15 figures, 3 tables, Supplementary video

Uncovering Zero-Shot Generalization Gaps in Time-Series Foundation Models Using Real-World Videos 2025-11-28
Show

Recent research on time-series foundation models (TSFMs) has underscored the scarcity of real-world data, often supplemented with synthetic sources in existing datasets, whose generalizability remains however debated. As such, in this work, we propose a novel benchmarking approach: in particular, we aim at building a curated dataset reflecting real world physical temporal dynamics, extracting temporal signals from real-world videos using optical flow. As such, we introduce REAL-V-TSFM, a novel dataset designed to capture rich and diverse time series derived from real-world videos. Experimental results on state-of-the-art TSFMs under zero-shot forecasting show that, despite strong performance on conventional benchmarks, these models exhibit performance degradation on the proposed dataset, suggesting limited generalizability to novel datasets. These findings underscore the need for novel approaches to acquiring time series data and highlight the lack of universality in recent TSFMs, while further validating the effectiveness of our video-based time series data extraction pipeline.

This ...

This paper has been accepted by Artificial Intelligence for Time Series Analysis (AI4TS) Workshop @ AAAI 2026: Theory, Algorithms, and Applications

Hierarchical AI-Meteorologist: LLM-Agent System for Multi-Scale and Explainable Weather Forecast Reporting 2025-11-28
Show

We present the Hierarchical AI-Meteorologist, an LLM-agent system that generates explainable weather reports using a hierarchical forecast reasoning and weather keyword generation. Unlike standard approaches that treat forecasts as flat time series, our framework performs multi-scale reasoning across hourly, 6-hour, and daily aggregations to capture both short-term dynamics and long-term trends. Its core reasoning agent converts structured meteorological inputs into coherent narratives while simultaneously extracting a few keywords effectively summarizing the dominant meteorological events. These keywords serve as semantic anchors for validating consistency, temporal coherence and factual alignment of the generated reports. Using OpenWeather and Meteostat data, we demonstrate that hierarchical context and keyword-based validation substantially improve interpretability and robustness of LLM-generated weather narratives, offering a reproducible framework for semantic evaluation of automated meteorological reporting and advancing agent-based scientific reasoning.

9 pages, 4 figures
Conjugate Generalised Bayesian Inference for Discrete Doubly Intractable Problems 2025-11-28
Show

Doubly intractable problems occur when both the likelihood and the posterior are available only in unnormalised form, with computationally intractable normalisation constants. Bayesian inference then typically requires direct approximation of the posterior through specialised and typically expensive MCMC methods. In this paper, we provide a computationally efficient alternative in the form of a novel generalised Bayesian posterior that allows for conjugate inference within the class of exponential family models for discrete data. We derive theoretical guarantees to characterise the asymptotic behaviour of the generalised posterior, supporting its use for inference. The method is evaluated on a range of challenging intractable exponential family models, including the Conway-Maxwell-Poisson graphical model of multivariate count data, autoregressive discrete time series models, and Markov random fields such as the Ising and Potts models. The computational gains are significant; in our experiments, the method is between 10 and 6000 times faster than state-of-the-art Bayesian computational methods.

Interpretability for Time Series Transformers using A Concept Bottleneck Framework 2025-11-28
Show

Mechanistic interpretability focuses on reverse engineering the internal mechanisms learned by neural networks. We extend our focus and propose to mechanistically forward engineer using our framework based on Concept Bottleneck Models. In the context of long-term time series forecasting, we modify the training objective to encourage a model to develop representations which are similar to predefined, interpretable concepts using Centered Kernel Alignment. This steers the bottleneck components to learn the predefined concepts, while allowing other components to learn other, undefined concepts. We apply the framework to the Vanilla Transformer, Autoformer and FEDformer, and present an in-depth analysis on synthetic data and on a variety of benchmark datasets. We find that the model performance remains mostly unaffected, while the model shows much improved interpretability. Additionally, we verify the interpretation of the bottleneck components with an intervention experiment using activation patching.

Time Series Forecasting via Direct Per-Step Probability Distribution Modeling 2025-11-28
Show

Deep neural network-based time series prediction models have recently demonstrated superior capabilities in capturing complex temporal dependencies. However, it is challenging for these models to account for uncertainty associated with their predictions, because they directly output scalar values at each time step. To address such a challenge, we propose a novel model named interleaved dual-branch Probability Distribution Network (interPDN), which directly constructs discrete probability distributions per step instead of a scalar. The regression output at each time step is derived by computing the expectation of the predictive distribution on a predefined support set. To mitigate prediction anomalies, a dual-branch architecture is introduced with interleaved support sets, augmented by coarse temporal-scale branches for long-term trend forecasting. Outputs from another branch are treated as auxiliary signals to impose self-supervised consistency constraints on the current branch's prediction. Extensive experiments on multiple real-world datasets demonstrate the superior performance of interPDN.

16 pa...

16 pages, 8 figures. This is the preprint version of the paper and supplemental material to appear in AAAI, 2026. Please cite the final published version. Code is available at https://github.com/leonardokong486/interPDN

Towards Understanding Transformers in Learning Random Walks 2025-11-28
Show

Transformers have proven highly effective across various applications, especially in handling sequential data such as natural languages and time series. However, transformer models often lack clear interpretability, and the success of transformers has not been well understood in theory. In this paper, we study the capability and interpretability of transformers in learning a family of classic statistical models, namely random walks on circles. We theoretically demonstrate that, after training with gradient descent, a one-layer transformer model can achieve optimal accuracy in predicting random walks. Importantly, our analysis reveals that the trained model is interpretable: the trained softmax attention serves as a token selector, focusing on the direct parent state; subsequently, the value matrix executes a one-step probability transition to predict the location of the next state based on this parent state. We also show that certain edge cases not covered by our theory are indeed failure cases, demonstrating that our theoretical conditions are tight. By investigating these success and failure cases, it is revealed that gradient descent with small initialization may fail or struggle to converge to a good solution in certain simple tasks even beyond random walks. Experiments are conducted to support our theoretical findings.

45 pages, 13 figures
SDE-Attention: Latent Attention in SDE-RNNs for Irregularly Sampled Time Series with Missing Data 2025-11-28
Show

Irregularly sampled time series with substantial missing observations are common in healthcare and sensor networks. We introduce SDE-Attention, a family of SDE-RNNs equipped with channel-level attention on the latent pre-RNN state, including channel recalibration, time-varying feature attention, and pyramidal multi-scale self-attention. We therefore conduct a comparison on a synthetic periodic dataset and real-world benchmarks, under varying missing rate. Latent-space attention consistently improves over a vanilla SDE-RNN. On the univariate UCR datasets, the LSTM-based time-varying feature model SDE-TVF-L achieves the highest average accuracy, raising mean performance by approximately 4, 6, and 10 percentage points over the baseline at 30%, 60% and 90% missingness, respectively (averaged across datasets). On multivariate UEA benchmarks, attention-augmented models again outperform the backbone, with SDE-TVF-L yielding up to a 7% gain in mean accuracy under high missingness. Among the proposed mechanisms, time-varying feature attention is the most robust on univariate datasets. On multivariate datasets, different attention types excel on different tasks, showing that SDE-Attention can be flexibly adapted to the structure of each problem.

11 pages, 6 figures
Field-programmable dynamics in a soft magnetic actuator enabling true random number generation and reservoir computing 2025-11-28
Show

Complex and even chaotic dynamics, though prevalent in many natural and engineered systems, has been largely avoided in the design of electromechanical systems due to concerns about wear and controlability. Here, we demonstrate that complex dynamics might be particularly advantageous in soft robotics, offering new functionalities beyond motion not easily achievable with traditional actuation methods. We designed and realized resilient magnetic soft actuators capable of operating in a tunable dynamic regime for tens of thousands cycles without fatigue. We experimentally demonstrated the application of these actuators for true random number generation and stochastic computing. {W}e validate soft robots as physical reservoirs capable of performing Mackey--Glass time series prediction. These findings show that exploring the complex dynamics in soft robotics would extend the application scenarios in soft computing, human-robot interaction and collaborative robots as we demonstrate with biomimetic blinking and randomized voice modulation.

Delta-XAI: A Unified Framework for Explaining Prediction Changes in Online Time Series Monitoring 2025-11-28
Show

Explaining online time series monitoring models is crucial across sensitive domains such as healthcare and finance, where temporal and contextual prediction dynamics underpin critical decisions. While recent XAI methods have improved the explainability of time series models, they mostly analyze each time step independently, overlooking temporal dependencies. This results in further challenges: explaining prediction changes is non-trivial, methods fail to leverage online dynamics, and evaluation remains difficult. To address these challenges, we propose Delta-XAI, which adapts 14 existing XAI methods through a wrapper function and introduces a principled evaluation suite for the online setting, assessing diverse aspects, such as faithfulness, sufficiency, and coherence. Experiments reveal that classical gradient-based methods, such as Integrated Gradients (IG), can outperform recent approaches when adapted for temporal analysis. Building on this, we propose Shifted Window Integrated Gradients (SWING), which incorporates past observations in the integration path to systematically capture temporal dependencies and mitigate out-of-distribution effects. Extensive experiments consistently demonstrate the effectiveness of SWING across diverse settings with respect to diverse metrics. Our code is publicly available at https://anonymous.4open.science/r/Delta-XAI.

Under...

Under review at ICLR 2026

YARE-GAN: Yet Another Resting State EEG-GAN 2025-11-28
Show

Resting-state EEG offers a non-invasive view of spontaneous brain activity, yet the extraction of meaningful patterns is often constrained by limited availability of high-quality data, and heavy reliance on manually engineered EEG features. Generative Adversarial Networks (GANs) offer not only a means to synthesize and augment neural signals, but also a promising way for learning meaningful representations directly from raw data, a dual capability that remains largely unexplored in EEG research. In this study, we introduce a scalable GAN-based framework for resting-state EEG that serves this dual role: 1) synthesis and 2) unsupervised feature extraction. The generated time series closely replicate key statistical and spectral properties of real EEG, as validated through both visual and quantitative evaluations. Importantly, we demonstrate that the model's learned representations can be repurposed for a downstream gender classification task, achieving higher out-of-sample accuracy than models trained directly on EEG signals and performing comparably to recent EEG foundation models, while using significantly less data and computational resources. These findings highlight the potential of generative models to serve as both neural signal generators and unsupervised feature extractors, paving the way for more data-efficient, architecture-driven approaches to EEG analysis with reduced reliance on manual feature engineering. The implementation code for this study is available at: https://github.com/Yeganehfrh/YARE-GAN.

A Trainable Centrality Framework for Modern Data 2025-11-28
Show

Measuring how central or typical a data point is underpins robust estimation, ranking, and outlier detection, but classical depth notions become expensive and unstable in high dimensions and are hard to extend beyond Euclidean data. We introduce Fused Unified centrality Score Estimation (FUSE), a neural centrality framework that operates on top of arbitrary representations. FUSE combines a global head, trained from pairwise distance-based comparisons to learn an anchor-free centrality score, with a local head, trained by denoising score matching to approximate a smoothed log-density potential. A single parameter between 0 and 1 interpolates between these calibrated signals, yielding depth-like centrality from different views via one forward pass. Across synthetic distributions, real images, time series, and text data, and standard outlier detection benchmarks, FUSE recovers meaningful classical ordering, reveals multi-scale geometric structures, and attains competitive performance with strong classical baselines while remaining simple and efficient.

Counterfactual Explanation for Multivariate Time Series Forecasting with Exogenous Variables 2025-11-28
Show

Currently, machine learning is widely used across various domains, including time series data analysis. However, some machine learning models function as black boxes, making interpretability a critical concern. One approach to address this issue is counterfactual explanation (CE), which aims to provide insights into model predictions. This study focuses on the relatively underexplored problem of generating counterfactual explanations for time series forecasting. We propose a method for extracting CEs in time series forecasting using exogenous variables, which are frequently encountered in fields such as business and marketing. In addition, we present methods for analyzing the influence of each variable over an entire time series, generating CEs by altering only specific variables, and evaluating the quality of the resulting CEs. We validate the proposed method through theoretical analysis and empirical experiments, showcasing its accuracy and practical applicability. These contributions are expected to support real-world decision-making based on time series data analysis.

27pag...

27pages,9figures,9tables

Atom of Thoughts for Markov LLM Test-Time Scaling 2025-11-28
Show

Large Language Models (LLMs) achieve superior performance through training-time scaling, and test-time scaling further enhances their capabilities by conducting effective reasoning during inference. However, as the scale of reasoning increases, existing test-time scaling methods suffer from accumulated historical information, which not only wastes computational resources but also interferes with effective reasoning. To address this issue, we observe that complex reasoning can be achieved by solving a series of independent and self-contained subquestions. These subquestions are essentially \textit{atomic questions}, exhibiting the memoryless property similar to Markov processes. Based on this observation, we propose Atom of Thoughts (\our), where each state transition consists of decomposing the current question into a dependency-based directed acyclic graph and contracting its subquestions, forming a simplified question that maintains answer equivalence with the original problem. This answer preservation enables the iterative \textit{decomposition-contraction} process to naturally form a meaningful Markov reasoning process. Furthermore, these atomic states can be seamlessly integrated into existing test-time scaling methods, enabling \our to serve as a plug-in enhancement for improving reasoning capabilities. Experiments across six benchmarks demonstrate the effectiveness of \our both as a standalone framework and a plug-in enhancement. Notably, on HotpotQA, when applied to gpt-4o-mini, \our achieves an \textbf{80.6%} F1 score, surpassing o3-mini by \textbf{3.4%} and DeepSeek-R1 by \textbf{10.6%}. The code is available at \href{https://github.com/qixucen/atom}{https://github.com/qixucen/atom}.

Accep...

Accepted to NeurIPS 2025

TARFVAE: Efficient One-Step Generative Time Series Forecasting via TARFLOW based VAE 2025-11-28
Show

Time series data is ubiquitous, with forecasting applications spanning from finance to healthcare. Beyond popular deterministic methods, generative models are gaining attention due to advancements in areas like image synthesis and video generation, as well as their inherent ability to provide probabilistic predictions. However, existing generative approaches mostly involve recurrent generative operations or repeated denoising steps, making the prediction laborious, particularly for long-term forecasting. Most of them only conduct experiments for relatively short-term forecasting, with limited comparison to deterministic methods in long-term forecasting, leaving their practical advantages unclear. This paper presents TARFVAE, a novel generative framework that combines the Transformer-based autoregressive flow (TARFLOW) and variational autoencoder (VAE) for efficient one-step generative time series forecasting. Inspired by the rethinking that complex architectures for extracting time series representations might not be necessary, we add a flow module, TARFLOW, to VAE to promote spontaneous learning of latent variables that benefit predictions. TARFLOW enhances VAE's posterior estimation by breaking the Gaussian assumption, thereby enabling a more informative latent space. TARFVAE uses only the forward process of TARFLOW, avoiding autoregressive inverse operations and thus ensuring fast generation. During generation, it samples from the prior latent space and directly generates full-horizon forecasts via the VAE decoder. With simple MLP modules, TARFVAE achieves superior performance over state-of-the-art deterministic and generative models across different forecast horizons on benchmark datasets while maintaining efficient prediction speed, demonstrating its effectiveness as an efficient and powerful solution for generative time series forecasting.

Gaussian approximations for fast Bayesian inference of partially observed branching processes with applications to epidemiology 2025-11-28
Show

We consider the problem of inference for the states and parameters of a continuous-time multitype branching process from partially observed time series data. Exact inference for this class of models, typically using sequential Monte Carlo, can be computationally challenging when the populations that are being modelled grow exponentially or the time series is long. Instead, we derive a Gaussian approximation for the transition function of the process that leads to a Kalman filtering algorithm that runs in a time independent of the population sizes. We also develop a hybrid approach for when populations are smaller and the approximation is less applicable. We investigate the performance of our approximation and algorithms to both a simple and a complex epidemic model, finding good adherence to the true posterior distributions in both cases with large computational speed-ups in most cases. We also apply our method to a COVID-19 dataset with time dependent parameters where exact methods are intractable due to the population sizes involved.

Detecting Masquerade Attacks in Controller Area Networks Using Graph Machine Learning 2025-11-27
Show

Modern vehicles rely on a myriad of electronic control units (ECUs) interconnected via controller area networks (CANs) for critical operations. Despite their ubiquitous use and reliability, CANs are susceptible to sophisticated cyberattacks, particularly masquerade attacks, which inject false data that mimic legitimate messages at the expected frequency. These attacks pose severe risks such as unintended acceleration, brake deactivation, and rogue steering. Traditional intrusion detection systems (IDS) often struggle to detect these subtle intrusions due to their seamless integration into normal traffic. This paper introduces a novel framework for detecting masquerade attacks in the CAN bus using graph machine learning (ML). We hypothesize that the integration of shallow graph embeddings with time series features derived from CAN frames enhances the detection of masquerade attacks. We show that by representing CAN bus frames as message sequence graphs (MSGs) and enriching each node with contextual statistical attributes from time series, we can enhance detection capabilities across various attack patterns compared to using graph-based features only. Our method ensures a comprehensive and dynamic analysis of CAN frame interactions, improving robustness and efficiency. Extensive experiments on the ROAD dataset validate the effectiveness of our approach, demonstrating statistically significant improvements in the detection rates of masquerade attacks compared to a baseline that uses graph-based features only as confirmed by Mann-Whitney U and Kolmogorov-Smirnov tests p < 0.05.

Modèles de Fondation et Ajustement : Vers une Nouvelle Génération de Modèles pour la Prévision des Séries Temporelles 2025-11-27
Show

Inspired by recent advances in large language models, foundation models have been developed for zero-shot time series forecasting, enabling prediction on datasets unseen during pretraining. These large-scale models, trained on vast collections of time series, learn generalizable representations for both point and probabilistic forecasting, reducing the need for task-specific architectures and manual tuning. In this work, we review the main architectures, pretraining strategies, and optimization methods used in such models, and study the effect of fine-tuning after pretraining to enhance their performance on specific datasets. Our empirical results show that fine-tuning generally improves zero-shot forecasting capabilities, especially for long-term horizons.

in French language
Chain-of-Influence: Tracing Interdependencies Across Time and Features in Clinical Predictive Modelings 2025-11-27
Show

Modeling clinical time-series data is hampered by the challenge of capturing latent, time-varying dependencies among features. State-of-the-art approaches often rely on black-box mechanisms or simple aggregation, failing to explicitly model how the influence of one clinical variable propagates through others over time. We propose $\textbf{Chain-of-Influence (CoI)}$, an interpretable deep learning framework that constructs an explicit, time-unfolded graph of feature interactions. CoI enables the tracing of influence pathways, providing a granular audit trail that shows how any feature at any time contributes to the final prediction, both directly and through its influence on other variables. We evaluate CoI on mortality and disease progression tasks using the MIMIC-IV dataset and a chronic kidney disease cohort. Our framework achieves state-of-the-art predictive performance (AUROC of 0.960 on CKD progression and 0.950 on ICU mortality), with deletion-based sensitivity analyses confirming that CoI's learned attributions faithfully reflect its decision process. Through case studies, we demonstrate that CoI uncovers clinically meaningful, patient-specific patterns of disease progression, offering enhanced transparency into the temporal and cross-feature dependencies that inform clinical decision-making.

A Framework for Initial Transient Detection and Statistical Assessment of Convergence in CFD Simulations 2025-11-27
Show

Time series data often contain initial transient periods before reaching a stable state, posing challenges in analysis and interpretation. In this paper, we propose a novel approach to detect and estimate the end of the initial transient in time series data. Our method leverages the reversal mean standard error (RMSE) as a metric for assessing the stability of the data. Additionally, we employ fractional filtering techniques to enhance the detection accuracy by filtering out noise and capturing essential features of the underlying dynamics. Combining with autocorrelation-corrected confidence intervals we provide a robust framework to automate transient detection and convergence assessment. The method ensures statistical rigor by accounting for autocorrelation effects, validated through simulations with varying time steps. Results demonstrate independence from numerical parameters (e.g., time step size, under-relaxation factors), offering a reliable tool for steady-state analysis. The framework is lightweight, generalizable, and mitigates inflated false positives in autocorrelated datasets.

The Catechol Benchmark: Time-series Solvent Selection Data for Few-shot Machine Learning 2025-11-27
Show

Machine learning has promised to change the landscape of laboratory chemistry, with impressive results in molecular property prediction and reaction retro-synthesis. However, chemical datasets are often inaccessible to the machine learning community as they tend to require cleaning, thorough understanding of the chemistry, or are simply not available. In this paper, we introduce a novel dataset for yield prediction, providing the first-ever transient flow dataset for machine learning benchmarking, covering over 1200 process conditions. While previous datasets focus on discrete parameters, our experimental set-up allow us to sample a large number of continuous process conditions, generating new challenges for machine learning models. We focus on solvent selection, a task that is particularly difficult to model theoretically and therefore ripe for machine learning applications. We showcase benchmarking for regression algorithms, transfer-learning approaches, feature engineering, and active learning, with important applications towards solvent replacement and sustainable manufacturing.

10 pa...

10 pages main, 22 pages total, 8 figures, 7 tables. Accepted to NeurIPS Datasets and Benchmarks track 2025

ChronoGraph: A Real-World Graph-Based Multivariate Time Series Dataset 2025-11-27
Show

We present ChronoGraph, a graph-structured multivariate time series forecasting dataset built from real-world production microservices. Each node is a service that emits a multivariate stream of system-level performance metrics, capturing CPU, memory, and network usage patterns, while directed edges encode dependencies between services. The primary task is forecasting future values of these signals at the service level. In addition, ChronoGraph provides expert-annotated incident windows as anomaly labels, enabling evaluation of anomaly detection methods and assessment of forecast robustness during operational disruptions. Compared to existing benchmarks from industrial control systems or traffic and air-quality domains, ChronoGraph uniquely combines (i) multivariate time series, (ii) an explicit, machine-readable dependency graph, and (iii) anomaly labels aligned with real incidents. We report baseline results spanning forecasting models, pretrained time-series foundation models, and standard anomaly detectors. ChronoGraph offers a realistic benchmark for studying structure-aware forecasting and incident-aware evaluation in microservice systems.

Accep...

Accepted as an oral presentation at the NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT2S)

TS2Vec-Ensemble: An Enhanced Self-Supervised Framework for Time Series Forecasting 2025-11-27
Show

Self-supervised representation learning, particularly through contrastive methods like TS2Vec, has advanced the analysis of time series data. However, these models often falter in forecasting tasks because their objective functions prioritize instance discrimination over capturing the deterministic patterns, such as seasonality and trend, that are critical for accurate prediction. This paper introduces TS2Vec-Ensemble, a novel hybrid framework designed to bridge this gap. Our approach enhances the powerful, implicitly learned dynamics from a pretrained TS2Vec encoder by fusing them with explicit, engineered time features that encode periodic cycles. This fusion is achieved through a dual-model ensemble architecture, where two distinct regression heads -- one focused on learned dynamics and the other on seasonal patterns -- are combined using an adaptive weighting scheme. The ensemble weights are optimized independently for each forecast horizon, allowing the model to dynamically prioritize short-term dynamics or long-term seasonality as needed. We conduct extensive experiments on the ETT benchmark datasets for both univariate and multivariate forecasting. The results demonstrate that TS2Vec-Ensemble consistently and significantly outperforms the standard TS2Vec baseline and other state-of-the-art models, validating our hypothesis that a hybrid of learned representations and explicit temporal priors is a superior strategy for long-horizon time series forecasting.

Qwen3-VL Technical Report 2025-11-27
Show

We introduce Qwen3-VL, the most capable vision-language model in the Qwen series to date, achieving superior performance across a broad range of multimodal benchmarks. It natively supports interleaved contexts of up to 256K tokens, seamlessly integrating text, images, and video. The model family includes both dense (2B/4B/8B/32B) and mixture-of-experts (30B-A3B/235B-A22B) variants to accommodate diverse latency-quality trade-offs. Qwen3-VL delivers three core pillars: (i) markedly stronger pure-text understanding, surpassing comparable text-only backbones in several cases; (ii) robust long-context comprehension with a native 256K-token window for both text and interleaved multimodal inputs, enabling faithful retention, retrieval, and cross-referencing across long documents and videos; and (iii) advanced multimodal reasoning across single-image, multi-image, and video tasks, demonstrating leading performance on comprehensive evaluations such as MMMU and visual-math benchmarks (e.g., MathVista and MathVision). Architecturally, we introduce three key upgrades: (i) an enhanced interleaved-MRoPE for stronger spatial-temporal modeling across images and video; (ii) DeepStack integration, which effectively leverages multi-level ViT features to tighten vision-language alignment; and (iii) text-based time alignment for video, evolving from T-RoPE to explicit textual timestamp alignment for more precise temporal grounding. Under comparable token budgets and latency constraints, Qwen3-VL achieves superior performance in both dense and Mixture-of-Experts (MoE) architectures. We envision Qwen3-VL serving as a foundational engine for image-grounded reasoning, agentic decision-making, and multimodal code intelligence in real-world workflows.

42 pages
Predicting and Interpolating Spatiotemporal Environmental Data: A Case Study of Groundwater Storage in Bangladesh 2025-11-27
Show

Geospatial observational datasets are often limited to point measurements, making temporal prediction and spatial interpolation essential for constructing continuous fields. This study evaluates two deep learning strategies for addressing this challenge: (1) a grid-to-grid approach, where gridded predictors are used to model rasterised targets (aggregation before modelling), and (2) a grid-to-point approach, where gridded predictors model point targets, followed by kriging interpolation to fill the domain (aggregation after modelling). Using groundwater storage data from Bangladesh as a case study, we compare the effcacy of these approaches. Our findings indicate that spatial interpolation is substantially more difficult than temporal prediction. In particular, nearest neighbours are not always the most similar, and uncertainties in geology strongly influence point temporal behaviour. These insights motivate future work on advanced interpolation methods informed by clustering locations based on time series dynamics. Demonstrated on groundwater storage, the conclusions are applicable to other environmental variables governed by indirectly observable factors. Code is available at https://github.com/pazolka/interpolation-prediction-gwsa.

Submi...

Submitted to the IDA 2026 conference

RI-Loss: A Learnable Residual-Informed Loss for Time Series Forecasting 2025-11-27
Show

Time series forecasting relies on predicting future values from historical data, yet most state-of-the-art approaches-including transformer and multilayer perceptron-based models-optimize using Mean Squared Error (MSE), which has two fundamental weaknesses: its point-wise error computation fails to capture temporal relationships, and it does not account for inherent noise in the data. To overcome these limitations, we introduce the Residual-Informed Loss (RI-Loss), a novel objective function based on the Hilbert-Schmidt Independence Criterion (HSIC). RI-Loss explicitly models noise structure by enforcing dependence between the residual sequence and a random time series, enabling more robust, noise-aware representations. Theoretically, we derive the first non-asymptotic HSIC bound with explicit double-sample complexity terms, achieving optimal convergence rates through Bernstein-type concentration inequalities and Rademacher complexity analysis. This provides rigorous guarantees for RI-Loss optimization while precisely quantifying kernel space interactions. Empirically, experiments across eight real-world benchmarks and five leading forecasting models demonstrate improvements in predictive performance, validating the effectiveness of our approach. The code is publicly available at: https://github.com/shang-xl/RI-Loss.

Beyond MSE: Ordinal Cross-Entropy for Probabilistic Time Series Forecasting 2025-11-27
Show

Time series forecasting is an important task that involves analyzing temporal dependencies and underlying patterns (such as trends, cyclicality, and seasonality) in historical data to predict future values or trends. Current deep learning-based forecasting models primarily employ Mean Squared Error (MSE) loss functions for regression modeling. Despite enabling direct value prediction, this method offers no uncertainty estimation and exhibits poor outlier robustness. To address these limitations, we propose OCE-TS, a novel ordinal classification approach for time series forecasting that replaces MSE with Ordinal Cross-Entropy (OCE) loss, preserving prediction order while quantifying uncertainty through probability output. Specifically, OCE-TS begins by discretizing observed values into ordered intervals and deriving their probabilities via a parametric distribution as supervision signals. Using a simple linear model, we then predict probability distributions for each timestep. The OCE loss is computed between the cumulative distributions of predicted and ground-truth probabilities, explicitly preserving ordinal relationships among forecasted values. Through theoretical analysis using influence functions, we establish that cross-entropy (CE) loss exhibits superior stability and outlier robustness compared to MSE loss. Empirically, we compared OCE-TS with five baseline models-Autoformer, DLinear, iTransformer, TimeXer, and TimeBridge-on seven public time series datasets. Using MSE and Mean Absolute Error (MAE) as evaluation metrics, the results demonstrate that OCE-TS consistently outperforms benchmark models. The codeis publicly available at: https://github.com/Shi-hm/OCE-TS.

Spatio Temporal

Title Date Abstract Comment
U4D: Uncertainty-Aware 4D World Modeling from LiDAR Sequences 2025-12-02
Show

Modeling dynamic 3D environments from LiDAR sequences is central to building reliable 4D worlds for autonomous driving and embodied AI. Existing generative frameworks, however, often treat all spatial regions uniformly, overlooking the varying uncertainty across real-world scenes. This uniform generation leads to artifacts in complex or ambiguous regions, limiting realism and temporal stability. In this work, we present U4D, an uncertainty-aware framework for 4D LiDAR world modeling. Our approach first estimates spatial uncertainty maps from a pretrained segmentation model to localize semantically challenging regions. It then performs generation in a "hard-to-easy" manner through two sequential stages: (1) uncertainty-region modeling, which reconstructs high-entropy regions with fine geometric fidelity, and (2) uncertainty-conditioned completion, which synthesizes the remaining areas under learned structural priors. To further ensure temporal coherence, U4D incorporates a mixture of spatio-temporal (MoST) block that adaptively fuses spatial and temporal representations during diffusion. Extensive experiments show that U4D produces geometrically faithful and temporally consistent LiDAR sequences, advancing the reliability of 4D world modeling for autonomous perception and simulation.

Prepr...

Preprint; 19 pages, 7 figures, 8 tables

Benchmarking Scientific Understanding and Reasoning for Video Generation using VideoScience-Bench 2025-12-02
Show

The next frontier for video generation lies in developing models capable of zero-shot reasoning, where understanding real-world scientific laws is crucial for accurate physical outcome modeling under diverse conditions. However, existing video benchmarks are physical commonsense-based, offering limited insight into video models' scientific reasoning capability. We introduce VideoScience-Bench, a benchmark designed to evaluate undergraduate-level scientific understanding in video models. Each prompt encodes a composite scientific scenario that requires understanding and reasoning across multiple scientific concepts to generate the correct phenomenon. The benchmark comprises 200 carefully curated prompts spanning 14 topics and 103 concepts in physics and chemistry. We conduct expert-annotated evaluations across seven state-of-the-art video models in T2V and I2V settings along five dimensions: Prompt Consistency, Phenomenon Congruency, Correct Dynamism, Immutability, and Spatio-Temporal Continuity. Using a VLM-as-a-Judge to assess video generations, we observe strong correlation with human assessments. To the best of our knowledge, VideoScience-Bench is the first benchmark to evaluate video models not only as generators but also as reasoners, requiring their generations to demonstrate scientific understanding consistent with expected physical and chemical phenomena. Our data and evaluation code are available at: \href{https://github.com/hao-ai-lab/VideoScience}{github.com/hao-ai-lab/VideoScience}.

LoVoRA: Text-guided and Mask-free Video Object Removal and Addition with Learnable Object-aware Localization 2025-12-02
Show

Text-guided video editing, particularly for object removal and addition, remains a challenging task due to the need for precise spatial and temporal consistency. Existing methods often rely on auxiliary masks or reference images for editing guidance, which limits their scalability and generalization. To address these issues, we propose LoVoRA, a novel framework for mask-free video object removal and addition using object-aware localization mechanism. Our approach utilizes a unique dataset construction pipeline that integrates image-to-video translation, optical flow-based mask propagation, and video inpainting, enabling temporally consistent edits. The core innovation of LoVoRA is its learnable object-aware localization mechanism, which provides dense spatio-temporal supervision for both object insertion and removal tasks. By leveraging a Diffusion Mask Predictor, LoVoRA achieves end-to-end video editing without requiring external control signals during inference. Extensive experiments and human evaluation demonstrate the effectiveness and high-quality performance of LoVoRA.

TrackNetV5: Residual-Driven Spatio-Temporal Refinement and Motion Direction Decoupling for Fast Object Tracking 2025-12-02
Show

The TrackNet series has established a strong baseline for fast-moving small object tracking in sports. However, existing iterations face significant limitations: V1-V3 struggle with occlusions due to a reliance on purely visual cues, while TrackNetV4, despite introducing motion inputs, suffers from directional ambiguity as its absolute difference method discards motion polarity. To overcome these bottlenecks, we propose TrackNetV5, a robust architecture integrating two novel mechanisms. First, to recover lost directional priors, we introduce the Motion Direction Decoupling (MDD) module. Unlike V4, MDD decomposes temporal dynamics into signed polarity fields, explicitly encoding both movement occurrence and trajectory direction. Second, we propose the Residual-Driven Spatio-Temporal Refinement (R-STR) head. Operating on a coarse-to-fine paradigm, this Transformer-based module leverages factorized spatio-temporal contexts to estimate a corrective residual, effectively recovering occluded targets. Extensive experiments on the TrackNetV2 dataset demonstrate that TrackNetV5 achieves a new state-of-the-art F1-score of 0.9859 and an accuracy of 0.9733, significantly outperforming previous versions. Notably, this performance leap is achieved with a marginal 3.7% increase in FLOPs compared to V4, maintaining real-time inference capabilities while delivering superior tracking precision.

Rethinking Surgical Smoke: A Smoke-Type-Aware Laparoscopic Video Desmoking Method and Dataset 2025-12-02
Show

Electrocautery or lasers will inevitably generate surgical smoke, which hinders the visual guidance of laparoscopic videos for surgical procedures. The surgical smoke can be classified into different types based on its motion patterns, leading to distinctive spatio-temporal characteristics across smoky laparoscopic videos. However, existing desmoking methods fail to account for such smoke-type-specific distinctions. Therefore, we propose the first Smoke-Type-Aware Laparoscopic Video Desmoking Network (STANet) by introducing two smoke types: Diffusion Smoke and Ambient Smoke. Specifically, a smoke mask segmentation sub-network is designed to jointly conduct smoke mask and smoke type predictions based on the attention-weighted mask aggregation, while a smokeless video reconstruction sub-network is proposed to perform specially desmoking on smoky features guided by two types of smoke mask. To address the entanglement challenges of two smoke types, we further embed a coarse-to-fine disentanglement module into the mask segmentation sub-network, which yields more accurate disentangled masks through the smoke-type-aware cross attention between non-entangled and entangled regions. In addition, we also construct the first large-scale synthetic video desmoking dataset with smoke type annotations. Extensive experiments demonstrate that our method not only outperforms state-of-the-art approaches in quality evaluations, but also exhibits superior generalization across multiple downstream surgical tasks.

12 pa...

12 pages, 15 figures. Accepted to AAAI-26 (Main Technical Track)

GeoMAE: Masking Representation Learning for Spatio-Temporal Graph Forecasting with Missing Values 2025-12-02
Show

The ubiquity of missing data in urban intelligence systems, attributable to adverse environmental conditions and equipment failures, poses a significant challenge to the efficacy of downstream applications, notably in the realms of traffic forecasting and energy consumption prediction. Therefore, it is imperative to develop a robust spatio-temporal learning methodology capable of extracting meaningful insights from incomplete datasets. Despite the existence of methodologies for spatio-temporal graph forecasting in the presence of missing values, unresolved issues persist. Primarily, the majority of extant research is predicated on time-series analysis, thereby neglecting the dynamic spatial correlations inherent in sensor networks. Additionally, the complexity of missing data patterns compounds the intricacy of the problem. Furthermore, the variability in maintenance conditions results in a significant fluctuation in the ratio and pattern of missing values, thereby challenging the generalizability of predictive models. In response to these challenges, this study introduces GeoMAE, a self-supervised spatio-temporal representation learning model. The model is comprised of three principal components: an input preprocessing module, an attention-based spatio-temporal forecasting network (STAFN), and an auxiliary learning task, which draws inspiration from Masking AutoEncoders to enhance the robustness of spatio-temporal representation learning. Empirical evaluations on real-world datasets demonstrate that GeoMAE significantly outperforms existing benchmarks, achieving up to 13.20% relative improvement over the best baseline models.

34 pages
Dynamic Configuration of On-Street Parking Spaces using Multi Agent Reinforcement Learning 2025-12-02
Show

With increased travelling needs more than ever, traffic congestion has become a major concern in most urban areas. Allocating spaces for on-street parking, further hinders traffic flow, by limiting the effective road width available for driving. With the advancement of vehicle-to-infrastructure connectivity technologies, we explore how the impact of on-street parking on traffic congestion could be minimized, by dynamically configuring on-street parking spaces. Towards that end, we formulate dynamic on-street parking space configuration as an optimization problem, and we follow a data driven approach, considering the nature of our problem. Our proposed solution comprises a two-layer multi agent reinforcement learning based framework, which is inherently scalable to large road networks. The lane level agents are responsible for deciding the optimal parking space configuration for each lane, and we introduce a novel Deep Q-learning architecture which effectively utilizes long short term memory networks and graph attention networks to capture the spatio-temporal correlations evident in the given problem. The block level agents control the actions of the lane level agents and maintain a sufficient level of parking around the block. We conduct a set of comprehensive experiments using SUMO, on both synthetic data as well as real-world data from the city of Melbourne. Our experiments show that the proposed framework could reduce the average travel time loss of vehicles significantly, reaching upto 47%, with a negligible increase in the walking distance for parking.

XXLTraffic: Expanding and Extremely Long Traffic forecasting beyond test adaptation 2025-12-02
Show

Traffic forecasting is crucial for smart cities and intelligent transportation initiatives, where deep learning has made significant progress in modeling complex spatio-temporal patterns in recent years. However, current public datasets have limitations in reflecting the distribution shift nature of real-world scenarios, characterized by continuously evolving infrastructures, varying temporal distributions, and long temporal gaps due to sensor downtimes or changes in traffic patterns. These limitations inevitably restrict the practical applicability of existing traffic forecasting datasets. To bridge this gap, we present XXLTraffic, largest available public traffic dataset with the longest timespan collected from Los Angeles, USA, and New South Wales, Australia, curated to support research in extremely long forecasting beyond test adaptation. Our benchmark includes both typical time-series forecasting settings with hourly and daily aggregated data and novel configurations that introduce gaps and down-sample the training size to better simulate practical constraints. We anticipate the new XXLTraffic will provide a fresh perspective for the time-series and traffic forecasting communities. It would also offer a robust platform for developing and evaluating models designed to tackle the extremely long forecasting problems beyond test adaptation. Our dataset supplements existing spatio-temporal data resources and leads to new research directions in this domain.

Updat...

Updated version. SIGSPATIAL 2025 Best Paper

EcoCast: A Spatio-Temporal Model for Continual Biodiversity and Climate Risk Forecasting 2025-12-01
Show

Increasing climate change and habitat loss are driving unprecedented shifts in species distributions. Conservation professionals urgently need timely, high-resolution predictions of biodiversity risks, especially in ecologically diverse regions like Africa. We propose EcoCast, a spatio-temporal model designed for continual biodiversity and climate risk forecasting. Utilizing multisource satellite imagery, climate data, and citizen science occurrence records, EcoCast predicts near-term (monthly to seasonal) shifts in species distributions through sequence-based transformers that model spatio-temporal environmental dependencies. The architecture is designed with support for continual learning to enable future operational deployment with new data streams. Our pilot study in Africa shows promising improvements in forecasting distributions of selected bird species compared to a Random Forest baseline, highlighting EcoCast's potential to inform targeted conservation policies. By demonstrating an end-to-end pipeline from multi-modal data ingestion to operational forecasting, EcoCast bridges the gap between cutting-edge machine learning and biodiversity management, ultimately guiding data-driven strategies for climate resilience and ecosystem conservation throughout Africa.

9 pag...

9 pages, 3 figures, 1 table. Accepted to the NeurIPS 2025 Workshop on Tackling Climate Change with Machine Learning

MV-TAP: Tracking Any Point in Multi-View Videos 2025-12-01
Show

Multi-view camera systems enable rich observations of complex real-world scenes, and understanding dynamic objects in multi-view settings has become central to various applications. In this work, we present MV-TAP, a novel point tracker that tracks points across multi-view videos of dynamic scenes by leveraging cross-view information. MV-TAP utilizes camera geometry and a cross-view attention mechanism to aggregate spatio-temporal information across views, enabling more complete and reliable trajectory estimation in multi-view videos. To support this task, we construct a large-scale synthetic training dataset and real-world evaluation sets tailored for multi-view tracking. Extensive experiments demonstrate that MV-TAP outperforms existing point-tracking methods on challenging benchmarks, establishing an effective baseline for advancing research in multi-view point tracking.

Proje...

Project Page: https://cvlab-kaist.github.io/MV-TAP/

Beyond Scaffold: A Unified Spatio-Temporal Gradient Tracking Method 2025-12-01
Show

In distributed and federated learning algorithms, communication overhead is often reduced by performing multiple local updates between communication rounds. However, due to data heterogeneity across nodes and the local gradient noise within each node, this strategy can lead to the drift of local models away from the global optimum. To address this issue, we revisit the well-known federated learning method Scaffold (Karimireddy et al., 2020) under a gradient tracking perspective, and propose a unified spatio-temporal gradient tracking algorithm, termed ST-GT, for distributed stochastic optimization over time-varying graphs. ST-GT tracks the global gradient across neighboring nodes to mitigate data heterogeneity, while maintaining a running average of local gradients to substantially suppress noise, with slightly more storage overhead. Without assuming bounded data heterogeneity, we prove that ST-GT attains a linear convergence rate for strongly convex problems and a sublinear rate for nonconvex cases. Notably, ST-GT achieves the first linear speed-up in communication complexity with respect to the number of local updates per round $τ$ for the strongly-convex setting. Compared to traditional gradient tracking methods, ST-GT reduces the topology-dependent noise term from $σ^2$ to $σ^2/τ$, where $σ^2$ denotes the noise level, thereby improving communication efficiency.

13 pages
StreamGaze: Gaze-Guided Temporal Reasoning and Proactive Understanding in Streaming Videos 2025-12-01
Show

Streaming video understanding requires models not only to process temporally incoming frames, but also to anticipate user intention for realistic applications like AR glasses. While prior streaming benchmarks evaluate temporal reasoning, none measure whether MLLMs can interpret or leverage human gaze signals within a streaming setting. To fill this gap, we introduce StreamGaze, the first benchmark designed to evaluate how effectively MLLMs use gaze for temporal and proactive reasoning in streaming videos. StreamGaze introduces gaze-guided past, present, and proactive tasks that comprehensively evaluate streaming video understanding. These tasks assess whether models can use real-time gaze to follow shifting attention and infer user intentions from only past and currently observed frames. To build StreamGaze, we develop a gaze-video QA generation pipeline that aligns egocentric videos with raw gaze trajectories via fixation extraction, region-specific visual prompting, and scanpath construction. This pipeline produces spatio-temporally grounded QA pairs that closely reflect human perceptual dynamics. Across all StreamGaze tasks, we observe substantial performance gaps between state-of-the-art MLLMs and human performance, revealing fundamental limitations in gaze-based temporal reasoning, intention modeling, and proactive prediction. We further provide detailed analyses of gaze-prompting strategies, reasoning behaviors, and task-specific failure modes, offering deeper insight into why current MLLMs struggle and what capabilities future models must develop. All data and code will be publicly released to support continued research in gaze-guided streaming video understanding.

Proje...

Project page: https://streamgaze.github.io/

IberFire -- a detailed creation of a spatio-temporal dataset for wildfire risk assessment in Spain 2025-12-01
Show

Wildfires pose a threat to ecosystems, economies and public safety, particularly in Mediterranean regions such as Spain. Accurate predictive models require high-resolution spatio-temporal data to capture complex dynamics of environmental and human factors. To address the scarcity of fine-grained wildfire datasets in Spain, we introduce IberFire: a spatio-temporal dataset with 1 km x 1 km x 1-day resolution, covering mainland Spain and the Balearic Islands from December 2007 to December 2024. IberFire integrates 120 features across eight categories: auxiliary data, fire history, geography, topography, meteorology, vegetation indices, human activity and land cover. All features and processing rely on open-access data and tools, with a publicly available codebase ensuring transparency and applicability. IberFire offers enhanced spatial granularity and feature diversity compared to existing European datasets, and provides a reproducible framework. It supports advanced wildfire risk modelling via Machine Learning and Deep Learning, facilitates climate trend analysis, and informs fire prevention and land management strategies. The dataset is freely available on Zenodo to promote open research and collaboration.

AgriPotential: A Novel Multi-Spectral and Multi-Temporal Remote Sensing Dataset for Agricultural Potentials 2025-12-01
Show

Remote sensing has emerged as a critical tool for large-scale Earth monitoring and land management. In this paper, we introduce AgriPotential, a novel benchmark dataset composed of Sentinel-2 satellite imagery captured over multiple months. The dataset provides pixel-level annotations of agricultural potentials for three major crop types - viticulture, market gardening, and field crops - across five ordinal classes. AgriPotential supports a broad range of machine learning tasks, including ordinal regression, multi-label classification, and spatio-temporal modeling. The data cover diverse areas in Southern France, offering rich spectral information. AgriPotential is the first public dataset designed specifically for agricultural potential prediction, aiming to improve data-driven approaches to sustainable land use planning. The dataset and the code are freely accessible at: https://zenodo.org/records/15551829

Accep...

Accepted at CBMI 2025

The Dynamical Model Representation of Convolution-Generated Spatio-Temporal Gaussian Processes and Its Applications 2025-12-01
Show

Convolution-generated space-time models yield an important class of non-separable stationary Gaussian Processes (GP) through a sequence of convolution operations, in both space and time, on spatially correlated Brownian motion with a Gaussian convolution kernel. Because of its solid connection to stochastic partial differential equations, such a modeling approach offers strong physical interpretations when it is applied to scientific and engineering processes. In this paper, we obtain a new dynamical model representation for convolution-generated spatio-temporal GP. In particular, an infinite-dimensional linear state-space representation is firstly obtained where the state transition is governed by a stochastic differential equation (SDE) whose solution has the same space-time covariance as the original convolution-generated process. Then, using the Galerkin's method, a finite-dimension approximation to the infinite-dimensional SDE is obtained, yielding a dynamical model with finite states that facilitates the computation and parameter estimation. The space-time covariance of the approximated dynamical model is obtained, and the error between the approximate and exact covariance matrices is quantified. We investigate the performance of the proposed model through a simulation-based study, and apply the approach to a real case study utilizing the remote-sensing aerosol data during the recent 2025 Los Angeles wildfire. The modeling capability of the proposed approach has been well demonstrated, and the proposed approach is found particularly effective in monitoring the first-order time derivative of the underlying space-time process, making it a good candidate for process modeling, monitoring and anomaly detection problems. Computer code and data have been made publicly available.

CycliST: A Video Language Model Benchmark for Reasoning on Cyclical State Transitions 2025-11-30
Show

We present CycliST, a novel benchmark dataset designed to evaluate Video Language Models (VLM) on their ability for textual reasoning over cyclical state transitions. CycliST captures fundamental aspects of real-world processes by generating synthetic, richly structured video sequences featuring periodic patterns in object motion and visual attributes. CycliST employs a tiered evaluation system that progressively increases difficulty through variations in the number of cyclic objects, scene clutter, and lighting conditions, challenging state-of-the-art models on their spatio-temporal cognition. We conduct extensive experiments with current state-of-the-art VLMs, both open-source and proprietary, and reveal their limitations in generalizing to cyclical dynamics such as linear and orbital motion, as well as time-dependent changes in visual attributes like color and scale. Our results demonstrate that present-day VLMs struggle to reliably detect and exploit cyclic patterns, lack a notion of temporal understanding, and are unable to extract quantitative insights from scenes, such as the number of objects in motion, highlighting a significant technical gap that needs to be addressed. More specifically, we find no single model consistently leads in performance: neither size nor architecture correlates strongly with outcomes, and no model succeeds equally well across all tasks. By providing a targeted challenge and a comprehensive evaluation framework, CycliST paves the way for visual reasoning models that surpass the state-of-the-art in understanding periodic patterns.

Efficient and Scalable Monocular Human-Object Interaction Motion Reconstruction 2025-11-30
Show

Generalized robots must learn from diverse, large-scale human-object interactions (HOI) to operate robustly in the real world. Monocular internet videos offer a nearly limitless and readily available source of data, capturing an unparalleled diversity of human activities, objects, and environments. However, accurately and scalably extracting 4D interaction data from these in-the-wild videos remains a significant and unsolved challenge. Thus, in this work, we introduce 4DHOISolver, a novel and efficient optimization framework that constrains the ill-posed 4D HOI reconstruction problem by leveraging sparse, human-in-the-loop contact point annotations, while maintaining high spatio-temporal coherence and physical plausibility. Leveraging this framework, we introduce Open4DHOI, a new large-scale 4D HOI dataset featuring a diverse catalog of 144 object types and 103 actions. Furthermore, we demonstrate the effectiveness of our reconstructions by enabling an RL-based agent to imitate the recovered motions. However, a comprehensive benchmark of existing 3D foundation models indicates that automatically predicting precise human-object contact correspondences remains an unsolved problem, underscoring the immediate necessity of our human-in-the-loop strategy while posing an open challenge to the community. Data and code will be publicly available at https://wenboran2002.github.io/open4dhoi/

HanDyVQA: A Video QA Benchmark for Fine-Grained Hand-Object Interaction Dynamics 2025-11-30
Show

Hand-object interaction (HOI) inherently involves dynamics where human manipulations produce distinct spatio-temporal effects on objects. However, existing semantic HOI benchmarks focused either on manipulation or on the resulting effects at a coarse level, lacking fine-grained spatio-temporal reasoning to capture the underlying dynamics in HOI. We introduce HanDyVQA, a fine-grained video question-answering benchmark that comprehensively covers both the manipulation and effect aspects of HOI. HanDyVQA comprises six complementary question types (Action, Process, Objects, Location, State Change, and Object Parts), totalling 11.1K multiple-choice QA pairs. Collected QA pairs recognizing manipulation styles, hand/object motions, and part-level state changes. HanDyVQA also includes 10.3K segmentation masks for Objects and Object Parts questions, enabling the evaluation of object/part-level reasoning in video object segmentation. We evaluated recent video foundation models on our benchmark and found that even the best-performing model, Gemini-2.5-Pro, reached only 73% average accuracy, which is far from human performance (97%). Further analysis shows the remaining challenges in spatial relationship, motion, and part-level geometric understanding. We also found that integrating explicit HOI-related cues into visual features improves performance, offering insights for developing future models with a deeper understanding of HOI dynamics.

Proje...

Project page: https://masatate.github.io/HanDyVQA-project-page/

City-Conditioned Memory for Multi-City Traffic and Mobility Forecasting 2025-11-30
Show

Deploying spatio-temporal forecasting models across many cities is difficult: traffic networks differ in size and topology, data availability can vary by orders of magnitude, and new cities may provide only a short history of logs. Existing deep traffic models are typically trained per city and backbone, creating high maintenance cost and poor transfer to data-scarce cities. We ask whether a single, backbone-agnostic layer can condition on "which city this sequence comes from", improve accuracy in full- and low-data regimes, and support better cross-city adaptation with minimal code changes. We propose CityCond, a light-weight city-conditioned memory layer that augments existing spatio-temporal backbones. CityCond combines a city-ID encoder with an optional shared memory bank (CityMem). Given a city index and backbone hidden states, it produces city-conditioned features fused through gated residual connections. We attach CityCond to five representative backbones (GRU, TCN, Transformer, GNN, STGCN) and evaluate three regimes: full-data, low-data, and cross-city few-shot transfer on METR-LA and PEMS-BAY. We also run auxiliary experiments on SIND, a drone-based multi-agent trajectory dataset from a signalized intersection in Tianjin (we focus on pedestrian tracks). Across more than fourteen model variants and three random seeds, CityCond yields consistent improvements, with the largest gains for high-capacity backbones such as Transformers and STGCNs. CityMem reduces Transformer error by roughly one third in full-data settings and brings substantial gains in low-data and cross-city transfer. On SIND, simple city-ID conditioning modestly improves low-data LSTM performance. CityCond can therefore serve as a reusable design pattern for scalable, multi-city forecasting under realistic data constraints.

Evaluating Spatio-Temporal Forecasting Trade-offs Between Graph Neural Networks and Foundation Models 2025-11-30
Show

Modern IoT deployments for environmental sensing produce high volume spatiotemporal data to support downstream tasks such as forecasting, typically powered by machine learning models. While existing filtering and strategic deployment techniques optimize collected data volume at the edge, they overlook how variations in sampling frequencies and spatial coverage affect downstream model performance. In many forecasting models, incorporating data from additional sensors denoise predictions by providing broader spatial contexts. This interplay between sampling frequency, spatial coverage and different forecasting model architectures remain underexplored. This work presents a systematic study of forecasting models - classical models (VAR), neural networks (GRU, Transformer), spatio-temporal graph neural networks (STGNNs), and time series foundation models (TSFMs: Chronos Moirai, TimesFM) under varying spatial sensor nodes density and sampling intervals using real-world temperature data in a wireless sensor network. Our results show that STGNNs are effective when sensor deployments are sparse and sampling rate is moderate, leveraging spatial correlations via encoded graph structure to compensate for limited coverage. In contrast, TSFMs perform competitively at high frequencies but degrade when spatial coverage from neighboring sensors is reduced. Crucially, the multivariate TSFM Moirai outperforms all models by natively learning cross-sensor dependencies. These findings offer actionable insights for building efficient forecasting pipelines in spatio-temporal systems. All code for model configurations, training, dataset, and logs are open-sourced for reproducibility: https://github.com/UIUC-MONET-Projects/Benchmarking-Spatiotemporal-Forecast-Models

Dynamic-eDiTor: Training-Free Text-Driven 4D Scene Editing with Multimodal Diffusion Transformer 2025-11-30
Show

Recent progress in 4D representations, such as Dynamic NeRF and 4D Gaussian Splatting (4DGS), has enabled dynamic 4D scene reconstruction. However, text-driven 4D scene editing remains under-explored due to the challenge of ensuring both multi-view and temporal consistency across space and time during editing. Existing studies rely on 2D diffusion models that edit frames independently, often causing motion distortion, geometric drift, and incomplete editing. We introduce Dynamic-eDiTor, a training-free text-driven 4D editing framework leveraging Multimodal Diffusion Transformer (MM-DiT) and 4DGS. This mechanism consists of Spatio-Temporal Sub-Grid Attention (STGA) for locally consistent cross-view and temporal fusion, and Context Token Propagation (CTP) for global propagation via token inheritance and optical-flow-guided token replacement. Together, these components allow Dynamic-eDiTor to perform seamless, globally consistent multi-view video without additional training and directly optimize pre-trained source 4DGS. Extensive experiments on multi-view video dataset DyNeRF demonstrate that our method achieves superior editing fidelity and both multi-view and temporal consistency prior approaches. Project page for results and code: https://di-lee.github.io/dynamic-eDiTor/

4D Scene Editing
GCMCG: A Clustering-Aware Graph Attention and Expert Fusion Network for Multi-Paradigm, Multi-task, and Cross-Subject EEG Decoding 2025-11-29
Show

Brain-Computer Interfaces (BCIs) based on Motor Execution (ME) and Motor Imagery (MI) electroencephalogram (EEG) signals offer a direct pathway for human-machine interaction. However, developing robust decoding models remains challenging due to the complex spatio-temporal dynamics of EEG, its low signal-to-noise ratio, and the limited generalizability of many existing approaches across subjects and paradigms. To address these issues, this paper proposes Graph-guided Clustering Mixture-of-Experts CNN-GRU (GCMCG), a novel unified framework for MI-ME EEG decoding. Our approach integrates a robust preprocessing stage using Independent Component Analysis and Wavelet Transform (ICA-WT) for effective denoising. We further introduce a pre-trainable graph tokenization module that dynamically models electrode relationships via a Graph Attention Network (GAT), followed by unsupervised spectral clustering to decompose signals into interpretable functional brain regions. Each region is processed by a dedicated CNN-GRU expert network, and a gated fusion mechanism with L1 regularization adaptively combines these local features with a global expert. This Mixture-of-Experts (MoE) design enables deep spatio-temporal fusion and enhances representational capacity. A three-stage training strategy incorporating focal loss and progressive sampling is employed to improve cross-subject generalization and handle class imbalance. Evaluated on three public datasets of varying complexity (EEGmmidb-BCI2000, BCI-IV 2a, and M3CV), GCMCG achieves overall accuracies of 86.60%, 98.57%, and 99.61%, respectively, which demonstrates its superior effectiveness and strong generalization capability for practical BCI applications.

46 pages, 11 figures
Describe Anything Anywhere At Any Moment 2025-11-29
Show

Computer vision and robotics applications ranging from augmented reality to robot autonomy in large-scale environments require spatio-temporal memory frameworks that capture both geometric structure for accurate language-grounding as well as semantic detail. Existing methods face a tradeoff, where producing rich open-vocabulary descriptions comes at the expense of real-time performance when these descriptions have to be grounded in 3D. To address these challenges, we propose Describe Anything, Anywhere, at Any Moment (DAAAM), a novel spatio-temporal memory framework for large-scale and real-time 4D scene understanding. DAAAM introduces a novel optimization-based frontend to infer detailed semantic descriptions from localized captioning models, such as the Describe Anything Model (DAM), leveraging batch processing to speed up inference by an order of magnitude for online processing. It leverages such semantic understanding to build a hierarchical 4D scene graph (SG), which acts as an effective globally spatially and temporally consistent memory representation. DAAAM constructs 4D SGs with detailed, geometrically grounded descriptions while maintaining real-time performance. We show that DAAAM's 4D SG interfaces well with a tool-calling agent for inference and reasoning. We thoroughly evaluate DAAAM in the complex task of spatio-temporal question answering on the NaVQA benchmark and show its generalization capabilities for sequential task grounding on the SG3D benchmark. We further curate an extended OC-NaVQA benchmark for large-scale and long-time evaluations. DAAAM achieves state-of-the-art results in both tasks, improving OC-NaVQA question accuracy by 53.6%, position errors by 21.9%, temporal errors by 21.6%, and SG3D task grounding accuracy by 27.8% over the most competitive baselines, respectively. We release our data and code open-source.

14 pa...

14 pages, 5 figures, 6 tables

STC-ViT: Spatio Temporal Continuous Vision Transformer for Medium-range Global Weather Forecasting 2025-11-28
Show

Operational Numerical Weather Prediction (NWP) system relies on computationally expensive physics-based models. Recently, transformer models have shown remarkable potential in weather forecasting achieving state-of-the-art results. However, traditional transformers discretize spatio-temporal dimensions, limiting their ability to model continuous dynamical weather processes. Moreover, their reliance on increased depth to capture complex dependencies results in higher computational cost and parameter redundancy. We address these issues with STC-ViT, a Spatio-Temporal Continuous Vision Transformer for weather forecasting. STC-ViT integrates a Fourier Neural Operator (FNO) for global spatial operators with a transformer parameterised Neural ODE for continuous-time dynamics, yielding a space-time continuous model for weather forecasting. Our proposed method achieves competitive forecasting performance even with a shallow, single-layer transformer encoder mitigating the reliance on deeper networks. STC-ViT generates complete forecast trajectories with an inference speed of only 0.125 seconds and achieves strong medium-range forecasting skill on 1.5-degree WeatherBench 2 as compared to state-of-the-art data-driven and NWP models trained on higher-resolution data, with substantially lower data and compute costs. We also provide detailed empirical analysis on model's performance with respect to denser time grids, higher-accuracy ODE solvers, and deeper transformer stacks.

Video-CoM: Interactive Video Reasoning via Chain of Manipulations 2025-11-28
Show

Recent multimodal large language models (MLLMs) have advanced video understanding, yet most still "think about videos" ie once a video is encoded, reasoning unfolds entirely in text, treating visual input as a static context. This passive paradigm creates a semantic bottleneck: models cannot rewatch, refocus, or verify evidence, leading to shallow visual reasoning on tasks requiring fine grained spatio temporal understanding. In this work, we introduce Interactive Video Reasoning, a new paradigm that transforms video into an active cognitive workspace, enabling models to "think with videos". Our model, Video CoM, reasons through a Chain of Manipulations (CoM), performing iterative visual actions to gather and refine evidence. To support this behavior, we construct Video CoM Instruct, an 18K instruction tuning dataset curated for multi step manipulation reasoning. Beyond supervised learning, we further optimize the manipulation policy via reinforcement learning with reasoning aware Group Relative Policy Optimization (GRPO). Unlike prior work that relies solely on sparse answer rewards, our method introduces step level reasoning rewards, guiding the model toward grounded and consistent reasoning. Video CoM achieves strong results across nine video reasoning benchmarks, improving average performance by 3.6 percent over recent state of the art models, while training on only 25K SFT and 3K GRPO video samples, significantly fewer than comparable large scale models. Ablation studies demonstrate that reasoning aware rewards improve both accuracy and interpretability. Code: https://github.com/mbzuai-oryx/Video-CoM

Technical Report
Machine Learning for Scientific Visualization: Ensemble Data Analysis 2025-11-28
Show

Scientific simulations and experimental measurements produce vast amounts of spatio-temporal data, yet extracting meaningful insights remains challenging due to high dimensionality, complex structures, and missing information. Traditional analysis methods often struggle with these issues, motivating the need for more robust, data-driven approaches. This dissertation explores deep learning methodologies to improve the analysis and visualization of spatio-temporal scientific ensembles, focusing on dimensionality reduction, flow estimation, and temporal interpolation. First, we address high-dimensional data representation through autoencoder-based dimensionality reduction for scientific ensembles. We evaluate the stability of projection metrics under partial labeling and introduce a Pareto-efficient selection strategy to identify optimal autoencoder variants, ensuring expressive and reliable low-dimensional embeddings. Next, we present FLINT, a deep learning model for high-quality flow estimation and temporal interpolation in both flow-supervised and flow-unsupervised settings. FLINT reconstructs missing velocity fields and generates high-fidelity temporal interpolants for scalar fields across 2D+time and 3D+time ensembles without domain-specific assumptions or extensive finetuning. To further improve adaptability and generalization, we introduce HyperFLINT, a hypernetwork-based approach that conditions on simulation parameters to estimate flow fields and interpolate scalar data. This parameter-aware adaptation yields more accurate reconstructions across diverse scientific domains, even with sparse or incomplete data. Overall, this dissertation advances deep learning techniques for scientific visualization, providing scalable, adaptable, and high-quality solutions for interpreting complex spatio-temporal ensembles.

PhD t...

PhD thesis, University of Groningen, 2025

Fault-Tolerant MARL for CAVs under Observation Perturbations for Highway On-Ramp Merging 2025-11-28
Show

Multi-Agent Reinforcement Learning (MARL) holds significant promise for enabling cooperative driving among Connected and Automated Vehicles (CAVs). However, its practical application is hindered by a critical limitation, i.e., insufficient fault tolerance against observational faults. Such faults, which appear as perturbations in the vehicles' perceived data, can substantially compromise the performance of MARL-based driving systems. Addressing this problem presents two primary challenges. One is to generate adversarial perturbations that effectively stress the policy during training, and the other is to equip vehicles with the capability to mitigate the impact of corrupted observations. To overcome the challenges, we propose a fault-tolerant MARL method for cooperative on-ramp vehicles incorporating two key agents. First, an adversarial fault injection agent is co-trained to generate perturbations that actively challenge and harden the vehicle policies. Second, we design a novel fault-tolerant vehicle agent equipped with a self-diagnosis capability, which leverages the inherent spatio-temporal correlations in vehicle state sequences to detect faults and reconstruct credible observations, thereby shielding the policy from misleading inputs. Experiments in a simulated highway merging scenario demonstrate that our method significantly outperforms baseline MARL approaches, achieving near-fault-free levels of safety and efficiency under various observation fault patterns.

STAR-Bench: Probing Deep Spatio-Temporal Reasoning as Audio 4D Intelligence 2025-11-28
Show

Despite rapid progress in Multi-modal Large Language Models and Large Audio-Language Models, existing audio benchmarks largely test semantics that can be recovered from text captions, masking deficits in fine-grained perceptual reasoning. We formalize audio 4D intelligence that is defined as reasoning over sound dynamics in time and 3D space, and introduce STAR-Bench to measure it. STAR-Bench combines a Foundational Acoustic Perception setting (six attributes under absolute and relative regimes) with a Holistic Spatio-Temporal Reasoning setting that includes segment reordering for continuous and discrete processes and spatial tasks spanning static localization, multi-source relations, and dynamic trajectories. Our data curation pipeline uses two methods to ensure high-quality samples. For foundational tasks, we use procedurally synthesized and physics-simulated audio. For holistic data, we follow a four-stage process that includes human annotation and final selection based on human performance. Unlike prior benchmarks where caption-only answering reduces accuracy slightly, STAR-Bench induces far larger drops (-31.5% temporal, -35.2% spatial), evidencing its focus on linguistically hard-to-describe cues. Evaluating 19 models reveals substantial gaps compared with humans and a capability hierarchy: closed-source models are bottlenecked by fine-grained perception, while open-source models lag across perception, knowledge, and reasoning. Our STAR-Bench provides critical insights and a clear path forward for developing future models with a more robust understanding of the physical world.

Homep...

Homepage: https://internlm.github.io/StarBench/

Rethinking Progression of Memory State in Robotic Manipulation: An Object-Centric Perspective 2025-11-28
Show

As embodied agents operate in increasingly complex environments, the ability to perceive, track, and reason about individual object instances over time becomes essential, especially in tasks requiring sequenced interactions with visually similar objects. In these non-Markovian settings, key decision cues are often hidden in object-specific histories rather than the current scene. Without persistent memory of prior interactions (what has been interacted with, where it has been, or how it has changed) visuomotor policies may fail, repeat past actions, or overlook completed ones. To surface this challenge, we introduce LIBERO-Mem, a non-Markovian task suite for stress-testing robotic manipulation under object-level partial observability. It combines short- and long-horizon object tracking with temporally sequenced subgoals, requiring reasoning beyond the current frame. However, vision-language-action (VLA) models often struggle in such settings, with token scaling quickly becoming intractable even for tasks spanning just a few hundred frames. We propose Embodied-SlotSSM, a slot-centric VLA framework built for temporal scalability. It maintains spatio-temporally consistent slot identities and leverages them through two mechanisms: (1) slot-state-space modeling for reconstructing short-term history, and (2) a relational encoder to align the input tokens with action decoding. Together, these components enable temporally grounded, context-aware action prediction. Experiments show Embodied-SlotSSM's baseline performance on LIBERO-Mem and general tasks, offering a scalable solution for non-Markovian reasoning in object-centric robotic policies.

Accep...

Accepted at AAAI 2026

Constrained Gaussian Random Fields with Continuous Linear Boundary Restrictions for Physics-informed Modeling of States 2025-11-28
Show

Boundary constraints in physical, environmental and engineering models restrict smooth states such as temperature to follow known physical laws at the edges of their spatio-temporal domain. Examples include fixed-state or fixed-derivative (insulated) boundary conditions, and constraints that relate the state and the derivatives, such as in models of heat transfer. Despite their flexibility as prior models over system states, Gaussian random fields do not in general enable exact enforcement of such constraints. This work develops a new general framework for constructing linearly boundary-constrained Gaussian random fields from unconstrained Gaussian random fields over multi-dimensional, convex domains. This new class of models provides flexible priors for modeling smooth states with known physical mechanisms acting at the domain boundaries. Simulation studies illustrate how such physics-informed probability models yield improved predictive performance and more realistic uncertainty quantification in applications including probabilistic numerics, data-driven discovery of dynamical systems, and boundary-constrained state estimation, as compared to unconstrained alternatives.

Axial-UNet: A Neural Weather Model for Precipitation Nowcasting 2025-11-28
Show

Accurately predicting short-term precipitation is critical for weather-sensitive applications such as disaster management, aviation, and urban planning. Traditional numerical weather prediction can be computationally intensive at high resolution and short lead times. In this work, we propose a lightweight UNet-based encoder-decoder augmented with axial-attention blocks that attend along image rows and columns to capture long-range spatial interactions, while temporal context is provided by conditioning on multiple past radar frames. Our hybrid architecture captures both local and long-range spatio-temporal dependencies from radar image sequences, enabling fixed lead-time precipitation nowcasting with modest compute. Experimental results on a preprocessed subset of the HKO-7 radar dataset demonstrate that our model outperforms ConvLSTM, pix2pix-style cGANs, and a plain UNet in pixel-fidelity metrics, reaching PSNR 47.67 and SSIM 0.9943. We report PSNR/SSIM here; extending evaluation to meteorology-oriented skill measures (e.g., CSI/FSS) is left to future work. The approach is simple, scalable, and effective for resource-constrained, real-time forecasting scenarios.

16 pa...

16 pages, 3 figures. Accepted at the International Conference on Distributed Computing and Intelligent Technology (ICDCIT 2026), to appear in Springer LNCS

Tracking the Unstable: Appearance-Guided Motion Modeling for Robust Multi-Object Tracking in UAV-Captured Videos 2025-11-28
Show

Multi-object tracking (MOT) aims to track multiple objects while maintaining consistent identities across frames of a given video. In unmanned aerial vehicle (UAV) recorded videos, frequent viewpoint changes and complex UAV-ground relative motion dynamics pose significant challenges, which often lead to unstable affinity measurement and ambiguous association. Existing methods typically model motion and appearance cues separately, overlooking their spatio-temporal interplay and resulting in suboptimal tracking performance. In this work, we propose AMOT, which jointly exploits appearance and motion cues through two key components: an Appearance-Motion Consistency (AMC) matrix and a Motion-aware Track Continuation (MTC) module. Specifically, the AMC matrix computes bi-directional spatial consistency under the guidance of appearance features, enabling more reliable and context-aware identity association. The MTC module complements AMC by reactivating unmatched tracks through appearance-guided predictions that align with Kalman-based predictions, thereby reducing broken trajectories caused by missed detections. Extensive experiments on three UAV benchmarks, including VisDrone2019, UAVDT, and VT-MOT-UAV, demonstrate that our AMOT outperforms current state-of-the-art methods and generalizes well in a plug-and-play and training-free manner.

Accep...

Accepted by the AAAI26 Conference Main Track

Taming generative video models for zero-shot optical flow extraction 2025-11-27
Show

Extracting optical flow from videos remains a core computer vision problem. Motivated by the recent success of large general-purpose models, we ask whether frozen self-supervised video models trained only to predict future frames can be prompted, without fine-tuning, to output flow. Prior attempts to read out depth or illumination from video generators required fine-tuning; that strategy is ill-suited for flow, where labeled data is scarce and synthetic datasets suffer from a sim-to-real gap. Inspired by the Counterfactual World Model (CWM) paradigm, which can obtain point-wise correspondences by injecting a small tracer perturbation into a next-frame predictor and tracking its propagation, we extend this idea to generative video models for zero-shot flow extraction. We explore several popular architectures and find that successful zero-shot flow extraction in this manner is aided by three model properties: (1) distributional prediction of future frames (avoiding blurry or noisy outputs); (2) factorized latents that treat each spatio-temporal patch independently; and (3) random-access decoding that can condition on any subset of future pixels. These properties are uniquely present in the recently introduced Local Random Access Sequence (LRAS) architecture. Building on LRAS, we propose KL-tracing: a novel test-time inference procedure that injects a localized perturbation into the first frame, rolls out the model one step, and computes the Kullback-Leibler divergence between perturbed and unperturbed predictive distributions. Without any flow-specific fine-tuning, our method is competitive with state-of-the-art, task-specific models on the real-world TAP-Vid DAVIS benchmark and the synthetic TAP-Vid Kubric. Our results show that counterfactual prompting of controllable generative video models is an effective alternative to supervised or photometric-loss methods for high-quality flow.

Proje...

Project webpage: https://neuroailab.github.io/projects/kl_tracing

Where to Measure: Epistemic Uncertainty-Based Sensor Placement with ConvCNPs 2025-11-27
Show

Accurate sensor placement is critical for modeling spatio-temporal systems such as environmental and climate processes. Neural Processes (NPs), particularly Convolutional Conditional Neural Processes (ConvCNPs), provide scalable probabilistic models with uncertainty estimates, making them well-suited for data-driven sensor placement. However, existing approaches rely on total predictive uncertainty, which conflates epistemic and aleatoric components, that may lead to suboptimal sensor selection in ambiguous regions. To address this, we propose expected reduction in epistemic uncertainty as a new acquisition function for sensor placement. To enable this, we extend ConvCNPs with a Mixture Density Networks (MDNs) output head for epistemic uncertainty estimation. Preliminary results suggest that epistemic uncertainty driven sensor placement more effectively reduces model error than approaches based on overall uncertainty.

Mapping Urban Air Quality from Mobile Sensors Using Spatio-Temporal Geostatistics 2025-11-27
Show

With the advancement of technology and the arrival of miniaturized environmental sensors that offer greater performance, the idea of building mobile network sensing for air quality has quickly emerged to increase our knowledge of air pollution in urban environments. However, with these new techniques, the difficulty of building mathematical models capable of aggregating all these data sources in order to provide precise mapping of air quality arises. In this context, we explore the spatio-temporal geostatistics methods as a solution for such a problem and evaluate three different methods: Simple Kriging (SK) in residuals, Ordinary Kriging (OK), and Kriging with External Drift (KED). On average, geostatistical models showed 26.57% improvement in the Root Mean Squared Error (RMSE) compared to the standard Inverse Distance Weighting (IDW) technique in interpolating scenarios (27.94% for KED, 26.05% for OK, and 25.71% for SK). The results showed less significant scores in extrapolating scenarios (a 12.22% decrease in the RMSE for geostatisical models compared to IDW). We conclude that univariable geostatistics is suitable for interpolating this type of data but is less appropriate for an extrapolation of non-sampled places since it does not create any information.

Cross-Modal Reconstruction Pretraining for Ramp Flow Prediction at Highway Interchanges 2025-11-27
Show

Interchanges are crucial nodes for vehicle transfers between highways, yet the lack of real-time ramp detectors creates blind spots in traffic prediction. To address this, we propose a Spatio-Temporal Decoupled Autoencoder (STDAE), a two-stage framework that leverages cross-modal reconstruction pretraining. In the first stage, STDAE reconstructs historical ramp flows from mainline data, forcing the model to capture intrinsic spatio-temporal relations. Its decoupled architecture with parallel spatial and temporal autoencoders efficiently extracts heterogeneous features. In the prediction stage, the learned representations are integrated with models such as GWNet to enhance accuracy. Experiments on three real-world interchange datasets show that STDAE-GWNET consistently outperforms thirteen state-of-the-art baselines and achieves performance comparable to models using historical ramp data. This demonstrates its effectiveness in overcoming detector scarcity and its plug-and-play potential for diverse forecasting pipelines.

Improving Spatio-temporal Gaussian Process Modeling with Vecchia Approximation: A Low-Cost Sensor-Driven Approach to Urban Environmental Monitoring 2025-11-27
Show

This paper explores Vecchia likelihood approximation for modeling physical phenomena sensed by mobile and fixed low-cost sensors in urban environments. A three-level hierarchical model is proposed to simultaneously accounts for the physical process of interest and measurement errors inherent in low-cost sensors. Several innovative configurations of Vecchia's approximation are investigated, including variations in ordering strategies, distance definitions, and sensor-specific conditioning. These configurations are evaluated for approximating the likelihood of a spatio-temporal Gaussian process, using simulated data based on real mobile sensor trajectories across Nantes, France. Our findings highlight the effectiveness of the min-max distance algorithm for ordering, reaffirming existing literature. Additionally, we demonstrate the utility of a random ordering approach that doesn't require prior definition of a spatio-temporal distance. These two ordering configurations achieved, on average, 102% better results in log Kullback-Leibler divergence compared with four other ordering schemes studied. Results are supplemented with Asymptotic Relative Efficiency analysis, offering practical recommendations for optimizing parameter estimation. The proposed model and preferred Vecchia configuration are applied to real-world air quality data collected using mobile and fixed low-cost sensors. This application underscores the model's practical value for pollution mapping and prediction in environmental monitoring. This study advances the use of Vecchia's approximation for addressing computational challenges of Gaussian models in large-scale spatio-temporal datasets from environmental monitoring with low-cost sensor networks.

Beyond Real versus Fake Towards Intent-Aware Video Analysis 2025-11-27
Show

The rapid advancement of generative models has led to increasingly realistic deepfake videos, posing significant societal and security risks. While existing detection methods focus on distinguishing real from fake videos, such approaches fail to address a fundamental question: What is the intent behind a manipulated video? Towards addressing this question, we introduce IntentHQ: a new benchmark for human-centered intent analysis, shifting the paradigm from authenticity verification to contextual understanding of videos. IntentHQ consists of 5168 videos that have been meticulously collected and annotated with 23 fine-grained intent-categories, including "Financial fraud", "Indirect marketing", "Political propaganda", as well as "Fear mongering". We perform intent recognition with supervised and self-supervised multi-modality models that integrate spatio-temporal video features, audio processing, and text analysis to infer underlying motivations and goals behind videos. Our proposed model is streamlined to differentiate between a wide range of intent-categories.

SPO-VCS: An End-to-End Smart Predict-then-Optimize Framework with Alternating Differentiation Method for Relocation Problems in Large-Scale Vehicle Crowd Sensing 2025-11-27
Show

Ubiquitous mobile devices have catalyzed the development of vehicle crowd sensing (VCS). In particular, vehicle sensing systems show great potential in the flexible acquisition of spatio-temporal urban data through built-in sensors under diverse sensing scenarios. However, vehicle systems often exhibit biased coverage due to the heterogeneous nature of trip requests and routes. To achieve a high sensing coverage, a critical challenge lies in optimally relocating vehicles to minimize the divergence between vehicle distributions and target sensing distributions. Conventional approaches typically employ a two-stage predict-then-optimize (PTO) process: first predicting real-time vehicle distributions and subsequently generating an optimal relocation strategy based on the predictions. However, this approach can lead to suboptimal decision-making due to the propagation of errors from upstream prediction. To this end, we develop an end-to-end Smart Predict-then-Optimize (SPO) framework by integrating optimization into prediction within the deep learning architecture, and the entire framework is trained by minimizing the task-specific matching divergence rather than the upstream prediction error. Methodologically, we formulate the vehicle relocation problem by quadratic programming (QP) and incorporate a novel unrolling approach based on the Alternating Direction Method of Multipliers (ADMM) within the SPO framework to compute gradients of the QP layer, facilitating backpropagation and gradient-based optimization for end-to-end learning. The effectiveness of the proposed framework is validated by real-world taxi datasets in Hong Kong. Utilizing the alternating differentiation method, the general SPO framework presents a novel concept of addressing decision-making problems with uncertainty, demonstrating significant potential for advancing applications in intelligent transportation systems.

Accep...

Accepted by Transportation Research Part E: Logistics and Transportation Review

Spatio-Temporal Hierarchical Causal Models 2025-11-27
Show

The abundance of fine-grained spatio-temporal data, such as traffic sensor networks, offers vast opportunities for scientific discovery. However, inferring causal relationships from such observational data remains challenging, particularly due to unobserved confounders that are specific to units (e.g., geographical locations) yet influence outcomes over time. Most existing methods for spatio-temporal causal inference assume that all confounders are observed, an assumption that is often violated in practice. In this paper, we introduce Spatio-Temporal Hierarchical Causal Models (ST-HCMs), a novel graphical framework that extends hierarchical causal modeling to the spatio-temporal domain. At the core of our approach is the Spatio-Temporal Collapse Theorem, which shows that a complex ST-HCM converges to a simpler flat causal model as the amount of subunit data increases. This theoretical result enables a general procedure for causal identification, allowing ST-HCMs to recover causal effects even in the presence of unobserved, time-invariant unit-level confounders, a scenario where standard non-hierarchical models fail. We validate the effectiveness of our framework on both synthetic and real-world datasets, demonstrating its potential for robust causal inference in complex dynamic systems.

Lips-Jaw and Tongue-Jaw Articulatory Tradeoff in DYNARTmo 2025-11-27
Show

This paper investigates how the dynamic articulatory model DYNARTmo accounts for articulatory tradeoffs between primary and secondary articulators, with a focus on lips-jaw and tongue-jaw coordination. While DYNARTmo does not implement full task-dynamic second-order biomechanics, it adopts first-order task-space gesture specifications comparable to those used in articulatory phonology and integrates a simplified mechanism for distributing articulatory effort across multiple articulators. We first outline the conceptual relationship between task dynamics and DYNARTmo, emphasizing the distinction between high-level task-space trajectories and their low-level articulatory execution. We then present simulation results for a set of CV syllables that illustrate how jaw displacement varies as a function of both place of articulation (labial, apical, dorsal) and vowel context (/a/, /i/, /u/). The model reproduces empirically attested patterns of articulatory synergy, including jaw-supported apical closures, lower-lip elevation in bilabial stops, tongue-jaw co-movement, and saturation effects in labial constrictions. These results demonstrate that even with computationally simplified assumptions, DYNARTmo can generate realistic spatio-temporal movement patterns that capture key aspects of articulatory tradeoff and synergy across a range of consonant-vowel combinations.

12 pa...

12 pages, 3 figures, supplementary material: python code

Ultralight Polarity-Split Neuromorphic SNN for Event-Stream Super-Resolution 2025-11-27
Show

Event cameras offer unparalleled advantages such as high temporal resolution, low latency, and high dynamic range. However, their limited spatial resolution poses challenges for fine-grained perception tasks. In this work, we propose an ultra-lightweight, stream-based event-to-event super-resolution method based on Spiking Neural Networks (SNNs), designed for real-time deployment on resource-constrained devices. To further reduce model size, we introduce a novel Dual-Forward Polarity-Split Event Encoding strategy that decouples positive and negative events into separate forward paths through a shared SNN. Furthermore, we propose a Learnable Spatio-temporal Polarity-aware Loss (LearnSTPLoss) that adaptively balances temporal, spatial, and polarity consistency using learnable uncertainty-based weights. Experimental results demonstrate that our method achieves competitive super-resolution performance on multiple datasets while significantly reducing model size and inference time. The lightweight design enables embedding the module into event cameras or using it as an efficient front-end preprocessing for downstream vision tasks.

8 pag...

8 pages, 10 figures, 7 tables, accepted by AAAI2026

Mavors: Multi-granularity Video Representation for Multimodal Large Language Model 2025-11-27
Show

Long-context video understanding in multimodal large language models (MLLMs) faces a critical challenge: balancing computational efficiency with the retention of fine-grained spatio-temporal patterns. Existing approaches (e.g., sparse sampling, dense sampling with low resolution, and token compression) suffer from significant information loss in temporal dynamics, spatial details, or subtle interactions, particularly in videos with complex motion or varying resolutions. To address this, we propose $\mathbf{Mavors}$, a novel framework that introduces $\mathbf{M}$ulti-gr$\mathbf{a}$nularity $\mathbf{v}$ide$\mathbf{o}$ $\mathbf{r}$epre$\mathbf{s}$entation for holistic long-video modeling. Specifically, Mavors directly encodes raw video content into latent representations through two core components: 1) an Intra-chunk Vision Encoder (IVE) that preserves high-resolution spatial features via 3D convolutions and Vision Transformers, and 2) an Inter-chunk Feature Aggregator (IFA) that establishes temporal coherence across chunks using transformer-based dependency modeling with chunk-level rotary position encodings. Moreover, the framework unifies image and video understanding by treating images as single-frame videos via sub-image decomposition. Experiments across diverse benchmarks demonstrate Mavors' superiority in maintaining both spatial fidelity and temporal continuity, significantly outperforming existing methods in tasks requiring fine-grained spatio-temporal reasoning.

22 pages
R-AVST: Empowering Video-LLMs with Fine-Grained Spatio-Temporal Reasoning in Complex Audio-Visual Scenarios 2025-11-27
Show

Recently, rapid advancements have been made in multimodal large language models (MLLMs), especially in video understanding tasks. However, current research focuses on simple video scenarios, failing to reflect the complex and diverse nature of real-world audio-visual events in videos. To bridge this gap, we firstly introduce R-AVST, a dataset for audio-visual reasoning featuring fine-grained spatio-temporal annotations. In constructing this, we design a pipeline consisting of LLM-based key object extraction, automatic spatial annotation and manual quality inspection, resulting in over 5K untrimmed videos with 27K objects across 100 types of audio-visual events. Building on this dataset, we define three core tasks for spatio-temporal reasoning in audio-visual scenes and generate more than 8K high-quality, evenly distributed question-answer pairs to effectively benchmark model performance. To further enhance reasoning, we propose AVST-Zero, a reinforcement learning-based model that avoids intermediate supervision, directly optimizing behavior via carefully designed multi-dimensional rewards. Extensive experiments validate the effectiveness of our R-AVST in advancing audio-visual spatio-temporal reasoning, upon which AVST-Zero demonstrates competitive performance compared to existing models. To the best of our knowledge, R-AVST is the first dataset designed for real-world audio-visual spatio-temporal reasoning, and AVST-Zero offers a novel perspective for tackling future challenges in this domain.

Accep...

Accepted by AAAI 2026. Project page: https://github.com/zhlllau/R-AVST

Building temporally coherent 3D maps with VGGT for memory-efficient Semantic SLAM 2025-11-27
Show

We present a fast, spatio-temporal scene understanding framework based on Visual Geometry Grounded Transformer (VGGT). The proposed pipeline is designed to enable efficient, close to real-time performance, supporting applications including assistive navigation. To achieve continuous updates of the 3D scene representation, we process the image flow with a sliding window, aligning submaps, thereby overcoming VGGT's high memory demands. We exploit the VGGT tracking head to aggregate 2D semantic instance masks into 3D objects. To allow for temporal consistency and richer contextual reasoning the system stores timestamps and instance-level identities, thereby enabling the detection of changes in the environment. We evaluate the approach on well-known benchmarks and custom datasets specifically designed for assistive navigation scenarios. The results demonstrate the applicability of the framework to real-world scenarios.

Multivariate Spatio-temporal Modelling for Completing Cancer Registries and Forecasting Incidence 2025-11-26
Show

Cancer data, particularly cancer incidence and mortality, are fundamental to understand the cancer burden, to set targets for cancer control and to evaluate the evolution of the implementation of a cancer control policy. However, the complexity of data collection, classification, validation and processing result in cancer incidence figures often lagging two to three years behind the calendar year. In response, national or regional population-based cancer registries (PBCRs) are increasingly interested in methods for forecasting cancer incidence. However, in many countries there is an additional difficulty in projecting cancer incidence as regional registries are usually not established in the same year and therefore cancer incidence data series between different regions of a country are not harmonised over time. This study addresses the challenge of forecasting cancer incidence with incomplete data at both regional and national levels. To achieve this, we propose the use of multivariate spatio-temporal shared component models that jointly model mortality data and available cancer incidence data. We evaluate the performance of these multivariate models using lung cancer incidence data and the corresponding number of deaths reported in England for the period 2001-2019. Model performance was assessed using different predictive measures to select the best model.

37 pages
ENMA: Tokenwise Autoregression for Generative Neural PDE Operators 2025-11-26
Show

Solving time-dependent parametric partial differential equations (PDEs) remains a fundamental challenge for neural solvers, particularly when generalizing across a wide range of physical parameters and dynamics. When data is uncertain or incomplete-as is often the case-a natural approach is to turn to generative models. We introduce ENMA, a generative neural operator designed to model spatio-temporal dynamics arising from physical phenomena. ENMA predicts future dynamics in a compressed latent space using a generative masked autoregressive transformer trained with flow matching loss, enabling tokenwise generation. Irregularly sampled spatial observations are encoded into uniform latent representations via attention mechanisms and further compressed through a spatio-temporal convolutional encoder. This allows ENMA to perform in-context learning at inference time by conditioning on either past states of the target trajectory or auxiliary context trajectories with similar dynamics. The result is a robust and adaptable framework that generalizes to new PDE regimes and supports one-shot surrogate modeling of time-dependent parametric PDEs.

Context-Specific Causal Graph Discovery with Unobserved Contexts: Non-Stationarity, Regimes and Spatio-Temporal Patterns 2025-11-26
Show

Real-world data, for example in climate applications, often consists of spatially gridded time series data or data with comparable structure. While the underlying system is often believed to behave similar at different points in space and time, those variations that do exist are twofold relevant: They often encode important information in and of themselves. And they may negatively affect the stability / convergence and reliability\Slash{}validity of results of algorithms assuming stationarity or space-translation invariance. We study the information encoded in changes of the causal graph, with stability in mind. An analysis of this general task identifies two core challenges. We develop guiding principles to overcome these challenges, and provide a framework realizing these principles by modifying constraint-based causal discovery approaches on the level of independence testing. This leads to an extremely modular, easily extensible and widely applicable framework. It can leverage existing constraint-based causal discovery methods (demonstrated on IID-algorithms PC, PC-stable, FCI and time series algorithms PCMCI, PCMCI+, LPCMCI) with little to no modification. The built-in modularity allows to systematically understand and improve upon an entire array of subproblems. By design, it can be extended by leveraging insights from change-point-detection, clustering, independence-testing and other well-studied related problems. The division into more accessible sub-problems also simplifies the understanding of fundamental limitations, hyperparameters controlling trade-offs and the statistical interpretation of results. An open-source implementation will be available soon.

EvRainDrop: HyperGraph-guided Completion for Effective Frame and Event Stream Aggregation 2025-11-26
Show

Event cameras produce asynchronous event streams that are spatially sparse yet temporally dense. Mainstream event representation learning algorithms typically use event frames, voxels, or tensors as input. Although these approaches have achieved notable progress, they struggle to address the undersampling problem caused by spatial sparsity. In this paper, we propose a novel hypergraph-guided spatio-temporal event stream completion mechanism, which connects event tokens across different times and spatial locations via hypergraphs and leverages contextual information message passing to complete these sparse events. The proposed method can flexibly incorporate RGB tokens as nodes in the hypergraph within this completion framework, enabling multi-modal hypergraph-based information completion. Subsequently, we aggregate hypergraph node information across different time steps through self-attention, enabling effective learning and fusion of multi-modal features. Extensive experiments on both single- and multi-label event classification tasks fully validated the effectiveness of our proposed framework. The source code of this paper will be released on https://github.com/Event-AHU/EvRainDrop.

Thinking With Bounding Boxes: Enhancing Spatio-Temporal Video Grounding via Reinforcement Fine-Tuning 2025-11-26
Show

Spatio-temporal video grounding (STVG) requires localizing a target object in untrimmed videos both temporally and spatially from natural language descriptions. Despite their strong language understanding, multimodal large language models (MLLMs) underperform on STVG due to misaligned training objectives and weak fine-grained region-word alignment in standard visual encoders. To address this, we propose STVG-o1, the first framework that enables off-the-shelf MLLMs to achieve state-of-the-art STVG performance without any architectural modifications. Our method introduces a bounding-box chain-of-thought mechanism that explicitly reasons about spatio-temporal locations in an intermediate step before producing the final prediction. We further design a multi-dimensional reinforcement reward function consisting of format, consistency, temporal, spatial, and think rewards, which provides geometry-aware supervision through reinforcement fine-tuning. Evaluated on HCSTVG-v1/v2 and VidSTG, STVG-o1 sets new state-of-the-art results on HCSTVG, outperforming the best task-specific method by 7.3% m_tIoU on HCSTVG-v1, matching specialized models on VidSTG, and surpassing all existing MLLM-based approaches by large margins. It also demonstrates strong open-vocabulary generalization across datasets, establishing MLLMs as viable and powerful backbones for precise spatio-temporal grounding. Our code and models will be released.

FaithFusion: Harmonizing Reconstruction and Generation via Pixel-wise Information Gain 2025-11-26
Show

In controllable driving-scene reconstruction and 3D scene generation, maintaining geometric fidelity while synthesizing visually plausible appearance under large viewpoint shifts is crucial. However, effective fusion of geometry-based 3DGS and appearance-driven diffusion models faces inherent challenges, as the absence of pixel-wise, 3D-consistent editing criteria often leads to over-restoration and geometric drift. To address these issues, we introduce \textbf{FaithFusion}, a 3DGS-diffusion fusion framework driven by pixel-wise Expected Information Gain (EIG). EIG acts as a unified policy for coherent spatio-temporal synthesis: it guides diffusion as a spatial prior to refine high-uncertainty regions, while its pixel-level weighting distills the edits back into 3DGS. The resulting plug-and-play system is free from extra prior conditions and structural modifications.Extensive experiments on the Waymo dataset demonstrate that our approach attains SOTA performance across NTA-IoU, NTL-IoU, and FID, maintaining an FID of 107.47 even at 6 meters lane shift. Our code is available at https://github.com/wangyuanbiubiubiu/FaithFusion.

16 pages, 10 figures
CLRecogEye : Curriculum Learning towards exploiting convolution features for Dynamic Iris Recognition 2025-11-26
Show

Iris authentication algorithms have achieved impressive recognition performance, making them highly promising for real-world applications such as border control, citizen identification, and both criminal investigations and commercial systems. However, their robustness is still challenged by variations in rotation, scale, specular reflections, and defocus blur. In addition, most existing approaches rely on straightforward point-to-point comparisons, typically using cosine or L2 distance, without effectively leveraging the spatio-spatial-temporal structure of iris patterns. To address these limitations, we propose a novel and generalized matching pipeline that learns rich spatio-spatial-temporal representations of iris features. Our approach first splits each iris image along one dimension, generating a sequence of sub-images that serve as input to a 3D-CNN, enabling the network to capture both spatial and spatio-spatial-temporal cues. To further enhance the modeling of spatio-spatial-temporal feature dynamics, we train the model in curriculum manner. This design allows the network to embed temporal dependencies directly into the feature space, improving discriminability in the deep metric domain. The framework is trained end-to-end with triplet and ArcFace loss in a curriculum manner, enforcing highly discriminative embeddings despite challenges like rotation, scale, reflections, and blur. This design yields a robust and generalizable solution for iris authentication.Github code: https://github.com/GeetanjaliGTZ/CLRecogEye

12 Pa...

12 Pages, 3 figures, ISVC conference 2025

SOAP: Enhancing Spatio-Temporal Relation and Motion Information Capturing for Few-Shot Action Recognition 2025-11-26
Show

High frame-rate (HFR) videos of action recognition improve fine-grained expression while reducing the spatio-temporal relation and motion information density. Thus, large amounts of video samples are continuously required for traditional data-driven training. However, samples are not always sufficient in real-world scenarios, promoting few-shot action recognition (FSAR) research. We observe that most recent FSAR works build spatio-temporal relation of video samples via temporal alignment after spatial feature extraction, cutting apart spatial and temporal features within samples. They also capture motion information via narrow perspectives between adjacent frames without considering density, leading to insufficient motion information capturing. Therefore, we propose a novel plug-and-play architecture for FSAR called Spatio-tempOral frAme tuPle enhancer (SOAP) in this paper. The model we designed with such architecture refers to SOAP-Net. Temporal connections between different feature channels and spatio-temporal relation of features are considered instead of simple feature extraction. Comprehensive motion information is also captured, using frame tuples with multiple frames containing more motion information than adjacent frames. Combining frame tuples of diverse frame counts further provides a broader perspective. SOAP-Net achieves new state-of-the-art performance across well-known benchmarks such as SthSthV2, Kinetics, UCF101, and HMDB51. Extensive empirical evaluations underscore the competitiveness, pluggability, generalization, and robustness of SOAP. The code is released at https://github.com/wenbohuang1002/SOAP.

Accep...

Accepted by ACM MM 2024

Resilient Charging Infrastructure via Decentralized Coordination of Electric Vehicles at Scale 2025-11-26
Show

The rapid adoption of electric vehicles (EVs) introduces major challenges for decentralized charging control. Existing decentralized approaches efficiently coordinate a large number of EVs to select charging stations while reducing energy costs, preventing power peak and preserving driver privacy. However, they often struggle under severe contingencies, such as station outages or unexpected surges in charging requests. These situations create competition for limited charging slots, resulting in long queues and reduced driver comfort. To address these limitations, we propose a novel collective learning-based coordination framework that allows EVs to balance individual comfort on their selections against system-wide efficiency, i.e., the overall queues across all stations. In the framework, EVs are recommended for adaptive charging behaviors that shift priority between comfort and efficiency, achieving Pareto-optimal trade-offs under varying station capacities and dynamic spatio-temporal EV distribution. Experiments using real-world data from EVs and charging stations show that the proposed approach outperforms baseline methods, significantly reducing travel and queuing time. The results reveal that, under uncertain charging conditions, EV drivers that behave selfishly or altruistically at the right moments achieve shorter waiting time than those maintaining moderate behavior throughout. Our findings under high fractions of station outages and adversarial EVs further demonstrate improved resilience and trustworthiness of decentralized EV charging infrastructure.

14 pa...

14 pages, 12 figures. This work has been submitted to the IEEE for possible publication

Investigating access to support centers for Violence Against Women in Apulia: A Spatial analysis over multiple years 2025-11-25
Show

In this study, we address the challenge of modelling the spatial variability in violence against women across municipalities in a Southern Italian region by proposing a Bayesian spatio-temporal Poisson regression model. Using data on access to Local Anti-Violence Centers in the Apulia region from 2021 to 2024, we investigate the impact of municipality-level socioeconomic characteristics and local vulnerabilities on both the incidence and reporting of gender-based violence. To explicitly account for spatial dependence, we compare four spatial models within the Integrated Nested Laplace Approximation framework for Bayesian model estimation. We assess the relative fit of the competing models, discussing their prior assumptions, spatial confounding effects, and inferential implications. Our findings indicate that access to support services decreases with distance from the residential municipality, highlighting spatial constraints in reporting and the strategic importance of support center location. Furthermore, lower education levels appear to contribute to under-reporting in disadvantaged areas, while higher economic development may be associated with a lower incidence of reported violence. This study emphasises the critical role of spatial modelling in capturing reporting dynamics and informing policy interventions.

Integrating Expert Knowledge and Recursive Bayesian Inference: A Framework for Spatial and Spatio-Temporal Data Challenges 2025-11-25
Show

Integrating heterogeneous data sources and expert knowledge is essential for overcoming data scarcity and enhancing estimation accuracy. Two main frameworks naturally arise to perform the integration of these multiple sources: sequential Bayesian inference and integrated models. The first one consists of updating posterior information in a sequential data analysis procedure, without the need to reanalyze previous data when new data become available. The second one consists of bringing together diverse sources of information in a joint inferential analysis through hierarchical Bayesian models. Within the context of the first framework, we propose a recursive inference method grounded in the methodological principles of INLA, designed to handle spatial and spatio-temporal problems, although its applicability is not limited to these cases, as the procedure is general in nature. Within the integrated models framework, we also present a comprehensive approach to address change of support issues that arise when combining heterogeneous information sources, developing a typology that classifies such changes as spatial, temporal, spatio-temporal, or categorical. Both frameworks can be combined, as there is neither a theoretical nor a practical incompatibility preventing their joint use. Finally, detailed examples are provided to illustrate clear and replicable procedures for combining heterogeneous data sources with change of support and recursive inference.

32 pa...

32 pages and 8 figures

TaCo: Capturing Spatio-Temporal Semantic Consistency in Remote Sensing Change Detection 2025-11-25
Show

Remote sensing change detection (RSCD) aims to identify surface changes across bi-temporal satellite images. Most previous methods rely solely on mask supervision, which effectively guides spatial localization but provides limited constraints on the temporal semantic transitions. Consequently, they often produce spatially coherent predictions while still suffering from unresolved semantic inconsistencies. To address this limitation, we propose TaCo, a spatio-temporal semantic consistent network, which enriches the existing mask-supervised framework with a spatio-temporal semantic joint constraint. TaCo conceptualizes change as a semantic transition between bi-temporal states, in which one temporal feature representation can be derived from the other via dedicated transition features. To realize this, we introduce a Text-guided Transition Generator that integrates textual semantics with bi-temporal visual features to construct the cross-temporal transition features. In addition, we propose a spatio-temporal semantic joint constraint consisting of bi-temporal reconstruct constraints and a transition constraint: the former enforces alignment between reconstructed and original features, while the latter enhances discrimination for changes. This design can yield substantial performance gains without introducing any additional computational overhead during inference. Extensive experiments on six public datasets, spanning both binary and semantic change detection tasks, demonstrate that TaCo consistently achieves SOTA performance.

A Multi-echelon Demand-driven Supply Chain Model for Proactive Optimal Control of Epidemics: Insights from a COVID-19 Study 2025-11-25
Show

Timely and effective decision-making is critical during epidemics to reduce preventable infections and deaths. This demands integrated models that jointly capture disease dynamics, vaccine distribution, regional disparities, and behavioral responses. However, most existing approaches decouple epidemic forecasting from logistics planning, hindering adaptive and regionally responsive interventions. We propose a novel epidemiological-optimization framework that jointly models epidemic progression and a multiscale vaccine supply chain. The model incorporates spatio-temporally varying effective infection rates to reflect regional policy and behavioral dynamics. It supports coordinated, data-driven decision-making across spatial scales through two formulations: a multi-objective Gini-based model and a knapsack-based model that leverages regional vulnerability indicators for tractability and improved mitigation. To address computational complexity, we design two scalable heuristic decomposition algorithms inspired by the Benders decomposition. The model is validated using COVID-19 data in the U.S.. We introduce SARIMA-based forecasting as a novel approach for validating epidemic-optimization models under data limitations. The results show that our approach can prevent more than 2 million infections and 30,000 deaths in just six months while significantly improving the accessibility of vaccines in underserved regions. Our framework demonstrates that integrating fairness and epidemic dynamics with vaccine logistics leads to superior outcomes compared to traditional myopic policies. Fairness improves overall efficiency in the long term by prioritizing the most vulnerable populations, leading to better long-term public health outcomes. The model offers policymakers a scalable and operationally relevant tool to strengthen preparedness and ensure a more effective and equitable response to epidemics.

Spatio-Temporal Trajectory Foundation Model - Recent Advances and Future Directions 2025-11-25
Show

Foundation models (FMs) have emerged as a powerful paradigm, enabling a diverse range of data analytics and knowledge discovery tasks across scientific fields. Inspired by the success of FMs, particularly large language models, researchers have recently begun to explore spatio-temporal foundation models (STFMs) to improve adaptability and generalization across a wide spectrum of spatio-temporal (ST) tasks. Despite rapid progress, a systematic investigation of trajectory foundation models (TFMs), a crucial subclass of STFMs, is largely lacking. This tutorial addresses this gap by offering a comprehensive overview of recent advances in TFMs, including a taxonomy of existing methodologies and a critical analysis of their strengths and limitations. In addition, the tutorial highlights open challenges and outlines promising research directions to advance spatio-temporal general intelligence through the development of robust, responsible, and transferable TFMs.

This ...

This paper has been accepted by CIKM 2025 STIntelligence Workshop

WPT: World-to-Policy Transfer via Online World Model Distillation 2025-11-25
Show

Recent years have witnessed remarkable progress in world models, which primarily aim to capture the spatio-temporal correlations between an agent's actions and the evolving environment. However, existing approaches often suffer from tight runtime coupling or depend on offline reward signals, resulting in substantial inference overhead or hindering end-to-end optimization. To overcome these limitations, we introduce WPT, a World-to-Policy Transfer training paradigm that enables online distillation under the guidance of an end-to-end world model. Specifically, we develop a trainable reward model that infuses world knowledge into a teacher policy by aligning candidate trajectories with the future dynamics predicted by the world model. Subsequently, we propose policy distillation and world reward distillation to transfer the teacher's reasoning ability into a lightweight student policy, enhancing planning performance while preserving real-time deployability. Extensive experiments on both open-loop and closed-loop benchmarks show that our WPT achieves state-of-the-art performance with a simple policy architecture: it attains a 0.11 collision rate (open-loop) and achieves a 79.23 driving score (closed-loop) surpassing both world-model-based and imitation-learning methods in accuracy and safety. Moreover, the student sustains up to 4.9x faster inference, while retaining most of the gains.

Rectifying Distribution Shift in Cascaded Precipitation Nowcasting 2025-11-25
Show

Precipitation nowcasting, which aims to provide high spatio-temporal resolution precipitation forecasts by leveraging current radar observations, is a core task in regional weather forecasting. Recently, the cascaded architecture has emerged as the mainstream paradigm for deep learning-based precipitation nowcasting. This paradigm involves a deterministic model to predict posterior mean, followed by a probabilistic model to generate local stochasticity. However, existing methods commonly overlook the conflation of the systematic distribution shift in deterministic predictions and the local stochasticity. As a result, the distribution shift of the deterministic component contaminates the predictions of the probabilistic component, leading to inaccuracies in precipitation patterns and intensity, particularly over longer lead times. To address this issue, we introduce RectiCast, a two-stage framework that explicitly decouples the rectification of mean-field shift from the generation of local stochasticity via a dual Flow Matching model. In the first stage, a deterministic model generates the posterior mean. In the second stage, we introduce a Rectifier to explicitly learn the distribution shift and produce a rectified mean. Subsequently, a Generator focuses on modeling the local stochasticity conditioned on the rectified mean. Experiments on two radar datasets demonstrate that RectiCast achieves significant performance improvements over existing state-of-the-art methods.

Non-stationarities in extreme hourly precipitation over the Piave Basin, northern Italy 2025-11-25
Show

We study the spatio-temporal features of extremal sub-daily precipitation data over the Piave river basin in northeast Italy using a rich database of observed hourly rainfall. Empirical evidence suggests that both the marginal and dependence structures for extreme precipitation in the area exhibit seasonal patterns, and spatial dependence appears to weaken as events become more extreme. We investigate factors affecting the marginal distributions, the spatial dependence and the interplay between them. Capturing these features is essential to provide a realistic description of extreme precipitation processes in order to better estimate their associated risks. With this aim, we identify various climatic covariates at different spatio-temporal scales and explore their usefulness. We go beyond existing literature by investigating and comparing the performance of recently proposed covariate-dependent models for both the marginal and dependence structures of extremes. Furthermore, a flexible max-id model, which encompasses both asymptotic dependence and independence, is used to learn about the spatio-temporal variability of rainfall processes at extreme levels. We find that modelling non-stationarity only at the marginal level does not fully capture the variability of precipitation extremes, and that it is important to also capture the seasonal variation of extremal dependence.

STAlloc: Enhancing Memory Efficiency in Large-Scale Model Training with Spatio-Temporal Planning 2025-11-25
Show

The rapid scaling of large language models (LLMs) has significantly increased GPU memory pressure, which is further aggravated by training optimization techniques such as virtual pipeline and recomputation that disrupt tensor lifespans and introduce considerable memory fragmentation. Such fragmentation stems from the use of online GPU memory allocators in popular deep learning frameworks like PyTorch, which disregard tensor lifespans. As a result, this inefficiency can waste as much as 43% of memory and trigger out-of-memory errors, undermining the effectiveness of optimization methods. To address this, we introduce STAlloc, a GPU memory allocator for deep learning frameworks that reduces fragmentation by exploiting the spatial and temporal regularity in memory allocation behaviors of training workloads. STAlloc introduces a novel paradigm that combines offline planning with online allocation. The offline planning leverages spatio-temporal regularities to generate a near-optimal allocation plan, while the online allocation handles complex and dynamic models such as Mixture-of-Experts (MoE). Built as a pluggable PyTorch memory allocator, STAlloc reduces fragmentation ratio on average by 85.1% (up to 100%) across both dense and MoE models, with negligible overhead. This enables more efficient, high-throughput training configurations and improves throughput performance by up to 32.5%.

Hierarchical Spatio-Temporal Attention Network with Adaptive Risk-Aware Decision for Forward Collision Warning in Complex Scenarios 2025-11-25
Show

Forward Collision Warning systems are crucial for vehicle safety and autonomous driving, yet current methods often fail to balance precise multi-agent interaction modeling with real-time decision adaptability, evidenced by the high computational cost for edge deployment and the unreliability stemming from simplified interaction models.To overcome these dual challenges-computational complexity and modeling insufficiency-along with the high false alarm rates of traditional static-threshold warnings, this paper introduces an integrated FCW framework that pairs a Hierarchical Spatio-Temporal Attention Network with a Dynamic Risk Threshold Adjustment algorithm. HSTAN employs a decoupled architecture (Graph Attention Network for spatial, cascaded GRU with self-attention for temporal) to achieve superior performance and efficiency, requiring only 12.3 ms inference time (73% faster than Transformer methods) and reducing the Average Displacement Error (ADE) to 0.73m (42.2% better than Social_LSTM) on the NGSIM dataset. Furthermore, Conformalized Quantile Regression enhances reliability by generating prediction intervals (91.3% coverage at 90% confidence), which the DTRA module then converts into timely warnings via a physics-informed risk potential function and an adaptive threshold mechanism inspired by statistical process control.Tested across multi-scenario datasets, the complete system demonstrates high efficacy, achieving an F1 score of 0.912, a low false alarm rate of 8.2%, and an ample warning lead time of 2.8 seconds, validating the framework's superior performance and practical deployment feasibility in complex environments.

A Survey on Diffusion Models for Time Series and Spatio-Temporal Data 2025-11-25
Show

Diffusion models have been widely used in time series and spatio-temporal data, enhancing generative, inferential, and downstream capabilities. These models are applied across diverse fields such as healthcare, recommendation, climate, energy, audio, and traffic. By separating applications for time series and spatio-temporal data, we offer a structured perspective on model category, task type, data modality, and practical application domain. This study aims to provide a solid foundation for researchers and practitioners, inspiring future innovations that tackle traditional challenges and foster novel solutions in diffusion model-based data mining tasks and applications. For more detailed information, we have open-sourced a repository at https://github.com/yyysjz1997/Awesome-TimeSeries-SpatioTemporal-Diffusion-Model.

Accep...

Accepted by ACM Computing Surveys; 40 pages; Github Repo: https://github.com/yyysjz1997/Awesome-TimeSeries-SpatioTemporal-Diffusion-Model

SteadyDancer: Harmonized and Coherent Human Image Animation with First-Frame Preservation 2025-11-24
Show

Preserving first-frame identity while ensuring precise motion control is a fundamental challenge in human image animation. The Image-to-Motion Binding process of the dominant Reference-to-Video (R2V) paradigm overlooks critical spatio-temporal misalignments common in real-world applications, leading to failures such as identity drift and visual artifacts. We introduce SteadyDancer, an Image-to-Video (I2V) paradigm-based framework that achieves harmonized and coherent animation and is the first to ensure first-frame preservation robustly. Firstly, we propose a Condition-Reconciliation Mechanism to harmonize the two conflicting conditions, enabling precise control without sacrificing fidelity. Secondly, we design Synergistic Pose Modulation Modules to generate an adaptive and coherent pose representation that is highly compatible with the reference image. Finally, we employ a Staged Decoupled-Objective Training Pipeline that hierarchically optimizes the model for motion fidelity, visual quality, and temporal coherence. Experiments demonstrate that SteadyDancer achieves state-of-the-art performance in both appearance fidelity and motion control, while requiring significantly fewer training resources than comparable methods.

10 pages, with supp
The SA-FARI Dataset: Segment Anything in Footage of Animals for Recognition and Identification 2025-11-24
Show

Automated video analysis is critical for wildlife conservation. A foundational task in this domain is multi-animal tracking (MAT), which underpins applications such as individual re-identification and behavior recognition. However, existing datasets are limited in scale, constrained to a few species, or lack sufficient temporal and geographical diversity - leaving no suitable benchmark for training general-purpose MAT models applicable across wild animal populations. To address this, we introduce SA-FARI, the largest open-source MAT dataset for wild animals. It comprises 11,609 camera trap videos collected over approximately 10 years (2014-2024) from 741 locations across 4 continents, spanning 99 species categories. Each video is exhaustively annotated culminating in ~46 hours of densely annotated footage containing 16,224 masklet identities and 942,702 individual bounding boxes, segmentation masks, and species labels. Alongside the task-specific annotations, we publish anonymized camera trap locations for each video. Finally, we present comprehensive benchmarks on SA-FARI using state-of-the-art vision-language models for detection and tracking, including SAM 3, evaluated with both species-specific and generic animal prompts. We also compare against vision-only methods developed specifically for wildlife analysis. SA-FARI is the first large-scale dataset to combine high species diversity, multi-region coverage, and high-quality spatio-temporal annotations, offering a new foundation for advancing generalizable multianimal tracking in the wild. The dataset is available at https://www.conservationxlabs.com/sa-fari.

3D Dynamic Radio Map Prediction Using Vision Transformers for Low-Altitude Wireless Networks 2025-11-24
Show

Low-altitude wireless networks (LAWN) are rapidly expanding with the growing deployment of unmanned aerial vehicles (UAVs) for logistics, surveillance, and emergency response. Reliable connectivity remains a critical yet challenging task due to three-dimensional (3D) mobility, time-varying user density, and limited power budgets. The transmit power of base stations (BSs) fluctuates dynamically according to user locations and traffic demands, leading to a highly non-stationary 3D radio environment. Radio maps (RMs) have emerged as an effective means to characterize spatial power distributions and support radio-aware network optimization. However, most existing works construct static or offline RMs, overlooking real-time power variations and spatio-temporal dependencies in multi-UAV networks. To overcome this limitation, we propose a {3D dynamic radio map (3D-DRM)} framework that learns and predicts the spatio-temporal evolution of received power. Specially, a Vision Transformer (ViT) encoder extracts high-dimensional spatial representations from 3D RMs, while a Transformer-based module models sequential dependencies to predict future power distributions. Experiments unveil that 3D-DRM accurately captures fast-varying power dynamics and substantially outperforms baseline models in both RM reconstruction and short-term prediction.

7 pag...

7 pages, 4 figures, submitted to IEEE ICC 2026

EventSTU: Event-Guided Efficient Spatio-Temporal Understanding for Video Large Language Models 2025-11-24
Show

Video large language models have demonstrated strong video understanding capabilities but suffer from high inference costs due to the massive number of tokens in long videos. Inspired by event-based vision, we propose an event-guided, training-free framework for efficient spatio-temporal understanding, named EventSTU. In the temporal domain, we design a coarse-to-fine keyframe sampling algorithm that exploits the change-triggered property of event cameras to eliminate redundant frames. In the spatial domain, we design an adaptive token pruning algorithm that leverages the visual saliency of events as a zero-cost prior to guide spatial reduction. From a holistic spatio-temporal perspective, we further integrate question relevance from keyframe sampling to adaptively allocate token pruning budgets. To facilitate evaluation, we construct EventBench, the first event-inclusive, human-annotated multimodal benchmark that covers diverse real-world scenarios. Beyond physical event cameras, EventSTU also supports general video understanding using simulated events. Comprehensive experiments show that EventSTU achieves 3.01x FLOPs reduction and 3.10x prefilling speedup over the strongest baseline while still improving performance.

8 pages, 7 figures
Prompt-guided Disentangled Representation for Action Recognition 2025-11-24
Show

Action recognition is a fundamental task in video understanding. Existing methods typically extract unified features to process all actions in one video, which makes it challenging to model the interactions between different objects in multi-action scenarios. To alleviate this issue, we explore disentangling any specified actions from complex scenes as an effective solution. In this paper, we propose Prompt-guided Disentangled Representation for Action Recognition (ProDA), a novel framework that disentangles any specified actions from a multi-action scene. ProDA leverages Spatio-temporal Scene Graphs (SSGs) and introduces Dynamic Prompt Module (DPM) to guide a Graph Parsing Neural Network (GPNN) in generating action-specific representations. Furthermore, we design a video-adapted GPNN that aggregates information using dynamic weights. Experiments in video action recognition demonstrate the effectiveness of our approach when compared with the state-of-the-art methods. Our code can be found in https://github.com/iamsnaping/ProDA.git

Vidi2: Large Multimodal Models for Video Understanding and Creation 2025-11-24
Show

Video has emerged as the primary medium for communication and creativity on the Internet, driving strong demand for scalable, high-quality video production. Vidi models continue to evolve toward next-generation video creation and have achieved state-of-the-art performance in multimodal temporal retrieval (TR). In its second release, Vidi2 advances video understanding with fine-grained spatio-temporal grounding (STG) and extends its capability to video question answering (Video QA), enabling comprehensive multimodal reasoning. Given a text query, Vidi2 can identify not only the corresponding timestamps but also the bounding boxes of target objects within the output time ranges. This end-to-end spatio-temporal grounding capability enables potential applications in complex editing scenarios, such as plot or character understanding, automatic multi-view switching, and intelligent, composition-aware reframing and cropping. To enable comprehensive evaluation of STG in practical settings, we introduce a new benchmark, VUE-STG, which offers four key improvements over existing STG datasets: 1) Video duration: spans from roughly 10s to 30 mins, enabling long-context reasoning; 2) Query format: queries are mostly converted into noun phrases while preserving sentence-level expressiveness; 3) Annotation quality: all ground-truth time ranges and bounding boxes are manually annotated with high accuracy; 4) Evaluation metric: a refined vIoU/tIoU/vIoU-Intersection scheme. In addition, we upgrade the previous VUE-TR benchmark to VUE-TR-V2, achieving a more balanced video-length distribution and more user-style queries. Remarkably, the Vidi2 model substantially outperforms leading proprietary systems, such as Gemini 3 Pro (Preview) and GPT-5, on both VUE-TR-V2 and VUE-STG, while achieving competitive results with popular open-source models with similar scale on video QA benchmarks.

JointTuner: Appearance-Motion Adaptive Joint Training for Customized Video Generation 2025-11-24
Show

Recent advancements in customized video generation have led to significant improvements in the simultaneous adaptation of appearance and motion. Typically, decoupling the appearance and motion training, prior methods often introduce concept interference, resulting in inaccurate rendering of appearance features or motion patterns. In addition, these methods often suffer from appearance contamination, in which background and foreground elements from reference videos distort the customized video. This paper aims to alleviate these issues by proposing JointTuner. The core motivation of our JointTuner is to enable joint optimization of both appearance and motion components, upon which two key innovations are developed, i.e., Gated Low-Rank Adaptation (GLoRA) and Appearance-independent Temporal Loss (AiT Loss). Specifically, GLoRA uses a context-aware activation layer, analogous to a gating regulator, to dynamically steer LoRA modules toward learning either appearance or motion while maintaining spatio-temporal consistency. Moreover, with the finding that channel-temporal shift noise suppresses appearance-related low-frequencies while enhancing motion-related high-frequencies, we designed the AiT Loss. This loss adds the same shift to the diffusion model's predicted noise during fine-tuning, forcing the model to prioritize learning motion patterns. JointTuner's architecture-agnostic design supports both UNet (e.g., ZeroScope) and Diffusion Transformer (e.g., CogVideoX) backbones, ensuring its customization capabilities scale with the evolution of foundational video models. Furthermore, we present a systematic evaluation framework for appearance-motion combined customization, covering 90 combinations evaluated along four critical dimensions: semantic alignment, motion dynamism, temporal consistency, and perceptual quality. Our project homepage is available online.

Proje...

Project Page: https://fdchen24.github.io/JointTuner-Website

STCDiT: Spatio-Temporally Consistent Diffusion Transformer for High-Quality Video Super-Resolution 2025-11-24
Show

We present STCDiT, a video super-resolution framework built upon a pre-trained video diffusion model, aiming to restore structurally faithful and temporally stable videos from degraded inputs, even under complex camera motions. The main challenges lie in maintaining temporal stability during reconstruction and preserving structural fidelity during generation. To address these challenges, we first develop a motion-aware VAE reconstruction method that performs segment-wise reconstruction, with each segment clip exhibiting uniform motion characteristic, thereby effectively handling videos with complex camera motions. Moreover, we observe that the first-frame latent extracted by the VAE encoder in each clip, termed the anchor-frame latent, remains unaffected by temporal compression and retains richer spatial structural information than subsequent frame latents. We further develop an anchor-frame guidance approach that leverages structural information from anchor frames to constrain the generation process and improve structural fidelity of video features. Coupling these two designs enables the video diffusion model to achieve high-quality video super-resolution. Extensive experiments show that STCDiT outperforms state-of-the-art methods in terms of structural fidelity and temporal consistency.

Proje...

Project page: https://jychen9811.github.io/STCDiT_page

GRIT-LP: Graph Transformer with Long-Range Skip Connection and Partitioned Spatial Graphs for Accurate Ice Layer Thickness Prediction 2025-11-24
Show

Graph transformers have demonstrated remarkable capability on complex spatio-temporal tasks, yet their depth is often limited by oversmoothing and weak long-range dependency modeling. To address these challenges, we introduce GRIT-LP, a graph transformer explicitly designed for polar ice-layer thickness estimation from polar radar imagery. Accurately estimating ice layer thickness is critical for understanding snow accumulation, reconstructing past climate patterns and reducing uncertainties in projections of future ice sheet evolution and sea level rise. GRIT-LP combines an inductive geometric graph learning framework with self-attention mechanism, and introduces two major innovations that jointly address challenges in modeling the spatio-temporal patterns of ice layers: a partitioned spatial graph construction strategy that forms overlapping, fully connected local neighborhoods to preserve spatial coherence and suppress noise from irrelevant long-range links, and a long-range skip connection mechanism within the transformer that improves information flow and mitigates oversmoothing in deeper attention layers. We conducted extensive experiments, demonstrating that GRIT-LP outperforms current state-of-the-art methods with a 24.92% improvement in root mean squared error. These results highlight the effectiveness of graph transformers in modeling spatiotemporal patterns by capturing both localized structural features and long-range dependencies across internal ice layers, and demonstrate their potential to advance data-driven understanding of cryospheric processes.

Fusing Biomechanical and Spatio-Temporal Features for Fall Prediction: Characterizing and Mitigating the Simulation-to-Reality Gap 2025-11-23
Show

Falls are a leading cause of injury and loss of independence among older adults. Vision-based fall prediction systems offer a non-invasive solution to anticipate falls seconds before impact, but their development is hindered by the scarcity of available fall data. Contributing to these efforts, this study proposes the Biomechanical Spatio-Temporal Graph Convolutional Network (BioST-GCN), a dual-stream model that combines both pose and biomechanical information using a cross-attention fusion mechanism. Our model outperforms the vanilla ST-GCN baseline by 5.32% and 2.91% F1-score on the simulated MCF-UA stunt-actor and MUVIM datasets, respectively. The spatio-temporal attention mechanisms in the ST-GCN stream also provide interpretability by identifying critical joints and temporal phases. However, a critical simulation-reality gap persists. While our model achieves an 89.0% F1-score with full supervision on simulated data, zero-shot generalization to unseen subjects drops to 35.9%. This performance decline is likely due to biases in simulated data, such as 'intent-to-fall' cues. For older adults, particularly those with diabetes or frailty, this gap is exacerbated by their unique kinematic profiles. To address this, we propose personalization strategies and advocate for privacy-preserving data pipelines to enable real-world validation. Our findings underscore the urgent need to bridge the gap between simulated and real-world data to develop effective fall prediction systems for vulnerable elderly populations.

Gaze Beyond the Frame: Forecasting Egocentric 3D Visual Span 2025-11-23
Show

People continuously perceive and interact with their surroundings based on underlying intentions that drive their exploration and behaviors. While research in egocentric user and scene understanding has focused primarily on motion and contact-based interaction, forecasting human visual perception itself remains less explored despite its fundamental role in guiding human actions and its implications for AR/VR and assistive technologies. We address the challenge of egocentric 3D visual span forecasting, predicting where a person's visual perception will focus next within their three-dimensional environment. To this end, we propose EgoSpanLift, a novel method that transforms egocentric visual span forecasting from 2D image planes to 3D scenes. EgoSpanLift converts SLAM-derived keypoints into gaze-compatible geometry and extracts volumetric visual span regions. We further combine EgoSpanLift with 3D U-Net and unidirectional transformers, enabling spatio-temporal fusion to efficiently predict future visual span in the 3D grid. In addition, we curate a comprehensive benchmark from raw egocentric multisensory data, creating a testbed with 364.6K samples for 3D visual span forecasting. Our approach outperforms competitive baselines for egocentric 2D gaze anticipation and 3D localization while achieving comparable results even when projected back onto 2D image planes without additional 2D-specific training.

NeurI...

NeurIPS 2025 Spotlight

Uni-MoE-2.0-Omni: Scaling Language-Centric Omnimodal Large Model with Advanced MoE, Training and Data 2025-11-23
Show

We present Uni-MoE 2.0 from the Lychee family. As a fully open-source omnimodal large model (OLM), it substantially advances Lychee's Uni-MoE series in language-centric multimodal understanding, reasoning, and generating. Based on the dense LLM, we build Uni-MoE-2.0-Omni from scratch through three core contributions: dynamic-capacity Mixture-of-Experts (MoE) design, a progressive training strategy enhanced with an iterative reinforcement strategy, and a carefully curated multimodal data matching technique. It is capable of omnimodal understanding, as well as generating images, text, and speech. Architecturally, our new MoE framework balances computational efficiency and capability for 10 cross-modal inputs using shared, routed, and null experts, while our Omni-Modality 3D RoPE ensures spatio-temporal cross-modality alignment in the self-attention layer. For training, following cross-modal pretraining, we use a progressive supervised fine-tuning strategy that activates modality-specific experts and is enhanced by balanced data composition and an iterative GSPO-DPO method to stabilise RL training and improve reasoning. Data-wise, the base model, trained on approximately 75B tokens of open-source multimodal data, is equipped with special speech and image generation tokens, allowing it to learn these generative tasks by conditioning its outputs on linguistic cues. Extensive evaluation across 85 benchmarks demonstrates that our model achieves SOTA or highly competitive performance against leading OLMs, surpassing Qwen2.5-Omni (trained with 1.2T tokens) on over 50 of 76 benchmarks. Key strengths include video understanding (+7% avg. of 8), omnimodallity understanding (+7% avg. of 4), and audiovisual reasoning (+4%). It also advances long-form speech processing (reducing WER by 4.2%) and leads in low-level image processing and controllable generation across 5 metrics.

47 pa...

47 pages,10 Figures, Project Website: https://idealistxy.github.io/Uni-MoE-v2.github.io/ Codes: https://github.com/HITsz-TMG/Uni-MoE

Consolidating Diffusion-Generated Video Detection with Unified Multimodal Forgery Learning 2025-11-22
Show

The proliferation of videos generated by diffusion models has raised increasing concerns about information security, highlighting the urgent need for reliable detection of synthetic media. Existing methods primarily focus on image-level forgery detection, leaving generic video-level forgery detection largely underexplored. To advance video forensics, we propose a consolidated multimodal detection algorithm, named MM-Det++, specifically designed for detecting diffusion-generated videos. Our approach consists of two innovative branches and a Unified Multimodal Learning (UML) module. Specifically, the Spatio-Temporal (ST) branch employs a novel Frame-Centric Vision Transformer (FC-ViT) to aggregate spatio-temporal information for detecting diffusion-generated videos, where the FC-tokens enable the capture of holistic forgery traces from each video frame. In parallel, the Multimodal (MM) branch adopts a learnable reasoning paradigm to acquire Multimodal Forgery Representation (MFR) by harnessing the powerful comprehension and reasoning capabilities of Multimodal Large Language Models (MLLMs), which discerns the forgery traces from a flexible semantic perspective. To integrate multimodal representations into a coherent space, a UML module is introduced to consolidate the generalization ability of MM-Det++. In addition, we also establish a large-scale and comprehensive Diffusion Video Forensics (DVF) dataset to advance research in video forgery detection. Extensive experiments demonstrate the superiority of MM-Det++ and highlight the effectiveness of unified multimodal forgery learning in detecting diffusion-generated videos.

Code ...

Code and dataset are available at https://github.com/SparkleXFantasy/MM-Det-Plus

ResAD: Normalized Residual Trajectory Modeling for End-to-End Autonomous Driving 2025-11-22
Show

End-to-end autonomous driving (E2EAD) systems, which learn to predict future trajectories directly from sensor data, are fundamentally challenged by the inherent spatio-temporal imbalance of trajectory data. This imbalance creates a significant optimization burden, causing models to learn spurious correlations instead of robust driving logic, while also prioritizing uncertain, distant predictions, thereby compromising immediate safety. To address these issues, we propose ResAD, a novel Normalized Residual Trajectory Modeling framework. Instead of predicting the future trajectory directly, our approach reframes and simplifies the learning task by predicting the residual deviation from a deterministic inertial reference. This inertial reference serves as a strong physical prior, compelling the model to move beyond simple pattern-matching and instead focus its capacity on learning the necessary, context-driven deviations (e.g., traffic rules, obstacles) from this default, inertially-guided path. To mitigate the optimization imbalance caused by uncertain, long-term horizons, ResAD further incorporates Point-wise Normalization of the predicted residual. This technique re-weights the optimization objective, preventing large-magnitude errors associated with distant, uncertain waypoints from dominating the learning signal. On the NAVSIM v1 and v2 benchmarks, ResAD achieves state-of-the-art results of 88.8 PDMS and 85.5 EPDMS with only two denoising steps, demonstrating that ResAD significantly simplifies the learning task and improves planning performance. The code will be released to facilitate further research.

DMAT: An End-to-End Framework for Joint Atmospheric Turbulence Mitigation and Object Detection 2025-11-22
Show

Atmospheric Turbulence (AT) degrades the clarity and accuracy of surveillance imagery, posing challenges not only for visualization quality but also for object classification and scene tracking. Deep learning-based methods have been proposed to improve visual quality, but spatio-temporal distortions remain a significant issue. Although deep learning-based object detection performs well under normal conditions, it struggles to operate effectively on sequences distorted by atmospheric turbulence. In this paper, we propose a novel framework that learns to compensate for distorted features while simultaneously improving visualization and object detection. This end-to-end training strategy leverages and exchanges knowledge of low-level distorted features in the AT mitigator with semantic features extracted in the object detector. Specifically, in the AT mitigator a 3D Mamba-based structure is used to handle the spatio-temporal displacements and blurring caused by turbulence. Optimization is achieved through back-propagation in both the AT mitigator and object detector. Our proposed DMAT outperforms state-of-the-art AT mitigation and object detection systems up to a 15% improvement on datasets corrupted by generated turbulence.

Accepted to WACV2026
Evolving Graph Learning for Out-of-Distribution Generalization in Non-stationary Environments 2025-11-22
Show

Graph neural networks have shown remarkable success in exploiting the spatial and temporal patterns on dynamic graphs. However, existing GNNs exhibit poor generalization ability under distribution shifts, which is inevitable in dynamic scenarios. As dynamic graph generation progresses amid evolving latent non-stationary environments, it is imperative to explore their effects on out-of-distribution (OOD) generalization. This paper proposes a novel Evolving Graph Learning framework for OOD generalization (EvoOOD) by environment-aware invariant pattern recognition. Specifically, we first design an environment sequential variational auto-encoder to model environment evolution and infer the underlying environment distribution. Then, we introduce a mechanism for environment-aware invariant pattern recognition, tailored to address environmental diversification through inferred distributions. Finally, we conduct fine-grained causal interventions on individual nodes using a mixture of instantiated environment samples. This approach helps to distinguish spatio-temporal invariant patterns for OOD prediction, especially in non-stationary environments. Experimental results demonstrate the superiority of EvoGOOD on both real-world and synthetic dynamic datasets under distribution shifts. To the best of our knowledge, it is the first attempt to study the dynamic graph OOD generalization problem from the environment evolution perspective.

Accepted by TPAMI
Plan-X: Instruct Video Generation via Semantic Planning 2025-11-22
Show

Diffusion Transformers have demonstrated remarkable capabilities in visual synthesis, yet they often struggle with high-level semantic reasoning and long-horizon planning. This limitation frequently leads to visual hallucinations and mis-alignments with user instructions, especially in scenarios involving complex scene understanding, human-object interactions, multi-stage actions, and in-context motion reasoning. To address these challenges, we propose Plan-X, a framework that explicitly enforces high-level semantic planning to instruct video generation process. At its core lies a Semantic Planner, a learnable multimodal language model that reasons over the user's intent from both text prompts and visual context, and autoregressively generates a sequence of text-grounded spatio-temporal semantic tokens. These semantic tokens, complementary to high-level text prompt guidance, serve as structured "semantic sketches" over time for the video diffusion model, which has its strength at synthesizing high-fidelity visual details. Plan-X effectively integrates the strength of language models in multimodal in-context reasoning and planning, together with the strength of diffusion models in photorealistic video synthesis. Extensive experiments demonstrate that our framework substantially reduces visual hallucinations and enables fine-grained, instruction-aligned video generation consistent with multimodal context.

The p...

The project page is at https://byteaigc.github.io/Plan-X

A Stitch in Time: Learning Procedural Workflow via Self-Supervised Plackett-Luce Ranking 2025-11-21
Show

Procedural activities, ranging from routine cooking to complex surgical operations, are highly structured as a set of actions conducted in a specific temporal order. Despite their success on static images and short clips, current self-supervised learning methods often overlook the procedural nature that underpins such activities. We expose the lack of procedural awareness in current SSL methods with a motivating experiment: models pretrained on forward and time-reversed sequences produce highly similar features, confirming that their representations are blind to the underlying procedural order. To address this shortcoming, we propose PL-Stitch, a self-supervised framework that harnesses the inherent temporal order of video frames as a powerful supervisory signal. Our approach integrates two novel probabilistic objectives based on the Plackett-Luce (PL) model. The primary PL objective trains the model to sort sampled frames chronologically, compelling it to learn the global workflow progression. The secondary objective, a spatio-temporal jigsaw loss, complements the learning by capturing fine-grained, cross-frame object correlations. Our approach consistently achieves superior performance across five surgical and cooking benchmarks. Specifically, PL-Stitch yields significant gains in surgical phase recognition (e.g., +11.4 pp k-NN accuracy on Cholec80) and cooking action segmentation (e.g., +5.7 pp linear probing accuracy on Breakfast), demonstrating its effectiveness for procedural video representation learning.

18 pages
Multi-Agent Pointer Transformer: Seq-to-Seq Reinforcement Learning for Multi-Vehicle Dynamic Pickup-Delivery Problems 2025-11-21
Show

This paper addresses the cooperative Multi-Vehicle Dynamic Pickup and Delivery Problem with Stochastic Requests (MVDPDPSR) and proposes an end-to-end centralized decision-making framework based on sequence-to-sequence, named Multi-Agent Pointer Transformer (MAPT). MVDPDPSR is an extension of the vehicle routing problem and a spatio-temporal system optimization problem, widely applied in scenarios such as on-demand delivery. Classical operations research methods face bottlenecks in computational complexity and time efficiency when handling large-scale dynamic problems. Although existing reinforcement learning methods have achieved some progress, they still encounter several challenges: 1) Independent decoding across multiple vehicles fails to model joint action distributions; 2) The feature extraction network struggles to capture inter-entity relationships; 3) The joint action space is exponentially large. To address these issues, we designed the MAPT framework, which employs a Transformer Encoder to extract entity representations, combines a Transformer Decoder with a Pointer Network to generate joint action sequences in an AutoRegressive manner, and introduces a Relation-Aware Attention module to capture inter-entity relationships. Additionally, we guide the model's decision-making using informative priors to facilitate effective exploration. Experiments on 8 datasets demonstrate that MAPT significantly outperforms existing baseline methods in terms of performance and exhibits substantial computational time advantages compared to classical operations research methods.

15 pages
QueryOcc: Query-based Self-Supervision for 3D Semantic Occupancy 2025-11-21
Show

Learning 3D scene geometry and semantics from images is a core challenge in computer vision and a key capability for autonomous driving. Since large-scale 3D annotation is prohibitively expensive, recent work explores self-supervised learning directly from sensor data without manual labels. Existing approaches either rely on 2D rendering consistency, where 3D structure emerges only implicitly, or on discretized voxel grids from accumulated lidar point clouds, limiting spatial precision and scalability. We introduce QueryOcc, a query-based self-supervised framework that learns continuous 3D semantic occupancy directly through independent 4D spatio-temporal queries sampled across adjacent frames. The framework supports supervision from either pseudo-point clouds derived from vision foundation models or raw lidar data. To enable long-range supervision and reasoning under constant memory, we introduce a contractive scene representation that preserves near-field detail while smoothly compressing distant regions. QueryOcc surpasses previous camera-based methods by 26% in semantic RayIoU on the self-supervised Occ3D-nuScenes benchmark while running at 11.6 FPS, demonstrating that direct 4D query supervision enables strong self-supervised occupancy learning. https://research.zenseact.com/publications/queryocc/

TDSNNs: Competitive Topographic Deep Spiking Neural Networks for Visual Cortex Modeling 2025-11-21
Show

The primate visual cortex exhibits topographic organization, where functionally similar neurons are spatially clustered, a structure widely believed to enhance neural processing efficiency. While prior works have demonstrated that conventional deep ANNs can develop topographic representations, these models largely neglect crucial temporal dynamics. This oversight often leads to significant performance degradation in tasks like object recognition and compromises their biological fidelity. To address this, we leverage spiking neural networks (SNNs), which inherently capture spike-based temporal dynamics and offer enhanced biological plausibility. We propose a novel Spatio-Temporal Constraints (STC) loss function for topographic deep spiking neural networks (TDSNNs), successfully replicating the hierarchical spatial functional organization observed in the primate visual cortex from low-level sensory input to high-level abstract representations. Our results show that STC effectively generates representative topographic features across simulated visual cortical areas. While introducing topography typically leads to significant performance degradation in ANNs, our spiking architecture exhibits a remarkably small performance drop (No drop in ImageNet top-1 accuracy, compared to a 3% drop observed in TopoNet, which is the best-performing topographic ANN so far) and outperforms topographic ANNs in brain-likeness. We also reveal that topographic organization facilitates efficient and stable temporal information processing via the spike mechanism in TDSNNs, contributing to model robustness. These findings suggest that TDSNNs offer a compelling balance between computational performance and brain-like features, providing not only a framework for interpreting neural science phenomena but also novel insights for designing more efficient and robust deep learning models.

AAAI 2026 (Oral)
SpotFormer: Multi-Scale Spatio-Temporal Transformer for Facial Expression Spotting 2025-11-21
Show

Facial expression spotting, identifying periods where facial expressions occur in a video, is a significant yet challenging task in facial expression analysis. The issues of irrelevant facial movements and the challenge of detecting subtle motions in micro-expressions remain unresolved, hindering accurate expression spotting. In this paper, we propose an efficient framework for facial expression spotting. First, we propose a Sliding Window-based multi-temporal-resolution Optical flow (SW-MRO) feature, which calculates multi-temporal-resolution optical flow of the input image sequence within compact sliding windows. The window length is tailored to perceive complete micro-expressions and distinguish between general macro- and micro-expressions. SW-MRO can effectively reveal subtle motions while avoiding the optical flow being dominated by head movements. Second, we propose SpotFormer, a multi-scale spatio-temporal Transformer that simultaneously encodes spatio-temporal relationships of the SW-MRO features for accurate frame-level probability estimation. In SpotFormer, we use the proposed Facial Local Graph Pooling (FLGP) operation and convolutional layers to extract multi-scale spatio-temporal features. We show the validity of the architecture of SpotFormer by comparing it with several model variants. Third, we introduce supervised contrastive learning into SpotFormer to enhance the discriminability between different types of expressions. Extensive experiments on SAMM-LV, CAS(ME)^2, and CAS(ME)^3 show that our method outperforms state-of-the-art models, particularly in micro-expression spotting.

OmniGround: A Comprehensive Spatio-Temporal Grounding Benchmark for Real-World Complex Scenarios 2025-11-21
Show

Spatio-Temporal Video Grounding (STVG) aims to localize target objects in videos based on natural language descriptions. Despite recent advances in Multimodal Large Language Models, a significant gap remains between current models and real-world demands involving diverse objects and complex queries. We attribute this to limited benchmark scope, causing models to exhibit category bias, oversimplified reasoning, and poor linguistic robustness. To address these limitations, we introduce OmniGround, a comprehensive benchmark with 3,475 videos spanning 81 categories and complex real-world queries. We propose the Forward-Backward-Refinement annotation pipeline that combines multi-directional tracking with intelligent error correction for high-quality labels. We further introduce DeepSTG, a systematic evaluation framework quantifying dataset quality across four complementary dimensions beyond superficial statistics. Evaluations reveal performance average drop of 10.4% on complex real-world scenes, particularly with small/occluded objects and intricate spatial relations. Motivated by these, we propose PG-TAF, a training-free two-stage framework decomposing STVG into high-level temporal grounding and fine-grained spatio-temporal propagation. Experiments demonstrate PG-TAF achieves 25.6% and 35.6% improvements in m_tIoU and m_vIoU on OmniGround with consistent gains across four benchmarks.

20 pages
A Spatio-temporal CP decomposition analysis of New England region in the US 2025-11-21
Show

Spatio temporal data consist of measurement for one or more raster fields such as weather, traffic volume, crime rate, or disease incidents. Advances in modern technology have increased the number of available information for this type of data hence the rise of multidimensional data. In this paper we take advantage of the multidimensional structure of the data but also its temporal and spatial structure. In fact, we will be using the NCAR Climate Data Gateway website which provides data discovery and access services for global and regional climate model data. The daily values of total precipitation (prec), maximum (tmax), and minimum (tmin) temperature are combined to create a multidimensional data called tensor (a multidimensional array). In this paper, we propose a spatio temporal principal component analysis to initialize CP decomposition component. We take full advantage of the spatial and temporal structure of the data in the initialization step for cp component analysis. The performance of our method is tested via comparison with most popular initialization method. We also run a clustering analysis to further show the performance of our analysis.

14 pages, 3 figures
SAM2S: Segment Anything in Surgical Videos via Semantic Long-term Tracking 2025-11-20
Show

Surgical video segmentation is crucial for computer-assisted surgery, enabling precise localization and tracking of instruments and tissues. Interactive Video Object Segmentation (iVOS) models such as Segment Anything Model 2 (SAM2) provide prompt-based flexibility beyond methods with predefined categories, but face challenges in surgical scenarios due to the domain gap and limited long-term tracking. To address these limitations, we construct SA-SV, the largest surgical iVOS benchmark with instance-level spatio-temporal annotations (masklets) spanning eight procedure types (61k frames, 1.6k masklets), enabling comprehensive development and evaluation for long-term tracking and zero-shot generalization. Building on SA-SV, we propose SAM2S, a foundation model enhancing \textbf{SAM2} for \textbf{S}urgical iVOS through: (1) DiveMem, a trainable diverse memory mechanism for robust long-term tracking; (2) temporal semantic learning for instrument understanding; and (3) ambiguity-resilient learning to mitigate annotation inconsistencies across multi-source datasets. Extensive experiments demonstrate that fine-tuning on SA-SV enables substantial performance gains, with SAM2 improving by 12.99 average $\mathcal{J}$&amp;$\mathcal{F}$ over vanilla SAM2. SAM2S further advances performance to 80.42 average $\mathcal{J}$&amp;$\mathcal{F}$, surpassing vanilla and fine-tuned SAM2 by 17.10 and 4.11 points respectively, while maintaining 68 FPS real-time inference and strong zero-shot generalization. Code and dataset will be released at https://jinlab-imvr.github.io/SAM2S.

11 pages, 4 figures
Context-Aware Multimodal Representation Learning for Spatio-Temporally Explicit Environmental Modelling 2025-11-20
Show

Earth observation (EO) foundation models have emerged as an effective approach to derive latent representations of the Earth system from various remote sensing sensors. These models produce embeddings that can be used as analysis-ready datasets, enabling the modelling of ecosystem dynamics without extensive sensor-specific preprocessing. However, existing models typically operate at fixed spatial or temporal scales, limiting their use for ecological analyses that require both fine spatial detail and high temporal fidelity. To overcome these limitations, we propose a representation learning framework that integrates different EO modalities into a unified feature space at high spatio-temporal resolution. We introduce the framework using Sentinel-1 and Sentinel-2 data as representative modalities. Our approach produces a latent space at native 10 m resolution and the temporal frequency of cloud-free Sentinel-2 acquisitions. Each sensor is first modeled independently to capture its sensor-specific characteristics. Their representations are then combined into a shared model. This two-stage design enables modality-specific optimisation and easy extension to new sensors, retaining pretrained encoders while retraining only fusion layers. This enables the model to capture complementary remote sensing data and to preserve coherence across space and time. Qualitative analyses reveal that the learned embeddings exhibit high spatial and semantic consistency across heterogeneous landscapes. Quantitative evaluation in modelling Gross Primary Production reveals that they encode ecologically meaningful patterns and retain sufficient temporal fidelity to support fine-scale analyses. Overall, the proposed framework provides a flexible, analysis-ready representation learning approach for environmental applications requiring diverse spatial and temporal resolutions.

10 pa...

10 pages (incliding 2 pages of references), 7 figures

Time Series Imputation

Title Date Abstract Comment
An Interdisciplinary and Cross-Task Review on Missing Data Imputation 2025-12-01
Show

Missing data is a fundamental challenge in data science, significantly hindering analysis and decision-making across a wide range of disciplines, including healthcare, bioinformatics, social science, e-commerce, and industrial monitoring. Despite decades of research and numerous imputation methods, the literature remains fragmented across fields, creating a critical need for a comprehensive synthesis that connects statistical foundations with modern machine learning advances. This work systematically reviews core concepts-including missingness mechanisms, single versus multiple imputation, and different imputation goals-and examines problem characteristics across various domains. It provides a thorough categorization of imputation methods, spanning classical techniques (e.g., regression, the EM algorithm) to modern approaches like low-rank and high-rank matrix completion, deep learning models (autoencoders, GANs, diffusion models, graph neural networks), and large language models. Special attention is given to methods for complex data types, such as tensors, time series, streaming data, graph-structured data, categorical data, and multimodal data. Beyond methodology, we investigate the crucial integration of imputation with downstream tasks like classification, clustering, and anomaly detection, examining both sequential pipelines and joint optimization frameworks. The review also assesses theoretical guarantees, benchmarking resources, and evaluation metrics. Finally, we identify critical challenges and future directions, emphasizing model selection and hyperparameter optimization, the growing importance of privacy-preserving imputation via federated learning, and the pursuit of generalizable models that can adapt across domains and data types, thereby outlining a roadmap for future research.

Deep sub-ensembles meets quantile regression: uncertainty-aware imputation for time series 2025-12-01
Show

Real-world time series data often exhibits substantial missing values, posing challenges for advanced analysis. A common approach to addressing this issue is imputation, where the primary challenge lies in determining the appropriate values to fill in. While previous deep learning methods have proven effective for time series imputation, they often produce overconfident imputations, which poses a potentially overlooked risk to the reliability of the intelligent system. Diffusion methods are proficient in estimating probability distributions but face challenges under a high missing rate and are, moreover, computationally expensive due to the nature of the generative model framework. In this paper, we propose Quantile Sub-Ensembles, a novel method that estimates uncertainty with ensembles of quantile-regression-based task networks and incorporate Quantile Sub-Ensembles into a non-generative time series imputation method. Our method not only produces accurate and reliable imputations, but also remains computationally efficient due to its non-generative framework. We conduct extensive experiments on five real-world datasets, and the results demonstrates superior performance in both deterministic and probabilistic imputation compared to baselines across most experimental settings. The code is available at https://github.com/yingliu-coder/QSE.

Publi...

Published in Machine Learning, 114, 268 (2025). DOI: 10.1007/s10994-025-06922-x

FMTK: A Modular Toolkit for Composable Time Series Foundation Model Pipelines 2025-11-30
Show

Foundation models (FMs) have opened new avenues for machine learning applications due to their ability to adapt to new and unseen tasks with minimal or no further training. Time-series foundation models (TSFMs) -- FMs trained on time-series data -- have shown strong performance on classification, regression, and imputation tasks. Recent pipelines combine TSFMs with task-specific encoders, decoders, and adapters to improve performance; however, assembling such pipelines typically requires ad hoc, model-specific implementations that hinder modularity and reproducibility. We introduce FMTK, an open-source, lightweight and extensible toolkit for constructing and fine-tuning TSFM pipelines via standardized backbone and component abstractions. FMTK enables flexible composition across models and tasks, achieving correctness and performance with an average of seven lines of code. https://github.com/umassos/FMTK

MSTN: Fast and Efficient Multivariate Time Series Model 2025-11-25
Show

Real-world time-series data is highly non stationary and complex in dynamics that operate across multiple timescales, ranging from fast, short-term changes to slow, long-term trends. Most existing models rely on fixed-scale structural priors, such as patch-based tokenization, fixed frequency transformations, or frozen backbone architectures. This often leads to over-regularization of temporal dynamics, which limits their ability to adaptively model the full spectrum of temporal variations and impairs their performance on unpredictable, Sudden, high-magnitude events. To address this, we introduce the Multi-scale Temporal Network (MSTN), a novel deep learning architecture founded on a hierarchical multi-scale and sequence modeling principle. The MSTN framework integrates: (i) a multi-scale convolutional encoder that constructs a hierarchical feature pyramid for local patterns (ii) a sequence modeling component for long-range temporal dependencies. We empirically validate this with BiLSTM and Transformer variants, establishing a flexible foundation for future architectural advancements. and (iii) a gated fusion mechanism augmented with squeeze-and-excitation (SE) and multi-head temporal attention (MHTA) for dynamic, context-aware feature integration. This design enables MSTN to adaptively model temporal patterns from milliseconds to long-range dependencies within a unified framework. Extensive evaluations across time-series long-horizon forecasting, imputation, classification and generalizability study demonstrate that MSTN achieves competitive state-of-the-art (SOTA) performance, showing improvements over contemporary approaches including EMTSF, LLM4TS, HiMTM, TIME-LLM, MTST, SOFTS, iTransformer, TimesNet, and PatchTST. In total, MSTN establishes new SOTA performance on 24 of 32 benchmark datasets, demonstrating its consistent performance across diverse temporal tasks.

21 pa...

21 pages, 1 figure, 5 tables

Energy-Aware Pattern Disentanglement: A Generalizable Pattern Assisted Architecture for Multi-task Time Series Analysis 2025-11-25
Show

Time series analysis has found widespread applications in areas such as weather forecasting, anomaly detection, and healthcare. While deep learning approaches have achieved significant success in this field, existing methods often adopt a "one-model one-task" architecture, limiting their generalization across different tasks. To address these limitations, we perform local energy analysis in the time-frequency domain to more precisely capture and disentangle transient and non-stationary oscillatory components. Furthermore, our representational analysis reveals that generative tasks tend to capture long-period patterns from low-frequency components, whereas discriminative tasks focus on high-frequency abrupt signals, which constitutes our core contribution. Concretely, we propose Pets, a novel "one-model many-tasks" architecture based on the General fluctuation Pattern Assisted (GPA) framework that is adaptable to versatile model structures for time series analysis. Pets integrates a Fluctuation Pattern Assisted (FPA) module and a Context-Guided Mixture of Predictors (MoP). The FPA module facilitates information fusion among diverse fluctuation patterns by capturing their dependencies and progressively modeling these patterns as latent representations at each layer. Meanwhile, the MoP module leverages these generalizable pattern representations to guide and regulate the reconstruction of distinct fluctuations hierarchically by energy proportion. Pets demonstrates strong versatility and achieves state-of-the-art performance across 60 benchmarks on various tasks, including forecasting, imputation, anomaly detection, and classification, while demonstrating strong generalization and robustness.

We ha...

We have updated the abstract, citations and related work. At the same time, we have also updated the latest baseline model

The Generalized Proximity Forest 2025-11-23
Show

Recent work has demonstrated the utility of Random Forest (RF) proximities for various supervised machine learning tasks, including outlier detection, missing data imputation, and visualization. However, the utility of the RF proximities depends upon the success of the RF model, which itself is not the ideal model in all contexts. RF proximities have recently been extended to time series by means of the distance-based Proximity Forest (PF) model, among others, affording time series analysis with the benefits of RF proximities. In this work, we introduce the generalized PF model, thereby extending RF proximities to all contexts in which supervised distance-based machine learning can occur. Additionally, we introduce a variant of the PF model for regression tasks. We also introduce the notion of using the generalized PF model as a meta-learning framework, extending supervised imputation capability to any pre-trained classifier. We experimentally demonstrate the unique advantages of the generalized PF model compared with both the RF model and the $k$-nearest neighbors model.

Self-Supervised Temporal Super-Resolution of Energy Data using Generative Adversarial Transformer 2025-11-19
Show

To bridge the temporal granularity gap in energy network design and operation based on Energy System Models, resampling of time series is required. While conventional upsampling methods are computationally efficient, they often result in significant information loss or increased noise. Advanced models such as time series generation models, Super-Resolution models and imputation models show potential, but also face fundamental challenges. The goal of time series generative models is to learn the distribution of the original data to generate high-resolution series with similar statistical characteristics. This is not entirely consistent with the definition of upsampling. Time series Super-Resolution models or imputation models can degrade the accuracy of upsampling because the input low-resolution time series are sparse and may have insufficient context. Moreover, such models usually rely on supervised learning paradigms. This presents a fundamental application paradox: their training requires the high-resolution time series that is intrinsically absent in upsampling application scenarios. To address the mentioned upsampling issue, this paper introduces a new method utilizing Generative Adversarial Transformers (GATs), which can be trained without access to any ground-truth high-resolution data. Compared with conventional interpolation methods, the introduced method can reduce the root mean square error (RMSE) of upsampling tasks by 10%, and the accuracy of a model predictive control (MPC) application scenario is improved by 13%.

PAST: A Primary-Auxiliary Spatio-Temporal Network for Traffic Time Series Imputation 2025-11-17
Show

Traffic time series imputation is crucial for the safety and reliability of intelligent transportation systems, while diverse types of missing data, including random, fiber, and block missing make the imputation task challenging. Existing models often focus on disentangling and separately modeling spatial and temporal patterns based on relationships between data points. However, these approaches struggle to adapt to the random missing positions, and fail to learn long-term and large-scale dependencies, which are essential in extensive missing conditions. In this paper, patterns are categorized into two types to handle various missing data conditions: primary patterns, which originate from internal relationships between data points, and auxiliary patterns, influenced by external factors like timestamps and node attributes. Accordingly, we propose the Primary-Auxiliary Spatio-Temporal network (PAST). It comprises a graph-integrated module (GIM) and a cross-gated module (CGM). GIM captures primary patterns via dynamic graphs with interval-aware dropout and multi-order convolutions, and CGM extracts auxiliary patterns through bidirectional gating on embedded external features. The two modules interact via shared hidden vectors and are trained under an ensemble self-supervised framework. Experiments on three datasets under 27 missing data conditions demonstrate that the imputation accuracy of PAST outperforms seven state-of-the-art baselines by up to 26.2% in RMSE and 31.6% in MAE.

Beyond Observations: Reconstruction Error-Guided Irregularly Sampled Time Series Representation Learning 2025-11-15
Show

Irregularly sampled time series (ISTS), characterized by non-uniform time intervals with natural missingness, are prevalent in real-world applications. Existing approaches for ISTS modeling primarily rely on observed values to impute unobserved ones or infer latent dynamics. However, these methods overlook a critical source of learning signal: the reconstruction error inherently produced during model training. Such error implicitly reflects how well a model captures the underlying data structure and can serve as an informative proxy for unobserved values. To exploit this insight, we propose iTimER, a simple yet effective self-supervised pre-training framework for ISTS representation learning. iTimER models the distribution of reconstruction errors over observed values and generates pseudo-observations for unobserved timestamps through a mixup strategy between sampled errors and the last available observations. This transforms unobserved timestamps into noise-aware training targets, enabling meaningful reconstruction signals. A Wasserstein metric aligns reconstruction error distributions between observed and pseudo-observed regions, while a contrastive learning objective enhances the discriminability of learned representations. Extensive experiments on classification, interpolation, and forecasting tasks demonstrate that iTimER consistently outperforms state-of-the-art methods under the ISTS setting.

Accep...

Accepted by AAAI 2026

CSAI: Conditional Self-Attention Imputation for Healthcare Time-series 2025-11-11
Show

We introduce the Conditional Self-Attention Imputation (CSAI) model, a novel recurrent neural network architecture designed to address the challenges of complex missing data patterns in multivariate time series derived from hospital electronic health records (EHRs). CSAI extends state-of-the-art neural network-based imputation by introducing key modifications specific to EHR data: a) attention-based hidden state initialisation to capture both long- and short-range temporal dependencies prevalent in EHRs, b) domain-informed temporal decay to mimic clinical data recording patterns, and c) a non-uniform masking strategy that models non-random missingness by calibrating weights according to both temporal and cross-sectional data characteristics. Comprehensive evaluation across four EHR benchmark datasets demonstrates CSAI's effectiveness compared to state-of-the-art architectures in data restoration and downstream tasks. CSAI is integrated into PyPOTS, an open-source Python toolbox designed for machine learning tasks on partially observed time series. This work significantly advances the state of neural network imputation applied to EHRs by more closely aligning algorithmic imputation with clinical realities.

IBMA: An Imputation-Based Mixup Augmentation Using Self-Supervised Learning for Time Series Data 2025-11-11
Show

Data augmentation in time series forecasting plays a crucial role in enhancing model performance by introducing variability while maintaining the underlying temporal patterns. However, time series data offers fewer augmentation strategies compared to fields such as image or text, with advanced techniques like Mixup rarely being used. In this work, we propose a novel approach, Imputation-Based Mixup Augmentation (IBMA), which combines Imputation-Augmented data with Mixup augmentation to bolster model generalization and improve forecasting performance. We evaluate the effectiveness of this method across several forecasting models, including DLinear (MLP), TimesNet (CNN), and iTrainformer (Transformer), these models represent some of the most recent advances in time series forecasting. Our experiments, conducted on four datasets (ETTh1, ETTh2, ETTm1, ETTm2) and compared against eight other augmentation techniques, demonstrate that IBMA consistently enhances performance, achieving 22 improvements out of 24 instances, with 10 of those being the best performances, particularly with iTrainformer imputation.

9 pag...

9 pages, 1 figure, 1 table, accepted at the AAAI2025 conference

MoTM: Towards a Foundation Model for Time Series Imputation based on Continuous Modeling 2025-11-08
Show

Recent years have witnessed a growing interest for time series foundation models, with a strong emphasis on the forecasting task. Yet, the crucial task of out-of-domain imputation of missing values remains largely underexplored. We propose a first step to fill this gap by leveraging implicit neural representations (INRs). INRs model time series as continuous functions and naturally handle various missing data scenarios and sampling rates. While they have shown strong performance within specific distributions, they struggle under distribution shifts. To address this, we introduce MoTM (Mixture of Timeflow Models), a step toward a foundation model for time series imputation. Building on the idea that a new time series is a mixture of previously seen patterns, MoTM combines a basis of INRs, each trained independently on a distinct family of time series, with a ridge regressor that adapts to the observed context at inference. We demonstrate robust in-domain and out-of-domain generalization across diverse imputation scenarios (e.g., block and pointwise missingness, variable sampling rates), paving the way for adaptable foundation imputation models.

10th ...

10th Workshop on Advanced Analytics and Learning on Temporal Data (AALTD), ECML 2025

Are Time-Indexed Foundation Models the Future of Time Series Imputation? 2025-11-08
Show

Foundation models for time series imputation remain largely unexplored. Recently, two such models, TabPFN-TS and MoTM, have emerged. These models share a common philosophy that places them within the family of time-indexed foundation models. This paper presents the first large-scale empirical study of these models for zero-shot imputation, which enables missing value recovery without retraining across a wide range of scenarios. We conduct extensive univariate experiments across 33 out-of-domain datasets (approximately 1.3M imputation windows) and evaluate their ability to integrate covariates at inference time to improve accuracy without fine-tuning. Our results demonstrate that time-indexed foundation models are a powerful and practical step toward achieving general-purpose, zero-shot imputation for real-world time series.

HAGI++: Head-Assisted Gaze Imputation and Generation 2025-11-04
Show

Mobile eye tracking plays a vital role in capturing human visual attention across both real-world and extended reality (XR) environments, making it an essential tool for applications ranging from behavioural research to human-computer interaction. However, missing values due to blinks, pupil detection errors, or illumination changes pose significant challenges for further gaze data analysis. To address this challenge, we introduce HAGI++ - a multi-modal diffusion-based approach for gaze data imputation that, for the first time, uses the integrated head orientation sensors to exploit the inherent correlation between head and eye movements. HAGI++ employs a transformer-based diffusion model to learn cross-modal dependencies between eye and head representations and can be readily extended to incorporate additional body movements. Extensive evaluations on the large-scale Nymeria, Ego-Exo4D, and HOT3D datasets demonstrate that HAGI++ consistently outperforms conventional interpolation methods and deep learning-based time-series imputation baselines in gaze imputation. Furthermore, statistical analyses confirm that HAGI++ produces gaze velocity distributions that closely match actual human gaze behaviour, ensuring more realistic gaze imputations. Moreover, by incorporating wrist motion captured from commercial wearable devices, HAGI++ surpasses prior methods that rely on full-body motion capture in the extreme case of 100% missing gaze data (pure gaze generation). Our method paves the way for more complete and accurate eye gaze recordings in real-world settings and has significant potential for enhancing gaze-based analysis and interaction across various application domains.

Exten...

Extended version of our UIST'25 paper "HAGI: Head-Assisted Gaze Imputation for Mobile Eye Trackers"

Revisiting Multivariate Time Series Forecasting with Missing Values 2025-11-03
Show

Missing values are common in real-world time series, and multivariate time series forecasting with missing values (MTSF-M) has become a crucial area of research for ensuring reliable predictions. To address the challenge of missing data, current approaches have developed an imputation-then-prediction framework that uses imputation modules to fill in missing values, followed by forecasting on the imputed data. However, this framework overlooks a critical issue: there is no ground truth for the missing values, making the imputation process susceptible to errors that can degrade prediction accuracy. In this paper, we conduct a systematic empirical study and reveal that imputation without direct supervision can corrupt the underlying data distribution and actively degrade prediction accuracy. To address this, we propose a paradigm shift that moves away from imputation and directly predicts from the partially observed time series. We introduce Consistency-Regularized Information Bottleneck (CRIB), a novel framework built on the Information Bottleneck principle. CRIB combines a unified-variate attention mechanism with a consistency regularization scheme to learn robust representations that filter out noise introduced by missing values while preserving essential predictive signals. Comprehensive experiments on four real-world datasets demonstrate the effectiveness of CRIB, which predicts accurately even under high missing rates. Our code is available in https://github.com/Muyiiiii/CRIB.

Closing Gaps: An Imputation Analysis of ICU Vital Signs 2025-10-28
Show

As more Intensive Care Unit (ICU) data becomes available, the interest in developing clinical prediction models to improve healthcare protocols increases. However, the lack of data quality still hinders clinical prediction using Machine Learning (ML). Many vital sign measurements, such as heart rate, contain sizeable missing segments, leaving gaps in the data that could negatively impact prediction performance. Previous works have introduced numerous time-series imputation techniques. Nevertheless, more comprehensive work is needed to compare a representative set of methods for imputing ICU vital signs and determine the best practice. In reality, ad-hoc imputation techniques that could decrease prediction accuracy, like zero imputation, are still used. In this work, we compare established imputation techniques to guide researchers in improving the performance of clinical prediction models by selecting the most accurate imputation technique. We introduce an extensible and reusable benchmark with currently 15 imputation and 4 amputation methods, created for benchmarking on major ICU datasets. We hope to provide a comparative basis and facilitate further ML development to bring more models into clinical practice.

Preprint
CPSLint: A Domain-Specific Language Providing Data Validation and Sanitisation for Industrial Cyber-Physical Systems 2025-10-21
Show

Raw datasets are often too large and unstructured to work with directly, and require a data preparation process. The domain of industrial Cyber-Physical Systems (CPS) is no exception, as raw data typically consists of large amounts of time-series data logging the system's status in regular time intervals. Such data has to be sanity checked and preprocessed to be consumable by data-centric workflows. We introduce CPSLint, a Domain-Specific Language designed to provide data preparation for industrial CPS. We build up on the fact that many raw data collections in the CPS domain require similar actions to render them suitable for Machine-Learning (ML) solutions, e.g., Fault Detection and Identification (FDI) workflows, yet still vary enough to hope for one universally applicable solution. CPSLint's main features include type checking and enforcing constraints through validation and remediation for data columns, such as imputing missing data from surrounding rows. More advanced features cover inference of extra CPS-specific data structures, both column-wise and row-wise. For instance, as row-wise structures, descriptive execution phases are an effective method of data compartmentalisation are extracted and prepared for ML-assisted FDI workflows. We demonstrate CPSLint's features through a proof of concept implementation.

Unlocking the Power of Mixture-of-Experts for Task-Aware Time Series Analytics 2025-10-20
Show

Time Series Analysis is widely used in various real-world applications such as weather forecasting, financial fraud detection, imputation for missing data in IoT systems, and classification for action recognization. Mixture-of-Experts (MoE), as a powerful architecture, though demonstrating effectiveness in NLP, still falls short in adapting to versatile tasks in time series analytics due to its task-agnostic router and the lack of capability in modeling channel correlations. In this study, we propose a novel, general MoE-based time series framework called PatchMoE to support the intricate ``knowledge'' utilization for distinct tasks, thus task-aware. Based on the observation that hierarchical representations often vary across tasks, e.g., forecasting vs. classification, we propose a Recurrent Noisy Gating to utilize the hierarchical information in routing, thus obtaining task-sepcific capability. And the routing strategy is operated on time series tokens in both temporal and channel dimensions, and encouraged by a meticulously designed Temporal & Channel Load Balancing Loss to model the intricate temporal and channel correlations. Comprehensive experiments on five downstream tasks demonstrate the state-of-the-art performance of PatchMoE.

Spatiotemporal Besov Priors for Bayesian Inverse Problems 2025-10-17
Show

Fast development in science and technology has driven the need for proper statistical tools to capture special data features such as abrupt changes or sharp contrast. Many inverse problems in data science require spatiotemporal solutions derived from a sequence of time-dependent objects with these spatial features, e.g., the dynamic reconstruction of computerized tomography (CT) images with edges. Conventional methods based on Gaussian processes (GP) often fall short in providing satisfactory solutions since they tend to offer oversmooth priors. Recently, the Besov process (BP), defined by wavelet expansions with random coefficients, has emerged as a more suitable prior for Bayesian inverse problems of this nature. While BP excels in handling spatial inhomogeneity, it does not automatically incorporate temporal correlation inherited in the dynamically changing objects. In this paper, we generalize BP to a novel spatiotemporal Besov process (STBP) by replacing the random coefficients in the series expansion with stochastic time functions as Q-exponential process (Q-EP) which governs the temporal correlation structure. We thoroughly investigate the mathematical and statistical properties of STBP. Simulations, two limited-angle CT reconstruction examples, a highly non-linear inverse problem involving Navier-Stokes equation, and a spatiotemporal temperature imputation problem are used to demonstrate the advantage of the proposed STBP compared with the classic STGP and a time-uncorrelated approach.

64 pages, 17 figures
Extending Prediction-Powered Inference through Conformal Prediction 2025-10-17
Show

Prediction-powered inference is a recent methodology for the safe use of black-box ML models to impute missing data, strengthening inference of statistical parameters. However, many applications require strong properties besides valid inference, such as privacy, robustness or validity under continuous distribution shifts; deriving prediction-powered methods with such guarantees is generally an arduous process, and has to be done case by case. In this paper, we resolve this issue by connecting prediction-powered inference with conformal prediction: by performing imputation through a calibrated conformal set-predictor, we attain validity while achieving additional guarantees in a natural manner. We instantiate our procedure for the inference of means, Z- and M-estimation, as well as e-values and e-value-based procedures. Furthermore, in the case of e-values, ours is the first general prediction-powered procedure that operates off-line. We demonstrate these advantages by applying our method on private and time-series data. Both tasks are nontrivial within the standard prediction-powered framework but become natural under our method.

CauchyNet: Compact and Data-Efficient Learning using Holomorphic Activation Functions 2025-10-11
Show

A novel neural network inspired by Cauchy's integral formula, is proposed for function approximation tasks that include time series forecasting, missing data imputation, etc. Hence, the novel neural network is named CauchyNet. By embedding real-valued data into the complex plane, CauchyNet efficiently captures complex temporal dependencies, surpassing traditional real-valued models in both predictive performance and computational efficiency. Grounded in Cauchy's integral formula and supported by the universal approximation theorem, CauchyNet offers strong theoretical guarantees for function approximation. The architecture incorporates complex-valued activation functions, enabling robust learning from incomplete data while maintaining a compact parameter footprint and reducing computational overhead. Through extensive experiments in diverse domains, including transportation, energy consumption, and epidemiological data, CauchyNet consistently outperforms state-of-the-art models in predictive accuracy, often achieving a 50% lower mean absolute error with fewer parameters. These findings highlight CauchyNet's potential as an effective and efficient tool for data-driven predictive modeling, particularly in resource-constrained and data-scarce environments.

CarbonX: An Open-Source Tool for Computational Decarbonization Using Time Series Foundation Models 2025-10-10
Show

Computational decarbonization aims to reduce carbon emissions in computing and societal systems such as data centers, transportation, and built environments. This requires accurate, fine-grained carbon intensity forecasts, yet existing tools have several key limitations: (i) they require grid-specific electricity mix data, restricting use where such information is unavailable; (ii) they depend on separate grid-specific models that make it challenging to provide global coverage; and (iii) they provide forecasts without uncertainty estimates, limiting reliability for downstream carbon-aware applications. In this paper, we present CarbonX, an open-source tool that leverages Time Series Foundation Models (TSFMs) for a range of decarbonization tasks. CarbonX utilizes the versatility of TSFMs to provide strong performance across multiple tasks, such as carbon intensity forecasting and imputation, and across diverse grids. Using only historical carbon intensity data and a single general model, our tool achieves a zero-shot forecasting Mean Absolute Percentage Error (MAPE) of 15.82% across 214 grids worldwide. Across 13 benchmark grids, CarbonX performance is comparable with the current state-of-the-art, with an average MAPE of 9.59% and tail forecasting MAPE of 16.54%, while also providing prediction intervals with 95% coverage. CarbonX can provide forecasts for up to 21 days with minimal accuracy degradation. Further, when fully fine-tuned, CarbonX outperforms the statistical baselines by 1.2--3.9X on the imputation task. Overall, these results demonstrate that CarbonX can be used easily on any grid with limited data and still deliver strong performance, making it a practical tool for global-scale decarbonization.

Updat...

Update: Corrected PDF rendering error on page 10 (caption of Figure 5 was previously overlapping with paper text)

Improving Anomaly Detection in Industrial Time Series: The Role of Segmentation and Heterogeneous Ensemble 2025-10-10
Show

Concerning machine learning, segmentation models can identify state changes within time series, facilitating the detection of transitions between normal and anomalous conditions. Specific techniques such as Change Point Detection (CPD), particularly algorithms like ChangeFinder, have been successfully applied to segment time series and improve anomaly detection by reducing temporal uncertainty, especially in multivariate environments. In this work, we explored how the integration of segmentation techniques, combined with a heterogeneous ensemble, can enhance anomaly detection in an industrial production context. The results show that applying segmentation as a pre-processing step before selecting heterogeneous ensemble algorithms provided a significant advantage in our case study, improving the AUC-ROC metric from 0.8599 (achieved with a PCA and LSTM ensemble) to 0.9760 (achieved with Random Forest and XGBoost). This improvement is imputable to the ability of segmentation to reduce temporal ambiguity and facilitate the learning process of supervised algorithms. In our future work, we intend to assess the benefit of introducing weighted features derived from the study of change points, combined with segmentation and the use of heterogeneous ensembles, to further optimize model performance in early anomaly detection.

Confe...

Conference paper. Under publication process at CODIT 2025

Glocal Information Bottleneck for Time Series Imputation 2025-10-06
Show

Time Series Imputation (TSI), which aims to recover missing values in temporal data, remains a fundamental challenge due to the complex and often high-rate missingness in real-world scenarios. Existing models typically optimize the point-wise reconstruction loss, focusing on recovering numerical values (local information). However, we observe that under high missing rates, these models still perform well in the training phase yet produce poor imputations and distorted latent representation distributions (global information) in the inference phase. This reveals a critical optimization dilemma: current objectives lack global guidance, leading models to overfit local noise and fail to capture global information of the data. To address this issue, we propose a new training paradigm, Glocal Information Bottleneck (Glocal-IB). Glocal-IB is model-agnostic and extends the standard IB framework by introducing a Global Alignment loss, derived from a tractable mutual information approximation. This loss aligns the latent representations of masked inputs with those of their originally observed counterparts. It helps the model retain global structure and local details while suppressing noise caused by missing values, giving rise to better generalization under high missingness. Extensive experiments on nine datasets confirm that Glocal-IB leads to consistently improved performance and aligned latent representations under missingness. Our code implementation is available in https://github.com/Muyiiiii/NeurIPS-25-Glocal-IB.

Diffusion Transformers for Imputation: Statistical Efficiency and Uncertainty Quantification 2025-10-02
Show

Imputation methods play a critical role in enhancing the quality of practical time-series data, which often suffer from pervasive missing values. Recently, diffusion-based generative imputation methods have demonstrated remarkable success compared to autoregressive and conventional statistical approaches. Despite their empirical success, the theoretical understanding of how well diffusion-based models capture complex spatial and temporal dependencies between the missing values and observed ones remains limited. Our work addresses this gap by investigating the statistical efficiency of conditional diffusion transformers for imputation and quantifying the uncertainty in missing values. Specifically, we derive statistical sample complexity bounds based on a novel approximation theory for conditional score functions using transformers, and, through this, construct tight confidence regions for missing values. Our findings also reveal that the efficiency and accuracy of imputation are significantly influenced by the missing patterns. Furthermore, we validate these theoretical insights through simulation and propose a mixed-masking training strategy to enhance the imputation performance.

49 pa...

49 pages, 4 figures. Accepted as a poster at NeurIPS 2025

Label-Guided Imputation via Forest-Based Proximities for Improved Time Series Classification 2025-09-26
Show

Missing data is a common problem in time series data. Most methods for imputation ignore label information pertaining to the time series even if that information exists. In this paper, we provide a framework for missing data imputation in the context of time series classification, where each time series is associated with a categorical label. We define a means of imputing missing values conditional upon labels, the method being guided by powerful, existing supervised models designed for high accuracy in this task. From each model, we extract a tree-based proximity measure from which imputation can be applied. We show that imputation using this method generally provides richer information leading to higher classification accuracies, despite the imputed values differing from the true values.

6 pag...

6 pages, one figure. Accepted at ICMLA 2025

Lossless Compression: A New Benchmark for Time Series Model Evaluation 2025-09-25
Show

The evaluation of time series models has traditionally focused on four canonical tasks: forecasting, imputation, anomaly detection, and classification. While these tasks have driven significant progress, they primarily assess task-specific performance and do not rigorously measure whether a model captures the full generative distribution of the data. We introduce lossless compression as a new paradigm for evaluating time series models, grounded in Shannon's source coding theorem. This perspective establishes a direct equivalence between optimal compression length and the negative log-likelihood, providing a strict and unified information-theoretic criterion for modeling capacity. Then We define a standardized evaluation protocol and metrics. We further propose and open-source a comprehensive evaluation framework TSCom-Bench, which enables the rapid adaptation of time series models as backbones for lossless compression. Experiments across diverse datasets on state-of-the-art models, including TimeXer, iTransformer, and PatchTST, demonstrate that compression reveals distributional weaknesses overlooked by classic benchmarks. These findings position lossless compression as a principled task that complements and extends existing evaluation for time series modeling.

24 pages
Federated Markov Imputation: Privacy-Preserving Temporal Imputation in Multi-Centric ICU Environments 2025-09-25
Show

Missing data is a persistent challenge in federated learning on electronic health records, particularly when institutions collect time-series data at varying temporal granularities. To address this, we propose Federated Markov Imputation (FMI), a privacy-preserving method that enables Intensive Care Units (ICUs) to collaboratively build global transition models for temporal imputation. We evaluate FMI on a real-world sepsis onset prediction task using the MIMIC-IV dataset and show that it outperforms local imputation baselines, especially in scenarios with irregular sampling intervals across ICUs.

Accep...

Accepted at the 1st International ECML-PKDD Workshop-Tutorial on Learning on Real and Synthetic Medical Time Series Data (MED-TIME)

MAGIC: Multi-task Gaussian process for joint imputation and classification in healthcare time series 2025-09-23
Show

Time series analysis has emerged as an important tool for improving patient diagnosis and management in healthcare applications. However, these applications commonly face two critical challenges: time misalignment and data sparsity. Traditional approaches address these issues through a two-step process of imputation followed by prediction. We propose MAGIC (Multi-tAsk Gaussian Process for Imputation and Classification), a novel unified framework that simultaneously performs class-informed missing value imputation and label prediction within a hierarchical multi-task Gaussian process coupled with functional logistic regression. To handle intractable likelihood components, MAGIC employs Taylor expansion approximations with bounded error analysis, and parameter estimation is performed using EM algorithm with block coordinate optimization supported by convergence analysis. We validate MAGIC through two healthcare applications: prediction of post-traumatic headache improvement following mild traumatic brain injury and prediction of in-hospital mortality within 48 hours after ICU admission. In both applications, MAGIC achieves superior predictive accuracy compared to existing methods. The ability to generate real-time and accurate predictions with limited samples facilitates early clinical assessment and treatment planning, enabling healthcare providers to make more informed treatment decisions.

36 pages, 4 figures
A Structure-Preserving Assessment of VBPBB for Time Series Imputation Under Periodic Trends, Noise, and Missingness Mechanisms 2025-09-21
Show

Incomplete time series data present significant challenges to accurate statistical analysis, particularly when the underlying data exhibit periodic structures such as seasonal or monthly trends. Traditional imputation methods often fail to preserve these temporal dynamics, leading to biased estimates and reduced analytical integrity. In this study, we introduce and evaluate a structure-preserving imputation framework that incorporates significant periodic components into the multiple imputation process via the Variable Bandpass Periodic Block Bootstrap (VBPBB). We simulate time series data containing annual and monthly periodicities and introduce varying levels of noise representing low, moderate, and high signal-to-noise scenarios to mimic real world variability. Missing data are introduced under Missing Completely at Random (MCAR) mechanisms across a range of missingness proportions (5% - 70%). VBPBB is used to extract dominant periodic components at multiple frequencies, which are then bootstrapped and included as covariates in the Amelia II multiple imputation model. The performance of this periodicity-enhanced approach is compared against standard imputation methods that do not incorporate temporal structure. Our results demonstrate that the VBPBB-enhanced imputation framework consistently outperforms conventional approaches across all tested conditions, with the greatest performance gains observed in high-noise settings and when multiple periodic components are retained. This study addresses critical limitations in existing imputation techniques by offering a flexible, periodicity-aware solution that preserves temporal structure in incomplete time series. We further explore the methodological implications of incorporating frequency-based components and discuss future directions for advancing robust imputation in temporally correlated data environments.

24 pa...

24 pages, 6 figure and 3 tables

Diffusion-Based Generation and Imputation of Driving Scenarios from Limited Vehicle CAN Data 2025-09-15
Show

Training deep learning methods on small time series datasets that also include corrupted samples is challenging. Diffusion models have shown to be effective to generate realistic and synthetic data, and correct corrupted samples through imputation. In this context, this paper focuses on generating synthetic yet realistic samples of automotive time series data. We show that denoising diffusion probabilistic models (DDPMs) can effectively solve this task by applying them to a challenging vehicle CAN-dataset with long-term data and a limited number of samples. Therefore, we propose a hybrid generative approach that combines autoregressive and non-autoregressive techniques. We evaluate our approach with two recently proposed DDPM architectures for time series generation, for which we propose several improvements. To evaluate the generated samples, we propose three metrics that quantify physical correctness and test track adherence. Our best model is able to outperform even the training data in terms of physical correctness, while showing plausible driving behavior. Finally, we use our best model to successfully impute physically implausible regions in the training data, thereby improving the data quality.

Prepr...

Preprint, Paper has been accepted at ITSC 2025

Sparse Coding Representation of 2-way Data 2025-09-12
Show

Sparse dictionary coding represents signals as linear combinations of a few dictionary atoms. It has been applied to images, time series, graph signals and multi-way spatio-temporal data by jointly employing temporal and spatial dictionaries. Data-agnostic analytical dictionaries, such as the discrete Fourier transform, wavelets and graph Fourier, have seen wide adoption due to efficient implementations and good practical performance. On the other hand, dictionaries learned from data offer sparser and more accurate solutions but require learning of both the dictionaries and the coding coefficients. This becomes especially challenging for multi-dictionary scenarios since encoding coefficients correspond to all atom combinations from the dictionaries. To address this challenge, we propose a low-rank coding model for 2-dictionary scenarios and study its data complexity. Namely, we establish a bound on the number of samples needed to learn dictionaries that generalize to unseen samples from the same distribution. We propose a convex relaxation solution, called AODL, whose exact solution we show also solves the original problem. We then solve this relaxation via alternating optimization between the sparse coding matrices and the learned dictionaries, which we prove to be convergent. We demonstrate its quality for data reconstruction and missing value imputation in both synthetic and real-world datasets. For a fixed reconstruction quality, AODL learns up to 90% sparser solutions compared to non-low-rank and analytical (fixed) dictionary baselines. In addition, the learned dictionaries reveal interpretable insights into patterns present within the samples used for training.

AdaWaveNet: Adaptive Wavelet Network for Time Series Analysis 2025-09-11
Show

Time series data analysis is a critical component in various domains such as finance, healthcare, and meteorology. Despite the progress in deep learning for time series analysis, there remains a challenge in addressing the non-stationary nature of time series data. Traditional models, which are built on the assumption of constant statistical properties over time, often struggle to capture the temporal dynamics in realistic time series, resulting in bias and error in time series analysis. This paper introduces the Adaptive Wavelet Network (AdaWaveNet), a novel approach that employs Adaptive Wavelet Transformation for multi-scale analysis of non-stationary time series data. AdaWaveNet designed a lifting scheme-based wavelet decomposition and construction mechanism for adaptive and learnable wavelet transforms, which offers enhanced flexibility and robustness in analysis. We conduct extensive experiments on 10 datasets across 3 different tasks, including forecasting, imputation, and a newly established super-resolution task. The evaluations demonstrate the effectiveness of AdaWaveNet over existing methods in all three tasks, which illustrates its potential in various real-world applications.

Trans...

Transactions on Machine Learning Research; code: https://github.com/comp-well-org/AdaWaveNet ; TMLR review: https://openreview.net/forum?id=m4bE9Y9FlX

IBN: An Interpretable Bidirectional-Modeling Network for Multivariate Time Series Forecasting with Variable Missing 2025-09-09
Show

Multivariate time series forecasting (MTSF) often faces challenges from missing variables, which hinder conventional spatial-temporal graph neural networks in modeling inter-variable correlations. While GinAR addresses variable missing using attention-based imputation and adaptive graph learning for the first time, it lacks interpretability and fails to capture more latent temporal patterns due to its simple recursive units (RUs). To overcome these limitations, we propose the Interpretable Bidirectional-modeling Network (IBN), integrating Uncertainty-Aware Interpolation (UAI) and Gaussian kernel-based Graph Convolution (GGCN). IBN estimates the uncertainty of reconstructed values using MC Dropout and applies an uncertainty-weighted strategy to mitigate high-risk reconstructions. GGCN explicitly models spatial correlations among variables, while a bidirectional RU enhances temporal dependency modeling. Extensive experiments show that IBN achieves state-of-the-art forecasting performance under various missing-rate scenarios, providing a more reliable and interpretable framework for MTSF with missing variables. Code is available at: https://github.com/zhangth1211/NICLab-IBN.

Investigating a Model-Agnostic and Imputation-Free Approach for Irregularly-Sampled Multivariate Time-Series Modeling 2025-09-03
Show

Modeling Irregularly-sampled and Multivariate Time Series (IMTS) is crucial across a variety of applications where different sets of variates may be missing at different time-steps due to sensor malfunctions or high data acquisition costs. Existing approaches for IMTS either consider a two-stage impute-then-model framework or involve specialized architectures specific to a particular model and task. We perform a series of experiments to derive novel insights about the performance of IMTS methods on a variety of semi-synthetic and real-world datasets for both classification and forecasting. We also introduce Missing Feature-aware Time Series Modeling (MissTSM) or MissTSM, a novel model-agnostic and imputation-free approach for IMTS modeling. We show that MissTSM shows competitive performance compared to other IMTS approaches, especially when the amount of missing values is large and the data lacks simplistic periodic structures - conditions common to real-world IMTS applications.

21 pages
STDiff: A State Transition Diffusion Framework for Time Series Imputation in Industrial Systems 2025-08-28
Show

Most deep learning methods for imputing missing values treat the task as completing patterns within a fixed time window. This assumption often fails in industrial systems, where dynamics are driven by control actions, are highly non-stationary, and can experience long, uninterrupted gaps. We propose STDiff, which reframes imputation as learning how the system evolves from one state to the next. STDiff uses a conditional denoising diffusion model with a causal bias aligned to control theory, generating missing values step-by-step based on the most recent known state and relevant control or environmental inputs. On a public wastewater treatment dataset with simulated missing blocks, STDiff consistently achieves the lowest errors, with its advantage increasing for longer gaps. On a raw industrial dataset with substantial real gaps, it produces trajectories that remain dynamically plausible, in contrast to window-based models that tend to flatten or over-smooth. These results support dynamics-aware, explicitly conditioned imputation as a robust approach for industrial time series, and we discuss computational trade-offs and extensions to broader domains.

pyFAST: A Modular PyTorch Framework for Time Series Modeling with Multi-source and Sparse Data 2025-08-26
Show

Modern time series analysis demands frameworks that are flexible, efficient, and extensible. However, many existing Python libraries exhibit limitations in modularity and in their native support for irregular, multi-source, or sparse data. We introduce pyFAST, a research-oriented PyTorch framework that explicitly decouples data processing from model computation, fostering a cleaner separation of concerns and facilitating rapid experimentation. Its data engine is engineered for complex scenarios, supporting multi-source loading, protein sequence handling, efficient sequence- and patch-level padding, dynamic normalization, and mask-based modeling for both imputation and forecasting. pyFAST integrates LLM-inspired architectures for the alignment-free fusion of sparse data sources and offers native sparse metrics, specialized loss functions, and flexible exogenous data fusion. Training utilities include batch-based streaming aggregation for evaluation and device synergy to maximize computational efficiency. A comprehensive suite of classical and deep learning models (Linears, CNNs, RNNs, Transformers, and GNNs) is provided within a modular architecture that encourages extension. Released under the MIT license at GitHub, pyFAST provides a compact yet powerful platform for advancing time series research and applications.

FlexTSF: A Flexible Forecasting Model for Time Series with Variable Regularities 2025-08-25
Show

Forecasting time series with irregular temporal structures remains challenging for universal pre-trained models. Existing approaches often assume regular sampling or depend heavily on imputation, limiting their applicability in real-world scenarios where irregularities are prevalent due to diverse sensing devices and recording practices. We introduce FlexTSF, a flexible forecasting model specifically designed for time series data with variable temporal regularities. At its foundation lies the IVP Patcher, a continuous-time patching module leveraging Initial Value Problems (IVPs) to inherently support uneven time intervals, variable sequence lengths, and missing values. FlexTSF employs a decoder-only architecture that integrates normalized timestamp inputs and domain-specific statistics through a specialized causal self-attention mechanism, enabling adaptability across domains. Extensive experiments on 16 datasets demonstrate FlexTSF's effectiveness, significantly outperforming existing models in classic forecasting scenarios, zero-shot generalization, and low-resource fine-tuning conditions. Ablation studies confirm the contributions of each design component and the advantage of not relying on predefined fixed patch lengths.

TANDEM: Temporal Attention-guided Neural Differential Equations for Missingness in Time Series Classification 2025-08-24
Show

Handling missing data in time series classification remains a significant challenge in various domains. Traditional methods often rely on imputation, which may introduce bias or fail to capture the underlying temporal dynamics. In this paper, we propose TANDEM (Temporal Attention-guided Neural Differential Equations for Missingness), an attention-guided neural differential equation framework that effectively classifies time series data with missing values. Our approach integrates raw observation, interpolated control path, and continuous latent dynamics through a novel attention mechanism, allowing the model to focus on the most informative aspects of the data. We evaluate TANDEM on 30 benchmark datasets and a real-world medical dataset, demonstrating its superiority over existing state-of-the-art methods. Our framework not only improves classification accuracy but also provides insights into the handling of missing data, making it a valuable tool in practice.

SSD-TS: Exploring the Potential of Linear State Space Models for Diffusion Models in Time Series Imputation 2025-08-19
Show

Probabilistic time series imputation has been widely applied in real-world scenarios due to its ability for uncertainty estimation and denoising diffusion probabilistic models~(DDPMs) have achieved great success in probabilistic time series imputation tasks with its power to model complex distributions. However, current DDPM-based probabilistic time series imputation methodologies are confronted with two types of challenges: 1)\textit{The backbone modules of the denoising parts are not capable of achieving sequence modeling with low time complexity.} 2)~\textit{The architecture of denoising modules can not handle the dependencies in the time series data effectively.} To address the first challenge, we explore the potential of state space model, namely Mamba, as the backbone denoising module for DDPMs. To tackle the second challenge, we carefully devise several SSM-based blocks for time series data modeling. Experimental results demonstrate that our approach can achieve state-of-the-art time series imputation results on multiple real-world datasets. Our datasets and code are available at \href{https://github.com/decisionintelligence/SSD-TS/}{https://github.com/decisionintelligence/SSD-TS/}

KDD' 25
Enhancing Transformer-Based Foundation Models for Time Series Forecasting via Bagging, Boosting and Statistical Ensembles 2025-08-18
Show

Time series foundation models (TSFMs) such as Lag-Llama, TimeGPT, Chronos, MOMENT, UniTS, and TimesFM have shown strong generalization and zero-shot capabilities for time series forecasting, anomaly detection, classification, and imputation. Despite these advantages, their predictions still suffer from variance, domain-specific bias, and limited uncertainty quantification when deployed on real operational data. This paper investigates a suite of statistical and ensemble-based enhancement techniques, including bootstrap-based bagging, regression-based stacking, prediction interval construction, statistical residual modeling, and iterative error feedback, to improve robustness and accuracy. Using the Belgium Electricity Short-Term Load Forecasting dataset as a case study, we demonstrate that the proposed hybrids consistently outperform standalone foundation models across multiple horizons. Regression-based ensembles achieve the lowest mean squared error; bootstrap aggregation markedly reduces long-context errors; residual modeling corrects systematic bias; and the resulting prediction intervals achieve near nominal coverage with widths shrinking as context length increases. The results indicate that integrating statistical reasoning with modern foundation models yields measurable gains in accuracy, reliability, and interpretability for real-world time series applications.

Physics-Informed Diffusion Models for Unsupervised Anomaly Detection in Multivariate Time Series 2025-08-15
Show

We propose an unsupervised anomaly detection approach based on a physics-informed diffusion model for multivariate time series data. Over the past years, diffusion model has demonstrated its effectiveness in forecasting, imputation, generation, and anomaly detection in the time series domain. In this paper, we present a new approach for learning the physics-dependent temporal distribution of multivariate time series data using a weighted physics-informed loss during diffusion model training. A weighted physics-informed loss is constructed using a static weight schedule. This approach enables a diffusion model to accurately approximate underlying data distribution, which can influence the unsupervised anomaly detection performance. Our experiments on synthetic and real-world datasets show that physics-informed training improves the F1 score in anomaly detection; it generates better data diversity and log-likelihood. Our model outperforms baseline approaches, additionally, it surpasses prior physics-informed work and purely data-driven diffusion models on a synthetic dataset and one real-world dataset while remaining competitive on others.

16 pages, 5 figures
Federated Time Series Generation on Feature and Temporally Misaligned Data 2025-08-14
Show

Distributed time series data presents a challenge for federated learning, as clients often possess different feature sets and have misaligned time steps. Existing federated time series models are limited by the assumption of perfect temporal or feature alignment across clients. In this paper, we propose FedTDD, a novel federated time series diffusion model that jointly learns a synthesizer across clients. At the core of FedTDD is a novel data distillation and aggregation framework that reconciles the differences between clients by imputing the misaligned timesteps and features. In contrast to traditional federated learning, FedTDD learns the correlation across clients' time series through the exchange of local synthetic outputs instead of model parameters. A coordinator iteratively improves a global distiller network by leveraging shared knowledge from clients through the exchange of synthetic data. As the distiller becomes more refined over time, it subsequently enhances the quality of the clients' local feature estimates, allowing each client to then improve its local imputations for missing data using the latest, more accurate distiller. Experimental results on five datasets demonstrate FedTDD's effectiveness compared to centralized training, and the effectiveness of sharing synthetic outputs to transfer knowledge of local time series. Notably, FedTDD achieves 79.4% and 62.8% improvement over local training in Context-FID and Correlational scores.

Temporal Wasserstein Imputation: A Versatile Method for Time Series Imputation 2025-08-13
Show

Missing data can significantly hamper standard time series analysis, yet they occur frequently in applications. In this paper, we introduce temporal Wasserstein imputation, a novel method for imputing missing data in time series. Unlike most existing techniques, our approach is fully nonparametric, circumventing the need for model specification prior to imputation, making it suitable for empirical applications even with nonlinear dynamics. Its principled algorithmic implementation can seamlessly handle univariate or multivariate time series with any non-systematic missing pattern. In addition, the plausible range and side information of the missing entries (such as box constraints) can easily be incorporated. Furthermore, our method mitigates the distributional bias common among many existing approaches, ensuring more reliable downstream statistical analysis using the imputed series. We establish the convergence of an alternating minimization algorithm to critical points. We also provide conditions under which the marginal distributions of the underlying time series can be identified. Numerical experiments, including extensive simulations covering both linear and nonlinear time series and an analysis on a real-world groundwater dataset, corroborate the practical usefulness of the proposed method.

Matrix Factorization-Based Solar Spectral Irradiance Missing Data Imputation with Uncertainty Quantification 2025-08-06
Show

The solar spectral irradiance (SSI) depicts the spectral distribution of solar energy flux reaching the top of the Earth's atmosphere. The SSI data constitute a matrix with spectrally (rows) and temporally (columns) resolved solar energy flux measurements. The most recent SSI measurements have been made by NASA's Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) Spectral Irradiance Monitor (SIM) since March 2018. This data have considerable missing data due to both random factors and instrument downtime, a periodic trend related to the Sun's cyclical magnetic activity, and varying degrees of correlation among the spectra, some approaching unity. We propose a novel low-rank matrix factorization method that uses autoregressive regularization and periodic spline detrending to recover the missingness. The method is a two-step procedure, each of which tackles scattered and downtime missingness, respectively. We design efficient alternating algorithms to jointly estimate the model parameters. Moreover, we build a distribution-free uncertainty quantification method using conformal prediction. We validate the prediction interval coverage rates and assess the imputation accuracy against competing models such as Gaussian process regression and linear time series smoothing via numerical experiments.

Spatial Imputation Drives Cross-Domain Alignment for EEG Classification 2025-08-05
Show

Electroencephalogram (EEG) signal classification faces significant challenges due to data distribution shifts caused by heterogeneous electrode configurations, acquisition protocols, and hardware discrepancies across domains. This paper introduces IMAC, a novel channel-dependent mask and imputation self-supervised framework that formulates the alignment of cross-domain EEG data shifts as a spatial time series imputation task. To address heterogeneous electrode configurations in cross-domain scenarios, IMAC first standardizes different electrode layouts using a 3D-to-2D positional unification mapping strategy, establishing unified spatial representations. Unlike previous mask-based self-supervised representation learning methods, IMAC introduces spatio-temporal signal alignment. This involves constructing a channel-dependent mask and reconstruction task framed as a low-to-high resolution EEG spatial imputation problem. Consequently, this approach simulates cross-domain variations such as channel omissions and temporal instabilities, thus enabling the model to leverage the proposed imputer for robust signal alignment during inference. Furthermore, IMAC incorporates a disentangled structure that separately models the temporal and spatial information of the EEG signals separately, reducing computational complexity while enhancing flexibility and adaptability. Comprehensive evaluations across 10 publicly available EEG datasets demonstrate IMAC's superior performance, achieving state-of-the-art classification accuracy in both cross-subject and cross-center validation scenarios. Notably, IMAC shows strong robustness under both simulated and real-world distribution shifts, surpassing baseline methods by up to $35$% in integrity scores while maintaining consistent classification accuracy.

ACMMM 2025 poster
CoSTI: Consistency Models for (a faster) Spatio-Temporal Imputation 2025-07-26
Show

Multivariate Time Series Imputation (MTSI) is crucial for many applications, such as healthcare monitoring and traffic management, where incomplete data can compromise decision-making. Existing state-of-the-art methods, like Denoising Diffusion Probabilistic Models (DDPMs), achieve high imputation accuracy; however, they suffer from significant computational costs and are notably time-consuming due to their iterative nature. In this work, we propose CoSTI, an innovative adaptation of Consistency Models (CMs) for the MTSI domain. CoSTI employs Consistency Training to achieve comparable imputation quality to DDPMs while drastically reducing inference times, making it more suitable for real-time applications. We evaluate CoSTI across multiple datasets and missing data scenarios, demonstrating up to a 98% reduction in imputation time with performance on par with diffusion-based models. This work bridges the gap between efficiency and accuracy in generative imputation tasks, providing a scalable solution for handling missing data in critical spatio-temporal systems.

14 pa...

14 pages, 7 figures, 13 tables

A diffusion-based generative model for financial time series via geometric Brownian motion 2025-07-25
Show

We propose a novel diffusion-based generative framework for financial time series that incorporates geometric Brownian motion (GBM), the foundation of the Black--Scholes theory, into the forward noising process. Unlike standard score-based models that treat price trajectories as generic numerical sequences, our method injects noise proportionally to asset prices at each time step, reflecting the heteroskedasticity observed in financial time series. By accurately balancing the drift and diffusion terms, we show that the resulting log-price process reduces to a variance-exploding stochastic differential equation, aligning with the formulation in score-based generative models. The reverse-time generative process is trained via denoising score matching using a Transformer-based architecture adapted from the Conditional Score-based Diffusion Imputation (CSDI) framework. Empirical evaluations on historical stock data demonstrate that our model reproduces key stylized facts heavy-tailed return distributions, volatility clustering, and the leverage effect more realistically than conventional diffusion models.

Hallucination Detection and Mitigation with Diffusion in Multi-Variate Time-Series Foundation Models 2025-07-23
Show

Foundation models for natural language processing have many coherent definitions of hallucination and methods for its detection and mitigation. However, analogous definitions and methods do not exist for multi-variate time-series (MVTS) foundation models. We propose new definitions for MVTS hallucination, along with new detection and mitigation methods using a diffusion model to estimate hallucination levels. We derive relational datasets from popular time-series datasets to benchmark these relational hallucination levels. Using these definitions and models, we find that open-source pre-trained MVTS imputation foundation models relationally hallucinate on average up to 59.5% as much as a weak baseline. The proposed mitigation method reduces this by up to 47.7% for these models. The definition and methods may improve adoption and safe usage of MVTS foundation models.

MoCap-Impute: A Comprehensive Benchmark and Comparative Analysis of Imputation Methods for IMU-based Motion Capture Data 2025-07-14
Show

Motion capture (MoCap) data from wearable Inertial Measurement Units (IMUs) is vital for applications in sports science, but its utility is often compromised by missing data. Despite numerous imputation techniques, a systematic performance evaluation for IMU-derived MoCap time-series data is lacking. We address this gap by conducting a comprehensive comparative analysis of statistical, machine learning, and deep learning imputation methods. Our evaluation considers three distinct contexts: univariate time-series, multivariate across subjects, and multivariate across kinematic angles. To facilitate this benchmark, we introduce the first publicly available MoCap dataset designed specifically for imputation, featuring data from 53 karate practitioners. We simulate three controlled missingness mechanisms: missing completely at random (MCAR), block missingness, and a novel value-dependent pattern at signal transition points. Our experiments, conducted on 39 kinematic variables across all subjects, reveal that multivariate imputation frameworks consistently outperform univariate approaches, particularly for complex missingness. For instance, multivariate methods achieve up to a 50% mean absolute error reduction (MAE from 10.8 to 5.8) compared to univariate techniques for transition point missingness. Advanced models like Generative Adversarial Imputation Networks (GAIN) and Iterative Imputers demonstrate the highest accuracy in these challenging scenarios. This work provides a critical baseline for future research and offers practical recommendations for improving the integrity and robustness of Mo-Cap data analysis.

22 pa...

22 pages, 7 figures, 3 algorithms, 2 tables

Impute With Confidence: A Framework for Uncertainty Aware Multivariate Time Series Imputation 2025-07-12
Show

Time series data with missing values is common across many domains. Healthcare presents special challenges due to prolonged periods of sensor disconnection. In such cases, having a confidence measure for imputed values is critical. Most existing methods either overlook model uncertainty or lack mechanisms to estimate it. To address this gap, we introduce a general framework that quantifies and leverages uncertainty for selective imputation. By focusing on values the model is most confident in, highly unreliable imputations are avoided. Our experiments on multiple EHR datasets, covering diverse types of missingness, demonstrate that selectively imputing less-uncertain values not only reduces imputation errors but also improves downstream tasks. Specifically, we show performance gains in a 24-hour mortality prediction task, underscoring the practical benefit of incorporating uncertainty into time series imputation.

PyPOTS: A Python Toolkit for Machine Learning on Partially-Observed Time Series 2025-07-09
Show

PyPOTS is an open-source Python library dedicated to data mining and analysis on multivariate partially-observed time series with missing values. Particularly, it provides easy access to diverse algorithms categorized into five tasks: imputation, forecasting, anomaly detection, classification, and clustering. The included models represent a diverse set of methodological paradigms, offering a unified and well-documented interface suitable for both academic research and practical applications. With robustness and scalability in its design philosophy, best practices of software construction, for example, unit testing, continuous integration and continuous delivery, code coverage, maintainability evaluation, interactive tutorials, and parallelization, are carried out as principles during the development of PyPOTS. The toolbox is available on PyPI, Anaconda, and Docker. PyPOTS is open source and publicly available on GitHub https://github.com/WenjieDu/PyPOTS.

PyPOT...

PyPOTS website is at https://pypots.com, and PyPOTS is open source at https://github.com/WenjieDu/PyPOTS

ReTimeCausal: EM-Augmented Additive Noise Models for Interpretable Causal Discovery in Irregular Time Series 2025-07-04
Show

This paper studies causal discovery in irregularly sampled time series-a pivotal challenge in high-stakes domains like finance, healthcare, and climate science, where missing data and inconsistent sampling frequencies distort causal mechanisms. Traditional methods (e.g., Granger causality, PCMCI) fail to reconcile multi-scale interactions (e.g., hourly storms vs. decadal climate shifts), while neural approaches (e.g., CUTS+) lack interpretability, stemming from a critical gap: existing frameworks either rigidly assume temporal regularity or aggregate dynamics into opaque representations, neglecting real-world granularity and auditable logic. To bridge this gap, we propose ReTimeCausal, a novel integration of Additive Noise Models (ANM) and Expectation-Maximization (EM) that unifies physics-guided data imputation with sparse causal inference. Through kernelized sparse regression and structural constraints, ReTimeCausal iteratively refines missing values (E-step) and causal graphs (M-step), resolving cross-frequency dependencies and missing data issues. Extensive experiments on synthetic and real-world datasets demonstrate that ReTimeCausal outperforms existing state-of-the-art methods under challenging irregular sampling and missing data conditions.

12 pages, 2 figures
Multiple data-driven missing imputation 2025-07-03
Show

This paper introduces KZImputer, a novel adaptive imputation method for univariate time series designed for short to medium-sized missed points (gaps) (1-5 points and beyond) with tailored strategies for segments at the start, middle, or end of the series. KZImputer employs a hybrid strategy to handle various missing data scenarios. Its core mechanism differentiates between gaps at the beginning, middle, or end of the series, applying tailored techniques at each position to optimize imputation accuracy. The method leverages linear interpolation and localized statistical measures, adapting to the characteristics of the surrounding data and the gap size. The performance of KZImputer has been systematically evaluated against established imputation techniques, demonstrating its potential to enhance data quality for subsequent time series analysis. This paper describes the KZImputer methodology in detail and discusses its effectiveness in improving the integrity of time series data. Empirical analysis demonstrates that KZImputer achieves particularly strong performance for datasets with high missingness rates (around 50% or more), maintaining stable and competitive results across statistical and signal-reconstruction metrics. The method proves especially effective in high-sparsity regimes, where traditional approaches typically experience accuracy degradation.

https...

https://github.com/s-kav/kz_data_imputation

GKNet: Graph Kalman Filtering and Model Inference via Model-based Deep Learning 2025-06-27
Show

Inference tasks with time series over graphs are of importance in applications such as urban water networks, economics, and networked neuroscience. Addressing these tasks typically relies on identifying a computationally affordable model that jointly captures the graph-temporal patterns of the data. In this work, we propose a graph-aware state space model for graph time series, where both the latent state and the observation equation are parametric graph-induced models with a limited number of parameters that need to be learned. More specifically, we consider the state equation to follow a stochastic partial differential equation driven by noise over the graphs edges accounting not only for potential edge uncertainties but also for increasing the degrees of freedom in the latter in a tractable manner. The graph structure conditioning of the noise dispersion allows the state variable to deviate from the stochastic process in certain neighborhoods. The observation model is a sampled and graph-filtered version of the state capturing multi-hop neighboring influence. The goal is to learn the parameters in both state and observation models from the partially observed data for downstream tasks such as prediction and imputation. The model is inferred first through a maximum likelihood approach that provides theoretical tractability but is limited in expressivity and scalability. To improve on the latter, we use the state-space formulation to build a principled deep learning architecture that jointly learns the parameters and tracks the state in an end-to-end manner in the spirit of Kalman neural networks.

TSPulse: Dual Space Tiny Pre-Trained Models for Rapid Time-Series Analysis 2025-06-25
Show

The rise of time-series pre-trained models has advanced temporal representation learning, but current state-of-the-art models are often large-scale, requiring substantial compute. We introduce TSPulse, ultra-compact time-series pre-trained models with only 1M parameters, specialized to perform strongly across classification, anomaly detection, imputation, and retrieval tasks. TSPulse introduces innovations at both the architecture and task levels. At the architecture level, it employs a dual-space masked reconstruction, learning from both time and frequency domains to capture complementary signals. This is further enhanced by a dual-embedding disentanglement, generating both detailed embeddings for fine-grained analysis and high-level semantic embeddings for broader task understanding. Notably, TSPulse's semantic embeddings are robust to shifts in time, magnitude, and noise, which is important for robust retrieval. At the task level, TSPulse incorporates TSLens, a fine-tuning component enabling task-specific feature attention. It also introduces a multi-head triangulation technique that correlates deviations from multiple prediction heads, enhancing anomaly detection by fusing complementary model outputs. Additionally, a hybrid mask pretraining is proposed to improves zero-shot imputation by reducing pre-training bias. These architecture and task innovations collectively contribute to TSPulse's significant performance gains: 5-16% on the UEA classification benchmarks, +20% on the TSB-AD anomaly detection leaderboard, +50% in zero-shot imputation, and +25% in time-series retrieval. Remarkably, these results are achieved with just 1M parameters (10-100X smaller than existing SOTA models) and allow GPU-free inference, setting a new standard for efficient time-series pre-trained models. The models can be accessed from https://huggingface.co/ibm-granite/granite-timeseries-tspulse-r1

DIM-SUM: Dynamic IMputation for Smart Utility Management 2025-06-24
Show

Time series imputation models have traditionally been developed using complete datasets with artificial masking patterns to simulate missing values. However, in real-world infrastructure monitoring, practitioners often encounter datasets where large amounts of data are missing and follow complex, heterogeneous patterns. We introduce DIM-SUM, a preprocessing framework for training robust imputation models that bridges the gap between artificially masked training data and real missing patterns. DIM-SUM combines pattern clustering and adaptive masking strategies with theoretical learning guarantees to handle diverse missing patterns actually observed in the data. Through extensive experiments on over 2 billion readings from California water districts, electricity datasets, and benchmarks, we demonstrate that DIM-SUM outperforms traditional methods by reaching similar accuracy with lower processing time and significantly less training data. When compared against a large pre-trained model, DIM-SUM averages 2x higher accuracy with significantly less inference time.

Data-driven Insights for Informed Decision-Making: Applying LSTM Networks for Robust Electricity Forecasting in Libya 2025-06-20
Show

Accurate electricity forecasting is crucial for grid stability and energy planning, especially in Benghazi, Libya, where frequent load shedding, generation deficits, and infrastructure limitations persist. This study proposes a data-driven approach to forecast electricity load, generation, and deficits for 2025 using historical data from 2019 (a year marked by instability) and 2023 (a more stable year). Multiple time series models were applied, including ARIMA, seasonal ARIMA, dynamic regression ARIMA, exponential smoothing, extreme gradient boosting, and Long Short-Term Memory (LSTM) neural networks. The dataset was enhanced through missing value imputation, outlier smoothing, and log transformation. Performance was assessed using mean squared error, root mean squared error, mean absolute error, and mean absolute percentage error. LSTM outperformed all other models, showing strong capabilities in modeling non-stationary and seasonal patterns. A key contribution of this work is an optimized LSTM framework that integrates exogenous factors such as temperature and humidity, offering robust performance in forecasting multiple electricity indicators. These results provide practical insights for policymakers and grid operators to enable proactive load management and resource planning in data-scarce, volatile regions.

This ...

This article was published in International Journal of Intelligent Systems and Applications (IJISA) (MECS Press), Vol. 17, No. 3, 8 Jun. 2025, DOI: https://doi.org/10.5815/ijisa.2025.03.05

LSCD: Lomb-Scargle Conditioned Diffusion for Time series Imputation 2025-06-20
Show

Time series with missing or irregularly sampled data are a persistent challenge in machine learning. Many methods operate on the frequency-domain, relying on the Fast Fourier Transform (FFT) which assumes uniform sampling, therefore requiring prior interpolation that can distort the spectra. To address this limitation, we introduce a differentiable Lomb--Scargle layer that enables a reliable computation of the power spectrum of irregularly sampled data. We integrate this layer into a novel score-based diffusion model (LSCD) for time series imputation conditioned on the entire signal spectrum. Experiments on synthetic and real-world benchmarks demonstrate that our method recovers missing data more accurately than purely time-domain baselines, while simultaneously producing consistent frequency estimates. Crucially, our method can be easily integrated into learning frameworks, enabling broader adoption of spectral guidance in machine learning approaches involving incomplete or irregular data.

In ICML 2025
CoIFNet: A Unified Framework for Multivariate Time Series Forecasting with Missing Values 2025-06-20
Show

Multivariate time series forecasting (MTSF) is a critical task with broad applications in domains such as meteorology, transportation, and economics. Nevertheless, pervasive missing values caused by sensor failures or human errors significantly degrade forecasting accuracy. Prior efforts usually employ an impute-then-forecast paradigm, leading to suboptimal predictions due to error accumulation and misaligned objectives between the two stages. To address this challenge, we propose the Collaborative Imputation-Forecasting Network (CoIFNet), a novel framework that unifies imputation and forecasting to achieve robust MTSF in the presence of missing values. Specifically, CoIFNet takes the observed values, mask matrix and timestamp embeddings as input, processing them sequentially through the Cross-Timestep Fusion (CTF) and Cross-Variate Fusion (CVF) modules to capture temporal dependencies that are robust to missing values. We provide theoretical justifications on how our CoIFNet learning objective improves the performance bound of MTSF with missing values. Through extensive experiments on challenging MSTF benchmarks, we demonstrate the effectiveness and computational efficiency of our proposed approach across diverse missing-data scenarios, e.g., CoIFNet outperforms the state-of-the-art method by $\underline{\textbf{24.40}}$% ($\underline{\textbf{23.81}}$%) at a point (block) missing rate of 0.6, while improving memory and time efficiency by $\underline{\boldsymbol{4.3\times}}$ and $\underline{\boldsymbol{2.1\times}}$, respectively. Our code is available at: https://github.com/KaiTang-eng/CoIFNet.

Missing data in non-stationary multivariate time series from digital studies in Psychiatry 2025-06-17
Show

Mobile technology (e.g., mobile phones and wearable devices) provides scalable methods for collecting physiological and behavioral biomarkers in patients' naturalistic settings, as well as opportunities for therapeutic advancements and scientific discoveries regarding the etiology of psychiatric illness. Continuous data collection through mobile devices generates highly complex data: entangled multivariate time series of outcomes, exposures, and covariates. Missing data is a pervasive problem in biomedical and social science research, and Ecological Momentary Assessment (EMA) data in psychiatric research is no exception. However, the complex data structure of multivariate time series and their non-stationary nature make missing data a major challenge for proper inference. Additional historical information included in time series analyses exacerbates the issue of missing data and also introduces problems for confounding adjustment. The majority of existing imputation methods are either designed for stationary time series or for longitudinal data with limited follow-up periods. The limited work on non-stationary time series either focuses on missing exogenous information or ignores the complex temporal dependence among outcomes, exposures, and covariates. We propose a Monte Carlo Expectation Maximization algorithm for the state space model (MCEM-SSM) to effectively handle missing data in non-stationary entangled multivariate time series. We demonstrate the method's advantages over other widely used missing data imputation strategies through simulations of both stationary and non-stationary time series, subject to various missing mechanisms. Finally, we apply the MCEM-SSM to a multi-year smartphone observational study of bipolar and schizophrenia patients to investigate the association between digital social connectivity and negative mood.

PeakWeather: MeteoSwiss Weather Station Measurements for Spatiotemporal Deep Learning 2025-06-16
Show

Accurate weather forecasts are essential for supporting a wide range of activities and decision-making processes, as well as mitigating the impacts of adverse weather events. While traditional numerical weather prediction (NWP) remains the cornerstone of operational forecasting, machine learning is emerging as a powerful alternative for fast, flexible, and scalable predictions. We introduce PeakWeather, a high-quality dataset of surface weather observations collected every 10 minutes over more than 8 years from the ground stations of the Federal Office of Meteorology and Climatology MeteoSwiss's measurement network. The dataset includes a diverse set of meteorological variables from 302 station locations distributed across Switzerland's complex topography and is complemented with topographical indices derived from digital height models for context. Ensemble forecasts from the currently operational high-resolution NWP model are provided as a baseline forecast against which to evaluate new approaches. The dataset's richness supports a broad spectrum of spatiotemporal tasks, including time series forecasting at various scales, graph structure learning, imputation, and virtual sensing. As such, PeakWeather serves as a real-world benchmark to advance both foundational machine learning research, meteorology, and sensor-based applications.

Cross-Domain Conditional Diffusion Models for Time Series Imputation 2025-06-14
Show

Cross-domain time series imputation is an underexplored data-centric research task that presents significant challenges, particularly when the target domain suffers from high missing rates and domain shifts in temporal dynamics. Existing time series imputation approaches primarily focus on the single-domain setting, which cannot effectively adapt to a new domain with domain shifts. Meanwhile, conventional domain adaptation techniques struggle with data incompleteness, as they typically assume the data from both source and target domains are fully observed to enable adaptation. For the problem of cross-domain time series imputation, missing values introduce high uncertainty that hinders distribution alignment, making existing adaptation strategies ineffective. Specifically, our proposed solution tackles this problem from three perspectives: (i) Data: We introduce a frequency-based time series interpolation strategy that integrates shared spectral components from both domains while retaining domain-specific temporal structures, constructing informative priors for imputation. (ii) Model: We design a diffusion-based imputation model that effectively learns domain-shared representations and captures domain-specific temporal dependencies with dedicated denoising networks. (iii) Algorithm: We further propose a cross-domain consistency alignment strategy that selectively regularizes output-level domain discrepancies, enabling effective knowledge transfer while preserving domain-specific characteristics. Extensive experiments on three real-world datasets demonstrate the superiority of our proposed approach. Our code implementation is available here.

Accep...

Accepted by ECML-PKDD 2025

Neural Functions for Learning Periodic Signal 2025-06-11
Show

As function approximators, deep neural networks have served as an effective tool to represent various signal types. Recent approaches utilize multi-layer perceptrons (MLPs) to learn a nonlinear mapping from a coordinate to its corresponding signal, facilitating the learning of continuous neural representations from discrete data points. Despite notable successes in learning diverse signal types, coordinate-based MLPs often face issues of overfitting and limited generalizability beyond the training region, resulting in subpar extrapolation performance. This study addresses scenarios where the underlying true signals exhibit periodic properties, either spatially or temporally. We propose a novel network architecture, which extracts periodic patterns from measurements and leverages this information to represent the signal, thereby enhancing generalization and improving extrapolation performance. We demonstrate the efficacy of the proposed method through comprehensive experiments, including the learning of the periodic solutions for differential equations, and time series imputation (interpolation) and forecasting (extrapolation) on real-world datasets.

CFMI: Flow Matching for Missing Data Imputation 2025-06-10
Show

We introduce conditional flow matching for imputation (CFMI), a new general-purpose method to impute missing data. The method combines continuous normalising flows, flow-matching, and shared conditional modelling to deal with intractabilities of traditional multiple imputation. Our comparison with nine classical and state-of-the-art imputation methods on 24 small to moderate-dimensional tabular data sets shows that CFMI matches or outperforms both traditional and modern techniques across a wide range of metrics. Applying the method to zero-shot imputation of time-series data, we find that it matches the accuracy of a related diffusion-based method while outperforming it in terms of computational efficiency. Overall, CFMI performs at least as well as traditional methods on lower-dimensional data while remaining scalable to high-dimensional settings, matching or exceeding the performance of other deep learning-based approaches, making it a go-to imputation method for a wide range of data types and dimensionalities.

Diffusion Models for Tabular Data Imputation and Synthetic Data Generation 2025-06-02
Show

Data imputation and data generation have important applications for many domains, like healthcare and finance, where incomplete or missing data can hinder accurate analysis and decision-making. Diffusion models have emerged as powerful generative models capable of capturing complex data distributions across various data modalities such as image, audio, and time series data. Recently, they have been also adapted to generate tabular data. In this paper, we propose a diffusion model for tabular data that introduces three key enhancements: (1) a conditioning attention mechanism, (2) an encoder-decoder transformer as the denoising network, and (3) dynamic masking. The conditioning attention mechanism is designed to improve the model's ability to capture the relationship between the condition and synthetic data. The transformer layers help model interactions within the condition (encoder) or synthetic data (decoder), while dynamic masking enables our model to efficiently handle both missing data imputation and synthetic data generation tasks within a unified framework. We conduct a comprehensive evaluation by comparing the performance of diffusion models with transformer conditioning against state-of-the-art techniques, such as Variational Autoencoders, Generative Adversarial Networks and Diffusion Models, on benchmark datasets. Our evaluation focuses on the assessment of the generated samples with respect to three important criteria, namely: (1) Machine Learning efficiency, (2) statistical similarity, and (3) privacy risk mitigation. For the task of data imputation, we consider the efficiency of the generated samples across different levels of missing features.

25 pa...

25 pages, 7 figures, 6 tables

Temporal Variational Implicit Neural Representations 2025-06-02
Show

We introduce Temporal Variational Implicit Neural Representations (TV-INRs), a probabilistic framework for modeling irregular multivariate time series that enables efficient individualized imputation and forecasting. By integrating implicit neural representations with latent variable models, TV-INRs learn distributions over time-continuous generator functions conditioned on signal-specific covariates. Unlike existing approaches that require extensive training, fine-tuning or meta-learning, our method achieves accurate individualized predictions through a single forward pass. Our experiments demonstrate that with a single TV-INRs instance, we can accurately solve diverse imputation and forecasting tasks, offering a computationally efficient and scalable solution for real-world applications. TV-INRs excel especially in low-data regimes, where it outperforms existing methods by an order of magnitude in mean squared error for imputation task.

Language in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal Narrative 2025-06-01
Show

While many advances in time series models focus exclusively on numerical data, research on multimodal time series, particularly those involving contextual textual information commonly encountered in real-world scenarios, remains in its infancy. With recent progress in large language models and time series learning, we revisit the integration of paired texts with time series through the Platonic Representation Hypothesis, which posits that representations of different modalities converge to shared spaces. In this context, we identify that time-series-paired texts may naturally exhibit periodic properties that closely mirror those of the original time series. Building on this insight, we propose a novel framework, Texts as Time Series (TaTS), which considers the time-series-paired texts to be auxiliary variables of the time series. TaTS can be plugged into any existing numerical-only time series models and enable them to handle time series data with paired texts effectively. Through extensive experiments on both multimodal time series forecasting and imputation tasks across benchmark datasets with various existing time series models, we demonstrate that TaTS can enhance predictive performance without modifying model architectures. Code available at https://github.com/iDEA-iSAIL-Lab-UIUC/TaTS.

Preprint, 43 pages
Imputation of Missing Data in Smooth Pursuit Eye Movements Using a Self-Attention-based Deep Learning Approach 2025-05-31
Show

Missing data is a relevant issue in time series, especially in biomedical sequences such as those corresponding to smooth pursuit eye movements, which often contain gaps due to eye blinks and track losses, complicating the analysis and extraction of meaningful biomarkers. In this paper, a novel imputation framework is proposed using Self-Attention-based Imputation networks for time series, which leverages the power of deep learning and self-attention mechanisms to impute missing data. We further refine the imputed data using a custom made autoencoder, tailored to represent smooth pursuit eye movement sequences. The proposed approach was implemented using 5,504 sequences from 172 Parkinsonian patients and healthy controls. Results show a significant improvement in the accuracy of reconstructed eye movement sequences with respect to other state of the art techniques, substantially reducing the values for common time domain error metrics such as the mean absolute error, mean relative error, and root mean square error, while also preserving the signal's frequency domain characteristics. Moreover, it demonstrates robustness when large intervals of data are missing. This method offers an alternative solution for robustly handling missing data in time series, enhancing the reliability of smooth pursuit analysis for the screening and monitoring of neurodegenerative disorders.

17 pa...

17 pages, 10 figures, 3 tables

Understanding Why Large Language Models Can Be Ineffective in Time Series Analysis: The Impact of Modality Alignment 2025-05-26
Show

Large Language Models (LLMs) have demonstrated impressive performance in time series analysis and seems to understand the time temporal relationship well than traditional transformer-based approaches. However, since LLMs are not designed for time series tasks, simpler models like linear regressions can often achieve comparable performance with far less complexity. In this study, we perform extensive experiments to assess the effectiveness of applying LLMs to key time series tasks, including forecasting, classification, imputation, and anomaly detection. We compare the performance of LLMs against simpler baseline models, such as single layer linear models and randomly initialized LLMs. Our results reveal that LLMs offer minimal advantages for these core time series tasks and may even distort the temporal structure of the data. In contrast, simpler models consistently outperform LLMs while requiring far fewer parameters. Furthermore, we analyze existing reprogramming techniques and show, through data manifold analysis, that these methods fail to effectively align time series data with language and display "pseudo-alignment" behavior in embedding space. Our findings suggest that the performance of LLM based methods in time series tasks arises from the intrinsic characteristics and structure of time series data, rather than any meaningful alignment with the language model architecture.

FreshRetailNet-50K: A Stockout-Annotated Censored Demand Dataset for Latent Demand Recovery and Forecasting in Fresh Retail 2025-05-23
Show

Accurate demand estimation is critical for the retail business in guiding the inventory and pricing policies of perishable products. However, it faces fundamental challenges from censored sales data during stockouts, where unobserved demand creates systemic policy biases. Existing datasets lack the temporal resolution and annotations needed to address this censoring effect. To fill this gap, we present FreshRetailNet-50K, the first large-scale benchmark for censored demand estimation. It comprises 50,000 store-product time series of detailed hourly sales data from 898 stores in 18 major cities, encompassing 863 perishable SKUs meticulously annotated for stockout events. The hourly stock status records unique to this dataset, combined with rich contextual covariates, including promotional discounts, precipitation, and temporal features, enable innovative research beyond existing solutions. We demonstrate one such use case of two-stage demand modeling: first, we reconstruct the latent demand during stockouts using precise hourly annotations. We then leverage the recovered demand to train robust demand forecasting models in the second stage. Experimental results show that this approach achieves a 2.73% improvement in prediction accuracy while reducing the systematic demand underestimation from 7.37% to near-zero bias. With unprecedented temporal granularity and comprehensive real-world information, FreshRetailNet-50K opens new research directions in demand imputation, perishable inventory optimization, and causal retail analytics. The unique annotation quality and scale of the dataset address long-standing limitations in retail AI, providing immediate solutions and a platform for future methodological innovation. The data (https://huggingface.co/datasets/Dingdong-Inc/FreshRetailNet-50K) and code (https://github.com/Dingdong-Inc/frn-50k-baseline}) are openly released.

10 pages, 5 figures
The Alpha-Alternator: Dynamic Adaptation To Varying Noise Levels In Sequences Using The Vendi Score For Improved Robustness and Performance 2025-05-22
Show

Current state-of-the-art dynamical models, such as Mamba, assume the same level of noisiness for all elements of a given sequence, which limits their performance on noisy temporal data. In this paper, we introduce the $α$-Alternator, a novel generative model for time-dependent data that dynamically adapts to the complexity introduced by varying noise levels in sequences. The $α$-Alternator leverages the Vendi Score (VS), a flexible similarity-based diversity metric, to adjust, at each time step $t$, the influence of the sequence element at time $t$ and the latent representation of the dynamics up to that time step on the predicted future dynamics. This influence is captured by a parameter that is learned and shared across all sequences in a given dataset. The sign of this parameter determines the direction of influence. A negative value indicates a noisy dataset, where a sequence element that increases the VS is considered noisy, and the model relies more on the latent history when processing that element. Conversely, when the parameter is positive, a sequence element that increases the VS is considered informative, and the $α$-Alternator relies more on this new input than on the latent history when updating its predicted latent dynamics. The $α$-Alternator is trained using a combination of observation masking and Alternator loss minimization. Masking simulates varying noise levels in sequences, enabling the model to be more robust to these fluctuations and improving its performance in trajectory prediction, imputation, and forecasting. Our experimental results demonstrate that the $α$-Alternator outperforms both Alternators and state-of-the-art state-space models across neural decoding and time-series forecasting benchmarks.

The c...

The codebase will be made available upon publication. This paper is dedicated to Patrice Lumumba

Deep Learning for Multivariate Time Series Imputation: A Survey 2025-05-20
Show

Missing values are ubiquitous in multivariate time series (MTS) data, posing significant challenges for accurate analysis and downstream applications. In recent years, deep learning-based methods have successfully handled missing data by leveraging complex temporal dependencies and learned data distributions. In this survey, we provide a comprehensive summary of deep learning approaches for multivariate time series imputation (MTSI) tasks. We propose a novel taxonomy that categorizes existing methods based on two key perspectives: imputation uncertainty and neural network architecture. Furthermore, we summarize existing MTSI toolkits with a particular emphasis on the PyPOTS Ecosystem, which provides an integrated and standardized foundation for MTSI research. Finally, we discuss key challenges and future research directions, which give insight for further MTSI research. This survey aims to serve as a valuable resource for researchers and practitioners in the field of time series analysis and missing data imputation tasks.A well-maintained MTSI paper and tool list are available at https://github.com/WenjieDu/Awesome_Imputation.

Accep...

Accepted by IJCAI 2025

TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis 2025-05-19
Show

Time series analysis plays a critical role in numerous applications, supporting tasks such as forecasting, classification, anomaly detection, and imputation. In this work, we present the time series pattern machine (TSPM), a model designed to excel in a broad range of time series tasks through powerful representation and pattern extraction capabilities. Traditional time series models often struggle to capture universal patterns, limiting their effectiveness across diverse tasks. To address this, we define multiple scales in the time domain and various resolutions in the frequency domain, employing various mixing strategies to extract intricate, task-adaptive time series patterns. Specifically, we introduce a general-purpose TSPM that processes multi-scale time series using (1) multi-resolution time imaging (MRTI), (2) time image decomposition (TID), (3) multi-scale mixing (MCM), and (4) multi-resolution mixing (MRM) to extract comprehensive temporal patterns. MRTI transforms multi-scale time series into multi-resolution time images, capturing patterns across both temporal and frequency domains. TID leverages dual-axis attention to extract seasonal and trend patterns, while MCM hierarchically aggregates these patterns across scales. MRM adaptively integrates all representations across resolutions. This method achieves state-of-the-art performance across 8 time series analytical tasks, consistently surpassing both general-purpose and task-specific models. Our work marks a promising step toward the next generation of TSPMs, paving the way for further advancements in time series analysis.

Accep...

Accepted by the 13th International Conference on Learning Representations (ICLR 2025)

Alternators With Noise Models 2025-05-18
Show

Alternators have recently been introduced as a framework for modeling time-dependent data. They often outperform other popular frameworks, such as state-space models and diffusion models, on challenging time-series tasks. This paper introduces a new Alternator model, called Alternator++, which enhances the flexibility of traditional Alternators by explicitly modeling the noise terms used to sample the latent and observed trajectories, drawing on the idea of noise models from the diffusion modeling literature. Alternator++ optimizes the sum of the Alternator loss and a noise-matching loss. The latter forces the noise trajectories generated by the two noise models to approximate the noise trajectories that produce the observed and latent trajectories. We demonstrate the effectiveness of Alternator++ in tasks such as density estimation, time series imputation, and forecasting, showing that it outperforms several strong baselines, including Mambas, ScoreGrad, and Dyffusion.

ImputeINR: Time Series Imputation via Implicit Neural Representations for Disease Diagnosis with Missing Data 2025-05-16
Show

Healthcare data frequently contain a substantial proportion of missing values, necessitating effective time series imputation to support downstream disease diagnosis tasks. However, existing imputation methods focus on discrete data points and are unable to effectively model sparse data, resulting in particularly poor performance for imputing substantial missing values. In this paper, we propose a novel approach, ImputeINR, for time series imputation by employing implicit neural representations (INR) to learn continuous functions for time series. ImputeINR leverages the merits of INR in that the continuous functions are not coupled to sampling frequency and have infinite sampling frequency, allowing ImputeINR to generate fine-grained imputations even on extremely sparse observed values. Extensive experiments conducted on eight datasets with five ratios of masked values show the superior imputation performance of ImputeINR, especially for high missing ratios in time series data. Furthermore, we validate that applying ImputeINR to impute missing values in healthcare data enhances the performance of downstream disease diagnosis tasks. Codes are available.

Accep...

Accepted by IJCAI 2025

Clustering Rooftop PV Systems via Probabilistic Embeddings 2025-05-15
Show

As the number of rooftop photovoltaic (PV) installations increases, aggregators and system operators are required to monitor and analyze these systems, raising the challenge of integration and management of large, spatially distributed time-series data that are both high-dimensional and affected by missing values. In this work, a probabilistic entity embedding-based clustering framework is proposed to address these problems. This method encodes each PV system's characteristic power generation patterns and uncertainty as a probability distribution, then groups systems by their statistical distances and agglomerative clustering. Applied to a multi-year residential PV dataset, it produces concise, uncertainty-aware cluster profiles that outperform a physics-based baseline in representativeness and robustness, and support reliable missing-value imputation. A systematic hyperparameter study further offers practical guidance for balancing model performance and robustness.

Avocado Price Prediction Using a Hybrid Deep Learning Model: TCN-MLP-Attention Architecture 2025-05-15
Show

With the growing demand for healthy foods, agricultural product price forecasting has become increasingly important. Hass avocados, as a high-value crop, exhibit complex price fluctuations influenced by factors such as seasonality, region, and weather. Traditional prediction models often struggle with highly nonlinear and dynamic data. To address this, we propose a hybrid deep learning model, TCN-MLP-Attention Architecture, combining Temporal Convolutional Networks (TCN) for sequential feature extraction, Multi-Layer Perceptrons (MLP) for nonlinear interactions, and an Attention mechanism for dynamic feature weighting. The dataset used covers over 50,000 records of Hass avocado sales across the U.S. from 2015 to 2018, including variables such as sales volume, average price, time, region, weather, and variety type, collected from point-of-sale systems and the Hass Avocado Board. After systematic preprocessing, including missing value imputation and feature normalization, the proposed model was trained and evaluated. Experimental results demonstrate that the TCN-MLP-Attention model achieves excellent predictive performance, with an RMSE of 1.23 and an MSE of 1.51, outperforming traditional methods. This research provides a scalable and effective approach for time series forecasting in agricultural markets and offers valuable insights for intelligent supply chain management and price strategy optimization.

Causal View of Time Series Imputation: Some Identification Results on Missing Mechanism 2025-05-12
Show

Time series imputation is one of the most challenge problems and has broad applications in various fields like health care and the Internet of Things. Existing methods mainly aim to model the temporally latent dependencies and the generation process from the observed time series data. In real-world scenarios, different types of missing mechanisms, like MAR (Missing At Random), and MNAR (Missing Not At Random) can occur in time series data. However, existing methods often overlook the difference among the aforementioned missing mechanisms and use a single model for time series imputation, which can easily lead to misleading results due to mechanism mismatching. In this paper, we propose a framework for time series imputation problem by exploring Different Missing Mechanisms (DMM in short) and tailoring solutions accordingly. Specifically, we first analyze the data generation processes with temporal latent states and missing cause variables for different mechanisms. Sequentially, we model these generation processes via variational inference and estimate prior distributions of latent variables via normalizing flow-based neural architecture. Furthermore, we establish identifiability results under the nonlinear independent component analysis framework to show that latent variables are identifiable. Experimental results show that our method surpasses existing time series imputation techniques across various datasets with different missing mechanisms, demonstrating its effectiveness in real-world applications.

Using matrix-product states for time-series machine learning 2025-05-12
Show

Matrix-product states (MPS) have proven to be a versatile ansatz for modeling quantum many-body physics. For many applications, and particularly in one-dimension, they capture relevant quantum correlations in many-body wavefunctions while remaining tractable to store and manipulate on a classical computer. This has motivated researchers to also apply the MPS ansatz to machine learning (ML) problems where capturing complex correlations in datasets is also a key requirement. Here, we develop and apply an MPS-based algorithm, MPSTime, for learning a joint probability distribution underlying an observed time-series dataset, and show how it can be used to tackle important time-series ML problems, including classification and imputation. MPSTime can efficiently learn complicated time-series probability distributions directly from data, requires only moderate maximum MPS bond dimension $χ_{\rm max}$, with values for our applications ranging between $χ_{\rm max} = 20-160$, and can be trained for both classification and imputation tasks under a single logarithmic loss function. Using synthetic and publicly available real-world datasets, spanning applications in medicine, energy, and astronomy, we demonstrate performance competitive with state-of-the-art ML approaches, but with the key advantage of encoding the full joint probability distribution learned from the data, which is useful for analyzing and interpreting its underlying structure. This manuscript is supplemented with the release of a publicly available code package MPSTime that implements our approach. The effectiveness of the MPS-based ansatz for capturing complex correlation structures in time-series data makes it a powerful foundation for tackling challenging time-series analysis problems across science, industry, and medicine.

31 pages, 14 figures
Conditional Lagrangian Wasserstein Flow for Time Series Imputation 2025-05-07
Show

Time series imputation is important for numerous real-world applications. To overcome the limitations of diffusion model-based imputation methods, e.g., slow convergence in inference, we propose a novel method for time series imputation in this work, called Conditional Lagrangian Wasserstein Flow (CLWF). Following the principle of least action in Lagrangian mechanics, we learn the velocity by minimizing the corresponding kinetic energy. Moreover, to enhance the model's performance, we estimate the gradient of a task-specific potential function using a time-dependent denoising autoencoder and integrate it into the base estimator to reduce the sampling variance. Finally, the proposed method demonstrates competitive performance compared to other state-of-the-art imputation approaches.

20 pages, 4 figures
A new membership inference attack that spots memorization in generative and predictive models: Loss-Based with Reference Model algorithm (LBRM) 2025-05-06
Show

Generative models can unintentionally memorize training data, posing significant privacy risks. This paper addresses the memorization phenomenon in time series imputation models, introducing the Loss-Based with Reference Model (LBRM) algorithm. The LBRM method leverages a reference model to enhance the accuracy of membership inference attacks, distinguishing between training and test data. Our contributions are twofold: first, we propose an innovative method to effectively extract and identify memorized training data, significantly improving detection accuracy. On average, without fine-tuning, the AUROC improved by approximately 40%. With fine-tuning, the AUROC increased by approximately 60%. Second, we validate our approach through membership inference attacks on two types of architectures designed for time series imputation, demonstrating the robustness and versatility of the LBRM approach in different contexts. These results highlight the significant enhancement in detection accuracy provided by the LBRM approach, addressing privacy risks in time series imputation models.

SDA-GRIN for Adaptive Spatial-Temporal Multivariate Time Series Imputation 2025-05-05
Show

In various applications, the multivariate time series often suffers from missing data. This issue can significantly disrupt systems that rely on the data. Spatial and temporal dependencies can be leveraged to impute the missing samples. Existing imputation methods often ignore dynamic changes in spatial dependencies. We propose a Spatial Dynamic Aware Graph Recurrent Imputation Network (SDA-GRIN) which is capable of capturing dynamic changes in spatial dependencies.SDA-GRIN leverages a multi-head attention mechanism to adapt graph structures with time. SDA-GRIN models multivariate time series as a sequence of temporal graphs and uses a recurrent message-passing architecture for imputation. We evaluate SDA-GRIN on four real-world datasets: SDA-GRIN improves MSE by 9.51% for the AQI and 9.40% for AQI-36. On the PEMS-BAY dataset, it achieves a 1.94% improvement in MSE. Detailed ablation study demonstrates the effect of window sizes and missing data on the performance of the method. Project page:https://ameskandari.github.io/sda-grin/

Enhancing Data Completeness in Time Series: Imputation Strategies for Missing Data Using Significant Periodically Correlated Components 2025-05-04
Show

Missing data is a pervasive issue in statistical analyses, affecting the reliability and validity of research across diverse scientific disciplines. Failure to adequately address missing data can lead to biased estimates and consequently flawed conclusions. In this study, we present a novel imputation method that leverages significant annual components identified through the Variable Bandpass Periodic Block Bootstrap (VBPBB) technique to improve the accuracy and integrity of imputed datasets. Our approach enhances the completeness of datasets by systematically incorporating periodic components into the imputation process, thereby preserving key statistical properties, including mean and variance. We conduct a comparative analysis of various imputation techniques, demonstrating that our VBPBB-enhanced approach consistently outperforms traditional methods in maintaining the statistical structure of the original dataset. The results of our study underscore the robustness and reliability of VBPBB-enhanced imputation, highlighting its potential for broader application in real-world datasets, particularly in fields such as healthcare, where data quality is critical. These findings provide a robust framework for improving the accuracy of imputed datasets, offering substantial implications for advancing research methodologies across scientific and analytical contexts. Our method not only impute missing data but also ensures that the imputed values align with underlying temporal patterns, thereby facilitating more accurate and reliable conclusions.

21 pages, 8 figures
Decoding Latent Spaces: Assessing the Interpretability of Time Series Foundation Models for Visual Analytics 2025-04-26
Show

The present study explores the interpretability of latent spaces produced by time series foundation models, focusing on their potential for visual analysis tasks. Specifically, we evaluate the MOMENT family of models, a set of transformer-based, pre-trained architectures for multivariate time series tasks such as: imputation, prediction, classification, and anomaly detection. We evaluate the capacity of these models on five datasets to capture the underlying structures in time series data within their latent space projection and validate whether fine tuning improves the clarity of the resulting embedding spaces. Notable performance improvements in terms of loss reduction were observed after fine tuning. Visual analysis shows limited improvement in the interpretability of the embeddings, requiring further work. Results suggest that, although Time Series Foundation Models such as MOMENT are robust, their latent spaces may require additional methodological refinements to be adequately interpreted, such as alternative projection techniques, loss functions, or data preprocessing strategies. Despite the limitations of MOMENT, foundation models supose a big reduction in execution time and so a great advance for interactive visual analytics.

Curre...

Currently under review at the International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)

TSRM: A Lightweight Temporal Feature Encoding Architecture for Time Series Forecasting and Imputation 2025-04-26
Show

We introduce a temporal feature encoding architecture called Time Series Representation Model (TSRM) for multivariate time series forecasting and imputation. The architecture is structured around CNN-based representation layers, each dedicated to an independent representation learning task and designed to capture diverse temporal patterns, followed by an attention-based feature extraction layer and a merge layer, designed to aggregate extracted features. The architecture is fundamentally based on a configuration that is inspired by a Transformer encoder, with self-attention mechanisms at its core. The TSRM architecture outperforms state-of-the-art approaches on most of the seven established benchmark datasets considered in our empirical evaluation for both forecasting and imputation tasks. At the same time, it significantly reduces complexity in the form of learnable parameters. The source code is available at https://github.com/RobertLeppich/TSRM.

Asynchronous Graph Generator 2025-04-16
Show

We introduce the asynchronous graph generator (AGG), a novel graph attention network for imputation and prediction of multi-channel time series. Free from recurrent components or assumptions about temporal/spatial regularity, AGG encodes measurements, timestamps and channel-specific features directly in the nodes via learnable embeddings. Through an attention mechanism, these embeddings allow for discovering expressive relationships among the variables of interest in the form of a homogeneous graph. Once trained, AGG performs imputation by \emph{conditional attention generation}, i.e., by creating a new node conditioned on given timestamps and channel specification. The proposed AGG is compared to related methods in the literature and its performance is analysed from a data augmentation perspective. Our experiments reveal that AGG achieved state-of-the-art results in time series imputation, classification and prediction for the benchmark datasets \emph{Beijing Air Quality}, \emph{PhysioNet ICU 2012} and \emph{UCI localisation}, outperforming other recent attention-based networks.

Submi...

Submitted to Signal Processing

Temporal Dynamic Embedding for Irregularly Sampled Time Series 2025-04-08
Show

In several practical applications, particularly healthcare, clinical data of each patient is individually recorded in a database at irregular intervals as required. This causes a sparse and irregularly sampled time series, which makes it difficult to handle as a structured representation of the prerequisites of neural network models. We therefore propose temporal dynamic embedding (TDE), which enables neural network models to receive data that change the number of variables over time. TDE regards each time series variable as an embedding vector evolving over time, instead of a conventional fixed structured representation, which causes a critical missing problem. For each time step, TDE allows for the selective adoption and aggregation of only observed variable subsets and represents the current status of patient based on current observations. The experiment was conducted on three clinical datasets: PhysioNet 2012, MIMIC-III, and PhysioNet 2019. The TDE model performed competitively or better than the imputation-based baseline and several recent state-of-the-art methods with reduced training runtime.

Temporal Gaussian Copula For Clinical Multivariate Time Series Data Imputation 2025-04-03
Show

The imputation of the Multivariate time series (MTS) is particularly challenging since the MTS typically contains irregular patterns of missing values due to various factors such as instrument failures, interference from irrelevant data, and privacy regulations. Existing statistical methods and deep learning methods have shown promising results in time series imputation. In this paper, we propose a Temporal Gaussian Copula Model (TGC) for three-order MTS imputation. The key idea is to leverage the Gaussian Copula to explore the cross-variable and temporal relationships based on the latent Gaussian representation. Subsequently, we employ an Expectation-Maximization (EM) algorithm to improve robustness in managing data with varying missing rates. Comprehensive experiments were conducted on three real-world MTS datasets. The results demonstrate that our TGC substantially outperforms the state-of-the-art imputation methods. Additionally, the TGC model exhibits stronger robustness to the varying missing ratios in the test dataset. Our code is available at https://github.com/MVL-Lab/TGC-MTS.

Accepted in BIBM2024
Multiple Imputation of Hierarchical Nonlinear Time Series Data with an Application to School Enrollment Data 2025-03-28
Show

International comparisons of hierarchical time series data sets based on survey data, such as annual country-level estimates of school enrollment rates, can suffer from large amounts of missing data due to differing coverage of surveys across countries and across times. A popular approach to handling missing data in these settings is through multiple imputation, which can be especially effective when there is an auxiliary variable that is strongly predictive of and has a smaller amount of missing data than the variable of interest. However, standard methods for multiple imputation of hierarchical time series data can perform poorly when the auxiliary variable and the variable of interest have a nonlinear relationship. Performance can also suffer if the multiple imputations are used to estimate an analysis model that makes different assumptions about the data compared to the imputation model, leading to uncongeniality between analysis and imputation models. We propose a Bayesian method for multiple imputation of hierarchical nonlinear time series data that uses a sequential decomposition of the joint distribution and incorporates smoothing splines to account for nonlinear relationships between variables. We compare the proposed method with existing multiple imputation methods through a simulation study and an application to secondary school enrollment data. We find that the proposed method can lead to substantial performance increases for estimation of parameters in uncongenial analysis models and for prediction of individual missing values.

34 pages, 5 figures
tempdisagg: A Python Framework for Temporal Disaggregation of Time Series Data 2025-03-28
Show

tempdisagg is a modern, extensible, and production-ready Python framework for temporal disaggregation of time series data. It transforms low-frequency aggregates into consistent, high-frequency estimates using a wide array of econometric techniques-including Chow-Lin, Denton, Litterman, Fernandez, and uniform interpolation-as well as enhanced variants with automated estimation of key parameters such as the autocorrelation coefficient rho. The package introduces features beyond classical methods, including robust ensemble modeling via non-negative least squares optimization, post-estimation correction of negative values under multiple aggregation rules, and optional regression-based imputation of missing values through a dedicated Retropolarizer module. Architecturally, it follows a modular design inspired by scikit-learn, offering a clean API for validation, modeling, visualization, and result interpretation.

20 pa...

20 pages, 3 figures, 1 table. Software data paper describing the Python package tempdisagg

ImputeGAP: A Comprehensive Library for Time Series Imputation 2025-03-19
Show

With the prevalence of sensor failures, imputation--the process of estimating missing values--has emerged as the cornerstone of time series data preparation. While numerous imputation algorithms have been developed to address these data gaps, existing libraries provide limited support. Furthermore, they often lack the ability to simulate realistic patterns of time series missing data and fail to account for the impact of imputation on subsequent downstream analysis. This paper introduces ImputeGAP, a comprehensive library for time series imputation that supports a diverse range of imputation methods and modular missing data simulation catering to datasets with varying characteristics. The library includes extensive customization options, such as automated hyperparameter tuning, benchmarking, explainability, downstream evaluation, and compatibility with popular time series frameworks.

Zero-shot Imputation with Foundation Inference Models for Dynamical Systems 2025-03-14
Show

Dynamical systems governed by ordinary differential equations (ODEs) serve as models for a vast number of natural and social phenomena. In this work, we offer a fresh perspective on the classical problem of imputing missing time series data, whose underlying dynamics are assumed to be determined by ODEs. Specifically, we revisit ideas from amortized inference and neural operators, and propose a novel supervised learning framework for zero-shot time series imputation, through parametric functions satisfying some (hidden) ODEs. Our proposal consists of two components. First, a broad probability distribution over the space of ODE solutions, observation times and noise mechanisms, with which we generate a large, synthetic dataset of (hidden) ODE solutions, along with their noisy and sparse observations. Second, a neural recognition model that is trained offline, to map the generated time series onto the spaces of initial conditions and time derivatives of the (hidden) ODE solutions, which we then integrate to impute the missing data. We empirically demonstrate that one and the same (pretrained) recognition model can perform zero-shot imputation across 63 distinct time series with missing values, each sampled from widely different dynamical systems. Likewise, we demonstrate that it can perform zero-shot imputation of missing high-dimensional data in 10 vastly different settings, spanning human motion, air quality, traffic and electricity studies, as well as Navier-Stokes simulations -- without requiring any fine-tuning. What is more, our proposal often outperforms state-of-the-art methods, which are trained on the target datasets. Our pretrained model, repository and tutorials are available online.

A Time Series Multitask Framework Integrating a Large Language Model, Pre-Trained Time Series Model, and Knowledge Graph 2025-03-10
Show

Time series analysis is crucial in fields like finance, transportation, and industry. However, traditional models often focus solely on temporal features, limiting their ability to capture underlying information. This paper proposes a novel time series multitask framework, called LTM, which integrates temporal features with textual descriptions to enhance analytical and predictive capabilities. LTM combines pre-trained time series model, large language model (LLM), and knowledge graph to tackle time series tasks, including forecasting, imputation, and anomaly detection. LTM achieves improved performance with a few trainable parameters. It is very efficient and practical. LTM encodes time series data into patches and enriches user-provided prompts using knowledge graphs to generate enhanced prompts. A novel feature fusion method embeds prompts into each patch encoding, which is processed by a frozen LLM, followed by a feature enhancement module and a time decoder module. During fine-tuning stage, cosine similarity between prompts and temporal patches is integrated into the loss function to boost performance. Experiments on benchmark datasets show that LTM significantly outperforms existing methods. It provides a robust and versatile solution for time series tasks.

Tensor PCA for Factor Models 2025-03-06
Show

Modern empirical analysis often relies on high-dimensional panel datasets with non-negligible cross-sectional and time-series correlations. Factor models are natural for capturing such dependencies. A tensor factor model describes the $d$-dimensional panel as a sum of a reduced rank component and an idiosyncratic noise, generalizing traditional factor models for two-dimensional panels. We consider a tensor factor model corresponding to the notion of a reduced multilinear rank of a tensor. We show that for a strong factor model, a simple tensor principal component analysis algorithm is optimal for estimating factors and loadings. When the factors are weak, the convergence rate of simple TPCA can be improved with alternating least-squares iterations. We also provide inferential results for factors and loadings and propose the first test to select the number of factors. The new tools are applied to the problem of imputing missing values in a multidimensional panel of firm characteristics.

MUSE-Net: Missingness-aware mUlti-branching Self-attention Encoder for Irregular Longitudinal Electronic Health Records 2025-03-05
Show

The era of big data has made vast amounts of clinical data readily available, particularly in the form of electronic health records (EHRs), which provides unprecedented opportunities for developing data-driven diagnostic tools to enhance clinical decision making. However, the application of EHRs in data-driven modeling faces challenges such as irregularly spaced multi-variate time series, issues of incompleteness, and data imbalance. Realizing the full data potential of EHRs hinges on the development of advanced analytical models. In this paper, we propose a novel Missingness-aware mUlti-branching Self-Attention Encoder (MUSE-Net) to cope with the challenges in modeling longitudinal EHRs for data-driven disease prediction. The proposed MUSE-Net is composed by four novel modules including: (1) a multi-task Gaussian process (MGP) with missing value masks for data imputation; (2) a multi-branching architecture to address the data imbalance problem; (3) a time-aware self-attention encoder to account for the irregularly spaced time interval in longitudinal EHRs; (4) interpretable multi-head attention mechanism that provides insights into the importance of different time points in disease prediction, allowing clinicians to trace model decisions. We evaluate the proposed MUSE-Net using both synthetic and real-world datasets. Experimental results show that our MUSE-Net outperforms existing methods that are widely used to investigate longitudinal signals.

Irregular Time Series

Title Date Abstract Comment
Q-triplet characterization of atmospheric time series at Antofagasta: A missing values problem 2025-12-02
Show

Located in northern Chile (23.7°S, 70.4°W), Antofagasta has an exceptionally arid and stable climate characterized by minimal precipitation and consistent weather patterns. Nevertheless, despite these climate conditions being meaningful for several research and practical applications, our understanding of weather dynamics remains limited. The available meteorological data from 1969 to 2016 is analogical, which presents a significant challenge to analyze because these records are riddled with missing values, some measurements were taken at irregular measuring intervals, making it an interesting puzzle to grasp the Antofagasta's climate scenario. To overcome this issue, we present a comprehensive statistical analysis of atmospheric temperature, pressure, and humidity time series. Our analytical approach involves the q-triplet calculation method, serving as a powerful tool to identify distinctive behavior within systems under non-equilibrium states. Our results suggest that, in general, the q-triplet values satisfy the condition $q_\text{sens}&lt;1&lt;q_\text{stat}&lt;q_\text{rel}$, a pattern that has been observed in previous studies.

5 pag...

5 pages, 1, table, 3 figures, International Workshop of Statistical Physics

Revitalizing Canonical Pre-Alignment for Irregular Multivariate Time Series Forecasting 2025-12-01
Show

Irregular multivariate time series (IMTS), characterized by uneven sampling and inter-variate asynchrony, fuel many forecasting applications yet remain challenging to model efficiently. Canonical Pre-Alignment (CPA) has been widely adopted in IMTS modeling by padding zeros at every global timestamp, thereby alleviating inter-variate asynchrony and unifying the series length, but its dense zero-padding inflates the pre-aligned series length, especially when numerous variates are present, causing prohibitive compute overhead. Recent graph-based models with patching strategies sidestep CPA, but their local message passing struggles to capture global inter-variate correlations. Therefore, we posit that CPA should be retained, with the pre-aligned series properly handled by the model, enabling it to outperform state-of-the-art graph-based baselines that sidestep CPA. Technically, we propose KAFNet, a compact architecture grounded in CPA for IMTS forecasting that couples (1) Pre-Convolution module for sequence smoothing and sparsity mitigation, (2) Temporal Kernel Aggregation module for learnable compression and modeling of intra-series irregularity, and (3) Frequency Linear Attention blocks for the low-cost inter-series correlations modeling in the frequency domain. Experiments on multiple IMTS datasets show that KAFNet achieves state-of-the-art forecasting performance, with a 7.2$\times$ parameter reduction and a 8.4$\times$ training-inference acceleration.

Accep...

Accepted by AAAI 2026

Machine Learning Approaches to Clinical Risk Prediction: Multi-Scale Temporal Alignment in Electronic Health Records 2025-11-26
Show

This study proposes a risk prediction method based on a Multi-Scale Temporal Alignment Network (MSTAN) to address the challenges of temporal irregularity, sampling interval differences, and multi-scale dynamic dependencies in Electronic Health Records (EHR). The method focuses on temporal feature modeling by introducing a learnable temporal alignment mechanism and a multi-scale convolutional feature extraction structure to jointly model long-term trends and short-term fluctuations in EHR sequences. At the input level, the model maps multi-source clinical features into a unified high-dimensional semantic space and employs temporal embedding and alignment modules to dynamically weight irregularly sampled data, reducing the impact of temporal distribution differences on model performance. The multi-scale feature extraction module then captures key patterns across different temporal granularities through multi-layer convolution and hierarchical fusion, achieving a fine-grained representation of patient states. Finally, an attention-based aggregation mechanism integrates global temporal dependencies to generate individual-level risk representations for disease risk prediction and health status assessment. Experiments conducted on publicly available EHR datasets show that the proposed model outperforms mainstream baselines in accuracy, recall, precision, and F1-Score, demonstrating the effectiveness and robustness of multi-scale temporal alignment in complex medical time-series analysis. This study provides a new solution for intelligent representation of high-dimensional asynchronous medical sequences and offers important technical support for EHR-driven clinical risk prediction.

5 pages, 3 figures
TSGM: Regular and Irregular Time-series Generation using Score-based Generative Models 2025-11-26
Show

Score-based generative models (SGMs) have demonstrated unparalleled sampling quality and diversity in numerous fields, such as image generation, voice synthesis, and tabular data synthesis, etc. Inspired by those outstanding results, we apply SGMs to synthesize time-series by learning its conditional score function. To this end, we present a conditional score network for time-series synthesis, deriving a denoising score matching loss tailored for our purposes. In particular, our presented denoising score matching loss is the conditional denoising score matching loss for time-series synthesis. In addition, our framework is such flexible that both regular and irregular time-series can be synthesized with minimal changes to our model design. Finally, we obtain exceptional synthesis performance on various time-series datasets, achieving state-of-the-art sampling diversity and quality.

Generative Modeling of Clinical Time Series via Latent Stochastic Differential Equations 2025-11-20
Show

Clinical time series data from electronic health records and medical registries offer unprecedented opportunities to understand patient trajectories and inform medical decision-making. However, leveraging such data presents significant challenges due to irregular sampling, complex latent physiology, and inherent uncertainties in both measurements and disease progression. To address these challenges, we propose a generative modeling framework based on latent neural stochastic differential equations (SDEs) that views clinical time series as discrete-time partial observations of an underlying controlled stochastic dynamical system. Our approach models latent dynamics via neural SDEs with modality-dependent emission models, while performing state estimation and parameter learning through variational inference. This formulation naturally handles irregularly sampled observations, learns complex non-linear interactions, and captures the stochasticity of disease progression and measurement noise within a unified scalable probabilistic framework. We validate the framework on two complementary tasks: (i) individual treatment effect estimation using a simulated pharmacokinetic-pharmacodynamic (PKPD) model of lung cancer, and (ii) probabilistic forecasting of physiological signals using real-world intensive care unit (ICU) data from 12,000 patients. Results show that our framework outperforms ordinary differential equation and long short-term memory baseline models in accuracy and uncertainty estimation. These results highlight its potential for enabling precise, uncertainty-aware predictions to support clinical decision-making.

TESSERA: Temporal Embeddings of Surface Spectra for Earth Representation and Analysis 2025-11-19
Show

Satellite Earth-observation (EO) time series in the optical and microwave ranges of the electromagnetic spectrum are often irregular due to orbital patterns and cloud obstruction. Compositing addresses these issues but loses information with respect to vegetation phenology, which is critical for many downstream tasks. Instead, we present TESSERA, a pixel-wise foundation model for multi-modal (Sentinel-1/2) EO time series that learns robust, label-efficient embeddings. During model training, TESSERA uses Barlow Twins and sparse random temporal sampling to enforce invariance to the selection of valid observations. We employ two key regularizers: global shuffling to decorrelate spatial neighborhoods and mix-based regulation to improve invariance under extreme sparsity. We find that for diverse classification, segmentation, and regression tasks, TESSERA embeddings deliver state-of-the-art accuracy with high label efficiency, often requiring only a small task head and minimal computation. To democratize access, adhere to FAIR principles, and simplify use, we release global, annual, 10m, pixel-wise int8 embeddings together with open weights/code and lightweight adaptation heads, thus providing practical tooling for large-scale retrieval and inference at planetary scale. The model training/inference code, downstream task code, and pre-generated embeddings can be accessed at https://github.com/ucam-eo

Continuum Dropout for Neural Differential Equations 2025-11-18
Show

Neural Differential Equations (NDEs) excel at modeling continuous-time dynamics, effectively handling challenges such as irregular observations, missing values, and noise. Despite their advantages, NDEs face a fundamental challenge in adopting dropout, a cornerstone of deep learning regularization, making them susceptible to overfitting. To address this research gap, we introduce Continuum Dropout, a universally applicable regularization technique for NDEs built upon the theory of alternating renewal processes. Continuum Dropout formulates the on-off mechanism of dropout as a stochastic process that alternates between active (evolution) and inactive (paused) states in continuous time. This provides a principled approach to prevent overfitting and enhance the generalization capabilities of NDEs. Moreover, Continuum Dropout offers a structured framework to quantify predictive uncertainty via Monte Carlo sampling at test time. Through extensive experiments, we demonstrate that Continuum Dropout outperforms existing regularization methods for NDEs, achieving superior performance on various time series and image classification tasks. It also yields better-calibrated and more trustworthy probability estimates, highlighting its effectiveness for uncertainty-aware modeling.

Discovering Operational Patterns Using Image-Based Convolutional Clustering and Composite Evaluation: A Case Study in Foundry Melting Processes 2025-11-17
Show

Industrial process monitoring increasingly relies on sensor-generated time-series data, yet the lack of labels, high variability, and operational noise make it difficult to extract meaningful patterns using conventional methods. Existing clustering techniques either rely on fixed distance metrics or deep models designed for static data, limiting their ability to handle dynamic, unstructured industrial sequences. Addressing this gap, this paper proposes a novel framework for unsupervised discovery of operational modes in univariate time-series data using image-based convolutional clustering with composite internal evaluation. The proposed framework improves upon existing approaches in three ways: (1) raw time-series sequences are transformed into grayscale matrix representations via overlapping sliding windows, allowing effective feature extraction using a deep convolutional autoencoder; (2) the framework integrates both soft and hard clustering outputs and refines the selection through a two-stage strategy; and (3) clustering performance is objectively evaluated by a newly developed composite score, S_eva, which combines normalized Silhouette, Calinski-Harabasz, and Davies-Bouldin indices. Applied to over 3900 furnace melting operations from a Nordic foundry, the method identifies seven explainable operational patterns, revealing significant differences in energy consumption, thermal dynamics, and production duration. Compared to classical and deep clustering baselines, the proposed approach achieves superior overall performance, greater robustness, and domain-aligned explainability. The framework addresses key challenges in unsupervised time-series analysis, such as sequence irregularity, overlapping modes, and metric inconsistency, and provides a generalizable solution for data-driven diagnostics and energy optimization in industrial systems.

Rethinking Irregular Time Series Forecasting: A Simple yet Effective Baseline 2025-11-17
Show

The forecasting of irregular multivariate time series (IMTS) is crucial in key areas such as healthcare, biomechanics, climate science, and astronomy. However, achieving accurate and practical predictions is challenging due to two main factors. First, the inherent irregularity and data missingness in irregular time series make modeling difficult. Second, most existing methods are typically complex and resource-intensive. In this study, we propose a general framework called APN to address these challenges. Specifically, we design a novel Time-Aware Patch Aggregation (TAPA) module that achieves adaptive patching. By learning dynamically adjustable patch boundaries and a time-aware weighted averaging strategy, TAPA transforms the original irregular sequences into high-quality, regularized representations in a channel-independent manner. Additionally, we use a simple query module to effectively integrate historical information while maintaining the model's efficiency. Finally, predictions are made by a shallow MLP. Experimental results on multiple real-world datasets show that APN outperforms existing state-of-the-art methods in both efficiency and accuracy.

State of Health Estimation of Batteries Using a Time-Informed Dynamic Sequence-Inverted Transformer 2025-11-17
Show

The rapid adoption of battery-powered vehicles and energy storage systems over the past decade has made battery health monitoring increasingly critical. Batteries play a central role in the efficiency and safety of these systems, yet they inevitably degrade over time due to repeated charge-discharge cycles. This degradation leads to reduced energy efficiency and potential overheating, posing significant safety concerns. Accurate estimation of a State of Health (SoH) of battery is therefore essential for ensuring operational reliability and safety. Several machine learning architectures, such as LSTMs, transformers, and encoder-based models, have been proposed to estimate SoH from discharge cycle data. However, these models struggle with the irregularities inherent in real-world measurements: discharge readings are often recorded at non-uniform intervals, and the lengths of discharge cycles vary significantly. To address this, most existing approaches extract features from the sequences rather than processing them in full, which introduces information loss and compromises accuracy. To overcome these challenges, we propose a novel architecture: Time-Informed Dynamic Sequence Inverted Transformer (TIDSIT). TIDSIT incorporates continuous time embeddings to effectively represent irregularly sampled data and utilizes padded sequences with temporal attention mechanisms to manage variable-length inputs without discarding sequence information. Experimental results on the NASA battery degradation dataset show that TIDSIT significantly outperforms existing models, achieving over 50% reduction in prediction error and maintaining an SoH prediction error below 0.58%. Furthermore, the architecture is generalizable and holds promise for broader applications in health monitoring tasks involving irregular time-series data.

11 pages, 3 figures
MIRA: Medical Time Series Foundation Model for Real-World Health Data 2025-11-15
Show

A unified foundation model for medical time series -- pretrained on open access and ethics board-approved medical corpora -- offers the potential to reduce annotation burdens, minimize model customization, and enable robust transfer across clinical institutions, modalities, and tasks, particularly in data-scarce or privacy-constrained environments. However, existing generalist time series foundation models struggle to handle medical time series data due to their inherent challenges, including irregular intervals, heterogeneous sampling rates, and frequent missing values. To address these challenges, we introduce MIRA, a unified foundation model specifically designed for medical time series forecasting. MIRA incorporates a Continuous-Time Rotary Positional Encoding that enables fine-grained modeling of variable time intervals, a frequency-specific mixture-of-experts layer that routes computation across latent frequency regimes to further promote temporal specialization, and a Continuous Dynamics Extrapolation Block based on Neural ODE that models the continuous trajectory of latent states, enabling accurate forecasting at arbitrary target timestamps. Pretrained on a large-scale and diverse medical corpus comprising over 454 billion time points collect from publicly available datasets, MIRA achieves reductions in forecasting errors by an average of 10% and 7% in out-of-distribution and in-distribution scenarios, respectively, when compared to other zero-shot and fine-tuned baselines. We also introduce a comprehensive benchmark spanning multiple downstream clinical tasks, establishing a foundation for future research in medical time series modeling.

NeurI...

NeurIPS 2025 Main Conference

ReCast: Reliability-aware Codebook Assisted Lightweight Time Series Forecasting 2025-11-15
Show

Time series forecasting is crucial for applications in various domains. Conventional methods often rely on global decomposition into trend, seasonal, and residual components, which become ineffective for real-world series dominated by local, complex, and highly dynamic patterns. Moreover, the high model complexity of such approaches limits their applicability in real-time or resource-constrained environments. In this work, we propose a novel \textbf{RE}liability-aware \textbf{C}odebook-\textbf{AS}sisted \textbf{T}ime series forecasting framework (\textbf{ReCast}) that enables lightweight and robust prediction by exploiting recurring local shapes. ReCast encodes local patterns into discrete embeddings through patch-wise quantization using a learnable codebook, thereby compactly capturing stable regular structures. To compensate for residual variations not preserved by quantization, ReCast employs a dual-path architecture comprising a quantization path for efficient modeling of regular structures and a residual path for reconstructing irregular fluctuations. A central contribution of ReCast is a reliability-aware codebook update strategy, which incrementally refines the codebook via weighted corrections. These correction weights are derived by fusing multiple reliability factors from complementary perspectives by a distributionally robust optimization (DRO) scheme, ensuring adaptability to non-stationarity and robustness to distribution shifts. Extensive experiments demonstrate that ReCast outperforms state-of-the-art (SOTA) models in accuracy, efficiency, and adaptability to distribution shifts.

AAAI 2026 Oral
Leveraging Sidewalk Robots for Walkability-Related Analyses 2025-11-14
Show

Walkability is a key component of sustainable urban development. In walkability studies, collecting detailed pedestrian infrastructure data remains challenging due to the high costs and limited scalability of traditional methods. Sidewalk delivery robots, increasingly deployed in urban environments, offer a promising solution to these limitations. This paper explores how these robots can serve as mobile data collection platforms, capturing sidewalk-level features related to walkability in a scalable, automated, and real-time manner. A sensor-equipped robot was deployed on a sidewalk network at KTH in Stockholm, completing 101 trips covering 900 segment records. From the collected data, different typologies of features are derived, including robot trip characteristics (e.g., speed, duration), sidewalk conditions (e.g., width, surface unevenness), and sidewalk utilization (e.g., pedestrian density). Their walkability-related implications were investigated with a series of analyses. The results demonstrate that pedestrian movement patterns are strongly influenced by sidewalk characteristics, with higher density, reduced width, and surface irregularity associated with slower and more variable trajectories. Notably, robot speed closely mirrors pedestrian behavior, highlighting its potential as a proxy for assessing pedestrian dynamics. The proposed framework enables continuous monitoring of sidewalk conditions and pedestrian behavior, contributing to the development of more walkable, inclusive, and responsive urban environments.

FlowPath: Learning Data-Driven Manifolds with Invertible Flows for Robust Irregularly-sampled Time Series Classification 2025-11-13
Show

Modeling continuous-time dynamics from sparse and irregularly-sampled time series remains a fundamental challenge. Neural controlled differential equations provide a principled framework for such tasks, yet their performance is highly sensitive to the choice of control path constructed from discrete observations. Existing methods commonly employ fixed interpolation schemes, which impose simplistic geometric assumptions that often misrepresent the underlying data manifold, particularly under high missingness. We propose FlowPath, a novel approach that learns the geometry of the control path via an invertible neural flow. Rather than merely connecting observations, FlowPath constructs a continuous and data-adaptive manifold, guided by invertibility constraints that enforce information-preserving and well-behaved transformations. This inductive bias distinguishes FlowPath from prior unconstrained learnable path models. Empirical evaluations on 18 benchmark datasets and a real-world case study demonstrate that FlowPath consistently achieves statistically significant improvements in classification accuracy over baselines using fixed interpolants or non-invertible architectures. These results highlight the importance of modeling not only the dynamics along the path but also the geometry of the path itself, offering a robust and generalizable solution for learning from irregular time series.

MedFuse: Multiplicative Embedding Fusion For Irregular Clinical Time Series 2025-11-12
Show

Clinical time series derived from electronic health records (EHRs) are inherently irregular, with asynchronous sampling, missing values, and heterogeneous feature dynamics. While numerical laboratory measurements are highly informative, existing embedding strategies usually combine feature identity and value embeddings through additive operations, which constrains their ability to capture value-dependent feature interactions. We propose MedFuse, a framework for irregular clinical time series centered on the MuFuse (Multiplicative Embedding Fusion) module. MuFuse fuses value and feature embeddings through multiplicative modulation, preserving feature-specific information while modeling higher-order dependencies across features. Experiments on three real-world datasets covering both intensive and chronic care show that MedFuse consistently outperforms state-of-the-art baselines on key predictive tasks. Analysis of the learned representations further demonstrates that multiplicative fusion enhances expressiveness and supports cross-dataset pretraining. These results establish MedFuse as a generalizable approach for modeling irregular clinical time series.

Rotary Masked Autoencoders are Versatile Learners 2025-11-08
Show

Applying Transformers to irregular time-series typically requires specializations to their baseline architecture, which can result in additional computational overhead and increased method complexity. We present the Rotary Masked Autoencoder (RoMAE), which utilizes the popular Rotary Positional Embedding (RoPE) method for continuous positions. RoMAE is an extension to the Masked Autoencoder (MAE) that enables interpolation and representation learning with multidimensional continuous positional information while avoiding any time-series-specific architectural specializations. We showcase RoMAE's performance on a variety of modalities including irregular and multivariate time-series, images, and audio, demonstrating that RoMAE surpasses specialized time-series architectures on difficult datasets such as the DESC ELAsTiCC Challenge while maintaining MAE's usual performance across other modalities. In addition, we investigate RoMAE's ability to reconstruct the embedded continuous positions, demonstrating that including learned embeddings in the input sequence breaks RoPE's relative position property.

NeurI...

NeurIPS 2025 Camera Ready

MedM2T: A MultiModal Framework for Time-Aware Modeling with Electronic Health Record and Electrocardiogram Data 2025-10-31
Show

The inherent multimodality and heterogeneous temporal structures of medical data pose significant challenges for modeling. We propose MedM2T, a time-aware multimodal framework designed to address these complexities. MedM2T integrates: (i) Sparse Time Series Encoder to flexibly handle irregular and sparse time series, (ii) Hierarchical Time-Aware Fusion to capture both micro- and macro-temporal patterns from multiple dense time series, such as ECGs, and (iii) Bi-Modal Attention to extract cross-modal interactions, which can be extended to any number of modalities. To mitigate granularity gaps between modalities, MedM2T uses modality-specific pre-trained encoders and aligns resulting features within a shared encoder. We evaluated MedM2T on MIMIC-IV and MIMIC-IV-ECG datasets for three tasks that encompass chronic and acute disease dynamics: 90-day cardiovascular disease (CVD) prediction, in-hospital mortality prediction, and ICU length-of-stay (LOS) regression. MedM2T outperformed state-of-the-art multimodal learning frameworks and existing time series models, achieving an AUROC of 0.947 and an AUPRC of 0.706 for CVD prediction; an AUROC of 0.901 and an AUPRC of 0.558 for mortality prediction; and Mean Absolute Error (MAE) of 2.31 for LOS regression. These results highlight the robustness and broad applicability of MedM2T, positioning it as a promising tool in clinical prediction. We provide the implementation of MedM2T at https://github.com/DHLab-TSENG/MedM2T.

This ...

This preprint version of the manuscript has been submitted to the IEEE Journal of Biomedical and Health Informatics (JBHI) for review. The implementation of MedM2T is available at https://github.com/DHLab-TSENG/MedM2T

Unbiased likelihood estimation of the Langevin diffusion for animal movement modelling 2025-10-28
Show

The resource selection function provides a model for describing habitat suitability, which can be used to predict the spatial utilisation distribution of a species. Tracking data can be modelled as a point process, but this is made complicated by the presence of temporally irregular autocorrelation. One proposed model to handle this is the continuous-time Langevin diffusion. However, current estimation techniques obtain increasingly biased parameter estimates as the intervals between observations increase. In this paper, we address this issue using Brownian bridges in an importance sampling scheme to improve the likelihood approximation of the Langevin diffusion model. We show using a series of simulation studies that this approach effectively removes the bias in many scenarios. Furthermore, we show that the model actually performs better at lower sampling rates over a longer duration than shorter duration at a higher sampling frequency. This research broadens the applicability of Langevin diffusion models to telemetry data at coarser resolutions.

Mixing It Up: Exploring Mixer Networks for Irregular Multivariate Time Series Forecasting 2025-10-27
Show

Forecasting Irregular Multivariate Time Series (IMTS) has recently emerged as a distinct research field, necessitating specialized models to address its unique challenges. While most forecasting literature assumes regularly spaced observations without missing values, many real-world datasets - particularly in healthcare, climate research, and biomechanics - violate these assumptions. Time Series (TS)-mixer models have achieved remarkable success in regular multivariate time series forecasting. However, they remain unexplored for IMTS due to their requirement for complete and evenly spaced observations. To bridge this gap, we introduce IMTS-Mixer, a novel forecasting architecture designed specifically for IMTS. Our approach retains the core principles of TS mixer models while introducing innovative methods to transform IMTS into fixed-size matrix representations, enabling their seamless integration with mixer modules. We evaluate IMTS-Mixer on a benchmark of four real-world datasets from various domains. Our results demonstrate that IMTS-Mixer establishes a new state-of-the-art in forecasting accuracy while also improving computational efficiency.

Log Neural Controlled Differential Equations: The Lie Brackets Make a Difference 2025-10-23
Show

The vector field of a controlled differential equation (CDE) describes the relationship between a control path and the evolution of a solution path. Neural CDEs (NCDEs) treat time series data as observations from a control path, parameterise a CDE's vector field using a neural network, and use the solution path as a continuously evolving hidden state. As their formulation makes them robust to irregular sampling rates, NCDEs are a powerful approach for modelling real-world data. Building on neural rough differential equations (NRDEs), we introduce Log-NCDEs, a novel, effective, and efficient method for training NCDEs. The core component of Log-NCDEs is the Log-ODE method, a tool from the study of rough paths for approximating a CDE's solution. Log-NCDEs are shown to outperform NCDEs, NRDEs, the linear recurrent unit, S5, and MAMBA on a range of multivariate time series datasets with up to $50{,}000$ observations.

23 pages, 5 figures
SynTSBench: Rethinking Temporal Pattern Learning in Deep Learning Models for Time Series 2025-10-23
Show

Recent advances in deep learning have driven rapid progress in time series forecasting, yet many state-of-the-art models continue to struggle with robust performance in real-world applications, even when they achieve strong results on standard benchmark datasets. This persistent gap can be attributed to the black-box nature of deep learning architectures and the inherent limitations of current evaluation frameworks, which frequently lack the capacity to provide clear, quantitative insights into the specific strengths and weaknesses of different models, thereby complicating the selection of appropriate models for particular forecasting scenarios. To address these issues, we propose a synthetic data-driven evaluation paradigm, SynTSBench, that systematically assesses fundamental modeling capabilities of time series forecasting models through programmable feature configuration. Our framework isolates confounding factors and establishes an interpretable evaluation system with three core analytical dimensions: (1) temporal feature decomposition and capability mapping, which enables systematic evaluation of model capacities to learn specific pattern types; (2) robustness analysis under data irregularities, which quantifies noise tolerance thresholds and anomaly recovery capabilities; and (3) theoretical optimum benchmarking, which establishes performance boundaries for each pattern type-enabling direct comparison between model predictions and mathematical optima. Our experiments show that current deep learning models do not universally approach optimal baselines across all types of temporal features.The code is available at https://github.com/TanQitai/SynTSBench

NeurIPS 2025
A Climate-Aware Deep Learning Framework for Generalizable Epidemic Forecasting 2025-10-22
Show

Precise outbreak forecasting of infectious diseases is essential for effective public health responses and epidemic control. The increased availability of machine learning (ML) methods for time-series forecasting presents an enticing avenue to enhance outbreak forecasting. Though the COVID-19 outbreak demonstrated the value of applying ML models to predict epidemic profiles, using ML models to forecast endemic diseases remains underexplored. In this work, we present ForecastNet-XCL (an ensemble model based on XGBoost+CNN+BiLSTM), a deep learning hybrid framework designed to addresses this gap by creating accurate multi-week RSV forecasts up to 100 weeks in advance based on climate and temporal data, without access to real-time surveillance on RSV. The framework combines high-resolution feature learning with long-range temporal dependency capturing mechanisms, bolstered by an autoregressive module trained on climate-controlled lagged relations. Stochastic inference returns probabilistic intervals to inform decision-making. Evaluated across 34 U.S. states, ForecastNet-XCL reliably outperformed statistical baselines, individual neural nets, and conventional ensemble methods in both within- and cross-state scenarios, sustaining accuracy over extended forecast horizons. Training on climatologically diverse datasets enhanced generalization furthermore, particularly in locations having irregular or biennial RSV patterns. ForecastNet-XCL's efficiency, performance, and uncertainty-aware design make it a deployable early-warning tool amid escalating climate pressures and constrained surveillance resources.

Still Competitive: Revisiting Recurrent Models for Irregular Time Series Prediction 2025-10-17
Show

Modeling irregularly sampled multivariate time series is a persistent challenge in domains like healthcare and sensor networks. While recent works have explored a variety of complex learning architectures to solve the prediction problems for irregularly sampled time series, it remains unclear what are the true benefits of some of these architectures, and whether clever modifications of simpler and more efficient RNN-based algorithms are still competitive, i.e. they are on par with or even superior to these methods. In this work, we propose and study GRUwE: Gated Recurrent Unit with Exponential basis functions, that builds upon RNN-based architectures for observations made at irregular times. GRUwE supports both regression-based and event-based predictions in continuous time. GRUwE works by maintaining a Markov state representation of the time series that updates with the arrival of irregular observations. The Markov state update relies on two reset mechanisms: (i) observation-triggered reset, and (ii) time-triggered reset of the GRU state using learnable exponential decays, to support the predictions in continuous time. Our empirical evaluations across several real-world benchmarks on next-observation and next-event prediction tasks demonstrate that GRUwE can indeed achieve competitive to superior performance compared to the recent state-of-the-art (SOTA) methods. Thanks to its simplicity, GRUwE offers compelling advantages: it is easy to implement, requires minimal hyper-parameter tuning efforts, and significantly reduces the computational overhead in the online deployment.

Time-IMM: A Dataset and Benchmark for Irregular Multimodal Multivariate Time Series 2025-10-15
Show

Time series data in real-world applications such as healthcare, climate modeling, and finance are often irregular, multimodal, and messy, with varying sampling rates, asynchronous modalities, and pervasive missingness. However, existing benchmarks typically assume clean, regularly sampled, unimodal data, creating a significant gap between research and real-world deployment. We introduce Time-IMM, a dataset specifically designed to capture cause-driven irregularity in multimodal multivariate time series. Time-IMM represents nine distinct types of time series irregularity, categorized into trigger-based, constraint-based, and artifact-based mechanisms. Complementing the dataset, we introduce IMM-TSF, a benchmark library for forecasting on irregular multimodal time series, enabling asynchronous integration and realistic evaluation. IMM-TSF includes specialized fusion modules, including a timestamp-to-text fusion module and a multimodality fusion module, which support both recency-aware averaging and attention-based integration strategies. Empirical results demonstrate that explicitly modeling multimodality on irregular time series data leads to substantial gains in forecasting performance. Time-IMM and IMM-TSF provide a foundation for advancing time series analysis under real-world conditions. The dataset is publicly available at https://github.com/blacksnail789521/Time-IMM, and the benchmark library can be accessed at https://github.com/blacksnail789521/IMM-TSF. Project page: https://blacksnail789521.github.io/time-imm-project-page/

This ...

This paper has been accepted by the NeurIPS 2025 Datasets and Benchmarks Track

Learning Representations of Event Time Series with Sparse Autoencoders for Anomaly Detection, Similarity Search, and Unsupervised Classification 2025-10-11
Show

Event time series are sequences of discrete events occurring at irregular time intervals, each associated with a domain-specific observational modality. They are common in domains such as high-energy astrophysics, computational social science, cybersecurity, finance, healthcare, neuroscience, and seismology. Their unstructured and irregular structure poses significant challenges for extracting meaningful patterns and identifying salient phenomena using conventional techniques. We propose novel two- and three-dimensional tensor representations for event time series, coupled with sparse autoencoders that learn physically meaningful latent representations. These embeddings support a variety of downstream tasks, including anomaly detection, similarity-based retrieval, semantic clustering, and unsupervised classification. We demonstrate our approach on a real-world dataset from X-ray astronomy, showing that these representations successfully capture temporal and spectral signatures and isolate diverse classes of X-ray transients. Our framework offers a flexible, scalable, and generalizable solution for analyzing complex, irregular event time series across scientific and industrial domains.

Accep...

Accepted at the 2025 ICML Workshop on Machine Learning for Astrophysics, Code available at: https://github.com/StevenDillmann/ml-xraytransients-mnras

A Diffusion Model for Regular Time Series Generation from Irregular Data with Completion and Masking 2025-10-08
Show

Generating realistic time series data is critical for applications in healthcare, finance, and science. However, irregular sampling and missing values present significant challenges. While prior methods address these irregularities, they often yield suboptimal results and incur high computational costs. Recent advances in regular time series generation, such as the diffusion-based ImagenTime model, demonstrate strong, fast, and scalable generative capabilities by transforming time series into image representations, making them a promising solution. However, extending ImagenTime to irregular sequences using simple masking introduces "unnatural" neighborhoods, where missing values replaced by zeros disrupt the learning process. To overcome this, we propose a novel two-step framework: first, a Time Series Transformer completes irregular sequences, creating natural neighborhoods; second, a vision-based diffusion model with masking minimizes dependence on the completed values. This approach leverages the strengths of both completion and masking, enabling robust and efficient generation of realistic time series. Our method achieves state-of-the-art performance, achieving a relative improvement in discriminative score by $70%$ and in computational cost by $85%$. Code is at https://github.com/azencot-group/ImagenI2R.

Accep...

Accepted to NeurIPS 2025; The first two authors contributed equally and are co-leading authors

StarEmbed: Benchmarking Time Series Foundation Models on Astronomical Observations of Variable Stars 2025-10-07
Show

Time series foundation models (TSFMs) are increasingly being adopted as highly-capable general-purpose time series representation learners. Although their training corpora are vast, they exclude astronomical time series data. Observations of stars produce peta-scale time series with unique challenges including irregular sampling and heteroskedasticity. We introduce StarEmbed, the first public benchmark for rigorous and standardized evaluation of state-of-the-art TSFMs on stellar time series observations (``light curves''). We benchmark on three scientifically-motivated downstream tasks: unsupervised clustering, supervised classification, and out-of-distribution source detection. StarEmbed integrates a catalog of expert-vetted labels with multi-variate light curves from the Zwicky Transient Facility, yielding ~40k hand-labeled light curves spread across seven astrophysical classes. We evaluate the zero-shot representation capabilities of three TSFMs (MOIRAI, Chronos, Chronos-Bolt) and a domain-specific transformer (Astromer) against handcrafted feature extraction, the long-standing baseline in the astrophysics literature. Our results demonstrate that these TSFMs, especially the Chronos models, which are trained on data completely unlike the astronomical observations, can outperform established astrophysics-specific baselines in some tasks and effectively generalize to entirely new data. In particular, TSFMs deliver state-of-the-art performance on our out-of-distribution source detection benchmark. With the first benchmark of TSFMs on astronomical time series data, we test the limits of their generalization and motivate a paradigm shift in time-domain astronomy from using task-specific, fully supervised pipelines toward adopting generic foundation model representations for the analysis of peta-scale datasets from forthcoming observatories.

A Hybrid DNN Transformer AE Framework for Corporate Tax Risk Supervision and Risk Level Assessment 2025-09-28
Show

Tax risk supervision has become a critical component of modern financial governance, as irregular tax behaviors and hidden compliance risks pose significant challenges to regulatory authorities and enterprises alike. Traditional rule-based methods often struggle to capture complex and dynamic tax-related anomalies in large-scale enterprise data. To address this issue, this paper proposes a hybrid deep learning framework (DNN-Transformer-Autoencoder) for corporate tax risk supervision and risk level assessment. The framework integrates three complementary modules: a Deep Neural Network (DNN) for modeling static enterprise attributes, a Transformer-based architecture for capturing long-term dependencies in historical financial time series, and an Autoencoder (AE) for unsupervised detection of anomalous tax behaviors. The outputs of these modules are fused to generate a comprehensive risk score, which is further mapped into discrete risk levels (high, medium, low). Experimental evaluations on a real-world enterprise tax dataset demonstrate the effectiveness of the proposed framework, achieving an accuracy of 0.91 and a Macro F1-score of 0.88. These results indicate that the hybrid model not only improves classification performance but also enhances interpretability and applicability in practical tax regulation scenarios. This study provides both methodological innovation and regulatory implications for intelligent tax risk management.

ASTGI: Adaptive Spatio-Temporal Graph Interactions for Irregular Multivariate Time Series Forecasting 2025-09-27
Show

Irregular multivariate time series (IMTS) are prevalent in critical domains like healthcare and finance, where accurate forecasting is vital for proactive decision-making. However, the asynchronous sampling and irregular intervals inherent to IMTS pose two core challenges for existing methods: (1) how to accurately represent the raw information of irregular time series without introducing data distortion, and (2) how to effectively capture the complex dynamic dependencies between observation points. To address these challenges, we propose the Adaptive Spatio-Temporal Graph Interaction (ASTGI) framework. Specifically, the framework first employs a Spatio-Temporal Point Representation module to encode each discrete observation as a point within a learnable spatio-temporal embedding space. Second, a Neighborhood-Adaptive Graph Construction module adaptively builds a causal graph for each point in the embedding space via nearest neighbor search. Subsequently, a Spatio-Temporal Dynamic Propagation module iteratively updates information on these adaptive causal graphs by generating messages and computing interaction weights based on the relative spatio-temporal positions between points. Finally, a Query Point-based Prediction module generates the final forecast by aggregating neighborhood information for a new query point and performing regression. Extensive experiments on multiple benchmark datasets demonstrate that ASTGI outperforms various state-of-the-art methods.

Comprehensive Review of Neural Differential Equations for Time Series Analysis 2025-09-27
Show

Time series modeling and analysis have become critical in various domains. Conventional methods such as RNNs and Transformers, while effective for discrete-time and regularly sampled data, face significant challenges in capturing the continuous dynamics and irregular sampling patterns inherent in real-world scenarios. Neural Differential Equations (NDEs) represent a paradigm shift by combining the flexibility of neural networks with the mathematical rigor of differential equations. This paper presents a comprehensive review of NDE-based methods for time series analysis, including neural ordinary differential equations, neural controlled differential equations, and neural stochastic differential equations. We provide a detailed discussion of their mathematical formulations, numerical methods, and applications, highlighting their ability to model continuous-time dynamics. Furthermore, we address key challenges and future research directions. This survey serves as a foundation for researchers and practitioners seeking to leverage NDEs for advanced time series analysis.

Publi...

Published at the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2025), Survey Track. https://www.ijcai.org/proceedings/2025/1179

Mind the Missing: Variable-Aware Representation Learning for Irregular EHR Time Series using Large Language Models 2025-09-26
Show

Irregular sampling and high missingness are intrinsic challenges in modeling time series derived from electronic health records (EHRs),where clinical variables are measured at uneven intervals depending on workflow and intervention timing. To address this, we propose VITAL, a variable-aware, large language model (LLM) based framework tailored for learning from irregularly sampled physiological time series. VITAL differentiates between two distinct types of clinical variables: vital signs, which are frequently recorded and exhibit temporal patterns, and laboratory tests, which are measured sporadically and lack temporal structure. It reprograms vital signs into the language space, enabling the LLM to capture temporal context and reason over missing values through explicit encoding. In contrast, laboratory variables are embedded either using representative summary values or a learnable [Not measured] token, depending on their availability. Extensive evaluations on the benchmark datasets from the PhysioNet demonstrate that VITAL outperforms state of the art methods designed for irregular time series. Furthermore, it maintains robust performance under high levels of missingness, which is prevalent in real world clinical scenarios where key variables are often unavailable.

Federated Markov Imputation: Privacy-Preserving Temporal Imputation in Multi-Centric ICU Environments 2025-09-25
Show

Missing data is a persistent challenge in federated learning on electronic health records, particularly when institutions collect time-series data at varying temporal granularities. To address this, we propose Federated Markov Imputation (FMI), a privacy-preserving method that enables Intensive Care Units (ICUs) to collaboratively build global transition models for temporal imputation. We evaluate FMI on a real-world sepsis onset prediction task using the MIMIC-IV dataset and show that it outperforms local imputation baselines, especially in scenarios with irregular sampling intervals across ICUs.

Accep...

Accepted at the 1st International ECML-PKDD Workshop-Tutorial on Learning on Real and Synthetic Medical Time Series Data (MED-TIME)

IConv: Focusing on Local Variation with Channel Independent Convolution for Multivariate Time Series Forecasting 2025-09-25
Show

Real-world time-series data often exhibit non-stationarity, including changing trends, irregular seasonality, and residuals. In terms of changing trends, recently proposed multi-layer perceptron (MLP)-based models have shown excellent performance owing to their computational efficiency and ability to capture long-term dependency. However, the linear nature of MLP architectures poses limitations when applied to channels with diverse distributions, resulting in local variations such as seasonal patterns and residual components being ignored. However, convolutional neural networks (CNNs) can effectively incorporate these variations. To resolve the limitations of MLP, we propose combining them with CNNs. The overall trend is modeled using an MLP to consider long-term dependencies. The CNN uses diverse kernels to model fine-grained local patterns in conjunction with MLP trend predictions. To focus on modeling local variation, we propose IConv, a novel convolutional architecture that processes the temporal dependency channel independently and considers the inter-channel relationship through distinct layers. Independent channel processing enables the modeling of diverse local temporal dependencies and the adoption of a large kernel size. Distinct inter-channel considerations reduce computational cost. The proposed model is evaluated through extensive experiments on time-series datasets. The results reveal the superiority of the proposed method for multivariate time-series forecasting.

Submitted to AAAI
Dynamic Lagging for Time-Series Forecasting in E-Commerce Finance: Mitigating Information Loss with A Hybrid ML Architecture 2025-09-24
Show

Accurate forecasting in the e-commerce finance domain is particularly challenging due to irregular invoice schedules, payment deferrals, and user-specific behavioral variability. These factors, combined with sparse datasets and short historical windows, limit the effectiveness of conventional time-series methods. While deep learning and Transformer-based models have shown promise in other domains, their performance deteriorates under partial observability and limited historical data. To address these challenges, we propose a hybrid forecasting framework that integrates dynamic lagged feature engineering and adaptive rolling-window representations with classical statistical models and ensemble learners. Our approach explicitly incorporates invoice-level behavioral modeling, structured lag of support data, and custom stability-aware loss functions, enabling robust forecasts in sparse and irregular financial settings. Empirical results demonstrate an approximate 5% reduction in MAPE compared to baseline models, translating into substantial financial savings. Furthermore, the framework enhances forecast stability over quarterly horizons and strengthens feature target correlation by capturing both short- and long-term patterns, leveraging user profile attributes, and simulating upcoming invoice behaviors. These findings underscore the value of combining structured lagging, invoice-level closure modeling, and behavioral insights to advance predictive accuracy in sparse financial time-series forecasting.

DeNOTS: Stable Deep Neural ODEs for Time Series 2025-09-24
Show

Neural CDEs provide a natural way to process the temporal evolution of irregular time series. The number of function evaluations (NFE) is these systems' natural analog of depth (the number of layers in traditional neural networks). It is usually regulated via solver error tolerance: lower tolerance means higher numerical precision, requiring more integration steps. However, lowering tolerances does not adequately increase the models' expressiveness. We propose a simple yet effective alternative: scaling the integration time horizon to increase NFEs and "deepen`` the model. Increasing the integration interval causes uncontrollable growth in conventional vector fields, so we also propose a way to stabilize the dynamics via Negative Feedback (NF). It ensures provable stability without constraining flexibility. It also implies robustness: we provide theoretical bounds for Neural ODE risk using Gaussian process theory. Experiments on four open datasets demonstrate that our method, DeNOTS, outperforms existing approaches~ -- including recent Neural RDEs and state space models, -- ~achieving up to $20%$ improvement in metrics. DeNOTS combines expressiveness, stability, and robustness, enabling reliable modelling in continuous-time domains.

MTM: A Multi-Scale Token Mixing Transformer for Irregular Multivariate Time Series Classification 2025-09-22
Show

Irregular multivariate time series (IMTS) is characterized by the lack of synchronized observations across its different channels. In this paper, we point out that this channel-wise asynchrony can lead to poor channel-wise modeling of existing deep learning methods. To overcome this limitation, we propose MTM, a multi-scale token mixing transformer for the classification of IMTS. We find that the channel-wise asynchrony can be alleviated by down-sampling the time series to coarser timescales, and propose to incorporate a masked concat pooling in MTM that gradually down-samples IMTS to enhance the channel-wise attention modules. Meanwhile, we propose a novel channel-wise token mixing mechanism which proactively chooses important tokens from one channel and mixes them with other channels, to further boost the channel-wise learning of our model. Through extensive experiments on real-world datasets and comparison with state-of-the-art methods, we demonstrate that MTM consistently achieves the best performance on all the benchmarks, with improvements of up to 3.8% in AUPRC for classification.

KDD 2025
Explainable Unsupervised Multi-Anomaly Detection and Temporal Localization in Nuclear Times Series Data with a Dual Attention-Based Autoencoder 2025-09-15
Show

The nuclear industry is advancing toward more new reactor designs, with next-generation reactors expected to be smaller in scale and power output. These systems have the potential to produce large volumes of information in the form of multivariate time-series data, which could be used for enhanced real-time monitoring and control. In this context, the development of remote autonomous or semi-autonomous control systems for reactor operation has gained significant interest. A critical first step toward such systems is an accurate diagnostics module capable of detecting and localizing anomalies within the reactor system. Recent studies have proposed various ML and DL approaches for anomaly detection in the nuclear domain. Despite promising results, key challenges remain, including limited to no explainability, lack of access to real-world data, and scarcity of abnormal events, which impedes benchmarking and characterization. Most existing studies treat these methods as black boxes, while recent work highlights the need for greater interpretability of ML/DL outputs in safety-critical domains. Here, we propose an unsupervised methodology based on an LSTM autoencoder with a dual attention mechanism for characterization of abnormal events in a real-world reactor radiation area monitoring system. The framework includes not only detection but also localization of the event and was evaluated using real-world datasets of increasing complexity from the PUR-1 research reactor. The attention mechanisms operate in both the feature and temporal dimensions, where the feature attention assigns weights to radiation sensors exhibiting abnormal patterns, while time attention highlights the specific timesteps where irregularities occur, thus enabling localization. By combining the results, the framework can identify both the affected sensors and the duration of each anomaly within a single unified network.

Why Bonds Fail Differently? Explainable Multimodal Learning for Multi-Class Default Prediction 2025-09-13
Show

In recent years, China's bond market has seen a surge in defaults amid regulatory reforms and macroeconomic volatility. Traditional machine learning models struggle to capture financial data's irregularity and temporal dependencies, while most deep learning models lack interpretability-critical for financial decision-making. To tackle these issues, we propose EMDLOT (Explainable Multimodal Deep Learning for Time-series), a novel framework for multi-class bond default prediction. EMDLOT integrates numerical time-series (financial/macroeconomic indicators) and unstructured textual data (bond prospectuses), uses Time-Aware LSTM to handle irregular sequences, and adopts soft clustering and multi-level attention to boost interpretability. Experiments on 1994 Chinese firms (2015-2024) show EMDLOT outperforms traditional (e.g., XGBoost) and deep learning (e.g., LSTM) benchmarks in recall, F1-score, and mAP, especially in identifying default/extended firms. Ablation studies validate each component's value, and attention analyses reveal economically intuitive default drivers. This work provides a practical tool and a trustworthy framework for transparent financial risk modeling.

PLanTS: Periodicity-aware Latent-state Representation Learning for Multivariate Time Series 2025-09-05
Show

Multivariate time series (MTS) are ubiquitous in domains such as healthcare, climate science, and industrial monitoring, but their high dimensionality, limited labeled data, and non-stationary nature pose significant challenges for conventional machine learning methods. While recent self-supervised learning (SSL) approaches mitigate label scarcity by data augmentations or time point-based contrastive strategy, they neglect the intrinsic periodic structure of MTS and fail to capture the dynamic evolution of latent states. We propose PLanTS, a periodicity-aware self-supervised learning framework that explicitly models irregular latent states and their transitions. We first designed a period-aware multi-granularity patching mechanism and a generalized contrastive loss to preserve both instance-level and state-level similarities across multiple temporal resolutions. To further capture temporal dynamics, we design a next-transition prediction pretext task that encourages representations to encode predictive information about future state evolution. We evaluate PLanTS across a wide range of downstream tasks-including multi-class and multi-label classification, forecasting, trajectory tracking and anomaly detection. PLanTS consistently improves the representation quality over existing SSL methods and demonstrates superior runtime efficiency compared to DTW-based methods.

Semi-Supervised Bayesian GANs with Log-Signatures for Uncertainty-Aware Credit Card Fraud Detection 2025-09-05
Show

We present a novel deep generative semi-supervised framework for credit card fraud detection, formulated as time series classification task. As financial transaction data streams grow in scale and complexity, traditional methods often require large labeled datasets, struggle with time series of irregular sampling frequencies and varying sequence lengths. To address these challenges, we extend conditional Generative Adversarial Networks (GANs) for targeted data augmentation, integrate Bayesian inference to obtain predictive distributions and quantify uncertainty, and leverage log-signatures for robust feature encoding of transaction histories. We introduce a novel Wasserstein distance-based loss to align generated and real unlabeled samples while simultaneously maximizing classification accuracy on labeled data. Our approach is evaluated on the BankSim dataset, a widely used simulator for credit card transaction data, under varying proportions of labeled samples, demonstrating consistent improvements over benchmarks in both global statistical and domain-specific metrics. These findings highlight the effectiveness of GAN-driven semi-supervised learning with log-signatures for irregularly sampled time series and emphasize the importance of uncertainty-aware predictions.

Updat...

Updated references in v2

End to End Autoencoder MLP Framework for Sepsis Prediction 2025-09-02
Show

Sepsis is a life threatening condition that requires timely detection in intensive care settings. Traditional machine learning approaches, including Naive Bayes, Support Vector Machine (SVM), Random Forest, and XGBoost, often rely on manual feature engineering and struggle with irregular, incomplete time-series data commonly present in electronic health records. We introduce an end-to-end deep learning framework integrating an unsupervised autoencoder for automatic feature extraction with a multilayer perceptron classifier for binary sepsis risk prediction. To enhance clinical applicability, we implement a customized down sampling strategy that extracts high information density segments during training and a non-overlapping dynamic sliding window mechanism for real-time inference. Preprocessed time series data are represented as fixed dimension vectors with explicit missingness indicators, mitigating bias and noise. We validate our approach on three ICU cohorts. Our end-to-end model achieves accuracies of 74.6 percent, 80.6 percent, and 93.5 percent, respectively, consistently outperforming traditional machine learning baselines. These results demonstrate the framework's superior robustness, generalizability, and clinical utility for early sepsis detection across heterogeneous ICU environments.

ExSEnt: Extrema-Segmented Entropy Analysis of Time Series 2025-08-29
Show

We introduce Extrema-Segmented Entropy (ExSEnt), a feature-decomposed framework for quantifying time-series complexity that separates temporal from amplitude contributions. The method partitions a signal into monotonic segments by detecting sign changes in the first-order increments. For each segment, it extracts the interval duration and the net amplitude change, generating two sequences that reflect timing and magnitude variability, respectively. Complexity is then quantified by computing sample entropy on durations and amplitudes, together with their joint entropy. This decomposition reveals whether overall irregularity is driven by timing, amplitude, or their coupling, providing a richer and more interpretable characterization than unidimensional metrics. We validate ExSEnt on canonical nonlinear dynamical systems (Logistic map, Rossler system, Rulkov map), demonstrating its ability to track complexity changes across control parameter sweeps and detect transitions between periodic and chaotic regimes. Then, we illustrate the empirical utility of ExSEnt metrics to isolate feature-specific sources of complexity in real data (electromyography and ankle acceleration in Parkinsons disease). ExSEnt thus complements existing entropy measures by attributing complexity to distinct signal features, improving interpretability and supporting applications in a broad range of domains, including physiology, finance, and geoscience.

pyFAST: A Modular PyTorch Framework for Time Series Modeling with Multi-source and Sparse Data 2025-08-26
Show

Modern time series analysis demands frameworks that are flexible, efficient, and extensible. However, many existing Python libraries exhibit limitations in modularity and in their native support for irregular, multi-source, or sparse data. We introduce pyFAST, a research-oriented PyTorch framework that explicitly decouples data processing from model computation, fostering a cleaner separation of concerns and facilitating rapid experimentation. Its data engine is engineered for complex scenarios, supporting multi-source loading, protein sequence handling, efficient sequence- and patch-level padding, dynamic normalization, and mask-based modeling for both imputation and forecasting. pyFAST integrates LLM-inspired architectures for the alignment-free fusion of sparse data sources and offers native sparse metrics, specialized loss functions, and flexible exogenous data fusion. Training utilities include batch-based streaming aggregation for evaluation and device synergy to maximize computational efficiency. A comprehensive suite of classical and deep learning models (Linears, CNNs, RNNs, Transformers, and GNNs) is provided within a modular architecture that encourages extension. Released under the MIT license at GitHub, pyFAST provides a compact yet powerful platform for advancing time series research and applications.

FlexTSF: A Flexible Forecasting Model for Time Series with Variable Regularities 2025-08-25
Show

Forecasting time series with irregular temporal structures remains challenging for universal pre-trained models. Existing approaches often assume regular sampling or depend heavily on imputation, limiting their applicability in real-world scenarios where irregularities are prevalent due to diverse sensing devices and recording practices. We introduce FlexTSF, a flexible forecasting model specifically designed for time series data with variable temporal regularities. At its foundation lies the IVP Patcher, a continuous-time patching module leveraging Initial Value Problems (IVPs) to inherently support uneven time intervals, variable sequence lengths, and missing values. FlexTSF employs a decoder-only architecture that integrates normalized timestamp inputs and domain-specific statistics through a specialized causal self-attention mechanism, enabling adaptability across domains. Extensive experiments on 16 datasets demonstrate FlexTSF's effectiveness, significantly outperforming existing models in classic forecasting scenarios, zero-shot generalization, and low-resource fine-tuning conditions. Ablation studies confirm the contributions of each design component and the advantage of not relying on predefined fixed patch lengths.

Modeling Irregular Astronomical Time Series with Neural Stochastic Delay Differential Equations 2025-08-24
Show

Astronomical time series from large-scale surveys like LSST are often irregularly sampled and incomplete, posing challenges for classification and anomaly detection. We introduce a new framework based on Neural Stochastic Delay Differential Equations (Neural SDDEs) that combines stochastic modeling with neural networks to capture delayed temporal dynamics and handle irregular observations. Our approach integrates a delay-aware neural architecture, a numerical solver for SDDEs, and mechanisms to robustly learn from noisy, sparse sequences. Experiments on irregularly sampled astronomical data demonstrate strong classification accuracy and effective detection of novel astrophysical events, even with partial labels. This work highlights Neural SDDEs as a principled and practical tool for time series analysis under observational constraints.

Early Detection of Pancreatic Cancer Using Multimodal Learning on Electronic Health Records 2025-08-18
Show

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, and early detection remains a major clinical challenge due to the absence of specific symptoms and reliable biomarkers. In this work, we propose a new multimodal approach that integrates longitudinal diagnosis code histories and routinely collected laboratory measurements from electronic health records to detect PDAC up to one year prior to clinical diagnosis. Our method combines neural controlled differential equations to model irregular lab time series, pretrained language models and recurrent networks to learn diagnosis code trajectory representations, and cross-attention mechanisms to capture interactions between the two modalities. We develop and evaluate our approach on a real-world dataset of nearly 4,700 patients and achieve significant improvements in AUC ranging from 6.5% to 15.5% over state-of-the-art methods. Furthermore, our model identifies diagnosis codes and laboratory panels associated with elevated PDAC risk, including both established and new biomarkers. Our code is available at https://github.com/MosbahAouad/EarlyPDAC-MML.

The path to a goal: Understanding soccer possessions via path signatures 2025-08-18
Show

We present a novel framework for predicting next actions in soccer possessions by leveraging path signatures to encode their complex spatio-temporal structure. Unlike existing approaches, we do not rely on fixed historical windows and handcrafted features, but rather encode the entire recent possession, thereby avoiding the inclusion of potentially irrelevant or misleading historical information. Path signatures naturally capture the order and interaction of events, providing a mathematically grounded feature encoding for variable-length time series of irregular sampling frequencies without the necessity for manual feature engineering. Our proposed approach outperforms a transformer-based benchmark across various loss metrics and considerably reduces computational cost. Building on these results, we introduce a new possession evaluation metric based on well-established frameworks in soccer analytics, incorporating both predicted action type probabilities and action location. Our metric shows greater reliability than existing metrics in domain-specific comparisons. Finally, we validate our approach through a detailed analysis of the 2017/18 Premier League season and discuss further applications and future extensions.

DeepFeatIoT: Unifying Deep Learned, Randomized, and LLM Features for Enhanced IoT Time Series Sensor Data Classification in Smart Industries 2025-08-13
Show

Internet of Things (IoT) sensors are ubiquitous technologies deployed across smart cities, industrial sites, and healthcare systems. They continuously generate time series data that enable advanced analytics and automation in industries. However, challenges such as the loss or ambiguity of sensor metadata, heterogeneity in data sources, varying sampling frequencies, inconsistent units of measurement, and irregular timestamps make raw IoT time series data difficult to interpret, undermining the effectiveness of smart systems. To address these challenges, we propose a novel deep learning model, DeepFeatIoT, which integrates learned local and global features with non-learned randomized convolutional kernel-based features and features from large language models (LLMs). This straightforward yet unique fusion of diverse learned and non-learned features significantly enhances IoT time series sensor data classification, even in scenarios with limited labeled data. Our model's effectiveness is demonstrated through its consistent and generalized performance across multiple real-world IoT sensor datasets from diverse critical application domains, outperforming state-of-the-art benchmark models. These results highlight DeepFeatIoT's potential to drive significant advancements in IoT analytics and support the development of next-generation smart systems.

Accep...

Accepted for publication at IJCAI 2025

Dual Signal Decomposition of Stochastic Time Series 2025-08-13
Show

The decomposition of a stochastic time series into three component series representing a dual signal - namely, the mean and dispersion - while isolating noise is presented. The decomposition is performed by applying machine learning techniques to fit the dual signal. Machine learning minimizes the loss function which compromises between fitting the original time series and penalizing irregularities of the dual signal. The latter includes terms based on the first and second order derivatives along time. To preserve special patterns, weighting of the regularization components of the loss function has been introduced based on Statistical Process Control methodology. The proposed decomposition can be applied as a smoothing algorithm against the mean and dispersion of the time series. By isolating noise, the proposed decomposition can be seen as a denoising algorithm. Two approaches of the learning process have been considered: sequential and jointly. The former approach learns the mean signal first and then dispersion. The latter approach fits the dual signal jointly. Jointly learning can uncover complex relationships for the time series with heteroskedasticity. Learning has been set by solving the direct non-linear unconstrained optimization problem or by applying neural networks that have sequential or twin output architectures. Tuning of the loss function hyperparameters focuses on the isolated noise to be a stationary stochastic process without autocorrelation properties. Depending on the applications, the hyperparameters of the learning can be tuned towards either the discrete states by stepped signal or smoothed series. The decomposed dual signal can be represented on the 2D space and used to learn inherent structures, to forecast both mean and dispersion, or to analyze cross effects in case of multiple time series.

21 pa...

21 pages, 9 figures, 1 table

EnergyPatchTST: Multi-scale Time Series Transformers with Uncertainty Estimation for Energy Forecasting 2025-08-07
Show

Accurate and reliable energy time series prediction is of great significance for power generation planning and allocation. At present, deep learning time series prediction has become the mainstream method. However, the multi-scale time dynamics and the irregularity of real data lead to the limitations of the existing methods. Therefore, we propose EnergyPatchTST, which is an extension of the Patch Time Series Transformer specially designed for energy forecasting. The main innovations of our method are as follows: (1) multi-scale feature extraction mechanism to capture patterns with different time resolutions; (2) probability prediction framework to estimate uncertainty through Monte Carlo elimination; (3) integration path of future known variables (such as temperature and wind conditions); And (4) Pre-training and Fine-tuning examples to enhance the performance of limited energy data sets. A series of experiments on common energy data sets show that EnergyPatchTST is superior to other commonly used methods, the prediction error is reduced by 7-12%, and reliable uncertainty estimation is provided, which provides an important reference for time series prediction in the energy field.

Accep...

Accepted for publication at the International Conference on Intelligent Computing (ICIC 2025). 12 pages. The final authenticated version is published in the Lecture Notes in Computer Science (LNCS) series, vol 15860, and is available online. This is the author's version of the work submitted for peer review

CauKer: classification time series foundation models can be pretrained on synthetic data only 2025-08-06
Show

Time series foundation models (TSFMs) have recently gained significant attention due to their strong zero-shot capabilities and widespread real-world applications. Such models typically require a computationally costly pretraining on large-scale, carefully curated collections of real-world sequences. To allow for a sample-efficient pretraining of TSFMs, we propose CauKer, a novel algorithm designed to generate diverse, causally coherent synthetic time series with realistic trends, seasonality, and nonlinear interactions. CauKer combines Gaussian Process (GP) kernel composition with Structural Causal Models (SCM) to produce data for sample-efficient pretraining of state-of-the-art classification TSFMs having different architectures and following different pretraining approaches. Additionally, our experiments reveal that CauKer-generated datasets exhibit clear scaling laws for both dataset size (10K to 10M samples) and model capacity (1M to 783M parameters), unlike real-world datasets, which display irregular scaling behavior.

HT-Transformer: Event Sequences Classification by Accumulating Prefix Information with History Tokens 2025-08-02
Show

Deep learning has achieved remarkable success in modeling sequential data, including event sequences, temporal point processes, and irregular time series. Recently, transformers have largely replaced recurrent networks in these tasks. However, transformers often underperform RNNs in classification tasks where the objective is to predict future targets. The reason behind this performance gap remains largely unexplored. In this paper, we identify a key limitation of transformers: the absence of a single state vector that provides a compact and effective representation of the entire sequence. Additionally, we show that contrastive pretraining of embedding vectors fails to capture local context, which is crucial for accurate prediction. To address these challenges, we introduce history tokens, a novel concept that facilitates the accumulation of historical information during next-token prediction pretraining. Our approach significantly improves transformer-based models, achieving impressive results in finance, e-commerce, and healthcare tasks. The code is publicly available on GitHub.

VISTA-SSM: Varying and Irregular Sampling Time-series Analysis via State Space Models 2025-07-24
Show

We introduce VISTA, a clustering approach for multivariate and irregularly sampled time series based on a parametric state space mixture model. VISTA is specifically designed for the unsupervised identification of groups in datasets originating from healthcare and psychology where such sampling issues are commonplace. Our approach adapts linear Gaussian state space models (LGSSMs) to provide a flexible parametric framework for fitting a wide range of time series dynamics. The clustering approach itself is based on the assumption that the population can be represented as a mixture of a fixed number of LGSSMs. VISTA's model formulation allows for an explicit derivation of the log-likelihood function, from which we develop an expectation-maximization scheme for fitting model parameters to the observed data samples. Our algorithmic implementation is designed to handle populations of multivariate time series that can exhibit large changes in sampling rate as well as irregular sampling. We evaluate the versatility and accuracy of our approach on simulated and real-world datasets, including demographic trends, wearable sensor data, epidemiological time series, and ecological momentary assessments. Our results indicate that VISTA outperforms most comparable standard times series clustering methods. We provide an open-source implementation of VISTA in Python.

Toward Temporal Causal Representation Learning with Tensor Decomposition 2025-07-18
Show

Temporal causal representation learning is a powerful tool for uncovering complex patterns in observational studies, which are often represented as low-dimensional time series. However, in many real-world applications, data are high-dimensional with varying input lengths and naturally take the form of irregular tensors. To analyze such data, irregular tensor decomposition is critical for extracting meaningful clusters that capture essential information. In this paper, we focus on modeling causal representation learning based on the transformed information. First, we present a novel causal formulation for a set of latent clusters. We then propose CaRTeD, a joint learning framework that integrates temporal causal representation learning with irregular tensor decomposition. Notably, our framework provides a blueprint for downstream tasks using the learned tensor factors, such as modeling latent structures and extracting causal information, and offers a more flexible regularization design to enhance tensor decomposition. Theoretically, we show that our algorithm converges to a stationary point. More importantly, our results fill the gap in theoretical guarantees for the convergence of state-of-the-art irregular tensor decomposition. Experimental results on synthetic and real-world electronic health record (EHR) datasets (MIMIC-III), with extensive benchmarks from both phenotyping and network recovery perspectives, demonstrate that our proposed method outperforms state-of-the-art techniques and enhances the explainability of causal representations.

Solar Flare Prediction Using Long Short-term Memory (LSTM) and Decomposition-LSTM with Sliding Window Pattern Recognition 2025-07-15
Show

We investigate the use of Long Short-Term Memory (LSTM) and Decomposition-LSTM (DLSTM) networks, combined with an ensemble algorithm, to predict solar flare occurrences using time-series data from the GOES catalog. The dataset spans from 2003 to 2023 and includes 151,071 flare events. Among approximately possible patterns, 7,552 yearly pattern windows are identified, highlighting the challenge of long-term forecasting due to the Sun's complex, self-organized criticality-driven behavior. A sliding window technique is employed to detect temporal quasi-patterns in both irregular and regularized flare time series. Regularization reduces complexity, enhances large flare activity, and captures active days more effectively. To address class imbalance, resampling methods are applied. LSTM and DLSTM models are trained on sequences of peak fluxes and waiting times from irregular time series, while LSTM and DLSTM, integrated with an ensemble approach, are applied to sliding windows of regularized time series with a 3-hour interval. Performance metrics, particularly TSS (0.74), recall (0.95) and the area under the curve (AUC=0.87) in the receiver operating characteristic (ROC), indicate that DLSTM with an ensemble approach on regularized time series outperforms other models, offering more accurate large-flare forecasts with fewer false errors compared to models trained on irregular time series. The superior performance of DLSTM is attributed to its ability to decompose time series into trend and seasonal components, effectively isolating random noise. This study underscores the potential of advanced machine learning techniques for solar flare prediction and highlights the importance of incorporating various solar cycle phases and resampling strategies to enhance forecasting reliability.

Publi...

Published in the Astrophysical Journal Supplement Series, volume 279, 2025, DOI: 10.3847/1538-4365/addc73

Estimation de la tendance-cycle avec des méthodes robustes aux points atypiques 2025-07-14
Show

Seasonally adjusted series are usually used to analyse the business cycle and turning points. When the irregular is too high, it is preferable to smooth the series in order to analyse the trend-cycle component directly. This study focuses on the real-time estimation of the trend-cycle component around shocks and turning points. The linear moving averages classically used for estimating the trend-cycle, which are sensitive to the presence of atypical points, are compared with robust non-linear methods. We also propose a methodology for extending the Henderson and Musgrave moving averages to take account of external information and thus construct moving averages that are robust to the presence of certain shocks. We describe how to estimate confidence intervals for estimates derived from moving averages, thereby validating the use of these new moving averages. By comparing the methods on simulated and real series, we show that: building robust moving averages makes it possible to reduce revisions and better model turning points around shocks, without degrading the estimates when no shock is observed; robust non-linear methods do not make it possible to extract a trend-cycle component that is satisfactory for economic analysis, with sometimes significant revisions. This study is fully reproducible and all the codes used are available under https://github.com/AQLT/robustMA.

Comme...

Comments: 48 pages, 31 figures, in French

Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems 2025-07-07
Show

Cyber-Physical Systems (CPS) in domains such as manufacturing and energy distribution generate complex time series data crucial for Prognostics and Health Management (PHM). While Deep Learning (DL) methods have demonstrated strong forecasting capabilities, their adoption in industrial CPS remains limited due insufficient robustness. Existing robustness evaluations primarily focus on formal verification or adversarial perturbations, inadequately representing the complexities encountered in real-world CPS scenarios. To address this, we introduce a practical robustness definition grounded in distributional robustness, explicitly tailored to industrial CPS, and propose a systematic framework for robustness evaluation. Our framework simulates realistic disturbance

About

This repository implements an automated crawling tool for topics about "data mining" papers from the arXiv preprint website.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages