- This is the official repository of the paper "MDSC-Net: Multi-modal Discriminative Sparse Coding Driven RGB-D Classification Network" from IEEE Transactions on Multimedia (TMM). [Paper Link]

- Python >= 3.5
- PyTorch == 1.7.1 is recommended
- opencv-python = =3.4.9.31
- tqdm
- scikit-image == 0.15.0
- scipy == 1.3.1
- Matlab
- For RGB-D image classification task, adopt the Washington RGB-D object dataset (WRGBD) and the JHUIT-50 object dataset for training and testing training and testing.
All the training and testing images for classification task used in this paper can be downloaded from the [Google Drive Link]
https://github.com/JingyiXu404/MDSC-Net.git
https://drive.google.com/drive/folders/15lCYy0HyM1Q1Bw7rH29rJOaZqpmIhVaa?usp=sharing
1. Prepare dataset: If you do not use same datasets as us, place the test images in data/xxx_dataset/.
xxx_dataset
└── category 1
└── instance 1
├── xxx_crop.png
├── ....
└── xxx_depthsn.png
└── other instances from category 1
└── category 2
└── instance 1
├── xxx_crop.png
├── ....
└── xxx_depthsn.png
└── other instances from category 2
└── other categories
2. Setup configurations: In main.py.
"dataset_path": "/data/WRGBD/"
3. Run:
export PYTHONPATH=$PYTHONPATH:utils/
python main.py --batch-size 32 --split-no [split number, from 1 to 10] --qloss ['True' for using discriminative loss, 'False' for not] --gpu 'True' --cu 'True' --phase 'test'
If you find our work useful in your research or publication, please cite our work:
release soon
If you have any question about our work or code, please email jingyixu@buaa.edu.cn .

