Skip to content

Krish-B-Shah/Quant-Lab-Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🐊 GatorAI

Quant Lab

A structured pipeline for market data acquisition, cleaning, feature engineering, backtesting strategies, and portfolio optimization with an interactive Streamlit dashboard.

Focus: SPY, QQQ, and IWM


📋 Table of Contents


🧱 Project Structure

GatorAI/
├── data/                 # Raw and processed datasets, test samples
├── src/                  # Core Python modules
│   ├── data/            # Data acquisition and processing
│   ├── backtesting/     # Backtesting engine
│   ├── optimization/    # Portfolio optimization
│   └── dashboard/       # Streamlit application
├── notebooks/           # Jupyter notebooks for exploration
├── tests/               # Unit and integration tests
├── docs/                # Documentation and guides
└── scripts/             # Utility scripts

⚙️ Quickstart

1. Set up environment

# Create virtual environment
python -m venv venv

# Activate (Unix/macOS)
source venv/bin/activate

# Activate (Windows)
venv\Scripts\activate

2. Install dependencies

pip install -r requirements.txt

3. Generate sample data (optional)

python scripts/generate_sample_data.py

4. Launch dashboard

streamlit run src/dashboard/app.py

🎯 Targets and Tickers

Initial Focus: SPY, QQQ, IWM

Extend ticker universe via:

  • src/data/utils.py — Configuration utilities
  • src/data/fetch_data.py — Data acquisition functions

🧪 Testing

Run all tests:

pytest -q

🧩 Tech Stack

Languages: Python

Libraries: pandas, numpy, matplotlib, yfinance, PyPortfolioOpt, scikit-learn, streamlit, plotly

Tools: Git, Jupyter, Streamlit, pytest


📈 Project Goals

  • Build a modular, reproducible research environment for quantitative portfolio optimization
  • Implement AI-assisted risk and return modeling
  • Develop an interactive dashboard for real-time portfolio analysis and backtesting
  • Deliver a polished, production-ready prototype by end of semester

🗓️ Development Roadmap

Phase Weeks Focus
Phase 1 1–3 Data collection, cleaning, and pipeline setup
Phase 2 4–6 Backtesting engine and performance metrics
Phase 3 7–8 Portfolio optimization and AI modeling
Phase 4 9–10 Dashboard integration, testing, and documentation

🧠 Team

University of Florida — Fall 2025

  • Krish Shah — Team Lead / Integration & Architecture
  • Neerav Gandhi
  • Sparsh Mogha
  • Son Tran
  • Navaj Sivkumar
  • Mahdi Haque
  • Muhammad Ismael
  • Sidhharth Radhakrishnan
  • Pratik Patil

🤝 Contributions

We follow a simple Git workflow:

  1. Create a new branch for your feature
  2. Commit with clear, descriptive messages
  3. Open a Pull Request
  4. Merge after review and testing

📜 License

This project is licensed under the MIT License. See LICENSE for details.


📫 Contact

Team Lead: Krish Shah
Institution: University of Florida
Semester: Fall 2025

About

Gator AI - Quant Lab Group Project

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 7

Languages