Skip to content

Lackadaisical-Security/Spectral-Deepmesh-Copilot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

4 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿง  Spectral DeepMesh Copilot - Deep Translator Engine

Production-ready modular translator for ancient, constructed, and partially deciphered languages

License Python Status Tests

Developer: Lackadaisical Security 2025
Website: https://lackadaisical-security.com
Support: linguistics@lackadaisical-security.com | support@lackadaisical-security.com
GitHub: https://github.com/Lackadaisical-Security


๐ŸŒŸ Overview

The Spectral DeepMesh Copilot Translator Engine is a cutting-edge production system that leverages OpenAI's o3 Deep Research API to provide multi-layered symbol and language translation. Designed for ancient scripts, constructed languages, and partially deciphered writing systems with comprehensive testing and professional documentation.

โœจ Key Features

  • Complete Translation Pipeline: Symbol ID โ†” Gloss โ†” Transliteration with confidence scoring
  • Advanced Pattern Recognition: Chant cycles, genealogy patterns, creation triads detection
  • Production Web Interface: Responsive HTML/CSS/JS with drag-and-drop functionality
  • SVG Glyph Visualization: 7 rendering styles for professional output
  • Comprehensive Testing: 81/81 tests passing across all components
  • Multi-Format Support: ZIP, JSON, CSV dataset ingestion
  • Real-time Processing: Live translation with confidence indicators
  • Professional Documentation: Complete API reference and user guides
  • Undeciphered Scripts Gallery: Authentic visual representations of ancient writing systems
  • Glyph Generator: Extract and export individual glyphs as SVG/PNG from text or datasets

๐ŸŽจ New Features

Undeciphered Scripts Gallery

Explore authentic visual representations of ancient undeciphered writing systems:

  • Rongorongo Script (Easter Island) - 700+ glyphs in boustrophedon format
  • Linear A (Minoan Crete) - Administrative tablets with syllabic signs
  • Indus Valley Script (Harappan seals) - 400+ symbols from ancient India
  • Proto-Elamite (Ancient Iran) - One of the earliest writing systems

Access the gallery at: frontend/script_gallery.html or click "Scripts Gallery" in the web interface.

Glyph Generator ๐Ÿ†•

Generate individual glyph/symbol SVG and PNG files from text, images, or datasets!

Quick Start:

# Generate from text
python generate_glyphs.py --text "Ancient Text" --language rongorongo --output ./glyphs

# Generate from dataset
python generate_glyphs.py --dataset data/lexicon.json --output ./catalog --png

# Generate samples
python generate_glyphs.py --script linear_a --count 100 --style scholarly

Features:

  • ๐Ÿ“ Extract glyphs from text or datasets
  • ๐ŸŽจ Multiple rendering styles (basic, artistic, scholarly, cuneiform, hieroglyphic, etc.)
  • ๐Ÿ“ฆ Batch processing support
  • ๐Ÿ–ผ๏ธ SVG and PNG export
  • ๐Ÿ”ง Python API for programmatic use

See GLYPH_GENERATOR_GUIDE.md for complete documentation.

๐Ÿš€ Quick Start

Prerequisites

  • Python 3.11 or higher
  • OpenAI API key with o3 Deep Research access
  • VS Code (recommended) with Python extension

Installation

  1. Clone or download the project to your local machine
  2. Navigate to the project directory:
    cd Deep-Translator-Engine
  3. Install dependencies:
    pip install -r requirements.txt
  4. Configure API key in config.json:
    {
      "api": {
        "headers": {
          "Authorization": "Bearer your-openai-api-key-here"
        }
      }
    }

Basic Usage

from deep_translator_engine import create_engine

# Initialize the engine
engine = create_engine()

# Check status
status = engine.get_status()
print(f"Engine ready: {status['ready']}")

# Translate a symbol
result = engine.translate("606-76-700", input_type="symbol_id")
print(f"Translation: {result['translated_gloss']}")
print(f"Confidence: {result['confidence']}")

Running the Web Interface

The system includes a production-ready web interface:

# Start the production backend server
python production_backend.py

# Or use uvicorn directly
uvicorn production_backend:app --host 0.0.0.0 --port 8000 --reload

# Access the web interface at:
# http://localhost:8000

The web interface provides:

  • ๐ŸŽจ Interactive translation with drag-and-drop
  • ๐Ÿ“Š Real-time confidence scoring
  • ๐Ÿ” Pattern analysis visualization
  • ๐Ÿ“ Dataset management
  • ๐Ÿ–ผ๏ธ Glyph generation and SVG export
  • ๐Ÿ“š Undeciphered Scripts Gallery

Running Tests

Verify your installation:

# Install test dependencies
pip install pytest pytest-asyncio

# Run all tests (should see 81/81 passing)
python -m pytest tests/ -v

๐Ÿ“ Project Structure

Deep-Translator-Engine/
โ”œโ”€โ”€ deep_translator_engine/        # Core engine modules
โ”‚   โ”œโ”€โ”€ __init__.py                # Main orchestrator class
โ”‚   โ”œโ”€โ”€ utils.py                   # Configuration and utilities
โ”‚   โ”œโ”€โ”€ dataset_loader.py          # Dataset ingestion (Phase 2)
โ”‚   โ”œโ”€โ”€ translator.py              # Core translation engine (Phase 3)  
โ”‚   โ”œโ”€โ”€ pattern_matcher.py         # Pattern recognition (Phase 4)
โ”‚   โ”œโ”€โ”€ confidence.py              # Confidence scoring (Phase 5)
โ”‚   โ””โ”€โ”€ svg_renderer.py            # Glyph visualization (Phase 7)
โ”œโ”€โ”€ frontend/                      # Web interface (Phase 6)
โ”‚   โ”œโ”€โ”€ index.html                 # Main interface
โ”‚   โ”œโ”€โ”€ styles.css                 # Styling
โ”‚   โ””โ”€โ”€ app.js                     # Frontend logic
โ”œโ”€โ”€ data/                          # Datasets and lexicons
โ”‚   โ”œโ”€โ”€ [extensive language datasets already available]
โ”œโ”€โ”€ docs/                          # Documentation
โ”‚   โ”œโ”€โ”€ api_config.md              # API configuration guide
โ”‚   โ””โ”€โ”€ implementation_plan.md     # Development roadmap
โ”œโ”€โ”€ tests/                         # Unit and integration tests
โ”œโ”€โ”€ config.json                    # Main configuration file
โ””โ”€โ”€ requirements.txt               # Python dependencies

๐Ÿ”ง Configuration

The engine uses a comprehensive JSON configuration system. Key sections:

API Configuration

{
  "api": {
    "model": "gpt-4o-deep-research",
    "endpoint": "https://api.openai.com/v1/chat/completions",
    "temperature": 0.7,
    "max_tokens": 4096
  }
}

Dataset Settings

{
  "datasets": {
    "data_path": "./data/",
    "supported_formats": ["json", "csv", "jsv", "zip"],
    "auto_load": true,
    "validation": true
  }
}

Translation Parameters

{
  "translation": {
    "bidirectional": true,
    "input_types": ["symbol_id", "phonetic_form", "english_gloss"],
    "pattern_matching": true,
    "include_confidence": true
  }
}

๐Ÿ“Š Supported Datasets

The engine comes with extensive pre-loaded datasets for:

Ancient Languages

  • Akkadian - Cuneiform script and lexicon
  • Sumerian - Early cuneiform with Borger signs
  • Elamite - Linear Elamite and cuneiform variants
  • Ancient Greek - Classical grammar and lexicon
  • Gothic - Germanic runic script
  • Norse - Elder Futhark runes

Undeciphered Scripts

  • Rongorongo - Easter Island script
  • Linear B - Mycenaean Greek (partially deciphered)
  • Proto-Elamite - Early Iranian script
  • Maya Glyphs - Mayan hieroglyphic writing

Constructed Languages

  • Khuzdul - Tolkien's Dwarvish
  • Eldar Scripts - Elvish writing systems
  • Klingon - Star Trek language

๐Ÿ” Translation Examples

Symbol ID Translation

result = engine.translate("606-76-700", "symbol_id")
# Output: {"translated_gloss": "Birds copulated with fish", 
#          "structure": "creation_triad", "confidence": 0.94}

Phonetic Translation

result = engine.translate("lugal-kur-ra", "phonetic_form") 
# Output: {"translated_gloss": "King of the mountain", 
#          "language": "sumerian", "confidence": 0.88}

English to Ancient Script

result = engine.translate("water flows", "english_gloss")
# Output: {"transliteration": "a-mu-ra-ka", 
#          "script": "linear_elamite", "confidence": 0.76}

๐ŸŽฏ Development Phases

โœ… Phase 1: Project Setup & Core Architecture (Complete)

  • Project structure created
  • Configuration system implemented
  • Core utilities and logging
  • Base classes and interfaces

โœ… Phase 2: Dataset Management System (Complete)

  • ZIP/JSON/CSV ingestion engine
  • Dataset validation and parsing
  • Internal data structures
  • Symbol/glyph mapping system

โœ… Phase 3: Core Translation Engine (Complete)

  • Bidirectional translation core with OpenAI API
  • Translation pipeline (Symbol ID โ†” Gloss โ†” Transliteration)
  • Basic confidence scoring
  • Source tracking and citations

โœ… Phase 4: Pattern Recognition & Analysis (Complete)

  • Structural pattern detection
  • Chant cycle recognition
  • Genealogy pattern matching
  • Creation triad detection
  • Cyclic formation analysis

โœ… Phase 5: Advanced Confidence System (Complete)

  • Advanced certainty weighting
  • Multi-source validation
  • Decipherment phase tracking
  • Quality metrics dashboard

โœ… Phase 6: Web Frontend Interface (Complete)

  • Responsive HTML/CSS/JS interface
  • Drag-and-drop dataset loading
  • Glyph input system
  • Result visualization panels
  • Confidence indicators

โœ… Phase 7: Glyph Visualization & Advanced Features (Complete)

  • SVG renderer with 7 rendering styles
  • Glyph template system
  • Sequence rendering with multiple layouts
  • Batch export functionality
  • Undeciphered Scripts Gallery
  • Individual Glyph Generator

โœ… Phase 8: Testing & Documentation (Complete)

  • Comprehensive unit testing (81/81 tests passing)
  • Integration testing with real datasets
  • Performance optimization
  • Complete documentation suite
  • API reference guide
  • Export compliance documentation

๐Ÿ”„ Phase 9: Deployment & Integration (Optional Extensions)

  • VS Code extension integration (API ready)
  • CLI interface development (Framework ready)
  • Mesh deployment compatibility (Ready for integration)
  • Remote API deployment options (Production-ready codebase available)

Note: Phases 1-8 are complete. Phase 9 provides optional deployment enhancements. The core system is production-ready and fully functional.

๐Ÿ“– See PHASE9_DEPLOYMENT_OPTIONS.md for detailed implementation guides and recommendations.


๐Ÿงช Testing

Run the comprehensive test suite to verify functionality:

# Run all tests (81 tests across all phases)
python -m pytest tests/

# Run with verbose output
python -m pytest tests/ -v

# Run specific test category
python -m pytest tests/test_phase2.py  # Dataset loader tests
python -m pytest tests/test_phase3.py  # Translation engine tests
python -m pytest tests/test_phase4.py  # Pattern recognition tests
python -m pytest tests/test_phase5.py  # Confidence system tests
python -m pytest tests/test_phase7.py  # SVG renderer tests
python -m pytest tests/test_glyph_generator.py  # Glyph generator tests
python -m pytest tests/test_script_gallery.py  # Script gallery tests

Current Test Status: โœ… 81/81 passing (100% success rate)


๐Ÿ“š Documentation

Comprehensive documentation is available in the docs/ folder:


๐Ÿค Contributing

This project is developed by Lackadaisical Security 2025. While primarily an internal project, contributions and feedback are welcome.

Development Guidelines

  1. Follow existing code style and structure
  2. Add comprehensive tests for new features
  3. Update documentation for any API changes
  4. Ensure all phases are completed sequentially

๐Ÿ“œ License

Dual License: MIT / LQX-20

  • MIT License: For local use, educational purposes, and open-source projects
  • LQX-20 Private License: For commercial use, mesh-integrated primitives, and enterprise deployment

See LICENSE for full details.


๐Ÿ”ฎ Future Vision

The Spectral DeepMesh Copilot is designed to become the definitive tool for:

  • Archaeological Research: Real-time translation of newly discovered inscriptions
  • Linguistic Analysis: Pattern detection in partially deciphered scripts
  • Educational Tools: Interactive learning for ancient languages
  • Game Development: Authentic constructed language support
  • Academic Research: Multi-source validation for translation hypotheses

๐Ÿ“ž Support

For technical support, bug reports, or feature requests:

  • Developer: Lackadaisical Security 2025
  • Project Status: Production Ready โœ…
  • Current Phase: 8 of 9 Complete (Phase 9: Optional Deployment Extensions)
  • Test Status: 81/81 Passing โœ…

"Bridging the gap between ancient wisdom and modern AI" - Spectral DeepMesh Copilot


Status: Phases 1-8 Complete โœ… | Production Ready ๐Ÿš€ | Phase 9: Optional Extensions Available ๐Ÿ”„

About

Documentation for The Spectral DeepMesh Copilot Translator Engine

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •