Production-ready modular translator for ancient, constructed, and partially deciphered languages
Developer: Lackadaisical Security 2025
Website: https://lackadaisical-security.com
Support: linguistics@lackadaisical-security.com | support@lackadaisical-security.com
GitHub: https://github.com/Lackadaisical-Security
The Spectral DeepMesh Copilot Translator Engine is a cutting-edge production system that leverages OpenAI's o3 Deep Research API to provide multi-layered symbol and language translation. Designed for ancient scripts, constructed languages, and partially deciphered writing systems with comprehensive testing and professional documentation.
- Complete Translation Pipeline: Symbol ID โ Gloss โ Transliteration with confidence scoring
- Advanced Pattern Recognition: Chant cycles, genealogy patterns, creation triads detection
- Production Web Interface: Responsive HTML/CSS/JS with drag-and-drop functionality
- SVG Glyph Visualization: 7 rendering styles for professional output
- Comprehensive Testing: 81/81 tests passing across all components
- Multi-Format Support: ZIP, JSON, CSV dataset ingestion
- Real-time Processing: Live translation with confidence indicators
- Professional Documentation: Complete API reference and user guides
- Undeciphered Scripts Gallery: Authentic visual representations of ancient writing systems
- Glyph Generator: Extract and export individual glyphs as SVG/PNG from text or datasets
Explore authentic visual representations of ancient undeciphered writing systems:
- Rongorongo Script (Easter Island) - 700+ glyphs in boustrophedon format
- Linear A (Minoan Crete) - Administrative tablets with syllabic signs
- Indus Valley Script (Harappan seals) - 400+ symbols from ancient India
- Proto-Elamite (Ancient Iran) - One of the earliest writing systems
Access the gallery at: frontend/script_gallery.html or click "Scripts Gallery" in the web interface.
Generate individual glyph/symbol SVG and PNG files from text, images, or datasets!
Quick Start:
# Generate from text
python generate_glyphs.py --text "Ancient Text" --language rongorongo --output ./glyphs
# Generate from dataset
python generate_glyphs.py --dataset data/lexicon.json --output ./catalog --png
# Generate samples
python generate_glyphs.py --script linear_a --count 100 --style scholarlyFeatures:
- ๐ Extract glyphs from text or datasets
- ๐จ Multiple rendering styles (basic, artistic, scholarly, cuneiform, hieroglyphic, etc.)
- ๐ฆ Batch processing support
- ๐ผ๏ธ SVG and PNG export
- ๐ง Python API for programmatic use
See GLYPH_GENERATOR_GUIDE.md for complete documentation.
- Python 3.11 or higher
- OpenAI API key with o3 Deep Research access
- VS Code (recommended) with Python extension
- Clone or download the project to your local machine
- Navigate to the project directory:
cd Deep-Translator-Engine - Install dependencies:
pip install -r requirements.txt
- Configure API key in
config.json:{ "api": { "headers": { "Authorization": "Bearer your-openai-api-key-here" } } }
from deep_translator_engine import create_engine
# Initialize the engine
engine = create_engine()
# Check status
status = engine.get_status()
print(f"Engine ready: {status['ready']}")
# Translate a symbol
result = engine.translate("606-76-700", input_type="symbol_id")
print(f"Translation: {result['translated_gloss']}")
print(f"Confidence: {result['confidence']}")The system includes a production-ready web interface:
# Start the production backend server
python production_backend.py
# Or use uvicorn directly
uvicorn production_backend:app --host 0.0.0.0 --port 8000 --reload
# Access the web interface at:
# http://localhost:8000The web interface provides:
- ๐จ Interactive translation with drag-and-drop
- ๐ Real-time confidence scoring
- ๐ Pattern analysis visualization
- ๐ Dataset management
- ๐ผ๏ธ Glyph generation and SVG export
- ๐ Undeciphered Scripts Gallery
Verify your installation:
# Install test dependencies
pip install pytest pytest-asyncio
# Run all tests (should see 81/81 passing)
python -m pytest tests/ -vDeep-Translator-Engine/
โโโ deep_translator_engine/ # Core engine modules
โ โโโ __init__.py # Main orchestrator class
โ โโโ utils.py # Configuration and utilities
โ โโโ dataset_loader.py # Dataset ingestion (Phase 2)
โ โโโ translator.py # Core translation engine (Phase 3)
โ โโโ pattern_matcher.py # Pattern recognition (Phase 4)
โ โโโ confidence.py # Confidence scoring (Phase 5)
โ โโโ svg_renderer.py # Glyph visualization (Phase 7)
โโโ frontend/ # Web interface (Phase 6)
โ โโโ index.html # Main interface
โ โโโ styles.css # Styling
โ โโโ app.js # Frontend logic
โโโ data/ # Datasets and lexicons
โ โโโ [extensive language datasets already available]
โโโ docs/ # Documentation
โ โโโ api_config.md # API configuration guide
โ โโโ implementation_plan.md # Development roadmap
โโโ tests/ # Unit and integration tests
โโโ config.json # Main configuration file
โโโ requirements.txt # Python dependencies
The engine uses a comprehensive JSON configuration system. Key sections:
{
"api": {
"model": "gpt-4o-deep-research",
"endpoint": "https://api.openai.com/v1/chat/completions",
"temperature": 0.7,
"max_tokens": 4096
}
}{
"datasets": {
"data_path": "./data/",
"supported_formats": ["json", "csv", "jsv", "zip"],
"auto_load": true,
"validation": true
}
}{
"translation": {
"bidirectional": true,
"input_types": ["symbol_id", "phonetic_form", "english_gloss"],
"pattern_matching": true,
"include_confidence": true
}
}The engine comes with extensive pre-loaded datasets for:
- Akkadian - Cuneiform script and lexicon
- Sumerian - Early cuneiform with Borger signs
- Elamite - Linear Elamite and cuneiform variants
- Ancient Greek - Classical grammar and lexicon
- Gothic - Germanic runic script
- Norse - Elder Futhark runes
- Rongorongo - Easter Island script
- Linear B - Mycenaean Greek (partially deciphered)
- Proto-Elamite - Early Iranian script
- Maya Glyphs - Mayan hieroglyphic writing
- Khuzdul - Tolkien's Dwarvish
- Eldar Scripts - Elvish writing systems
- Klingon - Star Trek language
result = engine.translate("606-76-700", "symbol_id")
# Output: {"translated_gloss": "Birds copulated with fish",
# "structure": "creation_triad", "confidence": 0.94}result = engine.translate("lugal-kur-ra", "phonetic_form")
# Output: {"translated_gloss": "King of the mountain",
# "language": "sumerian", "confidence": 0.88}result = engine.translate("water flows", "english_gloss")
# Output: {"transliteration": "a-mu-ra-ka",
# "script": "linear_elamite", "confidence": 0.76}- Project structure created
- Configuration system implemented
- Core utilities and logging
- Base classes and interfaces
- ZIP/JSON/CSV ingestion engine
- Dataset validation and parsing
- Internal data structures
- Symbol/glyph mapping system
- Bidirectional translation core with OpenAI API
- Translation pipeline (Symbol ID โ Gloss โ Transliteration)
- Basic confidence scoring
- Source tracking and citations
- Structural pattern detection
- Chant cycle recognition
- Genealogy pattern matching
- Creation triad detection
- Cyclic formation analysis
- Advanced certainty weighting
- Multi-source validation
- Decipherment phase tracking
- Quality metrics dashboard
- Responsive HTML/CSS/JS interface
- Drag-and-drop dataset loading
- Glyph input system
- Result visualization panels
- Confidence indicators
- SVG renderer with 7 rendering styles
- Glyph template system
- Sequence rendering with multiple layouts
- Batch export functionality
- Undeciphered Scripts Gallery
- Individual Glyph Generator
- Comprehensive unit testing (81/81 tests passing)
- Integration testing with real datasets
- Performance optimization
- Complete documentation suite
- API reference guide
- Export compliance documentation
- VS Code extension integration (API ready)
- CLI interface development (Framework ready)
- Mesh deployment compatibility (Ready for integration)
- Remote API deployment options (Production-ready codebase available)
Note: Phases 1-8 are complete. Phase 9 provides optional deployment enhancements. The core system is production-ready and fully functional.
๐ See PHASE9_DEPLOYMENT_OPTIONS.md for detailed implementation guides and recommendations.
Run the comprehensive test suite to verify functionality:
# Run all tests (81 tests across all phases)
python -m pytest tests/
# Run with verbose output
python -m pytest tests/ -v
# Run specific test category
python -m pytest tests/test_phase2.py # Dataset loader tests
python -m pytest tests/test_phase3.py # Translation engine tests
python -m pytest tests/test_phase4.py # Pattern recognition tests
python -m pytest tests/test_phase5.py # Confidence system tests
python -m pytest tests/test_phase7.py # SVG renderer tests
python -m pytest tests/test_glyph_generator.py # Glyph generator tests
python -m pytest tests/test_script_gallery.py # Script gallery testsCurrent Test Status: โ 81/81 passing (100% success rate)
Comprehensive documentation is available in the docs/ folder:
- API Reference - Complete API documentation
- User Manual - User guide and tutorials
- Production README - Production deployment guide
This project is developed by Lackadaisical Security 2025. While primarily an internal project, contributions and feedback are welcome.
- Follow existing code style and structure
- Add comprehensive tests for new features
- Update documentation for any API changes
- Ensure all phases are completed sequentially
Dual License: MIT / LQX-20
- MIT License: For local use, educational purposes, and open-source projects
- LQX-20 Private License: For commercial use, mesh-integrated primitives, and enterprise deployment
See LICENSE for full details.
The Spectral DeepMesh Copilot is designed to become the definitive tool for:
- Archaeological Research: Real-time translation of newly discovered inscriptions
- Linguistic Analysis: Pattern detection in partially deciphered scripts
- Educational Tools: Interactive learning for ancient languages
- Game Development: Authentic constructed language support
- Academic Research: Multi-source validation for translation hypotheses
For technical support, bug reports, or feature requests:
- Developer: Lackadaisical Security 2025
- Project Status: Production Ready โ
- Current Phase: 8 of 9 Complete (Phase 9: Optional Deployment Extensions)
- Test Status: 81/81 Passing โ
"Bridging the gap between ancient wisdom and modern AI" - Spectral DeepMesh Copilot
Status: Phases 1-8 Complete โ | Production Ready ๐ | Phase 9: Optional Extensions Available ๐