Skip to content
284 changes: 254 additions & 30 deletions AGCreates.ipynb
Original file line number Diff line number Diff line change
@@ -1,32 +1,256 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "AGCreates.ipynb",
"version": "0.3.2",
"provenance": [],
"include_colab_link": true
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
}
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"[View in Colaboratory](https://colab.research.google.com/github/AGCreates/Assignment-2/blob/AGCreates/AGCreates.ipynb)"
]
},
{
"metadata": {
"id": "FTBef_OJr-Mu",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 136
},
"outputId": "607f64d3-512a-4b67-8c3c-be3d29a4f5be"
},
"cell_type": "code",
"source": [
"import random\n",
"dummy_list = [x for x in range (10)]\n",
"print (\"Dummy List\", dummy_list)\n",
"dummy_list.reverse()\n",
"print (\" Dummy List Reversed\", dummy_list)\n",
"dummy_list_2 = [2, 200, 16, 4, 1, 0, 9.45, 45.67, 90, 12.01, 12.02]\n",
"dummy_list= dummy_list + dummy_list_2\n",
"print(\"Dummy List after addition \", dummy_list)\n",
"\n",
"dummy_list_freq = []\n",
"dummy_list_unique = []\n",
"for x in dummy_list:\n",
" if x not in dummy_list_unique:\n",
" dummy_list_unique.append(x)\n",
"print (\" Dummy List Unique \",dummy_list_unique)\n",
"\n",
"for x in (dummy_list_unique):\n",
" counter=0\n",
" for y in (dummy_list):\n",
" if x==y:\n",
" counter= counter+1\n",
" dummy_list_freq.append(counter)\n",
" \n",
"dummy_dict = dict()\n",
"for i in range (len(dummy_list_unique)):\n",
" for j in range (len(dummy_list_freq)):\n",
" if i == j: dummy_dict[dummy_list_unique[i]] = dummy_list_freq[j]\n",
"print (\"Dummy Dictionary\", dummy_dict)\n",
"dummy_list.sort()\n",
"print (\"Dummy List Sorted Ascending Order\", dummy_list)\n",
"dummy_list.reverse()\n",
"print (\"Dummy List Sorted Descending Order\",dummy_list) \n",
"dummy_list.remove(200)\n",
"print (\"Dummy List Sorted After removing x= 200\", dummy_list)\n",
"index_remove = random.randint(0, len(dummy_list)-1)\n",
"print (\"Removing the value at radom index \", index_remove, \" which is \")\n",
"dummy_list.pop(index_remove)\n",
"print (\"Dummy List after removal of value at random index \", dummy_list)\n",
"print (\"Cleared Dummy List \", dummy_list.clear())"
],
"execution_count": 2,
"outputs": [
{
"output_type": "stream",
"text": [
"Dummy List [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n",
" Dummy List Reversed [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]\n",
"Dummy List after addition [9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 2, 200, 16, 4, 1, 0, 9.45, 45.67, 90, 12.01, 12.02]\n",
" Dummy List Unique [9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 200, 16, 9.45, 45.67, 90, 12.01, 12.02]\n",
"Dummy Dictionary {9: 1, 8: 1, 7: 1, 6: 1, 5: 1, 4: 2, 3: 1, 2: 2, 1: 2, 0: 2, 200: 1, 16: 1, 9.45: 1, 45.67: 1, 90: 1, 12.01: 1, 12.02: 1}\n",
"Dummy List Sorted Ascending Order [0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 9, 9.45, 12.01, 12.02, 16, 45.67, 90, 200]\n",
"Dummy List Sorted Descending Order [200, 90, 45.67, 16, 12.02, 12.01, 9.45, 9, 8, 7, 6, 5, 4, 4, 3, 2, 2, 1, 1, 0, 0]\n"
],
"name": "stdout"
}
]
},
{
"metadata": {
"id": "7wkOxQUpzRl2",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 986
},
"outputId": "877ad255-e68e-4042-ea73-8d701553ec76"
},
"cell_type": "code",
"source": [
"import numpy as np\n",
"\n",
"#Numpy examples have been tried out but haven not been added here.\n",
"#This part consists of the Numpy Exercise only \n",
"\n",
"\n",
"unisub = np.linspace(-1.3, 2.5, 64)\n",
"print (\"Uniform Subdivision: \\n\", unisub) \n",
"\n",
"n = 8\n",
"cyc= np.array([1, 2, 3])\n",
"cyc = np.resize(cyc, 3 * n) \n",
"print(\"Cyclic Pattern \\n\", cyc) \n",
"\n",
"oddarr = np.arange(1, 2 * 10, 2)\n",
"print (\" First 10 odd int array:\\n\", oddarr) \n",
"\n",
"\n",
"a = np.array([1,2,3,2,3,4,3,4,5,6])\n",
"b = np.array([7,2,10,2,7,4,9,4,9,8])\n",
"\n",
"intersect = np.intersect1d(a, b)\n",
"print(\"Intersection array \\n\", intersect)\n",
"\n",
"a = np.arange(10)\n",
" \n",
"a = a.reshape(2, 5)\n",
" \n",
"print(\"Reshaped Array \\n\", a)\n",
"\n",
"\n",
"a = [1, 2, 3, 4, 5, 6, 7, 8, 9]\n",
" \n",
"a = np.array(a)\n",
"print(\"List to Numpy Array: \\n\", a)\n",
" \n",
"a= list(a)\n",
"print(\"Numpy Array to List: \\n\", a)\n",
"\n",
"\n",
"\n",
"\n",
"n = 10\n",
"arr = np.zeros(shape = (n, n))\n",
"print(\"Array of Zeroes: \\n\", arr)\n",
"print()\n",
"arr[n - 1, :] = np.ones(n)\n",
"arr[:, 0] = np.ones(n)\n",
"arr[:, n - 1] = np.ones(n)\n",
"arr[0, :] = np.ones(n)\n",
"print(\"Array of Zeroes bounded by 1:\\n\", arr)\n",
" \n",
"\n",
"n=8 \n",
" \n",
"print(\"Checkerboard:\")\n",
"x = np.zeros((n, n), dtype = int) \n",
"x[1::2, ::2] = 1\n",
"x[::2, 1::2] = 1\n",
" \n",
"for i in range(n): \n",
" for j in range(n): \n",
" print(x[i][j], end= \" \",) \n",
" print() \n",
" "
],
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"text": [
"Uniform Subdivision: \n",
" [-1.3 -1.23968254 -1.17936508 -1.11904762 -1.05873016 -0.9984127\n",
" -0.93809524 -0.87777778 -0.81746032 -0.75714286 -0.6968254 -0.63650794\n",
" -0.57619048 -0.51587302 -0.45555556 -0.3952381 -0.33492063 -0.27460317\n",
" -0.21428571 -0.15396825 -0.09365079 -0.03333333 0.02698413 0.08730159\n",
" 0.14761905 0.20793651 0.26825397 0.32857143 0.38888889 0.44920635\n",
" 0.50952381 0.56984127 0.63015873 0.69047619 0.75079365 0.81111111\n",
" 0.87142857 0.93174603 0.99206349 1.05238095 1.11269841 1.17301587\n",
" 1.23333333 1.29365079 1.35396825 1.41428571 1.47460317 1.53492063\n",
" 1.5952381 1.65555556 1.71587302 1.77619048 1.83650794 1.8968254\n",
" 1.95714286 2.01746032 2.07777778 2.13809524 2.1984127 2.25873016\n",
" 2.31904762 2.37936508 2.43968254 2.5 ]\n",
"Cyclic Pattern \n",
" [1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3]\n",
" First 10 odd int array:\n",
" [ 1 3 5 7 9 11 13 15 17 19]\n",
"Intersection array \n",
" [2 4]\n",
"Reshaped Array \n",
" [[0 1 2 3 4]\n",
" [5 6 7 8 9]]\n",
"List to Numpy Array: \n",
" [1 2 3 4 5 6 7 8 9]\n",
"Numpy Array to List: \n",
" [1, 2, 3, 4, 5, 6, 7, 8, 9]\n",
"Array of Zeroes: \n",
" [[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
" [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
" [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
" [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
" [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
" [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
" [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
" [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
" [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
" [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]\n",
"\n",
"Array of Zeroes bounded by 1:\n",
" [[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
" [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
" [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
" [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
" [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
" [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
" [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
" [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
" [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]\n",
"Checkerboard:\n",
"0 1 0 1 0 1 0 1 \n",
"1 0 1 0 1 0 1 0 \n",
"0 1 0 1 0 1 0 1 \n",
"1 0 1 0 1 0 1 0 \n",
"0 1 0 1 0 1 0 1 \n",
"1 0 1 0 1 0 1 0 \n",
"0 1 0 1 0 1 0 1 \n",
"1 0 1 0 1 0 1 0 \n"
],
"name": "stdout"
}
]
},
{
"metadata": {
"id": "dozwmoLWM_jJ",
"colab_type": "code",
"colab": {}
},
"cell_type": "code",
"source": [
""
],
"execution_count": 0,
"outputs": []
}
]
}
Loading