Minseung Lee¹, Seokha Moon¹, Seung Joon Lee², Reza Mahjourian³, and Jinkyu Kim¹
¹CSE, Korea University · ²LG Innotek · ³Waymo Research
| Method | Training Time | Car@R40 | Pedestrian@R40 | Cyclist@R40 | Download |
|---|---|---|---|---|---|
| ImagePG | ~12 hours | 85.67 | 71.01 | 78.94 | ckpt |
Note that ImagePG is trained with 8 NVIDIA A6000 GPUs.
Clone and create conda environment.
git clone https://github.com/MS-LIMA/ImagePG.git
cd ImagePG
conda create -n imagepg python=3.8 -y
conda activate imagepgDownload pretrained 2D backbone weight.
mkdir -p ckpt
cd ckpt
wget https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
cd ..Install requirements.
pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
pip install "git+https://github.com/facebookresearch/pytorch3d.git@v0.7.7"
pip install spconv-cu113Compile libraries.
pip install -v -e .
cd pcdet/ops/deform_attn/ops
python setup.py build develop
cd ../../../..data/
└── kitti/
├── training/
│ ├── calib/
│ ├── image_2/
│ ├── label_2/
│ ├── velodyne/
│ └── planes/
├── testing/
│ ├── calib/
│ ├── image_2/
│ ├── velodyne/
└── train_mirror_target/
├── bm_5maxdist_2num_Cyclist/
├── bm_5maxdist_2num_Pedestrian/
└── bm_50maxdist_2num_Car/Follow the guide from OpenPCDet to prepare dataset. In addition, please refer to BtcDet to download dense point cloud (train_mirror_target) for KITTI dataset.
cd tools# 4 GPUs
bash scripts/dist_train.sh 4 \
--cfg_file cfgs/kitti_models/imagepg.yaml# 4 GPUs
bash scripts/dist_test.sh 4 \
--cfg_file cfgs/kitti_models/imagepg.yaml \
--ckpt ../ckpt/imagepg_kitti.pth \
--extra_tag val \
--batch_size 4 We thank for the multiple great open-sourced code bases.
@article{lee2025imagepg,
title={Image-Guided Semantic Pseudo-LiDAR Point Generation for 3D Object Detection},
author={Minseung Lee and Seokha Moon and Seung Joon Lee and Reza Mahjourian and Jinkyu Kim},
year={2025},
eprint={2409.14985},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2409.14985},
}

