Skip to content

MS-LIMA/ImagePG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Image-Guided Semantic Pseudo-LiDAR Point Generation for 3D Object Detection

Minseung Lee¹, Seokha Moon¹, Seung Joon Lee², Reza Mahjourian³, and Jinkyu Kim¹
¹CSE, Korea University · ²LG Innotek · ³Waymo Research

Paper PDF

Overview

Model Zoo

Method Training Time Car@R40 Pedestrian@R40 Cyclist@R40 Download
ImagePG ~12 hours 85.67 71.01 78.94 ckpt

Note that ImagePG is trained with 8 NVIDIA A6000 GPUs.

Installation

Clone and create conda environment.

git clone https://github.com/MS-LIMA/ImagePG.git
cd ImagePG

conda create -n imagepg python=3.8 -y
conda activate imagepg

Download pretrained 2D backbone weight.

mkdir -p ckpt
cd ckpt

wget https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
cd ..

Install requirements.

pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
pip install "git+https://github.com/facebookresearch/pytorch3d.git@v0.7.7"
pip install spconv-cu113

Compile libraries.

pip install -v -e . 
cd pcdet/ops/deform_attn/ops
python setup.py build develop
cd ../../../..

Dataset Setup

data/
└── kitti/
    ├── training/
    │   ├── calib/         
    │   ├── image_2/       
    │   ├── label_2/       
    │   ├── velodyne/      
    │   └── planes/
    ├── testing/
    │   ├── calib/         
    │   ├── image_2/      
    │   ├── velodyne/
    └── train_mirror_target/
        ├── bm_5maxdist_2num_Cyclist/
        ├── bm_5maxdist_2num_Pedestrian/
        └── bm_50maxdist_2num_Car/

Follow the guide from OpenPCDet to prepare dataset. In addition, please refer to BtcDet to download dense point cloud (train_mirror_target) for KITTI dataset.

Training & Evaluation

cd tools

Train on KITTI

# 4 GPUs
bash scripts/dist_train.sh 4 \
--cfg_file cfgs/kitti_models/imagepg.yaml

Evaluate

# 4 GPUs
bash scripts/dist_test.sh 4 \
--cfg_file cfgs/kitti_models/imagepg.yaml \
--ckpt ../ckpt/imagepg_kitti.pth \
--extra_tag val \
--batch_size 4  

Acknowledgements

We thank for the multiple great open-sourced code bases.

Citation

@article{lee2025imagepg,
      title={Image-Guided Semantic Pseudo-LiDAR Point Generation for 3D Object Detection}, 
      author={Minseung Lee and Seokha Moon and Seung Joon Lee and Reza Mahjourian and Jinkyu Kim},
      year={2025},
      eprint={2409.14985},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2409.14985}, 
}

About

Image-Guided Semantic Pseudo-LiDAR Point Generation for 3D Object Detection (WACV 2026)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published