Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 12 additions & 4 deletions custom_model.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from chainer import functions as F
from chainer.functions.pooling.average_pooling_2d import average_pooling_2d
from chainer import links as L
from chainer import Chain
from resnet_group_norm import ResNet as ResNetGroupNorm
Expand All @@ -8,17 +9,24 @@ class CustomModel(Chain):
def __init__(self, n_actions):
super(CustomModel, self).__init__()
with self.init_scope():
self.resNet=L.ResNet50Layers()
self.l1=L.Linear(2138, 1024)
self.resNet=ResNetGroupNorm(n_layers=18)
self.l1=L.Linear(602, 1024)
self.l2=L.Linear(1024, 1024)
self.l3=L.Linear(1024, n_actions)

def forward(self, x):
image, history = x[0], x[1]
image = F.reshape(image, (-1,3,224,224))
history = F.reshape(history.astype('float32'),(-1,90))
h1 = F.relu(self.resNet(image, layers=['pool5'])['pool5'])
h1 = F.reshape(F.concat((h1, history), axis=1), (-1,2138))
h1 = self.resNet(image)

# pooling as done here: https://github.com/chainer/chainer/blob/v6.0.0/chainer/links/model/vision/resnet.py#L655
n, channel, rows, cols = h1.shape
h1 = average_pooling_2d(h1, (rows, cols), stride=1)
h1 = F.reshape(h1, (n, channel))

h1 = F.relu(h1)
h1 = F.reshape(F.concat((h1, history), axis=1), (-1,602))
h2 = F.relu(self.l1(h1))
h3 = F.relu(self.l2(h2))
return F.relu(self.l3(h3))
40 changes: 20 additions & 20 deletions resnet_group_norm.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,11 +47,11 @@ def __init__(self, n_layers, class_labels=None):
self.res4 = BasicBlock(block[2], 512)
elif n_layers in [18, 20, 21, 34]:
self.conv1 = L.Convolution2D(3, 64, 7, 2, 3, initialW=w, nobias=True)
self.bn1 = L.GroupNormalization(16)
self.res2 = BasicBlock(block[0], 64, 1, num_groups=16)
self.res3 = BasicBlock(block[1], 128)
self.res4 = BasicBlock(block[2], 256)
self.res5 = BasicBlock(block[3], 512)
self.bn1 = L.GroupNormalization(16, 64)
self.res2 = BasicBlock(block[0], 64, 64, 1, num_groups=16)
self.res3 = BasicBlock(block[1], 64, 128)
self.res4 = BasicBlock(block[2], 128, 256)
self.res5 = BasicBlock(block[3], 256, 512)
elif n_layers in [32, 44, 56, 110]:
self.conv1 = L.Convolution2D(3, 16, 7, 2, 3, initialW=w, nobias=True)
self.bn1 = L.GroupNormalization(8)
Expand Down Expand Up @@ -98,12 +98,12 @@ def __call__(self, x):

class BasicBlock(chainer.ChainList):

def __init__(self, layer, ch, stride=2, num_groups=32):
def __init__(self, layer, input_ch, output_ch, stride=2, num_groups=32):
super(BasicBlock, self).__init__()
with self.init_scope():
self.add_link(BasicA(ch, stride, num_groups))
self.add_link(BasicA(input_ch, output_ch, stride, num_groups))
for i in range(layer - 1):
self.add_link(BasicB(ch, num_groups))
self.add_link(BasicB(output_ch, num_groups))

def __call__(self, x):
for f in self.children():
Expand All @@ -127,18 +127,18 @@ def __call__(self, x):

class BasicA(chainer.Chain):

def __init__(self, ch, stride, num_groups):
def __init__(self, input_ch, output_ch, stride, num_groups):
super(BasicA, self).__init__()
w = chainer.initializers.HeNormal()

with self.init_scope():
self.conv1 = L.Convolution2D(None, ch, 3, stride, 1, initialW=w, nobias=True)
self.bn1 = L.GroupNormalization(num_groups)
self.conv2 = L.Convolution2D(None, ch, 3, 1, 1, initialW=w, nobias=True)
self.bn2 = L.GroupNormalization(num_groups)
self.conv1 = L.Convolution2D(input_ch, output_ch, 3, stride, 1, initialW=w, nobias=True)
self.bn1 = L.GroupNormalization(num_groups, output_ch)
self.conv2 = L.Convolution2D(output_ch, output_ch, 3, 1, 1, initialW=w, nobias=True)
self.bn2 = L.GroupNormalization(num_groups, output_ch)

self.conv3 = L.Convolution2D(None, ch, 3, stride, 1, initialW=w, nobias=True)
self.bn3 = L.GroupNormalization(num_groups)
self.conv3 = L.Convolution2D(input_ch, output_ch, 3, stride, 1, initialW=w, nobias=True)
self.bn3 = L.GroupNormalization(num_groups, output_ch)

def __call__(self, x):
h1 = F.relu(self.bn1(self.conv1(x)))
Expand All @@ -155,10 +155,10 @@ def __init__(self, ch, num_groups):
w = chainer.initializers.HeNormal()

with self.init_scope():
self.conv1 = L.Convolution2D(None, ch, 3, 1, 1, initialW=w, nobias=True)
self.bn1 = L.GroupNormalization(num_groups)
self.conv2 = L.Convolution2D(None, ch, 3, 1, 1, initialW=w, nobias=True)
self.bn2 = L.GroupNormalization(num_groups)
self.conv1 = L.Convolution2D(ch, ch, 3, 1, 1, initialW=w, nobias=True)
self.bn1 = L.GroupNormalization(num_groups, ch)
self.conv2 = L.Convolution2D(ch, ch, 3, 1, 1, initialW=w, nobias=True)
self.bn2 = L.GroupNormalization(num_groups, ch)

def __call__(self, x):
h = F.relu(self.bn1(self.conv1(x)))
Expand Down Expand Up @@ -220,4 +220,4 @@ def __call__(self, x):
h = F.relu(self.bn2(self.conv2(h)))
h = self.bn3(self.conv3(h))

return F.relu(h + x)
return F.relu(h + x)